

LITERATURE

In addition to the product line handbooks listed below, the INTEL PRODUCT GUIDE (no charge,
Order No. 210846-003) provides an overview of Intel's complete product lines and customer services.

Consult the INTEL LITERATURE GUIDE (Order No. 210620) for a listing of Intel literature. TO
ORDER literature in the U.S., write or call the INTEL LITERATURE DEPARTMENT, 3065 Bowers
Avenue, Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER
literature from international locations, contact the nearest Intcl sales office ordistributor(see hstings in
the back of most any Intel literature).

Use the order blank on the facing page or call our TOLL FREE number listed aboveto order literature.
Remember to add your local sales tax.

1985 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprmts and other design
information.

QUALITY/RELIABILITY HANDBOOK (Order No. 210997-001)
Contains technical details of both quality and reliability programs and principles.

CHMOS HANDBOOK (Order No. 290005-001)
Contains data sheets only on all microprocessor, peripheral, microcontroller and
memory CHMOS components.

MEMORY COMPONENTS HANDBOOK (Order No. 210830-004)

TEIJECOMMUNICATION PRODUCTS HANDBOOK (Order No. 230730-003)

MICRO CONTROLLER HANDBOOK (Order No. 210918-003)

MICROSYSTEM COMPONENTS HANDBOOK (Order No. 230843-002)
Microprocessors and peripherals-2 Volume Set

DEVELOPMENT SYSTEMS HANDBOOK (Order No. 210940-003)

OEM SYSTEMS HANDBOOK (Order No. 210941-003)

SOFTWARE HANDBOOK (Order No. 230786-002)

MILITARY HANDBOOK (Order No. 210461-003)
Not available until June.

COMPLETE SET OF HANDBOOKS (Order No. 231003-002)
Get a 25% discount off the retail price of $160.

*U.S. Price Only

*U.S. PRICE
$15.00

$12.00

$18.00

$12.00

$18.00

$25.00

$15.00

$18.00

$12.00

$15.00

$120.00

(J)
c:
J
o
~ o
:l
0>
c:
o·
;:
5
J

u.s. LITERATURE ORDER FORM
NAME: __________________ TITLE: ______ _

COMPANY:

ADDRESS: __ _

CITY: ______________ __ STATE: ______ ZIP: ____ __

COUNTRY: ___ _

PHONE NO.: (____ -'--__ __

ORDER NO.

~::=:::=::::::I-~I ~
~:!=:=~=:I-~I ~
~::=:::=::::::I-:=I ~
~::;::::;:=::::::I-:=I ~
~:!=:=~=:I-:=I ~
L..-L--L--,--,,--,---,I-,--I -'--'---'
POSTAGE AND HANDLING:
Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada

Allow 4-6 weeks for delivery

TITLE QTY. PRICE TOTAL

x

x

x

x

x

x

Subtotal _______ _

Your Local Sales Tax _______ _

Total ______ _

Pay by Visa, MasterCard, Check or Money Order, payable to I ntel Literature. Pu rchase Orders
have a $50.00 minimum.

o Visa Account No. ______ ~ _____ _ Expiration _____ _
o MasterCard Date

Signature: __________________________ __

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95061.

Customers outside the U.S. and Canada should con­
tact the local Intel Sales Office or Distributor listed in
the back of this book.

For information on quantity discounts, call the 800 number below:
TOLL-FREE NUMBER: (800) 548-4725
Prices good until 12/31/85.
Source HB

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051.

MICROSYSTEM
COMPONENTS HANDBOOK

1985

About Our Cover:
The design on our front cover is an abstract p6)rtrayal of microprocessors and associated

peripherals as the building blocks which provide total systems development solutions. Intel
superior technology and reliability provide easier solutions to specific development problems

thereby cutting "time-to-market" and creating a greater market share.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein. .

Intel retains the right to make changes to these speCifications at any time, without notice.

Contact your local sales office to obtain the latest sp'ecificallons before plaCing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, f, ICE, iCS, iDBp, iDIS, 121CE,
iLBX, 1m, iMDDX, IMM~, Insite, Intel, int"l, intelBOS, Intelevislon, int"ligent Identifier,
inteligent Programming, Intellec, Inteliink, iOSP, iPDS, iRMX, ISBC, iSBX, iSDM, iSXM,
KEPROM, library Manager, MCS, Megachassis, MICROMAINFRAME, MULTI BUS,
MULTICHANNEL, MULTIMODULE, OpeNET, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Ripplemode, RMX/SO, RUPI, Seamless, SLD, SYSTEM 2000, and UPI,
and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDSE is a registered trademark of Mohawk Data
Sciences Corporation.

* MULTI BUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

©INTEL CORPORATION 1984

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

CHAPTER 1
OVERVIEW

Introduction

CHAPTER 2
MCS@-8018S MICROPROCESSORS

Table of Contents

1-1

808OA/8080A-1/8080A-2, 8-Bit N-Channel Microprocessor................................ 2-1
8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors•........... 2-10
8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26
8185/8185-21024 x 8-Bit Static RAM for MCS-SS•........ 2-38
8205 High Speed 1 out of 8 Binary Decoder .. 2-43
8224 Clock Generator and Driver for 8080A CPU .. 2-48
8228/8238 System Controller and Bus Driver for 8080A CPU 2~53
8237A/8237A-4/8237A-5 High' Performance Programmable DMA Controller................ 2-57
8257/8257-5 Programmable DMA Controller.. 2-72
8259A/8259A-2/8259A-8 Programmable Interrupt Controller.............................. 2-89
8755A/8755A-2 16, 384-Bit EPROM with I/O•....... 2-107
AP-59 Using the 8259A Programmable Interrupt Controller 2-118

CHAPTER 3
IAPX 86, 88, 186, 188 MICROPROCESSORS

iAPX 86/10 16-Bit HMOS Microprocessor. 3-1
, iAPX 186 High Integration 16-Bit Microprocessor............ 3-25

iAPX 88/10 8-Bit HMOS Microprocessor ' '. 3-79
iAPX 188 High Integration 8-Bit Microprocessor•...• 3-106
80898& 16-Bit HMOS I/O Processor ..•..... 3-161
8087/8087-2/8087-1 Numeric Data Coprocessor•................•................. 3-175
80130/8013G-2 iAPX 86/30, 88/30, 186/30, 188/30 iRMX'· 86 Operating System Processors 3-198'
80150/8015G-2 iAPX 86/50, 88/50, 186/50, 188/50 CPlM"-86 Operating System Processors .•.. 3-220
8282/8283 Octal Latch ...•..................... 3-232

,8284A/8284A-1 Clock Generator and Driver for iAPX 86, 8a Processors• 3-237
8286/8287 Octal Bus Transceiver :............................... 3-245
8288 Bus Controller for iAPX 86, 88 Processors ... 3-250
82188 Integrated Bus Controller for iAPX 86, 88, 186, 188 Processors •..................... 3-257
8289/8289-1 Bus Arbiter ..•..................... 3-274
AP-67 8086 System Design ... 3-28P
AP-123 Graphic CRT Design Using the Intel 8089 , ' 3-348
AP-113 Getting Started with the Numeric Data Processor••............. -...... 3-420
AP-143 Using the iAPX 86/20 Numeric Data Processor in a Small Business Computer 3-481
AP-144 Three Dimensional Graphics Application of the iAPX 86120
Numeric Data Processor••.. 3-504
AP-l86 Introduction to the 80186••..•................•................ 3-543

CHAPTER 4
IAPX 286 MICROPROCESSORS

iAPX 286/10 High Performance Microprocessor with Memory Management and Protection 4-1
80287 SG-Bit HMOS NumeriC Processor Extension••.......••.•. 4-54
82258 Advanced,DMA Controller Architectural Overview................................. 4-79
82284 Clock Generator and Ready Interface for iAPX 286 Processors 4-92
82288 Bus Controller for iAPX 286 Processors-•.• 4-100
82289 Bus Arbiter for iAPX 286 Processor Family• 4-118

"CP/M is a Trademark of Digital Research, Inc,

iii

CHAPTER 5
MEMORY CONTROLLERS

DATA SHEETS
8202A Dynamic RAM Controller... 5-1
8203 64K Dynamic RAM Controller.. 5-15
8206/8206-2 Error Detection and Correction Unit •....•.......•..•••.•...•........ 5-30
8207 Dual-Port Dynamic RAM Controller .. 5-51
8208 Dynamic RAM Controller ...•.............................•.•.............. 5-98

USERS MANUAL
Introduction•.......• ~•.•.•...............•..•.... 5-117
Programming the 8207 ,•...•.•...•............... 5-118
RAM Interface ... -.................... 5-123
Microprocessor Interfaces ... 5-132
8207 with ECC (8206) .. 5-140
Appendix•..•............•.•............•..............•.•..•........•..• 5-143

APPLICATION NOTES .
AP-97A Interfacing Dynamic RAM to iAPX 86/88 Using the 8202A and 8203 •....... 5-147
AP-141 8203/8206/2164A Memory Design .. 5-183
AP-167 Interfacing the 8207 Dynamic RAM Controller to the iAPX 186 ..•.....•.... 5-189
AP-168 Interfacing the 8207 Advanced Dynamic RAM Controller to the iAPX 286 ... 5-194

ARTICLE REPRINTS
AR-364 FAE News 1/84 "8208 with 186" .. 5~201
AR-231 Dynamic RAM Controller Orchestrates Memory Systems•....•..... 5-212

-VOLUME2-

SUPPORT PERIPHERALS
DATA SHEETS

8231A Arithmetic Processing Unit ... 5-219
8253/8253~5 Programmable Interval Timer•.............•.....•...• 5-229
8254 Programmable Interval Timer•...•.••......•.....•.... 5-240
82C54 CHMOS Programmable Interval Timer•... ~•..•...•... 5-256
8255A/8255A-5 Programmable Peripheral Interface•..•.................. 5-273
82C55A CHMOS Programmable Peripheral Interface•....... 5-294
8256AH Multifunction Microprocessor Support Controller•......• 5-317
8279/8279-5 Programmable Keyboard/Display Interface•...•............ 5-340

APPLICATION NOTES
AP-153 Designing with the 8256•.........•........ '.' 5-352
AP-183 8256AH Application Note ... 5-427

FLOPPY DISK CONTROLLERS
DATA SHEETS

8272A Single/Double Density Floppy Disk Controller•.•..••................. 5-444
APPLICATION NOTES

AP-116 An Intelligent Data Base System Using the 8272•...................... 5-463
AP-121 Software Design and Implementation of Floppy Disk Systems•.. 5-504

HARD DISK CONTROLLERS
DATA SHEETS

82062 Winchester Disk Controller• , ..•.•.•...........•.•...... 5-574
. 82064 Winchester Disk Controller with On-Chip Error Detection and Correction 5-601

UPI USERS MANUAL
Introduction ..•......................•........•.........................•....... 5-635
Functional Description•....................................•............... 5-639
Instruction Set•....................•......................... 5-656
Single-Step. Programming. and Power-Down Modes ..•.....................•....... 5-683
System Operation ... 5-688
Applications .•....................................•...•....... :................. 5-694
AP-161 Complex Peripheral Control with the UPI-42•......................•.. 5-750
AP-90 An 8741A/8041A Digital Cassette Controller•......•.......... 5-806

iv

DATA SHEETS
8041N8641A/8741A Universal Peripheral Interface 8-Bit Microcomputer 5-814
8042/8742 Universal Peripheral Interface B-Bit Microcomputer 5-826
8243 MCS-48 Input/Output Expander ... 5-840

APPLICATION NOTES
AP-182 Multimode Winchester Controller Using the 82062 5-846

SYSTEM SUPPORT
ICE-42 8042 In-Circuit Emulator .. , 5-908
MCS-48 Diskette-Based Software Support Package 5-916
iUP-200/iUP-201 Universal PROM Programmers 5-918

CHAPTER 6
DATA COMMUNICATIONS

INTRODUCTION
Intel Data Communications Family Overview........... 6-1

GLOBAL COMMUNICATIONS
DATA SHEETS

8251 A Programmable Communication Interface........... 6-3
8273/8273-4 Programmable HDLC/SDLC Protocol Controller 6-20
8274 Multi-Protocol Serial Controller (MPSC) 6-48
82530/82530-6 Serial Communications Controller (SCC) 6-85

APPLICATION NOTES
AP-16 Using the 8251 Universal Synchronous/Asynchronous
Receiver/Transmitter ... 6-113
AP-36 Using the 8273 SDLC/HDLC Protocol Controller 6-144
AP-134 Asynchronous Communications with the 8274 Multiple .
Protocol Serial Controller ... 6-191
AP-145 Synchronous Communications with the 8274 Multiple
Protocol Serial Controller•............................... 6-228
AP-222 Asynchronous SDLC Communications with 82530 6-268

LOCAL AREA NETWORKS
DATA SHEETS

82501 Ethernet Serial Interface '•............. 6-288
82C502 Ethernet Tranceiver Chip Data Sheet 6-299
82586 Local Area Network Coprocessor ... 6-302
82588 Single Chip LAN Controller ... 6-336

ARTICLE REPRINTS
AR-345 Build a VLSI-Based Workstation for the Ethernet
Environment ... 6-362
AR-346 VLSI Solutions for Tiered Office Networks 6-370
AR-342 Chips Support Two Local Area Networks 6-380

OTHER DATA COMMUNICATIONS
DATA SHEETS

8291A GPIB Talker/Listener ... 6-386
8292 GPIB Controller ... 6-415
8294A Data Encryption Unit ... 6-430

APPLICATION NOTES
AP-66 Using the 8292 GPIB Controller ... 6-442
AP-166 USing the 8291A GPIB Talker/Listener 6-496

ARTICLE REPRINTS .
AR-208 LSI Transceiver Chips Complete GPIB Interface 6-528
AR-113 LSI Chips Ease Standard 488 Bus Interfacing : 6-536

TUTORIAL
Data Encryption Tutorial .. 6-546

v

CHAPTER 7
ALPHANUMERIC TERMINAL CONTROLLERS

DATA SHEETS
8275H Programmable CRT Controller•........... 7-1
8276H Small System CRT Controller ' •...•.......... : 7-25

APPUCATION NOTES
AP-62 A Low Cost CRT Terminal Using the 8275•.•................... 7-42

ARTICLE REPRINTS' .
AR-178 A Low Cost CRT Terminal Does More with Less........................... 7-84

GRAPHICS DISPLAY PRODUCTS
DATA SHEETS

82720 Graphics Display Controller .. 7-91
ARTICLE REPRINTS

AR-255 Dedicated VLSI Chip Lightens Graphic Display ,
Design,Load .. 7-128
AR-298 Graphics Chip Makes Low Cost High Resolution, Color
Displays Possible -.......•.. 7-136

TEXT PROCESSING PRODUCTS /
DATA SHEETS

82730 Text Coprocessor ... 7-143
82731 Video Interface Controller , 7-187

ARTICLE REPRINTS
AR-305 Text Coprocessor Brings Quality to CRT Displays 7-206
AR-297 VLSI Coprocessor Delivers High Quality Displays 7-214
AR-296 Mighty Chips ... 7-217

, ' ,

vi

Numeric Index

80130/81030-2 iAPX 86/30,88/30,186/30,188/30 iRMX'· 86 Operating System Processors 3-198

80150/80150-2 iAPX 86/50, 88/50, 186/50, 188/50 C/PM*-86 Operating System Processors 3-220

80186 (iAPX 186) High Integration 16-Bit Microprocessor " 3-25, 3-543

80188 (iAPX 188) High Integration 8-Bit Microprocessor 3-106

80286 (iAPX 286/10) High Performance Microprocessor with Memory Management

and Protection .. 4-1

80287 80-Bit HMOS Numeric Processor Extension ... 4-54

8041A/8641 A/8741 A Universal Peripheral Interface 8-Bit Microcomputer 5-814,5-635,5-639

8042/8742 Universal Peripheral Interface 8-Bit Microcomputer 5-826, 5-635, 5-639, 5-910

8080A/8080A-1/8080A-2, 8-Bit N-Channel Microprocessor 2-1

8085AH/8085AH-2/8085AH-1 8-Bit HMOS Microprocessors 2-10

8086 (iAPX 86/10) 16-Bit HMOS Microprocessor ... 3-1,3-285

8087/8087-2/8087-1 Numeric Data Coprocessor 3-175, 3-420, 3-481, 3-504, 6-362

8088 (iAPX 88/10) 8-Bit HMOS Microprocessor ... ~; 3-79

80898& 16-Bit HMOS I/O Processor ... 3-161,3-348

8155H/8156H/8155H-2/8156H-2 2048-Bit Static HMOS RAM with I/O Ports and Timer 2-26

8185/8185-21024 x 8-Bit Static RAM for MCS®-85 '" ., 2-38

8202A Dynamic RAM Controller n 5-1, 5-147

8203 64K Dynamic RAM Controller ... 5-15,5-147,5-183

8205 High Speed 1 out of 8 Binary Decoder .. 2-43

8206/8206-2 Error Detection and Correction Unit 5-30, 5-183, 5-212

82062 Winchester Disk Controller .. 5-574,5-846

82064 Winchester Disk Controller with On-Chip Error Detection and Correction 5-601

8207 Dual-Port Dynamic RAM eontroller 5-51, 5-118, 5-123, 5-132, 5-140

5-143,5-183,5-189,5-194,5-212

8208 Dynamic RAM Controller .. 5-98, 5-201

82188 Integrated Bus Controller for iAPX 86, 88, 186, 188 Processors 3-257

8224 Clock Generator And Driver for 8080A CPU .. 2-48

82258 Advanced DMA Controller Architectural Overview 4-79

8228/8238 System Controller and Bus D~iver for 8080A CPU 2-53

82284 Clock Generator and Ready Interface for iAPX 286 Processors .. " 4-92

82288 Bus Controller for iAPX 286 Processors .. 4-100

82289 Bus Arbiter for iAPX 286 Processor Family ... 4-118

8231A Arithmetic Processing Unit .. 5-219

8237 A/8237 A-4/8237 A-5 High Performance Programmable DMA Controller 2-57

, 8243 MCS-48 Input/Output Expander .. 5-635,5-840

82501 Ethernet Serial Interface .. 6-288, 6-362, 6-380

82C502 Ethernet Tranceiver Chip ... 6-299

8251A Programmable Communication Interface .. 6-3,6-113

8253/8253-5 Programmable Interval Timer ... : 5-229

82530/82530-6 Serial Communications Controller (SCC) 6-85, 6-268

vii

8254 Programmable Interval Timer ... 5-240
82C54 CHMOS Programmable Interval Timer " •... , 5-256
8255A/8255A-5 Programmable Peripheral Interface•..... 5-273, 7-84
82C55 CHMOS Programmable Peripheral Interface ~ '," 5-294
8256AH Multifunction Microprocessor Support Controller 5-317, 5-352, 5-427

, 8257/8257-5 Programmable DMA Controller :-................................. 2-72
82586 Local Area Network Coprocessor ; .. 6-302, 6-362, 6-370, 6-380
82588 Personal Workstation Lan Control .. 6-336
8259A/8259A-2/8259A-8 Programmable Interrupt Controller 2-89,2-118

'8272A Single/Double Density Floppy Disk Controller 5-444,5-463,5-504, 7-128
82720 Graphics Display Controller 7-91, 7-128, 7-136, 7-206, 7-214, 7-217
8273/8273-4 Programmable HDLC/SDLC Protocol Controller 6-20,6-144,6-380
82730 Text Coprocessor 6-262, 7-136, 7-143, 7-206, 7-214, 7-217
82731 Video Interface Controller ... 7-187, 7-206
8274 Multi-Protocol Serial Controller (MPSC) , ... 6-48,6-191,6-228,6-380
8275H Programmable CRT Controller ... 7-1, 7-42
8276H Small System CRT Controller , ... 7-25, 7-84
8279/8279-5 Programmable Keyboard/Display Interface 5-340
8282/8283 Octal Latch ... , 3-232
8284A/8284A-1 Clock Generator and Driver for iAPX 86,88 Processors 3-327
8286/8287 Octal Bus Transceiver ..• 3-245
8288 Bus Confroller for iAPX 86, 88 Processors ... 3-250, 6-362
8289/8989-1 Bus Arbiter .. ' ~. 3-274
8291A GPIB Talker/Listener .. 6-386,6-496,6-528,6-536
8292 GPIB Controller .. 6-415,6-442,6-528,6-536
8294A Data Encryption Unit .. : 6-430
8755A/8755A-2 16,384-Bit EPROM with I/O : 2-107

viii

Peripherals 5

8202A
DYNAMIC RAM CONTROLLER

Ii Pr!)vldes All Signals Necessary to Con­
trol 2117, or 2118 Dynamic Memories

• Directly Addresses and Drives Up to 64K
Bytes Without External Drivers

• Provides Address Multiplexing and
Strobes

• Provides a Refresh Timer and a Refresh
Counter

• Refresh Cycles May be Internally or Exter·
nally Requested

• Provides Transparent Refresh Capability

• Fully Compatible with Intel@ 8080A,
808SA, iAPX 88, and iAPX 86 Family Micro­
processors

• Decodes CPU Status for Advanced Read
Capability with the 8202A-1 or 8202A-3

• Provides System Acknowledge and Trans­
fer Acknowledge Signals

• Internal Clock Capability with the 8202A·1
or 8202A-3

The Intel® 8202A is a Dynamic Ram System Controller designed to provide all signals necessary to use 2117 or
2118 Dynamic RAMs in microcomputer systems. The 8202A provides multiplexed addresses and address
strobes, as well as refresh/access arbitration. The 8202A-1 or 8202A-3 support an internal crystal oscillator.

AHo-AH6

ALo-Al6

REFRESH
COUNTER

RillS1 ~----I
Wii------t
iiCS------t

REFRQ/AlE -----<----I

COLUMN
ADDflESS

MUX

ROW
AODm:SS

I====> OiJfo-0Ui'6

ARBITER

Figure 1. 8202A Block Diagram

5-1

AH.

AH,

AH,

AH,

AHO

..... OOTo

R.AS,
AL,

RAS2
0UT1

AL,
W3

OOT2
AL,

en 0uf3
TIMING WE A'-4

G.ENERATOR

SAQ(AL,

AACK
0UT5

AL.

OOTs

GNO

Figure 2. Pin Configuration

205215-001

intJ

Pin
Symbol No. Type

ALO a I
ALl 8 I
AL2 10 I
AL3 12 I
AL4 14 i
AL5 16 I
ALai 18 I

AHO 5 I
AHl 4 I
AH2 3 I
AH3 2 I
AH4 1 I
AH5 39 I
AH6 38 I

BO 24 I
Bl /0P l 25 I

PCS 33 I

WR 31 I

RDISI 32 I

REFRQI 34 I
ALE

OUTO 7 0
OUTl 9 0
OUT2 11 0
OUT3 13 0
OUT4 15 0
OUT5 17 0
OUT6 19 0

WE 28 0

CAS 27 0

8202A

Table 1. Pin Descriptions

Name and Function

Address Low: CPU address in·
puts used to generate memory
row address.

Address High: CPU address in·
puts used to generate memory
column address.

Bank Select Inputs: Used to
gate the appropriate RASO'
RAS3 output for a memory cy·
cle. B 11 OP 1 option used to se·
lect the Advanced Read Mode.

Protected Chip Select: Used to
enable the memory read and
write inputs. Once a cycle is
started, it will not abort even if
PCS goes inactive before cycle
completion.

Memory Write Request.

Memory Read Request: Sl
function used in Advanced Read
mode selected by OP 1 (pin 25).

External Refresh Request: ALE
function used in Advanced Read
mode, selected by OP 1 (pin 25).

Qutput of the Multiplexer:
These outputs are designed to
drive the addresses olthe Dynamic
RAM array. (Note that the OUTO•6

pins do not require inverters or
drivers for proper operation.)

Write Enable: Drives the Write
Enable inputs of the Dynamic
RAM array.

Column Address Strobe: This
output is used to latch the Col·
umn Address into the Dynamic
RAM array.

5-2

Pin
Symbol No. Type Name and Function

RASo 21 0 Row Address Strobe: Used to
RASI 22 0 latch the Row Address into the
RAS2 23 0 bank of dynamic RAMs, select·
RAS3 26 0 ed by the 8202A Bank Select

pins (80, Bl/0Pl).

XACK 29 0 Transfer Acknowledge: This
output is a strobe indicating val·
id data during a read cycle or
data written during a write cycle.
XACK can be used to latch valid
data from the RAM array.

SACK 30 .() System Acknowledge: This
output indicates the beginning of
a memory access cycle. It can
be used as an advanced trans·
fer acknowledge to eliminate
wait states. (Note: If a memory
access request is made during a
refresh cycle, SACK is delayed
until XACK in the memory ac:
cess cycle).

(XO) OP2 36 1/0 Oscillator Inputs: These inputs
(Xl) CLK 37 1/0 are designed for a quartz crystal

to control the frequency of the
oscillator. If XO/OP2 is connect·
ed to a 1 Kn resistor pulled to
+ 12V then Xli CLK becomes a
TTL input for an external clock.

N.C. 35 Reserved for future use.

VCC 40 Power Supply:+5V.

GND 20 Ground,

NOTE: Crystal mode for the 8202A-l or 8202A-3 only.

i-- Xo WE

I CAS cs* 'KG I ±S% RAOo
I x,
I 8202A-1 RAS1

6800 or

±S% 8202"-3 RAS2

-::- RAS3

Cs < 10pF XACK

FUNDAMENTAL XTAL SACK

Figure 3. Crystal Operation for the 8202A-1
and the 8202A-3

205215-001

inter 8202A

Functional Description
The 8202A provides a complete dynanilc RAM controller
for microprocessor systems as well as expansion memory
boards. All of the necessary control signals are pro­
vided for 2117 and 2118 dynamic RAMs.

All 8202A timing is generated from a single reference
clock. This clock is provided via an external oscillator or
an on chip crystal oscillator. All output signal transitions
are synchronous with respect to this clock reference, ex­
cept for the CPU handshake signals SACK and XACK
(trailing edge).

CPU memory requests normally use the AD and WR in­
puts. The advanced READ mode allows ALE and S 1 to ba
used in place of the RD input.

Failsafe refresh is provided via an internal refresh timer
which generates internal refresh requests. Refresh re­
quests can also ba generated via ~e REFRQ input.

An on-chip synchronizer / arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The
READ, WRITE, and external REFRESH requests may be
asynchronous to the 8202A clock; on-chip logic win syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cycle 'in
progress.

Option Selection
The 8202A has two strapping options. When OPl is se­
lected (16K mode only), pin 32 changes from a RD input to
an S 1 input, and pin 34 changes from a REFREQ input to
an ALE input. See "Refresh Cycles· and "Read Cycles·
for more detail. OPI is selected by tying pin 25 to
+ 12V th roug h a 5.1 K ohm resistor on the 8202A-l or
8202A-3 only.

When OP2 is selected, by connecting pin 36 to +12V
through a 1K ohm resistor, pin 37 changes from a crystal
input (X1) to the elK input for an external TTL clock.

Refresh Timer
The refresh timer is used to monitor the time since the last
refresh cycle occurred. When the appropriate amount of
time has elapsed, the refresh timer will request a
refresh cycle. External refresh requests will reset the
refresh timer.

Refresh Counter
The refresh counter is used to sequentially refresh all of

Description Pin # Normal Function

Bl/0Pl 25 Bank (RAS) Select

the memory's rows. The 8-bit counter is incremented after
every refresh cycle.

Address Multiplexer
The address multiplexer takes the address inputs and the
refresh counter outputs, and gates them onto the address
outputs at the appropriate time. The address outputs, in
conjunction with the RAS and CAS outputs, determine the
address used by the dynamic RAMs for read, write, and
refresh cycles. During the first part of:a read or write cy­
cle, Ala-ALa are gated to OOTO-00T6, then AHo-AH6
are gated to the address outputs.

During a refresh cycle, the refresh counter is gated onto
the address outputs. All refresh cycles are RA8-only re­
fresh (CAS inactive, RAS active).

To minimize buffer delay, the information on the address
outputs is inverted from that on the address inputs.

OUT o-ooT 6 do not need inverters or buffers unless addi­
tional drive is required.

Synchronizer / Arbiter
The 8202A has three inputs, REFRQI ALE (pin 34), RD
(pin 32) and WR (pin 31). The RD and WR inputs allow an
external CPU to request a memory read or write cycle,
respectively. The REFRQ I ALE allows refresh requests to
ba requested Itxternal to the 8202A.

All three of these inputs may be asynchronous with re­
spect to the 8202A's clock. The arbiter will resolve con;
f/icts between refresh and memory requests, for both
pending cycles and cycles in progress. Read and write re­
quests will ba given priority over refresh, requests.

System Operation
The 8202A is always in one of the following states:

a) IDLE
b) TEST Cycle
c) REFRESH Cycle
d) READ Cycle
e) WRITE Cycle

The 8202A is normally in the IDLE state. Whenever one of
the other cycles is requested, the 8202A will leave the
IDLE state to perform the desired cycle. If no other cycles
are pending, the 8202A will return to the IDLE state.

Option Function

Advanced-Read Mode (see text)

XO/OP2 36 Crystal Oscillator (8202A-l or 8202A·3) External Oscillator

Figure 4. 8202A Option Selection

5-3 205215-001

intJ 8202A

Test Cycle
The TEST Cycle is used to check operation of several
8202A internal functions. TEST cycles are requested
by activating the RD and WR inputs, independent of
PCS. The TEST Cycle will reset the refresh address
counter. It will perform a WRITE Cycle if PCS is low.
The TEST Cycle should not be usee! in normal system
operation, since it would affect the dynamic RAM
refresh.

Refresh Cycles
The 8202A has two ways of providing dynamic RAM re­
fresh:

1) Internal (failsafe) refresh
2) External (hidden) refresh

Both types of 8202A refresh cycles activate all of the RAS
outputs, while CAS, WE, SACK, and XACK remain inac­
tive.

Internal refresh is generated by the on-chip refresh timer.
The timer uses the 8202A clock to ensure that refresh of
all rows of the dynamic RAM occurs every 2 milliseconds.
If REFRQ is inactive, the refresh timer will request a re­
fresh cycle every 10-16 microseconds.

External refresh is requested via the REFRQ input (pin 34).
External refresh control is not available when the Ad­
vanced-Read mode is selected. External refresh requests
. are latched, then synchronized to the 8202A clock.

The arbiter will allow the refresh request to start a refresh
cycle only if the 8202A is not in the middle of a cycle.

Simultaneous memory request and external refresh re­
quest will result in the memory request being honored first.
This 8202A characteristic can be used to "hide" refresh
cycles during system operation. A circuit similar to
Figure 5 can be used to decode the CPU's instruction
fetch status to generate an external refresh request. The
refresh request is latched while the 8202A performs the
instruction fetch; the refresh cycle will start immediately
after the memory cycle is completed, even if the RD input
has not gone inactive. If the CPU's instruction decode time
is long enough, the 8202A can complete the refresh cycle
before the next memory request is generated.

Certain system configurations require complete external
. refresh requests. If external refresh is requested faster
than the minimum internal refresh timer(tREF), then, in ef­
fect, all refresh cycl~ will be caused by the external re­
fresh request, and the internal refresh timer will never
generate a refresh request.

5-4

So ~'---. REFRQ

-" .. . ~.
_ SACK or

CAS

Figure 5. Hidden Refresh

Read Cycles
The 8202A can accept two different types of memory
Read requests:

1) Normal Read, via the RD input
2) Advanced Read, using the S1 and ALE inputs

The user can select the desired Read request configura­
tion via the B1 /OP1 hardware strapping option on pin 25.

Normal Read Advanced Read

Pin 25 Bl input +12 Volt Option

Pin 32 RD input 81 input
Pin 34 REFRQ input ALE input·

RAM banks 4 (RA8 0-3) 2 (RA8 2-3)
Ext. Refresh Req. Yes No

Figure 6. 8202A Read Options

Normal Reads are requested by activating the RD input,
and keeping it active until the 8202A responds with an
XACK pulse. The RD input can go inactive as soon as the
command hold time (tCHS) is met.

Advanced Read cycles are requested by pulsing ALE
while S1 is active; if S1 is inactive (low) ALE is ignored.
Advanced Read timing is similiar to Normal Read timing,
except the falling edge of ALE is used as the cycle start
reference.

If a Read cycle is requested while a refresh cycle is in
progress, then the 8202A will set the internal delayed­
SACK latch. When the Read cycle is eventually started,
the 8202A will delay the active SACK transition until XACK
goes active, as shown in the AC timing diagrams. This de­
lay was designed to compensate for the CPU's READY
setup and hold times. The delayed-SACK latch is cleared
after every READ cycle.

Based on system requirements, either SACK or XACK can
be used to generate the CPU READY Signal. XACK will

205215-001

inter 8202A

normally b8 used; if the CPU can tolerate an advanced
READ¥, then SACK can be used, but only if the CPU can
tolerate the amount of advance provided by SACK. If
SACK arrives too early to provide the appropriate number
of WAIT states, then either XACK or a delayed form of
SAC~ should be used.

Write Cycles
Write cycles are similiar to Normal Read cycles, except
for the WE output. WE is held inactive {or Read cycles, but
goes active for Write cycles. All 8202A Write cycles are
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic
RAM output buffers turned off.

General System Considerations
All memory requests (Normal Reads, Advanced Reads,
Writes) are qualified by the PeS input. PeS should be sta­

"ble, either active or inactive, prior to the leading edge of
'RD, WR, or ALE. Systems which use battery backup
should pullup PCS to prevent erroneous memory requests,
and should also pullup WR to keep the 8202A out of its
test mode.

In order to minimize propagation delay, the 8202A uses an
inverting address multiplexer without latches. The system
must provide adequate address setup and hold times to
guarantee RAS and CAS setup and hold times for the
RAM. The 8202A tAD AC parameter should be used for
this system calculation.

The BO-B 1 inputs are similiar to the address inputs in that
they are not latched. eo and B 1 should not be changed
during a memory cycle, since they directly control which
RAS output is activated.

The 8202A uses a two-stage synchronizer for the memory
request inputs (RD, WR, ALE), and a separafe two stage

, synchronizer for the external refresh input (REFRQ). As
with any synchronizer, there is always a finite probability
of metastable states inducing system errors. The 8202A
synchronizer was designed to have a system error rate
less than 1 memory cycle every three years based on the
full oparating range of the 8202A.

5-5

A microprocessor system is concerned with the time data
is valid after RD goes low. See Figure 7.ln order to calcu­
late memory read access times, the dynamic RAM's A.C.
specifications must be examined, especially the RAS-ac­
cess time (tRAc) and the CAS-access time (tCAc). Most
configurations will be CAS-access limited; i.e., the data
from the RAM will be stable tcc,max (8202A) + tCAC
(RAM) after a memory read cycle is started. Be sure to
add any delays (due to buffers, deta latches, etc.) to cal­
culate the overall read access time.

Since the 8202A normally performs "early-write" cycles,
the data must be stable at the RAM data inputs by the time
CAS goes active, including the RAM's data setup time. If
the system does not normally guarantee sufficient write
data setup, you must either delay the WR input signal or
delay the 8202A WE output.

Delaying the WR input will delay all 8202A timing, including
the READY handshake signals, SACK and XACK, which
may increase the number of WAIT states generated by the
CPU.

If the WE output is externally delayed beyond the CAS ac­
tive transition, then the RAM will use the falling edge of WE
to strobe the write data into the RAM. This WE transition
should not occur too late during the CAS active transition,
or else the WE to CAS requirements of the RAM will not be
met.

AD ~"----~-----J(
I I
!-ol • ...---tRlDv • :

DATA-----« B-
I i
__ tRAC--'

______ ~ I I

'\ i r-
I

I tCAC I
'-I

CAS ------------~\ ! r-
Figure 7. Read Ace ... nme

8202A

AS-15 ALO-6 MO-S r- AO-S

~
AHa-6

ALE 80-,
BOS8

8202A
(16K MODEl WE ~

WE
ADO_7 'CAS CAS

~F
RD/!, RASa t--- RAS

RD DIN DoUT
WA WA

I f I AAS, E=-
-< SACK

RAS2~ ~ AO-.
RAS3

XACK

t=: WE
CAS

i- RAS
DINDOUT

1
~

I ~ Ao-.

f::: WE
CAS

~ i- RAS
DIN Dour

T T, -I ~ AO-6

~
WE

~s'rB
CAS

D'N
RAS DOUT \ DIN Dour

A. l' l' 1
DATA BUS DATA IN V

LATCH 1\
~ ---- "

Figure 8. Typical 8088 System

DON
DoluT

j

2118
DYNAMIC RAM ARRAY

+
BAL

I

+
+ DiN DIN

DoUT Dour

1 j

-,

D'N
Dour

1

DoN
DOUT

l....1

DoN

IT
,

DoN
D'N DolUT

DOUT
DolUT ,--

205215-OQ1

8202A

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias DoC to 70°C
Storage Temperature -65°C to + 150°C
Voltage On any Pin

With Respect to Ground. -O.5V to + 7V4
Power Dissipation 1.5 Watts

'NOTE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability.

D.C. CHARACTERISTICS TA = ooe to 70oe' VCC = 50V + 10% VCC = 50V + 5% for 8202A-3 GND = OV - -

Symbol Paramater

Vc Input Clamp Voltage

ICC Power Supply Current

IF Forward Input Current
ClK
All Other Inputs3

IR Reverse Input Current3

VOL Output low Voltage
SACK,XACK
All Other Outputs

VOH Output High Voltage
SACK,XACK
All Other Outputs

Vil Input low Voltage

VIHI Input High Voltage

VIH2 Option Voltage

CIN Input Capacitance

NOTES:
IR = 200pA for Pin 37 (elK) for eXlernal clock mode.

For lest mode RD & WR musl be held al GND
3 Excepl for pin 36

Min

2.4
2.6

2.0

4 8202A-1 and 8202A-3 supports bolh OP, and OP2 8202A only supports OP2

+12 Volt ' K 36 OP,
±10%

8202A

5.1 K 2. OPI

ReSistor Tolerance ",5%

5-7

Max Units Test Conditions

-1.0 V IC = -5 rnA

270 rnA

-2.0 rnA VF = 0.45V
-320 /LA VF = 0.45V

40 p.A VR= Vee (Note 1)

0.45 V IOl = 5 rnA
0.45 V 10l = 3 rnA

Vil = O.65V
V 10H = -1 rnA
V IOH = -1 rnA

0.8 V VCC = 5.0V (Note 2)

V VCC = 5.0V

V (Note 4).

F=IMHz

30 pF VBIAS = 2.5V, VCC = 5V
TA = 25°C

205215-001

1

I,;

I:,

I
I

intJ 8202A

A.C. CHARACTERISTICS
TA = O°C to 70°C, VCC = 5V ± 10%, VCC = 5V ± 5% for 8202A-3

Measuremenls made wilh respecllo RASO-RAS3, CAS, WE,OUTO-OUT6 are al 2.4V and 0.8V. All
olher pins are measured ~I 1 5V All limes are in nsec

Symbol Parameter Min Max

Ip Clock Period 40 54

IPH External Clock High Time 20

,lpL Exlernal Clock Low Time-above (» 20 mHz 17

IpL Exlernal Clock Low Time-below «) 20 mHz 20

IRC Memory Cycle Time 10lp - 30 121p

IREF Refresh Time (128 cycles-16K mode) 2641p 2881p

IRP RAS Precharge Time 41p - 30

IRSH RAS Hold After CAS 51p - 30

IASR Address Selup 10 RAS Ip - 30

IRAH Address Hold From RAS Ip - 10

IASC Address Selup 10 CAS Ip - 30

ICAH Address Hold from CAS 51p - 20

ICAS ~ Pulse Widlh 51p - 10

IWCS WE Selup 10 CAS Ip - 40

IWCH WE Hold After CAS 51p - 35

IRS RD, WR, ALE, REFRQ delay from RAS) 51p

IMRP RD, WR selup 10 RAS 0

IRMS REFRQ selup 10 RD, WR 21p

IRMP REFRQ selup 10 RAS 21p

Ipes Pes Selup)0 RD, WR, ALE 20

IAL S 1 Selup 10 ALE 15

ILA S 1 Hold from ALE 30

ICR RD, WR, ALE 10 RAS Delay Ip + 30 21p + 70

ICC RD, WR, ALE 10 CAS Delay 31p + 25 4tp + 85

ISC CMD Selup 10 Clock 15

IMRS RD, WR selup 10 REFRQ 5

ICA RD, WR, ALE 10 SACK Delay 21p + 47

ICX ~ 10 XACK Delay 51p - 25 51p + 20

ICS CAS 10 SACK Delay 51p - 25 51p + 40

lACK XACK to CAS Selup 10

IXW XACK Pulse Widlh Ip - 25

ICK SACK, XACK lurn-off Delay 35

IKCH CMD Inaclive Hold after SACK, XACK 10

ILL REFRQ Pulse Widlh 20

ICHS CMD Hold Time 30

IRFR REFRQ 10 RAS Delay 41p + 100

IWW WR 10 WE Delay 0 50

lAD CPU Address Delay I 0 40 I

5-8

Notes

4,5

3

3

3

3

3

8

5

5

2

2

1

2,9
~

2, 10

7

11

6

8

3

8202A

WAVEFORMS
Normal Read or Write Cycle

Advanced Read Mode

RAS
tCR

-MIN-

+- tCR
MAX

I'
CAS I~

1'1

-~1.1. I~
XACK

..--tCA-
Ii I,

5-9 205215-001

'NAVEFORMS (cont'd)
Memory Compatibility Timing

ALQ-AL6, VALID ADDRESS

8202A

BO_Bl~ ~
AHO-AH6 '----------------------' '----------------

-~~~- --~~-

i\ ~ ,

tRSH
I

tCAS

\ - V
_ tASR-OO ~tRAH _ I--tASC- _tCAH_

OUTO-OUT6 ~ ROW X COLUMN K

Write Cycle Timing

ViR \ I
r\ I

RAS .-~~
\:

tCR
~MAX- - tww -

WE \ / /
-..twcs_ ~tWCH . / . tcc /l CAS MIN)

. tcc

/ MAX

/

5-10 205215-001

8202A

WAVEFORMS (cont'd)
Read or Write Followed By External Refresh

\
\
-tMRS-_ILL~

REFRQ / \
I \

I+---- tRS ------.

. tRMP C- 'AP
-+--- ~'i~----...

1\ \ . IRe .
.1 . tec \ MIN - -

ICC ,
MAX .

External Refresh Followed By Read or Write

---lfo-'""----------------,M-RP---------------------~.-I-----:---------
REFRQ

~tLL

tRs~I ... ·---

1------ lAC ------\

5-11

\~I

205215-00)

intJ 8202A

WAVEFORMS (cont'd)
Clock And System Timing

ClK

-tpcs---.....-.tsc-

RD, ViR, ALE

Table 2 8202A Output Test
Loading.

Test Load
Pin

SACK.XACK CL = 30 pF
OUTo-OUTe CL = 1eo pF
RASo-RAS3 CL = 60 pF
WE Cl = 224 pF
CAS CL = 320 pF

NOTES:
1. tsc is a reference point only. ALE. RD. WR. and REFRQ inputs do

not have to be externally synchronized to 6202A clock.
2. If tRS min and tMRS min are met then. tCA. tCR. and tcc are

valid. otherwise tcs is valid.
3. tASR. tRAH. tASC. tCAH. and tRSH depend upon 80-8 1 and CPU

address remaining stable throughout the memory cycle. The ad­
dress inputs are not latched by the 6202A.

4. For back-to-back refresh cycles. tRC max = 13tp
5. tRC max is valid only if tRMP min is met (READ. WRITE followed

by REFRESH) or tMRP min is met (REFRESH followed by READ.
WRITE).

6. tRFR is valid only if tRS min and tRMS min are met.
7. txw min applies when RD. WR.has already gone high. Otherwise

XACK follows RD. WR. >

8.· WE goes high according to tWCH or tWW. whichever occurs
first.

A.C. TESTING LOAD CIRCUIT

DEVICE ICl UNDER
TEST

CL INCLUDES JIG CAPACITANCE

9. tCA applies only when in normal SACK mode.
10. tcs applies only when in delayed SACK mode.
11. tCHS must be met only to ensure a SACK active pulse when in

delayed SACK mode. XACK will always be activated for at
least txw (tp- 25 nS). Violating tCHS min does not otherwise
affect device operation.

5-12 205215-001

inter 8202A

The typical rising and falling characteristic curves for the
OUT, RAS, CAS and WE output buffers can be used to
determine the effects of capacitive loading on the A.C.

Timing Parameters.'Using this design tool in conjunction
with the timing waveforms, the designer can determine
typical timing shifts based on system capacitive load,

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS

NOTE:

Use the Test Load as the base capacitance for estImating timing
shifts for system critical timIng parameters.

5-13

MEASUREMENT CONDITIONS:

TA = 25°C
Vce = +5V
tp = 50 ns

Pins not measured are loaded with the
Test Load capacitance.

205215-001

I'

I',
i~
Ii
Ii

J inter 8202A

Example: Find the effect on tCR and tcc using 64
2118 Dynamic RAMs configured in 4 banks.

1. Determine the typical RAS and CAS capacitance:
From the data sheet RAS = 4 pF and CAS = 4 pF.
:. RAS load = 64 pF + board capacitance.

CAS load = 256 pF + board capacitance.
Assume 2 pF/in (trace length) for board
capacitance.

I
./

2. From the waveform diagrams. we determine that
the falling, edge timing is needed for tCR andtcc.
Next find the curve that best approximates the
test load; i.e .• 68 pF for RAS and 330 pF for CAS.

3. If we use 72 pF for RAS loading. then the !cR
(max.) spec should be increased by about 1 ns.
Similarly if we use 288 pF for CAS. then tcc (min.)
and (max.) should decrease about 1 ns.

5-14 205215-001

8203
64K DYNAMIC RAM CONTROLLER

• Provides All Signals Necessary to
Control 64K (2164) and 16K (2117, 2118)
Dynamic Memories

• Directly Addresses and Drives Up to 64
, Devices Without External Drivers

• Provides Address Multiplexing and
Strobes

• Provides a Refresh Tim'er and a Refresh
, Counter

• Provides Refresh/ Access Arbitration

• Internal Clock Capability with the 8203-1
and the 8203-3

• Fully Compatible with Intel® 8080A,
8085A, iAPX 88, and iAPX 86 Family Micro­
processors

• Decodes CPU Status for Advanced Read
Capability in 16K mode with the 8203-1 and
the 8203-3.

• Provides System Acknowledge and Trans­
fer Acknowledge Signals

• Refresh Cycles May be Internally or Exter­
nally Requested (For Transparent Refresh)

• Internal Series Damping Resistors on All
RAM Outputs

The Intel® 8203 is a Dynamic Ram System Controller designed to provide all signals necessary to use 2164, 2118
or 2117 Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address
strobes, refresh logic, refresh/access arbitration. Refresh cycles can be started internally or externally. The
8203-1 and the 8203-3 support an internal crystal oscillator and Advanced Read Capability. The 8203-3 is a ±5% Vee
part.

AHo-AHt

ALo-AL1

iiti
/S1======:l ...
""-------1

=­.......

"""
so

81/OP1

Figure 1. 8203 Block Diagram

-m,
m,
m,

m ...
....
"""

AH4 Vee

AHa AH,

AH,
AH, X1/Cu<

AHo

ALO 16KJ84K

OUTo REFRQ/ALE

AL, PCli

Oi1f, iiD/S1

AL, W;;

OUT,
AL, iiAQ(

0uT3 WE

A14 CAS

OUT • RAS3 (801

ALs B1/OP1 (AH71

Oi1f, Bo{AL7)

OUT. iiA§, -
Figure 2. Pin Configuration.

Intet Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other Circuit Patent Licenaes Bfe Implied.
@INTELCORPORATION. 1982 JANUARY 1985

5-15 ORDER NUMBER: 21044-003

Pin
Symbol No. Type

ALO 6
ALl 8
AL2 10
AL3 12
AL4 14
AL5 16
AL6 18

AHO 5
AHl 4
AH2 3
AH3 2
AH4 1
AH5 39
AH8 38

BO/AL7 24
Bl/0P l/ 25
AH7

pes 33 I

WR 31 I

RD/Sl 32 I

REFRQ/ 34 I
ALE

OUTo 7 0
OUTl 9 0
OUT2 11 0
OUT3 13 0
OUT4 15 0
OUT5 17 0
0iJf6

.... __ .
19 0

WE 28 0

CAS 27 0

8203

Table 1. Pin De8criptioQ8

Name and Function

Address Low: CPU address in-
puts used to generate' memory
row address.

Address High: CPU address in-
puts used to generate memory
column ad\lress.

Bank Select Inputs: Used to
gate the appropriate RAS output
fora memory cycle. Bl /OPl op-
tion used to select the Advanced
Read Mode. (Not available in
64K mode.) See Figure 5.
When in 64K RAM Mode. pins 24
and 25 operate as the AL 7 and
AH7vaddress inputs.

Protected Chip Select: Used to
enable the memory read and
write inputs. Once a cycle is
started, it will not abort even if
PCS goes inactive before cycle
completion.

Memory Write Re~uest.

Memory Read Request: Sl
function used in Advanced Read
mode selected by OPl (pin 25).

External Refresh Request: ALE
function used in Advanced Read
mode, selected by OP 1 (pin 25).

Output of the Multiplexer:
These outputs are designed to
drive the addresses of the Dy-
"amic RAM array. (Note that the
OUT 0-7 pins do not require in-
verters or drivers for proper op-
eration.)

Write Enable: Drives the Write
Enable inputs of the Dynamic
RAM array.

Column Address Strobe: This
output is used to latch the Col-
umn Address into the Dynamic
RAM array.

5-16

Pin
Symbol No. Type Name and Function

RASo 21 0 Row Address Strobe: Used to
RASl 22 0 latch the Row Address into the
RAS2/ 23 0 bank of dynamic RAMs, select-
OUT7 ed by the 8203 Bank Select pins
RAS3/BO 26 I/O (BO, Bl/0Pl). In,64K mode,

only RASO and RASl are 'avail-
able; pin 23 operates as 0iJf7
and pin 26 operates as the BO
bank select input.

XACK 29 0 Transfer Acknowledge: This
output is a strobe indicating val-
id data during a read cycle or
data written during a write cycle.
XACK can be used to latch valid
data from the RAM array.

SACK 30 0 System Acknowledge: This
output indicates the beginning of
a memory access cycle. It can
be used as an advanced trl'\ns-
fer acknowledge to eliminate
wait states. (Note: If a memory

. access request is made during a
refresh cycle, SACK is delayed
until XACK in the memory ac-
CllSS cycle).

XO/OP2 36 I/O Oscillator Inputs: These inputs
Xl/ CLK 37 I/O are designed for a quartz crystal

to control the frequency of the
oscillator. If XO/OP2 is shorted
to pin 40 (VCC) or if XO/OP2 is
connected to + 12V through a
1 KG resistor then Xl / CLK be-
comes a TTL input for an exter-
nal clock. (Note: Crystal mode
for the 8203-1 and the 8203-3
only),

16K/64K 35 I , Mode Select: This input selects
16K mode (2117, 2118) or 64K
mode (2164), Pins 23-26
change function based on the
mode of operation.

VCC 40 Power Supply: +5V.

GND 20 Grou.,d.

Functional Description
The 8203 provides a complete dynamic RAM control­
ler for microprocessor systems as well as expansion
memory boards. All of the necessary control signals
are provided for 2164,2118 and 2117 dynamic RAMs.

The 8203 has two modes, one for 16K dynamic RAMs
and one for 64Ks, controlled by pin 35.

21044-003

8203

,-- Xo WE

I CAS
CS*

t::I
1KU I ±S% " RASO I X, I Cl!!.. 8203-1

RAS1 ...
680n T 8203-3

.". ±5% I RAS2
J

.". RAS3

Cs < 10pF XACK

FUNDAMENTAL XTAl SACK

Figure 3. Crystal Operation for the 8203-1 and
8203-3

All 8203 timing is generated from a single reference clock.
This clock is provided via an external oscillator or an on­
chip crystal oscillator. All output signal transitions are syn­
chronous with respect to this clock reference, except for
the trailing edges of the CPU handshake signals SACK and
XACK. •

CPU memory requests normally use the RD and WR in­
puts. The Advanced-Read mode allows ALE and S 1 to be
used in place of the RD input.

Failsafe refresh is provided via an internal timer which gen­
erates refresh requests. Refresh requests can also be
generated via the REFRQ input.

An on-chip synchronizer I arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The
READ, WRITE, and external REFRESH requests may be
asynchronous to the 8203 clock; on-chip logic will syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cyole in
progress.

16K/64K Option Selection
Pin 35 is a strap input that controls the two 8203 modes.
Figure 4 shows the four pins that are multiplexed. In 16K

, mode (pin 35 tied to VCC or left open), the 8203 has two
Bank Select inputs to select one of four RAS outputs. In
this mode, the 8203 is exactly compatible with the Intel
8202A Dynamic RAM Controller. In 64K mode (pin 35 tied
to GND), there is only one Bank Select input (pin 26) to
select the two RAS outputs. More than two banks of 64K
dynamic RAM's can be used with external logic.

Description Pin # Normal Function

Bl IOPl (16Konly)/AH7 25 Bank (RAS) Select

Other Option Selections
The 8203 has two strapping options. When OP, is selected
(16K mode only), pin 32 changes from a RD input to an Sl
input, and pin 34 changes from a REFRQ input to an ALE
input. See "Refresh Cycles" and "Read Cycles" for more
detail. OP, is selected by tying pin 25 to +12V through a 5.1 K
ohm resistor on the 8203-1 or 8203-3 only.

When OP2 is selected, the internal oscillator is disabled
and pin 37 changes from a crystal input (X 1) to a ClK
input for an external TTL clock. OP2 is selected by short­
ing pin 36 (XO/OP2) directly to pin 40 (VCe). No current
limiting resistor should be used. OP2 may also be selected
by tying pin 36 to + 12V through a 1 Kr! resistor.

Refresh Timer
The refresh timer is used to monitor the time since the last
refresh cycle occurred. When the appropriate amount of
time has elapsed, the refresh timer will request a refresh
cycle. External refresh requests will reset the refresh
timer.

Refresh .Counter
The refresh counter is used to sequentially refresh all of
the memory's rows. The 8-bit counter is incremented after
every refresh cycle.

Pin # 16K Function 64K Function

23 RAS2 Address Output (OUT7)
24 Bank Select (BO) Address Input (AL 7)'
25 Bank Select (B,) Address Input (AH7)
26 RAS3 Bank Select (BO)

Figure 4. 16K/64K Mode Selection

Inputs Outputs

B1 BO RASO RAS1 RAS2 RAS3

a a a 1 1 1
16K a 1 1 a 1 1
Mode 1 a 1 1 a 1

1 1 1 1 1 a
64K - a a 1 - -
Mode - 1 1 a - -

Figure 5. Bank Selection

Option Function

Advanced-Read Mode (8203-:~

XOIOP2 36 Crystal Oscillator (8203-1 and 8203-3) External OSCillator

Figure 6. 8203 Option Selection

5-17 21044-003

intJ 8203

Address Multiplexer
The address multiplexer takes the address inputs and the
refresh counter outputs, and gates them onto the address
outputs at the appropriate time. The address outputs, in
conjunction with the RAS and CAS outputs, determine the
address used by the dynamic RAMs for read, write, lind
refresh cycles. During the first part of a read or write cy­
cle, ALO-AL7 are gated to OUTO~OUT7, then AHO-AH7
are gated to the address outputs.

During a refresh cycle, the refresh counter is gated onto
the address outputs. All refresh cycles are RAS-only re­
fresh (CAS inactive, RAS active).

To minimize buffer delay, the information on the address
outputs is inverted from that on the address inputs.

OUTO-OUT7 do not need inverters or buffers unless addi­
tional drive is required.

Synchronizer I Arbiter
The 8203 has three inputs, REFRQ / ALE (pin 34), RD (pin
32) and WR (pin 31). The RD and WR inputs allow an ex­
ternal CPU to request a memory read or write cycle. re­
spectively. The REFRQ / ALE input allows refresh requests
to be requested external to the 8203.

All three of these inputs may be asynchronous with re­
spect to the 8203' s clock. The arbiter will resolve conflicts
between refresh and memory req!.e,,(s, for both pending
cycles and cycles in progress. Read and write requests
will be given priority over refresh requests.

System Operation
The 8203 is always in one of the following states:

a) IDLE
b) TEST Cycle
c) REFRESH Cycle
d) READ Cycle
e) WRITE Cycle

The 8203 is normally in the IDLE state. Whenever one of
the other cycles is requested, the 8203 will leave the IDLE
state to perform the deSired cycle. If no other cyCles are
pending, the 8203 will return to the IDLE state.

Test Cycle
The TEST Cycle is used to check operation of several
8203 internal functions. TEST cycles are requested by ac­
tivating the PCS, RD and WR inputs. The TEST Cycle will
reset the refresh address counter and perform a WRITE
Cycle. The TEST Cycle should not be used in normal sys­
tem operation, since it would affect the dynamic RAM re­
fresh.

5-18

Refresh Cycles
The 8203 has two ways of providing dynamic RAM
refresh:

1) Internal (failsafe) refresh
2) External (hidden) refresh

Both types of 8203 refresh cycles activate all of the RAS
outputs, while CAS, WE, SACK, and XACK remain
inactive.

Internal refresh is generated by the on-chip refresh timer.
The timer uses the 8203 clock to ensure that refresh of all
rows of the dynamic RAM occurs every 2 milliseconds
(128 cycles) or every 4 milliseconds (256 cycles). If
REFRQ is inactive, the refresh timer will request a refresh
cycle every 10-16 microseconds.

External refresh is requested via the REFRQ input (pin 34).
External refresh control is 'not available when the Ad­
vanced-Read mode is selected. External refresh requests
are latched, then synchronized to the 8203 clock.

The arbiter will allow the refresh request to start a refresh
cycle only if the 8203 is not in the middle of a cycle.

When the 8203 is in the idle state a simultaneous memory
request and external refresh request will result in the mem­
ory request being honored first. This 8203 characteristic
can be used to "hide" refresh cycles during system oper­
ation. A circuit similar to Figure 7 can be used to decode
the CPU's instruction fetch status to generate an external
refresh request. The refresh request is latched while the
8203 performs the instruction fetch; the refresh cycle will
start immediately after the memory cycle is completed,
even if the RD input has not gone inactive. If the CPU's
instruction decode time is long enough, the 8203 can com­
plete the refresh cycle before the next memory request is
generated.

If the 8203 is not in the idle state then a simultaneous mem­
ory request and an external refresh request may result in
the refresh request being honored first.

So ~~ ___ REFRQ

8085A

S1
8203,

SACK or
CAS

Figure 7. Hidden Refresh

21044-003

8203

Certain system configurations require complete external
refresh requests. If external refresh is requested faster
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caused by the external re­
fresh request, and the internal refresh timer will never
generate a refresh request.

Read Cycles
The 8203 can accept two different types of memory Read
requests:

1) Normal Read, via the AD input
2) Advanced Read, using the S1 and ALE inputs (16K

mode only)

The user can select the desired Read request configura­
tion via the B1 /OP1 hardware strapping option on pin 25.

Normal Read Advanced Read

Pin 25 81 input OP1 (+12V)
Pin 32 RD input S1 input
Pin 34 REFRQ input ALE input
RAM banks 4 (RAS 0-3) 2 (RAS 2-3)
Ext. Refresh Yes No

Figure 8_ 8203 Read Options

Normal Reads are requested by activating the RD input,
and keeping it active until the 8203 responds with an
XACK pulse. The RD input can go inactive as soon as the
command hold time (tCHS) is met.

Advanced Read cycles are requested by pulsing ALE
while S1' is active; if S1 is inactive (low) ALE is ignored.
Advanced Read timing is similiar to Normal Read timing,
except the falling edge of ALE is used as the cycle start
reference.

If a Read cycle is requested while a refresh cycle is in
progress, then the 8203 will set the internal delayed­
SACK latch. When the Read cycle is eventually started,
the 8203 will delay the active SACK transition until XACK
goes active, as Shown in the AC timing diagrams. This de­
lay was designed to compensate for the CPU's READY
setup and hold times. The delayed-SACK latch is cleared
after every READ cycle.

Based on system requirements, either SACK or XACK can
be used to generate the CPU READY signal. XACK will
normally be used; if the CPU can tolerate an advanced
READY, then SACK can be used, but only if the CPU can
tolerate the amount of advance provided by SACK. If
SACK arrives too early to provide the appropriate number
of WAIT states, then either XACK or a delayed form of
SACK should be used.

Write Cycles
Write cycles are similiar to Normal Read cycles, except
for the WE output. WE is held inactive for Read cycles, but
goes active for Write cycles. All 8203 Write cycles are
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic
RAM output buffers turned off.

General System Considerations
All memory requests (Normal Reads, Advanced Reads,
Writes) are qualified by the PCS input. PCS should be sta­
ble, either active or inactive, prior to the leading edge of
RD, WR, or ALE. Systems which use battery backup
should pullup PCS to prevent erroneous memory requests.

In order to minimize propagation delay, the 8203 uses an
inverting address multiplexer without latches. The system
must provide adequate address setup and hold times to
guarantee RAS and CAS setup and hold times for the
RAM. The tAD AC parameter should be used for this sys­
tem calculation.

The Bo-B 1 inputs are similiar to the address inputs in that
they are not latched. BO and B1 should not be changed
during a memory cycle, since they directly control which
RAS output is activated.

The 8203 uses a two-stage synchronizer for the memory
request inputs (RD, WR, ALE), and a separate two gtage
synchronizer for the external refresh input (REFRO). As
with any synchronizer, there is always a finite probability
of metastable states inducing system errors. The 8203
synchronizer was designed to have a system error rate
less than 1 memory cycle every three years based on the
full operating range of the 8203.

A microprocessor system is concerned when the data is
valid after RD goes low. See Figure 9. In order to calculate
memory read access times, .the dynamic RAM's A.C.
specifications must be examined, especially the RAS-ac­
cess time (tRAC) and the CAS-access time (tCAc). Most
configurations will be CAS-access limited; i.e., .the data
from the RAM will be stable tcc,max (8203) + tCAC
(RAM) after a memory read cycle is started. Be sure to
add any delays (due to buffers, data latches, etc.) to cal­
culate the overall read access time.

Since the 8203 normally performs "early-write" cycles,
the data must be stable at the RAM data inputs by the time
CAS goes active, including the RAM's data setup time. If
the system does not normally guarantee sufficient write
data setup, you must either delay the WR input signal or
delay the 8203 WE output.

Delaying the WR input will delay all 8203 timing, including
the READY handshake Signals, SACK and XACK, which

5-19 21044-003

intJ

RD~ ;-I ~ _______ ""I""" ___ ..J

1~,.---tRlDV--: ,

DATA-----~(B-
I I
t.---tRAC---":
I I

~-----~'l i ~
I

~
CAS -------"""1\ i~

Figure 9. Read Access Time

Aa-1S ALO-6 QUTO-6

~
AHO-6

ALE 80-1

a088
8203

(16K MODE) WE
ADO_7 CAS

RD P RD/S, RASa

WR WR

RAS, D--

,-< SACK
RAS, ()-

RASa

XACK

.

-

~';;- ,.,
DATA BUS DATA IN V

LATCH 1\
-'I

8203

may increase the number of WAIT states generated by the
CPU.

If the WE output is externally delayed beyond the CAS ac­
tive transition, then the RAM will use the falling edge of WE
to strobe the write data into the RAM. This WE tra'l$ition
should not occur too late during the CAS active transition,
or else the WE to CAS requirements of the RAM will not be
met.

The RASo-3, CAS, OUTO-7' and WE outputs contain on­
chip series damping resistors (typically 20m to minimize
overshoot.

Some dynamic RAMs require more than 2.4V VIH. Noise
immunity may be improved for these RAMs by adding pull­
up resistors to the 8203's outputs. Intel RAMs do not re­
quire pull-up resistors.

,....,I AO_6

=: WE
CAS

---- RAS
DIN DOUT

T
~r;:-

=: WE
CAS - RAS
DINOOUr

LL
~ AO·.

=: WE
CAS - RAS
DIN Dour

T
~r;:-

-==: WE
CAS D'N

"'N DOUl RAS Dour
DIN DouT

! T T !

2118
DYNAMIC RAM ARRAY

+
+

-

~

+
BAL

JD'N
D'N

Dour DIN DOUT
DOUT

J 1

-

D'N
DoUT

L

D'N
I Dour

1

"
D'N

' I i DO~T

1..J.

D'N

DOUT ~UT

Figure 10. Typical 8088 System

5-20 21044-003

inter

8284A

OTHER
READY
INPUTS

ADO-AD15
A16-A19

BHE

8288 I-----'-A"'EA"'O'-_

MULTI8US l";
TYPE

SYSTEM
BUS

MADC
WRITE MWTC

BHEN
AORO

I A'j'"
ADRF

DATA

8203

00-15

Figure 11. 8086/256K Byte System

5-21

DO

'6

HIGH BYTe
WRITE

2184
256.

BYTES

01

'6

21044-003

8203

ABSOLUTE MAXIMUM RATINGS'

Ambient Temperature Under ,Bias DoC to 7D o C
Storage Temperature -65°C to +15D oC
Voltage On any Pin

With Respect to Ground -D.5V to +7V4
Power Dissipation " 1.6 Watts

'NOTE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent'damage to the device.
This is a stress rating only and functional operation pf the de­
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability.

D.C. CHARACTERISTICS TA = DOC to 7DOC' VCC = 5DV + 10.% (5 DV + 5% for 820.3-3)' GND = DV - -
Symbol Parameter Min Max Units Test Conditions

Vc Input Clamp Voltage -1.0. V IC = -5 mA

ICC Power Supply Current 290. mA

IF Forward Input Current
ClK, 64KI 16K Mode select -2.0. ! mA VF = D.45V
All Other Inputs3 -320. /J.A VF = D.45V

IR Reverse Input Current3 40. /J.A VR = VCC; Note 1

VOL Output low Voltage
SACK,XACK 0..45 V 10l = 5 mA
All Other Outputs 0..45 V 10l = 3 mA

VOH Output High Voltage Vil = 0..65 V
SACK,XACK 2.4 V 10H = -1 mA
All Other Outputs 2.6 V 10H = -1 mA

Vil Input low Voltage 0..8 V VCC = 5.DV (Note 2)

VIH1 Input High Voltage 2.0. VCC V VCC = 5.DV

VIH2 Option Voltage VCC V (Note 4)

F=1MHz

CIN Input Capacitance 3D pF VBIAS = 2.5V, VCC = 5V
TA = 25°C

NOTES:
1. IR = 20.0. p.A for pin 37 (elK).
2. For test mode RD & WR must be held at GND.
3. Except for pin 36 in XTAl mode.
4. 8203-1 and 8203 3 supports both OP1 and OP2 8203 only supports OP2. -

+12 Volt S.1KU 25
±10%

0.,

8203

1K 38
01':1

R.,i$tor Toterance:,.± 5%

5-22 21044-0.0.3

8203

A.C. CHARACTERISTICS
TJ = ODC to 70 DC; VCC = 5V ± 10% (5.0V ± 5% for 8203-3); GND = OV

Measurements made with respect to RASO-RAS3, CAS, WE, OUTO-OUTs are at 2.4V and 08V. All
other pms are measured at 1.5V. All times are in nsec.

Symbol Parameter Min Max

tp Clock Period 40 54

tpH External Clock High Time 20

tpL External Clock Low Time-above (» 20 mHz 17

tpL External Clock Low Time-below (.oS) 20 mHz 20

tRC
,

Memory Cycle Time IOtp - 30 12tp

tREF Refresh Time (128 cycles) 264tp 288tp

tRP RAS Precharge Time 4tp - 30

tRSH RAS Hold After CAS 5tp - 30

tASR Address Setup to RAS tp - 30

tRAH Address Hold From RAS tp - 10

tASC Address Setup to CAS tp - 30

tCAH Address Hold from CAS 5tp - 20

tCAS CAS Pulse Width 5tp - 10

IWCS WE Setup to CAS tp - 40

tWCH WE Hold After CAS 51p - 35

tRS RD, WR, ALE, REFRQ delay from RAS 5tp

IMRP RD, WR selup 10 RAS 0

tRMS REFRQ selup to RD, WR 21p

tRMP REFRQ selup to RAS 2tp

tpcs PCS Selup to RD, WR, ALE 20

tAL S 1 Selup to ALE 15

tLA SI Hold from ALE 30

tCR RD, WR, ALE 10 RAS Delay Ip + 30 2tp + 70

tcc RD, WR, ALE to CAS Delay 3tp + 25 4tp + 85

tsc CMD Setup to Clock 15

'MRS RD, WR setup to REFRQ 5

tCA RD, WR, ALE 10 SACK Delay 21p + 47

ICX CAS 10 XACK Delay 51p - 25 51p + 20

tcs CAS to SACK Delay 5tp - 25 5tp + 40

tACK XACK to CAS Setup 10

txw XACK PU,Ise Widlh tp - 25

tCK SACK, XACK turn-off Delay 35

tKCH CMD Inactive Hold after SACK, XACK 10

tLL REFRQ Pulse Width 20

tCHS CMD Hold Time 30

tRFR REFRQ to RAS Delay 4tp + 100

tww WR to WE Delay 0 50

tAD CPU Address Delay 0 40

5-23

Notes

4,5

3

3

3

3

3

8

2, 6

5

6

5

2

2

1

2

2,9

2,10

7

11

6

8

3

21044-003

intJ 8203

WAVEFORMS
Normal Read or Write Cycle

RD.WR

Advanced Read Mode

8, _____ { lAl _,lA}-------------

ALE

5-24 21044-003

WAVEFORMS (cont'd)
Memory Compatibility Timing

8203

~i:~~ ____________ V_AL_~_A_OO_RE_~ ______________ ~~~ ________________________ __

-~";."x-- -:.a2-

1\
tRSH

I ,
teAs

\ V
I--IASR-OO ... IRAH j--IASC- _ICAH_

OUTO-OUT6 X ROW X COLUMN K

Write Cycle Timing

\ I
\ /

.1
'tc~~ -MIN (

1(

ICR -- IWW +---+--MAX-
MAX

\ / IWW~ MIN

'I
.... twcs __ ~tWCH .

. ICC
MIN

. ICC
MAX

5-25 21044-003

int:er 8203

WAVEFORMS (cont'd)
Read or Write Followed By External Refresh

Ali, WR

REFRQ

~------------IRC------------~

I+-------~~--------·~

I+--------~i--------t------J

External Refresh Followed By Read or Write

RD.WR

REFRQ

tRS ---.....l~.o-------

\1....-

5-26 21044-003

WAVEFORMS (cont'd)
Clock And System Timing

CLK

RD, WR,ALE

Table 2. 8203 Output Loading.
All specifications are
for the Test Load un­
less otherwise noted

Pin I Test Load
,

SACK. XA.CK CL=30pF
OUTO-OUT6 CL = 160 pF
RASO-RAS3 CL = 60 pF
WE CL = 224 pF
CAS CL = 320 pF

NOTES:
1. tsc isa reference point only. ALE. RD. WR. and REFRQ Inputs do

not have to be externally synchronized to 8203 clock.
2. If tRS min and tMRS min are met then tCA. tCR. and tcc are valid.

otherwise tcs is valid.
3. tASR. tRAH. tASC. tCAH. and tRSH depend upon 80-81 and CPU

address remaining stable throughout the memory cycle. The ad·
dress inputs are not latched by the 8203.

4. For back·to·back refresh cycles. tRC max - 13tp
5. tRC max is valid only if tRMP min is met (READ. WRITE followed

by REFRESH) or tMRP min is met (REFRESH followed by READ.
WRITE).

6. tRFR is valid only if tRS min and tRMS min are met.
7. txw min applies when RD. WR has already gone high. Otherwise

XACK follows RD. WR.
8. WE goes high according to tWCH or tWW. whichever occurs

first.

8203

5-27

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER
TEST

NOTE: CL includes jIg capacitance

9. tCA applies only when in normal SACK mode. de.
10. tcs applies only when in delayed SACK mode.
11. tCHS must be be met only to ensure a SACK active pulse

when in delayed SACK mode. XACK will always be activated
for at least txw (tp-25 nS). Violating tCHS min (loes not
otherwise affect device operation.

21044-003

'I

8203

The typical rising and falling characteristic curves for the
OUT, RAS, CAS and WE output buffers can be used to
determine the effects of capacitive loading on the A.C.

Timing Parameters. Using this design tool in conjunction
with the timing waveforms, the designer can determine
typical timing shifts based on system capacitive load.

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS

NOTE:

CAPACITANCE: pP
I.Or-----~------i-------r_----_r------r_----_.------_r------r_----_r----~

o .• I----+--.,I>iII~F1iiIIIiiiii:==+--~~--_I_--_+---+_--_+---I_--_I

O'O~----~------i------~-----L---T~~----~------~-----~----L~---In-.-~~

CAPACITANCE: pF
I.Or----~----~-----r-----_r------r_----~------_,------r_----_r----~

MEASUREMENT CONDITIONS:
Use the Jest Load as the base capacitance for estimating timing TA = 25°e

Vce = +5V
tp=50ns

Pins not measured are loaded with
the Test Load capacitance

shifts for system critical timing parameters.

5-28 21044-003

8203

Example: Find the effect on tCR and tcc using 32 2164
Dynamic RAMs configured in 2 banks.

1. Determine the typical RAS and CAS capacitance:
From the data sheet RAS = 5 pF and CAS = 5 pF.

RAS load = 80 pF + board capacitance:
CAS load = 160 pF + board capacitance.
Assume 2 pF lin (trace length) for board capaci­
tance and for this example 4 inches for RAS and
8 inches for CAS.

5-29

2. From the waveform diagrams, we determine that the
falling edge timing is needed for tCR and tCC. Next find
the curve that best approximates the test load; i.e.,
68 pF for RAS and 330 pF for CAS.

3. If we use 88 pF for RAS loading, then tCR (min.) spec
should be increased by about 1 ns, and tCR (max.)
spec should be increased by about 2 ns. Similarly if we
use 176 pF for CAS, then tcc (min.) should decrease
by 3 ns and tcc (max.) should decrease by about 7 ns.

21044-003

8206/8206-2
ERROR DETECTION AND CORRECTION UNIT

• Detects and Corrects All Single Bit
Errors

• Detects All Double Bit and Most
Multiple Bit Errors

• 52 ns Maximum for Detection; 67 ns
Maximum for Correction (16 Bit
System)

• Syndrome Outputs for Error Logging
• 8206-2 Timing Optimized for single 8206

8MHz iAPX 186, 188, 86, 88 and 8207-2
Systems

• Separate Input and Output
Busses-No Timing Strobes Required

• Expandable to Handle 80 Bit Memories

• Supports Reads With and Without
Correction, Writes, Partial (Byte)
Writes, and Read-Modify~Writes

• HMOS Technology for Low Power
• 68 Pin Leadless JEDEC Package

• Single +5V Supply

The HMOS 8206 Error Detection and Correction Unit is a high-speed device that provides error detection and
correction for memory systems (static and dynamic) requiring high reliability and performance. Each 8206
handles 8 or 16 data bits and up to 8 check bits. 8206's can be cascaded to provide correction and detection for
up to 80 bits of data. Other 8206 features include the ability to handle byte writes, memory initialization, and
error logging.

WL 16

, DATA IN
LATCH pOSo., READ

PARTIAL PARITY ERR

010 . 1

STS r- GENERATOR

CE
CHECK BIT

Tit t ,I 7 LAT~H

.~ J:-
---<CRC

CHECK BIT/

~
SVNDROME

~ • --" DECODER 16

< SYNDROME! SYNDROME AND
DATA

-I- ~ PARTIAL PARITY ,--y LATCH ERROR
CORRECTION

GENERATOR DETECTION

CB1/SY10_

SYO/C90/PPOO_7

-T

D?IWDIO_15

•
L--/--

iI' U·i 11 llf !"~ V po""
~ NSLo.1

WRITE 16
PARTIAL PARITY

PPI/POS/NS

Mis
GENERATOR

POSo"H 2

GND -5V

1 L 1 1 - -
SEDCU R/W Vss vee WZ SMo_,

Figure 1. 8206 Block Diagram

Intel Corporation Assume. No Responsibilty for the Use of Any CircUitry Other Than CirCUitry Embodied In an Intel Product No Other CirCUIt Patent Licenses are Implied

@INTELCORPORATION, 1982 ' NOVEMBER 1984

5-30 Order Number 205220-005

intJ

010 0 15

8Ta -~=r:::~
CB1o.s

SYOICBOo-s ¢=-::;.=:::;:~

Symbol Pin No. Type

D10-15 1,68-61, I
59-53

CBI/SYIO 5 I
CBI/SYI1 6 I
CBI/SYI2 7 I
CBI/SYI3 8 I
CBI/SYI4 9 I
CBI/SYI5 10 I
CBI/SYIS 11 I
CBI/SYI7 12 I

DOIWDIO 51 I/O
DOIWDI1 50 I/O
DOIWDI2 49 I/O
DOIWDI3 48 I/O
DOIWDI4 47 I/O
DOIWDI5 46 I/O
DOIWDIS 45 I/O
DO/WDI7 44 I/O
DOIWDls 42 I/O
DO/WDlg 41 I/O
DOIWDl10 40 I/O
DOIWDl11 39 I/O
DOIWDI12 38 I/O
DO/WDI13 37 I/O
DOIWDI14 36 I/O
DOIWDI15 35 I/O

WRITE
PARTIAL PARITY

GENERATOR

8206/8206-2

16

r------~ t----_ERROR

RIW

SYNDROME
DECODER

AND
ERROR

DETECTION

r----~ ~---_CE

16

II

DATA
CORRECTION

16

Yss Vee ViZ &Moo 1

Figure 2. 8206-2 Block Diagram

Table. 1. 8206 Pin Description

Name and Function
Data In: These inputs accept a 16 bit data word from RAM for error detection
and/or correction.

Check Bits In/Syndrome In: In a single 8206 system, or in the master in a multi-
8206 system, these inputs accept the check bits (5 to 8) from the RAM. In a
single 8206 16 bit system, CB10-5 are used. In slave 8206's these inputs accept
the syndrome from the master.

Data Out/Write Data In: In a read cycle, data accepted~10_15 appears at
these outputs corrected if CRCT is low, or uncorrected if CRCT is high. The BM
inputs< must be high to enable the output buffers during the read cycle. In a
write cycle, data to be written into the RAM is accepted by these inputs for com-
puting the write check bits. In a partial-write cycle, the byte not to be modified
appears at either DOO_7 if BMo is high, or DOS-15 if BM1 is high, for writing to
the RAM. When WZ is active, it causes the 8206 to output all zeros at DOO-15,
with the proper write check bits on CBO.

5-31 205220-005

· 8206/8206-2

Table 1. 8206 Pin Descriptipn (Continued)

Symbol Pin No. Type Name and Function

SYO/CBO/PPOo 23 ° Syndrome Out/Check Bits Out/Partial Parity Out: In a single 820S system, or
SYO/CBO/PP01 24 ° in the master in a multi·820S system, the syndrome appears at these outputs
SYO/CBO/PP02 25 ° during a read. During a write, the write check bits appear. In slave 820S's the
SYO/CBO/PP03 27 ° partial parity bits used by the master appe~ at these outputs. The syndrome is
SYO/CBO/PP04 28 ° latched (during read-modify-wrltes) by RIW going low.
SYO/CBO/PP05 29 ° SYO/CBO/PPOS 30 0
SYO/CBO/PP07 31 0

PPlolPOSo 13 I Partial Parity In/Position: In the master in a multi-820S system, these inputs
PPI1/POS1 14 I accept partial parity bits 0 and 1 from the slaves. In a slave 820S these inputs in-

form it of its position within the system (1 to 4). Not used in a single 820S
system.

PPI2/NSLo 15 I Partial Parity In/Number of Slaves: In the master in a multi-820S system, these
PPI3/NSL1 1S I inputs accept partial parity bits 2 and 3 from the slaves. In a multi-820S system

these inputs are used in slave number 1 to tell it the total number of slaves in the
system (1 to 4). Not used in other slaves or in a single 820S system.

PPI4/CE 17 I/O Partial Parity In/Correctable Error: In the master in a multi-820S system this
pin accepts partial parity bit 4. In slave number 1 only, or in a sin~e 820S
system, this pin outputs the correctable error flag. CE is latched by R going
low. Not used in other slaves.

PPI5 18 I Partial Parity In: In the master in a multi-820S system these pins accept partial
PPls 19 I parity bits 5 to 7. The number of partial parity bits equals the number of check
PPI7 20 I bits. Not used in single 820S systems or in slaves.

ERROR 22 0 Error: This pin outputs the error flag in ~ingle 820S system or in the master of
a multi-820S system. It is latched by RIW going low. Not used in slaves.

CRCT 52 I Correct: When low this pin causes data correction during a read or read-
mOdify-write cycle. When high, it causes error correction to be disabled,
although error checking is still enabled.

STB 2 I Strobe: STB is an input control used to strobe data at the 01 inputs and check-
bits at the CBI/SYI inputs. The signal is active high to admit the inputs. The
signals are latched by the high-to-Iow transition of STB.

ID;i;o 33 I Byte Marks: When high, the Data Out pins are enabled f~ read cycle. When
BM1 32 I low, th~ata Out buffers are fristated for a write cycle. BMo controls 000_7,

while BM1 controls 008-15' In partial (byte) writes, the byte mark input is low
for the new byte to be written.

RIW 21 I fleadlWrite: When high this pin causes the 820S to perform detection and
correction, (if CRCT is low). When low, it causes the 820S to generate check bits.
On the high-to-Iow transition the syndrome is latched internally for read-
modify-write cycles.

WZ 34 I Write Zero: When low this input overrides the BMo_1 and R/W inputs to cause
the 820S to output all zeros at 000-15 with the correspondi ng check bits at
CBOo_7. Used for memory initialization.

M/S 4 I Master/Slave: Input tells the 820S whether it is a master (high) or a slave (lOW).

SEOCU 3 I Single EDC Unit: InpLlt tells the master whether it is operating ,as a single 820S
(low) or as the master in a multi-820S system (high). Not used in slaves.

Vee so I Power Supply: +5V

VSS 2S I Logic Ground

Va's 43 I Output Driver Ground

5-32 205220-005

intJ 8206/8206-2

Table 2. 8206-2 Pin Description Differences over the 8206.

Symbol Pin "!)'pe Name and Function

. CBlo-s 5-10 I Check Bits In: In an 8206-2 system, these inputs accept the check bits (5
to 6) from the RAM

SYO/CBOo 23 0 Syndrome Out/Check Bits Out: In an 8206-2 system, the syndrome
SYO/CB01 24 0 appears at these outputs during a read. During a write, the write che~
SYO/CB02 25 0 bits appear The syndrome is latched (during read-modify-writes) by R/W
SYO/CBOa 27 0 gOing low
SYO/CB04 28, 0
SYO/CBOs 29 0

CE 17 0 Correctable Error: In an 8206-~system, this pin outputs the correctable
error flag. CE is latched by R/W going low.

WZ 34 I Write Zero: When low this input overrides the BMo-1 and R/W Inputs to
I cause the 8206-2 to output all zeros at DOo-15 with the corresponding check I
. bits at C;_~0.o,5 Used for memory initialization. r

Strap High 4 I Must be tied High.

Strap Low 3 I Must be tied Low.

,N.C. 11-16 I Note: These pinS have internal pull-up resistors but if possible should be
18-20 !led hi.gh or low.

N.C. 30, 31 0 Note: These are no connect pins and should be left open.

FUNCTIONAL DESCRIPTION

The 8206 Error Detection and Correction Unit
provides greater memory system reliability through
its ability to detect and correct memory errors. It is a
single chip device that can detect and correct all
single bit errors and detect all double bit and some
higher multiple bit errors. Some other odd multiple
bit errors (e.g., 5 bits in error) are interpreted as
single bit errors, and the CE flag is raised. While
some even multiple bit errors (e.g., 4 bits in error) are
interpreted as no error, most are detected as double
bit errors. This error handling is a function of the
number of check bits used by the 8206 (see Figure 2)
and the specific Hamming code used. Errors in
check bits are not distinguished from errors in a
word.

For more information on error correction codes, see
Intel Application Notes AP-46 and AP-73.

Asingle 8206 or 8206--2 handles8 or 16 bits of data, and
up to 5 8206's can be cascaded in order to handle data
paths of 80 bits. For a single 8206 8 bit system, the
DI8-1S, DOIWDls_1s and 8M1 inputs are grounded. See
the Multi-Chip systems section for information on
24-80 bit systems.

The 8206 has a "flow through" architecture. It sup­
ports two kinds of error correction architecture: 1)
Flow-through, or correct-always; and 2) Parallel, or
check-only. There are two separate 16-pin busses,

5-33

DATA WORD BITS CHECK BITS

8 5

16 6

24 6

. 32 7

40 7

48 8

56 8

64 8

72 8

80 8

Figure 3. Number of Check Bits Used by 8206

one to accept data from the RAM (DI) and the other
to deliver corrected data to the system bus (DOl
WDI). The logic is entirely combinatorial during a
read cycle. This is in contrast to an architecture with
only one bus, with bidirectional bus drivers that
must first read the data and then be turned around to
output the corrected data. The latter architecture
typically requires additional hardware (latches
andlor transceivers) and may be slower in a system
due to timing skews of control Signals.

20S220-00S

inter 8206/8206-2.

READ CYCLE

With the RNV pin high, data is received from the RAM
outputs into the 01 pins where it is optionally latched
by the STB signal. Check bits are generated from the
data bits and compared to the check bits read from
the RAM into the CBI pins. If an error is detected the
ERROR flag is activated and the correctable error
flag (CE) is used to inform the system whether the
error was correctable or not. With the 8M inputs
high, the word appears corrected at the DO pins if
the error was correctable, or unmodified if the error
was uncorrectable.

If more than one 8206 is being used, then the check'
bits are read by the master. The slaves generate a
partial parity output (PPO) and pass it to the master.
The master 8206 then generates and returns the
syndrome to the slaves (SYO) for correction of the
data.

The 8206 may alternatively be used in a "check­
only" mode with the CRC'f pin left high. With the
correction facility turned off, the propagation delay
from memory outputs to 8206 outputs is signifi­
cantly shortened. In this mode the 8206 issues an
ERROR flag to the CPU, which can then perform one
of several options: lengthen the current cycle for
correction, restart the instruction, perform a diag­
nostic routine, etc.

A syndrome word, five to eight bits in length and
90ntaining all necessary information about the exis­
tence and location of an error, is made available to
the system at the SYOO_7 pins. Error logging may be
accomplished by latching the .syndrome and the
memory address of the word in error.

WRITE CYCLE

For a full write, in which an entire word is written to
memory, the data is written directly' to the RAM,
bypassing the 8206. The same data enters the 8206
through the WDI pins where check bits are gener­
ated. The Byte Mark inputs must be low to tristate

. the DO drivers. The check bits, 5 to 8 in number, are
then written to the RAM through the CBO pins for
storage along with the data word. In a multi-chip
system, the master writes the check bits using par­
tial parity information from the slaves.

In a partial write, part of the data word is overwritten,
and part is retained in memory. This is accomplished
by performing a read-modify-write cycle. The com­
plete old word is read into the 8206 and'porrected,

with the syndrome internally latched by R/W going
low. Only that part of the word not to be modified is
output onto the DO pins, as controlled by the Byte
Mark inputs. That portion of the word to be overwrit­
ten is supplied by the system bus. The 8206 then
calculates check bits for the new word, using the
byte from the previous read and the new byte from
the system bus, and writes them to the memory.

READ·MODIFY-WRITE CYCLES

Upon detection of an error the 8206 may be used to
correct the bit in error in memory. This reduces the
probability of getting multiple-bit errors in sub­
sequent read cycles. This correction is handled by
executing read-modify-write cycles.

The read-modify-write cycle is controlled by the Rm
input. After (during) the read cycle, the system
dynamic RAM controller or CPU examines the 8~06
ERROR and CE outputs to determine if a correctable
error occurred. If it did, the dynamic RAM controller
or CPU forces RiW low, telling the 8206 to latch the
generated syndrome and drive the corrected check
bits onto the CBO outputs. The corrected data is
available on the DO pins. The DRAM controller then
writes the corrected data and corresponding check
bits into memory.

5-34

The 8206 may be used to perform read-modify­
writes in one or two RAM cycles. If it is done in two
cycles, the 8206 latches are used to hold the data
and check bits from the read cycle to be used in the
following write cycle. "The Intel 8207 Advanced
Dynamic RAM controller allows read-modify-write
cycles in one memory cycle. See the System
Envi'ronment section.

INITIALIZATION

A memory system operating with ECC requires some
form of initialization'at.system power-up in order to
set valid data and check bit information in memory.
The 8206 supports memory initialization by the write
zero function. By activating the WZ pin, the 8206 will
write a data pattern of zeros and the associated
check bits in the current write cycle. By thus writing
to all memory at power-up, a controller can set
memory to valid data and check bits. Massive mem­
ory failure, as signified by both data and check bits
all ones.or zeros, will be .detected as an uncorrecta­
ble error.

205220-005

8206/8206-2

MULTI-CHIP SYSTEMS

. A single 8206 handles 8 or 16 bits of data and 5 or 6
check bits, respectively. Up to 5 8206's can be cas­
caded for 80 bit memories with 8 check bits.

When cascaded, one 8206 operates as a master, and
all others as slaves. ASI an example, during a read
cycle in a 32 bit system with one master and one
slave, the slave calculates parity on its portion of the
word-"partial parity"-and presents it to the mas­
ter through the PPO pins. The master combines the
partial parity from the slave with the parity it calcu­
lated from its own portion of the word to generate

3a. 48 BIT SYSTEM

3b ~4 BIT SYSTEM

3c. ·80 BIT SYSTEM

the syndrome. The syndrome is then returned by the
master to the slave for error correction. In systems
with more than one slave the above description con­
tinues to apply, except that the partial parity outputs
of the slaves must be XOR'd externally. Figure 4
shows the necessary external logic for multi-chip
systems. Write and read-modify-write cycles are car­
ried out analogously. See the System Operation sec­
tion for multi-chip wiring diagrams. .

There are several pins used to define whether the
8206 will operate as a master or a slave. Tables 3 and
4 illustrate how these pins are tied.

SLAVE 2

PPO

SLAVE 3

PPO

SLAVE 3 SLAVE 4

PPO PPO

Figure 4. External Logic For Mult-Chip Systems

5-35 205220-005

8206/8206-2

liIble 3. Master/Slave Pin Assignments
r

Pin No. Pin Name Master Siaye 1 ' SIaye2 SIaye3 SIaye4

4
3

13
14
15
16

'See Table 3.
NOTE:

MIS, +5V
SEDCU +5V
PPlofPOSo. PPI
PPI1/POS1 PPI
PPI2/NSLo PPI
PPI3/NSL1 PPI

Gnd ~nd Gnd Gnd
+5V +5V +5V +5V
Gnd +5V Gnd +5V
Gnd Gnd +5V +5V . +5V +5V +5V . +5V +5V +5V

Pins 13, 14, 15, 16 have internal pull-up resistors and may be left as N.C. where specified as connecting to +5V.

liIbIe 4. NSL Pin AssIgnments for Slave 1

Number of Siayes
Pin 1

PPI2/NSLo Gnd
PPIalNSL1 Gnd

The timing specifications for multi-chip systems
must be calculated to take account of the external
XOR gating in 3, 4, and 5-chip systems. Let tXOR be
the delay for a single external TTL XOR gate. Then
the following equations show how to calculate the
relevant timing parameters for 2-chip (n=-O), 3-chip
(n=1), 4-chip (n=2), and 5-chip (n=2) systems:

Data-in to corrected data-out (read cycle) =
TDVSV + TPVSV + TSVaV + ntXOR

Data-in to error flag (read cycle) =
TDVSV + TPVEV + ntXOR

Data-in to correctable error flag (read cycle) =
TDVSV + TPVSV + TSVCV + ntXOR

Write data to check-bits valid (full write cycle) =
TaVaV + TPVSV + ntXOR

Data-in to check-bits valid (read-1l10d-write cycle) =
TDVSV + TPVSV + TSVaV + TaVaV + TPVSV +

2ntXOR

Data-in to check-bits valid (non-correcting read­
modify-write cycle) =

TDVaU + TaVaV + TPVSV + ntXOR

HAMMING CODE

The 8206 uses a modified Hamming code which was
optimized for multi-chip EDCU systems. The code is
such that partial parity is computed by all 8206's in

2
+5V
Gnd

3 4
Gnd +5V
+5V +5V

parallel. No 8206/equlres·more time for propagation
through logic levels than any other one, and hence
no one device becomes a bottleneck in the parity
oper!i\tion. However, one or two levels of external
TTL XOR gates are required In systems with three to
five chips. The code appears in Table 5. The check
bits are derived from the table by XORing or XNOR­
ing together the bits indicated by 'X's in each row
corresponding to a check bit. For example, check bit
o in the MASTER for data word 1000110101'1 01 011
will be "0." It should be noted that the 8206 will
detect the gross-error condition of all lows or all
highs.

Error correction is accomplished by identifying the
bad bit and inverting it. Table 5 can also be used as
an error syndrome ·table by replacing the 'X's with
'1 'so Each column then represents a different syn­
drome word, and by locating the column corre­
sponding to a particular syndrome the bit to be cor­
rected may be identified. If the syndrome cannot be
located then the error cannot be corrected. For
example, if the syndrome word ,is 00110111, the bit
to be corrected is bit 5 in the slave one data word (bit
21).

The syndrome decoding is also summarized in Tables 6
and 7 which ean be used for error logging. By finding
the appropriate syndrome word (starting with bit zero,
the least significant bit), the result is either: 1) no error;
2) an identified (correctable) single bit error; 3) a
double bit error; or 4) a multi-bit uncorrectable error.

205220-005

~

!

liIble 5. Modified Hamming Code Check Bit Generation

Check bits are generated by XOR'ing (exceptfor the CBO and CBl data bits, which are XNOR'ed in the Master) the data
bits in the rows corresponding to the check bits. Note there are 6 check bits in a l6-bit system, 7 in a 32-bit system, and
8 in 48-or-more-bit systems.

BYTE NUMBER 0 1 OPERATION
BIT NUMBER 01234567 o 1 2 3 4 5 6 7

2 3 OPERATION o 1 2 3 4 5 6 7 o 1 2 345 6 7
CBO= xx-x·xx· x-·x-x-· XNOR -xxx-xx- - x x • - x - - XOR
Clll = x - x •• x - x - x - x x - x - XNOR x x x - - x - x x x - - - - - x XOR

CHECK CB2 = - x x - x - x x - - x - x - - x XOR - x x x - x x x - - x x - - - - XOR
CB3 = xxxxx-·- xxx-·--- XOR x x - - x - x x x - - x x - - - XOR

BITS CB4 = -_·xxxxx - - - • - x x x XOR x x - - x x x x - . - x - x - XOR
CBS = - - - - - - - - xxxxxxxx XOR - - -xxxxx- - - - - x x x XOR
CB6 = - - - - - - - - - - - - - - - - XOR - - - - . . - - x x x x x x x x XOR
CB7 = - - - - - - - - - - - - - - - - XOR - - - - - - - - . - - - - - . XOR

DATA BITS o 0 0 0 0 0 0 0 00111111
o 1 234 5 6~7 8 9 0 1 234 5

1 1 1 1 2 2 2 2 22222233
,67890123 4 5 6 7 8 901

16 BIT OR MASTER SLAVE #1

BYTE NUMBER 4 5 6 7 8 9 OPERATION
BIT NUMBER 01234567 o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 01234567 01234567 o 1 2 3 4 5 6 7

CBO= xx-x-xx- x - - x - x - . x - x - x x - - x - x x - - x - - x ~ x - x x - - x x - - x - - XOR
CBl = x - x - - x - x - x - x x - x - - x x - -c: • X X X X X - - - x - -xxx-xxx - x x - - - - XOR

CHECK CB2= - x x - x - x x - - x - x - - x -xxx-xx- - x x - - x - • x - - x - x x - - x x - - x - x XOR
CB3= x x x x x - - - x x x - - - - - x - x - - x x - x x - - x x - - - x x x x - - x x x • • x - . - XOR

BITS CB4= - - -xxxxx- - - - - x x x - - - x x x x x - - - - - x x x - x x - - - x x x x x - - - x - XOR
CB5= x x x x x x x x - - - - - - - - - - - - - - x X x x x x x x x - x x x x - x - - - x - - - x XOR
CB6= x x x x x x x x - - - - - - - - x x x x x x x x - - . - - . . • x x - • x x x x - - - - x - x - XOR
CB7= - - - - - - - x x x x x x x x - - . - - - - - x x x x x x x x - . - - - - - - x x x x x x x x XOR

DATA BITS 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 445 5 5 5 5 5 55556666 66666 6 7 7 7 7 7 7 7 7 7 7
23456789 o 1 234 5 6 7 ,8.9 0 1 2 3 4 5 67890 1 2 3 45678901 234 5 678 9

SLAVE #2 I I SLAVE #3 I I SLAVE #4

l

co

I

"@
aeJ
Iiiiil
IF

~
<=>
~
~
2:ID
~

OE

8206/8206-2

Table 6. 8206 Syndrome Decoding

0 0 1
Syndrome 1 0 0

Bits 2 0 0
7 6 5 4 3 0 0
0 0 0 0 N CBO

0 0 0 1 CB4 0

0 0 1 0 CB5 0

0 0 1 1 0 13

0 1 0 0 CB6 0

0 1 0 1 0 52

0 1 1 0 0 29

0 1 1 1 30 0

1 0 0 0 CB7 0

1 0 0 1 0 45

1 0 1 0 0 '59

1 0 1 1 63 0

1 1 0 0 0 u
1 1 0 1 78 0

1 1 1 0 U 0

1 1 1 1 0 U

N = No Error
CBX = Error in Check Bit X

X = Error in Data Bit X
o = Double Bit Error

0 1
1 1
0 0
0 0

CB1 0

0 5

0 11

14 0

0 25

55 0

31 0

0 37

0 43

46 0

75 0

0 62

u 0

0 U

0 u
U 0

U = Uncorrectable Multi-Bit Error

DATA MEMORY
16 BITS

~ 01 DO

'1

0 '1
0 0
1 1
0 0

CB2 0

0 6

0 19

15 0

0 26

51 0

64 0

0 38

0 77

47 0

79 0

0 U

u 0

0 U

0 u
U 0

CHECK BITS
7 BITS

01 DO

0
1
1
0
0

7

12

0

49

0

0

39

44

0

0

U

0

U

u
0

1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1
1 0 0 0 0 1 1 1 1
0 1 1 1 1 1 1 1 1
18 CB3 0 0 0 0 1 2 0

0 0 3 16 0 4 0 0 17

0 0 8 9 0 10 0 0 67

21 20 0 0 66 0 22 23 0

0 0 48 24 0 27 0 0 50

70 28 0 0 65 0 53 54 0

69 68 0 0 32 0 33 34 0

0 0 35 71 0 36 0 0 U

0 0 40 41 0 42 0 0 U

74 72 0 0 U 0 73 U 0

58 60 0 0 56 0 U 57 0

0 0 u u 0 61 0 0 U

U 76 0 0 U 0 U U 0

0 0 u u 0 u 0 0 U

0 0 u u 0 u 0 0 U

u u 0 0 u 0 u u 0

SYSTEM ENVIRONMENT

The 8206 interface to a typical 32 bit memory system
is illustrated in Figure 5. For larger systems, the
partial parity bits from slaves two to four must be

DATA MEMORY
16 BITS

01 DO

32 BIT
DATA
BUS ~

x
C
V
R r--- I 1=

1
r--

t F II , T

DOIWDI 01 SYO/CBO CBlo_6 SYIO_6 DOIWDI 01

PPIO-6 PPOo-s POSo

~~ CIICT PPI7

~
,---- = POS,

CONTROL { wz CBI7 V"- wz NSL, .-
LINES i 8206 8206

NSL, ... STB MASTER V"- STB (SLAVE

RIW MIS ~+v V-- RIW MIS .-
'\ SEOCU PPIS-7

~ liMo

J r
BMo smlm

~l liM,
ERROR r-- iJM, SYI7

CE
MARKS

I
ERROR

SIGNALS J

+5V

Figure 5. 32-81t 8206 System Interface

5-38 205220-005

8206/8206-2

XOR'ed externally, which calls for one level of XOR
gating for three 8206's and two levels for four or five
8206's.

The 8206 is designed for direct connection to the Intel
8207 Advanced Dynamic RAM Controller. The 8207
has the ability to perform dual port memory control,
and Figure 6 illustrates a highly integrated dual port

ACKB 1 ACK8

ADDR

I ~ lIAS CMO/PEA =
CMDfPES CMD/PEB WE H>o-<

8207
MUX ADRC

WZ
ClK>--- ClK PSEN '---

ADDR B

CE

ERROR

DBM
MUX l- I""

ADDR
RIW

- ACKA. PSEL
CMO/PEA

ADORA

ACKA -

..-- '--

BYTe
MARK

DECODER

~

WE
01

RAM implementation using the 8206 and 8207. The
8206/8207 combination permits such features as au­
tomatic scrubbing (correcting errors in memory dur­
ing refresh), extending RAS and CAS timings for
Read-Modify-Writes in single memory cycles, and
automatic memory initialization upon reset. To­
gether these two chips provide a complete dual­
port, error-corrected dynamic RAM subsystem.

DYNAMIC
RAM

32 BITS +
7 CHECK BITS

CBI DO/CSO

r-- h
I L E L 1 L ERJOR SYOI DIICBI CE SYI 01

R/W cso RIW

~5V- STB PPI PPO STB r-
8206 8206 .r CReT MASTER

f
CRCT SLAVE

WZ WZ
BM DO/WDI BM DO/WDI

1iJl Q
~t= l~r-

jl
'---- c...-..

~ XCVR

b
RD

STB OEI
LATCH

PORT A PORT B

Figure 6. Dual Port RAM Subsystem with 8206/8207 (32-bit bus)

5-39 205220-005

inter 8206/8206-2

Table 7. 8206-2 Syndrome Decoding

Syndrome 0 0 1
Bits 1 0 0

5 4 3 2 0 0

0 0 0 N CBO

0 0 1 CB3 D

b 1 0 CB4 D

0 1 1 D 3

1 0 0 CB5 D

1 0 1 D 8

1 1 0 D 13

1 1 1 D D

N = No Error
CBX = Error in Check Bit X

X = Error in Data Bit X
D = Double Bit Error

0 1 0
1 1 0
0 0 1

CB1 D CB2

D 0 D

D 5 D

D D 4

D 11 D

9 D 10

14 D 15

D D D

1 0
0 1
1 1

D D

1 2

6 7

D D

D 12

D D

D D

D D

OTHER ACK
INPUTS

1
1
1

D

D

D

D

D

D

D

D

eLK AACKA AOe-8 RASo_3

AROyelK

S21------------~PCTLA

80186

CASo_3

8207-2

The 8206-2 han'dles 8 or 16 bits of data. For 8 bit
8206-2 systems, the DIS-.15' DO/WDls-15 and BM1 in­
puts are grounded.

The 8206-2 is designed for direct connection to the
Intel 8207-2 Advanced Dynamic RAM Controller. The
8207-2 has the ability to perform dual port memory
control, and Figure 7 illustrates a highly integrated
iAPX 186 RAM implementation using the 8206-2 and
8207-2. The 8206-218207-2 combination permits such
features as automatic scrubbing (correcting errors in
memory during refresh), extending RAS and CAS tim­
ings for Read-Modify-Writes in single memory cycles,
and automatic memory initialization upon reset.
Together these two chips provide a complete dual-port,
error-corrected dynamic RAM subsystems.

ERROR 010-15

STB . +5V

Figure 7. iAPX 186 RAM Correct Always Subsystem with the 8206·2 and the 8207·2

5-40 205220-005

intJ 8206/8206-2

MEMORY BOARD TESTING

The 8206 lends itself to straightforward memory
board testing with a minimum of hardware over­
head. The following is a description offour common
test modes and their implementation.

Mode O-Read and write with error correction.
Implementation: This mode is the normal
8206 operating mode.

Mode 1-Read and write data with error correction
disabled to allow test of data memory.
Implementation: This mode is performed
with CRCT deactivated.

Mode 2-Read and write check bits with error cor­
rection disabled to allow test of check bits
memory.
Implementation: Any pattern may be writ­
ten into the check bits memory by judi-

5-41

ciously qhoosing the proper data word to
generate the desired check bits, through
the use of the 8206 Hamming code. To
read out the check bits it is first necessary
to fill the data memory with all zeros,
which may be done by activating WZ al1d'
incrementing memory addresses with WE
to the check bits memory held inactive,
and then performing ordinary reads. The
check bits will then appear directly at the
SYO outp'uts, with bits CBO and CB1
inverted.

Mode 3-Write data, wittiout altering or writing
check bits, to allow the storage of bit
combinations to cause error correction
and detection.
Implementation: This mode is im­
plemented by writing the desired word to
memory with WE to the check bits array
held inactive.

205220-005

I.
I·

ii
I)

II

8206/8206-2

BOTTOM

.P Q S Q 0

~ ~ ;: ;:
a a

TOP 0 0 0 0

I~ I'

wz
BMO
BM1

TY0
7

SYO,

Vss

JSY0
2

SYOo

ERROR

R1W

] PPI7

PPls

PIN NO.1 MARK PIN NO. 1 cl' f!!lil!!' II
MARK In 0 :Ii i if w

In U U 0.

BOTTOM

cl' <5 S Q

~ ;: ;: ;:
a a a

0 0 0 0 ,; I I

CIICT W1.

"I
HMO

HM1
N.C.
N.C. JY0

5
01, SY03

Vee Vss
iC8206-2

~[JSY0
2

SYOo

ERROR

R1W

01,
] N.C.

PIN NO.1 MARK .Pal

~ ~I I~ o In
iii iii t.i
u " z

NOTE:
The 8206 and 8206-2 is packaged in a 88 pin JEDEC TYPE A hermetic chip carrier

Figure 8. 8206 and 8206-2 Pinout Diagram

5-42 205220-005

8206/8206-2

ABSOLUT~ MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature -65°C to +1500C
Voltage On Any Pin

With Respect to Ground -0.5V to + 7V
Power Dissipation 1.5 Watts

'NOTE: stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, VCC = 5.0V ± 10%, VSS= GND) .

Symbol Parameter Min. Max. . Unit Test CQnditions

Icc Power Supply Current
-Single 8206, 8206-2 or 270 rnA

Slave #1
-Master in Multi·Chip 230 rnA

or Slaves #2, 3, 4

VIL
1 Input Low Voltage -0.5 0.8 V

VIH
1 Input High Voltage 2.0 Vcc+ V

0.5V

Output Low Voltage
VOL -DO 0.45 V IOL = 8mA

-All Others 0.45 V 10L = 2.0m~

Output High Voltage
VOH -DO,CBO 2.6 V 10H = -2m A

-All Other Outputs 2.4 V 10H = -O.4mA

I/O Leakage Current

ILO -PPI4/CE ± 20 /LA 0.45V,,;; VI 10 ,,;; Vce

-DO/WDI0_15 ± 10 /LA

III
Input Leakage Current ___ 2
-PPI0-3, 5-7, CBIS_7, SEDCU ± 20 /LA OV,,;;VIN ,,;;Vcc
-All Other Input Only Pins ± 10 /LA

NOTES:
1. SEDCU (Pin 3) and MIS (Pin 4) are device strapping options and should betied toVee orGND. V1H min = Vee -0.5Vand V1L max= 0.5V.

2. PPIO-7 (pins 13-20) and CB16_7 (pins 11, 12) have internal pull-up resistors and if left unconnect~d will be pulled to Vee

A.C. TESTING INPUT, OUTPUT WAVEFORM

.. ~ ~2'0 > T,EST POINTS < 2.0 (

08 0.8
045

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A lOGIC a TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1
AND 0 BV FOR A LOGIC 0 ' .

5-43

A.C. TESTING LOAD CIRCUIT

DEVICE RL
UNDER ICc TEST

-=

CL INCLUDES JIG CAPACITANCE

205220-005

inter 8206/8206-2

A.C. CHARACTERISTICS (TA = O°Clo 70°C, Vee = +5V ± 10%, VSS = OV, RL = 22fi, CL = 59 pF;
all times are in nsec.)

8206 8206-2

Symbol Parameter Min. Max. Min. Max.

TRHEV ERROR Valid from R/Wt 25 40

TRHCV CEVaiid from R/Wf (Single 8206) 44 49

TRHQV Corrected Data Valid from R/Wf 54 66

TRVSV SYO/CBO/PPOValid from R/W 42 46

TDVEV ERROR Valid from Data/Check Bits In 52 57

TDVCV CE Valid from Data/Check Bits In 70 76

TDVQV Corrected Data Valid from Data/Check Bits In 67 74

TDVSV SYO/PPOValid from Data/Check Bits In 55 65

TBHQV. Corrected Data Access Time 37 37

TDXQX Hold Time from Data/check Bits In 0 0

TBLQZ Corrected Data Float Delay 0 28 0 28

TSHIV STB High to Data/Check Bits In Valid 30 30

TIVSL Data/Check Bits In to STBt Set-up 5 5

TSLIX Data/Check Bits In from STBt Hold 25 25

TPVEV ERROR Valid from Partial Parity In 30

TPVQV Corrected Data (Master) frail) Partial Parity In 61

TPVSV Syndrome/Check Bits Out from Partial Parity In 43

TSVQV Corrected Data (Slave) Valid from Syndrome 51

TSVCV CE Valid from Syndrome (Slave number 1) 48

TQVQV Check Bits/Partial Parity Out from Write Data In 64 69

TRHSX Check Bits/Partial Parity Out from R/W, WZ Hold 0 0

TRLSX Syndrome Out from R/W Hold 0 0

TQXQX Hold Time from Write Data In 0 0

TSVRL !itlndrome Out to R/Wt Set-up 17

TDVRL Data/Check Bits In to R/W Set-up 39 41

TDVQU Uncorrected Data Out from Data In 32 38

TTVQV Corrected Data Out from CRCTt 30 33

TWLQ(wzt to Zero Out 30 34

TWHQX Zero Out from WZf Hold 0 0

NOTES:
1. A.C. Test Levels for CBO and DO are 2.4V and 0.8V.

Notes

1

1

1

1

2

3

'1,3

'1,3
.-
3

3

1

1

1

3
1

2. TSHIV is required to 9uarantee output delay timings: TOVEV, Tovev, TOVQV, Tovsv. TSHIV + TIVSL guarantees a min STB pulse
width of 35 ns (45 rls for the 8206-8).

3. Not required for 8/16 bit systems

5-44 205220-005

intJ 8206/8206-2

WAVEFORMS

READ

STB7: ! N"-+I-----
h"sHI~ 1 • TIVSL • 1 1 ~SLI~ 1

RIW -------f~ :

1 1 1 1

I 1 1 1

~ 1 I

~--+!~~ 1 ~~-------
1 1 j-TBHQV--J 1 1

1 1 1 1 1

e~: ---<~ i I """ ~>--'-: ----
1 ,. 1 TRHQV ., 1 I---TBLQZ"I "I

DO ! i w~d ,,:-'- ~
\ ' ' TRVSV '1 1 I

SYO--'--; +--! >00W4W4 l·~ k=
1-1_ +1 ---'TDvsv----t.1 1 1
I~. -+-1 ----'TDVQ'v-.' ------I., I -rl i' ~TRHEV ::;::;::;::::;=~-r---- 1

ERROR-+i -+-"i)0/$ hW/ hi VALID x=
I 1.1 TOVEV "I 1

I. , Tovev "I I

_~I~I~'~~~T~RH~eV~~~~~"I _____ ~1
eE_~>W//#/U/ffA VALID x=

5-45 205220-005

i

intJ 8206/8206-2

WAVEFORMS (Continued)

READ-MASTER/SLAVE

STB JA I 11:--------
i--lTSHIV I

I , I :

RIW ----fl/i I ' ':aLI; " TIVSL '----' I _ _ I , I I ,--, r--TBLQZ--.

':~ I "I I ~ I I '\L ---tll--__I.-, -',"':; 1----1 , ,- I
TBHQV I ,

C~: ---<~,.....-1i--+-i --'---VA-LlO+--{ I i
!--:TRVSVt-----I I_TOXQX-----, I

:;~~:~::::-~XWA77l- VALID x~: -
I : : __ TPVQV-j I I

DO (MASTER) _--;--:'---~f"""'7'"""/A.r"..0-"""'7'""":~.".-r7p,.,j{-tr---VAL-1D ---~
I I '-TPVSV-j , I

Sy::~S:::)----'xt00/$4 .. ""' ~'j--i-
I I I '-TSVQV--i I I

DO(SLAVE)-----:-~/A VALID ~
I I·TPVEV..I I I

" ~';::;::;::;' ~TRHEY~7:k t __
ERROR_~/41 VALID P<'---_

i ~SVC"..I I , I. TRHCV, ~ I I

CE ---------X///W/////// A VALID X'---

5-46 205220-005

8206/8206-2

WAVEFORMS (Continued)

FULL WRITE

!--TRVSV-!

I I

R/W i
1
1
I

1 I

;........J TRLSX I
I I

::i
I I

8M I I

I I

1 TBlOZ I I
1-1 I I

I I 1
I 1 I

DOfWDI DATA OUT H I I
1 I

I I
1 I

I_TOVOV ·1 I
1 I

SVOfCBO SYN ~/(

FULL WRITE-MASTER/SLAVE

f.-- TRVSV----+-l

I
RIW------__ ~ :

I
I ~BLQ~ 1 I
1 I I

BM~: :
I I

I I I
I ~TQVQv---+-1

I I i I
DO/WOI DATA OUT ~ I I _____ If ... 'k I

I
1 I

I I

PPOISLAVE)------!...,I)05R771
PPI(MASTER) _________ +-1 I

I

A
I TRHSX I
i-----I

I
I
I
I
I
I
I

1 1 I

WRITE DATA IN 1:
~

Toxoxi

1

CB

I

X

/f

WRITE DATA IN

I
I
I~

I
I
I
I
I

I I

):
W.

TaxQxl
I

SYN

VALID x=
I

I-TRlSX --l :. TPVSV • 1
I
I
I

SVOICBO ___ SVN --~~4 CB x=
5-47 205220-005

inter 8206/8206-2

WAVEFORMS (Continued)

READ MODIFY WRITE

STBl ¥., '
I I N~---------

TS1Iv/i-' -----TIVSL----!.' I'''. ---TsLlx---J-1
-1/"'- , I I

I I I

R~Yf '{ A:
, I I ---------:-1 -" I I

, I-/ I----'TOVRL.---... ·I_TRVSV--! I ,

i
l, I I I II

8M 1: X----ll-"LlO"t-: ---r: ----:,-~
I I II T.RHS~ I I

'I .- i,~BL~i ", I- TBHQV---J

I I' I I I
cg: -{: : VALID: 1 : I

, I , , ,
I '-.---·TRHQV , '1 I I . ,:-- , I TOXQX --+I I+- I
/41 .. -:-----TOVQV-t/::;:::-;.-~I.-+-_--+-_-_ I

OO/WOI-..l.-: i--: ---@;! .~
II II TqJ(Q~ L
I ,.I.---TRVSV---~" 1-'-1 I-TRLSX I

I I I " I
SYO/CBO ---1....: ~~~7/~Z-r-7'"/Z"7""i7Z~: SYN ~~~7"17--CB --x=

, I I I I
11-. -, ---'Tovsv'---+/·I !--TQVQV---l

5-48 205220-005

intJ 8206/8206-2

WAVEFORMS (Continued)

READ MODIFY WRITE-MASTER/SLAVE

;{ '{ A ---' I I '-----' I

I I !----TRHSX ---I
II I I I

~~--------~: --~x :
II----TBHQv~ I I I I

I !--TBLQZ~ I
I I- TIVSL -I I I ---J I I I Vi , I

8TB Ji: i Il1\., -+1: --------+-: -tl
I~SHI:I· I TOVSV--J I I I : I

01
CBI

PPO(SLAVE)

PPI (MASTER)

DQIWOI
(MASTER)

--~~M::====:i :l=::VAL=IO ===============::!
: I I I J I : I
I I--TRVSV---i I !+-TSVRL--r-TRVSV-l I I

--------~I '-~~~~~~r--~I ----~ ,~~I--------------~I
~~~~~~ ____ I~ ____ -J , 

I I I I I 
r-T+V

": I I I 
, I , , I I 

! ~t i· VALID »t 
I 1.1 I TPVSV I 

I ~T~QV~ ~ I 
I I I i 
I 'rr..,-p.-' -,-,.b----------------- I 

SYO/CBD(~A( SYN ~ CB K 
SYI (SLAVE), I 

I ~TQVQV~ 
I , 

I ~~20~~{----nLl-o--~~ 

5-49 205220-005 



intJ 8206/8206-2 

WAVEFORMS (Continued) 

NON-CORRECTING READ 

CRCT--------1,.;.... ___ -J1 
I 1 

- I 1 

BM=?: i ~ 
1 I TTVQV1 I.TBLQZ.I 

DI 
CBI 

1 ~1·--TDVQU---.j_1 l-
I I 1 j..-TTVQv .... 1 I ,_TDXQX"I 1 

: ~=============:t =========l:============i==~ ! i I I 1 1 I 
I I 1 1 1 
!--TBHQV----l I I I 1 

1 I 1 I 1 1 

DOIWDI -------WA UNCORRECTED ~ CORRECTED } UNCORRECTED j;/}-

WRITE ZERO I" TWLQL -I 
1 1 

ViZ 

"4- I 
1 
I 
I 
1- TQVQV ----l 
1 

1 

1 
1 

1 

1 

DoWaw///ff$//~ 

s-sq 

1 

/f 
I 

I~WHQ~ I 
I 1 

: k7// 
i 

205220-005 



8207 
DUAL·PORT DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to 
Control 16K (2118), 64K (2164A) and 
256K Dynamic RAMs 

• Directly Addresses and Drives up to 2 
Megabytes without External Drivers 

• Supports Single and Dual·Port 
Configurations 

• Automatic RAM Initialization in All 
Modes 

• Four Programmable Refresh Modes 

• Transparent Memory Scrubbing in 
ECC Mode 

• iAPX 286 
(CFS=1) 
iAPX 86/186 
(CFS=O) 

8207·16 
8207·12 
8207·8 
8207·6 

2.5·8 MHz 
2.5·6 MHz 
2·8 MHz 
2·6 MHz 

• Provides Signals to Directly Control the 
8206 Error Detection and Correction Vnit 

• Supports Synchronous or 
Asynchronous Operation on Either Port 

• +5 Volt Only HMOSII Technology for 
High Performance and Low Power 

The Intel 8207 Advanced Dynamic RAM Controller (ADRC) is a high·performance, systems·oriented, Dynamic 
RAM controller that is designed to easily interface 16K, 64K and 256K Dynamic RAMs to Intel and other 
microprocessor systems. A dual·port interface allows two different busses to independently access memory. When 
configured'with an 8206 Error Detection and Correction Unit the 8207 supplies the necessary logic for designing 
large error-corrected memory arrays. This combination provides automatic memory initialization and transparent 
memory error scrubbing. 

Vee ----+­
Yss -ClK_ 

RESET_ 

ALa_a '--------,./1 

AHo_a '-------,./1 

850_1 '--------.,./1 

Figure 1. 8207 Block Diagram 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit 
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel. 
@ INTEL CORPORATION, 1983 5-51 

JANUARY 1985 
ORDER NUMBER: 210463M004 

i ~ 

I 
I. 
I , 



inter 8207 

Table 1. Pin description 

Symbol Pin Type Name and Function 

LEN 1 0 ADDRESS LATCH ENABLE: In two-port configurations, when Port A is running with iAPX 286 Status 
interface mode, this output replaces the ALE signal from the system bus controller of port A and 
generates an address latch enable Signal which provides optimum setup and hold timing for the 8207. 
This signal is used in Fast Cycle operation only. ~ , 

XACKAI 2 0 TRANSFER ACKNOWLEDGE PORTA/ACKNOWLEDGE PORTA: In non-ECC mode, this pin is 
ACKA XACKA and inid9ates that data on the bus is valid during a read cycle or that data may be removed 

from the bus during a write cycle for Port A. XACKA is a Multibus-compatibie signal. In ECC mode, 
this pin is ACKA which can be configured, depending on the programming of th~Ogram bit, 
as an XACK or AACK strobe. The SA programming bit determines whether the AA K will be an 
early EAACKA or a late LAACKA interface signal. 

XACKB/ 3 0 TRANSFER ACKNOWLEDGE PORT B/ACKNOWLEDGE PORT B: In non-ECC mode, this pin 
ACKB is XACKB and indicates that data on the bus is valid during a read cycle or that data may be re-

movedirom the bus during a write cycle for Port B. XACKB is a Multibus-coml1atible signa!. In ECC 
mode, this pin is ACKB which can be configured, depending on the programming of thetif'0gram 
bit, as an XACK or AACK strobe. The SB programming bit determines whether the AA will be 
an early EAACKB or a late LAACKB interface signal. 

Aiil%A/ 4 0 ADVANCED ACKNOWLEDGE PoRT AlWRITE ZERO: In non-ECC mode, this pin is AAl)I(A 
WZ and indicates that the processor may continue processing and that data will be available when re-

quired. This signal is optimized for the system by programming the SA program bit for synchronous 
or asynchronous operation. In ECC ~e, after a RESET, this signal will cause the 8206 to force 
the data to all zeros and generate the appropriate check bits. 

AACKBI 5 0 ADVANCED ACKNOWLEDGE PORT B/READ/WRITE: In non-ECC mode, this pin is AACKB and 
RJW indicates that the processor may continue processing and that data will be available when required. 

This signal is optimized for the system by programming the SB program bit for synchronous or asyn-
chronous operation. In ECC mode, this signal causes the 8206 EDCU to latch the syndrome and 
error flags and generate check bits. 

DBM 6 0 DISABLE,BYTE MARKS: This is an ECC control output signal indicating that a read or refresh cy-
cle is occurring. This output forces the byte address decoding logic to enable all 8206 data output 
buffers. In ECC mode, this output is also asserted during memory initialization and the 8-cycle dynamic 
RAM wake-up exercise. In non-ECC systems this signal indicates that either a read, refresh or 8-cycle 
warm-up is in progress. 

E§'fB 7 0 ERROR STROBE: In ECC mode, this strobe is activated when an error is detected and allows a 
negative-edge triggered flip-flop to latch the status of the 8206 EDCU CE for systems with error 
logging capabilities. ES'rn will not be issued during refresh cycles. 

LOCK 8 I LOCK: This input instructs the 8207 to lock out the port not being serviced at the time LOCK was 
issued. 

Vee 9 I DRIVER POWER: +5 Volts. Supplies Vee for the output drivers. 
43 LOGIC POWER: +5 Volts. Supplies Vee for the internal logie circuits. 

CE 10 I CORRECT ABLE ERROR: This is an ECC input from the 8206 EDCU whieh instructs the 8207 whether 
a detected error is correctable or not. A high input indicates a correctable error. A low input inhibits 
the 8207 from activating WE to write the data back into RAM. This sho.uld be connected to the CE 
output of the 8206. 

~ 11 I ERROR: This is an ECC input from the 8206 EDCU,and instructs the 8207 that an error was detected. 
This pin should be connected to the ERROR output of the 8206. 

MUXI 12 0 MULTIPLEXER CONTROUPROGRAMMING CLOCK: Immediately after a RESET this pin is used 
PCLK to clock serial programming data into the PDI pin. In nonnal two-port operation, this pin is used 

to, select memory addresses from the appropriate port. When this signal is high, port A is selected 
and when it is low, port B~is selected. This signal may change state before the completion of a RAM 
cycle, but the RAM address hold time is satisfied. 

PSEL 13 0 PORT SELECT: This signal is used \0 select the appropriate port for data transfer. When this signal 
is high port A is selected and when it is low port B is selected. 

PSEN 14 0 PORT SELECT ENABLE: This signal used in conjunction with PSEL provides contention-free port 
exchange on the data bus. When PSEN is low, port selection is allowed to change state. 

WE 15 0 WRITE ENABLE: This signal provides the dynamic RAM array the write enable input for a write 
operation. 

5-52 210463-004 



inter 8207 

Table 1. Pin Description (Continued) 

Symbol Pin Type Name and Function 

FWR 16 I FULL WRITE: This is an ECC input signal that instructs the 8207, in an ECC configura-
tion, whether the present write cycle is normal RAM write (full write) or a RAM partial 
write (read-modify-write) cycle. 

RESET 17 I RESET: This signal causes all internal counters and state flip-flops to be reset and upon 
release of RESET, data appearing at the POI pin is clocked in by the PCLK output. The 
states of the POI, PCTLA, PCTLB and RFRQ pins are sampled by RESET going inactive 
and are used to program the 8207. An 8-cycle dynamic RAM warm-up is performed after 
clocking POI bits into the 8207. 

CASO 18 0 COLUMN ADDRESS STROBE: These outputs are used by the dynamic RAM array to 
CAS1 19 0 latch the column address, present on the AOQ-8 pins. These outputs are selected by 
CAS2 20 0 the BSO and BS1 as programmed by program bits RBO and RB1. These outputs drive 
CAS3 21 0 the dynamiC RAM array directly and need no external drivers. 

RASO 22 0 ROW ADDRESS STROBE: These outputs are used by the dynamic RAM array to latch 
RAS1 23 0 the row address, present on the AOO-8 pins. These outputs are selected by the BSO 
RAS2 24 0 and BS1 as programmed by program bits RBO and RB1. These outputs drive the 
RAS3 25 0 dynamic RAM array directly and need no external drivers. 

Vss 26 I DRIVER GROUND: Provides a ground for the output drivers. 
60 I LOGIC GROUND: Provides a ground for the remainder of the device. 

AOO 35 0 ADDRESS OUTPUTS: These outputs are designed to provide the row and column 
AOl 34 0 addresses of the selected port to the dynamic RAM array. These outputs drive the 
A02 33 0 dynamic RAM array directly and need no external drivers. 
A03 32 0 
A04 31 0 
A05 30 0 
A06 29 0 
A07 28 0 
A08 27 0 

BSO 36 BANK SELECT: These inputs are used to select one of four banks of the dynamic 
BSl 37 RAM array as defined by the program bits RBO and RB1. 

ALO 38 ADDRESS LOW: These lower-order address inputs are used to generate the row 
ALl 39 address for the internal address multiplexer. 
AL2 40 
AL3 41 
AL4 42 
AL5 44 
AL6 45 
AL7 46 
AL8 47 

AHO 48 ADDRESS HIGH: These higher-order address inputs are used to generate the 
AH1 49 column address for the internal address multiplexer. 
AH2 50 
AH3 51 
AH4 52 
AH5 53 
AH6 54 
AH7 55 
AH8 56 

POI 57 PROGRAM DATA INPUT: This input programs the various user-selectable options in the 
8207. The PCLK pin shifts programming data into the POI input from optional external 
shift registers. This pin may be strapped high or low to a default ECC (POI =LOgic "I") 
or non-ECC (POI = Logic "0") mode configuration. 

RFRQ 58 I REFRESH REQUEST: This input is sampled on the falling edge of RESET. If it is high 
at RESET, then the 8207 is programmed for internal refresh request or external refresh 
request with failsafe protection. If it is low at RESET, then the 8207 is programmed for 
extemal refresh without failsafe protection or burst refresh. Once programmed the RFRQ 
pin accepts signals to start an external refresh with failsafe protection or external refresh 
without failsafe protection or a burst refresh. 

5-53 210463-004 



8207 

Table 1. Pin Description (Continued) ,. 

Symbol Pin Type Name and Function .. 
elK 59 I CLOCK: This input provides the basic timing for sequencing the internal logic. 

ROB 61 I READ FOR PORTS: This pin is the read memory request command input for port B. 
This input also directly accepts the 51 status line from Intel processors. 

WRB 62 I WRITE FOR PORT B: This pin is the write memory request command input for port B. 
This inpi:Jt also directly accepts the mi status line from Intel processors. 

J5EE! 63 I PORT ENABLE FOR PORT B: This pin serves to enable a RAM cycle request for port 
B. It is generally decoded from the port address. 

peTlB 64 I PORT CONTROL FOR PORT B: This pin is sampled on the falling edge of RESET. It 
configures port B to acqept cornmand il)puts or processor status inputs. If low after 
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or 
Multibuscommands. If high after RESET, the 8207 is programmed to accept status 
inputs from iAPX 86 or iAPX 186 processors. The 52 status line should be connected 
to this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When 
programmed to accept commands or iAPX 286 status, it should be tied low or it may 
be used as a Multibus-compatible inhibit signal. 

lffiA 65 I READ FOR PORT A: This pin is the read memory request'command input for port A. 
This input al.so directly accepts the S1 status line from Intel proGessors. 

WRA 66 I WRITE FOR PORT A: This pin is the write memory request command input for port A. 
This input also directly accepts the SO status line from Intel processors. 

f5EA 67 I PORT ENABLE FOR PORTA: This pin serves to enable a RAM cycle request for port 
A. It is generally decoded from the port address. 

peTlA 68 I PORT CONTROL FOR PORT A: This pin is sampled on the falling edge of RESET. It 
configures port A to accept command inputs or processor status inputs. If low after 
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or 
Multibus commands. If high after RESET, the 8207 is programmed to accept status 
inputs from iAPX 86 or iAPX 186·processors. The S2 status line should be connected 
to this input if programmed to accept iAPX86 or iAPX 186 status inputs. When 
programmed to accept commands or iAPX 286 status, it should be tied low or it may 
be connected to INHIBIT when operating with Multibus. 

GENERAL DESCRIPTION FUNCTIONAL DESCRIPTION 

The Intel 8207 Advanced Dynamic RAM Controller 
(ADRC) is a microcomputer peripheral device which 
provides the necessary signals to address, refresh 
and directly drive 16K, 64K and 256K dynamic RAMs. 
This controller also provides the necessary arbitra­
tion circuitry to support dual-port access of the 
dynamic RAM array. 

Processor Interface 

The 8207 has control circuitry for two ports each 
capable of supporting one of several possible bus 
structures. The ports are independently configur­
able allowing the dynamic RAM to serve as an inter­
face between two different bus structures. 

The ADRC supports several microprocessor interface 
options including synchronous and asynchronous con­
nection to iAPX 86, iAPX 88, iAPX 186, iAPX 188, iAPX 
286 and Multibus. , 

This device may be used with the 8206 Error Detec­
tionand Correction Unif (EDCU). When used with the 
8206, the 8207 is programmed in the Error Checking 
and: Correction (ECC) mode. In this mode, the 8207 

. provides all the 'necessary control signals for the· 
8206 to perform memory initialization and transpar­
ent error scrubbing during refresh. 

5-54 

Each port of the 8207 may be programmed to run 
synchronou~ or asynchronous to the processor clock. 
(See Synchronous/Asynchronous' Mode) The 8207 
has been optimized to run synchronously with Intel's 
iAPX86, iAPX 88, iAPX 186, iAPX 188 and iAPX 286 . 
When the 8207 is programmed to run in asynchronous 
mode, the 8207 inserts the necessary synchronization 
circuitry for the RD, WR, PE, and PCTL inputs. 

210463-004 



intJ 8207 

The 8207 achieves high performance (I.e. no wait 
states) by decoding the status lines directly from the 
iAPX 86, iAPX 88, iAPX 186, iAPX 188 and iAPX 286 
processors. The 8207 can also be programmed to 
receive read or write Multibus commands or commands 
from a bus controller. (See Status/Command Mode) 

The 8207 may be programmed to accept the clock of 

I--___ ~WRCLK 
I-----.. Rfi 

Slow-Cycle Synchronous-Status Interface 

Slow-Cycle Synchronous-Command Interface 

the iAPX 86, 88, 186, 188, or 286. The 8207 adjusts 
its internal timing to allow for' the different clock 
frequencies of these microprocessors. (See 
Microprocessor Clock Frequency Option) 

Figure 2 shows the different processor interfaces to 
the 8207 using the synchronous or asynchronous 
mode and status or command interface. 

8207 

1----iRD 

ADDAJDATA 

Slow-Cycle Asynchronous-Status Interface 

Slow-Cycle Asynchronous-Command Interface 

Figure 2A. Slow-cycle (CFS=O) Port Interfaces Supported by the 8207 

5-55 210463·004 

I 

! 

!~ ... '. Ii 



8207 

NOTE: NOTE: 
ADDRESS LATCH NOT REQUIRED IN SINGLE-PORT MODE. ADDRESS LATCH NOT REQUIRED IN SINGLE-PORT MODE. 

Fast-Cycle Synchronous-Status Interface Fast-cycle Asynchronous-Status Interface 

SYNCHRONOUS 80286 
'MULTI·BUS OPTION 

- -
Fast-Cycle Synchronous-Command Interface Fast-Cycle Asynchronous-Command Interface 

FiOlure 2B, Fast-cycle (CFS=1) Port Interfaces Supported by-the 8207 

Single-Port Operation 

The use of an address latch with the iAPX 286 status 
interface is not needed since the 8207 can internally 
latch the addresses with an internal signal similar in 
behavior to the LEN output. This operation is active only 
in single-port applications when the processor is inter­
faced to port A. 

Dual-Port Operation 

The 8207 provides for' tWo-port operation. Two inde­
pendent processors may access memory' controlled 
by the 8207. The 8207 arbitrates between each of the 
processor requests and directs data to or from the 
appropriate port. Selection is dOlle on a priority con­
cept that reassigns priorities based upon past his­
tory. Processor requests are internally queued. 

Figure 3 shows a dual-port configuration with two 
iAPX 86 systems interfacing to dynamic RAM. One of 
the processor systems is interfaced synchronously 
using the status interface and the other is interfaced 
asynchronously also using the status interface .. 

5-56 

Dynamic RAM Interface 

The 8207 is capable of addressing 16K, 64K and 256K 
dynamic RAMs. Figure 4 shows the connection of the 
processor address bus to the 8207 using the different 
RAMs. The 8207 directly supports the 2118 RAM 
family or any RAM with similar timing requirements 
and responses including the Intel 21p4A RAM. 

The 8207 divides memory into as many as four banks, 
each bank having its own Row (RAS) and Column 
(CAS) Address Strobe pair._ This organization permits 
RAM cycle interleaving and permits error scrubbing 
during ECC refresh cycles. RAM cycle interleaving 
overlaps the start of the next RAM cycle with the RAM 
Precharge period of the- previous cycle. Hiding the 
precharge period of one RAM cycle behind the data 
access pe-riod of the next RAM cycle optimizes memory 
bandwidth and is effective as long as successive RAM 
~ycles occur in alternate banks. 

Successive data access to the same bank will cause 
the 8207 to wait for the precharge time of the previous 
RAM cycle. 

210463-004 



Cf 
CJ1 
-..j 

I 

" 
8284A' P READY ROY1 ~ OfHER~INPUTS 

MEMORY MEMORY 

eLK 
(UPPER) (LOWER) 8284A* 

~ iQ"-'-, 
elK WE 01 DO WE 01 DO elK 

~HII If ALE r-----
8288" DEN I--

- eLK 

OTIRf- ........ r----' ~~ 8288* 
eLK AACKA AOo_8 RASO_3 ~! DEN DTfA-

52 Sl so CASQ_3 - I---l b ALE 

T T 
WE 

READY elK 82 AJIClU! so 51 52 elK READY PCTlA 

51 ROA 8207 PCTlB .. 52 
ROB Sl so WRA so 

WRB 

MUX ~ $" 8086/ 

STJ ~ 
AHa_sAle_a PSEN PSEL 74LS74 74LS74 80861 

80186 801" 

OE STa 

8283 8283 
AODRJOATA p LATCH 

~rT "...., 
ADDRJOATA 

'----

~ r- -" 
A ]0, , 

STB BO OE STB 
. BYTE 
MARK 8283 t---
LATCH Bl LATCH f------; ...::::=::- ,. 

-
.--<C: 

STa OE DE STB 

~ 8283 

rrl! ,. 8283 t---,. LATCH 

-
Bra OE 

I~~U 

NOTE: 
'These c;:omponents are not necessary when using the 80186 components. These functions are provided directly by 
the 801.86. 

Figure 3. 8086/801860,,81 Port System 

EXTENDED MEMORY l 

PORT A-SYNCHRON(J 

PORT B-ASYNCHROI'I 

SING STATUS. 

US, 

cus 

( 

~ 
Q 
....a 

"@ 
2QJ 
m 
F 
= 
~ 
= 
~. 

~ 
2QJ 
~ 



intJ 8207 

A12-A20 

8207 8207 8207 

A3-A11 

A1.A2 

256K RAM INTERFACE 64K RAM INTERFACE 16K RAM INTERFACE 

NOTES: 
(1) Unassigned address input pins should be strapped high or low. 
(2).AO along with BHE are used to select a byte within a processor word. 
(3) Low order address bits are used as bank select inputs so that consecutive memory access requests 

are to alternate .banks allowing bank interleaving of memory cycles. 

Figure 4. Processor Address Interface to the 8207 Using 16K, 64K, and 256K RAMS 

If not all RAM banks are occupied, the 8207 reassigns 
the RAS and CAS strobes to allow using wider data 
words without increasing the loading on the RAS and 
CAS drivers. Table 2 shows the bank selection 
decoding and the word expansion, including RAS and 
CAS assignments. For example, ·if only two RAM banks 
are occupied, then two RAS and two CAS strobes are 
activated per bank. Program bits RB1 and RBO are not 
used to check the bank select inputs BS1 and BSO. The 
system design must protect from accesses to "illegal", 
non-existent banks of memory, by deactivating the 
PEA, PE.B inputs when addressing an illegal bank. 

The 8207 can interface to fast (e.g., 2118-10) or slow 
(e.g., 2118-15) RAMs. The 8207 adjusts and optimizes 
internal timings for either the fast or slow RAMs as 
programmed. (See RAM Speed Option). 

Memory Initialization 
After programming, the 8207 performs eight RAM 
"warm-up" cycles to prepare the dynamic RAM for 
proper device operation. During "warm-up" some 
RAM parameters, such as tRAH, tASC, may not be 
met. This causes no harm to the dynamic RAM ar­
ray. If configured for operation with error correction, 
the 8207 and 8206 EDCU will proceed to initialize 
all of memory (memory is writtert with zeros with 
corresponding check bits). 

5-58 

Program 
Bits 

RB1 RBO 

0 0 

0 0 

0 0 

0 0 

0 1 

0 1 

0 1 

0 1 

1 0 

1 0 

1 0 

1 0 

1 1 

1 1 

1 1 

1 1 

Table 2. 
Bank Selection Decoding and 

Word Expansion 

Bank 
Input 

BS1 BSG RAS/CAS Pair Allocation 

0 0 RASo_3. CASO_3 to Bank 0 

0 1 \ Illegal 

1 0 Illegal 

1 1 Illegal 

0 0 RASo.1. CASO.1 to Bank 0 

0 1 RAS2.3. CAS2.3 to Bank 1 

1 0 Illegal 

1 1 Illegal 

0 0 RASo. CASo to Bank 0 

0 1 RAS1. CAS1 to Bank 1 

1 0 RAS2. CAS2 to Bank 2 

1 1 lIIegel 

0 0 RASo. CASo to Bank 0 

0 1 RAS1. CAS1 to Bank 1 

1 0 RAS2. CAS2 to Bank 2 

1 1 RAS3. CAS3 to Bank 3 

210463-004 



intJ 8207 

Because the time to initialize memory is fairly long, 
the 8207 may be programmed to skip initialization in 
ECC mode. The time required to initialize all of 
memory is dependent on the clock cycle time to the 
8207 and can be calculated by the following 
equation: 

eq.1 TINIT = (:f3) TCLCL 

if TCLCL = 125 ns then TINIT = 1 sec. 

8206 ECC Interface 

For operation. with Error Checking and Correction 
(ECC), the 8207 adjusts its internal timing and 
changes some pin functions to optimize perfor­
mance and provide a clean dual-port memory inter­
face between the 8206 EOCU and memory. The 8207 
directly supports a master-only (16-bit word plus 6 
check bits) system. Under extended operation and 
reduced clock frequency, the 8207 will support any 
ECC master-slave configuration up to 80 data bits, 
which is the maximum set by the 8206 EOCU. (See 
Extend Option) 

Correctable errors detected during memory read 
cycles are corrected immediately and then written 
back into memory. 

In a synchronous bus environment, ECC system per­
formance has been optimized to enhance processor 
throughput, while in an asynchronous bus environ­
ment (the Multibus), ECC performance has been op­
timized to get valid data onto the bus as quickly as 
possible. Performance optimization, processor 
throughput or quick data access may be selecte9 via 
the Transfer Acknowledge Option. 

The main difference between the two ECG im­
plementations is that, when optimized for processor 
throughput, RAM data is always corrected and an 
advanced transfer acknowledge is issued at a point 
when, by knowing the processor characteristics, 
data is guaranteed to be valid by the time the proces­
sor needs it. 

When optimized for quick data access, (valid for Mul­
tibus) the 8206 is configured in the uncorrecting 
mode where the delay associated with error correc­
tion circuitry is transparent, and a transfer acknowl­
edge is issued as soon as valid data is known to exist. 
If the ERROR flag is activated, then the transfer ac-

. knowledge is delayed until after the 8207 has instruc­
ted the 8206 to correct the data and the corrected 
data becomes available on the bus. Figure 5 il­
lustrates a dual-port EGG system. 

Figure 6 illustrates the interface required to drive the 
GRGT pin of the 8206, in the case that one port (PORT 
A) receives an advanced acknowledge (not Multibus­
compatible), while the other port (PORT B) receives 
XAGK (which is Multibus-compatible). 

Error Scrubbing 

The 8207/8206 performs error correction during 
refresh cycles (error scrubbing). Since the 8207 must 
refresh RAM, performing error scrubbing during 
refresh allows it to be accomplished without addi­
tional performance penalties. 

Upon detection of a correctable error during refresh, 
the RAM refresh cycle is lengthened slightly to per­
mit the 8206· to correct the error and for the corrected 
word to be rewritten into memory. Uncorrectable er­
rors detected during scrubbing are ignored. 

Refresh 

The 8207 provides an internal refresh interval coun­
ter and a refresh address counter to allow the 8207 to 
refresh memory. The 8207 will refresh 128 rows every 
2 milliseconds or 256 rows every 4 milliseconds, 
which allows all RAM refresh options to be sup­
ported. In addition, there exists the ability to refresh 
256 row address locations every 2 milliseconds via 
the Refresh Period programming option. 

The 8207 may be programmed for any of four different 
refresh options: Internal refresh only, External refresh 
with failsafe protection, External refresh without failsafe 
protection, Burst Refresh mode, or no refresh. (See 
Refresh Options) 

It is possible to decrease the refresh time interval by 
10%, 20% or 30%. This option allows the 8207 to 
compensate for reduced clock frequenciE!s. Note 
that an additional 5% interval shortening is built-in in 
all refresh interval options to compensate for clock 
variations and non-immediate response to the inter­
nally generated refresh request. (See Refresh Period 
Options) 

External Refresh Requests after RESET 

External refresh requests are not recognized by tbe 
8207 until after it is finished programming and pre­
paring memory for access. Memory preparation in­
cludes 8 RAM cycles to prepare and ensure proper 

5-59 210463-004 



ACKB 

CMD/PEA 

CMD/PEB ~~~~!!I~ ~ 
ADDR B CLK >--

8207 
MUX 

CLK 

!-----, rv1 ADOR 

RAS 
CAS 

ADDR 

WE 

K 

v 

DYNAMIC 
RAM 

~WE 001 
I V I 01 CBICBO 

)( >< i , 

ACKA 

~ CMD/PEA==..J V 
o ADDR A _____ . 

:;' ,II ill 

i 

BYTE 
MARK 

t 
STB 

BYTE t::= 
DECODER 

~ 
TV 

MARK 
LATCH I--:-

III II q'li!5d:m~~ 

Figure 5. lWo-Port ECC Implementation Using the 8207 and the 8206 

CE SYNC 01 

ECC 
SLAVE 
8206 

~~ 

l 

~ 

"@ 

dllJ 
ffi 
F 
= 
~ 
~ 
~ 
dllJ 
~ 



intJ 8207 

8207 8206 

PSELt------, 

R/W 

Figure 6. Interface to 8206 ~ Input When Port 
A Receives AACK and Port B Receives 
XACK 

dynamic RAM operation, and memory initialization if 
error correction is used. Many dynamic RAMs re­
quire this warm-up period for proper operation. The 
time it takes for the 8207 to recognize a request is 
shown below. 

eq.2 Non-ECC Systems: TRESP = TpROG + 
TpREP 

eq.3 where: TpROG = (66) (TCLCI-) which is 
programming time 

eq. 4 TpREP = (8) (32) (TCLCL) which is 
the RAM warm-up time 

if TCLCL = 125 ns then T RESp::: 41 us 

, eq. 5 ECC Systems: T RESP = T PROG + T PREP + 
TINIT 

if T CLCL = 125 ns then T RESp::: 1 sec 

RESET 

RESET is an asynchronous input, the falling edge of 
which is used by the 8207 to directly sample to logic 
levels of the PCTLA, PeTlB, RFRO, and POI inputs. 
The internally synchronized falling edge of RESET is 
used to begin programming operations (shifting in the 
contents of the extemal shift register into the POI input). 

Until programming is complete the 8207 registers 
but does not respond to command or status inputs. A 
simple means of preventing commands or status 
from occurring during this period is to differentiate 
the system reset pulse to obtain a smaller reset pulse 
for the 8207. The total time of the reset pulse and the 
8207 programming time must be less than the time 
before the first command in systems that alter the 
default port synchronization programming bits 
(default is Port A synchronous, Port B asynchro­
nous). Differentiated reset is unnecessary when the 
default port synchronization programming is used. 

5-61 

The differentiated reset pulse would be shorter than 
the system reset pulse by at least the programming 

,period required by the 8207. The differentiated reset 
pulse first resets the 8207, and system reset would 
reset the rest of the system. While the rest of the 
system is still in reset, the 8207 completes its pro­
gramming. Figure 7 illustrates a ~ircuif to ac­
complish this task. 

Within four cloCks after RESET goes active, all the 8207 
outputs will go high, except for PSEN, WE, and AOO-2, 
which will go low. 

OPERATIONAL DESCRIPTION 

Programming the 8207 

The 8207 is programmed after reset. On the falling 
edge of RESET, the logic states of several input pins 
are latched internally. The falling edge of RESET 
actually performs the latching, which means that the 
logic levels on these inputs must be stable prior to 
that time. The inputs whose logic levels are latched at 
the end of reset are the PCTlA, PCTlB, REFRO, and 
POI pins. Figure 8 shows the necessary timing for 
programming the 8207. 

SYST~~I I 
RESE2J L..--
~..-I--I'--"'·~I 

RESUlJ L-_____ _ 
I, PROGRAMMING TIME OF 8207 

SYSTEM)....-t: 
RESET ... 

8207 ..... 3J- RESET 

1 ~ --

J 
DIFFERENTIATED RESET 

NOTES: 
(1)Required only when the port synchroniza­

tion options (SA & SB) are altered from 
their initial default values. 

(2)Vcc must be stable before syste~ reset 
is activated when using this circuit. 

Figure 7. 8207 Differentiated Reset Circuit 

210463-004 

i 
" I 
! 
II' 
, 

" 
I' 

i 
i 

i 



8207 

CLK_ 4 . ····0- . 

RESET ' . 

W~~ --~~. 
PCLK_ '_ _ 'I... ___ J 

TLOorID - I 6 . 

PDI~ . PDQ I X POl X P02 x= 
NOTES: , 
TRTVCL - Reset is an asynchronous input, if reset occurs before 1;, then it is 

guaranteed to be recognized. 
TPGVCL - Minimum PD.I valid time prior to reset going low. 
T~LPC - MUXlPCLK delay. . 
TLOAD - Asynchronous load data propagation delay. 

Figure 8. Timing Illustrating External Shift Register Requirements for Programming the 8207 

Status/Command Mode 
The tWQ processor ports of the 8207 are configured 
by the states of the PCTLA and PCTLB pins. Which 
interface is selected depends on the state of the 
individual port's PCTL pin at the end·of reset. It PCTL 
is high at the end of the reset, the 8086 Status inter­
face is selected; if it is low, then the Command inter­
face is selected. 

The status lines of the 80286 are similar in code and 
timing to the Multibus command lines, while the status 
code and timing of the 8076 and 8088 are identical to 
those of the 80186 and 80188 (ignoring the differences 
in clock duty cycle). Thus there exists two interface con­
figurations, one for the 80286 status or Multibus 
memory commands, which is called the Command in­
terface, and one for 8086,8088,80186 or 80188 status, 
called the 8086 Status interface. The Command inter· 
face can also directly interface to the command lines 
of the bus controllers for the 8086, 8088, 80186 and 
the 80286. 

The 8086 Status interface allows direct decoding of 
the status of the iAPX 86, iAPX 86, iAPX 186 and the 
iAPX 188. Table 3 shows how the status lines are 
decoded. While in the Command mode the iAPX 286 
status can be directly decoded. Microprocessor 
bus controller read or write commands or Multibus 
commands can also be directed to the 8207 when in 
Command mode. 

Refresh Options 

Immediately after system reset, the state of the 
REFRQ input pin is examined. If REFRQ is high, the 
8207 provides the user with the choice between self­
n!fresh or user-generated refresh with failsafe pro­
tection. Failsafe protection guarantees that ·if the 

5-62 

Table 3A. Status Coding of 8086, 80186 and 80286 

Status Code Function 

S2 S1 SO 8086/80186 80286 

0 0 0 INTERRUPT INTERRUPT. 

0 0 1 1/.0 READ I/O READ 

0 1 0 I/O WRITE I/O WRITE 

0 1 1 HALT IDLE 

1 0 0 INSTRUCTION 
FETCH HALT 

1 0 1 MEMORY READ MEMORY READ 

1 1 0 MEMORY WRITE MEMORY WRITE 

1 1 1 IDLE IDLE 

Table 3B. 8207 Response 

8207 
Functi~n Command 

I 
8086/80186 80286 Status or 

Status Command 
PCTL RD WR Interface Interface 

, 
0 0 0 IGNORE IGNORE 

0 0 1 IGNORE READ 

0 1 0 IGNORE WRITE 

0 1 1 IGNORE IGNORE' 

t 0 0 READ IGNORE 

1 0 1 READ INHIBIT 

1 1 0 WRITE INHIBIT 

1 1 1 IGNORE IGNOR~ 

'Illegal with CFS=O 
, 

210463'()04 



intJ 8207 

user does not come back with another refresh re­
quest before the internal refresh interval counter 
times out, a refresh request will be automatically 
generated. If the REFRQ pin is low immediately after 
a reset, then the user has the choice of a single 
external refresh cycle without failsafe, burst refresh 
or no refresh. 

Internal Refresh Only 

For the 8207 to generate internal refresh requests, it 
is necessary only to strap the REFRQ input pin high. 

External Refresh with Failsafe 

To allow user-generated refresh requests with fail­
safe protection, it is necessary to hold the REFRQ 
input high IcJntii after reset. Thereafter, a low-to-high 
transition on this input causes a refresh request to be 
generated and the internal refresh interval counter 
to be reset. A high-to-Iow transition has no effect on 
the 8207. A refresh request is not recognized until a 
previous request has been serviced. 

External Refresh without Failsafe 

To generate single external refresh requests without 
f~ilsafe protection, it is necessary to hold REFRQ low 
until after reset. Thereafter, bringing REFRQ high for 
one clock period causes a refresh request to be 
generated. A refresh request is not recognized until a 
previous request has been serviced. 

Burst Refresh 

Burst refresh is implemented through the same pro­
cedure as a single external refresh without failsafe (Le., 
REFRQ is kept low until after reset). Thereafter, bring­
ing REFRQ high for at least two clock periods causes 
a burst of up to 128 row address locations to be 
refreshed. 

In ECCconfigured systems, 128ldcations are scrubbed. 
Any refresh request is not recognized until a previous 
request has been serviced (Le., burst completed). 

No Refresh 

It is necessary to hold REFRQ low until after reset. 
This is the same as programming External Refresh 
without Failsafe. No refresh is accomplished by 
. keeping REFRQ low. 

Option Program Data Word 

The program data word consists of 16 program data 
bits, PDO-PD15. If the first program data bit PDO is 
set to logic 1, the 8207 is configured to support ECC. 
If it is logic 0, the 8207 is configured to support a non­
ECC system. The remaining bits, PD1-PD15, may 
then be programmed to optimize a selected configura­
tion. Figures 9 and 10 show the Program words for non­
ECC and ECC operation. 

Using an External Shift Register 

The 8207 may be configured to use an external shift 
register with asynchronous load capability such as a 
74LS165. The reset pulse serves to parallel load the 
shift register and the 8207 supplies the clocking sig­
nal to shift the data in. Figure 11 shows a sample 
circuit diagram of an external shift register circuit. 

Serial data is shifted into the 8207 via the POI pin (57), 
and clock is provided by the MUX/PCLK pin (12), which 
generates a total of 16, cl9ck pulses. After program­
ming is complete, data appearing at the input of the 
POI pin is ignored. MUXlPCLK is a dual-function pin. 
During programming, it serves to clock the external shift 
register, and after programming is completed, it reverts 
to a MUX control pin. As the pin changes state to select 
different port addresses, it continues to clock the shift 
register. This does not present a problem because data 
at the,PDI pin is ignored after programming. Figure 8 
illustrates the timing requirements of the shift register 
circuitry. 

ECC Mode (ECC Program Bit) 

The state of POI (Program Data In) pin at reset deter­
mines whether the system is an ECC or non-ECC 
configuration. It is used internally by the 8207 to 
begin configuring timing circuits, even before pro­
gramming is completely finished. The 8207 then 
begins programming the rest of the options. 

Default Programming Options 

After reset, the 8207 serially shifts in a program data 
word via the POI pin. This pin may be strapped either 
high or low, or connected to an external shift register. 
Strapping POI high causes the 8207 to default to a 
particular system configuration with error correc-

. tion, and strapping it low causes the 8207 to default 
to a particular system configuration without error 
correction. Table 4 shows the default configurations . 

210463-004 



,~ 

P015 PD6 P07 PDQ 

o I 0 ITM 11 PPAI m I EXT PLSI CIO I CI1 I iiBllli80l ~I C~SI SB I SA I 0 

PROGRAM 
OATABIT NAME POLARITY/FUNCTION 

PDO ECC ECC~O FOR NON-ECC MOOE 

P01 SA SA-O PORT A IS SYNCHRONOUS 
SA~1 PORTA IS ASYNCHRONOUS 

PD2 SB SB-O PORT B IS ASYNCHRONOUS 
SB~1 PORT B IS SYNCHRONOUS 

PD3 CFS CFS~O FAST-CYCLE IAPX 286 MODE 
CFS~1 SLOW-CYCLE iAPX 86 MODE 

PD4 RFS RFS~O FAST RAM 
RFS~1 SLOW RAM 

PD5 RBO RAM BANK OCCUPANCY 
PD6 RB1 SEE TABLE 2 

PD7 CI1 COUNT INTERVAL BIT 1; SEE TABLE 6 
PDS CIO COUNT INTERVAL BIT 0; SEE TABLE 6 

PD9 PLS PLS~O LONG REFRESH PERIOD 
\ PLS~1 SHORT REFRESH PERIOD 

PD10 EXT \ EXT-O NOT I:XTENDED 
EXT~1 EXTENDED 

PD11 FFS FFS~O FAST CPU FREQUENCY 
FFS~1 SLOW CPU FREQUENOY 

PD12 PPR PPR-O MOST RECENTLY USED PORT 
PRIORITY 

PPR~1 PORT A PREFERRED 
PRIORITY 

PD13 TM1 TM1~0 TEST MODE 1 OFF 
TM1~1 TEST MODE 1 ENABLED 

PD14 0 RESERVED MUST BE ZERO 

PD15 0 RESERVED MUST BE ZERO 

Figure 9. Non-ECC Mode Program Data Word 

P015 POB P07 POO 

fM21 IIB+80 1 PPRI FFSI EXT PLsl ern I eMl XB I XA I RFSI CFSI Sii I SA I 1 

PROGRAM 
DATA BIT NAME POLARITY/FUNCTION 

PDO ECC ECC~1 ECCMODE 

P01 SA SA~O PORT A ASYNCHRONOUS 
SA~1 PORT A SYNCHRONOUS 

PD2 SB SB-O ,PORT B SYNCHRONOUS, 
Sii~1 PDRT 8 ASYNCHRONOUS 

P~ CFS CFS~O SLOW-CYCLE IAPX 86 MODE 
CFS~1 FAST-CYCLE iAPX 286 MODE 

PD4 RFS RFS-O SLOW RAM 
RFS~1 FAST RAM 

PD5 XA XA~O MULTISUS-COMPATIBLE 

XA~1 
ACKA 
ADVANCED ACKA NOT 
MULTIBUS-COMPATIBLE 

PD6 XB XB~O ADVANCED ACKB NOT 
MULTIBUS COMPATIBLE 

XB~1 MULTI BUS-COMPATIBLE 
ACKB 

PD7 CI1 COUNT INTERVAL BIT 1; SEE TABLE 6 

PDS CHi COUNT INTERVAL BIT 0; SEE TABLE 6 

P09 PLS PLS~O SHORT REFRESH PERIOD 
PLS~1 LONG REFRESH PERIOD 

PD10 EXT m~o MASTER AND SLAVE EDCU 
m~1 MASTER EDCU ONLY 

PD11 FFS FFS~O SLOW CPU FREQUENCY 
FFS~1 FAST CPU FREQUENCY 

P012 PPR PPR~O PORT A PREFERRED 
PRIORITY 

PPR~1 MOST RECENTLY USED PORT 
PRIORITY 

PD13 RBO RAM BANK OCCUPANCY 
PD14 RB1 SEE TABLE 2 

PD15 TM2 TM2~0 TEST MODE 2 ENABLED 
TM2~1 TEST MOllE 2 OFF 

Figure 10. ECC Mode Program Data Word 

5-64 

, 

, 
/ 

210463-004 



Figure 11. External Shift Register Interface 

Table 4A. 
Default Non-ECC Programming, POI Pin (57) 

Tied to Ground. 

Port A is Synchronous (EAACKA and XACKA) 

Port B is Asynchronous (LAACKB and XACKB) 

Fast·cycle Processor Interface (iAPX 286) 

Fast RAM 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

Table 4B. 
Default ECC Programming, POI Pin (57) 

Tied to Vee. 

Port A is Synchronous 

Port B is Asynchronous 

Fast-cycle Processor Interface (iAPX 286) 

Fast RAM 

Port A has EAACKA strobe (non-multibus) 

Port B has XACKB strobe (multibus) 

Refresh interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms 

Master EDCU only (16-bit system) 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

8207 

If further system flexibility is needed, one or two 
external shift registers can be used to tailor the 8207 
to its operating environment. 

Synchronous! Asynchronous Mode 
(SA and SB Program Bits) 

Each port of the 8207 may be independently config­
ured to accept synchronous or asynchronous port 
commands (RD, WR, PCTL) and Port Enable (PE) via 
the program bits SA and S8. The state of the SA and 
S8 programming bits determine whether their asso­
ciated ports are synchronous or asynchronous. 

, 
While a port may be configured with either the Status 
or Command interface in the synchronous mode, 
certain restrictions exist in the asynchronous mode. An 
asynchronous Command interface using the control 
lines of the Multibus is supported, and an asynchronous 
8086 interface using the control lines of the 8086 is 
supported, with the use of TIL gates as illustrated in 
Figure 2. In the 8086 case, the TIL gates are needed 
to guarantee that status does not appear at the 8207's 
inputs too much before address, so that a cycle would 
start before address was valid. ' 

Microprocessor Clock Frequency Option 
(CFS and FFS Program Bits) 

The 8207 can be programmed to interface with slow­
cycle microprocessors like the 8086, 8088, 80188 and 
80186 or fast-cycle microprocessors like the 80286. The 
CFS bit configures the microprocessor interface to 
accept slow or fast cycle signals from either micro­
processor group. 

The FFS bit is used to select the speed of the micro­
processor clock. Table 5 shows the various micro­
processor clock frequency options that can be 
programmed. 

Table 5. 
Microprocessor Clock Frequency Options, 

Program Bits Processor Clock 

CFS FFS Frequency 

0 0 iAPX 86, 6 MHz 
88, 186, 188 

0 1 iAPX 86, B MHz 
88, 186, 188 

1 0 iAPX 286 12MHz 

1 1 iAPX 286 16 MHz 

5-65 210463-004 



intJ 8207 

The external clock frequency must be programmed 
so that the failsafe refresh repetition circuitry can 
adjust its internal timing accordingly to produce a 
refresh request as programmed. 

RAM Speed Option (RFS Program Bit) 

The RAM Speed programming option determines 
whether RAM timing will be optimized for a fast or 
slow RAM. Whether a, RAM is fast or slow is mea­
sured relative to the 2118-10 (Fast) or the 2118-15 
(Slow) RAM specifications. 

Refresh Period Options 
(CIO, C11, and PLS Program Bits) 

The 8207 refreshes with either 128 rows every 2 mil­
liseconds or 256 rows every 4 milliseconds. This 
translates to one refresh cycle being executed ap­
proximately once every 15.6 microseconds. This rate 
can be changed to 256 rows every 2 milliseconds or a 
refresh approximately once every 7.8 microseconds 
via the Period Long/Short, program bit PLS, pro­
gramming option. The 7.8 microsecond refresh re­
quest rate is intended for those RAMs, 64K and 
above, which may require a faster refresh rate. 

I,n addition to PLS program option, two other pro­
gramming bits for refresh exist: Count Interval 0 (CIO) 
and Count Interval 1, (CI1). These two programming 
bits allow the rate at which refresh requests are 
generated to be increased in order to permit refresh 
requests to be generated close to the same 15.6 or 
7.8 microsecond period when the 8207 is operating 

at reduced frequencies. The interval between re­
freshes is decreased by 0%,10%,20%, or ,30% as a 
function of how the count interval bits are program­
med. A 5% guardband is built-in to allow for any 
clock frequency variations. Table 6 shows the refresh 
period options available. 

The numbers tabulated under Count Interval represent 
the number of clock periods between internal refresh 
requests. The percentages in parentheses represent 
the decrease in the interval between refresh requests. 
Note that all intervals have a built-in 5% (approximate­
ly) safety factor to compensate for minor clock frequen­
cy deviations and non-immediate response to internal 
refresh requests. 

Extend Option (EXT Program Bit) 

The Extend option lengthens the memory cycle to 
allow longer access time which may be required by 
the system. Extend alters the RAM timing to compen­
sate for increased loading on the Rowand Column 
Address Strobes; and in the multiplexed Address 
OLit lines. 

Port Priority Option and Arbitration 
(PPR Program Bit) 

The 8207 has to internally arbitrate among three 
ports: Port A, Port B and Port C-the refresh port. 
Port C is an internal port dedicated to servicing 
refresh requests, whether they are generated inter­
nally by the refresh inverval counter, or externally by 
the user. Two arbitration approaches are available via 

Table 6. Refresh Count Interval Table 

Count Interval 
C11, CIO 

(8207 Clock Periods) 

Ref. 
Period 00 01 10 11 

(ILS) CFS PLS FFS (0%) (10%) (20"10) (30"/0) 

15,6 1 1 1 236 212 188 164 

7.8 1 0 1 118 106 94 82 

15,6 1 1 0 148 132 116 100 

7.8 1 0 0 74 66 58 50 

15,6 0 1 1 118 106 94 82 

7.8 0 0 1 59 53 47 41 

15.6 0 1 0 74 66 58 50 

7.8 0 0 0 37 33 29 -~-. 

5-66 210463-004 



8207 

the Port Priority programming option, program bit 
PPR. PPR determines whether the most recently 
used port will remain selected (PPR = 1) or whether 
Port A will be favored or preferred over Port B 
(PPR = 0). 

A port is selected if the arbiter has given the selected 
port direct access to the timing generators. The 
front-end logic, which includes the arbiter, is de­
signed to operate in parallel with the selected port. 
Thus a request on the selected port is serviced imme­
diately. In contrast, an unselected port only has ac­
cess to the timing generators thrdugh the front-end 
logic. Before a RAM cycle can start for an unselected 
port, that port must first become selected (i.e., the 
MUX output now gates that port's address into the 
8207 in the case of Port A or B). Also, in order to allow 
its address to stabilize, a newly selected port's first 
RAM cycle is started by the front-end logic. There­
fore, the selected port has direct access to the timing 
generators. What all this means is that a request on a 
selected portis started immediately, wtJile a request 
on an unselected port is started two to three clock 
periods after the request, assuming that the other 

two ports are idle. Under normal operating condi­
tions, this arbitration time is hidden behind the RAM 
cycle of the selected port so that as soon as the 
present cycle is over a new cycle is started. Table 7 
lists the arbitration rules for both options. 

Port LOCK Function 

The LOCK function provides each port with the 
ability to obtain uninterrupted access to a critical 
region of memory and, thereby, to guarantee that the 
opposite port cannot "sneak in" and read from or 
write to the critical region prematurely. 

Only one LOCK pin is present and is multiplexed 
between the two ports as follows: when MUX is high, 
the 8207 treats the LOCK input as originating at 
PORT A, while when MUX is low, the 8207 treats 
LOCK as originating at PORT B. When the 8207 
recognizes a LOCK, the MUX output will remain 
pointed, to the locking port until LOCK is deactivated. 
Refresh is .not affected by LOCK and can occur dur-
ing a locked memory cycle. . 

Table 7. The Arbitration Rules for the Most Recently Used Port Priority and for 
Port A Priority Options Are As follows: 

1. If only one port requests service, then that port-if not already selected-becomes selected. 

2a. When no service requests are pending, the last selected processor port (Port A or B) will remain selected. 
(Most Recently Used Port Priority Option) 

2b. When no service requests are pending, Port A is selected whether it requests service or not. (Port A Priority 
Option) 

3. During reset initialization only Port C, the refresh port, is selected. 

4. If no processor requests are pending after reset initialization, Port A will be selected, 

5a. If Ports A and B simultaneously(') request service while Port C is being serviced, then the next port to be 
selected is the one which was not selected prior to servicing Port C. (Most'Recently Used Port Priority 
Option) 

5b, If Ports A and B simultaneously!,) request service while Port C is selected, then the next port to be selected 
is Port A. (Port A Priority Option) 

6. If a port simultaneously requests service with the currently selected port, service is granted to the selected 
port. 

7. The MUX output remains in its last state whenever Port C is selected. 

8, If Port C and either Port A or Port B (or both) simultaneously request service, then service is granted to the 
requester wt,lOse port is already selected. If the selected port is not requesting service, then service is 
granted to Port C. 

9. If during the servicing of one port, the other port requests service before or simultaneously with the refresh 
port, the refresh port is selected. A new port is not selected before the presently selected port is 
deactivated. 

10. Activating LOCK will mask off service requests from Port B if the MUX output is high, or from Port A if the 
MUX output is low . 

• By "simultaneous" it is meant that two or more requests are valid at the clock edge at which the internal arbiter 
samples them. 

5-67 210463-004 



8207 

Dual·Port Considerations 

For both ports to be operated' synchronously, several 
conditions must be met. The processors must be the 
same type (Fast or Slow Cycle) as defined by Table 8 
and they must have synchronized clocks. Also when 
processor types are mixed, even though the clocks 
may be in phase, one frequency may be twice that of 
the other. So to run both ports synchronous using 
the status interface, the processors must have 
related timings (both phase and frequency). If these 
conditions cannot be met, then one port must run 
synchronous and the other asynchronous. 

Figure 3 illustrates an example of dual-port operation 
using the processors in the slow cycle group. Note the 

.use of cross-coupled NAND gates at the MUX output 
for minimizing contention between the two latches, and 
the use of flip flops on the status lines of the asyn­
chronous processor for delayi ng the status and thereby 
guaranteeing RAS will not be issued, even in the worst 
case, until address is valid. 

Processor Timing 

In order to run without wait states, AACK must be 
used and connected to the SRDY input of the ap­
propriate bus controller. AACK is issued relative to a 
point within the RAM cycle and has no fixed relation­
ship to the processor's request. The timing is such, 
however, that the processor will run without wait states, 
barring refresh cycles, bank precharge, and RAM 
accesses from the other port. In non-ECC fast cycle, 
fast RAM, non-extended configurations (80286), AACK 
is issued on the next falling edge of the clock after the 

edge that i~ues RAS. In non-ECC, slow cycle, non­
extencled, or extended with fast RAM cycie configura­
tions (8086, 80188, 80186), AACK is issued on the 
same clock cycle that issues RAS. Figure 14 illustrates 
the timing relationship between AACK, the RAM cycle, 
and thE( processor cycle for several different situations. 

Port Enable (PE) setup time requirements depend on 
whether the associated port is configured for syn­
chronous or asynchronous fast or slow cycle opera­
tion. In a synchronous fast cycle configuration, PE is 
required to be setup to the same clock edge as the 
status or commands. If PE is true (low), a RAM 
cycle is started;, if not, the cycle is aborted. The 
memory cycle will only begin when both valid sig­
nals (PE and RD or WR) are recognized at a 
particular clock edge. In asynchronous operation, 
PE is required to be setup to the same clock edge 
as the internally synchronized status or commands. 
Externally, this allows the internal synchronization 
delay to be added to the status (or command)-to-PE 
delay time, thus allowing for more external decode 
time that is available in synchronous operation. 
The minimum synchronization delay is the additional 
amount that PE must be held valid. If PE is not held 
valid for the maximum synchronization delay time, it 
is possible that PE will go invalid prior to the status or 
command being synchronized. In such a case the 8207 
aborts the cycle. If a memory cycle intended for the 
8207 is aborted, then no acknowledge (AACK or MCK) 
is issued and the processor locks up in endless wait 
states. Figure 15 illustrates the status (command) 
timing requirements for synchronous and asyn­
chronous systems. Figures 16 and 17 ,show a more 
detailed hook-up of the 8207 to the 8086 and the 80286, 
respectively. 

5-68 210463-004 



a.K 

ADDRESS 

LEN 

RAS 1 

CAS' 

PSEN 

PSEL 

8207 

I I I 
I 
I 

VAliD ~ 
: I 

~~I ____ V_A_UD _____ ~~---------- VALID 'Illli 
I 

~I : \ I'--~\ r-
I 

~ / /I :\ I \ r-
I 

~------'/ 

Figure 14. iAPX 28618207 Synchronous-Status Timing Programmed in non-ECC Mode, CO 
Configuration (Read Cycle) 

5-69 210463-004 



8207 

8207CLK 

(A) PE SET-UP AND HOLD TIM" REQUIREMENTS FOR FAST CYCLE, 
SYNCHRONOUS OPERATION (80288 CMDISTATUS) 

8207CLK 

COMMAND/fI'A'I'Ui ------.----..... 

\ 

(8) liE TIMING REQUIREMENTS FOR FAST OR SLOW CYC~E 
ASYNCH~US OPERATION 

Figure 15. 

Memory Acknowledge 
(AACK, XACK) 

In system configurations without error correction, 
two memory acknowledge signals per port are sup­
plied by the 8207. They are the Advanced Acknowl­

,edge strobe (AACK) and the Transfer Acknowledge 
strobe (XACK). The CFS programming bit deter­
mines for which processor AACKA and ~ are 
optimized, either 80286 (CFS = 1) Qr 80861186 (CFS 
= 0), while the SA and S8 programming bits optimize 
AACK for synchronous operation ("early" AACK) or 
asynchronous operation ("late" AACK). 

Both the early and late AACK strobes are three 
clocks long fqr CFS = 1 and ,two clocks long for CFS 
= O. The XACK strobe is asserted when data is valid 
(for reads) or when data may be removed (for writes) 
and meets the Multibus requirements. XACK is 

removed asynchronously by the command going in­
active. Since in asynchronous operation the 8207 
removes read data before late AACK or XACK is 
recognized by the CPU, the user must provide for 
data latching in tne system until the CPU reads the 
data. In synchronous operation, data latching is un­
necessary since the 8207 will not remove data until 
the CPU has read it. I 

In ECG-based systems there is one memory acknow­
ledge (XACK or AACK) per port and a programming 
bit associated with each acknowledge. If the X pro­
gramming bit is active, the strobe is configured as 
XACK, while if the bit is inactive, the strobe is 
configured as AACK. As in non-ECC, the SA and SB 
programming bits determine whether. the, AACK 
strobe is early or late (EAACK or LAACK). 

5-70 

Data will,always be valid a fixed time after the occur­
rence of the advanced acknowledge. Table 9 sum­
marizes the various transfer acknowledge options. 

210463-004 



8207' 

8284A' 
<"1= I OTHER ~ INPUTS RDY 1 

READY 
CLK 

+ 
CLK 

8288~ 

DEN r----
OT/II r- CLK AAa( 

S2 SlSOALE ~~ :::::> READY CLK IT ~ 

iii 
8207 MEMORY 

=:> 1 
PCTL ADo .. (UPPER) 

i1 RD WE- ~ 

iii WR 
80881 VI AHn-eALo.8 PSEN WE DI DO 80188 

" ~ 't II OE ST8 

ADDRI 
DATA - --v' 8283 

~ =:::D>- t- I 
LATCH I 

CLK 

~ AD D Q 

TV~ ~D Q r--!!-
T OE l' 

~ 
16 

8287 
I 

~ 
'T OE 

'-- 16/ 
'----

8287 I 

NOTE: 
"These components are not necessary when using the 80186. These functions are 
provided directly by the 80186. 

MEMORY 
(LOWER) 

WE DI DO 

r it 
I 

Figure 16. 8086/80186, 8207 Single Port Non-ECC Synchronous Systems 

5-71 210463-004 
/ 



inter 8207 

82284 

READYSRDY ~l OTHER Aa( INPUTS 

ClK 

t 
CLK 

82288 
DEN - ClK AACK 
DTIR 

Mlili Sl so ADDR, 
READY ClK 

~r 
STROBES 

~ 
PCTl MEMORY 

Mlili 8207 (UPPER) 
S1 RD WE -
SO WR 

80288 ADDRIN PSEN WE 01 DO 

....-- ir 
ADDR 'I 

+ ~=D- - L 
DATA 

t-: AO-
ClK 

a ~ 
+5V 

TVl BHE- at-!!--
T DE 

16 

8287 

Vl r-
T DE 

16 -
~ 8287, 

Note: While the 8207 does not need the input addresses latched, AO, BRi: 
must come from the latched address ,bus. 

\ 

==:> 
MEMORY 
(LOWER) 

WE 01 DO 

I {r 
J 

Figure 17. 80286 Hook-up to 8207 Non-ECC Synchronous System-Single Port. 

5-72 
.I 

210463-004 



8207 

Table 8. Processor Interface/Acknowledge Summary 

SYNC/ASYNC 
CYCLE PROCESSOR REQUEST TYPE INTERFACE ACKNOWLEDGE TYPE 

80286 STATUS SYNC EAAC~ 

80286 STATUS ASYNC LAACK 

FAST 80286 COMMAND SYNC EAACK 
CYCLE 
CFS=1 

80286 COMMAND ASYNC LAACK 

8086/80186 STATUS ASYNC LAACK 

8086/80186 COMMAND ASYNC LAACK 

MULTIBUS COMMAND. ASYNC XACK 

8086/80186 STATUS SYNC EAACK 

SLOW 8086/80186 STATUS ASYNC LAACK 

CYCLE 8086/80186 COMMAND SYNC EAACK 
CFS=O 

8086/80186 COMMAND ASYNC LAACK 

MULTIBUS COMMAND ASYNC XACK 

Table 9. Memory Acknowledge Option Summary 

Synchronous 

AACK Optimized 
Fast Cycle for Local 80286 

AACK Optimized 
Slow Cycle for Local 8086/186 

Test Modes 

Two special test modes exist in the 8207 to facilitate 
testing. Test Mode 1 (non-EGG mode) splits the 
refresh address counter into two separate counters 
and Test Mode 2 (EGG mode) presets the refresh 
address counter to a value slight:y less than rollover. 

Test Mode 1 splits the address counter into two, and 
increments both counters simultaneously with each 
refresh address update. By generating external 
refresh requests, the tester is able to check for 
proper operation of both counters. Once proper indi­
vidual counter operation has been established, the 
8207 must be returned to normal mode and a second 
test performed to check that the carry from the fi rst 
counter increments the second counter. The outputs 
of the counters are presented-on the address out bus 
with the same timing as the row and column ad· 
dresses of a normal scrubbing operation. During 
Test Mode 1, memory initialization is inhibited, since 
the 8207, by definition, is in non-EGG mode. 

Test Mode 2 sets the internal refresh counter to a 
value slightly less than rollover. During functional 
testing other than that covered in Test Mode 1, the 

Asynchronous XACK 

AACK Optimized for Multibus Compatible 
Remote 80286 

AACK Optimized for Multibus Compatible 
Remote 8086/186 

5-73 

8207 will normally be set in Test Mode 2. Test Mode 2 
eliminates memory initialization in EGG mode. This 
allows quick examination of the circuitry which 
brings the 8207 out of memory initialization and into 
normal operation. 

General System Considerations 
The RASo_3, GASO_3, AOo_s, output buffers were 
designed to directly drive the heavy capacitive loads 
associated with dynamic RAM arrays. To keep the RAM 
driver outputs from ringing excessively in the system 
environment and causing noise in other output pins it is 
necessary to match the output impedance of the RAM 
output buffers with the RAM array by using series 
resistors and to add series resistors to other control 
outputs for noise reduction if necessary. Each applica­
tion may have different impedance characteristics and 
may require different series resistance values, The 
series resistance values should be determined for each 
application. In non-EGG systems unused EGG input 
pins should be tied high or low to improve noise 
immunity. 

The 8207 is packaged in a 68-pin, leadless JEDEG type 
A hermetic chip carrier. 

210463-004 

, 

'j 



inter 8207 

TOP BOTTOM 

~~i~~~~~~~~~~90i8 cccccccc>cccccmmc 
~~~~~~~;~~;i~~~~~ 

NOTE:
8207 is packaged in a 68 pin JEDEC Type A hermetic lead less chip carrier.

Figure 19. 8207 Pinout Diagram

5-74

34 A01
33 A02
32 A03

28 A07
27 A08
26 Vss
25 RAS3
24 RAS2
23 RAS1
22 RASO
21 CAS3
20 CAS2
19 CAS1

1 18 CASO

210463-004

8207

A.C. CHARACTERISTICS
(TA =O°C to 70°C; Vcc = +5V±5%. VssOV)
Measurements made with respect to RASo.3• CASo.3• AOO•8• are a +2.4V and O.8V. All other pins are
measured at 2.0V and O.8V. All times are nsec unless otherwise indicated. Testing done with specified
test load.

CLOCK AND PROGRAMMING
8207·16, ·8 ' 8207·12, ·6
(FFS=l) (FFS=O)

ReI. Symbol Parameter Min. Max. Min. Max. Units Notes

- tF Clock Fall Time 10 10 ns 3

- tR Clock Rise Time 10 10 ns< 3

1 TClCl Clock Period 8207·16 62<5 200 ns 1
8207·12 83<3 200 ns 1
8207·8 125 500 ns 2
8207·6 167 500 ns 2

2 TCl Clock Low Time 8207·16 15 180 ns 1
8207·12 20 180 ns 1
8207-8 TClCLl2·12 ns 2
8207·6 TClCLl2·12 ns 2

3 TCH Clock High Time 8207·16 20 180 ns 1
8207·12 25 180 ns 1
8207-8 TClCLl3·3 ns 2
8207-6 TClCLl3·3 ns 2

4 TRTVCl Reset to ClKI Setup 40 55 ns 4

5 TRTH Reset Pulse Width 4 TClCl 4 TClCl ns

6 TPGVRTl PCTl, POI, RFRO to RESET!
Setup 125 167 ns 5

7 TRTlPGX PCTl, RFRO to RESET! Hold 10 10 ns

8 TClPC PClK from ClKI Delay 45 55 ns

9 TPOVCl POin to ClKI Setup 60 85 ns

10 TClPOX POin to ClKI Hold 40 55 ns 6

..

5-75 210463-004

8207

ABSOLUTE MAXIMUM RATINGS
Ambient Temperature .

Under Bias•.........• -0° C to +70° C
Storage Temperature•... -65°C to +150°C
Voltage On Any Pin With

Respect to Ground - .5V to + 7V
Power Dissipation 2.5 Watts

D.C. CHARACTERISTICS

Symbol Parameter Min.

Vil Input Law Voltage -0.5

VIH Input High Voltage 2.0

VOL Output Low Voltage

VOH Output High Voltage 2.4

VROl
RAM Output
Low Voltage

VROH
RAM Output

2.6
High Voltage

Icc Supply Current

III Input Leakage Current

Vel
Clock Input

-0.5
Low Voltage

VeH
Clock Input

3.8.
High Voltage

CIN Input Capacitance

NOTE 1:

NOTICE: Stress above those listed under "Absolute
Maximum Ratings" may cause permanent damage
to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

Max. Units Comments

+0.8 V

Vee + 0.5 V

0.45 V Note 1

V Note 1

0.45 V Note 1

V Note 1

455 mA TA=OoC

+10 f1A OV:::; VIN :::; Vee

+0.6 V

Vee + 0.5 V

20 pF fc = 1 MHz

IOl =5 mA and 10H = -0.2 mA (Typically 10L =~10 mA and 10H = -0.88 mA,)
WE: IOL=8 mA

A.C. Testing Load Circuit A.C. Testing Input, Output Waveform

RRAS = 39Q
RCAS = 39Q
RAO = 22Q
RL = 39Q

5-76

: .;..;,..: __ x:: :.: X'-__
. A.C. Testing inputs (except,clock) are driven at

2.4V for a logic "1" and 0.4SV for a logic "0"
(~Iock is driven at 4.0V and 0.4SV for logic "1"

, and "0" respectively). Timing measurements are
made at 2.0V, 2.4V for logic "1" and 0.8 V for logic
"0"

210463-004

8207

I

A.C. CHARACTERISTICS (Continued)

RAM WARM·UP AND INITIALIZATION
I 64 I TClWZl I WZ from ClKI Delay 40 55 ns 7

SYNCHRONOUS JlP PORT INTERFACE
11 TPEVCl PE to ClKI Setup 30 40 2

12 TKVCl RD, WR, PE, PCTl to ClKI Setup 20 25 ns 1

13 TClKX RD, WR, PE, PCTl to ClKI Hold 0 0 ns

14 TKVCH RD, WR, PCTl to ClK! Setup 20 30 ns 2

ASYNCHRONOUS JlP PORT INTERFACE

15 TRWVCl RD, WR to ClKI Setup 20 30 ns 8,9

16 TRWl RD, WR Pulse Width 2TClCl+30 2TClCl+40 ns

17 TRWlPEV PE from RD, WRI Delay CFS=l TClCl-20 TClCl-30 ns 1
CFS=O TClCl-30 TClCl-40 ns 2

18 TRWlPEX PEto RD, WRI Hold 2TClCl+30 2TClCl+40 ns

19 TRWlPTV PCTl from RD, WRI Delay TClCl-30 TClCl-40 ns 2

20 TRWlPTX PCTl to RD, WRI Hold 2TClCl+30 2TClCl+40, ns 2

21 TRWlPTV PCTl from RD, WRI Delay 2TClCl-20 2TClCL-30 ns 1

22 TRWlPTX PCTl to RD, WRI Hold 3TClCL+30 3TCLCl+40 ns 1

5-77 210463-004

A.C. CHARACTERISTICS (Continued)
RAM INTERFACE

Ref. Symbol Parameter

23 TAVCl Al, AH, BS to ClKl Setup

24 TClAX Al, AH, BS to ClKl Hold

25 TCllN lEN from ClKl Delay

26 TClRSl RAS. from ClK. Delay

27 TRCD RAS to CAS Delay CFS=l
CFS=O
CFS=O

28 TClRSH BASt from ClK. Delay

29 TRAH CFS=l
CFS=O

'\ CFS=O

30 TASR Row AO to CAS HOld\

31 TASC Column AO to CASl Setup CFS=1
CFS=O

32 TCAH Column AO to CAS Hold

33 TClCSl CASl from ClK. Delay

34 TClCSl CAS. from ClK. Delay

35 TClCSH CASt from ClK. Delay

36 TClW WE from ClK. Delay

37 TClTKl XACKl from ClKl Delay

38 TRWlTKH XACKt from RDt, WRf Delay

39 TClAKl AACKl from ClK. Delay

40 TClAKH AACKt from ClKl Delay

41 TClDL DBM from ClKl Delay

ECC INTERFACE
42 TWRlFV FWR from WRl Delay CFS=1

CFS=O

43 TFVCl FWR to ClK. Setup

44 TClFX FWR 10 ClK. Hold

45 TEVCl ERROR to ClKl Setup

46 TClEX ERROR to ClKl Hold

47 TClRl RfW from ClK. Delay

48 TClRH RfW from ClK. Delay

49 TCEVCl CE to ClKl Selup

50 TClCEX CE to ClK. Hold

51 TClES ESTB from ClKl Delay

8207

(

8207·16, ·8 8207·12, ·6
(FFS=l) (FFS=O)

Min. Max. Min'. Max. Units Notes

35+tASR 45+tASR ns 10

0 0 ns

35 '45 ns

35 45 ns

TClCl·25 TClCl·30 ns 1,14
TClCLl2·25 TClCLl2·30 ns 11,14

75 70 ns 12,14

50 60 ns

TClClf2·10 TClClf2·15 ns 1,13,15
TClCLl4·10 TClClf4·15 ns 11,15

40 35 ns 12,15

10,18

0 5 ns 13',19,20
5 5 ns 13,19,20

(See DRAM Interface Tables) 21

TCI,.CLl4 TClCU1.8 TClCLl4 'TClCU1.8 ' ns 11
+30 +53 +30 +72 ns 12

35 40 ns 1

50 60 ns

35 45 ns

35 45 ns

50 55 ns

35 45 ns

50 60 ns

35 45 ns

2TClCl·40 2TCLCl·50 ns 1,22
TClCl+ TClCl+ ns 2,22
TCl·40 TCl·65

40 50 ns 23

0 0 ns 24

20 25 ns 25,26

0 0 ns

40 45 ns

50 60 ns

20 25 ns 25,27

0 0 ns

35 45 , ns

5-78 210463-004

A.C. CHARACTERISTICS (Continued)
PORT SWITCHING AND LOCK

8207

8207,16, ,8
(FFS=l)

Ref. Symbol Parameter Min,

52 TClMV MUX from ClKI Delay

53 TClPNV PSEN from ClKI Delay TCl
TCl

54 TClPSV PSEl from ClKI

55 TlKVCl lOCK to ClK! Setup 30

56 TCllKX lOCK to ClKI Hold 10

57 TRWllKV lOCK from RD!, WRI Delay

58 TRWHlKX lOCK to ROt, WR! Hold 3TClCl+30

REFRESH REQUEST

59 TRFVCl RFRO to ClKI Setup 20

60 TClRFX RFRO to ClKI Hold 10

61 TFRFH Failsafe RFRO Pulse Width TClCl+30

62 TRFXCl Single RFRO Inactive to ClKI
Setup 20

63 TBRFH Burst RFRO Pulse Width 2TClCl+30

NOTES:
1. Specification when p-ogrammed In the Fast Cycle processor mode (iAPX 286 mode)
2 SpeCification when programmed In the Slow Cycle processor mode (IAPX 186 mode)
3 tR and IF are referenced from the 3 5V and 1 OV levels

Max,

45

60
TCl+35

35

2TClCl,30

8207,12, ,6
(FFS=O)

Min, Max,

55

TCl 60
TCl TCl+35

45

40

10

2TClCl,40

3TClCl+40

25 /

10

TClCl+40

30

2TClCl+40

4 RESET IS Internally synchronized to elK Hence a set-up time IS reqUired only to guarantee its recogmtlOn at a particular clock edge
5 The f,rst programming bit (POD) IS also sampled t:Pt RESET gOIng tow
6 TCLPDX IS guaranteed If programmmg data IS shifted uSing PCLK
7 WZ IS issued only In ECC mode
8 TRWVCL IS not required for an aSYQchronous command except to guarantee Its recognition at a particular clock edge
9 Valid when programmed in either Fast or Slow C)Cle mode

10 tASA IS a user specified perameter and ItS value should be added accordngly to TAVel
11 When programmed In Slow Cycle mode and 125 ns ~ TClCl < 200 ns
12 When programmed In Slow Cycle mode and 200 ns ~ TClCl
13 Specification for Test load conditions

Units

ns

ns
ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

14 tACO (actual) = tRCg (specificatIOn) +0 06 (.:.\~Asl- 006 (,:,\Cr:AR) where AC = C (test load) - C (actual) In pF (These are first order approXimations)
~~ tRAH (actual) = tRAH (specification) + 006 (A RAS) - 0 O~2 {ACAtY where AC = C (test loaj) - C (actual) In pF (These are first order apprOXimations)

17
18 tASR (actual) = tASR (specification) +006 (ACAO) - 0025 (ACRA& where AC = C (test load) - C (actual) In pF (These are first order approximatIOns)
19 tASe (actual) = tASC (specification) +0 06 (ACAr» - 0 025 (ACCAS> where AC = C (test load) - C (actual) In pF (These are first order approximations)
20 tASC IS a function of clock frequency and thus vanes With changes In frequency A mlmllT1Um value IS speCified
21 See 8207 DRAM Interface Tables 14 - 18

Notes

28
29

30,31

30,31

31,32

31,32

33

34

33

22 ~~~~C~I;~~na~~~e~o~~ ~cC~~onous and asynChronous FWI1ln systems In which FYJR IS decoded directly frem the address Inputs to the 8207 TClFV IS

23 TFVCL IS defined for synchronous f!'WI1
24 TClFV)s defined for both synchronous and asynchronous FWR In systems In which FWR IS decoded directly from the address Inputs to the 8207

TClFV IS automatICally guaranteed by TCLA V
25 ERROR and CE are set-up to ClK'" 10 fast cycle mode and ClKt 10 slow cycle mode
26 ERROR is set~up to the same edge as AIW IS referenced to, 10 RMVV cycles
27 CE IS set~up to the same edge as WE IS referenced to 10 RMW cydes
28 SpeCification when TCl < 25 ns
29 SpecificatIon when Tel ;;at. 25 ns
30 Synchronous operatIon only Must arrive by the second clock failing edge after the clock edge which recognizes the command 10 order to be effective
31 lOCK must be held active for the entire penod the opposite port must be locked out One clock after the release of lOCK the oPPosIte port will be able to obtain

access to memory
32 Asynchronous mode only In thiS mode a synchronizer stage IS used Internally In the 8207 to synchronIze up lOO< TRWLLKV and TRWHLKX are only

reqUIred for guaranteeing that lOCK will be recogmzed for the requestIng port, but these parameters are not reqllred for correct 8207 operation
33 TFRFH and TBAFH pertalO to asynchrono1.6 operation only
34 Single RFRQ cannot by supplIed asynchronously

5-79 210463-004

8207

WAVEFORMS
Clock and Programming Timlng~s

elK

RESET--t~~~~~~~~~~--------~----------~----------------JL--~--------
PCTl

REFRQ

POI

IIEFR E
QAAMMING

POO

MUXlPClK:=J -~---,""":"'--------"":::';:I ® ®
,......---~

RAM Warm-up and Memory Initialization Cycles

RESET __ --,

®
P01

£~c ____ ~~ __ -+~~ ______ ~ ____ ~~ ______________ -+~

ffi

I RIW:J 5)

PROGRAMMING
i RESET i

NOTES:

f

FIRST RAM WARM-UP CYCLE

' ____________ 1
lAST RAM WARM-UP OR
INITIALIZATIOtfcvClE

1. When in non-ECC mode or in ECC mode with the TM2 programming bit on, there are no initialization cycles,
when in ECC mode with TM2 off, the dummy cycles are followed by initialization cycles.

2. The present example assumes a RAS four clocks long.

5-80 210463-004

WAVEFORMS (Continued)
Synchronous Pon Interface

COMMAND MODEl
FAST CYCLE
lID, WIf, PE"

COMMAND MODEl ---+--+--'""\
FAST CYCLE
PCTL (INHIBIT)

COMMAND MODEl
FAST CYCLE

8207

INTERNAL INHIBIT ---t--+-----'"t------------------

SLOW CYCLE
RlJ,WR

~OWCYCLE

SLOW CYCLE
PCTL

INTERNAL
CYCLE REQUEST

NOTE:

®

Actual transitions are programmable. Refer to Tables 12 and 13.

5-81 210463-004

"n+_I®
lu"e'

WAVEFORMS (Continued)
Asynchronous Port Interface

8207

CLK~~~LI\J\
FAST/SLOW CYCLE \

f--@-
Fill, ViA k{ -' r- -

®

®
~®-FAST/SLOW CYCLE

PE ~ 'i ~ -,

®
--@

SLOW CYCLE
PCTL r -~

@
® ~I

FAST CYCLE \ 7~ PCTL (INHIBIT)

(

FAST CYCLE
"""'
r------------------------

INTERNAL INHIBIT
....

I

INTERNAL

")
I,l..-

CYCLE REQUEST

5-82 210463-004

WAVEFORMS (Continued)
RAM Interlae, Timing
ECC and NoII-ECC Mode

CLOCK 0

ClK ~

COMMAND

INTERNAL
CYCLE REQUEST

ALa' ALa
AHO' AHa
BBo' BS1

lEN

RAS

AOo·AOa

CAS

WE

XACK

DBM

,

_l--®.
--.ft.

NOTE:

~

~

~®4

~@H--

-@ ®

~

-®j
~

8207

~ ~ ~~

/ / /

\

~
](

r®i
.$

-®- ~. ,
L

l\

~ ® ~.
..L

I-@-

-®j ~
.T 1\

f-®j -@
X

-®j ~
:t. ..L

I I

~.
.L

Actual transitions are programmable. Refer to Tables 12 and 13.

5-83

I
11"i ,

210463-G04

inter

WAVEFORMS (Continued)
Port Switching and Lock, Timing

ClK

8207

COMMAND ____ ~--~--_r--------~--+_--~------~,
PORTA

COMMAND
PORT B

MUX -------..
PORTA

RAS-------------n

PORTB

PSEN---------_r~-'

PSEl_ -------... 1
PORT A

PORTA

PORTA
®

lOCK----------~~--------~~~------------+_------J~

FASTCYC~ r---1 r--l~ __________ ~ ______________________ __
INTERNAL lOC=K ---' L.-______

DISABLE NOTE:
Transients during MUX switching.

Refresh Request Timing

ClK---

FAilSAFE REFRES,.,H~ _____ _
REQUEST -

SINGLE REFRESH REQUEST ----_________ _

--------------t®@3 f3_@ ______ ------BURST REFRESH
REQUEST

5-84 210463-004

8207

WAVEFORMS (Continued)
ECC Interface Timing

NOTE:

CLOCK 0

ClK

COMMAND
(WR)

INTERNAL
CYCLE REQUEST --I_oJ

FASTCYClE---~~'r~~--~~-~r-+---+-----~-­
FWii

SlOWCYClE---~r-----~--~r-+---+-----~-­
Fm

ERROR ___ - _______ -'1~_+--~~~---~~

ww----------------------~~~--------_4~~

XACK _____________ ~~_+-----~--

CE _____________ ~~~-~~~-~~,-

ESTB _______________ ~~~---~~~

WE _________________ ~L_ ____ ~

1. This parameter is set-up to the falling edge of clock, as shown, for fast cycle configurations. It is set-up to the
rising edge of clock if in slow cycle configurations. Table 13A shows which clock and clock edge these
signals are set-up in the RIW L column.

2. CE is set-up to the same edge as WE is referenced to in RMW cycles.

5-85 210463-004

• _I® I •• ~ 8207

CONFIGURATION TIMING CHARTS Tables 10 and 11 give a description of non-ECC and
The timing charts that follow are based on 8 basic ECC system configurations based on the 8207's
system configurations where the 8207 o~erates. PDO, PD3, PD4, PD10 ar'd PD11 programming bits.

liIble 10. Non-ECC System Configurations
Non-ECC Mode: PDO=O

nmlngConl. CFS(PD3) RFS(PD4) EXT(PD10)" FFS(PD11)

Co iAPX286(0) FASTRAM(O) NOT EXT(O) 10MHZ(1)

Co iAPX286(0) / FASTRAM(O) EXT(1) 10MHZ(1)

Co iAPX286(O) SLOWRAM(1) NOT EXT(O) 10 MHZ(1)

Co iAPX286(0) SLOWRAM(1) EXT(1) 10 MHZ(1)

Co IAPX286(0) FASTRAM(O) NOT EXT(O) 16 MHZ(O)

C, iAPX286(0) SLOW RAM(1) NOT EXT(O) 16MHZ(0)

c, iAPX286(0) FAST RAM(O) EXT(1) 16MHZ(0)

Co iAPX286(0) SLOW RAM(1) EXT(1) 16MHZ(0)
I C3 iAPX186(1) FAST RAM(O) NOT EXT(O) 8 MHZ(O)

C3 iAPX186(1) SLOWRAM(1) NOT EXT(O) 8 MHZ(O)

C3 iAPX186(1) FAST RAM(O) EXT(1) 8 MHZ(O)

C3 iAPX186(1) FAST RAM(O) NOT EXT(O) SMHZ(1)

C3 iAPX186(1) FAST RAM(O) EXT(1) SMHZ(1)

C3 iAPX186(1) SLOWRAM(1) NOT EXT(O) SMHZ(1)

C3 IAPXl86(1) SLOW RAM(1) EXT(1) SMHZ(1)

C. iAPX186(1) SLOWRAM(1) EXT(1) 8 MHZ(O)

ECC Mode: PDO=1
liIble 11",ECC System Configurations

Timing ConI. CFS(PD3) RFS(PD4) EXT(PD10) FFS(PD11)

Co IAPX286(1) SLOWRAM(O) MIS EDCU(O) 10 MHZ(O)

Co iAPX286(1) SLOW RAM(O) M EDCU(1) 10 MHZ(O)

Co IAPX286(1) . FAST RAM(1) MIS EDCU(O) 10MHZ(0)

Co IAPX286(1) FAST RAM(1) M EDCU(1) 10 MHZ(O)

Co IAPX286(1)' FAST RAM(1) M EDCU(1) 16 MHZ(1)

C, iAP){286(1) SLOWRAM(O) M EDCU(1) 16 MHZ(1)

Co iAPX286(1) FAST RAM(1) MIS EDCU(O) 16MHZ(1)

Co IAPX286(1") SLOW RAM(O) MIS EDCU(O) 16MHZ(1)

C. .iAPX186(0) SLOWRAM(O) MIS EDCU(O) S MHZ(O) -c. iAPX186(0) FASTRAM(1) MIS EDCU(O) S MHZ(O)

c. iAPX186(Q) SLOWRAM(O) M EDCU(1) 8MHZ(1)

C. iAPX186(0) FAST RAM(1) M EDCU(1) 8MHZ(1)

c. iAPX186(0) SLOW RAM(O) MIS EDCU(O) 8 MHZ(1)

C. iAPX186(0) FAST RAM(1) MIS EDCU(O) 8MHZ(1)

Co iAPX186(0) SLOW RAM(O) M EDCU(1) S MHZ(O) .

Co IAPX186(0) FAST RAM(1) M EDCU(1) S MHZ(O)

5-86 210463-004

8207

Using the Timing Charts
The notation used to indicate which clock edge
triggers an output transition is "nr" or "nl", where
"n" is the number of clock periods that have passed
since clock 0, the reference clock, and "r" refers to
rising edge and "I to falling edge. A clock period is
defined as the interval from a clock falling edge to
the following falling edge. Clock edges are defined
as shown below.

I , i I I :- n ~I" n+1--+\
I I

L l I I I
(n-1)! nt n! (n+1)t (n+1)!

The clock edges which trigger transitions on each
8207 output are tabulated in Table 12 for non-ECC
mode, and Table 13 for ECC mode. "H" refers to the
high-going transition, and "L" to low-going transi­
tion; "V" refers to valid, and "Ii" to non-valid.

Clock 0 is defined as the clock in which the 8207
begins a memory cycle, either as a result of a port
request which has just arrived, or of a port request
which was stored previously but could not be
serviced at the time of its arrival because the 8207
was performing another memory cycle. Clock 0 may
be identified externally by the leading edge of RAS.
which is always triggered on 01.

Notes for interpreting the timing charts.

1. PSEL - valid is given as the latest time it can
occur. It is entirely possible for PSEL to become
valid before the time given. In a refresh cycle,
PSEL can switch as defined in the chart, but it
has no bearing on the refresh cycle itself, but
only on a subsequeht cycle for one of the
external ports.

2. LEN -low is given as the latest time it can occur.
LEN is only activated by port A configured in Fast

Cycle iAPX286 mode, and thus it is not activated
by a refresh cycle, although it may be activated
by port A during a refresh cycle.

3. ADDRESS - COlli is the time 'column address
becomes valid.

4. In non-ECC mode the CAS, EAACK, LAACK and
XACK outputs are not issued during refresh.

5. Ip ECC mode there are really seven types of
cycles: Read without error, read with error, full
write, partial write without error, partial write with
error, refresh without error, and refresh with er­
ror. These cycles may be derived from the timing
chart as follows:

A. Read without error: Use row marked 'RD, RF'.

B. Read with error: Use row marked 'RMW'
except for EAACKand LAACK, which should
be taken from 'RD, RF'. If the error is uncor­
rectable, WE will not be issued.

C. Full write: Use row marked 'WR'.

D. Partial write without error: Use row marked
'RMW', except that DBM and ESTB will not be
issued.

E. Partial write with error: Use row marked
'RMW', except that DBM will not be issued. If
the error is uncorrectable, WE will not be
issued.

F. Refresh without error: Use row marked 'RD
RF', except that ESTB, EAACK, LAACK and
XACK will not be issued. '

G. Refresh with error: Use row marked 'RMW'
except that EAACK, LAACK, ESTB, and
XACK will not be issued. If the error is
uncorrectable WE will not be issued.

6. XACK - high is reset asynchronously by command
going inactive and not by a clock edge.

7. MUX - valid is given as the latest time it can occur.

5-87 210463-004

'n+_I®
111'eI .

Cn

Co

C1

C2

C3

C4

CYCLE

RD, RF

WR

RD,RF
WR

RD, RF
WR

RD,RF
WR

RD,RF
WR

Cn

Co

C1

C2

C3

C4

8207

Table 12 A. Timing Chart - Non-ECC Mode

PSEN PSEL DBM LEN RAS CAS WE

H L V V L H L H L H L H H L

·O~ 3~ O~ 4~ O~ 4~ O~ 2~ O~ 3~ H 4~

O~ 4~ O~ 5~ O~ 2~ O~ 5~ H 5~ 2~ 5~

O~ , 5~ O~ 6~ O~ 6~ O~ 2-1 O~ 4~ H 6t

0-1 4-1 0-1 5-1 0-1 2-1 O~ 5-1 H 5-1 2-1 5~

0-1 5-1 O~ 6~ O~ 6-1 O~ 2~ O~ 4~ H 6~

O~ 4~ O~ 5~ O~ 2~ O~ 5~ H 5~ 2~ 5~

O~ 2~ O~ 3~ O~ 3~ O~ 2~ 0-1 3~ O~ 3~

O~ 3~ O~ 4~ O~ 2~ O~ 4~ O~ 4-1 2t 4~

O~ 3~ O~ 4~ 0-1 4~ 0-1 2~ O~ 4-1 O~ 4+

O~ 3~ , O~ 4~ O~ 2~ O~ 4~ O~ 4~ 2t 4~

Table 12 B. Timing Chart - Non-ECC Mode

COLADDR EAACK LAACK' XACK MUX

CYCLE V V L H L H L H V V
RD, RF O~ 2~ H 4~ 2~ 5~ 3~ RD -2~ 2~

WR 0+ 2.). H 4~ H 4~ 3~ WR -2~ 2~

RD, RF O~ 3~ 2~ 5~ 2~ 5~ 4~ 'RD -2-1 2-1

WR O~ 3-1 H 4-1 H 4-1 at WR -2~ 2-1

RD, RF 0-1 3-1 2-1 5~ 3~ 6-1 4t RD -2-1 2-1

WR 0-1 3~ H 4-1 H 4-1 3-1 WR -2-1 2-1

RD, RF 0-1 2-1 0-1 2-1 H 3-1 2-1 RD -H 2-1

WR 0-1 2-1 O~ 2-1 1t 3t 2~ WR -H 2-1

RD, RF O~ 2-1 H 3-1 1-1 3-1 3t RD -H 2~

WR O~ 2~ 0-1 2~ 1t 3t 2-1 WR -H 2-1

5-88 210463-004

8207

Table 13 A. Timing Chart - ECC Mode

PSEN PSEL OBM LEN RAS CAS R/W WE

Cn CYCLE H L V V L H L H L H L H L H H L

RD. RF O. 5. 01 61 01 61 01 21 01 41 11 61

Co WR O. 5. 01 61 01 21 01 61 1 I 61 1 I 61 31 61

RMW O. 8. 01 91 01 91 01 21 01 91 1 I 91 41 91 61 91

RD. RF O. 5. 01 61 01 61 O! 21 01 41 11 61

C, WR O. 5. 01 61 01 21 O! 61 1 I 61 11 61 31 61

RMW O. 8. 01 91 O! 91 01 21 01 91 11 91 41 91 61 91

RD. RF O. 6. O! 71 01 71 01 21 O! 51 11 71

C2 WR O. 6-1 O! 71 O! 21 01 71 1 I 71 1 I 71 41 71

RMW 0-1 10-1 01 11 I 01 11 I O! 21 01 111 1 I 111 51 11 I 81 11 I

RD. RF 0-1 6-1 01 71 01 71 01 21 01 51 1 I 71

C3 WR Ot 6-1 01 71 01 21 01 71 11 71 11 71 41 71

RMW 0-1 10t O! 11 I 01 11 I 01 21 01 111 1 I 111 51 111 81 11 I

RD. RF 0+ 3t 01 41 01 41 O! 21 01 31 01 41

C. WR Ot 4-1 01 51 O! 21 O! 51 01 51 11 51 31 51

RMW 0-1 6-1 01 71 01 71 O! 21 O! 71 01 71 31 71 51 71

RD. RF 0-1 3-1 01 41 O! 41 01 21 01 31 01 41

C5 WR 0-1 4-1 01 51 01 21 01 51 01 51 11 51 31 51

RMW or 6+ 01 71 01 71 01 21 01 71 01 71 31 71 51 71

RD. RF 0-1 3-1 01 41 01 41 01 21 01 3) 0) 41

Cs WR 0+ 3-1 O! 41 O! 21 01 41 01 41 11 41 21 41

RMW 0+ 4-1 01 51 O! 51 01 21 O! 51 01 51 21 51 31 51

5-89 210463-004

1>00-£91>'0 ~~ 06-9

t~ H- ~M tE ~V ~~ tE H H> ~E t~ to MW~

t~ H- ~M t~ ~t H tE H t~ to ~M 90

t~ H- O~ .~ ~E H tE H t~ to :I~'O~

t~ H- ~M t9 .'9 ~v t9 fe, .9 ~9 t~ to MW~

t~ H- ~M tE 'tV t~ tE H t~ to ~M So
t~ H- O~ ~E t9 ~E tv t~ t~ to :I~'O~

t~ H- ~M t9 t9 tV t9 tE .9 t9 t~ to MW~

t~ H- ~M tE tV .~ tE H t~ to ~M 1>'0

t~ H- O~ i.E ~V ~~ tE H t~ to :I~'O~

t~ t~- ~M t6 tO~ tL tO~ tL tO~ ta tE to MW~

t~ t~- ~M t9 t9 tE t9 tE tE to ~M EO

t~ t~- O~ t9 ta t9 tL tv tE to :I~'O~

t~ t~- ~M t6 tO~ tL tO~ tL to~ ta tE to MW~

t~ t~- ~M tS t9 tE t9 tE tE to ~M ~O

t~ t~- O~ tS tL tv tL tv tE to :I~'O~

t~ t~- ~M tL ta tS ta tS ta t9 tE to MW~

t~ t~- ~M tv tS t~ tS t~ tE to ~M ~O

t~ t~- O~ tv t9 tE t9 tE tE to :I~ 'O~

t~ t~- ~M tL ta tS ta tS ta t9 t~ to MW~

t~ t~- ~M tv tS t~ tS t~ t~ to ~M 00

t~ t~- O~ tv t9 tE tS t~ t~ to :I~'Ol;l

" " H 1 H 1 H 1 H 1 " " 310AO Uo
xnw >l0~ >10'1'11 >10'1'13 SJ.S3 1:100'110::1

epow 003 - ..,IUIO 6UIWIJ. 'S &~ elqBJ.

A~w[rJ]~[W\!l~I~~©l Loze @Mul

inter 8207

8207 - DRAM Interface Parameter Equations
Several DRAM parameters, but not all, are a direct
function of 8207 timings, and the equations for
these parameters are given in the following tables.
The following is a list of those DRAM parameters
which have NOT been included in the following
tables, with an explanation for their exclusion.

WRITE CYCLE

READ, WRITE, READ-MODIFY-WRITE &
REFRESH CYCLES

tRAC:
tCAC:
tREF:
tCRP:

response parameter.
response parameter.
See "Refresh Period Options"

tRC:
tRAS:
tCAS:
tWCS:

tDS:
tDH:
tDHR:

guaranteed by tRWC.
guaranteed by tRRW.
guaranteed by tCRW.
WE always activated· after CAS is acti­
vated, except in memory initialization,
hence tWCS is always negative (this is
important for RMW only) except in mem­
ory initialization; in memory initialization
tWCS is positive and has several clocks of
margin.
system-dependent parameter.
system-dependent parameter.

. system-dependent parameter.

tRAH:
·tRCD:
tASC:
tASR:
tOFF:

must be met only if CAS-only cycles,
which do not occur with 8207, exist.
See "A.C. Characteristics" READ-MODIFY-WRITE CYCLE

See "A.C. Characteristics"
See "A.C. Characteristics"
See "A.C. Characteristics"
response parameter.

READ & REFRESH CYCLES

tRWD: don't care in 8207 write cycles, but tabu­
lated for 8207 RMW cycles.

tCWD: don't care in 8207 write cycles, but tabu­
lated for 8207 RMW cycles.

tRCH: WE always goes active after CAS goes
active, hence tRCH is guaranteed by
tCPN.

Table 14. Non-ECC Mode - RD, RF Cycles

Fast Cycle Configurations Slqw Cycle Configurations I

Parameter Co C, C2 C3 C4 Notes

tRP 3TCLCL-T26 4TCLCL-T26 4TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tCPN 3TCLCL-T35 3TCLCL-T35 3TCLCL-T35 2.5TCLCL-T35 2.5TCLCL - T35 1

tRSH 2TCLCL-T34 3TCLCL-T34 3TCLCL-T34 3TCLCL-T34 4TCLCL-T34 1

tCSH 4TCLCL-T26 6TCLCL-T26 6TCLCL-T26 3TCLCL-T26 4TCLCl-T26 1

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 3TClCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tT 3/30 3/30 3/30 3/30 3/30 2

tRC 6TClCL 8TClCL 8TClCl 5TCLCL 6TCLCL 1

tRAS 3TCLCL-T26 4TCLCL-T26 4TCLCL-T26 3TCLCL-T26 4TCLCt.-T26 1

tCAS 3TCLCL-T34 5TCLCL-T34 5TCLCL-T34 3TCLCL-T34 4TCLCL-T34 1

tRCS 2TCLCL-TCL 2TCLCL-TCL 2TCLCL-TCL 1.5TCLCL-TCL 1.5TCLCL-TCL 1

-T36-TBUF -T36-TBUF . -T36-TBUF -T36-TBUF -T36-TBUF

5-91 210463-004

8207

Table 15. Non-ECC Mode - WR Cycle

Fast Cycle Configurations Slow Cycle Configurations

Parameter Co C, C2 C3 C4 Notes

tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 2.5TCLCL - T35 2.5TCLCL - T35 1

tRSH 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1

tCSH 5TCLCL-T26 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tT 3/30 3/30 3/30 3/30 3/30 2

tRWC 8TCLCL 8TCLCL 8TCLCL 6TCLCL 6TCLCL 1

tRRW 5TCLCL-T26 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1

tCRW 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1

tWCH 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 1,3

-T34 -T34 -T34 -T34 -T34

tWCR 4TCLCL+TCL 4TCLCL+TCL 4TCLCL+TCL 3TCLCL+TCL 3TCLCL+TCL 1,3

-T26 -T26 -T26 -T26 -T26

tWP 2TCLCL+TCL 2TCLCL+TCL 2TCLCL+TCL 2TCLCL-T36 2TCLCL-T36 1

-T36-TBUF -T36-TBUF -T36-TBUF -TBUF -TBUF

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-TCL 3TCLCL-TCL , 1

-TBUF -TBUF -TBUF -T36-TBUF -T36-TBUF

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-TCL 3TCLCL-TCL 1

-TBUF -TBUF -TBUF -T36-TBUF -T36-TBUF

5-92 210463-004

8207

Table 16 A. ECC Mode - RD, RF Cycles

Fast Cycle Mode

Parameter Co Cl C2 C3 Notes

tRP 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1

tCPN 3TCLCL-T35 3TCLCL-T35 3TCLCL-T35 3TCLCL-T35 1

tRSH 3TCLCL-T34 3TCLCL-T34 4TCLCL'-T34 4TCLCL-T34 1

tCSH 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1 '

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1

tT 3/30 3/30 3/30 3/30 2

tRC 8TCLCL 8TCLCL 9TCLCL 9TCLCL 1

tRAS 4TCLCL-T26 4TCLCL-T26 5TCLCL-T26 5TCLCL-T26 1

tCAS 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1

tRCS TCLCL-T36 TCLCL-T36 TCLCL-T36 TCLCL-T36 1
- -

-TBUF -TBUF -TBUF -TBUF

Table 16 B. ECC Mode - RD, RF Cycles

Slow Cycle Mode I

Parameter C4 C5 Ce Notes

tRP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tCPN 1.5TCLCL - T35 1.5TCLCL - T35 1.5TCLCL - T35 1

tRSH 3TCLCL-T34 3TCLCL-T34 3TCLCL-T34 1

tCSH 4TCLCL-T26 4TCLCL-T26 4TCLCL-T26 1

tCAH 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR .2TCLCL - T26 2TCLCL-T26 2TCLCL-T26 1

tT 3/30 3/30 3/30 2

tRC 5TCLCL 5TCLCL 5TCLCL 1

tRAS 3TCLCL-T26 3TCLCL~T26 3TCLCL-T26 1

tCAS 4TCLCL-T34 4TCLCL-T34 4TCLCL-T34 1

iRCS 0.5TCLCL - n6 0.5TCLCL-T36 0.5TCLCL - T36 1

-TBUF -TBUF -TBUF

5-93 210463-004

8207

Table 17 A. ECC Mode - WR Cycle \

Fast Cycle Mode

Parameters Co C, C2 C3 Notes

tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 1

tRSH 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1

tCSH 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 '1

tT 3/30 3/30 3/30 3/30 2

tRWC 9TCLCL 9TCLCL 10TCLCL 10TCLCL 1

tRRW 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1

tCRW 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1

tWCH 5TCLCL-T34 5TCLCL-T34 6TCLCL-T34 6TCLCL-T34 1,4

tWCR 6TCLCL-T26 6TCLCL-T26 7TCLCL-T26 7TCLCL-T26 1,4

tWP 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1

-TBUF -TBUF -TBUF -TBUF

tRWL 3TCLCL-T36 . 3TCLCL - T36 3TCLCL-T36 3TCLCL-T36 1

-TBUF -TBUF -TBUF -TBUF

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1

-TBUF -TBUF -TBUF -TBUF

5-94 210463-004

8207

Table 17 B. ECC Mode - WR Cycle

Slow Cycle Mode

Parameters C4 Cs Cs Notes

tRP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tCPN 2.5TCLCL - T35 2.5TCLCL - T35 2.5TCLCL - T35 1

tRSH 5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1

tCSH 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1

tCAH 2TC~CL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

IT 3/30 3/30 3/30 2

tRWe 7TCLCL 7TCLCL 6TCLCL 1

tRRW 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1

tCRW 5TCLCL-T34 5TCLCL-T34 4TCLCL-T34 1

tWCH 5TCLCL-T34 5TCLCL-T34 4TCLCL-T34· 1,4

tWCR 5TCLCL-T26 5TCLCL-T26 4TCLCL-T26 1,4

tWP 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1

-T36-TBUF -T36-TBUF -T36-TBUF

tRWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1

-T36-TBUF -T36-TBUF -T36-TBUF

tCWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1

-T36-TBUF -T36-TBUF -T36-TBUF

5-95 210463-004

8207

Table 18 A. ECC Mode - RMW

Fast Cycle Mode

Parameters Co C, C2 C3 Notes

tRP 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1

tCPN 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 4TCLCL-T35 1

tRSH 8TCLCL-T34 8TCLCL-T34 10TCLCL - T34 10TCLCL - T34 1

tCSH 9TCLCL-T26 9TCLCL-T26 11TCLCL-T26 11TCLCL-T26 1

tCAH TCLCL-T34 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 3TCLCL-T26 3TCLCL-T26 3TCLCL-T26 1

tT 3/30 3/30 3/30 3/30 2

tRWC 12TCLCL 12TCLCL 14TCLCL 14TCLCL 1

tRRW 9TCLCL-,T26 9TCLCL-T26 11 TCLCL·-T26 11TCLCL - T26 1

tCRW 8TCLCL-T34 8TCLCL-T34 10TCLCL ~ T34 10TCLCL - T34 1

tRCS TCLCL;-T36 TCLCL-T36 TCLCL-T36 TCLCL-T36 1

-TBUF -TBUF -TBUF -TBUF

tRWD 6TCLCL-T26 6TCLCL-T26 8TCLCL-T26 8TCLCL-T26 1

tCWD 5TCLCL-T34 5TCLCL-T34 7TCLCL-T34 7TCLCL-T34 1

tWP 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1

-TBUF -TBUF -TBUF -TBUF

tRWL 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 3TCLCL-T36 1

-TBUF -TBUF -TBUF -TBUF

tCWL 3TCLCL-T36 3TCLCL-T36 3TCLCL'--T36 3TCLCL-T36 1

) -TBUF -TBUF -TBUF -TBUF

5-96 210463-004

8207

Table 18 B. ECC Mode - RMW

Slow Cycle Mode

Parameters C4 Cs Cs Notes

tRP 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

tCPN 2.5TCLCL - T35 2.5TCLCL - T35 2.5TCLCL - T35 1

tRSH 7TCLCL-T34 7TCLCL-T34 5TCLCL-T34 1

tCSH 7TCLCL-T26 7TCLCL-T26 5TCLCL-T26 1

tCAH 2TCLCL-T34 2TCLCL-T34 2TCLCL-T34 1

tAR 2TCLCL-T26 2TCLCL-T26 2TCLCL-T26 1

IT 3/30 3/30 3/30 2

tRWC 9TCLCL 9TCLCL 7TCLCL 1

tRRW 7TCLCL-T26 7TCLCL-T26 5TCLCL-T26 1

tCRW 7TCLCL-T34 7TCLCL-T34 5TCLCL-T34 1

tRCS 0.5TCLCL - T36 0.5TCLCL - T36 0.5TCLCL - T36 1

-TBUF -TBUF -TBUF

tRWD 4TCLCL+TCL 4TCLCL+TCL 2TCLCL+TCL 1

-T26 -T26 -T26

tCWD 4TCLCL+TCL 4TCLCL+TCL 2TCLCL+TCL 1

-T34 -T34 -T34

tWP 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1

-T36-TBUF -T36-TBUF -T36-TBUF

tRWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1

-T36-TBUF -T36-TBUF -T36-TBUF

tCWL 3TCLCL-TCL 3TCLCL-TCL 3TCLCL-TCL 1

-T36-TBUF -T36-TBUF -T36-TBUF

NOTES:
1. Minimum
2. Value on right is maximum; value on left is minimllm.
3. Applies to the eight warm-up cycles during initialization only.
4. Applies to the eight warm-up cycles and to the memory initilization

cycles during initialization only.
5. TP = TCLCL

T26 = TCLRSL
T34 = TCLCSL
T35 = TCLCSH
T36 = TCLW
TBUF = TTL Buffer delay

5-97 210463-004

inter
8208

DYNAMIC RAM CONTROLLER

• o Walt State, 8 MHz IAPX 1861188, IAPX • Directly Addresses and Drives up to
286 and IAPX 86/88 Interface 1 Megabyte without External Drivers

• Provides all Signals necessa~ to • Four Programmable Refresh Modes
Control 64K (2164A) and 256
Dynamic RAMs • +5 Volt Only HMOS" Technology for

• Supports Synchronous or
High Performance and Low Power

Asynchronous
Microprocessor Interfaces

• ' Automatic RAM Warm-up

The Intel 8208 Dynamic RAM Controller is a high performance. systems oriented. Dynamic RAM controller
that is designed to easily interface 64K and 256K Dynamic RAMs to Intel and other microcomputer systems.
The 8208 is designed to easily interface to the iAPX 186, iAPX 186, iAPX 86, and the iAPX 86 by strapping
the programming pin to logic O.

.FO.

PDI--+-----,~

AL" c:==::::l

as

:' AL4
AL3
AL2
AL1
ALO
BS

AOO
m A01

A02
A03
A04
Vss
A05
A06
A07
A08
Vss

RAS1
RAOO

1-----"'. _. CA§'i

CASii
Vss

RESET
Vcc

Figure 1. Block Diagram and Pinout Diagram

Vee
AL5
AL6
AL7
AL6
AHO
AH1
AH2
AH3
AH4
AH5
AH6
Vss
AH7
AH8
POI
RFRQ
CLK
~
~
fiE
PCTL
AACK7XACK
WE/PCLK

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel
Product. No Other Circuit Patent Licen~ are Implied. Information Contained Herein Supercedes Previously Published
Specifications On These Devices From Intel. January. 1985

©INTEL CORPORATION, 1983. 5-98 ORDER NUMBER 230734-002

inter 8208

Table 1. Pin Description

Symbol Pin Type Name and Function
ALO 5 I ADDRESS LOW: These lower order address inputs are used to generate the row address
AL1 4 I for the internal address multiplexer.
AL2 3 I
AL3 2 I
AL4 1 I
AL5 47 I
AL6 46 I
AL7 45 I
ALB , 44 I

BS 6 I BANK SELECT: This input is used to select one of the two banks of the dynamic RAM
'array as defined by the program-bit RB.

AOO 7 0 ADDRESS OUTPUTS: These outputs are designed to provide the row and column
A01 8 0 addresses, of either the CPU or the refresh counter, to the dynamic RAM arrWc' These
A02 9 0 outputs drive the dynamic RAM array directly and need no external drivers. owever,
A03 10 0 they typically need series resistors to match impedances.
A04 11 0
A05 13 0
A06 ' 14 0
A07 15 0 I

" A08 16 0

VSS 12 I GROUND
17 I GROUND
22 I GROUND
36 I GROUND

~ 19 0 ROW ADDRESS STROBE: These outputs are used by the dynamic RAM array to latch
18 0 the row address, present on the AQ0.8 pins. These outputs are selected by the BS pin

as programmed by program-bit RB. Thsee outputs drive the dynamic RAM array directly
and need no external drivers.

~ 21 0 COLUMN ADDRESS STROBE: These outputs are used by the dynamic RAM array to
20 0 latch the column address, present on the A00-8 pins. These outputs are selected by the

BS pin as programmed by program·bit RB. These outputs drive the dynamic RAM array
directly and need no external drivers.

. RESET 23 I RESET: This active high signal causas all internal counters to be reset and upon release
of RESET, data appearin~ at the POI pin is clocked·in ~the PCLK output. The states
of the POI, PCTL and RF Q pins are sampled by RES going inactive and are used
to program tbe 8208. An 8 cycle dynamic RAM warm·up is performed after clocking POI
bits into the 8208.

WEi 25 0 WRITE ENABLE/PROGRAMMING CLOCK: Immedlate~ after a RESET this
PCLK pin becomes PCLK and Is used to clock serial programming ata into the POI pin. After

the 8208 is programmed this active high signal provides the dynamic RAM array the write
enable input for a write operation.

VCC 24 I POWER: + 5 Volts.
48 I POWER: + 5 Volts.

AACKl 26 0 ADVANCE ACKNOWLE~NSFER ACKNOWLEDGE: When the X programming bit
~ is set to logic 0 this ~n Is AA K and indicates that the processor may continue process·

ing and that data wi be available when required. This signal Is optimized for the ~tem
by programminJj the S program·blt for synchronous or asynchronous operation. he S
prrerarnming bit determines whether this strobe will be earl~e. If another dynamic
RA cycle is in pr~ress at the time of the new~~est, the Is delayed. When the
X programming bit IS set to I~C 1 this pin is and indicates that data on the bus
Is v~lng a read ~cle or t at data may be removed from the bus during a write cy.
cle. XA K Is a MULTI US compatible signal. .

PCTL 27 I PORT CONTROL: This pin is sampled on the failing edge of RESET. It configures the
8208 to accept command inputs or processor status inputs. If PCTL is low after RESET
the 8208 is programmed to accept bus command inputs. If f>CTL is high after RESET
the 8208 is ~rammed to accept status Inputs from IAPX 86 or iAPX .186 type processors.
The S2 status ine should be connected to this input if programmed to accept iAPX 86
or iAPX 186 status inputs. When PmBrammed to accept bus commands it should be tied
low or it may be comected to INHI IT when operating with MULTIBUS.

PE 28 I
)

PORT ENABLE: This pin serves to enable a RAM cycle request. It Is generally decoded
from the address bus.

5-99 230734-002

inter 8208

Table 1. Pin Description (Continued)

Symbol Pin Type Name and Function
WR 29 I WRITE: ~Pin is the write memory request command input. This Input also directly ac-

cepts the status line from Intel processors.

RD 30 I READ: Th~ln is the read memory request command input. This input also directly ac-
) cepts the status line from Intel processors.

elK 31 I a.OCK: This input provides the basic timing for sequencing the Internal logic

RFRQ 32 I REFRESH REQUEST: This Input is sampled on the falling edge of RESET. If RFRQ is
high at RESET then the 820818 P~ed for IntemaI-refI8sh request or extemaJ.refresh
request with failsafe protection. If FRQ Is low at RESET then the 8208 Is programmed
for external·refresh without failsafe protection or burst·refresh. Once programmed the
RFRQ pin accepts signals to start an external·refresh with failsafe proteCtIon or external·
refresh without failsafe protection or a burst-refresh.

POI 33 I PROGRAM DATA INPUT: This input is sam~ ~ RESET "olng low. It programs the
various user selectable options In the 8208. LK pin shifts programming data Into
the POI input from an external shift :i,ister. This pin may be strapped low to a default
iAPX 186 (PDI=Low) mode configurat n.

AHO 43 I ADDRESS HIGH: These hlter order address Inputs are used to generate the colUmn
AH1 42 I address for the internal ad ress multiplexer.
AH2 41 I
AH3 40 I
AH4 39 I
AH5 38 I
AHa 37 I
AH7 35 I
AH8 34 I

5-100 230734-002

intJ 8208

GENERAL DESCRIPTION

The Intel 8208 Dynamic RAM Controller is a
. microcomputer peripheral device which provides the
necessary signals to address, refresh and directly
drive 64K ana 256K dynamic RAMs.

The 8208 supports several microprocessor interface
options including synchronous and asynchronous
operations for iAPX 86, iAPX 186, iAPX 188 and
MULTIBUS.

FUNCTIONAL DESCRIPTION

Processor Interface

The 8208 has control circuitry capable of supporting
one of several possible bus structures. The 8208 may
be programmed to run synchronous or asynchronous
to the processor clock. (See Synchronous/Asyn­
chronous Mode) The 8208 has been optimized to run
synchronously with Intel's iAPX 86, iAPX 88, iAPX

Synchronous-Status Interface

Synchronous-Command Interface

186 and iAPX 188. When the 8208 is programmed
to run in asynchronous mode, the 8208 inserts the
necessary synchronization circuitry for the RD, WR,
PE, and PCTL inputs .

The 8208 achieves high performance (i.e. no wait
states) by decoding the status lines directly from the
iAPX 86, iAPX 88, iAPX 186 and the iAPX 188. The
8208 can also be programmed to receive read or write
MUL TIBUS commands or commands from a bus con­
troller. (See Status/Command Mode)

The 8208 may be programmed to accept the clock
of the iAPX 86, iAPX 88, iAPX 186 or 188. The 8208
adjusts its internal timing to allow for different clock
frequencies of these microprocessors. (See
Microprocessor Clock Frequency Option)

Figure 2 shows the different processor interfaces to
the 8208 using the synchronous or asynchronous
mode and status or command interface.

Asynchronous-Status Interface

Asynchronous-Command Interface

Figure 2. Interfaces Supported by the 8208.

5-101 230734-002

8208

Dynamic RAM Interface

The 8208 ~is capable of addressing 64K and 256K
dynamic RAMs. Figure 3 shows ttle connection of the
processor address bus to the 8208 using the different
RAMs. The 8208 directly supports the 2164A RAM
family or any RAM with similar timing requirements
and responses.

A11-A19

NOTES:

256K RAM
INTERFACE

(NOTE 1)

A1,

AH8

8208

BS

64K RAM
INTERFACE

l.1Unassigned address input pins should be strapped
high or low.

2. 'AO along with BHE are used to select a byte within
a proCessor word.

3. Low order address bit is used as a bank select
input so that consecutive mer;nory access requests
are to alternate banks allowing bank interleaving
of memory cycles.

Figure 3. Processor Address Interface to the
8208 Using 64K, and 256K, RAMS

The 8208 divides memo~o two Danks, each bank
having its own Row (RAS) and Column (~
Address Strobe pair. This organization permits RAM
cycle interleaving. RAM cycle interleaving overlaps
the start of the next RAM cycle with the RAM
precharge period of the previous cycle. Hiding the
precharge period of one RAM cycle behind the data
access period of the next RAM cycle optimizes
memory bandwidth and is effective as long as suc­
cessive RAM cycles occur in the alternate banks.

Successive data access to the same bank cause the
8208 to wait for the precharge time of the previous
RAM cycle. But when the 8298 is-programmed in an
iAPX 186 synchronous'configuration conSecutive read
cycles to the same bank does not result in additional
wait states (Le. 0 wait state reads reSUlt).

If not all RAM banks are occupied, the8208 reassigns
the RAS and CAS stro~s to allow using wider data
words without increasing'the loading on the RAS and
CAS drivers. Table 2 shows the ~nkselection
decodin~d the horizontal word expansion, in­
cluding AAS and ~ assignments. For examp~M
only one RAM b!lnk is occupied, then the two
and CAS strobes are activated with the same timing.

Table 2. Bank Selection Decoding
and Word Expansion

Program Bank
Bit Input 8208
RB BS RAS/CAS Pair Allocation

0 0 'RASo l' CASo 1 to Bank 0

0 1 Illegal.

1 0 RASo: CAS'o to Bank 0

~ 1 ~1' CAS1 to Bank 1

Program bit RB is not used to check the bank select
input BS. The system design must protect from
accesses to "Ulegal", non-existent banks of memory
by deactivating the PE input when addressing an
"illegal", non-existent bank of memory. '

The 8208 adjusts and optimizes intemal timings for
either the fast or slow RAMs as programmed. (See
RAM Speed Option)

Memory Initialization

After programming, the 8208 performs eight RAM
"wake-up" cycles to prepare the dynamic RAM for
proper device operation (during "warm-up" some
RAM interface parameters may not be met, this
should cause no harm to the dynamic RAM array).

Refresh

The 8208 provides an internal refresh intemll counter,
and a refresh address counter to allow the 8208 to
refresh memory. The 8208 will refresh 128 rows every
2 milliseconds or 256 rows every 4 millisecQnds,
which allows all RAM refresh options to be supported.
In addition, there exists the ability to refresh 256 row
address locations every 2 milliseconds via the Refresh
Period programming option.

The 8208 may be programmed for any of five different
refr"sh options: Internal refresh only, External refresh
with failsafe protection, External refresh without,
failsafe protectio\1, 'Burst Refresh modes, or no
refresh. (See.Refresh Options)

5-102 230734-002

It is possible to decrease the refresh time interval by
1 ()oAI 20% or 3QOAI. This option allows the 8208 to com­
pensate for reduced clock frequencies. Note that an
additional 5% interval shortening is built-in in all refresh
interval options to compensate for clock variations and
non-immediate r~sponse to the internally generated
refresh request. (See Refresh Period Options)

External Refresh Requests after RESET

External refresh requests are not recognized by the
8208 until after it is finished programming and prepar­
ing memory for access. Memory preparation includes
8 RAM cycles to prepare and ensure proper dynamic
RAM operation. The time it takes for the 8208 to
recognize a request is shown below.

eq. 8208 System Response: TRESP = PROG + TPREP
where: TPROG = (40) (TCLCL) which is programming

time
TPREP = (8) (32) (TCLCL) which is the RAM

warm-up time
if TCLCL = 125 ns then TRESP = 37 us

Reset

RESET is an asynchronous input, the falling edge of
which is used by the 8208 to directly sample the logic
levels of the PCTL, RFRQ, and POI inputs. The
internally synchronized falling edge of reset is used
to begin programming operations (shifting in the
contents of the external shift register, if needed, into
the POI input).

Differentiated reset is unnecessary when the default
synchronization programming is used. (S=O)

Until programming is complete the 8208 registers but
does not respond to command or status inputs. A
simple means of preventing comm~nds or status from
occurring during this period is to differentiate the
system reset pulse to obtain a smaller reset pulse for

, the 8208. The total time of the 8208 reset pulse and
the 8208 programming time must be less than the
time before the first command the CPU issues in
systems that alter the default port synchronization
programming bit (default is synchronous interface).

The differentiated reset pulse would be shorter than
the system reset pulse by at least the programming
period required by the 8208. The differentiated reset
pulse first resets the 8208, and system reset would
reset the rest of the system. While the rest of the
system is still in reset, the 8208 completes its
programming. Figure 4 illustrates a circuit to ac­
complish this task.

8208

SYSTEM ,.-______ ...,

RE~ L-
82018 I---- t1----,
RR~~ __________ __

t1 PROGRAMMING TIME OF 8208

SYSTEM >--t>-+--v\N'---t--L>o----t
RESET

DIFFERENTIATED RESET

NOTES:

8208
RESET

1. Required only when the port synchronization op­
tion(s) is altered from its initial default value.

2_ Vcc must be stable before system reset is ac­
tivated when using this circuit.

Figure 4. 8208 Differentiated Reset Circuit

Within four clocks after RESET goes active, all the
8208 outputs will go high, except for AOO-2, which
will go low.

OPERATIONAL DESCRIPTION

Programming the 8208

The 8208 is programmed after reset. On the falling
edge of RESET, the logic states of several input pins
are latched internally. The falling edge of RESET
actually perfonns the latching, which means that the
logic levels on these inputs must be stable prior to
that time_ The inputs whose logic levels are-latched
at the end of reset are the PCTL, REFRQ, and POI
pins.

Status/Command Mode
The processor port of the 8208 is configured by the
states of the PCTL pin. Which interface is selected
depends on the state of the PCTL pin at the end of
reset. If PCTL is high at the end of reset, the 80186
Status interface is selected; if it is low, then the
MUL TIBUS or Command interface is sele9ted_

There exist two interface configurations, one for
MUL TIBUS memory commands, which is called the
Command interface, and one for 8086, 8088, 80186
or 80188 status, called the 80186 Status interface.
The Command interface also directly interfaces to the
command lines of the bus controllers for the 8086,
8088.

5-103 230734-002

intel· 8208

The 80186 Status interface allows direct decoding of
the status lines for the iAPX 86, iAPX 88, iAPX 186
and the iAPX 188. Table 3 shows how the status lines
are decoded. Mic~oprocessor bus controller read or
write commands or MUL TIBUS commands can also
be directeato the 8208 when in Command mode.

Table 3.8208 Response

8208 Command Function

8086/80186 Multibus or
Status Command

PCTL RD WR Interface Interface

0 0 0 IGNORE IGNORE

0 0 1 IGNORE READ

0 1 0 ,IGNORE WRITE

0 1 1 IGNORE IGNORE

1 0 0 READ IGNORE

1 0 1 READ INHIBIT

1 1 0 WRITE INHIBIT

1 1 1 IGNORE IGNORE

Refresh Options

Immediately after system reset, the state of the
REFRQ input pin is examined. If REFRQ is high, the
8208 provides the user with the choice between self­
refresh and user-generated refresh with failsafe
protection. Failsafe protection guarantees that if the
user does not come back with another refresh request
before the internal refresh interval counter times out,
a refresh request will be automatically generated. If
the REFRQ pin is low immediately after a reset, then
the user has the choice of a single external refresh
cycle without failsafe, burst refresh or no refresh.

Internal Refresh Only

For the 8208 to generate internal refresh requests,
it is necessa~ only to strap the REFRQ input pin high.

External Refresh with Failsafe

To allow user-generated refresh requests with failsafe
protection, it is necessa~ to hold the REFRQ input
high until after reset. Thereafter, a low-to-high transi­
tion on this input causes a refresh request to be

. generated and the internal refresh interval counter
to be reset. A high-to-Iow transition has no effect on
the 8208. A refresh request is not recognized until
a previous request has been serviced.

External Refresh without Failsafe

To generate single externaftefresh requests without
failsafe protection, it is necessa~to hold REFRQ low
until after reset. Thereafter, bringing REFRQ high for
one clock period will cause a refresh request to be
generated. A refresh request is not recognized until
a previous request has been serviced.

Burst Refresh

Burst refresh is implemented through the same
procedure as a Single external refresh without failsafe
(Le., REFRQ is kept low until after reset). Thereafter,
bringing REFRQ high for at le~st two clock periods
will cause a burst of up to 128 row address locations
to be refreshed. Any refresh request is not recogniz­
ed until a previous request has been serviced (Le.
burst is completed).

No Refresh

It is necessary to holdREFRQ low until after reset.
This is the same as programming External Refresh
without Failsafe. No refresh is accomplished by
keeping REFRQ low.

Option Program Data Word

The program data word consists of 9 program data
bits, POO-P08. If the first program data bit, POO is
set to logic 0, the 8208 is configured to support iAPX
186, 188, 86, or 88 systems. The remaining bits,
P01-P08, may then be programmed to optimize a
sel.ected system configuration. A default of all zeros
in the remaining program bits optimizes the 8208
timing for 8 MHz Intel CPUs usir'lg 150 nS (or faster)
dynamic RAMs with no performance penalty. Figure
5 shows the various options that can be programmed
into the 8208.

. Using an Extemal Shift Register

The 8208 may be programmed by using an external
shift register with asynchronous load capability such
as a 74LS165. The resetpulse serves to parallel load
the shift register and the 8208 supplies the clocking
signal (PCLK) to shift the data into the POI program­
ming pin. Figure 6 shows a sample circuit diagram
of an external shift register circuit.

Serial data is shifted into the 8208 via the POI pin (33),
and clock is provided by the WE/PCLK pin (23), whiCh
generates a total of 9 clock pulses. After program­
ming is complete, data appearing at the input of the
POI pin is ignored. WE/PCLK is a dual function pin.

5-104 230734-001

8208

During programming, it seNes to clock the external
shift register, and after programming is completed,
it reverts to the write enable RAM control output pin.
As the pin changes state to provide the write enable
signal to the dynamic RAM array, it continues to clock
the shift register. This does not present a problem
bec~use d~JIl at1he POI pin is ignored after program- ,
mingo Figure 7 illustrates the timing requirements of
the shift register. .

PD. PD7 PDO

I x Imlpcslao IffiIRBIRF§I~1 0 I
PROGRAM
DATA BIT NAIE POLARITY/FUNCTION

PD~ CFS MUST BE ZERO

POl S S = 0 SYNCHRONOUS
S = 1 ASYNCHRONOUS

PD2 RFS RFS = 0 FAST RAM
R'FS - 1 SLOW RAM

PD3 RB RAM BANK OCCUPANCY
SEE TABLE 2

PD4 Cll COUNT INTERVAL BIT 1; SEE TABLE 6

PD5 CIO COUNT INTERVAL BIT 0; SEE TABLE 6

PD6 PLS PLS = 0 LONG REFRESH PERIOD
j5[§ = 1 SHORT REFRESH PERIOD

PD7 m FF§ = 0 FAST CPU FREQUENCY
FF§ = 1 SLOW CPU FREQUENCY

PD8 X X = OMCK
X=lXACK

Figure 5. Program Data Word

CLK

RESET

ww --t-----<r------~------~~

Default Programming Options

After reset, the 8208 serially shifts in a program data
word via the POI pin. This pin may be strapped low,
or connected to an external shift register. Strapping
POI low causes the 8208 to default to the iAPX 186
system configuration. Table 4 shows the character­
istics of the default configuration. If further system
flexibility is needed, one external sbift register, like
a 74LS165, can be used to tailor the 8208 to its
operating environment. Figure 8 illustrates an iAPX
186 and 8208 system.

Table 4. Programming, POI Pin Tied to Ground.

Synchronous 80186 interface

2 RAM banks occupied

Fast processor clock frequency (8 MHz)

Fast RAM (Note 1)

Refresh interval uses 118 clocks

128 row refresh in 2 ms; 256 row refresh
in 4 ms

Advanced ACK strobe

NOTE:
1. For iAPX 186 systems either slow or fast (150 or 100 ns)

RAMS are ok to use.

PCLK--:-I--:-_-J

~~~-~~~==~~==~--~--------------~r------------~.~----------~,,--
PDI __ --I.'-_____________ P...;;DO-'-____________ -J'-____ ...;;P.:;D.:..1 ____ ....J PD2 

NOTES: 

TRTVel 
TPaVel 
TClPC 
TlOAO 

- Reset is an asynchronous input, if reset occurs before TRTVCl, then it is guaranteed to be recognized. 
- Minimum POI valid time prior to reset going low. 
- MUXlPClK delay. 
- Asynchronous load data propagation delay. 

Figure 6. TIming Illustrating External Shift Register Requirements for Programming the 8208. 

5-105 230734-002 

", 

I, 

i'i 
I" 



l 

8208 
RESET 

o 

8208 

+5V 

~ , , 0-O--<:)-., .... ,~O)-_....J 
I I I I 

8208 

POI WElPCLK 1---...... 

L---------~--------------------------------~RESET 

Figure 7. External Shift Register Interface 

~ OTHER ~ >J AACK 
SIGNALS 

eLK AACK " ~ RESET RABG1 

l=: REFRQ CAS01 MEMORY 

I ( 
MEMORY 

AH. ~' 
2164A·15 2164A·15 

AU 8208 
(UPPER) (LOWER) 

'ROY eLK 
AOOO 

" WR r-----Y RESET OUT S1 '0 WE-- " WE OlIO WE 0110 

" PCTL 

MMCS PE AHOlSALO7 POI "1. ... ~ 41 ALE 

~E 1.1 80186 'TB 
AODRI " LATCH .=:. 

DATA 828. A1Al1 
T ~.f oL c::J" DTiii DeN Y --.. ~ 

- .=:. 

~ 
~O ol.!:::i }-- - '--" 

T DE 

~ 7' 
LS245 

Jr ,. 
DATA BUS 

Figure 8. 8208 Interface to an 80186 

5-106 230734-002 



8208 

Synchronous/Asynchronous Mode 
(S program bit) 

The 8208 may be independently configured tu ac~t 
synchronous or asynchronous commands (AC, WR, 
PCTl) and Port Enable (PE) via the S program bit. 
The state of the S programming bit determines 
whether the interface is synchronous or 
asynchronous. 

While the 8208 may be configured with either the 
80186 Status or Command (MUl TIBUS) interlace in 
the Synchronous mode, certain restrictions exist in 
the Asynchronous mode. An Asynchronous-Command 
interface using the control lines of the MUl TIBUS is 
supported, and an Asynchronous-80186 Status inter­
face using the status lines of the 80186 is supported, 
with the use of TTL gates as illustrated in Figure 2. 
In the 80186 case, the TTL gates are needed to 
guarantee that status does not appear at the 8208's 
inputs too much before address, so that a cycle would 
start before address was valid. 

Microprocessor Clock Cycle Option 
(CFS and FFS program bits 

The 8208 is programmed to interface with micro­
processors with "slow cycle" timing like the 8086, 
8088,80186, and 80188 cycle timing. The CFS bit 
configures the microprocessor interface to accept 
signals from this microprocessor group. The CFS 
programming bit must be programmed to logic O. 

The FFS option is used to select the speed of the 
microprocessor clock. Table 5 shows the various 
microprocessor clock frequency options that can be 

, programmed, The external clock frequency must be 
programmed so that the failsafe refresh repetition 
circuitry can adjust its internal timing accordingly to 
produce a refresh request as programmed. 

Table 5_ Microprocessor Clock 
Frequency Options. 

Program Bits 
Processor Clock 

CFS FFS Frequency 

0 0 iAPX 86,;88,186 6 MHz 

0 1 iAPX 86, 88,1186 8 MHz 

RAM Speed Option (RFS program bit) 

The RAM Speed programming option determines 
whether RAM timing will be optimized for a fast or 
slow RAM. Whether a RAM is fast or slow is measured 
relative to the 2118-10 (Fast) or the 2118-15 (Slow) 
RAM specifications. 

Refresh Period Options 
(CIO CI1 and PLS program bits) 

The 8208 refreshes with either 128 rows every 2 
milliseconds or the 256 rows every 4 milliseconds. 
This translates to one refresh cycle being executed 
approximately once every 15.6 microseconds. This 
rate can be changed to 256 rows every 2 milliseconds 
or a refresh approximately once every 7.8 micro­
seconds via the Period Long/Short, program bit PlS, 
programming option. 

The Count Interval 0 (CIO) and Count Interval 1 (CI1) 
programming options allow the rate at which refresh 
requests are generated to be increased in order to 
permit refresh requests to be generated close to the 
15.6 'or 7.8 microsecond period when the 8208 is 
operating at reduced frequencies. The interval bet­
ween refreshes is decreased by 0%,10%,20%, or 
300(0 as a function of how the count interval bits are 
programmed. A 5% guardband is built-in to allow for 
any clock frequency variations. Table 6 shows the 
refresh period options available. 

Table 6. Refresh Count Interval Table 

Count Interval C11, CIO (8208 Clock Periods) 

Ref. 
Period 00 01 10 11 

(/AS) CFS PLS FFS (0%) (10%) (20%) (30%) 

15.6 0 1 1 118 106 94 82 

7.8 0 0 1 59 53 47 41 

15.6 0 1 0 74 66 58 50 

7.8 0 0 0 37 33 29 25 

5-107 230734-002 



intJ 8208 

The numbers tabulated under Count Interval repre­
sent the number of clock periods between internal 
refresh requests. The percentages in parentheses 
represent the decrease in the interval between refresh 
requests. Note that all intervals have a built-in 5% 
(approximately) safety factor to compensate for minor 
clock frequency deviations and non-immediate 
response to internal refresh requests. 

Processor Timing 

In order to run without wait states, AACK must be 
used and connected to the SRDY input of the 
appropriate bus controller. AACR is issued relative 
to a point within the RAM cycle and has no fixed rela­
tionship to the processor's request. The timing is 
such, however, that the processor will run without wait 
states, barring refresh cycles, and bank precharge. 
In slow cycle, fast RAM configurations (8086,80186), 
AAe"i(is issued on the same same clock cycle that 
issues RAS. 

Port Enable (PE) set-up time requirements depend 
on whether the 8208 is configured for synchronous 
or asynchronous,fast or slOW cycle ~ration. In a 
synchronous fast cycle configuration, PE is required 
to be set-.!!E. to the same clock edge as the com­
mands. If PE is true (low), a RAM cycle is started; if 
not, the cycle is aborted. 
In asynchronous operation, PE is required to be set­
up to the same clock edge as the internally syn­
chronized status or commands. Externally, this allows 
the internal synchronization delay to be added to the 
status (or command) -to-PE delay time, thus allow­
ing for more external decode time than is available 
in synchronous operation. 

The minimum...3'nchronization delay is the additional 
amount that PE must be held valid. If PE is not held 
valid for the maximum synohronization delay time, it 
is possible that PE will go invalid prior to the status 
or command being synchronized. In such a case the 
8208 aborts the cycle. If a memory cyde intended for 
the 8208 is aborted, then no acknowledge (AACK or 
XACK) is issued and the processor locks up in endless 
wait states. . 

Memory Acknowledge (AACK, XACK) 

Two type of memory acknowledge signals are sup­
plied by the 8208. They are the Advanced 
Acknowledge strobe (rCK) and the Transfer 
Acknowledge strobe (XA K). The S programming bit 
optimizes MCK for synchronous operation (' 'early" 
AAOR) or asynchronous operation ("late" AACK). 
Both the early and late AACK strobes are two clocks 

long. The XACK strobe is asserted when data is valid 
(for reads) or when data may be removed (for writes) 
and meets the MUL TIBUS requirements. ~ is 
removed asynchronously by the ,command going 
inactive. 

Since io a asynchronous operation the 8208 removes 
read data before late AACR: or XACK is recognized 
by the CPU, the user must provide for data latching 
in the system until the CPU reads the data. In syn­
chronous operation data latching is unnecessary, 
since the 8208 will not remove data until the CPU has 
read it. 

If the X programming bit is high, the strobe is con­
figured as XACK, while if the bit is low, the strobe is 
configured as MCR. 

Data will always be valid a fixed time after the 
occurrence of the advanced acknowledge. Thus, the 
advanced acknowledge may also serve as a RAM 
cycle timing indicator. 

General System Considerations 

The RASO, 1 , CASO,1 and AOO-8 output buffers are 
designed to directly drive the heavy capacitiVe loads 
associated with dynamic RAM arrays. To keep the 
RAM driver outputs from ringing excessively in the 
system environment it is necessary to match the 
output impedance with the RAM array by using series 
resistors. Each application may have different im­
pedance characteristics and may require different 
series resistance values. The series resistance values 
should be determined for each application. 

Using the Timing Charts 

The notation used to indicate which clock edge 
triggers an output transition is "n t" or "n~", where 
"n" is the number of dock periods that have passed, 
since clock 0, the reference clock, and "t" refers to 
rising edge and 'T' to falling edge. A clock period 
is defined as the interval from a clock falling edge to 
the follwoing falling edge. Clock edges are defined 
as shown below. 

I-- n +. n+1-1 

l I I I L 
(n-1 )l nt nl (n+1)t (n+1)l 

5-108 230734-002 



8208 

The clock edges which trigger transitions on each 
8208 output are tabulated in Table 7. "H" refers to 
the high-going transition, and "l" to low-going tran­
sition; "V refers to valid, and "V" to non valid. 
Clock 0 is defined as the clock in which the 8208 
begins a memory cycle, either as a result of a port 
request which has just arrived, or of a port request 
which was stored previously but could not be 
serviced at the time of its arrival because the 8208 
was performing another memory cycle. Clock 0 

is identified externally by the leading edge of RAS, 
which Is always triggered on O. 

NOTES FOR INTERPRETING THE TIMING CHARTS: 
1. COLUMN ADDRESS is the time column address 

becomes valid. 

2. The CAS, EAACK, LAACK and XACK outputs are not 
issued during refresh. 

3. XACK - high is reset asynchronously by command go­
ing inactive and not be a clock edge. 

Table 7. Timing Chart. 

- COLUMN 
RAS ADDRESS CAS 

CYCLE l H V V l H 

RD,RF 0+ 2. O. 2. 0+ 3+ 

WR O. 4. O. 3. H 4+ 

8208-DRAM Interface Parameter Equations 

Several DRAM parameters, but not all, are a direct 
function of 8208 timings, and the equations for these 
parameters are given in the following tables. The 
following is a list of those DRAM parameters which 
have NOT been included in the following tables, with 
an explanation for their exclusion. 

READ, WRITE 
REFRESH CYCLES' 

tRAC: response parameter. 
tCAC: response parameter. 
tREF: See "Refresh Period Options". 
tCRP: must be met only if CAS-only cycles, 

which do not occur with 8208, exist. 
tRAH: See "A.C. Characteristics" 
tRCD: See "A.C. Characteristics" 
tASC: See "A.C. Characteristics" 
tASR: See "A.C. Characteristics" 
tOFF: response parameter. 

WRITE CYCLE 

tDS: system-dependent parameter. 
tDH: system-dependent parameter. 
tDHR: system-dependent parameter. 

, NOTES: 
1. Minimum. 
2. Value on right is maximum; value on left is minimum. 
3. Applies to the eight warm-up cycles during initialization 

only. 
4. T22=TCLRSL 

T29=TCLCSL 
T30=TCLCSH 
T31=TCLWH 
TBUF=TTL buffer delay 

H 

-
0+ 

5-109 

WE EAACK LAACK XACK 

l l H l H l H 

- O. 2. H 3. 2+ RD 

4+ 0+ 2+ 1t 3t 2. WR 

Table 8. RD, RF & WR Cycles 

Parameter Rd, RF Cycles Notes 
tRP 2TCLCL:r22 1 

tCPN 2.5TCLCL-T30 1 
tRSH 3TCLCL-T29 1 
tCSH 3TCLCL-T22 1 
tCAH 2TCLCL-T29 1 
tAR 2TCLCL-T22 1 
tT 3130 2 

tRC 4TCLCL 1 
tRAS 2TCLCL-T22 1 
tCAS 3TCLCL-T29, 1 
tRCS 1.5TCLCL-TCL-T31-TBUF 1 
tRCH 0.5TCLCL-T29 1 

Parameter WR Cycles Notes 
tRP 2TCLCL-T22 1 

tCPN 2.5TCLCL-T30 1 
tRSH 3TCLCL-T29 1 
tCSH 4TCLCL-T22 1 
tCAH 2TCLCL-T29 1 
tAR 3TCLCL-T22 1 
IT 3130 2 

tRC 6TCLCL 1 
tRAS 4TCLCL-T22 1 
tCAS 3 TCLCL-T29 1 
tWCH 3TCLCL-T29 1,3 
tWCR 4TCLCL-T22 1,3 
tWP 4TCLCL-T31-TBUF 1 

tRWL 4TCLCL-T31-TBUF 1 
tCWL 4TCLCL-T31-TBUF 1 
tWCS TCLCL-T31'-TBUF 

230734-002 

" I 

I 



inter 8208 

ABSOLUTE MAXIMUM RATINGS 
Ambient Temperature 

Under Bias................... O°C to + 70°C 
Storage Temperature .......... -65°C to +150°C 
Voltage On Any Pin With 

Respect to (lr.ound . . . . . . . . . . . . .. - .5V to + 7V 
Power Dissipation ..................... 1.55 Watts 

NOTICE: Stress above those list~d under "Absolute 
Maximum Ratings." may cause permanent damage 

'to the device. This is a stress rating only and 
fiJnctional operation of the device at these or any 
other conditions above those indicated in the 
operational sections of this specification is not 
implied. Exposur.e to absolute maximum rating 
conditions for ~xtended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (T A =ooC to + 70°C, Vee = 5.0V ± 10%, Vss =GND) 

Symbol Parameter Min. Max. Units Comments 

VIL Input Low Voltage -0.5 +08 V 

VIH Input High Voltage 2.0 Vcc+05 V 

VOL Output Low Voltage 0.45 V Note 1 

VOH Output High Voltage 2.4 V Note 1 

VROL 
RAM Output 

0.45 V Note 1 
Low Voltage 

VROH 
RAM Output 

26 V Note 1 
High Voltage 

" Icc Supply Current 280 mA 

~LI Input Leakage Current +10 pA OV ::; VIN ::; Vcc 

VCL 
Clock Input 

-0.5 +0.6 V 
Low Voltage .. 

VCH 
CloCk Input 

3.a Vcc'+ 0.5 V 
High Voltage 

CIN Input Capacitance 20 pF fc = 1 MHz 

Nmtt , 
1. 10L = 8 rnA and 10H = -0.2 rnA (typically 10L = 10'rnA and 10H = -0.25rnA) 

a20a 

A.C. Testing Load Circuit 

Rl'SO.1 1------""V'v--4~ 
CASo.1 I----~""'\t-+_O-'r_ 

AO~8~--"I""'~~ 
Other Outputs 

::::r::: c...-
RRAS = 390 -:::- CRAS = 150 pF 
RCAS = 390, CCAS = 150 pF 

RAO = 220 CAO = 200 pF 
RL = 33Q CL .= 50 pF 

A.C. Testing Input, Output Waveform 

:: 2.4VX'-0_2:_: ___ :_:4_a ..... A'-: __ 

5-110 

A.C. Testing inputs (except clock) are driven at 
2.4V for a logic "1" and O.45V for a logic "0" 
(clock is driven at 4.0V and 0.45V for logic "1" 
and "0" respectively). Timing measurements are 
made at 2.0V, 2.4Vfor logic "1" and o.a V for logic 
"0". 

230734-002 



8208 

A.C. CHARACTISTICS (TA=OoC to +70oC, Vcc= +5V ±10%, Vss=GND) 

Measurements made with respect to RASO, 1, CASQ; 1, AOO-8 are at 2.4V and 0.8 V. All other pins are 
measured at 2.0V and 0.8V. All times in nsec unless otherwise indicated. AC testing done with specified 
test 'load. 

CLOCK AND PROGRAMMING 

8208 (FFS=1) 82011-8 (FFS=O) 

Ref. Symbol Paramater Min. Max. Min. Max. Unlta Not .. 

- tF Clock Rise Time 10 15 ns 

- tF Clock Fall Time 10 15 ns 

1 TClCl Clock Period 125 500 167 500 ns 

2 TCl Clock low Time TClCU2-12 TClCU2·12 ns 

3 TCH Clock High Time TCLCU3+2 TCLCU3+2 ns 

4 TRTVCl Reset to ClK! Setl4l 40 65 ns 1 

5 TRTH Reset Pulse Width 4 TClCL 4 TClCl ns 

6 TPGVRTl PCTl POI, RFRO 
to RESETI Setup 

TCLCl TCLCl ns 2 

7 TRTlPGX PCTl, RFRO 10 10 ns 
to RESET! Hold 

8 TClPC PClK from ClK! Delay 45 65 ns 

9 TPDVCl POI to CLK! Setup 60 100 ns 

10 TClPDX POI to ClKI Hold 40 65 ns 3 

SYNCHRONOUS ,.p INTERFACE 

11 TKVCH ' l'IO" WR, PCTl 20 30 ns 
, TO 'CLKt SetUD 

12 TClKX RD, \Om, ~ PCTl 0 0 ns 
to ClK! Hold 

13 TPEVCl . ~ to ClKI Setup 30 50 ns 

ASYNCHRONOUS ,.p INTERFACE 

14 TRWVCL AD, WI!! to ClKI Setup 20 30 ns 

15 TRWL RD, WR Pulse Width 2TCLCl+30 2TClCl+50 ns 

16 TRWLPEV PE from RD, WR! Delay TClCl-30 TCLCL-50 ns 

17 TRWlPEX ' I'E'to RD, WI!I! Hofd 2TCLCL+30 2TCLCL+50 ns 

18 TRWlPT PCTl from RD, WRI Delay TClCL-30 TCLCL-50 ns 

19 TRWlPTX PCTL to RD, WRI Hold 2TCLCl+30 2TCLCL+50 ns 

RAM INTERFACE 

20 TAVCl Al, AH, as to ClK! Setup 45+tASR 55+tASR ns 4 

21 TCLAX Al, AH, as to ClK! Hold 0 0 ns 

22 TcLRSL RASI from ClK! Delay 35 55 ns 

23 tRCD RAS to CAS Delay TCLCU2-25 TCLCU2-4O ns 5,7,8 
75 60 ns 6,7,8 

24 TCLRSH FiASt from CLK! Delay 50 70 ns 

25 tASR Row AD to I1I\SI Setup 4,10 

26 tRAH Row AD to ~I Hold TCLCU4-10 TCLCU4-15 ns 5,7,9 
40 3!i ns 6,7,9 

27 tA$C Column AD to CASi TCLCU4-26 5 ~: 7,11,12 
Setup 5 5 ns , 7,~~,12j 

28 tCAH Column AD to CAS Hold (See DRAM Interface Tables) 13 

5-111 230734-002 



intJ 8208 

A.C. CHARACTERISTICS (Continued) 

RAM Interface (Continued) 

8208 8208-8 

Ref. Symbol Parameter Min. Max. Min. Max. 

29 TClCSl CAS. from ClK. Delay TCLCU4+30 TClCU1.8+53 TClCU4+30 TClCU1.8 + 78 

30 TClCSH CASt from ClK. Delay. "50 70 

31 TClWH WEt from ClK. Delay TClCU4+3O TClCU1.8+53 TClCU4+3O TCLCU1.8 + 78 

32 TClWl WE. from ClK. Delay 35 55 

33 TClTKl XACK. from ClK. Delay 35 55 

34 TRWLTKH XACRt from ROt, WAt Delay 50 60 

35 TCLAKl ~. from ClK. Delay 35 55 

36 TCLAKH AACKt from ClK. Delay 50 70 

REFRESH REQUEST 

37 TRFVCl 

38 TClRFX 

39 TFRFH 

40 TRFXCL 

41 TBRFH 

RFRO to ClK. Setup 20 30 

RFRO to ClK. Hold 10 10 

Failsafe RFRO Pulse Width TClCl+30 TClCl+50 

Single RFRO inactive 20 30 
to ClK. Setup 

Burst RFRO Pulse Width 2TClCl+30 2TClCl+50 

NOTES: 
1. RESET is internally synchronized to ClK. Hence a set-up time is 

required only to guarantee its recognition at a particular clock edge. 
2. The first programming bit (POO) is also sampled by RESET going low. 
3. TClPDX is guaranteed if programming data is shifted using PplK. 
4. tASR is a user specified parameter and its value should be added 

accordingly to TAVCL. 
5. 125 ns .. TClCl < 200 ns. 
6. 200 ns .. TClCL. 
7. Specification for Test Load Conditions. 
8. tRCD (actual) = tRCD (specification)+0.06 (ACRAsl-O.06 (CcAsl 

where AC = C (test load)-C (actual) in pF. 
9. tRAH (actual) = tRAH (specification)+0.06 (ACRAS)-0.022 (ACAO) 

where AC = C (test load)-C (actual) in pF. 
10. tASR (actual) = tASR (specificatlon)+0.06 (ACAO)-0.025 (ACRAsl 

where AC = C (test load)- C (actual) in pF. 
11. tASC (actual) = tASC (specification)+O.06 (ACAO)-0.025 (ACcAsl 

where AC = C (test load)-C (actual) in pF. 
12. tASC is a function of clock frequency and thus varies with changes in 

frequency. A minimum value is specified. 
13. See 8208 DRAM Interface Tables. 
14. TFRFH and TBRFH pertain tei asynchronous operation only. 
15. SinQle RFRQ cannot be supplied asynchronously. 

5-112 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 14 

ns 15 

ns 14 

230734-002 



8208 

WAVEFORMS 
CI~Ck and Programming Timings 

CLK 

RESET--t~~~=~~~~~~---------+-----------t----------------~------------
PCTL 

REFRQ 

POI 

REFRESHM E 
PROGRAMMING ® 

POO POl 

WEJ~LK:::::J -----~~r--------------~~IQD-8------QD-8~r-.--------~---------J 

RAM Warm-up Cycles 

"~~~~G _______________ _ 
RASC/ ~~,--_____ ---,I 
WE-:=J--r-~£rG--~C~G------------------------~,c~---------~,-­

, PROGRAMMING LAST RAM WARM-UP 
i RESET i . FIRST RAM WARM-UP CYCLE 

NOTE: 
The present example assumes a RAS four clocks long. 

Synchronous Port Interface 

PCTL 

5-113 230734-00~ 

, 
I •. 
!II 

I 
I 



8208 

WAVEFORMS (Continued) 

Asynchronous Port Interface 

ClK 

RD,WR 

~--------'~--r-------~~ 
~-=--------QV+--------+~ 

PCTL 

RAS ---------""'\ 

Refresh Request Timing 

CLK __ _ 

~~I~~~~ REFESH ______ -"\ 

SINGLE REFESH 
REQUEST 

BURST REFRESH 5 
REQUEST t ®--l r:=}'@ 

-------------- '@Y --------------

5-114 230734-002 



8208 

WAVEFORMS (Continued) 

RAM Interface Timing 

CLOCK 0 

ClK 

COMMAND __ ~ __ -+ __________ ~~ ____ ~-L ____ +-__ ~1 

AlO - Ala 
AHO - AHa 
BSo-~1---J'~-+------------~~~--------+-----1-----------

RAS -------+--:111. 

AOo -AOa 

----~'~--~~~~~~------~--~----------

CAS ______ -+ ________ ~~ 

WE 

AACK ______ -+ ____________ +_~ 

@ 
AACK ----t-"""\.I 

Note: Actual transitions are programmable. See Table 7. 

5-115 230734-002 



inter 8207 

8207 User's Manual 

AUGUST 1983 

5-116 
NOVEMBER 1983 

ORDER NUMBER: 230822-002 



8207 

CHAPTER 1 
INTRODUCTION 

This guide is a supplement to the 8207 Data Sheet 1 and is intended as a design aid and not a stand­
alone description of the 8207. The reader should already have read and have a copy of the 8207 Data 
Sheet, 8206 Error Detection and Correction Unit Data Sheet (EDCU), a microprocessor Data Sheet, 
or a Multibus bus specification for interfacing to the 8207, and a dynamic RAM Data Sheet2. 

The Intel 8207 Advanced Dynamic RAM Controller is a high performance, highly integrated device 
designed to interface 16k, 64k, and 256~ dynamic RAMS to Intel microprocessors. The 8207, with 
the 8206, provides complete control for memory initialization, error correction, and automatic error 
scrubbing. 

The 8207 has several speed selected versions. The -16 and -12 parts are for clock speeds up to 16MHz and 12 
MHz in "fast cycle" configurations, and up to 8 M Hz and 6 MHz in "slow cycle" configurations. The -8 and -6 
parts can only be used in slow cycle configurations and as a result have some relaxed A.c. timings. 

NOTE: 

(I) The most current Data Sheet is dated July, 1984 
(2) All RAM cycle timings and references are based on Intel's 2164A Dynamic RAMs, APR '82 

5-117 230822-002 



8207 

CHAPTER 2 
PROGRAMMING THE 8207 

The many configurations of bus structures, RAM speeds, and system requirements that the 8207 
supports require the 8207 to be programmable. The 8207 will modify its outputs to provide the best 
performance possible. The 8207 must be told what type of interface the memory commands will 
arrive on, what type of RAM (speed, refresh rate) is being used, the clock rate; and others. 

The 8207 uses two means to be informed of the user's requirements. It reads in a 16 bit serial program 
word and examines the logic states on several input pins. The pins that are sampled for a logic level 
give the user options on the types of refresh and memory command input timing. 

Input Pin Options 

The three input pins that configure part of the 8207 are: PCTJ-A, PCTLB, and REFRQ. Let's 
examine the options in refresh types the REFRQ pin provides. 

Refresh types: 

The 8207 gives the user a choice of the following refresh types. 
" , 

1) Internal Refresh: All refresh cycles are generated internally - based on an internal 
programmable time. 

2) External Refresh with Failsafe: If the external logic does not generate a refresh cycle within 
the programmed period, the 8207 will. 

3) External Refresh - No Failsafe or No Refresh; All refresh cycles are generated at times 
by the user. This is for systems that cannot tolerate the random delay imposed by refresh 
(Le. graphics memory). 

4) Burst Refresh: The 8207 generates up to 128 consecutive refresh cycles and must,be requested 
by external logic. Memory requests will be performed when the burst is completed. 

The 8207 examines the state of the REFRQ pin when RESET goes inactive. This timing is shown in 
the "Clock and Programming Timings" waveforms in the Data Sheet. 

If REFRQ is sampled active by the falling edge of RESET, the 8207's internal timer is enabled. The 
timer's period is determined by the CIO, Cll, and PLS bits in the program word. External refresh 
cycles are generated by a low to high transition on the REFRQ input. This transition, besides generating 
a refresh cycle, also resets the internal timer to zero. Simply tie REFRQ to Vcc if internal refresh 
is required. 

If REFRQ is seen low at the falling edge of RESET, the internal timer is deactivated. All refresh cycles 
must either be done by external logic or by accessing all RAM (internal) rows within a 2 ms period. 

Once the no failsafe option is programmed, the 8207 will generate a burst of up to 128 refresh cycles 
when the REFRQ input goes from low to high and sampled high for two consecutive clock edges. 
These cycles are internally counted and the 8207 stops when the refresh address counter reaches the 
value XX11111112 (X = don't care; see Refresh Counter section). If prior to the burst request the 
counter is at XXI ~ 111102 then only 2 refresh cycles woul~ be generated. . 

5-118 230822-002 I 



inter 8207 

For a single refresh cycle to be generated via external logic, the REFRQ input will have to go from 
low to high and then sample high by a falling 8207 clock edge. Since external refresh requests typically 
arrive asynchronously with respect to the 8207's clock, this requires the REFRQ to be synchronized 
to the 8207 clock when programmed in the failsafe mode. This is to ensure that the request is seen 
for one clock - no more, no less. If no external synchronization is performed, then the 8207 could 
do random burst cycles. 

Processor Interface Options: 

The PCTLA, PCTLB input pins will program the 8207 to accept either the standard demultiplexed 
RD and WR inputs, or to directly decode the status outputs of Intel's iAPX86, 88 family of 
microprocessors. The state definitions of the status lines and their timings, relative to the processor 
clock, differ for the 8086 family and the iAPX286 processor. Table 1 illustrates how the 8207 
interprets these inputs after the PCTL pins are programmed. 

If PCTL is seen high, as RESET goes inactive, and 8086 status interface is enabled. The commands 
arriving at the 8207 are sampled by a rising clock edge. When PCTL is low, the 80286 status and 
Multibus command interface is selected. These commands are sampled by the 8207 by a falling clock 
edge. 

More information on interfacing to processors is contained in the Microprocessor Interface section. 

Table 1. Status Coding of 8086, 80186 and 
80286 

Status Code Function 

S2 S1 SO 8086/80186 80286 

0 0 0 Interrupt Interrupt 

0 0 1 1/0 Read I/O Read 

0 1 0 I/O Write 1/0 Write 

0 1 1 Halt Idle 

1 0 0 Instruction Halt 
Fetch 

1 0 1 Memory Read Memory Read 

1 1 0 Memory Write Memory Write 

1 1 1 Idle . Idle 

Programming Word 

8207 Response 

8207 Function 
Command 

8086 Command 
PCTL RD WR Status 

Interface 
Interface 

0 0 0 Ignore Ignore 

0 0 1 Ignore Read 

0 1 0 Ignore Write 

0 1 1 Ignore Ignore 

1 0 0 Read Ignore 

1 0 1 Read Inhibit 

1 1 a Write Inhibit 

1 1 1 Ignore Ignore 

The 8207 requires more information to operate in a wide variety of systems: The 8207 alters its 
timings and pin functions to operate with the 8206 BCC chip. The programming options allow the 
designer to use iisynchronous or synchronous buses, various clock rates, various speeds and types of 
RAM, and others. This is detailed in Table 2. 

This data is supplied to the 8207 over the PDI jnput pin. There are two methods of supplying this 
data. One is to strap the PDI pin high or low with the subsequent restrictions OJ?- your system. Table 

5-119 230822-002 



8207 

3 shows th~ required system configuration. Note that your only option wh~n strapping this pin high 
or low is error correction or not., 

If any other configurations are required, then the programming data will have to be supplied by one 
or two 74LS165 type shift registers. Note that the sense of the bits in the program word change 
between Eee and non-Eee configurations. 

Table 2a. 
Non-ECC Mode Program Data Word 

PD15 P08 PD7 PD~ 

I 0 I 0 I TM1 I PPR I FFS I EXT I PLS I CIO I CI1 I RB1 I RBO I RFS I CFS I SB SA I 0 I 
'Program 
Data Bit Name Polarity/Function 

-PD~ ECC ECC = 0 For non-ECC mode 

PD1 SA SA = 0 Port A is synchronous 
SA ,= 1 Port A is asynchronous 

PD2 SB SB = 0 Port B is asynchronous 
SB = 1 Port B is synchronous 

PD3 CFS CFS = 0 Fast-Qycle iAPX 286 mode 
CFS =1 Slow-cycle iAPX 86 mode 

PD4 RFS RFS = 0 Fast RAM 
RFS = 1 Slow RAM 

PD5 RBO RAM bank occupancy 
PD6 RB1 See Table 4 

PO? CI1 Count interval bit 1: see Table 6 in 8207 data sheet 
P08 CIO Count interval bit 0: see TCibie 6 in 8207 data sheet 

PD9 PLS PCS = 0 Long refresh period 
PCS = 1 Short refrel1h period 

PD10 EXT EXT = 0 Not extended 
EXT = 1 Extended 

PD11 ' FF$ FFS = 0 Fast CPU frequency l 

FFS=1 Slow CPU frequency 

PD12 j5j5R PPR = (} Most recently' used port priority 
PPR = 1 ~ort IA preferred priority 

PD13 TM1 TM1 = 0 Test mode 1 off 
TM1 = 1 Test mode 1 enabled 

PD14 0 Reserved must be zero 

PD15 0 Reserved must be Zero 

5-120 <~0822-002 



8207 

Table 2b. 
ECC Mode Program Data Word 

P015 P08 P07 POO 

I TM21 RB1 I RBO I PPR I FFS I EXT I PLS I CIO I CI1 I XB I XA I RFS I CFS I SB I SA I 
Program 
Data Bit Name Polarity/Function 

POO ECC ECC = 1 ECC mode 

, ' P01 SA SA = 0 Port A is asynchronous (late AACK) 
SA = 1 Port A is synchronous (early AACK) 

PD2 SB SB = 0 Port B is synchronous (early AACK) 
SB =.1 Port B is asynchronous (late AACK) 

P03 CFS CFS = 0 Slow-cycle iAPX 86 mode 
CFS = 1 Fast-cycle iAPX 286 mode 

P04 RFS RFS = 0 Slow RAM· 
RFS = 1 Fast RAM 

P05 XA XA = 0 Multibus-compatible XACKA 
XA = 1 AACKA not multibus-compatible 

P06 XB XB = 0 AACKB not multibus-compatible 
XB = 1 Multibus-compatible XACKB 

P07 CI1 Count interval bit 1: see Table 6 in 8207 data sheet 
P08 CIO Count interval bit 0: see Table 6 in 8207 data sheet 

P09 PLS PLS = 0 Short refresh period 
PLS = 1 Long refresh period 

P010 EXT EXT = 0 Master and slave EOCU 
EXT EXT = 1 Master EOCU only 

P011 FFS FFS = 0 Slow CPU frequency 
FFS = 1 Fast CPU frequency 

P012 PPR PPR = 0 Port A preferred priority 
PPR = 1 Most recently used port priority 

PD13 RBO RAM bank occupancy 
P014 RB1 See Table 4 

P015 TM2 1M2 = 0 Test mode 2 enabled 
TM2 = 1 Test mode 2 off 

Table 3. 8207 Default Programming 

Port A is Synchronous-has early AACK 

Port B is Asychronous-has late AACK 

Fast RAM 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms 

Fast. Processor Clock Frequency ('16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

5-121 230822-002 



8207 

Reset 

If Port A is changed to an asynchronous interface (via the SA bit), then one of two precautions must 
be taken. Either a differentiated reset must be provided, or else software must not access the 8207 
controller RAM for a short period. The 8207 is either adding or deleting internal synchronizing 
circuits. If a command is received during this changing, the 8207 may not perform properly. This 
is required only if Port A is changed to asynchronous, or if Port B is changed to synchronous. 

Several of the bits in the program word determine a particular configuration of the 8207 (reference 
Tables 10, 11 and the 8207 Data Sheet). The bits are: CFS, CLOCK fast or slow; RFS, RAM access 
time fast or slow (fast refers to 100 ns - slow is everything greater); and EXT, for memory data word 
widths .greater than 16 (22) bits. Generally speaking, CO is the fastest configuration at clock 
frequencies up to 16 MHz, both in the ECC or non-ECC charts. 'C3' is the fastest for 8 MHz clocks 
in non-ECC mode, and 'C4' is the fastest configuration when using ECC. 

Take, for example, a 16 MHz 8207 clock with no error correction, a 16 bit word, and 150 ns (slow) dynamiC 
RAMs. Table 10, in the 8207 data sheet, is used to arrive at the configuration "CI." The Timing chart Table 12 
in the 8207 Data Sheet is then used to determine which clock edge to reference all timings from. The 
Waveforms diagrams then are used to determine the delay from the clock edge. 

5-122 230822-002 



8207 

CHAPTER 3 
RAM INTERFACE 

The 8207 takes the memory addresses from the microprocessor bus and multiplexes them into row 
and column addresses as required by dynamic RAMs. The only hardware requirement when inter­
facing the 8207 to dynamic RAM are series resistors on all the RAM outputs of the 8207, and proper 
layout of the traces (see Intel's RAM Data Sheets or the Memory Design Handbook). This section 
mai,nly details the effects and requirements of input signals to the 8207 on the RAM array. 

The 8207 contains an internal address counter used for refresh and error scrubbing (when using the 
8206 EDCU) cycles. The 8207 has 18 address inputs (AILO-AIL8 and AIHO-AIH8) which are multiplexed 
to form 9 address outputs (AOO-A08). There are also 2 bank select (BSO, BSl) inputs for up to 4 banks 
of RAM. The Bank Select inputs are decoded internally to generate RAS and ~AS outputs. 

Refresh Interval 

The 8207 supports four different refresh techniques as described in the Refresh Options section. In 
addition, the rate at which refresh cycles are performed is programmable. This is necessary because 
the refresh period is generated from the CLK input, which may vary over a wide range of frequencies. 
Programming the Cycle Fast/Slow (CFS) and Frequency Fast/Slow (FFS) bits automatically reprograms 
the refresh timer to generate the correct refresh interval for a clock frequency of 16, 10, 8, or 5 MHz 
(CFS, FFS = 11, 10, 01, and 00, respectively). For clock frequencies between those, Count Interval 
(CIl, CIO) programming bits allow "fine tuning" of the refresh interval. Refresh will always be done 
often enough to satisfy the RAM's requirements without doing refresh more often than needed and 
wasting memory bandwidth for all clock frequencies. 

Refresh Counter 

The internal refresh address counter of the 8207 contains 20 bits as organized in Figure 1. 

17 16 15 14 13 12 11 10 9 
Col addr 

8 7 .6 5 4 3 2 
Rowaddr 

Figure 1. 8207 Refresh Address Counter 

o 

In non-ECC mode, the refresh address counter does not count beyond bit 8. For standard RAMs, 
this will refresh 128 rows every 2 ms or 256 rows every 4 ms. 

In ECC mode, the 8207 automatically checks the RAM for errors during refresh. This requires it to 
access each of the possible 220 words of memory. The 8207 does not delete any of these bits when 
used wit~ 16k and 64k dynamic RAMs. Each column would be scrubbed 4 times with 16k RAMs, 
and twice with 64 RAMs. This will have no detrimental effect on reliability. Banks of RAM that are 
not occupied, as indicated to the 8207 by the RBO, RBI programming bits, will not be scrubbed. 

Bank Selects BSO, BS1; RBO, RB1 

The 8207 is designed to drive up to 88 RAMs in various configurations. The 8207 takes 2 inputs, BSO, 
BSl, and decodes them based on 2 programming bits, RBO, RBI, to generate the required RAS/CAS 
strobes. Additionally, the 8207 will always recognize (not programmable) whether an access is made 
to the same RAM bank or to a different bank. The 8207 will interleave the accesses resulting in 
improved performance. 

5-123 230822-002 



8207 

RAS and CAS Reallocation 

The 8207's address lines are designed to drive up to 88 RAMs directly (through impedance matching 
resistors). The 4 RAS and CAS outputs drive up to 22 RAMs per bank (16 data plus 6 check bits 
with the 8206). Under these conditions, the 8207 will meet all RAM timing requirements. See 
Figure 2 for an example. 

RASO 
CASO 8 BITS 8 BITS 

RAS1 
8 BITS 8 BITS CAST 

8207 
AOO·S 

RAS2 
8 BITS '8 BITS CAS2 

BSO 
BS1 

RAS3 
CAS3 8 BITS 8 BITS 

'ECC OPTIONAL 

Figure 2. 8207 4 RAM Bank Configuration 

The 8207. can accommodate other configurations like a 32 bit error corrected memory system. Each 
bank would have 39 RAMs (32 + 7 check bits) with the total number of RAMs equal to 78. This is 
within the address drivers capability, but the 39 RAMs per bank exceeds the RAS and CAS drivers 
limits. The loading of the RAS/CAS drivers should not exceed 22 RAMs per bank, otherwise critical 
row, column address setup, and hold times would be violated. 

In order to prevent these critical timings being violated, the 8207 will re-allocate the RAS and CAS 
drivers based on the RBO, RBI programming bits (see Table 4). If the RBO, RBI bits are programmed 
for 2 banks, the 8207 will operate RASO and RASI as a pair along with.RAS2 and:Rt\S"3, CXSO and 
CASI, and CAS2 and CAS3. Now the address drivers would be loaded by 78 RAMs and the RAS/CAS 
drivers by 20 RAMs. This relative loading is almost identical to the first case of four banks of 
22 RAMs each. Drive reallocation allows a wide range of memory configurations to be used and still 
maintain optimal memory timings. Figure 3 shows a 32 bit non-error corrected configuration. 

These programming bits do not help to qualify RAM cycles. Their purpose is to reallocate RAS/CAS 
drivers. For example, if there is one bank of RAM and the bank select inputs (BSO, BSI) select any 
other bank and no provision is made to deselect the 8207 (via PEl, the 8207 will do a RAM cycle 
and issue an acknowledge. This happens irregardless of the RBO, RBI programmed value. See the. 
Optional RAM Bank's section to provide for this. 

5-124 230822-002 



inter 

RAS1-
CAS1 

RASO 
CAsO 

AOO-8 

RAS2 
CAS2 

C>- BSO 
BS1 

~ RAS3 
CAS3 

8207 

8207 

Table 4. RAM Bank Selection Decoding 
and Word Expansion 

Program Bank 
Bits Input RAS/CAS Pair Allocation 

RB1 RBO B1 BO 

0 0 0 0 RASO-3, CASO_3 to Bank 0 

0 0 0 1 Illegal Bank Input 

0 0 1 0 Illegal Bank Input 

0 0 1 1 Illegal Bank Input 

0 1 0 0 ~0,1' ~0,1 to Bank 0 

0 1 0 1 RAS2,3, CAS2,3 to Bank 1 

0 1 1 0 Illegal Bank Input 

0 1 1 1 Illegal Bank Input 

1 0 0 0 RASO, CASO to Bank 0 

1 0 0 1 RAS1, CAS1 to Bank 1 

1 0 1 0 RAS2, CAS2 to Bank 2 

1 0 1 1 Illegal Bank Input 

1 1 0 0 RASo, CASO to Bank 0 

1 1 0 1 RAS1, CAS1 to Bank 1 

1 1 1 0 ~2' CAS2 to Bank 2 

1 1 1 1 RAS3, CAS3 to Bank 3 

~ ...-l 
16 BITS J L=:f 

----.l 1.1 
16 BITS J r-;=ta 

Figure 3. 8207 2 RAM Bank Configuration 

5-125 

16 BITS J 

16 BITS J 

230822-002 



inter , 8207 

Scrubbing 

An additional function of the RBO, RBI bits, besides RAS/CAS allocation, is to inform the 8207 
of how many banks are physically present. The 8207 will, during the refresh cycle, read data from 
a location and check to see that data and check bits are correct. If there is an error, the 8207 lengthens 
the refresh cycle and writes the correct~d data back into RAM. Scrubbing the entire memory greatly 
reduces the chance of an un correctable error occurring. See the Refresh section for more detail on 
scrubbbing. 

Refresh Cycles 

The 8207 performs RAS only refresh cycles in non-ECC systems. It outputs all 8207 control signals 
except for CAS and acknowledges. The real delay in a system due.to refresh would be a fraction of 
that value l . The length of the refresh cycle is always 2tRP + tRAS, and varies based upon the 
programmed 8207 configuration. 

In error-corrected systems, the refresh cycle is actually a read cycle. The 8207 outputs a row address, 
then all RAS outputs go active. Next, a column address is output and then CAS. The CAS output 
is based upon the RBO, RBI allocation bits. Figure 4a shows the general timing for a four bank system, 
and' Figure 4b shows a two bank system. 

ROW ROW 

.~~---------------------- ~~--------------------
CASO \\.------ CASO,1 \'-----
CAS1-3 CAS2,3 

4 BANKS 2 BANKS 

Figure 4. Refresh Cycles for Error Corrected Systems 

(I) Measurements have shown a delay of 2-40/0 on program execution time compared to programs 
running without refresh. 

5-126 230822-002 



8207 

The 8207 sends the read out word through the 8206 EDCU to check for any errors. If no errors, the 
refresh cycle ends. If an error is discovered, the 8207 lengthens the cycle. An error is determined if 
the ERROR output of the 8206 is seen active at the same edge that the 8207 issues the R/W output. 
The cycle is then lengthened to a RMW cycle. If the error was correctable, the corrected data is writ­
ten back to the location it was read from. But, if the data is uncorrectable, the cycle is still lengthened 
to a RMW, but no write pulse is issued. To aid in stabilizing the RAM output data and the Error 
flag, pullup resistors of 10k ohms on the data out lines are recommended. 

Scrubbing removes soft errors that may accumulate until a double-bit error occurs, which would halt 
the system. Hard single-bit failures will not stop the system, but could slow it down. This is because 
read and refresh cycles lengthen to correct the data. 

For large RAM arrays some form of error logging or diagnostics should be considered. 

Interleaving 

The term "interleaving" is often used to refer to overlapping the cycle times of multiple banks (or 
poards or systems) of RAMs. This has the advantage of using relatively slow cycle time banks to achieve 
a faster perceived cycle time at the processing unit. The drawbacks of interleaving are more logic to 
handle the necessary control and, for maximum performance, the program should execute sequen­
tially through the addresses. 

Dynamic RAM cycles consist of 2 parts - the RAS active time (tRAS in Dynamic RAM Data Sheets) 
and precharge time (tRP). The sum of these two times are roughly equal to the cycle time of the RAM. 
The 8207 determines how long these two periods are, based on the configuration the user picked (via 
the programming bits). Bank interleaving, as used by the 8207, is slightly different than the previous 
definition. The 8207 will overlap the precharge time of one bank with the access time of another bank. 
In either case, the advantage is the effective cycle time is reduced without having to use faster RAMs. 

For interleaving to take place there must be more than 1 bank of RAM connected to the 8207. 
Interleaving is not practical with 3 banks of RAM because 3 is not a power of 2 (the 2 bank inputs 
BSO, BS1). So, interleaving works only for 2 or 4 banks of RAM. Note that it is easy enough to use 
three banks of RAM where the bank select inputs are connected to the highest-order address line. 
For instance, if three banks of 2164s are used in an 8086 system, and located at address OH, bank 
selects BSO and BS1 would be connected to microprocessor addresses A17 and A18, respectively. Banks 
0-2 would be accessed in the address ranges OH - FFFFH,lOOOOH - 1FFFFH, and 20000H - 2FFFFH, 
respectively. In this case, consecutive addresses are almost always in the same bank and very little 
interleaving can take place. 

Figure 5 shows the effects on the performance of the processor with and without interleaving. In both 
examples, consecutive accesses to the same bank will add 1 wait state to the second access, but no 
wait states to consecutive accesses to different banks. Irregardless of the 8207 configuration, there 
will always be a minimum 1 wait state added without interleaving. Therefore, interleaving is very highly 
recommended! 

Interleaving is accomplished by connecting the 8207's BSO, BS1 inputs to the microprocessor's low 
order word address lines. Each consecutive address is then located in a different bank of RAM. About 
900/0 of memory accesses are sequential, so interleaving will occur about 90% of the time in a single 
port system. 

In a dual port system, the advantages of interleaving are a function of the number of banks of memory. 
Since the memory accesses of the two ports are presumably independent, and both ports are continuously 
accessing memory, the 8207 arbiter will tend to interleave accesses from each port (Le., Port A, Port 

5-127 



\ 

inter 820'1 
' ,,'~, , 

TC 

80286, , 
I' TS' TC TS TC ,I TS I 

16 MHz CL09~ r 
8207 

0 I' I 2 r" 3 I 4 I 5 '0' I 1 ' I 3 
o ' 1 2 3: 

RASO \ /---.:-.:. tRP.'· .\ ,-
DELAY \ 

,- f RAS1 F\ 

CONFIGURATION CO-NO ECC (READ) 

TW .4 T1 
T1 , T2 T3 I T4 I T1 T2 I T3 T4 T1 T2 

80186 

8 MHz CLOCK 

8207 J 0 I ? I 3 I 4 I 0 1, 2 3 ,j 4 , I 
0 1 2' 3 4 

RASO \ / __ tRP, =+\ I DELA~ 

RAS1 L I 
CONFIGURATION C3-NO ECC (READ) 

, , 

Figure 5. Processor Performance With and Without Interleaving 

B, Port A, Port B, ... ). If there are two banks of RAM interleaving will occur 50070 of the time and, 
if there are four banks of RAM, interleaving will take place 75070 of the timet. To the extent that 
a single port generates a majority of memory cycles, interleaving efficiency will approach 90% as 
described in the previous paragraph. 

(1) Don't get confused here. The paragrap~ is talking about interleavi~g ~emory requestsfrQrn 
both ports, and their prQhabilityof liccessing one of the other bl;!,iik~ of RAM where tRP 
has been satisfied. The S207 will leave the RAM precharge time out if consecutive accesses go 
to different banks. The 8207 RAM timing logic does not care which port requests a RAM cycle. 
requests a RAM cycle. . , ',' 

Optional RAM .Banks 

Many users allow various RAM array sizes for customer options and future growth. Some care must 
be taken during the design to allow for this. Three items should be considered to permit optional RAM 
banks. 

The first item is the' total RAM size. The 8207 starts a memory cycle based only upon a valid status 
or command and PE active. So some logic will be required to deselect the,8207 (via PEl when the 
addressed location does not exist within the current memory size. A 7485 type magnitude comparator 
works well. . 

, ,':, 

The second item to consider is the, BSO, BSt inputs. With one bank of RAM ,these inputs are tied 
to,gl'ound. Four banks of RAM require two address inputs. So, if the design ever needs four banks 

5-1,Z8 230822-002 



8207 

of RAM, then the BSO, BSI inputs must be connected to address lines. Selecting a non-existant RAM 
bank is illegal. ,Figure 6 shows a non-interleaved method. 

A19 

A18 

~ ________ ~ ________________________ ~ BS1 

r-~-----1--+--------------------------4 BSO 

A 
L.----l 

+5 A>B~------------~ ~ 

7485 

Figure 6. Non-Interleaved 8207 Selection Circuit 

8207 

With designs using interleaving, the least significant word address lines are connected to the. BSO, BSI 
inputs. With two banks of RAM, Al from the Intel processor is connected to BSO. A2 is connected 
to BSI, but not allowed to function until four banks are present. However, A2 must still be used 
since addresses increase sequentially. Two possible ways of implementing this are shown in Figure 
7 below. . 

240 

A19 AH7 
A19 

AH7 
A18 AL7 

8207 8207 
A2 BS1 A2 

BS1 

A1 BSO ? 
PE .111 

V 
BS~ ,PE 

A18 A 

A>B 

F B 

7485 7485 

Figure 7. Interleaved 8207 Selection Circuits 

5-129 230,822-002 



8207 

The final consideration is for the RAS/CAS outputs. Remember that when the RBO, RBI bits are 
programmed for two banks, then RASO, I operates in tandem (non-Ee<:: rrie>de/ECC mode - the CAS 
outputs also work in tandem). Figure 8 ~hows the proper layout. 

RAM BANK 

~ RASO/CASO 

RAS2/CAS2 

8207 

2 
RAS1/CAS1 

OPTIONAL BANK 

RAS3/CAS3 
OPTIONAL BANK 

Figure 8. RAM Bank Layout 

Write Enables - Byte Marks 

The write enable supplied by the 8207 cannot drive the RAM array directly. It is intended to be 
NAND with the processor supplied byte marks in a non-ECC system. In error-corrected systems, the 
write enable output should be inverted before being used by RAMs. Only full word read/writes are 
allowed in ECC systems. The changing of byte data occurs in the 8206 EDCU. 

For single and dual port systems, the byte mark data (AO, BHE) must be latched. The 8207 can (and 
will) change the input addresses midway through a RAM cycle. 

Memory Warm-up and Initialization 

After programming, the 8207 performs 8 RAM warm-up cycles. The warm-up cycles are to prepare 
the RAMs for proper operation. If the 8207 is configured for ECC, it will then prewritezeros into 
the er:tire array. 

All RAS outputs are driven active for these cycles, once every 32 clock periods. The prewrite cycles 
. are equivalent to write cycles, except all RAS and CAS will go active, data is generated by the 8206, 
and the address is generated by the 8207. 

RAM Cycles/Timings 

Tables 12 and 13 of the 8207 Data Sheet show on what clock edge each of the 8207 outputs are generated. 
This, together with the timing waveforms and A:C. parameters, allows the user to calculate the 
timings of the 8207 for each of its configurations. To make the job easier, Tables 14-18 of the 8207 
Data Sheet precalculate dynamic RAM ·timings for each 8207 configuration and type of cycle. All 
that is required is to plug in n~merical values for the 8207 parameters. 

230822-002 



inter 8207 

Write Cycles 

The 8207 always issues WE after CAS has gone valid. These types of c~cles are known as "late writes." 
The 8207 does this primarily to interface to the iAPX286 processor bus timings. Late writes require 
separate data in and data out traces to the RAM array, plus the additional drivers. 

Data Latches 

The 8207 is designed to meet data setup and hold times for the iAPX86 family processors when'using 
a synchronous status interface (see Microprocessor Interface section). Other types of interfaces will 
require external data latches. This is because the CAS pulse is a fixed length - the user has no control 
(besides programming options) over lengthening CAS. When CAS goes inactive, data out of the RAMs 
will disappear. Asynchronous interfaces should use XACK or LAACK to latch the data. 

5-131 230822-002 



8207 

CHAPTER 4 
MICROPROCESSOR INTERFACES 

The 8207 is designed to be dir~ctly compatible with all Intel iAPX86, 186, 188, and 286 processors. 
For maximum performance, the 8207 will directly decode the status lines and operate off of the pro­
cessor's clock. Additionally, the 8207 interfaces easily to other bus types that support demultiplexed 
address and data with separate read and write strobes. 

Bus Interfaces 

The 8207 easily supports either an asynchronous or synchronous command timing. The command 
timing can also be adjusted for various processors via the PCTL pin. 

MEMORY COMMANDS 

There are four inputs for each port of the 8207 that initiate a memory cycle. The input pins are WR, 
RD, PCTL, and PE. The first three inputs connect directly to the iAPX 86, 88, 186, 188 SO-S2 
outputs, respectively. For the 80286, the same connections are used except that PCTL is tied to ground. 
In all configurations PE is decoded from the address bus. Multibus type commands use the same 
input setup as the 80286. 

COMMAND/STATUS INTERFACE 

The status interface for the 80186 and the 80286 differ both in timing and meaning. The 8207 can 
be optimized for either processor by programming the PCTL input pin at RESET time. S2 in 80186 
systems, connects directly to PCTL. When the processor is reset it drives S2 high for one clock, then 
tristates it. A pullup resistor to +5 will program the PCTL input for the 80186 status interface when 
RESET goes inactive. A pullup is required only if no component has this pullup internally. 

To optimize the 8207 for the 80286 interface, PCTL is tied to ground and not used in 80286 systems. 
Multibus commands are similar in meaning to the 80286 status interface, and are programmed the 
same way. In Multibus type systems, PCTL can be used as an inhibit to allow shadow memory. PCTL 
would be driven high, when required, to prevent the 8207 from performing a memory cycle. It would 
be connected to the Multibus INH pin through an inverter. 

SYNCHRONOUS/ASYNCHRONOUS COMMANDS 

Each port of the 8207 can be configured to accept either a synchronous or asynchronous (via 
programming bits) memory request. Minimum memory request decode time (and maximum per­
formance) is achieved using a synchronous status interface. This type of interface to the processor 
requires no logic for the user to implement. 

An asynchronous interface is used with Multibus bus interfaces when the setup and hold times of 
the memory commands cannot be guaranteed. Synchronizers are added to the inputs and will require 
up to two clocks for the 8207 to recognize the command. It should be obvious that better performance 
will result if the 8207's clock is run as fast as possible. 

Figure 2 of the 8207 Data Sheet shows various combinations of interfaces. The additional logic for 
the asynchronous interfaces is used to either lengthen the command width, to meet the minimum 8207 
spec, or to make sure the command does not arrive too soon before the address has stabilized. 

PORT ENABLE 

The PE inputs serve t2...!l.ualify a memory request. A RAM cycle, once started, cannot be stopped. 
A RAM cycle starts if PE is seen active at the proper clock edge and a valid command is recognized. 
If FE is activated after a command has gone active and-inactive, no cycle will start. 

5-132 230822·002, 



8207 

Types of logic that work well are 74138 and 7485. PE should be valid as much as possible before 
the command arrives because, as the address bus switches and settles, glitches on PE could either: 
disqualify a memory cycle; delay a memory cycle; or start a memory cycle when none should have. 
Refer to the Port Interface Waveforms in the Data Sheet. If Port Enable is not seen active by the 
next or same clock edge, no memory cycle will occur unless the command is removed and brought 
active again. 

Back to Back Commands 

Holding the 1li), WIt inputs active will not generate continuous memory cycles. Memory commands 
must go inactive for at least one clock period before another memory request at that port will be 
considered valid. Holding the inputs active will not keep the other port from gaining access to the 
RAM. The only signal that can prevent the other port's gaining access to the RAM is LOCK. 

Address Inputs (And LOCK) 

Two pins control the address inputs on the 8207, MUX and LEN. Neither are used for single port 
8086 based systems. MUX is used for dual port configurations, and LEN is used for single and dual 
port 80286 based systems. MUX is used to gate the proper ports addresses to the 8207. If the output 
is high, Port A is selected. If it is low, Port B is selected. 

The cross coupled NAND gates, shown in the 8207 Data Sheet (Figure 3), are used to minimize 
contention when switching address buses. Use of a single inverter would have both outputs enabled 
simultaneously for a short period. The cross coupled hand gates allow only one output enabled. 

MUX also allows the single LOCK input to be multiplexed between ports. Figure 9 shows how to 
multiplex the LOCK input for dual port systems. See the LOCK section for more information. 

TO ADDR LATCH A EN 

MUX r--.-----i 

8207 

LOCK 
TO ADDR LATCH B EN 

Figure 9. Dual Port LOCK Input Circuit 

MUX TIMING 

The MUX output is optimized by the Port Arbitration scheme, which is selected in the program word. 
Figure 10 shows the effects on memory selected in the program word. Figure 10 shows the effects 
on memory bandwidth with the different schemes. Port A Preferred optimizes consecutive cycles for 
Port A. Consecutive Port B cycles have at least 1 clock added to their cycle time. There would be 
no MUX delays for any Port A request. 

5-133 230822-002 



8297 

The Most Recently Used scheme allows either port to generate consecutive cycles without any MUX 
delays. The first memory cycle for each port would have the 1 clock delay. But all others would not. 

With either scheme, if both ports request th" memory at their top speed, the 8207 will interleave the 
requests; Port A, Port B, Port A, Refresh, Port B. 

8 MHz 

CMOA 

CMOS 

MUX -----"\ 
A 

RASX A 

MUX 
A A 

Figure 10. Port Arbitration Effects 

LEN 

LEN is used to hold the 80286 addresses when the 8207 cannot respond immediately. The 8207 will 
require a separate address latch, with the ALE input replaced with LEN. LEN optimizes the address 
setup and hold times for the 8207. 

LEN goes from high to low when a valid 8207 command is recognized, which latches the 80286 
address. This transition of LEN is independent of a memory cycle starting. The low to high transition 
will occur in the middle of a memory cycle so that the next address will be admitted and subsequently 
latched. 

If Port B is to interface to an 80286 with the synchronous status interface, then LEN must be created 
using external logic. Figure 11 shows the equivalent 8207 circuit for Port B. 

LOCK 

The LOCK input allows each port uninterrupted access to memory. It does this by not permitting 
MUX to switch. It is not intended as a means to improve throughput of one of the ports: To do so 
is at the designer's riskl. Obviously, LOCK is only used in dual port systems. The 8207 interprets 
LOCK as originating from the port that MUX is indicating. 

(1) The 8207 will not malfunction if this is done. This is a system level concern. For example, 
a time dependent process may fail if the other port holds LOCK active, preventing its access of 
memory and relinquishing the bus. 

5-134 230822-002 



8207 

RESET 

AACK 

FROM 
80286 CLOCK 

+5 

SO g )&~ S1 

PE 

Figure 11. Port B LEN Circuit 

LOCK from the 8086 may be connected directly to the 8207 or to the multiplexing logic. The 8207 
requires additional logic when interfaced to an 80286. Figure 12 shows both the synchronous and 
asynchronous circuitry. 

For 16 MHz operation, the 8207 ignores the LOCK input during the clock period that MUX switched. 
During 8 MHz operation, the 8207 will see LOCK as being active during the clock period when MUX 
switches. 

The LOCK issued in Multibus bus systems may not be compatible with the 8207. The 8207 references 
LOCK from the beginning of a cycle, while Multibus references LOCK from the end of a cycle. The 

~ 

82284 

RESET 
V READY-

ClK 

J PR Q _ J PR Q =D- ~~ 
lOCK 

ALE --<~ 
82288 

=D~~K - K Ci- a 

~ ---t> 
80286 

-COCK 

Figure 12a. Synchronous interface 

5-135 230822-002 



i~ 8207 

80289 

LOCK f-- <' 

-[) 
1 1 
PR 

D Q 
PR 

Q D 
82288 

ALE Q ~ Q CLR CLR 

L:r- 1 
82284 

RESET 
READY 

Figure 12b. Asynchronous interface 

Multibus LOCK can be used if it meets the 8207 requirements. If the LOCK timing cannot be guaranteed, 
then additional logic is necessary. The logic would issue LOCK whenever a Multibus command is 
recognized. The drawback to this is that'MUX cannot switch during the RAM cycle. This would delay 
the other port's memory access by one or two clocks. 

DEADLOCK 

The designer should ensure that a deadlock hazard has not been created in the design. The simple 
interfaces shown previously will not create a deadlock condition when the 8207 controls all system 
memory. If LOCK is issued by both ports, then the above logic would need to be modified to remove 
LOCK. 

Figure 13 shows an illustration of the problem with a single LOCK input. 

~P 

LOCK 1----1 MUX 
LOCK 

8207 

Figure 13. Single LOCK Input Circuit 

5-136 230822-002 



inter 8207 

Suppose the 8207 starts a locked string transfer for the processor. The Multibus bus port requests 
a, memory cycle but must wait for the processor to remove LOCK. But the processor must access 
Multibus as part of the locked string transfer. We now nave a deadlock. The solution is to force LOCK 
inactive whenever an access is made to non-8207 memory by the processor. By doing this we have 
now violated the purpose of LOCK, since the Multi,bus port could change data. Another solution is 
to ensure that locked data does not exist in physically separate memory. 

8207 Acknowledge's 

The 8207 in non-ECC mode has two active acknowledge's per port, AACK and XACK. The AACK 
output is configured into either an "early" or "late" AACK based on the $A, SB bits in the program 
data word. In ECC systems there is on~ Acknowledge per port, and it i~ configured to anyone of 
the three (EAACK, LAACK or XACK) by the programming bits. i 

The AACK pin is optimized for either the 80286 or the 8086, based upon the CFS programming bit 
(fast = 80286; slow = 8086). XACK conforms to the Multibus bus specification. XACK requires a 
tri-state buffer and must not drive the bus directly. 

In synchronous systems, XACK will not go active if the memory command is removed prior to the 
clock period that issues XACK. In asynchronous systems, the AACK pin can also serve as an 
advanced RAM cycle timing indicator. 

Data out, in synchronous systems, should not have to be latched. The 8207 was designed to meet the 
data setup and hold times of Intel processors, the 8086 family, and the 80286. In asynchronous systems, 
the 8207 will remove data before the processor recognizes the Acknowledge (LAACK or XACK). In 
these systems, the data should be latched with transparent type latches (Intel 8282/8283). 

Output Data Control 

Non-EGG 

In single port systems, Intel processors supply the necessary timing signals' to control the input or 
output of data to the RAMs. These control signals are DEN and DT /R. Refer to the microprocessor 
handbook for their explanation. If these signals are not available, then PSEN and DBM provide the 
same function., They can be used directly to control the 8286/8287 bus drivers of the 8207. 

Because of the single set of data in/out pins!of the RAMs, data must be multiplexed between the 
two ports in dual port systems. The 8207 provides two outputs for contention-free switching. PSEL 
operates the same as the MUX output, in that a high selects Port A and a low selects Port B. PSEN 
acts to enable the selected port. The timing is shown in the 8207 Data Sheet, Port Switching Timing 
section. 

The easiest means of using PSEL and PSEN is shown in Figure 14. At no time will both ports'be 
enabled simultaneously., 

PSEL 

PSEN 

1 =:=>,D OE """" _ ~==D---D OE PORT B 

Figure 14. PSEL and PSEN Interface Circuit 

5-137 230822-002 



inter 8207 

Data Bus - Single Port 

Recall that the 8207 always performs a late write cycle and that this requires separate data in and 
out buses. One option for the data bus is shown in Figure 3 of the 8207 Data Sheet. It requires separate 
data in and out traces on the processor board .. 

The second option is to keep the processor's combined data, bus but separate the data at the 8207 
RAM. This is shown in Figure 15. 

PE 

DBM 

Data Bus - Dual Port 

Non-EGG 

Figure 15, Data Bus Circuit 

RAM 

ARRAY 

TO ~P DATA 
BUS. 

'S240(2) 

The multiplexed data of the 8207 RAM must be kept isolated so that an access by one port does not 
affect another port. Figure 16 illustrates the control logic. 

5-138 230822-002 



DBM """--rr-..... 
TE' ~--<.-L-./ 

S 
Y 
S 
T 
E 
M 

B 
U 
S 

A PSEL c::_-----4~H 
PSEN C>-----~L_...,.I 

820.7 

RAM 
ARRI'.Y 

Figure 16. Dual Port Data Bus Cc;mtrol Circuitry 

5-139 

PORTA 

s 
y 
S 
T 
E 
M 

B 
U 
S 

230822-002 



8207 

CHAPTER 5 
8207 WITH ECC (8206) 

This section points out the proper control of the 8206 EDCU by the 8207. 

The 8207 performs error correction during read and refresh cycles (scrubbing), and initializes memory 
after power up to prevent false errors from causing interrupts to the processor. Since the 8207 must 
refresh RAM, performing scrJlbbing during refresh allows it to be accomplished without any 
additional performance penalty. Upon detection of a correctable error during scrubbing, the RAM 
refresh cycle is lengthened slightly to permit the 8206 to correct the error and for the corrected word 
to be rewritten into memory. Uncorrectable errors detected during scrubbing are ignored, since the 
processor may never access that memory location. 

Correctable errors detected during a memory read cycle are corrected immediately and written back 
into memory. 

Synchronous/Asynchronous Buses 

The many types of configurations that are supported by the 8207/8206 combination can be broken 
down into two classes: ECC for synchronous or for asynchronous buses. 

, In synchronous bus systems, performance is optimized for processor throughput. In asynchronous 
buses, performance is optimized to get valid data onto the bus as quickly as possible (Multibus). While 
possible to optimize the 8207/8206 for processor throughput in Multibus systems, it is not Multibus 
compatible. The performance optimization is selected via the XA/XB and SA/SB programming bits. 

When optimized for processor throughput, an advanced acknowledge (AACK - early or late) is issued 
at some point (based on the type of processor) so that data will be valid when ,the processor needs it. 

When optimized for quick data access, an XACK is issued as soon as valid data is known to exist. 
If the data was invalid (based on the ERROR flag), then the XACK is delayed until the 8206 corrects 
the data and the data is on the bus. 

The first example is known as "correct /ilways" mode. The 8206 CRCT pin is tied to ground and 
the 8206 requires time to do the correct'ion. Figure 17 shows this implementation. The quick data 
access method is known as "correct on error." The CRCT pin is tied to the RIW output of the 8207. 
When CRCT is high, the 8206 does not do correction, but still checks the data. This delay is typically 
half of the first. If an error happens, the cycle becomes a RMW and XACK is delayed slightly so 
that data can be corrected. 

The correct on error mode is of no real benefit to non-Multibus users. The earliest acknowlege (EAACK) 
is delayed by one clock to allow for the delays through the 8206. This imposes a 1 wait state delay. 

Byte Marks 

The only real difference to the 8207 system when adding the 8206 is the treatment of byte writes. Because 
the encoded check bits apply only to a whole word (including check bits), byte writes must not be 
permitted at the RAM. Instead, the altering of byte data is done at the 8206. The byte marks 
previously sent to RAM are now sent to the 8206. These byte marks must also qualify the output 
enables of the data drivers. 

The DBM output of the 8207 is meant to be nanded with the processors byte marks. This output is 
activated only on reads or refreshes. On write cycles, this output stays high which would force the 
8206 byte mark input low. When low, the internal 8206 data out buffers are tristated so that new 
data may be p:ated into the device. 

5-140 230822-002 



AO 

BHE 

8207 

RAS,CAS ~-------" 
ADDRr------------o/ 

WE 1---------1 

+5 

8207 DBM 

WZ~~---~---~ 

PSEN 

ERROR 1--+-----+ 
CE I--+----. 

R/W 

FWR 

RAM 

ARRAY 

Figure 17. 8206 Interface to the 8207 

Read Modify Writes - ECC 

A RMW cycle occurs whenever a processor wants to do byte writes or when the 8207 has detected 
an error during read or refresh (scrubbing) cycles. A byte write is detected by the FWR input to the 
8207 and is based on the processor supplied byte marks .. 

At the start of a RMW cycle, DBM stays high, which, when qualified with the byte marks, will enable 
the..ilata out buffer of the 8206 for the unmodified byte, and tristates the buffer for the new byte; 
R/W is high, which tells the 8206 to do error detection and correcting (if CRCT is low). The 8206 
can latch data and check bits from the RAM via the STB input, but the 8207 does not use this feature. 
Instead, the 8207 keeps CAS active the entire length of the RMW cycle to hold data at the 8206. The 
new byte data from the processor goes to the 8206 and to the RAM. The 8207 would have corrected 
any errors just read, so the old and new bytes of data, plus their check bits, are available at the RAM, 
and the 8207 generates a write pulse. The data driver for the unmodified byte must not have been 
enabled, otherwise erroneous data would be written to RAM and possibly made valid (if it was stable) 
by the 8206.' ~. 

Data Buffer Control - ECC 

The control of the data buffers is essentially the same as in non-ECC systems; with a few exceptions .. 

5-141 230822-002 



inter 8207 

The processor's byte marks must now qualify the output enable logic. The reason was described earlier 
in the RMW section. This applies to both single and dual port-configurations. A refresh cycle outputs 
all the control signals that a read cycle will, except for an acknowledge. If complete buffer control 
is left to the 8207, then it would occasionally (during refreshes) put data on the processor bus. The 
DEN and DT IR signals must be qualified by the PE input. PE would have to be latchect'for the entire 
cycle by PSEN. 

Test Modes 

Neither of the two test modes of the 8207 are to be used in a design. Both test modes reset the refresh 
address counter to a specific value, which interrupts the refresh sequence and causes loss of data. 

In error corrected systems, a reset pulse causes the 820718206 to write over the entire RAM array. 
Test Mode 2 appears to bypass the prewrite sequence. But, the refresh counter is reset to a value of 
IF7 (H). So, besides interrupting the refresh sequence, the 8207 still prewrites the 8 locations specified 
by the counter. 

To not overwrite the RAM data, the 8207 RESET will have to be isolated from the system reset logic 
in ECC systems. 

5-142 230822-002 



8207 

APPENDIX I 
8207/8208 Performance 

The following performance charts were based upon Figure 3 in the 8207 Data Sheet, and apply to 
the 8208 as well. All RAM access delays are based upon Intel dynamic RAMs. The charts show the 
performance of a single cycle with no precharge, refresh, port switching, or arbitration delays. 

The read access calculations are: the margin between the 8207 starting a memory cycle to data valid 
at the processor - 8207 RAS or CAS from clock delay - DRAM RAS or CAS access - 8286 propaga­
tion delay - processor setup. 

Assume the RAS/CAS drivers are loaded with 150 pf, and the 8286 is driving a 300 pf data bus. 

80286 (example) 

80186 (example) 

RAS Access: 3TCLCL - 8207 TCLRSL - 2118 tRAC -
8286 TIVOV - 80286 t8 
= (3)62.5 - 35 max - 100 max - 22 - 10 
= 20 ns 

CAS Access: 2 TCLCL - 8207 TCLCSL - 2164A tCAC -
8286 TIVOV - 80186 TDVCL 
= (2)125 - 115 max - 85 max - 22 - 20 
= 8 ns 

5-143 230822-002 



inter 8207 

8207 Performance (EDC synchronous status interface) 

Table Sa. Wait States for Different lAP and RAM Combinations 

""ait states at full CPU speed RAM speed 

CPU' Freq 100 ns 120 ns 150 ns 200 ns 

1-RD, WR 1-RD, WR 2-Read 
80286 8 MHz 3-Byte WR 3-Byte WR 1-Write 

CO (3) CO 3-Byte WR Not (1) 
C2 compatible 

80186, 1-RD, WR 1-RD,WR 1-RD,WR with RAM 

8086/88-2 8 MHz 3-Byte WR 3-Byte WR 3-Byte WR parameters 

C4 C4 C4 

1 1 1 1-RD, WR 
8086/88 5 MHz C6 C6 C6 3-Byte WR 

C4 

8207 Performance (EDC synchronous status interface) 

Table 5b. lAP Clock Frequency for Differenc lAP and RAM Combinations 

Maximum frequency for 
RAM speed one wait-state (4) 

CPU Freq 100 ns I 120 ns 150 ns 200 ns 

80286 8 MHz 7.3 MHz 6 MHz 
CO 00 

80186, 8 MHz 7 MHz 
8086/88-2 FULL SPEED C4 

8086/88 5 MHz 
. 

5-144 230822-002 



8207 

8207 Performance (Non-EDC synchronous status interface) 

Table 6a. Wait States for Different iJP and RAM Combinations 

Wait states at full CPU speed RAM speed 

CPU Freq 100 ns 120 ns 150 ns 200 ns 

0 1-Read 1-Read Not(1 ) 
80286 8 MHz CO(3) O-Write O-Write compatible 

C1 C1 with 

80186, 8 MHz 0 0 0(2) RAM 
8086/88-2 C3 C3 C3 parameters 

8086/88 5 MHz 0 0 0 0 
C3 C3 C3 C3 

Table ~b. IlP Clock Frequency for Different IlP and RAM Combinations 

Maximum frequency for 
RAM speed no wait-state (4) 

CPU Freq 100 ns 120 ns 150 ns 200 ns 

80286 8 MHz 7 MHz 6 MHz 5.3 MHz 

80186, 8 MHz 7 MHz 
8086/88-2 

FULL SPEED 
8086/88 5 MHz 

(1) The .2164A tRAH parameter is not satisfied. 
(2) 150 ns 64K DRAMs with tCAC = 100 ns won't run with 0 wait-states, because they have a longer CAS 

access time than the 2164A-15 (tCAC = 85 ns). 
(3) Numbers in lower right corners are the programmed configurations of the 8207. 
(4) To meet read access time. 

5-145 230822-002 



8207· 

8207 Performance (multibus interface) 
• • I • _ ? , 

This is an asynchronous, command interface. Worst case data and transfer' acknowledge 
(XACK#) delays. Including synchronization and data buffer delays, are: 

Table 7a. Non-EDC system 

RAM speed 

100 ns 120 ns ·150 ns 200 ns 

Data access time 289n5 299ns 322ns 380ns' 

XACK# access time 333ns 450ns 

Table 7b. EDC system 

RAM speed 

100 ns 120 ns 150 ns 200 ns 

Data access time (read) 359n's 369ns 392ns 450ns 
(324 ns)[1) (334 ns) (357 ns) (415 ns) 

XACK# access time 400 ns-RD. WR 520 ns-RD, WR 
588 ns-Byte Write 806 ns-Byte WR 

(1) Numbers in parentheses are for when 8206 is.'in check-only mode (8206 doesn't do error correction 
until after an error is detected. 

5-146 230822-002 



APPLICATION 
NOTE. I 

5-147 

Ap·97A 

'April 1982 

ORDER NUMBER 210398-001 



AP-97A 

INTRODUCTION 

The designer of a microprocessor-based system has two 
basic types of devices available to implement a random 
access read/write memory - static or dynamic RAM. 
Dynamic RAMs offer many advantages. First, dynamic 
RAMs have four times the density (number of bits per 
device) of static RAMs, and are packaged in a 16-pin 
DIP package, as opposed to the 20-pin or larger DIPs 
used by static RAMs; this allows four times as many 
bytes of memory to be put on a board, or alternatively, 
a given amount of memory takes much less board space. 
Second, the cost per bit of dynamic RAMs is roughly 
one-fourth that of statics. Third, static RAMs use about 
one-sixth the power of static RAMs, so power supplies 
may be smaller'and less expensive. These aQvantages are 
summarized in Table 1. 

On the other hand, dynamic RAMS require complex 
support functions which static RAMs don't, including 

• address multiplexing 
• timing of addresses and control strobes 
• refreshing, to prevent loss of data 
• arbitration, to decide when refresh cycles will be 

performed. 

LOG2(COST( 

CONTROLLER 

CS LOGIC 

4K 8K 

Table 1. Comparison of Intel Static and 
Dynamic RAMs Introduced during 1981 

2164·15 2167·70 
(DynamiC) (Static) 

Density 
(No. of bits) 64K 16K 

No. of pins 16 20 
Access time (ns) 150 70 
Cycle time (ns) 300 70 
Active power (rna) 60 125 
Standby power (rna) 5 40 
Approx. cost per bit 45 250 

(millicents/bit) 

In addition, dynamic RAMs may not always be able to 
transfer data as fast as high-performance 
microprocessors require; wait states must be generated 
in this case. The circuitry required to perform these 
functions takes up board space, costs money, and con­
sumes power, and so detracts from the advantages that 
make dynamic RAMs so appealing. Obviously, the 
amount of support circuitry should be minimized. 

The Intel 8202A and 8203 are LSI dynamic RAM con­
troller components. Either of these 4O-pin devices alone 
does all of the support functionS required by dynamic 
RAMs. This results in a minimum of board space, cost, 
and power consumption, allowing maximum advantage 
from the use of dynamic RAMs. 

16K 32K ,64K 128K 

LOG2 (RAM SIZE) (K BYTES) 

Figure 1. Implemented Cost of Static vs. Dynamic RAM 

5-148 210398-001 



Ap·97A 

Figure 1 shows the relative cost of static and dynamic 
RAM, including support circuitry, as a function of 
memory size, using the Intel 8202A or 8203. For any 
memory larger than 16KBytes, the dynamic RAM is less 
expensive. Since the cost of the dynamic RAM con­
troller is relatively independent of memory size, the cost 
advantge for dynamic RAM increases with increasing 
memory size. 

This Application Note will describe the techniques of in­
terfacing a dynamic RAM memory to an iAPX-86 or 
iAPX-88 system using either the 8202A or 8203 dynamic 
RAM controller. Various configurations of the 8086 
and 8088 microprocessors, and those timings which they 
satisfy, are described. The Note concludes with ex­
amples of particular system implementations. 

DYNAMIC RAMS 

This section gives a brief introduction to the interfacing 
requirements for Dynamic RAMs. Later sections will 
describe the operation of the Intel 8202A and 8203 
Dynamic RAM Controllers. 

Device Description 

The pinout of two popular families of dynamic RAMs, 
the Intel 2118 and 2164A, are shown in Figure 2. The 
2118 is a 16,384 word by I-bit dynamic MOS RAM. The 
2164 is a 65,536 word by I-bit dynamic MOS RAM. 
Both parts operate from a single + 5v supply with a 
± 10% tolerance, and both use the industry standard 
16-lead pinout. 

The two parts are pinout-compatible with the exception 
of the 2164 having one extra address input (A7, pin 9); 
this pin is a no-connect in the 2118. Both parts are also 
compatible with the next generation of 256K dynamic 
RAMs (262,144 word by I-bit), which will use pin 1 
(presently a no-connect on both the 2118 and 2164A) for 
the required one extra address input (As). This makes it 
possible to use a single printed circuit board layout with 
any of these three types of RAM. 

vss 
DIN CAS DIN 
WE Dour WE 

RAS A6 RAS 

Ao A3 Ao 

A2 A. M 
A, As A, 

voo voo 

Addressing 

Each bit of a dynamic RAM is individually addressable. 
Thus, a 2164A, which contains 216 (or 65,536) bits of in­
formation, requires 16-bit addresses; similarly, the 
2118, which contains 214(or 16,384) bits, requires 14-bit 
addresses. 

In order to reduce the number of address pins required 
(and thus reduce device cost), dynamic RAMs time­
multiplex addresses in two halves over the same pins. 
Thus a 2164A needs only 8 address pins to receive 16-bit 
addresses, and the 2118 needs only 7 for its 14-bit ad­
dresses. The first address is called the row address, and 
the second is called the column address. The row ad­
dress is latched internal to the RAM by the falling edge 
of the RAS (Row Address Strobe) control input; the col­
umn address is latched by the falling edge of the CAS 
(Column Address Strobe) control input. This operation 
is illustrated in Figure 3. 

Dynamic RAMS may be visuallized as a two­
dimensional array of single-bit storage cells arranged 
across the surface of the RAM's die. In the case 0f the 
2164A, this array would consist of 2s (or 256) rows and 
2s (or 256) columns, for a total of 216 (or 65,526) total 
bit cells (Figure 4). This is the source of the "row ad­
dress" and "column address" terminology. Bear in 
mind that any given RAM may not be physically im­
plemented as described here; for instance, the 2164A ac­
tually contains four arrays, each one 27 rows by 27 
columns. 

V •• .A8 v •• 
CAS DIN CAS 

Dour WE Dour 
Ac RAS As 
A3 Ao A3 

A4 A2 A4 

As A, As Ar. voo Ar 

Figure 2. Dynamic RAM Pinout Compatibility 

5-149 210398-001 

Ii 



Ap·97A 

,ADDRESS COLUMN 

Figure 3. Dynamic RAM Addressing 

COLUMNS 
OH 1H 2H ... FEH FFH 

°H °H 1H 2H 3H ( 'ilH 1 FEH FFH 

1H 100H 101 H 102H 103H 1~ \1 IFEH IFFH 

2H 200H 201H 202H V 203H1! \ 2FEH 2FFH 

'3H '300H 301 H 302H 303( \3FEH 3FFH 

4H ' 400H 401 H 402H 403Hl -<= 

"'"' ROWS 
5H 500H 501 H 502H 50Y BIT CELL ADDRESS 

~ 
. 
~ 

-
~H FCFFH 

FDH FDOOH Fuu'H ............ ~ FDFEH FDFFH 

FEH FEOOH FE01H FE02H I II FEFEH FEFFH 

FFH FFOOH FF01H FF02H 1\ /1 FFFEH FFFFH , 

Figure 4. Bit Cell "Array" 

Memory Cycles 

In this Application Note, we will discuss three types of 
memory cycles - read, write, and RAS-only refresh. 
Dymanic RAMs may perform other types of cycles as 
well; these are described in the dynamic RAM's data 
sheet. 

Whether data is read or written during a memory cycle 
is determined by the RAM's WE control input. Data is 
written only when WE is active. 

During a read cycle, the CAS input has a second func­
tion, other than latching the column address. CAS also 
enables the RAM data output (pin 14) when active, 
'assuming' RAS is also active. Otherwise, the data output 
is 3-stated: This allows multiple dynamic RAMs to have 
their data outputs tied in common. 

During write cycles, data on the RAM data input pin is 
latched internally to the RAM by the falling edge of 

CAS or WE, ,whichever occurs last. If WE goes active 
b~fore CAS (the usual case, called an "early write"), 
write data is latched by the falling edge of CAS. If WE 
goes active after CAS (called a "late write"), data is lat­
ched by the falling edge of WE (see Figure 5): 

Late writes are useful in some systems where it is desired 
to start the memory cycle as quickly as possible, ~o max­
imize performance, but the CPU cannot get the write 
data to the dynamic RAMs quickly enough to be latched 
by CAS. By delaying WE, more time is allowed for 
write data to arrive at the dynamic RAMs. 

Note that when "late w~ite" is performed, CAS goes ac­
tive while WE is still inactive; this indicates a read cycle, 
so the RAM enables its data output. So, if "late write" 
cycles are performed by a system, the RAM dl!ta inputs 
and data outputs must be electically isolated from each 
other to prevent contention. If no "late writes" are per­
formed, the RAM data inputs and data outputs may be 
tied together at the RAM to reduce the number of board 
traces. 

5-150 210398-001 



AP·97A 

1'\1'--___ --1 

~ I IDH 

) VALID K __________________________ -J ~ __________________ _ 

DOUT -------------------------< ..... _______ IN_D_E_T_ER_M_IN_A_T_E ________ ~)-------------
B. "LATE WRITE" 

1\ 
> 

~ IDH 

DIN > VALID K 
• 

DOUT ------------------------------------------~------------------------------
A. "EARLY WRITE" 

Figure 5. Dynamic RAM Write Cycles 

Access Times 

Each dynamic RAM has two different access times 
quoted for it -- access time from RAS active (tRAcl and 
access time from CAS a<;tive (tcAcl; these are jllustrated 
in Figure 6. How do you know which to use? This 
depends on the timings of your RAM controller. First, 
the worst case delay from the memory read command 
active to RAS active (teR> and CAS active (tecl must be 
determined. Then the read data access time is the larger 
of the tCR(Controller) + tRAdRAM) or tedController) 
+ tCAdRAM). An alternative way to determine 

5-151 

whether to use tRAC or tCAC is to look at the dynamic 
RAM parameter for RAS active to CAS active delay" 
tRCD' tRCJ)I7'Iax is a calculated value, and is shown on 
dynamic RAM data sheets as a reference point only. If 
the delay from RAS to CAS is less than or equal to 
tRComax, then tRAC is the limiting access time para­
meter; if, on the other hand, the delay from RAS to 
CAS is greater than tRComax, then tCAC is the limiting 
parameter. tRComax is not an operating limit, and this 
spec may be exceeded without affecting operation of the 
RAM. tRcJ)I7'Iin, on the other hand, is an operating 
limit, and the RAM will not operate properly if this spec 
is violated. 

210398-001 

! 

'" 
"~I 

i~ I, 
ii 
I

, 

" 



Ap·97A 

RAS \ 
J 

CAS \ / 

DOUT -----------------------::::::::~ VALID 

-~~ 

Figure 6. Dynamic RAM Access Times 

Refresh 

One unique requirement of dynamic RAMs is that they 
be refreshed in order to retain data. To see why this is 
so, we must look briefly at how a dynamic RAM is 
implemented. 

Dynamic RAMs achieve their high density and low cost 
mostly because of the very simple bit-storage cell they 
use, which consists only of one transistor and a 
capacitor. The capacitor stores one bit as the presence 
(or absence) of charge. This capacitor is selectively ac­
cessed for reading an.;! writing by enabling its associated 
transistor (see Figure 7). 

Unfortunately, if left for very long, the charge will leak 
out of the capacitor, and the data will be lost. To pre­
vent this, each bit-cell must be periodically read, the 
charge on the capacitor amplified, and· the capacitor 
recharged to its initial state. The circuitry which does 
this amplification of charge is called a "sense amp". 
This must be done for every bit-cell every 2 ms or less to 
prevent loss of data. 

Each column in a dynamic RAM has its own sense amp, 
so refresh can be performed on an entire row at a time. 
Thus, for the 2118, it is only necessary to refresh each of 
its 128 rows every 2 ms. Each row must be addressed via 
the RAM's address inputs to be refreshed. To simplify 

ONE COLUMN 

BIT SELECT 
LINES 
(FROM ROW 
ADDRESS 
DECODER) 

~ 

V+ 

'------v-------
BIT SENSE LINES 
(TOSENSEA.MPS) • 

Figure 7. Dynamic RAM Cell 

5-152 

}
ONE 
ROW 

210398-001 



inter AP·97A 

ADDRESS X ROW X 
RAS \ / 
CAS 

,D9N'T CARE 

Dour 

Figure 8. RAS·only Refresh 

refresh, the 2164A is implemented in such a way that its 
refresh requirements are identical to the 2118; 128 rows 
every 2 ms. Some other 64K RAMs require 256 row 
refresh every 4 ms. 

Refresh can be performed by a special cycle called a 
RAS-only refresh, shown in Figure 8. Only a row ad­
dress is sent; that row is refreshed. No column address is 
sent, and no data is read or written during this cycle. In­
tel dynamic RAM controllers use this technique. 

Any read, write, or read-modify-write cycle also 
refreshes the row addressed. This fact may be used to 
refresh the dynamic RAM without doing any special 
refresh cycles. Unfortunately, in general you cannot be 
sure that every row of every dynamic RAM in a system 
will be read from or written to every 2 ms, so refresh 
cannot be guaranteed by this method alone, except in 
special applications. 

A third technique for refresh is called hidden refresh. 
This method is not popular in microprocessor systems, 
so it is not described here, but more information is 
available in the dynamic RAM's data sheet. 

Three techniques for timing when refresh cycles are per­
formed are in common use: burst refresh, distributed 
refresh, and transparent refresh. 

Burst refresh means waiting almost 2 ms from the last 
time refresh was performed, then refreshing the entire 
memory with a "burst" of 128 refresh cycles. This 
method has the inherent disadvantage that during the 
time refresh is being performed (more than- 40 

microseconds for 128 rows) no read or write cycles can 
be performed. This severely limits the worst case 
response time to interrupts and makes this approach un­
suitable for'many systems. 

As long as every row of the RAM is refreshed every 2 
ms, the distribution of individual refresh cycles is unim­
portant. Distributed refresh takes advantage of this fact 
by performing a single refresh cycle every 2 ms/l28, or 
about every 15 microseconds. In this way, the refresh re­
quirements of the RAM are satisfied, but the longest 
time that read and write cycles are delayed because of 
refresh is minimized. Those few dynamic RAMs which 
use 256 row refresh allow 4 ms for the refresh to be com­
pleted, so the distributed refresh period is still 15 
microseconds. 

The third technique is called transparent (or "hidden" 
or "syncronous") refresh. This takes advantage of the 
fact that many microprocessors wait a fixed length of 
time after fetching the first opcode of an instruction to 
decode it. This time is necessary to determine what to do 
next (Le. fetch irtore opcode bytes, fetch operands, 
operate on internal registers, etc.); this time may be 
longer than the time required for a RAM refresh cycle. 
If the status outputs of the CPU can be examined to 
determine which memory cycles are opcode fetches, a 
refresh cycle may be performed immediately afterward 
(Figure 9). In this way, refresh cycles will never interfere 
with read or write cycles, and so appear "transparent" 
to the microprocessor. 

Transparent refresh has the disadvantage that if the 
microprocessor ever stops fetching opcodes for very 

5-153 210398-001 

i'l 
:'1 
:~ 

I~ 
I: 



AP·97A 

I FETCH 
OPCODE 

INSTRUCTION 
DECODE TIME 

~ 

FETCH FETCH 
OPERAND OPERAND 

• TIME 

A. NO REFRESH CYCLES h 
INSTRUCTION EXECUTION 
DECODE TIME TIME DEGRADED 
~ THIS AMOUNT 

...-----i 
FETCH 

OPCODE 

r----------, 
I I I I REFRESH I 
I CYCLE I 
I I L _____ .,. ____ .l 

B. REFRESH INTERFERES WITH OPERAND FETCH 

FETCH 
OPCODE 

INSTRUCTiON 
DECODE TIME 

~ 
r----------l I REFRESH I 

CYCLE I 
I L __________ .J 

C. TRANSPARENT REFRESH 

FETCH 
OPERAND 

FETCH I 
OPERAND 

FETCH I OPERAND 

FETCH I 
OPERAND 

I 

TIME 

• 
TIME 

Figure 9. Transparent Refresh 

long, due to a HOLD, extended DMA transfers, or 
when under hardware emulation, no refresh cycles will 
occur and RAM data will be lost. This puts restrictions 
on the system design. Also, high speed microprocessors 
do not allow sufficient time between opcode fetches and 
susequent bus cycles for a complete RAM refresh cycle 
to be performed, so they must wait for the refresh cycle 
to complete before they can do a subsequent bus cycle. 
These microprocessors cannot use transparent refresh to 
any advantage. Transparent refresh is useful for 
microprocessors like the Intel 8085 operating at low 
clock frequencies. 

The 8086 and 8088, however, prefetch opcodes into a 
queue which is several bytes long. This prefetching is in­
dependent of the actual decoding and execution of the 
opcodes, and there is no time at which it can be 
guaranteed that the 8086 or 8088 will not reqRest a 
memory cycle. So transparent refresh is not applicable 
to these microprocessors. 

The 8202A and 8203 perform distributed and/or 
transparent refresh. Each device has an internal timer 
which automatically generates a distributed refresh cy­
cle every 15.6 microseconds or less. In addition, an ex-

J 

ternal refresh request input (REFRQ) allows the 
microprocessor's status to be decoded to generate a 
refresh cycle for transparent refresh. If, for whatever 
reason, no external REFRQ is generated for 15 
microseconds, the internally generated refresh will take 
over, so memory integrity will be guaranteed. 

Arbitration 

Because RAMs cannot do a read or write cycle and a 
refresh cycle at the same time, some form of arbitration 
must be provided to determine when refresh cycles will 
be performed. 

Arbitration may be done by the microprocessor or by 
the dynamic RAM controller. Microprocessor arbitra­
tion may be implemented as follows: 

A counter, running from the microprocessor's clock, is 
used to time the period between refresh cycles. At ter­
minal count, the arbitration logic asserts the bus request 
signal to prevent the microprocessor from performing 
any more memory cycles. When the inicroprocessor 
responds with a bus grant, the arbitration logic 
generates a refresh cycle (or cycles, if burst refresh is 

5-154 210398-001 



Ap·97A 

used). After refresh is complete, the arbitration logic 
releases the bus. This method has several disadvantages: 
First, time is wasted in exchanging bus control, which 
would not be required if the RAM controller did ar­
bitration. Second, while refresh is being performed, all 
bus activity is stopped; for instance, even if the 
microprocessor is executing out of ROM at the time, it 
must stop until refresh is over. Third, bursts of DMA 
transfers must be kept very short, as refresh cannot be 
performed while DMA is in progress. 

Some microprocessors, such as the Zilog Z-80, generate 
refresh cycles themselves after instruction fetches. This 
removes the need for external arbitration logic, but still 
has several disadvantages: First, DMA bursts still must 
be kept short to allow the CPU to do refresh. Second, 
this method adds to the complexity of the micropro­
cessor, without removing the need for the RAM con­
troller which is 'still required to do address multiplexing 
and RAS, CAS and WE timing. Microprocessor refresh 
can cause problems of RAM compatibility; for instance, 
the Z-80 only outputs a 7-bit refresh address, which 
means some 64K RAMs which use 256 row refresh can­
not be used with the Z-80. Also, since the Z-80 refresh 
cycle is a fixed length (no wait states), faster speed selec­
tions of the Z-80 are not compatible with slower 
dynamic RAMs. Third, systems employing multi­
processing or DMA are harder to implement, because of 
the difficulty in insuring the microprocessor will be able 
to perform refresh. 

It is preferable to have arbitration performed by the 
dynamic RAM controller itself. This method avoids all 
the problems described above, but introduces a com­
plication. If the microprocessor issues a read or write 
command while the dynamic RAM is in the middle of a 
refresh cycle, the RAM controller must make the 
microprocessor wait until it is done with the refresh 

INTEL DYNAMIC RAM CONTROLLERS 

The Intel 8202A and 8203 Dynamic RAM Controllers 
each provide all the interface logic needed to use 
dynamic RAMs in microprocessor systems, in a single 
chip. Either the 8202A or 8203 allow a dynamic RAM 
memory to be implemented using a minium of com­
ponents, board space, and power, and in less design 
time than any other approach. 

The following sections will describe each of these con­
trollers in detail. 

8202A 

FUNCTIONAL DESCRIPTION 

The 8202A provides total dynamic RAM control for 4K 

before it can complete the read or write cycle. This 
means that from when the microprocessor activates the 
read or write signal, the time until the cycle can be com­
pleted can vary over a range of roughly 200 to 700 ns. 
Because of this, an acknowledge signal from the 
dynamic RAM controller is required to tell the 
microprocessor the memory cycle it requested is com­
plete. This signal goes to the microprocessor:s READY 
logic. 

Memory Organization 

As each dynamic RAM operates on ohly one bit at a 
time, mUltiple RAMs must be operated in parallel to 
operate on a word at a time. RAMs operated in this way 
are called a bank of RAM. A bank consists of as many 
RAMs as there are bits in the memory word. When used 
in this way, all address and control lines are tied to all 
RAMs in the bank. 

A single bank of RAM will provide 64K words of 
memory in the case of the 2164A, or 16K words in the 
case of the 2118. To provide more memory words, 
multiple banks of RAM are used. In this case, all ad­
dress, CAS, and WE lines are tied to all RAMs, but each 
b,ank of RAM has its own RAS. Each bank knows 
whether it is being addressed during a read or write 
operation by whether or not its RAS input was activated 
- if not, then all other inputs are ignored during that 
cycle. 

Data outputs for RAMs in corresponding bit positions 
in each of the banks may be tied in common, since they 
are 3-state outputs; even though CAS is connected to all 
banks of RAM, only that bank whose RAS is active will 
enable its data outputs in response to CAS going active. 
Data inputs for RAMs in corresponding bit positions in 
each of the banks are also tied in common. 

I 

and 16K dynamic RAMs, including the Intel 2104A, 
2117, and 2118. The pinout and simplified logic' 
diagram of the 8202A are shown in Figures 10 and 11. 

The 8202A is always in one of the following states: 

a) IDLE 
b) TEST cycle 
c) REFRESH cycle 
d) READ cycle 
e) WRITE cycle 

The 8202A is normally in the idle state. Whenever a cy­
cle is requested, the 8202A will leave the idle state to 
perform the desired cycle; if no cycle requests are pen­
ding, the 8202A will return to the idle state. A refresh 
cycle request may originate internally or externally to 

5-155 210398-001 



Ap·97A 

AH4 Vee 

AH3 AHs 
AH2 AHs 
AH, X,/ClK 

AHo XoIOP2' 
Alo N.C. 

OUTO REFRQ ALE 
Al, PCS 

OUT, liD S' 
Al2 WR 

OUT2 SACK 
Al3 XACK 

OUT3 WE 

AL4 CAS 

OUT4 RAS3 
ALs B,/OP, 

OUTs 80 
ALslOP3 RAS2 

OUTs RAS, 
GND RASo 

Figure 10. 8202A Pinout 

the 8202A; all other requests come only from outside 
the 8202A. 

A test cycle is requested by activating the RD and WR 
inputs simultaneously, independent of PCS (Protected 
Chip Select). The test cycle will reset the refresh address 
counter to zero and perform a write cycle. A test cycle 
should not be allowed to occur in normal system opera­
tion, as it interferes with normal RAM refresh. 

A refresh cycle performs a RAS-only refresh cycle of the 
next lower consecutive row address after the one 
previously refreshed. Arefresh cycle may be requested 

by activating the REFRQ input to the 8202A; this input 
is latched on the next 8202A clock. If no refresh cycles 
are requested for a period of about 13 microseconds, the 
8202A will generate one internally. By refreshing one 
row every 15.6 microseconds or sooner, all 128 rows will 
be refreshed every 2 ms. Because refresh requests are 
generated by the 8202A itself, memory integrity is in­
sured, even if the rest of the system should halt opera­
tion for an extended period of time. 

The arbiter logic will allow the refresh cycle to take 
place only if there is not another cycle in progress at the 
time. 

A read cycle may be requested by activating the RD in­
put, with PCS (Protected Chip Select) active. In the Ad­
vanced Read mode, a read cycle is requested if the 
microprocessor's SI status line is high at the falling edge 
of ALE (Address Latch Enable) and PCS is active. If a 
dynamic RAM cycle is terminated prematurely, data 
loss may result. The 8202A chip select is "protected" in 
that once a memory cycle is started, it will go to comple­
tion, even if the 8202A becomes de-selepted. 

A write cycle may be requested by activating the WR in­
put, with PCS active; this is the same for the normal and 
Advanced Read modes. 

BLOCK DIAGRAM 

Let's look at the detailed block diagram in Figure 12 to 
see how the 8202A satisfies the interface requirements 
of the dynamic RAM. . 

Address Multiplexing 

Address multiplexing is achieved by a 3-to-1 multiplexer 

AHo·. ---------,/1 

Alo,. 

REFRQ/ALE 
liD/S1 

WR 
PCS 

==r===:::::::;--~](I 
ADDRESS 

MUX 

TIMING 
B.10P'_ ..... ______ -lGENERATOR 

Bo--------~ 

RASo 
RAS, 
RAS2 
RAS3 
CAS 
WE 
SACK 
XACK 

Figure 11. 8202A Simplified Block Diagram 

5-156 210398-001 



inter Ap·97A 

AHO_S COL 

ALo_S OUTOS 

BO 

B, 
REFRESH 

REF RIC 

XoIOP2 
TEST MODE 

RAS 
RASo 

DECODE RAS, 

RAS2 

REFRO 
RAS3 

RAS 
RIC 

CAS 

WE 
WE 

REFROI ALE 
ALE 

ROiS1 SACK COMMAND 
SACK DECODER EOC 

WR 

PCS 

XACK 
OP1 XACK 

Figure 12. 8202A Detailed Block Diagram 

internal to the 8202A; the three inputs are the row ad­
dress (ALo_6), column address (AHo_6), and refresh row 
address (generated internally). When the 8202A is in the 
Idle state, the multiplexer selects the row address, so it is 
prepared to start a memory cycle. If a refresh cycle is re­
quested either internally or externally, the address 
multiplexer will select the refresh row address long 
enough before RAS goes active to satisfy the RAM's 
tASR parameter. 

To minimize propagation delays, the 8202A address 
outputs (OUTO_6) are inverted from the address inputs. 

. 
This has no effect on RAM operation; inverters are not 
needed on the address outputs. 

Doing this multiplexing internally minImizes timing 
skews between the address, RAS, and CAS, and allows 
higher performance than would otherwise be possible. 

Refresh Counter-

The next row to be refreshed is determined by the 
refresh counter, which is implemented as a 7-bit ripple­
carry counter. During each refresh cycle, the counter is 

FROM MICROPROCESSOR ADDRESS BUS 

OUTo_s ALO-S 

Figure 13. Detailed 8202A Refresh Cycle 

5-157 210398-001 



AP·97A 

incremented by one in preparation for the next refresh 
cycle (a refresh cycle is shown in detail in Figure 13). 

When the 8202A enters TEST mode, the refresh counter 
is clear~d. This feature is useful for automatic testing of 
the refresh counter function. Because the address out­
puts are inverted, the first refresh address after clearing 
the counter in test mode is 7FH, and the addresses 
decrease for subsequent refresh cycles. 

RAS Decoding 

Which bank of RAM is selected for a memory cycle is 
determined by the RAS decoder from the BO-l inputs, 
which normally come from the microprocessor address 
bus. The 8202A Timing Generator produces an internal 
RAS pulse which strobes the RAS decoder, generating 
the appropriate external RAS pulse. The BO-l inputs are 
not latched, so they must be held valid for the length of 
the memory cycle. During a'refresh cycle, all the RAS 
outputs are activated, refreshing all banks at once. 

Oscillator 

The 8202A operates from a single reference clock with a 
frequency between 18.432 MHz and 25 MHz; this clock 
is used by the synchronization, arbitration, and timing 
generation logic. This clock may be generated by an on­
board crystal oscillator, or by an external TTL­
compatible clock source. When using the internal 
oscillator (available only on part number D8202A-l or 

Xo 36 

8202A 

.S, CRYSTAL MODE 

12'v 
±10% 

1 Kr\. 
±S% 8202A 

~ 
ClK 37 

b. EXTERNAL CLOCK MODE 

Figure 14. 8202A Clock Options 

D8202A-3), a fundamental-mode crystal is attached to 
pins 36 and 37 (Xo and Xl), as shown in Figure 14. The 
external TTL clock option is selected by pulling pin 36' 
(OP:z) to + 12v through lK ohm resistor, and attaching 
the clock input to pin 37 (eLK)., . 

Command Decoder 

The command decoder takes the commands from the " 
bus and generates internal memory request (MEMR), 
and TEST signals. 

The 8202A has two bus interface modes: the "normal" 
mode, and the "Advanced Read" mode. In the normal 
mode, the 8202A interfaces to the usual bus RD and 
WR signals. 

In the Advanced Read mode, the 8202A interfaces to 
the Intel microprocessor bus signals ALE, SI, and WR. 
SI must be high on the falling edge of ALE for read 
cycles, and WR must be low for write cycles (write 
cycles are the same as for normal read mode). The 
8085A SI may be used directly by the 8202A; the 8086 
and 8088 Si must be inverted. ALE and WR must be 
qualified by pes. 

The Advanced Read mode is useful for reducing read 
data access time, and thus wait states. This mode is used 
mainly with 8085A systems. 

If both RD and WR are active at once (regardless of the 
state of peS), the internal TEST signal is generated and 
the 8202A performs a test cycle as described above. One 
or both of RD and WR should have pull-up resistors to 
prevent the 8202A from inadvertantly being put into test 
mode, as the RD and WR signals are 3-stated by the 
microprocessor when RESET or HOLD are active. 
Since the test mode resets the refresh address counter, 
the refresh sequence will be interrupted, and data loss 
may result. 

Refresh Timer and REFRQ 

The 8202A contains a counter, operated from the inter­
nalclock to time the period from the last refresh cycle. 
When the counter times out, an internal refresh request 
is generated. This refresh period is proportional to the 
8202A's clock period, and varies from 10.56 to 15.625 
microseconds. Even at the lowest refresh rate, all the 
rows of the dynamic RAM will be refreshed every 2 ms. 

5-158 

The 8202A has an option of reducing the refresh rate by 
a factor of two, for use with 4K RAMS. These RAMs 
have only 64 rows to refresh every 2 rils, so need refresh 
cycles only half as often. This option is selected by pull-

210398-001 



Ap·97A 

ing pin 18 (AL6/0P3) to + 12v through a 5.1K ohm 
resistor. This pin normally serves as the high-order row 
address input for the address multiplexer, but it is no 
.longer needed for this function, as 4K RAMs have one 
less address input. 

A refresh cycle may also be requested externally by ac­
tivating the REFRQ input. This input is latched, so it 
only needs to be held active a maximum of 20 ns. If the 
8202A is currently executing a memory cycle, it will 
complete that cycle, and then perform the refresh cycle. 
The internal and external refresh requests are ORed 
together before going to the arbiter. 

The REFRQ input cannot be used in the Advanced 
Read mode, as the REFRQ pin is used for ALE in this 
mode. 

REFRQ is most often used to implement transparent 
refresh, as explained in the section Dynamic 
RAMS - Refresh. This technique is not useful in iAPX 
86 and iAPX 88 systems, so REFRQ is normally tied to 
ground. 

The refresh timer is reset as soon as a refresh cycle is 
started (whether it was requested internally or external­
ly). The time between refresh cycle (tREF) is measured 
from when the first cycle is started, not when it was re­
quested, which occurs sometime earlier. Of course, 
tREFmin does not apply if REFRQ is used - you may 
externally request refresh cycles as often as you wish. 

Arbiter 

This is the hardest section of a dynamic RAM controller 
to implement. If a read or write arrives at the same time 
as a refresh request, the arbiter must decide which one 
to service first. Also, if a read, write, or refresh request 
arrives when another cycle is already in progress, the ar­
biter must delay starting the new cycle until the current 
cycle is complete. 

Both of the internal signals REFR (refresh request) and 
MEMR (memory cycle request) are synchronized by 
D-type master-slave flip-flops before reaching the ar­
biter. these circuits have been optimized to resolve a 
valid logic state in as short a time as possible. Of course, 
with any synchronizer, there is a probability that it will 
fail - not be able to settle in one logic state or the other 
in the allowed amount of time, resulting in a memory 
failure - but the 8202A has been designed to have less 
than one system memory failure every three years, 
based on operation in the worst case system timing 
environments. 

Both'synchronizers and the arbiter are operated from 

the 8202A's internal clock. Assuming the 8202A is in­
itially in an idle state, one full clock period after the syn­
chronizers sample the state of the MEMREQ and 
REFREQ signals, the arbiter examines the REFR and 
MEMR outputs of the synchronizers. If MEMR is ac­
tive, the arbiter will activate START to begin the 
memory cycle (either read or write) on that clock. If 
REFR is active (regardless of the state of MEMR), the 
arbiter will activate START and REF to begin a refresh 
cycle on that clock. Once the cycle is complete, the Cy­
cle Timing Generator will generate an end-of-cycle 
(EOC) signal to clear the arbiter and allow it to respond 
to any new or pending requests on the next clock. 

Once a memory cycle is started, it cannot be stopped, 
regardless of the state of the RD/Sl, WR, ALE, or PCS 
inputs. This is necessar:ll, as ending a dynamic RAM 
cycle prematurely may cause loss of data. Note, 
however, that the RAM WE output is directly gated by 
the WR input, so if WR is removed prematurely, the 
RAM WE pulse-width spec (twp) may be violated, caus­
ing a memory failure. 

What happens if a memory request and refresh request 
occur simultaneously? 

If the 8202A is in the idle state, the memory request 
will be honored first. 

If the 8202A is not in the idle state (a memory or 
refresh cycle is in progress) then the memory cycle 
will lose priority and the refresh cycle will be honored 
first. 

Remember, if the 8202A is performing a cycle, the ar­
biter doesn't arbitrate again until the end of that cycle. 
So the memory and refresh cycles are "simultaneous" if 
they both happen early enough to reach the arbiter 
before it finishes the current cycle. This arbitration ar­
rangement gives memory cycles priority over refresh 
cycles, but insures that a refresh cycle will be delayed at 
most one RAM cycle. . 

Refresh Lock·Out 

As a result of the 8202A operation, transparent refresh 
circuits like the one shown in Figure 15 should not be 
used. This circuit uses the RD input, with some qualify­
ing logic, to activate REFRQ whenever the micropro­
cessor does an opcode fetch. This circuit will work fine, 
as long as the 8202A never has to generate an internal 
refresh request, which is unlikely (if nothing else, the 
system RESET pulse is probably long enough that the 
8202A will throw in a couple of refreshes while the 
microprocessor is reset). If the 8202A ever does generate 
its own refresh, there is a probability that the 
microprocessor will try to fetch an opcode while the 

5-159 210398-001 



Ap·97A 

refresh is still in progress. If that happens, the 8202A 
will finish the refresh, see both the RD and REFRQ in­
puts active, honor the REFRQ first, and start a second 
refresh. In the meantime, the microprocessor is sitting 
in wait states, waiting for the 8202A to complete the op­
code fetch. When the 8202A finishes the secorld refresh, 
it will see both RD and REFRQ active again, and will 
start a third refresh, etc. The system "locks up" with 
the microprocessor sitting in wait states 'ad infinitum, 
and the 8202A doing one refresh cycle after another. 

808SA 

Figure 15. Improper Transparent 
Refresh Generation 

To prevent this from happening, the transparent refresh 
circuit should be modified as shown in Figure 16. In this 
circuit, REFRQ cannot be activated until the opcode 
fetch is already in progress, as indicated by SACK being 
active (remember, SACK is never active during a 
refresh). If the microprocessor tries to do an opcode 
fetch while the 8202A is doing a refresh, REFRQ will 
not be active; the 8202A will finish the refresh and see 
only RD active, and will start the opcode fetch; only 
then will REFRQ be activated. 

8202A 
S1 
So REFRQ 

80SSA 
SACK 

RD RD 

Figure 16. Generating Transparent 
Refresh For 8085A Systems 

Cycle Timing Generator 

The Cycle Timing Generator consists of a travelling­
ones shift register and combinational logic required to 
generate all the RAM control signals and SACK and 
XACK. All timings are generated from the 8202A's in­
ternal clock; no external delay lines are ever needed. The 
timing of these signals relative to CLK is illustrated in 
Figure 17. 

When the cycle is complete, the Cycle Timing Generator 
sends an end-of-cycle (EOC) pulse to the arbiter to 
enable it to respond 16 new or pending cycle requests. 

Minimum and maximum values for the 8202A 
parameters tCR (Command to RAS active delay) a~d tcc 
(Command to CAS active delay) differ by one 8202A 
clock period. This is because the' cQmmands (RD, WR, 
ALE) must be synchronized to the 8202A's clock; this 
introduces a ± one clock period (tp) uncertainty due to 
the fact that the command mayor may not be sampled 
on the first clock after it goes active, depending on the 
set-up time. If RD or ALE and WR are synchronous to 
the 8202A's clock, and the set-up time (tsd is met, the 
smaller number of clock periods will apply. 

All 8202A output timings are specified for the 
capacitive loading in the data sheet. Typical output 
characteristics are shown in the data sheet for capacitive 
loads ranging from 0 to 660 pF, these can be used to 
calculate the effect of different loads than those 
specified in the data sheet on output timings. All ad­
dress, RAS, CAS, and JNE drivers are identical, so these 
characteristic curves apply to all outputs. 

SACK AND XACK 

Because refresh cycles are performed asynchronously to 
the microprocessor's operation (except during 
transparent refresh), the microprocessor cannot know 
when it activates RD or WR if a refresh cycle is in pro­
gress, and therefore, it can't know how long it will take 
to complete the memory cycle. 

This added consideration requires an acknowledge or 
"handshake" signal from the 8202A to tell the 
microprocessor when it may complete the memory 
cycle. This acknowledge would be used to generate the 
microprocessor's READY input - the microprocessor 
will. sit in wait states until the 8202A acknowledges the 
memory cycle. Two signals are generated for this pur­
pose by the 8202A; they are called system acknowledge 
(SACK) and transfer acknowledge (XACK). They serve 
the same purpose but differ in timing. 

XACK is a MuItibus-compatible signal, and is not ac­
tivated. until the read or write cycle has been completed 
by the RAMs. In a microprocessor system, however, 
there is a considerable delay from when the 8202A 
acknowledges the memory cycle until the micro­
processor actually terminates the cycle'. This delay is due 
to the time required to combine this acknowledge with 
othel' sources of READY in the system, synchronize 
READY to the microprocessor's clock, sample the state 
of READY, and respond to an active READY signal. 
AS.a result, more wait states than necessary may actual-

5-160 2103~8-001 



ClK 

liD 
WR 

ALE 

PCS 

ADDRESS 

RAS 

(J1 

~ 
~ 

CAS 

WE 

SACK 

XACK 

(EOC) 

~ 
0 

'" '" b 
~ 

·1 0 

r-\ I 

ROW COLUMN 

READ CYCLE 

WRITE CYCLE 

----------1\\, ___________________________ .P-~~~.:!'.P_:;!I_~ ______________ -----------1-"-, 

NORMAL SACK 

Figure 17. 8202A Timing Relative To elK 

ROW 

\ 

9 

» 
"tI 
cD ..... » 



Ap·97A 

ly be generated by using XACK. SACK is activated 
earlier in the cycle to improve performance of 
microprocessors by compensating for the delays in the 
microprocessor responding to XACK, and thus 
eliminating unneeded wait states which might be 
generated as a result of XACK timing. The system 
designer may use one or the other acknowledge signal, 
or use both in different parts of the system, at his 
option. 

SACK and XACK are activated by the Cycle Timing 
Generator, but they can be de-activated only by the 
microprocessor removing its RD or WR request, or by 
activating ALE when in the advanced read mode. As the 
SACK and XACK signals are used to generate READY 
for the microprocessor, this is necessary to give the 
microprocessor as much time as it needs to respond to 
its READY input. 

Delayed SACK Mode 

SACK may be activated at one of two different times in 
the memory cycle; the earlier case is called "normal 
SACK". and the later is called "delayed SACK" (Figure 
18). Delayed SACK: occurs if the memory request was 
received by the 8202A while it was doing a refresh cycle. 
In this case, the memory cycle will be delayed some 
length of time while the refresh cycle completes; SACK 
is delayed to ensure the microprocessor will generate 
enough wait states. This is a concern mostly for read 
cycles. 

Because of the way the delayed SACK mode is im­
plemented in the 8202A, if the RD or WR input is ac­
tivated while a refresh cycle is in progress, regardless of 
whether or not the 8202A is chip-selected, the internal 
delayed SACK mode flip-flop will be set. The next 

8202A memory cycle will have SACK delayed, even if 
that cycle was not actually delayed due to a refresh cycle 
in progress. The delayed SACK flip-flop will be reset at 
the end of that cycle, and the 8202A will return to nor­
mal SACK operation. The same thing happens in Ad­
vanced Read mode if SI is high at the falling edge of 
ALE during a refresh cycle, once again regardless of the 
state of PCS. 

8203 

The 8203 is an extension of the 8202A architecture 
which allows the use of 64K dynamic RAMs. It is pinout 
compatible with the 8202A and shares identical A.C. 
and D.C. parameters with that part. The description of 
the 8202A applies to this part also, with the modifica­
tions below. 

ENHANCEMENTS 

1. Supports 16K or 64K dynamic RAMs. 4K .RAM 
mode, selected by pulling AL6/0P3 (pin 18) to 
+ 12v, is not supported. 

2. Allows a single board design to use either 16K 
or 64K RAMs, without changing the controller, 
and only making between two and four jumper 
changes to reconfigure the board. 

3. May operate from external TTL clock without 
the + 12v pull-up which the 8202A requires (a 
+ 5v or + 12v pull-up may be used). 

The pinout of the 8203 is shown in Figure 19. This 
pinout is identical to the 8202A, with the exception of 
the five highlighted pins .. The function of these is 
described below. The simplified block diagram is similar 
to the 8202A's, in Figure II. 

RAS \ ______ ----'/ 

DELAYED SACK 

~------------------N-~R~::~----------------~ 

Figure 18. Delayed SACK Mode 

5-162 210398-001 



Ap·97A 

Fig. 19 8203 Pinout 

16K Mode and 64K Mode 

The goal of the 8203 is to provide a pin- and timing­
compatible upgrade of the 8202A for use with 64K 
RAMs. The difficulty in doing this is that 64K RAMs re­
quire an additional address input compared to 16K 
RAMs, and thus the 8203 needs three more pins (one 
more RAM address output, and two more inputs to its 
internal address multiplexer). Since all but one of the 

8202A's pins are already used, this is clearly a challenge 
- some functionality must be sacrificed to gain 64K 
RAM support. The 8203 reduces the maximum number 
of banks supported from four to two for 64K RAMs. 

Pin 35 (16K/64K) is used to tell the 8203 whether it is be­
ing used to control 16K RAMs or 64K RAMs. When 
tied to Vee or left unconnected, the 8203 operates in the 
16K RAM mode; in this mode all the remaining pins 
function identically to the 8202A. When tied to ground, 
it operates in the 64K RAM mode, and pins 23 through 
26 change function to enable the 8203 to support 64K 
RAMs. Pin 35 (16K/64K) contains an internal pull-up 
-when unconnected, this input is high, and the 8203 
operates identically to the 8202A. This maintains pinout 
compatibility with the 8202A, in which pin 35 is a no­
connect, so the 8203 may be used in 8202A sockets with 
no board modifications. 

When the 8203 is in the 64K RAM mode, four pins 
change function, as shown in Table 2. The pins change 
function in this particular way to allow laying out a 
board to use either 16K or 64K RAMs with a minimum 
of jumpers, as shown in Figure 20. This figure shows the 
8203 with two banks of RAM. Banks 0 and 1 may be 
either 16K RAMs or 64K RAMs; banks 2 and 3 may on­
ly be 16K RAMs, as the 8203 supports two bariks of 64K 
RAM. For clarity, only those connections which are im­
portant in illustrating the 8203 jumper options are 
shown. 

-------... ALo·6 RASo 21 Ao-A13 4 RAS 
ALo·6 

A14 
"';4 Bo(AL7) RASI 22 2118 BANK 0 (2164) 

A15 25 Bl (AH7) RAS2 23 9 N.C. (A7) 
Jl 

(OUT7) 

CS (32K WORDS) ----no J4 33 RAS3(Bo) lL--
~ (64K WORDS) --0 (j...2l! PCS 
~ (128K WORDS)---.:8' 

8203 
J5 ~ 

16K164K 
~ RAS 

1 2118 BANK 1 
-=- (2164) f 

J7 
A16 -<> J8 ~ N.C. (A7) 

16K RAM JUMPER OPTION 
Jl.J4 (32K WORDS) 
Jl·J2 (64K WORDS) 

L..... TO RAS OF BANK 2 
(2118 ONLy) 

~ TO RAS OF BANK 3 
" (2118 ONLy) 

64K RAM JUMPER OPTION 
J2·J4 (64K WORD~ 

J3·J4 (l28K WORD ) 
J5·J6 

v 

J7·J8 

Figure 20. 8203 Jumper Options 

5-163 210398-001 

Ii 
1,,'· 

I· 
i' 



Ap·91A 

Table 2. 16K/64K Mode Selection 

Pin # 16K Function 64K Function 

23 RAS2 Address Output (OUT7) 
24 Bank Select (BO) Address Input (AL7) 
25 !lank Select (Bl) Address Input (AH7) 
26 RAS3 Bank Select (BO) 

Jumpers 11-J4 may be used to chip select the 8203 over 
various address ranges. For example, if two banks of 
16K RAMs are replaced with two banks of 64K RAMs, 
the address space controlled by the 8203 increases from 
32K words to 128K words. If four banks of 16K RAMs 
are replaced with one bank 'of 64K RAMs, no chip select 
jumpers are needed. 

In the 64K RAM mode, pins 24 and 25 (Bo(AL7) and 
Bl(AH7» change function from bank select inputs to 
address inputs for the 64K RAM. Since the bank select 
inputs normally come from the address bus anyway, no 
jumper changes are required here. The bank select func­
tion moves to pin 26 (RAS3(Bo»; since only two bank of 
64K RAM is supported, only one bank select input is 
needed in this mode, not two. Jumpers J6 and 17 are 
shorted in the 64K RAM mode to connect pin 26 (Bo) to 
the address bus. In the 16K RAM mode, these jumpers 
must be disconnected, as pin '26 junctions as the RAS3 
output; in the 64K RAM mode, this bank is not popu­
lated, so RAS3 is not needed. 

Pin 23 serves two functions: in the 16K RAM mode it is 
the RAS output for bank 2 (RAS21, in the 64K RAM 
mode is the high order RAM address output (OUT7), 

which goes to pin 9 of the 64K RAMs. This requires no 
jumpers as when using 16K RAMs, pin 9 is a no­
connect, and when using 64K RAMs, bank 2 is 
depopulated, so RAS2 is not used. 

\ This arrangement allows converting a board from 16K 
\ RAMs to 64K RAMs with no change to the controller 

and changing a maximum of three jumpers. 

+ 5v External Clock Option 

Just as with the 8202A, the user has the option of an ex­
ternal TTL clock instead 'of the internal crystal 
oscillator as the timing reference for the 8203; unlike the 
8202A, he does not need to tie pin 36 (XoIOPz) to + 12v 
to select this option-this pin may be tied to either + 5v 
or + 12v. If pin 36 is tied to + 12v, a lK ohm (± 5OJo) 
series resistor must be used, just as for the 8202A. If pin 
36 is tied to + 5v, it must be tied directly to pin 40 (V eel 
with no series resistor. This is because pin 36 must be 
within one Schottky diode voltage drop (rOl.jghly 0.5v) 
of pin 40 to select the external TTL clock option; a 
series resistor may cause too great a voltage drop for the 
external clock option to be selected. For the same 
reason, the trace from pin 36 to 40 should be kept as 
short as practical. 

Test Cycle 

An 8203 test cycle is requested by activating the RD. 
WR, and PCS inputs simultaneously. By comparison, 
an 8202A test cycle requires activating only the RD and 
WR inputs simultaneously, independent of PCS. Like 
the 8202A, and 8203 test cycle resets the address counter 
to zero and' performs a write cycle. 

AHO·. --------.,/1 

ALO·S -:::r====::;---y'j 

REFRQ/ALE 
AD/S1 

TIMING 
B,.OP,_ ..... ______ --to-iGENERATOR 

Bo--------~ 

16K/64K:---~ 

OUTO·7 

RASO 
RAS, 
RAS, 
RAS3 
CAS 
WE 

SACK 
XACK 

Figure 21. 8203 Simplified Block Diagram 

5-164 210398-001 



Ap·97A 

BLOCK DIAGRAM 

A simplified block diagram of the 8203 is shown in 
Figure 21. It is identical to the 8202A except for the 
following differences: 

1. The 3: I address multiplexer is 8 bits wide, inst-ead 
of 7 bits wide, to support the addressing 
requirements of the 64K RAM. 

2. The refresh address counter is 8 bits. This allows 

INTEL iAPX·86 AND iAPX·88 

Device Descriptions 

The iAPX-86 and iAPX-88 are advanced 16-bit 
microprocessor families, based on the 8086 and 8088 
microprocessors, respectively. While both have a similar 
architecture and are software compatible, the 8086 
transfers data over a 16-bit bus, while the 8088 uses an 
8-bit data bus (but has a 16-bit internal bus). 

Min and Max Modes 

In order to support the widest possible range of applica­
tions, the 8086 and 8088 can operate in one of two 
modes, called minimum and maximum modes. This 
allows the user to define certain processor pins to 
"tailor" the 8086 or 8088 to the intended system. These 
modes are selected by strapping the MN/MX 
(minimum/maximum) input pin to Vee or ground. 

READY 

8284A 
ClK 

GEN·R ClK 

TO 
TOCPU 
READY 
lOGIC 

8086 
CPU 

MIlO 
ALE 

A16-19I.1"'----" 
ADo_1S 

BHE 

8282 
lATCH 

it to support RAMs which use either the 128-row 
or 256-row refresh schemes. Regardless of which 
type of RAM is used, the refresh counter cycles 
through 256 rows every 4 ms. RAMs which use 
128-row re-fresh treat the eighth address bit as a 
"don't care" during refresh, so they see the 
equivalent of 128-row refresh every 2 ms. In 
either case the rate of internally-generated 
refresh cycles is the same-at least one every 
15.6 microseconds. 

In the minimum mode, the microprocessor supports 
small, single-processor systems using a minimum of 
components. In this mode, the 8086 or 8088 itself 
generates all the required bus control signals (Figure 
22). 

In the maximum mode, the microprocessor supports 
larger, higher performance, or multiprocessing systems. 
In this mode, the 8086 or 8088 generates status outputs 
which are decoded by the Intel 8288 Bus Controller to 
provide an extensive set of bus control signals, and 
Multibus compatibility (Figure 23). This allows higher 
performance RAM operation because the memory read 
and write commands are generated more quickly than is 
possible in the minimum mode. The maximum mode is 
the one most often used in iAPX-86 and iAPX-88 
systems. 

Figure 22. 8086 Minimum Mode 

5-165 210398-001 



AP·97A 

READY 

8284A 
CLK 

GEN'R CLK 

TOCPU 
READY 
LOGIC 

(' 

Figure 23. 8086 Maximum Mode 

Alternate Configuration 

'The Alternate Configuration is not an operating mode 
of the 8086 or 8088 per se, but uses TTL logic along with 
the>status outputs of the microprocesor to generate the 
RAM read and/or write control signals (Figure 24). The 
alternate configuration may be used with the 
microprocessor in either minimum or maximum mode. 
This configuration is advantageous because it activates 
the memory read and write signals even earlier than the 
maximum mode, leading to higher performance. It is 
possible to generate either the RAM read or write signal 
using this configuration, and generate the other RAM 

8284A { CLK 

8086 {STATUS 
8088 (50·2) 

I 

ALE 

8288 

AMWC 

MRDC 

control signal using the min or max mode in the normal 
configuration. 

Each of the three system configurations may be used 
with buffers on the address, data, or control bus for in-
creased electrical drive capability. ' 

Performance vs. Wait States 

Before starting a discussion of timing analyses, it's 
worthwhile to look at the effect of wait states on the 
iAPX-86 and iAPX-88. 

Vee Vee 

CLOCKED AMWC 

TO 
ADVWR 8202AI 

8203 

ADVRD 

Figure 24. AI.temate Configuration Logic 

5-166 210398-001 



Ap·97A 

For most microprocessors, the effect of, say, one wait 
state on execution times is straightforward. If a bus 
cycle normally is three clocks long, adding a wait state 
to every bus cycle will make all bus cycles four clocks, 
decreasing performance by 33070. This is multiplied by 
the percentage of time that the microprocesor is doing 
bus cycles (some instructions take a long time to exe­
cute, so the microprocessor skips a few bus cycles). 

The effect of wait states on the iAPX-86 and iAPX-88 is 
not so straightforward, however. 

The 8086 and 8088 microprocessors consist of two pro­
cessing units: the execution unit (EU) executes instruc­
tions, and the bus interface unit (BIU) fetches instruc­
tions, reads operands, and writes results. During 
periods when the EU is busy executing instructions, the 
BIU "looks ahead" and fetches more instructions from 
the next consecutive addresses in memory; these are 
stored in an internal queue. This queue is four bytes 
long for the 8088 and six bytes long for the 8086; under 
most conditions, the BIU can supply the next instruc­
tions without having to perform a memory cycle. Only 
when the program doesn't proceed serially (e. g. a Jump 
or Call instruction) does the EU have to wait for the 
next instruction to be fetched from memory. Otherwise, 
the instruction fetch time "disappears" as it is pro­
ceeding in parallel with execution of previously fetched 
instructions. The EU then has to wait for the BIU only 
when it needs to read operands from memory or write 
results to memory. As a result, the 8086 and 8088 are 
less sensitive to wait states than other microprocessors 

8086 

A'G_,.IP---J\,I 
AD015 

52,51,50 
READY 

8282 

which don't use an instruction queue. The effect of wait 
states on 8086 execution time compared to the Motorola 
68000 and Zilog Z8000 for a typical mix of software is 
summarized in Table 3.[1] 

Table 3. Effects of Wait States on Execution Time 

Execution Time Increase 
Over a Wait State 
Execution Time 

Processor 1 Wait 2 Wait 3 Wait 
State States States 

iAPX 86/10 (measured) 8.3"70 16.3"70 26.3"70 
Z8000 (computed) 19.1"7. 38.2"70 57.3"70 
68000 (computed) 15.9"70 31.9"70 47.8"70 

The BIU can fetch instructions faster than the EU can 
execute them, so wait states only affect performance to 
the extent that they make the EU wait for the transfer of 
operands and results. How much this affects program 
execution time is a function of the software; programs 
that contain many complex instructions like multiplies 
and divides and register operations are slowed down less 
than programs that contain primarily simple instruc­
tions. The effect of wait states on the 8086 and 8088 is 
always less than on other microprocessors which don't 
use an instruction queue. 

[l] From J6-Bit Microprocessor Benchmark Report: 
iAPX·86, Z8000, and 68000, pub!. by Intel Corp. 
1980 

Ao 
74532 

WE 
(LOW 
BYTE) 

OUT WE 
0-7~ __ ./1' 

~~~ a¥s RAM 
XACK

01100

Figure 25. 8086 Max Mode System

5-167 210398-001

Ap·97A

AL~~~~~ -r t
AHo-AH6 --'~ _____________________________________ '~ ______________________ __

~~~- ~~~-

\ 
'I 

I-----IRCD-
IRSH 

I 
ICAS 

( V CAS 

I--IASR- I-IRAH+ _ IASC-+ -ICAH __ 

;. ROW COLUMN K 
Figure 26. Memory Compatibility Timing 

Timing Analysis 

This section will look at two specific system configura­
tions to show how the 8203 timing requirements are 
satisfied by the 8086. Methods of determining the worst 
case number of wait states for the various configura­
tions are also given. 

The timings of the 8202A and 8203 are identical; only 
the 8203 is referred to for the remainder of this note, but 
all comments apply, equally to the 8202A. All timings 
are worst case over the range of T A = 0 - 70°C and 
Vee = + 5v ± 10% for the test conditions given in the 
devices' data sheets. 

Example 1. 8086 Max 
Mode System (5 MHz) 

This example (Figure 25) is representative of a typical 
medium-size microprocesor system. Example I requires 
one wait state (worst case) for memory cycles. Example 
2 also uses an 8086 in Max mode at 5 MHz, but uses ex­
ternallogic to reduce the number of wait states to zero 
for both read and write cycles. 

DYNAMIC RAM INTERFACE 

First, look at the timing requirements of the dynamic 
RAM to ensure they are satisfied by the 8203. Memory 
compatibility timings are shown in the 8203 data sheet 
(Figure 26). Seven 8203 timings are given, not counting 
tAD, which will be discussed in the next section. These 
timings are summarized in Table 4. 

Table 4. Memory Compatibility Timings 
(all parameters are minimums) 

Symbol Parameter Value 

'tASC Column Address Set-Up Time tp-30 
tASR Row Address Set-Up Time 1p-30 
leAH Column Address Hold Time SIp-30 
leAS CAS Pulse Width Sip-to 
tRAH Row Address Hold Time Ip-to 
tRCD!!] RAS to CAS Delay Time 21p-40 
tRSH RAS Hold Time from CAS SIp-30 

[1]tRCornin = tRAHmin + tAscmin = 2p - 40 
This parameter is the minimum RAS active to CAS 
active delay. 

These timings are all a function of the 8203's clock 
period (tp); they may be adjusted to be compatible with 
slower dynamic RAMs by slowing the 8203's clock (in­
creasing tp). The frequency of the 8203's clock may be 
varied from 18.432 MHz to 25 MHz; for best perfor­
mance, the 8203 should be operated at the highest possi­
ble frequency compatible with the chosen dynamic 
RAM. In most cases, tRAH or teAS will be the frequency 
limiting parameter, but the 8203 can operate at its max­
imum frequency with most dynamic RA~s available. 

tASR applies only to refresh cycles. When the 8203 is in 
the Idle state (not performing any memory or refresh 
cycles) the address multiplexer allows the ALo:7 inputs 
(the RAM row address) to propagate through to the 
8203 OUTO_7 pins, which are connected to the RAM ad­
dress pins. So in read or write cycles, the row address 
will propagate directly from the address bus to the 

5-168 210398-001 



Ap·97A 

RAM; the row address set-up time in this case is deter­
mined by the microprocessor's timing (see the next sec­
tion). At the beginning of a refresh cycle, the 8203 has 
to switch its internal multiplexer to direct the refresh 
row address to the RAMs before activating RAS; the 
tASR parameter in Table 4 refers to this case only. 

Assume the Intel 2164A-20 RAM (200 ns access time) is 
used. Equations l(a)-(h) show that this RAM is com­
patible at the8203's maximum operating frequency of 
25 MHz (t" = 1/(25 MHz) = 40 ns). This frequency 
will be used for now; once the rest of the system timings 
are calculated, the minimum 8203 frequency which will 
provide the same system performance can also be deter­
mined. 

(a) tASC 
(b) tASR 
(c) tCAH 
(d) tCAS 
(e) tRAH 
(f) tRcn[11 
(g) tRP 

(h) tRSH 

tp - 30 
tp - 30 

5tp - 30 
Stp - 10 
tp - 10 

2tp - 40 
=4tp-30 
= 5tp - 30 

[II May be calculated as 

10 (Equation J.) 
10 

170 
190 
30 
40 

130 
170 

tRcomin = tRAHmin + tAscmin = 2tp - 40 

8086 

ADDRESS SET·UP AND HOLD TIME MARGINS 

The microprocessor must put the memory address on 
the address bus early enough in the memory cycle for it 
to pass through the 8203 and meet the row address set­
up time to RAS (tAS~ requirement of the dynamic 
RAM (Figure 27). Since the address propagates directly 
through the 8203, this set-up time is a function of how 
long the microprocessor holds the address on the bus 
before activating the RD or WR command, the address 
delay through the 8203 (tAomax), and how long the 
8203 waits before activating RAS (tcRmin). This is 
shown in Figure 28, and calculated in Equation 2. This 
and all following equations show timing margins; a 
positive result indicates extra margin, a zero result says 
the parameter is just met, and a negative result indicates 
it is not met for worst-case conditions. 

Row Address Set-Up Time Margin (Equation 2.) 
CPU Address to RD Delay + RAS 
Active Delay - Address Delays 
TCLCL(5MHz) + TCLML min (8288) + 
tCRmin(8203) - [Greater of ' 
TCLA Vmax(8086) + TIVOVmax (8282) or 
TCLLHmax(8288) + TSHOVmax(8282)] -
tAomax(8203) - tASR(2164A-20) 
200 + 10 + [40 + 30] -
[Greater of (110 + 30) or (15 + 45)] - 40 - 0 
100 

74532 

WE 
(LOW 
BYTE) 

Figure 27. Address Sel·Up and Hold Time' Margins 

5-169 210398-001 

J 

I 

I, 
II 

I 



'£ 
-..j 
o 

~ 

! 

ClK(8284A) 

BHEj(8086) 
AO-19 

AlE(8288) 

ADDRESS BUS 

OUT 0_7(8203) 
= AO.](2164·20) 

MRDC \(8288) 
AMWC 

RAS(8203) 

~ 
f\ 
f-----TClAV-

\V 
/1\ 

f+-TCllH-

V 
/ 

, 

T1 

\ 
f\ 

BHE. Ao 19VALIO 

TIVOV 
TSHOV 

\11 
/1\ 

!-tAO-----

> 
\ 

f\ 

I-TClMl 

Figure 28. Address Set·up Time Margin 

T2 

VALID 

~tASR-

1\ 
tCR-

\ 
!~ 

VALID 

l> 

" cD 
~ 



~ 
:::1 

~ 

! 

CLK(8284A) 
\ 

ALE(8288) 

ADDRESS BUS 

MRDS 1(8288) 
AMWC 

~-

RAS(8203) 

CAS(8203) 

T2 

\ 
1\ '\ 

~ 
\ 
1\ 

I .. ICC 

i 

-

T3 TW T4 T1 

\ \ \ 
"\ 1\ 

~ 
V 

/ 

~ 
VALID 

\V 
/1\ 

IRSH I ", 
/ 

- -- - -- -- -- - -- -_ .. - - -- -- _ .. - ------

Figure 29. Address liold Time Margin 

, 
"---

I 

~ 
." 
cD .... 
~ 



Ap·97A 

Similarly, thtl' microprocessor must maintain the 
memory address long enough to satisfy the column ad­
dress hold time (teAR> of the RAM; the 8203 TAomin 
parameter should be used for this calculation. 

More importantly, the 8203 bank select (Bo_l) inputs are 
also not latched; these are used directly to decode which 
RAS output is activat~d during read or write cycles, so 
these inputs must be held valid until RAS goes inactive. 
Since BO_I are usually taken directly from the address 
bus, this determines the address hold time required of 
the system (Figure 29). These are easily satisfied by the 
8086 as shown by Equation 3. N represents the number 
of wait states. This equation can be tried with various 
values for N (starting with 0 and increasing) until the 
equation is satisfied, or it can be set equal to zero 
(meaning no excess margin remains) and solved for N 
directly; the fractional value for N that results IIlUSt be 
rounded up to get the worst-case number of wait states 
to satisfy this particular parameter. No wait states are 
required to meet address hold times. 

Address Hold Time Margin (N = 0) (Equation 3.) 
CPU Address Hold Time, from 
RD Active - RAS Inactive Delays 
(3 + N)TCLCL(5MHz) + 
TCLLHmin(8288)[I] + TSHOVmin(8282)­
TCLMLmax(8288) - tccmas(~203) -
tRsHmax(8203)[2] 
3(200) + 2 + 10 - 35 - [4(40) + 85] -
[5(40) + 30] 
102 

8086 8282 

OE 
8286 T 

READ DATA ACCESS TIME MARGIN 

Read'data access times determine how many wait states 
are required for read cycles. Remember that dynamic 
RAMs have two access time parameters, RAS access 
time (tRAd and CAS access time (tcAd. Either one may 
be the limiting factor in determining RAM access time, 
as explained in the section Dynamic RAM - Access 
Times, above. Her.e tCAC is the limiting factor, as 

This timing is shown in Figures 30 and 31, and is 
calculated in Equation 4. In this system, one wait state is 
required to satisfy the read data access time re­
quirements of the system; the margin is -50 ns, which is 
too large a difference to be made up by using a faster 
RAM. ' 

[I] Not specified - use 2 ns 

[2] Not specified in 8203 data sheet; 
tRsHmax(8203) = 5tp + 30 

Ao 
74532 

Figure 30. Read Data Access Time Margin 

5-172 210398-001 



01 
~ 
(j 

~ 

! 

12 13 TW T4 

CLK(8284A) 

MRDC(8288) 

I; ICC 

CAS(8203) 

DouT(2164-20) VALID ------------

DATA BUS XI VALID 

ADo·,s(8086) 

Figure 31. Read Data Access Time Margin 

:r> 
"0 
cD ...., 
:r> 

",..-~"".~."._...2",;<;;. ~---



AP·97A 

Read Data Access (Equation 4.) 
Time Margin (N = 0) 

CPU RD Active to Data Valid Delay -
CAS Active Delay - Data Delays 
(2 + N)TCLCL(5MHz) - TCLMLmax(8288) 
tccmax(8203) - tCAcmax(2164A-20) -
tpmax(74S373)[1] - TIVOVmax(8286) -
TDVCLmin(8086) 
2(200) - 35 - [4(40) + 85] - llO-
30[1] - 30 - 30 
- 80=>1 wait state needed (N = 1) 

WRITE DATA SET·UP AND HOLD TIME MARGINS 

In write cycles, the write data must 

1. reach the dynamic RAMs long enough before 
CAS to meet the RAM's data set-up time 
parameter, tos (Figures 32 and 33), and 

2. be held long enough after CAS to meet the 
RAM's data hold time parameter (tow (Figures 
32 and 34.) 

Data set-up time margin is calculated in Equation 5, and 
data hold time margin is ~iven in Equation 6. Again, 
these are margins, so a positive number indicates that 
system timing requirements are met for worst-case tim­
ings. Data hold time is a function of the number of 8086 
wait states, represented as N, as is the read data access 
time margin. No wait states are required to meet this 
parameter. 

8086 

A,s·'9 1.40 .... ".-'\ A 
ADo.'51"'ilIIi1IlI--V1 

8282 

.... -------!III---ICLK 

DE 
8286 T 

Write Data Set-Up Time Margin (Equation 5.) 
CPU WR Active to Data Valid Delay + 
CAS Delay - Data Delay 
TCLMLmin(8288) + tccmin(8203) -
TCLDVmax(8086) - TIVOVmax(8286) -
tosmin(2164A-20) 
10 + [3(40) + 25] - 110 - 30 - 0 
15 

Write Data Hold Time (Equation 6.) 
Margin (N = 0) 

CPU Data Hold Time, from AMWC 
l~dive + Data Delays, - CAS Active Delay 
(2 + N)TCLCL(5MHz) + TCLCHmin(8284A) 
+ TCHDXmin(8086) + TIVOVmin(8286) 
- TCLMLmax(8288) - tccmax(8203) -
tOHmin(2164A-20) 
2(200) + [% (200) - 15] + 10 

+ 5 - 35 - [4(40) + 85] - 45 
308 

[I] tp(74S373) is the greater of tpHL (from data) or 
tpLH (from data) and is compensated for Vee and 
temperature variations, and is derated for a 
300pF load (T.I. spec is at 15pF). 
tp(74S373) = 13ns + 0.05ns/ pF(300 - 15)pF 
+ 2.75ns = 3Ons. , 

Where 13ns is T.1. spec value 

Ao 

0.05ns/ pF is derating factor 
for excess capacitive load 
(300 - 15) is excess capacitive 
load 2.75 is compensation for 
T A and Vee variation 

74532 

WE 
(LOW 
BYTE) 

WE 

~---t~ RAM 

01100 

Dour 

o 

Figure 32. Write Data Set·Up and Hold Time Margins 

5-174 210398-001 



Ap·97A 

11 T2 

\ \ 

1\ 1\ 
CLK(8284A) 

TCLML 

\ 
1\ 

AMWC(8288) 

ICC 

CAS(8203) \ 
I--TCLDV-

ADO·,s(8086) 

DATA BUS= I 
DIN(2164A·20) 

ADDRESS 

------------------------------

\/ 
J\ 

!-o--TlVOV 

DATA 

IOS-

\V 
VALID 

/1\ 

Figure 33. Write Data Set-Up Time Margin 

SACK SET-UP TIME MARGIN 

As explained earlier, SACK (and XACK) are "hand­
shaking" signals used to tell the microprocessor when it 
may terminate the bus cycle in progress. Thus, SACK 
timing determines how many wait states will be 
generated, as opposed to how many wait states are ac­
tually required for proper operation, which is determin­
ed by the read data access time for read cycles and by 
the w~ite data hold time. for write cycles. If SACK 
causes more wait states than are required, there is a per­
formance penalty, but the system operates; if too few 
wait states are generated, the system will not function. 

SACK and XACK serve the same function; they differ 
only in timing. XACK is Multibus compatible, and is 
activated only when the read data is actually on the bus 
(in a read cycle) or when the write data has been latched 
into the RAM (in a write cycle). SACK is activated 
earlier in the memory cycle than XACK to compensate 
for delays in the microprocessor responding to this 
signal to terminate the cycle. Use of SACK is normally 
preferable, as it results in the fewest possible wait states 
being generated. But in some systems, SACK will not 
generate a sufficient number of wait states, so XACK or 
a delayed form of SACK must be used. Note that the 
number of wait states generated by SACK and XACK 
will vary, depending on whether a refresh cycle is in pro­
gress when the memory cycle was requested, and if 

refresh cycle is in progress, how near it is to completion. 
SACK is sampled by the 8284A Clock Generator Chip's 
RDYI or RDY2 input. The 8284A can be program­
med to treat these inputs as either synchronous or asyn­
chronous inputs by tying its ASYNC input (pin 15) 
either high or low, respectively. SACK must be treated 
as asynchronous unless it has been synchronized to the 
microprocessor's clock with an external flip-flop. 

SACK set-up time is shown in Figures 35 and 36, and is 
calculated in Equation 7. This equation indicates that, 
at worst case, one wait state will be generated (n = 1). 
This satisfies the requirements of the system, namely 
one wait state for reads and zero (or more) wait states 
for writes. 

SACK Set-Up Time Margin (N = 0) (Equation 7.) 
RD or WR Active to SACK Active Delay 
(N)TCLCL(5MHz) + tPLHmin(7404)[I] -
TCLMf,max(8288) - tCAmax(8203) 
- tsumin(74S74) 
o + 1 - 35 - [2(40) + 47] - 3 
-164 => 1 wait state wi! be generated (N = 1) 

We have only looked at "worst case" SACK set-up time 
so far, to determine the maximum number of wait states 
that will be generated (assuming no delays due to a 
refresh cycle in progress). We should look at "best 

[I] Not specified - use 1 ns. 

5-175 210398-001 



T2 T3 

CLK(8284A) ~ \ \ 
1\ \ r\ 

~ 

AMWC(8288) 
\ , 

tcc 

CAS(8203) \ 
Cf' .... 
al 

ADo-ls(8086) DATA VALID 

DEN(8288) 
~ 

DATA BUS VALID 

~ 

! Figure 34. Write Data Hold Time Margin 

T4 

/ 
J 

TCHDlt 

\ 
J 

!--TCVNX 

tDH 

\ 
\ 

... 
\ 

~ 
~TELOZ_ 

"":-TlVOV--

~ 

~ 
"U 
cO .... 
~ 



intJ 

CLK(8284A) 

MRDC \(8288) 
AMWC 

SACK(8203) 

CLK(74S74) 

Q(74S74)~ 
RDY1(8284A) 

READY(8284A, 8086) 

8086 
CPU 

8282 

Ap·97A 

A'6.'91~----",1 
ADo·15 

Figure 35. SACK Set·Up Time Margin 

T2 T3 

Figure 36. SACK Set-Up Time Margin 

5-177 

AO 
74S32 

TW 

WE 
(LOW 
BYTE) 

210398-001 



AP·97A 

case" SACK timing also, to make sure enough wait 
states are always generated. Note that in Figure 35, 
SACK goes through an external 74S74 flip-flop; this 
samples SACK on-half clock cycle earlier than the 
8284A does (on the same clock edge that activates 
MRDC or AMWC), effectively reducing SACK set-up 
time by one-half clock period. This guarantees the pro­
per number of wait state will be generated for "best 
case" SACK timing. Adding this flip-flop does not in­
crease the worst case number of wait states generated by 
SACK. 

In the case where a memory cycle is requested while a 
refresh cycle is in progress, the memory cycle will be 
delayed by a variable amount of time, depending on 
how near the refresh cycle is to completion. This delay 
may be as long'as one full memory cycle if the refresh 
was just starting; this time is about 650 ns, depending on 
the 8203's clock frequency. SACK set-up, read data set­
up, and write data hold times to the microprocessor's 
clock are not the same as in the usual case where there is 
no refresh interference. In this case, SACK is delayed 
until the read or write cycle has been completed by the 
RAM, so that there is no possibility of terminating the 
cycle too soon. 

PCS SET·UP TIME MARGIN 

The 8203's RD, WR, and ALE inputs must be qualified 
by PCS in order to perform a memory cycle. If the PCS 
active set-up time parameter (tpcs) is violated, the 
memory cycle will be delayed. In this case all maximum 
delays normally measured from command (tCR, tcc, 
tc~ will be measured instead froin PCS active and will 
be increased by tpcs (20 ns). Minimum tCR, tcc, tCA 
delays remain the same, but are measured from com­
mand or PCS whichever goes active later. If tpcs is 
violated, care must be taken that PCS does not glitch 
low while RD, WR, or ALE is active, erroneously trig­
gering a memory cycle. tpcs is not violated in this 
system, however (Equation 8). 

PCS Set-Up Time Margin (Equation 8.) 
CPU Address Valid to Command Active 
Delay - PCS Decode Time 
TCLCL(5MHz) + TCLMLmin(8288)­
[Greater of TCLA Vmax(8086) + 
TIVOVmax(8282) or TCLLHmax(8288) + 
TSHOVmax(8282)] 
- tplllax(8205) -tpcsmin(8203) 
200 + 10 - [Greater of (110 + 30) or 
(15 + 45)] - 18 - 20 
32 

RAM DATA OUT HOLD TIME MARGIN 

The 8203 CAS output is only held valid fo~ a fixed 
length of time during a read cycle, after that the RAM 
data outputs are 3-stated. This time is not long enough 
to allow the 8086 to read the data from the bus, so the 
data must be latched externally. This latch should be a 
transparent type and should be strobed by XACK from 
the 8203. Because the minimum time from XACK active 
to CAS inactive is only 10 ns, a latch with a data hold 
time requirement of 10 ns or less (such as a 74S373) 
should be used (see Equation 9). 

RAM Data Out Hold Time Margin, (Equation 9.) 
from XACK Active 

tAcKmin(8203) + tOFFmin(2164A - 20) 
- tHmin(74S373)[I] 

10 + 0 - 10 
o 

OTHER CALCULATIONS 

Equations 3, 4, 6 and 7 may be solved directly for N, 
where N is the number of wait states, to find how many 
wait states are required at a given frequency. Alter­
natively, a number may be substituted for N and these 
equations solved for the 8086's clock period, TCLCL, 
to find the maximum microprocessor frequency possible 
with N wait states. Note that the clock high and low 
times (TCHCL and TCLCH) lire also a function of 
TCLCL. Be sure to use the proper speed selection of the 
8086 in this calculation, as various A.C:parameters are 
different and the result may be different for different 
speed selections of the 8086, even at the same frequency. 
Be sure to check the other equations at this frequency to 
make sure they are OK, too. 

Finally, for given values of TCLCL and N, Equations 3, 
4, 6, and 7 may be checked to find the lowest 8203 clock 
frequency which will allow the same system per­
formance, if it is desired to operate at some frequency 
other than the 25 MHz we assumed. 

CONCLUSION 

This design will operate with, at worst case, one wait 
state (except for refresh) at microprocessor frequencies 
up to 6 MHz, using slow (200 ns access time) dynamic 
RAMs. At 6 MHz, it is limited by a lack of SACK set-up 

5-178 

[I] A 74S373 must be used to meet this timing re­
quirement. Even though worst case margin is 0 ns, 
this is not a critical timing, as valid data will hold 
on the latch inputs for a considerable time after 
the RAM outputs 3-state. 

, 210398-001 



AP·97A 

time. At 5 MHz, the 8203 can be operated at any clock 
frequency from 18.432 MHz to 25 MHz, still with only 
one wait state. 

Example 2. 8086 Alternate 
Configuration System (5 MHz) 

Figure 37 shows another 8086 Max mode system at 5 
MHz, but this time using the Alternate Configuration, 
which allows it to operate with no wait states (except for 
refresh). 

The system in the previous example was limited by 
SACK set-up time. SACK set-up time can be improved 
by sampling SACK later; this has been done by changing 
the clock edge used to sample SACK, allowing roughly 
¥3 clock period longer. SACK set-up time (and read data 
access time and write data hold time) margin can also be 
improved by activating the RD or WR inputs of the 8203 
earlier in the 8086's bus cycle; this is the purpose of the 
extra logic in Figure 37 (I.C.s A8 - All). These generate 
advanced RD and WR signals timed from the falling 
edge of ALE, which occurs roughly Y\ clock period 
sooner than the MRDC and AMWC are generated by the 
8288 Bus Controller. Altogether, these changes allow 
about one 8086 clock period more set-up time for SACK. 

Let's look at this logic in more detail. An Intel 8205 
(A8) is used to decode the 8086's status outputs SO-2. An 
opcode fetch, memory read, or memory write decode to 
8205 outputs 4,5, and 6, respectively. These-outputs go 
to the D inputs of two 74S74 flip-flops. The Q output of 
flip-flop AIO.2 is an advanced memory read signal and 
the Q output of AII.2 is an advanced memory write 
signal. As shown in Figure 37, the 8203 is not activated 
for opcode fetches, but it can be if 8205 outputs 4 and 5 
are ORed with the unused 74S00 gate (A9.4) and the Q 
output of AIO.2 used instead of Q. Both flip-flops are 
clocked by the falling edge of ALE to generate the ad­
vanced commands. Flip-flop AIO.I is clocked by the 
trailing edge of either AMWC (Advanced Memory 
Write Command) or MRDC (Memory Read Command) 
from the 8288 bus controller (A6), indicating that the 
8086 has completed the memory cycle. AIO.I, in turn, 
presets both the AIO.2 and AII.2 flip-flops to terminate 
the advanced memory read and write signals to the 
8202A. AIO.1 is then preset to its initial state by ALE 
going active at the start of the next bus cycle. 

Because RAM write cycles are started very early in the 
8086's bus cycle using this logic, the 8203 will activate 
CAS to the RAMs (latching write data) before the data 
is valid from the 8086. This requires delaying WE to the 
RAMs and performing a "late write" (explained earlier 
under Dynamic RAMs) in order to allow more time for 
the write data to arrive. But the WE signal must not be 

delayed so long that there is no longer enough data hold 
time, measured from when WE goes active; or that the 
WE active to CAS inactive delay spec or the RAM 
(tRwd is violated. None of the control signals from the 
8086 or 8288 bus controller satisfy both of these timing 
constraints, so such a signal is generated by flip-flop 
AIl.I, which serves to delay AMWC from the bus con­

Ltroller by an amount of time equal to TCLCH (the low 
time of the 8086's clock). All.l is also preset by AIO.l 
at the end of the memory cycle. The Q output of All.1 
is ANDed with WE from the 8203 by A14.1 to form a 
delayed RAM WE. As in the previous example, tl:tis 
signal is then ANDed with BHE and AO to form the 
WE for the high and low bytes of RAM, respectively. 

A total of four packages (three 14-pin and one l6-pin) 
of TTL logic are required. 

The dynamic RAM interface timings are identical to the 
last example (Equations I (a)-(h»; 2164A-20 RAMs will 
be used again. 

ADDRESS SET·UP AND HOLD TIME MARGINS 

Address set-up and hold time margins are given in 
Equations 10 and 11, respectively. An 8086-2 
microprocessor has been used instead of the standard 
8086, as this speed-selected part gives better address set­
up to RD or WR times, which this design needs since it 
uses advanced RD and WR commands. 

Row Address Set-Up Time Margin[1] (Equation 10.) 

5-179 

CPU Address to Adv. RD Delay 
+ RAS Delay - Address'Deiays 
TCLCHmin(8284A) + TCHLLmin(828S)[2] 

+ tpLHmin(74S00)[3] + tpHLmin(74S74)[21 

+ tCRmin(S203) - [Greater of 
TCLA Vmax(S086 - 2) + TIVOVmax(S282) 
or TCLLHmax(S288) + TSHOVmax(8282)] 

- tAJ)lIlax(S203) - tAsRmin(2164A-20) 
[¥3(200) - 15] + 2 + I + 2 + [(40) + 30] 
- [Greater of (60 + 30) or (15 + 45)] - 40 - 0 

63 

[I] Read or write cycles only. Eq. Ib gives this timing 
for refresh cycles. 

[2] Not specified - use 2 ns. 
[3] Not specified - use Ins. 

210398-001 



AP·97A 

I 

Address Hold Time Margin (N = 0) (Equation 11.) Write Data Hold Time (Equation 14.) 
CPU Address Hold Time from Adv. RD 
Active -' RAS Inactive Delays 
(3 + N)TCLCL(5MHz) + TCHCLmin(8284A) 
+ TCLLHmin (8288) 
+ TSHOVmin(8282) - TCLMLmax(8288) 
• tccmax(8203) - tRSHmax(8203) 
(3)200 + [Y3(2OO) + 2] + 2 + 5 - 35 
- [4(40) + 85] - [5(40) + 20] 
175 

READ DATA ACCESS TIME MARGIN 

Read data access time margin is shown in Equation 12; 
, no wait states are required for read cycles, even with 200 

ns access time RAMs. 

Read Data Access Time (Equation 12.) 
Margin (N = 0) 

= Adv. RD to Data Valid Delay - CAS Delay 
- Read Data Delays 

= (2+N)TCLCL(5MHz) + TCHCLmin(8284A) 
, - TCHLLmax(8288) - tpLHmax(74Soo) 

- tpHLmax(74S74) - tccmax(8203) 
- tCAcmax(2164A-20) - tpIllax(74S373) 
- TIVOVmax(8286) - TDVCLmin(8086-2) 
(2)200 + [Y3(2OO) + 2] - 15 - 5 - 10 
- [4(40) + 85] - 110 - 30 - 30 - 20 
3 

WRITE DATA SET·UP AND HOLD TI",E MARGINS 

Write data set-up al}d hold times are shown in Equa­
tions 13 and 14, respectively. No wait states are required 
during write cycles. Note that write data set-up has been 
guaranteed by delaying WE from the 8203 with clocked 
AMWC from the bus controller and performing "late 
write" cycles; write data set-up time would not be 
satisfied otherwise. Equation 15 verifies that WE has 
not been delayed too long to meet the RAM's WE active 
to RAS inactive set-up time (tRWU, The RAM's WE ac­
tive'to CAS inactive set-up time (tcwu is also satisfied, 
since CAS does not go inactive until at least 20 ns after 
RAS. . 

Write Data Set-Up Time Margin (Equation 13.) 
CP{] Data to Clocked AMWC Set-Up 
+ WE Delays - Data Delays , 
TCLCHmin(8284A) + tpHLmin(74S74)[I) 
+ (2)tpHLmin(74S32)[I) 
- TCLDVmax(8086-2) - TIVOVmax(8286) 
- tosJIlin(2164A-20) 
[%(200) - 15] + 2 + (2)2 - 60 - 30 - 0 
34 

Margin (N = 0) 
CPU Data Hold Time from Clocked AMWC 
+ Data Delays - WE Delays 
(2 + N)TCLCL(5MHz) 
TCHDXmin(8086-2) + TIVOVmin(8286) -
- tPHLm\lX(74S74) - (2)tpHJ)llax(74S)2) 
- tOHmin(2164A-20) 
(2)200 + 10 + 5 - 10 - (2)7 - 45 
346 

WE Active Set-Up Time Margin (Equation 15.) 
to RAS Inactive 

TCHLLmin(8284A)[I) + tpLHmin(74Soo)[2) 
+ tccmin(8203) + tRsHmin(8203) 
- tSKEw(74S74)[3) -(2)tpHLmax(74S32) 
- tRWLmin(2164A-20) - TCLCL(5MHz) 
2 + 1 + [3(40) + 25] + [5(40) - 30] 
-2-(2)7-50-200 
52 

SACK SET·UP TIME MARGIN, 

Equation 16 shows that SACK set-up time is satisfied; 
no wait states will be generated for read or write cycles 
(except for refresh). ' 

SACK Set-Up Time Margin (N = 0) (Equation 16.) 

5-180 

(1 + N)TCLCL(5MHz) - TCHLLmax(8288) 
- tpLHmax(74Soo) - tpHJ)llax(74S74) 
- tCAmax(8203) - tsumin(74S74) 
200 • 35 - 5 - 10 [2(40) + 47] - 3 
20 

[I) Not specified - use 2 ns. 
[2) Not specified - use 1 ns. 
[3) tSKEw(74S74) is max. skew betw~n 

tpHL(Q output, from CLK) of two Q outputs in 
same'package - use = 2 ns. 

210398-001 



~ 
~ 

'" 

! 

A1 
• 8264A 

~ASYNC 
>z 'r Ow 
a:< 

Notes 

A16-19 
ADo-15 

ALE AMWC 

Symbol\, Indicates connection to Vee through 1K.n.pull up 
- - - mdlcates additional Circuitry to zero wall states 

ADDRESS BUS 

A8 
A02 

0619 
8205 0,10 

74500 

L_ 
I L ______ _ 

DATA BUS 

Figure 37. 8086 Alternate Configuration System 

DOUT 
DIN 

WE 
(HIGH 
BYTE) 

WE 
RAM 

2164A 
·20 

DIN 

3> 
"'tI 

~ 
3> 



AP·97A 

PCS Set-Up Time Margin (Equation 17.) 
CPU Address Valid to Adv. RD or Adv. ' 
WIt Delay - PCS Decode Time 
TCLCHmin(8284A) + TCHLLmin(8288)[I] 
+ tpLHmin(74S00) + tpHLmin(74S74)[l] 
- TCLA Vmax(8086-2) - TIVOVmax(8282) 
- tpmax(74S138[3] - tpcsmin(8203) 
[%(200) - IS) t 2 + 1 + 2 - 60 - 30 - 12 - 20 
1 

PCS SET-UP TIME MARGIN 

PCS set-up time for the 8203 (tpcS> is sapsfied, but not 
with as much margin in the last example (Figure 17). 

[I] Not specified..,... use 2 ns. 
[2] Not specified ...:.. use 1 ns. 
[3] Must use 74S138 to maintain PCS Set-Up 

Time Margin. 

This is because the RD and WR commands are activated 
earlier in the microprocessor's bus cycle, leaving less 
time to decode PCS from the address bus. 

CONCLUSION 

This design will operate with a guaranteed zero wait 
states up to 5 MHz using slow (200 ns access time) 
RAMs. At this frequency, it is limited by both read and 
write data set-up times, and to a lesser extent, by SACK 
set-up time. Using faster RAMs will not raise the max­
imum frequency, as write data ar(d SACK set-up times: 
are not affected by the RAM speck The 8203 operating 
frequency must be 25 MHz. 

This design can be used (with some modifications) to 
allow one wait state performance up to 8086 clock fre­
quency of 8 MHz. 

5-182 210398-001 



APPLICATION 
NOTE 

5-183 

Ap·141 

October 1981 

order number:210315.001 



8203/8206/2164A 
Memory Design 

Contents 

ABSTRACT 

DESIGN 

CONCLUSION 

5-184 

''j 

210315-001 



Ap·141 

ABSTRACT 

This Application Note shows an error corrected 
dynamic RAM memory design using the 8203 64K 
Dynamic RAM Controller, 8206 Error Detection and 
Correction Unit and 150 ns 64K Dynamic RAMs with a 
minimum of additional logic. 

The goals of this design are to: 

1. Control 128K words X 16 bits (256 KB) of 64K 
dynamic RAM. 

2. Support 150 ns dynamic RAMs. 
3. Write corrected data back into dynamic RAM when 

errors are detected during read operations. . 
4. To use a minimum of additional logic. 

It is not the goal of this design to: 

1. Provide the maximum possible performance. 
2. Provide features like error logging, automatic error 

scrubbing and dynamic RAM initialization on 
power-up, or diagnostics, although these features 
can be added. 

DESIGN 

Figure 1 shows a memory design using the 8206 with 
Intel's 8203 64K Dynamic RAM Controller and 150 ns 
64K Dynamic RAMs. As few as three additional ICs 
complete the memory control function (Figure 2). 

For simplicity, all memory cycles are impfemented as 
single-cycle read-modify-writes, shown in Figure 3. This 
cycle differs from a normal read or write primarily when 
the dynamic RAM write enable (WE) is activated. In a 
normal write cycle, WE is activated early in the cycle; in 
a read cycle, WE is inactive. A read-modify-write cycle 
consists of two phases. In the first phase, WE is inac­
tive, and data is read from the dynamic RAM; for the 
second phase, WE is activated and the (modified) data is 
written into the same word in the dynamic RAM. 
Dynamic RAMs have separate data input and output 
pins so that modified data may be written, even as the 
original data is being read. Therefore data may be read 
and written in only one memory cycle. 

A17.Al J.. Bo,AH,AL OUT ~I"A-7'-A-O --~~I"A-7'-A-o ---Lt--'-_l ~\P·A-7-'Ao---'" 
----,yJ y HIGH I---v LOW 1---11 CHECK 

RD RD RASO RAS BYTE -<: RAS BYTE I ~ RAS BIT 
WR WR 8203 RASl RAS RAM ~ RAS RAM --c RAS RAM 

cs CS CAS CAS ~::~A ~ CAS ~::~A --c CAS ~:~4A 
XACK ,.-c ~~ DO -<: ~~ DO --C W~ 

XACK -++-+------4I___++_, ~ ~ I ~ 

1 
'---T-.,----,..,JJ~ '< 7" 

,.-c CAS WE 
'--<: RD 

_WR 
L----;~CS 

Ao------tAo 
EfiiE BHE 

RIW r-----i 
BMoP------i 
BM1P-----1 
TI--~--1 

OEBO P--i----i 
OEB1~ 

INTERFACE 
LOGIC 

;1. SYSTEM DATA BUS \ 

01 

Figure 1. 8203/8206 Memory System 

5-185 210315-001 

I 



inter Ap·141 

In order to do read-modify-writes in one cycle, the 
dynamic RAM's CAS strobe must be active long enough 
for the 8206 to access data from the dynamic RAM, cor­
rect it, and write the corrected data back into the 
dynamic RAM. CAS active time is an 8203 spec (teAs), 
and is dependent on the 8203's clock frequency. The 
clock frequency and dynamic RAM must be chosen to 
satisfy Equation I. 

(Eq. 1) 
Dynamic Dynamic Dynamic 

8203 RAM 8206 8206 RAM RAM 

tcAsmin 2: !cAC +TDVQV+ TQVQV +tDS+ tCWL 

5(54)-10 '" 85 + 67 + 59 + 0 + 40 

260 '" 251 

The 8203 itself performs normal reads and writes. In 
order to perform read-modify-writes, all that is needed 
is to change the timing of the WE signal. In this design, 
WE is generated by the interface logic in Figure 2-the 
8203 WE output is not used. All other dynamic RAM 
control signals come from the 8203.A 20-ohm damping 
rresistor is used to reduce ringing of the WE signal. These 
'resistors are included on-chip for all 8203 outputs. 

The interface logic generates the R/W input to the 8206. 
This signal is high for read cycles and ,low for write 
cycles. During a read-modify-write cycle, R/W is first 
high, then low. The falling edge of R/W tells the 8206 to 
latch its syndrome bits internally and generate corrected 
check bits to be written to dynamic RAM. Corrected 
data is already available from the DO pins. No control 
signals at all are required to generate corrected data. 

R/W is generated by delaying CAS from the 8203 with a 
TTL-buffered delay line. This allows the 8206 sufficient 
time to generate the syndrome; this delay, tDELAY 1> 

must satisfy, Equation 2. 

(Eq.2) 
Dynamic 

RAM 8206 

tOELAYI 2: tCAC + TDVRL 

150 '" 85 ,+ 34 

150 '" 119 ". 

The 8206 uses multiplexed pins to output first the syn­
drome word and then check bits. This same R/W signal 
may be used to latch the syndrome word externally for 
error logging. The 8206 also supplies two useful error 
signals. ERROR signals the presence of an error in the 
data or check bits. CE tells if the error is correctable 
(single bit in error) or uncorrectable (multiple bits in 
error). 

In the event that an uncorrectable error is detected, the ' 
8206 will force the Correctable Error (CE) flag low; this 
may be used as an interrupt to the CPU to halt execu­
tion and/or perform an error service routine. In this 
case the 8206 outputs data and check bits just as they 
were read, so that the data in the dynamic RAM is left 
unaltered, and may be inspected later. 

After R/W goes low, sufficient time is allowed for the 
8206 to generate corrected check bits, then the interface 
logic activates WE to write both corrected data and 
check bits into dynamic RAM. WE is generated by 
delaying CAS from the 8203 with the same delay line 

8203 CAS 
TTL 

DELAY LINE 

SYSTEM 
ADDRESS 

BUS 

{ 

Ao 

BHE~------------~-r--~-' 

DEL~~~~ cs -+--11><>0 OE 1 
C~YS~~M { AD ~ __________________ ----..,.0TE:: ~~~TROL NT BU~ WR -;--<L_ 

Figure 2. Interface logic 

5-186 210315-001 



Ap·141 

A7-AoJ(l: ROW X COLUMN X 

\ ~----------------~! 
CAS \ _______ ---11 

\'-----J! 
DO- - - - - - - - < VALID )-

DI X VALID x ....... _ 
Figure 3. Single·Cycle Read·Modlfy-Wrlte 

used to generate R/W. This delay, tDELAY 2, must be 
long enough to allow the 8206 to generate valid check 
bits, but not so long that the tcWL spec of the RAM is 
violated. This is expressed by Equation 3. 

8206 8203 

(Eq. 3) 

Dynamic 
RAM 

tDELAY I + TRVSV S tDELAY 2 S tCAsmin - tCWL 

150 + 42 s 200 s 260 40 
"I 

192 s 200 s 220 ~ 

Unlike other :eDC chips, errors in both data and check 
bits are automatically corrected, without programming 
the chip to a special mode. 

~ince the-8203 terminates'CAS to the dynamic RAMs a 
fixed length of time after the start of a memory cycle, a 
latch is usually needed to maintain data on the bus until 
the 8086 completes the read cycle. This is conveniently 
done by connecting XACK from the 8203 to the STB in­
put of the 8206. This latches the read data and check 
bits using the 8206's internal latches. 

The 8086, like all 16-bit microprocessors, is capable of 
reading and writing single byte data to memory. Since 
the Hamming code works only on entire words, if you 
want to write one byte of the word, you have to read the 
entire word to be modified, do error correction on it, 
merge the new byte into the old word inside the 8206, 
generate check bits for the new word, and write the 

whole word plus check bits into dynamic RAM. A byte 
write is implemented as a Read-Modify-Write. 

Why bother with error correction on the old word? Sup­
pose a bit error had occurred in the half of the old word 
not to be changed. This old byte would be combined 
with the new byte, and new check bits would be gener­
ated for the whole word, including the bit in error. So 
the bit error now becomes "legitimate"; no error will be 
detected when this word is read, and the system will 
crash. You can see why it is important to eliminate this 
bit error before new check bits are generated. Byte 
writes are difficult with most EDC chips, but easy with 
the 8206. 

Referring again to Figure 2, the 8206 byte mark inputs 
(BMo, BMI), are generated from AO and BHE, respec­
tively, of the 8086's address bus, to tell the 8206 which 
byte is being written. The 8206 performs error correc­
tion on the entire word to be modified, but tri-states its 
DO/WDI pins for the byte to be written; this byte is 
provided from the data bus by enabling the correspon­
ding 8286 transceiver. The 8206 then generates check 
bits for the new word. 

During a read cycle, BMo and BMI are forced inactive, 
i.e., the 8206 outputs both bytes even if 8086 is only 
reading one. This is done since all cycles are imple­
mented as read-modify-writes, so both bytes of data 
(plus check bits) must be present at the dynamic RAM 
data input pins to be rewritten during the second phase 

. of the read-modify-write. Only those bytes actually be-

5-187 ' 210315-001 



inter AP·141. 

ing read by the 8086 are driven on the data bus by enabl­
ing the corresponding 8286 transceiver. 

The output enables of the 8286 transceivers (OEBO, 
OEB1) are qualified by the 8086 RD, WR commands 
and the 8203 CS. This serves two purposes: 

1. It prevents data bus contention during read cycles. 
2. It prevents contention between the transceivers and 

the 8206 DO pins at the beginning of a write cycle. 

CONCLUSION 
Thanks to the use of a 68-pin package, the 8206 Error 
Detection and Correction Unit is able to implement an 
architecture with separate 16 pin input and outPut 
busses. The resulting simplification of control require­
ments allows error correction to be easily added to an 
8203 memory subsystem with a minimal amount of 
interface logic. 

5-188 210315-001 



©Intel Corporation, 1983. 

APPLICA·TION 
NOTE 

5-189 

AP·167 

August 1983 

ORDER NUMBER: 230809-001 
NOVEMBER 1983 

I 

I 
• I 

i 



AP-167. 

INTRODUCTION 

Most microprocessor based workstation designs to­
day use large amounts of DRAM for program storage. 
A drawback to DRAMs is the many critical timings 
that must be met. This control function could easily 
equal the area of the DRAM array if implemented with 
discrete logic. . 

The VLSI 8207 Advanced Dynamic RAM Controller 
(ADRC) performs complete DRAM timing and con­
trol. This includes the normal RAM 8 warm-up cycles, 
various refresh cycles and frequencies, address 
multiplexing, and address strobe timings. The 8207's 
system interface and RAM timing and control are pro­
grammable to permit it to be used in most 
applications. 

Integrating all of the above functions (plus a dual port 
and error correcting interfaces) allows the user to 
realize significant cost savings over discrete logic. For 
example, comparing the 8207 to the iSBCOl2B 512K 
'byte RAM board (where the DRAM control is done 
entirely with TTL), an 8207 design saved board space 
(3 in2 vs 10 in2); required less power (420 rna vs 
1220 rna); and generated less heat. Moreover, design· 
time was reduced, and increased margins were a­
chieved due to less skewing of critical timings. This 
comparison is based on a single port design and did 
not include the 8207's RAM warm-up, dual:port and 
error correcting features. If these features were fully 
implemented, there would be no change to the 8207 
figures, listed above, while the TTL figures would easi­
ly double. 

This Application Note will illustrate an iAPX design 
with the 8207 controJIing the dynamic RAM array. The 
reader should be familiar with the 8207 data sheet, the 
80186 data sheet, and a RAM data sheet*. 

DESIGN GOALS 

The main objective of this design is for the 80186 to 
run with no wait states with a Dynamic RAM array. 
The design uses one port of the 8207. The dual port 
and error correcting interfaces of the 8207 are covered 
in separate Application Notes. 

The size of the RAM array is 4 banks of 64k RAMs 
or 512k bytes. The memory is to be interfaced locally 
to the 80186. 

USING THE 8207 

The three areas to be considered when designing in 
the 8207 are: 

• 8207 programming logic 
• Microprocessor interface 
• RAM array 

8207 Programming 

The 8207 requires up to two 74LS165 shift registers 
(or programming. This design needs one 8 bit shift 
register, as shown in Figure 1. The 16 bits in the Pro­
gram Data Word are set as shown in Figure 2. Refresh 
is done internally, so the REFRQ input must be tied 
high. The memory commands are iAPX 86 status, so 

,-----------, 
SYSTEM \ I r-----.;----------, 

RESET 

8207 

RESET / " ~ 1" . 

Y PCLKlMUX 

II ,~OA~,,, ,,:'" . "" J,- ''"'''- ":so ,.:' ".' Q,,. '" I I ~TA IN G H ~ A B DATA IN G H tW..-w-... t t t : t t t .. ~ t t t .-
I I I - • 1! : 1 i _ _ I! JUMPER ~PTIONS *l P;15 , -- PD8.: PD7 PD9 

, I 
L __ ~T.!£.N~ ____ J 

Figure 1. 8207 programming shift registers 

'All RAM references in this Application Note are based on Intel's 2164A 64k Dynamic RAM. 

5-190 230809-001 



AP-167 

+5 

SRDyCLK 
~1----~~--4------01 

80186 Sorl;:::=~::::;----j-"1 

S240 

ADDRESS 
BUS 

DATA 
BUS 

+5 

NOTE: THE 8207 REQUIRES SERIES RESISTORS ON ALL OUTPUTS TO RAM. 

Figure 3. 80186 to 8207, non-ECC, synchronous system single port. 

the timing of EAACK will always guarantee 2 clocks 
of address hold time from RAS. 

Acknowledge Setup Time 
The margin between the 8207 issuing EAACK and the 
80186 ready input for no wait states minus delays from 
clock edges, logic delays, and setup time is calculated 
as follows. 

1 clock - 8207 TCLAKL max - 74S30 tPLH @ 
15 pf - 80186 TSRYCL ~ 0 

125 ns - 35 - 22 - 35 = 33 ns 

Read Access Margin 

The 8207 starts a memory cycle on the falling clock 
edge between the 80186's Tl and T2. Data must be 
valid within 2 clocks. Valid data from the RAMs is 

5-191 

based upon the CAS access period minus buffer, 
clock, setup requirements. 

2 TCLCL - 8207 TCLCSL @ 150 pf (t34) -
DRAM tCAC - 74S240 propagation delay @ 
50 pf - additional bus loading delay 
(250 pf)(I) - 74S240 delay @ 50 pf - 80186 
TDVCL ~ 0 

250 ns - 122 - 85 - 7 - 7 - 7 - 20 = 2 ns 

Write Data Setup and Hold Margin 
Data from the processor must be valid when WE 
is issued by the 8207 to meet the RAM specifica­
tion tDS (2l64A = 0 ns), and then held for a 
minimum of 30 ns .. 
(I) 74STTL logic derated by .05 ns/pf. 74STTL 
buffers (240, 37) derated by .025 ns/pf. 

230809-001 



inter AP-167 ' 

o 0 0 000 0 0 0 0 0 000 

~11~5 ____________________ -J8j ~17~ ________ ~ _________ O~1 

Figure 2. Program data word 

the PCTLA input must be high when RESET goes 
inactive. 

The differential reset circuit shown in the Data Sheet 
is necessary only to ensure that memory commands 
are not received by the 8207 when Port A is changed 
from synchronous to asynchronous (vice versa for 
Port B). This design keeps Port A synchronous so no 
differential reset circuit is needed. 

Microprocessor Interface 

To achieve no wait states, the 8207 must connect 
directly to the microprocessor's CLKQUT and status 
lines. The 8207 Acknowledge (BAACK) must connect 
to the SRDY input of the 80186. 

When the 80186 is reset, it tristates the status lines. 
The 8207 PCTLA input requires a high to decode the., 
proper memory commands. This is accomplished by 
using a pull-up resistor, or some component that 
incorporates a pull-up on SZ. 

The 8207 address inputs are connected directly to the 
latched/demultiplexed address bus. 

RAM Array 

The 8207 provides complete control of all RAM tim­
ings, warm up cycles, alld refresh cycles. All write 
cycles are "late writes." During write cycles, the data 
out lines go active. This requires separate data in/out 
lines in the RAM array. 

To operate the 80186 with no wait states, it is necessary 
to chose sufficiently fast DRAMs. The 150 ns version 
of the 2164A allows operating the 80186 at 8 MHz, 
and the 200 ns version up to 7 MHz. 

HARDWARE DESIGN 

Figure 3 shows a block diagram of the design, and 
Figure 4 is a timing diagram showing the relationship 
befween the 8207 and the 80186. 

8207 Command Setup 

Two events must occur for a command to be recog­
nized by the 8207. The 80186 status outputs are sam­
pled by a rising clock edge and Port Enable (PE) is 
sampled by the next falling clock edge (refer to the 
Data Sheet wave forms). 

The command timing is determined by the period be­
tween the status being issued and the first rising clock 
edge of the 8207,minus setup and delays. 

80186 status valid to 8207 rising clock - status from 
clock delay - 8207 setup to clock ~ 0 

I TCLCL - 80186 TCHSV max - 8207 TKVCH 
min ~ 0 

125ns - 55 - 20 = 50 ns 

PE is a chip select for a valid address range. It can 
be generated from the address bus or from the 80186's 
programmable memory selects. This design uses an 
inverted A19. The timing is determined by the inter­
val between the address becoming valid and the fall­
ing clock edge, minus setup and delays. 

80186 address valid to 8207 falling clock edge 
- 80186 address from clock delay - 8283 latch 
delays - 8207 PE setup ~ 0 

I TCLCL - 80186 TCLAV max - 8283 IVOV @ 
300 pf - 8207 TPEVCL ~ 0 

125 ns - 44 - 22 - 30 = 29 ns 

The hold times are 0 ns and are met. 

, Address Setup 
For an 80186 design, the 8207 requires the address to 
be stable before RAS goes active, and to remain stable 
for 2 clocks. Unused 8207 address inputs should be 
tied to Vcc. 

tASR is a RAM specification. If it is greater than zero, 
this must be added to the address setup time of the 
8207. Address setup is the interval between addresses 
being issued and RAS going active, minus appropriate 
delays. 

80186 address valid to 8207 RAS' active -
80186 address from clock delay - bus delays -
(8207 setup + RAM t ASR) ~ 0 

TCLCL + 8207 'TCLRSL min @ 150 pr(l) -
80186 TCLA V max - 8283 'IVOV max @ 300 pf 
- (8207 TAVCL min + DRAM tASR) ~ 0 

125 ns + 0 - 44 - 22 - (35 + 0) = 24 ns 

The address hold time of 2 clocks + 0 ns is always 
met, since the 'addresses are latched by the 8282/3. 
Even when the processor is in wait states (for refresh), 

(1) Not specified-use 0 AS. 

5-192 230809-001 



inter AP-167 

TCLCL + TCLCH + 8207 TCLW min(l) + 
74St37 delay tPHL min @ SO pf + additional 
loading (142 pf) - 80186 TCVCTV -
74S24OtPZL, - bus delays (250 pf) - 74S240 
delay - 2164A tOS ~ 0 

125 + 62.5 + 0 + 6.5 + 3.5 - 70 - 15 - 7 - 7 -
o = 98.5 ns 

The hold time, tOH, is from WE going low to the 
80186 DEN going high plus buffer delays minus 
WE from clock delays. 

TCLCL - 80186 TCVCTX min + 74S32 
tPo(2) min + 74S24O tPHZ (min)(2) + 250 pf 
bus delays + 74S24O propagation delay min -
8207 TCLW max - 74S37 tPHL @ 50 pf-
142 pf loading delays - DRAM tOH ~ 0 

8207 

8207 

8207WE ______ ~--J 

8207 EAACK ___ --' 

80188 (SRDY) 

NOTES: 

WRITE 
CYCLE 

1, COMMAND SETUP MARGIN 
2. PE SETUP MARGIN 
3, EAACK SETUP MARGIN 
4, DATA SETUP MARGIN 
5. READ ACCESS MARGIN 

READ 
CYCLE 

62.5 ns + 10 + 2 + 3 + 7 + 3.5 - 35 -
3.5 - 30 = 19.5 ns 

All margins are actually better by about 10-20 ns. No 
improvement in timing was allowed for lower 
capacitive loads when additional buffers are used (Le. 
the 80186 address out delay is at 200 pf,'but the 8283 
latch only loads these lines with about 20 pf). 

SUMMARY 

The 8207 supports the 80186 microprocessor run­
ning with no wait states. The 8207 interfaces easi­
ly between the microprocessor and dynamic RAM. 
There are no difficult timings to be resolved by 
the designer using external logic. 

REFRESH 
CYCLE '" READ CYCLE 

Figure 4. 8207/80186 timing relationship 

(1) Not specified, use 0 ns. ) . 
(2) Not specified, use one half of tYllical value. 

5-193 230809-001 



inter 

©Intel Corporation, 1983. 

APPLICA liON 
NOTE 

5-194 

AP-168 

August 1983 

ORDER NUMBER: 230862·001 
NOVEMBER 1983 



intJ AP·168 

I 

INTRODUCTION 
The 80286 high speed microprocessor pushes 
microprocessor based systems to new performance 
levels. However, its high speed pus requires special 
design considerations to utilize that performance. In­
terfacing the 80286 to a dynamic RAM array require 
many timings to be analyzed, refresh cycle effects on 
bus timing examined, minimum and maximum signal 
widths noted, and the list continues. 

The 8207 Advanced Dynamic RAM Controller was 
specifically designed to solve all interfacing issues for 
the 80286, provide complete control and timing for 
the DRAM array, plus achieve optimum system per­
formance. This includes the normal RAM 8 warm­
up cycles, various refresh cycles and frequencies, ad­
dress multiplexing, and address strobe timings. The 
8207 Dynamic RAM Controller's system interface and 
RAM timing and control are programmable to per­
mit it to be used in most applications. 

Integrating these functions (plus dual port and error 
correcting interfaces) allows the user to realize signifi­
cant savings in both engineering design time, PC board 
space and product cost. For example, in comparing 
the 8207 to the ISBCOl2B 512k byte RAM board 
(where the DRAM timing and control is done entire­
ly with TTL), the 8207 design saved board space (3 in2 
vs 10 in2); used less power (420 ma vs 1220 ma); 
reduced the design time; and increased margins due 
to less skewing of timings. The comparison is based 
upon a single port 8207 design and does not include 
its RAM warm-up, dual port, error correcting, and 
error scrubbing or RAM interleaving features. 

This Application Note will detail an 80286 and 8207 
design., The reader should have read the 8207 and the 
80286 data sheets, a DRAM data sheet· , and have them 
available for reference. 

DESIGN GOALS 

The main objective of this design is to run the RAM 
array without wait states, to maximize the 80286's per­
formance, and to use as little board space as possi­
ble. The 80286 will interface synchronously to Port 
A of the 8207 and the 8207 will control 512k bytes 
of RAM (4 banks using 64k DRAMs). The dual port 
and error correcting features of the 8207 are covered 
in separate Application Notes . 

8207 INTERFACE 

The 8207 Memory design can be subdivided into three 
sections: 

• Programming the 8207. 
• The 80286/8207 interface. 
• The Dynamic RAM array. 

Programming the 8207 

The RAM timing is configured via the 16 bit program 
word that the 8207 shifts-in when reset. This can re­
quire two 74LS165 shift registers to provide complete 
DRAM configurability. The 8207 defaults to the con­
figuration shown in Table 1 when POI is connected 
to ground. This design does not need the flexibility 
the shift registers would allow since standard 
8207/80286 clock frequencies, DRAM speeds and 
refresh rates are used. Table 1 details the 8207/80286 
configuration and Table 10 in the Data Sheet iden­
tifies "CO" as the configuration of the 8207 all tim­
ings will be referenced to (80286 mode at 16 MHz us­
ing fast RAMs = CO). 

Table 1. Default Non-ECC programming, PD1 
pin (57) tied to ground. 

Port A is Synchronous (EAACKA and XACKA) 

Port B is Asynchronous (LAACKB and XACKB) 

Fast-cycle Processor Interface (10 or 16 MHz) 

Fast RAM 100/120 ns RAM 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 
4 ms 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

The 8207 will accept 80286 status inputs when the 
PCTLA pin is sampled low at reset. This pin is not 
necessary for an 80286 design (besides programming) 
and is tied to ground. 

Refresh is the final option to be programmed. If the 
Refresh pin is sampled high at reset, an internal timer 

• All RAM references in Ihis Application Note are based upon Inlel's CMOS 51C64-12 64k Dynamic RAM. Any DRAM with similar tim-
ings will function. Refer 10 section 4.4. ' 

5-195 230862-001 



f • 

AP-168 

is enabled, and if low at reset, this timer is disabled. 
The first method is the easiest to implement, so the 
RFRQ pin is tied to Vcc. 

The differential reset circuit shown in the Data Sheet 
is necessary only to ensure that memory commands 
are not received by the 8207 when Port A is changed 
from synchronous to asynchronous (vice versa for 
Port B). This design keeps Port A synchronous so no 
differential reset circuit is needed. 

RAM Array 
The 8207 completely controls all RAM timings, warm­
up cycles, and refresh cycles. To determine if a par­
ticular RAM will work with the 8207, calculate the 
margins provided by the 8207 (Table IS, 16-8207 
Data Sheet) and ensure they are greater than the RAM 
requirement. An additional consideration is the ac­
cess times of the RAMs. The access time of the system 
is dependent upon the number of data buffers between 
the 80286 and the DRAMs. To operate the 80286 at 
zero wait states requires access times of 100-120 ns. 
Slower RAMs can be used (150 ns) by either adding 
a wait state (programming the 8207 'for "Cl") or 
reducing the' clock frequency (to 14.9 MHz approx­
imately and maintaining the CO configuration.). 

All write cycles are "late writes" and the data out lines 
of the RAM will go active. This will require separate 
data in and out lines in the RAM array. Another con­
sideration for the 'RAM array is the proper layout of 
the RAM, and impedance matching resistors on the 
8207 outputs. Proper layout is covered in Intel's RAM 
Data Sheets and Application Notes. 

Microprocessor Array 
To achieve no wait state operation, the 8207's clock 
input must be connected to the 80286's clock input. 
The EAACK (early acknowledge) output of the 8207 
must connect to the SRpy input of the 82284. The 
8207's address inputs connect directly to the 80286 
address outputs and the addresses are latched inter­
nally. This latch is strobed by an internal signal with 
the same timing as LEN (which is for dual port 80286 
designs). Figure 2 shows the timing relationship bet­
ween LEN and the 80286. 

LEN will fall from high to low, which latches the bus 
address internally, when a valid command is receiv­
ed. LEN can go high in two clock cycles if the RAM 
cycle started (RAS going low) at the same time LEN 
went low. If the 8207 is doing a refresh cycle, the 80286 
will be put into wait states until the memory cycle can 

start. LEN will then go high two clocks after RAS 
starts, since addresses are no longer needed for the 
current RAM cycle. Thus the low period of LEN could 
be much longer than listed in the Data Sheet. 

DESIGNING THE HARDWARE 
Figure 1 shows a detailed block diagram of the design 
and Figure 2 shows the timing relationship between 
the 8207 and the 80286. 

The following analysis of six parameters will confirm 
that the design will work. These six system parameters 
are generally considered the most important in any 
microprocessor-Dynamic RAM design. 

8207 Command Setup Margin 
Two events must occur for the 8207 to start a memory 
cycle. Either RD or WR active (low) and PE must be 
low when the 8207 samples these pins on a falling clock 
edge. If PE is not valid at the same clock edge that 
samples RD or WR active, the memory cycle will be 
aborted and no acknowledge will be issed. 

The command setup time is based upon the status be­
ing valid at the first falling clock edge. 

80286 status valid to 8207 falling clock -
80286 status from clock delay - 8207 
command setup to clock " 0 
TCLCL - 80286 tI2 (max) - 8207 TKVCL 

(min) " 0 
62.5 - 40ns - 20ns = 2.Sns 

PE is decoded from the address bus and must be set 
up to the same falling clock edge that recognizes the 
RD, WR inputs.-,Jhis margin is determined from the 
clock edge that issues the address and the clock edge 
that will recognize,RD or WR, minus decoding logic 
delays. 

There are 2 clocks between addresses being issued by 
the 80286 and PE being sampled by the 8207. Then 
the 80286 ad4ress delay. from the clock edge and 
decoding logic delays are subtracted from this inter­
val. This margin must be greater than O. 

2TCLCL -80286 tI3 (max) - 8207 TPEVCL 
(min) " 0 
125 - 60 - 30= 35ns 

The address decode logic must use no more than 35 ns 
(and less is better). Figure 3 shows an easy implemen­
tation which uses a maximum of 12 ns. 

The 8207 requires a zero ns hold time and\is always 
met. 

5-196 230862-001 



intJ AP-168 

82284 

R'EAl5Y SRDY 

ClK 

t 
ClK 

ALE +5 
82288, ~~ DE I-- i CCK ""' 

DT/R 
MilO Sl1S0 ADD" ~ REAliY, Cl~ 
~I 

~FRQSTROBE - .. MEMORY MEMORY 

Ml4,Q. V. PCTl, POI ~ (UPPER) (lOWER) 

Sl RD 8207 WE~ 

SO WR PSEN 

80286 ADDR IN lEN WE DI DO WE DI DO 

ru ~ I} TTf 
ADDR 

~ DATA ~ 
'-- f---74S10 

- AO sra 
~ 

AAcK 
D a 

iHe 7474 

~ 
D Q~ VI 

OE 

r-
74S24O 

T OE STB .I. 
--a.:: ACCK 

DBM 
OE 

8287 8283 ¢=-OE :>-, 

{} {} '~ 74S240 

DATA ADDR 

NOTE: THE 8207 REQUIRES SERIES RESISTORS ON ALL OUTPUTS. 

Figure 1. 80286 to 8207, non-ECC, Synchronous System Single Port 

5-197 230862-001 



'( 
T8 Tc 

I I 
16 MHz 
CLOCK 

~0-S1 

60286 
ADDR. 

LEN 

RASii 

RASl 

CASo 

CAs1 

DRAM WE 

EAACK 

~ 

A23 

A22 

A21 

A20 

A19 

Ap·168 

T8 Tc 11 T8 

I I I 

Figure 2. 80286/8207 Timing-"te" 

+5 

74S04 

Figure 3. Address Decode Logic 

5-198 

Tc Tc 

I I 

74S3O 

,I Tc 

I 

8207 
PE 

230862-001 



Address Setup Margin 
The 8207 must have stable addresses up to two clocks 
after RAS goes active. This is of no concern to the 
user, since LEN latches the address internally and will 
not admit a new address until two clocks after RAS 
goes active. 

Addresses must be stable at least 35 ns (tA VCL) before 
RAS goes active to allow for propagation delays 
through the 8207, if a RAM cycle is not delayed by 
the 8207. 

tASR is a RAM specification. If it is greater than zero, 
tASR must be added to the address setup time of the 
8207. Address setup is the interval between addresses 
being issued, by the 80286, and RAS going active, 
minus appropriate delays. 

The margin is determined from the number of clocks 
between addresses being issued from the 80286 to RAS 
going active. Exactly when RAS goes active is unim-

. portant, since here we are interested only in the clock 
edge. 

2TCLCL - 80286 tl3 (max) - 8207 TAVCL 
(min) ~ 0 
125 - 60ns - 35ns = 35ns 

AP-168 

Acknowledge Setup Margin 
The 8207 acknowledge (EAACK) can be issued at any 
point in the 80286 bus cycle (end of ~I or ~2 of Ts 
or Tc). If EAACK is issued at the end of ~2 (Ts or 
Tc), the 80286 will complete the current bus cycle. If 
EAACK is issued at the end of ~I of Tc, the 82284 
will not generate READY to the 80286 in time to end 
the current bus cycle. A new Tc would then be 
generated and EAACK would now be sampled in time 
to terminate the bus cycle. EAACK is 3 clocks long 
in order to, meet setup and hold times for either 
condition. 

We need the margin between the 8207 issuing EAACK 
and the 82284 needing it. Figure 4, shows a worst case 
example. 

TCLCL - 8207 TCLAKL max - 82284 t11 ~ 0 
62.5 - 35 - 15 = 12.5ns 

~ead Access Margin 
The 8207 will typically start a memory cycle (I.e. RAS 
goes low) at the end of ~I of Ts. But if the start of 
a memory cycle is delayed (by a refresh cycle for in­
stance), then RAS will be delayed. In the first case, 

Ts Tc Ts or T1 

Tc 

Figure 4. Acknowledge to the 82284 

5-199 230862-001 



this represents'3 clocks and the second case could re­
quire 4 clocks to meet the data setup requirements of 
the 80286. In either case, data must be valid at the 
end qf Tc. The 8207 holds CAS active long enough 
to ensure valid data is received by the 80286 in either 
case. 

DRAMs specify two access times, RAS access (tRAC) 
and CAS access (tCAC) Both access periods must be 
calculated and the one with the least margin used. Also 
the n\lmber of data buffers should be kept to a 
minimum. Too many buffers would require either 
faster (more expensive) DRAMs, or a reduction in the 
performance of the CPU (by adding wait states). 

RAS Access Margin 

3TCLCL - 8207 TCLRSL max @ 150 pf -
DRAM tRAC - 74S240 propagation delay max 

.@ 50 pf - 80286 t8 .;; 0 

187.5 - 35 - 120 - 7 - 1'0 = 15.5ns 

CAS Access Margin 

2TCLCL - 8207 TCLCSL max @ 150 pf - DRAM 
tCAA (or tCAC - 74S240 tplh max @ 50 pf -
80286 t8 .;; 0 

125 - 35 - 60 - 7 - 10 = 13ns 

By solving each equation for tRAC and tCAC, the 
speed requirement of the RAM can be determined. 

DRAM tRAC = 3 TCLCL - 8207 TCLRSL -
74S240 tplh - 80286 t8 = 135.5ns 

DRAM tCAC = 2 TCLCL - 8207 TCLCSL -
74S240 tplh - 80286 t8 = 73ns 

1. Not specified. Assume no delay for worst case analysis. 
2. STTL derated by .05ns/pt 

AP-168 

5-200 

So any DRAM that has a RAS access period less than 
135 ns, a CAS access period less than 73 ns, and meets 
all requirements in the DRAM Interface Timing (Table 
15, 16-8207 Data Sheet), will work. 

Write Data Setup and Hold Margin 
Write data from the processor must be valid when the 
8207 issues WE to meet the DRAM specification tDS 
and then held to meet the tDH requirement. Some 
write cycles will be byte writes and the information 
to determine which byte is decoded from AO and 
BHE/. Since the 80286's address bus is pipelined, these 
two signals can change before the RAM cycle starts, 
hence they must be latched by LEN. PSEN is used 
in the WE t~rm to shorten the WE pulse. Its use is 
not essential. 

Data must be set up to the falling edge of WE, ~ince 
WE occurs after CAS. The 2 clocks between valid 
write data and WE going active (at the RAM's).minus 
propagation delays determines the margin. 

2 TCLCL - 80286 tl4 (max) @ 100 pf -
74S240tplh + 8207 TCLW (iiiin)! + 74SlOtphi @ 
192 pf2 - DRAM tDS = 0 

/' 

125 - 50 - 7 +'0 + 14 - 0 = 82ns 

The timing of the 8207's acknowledge is such that data 
will be kept valid by the 80286, for more than two 
clocks after WE goes active. This easily meets all RAM 
tDH specifications. 

SUMMARY 
The 8207 complements the 80286's performance and 
high integration with its own performance, integra­
tion and ease of use. No critical timings or logic design 
has been left to the designer. The 80286/8207 com­
bination allows users to realize maximum performance 
from their simpler design. 

230862-001 



AR-364 

7231B 

APPLICATION BRIEF 

INTERFACING THE DYNAMIC RAM CONTROLLER TO THE iAPX 186 

Jim Sleezer 

1.0 INTRODUCTION 

The 80186 microprocessor has integrated about 20 typically used system 
components into the same package as the microprocessor. This integration 
saves board space and design-in time. The 8208 Dynamic RAM Controller 
continues this system level integration. It is designed to control up to _ 
256 Kbytes of Dynamic RAM (DRAM) using 64 K x 1 DRAMs, and up to 1 Mbyte using 
256 K x 1 DRAMs. 

Besides generating all DRAM control and timings, the 8208 allows various 
refresh types, frequencies, and microprocessor interfaces. Additionally, the 
8208 does the 8 DRAM warm-up cycles back-to-back to prepare for operation. 

By integrating the entire RAM timing and programmable refresh types, refresh 
rates, and interfaces into a single package, the user realizes significant 
savings in development time and board space. For example, ,a quick comparison 
of the 8208 versus a TTL implementation (using just the DRAM timing logic from 
Intel's iSBC012B memory-board) yielded the following results: 

1) a reduction in board space (10 in2 to 3 in2), 

2) a reduction in power (1.2'A to 300 mAl, and 

3) much less design t.ime (1 day). 

The difference would be greater still if RAM warm-up, refresh, and interface 
programmability were added to the TTL implementation. 

This Application Note will examine an 8208 to 80186 design. The reader should 
already have read the 8208 Data Sheet, the 80186 Data Sheet, and a DRAM Data 
Sheet*. 

* While all DRAM references in this Application Note are based upon Intel's 
2164A-15 64 K x 1 Dynamic RAM, any DRAM that meets the timing requirements 
in the Data Sheet, Table 8, and A.C. Characteristics, plus satisfies the 
Read Data Access Margin, will work. 

5-201 



inter AR-364 

2.0 HARDWARE DESIGN 

An 8208 design can be divided into three areas: programming the 8208, DRAM 
compatibility, and system interface. While each topic will be covered in this 
Application Note, the 8208's programming logic defaults to an 8 MHz 80186 
synchronous status interface with 150 ns access RAMs. All programming, RAM 
timings, and interface i~sues are satisfied for that configuration. 

2.1.0 8208 PROGRAMMING 

On the trailing edge of Reset, the 8208 samples the levels on two input pins 
and clocks in a.9 bit serial programming word. One input pin controls the 
type of refresh to be performed, while the other input pin alters the edge on 
which the 8208 samples memory commands. The program word further configures 
the 8208 for a refresh rate as a function of 8208 clock frequency, synchronous 
or asynchronous operation, and either an advanced acknowledge or Mu1tibus 
compatible acknowledge. 

2.1.1 REFRESH TYPES 

If the REFRQ pin is sampled high at reset, an internal refresh timer is 
enabled; a low disables it. Both modes allow an external refresh cycle 
request by pulsing the REFRQ pin. An external request is generated by a 
low-to-high transition, and sampled by an 8208 (clock edge). Burst refresh 
occurs only when the timer is disabled and the REFRQ pin is sampled by two 
falling clock edges. The easiest method is to tie the REFRQ pin to Vec 
(through a pull-up resistor); refresh cycles are transparent to the user. 

2.1.2 8208 COMMANDS 

The 8208 alters the point at which it samples a command and its response to 
the command inputs, based on the level sampled on PCTl when reset goes 
inactive. A high enables the status interface and a rising clock edge is used 
(this would be the middle of the T1 state; refer to the Timing Diagram). If 
low, the Multibus compatible interface is selected and a falling edge is used 
to allow for more propagation delay. 

5-202 



inter AR-364 

When the status interface is used, the status lines must be externally pulled 
up. The 80186 will tristate them when reset and the proper level (high) may 
not be seen by the 8208. 

2.1.3 PROGRAM WORD 

The program word defaults to a synchronous interface, fast acknowledge (for no 
wait states), and a refresh rate compatible with an 8 MHz clock 
(128 row/2 ms; 256 row/4 ms). When operating the 8208 at 8 MHz, most designs 
will not need to alter any programming bits and the POI input pin can be tied 
to ground. If the 8208 is not run at 8 MHz a 74LS165-type shift register is 
needed to adjust for a proper refresh rate; otherwise, refresh cycles would 
not be performed often enough and data would be corrupted. 

2.1.3.1 REFRESH RATE OPTIONS (ITO, m, PLS,ffi) 

These four programming bits permit almost any DRAM to be used without wasting 
memory bandwidth. The combination of these four bits selects one of sixteEn 
clock intervals as shown in Table 1. 

I I 

Count Interval CI,. CIO (120' Clocx P.nOdal 

I 
I i i 00 0' I 10 " CPS PLS m (O~) (10~1 I (21M) -i (30~) 

I 0 1 I 1 I 118 I 106 i 94 I 82 

I 0 0 I 1 I 59 i 53 i 41 i 41 I 

! 0 I 1 I 0 i 74 ! 66 , 58 , 50 

I 0 : 0 I I 0 i :r7 i 33 29 25 I 

Table 1. Refresh Count Intervals 

5-203 



AR-364 

The 8208 does not alter any other of its functions with these f.our bits. To 
determine which combination of bits t9 use, examine the following equation: 

Equation 1. Refresh Rate = count interval x 8208 clock period 
14.6 usec - = count interval x 190 ns 
14.6 usec/.190 = 76.8 count interval 

The next fastest Count Interval of 74 is chosen from Table 1. The bit 
configuration is: PLS = 1; FFS = 0; CI1 = 0; CIO = 0, and generates 
seventy-four 8208 clocks between refresh cycles. A refresh cycle can be 
delayed up to one 8208 RAM cycle from the time it was requested to the time it 
is serviced. Thus, the 14.6 usec refresh rate is chosen to allow for these 
delays. The 190 ns clock period was picked at random. The refresh timer is 
restarted when the cycle is requested and not when the cycle begins 
executing. Note the difference in the sense of the programming bits. PLS = 0 
is the same as PLS = 1. This notation is used throughout the Data Sheet. 

2.1.3.3 INTERFACE OPTIONS ('5", X") 

The S programming bit adds synchronizers to the 8208 1s inputs when input 
signals cannot meet setup and hold times. The RD, WR inputs are still decoded 
as determined by PCTL, but these inputs will be sampled on a falling edge 
(status or command interface). The X bit allows either an 80186 (8086) no 
wait state acknowledge or an XACK (Multi bus) type acknowledge. A synchronous 
interface should use the advanced acknowledge and an asynchronous interface 
the XACK acknowledge. XACK is removed by the inactive edge of RD or WR. If 
RD or WR goes inactive before the 8208 issues XACK, then no XACK is issued. 

2.1~3.3 OTHER OPTIONS (~, ~, reFS) 

The CFS bit must be set to zero. This bit is reserved for future speed 
enhancements of th.e 8208. RFS has no effect on 8208 t imi ngs and may be set to 
either state. It is to be used with faster 8208's. RB is to allow for 32 bit 
wide memory arrays. If an 8 or 16 bit wide system is used, set this bit to 
its active state (RB = 0). The Bank Select pin must not select a RAM bank 
that is not physically present. 

5-204 



AR-364 

2.2 MICROPROCESSOR INTERFACE 

The 8208's timings are optimized for an 8086 and 80186 system. The 
synchronous status interface offers the best performance (i.e., no wait 
states) and is the easiest to implement. 

2.3 DRAM COMPATIBILITY 

Table 2 lists the equations to determine whether a particular DRAM will work 
with the 8208. Four other questions are listed in the A.C. Characteristics 
Section in the 8208 Data Sheet. 

·P.,-, .. ReI, '" Cye_ I Ho, .. P.r-cer WR Cyel .. Ho, .. 
IRP 2TCLCL-m , IRP 2TCLCL-T26 , 

ICPN 2 5TCLCL-T35 , ICPN 2.5TCLCL-T35 i t 
IRSH 3TCLCL-T34 , IRSH 3TCLCL-T30t t 
ICSH 3TCLCL-T26 , ICSH 4TCLCL-T26 1 

ICAH 2TCLCL-T30t , !CAH 2TCLCL-T30t , 
IAR 2TCLCL-m , IAA 3TCLCL-T26 t 
IT 3130 2 IT 3130 2 

IRC 4TCLCL , lAC 6TCLCL 1 

IRAS 2TCLCL-m , IAAS 4TCLCL-m t 
tCAS 3TCLCL-T30t , ICAS TCLCL-T)4 , 
lACS ,.5TCLCL-TCL-T36-TeUF I IWCH 3TCLCL-T)4 t,3 

IACH O.5TCLCL-T34 t !WCR 4TCLCL-T26 ,.3 

twP 4TCLCL-T36-TBUF t 

IAWl. 4TCLCL-T36-TBUF , 
ICWL 4TClCL-T36-TBUF t 

TWCS TCLCL-T36-TeUF 

Table 2. DRAM Equations 

These equations merely determine 'if the 8208 will provide proper margins for a 
DRAM. Whether a RAM works properly in a system is another issue. The 
Hardware Design Example section examines most of the important system timings. 

5-205 



inl:ef AR·364 -

3.0 HARDWARE DESIGN EXAMPLE 

The objective is to have-the 80186 run without wait states when accessing a 
DRAM array. The total amount of DRAM is 128K bytes and will be organized as 
1 bank of 64K words. 

Figure 1 is a block diagram of our design showing all relevant logic. The 
programming shift register is not needed since the 8208 will be operating at 
8 MHz, and the other defult values are required. A data buffer is required in 
a no wait state design, since during reads the 8208 CAS line drives data onto 
the bus up to 50 ns past the end of _T4. If another bus cycle were starting, 
then the multiplexed address/data l.ines'would conflict with the driven data 
bus. This would reduce the systems' address to ALE setup margins. Figure 2 
is a timing diagram of the design. 

The timing parameters that are examined ensure that this portion of the system 
will operate properly. The parameters are: 

1. Command setup and hold margin. 

2. Address setup and hold margin. 

3. Acknowledge setup and holq margin. 

4. Write data setup and hold margin. 

5. Read access margin. 

3.1 ACKNOWLEDGE SETUP AND HOLD MARGIN 

The 8208 early acknowledge (AACK) is intended to be connected to the SRDY 
input on the 80186 after being inverted. The AACK is issued at the beginning 
of T2 and must be valid at the beginning of T3. 

lTCLCL - 8208 TCLAKL max - 7410 tPLH @ 15 pf - 80186 TSRYCL min _ 0 

125 ns - 35 - 22 - 35 
= 33 ns 

5-206 



AR-364 

The 80186 hold requirements, TClSRY, of 15 ns is always met. The 15 ns hold 
time applies only when READY is being looked at by the 80186. Transitions 
that occur anywhere else in the bus cycle have no" effect. AACK is two clocks 
long and is issued from a falling clock edge. AACK would always be sampled 
one clock into. its duration. There would be a hold time of about 1 clock. 

3.2 COMMAND SETUP AND HOLD MARGIN 

Two events must occur for the 8208 to recognize a valid memory command. The 
80186 status outputs are sampled by a rising clock edge (middle of T1 
typically) and PE is sampled on the very next falling clock edge. If PE is 
not sampled at this point, no memory cycle will start. The status lines would 
have to go inactive before requesting another memory cycle. 

The status setup margin is referenced to the middle of T4 or TI, and is 
required to be valid by the middle of T1. 

lTCHCH - 80186 TCHSV max - 8208 TKVCH min 0 

125 ns - 55 ns - 20 ns 
50 ns 

PE setup margin is referenced to the beginning of T1 and must be valid by the 
end of T1. PE selects the 8208 for a valid address range. It can be 
generated from either the address bus or using the 80186's programmable chip 
selects. 

1 TClCl - 80186 TClCSV max - 8208 TPEVCl min 0 

125 - 66 - 30 
= 29 ns 

Both PE and the RD, WR, and peTl inputs require a 0 ns hold time to their 
respective clock edges. 

5-207 

i 

I 

I 
I 



inter AR-364 

The 8208 latches this information internally for cases when a refresh cycle 
delays a memory cycle from starting. Thus, a cycle,wil'l start when the 
refresh' cycle finishes, even if the status signals have gone inactive. The 
hold margin is always met. 

3.3 ADDRESS SETUP AND HOLD MARGINS 

The 8208 requires the addresses to be stable before,RAS goes active, and to 
remain stable for two clock periods thereafter. Unused address inputs should 
be pulled up to Vcc with a resistor. 

The 8208 generates a margin of 0 ns minimum for the DRAM specifi,cation tASR 
when the 8208 specification TAVCl is met. If some DRAM is found that nee,ds a 
more positive margin for tASR, then this requirement must be added to TAVCl. 

The setup margin is between the clock edge that addresses are issued from to 
the 8208 tssuing RAS, minus delays. 

I ' 

1 TC'lCl + 8208 TClRSl min[l] (@ 150 pf) - 80186 TClAV max -
8282 IVOV max (@ 300 pf) - [8208 TAVCl min + DRAM tASR] _ 0 

125 ns + 0 - 44 - 30 - (35 + O) 
= 16 ns 

The 8208 1 s address bus is divided into two halves. AlO-8 becomes the DRAM row 
address outputs and AHO-8 becomes the column addresses (64K DRAMs would need 
AlO-7 and AHO-7 connected to the address bus, Al8, AH8 would be tied to Vcc). 
Internally, the 8208 latches AHO-8 with CAS to provide for tCAH - column 
address hold time. This latching occurs near the end of T2 for read cycles 
and near the end of 13 for write cycles. When the RAM cycle is delayed due to 
refresh, the timing of AACK will ensure the two clock hold requirement. No, 
equation is provided since this happens internally. 

[1] Since this is not specified, 0 will be used for analysis only. Based 
upon design' information this value wou,ld be about 20 ns. \ 

5-208 ' 



"1m _I® I I'e" AR-364 

3.4 WRITE DATA SETUP AND HOLD MARGIN 

During write cycles, data from the 80186 must be valid at the DRAM when CAS 
goes low, and satify the DRAM tDS specification. Data must then'be held valid 
and referenced to CAS long enough to meet the DRAM specification tDH. In this 
design example DEN is the limiting factor in the data setup margin. DEN is 
active before data is issued by the microprocessor, but there is a significant 
delay before the buffer is active. The result is that write data will be 
valid at the buffer before it is fully capable of transmitting data. The 
margin is referenced to the clock edge that issues DEN and the clock edge that 
issues CAS, minus delays. ' 

) 

TCHCL + 1 TCLCL = 8208 TCLCSL min (@ 150 pf) -
80186 TCVCTV max - 74LS245 TPZH max - DRAM TDS 0 

55 + 125 + 62.5 - 70 - 40 - 0 
= 132 ns 

The hold margin is referenced to the edge that issues CAS and when valid data 
disappears. DEN is the controlling signal because it can go inactive before 
the data bus is floated by the microprocessor. 

1 TCLCL + 1 TCLCH + 80186 TCVCTX min + 74LS245 TPLZ min[l] -
8208 TCLCSL max (@ 150 pf) - DRAM TDH _ 0 

125 ns + 55 + 10 + 7.5 ~ 121 - 30 
= 46.5 ns 

The WE pulse length may cause problems with back-to-back bus cycles. 
Shortening the pulse width will not cause any other problems. The,easiest 
solution is to factor in a shorter width signal, such as AACK, as is'done in 
the design example. ' 

[1] This parameter is not specified. For analysis, either assume 0 ns or use 
a more realistic value, such as one-half of typical. 

5-209 



inter AR-364 

3.5 READ DATA ACCESS MARGIN 

The design example requires a buffer in the data path because the 8208 will 
not stop driving data onto the bus until after the end of T4. With 
back-to-back bus cycles this would cause bus contention and reduce address to 
ALE setup margins. The DRAM access parameter used is called "TCAC", and is 
referenced from the CAS active edge - not RAS. This parameter varies widely 
between manufacturers. When analyzing read access margins, some trade-off 
between buffer speed and TCAC delays must be considered. 

The 8208 starts a memory cycle, typically, at the end of Tl, and data must be 
valid at the end of T3. With [refresh cycle] delayed bus cycles, data would 
still have to be valid in two clocks. The timing of the AACK signal 
guarantees this. From this two clock margin, buffer delays, TCAC delays, and 
others must be subtracted. 

2 TCLCL - 8208 TCLCSL max (@ 150 pf) - DRAM TCAC max * 
(@100 pf) - buffer delays max - 80186 TDVCL min 0 

! 

250 ns - 121 - 85 - 12 - 20 
= 12 ns 

4 ~O SUMMARY 

The 8208 solves most of the many design issues faced when adding a dynamic RAM 
array by giving the designer options. Options for various types of DRAMs, 
clock speeds, and system configurations. The margins that were just examined 
showed that the 8208 has plenty of margin in a system. Several margins were 
even higher. The READ DATA ACCESS MARGIN, for example, is considerably 
greater. The access time for· DRAMS is specified with 100 pf loads, yet this 
was not added into the equation. Each designer should verify this analysis as 
specifications from manufacturer's change, without notice. 

5-210 



AR-364 

Tl T2 TJ T4 

\\------'{ 

~!CK--------------------~--------------------------------------' AACJ ______________ ~ 

~-'--___ _J/ 

8208 TimIng Oi.gram 

Read then Wrtte Cycle with one Bank of RAM 

!'lACK 
SI6N .. LS 

5-211 

1. Status setup margln 
2. Address setup margin 
3. Acknowledqe setup fnargin 
4. Wnte data setun margln 
5. Read access man)ln' based upon TCAC 
6. Shortened WE pu 1 se 

"EHOW 
2164111-15 

(UPPER) 

ttDtIIIIV 
216<iA-15 
(LOMElI) 



ARTICLE 
REPRINT 

"Reprmted from ELECTRONICS, Sept. 8, 1982 Copyrtght (c) McGraw-HIli, Inc 1982 All fights reserved." 

5-212 

AR·231 

October 1982 

OCTOBER 1982 
ORDER NUMBER: 210758-001 



inter AA·231 

Dynamic-RAM controller 
orchestrates memory systems 

Up to 88 chips take their cues from an n-channel MOS Ie 
that both housekeeps and supports error-corrected dual-port memories 

by Jim Nadir and Mel Bazes, Intel Corp, Santa Clara. Calif 

o Designing a dynamic-random-access-memory system 
means balancing the goals of high performance, reliabili­
ty, and versatility against the often contrary aims of 
economy, simplicity, and compactness. In the last five or 
so years, the advent of dynamic-RAM controller chips 
relieved designers of some of the onus of tending to the 
needs of dynamic chips: standard supportive integrated 
circuits brought together the counters, timers, multiplex­
ers, and other elements needed. 

But controllers diverged into two types. One bought 
the high performance to ride with fast memory systems 
at the expense of functionality, while the other took on 
more and more functions to do a complete but slower 
job. The 8207-an advanced dynamic-RAM controller­
blunts the horns of that dilemma and also solves a 
variety of less severe design problems. 

A dynamic-RAM controller is charged with making a 
dynamic memory system appear static to the host pro­
cessor. At a minimum, therefore, the controller takes 
over refreshing the memory chips, multiplexing the row 
and column addresses, generating control signals, timing 
the precharge period, and signaling the processor when 

data is available or no longer needed. But, beyond those 
local housekeeping chores, the controller can also go a 
long way to solving more global design problems, like 
sharing memory between two processors, not to mention 
detecting and correcting errors. 

To realize this potential for a highly integrated solu­
tion, the 8207 has a dual-port interface and, when used 
with the 8206 error-checking and -correction unit, 
ensures data integrity in large dynamic-RAM systems. In 
addition to doing the jobs of refreshing, address multi­
plexing, and control timing, the unit supports memory­
bank interleaving for pipelined accesses, overlaying RAM 
and read-only-memory locations, and initializing RAM. 

The exact implementation of most of these functions is 
programmable, letting designers tailor their systems in 
detail. Systems containing up to 88 dynamic-RAM 
chips-whether 16-,64-, or 2S6-K versions-in one, two, 
or four banks need only a single 8207 and no external 
buffering. Attesting to the high performance claimed, 
the 8207 mates dynamic RAMs having 100-nanosecond 
access times to the iAPX-286 processor operating at 8 
megahertz without introducing any wait states. 

8207 
DYNAMIC· 

RAM 
CONTROLLER 

DYNAMIC 
RANDOM·ACCESS 

"MEMORY 

PROCESSOR 

DEVELOPMENT PROTOTYPE 

EXTERNAL DISPLAV FOR DEBUGGING 

ViDEO-DiSPLAy ....... 
CONTROLLER II 

DATA 
TABLE 

WORKING 
REGISTERS 

........ DISPLAV 

5:-213 

1. Window on 8 micro. One use for a dual­
port memory shared by independent proces­
sors is the development system'shown Add­
ing a video display to the prototype itself 
gives a window on the system memory 

210758-001 



AR·231 

To achieve that speed and include all those functions, 
the 8207 relies on a dense, \Iigh-speed n-channel MOS 
process (HoMOS II) and requires a chip some 230 by 200 
mils in area. To meet the rigors of operation with even 
faster processors, novel logic' and Integrated-circuit 
designs are employed. Replacing the two-phase logic 
common in n-MOS les, single-phase edge-triggered logic 
simplifies logic and circuit desig'n, precludes problems of 
clock-pulse overlap, and reduces the' sensitivity to clock 
high and low times. Voltage-controlled capacitive loads 
form the delay elements that time critical output pulses, 
such as the address strobes, and compensate the output­
switching delays for variations in power-supply voltage, 
temperature, and processing. 

A low 20-ns setup time for input signals is achieved by 
cutting the RCdelay of input-protection devices and 
moving the TTL-tO-MOS signal buffering from the 'input 
pads to the pulse generators. A short 35-ns delay from 
input to output switching is achieved by triggering the 
output generators directly from the external clock, sav­
ing a buffer delay time. With the resulting high-speed 
performance and a high level of integration, the 8207 
successfully attacks the stringent requirements of today's 
memory systems .. 

One system feature gaining popularity currently is the 
use of multiple processors operating on shared data to 
obtain 'higher performances and reliability. For example, 
a separate processor dedicated to input/output tasks 
frees the main processor for full-time data processing. 
Alternatively, multiple main processors can execute dif­
ferent tasks simultaneously. In all such cases, sharing a 
common memory space among the cooperating proces­
sors is the key to effective operation. 

Unfortunately, when more than one processor accesses 
shared 'memory through a single bus, the limited bus 
bandwidth and the time spent in exchanging bus control 
slow down data transfers. Dual-port memory systems 
overcome this limitation by giving two processors access 

to a .common memory through two independent buses. 
The 8207 includes a dual-port interface to simplify the 
design of shared memory systems. 

Two-port memories can be used with multiprocessing 
or multitasking architectures. In the former, indepen­
dent prqcessors run independent programs, sharing only 
a common memory. Multitasking processors cooperate 
on different parts of the same task. 

An example of a mUltiprocessing architecture is the 
dynamic video display (Fig. \) that provides a window 
on a processor's memory. Centering the display over a 
data table, for example, immediately reveals how pro­
gram execution affects the data, which aids in debugging 
programs. If a microcomputer is implemented with a 
dual-port memory-the second port for a dynamic video 
display - then the prototype itself can serve as a develop- ' 
ment and debugging system, reverting to single-port 
operation in the final version. 

A dual-port architecture in a multitasking environ­
ment, on the other hand, adds a margin of safety to a 
shared-resource bus, such as Intel's Multibus. Although 
one of the biggest benefits of such a bus is the sharing of 
expensive peripherals among several users' programs, an 
intimidating problem is that a single program gone hay­
wire can easily corrupt the entire system. A two-port 
memory, properly configured, circumvents this occur­
rence. Because each port has its own address, data, and 
control lines, problems on one side are confined by 
hardware to that side. 

Port of call 

As a general rule for multitasking architectures, one 
port of a two-port memory operates in a local environ­
ment, and the other port runs remotely, off the expanda­
ble shared-resource bus. The local processor is likely to 
require a synchronous port to reap the benefit of higher 
performance. Remote buses, in contrast, are. usually 
configured asynchronously. Unless programmed other-

Dynamic-RAM controlle~s get In step 
Synchronous and asynchronous signals have different 
reqUirements for interfacing with a controller. The terms 
synchronous and asynchronous are conventionally ap­
plied to dynamic random-access memory depending on 
whether it exists in a local or a remote environment, 
respectively. However, they more properly characterize 
the dynamic-RAM controllers, for the RAMs themselves 
need no clocks-the only restrictions as to the start of a 
memory access cycle involve ensuring that the refresh and 
precharge reqUirements are satisfied. 

Because the controller decides both when to refresh 
and whether or not precharge and other timing require­
ments have been met, it does need a clock. Incoming 
commands can either always arrive with a fixed relation­
Ship to the controller's clock or have no particular relation, 
ship to it. The former are, of course, synChronous opera­
tions, the latter asynchronous. 

The major difference b'etween an asynchronous and a 
synchronous controller (or port of a controller, in the case 
of the dual-port 8207) iS'that the asynchronous controller 
must first synchronize the incoming commands to its own 

internal clock. From that pOint on, the asynchronous con­
troller looks just like a synchronous device. 

Whereas various techniques for synchronization are 
available off chip, on-chip synchronization is restricted to 
the resolution and sampling of states of a flip-flop. The 

. incoming' command is clocked into a resolving flip-flop. 
After a predetermined time, a sampling flip-flop reads the 
state of the resolving flip-flop, thereby synchronizing the 
command. Assuming that both flip-flops are triggered on 
the same edge of the contrDller's internal clock, the fastest 
that an asynchronous signal can be synchronized is one 
clock period. The slowest synchronization takes two clock 
periods; on the average, getting the signals in step takes 
one and a half clock cycles. ' 

Because the processor typically requires four or fewer 
clock periods to complete a cycle, adding a cycle and a 
half for synchronizing increases the access time by 
approximately 25%. Synchronous controllers are therefore 
always preferred when the environment permits them, and 
local environments, such as single-board computers, gen­

. erally do so. 

5-214 210758-001 



AR-231 

wise, the 8207 configures one port synchronously, and 
the other asynchronously. For specific applications, both 
ports may be programmed as either synchronous or 
asynchronous (see "Dynamic-RAM controllers get in 
step," p. 129). 

Whether the ports are programmed for synchronous 
or asynchronous operation" some mechanism must 
decide which processor will gain access to memory when 
both request it almost simultaneously. That mechanism 
consists of arbitration logic that controls access and 
always leaves one port selected. When a port is selected, 
its associated control and interface signals are passed 
directly to the RAM timing logic by the command multi­
plexer (Fig. 2). Both ports' command and control lines, 
after being synchronized, go into both the command 
multiplexer and the arbitration logic. 

However, the arbitration logic enables the command 
mUltiplexer to pass only commands that appear at the 
selected port. At the same time as a command appears at 
a selected port, arbitration logic initiates the cycle­
control logic that completes the timing of the RAM cycle 
that ensues. If a command appears on the unselected 
port, it will not get through the multiplexer to initiate a 
RAM cycle but will instead wait in the status-command 
decoder until the current command is completed, at 
which time the command multiplexer switches to the 
unselected port. The arbitration logic will then service 
this queued access request by starting a new cycle. 

The arbitration logic examines all port requests, 
including the internal refresh port. The refresh-request 
port is subject to arbitration like the other two ports, 
except that it is always assigned a higher priority than an 
unselected external access port. Thus, refreshing can be 
delayed, at most, one RAM cycle. 

While the current RAM cycle is running, the arbiter 
determines the next cycle to be initiated. Thus, the 
arbitration time of two or more simultaneous port 
requests is hidden by the memory cycle timo!. In other 
words, in cases where both a selected and an unselected 
port request access simultaneously, the arbitration time 
for the unselected port does not extend that port's access 
time, which is delayed by one memory cycle anyway. 
Only when an unselected port requests a free memory 
does the arbitration time slow access, because then the 
command must pass through the arbitration logic before 
a RAM cycle can be initiated. To minimize such delays in 
most cases, there are two arbitration algorithms to be 
selected by the user. 

The first algorithm, intended for multiprocessing envi­
ronments, automatically returns the arbiter to a desig­
nated preferred port, generally the higher-performance, 
synchronous port. Thus any command on the selected 
port generally has immediate access, whereas any com­
mand arriving at the unselected port must wait. 

The second, or last-accessed-port, algorithm, which is 
I}pplicable in multitasking environments, leaves the most 
recently accessed port as the selected port. This algo­
rithm optimizes port selection for task passing in a 
multitasking environment. In task Pllssing, the host pro­
cessor sends a task to an execution processor; until the 
task is received, the execution processor seldom accesses 
memory. Conversely, once the task is passed, the host 

processor seldom accesses memory until the task is com­
pleted. Thus, the ports are used in spurts. 

Because timely refreshing is needed to preserve 
dynamiC-RAM data, a refresh request is always serviced 
on the next available cycle. The refresh algorithm, how­
ever, may be selected by the user. The options available 
are: no refresh, user-generated single refresh, automatic 
refresh, or user-generated burst refresh. 

No refresh would be selected for applications like 
bit-mapped-video displays, where continuous, sequential 
access of all RAM locations itself refreshes every cell 
periodically. User-generated refresh modes allow the 
designer greater control over power, dissipation, for 
example, in large memory systems. Automatic refresh­
ing, in which the controller itself times the refresh inter­
val and initiates the operation, lets the designer ignore 
the refresiJ. requirements entirely. As mentioned, the 
refresh requests are subject to arbitration just like other 
access requests. However, once a burst refresh is select­
ed, it remains active until completed. 

Cleaning up errors 

Ensuring data integrity is a major concern in large 
dynamiC-RAM systems, particularly because of their sus­
ceptibility to soft errors caused by alpha-particle radia­
tion. Various parity encoding techniques have been 
developed to detect and correct memory-word errors 
[Electronics, June 2, 1982, p. 153]. The parity bits, called 
check bits when used for correction as well as detection, 
are stored in the memory array along with their asso­
ciated data word. When the data is read, the check bits 
are rc;generated and compared with the stored check 
bits. If an error exists, whether in the retrieved check bits 
or in the retrieved data word, the result of the compari­

,son-called the syndrome-gives the location in the 
group of the bit in error. 

Two drawbacks surface in the design of any memory 
system that is to be protected by error-correction circuit­
ry. First, the memory-word width must be increased to 
store the check bits; second, extra time must be allotted 
for the error-correction circuitry to generate the check 
bits on write cycles, plus more time to regenerate and 
compare the check bits on read cycles. T-be 8207 pro­
vides several ways to minimize both problems. 

Error-correction schemes require a smaller proportion 
of check bits to protect wider memory words. For exam­
ple, an 8-bit word needs 5 check bits, for a 63% increase 
in memory. Put the other way around, 38% of the 
available memory would be dedicated to the check bits. 
Six check bits are required to protect a 16-bit data 
word-only a 27% overhead. Clearly, the wider the 
memory array, the more economical the error correction. 

The 38% overhead necessary to protect such 8-bit-bus 
machines as the 8088 or 8085 makes error correction an 
unattractive proposition. However, if the memory width 
could be doubled, with the 8088 accessing only half a 
word at a time, the overhead would drop to 27%. 

Reading a double-width word, checking for soft errors, 
and then sending the desired portion of the word to the 
processor presents no major problems, unlike writing to 
such an array. The check bits cannot be calculated from 
only a portion of the word-they must be calculated for 

5-215 210758-001 



AR-231 

PORT A 
COMMANOS 

PORT B 
COMMANDS SYNCHRO· ... !j .... ~1 NIZER .. 

PROGRAM' 
MING DATA 
INPUT 

SERIAL· 
PROGRAM 

COLLECTOR 

PORT 

CYCLE' 

ROW·ADDRESS 
STROBE 0 
COLUMN'ADDRESS 
STROBE 0 

RASt/CASt 

RAS2/CAS2 

RAS3/CiXS3 

CONTROL ............ CONTROL AND 
LOGIC .. TIMING STROBES 

............ ERROR·CORRECTION· 

... CONTROL INPUTS 

CONTROL 
OUTPUT CONTROL f4--i.--------------' 

ADDRESS 
LATCH 

ROW/ 
COLUMN 
MULTI' 

PLEXER 
ADDRESS OUTPUTS 

2. Arbiter's labor. Two external ports pius the internal refresh port can request access to the memory system at once. Arbitration logic 
decides which to service. based on progr~mmable algorithms. High-speed logic design cuts the delay from input to output switching to 55 ns. 

the entire word at once. Whenever the processor writes a 
partial word to memory, it must first read the entire 
word, check it, substitute for that portion of the word to 
be rewritten, and recalculate the check bits. Only then 
can the entire word be written to memory. The 8207, 
working in conjunction with the 8206 error-checking and 
-correction unit, contains mechanisms to expedite this 
potentially arduous process. 

Whenever the 8207 performs a partial-write cycle, it 
initiates a read-modify-write cycle wherein the entire 
memory word is first read and latched into the 8206 
(Fig. 3). After the retrieved data has been verified as 
correct, new data is supplied to the RAM, half from the 
processor and half from the 8206, which also generates 
the check bits for the entire new word. 

Control signals-called 'byte marks-specify which 
portion of the new data word is coming froin the proces­
sor and which from the 8206. The byte marks determine 
whether the processor or the 8206 drives the, RAM data 
bus-for example, if the 8206 is driving one portion of 
the data bus, the processor is prevented from driving the 
same portion. The byte-mark signals simply disable the 
appropriate transceivers. If, on the other hand, the pro­
cessor is driving a portion of the RAM data bus, the byte 
marks change the 8206 data outputs to inputs, allowing 

the 8206 t'\ read the data from the processor and calcu­
late new check bits. 

The ability of the 8207 to handle memories organized 
as one, two, or four banks allows tradeoffs between the 
cost and performance of an error-correction system. For 
maximum performance, memory would be organized in 
four banks, each 16 bits wide. In applications requiring 
error correction, but where maximum performance is not 
critical, concatenation of RAM banks into two banks of 
32-bit words, or even one bank of 64-bit words, can make 
error correction very economical. . 

Holding to high performance 

Even though the cost of error correction has thus been' 
reduced to where it becomes an attractive solution, the 
problem remains of minimizing performance degrada­
tion. Tackling that challenge depends on the particulars 
of the configuration, such as whether the memory is to 
be used with a high-performance local processor, as 
system memory on a shared-resource bus, or is to be 
shared between a local high-performance processor and 
a shared-resource bus. 

The method chosen to handle errors depends on the 
type of bus. Intel's Multibus is the kind that requires 
data to be valid prior to the issuance of a transfer-

5-216 210758-001 



AR-231 

LOWER 
MEMORY 

UPPER 
MEMORY 

3. Teamwork. The 8206 error-correction 
chip joins forces with the random-access­
memory controller so that an 8-bit-bus pro­
cessor may utilize the 16-btt-wlde memory 
that is more economical for error-correction 
schemes Byte marks configure the data 
buses for partial-word transfers 

BYTE· 
MARK 
INPUT 

BYTE. 1--...... -lt'!I--+I 
MARK 

B206 
ERROR·DETECTION 

AND ·CORRECTION UNIT 

LATCH I-~-+-_I"-+I 

• .......... PROCESSOR DATA BUS 

acknowledge signal, in contrast to the local buses of the 
iAPX-86, -186, and -286 processors. A local bus will 
usually be synchronous, with a singh: processor or copro­
cessor group attached to it; the processor characteristics 
are known, as is the processor's response to a transfer­
acknowledge signal. 

With Multibus and other shared-resource buses, the 
processor types that will eventually be connected are not 
known in advance, and the buses themselves are general­
ly asynchronous. Hence the time between the transfer­
acknowledge signal and data becoming valid is not 
·known. Therefore, the rule with such buses is to 
acknowl~dge a transfer only when data is valid. (On 
some asynchronous buses, the acknowledgment is issued 
earlier to compensate for synchronization delay at the 
receiving processor.) 

Two basic configurations for checking and correcting 
errors derive from these system considerations and the 
fact that it takes longer to correct data than to detect an 
error. One is for buses that connect to processors and 
coprocessors receiving a transfer acknowledge prior to 
data becoming valid, and the other for buses that COIr­

nect to processors receiving a transfer acknowledge after 
data is valid. Both configurations are supported by the 
8206-8207 team. 

Buses among the former type of processors always get 
corrected data from the 8206, whether an error exists or 
not, and will carry a transfer acknowledge from the 8207 
before data becomes valid on the bus. Though this means 
data is delayed for error correction on every transaction, 
the extra delay is immaterial, since it is hidden behind 
the processor's response time to the transfer-acknowl­
edge signal. By the time the processor requires data, it is 

already corrected and on the bus. ~s a result, system 
performance is not degraded at all because of single-bit 
errors. 

For buses among processors that receive the transfer 
acknowledge after the data is valid, the 8206 always 
checks for errors but does not routinely correct data. In 
this mode, RAM data passes through faster, because the 
8207 will iss'ue an acknowledgment sooner. If, however, 
an error is found, the 8207 will lengthen the cycle, 
command the 8206 to correct the data, and delay the 
transfer-acknowledge signal until the corrected data can 
be placed oJ! the bus. For those buses with an acknowl: 
edge-synchronization delay, the 8207 can be pro­
grammed to issue the acknowledgment earlier to com­
pensate for the delay. 

Power-up problema 

Another problem with memories protected by ECC 
circuits crops up when the power is turned on. At 
power-up, the data stored in memory is completely ran­
dom; any attempt to read or perform a partial write will 
be aborted because the check bits will indicate multiple, 
and therefore uncorrectable, errors. For processors 
whose word width is the same as that of the memory 
array, the processor could simply initialize the entire 
memory array, taking some additional time and soft­
ware. For memories whose word width is greater than 
that of the processor, however, initialization of the mem­
ory is not possible unless the error-checking or -correc­
tion circuitry is disabled by hardware, for example, by 
gating off the error flags. 

The 8207 is equipped to deal with the initialization 
problem by itself. At system reset, the 8207 performs 

5-217 ~10758-001 

I'" I' 
ii, 



AR·231 

4. Intefleeving. Overlapping accesses to dif­

ferent banks increases memory throughput. 

Once the column-address hold time is satis­

fied, the 8207, starts a second cycle, pulling 
the second row-address strobe low. ROW·ADDRESS 

STROBE 1 

CDLUMN·ADDRESS 

I- RANDOM'ACC:~:'~~MORY CYCLE -I' 
SECOND ' 

RAM CYCLE 

STROBE 1 --t-----, 

RAS2 

CAS2 --t----/-----+--+, 

8207 
ADDRESS 
OUTPUTS 

ROW2 COLUMN 2 

MEMORY 
DATA 
OUTPUTS ""----~<'__B_A_NK_l_...;<l...-!.,y- BANK2 j~ >­

~VALIDDATA 

eight cycles on all banks at once to warm up the dynamic 
RAMS, a typical RAM requirement for stable operation. 
The chip then individually initializes all memory loca­
tions to 0, adding the proper check bits. Though all 
memory banks could be initialized in parallel, that would 
require more power than any other memory operation, 
calling for a heftier and more expensive power supply 
needed only at system reset. 

One final problem associated with memories protected 
by error-correction circuitry stems from the fact that 
only data that is accessed by the processor is corrected. 
If the processor continually accesses one particular seg­
ment of memory, the rest of the array may be accumu­
lating soft errors. The possibility of two soft errors 
accumulating in a word of seldom access'ed memory now 
becomes significant-and not all double-bit errors are 
correctable in simple ECC schemes. The 8207 scrubs 
memories to clean up this problem. During each refresh 
cycle, one word of memory is read, checked for errors, 
and if necessary, corrected before data is written back to 
memory. Because scrubbing occurs during refresh cycles 
with a read cycle replacing a row-address-strobe--only 
refresh cycle, no performance penalty is incurred. Scrub­
bing rids the entire memory of errors at least once ,every 
16 seconds, reducing the probability of two soft errors 
accumulating in the same word almost to nil. 

Bells and whistles 

All dynamic RAMS require a recovery period for pre­
charging internal lines after each access. If the processor 
were immediately to reaccess the RAM, the controller 
would have to delay it until the precharge time was over. 
By automatically organizing memory into banks so that 
sequential addresses are in different banks, the 8207 is 
usually able to hide the precharge time of one bank 

. behind the access time of another. That organization 
follows from using the 2 least significant bits of the 
address to select the bank. Of course, a break in the 
program flow, such as would be caused by a jump or call 

instruction, raises the probability that the same bank 
may be immediately re-accessed. This probability is less 
in four-bank memories than in two-bank configurations. 

Further performance advantages are gleaned by 
organizing memory into multiple banks. For example, 
the 8207 can speed throughput by pipelining cycles. 
Once the row and column addresses to one bank have 
been latched, the controller sends the row address for the 
next cycle to the next bank (Fig. 4). 

The 820Ts manifold features can be tailored to a 
given system with the use of a serial programming pin. 
This pin can either be strapped high or low to select one 
of two default modes or be programmed by means of a 
shift register. The external register is completely con­
trolled by the 8207, eliminating any local processor 
support. Sixteen bits are shifted into the 8207 to configu­
re up to nine different features. The bits are arranged in 
order of increasing importance; using a shift register 
with less than 16 bits permits just those features needed 
to be programmed. 

Programmable features of the processor interface 
include the choice of arbitration algorithm, clock com­
pensation, and preferred port. At the RAM interface, the 
user can specify fast or slow memory chips, indicate 
bank configuration, and select the optimal refreshing 
scheme. In anticipation of the next generation of 256-K 
dynamic RAMs, the 8207 can support a 256-row-J­
millisecond refresh convention, in addition to the 128-
row-2-ms one for current 16- and 64-K parts. 

Helping facilitate system design is a self-programming 
processor interface. By decoding the command input 
pins at power-up, the 8207 automatically determines 
whether it is connected to the status lines of an 8086, 
iAPX-286 or to the command lines of the Multibus. 
Because the 8207 can directly decode the status lines of 
I ntel microprocessors, it can anticipate the next memory 
cycle and start a new cycle before actually receiving a 
command. This extra pipelining enables the designer to 
specify slower RAMs then would otherwise be required.p 

5-218 210758-001 



, 

inter , 
8231 A 

ARITHMETIC PROCESSING UNIT 

• Fixed Point Single and Double • Compatible with all Intel and most 
Precision (16/32 Bit) other Microprocessor Families 

• Floating Point Single Precision • Direct Memory Access or 
(32 Bit) Programmed I/O Data Transfers 
Binary Data Formats • • End of Execution Signal 

• Add, Subtract, Multiply and Divide General Purpose 8·Bit Data Bus • Trigonometric and Inverse • Interface Trigonometric Functions 

• Square Roots, Logarithms, • Standard 24 Pin Package 

Exponentiation • + 12 Volt and + 5 Volt Power 

• Float to Fixed and Fixed to Float Supplies 
Conversions • Advanced N·Channel Silicon Gate 

• Stack Oriented Operand Storage 'HMOS Technology 
The IntellilJ 8231AArithmetic Processing Unit (APU) is a monolithic HMOS LSI device that provides high performance fixed 
and floating point arithmetic and floating point trigonometric operations. It may be used to enhance the mathematical 
capability of a wide variety of processor-oriented systems. Chebyshev polynomials are used in the implementation of the 
APU algorithms. 

All transfers, including operand, result, status and command information, take place over an 8-bit bidirecti,onal data,bus. 
Operands are pushed onto an internal stack and commands are issued to perform operations on the data in the stack. 
Results are then available to be retrieved from the stack. 

Transfers to and from the APU may be handled by the associated processor using conventional programmed I/O, or may be 
handled by a direct memory access controller for improved performance. Upon completion of each command, the APU 
issues an end of execution signal that may be used as an interrupt by the CPU to help coordinate program execution. 

INTERFACE 
CONTROL 

\' 

Figure 1. Block.Dlagram 

5-219 

V.. 1 

Vee 2 

E:lCK 3 

iViCR 
SVREQ 

READY 

Figure 2. Pin Configuration 

Order Number 231305-001 

i, 

iit 
Ii 
I I~ 
:~ 
I 

II 
Iii' 
,l' 

'" 

if 
I" 
I 

I, 
I,' 

[, 

" 

i 
I': ; 
I 

I" 

I', 
I 

" 
, I' 

Ii 

Ii 
,l 
I' 



Pin 
Symbol No. Type 

Vee 2 

Voo 16 

Vss 1 

CLK 23 I 

RESET 22 I 

CS 18 I 

Ao 21 I 

Ao RD 

0 1 
0 0 
1 1 
1 0 

RD 20 I 

WR 19 I 

EACK 3 I 

SVACK 4 I 

END 24 0 

8231A 

Table 1. Pin Description 

Name and Function 

Power: +5 Volt power supply. 

Power: + 12 Volt power supply. 

Ground •. 

Clock: An external, TTL compatible, 
timing source is applied to the CLK pin. 

Reset: The active hign reset signal pro· 
vides initialization for the chip. RESET 
also terminates any operation in pro-
gress. RESET clears the status register 
and places the 8231 A into the idle state. 
Stack contents and command registers 
are not affected (5 clock cycles). 

Chip Select: CS is an active low input 
signal which selects the 8231A and en-
ables communication with the data bus. 

Address: In conjunction with the RD 
and WR signals, the Ao control line es-
tablishes the type of communication 
that is to be performed wit~ the 8231 A as 
shown below: 

WR Function 

0 Enter data byte into stack 
1 Read data byte from stack 
0 Enter command 
1 Read status 

Read: This active low input indicates 
that data or status is to be read from the 
8231A if CS is low. 

Write: This active low input indicates 
that data or a command is to be written 
into the 8231 A if CS is low. 

End of Execution: This active low input 
clears the end of execulionaPutput sig-
nal (ENl». If EACK is tied low, the END 
output will be a' pulse that is one clock 
period wide. 

Service Request: This active low input 
clears the service request output 
(SVREQ). 

End: This active low, open-drain output 
indicates that execution of the pre-
viouslyentered command is complete. It 
can be used as an interrupt request and 
is cleared by EACK, RESET or any read 
or write access to the 8231. 

Pin 
Symbol No. Type Name and Function 

SVREQ 5 0 Service Request: ThiS active high out-
put signal indicates that command 
execution is complete and that post 
execution service was requested in the 
prevIous command byte. It is cleared by 
SVACK, the next command output to the 
device, or by RESET. 

READY 17 0 Ready: ThiS active high output indi-
cates that the 8231A is able to accept 
communication with the data bus. When 
an attempt is made to read data, write 
data or to enter a new command while 
the 8231A is executing a command, 
READY goes low until execution of the 
current command is complete (See 
READY Operation, p. 5). 

DBO- 8- 1/0 Data Bus: These eight bidirectional 

DB7 15 lines provide for transfer of commands, 
status and data between the 8231A" and 
the CPU. The 8231A can drive the data 
bus only when CS and RD are low. 

COMMAND STRUCTURE 
Each command entered into the 8231 A consists of a single 
8-bit byte having the format illustrated below: 

Bits 0-4 select the operation to be performed as shown 
in the table. Bits 5-6 select the data format appropriate 
to the selected operation. If bit 5 is a 1, a fixed point data 
format is specified. If bit 5 is a 0, floating point format is 
specified. Bit 6 selects the precision of the data to be 
operated upon by fixed point commands only (if bit 
5 = 0, bit 6 must be 0). If bit 6 is a 1, single-precision 
(16-bit) operands are assumed. If bit 6 is a 0, double­
precision (32-bit) operands are indicated. Results are 
undefined for all illegal combinations of bits in the com­
mand byte. Bit 7 indicates whether a service request is 
to be'issued after the command is executed. If bit 7 is a 
1, the service request output (SVREQ) will go high at the 
conclusion of the command and will remain high until 
reset by a low level on the service acknowledge pin 
(SilACR) or until completion of execution of the suc­
ceeding command where service request (bit 7) is 0. 
Each command issued to the 8231A requests post execu­
tion service based upon the state of bit 7 in the command 
byte. When bit 7 is a 0, SVREQ remains low. 

5-220 231305-001 



8231A 

Table 2. 32·Blt Floating Point Instructions 

Hexc') Stack Contents(2) 
Status Flags(4) Instruction Description Alter Execution Code A B C D Allected 

ACOS Inverse Cosine of A 0 6 R U U U S, Z, E 

ASIN Inverse Sine of A 0 5 R U U U S, Z, E 

ATAN Inverse Tangent of A 0 7 R B U U S, Z 

CHSF Sign Change 01 A 1 5 R B C 0 S, Z 

COS Cosine 01 A (radians) 0 3 R B U U S, Z 

EXP eA Function 0 A R B U U S, Z, E 

FADD Add A and B 1 0 R C 0 U S, Z, E 

FDIV Divide B by A 1 3 R C D U S, Z, E 

FLTD 32-Bit Integer to Floating Point Conversion 1 C R B C U S, Z 

FLTS 16-Bit Integer to Floating Point Conversion 1 0 R B C U S, Z 

FMUL Multiply A and B 1 2 R C 0 U S, Z, E 

FSUB Subtract A from B 1 1 R C 0 U S, Z, E 

LOG Common Logarithm (base 10) of A 0 6 R B U U S, Z, E 

LN Natural Logarithm of A 0 9 R B U U S, Z, E 

POPF Stack POp 1 6 B C 0 A. S, Z 

PTOF Stack Push 1 7 A A B C S, Z 

PUPI Push 11 onto Stack 1 A R A B C S, Z 

PWR SA Power FUnction 0 B R C U U S, Z, E 

SIN Sine of A (radians) 0 2 R B U U S, Z 

SORT Square Root of A 0 1 R B C U 5, Z, E 

TAN Tangent of A (radians) 0 4 R B U U S, Z, E 

XCHF Exchange A and B 1 9 B A C 0 S, Z 

Table 3. 32·Bit Integer Instructions 

HexC') 
Stack Contents(2) Status Flags(4) Instruction Description Alter Execution Code A B C D Allected 

CHSD Sign Change of A 3 4 R B C 0 S, Z, 0 

DADO Add A and B 2 C R C 0 A 5, Z, C, E 

DDIV Divide B by A 2 F R C 0 U 5, Z, E 

DMUL Multiply A and B (R = lower 32-bits) 2 E R C 0 U 5, Z,O 

DMUU Multiply A and B (R = upper 32-bits) 3 6 R C 0 U S,Z,O 

DSUB Subtract A from B 2 0 R C 0 A S,Z, C, 0 

FIXD Floating Point to Integer Conversion 1 E R B C U S,Z,O 

POPD Stack Pop 3 6 B C 0 A S, Z 

PTOD Stack Push 3 7 A A B C S, Z 

XCHD Exchange A and B 3 9 B A C 0 S, Z 

Table 4. l6·Bit Integer Instructions 

HexC') 
Stack Contents(3) Status Flags(4) 

Instruction Description Code Alter Execution Allected 
Au AL BU BL Cu CL Du DL . 

CHSS Change Sign of Au 7 4 R AL Bu BL Cu CL Du DL S,Z,O 

FIXS Floating Point to Integer Conversion 1 F RBuBLCUCLU U U S,Z,O 

POPS Stack Pop 7 6 AL Bu BL Cu CL Du DL Au S,Z 

PTOS Stack Push 7 7 Au Au AL Bu BL Cu CL Du S, Z 

SADD Add Au and AL / 6 C R Bu BL Cu CL 'Du DL Au S,Z,C,E 

SOl V Divide AL by Au 6 F R Bu BL Cu CL Du DL U S, Z, E 

SMUL Multiply AL by Au (R = lower 16-bits) 6 E R Bu BL Cu CL Du DL U S, Z, E 

SMUU Multiply AL by Au (R = upper 16-bits) 7 6 R Bu BL Cu CL Du DL U S, Z, E 

SSUB Subtract Au from AL 6 0 R Bu BL Cu CL Du DL Au S, Z, C, E 

XCHS Exchange Au and AL 7 9 AL Au Bu BL Cu CL Du DL S, Z 

NOP No Operation 0 0 Au AL Bu BL Cu CL Du DL 

Notes: 1. In the hex code column, SVREO IS a O. 
2 The stack initially is composed of four 32-bit numbers (A, B, C, D). A is eqUivalent to Top Of Stack (TOS) and B IS Next On Stack (NOS). Upon 

completion of a command the stack is composed of: the result (R); undefined (U); or the initial contents (A, B, C, or D). 
3. The stack initially is composed of eight 16-bit numbers (Au, AL, Bu, BL, Cu, CL, Du, OJ. Au is the TOS and AL is NOS. Upon completion of a 

command the stack is composed of: the result (R); undefined (U); or the initial contents (Au, AL' Bu, BL," .). 
4. Nomenclature: Sign (S); Zero (Z); Overflow (0); CarrY (C); Error Code Field (E). 

5-221 231305-001 



intJ 8231 A 

DATA FORMATS 
The 8231 A arithmetic processing unit handles operands 
in both fixed point and floating point formats. Fixed 
point opdrands may be represented in either single 
(16·btt operands) or double precision (32·blt operands), 
and are always represented as binary,. two's comple­
ment values. 

SINGLE PRECISION FIXED POINT FORMAT 

I VALUE I 
sl I I I I I I I I I I I I I I 
~ 0 

DOUBLE PRECISION FIXED POINT FORMAT 

I VALUE I 
'sl I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
31" - 0 

The sign (positive or negative) of the operand Is located 
. in the most significant bit (MSB). Positive values are 
represented by a sign bit of zero (S = 0). Negative values 
are represented by the two's complement of the corre­
sponding positive value with a sign bit equal to 1 (S = 1). 
The range of values that may be accommodated by each 
of these formats is - 32,768 to + 32,767 for single preci­
sion and -2,147,483,648 to +2,147,483,647 for double 
precision. 

Floating pOint binary values are represented in a form~t 
that permits arithmetic to be performed in a fashion 
analogous to operations with decimal values expressed 
In scientific notation. 

In the decimal system, data may be expressed as values 
between 0 and 10 times 10 raised to a power that effec­
tively shifts the Implied decimal point right or left the 
number of plac'es necessary to express the result in con­
ventional form (e.g., 47,572.8). The'value-portion of the 
da,ta is called the mantissa. The exponent may be either 
negative or positive. . 

The concept of floating point notation has both a gain 
and a loss associated with It. The gain Is the ability to 
represent the slgnljlcant digits of data with values span­
nll)g a large dynamic range limited only by the capacity 
of the exponent field. For example, in decimal notation 
if the exponent field is two digits wide, and the mantissa 
is five digits, a range of values-(positive or negative) 
from 1'.0000 x 10-99 to 9.!l999 x 10+ 99 can be accom­
modated. The loss is that only the significant digits of 
the value can be represented. Thus there is no distinc­
tion in this representation between the values 123451 
and 123452, for example, since each would be ex· 
pressed as: 1.2345 x 105. The sixth dlgrt has been 
discarded. In most applications where the dynamic 
range of values to be represented is large, the loss of 
significance, and hence accuracy of results, Is a minor 
consideration. For greater precision a fixed point format 
could be chosen, although with a loss of potential 
dynamic range. \ 

The 8231A is a binary arithmetic processor and requires 
that floating pOint data be represented by a fractional 
mantissa value between .5 and 1 multiplied by 2 raised 
to an appropriate power. This Is expressed as follows: 

. value = mantissa x 2exponenl 

For example, the value 100.5 expressed In this lorm Is 
0.1100 1001 x 27. The decimal equivalent of this value 
may tie computed by summing the components (powers 
of two) of the mantissa and then multiplying by the ex­
ponent as shown below: 

value=(2- 1 + 2- 2 + 2- 5+ 2- S)x 27 
= 0.5 + 0.25'+ 0.03125 + 0.00290625) x 128 
= 0.78515625 x 128 
= 100.5 

FLOATING POINT FORMAT 
The format for floating point values in the 8231 A is given 
below. The mantissa is expressed as a 24-bit (fractional) 
value; the exponent Is expressed as a two's complement 
7-blt value' having a range of - 64 to + 63. The most 
significant bit Is the sign of the mantissa (0 = positive, 
1 = negative), for a total of 32 bits. The binary pOint Is 
assumed to be to the left of the most significant man­
tissa bit (bit 23). All floating pOint data values must be 
normalized. Bit 23 must be equal to 1, except for the 
value zero, which is represented by all zeros. 

I EXPONENT I MANTISSA I 
~I~I I I I I II I I I I I I I I I I I I I I I I I I I I I I 
~~ ~u , 

The ra~ge of values that can be represented in this for­
mat is ± (2.7 x 10- 20 to 9.2 X lO'S) and zero. 

FUNCTIONAL DESCRIPTION 

STACK CONTROL 

The user interface to the 8231A includes access to an 8 
,level 16-bit wide data stack. Since single precision fixed 
pOint operands are 16-bits in length, eight such values 
may be 'maintained In the stack. When using double 
precision fixed point or floating pOint formats four 
values may be stored. The stack In these two config!Jra­
tlons can be visualized as shown below: 

TOS 

NOS 
-- A2 AI 

B. Bl 

-18-

T05-
NOS-

A4 A3 A. Al 

B4 B3 B. Bl 

-32-

Data '~re written onto the stack, eight bits at a time, in 
the order shown (A 1, A2, A3, ... ). Data are removed from 
the stack in reverse byte order (A4, A3, A2 ... ). Data 
should be entered onto the stack in multiples of the 
number of by,tes appropriate to the chosen data format. 

5-222 231305-001 



intJ 8231A 

DATA ENTRY 

Data 'entry is accomplished by bringing the chip select 
(CS), the command/data line (Ao), and iNR" low, as shown 
in the timing diagram. The entry of each new data word 
"pushes down" the previously entered data and places 
the new byte on the top of stack (TOS). Data on the bot­
tom of the stack prior to a stack entry are lost. 

DATA REMOVAL 

Data are removed from the stack in the 8231A by bringing 
chip select (CS), command/data (Ao), and RD low as 
shown in the timing diagram. The removal of each data 
word redefines TOS so that the next successive byte to 
be removed becomes TOS. Data removed from the stack 
rotates to the bottom of the stack. 

COMMAND ENTRY 

After the appropriate number of bytes of data have been 
entered onto the stack, a command may be issued to 
perform an operation on that data. Commands which reo 
quire two operands for execution (e.g., add) operate on 
the TOS and NOS values. Single operand commands 
operate only on the TOS. 

Commands are issued to the 8231A by bringing the chip 
select (CS) line low, command data (Ao)Une high, and 
WR line low as indicated by the timing diagram. After a 
command is issued, the CPU can continue execution of 
its program concurrently with the 8231A command 
execution. 

COMMAND COMPLETION 

The 8231A signals the completion of each command exe­
cution by lowering the End Execution line (END). 
Simultaneously, the busy bit in the status register is 
cleared and the Service Request bit of the command 
register is checked. If it is a "I" the service request out· 
put level (SVREQ) is raised. END is cleared on receipt of 
an active low End Acknowledge (EACK) pulse. Similarly, 
the service request line is cleared by recognition of an 
active low Service Acknowledge (SVAOK) pulse. 

READY OPERATION 

An active high ready (READY) is provided. This line is 
high in its quiescent state and is pulled low by the 8231A 
under the following conditions: 

1. A previously initiated operation is in progress (device 
busy) and Command Entry has been attempted. In 
this case, the READY line will be pulled low and reo 
main low until completion of the current command 
execution. It will then go high, permitting entry of the 
new command. 

2. A previously initiated operation is in progress and 
stack access has been attempted. In this case, the 
READY line will be pulled low, will remain in that 
state until execution is complete, and will then be 
raised to permit completion of the stack access. 

3. The 8231A is not busy, and data removal has been re­
quested. READY will be pulled low for the length of 
time necessary to transfer the byte from the top of 
stack to the interface latch, and will then go high, 
indicating availability of the data. 

4. The 8231A is not busy, and a data entry has been re­
quested. READY will be pulled low for the length of 
time required to ascertain if the preceding data byte, 
if any, has been written to the stack. If so READY will 
immediately go high. If not, READY will remain low 
until the interface latch is free and will then go high. 

5. When a status read has been requested, READY will 
be pulled low for the length of time necessary to 
transfer the status to the interface latch, and will 
then be raised to permit completion of the status 
read. Status may be read whether or not the 8231A is 

. busy. 

When READY goes low, the APU expects the bus con· 
trol signals present at the time to remain stable until 
READY goes high. 

DEVICE STATUS 

Device status is provided by means of an internal status 
register whose format is shown below: 

I BUSY SIGN ZERO I~~- ERROR CODE ---I CARRY I 
I I I I I 

BUSY: Indicates that 8231A is currently executing a com­
mand (1 = Busy) 

SIGN: Indicates that the value on the top of stack is 
negative (1 = Negative) 

ZERO: Indicates that the value on the top of stack is 
. zero (1 = Value is zero) 

ERROR CODE: This field contains an indication of the 
val idity of the result of the last opera­
tion. The error codes are: 

0000 - No error 
1000 - Divide by zero 
0100 - Square root or log of negative number 
1100 - Argument of inverse sine, cosine, or 

eX too large 
XX10 - Underflow 
XXOI - Overflow 

CARRY: Previous operation resulted in carry or borrow 
from most significant bit. (1 = Carry/Borrow, 
0= No Carry/No Borrow.) 

If the BUSY bit in the status register is a one, the other 
status bits are not defined; if zero, indicating not busy, 
the operation is complete and the other status bits are 
defined as given above. 

READ STATUS 

The 8231A status register can be read by the CPU at any 
time (whether an operation is in progress or not) by 
bringing the chip select (CS) low, the command/data line 
(Ao) high, and lowering RD. The status register is then 
gated onto the data bus and may be input by the CPU. 

EXECUTION TIMES 
Timing for execution of the 8231A command set is con­
tained below. All times are given in terms of clock 
cycles. Where substantial variation of execution times 

5-223 231305-001 

I 

I 



8231A 

is possible, the minimum and maximum values are 
quoted; otherwise, typical values are given. Variations 
are data dependent. 

Total execution times may require allowances for 
operand transfer into the APU, command execution, and 
result retrieval from the APU. Except for command exe· 

cut ion. these times will be heavily influenced by the 
nature of the data, the control interface used, the speed 
of memory, the CPU used, the priority allotted to DMA 
and Interrupt operations, the 'size and number of 
operands to be transferred, and the use of chained 
calculations, etc. 

Table 5. Command Execution Times 

Command Clock Command Clock 
Mnemonic Cycles Mnemonic Cycles 

SADD 17 FADD 54·368 
SSUB 30 FSUB 70·370 
SMUL 84·94 FMUL 146·168 
SMUU 80·98 
SOl V 84·94 FDIV 154·184 
DADO 21 SORT 800 
DSUB 38 SIN 4464 
DMUL 194·210 COS 41.18 
DMUU 182·218 
DDIV 208 TAN 5754 
FIXS 92·216 ASIN 7668 
FIXD 100·346 ACOS 7734 
FLTS 98·186 ATAN 6006 
FLTD 98·378 LOG 4474·7132 

DERIVED FUNCTION DISCUSSION 
Computer approximations of transcendental functions 
are often based on some form of polynomial equation, 
such as: 

(1·1) 

The primary shortcoming of an approximation in this 
form is that it typically exhibits ~ery large errors when 
the magnitude of IXI is large, although the errors are 
small when IXI is small. With polynomials in this form, 
the error distribution is markedly uneven over any 
arbitrary interval. 

, A set of approximating functions exists that not only 
minimizes the maximum error but also provides an even 
distribution of errors within the selected data represen· 
tation interval. These are known as Chebyshev Poly· 
nomials and are are based upon cosine functions, These 
functions are defined as follows: 

T nIX) = Cos n9; where n = 0,1,2 . , . 
9=COS-1X 

(1·2) 

The various terms of the Chebyshev series can be com· 
puted as shown below: 

To(X) = Cos (9' 9)= Cos (0)= 1 (1-4) 
T1(X)=CoS(COS-1X)=X (1'5) 
T 2(X) = Cos 29 = 2Cos2 9 - 1 = 2COS2 (Cos -lX) - 1 (1·6) 

= 2X2_1 

Command Clock Command Clock 
Mnemonic Cycles Mnemonic Cycles 

LN 4298·6956 POPF 12 
EXP 3794·4878 XCHS 18 
PWR 8290·12032 XCHD 26 

Nap 4 XCHF 26 
CHSS 23 PUPI 16 
CHSD 27 
CHSF 18 

PTOS 16 
PTOD 20 
PTOF 20 
POPS 10 
POPD 12 

In general, the next term in the Chebyshev series can be 
recursively derived from the previous term as follows: 

T n(X) = 2X [Tn- 1(X))- T n- 2(X); n ~ 2 (1·7) 

Common logarithms are computed by multiplication 
of the na~ural logarithm by. the conversion factor 
0.43429448 and the error function is therefore the same 
as that for natural logarithm. The power function is 
realized by combination of natural log and exponential 
functions according to the equation: 

XV = e yLnx, 

The error for the power function is a combination of that 
for the logarithm and exponential functions. 

Each of tM derived functions is an approximation of the 
true function. Thus the result of a derived function will 
have an error, The absolute error is the difference be· 
tween the function's result and the true result. A morl! 
useful measure of the function's error is relative error 
(absolute errorltrue result), This gives a measurement of 
the significant digits of algorithm accuracy. For the 
derived functions except LN, LOG, and PWR the relative 
error is typically 4 x 10 -7. For PWR the relative error is 
the summation of the EXP and LN errors, 7x 10-7, For 
LN and LOG, the absolute error is 2x 10- 7. 

5-224 231305·001 



8231A 

APPLICATION INFORMATION 

The diagram in Figure 4 shows the interface connec· 
tions for the APU with operand transfers handled by an 
8237 DMA controller, and CPU coordination handled by 
an Interrupt Controller. The APU interrupts the CPU to 
indicate that a command has been completed. When the 
performance enhancements provided by the DMA and 
Interrupt operations are not required, the APU interface 

can be simplified as shown in Figure 3. The 8231A APU is 
designed with a general purpose B·bit data bus and in· 
terface control so that it can be conveniently used with 
any general B·bit processor. 

~ 
AO-A15 I HlDA 

HOLD 

CLOCK 

MEMR 

MEMW 

iOii 
CPU 

iOW 

AEADY 

iNn 

INT 

DBo-oar 

J 

I 

CPU 

In many systems it will be convenient to use the 
microcomputer system clock to drive the APU clock 
input. In the case of 80BOA systems it would be the 
c/>2TTL signal. Its cycle time will usually fall in the range 
of 250 ns to 1000 ns, depending on the system speed. 

ADDRESS BUS 

lOR 10-----001 RD 

lOW WR 

CLOCK eLK 

READY READY 

SYSTEM DATA BUS 

Ao CS 

8231A 
ARITHMETIC 
PROCESSOR 

UNIT 

Jt 
v 

Figure 3. Minimum Configuration Example 

ADDRESS BUS 

8205 r Ii 
DECODER AO-A7 

0-
8237 ADSlB ,A 

DMA CONTROLLER DBO-
HLDA 

~ Ii ~ DB7 l\rr-HRQ ~ 

12 ~ Ig ~ ~ 0 

f r 

WR lID cs AO 

INTA IRO 8259A 8231 A 
INTERRUPT 

INT 
CONTROL.LER 

OBO-087 

".. 

ARITHMETIC 

"" 
r<= EACK 

±L-____ ~DB~O.~D~B7 ____ ~ 

'" "'" 

PROCESSOR UNIT 

"" :,. 
SYSTEM DATA BUS 

v 

Figure 4. High Performance Configuration Example 

v 

5-225 231305-001 . 



intJ 8231A 

ABSOLUTE MAXIMUM RATINGS· 
Storage Temperature ............. - 65·C to + 150·C 
Ambient Temperature Under Bias ......... O·C to 70·C 
Voo with Respect to Vss ............ - 0.5V to + 15.0V 
Vee with Respect to Vss ............. - 0.5V to + 7.0V 
All Signal Voltages with Respect 

to Vss .......................... - 0.5V to + 7.0V 
Power Dissipation ............................ 2.0W 

'NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may effect device 
reliability. . 

D.C. AND OPERATING CHARACTERISTICS (TA = OOG to 700 G, Vss = OV, Vee = +5V ± 10%, 

Voo = +12V ± 10%) 

Paramet,ers Description . Min. 

VOH Output HIGH Voltage 3.7 

VOL Output LOW Voltage 

V,H Input HIGH Voltage 2.0 

V,L Input LOW Voltage -0.5 

I'L Input Load Current 

IOFL Data Bus Leakage 

lee Vee Supply Current 

100 Voo Supply Current 

Co Output CapaCitance 

C, Input CapaCitance 

C ,O I/O CapaCitance 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

37=>\ :c 20 2.0 

.4 •. 8 > TEST POINTS< •. 8 

A C TESTING INPUTS ARE DRIVEN AT 3.7V FOR A LOGIC "1" AND 0 4V FOR 
A LOGIC'O "TIMING MEASUREMENTS ARE MADE AT 2 OV FORA LOGIC "1" 
AND O.SV FOR A LOGIC "0 " 

Typ. Max. Units Test Conditions 

Volts 10H= -200!'A 

0.4 Volts IOL=3.2 mA 

Vee Volts 

0.8 Volts 

± 10 !,A Vss :$ Y,N :$ Vee 

± 10 !,A VSS +0.45 ,,;; Your ,,;; Vee 

50 95 mA 

50 95 mA 

8 pF 

5 pF fc = 1.0 MHz, Inputs = OV' 

10 pF 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER i}CC. 15O PF 

TeST 

-= 

5-226 231305-001 



8231A 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vss = OV, Vcc = +5V ± 10%, VDD = +12V ± 10%) 

READ OPERATION 

Symbol Parameter 8231A-8 8231A Units 
Min. Max. Min. Max. 

tAR Ao, CS Setup to RD 0 0 ns 

tRA Ao, CS Hold from RD 0 0 ns 

tRY READY I from RD I Delay (Note 2) 150 100 ns 

tYR READY! to RD t 0 0 ns 

Data 3.5 tCY 3.5 tCY ns 

tRRR READY Pulse Width (Note 3) 
+50 +50 

Status 1.5 tCY 1.5 tCY ns 
+50 +50 

tROE Data Bus Enable from RD I 5D 50 ns 

tORY Data Valid to READY t 0 0 ns 

tOF Data Float after RD t 50 200 50 100 ns 

WRITE OPERATION 

Symbol Parameter ,8231A-8 8231A Units 
Min. Max. Min. Max: 

tAW Ao, cs Setup to WR 0 0 ns 

tWA Ao, CS Hold afler WR 60 25 ns 

tWY READY I from WR I Delay (Note 2) 150 100 ns 

tyW READY! to WR ! 0 0 ns 

tRRW READY Pulse Width (Note 4) 50 50 ns 

tWI Write Inactive Time (Note 4) I Command 4 tCY 4 ICY ns 

I Data 5 ICY 5 ICY ns 

tow Dala Setup to WR 150 100 ns 

two Dala Hold after WR 20 20 ns 

OTHER TIMINGS 

Symbol Parameter : 8231A-8 8231A Units 
Min. Max. Min. Max. 

ICY Clock Period 480 5000 250 2500 ns 

ICPH Clock Pulse High Widlh 200 100 ns 

tCPL Clock Pulse Low Width 240 120 ns 

lEE END Pulse Widlh (Nole 5) 400 200 ns 

IEAE EACK I to END! Delay 200 150 ns 

1M EACK Pulse Widlh 100 50 ns 

tSA SVACK I to SVREQ I Delay 300 150 ns 

Iss SVACK Pulse Widlh 100 50 ns 

NOTES: 
1. Typical values are for TA=25°C, nominal supply voltages and nominal processing parameters. 
2. READY is pulled low for both command and data operations. 
3. Minimum values shown assume no previously entered command ls being executed for the data access. If a previously entered 

command is being executed, READY low pulse width is the time to complete execution plus the time shown. Status may be read at any 
time without exceeding the time shown. 

4. READY low pulse width is less than 50 ns when wntong into the data port orthe'control port as long as the duty cycle requirement (tWI) is 
observed and no previous command is being executed. tWI may be safely violated as long as the extended tRRW that results is 
observed. If a previously entered command is being executed, READY low pulse width is the time to complete execution plus the time 
shown. These timings refer specifically to the 8231A. 

5. END low pulse width is specified for EACK :ied to VSS. Otherwise tEAE applies. 

5-227 231305-001 



WAVEFORMS 

READ OPERATION 

CLOCK 

READY 

DATA 
BUS 

WRITE OPERATION 

8231A 

I . 

INTERRUPT OPERATION 

EACK 

\'EE" , 
'EAED! ______________ -'AA- ._----------

SVREQ / t 
----------~ .I\~-------___ 'SA~,SS~/~_ 

SVACK 't ¥ 

5-228 
231305-001 



8253/8253·5 
PROGRAMMABLE INTERVAL TIMER 

• MC8-85™ Compatible 8253·5 

• 3 Independent 16·Blt Counters 

• DC to 2.6 MHz 

• Programmable Counter Modes 

• Count Binary or BCD 

• Single + 5V Supply 

• Available in EXPRESS 
-Standard Temperature Range 
-Extended Temperature Range 

The Intell!!> 8253 is a programmable counter/timer device designed for use as an Intel microcomputer peripheral. It uses nMOS 
technology with a single +5V supply and is packaged in a 24-pin plastic DIP. 

It is organized as 3 independent 16-bit counters, each with a count rate of up to 2.6 MHz. All modes of operation are software 
programmable. 

elK 0 
DATA 

°7°0 BUS GATED 
BUFFER 

OUT 0 

RD 
eLK 1 Vee WR- READJ WR 

WRITE GATE 1 

Ao lOGIC Rli 
OUT 1 

Al 
Al 

0, A, 

cs eLK 2 

17 OUT 2 

eLK 2 
GATE 2 

CONTROL COUNTER 
OUTO 

WORD 
=2 GATE 2 GATE 1 

REGISTER 

OUT 2 GNO OUT 1 

INTERNAL BUS / 

Figure 1. Block Diagram Figure 2. Pin Configuration 

oelNTEL CORPORATION, 1983 

5-229 Order Number: 231306-001 



8253/8253·5 

FUNCTIONAL DESCRIPTION 
General 
The 8253 isa programmable interval timer/counter 
specifically designed for use with the ,Intel'· Micro­
computer systems. Its function is that ofa general 
purpose, multi-timing element that can be treated 'as an 
array of I/O ports in the system software. 

The 8253 solves one of the most common problems in any 
microcomputer system, the generation of accurate time 
delays under software control. Instead Of setting up timing 
loops in systems software, the programmer configures the 
8253 to match his requirements, initializes one of the 
counters of the 8253 with the desired quantity, then upon 
command the 8253 will count out the delay and interrupt 
the CPU when it has completed its tasks, It is easy to see 
that the software overhead is minimal and that multiple 
delays can easily be maintained by assignment of priority 
levels. 

Other counter/timer functions that are non-delay in 
nature but also common to most microcomputers can be 
implemented with the 8253, 

• Programmable Rate Generator 
• Event Counter 
• Binary Rate Multiplier 
• Real Time Clock 
• Digital One-Shot 
• Complex Motor Controller 

Data Bus Buffer 
This 3-state, bi-directional, 8-bit buffer is used to interface 
the 8253 to the system data bus. Data is transmitted or 
received by the buffer upon execution of INput or OUTput 
CPU instructions. The Data Bus Buffer has three basic 
functions. 

1. Programming the MODES of the 8253, 
2. Loading the count reg·isters. 
3. Reading the count values. 

Read/Write Logic 

The Read/Write Logic accepts inputs from the system bus 
and in turn generates control signals for overall device 
operation. It is enabled or disabled by CS so that no 
operation can occur to change the function unless the 
device has been selected by the system logic. 

RD (Read) 
A "low" on this input informs the 8253 that the CPU IS 

inputting data in the form of a counters value. 

WR (Write) 
A "lOW" on this input informs the 8253 that the CPU is 
outputting data in the form of mode information or loading 
counters. 

AO,A1 
These inputs are normally connected to the address bus. 
Their function is to selectone of the three counters to be 

- operated on and to address the control word register for 
mode selection. 

CS (Chip Select) 
A "low" on this input enables the 8253. No reading or 
writing will occur unless the device is selected The CS 
input has no effect upon the actual operation of the 
counters, , 

INTERNAL BUS 

Figure 3. Block Diagram Showing Data Bus Buffer and 
Read/Write Logic Functions 

CS RD WR A, Ao 
0 1 0 0 0 Load Counter No. 0 

0 1 0 0 1 Load Counter No.1 

0 1 0 1 0 Load Counter No.2 

0 1 0 1 1 Write Mode Word 

0 0 1 0 0 Read Counter No. 0 

0 0 1 0 1 Read Counter No. " 

0 0 , 1 0 Read Counter No.2 

0 0 , 1 1 No-Operation 3-State 

1 X X X X Disable 3-State 

0 1 1 X X No-Operation 3-State 

5-230 231306-001 



8253/8253·5 

Control Word Register 
The Control Word Register is selected when AO, A 1 are 11. 
It then accepts information from the data bus buffer and 
stores it in a register. The information stored in this 
register controls the operational MODE of each counter, 
selection of binary or BCD counting and the loading of 
each count register. 

The Control Word Register can only be written into; no 
read operation of its contents is available. 

Counter #0, Counter #1, Counter #2 
These three functional blocks are identical in operation so 
only a single Counter will be described. Each Counter 
consists of a single, 16-bit, pre-settable, DOWN counter. 
The counter can operate in either binary or BCD and its 
input, gate and output are configured by the selection of 
MODES stored in the Control Word Register 

The counters are fully independent and each can have 
separate Mode configuration and counting operation, 
binary or BCD. Also, there are special features in the 
control word that handle the loading of the count value so 
that software overhead can be minimized for these 
functions. 

The reading of the contents of each counter is avallableto 
the programmer with simple READ operations for event 
counting applications and special commands and logic 
are included in the 8253 so that the contents of each 
counter can be read "on the fly" without having to inhibit 
the clock input. 

8253 SYSTEM INTERFACE 
The 8253 is a component of the Intel'" Microcomputer 
Systems and interfaces in the same manner as all other 
peripherals of the family. It is treated by the systems 
software as an array of peripheral I/O ports; three are 
counters and the fourth is a control register for MODE 
programming. 

Basically, the select inputs AO, A1 connect to the AO, A1 
address bus signals of the CPU The CS can be derived 
directly from the address bus using a linear select method. 
Or it can be connected to the output of a decoder, such as 
an Intel® 8205 for larger systems. 

Ril 
WR 

Ao 

A, 

cs 

II 

11 

1\ 

5-231 

elK 0 

GATE 0 

aUTO 

elK 1 

GATE 1 

OUTl 

elK 2 

GATE 2 

OUT 2 

Figure 4. Block Diagram Showing Control Word 
Register and Counter Functions 

ADDRESS BUS {161 J 
A, Ao 

CONTROL BUS J 
IIDR I/OW 

DATA BUS (8) 

B 
A, Ao cs 0 0 .07 RD WR . 

8253 
COUNTER COUNTER COUNTER 

0 1 2 
I 

lOUT GATE elK I 
I 

lOUT GATE elK I 
I 

I aUT GATE elK I 

1 r r 1 r 1 1 r 1 

Figure 5. 8253 System Interface 

231306-001 



intel" 8253/8253·5 

OPERATIONAL DESCRIPTION 

General 
The complete functional definition of the 8253 is 
programmed by the systems software. A set of control 
words ~ be sent out by the CPU to initialize each 
counter of the 8253 with the desired MODE and quantity 
information. Prior to initialization, the MODE, count, and 
output of all counters is undefined. These control words 
program the MODE, Loading sequence and selection of 
binary or BCD counting. 

M - MODE: 

• M2 Ml MO 

0 0 0 Mode 0 

0 0 1 Mode 1 

X 1 0 Mode 2 

X 1 1 Mode 3 

1 0 0 Mode 4 

1 0 1 Mode 5 

Once programmed, the 8253 is ready to perform whatever BCD: 
timing tasks it is assigned to accomplish. 

The actual counting operation of each counter is 
completely independent and additional logic is provided 
on-chip so that the usual problems associated with 
efficient monitoring and' management of external, 
asynchronous events or rates to the microcomputer 
system have been eliminated. 

Programming the 8253 

All of the MODES for each counter are programmed by the 
systems software by simple I/O operations. 

Each counter of the 8253 IS individually programmed by 
writing a control word Into the Control Word Register 
(AO, A1 = 11) 

Control Word Format 

D2 D1 DO 

SCl SCO RL1 RLO Ml MO BCD 

Definition of Control 

SC - Select Counter: 

SCl SCO 

0 0 Select Counter 0 

0 1 Select Counter 1 

1 0 Select Counter 2 

1 1 Illegal 

RL - Read/Load: 

RL 1 RLO 

0 0 Counter Latching operation (see 
R EAD/WR ITE Procedure Section) 

1 0 Read/Load most significant byte only. 

0 1 Read/Load least significant byte only. 

1 1 Read/Load least significant byte first, 
then most significant byte. 

o Binary Counter 16-bits 

Binary Coded Decimal (BCD) Counter 
(4 Decades) 

Counter Loading 

The count register is not loaded until the count value is 
written (one or two bytes, depending on the mode 
selected by the RL bits), followed by a rising edge and a 
falling edge of the clock. Any read of the counter prior to 
that'falling clock edge may yield invalid data. 

MODE Definition 

MODE 0: Interrupt on Terminal Count_ The output will 
be initially low after the mode set operation. After the 
count is loaded into the selected count register, the out­
put will remain low and the counter will count. When ter­
minal count is reached the output will go high and re­
main high until the selected count register is reloaded 
with the mode or. a new count is loaded. The counter' 
continues to decrement after terminal count has been 
reached. 

Rewriting a counter register during counting results in 
the following: 

(1) Write 1 st byte stops the current counting_ 
(2) Write 2nd byte starts the new count. 

MODE 1: Programmable One-Shot The output will go 
low on the count following the rising edge of the gate in­
put. 

The output will go high on the terminal cOunt. If a new 
count value is loaded while the output is low it will not 
affect the duration of the one-shot pulse until the suc­
ceeding trigger. The current count can be read at any 
time without affecting the one-shot pulse. 

The one-shot is retriggerable, hence the output will re­
main low for the full count after any rising edge of the 
gate input. 

5-232 231306-001 



825318253·5 

MODE 2: Rate Generator. Divide by N counter. The out­
put will be low for one period of the input clock. The 
period from one output pulse to the next equals the 
number of input counts in the count register. If the 
count register is reloaded between output pulses the 
present period will not be affected, but the subsequent 
period will reflect the new value. 

The gate input, when low, will force the output high. 
When the gate input goes high, the counter will start 
from the initial count. Thus, the gate input can be used 
to synchronize the counter. 

When this mode is set, the output will remain high until 
after the count register is loaded. The output then can 
also be synchronized by software. 

MODE 3: Square Wave Rate Generator.Similar to MODE 
2 except that the output will remain high until one half 
the count has been completed (for even numbers) and 
go low for the other half of the count. This is accom­
plished by decrementing the counter by two on the faIl­
ing edge of each clock pulse. When the counter reaches 
terminal count, the state of the output is changed and 
the counter is reloaded with the full count and the whole 
process is repeated. 

If the count is odd and the output is high, the first clock 
pulse (after the count is loaded) decrements the count 
by 1. Subsequent clock pulses decrement the clock by 
2. After timeout, the output goes low and the full count 
is reloaded. The first clock pulse (following the reload) 
decrements the counter by 3. Subsequent clock pulses 
decrement the count by 2 until timeout. Then the whole 
process is repeated. In this way, if the count is odd, the 
output will be high for (N +1)/2 counts and low for 
(N - 1)/2 counts. 

In Modes 2 and 3, if a ClK source other than the system 
clock is used, GATE should be pulsed immediately following 
iNA of a new count value. 

MODE 4: Sofiware Triggered Strobe. After the mode is 
set, the output will be high. When the count is loaded, 
the counter will begin counting. On terminal count, the 

output will go low for one input clock period, then will 
go high again. 

If the count register is reloaded during counting, the new 
count will be loaded on the next ClK pulse. The count will 
be inhibited while the GATE input is low. 

MODE 5: Hardware Triggered Strobe. The counter will 
start counting after the rising edge of the trigger input 
and will go low for one clock period when the terminal 
count is reached. The counter is retriggerable. The out­
put will not go low until the full count after the rising 
edge of any trigger. 

~I Low 
, Status Or Going 

Modes Low Rlsmg HIgh 

0 Disables -- Enables 
counting counting 

1 -- 1) Initiates --
counting 

2) Resets output 
after next clock 

2 1) Disables 
1) Reloads 

counting Enables 
2) Sets output 

counter counting 
Immediately 2) InItIates 

high counting 

3 1) Disables 1) Reloads 
counting counter Enables 

2) Sets output 2) Initiates counting 
Immediately counting 
hIgh 

4 Disables -- Enables 
counting counting 

5 -- Initiates --
counting 

Figure 6. Gate Pin Operations Summary 

5-233 231306-001 



8253/8253·5 

MODE 0: Interrupt on Terminal Count 

CLOCK 
, I 

WFfn 
, I 

4 3 2 1 0 
OUTPUT (INTERRUPT) I I 

(n;4) 1-+-0_: 
I I 
I I 

WRm~ 
, I 

GATE------------~:L____J~-+'---------
54 3210 

OUTPUT (INTERRUPT) 

A B 
A+B"'m 

MODE 1: Programmable One·Shot 

TAIGGEA~ 

4324321 
OUTPUT ---,L.:.....:....:~.:.....:.....: __ r-------

MODE 2: Rate Generator 

4 3 2 1 O(4) 3 2 1 0(3) 2 1 0 

~ OUTPUT 

OUTPUT (n '" 3) 
0131 3 2 1 013) 2 1 0(3) 2 1 

RESET -----,L ___ ..J-----

MODE 3: Square Wave Generator 

CLOCK 

OUTPUT (n = 4) 

OUTPUT (n=5) 

MODE 4: Sof·tware Triggered Strobe 

LOAOn~-----------------------

GATE ------~~~--------
4 3 

OUTPUT 

MODE 5: Hardware Triggered Strobe 

CLOCK 

GATE ----.J 
4 3 2 0 

~~~~~~~-------OUTPUT (n = 4) 

GATE~
4343210

OUTPUT In" 41 U

Figure 7. 8253 Timing Diagrams

5-234 231306-001

8253/8253·5

8253 READ/WRITE PROCEDURE

Write Operations

The systems software must program each counter of the
8253 with the mode and quantity desired. J'he program­
mer must write out to the 8253 a MODE control word and
the programmed number of count register bytes (lor 2)
prior to actually using the selected counter ..

The actual order of the programming is quite flexible.
Writing out of the MODE control word can be in any
sequence of counter selection, e.g., counter #0 does not
have to be first or counter #2 last. Each counter's MODE
control word register has a separate address so that its
loading is completely sequence independent. (SCO, SC1)

The loading of the Count Register with the actual count
value, however, must be done in exactly the sequence
programmed in the MODE control word (RLO, RL 1). This
loading of the counter's count register is still sequence
independent like the MODE control word loading, but
when a selected count register is to be loaded it !!l.!iM be
loaded with the number of bytes programmed in the
MODE control word (RLO, RL 1). The one or two bytes to
be loaded in the count register'do not have to follow the
associated MODE control word. They can be programmed
at any time following the MODE control word loading as
long as the correct number of bytes is loaded in order.

,All counters are down counters. Thus, the value loaded
into the count register will actually be decremented,
Loading all zeroes into a count register will result in the
maximum count (2'6for Binary or 104 for BCD).ln MODEO
the new count will not restart until the load has been
cornpleted, It will accept one of two bytes depending on
how the MODE control words (RLO, RL 1) are program­
med Then proceed with the restart operation.

5-235

MODE Control Word
Counter n

LSB
Count Register byte

Counter n

MSB
Count Register byte

Counter n

Note: Format shown is a simple example of loading the 8253 and
does not imply that it is the on,lv format that can be used.

Figure 8. Programming Format

Al AO

No. 1
MODE Control Word

1 1
Counter 0

MODE Control Word
1 1

Counter 1
No. 2

MODE Control Word
1 1

Counter 2
No.3

LSB
Count Register Byte

0 1
Counter 1

No. 4

Count Register Byte
0 1

MSB Counter 1 No. 5

LSB
Count Register Byte

1 0
Counter 2

No.6

MSB
Count Register Byte

1 0
Counter 2

No. 7

LSB
Count Register Byte

0 0
Counter 0

No.8

MSB
Count Register Byte

0 0
Counter 0

No. g

Note: The exclusive addresses of each counter's count register make
the task of programming the 8253 a very simple matter, and
maximum effective use of the device will result if this feature
Is fully utilized.

Figure 9. Alternate Programming Formats

231306-001

inter 8253/8253·5

Read Operations
In most counter applications It becomes necessary to read
the value of the count In progress and make a
computatIOnal decIsion based on thiS quantity Event
counters are probably the most common application that
uses thiS function The 8253 contains logic that will allow
the programmer to easily read the contents of any of the
three counters without disturbing the actual count In
progress

There are two methods that the programmer can use to
read the value of the counters The first method Involves
the use of simple I/O (ead operations of the selected
counter By controlling the AO, A 1 Inputs to the 8253 the
programmer can select the counter to be read (remember
that no read operallon of the mode register IS allowed AO,
A1-11) The only requirement with thiS method IS that In
order to assure a stable count reading the actual operatIOn
of the selected counter must ~ Inhibited either by
controlling the Gate Input or by external logic that Inhibits
the clock Input The contents of the counter selected will

" be available as follows

first I/O Read contains the least significant byte (LSB)

second I/O Read contains the most significant byte
(MSB).

Due to the Internal logiC of the 8253 It IS absolutely
necessary to complete the entire reading procedure If two
bytes are programmed to be read then two bytes must be
read before any loading WR command can be sent to the
same counter

3MHz
ClK ~ -2

8085

Read Operation Chart

Al AO RD

0 I 0 0 Read Counter No. 0

0 1 0 Read Counter No.1

1 0 0 Read COljnter No. :1

1 1 0 Illegal

Reading While Counting
In order for the programmer to read the contents of any
counter without effecting or disturbing the counting
operation the 8253 has special Internal logiC that can be
accessed uSing simple WR commands to the MODE
register BaSically, when the programmer wishes to read
the contents of a selected counter "on the fly" he loads the
MODE register with a special code which latches the
present count value Into a storage register $0 that ItS
contents contain an accurate, stable quantity The
programmer then Issues a normal read command to the
selected counter and the contents of the latched register IS
available

MODE Register for Latching Count

AO, A1 11

DO

x

SC1,SCO- specify counter to be latched

D5,D4 - 00 deSignates counter latching operation

X - don't care.

The same limitation applies to this m'ode of reading the
counter as the previous method. That is, it is mandatory
to complete the entire read operation as programmed.
This command has no effect on the counter's mode.

• 1.5MHz
ClK

8253·5

-If an 8085 clock output is to drive an 8253·5 clock input, It must be reduced to 2 MHz or less

Figure 10. MCS_85™ Clock Interface'

5-236 231306-001

825318253·5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias
Storage Temperature
Voltage On Any Pin

With Respect to Ground
Power DiSSipation

0° Cto 70°C
-65° C to +150° C

-05Vto+7V
1 Watt

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = 5V ±10%) "

Symbol Parameter Min. Max. Unit Test Conditions

V,L Input Low Voltage -0.5 0.8 V

V,H Input High Voltage 2.2 Vee +·5V V

VOL Output Low Voltage 0.45 V Note 1

VOH Output High Voltage 2.4 V Note 2

I,L I nput Load Current ±10 pA VIN = Vee to OV

IOFL Output Float Lea kage ±10 pA VOUT = Vee to .45V

lee Vee Supply Current 140 mA

CAPACITANCE (TA = 25°C. Vee = GND = OV)

Symbol Parameter Min. Typ. Max. Unit Test Conditions

C'N I nput Capacitance 10 pF fc = 1 MHz

C,iO I/O Capacitance 20 pF Unmeasured pins returned to VSS

A.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = 5.0V ± 10%. GND = OV) "

Bus Parameters (Note 3)

READ CYCLE

8253 8253-5

Symbol Parameter Min. Max. Min. Max. Unit

tAR Address Stable Before READ 50 30 ns

tRA Address Hold Time for READ 5 5 ns

tRR READ Pulse Width 400 300 ns

tRD Data Delay From R EAD[4] 300 200 ns

tDF READ to Data Floating 25 125 25 100 ns
-~ 1---------

tRY Recovery Time Between READ
1 and Any Other Control Signal 1 f../S

5-237 231306-001

I;
I::

8253/8253·5

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

8253 8253-5

Symbol Parameter Min. Max. Mln_ Max.

tAW Address Stable Before WR ITE 50 30 '

tWA Address Hold Time for WRITE 30 " 30

tww WR ITE Pulse Width 400 300

tow Data Set Up Time for WR ITE 300 250

two Data Hold Time for WR ITE 40 30

tRY Recovery Time Between WRITE 1 1

and Any Other Control Signal

CLOCK AND GATE TIMING

8253 8253-5

Symbol Parameter Min. Max_ Min. Max_

teLK Clock Per iod 380 dc 380 dc

tPWH High Pulse Width 230 230

tPWL Low Pulse Width 150 150

tqw Gate Width High 150 150

tGL Gate Width Low 100 100

tGS Gate Set Up Time to CLKt 100 100

tGH Gate Hold Time After CLKt 50 50

too Output Delay From CLK,t,[4] 400 400

tOOG Output Delay From Gate,t, [4J 300 300

NOTES:
1, IOL = 2,2 mAo
2. IOH = -400 I'A
3. AC timings measured at VOH 2.2, VOL = O.B.
4. CL = 150pF.
• For Extended Temperature EXPRESS, use MB253 electrical parameters.

A,C_ TESTING INPUT, OUTPUT WAVEFORM

24
2.2V 2.2V > TEST POINTS <

045
0.8 0.8

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 0 45V FOR A
lOGIC "0" TIMING MEASUREMENTS ARE MADE AT 22V FOR A LOGIC "1" AND
o av FOR A LOGIC 0

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~CL~150PF TEST

-::-

Cl INCLUDES JIG CAPACITANCE

,5-238

Unit

ns

ns

ns

ns

ns

p,s

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

231306-001

intJ 8253/8253-5

WAVEFORMS

WRITE TIMING

110-1' CS __ J1'--_______ +"'I''--__ _

DATA BUS

----------Jl~----~--~~--

CLOCK AND GATE TIMING

eLK

READ TIMING

5-239 231306-001

•

•

•
•

8254
PROGRAMMABLE INTERVAL TIMER

Compatible with all Intel and most, • Three Independent 16·bit Counters
other microprocessors

Handles Inputs from DC to 10 MHz • Binary or BCD Counting
5 MHz 8254-5
8 MHz 8254

Single +5V Supply 10 MHz 8254-2 •
Status Read·Back Command • Available in EXPRESS

Six Programmable Counter Modes -Standard Temperature Range

The Intel® 8254 is a counter/timer device designed to solve the common timing control problems in microcom­
puter system design. It provides three independent 16-bit counters, each capable of handling clock inputs up to
10 MHz. All modes are software programmable. The 8254 is a superset of the 8253.

The 8254 uses HMOS technology and comes in a 24-pin plastic or CERDIP package.

elK 0

07-0 0

0, Vee

o. WR

All 0, AD
IVA

elK 1
0, es

GATE 1 0, A,

"
OUT 1 0, Ao

0, elK 2

OUT2
i:"S

GATE 2

ClK 1

GATE 1
GATE 2 GNO OUTl

OUT 2

Figure 1. 8254 Block Diagram Figure 2. Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No
Other Circ.uit Patent Licenses are Implied. Information Contained herein Supersedes Previously Published Specifications On The
Devices FromJntel.

©INTEL CORPORATION, 1984 5-240 January 1985
ORDER NUMBER: 231164-002

inter 8254

Table 1. Pin Description

Symbol Pin No. Type N,ame and Function

DrDo 1·8 I/O Data: B.·d"""lional three state data bus
lines, connected to system data bus.

ClKO 9 I Clock 0: Clock .nput of Counter O.

OUTO 10 0 Output 0: Output of Counter 0

GATE 0 11 I Oate 0: Gate Input of Counter O.

GND) 12 Oround: Power supply connection.

FUNCTIONAL DESCRIPTION

General

The 8254 is a programmable interval timer/counter de­
signed for use with Intel microcomputer systems. It is a
general purpose, multi-till\ing element that can be treated
as an array of 1/0 ports in the system software.

The 8254 solves one of the most common problems in
any microcomputer system, the generation of accurate
time delays under software control: Instead of setting
up timing loops in software, the programmer configures
the 8254 to match his requirements and programs one of
the counters for the desired delay. After the desired
delay, the 8254 will interrupt the CPU. Software over·
head is minimal and variable length delays can easily be
accommodated.

Some of the other counterltimer functions common to
microcomputers which can be implemented with the
8254 are:

• Real time qlock
• Event counter
• Digital one·shot
• Programmable rate generator
• Square wave generator
• Binary rate multiplier
• Complex waveform generator
.. Complex motor controller

Symbol Pin No. Type

Vee 24

WR 23 r

RD 22 I

CS 21 I

A1,Ao 20·19 I

ClK2 18 I

OUT 2 17 0

GATE 2 16 I

ClK 1 15 I

GATE 1 14 I

OUTI 13 0

Block Diagram

DATA BUS BUFFER

Nama and Function

POWfIr: + 5V power supply conn""t.on.

Write COIltrol: This .nput.s low during CPU
write operations.

Raed Control: This Input Is low during CPU
read operations.

Chip Select: A low on this Input enables the
8254 to respond to AD and WR signals. AD
and WR are Ignored otherwlss.

Add : Used to sslect one of the three
Counters or the Control Word Register for
read or write operations. Normally con·
nected to the system address bus.

AI Ao &elects

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control Word Register

Clock 2: Clock .nput of Counter 2.

Out 2: Output of Counter 2.

Oate 2: Gate Input of Counter 2.

Clock 1: Clock Input of Counter 1.

Oatel: Gate input of Counter 1.

Out 1: Output of Counter 1.

This 3'state, bi·directional, 8·bit buffer is used to inter·
face the 8254 to the system bus (see Figure 3).

elK 1

GATE 1

OUT 1

CLK2

GATE 2

OUT 2

Figure 3. Block Diagram Showing Dala Bus Buffer and
ReadIWrlle Logic Functions

5-241 231164·002

inter ·8254

READIWRITE lOGIC

The ReadlWrite logic accepts inputs from the system
bus and generates control signals for the other func­
tional blocks of the 8254. A1 and Ao select one of the
three counters or the Control Word Register to be read
from/written into. A "low" on the Fit) input tells the 8254
that the CPU is reading one of the counters. A "low" on
the WR input tells the 8254 that the CPU is writing either
a Control Word or an initial count. Both RD and iiirn are
qualified by C5; RD and WR are ignored unless the 8254
has been selected by holding CS low.

CONTROL WORD REGISTER

The Control Word Register (see Figure 4) is selected by
the Read/Write logic when A1,Ao= 11. If the CPU then
does a write operation to the 8254, the data is stored in
the Control Word Register and is interpreted as a Con­
trol Word used to define the operation of the Counters.

The Control Word Register can only be written to; status
Information is available with the Read-Back Command.

Figure 4_ Block Diagram Showing Control Word
Register and Counter Functions

COUNTER D, COUNTER 1, COUNTER 2

These three functionai blocks are identical in operation,
so only a single Counter will be described. The internal
block diagram of a Single counter'is shown in Figure 5.

The Counters are fully independent. Each Counter may
operate in a different Mode.

The Control Word Register is shown in the figure; it is
not part of the Counter itself, but I~s contents determine
how the Counter operates.

Figure S. Internal Block Diagram of a Counter

The status register, shown in the Figure, when latched,
contains the current contents of the Control Word
Register and status of the output and null count flag.
(See detailed explanation of the Read-Back command.)

The actual counter is labelled CE (for "Counting Ele-.
ment"). It is a 16-bit presettable synchronous down
counter.

OlM and Oll are two 8-bit latches. Ol stands for "Out­
put latch"; the subscripts M and l stand for "Most sig­
nificant byte" and "least significant byte" respectively.
Both are normally referred to as one unit and called just
OL. These latches normally ~'follow" the CE, but if a
suitable Counter Latch Command is sent to the 8254,
the latches "latch" the present count untii read by the
CPU and then return to "following" the OE. One latch at
a tim~ is enabled by the counter's Control logic to drive
the internal bus. This is how the 16-bit Counter com­
municates over the 8-blt Internal bus. Note that the CE
Itself cannot be read; whenever you read the count, it is
the Ol that is being read.

Similarly, there are two 8-bit registers called CRM and
CRl (for "Count Register"). Both are normally referred to
as one unit and called just CR. When a new count is writ­
ten to the Counter, the count is stored in the CR and
later transferred to the CEo The Control logic allows one
register at a time to be IQaded from the internal bus .• ,

• Both bytes are transferred to the CE simultaneously.
CRM and CRl are cleared when the Counter Is pro­
grammed. In this way, if the Counter has been pro­
grammed for one byte counts (either most significant
byte only or least significant byte only) the other byte
will be zero. Note that the CE cannot be written into;
.lIJIhenever a count is written, ft is written into the CR.

The Control logic is also shown in the diagram. ClK n,
GATE n, and OUT n are all connected to the outside
world through the Control logic.

5-242. 231164-002

..
8254

8254 SYSTEM INTERFACE

The 8254 is a component of the Intel Microcomputer Sys­
tems and interfaces in the same manner as all other pe­
ripherals of the family. It is treated by the systems software
as an array of peripheral 1/0 ports; three are counters and
the fourth is a control register for MODE programming.

Basically, the select inputs Ao, A1 connect to the Ao, A1
address bus signals of the CPU. The CS can be derived
directly from the address bus using a linear select method.
Or it can be connected to the output of a decoder, such as
an Intel 8205 for larger systems.

Figure 6. 8254 System Interface

OPERATIONAL DESCRIPTION

General
After power-up, the state of the 8254 is undefined. The
Mode, count value, and output of all Counters are
undefined.

How each Counter operates is determined when it is
programmed. Each Counter must be programmed
before it can be used. Unused counters need not be pro­
grammed.

Programming the 8254

Counters are programmed by writing a Control Word
and then an initial count.

All Control Words are written into the Control Word
Register, which is selected when Al,Ao= 11. The Con·
trol Word itself specifies which Counter Is being pro-
grammed. .

By contrast, initial counts are written Into the Counters,
not the Control Word Register. The Al,Ao Inputs are
used to select the Counter to be written Into. The fOJmat
of the initial count is determined by the Control Word
used.

Control YVord Format

'Al,Ao= 11 CS=O RD= 1 WR=O

SC1 I sco I RW1 I RWO I M2 M1 MO I BCD I
SC - Select Counter:

SCl sco
0 0 Select Counter 0

0 1 Select Counter 1

1 0 Select Counter 2

1 1 Read-Back Command
(See Read Operations)

RW - RaadlWrite:

RW1 RWO

0 0 Counter Latch Command (see Read
Operations)

0 1 ReadlWrite least Significant byte only.

1 0 ReadlWrlte most significant byte only

1 1 ReadlWrlte least significant byte first,
then most Significant byte.

NOTE: DON'T CARE BITS (X) SHOULD BE 0 TO INSURE
COMPATIBILITY WITH FUTURE INTEL PRODUCTS.

M- MODE:

M2 Ml

0 0

0 0

X 1

X 1

1 0

1 0

BCD:

Figure 7. Control Word Format

5-243

MO

0 Mode 0

1 Mode 1

0 Mode 2

1 Mode 3

0 Mode 4

1 Mode 5

Binary Counter 16-blts

Binary Coded DeCimal (BCD) Counter
(4 Decades)

231164-002

1

I
I

Ii ','
~

;i

1 I,

i:
I:
1

I

I

"

intJ 8254

Write Operations
The programming procedure for the 8254 is very flexible.
Only two conventions need to be remembered:

1) For each Counter, the Control Word must be written
before the initial count Is written.

2) The Initial count must follow the count format
specified In the Control Word (least significant byte
pnly, most significant byte only, or least significant
byte and then most significant byte).

Since the Control Word Register and the three Counters
have separate addresses (selected by the A1,Ao inputs),
and each Control Word specifies the Counter It applies
to (SCO,SC1 bits), no special Instruction sequence is reo

At Ao

Control Word - Counter 0 1 1
LSB of count - Counter 0 0 0
MSB of count - Counter 0 0 0
Control Word - Counter 1 1 1
LSB of count - Counter 1 0 1
MSB of count - Counter 1 0 1
Control Word - Counter 2 1 1
LSB of count - Counter 2 1 0
MSB of count - Counter 2 1 0

A1 Ao

Control Word - Counter 0 1 1
Control Word - Counter 1 1 1
Control Word - Counter 2 1 1
LSB of count - Counter 2 1 0
LSB of count - Counter 1 0 1
LSB of count - Counter 0 0 0
MSB of count - Counter 0 0 0
MSB of count - Counter 1 0 1
MSB of count - Counter 2 1 0

J

quired. Any programming sequence that follows the
conventions above is acceptable.

A new initial count may be written to a Counter at any
time without affecting the Counter's programmed Mode
in any way. Counting will be affected as described In the
Mode definitions. The new count must follow the pro­
grammed count format.

If a Counter Is programmed to read/write two·byte
counts, the following precaution applies: A program
must not transfer control between writing the first and
second byte to another routine which also writes into­
that same Counter. Otherwise, the Counter will be
loaded with an Incorrect count.

At Ao

Control Word - Counter 2 1 1
Control Word - Counter 1 1 1
Control Word - Counter 0 1 1
'LSB of count - Counter 2 1 0
MSB of count - Counter 2 1 0
LSB of count - Counter 1 0 1
MSB of count - Counter 1 0 1
LSB of count - Counter 0 0 0
MSB of count - Counter 0 0 0

At Ao

Contr.ol Word - Counter 1 1 1
Control Word - Counter 0 1 1
LSB of count - Counter 1 0 1
Control Word - Counter 2 1 1
LSB of count - Counter 0 0 0
MSB of count - Counter 1 ° 1
LSB of count - Counter 2 1 0
MSB of count - Counter 0 0 0
MSB of count - Counter 2 1 0

NOTE: IN ALL FOUR EXAMPLES, ALL COUNTERS ARE PROGRAMMED TO READlWRITE TW().BYTE COUNTS.

THESE ARE ONLY FOUR OF MANY POSSIBLE PROGRAMMING SEQUENCES.

Figure 8. A Few Possible Programming Sequences

Read Operations
It is often desirable to read the value of a Counter
without disturbing tbe count In progress. This is easily
done in the 8254.

There are three possible methods for reading the counters: a
simple read operation, the Counter Latch Command, and

the Read-Back Command. Each is explained below. The first
method Is to perform a simple read operation. To read the
Counter, which is selected with the A1, AO inputs, the CLK
Input of the selected Counter must be inhibited by using
either the GATE input or external logic. Otherwise, the count
may be in the process of changing when it is read, giving an
undefined result.

5-244 231164-002

inter 8254

COUNTER LATCH COMMAND

The second method uses the "Counter Latch Command".
Like a Control Word, this command is written to the Control
Word Register, which is selected when A1, Ao= 11. Also like a
Control Word, the SCO, SC1 bits select one of the three
Counters, but two other bits, 05 and 04, distinguish this
command from a Control Word.

A1.Ao=11; CS=O; RD=1; WR=O

D7 Ds Ds D4 D3 D2 D1 Do

I SC1 I SCO I 0 I 0 I X I X I X I Xl

SC1,SCO - specify counter to be latched

SC1 seo Counter

0 0 0
0 1 1
1 0 2
1 1 Read-Back Command

05,04 - 00 designates Counter Latch Command

X - don't care

NOTE: DON'T CARE BITS (Xl SHOULD BE 0 TO INSURE
COMPATIBILITY WITH FUTURE INTEL PRODUCTS.

Figure 9. Counter Latching Command Format, .

The selected Counter's output latch (OL) latches the
count at the time the Counter Latch Command is reo
ceived. This count is held in the latch until it is read by
the CPU (or until the Counter is reprogrammed). The
count is then unlatched automatically and the OL
returns to "following" the counting element (CE). This
allows reading the contents of the Counters "on the fly"
without affecting counting in progress. Multiple
Counter Latch Commands may be used to latch more
than one Counter. Each latched Counter's OL holds its
count until it is read. Counter Latch Commands do not
affect the programmed Mode of the Cou'nter in any way.

If a Counter is latched and then, some time later, latch·
ed again-before the count is read, the second Counter
Latch Command is ignored. The count read will be the
count at the time the first Counter Latch Command was
issued.

With either method, the count must be read according
to the programmed format; specifically, if the Counter is
programmed for two byte counts, two bytes must be
read. The two bytes do not have to be read one right
after the other; read or write or programming operations
of other Counters may be inserted between them.

Another feature of the 8254 is that reads and writes of
the same Counter may be interleaved; for example, if the
Counter is programmed for two byte counts, the follow·
ing sequence is valid.

1. Read least significant byte.
2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

If a Counter is programmed to read/write two·byte
counts, the following precaution applies: A program
must not transfer control between reading the first and
second byte to another routine which also reads from
that same Counter. Otherwise, an incorrect count will be
read.

READ-BACK COMMAND

The third method uses the Read-Back Command. This
command allows the user to check the count value, pro­
grammed Mode, and current states of the OUT pin and Null
Count flag of the selected counter(s).

The command is written into the Control Word Register
and has the format shown in Figure 10. The command
applies to the counters selected by setting their corre­
sponding bits 03,02,01=1.

~ ~ ~ ~ ~ ~ ~ ~

I COUNT ISTATusl CNul CNT 1 I CNT 0 I 0 I

05: 0 = LATCH COUNT OF SELECTED CoUNTER(8)
Qj: 0 = LATCH STATUS OF SELECTED COUNTER(8)
0,: 1 - SELECT COUNTER 2
~: 1 = SELECT COUNTER 1
0.,: 1 = SELECT COUNTER 0
Do: __ FOR FU1URE EXPANSION; MUST BE 0

Figure 10. Read·Back Command Format

The read-back command may be used to latch multiple
counte.r output latches (OL) by setting the COUNT bit
05=0 and selecting the desired counter(s). This single
command is functionally equivalent to several counter
latch commands, one for each counter latched. Each
counter's latched count is held ,until it is read (or the
counter is reprogrammed). That counter is automatically
unlatched when read, but other counters remain latched
until they are read. If multiple count read-back commands
are issued to the same counter without reading the count,
all but the first are ignored; i.e., the count which will be
read is the count at the time the first read-back command
was issued.

The read·back command may also be used to latch
status information of selected counter(s) by setting
STATUS bit 04=0. Status must be latched to be read;
status of a counter is accessed by a read from that
counter.

5-245 231164-002

i;

I.,

8254

The counter status format is shown in Figure 11. Bits 05
through DO contain the counter's programmed Mode ex·
actly as written In the last Mode Control Word. OUTPUT
bit 07 contains the current state of the OUT pin. This
allows the user to monitor the counter's output via soft·
ware, possibly eliminating some hardware from a
system.

Drl=OUTPlNIS1
0= OUT PIN ISO

M1

lie ~ : ~~~:rWILE FOR READING

OJ Do

MO BCD

D5-Do COUNTER PROGRAMMED MODE (SEE FIGURE 7)

Figure 11. Status Byte

NULL COUNT bit 06 indicates when the last count writ·
ten to the counter register (CR) has been loaded into the.
counting element (CE). The exact time this happens de·
pends on the Mode of the counter and is described in
the Mode Definitions, but until the count is loaded into
the counting element (CE), it can't be read from the
counter. If the count is latched or read before this time,
the count value will not reflect the new count just writ·
ten. The operation of Null Count is shown in Figure 12.

THIS AcnON: CAUSES:
A. WRITE TO THE CONTROL WORD REGISTERP J NULL COUNT=l

'B. WRITE TO THE COUNT REQISTER (CR);[2) NULL COUNT=l

c. NEW COUNT IS LOADED INTO CE (CR-+CE): NULL COUNT=O

[1) ONLY THE COUNTER SPECIFIED BY THE CONTROL WORO WILL HAVE
ITS NULL COUNT SET TO 1. NULL COUNT BITS OF OTHER COUNTERS
ARE UNAFFECTEO.

[2) IF THE COUNTER IS PROQRAMMED FOR TWO·BYTE COUNTS [LEAST
SIGNIFICANT BYTE THEN MOST SIGNIFICANT BYTE) NULL COUNT
GOES TO 1 WHEN THE SECOND BYTE IS WRITTEN.

Figure 12. Null Count Operation

If multiple status latch operations of fhe'counter(s) are
performed without reading the status, all but the first
are ignored; i.e., the status that will be read is the status
of the counter at the time the first status read·back com·
mand was issued.

Both count and status of the selected counter(s) may be
latched simultaneously by setting both COUNT and
STATUS bits 05,04=0. This is functionally the same as
issuing two separate read-back commands at once, and
the above discussions apply here also. Specifically, if mUl­
tiple count and/or status read-back commands are issued
to the same counter(s) without any intervening reads, all
but the first are ignored. This is illustrated in Figure 13.

Command
D7 D6 Ds D4 D3 D2 D, Do

Result Description

1 1 0 0 0 0 1 0 Read back count and status of Count and status latched
Counter 0 for Counter 0

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1

1 1 1 0 1 1 0 0 Read back status of Counters 2, 1 Status latched for Counter
2, but not Counter 1

1 1 0 1 1 0 0 0 Read back count of Counter 2 ' Count latched for Counter 2

1 1 0 0 0 1 0 0 Read back count and status of Count latched for Counter 1,
Counter 1 but not status

1 1 1 0 0 0 1 0 Read back status of Counter 1 Command ignored; status
alread~ latched for Counter 1

Figure 13. Read-Back Command Example

5-246 231164-002

inter

If both count and status of a counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The next
one or two reads (depending on whether the counter is
programmed for one or two type counts) return latched
count. Subsequent reads return unlatched count.

CS RD WR A1 Ao

0 1 0 0 0 Write into Counter 0

0 1 0 0 1 Write into Counter 1

0 1 0 1 0 Write into Counter 2

0 1 0 1 1 Write Control Word

0 0 1 0 0 . Read from Counter 0

0 0 1 0 1 Read from Counter 1

0 0 1 1 0 Read from Counter 2

0 0 1 1 1 No-Operation (3-State)

1 X X X X No-Operation (3-State

0 1 1 X X No-Operation (3-State)

Figure 14. ReadlWrlte Operations Summary

Mode Definitions
The following are defined for use in describing the
operation of the 8254.

CLK pulse: a rising edge, then a falling edge, in that
order, of a Counter's CLK input.

trigger: a rising edge of a Counter's GATE input.
Counter loading: the transfer of a count from the CR

to the CE (refer to the "Functional
Description")

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially low, and will re­
main low until the Counter reaches zero. OUT then goes
high and remains high until a new count or a new Mode
o Control Word is written into the Counter.

GATE=1 enables counting; GATE=O disables count­
ing. GATE has no effect on OUT.

After the Control Word and initial count are written to a
Counter, the initial count will be loaded on the next CLK
pulse. This CLK pulse does not decrement the count, so
for an initial count of N, OUT does not go high until N + 1
CLK pulses after the initial count is written.

If a new count is written to the Counter, it will be loaded
on the next CLK pulse and counting will continue from
the new count. If a two-byte count is written, the follow­
ing happens:

8254

5-247

1) Writing the first byte disables counting. OUT is set
low immediately (no clock pulse required)

2) Writing the second byte allows the new count to be
loaded on the next CLK pulse.

This allows the counting sequence to be synchronized
by software. Again, OUT does not go high until N + 1
CLK pulses after the new count of N is written.

If an initial count is written while GATE= 0, it will still be
loaded on the next ClK pulse. When GATE goes high,
OUT will go high N CLK pulses later; no CLK pulse is
needed to load the Counter as this has already been
done.

eW.10 lSa-4r-__________ _

WIi LJl...j

elK

GATE -----------------

OUT ~'--_______ _'

CW ... 10 LSB=3
WI! LJl...j--------

elK

GATE

OUT ~I.. _______ ~,_
I ~ I ~~ I

elK

GATE

OUT =::JI.. _______ ~,_
ININININI I~I~~I

NOTE. THE FOLLOWING CONVENTIONS APPLY TO ALL MODe TIMING DIAGRAMS:
1. COUNTERS ARE PROGRAMMED FOR BINARY (NOT BCD) COUNTING AND FOR

READINGIWRITING LEAST SIGNIFICANT BYTE (lSB) ONLY.
2. THE COUNTER 18 ALWAYS SELECTED (el ALWAYS LOW).
3. CW STANDS FOR "CONTROL WORD"; CW "" 10 MEANS A CONTROL WORD OF 10,

HEX IS WRITTEN TO THE COUNTER.
4. LSB STANDS FOR "LEAST SIGNIFICANT BYTE" OF COUNT.
S. NUMBERS BELOW DIAGRAMS ARE COUNT VALUES.

THE LOWER NUMBER IS THE LEAST SIGNIFICANT BYTE.
THE UPPER NUMBER IS THE MOST SIGNIFICANT BYTE. SINCE THE COUNTER
IS PROGRAMMED TO READlWRITE LSB ONLY, THE MOST SIGNIFICANT BYTE
CANNOT BE READ.
N STANDS FOR AN UNDEFINED COUNT.
VERTICAL LINES SHOW TRANSITIONS BETWEEN cau'NT VALUES.

Figure 15. Mode 0

231164-002

i~ 8254

MODE 1: HARDWARE RETRIGGERABlE ONE·SHOT MODE 2: RATE GENERATOR

OUT will be initially high. OUT will go low on the ClK
pulse following a trigger to begin the one·shot pulse,
and will remain low until the Counter reaches zero. OUT
will then go high and remain high until the ClK pulse
after the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next CLI<' pulse,
thus starting the one·shot pulse. An initial count of N
will result in a one·shot pulse N ClK cycles in duration.
The one·shot is retriggerable, hence OUT will remain
low for N ClK pulses after any trigger. The one·shot
pulse caR be repeated without rewriting the same count
into the counter. GATE has no effect on OUT.

If a new count is written to the Counter during a one·
shot pulse, the current one·shot is not affected unless
the Counter is retriggered. In that case, the Counter is
loaded with the new count and the one·shot pulse con·
tinues until t~e new count expires.

I

CW=12 LSB=3

WIi l....Jl-.Jr----------

elK

OUT

ININI"I"I"I
CW=12 LSB=3

WIi l....Jl-.Jr----------

elK

GATE -------in ----in----------

OUT =:J ,'--_____ ---'r
I"INI"I"I"I~I I~I

elK

GATE -------In --------.. (t-----

OUT

Figure 16. Mode 1

This Mode functions like a divide·by·N counter. It is
typiclaly used to generate a Real Time Clock interrupt.
OUT will initially be high. When the initial count has
decremented to 1, OUT goes low for one ClK pulse. OUT
then goes high again, the Counter reloads the initial
count and the process is repeated. Mode 2 is periodic;
the same sequence is repeated indefinitely. For an in·
itial count of N, the sequence repeats every N· CLK
cycles.

GATE = 1 enables counting; GATE = 0 disables count·
ing. If GATE goes low during an output pulse, OUT is set
high immediately. A trigger reloads the Counter with the
initial count on the next CLK pulse; OUT goes low N
CLK pulses after the trigger. Thus the GATE input can
be used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. OUT goes
low N CLK Pulses after the initial count is written. This
allows the Counter to be synchronized by software also.

5-248

eW=14 lSB=3.;...-_________ _

WI! L..JL.J
elK

~ATE ----------------

OUT

I ~ I
CW=14 LSB=3 WliL..JL.J--------

elK

GATE

OUT~

elK

GATE

OUT '=::J u
INI,.ININI~I~I~I~I~I~I~I

NOTE: A GATE Iran.Rton should not occur one clock prior to terminal
count.

Figure 17. Mode 2

231164-002

8254

Writing a new count while counting does not affect the
current counting sequence. If a trigger is received after
writing a new count but before the end of the current
period, the Counter will be loaded with the new count on
the next ClK pulse and counting will continue from the
new count. Otherwise, the new count will be loaded at
the end of the current counting cycle. In mode 2, a
COUNT of 1 is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation. Mode
3 is similar to Mode 2 except for the duty cycle of OUT.
OUT will initially be high. When half the initial count has
expired, OUT goes low for the remainder of the count.
Mode 3 is periodic; the sequence above is repeated in­
definitely. An initial count of N results in a square wave
with a period of N ClK cycles.

GATE = 1 enables counting; GATE = 0 disables coun­
ting. If GATE goes low while OUT is low, OUT is set high
immediately; no ClK pulse is required. A trigger reloads
the Counter with the initial count on the next ClK pulse.
Thus the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next ClK pulse. This
allows the Counter to be synchronized by software also.

Writing a new count while counting does not affect the
current counting sequence. If a trigger is received after
writing a new count but before the end\ of the current
half-cycle of the square wave, the Counter wilhbe loaded
with the new count on the next ClK pulse and counting
will continue from the new count. Otherwise, the new
count will be loaded at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is
loaded on one ClK pulse and then is decremented by
two on succeeding ClK pulses. When the count expires
OUT changes value and the Counter is reloaded with the
initial count. The above process is repeated indefinitely.

Odd counts: OUT is initially high. The initial count
minus one (an even number) is loaded on one ClK pulse
and then is decremented by two on succeeding ClK
pulses. One ClK pulse after the count expires, OUT
goes low and the Counter is reloaded with the' initial
count minus one. Succeeding ClK pulses decrement
the.count by two. When the count expires, OUT goes
high again and the Counter is reloaded with the initial
count minus one. The above process is repeated in·
definitely. So for odd counts, OUT will be high for
(N + 1)/2 counts and low for (N - 1)/2 counts.

CW.UI L$B_4 W1iL.JLJ-----------
elK

GATe ------------------

OUT

CW_16 LSB-6r-____________ _

W1iLJU
elK

GATE ------------------

OUT

ININININI:I~I:I:I~I:I~I:I:I~I

CW3'18 LSB=4 W1ilJUr------------
elK

GATE

OUT

I • I N I N I ·'1 : I ~ I : I : I : I ~ I : I ~ I : I : I
NOTE: A GATE Iranlltlo" Ihould not occur one clock prior 10 terminal
count.

Figure 18_ Mode 3 I

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count expires,
OUT will go low for one ClK pulse and then go high
again. The counting sequence is "triggered" by writing
the initial count.

GATE= 1 enables counting; GATE=O disables count·
ing. GATE has no effect on OUT.

After writing a Control Word and initial count, thtl
Counter will be loaded on the next ClK pulse. This ClK
pulse does not decrement the count, so for an initial
count of N, OUT does not strobe low until N + 1 ClK
pulses after the initial count is written.

If a new count is written during counting, it will be load­
ed ,on the next ClK pulse and counting will continue
from the new count. If a two-byte count is written, the
following happens:

1) Writing the first byte has no effect on co~nting.
2) Writing the second byte allows the nev.: count to .be

loaded on the next ClK pulse.

This allows the sequence to be "retriggered" by soft­
ware. OUT strobes low N + 1 ClK pulses after the new
count of N is written.

5-249 231164-002

i:

CW=18 LSB=3i-__________ _

Wlil..J"LJ
ClK

GATE

OUT =:J u
o 1 0 1 FF 1 FF 1 FF '1 1 0 FF FE FO

CW=l. lS8=3;-__________ _

Wlil..J"LJ
ClK

GATE ______ --.J

OUT =:J
1 ~ 1 ~ 1

ClK

GATE

OUT =:J

Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABlE)

OUT will initially be high. Counting is triggered by a ris·
ing edge of GATE. When the initial count has expired,
OUT will go low for one ClK pulse and then go high
again.

Atter writing the Control Word and initial count, the
counter will not' be loaded until the CLK pulse atter a
trigger. This CLK pulse does not decrement the count,
so for an initial count of N, OUT does not strobe low un·
til N + 1 CLK pulses after a trigger.

A trigger results in the Counter being loaded with the in·
itial .count on the next ClK pulse. The counting se·
quence is retriggerable. OUT will not strobe low for
N + 1 CLK pulses after any trigger. GATE has no effect
on OUT.

If a new count is written during counting, the curent
counting sequence will not be affected. If a trigger oc·
curs after the new count is written but before the cur·
rent count expires, the Counter will be loaded with the

, new count on the next CLK pulse and counting will con·
tinue from there.

8254

5-250

CW=1A lSB=3r-_________ _

mLJU

CW=1A Lsa=3r-____________ _

Wii LJU
ClK

GATE ---------l~------------

OUT =-.J

OUT,,~ u
I N I N I N I N I N I ~ I ~ I ~ I ~ I ~~ I ~~ I

Figure 20. Mode 5

Signal Low
Slalu8 O,Ooing Rising High
Mod •• Low

0 Disables -- Enables
counting counting

1 -- 1) Inlliales --
counting

2) Resets output
after next clock

2 1) Disables
counting Initiates Enables

2) Sets output counting counting
Immediately
high

3 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

4 Disables -- Enables
counting counting

5 -- Initiates --
counting

Figure 21. Gal. Pin Operations Summary

231164·002

Mode Min Max
Count Count

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

5 1 0

NOTE: 0 IS EQUIVALENT TO 218 FOR BINARY COUNTING AND 104 FOR
BCD COUNTING.

Figure 22. Minimum and Maximum Initial Counts

Operation Common to All Modes

PROGRAMMING

When a Control Word is written to a Counter, all Control
logic is immediately reset and OUT goes to a known
-initial state; no ClK pulses are required for this.

8254

5-251

GATE

The GATE input is always sampled on the rising edge of
ClK. In Modes 0, 2, 3, and 4 the GATE input is level
sensitive, and the logic level is sampled on the rising
edge of ClK. In Modes 1, 2, 3, and 5 the GATE input is
rising-edge sensitive. In these Modes, a rising edge of
GATE (trigger) sets an edge-sensitive flip-flop in the
Counter. This flip-flop is then sampled on the next rising
edge of ClK; the flip-flop is reset immediately after It is
sampled. In this way, a trigger will be detected no matter
when it occurs-a high logic level does not have to be
maintained until the next rising edge of ClK. Note that
in Modes 2 and 3, the GATE input is both edge- and level­
sensitive. In Modes 2 and 3, if a ClK source other than the
system clock is used, GATE should be pulsed immediately
following WR of a new count value.

COUNTER

New counts are loaded and Counters are decremented
on the falling edge of ClK.

The largest possible initial count is 0; this is equivalent
to 216 for binary counting and 104 for BCD counting.

The Counter does not stop when it reaches zero. In
Modes 0, 1,4, and 5 the Counter "wraps around" to the
highest count, either FFFF hex for binary counting or
gg99 for BCD counting, and continues counting. Modes
2 and 3 are periodic; the Counter reloads itself with the
initial count and continues counting from there.

231164-002

8254·5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias o·e to 70·e

Storage Temperature -6S·C to + 1S0·C

Voltage on Any Pin with
Respect to Ground -O.SV to + 7V

Power Dissipation : ... 1 Watt

,'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to Absolute Maximum
Rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA=O·C to 70·C, Vcc=SV± 10%)

Symbol Parameter Min. Max.

VIL Input Low Voltage -O.S 0.8

VIH Input High Voltage 2.0 Vcc+ O.SV

VOL Output Low Voltage O.4S

VOH Output High Voltage 2.4

IlL Input Load Current ±10

10FL Output Float Leakage ±10

Icc Vee Supply Current 170

CAPACITANCE (TA=2SoC, Vee=GND=OV)

Symbol Parameter Min. Max.

CIN Input CapacitancE! 10

CliO 110 Capacitance 20

A.C. CHARACTERISTICS (T A = O·C to 70·C, Vee = SV ± 10%, GND = OV)

Bus Parameters (Note 1)

READ CYCLE

Units

V

V

V

V

j.tA

j.tA

mA

Units

pF

pF

8254-5 8254

Symbol Parameter Min. Max. Min. Max.

tAA Address Stable Before RD I 45 45

tSA CS Stable Before RD I 0 0

tAA Address Hold Time After ROt 0 0

tAA RD Pulse Width 150 150

tAD Data Delay from RD I 120 120

tAD Data Delay from Address 220 220

tDF RD t to Data Floating 5 90 5 90

tAv Command Recovery Time 200 200

Note 1: AC tImings measured at VOH '" 2 OV, VOL:: 0 BV

5-2S2

Test Conditions

I~L=2.0 mA

10H= -400j.lA

VIN = Vcc to OV

VOUT= Vcc toO.4SV

Test Conditions

fc= 1 MHz

Unmeasured pins
returned to Vss

8254-2

Min. Max. Unit

30 ns

0 ns

0 ns

95 ns

85 ns

185 ns

5 65 ns

165 ns

231164-002

8254·5

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

8254-5 8254 8254-2

Symbol Parameter Min. Max. Min. Max. Min.

tAW Address Stable Before WR) 0 0 0

tsw CS Stable Before WR) 0 0 0

tWA Address Hold Ti me After WRf 0 0 0

tww WR Pufse Width 150 150 95

tow Data Setup Time Before WRf 120 120 85

two Data Hold time After WRf 0 0 0

tRV Command Recovery Time 200 200 165

CLOCK AND GATE

8254-5 8254 8254-2

Symbol Parameter Min. Max. Min. Max. Min.

tClK Clock Penod 200 DC 125 DC 100

tpWH High Pulse Width SOl31 6013J 3013J

tPWl low Pulse Width SOl3J 6013J 5013J

tR Clock Rise Time 25 25

tF Clock Fall Time 25 25

tGW Gate Width High 50 50 50

tGl Gate Width low 50 50 50

tGS Gate Setup Time to ClKf 50 50 40

tGH Gate Setup Time After ClKf 5012J 5012J 5012J

too Output Delay from ClKI 150 150

tOOG Output Delay from Gate) 120 120

twc ClK Delay for loading! 0 55 0 55 0

tWG Gate Delay for Sampling -5 50 -5 50 -5

two OUT Delay from Mode Write 2SO 260

tCl ClK Set Up for Count latch -40 45 -40 45 .-40

Note 2: In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 8254-2) of the
rising clock edge may not be detected

Note 3: Low-gomg glitches that violate tpWH' tPWL may cause errors requiring counter reprogrammmg

5-253

Max. Unit

ns

" ns

ns

ns

ns

ns

ns

Max. Unit

DC ns

ns

ns

25 ns

25 ns

ns

ns

ns

ns

100 ns

100 ns

55 ns

40 ns

240 ns

40 ns

2~1164-002

inter 8254·5

WAVEFORMS

WRITE
A O•1

CS

DATA BUS

READ

[RECOYERY

CLOCK AND GATE

ClK

GATE

OUTPUT 0

two "lABT BYTE OF COUNT BEING WRITTEN

5-254 231164-002

inter

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4 =>(2.0 2.o)C > TEST POINTS <
0.8 0.8 045

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1" AND 0 45V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1"
AND 0 8V FOR A lOGIC 0

i
" I'

8254·5 I

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

!JCl.,50PF
TEST

Cl = 150pf'

I"

[1
t

CL INCWDES JIG CAPACITANCE

,

5-255 231164-002

\

I

i

inter
82C54

CHMOS PROGRAMMABLE INTERVAL TIMER

• Compatible with alt Intel and most • Low Power CHMOS
other microprocessors -IcC = 10 mA @ 8 MHz Count ,

• High Speed, "Zero Walt State" frequency

Operation with 8 MHz 8086/88 and • Completely TTL Compatible
80186/188 • Six Programmable Counter Modes

• Three Independent 16-blt counters • Binary or .BCD counting
• Handles _nputs from DC to 8 MHz • Status Read Back Command

-10 MHz for 82C54-2

The Intel 82C54 is a high-performance, CHMOS version of the industry standard 8254 counter/timer which is
designed to solve the timing control problems common in microcomputer system deSign. It provides three
independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. All modes are software
programmable. The 82C54 is pin compatible with the HMOS 8254, and is a superset of the 8253.

Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator,.
programmable one-shot, and in many other applications.

The 82C54 is fabricated on Intel's advanced CHMOS III technology which provides low power consumption
with performance equal to or greater than the equivalent HMOS product. The 82C54 is available in 24-pin DIP
and 28-pin plastiC leaded chip carrier (PLCC) packages.

231244-1

Figure 1. 82C54 Block Diagram

Ds DB D7 Ne Vee ViR iii

321282728

82C54

12 13 14 15 18 17 18

auTO GATEO GND Ne OUT1 GATE1 elK1

PLASTIC LEADED CHIP CARRIER

231244-2
Diagrams are for pin reference only.

Package sizes are not to scale.

Figure 2. 82C54 Pinout

Intel Corporation assumes no respcmaibility for the use 01 any. circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are impHed. Information contained herein suparsedes previously published specifications on these devices from Intel. November 1184
@) Intel Corporation. 1984 . 5-256 Order Nul!!ber: 23124~

intJ ,82C54

Table 1. Pin Description

Symbol Pin Number Type
DIP PLCC

07"00 1-8 2-9 110

CLKO 9 10 I
OUT 0 10 12 0
GATE 0 11 13 I
GND 12 14
OUT 1 13 16 0
GATE 1 14 17 I
CLKt 15 18 I
GATE 2 16 19 I

'OUT2 17 20 0
CLK2 18 21 I

A1,Ao 20-19 23-22 I

es 21 24 I

i=m 22 26 I

iNA· 23 ,27 I

Vee 24 28
NC 1,11,15,25

FUNCTIONAL DESCRIPTION

General

The 82C54 is a programmable interval timer/counter
deSigned for use with Intel microcomputer systems.
It is a general purpose, multi-timing element that can
be treated as an array of 110 ports in the system
software.

The 82C54 solves one of the most common prob­
lems in any microcomputer system, the generation
of accurate time delays under software control. In­
stead of setting up timing loops in software, ttJe pro­
grammer configures the 82C54 to match his require­
ments and programs one of the counters for the de-

, Function

Data: Bidirectional tri-state data bus lines,
connected to system data bus.
Clock 0: Clock input of Counter O.
Output 0: Output of Counter O.
Gate 0: Gate input of Counter O.
Ground: Power supply connection.
Out 1: Output of. Counter 1.
Gate 1: Gate input of Counter 1.
Clock 1: Clock input of Counter 1.
Gate 2: Gate input of Counter 2.
Out 2: Output of Counter 2.
Clock 2: Clock input o(Counter 2.
Address: Used to select one of the three Counters
or the Control Word Register for read or write
operations. Normally connected to the system
address bus.

A1 Ao Selects
0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control Word Register

Chip Select: A low on this input enables the 82C54
to respond to AD and WR signals. RD and iNA are
ignored otherwise.
Read Control: This input is low during CPU read
operations.
Write Control: This input is low during CPU write
operations.
Power: + 5V power supply connection.
No Connect

sired delay. After the desired delay, the 82C54 will
interrupt the CPU. Software overhead is minimal and
variable length delays can easily be accommodated.

Some of the other counter/timer functions common
to microcomputers which can be implemented with
the 82C54 are:

• Real time clock
• Even counter
• Digital one-shot
• Programmable rate generator
• Square wave generator
• Binary rate multiplier
'. Complex waveform generator
• Complex motor controller

"

5-257 231244-001

i,

II
1\

~ d

/

I
I

'82C54

Block Diagram

DATA BUS BUFFER

This 3-state, bi-directional, 8-bit buffer is used to in­
terface the 82C54 to the system bus (see Figure 3).

231244-4

Figure 3. Block Diagram Showing Data Bus
Buffer and Read/Write Logic Functions

READ/WRITE LOGIC

The Read/Write Logic accepts inputs from the sys­
tem bus and generates control signals for the other
functiohal blocks of the 82C54. A1 and Ao select
one of the three counters or the Control Word Re~
ter to be read from/written into. A "low" on the RO
input tells the 82C54 that the CPU is reading one of
the counters. A "low" 'on the WR input tells the
82C54 that the CPU is writing either a Control Word
or an initial count. Both RD and WR are qualified by
~; RD and WR are ignored unless the 82C54 has
been selected by holding ~ low.

CONTROL WORD REGISTER

The Control Word Register (He Figure 4) is selected
by the Read/Write Logic when Alo Ao = 11. If the
CPU then does a write operation to the 82C54, the
data is stored in the Control Word Register and is
interpreted as a Control Word used to define the
operation of the Counters.

The Control Word Register can only be written to;
status information is available with the Read-Back
Command.

231244-5

Figure 4. Block Diagram Showing Control Word
Register and Counter Functions

COUNTER 0, COUNTER 1, COUNTER 2

These three functional blocks are identical in opera­
tion, so only a single Counter will be described. The
Internal block diagram of a single counter is shown
in Figure 5.

The Counters are fully independ~nt. Each Counter
may operate in a different Mode.

The Control Word Register is shown in the figure; it
is not part of the Counter itself, but its contents de­
termine how the Counter operates.

5-258 231244-001

intJ 82C54

231244-6

Figure 5. Internal Block Diagram of a Counter

The status register, shown in the Figure, when
latched, contains the current contents of the Control
Word Register and status of the output and null
count flag. (See detailed explanation of the Read­
Back command.)

The actual counter is labelled CE (for "Counting Ele­
ment"). It is a 16-bit presettable synchronous down
counter.

OlM and Oll are two 8-bit latches. Ol stands for
"Output Latch"; the subscripts M and l stand for
"Most significant byte" and "least significant byte"
respectively. Both are normally referred to as one
unit and called just OL. These latches normally "fol­
low" the CE, but if a suitable Counter Latch Com­
mand is sent to the 82C54, the latches "latch" the
present count until read by the CPU and then return
to "following" the CEo One latch at a time is enabled
by the counter's Control logic to drive the internal
bus. This is how the 16-bit Counter communicates
over the 8-bit internal bus. Note that the CE itself
cannot be read; whenever you read the count, it is
the Ol that is being read.

Similarly, there are two 8-bit registers called CRM
and CRl (for "Count Register"). Both are normally
referred to as one unit and called just CR. When a
new count is written to the Counter, the count is

stored in the CR and later transferred to the CEo The
Control logiC allows one register at a time to be
loaded from the internal bus. Both bytes are trans­
ferred to the CE simultaneously. CRM and CRl are
cleared when the Counter is programmed. In this
way, if the Counter has been programmed for one
byte counts (either most significant byte only or least
significant byte only) the other byte will be zero.
Note that the CE cannot be written into; whenever a
count is written, it is written into the CR.

The Control logic is also shown in the diagram. ClK
n, GATE n, and OUT n are all connected to the out­
side world through the Control logic.

82C5. SYSTEM INTERFACE

The 82C54 is treated by the systems software as an
array of peripheral 1/0 ports; three are counters and
the fourth is a control register for MODE program­
ming.

Basically, the select inputs Ao, A1 connect to the Ao,
A1 address bus signals of the CPU. The CS can be
derived directly from the addren bus using a linear
select method. Or it can be connected to the output
of a decoder, such as an Intel 8205 for larger sys­
tems.

231244-7

Figure 6. 82C54 System Interface

5-259 231244-001

\

,

\

82C54

OPERATIONAL DESCRIPTION

General

After power-up, the state of the 82C54 is undefined.
The Mode, count value, and output of all Counters
are undefined. '

How each Counter operates is determined when it is
programmed. Each Counter must be programmed
before it can be used. Unused counters need not be
programmed. .

.
Control Word Format

A1,Ao=11 CS = 0 RD = 1 iNA = 0

Programming the 82C54

Counters are programmed by writing a Control Word
and then an initial count. The control word format is
shown in Figure 7.

All Control Words are written into the Control Word
Register, which is selected when A1, Ao = 11. The
Control Word itself specifies which Counter is being
programmed.

By contrast, initial counts are written into the Coun­
ters, not the Control Word Register. The Alo Ao in­
puts are used to select the Counter to be written
into. The format of the initial count is determined by
the Control Word used .

D7 De D5 D4 Da Dz D1 Do

. I SCl I SCO I RWl I RWO I M21 Ml I MO I BCD I
SC - Select Counter. M-MODE:

SCl SCO M2 Ml MO

0 0 Select Counter 0 0 0 0 Mode 0

0 1 Select Counter 1 0 0 1 Model

1 0 Select Counter 2 X 1. 0 Mode 2

1 1
Read-Back Command X 1 1 Mode 3
(See Read Operations) 1 0 0 Mode 4

RW - Read/Write: 1 0 1 Mode 5

RW1RWO

0 0 Counter Latch Command (see Read BCD:

Operations) Q Binary Counter l6-bits

0 1 Read/Write least Significant byte only. 1 Binary Coded Decimal (BCD) Counter

1 0 Read/Write most significant byte only. (4 Decades)

1 1 Read/Write least significant byte first, .
then most significant /Jyte .. ,

NOTE: Don't care bits (X) should,be 0 to insure
compatibility with future Intel products.

Figure 7. Control Word Format

5-260 231244-001

inter 82C54

Write Operations
The programming procedure for the 82C54 is very
flexible. Only two conventions need to be remem­
bered:

1) For each Counter, the Control Word must be
written before the initial count is written.

2) The initial count must follow the count format
specified in the Control Word (least significant
byte only, most significant byte only, or least sig­
nificant byte and then most significant byte).

Since the Control Word Register and the three
Counters have separate addresses (selected by the
A1, ~ inputs), and each Control Word specifies the
Counter it applies to (SCO, SC1 bits), no special in-

A1 Ao
Control Word - Counter 0 1 1
LSB of count - Counter 0 0 0
MSB of count- Counter 0 0 0
Control Word- Counter 1 1 1
LSB of count - Counter 1, 0 1
MSB of count- Counter 1 0 1
Control Word - Counter 2 1 1
LSB of count - Counter 2 1 0
MSB of count- Counter 2 1 0

A1 Ao
Control Word - Counter 0 1 1
Counter Word - Counter 1 1 1
Control Word - Counter 2 1 1
LSB of count - Counter 2 1 0
LSB of count - Counter 1 0 1
LSB of count - Counter 0 0 0
MSB of count- Counter 0 0 0
MSB of count- ,Counter 1 0 1
MSB of count- Counter 2 1 0

NOTE:

struction sequence is required. Any programming
sequence that follows the conventions above is ac­
ceptable.

A new initial count may be written to a Counter at
any time without affecting the Counter's pro­
grammed Mode in any way. Counting will be affected
as described in the Mode definitions. The new count
must follow the programmed count format.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between writing the first
and second byte to another routine which also writes
into that same Counter. Otherwise, the Counter will
be loaded with an incorrect count.

A1 Ao
Control Word - Counter 2 1 1
Control Word- Counter 1 1 1
Control Word- Counter 0 1 1
LSB of count - Counter 2 1 0
MSB of count- Counter 2 1 0
LSB of count - Counter 1 0 1
MSB of count- Counter 1 0 1
LSB of count - Counter 0 0 0
MSB of count- Counter 0 0 0

A1 Ao
Control Word- Counter 1 1 1
Control Word- Counter 0 1 1
LSB of count - Counter 1 0 1
Control Word - Counter 2 1 1
LSB of count - Counter 0 0 ,0
MSB of count- Counter 1 0 1
LSB of count- Counter~ 1 0
MSB of count- Counter 0., 0 0
MSB of count- Counter 2 1 0

In all four examples, all counters are programmed to read/write two-byte counts.
These are only four of many possible programming sequences.

Figure 8. A Few Possible Programming Sequences

Read Operations

It is often desirable to read the value of a Counter
without disturbing the count in progress. This is easi­
ly done in the 82C54.

There are three possible methods for reading the
counters.: a simple read operation, the Counter

Latch Command, and the Read-Back Command.
Each is explained below. The first method is to per­
form a simple read operation. To read the Counter,
which is selected with the A 1, AO inputs, the CLK
input of the selected Counter must be inhibited by
using either the GATE input or external logic. Other­
wise, the count may be in the process of changing
when it is read, giving an undefined result.

5-261 231244-001 --

\\!

I'

I

82C54

COUNTER LATCH. COMMAND

ThE! second method uses the "Counter latch Com­
mand". Like a Control Word, this command is written
to the Control Word Register, which is selected
when A1, Ao = 11. Also like a Control Word, the
SCO, SC1 bits select one of the three Counters, but
two other bits, 05 and 04, distinguish this command
from a Control Word.

A1. Ao= 11; CS=O; RD= 1; WR=O

D7 D6 D5 04 D3 D2 D1 Do

I SC1 I SCO I 0 I 0 I X I X I X X I
SC1, SCO - specify counter to be latched

SC1 SCO Counter

0 0 0
0 1 1
1 0 2 ,
1 1 Read-Back Command

05,04 - 00 designates Counter latch Command

X - don't care

NOTE:
Don't care bits (X) should be 0 to insure compatibility
with future Intel products. '

Figure 9. Counter latching Command Format

The selected Counter's output latch (Ol) latches the
count at the time the Counter Latch Command is
received. This count is held in the latch until it is read
by the CPU (or until the Counter is reprogrammed).
The count is then unlatched automatically and the
Ol returns to "following" the counting element (CE).
This allows reading the contents of the Counters
"on the fly" without affecting counting in progress.
Multiple Counter latch Commands may be used to

, latch more than one Counter. Each latched Coun­
ter's Ol holds its count until it is read. Counter Latch
Commands do not affect the programmed Mode of
the Counter in any way.

If a Counter is latched and then, some time later,
latched again befor,.. the count is, read, the second
Counter latch Command is ignored. The count read
will be the count at the time the first Counter latch
Command was issued.

With either method, the count miJst be read accord­
ing to the programmed format; specifically, if the
Counter is programmed for two byte counts, two
bytes must be read. The two bytes do not have to be
read one right after the other; read or write or pro-

gramming operations of other Counters may be in­
serted between them.

Another feature of the 82C54 is that reads and
writes of the same Counter may be interleaved; for
example, if the Counter is programmed for two byte
counts, the following sequence is valid. '

1. Read least significant byte.
2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies; A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same Counter. Otherwise, an incorrect
count will be read.

READ-BACK COMMAND

The third method uses the R~ad-Back command.
This command allows the user to check the count
value, programmed Mode, and current state of the
OUT pin and Null Count flag of the selected coun­
ter(s).

The command is written into the Control Word Reg­
ister and has the format shown in Figure 10. The
command applies to the counters selected by set­
ting their corresponding bits 03,02;01 = 1.

AO, A1 = 11 cs '= 0 RD = 1 WR = 0

07 08 05 04 03 02 01 DO

11 I 1 I COiJNT I S'i'A'i'OS I CNT 21 CNT 1 I CNT 0 I 0 I
05: 0 ;= Latch count of selected coun~er(s)
04: 0 = Latch status of selected counter(s)
03: 1 = Select counter 2
02: 1 = Select counter 1
01: 1 = Select counter 0
00: Reserved for future expansion; must be' 0

Figure 10; Read-Back Command Format

The read-back command may be used to latch multi­
~e counter output latches (Ol) by setting the

OUNT bit 05=0 and selecting the desirEld coun­
ter(s). This Single command is functionally equiva­
lent to several counter latch commands, one for
each counter latched. Each counter's latched count
is held until it is read (or the counter is repro­
grammed). That counter is automatically 'unlatched
when read, but other counters remain latched until
they are read. If multiple count read-back commands
are issued to the same counter without reading the

5-262 231244-001

intJ 82C54

count, all but the first are ignored; i.e., the count
which will be read is the count at the time the first
read-back command was issued.

The read-back command may also be used to latch
status information of selected counter(s) by setting
STATUS bit 04 = O. Status must be latched to be
read; status of a counter is accessed by a read from
that counter.

The counter status format is shown in Figure 11. Bits
05 through DO contain the counter's programmed
Mode exactly as written in the last Mode Control
Word. OUTPUT bit 07 contains the current state of
the OUT pin. This allows the user to monitor the
counter's output via software, possibly eliminating
some hardware from a system.

07 06 05 04 03 02 01 Do

]OUTPUT] d6~';T] RW1] RWO] M2] M11 Mol BCD]

D71 = OutPinis1
o = Out Pin is 0

Ds 1 = Null count
o = Count available for reading

D5-DO Counter Programmed Mode (See Figure 7)

Figure 11. Status Byte

NULL COUNT bit 06 indicates' when the last count
written to the counter register (CR) has been loaded
into the counting element (CE). The exact time this
happens depends on the Mode of the counter and is
described in the Mode Definitions, but until the count
is loaded into the counting element (CE), it can't be
read from the counter. If the count is latched or read
before this time, the count value will not reflect the
new count just written. The operation of Null Count
is shown in Figure 12.

THIS ACTION:
A. Write to the control

word registed1)

B. Write to the count
register (CR);[2)

C. New count is loaded
into CE (CR -+ CE);

CAUSES:

Null count = 1

• Null count = 1

Null count = 0

[1) Only the counter specified by the control word will
have its null count set to 1. Null count bits of other
counters are unaffected.

[2) If the counter is programmed for two·byte counts
(least significant byte then most significant byte) null
count goes to 1 when the second byte is written.

Figure 12. Null Count Operation

If multiple status latch operations of the counter(s)
are performed without reading the status, all but the
first are ignored; i.e., the status that will be read is
the status of the counter at the time the first status
read-back command was issued.

Both count and status of the selected counter(s)
cay be latched simultaneously by setting both

aUNT and STATUS bits 05,04=0. This is func­
tionally the same as issuing two separate read-back
commands at once, and the above discussions ap­
ply here also. Specifically, if multiple count and/or
status read-back commands are issued to the same
counter(s) without any intervening reads, all but the
first are ignored. This is illustrated in Figure 13.

If both count and status of a counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The
next one or two reads (depending on whether the
counter is programmed for one or two type counts)
return latched count. Subsequent reads return un­
latched count.

Description .
Command

07 06 Os 04 03 02 01 Do
Results

1 1 0 0 0 0

1 1 1 0 0 1

1 1 1 0 1 1

1 1 0 1 1 0

1 1 0 0 0 1

1 1 1 0 0 0

1 0 Read back count and status of
CouRter 0

0 0 Read back status of Counter 1

0 0 Read back status of Counters 2, 1

0 0 Read back count of Counter 2

0 0 Read back count and status of
Counter 1

1 0 Read back status of Counter 1

Figure 13. Read-Back Command Example

5-263

Count and status latched
for Counter 0

Status latched for Counter 1

Status latched for Counter
2, but not Counter 1

Count latched for Counter 2

Count latched for Counter 1,
but not status

Command ignored,. status
already latched for Counter 1

231244-001

inter 82C54

CS RD WR A1 Ao

0 1 0 0 0 Write into Counter 0

0 1 0 0 1 Write into Counter 1

0 1 0 1 0 Write into Counter 2

0 1 0 1 1 Write Control Word

0 0 1 0 0 Read from Counter 0

0 0 1 0 1 Read from Counter 1

0 0 1 1 0 Read from Counter 2

0 0 1 ~ 1 t-Jo-Operation (3-State)

1 X X X X No-Operation (3-State)

0 1 1 X X No-Operation (3-State)

Figure 14. Read/Write Operations Summary

Mode Definitions

The following are defined for use in describing the
operation of the 82C54.

ClK PULSE: a rising edge, then a falling edge, in
that order, of a Counter's ClK input.

TRIGGER: a rising edge of a Cour;lter's GATE in­
put.

COUNTER lOADING: the transfer of a count from
the CR to the CE (refer to
the "Functional Descrip­
tion")

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially low, and will
remain low until the Counter reaches zero. OUT then
goes high and remains high until a new count or a
new Mode 0 Control Word is wi'itten into the Coun­
ter.

GATE = 1 enables counting; GATE = 0 disables
counting. GATE has no effect on OUT.

After the Control Word and initial count are written to
a Counter, the initial count will be loaded on the next
ClK pulse. This ClK pulse does not decrement the
count, so for an initial count of N, OUT does not go
high until N + 1 ClK pulses after the initial count is
written.

If a new count is written to the Counter, ii will be
loaded on the next ClK pulse and counting will con­
tinue from the new count. If a two-byte count is writ-
ten, the following happens: .

1) Writing the first byte disables counting. OUT is set'
low immediately (no clock pulse required).

2) Writing the second byte allows the new count to
be loaded on the next ClK pulse.

This allows the counting sequence to be synchro­
nized by software. Again, OUT does not go high until
N + 1 ClK pulses after th~ new count of N is writ­
ten.

If an initial count is written while GATE = 0, it will
still be loaded on the next ClK pulse. When GATE
goes high, OUT will go high N ClK pulses later; no
ClK pulse is needed to load the Counter as this has
already been done.

CW.10 LSI.4 WlI LJLj,.----------

elK

OATE --------------

OUT ::J-L. _______ ..J

CW-10 LSI.,
WlILJLjr-------

elK

QATE

OUT =-:J ... ' _______ ---Ir-
I • I • I • I ., I: 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~~ I

elK

OATE --------------

OUT :::1 ... _______ ---Ir-
I·I·I·I·I:I:I~I~I~ I:I~~I

231244-8

NOTE:
The Following Conventions Apply To All Mode Timing
Diagrams:
1. Counters are programmed for binary (not BCD)
counting and for Reading/Writing least significant byte
(lSB) only.
2. The counter is always selected (CS always low).
3. CW stands for "Control Word",; CW = 10 means a
control word of 10, hex is written to the counter.
4. lSB stands for "least Significant Byte" of count.
5. Numbers below diagrams are count values.
The lower number is the least significant byte.
The upper number is the most significant byte. Since
the counter is programmed to Read/Write lSB only,
the most significant byte cannot be read.
N stands for an undefined count.
Vertical lines show transitions between count values.

Figure 15. Mode 0

5-264 231244-001

82C54

MODE 1: HARDWARE RETRIGGERABLE
ONE·1)HOT

OUT will be initially high. OUT will go low on the ClK
pulse following a trigger to begin the one-shot pulse,
and will remain low until the Counter reaches zero.
OUT will then go high and remain high until the ClK
pulse after the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next ClK pulse,
thus starting the one-shot pulse. An initial count of N
will result in a one-shot pulse N ClK cycles in dura­
tion. The one-shot is retriggerable, hence OUT will
remain low for N ClK pulses after any trigger. The
one-shot pulse can be repeated without rewriting the
same count into the counter. GATE has no effect on
OUT.

If a new count is written to the Counter during a one­
shot pulse, the current one-shot is not affected un­
less the Counter is retriggered. In that case, the
Counter is loaded with the new count and the one­
shot pulse continues until the new count expires.

CW .. 12 LS8~3 _________ _

Wli L.JLJ

CW_12 lSI=3

WJll......1LJ~~~-----

eLK

GATE -------In----ln----------
OUT =.J r

1 • 1 • 1 ., 1 • 1 • 1 f 1 : 1 ~ 1 : 1 : 1 ~ I:' 1

eLK

GATE -------In--------;rT-----
OUT

I· I· I· I· I· I: I ~ I: 1 ~~I ~:I: I: 1
231244-9

Figure 16. Mode 1

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N counter. It is
typicially used to generate a Real Time Clock inter­
rupt. OUT will initially be high. When the initial count
has decremented to 1, OUT goes low for one ClK
pulse. OUT then goes high again, the Counter re­
loads the initial count and the process is repeated.
Mode 2 is periodic; the same sequence is repeated
indefinitely. For an initial count of N, the sequence
repeats every N ClK cycles.

GATE = 1 enables counting; GATE = 0 disables
counting. If GATE goes low during an output pulse,
OUT is set high immediately. A trigger reloads the
Counter with the initial count on the next ClK pulse;
OUT goes low N ClK pulses after the trigger. Thus
the GATE input can be used to synchronize the
Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next ClK pulse. OUT
goes low N ClK Pulses after the initial count is writ­
ten. This allows the Counter to be synchronized by
software also.

5-265

CW."" LSI.3 WliL.JLJ-------
eLK

GATE -----'----------

OUT

eLK

GATE

OUT =.l

eLK

GATE -------------

OUT:=J U
I·I·I·I·I:I:I:I~I:I:I:I

231244-10

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 17. Mode 2

231244-001

82C54

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of the current period, the Counter will be loaded with
the new count on the next CLK pulse and counting
will continue from the new count. Otherwise, the
new count will be loaded at the end of the current
counting cycle. In mode 2, a COUNT of 1 is illegal.

MODE 3: SQUARE WAVE MODE

Mode 3 is typically used for Baud rate generation.
Mode 3 is similar to Mode 2 except for the duty cycle
of OUT. OUT will initially be high. When half the ini­
tial count has expired, OUT goes low for the remain­
der of the count. Mode 3 is periodic; the sequence
above is repeated indefinitely. An initial count of N
results in a square wave with a period of N CLK
cycles.

GATE = 1 "enables counting; GATE = 0 disables,
counting. If GATE goes low while OUT is low, OUT is
set high immediately; no· ClK pulse is required. A
trigger reloads the Counter with the initial count on
the next CLK pulse. Thus the GATE input can be
used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
allows the Counter to be synchronized by software
also.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of the current half-cycle of the square wave, the
Counter will be loaded with the new count on the
next CLK pulse and counting will continue from the
new count. Otherwise, the new count will be loaded
at the end of the current half-cycle.

Mode 3 is implemented as follows:

Even counts: OUT is initially high. The initial count is
loaded on one CLK pulse and then is decremented
by two on succeeding CLK pulses. When the count
expires OUT changes value and the Counter is re­
loaded with the initial count. The above process is
repeated indefinitely.

Odd counts: OUT is initially high. The initial count
minus one (an even number) is loaded on one CLK
pulse and then is decremented by two on succeed­
ing CLK pulses. One CLK pulse after the count ex­
pires, OUT goes low and the Counter is reloaded
with the initial count minus one. Succeeding CLK
pulses decrement the count by two. When the count
expires, OUT goes high again and the Counter is
reloaded with the initial count minus one. The above
process is repeated indefinitely. So for odd counts,

OUT will be high for (N + 1)/2 counts and low for
(N -1)/2 counts.

cw .. ,. LS8= .. r-__________ _
WIi L.f1..J

CLK

GAfE ---------------

OUT

WR-r.J-Ur------------

OUT

R-O-Oi-------------
CLK

GATE

OUT

1"1"1_1_1:1:1:1:1:1:1:1:1:1:1
231244-11

NOTE:
A GATE transition should not occur one clock prior to
terminal count.

Figure 18_ Mode 3

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count ex­
pires, OUT will go low for one CLK pulse and then
go high again. The counting sequence is "triggered"
by writing the initial count.

GATE =. 1 enables counting; GATE = 0 disables
counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This
CLK pulse does not decrement the count, so for an
initial count of N, OUT does not strobe low until
N + 1 CLK pulses after the initial count is written.

If a new count is written during counting, it will be
loaded on the next CLK pulse and counting will con­
tinue from the new count. If a two-byte count is writ­
ten, the following happens:

5-266 231244-001

82C54

1) Writing the first byte has no effect on counting.

2) Writing the second bytE;! allows the new count to
be loaded. on the next ClK pulse.

This allows the sequence to be "retriggered" by
software. OUT strobes low N + 1 ClK pulses after
the new count of N is written.

CW .. 1' LSB:3,....-_______ _

Wft-u-LJ
elK

GATE -------------

OUT~ u

CW.lI lS8=3 1VlI-u-LJr--------
elK

QATE
-----~

OUT:.=J LF"
I N I N I N I N I ~ I ~ I : I : I ~ I ~ I ~~ I

WI!

elK

GATE -------------

OUT =-.J LF"
I N I N I N I N I ~ I : I ~ I : I ~ I ~ I ~~ I

231244-12

Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a
rising edge of GATE. When the initial count has ex­
pired, OUT will go low for one ClK pulse and then
go high again.

After writing the Control Word and initial count, the
counter will not be loaded until the ClK pulse after a
trigger. This ClK pulse does not decrement the
count, so for an initial count of N, OUT does not
strobe low until N + 1 ClK pulses after a trigger.

A trigger results in the Counter being loaded with the
initial count on the next ClK pulse. The counting
sequence is retriggerable. OUT will not strobe low
for N + 1 ClK pulses after any trigger. GATE has
no effect on OUT.

If a new count is written during counting, the current
counting sequence will not be affected. If a trigger
occurs after the new count is written but before the
current count expires, the Counter will be loaded
with the new count on the next ClK pulse and
counting will continue from there.

CWz1A LS8=3r.-______ _

WIILJU
elK

.ATE -------1 rr----n--lrc=
OUT

CW .. 1. LSB=3r.-___ ..-_____ _

IVlILJU
elK

GATE -- - ---- --In=..=.lll- ---- --- -- --

OUT =:J
I N I N I N I N I N I N I : I ~ I : I ~ I ~ I ~ I ~~ I

OUT =.J u
I N I N I N I N I N I : I ~ I : I ~ I ~~ I ~: I : I : I

231244-13

Figure 20. Mode 5

5-267 231244-001

Signal Low
Status Or Going Rising High
Modes Low ,

0 Disables - Enables
counting counting

1 - 1) Initiates -
counting

2) Resets output
after next
clock

2 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

3 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

4 Disables - Enables
counting counting

5 - Initiates -
counting

Figure 21. Gate Pin Operations Summary

MODE
MIN MAX

COUNT COUNT

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

NOTE:
o is equivalent to 216 for binary counting and 104 for
BCD counting

Figure 22. Minimum and Maxlmun Initial Counts

82C54

\
Operation Common to All Modes

Programming

When a Control Word is written to a Counter, all
Control logic is immediately reset and OUT goes to
a known initial state; no ClK pulses are required for
this.

GATE

The GATE input is always sampled on the rising
edge of ClK. In Modes 0, 2, 3, and 4 the GATE input
is level sensitive, and the logic level is sampled on
the rising edge of ClK. In Modes 1, 2, 3, and 5 the
GATE input is rising-edge sensitive. In these Modes,
a rising edge of GATE (trigger) sets an edge-sensi­
tive flip-flop in the Counter. This flip-flop is then sam­
pled on the next rising edge of ClK; the flip-flop is
reset immediately after it is sampled. In this way, a
trigger will be detected no matter when it occurs-a
high logic level does not have to be maintained until
the next rising edge of ClK. Note that in Modes 2
and 3, the GATE input is both edge- and level-sensi­
tive. In Modes 2 and 3, if a ClK source other than'
the system clock is used, GATE should be pulsed
immediately following WR of a new count value.

COUNTER

New counts are loaded and Counters are decre­
mented on the falling edge of ClK.

The largest possible initial count is 0; this is equiva­
lent to 216 for binary counting and 104 for BCD
counting.

The Counter does not stop when it reaches zero. In
Modes 0, 1, 4, and 5 the Counter "wraps around" to
the highest count," either FFFF hex for binary count­
ing or 9999 for BCD counting, and continues count­
ing. Modes 2 and 3 are periodic; the Counter reloads
itself with the initial count and continues counting
from there.

5-268 231244-001

inter 82C54

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O"C to 70·C
Storage Temperature - 65· to + 150·C
Supply Voltage - 0.5 to + 8.0V
Operating Voltage + 4V to + 7V
Voltage on any Input GND -2V to +6.5V
Voltage on any Output .. GND-0.5VtoVce + 0.5V
Power Dissipation 1 Watt

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS (TA=0·Ct070·C,Vee=5V± 10%,GND=0V)

Symbol Parameter Min Max Units Test Conditions

VIL Input low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+ 0.5V V

VOL Output low Voltage 0.45 V IOL = 2.0mA

VOH Output High Voltage 2.4 V IOH= -400/LA

IlL Input load Current ±10 /LA VIN = Vee to OV

IOFL Output Float leakage Current ±10 J!:...A VOUT= Vee to 0.45V

lec Vee Supply Current 10 mA
8MHz82C54

Clk Freq = 1 OMHz 82C54~2

ICCSB Vee Supply Current-Standby 10 /LA ClK Freq= DC
-,

CAPACITANCE (TA = 25·C, Vee = GND = OV) ,

Symbol Parameter Min Max Units Test Conditions

CIN Input Capacitance 10 pF fc = 1 MHz

CliO 1/0 Capacitance 20 pF
Unmeasured pins
returned to GND

COUT Output Capacitance 20 pF

A.C. CHARACTERISTICS(TA = 0·Ct070·C, Vee = 5V ±10%,GND =OV)
BUS PARAMETERS (Note 1)

READ CYCLE

Symbol Parameter 82C54 82C54-2
Units

Min Max Min Max

tAR Address Stable Before RD '" 45 30 ns

tsR CS Stable Before RD '" 0 0 ns

tRA ,Address Hold Time After RD '" 0 0 ns

tRR RD Pulse Width 150 95 ns

tRO Data Delay from RD '" 120 85 ns

tAD Data Delay from.Address 220 185 ns

tOF RD t to Data Floating 5 90 5 65 ns

tRV Command Recovery Time 200 165 ns

NOTE:
1. AC timings measured at VOH = 2.0V, VOL = O.8V.

5-269 231244-001

I'

!

I.,"

inter 82C54 £IIDW£OO©~ OOOIF©lmfMI£VO©OO ,

. A.C; CHARACTERISTICS (Continued)

\ "
WRITE CYCLE

Symbol Parameter
82C54 82C54-2

Units
Min Max Min Max

tAW Address Stable Before WR J, 0 0 ns

tsw CS Stable Before WR J, 0 0 ns

tWA Address Hold Time After WR t 0 0 ns

tww WFi Pulse Width 150 95 ns

tow Data Setup Time Before WR t 120 95 ns

two Data Hold Time After WR t 0 0 ns

tRY Command Recovery Time 200 165 .ns

CLOCK AND GATE

Symbol Parameter
82C54 82C54-2

Units
Min Max Min Max

tClK Clock Period 125 DC 100 DC ns

tPWH High Pulse Width 60[3] 30[3] ns

tPWl low Pulse Width 6013J 50[3] ns

TR Clock Rise Time 25 25 ns

tF Clock Fall Time 25 25 ns

tGw Gate Width High 50 50 ns

tGl Gate Width low 50 50 ns

tGs Gate Setup Time to ClK t 50 : 40 ns

tGH Gate Hold Time After ClK t 50[2] 5012J ns

Too Output Delay from ClK J, 150 100 ns

toOG Output Delay from Gate J, 120 100 ns

twc ClK Delay for loading 0 55 0 55 ns

tWG Gate Delay for Sampling -5 50 -5 40 ns

two OUT Delay from Mode Write 260 240 ns

tel ClK Set Up for Count latch -4 45 -40 40 ns

NOTES:
2. In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 8254-2) of
the rising clock edge may not be detected.
3. low-going glitches that violate tPWH. tPWL may cause errors requiring counter reprogramming.

5-270 231244-001

inter 82C54 ~@\Vl~OO©~ OOOIr@OOIMl~jj"O@OO

WAVEFORMS

WRITE

AO_l

4-----tAW______+_

CS

DATA BUS

Wi!

231244-14

READ

AD.

I ••

CS

DATA BUS---

231244-15

231244-16 I

5-271 231244-001

CLOCK AND GATE

CLK ------..,-,

\lATE ---_-:-____ ""-.J[

OUTPUT.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4=X x= 2.0 2.0 > TEST POINTS <
0.' 0 .•

0."5

231244-18
A.C. Testing: Inputs are driven at 2.4V lor a logic "I" and 0.45V
lor a logic "0." Timing measurements are made at 2.0V lor a logic
"I" and 0.8V lor a logiC "0." '

/

82C54

231244-17
• Last byte of count being written

A.C. TESTING LOAD CIRCUIT

231244-19
CL = 150 pF
CL includes jig capacitance

5-272 231244-001

8255A18255A·5
PROGRAMMABLE PERIPHERAL INTERFACE

• MCS.85 ™ Compatible 8255A·5

• 24 Programmable 110 Pins

• Completely TTL Compatible

• Fully Compatible with Intel@ Micro·
processor Families

• Improved Timing Characteristics

• Direct Bit Set/Reset Capability Easing
Control Application Interface

• Reduces System Package Count

• Improved DC Driving Capability

• Available in EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel'" 8255A is a general purpose programmable 110 device designed for use with Intel'" microprocessors. It has
24110 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first
mode (MODE 0), each group of 12110 pins may be programmed in sets of 4 to be input or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand­
shaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

Figure 1. 8255A Block Diagram Figure 2. Pin Configuration

"'INTEL CORPORATION, 1982
5-273 Order Number: 231308-001

intel' 8255A18255A·5

8255A FUNCTIONAL DESCRIPTION (RD)

General

The 8255A is a programmabje peripheral interface (PPI)
device designed for use in Intel® microcomputer
systems. Its function is that of a general purpose 1/0
component to interface peripheral equipment to the
microcomputer system bus. The functional configura­
tion of the 8255A is programmed by the system software
so that normally no external logic is necessary to inter·
face peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional8·bit buffer is used to interface
the 8255A to the system data bus. Data is transmitted or
received by the buffer upon execution of Input or output
instructions by the CPU. Control words"and status infor·
mation are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal
and external transfers of both Data and Control or Status
words. It accepts inputs from the CPU Address and Con­
trol busses and In turn, Issues commands to both of the
Contra I Groups.

(CS)

Chip Select. A "low" on this input pin enables the com·
muniction between the 8255A and the CPU.

..

POWER [-_.w
SUPPLIES --O'D

,,------'

Read. A "lOW" on this input pin enables the 8255A to
send the data or status information to the CPU on the
data bus. In essence, it allows the CPU to "read from"
the 8255A.

(WR)
Write. A "low" ori this input pin enables the CPU to write
data or control words into the 8255A.

(Ao and A,)

Port Select 0 and Port Select 1~ These input Signals, in
conjunction with the RD and WR Inputs, control the
selection of one of the three ports or the control word
registers. They are normally connected to the least
significant bits of the address bus (Ao and AI)'

8255A BASIC OPERATION
A, AO RD WR CS INPUT OPERATION (READ)

0 0 0 1 0 PORT A= DATA BUS
0 1 0 1 0 PORT B" DATA BUS
1 0 0 1 0 PORT C - DATA BUS

OUTPUT OPERATION
(WRITE)

0 0 1 0 0 DATA BUS= PORT A
0 1 1 0 0 DATA BUS - PORT B
1 0 1 0 0 DATA BUS-PORTC
1 1 1 0 0 DATA BUS= CONTROL

DISABLE FUNCTION

X X X X 1 DATA BUS= 3-STATE
1 1 0 1 0 ILLEGAL CONDITION

X X 1 1 0 DATA BUS = 3-STATE

Figure 3. 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control L~giC Functions

5-274
231308-001

8255A/8255A·5

(RESET)

Reset. A "high" on this Input clears the control register
and all ports (A, S, C) are set to the input mode

Group A and Group B Controls

The functional configuration of each port is program·
med by the systems software. In essence, the CPU "out­
puts" a control word to the 8255A. The control word con­
tains information such as "mode", "bit set", "bit reset",
etc., that initializes the functional configuration of the
8255A.

. Each of the Control blocks (Group A and Group B) accepts
"commands" from the Read/Write Contr'!l Logic, receives
"control words" from. the internal data bus and issues the
proper commands to its associated ports.

Control Group A - Port A and Port C upper (C7-C4)
Control Group B - Port B and Port Clower (C3-CO)

The Control Word Register can Only be written into. No
Read operation of the Control Word Register is allowed.

POWER {-~ ".
SUPPliES

-~""

Ports A, B, and C

The 8:t55A contains three 8-bit ports (A, B, and C). All
can be configured in a wide variety of functional charac·
teristics by the system software but each has its own
special features or "personality" to further enhance the
power and flexibility of the 8255A.

Port A. One 8-bit data output latch/buffer and one 8·bit
data input latch.

Port B. One 8-bit data input/output latch/buffer and one
8-bit data input buffer .

Port C. One 8-bit data output latch/buffer and one 8·bit
data input buffer (no latch for input). This port can be
divided into two 4-bit ports under the mode control.
Each 4-bit port contains a 4-bit latch and it can be used
for the control signal outputs and status signal inputs in
conjunction with ports A and B.

PIN CONFIGURATION

PIN NAMES

P.,
P'6

W.
RESET

D.

0,

0,

0,

PO,

PO'

P83

Figure 4. 8225A Block.oiagram Showing Group A and
Group B Control Functions

231308-001

5-275

8255A18255A·5

8255A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can be select­
ed by the system s9ftware:

Mode 0 - Basic Input/Output
Mode 1 - Strobed I nPf-lt/Output
Mode 2 - Bi-Directional Bus

When the reset input goes "high" all ports will be set to
the input mode (i.e., all 24 lines will be in the high im­
pedance state). After the reset is removed the 8255A can
remain in the input mode with no additional initialization
required. During the execution of the system program
any of the other modes may be selected using a single
output instruction. This allows a single 8255A to service
a variety of peripheral devices wlth.a simple software
maintenance routine.

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of the output registers, in­
cluding the status flip-flops, will be reset whenever the
mode is changed. Modes may be combined so that their
functional definition can be "tailored" to almost any I/O
structure. For instance; Group B can be programmed in
Mode 0 to monitor simple switch closings or display compu­
tational results, Group A could be programmed in Mode 1
to monitor a keyboard or tape reader on an interrupt-driven
basis.

MOOED

ADDRESS BUS

CONTROL 8US

Figure 5. Basic Mode Definitions
and Bus Interface

CONTROL WORD

10,1 o. Os 1 04 1 031 O2 1 0, 1 Dol
LJ

GROUPB \
L-..

PORT C (LOWER)
1'" INPUT
0= OUTPUT

PORTB
~ 1'" INPUT

0= OUTPUT

MODE SELECTION
0= MODE 0
1=MODe1

/ GROUP A

PORT C (UPPER)
1'" INPUT
0= QUTPUT

PORTA
1 = INPUT
0= OUTPUT

MODE SELECTION
00= MODe 0
01 "'MODE 1
1X ",MODE 2

I MODe SET FLAG

I 1 = ACTIVE

Figure 6. Mode DeJinition Format

The mode definitions and possible mode combinations
may seem confusing at first but after a cursory review of
the complete device operation a simple, logical 1/0 ap­
proach will surface. The design of the 8255A has taken
into account things such as efficient PC board layout,
control signal definition vs PC layout and complete
functional flexibility to support almost any peripheral
device with no external logic. Such design represents
the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a
single OUTput instruction. This feature reduces software
requirements in Control-based applications.

5-276
231308-001

inter 8255A18255A·5

CONTROL WORD

I~I~I~I~I~I~I~I~I
I I I Lr BIT SET~ESET

, x x x, 1-SET
I O-RESET

DON'T
CARE

BIT SELECT
01234687
01 01 0 1 01 110
00"00118,
0000 1 1 1 111121

BITSETIRESET FLAG
O-ACTIVE

Figure 7. Bit Set/Reset Format

Operating Modes

MODE 0 (BasiC Input/Output). This functional configura­
tion provides simple input and output operations for
each of the three ports. No "handshaking" is required,
data is simply written to or read from a specified port.

RD -'

I-"R-
INPUT

r---'AR-
Ci.A1,AO

----------r<
MODE 0 (Basic Input)'

Cl.A1,AO

OUTPUT

MODE 0 (Basic Output)

'RO

When Port C is being used as status/control for Port A or B,
these bits can be set or reset by using the Bit Set/Reset op­
eration just as if they were data output ports.

Interrupt Control Functions
When the 8255A is programmed to operate in mode 1 or
mode 2, control signals are provided that can be used as
interrupt request inputs to the CPU. The interrupt re­
quest signals, generated from port C, can be inhibited or
enabled by setting or resetting the associated INTE flip­
flop, using the bit set/reset function of port C.

This function allows the Programmer to disallow or allow a
specific I/O device to interrupt the CPU without affecting
any other device in the interrupt structure.

INTE flip-flop definition:

(BIT -SET) - INTE is SET - Interrupt enable
(BIT-RESET) - INTE is RESET -Interrupt disable

Note: All Mask flip-flops are automatically reset during
mode selection and device Reset.

Mode 0 Basic Functional Definitions:

• Two B-bit ports and two 4-bit ports.
• Any port can be input or output.
• Outputs are latched.
• Inputs are not latched.
• 16 different Input/Output configurations are possible

in this Mode.

"'R 0

7 f-

~'HR-I

040---tR~

'.

0 'OF 0

two

5-277 231308-001

8255A182~5A·5

MODE 0 Port Definition

A B GROUP A GROUPB

D4 D3 D, Do PORTA
PORTC PORTC
(UPPER)

PORTB
(LOWER)

0 0 0 0 OUTPUT OUTPUT 0 OUTPUT OUTPUT

0 0 0 1 OUTPUT OUTPUT 1 OUTPUT INPUT

0 0 1 0 OUTPUT OUTPUT 2 INPUT OUTPUT

0 0 1 1 OUTPUT OUTPUT 3 INPUT INPUT

0 1 0 0 OU:rPUT INPUT 4 OUTPUT OUTPUT

0 1 0 1 OUTPUT INPUT 5 OUTPUT INPUT

0 1 1 0 OUTPUT INPUT 6 INPUT OUTPUT

0 1 1 1 OUTPUT INPUT 7 INPUT INPUT

1 0 0 0 INPUT OUTPUT 8 OUTPUT OUTPUT

1 0 0 1 INPUT OUTPUT 9 OUTPUT INPUT

1 0 1 0 INPUT OUTPUT 10 INPUT OUTPUT

1 0 1 1 INPUT OUTPUT ", INPUT INPUT

1 1 0 0 INPUT INPUT 12 OUTPUT OUTPUT

1 1 0 1 INPUT INPUT 13 OUTPUT INPUT

1 1 1 0 INPUT INPUT 14 INPUT OUTPUT

1 1 1 1 INPUT INPUT 15 INPUT INPUT

MODE 0 Configurations

CONTROL WORD #0 CONtROL WORO #2

0, D. Os D. D, D, D, Do D, D. D. D. D, D, D, D,

I, I 0 I 0 I 0 I 0 I 0 I o I 0 I I , I 0 I 0 I 0 I 0 I 0 I , I 0 I
A

8
PA,.PA, A

8
'A,.PA,

8255A 8255A

4
PC'-PC4

4 "",.pc,

c{ c{ 0,.°0 0,,00
4

"""PCo
4 Pea,peo

B
8

PB,.PBo B
8

'B,.pa,

CONTROL WORD #1 'CONTROL WORD #3

D, D. D. D, D, D, D, " Do D, D. Os 0, D, 0, D, 0,

I, I 0 I 0 I 0 I 0 I 0 I o I, I I, I 0 I 0 I 0 I 0 I 0 I, I, I
t A f------+!- - PA,.pA, A

8
PA,'PA,

'.8255A. 8255A ,
PC,'PC4

4 "",.pc, c{ (c{ 0,-00 °,,00 . i /' pc,·pCo . i
/4 "",.pc,

• 8
PB,'PSo B

8 '
PB,.pa,

5-278 231308-001

8255A18255A·5

CONTROL WORD #4 CONTROL WORD #8

0, 0, D. D. 0, 0, 0, 00 0, o. Os D. 0, 0, 0, 00

I , I 0 I 0 I 0 I , I 0 I 0 I 0 I I, I 0 I o I ' I o I 0 I o I 0 I
A

8
.A,·'Ao A

,8
PA7·pAo ,

8255A 8255A

4
Pt;-PC4

4
PC7·PC4 c{ c{ °7-00 • °7.0 0 I .

4
PeS-PeO

4
PC3-PCO

8 • PB7,PSo • 8 PB7,PBO

CONTROL WORD #6 CONTROL WORD #9

0, 0, Os D. 0, 0, 0, DO 0, 0, Os D. 0, 0, 0, 00

I , I 0 I 0 I 0 I , I 0 I 0 I, I I, I 0 I 0 I , I 0 I o I o I, I
A

8
.A,·'Ao A . ,8

PArPAo ,
8255A iS25liA,

4 PC7,PC4
4

PC7·PC4 c{ c{ DrOo I . °rDo
4 4 pe3-pcO Pes-Peo

• 8 "", • 8
PB7,PSa

CONTROL WORD #6 CONTROL WORD #10

0, 0, Os D. 0, 0, 0, 00 0, 0, Os D. 0, 0, 0, 00

I , I 0 I 0 I 0 I , I 0 I 1 I 0 I I, I 0 I 0 I, I 0 I 0 I , I 0 I
8 A

8
A PA7·PAa PA7 ,PAo

8255A 8255A

4 4
PCr PC4 c{ PC7·PC4 c{ DrOo °7.0 0

4 4
Pe3-PCO Pes-PCa

• 8
'''·'·0 • . I

,8
P~.PBo

CONTROL WORD #7 CONTROL WORD #11

0, 0, 0, 0, 0, 0, 0, DO 0, 0, Os D. 0, 0, 0, 00

I , I 0 I 0 I 0 I , I 0 I
,

1'1 I , I 0 I 0 I , I 0 I 0 I , I , I
A

8
A

8· PA7,PAo PA7·PAa

8255~ 8255A

4 4
PC7-PC4 c{ PC7·PC4 c{ °rOo °7-0 0

4 4
Pe3 -PeO Pe3-PeO

• 8 ,.,.,,, • 8
'''·'·0

5-279 231308-001

8255A18255A·5

CONTROL WORD #12

0, 0, 0, 0, 0, 0, 0' 1 D.

I , I 0, I 0 I , I , I 0 I o I 0 I
,

A
8

PA,'PA"

8255A

4
Pt;-PC4 c{ °7-00

4
pel-peO

B
8

PB7-PBa

CONTROL WORD #13

0, D. 0, 0, 0, 0, 0, D.

I , I 0 I 0 I , I , I 0 I o I' I
A

8
PA,'PA"

8255A
4

PC7-PC4 c{ °7-0 0
,

4
pc3-pea

Operating Modes

MODE 1 (Strobed Input/Output). This functional con­
figuration provides a means for transferring I/O data to
or from a specified port in conjunction with strobes or
"handshaking" signals. In mode 1; port A and Port B use
the Ii nes on port C to generat!'! or accept these "hand­
shaking" signals.

5-280

CONTROL WORD #14 ,
0, D. D. 0, 0, 0, 0, D.

I, 10 1 0 I' I, 10 I, I 0 I ,

8
A P~.pAO

8255A
4

c{ "'7,PC,

°7-°0 "'
.

4
pe3-pca

B
8

PB7-PBo

CONTROL WORD #15

0, D. °5 ,_,°4 0, 0, 0, D.

I, I 0 I 0 I, I, I 0 I, I, I
A

8
PA,'PA"

,8255.\,
4

c{ "'7,PC,

°7-°0
4 PC3-pea

Mode 1 B'asic Functional Definitions:

• Two Groups (Group A and Group B)
• Each group contains one 8-bit data port and one 4-bit

control/data port.
• The 8-bit data port can be either input or output.

Both inputs and outputs are latched.
• The 4-bit port is used for control and status of the

8-bit data port.

231308-001

8255A18255A·5

Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads data into
the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been
loaded into the input latch; in essence, an acknowledgement
IBF is set by STB input being low and is reset by the rising
edge of the RD input. .

INTR (Interrupt Request)

A "high" on this output can be used to ,interrupt the CPU
when an input device is requesting service. I NT R is set by
the STB is a "one", IBF is a "one" and INTE is a "one".
It is reset by the falling edge of RD. This procedure allows
an input device to request service from the CPU by simply
strobing its data into the port.

INTE A

Controlled by bit set/reset of PC 4'

INTE B

Controlled by bit set/reset of PC 2.

~tST~

18F -'''·Y
tSIT

INTR D
I--tpH-1

MODE 1 (PORT Al

MODE 1 (PORT BJ

CONTROL WORD

Figure 8. MODE 1 Input

I~'RIB~)

:7 /

INTRa

INPUT FROM
PERIPHERAL --- ---------------------

tpg

Figure 9. MODE 1 (Strobed Input)

5-281 231308-001

8255A18255A·5.

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will go
"low" to indicate that the CPU has written data out to the
specified port. The OBF F/F will be set by the rising edge
of the WR input and reset by ACK input being low.

ACK (Acknowledge Input). A "low" on this Input informs
the 8255A that the data from port A or port B has been
accepted. In essence, a response from the peripheral
device indicating that it has recieved the data output by
the CPU.

INTR (Interrupt Request). A "high" on this output can be
used to interrupt the CPU when an output device has
accepted data transmitted by the CPU. INTR IS set when
ACK is a "one", OBF is a "one", and INTE IS a "one" It IS

reset by the falling edge of WR

INTR (Interrupt Request). A "high" on this output can be
used to interrupt the CpU when an output device h~s
accepted data transmitted by the CPU. INTR is set when
ACK is a "one", OBF IS a "one", and INTE IS a "one". It IS

reset by the falling edge of WR.

INTR

OUTPUT

INTEA

Controlied by bit set/reset of PC6.

INTEB

Controlied by bit set/reset of PC2.

\
I

\ I
~i}

twlT-~\

H-twB

MODE 1 (PORT Al

CONTROL WORD

MODE 1 (PORT Bl

.s,'."o 8
CONTROL WORe

07 06 Os 04 °3 ,02 01 Do

I, txNXJX], I 0 kXJ

Figure 10. MODE 1 Output

~t.o~

~/)
/r/

_1AK t A1T-

Figure 11. Mode 1 (Strobed Output)

INTRa

inter 8255A18255A·5

Combinations of MODE 1

Port A and Port B can be individually defined as input or
putput in Mode 1 to support a wide variety of strobed I/O
applications.

PA,"Ao

Ro_ pc. ifi.

Pes IBFA
CONTROL WORD

0, De Os 0" D3 D2 01 Do PC, INTRA

1,Iol,I,I,t 1OM 2
PC.,7 -f-.IO

PC.,7 -

1 = INPUT PS, B
O=OUTPUT

ViR PC, 08""
PC, AGKa

!'Co INTRa

PORT A - (STROBED INPUT)
PORT B - (STROBED OUTPUTI

PA,'pAo B

PC, OBF.

AGK.

INTRA

I/O

lffii.

PC, IBFB

PC, INTRB

PORT A - (STROBED OUTPUT)
PORT B - (STROBED INPUT)

Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus 1/0). This functional
configuration provides a means for communicating v,iith
a peripheral device or structure on a single B·bit bus for
both transmitting and receiving data (bidirectional bus
110). "Handshaking" signals are provided to maintain
proper bus flow discipline in a similar manner to MODE
1. Interrupt generation and enableldisable functions are
also available.

MODE 2 BasiC Functional Definitions:
• Used in Group A only.
• One S-bit, bi-directional bus Port (Port A) and a 5-bit

control Port (Port C).
• Both inputs and outputs are latched.
• The 5-bit control port (Port C) is u!/!!d for control

and status for the B-bit, bi-directional bus port (Port
A).

Bidirectional Bus 1/0 Control Signal Definition

INTR (Interrupt Request). A high on this output can be
used to Interrupt the CPU for both input or output opera­

,tlons.

Output Operations

OBF (Output Buffer Full). The OBF output wiii go "low" to
indicate that the CPU has written data out to port A

ACK (Acknowledge). A "low" on this input enables the
tri-state output buffer of port A to send out the data.
Otherwise, the output buffer wiii be in the high im­
pedance state.

INTE 1 (The INTE Flip-Flop Associated with OBF). Con­
trolled by bit set/reset o,f PCs.

Input Operations

STB (Strobe Input). A "low" on this input loads data into
the input latch.

IBF·(lnput Buffer Full F/F). A "high" on this output In­
dicates that data has beiln loaded into the input latch.

INTE 2 (The INTE Flip-Flop Associated with IBF). Con­
trolled by bit set/reset of PC4•

5-283 231308-001

INTR

CONTRO~ WORD

PC2~
1 = INPUT
0= OUTPUT

'----- PORT B
1 = INPUT
0= OUTPUT

8255A18255A·5

'------ GROUP B MODE
DC MODE 0
1==MODE1

Figure 13. MODE Control Word

DATA FROM A CPU TO 8255A

'---<r"'--'

Figure 14. MODE 2

-tAK -

------------------~--------------~ ~r----~----------

IBF

PERI:~~RAL _________ _

DATA FROM
PERIPHERAL TO 8255A

Figure 15. MODE 2 (Bidirectional)

NOTE" Any sequence where WR occurs before ACK and STB occurs before AD IS permissible.
(lNTR = ISF • MASK· STS • RD + OSF • MASK' ACK • WR)

5-284

DATA FROM
8255A TO 8080

231308-001

8255A18255A·5

MODE 2 AND MODE 0 (INPUT)

CONTROL WORD

~ 06 05 04 03 02 0, 00

I, I, t><t><M ° I ']01
PC2~
1 = INPUT
O"'DUTPUT

WR-

PC, 1----- OBF.

Pee-ACKA

I/O

MODE 2 AND MODE 1 (OUTPUT)

PC,I----- INTRA

OBFA

CONTROL WORO
ACKA

07 06 05 04 03 02 0, 00

1"'[XJX1X1'iOiXl STB.

PC,; IBFA

PB,-PBO

PC, OBFe

RD PC2 ACKB

WR pc. INTRB

MODE 2 AND MODE 0 (OUTPUT)

CONTROL WORD

07 0, Os 04 03 02 0, DO

I, " r><1>® ° , :]"1
PC2~
1 = INPUT
0= OUTPUT

RD_

WR_

PC,

3

PC~ --'-f--- I/O

MODE 2 AND MODE 1 (INPUT)

PC, 1---_ INTRA

PC, OBFA

CONTROL WORD
PC, ACKA

PC. STB.

Pc,; IBFA

PC, 1---_ 1BFa

PC. 1---- INTRa

Figure 16. MODE V4 Combinations

5-285 231308-001

8255A18255A·5

Mode Definition Summary

MODE 0 MODE 1 MODE 2
IN OUT IN

PAO IN OUT IN
(PAl IN OUT IN
PA2 IN OUT IN
PAa IN OUT IN,
PA.4 IN OUT IN
PAS IN OUT IN
PAs IN OUT IN
PA7 IN OUT IN

PBO IN OUT IN
PBl IN OUT IN
PB2 IN OUT IN
PBa IN OUT IN
PB4 IN OUT IN
PBS IN OUT IN
PBS IN OUT IN
PB7 IN OUT IN

PCO IN OUT INTRB
PCl IN OUT IBFB
PC2 IN OUT STBB
PCa IN OUT INTRA
PC4 IN OUT STBA
PCs IN OUT IBFA
pca IN OUT I/O
PC7 IN OUT 1/0

Special Mode Combination Considerations

There are several combinations of modes when not all of the
bits in Port C are used for control or status. The remaining
bits can be used as follows:

If Programmed as Inputs -
All input lines can be accessed during a normal Port C
read.

If Programmed as Outputs -
Bits in C upper (PCr PC4) must be individually accessed
using the bit set/reset function.

Bits in Clower (PC3 ·PCO) can be accessed using the bit
set/reset function or accessed as a threesome by writing
into Port C.

Source Current Capability on Port B and Port C

Any set of eight output buffers, selected randomly from
Ports Band C can source lmA at -1.5 volts. This feature
allows the 8255 to directfy drive Darlington type drivers
and high·voltage displays that require such source current.

Reading Port C Status

In Mode 0, Port C transfers data to or from the peripheral
device. When the 8255 is programmed to function in Modes
1 or 2, Port C generates or accepts "hand·shaking" signals
with the peripheral device. Reading the contents of Port C

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

INTRB
OBFB
ACKB
INTRA

1/0

1/0

ACKA
i5BFA

GROUP A ONLY -~ -----------
--
--
--
--
--
--
--

1/0

1/0

1/0

INTRA
STBA
IBFA

ACKA
OBFA

MODE 0
OR MODE 1
ONLY

allows the programmer to test or verify the "status" of each
periphe~al device and change the program flow accordingly.

There is no special instruction to read the status informa·
tion from Port C. A normal read operation of Port C is
executed to perform this function.

INPUT CONFIGURATION

OUTPUT CONFIGURATION

Figur~ 17. MODE 1 Status Word Format

~ ~ ~ ~ ~ ~ ~ ~

I OsFA IINTE,II.". I INTE2IINTR.IXIXC><I
! I ! !

GROUP A _______ GROUP.

(DEFINED BY MODE 0 OR MODE 1 SELECTION)

Figure 18. MODE 2 Status Word Format

5-286 231308-001

8255A18255A·5

APPLICATIONS OF THE 8255A

The 8255A is a very powerful tool for interfacing
peripheral equipment to, the microcomputer system, It
represents the optimum use of available pins and is flex­
ible enough to interface almost any /10 device without
the need for additional external logic.

Each peripheral device in a microcomputer system
usually has a "service routine" associated with it. The
routine manages the software interface between the
device and the CPU. The functional definition of the
8255A is programmed by the /10 service routine and
becomes an extension of the system software. By ex·
amining the /10 devices interface characteristics for
both data transfer and timing, and matching this infor·
mation to the examples and tables in the detailed opera­
tional description, a control word can easily be devel·
oped to initialize the 8255A to exactly "fit" the applica­
tion. Figures 19 through 25 present a few examples of
typical applications of the 8255A.

INTERRUPT
REQUEST

PC, I"" 'A, ,.,

MODEl pAt;
(OUTPUT) PAe [

'~

I2HA

'A,
PC,
PC,
PC,

PC,

PH,

",
MODE 1 PB5 [I~

(OUTPUT) PIle

INTERRUPT
REQUEST

'o,

PC,

PC, ACK

HIGH-SPEED
PRINTER

HAMMER
RELAYS

RIBBON

CARRIAGE SEN

CONTROL LOGIC AND DRIVERS

Figure 19. Printer Interface

5-287

INTERRUPT
REQUE

STI

PC, -
MODE 1
(lNPUTI

MODE 1
(OUTPUTI

PC.

UPT~ INTERR
REQUEST

Plio
PA,

PAz

PA"

PAo

PAs

Plio
PA,

PC,

,-Pes

r-PBo
PS,

PSz

PS,

PB,

PB,

PB.

PB,

PC,

PC,

pc.

LPC,

R,

R,

R, FULLY

R, DECODED
KEYBOARD

R.

R,
SHIFT

CONTROL

STROBE

ACK

B,

B,

B, BURROUGHS
SELF-SCAN

S, DISPLAY

B,

S,
BACKSPACE

CLEAR

DATA READY

ACK

BLANKING

CANCEL WORD

Figure 20. Keyboard and Display Interface

INTERRUPT
.EO UEST'i

PC'i'" PA, ,.,
MODE 11 p~
(INPUT) p~

1, ..
PA,

i ~ ..

l~ PC,

Pd,

---- iPB
, P',

PB,

MODE '1 PH,
(INPUT) PB4

l:::
PB,

"
"
"
"

FULLY
DECODED

" KEYBOARD

"
SHIFT

CONTROL

STROBE

ACKNOWLEDGE

BUSY I..T

TEST I..T

- "'-
--",------"»----------"»-----

i-
i-
I-
i-
i-
i-
I-
~

TERMINAL
ADDRESS

Figure 21. Keyboard and Terminal Address
Interface

231308-001

intJ 8255A18255A·5

PAO LS8

PA,
PA,

PA,
PA,

MODE 0 PAs ----
{OUTPUT' PAs 12·811

PA, O-A I-CONVERTER
ANALOG OUTPUT

PC, (DAel

PC,;

...... PC,

PC, MSB

r STB DATA

PC, OUTPUT EN

BIT
SET/RESET

PC, SAMPLE EN

PC, STB

P" LSB

PB, 8·BIT
A-O

PB, CONVERTER ~ ANALOG INPUT

MODe 0 Po, (ADe)

(INPUT) PB, " PB,
PO, .., MSB

Figure 22. Digital to Analog, Analog to Digital

INTERRUPT
REa UEST_~.

PC,

Moa'e 1
(OUTPUT)

"'5A

MODE 0
(OUTPUT)

PAs
PA,

PA,

PA,

PA,

PA,
PA,

PA,

,PC,

PC,

PC,

PC,

r pc,

PC,

PC,

PBo

PB,

Po,

PO,

PB,

PB,

PB,

PO,

Ro
R, CRT CONTROLLER

R, • CHARACTER GEN

R, • REFRESH BUFFER

R, • CURSOR CONTROL

R,

SHIFT

CONTROL

DATA READY

ACK

BLANKED

BLACKIWHITE

ROWSTB

COLUMN ST8

CURSOR HN STB

}---ADDRESS
H& V

REQUEST
INTERRUPTi

PC, PAo 00
PA, 0,

PA, 0,

PA, 0, FLOPPY DISK

P" 0,
CONTROLLER

AND DRIVE
PA, 0, I

MODE 2 PAo 0,
PA, 0,

PC, DATA STe

"'" ACK (IN)

PC, DATA READY

PC, ACK (OUT)
PC, TRACK "0" SENSOR

PC, SYNC READY

PC, INDEX

r
ENGAGE HEAD

PB, FORWARD/REV

PB, READ ENABLE

MODE 0 PB3 WRITE ENABLE

(OUTPUT) PB4 DISC SElECT

PBs ENABLE CRe

PB, TEST

PO, BUSV LT

Figure 23. Basic Floppy Disk Interface

REaUEST
INTERRUPTi

Pc, PAo --Ro

PA, R,
8 LEVEL PA, R,
PAPER

PA, R, TAPE

PA, R, READER

MODE 1
PAs R,

(INPUT) PAs R,
PA, R,

PC, STB,

PC, -PC, STOP/GO

8255A MACHINE TOOL

f~ START!STOP
MODE 0 PC LIMIT SENSOR (HN) jlNPUT) 1

PC, OUTOF FLUID

f
CHANGE TOOL

PB, LEFT/RIGHT

PB, UP/DOWN

MODE 0 PB3 HOR STEP STROBE

(OUTPUT) PB4 VERT STEP STROBE

PB, SLEW/STEP

PBs FLUID ENABLE

PB, E¥£RGENCY STOP

Figure 24. Basic CRT Controller Interface figure 25. Machine Tool Controller Interface

5-288 231308-001

inlef 8255A18255A·5

ABSOLUTE MAXIMUM RATINGS* "NOTICE: Stresses above those listed under "Absolute

Ambient Temperature Under Bias o°c to lO°C
Storage Temperature _65°C to +150°C
Voltage on Any Pin

With Respect to Ground -0.5V to + lV
Power Dissipation 1 Watt

Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = ooe to 70°C. Vee = +5V ± 10%. GND = OV)"

Symbol Parameter Min. Max. Unit Test Conditions

Vil Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee V

VOL (DB) Output Low Voltage (Data Bus) 0.45" V IOl = 2.5mA

VOdPER) Output Low Voltage (Peripheral Port) 0.45" V IOl = 1.lmA

VOH(DB) Output High Voltage (Data Bus) 2.4 V IOH = -400pA

VOH(PER) Output High Voltage (Peripheral Port) 2.4 V IOH = -2001lA

IOAR!ll Darlington Drive Current -1.0 -4.0 rnA R EXT = l5O!1; VEXT= 1.5V

Icc Power Supply Current 120 rnA

III In put Load Current ±10 IlA VIN = Vee to OV

IOFl Output Float Leakage ±10 J.LA VOUT = VCC to .45V

NOTE:
1. Available on any 8 pins from Port Band e.

CAPACITANCE (TA = 25°C. Vee = GND = (iV)

Symbol. Parameter Min. Typ. Max. Unit Test Conditions

ciN Input Capacitance 10 pF fc = lMHz

CilO 110 CapaCItance 20 pF Unmeasured pins returnedtoGND

A.C. CHARACTERISTICS (TA = ooe to looe. Vee = +5V ±10%. GND = OV)"

Bus Parameters
READ

Symbol

tAR

tRA

tRR

tRO

tOF

tRV

Parameter

Address Stable Before READ

Address Stable After READ

READ Pulse Width

Data Valid From R EAD!11

Data Float After READ

Time Between READs and lor WR ITEs

Min.

0

0

300

10

850

5-289

8255A 8255A·5

Max. Min. Max. Unit

0 ns

0 ns

300 ns

250 200 ns

150 10 100 ns

850 ns

8255A18255A·5

A.C. CHARACTERISTICS (Continued)
WRITE

Symbol Parameter

tAW Address Stable Before WR ITE

tWA Address Stable After WR ITE

tww WR ITE Pulse Width

tDW Data Valid to WR ITE (T. E.)

tWD Data Valid After WR ITE

OTHER TIMINGS

Symbol Parameter

tWB WR = 1 to Output(1)

tlR Peri phera I Data Before R D

tHR Peripheral Data After RD

tAK ACK Pulse Width

tST STB Pulse Width

tps Per. Data Before T. E. of STB

tpH Per. Data After T.E. of STB

tAD ACK = 0 to Output (1)

tKD ACK = 1 to Output Float

tWOB WR = 1 to OBF = 0 (1)

tAOB ACK = 0 to OBF = 111)

tSIB STB=Oto IBF='1 11)

tRIB RD = 1 to IBF =011)

tRIT RD = Oto INTR = 0111

tSIT STB = 1 to INTR = 1111

tAIT ACK= 1 to INTR = 1111

tWIT WR = Oto INTR = 01 1•3)

NOTES:
1. Test Conditions: CL = 150 pF.

8255A

Min.

0

20

400

100

30

8255A

Min.

0

0

300

500

0

180

20

8255A-5

Max_ Mln_ Max. Unit

0 ns

20 ns

300 ns
/

100 ns

30 ns

8255A-5

Max. Min. Max. Unit

350 350 ns

0 ns

0 ns

300 ns

500 ns

0 ns

100 ns

300 300 ns

250 20 250 ns

650 650 ns

350 350 ns

300 300 ns

300 300 ns

400 400 ns

300 300 ns

350 350 ns

450 450 ns

2. Period of Reset pulse must be at least 50,..s during or after power on. Subsequent Reset pulse can be 500 ns min.
3. INTRt may occur as early as \WIt .
• For Extended Temperature EXPRESS, use M8255A electrical parameters.

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CiRCUIT

INPUT/OUTPUT

2.4
2.0 2.0

;> TEST POINTS <
DEVICE

y----O VEX" UNDER i Ct=l50pF

TEST

D •• D •• -= 0.45

•

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A l.OGIC 1 AND 0 45V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 ov FOA A LOGIC 1
AND 0 BV FOR A LOGIC 0

'VEXT IS SET AT VARIOUS VOLTAGES DURING TESTING TO GUARANTEETHE
SPECIFICATION CllNCLUDES J1G CAPACITANCE)

5-290

inter 8255A18255A·5

WAVEFORMS

MODE 0 (BASIC INPUT)

tRR

RD ~[-

""
-; ~

j-tIA _ I-tHR~

INPUT

,==-tAR~ - tRA-----:1
CS,A1,AO

--------- .(--
tRO tOF .

MODE 0 (BASIC OUTPUT)

'wW

~ r -, f-,
I---tOW 'w~

tAW twA

CS,A1.AO .x=
OUTPUT

5-291

8255A18255A·5

WAVEFORMS (Continued)

MODE 1 (STROBED INPUT)

-'sT~

'BF

INTR

INPUT FROM
PERIPHERAL ---

\

-'SlBl 1

. 'PS

MODE 1 (STROBED OUTPUT)

INTR
_twiT

OUTPUT

\

J
tSIT I_'RIB~)_

~) /
J

_'PH_I

5-292

8255A18255A·5

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)

DATA FROM /v 8080 TO 8255

INTR

______ t
ST

------------------~ r---+-~----~-----------------

lB.

PERIPHERAL _________ _
BUS

DATA FROM
PERIPHERAL TO 8265

NOTE: Any sequence where WR occurs before ACK and STB occurs before RD IS permissible.
(lNTR = IBF • MASK· 5TB • RD + OBF • MASK' ACK • WR I

WRITE TIMING READ TIMING

5-293

DATA FROM
8255 TO 8080

inter
82C55A

CHMOS PROGRAMMABLE PERIPHERAL INTERFACE

• Compatible with all Intel and most • Low Power CHMOS
other microprocessors -Icc < 10 mA

• High Speed, "Zero Walt State" • Completely TTL Compatible
Operation with 8 MHz 8086/88 and • Control Word Read-Back Capability
80186/188
24 ProgrammableI/O Pins • Direct Bit SetlReset Capability •
Bus-hold circuitry on all 1/0 Ports • 2.5 mA DC Drive Capability on all I/O • Port Outputs
Eliminates Pull-up Resistors

The Intel 82C55A is a high-performance, CHMOS version of the industry standard 8255A .general purpose
programmable 1/0 device which is designed for use with all Intel and most other microprocessors. It provides
24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation.
The 82C55A is pin compatible with the NMOS 8255A and 8255A-5.

In MODE 0, each group of 12 1/0 pins may be programmed in sets of 4 to be inputs or outputs. In MODE 1,
each group may be programmed to have 8 lines of input or output. 3 of the remaining 4 pins are used. for
handshaking and interrupt control signals. MODE 2 is a bi-directional bus, and 5 lines, borrowing one from the
other group, for handshaking.

The 82C55A is fabricated on Intel's advanced CHMOS III technology wliich provides low power consumption
with performance equal to or greater than the equivalent NMOS product. The 82C55A is available in 40-pin
DIP and 44-pin plastic leaded chip carrier (PLCC) packages .

.. ..

..

.ow" {-'" SUP"-IES _ ...

CI __ ---'

Figure 1. 82C55A Block Diagram
231256-1 231256-2

Figure 2. 82C55A Pinout
Diagrams are for pin reference only. Package
sizes are not to scale.

Intel Corporation assumes no respornsibilily for the use of any circuitry other than Circuitry embodied in an Intel product. No other circun patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1984
@ Inlel Corporation. 1984 5-294 Order Number: 231256-001

82C55A

I

Table 1. Pin Description

Symbo.1
Pin Number

Type Name and Function
Dip PLCC

PA3-0 1-4 1-4 lID PORT A, PINS 0-3: Lower nibble of an 8-bit data output latchl
buffer and an 8-bit data input latch.

RD 5 5 I READ CONTROL: This input is low during CPU read operations.

CS 6 6 I CHIP SELECT: A low on this input enables the 82C55A to
respond to RD and WR signals. RD and WR are ignored
otherwise.

GND 7 7 System Ground

A1-0 8-9 9-10 I ADDRESS: These input signals, in conjunction RD and WR,
control the selection of one of the three ports or the control word
registers.

A1 Ao RD WR CS Input Operation (Read)

0 0 0 1 0 Port A - Data Bus

0 1 0 1 0 Port B - Data Bus

1 0 0 1 0 Port C - Data Bus

1 1 0 1 0 Control Word - Data Bus

Output Operation (Write)

0 0 1 0 0 Data Bus - Port A

0 1 1 0 0 Data Bus - Port B

1 0 1 0 0 Data Bus - Port C

1 1 1 0 0 Data Bus - Control

Disable Function

X X X X 1 Data Bus - 3 • State

X X 1 1 0 Data Bus - 3 - State

PC7-4 10-13 11-14 lID PORT C, PINS 4-7: Upper nibble of an 8-bit data output latchl
buffer and an 8-bit data input buffer (no latch for input). This port
can be divided into two 4-bit ports under the mode control. Each
4-bit port contains a 4-bit latch and it can be used for the control
signal outputs and status signal inputs in conjunction with ports
A and B.

PCO-3 14-17 15-18 lID PORT C, PINS 0-3: Lower nibble of Port C.

PBO-7 18-25 19-26 lID PORT B, PINS 0-7: An 8-bit data output latchlbuffer and an 8-
bit data input bl,Jffer.

Vee 26 27 SYSTEM POWER: + 5V Power Supply.

D7-0 27-34 30-37 lID DATA BUS: Bi-directional, tri-state data bus lines, connected to
system data bus.

RESET 35 38 I RESET: A high on this input clears the control register and all
ports are set to the input mode.

WR 36 40 I WRITE CONTROL: This input is low during CPU write
operations.

PA7-4 . 37-40 41-44 lID PORT A, PINS 4-7: Upper nibble of an 8-bit data output latchl
buffer and an 8-bit data input latch.

NC 8,28 No Connect
29,39

5-295 231256-001

82C55A

82C55A FUNCTIONAL DESCRIPTION

General

The 82C55A is a programmable peripheral interface
device designed for use in Intel microcomputer sys­
tems. Its function is that of a general purpose I/O
component to interface peripheral equipment to the .
microcomputer system bus. The functional configu­
ration of the 82C55A is programmed by the system

, software so that normally no external logic is neces­
sary to interface peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to inter­
face the 82C55A to the system data bus. Data is
tran$mitted or received by the buffer upon execution
of input or output instructions by the CPU. Control
words and status information are also transferred
through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the
internal and external transfers of both Data and
Control or Status words. It accepts inputs from the
CPU Address and Control busses and in turn, issues
commands to both of the Control Groups.

Group A and Group B Controls

The functional configuration of each port is pro­
grammed by the systems software. In essence, the
CPU "outputs" a control word t~ the 82C55A. The
control word contains information such as "mode",
"bit set", "bit reset", etc., that initializes the func­
tional configuration of the 82C55A.

Each of the Control blocks (Group A and Group B)
accepts "commands" from the Read/Write Control
Logic, receiv~s "control words" from the i~tElrnal
data bus and Issues the proper commands to Its as­
sociated ports.

Control Group A - Port A and Port C upper (C7 -C4)
Control Group B - Port B and Port Clower (C3-CO)

The control word register can be both written and
read as shown in the address decode table in the
pin descriptions. Figure 6 shows the control word
format for both Read and Write operations. When
the control word is read, bit 07 will always be.a logic
"1", as this implies control word mode information.

Ports A, B, and C

The 82C55A contains three 8-bit ports (A, B, and C).
All can be configured in a wide variety of functional
characteristics· by the system software but each has
its own special features or "personality" to further
enhance the power and flexibility of the 82C55A.

Port A. One 8-bit data output latch/buffer and one
8-bit input latch. Both "pull-up" and "pull-down" bus
hold devices are present on Port A.

Port B. One 8-bit data input/output latch/buffer and
one 8-bit data input buffer. Only "pull-up" bus hold
devices are present on Port B.

Port C. One 8-bit data output latch/buffer ~nd one
8-bit data input buffer (no latch for input). This port
can be divided into two 4-bit ports under the mode
control. Each 4-bit port contains a 4-bit latch and it
can be used for the control signal outputs and status
signal inputs in conjunction with ports A and B. Only
"pull~up" bus hold devices are present on Port C.

See Figure 4 for the bus-hold circuit configuration for
Port A, B, and C.

5-296 231256-001

82C55A

1- 0
"

_ ..
SUPPLIES ___ GND

II DIRECTIONAL DATA IUS

OJ 0 0 <::==::>1 B:~~R I¢~=======~

.,----J
RESn-----I

e!I-------'

K:==:::> p~~ PAo

"D
IV--.---./ PC, PC,

I/'-..L---". '0
IV--.---./ PC, PC.,

1/'---'---". "0
IV-.---'/ P8 7 P80

231256-3

Figure 3~ 82C55A Block Diagram Showing Data Bus1Juffer and Read/Write Control Logic Functions

INTERNAL EXTERNAL
DATA IN -~~--.a-~<I~~-::r A

Vee

RESET --j~~ _-I

EXTERNAL
..... 1I«Ir--0«1-..... -- PORT B,C

PIN

INm:= ----e~-----I

Figure 4. Port A, B, C, Bus-hold Configuration

5-297

231256-4

231256-001

82C55A

82C55A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can
be selected by the system software:

Mode 0 - Basic input/output
Mode 1 - Strobed Input/output
Mode 2 - Bi-directional Bus

When the reset input goes "~igh" all ports will be set
to the input mode with all 24 port lines held at a logic
"one" level by the internal bus hold devices. After­
the reset is removed the 82C55A can remain in the
input mode with no additional initialization required.
This eliminates the need for pullup or pulldown de­
vices in "all CMOS" designs. During the execution
of the system program, any of the other modes may
be selected by using a single output instruction. This
allows a single 82C55A to service a variety of pe­
ripheral devices with a simple software maintenance
routine.

The modes for Port A and Port B can be separately
defined, while Port C is divided into two portions as
required ~y the Port A and Port B definitions. All of
the output registers, including the status flip-flops,
will be reset whenever the mode is changed. Modes
may be combined so that their functional definition
can be. "tailored" to almost any 1/0 structure. For
instance; Group B can be programmed in Mode 0 to
monitor simple switch closings or display computa­
tional results, Group A could be programmed in
Mode 1 to monitor a keyboard or tape reader on an
interrupt-driven basis.

AODRESSBUS

CONTROL BUS

MODE 0

.., PO, "".... PC,..... .A,'.A,

231256-5

Figure 5. Basic Mode Definitions and Bus
Interface

CONTROL WORD

I ~ 1 D, D.I D.l D, I D,I D, 1 D.I

L.J

/ GROUPB \
L.

PORT C (LOWER)
1 -INPUT
O· OUTPUT

L--
PORTB
'-INPUT
O· OUTPUT

MODE SELECTION O·MODEO
,-MODEl

/ GROUP A \
PORT C (UPPER)
1 -INPUT
O-OUTPUT

PORTA
, -INPUT
O-OUTPUT

MODE SELECTION
OO-MOOEO
01-MODE 1
lX-MODE 2

MODE seT FLAG
,- ACTIVE

231256-6

Figure 6. Mode Definition Format

The mode definitions and possible mode combina­
tions may seem confusing at first but after a cursory
review of the complete device operation a simple,
logical 1/0 approach will surface. The design of the
82C55A has taken into account things such as effi­
cient PC board layout, control signal definition vs PC
layout and complete functional flexibility to support
almost any peripheral device with no external logiC.
Such design represents the maximum use of the
available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset
using a Single OUTput instruction. This feature re­
duces software requirements in Control-based appli­
cations.

When Port C is being used as statuslcontrol for Port
A or B, these bits can be set or reset by using the Bit
Set/Reset operation just as if they were data output
ports.

5-298 231256-001

inter
CONTROL WORD

BITSET/RESET
, -SET
a-RESET

BlTSELECT
0123.117

0' 0'0' 0'
00"0011.
0000" 1 1

231256-7

Figure 7. Bit SetlReset Format

82C55A

Interrupt Control Functions

When the 82C55A is programmed to operate in
mode 1 or mode 2, control signals are provided that
can be used as interrupt request inputs to the CPU.
The interrupt request Signals, generated from port C,
can be inhibited or enabled by setting or resetting
the associated INTE flip·flop, using the bit set/reset
function of port C.

This function allows the Programmer to disallow or
allow a specific 1/0 device to interrupt the CPU with­
out affecting any other device in the interrupt struc­
ture.

INTE flip-flop d~finition:

(BIT-SET)-INTE is SET-Interrupt enable
(BIT-RESET)-INTE is RESET-Interrupt disable

Note:
All Mask flip-flops are automatically reset during
mode selection and device Reset.

5-299 231256-001

82C55A

Operating Modes

Mode 0 (Basic Input/Output). This functional con­
figuration provides simple input and output opera·
tions for each of the three ports. No "handshaking"
is required, data is simply written to or read from a
specified port.

MODE 0 (BASIC INPUT)

0

AD -+-

1+-"0-
INPUT

t--:---.'.o-
e1.A',411

----------r(

MODE 0 (BASIC OUTPUT)

t-----·.w---~

DUTPUT

'00

Mode 0 Basic Functional Definitions:

. • Two a·bit ports and two 4·bit ports.

• Any port can be input or output.

• Outputs are latched.

• Inputs are not latched.

• 16 different Input/Output configurations are pos­
sible in this Mode.

'00 0

-,f-

~tHA_1

-tRA--:1

0 'oF 0

231256-8

'wo

'w.

231256-9

231256-001

MODE 0 Port Definition

A B

D. D3 D1 Do

0 0 0 0

0 0 0 1

0 0 1 0
0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0
1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0
1 1 1 1

MODE 0 Configurations

CONTROL WORD #0

..,,,,,,,D.D,D.D,c,,
1,101010101010101

A

82C55A

o,-D. c{

CONTROL WORD.'

0, '" '" D. II, II, D, '"

1,1010101010101,1

..
82C55A

0,-0" c{

82C55A

GROUP A GROUPB

PORTA

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

-INPUT

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

,"'-' ...
",,-pc.

""
""

. "'
",,-pc.

.......
""

PORTC # PORTB (UPPER)
OUTPUT 0 OUTPUT
OUTPUT 1 OUTPUT
OUTPUT 2 INPUT
OUTPUT 3 INPUT
INPUT 4 OUTPUT
INPUT 5 OUTPUT
INPUT 6 INPUT
INPUT 7 INPUT
OUTPUT 8 OUTPUT
OUTPUT 9 OUTPUT
OUTPUT 10 INPUT
OUTPUT 11 INPUT
INPUT 12 OUTPUT
INPUT 13 OUTPUT
INPUT 14 INPUT
INPUT 15 INPUT

CONTROL WORO #2

.., '" '" D. II, II, D, c"

5-301

1,10101010101,101

..
B2C55A

o,-C. c{
8

IXINTROt. """",,,,,,,D.D,D.D,c,,
1,10101010101,1,1

A

82C55A

..,-D. c{

PORTC
(LOWER)
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT
OUTPUT
INPUT

'A,-'",

,,?-PC.

...
""

.A,

,,?-PC.

...
""-No

231256-10

231256-001

82C55A

MODE 0 Configurations (Continued)

CONTROL ~RD ft CONTROL WOAD"

0., D. Do D. D, D, D, D. 0., D. Do D. 0, 0, 0, D.

I, 1 • 1 • 1 ·1 , I • I • 1·1 I. I ·1 ·1 ' I ·1 0 I • 1·1
.. • ,A,,-PAra A • PA,.'""

82C55A 82C55A

• , • c{ pc,-PC. c{ PC,""'.
0,.00 '~·DO' • .

• PC,-PCo • pc,.oc"

B • ..., B
8 ...,

-
CONTROL WORD #& CONTROL WORD #9

0., Do Do' D. 0, 0, 0, D. 0., D, Do 0" 0, D, 0, D.

I , I 0 1 0 1·1 • I • I • I ' I 1'1·1·1'1·1·1· I , I
A

8
PA,.PAw. A • . ..,

B2C55A 82C5SA

• PC,-PC .. • PC,.fIC .. c{ c{ Q7-00 • , 0.,·0.

• pc,.oc"
, • pc,.oc"

• 8 ..., • 8 ...,

CONTROL WORD #8 CONTROL WORD #10

0, D. D, D. 0, 0, D, D. D, 0, 0, D. D, 0, 0, D.

I· I • 1"1 • I • I 0 I ' 1·1 I. 1·1 • I· 1·1 ·1 ' 1·1
A • . .., A

8 . ..,
82C55A 82C55A

• PC,-PC. • PC,""'. c{ c{ °7,00 • D,-OO

• Pe3-PCO • pC,-PCo

B
8 ..., B • ...,

.
CONTROL WORD #1 CONTROL WORD #11

0., 0, Do D. 0, 0, D, D. 0., 0, Do D. D, 0, D, D.

I· I· I • 1·1 , I· I ' 1'1 I. 1·1· I· 1·1 0 I· I· I
A • . ..,., • . ..,

82C55A 82C55A

• pc,-PC. • pc,-PC. c{ c{ 0.,.0. 0.,"'. • pc,.oc" • pc,-PCo

• 8 ..., B • ...,
231256-11

5-302 231256-001

intJ 82C55A

MODE 0 Configurations (Continued)

CONTROL WORD .12

0., 0, Os. D. 0 3 02 0, Do

1,1·1·1,1,1·1·1·'
A PA,-PAo

82C55A

c{ Pe,-PC.

O,.DO

PC3-PCO

...,

CONTROL WORD #13

~ D, Os 0.03 02 D, Do

I ' I • I • I ' I ' I • I • I ' ,
A I------f"'-- PA,.PA"

82C55A

O,.D.-----I

I-----f"'-- P.,

Operating Modes

MODE 1 (Strobed Input/Output). This functional
configuration provides a means for transferring I/O
data to or from a specified port in conjunction with
strobes or "handshaking" signals. In mode 1, Port A
and Port B use the lines on Port C to generate or
accept these "handshaking'" Signals.

CONTROL WORD #,.
0, 0, Os D. 03 D2 01 Do

, ' I • I • I ' I ' I • I ' I·'
A PA,.pA"

82CSSA

c{ pc,.pc.

°7.00

PC,

...,

CONTROL WORD #15

D7 D, Os D. 03 02 0, Do

I ' I • I • I ' I· I • I ' I ' ,

D,.o._--.j

A I------f-=--- PA,.PA"

82C55A

c { 1---1-'-- pc,.f'C.

1----+'-- pc'-PCo

1---1,-,-8-' - ...,

231256-12

Mode 1 Basic functional Definitions:

• Two Groups (Group A and Group B).

• Each group contains one 8-bit data port and one
4-bit control/data port.

• The 8-bit data port can be either input or output
Both inputs and outputs are latched.

• The 4-bit port is used for control and status of the
8-bit data port.

5-303 , 231256-001

82C55A

Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads
data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has
been loaded into the input latchj in essence, an ac­
knowledgement. ISF is set by STS in~ being low
and is reset by the rising edge of the RD input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the
CPU when an input device is requesting service.
INTR is set by the STS is a "one", ISF is a "one"
and INTE is a "one". It is reset by the falling edge of
RD. This procedure allows an input device to re­
quest service from the CPU by simply strobing its
data into the port.

INTEA

Controlled by bit set/reset of PC4.
'INTE B

Controlled by bit set/reset of PC2'

+----- 's,---'

m

lB.

~t".y
t ..

INTR D
I--.... ~

CONTROL WORD

D1o.D5D4~D2D,Do

I. I ·1· I· l"olXlXlXl
L ~~~PUT

, O-OUTPUT

CONTROL WOAD

MODE 1 (PORT AI

MODE 1 IPORT II

Figure 8. MODE 1 Input

\ I_toll---..)

I--toIT1
/ /

J

I/O

INT"

231256-13

INPUT FROM
PERIPHERAL --- ---------------------...

231256-14

Figure 9. MODE 1 (Strobed Input)

5-304 231256-001

intJ 82C55A

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will
go "low" to indicate that the CPU has written data
out to the specified port. The OBF F/F will be set by
the rising edge of the WR input and reset by ACK
Input being low.

ACK (Acknowledge Input). A "low" on this input
informs the 82C55A that the data from Port A or Port
B has been accepted. In essence, a response from
the peripheral device indicating that it has received
the data output by the CPU.

INTR (Interrupt Request). A "high" on this output
can be used to interrupt the CPU when an outP!Jt
device has accepted data transmitted by the CPU.
INTR is set when ACK is a "one", OBF is a "one"
and INTE is a "one". It is reset by the falling edge of
WR.

INTEA

Controlled by bit set/reset of PCs.

INTE B

Controlled by bit setlresetof PC2.

'NTR

\4----IW'T

OUTPUT

CONTROL WORD

o.,O.DsD"D3 DJ D,DO

I. 1 0 I. 1 0 1·.,r><IXIXI
L~·,=.v.

0- OUTPUT

CONTROL WORD

o.,o.Ds 0,,03 0 2 0 , Do

1·@IXIXl·lo&J

MOD~ 1 IPORT AI

MODE 1 (PORT a)

Figure 10. MODE 1 Output

Figure 11. MODE t (Strobed Output)

5-305

INTRA

'NT"

231256-15

231256-16

231256-001

inter 82C55A

Combinations of MODE 1

Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed
1/0 applications.

2
PC~,7 ~I/O

WR_ PC,

PC2 -me

POAT A - (STROBED INPUT)
PORT B - (STROBED OUTPUT)

INTRa

PC,

PORT A - (STROBED OUTPUT)
PORT B - (STROBED INPUT)

1BFa

INTRa

231256-17

Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus 1/0).This
functional configuration provides a means for com­
municating with a peripheral device or structure on a
single 8-bit bus for both transmitting and receiving
data (bidirectional bus 1/0). "Handshaking" signals
are provided to maintain proper bus flow discipline in
a similar manner to MODE 1. Interrupt generation
and enable/dis/ible functions are also available.

MODE 2 Basic Functional Definitions:

• Used in Group A only.

• One 8-bit, bi-directional bus port (Port A) and a 5-
bit control port (Port C). .

• Both inputs and outputs are latched. .

• The 5-bit control port (Port C) is used for control
and status for the 8-bit, bi-directional bus port
(Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can
be used to interrupt the CPU for input or output oper­
ations.

Output Operations

OBF (Output Buffer Full). The OBF output will go
"Iow" to indicate that the CPU has written data out
to port A.

ACK (Acknowledge). A "low" on this input enables
the tri-state output buffer of Port A to send out the
data. Otherwise, the output buffer wiU be in the high
impedance state.

INTE 1 (The INTE Flip-Flop Associated with
OBF). Controlled by bit set/reset of PCs.

Input Operations

STB (Strobe Input). A "Iow" on this input loads
data into the input latch.

IBF (Input Buffer Full F/F). A "high" on this output
indicates that data has been loaded into the input
latch.

INTE 2 (The INTE Flip-Flop Associated with IBF).
Controlled by bit set/reset of PC4.

5-300 231256-001

CONTROL WORD

C7:2::'PUT
, 0 -OUTPUT

PORTa
1 -INPUT
0- OUTPUT

GROUPBMODE
O-MODEO
, -MODE 1

231256-18

Figure 13. MODE Control Word

82C55A

Figure 14. MODE 2

INTR

m

IBF

PERIPHERAL
BUS ----------

NOTE:

DATA FROM
PERIPHERAL TO 82C55A

Figure 15. MODE 2 (Bidirectional)

Any sequence where WR occurs before ACK, and STB occurs before RD is permissible.
(INTR = IBF. MASK. STB • RD + OBF • ~ • ACK • WR)

5-307

OATA FROM
82CSSA TO CPU

231256-19

ii

231256-20

231256-001

intJ

MODE 2 AND MODE 0 (INPUT)

CONTROL WORD

0, O. 0. 04 0, 02 D1 Pit

l'I'W¢<1Oljl
pc.~
l*INPUT
a-OUTPUT

PC,

oc,

MODE 2 AND MODE 1 (OUTPUT)

PC,

CONTROL WORD

0, D. 0, D" 03 02 0, Do

I, I' IXIXIXI' I 0 1><1

PC,

..,
PC,

Ro pc.

w- pc.

INT",

iiIii'.

AeK.

STa.

IBF.

I/O

INTR.

08F.

AC ••

STa.

'IF"

08F,

AC"

INTR,

82C55A

I
MODE 2 AND MODE 0 (OUTPUT)

~ROLWORD

0, 0. Ds D. D, D. D, Do

I, I, W¢<101051
PCH
l-INPUT
O-OUTPUT

Im_

lilI_

MODe 2 AND MODE 1 (INPUT)

PC, INTR"

oa,.
CONTROLwaRO

All ..

~o.DsD4D3D201Do

l'l'lXIXIXI'l'\X1 an.

.8'"

pc. m.
PC, I

>Co INTA,

231256-21

Figure 16. MODE % Combinations

5-308 231256-001

82C55A

Mode Definition Summary

MODE 0 MODE 1

IN OUT IN OUT

PAo IN OUT IN OUT
PA1 IN OUT IN OUT
PA2 IN OUT IN OUT
PAa IN OUT IN OUT
PA.t IN OUT IN OUT
PAs IN OUT IN OUT
PAs IN OUT IN OUT
PA7 IN OUT IN OUT

PBo IN OUT IN OUT
PB1 IN OUT IN OUT
PB2 IN OUT IN OUT
PB3 IN OUT IN OUT
PB4 IN OUT IN OUT
PB5 IN OUT IN OUT
PBe IN OUT IN . OUT

PB7 IN OUT IN OUT

PCo IN OUT INTRa INTRa
PC1 IN OUT IBFa ~a
PC2 IN OUT STBa ACKa
PC3 IN OUT INTRA INTRA
PC4 IN OUT S'fBA 1/0
PC5 IN OUT IBFA 1/0
pce IN OUT 1/0 ~A
PC7 IN OUT 1/0 OBFA

Special Mode Combination Considerations

There are several combinations of mod.es possible.
For any combination, some or all of the Port Clines
are used for control or status. The remaining bits are
either inputs or outputs as defined by a "Set Mode"
command.

During a read of Port C, the state of all the Port C
lines, except the ACK and m lines, will b!J!Laced
on the data bus. In place of the ACK and STB line
states, flag status will appear on the data bus in the
PC2, PC4, and PC6 bit positions as illustrated by
Figure 18. •

Through a "Write Port C" command, only the Port C
pins programmed as outputs in a Mode 0 group can
be written. No other pins can be affected by a "Write
Port C" command, nor can the interrupt enable flags
be accesSed. To write to any Port C output pro­
grammed as an output in a Mode 1 group or to

MODE 2

GROUP A ONLY

......
-
-
-
-
-
-
-
-
1/0
1/0
110

INTRA
STBA
IBFA

ACKA
OBFA

MODE 0
OR MODE 1
ONLY

change an interrupt enable flag, the "Set/Reset Port
C Bit" command must be used.

With a "Set/Reset Port C Bit" command, any Port C
line bB~ammed as an output (including INTR, IBF
and can be written, or an interrupt enable flag
can be either set or reset. Port C lines programmed
as inputs, including ACK and S'fB lines, associated
with Port C are not affected by a "Set/Reset Port C
Bit" command. Writin.aJQ. the corresponding Port C
bit positions of the ACK and S'i'B lines with the
"Set/Reset Port C Bit" command will affect the
Group A and Group B interrupt enable.flags, as illus­
trated in Figure 18.

Current Drive Capability

Any output on Port A, B or C can sink or source 2.5
mAo This feature allows the 82C55A to directly drive
Darlington type drivers and high-voltage displays
that require such sink or source current.

5-309 ·231256-001

82C55A

Reading Port C Status

In Mode 0, Port C transfers data to or from the pe­
ripheral device. When the 82C55A is programmed to
function in Modes 1 or 2, Port C generates or ac­
cepts "hand-shaking" signals with the peripheral de­
vice. Reacling the contents of Port C allows the pro-

. grammer to test or verify the "status" of each pe.
ripheral device and change the program flow ac­
cordingly.1

There is no special instruction to read the status in­
formation from Port C. A normal read operation of
Port C is executed to perform this function.

Interrupt Enable Flag Position

INTEB PC2
INTEA2 PC4
INTE A1 PC6

INPUT CONFIGURATION
0,. 'De DsD4 D3 D2 D1 Do

11/0 11/0 IIBFA IINTEA I INTRA IINTEa IIBFa I INTRa I
I I I

GROUP A GROUPB

OUTPUT CONFIGURATIONS
D7 De Ds D4 D3 D2 D1 Do

IOBFA I INTEAI 110 11/0 I INTRA IINTEa I OBFa I INTRa!
I I I

GROUP A GROUPB

Figure 17a. MODE 1 Status Word Format

0,. De Ds D4 D3 D2 D1 Do

@#AIINTE1!IBFA!INTE2!INTRAI
I I

GROUP A GROUPB
(Defined ay Mode 0 or Mode 1 Selection)

Figure 17b. MODE 2 Status Word Format

Alternate Port C Pin Signal (Mode)

~B (Output Mode 1) or STEiB (Input Mode 1)
STBA (Input Mode 1 or Mode 2)
ACKA (Output Mode 1 or Mode 2

Figure 18. Interrupt Enable Flags In Modes 1 and 2

5-310 231256-001

inter 82C55A

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O·C to + 70·C
Storage Temperature - 6S·C to + 1SO"C
Supply Voltage - O.S to + 8.0V
Operating Voltage + 4V to + 7V
Voltage on any Input : . GND - 2V to + 6.SV
Voltage on any Output .. GND-O.SVtoVee + O.SV
Power Dissipation 1 Watt

D.C. CHARACTERISTICS
TA = O·C to 70·C, Vee = +SV ±10%, GND = OV

Symbol Parameter

VIL Input Low Voltage

VIH Input High Voltage

VOL Output Low Voltage

VOH Output High Voltage

• Notice: Stresses above those listed under ':4bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE: Specifications contained within the
following tables are subject to change.

Min Max Units Test Conditions

-O.S 0.8 V

2.0 Vee V

0.4 V IOL = 2.SmA

3.0 V IOH= -2.SmA
Vee -0.4 V IOH = -:-100 poA

IlL Input Leakage Current ±10 poA VIN = Vee to OV

IOL Output Float Leakage Current ±10 poA VIN = Vee to OV

IOAR Darlington Drive Current -2.0 mA Ports A, B, C
Rext = 7S0 {}

. Vext = 1.SV

IBHL Bus Hold Low Leakage Current +SO +300 poA VOUT = 1.0V
PortA only

IBHH Bus Hold High Leakage Current -SO -300 poA VOUT = 3.0V
Ports A, B, C

lee Vee Supply Current 10 mA Outputs Open
See Note

leeSB Vee Supply Current-Standby 10 poA Vee = S.SV
VIN = Vee or GND
Outputs Open

Note:
Average Icc with all outputs open is 100 /LA.

5-311 231256-001

82C55A

CAPACITANCE
TA = 25·C, vee =GND = OV

Symbol Parameter Min Max

CIN Input Capacitance - 10

CliO 1/0 Capacitance 20

A.C. CHARACTERISTICS .
TA = o· to 70·C, Vee = +5V ±10%, GND == OV

BUS PAaAMETERS

READ CYCLE

Symbol Parameter 82C55A

Min Max

tAR Address Stable Before RD .J, 0

.tRA Address Hold Time After AD t 0

tRR RD Pulse Width 150

tRO Data Delay from RD .J, 120

tOF RD t to Data Floating 10 75

tRY Recovery Time between RD/iNA 300

WRITE CYCLE

Symbol Parameter 82C55A

Min ",ax

tAW Address Stable Before WR .J, 0

tWA Address Hold Time After WR t 20

100

tww WR Pulse Width 100

tow Data Setup Time Before WR t 100

two Data Hold Time After WR t 30

100

5-312

Units Test Conditions

pF Unmeasured pins

pF returned to GND

82C55A-2 Units Test

Min Max Conditions

0 ns

0 ns

150 ns

120. ns

10 75 ns

300 ns

82C55A-2 Units Test

Min Max Conditions

0 ns

20 ns Ports A & B

20 ns PortC

100 ns

100 ns

30 ns PortsA& B

30 ns PortC

231256-001

82C55A

OTHER TIMINGS

Symbol Parameter 82C55A 82C55A-2 Units Test

Min Max Min Max CondlttQns

tWB WR = 1 to Output 350 350 ns

tlR Peripheral Data Before RD 0 0 ns

tHR Peripheral Data After RD 0 0 ns

tAK ACK Pulse Width 100 100 ns

'tST STB Pulse Width 100 100 ns

tps Per. Data" Before STB High 20 20 ns

tpH Per. Data After STBHigh 50 50 ns

tAD ACK = 0 to Output 175 175 ns

tKD ACK = 1 to Output Float 20 250 20 250 ns

tWOB WR = 1 to OBF = 0 150 150 ns

tAOB ACK = OtoOBF = 1 150 150 ns -
tslB SfB = 0 to IBF = 1 , 150 150 ns

tRIB RD = 1 to IBF = 0 150 150 ns

tRIT RD = 0 to INTR = 0 200 200 ns

tslT S'fB = 1 to INTR = 1 150 150 ns

tAIT ACK = 1 to INTR = 1 150 150 ns

twiT WR = 0 to INTR = 0 200 200 ns see note 1

" lRES Reset Pulse Width 500 500 ns see note 2

NOTE:
1. INTR t may occur as early as WR J. .
2. Pulse width of initial Reset pulse after power on must be at least 50 ,.,.Sec. Subsequent Reset pulses may be 500 ns
minimum.

5-313 231256-001

I
"

" i

inter 82C55A

WAVEFORMS

.... MODE 0 (BASIC INPUT)

'o,

-'K -; I'-

~tl.R_ 1--'",_1 '
INPUT

~"A~:....-- tRA---I,

a,A'.AO

----------(--
'AD . 'DF .

231256-22

MODE 0 (BASIC OUTPUT)

two

\4-----' •• -------1 I-----tw.,---.....

a.A'.AO

OUTPUT

231256-23

5-314 231256-001

intJ

WAVEFORMS (Continued)

MODE 1 (STROBED INPUT)

ITIi

lB'

INTR

INPUT FROM
\. PERIPHERAL ---

-'oT-

~·"·1)
tl"

..,---

MODE 1 (STROBED OUTPUT)

'NTR
_twIT

OUTPUT

82C55A

\

J 1_ •••• ____ >
~7 I

1/ !

- -1

231256-24

231256-25

5-315 231256-001

82C55A

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)

DAT"'ROM a.-TO 1211

INTR

m

18'

PEAI::RAL _________ _

Note:

/
DATA FROM

PERIPHERAL TO 12M

DATA FROM 1211 TO_
231256-26

Any sequence where WR occurs before M;K AND STS occurs before RD is permissible.
(INTR = ISF. ~ • SiB • 1m + OBF. MASK. M;K • WR)

WRITE TIMING

231256-27

A.C. TESTING INPUT, OUTPUT WAVEFORM

Z.O > TEST POINTS <
0.8 0.8

0.45

231256-29

READ TIMING

"a.,.es ==::x-------"f~~--
-..j - i-tRA 1* t A•

~--------------~~e: ---------
.. ~ --1 tD'fo-

DATA8US:~~[5E~E~~
231256-28

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER
TEST

1---..,rr---'\I\Iv----<J VEX,'

L-______ ~ I Ct. -110 pF

231256-30
A.C. Testing Inputs Are Driven At 2.4V For A Logic 1 And 0.45V
For A Logic 0 Timing Measurements Are Made At 2.0V For A 'VEXT Is Set At Various Voltages During Testing To Guarantee
Logic 1 And 0.8 For A Logic O. The Specification. CL Includes Jig Capacitance.

5-316 231256-001

intJ
8256AH

MULTIFUNCTION MICROPROCESSOR
SUPPORT CONTROLLER

• Programmable Serial Asynchronous
Communications Interface for 5,,6·, 7·,
or 8·Blt Characters, 1, 1112, or 2 Stop
Bits, and Parity Generation

• On·Board Baud Rate Generator
Programmable for 13 Common Baud
Rates up to 19.2K Bits/second, or an
External Baud Clock Maximum of 1 M
Bit/second

• Five 8-Bit Programmable Timer/
Counters; Four Can Be Cascaded to
Two 16·Blt Timer/Counters

• Two 8·Bit Programmable Parallel I/O
Ports; Port 1 Can Be Programmed for
Port 2 Handshake Controls and Event
Counter Inputs

• Eight-Level Priority Interrupt Controller
Programmable for 8085 or iAPX 86,
iAPX 88 System~ and for Fully Nested
Interrupt Capability

• Programmable System Clock to 1)(,
2)(, 3)(, or 5)(1.024 MHz

The Intel@ 8256AH Multifunction Universal Asynchronous Receiver-Transmitter (MUART) combines five com­
monly used functions into a single 40-pin device. It is designed to interface to the 8086/88, iAPX 1861188,
and 8051 to perform serial communications, parallel 110, timing, event counting, and priority interrupt func­
tions. All of these functions are fully programmable through nine internal registers. In addition, the five
timerlcounters and two parallel 110 ports can be accessed directly by the microprocessor.

AOO-AD4

DBS-DBT

cs
AD

WI!
ALE

RESET
iN'i'A

INT

Figure 1. MUART Block Diagram

ClK

RxD
TxD

RxC
TiC
CTS

cs
INTA

INT

EXTINT

ClK

Figure 2. MUART Pin Configuration

Intel Corporation Assumes No ResponSibility for the Use of Any Circuitry Other Than CircUitry Embodied In an Intel Prodoot No Other CircUit Patent licenses are ImprieO'

@ INTEL CORPORATION 1984 September 1984
5-317 ORDER NUMBER: 230759-002

intJ 8256AH

Table 1. Pin Description

Symbol Pin Type Name and Function
ADO-AD4 1-5 I/O ADDRESS/DATA: Three-state address/data lines which interface to the lower
DB5-DB7 6-8 8 bits of the microprocessor's multiplexed address/data bus. The 5-bit

address is latched on the falling edge of ALE. In the 8-bit mode, ADO-AD3
are used to select the proper register, while AD1-AD4 are used in the 16-bit
mode. AD4 in the 8-bit mode is ignored as an address, while ADO in the
16-bit mode is used as a second chip select, active low.

ALE 9 I ADDRESS LATCH ENABLE: latches the 5 addrl1ss lines on ADO-AD4 and CS on the
fallingec!ge.

lm' 10 I READ CONTROL: When this signal is low, the selected register is gated
onto the data bus.

WJ!f 11 I WRITE CONTROL: When this signal is low, the value on the data bus is
written into the selected register.

RESET 12 I RESET: An active high pulse on this pin forces the ctlip into its in~ial state.
The chip remains in this state until control information is written.

CS 13 I CHIP SELECT: A Iowan this signal enables the MUART. It is latched with
the address on the falling edge of ALE, and 1m and vm have no effect
unless OS was latched low durillgthe ALE cycle.

iNTA 14 I INTERRUPT ACKNOWLEDGE: If the MUART has been enabled to respond
to interrupts, this signal informs the MUART, ttlat its interrupt request is being
acknowledged by the microprocessor. During this acknowledgement the
MUART puts an RSTn instruction on the data bus for the 8-bit mode or
a vector for the 16-bit mode.

/ INT 15 0 INTERRUPT REQUEST: A high signals the microprocessor that the MUART
needs service.

EXTINT 16 I EXTERNAL INTERRUPT: An external device can request interrupt service
through this input. The input is level sensitive (high), therefore it must be
h!lld high untU/ln iiii'i'A occurs or the interrupt address register is read.

elK 17 I SYSTEM CLOCK: The reference clock for the baud rate generator and the ti'mers.

RxC 18 I/O RECEIVE CLOCK: If the baud rate bits in the Command Register 2 are all 0,
this pin is an input which clocks serial data into the RxD pin on the riSing
edge of RxC. If baud rate bits in Command Register 2 are programmed from
1-0FH, this pin outputs a square wave whose rising edge indicates when
the data on RxD is being sampled. This output remains high during start,
stop, and parity bits.

RxD 19 I RECEIVE DATA: Serial data input.

GND 20 PS GROUND: Power supply and logic ground reference.

5-318 230759-002

intJ

Symbol

CTS

TxC

TxD

P27·P20

PH-P10

8256AH

Table 1. Pin Description (continued)

Pin Type Name and Function
21 I CLEAR TO SEND: This~ut enables the serial transmitter. If 1, 1.5, or 2

stop bits are selected CTS is level sensitive. As long as C'l'S is low, any
character loaded into the transmitter buffer register will be transmitter serially.
A single negative going pulse causes the transmission of a single character previously
loaded into the transmitter buffer register. If a baud rate from 1-0FH is
selected, C'fS must be low for at least 1/32 of a bit, or it will be ignored. If
the transmitter buffer is empty, this pulse will be ignored. If this pulse
occurs during the transmission of a character up to the time where '/2 the first
(or only) stop bit is sent· out, it will be ignored. If it occurs afterwards, but
before the end of the stop bits, the next character will be transmitted
immediately follOWing the current one. If CTS is still high when the transmitter
~egister is sending the last stop bit, the transmitter will enter its idle state
until the next high-to-Iow transition on CTS occurs. If 0.75 stop bits is
chosen, the CTS input is edge sensitive. A negative edge on CfS results in the
immediate transmission of the next character. The length of the stop bits is
determined by the time interval between the beginning of the first stop bit and
the next negative edge on CTS. A high-to-Iow transition has no effect if the
transmitter buffer is empty or if the time interval between the beginning of the
stop bit and next negative edge is less than 0.75 bits. A high or a low level
or a low-to-high transition has no effect on the transmitter for the 0.75 stop Olt mode.

22

23

24-31

32·39

40

I/O TRANSMIT CLOCK: If the baud rate bits in command register 2 are all set
to 0, this input clocks data out of the transmitter on the falling edge. If baud
rate bits are programmed for 1 or 2, this input permits the user to provide a
32x or 64x clock which is used for the receiver and transmitter. If the baud rate
bits are programmed for 3-0FH, the internal transmitter cloCk is output. As an
output it delivers the transmitter clock at the selected bit rate. If 1'/2 or 0.75
stop bits are selected, the transmitter divider will be asynchronously reset at
the beginning of each start bit, immediately causing a high-Io-Iow transition
on TxC. TxC makes a high-to-Iow transition at the beginning of each serial
bit, and a low-to-high transition at the center of each bit.

o TRANSMIT DATA: Serial data output.

I/O PARALLEL 110 PORT 2: Eight bit general purpose I/O port. Each nibble (4 bits)
of this port can be either an input or an output. The outputs are latched whereas
the input signals are not. Also, this port can be used as an a-bit input or output
port when using the two·wire handshake. In the handshake mode both inputs
and outputs are latched.

I/O PARALLEL 110 PORT 1: Each pin can be programmed as an input or an output
to perform general purpose I/O. All outputs are latched whereas inputs are
not. Alternatively these pins can serve as control pins which extend the·
functional spectrum of the Chip.

PS POWER: +5V power supply.

5-319 230759-002

inter 8256AH

FUNCTIONAL DESCRIPTION

The 8256AH Multi-Function Universal Asynchronous
Receiver-Transmitter (MUART) combines five com­
monly used functions into a single 40-pin device. The
MUART performs asynchronous serial communica­
tions, parallel 110, timing, event counting, a.nd inter­
rupt control. For detailed application information, see
Intel Ap Note #153, Designing with the 8256.

Serial Communications

The serial communications portion of the MUART
contains a full-duplex asynchronous receiver­
transmitter (UART). A programmable baud rate
generator is included on the MUART to permit a varie­
ty of operating speeds without external components.
The UART can be programmed by the CPU for a
variety of character sizes, parity generation and detec­
tion, error detection, and start/stop bit handling. Th,e
receiver checks the start and stop bits in the center
of the bit, and a break halts the reception of data. The
transmitter can send breaks and can be controlled
by an external enable pin.

Parallel 110

The MUART includes 16 bits of general purpose
parallel 110. Eight bits (Port 1) can be individually
changed from input to output or used for special I/O
functions. The other eight bits (Port 2) can be used
as nibbles (4 bits) or as bytes. These eight bits also
include a handshaking capability using two pins on
Port 1.

Counter/Timers

There are five 8-bit counter/timers on the MUART.
The timers can be programmed to use either a 1 kHz
or 16 kHz clock generated from the system clock.
Four of the 8-bit counter/timers can be cascaded to
two 16-bit counter/timers, and one of the 8-bit
counter/timers can be reset to its initial value by an
external signal.

Interrupts

An eight-level priority interrupt contr.oller can be con­
figured for fully nested or normal interrupt priority.
Seven of the eight interrupts service functions on the
MUART (counter/timers, UART), and one external in­
terrupt is provided which can be used for a particular
function or for chaining interrupt controllers or more
MUARTs. The MUARTwili support 8085 and 8086/88
systems with direct interrupt vectoring, or the MUART
can be polled to determine the cause of the interrupt.
If additional interrupt control capability is needed, the
MUART's interrupt controller can be cascaded into

another MUART, into an Intel 8259A Programmable
Interrupt Controller, or into the interrupt controller of
the iAPX 186/188 High-Integration Microprocessor.

INITIALIZATION

In general 'the MUART's'functions are independent
of each other and only the registers and bits
associated with a particular function need to be in­
itialized, not the entire chip. The command sequence
is arbitrary since every register is directly addressable;
however, Command Byte 1 must be loaded first. To
put the device into a fully operational condition, it is
necessary to write the following commands:

Command byte 1
Command byte 2
Command byte 3

Mode byte
Port 1 control
Set Interrupts

The modification register may be loaded if required
for special applications; normally this operation is not

'necessary. The MUART should be reset before in­
itialization. (Either a hardware or a software reset will
do.)

INTERFACING

This section describes the hardware interface 'bet­
ween the 8256 MUART and the 80186
microprocessor. Figure 3 displays the block diagram
for this interface. The MUART can be interfaced to
many other microprocessors using these basic
principles.

In all cases the 8256 will be connected directly to the
GPU's multiplexed address/data bus. If latches or
data bus buffers are used in a system, the MUART
should be on the microprocessor Side of the ad- '
dress/data bus. The MUART latches the address in­
ternally on the falling edge of ALE. The address con­
sists of Chip Select (CS) and four address lines. For
B-bit microprocessors, ADO-AD3 are the address lines.
For 16-bit microprocessors, AD1-AD4 are the address
lines; ADO is used as a second chip select which is
active low. Since chip select is internally latched along
with the address, it does not have to remain active
during the entire instruction cycle. As long as the chip
select setup and hold times are met, it can be deriv­
ed from multiplexed address/data lines or multiplex­
ed address/status lines. When the 8256 is in the 16-bit
mode, AO serves as a second chip select. As a result
the MUART's internal registers will all have even ad­
dresses since AO must be zero to select the device.
Normally the MUART will be placed on the lower data
byte. If the MUART is placed on the upper data byte.

5-320 230759-002

8256AH

Vee 16 MHz

n rCl
x x RESET

1 2 AD
RES WR

J
INTO
--
INTAO

ALE

+5V- SRDY DT/R -- I STB
DEN -tl 8282

NMI lATCH ADDRESS .. -r AD0-1S "r-
DDR/DATA

(2) OE
HOLD [" - f pcso

80186
8286 --

(16) TRCVR DATA ri CLOCK
~~(2) v GENERATOR

r- ALE INTA INT WR RD RESET ClK --1\
8) AD0-4 PORT 1 (8)

05_7 8256 PORT 2 (8) -
TxD RxD TxC RxC EiTiNT CS CTS .

f . -SERIAL I/O

Figure 3. 80186/8256 Interface

the internal registers will be 512 address locations
apart and the chip would occupy an S K word address
space.

DESCRIPTION OF THE REGISTERS

The following section will provide a description of the
registers and define the bits within the registers where
appropriate. Table 2 lists the registers and their
addresses.

Command Register 1

L1 I LO I S1 I so IBRKI! BITI Isos61 FRO I
(OR) (OW)

FRQ - Timer Frequency Select

This bit selects between two frequencies for the five
timers. If FRO = 0, the timer input frequency is 16
kHz (62.5J.ls). If FRO = 1, the timer input frequency
is 1 KHz (1 ms). The selected clock frequency is
shared by all the counter/timers enabled for timing;
thus, all timers must run with the same time base.

8086 - 8086 Mode Enable

This bit selects between SOS5 mode and SOS6/S0SS
mode. In SOS5 mode (80S6 = 0), AO to A3 are used
to address the internal registers, and an RSTn instruc­
tion is generated in response to the first INTA. In
In SOS6 mode (SOS6~ = 1), A1 to A4 are used to ad­
dress the internal registers, and AO is used as an ex­
tra chip select (AO must equal zero to be enabled).
The response to INTA is for SOS6 interrupts where
the first INTA is ignored, and an interrupt vector (40H
to 47H i!..E!aced on'the bus in response to the
second INTA.

BIT I - Interrupt on Bit Change

This bit selects between one of two interrupt sources
on Priority Level 1, either Counter/Timer 2 or Port 1
P17 interrupt. When this bit equals 0, CounterlTimer
2 will be mapped into Priority Level 1. If BITI equals
o and Level 1 interrupt is enabled, a transition from
1 to 0 in CounterlTimer 2 will generate an interrupt
request on Level 1. When BITI equals 1, Port 1 P17
external edge triggered interrupt source is mapped
into Priority Level 1. In this case if Level 1 is en­
abled, a low-ta-high transition on P17 generates an
interrupt request on Level 1.

5-321 230759-002

intJ 8256AH

Table 2. MUART Registers

Read Registers
8085 Mode: AD3 AD2 AD1 ADO
8086 Mode: AD4 AD3 AD2 AD1

Write Registers

L1 I La I S1 I SO 18RKII 81TI180861 FROI a a a a I L1 I La I S1 I SO 18RKII 81T1180861 FROI
Command 1 Command 1

I PEN I EP I C1 1 CO 1 83 1 . 82 1 '81 1 80 1 a a a 1 I PEN I EP I C1 I CO I 83 I 82. I 81 I 80 I
Command 2

I 0 I RxE I IAE 1 NIE I a IS8RKIT8RKI 0 1 a a
Command 3

I T351 T241 T5C I CT3 1 CT21 P2C21 P2C11 P2coI a a
Mode

I P171 P161 P151 P141 P131 P121 P11 1 P10 I a 0

Port 1 Control ,

Command 2

a I SET I RxE 1 IAE 1 NIE 1 END IS8R~T8R~ RST 1
Command 3

I T3S1 T241 TSC I CT31 CT21 P2C21 P2C11 P2coI
Mode

a I PHI P161 P1s1 P141 P131 P121 P11 I P10 I
Port 1 Control

L7 1 L6 1 LS 1 L4 1 L3 1 L2 1 L1 I La 1 a a 1 1 L7 1 L6 1 LS 1 L4A I L3 1 L2 1 L1 I La 1
Interrupt Enable Set Interrupts

mloolool~lool~I~lool a p ul~I~I~I~IL2IL1lwl
Interrupt Address Reset Interrupts

I 07 I 06 I OS I 04 I 03 I 02 1 01 1 00 I a Imroolool~lool~I~lool
Receiver Buffer Transmiiter Buffer

Imloolool~lool~I~lool 1 a a a Imloolool~lool~I~lool
Port 1 Port 1

[07 I 06 I OS 1 04 1 03 1 02 I 01 1 DO 1 1 0 0 1 I 07 I 06 1 OS I 04 1 03 1 02 I 01 I DO 1
Port 2 Port 2

I 07 I 06 1 OS 1 04 1 03 I 02 I 01 1 DO I 1 0 a I 07 I 06 I OS I 04 I 03 I 02 I 01 I 00 I
Timer 1 Timer 1

I 07 I 06 1 OS 1 04 1 03 1 02 I 01 1 00 I 1 0 I 07 I 06 1 OS 1 04 1 03 1 02 I 01 I 00 I
Timer 2 Timer t

I 07 I 06 I OS I 04 I 03 I 02 I 01 I::§] 1 a a I 07 I 061 OS I 04 I 03 I 02 I 01 1 00 I
Timer 3

Imloolool~lool~l~ 100 1 1
Timer 4

I 07 I 06 I 05 I 04 I 03 I 02 I 01 1 DO I 1
Timer 5

I iNT I R8F I T8E 1 TRE I 80 1 PE I OE 1 FE I 1
Status

Timer 3

a 1 I 07 I 06 I OS I 04 I 00 1 02 I 01 I DO 1

5-322

Timer 4

a I 07 I 06 I OS I 04 I 03 I 02 I 01 I DO I
Timer 5

1 I a IRS41 RS3 I RS2 I RS1 I RSO ITME losc I
Modification

230759-002

intJ 8256AH

BRKI - Break-In Detect Enable

If this bit equals 0, Port 1 P16 is a general purpose
1/0 port. When BRKI equals 1, the Break-In Detect
feature is enabled on Port 1 P16. A Break-In condi­
tion is present on the transmission line when it is
forced to the start bit voltage level by the receiving
station. Port 1 P16 must be connected externally to
the transmission line in order to detect a Break-In.
A Break-In is polled by the MUART during the
transmission of the last or only stop bit of a character.

A Break-In Detect is OR-ed with Break Detect in Bit
3 of the Status Register. The distinction can be made
through the interrupt controller. If the transmit and
receive interrupts are enabled, a Break-In will
generate an interrupt on Level 5, the transmit inter­
rupt, while Break will generate an interrupt on Level
4, the receive interrupt.

so, S1 - Stop Bit Length

S1 SO Stop Bit Length

0 0 1

0 1 1.5

1 0 .-2
1 1 0.75

The relationship of the number of stop bits and the
function of input CTS isdiscussed~n the Pin Descrip­
tion section under "CTS".

LO, L 1 - Character Length

L1 LO Character Length

0 0 8

0 1 7

1 0 6

1 1 5

Command Register 2

IPENI EP I C1 I CO B3 B2 B1 BO

(1R) (1W)

Programming bits O ... 3 with values from 3H to FH
enables the internal baud rate generator as a com­
mon clock source for the transmitter and receiver and
determines its divider ratio.

Programming bits O ... 3 with values of 1 H or 2H
enables input TxC as a common clock source for the
transmitter and receiver. The external clock must pro-

vide a frequency of either 32x or 64x the baud rate.
The data transmission rates range from O ... 32
Kbaud.

If bits O ... 3 are set to 0, separate clocks must ·be
input to pin RxC for the receiver and pin TxC for the
transmitter. Thus, different baud rates can be used
for transmission and reception. In this case,
prescalers are disabled and the input serial clock fre­
quency must match the baud rate. The input se~ial
clock frequency can range from 0 to 1.024 MHz.

BO, B1, B2, B3 - Baud Rate Select

These four bits select the bit clock's source, sam­
pling rate, and serial rate for the internal baud rate
generator.

Baud Sampling
B3 82 B1 BO Rate Rate

0 0 0 0 TxC, RxC 1

0 0 0 1 TxC/64 64

0 0 1 0 TxC/32 32

0 0 1 1 19200 32

0 1 0 0 9600 64

0 1 0 1 4800 64

0 1 1 0 2400 64

0 1 1 1 1200 64

1 0 0 0 600 64

1 0 0 1 300 64

1 0 1 0 200 64

1 0 1 1 150 64

1 1 0 0 110 64

1 1 0 1 100 64

1 1 1 0 75 64
1 1 1 1 50 64

The following table gives an overview of the function
of pins TxC and RxC:

Bits 3 to
0J.Hex.) TxC RxC

0 Input: 1 x baud Input: 1 x baud
rate clock for the rate clock for the
transmitter receiver

1,2 Input: 32 x or 64 x Output: receiver bit
baud rate for trans- clock with a low~to-
mitter and receiver high transition at

I
data bit sampling
time. Otherwise:
hIgh'level

3 to F Output: baud rate Output: as above
clock of the
transmitter

5-323 230759-002

I

!

inter 8256AH

As an output, AxC outputs a low-to-high transition at
sampling time of every data bit of a character. Thus,
data can be loaded, e.g., into a shift register exter­
nally. The transition occurs only if data bits of a
character are present. It does not occur for start, pari­
ty, and stop bits (RxC = high) ..

As an output, TxC outputs the internal baud rate clock
of the transmitter. There will be a high-to-Iow transi­
tion at every beginning of a bit.

CO, C1 - System Clock Prescaler
(Bits 4, 5)

Bits 4 and 5 define the system clock prescaler divider
ratio. The internal operating frequency of 1.024 MHz
is derived from the system clock.

C1 CO Divider Ratio

0 0 5

0 1 3

1 0 2

1 1 1

EP - Even Parity (Bit 6)

EP = 0: Odd parity
EP = 1: Even parity

Clock at Pin
ClK

5.12 MHz

3.072 MHz

2.048 MHz

1.024 MHz

PEN - Parity Enable (Bit 7)

Bit 7 enables parity generation and checking.

PEN = 0: No parity bit
PEN = 1: Enable parity bit

The parity bit according to Command Register 2 bit
6 (see above) is inserted between the last data bit of
a character and the first or only stop bit. The parity
bit is checked during reception. A false parity bit
generates an error indication in the Status Register
and an Interrupt Request on level 4.

Command Register 3

I SET I RxE IIAE I NIW I END I SBRK I TBRK I RST

(2R) (2W)

Command Register 3 is different from the first two
registers because it has a bit set/reset capability.
Writing a byte with Bit 7 high sets any bits which were
also high. Writing a byte with Bit 7 low resets any bits
which were high. If any bit 0-6 is low, no change oc-

curs to that bit. When Command Register 3 is read,
bits 0, 3, and 7 will always be zero.

RST - Reset

If RST is set, the following events occur:

1. All bits in the Status Register except bits 4 and 5
are cleared, and bits 4 and 5 are set.

2. The Interrupt Enable, Interrupt Request, and In­
terruptService Registers are cleared. Pending re­
quests and indications for interrupts in service will
be cancelled. Interrupt signal INT will go low.

3. The receiver and transmitter are reset. The
transmitter goes idle (TxD is high), and the receiver
enters start bit search mode.

4. If Port 2 is programmed for handshake mode, IBF
and OBF are reset high.

RST does not alter ports, data regist~rs or command
registers, but it halts any operation in progress. RST
is automatically cleared.

RST = 0 has not effect. The reset operation triggered
by Command Register 3 is a subset of the hardware
reset.

TBRK - Transmit Break

The transmission data output TxD will be set low as
soon as the transmission of the previous character
has been finished. It stays low until TBRK is cleared.
The state of CTS is of no significance for this
operation. As long as break is active, data transfer
from the Transmitter Buffer to the Transmitter
Register will be inhibited. As soon as TBRK is reset, /
the break condition will be deactivated and the
transmitter will be re-enabled.

SBRK - Single Character Break

This causes the transmitter data to be set low for one
character including start bit, data bits, parity bit, and
stop bits. SBRK is automatically cleared when time
for the last data bit has passed. It will start after the
character in progress completes, and will delay the
next data transfer from the Transmitter Buffer to the
Transmitter Register until· TxD returns to an idle
(marking) state. If both TBRK and SBRK are set,
break will be set as long as TBRK is set, but SBRK
wm be cleared after one character time of break. If
SBRK is set again, it remains set for another

, character. The user can send a definite number of
break characters in this manner by clearing TBRK
after setting SBRK for the last character time.

5-324 230759-002

intJ 8256AH

END - End of Interrupt

If fully nested interrupt mode is selected, this bit reset
the currently served interrupt level in the Interrupt Ser­
vice Register. This command must occur at the end
of each interrupt service routine during fu(/y nested
interrupt mode. END is automatically -cleared when
the Interrupt Service Register (internal) is cleared.
END is ignored if nested interrupts are not enabled.

NIE - Nested Interrupt Enable
When NIE equals 1, the interrupt controller will
operaje in the nested interrupt mode. When NIE
equals 0, the interrupt controller will operate in the
normal interrupt mode. Refer to the "Interrupt con­
troller" section of AP-153 under "Normal Mode"
and "Nested Mode" for a detailed description of
these operations.

IAE - Interrupt Acknowledge Enable

This bit enables an automatic response to INTA. The
particular response is determined by the 8086 bit in
Command Register 1.

RicE - Receive Enable

This bit enables the serial receiver and its associated
status bits in the status register. If this bit is reset,
the serial receiver will be disabled and the receive
status bits will not be updated.

Note that the detection of break characters remains
enabled while the receiver is disabled; i.e., Status
Register Bit 3 (BO) will be set while the receiver is
disabled whenever a break character has been
recognized at the receive data input RxO.

SET - Bit Set/Reset

If this bit is high during a write to Command Register
3, then any bit marked by a high wjll set. If this bit
is low, then any bit marked by a high will be cleared.

Mode Register

I T351 T241 TSC 1 CT31 CT21 P2C2 1 P2C1 1 P2CO 1

(3R) (3W)

If test mode is selected, the output from the internal
baud rate generator is placed on bit 4 of Port 1 (pin
35).

To achieve this, it is necessary to program bit 4 of
Port 1 as an output (Port 1 Control Register Bit P14
= 1), and to program Command Register 2 bits B3
- BO with a value ~ 3H.

P2C2, P2C1, P2CO - Port 2 Control
Direction

P2C2 P2C1 P2CO Mode Upper Lower
0 0 0 Nibble Input Input

0 0 1 Nibble Input Output

0 1 0 Nibble Output Input

0 1 1 Nibble Output Output
1 0 0 Byte Input

Handshake
1 0 1 ~e Output

Han shake
1 1 0 DO NOT USE
1 1 1 Test

NOTE:
If Port 2 is operating in handshake mode, Interrupt Level 7
is not available for Timer 5. Instead it is assign!ld to Port 2
handshaking.

CT2, CT3 - Counter/Timer Mode

Bit 3 and 4 defines the mode of operation of event
counterltimers 2 and 3 regardless of its use as a single
unit or as a cascaded one.

If CT2 or CT3 are high, then counter/timer 2 or 3
respectively is configured as an event counter on bit
2 or 3 respectively of Port 1 (pins 37 or 36). The event
counter decrements the count by one on each low­
to-high transition of the external input. If CT2 or CT3
is low, then the respective counter/timer is configured
as a timer and the Port 1 pins are used for parallel 110.

T5C - Timer 5 Control
If T5C is sat, then Timer 5 can be preset and started
by an external signal. Writing to the Timer 5 register
loads the Timer 5 save register and stops the timer.
A high-to-Iow transition on bit 5 of Port ~ (pin 34) loads
the timer with the saved value and starts the timer.
The next high-to-Iow transition on pin 34 retriggers
the timer by reloading it with the initial value and con­
tinues timing.

Following a hardware reset, the save register is reset
to OOH and both clock and trigger inputs are dis­
abled. Transferring an instruction with T5C = 1
enables the trigger input; the save register can now
be loaded with an initial value. The first trigger pulse
causes the initial value to be loaded from the save

'register and enables the counter to count down to
zero.

When the timer reaches zero it issues an interrupt
request, disables its interrupt level and continues
counting. A subsequent high-to-Iow transition on pin
5 resets Timer 5 to its initial value. For another timer
interrupt, the Timer 5 interrupt enable bit must be set
again.

5-325 230759-002

I:
~
.~

intJ 8256AH

T35, T24 - Cascade Timers

These two bits cascade Timers 3 and S or 2 and 4.
Timers 2 and 3 are the lower bytes, while Timers 4
and S are the upper bytes. If TSC is set, then both
Timers 3 and S can be preset and started by an ex-
ternal pulse. .

i When a high-ta-Iow transition occurs, Timer S is preset
to its saved value, But Timer 3 is always preset to all
ones. If either CT2 or CT3 is set, then the correspon­
ding timer pair is a 16-bit event counter.

A summary of the counter/timer control bits is given
in Table 3.

NOTE:
Interrupt levels assigned to single counters are partly not oc·
cupied if event counters/timers are cascaded. Level 2 will be
vacated if event counters/timers 2 and 4 are cascaded.
Likewise, Level 7 will be vacated if event counters/timers 3
and 5 are ~scaded.

Single event counters/timers generate an interrupt request
on the transition from 01H to OOH, while cascaded ones
generate it on the transition from 0001 H to OOOOH.

Port l' Control Register

I P171 P161 P1s1 P141 P131 P12 I P11 I P10,1

(4W) (4W)

Each bit in the Port 1 Control Register configures the
direction of the corresponding pin. If the bit is high.
the pin is an output, and if it low the pin is an inpu:
Every Port 1 pin has another function which is con­
trolled by other registers. ,If that special function is
disabled, the pin functions as a general I/O pin as
specified by this register. The special functions for
each pin are described below.

Port 10, 11 - Handshake Control

If byte handshake control is enabled for Port 2 by
the Mode Register, then Port 10 is programmed as
ST.B/ACK handshake control input, and Port 11 is
programmed as IBF/OBF handshake control output.

If byte handshake mode is enabled for output on Port
2 OBF indicates that a character has been loaded

Table 3. Event Counters/Tlmers ~ode of Operation

Event Counterl Programming
Timer Function (Mode Word) Clock Source

1 8-bit timer - Internal clock

2 8·bit timer T24=0, CT2=0 Intemal clock

8-bit event counter T24=0, CT2=1 P12 pin 37

2 8-bit timer T3S=0, CT3=0 Intemal clock

8·bit event counter T3S=0, CT3=1 P13 pin 36

4 8-bit timer T24=0 Intemal clock

8-bit timer, T35=O, TSC=O Internal clock

S normal mode

8-bit timer, T3S=0, TSC=1 Intemal clock
retriggerable mode

2 and 4 16-bit timer T24= 1, CT2=0 Internal clock

cascaded 16-bit event counter T24=1, CT2=1 P12 pin 37

16-bit timer, T3S=1, TSC=O, Intemal clock
normal mode 'CT3=0

3 and S 16-bit event counter, T3S=1, TSC=O, P13 pin 36
cascaded normall;Tlode CT3=1

16-bit timer, T3S=1, TSC=1, Internal clock
retriggerable mode CT3=0

16·bit event counter, T35=1, TSC=1, P13 pin 36
retriggerable mode CT3=1

5-326 230759-002

inter 8256AH

into the Port 2 output buffer. When an external
device reads the data, it acknowledges this opera­
tion by driving ACK low. OBF is set low by writing to
Port 2 and is reset by ACK.

If b.l1§..handshake mode is enabled for input on Port
2, STB is an input. IBF is driven low after STB goes
low. On the rising edge of STB the data from Port 2
is latched.

IBF is reset high when Port 2 is read.

Port 12, 13 - Counter 2, 3 Input

If Timer 2 or Timer 3 is programmed as an event
counter by the Mode Register, then Port 12 or Port
13 is the counter input for Event Counter 2 or 3,
'respectively.

Port 1'4 - Baud Rate Generator Output
Clock

If test mode is enabl,ed by the Mode Register and
Command Register Zbaud rate select is greater than
2, then Port 14 is an output from the internal baud
rate generator.

P14 in Port 1 control register must be set to 1 for the
baud rate generator clock to be output The baud rate
generator clock is 64 x the serial bit rate except at
19.2Kbps when it is 32 x the bit rate.

Port 15 - Timer 5 Trigger

If T5C is set in the Mode Register enabling a retrig­
gerable timer, then Port 15 is the input w,hich starts
and reloads Timer 5.

A high-to-Iow transition on P15 (Pin 34) loads the timer
with the save register and starts the timer.

Port 16 - Break-In Detect

If Break-In Detect is enabled by BRKI in Command
Register 1, then this input is used to sense a Break­
In. If Port lS is low while the serial transmitter is sen­
ding the last stop bit, then a Break-In condition is
signaled.

Port 17 - Port Interrupt Source

If BITI in Command Register 1 is set, then a low-to­
high transition on Port 17 generates an interrupt re­
quest on Priority Levell.

Port 17 is edge triggered.

Interrupt Enable Register

I L7 I LS I L5 I L4 L3 I L2 L1 La

(5R) (5W=enable,
(SW = disable)

Interrupts are enabled by writing to the Set Interrupts
Register (5W). Interrupts are disabled by writing to
the Reset Interrupts Register (SW). Each bit set by
the Set Interrupts Register (5W) will enable that level
interrupt, and each bit set in the Reset Interrupts
Register (SW) will disable that level interrupt. The user
can determine which interrupts are enabled by
reading the Interrupt enable Register (5R).

Priority Source
Highest La Timer 1

L 1 Timer 2 or Port Interrupt
L2 External Interrupt (EXTINT)
L3 Timer 3 or Timers 3 & 5
L4 Receiver Interrupt
L5 ' Transmitter Interrupt
LS Timer 4 or Timers 2 & 4

Lowest L7 Timer 5 or Port 2 Handshaking

Interrupt Address Register

(SR)

a a
Interrupt Level
Indication

Reading the interrupt address register transfers an
identifier for the currently requested interrupt level
on the system data bus. This identifier is the number
of the interrupt level multiplied by 4. It can be used
by the CPU as an offset address for interrupt handl­
ing. Reading the interrupt address register has the
same effect as a hardware interrupt acknowledge
INTA; it clears the interrupt request pin (INT) and
indicates an interrupt acknowledgement to the inter­
rupt controller.

5-327

Receiver and Transmitter Buffer

Iml~I~I~lool~ D1 00
(7R) (7W)

Both the receiver and transmitter in the MUART are
double buffered. This means that the transmitter and
receiver have a shift register and a buffer register.
The buffer registers are directly addressable by
reading or writing to register seven. After the receiver
buffer is full, the RBF bit in the status register is set.

230759-002

intJ 8256AH

Reading the receive buffer clE!ars the RBF status bit.
The transmit buffer should be written to only 'if the
TBE bit in the status register is set. Bytes written to
the transmit buffer are held there until the transmit
shift register is empty, assuming eTS is low. If the
transmit buffer and shift register are empty, writing
to the transmit buffer immediately transfers the byte
to the transmit shift register. If a serial character
length is less than S bits, the unused most significant
bits are set to zero when reading the receive buffer,
and are ignored when writing to the transmit buffer.

Port 1

I D7 I 06 I 05 I 04 03 02 01 00

(SR) (SW)

Writing to Port 1 sets the data in the Port 1 output
latch. Writing to an input pin does not affect the pin,
but the data is stored and will be output if the direc­
tion of the pin is changed later. If the pin is used as
a control signal, the pin will not be affected, but the
data is stored. Reiiding Port 1 transfers the data in
Port 1 onto the data bus.

Port 2

I 07 I 06 I 05 04 03 02 01 00

(9R) (9W)

Writing to Port 2 sets the data in the Port 2 output
latch. Writing to an input pin does not affect the pin,
blit it does store the data in the latch. Reading Port
2 puts the input pins onto the bus or the contents of
the output latch for output pins.

Timer 1-5

I 07 I 06 I 05 I 04 03 02 01 00

Reading Timer N puts the contents of the timer onto
the data bus. Ifthe counter changes while RO is low,
the value on the data bus will not change. If two timers
are cascaded, reading the high-order byte will cause
the low-order byte to be latched. Reading the low­
order byte will unlatch them both. Writing to either
timer or decascading them also clears the latch con­
dition. Writing to a timer sets the starting value of that
timer. If two timers are cascaded, writing to the high­
order byte presets the low-order byte to all ones.
Loading only the high-order byte with a value of X

leads to a count of X *256 + 255. Timers count
down continuously. If the interrupt is enabled, it
occurs when the counter 'changes from 1 to o.

The timer/counter interrupts are automatically disabl­
ed when the interrupt request is generated.

Status Register .

5-328

OE FE

Reading the status register gates its contents onto
the data bus. It holds the operational status of the
serial interface as well as the status of the interrupt ,
pin INT. The status register can be read at any time.
The flags are stable and well defined at all instants.

FE - ,Framing Error, Transmission
Mode

Bit 0 can be used in two modes. Normally, FE in­
dicates framing error which can be changed to
transmission mode indication by setting the TME bit
in the modification register.

If transmission mode is disabled (in Modification
Register), then FE indicates a framing error. A fram­
ing error is detected during the first stop bit. The er­
ror is reset by reading the Status Register or by a chip
reset. A framing error does not inhibit the loading of
the Receiver Buffer. If RxO remains low, the receiver
will assemble thE! next character. The false stop bit
is treated as the next start bit, and no high-to-Iow tran­
sition on RxO is required to synchronize the receiver.

When the TME bit in the Modification Register is s'et,
FE is used to indicate that the transmitter was active
during the reception of a character, thus indicating
that the character received was transmitted by its own
transmitter. FE is reset when the transmitter is not
active during the reception of character. Reading the
status register will not reset the FE bit in the transmis­
sion mode.

OE - Overrun Error

If the user does not read the character in the Receiver
Buffer before the next character is received and
transferred to this register, then the OE bit1s set. The
OE flag is set during the reception of the first stop
bit and is cleared when the Status Register is read
or when a,hardware or software reset occurs. The first
character received in this case will be lost.

230759-002

8256AH

PE - Parity Error

This bit indicates that a parity error has occurred dur­
ing the reception of a character. A parity error is pre­
sent if value of the parity bit in the received character
is different from the one expected according to com­
mand word 2 bits 6 EP. The parity bit is expected and
checked only if it is enabled by command word 2 bit
7 PEN.

A parity error is set during the first stop bit and is reset
by reading the Status Register or by a chip reset.

BD - Break/Break-In
The BD bit flags whether a break character has been
received, or a Break-In condition exists on the
transmission line. Command Register 1 Bit 3 (BRKI)
enables the Break-In Detect function.

Whenever a break character has been received,
Status Register Bit 3 will be set and in addition an
interrupt request on Level 4 is generated. The receiver
will be idled. It will be started again with the next high­
to-low transition at pin RxD.

The break character received will not be loaded into
the receiver buffer register.

If Break-In Detection is enabled and a Break-In con­
dition occurs, Status Register Bit 3 will be set and
in addition an interrupt request on Level 5 is
generated.

The BD status bit will be reset on reading the status
register or on a hardware or software reset. FOr
more information on Break/Break-In, refer to the
"Serial Asynchronous Communication" section of
AP-153 under "Receive Break Detect" and "Break­
In Detect."

TRE - Transmit Register Empty
When TRE is set the transmit register is empty and
an interrupt request is generated on Level 5 if en­
abled. When TRE equals 0 the transmit register is
in the process of sending data. TRE is set by a chip
reset and when the last stop bit has left the transmit­
ter. It is reset when a character is loaded into the
Transmitter Register. If CTS is low, the Transmitter
Register wilLQe loaqed during the transmission of the
start bit. If CTS is high at the end of a character, TRE
will remain high and no character will be loaded into
the Transmitter Register until CTS goes low. If the
transmitter was inactive before a character is load­
ed into the Transmitter Buffer, the Transmitter
Register will be empty temporarily while the buffer
is full. However, the data in the buffer will be transfer­
red to the transmitter register immediately and TRE
will be cleared while TBE is set.

TBE - Transmitter Buffer Empty

TBE indicates the Transmitter Buffer is empty and
is ready to accept a character. TBE is set by a chip
reset or the transfer of data to the Transmitter
Register, and is cleared when a character is written
to the transmitter buffer. When TBE is set, an inter­
rupt request is generated on Level 5 if enabled.

RBF - Receiver Buffer Full

RBF is set when the Receiver Buffer has been load­
ed with a new character during the sampling of the
first stop bit. RBF is cleared by reading the receiver
buffer or by a chip reset.

INT - Interrupt Pending

The INT bit reflects the state of the INT Pin (Pin 15)
and indicates an interrupt is pending. It is reset by
INTA or by reading the Interrupt Address Register if
only one interrupt is pending and by a chip reset.

FE, OE, PE, RBF, and Break Detect all generate a
Level 4 interrupt when the receiver samples the first
stop bit. TRE, TBE, and Break-In Detect generate a
Level 5 interrupt. TRE generates an interrupt when
TBE is set and the Transmitter Register finished
transmitting. The Break-In Detect interrupt is issued
at the same time as TBE or TRE.

Modification Register

o IRS41 RS31 RS21 RS1 I RSO I TME I DSC I
(OF1sW)

DSC - Disable Start Bit Check

DSC disables the receiver's start bit check. In this
state the receiver will not be reset if RxD is not low
at the center of the start bit.

TME - Transmission Mode Enable

TME enables transmission mode and disables fram­
ing error detection. For information on transmission
mode see the description of the framing error bit in
the Status Register.

RSO, RS1, RS2, RS3, RS4 - Receiver
Sample Time

The number in RSn alters when the receiver samples
RxD. The receiver sample time can be modified only
if the receiver is not clocked by RxC.

5-329 230759-002

if

8256AH

NOTE:
The modification register cannot be read. Reading from ad­
dress OFH, 8086: 1 EH gates the contents of the status
register onto the data bus.

A hardware reset (reset, Pin 12) resets all modifica­
tion register bits to 0, Le.:
• The start bit check is enabled:
• Status Register Bit 0 (FE) indicates framing error.
• The sampling time of the serial receiver is the bit

center.

A software reset (Command Word 3, RST) does not
affect the modification register.

Hardware Reset

A reset signal on pin RESET (HIGH level) forces the
device 8256 into a well-defined initial state. This state
is characterized as follows:

1. Command registers 1, 2 and 3, mode register, Port
1 control register, and modification register are
reset. Thus, all bits of the parallel interface are set
to be inputs and event counters/timers are con­
figured as independent 8-bit timers.

2. Status register bits are reset with the exception of
bits 4 and 5. Bits 4 and 5 are set indicating that
both transmitter register and transmitter buffer
register are empty.

3. The interrupt mask, interrupt request, and inter­
rupt service register bits are reset and disable all
requests. As a consequence, interrupt signallNT
IS INACTIVE (LOW).

4. The transmit data output is set to the marking state
(HIGH) and the receiver section is disabled until
it is enabled by Command Register 3 Bit 6.

5. The start bit will be checked at sampling time. The
receiver will return to start bit search mode if in­
put RxD is not LOW at this time.

6. Status Register Bit 0 implies framing error.

7. The receiver samples input RxD at bit center.

Reset has no effect on the contents of receiver buf·
fer register, transmitter buffer register, the in­
termediate latches of parallel ports, and event
counters/timers, respectively. .

RS4 RS3 RS2 RS1 RSO Point of time between
start of bit and end of
bit measured in steps
of 1/32 bit length

0 1 1 1 1 1 (Start of Bit)
0 1 1 1 6 2
0 1 1 0 1 3
0 1 1 0 0 4
0 1 0 1 1 5
0 1 0 1 0 6
0 1 0 0 1 7
0 1 0 0 0 8
0 0 1 1 1 9
0 0 1 1 0 10
0 0 1 0 1 11
0 0 1 0 0 12
0 0 0 1 1 13
0 0 0 1 0 14
0 0 0 0 1 15
0 0 0 0 0 16 (Bit center)
1 1 1 1 1 17
1 1 1 1 0 18
1 1 1 0 1 19
1 1 1 0 0 20
1 1 0 1 1 21
1 1 0 1 0 22
1 1 0 0 1 23
1 1 0 0 0 24
1 0 1 1 1 25
1 0 1 1 0 26
1 0 1 0 1 27
1 0 1 0 0 28
1 0 0 1 1 29
1 0 0 1 0 30
1 0 0 0 1 31
1 0 0 0 0 32 (End of Bit)

5-330 230759-002

inter 8256AH

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage On Any Pin

With Respect to ground -O.5V to +7V
Power Dissication 1 Watt

-NOTICE: Stresses above those listed under "Ab­
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and
functional operation of the device at these or any other
conditions above those indicated in the operational
sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS (TA= ooe to 70°C, Vcc= +S.OV ± 10%)

Symbol' Parameter Min. Max. Units Test Conditions

VIL loput Low Voltage -0.5 O.S V

VIH Input High Voltage 2.0 Vee+ 0.5 V

VOL Output Low Voltage 0.45 V IOL= 2.5 mA

VOH Output High Voltage 2.4 V IOH= -400!AA

ill Input Leakage 10 ~ VIN= Vee
-10 VIN= OV

iLo Output Leakage 10 ~ VOUT= Vce
-10 VOUT= 0.45V

lee Vee Supply Current 160 mA

CAPACITANCE

Symbol Pal'llmeter Min. Max. Units Teat Conditions

elN Input Capacitance 10 pF fc= 1 MHz

CliO I/O Capacitance 20 pF Unmeasured pins
returned to Vss

5-331 230759-002

8256AH

A.C. CHARACTERISTICS
BUS PARAMETERS

(TA = oDe to 700e, Vee = +5.0V ± 10%, GND= OV)

8256AH
Symbol Parameter

Min. Max.
Units

tLL ALE Pulse Width 50 ns

tCSL CS to ALE Setup Time 0 ns

tAL Address to ALE Setup Time 20 ns

tLA Address Hold Time After ALE 25 ns

tLC ALE to RDIWR 20 ns

tCC RD, WR, INTA Pulse Width 200 ns

tRD Data Valid from RD (1) 120 ns
tOF Data Float After RD (2) 50 ns

tOW Data Valid to WR 150 ns

tWO Data Valid After WR 50 ns

tCL RDIWR Control to Latch Enable 25 ns

tLDR ALE to Data Valid 150 ns
tRST Reset Pulse Width 300 ns

tRV Recovery Time Between RDIWR 500 ns

TIMER/COUNTER PARAMETERS

tCPI Counter Input Cycle Time (P12, P13) 2.2 lAS
tCPWH Counter Input Pulse Width High 1.1 lAs
tCPWL Counter Input Pulse Width Low 1.1 lAS
tTPI Counter Inputt to INn at Terminal Count 2.75 lAS
tTIH LOAD Pulse High Time Counter 5 1.1 lAs
tTIL LOAD Pulse Low Time Counter 5 1.1 lAS
tPP Counter 5 Load Befo-re Next Clock Pulse on P13 ' 1.1 lAs
tCR External Count Clockt to Rm to Ensure Clock is 2.2 lAS

Reflected in Count

tRC FIDt to External Count Clockt to Ensure Clock 0 ns
is not Reflected in Count

tCW External Count Clockt ro WRt to Ensure Count 2.2 lAS
Written is Not Decremented

tWC WRt to External Count Clock to Ensure Count 0 ns
Written is Decremented

INTERRUPT PARAMETERS

tOEX EXTINn to INn 200 ns

tOPI Interrupt request on P17t to INn 2tCY
+500 ns

tPI Pulse Width of Interrupt Request on P17 tCY+
100 ns

tHEA INTAt or ROt to EXTINH 30 ns

tHIA INTAt or ROt to INn 300 ns

5-332 230759-002

intJ 8256AH

A.C. CHARACTERISTICS (continued)
SERIAL INTERFACE AND CLOCK PARAMETERS

Symbol Parameter

tCY Clock Period

tCLKH Clock High Pulse Width

tCLKL Clock Low Pulse Width

tR Clock Rise Time

tF Clock Fall Time

tSCY Serial Clock Period (4)

tSPD Serial Clock High (4)

tSPW Serial Clock Low (4)

tSTD Internal Status Update Delay From Center of
Stop Bit (5)

tDTX TxC to TxD Data Valid

tlRBF INT Delay From Center of First Stop Bit

tlTBE INT Delay From Falling Edge of Transmit Clock at
end of Start Bit

tCTS Pulse Width for Single Character Transmission

PARALLEL I/O PORT PARAMETERS

tWP WR t to P1/P2 Data Valid

tPA P1/P2 Data Stable Before AD ~ (7)

tAP P1/P2 Data Hold Time

tAK ACK Pulse Width

tST Strobe Pulse Width

tPS Data Setup to STB t
tPH Data Hold After STB t
tWOB WA t toOBF t
tAOB ACKI to OBFI

tSIB STB ~ to IBF ~

tAl RD t to IBF t
tSIT STB t to INT t

tAIT ACK t to INT t .

tAED OBF~ to ACK ~ Delay

NOTES:

8256AH

Min. Max.

195 1000

65

65

20.

20

975

350

350

300

300

2tCY
+500

2tCY
+500

(6)

0

300

50

150

tSIB

50

50

250

250

250

250

2tCY
+500

2tCY
+500

0

1. CL = pF all outputs. 5. The center of the Stop Bit will be the receiver

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns.

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

2. Measured from logic "one" or "zero"
to 1.5V at CL = 150 pF,

sample time, as programmed by the modification register.

3. P12, P13 are external clock inputs.
4. Note that RxC may be used as an input only

in 1X mode, otherwise it will be an output.

6. 1/16th bit length for 32X, 64X; 100 11s for 1X.
7. To ensure tRD spec is met.

5-333 230759-002

inter
,WAVEFORMS

A.C. TI;~TING INPUT, OUrPUT WAVEFORM

INPUT/OUTPUT 2.4=X)C 2.0 2.0
, TEST POINTS

0.45 0.8 0.8

NOTES:
A.C. testing: inputs are driven at 2.4V for a logic "1" and
OA5V for a logic "0". timing measurements are made at 2.0V
for a logic "1" and O.BV for a 10gic "0".

SYSTEM CLOCK

ClK

WRITE CYCLE

ALE

READ CYCLE

"

ALE

A.C. TESTING LOAD QRCUIT

DEVICE
UNDER

~ C,' "."
TEST

NOTES:
Cl = 150 pF
Cl includes jig capacitance

DATA

-...,._-tcc_-~ ---

5-334 230759-002

inter 8256AH

WAVEFORMS (Continued)

PARALLEL PORT HANDSHAKING· INPUT MODE

P 20-27

P
1.1

(IBF)

INT

DB
0-7

A
0-3

PARALLEL PORT HANDSHAKING· OUTPUT MODE

DB0.7

A
0-3

WR

(OBF)

(ACK)

INT

INTAOR R~D

OUTPUT

P
20-27

_____ -:"twp~

____ ...;.,.JXOATA VALID

5-335

::

II

H

,J

DATA.)--.
VALID

\:X--,~

::~----~:I~, ______________ __

231256-001

8256AH

COUNT PULSE TIMINGS

P12 - P13 \
(COUNTER INPUT)

INT

EDGE CAUSING ~--­
t yZERO COUNT
TPI. I

------------------------------~
LOAplNG TIMER (OR CASCADED COUNTER/TIMER 3 AND 5)

P13
(COUNTER INPUT)

P15
(COUNTER INPUT)

14-----IT1L-------eot
INT

IRI;:~::FOR TIMER 5 ():~ £,~_s: ... A-N-D-5-)------

COUNTER TIMER TIMING

EXTERNAL CLOCK
(P12, P13)

OUTPUT FROM PORT 1 AND PORT 2

DB
0-7

AU-3

WR

OUTPUT

P10-17, P20-27

_______ J~, __ D_A_T_A_VA_L_ID __ _J~'_ _______ __

"--~--~~~l.r--------

5-336 230759-002

/

intJ 8256AH

INPUT FROM PORT 1 AND PORT 2

INPUT

P10-17, P20-27

DB
0-7

AU-3
___________ ,,Jx DATA VALID »).-------

INTERRUPT TIMING

EXTINT

INT

INTAOR AD

DB
0-7

AU-3

____________ x DATA)>----

CTS FOR SINGLE CHARACTER TRANSMISSION

RESET TIMING

RESET

EXTERNAL BAUD RATE CLOCK FOR SERIAL INTERFACE

TxC
(64 X AND 32

,BAUD RATE INPUT

5-337

,,--
230759-002

8256AH

TRANSMITTER AND RECEIVER CLOCK FROM INTERNAL CLOCK SOURCE

~1/21CCY J. 1I2.lccy'--
1

TiC, RXC '\ / ~It (OUTPUT)

ICCY= 1/BAUD RATE.....-

TRANSMISSION OF CHARACTERS ON SERIAL INTERFACE

STATUS
REGISTER
BIT 5 (TBE)

CTS

STATUS
REGISTER
BIT 4 (TRE)

INT
(LEVEL 5)

TxD

NOTES:
1. Load transmitter buffer register.
2. Transmitter buffer register is empty.
3. Transmitter register is empty.
4. Character format for this example: 7 Data Bits with Parity Bit and 2 Stop Bits.
5. Loading of transmitter buffer register must be complete before CfS goes low.
6. Interrupt due to transmitter buffer register empty.
7. Interrupt due to transmitter register empty.

No Status bits are altered when AD is active.

DATA BIT OUTPUT ON SERIAL INTERFACE

TxC
(1 x BAUD RATE INPUT)

TxC
(64 x BAUD RATE INPUT)

TxC
(32 x BAUD RATE INPUT)

TxD

''*"-----DATA BlT------.j

5-338 230759-002

8256AH

CONTINUOUS RECEPTION OF CHARACTERS ON SERIAL INTERFACE WITHOUT ERROR CONDITION

CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER

RxD

COMMAND
REGISTER
BIT 6 (RxE)

STATUS
REGISTER
BIT 6 (RBF)

INT
(LEVEL 4)

1)

2)

RD 4) RECEIVER ENABLE

CHARACTER CHARACTER

RECEIVER DISABLE

CHARACTER

NOTES:
1. Character format for this example: 6 data bits with parity bit and one stop bit.
2. Set or reset bit 6 of command register 3 (enable receiver).
3. Receiver buffer located.
4. Read receiver buffer register.

ERROR CONDITIONS DURING RECEPTION OF CHARACTERS ON THE SERIAL INTERFACE

RxD 1)

STATUS
REGISTER 2)
BIT 6 (RBF)

INT
(LEVEL 4)

STATUS 3)

CHARACTER CHARACTER

REGISTER ______ ++ ____ ..1

BIT 1 (OE)

STATUS
REGISTER

CHARACTER CHARACTER CHARACTER

BIT 0 (FE) FRAMING ERROR

NOTES:
1. Character format for this example: 6 data bits· without parity and or)e stop bit.
2. Receiver buffer register loaded.
3. Overrun error.
4. Framing error.
5. Interrupt from receiver buffer register loading.
6. Interrupt from overrun error.
7. Interrupt from framing error and loading receiver buffer register.

No status bits are altered when AD is active.

5-339 230759-002

!

inter
)

8279/8279·5
PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

• Simultaneous Keyboard Display
Operations

• Scanned Keyboard Mode

• Scanned Sensor Mode

• Strobed Input Entry Mode

• a·Character Keyboard FIFO

• 2·Key Lockout or N·Key Rollover with
Contact Debounce

• Dual a· or 16·Numerical Display

• Single 16·Character Display

• Right or Left Entry 16·Byte Display
RAM

• Mode Programmable from CPU

• Programmable Scan Timing

• Interrupt Output on Key Entry

• Available In EXPRESS
-Standard Temperature Range
-Extended Temperature Range

The Intel~ 8279 Is a general purpose programmable keyboard and display I/O interface device designed for use with
Intel~ microprocessors. The keyboard portion can provide a scanned Interface to a '54-contact key matrix. The
keyboard portion will also interface to an array of sensors or a strobed Interface keyboard, such as the hall effect and
ferrite variety. Key depressions can be 2-key lockout or N-key rollover. Keyboard entries are debounced and strobed.!'n
an 8·character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output
line to the CPU.

The display portion provides a scanned display Interface for LED, Inqandescent, and other popular display
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279
has 16X8 display RAM w~ich can be organized into dual 16X4. The RAM can be loaded or interrogated by the CPU. Both
right entry, calculator and left entry typewriter display formats are possible. Bath read and write of the display RAM

- can be done with auto-increment of the display RAM address.

Vee

IRQ Rlo7

SHIFT - KEY DATA

RD

w~
CNTL/STB

CPU
INTERFACE

C!l
St03 SCAN

AO

OUTAO]

RESET

DISPLAV
• elK OUT 903 DATA

VIS

Figure 1_ Logic Symbol Figure 2. Pin Configuration

827918279·5

HARDWARE DESCRIPTION
The 8279 IS packaged In a 40 pin DIP The following IS
a functional description of each pin

Table 1. Pin Descriptions

Pin
Symbol No. Name and Function

DBo-DB7 19-12 Bi-directional data bus: All data
and commands between the CPU
and the 8279 are transmitted on
these lines.

ClK 3 Clock: Clock from system used to
generate Internal timing.

RESET 9 Reset: A high signal on thiS pin re-
sets the 8279 After being reset the
8279 is placed In the following
mode:
1) 16 8·blt character display

-left entry.
2) Encoded scan keyboard-2

key lockout.
Along with thiS the program clock
prescaler IS set to 31.

CS 22 Chip Select: A Iowan thiS Pin en-
ables the interface functions to
recelV3 or transmit.

Ao 21 Buffer Address: A high on thiS
line indicates the signals In or out
are Interpreted as a command or
status. A low Indicates that they
are data

RD, WR 10-11 Input/Output Read and Write:
These signals enable the data
buffers to either send data to the
external bus or receive It from the
external bus

IRQ 4 Interrupt Request: In a key-
board mode, the Interrupt line is
high when there IS data In the
FIFO/Sensor RAM. The Interrupt
line goes low with each FIFO/
Sensor RAM read and returns
high if there is stili Information in
the RAM. In a sensor mode, the

, interrupt line goes high whenever
a change In a sensor IS detected.

Vss , Vcc 20,40 Ground and power supply pins.

Slo-Sl3 32-35 Scan Lines: Scan lines which are
used to scan the key switch or
sensor matrix and the display
digits These lines can be either
encoded (1 of 16) or decoded (1
of 4\

RLo-Rl7 38, Return Line: Return hne Inputs
39, which are connected to the scan
1,2, lines through the keys or sensor
5-8 sWitches They have active Internal

pullups to keep them high \lntll a
switch closure pulls one low. They
also serve as an 8-bit input In the
Strobed Input mode.

5-341

Pin
Symbol No, Name and Function

SHIFT 36 Shift: The shift Input status IS
stored along With the key position
on key closure in the Scanned Key-
board modes. It has an active in-
ternal pullup to keep It high until a
sWitch closure pulls It low

CNTLlSTB 37 Control/Strobed Input Mode: For
keyboard modes thiS line is used
as a control Input and stored like
status on a key closure The line
IS also the strobe line that enters
the data Into the FIFO In the
Strobed Input mode.

(RISing Edge) It has an active in-
ternal pullup to keep it high until
a switch closure pulls it low

OUT Ao-OUT A3 27-24 Outputs: These two ports are the
OUT Bo-OUT B3 31-28 outputs for the 16 x 4 display re-

fresh registers. The data from
these outputs IS synchronIZed to
the scan lines (Slo-Sl3) for multi-
plexed digit displays. The two 4
bit ports may be blanked Inde-
pendently. These two ports may
also be considered as one 8-blt
port

BD 23 Blank Display: ThiS output IS
used to blank the display dUring
digit sWitching or by a display
blanking command.

FUNCTIONAL DESCRIPTION

Since data Input and display are an Integral part of many
microprocessor deSigns, the system deSigner needs an
Interface that can control these functions Without plaCing
a large load on the CPU The 8279 prOVides thiS function
for 8-bit microprocessors.

The 8279 has two sections keyboard and display The
keyboard section c?n Int'erface to regular typewriter style
keyb?ards or random toggle or thumb SWitches The
display section drives alphanumeric displays or a bank of
Indicator lights Thus the CPU IS relieved from scanning
the keyboard or refreshing the display

The 8279 is designed to directly connect to the
microprocessor bus, The CPU can program all operating
modes for the 8279, These modes include:

i
I"

I

8279/8279-5

Input Mode.

• Scanned Keyboard - with encoded (8 x 8 key
keyboard) or decoded (4 x 8 key keyboard) scan lines.
A key depression generates a 6·bit encoding of key
position. Position and shift and control status are
stored in the FIFO. Keys are automatically debounced
wifh 2·key lockout or N·~ey rollover.

• Scanned Sensor Matrix - with encoded (8 x 8 matrix
switches) or decoded (4 x 8 matrix switches) scan lines.
Key status (open or closed) stored in RAM addressable
by CPU.

• Strobed Input - Data on return lines during control
line strobe is transferred to' FIFO.

Output Mode.
• 8 or 16 character multiplexed displays that can be or·

ganized as dual 4·bit or single 8·bit (80= Do, A3= 07).

• Right entry or left entry display formats.

Other features of the 8279 include:

• Mode programming from the CPU.

• Clock Prescaler

• I nterrupt output to signal CPU when there is keyboard
or sensor data available.

• An 8 byte FIFO to store keyboard information.

• 16 byte internal Display RAM for display refresh. This
RAM can also be read by the CPU.

elK RESET

our AO.3 O,UT SO-J

080-7

TIMING
AND

CONTROL

PRINCIPLES OF OPERATION

The following is a description of the major elements of the
8279 Programmable Keyboard/Display interface device.
Refer to the block diagram in Figure 3.

110 Control and Data Buff.,.

The I/O control section uses the CS, Ao, RD and WR lines
to control data flow to and from the various internal
registers and buffers. All data flow to and from the 8279 is
enabled by CS. The character of the information, given or
desired by the CPU, is identified by Ao. A logic one
means the information is a command or status. A logic
zero means the information is data. RD and WR determine
the direction of data'flow through the Data Buffers. The
Data Buffers are bi-directional buffers that connect the
internal bus to the external bus. When the chip is not
selected (CS = 1), the devices are in a high impedance
state. The drivers input during WR. CS and output during
RD.~.

Control and Timing Regl.ter. and Timing Control

These registers store the keyboard and display modes and
other operating conditions programmed by the CPU. The
modes are programmed by presenting the proper
command on the data lines with Ao = 1 and then sending
a iNA. The command is latched on the rising edge of WR.

IRQ

KEYBOARD
DEBOUNCE

AND
CONTROL

Figure 3. Internal Block Diagram
5-342

intJ 8279/8279·5

The command is then decoded and the appropriate
function is set. The timing control contains the basic
timing counter chain. The first counter is a ... N prescaler
that can be programmed to yield an internal frequency
of 100 kHz which gives a 5.1 ms keyboard scan time and
a 10.3 ms debounce time. The other counters divide
down the basic internal frequency to provide the proper
key scan, row scan, keyboard matrix scan, and display
scan times.

Scan Counter
The.scan counter has two modes. In the encoded mode,
the counter provides a binary count that must be
externally decoded to provide the scan lines for the
keyboard and display. In the decoded mode, the scan
counter decodes the least significant 2 bits and provides a
decoded 1 of 4 scan. Note than when the keyboard is in
decoded scan, so is the display. This means that only the
first 4 characters in the Display RAM are displayed.

In the encoded mode, the scan lines are active high
outputs. In the decoded mode, the scan lines are active
low outputs.

Return Buffers and Keyboard Debounce
and Control
The 8 return lines are buffered and latched by the Return
Buffers. In the keyboard mode, these lines are scanned,
looking for key closures in that row.· If the debounce
circuit detects a closed switch, it walts about 10 msec to
check if the switch remains closed. If it does, the address
of the switch in the matrix plus the status of SHIFT and
CONTROL are transferred to the FIFO In the scanned
Sensor Matrix modes, the contents of the return lines is
directly transferred to the corresponding row of the
Sensor RAM (FIFO) each key scan time. In Strobed Input
mode, the contents of the return lines are transferred to
the FIFO on the rising edge of the CNTLlSTB line pulse

FIFO/Sensor RAM and Status
,ThiS block is a dual function 8 x 8 RAM In Keyboard or
:Strobed Input modes, It IS a FIFO Each new entry IS
[written Into successive RAM pOSitions and each is then
read In order of entry FIFO status keeps track of the
number of characters In the FIFO and whether It is full or
empty. Too many reads or writes Will be recognized as an
error The status can be read by an RD with CS low and
Ao high. The status logic also provides an IRQ signal
when the FIFO IS not empty. In Scanned Sensor MatriX
mode, the memory IS a Sensor RAM. Each row of the
Sensor RAM is loaded with the status of the correspond­
ing row of sensor in the sensor matrix. In this mode, IRQ is
high if a change In a sensor is detected.

Display Address Registers and Display RAM
The Display Address Registers hold the address of the
word currently being written or read by the CPU and the
two 4-bit nibbles being displayed The read/write
addresses are programmed by CPU command They also
can be set to auto Increment after each read or write. The
Display RAM Cdn be directly read by the CPU after the
correct mode and address IS set. The addresses for the A
and B nibbles are dutomatlcally updated by the 8279 to
match data entry by the CPU The A and B nibbles can be
entered independently or as one word, according to the
mode that is set by the CPU Data entry to the display can
be set to either left or right entry. See Interface
ConSiderations for details

SOFTWARE OPERATION

8279 commands
The following commands program the 8279 operating
modes. The commands are sent on the Data Bus with CS
low and Ao high and are loaded to the 8279 on the riSing
edge of WR.

Keyboard/Display Mode Set

MSB LSB

Code: 10jOjOjDjDjKjKjKI

Where DD IS the Display Mode and KKK is the Keyboard
Mode.

DD
o 0

. 0 1

o
1

8 8-bit character display - Left entry

16 8-bit character display - Left entry'

8 8-bit character display - Right entry

16 8-bit character display - Right entry

For description of right and left entry, see Interface
ConSiderations. Note that when decoded scan is set In

keyboard mode, the display IS reduced to 4 characters
independent of display mode set.

KKK

0 0 0 Encoded Scan Keyboard - 2 Key Lockout'

0 0 Decoded Scan Keyboard - 2-Key Lockout

0 1 0 Encoded Scan Keyboard - N-Key Rollover

0 1 1 Decoded Scan Keyboard - N-Key Rollover

0 0 Encoded Scan Sensor MatrIX

0 1 Decoded Scan Sensor MatriX

·1 0 Strobed Input, Encoded Display Scan

Strobed I nput, Decoded Display Scan

Program Clock

All timing and multiplexing signals for the 8279 are
generated by an internal prescaler. This prescaler
divides the external clock (pin 3) by a programmable
integer. Bits PPPPP determine the value of this integer
which ranges from 2 to 31. Choosing a divisor that yields
100 kHz will give the specified scan and debounce
times. For instance, if Pin 3 of the 8279 is being clocked
by a 2 MHz Signal, PPPPP should be set to 10100 to
divide the clock by 20 to yield the proper 100 kHz operat·
ing frequency.

Read FIFO/Sensor RAM

Code: 1 011 I 01 All X I A I A I AI X= Don't Care

The CPU sets up the 8279 for a read of the FIFO/Sensor
RAM by first writing this command. In the Scan Key-

'Default after reset.

5-343

8279/8279·5

board Mode, the Auto-Increment flag (AI) and the RAM
address bits (AAA) are irrelevant. The 8279 will automati­
cally drive the data bus for each subsequent read (Ao = 0)
in the same sequence in which the data first entered the
FIFO. All subsequent reads will be from the FIFO until
another command is issued.

In the Sensor Matrix Mode, the RAM address bitsAAA
select one of the 8 rows of the Sensor RAM. If the AI flag
is set (AI = 1), each successive read will be from the sub­
sequent row of the sensor RAM.

Read Display RAM

Code: 1 0 11 11 1 AliA 1 A 1 A 1 A 1

The CPU sets up the 8279 for a read of the Display RAM
by first writing this command. The address bits AAAA
select one of the 16 rows of the Display RAM. If the AI
flag is set (AI = 1), this row address will be incremented
after each following read or write to the DisplaY'RAM.
Since the same counter is used for both reading and
writing, this command sets the next read or write
address and the sense of the Auto-Increment mode for'
both operations.

Write Display RAM

Code: 11 1 0 1 0 1 AliA 1 A 1 A 1 A 1

The CPU sets up the 8279 for a write to the Display RAM
by first writing this command. After writing the com­
mand with Ao= 1, all subsequent writes with Ao= o will
be to the Display RAM. The addressing and Auto­
Increment functions are identical to those for the Read
Display RAM. However, this command does not affect
the source of subsequent Data Reads; the CPU will read
from whichever RAM (Display or FIFO/Sensor) which
was last specified. If, indeed, the Display RAM was last
specified, the Write Display RAM will, nevertheless;
change the next Read location.

Display Write Inhibit/Blanking

A B A B
Code:

The IW Bits can be used to mask nibble A and nibble B
in applications requiring separate 4-bit display ports. By
setting the IW flag (lW = 1) for one of the ports, the port
becomes marked so that entries to the Display RAM
from the CPU do not affect that port. Thus, if each nibble
is il'1Put to a BCD decoder, the CPU may write a digit to
the Display RAM without affecting the other digit being
displayed. It Is important to note that bit Bo corresponds
to bit Do on the CPU bus, and that bit A3 corresponds to
bit 0 7,

If the user wishes to blank the display, the BL flags are
available for each nibble. The last Clear command issued
determines the code to be used as a "blank." This code
defaults to all zeros after a reset. Note that both BL
flags must be set to blank a display formatted with a
single 8-bit port.

Clear

Code: 11 11 1 0 1 CD 1 C~ I CD 1 CF 1 CA I
The Co bits are available in this command to clear all
rows of the Display RAM to a selectable blanking code
as follows: . r: ,e: ' AU ,,",0. IX • 00"«"")

1 0 AB = Hex 20 (0010 0000)

1 1 All Ones

Enable clear display when = 1 (or by CA = 1)

During the time the Display RAM is being cleared ("'160 /lS),
it may not be written to. The most significant bit of the
FIFO status word is set during this'time. When the Dis­
play RAM becomes available again, it automatically
resets.

If the CF bit is asserted (CF= 1), the FIFO status is
cleared and the interrupt output line is reset. Also, the
Sensor RAM pointer is set to row O. .

CA, the Clear All bit, has the combined effect of C" and
CF; it uses the CD clearing code on the Display RAM and
also' clears FIFO status. Furthermore, it resynchronizes
the internal timing chain.

End Interrupt/Error Mode Set

Code:

For the sensor matrix modes this command lowers the
IRO line and enables further writing into RAM. (The IRO
line would have been raised upon the detection of a
change in a sensor value. This would have also inhibited
further writing into the RAM until r$set)'

For the N-key rollover mode - if the E bit IS programmed
to "1" the chip will operate In the special Error mode. (For
further details, see Interface Considerations Section.)

Status Word
The status word contains the FIFO status, error. and
display unavailable signals. This word IS read by the CPU
when Ao is high and Cs and RD are low. See Interface
Considerations for more detail on status word.

. Data Read

Data is read when Ao, CS and AD are all low. The source
of the data is specified by the Read FIFO or Read Display
commands. The trailing edge of RD will cause the address
of the RAM being read to be Incremented if the Auto­
Increment flag is set. FIFO reads always increment (if no
error occurs) independent of AI.

Data Write
Data that is written with Ao, CS and WR low is always
written to the Display RAM. The address is specified by the.
latest Read Display or Write Display command. Auto­
Incrementing on the rising edge of WR occurs if AI set by
the latest display command. .

5-344

intJ 827918279·5

INTERFACE CONSIDERATIONS
Scanned Keyboard M~e, 2·Key Lockout

There are three possible combinations of conditions
that can occur during debounce scanning. When a key is
depressed, the debounce logic is set. Other depressed
keys are looked for during the next two scans. If none
are encountered, it is a single key depression and the
key position is entered into the FIFO along with the
status of CNTL and SHIFT lines. If the FIFO was empty,
IRQ will be set to signal the CPU that there is an entry in
the FIFO. If the FIFO was full, the key will not be entered
and the error flag will be set. If another closed switch is
encountered, no entry to the FIFO can occur. If all other
keys are released before this one, then it will be entered
to the FIFO. If this key is released before any other, it
will be entirely ignored. A key is entered to the FIFO
only once per depression, no mailer how many keys
were pressed along with it or in what order they were
reJeased. If two keys are depressed within the debounce
cycle, it is a simultaneous depression. Neither key will
be recognized until one key remains depressed alone.
The last key will be treated as a single key depression.

Scanned Keyboard Mode, N·Key Rollover
With N-key Rollover each key depression IS treated
independently from all others. When a key is depressed,
the debounce circuit waits 2 keyboard scans and then
checks to see if the key is still down. If it is, the key IS
entered Into the FIFO. Any number of keys can be
depressed and another'can be recognized and entered
Into the FIFO. If a simultaneous depression occurs. the
keys are recognized and entered according to the order
the keyboard scan found them.

Scanned Keyboard - Special Error Modes
For N-key rollover mode the user can program a special
error mode. ThIS IS done by the "End Interrupt/Error Mode
Set" command. The debounce cycle and key-validIty
check are as in normal N-key mode If dunng a single
debounce cycle, two keys are found depressed, this is
considered a simultaneous multIple depreSSIOn, and sets
an error flag. This flag will prevent any further wnting Into
the FIFO and will set interrupt (if not yet set). The error flag
could be read In thIS mode by reading the FIFO STATUS
word. (See "FIFO STATUS" for further details.) The error
flag is reset by sending the normal CLEAR command wIth
CF ~ 1.

Sensor Matrix Mode
In Sensor Matrix mode, the debounce logic IS inhibited
The status of the sensor switch is inputted dIrectly to the
Sensor RAM. In thIS way the Sensor RAM keeps an Image
of the state of the switches In the sensor matnx. Although
debouncing is not provided, this mode has the advantage
that the CPU knows how long the sensor was closed and
when il was released. A keyboard mode can only indicate
a valIdated closure. To make the software easier, the
designer should functionally group the sensors by row
since thIS is the format in which the CPU will read them.

The IRQ line goes high if any sensor value change is
detected at the end of a sensor matrix scan. The IRQ line is
cleared by the first data read operation if the Auto-

Increment flag is set to zero, or by the End Interrupt
command If the Auto-Increment flag is set to one.

Note: Multiple changes in the matrix Addressed by ISLo-3
= Q) may cause multiple interrupts. ISLa = 0 in the Decoded
Model. Reset may cause the 8279 to see multiple changes.

Data Format
In. the Scanned Keyboard mode, the character entered
into the FIFO corresponds to the position of-the switch
in the keyboard plus the status of the CNTL and SHIFT
lines (non-inverted). CNTL is the MSB of the character
and SHIFT is the next most significant bit. The next
three bits are from the scan counter and Indicate the
row the key was found in. The last three bits are from the
column counter and indicate to which return line the key
was connected.

MSB LSB

~ETUR~
SCANNED KEYBOARD DATA FORMAT

In Sensor MatriX mode. the data on the return lines is
entered directly in the row of the Sensor RAM that
corresponds to the row In the matrix being scanned.
Therefore, each switch postion maps directly to a Sensor
RAM poslllon The SHIFT and CNTL Inputs are Ignored in
thIS mode. Note that sWItches are not necessarily the only
thing that can be connected to the return lines in this
mode. Any logic that can be triggered by the scan lines
can enter data to the return line inputs. Eight multiplexed
Input ports could be tied to the return lines and scanned by
the 8279.

MSB LSB

RL71 RLsl RLsl RL41 RL31 RL21 RLI I RLo

In Strobed Input mode, the data IS also entered to the FIFO
from the return lines. The data is entered by the rising
edge of a CNTLlSTB line pulse. Data can come from
another encoded keyboard or sImple switch matrix The
return lines can also be used as a general purpose strobed
input.

MSB LSB

RL71 RLsl RLsl RL41 RL31 RL21 RLI I RLo

Display
Left Entry

Left Entry mode is the sImplest display format In that each
display position directly corresponds to a byte (or nibble)
in the Display RAM. Address 0 in the RAM is the left-most
dIsplay character and address 15 (or address 7 in 8
character display) is the right most display charact~r.
Entering characters from position zero causes the display
to fill from the left. The 17th (9th) character IS entered back
in the left most position and filling again proceeds from
there.

5-345

inter 8279/8279·5

a 1 14 15_Display

1st entry r;rr _- _- _- _- OJ RAM
L.:.LJ. Address

a 1 14 15

2nd entry QEJ = = = = II]
a 1 14 15

16th entry Q:EI= = = = ~
a 1 14 15

17th entry ~= = = = EEl
a 1 14 15

18th entry ~ = = = = EEl

Right Entry

LEFT ENTRY MODE
(AUTO INCREMENT)

Right entry IS the method used by most electronic
calculators. The first entry is placed In the right most
display character. The next entry is also placed in the right
most character after the display is shifted left one
character. The left most character is shifted off the end
and is lost

1 2 14 15 a_DISplay

1st entry ITJ - -. - --'---'-...J.I_l 1 ::d~ess

2nd entry

3 4 a 1 2

3rd entry OJ = = = = I 11 21 3 I

1 2 14 15 a

17th entry ~====1151161171
2 3 15 a 1

18th entry CiEI = = = = 1161171181

RIGHT ENTRY MODE
(AUTO INCREMENT)

Note that now the display pOSition and register address do
not correspond. Consequently, entering a character to an
arbitrary position in the Auto Increment mode may have
unexpected results. Entry starting at Display BAM address
o with sequential entry IS recommended.

Auto Inc:rement

In the Left Entry mode, Auto Incrementing causes the
address where the CPU will next write to be Incremented
by one and the character appears in the next location
With non-Auto Incrementing the entry is both to the same
RAM address and't1isplay position. Entry to an arbitrary
address in the Auto increment mode has no undesirable
side effects and the result is predictable:

0.1 234 5 6 7--Display

1st entry
11 I I I I I 1 I I =:d~ess

a 1 234 567

2nd entry 11 I 2 I I 1 I I I
a 1 234 567

Command 11 I 2 I I I I I I I
10010101 . .

Enter next at Location 5 Auto Increment

a 1 234 567

3rdentry 11121111311.1

a 1 234 567

4thentry 111211113141

LEFT ENTRY MODE
(AUTO INCREMENT)

In the Right Entry mode, Auto Incrementing and non
I ncrementing have the same effect as in the Left Entry
except if the address sequence IS interrupted:

1 2 3 4 5 6 7 0..- DISplay

1 st entry I I I I I I 11 I :~~ess

2nd entry

Command
10010101

4th entry

23456701

I I 11 121

23456701

I I 11 121 ,
Enter next at Location 5 Auto Increment

34567012

45670123

13141 11 121 I 1

RIGHT ENTRY MODE
(AUTO INCREMENT)

Starting at an arbitrary location operate:s as shown below:

5-346

Command
10010101

1st entry

2nd entry

8th entry

9th entry

o 1 2 3 4 5 6 7..- DISplay

I I I I I I I I 1 :~~ess
Enter next at Location 5 Auto Increment

12345670

I [[[11 I
23456701

I I I I
14151617181112131

15161718191213141

RIGHT ENTRY MODE
(AUTO INCREMENT)

intJ 827918279·5

Entry appears to be from the initial entry point.

8/16 Charactar Display Formats

If the display mode is set to an 8 character display. the on
duty-cycle is double what it would be for a 16 character
display (e.g., 5.1 ms scan time for 8 characters vs. 10.3 ms
for 16 characters with 100 kHz internal frequency).

G. FIFO StatuI

FIFO status is used in the Keyboard and Strobed InpIII
modes to indicate the number of characters in the FIFO
and to indicate whether an error has occurred. There are
two types of errors possible: overrun and underrun.
Overrun occurs when the entry of another character into a
full FIFO is attempted. Underrun occurs when the CPU
tries to read an empty FIFO.

The FIFO status word also has a bit to indicate that the
Display RAM was unavailable because a Clear Display or
Clear All command had not completed its clearing
operation.

In a Sensor Matrix mode, a bit Is set in the FIFO status
word to indicate that at ~ast one sensor closure indica­
tion is contained in the Sensor RAM.

In SpeCial Error Mode the SIE bit Is showing the error
flag and serves as an Indication to whether a simultane­
ous multiple closure error has occurred.

J
FIFO STATUS WORD

,FIFO Full

Error-Overrun

L.... ___ Sensor Closure/Error Flag for

Mu It I pie Closures
'------ DISplay unavaIlable

SHIFT KEYBOARD
MATRIX

CONTROL

87 8 COLUMNS

RETURN
LINES 8 ROWS

INT SHIFT CNTL RO_7 0 tis
INT ~o 3 -- 8 DECODER

8-SIT DATA BUS
VSSr1 MICRO- DATA BT 0 0 _1 }: PROCESSOR BUS

SYSTEM
DV 3 LS.-

CON~ROLS{
AD

lOR So-, 4/
WR 8279 SCAN LINES t4 lOW

RESET
RESET

cs cs 4-16 DECODER
ADDRESS { AD BUS AD

CLOCK
CLK

CLK BO_l
A. o

' BD BLANK, I H'·
r~I~LAV

4 ADDRESSES
(DECODED)

DISPLAY

4 CHARACTERS

/
DATA

DISPLAY

'00 not drive the keyboard decoder with the MSa of the scan lines.

Figure 4. System Block Diagram

5-347

8279/8279·5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature· ..•...••••••.. O°Cto 70·C
. Storage T.emperature •••••.••••••• -65°eto 125"C
Vgltage on any Pin with,

Respect to Ground •••.••..•••••• -0.5V to +7V
Power Dissipation ..••.••••.•••.•••••••. 1 Watt

·NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicatedJn the operational sections of this specifi­
cation fs not Implied. Exposura to absolute maximum
rating conditions for extended periods may affect device
reliability. i

D.C. CHARACTERISTICS [TA = O"C to 70DC, Vss = Ov. (NOTE 3))*

Symbol Parameter .Mln. Max.

VIL1 Input Low Voltage for -0.5 1.4
Return Lines

VIL2 Input Low Voltage for A!I Others - -0.5 0.8

VIH1 Input High Voltage for 2.2 .
Return Lines

VIH2 Input High Voltage for All Others 2.Q

, VOL Output Low Voltage " 0.45

VOH1 Output High Voltage on Interrupt 3.5
line

VOH2 . Other Outputs 2.4 .
IIL1 Input Current on Shift, Control and +10

Return lines -100
1---'

IIL2 Input Leakage Current on All Others ±lo'

IOFL Output Float Leakage ±10

Icc Power Supply Current 120

CAPACITANCE
Symbol Parameter Typ. Max.

CIN Input Capacitance 5 10

COUT Output Capacitance 10 20

A.C. CHARACTERISTICS [TA = O"C to 70"C, Vss = OV, (Note 3)] •
BUB Parameters

READ CYCLE

8279
Symbol Parameter Min. Max.

tAR Address Stable Before R EA'O 50

tRA Address Hold Time for READ 5

tRR READ Pulse Width 420

tRO[4]. Data Delay from READ 300

tAO [4] Address to Data Valid 450

tOF READ to Data Floating 10 100

tRCY Read Cycle Time 1

5-348

Unit Tell Conditions

V

V

V

V

V Note 1 L
V Note 2

~~ 8279-5
IOH = -100,.A 8279'

j.tA VIN = Vee
IlA VIN = OV

IlA VIN = Vcc to OV

IlA VOUT = Vee to 0.45V

mA

Unit Tell Conditions

pF fe = 1 MHz Unmeasured

pF pins returned to VSS

8279-5

Min. Max. Unit

0 ns

0 ns

250 ns

150 ns

250 ns

10 100 ns

1 IlS

intJ 8279/8279·5

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol Parameter

tAW Address Stable Before WR ITE

tWA Address Hold Time for WR ITE

tww WR ITE Pulse Width

tow Data Set Up Time for WR ITE

two Data Hold Time for WRITE

twCY Write Cycle Time

OTHER TIMINGS

Symbol Parameter

t",w Clock Pulse Width

tcy Clock Period

Keyboard Scan Time 5.1 msec
Keyboard Debounce Time 10.3 msec
Key Scan Time 80 f.£sec
Display Scan Time ... · 10.3 msec

NOTES:
1. 8279. IOL = 1.6mA; 8279-5. IOL = 2.2mA.
2. IOH = -100 /LA
3. 8279. VcC;= +SV ±S%; 8279-5. Vcc = +SV ±10%.
4: 8279. CL = 100pF; 8279-5. CL = lS0pF.

8279 8279-5

Mln_ Max. Min. Max_ Unit

50 0 ns

20 0 ns

400 250 ns

300 150 ns

40 0 ns

1 1 1'5

8279 8279-5

Mln_ Max. Mln_ Max. I Unit
--

230 120 nsec

500 320 nsec

Digit-on Time 480 f.£sec
Blanking Time 160 f.£sec
Internal Clock Cycle[S] 10 f.£sec

5. The Prescaler should be programmed to provide a 10 /Ls internal clock cycle .
• For Extended Temperature EXPRESS. use M8279A electrical parameters.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

u=x x= 2.0 2.0 > TEST POINTS ~
0.8 0.8

0.45

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR' A LOGIC 1" AND 0 45V FOR
A LOGIC o· TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1"
AND 08V FOR A LOGIC 0"

A.C. TESTING LOAD CIRCUIT

5-349

DEVICE
UNDER

TeST

CL =120pF

.1 c, ~ 120pF

CL INCLUDES JIG CAPACITANCE

8279/8279·5

WAVEFORMS

READ OPERATION

~-------------------

DATA BUS
(OUTPUT)~~~~~~~~~~~~~~ ____________________ ~~~~~~~~~~~~~~

WRITE OPERATION

AO,CS

DATA BUS DATA \J -DATA VALID-V

~-----------------------

DATA
MAY CHANGE (INPUT) MAY CHANGE ~ ... -----~~ ______ ______ -J ~ .. __ __

CLOCK INPUT

5-350

(SYSTEM'S
ADDR ESS BUS)

(READ DDNTRDL)

(SYSTEM'S
ADDRESS BUS)

(WRITE CONTROL)

inter 8279/8279-5

WAVEFORMS (Continued)

SCAN

ENCODED
SCAN

DECODED
SCAN

DISPLAY

So

s,

s,

So

5,

Ao-Ao
ACnVEHIGH

So-B,
ACTIVE HIGH

RLe- RL7

L

L
L

u u u
u u u

u U U LJ
u u

~----------~~-MI~----------~

u
PRESCALER PROGRAMMED FOR IN­
TERNAL FREQUENCY = 100 kHz SO
tCY'" 10"..

~------------------~

NOTE: SHOWN IS ENCODED SCAN LEFT ENTRY
IrS. AAE NOT SHOWN BUT THEY AAE SIMPLY S, DIVIDED BY. AND.

5-351

OIl)

-BLANK CODE IS EITHER ALL
0'. OR ALL 1·"'OR 20 HEX

8(1)

LJ

,
i'

APPLICATION '\
NOTE

5-352

Ap·153

June 1983

210907-002

Designing with the 8256

5-353

Contents

INTRODUCTION

DESCRIPTION OF THE MUART

Microprocessor Bus Interface
Command and Status Registers
Clock Circuitry

System Clock Prescaler
Timer Prescaler

Asynchronous Serial Interface
Receiver Section of the UART
Receive Break Detect
Transmitter Section of the UART
Transmit Break Features
Modification Register

Parallel 1/0
Two Wire Byte Handshake

Event CounterlTimers
Interrupt Controller

MCS-85/8256 Interrupt Operation
MCS-86/88/8256 Interrupt Operation
Using the Interrupt Controller

Without INTA
Interrupt Registers
Interrupt Modes
Edge Triggering
Level Triggering
Cascading the MUART's Interrupt

Controller
Polling the MUART

PIN DESCRIPTIONS

DESCRIPTION OF REGISTERS

Hardware Reset

INTERFACING

PROGRAMMING

Initialization
Operating the Serial Interface

Transmitting
Receiving

Operating the Parallel Interface
Loading Port 1 and 2
Reading Port 1 and 2

Operating the Event CounterlTimers
Loading Event CounterlTimers
Reading Ev.ent CounterlTimers

210907-002

inter

5-354

Contents (cont.)

APPLICATION EXAMPLE

Description of the Line Prin~er
Multiplexer

Description of the Hardware
Description of the Software
Buffer Management
Using the LPM with the MDS SERIES II

OR SERI,ES III

APPENDIX

Listing of the Line Printer Multiplexer
Software

Listing of the WRITE Program
MUART Registers

210907-002

Ap·153

INTRODUCTION
The INTEL 8256 MUART is a Multifunction Univer­
sal Asynchronous Receiver Transmitter designed to be
used for serial asynchronous communication while
also providing hardware support for parallel I/O, tim­
ing, counting and interrupt control. Its versatile
design allows it to be directly connected to the
MCS~-85, iAPX-86, iAPX-88, iAPX-186, and
iAPX-188 microcomputer systems plus the MCS-48
and MCS-51 family of single-chip microcomputers.

The four commonly used peripheral functions con­
tained in the MUART are:

1) Full-duplex, double-buffered serial asynchronous
Receiver/Transmitter with an on-chip Baud Rate
Generator

2) Two - 8-bit parallel I/O ports
3) Five - 8-bit counters/timers
4) 8-level priority interrupt controller

This manual can be divided into two parts. The first
part describes the MUART in detail, including its
functions, registers and pins. This section also
describes the interface between the MUART and Intel
CPUs plus a discussion on programming considera­
tions. The second section provides an application ex­
ample: a MUAR T-based line printer multiplexer. The
Appendix contains software listings for the line
printer multiplexer and some useful reference infor­
mation.

DESCRIPTION OF THE MUART
The MUAR T can be logically partitioned into seven
sections: the microprocessor bus interface, the com­
mand and status registers, clocking circuitry, asyn­
chronous serial communication, parallel I/O, timer/e­
vent counters, and the interrupt controller. This can
be seen from the block diagram of the 8256 MUART
as shown in Figure 1. The MUART's pin configura­
tion can be seen in Figure 2.

Microprocessor Bus Interface
The microprocessor bus interface is the hardware
section of the MUART which allows a I"P to com­
municate with the MUART. It consists of tristate
bi-directional data-bus buffers, an address .latch, a
chip select (CS) latch and bus control logic. In order to
provide all of the MUART's functions in a 40-pin DIP
while retaining direct register addressing, a multi­
plexed address/data bus is used.

5-355

Address/Data Bus

The MUART contains 16 internal directly addressable
read/write registers. Four of the eight address/data
lines are used to generate the address. When using
8-bit microprocessors such as MCS-85, MCS-48 and
MCS-51, ADO - AD3 are used to address the 16 inter­
nal registers while Address/Data line 4 (A04) is not
used for addressing. For 16-bit systems, ADI - AD4
are used to generate the address for the internal data
registers and ADO is used as a second active low chip
select.

RD, WR, CS

The 8256 bus interface uses the standard bus control
signals which are compatible with all Intel peripherals
and microprocessors. The chip select signal (CS),
typically derived from an address decoder, is latched
along with the address on the falling edge of ALE. As
a result, chip select does not have to remain low for
the entire bus cycle. However, the data bus buffers
will remain tristated unless an RD or a WR signal
becomes active while chip select has been latched in
low.

INT,INTA

The INT and INTA signals are used to interrupt the
CPU and receive the CPU's acknowledgment to the
interrupt request. The MUART can vector the CPU to
the appropriate service routine depending on the
source of the interrupt.

RESET

When a high level occurs on the RESET pin, the
MUART is placed in a known initial state. This initial
state is described under "Hardware Reset."

Command and Status Register
There are three command registers and one status
register as shown in Figure 1. The three command
registers are read/write registers while the status
register is a read only. The command registers con­
figure the MUART for its operating environment (i.e.,
8 or 16 bits CPU, system clock frequency). In addi­
tion, they direct its higher level functions such as con­
trolling the UART, selecting modes of operation for
the interrupt controller, and choosing the fundamen­
tal frequency for the timers. Command Register 3 is
the only register in the MUART which is a bit set/reset
register, allowing the programmer to simply perform
one write to set or reset any of the bits.

210907-002

ADo·AD.
DB.·DB,

Cs

Rii
W-

ALE

RESET

iNii"
INT

ADO

AD1

AD2

AD3

AD4

DB5

DBB

DB7

ALE

RD

WR

RESET

CS

iiiiTA
INT

EXTINT

ClK

RiC
RxD

GND

Ap·153

PiQon'

'11.17

"xO

TxO

TiC
RiC

I ____ ~=========== elK '" EXTINT

Figure 1. Block Diagram of the 8258 MUART

Vcc
P10

P11

P12

P13

P14

P15

P18

P17

P20

P21

P22

P23

P24

P25

P28

P27

TxD

TiC
eft

The status register provides all of the information
about the status of the UART's transmitter and
receiver as well as the status of the interrupt pin. The
status register is the only read only register in the
MUART.

CLOCK CIRCUITRY
The clock for the five timers and baud rate generator
is derived from the system clock. The system clock,
pin 17 (eLK), is fed into a system clock prescaler
which ill turn feeds the five timers and the baud rate
generator. The MUART's system clock can be asyn­
chronous to the microprocessor's clock.

System Clock Prescaler

The system clock prescaler is a programmable divider
which normalizes the internal clocking frequency for
the timers and baud rate generator to I.024MHz. It
divides the system clock (eLK) by 1, 2, 3, or 5, allow­
ing c)ock frequencies of I.024MHz, 2.04SMHz,
3.072MHz or S.I2MHz. (The commonly used
6.I44MHz crystal frequency for the S08S results in a
3.072MHz frequency from the SOSS's eLK pin.) Ifthe
system clock is not one of ~he four frequencies men-

Figure 2. MUART Pin Configuration
, tioned above, then the frequency of the baud rate

generator and the timers will be, nonstandard;

5-356, 210907-002

AP·1S3

however, the MUART will still run as long as the
system clock meets the data sheet tcy spec.

Timer Prescaler

The timer prescaler permits the user to select one of
two fundamental timing frequencies for all of the
MUART's timers, either 1KHz or 16KHz. The fre·
quency selection is made via Command Register O.

Asynchronous Serial Interface

The asy'nchronous serial interface of the MUART is a
full-duplex double-buffered transmitter and receiver
with separate control registers. The standard asyn­
chronous format is used as shown in Figure 3. The
operation of the UART section of the MUART is very
similar to the operation of the 8251A USART.

Receiver Section of the UART

The serial asynchronous receiver section contains a
serial shift register, a receiver buffer register and
receiver control logic. The serial input data is clocked
into the receive shift register from the RxD pin at the
specified baud rate. The sampling actually takes place
at the rising edge of RxC, assuming an external clock,

GENERATED
0001---- 011 BY 8256

DOES NOT APPEAR

RECEIVER INPUT DO 01----0x ON THE DATA BUS

! ! ! !
RICO IL._S..;;T:..;;I~_T G'--_D_AT-;A B~'T_S --'----':';';""....1

TRANSMISSION FORMAT

PROGRAMMED
CHARACTER

LENGTH

CPU BYTE 15 8 BITS/CHAR)

DATA C~~RACTER
ASSEMBLED SERIAL DATA OUTPUT (TxO)

ST6r:I
BITS L

5T6;I
arTS L

START [lATA CHARACTER s;oD
I..-;;:BIT.:.....I..-_---< __ -"---'-"---''--''iB1TS

ReCEIVE FORMAT

SERIAL DATA INPUT (RIID)

START DATA CHARA.CTER sroD
...... _BIT_'--__ ---4 ;-_.....J. __ -"-~BITS

CPU BYTE (58 BITS/CHAR)"

~ ,
D~T/l,CH:~~A_CT_E_R _

'NOTE If CHARACTER LENGTH IS DEFINED AS 5 6 OR 7
BITS THE UNUSED BITS ARE SET TO ZERO'

Figure 3. Asynchronous Format

or at the rising edge of the internal baud clock. When
the receiver is enabled but inactive, the receive logic is
sampling RxD at either 32 or 64 times the bit rate,
looking for a change from the Mark (high) to the
Space (low) state. This is commonly referred to as the
start bit search mode. When this state change occurs,
the receive logic waits one half of a bit time and then
samples RxD again. If RxD is still in the Space state,
the receive logic begins to clock in the receive data
beginning one bit period later. If RxD has returned to
the Mark state (Le., false start bit), the receive logic
will return to the start bit search mode.

Normally the received data is sampled in the center of
each bit, however it is possible to adjust the location
where the bit is sampled. This feature is controlled by
the modification register.

The bit rate of the serial receive data is derived from
either the internal baud rate generator or an external
clock. When using an external clock, the programmer
has a choice of three sampling rates: lx, 32x, or 64x,
Using the internal baud rate generator, the sampling
rates are all 64x except for 19.2 Kbps which is 32x.

When the serial shift register clocks in the stop bit, an
internal load pulse is generated which transfers the
contents of the shift register into the receive buffer.
This transfer takes place during the first half of the
first stop bit. The load pulse also triggers several other
signals relevant to the receive section including
Receive Buffer Full (RBF), Parity Error (PE), Over­
run Error (OE), and Framing Error (FE). These four
status bits are updated after the middle of the first
stop bit when the receive buffer has already been
latched. Each one of these four status bits are latched.
They are reset on the rising edge of the first read pulse
(RD) addressed, to the status register. A complete
description of the status register is given in the section
"Description of the Registers."

When the serial' receiver is disabled (via bit 6 of Com­
mand R.egister 3) the load pulse is suppressed. The
result is that the receive buffer is not loaded with the
contents of the shift register, and the RBF, PE, OE,
and FE bits in the status register are not updated.
Even though the receiver is disabled, the serial shift
register will still be clocking in the data from RxD, if
any. This means that the receiver will still be syn­
chronized with the start and stop bits. For example, if
the receiver is enabled via Command Register 3 in the
middle of receh:ing a serial character, the character
will still be assembled correctly. When the receiver is
disabled the last character received will remain in the
receive buffer. On power-up the value in the receive
buffer is undefined.

5-357 210907-002

intel® Ap·153

Whenever a character length of fewer than 8 bits is
programmed, the most significant bits of a received
character will read as zero. Also, the receiver will only
check the first stop bit of any character, regardless of
how many stop bits are programmed into the device.

Receive Break Detect

A Receive Break occurs when RxD remains in the
space state for one character time, including the parity
bit (if any) and the first stop bit. The MUART will set
the Break Detect status bit (BD) when it receives a
break. The Break Detect status bit is set after the mid·
die of the first stop bit. If the MUART detects a break
it will inhibit the receive buffer load pulse, thus the
receive buffer will not be loaded with the null
character, and none of the four status bits (PE, OE,
FE, and RBF) will be updated. The last character
received will remain in the receive buffer. A break
detect state has the same effect as disabling . the
receiver-they both inhibit the load pulse-therefore
one can think of the break status as disabling the
receiver.

The Break Detect status bit is latched. It is cleared by
the rising edge of the read pulse addressed to the status
register. If a break occurs, and then the RxD data line
returns to the Mark state before the status register is
read, the BD status bit will remain set until it is read.
If RxD returns to the Mark state after the BD status
bit has been read true, the BD status bit will be reset
automatically without reading the status register.

The receive break detect logic of the MUART is in·
dependent of whether the receiver is enabled or dis·
abled; therefore even if the receiver is disabled the
MUART will recognize a break. When the RxD line
returns to the Mark state after a break, the 8256 will
be in the start bit search mode.

If the receiver interrupt level is enabled, break will
generate an interrupt request regardless of whether the
receiver is enabled. Another receive interrupt will not
be generated until the RxD pin returns to the Mark
state.

Transmitter ~tlon of the UART

The serial' asynchronous transmitter section of the
MUART consists of' a transmit buffer, a transmit
(shift) register, and the associated control logic. There
are two bits in the status register which indicate the
status of the transmit buffer and transmit register:
TBE (transmit buffer empty) and TRE (transmit
register empty).

To transmit a character, a byte is written to the
transmit buffer. The transmit buffer should only be
written to when TBE = I. When the transmit register is
empty and CTS = 0, the character will be automatic·
ally transferred from the transmit buffer into the
transmit register. The data transfer from the transmit
buffer to the transmit register takes place during the
transmission of the start bit. After this transfer takes
place, sometime at the beginning of the transmission
of the first data bit, TBE is set to 1.

When the transmitter is idle, both TBE and TRE will
be set to 1. After a character is written to the transmit
buffer, TBE = 0 and TRE = 1. This state will remain
for a short period of time, then the character will be .
transferred into the transmit register and the status
bits will read TBE = 1 and TRE = O. At this point a se·
cond character may be written to the transmit buffer
after which TBE = 0 and TRE = O. TBE will not be set
to 1 again until the transmit register becomes empty
and is reloaded with the byte in the transmit buffer.

The transmitter can be disabled only one way-using
the CTS pin. When CTS = 0 the transmitter is enabled,
and when CTS = 1 the transmitter is disabled. If the
transmitter is idle and ffi goes from 0 to 1, disabling
the transmitter, TBE and TRE will remain set to 1.
Since TBE = 1 a character can be written into the
transmit buffer. The character will be stored in the
transmit buffer but it will not be transferred to the
transmit register until CTS goes low.

If ffi goes from low to high during transmission of a
character, the character in transmission will be com·
pleted and TxD will return to the Mark state. If the
transmitter is full (Le., TBE and TRE=O), the
transmit shift register will be emptied but the transmit
buffer will not; therefore TBE = 0 and TRE = I.

Transmitter Break Features

The MUART has three transmit break features:
Break·In Detect, Transmit Break (TBRK), and Single
Character Break (SBRK).

Break·In Detect - A Break·In condition occurs when
the MUART is sending a serial message and the
transmission line is forced to the space state by the
receiv~g station. Break·In is usually used with half·
duplex transmission so that the receiver can signal a
break to the transmitter. Port 16 must be connected
externally to the transmission line in order to detect a
Break·In. If transmission voltage levels other than
TTL are used, then proper buffering must be provided
so that Port 16 on the MUART will receive the correct
polarity and voltage le~els.

5-358 210907-002

AP·153

When Break-In Detect is enabled, Port 16 is polled in­
ternally during the transmission of the last or only
stop bit of a character. If this pin is low during
transmission of the stop bit, the Break Detect status
bit (BD) will be set. Break-In Detect and receive Break
Detect are OR-ed to set the BD status bit. (Either one
can set this bit.) The distinction can be made through
the interrupt controller. If the transmit and receive in­
terrupts are enabled, a Break-In will generate an inter­
rupt on levelS, the transmit interrupt, while Break will
generate an interrupt on level 4, the receive interrupt.
If RxC and TxC are used for the serial bit rates,
Break-In cannot be detected.

Transmit Break - This causes the TxD pin to be forced
low for as long as the TBRK bit in Command Register
3 is set. While Transmit Break is active, data transfers
from the"Transmit Buffer to the Transmit register will
be inhibited.

If both the Transmit Buffer and the Transmit Register
are full, and a Transmit Break command is issued
(command register 3, TBRK= I), the entire character
in the Transmit register is sent including the stop bits.
TxD is then driven low and the character in the
Transmit Buffer remains there until Transmit Break is
disabled (command register 3, TBRK=O). At this time
TxD will go high for one bit time and then send the
character in the Transmit Buffer.

Single Character Break - This causes TxD to be set
low for one character including start bit, data bits,
parity bit, and stop bits. The user can send a specific
number of Break characters using this feature.

If both the Transmit Buffer and the Transmit Register
are full and a Send Break command is issued (com­
mand register 3, SBRK= 1) the entire character in the
Transmit Register is sent including the stop bits. TxD
is driven low for one complete character time followed
by a high for two bit times after which the character in
the. Transmit Buffer is sent.

Modification Register

The modification register is used to alter two standard
f~nctions of the receiver (start bit check, and sampling
time) and to enable a special indicator flag for half­
duplex operation (transmitter status). Disabling start
bit check means that the receiver will not return to the
start bit search mode if RxD has returned to the Mark
state in the center of the start bit. It will simply pro­
ceed to assemble a character from the RxD pin
regardless of whether it received a false start bit or
not. The modification register also allows the user to

5-359

define where within the receive data bits the MUART
will sample.

Parallel 1/0
The MUART contains 16 parallel I/O pins which are
divided into two 8-bit ports. These two parallel I/O
ports (Port 1 and Port 2) can be used for basic digital
I/O such as setting a bit high or low, or for byte
transfers using a two-wire handshake. Port 1 is bit
programmable for input or output, so any combina­
tion of the eight bits in Port 1 can be selected as either
an input or an output. Port 2 is nibble programmable,
which means that all four bits in the upper or lower
nibble have to be selected as either inputs or outputs.
For byte transfers using the two- wire handshake,
Port 2 can either input or output the byte while two
bits in Port 1 are used for the handshaking signals.

All of the bits in Port 1 have alternate functions other
than I/O ports. As mentioned above, when using the
byte handshake mode, two bits on Port 1 are used for
the handshaking signals. As a result, these two bits
cannot be used for general purpose I/O. The other six
bits in Port 1 also have alternate functions if they are
not used as I/O ports. Table 1 lists each bit from Port
1 and its corresponding alternate function.

The bits in the Port 1 Control Register select whether
the pins on Port 1 are inputs or outputs. The pins on
Port 1 are selected as control pins through the other
programming registers which are relevant to the con­
trol signal. Configuring a bit in Port 1 as a control
function overrides its definition in the Port 1 Control
Register. If the pins on Port 1 are redefined as control
signals, the definition of whether the pin is an input or
an output in the Port 1 Control Register remains un­
changed. If the pins on Port 1 are converted back to
110 pins, they assume the state which was defined in
the Port 1 Control Register."

Each parallel I/O port has a latch and drivers. When
the port is in the output mode, the data written to the
port is latched and driven on the pins. The data which
is latched in the I/O ports remains unchanged unless
the port is written to again. Reading the ports,
whether the port is an input or output, gates the state
at the pins onto the data bus. Writing to an input port
has no effect on the pin, but the data is stored in the
latch and will be output if the direction on the pin is
changed later. Writing to a control pin on Port 1 has
the same effect as writing to an input pin. If pins 2, 3,
5, and 6 in Port 1 are used for control signals, the con­
tents of the respective output latches will be read, not
the state of the control signals. If pins 0, I, and 7 on

210907-002

AP·153"

Table 1. Port 1 Control Signals

Pin Pin
Symbol Number Control Function Condition

P,lO 39 ACK Control signals for Port 2 Mode register
P11 38 OBF 8-bit handshake output P2C2 - P2CO= 101

PIO 39 STB Control signals for Port 2 Mode register
P11 38 IBF 8-bit handshake input P2C2 - P2CO= 100

P12 37 Event counter 2
clock input'

P13 36 Event counter 3
clock input

P14 35 Internal baud rate
generator clock output

P15 34 Timer 5 trigger input

P16 33 Break-In detection input

P17 32 External edge sensitive
interrupt input

Port 1 are used for control signals,' the state of the
control signals will be read. If pin 4 on Port 1 is used
as a test output for the internal baud rate, this clock
signal will be output through the output latch, thus the
information in the output latch will be lost.

The Two·Wlre Byte Handshake

The 8256 can be programmed, via the Mode Register,
to implement an input or output two-wire byte hand­
shake. When the Mode Register is programmed for
the byte handshake, Port 2 is used to transmit or
receive the byte, and piIis PIO and PII are used for the
two handshake control signals. Figures 4 and 5 on
pages 7 through 10 show a block diagram and timing
signals for the two-wire handshake input and output.
~

To set up the two-wire handshake output using inter­
rupts one must first program the Mode Register, and
then enable the interrupt via the interrupt mask
register. An interrupt will not occur immediately after
the two-wire handshake interrupt is enabled. The in­
terrupt is triggered by the rising edge of ACK. There
are two ways to generate the first interrupt. Either the

Mode register
CT2=1

Mode register
CT3=1

Mode word
P2CO - P2C2 = 111
Port 1 control word P14= 1
Command Register 2
B3 - BO > 3H

Mode register
T5C=1

Command Register 1
BRKI=1

Command Register 1
BITI= 1

first data byte must be written to Port 2 and'complete­
ly transferred before an interrupt will occur, or the
two-wire handshake interrupt is enabled while ACK is
low, and then ACK goes high.

Event CountersfTilTlers
The MUART's five 8-bit programmable counters/
timers are binary presettable down counters. The
distinction between timer and counter is determined

. by the clock source. A timer measures an absolute
time interval, and its input clock frequency is derived
from the MUART's system clock. A counter's input
clock frequency is derived from a pulse applied to an
external pin. The counter is decremented on the rising
edge of this pulse. .

When the counters/timers are configured as timers
their clock source passes through two dividers: the
system clock prescaler, and the timer prescaler. As
mentioned before, the system clock prescaler normali­
zes the intemal system clock to 1.024 MHz. The timer
prescaier receives this normalized system clock and
devides it down to either 1 kHz or 16 kHz, depending

5-360 210907-002

Ap·153

INT OBF

INTA AcK

iffi
Processor 8256 Equipment

WR

Databus P20·P27

Figure 4. Block Diagram of Handshake Output
on how Command Register I is programmed. If more
timing resolution is needed the clock frequency can be
input externally through the I/Oports.

By programming the Mode Register, four of the 8·bit
counters/timers can be cascaded to form two 16·bit
counters. Counters/timers 3 and 5 can be cascaded
together, and counters/timers 2 and 4 can be cascaded
together. Counters/timers 2 and 3 are the lower bytes,
while counters/timers 4 and 5 are the upper bytes in
the cascaded mode.

Each counter can be loaded with an arbitrary initial
value. Timer 5 is the only timer which has a special
save register which holds its initial value. Whenever
Timer 5 is loaded with an initial value the special save
register is also loaded with this value. Timer 5 can be
reloaded 'to its initial value from the detection of a
high-to·low transition on Port PIS.

The counters are decremented on the first rising edge
of the clock after the initial value has been loaded.
The setup time for loading the counter when using an
external clock is specified in the data sheet. When us·
ing iI)ternal clocks, the user has no way of knowing
the phase relationship of the clock to the write pulse;
,therefore the timing accuracy is one clock period.

The timers are counting continuously, and an inter-
rupt request is issued any time a single counter or pair
of cascaded counters reaches zero. If the timers are
going to be used with interrupts, then the programmer
should first load the timer with the initial value, then
enable the interrupt. If the programmer enables the in­
terrupt first, it is possible that the interrupt will occur'
before the initial value is loaded. When an interrupt
from anyone of the timers occurs, the corresponding

bit in the interrupt mask register is automatically
reset, preventing further interrupt requests from oc­
curing.

The event counters/timers can be used in the follow­
ing modes of operation:

Timer I
- Serves as an 8-bit timer.

Event Counter/Timer 2
- Serves as an 8-bit timer or event counter, or

cascaded with Timer 4 as a 16-bit timer or event
counter.

Event Counter/Timer 3
- Serves as an 8-bit timer or event counter, or

cascaded with Timer 5 as a 16-bit timer or event
counter, with the additional modes of operation
selectable for Timer 5.

Timer 4
- Serves as an 8-bit timer, or cascaded with Event

Counter/Timer 2 as a 16-bit timer or event
counter. "

Timer 5
I) Non-retriggerable 8-bit timer
2) Retriggerable 8-bit timer whose initial value is

loaded from a save register which starts following
the negative transition of an external signal. Subse­
quent transitions of this signal after the counting
has started, reloads the initial value and restarts the
counting.

3)' Cascaded with Event Counter/Timer 3, non­
retriggerable 16-bit timer, which can be loaded
with an initial value by two write operations.

5-361 210907-002

I.

INT

AD.·AD4
DB5-DB7

P2()'P27

Ap·153

'- -.....
®
2 ,

\

..... ----------------~~\

-----'

Data

Figure 4a. Timing of Handshake Output

CD The 8256 signals with INT that the equipment has accepted the last character and that the output latches are empty again.

o Thereupon, the microprocessor transfers the next data to the 8256.

"CVThe rising edge of WR latches the data into port 2 (P20 ... P27) and "Output Buffer Full" (OBF) is set which indicates that a
new byte is available.

i @The,equipment acknowledges with the falling edge ofACK that it recognized OBF.

CDThereupon, the 8256 releases OBF.

@The equipment acknowiedges the data transfer with a rising edge of ACK which causes the 8256 to set INT.

5-362 210907-002

Ap·153

INT STB

INTA IBF

AD
Processor 8256 Equipment

Databus P20·P27

Figure 5. Block Diagram of Handshake Input

4) Cascaded with event counter/timer 3, non­
retriggerable 16-bit event counter, which can
be loaded with an initial value by two write
operations.

5) Cascaded with Event Counter/Timer 3, retrig­
gerable 16-bit timer. The m@st significant byte
(Timer 5) will be loaded with its initial value from
the save register, while the least significant byte
(Event Counter/Timer 3) will be set to OFFH
automatically, Loading, starting, and retriggering
operations follow the same pattern as in 2).

6) Cascaded with Event Counter/Timer 3, retrig­
gerable 16-bit event counter. The most significant
byte (Timer 5) will beloaded with its initial value
from the save register, while the least significant
byte (Event Counter/Timer 3) will be set to OFFH
automatically. Loading, starting, and retriggering
operations follow the same pattern a~in 2).

Interrupt Controller
In a microcomputer system there are several ways for
the CPU to recognize that a peripheral device needs
service. Two of the most common ways are the polling
method and the interrupt service method.

In the polling method the CPU reads the status of
each peripheral to determine whether it needs service.
If the peripheral does not need service, the time the
CPU spends polling is wasted; therefore this overhead
results in increasing the execution time. Some systems
must meet a specific request to response time such as a
real time signal. In this case the programmer must
guarantee that the peripheral is poned at a certain fre­
quency. This polling frequency cannot' always easily

5-363

be met when the CPU must execute a main program as
well as subroutines. Usually each peripheral has its
own request to response time requirements; therefore
the user must establish a priority scheme.

The interrupt method provides certain advantages
over the polling method. When a peripheral device
needs service it signals the CPU through hardware
asynchronously, thus reducing the overhead of polling
a device which does not need service. The CPU would·
typically finish the instruction it is executing, save the
important registers, and acknowledge the peripheral's
interrupt request. During the acknowledgment, the
CPU reads a vector which directs the CPU to the start­
ing location of the appropriate interrupt service
routine. If several interrupt requests occur at the same
time, special logic can prioritize the requests so that
when the CPU acknowledges the interrupt, the highest
priority request is vectored to the CPU.

An interrupt driven system requires additional hard­
ware to control the interrupt request signal, priority,
and vectoring. The 8256 integrates this additional
hardware onto the chip. The interrupt controller on
the MUART is directly compatible with the MCS-85,
iAPX-86, iAPX-88, iAPX-186, iAPX-188 family of
microcomputer systems, and it can also be used with
other microprocessors as well. It contains eight priori­
ty levels, however, there are a total of 12 interruptable
sources: 10 internal and 2 external. Since there are
eight priority levels, only eight interrupts can be used
at one time. The assignment of the interrupts used is
selected by Command Register 1 and by the mode
register. The MUART's interrupt sources have a fixed
priority. Table 2 displays how the 12 interrupt sources
are mapped into the 8 priority levels.

210907-002

Ap·153

P20-P27 --v Data v--:e /~ l'l.-y
-1\------~l~----------~n--------~l~------

Data

i'iF
11

INT 'Y
iNTA

~~~~~ ........................................ ~~~:~ .................... -
Figure Sa. Timing for Handshake Input 

CD The equipment indicates with the falling edLof STB (Strobe) that a new character is available at port 2. The 8256 
acknowledges the indication by activating IBF (Input Buffer Full). 

CD Thereupon, the equipment releases STB and the 8256 latches the character. 

® The 8256 informs the microprocessor through INT that a new character is ready for transfer. 

@The microprocessor 'rads the character. 

CD The rising edge of signal Ri5' resets signal iBF. 
@This action signals to the equipment that the input latches of the 8256 are empty and the next character can be transferred. 

5-364 210907-002 



inter Ap·153 

Table 2. Mapping of Interrupt Sources to 
Priority Levels MEMORY ADDRESS 

Priority Source 

Highest LO Timer 1 
L1 Timer 2 or Port Interrupt 
L2 External Interrupt (EXTINT) 
L3 Timer 3 or Timers 3 & 5 
IA Receiver Interrupt 
L5 Transmitter Interrupt 
L6 Timer 4 or Timers 2 & 4 

Lowest L7 Timer 5 or Port 2 Handshaking 

MCS<!>·8518256 Interrupt Operation 

The 8256 is compatible with the 8085 interrupt vector­
ing method when the 8086 bit in Command Register 1 
of the MUART is set to O. This is the default condition 
after a hardware reset. The 8085 has five hardware in­
terrupt pins: INTR, RST 7.5, RST 6.5, RST 5.5, and 
TRAP. When the MUART's interrupt acknowledge 
feature is enabled (lAB bit 5 Command Register 3 = 1) 
the MUART's INT Pin 15 should be tied to the 8085's 
INTR, and both the 8085 and the MUART's INTA 
pins should be tied together. All of the interrupt pins 
on the 8085 except INTR automatically vector the pro­
gram counter to a specified location in memory. When 
the INTR pin becomes active (HIGH), assuming the 
8085 has interrupts enabled, the 8085 fetches the next 
instruction from the data bus where it has been placed 
by the 8256 or some other interrupt controller. This 
instruction is usually a Call or an RSTO through 
RSTI. Figure 6 shows the memory locations where the 
8085 will vector to based on which type of interrupt 
occurred. 

The 8085 can receive an interrupt request any time, 
since its INTR input is asynchronous, The 8085, 

. however, doesn't always acknowledge an interrupt re­
quest immediately. It can accept or disregard requests 
under software control using the EI (Enable Interrupt) 
or DI (Disable Interrupt) instructions. 

At the end of each instruction cycle, the 8085 ex­
amines the state of its INTR pin. If an interrupt re­
quest is present and interrupts are enabled, the 8085 
enters an interrupt machine cycle. During the inter­
rupt machine cycle the 8085 automatically disables 
further interrupts until the EI instruction is executed. 
Unlike normal machine cycles, the interrupt machine 

TRAP 

RST 7.5 
RST 6.5 
RST 5.5 

808SA 
EXECUTING 
SOFTWARE 

RST INSTRUCTIONS 
IN RESPONSE TO INTR 

RST0r-___ --, 

808SA 
SYSTEM 
MEMORY 

DOH 

08H 

10H 

18H 

20H 

24H 

28H 

2CH 

30H 

34H 

38H 

3CH 

Figure 6. 8085A Hardware and Software RST 
Branch Locations 

cycle doesn't increment the program counter. This en­
sures that the 8085 can return to the pre-interrupt 
program location after the interrupt service is com-· 
pleted. The 8085 issues an INTA pulse indicating that 
it is honoring the request and is ready to process the 
interrupt. 

The 8256 can now vector program execution to the 
corresponding service routine. This is done during the 
first and only iNTA pulse. Upon receiving the 1N'i'A 
pulse, the 8256 places the opcode RSTn on the data 
bus; where n equals 0 through 7 based on the level of 
the interrupt requested. The RSTn instruction causes 
the contents of the program counter to be pushed onto 
the stack, then transfers control to the instruction 
whose address is eight times n, as shown in Figure 6. 

Note that because interrupts are disabled during the 
interrupt acknowledge sequence, the EI instruction 
must be executed in either the service routine or the 
main program before further interrupts can be proc­
essed. 
For additional information on the 8085 interrupt 
operation and the RSTn instruction, refer to the 
MCS-85 User's Manual. 

5-365 210907-002 



Ap·153 

IAPX.861~8 - 8258 Interrupt Operatipn 

The MUART is compatible with the 8086/8088 
method of interrupt vectoring when the 8086 bit in 
Command Register 1 is set to 1. The MUART's INT 
pin is tied to the 8086/8088 INTR pin', and its INTA 
pin connected to the 8086/88's INTA pin. Like the 
8085, the 8086/8088's INTR pin is also asynchronous 
so that an interrupt request can occur at any time. The , 
8086/8088 can accept or disregard requests on the 
INTR pin under software control instructions. These 
instructions set or clear the interrupt·enabled flag IF. 
When the 8086/8088 is powered-on or reset, the IF 
flag is cleared, disabling external interrupts on INTR. 

Although there are some basic similarities, the aC,tual 
processing of interrupts with an 8086/8088 is different 
from the 8085. When an interrupt request is present 
and interrupts are enabled, the 8086/8088 enters its in­
terrupt acknowledge machine cycle. The interrupt 
acknowledge machine cycle pushes the flag registers 
onto the stack (as in PUSHF instruction). It then 
clears the IF flag, which disables interrupts. Finally, 
the contents of both the code segment register and the 
instruction pointer are pushed onto the stack. Thus, 
the stack retains the pre-interrupt flag status and pro­
gram location which are used to return from the ser­
vice routine. The 8086/8088 then issues the first of 

MUART'S 
INTERRUPT 
LEVELS 

,~ 

~R 

c~ 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

· · · 
INTERRUPT 

INTERRUPT 

INTERRUPT 

two INT A pulses which signals the 8256 that the 
8086/8088 has honored its interrupt request. 

The 8256 is now ready to vector program execution to 
the appropriate service routine. Unlike the 8085 where 
the first INTA pulse is used to place an instruction on 
the data bus, the first INTA pulse from the 8086/8088 
is used only to signal the 8256 of the honored request. 
The second INT A pulse causes the 8256 to place a 
single interrupt vector byte onto the data bus. The 
8256 places the interrupt vector bytes 40H through 
47H corresponding to the level of the interrupt to be 
serviced. Not used as a direct address, this interrupt 
vector byte pertains to one of 256 interrupt "types" 
supported by the 8086/8088 memory. Program execu­
tion is vectored to the corresponding service routine 
by the contents of a specified interrupt type. 

All 256 interrupt types are located in absolute memory 
locations 0 through 3FFH which make up the 
8086/8088's interrupt vector table. Bach type in the 
interrupt vector table requires 4 bytes of memory and 
stores a code' segment address and an instruction 
pointer address. Figure 7 shows a block diagram of 
the interrupt vector table. When the 8086/8088 
receives an interrupt vector byte, it multiplies its value 
by four to acquire the addr,ess of the interrupt type. 

TYPE 255 

TYPE 254 

· · · 
TYPE 71 

TYPE 70 

TYPE 69 

TYPE 68 

TYPE 67 

TYPE 66 

TYPE 65 

TYPE 64 

TYPE 2 

TYPE '1 

TYPE 0 

(FFH) 

(FEH) 

(47H) 

(46H) 

(45H) 

~44fil 

(43H) 

(42H) 

(41H) 

~40fil 

(2H) 

(1H) 

(OH) 

~r 

~~ 

~R 

3FCH 

3F8H 

11CH 

118H 

114H 

f10H 

10CH 

108H 

104H 

100H 

8H 

4H 

OH 

Figure 7. 8086/8088 Interrupt Vector Table 

(i-366 210907-002 



Ap·153 

Once the service routine is completed the main pro­
gram may be reentered by using an IRET (Interrupt 
Return) instruction. The IRET instruction will pop the 
pre-interrupt instruction pointer, code segment and 
flags off the stack. Thus the main program will 
resume where it was interrupted With the same flag 
status regardless of changes in the service routine. 
Note especially that this includes the state of the IF 
flag; thus interrupts are re-enabled automatically 
when returning from the service routine. For further 
information refer to the iAPX 86,88 User's Manual. 

Using the 8256's Interrupt Controller 
Without INTA 

There are several configurations where the 8256 will 
not have an INTA signal connected to it. Some ex­
amples are when using the 8256 with an 8051 or 8048, 
or when connecting the INT pin on the 8256 to the 
8085's RST 7.5, RST 6.5, or RST 5.5 inputs. In these 
configurations the lAB bit in Command Register 3 is 
set to 0, and the INTA pin on the 8256 is tied high. 
When the interrupt occurs the CPU should branch to 
a service routine which reads the interrupt address 
register to determine which interrupt request level oc­
cured. The interrupt address register contains the level 
of the interrupt multiplied by four. Reading the inter­
rupt address register is equivalent in effect to the 
rnTi\ signal; it clears the INT pin and indicates to the 
MUART that the interrupt request has been 
acknowledged. After the CPU reads the value in the 
interrupt address register, it can add an offset to this 
value and branch to an interrupt vector table which 
contains jump instructions to the appropriate inter­
rupt service routines. An 8085 program· which 
demonstrates this routine is given is Figure 8. 

Table 3 summarizes the priority levels and the in­
terrupt vectors which the 8256 sends back to the CPU. 
Note that when using Timer 1 there is a conflict pre-

sent between RSTO in the 8085 mode and a hardware 
reset, because both expect instructions starting at 
address OH. However, there is a way to distinguish 
between the two. After a hardware reset, all control 
registers are reset to a value of OH; therefore when 
using Timer 1, Reset and RSTO can be distinguished 
by reading one of the control registers of the 8256 
which has not been programmed with a value of OH. 
The control registers will contain the previously 
programmed values if RSTO occurs. 

Interrupt Registers 

The 8256's interrupt controller has several registers 
associated with it: an Interrupt Mask Register, an In­
terrupt Address Register, an Interrupt Request 
Register, an Interrupt Service Register, and a Priority 
Controller. Only the Interrupt Mask Registers and the 
Interrupt Address Register can be accessed by the 
user. 

Interrupt Mask Registers 
The Interrupt Mask Registers consist of two write 
registers - the Set Interrupts Register and Reset Inter­
rupts Register, and one read register - the Interrupt 
Enable Register. Each one of the eight levels of inter­
rupts may be individually enabled or disabled through 
these registers. Writing a one to any of the bits in the 
Set Interrupts Register enables the corresponding in­
terrupt level, while writing a one to a bit in the Reset 
Interrupts Register disables the corresponding inter­
rupt level. Reading the Interrupt Enable Register 
allows the user to determine which interrupt levels are 
enabled. The bits which are set to one in the Interrupt 
Enable Register correspond to the levels which are 
enabled. All of the interrupt levels will remain enabled 
until disabled by the Reset Interrupts Register except 
the counter/timer interrupts which automatically 
disable themselves when they reach zero. 

INTA: IN 
MOV 
XRA 
MOV 

INTADD 
L, A 

;Read the Interrupt Address Register 
;Put the interrupt address in HL 

LXI 
DAD 
PCHL 

A 
H,A 

B, TABLE 
B 

;Load BE with the interrupt table offset 
;Add the offset to the interrupt address 
;Jump to the interrupt vecor table 

Figure 8. i Software Interrupt Acknowled'i!e Routine 

5-367 210907-002 



i 

Ap·153 

Table 3. Assignment of Interrupt Levels to Interrupt Sources 

Restart Inter· 
Com· ' rupt 
mand Vector Inter· Sources 

Interrupt 8085 8086 rupt Trigger (Only one sour~e can be Selection 
L~vel mode mode Address Mode assigned at any time) by 

Highest RSTO 40H OH edge Timer I -
Priority 
0 

I RSTl 41H 4H edge Event Counter/Timer 2 or Command 
external interrupt request word I BITI 
on Port I PI7 (bit 2) 

2 RST2 42H 8H level Input EXTINT -
3 RST3 43H CH edge Event Counter/Timer 3 or Mode word 

cascaded event counters/ T3S (bit 7) 
timers 3 and 5 

4 RST4 44H 10H edge Serial receiver -
5 RSTS 4SH 14H edge Serial transmitter -
6 RST6 46H 28H edge ' Timer 4 or cascaded event Mode word 

counters/timers 2 and 4 T24 (bit 6) 

7 RST7 47H ICH edge Timer 5 or Port 2 with Mode word 
Lowest handshaking interrupt P2C2 - P2CO 
Priority request (bits 2 ... 0) 

Note: 
If no interrupt requests are pending and im cycle occurs, interrupt level 2 will be the default value vectored to the CPU. 

Interrupt requests occurring when the corresponding 
interrupt level is disabled are lost. An interrupt will 
only occur if the interrupt is enabled before the 
interrupt request occurs. 

Interrupt Address Register 
The Interrupt Adaress Register contains an identifier 
for the currently requested interrupt level. The 
numerical value in this register is equal to the interrupt 
~ mutlip!ied by four. It can be used in lieu of an 
INTA signal to vector the CPU to the appropriate in­
terrupt service routine. Reading this register has the 
same effect as the INTA pulse: it clears the INT pin 
and indicates an interrupt acknowledgement to the 
MUART. If the Interrupt Address Register is read 
while no interrupts are pending, the external interrupt 
EXTINT will be the default value, OSH. 

Interrupt Request Register 
The Interrupt Request Register latches all pending in­
terrupt -requests unless they are masked off. The re­
quest is set whenever the associated event occurs. 

Interrupt Service Register 
In the fully nested mode of operation, every interrupt 
request which is granted service is entered into this 
register. The appropriate bit will be set whenever the 
interrupt is acknowledged by iiiITA or by reading the 
Interrupt Address Register. At the same time, the cor­
responding bit in the Interrupt Request Register is 
reset. The Interrupt Service Register bit remains set 
until the microcomputer transfers the End Of Inter­
rupt command (EOI) to the device by writing it into 
Command Register 3. In the normal mode the bits in 
the Interrupt Service Register are never set. 

5-368 210907-002 



Ap·153 

Priority Controller 
The priority controller selects the highest priority 
request in the Interrupt Request Register from up to 
eight requests pending. If the INTA signal is enabled 
and becomes active, the priority controller will cause 
the highest priority level in the Interrupt Request 
Register to be vectored back to the CPU, regardless of , 
whether the 8256 is in the normal mode or the nested 
mode. In the normal mode, if any bits are set in the 
Interrupt Request Register, the INT pin is activated. 
The highest priority level in the Interrupt Request 
register will be transferred to the Interrupt Address 
Register at the same time the interrupt requcrst occurs. 
In the Fully.Nested mode, the priorities of all pending 
requests are compared to the priorities in the Interrupt 
Service Register. If there is a higher priority in 'the 
Interrupt Request Register than in the Interrupt Ser­
vice Register, the INT signal will be activated and the 
new interrupt level will be loaded into the Interrupt 
Address Register. 

Interrupt Modes 
There are two modes of operation for the interrupt 
controller: a normal mode and a fully nested mode. In 
the normal mode the CPU should only be a maximum 
of one interrupt level deep; therefore, the CPU can be 
interrupted only while in the main program and not 
while in an interrupt service routine. In the fully 
nested mode it is possible for the CPU to be nested up 
to eight interrupt levels deep. Using the fully nested 
mode, the MUART will activate the INT pin only 
when a higher priority than the one in service is re­
quested. The fully nested mode is used to protect high 
priority interrupt service routines from being 
interrupted by equal or lower priority requests. 

Normal Mode 
In the normal mode of operation the 8256 will activate 
the INT pin whenever any of the bits in the Interrupt 
Request Register are set. The bits in the Interrupt 
Request Register can be set only if the corresponding 
interrupts are enabled. If more than one interrupt re­
quest bit is set, the MUART will always place the 
highest priority level in the Interrupt Address Register 
and vector this level to the CPU during an imA cy­
cle. When the CPU acknowledges the interrupt 
request, using either the INTA signal or by reading the 
Interrupt Address Register, the corresponding Inter­
rupt Request Register bit is reset. Since the Interrupt 
Service Register bits are never set, there is no indica­
tion in the MUART that an interrupt service routine is 
in progress. Therefore, the priority controller will in­
terrupt the CPU again if any of the interrupt request 
bits are set, regardless of whether the next request is a 
higher, lower, or equal priority. 

The implied way to design Il program using the normal 
mode is to have the CPU's interrupt flag enabled dur­
ing portions of the main program, but to leave the in­
terrupt flag disabled while the CPU is executing code 
in an interrupt service routine. This way, the CPU can 
never be interrupted in an interrupt service routine. 
Upon completion of an interrupt service routine the 
program can enable the CPU's interrupt flag, then 
return to the main program. 

Figure 9 shows an example of how the normal mode 
of interrupts may operate. As the CPU begins 
executing code in the main program, certain 1/0 
ports, variables, and arrays need to be initialized. 
During this time the CPU's interrupt flag is disabled. 
Once the program has completed the initialization 
routine and can accept an interrupt, the interrupt flag 
is enabled. In the 8085 this is done with the assembly 
language instruction EI, and on the 8086 with STI. 

A short time later, an interrup,t request comes in on 
Level 4. Since the CPU's interrupt flag is enabled, the 
interrupt acknowledge signal is activated and the CPU 
branches off to Interrupt Service Routine 4. While the 
CPU is executing code in Interrupt Service Routine 4, 
an interrupt request comes in ·on Level 6 and then a 
short time later on Level 2. The 8256 activates the INT 
signal; however, the CPU ignores this because its in­
terrupt flag is disabled. Upon returning to the main 
program the interrupt flag is enabled. When the inter­
rupt acknowledge signal is activated, the MUART 
places the highest priority interrupt request on the 
data bus regardless of the order in which the requests 
came in. Therefore, during the interrupt acknowledge 
the MUART vectors the indirect address for Interrupt 
Level 2. The INT signal is not cleared after the 
acknowledge because there is still a pending interrupt. 

The normal mode of operation is advantageous in that 
it simplifies programming and lowers code re­
quirements within interrupt routines; however, there 
are also several disadvantages. One disadvantage is 
that the interrupt response time for higher priority in­
terrupts may be excessive. For example, if the CPU is 
executing code in an interrupt service routine during a 
higher priority request, the CPU will not branch off to 
the higher priority service routine until the current in­
terrupt service routine is completed. This delay time 
may not be acceptable for interrupts such as the serial 
receiver or a real time signal. For these cases the 
MUART provides the nested mode. 

Nested Mode 
In the nested mode o{operation, whenever a bit in the 
Interrupt Request Register is set, the Priority Con-

5-369 210907-002 



Ap·153 

INTERRUPT 
REQUEST 4 

MAIN PROGRAM 

I 

I EI OR STI 

~ 
L 

r'NTERRUp,:-1 
I SERVICE I 

~11C::::::~rl~R~O~U~TiIN~E:4~11 • ...------. : I 
i INTERRUPT : ~=:;=~.Jj"" REQUEST 6 · ,.....--., 

• L--
t 

I 

I 

l 

II: I 
1~1 ~INTERRUPT 
I REQUEST 2 
I I 
I I 
I RET OR IRET I ________ -1 

r-iNTeRRUPT-' 
I SERVICE I 
i ROUTINE 2 I 
i I 
I I 
I I 
I t I 
I t I 
I I 

, I I 
I RET OR IRET I '-_______ .J 

r-iN'TERRuPr- , 
I SERVICE I 
i ROUTINE 6 I 

I I 
I I 
I I 
I I 
I RET OR IRE" I '-_______ 1 

Figur,e 9. Normal Interrupt Mode Example 

troller compares the Interrupt Request Register to the 
interrupt Service Register. If the tilt set iriThe Request 
Register is of a higher priority than the highest priority 
bit set in the Service Register, the MUART will ac­
tivate the INT signal and update the Interrupt Address 
Register. If the bit in the Request Register is of equal 
or lower priority than the highest priority bit set in the 
Service Registek the INT signal will not be activated. 
When an, INT signal is ac~ivated or the Interrupt 
Address Register is read, the corresponding bit in the 
Request Register which caused the INT signal to be 
asserted is reset and set in the Service Register. When 

5-370 

an EOI (End Of Interrupt) command is issued, the 
highest priority bit in the Service Register is reset. 

Figure 10 shows an example of the program flow using 
the nested mode of interrupts. During the main pro­
gram an interrupt request is generated from Level 4. 
Since the interrupt flag is enabled, the interrupt 
acknowledge signal is activated, and the 
microprocessor is vectored to Service Routine 4. 
During Service Routine' 4, Level ~ requests an inter­
rupt. Since Level 2 is a higher priority than Level 4, 
the 82~56 activates its tNT signal. An interrupt 

210907-002 



Ap-153 

MAIN PROGRAM 

I EI OR STI I 

L -.J 

INTERRUPT.-<.c=~~~=~r;-~IN~T~E-~R~RU~P~T~'" REQUEST 4 , R~EURT~~CEE 4 I , 
: c:::::;- ,L 
• .----

• 
• 

I ~~~~~4-t'l INTERRUPT , ~ I REQUEST 2 

I , r - iNTERFniPT- , 

I EI OR STI ...J I I R~t~~~~E 2 : 

I EI OR STI I' I ..i, t I 
I I I 
I I I INTERRUPT 
I r-,t~O:;-1 -, I I REQUEST 6 

, ;:;'RE~T~O~R~I;RE;'T~ : ll~§E~OI~§ 'I RET ... - ___ .J _J 

r TN1RRUPT ., 

, R~U~Y~1:E6 , 

lLEIORSTI: , , 
I EOI I 
I I 
I LRET OR IRET I 

I I ... ___ .J 

Figure 10. Fully Nested Interrupt Mode Example 

Edge Triggering acknowledge is not generated because the interrupt 
flag is disabled. This section of code in Service 
Routine 4 is protected and cannot be interrupted.· A 
protected section of code may reinitialize a timer, take 
a sample, or update a global variable. When the inter· 
rupt flag is enabled the microprocessor acknowledges 
the interrupt and vectors into Service Routine 2. Ser­
vice Routine 2 immediately enables the interrupt flag 
because it does not have a protected section of code. 
During Service Routine 2, Interrupt Request 6 is 
generated. However, the MUART will not interrupt 
the microprocessor until service routines 2 and 4 have 
issued the EOI command. 

The MUART has a maximum of two external inter­
rupts-EXTINT and P17. EXTINT is a dedicated 
interrupt pin which is level triggered, where P17 is 
either an 1/0 port or an edge triggered interrupt. If 
P17 is selected as an interrupt through Command 
Register 1 and its interrupt level is enabled, it will 
generate an interrupt when the level on this pin 
changes from low to high. The edge triggered mode in­
corporates an edge lockout feature. This means that 
after the rising edge of an interrupt request and the 
acknowledgment of the request, the positive level on 

5-371 210907-002 



AP·153 

PI7 won't generate further interrupts. Before another 
interrupt can be generated PI7 must return low. 

External devices which generate a pulse for an inter­
rupt request can use the edge triggered mode as long as 
the minimum high time specified in the data sheet is 
met. 

Level Triggering 

The external interrupt (EXTINT pin 16) is the only 
level triggered interrupt on the MUART. The 8256 will 
recognize any active (high) level on the EXTINT as an 
interrupt request. The EXTINT pin must stay high un­
til a short time after the rising edge of the first INTA 
pulse. If the voltage level on the EXTINT pin is high 
then goes low, the bit in the interrupt request register 
corresponding to. EXTINT will be reset. 

In the normal mode of operation if EXTINT is still 
high after the iN'TA pulse has been activated, the INT 
signal will remain active. If the microprocessor's inter­
rupt flag is immediately reenabled, another interrupt 
will occur. Unless repeated interrupt generation is 
desired, the programmer should not reenable the 
CPU's interrupt flag until EXTINT has gone low. 

In the nested mode of operation, if EXTINT is still 
high after the INTA pulse h~s been activated, the INT 
signal will not be reactivated. This is because in the 
nested mode only a higher priority interrupt than the 
one being serviced can activate the INT signal. The 

8085 
8088 

INTR 

8256 

EXTINT pin should go inactive (low) before the EOI 
command is issued if an immediate interrupt is not 
desired. 

Depending upon the particular design and applica­
tion, the EXTINT pin has a number of uses. For 
example, it can provide repeated interrupt generation 
in the normal mode. This is useful in cases when a ser­
vice routine needs to be continually executed until the 
interrupt request goes inactive. Another use of the 
EXTINT pin is that a number of external interrupt re­
quests can be wire-ORed. This can't be done using 
PI7, for if a device makes an interrupt request while 
P17 is high (from another request), its transition will 
be shadowed. Note that when a wire-OR'ed scheme is 
used, the actual requesting device has to be deter­
mined by the software in the service routine. 

Cascading the MUART's 
Interrupt Controller 

Cascading the MUART's interrupt controller is 
necessary in an interrupt driven system which contains 
more than one interrupt controller, such as a system 
using more than one MUART, or using a MUART 
with another interrupt controller like the 8259A. For a 
system which uses several MUART's, one of them is 
tied directly to the microprocessor's INT and INTA 
pins, while the remaining MUARTs are daisy-chained 
us~ng the EXTINT and INT pins. This is shown in 
Figure 11. 

8258 8256 

INT EXTINT INT 

INTA INTA 
Vee' Vee 

Figure 11. Cascading the MUART's Interrupt Controller 

5-372 210907-002 



AP·153 

Using the configuration in Figure 11, when the 
microprocessor receives an interrupt, it generates an 
interrupt acknowledge and branches into an interrupt 
service routine. For the interrupt service routine of the 
external interrupt, EXTINT Level 2, the micro­
processor will read the next MUART's interrupt ad­
dress register and branch to the appropriate service 
routine. In effect, this would be a software interrupt 

FIRST 
MUART 

SECOND 
MUART 

• 
• 
• 

acknowledge. An example of this type of interrupt 
acknowledge is given in Figure 8. If the last MUART 
in the chain indicated an external interrupt, the 
microprocessor would simply return to the main pro­
'gram; however, this would be an error condition 
caused by a spurious interrupt. A flow chart of the 
software to handle cascaded interrupts is given in 
Figure 12. 

• • • 

• • • 

Figure 12. Flow Chart to Resolve Interrupt Request When Cascading MUART 
Interrupt Controllers 

5-373 210907-002 



~P·153 

Some consideration should be given to the priority of 
the interrupts when cascading MUARTs. If all of the 
MUART's Level 0 and Levell interrupts are disabled, 
the highest priority interrupt is the EXTINT. In this 
case the last MUART in the chain would have the 
highest priority; however, it would take the longest 
time to propagate back to the CPU. If, however, 
Level 0 or Levell interrupts were enabled, the closer 
to the microprocessor the MUART is, the higher the 
priority these two l«vels weuld have. 

When using the 8256 interrupt controller along with 
some other interrupt controller, such as the 8259A, 
the MUART's INT signal would simply be tied to one 
of the interrupt controller's request inputs. The ser· 
vice routine for the MUART's interrupt request would 
initially perform the software interrupt acknowledge 
before servicing the MUART's interrupt request. 
A block diagram of this configur1ltion is given in 
Figure 13. 

Polling the MUART 

If interrupts are not used, the only other way to con­
trol the MUART is to poll it. It is still possible to use 
the priority structure of the MUART with polling. In 
this mode of operation the MUART'sINT signal (Pin 
15) is not used, lind the iN'i'A pin is tied high. Since 
the INT pin's level is duplicated in the MSB of the 
Status Register, a program can poll this bit. When it 
becomes set, the program could read the Interrupt 
Address Register to determine the cause. Either the 
normal or nested mode 'Of operation can be used. Note 
that the functions used with this polled method must 
have their interrupts enabled. 

It is also possible to poll the counters/timers, parallel 
I/O, and UART separately. To control the UART, 
one could poll the Status Register. Byte handshakes 
with the parallel I/O can be controlled by polling Port 
1. Finally, each counter/timer has its own register 
which can be polled. 

8085A 8259A 8256 
8086 

INTR I--- INT IRm I--- INT 

iNT'A r--- INTA vet"'" INTA 

Figure 13. Connecting the 8256 to the 8259A Interrupt Controller 

5-374 210907-002 



Symbol Pin No. Type 

ADO-AD4 l-S 110 

DBS-DB7 6-8 

ALE 9 

RD 10 

WR II 

RESET 12 

CS 13 

Ap·153 

PIN DESCRIPTIONS 

Name and Function Symbol Pin No. Type Name and Function 

Address/Data: Three­
state address/data lines 
which interface to the 
lower 8 bits of the micro­
processor's multiplexed 
address/data bus. The 
S-bit address is latched on 
the falling edge of ALE. 
In the 8-bit mode, ADO­
AD3 are used to select the 
proper register, while 
ADI-AD4 are used in the 
16-bit mode. AD4 in the 
8-bit mode is ignored as 
an address, while ADO in 
the 16-bit mode is used as 
a second chiJ.l select, active 
low. 

Address Latch Enable: 
Latches the S address lines 
on ADO-AD4 and CS on 
the falling edge. 

Read Control: When this 
signal is low, the selected 
register is gated onto the 
data bus. 

Write Control: When this 
signal is low, the value on 
the data bus is written in­
to the selected register. 

Reset: An active high 
pulse on this pin forces 
the chip into its initial 
state. The chip remains in 
this state until control in­
formation is written. 
Chip Select: A low on this 
signal . enables the 
MUART. It is latched 
with the address on the 
falling edge of ALE, and 
RD and WR have no ef­
fect unless CS was latched 
low during the ALE cycle. 

5-375 

INTA 

INT 

EXTINT 

CLK 

RxC 

14 

15 

16 

17 

18 

Interrupt Acknowledge: 
If the MUART has been 
enabled to respond to in­
terrupts, this signal in­
forms the MUART that 
its interrupt request is be­
ing' acknowledged by the 
microprocessor. During 
this acknowledgement the 
MUART puts an RSTn 
instruction on the data 
bus for the 8-bit mode or 
a vector for the 16-bit 
mode. 

o Interrupt Request: A high 
signals the microproc­
essor that the MUART 
needs service. 

I External Interrupt: An ex­
ternal device can request 
interrupt service through 
this input. The input is 
level sensitive (high), 
therefore it must be held 
high until an INTA occurs 
or the interrupt address 
register is read. 

I System Clock: The 
reference clock for the 
baud rate generator and 
the timers. 

110 Receive Clock: If the 
baud rate bits in Com­
mand Register 2 are all 0, 
this pin is an input which 
clocks serial data into the 
RxD pin on the rising 
edge of RxC. If baud rate 
bits in Command Register 
2 are programmed from 
I-OFH, this pin outputs a 
square wave whose rising 

210907-002 



Ap·153 

PIN DESCRIPTIONS (CONTINUED) 

Symbol, Pin No. Type Name and Function 

edge indicates when the 
data on RxD is being 
sampled. This output re­
mains high during start, 
stop, and parity bits. 

RxD 19 

CTS 21 

Receive Data: Serial data 
input. 

Qear To Send: This input 
enables the serial trans­
mitter. If I, 1.5, or 2 stop 
bits are selected, CTS is 
level sensitive. As long as 
CTS is low, any character 
loaded into the transmit" 
ter buffer register will be 
transmitted serially. A 
single negative going 
pulse causes the transmis­
sion of a'single character 
previously loaded into the 
transmitter buffer 
register. If a baud rate 
from 1-0FH is selected, 
CTS must be Ilow for at 
least 1/32 of a bit, or it 
will be ignored. If the 
transmitter buffer is emp­
ty, this pulse will be ig­
nored. If this pulse occurs 
during the transmission of 
a character up to the time 
where 1/2 of the first (or 
only) stop bit is sent out, 
it will be ignored. If it oc­
curs aft~rwards, but 
before the end of the stop 
bits, the next character 
will be transmitted im­
mediately following the 
current one. If CTS is still 
high when the transmitter 
register is sending the last 
stop bit, the transmitter 
will enter its idle state un­
til the next ~-to-low 
transition-on CTS occurs. 

5-376 

SYfYIbol Pin No. Type 'Name and Function 

If 0.75 stop bits is chosen, 
the crs input is edge sen­
sitive. A negative edge on rn results in the im­
mediate transmission of 
the next character. The 
length of the stop bits is 
determined by the time in­
terval between the begin­
ning of the first stop' bit 
and the next negative edge 
on rn. A high-to-low 
transition has no effect if 
the transmitter buffer is 
empty or if the time inter­
val between the beginning 
of the stop bit and next 
negative edge is less than 
0.75 bits. A high or a low 
level or a low-to-high 
transition has no effect on 

TxC 22 

_ the transmitter for the 
0.75 stop bit mode. 

1/0 Transmit Clock: If the 
baud rate bits in com­
mand register 2 are all set 
to 0, this input clocks data 
out of the transmitter on 
the falling edge. If baud 
rate bits are programmed 
for 1 or 2, this input per­
mits the user to provide a 
32x or 64x clock which is 

'used for the receiver and 
transmitter. If the baud 
rate bits are programmed 
for 3-0FH, the internal 
transmitter clock is out­
put. As an output it 
~elivers the trans,mitter 
clock at the selected bit 
rate. If 1 Vz or 0.75 stop 
bits are selected, the 
ransmitter divider will be 

asynchronously reset at 
the beginning of each 

210907-002 



inter Ap·153 

PIN DESCRIPTIONS (CONTINUED) DESCRIPTION OF THE REGISTERS 

Symbol Pin No. Type Name and Function 

start bit, immediately 
causing a high·to-Iow 
transition on TxC. TxC 
makes a high-to-Iow tran­
sition at the beginning of 
each serial bit, and a low­
to-high transition at the 
center of each bit. 

TxD 23 0 Transmit Data: Serial 
data output. 

P27-P20 24-31 110 Parallel I/O Port 2: Eight 
bit gc:neral purpose I/O 
port. Each nibble (4 bits) 
of this port can be either 
an input or an output. 
The outputs are latched 
whereas the input signals 
are not. Also, this port 
can be used as an 8-bit in­
put or output port when 
using the two-wire hand­
shake. In the handshake 
mode both inputs and 
outputs are latched. 

PI7-PlO 32-39 110 Parallel I/O Port 1: Each 

GND 20 

Vcc 40 

pin can be programmed as 
an input or an output to 
perform general purpose 
I/O. All outputs are 
latched whereas inputs are 
not. Alternatively these 
pins can serve as control 
pins which extend the 
functional spectrum of 

. the chip. 

PS Ground: Power supply 
and logic ground 
reference. 

PS Power: + 5V power sup­
ply. 

5-377 

The following section will provide a description of the 
registers and define the bits within the registers where 
appropriate. Table 4 lists the registers and their 
addresses. 

Command Register 1 

IL 1 I LO I S1 I SO I BRKI I BITI 8086 I FRO I 
(OR) (OW) 

FRQ - Timer Frequency Select 

This bit selects between two frequencies for the five 
timers. If FRQ = 0, the timer input frequency is 
16KHz (62.5us). If FRQ = 1, the timer input frequen­
cy is 1 KHz ·(Ims). The selected clock frequency is 
shared by all the counter/timers enabled for timing; 
thus, all timers must run with the same time base. 

8086 - 8086 Mode Enable 

This bit selects between 8085 mode and 8086/8088 
mode. In 8085 mode (8086 = 0), AO to A3 are used to 
address the internal registers, and an RSTn instruction 
is generated in response to the first INTA. In 8086 
mode (8086 = I), Al to A4 are used to address the in­
ternal registers, and AO is used as an extra chip select 
(AO must equal zero to be enabled). The response to 
INTA is for 8086 interrupts where the first INTA is ig­
nored, and an interrupt vector (40H to 47H) is placed 
on the bus in response to the second iNTA. 

BITI - Interrupt on Bit Change 

This bit selects between one of two interrupt sources 
on Priority Levell, either Counter/Timer 2 or Port 1 
PI7 interrupt. When this bit equals 0, Counter/Timer 
2 will be mapped into Priority Levell. If BIT! equals 
o and ~vel 1 interrupt is enabled, a transition from 1 
to 0 in Counter/Timer 2 will generate an interrupt re­
quest on Level 1. When BIT! equals 1, Port 1 P 17 ex­
ternal edge triggered interrupt so~rce is mapped into 
Priority Levell. In this case if Level I is enabled, a 
low-to-high transition on PI7 generates an interrupt 
request on Levell. 

BRKI - Break·ln Detect Enable 

If this bit equals 0, Port I PI6 is a general purpose 110 
port. When BRKI equals 1, the Break-In Detect 
feature is enabled on Port I P16. A Break-In condi­
tion is present on the transmission line when it is (orc­
ed to the start bit voltage level by the receiving station. 
Port 1 P16 must be connected externally to the 
transmission line in order to detect a Break-In. A 

210907-002 



Ap·153 

Table 4. MUART Registers 

Read Registers Write Registers 
8085 Mode: AD3 AD2 ADI ADO 
8086 Mode: AD4 AD3 AD2 ADI 

Ll I LO I 51 I SO I BRKII BITI 180861 FRO I 0 0 0 0 I Ll I LO I 51 I SO I BRKII BITI I 80861 FROI 
Command 1 Command 1 

I PENI EP I Cl I CO I B3 I B2 I Bl I BO I 0 0 I PENI EP I Cl I CO I B3 I B2 I Bl I BO I 
Command 2 Command 2 

0 I RxE I IAE I NIE I 0 ISBRKITBRKI 0 I 0 I SETI RXEIIAE I NIE I ENOISBRKITBR~ RSTI 
Command 3 Command 3 

I T3S1 T241 TSC I CT31 CT21 P2C21 P2Cli P2coI 0 I T3S1 T241 TSC I CT31 CT21 P2C21 P2Cli P2coI 
Mode Mode 

I P171 P161 PIS I P141 P131 P121 Pll I Pl0 I 0 0 0 I P171 P161 PIS I P141 P131 P121 Pll I Pl0 I 
Port I Control Port I Control 

L7 I L6 I LS I L4 I L3 I L2 I Ll I LO I 0 0 1 I L7 I L6 I LS I L41L31L21LI LO I 
Interrupt Enable Set Interrupts 

07 I 06 I OS I 04 I 03 I 02 I 01 I DO I 0 0 I L7 I L6 I LS I L4 1 L3 I L2 I LI LOI 
Interrupt Address Reset Interrupts 

07 I D61 DS I D4 I D3 I D2 I Dl I DO I 0 I I 07 I D6 I D5 I 04 I D3 I D2 I 01 I DO I 
Receiver Buffer TransmUter Buffer 

I D7 I D6 I 05 I 041031D2 1.01 I DO I 1 0 0 IwIOOIOOI~IOOI~I~IOOI 
Port I Port 1 

I 07 I 06 I 05 I D41D31D2 I DI I DO I 1 0 1 I D7 I D6 I DsID41D31D2 I DI 1 00 I 
Port 2 Port 2 

D7 I D6 I OS I D4 I 03 I D2 1 Dl I DO I I 0 0 I 07 I D6 I DsI041031D2 I DI I DO I 
Timer I Timer 1 

I 07 I D6 I DS I D4 I D3 I D2 I DI I 00 I 0 I D7 I D6 I D5 I D4 I D3 I D2 I DI I DO I 
Timer 2 Timer 2 

I 07 I 06 I OS I D4 I D3 I D2 I DI I 00 I I 0 I D7 I D6 I· DS I 04 I 03 I 02 I 01 1 DO I 
Timer 3 Timer 3 

I 07 I 06 I DS 1 D4 1 03 I D2 I Dl 1 00 1 1 0 I D7 1 D6 I D5 1 D4 1 03 I D2 1 Dl 1 DO 1 
Timer 4 Timer 4 

I D7 I 06 1 OS 1 D4 I D3 1 D2 1 Dl 1 DO 1 1 0 I D7 1061D51D4 I D3 1 D2 1 Dl 1 00 1 
Timer 5 Timer 5 

liNT 1 RBF 1 TBE 1 TRE 1 BD I PE IOE I FE I I 1 I 0 1 RS4 I RS3 I RS2 1 RSI 1 RSO ITME 1 DSC 1 
Status Modification 

5-378 . 210907-002 



Ap·153 

Break·In is polled by the MUART during the 
transmission of the last or only stop bit of a character. 

A Break-In Detect is OR-ed with Break Detect in Bit 3 
of the Status Register. The distinction can be made 
through the interrupt controller. If the transmit and 
receive interrupts are enabled, a Break-In will generate 
an interrupt on Level 5, the transmit interrupt, while 
Break will generate an interrupt on Level 4, the receive 
interrupt. 

SO, 51 - Stop Bit Length 

51 SO 
o 0 
o I 
1 0 
1 1 

Stop Bit Length 
1 
1.5 
2 
0.75 

The relationship of the number of stop bits and the 
function of input CTS is discussed in the Pin Descrip­
tion section under "CTS". 

LO, L 1 - Character Length 

L1 LO 

o 
o 
1 
1 

o 
I 
o 
I 

Command Register 2 

I PEN I EP I Cl I CO B3 

(IR) 

Character 
Length 

8 
7 
6 
5 

B2 Bl 

(IW) 

BO 

Programming bits 0 ... 3 with values from 3H to FH 
enables the internal baud rate generator as a common 
clock source for the transmitter and receiver and 
determines its divider ratio. 

Programming bits 0 ... 3 with values of IH or 2H 
enables input TxC as a common clock source for the 
transmitter and receiver. The external clock must pro­
vide a frequency of either 32x or 64x the baud rate. 
The data transmission rates range from 0 ... 32 
Kbaud. 

If bits O ... 3 are set to 0, separate clocks must be input 
to pin RxC for the receiver and pin TxC for the 
transmitter. Thus, different baud rates can be used for 

5-379 

transmission and reception. In this case, prescalers are 
disabled and the input serial clock frequency must 
match the baud rate. The input serial clock frequency 
can range from 0 to 1.024 MHz. 

BO, B1, B2, B3 - Baud Rate Select 

These four bits select the bit clock's source, sampling 
rate, and serial bit rate for the internal baud rate 
generator. 

B3 B2 B1 BO Baud Sampling 
Rate Rate 

0 0 0 0 TxC, RXC 1 
0 0 0 1 TxC/64 64 
0 0 1 0 TxC/32 32 
0 0 1 1 19200 32 
0 1 0 0 9600 64 
0 1 0 I 4800 64 
0 I 1 0 2400 64 
0 1 1 1 1200 64 
1 0 0 0 600 64 
1 0 0 1 300 64 
I 0 I 0 200 64 
I 0 1 I 150 64 
1 1 0 0 110 64 
1 1 0 1 100 64 
1 1 1 0 75 64 
I 1 I 1 50 64 

The following table gives an overview of the function 
of pins TxC and RxC: 

Bits 3 to 
o (Hex.) 

o 

1,2 

3 to F 

TxC RxC 
Input: 1 x baud Input: 1 x baud 
rate clock for the rate clock for the 
transmitter receiver 
Input 32 x or 64 x Output: receiver bit 
baud rate for trans- clock with a low-to­
mitter and receiver high transition at 

data bit sampling 
time. Otherwise: 
high level 

Output: baud rate Output: as above 
clock of the 
transmitter 

As an output, RxC outputs a low-to-high transition at 
sampling time of evary data bit of a character. Thus, 
data can be loaded, e.g., into a shift register external-

210907-002 



AP·153 

ly. The transition occurs only if data bits of a 
character are present. It does not occur for start, pari­
ty, and stop bits (RxC=high). 

As an output, TxC outputs the internal baud rate 
clock of the transmitter. There will be a high-to-low 
transition at every beginning of a bit. 

CO, C1 - System Clock Prescaler 
(Bits 4, 5) 

Bits 4 and 5 define the system clock prescaler divider 
ratio. The internal operating frequency of 1.024 MHz 
is derived from the system clock. 

C1 CO Divider Ratio 

0 0 5 
0 I 3 
1 0 2 
1 1 1 

EP - Even Parity (Bit 6) 

EP = 0: Odd parity 
EP = 1: Even parity 

PEN - Parity Enable (Bit 7) 

Clock at Pin 
ClK 

5.12 MHz 
3.072 MHz 
2.048 MHz 
1.024 MHz 

Bit 7 enables parity generation and checking. 

PEN = 0: No parity bit 
PEN = 1: Enable parity bit 

The parity bit according to Command Register 2 bit 6 
(see above) is inserted between the last data bit of a 
character and the first or only stop bit. The parity bit 
is checked during reception. A false parity bit 
generates an error indication in the Status Register 
and an Interrupt Request on Level 4. 

Command Register 3 

I SET I RxE I IAE I NIB IENDlsBRKkBRKIRST I 
(2R) (2W) 

Command Register 3 is different from the first two 
registers because it has a bit set/reset capability. 

Writing a byte with Bit 7 high sets any bits which were 
also high. Writing a byte with Bit 7 low resets any bits 
which were high. If any bit 0-6 is low, no change oc­
curs to that bit. When Command Register 3 is read, 
bits 0, 3, and 7 will always be zero. 

RST - Reset 

If RST is set, the following events occur: 

1) All bits in the Status Register except bits 4 and 5 
are cleared, and bits 4 and 5 are set. 

2) The Interrupt Enable, Interrupt Request, and In­
terrupt Service Registers are cleared. Pending re­
quests and indications for interrupts in service will 
be cancelled. Interrupt signal INT will go low. 

3) The receiver and transmitter are reset. The 
transmitter goes idle (TxD is high), and the receiver 
enters start bit search mode. 

4) If Port 2 is programmed for handshake mode, IBF 
and OBF are reset high. 

RST does not alter ports, data registers or command 
registers, but it halts any operation in progress. RST is 
automatically cleared. 

RST = 0 has no effect. The reset operation triggered 
by Command Register 3 is a subset of the hardware 
reset. 

TBRK - Transmit Break 

The transmission data output TxD will be set low as 
soon as the transmission of the previous character has 
been finished. It stays low until TBRK is cleared. The 
state of crs is of no significance for this operation. 
As long as break is active, data transfer from the 
Transmitter Buffer to the Transmitter Register will be 
inhibited. As soon as TBRK is reset, the break condi­
tion will be deactivated and the transmitter will be re­
enabled. 

SBRK - Single Character Break 

This causes the transmitter data to be set low for one 
character including start bit, data bits, parity bit, and 
stop bits. SBRK is automatically cleared when time 
for the last data bit has passed. It will start 'after the 
character in progress completes, and will delay the 
next data transfer from the Transmitter Buffer to the 
Transmitter Register until TxD returns to an idle 

5-380 210907-002 



Ap·153 

(marking) state. If both TBRK and SBRK are set, 
break will be set as long as TBRK is set, but SBRK will 
be cleared after one character time of break. If SBRK 
is set again, it remains set for another character. The 
user can send a definite number of break characters in 
this manner by clearing TBRK after setting SBRK for 
the last character time. 

END - End of Interrupt 

If fully nested interrupt mode is selected, this bit resets 
the currently served interrupt level in the Interrupt 
Service Register. This command must occur at the end 
of each interrupt service routine during fully nested in­
terrupt mode. END is automatically cleared when the 
Interrupt Service Register (internal) is cleared. END is 
ignored if nested interrupts are not enabled. 

NIE - Nested Interrupt Enable 

When NIE equals I, the interrupt controller will 
operate in the nested interrupt mode. When NIE 
equals 0, the interrupt controller will operate in the 
normal interrupt mode. Refer to the "Interrupt con­
troller" section under "Normal Mode" and "Nested 
Mode" for a detailed description of these operations. 

IAE - Interrupt Acknowledge Enable 

This bit enables an automatic response to INTA. The 
particular response is determined by the 8086 bit in 
Command Register I. 

RxE - Receive Enable 

This bit enables the serial receiver and its associated 
status bits in the status register. If this bit is reset, the 
serial receiver will be disabled and the receive status 
bits will not be updated. 

Note that the detection of break characters remains 
enabled while the receiver is disabled; i.e., Status 
Register Bit 3 (BD) will be set while the receiver is 
disabled whenever a break character has been 
recognized at the receive data input RxD. 

SET - Bit Set/Reset 

If this bit is high during a write to Command Register 
3, then any bit marked by a high will set. If this bit is 
low, then any bit marked by a high will be cleared. 

Mode Register 

I T351 T241 T5C I CT31 CT21 P2C21 P2CII P2col 

(3R) (3W) 

5-381 

P2C2, P2C1, P2CO - Port 2 Control 

Direction 
P2C2 P2C1 P2CO Mode Upper Lower 

o 0 0 nibble input input 
o 0 1 nibble input output 
o 1 0 nibble output input 
o 1 I nibble output output 
1 0 0 byte handshake input 
I 0 I byte handshake output 
1 1 0 DO NOT USE 
I 1 1 test 

If test mode is selected, the output from the internal 
baud rate generator is placed on bit 4 of Port 1 (pin 
35). 

To achieve this, it is necessary to program bit 4 of Port 
1 as an output (Port 1 Control Register Bit P14= 1), 
and to program Command Register 2 bits B3 - BO 
with a value ~ 3H. 

Note: 
If Port 2 is operating in handshake mode, Interrupt Level 7 is 
not available for Timer 5. Instead it is assigned to Port 2 hand­
shaking. 

CT2, CT3 - CounterlTimer Mode 

Bit 3 and 4 defines the mode of operation of event 
counter/timers 2 and 3 regardless of its use as a single 
unit or as a cascaded one. 

If CT2 or CT3 are high, then counter/timer 2 or 3 
respectively is configured as an event counter on bit 2 
or 3 respectively of Port 1 (pins 37 or 36). The event 
counter decrements the count by one on each low-to­
high transition of the external input. If CT2 or CT3 is 
low, then the respe.ctive counter/timer is configured as 
a timer and the Port 1 pins are used for parallel 110. 

T5C - Timer 5 Control 

If T5C is set, then Timer 5 can be preset and started by 
an external signal. Writing to the Timer 5 register 
loads the Timer 5 save register and stops the timer. A 
high-to-Iow transition on bit 5 of Port 1 (pin 34) loads 
the timer with the saved value and starts the timer. 
The next high-to-low transition on pin 34 retriggers 
the timer by reloading it with the initial value and con-
tinues timing. ' 

Following a hardware reset, the save register is reset to 
OOH and both clock and trigger inputs are disabled. 
Transferring an instruction with T5C = 1 enables the 
trigger input; the save register can now be loaded with 

210907-002 



Ap·153 

an initial value. The first trigger pulse causes the initial 
value to be loaded' from the save register and enables 
the counter to count down to zero. 

\ 
When the timer reaches tero it issues an interrupt re­
quest, disables its interrupt level and continues count­
ing. A subsequent high-to-Iow transition on pin 5 . 
resets Timer 5 to its initial value. For another timer in­
terrupt, the Timer 5 interrupt enable bit must be set 
.again. 

T3S, T24 - Cascade Timers 

These two bits cascade Timers 3 and 5 or 2 and 4. 
Timers 2 and 3 are the lower bytes, while Timers 4 and 
5 are the upper bytes. If T5C is set, then both Timers 3 
and 5 can be preset and started by an external pulse ... 

When a high-to-Iow transition occurs, Timer 5 is 
preset to its· saved value, But Timer 3 is always preset 
to all ones. If either CT2 or CT3 is' set, then the COF­

responding timer·pair is 1\ 16-bit event counter. '. 
\ 

,A summary of the counter/timer control bits is given 
in Table 5. 

Note: 
Interrupt levelS assigned to single counters are partly not oc­
cupied if event counters/timers are cascaded. Level 2 will be 
vacated if event counters/timers 2 and 4 'are cascaded. 
Likewise, Level 7 will be vacated if event counters/timers 3 
and S are cascaded. 

Single event counters/timers generate an interrupt request on 
the transition from OlH to OOH, while cascaded ones generate 
it on the transition from OOOIH to OOOOH. 

Table 5. Event CounterslTlmers Mode of Operation 

Event Counterl 
Timer Function 

I 8-bit timer 

2 8-bit timer 

8-bit event counter 

3 8-bit timer 

8-bit ·event counter 

4 8-bit timer 

8-bit timer, 

5 normal mode 

8~bit timer, 
retriggerable mode 

2 and 4 16-bit timer 
cascaded 16-bit event counter 

16-bit timer, 
normal ,mode 

3 and 5 16-bit event counter, 
cascaded normal mode 

16-bit timer, 
Retriggerable mode 

16-bit event counter, 
I Retriggerable mode 

\ 

Programming 
(Mode Word) 

-
T24=O, CT2=0 

T24=O, CT2=1 

T35 =0, CT3 =0 

'T35=O, CT3=1 

T24=0 

T35=0, T5C=0 
( 

T35=O, T5C=1 

T24=I, CT2=0 

T24=I, CT2=1 

T35=I, T5C=O, 
CT3=0 

T35=I, T5C=O, 
CT3=1 

T35 = I, T5C = I, 
CT3=0 

T35 = I, T5C= I" 
CT3=1 

5-382 

Clock Source 

internal clock 

internal clock 
PI2 pin 37 

internal clock 
PI3 pin 36 

internal clock 

internal clock 

internal clock 

internal clock 
PI2 pin 37 

internal clock 

P13 pin 36 

internal clock 

P13 pin 36 

,210907-002 
I 



Ap·153 

Port 1 Control Register 

I PI7 I PI61 PIS I PI41 P13 I PI21 P11 I PIO I 
(4R) (4W) 

Each bit in the Port 1 Control Register configures the 
direction of the corresponding pin. If the bit is high, 
the pin is an output, and if it is low the pin is an input. 
Every Port 1 pin has another functil)n which is con­
trolled by other registers. If that special function is 
disabled, the pin functions as a general I/O pm as 
specified by this register. The special functions for 
each pin are described below. 

Port 10, 11 - Handshake Control 

If byte handshake control is enabled for Port 2 by the 
Mode ...B&gister , then Port 10 is programmed as 
STB/ ACK handshake control input, and Port 11 is 
programmed as IBF/OBF handshake control output. 

If ~ handshake mode is enabled for output on Port 
2, OBF indicates that a character has been loaded into 
the Port 2 output buffer. When an external device 
reads the data, it acknowledges this operation by driv­
ing ACK low. OBF is set low by writing to Port 2 and 
is reset high by ACK. 

If ~ handshake mode is enabled for inpu!..Q!! Port 
2, STB is an input. IBF is driven low after STB goes 
low. On the rising edge of STB the data from Port 2 is 
latched. 

IBF is reset high when Port 2 is read. 

Port 12, 13 - Counter 2,3 Input 

If Timer 2 or Timer 3 is programmed as an event 
counter by the Mode Register, then Port 12 or Port 13 
is the-counter input for Event Counter 2 or 3, respec­
tively. 

Port 14 - Baud Rate Generator Output Clock 

If test mode is enabled by the Mode Register and 
Command Register 2 baud rate select is greater than 2, 
then Port 14 is an output from the internal baud rate 
generator. 

P14 in Port 1 control register must be set to 1 for the 
baud rate generator clock to be output. The baud rate 
generator clock is 64 x the serial bit rate except at 
I9.2Kbps when it is 32 x the bit rate. 

5-383 

Port 15 - Timer 5 Trigger 

If TSC is set in the Mode Register enabling a retrig­
gerable timer, then Port IS is the input which starts 
and reloads Timer S. 

A high-to-low transition on PIS (Pin 34) loads the 
timer with the save register and starts the timer. 

Port 16 - Break·ln Detect 

If Break-In Detect is enabled by BRKI in Command 
Register.t, then this input is used to sense a Break-In. 
If Port 16 is low while the serial transmitter is sending 
the last stop bit, then a Break-In condition is signaled. 

Port 17 - Port Interrupt Source 

If BIT! in Command Register 1 is set, then a low-to­
high transition on Port 17 generates an interrupt re­
quest on Priorit~ Levell. 

Port 17 is edg,e triggered. 

Interrupt Enable Register 

L7 I L6 I LS I L4 I L3 I L2 LI LO 

(SR) (SW = enable, 
6W = disable) 

Interrupts are enabled by writing to the Set Interrupts 
Register (SW). Interrupts are disabled by writing to 
the Reset Interrupts Register (6W). Each bit set by the 
Set Interrupts Register (SW) will enable that level in­
terrupt, and each bit set in the Reset Interrupts 
Register (6W) will disable that level interrupt. The 
user can determine which interrupts are enabled by 
reading the Interrupt Enable Register (SR). 

Priority 
Highest LO 

L1 
L2 
L3 
L4 
LS 
L6 

Lowest L7 

Source 
Timer 1 

Timer 2 or Port Interrupt 
External Interrupt (EXTINT) 

Timer 3 or Timers 3 & S 
Receiver Interrupt 

Transmitter Interrupt 
Timer 4 or Timers 2 & 4 

Timer S or 
_ Port 2 Handshaking 

Interrupt Address Register 

o o o D4 

(6R) 

210907-002 



AP·153 

Reading the interrupt address register transfers an 
identifier for the currently requested interrupt level on 
the system data bus. This identifier is the number of 
the interrupt level mUltiplied by 4. It can be used by 
the CPU as an offset address for interrupt handling. 
Reading the interrupt address register has the same ef­
fect as a hardware interrupt acknowledge INTA; it 
clears the interrupt request pin (lNT) and indicates an 
interrupt acknowledgement to the interrupt con­
troller. 

Receiver and Transmitter Buffer 

D7 I D6 I D5 I D4 D3 I D2 I Dl DO 
(7R) (7W) 

Both the receiver and transmitter in the MUART are 
double buffered. This means that the transmitter and 
receiver have a shift register and a buffer register. The 
buffer registers are directly addressable by reading or 
writing to register seven. After the receiver buffer is 
full, the RBF bit in the status register is set. Reading 
the receive buffer clears the RBF status bit. The 
transmit buffer should be written to only if the TBE 
bit in the status register is set. Bytes written to the 
transmit buffer are held there until the transmit shift 
register is empty, assuming CTS is low. If the transmit 
buffer and shift register are empty, writing to the 
transmit buffer immediately transfers the byte to the 
transmit shift register. If a serial character length is 
less than S bits, the unused most significant bits are set 
to zero when reading the receive buffer, and are ig­
nored when writing to the transmit buffer. 

Port 1 

D7 I D61 D5 1 D4 I D3 D2 Dl DO 

(SR) (SW) 

Writing to Port 1 sets the data in the Port 1 output 
latch. Writing to an input pin does not affect the pin, 
but the data is stored and will be output if the direc­
tion of the pin is changed later. If the pin is used as a 
control signal, the pin will not be affected, but the 
data is stored. Reading Port 1 transfers the data in 
Port 1 onto the data bus. 

Port 2 

D7 D6 D5 I D4 D3 D2 I Dl DO 

(9R) (9W) 

Writing to Port 2 sets the data in the Port 2 output 
latch. Writing to an input pin does not affect the pin, 
but it does store the data in the latch. Reading Port 2 
puts the input pins onto the bus or the contents of the 
output latch for output pins. 

Timer Hi 

D7 1 D6 1 D5 D4 D3 D2 DIDO 
(OA16-0E16R) (OAwOE16W) 

Reading Timer N puts the contents of the timer onto 
the data bus. If the counter changes while RD is low, 
the value on the data bus will not change. If two 
timers are cascaded, reading the high-order byte will 
cause the low-order' byte to b,e. latched. Reading the 
low-order byte will unlatch them both. Writing to 
either timer or decascading them also clears the latch 
condition. Writing to a timer sets the starting·value of 
that timer. If two timers are cascaded. writing to the 
high-order byte presets the low-order byte to all ones. 
Loading only the high-order byte with a value of X 
leads to a count of X 256 + 255. Timers count down 
continuously. If the interrupt is enabled, it occurs 
when the counter changes from 1 to O. 

The timer/cQunter interrupts are automatically dis­
abled when the interrupt request is generated. 

Status Register 

liNT I RBF I TBE I TRE I BD I PE OE FE 
(OF16R) 

Reading the statu~ register gates its contents onto the 
data bus. It holds the operational status of the serial 
interface as well as the status of the interrupt pin INT. 
The status register can be read at any time. The flags 
are stable and well defined at all instants. 

FE - Framing Error, Transmission Mode 

Bit 0 can be used in two modes. Normally, FE in­
dicates framing error which can be changed to 
transmis,sion mode indication by setting the TME bit 
in the m.odification register. 

5-384 210907-002 



inter AP-153 

If transmission mode is disabled (in Modification 
Register), then FE indicates a framing error. A fram­
ing error is detected during the first stop bit. The error 
is reset by reading the Status Register or by a chip 
reset. A framing error does not inhibit the loading of 
the Receiver Buffer. If RxD remains low, the receiver 
will assemble the next character. The false stop bit is 
treated as the next start bit, and no high-to-low transi­
tion on RxD is requied to synchronize the receiver. 

When the TME bit in the Modification Register is set, 
FE is used to indicate that the transmitter was active 
during the recepti~n of a character, thus indicating 
that the character received was transmitted by its own 
transmitter. FE is reset when the transmitter is not ac­
tive during the reception of character. Reading the 
status register will not reset the FE bit in the transmis­
sion mode. 

OE - Overrun Error 

If the user does not read the character in the Receiver 
Buffer before the next character is received and 
transferred to this register, then the OE bit is set. The 
OE flag is set during the reception of the first stop bit 
and is cleared when the Status Register is read or when 
a hardware or software reset. occurs. The first 
character received in this case will be lost. 

PE - Parity Error 

This bit indicates that a parity error has occurred dur­
ing the reception of a character. A parity error is pres­
ent if value of the parity bit in the received character 
is different from the one expected according to com­
mand word 2 bits 6 EP. The parity bit is expected and 
checked only if it is enabled by command word 2 bit 7 
PEN. 

A parity error is set during the first stop bit and is reset 
by reading the Status Register or by a chip reset. 

BD - Break/Break-In 

The BD bit flags whether a break character has been 
received, or a Break-In condition exists on the 
transmission line. Command Register 1 Bit 3 (BRKI) 
enables the Break-In Detect function. 

Whenever a break character has been received, Status 
Register Bit 3 will be set and in addition an interrupt 
request on Level 4 is generated. The receiver will be 
idled. It will be started again with the next high-to-low 
transition at pin RxD. . 

The break character received will not be loaded into 
the receiver buffer register. 

If Break-In Detection is enabled and a Break-In condi­
tion occurs, Status Register Bit 3 will be set and in ad­
dition an interrupt request on Level 5 is generated. 

The BD status bit will be reset on reading the status 
register or on a hardware or software reset. For more 
information on Break/Break-In, refer to the "Serial 
Asynchronous Communication" section under 
"Receive Break Detect"and "Break-In Detect." 

TRE - Transmit Register Empty 

When TRE is set the transmit register is empty and an 
interrupt request is generated on Level 5 if enabled. 
When TRE equals 0 the transmit register is in the pro­
cess of sending data. TRE is set by a chip reset and 
when the last stop bit has left the transmitter. It is 
reset when a character is loaded into the Transmitter 
Register. If CTS is low, the Transmitter Register will 
be loaded during the transmission of the start bit. If 
CTS is high at the end of a character, TRE will remain 
high and no character will be loaded into the 
Transmitter Register until CTS goes low. If the 
transmitter was inactive before a character is loaded 
into the Transmitter Buffer, the Transmitter Register 
will be empty temporarily while the buffer is full. 
However, the data in the buffer will be transferred to 
the transmitter register immediately and TRE will be 
cleared while TBE is set. 

TBE - Transmitter Buffer Empty 

TBE indicates the Transmitter Buffer is empty and is 
ready to accept a character. TBE is set by a chip reset 
or the transfer of data to the Transmitter Register, 
and is cleared when a character is written to the 
transmitter buffer. When TBE is set, an interrupt re­
quest is generated on LevelS if enabled. 

RBF - Receiver Buffer Full 

RBF is set when the Receiver Buffer has been loaded 
with a new character during the sampling of the first 
stop bit. RBF is cleared by reading the receiver buffer 
or by a chip reset'! 

INT - Interrupt Pending 

The INT bit reflects the state of the INT Pin (Pin 15) 
and indicates an interrupt is pending. It is reset by 
INTA or by reading the Interrupt Address Register if 
only one interrupt is pending and by a chip r~set. 

5-385 210907-002 



Ap·153 

FE, OE, PE, RBF, and Break Detect all generate a 
Level 4 interrupt when the receiver samples the first 
stop bit. TRE, TBE, and Break-In Detect generate a 
Level 5 interrupt. TRE generates an interrupt when 
TBE is set" and the Transmitter Register finished 
transmitting. The Break.In Detect interrupt is issued 
at the same time as TBE or TRE. 

Modification Register 

I 0 I RS4 I RS31 RS21 RSI I RSO I TME I DSC I 
(OFJ6W) 

DSC - Disable Start Bit Check 

DSC disables the receiver's start bit check. In this state 
the receiver will not be reset if RxD is not low at the 
center of the start bit. 

TME':'" Transmission Mode Enable 

TME enables transmission mode and disables framing 
error detection. For information on transmission 
mode see the description of the framing error bit in the 
Status Register. 

RSO, RS1, RS2, RS3, RS4 - Receiver Sample 
Time 

The number in RSn alters when the receiver samples 
RxD. The receiver sample time can be modified only if 
the receiver is not clocked by RxC. 

Note: 
The modification register cannot be read. Reading from ad­
dress OFH, 8086: IEH gates the contents of the status register 
onto the data bus. 

- A hardware reset (reset, Pin 12) resets all modifica­
tion register bits to 0, i.e.: 
* The start bit check is enabled. 
* Status Register Bit 0 (FE) indicates framing error. 
* The sampling time of the serial receiver is the bit 

center. 

A software reset (Command Word 3, RST) does not 
affect the modification register. 

Hardware Reset 

A reset signal on pin RESET (HIGH level) forces the 
device 8256 into a well-defined initial state. This state 
is characterized as follows: 

5-386 

RS4 RS3 RS2 RS1 RSC Point of time between 
start of bit and end of 
bit'measured in steps of 
1132 bit length 

0 1 1 1 1 1 (Start of Bit) 
0 1 1 1 0 2 
0 1 1 0 1 3 
0 1 1 0 0 4 
0 1 0 1 1 5 
0 1 0 1 0 6 
0 1 0 0 1 7 
0 1 0 0 0 8 
0 0 1 1 1 9 
0 0 1 1 0 10 
0 0 1 0 1 11 
0 0 1 0 0 12 
0 0 0 1 1 13 
0 0 0 1 0 14 
0 0 0 0 1 15 
0 0 0 0 0 16 (Bit center) 
1 1 1 1 1 17 
1 1 1 1 0 18 
1 1 1 0 1 19 
1 1 1 0 0 20 
1 1 0 1 1 21 
1 1 0 1 0 22 
1 1 0 0 1 23 
1 1 0 0 0 24 
1 0 1 1 1 25 
1 0 1 1 0 26 
1 0 1 0 1 27 
1 0 1 0 0 28 
1 0 0 1 1 29 
1 0 0 1 0 30 
1 0 0 0 1 31 
1 0 0 0 0 32 (End of Bit) 

1) Command registers 1,2 and 3, mode register, Port 
1 control register, and modification register are 
reset. Thus, all bits of the parallel interface are set 
to be inputs and event counters/timers are con­
figured as independent 8-bit timers. 

2) Status register bits are reset with the exception of 
bits 4 and 5 . Bits 4' and 5 are set indicating that 
both transmitter register and transmitter buffer 
register are empty. 

210907-002 



Ap·153 

3) The interrupt mask, interrupt request, and inter­
rupt service register bits are reset and disable all re­
quests. As a consequence, interrupt signal INT is 
inactive (LOW). 

4) The transmit data output is set to the marking state 
(HIGH) and the receiver section is disabled until it 
is enabled by Command Register 3 Bit 6. 

S) The start bit will be checked at sampling time. The 
receiver will return to start bit search mode if input 
RxD is not LOW at this time. 

6) Status Register Bit 0 implies framing error. 

7) The receiver samples input RxD at bit center. 

Reset has no effect on the contents of receiver buffer 
register, transmitter buffer register, the intermediate 
latches of parallel ports, and event counters/timers, 
respectively. 

INTERFACING 
This section describes the hardware interface between 
the 82S6 MUART and the 808S, 8086, 8088, and 80186 

. microprocesors. Figures 14 through 19 display the 
block diagrams for these interfaces. The MUART can 
be interfaced to many other microprocessors using 
these basic principles. 

In all cases the 82S6 will be connected directly to the 
CPU's multiplexed address/data bus. If latches or 
data bus buffers are used in a system, the MUART 
should be on the microprocessor side of the ad­
dress/data bus. The MUART latches the address in­
ternally on the falling edge of ALE. The address con­
sists of Chip Select (CS) and four address lines. For 
8-bit microprocessors, ADO-AD3 are the address 
lines. For 16-bit microprocessors, ADI-AD4 are the 
address lines; ADO is used as a second chip select 
which is active low. Since chip select is internally lat­
ched along with the address, it does not have to re­
main active during the entire instruction cycle. As long 
as the chip select setup and hold times are met, it can 
be derived from multiplexed address/data lines or 
multiplexed address/status lines. 

In Figure IS, the 8088 min mode, the 820S chip select 
decoder is connected to the 8088's address bus lines 
A8-AlS. These address lines are stable throughout the 
entire instruction cycle. However, the MUART's chip 
select signal could have been derived from AI6/S3-
A19/S6. 

Figure 16 shows the 82S6 interfaced with an 8086 in 
the min mode. When the 8256 is in the 16-bit mode, 
AO serves as a second chip select. As a result the 
MUART's internal registers will all have even ad­
dresses since AO must be zero to select the device. Nor­
mally the MUART will be placed on the lower data 
byte. If the MUART is placed on the upper data byte 
the internal ~egisters will be S 12 address locations 
apart and the chip would occupy an 8 K word address 
space. Figure 16A shows a table and a diagram of how 
the 8256 may be selected in an 8086 system where the 
MUART is I/O mapped and used on the lower byte of 
the address/data bus. 

PROGRAMMING 
Initialization 

In general the MUART's functions are independent of 
each other and only the registers and bits associated 
with a particular function need to be initialized, not 
the entire chip. The command sequence is arbitrary 
since every register is directly addressable; however, 
Command Word 1 must be loaded first. To put the 
device into a fully operational condition, it is 
necessary to write the following commands: 

Command byte 1 
Command byte 2 
Command byte 3 

Mode byte, 
Port 1 control 
Set Interrupts 

The modification register may be loaded if required 
for special applications; normally this operation is not 
necessary. It is a good idea to reset the part before in­
itialization. (Either a hardware or a software reset will 
do.) 

Operating the Serial Interface 

The microprocessor transfers data to the serial inter­
face by writing bytes to the Transmit Buffer Register. 

. Receive characters are transferred by reading the 
Receiver Buffer Register. The Status Register provides 
all of the necessary information to operate the serial 
I/O, including when to write to the Transmit Buffer, 
and when to read the Receive Buffer and error infor­

,mation. 

Transmitting 
The transmitter and the receiver may be operated by 
using either polling or interrupts. If polling is used 
then the software may poll the Status Register and 
write a byte to the Transmit Buffer whenever TBE = 1. 
Writing a byte to the Transmit Buffer clears the TBE 

5-387 
210907-002 



AP·153 

_ TRAP X, X, 
_ RST7.5 

:::: =~i ::~ 
II: 

RESET IN 

8085A 

HOLD --:­
HLOA~ 
~lbD ::: 

51 -
So -

g ADDRI 
« 10 ill DATA 

RESET 
ALE liD WI! CLKOUT INT INn 

II: 
Q 
Q 
« lL~ j 

Q 
Q 
« 

t----~RESET 

t-+-----t CLK 

t--t-r-----1 WR 

t--t-r-+------iRD 

~ ~'} 58,iall/O 
TxDI-­
C'fS1-

Po,t 1 .;<. (8) ...... 
t---+-+--+-r-----1 ALE 

I 8205 I 
DECODER 

1/'-_"'--_-'-_'----'----' ___ ---'" ADO·AD4 
, ..... _....-_ ... _....--.-, ___ --.,,' DB5·DB7 

port2~ ................... '-- r--+---+-r--r~r----~CS ......--.-

8282 J 
.... _,-;L, ~iiFT ,rC_H_.... i 
~ V 

TO NON·MULTIPLEXED 
PERIPHERALS 

EXTINTI-

VCC GND 

t t 

Figure 14. 8085/8256 Interface 

status bit. If the CTS pin is low, then the Transmit 
Buffer will transfer the data to the Transmit Register 
when it becomes empty. When this transfer takes 
place the TRE bit is reset, and the TBE bit is set in­
dicating th~xt byte may be written to the Transmit 
Buffer. If CTS is high, disabling the transmitter, the 
data byte will remain in the Transmit Buffer and TBE 
will remain low until CTS goes low. The transmitter 
can only buffer one byte if it is disabled. 

There is no way of knowing that the transmitter is 
disabled unless the CTS signal is fed into one of the 
110 ports. Using the transmitter interrupt will free up 
the CPU to perform other functions while the 
transmitter is disabled or while the Transmit Buffer is 
full. 

To enable the transmit interrupt feature Bit L5 in the 
Set Interrupt Register must be set. An interrupt re­
quest will not occur immediately fifter this bit has been 
set. Before any transmit interrupt request will occur a 

5-388 

byte must be written to the Transmit Buffer. After the 
first byte has been written to the Transmit Buffer, a 
transmit il).terrupt request will occur, providing the 
transmitter is enabled. 

There are three sources of transmitter interrupt re­
quests: TBE=I, TRE=I, and Break-In Detect. 
Assuming the Break-In Detect feature is disabled, 
after the transmit interrupt is enabled and the first 
byte is written, a transmit interrupt request will be 
generated by TBE going active. The microprocessor 
can immediately write a byte to the Transmit Buffer 
without reading any status. However if Break-In 
Detect is enabled, the Status Register must be read to 
determine whether the transmit interrupt request was 
generated by Break-In Detector TBE. 

The TRE interrupt request can be used to indicate 
when the transmitter has completely sent all of the 
data. For example, using half-duplex communica-

210907-002 



AP·153 

r----~~11 fl 1111111 R 
A,·A" t;;=AD~DR ~-'\ III III -.- "" PORT 1 ~ r-- ClK AD,.AD, ADDR/DATA '----00 ,,;, ~ 

PORT2r---
MN/MX r--VCC ","..,...r-r...,..,..."---~ Agg:~~4 ~ 

ALE 

~ ClK 

READY '-­

RES 
RESET 

Xl X2 

o 

RD 
WR 

,.. READY 101M 
INTR 

8088 INTA 

A"/S3·A,JS6 ~ 

RESET 

8256 

INTA 
INTR 
RESET 
WR 

TxC 
RxC 
TxD 
RxD 
CTS r-

SERIAL 1/0 

RD 
ALE 
ClK 

EXTINT I-

v " 

Figure 15. 8088 Min Mode/8256 Interface Multiplexed Bus 

tions, all of the data written to the MUART must be 
transmitted before the line can be turned around. 
After the last byte is written, an interrupt request will 
be generated by TBE. If this interrupt is acknowl­
edged without writing another byte, then the next 
transmitter interrupt request, TRE = I, will indicate 
that the transmitter is empty and the line may be 
turned around. 

RECEIVING 

Valid data may be read from the Receive Buffer 
whenever the RBF bit in the Status Register is set. 
Reading the Receive Buffer resets the RBF status bit. 
The RBF bit in the Status Register can be used for 
polling. When the RBF bit is set, the three receive 
status bits, PE, OE, and FE are updated. These three 
status bits are reset when they are read. Therefore 
when the status register is read with RBF set, the three 
error status bit should be tested too. 

If interrupts are used for serial receive data, the 
receiver must be enabled by setting the RxE bit in 
Command Register 3, and Bit U must be set in the Set 
Interrupt Register. When the receive interrupt request 

occurs the Receive Buffer may be read, but the status 
register should also be read since the receive interrupt 
could have been generated by the Break Detect. Also, 
reading the status register will indicate whether there 
were any errors in the received character. 

Operating the Parallel Interface 

Data can be transferred to or read from Port 1 and 
Port 2 by using the appropriate write and read opera­
tions. 

LOADING PORT 1 and PORT 2 

Writing to the ports transfers the data present on the 
data bus into the output latches. This operation is in­
dependent of the programmed I/O characteristics of 
the individual port pins. Writing to control or input 
ports has no effect on the state of the pins. Pins de­
fined as outputs immediately assume the state which is 
associated with the transferred data. If inputs or con­
trol pins are reprogrammed into outputs, they assume 
the states stored in their output latches which were 
transferred by the most recent port write operation. 

5-389 210907-002 



inter 

8284 rD~ ~ 
~~~~~ATOR ~ 
RES

AP·153'

MN/MXLI---.:.'V.:..:CC~"_---------~----~---------------.. +_-----_i--~----------.
M/rtlr

RESET ftD~----.-------------------------~--_+--_+--4_------.
~~~DY ~r------r---------------------------~-+---+--4--------

INTA ~----I-... ----------------------, 
Al~Er_----r_+__+--------------~ 

!lIL!l1----, IlL 
8086 DEN t--- Tn I STB 

il ,III jl 
AD.·AD" ~=~*,"""...L.."""\J 

A,,-A .. r¢PDRli-IIIJj,...ATT..,...,A_ ....... , 
8282 
lATCH 
2 OR 3 

BHE t-- I I I : 
L-__ ....J I I I I L.!:;::E,--....I 

I I II r-=----' 

ADDR ) 

I I r-----, I 
I I I I I 8286 : ... 1 __ -'---'----'---I_L--'---_'----'----~ .. 

: : I I ': I TRANS I L-__ -.--r-_, __ -r--.--r--.!D:::A~TA::........._----...... / 

~(16)~ CEI~~R:: I 
I OE II I 1! ____ j.Il---;-
L I "'OPTIONAL I CS ALE INTA INTWR RD RESET ClK ____ J I ~ 

'- - - - - - - ~ - PORT 1 j\r-----,/ 
ADDR/DATA (8) AD.·AD, 8256 ~ 

L--...::===----.:~_.I'l 05·07 PORT 2 ~ 

CTS TxD RxD TxC RxC EXTINT 

~·t 
SERIAL 1/0 

Figure 16. 8086 Min Mode/8256 Interface 

BHE A, CHARACTERISTICS 

0 0 WHOLE WORD 
0 1 UPPER BYTE FROMITO ODD ADDRESS 

MUART-. 1 0 lOWER BYTE FROMITO EVEN ADDRESS 
1 1 NONE 

1 

o~ 
ADDRESS • A,-A, 

~E, 
8205 ! p:VEN ADDRESS BYTE PERIPHERALS 

M/iO E, 1/0 MAPPED 

BHE E, 0, 

Figure 16a. Technique for Generating the MUART's Chip Select 

5-390 210907-002 



AP·153 

n .-~ 8284A .... ClK 
RES ~ READY IS, 

RESET S, 

tc>cK C 
GEN ERATOR 8088 

CPU 

L CO~8~~ER 
~ j!-K trm COMMAND BUS 

I, as 
-~f iOIR! rr ir mwe 

IL STB , 
8282 

AlB-AS OR 

lli' ';f"' .. ~ lL AD.-ADD 8283 

U;B- . OE 

i- lMEMORY PERIPHERA I 8205 I DATA DATA 

11 11 DECODER 

~ 
8286 

T OR 
8287 

ill 

1 
RESET ClK INT ALE ADD·AD, CSWRRDINTA 

D."D., 
8258 

PORTl PORT2 EXTINT TxC RxC TxD RxD CTS 

U U f ~ Serial 1/0 

Figure 17. 8088 Max Mode/8256 Interface 

READING POR:r 1 AND PORT 2 

Reading the ports gates the state at the pins onto the 
data bus if they are defined as I/O pins. A read opera­
tion transfers the contents of the associated output 
latches of pins P12, P13, PIS, and P16, which are de­
fined as control function pins. Reading control pins 
PIO, Pll, and P17 delivers the state of these pins. 

Operating the Event CounterslTlmers 

The event counters/timers can be loaded with an 
initial value at any time. Reading event 
counters/timers is possible without interfering with 
the counting process. 

LOADING EVENT COUNTERSITIMERS 

Loading event counters/timers I-S under their,respec­
tive addresses transfers the data present on the data 

5-391 

bus as an initial value into the addressed event 
counter/timer. The event counter/timer counts from 
the new initial value immediately following the data 
transfer (exception: retriggerable mode of Timer S, or 
3 and S) 

Cascaded counters/timers can be loaded with an 
initial value using one of two procedures: 
1) Only the event counter/timer representing the most 
significant byte will be loaded. The event 
counter/timer representing the least significant byte is 
set to OFFH automatically. Counting is started im­
mediately after the data transfer. 
2) The event counter/timer representing the most 
significant byte will be loaded, causing the least 
significant byte to be set to OFFH automatically. 
Counting is started immediately following the data 
transfer. Next, the, counter representing the least 
significant byte will be loaded and counting is ,started 

210907-002 



Ap·153 

r01 ~CLK MN/Ml< t--GND CLK=~~g 
~ So 

S, AMWC tt S, 
8284 ..... RESET S, S, iORC 

CLOCK DEN ~ 
GENERATOR r- READY, 

r- DT/R AI~ ~ I, ALE 
INTR 

8086 II r----l 
l-nB I 

OE I 
.,a,. 8282 

J ADo·ADt~ lATCH 
Ala-A,g (2 OR 3) 
BHE 

8286 
TRANS, 

CEIVERS 

~ 
T 

(2) 

DE 
..... JI 

ALE INT INTA WR RD CS ClK RESET 
ADDR/DATA ADo-AD, P 0 5"0 1 

8256 PORn 

CTS TxD RxD TxC RxC EXTINT PORT2 P 
~ r 

SERIAL 1/0 

Figure 18. 8086 Max Mocle/8256 Interface 

again, but this time with a complete I6-bit initial 
value. The least significant byte of the initial value 
must be transferred before the counter representing 
the least significant byte exhibits its zero transition to 
prevent the most significant byte of the initial value 
fr0l:l\ being decremented improperly. 

I 

In the case of an 8-bit initial value for Timer 5 or for 
cascaded Event Counter/Timer 3 and 5, the initial 
value for Timer 5 is loaded from a save register, if it is 
operated in retriggerable counting mode. Counting is 
started after an initial value has been transferred 
whenever a high-to-low transition occurs on Port 
PI5. 

Cascaded Event Counter/Timer 3 and 5 operating in 
retriggerable counting mode can be loaded directly 
with an initial value for Timer 5 representing the most 
significant byte; Event Counter/Timer 3 will be set to 
OFFH automatically. 

5-392 

READING EVENT COUNTERSITIMERS 

Reading event counters/timers 1-5 from their respec­
tive addresses gates the counter contents onto the data 
bus. The counter contents gated onto the data bus rc;­
main stable during the read operation while the 
counter just being read continues to count. The 
minimum time between the two read operations from 
the same counter is 1 usec. 

The procedure to be followed when reading cascaded 
event counters/time,rs is: 
1) The event counter/timer representing the most 
significant byte will be read first. At this time, the 
least significant byte is latched into read latches. 
2) When the event counter/timer representing the 
least significant byte is addressed; the byt~ stored in 
the read latches will be gated onto the data bus. The 
value stored in the read latches remains valid until it is 
read, the cascading condition is removed, or a write 

210907-002 



Ap·153 

18 MHz 
YCC ro1 

~l 
X, X, RESET 

Rfj 

m WII 
INTO 

~ 
INTAO 

Y- SRDY +5 
ALE 

-r NMI 
DT/R 

-r HOLD Il"EIii 
~frF 

8282 
ADII"AD jl ~. ADDRIDATA lATCH ADDRESS > 80188 (2) 

pcso OE 

~ 
8286 

TRCYR 

(18) (2) 
DATA ) 

~ 
OE 

f-- r 
GENERATOR ~ CLOCK RI 

ALE INTA INT WR RD RESET ClK 

(8) ADo·AD4 .-
0.·0. 

8258 PORTl (8) > 
~ cs PORT2 

CTS TxD RxD TxC RxC EXTINT 
(8) ) .... , , , , , , 

'--v---J 
SERIAL 1/0 

Figure 19. 8018618256 Interface 

operation affecting one of the two event 
counters/timers is executed. 

The time between reading the most significant byte 
and the least significant byte must be at least l' usec. 

Note: 
For cascaded event counters/timers the least significant 
counter/timer is latched after reading the inost significant 
counter/timer. If the lower byte changes from OOH to OFFH 
between the reading of the MSB and the latching of the LSB, 
the carry. from the most significant event counter/timer to the 
least significant event "Counter/timer is lost. 

Therefore, it is necessary to repeat the whole reading once if 
the value of the least significant event counter/timer is OFFH. 
Doing this will avoid working with a wrong value (correct· 
value + 255). 

APPLICATION EXAMPLE 

This section describes how the 8256 was designed into 
a Line Printer Multiplexer (LPM). This application 
example was chosen because it employs a majority of 
the MUART's features. The information in this sec­
tion will be applicable to many other designs since it 
describes some common software an'd hardware 
aspects of using the MUART. 

Description of the Line Printer Multiplexer 
(LPM) 

The Line Printer Multiplexer allows up to eight 
workstations to share one printer. The workstations 
transmit serial asynchronous data to the LPM. The 
LPM receives the serial data, buffers it, then transmits, 

5-393 210907-002 



Ap·153 

Workstations 8 Line Printer 

Figure 20. Using the Line Printer Multiplexer to Share a Line Printer 

it to the line printer using a two-wire byte handshake 
Dataproducts interface. A conceptual diagram of this 
system is shown in Figure 20. Note that only one 
workstation can transmit at a time. This workstation 
will transmit its entire file before another workstation 
will be allowed to transmit. 

The LPM sequentially polls each of the eight RS-232 
ports for a Request To Send (RTS). When It finds a 
serial port which has asserted RTS, it configures itself 
for the appropriate data format and bit rate, 
establishes the connection and sends back to the serial 
port a Clear To Send (CTS) which enables transmis­
sion. The LPM receives the'serial asynchronous data, 
buffers it in a software FIFO, and transmits the data 
to the line printer. If the LPM detects an error in any 
of the serial characters it receives, it transmits an error 
message to the serial, port and ignores the bad 
character. If the LPM does not receive a serial 
character after 18 seconds, it assumes that the 
transmission is complete. It transmits the final status 
to the serial port, and returns to scanning. 

This LPM was designed to be used with single-user 
workstations and a 300 lines per minute line printer. 
These workstations are not multitasking; therefore in 
the middle of a file transfer when the CPU needs to 
reload its buffer from the disk, no serial data is 
transmitted. During this time the LPM is emptying its 
FIFO; thus, the line printer never stops printing. 

The buffer size on the LPM was chosen to comple­
ment the disk access time on the workstations. Figure 
21 illustrates the buffer size calculation. The line 
printer can print up to 300 lines per minute, or ap­
proximately 660 characters per second. This cor­
responds to a serial transmission rate of 6,600bps 
(assuming ASCII character codes and a parity bit) as 
shown in equation I. 

(l) Serial bit rate = (300 Iines/min)*(l32 char /line)*(10 bits/char) 
for the line printer (60 sec/min) 

The bottleneck in this data transfer is the line printer 
since the MUART and the workstations can both 
transmit and receive at 19.2Kbps. To realize the max­
imum data transfer rate of this system the LPM must 
guarantee that the average transfer rate to the line 
printer is 660 characters per second. The maximum 
amount of dead time that the ,serial port on the 
workstation is not transmitting, multiplied by 660 is 
the number of bytes which the LPM should buffer. It 
was determined through experimentation that it takes 
about 3 seconds to load 40K bytes of data from the 
disk into the workstation's RAM. During these 3 
seconds no serial data is being sent; therefore the buf­
fer size on the LPM should be 2K bytes. (Note: even 
though only a 2K byte FIFO is required, this design 
used an 8 Kbyte FIFO.) 

To keep the LPM's buffer full the serial data rate must 
be greater than 6.6Kbps. The two bit rates which the 

5-394 210907-002 



AP·153 

LPM 

LINE 
PRINTER 

9,600 BPS 
OR 

19,200 BPS i 
300 LINES/MIN 

Figure 21. LPM Buffer Size Calculation 

FIRST BYTE 

L1 LO 
0 0 8·BIT 
0 1 7 
1 0 6 
0 0 5 

SECOND BYTE I X x I x X 

UPPER NIBBLE 

LOWER NIBBLE 

B3 I B2 Bl BO 

~ 
BAUD RATE SELECT 

B3 B2 Bl BO 
o 000 
o 0 0 1 
o 0 1 0 
o 0 1 1 
o 1 0 0 
o 1 0 1 
o 1 1 0 
o 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

BIT RATE 
DO NOT USE 
DO NOT USE 
DO NOT USE 
19200 
9600 
4800 
2400 
1200 
600 
300 
200 
150 
110 
100 
75 
50 

Figure 22. Programming Words Format for LPM 

workstations use are 9.6Kbps and 19.2Kbps. The CTS 
signal is used to control the flow of the serial data so 
that the LPM buffer will not overflow. 

Each serial port on the LPM can have a different bit 
rate, character length, and parity format. These 
parameters are programmable through the serial port. 
When the LPM powers up, or is reset, it expects a bit 
rate of 9600 bps, 7 bit characters, and odd parity. 

When a serial port receives an ASCII ESC character 
(lBH), it puts that port in the program mode. The 
next two bytes will program these three parameters. 
Only the lower nibbles of these two bytes are used, 
and the upper nibbles are discarded. The format of 
these programming words is given in Figure 22. If the 
word following the ESC is an ASCII NUL (0), the 
LPM will exit from the programming mode and not 
change any of its parameters. 

5-395 210907-002 

,! 
il 
ili 

'I 
I 



Ap·153 

Description of the Hardware " 

Figure 23 shows a block diagram of the LPM. In addi­
tion to the standard components of most 
microprocessor systems such as CPU, RAM, and 
ROM this particular design requires a UART, timers, 
parallel I/O and an interrupt controller. The MUART 
is the ideal choice for this design since it integrates 
these four functions onto one device. 

The eight serial 1/0 ports use four signals: Transmit 
Data (TxD), Receive Data ~D), Request To Send 
(RTS), and Clear To Send (CTS). These four signals, 
controlled by the MUART, are connected to one port 
at a time using TTL multiplexers. The TTL multiplex­
ers are interfaced to RS-232 transceivers to be elec­
trically compatible with the RS-232 spec. The serial 
port select address is derived from three bits of the 
MUART's parallel I/O port (Port I). Two more bits 
from Port I control CTS and RTS, and another bit 
lights up an LED to indicate when the LPM's buffer is 

r----------

full. Parallel Port 2 and two bits from Port I are con­
nected to the line printer implementing a two-wire 
byte handshake transfer. These signals are passed 
through a line driver so that they can reliably drive a 
long cable. 

There are three timing functions needed for the LPM: 
a scan timer, a debounce timer, and a recieve timeout. 
The Scan timer determines the amount of time spent 
sampling RTS on each port before the next port is ad­
dressed. By using one of the MUART's timers to do 
this function, the CPU is free to perform other func­
tions instead of implementing the timer in software. If 
RTS is recognized as true, the CPU branches into a 
debounce procedure. This procedure uses another one 
of the MUART's timers to wait 10 msec then sample 
RTS again, thus preventing any glitches from register­
ing as a false RTS. The receive timeout timer uses two 
8-bit timers in the cascaded mode to measure an 
I8-second interval. After a valid RTS is recognized, 

----------l 

c....:J C---..J c-----.; C----'J Serial 
1-----+-----1------t------11/0 ports 

C---..J <=--.J C.J C----'J 

Figure 23. Functional Block Diagram of the Line Printer Multiplexer 

5-396 210907-002 



Ap·153 

the LPM sends back a ffi and initializes the receive 
timeout timer for 18 seconds. Each time a character is 
received' by the LPM, this timer is reinitialized. If this 
timer times out, the LPM considers the transmission 
complete and returns to scanning. 

registers occupy even addresses from 0 to lEH. Using 
an 8088 CPU the MUART must be placed in the 8086 
mode since the INT A signal is used; hence the register 
addresses are all even numbers. 

The line printer used provides a choice of two stan-
The schematic diagram of the LPM is shown in Figure dard parallel interfaces: Centronics or Dataproducts. 
24. The CPU is an 8088 used in the min mode. It is in- The Centronics interface uses a two-wire handshake 
terfaced directly to the 8256. An 8282 latch is pulsed strobe where the transmitter asserts a complete 
employed in the system so that nonmultiplexed bus strobe pulse before an acknowledge is received. The 
memory can be used. A 2716 holds the entire pro- Dataproducts interface is an interlocking two-wire 
gram, and six 2016s (2K x 8 static RAMs) are used to handshake. The Dataproducts interface was chosen 
store the buffer, temporary data, stack area, and in- since it is directly compatible with the MUART's 
terrupt. vector table. The 2716 is located in the upper two-wire byte handshake. The MUART could also be 
2K of the 8088 address space (FF800-FFFFFH) so that connected to the Centronics interface; however, addi-
the reset vectors can be stored starting at location tional hard ware would be necessary to generate the 
FFFFOH. The RAM address space spans 0-2FFFH so pulsed strobe for correct interrupt operation. Figure 
that the interrupt vector table can be stored starting at 25 shows the timing of the Dataproducts interface and 
location O. The MUART is 110 mapped and its Table 6 lists the connector pin configuration. 

Table 6. Dataproducts Interface Line Functions 

Signal Description Connector Pin 

Data Request Sent by printer to synchronize data transmission. When E(return C) 
true, requests a character. Remains true until Data 
strobe is received, then goes false within 100 nsec. 

Data Strobe Sent by user system to cause printer to accept j(return m) 
information on data lines. Should remain true until 
printer drops Data Request line. Data lines must 
stabilize for at least 50 nsec before Data Strobe is sent. 

Data Bit 1 B(return D) 
Data Bit 2 F(return J) 
Data Bit 3 L(return N) 
Data Bit 4 Bit 8 controls optional character set R(return T) 
Data Bit 5 Refer to Commands and Formats., V(return X) 
Data Bit 6 Z(return b) 
Data Bit 7 n(return k) 
Data Bit 8 h(return e) 

VFU Control Optional control from user system. Used for VFU p(return s) 
(PI) control. Data Request/Strobe timing is same as for data 

lines. 

Ready Sent to user system by printer. True when no Check Cqreturn EE) 
condition exists. 

On Line Sent to user system by printer. True when Ready y(return AA) 
line is true and,operator has activated ON LINE 
Pushbutton. Enables interface activity. 

Interface Jumper in printer connector. Continuity informs user x to v 
Verify system that connector is properly seated. 

+5V Supply voltage for Exerciser only. HH 

5-397 210907-002 



"nt_I'" I. ''eI, 

TO.128(P) 

T02128(E) 

TO 2121(0) 

T02128(C1 

TO 2121(8) 

TYPtCAL 
0" 
2K.I 

STATIC 
RA .... .," .. 
THAU 
"'IIP) 

Ap·153 

, 
I 

I I 
I I 
I I 
I I 
I I 
I 
I 
I ON 1 I L _______ """":::. __ -;-.J 

Figure 24. Schematic of LPM 

5-398 

, .t44MH, 

210907-002 



Ap·153 

~~4 j---;-::;:a.-] r-

~.~ I 
· . • 

74LS251 
, , At:'" 1 ~, 15 T.D a .. 

:r1D'~ r---li " ... , 
" " rh I I .... 
~~ 

- I : • .A{l!:" J r-
" m. 

\ 2 .. 
11m'~ ...1 

, 
" m. 

'E:::. " 10 11 ,<l;;U ~ 8205 " hO 2 , 

'~-~~--~ 
, I A.O :J 

r--;: , 
• .... 

i. ~ 

J --=1 m. 
Vee MU)( . m, 

hD 2 
2 I AIID 3 , 

I I . ..... 6 74LS2S1 , 

I 
~ER~L .. I -L·ImJ· .---rll ". 

== tODRE 
s~-~ " " , 

9 -b =EJ' --,.. r- I A.D 3 

OBF 

rl~ 
. 

----~ .c, 
~ -" 

" m· , 
8205 " m. 

I~· " 
lIt 

hD :I 

" A"O 3 

" I -i , 

===-
, 

J 
We ~ .JmJ. 

• =- 9> .. ,n * =EJ~ Axo 3 ggijA4T 5250 -" 
~------1 

m. 
m. 
1.0 :I 
RaO 3 

I : 
~" 

I m 
m 

.~ 
,D , ,. , t .. o 

l.... ______ J . 
8205 

~11 I r-= 
~ ., " 

7)'" " " 86 13 

I 13~ ," 85 14 . .. " .. .. " 
• A3 83 16 

~ '" 12 11 
A1 81 18 

" " " 11( lK " " " " " 
80 19 

t'r 
r .... 

~, r "r r ~ 
LED 

Figure 24. Schematic of LPM (Continued) 

5-399 210907·002 



Ap·153 

rl-l ..----------------U 
READ~. 

ON·LINE 
__ ...,.......,,~ f+---------2~ SEC MIN -----------I.~I 

I 

DA!A REQUEST L..-_______ ---,.l II/ _ 100 NSEC (r---l 

DATA LINES 
1 :THROUGH 8 & Pl 

I 
~ j4- 50 N~EC MIN 

_________________________________ I--J:ll~ DATA STROBE 1 \'------
Figure 25. Timing of Dataproducts Interface ' 

Only ten signals are used'to interface the LPM to the 
line printer: Data Request, Data Strobe, and the eight 
data lines. The most significant data line is not used 
since the character code is 7-bit ASCII. Data Strobe 
connects to OBF on the MUART; however, for the 
Dataprc:iducts interface this signal must be inverted. 
Data Request is connected to ACK on the MUART. 
When the line printer.is ready to accept data, the Data 
Request signal goes high. The 8256 will not interrupt 
the CPU to transmit parallel data unless this signal is 
high. 

The Dataproducts interface is slightly different from 
the MUART's two-wire handshake in that it latches 
the data on the leading edge of the strobe signal. 
When the MUART receives bytes it latches the data on 
the trailing edge. As a result the Dataproducts inter­
face has a 50 nsec setup time for data stable to the 
leading edge of Data Strobe. In the LPM hardware a 
delay line was used to realize this setup time. 

Description of the Software 
The software is written in PL/M and is broken up into 
four separate modules, each containing several pro­
cedures. A block diagram of the software structure is 
given in Figure 26. The modules are identified by the 
dotted boxes, and the procedures are identified by the 
solid boxes. Two or more procedures connected by a 
solid line means the procedure above calls the pro­
cedure below. The procedures without any solid lines 

connected above are interrupt procedures. They are 
entered when the MUART interrupts the CPU and 
vectors an indirect address to it. 

The LPM program uses nested interrupts; the priority 
of the interrupt procedures is given in Table 7. 

Table 7. Line Printer Multiplexers' Interrupt 
Priority 

Priority Source 

Highest 0 Debounce timer 
I Not Used 
2 Not Used 
3 Receive timer 
4 RxD Interrupt 
5 TxD Interrupt 
6 Scan timer 
7 LP Interrupt 

The priority of the interrupts is not programmable but 
they are logically oriented so that for this application 
the prioritY is correct. In the steady state of the LPM's 
operation the UART will be receiving data, and the 
parallel port will be transmitting data. The serial 
receiver should be the highest priority since it can have 
overrun errors. This is the case because the debounce 
timer will be disabled, and the receive timeout inter­
rupt will only occur when serial reception has ended. 
Therefore the RxD request can interrupt any other ser­
vice routine, thus preventing any possibility of an 
overrun error. 

5-400 
210907-002 



Ap·153 

~------------., 
MAIN~MOO SCAN I 

I I 

foN-.::MoD - - ..., 
I I 
I '---P~O~W~E~R~SO~N-": 
L _______ J 

I 
I 
I 
I 
I 

I I L ____________ J 

17.:-----
IINT~MOD 

--------------- ---, 
I I SCANSTIME I DEBOUNCE$TlME I I RECEIVESTIME I LOADSINT$TABLE I 

I I 
I L __ 

c::§:] I ____________ ..J 

Figure 26. Block Diagram of LPM Software Structure 

On power-up the CPU branches from OFFFFOH to 
the INITCODE routine which is included in the 
machine code by the MDS locater utility. INITCODE 
initializes the 8088's segment registers, stack pointer, 
and instruction pointer, then it disabled interrupts and 
jumps into MAIN_MOD. The first executable in­
struction in MAIN~OD calls POWER$ON, which 
initializes the MUART, flags, variables, and arrays. 
The MAIN~OD calls LOAD$INT$TABLE, which 
initializes the interrupt vector table. The CPU's inter­
rupt is then enabled and the program enters into a DO 
FOREVER loop which scans the eight serial ports for 
an irfS". 

There are three software functions which employ the 
MUART's timers and interrupt controller to measure 
time intervals: SCAN, debounce, and INIT­
$RECEIVER. DEBOUNCE and INIT$RECEIVER 
procedures, employ the MUART's timers and inter­
rupt controller to measure time intervals. The CPU re­
mains in a loop for a specific amount of time before it 
proceeds with the next section of code. In this loop the 
CPU is waiting for a global status flag to change while 

servicing any interrupts which may occur. When the 
appropriate timer interrupt occurs, the interrupt ser­
vice routine will set the global flag which causes the 
CPU to exit the loop and proceed to the next section 
of code. An example can be seen from the scan flow 
chart in Figure 27. 

The first thing the program does before entering the 
loop' is set the flag (in this case SCAN$DELAY) 
TRUE. The timer is initialized and the loop is entered. 
As long as SCAN$DELAY is TRUE the CPU will 
continue to sample RTS. If RTS remains false for 
more than 100 msec, the timer interrupts the CPU and 
the interrupt service routine sets SCAN$DELAY 
FALSE. This causes the CPU to exit the loop and ad­
dress the next port. The process is then repeated. If 
RTS becomes true while it is being sampled, the DE­
BOUNCE procedure is called. 

5-401 

DEBOUNCE does nothing more than wait 10 msec 
and sample RTS again using the same technique 
discussed above. If RTS is still valid IN­
IT$RECEIVER is called, otherwise the CPU returns 
to scan. 

210907-002 



Ap·153 

ADDRESS NEXT PORT 

Figure 27. Scan Flow Chart 

INIT$RECEIVER calls CONFIGURE which pro­
grams the MUART for the bit rate, number of bits in a 
character, and parity format. This information is 
stored in an array called SERIAL$FORMAT, which 
contains a byte for each port. The bytes in the 
SERIAL$FORMAT array have the same bit definition 
as the two nibbles in the programming words in Figure 
22. Upon returning to INIT$RECEIVER the receiver 
is enabled, the receive timeout timer is)nitialized, and 
the timer and receiver interrupts are enabled. CTS on 
the serial port is then set true, and the CPU enters a 
loop which does nothing except wait for 18 seconds. If 
no characters are received within 18 seconds, the 
receive timeout interrupt occurs and the loop flag is 
set false, which causes the CPU to exit ,the loop. If a 
character is received, a receive interrupt occurs, and 
the CPU vectors into the RxD interrupt service 
routine. 

Figure 28 shows a flow chart of the RxD interrupt ser­
vice routine. This routine begins by reading the receive 
buffer and reinitializing the receive timeout timer. 
There are two conditions to check for before the 
character can be insert<;d into the FIFO. First, if there 

CALL ERROR 
PROCEDURE 

Figure 28. RxD Interrupt Procedure Flow Chart 

are any errors in the received character, an ERROR 
procedure is called which reports back to the serial 
port what the error condition was. The character in er­
ror is discarded and the routine returns. The other 
condition is that if the received character is an ASCII 
ESC, the PROGRAM procedure is called. If neither 
one of these conditions occurs, the character is placed 
in the FIFO by the BUFF$IN procedure. 

The LP interrupt routine is entered when the byte 
handshake interrupt request is acknowledged. This 
routine simply calls the BUFF$OUT procedure, which 
extracts a byte out of the FIFO. BUFF$OUT returns 
the byte to the LP interrupt procedure, which then 
writes it to Port 2. One small problem with getting the 
handshake interrupt going is that the first byte has to 
be written to Port 2 before the first handshake inter­
rupt will occur. The problem is that the line printer 
may not be ready for the first byte. This would be in­
dicated by DATA REQUEST being low. If the byte 
was written to the LP while DATA REQUEST is low, 
it would be lost. Note that if the handshake interrupt 
is enabled while DATA REQUEST is low, then DATA 
REQUEST goes high, the interrupt will occur without 

5-402 210907-002 



Ap·153 

writing the first byte. There are several ways to solve 
this problem. 'Port 1 can be read to find out what'the 
state of the DATA REQUEST line is. If DATA RE­
QUEST is low, the CPU can simply wait for the inter­
rupt without writing the first byte. If DATA RE­
QUEST is high, then the fitst data byte may be writ­
ten. Another solution would be to write a NUL 
character as the first byte to Port 2. If DATA 
REQUEST is low, then a worthless character is lost. If 
DATA REQUEST is high, the NUL character would 
be sent to the line printer; however, it is not printed 
since NUL is a nonprintable character. The LPM pro­
gram uses the NUL character solution. 

BUFFER MANAGEMENT 

The FIFO implementation uses an 8K byte array to 
store the characters. There are two pointers used as in­
dexes in the array to address the characters: 
IN$POINTER and OUT$POINTER. IN$POINTER 
points to the location in the array which will store the 
next byte of data inserted. OUT$POINTER points to 
the next byte of data which will be removed from the 
array. Both IN$POINTER and OUT$POINTER are 
declared as words. Figure 29 illustrates the FIFO in a 
block diagr.am. 

The BUFF$IN- procedure receives a byte ·from the 
RxD interrupt routine and stores it in the array loca­
tion pointed to by IN$POINTER, then IN$POINTER 
is incremented. Similarly, when BUFF$OUT is called 

J-- FIFO (OUT$POINTER) 

J-- FIFO (IN$POINTER) 

(8 K) 

BUFFER$STATUS SERIAL INPUT PARALLEL OUTPUT 

Figure 29. FIFO Structure and Status 

by the LP interrupt routine, the byte in the array 
pointed to by OUT.$POINTER is read. 
OUT$POINTER is incremented, and the byte which 
was read is passed back to the LP interrupt routine. 
Since IN$POINTER and OUT$POINTER are always 
incremented, they must be able to roll over when they 
hit the top of the 8K byte address space. This is done 
by clearing the upper three bits of each pointer after it 
is incremented. 

IN$POINTER and OUT$PONTER not only point to 
the locations in the FIFO, they also indicate how 
many bytes are in the FIFO and whether the FIFO is 
full or empty. When a character is placed into the 
FIFO and IN$POINTER is incremented, the FIFO is 
full if IN$POINTER equals OUT$POINTER. When 
a character is read from the FIFO and OUT$­
POINTER is incremented, the FIFO is empty if 
OUT$POINTER equals IN$POINTER. If the buffer 
is neither full nor empty, then it is in use. A byte called 
BUFFER$STATUS is used to indicate one of these 
three conditions. 

The software uses the buffer status information to 
control the flow into and out of the FIFO. When the 
FIFO is empty the handshake interrupt must be turned 
off. When the FIFO is full, CTS must be sent false so 
that no more data will be received. If the buffer status 
is in use, CTS is true and the handshake interrupt is 
enabled. 

Figure 30 shows the now chart of the BUFF$IN pro­
cedure. The BUFF$IN procedure begins by checking 
the ,BUFFER$STATUS. If it is empty and the 
character to be inserted into the FIFO is a CR or LF, 
the handshake interrupt is enabled, a NUL character 
is output, and the BUFFER$STATUS is set to IN­
USE. The character passed to BUFF$IN from RxD is 
put into the FIFO. If the FIFO is now full, the BlJF­
FER$STATUS is set to FULL, CTS is set false, and 
the buffer full LED is turned on. ' 

Figure 31 shows the flow chart of the BUFF$OUT 
procedure. After the character is, read from the FIFO, 
the FIFO is tested to determine if it is empty. If it is 
not empty, the BUFFER$STATUS is FULL and there 
are 200 bytes available in the FIFO, serial data recep­
tion is reenabled, and the FIFO fills again. While data 
is being received from the workstation, CTS toggles 
high and low, filling up and emptying the last 200 
bytes in 'the FIFO. Referring to the top of the flow 
chart (FIFO empty test) if it's empty, the BUF­
FER$STATUS is set to'EMPTY, and the handshake 
interrupt is disabled. During this time all interrupts 

5-403 210907-002 



AP·153 

Figure 30. Flow Chart of the BUFF$IN Procedure 

are disabled at the CPU. (Remember that the RxD in­
terrupt routine can interrupt the LP and BUFF$OUT 
procedures since it has a higher priority, and the 
MUART is. in the nested mode.) 

If the CPU interrupt was not disabled during this 
time, the following events could occur which would 
cause the LPM to crash. Assume that the RxD inter­
rupt occured where the asterisk is in the flow chart, 
after BUFFER$STATUS is set to EMPTY. The 
BUFF$IN procedure would set· BUFFER$STATUS to 
INUSE and enable the handshake interrupt. When the 
RxD interrupt routine returned to BUFF$OUT, the 
handshake interrupt is disabled, but th~ BUF­
FER$STATUS is INUSE. The handshake interrupt 
could never be reenabled, and the FIFO would fill up. 

This is known as a critical section of code. Suspicion 
should arise for a critical section of code when two or 
more nested interrupt routines can affect the same 
status. One solution is to disable the interrupt flag at 
the CPU while the status and conditional operations 
are being modified. 

The flow chart for the TxD interrupt procedure is 
given in Figure 32. For this program five different 
messages can be transmitted, and they are stored in 
ROM. It is possible to download the messages into a 
dedicated RAM buffer; however, the RAM buffer 
would have to be as large as the largest message. A 
more efficient way to transmit the messages is to read 
them from ROM. In this case the address of the first 
byte of the message would have to be accessible by the 
transmit interrupt procedure. Since parameters cannot 
be passed to interrupt procedures, this message 
pointer is declared PUBLIC in one module and EX­
TERNAL in the other modules. 

To get the transmit interrupt started, the first byte of 
the message must be written to the transmit buffer. 
When a section of code decides to transmit a message 
serially, it loads the global message pointer with the 
address of the first byte of thp message, enables the 
transmit interrupt, and calls the TxD interrupt pro­
cedure. Calling the TxD interrupt procedure writes the 
first byte to the transmit buffer to initiate transmit in­
terrupts. This can be done by calling PLlM's built-in 
procedure CAUSE$INTERRUPT. 

The transmit interrupt routine checks each byte before 
it writes it to the transmit buffer. The last character in 
each message is a 0, so if the character fetched is 0, the 
transmit interrupt is disabled and the character is 
ignored. 

USING THE LPM WITH THE INTELLEC® 
MICROCOMPUTER DEVELOPMENT 
SYSTEM, SERIES II OR SERIES III 

A special driver program was written for the MDS to 
communicate to the LPM. This program, called 
WRITE, reads a specified file from the disk, expands 
any TAB characters, and transmits the data through 
Serial Channel 2 to the LPM. Serial Channel 2 was 
chosen because CfS and RTS are brought out to the 
RS-232 connector. The WRITE program is listed in 
appendix B. It was also necessary to modify the boot 
ROM of the development system so that Serial Chan­
nel2 initializes with RTS false and a bit rate of 9600 
bps. 

5-404 210907-002 



Ap·153 

Figure 31. Flow Chart of the BUFF$OUT Procedure 

Figure 32. Flow Chart for TxD Interrupt Procedure 

5-405 210907-002 



Ap·153 

APPENDIX A 
LISTING OF THE LINE PRINTER 

MULTIPLEXER SOFTWARE 

5-406 210907-002 



Ap·153 

PL/M-H6 COMPIL~k 

SERIES-Ill PL/M-Bo VI 0 COMPILAtIUN OF MODULE MAINMOD 
OB-JECT MODULE PLACED IN /."J MAIN OBJ 
COMPILER INVO~ED BY PLM86 86 FI MAIN SRC 

2 

/********~*~***************************************************************** 

* 
* 

MAIN MODULE FOR THE LINE PRINTER MULTIPLEXER * 
************.***************************************************************1 

$DEBUG 
MAIN$MOD' 00, 

1**************************************************************************** 
* PORT I· BIT CONFIGURATION * 
* * • BUFFER FULL 
* B7 

CTS 
B6 

ADDRESS 
B5 64 B3 

RTS 
B2 

TWO WIRE HANDSHA~E 
61 BO * 

* 
************************************~****************************************1 

DECLARE LIT LITERALLY 'LITERALLY', 
TRUE LIT 'OFFH', 
FALSE LIT '0', 
FOREVER LIT 'WHILE l', 

CMD$I LIT '0', 1*82'56 REGISTERS*/ 
CMD$2 LIT '2', 
CMD$3 LIT '4' , 
MODE LIT '6', 
PORT$! $CTRL LIT '8', 
SET$INT LIT 'OAH', 
INT$EN LIT 'OAH', 
RST$INT LIT 'OCH', 
INT$ADDR LIT 'OCH " 
TX$BUFF LIT 'OEH', 
RX$BUFF LIT 'OEH', 
PORT$I LIT 'IOH', 
PORT$2 LIT '12H', 
DE60UNCE$TIMER LIT '14H', 
SCAN$TIMER LIT 'IAH', 
RECEIVE$T!MER LIT 'ICH' , 
STATUS$REG LIT 'IEH', 

SCAN$lNT LIT '40H', 
DE60UNCE$INT LIT 'OtH', 
RECEIVER$INT LIT 'IOH' 
TIME$OUT$INT LI r 'OSH' , 
TRAN5MIT$INT LIT ~20H' , 

EMPTY LIT '0' , 
INUSE LIT '1' , 
FULL LIT '2 " 

RTS LIl '( INPUTtPORT$l) AND 04H)', 

5-407 210907-002 



PL/M-86 COMPILER MAINMOD 

3 
4 

5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 
16 
17 
lB 

19 

20 
21 

22 
23 
24 
25 

1 
2 

2 

1 
2 
;/ 

2 
;/ 

1 
2 
2 
2 
2 
2 
2 

2 

2 
3 

2 
2 
2 
2 

BEGIN LABEL 

TEMP BYTE, 
SCANSDELAY BYTE 
DEBOUNCESDEOLAY BYTE 
RECEIVESDELAY BYTE 
PORTSPTR BYTE 

PUBLIC, 

PUBLIC, 
PUBLIC, 
PUBLIC, 
PUBLIC, 

, SERIAL$FORMAT(8)BYTE PUBLIC, 1* PEN EP Ll LO'B3 B2 Bl BO *1 

MESSAGE$PTR 
J 
01>1 ( 1) 
BUFFERSSTATUS 

POINTER 
BYTE 
BYTE 
BYTE 

EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 

I********************************************~************************ 
* EXTERNAL PROCEDURE DECLARATIONS * 
*********'************************************************************1 

POWERSON PROCEDURE EXTERNAL; 
END POWER$ON; 

LOAD$INT$TABLE PROCEDURE EXTERNAL 
END LOADSINTSTABLE, 

1********************************************************************* 
* SET THE BIT RATE AND DATA FORMAT FOR THE SERIAL PORT * 
.********.**********************************~*************************/ 

CONFIGURE,PROCEDURE , I*Init,al,ze blt rate and data Format*1 
TEMP=SERIAL$FORMAT(SHR(PORT$PTR,3», 
OUTPUT(CMDS1)=«SHL(TEMP,;/) AND OeOH) OR 03H), 
OUTPUT(CMDS2)=(TEMP OR 30H); 
END CONFIGURE, 

1****************************-11:**************************************** 
INITIALIZE SERIAL RECEIVER * 

*********************************************************************1 

INITSRECEIVER PROCEDURE, 
CALL CONFIGURE, 
RECEIVESDELAY=TRUE, 
OUTPUT(CMD$3)=OCOH, 
OUTPUT (RECEIVE$TIMER) ;70, ' 
OUTPUT(SET$INT)=18H, 
IF (BUFFERSSTATUS<:"FULL> 

I*Enable ser1al recslver*1 
1*18 second TIMESOUT*I 
I*Enable RECEIVER and TIME$OUT lnterrupts*1 

THEN 
OUTPUT(PORTS1)=(INPUT(PORTS1) AND OBFH), I*Send CTS TRUE*I 

DO WHILE RECEIVE$DELAV=TRUE. 1* Walt here whlle receIVIng serial data *1 
END, 

'1* After 18 second~ of not recelvl~g a charatter. proceed *1 

OUTPUT(SETSINT)=TRANSMI1SINT, 
J=O, 
MESSAGESPTR~ @01>l(0), 
CAUSE$INTERRUPT (45H), 

1* Send the termlnatlng m~S6aQe *1 

5-408 210907-002 



"nt_l® 
.111'eI AP·153 

PL/M-86 COMPILER MAHmOD 

26 
27 
28 
29 

30 
31 
32 
33 
34 
35 
36 
38 

39 

40 

41 

42 

43 

2 
2 
2 
2 

1 
2 
2 
2 
2 
3 
2 
2 

2 

OUTPUT(PORT$I)=(INPUT(PORT$I) 
OUTPUT(RST$INT)=18H. 
OUTPUT(CMD$3)=40H. 
END INIT$RECEIVER, 

OR 40H), I*Sond CTS FALSE*I 
I*Ciear RECEIVER and TIMER Intorrupts*1 
I*Dlsable seTlal recelver*; 

/***********~********************************************************* 
DEB OUNCE RTS * 

***********~*********************************************************1 

DEB OUNCE PROCEDURE. 
DEBOUNCE$DELAY=TRUE, 
OUTPUTCDEBOUNCE$TIMER)=-10, l* 10 mser debouncs tIme delay if./ 
OUTPUT(SET$INT)=DEBOUNCE$INT. 

DO WHILE DEBOUNCE$DELAY=TRUE; 
END. 

IF RTS=O THEN CALL INIT$RECEIVER, 
END DEBOUNCE, 

/****************************************************~***~************ 
* BEGIN MAIN PROGRAM * 
**********************************************************~**********/ 

BEGIN CALL POWER$ON. 

CALL LOAD$INT$TABLE, 

ENABLE. 

DO FOREVER. 

SCAN$DELAY=TRUE, 
44 2 OUTPUTCSCAN$TIMER)=100, I*Spend 100 msec on each seTlal port sampllng RTS*I 
45 2 

46 2 
47 3 

48 3 
49 3 

50 2 
51 2 
52 2 
53 2 

54 2 
55 2 
56 1 

OUTPUT(SET$INT)=SCAN$INT, 

DO WHIL.E SCAN$DELAY=TRUE. 
IF RTS=O 

THEN 
CALL DEBOUNCE, 

END; 

TEMP=INPUT(PORT$I). I*Incroment PORT$PTR*I 
PORT$PTR=TEMP AND 38H, 
TEMP=TEMP AND (NOT 38H), 
PORT$PTR=(PORT$PTR+8) AND 38H, 

OUTPUT(PORT$I)=TEMP OR PORT$PTR, I*Look at next serlai port*1 
END, I*DO FOREVER*I 
END MAIN$MOD. 

MODULE INFORMATION. 

CODE AREA SIZE 011CH 284D 

PL/M-86 COMPILER MAINMOD 

CONSTANT AREA SIZE = OOOOH 00 
VARIABLE AREA SIZE OOODH 13D 
MAXIMUM STACK SIZE OOOCH 12D 
159 LI NES READ 
o PROGRAM WARtJINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 
5-409 210907-002 



Ap·153 

PLjM-B6 COMP ILER WTMllD 

SERIES,'111 PL/M-86 "1 0 COMPILATIDN OF MODULE IN,I10D 
OBJECT MODUl E PLACED IN FlINT OBJ 
COMP ILER INVOKED BY PLM86 86 f-! [NT SRI' 

3 

4 
5 
6 

7 
B 

9 
10 
11 

12 
13 

14 

1 
2 
2 

1 
2 

1 
2 
2 

1 
2 

I**********~~~******~********~~*~~*~****~**.****~*~**~~R>~***~*~~*~*** 

• 
* 
* 

IN,EQRUPT MOD\;LF CUNTAINS ALI. INTERRUPT ,ROUTlNES 
PLUS LOAD INTERR','PT I P,DU: F'10CEDURIO 

SDEBUG 
INT$MOD DO, 
SNOLIST 

DECLARE 
ESC 
SCANSDELAY 
DEB OUNCES DELAY 
RECEIVESDELAY 
MESSAGESPTR 
J 

LIT 
BYTE 
BYTE 
BYTE 
POINTER 
BYTE 

'lBH' , 
EXTE"RNAL, 
EXTE"RNAL, 
EXTE"RNAL, 
EXTERNAL. 
EXTERNAL, 

• 
* .' 

l************************************* .... *** .. ******* ... ******ift>-*'A-**-lt-****** 
* MESSAGES SENr TO SERIAL PORTS 
******.*****************************************~********************1 

OK (*) BYTE PUBLIC DATA ('TRANSMISSION COMPLETE',OAH,ODH,QO), 
BREAK (*) BYTE PUBLIC DATA ('BREAK DETECT ERROR', QAH, ODH,OO), 
PARITY (.)BYTE PUBLIC DATA ('PARITY ERROR DETECTED', OAH, ODf;, 00), 
FRAME (*) BY,E PUBLIC DATA ('FRAMING ERROR DETECTED',OAH, ODH, 00), 
OVERSRUN(*)BYT. PUBLIC DATA( 'OVER RUN ERROR DETECTED', OAH, ODH, 00), 

1********************************************************************* 
EXTERNAL PROCEDURES CALLED BY THE INTERRUPT RourlNES " *****************************~*****************~**~******************1 

ERROR PROCEDURE (STATUS) EXTERNAL, 
DECLARE STATUS BYTE; 
END ERROR, 

PROGRAM PROCEDURE EXTERNAL. 
END PROGRAM, 

BUFFSIN PROCEDURE (CHAR) .XTERNAL, 
DECLARE CHAR BYTE, 
END BUFF$!N, 

BUFFSOUT PROCEDURE BYTE EXTERNAL, 
END BUFFSOUT, 

/ *** **** ***"* * * * ***~"*"* *** *'** '* * ~ ** ** ***** * **"""*"* 11- ** *** * '* ** ** * '* *** ** * ** *** 
LOAD THE INTERRUPT TABLE 

***************.********************************************+******.~I 

LOADSINTSTABLE PROCEDURE PUBLIC, 

5-410 210907-002 



Ap·153 

PL/M-86 COMPILER INTMOD 

15 
16 
17 
18 
19 
20 

21 

22 

23 
24 
25 
26 

27 
28 
29 
30 

31 
32 
33 
34 
35 

36 

37 

38 
39 
40 

2 
2 
2 
2 
2 
2 

2 

2 
2 
2 
2 

1 
2 
2 
2 

1 
2 
2 
2 
2 

2 
2 
2 

CALL SET$INTERRUPT (40H,DEBOUNCE$TIME), 
CALL SET$INTERRUPT (43H,RECEIVE$TIME), 
CALL SET$INTERRUPT (44H,RXD), 
CALL SET$INTERRUPT (45H,TXD), 
CALL SET$INTERRUPT (46H,SCAN$TIME), 
CALL SET$INTERRUPT (47H,LP), 

END LOAD$INT$TABLE, 

1********************************************.************************ 
* INTERRUPT ROUTINES * 
*********************************************************************/ 

1********************************************************************* 
* SET SCAN DELAY FLAG FALSE * 
*********************************************************************1 

SCAN$TIME PROCEDURE INTERRUPT 46H, 

ENABLE, 
SCAN$DELAY=FALSE, 
OUTPUT(CMD$3)=88H, 
END SCAN$TIME, 

/*Output end for nested mode./ 

1********************************************************************* 
* SET DEBOUNCE DELAY FLAG FALSE * 
*********************************************************************1 

DEBOUNCE$TIME PROCEDURE INTERRUPT 40H, 
DEBOUNCE$DELAY=FALSE, 
OUTPUTCCMD$3)=88H, 
END DEBOUNCE$TIME, 

1********************************************************************* 
* SET RECEIVE DELAY FLAG FALSE * 
**********************************~**********************************1 

RECEIVE$TIME PROCEDURE INTERRUPT 4iH, 
ENABLE, 
RECEIVE$DELAY=FALSE, 
OUTPUTCCMD$3)=88H, 
END RECEIVE$TIME, 

1********************************************************************* 
* READ SERIAL RECEIVE BUFFER 
*************************************~*******************************1 

RXD PROCEDURE INTERRUPT 44H, 

DECLARE 
STATUS BYTE, 
CHAR BYTE, 

CHAR=INPUT(RX$BUFF), 
OUTPUT(R"-CUVESTIMERI=70, 1* REINITIALIZE RECEIVE TIME OUT 0; 
STATUS~INPUT(STATiJS$REG) AND OFH, 

5-411 

12/09/82 

210907-002 



PL/M-86 COMPILER INTMOIJ 

41 

42 

43 

44 

45 
46 
47 

48 
49 
50 
51 
52 

53 
54 

55 
56 
57 

59 
60 
61 
62 

63 

~ 

2 

;/ 

2 

2 
2 
2 

1 
2 
2 
2 
2 

1 
2 

2 
2 
2 

2 
2 
2 
2 

l ,. STArlJS:- 0 
1 Hc.N 

CALL ERROR (s rATUa), 

ELSE IF CHAR=ESC 
THEN 

CAl.l. PR[)t;~AI1, 

ELSE 
CALL BUFFSIN (CHAR ), 

OUTPUT(CMDS3)=88H, 
END RXD, 

1********************************************************************* 
* SEND A BYTE TO THE LINE PRINTER * 
*********************************************************************1 

LP:PROCEDURE INTERRUPT 47H, 
ENABL.E, 
OUTPUT(PORTS21=BUFFSOUT, 
OUTPUT(CMDS3)=88H, 
END LP, 

1********************************************************************* 
* SEND A BYTE TO THE SERIAL PORTS * 
**********~**********************************************************1 

TXD.PROCEDURE INTERRUPT 45H, 
DECLARE 

MESSAGE BASED MESSAGE$PTR (I) BYTE, 
I BYTE, 

ENABLE, 
I =MESSAGE ( J ) , 

IF 1<:>0 
THEN OUTPUT(TXSBUFF)=I, 

ELSE OUTPUT(RST$INT)=TRANSMITSINT, 
J=J+I, 
OUTPUT(CMDS31=88H, 

·END TXD, 

END INTSMOD, 

MODULE INFORMATION 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
181 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 

OIBDH 
0078H 
0003H 
0022H 

4450 
1200 

3D 
340 

5-412 210907-002 



AP·153 

PL/M-86 COMPILER BUFFMOD 

SERIES-III PL/M-86 VI 0 COMPILATION OF MODULE BUFFMOD 
OBJECT MODULE PLACED IN F! BUFF OBJ 
COMPILER INVOKED BY PLM86 86 F! BUFF SRC 

3 

.. 
5 

6 

I 
2 

1********************************************************************* 

* 
* 
* 
* 

BUFFER MODULE INSERTS AND REMOVES CHARACTERS FROM FIFO 
REPORTS SERIAL RECEIVE ERRORS AND 
RE-PROGRAMS SERIAL PORTS 

* 

* 
* *******************************************.*************************1 

$DEBUG 
BUFF$MOD DO, 
$NOLIST 

DECLARE 
MESSAGE$PTR POINTER 
J BYTE 
OK( I) BYTE 
BREAK(!) BYTE 
PAR lTY ( I ) BYTE 
FRAME(!) BYTE 
OVER$RUN(I) BYTE 
SERIAL$FORMATII)BYTE 
PORT$PTR BYTE 

FIFO(8!92) 
IN$POINTER 
OUT$POINTER 
BUFFER$STATUS 

BYTE, 
WORD 
WORD 
BYTE 

PUBLIC. 
PUBLIC, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 
EXTERNAL, 

PUIlL IC. 
PUBLIC. 
PUBLIC, 

1*********************************************************************. 
* INSERT CHARACTER INTO FIFO * 
*********************************************************************1 

BUFF$IN PROCEDURE (CHAR) PUBLIC, 
DECLARE 

CHAR BYTE, 

IF «BUFFER$STATUS=EMPTY) AND «CHAR=LF) OR (CHAR=CR») 
THEN 

DO, 7 
8 
9 

2 
3 
3 
3 

OUTPUT(SET$INT)=HANDSHAKE$INT. 1* Enable tWo-WIre handshake Interrupt *1 
BUFFER$STATUS=INUSE, 

10 

II 

12 
13 

14 

15 

3 

2 
2 

2 

QUTPUT(PORTS2)=O. 1* Output NULL character to get 
the lnterrupt started *1 

END, 

FIFO(INSPOINTER)=CHAR. 1* Put CHAR Into FlFO and Incrpmpnt pOlnte,- • I 

IN$POINTER~( (INPOINTER>I) AND IFFFH), 

IF «(ItJ'IIPClJNTF:R-+4) AND lFFFH)'''IJUrfoPClIt-ITl-R) /fI- If tht' huff .. ,- I', fllil ">top l"f-"t'ptllHl" 

THEN 
DO, 1* Send CTE FALSE, dlld llqht up buf'fe-r -full 1 ~ U 11/ 

5-413 210907-002 



Ap·153 

FL/M-86 COMPILER BUFFMm) 

16 
17 
18 
19 

cO 
011 
22 
23 
2-\ 

25 
26 
27 
28 
29 
30 

31 

32 
33 
34 
35 

37 

38 
39 

40 

41 
42 

43 
44 

45 
46 

47 

49 
50 

3 
3 
3 
2 

I 
2 
2 
2 
'2 

2 
:3 
:3 
3 
3 
3 

2 

2 
3 
3 
3 

2 

I 
2 

2 

2 
2 

2 
2 

2 
:2 

2 

3 
3 

OUTPUT(PORT'$! )=( (INPUT (PORTSI) OR 40H) AND 7FH), 
BUFfER$STATlJS=Fl'LL, 

END, 
END IlUFFSIN, 

/*********~************************~********************************** 
* REMOVE CHA~ACTER FROM FIFO * 
*******~*********************~*****~****************** ***************1 

BUFF$OUT PROCEDURE BYTE PUBLIC, 
DECLARE CHAR BYTE, 
CHAR=FIFO(OUT$POINTER), 
OUT$POINTER~( (QUT$POINTER+I) AND IFFFH), 
IF OUT$POINTER=IN$POINTER 1* If the bu'fe •• , EMPTY d.,able the output to LP *1 

THEN 
00. 

DISABLE/ 
BUFF.R$STATUS=EMPTY, 
OUTPUT (RSH tNT> =HANDSHAKE$ I NT. 
ENABLE. 

END, 

1* If tMt bu" •• is r •• dv to fill up aga.n then .end CTS TRUE *1 

ELSE tl' «BUFFEfI$STATIJS=FULLl AND « (0\)TSPCJINTER--200) AND IFFFH)-=IN$POINTER» 
THEN 

DOi 1* Turn Off buffer-full LED and turn on ers *1 
OUTPUT(PORT$1 )=( (INPUT(PORTS1) AND OSFH) OR BOH). 
BUFFER$STATUS=INUSE, 

END, 
RETURN CHAR, 

END BUFFSOUT, 

/**********************************'********~******-t'-******************* * SEND ERROR MESSAGE TO SERIAL PORT * 
*************************************************~*******************1 

ERROR PRO~EDURE (STATUS) PUBLIC,' 
DECLARE STATUS BYTE, 

MESSAGE BASED MESSAGESPTR(I) BYTE. 

IF (STATUS AND 02H):0 
THEN 

STATUS=2, 
ELSE IF (STATUS AND 04H»)0 

THEN 
STATUS~3; 

ELSE II' (STATUS AND 08H»0 
THEN 

STATUS=4, 
ELSE IF (STATUS AND OIH)~O 

THEN 
STATUS=I, 

DO CASE STATUS. 

MESSAGE$PTR=@FRAME(O). 

5-414 210907-002 



AP-153 

PL/M-96 COMPILER BUFF MOD 

51 
52 
53 
54 

55 
56 
57 
59 

59 
60 

61 
62 

63 

64 

65 
66 
67 
69 
69 

70 

71 
72 

73 

74 
75 

76 

3 
3 
3 
3 

2 
:2 
2 
2 

1 
2 

2 
3 

:2 

2 

2 
3 
3 
3 
3 

2 

2 
3 

:2 

2 
:2 

MESSAGESPTR=~OVERSRUN(O), 

MESSAGESPTR=~PARITY(O), 

MESSAGESPTR=~BREAK(O), 

END, 

~=1, 1* POint to second character 1n strIng *1 
OUTPUT(SETSINT)=TRANSMITSINT, 
OUTPUT(TXSBUFF)=MESSAGE(O), 

END ERROR; 

1*********************************************************~*********** 
* RELOAD SERIAL PORT CONFIGURE BYTE 
*********************************************************************1 

PROGRAM. PROCEDURE PUBLIC, 
DECLARE TEMP BYTE, 

CHAR BYTE, 

DO WHILE (INPUT(STATUSSREG) AND 40H)=O, 1* Walt for ne,t byte *1 
END, 

CHAR=INPUT(RXSBUFF), 

IF CHAR=O 
THEN 

DO; 

END; 

1* If second byte 15 0, e-xit program mode *1 

OU1PUT(RECEIVESTIMER)~70; 

CALL BUFFSIN (CHAR), 
RETURN, 

TEMP=(CHAR AND OFH), 

DO WHILE (INPUT!STATUSSRE6! AND 40H)=O; 
END. 

TEMP=(INPUT(RXBUFF) AND OFH) OR SHL(TEMP,4), 

SERIALSFORMAT (SHR(PORTSPTR,3»=TEMP, 
END PROQRAM, 

END I3UFFSMOD, 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
189 LINES READ 
o PROGRAM WARNINQS 
o PROGRAM ERRORS 

= 01E4W' 
OOOOH 
200BH 

= OOOAH 

END OF PL/M-86 COMPILATION 

4940 
00 

82030 
100 

5-415 210907-002 



Ap·153 

PL/M-86 COMPILER 

SERIES-III PL/M-86 VI 0 COMPILATION OF MODULF PON .. MOIl 
OBJECT MODULE PLACED IN n PON DB,) 
COMPILER INVOKED BY PLM86 86 Fl PON SRC 

SDEBUG 

/****************************~********************************************** 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 

14 
15 
17 

18 

2 

2 

2 

2 

2 
2 

2 

2 

2 

2 
2 
2 

2 

• 
• • 

POWER ON INITIALIZATION OF THE LINE PRINTER MULTIPLEXER 
if 

• 
* 

****************************~*~******~*****.*******************************1 

!!>NOLlST 

DECLARE BUFFERSSTATUS BYTE 
INSPOINTER WORD 
OUTSPO I NTER WORD 
PORTSPTR BYTE 
SERIALSFORMAT(S)BYTE 

POWERSON PROCEDURE PUBLIC, 

DECLARE I BYTE, 

DISABLE, 

EXTERNAL, 
EXTERNAL, 
EXTERNAl., 
EXTERNAL, 
EXTERNAL, 

/* INITIALIZE THE MUART ./ 

OUTPUT(CMDSl)=0100001IB, 

OUTPUT(CMDS2)=IOII0100B, 

OUTPUT(CMDS3)=0111111IB, 
OUTPUT(CMDS3)=1011000IB, 

OUTPUT(MODE)=IOOOOIOIB, 

1*8086 MODE, FREQ=IKHz, I STOP BIT, & 
7 BITS/CHARACTER-I 

1*000 PARITY, SYSTEM CLO.CK=I 024 MHz, & 
9600 bps"l 

I.CLEAR CMDS3 REGISTER*I 
I*RESET, INTERRUPT ACKNOWLEDGE ENABLE, & 

NESTED INTERRUPT MODE*I 
I*CASCADE TIMERS 35 FOR THE 

RECEIVESTIMESOUT TIMER, BYTE OUTPUT MODE*/ 

OUTPUT(PORTS1SCTRL)=11111000B, I*PORT I RTS=INPUT, THE REST ARE OUTPUTS*/ 

OUTPUT(PORTS1)=11000000B, I*POINT TO THE FIRST PORT, eTS IS Ft' 
AND BUFFER IS NOT FULL*I 

1* INITIALIZE FLAGS, VARIABLES, AND ARRAYS */ 

BUFFERSSTATUS=EMPTY, 
INSPOINTER=O, OUT$POINTER=O, 
PORTSPTR=O, 

DO 1=0 TO 7, 

5-416 210907-002 



Ap·153 

PL/M-86 COMPILER 

19 3 SERI'AL$FORMAT< I )=100101001l. 

20 3 END. 

21 2 END POWER$ON. 

22 

MODULE INFORMATION 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIAIlLE AREA SIZE = 
MAXIMUM STACK SIZE 
98 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 

0058H 
OOOOH 
OOOIH 
0002H 

88D 
OD 
ID 
2D 

5-417 

/* ON POWER-UP ALL EIGHT SERIAL PORTS 
DEFAULT TO 9600 bps. ODD PARITY. AND 
7 IlITS/CHARACTER./ 

210907-002 



AP·153 

APPENDIX B 
LISTING OF THE WRITE PROGRAM 

5-418 210907-002 



Ap·153 

F-L/M-S(J ('0I1PILFI"1 

ISIS-II PL/M-SO V4 0 COMPILA1ION OF MODULE WRIT~MOD 
OB')ECT MODULE PLACED IN F 1 UR ITE DB,) 
COMPILER INVOKED BY F2 PLMSO FI WRI1E SRe 

:2 

-3 

4 

7 

B 
'i' 

10 

:2 
2 

2 
:2 

.DEBUO 
WRITE$MOD DO, 

1*******.*********************.*************************************** 
* * * WRITE PROGRAM READS A FILE FROM A DISK AND COPIES * 
* IT TO SERIAL CHANNEL :2 ON THE MDS * 
* 
* 
* 

SYNTAX OF WRITE WRITE DEVICE NAME ExrENSION * 
* 
* 

****************.*********************~****~***.* •• *************.****1 

DECLARE LIT LITERALLY 'LITERALLY' , 
USART$DA1A LI1 'OF6H', 
USART$STATUS LIT 'OF7H' , 
RTS LIT '20H', 
HEN LIT 'OIH', 
RXE LIT '04H', 
CR LIT 'ODH', 
LF LIT 'OAH', 
TAil LIT 'O'i'H', 
SP LI1 '20H', 
ESC LIT 'IBH' , 
FORM$FEED LIT 'OCH', 

DECLARE AFT$IN ADDRESS, 
FILENAME(15) BYTE, 
STATUS ADDRESS, 
BUFFER (32000) BYTE, 
ACTUAL ADDRESS, 
CHAR$COUNT ADDRESS, 
BYE(42) BYTE INITIAL 

( 'WROTE ',O,O~O,O,O,O,O.o,o,o,o,o,o.o, ' TO THE LINE PRINTER',OAH,ODH), 
I ADDRESS, 
,) BYTE, 

1**********.**».***********************-*.******* •• ******************* 
* EXT~RNAL SYSTEM LIB PROCEDURES * 
**********.**.**************************.****~***.********.**.*******1 

OPEN 
PROCEDURE (AFTNPTR,FILE,ACCESS,MODE,STATUS) EXTERNAL, 

-DECLARE CAFTNPTR,FILE,ACCESS,MODE,STATUSl ADDRESS. 
END OPEN, 

READ 
PROCEDURE (AFTN,BUFFER,COUNT,ACTUAL,STATUS) EXTERNAL, 
DECLARE (AFTN, BUFFER, COUNT, ACTUAL, STATUS) A~DRESS, 

END READ, 

WRITE 

5-419 210907-002 



Ap·153 

PL/M-80 COMPILER 

11 
12 

13 

14 
15 

lo!> 

17 
18 

19 

20 

21 

22 
23 
24 

25 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

2 
2 

2 
2 

2 

2 
3 
2 

PROCEDURE (AFTN, BUFFER, COUNT, STATUS) EXTERNAL, 
DECLARE (AFTN, BUFFER, COUNT,STATUS) ADDRESS; 

END WRITE, 

CLOSE 
PROCEDURE (AFTN, STATUS) EXTERNAL, 
DECLARE (AFTN,STATUS) ADDRESS; 

END CLOSE, 

ERROR 
PROCEDURE (ERRNUM) EXTERNAL, 
DECLARE (ERRNUM) ADDRESS, 

END ERROR, 

EXIT 
PROCEDURE EXTERNAL, 

END EXIT, 

1*******************************************************-M.************* * WAIT UNTIL U8ART TRANSMITTER IS READY * 
****************************.****************************************1 

TXRDY 
PROCEDURE, 
DO WHILE ( (INPUnUSART$STATUS) AND 01H) 
END, 

END TXRDY, 

° ); 

1********************************************************************* 
* BEGIN MAIN PROGRAM * 
*************************************'.*******************************1 

BEGIN. 
STATUS=O, 

CALL READC1, FILENAME, 15, ACTUAL, STATUS), 1* R.ad ln flle and path name *1 

IF STATUS <> ° 

REPEAT 

THEN 
GO TO DONE; 

CALL OPENC AFT$IN, FILENAME, 1,0, . STATUS); 1* Open up the file *1 

IF STATUS <> ° 
THEN 

GO TO DONE; 

CALL READCAFT$IN,.BUFFER,32000, ACTUAL, STATUS); 

IF STATUS C 0 
THEN 

GO TO DONE, 

CHAR.COUNTzO, 1* CHAR.COUNT keeps track of the tab columns In each lIne *1 

OUTPUTCUSART$STATUS)= RTS OR TXEN, 

5-420 210907-0t>2 

) 



inter Ap·153 

f-lL/M-80 Cut'lP1LER 

37 

38 
39 2 
40 2 
41 2 

42 

43 2 

44 2 
45 3 
46 3 
47 3 

48 3 
49 4 
50 4 
51 4 
52 4 
53 3 

54 2 

55 2 
56 3 
57 3 
58 3 

59 2 
60 3 
61 3 
62 3 

63 3 

64 3 

65 3 
66 3 
67 2 

68 

69 

70 
71 
72 

IF RUFFERCO)=FORM$FEED 1* If the fIrst chaTatteT is a form feed 

THEN 
DO, 

BUFFE.R (0) =OOH, 
CHAR$COUNT=-I, 

END, 

remove It rorm f~eds are lnserted at the 
end of a fIle ~I 

DO I 0 TO (ACTUAL - 1), 

END, 

IF (BUFFER(I)~TAB) 1* Replace TAB characters WIth the 
approprIate number of spaces *1 

THEN 
DO, 

ELSE 
END. 

CALL TXRDY. 
OUTPUT(USART$DATA)=SP. 
CHAR$COUNT=CHAR$COUNT+l. 

DO WH! LE « CHAR$COUNT AND 0007H V:' 0) , 
CALL TXRDY. 
OUTPUT(USARTSDATA)=SP, 
CHARSCOUNT=CHAR$COUNT + t. 

END, 

IF BUFFER(I)=ESC I. If outputtIng ESC. theh output a 
o ne~t so the LPM does not get 

re-proqrammed *1 
THEN 

DO J=O TO 1. 
CALL TXRDY. 
OUTPUT(USARTSDATA)=O. 

END, 
ELSE 1* If the character 15 not an ESC or TAD then output It *1 

DO. 
CALL TXRDY, 
OUTPUT(USART$DATAi=BUFFER(!), 
! F (BUFFER ( !): 1 FH AND BUFFER ( !) ':: 7FH) 

THEN 1* Only Increment CHAR$COUNT 
for prIntable characters *1 

CHARSCOUNT=CHAR$COUNT+!, 

IF (BUFFER ( !) =CR) OR (BUFFER ( I l =LF) 
THEN 1* Reset CHAR$COUNT for CR or LF *1 

CHARSCOUNT=O, 
END, 

IF ACTUAL = 32000 1*lf the fIle 15 more than 32K, get some more data *1 
THEN 

GO TO REPEAT, 

CALL TXRDY, 1* TeTmlTlate flle ullth CR, LF, and FF <JS-I 
OUTPUT(USARTSDATAJ=CR, 
CALL TXRDY, 

5-421 210907-002 



Ap·153 

PL/M-80 COMPILER 

73 
74 
75 

76 

77 

78 1 
79 2 

80 2 
81 2 
82 2 

83 

84 

85 

86 

87 .il 

SKIP' 

DONE. 

NEXT: 

OUTPUT(USART$DA1A)=LF. 
CALL TXRDY. 
OUTPUT (USART$DATA)=FORM$FEED. 

OUTPUT(USART$STATUS>=RXE OR TXEN. 1* Shut off RTS *1 

CALL CLOSE (AFT$IN. STATUS). 

DO 1=0 TO 14; 1* Output sign off message *1 
IF FILENAME(I)=CR 

THEN 
GO TO SKIP. 

BYE(I+5)=FILENAME(I). 
END. 

CALL WRITE(O. BYE. 42. STATUS). 

GO TO NEXT. 

CALL ERROR(STATUS). 

CALL EXIT, 

END WR ITE$MOD, 

MODULE INFORMATION. 

CODE AREA SI ZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
191 LINES READ 
o PROGRAM ERRORS 

END OF PL/M-80 COMPILATION 

0209H 
7D44H 
0008H 

521D 
320680 

80 

5-422 210907-002 

/ 



AP·153 

APPENDIX C 
MUART REGISTERS 

5-423 210907-002 



"n+_I® I •• -e- Ap·153 

808S Mode: AD3 ADZ ADl ADO 
8086 Mode: AD4 AD3 ADZ ADl 

0000 

0001 

0010 

0011 

Timer Frequency Select 
8086 Mode Enable 
Interrupt on Bit Change 
Break-in Detect Enable 
Stop Bit Length 
Character Bit Length 

'------- Baud Rate Select 
'------------- System Clock Divider 

L-__ ------------- Even Parity 
'------------------- Parity Enable 

Command 3 

. Transmit Break I I Software Reset 

, 
__________ Single Character Break 1.-________ End of Interrupt 

Nested Interrupt Enable 
L-_____________ Interrupt Acknowledge Enable 

'----------------- Receiver Enable 
1.-_________________ Bit Set/Reset 

I T35 I T24 I T5C I CT3 I CT21 P2C21p2Cli P2CO I 
Mode I L 1 J r ... 1 ____ Port 2 Control 

I Counter/Timer 2 
L-__________ Counter/Timer 3 

L-_____________ Timer 5 Retriggerable 
1.-_______________ Cascade Counter/Timer 2 & 4 

L-_________________ Cascade Counter/Timer 3 & 5 

5-424 
210907-002 



Ap·153 

0100 

'----------- Output/Input of Port I pins 

(Write only) 

0101 L7 L6 I L~ I L4 I L3 I L2 I LI I LO I Enable 
Set Interrupts 

(Write only) 

0110 L7 L6 I L5 I L4 I L3 I L2 I L1 I LO I Disable 
Reset Interrupts 

(Read only) 

OlOl L7 L6 I L5 I L4 I L3 I L2 L1 I LO I Interrupt Levels Enabled 

0110 o 

1111 

Interrupt Enable 

(Read only) 

o 

Interrupt Level in Service 

(Write only) 

Disable Start Bit Check 
'----- Transmit Mode Enable 

'----------- Receiver S~pling Point 

5-425 210907-002 

I 

I· 
I 
I, 

I" 

I ," 

. , 



AP·153 

Status Register (Read only) 

1111 lINT I RBF I TBE I TRE I BD I PE I OE I FE I 

I Framing Error/Transmission Mode 
Indication 
Overrun Error 
Parity Error 
Break Detect or Break-in Detect 
Transmitter Register Empty 
Transmitter Buffer Empty 
Receiver Buffer Full 
Interrupt Pending 

Response to INTA 
8085-Mode (RST-instruction in response to INTA) 

D5 D4 I D3 

'--__________ Interrupt Level 

8086-Mode (Interrupt Vector in response to second INTA) 

o o o o D2 Dl I DO I 
'------ Interrupt Level 

5-426 210907·002 



inter APPLICATION 
NOTE 

AP-183 

August 1984 

8256AH Multifunction Peripheral 
Simplifies Microcomputer 

I/O Design 

CHRISTOPHER SCOTT 

@Intel Corporation, 1984 5-427 Order Number: 231125-001 



AP·183 

8256AH Multifunction CONTENTS 
Peripheral Simplifies INTRODUCTION 

Microcomputer 1/0 Design Description of the 8256AH 

HARDWARE DESCRIPTION 
8256AH/80186 System Design 

RS-232C Hardware Interface 

Parallel 1/0 with Handshaking 

SOFTWARE DESCRIPTION 
Serial RS-232C Interface 

RS-232C Control Signals Interrupt 
Structure 

CONCLUSION 

APPENDIX A. 
Software Listing 

FIGURES 
1a. System Block Diagram Without 

8256AH 

1b. System Block Diagram With 
8256AH 

2. 8256AH Internal Block Diagram 

3. 8256AH 180186 Schematic 

4. Block Diagram of the 8256AH Serial 
RS-232C Interface Software 
Structure 

5. 8256AH Interrupt Source To Priority 
Level Map 

6. Port 1 RS-232C Pin Definition 

7. Receive Data Interrupt Service 
Routine Software Flowchart 

8. Transmit Data Interrupt Service 
Routine Software Flowchart 

Additional Sources of Information 
Ap Note 153 Designing with the 8256AH 

5-428 231125-001 



AP-183 

INTRODUCTION 

A primary goal of microcomputer system design is to 
provide the required functionality and flexibility with 
the fewest number of components. The 8256AH Multi­
function Peripheral is designed specifically to meet 
these conflicting requirements. Four of the most com­
mon microcomputer systen,'l functions, previously re­
quiring up to four separate MSI or LSI devices, are 
combined into one LSI device. The 8256AH incorpo­
rates a serial asynchronous communication channel, 
two 8-bit parallel I/O ports, five 8-bit timer/count­
ers and an eight level priority interrupt controller in 
one 40 pin package. Its flexible design allows it to 
directly interface to most microprocessors, including 
Intel's MCS-85, iAPX-86, iAPX-88, iAPX-186 and 
iAPX-188, and the MCS-48 and MCS-5l family of sin­
gle-chip microcomputers. 

This application note describes using the 8256AH to 
implement a Data Terminal Equipment (DTE) 
RS-232C serial asyncrhonous communication link with 
the c;ontrol signals necessary to interface to a Bell 
103/212A modem. The interface requires a total of 
nine interface signals. Three of these signals, TxD, RxD 
and CTS, are provided by the UART section of the 
8256AH. The balance of the RS-232C interface signals 
are implemented using six of the independently pro­
grammable parallel PORT 1 lines. In addition, the ap­
plication design provides an eight bit parallel I/O port 
with handshaking signals. The on-chip priority inter­
rupt controller enables the RS-232C serial interface an 
the parallel interface to operate on an interrupt baSI 
The 8256AH uniquely addresses the complexities of 
implementing an RS-232C commuriications interface. 
By utilizing the built-in hardware and software features 
of the 8256AH, the design achieves flexibility with sim­
plicity, qualities often exclusive of one another. 

ZWIRE 
HANDSHAKE 

Previous solutions required four components to imple­
ment the same interface. Figure 1 illustrates the basic 
system block diagrams for the two solutions. In Figure 
la the 8251A Programmable Communications Inter­
face provides the UART serial communications inter­
face. The 8254 Programmable Interval Timer provides 
baud rate generation and other timing functions, such 
as time-out loops, needed for software support of an 
RS-232C interface. These are especially needed if the 
RS-232C channel is to operate in an interrupt system 
environment. The 8255A Programmable Peripheral In­
terface provides parallel I/O with one port dedicated to 
the RS-232C control signals. The 8259A Priority Inter­
rupt Controller provides an eight level priority inter­
rupt structure. This represents a total of 120 device pins 
compared to the single 40 pin 8256AH, and 465 mA 
current requirement verses a 160 mA current require­
ment. Figure Ib represents the 8256AH solution incor­
porating the four functions in one package. 

In some data communication applications only three 
lines - ground, Transmit Data and Receive Data - are 
used for serial communication. An example is commu­
nication between an ASCII terminal or printer and a 
personal computer. These devices are usually located 
close to one another and in general do not require the 
additional control signals of the EIA RS-232C serial 
communications standard. In other data communica­
tions applications, this same equipment requires that 
the integrity of the serial communications link be con­
stantly monitored. This enables the host system to con­
trol the data trransmission at all times, whether it be a 
host computer or intelligence local to a communica­
tions device, such as an ASCII terminal. The need for 
control and monitoring of the serial line is particularly 
important when the communications link is over tele­
phone lines using a modem. In a Switched Network, 

"where a number of serial devices share the same com-
munications line, the control signals are crucial to the 
system's multiplexing the single line. 

IIxD lieD 

231125-1 

Figure 1a. System Block Diagram Without the 8256AH 

5-429 231125-001 

I, 
I: 
I 
I' 

I~ 
II I 



AP-183 

PARALLEL 
I/O WITH 
2 WIRE 

HANDSHAKE 

8256 

RxD 1lID 
SERIAL 110 

231125-2 

Fig/ure 1 b. System Block\Dlagram With the 8256AH 

This Application Note assumes that the reader is famil­
iar with the 8256AH Data Sheet and with the RS-232C 
communication protocol and terminology. A complete 
software listing is provided in Appendix A. A complete 
description and dermition of the RS-232C interface 
standard may be found in the book "Data Communica­
tions: A Users Guide" by Kenneth S!terman, Reston 
Publishing 1981. 

DESCRIPTION, OF THE 8256AH 

The 8256AH combines four commonly used peripheral 
functions into. one device (see Figure 2); 

1. A full-duplex, double-buffered serial asynchronous ' 
, ReceiverITransmitter (UART) with an on-chip 

Baud Rate Generator. ' 

2. Two 8-bit parallel I/O ports; One bit programmable, 
One nibble programmable. 

3. Five 8-bit timer/counters; 4 can be cascaded to form 
2 16-bit timer/counters 

4. An 8-level priority interrupt controller. 

The 8256AH uses the standard bus control signals 
compatible with Intel's family of peripherals and mi­
croprocessors. The microprocessor interface utilizes a 
multiplexed address/data bus. Four of the eight ad­
dress/data lines are used to ge~erate the register ad­
dress. This enables all of the 8256AH's functionality to 
be contained in a 40 pin package while retaining direct 
register addressing. 

The sixteen directly addressable internal. read/write 
registers provide control for all of the 8256AH's vari~ 
ous functions. Fourteen of the registers are read/write, 
one, the Status Register, is read only and one, the Mod­
ification Register, is write only. Three Command Reg­
isters configure the operating environment including 
the type of CPU, 8 or 16 bit, and system clock frequen­
cy. Command Register Three provides bit set-reset ca­
pability for control of such functions as End of Inter­
rupt, Nested Interrupts, Interrupt Acknowledge and 
UART Receive Enable. The Status Register provides 
all information about the UART's transmitter and re­
ceiver, and the state of the interrupt (INT) output pin 
to the microprocessor. The Mode Register defines the 
configuration of the two parallel ports and the five tim­
er/counters. The write only Modification Register is 
used to alter two standard functions of the receiver, 
start bit sampli1)g and to enable a special indicator flag 
for half-duplex operation. In addition, six registers con­
trol the, two p~ra11el ports. Two registers provide for 
UART Transmit and Receive Buffers. Ten registers are 
used for timer/counter interface, and four registers pro­
vide for Priority Interrupt Controller support. 

The UART section of the 8256AH features a full-du­
plex double-buffered transmitter and receiver with sep­
arate control registers. The internal baud rate generator 
p~ovides the thirteen common sampling rates from 50 
bps to 19.2 kbps. An external baud rate clock can also 
be used, with programmable choice of IX, 32X or 64X 
sampling rates. 

The two parallel I/O ,ports can be configured as two 
independent 8-bit parallel I/O ports, or as one 8-bit 

5-430 231125-001 



AP-183 

ADO-AD4 

DB5-DB7 

cs---t 
RD ---of 
WR---t 

ALE ---t 

RESET --_ .. 

ADDRESS! 
DATA 
BUS 

BUFFERS 

BUS 
CONTROL 

LOGIC 

TO ALL INTERNAL 
FUNCfIONS 

PORT 1 
COUNTER 
INPUTS 

SYSTEM 
CLOCK 

PRESCALER 

BAUD 
RATE 

GENERATOR 

CLK 

RxD 
llcD 
RxC 
llcC 
CTS 

INTA --_ .. 
INT _---I INTERRUPT ... __ EXTINT 

CONTROLLER 

231125-3 

Figure 2. 8256AH Internal Block Diagram 

parallel port with ACK/OBF and STB/IBF two wire 
handshake signals. In the latter configuration, the six 
remaining I/O lines may be used as either independent­
ly programmable I/O lines, or as predefined, special 
function inputs and/or outputs, such as a second exter­
nal interrupt input or timer/counter inputs. 

The five 8-bit programmable timer/counters are binary 
presettable downcounters. In addition, an independent 
on-chip Baud Rate Generator is provided for the 
UART. The clock sources for the timers/counters may 
be either internal or external - via programmed parallel 
port pins - depending upon whether they are configured 
as timers or counters. Four of the timer/counters may 
be cascaded to form two 16-bit timer/counters. Each of 
the five timer/counters has its own read/write register. 

The eight level priority interrupt controller has twelve 
possible interrupt sources. Ten of the sources are inter­
nal and two are external. One of the external interrupt 
sources is a fixed pin; EXTINT. The second is one of 
the parallel Port 1 pins which can be programmed as an 
external interrupt source. The twelve interrupt sources 
are internally mapped to the eight interrupt priority 
levels. 

5-431 

The interrupt controller may be programmed to oper­
ate in either a Normal or Nested Interrupt Mode. In 
Normal Mode any interrupt may interrupt any other 
interrupt based upon the enable/disable bits in the In­
terrupt Enable, or Mask, Register. In the Nested Mode 
only an interrupt of higher piority may interrupt one of 
lower priority, again based upon the bits in the Enable 
Register. 

The 8256AH interrupt structure supports both 8085 
and 8086 interrupt vectoring methods via the INTR 
and INTA signals. In vectored interrupt operation the 
8256AH places the interrupt vector address on the data 
bus during the INT A sequence. In addition the 
8256AH supports non-vectored interrupt interfaces, 
such as MCS-51 and MCS-48 systems. In non-vectored 
interrupt applications the host system simply reads the 

,interrupt vector address from the Interrupt Address 
Register of the 8256AH. Reading the interrupt address 
register clears the INT pin and acknowledges that the 
interrupt has been serviced. This is the fun~tional 
equivalent to an INT A sequence generated by the host 
processor. 

231125-001 



AP-183 

DESIGN DESCRIPTION 

Hardware Description' 

Figure 3 shows a block diagram of this application's 
system design. The microprocessor used is an 
iAPX-186 with two 8256AH's for parallel and serial 
I/O, as well as for providing a variety of system sup­
port functions. One 8256AH is used to implement both 
the RS-232C modem interface and provide multiplexed 
parallel I/O. The system uses the Intel 957B System 
Monitor for control of the system hardware and soft­
ware development support. The second 8256AH is used 
for basic serial communication between an ASCII ter­
minal and the Intel 957B System Monitor residing in 
16K bytes of EPROM. The two 8256AHs provide a 
total of six I/O channels - two UARTs and four paral­
lel I/O ports. 

When one of the 8256AHs is configured for the serial 
RS-232C interface, one of its parallel ports, Port 1 pins 
2-7, provides control signals for the serial interface. 
Four of the RS-232C control signals (CTS, DSRS, DSR 
and CD) are OR'd to the EXTINT pin of the 8256AH. 
If any of these signals ,change from their defined state, 
an interrup.t is generated to the 8256AH. The modem 
driver software then responds to the interrupt by read­
ing the Port 1 register, determines the signal generating 
the interrupt and responds accordingly (see the soft­
ware listing; INT-MOD). In addition to the RS-232C 
control signals, the communications software can sup­
port all of the standard UART error conditions such as 
framing errors, underrun, overrun and parity, if parity 
is enabled. 

Parallel I/O With Handshaking 

The remaining two Port 1 lines, not used for the 
RS-232C control signals, provide ACK/OBF and 
STB/IBF handshaking signals for parallel Port 2. In an 
environment which utilized the second parallel port, 
while implementing the above described RS-232C 
channel, both would operate on an interrupt basis. The 
interrupt software algorithm depends upon whether the 
parallel port is configured as input or output, and 
whether Nested or Normal interrupt mode is pro­
grammed. If Nested Interrupt Mode is used, the soft­
ware flow would default to parallel input or output (as 
programmed) with Port 2 handshaking the lowest pri­
ority interrupt. The serial channel would then interrupt 
parallel P-ort 2 transmission whenever the serial chan­
nel transmitted or received a character. The RS-232C 
control signals, OR'd to the External Interrupt 
(EXTINT) pin, would have the highest interrupt con­
troller priority. The Software Description below de­
scribes this in greater detail. 

SOFTWARE DESCRIPTION 

Serial RS-232C Interface 

The software is written in PL/M and is broken up into 
four separate modules, each containing several proce­
dures. A block diagram of the software structure is giv­
en in Figure 4. The modules are identified by the dotted 
boxes, and the procedures are identified by the solid 
boxes. Two or more procedures connected by a solid 
line means the procedure above calls the procedure be­
low. The procedures without any solid lines connecting 
them are interrupt procedures. They are entered when 
the 8256AH interrupts the 80186 and vectors an indi­
'rect address to the 80186. 

The Serial RS-232C Interface software uses nested in­
terrupts. The priority of the interrupt procedures is giv­
en in Figure 5. 

The priority of the interrupts is not programmable but 
they are logically oriented so that for'this application 
the priority is correct. The serial receiver should have 
the highest priority since it could have overrun errors, 
Therefore the RxD request can interrupt any other in­
terrupt service routine thus preventing any possibility 
of an overrun error. 

The Serial RS-232C Interface software is entered via a 
GO instruction from the 957B System Monitor console. 
The software first calls POWR-ON-INIT which ini­
tializes the 8256AH. This sets the 8256AH to 8086 
Mode with parallel Port 2 in two wire handshake mode 
using Port 1 pin 0-1 for Port 2 handshaking. The ini­
tialization configures six of the Port 1 lines, pins 2-7, 
for RS-232C handshaking-input or output depending 
upon the specific signal tied to the pin. Figure 6 'iIIus-

. trates the definition of each Port 1 RS-232C handshak­
ing line and its direction. 

Both the Serial RS-232C Interface and the parallel in­
terface with handshaking operate on an interrupt basis. 
Following initialization the software enters an endless 
loop and awaits an interrupt from one of three sources; 
Receive Data (RxD), Transmit Data (TxD) or the par­
allel interface. In the serial interface idle state, neither 
transmitting nor receiving data, the software is con­
stantly responding to TxD interrupts; a result of the 
Transmit Buffer (TBE) and/or Transmit Register 
(TRE) being continuely empty. When data is received 
by the RS-232C channel the RxD interrupt, being of 
higher priority, asserts its interrupt. 

5-432 231125-001 



AP-183 

III III ~r~ II . 
~ 

Ii" 
a a , 

I U' I 
I 

hhll! I 
I 

~ a a ~ 

EU U ~~ r 0 .. ~ 

EUU~ i ~ u ~ r-
[E} .. ~ ~ I I II f 

I lIil II Ii 1= II! ~ f" I I!! II lih~ i ~ ~ t5 

I 

Ihi. Ihi~ 
I iii. Jcl~ IIi. I 
I I 

~~ iI~€ 18 '~~d€18" 
f...-..J f't fT 
I ~. 

I~II nh ;1& 

Ie;- II' i~ 
IO""E. ;; 1m Iha 

I ... 

~ . .. 
II/ 

II 

Figure 3. 8256AH I 80186 Schematic 

5-433 231125·001 



AP·183 

r~;oD-l------l r;;;~--------l 

! I POW~~IT IH!--------IIi--lk-Rx-LOOp ! 
I I I I 
~-------______ ~ L______ _ _____ ~ 

r----------------------------------- ------~ IINT·MOO I ! G . B HANDSHAKE·INT I..OAD-INT.TABLE! L___________________ _ __________________ J 

rH~~------ - -----------, 
I I 
I I 
I I 
I I 
I I 
I I 
I· I 
~ ____________________________ J 

231125-5 

Figure 4. Block Diagram of the 8256AH Serial RS-232C Interface Software Structure 

PrIority Source 

Highest 0 Not Used 
1 Not Used 
2 External Interrupt (EXTINT) . 
3 Not Used 
4 RxD Interrupt 
5 TxD Interrupt 
6 Timer 2 or 2 & 4 (16 bit) 
7 Port 2 Handshaking 

Figure 5. 8256AH Interrupt Source To Priority Level Map 

Port 1 
Circuit 1/0 Abrev. SignalHame 

PinHo. 

0 STB/ACK Parallel Port 2 
1 IBF/OBF Handshaking Signals 
2 CG I CTS Clear To Send 
3 CE I RI Ring Indicator 
4 CD 0 DTR Data Terminal Ready 
5 CI I DSRS Data Signal Rate Selector 
6 CF I RLSD Receive Une Signal Detector 

(or CD) (carrier Detect) 
7 CC I DSR Data Set Ready 

Figure 6. Port 1 RS-232C Pin Definition 

5-434 231125-001 



Ap·183 

Although the parallel interface software is not imple­
mented in the software listing of Appendix A, the algo· 
rithm for implementing multiplexed parallel and serial 
I/O is to input or output data on the parallel port duro 
ing the relatively lengthy time required for serial com· 
munication overhead. The algorithm differs slightly 
during the serial channel idle state when the software 
responds to repetitive TxD interrupts. In this case the 
endless loop would detect the idle state repetitive TxD 
interrupts and disable the TxD interrupt for a short 
time while the parallel inputs or outputs data. This 
would require using one of the 8256AH timers to time 
out repetitive TxD interrupts. The timer used has to be 
lower in priority than the RxD interrupt to guarantee 
protection against overrun errors. Timer 2, or 2 and 4 
cascaded if longer time delays are desired, provides the 
proper interrupt level as shown in Figure 5. 

Figure 7 shows the Receive Data (RxO) interrupt servo 
ice routine software flowchart. Since two conditions 
can generate an RxD Interrupt the Software first reads 
the Status Register and checks for the Break Detect 

(DB) bit being set. If the BD bit is clear, no Break 
condition being present, the data byte is read, stripped 
to seven bits, for an ASCII character, and sent to the 
system console via a call to the 957B System Monitor 
Console Output (CO) routine. Upon return from the 
957B monitor call an End Of Interrupt (EO!) is sent to 
the 8256AH to reset the currently served interrupt level 
bit in the Interrupt Service Register. 

Figure 8 shows the Transmit Data (TxD) interrupt 
service routine software flowchart. There are three con· 
ditions which may cause a TxD Interrupt; TBE, TRE 
and Break·ln Detect. The TxD service routine first 
reads the Status Register to determine if the interrupt 
source is the TBE (Transmit Buffer Empty), if not then 
the interrupt service routine returns to the MAIN­
MOD loop. If TBE= I (true) then a data byte is read 
from the 957B System Monitor Console Input (CI) rou· 
tine. If the data byte is an ASCII character it is written 
to the 8256AH Transmit Buffer. The software exists via 
an EO! (End Of Interrupt) command to the 8256AH 
then returns to the MAIN-MOD Rx-Tx-Loop. 

231125-6 

Figure 7. Receive Data Interrupt Service Routine 
Software Flowchart 

5·435 231125-001 



N 

231125-7 

Figure a.Transmit Data Interrupt Service Routine 
Software Flowchart 

RS-232C Control Signals Interrupt 
Structure 

The overall interrupt scheme is such that a change in a 
RS-232C handshake line causes an interrupt via the 
EXTINT pin on the 8256AH (see Figure 3 8256AH/ 
80186 Schematic). The EXTINT interrupt is of higher 
priority than either the RxO or TxO interrupt. This 
enables the RS-232C handshake signals to manage the 
receipt or transmission of data via the nested interrupt 
mode of the 8256AH. The EXTINT interrupt service 
routine first reads the Port I pins 2-7 data and com­
pares it to default state for the signal requiring service. 
The EXTINT interrupt service routine then calls the 
appropriate handshake signal service procedure as 
shown in the bottom module of Figure 4 Software 
Structure Block Diagram. 

Each of the individual RS-232C control signal service 
procedures displays a message on the 957B monitor 
console device indicating the signal requiring a re­
sponse. The service procedure then either initiates spe" 

clnC predefmed actions or prompts the user with op­
tions. In a system which utilized file storage, such as a 
personal comp,uter, the RS-232C software driver could 
pass a flag to the communications software, rather than 
a message. The communications software would in tum 
perform the same types of action but could also protect 
disk butTering files which might be open at the time of 
the interrupt. Two examples of the RS-232C Control 
Signal interrupt service routines, CTS and OSRS, are 
described below; 

If Clear To Send (CTS) changes state, the UART auto­
matically disables the transmitter. The CTS interrupt 
service procedure initializes the 825.6AH's internal 
Timer. If the timer times out before CTS goes active ' 
again an interrupt is generated, a second message i~ 
displayed at the 957B monitor console prompting the 
user that the CTS line remains inactive. The options 
available at this point are to wait again, re-initializing 
Timer 1, or to disconnect the RS-232C channel. 

5-436 231125-001 



AP-183 

If Data Signal Rate Selector (DSRS) changes state, the 
software prompts the user with a message that the Data 
Rates of the two RS-232C channels are not the same 
and the user is given the option of altering the data rate. 
This application example was interfaced to a 103A/212 
Bell modem and as such prompts the user to select 
between 300 or 1200 bps data rates. In the case of a 

non-modem interface the routine could prompt the user 
for one of the thirteen standard data rates. The software 
then returns to the TxD/RxD software loop. The bal­
ance of the interrupt service procedures for the 
RS-232C handshaking signals function in a similar 
manner. 

Depending upon the specific system design and soft­
ware requirements, a variety of enhancements could be 
added to the system design. These could include inter­
rupt traps that initiate specific corrective options or 
cascading multiple 8256AHs each with an RS-232C in­
terfaces as described above. An example of an interrupt 
trap might be auto redial upon time out for lack of 
Carrier Detect (CD) upon initiating a communications 
link, or automatic disk file update when a receive buffer 
approaches overflow. 

The ability of the 8256AH to be reprogrammed to meet 
the changing requirements of a system simplifies the 
overall system design and multiplies its capabilities. A 
simple reinitialization sequence could reconfigure the 
8256AH as a UART with two parallel ports or utilize 
any of the various special functions of the parallel Port 
1; e.g., an external timer input or an additional external 
interrupt input, etc. The reinitialization could also con-

figure the 8256AH Multifunction Peripheral for a vari­
ety of custom applications. 

CONCLUSION 

The functional integration of the 8256AH makes it 
ideal for designs which require maximum flexibility and 
simplicity of implementation. The implementation of 
the RS-232C serial channel modem interface and multi­
plexed parallel I/O described in this application note 
represent a level of efficiency in peripheral performance 
and design previously unavailable. The 8256AH Multi­
function Peripheral represents a savings of two-thirds 
the board space and power required by the previous 
four chip solution, with the added benefit of increased 
system reliability. The application note demonstrates 
the ease of implementing the variety of I/O capabilities 
and system support functions of the 8256AH. The inte­
gration of four c.ommon microprocessor system func­
tions into one VLSI device enables the designer to de­
vote valuable resources to adding features to enhance 
the system design, adding performance and flexibility, 
and reducing the system's overhead. 

5-437 231125-001 



APPENDIX A. 

SOFTWARE LISTING 

PL/M-8b COMPILER MAINMOD 

SERIES-III PL/M-8b V2.3 COMPILATION OF MODULE MAINMOD 
OBJECT MODULE PLACED IN:F2:5b. OBJ 
COMPILER INVOKED BY' PLM8b.86 :F2: 5b 

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

2 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

B256AH MULTIFUNCTION PERIPHERAL SIMPLIFIES 
MICROCOMPUTER 1/0 DESIGN 

Intel Corporatl0n 
3065 Bowers AvenuR 
Santa Clara, Ca. 95051 

Written BV Christopher Scott 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
$MOD18~ DEBUG LARGE 
MAINMOD: 
DO, 

Declare Lit 
DCL 

True 
False 
Forever 
Pcs1 
Cmd 1 re~ 
Cmd2reg 
Cmd3re~ 
'Modereg 

Port1Ctrl1Reg 
SetIntR .. ~ 
EnlntReg 
RstlntReg 
IntAddrReg 
TxBuffReg 
RxBuffReg 

PortlReg 
Port2Reg 
TimerlReg 
Timer2Reg 
Tlmer3Reg 
StatRe~ 

Intrl 
Intr2 
Intr3 

Lihrillh 
lit 

llt 
lit 
lit 
lit 
lit 
lit 
lit 
lit 

lit 
lit 
lit 
lit 
lit 
llt 
lit 

lit 
l1t 
l1t 
lit 
lit 
lit 

l1t 
lit 
lit 

5-438 

Definitions 

'literally', 
'Dec lare', 

'Offh' , 
'Oh I, 
'lIIhile I', 
'BOh I, 
'pcsl + 0', 
I pc s 1 + 2', 
'pcsl + 4', 
'p C I 1 + 6', 

'p c 51 + 8', 
'pc s 1 + Oah I, 
'pc s 1 + Oah " 
'pc s 1 + Och " 
'pcs1 + Och I, 
'pc 5 1 + O"h " 
'pc s 1 + Och " 

'pcsl + 10h '" 
'pcsl + 12h', 
'pes1 + 14h I, 
'pcsl + ish', 
'pcs1 + 1ch', 
'pcsl + leh', 

'pcl1 + 40h', 
'csl + 01h', 
'pcsl + 10h', 

* * 

* 
* 
* 
* 
* 
~ 

* 
* 
* 
* 
* 
*1 

231125-8 

231125-001 



PL/M-S6 COMPILER MAINMOD 

3 

1* - -

Intr4 lit 'pest + OSh " 

Int_Reset lit 'BSh " 
SioTxEn lit 'lOh', 
SioTxRd~ l1t '20h " 
SioRxRd~ lit '40h " 
Break lit '04h " 
Dislntr llt 'OOh " 
StripTo7fh lit '7fh' , 
Portl_Strlp lit 'OfcH' , 

Cmdl lit '43h " 
Cmd2A lit '07h " 
Cmd2B lit '09h " 
Cmd3Clr l1t '7fh " 
Cmd3 lit 'Oalh' , 
Mode llt 'OOh " 
EnRcvr lit 'OcOh' , 

A lit '41h " 
B l1t '42h " 
DSR lit 'SOh " 
DSR]lag llt 'BOh I, 
CD lit '40h " 
CD_Flag llt '40h " 
DSRS l1t '20h " 
DSRS]lag llt '20h " 
DTR lit 'tOh', 
RI lit 'OSh " 
CTS llt '04h " 
CTS_FloIg llt '04h " 

(Status, 
Hndshk_Plns, 
J) B~te, 

Char B~h Ex ternal, 

Message_ptr POInter; 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SI 

-

Message Declar.tlons 
CTS_MSG (S) B~te Public Data 

DSR _t1SG (S) B~te Pub 11 c Data 
CD_MSG <S) B~te Pub 11 c Dat. 
DSRS_t1SG <S) B~te Pub 11 c Data 

CTS2_t1SQ (S) B~t'" Pub li c Data 

Break _MSG <*) Byte Publlc Data 
- - - - - - - - - - - - - - -

*1 
< 'CTS Duabled RetelVe Data stopped. " 

OAH, ODH, 0), 
('DSR Disabled. ',OAH,ODH,OO), 
('CD Daabled. ',OAH, ODH, 00), 
('Enter Baud Rate, A. 300 B 1200 

(AlB) ',00), 
('CTS Dlsabled Recelve Data stopped " 

OAH, ODH, 00), 
('Break In Receive Data. ',OAH,ODH,OO), 
- - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - sl 
1* External Procedures: *1 

231125-9 

5-439 231125-001 



4 
5 
6 

7 
8 

9 

10 

11 

12 

13 
14 

15 
16 

17 
18 

19 

20 

21 
22 
23 
24 

25 

1 
2 
2 

1 
2 

2 

2 

2 

2 
2 

2 
2 

2 
2 

2 

<2 
2 
2 
2 

2 

MAINMOD 

MCO: 

MCI: 

957B Monitor Console Output Routine' 

957B Monitor Console Input Routine 

*1 
*1 
*1 
*1 
*1 

1* 
1* 
1* 
1* 
1* 
1* - - - - - - - *1 

MCO: Procedure(Char) External; 
DCL Char B~t"; 

End MCOI 

MCI: Procedure B~te External, 
End MCI. 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
1* Initiali.e 8256AH Procedure *1 
Init56: Procedure. 

Di .ab lei' 
1* Output 8256AH Init Data 
Output(Cmdl~"g)aCmdl' 

Output(CmdlReg)-Cmd2A. 

Output(CmdlReg)=Cmd3Clr. 
OutputCCmdlReg)=Cmd3; 

Output(CmdlReg)-EnRcvr. 
Output(CmdlReg)=Mode, 

Call Load_Int_Tab lei 
Enab Ie, 

*1 
1* 8086 mod". freg c 1 kh.. 1 stop bit. 

and 7 bit char *1 
1* odd parity. system elk=1, 024mh •• 

and 1200 bps *1 
1* clear cmd reg 3 *1 
1* reset. itr ack enabl"d. n".ted 

intr mode *1 
1* enabl" receiver *1 
1* cascade timers 3~5. for th" 

reeiver.timer'out tim"r. byte ~ 
, output mode *1 

End In i t56. 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - -
'1* Procedure: Load Interrupt Address Vectors 
Load_lnt_Table: Procedur~ Public. 

Call Set.lnterruptC42H.EXTINT). 
Call Set.lnterruptC44H.Receive_Char). 
Call Set.lnterrupt(45H.Transmit_Char). 
Call Set.lnt"rrupt(46H.Timer_<2_4). 

E,nd Load_Int_Table. 

- *1 
*1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - -
1* 
1* 

- - - - - - - - - - - - - - - - - - - - - - *1 
EXTINT Interrpt Procedure: *1 

*1 

5-44,0 

231125-10 

231125-001 



PL/M-B6 COMPILER MAINMOD 

26 

27 2 
2B 2 
29 2 
30 2 
31 3 
32 3 
33 3 
34 2 

35 2 
36 2 

37 2 
3B 2 

39 2 
40 3 
41 3 
42 3 

43 3 
44 3 

45 3 
46 2 
47 2 

4B 2 

49 

50 2 
51 2 
52 2 
53 2 
54 3 
55 3 
56 3 
57 2 

58 3 
59 3 
60 3 
61 2 

62 2 

1* 
1* 
1* 
1* 

Service routine reads the Port 1 RS232 *1 
handshake signals and sets the mes •• ge pointer *1 
cor •• ponding to the sIgnal detected. *1 

1* 
EXTINT. 

- - - - - - - - - - - - - - - - - - - - - - - - - *1 
Procedure Interrupt 42H, 

Enable, 
HndShk_Pins-Input(PortlReg) .nd Portl_Strlp, 
If CTSjFl.g - HndShk_Pins and CTS Then 

Do. 
Mess.ge_Ptr~eCTS_MSQ(O). 

Output(Timer2Reg)-100. 
End, 

Else 
If DSRjFlag ~ HndShk_Pins and DSR Then 

Message_Ptr-@DSR_MSQ(O). 
Else 

If CD_Flag - HndShk_Plns and CD Then 
Me.ugeJ'tr-eCD_MSQ(O) , 

Else 
If DSRSjFlag • HndShk_Plns and DSRS Then 

DO. 
Message_Ptr-eDSRS_MSQ(O). 
If MCI - A Then 

Output(CmdlReg)-Cmd2AI 
Else 

1* odd parIty, system clk-l. 024mhz. 
and 1200 bps *1 

If MCI • B Then 
Output(CmdlReg)-Cmd2B. 1* odd parity. system clk-l. 024mhz. 

and 300 bps *1 
End, 

Call Selld_Msg. 
OutPut(RstIntReg)-Int_Re.et. 

End EXTINT. 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
1* Procedure Receive a character *1 
Receive_Char: Procedure Interrupt 44H. 

Enab le, 
Status=(Input(StatReg) and SioRxRdy), 
If Status AND Break Then 

DO. 
Mess.ge_Ptr-@Break_MSQ(O). 
Ca 11 Send_Msg. 

End, 
Else 

Do, 
Char-Input(RxBuffReg) and StripT07fh; 
Call MCO(Char), 

End, 
OutPut(RstIntReg)-Int_Re.et, 

5-441 

231125-11 

231125-001 



PL/M-B6 COMPILER MAINMOD 

63 

64 
65 
66 
67 
68 
69 

70 

71 

72 
73 
74 

75 

76 

77 

78 
79 
80 
81 
82 
83 
84 

85 

86 
87 
88 

2 
2 
2 
2 
2 
2 

2 

2 
2 
2 

2 

2 

2 
2 
3 
3 
3 
3 
2 

1 
1 
2 

1* - - - - - - - - - - - - - - - - - - - - -~- - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - -
1* Procedure. Write character to 8256AH UART 
Transmit_Char: Procedure Interrupt 45H; 

Status=(Input(StatReg) and SioRxRdV); 
If Status and S.oRxRdy Then 

- *1 
*1 

Char-(MCI And StripT07FH); 1* strip to 7 bits *1 
If Char >- 20H And Char <- 7fH Then 1* if char is ASCII output it *1 

Output(TxSuffReg)=Char; 
OutPut(RstIntReg)=Int_Reset; 

End Transmit_Char; 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - -
1* Procedure. Write charact ... to 856AH UART 
Timer_2_4: Procedur. Interrupt 46H; 

MessagejPtr=ICTS2_MSG(0); 
Ca 11 Send_Msg; 
OutPut(RstIntReg)=Int_Reset; 

End Timer _2_4; 

- *1 
*1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 
1* Message Output Procedure *1 
Send_Msg: Procedure; 

DeL 

,,)=0; 

Do While M.ssage(~) <> 0; 
Char-Message (~); 
Call MCO(Char); 
~=~+l; 

End; 
Return; 

End Send_Msg. 
1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

1* 
1* 

Call Init56; 
00 Forever, 
End; 

- - - - - - - - - - - - - - - - - - - - *1 
*1 

1* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - *1 

5-442 

231125-12 

231125-001 



PL/M-86 COMPILER MAINMOD 

89 

MODULE INFORMATION: 

CODE AREA SIZE - 0235H 5650 
CONSTANT AREA SIZE. OOBEH 1900 
VARIABLE AREA SIZE - 0007H 70' 
MAXIMUM STACK SIZE. 0034H 520 
280 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY: 

31KB MEMORY AVAILABLE 
6KB MEMORY USED <19%) 
OKB DISK SPACE USED 

END OF PL/M-86 COMPILATION 

AP-183 

~-443 231125-001 



inter 

• 
• 

• 
• 

8272A 
SINGLE/DOUBLE DENSITY 

FLOPPY DISK CONTROLLER 

IBM Compatible in Both Single and • Data Transfers in DMA or Non-DMA 
Double Density Recording Formats Mode 

Programmable Data Record Lengths: • Parallel Seek Operations on Up to 
128,256,512, or 1024 Bytes/Sector Four Drives 

Multi-Sector and Multi-Track Transfer • Compatible with all Intel and Most 
Capability Other Microprocessors 

Drives Up to 4 Floppy or Mini-Floppy • Single-Phase 8 MHz Clock 
Disks • Single + 5 Volt Power Supply (::!: 10%) 

The 8272A is an LSI Floppy Disk Controller (FDG) Chip, which contains the circuitry and control functions for inter­
facing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or 
IBM System 34 Double Density format (MFM) including double sided recording. The 8272A provides control signals 
which simplify the design of an external phase locked loop and write precompensation circuitry. The FDC simplifies 
and handles most of the burdens associated with implementing a Floppy Disk Drive Interface. The 8272A is a pin­
compatible upgrade. to the 8272. 

080.1 REGISTERS 

SERIAL 
INTERFACE 

CONTROLLER 

....--READY 

DRIVE 
INTERFACE 

CONTROLLER 

Figure 1. 8272A Internal Block Diagram 

WRITE PROTECT/TWO SIDE 
INDEX 
FAULT/TRACK 0 

DRIVE SELECT 0 
DRIVE SELECT 1 
MFM MODE 

J(WfSEEK 
HEAD LOAD 
HEAD SELECT 
lOW CURRENTfDIRECTION 
FAULT RESET/STEP 

Vee 

AW/SEEK 

LCTfDIR 

FRJSTP 

HOL 

ROY 

WPITS 

FLT/TRKO 

PS, 

PS, 

WR DATA 

OS, 

OS, 

HDSEl 

MFM 

WE 

Voo 

RDOATA 

OW 

Figure 2. Pin Configuration 

tntel Corporation assumes no responsibility tor the use of any circuitry other than Circuitry embodied In an Intel product. No other circuit patent licenses are implied. 
© Intel Corporation, 1982 ORDER NUMBER 2~0606·001 

5-444 



intJ 8212A 

Table 1_ Pin Description 

Pin Connec-
Symbol No. Type tlonTo Name and Function 

RESET 1 I !,-P 
Reset: Places FDC in 
idle state. Resets out-
put lines to FDD to "0" 
(low). Does not clear the 
last specify command. 

RD 2 1[1] !,-P Read: Control Signal 
for transfer of data from 
FDC to Data Bus, when 
"0" (low). 

WR 3 1") !,-P Write: Control signal 
for transfer of data to 
FDC via Data Bus, when 
"0" (low) 

CS 4 I /LP Chip Select: IC selected 
whe~'O" (low). allow-
Ing RD and WR to be 
enabled. 

Ao 5 1[1) !,-P Data/Status Register 
Select: Selects Data 
Reg (Ao = 1) or Status 
Reg (Ao = 0) contents 
to be sent to Data Bus. 

DBo-DB7 6-13 1/0[1) !,-P Data Bus: Bidirectional 
8-Blt Data Bus. 

DRO 14 0 DMA Data DMA Request: 
DMA Request IS being 
made by FDC when 
DRO "1." [3) 

DACK 15 I DMA DMA Acknowledge: 
DMA cycle IS active 
when "0" (low) and 
Controller IS perform-
Ing DMA transfer 

TC 16 I DMA Terminal Count: Indi-
cates the termlnat[on of 
a DMA transfer when 
"1" (hlgh)[2) 

IDX 17 I FDD Index: Indicates the 
beginning of a disk 
track. 

INT 18 0 /LP Interrupt: Interrupt Re-
quest Generated by 
FDC. 

ClK 19 I 
Clock: Single Phase 8 
MHz (4 MHz for mini 
Jloppies) Sq uarewave 
Clock. 

GND 20 Ground: D.C. Power 
Return. 

-Note 1 Disabled when CS= 1 
Note 2 TC must be activated to termmate the ExecutIOn Phase of any command 
Note 3 ,ORQ IS also an Input for certain test modes It should have a 5kO P~II-UP 

resistor to prevent activation 

Symbol 

Vee 

RW/SEEK 

I,.CT/DIR 

FR/STP 

HDL 

RDY 

WP/TS 

FLT/TRKO 

PS" PSo 

WR DATA 

DS, .DSo 

HDSEL 

5-445 

Pin Connec-
No_ Type tlon To Name and Function 

40 D_C. Power: +5V 

39 0 FDD Read Write / SEEK: 
When "1" (high) ·Seek 
mode selected and 
when "0" (low) Read/ 
Write mode selected. 

38 0 FDD low Current/Direction: 
lowers Write current 
on Inner tracks in 
Read/Write mode, de-
termines direction head 
will step in Seek mode. 

37 0 FDD Fault Reset/Step: Re-
sets fault FF In FDD in 
Read/Write mode, pro-
vides slep pulses to 
move head to another 
cylinder In Seek mode. 

36 0 FDD Head load: Command 
which causes read/write 
head In FDD to contact 
diskette 

35 I FDD 
Ready: Indicates FDD 
is ready to send or re-
ceive data. Must be tied 
high (gated by the index 
pulse) for mini floppies 
which do not normally 
have a Ready line. 

34 I FDD Write Protect / Two-
Side: Senses Write Pro-
tect status In Read/ 
Wnte mode, and Two 
Side Media In Seek 
mode 

33 I FDD Fault/Track 0: Senses 
FDD fault condition In 
Read/Wnte mode and 
Track 0 condition In 

Seek mode. 

31.32 0 FDD Precompensation (pre-
shift): Write precom-
pensation status dunng 
MFM mode. Determines 
early. late. and normal 
times. 

30 0 FDD Write Data: Senal clock 
and data bits to FDD 

28.29 0 FDD Drive Select: Selects 
FDD unit. 

27 0 FDD Head Select: Head 1 
selected when "1" 
(high) Head 0 selected 
when "0" (low) 

210606-001 



intJ 8272A 

Table 1. Pin Description (Continued) 

Pin Connec· 
Symbol No. Type lion To Name and Funcllon 

MFM 26 0 PLL MFM Mode: MFM mode 
when '~1 ," FM mode 
when "0," 

WE ·25 0 FDD Wrlle Enable: Enables 
write data into- FDD. 

VCO 24 0 PLL YCO Sync: Inhibits VCO 
in PLL when "0" (low), 
enables VCO when "1." 

RD DATA 23 I FDD Read Data: Read data 
from FDD, containing 
clock and data bits. 

CPU I 
~ 

SYSTEM BUS 

"'" r-- ""'». 

'" I ;-..Z DATA -8-r 
WINDOW PLL 

I~ 
RD DATA ) 

WR DATA 

DRIVE ) 
8237 I DAC". 8272A 1,1 DMA FDC INTERFACE 

CONTROLLER INPUT CONTROL 

~ 
~ J\ 

I----;:c---" OUTPUT CONTROL 

V TERMINAL '---
COUNT 

Figure 3. 8272A System Block Diagram 

DESCRIPTION 
Hand-shaking signals are provided in the 8272A which 
make DMA operation easy to incorporate with the aid of 
an external DMA Controller chip, such as the 823.7 A. The 
FDC wilt operate in either DMA or Non-DMA mode. In 
the Non-DMA mode, the FDC generates interrupts to the 
processor for every transfer of a data byte between the 
CPU and the 8272A. In the DMA mode, the processor 
need only load a command into the FDC and all data 
transfers occur under cOntrol of the 8272A and DMA 
controller. 

There are 15 separate commands which the 8272A will 
execute. Each of these commands require multiple 8-bit 
bytes to fully specify the operation which the processor 
wishes the FDC to perform. The following commands 
are available. 

Read Data 
Read 10 
Read Deleted Data 
Read a Track 
Scan Equal 

Write Data 
Format a Track 
Write Deleted Data 
Seek 
Recalibrate (Restore to 

Pin 
Symbol No. Type 

DW 22 I 

WRCLK 21 I 

Scan High or Equal 
Scan Low or Equal 
Specify 

Connec· 
lion To Name and Function 

PLL Data Window: Gener-
ated by PLL, and used 
to sample data from 
FDD. 

Wrlle Clock: Write data 
rate to FDD FM = 500 
kHz, MFM = 1 MHz, with 
a pulse width of 250 ns 
for both FM and MFM. 

Must be enabled for all 
operations, both Read 
and Write. 

Track 0) 
Sense Interrupt Status 
Sense Drive Status 

For more information see the Intel Application Notes 
AP-116 and AP·121. 

FEATURES 
Address mark detection circuitry is internal to the FDC 
which simplifies the phase locked lOop and read elec­
tronics. The track stepping rate, head load time, and 
head unload time may be programmed by the user. The 
8272A offers many additional features such as multiple 
sector transfers in both read and write modes with a 
Single command, and full IBM compatibility in both 
Single (FM) and double density (MFM) modes. 

8272A ENHANCEMENTS 
On the 8272A, after detecting the Index Pulse, the 
VCO Sync output stays low for a shorter period of 
time. See Figure 4A. 
On the 8272 there can be a problem reading data 

. when Gap 4A is 00 and there is no lAM. This occurs 
on some older floppy formats. The 8272A cures this 
problem by adjusting the VCO Sync timing so that it 
is not low during the data field. See Figure 4B. 

... 
Track Gap4AIIAM I Gap1 110 I ~ap2 I Data ... 
Index Pulse ~ 

8272 VCO Syn.---" I 

8272A vco syii"C' I 

·560 ~s in FM mode; 527 JotS in MFM mode 

A. Margin on the Index Pulse 

Track Gap 4A (00) 
I 10 I Gap2 I Data 

Index Pulse ----r-o 
8272 I r-vco Sync 

. 8272A L-...J VCO Sync 
B. Ability to Read Data When Gap 4A Contains 00 

Figure 4. 8272A Enhancements over the 8272 

5-446 210606-001 



8272A 

8272A REGISTERS - CPU INTERFACE 
The 8272A contains two registers which may be ac­
cessed by the main system processor; a Status Register 
and a Data Register. The 8-bit Main Status Register con­
tains the status information of the FDC, and may be 
accessed at any time. The 8-bit Data Register (actually 
consists of several registers in a stack with only one 
register presented to the data bus at a time), stores 
data, commands, parameters, and FDD status informa­
tion. Data bytes are read out of, or written into, the Data 
Register in order to program or obtain the results after 
execution of a command. The Status Register may only 
be read and is used to facilitate the transfer of data 
between the processor and 8272A. 

The relationship between the Status/Data registers and 
the signals RD, WR, and Ao is shown In Table 2. 

Table 2_ Ao, RD, vm decoding for the se,lection 
of Status/Data register functions. 

Aa RD WR FUNCTION 

0 0 1 Read Main Status Register 

0 1 0 Illegal (see note) 

0 0 0 Illegal (see note) 

1 0 0 Illegal (see note) 

1 0 1 Read from Data Register 

1 1 0 Write into Data Register 

Note: Design must guarantee that the 8272A 
is not subjected to illegal Inputs_ 

The Main Status Register bits are defined in Table 3. 

Table 3_ Main Status Register bit description. 
BIT NUMBER NAME SYMBOL DESCRIPTION 

DO FOD 0 Busy oOB FDD number 0 IS In the Seek 
mode. 

Dl FDD 1 Busy D1B FoD number 1 IS In the Seek 
mode 

02 FOD2 Busy o2B FDD number 2 IS In the Seek 
mode 

03 FOD3 Busy o3B FDD number 3 IS tr1 the Seek 
mode. 

04 FOC Busy CB A read or write command IS In 
process 

05 Non·DMA mode NOM The FOC IS In the nan·DMA 
mode This bit IS set only dur-
Ing the execution phase In 

non-DMA mode Transition to 
"0" state indicates execution 
phase has ended. 

D6 Data InpuUOutput DID Indicates direction of data 
transfer between FDe and Ot 
Register If 010 = "1" then 
transfer Is from Data Register 
to the Processor If 010 = "0", 
then transfer IS from the Proc-
essor to Data Register 

D7 Request for Master ROM Indicates Data Register IS 
ready to send or receive data 
to or from the Processor Bot 
bits 010 and ROM should be 
used to perform the hand-
shaking functions of "ready" 
and "direction" to the proc-
essor 

The 010 and ROM bits in the Status Register indicate 
when Data is ready and in which direction data will be 
transferred on the Data Bus. 

Note: There is a 121'S or 241'8 ROM flag delay when 
using an 8 or 4 MHz clock respectively. 

DATA IN OUT 
(010) 

REQUEST 
FOR MASTER 

(ROMI 

OUT OF PROCESSOR AND INTO FDC 

I I I I 
w. ---u I u I 
AD 

I I 

I I I I 
I A I . I 1·1 

NOTES [!J - DATA REGISTER READV TO BE WRITTEN INTO BV PROCESSOR 

00 - DATA REGISTER NOT READY TO BE WRlnEN INTO BY PROCESSOR 

[g - DATA REGISTER READY FOR NEXT DATA BYTE TO BE READ BY THE 
PROCESSOR 

!QJ - DATA REGISTER NOT READY FOR NEXT DATA BYTE TO BE READ BY 
PROCESSOR 

Figure 5. Status Register Timing 

A I 

The 8272A is capable of executing 15 different com­
mands. Each command is initiated by a multi-byte 
transfer from the processor, and the result after execu· 
tion of the command may also be a multi-byte transfer 
back to the processor. Because of this multi-byte inter­
change of information between the 8272A and the proc­
essor, it is convenient to consider each command as 
consisting of three phases: 

5-447 

Command Phase: The FDC receives all information 
required to perform a particular 
operation from the processor. 

Execution Phase: The FDC performs the operation it 
was instructed to do, 

Result Phase: After completion of the operation, 
status and other housekeeping in· 
formation are made available to 
the processor. 

During Command or Result Phases the Main Status 
Register (described in Table 3) must be read by the proc­
essor before each byte of information is written into or 
read from the Data Register. Bits 06 and 07 in the Main 
Status Register must be in a 0 and 1 state, respectively, 
before each byte of the command word may be written 
into the 8272A. Many of the commands require multiple 
bytes, and as a result the Main Status Register must be 
read prior to each byte transfer to the 8272A. On the 
other hand, during the Result Phase, 06 and 07 in the 
Main Status Register must both be 1's (D6 = 1 and 
07 = 1) before reading each byte from the Data 
Register. Note, this reading of the Main Status Register 
before each byte transfer to the 8272A is required in 
only the Command and Result Phases, and NOT during 
the Execution Phase. 

During the Execution Phase, the Main Status Register 
need not be read. If the 8272A is in the non-DMA Mode, 
then the receipt of each data byte (if 8272A is reading, 
data from FDD) is indicated by an Interrupt signal on pin 
18 (INT = 1). The generation of a Read signal (RD = 0) 
will reset the Interrupt as well as output the Data onto 

210606-001 



the Data Bus. For example, if the processor cannot 
handle Interrupts fast enough (every 13 flS for MFM 
mode) then it may poll the Main Status Register and 
then bit D7 (ROM) functions just like the Interrup~ 

signal. If a Write Command is in process, then the WR 
signal performs the reset to the Interrupt signal. 

The 8272A always operates in a multi·sector transfer 
mode. It continues to transfer data until the TC input is 
active. In Non·DMA Mode, the system must supply the 
TC input. 

If the 8272A is in the DMA Mode, no Interrupts are gener: 
ated during the Execution Phase. The 8272A generates 
DRO's (DMA Requests) when each byte of data is 
available. The DMA Controller responds to this request 
with both a DACK=,O (DMA Acknowledge) and a RD=O 
(Read signal). When the DMA Acknowledge signal goes 
low (DACK = 0) then the DMA Request is reset (DRO = 0). 
If a Write Command has been programmed then a WR 
signal will appear instead of RD. After the Execution 
Phase has been completed (Terminal Count has 
occurred) then an Interrupt will occur (INT = 1). This 
signifies the beginning of the Result Phase. When the 
first byte of data is read during the Result Phase, the In· 
terrupt is automatically reset (INT = 0). 

It is important to note that during the Result Phase all 
bytes sho,wn in the Command Table must be read. The 
Read Data Command, for example, has seven bytes of 
data in the Result Phase. All seven bytes must be read 
in order to successfully complete the Read Data Com· 
mand, The 8272A will not accept a new command until 
all seven bytes have been read. Other commands may 
require fewer bytes to be read during the Result Phase., 

The 8272A contains five Status Registers. The Main 
Status Register mentioned above may be read by the 
processor at any time. The other four Status Registers 
(STO, ST1, ST2, and ST3) are only available during the 
Result Phase, and may be read only after successfully 
completing a command. The particular command which 
has been executed determines how many of the Status 
Registers will be read. 

The bytes of data which are sent to the 8272A to form 
the Command Phase, and are read out of the 8272A in 
the Result Phase, must occur in the order shown in the 
Table 4. That is, the Command Code must be sent first 
and the other bytes sent in the prescribed sequence. No 
foreshortening of the Command or Result Phases are 
allowed. After the last byte of data in the Command 
Phase is sent to the 8272A, the Execution Phase 

Table 4. 8272A Command Set 

I DATA BUS I 
PHASE RIW I D7 D6 DS D4 D3 D2 D,' Do I REMARKS 

READ DATA 

Command W MT MFM SK 0 0 1 1 0 Command Codes 

W 0 0 0 0 0 HOS OS1 OSO 

W C Sector 10 Information 
W H prior to Command 
W R execution 
W N 
W EDT 
W GPL 
W OTl 

Execution Data transfer 
between the FOD 
and main-system 

Result R STO Status information 
R ST 1 after Command 
R • ST2 execution 
R C 
R H Sector 10 information 
R R after command 
R N execution 

READ DELETED DATA 

Command W MT MFM SK 0 1 , 0 0 Command Codes 

W 0 0 0 0 0 HOS OS1 DSO 

W C Sector 10 information 
W H pnor to Command 
W R execution 
W N 
W EDT 
W GPl 
W OTl 

Execution Oata transfer 
between the FOD 
and main-system 

Result R STO Status information 
R ST 1 after Command 

I 

R ST 2 execution 
R _____ C 

R H Sector 10 Information 
R R after Command 
R N -execution 

Note: 1 Symbols used in this table are described at the end of this section 

2 AO= 1 for all operations 

3. X = Don't care, usually made to equal binary 0 

PHASE 

Command 

Execution 

Result 

Command 

Execution 

Result 

5-448 

DATA BUS 

RIW D7 De DS D4 D3 D2 D, Do REMARKS 

WRITE DATA 

W MT MFM 0 0 0 1 0 1 Command Codes 

W 0 0 0 0 0 HOS DS1 IOSO 

W C Sector 10 InformatIOn 
W H pnor to Command 
W R execution 
W N 
W EDT 
W GPL 
W 

I 

OTL 

Data transfer 
between the malO-
system and FoD 

R STO Status Information 
R ST1 after Command 
R ST 2 execution 
R C 
R H Sector 10 information 
R R after Command 
R N execution 

WRITE DELETED DATA 

W MT MFM 0 0 1 0 0 1 Command Codes 

W 0 0 0 0 0 HOS OS1 OSO 

W C Sector 10 information 
W H prior to Command 
W R execution 
W N 
W EDT _____ 

W GPL 
W OTL 

Data transfer 
between the FOD 
and mam-system 

R STO Status mformatlon 
R ST1 after Command 
A ST 2 execlItion 
R C 
R H Sector 10 information 
R R after Command 
R N execution 

210606-001 



I 
" 

8272A 

Table 4. 8272A Command Set (Continued) 

DATA BUS I I DATA BUS I 
PHASE -IIJ De D5 D4 Da Da D, Do REMARKS PHASE -IIIJ De De D4 D3 D2 D, Do REMARKS 

READ A TRACK SCAN LOW OR EQUAL 

Command W 0 MFM SK 0 0 0 1 0 Command Codes Command W MT MFM SK 1 1 0 0 1 Command Codes 

W 0 0 0 0 0 HOS OSI DSO W 0 0 0 0 0 HOS OSI DSO 

W C sector 10 Information W C Seerlor 10 information 
W H prior to Command W H prior Command 
W R execution W R execution 
W N W N 
W EOT W EOT 
W GPL W GPl 
W OTl 'W STP 

Execution Data transfer Execution Data compared 
between the FOD between the FOD 
and main-system and main-system 
FDC reads all of 
cylinders contents Result R STO Status Information 
from index hole to R STI after Command 
EOT R ST2 execution 

R C 
Result R ____ STO Status Information R H Sac tor 10 mformatlon 

R STI after Command R R after Command 
R ST2 execution R N execullon 
R C 
R H Sector 10 mformatlon SCAN HIGH OR EQUAL 

R R after Command Command W MT MFM SK 1 1 1 0 1 Command Codes 
R N execution 

W 0 0 0 0 0 HOS OSI OSO 
READ ID W C Sector 10 information 

Command W 0 MFM 0 0 1 0 1 0 Commands W H prior Command 
W R execution 

W 0 0 0 0 0 HOS OSI OSO W N 
W EOT 

Executton The first correct 10 W GPL 
Information on the W STP 
Cylinder IS stored In 

Data Register Execution - Data compared 
between the FDD 

Result R STO Status Information and main-system 
R STI after Command 
R ST2 execution Result R STO Status information 
R C R STI after Command 
R H Sector 10 information R ST2 execution 
R R ,dUring Execution R C 
R N Ph ... R H Sector 10 information 

R R after Command 
FORMAT A TRACK R N execution 

Command W 0 MFM 0 0 1 1 0 1 Command Codes RECALIBRATE 
W 0 0 0 0 0 HOS OSI DSO 
W N ByteslSector 

Command W 0 0 0 0 0 1 1 1 Command Codes 

W SC Sectors/Cylinder W 0 0 0 0 0 0 OSI DSO 
W GPL _____ Gap3 Executton Head retracted to 
W 0 Filler Byte , Track 0 

Execution FOC formats an SENSE INTERRUPT STATUS 
entire cylinder Command W 0 0 0 0 1 0 0 0 Command Codes 

Result R STO Status Information Result R STO Status information at 
B STI after Command R PCN the end of each seek 
R ST2 execution operation about the 

R C FOC 

R H In thiS case, the 10 
SPECIFY R R Information has no 

R N meaRing Command W 0 0 0 0 0 0 1 1 Command Codes 

SCAN EQUAL W _ SRT __ ._HUT _ 
W HLT • NO 

Command W MT MFM 8K 1 0 0 0 1 Command Codes 

W 0 0 0 0 0 HDS OSI DSO SENSE DRIVE STATUS 

W C Sector 10 Infbrmatlon Command W 0 0 0 0 0 1 0 0 Command Codes 
W H prior to Command W 0 0 0 0 0 H08 OSI DSO 
W R execution 

Result R ST3 W N Status information 

W EOT about FDD 

W GPL SEEK W STP , 
Command W 0 0 0 0 1 1 1 1 Command Codes 

Execution Data compared W 0 0 0 0 0 HOS OSI OSO 
between the FDD 

W NCN and main-system 

Result R STO Status mformatlon Execution Head IS positioned 

R STI after Command over proper Cylinder 

R ST2 execution on Diskette 

R C INVALID R H Sector 10 Information 
R 'R after Command Command W ____ Invaltd Codes ____ Invaltd Command 
R N execution Codes (NoOp - FOC 

goes mto Standby . State) 

Result R STO 8TO=80 
(18) 

5-449 210606-001 



8272A 

Table 5. Command Mneumonlc8 
SYMBOL NAME DESCRIPTION 

Ao Address Line 0 Ao controla solectlon o. Main Statu. 
Reglotar (Ao. 0) or Data Regl~tar (Ao- t). 

C Cylinder Number C stands for the current selected Cylinder 
track number 0 through 76 of the medium. 

0 Data o ,tands for the data pattem whtch 18 
going to be written Into. sector. 

~-OO Data BUI a·blt Data Bus where 07 '8 the moet 
slgnl'lcant bit, and Do Is the I ... t algnl'~ 
cant bit. 

DSD, OSI Drlv, Select OS atanda for a selected drive number 0 
or1. 

DTL Data Length When N Is defined as 00, OTl standS lor 
the data length which users are gOing to 
read out or write Into the Sector. 

EDT End afTrack EOT stands for the final Sector number of 
a Cylinder. 

GPL Gap Length GPL atands for the length of Gap 3 
(spacing between Sectors excluding veo 
Sync Field). 

H Head Address H stands lor head number 0 or 1, as 
specified In 10 'Iold. 

HOS Head Select HOS stands for a selected head number 0 
or 1 (H:= HOS In a" command warda). 

HLT Head Load Time HLT stands for the head load time In the 
FOO (2 to 254 rna In 2 rna Increments). 

HUT Head Unload Time HUT stands for the head unload time after 
a read or write operation has occurred (18 
to 240ms In 18ms Incrementa). 

MFM FM or MFM Mode If MF Is low, FM mode Is selected and If 
It Is high, MFM mode Is solected. 

MT Multl·Tnlck If MT Is high, a multi-track operation Is to 
be performed (a cylinder under bOth HOD 
and HD1 will be read or written). 

N Number N stands for the number of data bytes 
wr,ttten In a Sector. 

automatically starts. In a similar fashion, when the last 
byte of data is read out in the Result Phase, the com­
mand Is automatically ended and the 8272A Is ready for 
a new command. A command may be aborted by simply 
sending a Terminal Count signal to pin 16 
(TC = 1)_ This is a convenient means of ensuring that the 
processor may always get the 8272A's attention even If 
the disk system hangs up In an abnormal· ma(1ner. 

POLLING FEATURE OF THE 8272A . 
After power-up RESET, the Drive Select Lines OSO and 
OS1 will automatically go Into a polling mode. In be­
tween commands (and between step pulses In the SEEK 
command) the 8272A polls all four FOOs looking for a 
change in the Ready line from any of the drives. If the 
Ready line changes state (usually due to a door opening 
or closing) then the 8272A will generate an interrupt. 
When Status Register 0 (STO) is read (after Sense Inter­
rupt Status is issued), Not Ready (NR) will be indicated. 
The polling of the Ready line by the 8272A occurs con­
tinuously between Instructions, thus notifying the 
processor which drives are on or off line_ Approximate 
scan timing Is shown in Table 6. 

Table 6. Sc"n Timing 
OS1 OSD APPROXIMATE SCAN TIMING 

0 0 22D,<S 

0 t 22D,<S 
1 0 22D,<S 

, t 1 440,<8 

COMMAND· DESCRIPTIONS 
During the Command Phase, the Main Status Register 
must be polhld by the CPU before each byte is written 

SYMBOL NAME DESCRIPTION 

NCN Naw Cylinder Number NCN standi !P': a new Cylinder number, 

:r: :,:IC:':::n~:~ed -::'=~~f 
Head. 

NO Non-DMA Mode NO ltandl for operation In the Non-DMA 
Mode. 

PCN PreHnt Cylinder PeN stands for the Cylinder number at 
Number the completion o' SENSE INTERRUPT 

STATUS COmmand. POsition of Hood at 
preHnttime. 

R Record R Btanda for the Sector number, which 
will be read or written. 

R/W Road/Write R/W stands for either Road (R) or Writs 
(W) Ilgnal. 

SC Sector SC Indlcatel the number of Sectors per 
Cylinder. 

SK Skip SK stands tor Skip Deleted Data Address 
Mark. 

SRT Stap Rata Time SRT stands for the StePPing Rate for the 
FOD (1 to 16 ms In 1 ms Increments) The 
same Stepping Rate applies to all drives 
(F-1 ms, E"",2 ms, etc) 

STO Status 0 ST 0-3 stand for one of four registers 
STt StatuI 1 which store the statUI Information after 
ST2 Status 2 a command has been executed. Thll 
ST3 StatUI 3 I Intonnatlon 18 available during the result 

phase after command execution. These 
registers should not be confused with the 
main status reglltar (eolected by Ao= 0). 
ST 0-3 may be read only after a command 
has been executed and contain Infonnatlon 
relevant to that particular command. 

STP During a Scan operation, If STP= 1, the 
data In contiguoul lectOrs II compared 
byte by byte with data lent from the 
processor (or DMA), and If STP. 2, than 
alternate sectors are read and compared. 

Into the Data Register. The 010 (OBi) and RQM (OB7) 
bits in the Main Status Register must be In the "0" and 
"1" states resp,ectlvely, before each byte of the com­
mand may be written Into the 8272A. The beginning of 
the execution phase for any of these commands will 
cause 010 and RQM to switch to "1" and "0" states 
respectively. 

READ DATA 
A set of nine (9) byte words are required to place the 
FOC Into the Read Data Mode. After the Read Data com­
mand has been Issued the FOC loads the head (If it is in 
the unloaded state), walts the specified head settling 
time (defined in the Specify Command), and begins 
reading 10 Address Marks and 10 fields. Whliln t~e cur­
rent sector number ("R") stored in the 10 Register (lOR) 
compares with the sector number read off the diskette, 
then the FOC outputs data (from the data field) byte-by­
byte to the main system via the data bus. 
After completion of the read operation from the current 
sector, the Sector Number is incremented by one, and 
the data from the next sector Is read and output on the 
data bus. This continuous read function is called a 
"Multi-Sector Read Operation." The Read Data Com­
mand must be terminated by the receipt of a Terminal 
Count signal. Upon receipt of this Signal, the FOC stops 
outputting data to the processor, but will continue to 
read data from the current sector, check CRC (CycliC 
Redundancy Count) bytes, and then at the end of the 
sector terminate the Read Data Command. 

The amount of data which can be handled with a single 
command to the ,FOC depends upon MT (multi·track), 
MFM (MFM/FM), and N (Number of Bytes/Sector). Table 
7 on the next page shows the Transfer Capacity. 

5-450 210606-001 

.If 



8272A 

Table 7. Transfer Capacity 
Multl·Track MFM/FM BytellSector Maximum Tran.fe, Ca.,.clty Final sectOf R •• d 

MT MFM N (BytoliSoctor) (Number of SoctOI1l) from Dllke"e 

0 0 00 
0 1 01 

1 0 00 
1 1 01 

0 0 01 
0 1 02 

1 0 01 
1 1 02 

0 0 02 
0 1 03 

1 0 02 
1 1 03 

The "multi-track" function (MT) allows the FDC to read 
data from both sides of the diskette. For a particular' 
cylinder, data will be transferred starting at Sector f, 
Side 0 and completing at Sector L, Side 1 (Sector L = last 
sector on the side). Note, this function pertains to only 
one cylinder (the same track) on each side of the 
diskette. 

When N = 0, then DTL defines the data length which the 
FDC must treat as a sector. If DTL is smaller than the ac­
tual data length in a Sector, the data beyond DTL in the 
Sector is not sent to the Data Bus. The FDC reads (inter­
nally) the complete Sector performing the CRC check, 
and depending upon the manner of command termina­
tion, may perform a Multi-Sector Read Operation. When 
N is non-zero, then DTL has no meaning and should be 
set to OFFH. 

At the completion of the Read Data Command, the head 
is not unloaded until after Head Unload Time Interval 
(specified in the Specify Command) has elapsed. If the 
processor issues another command before the head 
unloads then the head settling time may be saved be­
tween subsequent reads. This time out is particularly 
valuable when a diskette is copied from one drive to 
another. 

If the FDC detects the Index Hole twice without finding 
the right sector, (indicated in "R"), then the FDC sets 
the ND (No Data) flag in Status Register 1 to a 1 (high), 
and terminates the Read Data Command. (Status 
Register 0 also has bits 7 and 6 set to 0 and 1 respective­
ly.) 

After reading the ID and Data Fields in each sector, the 
FDC checks the CRC bytes. If a read error is detected 
(incorrect CRC in ID field), the FDC sets the DE (Data Er­
ror) flag in Status Register 1 to a 1 (high), and if a CRC er­
ror occurs in the Data Field the FDC also sets the DD 
(Data Error in Data Field) flag in Status Register 2 to a 1 
(high), and terminates the Read Data Command. (Status 
Register 0 also has bits 7 and 6 set to 0 and 1 respec­
tively.) 

If the FDC reads a Deleted Data Address Mark off the 
di$,kette, and'the SK bit (bit D5 in the first Command 
Word) is not set (SK = 0), then the FDC sets the CM (Con­
trol Mark) flag in Status Register 2 to a 1 (high), and ter­
minates the Read Data Command, after reading all the 
data in the Sector. If SK= 1, the FDC skips the sector 
with the Deleted Data Address Mark and reads the next 
sector. 

(128)(26)= 3,328 26 at Side 0 
(256)(26) - 6,656 or 26 at Side 1 

(128) (52)= 6,656 
26 at Side 1 

(256) (52)= 13,312 

(256) (15)= 3,840 15 at Side 0 
(512)(15)= 7,680 or 15 at Side 1 

(256) (30)= 7,680 
15 at Side 1 

(512) (30)= 15,380 

(512) (8) = 4,096 S at Side 0 
(1024)(8) = 8,192 or 8 at Side 1 

(512)(16)= 8,192 
8 at Side 1 

(1024) (16)= 16,384 

During disk data transfers between the FDC and the 
processor, via the data bus, the FDC must be serviced 
by the processor every 27 J.lS in the FM Mode, and every 
13 J.ls in the MFM Mode, or the FDC sets the OR (Over 
Run) flag in Status Register 1 to a 1 (high), and ter­
minates the Read Data Command. 

If the processor terminates a read (or write) operation in 
the FDC, then the ID Information in the Result Phase is 
dependent upon the state of the MT bit and roT byte. 
Table 5 shows the values for C, H, R, and N, when the 
processor terminates the Command. 

Table 8. 10 Information When Processor 
Terminates Command 

Final Sector Trlln,tlrred to 
10 Informatton at R.,ull Phil .. 

MT EOT Proc •• aor C H R N 

1A Sector 1 to 25 at Side 0 
OF Sector 1 to 14 al Side 0 NC NC R+1 NC 
06 Sector 1 to 7 at Side 0 

1A Sector 26 at Side 0 
OF Sector 15 at Side 0 C+1 NC R=Ol NC 
08 Sector 8 at Side 0 

0 
1A Sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side 1 NC NC R+1 NC 
06 Sector 1 to 7 at Side 1 

1A Sector 26 at Side 1 
OF Sector 15 at Side 1 C+1 NC R=Ol NC 
06 Sector 8 at Side 1 

1A Sector 1 to 25 at Side 0 
OF Sector 1 to 14 at Side 0 NC NC R+1 NC 
08 Sector 1 to 7 at Side 0 

1A Sector 26 at Side 0 
OF Sector 15 at Side 0 NC Lsa R=Ol NC 
08 sector 8 at Side 0 

1 
1A Sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side 1 NC NC R+1 NC 
06 Sector 1 to 7 at Side 1 

1A sector 26 at Side 1 
OF Sector 15 at Side 1 C+1 LSa R=Ol NC 
08 Sector 8 at Side 1 

Notes: 1 NC (No Change): The same value as the one at the beginning of command 
execution. 

2 LSB (Least Significant Bit): The least significant bit of H is 
complemented. 

WRITE DATA 
A set of nine (9) bytes are required to set the FDC into 
the Write Data mode. After the Write Data command has 
been issued the FDC loads the head (if it is in the 
unloaded state), waits the specified head settling time 
(defined In the Specify Command), and begins reading 
ID Fields. When the current sector number ("R"), stored 
In the ID Register (IDR) compares with the sector 

5-451 210606-001 



inter 8272A 

number read off the diskette, then the FDC takes data 
from the processor byte-by-byte via the data bus, and 
outputs it to the FDD. 
After writing data into the current sector, the Sector 
Number stored in "R" is incremented by one, and the 
next data field is written Into. The FDC continues this 
"Multi-Sector Write Operation" until the issuance of a 
Terminal Count signal. If a Terminal Count signal Is sent 
to the FDC it continues writing into the current sector to 
complete the data field. 11 the Terminal Count signal is 
received while a data field is being written then the re­
mainder of the data field is filled with 00 (zeros). 
The FDC reads the 10 field of each sector and checks 
the CRC bytes. If the FDC detects a read error (Incorrect 
CRC) in one of the 10 Fields, It sets the DE (Data Error) 
flag of Status Register 1 to a 1,(high), and terminates the 
Write Data Command. (Statu~ Register 0 also has bits 7 
and 6 set to 0 and 1 respectively.) , 
The Write Command operates In much the same manner 
as the Read Command. The following items are the 
same; refer to the Read Data Command for details: 
• Transfer Capacity 
• EN (End of Cylinder) Flag 
• NO (No Data) Flag 
• Head Unload Time Interval 
• 10 Information when the processor terminates com-

mand (see Table 2) 
• Definition of DTL when N = 0 and when N ¢ 0 

J n the Write Data mode, data transfers between the proc: 
essor and FDC must occur every 31jls in the FM mode, 
and every 15 jls in the MFM mode. 11 the time interval 
between data transfers Is longer than this then the FDC 
sets the OR (Over Run) flag In Status Register 1 to a 1 
(high), and terminates the Write Data Command. 
For mini-floppies, multiple track writes are usually not 
permitted. This is because of the turn-off time of the 
erase head colis-the head switches tracks before the 
erase head turns off. Therefore the system should 
typically wait 1.3 mS before attempting to'step or 
change sides. 

WRITE DELETED DATA 

This command Is the same as the Write Data Command 
except a Deleted Data Address Mark Is written at the 
beginning of the Data Field instead of the normal Data 
Address Mark. 

READ DELETED DATA 

This command is the same as the Read Data,Command 
except that when the FDC detects a Data Address Mark 
at the beginning of a Data Field (and SK= 0 (low)), It will 
read all the data in the sector and set the CM flag in 
Status Register 2 to a 1 (high), and then terminate the 
command. 11 SK= 1, then tile FDC skips the sector with 
the Data Address Mark and reads the next sector. 

READ A TRACK 

This command is simi'lar to READ ,DATA Command 
except that the entire data field is read continuously 
from each of the sectors of a track. Immed,iately after 
enco,untering the INDEX HOLE, the FDC starts reading 

all data fields on the track as continuous blocks of data. 
If the FDC finds an error in the 10 or DATA CRC ctieck 
bytes, It cohtinues to read data from the track. The FDC 
compares the 10 Information read from each sector with 
the val~e stored in the lOR, and sets the NO flag of 
Status Register 1 to a 1 (high) if there Is no comparison. 
Multi-track or skip operations are not allowed with this 

I command. 
\ This command terminates when EOT number of sectors 

have bEl'8n read. 11 the FDC does not find an 10 Address 
'Mark on the diskette after It encounters the INDEX 
HOLE for the second time, then it sets the MA (missing 
address mark) flag in Status Register 1 to a 1 (high), and 
terminates the command. (Status Register 0 has bits 7 
and 6 set to 0 and 1 respectively.) 

READ ID 

The READ 10 Command Is used to give the present posi­
tion of the recording head. The FDC stores the values 
from the first 10 Field It Is able to read. If no proper 10 
Address Mark is found on the diskette, before the IN­
DEX HOLE Is encountered for the second time then the 
MA (Missing Address Mark) flag in Status Register 1 is 
set to a 1 (high), and if no data Is found then the NO (No 
Data) flag is also set in Status Register 1 to a 1 (high) 
and the command is terminated. 

FORMAT A TRACK 

The Format Command allows an entire track to be for­
matted. After the INDEX HOLE is detected, Data Is writ­
ten on the Diskette: Gaps, Address Marks, 10 Fields and 
Data Fields, all per the IBM System 34 (Double Density) 
or System 3740 (Single Density) Format are recorded. 
The particular format which will be written is controlled 
by the values programmed into N (number of bytes/sec­
tor), SC (sectors/cylinder), GPL (Gap Length), and 0 
(Data Pattern) which are supplied by tile processor dur­
ing the Command Phase. The Data Field is filled with 
the Byte of data stored in D. The ID Field for each sector 
is supplied by the processor; that Is, four data requests 
per sector are made by the FDC for C (Cylinder Number), 
H (Head Number), R (Sector Number) and N (Number of 
Bytes/Sector). This allows the diskette to be formatted 
wlth'nonsequentlal sector numbers, if desired. 

After formatting each sector, the processor must send 
new values for C, H, R, and N to the 8272A for each sec­
tor on the track. The contents of the R Register Is in­
cremented by one after each sector Is formatted, thus, 
the R register contains a value of R + 1 when It Is read 
during the Result Ptiase. This Incrementing and format­
ting continues for the whole track until the FDC en­
counters the INDEX HOLE for the second time, where­
upon It terminates the command. 

If a FAULT signal Is received from the FDD at the end of 
a write operation, then the FDC sets the EC flag of 
Status Register 0 to a 1 (high), and terminates the com­
mand after setting bits 7 and 6 of Status Register 0 to 0 
and 1 respectively. Also the loss of a READY signal at 
the b'eginnlng of a command execution phase causes 
command termination. 

Table 9 shows the relationship between N, SC, and GPL 
for various sector sizes: 

5-452 210606-001 

, 
f 



intJ 8272A 

Table 9. Sector Size Relationships. 
8" STANDARD FLOPPY 5114 " MINI FLOPPY 

FORMAT SECTOR SIZE N SC GPL1 GPL2 REMARKS SECTOR SIZE N SC GPL1 GPL2 

FM Mode 128 byteslSector 00 1A 07 18 IBM Diskette 1 128 byteS/Sector 00 12 07 09 
256 01 OF 0& 2A IBM Diskette 2 128 00 10 10 19 
512 02 08 18 3A 256 01 08 18 30 

1024 03 04 47 8A 512 02 04 46 87 
2048 04 02 C8 FF 1024 03 02 C8 FF 
4096 05 01 C8 FF 2048 04 01 C8 FF 

MPM Mode 256 01 1A OE 36 IBM Diskette 20 256 01 12 OA OC 
512 02 OF 18 54 256 01 10 20 32 

1024 '03 08 35 74 IBM Diskette 20 512 02 08 2A 50 
2048 04 04 99 FF 1024 03 04 80 FO 
4096 05 02 C8 FF 2048 04 02 C8 FF 
8192 06 01 C8 FF 4096 05 01 C8 FF 

Note. 1. Suggested values of GPL In Read or Wnte Commands to avoid splice polnt,between data field and 10 field of contiguous s8ctlons. 

2. Suggested values 01 GPL In format command 

SCAN COMMANDS 

The SCAN Commands allow data which is being read 
from the diskette to be compared against data which is 
being supplied from the main system (Processor in 
NON-DMA mode, and DMA Controller in DMA mode). 
The FDC compares the data on a byte-by-byte basiS, and 
looks for a sector of data which meets the conditions of 
DFOO= Dprocessor, DFoo"" Dprocessor, or DFoo ~ Dprocessor­
Ones complement arithmetic is used for comparison 
(FF = largest number, 00 = smallest number). After a 
whole sector of data is compared, if the conditions are 
not met, the sector !lumber is incremented (R + STP ... 
R), and the scan operation is continued. The scan opera­
tion continues until one of the following conditions oc­
cur; the conditions for scan are met (equal, low, or high), 
the last sector on the track is reached (EOn, or the ter­
minal count signal is received. 

If the conditions for scan are met then the FDC sets the 
SH (Scan Hit) flag of Status Register 2 to a 1 (high), and 
terminates the Scan Command. If the conditions for 
scan are not met between the starting sector (as 
specified by R) and the last sector on the cylinder (EOn, 
then the FDC sets the SN (Scan Not Satisfied) flag of 
Status Register 2 to a 1 (high), and terminates the Scan 
Command. The receipt of a TERMINAL COUNT signal 
from the Processor or DMA Controller during the scan 
operation will cause the FDC to complete the com­
parison Of the particular byte which is in process, and 
then to terminate the command. Table 10 shows the 
status of bits SH and SN under various conditions of 
SCAN. 

Table 10. Scan Status Codes 

STATUS REGISTER 2 
COMMAND 

BIT2=SN BIT3.SH COMMENTS 

Scan Equal 0 1 DFDO = 0Processor 
1 0 DFDD =+= ~Proce8sor 

0 1 DFOD = 0proces8or 
Scan Low or Equal 0 0 DFDD < 0Processor 

1 0 DFDD ~ DProcesaor 

0 1 0FDD = DProcessor 
Scan High or Equal 0 0 DFDD > Dproc8ssor 

1 0 DFDD ;t. Dproc8ssor 

If the FDC encounters a Deleted Data Address Mark on 
one of the sectors (and SK = 0), then it regards the sec­
tor as the last sector on the cylinder, sets CM (Control 

5-453 

Mark) flag of Status Register 2 to a 1 (high) and ter· 
minates the command. If SK= 1, the FDC skips the sec· 
tor with the Deleted Address Mark, and reads the next 
sector. In the second case (SK= 1), the FDC sets the CM 
(Control Mark) flag of Status Register 2 to a 1 (high) in 
order to show that a Deleted Sector had been en­
countered. 

When either the STP (contiguous sectors STP = 01, or 
alternate sectors STP = 02 sectors are read) or the MT 
(Multi·Track) are programmed, it is necessary to 
remember that the last sector on the track must be read. 
For example, if STP = 02, MT = 0, the sectors are 
numbered sequentially 1 through 26, and we start the 
Scan Command at sector 21; the following will happen. 
Sectors 21, 23, and 25 will be read, then the next sector 
(26) will be skipped and the Index Hole will be en· 
countered before the EOT value of 26 can be read. This 
will result in an abnormal termination of the command. 
If the EOT had been set at 25 or the scanning started at 
sector 20, then the Scan Command would be completed 
in a normal manner. 

During the Scan Command data is supplied by either the 
processor or DMA Controller for comparison against the 
data read from the diskette. In order to avoid having the 
OR (Over Run) fiag set in Status Register 1, it is nec­
essary to have the data available in less than 27 ,.s (FM 
Mode) or 13 ,.s (MFM Mode). If an Overrun occurs the 
FDC terminates the command. 
SEEK 

The read/write head within the FDD is moved from 
cylinder to cylinder under control of the Seek Command. 
The FDC compares the PCN (Present Cylinder Number) 
which is the current head position with the NCN (New 
Cylinder Number), and performs the following operation 
if there is a difference: 

PCN < NCN: Direction signal to FDD set to a 1 (high), 
and Step Pulses are issued. (Step In.) 
PCN > NCN: Direction signal to FDD set to a 0 (low), 
and Step Pulses are issued. (Step Out.) 

The rate at which Step Pulses are issued is controlled by 
SRT (Stepping Rate Time) in the SPECIFY Command. 
After each Step Pulse is issued NCN is compared 
against PCN, and when NCN = PCN, then the SE (Seek 
End) flag is set in Status Register 0 to a 1 (high), and the 
command is terminated. ~ 

210606-001 

i, 
I 

I' 

I,: 

I 
i ~ 



8272A 

During the Command Phase of the Seek operation the 
FDC Is in the FDC BUSY state, but during the Execution 
Phase it is In, the NON BUSY state. While the FDC Is In 
the NON BUSY state, another Seek Command may be 
issued, and in this manner parallel seek operations may 
be done on up to 4 Drives at once. 

If an FDD Is In a NOT READY state at the beginning of 
the commanb execution phase or during the seek opera· 
tion, then the NR (NOT READY) flag is set in Status 
Register Oto a 1 (high), and the command Is terminated. 

Note that the 8272A Read and Write Commands do not 
have implied Seeks. Any RIW command should be 
preceded by: 1) Seek Command; 2) Sense Interrupt 
Status; and 3) Read 10. 

RECAllBRATE 

This command causes the read/write head within 'the 
FDD to retract to the Track 0 position. The FDC clears 
the contents of the PCN counter, and checks the status 
of the Track 0 signal from the FDD. As long as the Track 
o signal is low, the Direction signal remains 1 (high) and 
Step Pulses are issued. When the Track 0 signal goes 
high, the SE (SEEK END) flag in Status Register 0 is set 
to a 1 (high) and the command is terminated. If the Track 
o signal is still low after 77 Step Pulses have been 
issued, the FDC sets the SI:: (SEEK END) and EC (EQUIP· 
MENT CHECK) flags of Status Register 0 to both 1s 
(highs), and terminates the command. 

The ability to overlap RECALIBRATE Commands to 
multiple FDDs, and the loss of the READY signal, as 
described in the SEEK Command, also applies to the 
RECAllBRATE Command. 

SENSE INTERRUPT STA"tUS 

'An Interrupt signal is generated by the FDC for one of 
the following reasons: 

1. Upon entering the Result Phase of: 
a. Read Data Command 
b. Read a Track Command 
c. Read 10 Command 
d. Read Deleted Data Command 
e. Write Data Command 
f. Format a Cylinder Command 
g. Write Deleted Data Command 
h. Scan Commands 

2. Ready Line of FDD changes state 
3. End of Seek or Recalibrate Command 
4. During Execution Phase in the NON-DMA Mode 

Interrupts caused by reasons 1 and 4 above occur during 
normal' command operations and are easily discernible 
by the processor. However, interrupts caused by 
reasons 2 and 3 above may be uniquely identified with 
the aid of the Sense Interrupt Status Command. This 
command when issued resets the Interrupt signal and 
via bits 5, 6, and 7 of Status Register 0 identifies the 
cau!?e of the interrupt. 

Neither the Seek or Recalibrate Command have a Result 
Phase. Therefore, it is mandatory to use the Sense Inter­
rupt Status Command after these commands to effec­
tively terminate them and, to provide verification of the 
head position (PCN). ~ 

Table 11. Seek, Interrupt Codes 

SEEK END INTERRUPT CODE 
BIJ 5 BIT6 BIT7 CAUSE 

0. 1 1 Ready Line changed 
state, either polarity 

1 0. 0. Normal Termination 
of Seek or Recalibrate 
Command 

1 1 0. Abnormal Termination of 
Seek or Recalibrate 
Command 

SPECIFY 
The Specify Command sets the initial values for each of 
the three internal timers. The HUT (Head Unload Time) 
defines the time from the end of the Execution Phase of 
one of the ReadIWrite Commands to the head unload 
state. This timer is programmable from 16 to 240 ms in 
increments of 16 ms (01 = 16 ms, 02= 32 ms .... OF = 
240 ms). The SRT (Step Rate Time) defines the time in­
terval between adjacent step pulses. This timer is pro­
grammable from 1 to 16 ms in increments of 1 ms (F = 1 
ms, E = 2 ms, 0 = 3 ms, etc.). The H l T (Head load Time) 
defines the time between when the Head load signal 
goes high and when the Read/Write operation starts. 
This timer is p'rogrammable from 2 to 254 ms in in­
crements of 2 ms (01 = 2 ms, 02 = 4 ms, 03 = 6 ms .... 
FE=254 ms). 

The step rate should be programmed 1 mS longer than 
the minimum time required by the drive. 

The time intervals mentioned above are a direct function 
of the clock (ClK on pin 19). Times indicated above ate 
for an 8 MHz clock, if the clock was reduced to 4 MHz 
(mini-floppy application) then all time Intervals are In­
creased by a factor of 2. 

The choice of DMA or NON-DMA operation is made by 
the NO (NON-DMA) bit. When this bit is high (NO = 1) the 
NON-DMA mode is selected, and when NO = 0 the DMA 
mode is selected. 

SENSE DRIVE STATUS 

This command may be used by the processor whenever 
it wishes to obtain the status of the FDDs. Status 
Register 3 contains the Drive Status information. 
INVALID 

If an invalid comm'and is sent to the FDC (a command 
not defined above), then the FDC will terminate the com­
mand. No interrupt is generated by the 8272A during this 
condition. Bit 6 and bit 7 (010 and RQM) in the Main 
Status Register are both high ("1") indicating to the 
processor that the 8272A is in the Result Phase and the 
contents of Status Register 0 (STO) must be read. When 
the processor reads Status Register 0 it will find an 80H 
indicating an invalid command was received. 
A Sense Interrupt Status Command must be sent after a 
Seek or Recalibrate interrupt, otherwise the FDC will 
consider the next command to be an Invalid Command. 

In some applicatio,ns the user may wish to use this com­
mand as a No-Op command, to place the FDC in a stand­
by or 1'10 operation state., 

210.60.6-0.0.1 



intJ 8272A 

Table 12. Status Registers 

BIT BIT 

NO. NAME SYMBOL 
DESCRIPTION DESCRIPTION 

NO. NAME SYMBOL 

STATUS REGISTER 0 STATUS REGISTER 1 (CONT.) 

0 7 Interrupt IC D7=Oand 06=0 
Code Normal Termination of Command, 

0 , Not NW DUring execution of WRITE DATA, 
Writable WRITE DELETED DATA or Format A 

(NT). Command was completed and Cylinder Command, if the FDC 
properly executed. detects a write protect signal from 

06 D7=Oand 06=1 the FDD, then this flag is set. 

Abnormal Termination of Com-
mand, (AT). Execution of Command 
was started, but was not 
successfully completed. 

Do Missing MA If the FDC cannot detect the 10 
Address Address Mark after encountering the 
Mark index hole tWice, then this flag is set. 

0 7= 1 and 06-0 
Invalid Command Issue, (IC) 
Command which was issued was 
never started 

If the FDC cannot detect the Data 
Address Mark or Deleted Data 
Address Mark, this flag is set. Also 
at the same time, the MD (Missing 
Address Mark in Data Field) of 

0 7= 1 and 06= 1 Status Register 2 is set. 
Abnormal Termination because 
during command execution the STATUS REGISTER 2 

ready signal from FDD changed 
state. 

0 7 Not used. This bit is always 0 (low). 

Os Seek End SE When the FDC completes the 
0 6 Control CM During executing the READ DATA or 

Mark SCAN Command, if the FDC 
SeEK Command, this flag is set to 1 encounters a Sector which contains 
(high). a Deleted Data Address Mark, this 

0_ EqUipment EC If a fault Signal IS received from the flag IS set. 

Check FDD, or if the Track 0 Signal fails to 
occur after 77 Step Pulses (Recail· 
brate Command) then this flag IS set. 

Os Data Error in DO If the FDC detects a CRC error In 
Data Field the data field then this flag IS set 

03 Not Ready NR When the FDD IS In the not-ready 
state and a read or write command IS 

0_ Wrong WC This bit IS related with the NO bit, 
Cylinder and when the contents of C on the 

medium IS different from that stored 
issued, this flag IS set If a read or 
write command IS Issued to Side 1 

In the lOR, this flag IS set. 

of a single sided drive, then this flag 0 3 Scan Equal SH DUring execution, the SCAN 

is set Hit Command, if the condition of 

O2 Head HD This flag IS used to mdlcate the 
"equal" IS satisfied, this flag IS set 

Address state of the head at Interrupt. O2 Scan Not SN During executing the SCAN 

0 , Unit Select 1 US 1 These flags are used to indicate a 
Satisfied Command, if the FOC cannot find a 

Sector on the cylinder which meets 

Do Unit Select 0 US 0 Drive Unit Number at Interrupt the condition, then this flag is set 

STATUS REGISTER 1 0 , Bad BC This bit IS related with the NO bit, 

0 7 End of EN When the FDC tries to access a 
Cylinder and when the content of C on the 

medium is different from that stored 
Cylinder Sector beyond the final Sector of a In the lOR and the content of C IS 

Cylinder, this flag is set FF, then this flag is set. 

0 6 Not used. This bit is always 0 (low). Do Missing MD When data is read from the medium, 

Os Data Error DE When the FDC detects a CRC error 
in either the 10 field or the data field, 

Address if the FDC cannot find a Data 
Mark In Data Address Mark or Deleted Data 

this flag is set. Field Address Mark, then this flag is set. 

D_ Over Run OR If the FDC is not serviced by the STATUS REGISTER 3 
main-systems during data transfers, 
within a certain time interval, this 
flag is set 

0 7 Fault FT This bit is used to indicate the 
status of the Fault signal from the 
FDD .• 

0 3 Not used. This bit always 0 (low) 
06 Write WP This bit is used to indicate the 

02 No Data NO DUring execution of READ DATA, Protected status of the Write Protected signal 
WRITE DELETED DATA or SCAN from the FDD 
Command, If the FDC cannot fmd 
the Sector specified in the lOR 
Register, this flag is set. 

Os Ready ROY This bit is used to indicate the status 
of the Ready signal from the FDD. 

DUring executing the READ 10 Com· 
mand, If the FOC cannot read the 

0_ Track 0 TO This bit is used to Indicate the status 
of the Track 0 signal from the FDD. 

10 field without an error, then this 
flag IS set. 

0 3 Two Side TS This bit IS used to indicate the status 
of the Two Side signal from the FDD. 

DUring the execution of the READ A 
Cylinder Command, If the starting 

O2 Head HD This bit is used to indicate the status 
Address of Side Select signal to the FDD. 

sector cannot be found, then this 
flag is set 0 , Unit Select 1 US 1 This bit IS used to indicate the status 

of the Unit Select 1 signal to the FDD. 

Do Unit Select 0 usa ThiS bit is used to Indicate the status 
of the Unit Select 0 signal to the FDD. 

5-455 210606-001 



intJ 8272A 

ABSOLUTE MAXIMUM RATINGS· 
Operati ng Temperature .................. O·C to + 70·C 
Storage Temperature .......•..•.. -40·Cto +125·C 
All Output Voltages ............... -0.5 to + 7 Volts 
All Input Voltages ••...........•... -0.5 to + 7 Volts 
Supply Voltage Vee ............... -0.5, \0 + 7 Volts 
Power Dissipation .......................... 1 Watt 

NOTICE: Stress above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the de­
.vice. This is a stress rating only and functional operation of 
the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect ~evice 
reliability. 

D.C. CHARACTERISTICS (TA = o·c to + 70·C, Vcc = + 5V ± 10%) 

Limits Test 
Symbol Parameter Min. Max. ,Unit Conditions 

VIL Input Low Voltage -0.5 0.8 V 

V 1H Input High Voltage 2.0 Vcc+ 0.5 V 

VOL Output Low Voltage 0.45 V, IOL=2.0 mA 

VOH Output High Voltage 2.4 Vcc V 10H = -400,..A 

Icc Vcc Supply Current 120 rnA 

IlL In~ut ,Load Current 10 ,..A VIN=VCC 
(A I Input Pins) -10 ,..A VIN=OV 

ILoH High Level Output 10 ,..A VOUT= Vee 
Leakage Current 

IOFL Output Float ±10 ,..A 0.45V .. VOUT .. Vee 
Leakage Current 

CAPACITANCE (TA = 25·C, fc = 1 1111Hz, Vcc = OV) 

Limits Test 
Symbol Parameter Min. Max. Unit Conditions , 

CIN(4)) Clock Input Capacitance • 20 pF All Pins Except 

CIN Input Capacitance 10 pF Pin Under Test 
Tied to AC 

CliO InputlOutput Capacitance 20 pF Ground 

A.C. CHARACTERISTICS (T A = O·C to + 70 ·C, V CC = + 5.0V ± 10%) 

CLOCK TIMING 

Symbol Parameter . Min. Max. Unit Notes 

tCY Clock Period 120 500 ns Note 5 

tCH Clock High Period 40 ns Note 4, 5 

tRST Reset Width 14 tCY 

READ CYCLE 

tAR Select Setup to RDI 0 ns 

tRA Select Hold from ROt 0 I ns 

tRR RD Pulse Width 250 ns 

tRO Data Delay from ROI 200 ns 

tOF Output Float Delay 20 100 ns 

5-456 210606-001 



intel' 8272A 

A.C. CHARACTERISTICS (Continued) (TAI= O·C to + 70·C, vcc= +5.0V ± 10%) 

WRITE CYCLE 

Symbol Parameter Typ.1 Min. Max. Unit Notes 

tAW Select Setup to WRI 0 ns 

tWA Select Hold from WII! 0 ns 

tww WR Pulse Width 250 ns 

tow 'Data Setup to WR! 150 ns 

two Data Hold from WR! 5 ns 

INT Delay from RD! Note 6 

INT Delay from WR! Note 6 

DMA 

tRaCY ORO Cycle Penod 13 ~s Note 6 

tAKRQ DACKI to DRQI 200 ns 

tRQA ORO! to RDI 800 ns Note 6 

tROW ORO! toWRI 250 ns Note 6 

tRQRW ORO! to ROt or WRt 12 ~s Note 6 

FDD INTERFACE 

twCY WCK Cycle Time 2 or 4 ~~~:~ Note 2 lor 2 ~s 

tWCH WCK High Time 250 80 350 ns 

tcp Pre· Shift Delay from WCK! 20 100 'ns 

tco WDA Delay from WCKt 20 100 ns 

tWDO Wnte Data Width tWCH-50 ns 

tWE WEt to WCK! or WEI to WCKI Delay 20 100 ns 

twWCY Wmdow Cycle Time 2 ~s 
MFM:O 

1 MFM=1 

tWAD Window Setup to ROOt 15 ns 

tRDW Window Hold from RDDI 15 ns 

tROD ROD Active Time (HIGH) 40 ns 

FDD SEEK/DIRECTION/STEP 

tus USo t Setup to RW/SEEKt 12 ~s Note 6 

tsu USc,1 Hold after RW/SEEKI 15 ~s Note 6 

ISO RW/SEEK Setup to LCT/DIR 7 ~s Note 6 

tDS RWISEEK Hold from LCTIDIR 30 ~s Note 6 

tOST LCT/DIR Setup to FR/STEP! 1 ~s Note 6 

tSTO LCTIDIR Hold from FA/STEPI 24 ~s Note 6 

'STU DS2,1 Hold from FR/Stepl 5 ~s Note 6 

tSTP STEP Active Time (High) 5 ~s Note 6 

tsc STEP Cycle Time 33 ~s Note 3, 6 

IFR FAULT RESET Active Time (High) 8 10 ~s Note 6 

tlOX INDEX Pulse Width 10 tCY 

tTC Terminal Count Width 1 tCY 

NOTES: 
1, Typical values for TA: 25'C and nominal supply voltage, 

2. The former values are used for standard floppy and the latter values are used for mini-floppies. 

3. tsc = 33,.,.s min. Is for different drive units. In the case of same unit, tsc can be ranged from 1 rns to 16 rns with 8 MHz clock period, and 2 rns 
to 32 ms with 4 MHz clock, under software control, 

4. From 2,OV to + 2,OV , 

5 At 4 MHz, the clock duty cycle may range from 16% to 76%. Using an 8 MHz clock the duty cycle can range from 32% to 52%, Duty cycle is 
defined as: 0 C, : 100 (tCH - tCY) with typical rise and fall times of 5 ns, 

6. The specified values listed are for an 8 MHz clock period. Multiply timings by 2 when using a 4 MHz clock period. , 

5-457 210606-001 

I"~ 



inter 

.' A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

u =-X">=~~<")C 
0.8 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN,AT 2 4V FOR A LOGIC' 1" AND 0 45V FOR 
A LOGIC 0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC' 1" 
AND 0 8V FOR A LOGIC '0" 

WAVEFORMS 

PROCESSOR READ OPERATION 

8272A 

A.C. TESTING LOAD CIRCUIT 

DEVIC~ 
UNDER 

~CL.'00PF TEST 

CL=100pF 
CL INCLUDES JIG CAPACITANCE 

I· .. o-----IRD----~ 

DATA - - - - - - - - - - - -

INT 

5-458 

-. 

210606-001 



8272A 

WAVEFORMS (Continued) 

PROCESSOR WRITE OPERATION 

Ar." CS. DACK 

......-tAW 1-+----lwW,----+i 

DATA 

INT 

DMA OPERATION 

I-+----------"'QC, ----------~ 

ORO 

1-+-------tROAW'-------t 

WR or R5 

I __ ---IRQR----I 

5-459 210606-001 



intJ 
WAVEFORMS (Continued) 

CLOCK TIMING 

elK 

FDD WRITE OPERATION 

WRITE ENABLE 
(WE) 

NORMAL 

LATE 

EARLY 

INVALID 

8272A 

tep 

PRESHIFTO PRESHIFTI 

0 0 

0 1 

1 0 

1 1 

5-460 210606-001 



WAVEFORMS (Continued) 

SEEK OPERATION 

leT! 
DIRECTION 

STEP 

FLT RESET 

FAULT RESET 
FAIL UNSAFE RESET 

8272A 

STABLE 

1------I"u-----1 

1 __ ----------lsc-----------1 

INDEX 

5-461 210606-001 



8272A 

WAVEFORMS (Continued) 

FDD READ OPERATION 

READDA4A 
tROO.... , 

, ----------------------------

RE~~NDDA_;~ ___________________ ~~""'!-------------'W-RD~~~~----------______ _ 

/tr------------twwcv---------J 

TERMINAL COUNT RESET 

RESET 
TC 

5-462 210606-001 



inter . . APPLICATION 
NOTE 

5-463 

AP·116 

March 1981 

207875-002 

, 
! 

i'l 



APPLICATIONS 

An Intelligent 
Data Base System 

Using the 8272 

Contents 

INTRODUCTION 

The Floppy Disk 
The Floppy Disk Drive 

SUBSYSTEM OVERVIEW 

Controller Electronics 
Drive Electronics 
Controller/Drive Interface 
Processor/Memory Interface 

DISK FORMAT 

, Data Recording Techniques 
Sectors 
Tracks 
Sector Interleaving 

THE 8272 FLEXIBLE DISKETTE CONTROLLER 

Floppy Disk Commands 
Interface Registers 
Command/Result Phases 
Execution Phase 
Multi-sector and Multi-track Transfers 
Drive Status Polling 
Command Details 

THE DATA SEPARATOR 

Single Density 
Double Density 
Phase-Locked Loop Design 
Initialization 
Floppy Disk Data 
Startup 
PLL Synchronization 

AN INTELLIGENT DISKETTE DATA BASE SYSTEM 

Processor and Memory 
Serial I/O 
DMA 
Disk Drive Interface 

SPECIAL CONSIDeRATIONS 

APPENDIX 

Schematics 
Power Distribution 

5-464 207875-002 



APPLICATIONS 

1. INTRODUCTION 

Most microcomputer systems in use today require low­
cost, high-density removable magnetic media for informa­
tion storage. In the area of removable media, a designer's 
choice is limited to magnetic tapes and floppy disks 
(flexible diskettes), both of which offer non-volatile 
data storage. The choice between these two technologies 
is relatively straight-forward for a given application. 
Since disk drives are designed to permit random access to 
stored information, they are significantly faster than 
tape units. For example, locating information on a disk 
requires less than a second, while tape movement (even at 
the fastest rewind or fast-forward speed) often re­
quires several minutes. This random access ability per­
mits the use of floppy disks in on-line storage applica­
tions (where information must be located, read, and 
modified/updated in real-time under program or 
operator control). Tapes, on the other hand, are ideally 
suited to archival or back-up storage due to their large 
storage capacities (more than 10 million bytes of data 
can be archived on a cartridge tape). 

A sophisticated controller is required to capitalize on 
the abilities of the disk storage unit. In the past, disk 
controller designs have required upwards of 150 ICs. 
Today, the single-chip 8272 Floppy Disk Controller 
(FDC) plus approximately 30 support devices can handle 
up to four million bytes of on-line data storage on four 
floppy disk drives. 

The Floppy Disk 

A floppy disk is a circular piece of thin plastic material 
covered with a magnetic coating and enclose" in a pro­
tective jacket (Figure 1). The circular piece of plastic 
revolves at a fixed speed (approximately 360 rpm) within 
its jacket in much the same manner that a record revolves 
at a fixed speed on a stereo turntable. Disks are 
manufactured in a variety of configurations for various 
storage capacities. Two standard physical disk sizes are 
commonly used. The 8-inch disk (8 inches square) is the 
larger of the two sizes; the smaller size (5-1/4 inches 
square) is often referred to as a mini-floppy. Single­
sided disks can record information on only one side of the 
disk, while double-sided disks increase. the storage 
capacity by recording on both sides. In addition, disks are 
classified as single-density or double-density. Double­
density disks use a modified recording method to store 
twice as much information in the same disk area as can be 
stored on a single-density disk. Table 1 lists storage 
capacities for standard floppy disk media. 

A magnetic head assembly (in contact with the disk) 
writes information onto the disk surface and subse­
quently reads the data back. This head assembly can 
move from the outside edge of the disk toward· the 
center in fixed increments. Once the head assembly is 

EJI===== 
• INDEX HOLE 

o 
I L...-.--------;;I.JL-­

WRITE PROTECT NOTCH./ 

Figura 1. A Floppy Diskette 

positioned at one of these fixed positions, the head can 
read or write information in a circular path as the disk 
revolves beneath the head assembly. This method 
divides the surface into a fixed number of cylinders (as 
shown in Figure 2). There are normally 77 cylinders on a 
standard disk. Once the head assembly is ppsitioned at a 
given cylinder, data may be read or written on either 
side of the disk. The appropriate side of the disk is 
selected by the read/write head address (zero or one). 
Of course, a single-sided disk can only use head zero. 
The combination of cylinder address and head address 
uniquely specifies a single circular track on the disk. The 
physical beginning of a track is located by means of a 
small hole (physical index mark) punched through the 
plastic near the center of the disk. This hole is optically 
sensed by the drive on every revolution of the disk. 

Table 1. Formatted Disk Capacities 

Single· Density 
Format 

Byte/Sector 128 256 512 1024 
Sectors/Track 26 15 8 4 
Tracks/Disk 77 77 77 77 

Bytes/Disk 256,256 295,680 315,392 315,392 

Double-Density 
Format 

Bytes/Sector 128 256 512 1024 
Sectors/Track 52 30 16 8 
Tracks/Disk 77 77 77 77 

Bytes/Disk 512,512 591,360 630,784 630,784 

5-465 207875-002 



APPLICATIONS 

Each track is subdivided into a number of sectors (see 
detailed discussion in section 3). Sectors are generally 
128, 256, 512, or 1024 data bytes in length. This track 
sectoring may be accomplished by one of two tech­
niques: hard sectoring or soft sectoring. Hard sectored 
disks divide each track into a maximum of 32 sectors. 
The beginning of each sector is indicated by a sector 
hole punched in the disk plastic. Soft sectoring, the IBM 
standard method, allows software selection of sector 
sizes. With this technique, each data sector is preceded 
by a unique sector identifier that is read/written by the 
disk controller. 

A floppy disk may also contain a write protect notch 
punched at the edge of the outer jacket of the disk. This 
notch is detected by the drive and passed to the con­
troller as a write protect signal. 

The Floppy Disk Drive 

The floppy disk drive is an electromechanical device 
that records data on, or reads data from, the surface of 
a floppy disk. The disk drive contains head control elec­
tronics that move, the head assembly one increment 
(step) forward (toward the center of the disk) or 
backward (toward the edge of the disk). Since the 
recording head must be in contact with the disk material 
in order to read or write information, the disk drive also 
contains head-load electronics. Normally the read/write 
head is unloaded until it is necessary to read or write in­
formation on the floppy disk. Once the head assembly 
has been positioned over the correct track on the disk, 
the head is loaded (brought into contact with the disk). 
This sequence prevents excessive disk wear. A small 
time penalty is paid when the head is loaded. Approx­
imately thirty to fifty milliseconds are needed before 
data may be reliably read from, or written to, the disk. 
This time is known as the head load time. If desired, the 
head may be moved from cylinder to cylinder while 
loaded. In this manner, only a small time interval (head 
settling time) is required before data may be read from 
the new cylinder. The head settling time is often shorter 
than the head load time. Typically, disk drives also con­
tain drive select logic that allows more than one physical 
drive to be connected to the same interface cable (from 
the controller). By means of a jumper on the drive, the 
drive number may be selected by the OEM or end user. 
The drive is enabled only when selected; when not 
selected, all control signals on the cable are ignored. 

Finally, the drive provides additional signals to the 
system controller regarding the status of the drive and 
disk. These signals include: 

Drive Ready - Signals the system that the drive door 
is closed and that a floppy disk is inserted into the 
drive. 

Track Zero - Indicates that the head assembly is 
located over the outermost track of the disk. 
This signal may be used for calibration of the disk 
drive at system initialization and after an error con­
dition. 

Write Protect - Indicates that the floppy disk loaded 
. into the drive is write protected. 

Dual Sided - Indicates that the floppy disk in the 
drive is dual-sided. \ 

Write Fault - Indicates that an error occurred during 
a recording operation. 

Index - Informs the system that the physical index 
mark of the floppy disk (signifying the start of a data 
track) has been sensed. 

CURRENT TRACK 

Figure 2. Concentric Cylinders on a Floppy Diskette 

5-466 207875-002 



APPLICATIONS 

2. SUBSYSTEM OVERVIEW 

A disk subsystem consists of the following functional 
electronic units: 

1. Disk Controller Electronics 

2. Disk Drive Electronics 

3. Controller/Disk Interface (cables, drivers; termina-
tors) 

4. Controller/Microprocessor System Interface 

The operation of these functional units is discussed in 
the following.paragraphs. 

Controller Electronics 

The disk controller is responsible for converting high­
level disk commands (normally issued by software ex­
ecuting on the system processor) into disk drive com­
mands. This function includes: 

1. Disk Drive Selection - Disk controllers typically 
manage the operations of multiple floppy disk 
drives. This controller function permits the system 
processor to specify which drive is to be used in a 
particular operation. 

2. Track Selection - The controller issues a timed se­
quence of step pulses to move the head from its cur­
rent location to the proper disk cylinder from which 
data is to be read or to which data is to be written. 
The controller stores the current cylinder number 
and computes the stepping distance from the current 
cylinder to the specified cylinder. The controller also 
manages the head select signal to select the correct 
side of the floppy disk. 

3. Sector Selection - The controller monitors the 
data on a track until the requested sector is sensed. 

4. Head Loading - The disk controller determines 
the times at which the head assembly is to be brought 
in contact with the disk surface in order to read or 
write data. The controller is also responsible for 
waiting until the head has settled before reading or 
writing information. Often the controller maintains 
the head loaded condition for up to 16 disk revolu­
tions (approximately 2 seconds) after a read or write 
operation has been completed. This feature elimi­
nates the head load time during periods of heavy disk 
110 activity. 

5. Data Separation - The actual signal recorded on a 
floppy disk is a combination of timing information 
(clock) and data. The serial READ DATA input 
(from the disk drive) must be converted into two sig­
nal streams: clock and data. (The READ DATA in­
put operates at 250K bits/second for single-density 
disks and 500K bits/second for double-density 

disks.) The serial data must also be assembled into 
8-bit bytes for transfer to system memory. A byte 
must be assembled and transferred every 32 
microseconds for single-density disks and every 16 
microseconds for double-density. 

6. Error Checking - Information recorded on a flop­
py disk is subject to both hard and soft errors. Hard 
(permanent) errors are caused by media defects. Soft 
errors, on the other hand, are temporary errors 
caused by electromagnetic noise or mechanical inter­
ference. Disk controllers use a standard error check­
ing technique known as a Cyclic Redundancy Check 
(CRC). As data is written to a disk, a 16-bit CRC 
character is computed and also stored on the disk. 
When the data is subsequently read, the CRC charac­
ter allows the controller to detect data errors. Typi­
cally, when CRC errors are detected, the controlling 
software retries the failed operation (attempting to 
recover from a soft error). If data cannot reliably be 
read or written after a number of retries, the system 
software normally reports the error to the operator. 
Multiple CRC errors normally indicate unrecover­
able media error on the current disk track. Subse­
quent recovery attempts must be defined by the sys­
tem designers and tailored to meet system interfacing 
requirements. 

Today, single-chip digital LSI floppy disk controllers 
such as the 8272 perform all the above functions with 
the exception of data separation. A data separation cir­
cuit (a combination of digital and analog electronics) 
synchronizes itself to the actual data rate of the disk 
drive. This data rate varies from drive to drive (due to 
mechanical factors such as motor tolerances) and varies 
from disk to disk (due to temperature effects). In order 
to operate reliably with both single- and double-density 
storage, the data separation circuit must be based on 
phase-locked loop (PLL) technology. The phase-locked 
loop data separation logic is described in section 5. The 
separation logic, after synchronizing with the data 
stream, supplies a data window to the LSI disk con­
troller. This window differentiates data information 
from "clock information within the serial stream. The 
controller uses this window to reconstruct the data 
previously recorded on the floppy disk. 

5-467 

Drive Electronics 

Each floppy disk drive contains digital electronic cir­
cuits that translate TTL-compatible command signals 
into electromechanical operations (such as drive selec­
tion and head movement/loading) and that sense and 
report disk or drive status to the controller (e.g., drive 
ready, write fault, and write protect). In addition, the 
drive electronics contain analog components to sense, 
amplify, and shape data pulses read from, or written to, 
the floppy disk surface by the read/write head. 

207875-002 



APPLICATIONS 

Controller/Drive Interface 

The controller/drive interface consists of high-current 
line drivers, Schmitt triggered input gates, and flat or 
twisted pair cable(s) to connect the disk drive electronics 
to the controller electronics. Each interface signal line is 
resistively terminated at the end of the cable farthest 
from the line drivers. Eight-inch drives may be directly 
interfaced by means of 50-conductor flat cable. 
Generally, cable lengths should be less than ten feet in 
order to maintain noise immunity. 

Normally, provisions are made for up to four disk 
drives to share the same interface cable. The controller 
may operate as many cable assemblies as practical. LSI 
floppy disk controllers typically operate one to four 
drives on a single cable. 

Processor/Memory Interface 

The disk controller must interface to the system proc­
essor and memory for two distinct purposes. First, the 
processor must specify disk control and command 
parameters to the controller. These parameters include 
the selection of the recording density and specification 
of disk formatting information (discussed in section 3). 
In addition to disk parameter specification, the proc­
essor must also send commands (e.g., read, write, seek, 
and scan) to the controller. These commands require the 
specification of the command code, drive number, 
cylinder address, sector address, and head address. 
Most LSI controllers receive commands and parameters 
by means of processor I/O instructions. 

In addition to this I/O interface, the controller must 
also be designed for high-speed data transfer between 
memory and the disk drive. Two implementation 
methods may be used to coordinate this data transfer. 
The lowest-cost method requires direct processor in­
tervention in the transfer. With this method, the con­
troller issues an interrupt to the processor for each data 
transfer. (An equivalent method allows the processor to 
poll an interrupt flag in the controller status word.) In 
the case of a disk write operation, the processor writes a 
data byte (to be encoded into the serial output stream) 
to the disk controller following the receipt of each con­
troller interrupt. During a disk read operation, the proc­
essor reads a data byte (previously assembled from the 
input data stream) from the controller after each inter­
rupt. The processor must transfer a data byte from the 
controller to memory or transfer a data byte from 
memory to the disk controller within 16 or 32 
microseconds after each interrupt (double-density and 
single-density response times, respectively). 

If the system processor must service a variety of other 
interrupt sources, this interrupt method may not be 
practical, especially in double-density systems. In this 
case, the disk controller may be interfaced to a Direct 

Memory Access (DMA) controller. When the disk con­
troller requires the transfer of a data byte, it simply ac­
tivates the DMA request line. The DMA controller in­
terfaces to the processor and, in response to the disk 
controller's request, gains control of the memory inter­
face for a short period of time-long enough'to transfer 
the requested data byte to/from memory. See section 6 
for a detailed DMA interface description. 

3. DISK FORMAT 

New floppy disks must be written with a fixed format by 
the controller before these disks may be used to store 
data. Formatting is a method of taking raw media and 
adding the/necessary information to permit the con­
troller to read and write data without error. All format­
ting is performed by the disk controller on a track-by­
track basis under the direction of the system processor. 
Generally, a track may be formatted at any time. 
However, since formattihg "initializes" a complete disk 
track, all previously written data is lost (after a format 
operation). A format operation is normally used only 
when initializing new floppy disks. Since soft-sectoring 
in such a predominant formatting technique (due to 
IBM's influence), the following discussion will limit 
itself to soft-sectored formats. 

Data Recording Techniques 

Two standard data recording techniques are used to 
combine clock and data information for storage on a 
floppy disk. The single-density technique is referred to 
as FM encoding. In FM encoding' (see Figure 3), a dou­
ble frequency encoding technique is used' that inserts a 
data bit between two adjacent clock bits. (The presence 
of a data bit represents a binary "one" while the 
absence of a data bit represents a binary "zero. ") The 
two adjacent clock bits are referred to as a bit cell, and 
except for unique field identifiers, all clock bits written 
on the disk are binary "ones." In FM encoding, each 
data bit is written at the center of the bit cell and the 
clock bits are written at the leading edge of the bit cell. 

The encoding used for double-density recording is 
termed MFM encoding (for "Modified FM"). In MFM 
encoding (Figure 3) the data bits are again written at the 
center of the bit cell. However, a clock bit is written at 
the leading edge of the bit cell only if no data bit was 
written in the previous bit cell and no data bit will be 
written in the present bit cell. 

Sectors 

Soft-sectored floppy disks divide each track into a 
number of data sectors. Typically, sector sizes of 128, 
256, 512, or 1024 data bytes are permitted. The sector 
size is specified when the track is initially formatted by 
the controller. Table 1 lists the single- and double-

5-468 207875-002 



APPLICATIONS 

density data storage capacities for each of the four sec­
tor sizes. Each sector within a track is composed of the 
following four fields (illustrated in Figure 4): 

1. Sector ID Field - This field, consisting of seven 
bytes, is written only when the track is formatted. 
The ID field provides the sector identification that is 
used by the controller when a sector must be read or 
written. The first byte of the field is the ID address 
mark, a unique coding that specifies the beginning of 
the ID field. The second, third, and fourth bytes are 
the cylinder, head, and sector addresses, respective­
ly, and the fifth byte is the sector length code. The 
last two bytes are the 16-bit eRe character for the 
ID field. During formatting, the controller supplies 
the address mark. The cylinder, head, and sector ad­
dresses and the sector length code are supplied to the 
controller by the processor software. The eRe 
character is derived by the controller from the data in 
the first five bytes. 

2. Post ID Field Gap - The post ID field gap (gap 2) 
is written initially when the track is formatted. Dur­
ing subsequent write operations, the drive's write cir­
cuitry is enabled within the gap and the trailing bytes 
of the gap are rewritten each time the sector is up­
dated (written). During subsequent read operations, 
the trailing bytes of the gap are used to synchronize 
the data separator logic with the upcoming data 
field. 

3. Data Field - The length (number of data bytes) of 
the data field is determined by software when the 
track is formatted. The first byte of the data field is 
th,:: data address mark, a unique coding that specifies 

DATA 

FM 

MFM 

-J I- BIT CELL (4 "5) 

J .LI I-- DATA 
~CLOCK 

the beginning of the data field. When a sector is to be 
deleted, (e.g., a hard error on the disk), a deleted 
data address mark is written in place of the data ad­
dress mark. The last two bytes of the data field com­
prise the eRe character. 

4. Post Data Field Gap - The post data field gap 
(gap 3) is written when the track is formatted and 
separates the preceding data field from the next 
physical ID field on the track. Note that a post data 
field gap is not written following the last physical 
sector on a track. The gap itself contains a program­
selectable number of bytes. Following a sector up­
date (write) operation, the drive's write logic is 
disabled during the gap. The actual size of gap 3 is 
determined by the maximum number of data bits 
that can be recorded on a track, the number of sec­
tors per track and the total sector size (data plus 
overhead information). The gap size must be ad­
justed so that it is large enough to contain the discon­
tinuity generated on the floppy disk when the write 
current is turned on or off (at the start or completion 
of a disk write operation) and to contain a syn­
chronization field for the upcoming ID field (of the 
next sector). On the other hand, the gaps must be 
small enough so that the total number of data bits re­
quired on the track (sectors plus gaps) is less than the 
maximum number of data bits that can be recorded 
on the track. The gap size must be specified for all 
read, write, and format operations. The gap size 
used during disk reads and writes must be smaller 
than the size used to format the disk to avoid the 
splice points between contiguous physical sectors. 
Suggested gap sizes are, listed in Table 9. 

NOTE THATTHE FM alT CELL IS TWICE THE SIZE OF THE MFM BIT CELL. THUS. THE 
FM TIME SCALE IN THIS FIGURE IS 4,us/BIT WHilE THE MFM TIME SCALE IS 2 IAs/BIT 

Figure 3. FM and MFM Encoding 

5-469 
207875-002 



APPLICATIONS 

Tracks 

The overall format for a track is illustrated in Figure 4. 
Each track consists of the following fields: 

1. Pre-Index Gap - The pre-index gap (gap 5) is writ­
ten only when the track is formatted. 

2. Index Address Mark - The index address' mark 
consists of a unique code that indicates the beginning 
of a data track. Op.e index mark is written on each 
track when the track is formatted. 

3. Post Index Gap - The post index gap (gap 1) is 
used during disk read and write operations to syn-

nPHYSICAL 
INDEX 
MARK ------' 

f~ FINAL PRE· 
SECTOR INDEX 

DATA GAP 
GAP 

FIELD (GAP 4) 
(GAPS) 

I 

INDEX 
POST 
INDEX 

ADDRESS GAP 
MARK 

(GAP') 

1 

chronize the data separator logic with the data to be 
read from the ID field (of the first sector). The post 
index gap is written only when the disk is formatted. 

4. Sectors - The sector information (discussed above) 
is repeated once for each sector on the track. 

5. Final Gap - The final gap (gap 4) is written when 
the track is formatted and extends from the last 
physical data field on the track to the physical index 
mark. The length of this' gap is dependent on the 
number of bytes per sector specified, the lengths of 
the program-selectable gaps specified, and the drive 
speed. 

SECTOR 
POST 10 

FIELD SECTOR. • / GAP DATA FIELD 
ID FIELD (GAP 2) 

HEXFF SYNC J (HEX 00) 1 SYNC HEX FF (HEX 00) 

..1 

.l DATA 1 I 
CRC 

I CRC ADDRESS 128 x 2" USER DATA BYTES BYTE. BYTE 2 " MARK 

.-

II J 

POST POST 
DATA SECTOR 

POST 10 DATA SECTOR 
POSTID ~~j FIELD SECTOR 2 FIELD j SECTOR FIELD 2 FIELD 3 

GAP ID FIELD 
GAP DATA FIELD GAP ID FIELD 

GAP 

~ 
DATA 

(GAP 3) (GAP 2) (GAP 3) (GAP 2) FIELD 

I I . 

I SYNC I HEX FF (HEX 00) I SYNC HEX FF (HEX 00) 

I ID 
TRACK I HEAD I SECTOR I SECTOR I CRC I CRC 

J ADDRESS 
MARK ADDRESS ADDRESS ADDRESS LENGTH BYTE. BYTE 2 

BYTE. BYTE 2 BYTE 3 BYTE 4 BYTES BYTE 8 BYTE 7 

Figure 4. Standard Floppy Diskette Track Format (From SBe 204 Manual) 

5-470 207875-002 



APPLICATIONS 

Sector Interleaving 

The initial formatting of a floppy disk determines where 
sectors are located within a track. It is not necessary to 
~llocate sectors sequentially around the track (Le., 
1,2,3, ... ,26). In fact, is is often advantageous to place 
the sectors on the track in a non-sequential order. Se­
quential sector ordering optimizes sector access times 
during multi-sector transfers (e.g., when a program is 
loaded) by permitting the number of sectors specified 
(up to an entire track) to be transferred within II single 
revolution of the disk. A technique known as sector in­
terleaving optimizes access times when, although sectors 
are accessed sequentially, .a small amount of processing 
must be performed between sector reads/writes. For ex­
ample, an editing program performing a text search 
reads sectors sequentially, and after each sector is read, 
performs a software search. If a match is not found, the 
software issues a read request for the next sector. Since 
the floppy disk continues to rotate during the time that 
the software executes, the next physical sector is already 
passing under the read/write head when the read request 
is issued, and the processor must wait for another com­
plete revolution of the disk (approximately 166 
milliseconds) before the data may actually be input. 
With interleaving, the sectors are not stored sequentially 
on a track; rather, each sector is physically removed 
from the previous sector by some number (known as the 
interl~ave factor) of physical sectors as shown in Figure 
5. This method of sector allocation provides the proc­
essor additional execution time between sectors on the 
disk. For example, with a 26 sector/track format, an in­
terleave factor of 2 provides 6.4 milliseconds of proces­
sing time between sequential 128 byte sector accesses. 

Figure 5. Interleaved Sector Allocation Within a Track 

/ 

To calculate the correct interleave factor, the maximum 
processor time between sector operations must be divid­
ed by the time required for a complete sector to pass 
under the disk read/write head. After determining the 
interleave factor, the correct sector numbers are passed 
to the disk controller (in the exact order that they are to 
physically appear on the track) during the execution of a 
format operation. 

4. THE 8272 FLEXIBLE DISKETTE 
CONTROLLER 

The 8272 is a single-chip LSI Floppy Disk Controller 
(FDC) that contains the circuitry necessary to imple­
ment both single-and double-density floppy disk storage 
subsystems (with up to four dual-sided disk drives per 
FDC). The 8272 supports the IBM 3740 single-density 
recording format (FM) and the IBM System 34 double­
density recording format (MFM). With the 8272, less 
than 30 ICs are needed to implement a complete disk 
subsystem. The 8272 accepts and executes high-level 
disk commands such as format track, seek, read sector, 
write sector, and read track. All data synchronization 
and error checking is automatically performed by the 
FDC to ensure reliable data storage and subsequent 
retrieval. External logic is required only for the genera­
tion of the FDC master clock and write clock (see Sec­
tion 6) and for data separation (Section 5). The FDC 
provides signals that control the startup and base fre­
quency selection of the data separator. These signals 
greatly ease the design of a phase-locked loop data 
separator. 

In addition to the data separator interface signals, the 
8272 also provides the necessary signals to interface to 
microprocessor systems with or without Direct Memory 
Access (DMA) capabilities. In order to interface to a 
large number of commercially available floppy disk 
drives, the FDC permits software specification of the 
track stepping rate, the head load time, and the head· 
unload time. 

The pin configuration and internal ,block diagram of the 
8272 is shown in Figure 6. Table 2 contains a description 
for each FDC interface pin. 

Floppy Disk Commands 

The 8272 executes fifteen high-level disk interface 
commands: 
Specify 
Sense Drive Status 
Sense Interrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read Deleted Data 

5-471 

Write Data 
Write Deleted Data 
Read Track 
Read 10 
Scan Equal 
Scan High or Equal 
Selm Low or Equal 

207875-002 



APPLICATIONS 

Each command. is initiated by a multi-byte transfer from 
the processor to the FOC (the transferred bytes contain 
command and parameter information). After.complete 
command specification, the FOC automatically ex­
ecutes the command. The command result data (after 
execution of the command) may require a multi-byte 
transfer of status information back to the processor. It 

'is convenient to consider each FOC command as con­
sisting of the following three phases: 

C;OMMANO PHASE: The executing program 
transfers to the FOC all the 
information required to per­
form a particular disk opera­
tion. The 8272.automatically 
enters the command phase 
after RESET and followi~g 
the completion of the result 
phase (if any) of a previous 
command. 

RESET Vee 080.7 
RJj 2 RWISEEK 

WR LCT/DIR 

cs 4 FRfSTP 

HDl 

ROY 

DB, WP/TS 

FLT/TRKO 

PSo 

DB, PS, TERMINAL 
DB, WR DATA COUNT~ 
DB, OS. 

DB, OS, 

DRQ HOSEL 

OACK MFM 

TC WE 

lOX Vee 
INT RD DATA 

ClK OW 
es 

GND WRCLK 
eLK ---. 
Vee --.. 
OND~ 

\ 
EXECUTION PHASE: The FOC performs the 

RESULT PHASE: 

REGISTERS 

operation as instructed. The 
execution phase is entered 
immediately after the last 
command parameter is writ­
ten to the FOC in the 
preceding command phase. 
The execution phase normal­
ly ends when the last data 
byte is transferred to/from 
the disk (signalled by the TC 
input to the FOC) or when an 
error occurs. 

After completion of the disk 
operation, status and other 
housekeeping information 
are made available to the 
processor. After the proc­
essor reads this information, 
the FOC reenters the com­
mand phase and is ready to 
accept another command. 

READY 
WRITE PROTECTITWO SIDE 
INDEX 
FAUL TITRACK 0 

DRIVE SELECT 0 
DRIVE SELECT 1 
MFM MODe 

IIWISEEK 
HEAD LOAD 
HEAD SELECT 
LOW CURRENT/DIRECTION 
FAULT RESET/STEP 

Figure 6. 8272 Pin Configuration and Internal Block Diagram 

5-472 207875-002 



Number Pin 1/0 
Symbol 

I RST I 

2 RD I· 

3 WR I· 

4 CS I 

5 Ao I· 

6-13 DBo-DB7 I/O· 

14 DRQ 0 

15 DACK I 

16 TC I 

17 IDX I 

18 INT 0 

19 CLK I 

20 GND 

21 WRCLK I 

22 DW I 

23 RDDATA I 

24 VCO 0 

25 WE 0 

26 MFM 0 

27 HDSEL 0 

28,29 DSl>DSo 0 

30 WRDATA 0 

31,32 PSl>PSO 0 

APPLICATIONS 

Table 2. 8272 FDe Pin Description 

TolFrom Description 

uP Reset. Active-high signal that places the FDC in the "idle" state and all 
disk drive output signals are forced inactive (low). This input must be 
held active during power on reset while the RD and WR inputs are active. 

uP Read. Active-low control signal that enables data transfer from the FDC 
to the data bus. 

1 

uP Write. Active-low control signal that enables data transfer from the data 
bus into the FDe. 

uP Chip Select. Active-low control signal that selects the FDC. No reading or 
writing will occur unless the FDC is selected. 

uP Address. Selects the Data Register or Main Status Register for input/out-
put in conjunction with the RD and WR inputs. (See Table 3.) 

uP Data Bus. Bidirectional three-state 8-bit data bus. 

DMA DMA Request. Active-high output that indicates an FDC request for 
DMA services. 

DMA DMA Acknowledge. Active-low control signal indicating that the re-
quested DMA transfer is in progress. 

DMA Terminal Count. Active-high signal that causes the termination of a com-
mand. Normally, the terminal count input is directly connected to the 
TC/EOP output from the DMA controller, signalling that the DMA 
transfer has been completed. In a non-DMA environment, the processor 
must count data transfers and supply a TC signal to the FDC. 

Drive Index. Indicates detection of the physical index mark (the beginning of a 
track) on the selected disk drive. 

uP Interrupt Request. Active-high signal indicating an 8272 interrupt service 
request. 

Clock. Signal phase 8 MHz clock (50070 duty cycle). 

Ground. DC power return. 

Write Clock. 500 kHz (FM) or I MHz (MFM) write clock with a constant 
pulse width of 250 ns (for both FM and MFM recording). The write clock 
must be present at all times. 

~ 

PLL Data Window. Data sample signal from the phase-locked loop indicating 
that the FDC should sample input data from the disk drive. 

Drive Read Data. FDC input data from the selected disk drive. 

PLL VCO Sync. Active-high output that enables the phase-locked loop to 
synchronize with the input data from the disk drive. 

Drive Write·Enable. Active-high output that enables the disk drive write gate. 

PLL MFM Mode. Active-high output used by external logic to enable the 
MFM double-density recording mode. When the MFM output is low, 
single-density FM recording is indicated. 

Drive Head Select. Selects head 0 or head I on a dual-sided disk. 

Drive Drive Select. Selects one of four disk drives. 

Drive Write Data. Serial data stream (combination of clock and data bits) to be 
written on the disk. 

Drive Precompensation (pre-shift) Control. Write precompensation output con-
trol during MFM mode. Specifies early. late. and normal timing signals. 
See the discussion in Section 5. 

5-473 207875-002 

I 
I 

I: 
1 

I, 

i 
II 



APPLICATIONS 

Table 2. 8272 FDC Pin Description (continued) 

Number Pin 1/0 To/From Description 
Symbol 

33 FLT/TRKO I Drive Fault/Track O. Senses the disk drive fault condition in the Read/Write 
mode and the Track 0 condition in the Seek mode. 

34 WP/TS I Drive Write Protect/Two-Sided. Senses the disk write protect status in the 
Read/Write mode and the dual-sided media status in the Seek mode. 

35 RDY I Drive Ready. Senses the disk drive ready status. 

36 fiDL 0 Drive Head Load. Loads the disk drive read/write head. (The head is placed in 
contact with the disk.) 

37 FR/STP 0 Drive Fault Reset/Step. Resets the fault flip-flop in the disk drive when 
operating in the Read/Write mode. Provides head step pulses (to move 
the head from one cylinder to another cylinder) in the Seek mode. 

38 LCT/DIR 0 Drive Low Current/Direction. Signals that the recording head has been position-
ed over the inner cylinders (44-77) of the floppy disk in the Read/Write 
mode. (The write current must be lowered when recording on the phys-
icaUY shorter inner cylinders of the disk. Most drives do not track the ac-
tual head position and require that the FDC supply this signal.) Deter-
mines the head step direction in the Seek mode. In the Seek mode, a high 
level on this pin steps the read/write head toward the spindle (step-in); a 
low level steps the head away from the spindle (step-out). 

39 RW/SEEK 0 Drive Read, Write/Seek Mode Selector. A high level selects the Seek mode; a 
low level selects the Read/Write mode. 

40 Vee + 5V DC Power. 

-Disabled when CS is high. 

Interface Registers 

To support information transfer between the FDC and 
the system processor, the 8272 contains two 8-bit 
registers: the Main Status Register and the Data 
Register. The Main Status Register (read only) contains 
FDC status information and may be accessed at any 
time. The Main Status Register (Table 4) provides the 
system processor with the status of each disk drive, the 
status of the FDC, and the status of the processor inter­
face. The Data Register (read/write) stores data, com­
mands, parameters, and disk drive status information. 
The Data Register is used to program the FDC during 
the command phase and to obtain result information 
after completion of FDC operations. Data is read from, 
or written to, the FDC registers by the combination of 
the AO, RD, WR, and CS signals, as described in 
Table 3. 

In addition to the Main Status Register, the FDC con­
tains four additional status registers (STO, STl, ST2, 
and ST3). These registers are only available during the 
result phase of a command. 

Table 3. FDC ReadlWrite Interface 

CS Ao RD WR Function 

0 0 0 I Read Main Status Register 
0 0 I 0 IUegal 
0 0 0 0 Illegal 
0 I 0 0 IUegal 
0 I 0 I Read from Data Register 
0 I I 0 Write into Data Register 
I X X X Data Bus is three-stated. 

5-474 207875-002 



APPLICATIONS 

Table 4. Main Status Register Bit Definitions 

Bit Symbol Description 
Npmber 

0 DoB Disk Drive 0 Busy. Disk Drive 0 is 
in the Seek mode. 

I DIB Disk Drive I Busy. Disk Drive I is 
in the Seek mode. 

2 D2B Disk Drive 2 Busy. Disk Drive 2 is 
in the Seek mode. 

3 D3B Disk Drive 3 Busy. Disk Drive 3 is 
in the Seek mode. 

4 CB FDC Busy. A read or write com-
mand is in process. 

5 NDM Non-DMA Mode. The FDC is in 
the non-DMA mode when this bit is 
high. This bit is set only during the 
execution phase of commands in 
the non-DMA mode. Transition to 
a low level indicates that the exe-
cution phase has ended. 

6 DIO Data Input/Output. Indicates the 
direction of a data transfer between 
the FDC and the Data Register. 
When DIO is high, data is read 
from the Data Register by the proc-
essor; when DIO is low, data is 
written from the processor to the 
Data Register. 

7 RQM Request for Master. Indicates that 
the Data Register is ready to send 
data to; or receive data from, the 
processor. 

Command/Result Phases 

Table 5 lists the 8272 command set. For each of the fif­
teen commands, command and result phase data 
transfers are listed. A list of abbreviations used in the 
table is given in Table 6, and the contents of the result 
status registers (STO-ST3) are illustrated in Table 7. 

The bytes of data which are sent to the 8272 during the 
command phase, and are read out of the 8272 in the 
result phase, must occur in the order shown in Table 5. 
That is, the command code must be sent first and the 
other bytes sent in the prescribed sequence. All bytes of 
the command and result phases must be read/written as 
described. After the last byte of data in the command 
phase is sent to. the 8272 the execution phase 
automatically starts. In a similar fashion, when the last 
byte of data is read from the 8272 in the result phase, 

the command is automatically ended and the 8272 is 
ready for a new command. A command may be aborted 
by simply raising the terminal count signal (pin 16). This 
is a convenient means of ensuring that the processor 
may always gain control of the 8272 (even if the disk 
system hangs up in an abnormal manner). 

It is important to note that during the result phase all 
bytes shown in Table 5 must be read. The Read Data 
command, for example, has seven bytes of data in the 
result phase. All seven bytes must be read in order to 
successfully complete the Read Data command. The 
8272 will not accept a new command until all seven 
bytes have been read. The number of command and 
result bytes varies from command-to-command. 

In order to read data from, or write data to, the Data 
Register during the command and result phases, the 
system processor must examine the Main Status Register 
to determine if the Data Register is available. The DIO 
(bit 6) and RQM (bit 7) flags in the Main Status Register 
must be low and high, respectively, before each byte of 
the command word may be written into the 8272. Many 
of the com11).ands require multiple bytes, and as a result, 
the Main Status Register must be read prior to each byte 
transfer to the 8272. To read status bytes during the 
result phase, DIO and RQM in the Main Status Register 
must both be high. Note, checking the Main Status 
Register in this manner before each byte transfer 
to/from the 8272 is required only in the command and 
result phases, and is NOT required during the execution 
phase. 

Execution Phase 

All data transfers to (or from) the floppy drive occur 
during the execution phase. The 8272 has two primary 
modes of operation for data transfers (selected by 
the specify command): 

1. DMA mode 

2. non-DMA mode 

In the DMA mode, DRQ (DMA Request) is activated 
for each transfer request. The DMA controller responds 
to DRQ with i"5AcK (DMA Acknowledge) and RD (for 
read commands) or WR (for write commands). DRQ is 
reset by the FDC during the transfer. INT is activated 
after the last data transfer, indicating the completion of 
the execution phase, and the beginning of the result 
phase. In the DMA mode, the terminal count 
(TC/EOP) output of the DMA controller should be 
connected to the 8272 TC input to properly terminate 
disk data transfer commands. 

5-475 207875-002 



APPLICATIONS 

Table 5. 8272 Command Set 

I DATA BUS DATA BUS 

PHASE RIW il? De D5 D4 D3 ~ D, Do REMARKS PHASE RIW D7 De Ds D4 D3 D2 D, DO REMARKS 

READ DATA READ A TRACK 

Command W MT MFM SK 0 0 , 1 0 Command Codes Command W 0 MFM SK 0 0 0 1 0 Command Codes 
W 0 0 0, 0 0 HDS DSl DSO W 0 0 0 0 0 HDS DSl DSO 

W C Sector 10 mformatlon W C $ector 10 information 
W H prior to Command W H prior to Command 
W R execution W R execution 
W N W N 
W EOT W EOT 
W GPl W GPl 
W DTl W DTl 

Execution Data transfer Data transfer 
between the FOD 

Execution between the FOD 

and the main-system and the mam-system 
FOC reads the 

Result R STO Status mformatlon complete track , 
R 8T 1 afler Command contents from the 
R ST2 execution physical Index 
1\ C mark to EOT 
R H Sector ID Information 
R R after command Result A STO Status tnformatlon 
R N execution R STl after Command 

R ST2 execution 
READ DELETED DATA R C 

Command W MT MFM SK 0 1 1 0 0 Command Codes R H Sector 10 Information 

W 0 0 0 0 0 HDS DSl DSO 
A A after Command 
R N execution 

W C Sector 10 information 
W H prior to Command AEAD 10 
W R execution Command W 0 MFM 0 0 1 0 1 0 Command Codes 
W N 
W ECl W 0 0 0 0 0 HDS OS1 OSO 
W GPl' 
W DTl Execution The first correct 10 

Execution Data transfer 
information on the 
track IS stored 10 

between the FOD Data RegIster and the main-system 

Result R STO Status information Result R STO Status information 
R STl after Command R STl after Command 
A ST2 execution R S12 execution 
R C R C 
A H Sector ID Information A H Sector 10 mformatlon 
R R after Command R A durmg Execution 
A N execution R N Phase 

WRITE DATA FORMAT A TAACK 

Command W MT MFM 0 0 0 1 0 1 Command Codes Command W 0 MFM 0 0 1 1 0 1 Command Codes 

W 0 0 0 0 0 HDS DSl OSO W 0 0 0 0 0 HDS Oil' DSO 

W C Sector 10 Informallon W N Bytes/Sector 
W H prior to Command W SC SectorslTrack 
W R execution W GPl Gap 3 
W N W 0 Filter Byte 
W EOT 
W GPl Execution FOC formats an 
W ______ DTl enltre track 

Execution Data transfer Result A STO Status information 
betweEln the mam- A ST 1 after Command 
system and the Foo R S12 execution 

Result A STO Status ,"formation A C 
R STl after Command A H In this case, the 10 
R ST2 execution R A Informatton has no 
R C A N meanmG 
R H Sector 10 information SCAN EQUAL 
R R after Command 
R N execution Command W MT MFM SK 1 0 0 0 1 Command Codes 

WAITE DELETED DATA W 0 0 0 0 0 HDS OSl OSO 

Command W MT MFM 0 0 1 0 0 1 Command Codes 
W C Sector 10 Information 
W H prior to Command 

W 0 0 0 0 0 HDS DSl DSO W R execution 
W' C Sector 10 information W N 
W H pnor to Command W EOT 
W A exec::utlon W GPl _____ 

W N W STP 
/ W ______ EOT 

W GPl Execution oa,a compared 
W DTl between the FOo 

Execution Data transfer 
and the main-system 

between the FOD Result A STO Status Informatton 
and the maIO-system R STl after Command 

Result R STO Status Information R ST2 executIon 

A STl after Command R C 

I 
A ST2 execullon R H sector 10 information 
R C ______ A A after Command 
A H Sector 10 Information R N execution 
R R after Command 
A N execution 

Note 1 AO = 1 for all operations 

5-476 207875-002 



APPLICATIONS 

Table 5. Command Set (Continued) 

I DATA BUS J I DATA BUS I 
PHASE RIW I 07 06 Os 0, 03 02 0, Do I REMARKS PHASE RIW I 07 06 Os 0, 03 02 0, DO I REMARKS 

SCAN LOW OR EaUAL AECALlBAATE 

Command W MT MFM SK , , 0 0 , Command Codes Command W 0 0 0 0 0 , , , Command Codes 
W 0 0 0 0 0 HOS 0$1 DSO W 0 0 0 0 0 0 DS1 DSO 
W C Sector 10 Information Execution Head retracted to 
W H prior Command Track 0 
W A execution 
W ______ N SEN$E INTERRUPT STATUS 
W EOT 

Command W 0 0 W GPl 0 0 , 0 0 0 Command Codes 

W STP Result A ST 0 Status Information al 
A ----- C the end of each seek 

Execution Oala compared operation about the 
between the FOD FDC 
and the main-system 

SPECIFY 

Result A ST 0 Status mformatlOn Command W 0 0 0 0 0 0 , , Command Codes 
A ST' _____ after Command 
A ST 2 execution W _~ SPT __ .. _________ HUT - Timer Settings 
R C ______ W HlT • NO 

._. --
A H Sector 10 Informallon 
A A after Command 

SENSE DRIVE STATUS 

A N execution Command W 0 0 0 0 0 , 0 0 Command Codes 

SCAN HIGH OR EQUAL W 0 0 0 0 0 HOS OS1 DSO 

Result A ST 3 Status information 
Command W MT MFM SK , , , 0 , Command Codes about the FDD 

W 0 0 0 0 0 HOS OS1 DSO 
SEEK 

W C Sector 10 information --
W H prior Command Command W 0 0 0 0 , , , , Command Codes 
W A execution W 0 0 0 0 0 HOS OS1 DSO 
W N 

W C W EOT ------ -----
W GPl _____ 

Execution W STP Head IS positioned 
over proper Cylinder 

Execution Data compared on Diskette 

between the FOD INVALID 
and the main-system 

Command W ____ Invalid Codes ____ Invalid Command 
Result A ______ STO Status information Codes (NoOp - FDe 

A ST' after Command goes Into Standby 
R ST 2 execution State) 
A C Result A STO STO=80 
A _____ H Sector 10 information (16) 
A A after Command 
A N execution 

Table 6. Command/Result Parameter Abbreviations 

Symbol Description Symbol Description 

C Cylinder Address. The currently selected EaT End of Track. The final sector number of the 
cylinder address (0 to 76) on the disk. current track. 

D Data Pattern. The pattern to be written in GPL Gap Length. The gap 3 size. (Gap 3 is the 
each sector data field during formatting. space between sectors excluding the VCO syn-

DSO,DSI Disk Drive Select. chronization field as defined in section 3.) 

DSI DSO H Head Address. Selected head: 0 or I (disk side 
0 0 Drive 0 o or I, respectively) as encoded in the sector 
0 I Drive I ID field. 
I 0 Drive 2 HLT Head Load Time. Defines the time interval 
I I Drive 3 that the FDC waits after loading the head 

DTL Special Sector Size. During the execution of before initiating a read or write operation. 
disk read/write commands, this parameter is Programmable from 2 to 254 milliseconds (in 
used to temporarily alter the effective disk sec- increments of 2 ms). 
tor size. By setting N to zero, DTL may be HUT Head Unload Time. Defines the time interval 
used to specify a sector size from I to 256 from the end of the execution-phase (of a read 
bytes in length. If the actual sector (on the or write command) until the head is unloaded. 
diskette) is larger than DTL specifies, the re- Programmable from 16 to 240 milliseconds (in 
mainder of the actual sector is not passed to increments of 16 ms). 
the system during read commands; during write 
commands, the remainder of the actual sector MFM MFM/FM Mode Selector. Selects MFM 

is written with all-zeroes bytes. DTL should double-density recording mode when high, FM 

be set to FF hexadecimal when N is not zero. single-density mode when low. 

5-477 207875-002 



APPLICATIONS 

Table 6. Command/Result Parameter Abbreviations (continued) 

Symbol Description Symbol Description 

MT Multi-Track Selector. When set, this flag SK Skip Flag. When this flag is set, sectors con-
selects the multi-track operating mode. In this taining deleted data address marks will auto-
mode (used only with dual-sided disks), the matically be skipped during the execution of 
FDC treats a complete cylinder (under both multi-sector Read Data or Scan commands. In 
read/write head 0 and read/write head 1) as a the same manner, a sector containing a data 
single track. The FOC operates as if this address ':Ilark will automatically be skipped 
expanded track started at the first sector under during the execution of a niul\i-sector Read 
head 0 and ended at the last sector under head Deleted Data command. 
1. Witl;1 this flag set (high), a multi-sector rea~ SRT' Step Rate Interval. Defines the time interval 
opeation will automatically continue to the 

between step pulses issued by the FOC (track-
first sector under head 1 when the FOC 

to-track access time). Programmable from 1 to 
fmishes operating on the last sector under head 16 milliseconds (in increments of 1 ms). 
O. 

N Sector Size. The number of data bytes within a 
STO' Status Register 0-3. Registers within the FOC 
STi that store status information after a command 

sector. (See Table 9.) 
ST2 has been executed. This status information is 

ND Non-DMA Mode Flag. When set (high), this ST3 available to the processor during the Result 
flag indicates that the FDC is to operate in the Phase after command execution. These 
non-DMA mode. In this mode, the processor registers may only be read after a command 
is interrupted for each data transfer. When has been executed (in the exact order shown in 
low, the FOC interfaces to a DMA controller Table 5 for each command). These registers 
by means of the DRQ and DACK signals. ' should not be confused with the Main Status 

R Sector Address. Specifies the sector number to Register. 

be read or written. In multi-sector transfers, I STP Scan Sector Increment. During Scan opera-
this parameter specifies the sector number of tions, this parameter is added to the current 
the first sector to be read or written. sector number in order to determine the next 

SC Number of Sectors per Track. Specifies the sector to be scanned. 

number of sectors per track to be initialized by 
the Format Track command. 

Table 7. Status Register Definitions 

Bit Symbol Descrlp~lon 
Number 

Status Register 0 

7,6 IC Interrupt Code. 
00 - Normal termination of command. The specified command was properly executed and 

co~pl\lted without error .. 
,01 - Abnormal termination of command. Command execution was started but could not be 

successfully completed. 

. ' 10 - Invalid command. The requested command could not be executed . 

11 - Abnormal termination. During command execution, the disk drive ready signal 
changed state. , 1 

5 SE Seek End. This flag is set (high) when the FOC has completed the Seek command and the 
read/write head is positioned over the correct cylinder. 

4 EC Equipment Check Error. This flag is set (high) if a fault signal is received from the disk drive 
or if the track 0 signal fails to become active after 77 step pulses (Recalibrate command). 

3 NR Not Ready Error. This flag is set if a read or write command is issued and either the drive is 
not ready or the command specifies side 1 (head 1) of a single-sided disk. 

2 H H'cad Address. the head address at the time of the interrupt. 

1,0 DSl,DSO Drive Select. The number of the drive selected at the time of the interrupt. 

5-478 207875-002 



Bit Symbol 
Number 

Status Register 1 

7 EN 

6 

S DE 

-
4 OR 

3 

2 ND 

1 NW 

0 MA 

Status Register 2 

7 

6 CM 

S DD 

4 WC 

3 SH 

2 SN 

1 BC 

0 MD 

APPLICATIONS 

Table 7. Status Register Definitions (continued) 

Description 

End of Track Error. This flag is set if the FDC attempts to access a sector beyond the final 
sector of the track. 

Not used. This bit is always low. 

Data Error-. Set when the FDC detects a CRC error in either the ID field or the data field of a 
sector. 

Overrun Error. Set (during data transfers) if the FDC does not receive DMA or processor serv-
ice within the specified time interval. 

Not used. This bit is always low. 

Sector Not Found Error. This flag is set by any of the following conditions. 
a) The FDC cannot locate the sector specified in the Read Data, Read Deleted Data, or Scan 

command. 
b) The FDC cannot locate the starting sector specified in the Read Track command. 
c) The FDC cannot read the ID field without error during a Read ID command. 

Write Protect Error. This flag is set if the FDC detects a write protect signal from the disk 
drive during the execution of a Write Data, Write Deleted Data, or Format Track command. 

Missing Address Mark Error. This flag is set by either of the following conditions: 
a) The FDC cannot detect the ID address mark on the specified track (after two occurrences 

of the physical index mark). 
b) The FDC cannot detect the data address mark or deleted data address mark on the 

specified track. (See also the MD bit of Status Register 2.) 

Not used. This bit is always low. 

Control Mark. This flag is set when the FDC encounters one of the following conditions: 
a) A deleted data address mark during the execution of a Read Data or Scan command. \ 
b) A data address mark during the execution of a Read Deleted Data command. 

Data Error. Set (high) when the FDC detects a CRC error in a sector data field. This flag is 
not set when a CRC error is detected in the ID field. 

Cylinder Address Error. Set when the cylinder address from the disk sector ID field is different 
from the current cylinder address maintained within the FDC. 

Scan Hit. Set during the execution of the Scan command if the scan condition is satisfied. 

Scan Not Satisfied. Set during execution of the Scan command if the FDC cannot locate a sec-
tor on the specified cylinder that satisfies the scan condition. 

Bad Track Error. Set when the cylinder address from the disk sector ID field is FF hexadecimal 
and this cylind~r address is different from the current cylinder address maintained within the 
FDC. This all "ones" cylinder number indicates a bad track (one containing hard errors) ac-
cording to the IBM soft-sectored format specification&. 

Missing Data Address Mark Error. Set if the FDC cannot detect a data address mark or 
deleted data address mark on the specified track. 

i 
)0 

5-479 207875-002 



APPLICATIONS 

Table 7. Status Register Definitions (continued) 

Bit 
Symbol Description 

Number 

Status Register 3 

7 FT Fault. This flag indicates the status of the fault signal from the selected disk drive. 

6 WP Write Protected. This flag indicates the status of the write protect signal from the selected disk 
drive. 

S RDY Ready. This flag indicates the status of the ready signal from the selected disk drive. 

4 TO Track O. This flag indicates the status of the track 0 signal from the selected disk drive. 

3 TS Two·Sided. This flag indicates the status of the two·sided signal from the selected disk drive. 

2 H Head Address. This flag indicates the status of the side select signal for the currently selected 
disk drive. 

1,0 DS1,DSO Drive Select. Indicates the currently selected disk drive number. 

In the non·DMA mode, transfer requests are indicated 
by activation of both the INT output signal and the 
RQM flag (bit 7) in the Main Status Register. INT can 
be used for interrupt·driven systems and RQM can be 
used for polled systems. The system processor must re· 
spond to the transfer request by reading data from (ac· 
tivating RD), or writing data to (activating WR), the 
FDC. This response removes the transfer request (lNT 
and RQM are set inactive). After completing tlie last 
transfer, the 8272 activates the INT output to indicate 
the beginning of the result phase. In the non·DMA 
mode, the processor must activate the TC signal to the 
FDC (normally by means of an I/O port) after the 
transfer request for the last data byte has been received 
(by the processor) and before the appropriate data byte 
has been read from (or written to) the FDC. 

In either mode of operation (DMA or non·DMA), the 
execution phase ends when a terminal count signal is 
sensed or when the last sector on a track (the EOT 
parameter-Table 5) has been read or written. In addi· 
tion, if the disk drive is in a "not ready" state at the 
beginning of the execution phase, the "not ready" flag 
(bit 3 in Status Register 0) is set (high) and the command 
is terminated. 

If a fault signal is received from the disk drive at the end 
of a write operation (Write Data, Write" Deleted Data, 
or Format), the FDC sets the "equipment check" flag 
(bit 4 in Status Register 0), and terminates the command 
after setting the interrupt code (bits 7 and 6 of Status 
Register 0) to "01" (bit 7 low, bit 6 high). , 

Multi-sector and Multi-track Transfers 

During disk read/write transfers (Read Data, Write 
Data, Read Deleted Data, and Write Deleted Data), the 
FDC will continue to transfer data from sequential sec· 
tors until the TC input is sensed. In the DMA mode, the 

J 

TC input is normally connected to the TC/EOP (ter· 
minal count) output of the DMA controller. In the non· 
DMA mode, the processor directly controls the FDC TC 
input as previo1l'sly described. Once the TC input is 
received, the FDC stops requesting data transfers (from 
the system processor or DMA controller). The FDC, 
however, continues to read data from, or write data to, 
the floppy disk until the end of the current disk sector. 
During a disk read QPeration, the data read from the 
disk (after reception of the TC input) is discarded, but 
the data CRC is checked for errors; during a disk write 
operation, the remainder of the sector is filled with all· 
zero bytes. 

If the TC signal is not received before the last pyte of the 
current sector has been transferred to/from the system, 
the FDC increments the sector number by one and ini· 
tiates a read or write command for this new disk sector. 

The FDC is also designed to operate in a multi·track 
mode for dual·sided disks. In the multi·track mode 
(specified by means of the MT flag in the command 
byte-Table 5) the FDC will automatically increment 
the head address (from 0 to 1) when the last sector (on 
the track under head 0) has been read or written.' 
Reading or writing is then continued on the first sector 
(sector 1) of head 1. 

Drive Status Polling 

After the power·on reset, the 8272 automatically enters 
a drive status polling mode. If a change in drive status is 
detected (all drives are assumed to be "not ready',' at 
power·on), an imerrupt is generated. The 8272 con· 
tinues this status polling between corttmand executions 
(and between step pulses in the Seek command). In this 
manner, the 8272 automatically notifies the system 
processor when a floppy disk is inserted, removed, or 
changed by the operator. 

5·480 
207875·002 



APPLICATIONS 

Command Details 

During the command phase, the Main Status Register 
must be polled by the CPU before each byte is written 
into the Data Register. The DIO (bit 6) and RQM (bit 7) 
flags in the Main Status Register must be low and high, 
respectively, before each byte of the command may be 
written into the 8272. The beginning of the execution 
phase for any of these commands will cause DIO to be 
set high and RQM to be set low. 

The following paragraphs describe the fifteen FDC 
commands in detail. 

Specify 

The Specify command is used prior to performing any 
disk operations (including the formatting of a new disk) 
to define drive/FDC operating characteristics. The 
Specify command parameters set the values for three in­
ternal timers: 

1. Head Load Time (HLT) - This seven-bit value 
defines the time interval that the FDC waits after 
loading the head before initiating a read or write 
operation. This timer is programmable from 2 to 254 
rltilliseconds in increments of 2 ms. 

2. Head Unload Time (HUT) - This four-bit value 
defines the time from the end of the execution phase 
(of a read or write command) until the head is 
unloaded. This timer is programmable from 16 to 
240 milliseconds in increments of 16 ms. If the proc­
essor issues another command before the head 
unloads, the head will remain loaded and the head 
load wait will be eliminated. 

3. Step Rate Time (SRT) - This four-bit value defines 
the time interval between step pulses issued by the 
FDC (track-to-track access time). This timer is pro­
grammable from 1 to 16 milliseconds in increments 
of 1 ms. 

The time intervals mentioned above are a direct func­
tion of the FDC clock (CLK 011 pin 19). Times indicated 
above are for an 8 MHz clock. 

The Specify command also indicates the choice of DMA 
or non-DMA operation (by means of the ND bit). When 
this bit is high the non-DMA mode is selected; when ND 
is low, the DMA mode is selected. 

Sense Drive Status 

This command may be used by the processor whenever 
it wishes to obtain the status of the disk drives. Status 
Register 3 (returned during the result phase) contains 
the drive status information as described in Table 7. 

Sense Interrupt Status 

An interrupt signal is generated by the FDC when one or 
more of the following events occurs: 

1. The FDC enters the result phase for: 

a. Read Data command 
b. Read Track command 
c. Read ID command 
d. Read Deleted Data command 
e. Write Data command 
f. Format Track command 
g. Write Deleted Data command 
h. Scan commands 

2. The ready signal from one of the disk drives changes 
state. 

3. A Seek or Recalibrate command completes opera­
tion. 

4. The FDC requires a data transfer during the execu-
tion phase of a command in the non-DMA mode. 

Interrupts caused by reasons (l) and (4) above occur 
during normal command operations and are easily 
discernible by the processor. However, interrupts 
caused by reasons (2) and (3) above are uniquely iden­
tified with the aid of the Sense Interrupt Status com­
mand. This command, when issued, resets the interrupt 
signal and by means of bits 5, 6, and 7 of Status Register 
o (returned during the result phase) identifies the cause 
of the interrupt (see Table 8). 

Table 8. Interrupt Codes 

Seek End Interrupt Code Cause 
Bit 5 Bit 6 Bit 7 

0 1 1 Ready Line changed 
state, either polarity 

I 0 0 Normal Termination 
of Seek or Recalibrate 
Command 

I I 0 Abnormal Termination 
of Seek or Recalibrate 
Command 

Neither the Seek nor the Recalibrate command has a 
result phase. Therefore, it is mandatory to use the Sense 
Interrupt Status Command after these commands to 
effectively terminate them and to provide verification of 
the disk head position. 

5-48-1 
207875-002 



APPLICATIONS 

When an interrupt is receiveq by the processor, the FDC 
busy flag (bit 4) and the non-DMA flag (bit 5) may be 
used to distinguish the above interrupt ~auses: 

bit 5 

o 
o 
1 

bit 4 

o 
1 
1 

Asynchronous event-(2) or (3) above 
Result phase-(l) above 
Data transfer required-(4) above 

A single interrupt request to the processor may, in fact, 
be caused by more than one of the above events. The 
processor should continue to issue Sense Interrupt 
Status commands (and service the resulting conditions) 
until an invalid command code is received. In this man­
ner, all "hidden" interrupts are serviced. 

Seek 

The Seek command causes the drive's read/write head 
to be positioned over the specified cylinder. The FDC 
determines the difference between the current cylinder 
address and the desired (specified) address, and issues 
the appropriate number of step pulses. If the desired 
cylinder address is larger than the current address, the 
direction signal (LCT/DIR, pin 38) is set high (step-in); 
the direction signal is set low (step-out) if the desired 
cylinder address is less than the current address. No 
head movement occurs (no step pulses are issued) if the 
desired cylinder is the same as the current cylinder. 

The rate at which step pulses are issued is controlled by 
the step rate time (SRT) in the Specify command. After 
each step pulse is issued, the desired cylinder address is 
compared against the current cylinder address. When 
,the cylinder addresses are equal, the "seek end" flag 
(bit 5 in Status Register 0) is set (high) and the command 
is terminated. If the disk drive becomes "not ready" 
during the seek operation, the "not ready" flag (in 
Status Register 0) is set (high) and the command is ter­
minated. 

During the command phase of the Seek operation the 
FDC is in the FDC busy state, but during the execution 
phase it is in the non-busy state. While the FDC is in the 
non-busy state, another Seek command may be issued. 
In this manner parallel seek operations may be in opera­
tion on up to four floppy disk drives at once. The Main 
Status Register contains a flag for each drive (Table 4) 
that indicates whether the associated drive is currently 
operating in the seek mode. When a drive has completed 
a seek operation, the FDC generates an interrupt. In 
response to this interrupt, the system software must 
issue a Sense Interrupt Status command. During the 
result phase of this command, Status Register 0 (con­
taining the drive number in bits 0 and 1) is read by the 
processor. 

Recalibrate 

This command causes the read/write head of the disk 
drive to retract to the track 0 position. The FDC clears 
the contents of its internal cylinder counter, and checks 
the status of the track 0 signal from the disk drive. As 
long as the track 0 signal is low, the direction signal re­
mains high and step pulses are issued. When the track 0 
signal goes high, the seek end flag (in Status Register 0) 
is set (high) and the command is terminated. If the track 
o signal is ~ti11low after 77 step pulses have been issued, 
the seek end and equipment check flags (in Status 
Register 0) are both set and the Recalibrate command is 
terminated. 

Recalibrate commands for multiple drives can be 
overlapped in the same manner that Seek commands are 
overlapped. 

Format Track 

The Format Track command formats or "initializes" a 
track on a floppy disk by writing the ID field, gaps, and 
address marks for each sector. Before issuin,g the For­
mat command, the Seek command must be used to posi­
tion the read/write head over the correct cylinder. In ad­
dition, a table of ID field values (cylinder, head, and 
sector addresses and sector length code) must be 
prepared before the command is executed. During com­
mand execution, the FDC accesses the table and, using 
the values supplied, writes each sector on the track. The 
ID field address mark originates from the FDC and is 
written automatically as the first byte of each sector's 
ID field. The cylinder, head, and sector addresses are 
taken, in order, from the table. The ID field CRC 
character (derived from the data written in the first five 
bytes) is written as the last two bytes of the ID field. 
Gaps are written automatically by the FDC, with the 
length of the variable gap determined by one of the For­
mat command parameters. 

The data field address mark is generated by the FDC 
and is written automatically as the first byte of the data 
field. The data pattern specified in the command phase 
is written into each data byte of each sector. A CRC 
character is derived from the data address mark and the 
data written in the sector's data> field. The two CRC 
bytes are appended to the last data byte. 

The formatting of a track begins at 'the physical index 
mark. As previously> mentioned, the order of sector 
assignment is taken directly from the formatting table. 
Four entries are required for each sector: a cylinder ad­
dress, a head address, a sector address, and a sector 
length code. The cylinder address in the IDfield should 
be equal to the cylinder address of the track currently 
being formatted. > 

5-482 207875-002 



APPLICATioNS 

The sector addresses must be unique (no two equal). 
The order of the sector entries in the table is the se­
quence in which sector numbers appear on the track 
when it is formatted. The number of entry sets 
(cylinder, head, and sector address and sector length 
code) must equal the number of sectors allocated to the 
track (specified in the command phase). 

Since the sector address is supplied, in order, for each 
sector, tracks can be formatted sequentially (the first 
sector following the index mark is assigned sector ad­
dress I, the adjacent sector is assigned sector address 2, 
and so on) or sector numbers can be interleaved (see sec­
tion 3) on a track. 

Table 9 lists recommended gap sizes and sectors/track 
for various sector sizes. 

Read Data 

Nine (9) bytes are required to complete the command 
phase specification for the Read Data command. Dur­
ing the execution phase, the FDC loads the head (if it is 
in the unloaded state), waits the specified head load time 
(defined in the Specify command), and begins reading 
ID address marks and ID fields. When the requested 
sector address compares with the sector address read 
from the disk, the FDC outputs data (from the data 
field) byte-by-byte to the system. The Read Data com­
mand automatically operates in the multi-sector mode 
described earlier. In addition, multi-track operation 
may be specified by means of the MT command flag 
(Table 5). The amount of data that can be transferred 
with a single command to the FDC depends on the 
multi-track flag, the recording density flag, and the 
number of bytes per secton 

During the execution of read and write commands,. the 
special sector size parameter (DTL) is used to tem­
porarily alter the effective disk sector -size. By setting the 
sector size code (N) to zero, DTL may be used to specify 
a sector size from 1 to 256 bytes in length. If the actual 
sector (on the disk) is larger than DTL specifies, only 
the number of bytes specified by the DTL parameter are 

passed to the system; the remainder of the actual disk 
sector is not transferred (although the data is checked 
for CRC errors). Multi-sector read operations are per­
formed in the same manner as they are when the sector 
size code is non-zero. (The N and OTL parameters are 
always present in the command sequence. DTL should 
be set to FF hexadecimal when N is not zero.) 

If the FOC detects the physical index mark twice 
without rmding the requested sector, the FDC sets the 
"sector not found error" flag (bit 2 in Status Register 1) 
and terminates the Read Data command. The interrupt 
code (bits 7 and 6 of Status Register 0) is set to "01." 
Note that the FDC searches for each sector in a multi­
sector operation. Therefore, a "sector not found" error 
may occur after successful transfer of one or more 
preceding sectors. This error could occur if a particular 
sector number was not included when the track was first 
formatted or if a hard error on the disk has invalidated a 
sector ID field. 

After reading the ID field and data field in each sector, 
the FDC checks the CRC bytes. If a read error is detect­
ed (incorrect CRC in the ID field), the FDC sets the 
"data error" flag in Status Register 1; if a CRC error 
occurs in the data field, the FDC sets the "data error" 
flag in Status Register 2. In either error condition, the 
FDC terminates the Read Data command. The interrupt 
code (bits 7 and 6 in Status Register 0) is set to "01." 

If the Foe reads a deleted data address mark from the 
disk, and the skip flag (specified during the command 
phase) is not set, the FDC sets the "control mark" flag 
(bit 6 in Status Register 2) and terminates the Read Data 
command (after reading all the data in the sector). If the 
skip flag is set, the FDC skips the sector with the deleted 
data address mark and reads the next sector. Thus, the 
skip flag may be used to cause the FOC to ignore deleted 
data sectors during a multi-sector read operation. 

During disk data transfers between the FDC and the 
system, the FDC must be serviced by the system (proc­
essor or DMA controller) every 27 j.lS in the FM mode, 
and every 13 j.lS in the MFM mode. If the FDC is not 

Table 9. Sector Size Relationships 

N SC GPL1 GPL2 
Format Sector Size Sector Size Sectors! Gap 3 Gap 3 Remarks 

Code Track Length Length 

128 bytes/Sector 00 lA(16) 07(16) IB(16) IBM Diskette 1 
FMMode 256 01 OF(16) OE(16) 2A(16) IBM Diskette 2 

512 02 08 . IB(16) 3A(16) 

256 01 lA(l6) OE(16) 36(16) IBM Diskette 2D 
MFMMode 512 02 OF(16) IB(16) 54(16) 

1024 03 08 35(16) 74(16) IBM Diskette 2D 

Notes: 1. Suggested values of OPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sectors. 

2. Suggested values of OPL in Fqrmat command. 

5-483 207875-002 

". 
I ~: 



APPLICATIONS 

serviced within this interval, the "overrun error" flag 
(bit 4 in Status Register 1) is set and the Read Data com­
mand is terminated. 

If the processor terminates a read (or write) operation in 
the FDC, the ID information in' the result phase is 
dependent upon the state of the multi-track flag and end 
of track byte. Table 11 shows the values for C, H, R, 
and N, when the processor terminates the command. 

Write Data 

Nine (9) bytes are required to complete the command 
phase specification for the Write Data command. Dur­
ing the execution phase the FDC loads the head (if it is 
in the unloaded state), waits the specified head load time 
(defined by the Specify command), and begins reading 
sector ID fields. When the requested sector address 
compares with the sector address read from the disk, the 
FDC reads data from the processor one byte at a time 
via the data bus and outputs the data to the data field of 
that sector. The CRC is computed on this data and two 
CRC bytes are written at the end of the data field. 

The FDC reads the ID field of each sector and checks 
the CRC bytes. If the FDC detects a read error (incor­
rect ·CRC) in one of the ID fields, it sets the "data 
error" flag (bit 5 in Status Register 1) and terminates the 
Write Data command. The interrupt code (bits 7 and 6 
in Status Register 0) is set to "01." 

The Write Data command operates in much the same 
manner as the Read Data command. The following 
items are the same; refer to the Read Data command for 
details: 

• Multi-sector and Multi-track operation 
• Data transfer capacity 
• "End of track error" flag 
• "Sector not found error" flag 
• "Data error" flag 
• Head unload time interval 
• ID information when the processor terminates the 

command (see Table 11) 
• Definition of DTL when N = 0 and when N * 0 

During the Write Data execution phase, data transfers 
between the processor and FDC must occur every 311ls 
in the FM mode, and every 15 IlS in the MFM mode. If 
the time interval between data transfers is longer than 
this, the FDC sets the "overrun error" flag (bit 4 in Sta-

. tus Register 1) and terminates the Write Data command. 

Read Deleted Data 

This command operates in almost the same manner as 
the Read Data command operates. The only difference 
involves the treatment of the data address mark and the 

skip flag. When the FDC detects a data address mark at 
the beginning of a data field (and the skip flag is not 
set), the FDC reads all the data in the sector, sets the 
"control mark" flag (bit 6 in Status Register 2), and ter- ' 
minates the command. If the skip flag is set, the FDC . 
skips the sector with the data address mark and con­
tinues reading at the next sector. Thus, the skip flag may 
be used to cause the FDC to read only deleted data sec­
tors during a multi-sector read operation. 

Write Deleted Data 

This command operates in the same manner as the 
Write Data command operates except that a deleted 
data address mark is written at the beginning of the data 
field instead of the normal data address mark. This. 
command is used to mark a bad sector (containing a 
hard error) on the floppy disk. 

Read Track 

The Read Track.command is similar to the Read Data 
cpmmand except that the entire data field is read con­
tinuously from each of the sectors of a track. Im­
mediately after encountering the physical index mark, 
the FDC starts reading all data fields on the track as 
continuous blocks of data. If the FDC finds an error in 
the ID field or data field CRC check bytes, it continues 
to read data from the track. The FDC compares the ID 
information read from each sector with the values 
specified during the command phase. If the specified ID 
field information is not found on the track, the "sector 
not found error" flag (in Status Register 1) is set. Multi­
track and skip operations are not allowed with this 
command. 

This command terminates when the last sector on the 
track has been read. (The number of sectors on the track 
is specified by the end of track parameter byte during 
the command phase.) If the FDC does not find an ID 
address mark on the disk after it encounters the physical 
index mark for the second time, it sets the "missing ad­
dress mark error" flag (bit 0 in Status Register 1) and 
terminates the command. The interrupt code (bits 7 and 
6 of Status Register 0) is set to "01." 

Read ID 

The Read ID command transfers (reads) the first correct 
ID field from the current disk track (following the 
physical index mark) to the processor. If no correct ID 
address mark is found on the track, the "missing ad­
dress mark error" flag is set (bit 0 in Status Register 1). 
If no data mark is found on the track, the "sector not 
found error" flag is also set (bi,t 2 in Status Register 1). 
Either error condition causes the command to be 
terminated. 

5-484 207875-002 



APPLICATIONS 

Scan Commands 
The Scan commands allow the data being read from the 
disk to be compared against data supplied by the system 
(by the processor in non-OMA mode, and by the OMA 
controller in OMA mode). The FOe compares the data 
on a byte-by-byte basis, and searches for a sector of 
data that meets the conditions of "disk data equal to 
system data", "disk data less than or equal to system 
data", or "disk data greater than or equal to system 
data". Simple binary (ones complement) arithmetic is 
used for comparison (FF = largest number, 00 = smallest 
number). If, after a complete sector of data is com­
pared, the conditions are not met, the sector number is 
incremented by the scan sector increment (specified in 
the command phase), and the scan operation is con­
tinued. The scan operation continues until one of the 
following conditions occurs; the conditions for scan are 
met (equal, low, or high), the last sector on the track is 
reached, or the terminal count signal is received. 

If the conditions for scan are met, the FOe sets the 
"scan hit" flag (bit 3 in Status Register 2) and ter­
minates the Scan command. If the conditions for scan 

are not met between the starting sector and the last sec­
tor on the track (specified in the command phase), the 
FOe sets the "scan not satisfied" flag (bit 2 in Status 
Register 2) and terminates the Scan command. The re­
ceipt of a terminal count signal from the processor or 
OMA controller during the scan operation will cause the 
FOe to complete the comparison (,If the particular byte 
which is in process, and to terminate the command. 
Table 10 shows the status of the "scan hit" and "scan 

Table 10. Scan Status Codes 

Command Status Register 2 Comments 
Bit 2=SN Bit 3= SH 

Scan Equal 0 1 Dpoo= Dprocessor 
1 0 D FDO"" Dprocessor 

Scan Low 0 1 Dpoo = Dprocessor 

or Equal 0 0 Dpoo< Dprocessor 
1 0 DFDO<¢; Dprocessor 

Scan High 0 1 DFDn::::: Dprocessor 

or Equal 0 0 Dpoo> Dprocessor 
1 0 DFDO Ii' Dprocessor 

Table 11 10 Information When Processor Terminates Command 

Final Sector Transferred 

MT EOT to 10 Information at Result Phase 
Processor C 

lA Sector I to 25 at Side 0 
OF Sector I to 14 at Side 0 NC 
08 Sector I to 7 at Side 0 

IA Sector 26 at Side 0 
OF Sector 15 at Side 0 C+I 

0 08 Sector 8 at Side 0 

IA Sector I to 25 at Side I 
OF Sector I to 14 at Side I NC 
08 Sector I to 7 at Side I 

IA Sector 26 at Side I 
OF Sector 15 at Side I C+I 
08 Sector 8 at Side I 

IA Sector I to 25 at Side 0 
OF Sector I to 14 at Side 0 NC 
08 Sector I to 7 at Side 0 

IA Sector 26 at Side 0 
OF Sector 15 at Side 0 NC 

I 08 Sector 8 at Side 0 

IA Sector I to 25 at Side I 
OF Sector I to 14 at Side I NC 
08 Sector I to 7 at Side I 

IA Sector 26 at Side I 
OF Sector 15 at Side I C+I 
08 Sector 8 at Side 1 

Notes: I. NC (No Change): The same value as the one at the beginning of command executIOn. 
2. LSB (Least Significant Bit): The least significant bit of H is complemented. 

5-485 

H R 

NC R+l 

NC R=OI 

NC R+I 

NC R=OI 

NC R+I 

LSB R=OI 

NC R+I 

LSB R=OI 

N 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

207875-002 



APPLICATIONS 

not satisfied" flags under various scan termination 
conditions. 

If the FOC encounters a deleted data address mark in 
one of the sectors and the skip flag is low, it regards the 
sector as the last sector on the cylinder, sets the "control 
mark" flag (bit 6 in Status Register 2) and terminates 
the command. If the skip flag is high, the FOC skips the 
sector with the deleted address mark, and reads the next 
sector. In this case, the FOC also sets the "control 
mark" flag (bit 6 in Status Register 2) in order to show 
that a deleted sector had been encountered. 

NOTE: During scan command execution, the last sector 
on the track must be read for the command to 
terminate properly. For example, if the scan 
sector increment is set to 2, the end of track 
parameter is set to 26, and the scan begins at 
sector 21 , sectors 21, 23, and 25 will be 
scanned. The next sector, 27 will not be found 
on the track and an abnormal command ter­
'mination will occur. The command would be 
completed in a normal manner if either a) the 
scan had started at sector 20 or b) the end of 
track parameter had been set to 25. 

;During the Scan command, dat.a is supplied by the proc­
essor or OMA controller for comparison against the 
data read from the disk. In order to avoid having the 
"overrun error" flag set (bit 4 in Status Register I), it is 
necessary to have the data available in less than 27 p.s 
(FM Mode) or 13 p.s (MFM Mode). If an overrun error 
occurs, the FOC terminates the command. 

Invalid Commands 

If an invalid (undefined) command is sent to the FOC, 
the FOC will terminate the command. No interrupt is 
generated by the 8272 during this condition. Bit 6 and 
bit 7 (010 and RQM) in the Main Status Register are 
both set .indicating to the processor that the 8272 is in 
the result phase and the contents of Status Register 0 
must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid oom­
mand was received. 

A Sense Interrupt Status command must be sent after a . 
Seek or Recalibrate interrupt; otherwise the FOC will 
consider the next command to be an invalid command. 
Also, when the last "hidden" interrupt has been ser­
viced, further Sense Interrupt Status commands will 
result in invalid command codes. 

In some applications the user may wish to use this CO!\l­

mand. as a No-Op command to place the FOC in a 
stand-by or no operation state. 

5. THE DATA SEPARATOR 

As briefly discussed in section 2, LSI disk controllers 
such as the 8272 require external circuitry to generate a 
data window signal. This signal is used within the FOC 
to isolate the data bits contained within the READ 
DATA input signal from the disk drive. (The disk 
READ DATA signal is a composite &ignal constructed 
from both clock and data information.) After isolating 
the data bits from this input signal, the FOC assembles 
the data bits into 8-bit bytes for transfer to the system 
processor or memory. 

Single Density 

In single-density (FM) recording (Figure 3 ), the bit cell 
is 4 microseconds wide. Each bit cell contains a clock bit 
at the leading edge of the cell. The data bit (if present) is 
always located at the center of the cell. The job of data 
separation is relatively straightforward for single­
density; simply generate a data window 2 p'S wide start­
ing I p'S after each clock bit. Since every cell has a clock 
bit, a fixed window reference is available for every data 
bit and because the window is 2 p'S wide, a slightly 
sh{fted data bit will still remai~ within the data window. 

A single-density data separator with these specifications 
may be easily generated using a digital or analog one­
shot triggered by the clock bit, 

Double· Density 

Double-density (MFM) bit cells are reduced to 2 p's (in 
order to double the disk data storage capacity). Clock 
bits are inserted into the data stream only if data bits are 
not present in both the current and preceding bit cells 
(Figure 3). The data bit (if present) still occurs at. the 
center of the bit cell and the Clock bit (if present) still oc­
curs at the leading edge of the bit cell. 

MFM data separation has two problems. First, only 
some bit cells contain a clock bit. In this manner, MFM 
encoding loses the fixed bit cell reference pulse present 
in FM encoding. Second, the bit cell for MFM is one­
half the size of the bit cell for FM. This shorter bit cell 
means that MFM cannot tolerate as large a playback 
data-shift (as FM can tolerate) without errors. 

Since most playback data-shift is predictable, the FOC 
can precompensate the write data stream so that 
datal clock pulses will be correctly positioned for subse­
quent playba,ck. This function is completely controlled 
by the FOC and is only required for MFM recording. 
During write operations, the FOC specifies an early, 
normal, or late bit positioning. This timing information 
is specified with respect to the FOC write clock. Early 
and late timing is typically 125 ns to 250 ns before or 
after the write clock transition (depending on disk drive 
requirements). 

5-486 207875-002 

( 



APPLICATIONS 

The data separator circuitry for double-density record­
ing must continuously analyze the total READ DATA 
stream, synchronizing its operation (window genera­
tion) with the actual clock/data bits of the data stream. 
The data separation circuit must track the disk input 
data frequency very closely-unpredictable bit shifts 
leave less than 50 ns margin to the window edges. 

Phase-Locked Loop 
Only an analog phase-locked loop (PLL) can provide 
the reliabi1ity required for a double-density data separa­
tion circuit. (A phase-locked loop is an electronic circuit 
that constantly analyzes the frequency of an input signal 
and locks another oscillator to that frequency.) Using 
analog PLL techniques, a data separator can be de­
signed with ± 1 ns resolution (this would require a 100 
MHz clock in a digital phase-locked loop). The analog 
PLL determines the clock and data bit positions by 
sampling each bit in the serial data stream. The phase 
relationship between a data bit and the PLL generated 
data window is constantly fed back to adjust the posi­
tion of the data window, enabling the PLL to track in­
put data frequency changes, and thereby reliably read 
previously recorded data from a floppy disk. 

PLL Design 
A block diagram of the phase-locked loop described in 
this application note is shown in Figure 7. Basically, the 
phase-locked loop operates by comparing the frequency 
of the input data (from the disk drive) against the fre­
quency of a local oscillator. The difference of these fre­
quencies is used to increase or decrease the frequency of 
the local oscillator in order to bring its frequency closer 
to that of the inpQt. The PLL synchronizes the local 
oscillator to the frequency of the input during the all 
"zeroes" synchronization field on the floppy disk (im­
mediately preceding both the ID field and the data 
field). 

The PLL consists of nine ICs and is located on page 3 of 
the schematics in the Appendix. The 8272 VCO output 
essentially turns the PLL circuitry on and off. When the 
PLL is off, it "idles" at its center frequency. The VCO 
output turns the PLL on only when valid data is being 
received from the disk drive. The VCO turns the PLL 
on after the read/write head has been loaded and the 
head load time has elapsed. The PLL is turned off in the 
gap between the ID field and the data field and in the 
gap after the data field (before the next sector ID field). 
The GPL parameter in the FDC read and write com­
mands specifies the elapsed time (number of data bytes) 
that the PLL is turned off in order to blank out discon­
tinuities that appear in the gaps when the write current is 
turned on and off. The PLL operates with either MFM 
or FM input data. The MFM output from the FDC con­
trols the PLL operation frequency. 

The PLL consists of six functional blocks as follows: 

1. Pulse Shaping - A 96LS02 senses a READ DAtA 
pulse and provides a clean output signal to the FDC 
and to the PLL Phase Comparator and Frequency 
Discriminator circuitry. 

2. Phase Comparator - The phase difference be­
tween the PLL oscillator and the READ DATA input 
is compared. Pump up (PU) and pump down (PD) 
error signals are derived from this phase difference 
and output to the filter. If there is no phase dif­
ference between the PLL oscillator and the READ 
DATA input, the PU and PD pulse widths are equal. 
If the READ DATA pulse occurs early, the PU dura­
tion is shorter than the PD duration. If the data pulse 
occurs late, the PU duration is longer than the PD 
duration. 

3. Filter - This analog circuit filters the PU and PD 
pulses into an error voltage. This error voltage is buf­
fered by an LM358 operational amplifier.' 

r-----------------------------------~~~A~D~~TA 

READ DATA 
(FROM DISKETTE DRIVE) 

FREQUENCY 
DISCRIMINATOR 

START 

VCO (FROM FDC) ____________________ -1 LOGIC 

MFM (FROM FDC) --------------------,-1 

IDLE CLAMP 

Figure 7. Phase· Locked Loop Data Separator 

5-487 

DATA WINDOW 
(TO FDC) 

207875-002 



APPLICATIONS 

4. PLL Oscillator - This oscillator is composed of a 
74LS393, 74LS74, and 96LS02. The oscillator fre­
quency is controlled by the error voltage output by 
the filter. This oscillator also generates the data win-
dow signal to the FDC. ' 

5. Frequency Discriminator - This logic tracks the 
READ DATA inpu\ from the disk drive and 
discriminates between the synchronization gap for 
FM recording (250 KHz) and the gap for MFM 
recording (500 KHz). Synchronization gaps im­
mediately precede address marks. 

6. Start Logic - The function of this logic is to clamp 
the PLL oscillator to its center frequency (2 MHz) 
until the FDC YCO signal is enabled and a valid data 
pattern is sensed by the frequency discriminator. The 
start logic (consisting of a 74LS393 and 74LS74) en­
sures that the PLL oscillator is started with zero 
phase error. 

PLL Adjustments 

The PLL must be initially adjusted to operate at its 
center frequency with the YCO output off and the ad­
justment jumper removed. The 5K trimpot should be 
adjusted until the frequency at the test point (Q output 
of the 96LS02) is 2 MHz.' The jumper should then be 
replaced for normal operation. 

PLL Design Details 

The following paragraphs describe the operational and 
design details of the phase-locked loop data separator il-

lustrated in the appendix. Note that the analog section is 
operated from a separately filtered +5Y supply. 

Initialization 
As long as the 8272 maintains Ii low YCO signal, the 
data separator logic is "turned off". In this state, the 
PLL oscillator (96LS02) is not oscillating, and therefore 
,the 2XBR signal is constantly low. In addition, the 
pump up (PU) and pump down (PD) signals are inactive 
(PU low and PD high), the CNT8 signal is inactive 
(low), and the filter input voltage is held at 2.5 volts by 
two IMohm resistors between ground and +5 volts. 

Floppy Disk Data 
The data separator frequency discriminator, the input 
pulse shaping circuitry, and the start logic are always 

'/'enabled and respond to rising edges of the READ DATA 
signal. The rising edge of every data bit from the disk 
drive triggers two pulse shaping one-shots. The first 
pulse shaper generates a stable and well-defined 200 ns 
read data pulse for input to the 8272 and other portions 
of the data separator logic. The second one-shot 
generates a 2.5 p.s data pulse that is used for input data 
frequency discrimination. 

The frequency discriminator operates as illustrated in 
Figure 8. The 2F output signal is active (high) ,during 
reception of valid MFM (double-density) sync fields on 
the disk while the IF signal is active (high) during recep­
tion of valid FM (single-density) sync fields. A 
multiplexer (controlled by the 8272 MFM signal) selects 
the appropriate IF or 2F signal depending on the pro­
grammed mode. 

(0) FM OPERATION: ONE·SHOT TIMES OUT BETWEEN CLOCK PULSES 

FM READ DATA ~-----...InL-----...lnL--------lnL----.-lnL--------IrL 

FREQ DISC -_< __ 
2F LOW, IF HIGH DURING SYNC DATA INPUT (FM) 

MFM READ DATA 

FREQ DISC~ 
~ 2F HIGH, IF LOW DURING SYNC DATA INPUT (MFM) _ .... . . • • 

x = FREQUENCY DISCRIMINATOR SAMPLE POINTS TO GENERATE IF AND 2F SIGNALS 

Figure 8. Input Data Frequency Discrimination 

5-488 207875~002 



APPLICATIONS 

Startup 

The data separator is designed to require reception of 
eight valid sync bits (one sync byte) before enabling the 
PLL oscillator and attempting to synchronize with the 
input data stream (see Figure 9). This delay ensures that 
the PLL will not erroneously synchronize outside a valid 
sync field in the data stream if the YCO signal is enabled 
slightly early. The sync bit counter is asynchronously 
reset by the CNTEN signal when valid sync data is not 
being received by th~ drive. 

READ DATA 

FREQDISe 

Once the YCO signal is active and eight sync bits have 
been counted, the CNT8 signal is enabled. This signal 
turns on the PLL osclllator. Note that this oscillator 
starts synchronously with the rising edge of the disk in­
put data (because CNT8 is synchronous with the data 
rising edge) and the oscillator also starts at its center fre­
quency of 2 MHz (because the LM348 filter input is held 
at its center voltage of approximately 2.5 volts). This 
frequency is divided by two and four to generate the 
2XBR signal (l MHz for MFM and 500 KHz for FM). 

2F~L.-_______ -.--_______ ....,....-_ 

lF~ 

Veo 

........,. 
eNn-----------------------------------------------------~ 

PLeLK _______________________________________________________ ~ 

~BR _____________________________________________________ ~~ 

PDeLR ________________________________________________________ ~ 

PUeLR------------------------------------------------------------~L_J 

PU ______________ ----'n'-----'n'--_ 
PD----------------,U LJ 
DW ___________ ILILJ 

Figure 9. Typical Data Separator Startup Timing Diagram 

5-489 207875-002 



APPLICATIONS 

PLL Synchronization 

At this point, the PLL is enabled and begins to syn­
chronize with the input data stream. This synchroniza­
tion' is accomplished very simply in the following man­
ner. The pump up (PU) signal is enabled on the rising 
edge of the READ OATA from the disk drive. (When 
the PLL is synchronized with the data stream, this point 
will occur at the same time as the falling edge of the 
2XBR signal as shown in Figure 9). The PU signal is 
turned off and the PO signal is activated on the next ris­
ing edge of the 2XBR clock. With this scheme, the dif­
ference between PU active time and the PO active time 
is equal to the difference between the input bit rate and 
the PLL clock rate. Thus, if PU is turned on longer than 
PO is on, the input bit rate is faster than the PLL clock. 

As long as PU and PO are both inactive, no charge is 
transferred to or from the LM358 input holding 
capacitor, and the PLL output frequency is maintained 
(the LM358 operational amplifier has a very high input 
impedance). Whenever PU is turned on, current flows 
from the +5 volt supply through a 20K resistor into the 
hoJding capacitor. When the PO signal is turned on, 
current flows from the holding capacitor to ground 
through a 20K resistor. In this manner. both the pump 
up and pump down charging rates are balanced. 

The change in capacitor charge (and therefore voltage) 
after a complete PUIPO cycle is proportional to the dif­
ference between the PU and PO pulse widths and is also 

\ proportional to the frequency difference between the in­
coming, data stream and the PLL oscillator. As the 
capacitor voltage is raised (PU active longer than .PO), 
the PLL oscillator time constant (RC of the 96LS02) is 
modified by the filter output (LM358) to raise the 
oscillator frequency. As the capacitor voltage is lowered 
(PO active longer than PO), the oscillator frequency is 
lowered. If both frequencies are equal, the voltage on 
the holding capacitor does not change, and the PLL 
oscillator frequency remains constant. 

6. AN INTELLIGENT· DISKETTE 
DATA BASE SYSTEM 

I 

The system described in this application note is designed 
to function as an intelligent data base controller. The 
schematics' for this data base unit are presented in Ap­
pendix A; a block diagram of the unit is illustrated in 
Figure 10. As designed, the unit can access over four 
million bytes of mass storage on four floppy disk drives 
(using a single 8272 FOC); the system can easily be ex­
panded to four FOC devices (and 16 megabytes of on­
line disk storage). Three serial data links are also includ­
ed. These data links may be used by CRT terminals or 
other microprocessor systems to access the data base. 

Pr9cessor and Memory 

A high-performance 8088 eight-bit microprocessor 
(operating at 5 MHz with no wait states) controls system 
operation. The 8088 was selected. because of its memory 
addressing capabilities and its sophisticated string 
handling instructions. These features improve the speed 
of data' base search operations. In addition, these 
capabilities allow the system to be easily upgraded with 
additional memory, disk drives, and if required, a bub­
ble memory or winchester disk unit. 

The schematics for the basic design provide 8K bytes of 
2732A high-speed EPROM program storage and 8K 
bytes of disk directory and file buffer RAM. This 
memory can easily be expanded to 1 megabyte for 
performance upgrades. 

An 8259A Programmable Interrupt Controller (PIC) is 
also included in the design to field interrupts from both 
the serial port and the FOC. This interrupt controller 
provides a large degree of programming flexibility for 
the implementation of data base functions in an asyn­
chronous, demand driven environment. The PIC allows 
the system ~o accumulate asynchronous data base re­
quests from all serial I/O ports while previously 

) specified data base operations are c\lrrently in progress. 
This feature is made possible by the ability of the 8251A 
RXRDY signal to cause a processor interrupt. After 
receiving this interrupt, the processor can temporarily 
halt work on existing requests and enter the incoming 
information into a data base request buffer. Once the 
information has been entered into the buffer, the system 
can resume its previous processing. . 

In addition, the PIC permits some portions of data base 
requests to be processed in parallel. For example, once a 
disk record has been loaded into a memory buffer, a 

, memory search can proceed in parallel with the loading 
of the next record. After the FOC completes the record 
transfer, the memory search will be interrupted and the 
processor can begin another disk transfer before resum­
ing the memory search. 

The bus structure of the system is split into three func­
tional buffered units. A 2O-bit address from the proc­
essor is latched by three-state transparent 74LS373 

, devices. When the processor is in control of the address 
and data busses, these devices are output enabled to the 
system buffered address bus. All I/O devices are placed 
directly on the local data bus. Finally, the memory data 
bus is isolated from the local data bus by an 8286 octal 
transceiver. The direction of this transceiver is deter­
mined by the Memory Read signal, while its output 
enable is activated by a Memory Read or Memory Write 
command. 

5-490 207875-002 



APPLICATIONS 

I ===>I ADDRESS r-- 20·81T ADDRESS 8US rrl RAM 
• LATCH 

R:.732A 

(2114·3) 

~l I ~ 
CLOCK / r--GENERATOR RESeT PROCESSOR 8-81T ceAL DATA BUS r-
(8284) READY (B.BB) r-

~ 
IIOAND ~R DATA BUS 1 1/0 AND MEMORY COMMANDS r- MEMORY TRANSCEIVER 

INTA ADDRESS AD,WR,es (B2BB) 

INT r- DECODE r-
HOLD t HLDA ~ <II <II <II 

q (J~ u 

~ADDRESS ~ 
a:: a: r£ 
iO, iO, iO, LATCHI 

f-- Q Q Q 
BUFFER a: a: a: RD,WR,CS 

DMA 
CONTROLLER f---

(B237.2) - f--- 8·BIT LOCAL DATA BUS 

-

JJL. DRQ t DACK ~ ~ - f- BAUD FLEXIBLE DISKETTE CONTROLLER PROGRAMMABLE 
DATA INTERRUPT - SERIAL 110 PORTS l- RATE I--

(B272FDC), I ':I~DOWI CONTROLLER (8251A USARTs) GENERATOR 
(8259A PIC) - I- (B253 PIT) 

11.1 VCO.MFM 

~~:~ IREAD DATA PHASE 
LOCKED 

LOOP 
(PLL) 

1 I. DATA 
RECEIVERS SEPA· '-----R,D 

~ 
hD 

fP READY 
R,D 

\ INDEX 

WRITE PROTECT 

TWO SIDED 
FAULT 
TRACK 0 

READ DATA 

DRIVERS 

III DRIVE SELECT 

DIRECTION 

STEP 
WRITE "ATE 
FAULT A'ESET 

lOW CURRENT 
sloe SELECT 
HEAD LOAD 
WRITE DATA 

Figure 10. Inte~ligent Data Base Block Diagram 

5-491 207875-002 



APPLICATION, 

Serial 1/0 

The three RS-232-C compatible serial 110 ports operate 
at software-programmable baud rates to 19.2K. Each 
I/O port is controlled by an 8251A USART (Universal 
Synchronous/ Asynchronous Receiver/Tr~smitter). 
Each USART is individually programmable for opera­
tion in many synchronous and asynchronous serial data 
transmis,sion formats (including IBM Bi-sync). In 
operation, USART error detection circuils can check 
for parity, data overrun, and framing errors. An 8253 
Programmable Interval Timer is employed to generate 
the baud rates for the serial I/O ports. 

'The Transmitter Ready and Receiver Ready output 
signals of the 8251 As are routed to the interrupt inputs 
of the 8259A interrupt controller. These signals inter­
rupt processor execution when a data byte is received by 
a USART and also when the USART is ready to accept 
another data byte for transmission. 

DMA 
The 8272 FOC interfaces to system memory by means of 
an 8237-2 high-speed OMA controller. Transfers be­
tween the disk controller and memory also operate with 
no wait states when 2114-3 (150 ns) or faster static RAM 
is used. In operation, the 8272 presents a OMA request 
to the 8237 for every byte of data to be transferred. This 
request causes the 8273 to present a HOLD request to 
the 8088. As soon as the 8088 is able to relinquish 
data/address bus control, the processor signals a HOLD 
acknowledge to the 8237. The 8237 then assumes con­
trol over the data and address busses. After latching the 
address for the OMA transfer, the 8237 generates 
simultaneous I/O Read and Memory Write commands 
(for a disk read) or simultaneous I/O Write and 
Memory Read commands (for a disk write). At the same 
time, the 8272 is selected as the I/O device by means of 
the OMA acknowledge signal from the 8237. After this 
single byte has been transferred between the FOC and 
memory, the OMA controller releases the data/address 
busses to the 8088 by deactivating the HOLD request. In 
a short period of'time (13 p's for double-density and 27 
p.s for single-density) the FOC requests a subsequent ' 
data transfer. This transfer occurs in exactly the same 
manner as the previous transfer. After all data transfers 
have been completed (specified by the word count pro­
grammedjnto the 8237 before the FOC operation was 
initiated), the 8237 signals a terminal count (BOP pin). 
This terminal 'count signal informs the 8272 that the' 
data transfer is complete. Upon reception of this ter­
minal count signal, the 8272 halts OMA requests and 
initiates an "operation complete" interrupt. 

Since the system is designed for 2O-bi~ 'addressing, a 
four-bit OMA-address latch is included as a processor 

addressable I/O port. The processor writes the upper 
four OMA address bits before a data transfer. When the 
OMA controller assumes bus control, the contents of 
this latch are output enabled on the upper four bits of 
the address bus. The only restriction in the use of this 
address latch is that a single disk read or write transfer 
cannot cross a 64K m~ory boundary. 

Disk Drive Interface 

The 8272 FOC may be interfaced t6 a maximum of four 
eight-inch floppy disk drives. Both single- and double­
density drives are accommodated using the data separa­
tion circuit described in section 5. In addition, single- or 
dual-sided disk drives may be used., The 8272 is driven 
by an 8 MHz crystal controller clock produced by an 
8224 clock generator. 

Drive select signals are decoded by means of a 74LS139 
from the OSO, OSI outputs of the FOC. The fault reset, 
step, low current, and direction outputs to the disk 
drives are generated from the FR/STEP, LCT/DIR, 
and RW/SEEK FOC output signals by means of a 
74LS240. The other half of the 74LS240 functions as an 
input multiplexer for the disk write protect, two-sided, 
fault, and track zero status signals. These signals are 
multiplexed into the WP/TS and FLT/TRKO inputs to 
the 8272. 

The 8272 write clock (WR CLK) is generated by a ring 
counter/multiplexer combination. The write clock fre­
quency is 1 MHz for MFM recording and 50Q KHz for 
FM recording (selected by the MFM output of the 
8272). The pulse width is a constant 250 ns. The write 
clock is constantly generated and input to the FOC (dur­
ing both read and write operationS). The FOe write 
enable output (WE) is transmitted directly to the write 
gate disk drive input. 

Write data to the disk drive is preshifted (according to 
the PSO, PSI FOC outputs) by the combination of a 
74LS175 four-bit latch and a 74LSlS3 multiplexer. The 
amount of preshift is completely controlled within the 
8272 FOC. Three cases are possible: the data may be 
written one clock cycle early, one clock cycle late, or 
with no preshift. The data preshift circuit is activated by 
the FOC only in the double-density mode. The preshift 
is required to cancel predictable playback data shifts 
when recorded data is later read from the floppy disk. 

A single 50-conductor flat cable cOllnects the board to 
the floppy disk drives. FOC outputs are driven by 7438 
open collector high-current line-drivers. These drivers 
are resistively terminated on the last disk drive by means 
of a 150 ohm resistor to +SV. The line receivers are 7414 
Schmitt triggered inverters with 150 ohm pull-up 
resistors on board. 

5-492 207875-002 



APPLICATIONS 

7. SPECIAL CONSIDERATIONS 

This section contains a quick review of key features and 
issues, most of which have been mentioned in other sec­
tions of this application note. Before designing with the 
8272FDC, it is advisable that the information in this 
section be completely understood. 

1. Multi·Sector Transfers 
The 8272 always operates in a multi-sector transfer 
mode. The 8272 continues to transfer data until the TC 
input is activated. In ~ DMA configuration, the TC in­
put of the 8272 must always be connected to the 
EOP/TC output of the DMA controller. When multiple 
DMA channels are used on a single DMA controller, 
EOP must be gated with the select signal for the proper 
FDC. If the TC signal is not gated, a terminal count on 
another channel will abort FDC operation. 

In a processor driven configuration with no DMA con­
troller, the system must count the transfers and supply a 
TC signal to the FDC. In a DMA environment, ORing a 
programmable TC with the TC from the DMA con­
troller is a convenient means of ensuring that the proc­
essor may always gain control of the FDC (even if the 
diskette system hangs up in an abnormal manner). 

2. Processor Command/Result Phase Interface 
In the command phase, the processor must write the ex­
act number of parameters in the exact order shown in 
Table 5. During the result phase, the processor must 
read the complete result status. For example, the For­
mat Track command requires six command bytes and 
presents seven result bytes. The 8272 will not accept a 
new command until all result bytes are read. Note that 
the number of command and result bytes varies from 
command-to-command. Command and result phases 
cannot be shortened. 

During both the command and result phases, the Main 
Status Register must be read by the processor before 
each byte of information is read from, or written to, the 
FDC Data Register. Before each command byte is writ­
ten, DIo.(bit 6) must be low (indicating a data transfer 
from the processor) and RQM (bit 7) must be high (in­
dicating that the FDC is ready for data). During the 
result phase, DIO must be high (indicating a data 
transfer to the processor) and RQM must also be high 
(indicating that data is ready for the processor). 

NOTE: After the 8272 receives a command byte, the 
RQM flag may remain set for 12 microseconds 
(with an 8 MHz clock). Software should not at­
tempt to read the Main Status Register before 
this time interval has elapsed; otherwise, the 
software will erroneously assume that the FDC 
is ready to accept the next byte. 

3. Sector Sizes 
The 8272 does not support 128 byte sectors in the MFM 
(double-density) mode. 

4. Write Clock 
The FDC Write Clock input (WR CLK) must be present 
at all times. 

5. Reset 
The FDC Reset input (RST) must be held active during 
power-on reset while the RD and WR inputs are active. 
If the reset input becomes inactive while RD and WR 
are still active, the 8272 enters the test mode. Once ac­
tivated, the test mode can only be deactivated by a 
power-down condition. 

6. Drive Status 
The 8272 constantly polls (starting after the power-on 
reset) all drives for changes in the drive ready status. At 
power-on, the FDC assumes that all drives are not 
ready. If a drive application requires that the ready line 
be strapped active, the FDC will generate an interrupt 
immediately after power is applied. 

7. Gap Length 
Only the gap 3 size is software programmable. All other 
gap sizes are fixed. In addition, different gap 3 sizes 
must be specified in format, read, write, and scan com­
mands. Refer to Section 3 and Table 9 for gap size 
recommendations. 

8. Seek Command 
The drive busy flag in the Main Status Register remains 
set after a Seek command is issued until the Sense Inter­
rupt Status command is issued (following reception of 
the seek complete interrupt). 

The FDC does not perform implied seeks. Before issu­
ing data read or write commands, the read/write head 
must be positioned over the correct cylinder. If the head 
is not positioned correctly, a cylinder address error is 
generated. 

After issuing a step pulse, the 8272 resumes drive status 
polling. For correct stepper operation in this mode, the 
stepper motor must be constantly enabled. (Most drives 
provide a jumper to -permit the stepper motor to be con­
stantly enabled.) 

9. Step Rate 
The 8272 can emit a step pulse that is one millisecond 
faster than the rate programmed by the SRT parameter 
in the Specify command. This action may cause subse­
quent sector not found errors. The step rate time should 
be programmed to be I ms longer than the step rate time 
required by the drive. 

10. Cable Length 
A cable length of less than 10 feet is recommended for 
drive interfacing. 

5-493 207875-002 



APPLICATIONS 

11. Scan Commands 
The current 8272 has several problems when using the 
scan commands. These commands should not be used at 
this time. 

12. Interrupts 
When the processor receives an interrupt from the FDC, 
the FDC may be reporting one of two distinct events: 

a) The beginning of the result phase of a previously re­
quested read, write; or scan command. 

b) An asynchronous event such as a seek/recalibrate 
completion, an attention, an abnormal command 
termination, or an invalid command. 

These two cases are distinguished by the FDC busy flag 
(bit 4) in the Main Status Register. If the FDC busy flag 
is high, the interrupt is of type (a). If the FDC busy flag 
is low, the interrupt was caused by an asynchronous 
event (b). 

A single interrupt from the FDC may signal more than 
one of the above events. After receiving an interrupt, 
the processor must continue to issue Sense Interrupt 
Status commands (and service the resulting conditions) 
until an invalid command code is received. In this man­
ner, all "hidden" interrupts are ferreted out and 
serviced. 

13. Skip Flag (SK) 
The skip flag is used during the execution of Read Data, 
,Read Deleted Data, Read Track, and various Scan com­
mands. This flag permits the FDC to skip unwanted sec­
tors on a disk track. 

When performing a Read Data, Read.Track, or Scan 
command, a high SK flag indicates that the FDC is to 
skip over (ni>t transfer) any sector containing a deleted 
data address mark. A low SK flag indicates that the 
FDC is to terminate the command (after reading all the 
data in the sector) when a deleted data address mark is 
encountered. 

When performing a Read Deleted Data command, a 
high SK flag indicates that sectors containing normal 
data address marks are to be skipped. Note that this is 
just the opposite situation from that described in the last 
paragraph. When a data address mark is encountered 
during a Read Deleted Data command (and the SK flag 

is low), the FDC terminates the command after reading 
all the data in the sector. 

14. Bad Track Maintenance 
The 8272 does not internally maintain bad track infor­
mation. The maintenance of this information must be 
performed by system software. As an example of typical 
bad track operation, assume that a media test deter­
mines that track 31 and track 66 of a given floppy disk 
are bad. When the disk is formatted for use, the system 
software formats physical track 0 as logical cylinder 0 
(C=O in the command phase parameters), physical 
track 1 as logical track 1 (C = 1), and so on, until 
physical track 30 is formatted as logical cylinder 30 
(C = 30). Physical track 31 is bad and should be format­
ted as logical cylinder FF (indicating a bad track). Next, 
physical track 32 is formatted as logical cylinder 31, and 
so on, until physical track 67 is formatted as logical 
cylinder 64. Next, bad physical track 66 is formatted as 
logical cylinder JlF (another bad track marker), and 
physical track 67 is formatted as logical cylinder 65. 
This formatting continues until the last physical track 
(77) is formatted as logical cylinder 15. Normally, after 
this formatting is complete, the bad track information is 
stored in a prespecified area on the floppy disk (typical­
ly.in a sector on track 0) so that the system will be able 
to recreate the bad track information when the disk is 
removed 'from the drive and reinserted at some later 
time. 

To illustrate how the system software performs a 
transfer operation disk with bad tracks, assume that the 
disk drive head is positioned at track 0 and the disk 
described above is loaded into the drive. If a command 
to read track 36 is issued by an application'program, the 
system software translates this read command into a 
seek to physical track 37 (since there is one bad track 
between 0 and 36, namely 31) followed by a read of 
logical cylinder 36. Thus, the cylinder parameter C is set 
to 37 for the Seek command and 36 for the Read Sector 
command. 

15. Head Load versus Head Settle Times 
The 8272 does not permit separate specification of the 
head load time and the head settle time. When the 
Specify command is issued for a given disk drive" the 
proper value for the HLT parameter is the maximum of 
the head load time and the head settle time. 

5-494 207875-002 



APPLICATIONS 

APPENDIX 

5-495 207875-002 



APPLICATIONS 

Power Distribution 

Part Ref Deslg +5 GND +12 -12 

8088 A2 40 1,20 
8224 I6 9,16 8 
8237-2 A6 31 20 
8251A A9,B9,C9 26 4 
8253-5 AIO 24 12 
8259A BI0 28 14 
8272 DIO 40 20 
8284 Al 18 9 
8286 B6,F4 20 10 

2114 Fl,F2,01,02,Hl,H2,I1,I2 18 9 
2732A DI,02 24 12 

74LSOO El 14 7 
74LS04 B2,E6,E8,F8 14 7 
74LS27 E2,E5 14 7 
74LS32 Bl 14 7 
74LS74 A4,05,H6 14 7 
74LS138 F3 16 8 
74LS139 EIO 16 8 
74LS153 13 16 8 
74LS157 F6 16 8 
74LSI64 F5 14 7 
74LS173 G3 16 8 
74LS175 G4 

, 
16 8 

74LS240 010 20 10 
74LS257 D3 16 8 
74LS367 C3,E9 16. 8 
74LS373 B4,C4,04,C6 20 10 
74LS393 I5,F7 14 7 

74S08 E4 14 7 
74S138 06,E3 16 8 

7414 H7 14 7 
7438 H8,H9,H1O 14 7 

1488 H3 7 14 1 
1489 H4 14 7 

96LS02 G7 16 8 
%LS02 06 16 8 

LM358 H5 8 4 

5-496 207875-002 



APPLICATIONS 

REFERENCES 
1. Intel, "8272 Single/Double Density Floppy Disk 

Controller Data Sheet," Intel Corporation, 1980. 

2. Intel iSBC 208 Hardware Reference Manual, 
Man~al Order No. 143078, Intel Corporation, 
1980. 

3. Intel, iSBC 204 Flexible Diskette Controller Hard­
ware Reference Manual, Manual Order 
No. 9800568A, Intel Corporation, 1978. 

4. Shugart, SA8001801 Diskette Storage Drive OEM 
Manual, Part No. 50574, Shugart Associates, 1977. 

5. Shugart, SA8001801 Diskette Storage Drive Theory 
of Operations, Part No. 50664, Shugart Associates, 
1977. 

6. Shugart, SA800 Series Diskette Storage Drive 
Double Density Design Guide, Part No. 39000, 
Shugart Associates, 1977. 

7. Shugart, "Application Notes for Shugart Dual 
VFO," Part No. 39101, Shugart Associates, 1980. 

8. Pertec, "Soft-sector Formatting for PERTEC Flex­
ible Disk Drives," Pertec Application Note, 1977. 

9. Austin Lesea and Rodnay Zaks, "Floppy-disc Con­
troller Design Must Begin With the Basics'," EDN, 
May 20, 1978. 

10. John Hoeppner and Larry Wall, "Encodingl 
Decoding Techniques Double Floppy Disc Capa­
city," Computer Design, Feb 1980. 

11. John Zarrella, System Architecture, Mirocomputer 
Applications, 1980. 

5-497 
207875-002 



i~ 

ADO-AD7 

ADO 

ADI 

AD. 

AD' 

AD4 

AD5 

ADO 

AD7 

RESET , 
iOR 

I lOW 

72CS 
AX. 

ORE072 

OACK72 

INT12 , 
EO' 

+5V 

8224 • 

" OSC 

. t XIV •• 

'~'I '-~ 10,F ~ RESIN' 
,. 5 

X2SYNC 
"--

150 7414 (2 PLeS) 
+5:1 (' 'LCS) H7 

READY 

INDEX :P.H ~ 

~:: t " PLeS) 

~ 
TWoSiDiD 

FAuLT 
TiiACKO 

'4i 
t-;o~ 
7 
1-4'2 
I..;;;. 

T 150 

A .. 'READ OAt 

'''' • .... .to. • ... 
1/2 LS240 

Gl0 

• ..--- 14. 
1A3 1Y3~ 15 • 
2A3 2V3 

8 144 1Y4~ 
17 2A4 2V4 3 
'---

741. 
5 ...... 

~ 

I 

7 

I 

0 

I. 

11 

" 
" 1 

• 
3 

• 
• ,. 

15 ,. 
18 

10 

'5 
17 

34 

33 

7438 

31 ~ 1 • HDL 
12 H. HI. - LS04 ('LCS) • 
~ 4 .. , ..... • ~ Do DSI 

.. 
: B LSi3 • • 3 ..... .... 

29 I ' ... 5 ..... I 
5-

01 DSO A E10 1~11 
1 7 I ...... 1 .... 

~ D. ,r0 V3 1 • 

"::- ----- ... 
10 D. • 

• 7 HI • 
D' : HDSEL 0 

4.7K (4 'LCS) 1 7438 7438 (4 Ples 
05 3 +5V HI 
08 112 LS240 • 1 
07 37 .r--- 18 !..to. • HO • 
RESET FAISTEP lAl lVl 

~ 0 ~ '_]00., ~ .- .,....., 
2Al .Vl RD • , . ... ~ 8 ~ ~ 
lA. IV' WR 

r!!----- 7 Joo. ~ lCTIDIR 2A2 ... 1~~ 11 
CS 13 .... ,. 

l ::::::lHO , 
L6 Gl0 

AO tJ ,,-,~. 3t ..... LS04 (4 PLeS) 
ORO AWlSEEK 

" ';. 11 
.. 
~ DACK 1~ I. 

INT E8 .... LS04 7438 (~ 

7.31 TC LS367 
~8 25 14 ...... 13 H8 

8272 
WE 

1" EO 5- LSOB (2 PLeS) 

Qr;)' •• • E' 
• SO 

~ ., 5 E' 
CLK .51 

4 MHz 

010 

GI""'"Q4 .0 
I • ~3D • 

30 5 20 15 • .r-A 
WROATA 

LS 4Q 10 lC. 

r"Ls383 • 175 3Q 1CO 1Y 
4MHz 0 7 5 1e1 00" 

CL.- ZQ ROY " 3 1e3 
15 ..",-lOX 

f'G I. CLR 
/ 

" ... "i:S153 ... 
" WP/TS WRelK 

OW 
.. 
.1 

M,FM 

FLTfTRKO •• RD DATA 
+5V ~iJ •• 2 

•• o I 
F, vco 98LS02 

" 00" 1 MHz 

~ 
G7 

~'HZ R +SY eLR Q1 

J' " I ,. 3 
'--- t • 

27" .JL·OO,F • lA 

+5V '!.l..:.:..l.!5 ~5 L! 
,F 8 •• 

G7 10 

~. 
0 FREQ IF 5 .A 

" 98LS02 -- DISC 

[ 
CLR ....!! 

~--F 1 G5 

LS04 
1~ • 
Fa 

5-498 



10 7438 

H8 

.8 Lso. 
5 

• 13 
Lso. .8 

1K 
Lso. +5V 

3 

.8 • CIITEII 
CLA 

03 • 
LS3t3 

'7 

APPLICATIONS 

LS27 (3 PLeS) 
A OA~--~----~~~~-, 

08.-:-------::-....._ 
OC ~--~>o~--~ 

.5 LS3. 

10 3B 
LS157 9 

3V 11 L-________________________ ~~3A ~ 

DSELO 

DSELl 

DSEL2 

DSEL3 

DIA 

STEP 

WAOT 

28 oiliivl!ftrmR 
28 DRN! 1~[l!!eTl 
30 DAIV! iELRTI 
3. DRIVE SELEen .. DIRECTION SELECT 
38 iffii .. ViFiiTEiiifE 

FAULT RESET 

LOW CURReNT 

" ~ ,. HEiiITi5iD 

r-------------------------------------------------------------------~. U WRITEDA~ 

+5V 

+SYA 

+SYA 
1K 

20K 
1M 

~----~==~--~~o~ 2MHzNOM 

,. +5V 

10K 

SETUP 
ADJUSTMENT 

5-499 207875-002 



inter 
ADo·AD1--------__ ------____________________________ ~._----------------------------------------

ADO 8 
DO 

AD' 1 

AD2 a BAUD RATE 01 

AD3 5 BAUD RATE 
geOO 

GENERATOR 4800 

AD. • 2400 
8253 1200 

AD5 3 Al0 eoo 
ADa 2 300 

D1 150 " AD1 1 110 1 

+5V 18 GATE2 
lK B GATE1 

11 
GATEO 

Po CLK2 
15 

CLK1 OUTO 
10 

9 
CLKO OUT1 

13 

AXI 20 Al OUT2 11 

AXO 19 AO CS RDWR 

1 
I 

I 

~j22 23 

~--------------------------------------+--+--------~~+-~~-----------------­
~--------------------------------------+--+--------~--+-~-------------------­
~----~--------------------------~_4--------4_4_~~----------------

AX~AX19 __ ------------------~----------------------_+--L-----~AX~0L---_+--+_--~------------------____ _ 

PCLK----------------------------------------4-------------~_h.__h._-------------------r: r:;8 ~S~~S) 
~ __ -----------------------------------------------------------l-~l.~5~'J~,0 9 

RESET-------------------------------------------------------------+---+----------------------

~---~------------------------------------------------------~---+---------------------­
~------------------------------------------------------------------~-------------------­
~D1------------------------------------------------------~--------~------------

III!W 
MW 
Ml[ 

AX12 1 r;--;;; p!." F8 

AX13 
20 118 2 B p.!.~ F9 

,1,,8 20 
AXI' 3 ~ FA 

C SI38 AX11 21 CE OE CE OE 

AX15 a E3 ~ FB Al1 
Gl p.!.' FC 

AXl0 19 

AXla 5 AX9 22 9 DO 

AXI1 4J El 
a 5 G2B 

~O FD 
AX8 23 

DO 

~ 
10 Dl 

AX'. 2 1 FF AX1 1 11 D2 

AX18 'h. 3 
• G2A Y1 

2732A 2132A 
Axa 2 D. 02 13 03 

LSOO PR~SS AX5 3 I. D4 

(2 PLCS) DECODE AX' • 15 D5 

AX3 5 18 D8 

AX2 a 
07 17 D1 

AXI ' 1 

AXO 8 
AO FEOOO FFOOO 

PROGRAM 
MEMORY 

5-500 



APPLICATIONS 

" I 
q 

! 
ADO 27 

DO ~ AD1 28 
,I 

AD2 1 'I 

1.03 2 

ADO 5 

ADS I 

ADS 7 82S1A B251A 
SERIAL 

8251A PORTS 
AD7 a 07 

A9 89 C9 

21 
RESET 

13 
RD 

10 
WR 

12 
AO 

~CLK 
~CTS ~iQQ uo i:iiCQ (JU ;;~ 
~ L~~~~~~~ ~~~S~~~ ~~~S~~~ 

----+-+--j--jf--f------4-J9 125 
11151.3 

1919 J25 1115 " 3 11 r 125 1115 14131,-1_9 ___ r1i;;;"~~ ______ _ 12 ;!!!. 11 
H3 TX03 

13 3~1 
RXD1 

~1489 

9~1 * 330PF 
H3 TXD2 

10 • H!1. 
RXD2 

~1489 
5 1488 

6 
~ 330PF 

H3 TXD1 
0-

8 H!1,0 
RXDl 

~ 1489 
~ 330PF 

- INTS13R 

INT513T 

INTS12R 

INT512T 

INT511R 

INTS11T 1 
10 

WE 
15 A. 

AX8 11 • 02A 
YO 

15 so AX7 17 

" S1 AX5 2114 ARRAY 11 07 
DO 

13 52 AX5 12 D8 028 
12 S3 AX. 13 05 

S138 11 54 AX3 DO 14 DO F3 
10 S5 AX2 

F1 01 H1 11 
01 

56 AX1 

(12 
LS27 

AXO 5 AO C S7 
Y7 

(11 
8 

AX9 15 A9 
(10 

A AXI 18 
F2 02 H2 12 

AX7 17 

AXI 
DO 

11 03 

AX5 12 02 DATA 
AXO 13 01 MEMOAY 

AX3 I I I i § ~ U 14 DO ;; ;; :; :;00 
AX2 

AX1 

AXO 

5-501 207875-002 



inter 

I:: 
+5V 

'l'rDi~~, 
3 • 

+5V 
~7 82 ~ ~ 8 9 

lN91'~ 18 17 10K LS04 

XI 33 MIN/MX 
2 ~ n 

A19 as 8 03 9 :~ 
RESET 10 21 RESET 

D3 

RES A18 38 7 D2 LS373 02 8 AX18 

l 
8 19 CLK CLK Ai7 37 • DC 01 ~ AX17 

"'1 
Dl 

AI READY 5 22 READY A18 38 3DO 00 2 AX18 
r""""'L...!!. -:: A15 39 18 07 07 l' AX15 AX15 l' 07 DE 

8284 A1. 2 17 DO Q8 18 AXI. 18 Q8 

+ 

2 A13 3 I. D5 05 '5 AX13 15 05 
PCLK 

A12 • 
13 04 04 '2 X12 12 01 10K 

4 ROY1 FIC 

~ 
LS373 

5V All 5 8 D3 C4 03 9 AXIl 9 03 
LS373 r RDY2 

CSYNC C8 
AID' 7 

D2 02 8 AX10 8 02 

AI7 4 01 01 5 AX9 501 AENI AEN2 

13 71 

, AI' 3 DO 00 2 AX8 AXB 200 

AD7 9 18 D1 07 '9 AX7 ~ 
ADO 10 17 DO 08 '8 AX8 AX7 12 87 

PCLK 

AOSl1 14 05 OS 15 AX5 13 88 

ADC 12 13 DC LS373 DC 12 AX4 I. 85 

ADa 13 , D3 
B. 

03 9 AX3 15 84 B288 

AD214 7 02 8 An 18 B3 
B8 

D2 

AD1 15 4 
01 01 5 AXI 17 B2 

ADO 18 3 
DOG OE 00 2 

AXO 18 81 

"1 
AXO 19 BO T 

LS387 1 
, 

ALE 25 4 to... 5 11 

HLDA 30 
Vca 

HOLD 31 
5 

0 D 2 

l$74 -8088 A4 
A2 

3 ..---CLR PR 

1 'I' 4 

INTR 18 
24 

INTA 

10K 
(2 PLCS) 

+5V 

t 10K (3 PLCS) 
lK 

101M 28 
LS':7 ...... 

~' C3 

1 IS 

32 2 SEL OE +5V 10K 
l00~ RD 

l 
lA (3 PLeS) 

-r-' +SYA 

f 
..2 18 ~rn 4.7., ~ to.,.FAlR 

NMI ~ 2A 

~ 28 LS257 

lY • 
29 11 D3 , 

WR 3A, 
zy7 

~ 
38 

~ 4A 
3Y 9 

+1 J 1 

+5V 13 48 
4Y 12 

+5V 

22I'F I I I 
GND )>-__ ~..-_(_2_PL_CS)_~_I--~_--'! 

0.11'F AIR J 

5-502 



LRun 

110 PORTS 

OX - 8237·2 

12 elK 
1X - DMA UPPER ADDRESS 

5 ~8 
2X - 8253 

• AEN 

~ 
3X - 8272 

DRE01 

~. 17 'X - 8251A.1 

8 AOSTI 
DRE02 

DRE03 11 5X -1251A.2 

ex - 8251A'3 
AD7 11 21 DI7 7X - 1258A 

17 ADI 22 

1. ADS 23 

13 AD. 26 8237-2 
A8 

8 AD3 27 

7 AD2 28 11 
es 

4 AD1 21 11 
3 ADO 

30 DIO 
DREOO 

25 
DACKO 

8 40 A7 

T 7 31 10K 

8 38 I~ 5 38 11 10 
37 EOP 

• 35 lOW 
2 ~S04 

3 34 • MW 
2 33 ~ lOR 
1 32 AO ~ MR 

7 HLDA 

10 HRO READV 

I 

I 
+5V~ 

10K 

ADO 1 AO M 10 11 

AD1 2 Al 81 18 
A02 3 A2 82 17 
AD3 4 A3 8286 13 18 
A04 

• A4 
F. 84 15 

ADS 8 AS 85 14 
ADI 7 AI 88 13 
AD7 8 A7 T OE 17 12 

11'( Iy 

);1 

LS387 
~LS08 

C4 PLeS) 13 1. 
lG .... I C3 

..... 8~7 

4 .... S ...... ... 2 .... 3 

'1! 

APPLICATIONS 

I 

AX8 3 V7~ e 
AX5 2 

I VI • 
AX. 1 

A V5 
10 

S138 V. 
11 

DI 12 
V3 

" 01 
13 

V2 
5 1. 

f021 
- V1 

OOA voj 

1r-
AXO 27 AO CS IRO 

18 

ADO 11 DO IRi " 
10 D1 IR2 20 

I D2 
21 

IR3 

v--2 D3 IR4 22 
7 23 

D4 IRS 
8 DS 8259A IRa 24 

S D8 110 
~ IR7 

AD7 4 D7 WR 
2 

RD ~ 
17 

INT 
26 

INTA 

~ 
61 

DO I'~ DO 00 3 AXi6 

Dl ~ 01 01 • 
AX17 

D2 ~ 
LS173 S AX18 

02 In 02 
D3 ~ 03 03 I AXll 

04 

D5 N 02 01 

01 

2~ '1'1 

D7 

I 

5-503 

r-

RUn 

e 

C 

e 

e 

D 

D 

RE072 

ACK72 

I 

I 

I 

I 

I 

I 

I 

NT72 

NT511R 

NT511T 

NT512R 

NTSl2T 

NTS13R 

NT513T 

E OP 

A XO-AX19 

A DO·AD7 

DO·07 

RW M 

M 

10 

M 

10 

Ii 
Ii 
W 
W 

207875-002 



inter ' 

© Infel Corporation, 1981 

APPLICATION 
NOTE 

5-504 

AP-121 

June 1981 

207885-001 



Software Design and 
Implementation of 

! Floppy Disk 
Subsystems 

Contents 

1. INTRODUCTION 

The Physical Interface Level 
The Logical Interface Llwel 
The File System Interface Level 
Scope of this Note 

2. DISK I/O TECHNIQUES 

FDC Data Transfer Interface 
Overlapped Operations 
Buffers 

3. THE 8272 FLOPPY DISK CONTROLLER 

Floppy Disk Commands 
1 Interface Registers 

Command/Result Phases 
Execution Phase 
Multi-sector and Multi-track 
Transfers 
Drive Status Polling 
Command Details 
Invalid Commands 

4. 8272 PHYSICAL INTERFACE 
SOFTWARE 

INITIALlZE$DRIVERS 
EXECUTE$DOCB 
FDCINT 
OUTPUT$CONTROLS$TO$DMA 
OUTPUT$COMMAND$TO$FDC 
INPUT$RESULT$FROM$FDC 
OUTPUT$BYTE$TO$FDC 
INPUT$BYTE$FROM$FDC 
FDC$READY$FOR$COMMAND 
FDC$READY$FOR$RESU LT 
OPERATlON$CLEAN$UP 
Modifications for 
Polling Operation 

5. 8272 LOGICAL INTERFACE 
SOFTWARE 

SPECIFY 
RECALIBRATE 
SEEK 
FORMAT 
WRITE 
READ 
Coping With Errors 

5-505 207885-001 



Contents (Continlked) 

6. FILE SYSTEMS 

File Allocation 
The Intel File System 
Disk File System Functions 

7. KEY 8272 SOFTWARE 
INTERFACING CONSIDERATIONS 

REFERENCES 

APPENDIX A-8272 FDC 
DEVICE DRIVER SOFTWARE 

APPENDIX B-8272 FDC 
EXERCISER PROGRAM 

APPENDIX C-8272 DRIVER FLOWCHARTS 

5-506 207885-001 



APPLICATIONS 

1. Introduction 

Disk interface software is a major contributor to the efficient and reliable 
operation of a floppy disk subsystem. This software must be a well-designed 
compromise between the needs of the application software modules and the 
capabilities of the floppy disk controller (FOC). In an effort to meet these 
requirements, the implementation of disk interface software is often divided 
into several levels of abstraction. The purpose of this application note is 
to define these software interface levels and describe the design and imple­
mentation of a modular and flexible software driver for the 8272 FOC. This 
note is a companion to AP-116, "An Intelligent Data Base System Using the 
8272." 

The Physical Interface Level 

The software interface level closest to the FDC hardware is referred to as the 
physical interface level. At this level, interface modules (often called disk 
drivers or disk handlers) communicate directly with· the FOC device. Disk drivers 
accept floppy disk commands from other software modules, control and monitor the 
FDC execution of the commands, and finally return operational status information 
(at command termination) to the requesting modules. 

In order to perform these functions, the drivers must support the bit/byte level 
FDC interface for status and data transfers. In addition, the drivers must field, 
classify, and service a variety of FOC interrupts. 

The Logical Interface Level 

system and application software modules often specify 
that are not directly compatible with the FDC device. 
bility is typically caused by one of the following: 

disk operation parameters 
This software incompati-

1. The change from an existing FDC to a functionally equivalent 
design. Replacing a TTL based controller with an LSI device is 
an example of a change that may result in software incompati­
bilities. 

2. The upgrade of an existing FDC subsystem to a higher capability 
design. An expansion from a single-sided, single-density sys­
tem to a dual-sided, double-density system to increase data 
storage capacity ~s an example of such a system change. 

3. The abstraction of the disk software interface to avoid redun­
dancy. Many FDC parameters (in particular the density, gap 
size, number of sectors per track and number of bytes per 
sector) are fixed for a floppy disk (after formatting). In 
fact, in many systems these parameters are never changed during 
the life of the syst~m. 

5-507 207885-001 



APPLICATIONS 

4. The requirement to support a software interface that is inde­
pendent of the type of disk attached to the system. In this 
case, a system generated ("logical") disk address (drive, head, 
cylinder, and sector numbers) must be mapped into a physical 
floppy disk address. For example, to switch between single­
and dual-sided disks, it may be easier and more cost-effective 
for the software to treat the dual-sided disk as containing 
twice as many sectors per track (52) rather than as having two 
sides. with this technique, accesses to sectors 1 through 26 
are mapped onto head 0 while accesses to sectors 27 through 52 
are mapped onto head 1. 

5. The necessity of supporting a bad track map. Since bad tracks 
depend on the disk media, the bad track mapping varies from 
disk to disk. In general, the system and application software 
should not_be concerned with calculating bad track parameters. 
Instead, these software modules should refer to cylinders 
logically (0 th~ough 76). The logical interface level pro­
cedures must map these cylinders into physical cylinder posi­
tions in order to avoid the bad tracks. 

The key to logical interface software design is the mapping of the "logical disk 
interface" (as seen by the application software) into the "physical disk inter­
face" (as implemented by the floppy disk drivers). This logical to physical 
mapping is tightly coupled to system software design and the mapping serves to 
isolate both applications and system software from the peculiarities of the FOC 
device. Typical logical interface procedures are described in Table 1. 

The File System Interface Level 

The file system typically comprises the highest level of disk interface software 
used by application programs. The file system is designed to treat the disk as 
a collection of named data areas (known as files). These files are cataloged in 
the disk directory. File system interface software permits the creation of new 
files and the deletion of existing files under software control. When a file is 
created, its name and disk address are entered into the directorYl when a file is 
deleted, its name is removed from the directory. Application software requests 
the use of a file by executing an OPEN function. Once opened, a file is 
normally reserved for use by the requesting program or task and the file cannot 
be reopened by other tasks. When a task no longer needs to use an open file, 
the task closes the file, releasing it for use by other tasks. 

Most file systems also support a set of file attributes that can be specified 
for each file. File attributes may be used to protect files (e.g., the WRITE 
PROTECT attribute ensurea that an existing file cannot accidentally be over­
written) and to supply system configuration information (e.g., a FORMAT attri­
bute may specify that a file should automatically be created on a new disk 
when the disk is formatted). 

At the file system interface level, application programs need not be explicitly 
aware of disk storage allocation techniques, block sizes, or file coding strate­
gies. Only a "file name" must be presented in order to open, read or write, 
and subsequently close a file. Typical file system functions are listed in 
Table 2. 

5-508 207885-001 



APPLICATIONS 

Table 1: Examples of Logical Interface Procedures 

Name Description 

FORMAT DISK 

RECALIBRATE 

SEEK 

READ STATUS 

READ SECTOR 

WRITE SECTOR 

Controls physical disk formatting for all tracks on a disk. 
Formatting adds FDC recognized cylinder, head, and sector 
addresses as well as address marks and data synchronization 
fields (gaps) to the floppy disk media. 

Moves the disk read/write head to track 0 (at the outside 
edge of the disk). 

Moves the disk read/write head to a specified logical 
cylinder. The logical and physical cylinder numbers may 
be different if bad track mapping is used. 

Indicates the status of the floppy disk drive and media. One 
important use of this procedure is to determine whether a 
floppy disk is dual-sided. 

Reads one or more complete sectors starting at a specified 
disk address (drive, head, cylinder, and sector). 

Writes one or more complete sectors starting at a specified 
disk address (drive, head, cylinder, and sector). 

5-509 207885-001 



APPLICATIONS 

Table 2: Disk File System Functions 

Name Description 

OPEN 

CLOSE 

READ 

WRITE 

CREATE 

DELETE 

RENAME 

ATTRIBUTE 

LOAD 

INITDISK 

prepare a file for processing. If the file is to be opened for 
input and the file name is not found in the directory, an error 
is generated. If the file is opened for output and the file name 
is not found in the directory, the file is automatically created. 

Terminate prpcessing of an open file. 
I 

Transfer data from an open file to memory. The READ function is 
often designed to buffer one or more sectors of data from the disk 
drive and supply this data to the reque~ting program, as required. 

Transfer data from memory to an open file. The WRITE function is 
often designed to buffer data from the application program until 
enough data is available to fill a disk sector. 

Initialize a file and enter its name and attributes into the 
file directory. 

Remove a file from the directory and release its storage space. 

Change the name of a file in the directory. 

Change the attributes of a file. 

Read a file of executable code into memory. 

Initialize a disk by formatting the media and establishing the 
directory file, the bit map file, and'other system files. 

5-510 207885-001 



APPLICATIONS 

Scope of this Rote 

This application note directly addresses the logical and physical interface 
levels. A complete 8272 driver (including interrupt service software) is 
listed in Appendix A. In addition, examples of recalibrate, seek, format, 
read, and write logical interface level procedures are included as part of 
the exerciser program found in Appendix B. Wherever possible, specific 
hardware configuration dependencies are parametized to provide maximum flexi­
bility without requiring major software changes. 

5-511 

I 

I: 

207885-001 



APPLICATIONS. 

2. Disk I/O Techniques 

One of the most important software aspects of disk interfacing is the fixed sector 
size. (Sector sizes are fixed when the disk is formatted.) Individual bytes of 
disk storage' cannot be read/written; instead, complete sectors must be trans­
ferred between the floppy disk and system memory., 

Selection of the appropriate sector size involves a tradeoff between memory 
size, disk storage efficiency, and disk transfer efficiency. Basically, the 
following factors must be weighed: 

1. Memory size. The larger the sector size, the larger the memory 
area that must be reserved for use during disk I/O transfers: 
For example, a lK byte disk sector size requires that at least 
one lK memory block be reserved for disk I/O. 

~. Disk Storage efficiency. Both very large and very small sectors 
can waste disk storage space as follows. In disk file systems, 
space must be allocated somewhere on the disk to link the sectors 
of each file together. If most files are composed of many small 
sectors, a large amount of linkage overhead information is re­
quired. At the other extreme, when most files are smaller than a 
single disk sector, a large amount of space is wasted at the 
end of each sector. 

3. Disk transfer efficiency. A file composed of a few large sectors 
can be transferred to/from memory mOI'e efficiently (faster and 
with less overhead) than a file composed of many small sectors. 

Balancing these considerations requires knowledge of the· intended system appli­
cations. Typically, for general purpose systems, sector sizes from 128 bytes 
to lK bytes are used. For compatibility between single-density and double­
density recording with t~e 8272 floppy disk controller, 256 byte sectors or 512 
byte sectors are most useful. 

FDC Data Transfer Interface 

Three distinct software interface techniques may be used to interface system mem­
ory to the FCC device during sector data transfers: 

1. DMA - In a DMA implementation, the software is only required 
to set up the DMA controller memory address and transfer count, 
and to initiate the data transfer. Th,e DMA controller hardware 
handshakes with the processor/system bus in order to perform 
each data transfer. 

2. Interrupt Driven - The FDC generates an interrupt when a data 
byte is ready to be transferred to memory, or when a data byte 
is needed from memory. It is the software's responsibility to 
perform appropriate memory reads/writes in order to transfer 
data from/to the FDC upon receipt of the interrupt. 

3. Polling - Software responsibilities in the polling mode are 
identical to the responsibilities in the interrupt driven mode. 
The polling mode, however, is used when interrupt service over­
head (context switching) is too large to support the disk data 

5-512 207885-001 



APPLICATIONS 

rate. In this mode, the software determines when to transfer 
data by continually polling a data request status flag in the 
FDC status register. 

The DMA mode has the advantage of permitting the processor to continue executing 
instructions while a disk transfer is in progress. (This capability is especially 
useful in multiprogramming environments when the operating system is designed to 
permit other tasks to execute while a program is waiting for I/O.) Modes 2 and 
3 are often combined and described as non-DMA operating modes. Non-DMA modes 
have the advantage of significantly lower system cost, but are often perform-
ance limited for double-density systems (where data bytes must be transferred 
to/from the FDC every 16 microseconds). 

Overlapped Operations 

Some FDC devices support simultaneous disk operations on more than one disk 
drive. Normally seek and recalibrate operations can be overlapped in this 
manner. Since seek operations on most floppy drives are extremely slow, this 
mode of operation can often be used by the system software to reduce overall 
disk access times. 

Buffers 

The buffer concept is an extremely important element in advanced disk I/O 
strategies. A buffer is nothing more than a memory area containing the same 
amount of data as a disk sector contains. Generally, when an application pro­
gram requests data from a disk, the system software allocates a buffer (memory 
area) and transfers the data from the appropriate disk sector into the buffer. 
The address of the buffer is then returned to the application software. In the 
same manner, after the application program has filled a buffer for output, 
the buffer address is passed to the system software, which writes data from the 
buffer into a disk sector. In multitasking systems, multiple buffers may be 
allocated from a buffer pool. In these systems, the disk controller is often 
requested to read ahead and fill additional data buffers while the application 
software is processing a previous buffer. Using this technique, system software 
attempts to fill buffers before they are needed by the application programs, 
thereby eliminating program waits during I/O transfers. Figure 1 illustrates 
the use of multiple buffers in a ring configuration. 

5-513 207885-001 



DISK 
DRIVE 

APPLICATIONS 

BUFFER #4 
EMPTY 

BUfFER #1 
BEING 
FILLED 

DISK 
SUBSYSTEM 

BUFFER #3 
EMPTY 

BUFFER #2 
EMPTY 

DATA FLOW FROM DISK 
INTO BUFFER 

a) The first disk read request by the application software causes the disk subsystem to begin filling 
the first empty buffer. The application software must wait until the buffer is filled before it may 
continue execution. . 

AFN-Q1949A 

Figure 1. Using Multiple Memory Buffers for Disk 1/0 

5-514 207885-001 



DISK 
DRIVE 

APPLICATIONS 

APPLICATION 
SOFTWARE 

BUFFER #1 
BEING 

EMPTIED 

BUFFER #2 
BEING 
FILLED 

DISK 
SUBSYSTEM 

~ 
BUFFER #4 

EMPTY 

~ 
BUFFER #3 

EMPTY 

/ 
DATA FLOW FROM DISK 

INTO BUFFER 

b) After the first buffer is filled, the disk system continues to transfer disk data into the next buffer 
while the application software begins operating on the first full buffer. 

AFN-01949A 

Figure 1. Using Multiple Memory Buffers for Disk 1/0 (Continued) 

5-515 207885-001 



BUFFER #2 
FULL 

BUFFER #3 
FULL 

APPLICATIONS 

Jl!>PUCATION 
SOfTWARE 

BUFFER #4 
FULL 

BUFFER #1 
BEING 

EMPTIED 

DISK 
SUBSYSTEM 

NO DISK TRANSFER 
ACTIVE 

c) When all empty buffers have been filled, disk activity is st~pped until the application software 
releases one or more buffers for reuse. 

AfN.Ol949A 

Figure '1. Using Multiple Memory Buffers for Disk 1/0 (Continued) 

5-516 207885-001 



DISK 
DRIVE 

APPLICATIONS 

/ 
BUFFER #3 

FULL 

~ 
BUFFER #4 

FULL 

~ 

APPLICATION 
SOFTWARE 

t 
BUFFER #2 

BEING 
EMPTIED 

\. 

BUFF.ER#1 
BEING 
FILLED 

DATA FLOW FROM 
DISK INTO BUFFER 

DISK 
SUBSYSTEM 

d) When the application software releases a buffer (for reuse), the disk subsystem begins a disk 
sector read to refill the buffer. This strategy attempts to anticipate application software needs by 
maintaining a sufficient number of full data buffers in order to minimize data fransfer delays. If 
disk data is already in memory when the application software requests it, no disk transfer delays 
are incurred. ' 

AFN-01S49A 

Figure 1. Using-Multiple Memory Buffers for Disk I/O (Continued) 

5-517 207885-001 



APPLICATIONS 

3. THE 8272 FLOPPY DISK CONTROLLER 

The 8272 is a single-chip LSI Floppy Oisk Controller (Foe) that implements both 
single- and double-density floppy disk storage subsystems (with up to four 
dual-sided disk drives per Foe). The 8272 supports the IBM 3740 single-density 
recording format (FM) and the. IBM System 34 double-density recording format 
(MFM). The 8272 accepts and executes high-level disk commands such as format 
track, seek, .read sector, and write sector. All data synchronization and error 
checking is automatically performed by the Foe to ensure reliable data storage 
'and subsequent retrieval. The 8272 interfaces to microprocessor systems with 
or without Oirect Memory Access (OMA) capabilities and also interfaces to a 
large number of commercially available floppy disk drives. 

Floppy Disk Commands 

The 8272 executes fifteen high-level disk interface commands: 

Specify 
Sense Drive Status 
Sense Interrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read Deleted Data 

Write Data 
Write Deleted Data 
Read Track 
Read ID 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 

Each commimd is initiated by a multi-byte transfer from the driver software 
to the Foe (the transferred bytes contain command and parameter information). 
After complete command specification, the Foe automatically executes the 
command. The command result data (after execution of the command) may require a 
multi-byte transfer of status information back to the driver. It is con-
venient to consider each Foe command as consisting of the following three phases: 

Command phase: The driver transfers to the Foe all the information 
required to perform a particular disk operation. The 
8272 automatically enters the command phase after 
RESET and following the completion of the result 
phase (if any) of a previous command. 

Execution Phase: The Foe performs the operation as instructed. The 
execution phase is entered immediately after the 
last command p~rameter is written to the Foe in the 
preceding command phase. The execution phase 
normally ends when the last data byte is transferred 
to/from the disk or when an error Qccurs. 

Result phase: After completion of the disk operation, status and 
other housekeeping information are made avail-
able to the driver software. After this information is 
read, the Foe reenters the command phase and is ready 
to accept another command. 

5-518 207885-001 



APPLICATIONS 

Interface Registers 

To support information transfer between the FDC and the system software, the 
8272 contains two 8-bit registers: the Main status Register and the Data 
Register. The Main Status Register (read only) contains FOC status information 
and may be accessed at any time. The Main Status Register (Table 3) provides 
the system processor with the status of each disk drive, the status of the 
FDC, and the status of the processor interface. The Data Register (read/write) 
stor~s data, commands, parameters, and disk drive status information. The Data 
Register is used to program the Foe during the command phase and to obtain 
result information after completion of FDC operations. 

In addition to the Main Status Register, the FDC contains four additional 
status registers (STO, ST1, ST2, and ST3). These registers are only available 
during the result phase of a command. 

Command/Result Phases 

Table 4 lists the 8272 command set. For each of the fifteen commands, command 
and result phase data transfers are listed. A list of abbreviations used in 
the table is given in Table 5, and the contents of the result status registers 
(STO-ST3) are illustrated in Table 6. 

The bytes of data which are sent to the 8272 by the drivers during the command 
phase, and are read out of the 8272 in the result phase, must occur in the order 
shown in Table 4. That is, the command code must be sent first and the other 
bytes sent in the prescribed sequence. All bytes of the command and result 
phases must be read/written as described. After the last byte of data in the 
command phase is sent to the 8272 the execution phase automatically starts. In 
a similar fashion, when the last byte of data is read from the 8272 in the 
result phase, the result phase is automatically ended and the 8272 reenters the 
command phase. 

It is important to note that during the result phase all bytes shown in Table 4 
must be read. The Read Data command, for example, has seven bytes of data in the 
result phase. All seven bytes must be read in order to successfully complete 
the Read Data command. The 8272 will not accept a new command until all seven 
bytes have been read. The number of command and result bytes varies 'from 
command-to-command. 

In order to read data from, or write data to, the Data Register during the 
command and result phases, the software driver must examine the Main Status 
Register to determine if the Data Register is available. The 010 (bit 6) and 
RQM (bit 7) flags in the Main Status Register must be low and high, respective­
ly, before each byte of the command word may be written into the 8272. Many of 
the commands require multiple bytes, and as a result, the Main Status Register 
must be read prior to each byte transfer to the 8272. To read status bytes 
during the result phase, 010 and RQM in the Main Status Register must both be 
high. Note, checking the Main Status Register in this manner before each byte 
transfer to/from the 8272 is required only in the command and result phases, 
and is NOT required during the execution phase. 

5-519 207885-001 



BIT SYMBOL 
NUMBER 

0 DOB 

1 DlB 

2 D2B 

3 D3B 

4 CB 

5 NDM 

6 DIO 

7 RQM 

APPLICATIONS 

Table 3: Main Status Register Bit Definitions 

DESCRIPTION 

Disk Drive o Busy. Disk Drive 0 is seeking. 

Disk Drive 1 Busy. Disk Driv!,! 1 is seeking. 

Disk Drive 2 Busy. Disk Drive 2 is seeking. 

Disk Drive 3 Busy. Disk Drive 3 is seeking. 

FDC Busy. A read or write command is in progress. 

Non-DMA Mode. The FDC is in the non-DMA mode when this flag is 
set (1). This flag is set only during the execution phase of 
commands in the non-DMA mode. Transition of this flag to a 
zero (0) indicates that the execution phase has ended. 

Data Input/Output. Indicates the direction of a data transfer 
between the FDC and the Data Register. When DIO is set (1), data 
is read from the Data Register by the processor1 when DIO is 
reset (0), data is written from the processor to the Data Register. 

Request for Master. When set (1), this flag indicates that 
the Data Register is ready to send data to, or receive data 
from, the processor. 

5-520 

,;.s.. 

207885-001 



APPLICATIONS 

Table 4: 8272 Command set 

I DATA BUS DATA BUS 

PHASE AJW I Dr De DS D. D3 D2 D, DO REMARKS PHASE AJW D7 D6 DS D. D3 D2 D, Do REMARKS 

READ DATA READ A TRACK 

Command W MT MFM SK 0 0 , , 0 Command Codes Command W 0 MFM SK 0 0 0 , 0 Command Codes 

W 0 0 0 0 0 HOS OS, 050 W 0 0 0 0 0 HOS OS, 050 

W C Sector 10 Information W C Sector 10 information 
W H prior to Command W H prior to Command 
W A execution W A execution 
W N W N 
W EOT W EOT 
W GPL W GPL 
W OTL 

, 
W OTL 

Execution Oala transfer Data transfer 

between the FoD 
Execution between the FDD 

and the main-system and the main-system. 
FOC reads the 

Result A STO Status information complete track 
A ST 1 after Command contents from the 
A ST 2 execution physical Index 
A C mark to EOT 
A H Sector 10 information 
A A after command Result A ST 0 Status mformatlon 

A N execution R ST 1 after Command 
A ST 2 texecutlon 

AEAO DELETED DATA A C 

Command W MT MFM SK 0 , 1 0 0 Command Codes A H _____ Sector 10 Information 

W 0 0 0 0 0 HDS DS1 DSO 
A A after Command 
A N execution 

vi C Sector 10 mformi!tIOn 
W H prior to Command READ to 
W A execut.on Command W 0 MFM 0 0 1 0 1 0 Command Codes 
W N 
W EC 1 W 0 0 0 0 0 HDS DS1 OSO 

W GPL 
W DTL Execut'on The f.rst correct 10 

Execution Data transfer 
information on the 
track IS stored In 

between the FDo Data Register 
and the main-system 

Result A STO Status information Result A STO Status information 
A 5T 1 after Command A ST 1 after Command 
A ST 2 execution A ST2 ____ execution 
A C R C 
A H Sector ID information '" H Sector 10 Information 

A A after Command A A dUring Execution 

A N execution R N Phase 
--

WAITE DATA FORMAT A TRACK 

Command W MT MFM 0 0 0 1 0 1 Command Codes Command W 0 MFM 0 0 1 1 0 1 Command Codes 

W 0 0 0 0 0 HDS DS1 050 W 0 0 0 0 0 HDS DS1 DSO 

W C Sector 10 information W N Bytes/Sector 

W H prtor to Command W SC SectorsfTrack 

W R executton W GPL Gap 3 

W N W D Filter Byte 

W EOT 
W GPL Execution FDC formats an 
W DTL entire track 

Execution Data transfer Result A ST 0 Status information 
between the main- A ST 1 after Command 
system and the FDD R ST 2 execution 

Result A STO Status information R C 

A ST1 after Command A H In this case, the ID 

A ST2 execution A A Informallon has no 

A C A N meaning 

A H Sector ID informatIon SCAN EQUAL 
A R after Command 
A N execution Command W MT MFM SK 1 0 0 0 1 Command Codes 

WAITE DELETED DATA W 0 0 0 0 0 HDS DS1 050 

Command W MT MFM 0 0 1 0 0 1 Command Codes 
W C Sector Ip Information 
W H prior to Command 

W 0 0 0 0 0 HDS DS1 050 W A execution 
W C Sector ID informatIOn W N 

W H pnor to Command W EOT 

W A execution W GPL 

W N W STP 

W EOT 
W GPL Execution Data compared 
W DTL between the FDo 

Execution Data transfer 
and the main-system 

between the FoD Result R STO Status Information 
and the main-system A ST 1 after Command 

Result A STO Status informatIon A ST 2 execution 

A ST1 after Command A C 

A ST 2 execution A H Sector ID information 

A C A A after Command 

A H Sector 10 Informatton A N execution 

A A after Command 
A N execution 

Note 1 AO= 1 for all operations 

5-521 207885·001 



APPLICATIONS 

DATA BUS I DATA BUS 

PHASE RJW 07 De 05 04 03 02 0, DO REMARKS PHASE RJW 07 De 05 04 03 02 0, DO REMARKS 

SCAN LOW OR EQUAL RECALIBRATE 

Command W MT MFM SK 1 1 0 0 1 Command Codes Command W 0 0 0 0 0 , 1 1 Command Codes 
W 0 0 0 0 0 HOS OS1 OSO W 0 0 0 0 0 0 OS1 OSO 
W C Sector 10 Information Execution Head retracted to 
W H pnor Command Track 0 
W A execution 
W N SENSE INTEAAUPT STATUS 
W EOT 
W GPL _ Command W 0 0 0 0 , 0 0 0 Command Codes 

W STP Result A STO Status information at 
A C the end of each seek 

Execution Data compared operation about the 
between the FOD FOC 
and the main-system 

SPECIFY 

Result A STO Status mformatlon Command W 0 0 0 0 0 cO , , Command Codes 
A ST' after Command 

W ~SPT __ .. ~HUT 
A ST2 execution - Timer Settings 
A C W HlT .. NO 

A H Sector 10 mformatlon SENSE DAIVE STATUS 
A A after Command 
A N executton Command W 0 0 0 0 0 1 0 0 Command Codes 

SCAN HIGH OA EQUAL W 0 0 0 0 0 HOS OS, OSO 
Result A ST 3 Status Information 

Command W MT MFM SK , , , 0 , Command Codes about the FOD 
W 0 0 0 0 0 HOS OS, OSO 

SEEK 
W C Sector lD Information 
W H pnor Command Command W 0 0 0 0 1 1 , , Command Codes 
W A execution W 0 0 0 0 0 HDS OS, DSO 
W N 

W C W EOT 
W GPl 

Execution Head IS positioned W STP 
over proper Cylinder 

Execution Data compared on Diskette 

between the FDD INVAUD 
and the main-system 

Command W ____ invalid Codes ____ Invalid Command 
Result A STO Status information Codes (NoOp- FDC 

A ST' after Command goes mto Standby 
A ST2 ____ execution State) 
A C Result A STO ST 0=80 
A H Sector 10 mformatlon (16) 
A A after Command 
A N execution 

5-522 207885-001 



SYMBOL 

C 

o 

APPLICATIONS 

Table 5: Command/Result Parameter Abbreviations 

DESCRIPTION' 

Cylinder Address. ~he currently selected cylinder address (0 to 76) on 
the disk~ 

Data pattern. The pattern to be written in each sector data field during 
formatting. 

DSO,DSl Disk Drive Select. 

DSIDSO 
0 0 Drive 0 
0 1 Drive 1 
1 0 Drive 2 
1 1 Drive 3 

DTL Special Sector Size. During the execution of disk read/write commands, 
this parameter is used to temporarily alter the effective disk sector 
size. By setting N to zero, DTL may be used to specify a sector size 
from 1 to 256 bytes in length. If the actual sector (on the disk) 
is larger than DTL specifies, the remainder of the actual sector is not 
passed to the system during read commands, during write commands, the 
remainder of the actual sector is written with all-zeroes bytes. DTL 
should be set to FF hexadecimal when N is not zero. 

EOT End of Track. The final sector number of the current track. 

GPL Gap Length. The, gap 3 size. (Gap 3 is the space between sectors.) 

H Head Address. Selected head: 0 or 1 (disk side 0 or 1, respectively) 
as encoded in the sector ID field. 

HLT Head Load Time. Defines the time interval that the FOe waits after 
loading the head before initiating a read or write operation. program­
mable from 2 to 254 milliseconds (in increments of 2 ms). 

HUT Head Unload Time. Defines the time interval from the end of the exe­
cution phase (of a read or write command) until the head is unloaded. 
programmable from 16 to 240 milliseconds (in increments of 16 ms). 

MFM MFM/FM Mode Selector. Selects MFM double-density recording mode when 
, high, FM single-density mode when low. 

MT Multi-Track Selector. When set, this flag selects the multi-track 
operating mode. In this mode (used only with dual-sided disks), 
the FOe treats a complete cylinder (under both read/write head 0 and 
read/write head 1) as a single track! The FOe operates as if this 
expanded track started at the first sector under head 0 and ended at the 
last sector under head 1. With this flag set (high), a multi-sector 
read operation will automatically continue to the first sector under 
head 1 when the FDC finishes operating on the last sector under head O. 

N Sector Size Code. ,The number of data bytes within a sector. 

207885-001 



NO 

R 

APPLICATIONS 

Non-DMA Mode Flag. When set (1), this flag indicates tha.t the FDC 
is to operate in the non-DMA mode. In this mode, the processor 
participates in' each data transfer (by means of an interrupt or by 
polling the RQM flag in the Main Status Register). When reset (0), 
the FDC interfaces to a DMA controller. 

Sector Address. Specifies the sector number to be read or written. In 
multi-sector transfers, this parameter specifies the sector number of 
the first sector to be read or written. 

SC Number. of-Sectors per Track. Specifies the number of sectors per track 
to be initialized by, the Format Track command. 

SK Skip Flag. When this flag is set, sectors containing deleted data 
address marks will automatically be skipped during the execution of 
multi-sector Read Data or Scan commands. In the same manner, a sector 
containing a data address mark will automatically be skipped during 
the execution of a multi-sector Read Deleted Data command. 

SRT Step Rate Interval. Defines the time intervaL uetween step pulses 
issued by the FDC (track-to-track access time). programmable from 
1 to 16 milliseconds (in increments of 1 ms). 

STO Status Register 0-3. ,Registers within the FDC that store status infor-
ST1 mation after a command has been executed. This status information is 
ST2 available to the processor during the Result phase after command exe-
ST3 cution. These registers may only be read after a command has been 

executed (in the exact order shown in Table 4 for each command). 
These registers should not be confused with the Main Status ~egister. 

STP Scan Sector Increment. During Scan operations, this parameter is 
added to the current sector number in order to determine the next 
sector to be scanned. 

5-524 207885-001 



APPLICATIONS 

Table 6: Status Register Definitions 

status Register 0 

BIT 
NUMBER 

7,6 

5 

4 

3 

SYMBOL 

IC 

SE 

EC 

NR 

DESCRIPTION 

Interrupt Code. 

00 - Normal termination of command. The specified command was 
properly executed and completed without error. 

01 - Abnormal termination of command. Command execution was 
started but could not be successfully completed. 

10 - Invalid command. The requested command could not be executed. 

11 - Abnormal ,termination. During command execution, the disk 
drive ready signal changed state. 

Seek End. This flag is set (1) when the FDC has completed the 
Seek command and the read/write head is positioned over the 
correct cylinder. 

Equipment Check Error. This flag is set (1) if a fault signal 
is received from the disk drive or if the track 0 signal is 
not received from the disk drive after 77 step pulses 
(Recalibrate command). 

Not Ready Error. This flag is set if a read or write command is 
issued and either the drive is not ready or the command specifies 
side 1 (head 1) of a single-sided disk. 

2 H Head Address. The head address at the time of the interrupt. 

1,0 DSl,DSO Drive Select. The number of the drive selected at the time of 
the interrupt. 

status Register 1 

BIT 
NUMBER 

7 

6 

5 

4 

SYMBOL 

EN 

DE 

OR 

DESCRIPTION 

End, of Track Error. This flag is set if the FDC attempts to 
access a sector beyond the final sector of the track. 

Undefined 

Data Error. Set when the FDC detects a CRC error in either the 
the ID field or the data field of a sector. 

Overrun Error. Set (during data transfers) if the FDC does not 
receive DMA or processor service within the specified time 
interval. 

5-525 207885-001 



3 

2 ND 

I NW 

o MA 

APPLICATIONS 

Undefined 

Sector Not Found ~rror. This flag is set by any of the follow­
ing conditions. 

a) The FDC cannot locate the sector specified in the Read 
Data, Read Deleted Dat-a, or Scan command. 

b) The FDC cannot locate the starting sector specified in 
the Read Tr~ck command. 

c) The FDC cannot read the ID field without error during 
a Read ID command. 

, 
Write protect Error. This flag is set if the FDC detects a 
write protect signal from the disk drive during the execution 
of a Write Data, Write Deleted Data, or Format Track command. 

/ 

Missing Address Mark Error. This flag is set by either of the 
following co~ditions: 

a) The FDC cannot detect the ID address mark on the specified 
track (after two rotations of the disk): 

b) The FDC cannot detect the data address mark or deleted data 
address mark on the specified track. (See also the Me bit 
of Status Register 2.) 

status Register 2 

BIT 
NUMBER 

7 

6 

5 

4 

3 

2 

SYMBOL 

CM 

DD 

WC 

SH 

SN 

DESCRIPTION 

Undefined 

Control Mark. This flag is set when the FDC encounters one of 
the following conditions: 

a) A deleted data address mark during the execution of a Read 
Data or Scan command. 

b) A data address mark during the execution of a Read Deleted 
Data command. 

Data Error. Set (1) when the FDC detects a CRCerror in a 
sector data field. This flag is not set when a CRC error is 
detected in the ID field. 

Cylinder Address Error. Set when the cylinder address from the 
disk sector ID field is different from the current cylinder 
address maintained within the FDC. 

Scan Hit. Set during the _execution of the Scan command 
if the scan condition is satisfied. 

Scan Not Satisfied. Set during execution of the Scan command 
if the FDC cannot locate a sector on the specified cylinder 
that satisfies the scan condition. 

5-526 207885-001 



1 BC 

o MD 

APPLICATIONS 

Bad Track Error. Set when the cylinder address from the disk 
sector ID field is FF hexadecimal and this cylinder address is 
different from the current cylinder address maintained within 
the FDC. This all "ones" cylinder number indicates a bad track 
(one containing hard errors) according to the IBM soft-sectored 
format specifications. 

Missing Data Address Mark Error. Set if the FDC cannot detect 
a data address mark or deleted data address mark on the speci­
fied track. 

status Register 3 

BIT 
NUMBER 

7 

6 

5 

4 

3 

2 

SYMBOL 

FT 

WP 

ROY 

TO 

TS 

H 

DESCRIPTION 

Fault. This flag indicates the status of the fault signal from 
the selected disk drive. 

Write Protected. This flag indicates the status of the write 
protect signal from the selected disk drive. 

Ready. This flag indicates the status of the ready signal from 
the selected disk drive. 

Track O. This flag indicates the status of the track 0 signal 
from the selected disk drive. 

TWo-Sided. This flag indicates the status of the two-sided 
signai from the selected disk drive. 

Head Address. This flag indicates the status of the side select 
signal for the currently s~lected disk drive. 

1,0 DSl,DSO Drive Select. Indicates the currently selected disk drive 
number. 

5-527 207885-001 



APPLICATIONS 

Execution phase 

All data transfers to (or from) the floppy drive occur during the,execution 
phase. The 8272 has two primary mOdes of operation for data transfers 
(selected by the specify command): 

1) DMA mode 
2) non-DMA mode 

In the DMA mode, execution phase data transfers are handled by the DMA con-
troller hardware (tnvisible to the driver software). The driver software, however, 
must set all appropriate DMA controller registers prior to the beginning of the 
disk operation. An interrupt is generated by the 8272 after the last data 
transfer, indicating the completion of the execution phase, and the beginning of 
the result phase. 

In the non-DMA mode, transfer requests are indicated by generation of an interrupt 
and by activation of the RQM flag (bit 7 in the Main Status Register). The 
interrupt signal can be used for interrupt-driven systems and RQM can be used for 
polled systems. The driver software must respond to the transfer request by 
reading data from, or writing data to, the FOC. After completing the last 
transfer, the 8272 generates an interrupt to indicate the beginning of the 
result phase. In the non-DMA mode, the processor must activate the "terminal 
count" (TC) signal to the FOC (normally by means of an I/O port) after the 
transfer request for the last data byte has been received (by the driver) and 
before the appropriate data byte has been read from (or written to) the FOC. 

In either mode of operation (DMA or non-DMA), the execution:phase ends when a 
"terminal count" signal is sensed by the FOC, when the last sector on a track 
(the EOT parameter - Table 4) has been read'or written, or when an error 
occurs. 

Multi-sector and Multi-track Transfers 

During disk read/write transfers (Read Data, Write Data, Read Deleted Data, 
and Write Deleted Data), the FOC will continue to transfer data from sequential 
sectors until the TC input is sensed. In the DMA mode, the TC input is normally 
set by the DMA controller. In the non-DMA mode, the processor directly controls 
the FOC TC input as 'previously described. Once the TC input is received, the FOe 
stops requesting data transfers (from the system software or DMA controller). 
The FOC, however, continues to read data from, or write data to, the floppy disk 
until the end of the current disk sector. During a disk read operation, the data 
read from the disk (after reception of the TC input) is discarded, but the data 
CRC is checked for errorS1 during a disk write operation, the remainder of the 
sector is filled with all-zero bytes. 

If the TC signal is not received before the last byte of the current sector Qas 
been transferred to/from the system, the FOe increments the sector number by one 
and initiates a read or write command for this new disk sector. 

5-528 207885-001 



APPLICATIONS 

The FOC is also designed to operate in a multi-track mode for dual-sided 
disks. In the multi-track mode (specified by means of the MT flag in the 
command byte - Table 4) the FDC will automatically increment the head address 
(from 0 to 1) when the last sector (on the track under head 0) has been read or 
written. Reading or writing is then continued on the first sector (sector 1) 
of head 1. 

Drive Status polling 

After the power-on reset, the 8272 automatfcally enters a drive status 
polling mode. If a change in drive status is detected (all drives are assumed 
to be "not ready" at power-on), an interrupt is generated. The 8272 continues 
this status polling between command executions (and between step pulses in the 
Seek command). In this manner, the 8272 automatically notifies the system 
software whenever a floppy disk is inserted, removed, or changed by the operator. 

COIIIDand Details 

During the command phase, the Main Status Register must be polled by the driver 
software before each byte is written into the Data Register. The DIO (bit 6) and 
RQM (bit 7) flags in the.Main Status Register must be low and high, respectively, 
before each byte of the command may be written into the 8272. The beginning 
of the execution phase for any of these commands will cause 010 to be set high 
and RQM to be set low. 

Operation of the FOC commands is described in detail in Application Note AP-116, 
"An Intelligent Data Base System Using the 8272." 

Invalid Commands 

If an invalid (undefined) command is sent to the FOC, the FOC will terminate 
the command. No interrupt is generated by the 8272 during this condition. 
Bit 6 and bit 7 (010 and RQM) in the Main Status Register are both set indi­
cating to the processor that the 8272 is in the result phase and the contents 
of Status Register 0 must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid command was received. 
The driver software in Appendix B checks each requested command and will not 
issue an invalid command to the 8272. 

A Sense Interrupt Status command must be sent after a Seek or Recalibrate 
interrupt, otherwise the FDC will consider the next command to be an invalid 
command. Also, when the last "hidden" interrupt has been serviced, further 
Sense Interrupt Status commands will result in invalid command codes. 

5-529 207885-001 



APPLICATIONS 

4. 8272 Physical Interface Software 

PL/M software driver listings for the 8272 FCC are contained in Appendix A. 
These drivers have been designed to operate in a DMA environment (as described 
in Application Note AP-116, HAn Intelligent Oata Base system using the 8272"). 
In the following paragraphs, each driver procedure is described. (A description 
of the driver data base variables is given in Table 7.) In addition, 'the modi­
fications necessary to reconfigure the drivers for ~peration in a polled envir­
onment are discussed. 

INITIALIZE$DRIVBRS 

This initialization procedure must be called before any FOC operations are 
attempted. This module initializes the ORIVE$READY, DRIVE$STATUS$CHANGE, 
OPERATION$IN$PROGRESS, and OPERATION$COMPLETE arrays as well as the 
GLOBAL$ORIVE$NO variable. 

EXBCUTE$DOCB 

This procedure contains the main 8272 driver control software and handles the 
execution of a complete FDC command. EXECUTE$DOCB is called with two parame­
ters: a) a pointer to a disk operation control b~ock and b) a pointer to a 
result status byte. The format of the disk operation control block is illus­
trated in Figure 2 and the result status codes are described in Table 8. 

Before starting the command phase for the specified disk operation, the command 
is checked for validity and to determine whether the FDC is busy. (For an over­
lapped operation, if the FDC BUSY flag is set - in the Main Status Register -
the command cannot be started; non-overlapped operations cannot be started if 
the FDC BUSY flag is set, if any drive is in the process of seeking/recalibrating, 
or if an operation is currently in'progress on the specified drive.) 

After these checks are made, interrupts are disabled in order to set the 
OPERATION$IN$PROGRESS flag, reset the OPERATION$COMPLETE flag, load a pointer 
to the current operation 90ntrol block into the OPERATION$DOCB$PTR array and 
set GLOBAL$DRIVE$NO (if a non-overlapped operation is to be started). 

At this point, parameters from the operation control block are output to the 
OMA controller and the FOC command phase is initiated. After completion of the 
command phase, a te$t is made to determine the type of result phase required 
for the current operation. If no result phase is needed, control is immediate­
ly returned to the calling program. If an immediate result phase is required, 
the result bytes are input from the FCC. Otherwise, the CPU waits until the 
OPERATION$COMPLETE flag is se~ (by the interrupt service procedure). 

Finally, if an error is detected in the result status code (from the FOC) , an 
FOC operation error is reported to the calling program • 

• 
5~530 207885-001 



NAME 

DRIVE$READY 

DRIVE$STATUS$CHANGE 

OPERATION$DOCB$PTR 

OPERATION$IN$PROGRESS 

OPERATION$COMPLETE 

GLOBAL$DRIVE$NO 

VALID$COMMAND 

COMMAND$LENGTH 

DRIVE$NO$PRESENT 

OVERLAP$OPERATION 

NO$RESULT 

IMMED$RESULT 

POSSIBLE$ERROR 

APPLICATIONS 

Table 7: Driver Data Base 

DESCRIPTION 

A public array containing the current "ready" 
status of each drive. 

A public array containing a flag for each 
drive. The appropriate flag is set when­
ever the ready status of a drive changes. 

An internal array of pointers to the 
operation control block currently in 
progress for each drive. 

An internal array used by the driver pro­
cedures to determine if a disk operation 
is in progress on a given drive. 

An internal array used by the driver pro­
cedures to determine when the execution 
phase of a disk operation is complete. 

A data byte that records the current drive 
number for non-overlapped disk operations. 

A constant flag array that indicates 
whether a specified FDC command code is 
valid. 

A constant byte array specifying the number 
of command/parameter bytes to be trans­
ferred to the FDC during the command phase. 

A constant flag array that indicates whether 
a drive number is encoded into an FOC command. 

A constant flag array that indicates whether 
an FDC command can be overlapped'with other 
commands. 

A constant flag array that is used to deter­
mine when an FDC operation does not have a 
result phase. 

A constant flag array that indicates that an 
FDC operation has a result phase beginning 
immediately after the'command phase is 
complete. 

A constant flag array that indicates if ,n 
FDC operation should be checked for an I 
error status indication during the result 
phase. 

5-531 207885-001 

", 
, 

" 
I'; 

'I 



Address 
Offset 

o 

1 

3 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

APPLICATIONS 

Disk Operation 
Control Block (DOCB) 

DMA$OP 

DMA$ADDR 

DMA$ADDR$EXT 

DMA$COUNT 

DISK$COMMAND(O) 

DISK$COMMAND (1) 

DISK$COMMAND(2) 

DISK$COMMAND(3) 

DISK$COMMAND(4) 

DISK$COMMAND(5) 

DISK$COMMAND(6) 

DISK$COMMAND (7) 

DISK$COMMAND(8) 

DISK$RESULT(O) 

DISK$RESULT(l) 

DISK$RESULT(2) 

DISK$RESULT(3) 

DISK$RESULT(4) 

DISK$RESULT(5) 

DISK$RESULT(6) 

MISC 

Figure 2. Disk Operation Control Block (DOCB) Format 

5-532 

I 

I 

AFN-01949A 

207885-001 



Code 

o 

1 

2 

3 

4 

5 

APPLICATIONS 

Table 8: EXECUTE$DOCB Return Status Codes 

Description 

No errors. The specified operation was completed without error. 

FOC busy. The requested operation cannot be started. This error 
occurs if an attempt is made to start an operation before the 
previous operation is completed. 

FDC error. An error was detected by the FOC during the execution 
phase of a disk operation. Additional error information is con­
tained in the result data portion of the disk operation control 
block (DOCB.OISK$RESULT) as described in the 8272 data sheet. 
This error occurs whenever the 8272 reports an execution phase 
error (e.g., missing address mark). 

8272 command interface error. An 8272 interfacing error was de­
tected during the command phase. This error occurs when the command 
phase of a disk operation cannot be successfully completed (e.g., 
incorrect setting of the DIO flag in the Main Status Register). 

8272 result interface error. An 8272 interfacing error was detected 
during the result phase. This error occurs when the result phase 
of a disk operation cannot be successfully completed (e.g., incorrect 
setting of the OIO flag in the Main Status Register). 

Invalid FOC Command. 

5-533 207885-001 

I 
i, 

I: 



APPL,ICATIONS 

FDCINT 

This procedure performs all interrupt processing for the 8272 interface drivers. 
Basically, two types of interrupts are generated by the 8272: (a) an interrupt 
that signals the end of a command execution phase and the beginning of the re­
sult phase and (b) an interrupt that signals the completion of an overlapped 
operation or the occurrence of an unexpected event (e.g., change in the drive 
"ready" status). 

An interrupt of type (a) is indicated when the FDC BUSY flag is set (in the 
Main Status Register). When a type (a) interrupt is sensed, the result bytes 
are read from the 8272 and placed in the result portion of the disk operation 
control block, the appropriate OPERATION$COMPLETE flag is set, and the OPERA­
TION$IN$PROGRESS flag is reset. 

When an interrupt of type (b) 'is indicated (FOC not busy), a sense interrupt 
status command is issued (to the Foe). The upper two bits of the result status 
register (Status Register Zero - STD) are used to determine the cause of the 
interrupt. The following four cases are possible: 

1) Operation Complete. An overlapped operation is complete. The 
drive number is found in the lower two bits of STD. The STD data 
is transferred to the active operation control block, the OPERA­
TION$COMPLETE flag is set, and the OPERATION$IN$PROGRESS flag is 
reset. 

2) Abnormal Termination. A disk operation has abnormally terminated. 
The drive number is found in the lower two bits of STD. The STD 
data is transferred to the active control block, the OPERATION$COM­
PLETE flag is set, and the OPERATION$IN$PROGRESS flag is reset. 

3) Invalid Command. The execution of an invalid command (i.e., a 
sense interrupt command with no interrupt pending) has been attempt­
ed. This interrupt signals the successful completion of all interrupt 
processing. 

4) Drive Status Change. A change has occurred in the "ready" status 
of a disk drive. The drive number is found in the lower two bits 
of STD. The DRIVE$READY flag for this disk drive is set to the 
new drive "ready" status and the DRIVE$STATUS$CHANGE flag for the 
drive is also set. In addition, if a command is currently in 
progress, the STD data is transferred to the active control block, 
the OPERATION$COMPLETE flag is set, and the OPERATION$IN$PROGRESS 
flag is reset. 

After processing a type (b) interrupt, additional sense interrupt status commands 
must be issued and processed until an "invalid command" result is returned from 
the FOC. This action guarantees that all "hidden" interrupts are serviced. 

In addition to the major driver procedures described above, a number of support 
procedures are required. These support routines are briefly described in the 
following paragraphs. 

5-534 207885-001 



APPLICATIONS 

OOTPOT$CONTROLS$TO$DMA 

This procedure outputs the OMA mode, the OMA address, and the OMA word count 
to the 8237 OMA controller. In addition, the upper four bits of the 20-bit 
OMA address are output to the address extension latch. Finally, the disk OMA 
channel is started. 

OOTPOT$COMMAND$TO$PDC 

This software module outputs a complete disk command to the 8272 FDC. The 
number of required command/parameter bytes is found in the COMMANO$LENGTH table. 
The appropriate bytes are output one at a time (by calls to OUTPUT$BYTE$TO$FDC) 
from the comm~nd portion of the disk operation control block. 

INPOT$RESOLT$PROM$PDC 

This procedure is used to read result phase status information from the disk 
controller. At most, seven bytes are read. In order to read each byte, a call 
is made to INPUT$BYTE$FROM$FDC. When the last byte has been read, a check is 
made to insure that the FDC is no longer busy. 

OOTPOT$BYTE$TO$PDC 

This software is used to output a single command/parameter byte to the FOC. 
This procedure waits until the FDC is ready for a command byte and then out­
puts the byte to the FDC data port. 

INPUT$BYTE$PROM$PDC 

This procedure inputs a single result byte from the FOC. The software waits 
until the FOC is ready to transfer a result byte and then reads the byte from 
the FOC data port. 

PDC$READY$POR$COMMAND 

This procedure assures that the FOC is ready to accept a command/parameter byte 
by performing the following three steps. First, a small time interval (more 
than 20 microseconds) is inserted to assure that the RQM flag has time to become 
valid (after the last byte transfer). Second, the master request flag (RQM) is 
polled until it is activated by the FOC. Finally, the 010 flag is checked to 
ensure that it is properly set for FDC input (from the processor). 

PDC$READY$POR$RESOLT 

The operation of this procedure is similar to the FOC$READY$FOR$COMMANO with 
the following exception. If the FOC BUSY flag (in the Main Status Register) 
is not set, the result phase is complete and no more data is available from 
the FOC. Otherwise, the procedure waits for the RQM flag and checks the 010 
flag for FDC output (to the processor). 

5-535 207885-001 



APPLICATIONS 

OPBRA~IO.$CLEAR$UP 

This procedure is called after the execution of a disk operation that has no 
result phase. OPERATION$CLEAN$UP resets the OPERATION$IN$PROGRESS flag and the 
GLOBAL$DRIVE$NO variable if appropriate. This procedure is also called to clean 
up after some disk operation errors. 

Modifications for polling Operation 

To operate in the polling mode, the following modifications should be made to 
the previous routines: 

1. The OUTPUT$CONTROLS$TO$DMA routine should be deleted. 

2. In EXECUTE$DOCB, immediately prior to WAIT$FOR$OP$COMPLETE, a 
polling loop should be inserted into the code. The loop should 
test the RQM flag (in the Main status Register). ·When RQM is 
set, a data byte should be written to, or read from, the 8272. 
The buffer address. may be computed from the base address con­
tained in DOCB.DMA$ADDR and DOCB.DMA$ADDR$EXT. After the correct 
number of bytes have been transferred, an operation complete 
interrupt will be issued by the FDC. During data transfer in 
the non-DMA mode, the NON-DMA MODE flag (bit 5 of the Main Status 
Register) will be set. This flag will remain set for the complete 
execution phase. When the transfer is''finished, the NON-DMA MODE 
flag is reset and the result phase interrupt is issued by the Foe. 

5-536 207885-001 



APPLICATIONS 

5. 8272 Logical Interface Software 

Appendix B of this Application Note contains a PL/M listing of an exerciser 
program for the 8272 drivers. This program illustrates the design of logical 
interface level procedures to specify disk parameters, recalibrate a drive, 
seek to a cylinder, format a disk, read data, and write data. 

The exerciser program is written to operate a standard single-sided 8" floppy 
disk drive in either the single- or double-density recording mode. Only the 

'eight parameters listed in Table 9 must be specified. All other parameters 
are derived from these 8 basic variables. 

Each of these logical interface procedures is described in the following para­
graphs (refer to the listing in Appendix B). 

SPECIH 

This procedure sets the FDC signal timing so that the FDC will interface 
correctly to the attached disk drive. The SPECIFY procedure requires four 
parameters, the step rate (SRT), head load time (HLT), head unload time (HUT), 
and the non-DMA mode flag (ND). This procedure builds a disk operation control 
block (SPECIFY$DOCB) and passes the control block to the FDC driver module 
(EXECUTE$DOCB) for execution. (Note carefully the computation required to 
transform the step rate (SRT) into the correct 8272 parameter byte.) 

RECALIBRA'l'E 

This procedure causes the floppy disk read/write head to retract to track O. 
The RECALIBRATE procedure requires only one parameter - the drive number on 
which the recalibrate operation is to be performed. This procedure builds a 
disk operation control block (RECALIBRATE$DOCB) and passes the control block 
to the FDC driver for execution. 

SB. 

This procedure causes the disk read/write head (on the selected drive) to move 
to the desired cylinder position. The SEEK procedure is called with three 
parameters: drive number (DRV1, head/side number (HO), and cylinder number 
(CYL). This software module builds a disk operation control block (SEEK$DOCB) 
that is executed by the FDC driver. 

The FORMAT procedure is designed to initialize a complete floppy disk so that 
sectors can-subsequently be read and written by system and application programs. 
Three parameters must be supplied to this procedure: the drive number (DRV), 
the recording density (DENS), and the interleave factor (INTLVE). The FORMAT 
procedure generates a data block (FMTBLK) and a disk operation control block 
(FORMAT$DOCB) for each track on the floppy disk (normally 77). 

5-537 207885-001 



APPLICATIONS 

Table 9: Basic Disk parameters' 

Name Description 

DENSITY 

FILLER$BYTE 

TRACKS$PER$DISK 

BYTES$PER$SECTOR 

INTERLEAVE 

STEP$RATE 

HEAD$LOAD$TIME 

HEAD$UNLOAD$TIME 

The recording mode (F~ or MFM). 

The data byte to be written in all sectors during 
formatting. 

The number of cylinders on the floppy disk. 

The number of bytes in each disk sector. The 
exerciser accepts 128, 256, and 512 in FM mode, 
and 256, 512, and ,1024 in MFM mode. 

The sector interleave factor for each disk track. 

The disk drive step rate (1-16 milliseconds). 

The disk drive head load time (2-254 milliseconds). 

The head unload time (16-240 milliseconds). 

5-538 207885-001 



APPLICATIONS 

The format data block specifies the four sector ID field parameters (cylinder, 
head, sector, and bytes per sector) for each sector on the track. The sector 
numbers need not be sequential; the interleave factor (INTLVE parameter) is used 
to compute the logical to physical sector mapping. 

After both the format data block and the operation control block are generated 
for a given cylinder, control is passed to the 8272 drivers for execution. 
After the format operation is complete, a SEEK to the next cylinder is per­
formed, a new format table is generated, and another track formatting operation 
is executed by the drivers. This track formatting continues until all tracks 
on the diskette are formatted. 

In some systems, bad tracks must also be specified when a disk is formatted. For 
these systems, the existing FORMAT procedure should be modified to format 
bad tracks with a cylinder number of OFFH. 

WRITE 

The WRITE procedure transfers a complete sector of data to the disk drive. Five 
parameters must be supplied to this software module: the drive number (DRV), 
the cylinder number (CYL), the head/side number (HD), the sector number (SEC) 
and the recording density (DENS). This procedure generates a disk operation 
control block (WRITE$DOCB) from these parameters and passes the control block to 
the 8272 driver for execution. When control returns to the calling program, the 
data has been transferred to disk. 

READ 

This procedure is identical to the WRITE procedure except the direction of data 
transfer is reversed. The READ procedure transfers a sector of data from the 
floppy disk to system memory. 

Coping With Errors 

In actual practice all logical disk interface routines would contain error 
processing mechanisms. (Errors have been ignored for the sake of simplicity 
in the exerciser programs listed in Appendix B.) A typical error recovery 
technique consists of a two-stage procedure. First, when an error is detected, 
a recalibrate operation is performed followed by a retry of the failed operation. 
This procedure forces the drive to seek directly to the requested cylinder (low­
ering the probability of a seek error) and attempts to perform the requested 
operation an additional time. Soft (temporary) errors caused by mechanical or 
electrical interference do not normally recur during the retry operation; hard 
errors (caused by media or drive failures), on the other hand, will continue 
to occur during retry operations. If, after a number of retries (approximately 
10), the operation continues to fail, an error message is displayed to the sys­
tem operator. This error message lists the drive number, type of operation, 
and failure status (from the FDC). It is the operator's responsibility to take 
additional action as required. 

5-539 207885-001 



APPLICATIONS 

6. File Systems 

The file system provides the disk I/O interface level most familiar to users 
of interactive microcomputer and minicomputer systems. In a file system, all 
data is stored in named disk areas called files. The user and applications 
programs need not be concerned with the exact location of a file on the disk - the 
disk file system automatically determines the file location from the file name. 
Files may be created, read, written, modified, and finally deleted (destroyed) 
when they are no longer needed. Each floppy disk typically contains a directory 
that lists all the files existing on the disk. A directory entry for a file 
contains information such as file name, file size, and the disk address (track 
and sector) of the beginning of the file. 

File Allocation 

File storage is actually allocated on the disk (by the file system) in fixed 
size areas called blocks. Normally a block is the same size as a disk sector. 
Files are created by finding and reserving enough unused blocks to contain the 
data in the file. Two file allocation methods are currently in widespread use. 
The first method allocates blocks (for a file) from a sequential pool of unused 
blocks. Thus, a file is always contained in a set of sequential blocks on the 
disk. Unfortunately, as files are created, updated, and deleted, these free­
block pools become fragmented (separated from one another). When this fragmen­
tation occurs, it often becomes impossible for the file system to create a file 
even though there is a sufficient numb~r of free blocks on the disk. At this 
point, special programs must be run to "squeeze" or compact the disk, in order 
to re-create a single contiguous free-block pool. 

The second file allocation method uses a more flexible technique in which indi­
vidual data blocks may be located anywhere on the disk (with no restrictions). 
with this technique, a file directory entry contains the disk address of a file 
pointer block rather than the disk address of the first data block of the file. 
This file pointer block contains pointers (disk addresses) for each data block 
in the file. For example, the first pointer in the file pointer block contains 
the track and sector address of the first data block in the file, the second 
pointer contains the disk address of the second data block, etc. 

In practice, pointer blocks are usually the same size as data blocks. Therefore, 
some files will require multiple pointer blocks. TO accommodate this require­
ment without loss of flexibility, pointer blocks are linked together, that is, 
each pointer block contains the disk address of the 'following pointer block. 
The last pointer block of the file is signalled by an illegal disk address 
(e.g., track 0, sector 0 or track OFFH, sector OFFH). 

5-540 207885-001 



APPLICATIONS 

The Intel File System 

The Intel file system (described in detail in the RMX-80 Users Guide) uses 
the second disk file allocation method (previously discussed). In order to 
lower the system overhead involved in finding free data blocks, the Intel file 
system incorporates a free space management data structure known as a bit map. 
Each disk sector is represented by a single bit in the bit map. If a bit in the 
bit map is set to 1, the corresponding disk sector has been allocated. A zero 
in the bit map indicates that the corresponding sector is free. with this 
technique, the process of allocating or freeing a sector is accomplished by 
simply altering the bit map. 

File names consist of a basic file name (up to six characters) and a file ex­
tension (up to three characters). The basic file name and the file extension 
are separated by a period (.). Examples of valid file names are: DRIV72.0BJ, 
XX.TMP, and FILE.eS. In addition, four file attributes are supported (see 
Figure 3 for attribute definitions). 

The bit map and the "file directory are placed on prespecified disk tracks 
(reserved for system use) beginning at track zero. 

~isk File System Functions 

Table 2 illustrates the typical functions implemented by a disk file system. 
As an example, the disk directory function (DIR) lists disk file information on 
the console display terminal. Figure 3 details the contents of a display entry 
in the Intel file system. The PL/M procedure outlined in Figure 4 illustrates 
a disk directory algorithm that displays the file name, the file attributes, 
and the file size (in blocks) for each file in the directory. 

5-541 207885-001 



APPLICATIONS 

7 0 

y 
Directory Entry 

O· INVISIBLE 
1· SYSTEM 
2· WRITE-PROTECT 

3" I 
~: I (RESERVED) 

6 " 
7 - FORMAT 

Presence is a flag that can contain one of three values: 

OOOH - The file associated with this entry is present on the disk. 

AFN-ol949A 

07FH - No file is associated with this entrY1 the content of the rest 
of the entry is undefined. The first entry with its flag set 
to 07FH marks the current logical end of the directory and 
directory searches stop at this entry. 

OFFH - The file named in this entry once existed on the disk but is 
currently deleted. The next file added to the directory will 
be placed in the first entry marked OFFH. This flag cannot, 
therefore, be used to (reliably) find a file that has been 
deleted. A value of OFFH should be thought of as simply marking 
an open directory entry. 

,i1e Name is a string of up to 6 non-blank ASCII characters specifying the 
name of the file associated with the directory entry. If the file name is 
shorter than six characters, the remaining bytes contain binary zeros. For ex­
ample, the name ALPHA would be stored as: 414C50484l00H. 

Extension is a string of up to 3 non-blank ASCII characters that specifies an 
extension to the file"name. Extensions often identify the type of data in the 
file such as OBJ (object module), or PLM (PL/M source module). As with tpe 
file name, unused positions in the extension field are filled with binary zeros. 

Figure 3. Intel Directory Entry Format 

5-542 207885-001 



APPLICATIONS 

Attributes are bits that identify certain characteristics of the file. A 1 
bit indicates that the file has the attribute, while a 0 bit means that the file 
does not have the attribute. The bit positions and their corresponding attri­
butes are listed below (bit 0 is the low-order or rightmost bit, bit 7 is the 
leftmost bit): 

0: Invisible. Files with this attribute are not listed by the 
ISIS-II DIR command unless the I switch is used. All system 
files are invisible. 

1: System. Files with this attribute are copied to the disk in 
drive 1 when the S switch is specified with the ISIS-II FORMAT 
command. 

2: Write-protect. Files with this attribute cannot be opened for 
output or update, nor can they be deleted or renamed. 

3-6: These positi~ns are reserved for future use. 

7: Format. Files with this attribute are treated as though they 
are write-protected. In addition, these files are created on 
a new diskette when the ISIS-II FORMAT command is issued. The 
system files all have the FORMAT attribute and it should not 
be given to any other files. 

BOP Count contains the number of the last byte in the last data block of 
the file. If the value of this field is 080H, for example, the last byte in 
the file is byte number 128 in the last data block (the last block is full). 

Number of Data Blocks is an address variable that indicates the number of 
data blocks currently used by the file. ISIS-II and the RMX/80 Disk File 

'system both maintain a counter called LENGTH that is the current number of 
bytes in the file. This is calculated as: 

«NUMBER OF DATA BLOCKS - 1) x 128 + EOF COUNT. 

Beader Block pointer is the address of the file's header block. The high 
byte of the field is the sector number and the low byte is the track number. 
The system "finds" a disk file by searching the directory for the name and then 
using the header block pointer to seek to the beginning of the file. 

Figure 3. Intel Directory Entry Format (Continued) 

5-543 207885-001 



dir: procedure (drv,dens) 
declare dry 

dens 
sector 
i 
dir$ptr 
dir$entry 

size (5) 

invisible$flag 
system$flag , 
protected$flag 
format$flag 

APPLICATIONS 

public; 
byte, 
byte, 
byte, 
byte, 
byte, 
based rdbptr structure (presence byte, 
file$name(6) byte,extension(3) byte, 
attribute byte,eof$count bytp., 
data$blocks address,header$ptr address), 
byte, 

literally 
li terally 
literally 

• literally 

.. 1 .... , 

... 2 .... , 

.... 4 .... , 
'SOH'; 

/* The disk directory starts at cylinder 1, sector 2 */ 
call seek(drv,l,O); 
do sector=2 to 26; 

call read(drv,l,O,sector,dens); 
do dir$ptr=O to 112 by 4; 

if dir$entry.presence=7FH then return; 
if dir$entry.presence=O 

then do; 
do i=O to 5; call co(dir$entry.file$name(i)); end; 
call co(period); 
do i=O to 2; call co(dir$entry.extension(i)); end; 
do i=O to 4; call co(space); end; 
call convert$to$decimal(@sizp.,dir$entry.data$blocks); 
do i=O to 4; call co (size (i)); end; 
If (dir$entry.attribute and invisible$flag) <> 0 then call co('I'); 
If (dir$entry.attribute and systp.m$flaq) <> 0 then call cO('S'); 
If (dir$entry.attribute and protected$flaq) <> 0 then call cO('W'); 
If (dir$entry.attribure and format$flag) <> 0 then call co('F'); 

end; 
end; 

end; 

end dir; 

Figure 4. Sample PUM Directory Procedure 

5-544 

AFN-01949A 

207885-001 



APPLICATIONS 

7. Key 8272 Software Interfacing Considerations 

This section contains a quick review of Key 8272 Software design features and 
issues. (Most items have been mentioned in other sections of this application 
note.) Before designing 8272 software drivers, it is advisable that the infor­
mation in this section be thoroughly understood. 

1. Non-DMA Data Transfers 

In systems that operate without a DMA controller (i~ the polled or 
interrupt driven mode), the system software is responsible for counting 
data transfers to/from the 8272 and generating a TC signal to the FDC 
when the transfer is complete. 

2. processor Command/Result phase Interface 

In the command phase, the driver software must write the exact number of parameters 
in the exact order shown in Table 5. During the result phase, the driver 
must read the complete result status. For example, the Format Track command 
requires six command bytes and presents seven result bytes. The 8272 will not 
accept a new command until all result bytes are read. Note that the number of 
command and result bytes varies from command-to-command. Command and result 
phases cannot be shortened. 

During both the command and result phases, the Main Status Register must be read 
by the driver before each byte of information is. read from, or written to, 
the FDC Data Register. Before each command byte is written, DIO (bit 6) 
must be low (indicating a data transfer from the processor) and RQM (bit 7) 
must be high (indicating that the FDC is ready for data). During the result 
phase, DIO must be high (indicating a data transfer to the processor) and RQM 
must also be high (indicating that data is ready for the processor) • 

Rote: After the 8272 receives a command byte, the RQM flag may remain set for 
approximately 16 microseconds (with an 8 MHz clock). The driver should not 
attempt to read the Main Status Register before this time interval has 
elapsed; otherwise, the driver may erroneously assume that the FDC is 
ready to accept the next byte. 

3. Sector Sizes 

The 8272 does not support 128 byte sectors in the MFM (double-density) mode. 

4. Drive Status Changes 

The 8272 constantly polls all drives for changes in the drive ready status. 
This polling begins immediately following RESET. An interrupt is generated 
every time the FDC senses a change in the drive ready status. After reset, 
the FDC assumes that all drives are "not ready". If a drive is ready 
immediately after reset, the 8272 generates a drive status change interrupt. 

5-545 207885-001 



APPLICATIONS 

5. Seek Commands 

The 8272 FOe dQes not perform implied seeks. Before issuing a data read 
or write command, the read/write head must be positioned over the correct 
cylinder by means of an explicit seek command. If the head is not posit­
ioned correctly, a cylinder address error is generated. 

6. Interrupt processing 
, 

When the processor receives an interrupt from the FDC, the FDC may be re­
porting one of two distinct events: 

a) The beginning of the result phase of a previously requested 
read, write, or scan command. 

b) An asynchronous event such as a seek/recalibrate completion, 
an attention, an abnormal command termination, or an invalid 
command. 

These two cases are distinguished by the FDC BUSY flag (bit 4) in the Main 
Status Register. If the FDC BUSY flag is high, the interrupt is of type (a). 
If the FDC BUSY flag is low, the interrupt was caused by an asynchronous 
event (b). 

A single interrupt from the FDC may signal more than one of the above events. 
After receiving an interrupt, the processor must continue to issue Sense 
Interrupt Status commands (and service the resulting conditions) until an 
invalid command code is received. In this manner, all "hidden" interr~pts are 
ferreted out and serviced. 

7. Skip Flag (SK) 

The skip flag is used during the execution of Read Data, Read Deleted Data, 
Read Track, and various Scan commands. This flag permits the FOe to skip 
unwanted sectors on a disk track. 

When performing a Read Data, Read Track, or Scan command, a high SK flag indi­
cates that the FDCis to skip over (not transfer) any sector containing a 
deleted data address mark. A low SK flag indicates that the FDC is to termi­
nate the command (after reading all the data in the sector) when a deleted 
data address mark is encountered. 

When performing a Read Deleted Data command, a high SK flag indicates that 
sectors containing normal data address marks are to be skipped. Note that 
this is just the opposite situation from that described in the last paragraph. 
When a data address mark is encountered during a Read Deleted Data command (and 
the SK flag is low), the FDC terminates the command after reading all the data 
in the sector. 

5-546 207885-001' 



APPLICATIONS 

8. Bad Track Maintenance 

The 8272 does not internally maintain bad track information. The maintenance 
of this information must be performed by system software. As an example of 
typical bad track operation, assume that a media test determines that track 
31 and track 66 of a given floppy disk are bad. When the disk is formatted 
for use, the system software formats physical track 0 as log {cal cylinder 
o (C=O in the command phase parameters), physical track 1 as logical track 1 
(C=l), and so on, until physical track 30 is formatted as logical cylinder 
30 (C=30). Physcia1 track 31 is bad and should be formatted as logical 
cylinder FF (indicating a bad track). Next, physical track 32 is formatted 
as logical cylinder 31, and so on, until physical track 65 is formatted as 
logi~a1 cylinder 64. Next, bad physical track 66 is formatted as logical 
cylinder FF (another bad track marker), and physical track 67 is formatted 
as logical cylinder 65. This formatting continues until the last physical 
track (77) is formatted as logical cylinder 75. Normally, after this formatting 
is complete, the bad track information is stored in a prespecified area on the 
floppy disk (typically in a sector on track 0) so that the system will be able 
to recreate the bad track information when the disk is removed from the drive 
and reinserted at some later time. 

To illustrate how the system software performs a transfer operation on a disk 
with bad tracks, assume that the disk drive head is positioned at track 0 and 
the disk described above is loaded into the drive. If a command to read track 
36 is issued by an application program, the system software translates this 
read command into a seek to physical track 37 (since there is one bad track 
between 0 and 36, namely 31) followed by a read of logical cylinder 36. 
Thus, the cylinder parameter C is set to 37 for the Seek command and 36 for 
the Read Sector command. 

5-547 207885-001 



APPLICATIONS 

REFERENCES 

1. Intel, "8272 Single/Double Density Floppy Disk Controller Data Sheet," 
Intel Corporation, 1980. 

2. Intel, "An Intelligent Data Base System Using the 8272," Intel Application 
Note, AP-116, 1981. 

3. Intel, iSBC 208 Hardware Reference Manual, Manual Order No. 143078, 
Intel Corporation, 1980. 

4. Intel; RMX/80 User's Guide, Manual Order No. 9800522, Intel 
Corporation, 1978 

5. Brinch Hansen, P., Operating System principles, prentice-Hall, Inc., 
New Jersey, 1973. 

6. Flores, I., Computer Software: Programming Systems for Digital Computers, 
prentice-Hall, Inc., New Jersey, 1965. 

7. Knuth, D. E., Fundamental Algorithms, Addison-Wesley Publishing Company, 
Massachusetts, 1975. 

8. Shaw, A. C., The Logical Design of Operating Systems, prentice-Hall, Inc., 
New Jersey, 1974. 

9. watson, R. W., Time $haring System Design Concepts, McGraw-Hill, Inc., 
New York, 1970. 

10. Zarrella, J., Operating Systems: Concepts and principles, Microcomputer 
Applications, California, 1979. 

5-548 207885-001 



APPLICATIONS 

APPENDIX A 
8272 FDC DEVICE DRIVER SOFTWARE 

5-549 207885-001 



APPLICATIONS 

PL/M-86 COMPILER 8272 FLOPPY DISK CONTROLLER DEVICE DRIVERS 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE DRIVERS 
OBJECT MODULE PLACED IN .Fl.driv72.0BJ 
COMPILER INVOKED BY. plm86 .Fl.driv72.p86 DEBUG 

10 

1 

$title('8272 floppy disk controller device drivers') 
$nointvector 
$optimize (2) 
$larqe 

drivers: d01 

declare 
/* floppy disk port 
fdc$status$port 
fdc$data$port 

declare 

definitions */ 
liter.ally'30H', 
literally '3lH'; 

/* floppy disk commands */ 
sense$int$status literally '08H'; 

declare 
1* interrupt definitions */ 
fdc$int$level literally '33'; 

declare 
/* return status and 
error 
ok 
complete 
false \ 
true 

error codes */ 
literally '0', 
literally ~l~, 
literally "'3"', 
literally '0', 
literally '1', 

/* 8272 status port */ 
/* 8272 data port */ 

/* fdc interrupt level */ 

error$in 
propagate$error 

literally ,"'not"', 
literally "'return error"', 

stat$ok literally 
stat$busy litNally 
stat$error literally 
stat$command$error literally 
stat$result$error literally 
stat$ invalid literally 

declare 
/* masks */ 
busy$mask literally 
DIO$mask literally 
RQM$mask literally 
seek$mask literally 
result$error$mask literally 
result$drive$mask -literally 
result$ready$mask literally 

declare 
1* drive numbers */ 
max$no$drives literally 
fdc$general literally 

t'lecl~re 
/* miscellaneous control *1 
any$drive$seeking literally 
command$code literally 
DIO$s~t$for$input literally 
DIO$set$for$output literally 
extract$drive$no literally 
fdc$busy li terally 
no$fdc$error 1i terally 

wait$for$op$complete 
wait$for$RQM 

1 iter ally 
literally 

.... 0 .... , 

"'1"" 
"'2'" , 
"'3" , 
'4', 
'5'; 

'lOH', 
'40H', 
'80H', 
'OFH', 
'OCOH' , 
'03H', 
'08H' ; 

.... 3 ... , 
'4' ; 

1* fde operation completed without errors */ 
/* fde is husy, operation cannot be started */ 
1* fdo operation error */ 
1* fde not ready for command phase */ 
/* fdc not ready for rpsult phase */ 
/* invalid fde command */ 

'((input(fdc$status$port) and s~ek$mask) <> 0)', 
'(docb.disk$command(O) and lFH)', 
'((input(fdc$status$port) and DIO$mask)=O)', 
'((input(fdc$status$port) and DIO$mask)<>O)', 
'(docb.disk$command(l) and 03H)', 
'((input(fdc$status$port) and busy$mask) <> 0)', 
'possible$error(command$code) and ((docb.disk$result(O) 

and result$error$mask) = 0)', 
~do while not operation$complete(drive$no); end~, 
'do while (input (fdc$status$port) and RQM$mask) = 0; end;'; 

1 declare 

1 

1* structures */ I 

dpcb$type literally /* disk operation control block */ 

$eject 
declare 

'(dma$op byte,dma$addr word, dma$addr$ext byte,dma$count word, 
disk$command(9) byte,disk$result(7) byte,mi,,!,c, byte)'; 

drive$status$change(4) byte public, 
drive$ready(4) byte public; 

1* when set - indicates that drve status ,changed */ 
/* current status of drives */ 

5-550 207885-001 



11 

12 

13 

14 

15 
16 
17 
18 
19 
20 

21 
22 
23 

24 

25 

26 

27 

30 

32 

33 

34 

35 

36 

APPLICATIONS 

declare 
operation$in$progress(5) byte, 
operation$complete(5) byte, 
operation$docbSptr{S) pointer, 
int~rrupt$docb structure docb$type, 
global$drive$no byte: 

/* internal flags for operation with multiple drives */ 
/* fdc execution phase completed */ 
1* pointers for operations in progress *1 
1* temporary docb for int'errupt processing */ 
/* drive number of non-overlapped operation 

in progress - if any */ 

declare 
/* internal vectors that contain command operational information */ 
no$result(32) byte 1* no result phase to command */ 

data(O,O,O,l,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0), 
immed$result(32} byte /* immediate result phase for command */ 

data{O,O,O,O,l,O,O,O,l,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O}, 
over1ap$operation(32) byte /* command permits overlapped operation of drvies */ 

data(O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0), 
drive$no$present(32) byte /* drive number present in command information */ 

data(O,O,l,O,l,l,l,l,O,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0), 
possible$error(32) byte /* determines if command can return with an error */ 

data(O,O,l,O,O,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0), 
command$1ength(32) byte /* contains number of command bytes for each command */ 

data(0,O,9,3,2,9,9,2,1,9,2,O,9,6,O,3,O,9,O,O,O,O,O,0,0,9,0,0,0,9,0,0), 
va1id$command(32) byte /* flags invalid command codes */ 

data(O,O,1,1,1,1,1,1,1,1,1,O,1,1,0,1,O,1,O,O,0,O,0,0,0,1,0,0,0,1,0,0): 

$eject 

/**** initialization for the 8272 fdc driver software. This procedure must 
be called prior to execution of any driver software. ****/ 

initlalize$drivers: procedure public: 
/* initialize 8272 drivers */ 

declare drv$no byte: 

do drv$no=O to max$no$drives: 
drive$ready(drv$no)=false: 
drive$status$change(drv$no)=false; 
operation$in$progress (drv$no) =false: 
operation$complete(drv$no)=false: 

end: ' 

operation$in$progress(fdc$general)=false; 
operation$complete(fdc$general)=false; 
global$drive$no=O: 

end initialize$driversi 

1**** wait until the 8272 fdc is ready to receive command/parameter bytes 
in 'the command phase. The 8272 is ready to receive command bytes 
when the RQM flag is high and the DIO flag is low. • ••• ; 

fdc$reaoy$for$cornmand: procedure byte; 

/* wait for valid flag settings in status reqister */ 
call time (1) : 

/* wait for "master request" flag */ 
wait$for$RQM: 

/* check data direction flag */ 
if DIO$set$for$input 

then return ok; 
else return error; 

end fdq$readv$for$cornmand; 

/**** wait until the 8272 fdc is ready to return data bytes in the result 
phase. The 8272 is ready to return a result byte when the ROM and oIO 
flags are both high. The busy flag in the rnqin status register will 
remain set until the last data byte of the result phase has been read 
by the processor. ~***/ 

fdc$ready$for$result: procedure byte: 

/* wait for valid settings in status register */ 
call time (1) : 

;* result phase has ended when the 8272 busy flag is reset .; 
if not fdc$busy 

then return complete; 

5-551 207885-001 



38 

41 

43 " 

44 

45 
46 

47 

49 

50 
51 

52 
53 
54 

55 
56 

58 

~O 

61 
62 

63 
64 
65 

66 

67 

69 
70 

APPLICATIONS 

/* wait for "master request" flag */ 
wait$for$RQM; 

1* check data direction flag */ 
if DIO$set$for$output 

then return ok; 
else return error; 

end fdc$ready$for$resu1t; 

1**** output a single command/parameter byte to the 8272 fdc. The "data$byte" 
parameter is the byte to be output to the fdc. ****/ 

output$byte$to$fdc: procedure (data$byte) byte; 
declare data$byte byte; 

/* check to see if fde is ready for command */ 
if not fdc$readv$for$command 

then propagate$error; 

output (fdc$data$port) =data$byte, 

return ok; 
end output$byte$to$fdc; 

1**** input a single result byte from the 8272 fde. The "data$byte$ptr" 
parameter is a pointer to the memory location that is to contain 
the input byte. ****/ 

input$byte$from$fdc: procedure (data$byte$ptr) byte; 
declare data$byte$ptr pOinter; 
declare 

data$byte based data$byte$ptr byte, 
status byte; 

/* check to see if fde is ready */ 
status=fdc$readySfor$result: 
if error$in status 

then propagate$error, 

/* check for result phase complete 'Ill 
if status=complete 

then return complete1 

data$byte=input(fdc$data$port) ; 
return ok; 

end input$byte$from$fdc; 

$eject 

1**** output the dma mode, the dma address, and the dma word count to the 
8237 dma controller. Also output the high order four bits of the 
address to the address extension latch. Finally, start the disk 
dma channel. The "docb$ptr" parameter is a pOinter to the appropriate 
disk operation control block. ****1 

output$contro1s$to$dma: procedure(docb$ptr); 
declare docb$ptr pointer; 
declare docb based docb$ptr structure docbtype; 

declare 
1* dma port definitions *1 
dma$upper$addr$port 1itera11y'10H', 
dma$diskSaddr$port literally 'DOH', 
dma$disk$word$count literally;OlH;, 
dma$command$port 1itera1ly'08H', 
dma$mode$port 1itera1ly'OBH', 
dma$mask$sr$port 1itera11y'OAH', 
dma$c1ear$ff$port 1itera11y'OCH', 
dma$master$c1ear$port literally 'ODH', 
dma$mask$port 1itera11y'OFH', 

dma$disk$chan$start 
dma$extended$write 
dma$single$transfer 

if docb.dma$op < 3 
then do; 

1itera11y'00H', 
1itera11y'sh1(1,5)', 
1itera11y'sh1(1,6)'; 

1* upper 4 bits of current address 'Ill 
1* current address port 'Ill 
1* word count port *1 
1* command port *1 
/* mode port */ 
/* mask set/reset port */ 
/* clear first/last flip-flop port */ 
I'll dma master clear port *1 
/* parallel mask set port*/ 

I'll dma mask to start disk channel *1 
1* extended write flag *1 
I'll single tranSfer flag *1 

/* set dma mode and clear first/last flip-flop */ 
output (dma$mode$port) =sh1 (docb.dma$op, 2) or 40H; 
output (dma$c1ear$ff$port)=0; 

5-552 



71 
72 
73 

74 
75 

76 
77 

78 

79 
80 

81 

82 

83 
84 

89 

90 
91 
92 

93 
94 
95 

% 

97 
98 
99 

104 

109 
110 

111 
112 

114 
115 

116 
117 

118 
119 

1 
2 

2 
3 
3 

APPLICATIONS 

1* set dma address */ 
output (dma$disk$addr$port) =low (docb.dma$addr) : 
output (dma$disk$addr$port) =high (docb.dma$addr) : 
output (dma$upper$addr$port)=docb.dma$addr$ext: 

1* output disk transfer word count to dma controller */ 
output(dma$disk$word$count)=low(docb.dma$count): 
output(dma$disk$word$count)=high(docb.dma$count): 

/* start dma channel 0 for fde */ 
output (dma$mask$sr$port) =dma$disk$chan$start: 

end; 

end Qutput$controls$to$dma; 

1**** output a high-level disk command to the 8272 fdc. The number of bytes 
required for each command is contained in the "command$length" table. 
The "docb$ptr" parameter is a pointer to the appropriate disk operation 
control block. ****/ 

Qutput$command$to$fdc: procedure (docb$ptr) byte: 
declare docb$ptr pointer; 

declare 
docb based docb$ptr structure docb$type, 
cmd$byte$no byte: 

disable; 

1* output all command bytes to the fde */ 
do cmd$byte$no=O to command$length(command$code)-l: 

if error$in output$byte$to$fdc(docb.disk$command(cmd$byte$no)) 
then do; enable; propagate$error; end; 

end; 

enable; 
return ok; 

end output$command$to$fdc; 

/**** input the result data from the 8272 fdc during the result phase (after 
command execution). The "docb$ptr" parameter is a pointer to the 
appropriate disk operation control block. ****/ 

input$resu1t$from$fdc: procedure (docb$ptr) byte: 
declare docb$ptr pointer; 
declare 

docb based docb$ptr structure docb$type, 
result$byte$no byte, 
temp byte, 
status byte; 

disable: 

do result$byte$no=O to 7: 
status=input$byte$from$fdc(@temp): 
if error$in status 

then dOi enable; propaqate$error; end; 
if status=complete 

then do; enable; return ok; end; 
docb.disk$result(result$byte$no)=temp: 

end; 

enable; 
if fdc$busv 

then return error; 
else return ok; 

end input$resuJt$from$fdc; 

/**** cleans up after the execution of a disk operation that has no result 
phase. The procedure is also used after some disk operation errors. 
"drv" is the drive number, and "cc" is the command code for the 
d~sk operation. ****/ 

operation$clean$up: procedure(drv,cc); 
declare (drv,cc) byte; 

disable; 
operation$in$progress(drv)=false; 

5-553 207885-001 



120 

122 

123 

124 

125 
126 

127 

132 

134 

2 

2 

2 

1 

2 
2 

2 

2 

13'5 2 

140 2 

145 2 
146 2 

152 ,2 

153 2 
154 2 

155 2 

157 2 

158 2 
159 '2 

161 3 
162 3 
163 3 
164 3 

165 2 

167 3 
168 3 
169 3 
170 3 

APPLICATIONS 

if not over1ap$operation(cc) 
then globa1$drive$no-0; 

enabler 

end operation$c1ean$up; 

$eject 

/ •••• execute the ,disk operation control block specified by the pointer 
parameter "docb$ptr". The "status$ptr" parameter is a pointer to 
a byte variable that is to contain the status of the requested 
operation when it has been completed. , Six status conditions are 
possible on return: 

o The specified operation was completed without error. 
1 The fdc is busy and 'the requested operation cannot be started. 
2 Fdc error (further information is contained in the result 

storage portion of the disk operation control block - as 
described in the 8272 data sheet). 

3 Transfer'error during output of the command bytes to the fdc. 
4 Transfer error during input of the result bytes from the fdc. 
S Invalid fdc command. ****1 

execute$docb: procedure (docb$ptr ,status$ptr) public; 
/* execute a disk operation control block */ 

declare docb$ptr pointer, status$ptr pointer; 
declare ' 

docb based docb$ptr,structure docb$type, 
status based status$ptr byte, 
drive$no byte, 

/. check command validity */ 
if not va1id$command(command$code) 

then do, status=stat$invalidr return: end, 

/* determine if command has a drive number field - if not, set the drive 
number for a general fdc command */' 

if drive$no$present(command$code) 
then drive$no=extract$drive$no: 
else drive$no=fdc$genera1; 

/* an overlapped operation can not be performed if the fdc is busy ./ 
if over1ap$operation(command$code) and fdc$busy 

then do: status=stat$busYI return, end: 

/* for a non-overlapped operation, check fdc busy or any drive seeking */ 
if not over1ap$operation(command$code) and (fdc$busy or any$drive$seeking) 

then do; status=stat$busy; return; end, 

/* check for drive operation in progress - if none, set flag and start operation */ 
disable; 
if operation$in$progress(drive$no) 

then do; enable: status-stat$busy: return; end: 
else operation$in$progress(drive$no)-true; 

/* at this point, an fdc operat,ion is about to begin, so: 
1. reset the operation complete flag 
2. set the docb pointer for the current operation 
3. if'this is not an overlapped operation, set the global drive 

number for the subsequent result phase interrupt. */ 
operation$comp1ete (drive$no) =0; 
operation$docb$ptr(drive$no)-docb$ptr; 

if not over1ap$operation(command$code) 
then globa1$drive$no=drive$no+1; 

enable, 

ca110utput$controls$to$dma(docb$ptr); 
if error$in output$command$to$fdc(docb$ptr) 

then do; 
calL operation$c1ean$up(drive$no,command$code); 
status=stat$command$error", 
return, 

end; 

/* return immediately if the command has no result phase or completion interrupt - specify */ 
if no$resu1t(command$code) 

then do; 
ca110peration$c1ean$up(drive$no,command$code); 
status=stat$okj 
return: 

end; 

5-554 \ 207885-001 



171 

173 

175 4 
176 4 
177 4 
178 4 
179 3 
180 2 
181 3 
183 3 

188 

189 

191 

192 

193 
194 
195 

196 

198 3 
199 3 
202 3 
203 3 
204 3 
205 3 

206 

APPLICATIONS 

if immed$resu1t(command$code) 
then do; 

if error$in input$resu1t$from$fdc(docb$ptr)-
then do; 

call operation$c1ean$up(drive$no,command$code) , 
status=stat$result$erro[; 
return; 

end; 
end; 
else do; 

wait$for$op$comp1ete, 
if docb.misc = error 

then do; status=stat$result$error; return; end; 
end; 

if no$fdc$error 
then status=stat$ok, 
else status=stat$error; 

end execute$docb; 

$eject 

1**** copy disk command results from the interrupt control block to the 
currently active disk operation control block if a disk operation is 
in progress. ****1 

copy$int$resu1t: procedure(drv), 
declare drv byte; 
declare 

i byte, 
docb$ptr pointer, 
docb based docb$ptr structure docb$type, 

if operation$in$progress(drv) 
then do, 

docb$ptr=operation$docb$ptr(drv), 
do i=l to 6, docb.disk$resu1t(i)=interrupt$docb.disk$resu1t(i) , end, 
docb.misc=ok; 
operation$in$progress{drv)=false; 
operation$complete(drv)=true; 

end; 

end copy$int$r,su1t, 

/**** interrupt processing for 8272 fdc drivers. Basically, two types of 
interrupts are generated by the 8272: (a)when the execution phase of 
an operation has been completed, an interrupt is generated to signal 
the beginning of the result phase (the fdc busy flag is set 
when this interrupt is received), and (b) when an overlapped operation 
is completed or an unexpected interrupt is received (the fdc busy flag 
is not set when this interrupt is received). 

When interrupt type (a) is received, the result bytes from the operation 
are read from the 8272 and the operation complete flag is set. 

When an interrupt of type (b) is received, the interrupt result code is 
examined to determine which of the following four actions are indicated: 

1. An overlapped option (reca1ibrate or seek) has been completed. The 
result data is read from the 8272 and placed in the currently active 
disk operation control block. 

2. An abnormal termination of an operation has occurred. The result 
data is read and placed in the currently active disk operation 
control block. 

3. The execution of an invalid command has been attempted. This 
signals the successful completion of all interrupt processing. 

4. The ready status of a drive has changed. The "drive$ready" and 
"drive$ready$status" change tables are updated. If an operation 
is currently in progress on the affected drive, the result data 
is placed in the currently active disk operation control block. 

After an interrupt is processed, additional sense interrupt status commands 
must be issued and processed until an invalid command result is returned 
from the fdc. This action guarantees that all "hidden" interrupts 
are serviced. ****/ 

5-555 

iii' 
,'II i: 



207 
208 

209 

210 

211 

213 

215 
216 

218 
219 
220 
221 
222 
223 

224 
225 
226 

227 
229 

231 

232 
233 
234 
235 

236 
237 
238 
239 

240 

241 
242 
243 
244 
245 

247 
248 
249 
250 
251 

252 
253 

254 

1 
2 

5 
6 
6 
6 

5 

5 
6 
6 
6 
6 

6 
6 
5 
4 
3 

APPLICATIONS 

fdcint. procedure public interrupt fdc$int$level; 
declare 

invalid byte, 
drive$no byte, 
docb$ptr pointer, 
docb based docb$ptr structure docb$type; 

declare 
/* interrupt port definitions */ 
ocw2 literally'70H', 
nseoi literally 'shl(1,5)'; 

declare 
1* miscellaneous flags *1 
result$code literally 'shr(interrupt$docb.disk$result(O) and result$error$mask,6)', 
result$drive$ready literally '((interrupt$docb.disk$result(O) and result$ready$mask) = 0)', 
extract$result$drive$no literally '(interrupt$docb.disk$result(O) and result$drive$mask)', 
end$of$interrupt literally 'output(ocw2)=nseoi'; 

1* if the fde is busy when an interrupt is received, then the result 
phase of the previous non-overlapped operation has begun */ 

if fdc$busy 
then do; 

/* process interrupt if operation in progress */ 
if global$drive$no <> 0 

then do; 
docb$ptr=operation$docb$ptr(global$drive$no-l); 
if error$in input$result$from$fdc(docb$ptr) 

then docb.misc=error: 
else docb.misc=ok; 

operation$in$progress(global$drive$no-l)=false; 
operation$complete (global$drive$no-l) =true; 
global$drive$no=O; 

end; 
end; 

/* if the fde is not busy, then either an overlapped operation has been 
completed or an unexpected interrupt has occurred (e.g., drive status 
change) *j 

else do; 
invalid=false; 
do while not invalid; 

/* perform a sense interrupt status operation - if errors are detected, 
in the actual fdc interface, interrupt processing is discontinued *1 

if error$in output$byte$to$fdc(sense$int$status) then go to ignore; 
if error$in input$result$from$fdc(@interrupt$docb) then go to ignore; 

do case result$code: 

1* case 0 ~ operation complete *1 
do; 

drive$no=extract$result$drive$no; 
call copy$int$result(drive$no); 

end; 

1* case 1 - abnormal termination *1 

~; . 
dr ive$no=extract$resul,t$dr i ve$no: 
call copy$int$result(drive$no); 

end; 

1* case 2 - invalid command *1 
invalid=true; 

1* case 3 - drive ready change *1 
do; 

drive$no=extract$result$drive$no; 
call copy$int$result(drive$no); 
drive$status$change(drive$no)=true; 
if result$drive$ready 

then dr'ive$read¥ (drive$no) =true; 
else drive$ready(drive$no)=false; 

end; 
end; 

end: 
end; 

ignore: end$of$interrupt; 
end fdcint; 

end drivers; 

5-556 207885-001 



MODULE INFORMATION: 
CODE AREA SIZE = 06158 
CONSTANT AREA SIZE = 00008 
VARIABLE AREA SIZE = 00508 
MAXIMUM STACK SIZE = 00328 
564 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

15570 
00 

800 
500 

APPLICATIONS 

5-557 207885-001 



APPLICATIONS 

APPENDIX B 
8272 FDC EXERCISER PROGRAM 

( c 

5-558 207885-001 



APPLICATIONS 

PL/M-86 COMPILER 8272 FLOPPY DISK DRIVER EXERCISE PROGRAM 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE RUN72 
OBJECT MODULE PLACED IN :Fl:run72.0BJ 
COMPILER INVOKED BY: plm86 :Fl:run72.p86 DEBUG 

1 

$title (-8272 floppy disk driver exercise program-) 
$nointvector 
$optimi ze (2) 
$large 
run72: do; 

declare 
docb$type literally /* disk operation control block */ 

-(dma$op byte,dma$addr word,dma$addr$ext byte,dma$count word, 
disk$command(9) byte,disk$result(7) byte,misc byte)-I 

declare 
/* 8272 fdc commands */ 
fm 
mfm 
dma$mode 
non$dma$mode 
recalibrate$command 
specify$command 
read$command 
write$command 
format$command 
seek$comrnand 

declare 
dma$verify 
dma$read 
dma$writ.e 
dma$noop 

declare 

literally -0-, 
literally -1-, 
literallY"'O"', 
literally -1-, 
literally -7-, 
literally -3-, 
literally -6-, 
literally"'5'", 
literally -ODH-, 
literally -OFH-I 

literally -0-, 
literally -1-, 
literally -2-, 
literally -3-1 

/* disk operation 
format$docb 
seek$docb 
recalibrate$docb 
specify$docb 
read$docb 
write$docb 

control blocks */ 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type: 

declare 
step$rate 
head$load$time 
head$unload$time 
filler$byte 
operation$status 
interleave 
format$gap 
read$write$gap 
index 
drive 
density 
multitrack 
sector 
cylinder 
head /* disk drive head */ 
tracks$per$disk 
sectors$per$track 
bytes$per$sector$code 
bytes$per$sector 

byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
word: 1* number of bytes in a sector on the disk *1 

declare 
1* read and write 
fmtblk (104) 
wrbuf(1024) 
rdbuf (1024) 

declare 

buffers */ 
byte publ c, 
byte publ c, 
byte publ CI 

1* disk format initialization tables */ 
sec$trk$table(3) byte data(26,lS,8), 
fmt$gap$table(8) byte data(lBH,2AH,3AH,O,O,36H,54H,74H), 
rd$wr$gap$table(8) byte data(07H,OEH,lBH,O,O,OEH,lBH,3SH) 1 

5-559 207885·001 



9 

10 
11 
12 

13 
14 

15 
16 

17 
18 
19 
20 
21 

22 

23 
24 

25 
26 
27 
28 

29 

30 
31 

32 
33 
34 
35 
36 

37 

38 

39 
40 

41 
42 

43 

46 

47 
48 

1 
2 
2 

1 
2 

1 
2 

1 
2 

2 
2 
2 
2 
2 

declare 
/* external pointer 
rdbptr (2) 
wrbptr (2) 
fbptr (2) 
intptr (2) 
intvec(80H) 

APPLICAnONS 

tables and interrupt vector */ 
word external, 
word external, 
word external, 
word external, 
word external; 

execute$docb: procedure (docb$ptr,status$ptr) externa11 
declare docb$ptr pointer, status$ptr pointer 1 

end execute$docb; 

"initialize$drivers: procedure external; 
end initialize$drivers; 

$eject 

/**** specify step rate ("srt"), head load time ("hlt"), head unload time ("hut"), 
and dma or non-dma operation (lind"). ****1 

specify: procedure(srt,hlt,hut,nd); 
declare (srt,hlt,hut,nd) byte; 

specify$docb.dma$op=dma$nooP1 
specify$docb.disk$command(0)=specify$command1 
specify$docb.disk$command(1)=sh1«not srt)+1,4) or shr(hut,4)1 
specify$docb.disk$command(2)=(h1t and OFEH) or (nd and 1)1 
call execute$docb(@specify$docb,@operation$status)1 

end specify; 

recalibrate disk drive /**** 
8272 automatically steps out until the track 0 signal is activated 
by the disk drive. • ••• / 

recalibrate: procedure(drv)1 
declare drv byte; 

reca1ibrate$docb.dma$op=dma$nooP1 ' 
reca1ibrate$docb.disk$command(0)=reca1ibrate$command1 
reca1ibrate$docb.disk$command(1)=drv1 
cai1 execute$docb(@recalibrate$docb,@operation$status)1 

end recalibrate; 

1**** seek drive "drv", head (side) "hd" to cylinder "oy1". 

seek: procedure(drv,cyl,hd), 
declare (drv,cyl,hd) byte; 

seek$docb.dma$op=dma$noop1 
seek$docb.disk$command(0)=seek$command1 
seek$docb.disk$command(l)=drvor shl(hd,2) 1 
seek$docb.disk$command(2)=cy1 1 
call execute$docb(@seek$docb,@operation$status); 

end seek; 

****/ 

/**** format a complete side ("head") of a single floppy disk in drive "drv". The density, 
(single or double) is specified by flag "dens". ****/ 

format: procedure(drv,dens,intlve); 
/* format disk */ 

declare (drv,dens,intlve) byte; 
declare physical$sector byte; 

call recalibrate(drv); 
do cy1inder=0 to tracks$per$disk-11 

/* set sector numbers in format block to zero before computing interleave */ 

do physical$sector=l to sectors$per$track1 fmtblk«physical$sector-l)'4+2)=01 end1 
/* physical sector 1 equals logical sector 1 */ 
physical$sector=11 

/* assign interleaved sectors */ 
do sector=l to sectors$per$track; 

index={physical$sector-l) *4; 

5-560 207885-001 



49 4 

53 4 
54 4 
55 4 
56 4 

57 4 
58 4 

60 

61 3 

62 3 
63 3 
64 3 
65 3 
66 3 
67 3 
68 3 
69 3 
70 3 
71 3 
72 3 
73 3 

74 2 

75 1 
76 2 

77 2 
78 2 
79 2 
80 2 
81 2 
82 2 
83 2 
84 2 
85 2 
86 2 
87 2 
88 2 
89 2 

91 2 
92 2 

93 2 

94 1 
95 2 

96 2 
97 2 
98 2 
99 2 

100 2 
101 2 
102 2 
103 2 
104 2 
105 2 
106 2 
107 2 

APPLICATIONS 

/* change sector and index if sector has already been assigned */ 
do while fmtblk(index+2) <> 0; index=index+4; physical$sector=physical$sector+l; end; 

/* set cylinder, head, sector, and size code for current sector into table */ 
fmtblk(index)=cylinder; 
fmtblk(index+l)=head; 
fmtblk (index+2) =sector; 
fmtblk (index+3) =bytes$per$sector$code; 

/* update physical sector number by interleave ./ 
physical$sector=physical$sector+intlve; 
if physical$sector > sectors$per$track 

then physical$sector=physical$sector-sectors$per$track; 
end, 

/. seek to next cylinder ./ 
call seek(drv,cylinder,head); 

/. set up format control block ./ 
format$docb.dma$op=dma$write; 
format$docb.dma$addr=fbptr (O)+shl(fbptr (1) ,4); 
format$docb.dma$addr$ext=O; 
format$docb.dma$count=sectors$per$track·4-l; 
format$docb.disk$command(O)=format$command or shl(dens,6); 
format$docb.disk$command(l)=drvor shl(head,2); 
format$docb.disk$command(2)=bytes$per$sector$code; 
format$docb.disk$command (3) =sectors$per$track; 
format$docb.disk$command(4)=format$gap; 
format$docb.disk$command(5)=filler$byte; 
call execute$docb(@format$docb,@operation$status); 

end, 

end format, 

/***. write sector "sec· on drive ndrv· at head "hd" and cylinder ·cy1". The 
disk recording density is specified by the "dens" flag. Data is expected to be 
in the global write buffer ("wrbuf").. • ••• / 

write; procedure(drv,cyl,hd,sec,dens); 
declare (drv,cyl,hd,sec,dens) byte, 

write$docb.dma$op-dma$write; 
write$docb.dma$addr=wrbptr (O)+shl (wrbptr (1) ,4); 
write$docb.dma$addr$ext=O; 
write$docb.dma$count=bytes$per$sector-l; 
write$docb.disk$command(O)=write$command or shl(dens,6) or shl(multitrack,7); 
write$docb.disk$command(l)-drv or shl(hd,2); 
write$docb.disk$command(2)-cyl; 
write$docb.disk$command (3f=hd; 
write$docb.disk$command(4)-sec; 
write$docb.disk$command(5)=bytes$per$sector$code; 
write$docb.disk$command(6)=sectors$per$track; 
write$docb.disk$command(7)=read$write$gap; 
if bytes$per$sector$code = 0 

then write$docb.disk$command(8)=bytes$per$sector; 
else write$docb.disk$command(8)=OFFH; 

call execute$docb(@write$docb,@operation$status); 

end write; 

/.*** read sector "sec" on drive "drv" at head "hd" and cylinder ·oy1". The 
disk recording density is defined by the "dens' flag. Data is read into 
the global read buffer ("rdbuf"). • ••• / 

read: procedure(drv,cyl,hd,sec,dens); 
declare (drv,cyl,hd,sec,dens) byte; 

read$docb.dma$op=dma$read; 
read$docb.dma$addr=rdbptr (O)+shl (rdbptr (1) ,4); 
read$docb.dma$addr$ext-O; 
read$docb.dma$count=bytes$per$sector-l; 
read$docb.disk$command(O)=read$command or shl(dens,6) or shl(multitrack,7); 
read$docb.disk$command(l)=drvor shl(hd,2); 
read$docb.disk$command(2)=cyl; 
read$docb.disk$command(3)=hd; 
read$docb.disk$command(4)=sec; 
read$docb.disk$command(5)=bytes$per$sector$code; 
read$docb.disk$command (6) =sectors$per$track; 
read$docb.disk$command (7) =read$write$gap; 

5-561 207885-001 



108 

110 
111 

112 

113 
114 

i15 

116 
117 

118 

119 
120 
121 
122 
123 
124 
125 
126 
127 

128 
129 
130 
131 
132 
133 
134 
135 
136 

2 

2 
2 

1 
2 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

APPLICATIONS 

if bytes$per$sector$code = 0 
then read$docb.disk$command(8)=bytes$per$sector, 
else read$docb.disk$command(8)=OFFH, 

call execute$docb(@read$docb,@operation$status), 

end read; 

$eject 

/ •••• initialize system by setting up 8237 dma controller and 82S9A interrupt 
controller. ****1 

initialize$system: procedure; 
declare 

/. I/O ports ./ 
dma$disk$addr$port 
dma$disk$word$count$port 
dma$command$port 
dma$mode$port 
dma$mask$sr$port 
dma$c1ear$ff$port 
dma$master$c1ear$port 
dma$mask$port 
dma$c1$addr$port 
dma$c1$word$count$port 
dma$c2$addr$port 
dma$c2$word$count$port 
dma$c3$addr$port 
dma$c3$word$count$port 
iew! 
icw2 
icw4 
oawl 
ocw2 
oow3 

declare 

literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
li terally 
literally 
literally 
li terally 
1i terally 
literally 
li terally 
literally 
li terally 
li terally 
literally 
li terally 

/* mise masks and literals *1 

'OOH', 
'OlH', 
"08H"', 
"'OBH", 
'OAH' , 
'·OCH' , 
'OOH', 
"'OFH"', 
"02H'" , 
'03H' , 
"048"', 
'OSH' , 
'06H' , 
'07H', 
'70H', 
'71H' , 
... 71H .... , 
'71H' , 
'70H' , 
'70H', 

/. current address port ./ 
/. word count port ./ 
/. command port */ 
/. mode port ./ 
/. mask set/reset port ./ 
/. clear first/last flip-flop 
/. dma master clear port ./ 
/. parallel mask set port'/ 

dma$extended$write 1itera11y'sh1(1,S)', /. extended write' flag ./ 
/* single transfer flag ./ dma$sing1e$transfer 1itera11y'sh1(1,6)', 

dma$disk$mode li terally '40H', 
dma$c1$mode 1itera11y'41H', 
dma$c2$mode li terally '42H', 
dma$c3$mode 1itera11y'43H', 
mode$8088 literally '1', 
interrupt$base litera11y'20H', 
sing1e$contro11er 1itera11y'sh1(1,1)', 
1eve1$sensitive 1itera11y'sh1(1,3)', 
contro1$word$4$required literally '1', 
base$icw1 1itera11y'10H', 
mask$a11 1iteral1y'OFFH', 
disk$interrupt$mask literally '1', 

output (dma$master$c1ear$port) =0, 
output(dma$mode$port)=dma$extended$write, 

/. set all dma registers to valid values */ 
output (dma$mask$port)=mask$a11, 

/* set all addresses to zero ./ 
output (dma$c1ear$ff$port) =0, 
output (dma$disk$addr$port) =0, 
output(dma$disk$addr$port)~P, 
output (dma$c1$addr$port) =0, , 
output (dma$c1$addr$port) =0, 
output (dma$c2$addr$port) =0, 
output (dma$c2$addr$port) =0, 
output (dma$c3$addr$port) =0, 
output (dma$c3$addr$port) =0; 

1* set all word counts to valid values */ 
output (dma$c1ear$ff$port) =0, 
output (dma$disk$word$count$port) =1, 
output (dma$disk$word$count$port) =1, 

, output (dma$c1$word$count$port) =1, 
output (dma$c1$word$count$port) =1, 
output (dma$c2$word$count$port) =1, 
output (dma$c2$word$count$port) =1, 
output (dma$c3$word$count$port) =1, 
output (dma$c3$word$count$port) =1, 

/. master reset ./ 
/. set dma command mode */ 

/* mask all channels ./ 

/. reset first/last flip-flop ./ 

/. reset first/last flip-flop ./ 

port */ 

5-562 207885-001 



137 
138 
139 
140 

141 
142 
143 
144 

145 
146 

147 

148 

149 

150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

160 
161 
162 

167 
168 

169 

170 
171 

172 
173 

174 
175 

176 

177 

178 
179 

181 

182 

183 
184 
185 
186 

187 

2 
2 
2 
2 

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
2 

2 
2 

1 

1 
1 

1 
1 

1 
1 

1 

1 
2 

1 

1 
2 
3 
3 

APPLICATIONS 

/* initialize all dma channel modes */ 
output (dma$mode$port)=dma$disk$model 
output (dma$mode$port) =dma$c1$model 
output (dma$mode$port) =dma$c2$model 
output (dma$mode$port) =dma$c3$model 

1* initialize 8259A interrupt controller */ 
output(icw1)=sing1e$contro11er or 1eve1$sensitive or control$word4$required or base$icwl; 
output (icw2)=interrupt$basel 

j. set 8088 interrupt mode .j output (icw4)=mode$80881 
output(ocw1)=not disk$interrupt$maskl j. mask all interrupts except disk .j 

1* initialize interrupt vector for fde */ 
intvec(40H)=intptr(0) I 
intvec (41H) =intptr (1) I 

end initialize$systern; 

$eject 

j •••• main program: first format disk (all tracks on side (head) O. Then 
read each sector on every track of the disk forever. ****/ 

declare drive$ready(4) byte external I 

/* disable until interrupt vector setup and initialization complete *1 
disable; 

j. set initial floppy disk parameters .j 
density=mfm: 
head=OI 
multitrack=O: 
fi11er$byte=55Hl 
tracks$per$disk=771 
bytes$per$sector=1024 1 
int.erleave=6; 

j. double-density .j 
j. single sided .; 
1* no multitrack operation */ 
j. for format *; 
;. normal floppy disk drive .j 
j. 1024 bytes in each sector .j 
1* set track interleave factor */ 

step$rate=lll 
head$10ad$time=401 

;. 10ms for SA800 plus 1 for uncertainty .j 
j. 40ms head load for SA800 .j 

head$un10ad$time=2401 j. keep head loaded as long as possible .; 

1* derive dependent parameters from those above */ 
bytes$per$sector$code=shr(bytes$per$sector,7) I 
do index=O to 31 

if (bytes$per$sector$code and 1) <> 0 
then do; bytes$per$sector$code=index; go to donebc; end; 
else bytes$per$sector$code=shr(bytes$per$sector$code,l) I 

end; 

donebc: 
sectors$per$track=sec$trk$tab1e(bytes$per$sector$code-density) I 
format$gap=fmt$gap$tab1e(sh1(density,2)+bytes$per$sector$code)I 
read$write$gap=rd$wr$gap$tab1e (sh1 (density,2)+bytes$pe r$sector$code)I 

1* initialize system and drivers */ 
call initialize$system, 
call initialize$drivers: 

/* reenable interrupts and give 8272 a chance to report on drive status 
before proceeding *1 

enable; 
call time (10) I 

/* specify disk drive parameters */ ~ 
call specify (step$rate,head$10ad$time,head$un10ad$time,dma$ mode) I 

drive=O; 

/* wait until drive ready */ 
do while 1; 

if drive$ready(drive) 
then go to start I 

end; 

start: 
call format (drive,density,interleave) ; 

do while 11 
do cy1inder=0 to tracks$per$disk-11 

callseek(drive,cylinder,head); 
do sector=l to sectors$per$track; 

;. set up write buffer .; 

;. run single disk drive to .; 

do index=O to bytes$per$secto~-l; wrbuf (index) =index+sector+cylinder , end; 

5-563 207885-001 . i 



190 
191 

192 

1,94 
195 
196 

197 

4 
3 
2 

1 

APPLICATIONS 

call write(drive,cylinder,head,sector,density); 
call read(drive,cylinder,head,sector,density); 

1* check read buffer against write buffer */ 
if cmpw(@wrbuf,@rdbuf,shr(bytes$per$sector,1» <> OFFFFH 

then halt; 
end~ 

end; 
end; 

end run72; 

MODULE INFORMATION: 

END 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE = 
412 LINES READ 
o PROGRAM ERROR(S) 

OF PL/M-86 COMPILATION 

0570H 
OOOOH 
0907H 
0022H 

13920 
00 

23110 
340 

5-564 207885-001 



APPLICATIONS 

APPENDIX C 
8272 DRIVER FLOWCHARTS 

5-565 207885-001 

I 
I', 

i 



\ 

APPLlCATJONS 

5-566 

RESET 
-DRIVE$READY 

=g:~::fl~J$~~~~~~=~SS 
-OPERATION$COMPLETE 

RETURN 

207885-001 



APPLICATIONS 

I: 

C RETURN ) 
COMPLETE 

'---------" 

RETURN 

5-567 207885-001 



APPLICATIONS 

RETURN 

5-568 207885-001 



RETURN 
ERROR 

.. 

YES 

APPLICATIONS 

RETURN 

5-569 

C RETURN ) 
ERROR 

"---~--' 

207885-001 

i. 
I 



APPLICATIONS 

C ReTURN ) >--'------ INVALID STATUS 
'--------' 

>=.------C RETURN ) 
• ~ __ ~B~U~S~Y~S~TA~T~U~S~~ 

C RETURN ) 
>~------I~ _____ BU_S_Y_S_T_A_TU_S __ ~ 

ENABLE INTERRUPTS C RETURN ) 
• ~ __ ~B~U~SY~S~T~A~T~U~S __ J 

NO 

5-570 207885-001 



RESULT PHASE OF 
PREVIOUS COMMAND 

RESET OPERATIONSIN$PROGRESS 
SET OPERATION$COMPLETE 
RESET GLOBAL$DRIVE$NO 

APPLICATIONS 

ASYNCHRONOUS 
INTERRUPT 

NO 

5-571 

CALL COPY$INT$RESULT 
TO PUT OPERATION 

RESULT INFORMATION 
INTO THE Doce 

CALL COPYSINT$RESULT 
TO PUT OPERATION 

RESULT INFORMATION 
INTO THE DOCB 

207885-001 



APPLICATIONS. 

RESET OPERATIONSINSPROGRESS FLAG 
SET OPERATION$COMPLETE FLAG 

C RETURN ) ---

5-572 207885-001 



APPLICATIONS 

RETURN 
RESULT ERROR STATUS 

NO 

RETURN ) 

YES 

NO 

NO 

C RETURN ) 

'-----

5-573 207885-001 



inter 82062 

82062 
WINCHESTER DISK CONTROLLER 

,: 

• Controls ST506/ST412 Interface 
Winchester Drives 

• 5 MBit/Sec Transfer Rate 

• 128,256,512, and 1024 Byte Sector 
Lengths 

• Six High-Level Commands: Restore, Seek, 
Read Sector, Write Sector, ~an 10, and 
Write Format 

• Multiple Sector Transfer Capability 

• Implied Seek With Read/Write Commands 

• 7 Byte Sector Length Extension For 
External Error Correction Code 

• Single +5 Volt Power Supply 

The 82062 Winchester Disk Controller (WDC) device interfaces microprocessor systems to Winchester Disks 
that use the Seagate Technology ST506/ST412 interface. Examples include the Seagate ST506 and ST412, 
Shugart SA604 and SA606, Tandon 600, and Computer Memories CM5206 and CM5412. The device translates 
parallel data from the microprocessor to a 5 mbitlsec, MFM-encoded serial bit stream. It provides all of the 
drive control logic and, in addition, control signals which simplify the design of an external phase locked loop 
and write precompensation circuitry. The 82062 is designed to interface to the host controller through an 
external Sector buffer. 

TASK, STATUS, DATA 
REGISTERS 

DATA 
DBO-7 BUS 

BUFFER 

WIIITE 
CONTROl. 

MFMENCOOE 

RESET 

INTRQ 

AO-2 READ 

AD CONTROl. 
AM DETECT 

WR MFM DECODE 

Co 

BADY 

BCS BUFFER 
CONTROL 

BORa 

BCR 
DRIVE 

INTERFACE 
Vcc------' CONTROL 

Vss ------. 

Figure 1. 82062 Block Diagram 

5-574 

BCS 

SCR 

INTRQ 
WR DATA 

NC 
EARLY RESeT 
LATE AD 
RWC Wii 
WR CLOCK Co 

'. 
RD DATA " 
RD GATE '2 

DRUN DB7 

AD CLOCK DB. 

DBS 

WR GATE 
DB, 

STEP 
DB. 

DIR 
DB2 

DB, 

DRDY 
DSO 

WR FAULT 
Vss 

TRACK 000 

INDEX 

sc 

Figure 2. 

VCC 

RO CLOCK 

AD GATE 

AD DATA 

BORa 

BRDY 

DRUN 

RWC 

SC 

TRACK 000 

WR FAULT 

INDEX 

CRDY 

STEP 

DIR 

WR CLOCK 

WR GATE 

EARLY 

LATE 

WR DATA 

Pin Configuration 

July 1984 
ORDER NUMBER: 210446·004 



inter 82062 

Table 1. Pin Description 

Symbol Pin No. Type Name and Function 

BCS 1 0 Buffer Chip Select: Output used to enable reading or writing of the external 
sector buffer by the 82062. When low, the host should not able to drive the 
82062 data bus,RD, or WR lines. 

BCR 2 0 Buffer Counter Reset: Output that is strobed by the 82062 prior to read/write 
operation. This pin is strobed whenever BCS changes"State. Used to reset the 
address counter of the buffer memory. 

INTRQ 3 0 Interrupt Request: Interrupt generated by the 82062 upon command 
termination. It is reset when any register is read. Optionally signifies when a 
data transfer is required on Read Sector commands. 

N/C 4 No connection. Reserved for future use. 

RESET 5 I Reset: Initializes the controller and clears all status flags. Does not clear the 
Task Registers. 

RD 6 I/O Read: As an input, RQ..controls the transfer of information from the 82062 
registers to the.host. RD is an output when the 82062 is reading data from the 
sector buffer (BCS low). 

WR 7 I/O Write: As an input, WR controls the transfer of command or task information 
into the 82062 registers. WR is an output when the 82062 is writing data to the 
sector buffer (BCS low). 

. CS 8 I Chip Select: Enables RD and WR as inputs for access to the Task Registers. It 
has no effect once a disk command starts .. 

Ao-A2 9-11 I Address: Used to select a register from the task register file. 

DBo-DB7 12-19 I/O Data Bus: Bidirectional8-bit Data Bus with control determined by BCS. When 
BCS is high the microprocessor has full control of the data bus for reading 
and writing the Task Registers. When BCS is low the 82062 controls the data 
bus to transfer data to or from the buffer. 

GND 20 Ground 

WR DATA 21 0 Write Data: Open drain output that shifts out MFM data at a rate determined 
by Write Clock. Requires an external flip-flop clocked at 10 MHz. S~e 
note 1. 

LATE 22 0 Late: Open drain output used to derive a delay value for write precom-
pensation. Valid when W~ GATE is high. Active on all cylinders. See note 1. 

EARLY 23 0 Early: Open drain output used to derive a delay value for write precom-
pensation. Valid when WR GATE is high. Active on all cylinders. See note 1. 

WR GATE 24 0 Write Gate: High when write data is valid. WR GATE goes low ifthe WR FAULT 
input is active. This output is used by the drive to enable head write current. 

WRCLOCK 25 I Write Clock: Clock input used to derive the write data rate. Frequency - 5MHz 
for the ST506 interface, 4.34MHz for the SA 1000 interface. See note 2. 

DIR 26 0 Direction: High level on this output tells the drive to move the head inward 
(increasing cylinder number). The state of this signal is determined by the 
82062's internal comparison of actual cylinder location vs desired cylinder. 

STEP 27 0 Step: Provides 8.4 microsecond pulses to move the drive head to another 
cylinder at a programmable frequency. 

DRDY 28 I Drive Ready: If DRDY from the drive goes low, the command will be 
terminated. 

5-575 ORDER NUMBER: 210448·004 



82062 

'nIble 1. Pin Description (continued) 

Symbol Pin No. ~pe Name and Function 

INDEX 29 I Index: Signal from the drive indicating the beginning of a track. It is used by 
the 82062 during formatting, and for counti(lg retries. Index is edge triggered. 
Only the rising edge is valid. 

WR FAULT 30 I Write Fault: An error input to the 82062 which indicates a fault condition at the - drive: If WR FAULt from the drive goes high, the command will be 
terminated. 

TRACK 000 31 I Track Zero: Signal from the drive which indicates that the head is at the 
outermost cylinder. Used by the Restore command. 

SC 32 I Seek Complete: Signal from the drive indicating to the 82062 that the drive 
head has settled and that reads or writes can be made. SC is edge triggered. 
Only the rising edge is valid. 

RWC 33 0 Reduced Write Current: Signal goes high for all cylinder numbers above the 
value programmed in the Write Precomp Cylinder register. It is used by the 
precompensation logic and by the drive to reduce the effects of bit shifting. 

DRUN 34 I Data Run: This signal informs the 82062 when a field of ones or zeroes has 
been detected in the read data stream by an external one-shot. This indicates 
the beginning of an 10 field. RD GATE is brought high when DRUN is sampled 
high for 16 clock periods. See note 2. 

BRDY 35 I BuHer Ready: Input used to signal the controller that the buffer is ready for 
reading (full), or writing (empty), by the host up. Only the rising edge 
indicates the condition. 

BDRQ 36 0 Buffer Data Request: Activated during Read or Write commands when a data 
transfer between the host and the 82062's sector buffer Is required. Typically 
used as a DMA request line, or to generate an interrupt. 

RD DATA 37 I Read Data:'Single ended input that accepts MFM data from the drive. See 
note 2. 

RDGATE 38 0 ~ead Gate: Output that is high for data and 10 fields. Goes active when DRUN 
has been high for 16 WR CLOCK periods to permit the external phase lock 
loop to lock onto the incoming disk data stream. 

RDCLOCK 39 I Read Clock: Clook input derived from the external data recovery circuits. See 
note 2. 

Vee 40 I D.C. Power: +5V 

Note 1: This pin requires a pull-up resistor to function properly. A value of 1000 ohmswill work satisfactorily. 

Note ,2: This pin requires input levels that are ",ot TTL compatible. These lines can be interfaced to TTL with a 
pull-up resistor. Too small of a resistor will produce a VIL level that is too high. Too large of a resistor will 
degrade the Signal's rise time. A minimum value for the resistor is determined as follows: 

(Vee max) - (82062 VIL max) 

(TTL 10L min) - (82062 IlL max) 

This would typically be: 

5.25V-0.5V 

3kCl 
1.6 mA -10 IJA 

5-576 ORD~R NUMBER: 21044':'004 



82062 

FUNCTIONAL DESCRIPTION 

The Intel 82062 Winchester Disk Controller (WDC) 
integrates much of the logic needed to implement 
Winchester Disk controller subsystems. It provides 
MFM-encoded data and all the control lines required 
by hard disks using the Seagate Technology ST506 
or Shugart Associates SA1000 interface standard. 
Currently, most 5V. inch and many 8 inch Winchester 
Drives use this interface. 

Due to the higher data rates required by these 
drives-1 byte every 1.6 usec-the 82062 is designed 
to interface with the host CPU or I/O controller 
through an external buffer RAM. The 82062 WDC has 
four pins that minimize the logic required to design a 
buffer interface. 

Figure 3 shows a block diagram of an 82062 subsys­
tem. The WDC is controlled by the host CPU through 
six commands: 

Restore 
Seek 
Read Sector 
Write Sector 
Scan 10 
Write Format 

These commands use information stored by six task 
registers. Command execution starts immediately 
after the command register is loaded-therefore 
commands require only one byte from the CPU after 
the WDC has been initialized. . 

The 82062 adds all the required track formatting to 
the data field, including two bytes of CRC. Optionally, 
these two bytes can be replaced by seven bytes of 
ECC information for external error correction. 

t-------~-----IBO"Q 

I-----------~INT"Q 

k;::==lli1~~!;]i!C==:JIDBO.7 Ri),WR 

I----.. cs 

1¢===:ill~!]lllC:::==~ Ao·A, 

INTERNAL ARCHITECTURE 

The internal architecture of the 82062 WDC is shown 
in more detail in Figure 4. The major functional 
blocks are: 

PLA Controller 

The PLA interprets commands and provides all con­
trol functions. It is synchronized with WR CLOCK. 

Magnitude Comparator 

A 1Q-bit magnitude comparator is used to calculate 
the direction and number of step pulses needed to 
move the head from the present to the desired 
cylinder. 

CRC Logic 

Generates and checks the cyclic redundancy check 
characters appended to the 10 and data fields. The 
polynomial used is: 

X16 + X12 + X5 + 1. 

MFM Encode/Decode 

Encodes and decodes MFM data to be written/read 
from the drive. The MFM encoder operates from WR 
CLOCK, a clock having a frequency equivalent to the 
bit rate. The MFM decoder operates from RD CLOCK, 
a bit rate clock generated from the external data 
separator. RD CLOCK and WR CLOCK need not be 
synchronized. 

EARLY, Rwe I-::=====::::;l 
LATE J.-

82062 
woe 

WR DATA 

10 MHZ 

DRIVE CONTROl. 

Figure 3. System Block Diagram 

5-577 ORDER NUMBER: 210446-004 



inter 82062 _ ' 

0110-7 

BcR 
BRDY 

BDRO 

R!i 

Vcc~ 

GND~ 

PLA 
CONTROLLER 

WR DATA 

WRCLDCK 

RDCLOCK 

RDDATA 

STEP 
DIR 

!Aiit9 
em 
DRDY 

WRFAULT 

TRACK 000 
INDEX 

SC 

RWC 
WRGATE 
RDGATE 

\o.._ ....... ..-DRUN 

Figure 4. 82062 Detailed Block Diagram 

AM Detect 

The address mark detector checks the incoming data 
stream for a unique missing clock pattern (Data = 
A1 H, Clock = OAH) used in each 10 and data field. 

Host/Buffer Interface Control 

The Host/Buffer IFC logic contains all of the neces­
sary circuitry to communicate with the 8-bit bus from 
the hoSt processor. 

Drive Interface Control 

The Drive IFC logic controls and monitors air line,s 
froin the drive, with the exception of read and write 

, data. 

DRIVE INTERFACE 

The drive side of the 82062 WDC requires three sec­
tions of externaJ logic. These are buffer/receivers, 

- data separator, and write precompensation. Figure 5 
illustrates a drive side interface. 

The buffer/receivers condition the control lines to 
be driven down the cable to the drive. The control 
lines are typically single-end!'ld,resistor terminated 
TTL levels. The data lines to and from the drive also 
require buffering, but are differential RS-422 levels. 
The interface specification to the drive can be found 
in the manufacturers' OEM manual. The WDC supp­
lies TTL compatible signals, and will interface to 
most buffer/driver devices. 

The data recovery circuits consist of a phase-lock 
loop data separator and associated _ components. 
The 82062 WDC interacts with the data separator 
thru the DATA RUN (DRUN) and RD GATE signals. 

\A block diagram of a typical data separator circuit is 
shown in Figure 6. Read data from the drive is pres­
ented to the RD DATA input of the WDC, the refer­
ence multiplexor, and a retriggerable one-s,hot. The 
RD GATE (Pin 38) output will be low when the WDC 
is not inspecting data. The PLL at this time should 
remain locked'to the reference clock. 

5-578 ORDER NUMBER: 210446-004 



inter 

82062 
woe 

. .' 

82062 

2X 
DATA RATE 

WRITE DATA 

EARLY WRITE 
LATE P~ECOMP 

WINCHESTER DRIVE 0 
Rwe 

WRITE DATA 

READ DATA READ DATA 

READ CLOCK PHASE 
LOCK 

DRIVE SEl ORUN LOOP 

READ GATE 
STEP 

TO NEXT 
DRIVE DIRECTION 

DATA 
WR CLOCK RATE READY 

ose 

WRITE FAULT 

sc 
TRACK 000 

INDEX 
INDEX 

TKOOO 
seEK COMPLETE 

CRDY Rwe 

WR FAULT 
HEAD NUMBER 

D'R 
WRITE GATE 

WR GATE 

STEP 

DATA BUS 

Q DAISY CHAIN TO 
NEXT DRIVE 

ADDRESS (HOLDS DRIVE AND HEAD 
SELECTS) 

DATA LATCH 

Figure 5. Drive Interface 

RETRIGGERABLE 
ONE-SHOT ~------------------------~DRUN 

~is~ :>---..... t-------------------------------.-j RD DATA 
DATA 

82062 

A 1----... -----.... RD CLOCK 

MUX 

,..----'"""1-1 B ~~~~--------~----------------------------~RDGATE 

t-------.... -i WR CLOCK 

Figure 6. Data Recovery Circuit 

5-579 ,ORDER NUMBER: 210446-004 



82062 

. When any Read1Write command is initiated and a 
search for address mark begins, the DRUN input is 
examined. The DRUN one-shot is set for slightly 
greater than one bit time, allowing it to retrigger 
constantly on a field of ones and zeros. An internal 
counter times outto see that DRUN is high for2 byte 
times. RD GATE is set by the WDC, switching the 
data separator to lock onto the incoming data 
stream. If DRUN falls prior to an additional 7 byte 
times, RD GATE is lowered and the process is 
repeated. AD GATE will remain active high until a 
non-zero, non-address mark byte is detected. It will 
then lower RD GATE for two byte ti mes (to allow the 
PLL to lock back on to the reference clock), and 
start the DRUN search again. If an address mark is 
detected, RD GATE will be held high and the com­
mand will continue searching for the proper 10 field. 
This sequence is shown in the flow chart in Figure 7. 

The write precompensation logic is controlled by 
the signals REDUCE WRITE CURRENT (RWC), 
~ and CAfE. The cylinder in which the RWC 
line becomes active is controlled by the REDUCE 
WRITE CURRENT register in the Task Register File. 
It Call be used to turn on the precomp circuitry on a 
predetermined cylinder. If the REDUCE WRITE 
CURRENT register contents are FFH, then RWC will 
always be low. 

The signals EARLY and mE are used to tell the 
precomp circuitry how much delay is required on 
the WR DATA pulse about to be sent. The amount of 
delay is determined externally through a digital 
delay line or equivalent circuitry. Since the EARLY 
signal occurs after the fact, WR DATA should be 
delayed by one interval when both EARLY and LATE 
are deasserted, two intervals when LATE is asserted, 
and no delay when EARLY is asserted. An interval is, 
~mp~2-15 ns. for the ST506 interface. 
EARLY or LATE will be active s.!J..9!!!!y, ahead of the 
WR DATA pulse. EARLY and LATE will never be 
asserted at the same time. EARLY and LATE are 
always active, and should be gated externally by the 
RWC signal. 

HOST PROCESSOR INTERFACE 

The primary interface between the host processor 
and the 82062 WDCls through an 8-bit bi-directional 
data bus. This bus is used to transmit/receive data to 
both the WDC and a sector buffer. The sector buffer 
is constructed with either FIFO memory, or static 
RAM and a counter. Sinc·e the WDC will use the data 
bus when accessing the sector buffer, a transceiver 
must be used to isolate the host during this time. 
Figure 8 shows a typical cbnnection to a sector 
buffer implemented with RAM memory. Whenever 
the WDC is not using the sector buffer, The BUFFER 
CHIP SELECT (BCS) is high (disabled). This allows 
the nost to access the WDC's Task Register File, and 

5-580 

SET 
RD GATE 

HIGH 

RESET 
RD GATE 

Figure 7. PLL Control Sequence 

ORDER NUMBER: 210446-004 



82062 

to set up parameters prior to issuing a command. It 
also allows the host to access the RAM buffer. A 
decoder is used to generate a chip select whenAo-2 
is '000', an unused address in the WDC. A binary 
counter is enabled whenever RD or WR go active 
and is incremented on the trailing edge of the chip 
select. This allows the host to access sequential 
bytes within the RAM. The decoder also generates 
another chip select when Ao-2 does not equal '000', 
allowing access to the WDC's internal registers 
while keeping the RAM tri-stated. 

During a WRITE SECTOR command, the host pro­
cessor sets up data in the Task Register File and 
then issues the command. It then generates a status 
to inform the host that it may load the buffer with the 
data to be written. When the counter reaches its 
maximum count, the BUFFER READY (BRDY) sig­
nal is made active (by the "carry" outofthe counter), 
informing the WDC that the buffer is full. (BRDY is a 
rising edge triggered signal which will be ignored if 
activated before the WDC issues BCR). BCS is then 
made active, disconnecting the host through the 
transceivers, and the RD and WR lines become out­
puts from the WDC to allow it to access the buffer. 

R5 

ViR 
p 

• 
DATA 

8 

When the WDC is done using the buffer, it disables 
BCS which again allows the host to access the local 
bus. The READ SECTOR command operates in a 
similar manner, except the buffer is loaded by the 
WDC instead of the host processor. 

Another control signal called BUFFER DATA 
REQUEST (BDRQ, not used in Figure 8) is a DMA 
signal that can inform a DMA controller when the 
82062 WDC is requesting data. For further explana­
tion, refer to the individual command descriptions 
and the A.C. Characteristics. In a READ SECTOR 
command, interrupts are generated at the termina­
tion of the command. An interrupt may be specified 
to occur either at the end of the command, or when 
BDRQ is activated. The INTERRUPT line (INTRQ) 
is cleared either by reading the STATUS register, or 
by writing a new command in the COMMAND 
register. 

R5 

ViR 

DATA 

4-11 BCR 

=§1:;-=!-= I 
I , .R RD WR I 
I CK 

I 
I Q AODR DATA I 
I I 
I I 
I TC CS 

HOST -- I 
CPU I 82062 

SYSTEM -- -Q--- I 

FF=l BCS 

BRCY 

cs 
ADDRESS 

3 
AO-A2 

INTERRUPT INTRQ 

RESET RESET 

LA .... 
STB .. DRIVE HEAD 

SELECT 

01 
LATCH 

Figure 8. CPU Buffer Interface 

5-581 ORDER NUMBER: 210446·004 



82062 

TASK REGISTER FILE 

The. Task Register File is a' bank of registers used to 
hold parameter information pertaining to each 
command. These registers and their addresses are: 

A2A1 AO READ WRITE 
0 0 0 (Bus Tri-Stated) (Bus Tri-Stated) 
0 0 1 Error Flags Reduce Write Curren 
0 1 0 Sector Count Sector Count 
0 1 1 Sector Number Sector Number 
1 0 0 Cylinder Low Cylinder Low 
1 0 1 Cylinder High Cylinder High 
1 1 0 SOH SOH 
1 1 1 Status Register Command Register 

--
NOTE: Registers are no~ cleared by RESET. 

ERROR REGISTER 

This read-only register contains specific error sta­
tus after the completion of a command. The bits are 
defined as follows: 

7 6 5 4 321 0 

I BBD I CRC I - I 10 

Bit 7 - Bad Block Detect 

This bit is set when an 10 field has been encoun­
tered that contains a bad block mark. It is used for 
bad sector mapping. 

Bit 6 - CRC Data Field 

This bit is set when a data field CRC error has 
ocurred. The sector buffer may still be read but will 
cpntain errors. 

Bit 5 - Reserved Not used. 

Forced to zero. 

Bit 4 - 10 Not Found 

This bit is set when the desired cylinder, head, sec­
tOJ, or size parameter cannot be found after 8 revolu­
tions of the disk, or if an 10 field CRC error has 
occured. 

Bit 3 - Reserved Not used. 

Forced to zero. 

Bit 2 - Aborted Command 

This bit is set if a commancj was issued while DRD~ 
(Pin 28) is deasserted or WR FAULT (Pin 30) is 
asserted. The Aborted Command bit will also be set 
if an undefined command is written into the COM­
MAND register, but an implied seek will be executed. 

Bit 1 - TRACK 000 

This bit is set only by the RESTORE command. It 
indicates that TRACK 000 (Pin 31) has not gone 
active after the issuance of 1024 stepping pulses. 

Bit 0 - Data Address Mark 

This bit is set during a READ SECTOR command if 
the Data Address Mark is not found after the proper 
Sector 10 is read. ' 

REDUCE WRITE CURRENT REGISTER 

This register is used to define the cylinder number 
where RWC (Pin 33) is asserted: 

7 6 5 4 3 2 1 o 

I 
The value (0-255) loaded into this register is inter­
nally multiplied by 4 to specify the actual cylinder 
where RWC is asserted. Thus a value of 01H will 
cause RWC to activate on cylinder 4, 02H on 
cylinder 8, and so on. RWC switching points are 
then 0,4,8, ... 1020. RWC will be asserted when the 
present cylinder is greater than or equal to the 
cylinder indicated by this register. For example, the 
ST~06 interface requires precomp on cylinder 128 
(80H) and above. Therefore, the REDUCE WRITE 
CURRENT register should be loaded with 32 (20H). 
A value of FFH will make RWC stay low, regardless 
of the actual cylinder number. 

5-582 ORDER NUMBER: 210446-004 



82062 

SECTOR COUNT REGISTER 

This register is used to define the number of sectors 
that need to be transfered to the buffer during a 
READ MULTIPLE SECTOR or WRITE MULTIPLE 
SECTOR command.: 

7 6 5 4 3 2 1 o 

The value contained in the register is decremented 
after each sector is transferred to/from the sector 
buffer. A zero represents a 256 sector transfer, a one 
a 1 sector transfer, etc. This register is a "don't care" 
when single sector commands are specified. 

SECTOR NUMBER 

This register holds the sector number of the desired 
sector: 

7 6 5 4 3 2 1 o 

For a multiple sector command, it specifies the first 
sector to transferred. It is incremented after each 
sector is transferred to/from the sector buffer .. The 
SECTOR NUMBER register may contain any value 
from 0 to 255. 

The SECTOR NUMBER register is also used to pro­
gram the Gap 1 and Gap 3 lengths to be used when 
formatting a disk. See the WRITE FORMAT com­
mand description for further explanation. 

76543 2 

.. 
6 5 SECTOR SIZE 4 3 DRIVE # 

0 0 256 0 0 DSEL1 
0 1 512 0 1 DSEL2 
1 0 1024 1 0 DSEL3 
1 1 128 1 . 1 DSEL4 

5-583 

CYLINDER NUMBER LOW REGISTER 

This register holds the lower byte of the desired 
cylinder number: 

7 6 5 4 321 0 

; LS B~TE ~F CY~INDE~ NU~BER ; 

It is used in conjunction with the CYLINDER 
NUMBER HIGH register to specify a range of 0 to 
1023. 

CYLINDER NUMBER HIGH REGISTER 

This register holds the two most significant bits of the 
desired cylinder number: 

7 6 543 2 o 

I X I X I X I X I X x (9) I (8) I 
Internal to the 82062 WDC is another pairof registers 
that hold the actual position where the R/W heads are 
located. The CYLINDER NUMBER HIGH and LOW 
registers can be considered the cylinder destination 
for seeks and other commands. After these com­
mands are executed, the internal cylinder position 
registers' contents are equal to the cylinder high/low 
registers. If a drive number change is detected on a 
new command, the WDC automatically reads an 10 
field to update its internal cylinder position registers. 
This affects all commands except a RESTORE. 

SECTOR/D.RIVE/HEAD REGISTER 

The SOH register contains the desired sector size, 
drive number, and head number parameters. The 
format is diagramed below. 

o 

... -
2 1 0 HEAD # 

0 0 0 HSELO 
0 0 1 HSEL1 
0 1 0 HSEL2 
0 1 1 HSEL3 
1 0 0 HSEL4 
1 0 1 HSEL5 
1 1 0 HSEL6 
1 1 1 HSEL7 

ORDER NUMBER: 210446-004 



82062 

'NR>-----_.. OBO 01 
DBl 02 

AO>-________ ~ __ 082 03 
~-~DB3 O. 

HSELO 
HSEL1 
HSEL2 

DBD 
081 

82062 
Al 

A2 
'-----"<IOB4 05 o OSEL1 

E OSEL2 

I!! )-_-":' ___ J Oc DSELJ 
o DSH4 
E 

Figure 9. Drive/Head Select Logic 

Both head number and sector size are compared 
against the disks' ID field. Head select and drive 
select lines are not available as outputs from the 
82062 WDC and must be generated externally. Figure 
9 shows a possible logic implementation of these 
select lines. 

Bit 7, the extension bit (EXT), is used to extend the 
data field by seven bytes when using ECC codes. 
When EXT = 1, the CRC is not appended to the end of 
the data field, the data field becomes "sector size + 7" 
bytes long. The CRC is checked on the ID field 
regardless of the state of EXT. Note that the sector 
size bits (SIZE) are written to the ID field during a 
formatting command. The SDH byte written into the 
ID field is different than the SDH Register COr.ltents. 
The recorded SOH byte does not have the drive 
number (DRIVE) written but does have the BAD 
BLOCK mark written. The format is: 

7 6 5 4 3 2 1 o· 

o 

Note that use of the extension bit requires the gap 
lengths to be modified as described in the WRITE 
FORMAT command description. 

STATUS REGISTER 

The status register is a read-only register which 
informs the host of certain events performed by the 
82062 WDC as well as reporting status from the 
drive control lines. The INTRQ line will be reset 
when the status register is read. The format is: 

7 6 5 4 3 2 o 

\ BUSY I READY I WF sp\ ORO CIP \ ERROR\ 

Bit 7 - Busy 

This bit is set whenever the 82062 WDC is accessing 
the disk. Commands should not be loaded into the 
COMMAND register while Busy is set. Busy is set 
when a command is written into the WDC and is 
cleared at the end of all commands except READ 
SECTOR. While executing a READ SECTOR com­
mand, Busy is cleared after the sector buffer has 
been filled. When the Busy bit is set, no other bits in 
either the STATUS or any !'ther registers are valid. 

Bit 6 - Ready 

This bit reflects the state of the DRDY (Pin 28) line. 

Bit 5 - Write Fault 

This bit reflects the state of the WR FAULT (Pin 30) 
line. Whenever WR FAULT goes high, an interrupt 
will be generated. 

Bit 4 - Seek Complete 

This bit reflects the state of the SC (Pin 32) line. 
Commands which initiate a seek will pause until 
Seek Complete is set. 

\ 

5-584 ORDER NUMBER: 210446-004 



inter 82062 

Bit 3 - Data Request 

The Data request bit (DRO) reflects the state of the 
BORa (Pin 36) line. It is set when the sector buffer 
should be loaded with data or read by the host 
processor, depending upon the command. The 
ORO bit and the BORa line remain high until BRDY 
is sensed, indicating the operation is completed. 
BORa can be used in DMA interfacing, while DRO 
can be used for programmed I/O transfers. 

Bit 2 - Reserved 

Not Used. Forced to zero. 

Bit 1 - Command in Progress 

When this bit is set, a command is being executed 
and a new command should not be loaded until it is 
cleared. Although a command may be executing, 
the sector buffer is still available for access by the 
host processor. Only the STATUS register may be 
read. If other registers are read, the STATUS regis­
ter contents will be returned. 

Bit 0 - Error 

This bit is set whenever any bits in the ERROR 
register are set. It is the 10€lical 'or' of the bits in the 
error register and may be used by the host proces­
sor to quickly check for successful completion of a 
command. This bit is reset when a new command is 
written into the COMMAND register. 

COMMAND REGISTER 

This write-only register is loaded with the desired 
command: 

7 6 5 4 3 2 1 o 

The command begins to execute immediately upon 
loading. This register should not be loaded while the 
Busy or Command in Progress bits are set in the 
STATUS register. The INTRa line (Pin 3), if set, will 
be cleared by a write to the COMMAND register. 

INSTRUCTION SET 
The 82062 WDC instruction set contains six 
commands. Prior to loading the command register, 
the host processor must first set up the Task 
Register File with the information needed for the 
command. Except for the COMMAND register, the 
registers may be loaded in any order. If a command 
is in progress, a subsequent write to the COMMAND 
register will be ignored until execution of the 
current command is completed as indicated by the 
command in progress bit in the STATUS register 
being cleared 

COMMAND 7 6 5 4 3 2 1 0 

RESTORE 0 0 0 1 R3 R2 R1 RO 
SEEK 0 1 1 1 R3 R2 R1 RO 
READ SECTOR 0 0 1 0 I M 0 T 
WRITE SECTOR 0 0 1 1 0 M 0 T 
SCANID 0 1 0 0 0 0 0 T 
WRITE FORMAT 0 1 0 1 0 0 0 0 

R3-0 = Rate Field 

For 5 MHz WR CLOCK: 

R3-0 = 0000 - =35 us 
0001 - 0.5 ms 
0010 - 1.0 ms 
0011 - 1.5 ms 
0100 - 2.0 ms 
0101 - 2.5 ms 
0110 - 3.0 ms 
0111 - 3.5 ms 
1000 - 4.0 ms 
1001 - 4.5 ms 
1010 - 5.0 ms 
1011 - 5.5 ms 
1100 - 6.0 ms 
1101 - 6.5 ms 
1110 7.0 ms 
1111 - 7.5 ms 

T = Retry Enable 

T = 0 Enable Retries 
T = 1 Disable Retries 

M= Multiple Sector Flag 

M= 0 Transfer 1 Sector 
M= 1 li'ansfer Multiple Sectors 

Interrupt Enable 

0 Interrupt at BDRQ time 
1 Interrupt at end of command 

5-585 ORDER NUMBER: 210446-004 



"m_l® 
11I"e' 82062 

RESTORE COMMAND 

The RESTORE command is usually used on a 
power-up comdition. The actual stepping rate used 
for the RESTORE is d.etermined by the Seek Com­
plete time. A sfep pulse is i.ssued and the 82062 
WDC waits for a rising edge on the Seek Complete 
(SC) line before issuing the next pulse. If 10 index 
pulses are received without a rising edge of SC, the 
82062 will switch to sensing the level of the SC line. 
If after 1,024 stepping pul~es the TRACK 000 line 
does not go active, the WDC will set the TRACK 000 
bit in the ERROR register and terminate with an 
INTRO. An interrupt will also occur if WR FAULT 
goes active or DRDY goes inactive at any time dur­
ing execution. 

The rate field specified R3-o is stored in an internal 
register for future use in commands with implied 
seeks. 

A flowchart of the RESTORE command is shown in 
Figure 10. 

SEEK COMMAND 

Since all commands except the SCAN 10 command 
feature an implied seek, the SEEK command can be 
used for overlap seek operattons on multiple drives. 
The actual stepping rate used is taken from the Rate 
Field of the command, and is stored in an internal 
register for future use. If DRDY goes inactive or WR 
FAULT goes active at any time during the seek, the 
command is terminated and an INTRO is generated. 

The direction and number of step pulses needed is 
calculated by comparing the contents of the 
CYLINDER NUMBER LOW/HIGH register pair to 
the internal cylinder position register. After all steps 
have been issued, the internal cylinder position reg­
ister is updated and the command is terminated. 
The Seek Complete (SC) line is not checked at the 
beginning or end of the command. 

If an implied seek was performed, the 82062 will 
search until a rising edge of SC is received. If 10 
index pulses are received without a rising edge of 
SC, the 82062 will switch to senSing the level of the 
SC line. 

A flowchart of the SEEK command is shown in 
Figure 11. 

READ SECTOR 

The READ SECTOR command is used to transfer 
one or more sectors of data from the disk to the 
sector buffer. Upon receipt oUhe READ SECTOR 
command, the 82062 woe checks the CYLINDER 

5-586 

NUMBER LOW/HIGH register pair against the 
internal cylinder position register to see if they are 
equal. If not, the direction and number of steps 
calculation is performed and a seek takes place. If 
an implied seek was performed, the woe will 
search until a rising edge of SC is received. The WR. 
FAULT and DRDY lines are monitored throughout 
the command. . 

RESET INTRa 
ERRORS, 

SET BUSY, eiP 

RESET Rwe 
seT DIRECTION 

OUT 
STORE STEP RATE 

ISSUE A 
STEP PULSE 

PULSE iiCI!i 
SETINTRQ 

RESET BUSY.eIP 

PULSE iiC1i 
SETINTRQ 

RESET BUSY.CIP 

Figure 10. Restore-Command Flow 

. ORDER NUMBER: 210446-004 



82062 

When the Seek Complete (SC) line is high (with or 
without an implied seek having occured), the search 
for an ID field begins. If T = 0 (retries enabled), the 
82062 WDC must find an I D with the correct cyli nder 
number, head, sector size and CRC within 10 revolu­
tions, or an automatic scan ID will be performed to 
obtain cylinder position information, and then a 
seek performed (if necessary). The search for the 
proper I D will be retried for up to 10 revolutions. Ifthe 
correct sector is still not found, the appropriate error 
bits will be set and the command terminated. Data 
CRC errors will also be retried for up to 10 revolutions 
(ifT = 0). 

1fT = 1 (retries disabled), the ID search must find the 
correct sector within 2 revolutions or the approp­
riate error bits will be set and the command 
terminated. 

Both the READ SECTOR and WRITE SECTOR com­
mandsfeaturea"simulated completion" to ease program­
mingo DRQ/BDRQ will be generated upon detecting 
an error condition. This allows the same program 
flow for successful or unsuccessful completion of a 
command. 

When the data address mark is found, the WDC is 
ready to transfer data to the sector buffer. After the 
data has been transferred, the I bit is checked. If 1= 0, 
INTRQ is made active cOincident with BDRQ, indicat­
ing that a transfer of data from the buffer to the host 
processor is required. If I = 1, INTRQ will occur at the 
end ofthe command, i.e. afterthe buffer is unloaded 
by the host. 

An optional M bit may be set for multiple sector 
transfers. When M = 0, one sector is transferred and 
the SECTOR COUNT register is ignored. When M = 
1, multiple sectors are transferred. After each sector 
is transferred the 82062 decrements the SECTOR 
COUNT register and increments the SECTOR NUM­
BER register. The next logical sector will be trans­
ferred regardless of any interleave. Sectors are num­
bered at format time by a byte in the ID field. 

For the 82062 to make multiple sector transfers to the 
buffer, the BRDY line must be toggled low to high for 
each sector. Transfers will continue until the SEC­
TOR COUNT register equals zero, orthe BRDY line 
goes active. If the SECTOR COUNT register is non­
zero (indicating more sectors are to be transferred 
but the buffer is full), BDRQ will be made active and 
the host must unload the buffer. After this occurs, the 
buffer will again be free to accept the remaining 
sectors from the WDC. This scheme enables the 
user to transfer,more'sectors than the buffer memory 
has capacity for. . 
In summary then, READ SECTOR operation is as 
follows: 

5-587 

Figure 11. Seek Command Flow 

ORDER NUMBER: 210446·004 



82062 

When M = 0 (READ SECTOR) 

(1) Host: Sets up parameters; issues 
READ SECTOR command. 

(2) 82062: Strobes BCR; sets BCS = O. 
(3) 82062: Finds sector specified; transfers 

( 4) 
( 5) 
( 6) 
( 7) 
( 8) 

82062: 
82062: 
82062 
Host: 
82062: 

data to buffer. 
Strobes BCR; sets BCS = 1. 
Sets BDRQ = 1, DRQ = 1. 
If I bit = 1 then go to (9). 
Reads contents of sector buffer. 
Waits for BRDY, then sets 
INTRQ = 1; END. 

(9) 82062: Sets INTRQ = 1. 
(10) Host: Reads out cont!lnts of buffer; 

END. 

When M = 1 (READ MULTIPLE SECTOR) 

( 1) Host: Sets up parameters; issues 
READ SECTOR command. 

( 2) 82062: Strobes BCR; sets BCS = O. 
( 3) 82062: Finds sector specified; transfers 

data to buffer. 
( 4) 82062: Decrements SECTOR COUNT 

register; increments SECTOR 
NUMBER register. 

( 5) 82062: Strobes BCR; sets EjCS = 1. 
( 6) 82062: Sets BDRQ" 1, ORO" 1. 
( 7) Host: Reads out contents of buffer; 
( 8) Buffer: Indicates data has been trans-

ferred by activating BRDY. 
( 9) 82062: When BRDY " 1, if Sector Count 

= 0, then go to (11). 
(10) 82062: Go to (2) .. 
(11) 82062: Set INTRQ = 1; END. 

A flowchart of the READ SECTOR command is 
shown in Figure 12. 

WRITE SECTOR 

The WRITE SECTOR command is used to write one 
or more sectors of data to the disk from the sector 

. buffer. Upon receipt of WRITE SECTOR command, 
the 82062 WDC checks the CYLINDER NUMBER 
LOW/HIGH register pair againstthe internal cylinder 
position register to see if they are equal. If not, the 
direction and number of steps calculation is per­
formed and a seek takes place. The WR FAULT and 
DRDY lines are checked throughout the command. 

When the Seek Complete (SC) line is found to be 
true (with or without an implied seek having oc­
cured), the BDRQ signal is made active and the host 
proceeds to load the buffer. When the 82062 senses 
BRDY going high, the 10 field with the specified 

cylinder number, head, and sector size is searched 
for. Once fouM, WR GATE is made active and the 
data is written to the disk. It is necessary to resynch­
ronize the write data since a bit cell can extend from 
295 nS to 315 nS during a write cycle. If retries are 
enabled (T " 0), and if the 10 field cannot be found 
within 10 revolutions, automatic scan 10 and seek 
commands are performed. The 10 Not Found error 
bit is set and the command is terminated if the cor­
rect 10 field is not found within 10 additional revolu­
tions.lf retries are disabled, (T" 1), and if the IDfield 
cannot be found within 2 revolutions, the 10 Not 
Found error bit is set and the command is terminated. 

During a WRITE MULTIPLE SECTOR command 
(M" 1), the SECTOR NUMBER register is incre­
mented and the SECTOR COUNT register is decre­
mented. If the BRDY line is asserted after the first 
sector is transferred from the buffer, the 82062 will 
transfer the next sector. If BRDY is deasserted, the 
82062 will set BDRQ and wait for the host processor 
to place more data in the buffer. In summary then, 
the WRITE SECTOR operation is as follows: 

When M" 0,1 (WRITE SECTOR) 

( 1) Host: Sets up parameters; issues 
WRITE SECTOR command. 

( 2) 82062: Sets BDRQ " 1, 

( 3) Host: 
DRQ" 1. 
Loads'sector buffer with data. 

( 4) 82062: Waits for BRDY = low to high. 
( 5) 82062: Finds specified 10 field; writes 

sector to disk. 
( 6) 82062: If M " 0, then set 

INTRQ" 1; END. 
( 7) 82062 Increment SECTOR NUMBER 

register; decrement SECTOR 
COUNT register. 

( 8) 82062 If SECTOR" 0, then set INTRQ 
= 1; END. 

( 9) 82062 Go to (2). 

A flowchart of the WRITE SECTOR command is 
shown in Figure 13 . 

SCANID 

The SCAN 10 command is used to update the SEC­
TOR/DRIVE/HEAD, SECTOR NUMBER, and CYL­
INDER NUMBER LOW/HIGH registers. 

After the command is loaded, the Seek Complete 
(SC) line is sampled until it is valid. The DRDY and 
WR FAULT lines are also monitored throughout 
execution of the command When the first 10 field is 

5-588 ORDER NUMBER: 210446-004 



inter 

RESETINTRQ 
ERRORS 

SET BUSY. CIP 

82062 

·U T bH 01 command = 1 thon d._ ""II I. taken altar 21ndal pol .... 

Figure 12A. Read Sector Command Flow 

5-589 ORDER NUMBER: 210448-004 



82062 

*" T bit of command = 1 then dished palh Is taken. 
··1. T bit ot command = 1 then telt I, tor 2 Index pul .... 

Figure 12B. Read Sector Command Flow 

5-590 ORDER NUMBER: 210446-004 



inter 

O~I 

*11 relnes disabled then dashed path IS 
taken after 2 Index pulses. 

82062 

Figure 13. Write Sector Command Flow 

5-591 ORDER NUMBER: 210446-004 



82062 

found, the ID information is loaded into the SDH, 
SECTOR NUMBER, and CYLINDER NUMBER 
registers. The internal cylinder position register is 
also updated. If a bad block is detected, the BAD 
BLOCK bit will.also be set. The CRC is checked and 
if an error is found, the 82062 will retry up to 10 
revolutions to find an error-free 10 field. There is no 
implied seek with this command' and the sector 
buffer is not disturbed. 

A flowchart of the SCAN ID command is shown in 
Figure 14. 

WRITE FORMAT 

The WRITE FORMAT command is used to format 
onetrack using the Task Register File and the sector 
buffer. During execution of this command, the sector 
buffer is used for additional parameter information 
instead of sector data. Shown in Figure 15 is the 
contents of the sector buffer for a 32 sector track 
format with an interleave factor of two. Each sector 
requires a two byte sequence. The first byte desig­
nates whether a bad block mark is to be recorded in 
the sector's ID field. An OOH is normal; an 80H indi­
cates a bad block mark forthat sector. In the example 
of Figure 15, sector 04 will get a bad block mark 
recorded. 

The second byte indicates the logical sector number 
to be recorded. This allows sectors to be recorded 
with any interleave- factor desired. The remaining 
memory in the sector buffer may be filled with any 
value; its only purpose is to generate a BRDY to tell 
the 82062 to begin formatting the track. 

An implied seek is in effect on this command. As for 
other commands, if the drive number has been 
changed, an ID field will be scanned for cylinder 
position information before tl;1e implied seek is per­
formed. If no ID field can be read (because the track 
had been erased or because an incomplete format 
had been been used), an ID Not Found error will 
result and the WRITE FORMAT command will be 
aborted. This can be avoided by issuing a RESTORE 
command before formatting. 

The SECTOR COUNT register is used to hold the 
total number of sectors to be formatted (FFH = 255 
sectors), while the SECTOR NUMBER register holds 
the number of bytes minus three to be used for Gap 1 
and Gap 3; for instance, if the SECTOR COUNT 
register value is 02H and the SECTOR NUMBER 
register value is OOH, then 2 sectors are written and 3 
bytes of 4EH are written for Gap 1 and Gap 3. The 
data fields are filled with FFH and the CRC is automat­
icallygenerated and appended. The sector extension 
bit in the SDH register should not be set. After the last 
sector is written the track is filled with 4EH. 

5-592 

-n rvtrIH are dlubled, path 
Is ...... _ 2 Indo. puIoH. 

Figure 14. Scan ID Command Flow 

ORDER NUMBER: 210448-004 



inter 82062 

FORMAT COMMAND 
SECTOR BUFFE-R CONTENTS 

SECTOR LOCICAL 
BUFFER BAD SECTOR 

ADDRESS BLOCK? NUMBER 

00 00 00 
02 00 10 
04 00 01 
06 00 11 
08 00 02 
OA 00 12 
DC 00 03 
DE 00 13 
10 80 04 
12 00 14 
14 00 05 
16 00 15 
18 00 06 
1A 00 16 
1C 00 07 
1E 00 17 
20 00 08 
22 00 18 
24 00 09 
26 00 19 
28 00 OA 
2A 00 1A 
2C 00 DB 
2E 00 1B 
30 00 DC 
32 00 1C 
34 00 00 
36 00 10 
38 00 DE 
3A 00 1E 
3C 00 OF 
3E 00 1F 
40 FF FF 

FO FF FF 

Figure 15 

10 FIELD 
At = A1H with OAH clock 

IDENT = MSB of Cylinder Number 
FE = 0-255 Cylinders 
FF = 256·511 Cylinders 
Fe = 512-767 Cylinders 
FO = 768-1023 Cylinders 

WRITE'GATE ~ 
SOH BYTE = Blls 1 1 2 = Head Number 

ells 3 4 = 0 
Blls 5 6 = Sector Size 
Bit 7 = Bad Block Mark 

Sec # = Logical Sector Number 

The Gap 3 value is determined by the drive motor 
speed variation, data sector length, and the interleave 
factor. The interleave factor is only important when 
1:1 interleave is-used. The formulafor determining the 
minimum Gap 3 length value is: 

Gap 3 = (2 • M • S) + K + E 

M = motor speed variation (e.g., 0.03 
for± 3%) 

S = sector length in bytes 

K = 25 for interleave factor of 1 

K = 0 for any other interleave factor 

E = 7 if the sector is to be extended 

Like all commands, a WR FAULT or drive not ready 
condition will terminate execution of the WRITE 
FORMAT command. Figure 16shows the format that 
the 82062 will write on the disk. 

A flowchart of the WRITE FORMAT command is 
shown in Figure 17. 

DATA FIELD ___ ",,-

DATA FIELD 
At = A1H with OAH clock 
FB " Data Address Mark Normal clock 

USER = Data Field 128 to 1024 Bytes 1 

NOTES 
1 GAP1 and 3 length determrned by sector number register contents dunng 

formatting . 
2 If EXT bit In SOH register IS set to 1 then an additional 7 data bytes are written 

no CAC bytes are wntten 

Figure 16. Track Format 

5-593 ORDER NUMBER: 210446-004 



SET ABORTED 
COMMAND BIT 

RESETINTRQ 
ERRORS 

SET CIP,BUSY 
ACTIVATE BDRQ 

RESE:U~:EG~ 'IB 
SETINTRQ 

RESET BUSY CIP 

82062 

YES 

Figure 17. Write Format Command Flow 

5-594 ORDER NUMBER: 210446-004 



82062 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias ... O°C to 70°C 
Storage Temperature .......... -65°C to +150°C 
Voltage on any pin with 

respect to GND ................. -0.5V to +7V 
Power Dissipation ...................... 1.5 Watt 

,I 

* NOTICE: Stresses above those listed under 
"Absolute Maximum Ratings" may cause perma­
nent damage to the device. This is a stress rating 
only and functional operation of thedeviceat these 
or any other conditions above those indicated in 
the operational sections of this specification is 
not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°C; VCC = +5V ± 10%; GND = OV) 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 

IlL Input Leakage Current ±10 f.J.A VIN = Vee to OV 

IOFL Output Leakage Current ±10 f.J.A VOUT = Vee to 0.45V 

VIH Input High Voltage 2.0 V 

VIL Input Low Voltage 0.8 V 

VOH Output High Voltage 2.4 V IOH = -100uA 

VOL Output Low Voltage 0.45 V IOL = 1.6mA 
4.8mA P2'I,22,23 

lee Supply Current 250 mA All Outputs Open 

CIN Input Capacitance 10 pF fc = 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins returned 
to GND 

For Pins 25,34,37,39 

VIH Input High Voltage 4.6 V 

VIL Input Low Voltage 0.5 V 

TRS Rise Time 30 ns 10% to 90% points 

5-595 ORDER NUMBER: 210446-004 



82062 

A.C. CHARACTERISTICS (TA = O°C to 70oe; Vee = +5V ± 10%; G.ND = OV) . 
HOST READ TIMING 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 

1 Address Stable Before RDI 100 ns 

2 Data Delay From RDI 375 ns 

3 RD Pulse Width 0.4 10 IlS 

4 RD to Data Floating 20 200 ns 

5 Address Hold Time after RDf 0 ns 

6 Read Recovery Time 300 ns 

7 es Stable before RD I 0 ns See Note 6 

~------------~ (4) 

080-7 ------c:-<~' ~,.,.~ ~>------:--CD 
HOST WRITE TIMING 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 

8 Address Stable Before WRI 0 10 lis 
9 es Stable Before WRI 0 10 lis 
10 Data Setup Time Before WRf 0.2 10 liS 
11 WR Pulse Width 0.2 10 liS 
12 Data Hold Time After WRf 10 ns 

13 Address Hold Time After WAf 30 ns 

14 es Hold Time After WRf 0 ns See Note 7 

15 Write Recovery Time 1.0 liS 

• 

5-596 ORDER NUMBER: 210446-004 



82062 

BUFFER READ TIMING (WRITE SECTOR COMMAND) 

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS 

16 BCS I to RD Valid 15 100 ns 

17 Fffi Output Pulse Width 300 400 500 ns See Note 3 

18 Data Setup to RD! 140 ns 

19 Data Hold from AD! 0 ns 

20 RD Repetition Rate 1.2 1.6 2.0 liS See Note 1 

21 RD Float from SCSI 15 100 ns 

~~~16------------~'~ 
1ID--...;r
(OUTPuT)

080-7 ;xxx
~-------®---~

BUFFER WRITE TIMING (READ SECTOR COMMAND)

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

22 SCSI to WR Valid 15 100 ns

23 WR Output Pulse Width 300 400 500 ns See Note 3

24 Data Val;d from WRI 150 ns

25 Data Hold from WRI 60 ns

26 WR Repetition Rate 1.2 1.6 2.0 liS See Note 1

27 WR Float from ~! ,15 100 ns

':~--~®~----------------------------~' ~
(OUTPUT)

@

080·7 -------+<' OATAVALIO
'-----'

I I------@----I I

5-597 ORDER NUMBER: 210446-003

inter 82062

MISCELLANEOUS TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT 'TEST CONDITIONS
28 BDRQ Reset from BRDY 40 200 ns

29 BRDY Pulse Width 800 ns See Note 4

30 BCR Pulse Width 1.4 1.6 1.8 fJS See Note 1

31 STEP Pulse Width 8.3 8.4 8.7 fJs See Note ..

32 INDEX Pulse Width 500 ns

33 RESET Pulse Width 24 WRCLK See Note 2

34 RESET! to BCR 1.6 3.2 6.4 fJS See Note 1

35 RESETl to WR, CSI 6.4 fJS See Note 1

36 WR CLOCK Frequency 0.25 5.0 5.25 MHz 50% Duty Cycle

37 RD CLOCK Frequency 0.25 5.0 5.25 MHz 50% Duty Cycle
See Note 5

BROY --~-'~L®~
BORQ .

~~

STEP~

:~®;et
WR CLOCK 1 ""- r

~r--I-----® •

INOEX~ , RO CLOCK -t~--- ;1~~~~=-1.r

5-598 ORDER NUMBER: 210446-004

82062

READ DATA TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

38 RD CLOCK Pulse Width 95 2000 ns 50% Duty Cycle

39 RD DATA after RD CLOCK! 0 T38 ns

40 RD DATA before RD CLOCK! 20 T38 ns

41 RD DATA Pulse Width 40 T38 ns

42 DRUN Pulse Width 30 ns

DR UN

WRITE DATA TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

43 WR CLOCK Pulse Width 95 2000 ns

Propogatlon Delay

44A WR CLOCK; to WR DATAt

448 WR CLOCKI to WR DATA!

44C WR CLOCKt to WR DATA!
10 65 ns

440 WR CLOCK, to WR DATAt

45A WR CLOCK! to EARLY/LATE!

458)WR CLOCK! to EARLY/LATE,
10 65 ns

46A WR CLOCK! to EARLY/LATEt

WR CLOCK1 to EARLY/LATEt
10 65 ns

468

5-599 ORDER NUMBER: 210446-003

WRCLOCK

WAOATA

A.C. TESTING INPUT, OUTPUT WAVEFORM
INPUT OUTPUT

2'
2.

.8 •• s

AC TESTING INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC 1,
AND 045V FOR A LOGIC 0 TIMING MEASUREMENTS ARE
MADE AT 2 OV FOR A LOGIC 1, ANDO 8V FOR A LOGIC 0

NOTES:
1. Based on WR CLOCK = 5.0 MHz.
2, 24 WR G;LOCK periods = 4,8 /Js at 5.0 MHz.
3. 2 WR CLOCK periods ± 100 ns.

82062

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER t CL ;150 PF

TEST

..J.-
-::-

CL INCLUDES JIG CAPACITANCE

/'

4. When used with a DMA controller BRDY must be > 4/Js or a spurious BDRQ pulse may exist for up to 4/Js
after the rising edge of BRDY.

5. WR CLOCK Frequency = RD CLOCK Frequency ± 15%.
6. RD may be asserted before CS as long as it remains active for at leastthe'minimum, T3 pulse width afterCS

is asserted,
7. WR may be asserted before CS as long as it remains active for at leastthe minimum T11 pulse width afterCS

is asserted,

5-600 ORDER NUMBER: 210446-003

82064
WINCHESTER DISK CONTROLLER

WITH ON-CHIP ERROR DETECTION AND CORRECTION

• Compatible with all Intel and most
other microprocessors

• Controls ST506/ST412 Interface
Winchester Disk Drives

• 5 Mbitlsec Data Transfer Rate

• Eight High-Level commands: Restore,
Seek, Read Sector, Write Sector, Scan
10, Write Format, Compute Correction,
Set Parameter

• Software Compatible with 82062

• High-speed "zero wait state" operation
with 8 MHz 80186/188

• On-chip ECC Unit Automatically
corrects errors

• 5 or 11-bit correction - span software
selectable

• Implied seeks with Read/Write
Commands

• Multiple Sector Transfer Capability

• 128, 256, 512 and 1024 Byte Sector
Lengths

The 82064 Winchester Disk Controller (WDC) with on-chip error detection and correction circuitry interfaces
microprocessor systems to 5%" Winchester disk drives. It is socket and software compatible with the 82062
Winchester Disk Controller, and additionally includes on-chip ECC, support for drives with up to 2k tracks, and
has an additional control signal which eliminates an external decoder.

The 82064 is fabricated on Intel's advanced HMOS III technology and is available in 40-pin CERDIP and
plastic packages.

080 7

BOAO

SUFFER
CONTROL

Vee ----+­

Vss---"

Figure 1. 82064 Block Diagram

w..n
CONTROl

MFM ENCODe

READ
C"",,,Ol

AM DETECT

"'" "'COO<

WA GATE

STEP

WAFAULT

SC

iD'HlE

231242-1

WR DATA

EiiiLY
LiTe
,we
WR CLOCK

AO DATA

RD GATE

DAUN

_RDelOCt(

iCs Vee

BeR RO CLOCK

INTRC AD GATE

SOHLE AD DATA

REm BORa

R5 BRDY

w- DRUN

cs Rwe '. se

" TRACK 000

'2 WR FAULT

DB, INDEX

DB, DROY

DB, STEP

DB, 01.
DB, WR CLOCK

OB2 WR GATE

DB, E'iiiL'Y
DB. iAii
Vss WA DATA

231242-2

Figure 2. 82064 Pinout

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied In an Intel product. No other CirCUit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. November 1984
@ Intel Corporation, 1984 5-601 Order Number: 231242-001

I

inter 82064 ~@w~oo©~ OOO~@OOIMl~iiO@OO

Table 1. Pin Description

Symbol Pin No. Type Name and Function

BCS 1 0 BUFFER CHIP SELECT: Output used to enable reading or
writing of the external sector buffer by the 82064. When low,
the host should not be able to drive the 82064 data bus, RD,
orWR lines.

BCR 2 0 BUFFER COUNTER RESET: Output that is asserted by the
82064 prior to readlwrite operation. This pin is asserted
whenever BCS changes state. Used to reset the address
counter of the buffer memory.

INTRQ 3 0 INTERRUPT REQUEST: Interrupt generated by the 82064
upon command termination. It is reset when the STATUS
register is read, or a new command is written to the
COMMAND register. Optionally signifies when a data transfer
is required on Read Sector commands.

SDHLE 4 0 SDHLE is asserted when the SOH register is written by the
host.

RESET 5 I RESET: Initializes the controller and clears all status flags.
Does not clear the Task Register File.

RD 6 1/0 READ: Tri-state, bi-directional signal. As an input, RD controls
the transfer of information from the 82064 registers to the
host. RD is an output when the 82064 is reading data from the
sector buffer (BCS low). .

WR 7 1/0 WRITE: Tri-state, bi-directional signal. As an input, WR
controls the transfer of command or task information into the
82064 registers. WR is an output when the 82064 is writing
data to the sector buffer (BCS low).

CS 8 I CHIP SELECT: Enables RD and WR as inputs for access to
the Task Registers. It has no effect once a disk command
starts.

AO-2 9-11 I ADDRESS: Used to select a register from the task register
file.

DBo-1 12-19 1/0 DATA BUS: Tri-state, bi-directionaI8-bit Data Bus with control
determined by BCS. When BCS is high the microprocessor
has full control of the data bus for reading and writing the Task
Register File. When BCS is low the 82064 controls the data
bus to transfer to or from the buffer.

Vss 20 Ground

WRDATA 21 0 WRITE DATA: Output that shifts out MFM data at a rate
determined by Write Clock. Requires an external 0 flip-flop
clocked at 10 MHz. The output has an active pullup and
pulldown that can sink 4.8 mA.

LATE 22 0 LATE: Output used to derive a delay value for write
. precompensation. Valid when WR GATE is high. Active on all

, cylinders.

EARLY 23 0 EARL)': Output used to derive a delay value for write
precompensation. Valid when WR GATE is high. Active on all
cylinders.

5-602 231242-001

inter 82064

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function
Ii

WRGATE 24 0 WRITE GATE: High when write data is valid. WR GATE goes
low if the WR FAULT input is active. This output is used by the
drive to enable head write current.

WRCLOCK 25 I WRITE CLOCK: Clock input used to derive the write data rate.
Frequency = 5 MHz for the. ST506 interface. See Note 1.

DIR 26 0 DIRECTION: High level on this output tells the drive to move
the head inward (increasing cylinder number). The state of this
signal is determined by the 82064's internal comparison of
actual cylinder location vs. desired cylinder.

STEP 27 0 STEP: This signal is used to move the drive head to another
cylinder at a programmable frequency. Pulse width = 1.6 JLs
for a step rate of 3.2 JLsl step, and 8.4 JLs for all other step
rates.

DRDY 28 I DRIVE READY: If DRDY from the drive goes low, the
command will be terminated.

INDEX 29' I INDEX: Signal from the drive indicating the beginning of a

~-

track. It is used by the 82064 during formatting, and for
counting retries. Index is edge triggered. Only the rising edge'
is valid.

WR FAULT 30 I WRITE FAULT: An error input to the 82064 which indicates a
fault condition at the drive. If WR FAULT from the drive goes
high, the command will be terminated.

TRACK 000 31 I TRACK ZERO: Signal from the drive which indicates that the
head is at the outermost cylinder. Used to verify proper
completion of a RESTORE command.

SC 32 I SEEK COMPLETE: Signal from the drive indicating to the
82064 that the drive head has settled and that reads or writes
can be made. SC is edge triggered. Only the rising edge is
valid.

RWC 33 0 REDUCED WRITE CURRENT: Signal goes high for all
cylinder numbers above the value programmed in the Write
Precomp Cylinder register. It is used by the precompensation
logic and by the drive to reduce the effects of bit shifting.

DRUN 34 I DATA RUN: This signal informs the 82064 when a field of all
ones or all zeroes has been detected in the read data stream
by an external one-shot. This indicates the beginning of an ID
field. RD GATE is brought high when DRUN is sampled high
for 16 clock periods. See Note 1.

BRDY 35 I BUFFER READY: Input used to Signal the controller that the
buffer is ready for reading (full), or writing (empty), by the host

_':. JLP. Only the rising edge indicates the condition.

5-603 231242-001

inter 82064

Table 1. Pin Description (Continued)

Symbol Pin No. Type· Name and Function

BDRQ 36 0 BUFFER DATA REQUEST: Activated during Read or Write
commands when a data transfer between the host and the
82064's sector buffer is required. Typically used as a DMA
request line, or to generate an interrupt.

RDDATA 37 I READ DATA: Single ended input that acce8fs MFM data from
the drive. See-note 1.

RDGATE 38 0 READ GATE: Output that is asserted when a search for an
address mark is initiated. It remains asserted until the end of
the ID or data field.

RDCLOCK 39 I READ CLOCK: Clock input derived from the external data
recovery circuits. See note 1.

Vee 40 I D.C. POWER: + 5V.

Note 1: This pin requires input levels that are not TIL compatible. These lines can be interfaced to TIL with a pull-up
resistor. Too small a resistor will produce a VIL level that is too high. Too large a resistor will degrade the signal's rise
time. A minimum value for the resistor is determined as follows:

(Vee max) - (82064 Vil max)

(TI~ IOl min) - (82064 III max)

This would typically be:

5.5V - 0.5V = 3 kO
1.6 mA - 10 f'A

FUNCTIONAL DESCRIPTION

The Intel 82064 Winchester Disk Controller (WDC)
interfaces microprocessor systems to Winchester
disk drives that use the Seagate Technology
ST506/ST412 interface. The device translates par­
allel data from the microprocessor to a 5 Mbitlsec,
MFM-encoded serial bit stream. It provides all of the
drive control logiC and control signals which simplify
the design of external data separation and write pre­
compensation circuitry. The 82064 is designed to in­
terface to the host processor through an external
sector buffer.

On-Chip error detection algorithms include the CRCI
CCITT and a 32-bit computer generated ECC poly­
nomial. If the ECC code is selected, the 82064 pro­
vides three possible error handling techniques if an
error is detected during a read operation:

1. Automatically correct the data in the sector buffer,
providing the host with good information.

2. Provide the host with the error location and pat­
tern, allowing the host to correct the error.

3. Take no action other than setting the error flag.

The 82064 is software compatible with the 82962.

INTERNAL ARCHITECTURE

The internal architecture of the 82064 is shown in
more detail in Figure 3. It is made up of seven major
blocks as described below.

PLA Controller

The PLA interprets commands and provides all con­
trol functions. It is synchronized with WR CLOCK.

Magnitude Comparator

An 11-bit magnitude comparator is used to calculate
the direction and number of steps needed to move
the heads from the present to the desired cylinder
pOSition. It compares the cylinder number in the task
file to the internal "present position" cylinder num­
ber.

A separate high-speed equivelance comparator is
used to comparelD field bytes when searching for a
sector ID field.

5-604 231242-001

82064

080·7

AD ,
\Vii J .

AO·2
I ...

INTRQ
HOST
IFC

iiEsET

Ci

iCR
BROY

BUFFER
BORQ IFC

iCI

Vee ----..

GNO----.

PLA
CONTROLLEP

WR DATA

WR CLOCK

RO CLOCK

RD DATA

'""---;::=~_ Si5HLE
STEP
DIRe
u;m
LATE
DRDY

WR FAULT

TRACK 000
INDEX

SC

Rwe
WR GATE

RD GATE
'""-__ -. ORUN

231242-3

Figure 3. 82064 Detailed Block Diagram

CRC and ECC Generator and Checker

The 82064 provides two options for protecting the
integrity of the data field. The data field may have
either a CRC (SOH register, bit 7 = 0), or a 32-bit
ECC (SOH register, bit 7 = 1) appended to it. The 10
field is always protected by a CRC.

The CRC mode provides a means of verifying the
accuracy of the data read from the disk, but does
not attempt to correct it. The CRC generator com­
putes and checks cyclic redundancy check charac­
ters that are written and read from the disk after 10
and data fields. The polynomial used is:

The CRC register is preset to all one's before com­
putation starts.

If the CRC character generated while reading the
data does not equal the one previously written an
error exists. If an 10 field CRC error occurs the "10
not found" bit in the error register will be set. If a

5-605

data field CRC error occurs the "ECC/CRC" bit in
the error register will be set.

The ECC mode is only applicable to the data field. It
provides the user with the ability to detect and cor­
rect errors in the data field automatically. The com­
mands and registers which must be considered
when ECC is used are:

1. SOH Register, bit 7 (CRC/ECG)

2. READ SECTOR Command, bit 0 (T)

3. READ SECTOR and WRITE SECTOR Com-
mands, bit 1 (L)

4. COMPUTE CORRECTION Command

5. SET PARAMETER Command

6. STATUS Register, bit 2 - error correction suc­
cessful

7. STATUS Register, bit 0 - error occurred

8. ERROR Register, bit 6 - uncorrectable error

To enable the ECC mode, bit 7 of the SOH register
must be set to one.

231242-001

82064

Bit 0 (T) of the READ Command controls whether or
not error correction is attempted. When T = 0 and
an error is detected, the 82064 tries up to 10 times
to correct the error. If the error is successfully cor­
rected, bit 2 of the STATUS Register is set. The host
can interrogate the status register and detect that an
error occurred and was corrected. If the error was
not correctable, bit 6 of the ERROR Register is set.
If the correction span was set to 5 bit$, the host may
now execute the SET PARAMETER Command to
change the correction span to 11 bits, and attempt
the read again. If the error persists, the host can
read the data, but it will contain errors.

When T = 1 and an error is detected, no attempt is \
made to correct it. Bit 0 of the STATUS Register and
bit 6 of the ERROR Register are set. The user now
has two choices:

1. Ignore the error and make no attempt to correct it.

2. Use the COMPUTE CORRECTION Comm~nd to
determine the location and pattern of the error,
and correct it within the user's program.

When the COMPUTE CORRECTION Command is
implemented, it must be done before,executing any
command which can alter the contents of the ECC
Register. The READ SECTOR, WRITE SECTOR,
SCAN 10, and FORMAT Commands will alter this
register and correction will be impossible. The COM­
PUTE CORRECTION Command may determine that
the error is uncorrectable, at which point the error
bits in the STATUS and ERROR Registers are set.

Although ECC generation starts with the first bit of
the F8H byte in the data 10 field, the actual ECC
bytes written will be the same as if the A 1 H byte was
included. The ECC polynomial used is:

X32+ X28+ X26+ X19+ X17 + X10+ X6+ X2+ 1

For automatic error correction, the external sector
buffer must be implemented with a static RAM and
counter, not with a FIFO.

The SET PARAMETER Command is used to select
a 5-bit or 11-bit correction span.

When the L Bit (bit 1) of the READ SECTOR and
WRITE SECTOR commands is set to one, they are
referred to as READ LONG and WRITE LONG com­
mands. For these commands, no CRC or ECC char­
acters are generated or checked by the 82064. In
effect, the data field is extended by 4 bytes which
are passed to/from the sector buffer.

With proper use of the WRITE SECTOR, READ
LONG, WRITE LONG, and READ SECTOR Com­
mands, a diagnostic routine may be developed to
test the accuracy of the error correction process.

MFM ENCODER/QECODER

Encodes and decodes MFM data to be written/read
from the drive. The MFM encoder operates from
WR CLOCK, a clock having a frequency equal to the
bit rate. The' MFM decoder operates from
RD CJ-OCK, a bit rate clock generated by the exter­
nal data separator. RD CLOCK and WR CLOCK
need not be synchronous.

The MFM encoder also generates the write precom­
pensation control signals. Depending on the bit pat­
tern of the data, EARLY or LATE may be asserted.
External circuitry uses these signals to compensate
for drift caused by the influence one bit has over
another. More information on the use of the EARLY
and LATE control signals can be found in the sec­
tion which describes the drive interface.

Address Mark (AM) Detection

An address mark is comprised of two unique bytes
preceeding both the 10 field and the data field. The
first byte is used for resynchronization. The second
byte indicates whether it is an 10 field or a data field.

The first byte, A 1 H, normally has a clock pattern of
OEH; however, one clock pulse has been sup­
pressed, making it OAH. With this pattern, the AM
detector knows it is looking at an address mark. It
now examines the next byte to determine if it is an 10
or data field. If this byte is 111101XX or 111111XX it
is an 10 field. Bits 3, 1, and 0 are the high order
cylinder number bits. If the second byte is F8H, it is a
data field.

Host/Buffer Interface Control

The primary interface between the host processor
and the 82064 is an 8-bit bi-directional bus. This bus
is used to transmit and receive data for both the
82064 and the sector buffer. The sector buffer con­
sists of a static RAM and counter. Since the 82064
makes the bus active when accessing the sector
buffer, a transceiver must be used 'to isolate the host
/:luring this time. Figure 4 illustrates a typical inter­
face with a sector buffer. Whenever the 82064 is not
using the sector buffer, the BUFFER CHIP SELECT
(BCS) is high (disabled). This allows the host access
to the 82064's Task Register File and to the sector
buffer. A decoder is used to generate' BCS when
AO-2 is '000'. an unused address in the 82064. A
binary counter is enabled whenever RD or WR go
active. The location within the; sector buffer which is
addressed by the counter will be accessed. The
counter will be incremented by the trailing edge of
the RD or WR. This allows the host to access se-

5-606 231242-001

inter 82064

- RD RD

-k~ -
W~ WR,

~
DATA BUS (8) --DATA - '//.

DBO_7

BCR

~>~
00 - A DATA

o RE -HOST - A,
CPU • - 82064

SYSTEt,j • • -
• - • WE -• • • - • - • • t,jR - •
Ox - AX -

TC CS

-
D 0 E
C
0

BCS D
~

3J r E -
CS

ADDRESS
3J

AO_2
I - I

D ° BRDY

CP BDRO
DMA r-- Dt,jA

1 ""i- II INTERRUPT REOUEST CONTROLLER INTRO

t 231242-4

Figure 4. Host Interface Block Diagram

quential bytes within the sector buffer. The decoqer
also generates a CS for the 82064 whenever Ao-2
does not equal '000', allowing access to the 82064's
internal Task Register File while keeping the sector
buffer tri-stated.

During a WRITE SECTOR Command, the host proc­
essor sets up data in the Task Register File and then
issues the command. The 82064 asserts BUFFER
COUNTER RESET (BCR) to reset the counter. It
then generates a status to inform the host that it can
load the sector buffer with data to be written. When
the counter reaches its maximum count, the BUFF­
ER READY (BRDY) signal is asserted by the carry
out of the counter, informing the 82064 that the sec­
tor buffer is full. (BRDY is a rising edge triggered
Signal which will be ignored if asserted before the'

82064 asserts BCR.) BCS is then asserted, discon­
necting the host through the transceivers,and the
RD and WR lines become outputs from the 82064 to
allow access to the sector buffer. When the 82064 is
done using the buffer, it deasserts BCS which again
allows the host to access the local bus. The READ
SECTOR command operates in a similar manner,
except the buffer is loaded by the 82064 instead of
the host.

Another control signal, BUFFER DATA REQUEST
(BDRQ), can be used with a DMA controller or in a
programmed 1/0 environment. In either case, it indi­
cates that the 82064 is ready to send or receive
data. For further explanation, refer to the individual
command descriptions and the A.C. Characteristics.

5-607 231242-001

intJ 82064

When INTRa is asserted, the host is signaled that
execution of a command has terminated (either a
normal termination or an aborted command). For the
READ SECTOR command, interrupts may be pro­
grammed to be asserted either at the termination of
the command, or when BORa is asserted. INTRa
will remain active until the host reads the STATUS
register to determine the cause of the termination, or
writes a new command into the COMMAND register.

The 82064 asserts SDHLE whenever the SDH register
is being written. This signal can be used to latch the
drive and head select information in an external regis­
ter for decoding. Figure 5 illustrates one method .

Drive Interface

The drive side of the 82064 WDC requires three sec­
tions of external logic. These are the control line
buffer/receivers, data separator, and write precom­
pensation. Figure 5 illustrates a drive interface.

The buffer/receivers condition the control lines to be
driven down the cable to the drive. The control lines
are typically single-ended, resistor terminated, TIL
levels. The data lines to and from the drive also re­
quire buffering. This is typically done with differential
RS-422 drivers. The interface specification for the
drive will be found in the drive manufacturer's OEM

.l\. r---o L Q HSELO

080_ 4 "
A Q HSEL1

~ Q HSEL2
H Q r-- r-- DSEL1

Qt-- 0 t-- DSEL2
E
c t-- DSEL3 0
0
E (-- DSEL4

SDHLE

RD GATE
DRUN DATA -RD DATA SEPARATOR

RD CLOCK

82064

WR DATA WRITE DISK

t: ~ EARLY PRECOMPENSATION DRIVE

LATE AND
.... 080_7 RWC SYNCHRONIZATION

HOST

STEP
DIR

DRDY
WR FAULT INTERFACE/

TRACK 000 BUFFER
INDEX

SC
WR GATE 231242-5

Figure 5. Drive Interface Block Diagram

5-608 231242-001

82064

manual. The 82064 supplies TTL compatible signals,
and will interface to most buffer/driver devices.

The data recovery circuits consist of a phase locked
loop, data separator, and associated components.
The 82064 interacts with the data separator through
the DATA RUN (DRUN) and RD GATE signals. A
block diagram of a typical data separator circuit is
shown in Figure 6. Read data from the drive is pre­
sented to the RD DATA input of the 82064, the ref­
erence multiplexor, and a retriggerable one shot.
The RD GATE output will be deasserted when the
82064 is not inspecting data. The PLL should remain
locked to the reference clock.

When any READ or WRITE command is initiated .
and a search for an address mark begins, the DRUN
input is examined. The DRUN one-shot is set for
slightly longer than one bit time, allowing it to retrig­
ger constantly on a field of all ones or all zeroes. An
internal counter times out to see that DRUN is as­
serted for two byte times. RD GATE is asserted by
the 82064, switching the data separator to lock on to
the incoming data stream. If DR UN is deasserted
prior to an additional seven byte times, RD GATE is
deasserted and the process is repeated. RD GATE
will remain asserted until a non-zero, non-address
mark byte is detected. The 82064Will then deassert
RD GATE for two byte times to allow the PLL to lock
back on the reference clock, and start the DRUN
search again. If an address mark is detected, RD
GATE remains asserted and the command will con­
tinue searching for the proper ID field. This se­
quence is shown in the flow chart in Figure 7.

The write precompensation circuitry is designed to
reduce the drift in the data caused by interaction
between bits. It is divided into two parts, REDUCED
WRITE CURRENT (RWC) and EARLY/LATE writing
of bits. A block diagram of a typical write precom­
pensation circuit is shown in Figure 8.

The cylinder in which the RWC line becomes active
is controlled by the REDUCE WRITE CURRENT reg­
ister in the Task Register File. When a cylinder is
written which has a cylinder number greater than or
equal to the contents of this register, the write cur­
rent will be reduced. This will decrease the interac­
tion between the bits.

Drift may also be caused by the bit pattern. With
certain combinations of ones and zeroes some of
the bits can drift far enough apart to be difficult to
read without error. This phenomenon can be mini­
mized by using EARLY and LATE as described be­
low. The 82064 examines three bits, the last one
written, the one being written, and the next one to be
written. From this, it determines whether to assert
EARLY or LATE. Since the bit leaving the 82064 has
already been written, it is too late to make it early.
Therefore, the external delay circuit must be as fol­
lows:

EARLY asserted and LATE deasserted = no de­
lay

EARLY deasserted and LATE deasserted = one
unit delay (typically 12-15 ns)

EARLY deasserted and LATE asserted = two
units delay (typically 24-30 ns)

EARLY and LATE are always active, and should be
gated externally by the RWC signal. Figure 8 illus­
trates one method of using these signals.

250 NSEC
RETRIGGERABLE DRUN

ONE-SHOT
Iojfloj ... - ~ DISK ,. J RD DATA
DATA

L~
C

r~ 82064

fiLTER I ~ AND +2 RD CLOCK
'- A

COlojp VCO r--
IojUX

I
B RD GATE

I +2 I WR CLOCK
L J

1242-6
ltO IojHZ J ,

OSC 23

Figure 6. Data Separator Circuit

5-609 231242-001

intJ 82064

NO

Figure 7a. PLL Control Sequence For ID Field

5-610 231242-001

82064

231242-8

Figure 7b. PLL Control Sequence For Data Field

5-611 231242-001

infef , 82064

WR DATA 1----1 D L Q 1----1
EARLY D A Q a..;.;r-~";"""';"F'"

LATE D i: Q

C H

82064

10MHZ
OSC

WR DATA
TO DRIVE

RWC~----~~;---------i-'

1.-_________________ • TO DRIVE

231242-9

Figure 8. Write Precompensation Circuit

TASK REGISTER FILE

The Task Register File is a bank of registers used to
hold parameter information pertaining to each com­
mand, status information, and the command itself.
These registers and their addresses are:

A2 A1 AD READ WRITE
0 0 0 BUS TRI-STATED BUS TRI-STATED
0 0 1 ERROR REGISTER REDUCE WRITE CURRENT
0 0 SECTOR COUNT SECTOR COUNT
0 1 '1 SECTOR NUMBER SECTOR NUMBER

0 0 CYLINDER LOW CYLINDER LOW
0 1 CYLINDER HIGH CYLINDER HIGH

0 SDH SDH
1 STATUS COMMAND

NOTE:
These registers are not cleared by 'RI:SET being asserted.

ERROR REGISTER

This read only register contains specific error infor­
mation after the termination of a command. The bits
are defined as follows:

Bit 7 - Bad Block Detect (BB)

This bit is set when an 10 field has been encoun­
tered that contains a bad block mark. It is used for
bad sector mapping.

Bit 6 - CRC/ECC Data Field Error (CRC/ECG)

When in the CRC mode (SOH register, bit 7 = 0),
this bit is set when a CRC error occurs in the data
field. When retries are enabled, ten more attempts
are made to read the sector correctly. If none of
these attempts are successful bit 0 in the STATUS
register is also set. If one of the attempts is success­
ful, the CRC/ECC error bit remains set to inform the
host that a marginal condition exists; however, bit 0
in the STATUS register is not set.

When in the ECC mode (SOH register, bit 7 = 1),
this bit is set when the first non-zero syndrome is
detected. When retries are enabled, up to ten at­
tempts are made to correct the error. If the error is
successfully corrected, this bit remains set; howev­
er, bit 2 of the STATUS register is also set to inform
the host that the error has been corrected. If the
error is not correctable, the CRC/ECC error bit re­
mains set and bit 0 of the STATUS register is also
set.

The data may be read even if uncorrectable errors
exist.

NOTE: If the long mode (L) bit is set in the READ or
WRITE command, no error checking is performed.

Bit 5 - Reserved

Not used. FOfced to zero.

5-612 231242-001

82064

Bit 4 - 10 Not Found (10)

This bit is set to indicate that the correct cylinder,
head, sector, or size parameter could not be found,
or that a CRC error occurred in the 10 field. This bit
is set on the first failure and remains set even if the
error is recovered on a retry. When recovery is un­
successful, the Error bit (bit 0) of the STATUS regis­
ter is also set.

For a SCAN 10 command with retries enabled (T =
0), the Error bit in the STATUS register is set after
ten unsuccessful attempts have been made to find
the correct 10. With retries disabled (T = 1), only
two attempts are made before setting the Error bit.

For a READ or WRITE command with retries en­
abled (T = 0), ten attempts are made to find the
correct 10 field. If there is still an error on the tenth
try, an auto-scan and auto-seek are performed.
Then ten more retries are made before setting the
Error bit. When retries are disabled (T = 1), only two
tries are made. No auto-scan or auto-seek opera­
tions are performed.

Bit 3 - Reserved

Not used. Forced to zero.

Bit 2 - Aborted Command (AC)

Command execution is aborted and this bit is set if a
command was issued while DRDY is deasserted or
WR FAULT is asserted. This bit will also be set if an
undefined command is written to the COMMAND
register; however, an implied seek will be executed.

Bit 1 - Track 000 Error (TKOOO)

This bit is set during the execution of a RESTORE
command if the TRACK 000 pin has not gone active
after the issuance of 2047 step pulses.

Bit 0 - Data Address Mark (DAM) Not Found

~ This bit is set during the execution of a READ SEC­
TOR command if the DAM is not found following the
proper sector 10.

REDUCE WRITE CURRENT REGISTER

This register is used to define the cylinder number
where the RWC output (Pin 33) is asserted.

I ,7 6 I 5 I 4 I 3 I 2 I 1 I 0
, CYLINDER NUMBER + 4

The value (OO-FFH) loaded into this cylinder is inter­
nally multiplied by four to specify the actual cylinder
where RWC is asserted. Thus a value of 01 H will
cause RWC to be asserted on cylinder 04H, 02H on
cylinder OSH, ... , 9CH on cylinder 270H, 9DH on
cylinder 274H, and so on. RWC will be asserted
when the present cylinder is greater than or equal to
the cylinder indicated by this register. For example,
the ST506 interface requires precomp on cylinder
SOH and above. Therefore, the REDUCE WRITE
CURRENT register should be loaded with 20H.

A value of FFH causes RWC to remain deasserted,
regardless of the actual cylinder number.

SECTOR COUNT REGISTER

This register is used to define the number of sectors
that need to be transferred to the buffer during a
READ MULTIPLE SECTOR or WRITE MULTIPLE
SECTOR command.

1716151413121 1 101
NUMBER OF SECTORS

The value contained in the register is decremented
after each sector is transferred to/from the sector
buffer. A zero represents a 256 sector transfer, a
one a one sector transfer, etc. This register is a
"don't care" when single sector commands are
specified. .

SECTOR NUMBER REGISTER

This register holds the sector number of the desired
sector.

1716151413121 1 101
SECTOR NUMBER

For a multiple sector command, it specifies the first
sector to be transferred. It is incremented after each
sector is transferred to/from the sector buffer. The
SECTOR NUMBER register may contain any value
from 0 to 255.

The SECTOR NUMBER register is also used to pro­
gram the Gap 1 and Gap 3 lengths to be used when
formating a disk. See the WRITE FORMAT com­
mand description for further explanation.

5-613 231242-001

82064

CYLINDER NUMBER LOW REGISTER

This register holds the lower byte of the desired cyl­
inder number.

171615\41312111°1
LS BYTE OF CYL. NUMBER

It is used with the CYLINDER NUMBER HIGH regis­
ter to specify the desired cylinder number over a
range of 0 to 2047.

CYLINDER NUMBER HIGH REGISTER

This register holds the three most significant bits of
the desired cylinder number.

I:I:I:I:I~I!I:I~I
The CYLINDER NUMBER LOW/HIGH register pair
determine where the RYW heads are to be posi­
tioned. The host writes the desired cylinder number
into these registers. Internal to the 82064 is another
pair of register.s that hold the present head location.
When any command other than a RESTORE is exe­
cuted, the internal head location registers are com­
pared to the CYLINDER NUMBER registers to deter­
mine how many cylinders to move the heads and in
what direction.

The internal head location registers are updated to
equal the CYLINDER NUMBER registers after the
completion of the seek.

When a RESTORE command is executed, the inter­
nal head location registers are reset to zero while
DIR and STEP move the heads to track zero.

SECTOR/DRIVE/HEAD (SOH) REGISTER

The SDH register contains .the desired sector size,
drive number, and head parameters. The format is
shown in Figure 9. The EXT bit (bit 7) is used to
select between the CRC or ECC mode. When bit 7
= 0 the ECC mode is selected for the data field.
When bit 7 = 1 the CRC mode is selected.

The SDH byte written in the ID field of the disk by the
FORMAT command is different than the SDH regis­
ter contents. The recorded SDH byte does not have

the drive number recorded, but does have the bad
block mark written. The format of the SDH byte writ­
ten on the disk is:

STATUS REGISTER

The status register is used to inform the host of cer­
tain events performed by the 82064, as well as re­
porting status from the drive control lines. Reading
the STATUS register deasserts INTRQ. The format
is:

Bit 7 - Busy

This bit is asserted when a command is written into
the COMMAND register and, except for the READ
command, is deasserted at the end of the cQrri­
mand. When executing a READ command, Busy will
be deasserted when the sector buffer is full. Com­
mands should not be loaded into the COMMAND
register when Busy is set. When the Busy bit is set,
no other bits in the STATUS or ERROR registers are
valid.

Bit 6 - Ready

This bit reflects the status of DRDY (pin 28). When
this bit equals zero, the command is aborted and the
status of this bit is latched.

Bit 5 - Write Fault (WF)

This bit reflects the status of WR FAULT (pin 30).
When this bit equals one the command is aborted,
INTRQ is asserted, and tile status of this bit is
latched.

Bit 4 - Seek Complete (SC)

This bit reflects the status of SC (pin 32). When a
seek or implied seek has been initiated by a com­
mand, execution of the command pauses until the
seek is complete. This bit is latched after an aborted
command error. .

5-614 231242-001 .

inter 82064

7 6 5 4 3 2 o

~I_EX_:~,~I~~~IZ_E_~~D_R_IV_E __ ~~~_~~:H_E_AD~:~~l__ '

~"" ,/ \', ~~~~, -----------
,.",

,"" I ::::........... --------_
" \ ---.. ..
6 5 SECTOR SIZE 4 3 DRIVE # 2 1 0 HEAD #
0 0 256 0 0 DSEL1 0 0 0 HSELO
0 1 512 0 1 DSEL2 0 0 1 HSEL1
1 0 1024 ., 0 DSEL3 0 1 0 HSEL2
1 1 128 1 1 DSEL4 0 1 1 HSEL3

1 0 0 HSEL4
1 0 1 HSEL5
1 1 0 HSEL6
1 1 1 HSEL7

231242-10

NOTE:
Drive select and head select lines must be generated externally. Figure 3 represents one method of achieving this.

Figure 9. SDH Register Format

Bit 3 - Data Request (ORO)

The ORO bit reflects the status of BDRO (pin 36). It
is asserted when the sector buffer must be written
into or read from. ORO and BDRO remain asserted
until BRDY indicates that the sector buffer has been
filled or emptied, depending upon the command.
BDRO can be used for DMA interfacing, while ORO
is used in a programmed I/O environment.

Bit 2 - Data Was Corrected (DWC)

When set, this bit indicates that an ECC error has
been detected during a read operation, and that the
data in the sector buffer has been corrected. This
provides the user with an indication that there may
be a marginal condition within the drive before the
errors become uncorrectable. This bit is forced to
zero when not in the ECC mode.

Bit 1 - Command In Progress (CIP)

When this bit is set a command is being executed
and a new command should not be loaded. Al­
though a command is being executed, the sector
buffer is still available for access by the host. Wheri
the 82064 is no longer Busy (bit 7 = 0) the STATUS
register can be read. If other registers are read while
CIP is set the contents of the STATUS register will
be returned.

5-615

Bit 0 - Error

This bit is set whenever any bits in the ERROR reg­
ister are set. It is the logical 'or' of the bits in the
ERROR register and may be used by the host proc­
essor to quickly check for nonrecoverable errors.
The host must read the ERROR register to deter­
mine what type of error occurred. This bit is reset
when a new command is written into the COMMAND
register.

COMMAND REGISTER .

The command to be executed is written into this
write-only register:

1716151413121 1 101
COMMAND

The command sets Busy and CIP, and begins to ex­
ecute as soon as it is written into this register. There­
fore, all necessary information should be loaded into
the Task Register File prior to entering the com­
mand. Any attempt to write a register will be ignored
until command execution has terminated, as indicat­
ed by the CIP bit being cleared. INTRO is deassert­
ed when the COMMAND register is written.

231242-001

82064

COMMAND 7 6
RESTORE 0 0
SEEK 0 1
READ SECTOR 0 0
WRITE SECTOR 0 0
SCAN 10 0 1
WRITE FORMAT 0 1
COMPUTE CORRECTION 0 0
SET PARAMETER 0 0

Ra-o = Stepping Rate Field

For 5 MHz WR CLOCK:

R3-0 = 0000 35 JLs
0001 0.5 ms
0010 1.0 ms
0011 1.5 ms
0100 2.0 ms
0101 2.5 ms
0110 3.0 ms
0111 3.5 ms
1000 4.0 ms
1001 4.5 ms
1010 5.0 ms
1011 5.5 ms
1100 6.0 ms
1101 6.5 ms
1110 3.2 JLs
111116JLs

I = Interrupt Control

5
0
1
1
1
0
0
0
0

4 3 2 1 0
1 R3 R2 R1 RO
1 R3 R2 R1 RO
0 I M L T
1 0 M L T
0 0 0 0 T
1 0 0 0 0
0 1 0 0 0
0 0 0 0 S

I = 0 INTRa occurs with BDRO/DRO indicating
the sector buffer is full. Valid only when M '=
o.

I = 1 INTRa occurs when the command is com­
pleted and the host has read the sector buffer.

M = Multiple Sector Flag

M = 0 Transfer one sector. Ignore the SECTOR
COUNT register ..

M = 1 Transfer multiple sectors.

L = Long Mode

L. = 0 Normal mode. Normal CRC or ECC functions
are performed.

L = 1 Long mode. No CRC or ECC bytes are devel­
oped or error checking performed on the
data field. The 82064 appends the four addi­
tional bytes supplied by the host or disk to
the data field.

T = Retry Enable

T = 0 Enable retries.

5-616

T = 1 Disable retries.

S = Error Correction Span

S = 0 5-bit span.

S = 1 11·bit span.

RESTORE COMMAND

The RESTORE command is used to position the
R/W heads over track zero. It is usually issued by
the host when a drive has just been turned on. The
82064 forces an auto-restore when a FORMAT
command has been issued following a drive number
change.

The actual step rate used for the RESTORE com­
mand is determined by the seek complete time. A
step pulse is issued and the 82064 waits for a rising
edge on the SC line before issuing the next pulse. If
the rising edge of SC has not occurred within ten
revolutions (INDEX pulses) the 82064 switches to
sensing the level of SC. If after 2047 step pulses the
TRACK 000 line does not go active the 82064 will
set the TRACK 000 bit in the ERROR register, assert
INTRa, and terminate execution of the command.
An interrupt will also occur if WR FAULT is asserted
on DRDY is deasserted at any time during execu­
tion.

The rate field specified (Ra-o) is stored in an internal
register for future use in commands with implied
seeks.

A flowchart of the RESTORE command is shown in
Figure 10.

SEEK COMMAND

The SEEK command can be used for overlapping
seeks on multiple drives. The step rate used is taken
from the Rate Field of the command, and is stored in
an internal re,9ister for future use by those com­
mands with implied seek capability.

The direction and number of step pulses needed are
'calculated by comparing the contents of the CYLIN­
DER NUMBER registers ih the Task Register File to
the present cylinder position stored internally. After
all the step- pulses have been issued the present
cylinder position is updated, INTRa is' asserted, and
the command terminated.

231242-001

inter 82064

If DRDY is deasserted or WR FAULT is asserted
during the execution of the command, INTRO is as­
serted and the command aborts setting the AC bit in
the ERROR register.

If an implied seek is performed, the step rate indicat­
ed by the, rate field is used for all but the last step
pulse. On the last pulse, the command execution
continues until the rising edge of SC is detected. If
10 INDEX pulses are received without a rising edge
of SC, the 82064 will switch to sensing the level of
SC.

A flowchart of the SEEK command flow is shown in
Figure 11.

READ SECTOR

The READ SECTOR command is used to transfer
one or more sectors of data from the disk to the
sector buffer. Upon receipt of the command, the
82064 checks the CYLINDER NUMBER LOW/HIGH
register pair against the internal cylinder position
register to see if they are equal. If not, the direction
and number of steps calculation takes place, and a
seek is initiated. As stated in the description of the
SEEK command, if an implied seek occurs, the step
rate specified by the rate field is used for all but the
last step pulse. On the last step pulse the seek con­
tinues until the rising edge of SC is detected.

If the 82064 detects a change in the drive number
since the last command, an auto-scan 10 is per­
formed. This updates the internal cylinder position
register to reflect the current drive before the seek
begins.

After the 82064 senses SC (with or without an im­
plied seek) it must find an 10 fi.,ld with the correct
cylinder number, head, sector size, and CRC. If re­
tries are enabled (T = 0), ten attempts are made to
find the correct 10 field. If there is still an error on the
tenth try, an auto-scan 10 and auto-seek are per-.

)ormed. Then ten more retries are attempted before
setting the 10 Not Found error bit. When retries are
disabled (T = 1) only two tries are made. No auto­
scan or auto-seek operations are performed.

When the data address mark (DAM) is found, the
82064 is ready to transfer data into the sector buffer.
When the disk has filled the sector buffer, the 82064
asserts BDRO and ORO and then checks the I flag.
If I = 0, INTRO is asserted, Signaling the host to
read the contents of the sector buffer. If I = 1,
INTRO occurs after the host has read the sector
buffer and the command has terminated. If after suc-

. cessfully reading the 10 field, the DAM is not found
the DAM Not Found bit in the ERROR register is set.

5-617

AESETfNTAQ
ERRORS

SET BUSY CIP

RESET Awe
SIET DIRECTION

- OUT
STOAE STEPAATE

ISSUE A
STEPPUL$I

PULSE BeA
SET AC, INTRo

RESET BUSY, CIP

231242-11

Figure 10. Restore Command Flow

231242-001

inter 82064

YES

YES

RESET INTRQ.
ERRORS.

SET BUSY. ClP
STORE STEP RATE

Figure 11. Seek Command Flow.·.

5-618 231242-001

inter 82064

An optional M flag can be set for multiple sector
transfers. When M = 0, one sector is transferred
and the SECTOR COUNT register is ignored. When
M = 1, multiple sectors are transferred. After each
sector is transferred, the 82064 decrements the
SECTOR COUNT register and increments the SEC­
TOR NUMBER register. The next logical sector is
transferred regardless of any interleave. Sectors are
numbered during the FORMAT command by a byte
in the 10 field.

For the 82064 to make multiple sector transfers to
the sector buffer, the BROY signal must be toggled
from low to high for each sector. The transfers con­
tinue until the SECTOR COUNT register equal zero.
If the SECTOR COUNT is not zero (indicating more
sectors remain to be read), and the sector buffer is
full, BORa will be asserted and the host must unload
the sector buffer. Once this occurs, the sector buffer
is free to accept the next sector.

WR FAULT and OROY are monitored throughout the
command execution. If WR FAULT is asserted or
OROY is deasserted, the command will terminate
and the Aborted Command bit in the ERROR regis­
ter will be set. For a description of the error checking
procedure on the data field see the explanation in
the section entitled "CRC and ECC Generator and
Checker."

Both the READ and WRITE commands feature a
"simulated completion" to ease programming.
BORa, ORa, and INTRa are generated in a normal
manner upon detection of an error condition. This
allows the same program flow for successful or un­
successful completion of a command.

In summary then, the READ SECTOR operation is
as follows:

When M = 0 (Single Sector Read)

1. HOST: Sets up parameters. Issues READ
SECTOR command.

2. 82064: Asserts BCA.

3. 82064: Finds sector specified. Asserts BCR
and BCS. Transfers data to sector
buffer.

4. 82064: Asserts BCA. Oeasserts BCS.

5. 82064: Asserts BORa and ORa.

6. 82064: If I = 1 then go to 9.

7. HOST: Read contents of sector buffer.

8. 82064: Wait for BROY, then assert INTRa.
End.

9. 82064: Assert INTRa ..

10. HOST: Read contents of sector buffer. End.

When M = 1 (Multiple Sector Read)

1. HOST: Sets up parameters. Issues READ
SECTOR command.

2. 82064: Asserts BCA.

3. 82064: Finds sector specified. Asserts BCR
and BCS. Transfers data to sector buff­
er.

4. 82064: Asserts BCA. Oeasserts BCS.

5. 82064: Asserts BORa and ORa.

6. HOST: Reads contents of sector buffer.

7. SECTOR
BUFFER: Indicates data has been transferred by

asserting BROY.

8. 82064: When BROY is asserted, decrement
SECTOR COUNT, increment SECTOR
NUMBEA. If SECTOR COUNT = 0, go
to 11.

9. 82064: Go to 2.

10. 82064: Assert INTRa.

A flowchart of the READ SECTOR commal')d is
shown in Figure 12.

WRITE SECTOR

The WRITE SECTOR command is used to write one
or more sectors of data from the sector buffer to the
disk. Upon receipt of the command, the 82064
checks the CYLINDER NUMBER LOW/HIGH regis­
ter pair against the internal cylinder position register
to see if they are equal. If not, the direction and num­
ber of steps calculation takes place, and a seek is
initiated. As stated in the description of the SEEK
command, if an implied seek occurs, the step rate
specified by the rate field is used for all but the last
step pulse. On the last step pulse the seek contin­
ues until the rising edge of SC is detected.

If the 82064 detects a change in the drive number
since the last command, an auto-scan 10 is per­
formed. This updates the internal cylinder position
register to reflect the current drive before the seek
begins.

After the 82064 senses SC (with or without an im­
plied seek) BORa and ORa are asserted and the
host begins filling the sector buffer with data. When
BROY is asserted, a search for the 10 field with the
correct cylinder number, head, sector size, and CRC
is initiated. If retries are enabled (T = 0), ten at­
tempts are made to find the cog-ect .10 field. If there
is still an error on the tenth try, an auto-scan 10 and
auto-seek are performed. Then ten more retries are
attempted before setting the 10 Not Found error bit.
When retries are disabled (T = 1) only two tries are
made. No auto-scan or auto-seek operations are
performed.

5-619 231242-001

82064

(READ SECTOR)

+
DE-ASSERT INTRQ.

ERRORS.
ASSERT BUSY. ClP

o

231242-13

*If T bit"of command = 1 then dashed path is taken after 2 index pulses.

Figure 12a. Read Sector Command Flow

5-620 231242-001

82064 I

NO

·11 T bit 01 command = 1 then dashed path is taken. 231242-14

··11 T bit 01 command = 1 then test is lor 2 index pulses.

Figure 12b. Read Sector Command Flow (Continued).

5-621 231242-001

inter 82064

When the correct 10 is found, WR GATE is asserted
and data is written to the disk. When the CRC/ECC
bit (SOH Register, bit 7) is zero, the 82064 gener­
ates a two byte CRC character to be appended to
the data. When the CRC/ECC bit is one, four ECC
bytes replace the CRC character. When L = 1, the
polynomial generator is inhibited and neither CRC or
ECC bytes are generated. Instead four bytes of data
supplied by the host are written.

During a WRITE MULTIPLE SECTOR command (M
~ 1), the SECTOR NUMBER register is increment­
ed and the SECTOR COUNT register is decrement­
ed. If BRDY is asserted after the first sector is read
from the sector buffer, the 82064 continues to read
data from the sector buffer for the next sector. If
BRDY is deasserted, the 82064 asserts BORa and
waits for the host to place more data in the sector
buffer.

In summary then, the WRITE SECTOR operation is
as follows:'

When M = 0,1

1. HOST: Sets up parameters. Issues READ SEC-
TOR command.

2. 82064: Asserts BDRa and ORO.

3. HOST: Loads sector buffer with data.

4. 82064: Waits for rising edge of BRDY.

5. 82064: Finds specified 10 field. Writes sector to
disk.

6.82064: If M = 0, asserts INTRa. End.

7. 82064: Increments SECTOR NUMBER. Decre-
ments SECTOR COUNT. I

8. 82064: IF SECTOR COUNT = 0, assert INTRa.
End.

9. 82064: Go to 2.

A flowchart of the WRITE SECTOR command is
shown in Figure 13.

SCANID

The SCAN ID command is used to update the SOH,
SECTOR. NUMBER, and CYLINDER NUMBER
LOW/HIGH .registers.

After the command is loaded, the SC line is sampled
until it is valid. The DRDY and WR FAULT lines are
also monitored througho!Jt execution of the com­
mand. If a fault occurs the command is aborted and
the appropriate error bits are set. When the first 10
field is found, the ID information is loaded into the
SOH, SECTOR NUMBER, and CYLINDER NUMBER
registers. The internal cylinder position register is
also updated. If this is an auto-scan caused by a

change in drive numbers, only the internal position
register is updated. If a bad block is detected, the
BAD BLOCK bit will also be set.

If an 10 field is not found, or if a CRC error occurs,
and if· retries are enabled (T = 0), ten attempts are
made to read it. If retries are disabled (T = 1), only
two tries are made. There is no auto-seek in this
command and the sector buffer is not disturbed.

A flowchart of the SCAN 10 command is shown in
Figure 14.

WRITE FORMAT

The WRITE FORMAT command is used to format
one track using information in the Task Register File
and the sector buffer. During execution of this com­
mand, the sector buffer is used for additional param­
eter information instead of data. Shqwn in Figure 15
is the contents of a sector buffer ,·for a 32 sector
track with an interleave factor of two.

Each sector requires a two byte sequence. The first
byte designates whether a bad block mark is to be
recorded in the sector's 10 field. An OOH is normal;
an 80H indicates a bad block mark for that sector. In
the example of Figure 15., sector 04 will get a bad
block mark recorded. The second byte indicates the
logical sector number to be recorded. This allows
sectors to be recorded with any interleave factor de­
sired. The remaining memory in the sector buffer
may be filled with any value; its only purpose is to
generate a BRDY to tell the 82064 to begin format­
ting the track.

If the drive number has been changed since the last
command, an auto-restore is initiated, positioning
the heads to track 000. The internal cylinder position
register is set to zero and the heads seek to the
track specified in the Task Register File CYLINDER
NUMBER register. This prevents an 10 Not Found
error from occuring due to an incompatible format,
or the track having been erased. A normal implied
seek is also in effect for this command.

\

The SECTOR COUNT register is used to hold the
total number of sectors to be formatted (FFH = 255
sectors), while the SECTOR NUMBER register holds
the number of bytes, minus three, to be used for
Gap 1 and Gap 3. If, for example, the SECTOR
COUNT register value is 02H and the SECTOR
NUMBER register value is OOH, then 2 sectors are
formatted and 3 bytes of 4EH are ~ritten for Gap 1
and Gap 3. The data fields are filled with FFH and
the CRC or ECC is automatically generated and ap­
pended. After the last sector is written the track is
filled with 4EH.

5-622 231242-001

82064

(WRITE SECTOR)

o

*11 retries disabled then dashed path is taken after 2 index pulses.

Figure 13. Write Sector Command Flow

5-623

ASSERT INTRQ
D£-ASSERT BUSY. ClP

231242-15

231242-001

inter

RESET INTRa,
ERRORS

SET BUSY, CIP

SEARCH FOR
ANY 10 FIELD

UPDATE SOH,
CYL, SECTOR,

cn POS, REG'S

NO

82064

SET INTRQ, AC
RESET BUSY, CIP

'If retries are disabled, path is taken after 2 index pulses.

Figure 14. Scan 10 Command Flow

5-624

231242-16

231242-001

82064

DATA
ADDR 0 1 2 3 4 5 6 7

00 00 00 00 10 00 01 00 11
08 00 02 00 12 00 03 00 13
10 80 04 00 14 00 05 00 15
18 00 06 00 16 00 07 00 17
20 00 08 00 18 00 09 00 19
28 00 OA 00 1A 00 DB 00 1B
30 00 DC 00 1C 00 00 00 10
38 00 DE 00 1E 00 OF 00 1F
40 FF FF FF FF FF FF FF FF

:
:

FO FF FF FF FF FF FF FF FF

Figure 15. Format Command Buffer Contents

The Gap 3 value is determined by the drive motor
speed variation, data sector length, and the inter·
leave factor. The interleave factor is only important
when 1:1 interleave is used. The formula for deter­
mining the minimum Gap 3 length is:

where:

M = motor speed variation (e.g., 0.03 for + 3%)
S = sector length in bytes
K = 18 for an interleave factor of 1

o for any other interleave factor
E = 2 if ECC is enabled (SOH register, bit 7 = 1)

As for all commands, if WR FAULT is asserted or
OROY is deasserted during execution of the com­
mand, the command terminates and the Aborted
Command bit in the ERROR register is set.

Figure 16 shows the format which the 82064 will
write on the disk.

A flowchart of the WRITE FORMAT command is
shown in Figure 17.

COMPUTE CORRECTION

The COMPUTE CORRECTION command deter­
mines the location and pattern of a single burst er­
ror, but does not correct it. The host, using the data
provided by the 82064, must perform the actual cor­
rection. The COMPUTE CORRECTION command is
used following a data field ECC error. The command
initiating the read must specify no retries (T = 1).

The COMPUTE CORRECTION command first writes
the four syndrome bytes from the internal ECC regis­
ter to the sector buffer. Then the ECC register is
clocked. With each clock, a counter is incremented

and the pattern examined. If the pattern is correcta­
ble, the procedure is stopped and the count and pat­
tern are written to the sector buffer, following the
syndrome. The process is also stopped if the count
exceeds the sector size before a correctable pattern
is found.

When the command terminates the sector buffer
contains the following data:

Syndrome MSB
Syndrome
Syndrome
Syndrome LSB
Error Pattern Offset
Error Pattern Offset
Error Pattern MSB
Error Pattern
Error Pattern LSB

As an example, when the Error Pattern Offset is zero
the following procedure may correct the error. The
first data byte of the sector is exclusive OR'd with
the MSB of the Error Pattern, the second data byte
with the second byte of the Error Pattern, and the
third data byte with the LSB of the Error Pattern.

If the sector buffer count exceeds the sector size, or
if the error burst length is greater than that selected
by the Set Parameter command, the ECC/CRC error
in the ERROR register and the Error bit in the
STATUS register is, set.

SET PARAMETER

This command selects the correction span to be
used for the error correction process. A 5-bit span is
selected when bit zero of the command equals 0,
and an 11-bit span when bit zero equals 1. The
82064 defaults to a 5-bit span after a RESET.

5-625 231242-001

I

i

I,

inter 82064

REPEATED FOR EACH SECTOR

~ 10 FIELD -DATA FIELD-
./

I
H S C C 0 C L 2 CRC

GAP4 GAPI 14 BYTES A
E Y 0 E E R R 3 BYTES 12 BYTES A F

USER DATA 'OR 3 BYTES GAP3
4E 4E '00' 1

N L W A C C C '00' '00' 1 S 4 ECC '00' 4E
(1)

T 0 # 1 2 (1)

, ,
'"

, , ,
·1 III I I I I~'I ________ ~' __________ ~ ____ -;'

I !II I I
WRITE GATE~:: L--.

I I I I
! !! I I

I M//i)lllj 1j$!/I/1 (j vAil Ij/i!/j !/I;M
I i

DRuN.J !
I

READ GATE..J2 h 51 I ' 6t ___________ l_L.1 ____ _

IDFIELD
A1 = A 1 H with OAH Clock

IDENT = Bits 3, 1, 0 = Cylinder High \

FE = 0-255 Cylinders
FF = 256-511 Cylinders
FC = 512-767 Cylil)ders'
FD = 768-1023 Cylinders
F6 = 1024-1279 Cylinders
F7 = 1280-1535 Cylinders
F4 = 1536-1791 Cylinders
F5 = 1792-2047 Cylinders

HEAD = Bits 0, 1, 2 = Head Number
Bits3,4 = 0
Bits 5, 6 = Sector Size
Bit 7 = Bad Block Mark

Sec # ~= Logical Sector Number -

DATA FIELD

A1 = A 1 H with OAH clock

F8 = Data Address Mark; Normal Clock

/ USER = Data Field 128 to 1024 Bytes

NOTE~ .
1. GAP 1 and 3 length determined by Sector Number Register contents during formatting.
2. RD GATE asserted 2 bytes after the start of DRUN. .
3. RD GATE de-asserted:

• ~f ORUN does not last until A 1
• When any part of 10 does not match the one expected.
• After CRC If correct 10 has been r~d. .

4. Write splice recorded on disk by asserting WR GATE
5. RD GATE is suppressed until after write splice.
6. Not a proper A1 or Fe, set DAM error.
7. Sector size as stated in 10 field, plus two for CRC or 4 for ECC.

Figure 16. Track Format

5-626

231242-17
\

231242-001

inter

SET ABORTED
COIAIAAND BIT

(FORMAT)

RESET INTRQ, ERRORS,
SET ClP, BUSY
ACTIVATE BORa

82064

RESET WR GATE, BcS
1----+1 PULSE BCR, SET INlRQ

... -----.... RESET BUSY, ClP

Figure 17. Write Format Command Flow

5-627

231242-18

231242-001

inter 82064

ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O·C to 70·C
Storage Temperature - 65·C to + 150·C
Voltage on any pin with

respectto GND - 0.5V to + 7V
Power Dissipation 1.5 Watt

'Notice: Stresses above those listed under ':4bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions above those indicated in the opera­
tional sections of this specification is· not implied Ex­
posure to absolute maximum rating conditions for
extended periods may affect device reliability.

NOTICE· Specifications contained within the
following tables are subject to change.

D.C. CHARACTERISTICS (T A = O·C to 70·C; Vee = + 5V ± 10%; GND = OV)

Symbol Parameter Min Max Units Test Conditions

IlL Input Leakage Current ±10 /LA VIN = Vee toOV

IOFL Output Leakage Current ±10 /LA VOUT = Vee to 0.45V

VIH Input High Voltage 2.0 V

VIL Input Low Voltage 0.8 V

VOH Output High Voltage 2.4 V IOH = -100/LA

VOL Output Low Voltage 0.40 V IOL = 1.6 mA
0.45 6.0 mA P21, 22, 23

lke Supply Current 250 mA All Outputs Open

CIN Input Capacitance 10 pF fc = 1 MHz

CliO 1/0 Capacitance 20 pF Unmeasured pins returned
toGND

For Pins 25, 34, 37, 39

VIH Input High Voltage 4.6 V

VIL Input Low Voltage 0.5 V

TRS Rise Time 30 ns 0.9Vt04.2V

A.C. CHARACTERISTICS (T A = O·C to 70·C; Vee = + 5V ± 10%; GND = OV) .

HOST READ TIMING

Symbol Parameter Min Max Units Test Conditions

1 Address Stable Before RD J, 0 ns

2 Data Delay from RD J, 70 ns

3 RD Pulse Width 0.2 10 /Ls

4 AD to Data Floating 10 200 ns

5 Address Hold Time after RD t 0 ns

6 Read Recovery Time 300 ns

7 CS Stable before RD J, 0 ns See Note 6

5-628 231242-001

intJ 82064

RD-----'''\.

080-7 ---------t.!!~~~~--
231242-19

HOST WRITE TIMING

Symbol Parameter Min Max Units Test Conditions

8 Address Stable Before WR J.- 0 10 p..s

9 CS Stable Before WR J.- 0 10 p..s

10 Data Setup Time Before WR t 0.16 10 p..s

11 WR Pulse Width 0.2 10 p..s

12 Data Hold Time After WR t 0 ns

13 Address Hold Time After WR t 0 ns

14 CS Hold Time After WR t 0 ns See Note 7

15 Write Recovery Time 300 ns

47 SDHLE Propagation Delay 20 150 ns

": ~--®~8---------~ '--­
®

WR -----"'\. 1----

SOHLE ------+"'\.

231242-20

5-629 231242-001

82064

BUFFER READ TIMING (WRITE SECTOR COMMAND)

Symbol , Parameter, Min Typ Max Units Test Conditions

16 80S J.. to RD Valid 15 100 ns

17 RD Output Pulse Width 300 400 500 ns See Note 3

18 Data Setup to AD t . 140 ns

19 Data Hold from RD t 0 ns

20 RD Repetition Rate 1.2 1.6 2.0 ,...s See Note 1

21 RD Float from BeS t 15 1'00 ns

a~f--:--____ -----1';-4f
lm---
(OUTPUT)

DIIO-7

~----@------~
231242-21

BUFFER WRITE TIMING (READ SECTOR COMMAND)

Symbol Parameter Min Typ Max, Units Test Conditions

22 BC5 J.. to WR Valid 15 100 ns

23 VIR Output Pulse Width 300 400 500 ns See Note 3

24 Data Valid from WFi J.. 150 ns

25 Data Hold from WR t . 20 200 ns

26 WR Repetition Rate 1.2 1.6 2.0 ,...s See Note 1

27 WR Float from BC5 t 15 100 ns

BCS4 ;...., -,---::::®,..------------------/' ~
WR __ :"""',f"--","""

(OUTPUT)
@

DBO-7------I~~~~~

, 1----- ® ---"'I" .~,
DATA VALID

231242-22

5-630 231242-001

inter
MISCELLANEOUS TIMING

Symbol Parameter Min

28 BDRQ Reset from BRDY 20

29 BRDY Pulse Width 800

30 BCR Pulse Width 1.4

31 STEP Pulse Width 1.5 ,
7.9

32 INDEX Pulse Width 500

33 RESET Pulse Width 24

34 RESET i to BeR 1.6

35 RESET i to WR, CS J, 6.4

36 WR CLOCK Frequency 0.25

37 RD CLOCK Frequency 0.25

:::: ---;6;-~1'~
m~

~ ST£P-..../-'-"-'~

~ INDEX~-<E!~
231242-23

READ DATA TIMING

Symbol Parameter

38 RD CLOCK Pulse Width

39 RD DATA after RD CLOCK J,
40 RD DATA before RD CLOCK i
41 RD OAT A Pulse Width

42 DRUN Pulse Width

82064

Typ Max Units Test Conditions

200 ns

ns See Note 4

1.6 1.8 ,.,.s See Note 1

1.6 1.7 ,.,.s Step Rate = 3.2,.,.s/step

8.4 8.7 ,.,.s All other step rates

ns

WRCLK See Note 2

3.2 6.4 j.l.S See Note 1

,.,.s See Note 1

5.0 5.25 MHz 50% Duty Cycle

5.0 5.25 MHz 50% Duty Cycle
See Note 5

231242-24

Min Typ Max Units Test Conditions

95 2000 ns 50% Duty Cycle

0 T38 ns

20 T38 ns

40 T38 ns

30 ns

5-631 231242-001

inter 82064

." !:~-----+j RDDATA J . . 'K~ ________ --,r-
-~®- ~

RDCLOCK --t®~ j
DRUN

231242-25

WRITE DATA TIMING

Symbol Parameter Min Typ Max Units Test Conditions

43 WR CLOCK Pulse Width 95 2000 ns

Propagation Delay

44A WR CLOCK t to WR DATA t
448 WR CLOCK J, to WR DATA J,

10 65 ns
44C WR CLOCK t to WR DATA J,
44D WR CLOCK J, to WR DATA t
45A WR CLOCK t to EARLY ILA TE J, 10 65 ns
458 WR CLOCK J, to EARLY/LATE J,
46A WR CLOCK t to EARLY/LATE t 10 65 ns
468 WR CLOCK J, to EARLY/LATE t

WRCLOCK

WRDATA

231242-26

5-632 231242-001

intJ
A.C. TESTING INPUT, OUTPUT WAVEFORM

Input Output

,4 =X'D> TEST POINTS < 2oX=

O. 0" 04. --,-,---___ _

231242-27

AC Testing: Inputs Are Driven At 2.4V For A Logic .1. And
0.45V For A Logic .0. Timing Measurements Are Made At
2.0V For a Logic .1. And 0.8V For A Logic .0.

NOTES
1. Based on WR CLOCK = 5.0 MHz ,
2. 24 WR CLOCK periods = 4.8 ,...s at 5.0 MHz.
3. 2 WR CLOCK periods ± 100 ns.

82064

A.C. TESTING LOAD CIRCUIT

OEVICE
UNDER IJ Ct=I50pF

TEST

-=
231242-28

CL Includes Jig Capacitance

4. When used with a OMA controlier BROY must be > 4 ,...s or a spurious BORQ pulse may exist for up to 4 ,...s after the
rising edge of BORY.
5. WR CLOCK Frequency = RO CLOCK Frequency ± 15%.
6. RO may be asserted before CS as long as it remains active for at least the minimum. T3.pulse width after CS is asserted.
7. WR may be asserted before CS as long as it remains active for at least the minimum T11 pulse width after CS is
asserted.

5-633 231242-001

intJ

MICROPROCESSOR PERIPHERALS
UPI™ USER'S MANUAL

,APRIL 1982

5-634 ORDER NUMBER: 231318-001

CHAPTER 1
INTRODUCTION

Accompanying the introduction of microprocessors
such as the 8080, 8085, 8088, and 8086 there has been
a rapid proliferation of intelligent pe~ipheral de­
vices. These special purpose peripherals extend
CPU performance and flexibility in a number ofim­
portant ways.

Table 1-1. Intelligent Peripheral Devices

8255 (GJ;>IO)

8251A (USART)

8253 (TIMER)

8257 (DMA)

8259

8271 (SDFDC),
8272 (DDFDC)
8273 (SDLC)

8274

8275/8276 (CRT)

8279 (PKD)

Programmable Peripheral
Interface
Programmable
Communication Interface
Programmable Interval Timer

Programmable DMA Controller

Programmable Interrupt
Controller
Programmable Floppy Disk
Controllers
Programmable Synchronous
Data Link Controller

Programmable Multiprotocol·
Serial Communications
Controller
Programmable CRT
Controllers
Programmable
Keyboard/Display Controller

8291A, 8292, 8293 Programmable GPIB System
Talker, Listener, Controller

Intelligent devices li~e the 8272 flopp,y disk control­
ler and 8273 synchronous data link controller (see
Table 1-1) can preprocess serial data and perform
control tasks which off-load the main system proces­
sor. Higher overall system throughout is achieved
and software complexity is greatly reduced. The in­
telligent peripheral chips simplify master processor
control tasks by performing many functions exter­
nally in peripheral hardware rather than internally,
in main processor software.

Intelligent peripherals also provide system flexibil­
ity. They contain on-chip mode registers which are
programmed by the master processor during system
initialization. These control registers allow the pe­
ripheral to be configured into many different oper­
ation modes. The user-defined program for the
peripheral is stored in main system memory and is
transferred to the peripheral's registers whenever a
mode change is required. Of course, this type of
flexibility requires software overhead in the master
system which tends to limit the benefit derived from
the peripheral chip.

In the past, intelligent peripherals were designed to
handle very specialized tasks. Separate chips, were

designed for communication disciplines, parallel
I/O, keyboard encoding, interval timing, CRT con­
trol, etc. Yet, in spite of the large number of devices
available and the increased flexibility built into
these chips, there is still a large number of micro­
computer peripheral control tasks which are not
satisfied.

With the introduction of the Universal Peripheral
Interface (UP!) microcomputer, Intel has taken the
intelligent peripheral concept a step further by
providing an intelligent controller that is fully user
programmable. It is a complete single-chip micro­
computer which can connect directly to a master
processor data bus. It has the same advantages of in­
telligence and flexibility which previous peripheral
chips offered. In addition, the UPI is user­
programmable: it has 1K bytes of ROM or EPROM
memory for program storage plus 64 bytes of RAM
memory for data storage or initialization from the
master processor. The UPI device allows a designer
to fully specify his control algorithm in the periph­
eral chip without relying on the master processor.
Devices like printer controllers and keyboard scan­
ners can be completely self-contained, relying on the
master processor only for data transfer.

The UPI family currently consists of five components:

• 8741A microcomputer with 1K EPROM
memory

• 8041AH microcomputer with 1K ROM mem-
ory

• 8042 microcomputer with 2K ROM memory
• 8243 I/O expander device
• 8742 microcomputer with 2K EPROM

memory

The 8741A, 8041AH, 8742 and 8042 single chip
microcomputers are functionally equivalent except
for the type and amount of program memory avail­
able with each. These devices have the following
main features:

• 8-bit CPU
• 8-bit data bus 'interface registers
• 1K by 8 bit ROM or EPROM memory (2K for

8042/8742)
• 64 by 8 bit RAM memory (128 bytes for

8042/8742)
• Interval timer/event counter
• Two 8-bit TTL compatible I/O ports
• Resident clock oscillator
• 12 MHZ operation, 1.25 p'sec instruction cycle

for 8041AH, 8742, 8042

5-635

INTRODUCTION

HOST
PROCESSOR

DATA
BUS

CONTROL
BUS

ADDRESS
BUS

KEYBOARD

~
PRINTER

Figure 1·1. Inter1acing Peripherals To Microcomputer Systems

HMOS processing has been applied to the UPI fam­
ily to allow for additional performance and memory
capability while reducing costs. The 8041AH, 8741A,
8042,8742 are all pin and software compatible. This
allows growth in present designs to incorporate new
features and add additional performance. For new
designs, the additional memory and performance of
the 8042/8742 extends the UPI 'grow your own solu­
tion' concept to more complex motor control tasks,
80-column printers and process control applications
as examples.

The 8243 device is an I/O multiplexer which allows
expansion of I/O to over 100 lines (if seven devices
are used). All three parts are fabricated with N­
channel MOS technology and require a single, 5V
supply for operation.

INTERFACE REGISTERS 'FOR MUL TI­
PROCESSOR CONFIGURATIONS
In the normal configuration, the 8041AH/8741A,
8042/8742 interfaces to die system bus, just like any
intelligent peripheral device (see Figure 1-1). The
host processor and the 8041AH/8741A, 8042/8742
form a loosely coupled multi-processor system, that
is, communications between the two processors are
direct. Common resources are three addressable reg­
isters located physically on the 8041AH/8741A,
8042/8742. These registers are the Data Bus Buffer
Input (DBBIN), Data Bus Buffer Output
(DBBOUT), and Status (STATUS) registers. The
host processor may read data from DBBOUT or
write commands and data into DBBIN. The status
of DBBOUT and DBBIN plus user-defined status is
supplied in STATUS. The host may read STATUS

at any time. An interrupt to the UPI processor is
automatically generated (if enabled) when DBBIN
is loaded.

Because the UPI contains a complete microcom­
puter with program memory, data memory, and
CPU it can function as a "Universal" controller. A
designer can program the UPI to control printers,
tape transports, or multiple serial communication
channels. The UPI can also handle off-line arithme­
tic processing, or any number of other low speed con­
trol tasks.

8041AH,8042
MASK

PROGRAMMED
ROM

B741A,8742
ELECTRICALLY

RROGRAMMABLE
LIGHT ERASABLE

EPROM

Figure 1·2. Pin Compatible ROM/EPROM Versions

5-636

INTRODUCTION

POWERFUL a-BIT PROCESSOR

The UPI contains a powerful, 8-bit CPU with as fast
as 1.25 Ilsec cycle time and two single-level inter­
rupts. Its instruction set includes over 90 instruc­
tions for easy software development. Most
instructions are single byte and single cycle and
none are more than two bytes long. The instruction
set is optimized for bit manipulation and I/O oper­
ations. Special instructions are included to allow bi­
nary or BCD aritl;}metic operations, table lookup
routines, loop counters, and N-way branch routines.

SPECIAL INSTRUCTION SET
FEATURES

• For Loop Counters:
Decrement Register and Jump if not
zero.

• For Bit Manipulation:
AND to A (immediate data or Register)
OR to A (immediate data or Register)
XOR to A (immediate data or Register)
AND to Output Ports (Accumulator)
OR to Output Ports (Accumulator)
Jump Conditionally on any bit in A

• For BDC Arithmetic:
Decimal Adjust A
Swap 4-bit Nibbles of A
Exchange lower nibbles of A and Register
Rotate A left or right with or without
Carry

• For Lookup Tables:
Load A from Page of ROM (Address in A)
Load A from Current Page of ROM
(Address in A)

Features for Peripheral Control
The UPI 8-bit interval timer/event counter can be
used to generate complex timing sequences for con­
trol applications or it can count external events such
as switch closures and position encoder pulses. Soft­
ware timing loops can be simplified or eliminated by
the interval timer. If enabled, an interrupt to the
CPU will occur when the timer overflows.

The UPI I/O complement contains two TTL-com­
patible 8-bit bidirectional I/O ports and two general­
purpose test inputs. Each of the 16 port lines can
individually function as either input or output under
software control. Four of the port lines can also func­
tion as an interface for the 8243 I/O expander which
provides four additional4-bit ports that are directly
addressable by UPI software. The 8243 expander al­
lows low cost I/O expansion for large control applica­
tions while maintaining easy and efficient software
port addressing.

8243 16 I/O LINES

B041AH/8741A,
8042/8742

PROG 1------'

12 I/O LINES

Figure 1-4. 82431/0 Expander Interface

PERIPHERAL
CONTROL

OFF·lINE ARITHMETIC
PROCESSING

1+--- ~~~~~NICATION

Figure 1-3. Interfaces And Protocols For Multiprocessor Systems

5-637

INTRODUCTION

On-Chip Memory
The UPI's 64 (128) bytes of data memory include
dual working register banks and an 8-level program
counter stack. Switching between the register banks
allows fast response to interrupts. The stack is used
to store return addresses and processor status upon
entering a subroutine.

The UPI program memory is available in two types
to allow flexibility in moving from Q.esign to proto­
type to production with the same PC layout. The
8741A, 8742 device with EPROM memory is very
economical for initial system design and develop­
ment. Its program memory can be electrically pro­
grammed using the Intel Universal PROM
Programmer. When changes are needed, the entire
program can be erased using UV lamp and
reprogrammed in about 20 minutes. This means the
87 41A/87 42 can be used as a single chip
"breadboard" for very complex interface and control
problems. After the 8741A/8742 is programmed 'it
can be tested in the actual production level PC
board and the actual functional environment.
Changes required during system debugging can be
made in the 874IA/8742 program much more'easily
than they could be made in a random logic design.
The system configuration and PC layout can remain
fixed during the development process and the turn
around time between changes can be reduced to a
minimum.

At any point during the development cycle, the
8741A/8742 EPROM part can be replaced with the
low cost 8041AH, 8042 respectively with factory
mask programmed memory. Tqe transition from
system development to mass production is made
smoothly because the 8741A and 8041AH, 8742 and'
8042 parts are completely pin compatible. 8742s or

8042s can be used in an 8041AH/8741 socket. This
feature allows extensive testing with the EPROM
part, even into initial shipments to oustomers" Yet,
the transition to low-cost ROM is simplified to the
point of being merely a package substitution.

PREPROGRAMMED UPI's
The 8292, 8294, and,8295 are 8041A's that are pro­
grammed by Intel and sold as standard peripherals.
The 8292 is a GPIB controller, part of a three chip
GPIB system. The 8294 is Ii Data Encryption Unit
that implements the National Bureau of Standards
data encryption algorithm. The 8295 is a dot matrix
printer controller designed especially for the LRC
7040 series dot matrix impact printers. These parts
illustrate the great flexibility offered by the UPI
family.

DEVELOPMENT SUPPORT
The UPI microcomputer is fully supported by Intel
with development tools like the UPP PROM pro­
grammer already mentioned. An ICE-41A in-circuit
emulator is also available to allow UPI software and
hardware to be developed easily apd quickly. The
combination of device features and Intel develop­
ment support make the UPI an ideal component for
low-speed peripheral control applications.

UPI DEVELOPMENT SUPPORT

• 8048/8041AH/8042 Assembler
• Universal PROM Programmer UPP Series
• ICE-41A Module
• MULTI-ICE
• Insite User's Library
• Application Engineers
• Trainin~ Courses

5-638

CHAPTER 2
FUNCTIONAL DESCRIPTION

The UPI-41AH, 42 microcomputer is an intelligent
peripheral controller designed to operate in iAPX-
86, 88, MCS-85, MCS-80, MCS-51 and MCS-48 sys­
tems. The UPI'S architecture, illustrated in Figure
2-1, is based on a low cost, single-chip microcom­
puter with program memory, data memory, CPU;
I/O, event timer and clock oscillator in a single 40-
pin package. Special interface registers are included
which enable the UPI to function as a peripheral to
an 8-bit master processor.

This chapter provides a basic description of the UPI
microcomputer and its system interface registers.
Unless otherwise noted the descriptions in this sec-

I CLOCK

1 1
8-BIT CPU

I
I

8-BIT
DATA BUS

INPUT REGISTER

"I

I
1024 X 8, 2048 X 8

PROGRAM
MEMORY

(ROM/EPROM)

II
II

8-BlT
DATA BUS

OUTPUT REGISTER

"
SYSTEM

INTERFACE

tion apply to both the 8741A, 8742 (with UV eras­
able program memory) and the 8041AH, 8042 (with
factory mask programmed memory). These two de­
vices are so similar that they can be considered iden­
tical under most circumstances. All functions
described in this chapter apply to the 8041AH, 8042,
and 8741A, 8742.

PIN DESCRIPTION
The 8041AH/8741A, 8042/8742 are packaged in 40-
pin Dual In-Line (DIP) packages. The pin configu­
ration for both devices is shown in Figure 2-2. Figure
2-3 illustrates the UPI Logic Symbol.

64 X 8, 128 X 8
DATA MEMORY

II
II

8-91T
STATUS

REGISTER

'I

8-BIT
TIMER/COUNTER

,.
I/O LINES

'v
PERIPHERAL INTERFACE

AND
I/O EXPANSION

Figure 2-1. UPI-41AH, 42 Single Chip Microcomputer.

5-639

FUNCTIONAL DESCRIPTION

TEST 0 VCC

XTAL1 TEST'

XTAL2 P27/DACK

RESET P2e/DAO
PROGRAM

55 P25 / iiF PROM

Cs
+5V GND

P24 / 0BF

EA P17

Ai) P'6
PORT #,

AO P'5

\VA p,. PORT #2

DATA
SYNC P'3 BUS BUFFER

INTERFACE
Do P'2 { _M
D, P11 CONTROL WRITE

D2 P,O
INTERFACE CONTROL/

DATA

D3 VDD
CHIP SELECT

D. PAOG

D5 P23

De P22

D7 PO,

VSS P20

Figure 2-2. Pin Configuration Figure 2-3. Logic Symbol

The following section summarizes the functions of
each UPI-41A pin. NOTE that several pins have two

or more functions which are described in separate
paragraphs.

Table 2-1. Pin Description

Symbol PinHo. Type Hame and Function

DO-D7 12-19 I/O Data,Bus: Three-state, bidirectional DATA BUS BUFFER lines used to interface the
(BUS) UPI-41AH, 42 microcomputer to an 8-bit master system data bus.

PlO-P17 27-34 I/O Port 1: 8-bit, PORT 1 quasi-bidirectional I/O lines.

P20-P27 21-24 I/O Port 2: 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower 4 bits (P20-P23) inter-
35-~~ face directly to the 8243 I/O expander device and contain address and data information

during PORT 4-7 access. The upper 4 bits (P24-P27) can be programmed to provide
interrupt Request and D,MA Handshake capability. Software control can configure P24
as Output Buffer Full (OBF) interrupt, P25 as Input Buffer Full UBF) interrupt, P26
as DMA Request (DRQ), and P27 as DMA ACKnowledge (DACK).

WR 10 I Write: I/O write input which enables the master CPU to write data and command
words to the UPI-41A INPUT DATA BUS BUFFER.

RD 8 I ' Read: I/O read input which enables the master CPU to read data and status words
from the OUTPUT DATA BUS BUFFER or status register.

CS 6 I Chip Select: Chip select input used to select one UPI-41AH, 42 microcomputer out of
several connected to a common data bus.

Ao 9 I Command/Data Select: Address input used by the master processor to indica~e
whether byte transfer is data (AO=O) or command (Ao=l).

TEST 0, 1 I Test Inputs: Input pins which can be directly tested using conditional branch instruc-
TEST 1 39 tions.

Frequency Reference: TEST 1 (T1) also functions as the event timer input (under
software control). TEST 0 (TO) Is used during PROM programming and verification in
the 8741A, 8742.

5-640

FUNCTIONAL DESCRIPTION

Table 2-1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

XTAL 1, 2 I Inputs: Inputs for a crystal, LC or an external timing signal to determine the internal
XTAL2 3 oscillator frequency.

SYNC 11 0 Output Clock: Output signal which occurs once per UPI-41A instruction cycle. SYNC
can be used as a strobe for external circuitry; it is also used to synchronize single step
operation.

EA 7 I External Access: External access input which allows emulation, testing and PROM/
ROM verification. .----. --- .. -.. -

PROG 25 I/O Program: Multifunction pin used as the program pulse input during PROM program-
ming.

During I/O expander access the PROG pin acts as an address/data strobe to the 8243.

RESET 4 I Reset: Input used to reset status flip-flops and to set the program counter to zero.

RESET is also used during PROM programming and verification.

SS 5 I Single Step: Single step input used in conjunction with the SYNC output to step the
program through each instruction.

VCC 40 Power: +5V main power supply pin.

VDD 26 Power: +5V during normal operation. +25V during programming operation, +21 V for
programming 8742. Low power standby pIn in ROM version.

VSS 20 Ground: Circuit ground potential.

The following sections provide a detailed functional
description of the UPI microcomputer. Figure 2-4 il-

lustrates the functional blocks within the UPI de­
vice.

.......
.'5191 - ...

"'- " 0,

Wi ..
'" ..

CONnK>.
cel"'"

'''''' ii -
{

.oo ___ .:.....

VCC_+5S1J'P1..'

·ss--_

'""­ou,

om
""'"

'''' lI8 21(X8
PROM AOM
PROGRAM
MEMORY

Figure 2-4. UPI-41AH, 42lM Block Diagram

5-641

VD PtO-

'0"" '"

RESIDENT

"::~l'
ACet:SS ...-

-...... ..,.
.10 .0 ... " -

,."

PORT 4·7

''''-""""' ...
nu.

FUNCTIONAL DESCRIPTION

CPU SECTION
The CPU section of the UPI-41AH, 42 micro­
computer performs basic data manipulations and
controls data flow throughout the single chip com­
puter via the internal8-bit data bus. The CPU sec­
tion includes the following functional blocks shown
in Figure 2-4:

• Arithmetic Logic Unit (ALU)
• Instruction Decoder
• Accumulator
• Flags

Arithmetic Logic Units (ALU)
The ALU is capable of performing the following op­
erations:

• ADD with or without carry
• AND, OR, and EXCLUSIVE OR
• Increment, Decrement
• Bit complement
• Rotate left or I'ight
• Swap
• BCD decimal adjust

In a typical operation data from the accumulator is
combined in the ALU with data from some other
source on the UPI-41AH, 42 internal bus (such as a
register or an I/O port). The result of an ALU oper­
ation can be transferred to the internal bus or back
to the accumulator.

If an operation such as an ADD or ROTATE re­
quires more than 8 bits, the CARRY flag is used as
an indicator. Likewise, during decimal adjust and
other BCD operations the AUXILIARY CARRY
flag can be set and acted upon. These flags are part
of the Program Status Word (PSW).

Instruction Decoder
During an inst~ction fetch, the operation code (op­
code) portion of each program instruction is stored
and decoded by the instruction decoder. The de­
coder generates outputs used along with various tim­
ing signals to control the functions performed in the
ALU. Also, the instruction decoder controls the
source and destination of ALU data.

Accumulator
The accumulator is the single most important regis­
ter in the processor. It is the primary source of data
to the ALU and is often the destination for results as
well. Data to and from the I/O ports and memory
normally passes through the accumulator.

" PROGRAM MEMORY
The UPI-41AH, 42 microcomputer has 1024, 20488-
bit words of resident, read-only memory for program

storage. Each of these memory locations is directly
addressable by a 10-bit program counter. Depending
on the type of application and the number of pro­
gram changes anticipated, two types of program
memory are available:

• 8041AH, 8042 with mask programmed ROM
Memory

• 8741A, 8742 with electrically programmable
EPROM Memory

The 8041AH and 874·1A, 8042 and 8742 are function­
ally identical parts and are completely pin compati­
ble. The 8742 and 8042 can be used in 8041AH,
8741A sockets. The 8041AH, 8042 has ROM memory
which is mask programmed to user specification
during fabrication. The 8741A/8742 are electrically
programmed by the user using the Universal PROM
Programmer (UPP series) with a UPP-848 or UPP-
549 Personality Card. It can be erased using
ultraviolet light and reprogrammed at any time.

A program memory map is illustrated in Figure 2-5 ..
Memory is divided into 256 location 'pages' and .
three locations are reserved for special use:

{
.D47

PAGE 7

1792

{
17.

PAGES

1536

1

{
1535

PAGE 5
12110

{
1279

PAGE 4

1024

{
1023

PAGE 3

766
, {767

PAGE 2

512

PAGE 1

PAGE 0

1
{

51

'58
.55

8 --"".1
6

-
-
~

7

ADDRESS

8 5 4 3 • 1 0

t

-

804.
8742

8041AH,
8741A

LOCATION 7 - TIMER
INTERRUPT VECTORS
PROGRAM HERE

LOCATION 3 - I!iF
INTERRUPT VECTORS
PROGRAM HERE

LOCATION 0 - RESET
VECTORS
PROGRAM HERE

PROGRAM MEMORY MAP

Figure 2-5. Program Memory Map

INTERRUPT VECTORS
1) Location 0

5-642

Following a RESET input to the processor, the
next instruction is automatically fetched from
location o.

FUNCTIONAL DESCRIPTION

2) Location 3
An interrupt generated by an Input Buffer Full
(IBF) condition (when the IBF interrupt is en­
abled) causes the next instruction to be fetched
from location 3.

3) Location 7
A timer overflow interrupt (when enabled) will
cause the next instruction to be fetched {rom lo­
cation 7.

Following a system RESET, program execution be­
gins at location O. Instructions in program memory
are normally executed sequentially. Program control
can be transferred out of the main line of code by an
input buffer full (IBF) interrupt or a timer inter­
rupt, or when a jump or call instruction is encoun­
tered. An IBF interrupt (if enabled) will'
automatically transfer control to location 3 while a
timer interrupt will transfer control to location 7.

All conditional JUMP instructions and the indirect
JUMP instruction are limited in range to the current
256-location page (that is, they alter PC bits 0-7
only). If a conditional JUMP or indirect JUMP be­
gins in location 255 of a page, it must reference a des­
tination on the following page.

Program memory can be used to store constants as
well as program instructions. The UPI-41,AH, 42 in­
struction set contains an instruction (M0VP3) de­
signed specifically for efficient transfer of look-up
table information from page 3 of memory.

DATA MEMORY
The UPI-41AH, 42 universal peripheral interface
has 64, 128 8-bit words of random access data mem­
ory. This memory contains two working register
banks, an 8-level program counter stack and a
scratch pad memory, as shown in Figure 2-6. The
amount of scratch pad memory available is variable
depending on the number of addresses nested in the
stack and the number of working registers being
used.

Addressing Data Memory
The first eight locations in RAM are designated as
working registers Ro-R7. These locations (or regis­
ters) can be addressed directly by specifying a regis­
ter number in the instruction. Since these locations
are easily addressed, they are generally used to store
frequently accessed intermediate results. Other lo­
cations in data memory are addressed indirectly by
using Ro or Rl to specify the desired address. Since
all RAM locations (including the eight working reg­
isters) can be addressed by 6 bits, the two most sig­
nificant bits (6 and 7) of the addressing registers are
ignored.

127 r---------,

8042
USER RAM

64 X 8

~~t----------I

USER RAM
32 X 8

~~ t_--------t
BANK 1

WORKING
REGISTERS

8X8

-------R1'--------
24 -------FiO:--------
23

8 LEVEL STACK
OR

USER RAM
16 X 8

BANK 0
WORKING

REGISTERS
8X8

:::::::~::::::::
RO

I
DIRECTlY

ADDRESSABLE
WHEN BANK 1

:JTED

ADDRESSED
INDIRECTLY
THROUGH
R1 OR RO

(RO' OR R1')

DIRECTLY
ADDRESSABLE
WHEN BANK 0
IS SELEClED

Figure 2·6. Data Memory Map

Working Registers
Dual banks of eight working registers are included in
the UPI-41AH, 42 data mentory. Locations 0-7
make up register bank 0 and locations 24-31 form
register bank 1. A RESET signal automatically se­
lects register bank O. When bank 0 is selected,
references to RO-R7 in UPI-41AH, 42 instructions
operate on locations 0-7 in data memory. A "select
register bank" instruction is used to select between
the banks during program execution. If the instruc­
tion SEL RBI (Select Register Bank 1) is executed,
then program references to Ro-R7 will operate on
locatipns 24-31. As stated previously, registers 0 and
1 in the active register bank are used as indirect ad­
dress registers for all locations in data memory.

Register bank 1 is normally reserved for handling in­
terrupt service routines, thereby preserving the con­
tents of the main, program registers. The SEL RBI
instruction can be issued at the beginning of an in­
terrupt service routine. Then, upon return to the
main pro~ram, an RETR (return & restore status)
instruction will automatically restore the previously
selected bank. During interrupt processing, registers
in bank 0 can be accessed indirectly using RO' and
Rl'·

If register bank 1 is not used, registers 24-31 can still
serve as additional scratch pad memory.

5-643

FUNCTIONAL DESCRIPTION

Program Counter Stack
RAM locations 8-23 are used as an 8-level program
counter stack. When program control is temporarily
passed from the main program to a subroutine or in­
terrupt service routine, the 10-bit program counter
and bits 4-7 of the program status word (PSW) are
stored in two stack locations. When control is re­
turned to the main program via an RETR instruc­
tion, the program counter and PSW bits 4-7 are -
restored. Returning via an RET instruction does not
restore the PSW bits, however. The program counter
stack is addressed by three stack pointer bits in the
PSW (bits 0-2). Operation of the program counter
stack and the program status word is explained in
detail in the following sections.

The stack allows up to eight levels of subroutine
'nesting'; that is, a subroutine may call a second sub­
routine, which may call a third, etc., up to eight lev­
els. Unused stack locations can be used as scratch
pad memory. Each unused level of subroutine nest­
ing provides two additional RAM'locations for gen­
eral use.

- The following sections provide a detailed descrip­
tion of the Program Counter Stack and the Program
Status Word.

PROGRAM COUNTER
The UPI-41AH, 42 microcomputer h~s a 10-bit pro­
gram counter (PC) which can directly addr~ss any of
the 1024 locations in program memory. The program
counter always contains the address of the next in­
struction to be executed and is normally incre­
mented sequentially for each instruction to be
executed when each instruction fetches occurs.

When control is temporarily passed fro~ the main
program to a subroutine or an interrupt routine,
however, the PC contents m~st be altered to point to
the address of the desired routine. The stack is used
to save the current PC contents so that, at the end of
the routine, main program execution can continue.
The program counter is initialized to zero by a
RESET signal.

PROGRAM COllNTER STACK
The Program Counter Stack is composed of 1610ca­
tions in Data Memory as illustrated in Figure 2-7.
These RAM locations (8 through 23) are used to
store the 10-bit program counter and 4 bits ·of the
program status word.

An interrupt or CALL to a subroutine callses the
contents of the program counter to be stored in one
of the 8 register pairs of the program counter stack.

STACK
POtNTER ,

11 1

11 0

'10 1

10 0

01 1

010

00 1

000

MSB

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

PSW(~7) I PC(a-9)

PC(4-7) I PC(0-3)

DATA
MEMORY

LOCATION

LSB

23

22

21

20

19

18

17

16

15

14

13

12

11

10

_ 9

Figure 2-7. Program Counter Stack

A 3-bit Stack Pointer which is part of the Program
Status Word (PSW) determines the stack pair to be
used at a given time. The stack pointer is initialized
by a RESET signal to OOH which corresponds to
RAM locations 8 and 9.

The first call or interrupt results in the program
counter and PSW contents being transferred to
RAM locations 8 and 9 in the format shown in Figure
2-7. The stack pointer is automatically incremented
by 1 to point to locations 10 and 11 in anticipation of
another CALL.

Nesting of subroutines within subroutines can con­
tinue up to 8 levels without overflowing the stack. If
overflow does occur the deepest address stored (lo­
cations 8 and 9) will be overwritten and lost since the
stack pointer overflows from 07H to OOH. Likewise,
the stack pointer will underflow from OOH to 07H.

The end of a subroutine is signaled by a return in­
struction, either RET or RETR. Each instruction
will automatically decrement the Stack Pointer and
transfer the contents of the proper RAM register
pair to the Program Counter.

PROGRAM STATUS WORD
The 8-bit program status ,word illustrated in Figure
2-8 is used to store general information about pro­
gram execution. In addition to the 3-bit Stack

5-644

FUNCTIONAL DESCRIPTION

SAVED IN STACK STACK POINTER
I I

I CY I AC I FO as I - 52 s, So I
Msa Lsa

Figure 2-8. Program Status Word

Pointer discussed previously, the PSW includes the
following flags:

• CY - Carry
• AC - Auxiliary Carry
• FO - Flag 0
• BS - Register Bank Select

The Program Status Word (PSW) is actually a col­
lection'of flip-flops located throughout the machine
which are read or written as a whole. The PSW can
be loaded to or from the accumulator by the MOV A,
PSW or MOV PSW,A instructions. The ability to
write directly to the PSW allows easy restoration of
machine status after a power-down sequence.

The upper 4 bits of the PSW (bits 4, 5, 6, and 7) are
stored in the PC Stack with every subroutine CALL
or interrupt vector. Restoring the bits on a return is
optional. The bits are restored if an RETR instruc­
tion is executed, but not if an RET is executed.

PSW bit definitions are as follows:
• Bits 0-2 Stack Pointer Bits SO, S1, S2
• Bit 3 Not Used
• Bit 4 Working Register Bank

0= BankO
1 = Bank 1

• Bit 5 Flag 0 bit (FO)
Thill is Ii general purpose flag

. which can be cleared or comple-

• Bit6

• Bit 7

mented and tested with condi­
tional jump instructions. It may
be used during data transfer to
an external processor.

Auxiliary Carry (AC)
The flag status is determined by
an ADD instruction and is used
by the Decimal Adjustment in­
struction DAA.

Carry (CY)
. The flag indicates that a previous
operation resulted in overflow of
the accumulator.

CONDITIONAL BRANCH LOGIC
Conditional Branch Logic in the UPI-41AH, 42 al­
lows the status of various processor flags, inputs, and
other hardware functions to directly affect program
execution. The status is sampled in state 3 of the
first cycle.

Table 2-2 lists the internal conditions which are test­
able and indicates the condition which will cause a
jump. In all cases, the destination address must be
within the page of program memory (256 locations)
in which the jump instruction occurs.

OSCILLATOR AND TIMING CIRCUITS
The 8041A's internal timing generation is controlled
by a self-contained oscillator and timing circuit. A
choice of crystal, L-C or external clock can be used to
derive the basic oscillator frequency.

The resident timing"circuit consists of an oscillator,
a state counter and a cycle counter as illustrated in
Figure 2-9. Figure 2-10 shows instruction cycle
timing.

Table 2-2. Conditional Branch Instructions

Jump Condition
Device Instruction Mnemonic Jump if:

Accumulator JZ addr r All bits zero
JNZ addr Any bit not zero

Accumulator bit JBb addr Bit "b" = 1
Carry flag JC addr Carry flag = 1

JNC addr Carry flag = 0
User flag JFO addr FO flag = 1

JFl addr Fl flag = 1
Timer flag JTF addr Timer flag = 1
Test Input 0 JTO addr TO= 1

JNTO addr TO = 0
Test Input 1 JTl addr Tl = 1

JNTI addr Tl = 0
Input Buffer flag JNIBF addr IBF flag = 0
Output Buffer flag JOBF addr OBF flag = 1

5-645

i.
I
I
I"

FUNCTIONAL DESCRIPTION

SYNC
I-""?'"-i- OUTPUT

(2.5,usee)

INTERNAL TIMING

Figure 2-9. Oscillator Configuration

Oscillator
The on-board oscillator is a series resonant circuit
with a frequency range of 1 to 12 (8041AH-2/
8042/8742) MHz. Pins XTAL 1 and XTAL 2 are in­
put and output (respectively) of a high gain ampli-

'fier stage. A crystal or inductor and capacitor
connected between XTAL 1 and XTAL 2 provide
the feedback and proper phase shift for oscillation.
Recommended connections for crystal or L-C are
shown in Figure 2-11.

SYNC ______ 11"' _____ _
2.5 ,usee CYCLE

1 S5 S, S2 S3 I S4 I S5 5,

I INPUT DECODE EXECUTION
INPUT

INST. INST

OU\TPUT ADDRESS INC. PC OUTPUT ADDRESS

I I I I I

Figure 2-10. Instruction Cycle Timing

State Counter
The output of the oscillator is divided by 3 in the
state counter to generate a signal which defines the
state times of the machine.

Each instruction cycle consists of five states as illus­
trated in Figure 2-10 and Table 2-3. The overlap of
address and execution operations illustrated in Fig­
ure 2-10 allows fast instruction execution.

,Table 2-3. Instruction Timing Diagram

INSTRUCTION
CYCLE 1 CYCLE 2

S1 S2 sa S4 S5 S1 82 sa S4 85

IN A,Pp' Felch Increment - increment - - Read Pori - - -Instruction program Counter Timer

OUTl Pp,A Felch Increment - Increment! Output - - - - -Instruction Program Counter Timer To Pori

ANt Pp, DATA Felch Increment - Increment Read Pori Felch - Increment Output -
Instruction Program Counter Timer Immediate Data Program Cpunler To Por1

ORl Pp, DATA felch Increment - Increment Read Pori Felch - Increment OuIpul -Inslrucllon Program Counter Timer Immediate Data Program Counter To Port

MOve A,Pp Fetch Increment IltJIptJI Increment - - Read - - -Inslruclion Program Counter Opcode/Address Timer P2lower

MOve Pp,A Fetch Increment Oulpol Increment Output Data - - - - -Insh'uctlon Program Counter Opcode/Address Timer To P2lower

ANlO Pp,A Felch Increment Output tncremenl Output - - - - -Instruction Program Counter Opcode/Address Tmer Data

ORLD Pp,A Fetch Increment iluIptJI Increment Output - - - - -Inslfuclroo Program Counter Opcode/Address Timer Dala

J (CondHlonal) Felch Increment Sample Incremenl - Felch - Update - -Instruction Program Counter Condition Timer Immediate Data Program Counter

MOV STS, A -Felch Increment - Increment Update
Instruction Program Counter Timer Status Register

IN A,DBB Fetch Increment - Increment -Instruction Program Counter Timer

OUT DBB,A Fetch Increment - Increment Output
Instruction Program Counter Timer To Port

STRT T Fetch Increment' Slart - -STRT CNT Instruction Program Counter Counter

STOP TCNT Fetch Increment - - Stop
Instrucllon Program Counter Counter

EN I Fetch Increment - Enable -Instrucllon Program Counter Interrupt

DIS I Fetch Increment - Disable -Instruction Program Counter Interrupt

EN DMA Felch Increment - DMA Enabled -instruction Program Counter ORO Cleared

EN FlAGS Felch Increment - OSF, IBF -
InslfuctlOll Program Colll,er, Output Enabled

5-646

FUNCTIONAL DESCRIPTION

,

r 20 pF
2

XTAL 1 r XTAL 1

B041AH ! L

B041AH

'3
8741A 8741A
8042 8042
8742 .8742

POPF
3 ± 15-25 pF

XTAL 2 XTAl2

Figure 2-11. Recommended Crystal and L-C Connections

Cycle Counter
The output of the state counter is divided by 5 in the
cycle counter to generate a signal which defines a
machine cycle. This signal is call SYNC and is avail­
able continously on the SYNC output pin. It can be
used to synchronize external circuitry or as a general
purpose clock output. It is also used for synchroniz­
ing single-step.

Frequency Reference
The external crystal provides high speed and accu­
rate timing generation. A crystal frequency of 5.9904
MHz is useful for generation of standard communi­
cation frequencies by the 8041AH/8741, 8042/8742.
However, if an accurate frequency reference and
maximum processor speed are not required, an in­
ductor and capacitor may be used in place of the cry­
stal as shown in Figure 2-11.

A recommended range of inductance and capaci­
tance combinations is given below:

• t = 130 /tH corresponds to 3 MHz
• L = 45 /tH corresponds to 5 MHz

+5V

+5V

L-Do-~-I XTAL 2

STANDARD TTL OR
OPEN COLLECTOR

Figure 2-12. Recommended Connection
For External Clock Signal

An external clock signal can also be used as a fre­
quency reference to the 8741AH, 8741A, 8742 or
8042; however, the levels are not TTL compatible.
The signal must be in the 1-12 MHz frequency range
and must be connected to pins XTAL 1 and XT AL 2
by buffers with a suitable pull-up resistor to guaran­
tee that a logic "1" is above 3.8 volts. The recom­
mended connection is shown in Figure 2-12.

INTERVAL TIMER/EVENT COUNTER
The 8041AH, 8042 has a resident 8-bit timer/
counter which has several software selectable modes
of operation. As an interval timer, it can generate ac­
curate delays from 80 microseconds to 20.48 milli­
seconds without placing undue burden on the
processor. In the counter mode, external events such
as switch closures or tachometer pulses can be
counted and used to direct program flow.

Timer Configuration
Figure 2-13 illustrates the basic timer/counter con­
figuration. An 8-bit register is used to count pulses
from either the internal clock and prescaler or from
an external source. The counter is presettable and
readable with two MOV instructions which transfer
the contents of the accumulator to the counter and
vice-versa (i.e. MOV T, A and MOV A, T). The
counter is stopped by a RESET or STOP TCNT in­
struction and remains stopped until restarted either
as a timer (START T instruction) or as a counter
(START CNT instruction). Once started, the
counter will increment to its maximum count (FFH)
and overflow to zero continuing its count until
stopped by a STOP TCNT instruction or RESET.

The increment from maximum count to zero (over­
flow) results in setting the Timer Flag (TF) and gen­
erating an interrupt request. The state of the
overflow flag is testable with the conditional jump

5-647

FUNCTIONAL DESCRIPTION

EXTERNAL
INPUT

~TEST1

TIMER

COUNTER

o
STOP

PRESCALER
1+ 32)

XTAl1

8·BIT
COUNTER

o
XTAl2

OSCILLATOR

Figure 2-13. Timer Counter

instruction, JTF. The flag is reset by executing a
JTF or by a RESET signal. .

The timer interrupt request is stored in a latch alld
ORed with the input buffer full interrupt request.
The timer interrupt can be enabled or disabled inde­
pengent of the IBF interrupt by the EN TCNTI and
DIS TCTNI instructions. If enabled, the counter
overflow will cause a subroutine call to location 7
where the timer service routine is stored. If the timer
and Input Buffer Full interrupts occur simulta­
neously, the IBF source will be recognized and the
call will be to location 3. Since the timer interrupt is
latched, it will remain pending until the DBBIN reg­
ister has been serviced and will immediately be rec­
ognized upon return from the service routine. A
pending timer interrupt is reset by the initiation of a
timer interrupt service routine.

Event Counter Mode
The STRT CNT instruction connects the TEST 1
input pin to the counter input and enables the
counter. Note this instruction does not clear the
counter. The counter is incremented on high to low
transitions of the TEST 1 input. The TEST 1 input
must remain high for a minimum of one state in or­
der to be registered (250 ns at 12 MHz). The maxi­
mum count frequency is one count per three
instruction cycles (267 kHz at 12 MHz). There is no
minimum frequency limit.,

Timer Mode
The STRT T instruction connects the internal clock
to the count.er input and enables the counter. The

input clock is derived from the SYNC signal of the
internal oscillator and the divide-by-32 prescaler.
The configuration is illustrated in Figure 2-13. Note
this instruction does not clear the timer register.
Various delays and timing sequences between 40
J.l.sec and 10.24 msec can easily be generated with a
minimum of software timing loops (at 12 MHz).

Times longer than 10.24 msec can be accurately
measured by accumulating multiple overflows in a
register under software control. For time resolution
less than 40 J.l.sec, an external clock can be applied to
the TEST 1 counter input (see Event Counter
Mode). The minimum time resolution with an exter­
nal clock is 3.75 J.l.sec (267 kHz at 12 MHz).

TEST 1 Event Counter Input
The TEST 1 pin is multifunctional. It is automati­
cally initialized as a test input by a RESET signal
and can be tested using UPI-41A conditional branch
instructions. .

In the second mode of operation, illustrated in Fig­
ure 2-13, the TEST 1 pin is used as an input to the
internal 8-bit event counter. The Start Counter
(STRT CNT) instruction controls an internal switch
which connects TEST 1 through an edge detector to
the 8-bit internal counter. Note that this instruction
does not inhibit the testing of TEST 1 via condi­
tional Jump instructIons.

In the counter mode the TEST 1 input is sampled
once per instruction cycle. After a high level is de­
tected, the next occurence of a low level at TEST 1

5-648

FUNCTIONAL DESCRIPTION

will cause the counter to increment by one.

The event counter functions can be stopped by the
Stop Timer/Counter (STOP TCNT) instruction.
When this instruction is executed the"TEST 1 pin
becomes a test input and functions as previously de­
scribed.

TEST INPUTS
There are two multifunction pins designated as Test
Inputs, TEST 0 and TEST 1. In the normal mode of
operation, status of each of t~ese lines can be di­
rectly tested using the following conditional Jump
instructions:

• JTO Jump if TEST 0 = 1
• JNTO Jump if TEST 0 = 0
• JT1 Jump if TEST 1 = 1
• JNT1 Jump if TEST 1 = 0

The test inputs are TTL compatible. An external
logic signal connected to one of the test inputs will
be sampled at the time the appropriate conditional
jump instruction is executed. The path of program
execution will be altered depending on the state of
the external signal when sampled.

INTERRUPTS
The 8041AH/8741A, 8042/8742 has the following in­
ternal interrupts:

WR Q

CS

IBF
INTERRUPT
REQUEST

IBF
INTERRUPT

RECOGNIZED

RESET
IBF

• Input Buffer Full (IBF) interrupt
• Timer Overflow interrupt

The IBF interrupt forces a CALL to location 3 in
program memory; a timer-overflow interrupt forces
a CALL to location 7. The IBF interrupt is enabled
by the EN I instruction and disabled by the DIS I
instruction. The timer-overflow interrupt is enabled
and disabled by the EN TNCTI and DIS TCNTI
instructions, respectively.

Figure 2-14 illustrates the internal interrupt l~
An IBF interrupt request is generated whenever WR
and CS are both low, regardless of whether inter­
rupts are enabled. The interrupt request is cleared
upon entering the IBF service routine only. That is,
the DIS I instruction does not clear a pending IBF
interrupt.

Interrupt Timing Latency
When the IBF interrupt is enabled and an IBF inter­
rupt request occurs, an interrupt sequence is initi­
ated as soon as the currently executing instruction is
completed. The following sequence occurs:

• A CALL to location 3 is forced.
• The program counter and bits 4-7 of the Pro­

gram Status Word are stored in the stack. f

• The stack pointer is incremented.

INTERRUPT
ENI Q ENABLE

IBF
INTERRUPT

ENABLE

DIS I

RESET

TIMER ~.IL~~--r}-____ -l
OVERFLOW

TIMER
INTERRUPT

RECOGNIZED

DIS TCNTr
EXECUTED

RESET

Q

TIMER
INTERRUPT

ENABLE

TIMER
INTERRUPT
REQUEST

RETA EXECUTED

RESET

Figure 2·14. Interrupt Logic

5-649

Q INTERRUPT
IN PROGRESS

FUNCTIONAL DESCRIPTION

Location 3 in program memory should contain an
unconditional jump to the beginning of the IBF in­
terrupt service routine elsewhere in program mem­
ory. At the end of the service routine, an RETR
(Return and Restore Status) instruction is used to
return control to the main program. This instruction
will restore the program counter and PSW bits 4-7,
providing automatic restoration of the previously
active register bank as well. RETR also re-enables
interrupts.

A timer-overflow interrupt is enabled by the EN
TCNT! instruction and disabled by the DIS TCNTI
instruction. If enabled, this interrupt occurs when
the timer/counter register oVf!rflows. A CALL to lo­
cation 7 is forced and the interrupt routine proceeds
as described above.

The interrupt service latency is the sum of current
instruction time, interrupt recognition time, and the
internal call to the interrupt vector address. The
worst case latency time for servicing an interrupt is 7
clock cycles. Best case latency is 4 clock cycles.

Interrupt Timing
Interrupt inputs may be enabled or disabled under
program control using EN I, DIS I, EN TCNTI and
DIS TCNT! instructions. Also, a RESET input will
disable interrupts. An interrupt request must be re­
moved before the RETR instruction is executed to
return from the service routine, otherwise the pro­
cessor will re-enter the service routine immediately.
Thus, the WR and CS inputs should not be held low
longer than the duration of the interrupt service
routine.

The interrupt system is single level. Once an inter­
rupt is detected, all further interrupt requests are
latched but are not acted upon until execution of an
RETR instruction re-enables the interrupt input
logic. This occurs at the beginning of the second cy­
cle of the RETR instruction. If an IBF interrupt and
a timer-overflow interrupt occur simultaneously, the
IBF interrupt will be recognized first and the timer­
overflow interrupt will remain pending 'until the end
of the interrupt service routine.

External Interrupts
An external interrupt can be created using the UPI-
41AH, 42 timer/counter in the event counter mode.
The counter is first preset to FFH and the EN
TCNT! instruction is executed. A timer-overflow in­
terrupt is generated by the first high to low transi­
tion of the TEST 1 input pin. Also, if an IBF
interrupt occurs during servicing of the
timer/counter interrupt, it will remain pending until
the end of thfl service routine.

Host Interrupts And DMA
If needed, two external interrupts to the host system '
can be created using the EN FLAGS instruction.
This instruction allocates two I/O lines on PORT 2
(P24 and P25). PZ4 is the Output Buffer Full inter­
rupt request line to the host system; P25 is the Input
Buffer empty interrupt request line. These interrupt
outputs reflect the internal status of the OBF flag
and the IBF inverted flag. Note, these outputs may
be inhibited by writing a "0" to these pins. Reenab­
ling interrupts is done by writing a "1" to these port
pins. Interrupts are typically enabled after power on
since the I/O ports are set in a "1" condition. The EN
FLAG's effect is only cancelled by a device RESET.

DMA handshaking controls are available from two
pins on PORT 2 of the UPI-41A microcomputer.
These lines (P26 and P27) are enabled by the EN
DMA instruction. P26 becomes DMA request
(DRQ) and P27 becomes DMA acknowledge
(DACK). The U~I program initiates a DMA request
by writing a "1" to P26. The DMA controller trans­
fers the data into the DBBIN data register using
DACK which acts as a chip select. The EN DMA in­
struction can only be cancelled by a chip RESET.

RESET
The RESET input provides a means for internal
initialization of the processor. An automatic
initialization pulse can be generated at power-on by
simply connecting a 1 !Lfd capacitor between the
RESET input and ground as shown in Figure 2-15. It
has an internal pull-up resistor to charge the capaci­
tor and a Schmitt-trigger circuit to generate a clean
transition. A 2-stage sychronizer has been added to
support reliable operation up to 12 MHz.

If automatic initialization is used, RESET should be
held low for at least 10 milliseconds to allow the
power supply to stabilize. If an external RESET sig­
nal is used, RESET may be held low for a minimum
of 8 instruction cycles", Figure 2-15 illustrates a con­
figuration using an external TTL gate to generate
the RESET input. This configuration can be used to
derive the RESET signal from the 8224 clock gener­
ator in an 8080 system.

The RESET input performs the following functions:

• Disables Interrupts
• Clears Program Counter to Zero
• Clears Stack Pointer
• Clears Status Register and Flags
• Clears Timer and Timer Flag
• Stops Timer
• Selects Register Bank 0
• Sets PORTS 1 and 2 to Input Mode

5-650

FUNCTIONAL DESCRIPTION

,

5Y

....c.... ,. 8041AH 8041AH

I
• RESET

8741A
EXTERNAL -el 8741A

l~F±
8042 RESET 8042
8742 RESET TTL 8742 SIGNAL

lOY
OPEN COLLECTOR

Figure 2-15. External Reset Configuration

DATA BUS BUFFER
Two 8-bit data bus buffer registers, DBBIN and
DBBOUT, serve as temporary buffers for commands
and data flowing between it and the master proces­
sor. Externally, data is transmitted or received by
the DBB registers upon execution of an INput or
OUTput instruction by the master processor. Four
control signals are used: .

•

•
•
•

AO

CS
RD
WR

Address input signifying control or
data
Chip Select
Read strobe
Write strobe

Transfer can be implemented with or without UPI
program interference by enabling or disabling an in­
ternal UPI interrupt. Internally, data transfer be-

UPI-41AH,42

BUS CONTENTS DURING STATUS READ

5T7 5T6 5T5 ST 4 Fl FO

07 D6 05 04 03 02

IBF

01

SYSTEM
INTERFACE

OBF

DO

tween the DBB and the UPI accumulator is under
software control and is completely asynchronous to
the external processor timing. This allows the UPI
software to handle peripheral control tasks indepen­
dent of the main processor while still maintaining a
data interface with the master system.

Configuration
Figure 2-16 illustrates the internal configuration of
the DBB registers. Data is stored in two 8-bit buffer
registers, DBBIN and DBBOUT. DBBIN and
DBBOUT may be accessed~ the external processor
using the WR line and the RD line, respectively. The
data bus is a bidirectional, three-state bus which can
be connected directly to an 8-bit microprocessor sys­
tem. Four control lines (WR, RD, CS, AO) are used
by the external processor to transfer data to and
from the DBBIN and DBBOUT registers.

WA
CONTROL AD

BUS cs
AO

DATA BUS v--i-...>I",BI_-I

2-16. Data Bus Buffer Configuration

5-651

FUNCTIONAL DESCRIPTION

"An 8-bit regi~ter containing status flags is used to
indicate the status of the DBB registers. The eight
status flags are defined as follows:

• OBF O!ltput Buffer Full This flag is auto­
. matically set when the UPL-Microcomputer
loads the DBBOUT register and is cleared when
the master processor reads the data register.

• IBF Input Buffe"r Full This flag is set when
the master processor writes a character to the
DBBIN register and is cleared when the UPI IN­
puts the data register contents to its accumula­
tor.

• FO This is a general purpose flag which can be
cleared or toggled under UPI software control.
The flag is used to transfer UPI status informa­
tion to the master processor.

• Fl Command/Data This flag is set to the con­
dition of the AO input line when the master pro­
cessor writes a character to the data register. The
Fl flag can also be cleared or toggled under UPI­
Microcomputer program control.

• " ST4 Through ST7 These bits are user defined
status bits. They are defined by the MOV STS A
instruction. '

All flags in the status register are automatically
cleared by a RESET input.

8-BIT
SYSTEM

BUS

.-
S

- \

~

AO A,

8

00-07 AO CS

PORT 1

l-
8

V

SYSTEM INTERFACE
Figure 2-17 illustrates how an UPI-Microcomputer
can be connected to a standard 8080-type bus sys­
tem. Data lines DO-D7 form a three-state,
bidirectional port which can be connected directly to
the system data bus. The uplbus interface has suf­
ficient drive capability (400 /LA) for small systems,
however, a larger system may require buffers.

Four control signals are required to handle the data
and status information transfer:

• WR I/O WRITE signal used to transfer data
from the system bus to the UPI DBBIN
register and set the Fl flag in the status
register.

• RD I/O READ signal used to transfer data
from the DBBOUT register or status
register to the system data bus.

• CS CHIP SELECT signal used to enable
one 8041A out of several connected to a
common bus.

• AO Address input used to select either the
8-bit status register or DBBOUT regis­
ter during an I/O READ.

I
iOR I lOW

Also, the signal is used to set the Fl flag
in the status register during an I/O
WRITE .

ADDRESS BUS ~

CONTROL BUS ~

REseT ¢2

DATA BUS \

~ ~ 470

t
+sv

470

l
+sv

RO WR REseT XTAL 1 XTAL 2

B041A/s741A

PORT 2 TEST1 TEST 0

8

V

I
PERIPHERAL INTERFACE

Figure 2·17. Interface to 8080 System Bus

5-652

FUNCTIONAL DESCRIPTION

The WR and RD signals are active low and are stan­
dard MCS-80 peripheral control signals used to syn­
chronize data transfer between the ~ystem bus and
peripheral devices.

The CS and AO signals are decoded from the address
bus of the master system. In a system with few I/O
devices a linear addressing configuration can be used
where AO and Al lines are connected directly to AO
and CS inputs (see Figure 2-17).

Data Read
Table 2-4 illustrates the relative timing of a
DBBOUT Read. When CS, AO, and RD are low, the
contents of the DBBOUT register is placed on the
three-state Data lines DO-D7 and the OBF flag is
cleared.

The master processor uses CS, AO, WR, and RD to
control data transfer between the DBBOUT register
and the master system. The following operations are
under master processor control:'

Table 2-4. Data Transfer Controls

CS RD WR Ao
0 G 1 0 Read DBBOUT register
0 0 1 1 Read STATUS register
0 1 0 0 Write DBBIN data register
0 1 0 1 Write DBBIN command register
1 x x x Disable DBB

Status Read
Table 2-4 shows the logic sequence re~ed for a
STATUS register read. When CS and RD are low
with AO high, the contents of the 8-bit status register
appears on Data lines DO-D7.

Data Write
Table 2-4 shows the sequence for writing informa­
tion to the DBBIN register. When CS and WR are
low, the contents of the system data bus is latched
into DBBIN. Also, the IBF flag is set and an inter­
rupt is generated, if enabled.

Command Write
During any write (Table 2-4), the state of the AO in­
put is latched into the status register in the Fl
(command/data) flag location. This additional bit is
used to signal whether DBBIN contents are com­
mand (AD = 1) or data (AO = 0) information.

INPUT/OUTPUTINTERFACE
The UPI-41A has 16 lines for input and output func­
tions. These I/O lines are grouped as two 8-bit TTL
compatible ports: PORTS 1 and 2. The port lines

can individually function as either inputs or outputs
under software control. In addition, the lower 4 lines
of PORT 2 can be used to interface to an 8243 I/O
expander device to increase I/O capacity to 28 or
more lines. The additional lines are grouped as 4-bit
ports: PORTS 4,5,6, and 7.

PORTS 1 and 2
PORTS 1 and 2 are each 8 bits wide and have the
same I/O characteristics. Data written to these ports
by an OUTL Pp,A instruction is latched and re­
mains unchanged until it is rewritten. Input data is
sampled at the time the IN, A,Pp instruction is ex­
ecuted. Therefore, input data must be present at the
PORT until read by an INput instruction. PORT 1
and 2 inputs are fully TTL compatible and outputs
will drive one standard TTL load.

Circuit Configuration
The PORT 1 and 2 lines have a special output struc­
ture (shown in Figure 2-18) that allows each line to
serve as an input, an output, or both, even though
outputs are statically latched.

Each line has a permanent high impedance pull-up
(50KQ) which is sufficient to provide source current
for a TTL high level, yet can be pulled low by a stan­
dard TTL gate drive. Whenever a "I" is written to a
line, a low impedance pull-up (5K) is switched in
momentarily (500 ns) to provide a fast transition
from 0 to 1. When a "0" is written to the line, a low
impedance pull-down (300Q) is active to provide
TTL current sinking capability.

To use a particular PORT pin as an input, a logic "I"
must first be written to that pin.

NOTE: A RESET intializes all PORT pins to the
high impedance logic "I" state.

An external TTL device connected to the pin has
sufficient current sinking capability to pull-down .
the pin to the low state. An IN A,Pp instruction will
sample the status of PORT pin and will input the
proper logic level. With no external input connected,
the IN A,Pp instruction inputs the previous output
status.

This structure allows input and output information
on the same pin and also allows any mix of input and
output lines on the same port. However, when inputs
and outputs are mixed on one PORT, a PORT write
will cause the strong internal pull-ups to turn on at
all inputs. If a switch or other low impedance device
is connected to an input, a PORT write ("I" to an
input) could cause current limits on internal lines to

5-653

FUNCTIONAL DESCRIPTION

INTERNAL
BUS

Figure 2-18. Quasi-Bidirectional Port Structure

be exceeded. Figure 2-19 illustrates the recom­
mended connection when inputs and outputs are
mixed on one PORT.

The bidirectional port structure in combination with
the UPI-41AH, 42 logical AND and OR instructions
provides an efficient means for handling single line
inputs and outputs within an 8-bit processor.

PORTS 4, 5, 6, and 7
By using an 8243 I/O expander, 16 additional I/O
lines can be connected to the UPI-41AH, 42 and di­
rectly addressed as 4-bit I/O ports using UPI-41AH,
42 instructions. This feature saves program space
and design time, and improves the bit handling ca­
pability of the UPI-41AH, 42.

PORT 1,2 ---0 . l NPUT

8041AH
8741A

~~ -:

INCORRECT UNlESS
ALL LINES ON THE
PORT ARE INPUTS

The lower half of PORT 2 provides an interface to
the 8243 as illustrated in Figure 2-20. The PROG pin
is used as a strobe to clock address and data informa­
tion via the PORT 2 interface. The extra 16 I/O lines
are referred to in UPI software as PORTS 4, 5, 6, and
7. Each PORT can be directly addressed and can be
ANDed and ORed with an immediate data mask.
Data can be moved directly to the accumulator from
the expander PORTS (or vice-versa).

The 8243 I/O ports, PORTS 4, 5, 6, and 7, provide
more drive capability than the UPI-41AH, 42
bidirectional ports. The 8243 output is capable of
driving about 5 standard TTL loads.

8041AH
8741A
8042
8742

1K

~. INPUT-:­PORT 1.2 t-J\N~--o . 1

RECOMMENDED WHEN
INPUTS AND OUTPUTS
ARE MIXED ON A PORT

Figure 2-19. Recommended PORT Input Connections

5-654

FUNCTIONAL DESCRIPTION

-=- THAN ONE EXPANDER IS USED
*l CHIP SELECT CONNECTION IF MaR

12 1/0 CS

P4.- PORT 4 4 > 1/0

TEST 2 INPUTS
8041AH P5 -- PORT 5 4 I/O
8741A
8042 8243
8742

P6 -- PORT 6 4 1/0

P20-P23 4 00-03

P7 -- PORT 7 4 > 1/0
PROG PROG

\ / BITS 0,1 BITS 2,3
PROG

°fr
o~ READ 01 PORT 01 WRITE

10 ADDRESS 10 OR

-< X >
11 11 AND

P20-P23

ADDRESS (4-8IT5) DATA (4-8IT5)

Figure 2-20. 8243 Expander Interface

Multiple 8243's can be connected to the PORT 2 in­
terface. In normal operation, only one of the 8243's
would be active at the time an Input or Output com­
mand is executed. The upper half of PORT 2 is used
to provide chip select signals to the 8243's. Figure 2-
21 shows how four 8243's could be connected. Soft-

8041AH
DaAuTsA ,-_-,,-_rI DBB 8;O~~A

8742

CO~J;OL /"-~~"CONTRO~ORT 1 K:::]=:>

ware is needed to select and set the proper PORT 2
pin before an INPUT or OUTPUT command to
PORTS 4-7 is executed. In general, the software
overhead required is very minor compared to the
added flexibility of having a large number of I/O
pins available.

PROG~----------~------------~------------+-----------~

Figure 2-21. Multiple 8243 Expansion

5-655

CHAPTER 3
INSTRUCTION SET

The UPI-41AH, 42 Instruction Set is opcode-com­
patlble with the MCS-48 set except for the elimina­
tion of external program and data memory
instructions and the addition of the data bus buffer
instructions. It is very straightforward and efficient
in its use of program memory. All instructions are
either 1 or 2 bytes in length (over 70% are only 1
byte long) and over half of the instructions execute
in one machine cycle. The remainder require only
two cycles and include Branch, Immediate, and I/O
operations.

The UPI-41AH, 42 Instruction Set efficiently han­
dles the single-bit operations required in control ap­
plications. Special instructions allow port bits to be
set or cleared individually. Also, any accumulator bit
can be directly tested via conditional branch instruc­
tions. Additional instructions are included to
simplify Ibop counters, table look-up routines and
N-way branch routines.

The UPI-41AH, 42 Microcomputer handles
arithmetic operations in both binary and BCD for
efficient interface to peripherals such as keyboards
and displays.

The instruction set can be divided into the following
groups:

• Data Moves
• Accumulator Operations
• Flags
• Register Operations
• Branch Instructions
• Control
• Timer Operations
• Subroutines
• Input/Output Instructions

Data Moves
(See Instruction Summary)
The 8-bit accumulator is the control point for all
data transfers within the UPI-41AH, 42, Data can be
transferred between the 8 registers of each working
register bank and the accumulator directly (Le., with
a source or destination register speCified by 3 bits in
the instruction). The remaining locations in the
RAM array are addressed either by Ro or Rl of the
active register bank. Transfers to and from RAM re-
quire one cycle. '

chine status accordingly and provide a means of re­
storing status after an interrupt or of altering the
stack pointer if necessary.

Accumulator Operations
Immediate data, data memory, or the working regis­
ters can be added (with or without carry) to the ac­
cumulator. These sources can also be ANDed, ORed,
or exclusive ORed to the accumulator. Data may be
moved to or from the accumulator and working reg­
isters or data memory. The two values can also be
exchanged in a single operation.

The lower 4 bits of the accumulator can be ex­
changed with the lower 4 bits of any of the internal
RAM locations. This operation, along with an in­
struction which swaps the upper and lower 4-bit
halves of the accumulator, provides easy handling of
BCD numbers and other 4-bit quantities. To facili­
tate BCD arithmetic a Decimal Adjust instruction is
also included. This instruction is used to correct the
result of the binary addition of two 2-digit BCD
numbers. Performing a decimal adjust on the result
in the accumulator produces the desired BCD result.

The accumulator can be incremented, decremented,
cleared, or complemented and can be rotated left or
right 1 bit at a time with or without carry.

A subtract operation can be easily implemented in
UPI-41AH, 42 software using three single-byte,
single-cycle instructions. A value can be subtracted
from the accumulator by using the following instruc­
tions:

• Complement the accumulator
• Add the value to the accumulator
• Complement the accumulator

Flags
There are four user accessible flags:

• Carry
• Auxiliary Carry
• FO
• Fl

The Carry flag indicates overflow of the accumula­
tor, while the Auxiliary Carry flag indicates overflow
between BCD digits and is used during decimal ad­
just operations. Both Carry and Auxiliary Carry are
part of the Program Status Word (PSW) and are

Constants stored in Program Memory can be loaded stored in the stack during subroutine calls. The FO
directly into the accumulator or the eight working and Fl flags are general-purpose flags which can be
registers. Data can also be transferred directly be- cleared or complemented by UPI instructions. FO is
tween the accumulator and the on-board timer/ accessible via the Program Status Word and is
counter, the Status Register (STS), or the Program stored in the stack with the Carry flags. Fl reflects
Status Wor(i (PSW). Transfers to the STS register the condition of the AO line, and caution must be
alter bits 4-7 only. Transfers to the PSW alter ma- used when setting or clearing it.

5-656

INSTRUCTION SET

Register Operations
The working registers can be accessed via the accu­
mulator as explained above, or they can be loaded
with immediate data constants from program mem­
ory. In addition, they can be incremented or
decremented directly, or they can be used as loop
counters as explained in the section on branch
instructions.

Additional Data Memory locations can be accessed
with indirect instructions via Ro and Rl.

Branch Instructions
The UPI-41AH, 42 Instruction Set includes 17 jump
instructions. The unconditional jump instruction al­
lows jumps anywhere in the 1K words of program
memory. All other jump instructions are limited to
the current page (256 words) of program memory.

Conditional jump instructions can test the following
inputs and machine flags:

• TEST 0 input pin
• TEST 1 input pin
• Input Buffer Full flag
• Output Buffer Full flag
• Timer flag
• Accumulator zero
• Accumulator bit
• Carry flag
• FO flag
• F1 flag

The conditions tested by these instructions are the
instantaneous values at the time the conditional
jump instruction is executed. For instance, the jump
on accumulator zero instruction tests the accumula­
tor itself, not an intermediate flag.

The decrem~nt register and jump if not zero (DJNZ)
instruction combines decrement and branch oper­
ations in a single instruction which is useful in im­
plementing a loop counter. This instruction can
designate any of the 8 working registers as a counter

. and can effect a branch to any address within the
current page of execution.

A special indirect jump instruction (JMPP @A) al­
lows the program to be vectored to anyone of several
different locations based on the contents of the accu­
mulator. The contents of the accumulator point to a
location in program memory. which contains the
jump address. As an example, this instruction could
be used to vector to anyone of several routines based
on an ASCII character which has been loaded into
the accumulator. In this way, ASCII inputs can be
used to initiate various routines.

Control
The UPI-41AH, 42 Instruction Set has six instruc­
tions for control of the DMA, interrupts, and selec­
tion of working register banks.

The UPI-41AH, 42 provides two instructions for
control of the external microcomputer system. IBF
and OBF flags can be routed to PORT2 allowing in­
terrupts of the external processor. DMA
handshaking signals can also be enabled using lines
from PORT 2.

The IBF interrupt can be enabled and disabled
using two instructions. Also, the interrupt is auto­
matically disabled following a RESET input or dur­
ing an interrupt service routine.

The working register bank switch instructions allow
the programmer to immediately substitute a second
8 register bank for the one in use. This effectively
provides either 16 working registers or the means for
quickly saving the contents of the first 8 registers in
response to an interrupt. The user has the option of
switching register banks when an interrupt occurs.
However, if the banks are switched, the original
bank will automatically be restored upon execution
of a return and restore status (RETR) instruction at
the end of the interrupt service routine.

Timer
The 8-bit on-board timer/counter can be loaded or
read via the accumulator while the counter is
stopped or while counting.

The counter can be started as a timer with an inter­
nal clock source or as an event counter or timer with
an external clock applied to the TEST 1 pin. The
instruction executed determines which clock source
is used. A single instruction stops the counter
whether it is operating with an internal or an exter­
nal clock source. In addition, two instructions allow
the timer interrupt to be enabled or disabled.

Subroutines
Subroutines are entered by executing a call instruc­
tion. Calls can be made to any address in the 1K
word program memory. Two separate return
instructions determine whether or not status (i.e.,
the upper 4 bits of the PSW) is restored upon return
from a subroutine.

Input/Output Instructions
Two 8-bit data bus buffer registers (DBBIN and
DBBOUT) and an 8-bit status register (STS) enable
the UPI-41A universal peripheral interface to com­
municate with the external microcomputer system.
Data can be INputted from the DB BIN register to

5-657

/

INSTRUCTION SET

the accumulator. Data can be OUTputted from the
accumulator to the DBBOUT registe-{.

The STS register contains four user-definable bits
(ST 4 -ST7) plus four reserved status bits (IBF, OBF,
FO, and F1). The user-definable bits are set from the
accumulator.

The UPI-41AH, 42 peripheral interface hilS two 8-
bit static I/O ports which can be loaded to and from
the accumulator. Outputs are statically latched but
inputs to the ports are sampled at the time an IN
instruction is executed. In addition, immediate data
from program memory can be ANDed and ORed di­
rectly to PORTS 1 and 2 with the result remaining
on the port. This allows "masks" stored in program
memory to be used to set or reset individual bits' on
the I/O ports. PORTS 1 and 2 are configured to al­
low input on a given pin by first writing a "1" to the
pin.

Four additional4-bit ports are available through the
8243 I/O expander device. The 8243 interfaces to the
UPI-41AH, 42 peripheral interface via four PORT 2
lines which form an expander bus. The 8243 ports
\have their own AND and OR instructions like the
on-board ports, as well as move instructions to trans­
fer data in or out. The expander AND or OR instruc­
tions, however, combine the contents of the
accumulator with the selected port rather than with
immediate data as is done with the on-board ports.

INSTRUCTION SET DESCRIPTION
The following section provides a detailed descrip­
tion of each UPI instruction and illustrates how the
instructions are used.

For further information about programming the
UPI, consult the 8048/8041A Assembly Language
Manual.

Table 3·1. Symbols and Abbreviations Used

Symbol Definition

A Accumulator
C Carry

DBBIN Data Bus Buffer Input
DBBOUT Data Bus Buffer Output

FO,Fl FLAG 0, FLAG 1 (C/D flag)
I Interrupt
P Mnemonic fpr "in-page" operation

PC Program Counter
Pp Port designator (p = 1,2, or 4-7)

PSW Program Status Word
Rr Register designator (r = 0-7)
SP Stack Pointer

STS Status register
T Timer

TF Timer Flag
TO,Tl TEST 0, TEST 1

Immediate data prefix
@ Indirect address prefix
«» Double parentheses show the effect of @,

that is, @RO is shown as «RO».
() Contents of

Table 3·2. Instruction Set Summary

Mnemonic Operation Description Bytes Cycles

ACCllmulator
ADD A,Rr Add register to A 1 1
ADD A,@Rr Add data memory to A 1 1
ADD A,#data Add immediate to A 2 2
ADDC A,Rr, Add register to A with carry 1 1

, ADDC A,@Rr Add data memory to A with carry 1 1
ADpC A,#data Add immediate to A with carry 2 2
ANL A,Rr And register to A 1 1
ANL A,@Rr And data memory to A 1 1
ANL A,#data And immediate to A' 2 2
ORL A,Rr Or register to A 1 1
ORL A,@Rr Or data memory to A 1 1
ORL A,#data Or immediate to A 2 2
XRL A,Rr Exclusive Or register to A 1 1
XRL A,@Rr Exclusive Or data memory to A 1 1
XRL A,#data Exclusive Or immediate to A 2 2
INC A IncrementA 1 1
DEC A Decrement A 1 1
CLR A Clear A 1 1
CPL A Complement A 1 1
DA A Decimal Adjust A 1 1
SWAP A Swap nibbles of A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through carry 1 1
RR A Rotate A right 1 1
RRC A ' Rotate A right through carry 1 1

5·658

(

INSTRUCTION SET

Table 3-2. Instruction Set Summary (Con't.)

Mnemonic OReration Description Bytes Cycles

INPUT/OUTPUT

IN A,Pp Input port to A I 2
OUTL Pp,A Output A to port I 2
ANL Pp,#data And immediate to port 2 2
ORL Pp,#data Or immediate to port 2 2
IN A,DBB Input DBB to A, clear IBF I I
OUT DBB,A Output A to DBB, Set OBF I I
MOV STS,A A4-A7 to bits 4-7 of status I I
MOVD A,Pp Input Expander port to A I 2
MOVD Pp,A Output A to Expander port I 2
ANLD Pp,A And A to Expander port I 2
ORLD Pp,A Or A to Expander port I 2

DATA MOVES

MOV A,Rr Move register to A I I
MOV A,@Rr Move data memory to A I I
MOV A,#data Move immediate to A 2 2
MOV Rr,A Move A to register I I
MOV @Rr,A Move A to data memory I I
MOV Rr,#data Move immediate to register 2 2
MOV @Rr,#data Move immediate to data memory 2 2
MOV A,PSW Move PSW to A I I
MOV PSW,A Move A toPSW I I
XCH A,Rr Exchange A and registers I I
XCH A,@Rr Exchange A and data memory I I
XCHD A,@Rr Exchange digit of A and register I I
MOVP A,@A Move to A from current page I 2
MOVP3 A,@A Move to A from Page 3 I 2

TIMER / COUNTER

MOV A,T Read Timer/Counter I I
MOV T,A Load Timer/Counter I I
STRT T Start Timer I I
STRT CNT Start Counter I I
STOP TCNT Stop Timer/Counter I I
EN TCNTI Enable Timer/Counter Interrupt I I
DIS TCNTI Disable Timer/Counter Interrupt I I

CONTROL

EN DMA Enable DMA Handshake Lines I I
EN I Enable IBF interrupt I I
DIS I Disable IBF interrupt I I
EN FLAGS Enable Master Interrupts 1 I
SEL RBO Select register bank 0 I I
SEL RBI Select register bank I I I
NOP No Operation I I

REGISTERS

INC Rr Increment register I I
INC @Rr Increment data memory I I
DEC Rr Decrement register I I

SUBROUTINE

CALL addr Jump to subroutine 2 2
RET Return I 2
RETR Return and restore status I 2

FLAGS

CLRC Clear Carry I I
CPLC Complement Carry I I
CLRFO Clear Flag 0 I I
CPLFO Complement Flag 0 I I
CLRFI Clear FI Flag I I
CPLFI Complement FI Flag I I

5-659

INSTRUCTION SET

Table 3-2. Instruction Set Summary (Con't.)

Mnemonic Operation Description Bytes Cycles

BRANCH
JMP addr Jump unconditional 2
JMPP @A Jump indirect 1
DJNZ Rr,addr Decrement register and jump on non-zero 2
JC addr Jump on Carry=l 2
JNC addr Jump on Carry=O 2
JZ addr Jump on A Zero 2
JNZ addr Jump on A not Zero 2
JTO addr Jump on TO=l 2
JNTO addr Jump on TO=O 2
JTl addr Jump on Tl=l 2
JNTl addr Jump on Tl=O 2
JFO addr Jump on FO Flag=l 2
JFl addr Jump on Fl Flag=l 2
JTF addr Jump on Timer Flag=l 2
JNII}F addr Jump on IBF Flag=O 2
JOBF addr Jump on OBF Flag=1 2
JBb addr Jump on Accumulator Bit 2

ALPHABETIC LISTING

ADD A,Rr Add Register Contents to Accumulator

Opcode: LI _o ________ 0-LI _1 __ r_2 __ r_1 __ ro~1
The contents of register 'r' are added to the accumulator. Carry is affected.
(A) -- (A) + (Rr) r=0-7

Example: ADDREG: ADD A,R6 ;ADD REG 6 CONTENTS
;TOACC

ADD A,@Rr Add Data Memory Contents to Accumulator

Opcode: 1 o ____ o l_o_o_o_---'r I

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

The contents of the standard data memory location addressed by register 'r' bits 0-5 are added to the
accumulator. Carry is affected.
(A) -- (A) + «Rr» r=0-1

Example: ADDM: MOV RO,#47 ;MOVE 47 DECIMAL TO REG °
ADD A,@RO ;ADD VALUE OF LOCATION

;47 TO ACC

ADD A,#data Add Immediate Data to Accumulator

Opcode: 10 ° ° 010 a.

This is a 2-cycle instruction. The specified data is added to the accumulator. Carry is affected.
(A) -- (A) + data

Example: ADDID: ADD A,#ADDER ;ADD VALUE OF SYMBOL
;'ADDER' TO ACC

5-660

INSTRUCTION SET

ADDC A,Rr Add Carry and Register Contents to Accumulator

Opcode: ~I _0 ________ 1~1 _1 __ r_2 __ r_1 __ ro~1
The content of the carry bit is added to accumulator location O. The contents of register 'r' are then added to
the accumulator. Carry is affected.
(A) -- (A) + (Rr) + (C) -r=0-7

Example: ADDRGC: ADDC A,R4 ;ADD CARRY AND REG 4
;CONTENTS TO ACC

ADDC A,@Rr Add Carry and Data Memory Contents to Accumulator

Opcode: LI 0 ____ 1_ILo_0 __ 0_r--l1

The content of the carry bit is added to accumulator location O. Then the contents of the standard data
memory location addressed by register 'r' bits 0-5 are added to the accumulator. Carry is affected.
(A) -- (A) + «Rr» + (C) r=0-1

Example: ADDMC: MOV R1,#40 ;MOV '40' DEC TO REG 1
AD DC A,@R1 ;ADD CARRY AND LOCATION 40

;CONTENTS TO ACC

ADDC A,#data Add Carry and Immediate Data to Accumulator

Opcode: 1 0 0 0 1 1 0 0

This is a 2-cycle instruction. The content of the carry bit is added to accumulator location O. Then the
specified data is added to the accumulator. Carry is affected.
(A) -- (A) + data + (C)

Example: ADDC A,#255 ;ADD CARRY AND '225' DEC
;TOACC

ANL A,Rr Logical AND Accumulator With Register Mask

Opcode: 1~0 _____ 0 ___ 1~1 _1 __ r_2 __ r_1 __ ro~1
Data in the accumulator is logically ANDed with the mask contained in working register 'r'.
(A) -- (A) AND (Rr) r=0-7

Example: ANDREG: ANL A,R3 ;'AND' ACe CONTENTS WITH MASK
;MASK IN REG 3

ANL A,@Rr Logical AND Accumulator With Memory Mask

Opcdde: 1,-0 ___ 0 _1....1.1_0_0_0_r.....J1

Data in the accumulator is logically ANDed with the mask contained in the data memory location referenced
by register 'r', bits 0-5.
(A) -- (A) AND «Rr» r=0-1

Example: AND OM: MOV RO,#OFFH ;MOVE 'FF' HEX TO REG 0
ANL A,#OAFH ;'AND' ACC CONTENTS WITH

;MASK IN LOCATION 63

5-661

INSTRuctiON SET

ANL A,#data Logical AND Accumulator With Immediate Mask

Opcode: IL-0 ___ O _1--L' 1_0_0 __ 1-,J1 • 1 d7 d6 d5 d41 d3 d2 d 1 dO I

This is a 2-cycle instruction, Data in the accumulator is logically ANDed with an immediately-specified mask.
(A) - (A) AND data

Example: ANDID: ANL A,#OAFH ;'AND' ACC CONTENTS
:WITH MASK 10101111

ANL A,#3+X/Y ;'AND' ACC CONTENTS
;WITH VALUE OF EXP
;'3+X/Y'

'ANL Pp,#data Logical AND Port 1-2 With Immediate Mask

Opcode: 11 0 0 1 11 0 P1 PO 1 • I d7 d6 d5 d41 d3 d2 d1 dO I

, Note:

Example:

This is a 2-cycle instruction. Data on port 'p' is lOgically ANDed with an immediately-specified mask.
(Pp) - (Pp) AND data p= 1-2

Bits 0-1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than
assembly language, the mapping is as follows:

Bits p1

o
o

1
ANDP2: ANL P2,#OFOH

pO Port

o X
1 1
o 2
1 X

, ;'AND' PORT 2 CONTENTS
;WITH MASK 'FO' HEX
;(CLEAR P20-23)

ANLD Pp,A Logical AND Port 4-7 With Accumulator Mask

Opcode: 11 0 0 1 11 1 P1 ,PO 1

This is a 2-cycle instruction. Data on port 'p' on the 8243 expander is logically ANDed with the digit mask
contained in accumulator bits 0-3.
(Pp) - (Pp) AND (AO-3) p=4-7

Note: The mapping of Port 'p' to opcode bits p 1 ,PO is as follows:

Example:

P1 PO
o 0
o 1

o
1 1

ANDP4: ANLD P4,A

Port

4
5
6
7
;'AND' PORT 4 CONTENTS
;WITH ACC BITS 0-3

5-662

INSTRUCTION SET

CALL address Subroutine Call

Opcode: 1 0 ag as 1 1 0

This is a 2-cycle instruction. The program counter and PSW bits 4-7 are saved in the stack. The stack
pOinter (PSW bits 0-2) is updated. Program control is then passed to the location specified by 'address'.

Execution continues at the instruction following the CALL upon return from the subroutine.
«SP» - (PC), (PSW4-7)
(SP) - (SP) + 1
(PCS-g) - (addrS-g)
(PCO-7) - (addrO-7)

Example: Add three groups of two numbers. Put subtotals in locations 50, 51 and total in location 52.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REGO
BEGADD: MOV A,R1 ;MOVECONTENTS OF REG 1

;TOACC
ADD A,R2 ;ADD REG 2 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'
ADD A,R3 ;ADD REG 3 TO ACC
ADD A,R4 ;ADD REG 4 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'
ADD A,R5 ;ADD REG 5 TO ACC
ADD A,R6 ;ADD REG 6 TO ACC
CALL SUBTOT ;CALL SUBROUTINE 'SUBTOT'

SUBTOT: MOV @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION ADDRESSED BY
;REGO

INCRO
RET

CLR A Clear Accumulator

Opcode: 1 0 0 0 1 0

;INCREMENT REG 0
;RETURN TO MAIN PROGRAM

The contents of the accumulator are cleared to zero.
(A)- OOH

CLR C Clear Carry Bit

Opcode: 1 1 0 0 1 0

During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC, CPLC, RRC, and
DAA instructions. This instruction resets the carry bit to zero.
(C)- 0

CLR F1 Clear Flag 1

Opcode: 1'-.1_0 ___ 0--'-1_0 ___ 0_---'

The F 1 flag is cleared to zero.
(F1) - 0

5-663

INSTRUCTION SET

CLR FO Clear Flag 0

Opcode: 110 ° 010 °
Flag ° is cleared to zero.

(FO) - °
CPL A Complement Accumulator

Opcode: I ° ° 1 I °
The contents of the accumulator are complemented. This is strictly a one's complement. Each one' is
changed to zero and vice-versa.
(A) - NOT (A)

Example: Assume accumulator contains 01101010.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE­

;MENTED TO 10010101

CPL C Complement Carry Bit

Opcode: L....11_0 __ 0-,-1 0_' ___ '-,1

The setting of the carry bit is complemented; one is changed tp zero, and zero is changed to one.
(C) - NOT (C)

Example: Set C to one; current setting is unknown.
CT01: CLR C ;C IS CLEARED TO ZERO

CPL C ;C IS SET TO ONE

• CPL FO Complemo;o1t Flag 0

Opcode: I 1 ° ° 1 I ° °
The setting of Flag ° is complemented; one is changed to zero, and zero is changed to one.
FO - NOT (FO)

CPL F 1 Complement Flag 1

Opcode: LI_1_0 ___ 1...J.1_0 ___ 0_---'

The setting of the F 1 Flag is complemented; one is changed to zero, and zero is changed to one.
(F1) - NOT (F1)

5-664

INSTRUCTION SET

DA A Decimal Adjust Accumulator

Opcode: '-1_0 ___ 0 __ 1-'-1_0 ____ ---'

The a-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits following the
binary addition of BCD numbers. The carry bit C is affected. If the contents of bits 0-3 are greater than nine,
or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if C is one, these bits are increased by
six. If an overflow occurs, C is set to one; otherwise, it is cleared to zero.

Example: Assume accumulator contains 9AH.
DA A ;ACC ADJUSTED TO 01H with C set

AC ACC C
o o 9AH

06H
INITIAL CONTENTS
ADD SIX TO LOW DIGIT

o o A1H
60H ADD SIX TO HIGH DIGIT

o 01H RESULT

DEC A Decrement Accumulator

Opcode: 1 0 0 0 0 1 0

The contents of the accumulator are decremented by one.
(A) -- (A) - 1

Example: Decrement contents of data memory location 63.
MOV RO,#3FH ;MOVE '3F' HEX TO REG 0
MOV A,@RO ;MOVE CONTENTS OF LOCATION 63

;TOACC
DEC A ;DECREMENT ACC
MOV @RO,A ;MOVE CONTENTS OF ACC TO

;LOCATION 63

DEC Rr Decrement Register

Opcode: 1L-1 ___ 0 __ 0-L1 _1_r_2_r_1_ro~1
The contents of working register 'r' are decremented by one.
(Rr) -- (Rr) - 1 r=O-7

Example: DECR1: DEC R1 ;DECREMENT ADDRESS REG 1

DIS I Disable IBF Interrupt

Opcode: 1 0 __ 0 __ 0_---'-1_0 ___ 0_--'

The input Buffer Full interrupt is disabled. The interrupt sequence is not initiated by WR and CS, however,
an IBF interrupt request is latched and remains pending until an EN I (enable IBF interrupt) instruction is
executed.

Note: The ISF flag is set and cleared independent of the ISF interrupt request so that handshaking protocol can
continue normally.

5-665

INSTRUCTION SET

DIS TCNTI Disable Timer/Counter Interrupt

Opcode: LI 0_0 ___ 1....1.1_0 __ 0_--,1 I

The timer / counter interrupt is disabled. Any pending timer interrupt request is cleared. The interrupt se­
quence is not initiated by an overflow, but the timer flag is set and time accumulation continues.

DJNZ Rr, address Decrement Register and Test

Opcode: 11

This is a 2-cycle instruction. Register 'r' is decremented and tested for zero. If the register contains all zeros,
program control falls through to the next instruction. If the register contents are not zero, control jumps to the
specified address within the current page.
(Rr) -- (Rr) - 1
If R "* 0, then;
(PCO-7) -- addr

Note: A 10-bit address specification does not cause an error if the DJNZ instruction and the jump target are on the
same page. If the DJNZ instruction begins in location 255 of a page, it will jump to a target address on the
following page. Otherwise, it is limited to a jump within the current page.

Example: Increment values in data memory locations 50-54.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REGO
MOV R3,#05 ;MOVE '5' DEC TO COUNTER

;REG3
INCRT: INC @RO ;INCREMENT CONTENTS OF

;LOCATION ADDRESSED BY
;REGO

INC RO ;INCREMENT ADDRESS IN REG °
DJNZ R3,INCRT ;DECREMENT REG 3--JUMP TO

;'INCRT' IF REG 3 NONZERO
NEXT -- ;'NEXT' ROUTINE EXECUTED

;IF R3 IS ZERO

EN DMA Enable DMA Handshake Lines

Opcode: LI _1 ___ 0--,-1_0 __ 0_--,

DMA handshaking is enabled using P26as DMA request (DRO) and P27 as DMA acknowledge (DACK). The
DACK line forces CS and AO low internally and clears DRO.

EN FLAGS Enable Master Interrupts

Opcode: Col _1 ____ 1_,>-1_0 ___ 0_---'

The Output Buffer Full (OBF) and the Input Buffer Full ClBF) flags (IBF is inverted) are routed to P24 and P25.
For proper operation, a "1" should be written to P25 and P24 before the EN FLAGS instruction. A "0" written
to P24 or P25 disables the pin. .

5-666

INSTRUCTION SET

EN I Enable IBF Interrupt

Opcode: 10 ° ° 010 °
The Input Buffer Full interrupt is enabled. A low signal on WR and CS initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt

Opcode: 10_0 ___ 0--,1_0 __ 0_--,1 I
The timer / counter interrupt is enabled. An overflow of this register initiates the interrupt sequence.

IN A,DBB Input Data Bus Buffer Contents to Accumulator

Opcode: L....I 0_0 ___ 0--,1_0_0 __ 0--,1

Data in the DBBIN register is transferred to the accumulator and the Input Buffer Full (lBF) flag is set to zero.
(A) -- (DBB)

(lBF) -- °
Example: INDBB: IN A,DBB ;INPUT DBBIN CONTENTS TO

;ACClIMULA TOR

IN A,Pp Input PQrt 1-2 Data to Accumulator

Opcode: I ° ° ° ° 11 ° P1 PO I
This is a 2-cycle instruction. Data present on port 'p' is transferred (read) to the accumulator.
(A) -- (Pp) p= 1-2 (see ANL instruction)

Example: INP12: IN A,P1 ;INPUT PORT 1 CONTENTS
;TOACC

MOV R6,A ;MOVE ACC CONTENTS TO
;REG6

IN A,P2 ;INPUT PORT 2 CONTENTS
;TOACC

MOV R7,A ;MOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

Opcode: I ° ° ° 1 I °
The contents of the accumulator are incremented by one.
(A) -- (A) + 1

Example: Increment contents of location 10 in data memory.
INCA: MOV RO,#10 ;MOV '10' DEC TO ADDRESS

;REGO
MOV A,@RO ;MOVE CONTENTS OF LOCATION

;10 TO ACC
INC A ;INCREMENT ACC
MOV @RO,A ;MOVE ACCCONTENTS TO

;LOCATION 10

5-667

INSTRUCTION SET

INC Rr Increment Register

Opcode: 1 ° ° ° 1 11 r2 f1 rO 1

The contents of working register.'r' are incremented by one.
(Rr) (Rr) + 1 r=0-7

Example: INCRO: INC RO ;INCREMENT ADDRESS REG °
INC @Rr Increment Data Memory Location

Opcode: 1 ° ° ° 1 1 ° ° ° r 1

The contents of the, resident data memory location addressed by register 'r' bits 0-5 are incremented by
one.
«Rr» «Rr» + 1 r=0-1

Example: INCDM: MOV R1,#OFFH ;MOVE ONES TO REG 1
;INCREMENT LOCATION 63 INC @R1

JBb address Jump If Accumulator Bit is Set

Opcode: 1 b2 b1 bO 1 1 ° ° ° 1 • 1 a7 a6 a5 a41 a3 a:2 a 1 aO 1

This is a 2-cycle instruction. Control passes to the specified address if accumulator bit 'b' is set to one.
(PCO-7)"'" addr if b= 1
(PC) (PC) + 2 if b=O

Example: JB41S 1: JB4 NEXT ;JUMP TO 'NEXT' ROUTINE ,
;IF ACC BIT 4= 1

JC address Jump If Carry Is Set

Opcode: LI _1 ____ 1-L1 0 _____ 0--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 ao 1

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is set to one.
(PCO-7) addr if C= 1
(PC) (PC) + 2 if C=O '

Example: JC1: JC OVERFLOW ;JUMP TO 'OVFLOW' ROUTINE
;IFC=1

JFO address Jump If Flag 0 Is Set

Opcode: '---_0 ___ 1..J.I_o ___ o--'1 • 1 a7 a6 a5 a41 a3 a2 a 1 SO I
This is a 2-cycle instruction. Control passes to the specified address if flag ° is set to one.
(PCO-7)"'" addr if FO= 1

Example: JFOIS1: JFO TOTAL;JUMP TO 'TOTAL' ROUTINE
;IF FO=1

5-668

INSTRUCTION SET

JF1 address Jump If C/O Flag (F1) Is Set

Opcode: 1...10 ____ 1-1.1_0 __ 1_0--'1- la7 as a5 a4l a3 a2 a1 SO 1

This is a 2-cycle instruction. Control passes to the specified address if the C/O flag (F1) is set to one.
(PCo-7)": addr if F1=1

Example: JF 11S1: JF1 FILBUF ;JUMP TO 'FILBUF'
;ROUTINE IF F 1 = 1

JMP address Direct Jump Within 1K Block

Opcode: F10 a9 as ° 1 ° ° ° 1-l a7 as a5 84l a3 a2 a1 aol

This is a 2-cycle instruction. Bits 0-9 of the program counter are replaced with the directly-specified
address.
(PCS-9) - addr 8-9
(PCo-7) - addr 0-7

Example: JMP SUBTOT ;JUMP TO SUBROUTINE 'SUBTOT'
JMP $-S ;JUMP TO INSTRUCTION SIX LOCATIONS

;BEFORE CURRENT LOCATION
JMP 2FH ;JUMP TO ADDRESS '2F' HEX

JMPP @A Indirect Jump Within Page

Opcode: 11 ° ,1 1 10 °
This is a 2-cycle instruction. The contents of the program memory location pointed to by the accumulator are
substituted for the 'page' portion of the program counter (PC 0-7).
(PCO-7) - «A»

Example: Assume accumulator contains OFH
JMPPAG: JMPP @A ;JMP TO ADDRESS STORED IN

;LOCATION 15 IN CURRENT PAGE

JNC address Jump If Carry Is Not Set

Opcode: 1...11 ____ 0-1.1--,0 ___ 0--'1- la7 as a5 84l a3 a2 a1 SO 1

This is a 2-cycie instruction. Control passes to the specified address if the carry bit is not set, that is, equals
zero.
(PCo-7) - addr

Example: JCO: JNC NOVFLO
ifC=O
;JUMP TO 'NOVFLO' ROUTINE
;IFC=O

JNlBF address Jump If Input Buffer Full Flag Is Low

Opcode: 1-1_1 ___ 0_1-'-1_0 ____ 0--'1- la7 as a5 a4l a3 a2 a1 ao I

This is a 2-cycle instruction. Control passes to the specified address if the Input Buffer Full flag is low
(IBF=O).
(PCo-7) - addr if IBF=O

Example: LOC 3:JNIBF LOC 3 ;JUMP TO SELF IF IBF=O
;OTHERWISE CONTINUE

5-669

I.

I'" "

!~:\
"

I
I,

l
I!
I,
,

INSTRUCTION SET

JNTO address Jump If TEST 0 Is Low

Opcode: L! o __ o ___ o-'-!_o ____ o---'!- !a7 a6 a5 a4!a3 a2 a1 ao!

This is a 2-cycle instruction. Control passes to the specified address, if the TEST ° signal is low. Pin is
sampled during SYNC.
(PCO-7) -- addr if TO=O

Example: JTOLOW: JNTO 60 ;JUMP TO LOCATION 60 DEC
;IF TO=O

JNT1 address Jump If TEST 1 Is Low

Opcode: L.!_o ___ o __ o_' "-!_o ____ o-,! - ! a7 a6 a5 a4! a3 a2 a 1 ao!

This isa 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is low. Pin is
sampled during SYNC.
(PCO-7) -- addr if T 1 =0

Example: JT1LOW: JNT1 OBBH ;JUMP TO LOCATION 'BB' HE~
;IF T1=0 '

JNZ address Jump If Accumulator Is Not Zero

Opcode: L-_O __ O __ 1..J...!_0 ____ 0-'! - ! a7 a6 a5 a4! a3 a2 a 1 ao!

This is a 2-cycle instruction. Control passes to the specified address if the accumulator contents are nonzero
at 'the time this instruction is executed.
(PCo-7) -- addr if A*O

Example: JACCNO: JNZ OABH ;JUMP TO LOCATION 'AB' HEX
;IF ACC VALUE IS NONZERO

JOBF Address Jump If Output Buffer Full Flag Is Set

Opcode: !1 ° ° o! ° . ° ! - ! a7 a6 a5 a4! a3 a2 a 1 ao!

This is a 2-cycle instruction. Control passes to the specified address if the Output Buffer Full (OBF) flag is set
(= 1) at the time this instruction is executed.
(PCo-7) -- addr if OBF=1

Example: JOBFHI: JOBF OAAH ;JUMP TO LOCATION' AA' HEX
;IF OBF=1

JTF address Jump If Timer Flag ·Is Set

Opcode: ! ° ° ° 1! °
This is a 2-cycle instruction. Control passes to the specified address if the timer flag is set to one, that is, the
timer / counter register overflows to zero. The timer flag is cleared upon execution of this instruction. (This
overflow initiates an interrupt service sequence if the timer-overflow interrupt is enabled.)
(PCO-7) -- addr If TF=1 '

Example: JTF1: JTF TIMER ;JUMP TO 'TIMER' ROUTINE.
;IF TF=1

5-670

INSTRUCTION SET

JTO address Jump If TEST 0 Is High

Opcode: LI_O_O ___ 1-L1_0 __ -'-_0....JI. la7 a6 a5 a41 a3 a2 a1 ao I

This is a 2-cycle instruction. Control passes to the specified address if the TEST ° signal is high (= 1). Pin is
sampled during SYNC.
(PCO-7)-addr ifTO=l

Example: JTOHI: JTO 53 ;JUMP TO LOCATION 53 DEC
;IF TO=l

JT1 address Jump If TEST 1 Is High

Opcode: ... 1_0 ___ 0 __ 1-<-1_0 ____ 0-'1· I a7 a6 a5 a41 a3 a2 a1 ao I

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is high (= 1). Pin is
sampled during SYNC.
(PCO-7) - addr if T1=1

Example: JT1HI: JT1 COUNT ;JUMP TO 'COUNT' ROUTINE
;IF T1=1

JZ address Jump If Accumulator Is Zero

Opcode: LI_1 ___ 0 __ 0-L1_0 ____ 0....JI. I a7 a6 a5 a41 a3 a2 a1 ao I

This is a 2-cycle inst~uction. Control passes to the specified address if the accumulator contains all zeros at
the time this instruction is executed.
(PCO-7) - addr if A=O

Example: JACCO: JZ OA3H ;JUMP TO LOCATION 'A3' HEX
;IF ACC VALUE IS ZERO

MOV A,#data Move Immediate Data to Accumulator

Opcode: LI 0_0 ___ 0....LI_O_O __ 1--,1 • I d7 d6 d5 d41 d3 d2 d1 dO I

This is a 2-cycle instruction. The a-bit value specified by 'data' is loaded in the accumulator.
(A) - data

Example: MOV A,#OA3H ;MOV 'A3' HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

Opcode: LI_1 __ 0_0....L1_0 ___ --'1 I

The contents of the program status word are moved to the accumulator.
(A)- (PSW)

Example: Jump to 'RB1SET' routine if bank switch, PSW bit 4, is set.
BSCHK: MOV A,PSW ;MOV PSW CONTENTS TO ACC

JB4 RB1 SET ;JUMP TO 'RB1SET' IF ACC
;BIT 4=1

5-671

INSTRUCTION SET

MOV A, Rr Move Register C?htents to Accumulator

Opcode: �L-1 ________ 1~1_1 ___ r2 ___ r1 __ r_o~1

Eight bits of data are moved from working register 'r' into the accumulator."
(A) - (Rr) . r=0-7

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3
;TOACC

MOV A,@Rr Move Data Memory Contents to Accumulator

Opcode: 11-1 ____ 1-'-I_o_o_o_r--'1

Example:

The contents of the data memory location addressed by bits 0-5 of register 'r' are moved to the accumula­
tor. Register 'r' contents are unaffected.
(A) - «Rr» r=0-1
Assume R1 contains 00110110.

MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM
;LOCATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Opcode: 1-10 ___ 0_0-,-1_0_0 __ 0--,1

The contents of the timer / event-counter register are moved to "the accumulator. The timer / event-counter is
not stopped.
(A)-<TI

Example: Jump to "EXIT" routine when timer reaches '64', that is, when bit 6 is set-assuming initialization to zero.
TIMCHK: MOV A,T ;MOVE TIMER CONTENTS TO

;ACC
JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT

;6=1

MOV PSW,A Move Accumulator Contents to PSW

Opcode: 1.-11 ___ o_1-1.1_o ___ 1---,1

The contents of the accumulator are moved into the program status word. All condition bits and the stack
pointer are affected by this move.
(PSW)- (A)

Example: Move up stack pOinter by two memory locations, that is, increment the pOinter by one.
INCPTR: MOV A,PSW ;MOVE PSW CONTENTS TO ACC

INC A ;INCREMENT ACC BY ONE
MOV PSW,A ;MOVE ACC CONTENTS TO PSW

5-672

INSTRUCTION SET

MOV Rr,A Move Accumulator Contents to Register

Opcode: LI_1_0 ___ 0--,-1_1_r_2_r_1_ro-,1

The contents of the accumulator are moved to register 'r'.
(Rr) -- (A) r=0-7

Example: MRA MOV RO,A ;MOVE CONTENTS OF ACC TO
;REGO

MOV Rr,#data Move Immediate Data to Register

Opcode: 11 °
This a 2-cycle instruction. The 8-bit value specified by 'data' is moved to register 'r'.
(Rr) -- data r=0-7

Example: MIR4: MOV R4,#HEXTEN ;THE VALUE OF THE SYMBOL
;'HEXTEN'IS MOVED INTO
;REG4

MIR5: MOV R5;#PI*(R*R) ;THE VALUE OF THE
;EXPRESSION 'PI*(R*R)'
;IS MOVED INTO REG 5

MIR6: MOV R6,#OADH ;'AD' HEX IS MOVED INTO
;REG6

MOV @Rr,A Move Accumulator Contents to Data Memory

Opcode: 1,--1 _0_, __ 0--,-1 o __ o_o __ r.....J1

Example:

The contents of the accumulator are moved to the data memory location whose address is specified by bits
0-5 of register 'r'. Register 'r' contents are unaffected.
«Rr» -- (A) r=0-1
Assume RO contains 11000111.
MDMA: MOV @R,A ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG)

MOV @Rr,#data Move Immediate Data to Data Memory

Opcode: 11 °
This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved to the standard data memory
location addressed by' register 'r', bit 0-5.
«Rr» -- data r=0-1

Example: Move the hexadecimal value AC3F to locations 62-63.
MIDM: MOV RO,#62 ;MOVE '62' DEC TO ADDR REGO

MOV @RO,#OACH ;MOVE 'AC' HEX TO LOCATION 62
INC RO ;INCREMENT REG ° TO '63'
MOV @RO,#3FH ;MOVE '3F' HEX TO LOCATION 63

5-673

INSTRUCTION SET

MOV STS,A Move Accumulator Contents to STS Register

Opcode: 11 0 0 1 1 0 0 0 0 1

The contents of the accumulator are moved into the status register. Only bits 4-7 are affected.
(STS4-7) - (A4-7)

Example: Set ST4-ST7 to "1".

MSTS: MOV A,#OFOH ;SET ACC
MOV STS,A ;MOVE TO STS

MOV T,A Move Accumulator Contents to Timer/Counter

Opcode: ILo ___ o_ILO_O __ O-,1

The contents of the accumulator are moved to the timer / event-counter register.
(T) - (A)

E~ample: Initialize and start event counter.

INITEC: CLR A
MOVT,A
STRT CNT

;CLEAR ACC TO ZEROS
;MOVE ZEROS TO EVENT COUNTER
;START COUNTER

MOVO A,Pp Move Port 4-7 Data to Accumulator

Opcode: 1 0 0 0 0 11 1 P1 PO 1

This is a 2-cycle instruction. Data on 8243 port 'p' is moved (read) to accumulator bits 0-3. Accumulator bits
4-7 are zeroed.
(AO-3) - Pp .p=4-7
(A4-7)- 0

Note: Bits 0-1 of the opcode are used to represent PORTS ,4-7. If you are coding in binary rather than assembly
language, the mapping is as follows:

, Bits P1 PO

o 0
o

o

Example: INPPT5: MOVD A,P5

Port

4

5

6

7

;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS 4-7

MOVO Pp,A Move Accumulator Data to Port 4, 5, 6 and 7

Opcode: 1-1 0 __ 0 ___ 1--,-1_1_1_P_1_po-,1

This is a 2-cycle instruction. Data in accumulator bits 0-3 is moved (written) to 8243 port 'p'. Accumulator
bits 4-7 are unaffected. (See NOTE above regarding port mapping.)
(Pp) - (AO-3) p=4-7

Example: Move data in accumulator to ports 4 and 5.
OUTP45: MOVD P4,A ;MOVE ACC BITS 0-3 TO PORT 4

SWAP A ;EXCHANGE ACC BITS 0-3 AND 4-7
MOVD P5,A ;MOVE ACC BITS 0-3 TO PORT 5

5-674

INSTRUCTION SET

MOVP A,@A Move Current Page Data to Accumulator

()pcode: ,-11_0 __ 0--,-1 o_o __ 1--,1

This is a 2-cycle instruction. The contents of the program memO!):' location addressed by the accumulator
are moved to the accumulator. Only bits 0-7 of the program counter are affected, limiting the program
memory reference to the current page. The program counter is restored following this operation.
(A) - «A»

Note: This is a 1-by1e, 2-cycle instruction. If it appears in location 255 of a program memory page, @Aaddresses
a location in the following page.

Example: MOV128: MOV A,#128 ;MOVE '128' DEC TO ACC
MOVP A,@A ;CONTENTS OF 129TH LOCATION

;IN CURRENT PAGE ARE MOVED TO
;ACC

MOVP3 A,@A Move Page 3 Data to Accumulator

()pcode: 1,-1 ___ 0--,-1 o_o __ l....Jli

This is a 2-cycle instruction. The contents of the program memory location within page 3, addressed by the
accumulator, are moved to the accumulator. The program counter is restored following this operation.
(A) - «A» within page 3 '

Example: Look up ASCII equivalent of hexadecimal code in table contained at the beginning of page 3. Note that ASCII
characters are designated by a 7-bit code; the eighth bit is always reset.
TABScH: MOV A,#OBBH ;MOVE '88' HEX TO ACC (10111000)

ANL A,#7FH ;LOGICAL AND ACC TO MASK BIT
;7 (00111000)

MOVP3, A,@A ;MOVE CONTENTS OF LOCATION
;'38' HEX IN PAGE 3 TO ACC
;(ASClI'8')

Access contents of location in page 3 labelled TAB 1. Assume current program location is not in page 3.
TABSCH: MOV A,#TAB1 ;ISOLATE BITS 0-7 .

;OF LABEL'
;ADDRESS VALUE

MOVP3 A,@A ;MOVE CONTENT OF PAGE 3
;LOCATION LABELED 'TAB l'
;TOACC

NOP The NOP Instruction

()pcode: II) ° ° 0.10 ° ° ° I
No operation is performed. Execution continues with the following instruction.

ORL A,Rr Logical OR Accumulator With Register Mask

Opcode: 1 0 ___ 0_0 1_1_r2_r_1 _r--,O I
Data in the accumulator is logically ORed with the mask contained in working register 'r'.
(A) - (A) OR (Rr) r=0-7

Example: ORREG: ORL A,R4 ;'OR' ACC CONTENTS WITH
;MASK IN REG 4

5-675

INSTRUCTION SET

ORL A,@Rr Logical OR Accumulator With Memory Mask

Opcode: 1-1 o ___ o_o-JI,-o_o __ o_r-JI

Data in the accumulator is logically ORed with the mask contained in the data memory location referenced by
register 'r', bits 0-5.
(A) - (A) OR «Fir» r=0-1

Example: OROM: MOVE RO,#3FH ;MOVE '3F' HEX TO REG °
ORL A,@RO ;'OR' ACC CONTENTS WITH MASK

;IN LOCATION 63

ORL A,#data Logical OR Accumulator With Immediate Mask

Opcode: LI 0 ___ 0 _0....1.1_o_o __ 1--,1 • 1 d7 d6 d5 d41 d3 d2 d 1 do I
This is a 2-cycle instruction. Data in the accumulator is logically ORed with an immediately-specified mask.
(A) - (A) OR data

Example: ORIO: ORL A,#'X' ;'OR' ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF 'X')

ORL Pp,#data Logical OR Port 1-2 With Immediate Mask

This is a 2-cycle instruction. Data on port 'p' is logically ORed with an immediately-specified mask.
(Pp) - (Pp) OR data p= 1-2 (see OUTL instruction)

Example: ORP1: ORL P1,#OFFH ;'OR' PORT 1 CONTENTS WITH
;MASK 'FF' HEX (SET PORT 1
'TO ALL ONES)

ORLO Pp,A Logical OR Port 4-7 With Accumulator Mask

Opcode: 11 ° ° ° 11 1 P1 PO 1

This is a 2-cycle instruction. Data on 8243 port 'p' is logically ORed with the digit mask contained in accumu­
lator bits 0-3,

• (Pp) (Pp) OR (AO-3)
Example: I ORP7: ORLO P7,A

p=4-7 (See MOVO instruction)
;'OR' PORT 7 CONTENTS
;WITH ACC BITS 0-3

OUT OBB,A Output Accumulator Contents to Data Bus Buffer

Opcode: 1 ° ° ° ° 1 0' ° ° 1

Contents of the accumulator are transferred to the Data Bus Buffer Output register and the Output Buffer Full
(OBF) flag is set to one.
(OBB)- (A)
OBF-1

Example: OUTDBB: OUT OBB,A ;OUTPUT THE CONTENTS OF
;THE ACC TO OBBOUT

5-676

INSTRUCTION SET

OUTl Pp,A Output Accumulator Data to Port 1 and 2

Opcode: 1L-0_o __ l_lL-l_o_p_l _PO--,I

This is a 2-cycle instruction. Data residing in the accumulator is transferred (written) to port 'p' and latched.
(Pp) - (A) P= 1-2

Note: Bits 0-1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than
assembly language, the mapping is as follows:

Example:

Bits p1
"0
o
1
1

OUTlP: MOV A,R7
OUTl P2,A
MOVA,R6
OUTL'P1,A

pO Port
"0 X-

l 1
o 2
1 X

;MOVE REG 7 CONTENTS TO Ace
;OUTPUT Ace CONTENTS TO PORT2
;MOVE REG 6 CONTENTS TO Ace
;OUTPUT Ace CONTENTS TO PORT 1

RET Return Without PSW Restore

Opcode: 11000100

This is a 2-cycle instruction. The stack pointer (PSW bits 0-2) is decremented. The program counter is then
restored from the stack. PSW bits 4-7 are not restored.
(SP) - (SP) - 1
(PC) - «SP»

RETR Return With PSW Restore

Opcode: 11001100

This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits 4-7 of the
PSW are then restored from the stack. Note that RETR should be used to return from an interrupt, but should
not be used within the interrupt service routine as it signals the end of an interrupt routine.
(SP) - (SP) - 1
(PC) - «SP»
(PSW4-7) - «SP»

Rl A Rotate lett Without Carry

Opcode: 11 0 1 0

The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit 0 position.
(An+l) - <An) n=0-6
(Ao) - (A7)

Example: Assume accumulator contains 10110001.
RLNC: RL A , ;NEW Ace CONTENTS ARE 01100011

5-677

INSTRUCTION SET

RLC A Rotate Left Through Carry

Opcode: 11 1 1 0

Example:

The contents of the accumulator are rotated left one bit. Bit 7 replaces the carry bit; the carry bit is rotated
into the bit 0 poSition.
(An+1) - (An) n=0-6
(AO) - (C)
(C) - (A7)
Assume accumulator contains a 'signed' number; isolate sign without changing value.
RL TC: CLR C ;CLEAR CARRY TO ZERO

RLC A ;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY

RR A. ;ROTATE ACC RIGHT - VALUE
;(BITS 0-6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;ISZ~RO

RR A Rotate Right Without Carry

Opcode: 1 0 1 I 0

The contents of the accumulator are rotated right one bit. Bit 0 is rotated into the bit 7 position.
(An):-- (An+1) n=0-6 .
(A7) - (AO)

Example: Assume accumulator contains 10110001.
RRNC: RRA ;NEW.ACC CONTENTS ARE 11011000

RRC A Rotate Right Through Carry

Opcode: 1 0 0 1 0

The contents of the accumulator are rotated right one bit. Bit 0 replaces the carry bit; the carry bit is rotated'
into the bit 7 positiori.
(An) - (An+1) n=0-6
(A7) - (C)
(C)- (AO)

Example: Assume carry is not set and accumulator contains 10110001.
RRTC: RRCA ;CARRY IS SET AND ACC

;CONTAINS 01011000

SEL RBO Select Register Bank 0

Opcode: ,--I _1 __ O_0--L.I 0 ___ 0_---'

PSW BIT 4 is set to zero. References to working registers 0-7 address data memory locations 0-7. This is
the recommended setting for normal program execution.
(BS)- 0

INSTRUCTION SET

SEL RB 1 Select Register Bank 1

Opcode: ~I _1 _____ 0 ___ 1~1 _O _____ o __ ~
PSW bit 4 is set to one. References to working registers 0-7 address data memory locations 24-31. This is
the recommended setting for interrupt service routines, since locations 0-7 are left intact. The setting of
PSW bit 4 in effect at the time of an interrupt is restored by the RETR instruction when the interrupt service
routine is completed.
(BS) - 1

Example: Assume an IBF interrupt has occurred, control has passed to program memory location 3, and PSW bit 4
was zero before the interrupt.
LOC3: JMP INIT ;JUMP TO ROUTINE 'INIT'

INIT: MOV R7,A

SEL RB1
MOV R7,#OFAH

SEL RBO
MOVA,R7
RETR

STOP TCNT Stop Timer I Event Counter

;MOV ACC CONTENTS TO
;LOCATION 7
;SELECT REG BANK 1
;MOVE 'FA' HEX TO LOCATION 31

;SELECT REG BANK °
;RESTORE ACC FROM LOCATION 7
;RETURN--RESTORE PC AND PSW

Opcode: L-I 0 ____ °....1.1_0 __ 0_---'

This instruction is used to stop both time accumulation and event counting.
Example: Disable interrupt, but jump to interrupt routine after eight overflows and stop timer. Count overflows in

register 7.
START: DIS TCNTI ;DISABLE TIMER INTERRUPT

CLR A ;CLEAR ACC TO ZERO
MOV T,A :MOV ZERO TO TIMER
MOV R7,A :MOVE ZERO TO REG 7
STRT T ;START TIMER

MAIN: JTF COUNT ;JUMP TO ROUTINE 'COUNT'
;IF TF=1 AND CLEAR TIMER FLAG

JMP MAIN ;CLOSE LOOP
COUNT: INC R7 ;INCREMENT REG 7

MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
JB3 INT ;JUMP TO ROUTINE 'INT' IF ACC

;BIT 31S SET (REG 7=8)
JMP MAIN ;OTHERWISE RETURN TO ROUTINE

;MAIN

INT: STOP TCNT
JMP7H

;STOPTIMER
;JUMP TO LOCATION 7 (TIMER
;INTERRUPT ROUTINE)

5-679

1/
!

INSTRUCTION SET

STRT CNT Start Event Counter

Opcode: LI o ___ o_0----LI 0 ___ 0_---'

The TEST 1 (T 1) pin is enabled as the event-counter input and the counter is started. The event-counter
register is incremented with each high to low transition on the T 1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T 1 input.
STARTC: EN TCNTI ;ENABLE COUNTER INTERRUPT

MOV A,#OFFH ;MOVE 'FF' HEX (ONES) TO
;ACC

MOV T,A ;MOVE ONES TO COUNTER
STRT CNT ;INPUT AND START

STRT T Start Timer •

Opcode: ILo ___ o_----'I_o ___ o_--'

Timer accumulation is initiated in the timer register. The register is incremented every 32 instruction cycles.
The prescaler which counts the 32 cycles is cleared but the timer register is not.

Example: Initialize and start timer.
STARTT: EN TCNTI ;ENABLE TIMER INTERRUPT

CLR A :CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
STRT T ;START TIMER

SWAP A Swap Nibbles Within Accumulator

Opcode: ,-I 0 __ 0_0--,-1 o ___ 1--,1

Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.
(A4-7) - (AO-3)

Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO,#50 ;MOVE '50' DEC TO REG °

MOV R1,#51 ;MOVE '51' DEC TO REG 1
XCHD A,@RO ;EXCHANGE BIT 0-3 OF ACC

;AND LOCATION 50
SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC

XCHD A,@R1 ;EXCHANGE BITS 0-3 OF ACC AND
;LOCAT!ON 51

MOV @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION 51

XCH A,Rr Exchange Accumulator-Register Contents

Opcode: ILO ___ O ______ 0-LI _1 __ r_2 __ r_1 __ rO....J1

The contents of the accumulator and the contents of working register 'r' are exchanged.
(A) - (Rr) r=0-7

Example: Move PSW contents to Reg 7 w,ithout losing accumulator contents.
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND ACC
MOV A,PSW ;MOVE PSW CONTENTS TO ACC
XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND ACC AGAIN

5-680

INSTRUCTION SET

XCH A,@Rr Exchange Accumulator and Data Memory Contents

OPcode:1 L o __ o __ o_ILo __ o _o_r--.JI

The contents of the accumulator and the contents of the data memory location addressed by bits 0-5 of
register 'r' are exchanged. Register 'r' contents are unaffected.
(A) - «Rr» r=0-1

Example: Decrement contents of location 52.
DEC52: MOV RO,#52 ;MOVE '52' DEC TO ADDRESS

;REGO
XCH A,@RO ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52
DEC A ;DECREMENT ACC CONTENTS
XCH A,@RO ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52 AGAIN

XCHD A,@Rr Exchange Accumulator and Data Memory 4·bit Data

Opcode: LI 0_0 ___ 1---'-1_0_0_0_-----'r I

This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of the data memory location addressed
by bits 0-5 of register 'r'. Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and the
contents of register 'r' are unaffected.
(AQ-3) - «RrO-3» r=0-1

Example: Assume program counter contents have been stacked in locations 22-23.
XCHNIB: MOV RO,#23 ;MOVE '23' DEC TO REG 0

CLR A ;CLEAR ACC TO ZEROS
XCHD A,@RO ;EXCHANGE BITS 0-3 OF ACC

;AND LOCATION 23 (BITS 8-11
;OF PC ARE ZEROED, ADDRESS
;REFERS TO PAGE 0)

XRL A,Rr Logical XOR Accumulator With Register Mask

Opcode: LI_1 ___ 0 __ 1--,-1_1_r_2_r_1_rO--,1

Data in the accumulator is EXCLUSIVE ORed with the mask contained in working register 'r'.
(A) - (A) XOR (Rr) r=0-7

Example: XORREG: XRL A,R5 ;'XOR' ACC CONTENTS WITH
;MASK IN REG 5

XRL A,@Rr Logical XOR Accumulator With Memory Mask

Opcode: LI_1 __ 0_1---'-1_0_0_0_-----'r I

Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory location ad·
dressed by register 'r', bits 0-5.
(A) - (A) XOR «Rr» r=0-1

Example: XORDM: MOV R1,#20H ;MOVE '20' HEX TO REG 1
XRL A,@R1 ;'XOR' ACC CONTENTS WITH MASK

;IN LOCATION 32

5-681

INSTRUCTION SET

XRL A,#data Logical XOR Accumulator With Immediate Mask

This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE OREid with an immediately-specified
~~. '

(A) - (A) XOR data
Example: XORID: XOR A,#HEXTEN ;XOR CONTENTS OF ACC WITH

;MASK EaUAL VALUE OF SYMBOl
;'HEXTEN'

5-682

CHAPTER 4
SINGLE-STEP, PROGRAMMING,

AND POWER-DOWN MODES

SINGLE-STEP
I

The UPI family has a single-step mode which allows
the user to manually step through his program one
instruction at a time. While'stopped, the address of
the next instruction to be fetched is available on
PORT 1 and the lower 2 bits of PORT 2. The single­
step feature simplifies program debugging by allow­
ing the user to easily (ollow program execution.

+5v

10k

PRESET

MOMENTARY +5V D Q

PUSH TO STEP fl} +5V

10k

CLEAR

l> 7474

Figure 4-1 illustrates a recommended circuit for sin­
gle-step operation, while Figure 4-2 shows the tim­
!!!g relationship between the SYNC output and the
SS input. During single-step operation, PORT 1 and
part of PORT 2 are used to output address informa­
tion. In order to retain the normal I/O functions of
PORTS 1 and 2, a separate latch can be used as
shown in Figure 4-3.

HALT

+5V D

L.... _____ ~> CLOCK

+5V

10k

Q
TOSS
INPUT
ON 8741A

FROII
L.... __ <I-- :~~

OUTPUT

Figure 4-1. Single-Step Circuit

SYNC~

~
I ~l

C)

\
SS '--

P10-17 PORT DATA X :: PCO-7 >C
P2o-P21 X :: PCS-9 >C

ACTIVE CYCLE STOP CYCLE ACTIVE CYCLE

Figure 4-2. Single-Step Timing

5-683

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

SYNC

Pl0 Pl0 Dl0

Pl1
DATA IN

Dl1

P12 D12

8041AH
P13 D13 8042

8741A
8742 P14 Dl'

PIS DIS

P16 D16

P17 D17 , , , ~

~

+sV
,

+SV

SYNC

10k ADDRESS
DISPLAY
(LED)

LS

P17 D17

OC = OPEN COLLECTOR TTL
LS = LOW POWER SCHOTTt(LY TTL P17 INPUT DATA

Figure 4-3. Latching Port Data

Timing
The sequence of single-step operation is as follows:.
1) The processor is requested to stop by applying a

low level on SS. The SS input should not be
brought low while SYNC is high. (The UPI
samples the SS pin in the middle of the SYNC
pulse).

2) The processor responds to the request by stop­
ping during the instruction fetch portion of the
next instruction. If a double cycle instruction is
in progress when the single-step command is re­
ceived, both cycles will be completed before
stopping.

3) The processor acknowledges it has entered the
stopped state by raising SYNC high. In this
state, which can be maintained indefinitely, the
10-bit address of the next instruction to be
fetched is present on PORT 1 and the lower 2
bits of PORT 2.

4) SS is then raised high to bring the processor out
of the stopped mode allowing it to fetch the
next instruction. The exit from stop is indicated
by the processor bringing SYNC low.

5) To stop the processor at the next instruction SS
must be brought low again before the next
SYNC pulse-the circuit in Figure 4-1 uses the
trailing edge of the previous pulse. If SS is left
high, the processor remains in the "RUN"
mode.

Figure 4-1 shows a schematic for implementing sin­
gle-step. A single D-type flip-flop with preset and
clear is used to generate SS. In the RUN mode SS is
held high by keeping the flip-flop preset (preset has
precedence over the clear input). To enter single­
step, preset is removed allowing SYNC to bring SS
low via the clear input. Note that SYNC must be
buffered since the SN7474 is equivalent to 3 TTL
loads.

The processor is now in the stopped state. The next
instruction it! fnitiated by clockin~l" into the flip­
flop. This "1" will not appear on SS unless SYNC is
high (i.e., clear must be removed from the flip-flop).
In response to SS going high, the processor begins an
instruction fetch which brings SYNC low. SS is then
reset through the clear input and the processor again
enters the stopped stat~.

~84

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

PROGRAMMING, VERIFYING AND ERASING
EPROM (8741 A, 8742 EPROM ONLY)
The internal Program Memory of the 8741A and
8742 may be erased and reprogrammed by the user
as explained in the following sections. See the data
sheet for more detail.

Programming
The programming procedure consists of the follow­
ing: activating the program mode, applying an
address, latching the address, applying data, and
applying a programming pulse. Each word is pro­
grammed completely before moving on to the next
and is followed by a verification step. Figure 4-4
illustrates the programming and verifying sequence.
The following is a list of the pins used for program­
ming and a description of their functions:

• XTAL 1, Clock Input
XTAL2

• RESET Initialization and Address Latching

• TEST 0 Selection of Program or Verify
Mode

• EA Activation of Program/Verify
Modes

• DO-D7 Address and Data Input
Data Output During Verify

+5V

RESET

• P20, P21 Address Input

• VDD
• PROG

Programming Power Supply

Program Pulse Input

NOTE: All set·up and hold times are 4 cycles.

The detailed Programming sequence (for one byte)
is as follows:

1) Initial Conditions: ~C = VDD = 5V; Clock
Running; AO = OV, CS = 5V; EA = 5V; DO-D7
and PROG Floating.

2) RESET = OV, TEST 0 = OV (Select Program­
ming Mode).

3) EA = 23V for 8741A
EA = 18V for 8742

4) Address applied to DO-D7 and PORTS 20-22.

5) RESET = 5V (Latch Address).

6) Data applied to DO-D7.

7) VDD = 25V for 8741A
VDD = 21V for 8742 (Programming Power).

BUS AND PROG CAN BE DRIVEN ONL V DURING THIS TIME -I
+5V

TeST 0

+23V/+18V
EA

+sv

PO·P7 (ADDRESS 0-7)-{ DATA) GJ[OUT

P2G-21 (ADDRESS AO-Ag)

+25V/+21V

VDO
+5V

+sv +23V/+21V I
~ PROG

+OV ,

Figure 4-4. Programming Sequence

5-685

i~

SINGLE-STEP, 'PROGRAMMING, & POWER-DOWN MODES

8) PROG = OV followed by one 50 msec pulse of
23V for 8741A
PROG = OV followed by one 50 msec pulse of
18V for 8742.

9) VOO = 5V.

10) TEST 0 = 5V (Select Verify Mode).

11) Read data on 00-07 and verify EPROM cell
contents.

WARNING
An attempt to program a mis-socketed 8741A
or 87 42 wil~ result in severe'damage to the p'art.
An indication of a properly socketed part is the
appearance of the SYNC clock O!ltput. The
lack of this clock may be used to disable the
programmer.

r
Verification
Verification is accomplished by latching in an ad­
dress as in the Programming Mode and then apply­
ing "1" to the TEST 0 input. The word stored at the
selected address then appears on the 00-'07 lines.
Note that verification can be applied to both ROM's
and EPROM's independently of the programming
procedure. See the data sheet.

The detailed Verifying sequence (for one byte) is as
follows:

1) Initial Conditions: VCC = VO'O = 5V; Clock
Running; AO = OV, CS = 5V; EA = 5V; 00-07
and PROG Floating.

2) RESET = OV, TEST 0 = 5V,(Verify Mode).

3) EA = 23V for 8741A
EA = 18V for 8742

4) Address applied to 00-07 and PORTS 20-22.

5) RESET = 5V (Latch Address)

6) Read data on 00-07 and verify EPROM cell
contents.

Erasing
The program memory of the 8741A or 8742 may be
erased to zeros by exposing its translucent lid to
shortwave ultraviolet light.

I;PROM Light Sensitivity
The erasure characteristics of the 8741A or 8742
EPROM are such that erasure begins to occur when

exposed to light with wavelengths shorter than ap­
proximately 4000 Angstroms. It should be noted
that sunlight and certain types of fluorescent lamps
have wavelengths in the 3000-4000 Angstrom range.
Oata shows that constant exposure to room level flu­
orescent lighting could erase the typical 8741A in ap­
proximately 3 years while it would take
approximately 1 week to cause erasure when ex­
posed to direct sunlight. If the 8741A or 8742 is to be
exposed to these types of lighting conditions for ex­
tended pe,iods of time, opaque labels (available
from Intel)' should be placed over the 8741A or 8742
window to prevent unintentional erasure.

The recommended erasure procedure for the 8741A
or 8742 is exposure to shortwave ultraviolet light
which has a wavelength of 2537 Angstroms. The in­
tegrated dose (i.e., UV intensity X exposure time)
for,erasure should be a minimum of 15W-sec/cm2
power rating. The erasure time with this dosage is
approximately 15 minutes using an ultraviolet lamp
with Ii 12,000 j.lW/cm2 power rating. The 8741A or
8742 should be placed within 1 inch of the lamp
tubes during erasure. Some lamps have a filter on
their tubes which should be removed, before erasure. '

EXTERNA,L ACCESS
The UPI family has an External Access mode (EA)
which puts the processor into a test mode. This
mode allows the user to disable the internal program
memory and execute from external memory. Exter­
nal Access mode is useful in testing because it allows
the user to test the processor's functions directly. It
is only useful for testing since this mode uses 00-07,
PORTS 10-17 a,nd PORTS 20-22.

This mode is invoked by connecting the EA pin to
5V. The 11-bit current program counter contents
then come out on PORTS 10-17 and PORTS 20-22
after the SYNC output goes high. (PORT 10 is the
least significant bit.) The desired instruction opcode
is placed on 00-07 before the start of state Sl. Our­
ing state Sl, the opcode is sampled from 00-07 and
subsequently executed in place, of the internal pro­
gram memory contents.

The program couIiter contents are multiplexed with
the I/O port data on PORTS 10-17 and PORTS 20-
22. The I/O port data may be demultiplexed using
an external latch on the rising edge of SYNC. The
program counter contents may be demultiplexed'
~imilarly using the trailing edge of SYNC.

Reading and/or writing the Oata Bus Buffer regis­
ters is still allowed although only when 00-07 are
not being sampled for opcode data. In practice, since
this sampling time is not known externally, reads or

5-686

SINGLE-STEP, PROGRAMMING, & POWER-DOWN MODES

writes on the system bus are done during SYNC high
time. Approximately 600ns are available for each
read or write cycle.

POWER DOWN MODE
(S041AH/S042 ROM ONLY)

Extra circuitry is included in the ROM version to al­
low low-power, standby operation. Power is removed
from all system elements except the internal data
RAM in the low-power mode. Thus the contents of
RAM can be maintained and the device draws only
10 to 15% of its normal power.

The V CC pin serves as the 5V power supply pin for
all of the ROM version's circuitry except the data
RAM array. The VDD pin supplies only the RAM
array. In normal operation, both VCC and VDD are
connected to the same 5V power supply.

To enter the Power-Down mode, the RESET signal
to the UPI is asserted. This ensures the memory will
not be inadvertently altered by the UPI during
power,down. The V CC pin is then grounded while
VDD is maintained at 5V. Figure 4-5 illustrates a
recommended Power-Down sequence. The sequence
typically occurs as follows:

1) Imminent power supply failure is detected by
user defined circuitry. The signal must occur

POWER SUPPL V

early enough to guarantee the 8041AH or 8042
can save all necessary data before V CC falls
outside normal operating tolerance.

2) A "Power Failure" signal is used to interrupt
the processor (via a timer overflow interrupt,
for instance) and call a Power Failure service
routine.

3) The Power Failure routine saves all important
data and machine status in the RAM array. The
routine may also initiate" transfer of a backup
supply to the VDD pin and indicate to external
circuitry that the Power Failure routine is com­
plete.

4) A RESET signal is applied by external hard­
ware to guarantee data will not be altered as the
power supply falls out of limits. RESET must
be low until V CC reaches ground potential.

Recovery from the Power-Down mode can occur as
any other power-on sequence. An external 1 !Lfd ca­
pacitor on the RESET input will provide the neces­
sary initialization pulse.

!"'\
PROCESSOR I '-I ----
INTERRUPTED I I Iii ----·'1 1 1 PO~~~ ~Y~:ir ~ I I NORMAL

,~---"';:-----i--------- :~~J:Ng~
1 1 1 FOLLOWS
1 1 1 ______ ~I __ ------.,I 1

RE~T ! ~ ________ _
1
I~--.---~I~I------r----

DATA SAVE
ROUTINE
EXECUTED

ACCESS TO
DATA RAM
INHIBITED

Figure 4-5. Power-Down Sequence

5-687

CHAPTER 5
SYSTEM OPERATION

BUS INTERFACE
The UPI-4IAH, 42 Microcomputer functions as a
peripheral to a master processor by using the data
bus 'buffer registers to handle data transfers. The
DBB configuration is illustrated in Figure 5-1. The
UPI-4IAH, 42 Microcomputer's 8 three-state data
lines (D7-DO) connect directly to the master proces­
sor's data bus. Data transfer to the master is con­
trolled by 4 external inputs to the UPI:

• AO Address Input signifying command
or data

• CS Chip Select
• RD Read strobe
• WR Write strobe

WR
CONTROL AD

BUS cs
AO

Reading the DBBOUT Register
The sequence for reading the DBBOUT register is
shown in Figure 5-2. This operation causes the 8-bit
contents of the DBBOUT register to he placed on

the system Data Bus. The OBF flag is cleared auto­
matically.

Reading STATUS
The sequence for reading the UPI-4IAH, 42
Microcomputer's 8 STATUS bits is shown in Figure
5-3. This operation causes the 8-bit STATUS regis­
ter contents to be placed on the system Data Bus as
shown.

Write Data to DBBIN
The sequence for writing data to the DBBIN register
is shown in Figure 5-4. This operation causes the sys­
tem Data Bus contents to be transferred to the
DB BIN register and the IBF flag is set. Also, the FI
flag is cleared (FI = 0) and an interrupt request is
generated. When the IBF interrupt is enabled, a
jump to location 3 will occur. The interrupt request
is cleared upon entering the IBF service routine or
by a system RESET input.

AO

AD --....... \'-___ ..JI

ST7 8T6 8T5 8T4 F1 Fa ISF OBF

D7 D6 D5 D4 D3 D2 Dl DO

Figure 5-3. Status Read

5-688

SYSTEM OPERATION

AO

WR --"""'\'-_______ /

DATA --<)-
Figure 5-4. Writing Data to DBBIN

Writing Commands to DBBIN
The sequence for writing commands to the DBBIN
register is shown in Figure 5-5. This sequence is
identical to a data write except that the AO input is
latched in the Fl flag (Fl = 1). The IBF flag is set
and an interrupt request is generated when the mas­
ter writes a command to DBB.

Operations of Data Bus Registers
The UPI-41AH, 42 Microcomputer controls the
transfer of DBB data to its accumulator by execut­
ing INput and OUTput instructions. An IN A,DBB
instruction causes the contents to be transferred to
the UPI accumulator and the IBF flag is cleared.

The OUT DBB,A instruction causes the contents of
the accumulator to be transferred to the DBBOUT
register. The OBF flag is set.

The UPI's data bus buffer interface.is applicable to a
variety of microprocessors including the 8086, 8088,
8085AH, 8080, and 8048.

A description of the interface to each of these pro­
cessors follows.

DESIGN EXAMPLES
8085AH Interface
Figure 5-6 illustrates an 8085AH system using a
,UPI-41AH, 42. The 8085AH system uses a multi­
plexed address and data bus. During I/O the 8 upper
address lines (A8-AI5) contain the same I/O address
as the lower 8 address/data lines (AO-A7); therefore
I/O address decoding is done using only the upper 8
lines to eliminate latching of the address. An 8205
decoder provides address decoding for both the
UPI-41AH, 42 and the 8237. Data is transferred

AO

WR ------...\'-_--J/
DATA --<)-
Figure 5-5. Writing Commands to DBBIN

using the two DMA handshaking lines of PORT 2.
The 8237 performs the actual bus transfer operation.
Using the UPI-41AH, 42's OBF master interrupt,
the UPI-41A notifies the 8085AH upon transfer
completion using the RST 5.5 interrupt input. The
IBF master interrupt is not used in this example.

8088 Interface
Figure 5-7 illustrates a UPI-41AH, 42 interface to an
8088 minimum mode system. Two 8-bit latches are
used to demultiplex the address and data bus. The
address bus is 20-lines wide. For I/O only, the lower
16 address lines are used, providing an addressing
range of 64K. UPI address selection is accomplished
using an 8205 decoder. The AO address line of the
bus is connected to the corresponding UPI input for
register selection. Since the UPI-41A is polled by the
8088, neither DMA nor master interrupt capabilities
of.the UPI-41AH, 42 are used in the figure.

8086 Interface
The UPI-41AH, 42 can be used on an 8086 maxi­
mum mode system as shown in figure 5-8. The ad­
dress and data bus is demultiplexed using three 8282
latches providing separate address and data buses.
The address bus is 20-lines wide and the data bus is
16-lines wide. Multiplexed control lines are decoded'
by the 8288. The UPI's CS input is provided by lin­
ear selection. Note that the UPI-41AH, 42 is both
I/O mapped and memory mapped as a result of the
linear addressing technique. An address decoder
may be used to limit the UPI-41AH, 42 to a specific
I/O mapped address. Address line Al is connected to
the UPI's AO input. This insures that the registers of
the UPI will have even I/O addresses. Data will be
transferred on Do-D7lines only. This allows the I/O
registers to be accessed using byte manipulation
instructions.

5-689

I',

SYSTEM OPERATION

8085AH

101M E3 8205

ALE E2 00 f--

Aa-A15 ADDRESS Ao-A2: 0, I-

ADO-AD7
V- ADDRESS/OATA l

- CONTROL -
\ ,. RST 5 5

L 8237 8041AH,8741A
8042, 8742

CS L,. CS PORT 1 (8)

~ - AD PORT 2 (8)

- W-

00-07

00-07
TEST 0

DRQ
TEST 1

DACKl

Figure 5-6. 8085AH-UPI System

8284

elK AODRESS
B088

L S
READY

REseT
B041AH - 8282 8205 I 8741A

ADO-AD 15
['r- -v'I (2) 8042 m I

Co 8742

IO/M
PORT 1 (8)

ALE I I
A.

PORT 2 (8)

DATA BUS 00-0 7

AD AD TEST 0

W. W. TEST 1

Figure 5-7. 8088-UPI Minimum Mode System

5-690

SYSTEM OPERATION

8284

elK
8086

~ CONTROL ,
READY 8288
RESET

_W"nr 8282
ADDRESS (3)

I . \
DATA '>

D
00-07 CS AO WR RD

B041AH
8741A
8042
8742

PORT 2 PORT 1

T1J
n B 8

V
TEST 1

Figure 5·8. 8086·UPI Maximum Mode Systems

8080 Interface
Figure' 5-9 illustrates the i~terface to an 80.80.A sys­
tem. In this example, a crystal and capacitor are
used for UIlI-41AH, 42 timing reference and power­
on RESET. If the 2-MHz 80.80.A 2-phase clock were
used instead of the crystal, the UPI-41AH, UPI-42
would run at only 16% full speed.

The Ao. and es inputs are direct connections to the
8080. address bus. In larger systems, however, either
of these inputs may be decoded from the 16 address
lines.

The RD and WR inputs to the UPI can be either the
lOR and lOW or the MEMR and MEMR signals de­
pending on the I/O mapping technique to be used.

The UPI can be addressed as an I/O device using IN­
put and OUTput instructions in 80.80. software.

8048 Interface
Figure 5-10 shows the UPI interface to an 80.48 mas­
ter processor.

The 80.48 RD and WR outputs are directly compati­
ble with the UPI. Figure 5-11 shows a distributed
processing system with up to seven UPI's connected
to a single 80.48 master processor.

In this configuration the 80.48 uses PORT 0. as a data
bus. I/O PORT 2 is used to select one of the seven
UPI's when data transfer occurs. The UPI's are pro­
grammed to handle isolated tasks and, since they op­
erate in parallel, system throughput is increased.

GENERAL HANDSHAKING PROTOCOL
1) Master reads STATUS register (RD, es, Ao. =

(0., 0., 1)) in polling or in response to either an
rBF or an OBF interrupt.

2) If the UPI DBBIN register is empty (IBF flag =
0.), Master writes a word to the DBBIN register
(WR, es, Ao. = (0.,0.,1) or (0.,0.,0.)). If Ao. = 1,
write command word, set Fl. If Ao. = 0, write
data word, F1 = 0..

5-691

SYSTEM OPERATION

DATA

aoaoA rg
<II 8041AH on on 8741A TO

ADDR ,. on a PERIPHERAL II! 8042 DEVICES
Q 5 8742
Q .. I!:

~
lOW

0

iOR

Figure 5-9. 8080A-UPI Interface

AD

Wi!
8048

PORT CONTROL 2

sus DATA BUS 8

-
RO

WRS041AH
8741A

cs 8042
874~

AO

OSB

\

~
~
i-TEST 0

i-TEST 1

I

TO
PERIPHERAL
DEVICES

Figure 5-10. 8048-UPllnterface

3) If the UPI DBBOUT register is full (OBF flag =
I), Master reads a word from the DBBOUT reg­
ister (RD, CS, AO = (0, 0,0)).

4) UPI recognizes IBF (via IBF interrupt or
JNIBF). Input data or command word is
processed, depending on F1; IBF is reset. Re­
peat step 1 above.

5) UPI-41AH, 42 recognizes OBF flag = 0 (via
JOBF). Next word is output to DBBOUT regis­
ter, OBF is set. Repeat step 1 above.

5-692

1/0

SYSTEM OPERATION

P2.
RO,WR

8048

PORT 0 1'\r-....-"r--v1

CONTROL
BUS

cs
r---,--'" AD
~....:..~ WR 8So;'4\AAH

AO 8042
v--".-'" DBB 8742

#1

cs
I=:::I::::~ ~ 8~~1tAH

AO 8042
1/'--.".-"-.) OBS 8742

DATA BUS

cs
AD

#2

WR B041AH

AO 8l~1:
CBS 8742

#N

N .5 7

Figure 5-11. Distributed Processor System

5-693

110

1/0

Chapter 6
APPLICATIONS

ABSTRACTS
The UPI-41A is designed to fill a wide variety of low
to medium speed peripheral interface applications
where flexibility and easy implementation are im­
portant considerations. The following examples il­
lustrate some typical applications.

Keyboard Encoder
Figure 6-1 illustrates a keyboard encoder config­
uration using the UPI and the 8243 I/O expander
to scan a 128-key matrix. The encoder has switch
matrix scanning logic, N-key rollover logic, ROM
look-up table, FIFO character buffer, and additional
outp~ts for display functions, control keys or other
special functions.

PORT 1 and PORTs 4-7 provide the interface to the
keyboard. PORT 1 lines are set one at a time to se­
lect the various key matrix rows.

When a row is energized, all 16 columns (i.e., PORTs
4-7 inputs) are sampled to determine if any switch
in the row is closed. The scanning software is code
efficient because the UPI instruction set includes in­
dividual bit set/clear operations and expander
PORTs 4-7 can be directly addressed with single, 2-
byte instructions. Also, accumulator bits can be test­
ed in a single operation. Scan time for 128 keys is
about 10 ms. Each matrix point has a unique binary

code which is used to address ROM when a key clo­
sure is detected. Page 3 of ROM contains a look-up
table with useable codes (i.e., ASCII, EBCDIC, etc.)
which correspond to each key. When a valid key clo~
sure is detected the ROM code corresponding to that
key is stored in a FIFO buffer in data memory for
transfer to the master processor. To avoid stray
noise and switch bounce, a key closure must be de­
tected on two consecutive scans before it is consid­
ered valid and loaded into the FIFO buffer. The
FIFO buffer allows multiple keys to be processed as
they are depressed without regard to when they are
released, a condition known as N-key rollover.

The basic features of this encoder are fairly standard
and require only about 500 bytes of memory. Since
the UPI is programmable and has additional mem­
ory capacity it can handlll a number of other func­
tions. For example, special keys can be programmed
to give an entry on closing as well as opening. Also,
I/O lines are available to control a 16-digit, 7 -seg­
ment display. The UPI can also be programmed to
recognize special combinations of characters such as
commands, then transfer only the decoded informa­
tion to the master processor.

A complete keyboard application has been devel­
oped for the UPI-41A. A description is included in
this section. The code for the application is available
in the Intel Insite Library (program AS 147).

PORT 4 4

INTERFACE
T08-BIT
MASTER

PROCESSOR

...

'I

<II

PORTS 4 z ,.
8243 ::> KEYBOARD

EXPANDER 5 MATRIX
PORTS 4 " ~
PORT 7 4 8 ROWS

4

r ~1 it ~I ~1 H '<
PORT 2 PROO I , ' PORT 1

PORT 2

a041A/8741A

DBB CONTROL

B Ii
DATA BUS .,

II
CONTROL BUS \

Figure 6·1. Keyboard Encoder Configuration

5-694

APPLICATIONS

Matrix Printer Interface
The matrix printer interface illustrated in Figure 6-2
is a typical application for the UPI-41A. The actual
printer mechanism could be any of the numerous
dot-matrix types and similar configurations can be
shown for drum, spherical head, daisy wheel or chain
type printers.

The bus structure shown represents a generalized, 8-
bit system bus configuration. The UPI's three-state
interface port and asynchronous data buffer regis­
ters allow it to connect directly to this type of system
for efficient, two-way data transfer.

The UPI's two on-board I/O ports provide up to 16
input and output signals to control the printer
mechanism. The timer/event counter is used for
generating a timing sequence to control print head
position, line feed, carriage return, and other se­
quences. The on-board program memory provides
character generation for 5 X 7, 7 X 9, or other dot
matrix formats. As an added feature a portion ofthe
64 X 8-bit data memory can be used as a FIFO buffer
so that the master processor can send a block of data
at a high rate. The UPI can then output characters
from the buffer at a rate the printer can accept while
the master processor returns to other tasks.

INTERFACE
TO 8-BIT
MASTER

PROCESSOR

~

)

FORM
PRINT L.F HOLD

MOTOR
DRIVERS

PORT 2

DBB

.".
B

DATA BUS

CONTROL BUS

The 8295 Printer Controller is an example of an
8041A preprogrammed as a dot matrix printer inter­
face.

Tape Cassette Controller
Figure 6-3 illustrates a digital cassette interface
which can be implemented with the UPI-41A. Two
sections of the tape transport are controlled by the
UPI: digital data/command logic, and motor servo
control.

The motor servo requires a speed reference in the
form of a monostable pulse whose width is propor­
tional to the desired speed. The UPI monitors a
prerecorded clock from the tape and uses its on­
board interval timer to generate the required speed
reference pulses at each clock transition.

Recorded data from the tape is supplied serially by
the data/command logic and is converted to 8-bit
words by the UPI, then transferred to the master
processor. At 10 ips tape speed the UPI can easily
handle the 8000 bps data rate. To record data, the
UPI uses the two input lines to the data/command
logic which control the flux direction in the record­
ing head. The UPI also monitors 4 status lines from
the tape transport including: end of tape, cassette

DOT MATRIX PRINTER

SOLENOIDS

~ i'

z
Q ,. iii '" I s: fr SOLENOID

15 Q

'" DRIVERS

& ~ .. '" z
:J

70R9

PORT 2 PORT 1/PORT 2

a041A/8741A

CONTROL

4

~

j

Figure 6-2. Matrix Printer Controller

5-695

APPLICATIONS

DATA
EOT/BOT

\(0- -8
I, DATA ENCODE/DECODE

J 1
MOTOR

J AND COMMAND DRIVE

INTERFACE
TO 8-BIT
MASTER

~

DATA
OUT

DATA
IN CLOCK

2

PORT ~

DBB

STATUS FWD REV SPEED
4

I
i

I

PORT 2

8041A/8741A

CONTROL

DATA BUS

PROCESSOR CONTROL BUS

Figure 6-3. Tape Transport Controller

inserted, busy, and write permit. All control signals
can be handled by the UPI's two I/O ports.

Universal 1/0 Interface
Figure 6-4 shows an I/O interface design based on
the UPI. This configuration includes 12 parallel I/O
lines and a serial (RS232C) interface for full duplex
data transfer up to 1200 baud. This type of design
can be used to interface a master processor to a
broad spectrum of peripheral devices as well as to a
serial communication channel.

PARALLEL
I/O

,-L-, i

PORT 1 is used strictly for I/O in thil(! example while
PORT 2 lines provide five functions:

• P23-P20 I/O lines (bidirectional)
• P24 Request to send (RTS)
• P25 Clear to Send (CTS)
• P26 Interrupt to master
• P27 Serial data out

The parallel I/O lines make use of the bidirectional
port structure of the UPI. Any line can function as
an input or output. All port lines are automatically
initialized to 1 by a system RESET pulse and remain

RS232C
SERIAL INTERFACE

I

ers RTS ~t &,

INTERFACE
TO a-BIT
MASTER

PROCESSOR

""
OUTPUT _

TO AO A1
MASTER

PRocrSOR
12

TRANSMIT RECEIVE
DATA DATA

"--r-'
,

I I TEST 0
PORT 1 AND 2 PORT 2

8041A/8741A

DBB CONTROL

J II ,
DATA

I I
CONTROL

Figure 6-4. Universal 1/0 Interface

5-696

\

APPLICATIONS

latched. An external TTL signal connected to a port
line will override the UPI's 50K-ohm internal pull­
up so that an INPUT instruction will correctly sam­
ple the TTL signal.

Four PORT 2 lines function as general I/O similar to
PORT 1. Also, the RTS signal is generated on PORT
2 under software control when the UPI has serial
data to send. The CTS signal is monitored via PORT
2 as an enable to the UPI to send serial data. A
PORT 2 line is also used as a software generated in­
terrupt to the master processor. The interrupt func­
tions as a service request when the UPI has a byte of
data to transfer or when it is ready to receive. Alter­
natively, the EN FLAGS instruction could be used
to create the OBF and IBF interrupts on P24 and

~25·

The RS232C interface is implemented using the
TEST 0 pin as a receive input and a PORT 2 pin as a
transmit output. External packages (AO, AI) are
used to provide RS232C drive requirements. The
serial receive software is interrupt driven and uses
the on-chip timer to perform time critical serial con­
trol. After a start bit is detected the interval timer

can be preset to generate an interrupt at the proper
time for sampling the serial bit stream. This elimi­
nates the need for software timing loops and allows
the processor to proceed to other tasks (i.e., parallel
I/O operations) between serial bit samples. Software
flags are used so the main program can determine
when the interrupt driven receive program has a
character assembled for it.

This type of configuration allows system designers
flexibility in designing custom I/O interfaces for spe­
cific serial and parallel I/O applications. For in­
stance, a second or third serial channel could be
substituted in place of the parallel I/O if required.
The UPI's data memory can buffer data and com­
mands for up to 4 low-speed channels (110 baud tele­
typewriter, etc.)

Application Notes
The following application notes illustrate the var­
ious applications of the UPI family. Other related
publications including the 8048 Family Application
Handbook are available through the Intel Literature
Department.

5-697

APPLICATIONS

INTRODUCTION TO THE UPI-41ATM

Introduction

Since the introduction in 1974 of the second genera­
tion of microprocessors, such as the 8080, a wide
range of peripheral interface devices have appeared.
At first, these devices solved application problems of
a general nature; i.e., parallel interface (8255), serial
interface (8251), timing (8253), interrupt control
(8259). However, as the speed and density of LSI
technology increased, more and more intelligence
was incorporated into the peripheral devices. This
allowed more specific application problems to be
solved, such as floppy disk control (8271), CRT con­
trol (8275), and data link control (8273). The advan­
tage to the system designer of this increased
peripheral device intelligence is that many of the pe­
ripheral control tasks are now handled externally to
the main processor in the peripheral hardware
rather than internally in the main processor soft­
ware. This reduced main processor overhead results
in increased system throughput and reduced soft­
ware complexity.

In spite of the number of peripheral devices avail­
able, the pervasiveness of the microprocessor has
been such that there is still a large number of periph­
eral control applications not yet satisfied by dedi­
cated LSI. Complicating this problem is the fact that
new applications are emerging faster than the manu­
facturers can react in developing new, dedicated pe­
ripheral controllers. To address this problem, a new
microcomputer-based Universal Peripheral Inter­
face (UPI-41A) device was developed.

In essence, the UPI-41A acts as a slave processor to
the main system CPU. The UPI contains its own
processor, memory, and I/O, and is completely user
programmable; that is, the entire peripheral control
algorithm can be programmed locally in the UPI, in­
stead of taxing the master processor's main memory.
This distributed processing concept allows the UPI
to handle the real-time tasks such as encoding key­
boards, controlling printers, or multiplexing dis­
plays, while the main processor is handling non-real­
time dependent tasks such as buffer management or
arithmetic. The UPI relies on the master only for
initialization, elementary commands, and data
transfers. This technique results in 'an ov~rall in­
crease in system efficiency since both processors­
the master CPU and the slave UPI-are working in
parallel.

This application note presents three UPI-41A appli­
cations which are roughly divided into two groups:
applications whose complexity and UPI code space

requirements allow them to either stand alone or be
incorporated as just one task in a "multi-tasking"
UPI, and applications which are complete UPI ap­
plications in themselves. Applications in the first
group are a simple LED display and sensor matrix
controllers. A combination serial/parallel/ I/O de­
vice is an application in the second group. Each ap­
plication illustrates different UPI configurations
and features. However, before the application de­
tails are presented, a section on the UPI/master pro-

'tocol requirements is included. These protocol
requirements are key to UPI software development.
For convenience, the UPI block diagram is repro­
duced in Figure 1 and the instruction set summary
in Table 1.

UPI-41 vs. UPI-41 A
The UPI-41A is an enhanced version of the UPI-41.
It incorporates several architectural features not
found on the "non-A" device:

• Separate Data In and Data Out data bus buf­
fer registers

• User-definable STATUS register bits
• Programmable master interrupts for the OBF

and IBF flags
• Programmable DMA interface to external

DMA controller.

The separate Data In (DBBIN) and Data Out
(DB BOUT) registers greatly simplify the master/
UPI protocol compated to the UPI-41. The master
need only check IBF before writing to DBBIN and
OBF before reading DBBOUT. No data bus buffer
lock -out is required.

The most significant nibble of the STATUS register,
undefined in the UPI-41, is user-definable in UPI-
41A. It may be loaded directly from the most signifi­
cant nibble of the Accumulator (MOV STS,A).
These extra four STATUS bits are useful for trans­
ferring additional status information to the master.
This application note uses this feature extensively.

A new instruction, EN FLAGS, allows OBF and IBF
to be reflected on PORT'2 BIT 4 and PORT 2 BIT 5
respectively. This feature enables interrupt-driven
data transfers when these pins are interrupt sources
to the master.

By executing an EN DMA instruction PORT' 2 BIT
6 becomes a DRQ (DMA Request) output and
PORT 2 BIT 7 becomes DACK (DMA Acknbwl­
edge). Setting DRQ requests a DMA cycle to an ex­
ternal DMA controller. When the cycle is granted,
the DMA controller returns DACK plus either RD
(Read) or WR (Write). DACK automatically forces

5-698

APPLICATIONS

.~{"
7681-_____ -1

·~·r
512 1------..."..--1

.~{"
~i~ 1-------1

LOCATION 7 - TIMER

1--_____ --1 .r---::':~~=~~TH~~~TORS
PAGE 0

LOCATION 3 - IBF

I-------..;;;;r .I-----I~RE~~~:~ ~i~~TORS

o 71 6 15 14 I 31 2 l' I 0 ~~~~~~X~c:,g,~S
ADDRESS

Figure 1A. Program Memory Map

CS and Ao low internally and clears DRQ. This se­
lects the appropriate data buffer register (DBBOUT
for DACK and RD, DBBIN for DACK and WR) for
the DMA transfer.

Like the "non-A", the UPI-41A is available in both
ROM (8041A) and EPROM (8741A) Program Mem­
ory versions. This application note deals exclusively
with the UPI-41A since the applications use the "A"s
enhanced features.

UPI/MASTER PROTOCOL
As in most closely coupled multiprocessor systems,
the various processors communicate via a shared re­
source. This shared resource is typically specific lo­
cations in RAM or in registers through which status
and data are passed. In the case of a master proces­
sor and a UPI-41A, the shared resource is 3 separate,
master-addressable, registers internal to the UP!.
These registers are the status register (STATUS),
the Data Bus Buffer Input register (DBBlN), and
the Data Bus Output register (DBBOUT). [Data
Bus Buffer direction is relative to thll UPI]. To illus­
trate this register interface, consider the 8085ANPI
system in Figure 2.

63r---------------,

USER RAM
32 X 8

~~I---------------1
BANK 1

WORKING
REGISTERS

8X8

8 LEVEL 5T ACK
OR

USER RAM
16 X 8

BANK 0
WORKING

REGISTERS
8X8

I
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SELECTED

~
ADDRESSED
INDIRECTLY
THROUGH
Al OR RO

(RO' OR Rl)

DIRECTLY
ADDRESSABLE
WHEN BANK 0

IS SELECrO

Figure 1B. Data Memory Map

Looking into the UPI from the 8085A, the 8085A
sees only the three registers mentioned above. If the
8085A wishes to issue a command to the UP I, it does
so by writing the command to the DBBIN register
according to the decoding of Table 2. Data for the
UPI is also passed via the DBBIN register. (The UPI
differentiates commands and data by examining the
AO pin. Just how this is done is covered shortly.)
Data from the UPI for the 8085A is passed in the
DBBOUT register. The 8085A may interrogate the
UPI's status by reading the UPI's STATUS register.
Four bits of the STATUS register act as flags and
are used to handshake data and commands into and
out of the UP!. The STATUS register format is
shown in Figure 3.

BIT 0 is OBF (Output Buffer Full). This flag indi­
cates to the master when the UPI has placed data in
the DBBOUT register. OBF is set when the UPI
writes to DBBOUT and is reset when the master
reads DBBOUT. The master finds meaningful data
in the DBBOUT register only when OBF is set.

The Input Buffer Full (IBF) flag -is BIT 1. The UPI
uses this flag as an indicator that the master has
written to the DBBIN register. The master uses IBF

AFN-01536A

5-699

APPLICATIONS

MASTER
SYSTEM

INTERfACE

CRYSTAL

~fo~~

j'" "
w, ..
'"
"

},,"
1TAL2

{

Veo ___ PROM PROGRAM. SUPP[Y

POWER vee -, -_ +5 SUPPLY

vss ___ GROUND

INTERNAL eo,

DATA
MEMORY

lKX8

P~~~~'j.~
MEMORY

RE!>IDENT
64X8

RANDOM
ACCESS
MEMORY

PORT 4 7
EXPANDER
INT~RFACE

8-BIT
, TIM"R'

EVENT COlJ"lrER

TE5T1 ..

PERIPHERAL
INTERFACE

Figure 1C. UPI-41A Block Diagram

to indicate when the UPl has accepted a particular
command or data byte. The. master should examine
lBF before outputting anything to the UP!. IBF is
set when the master writes to DBBlN and is reset
when the UPI reads DBBIN. The master must wait
until IBF=O before writing new data or commands
to DBBlN. Conversely, the UPl must ensure lBF=l
before reaQing DBBIN.

The third STATUS register bit is FO (FLAG 0). This
is a general purpose flag that the UPl can set, reset,
and test. It is typically used to indicate a UPI error
or busy condition to the master.

FLAG 1 (Fl) is the final dedicated STATUS bit.
Like FO the UPI can set, reset, and test this flag.
However, in addition, Fl reflects the state ofthe AO
pin whenever the master writes to the DBBIN regis­
ter. The UPI uses this flag to delineate between mas­
ter command and data writes to DBBIN.

The remaining four STATUS register bits are user
defhlable. Typical uses of these bits are as status in-

~r(" II'- r-r-- I STATUS I ~ ['<- ~
t--~~a: ~ I I 8085 t--~r~r-:-!z AO DRBIN

t--Ct- f--'\8 cs
t-- t- r- RD

I I WR DBBOUT

'"-

.
Figure 2. Register Interface

dicato:cs for individual tasks in a multitasking UPI
or as UPI generated interrupt status. These bits find
a wide variety of uses in the upcoming applications.

Looking into the SOSSA from the UPl, the UPl sees
the two DBB registers plus the IBF, OBF, and Fl
flags. The UPI can write from its accumulator to
DBBOUT or read DBBIN into the accumulator.
The UPI cannot read OBF, lBF, or Fl directly, but
these flags may be tested using conditional jump

5-700

APPLICATIONS

Table 1. Instruction Set Summary

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles

Accumulator Timer/Counter

ADDA,Rr Add register to A I I MOVA,T Read Timer/Counter I I
ADDA,@Rr Add dats memory to A I I MOVT,A Load Timer/Counter I I
ADD A,#data Add immediate to A 2 2 STRTT Slsrt Timer J I
ADDCA,Rr Add register to A with carry I I STRTCNT Stsrt Counter 1 I
ADDCA@Rr Add data memory to A with carry I I STOP TCNT Stop Timer/Counter I I
ADDC A,#dats Add immed. to A with carry 2 2 EN TCNTI Enable Timer/Counter Interrupt I I
ANLa,Rr AND register to A I I DIS TCNT! Disable Timer/Counter Interrupt I I
ANLA,@Rr AND data memory to A I I
ANLA,#data AND immediate to A 2 2 Control

ORLA,Rr OR register to A I I ENDMA Enable DMA Handshake Lines I I
ORLA@Rr OR dats memory to A I I EN! Enable IBF Interrupt I I
ORLA,#dats OR immediate to A 2 2 DIS I Disable IBF Interrupt 1 1
XRLA,Rr Exclusive OR register to A I I
XRLA,@Rr Exclusive OR data memory to A I I
XRLA,#dats Exclusive OR immediate to A 2 2

EN FLAGS Enable Master Interrupts 1 I
SELRBO Select gister bank 0 I I
SEL RBI Select register bank 1 I I

INCA Increment A I I NOP No Operation 1 1
DEC A Decrement A I I
CLRA Clear A I I Registers

CPLA Complement A I I
DAA Decimal Adjust A I I
SWAP A Swap digits of A I I
RLA Rotate A left I I

INCRr Increment register I I
INC@Rr Increment data memory I I
DECRr Decrement register I I

RLCA Rotate A left through carry I I Subroutine
RRA Rotate A right I I
RRCA Rotst' A right through carry I I

CALL addr Jump to subroutine 2 2
RET Return I 2 --

Input/Output RETR Return and restore status I 2

IN A,P Input port to A I 2
OUTLf,p,A Output A to port I 2
ANL Pp,#data AND immediate to port 2 2
ORL P~#data OR immediate to port 2 2
IN A,D B Input DBB to A, clear IBF I I
OUTDBB,A Output A to DBB, set OBF I I
MOVSTS,A A4-A7 to Bits 4-7 of Ststus I I
MOVDA,PX Input Expander port to A I 2
MOVDPp, Output A to Expander port I 2
ANLD Pp.A AND A to Expander port I 2
ORLDPp,A OR A to Expander port I 2

Flags

CLRC Clear Carry I I
CPLC Complement Carry I I
CLRFO Clear Flag 0 I I
CPLFO Complement Flag 0 I I
CLRFI Clear FI Flag I I
CPLFI Complement FI Flag I I

Branch

JMPADDR Jump unconditional 2 2
JMPP@A Jump indirect I 2

Data Moves DJNZ R,addr Decrement register and skip 2 2

MOV A,Rr Move register to A I I
MOVA,@Rr Move data memory to A I I
MOV A,#dats Move immediate to A 2 2
MOVRr,A Move A to register I I
MOV@Rr,A Move A to data memory I I
MOV Rr,#dats Move immediate to register 2 2
MOV @Rr,#dats Move immediate to data memory 2 2
MOVA,PSW Move PSW to A I I
MOVPSW,A Move A toPSW I I
XCHA,Rr Exchange A and register I I
XCHA,@Rr Exchange A and data memory I I
XCHDA@Rr Exchange digit of A and register I I
MOVPA.@A Move to A from current page I 2
MOVP3,A,@A Move to A from page 3 I 2

JC addr Jump on Carry=1 2 2
JNC addr Jump on Carry=O 2 2
JZ.addr Jump on A Zero 2 2
JNZ addr Jump on A not Zer0 2 2
JTO addr Jump on TO=I 2 2
JNTOaddr Jump on TO=O 2 2
JTladdr Jump on TI=I 2 2
JNTI addr Jump on TI=O 2 2
JFO addr Jump on FO Flag=1 2 2
JFladdr Jump on FI Flag=1 2 2
JTF addr Jump on Timer Flag=l,Clear Flag 2 2
JNIBF addr Jump on IBF Flag=O 2 2
JOBF addr Jump on OBF Flag=1 2 2
JBb addr Jump on Accumulator Bit 2 2

Table 2. Register Decoding

cs AO RD

0 0 0
0 1 0
0 0 1

0 1 1

1 X X

WR REGISTER

1 READDBBOUT

1 READ STATUS

0 WRITE DBBIN (DATA)

0 WRITE DBBIN (COM-
MAND)

X NO ACTION

5-701

I ., Ir7 ..'-I-r..'-[_Srl ..'-1_4r-'_3r-'1_2r-'1_'r)O)~°r' OBF _ DBBour FULL

~ tBF - ceelN FULL
~---- FO - FLAG 0

'------ F1 - FLAG 1
--------- USER DEFINED

STATUS REGISTER

Figure 3. Status Register Format

AFN-D1536A

APPLICATIONS

instructions. The UPI should make sure that OBF is
reset before writing new data into DBBOUT to en­
sure that the master has read previous DBBOUT
data. IBF should also be tested before reading
DBBIN since DBBIN data is valid only when IBF is
set. As w~s mentioned earlier, the UPI uses Fl to dif­
ferentiate between command and data contents in
DBBIN when IBF is set. The UPI may also write tlie
upper 4-bits of its accumulator to the upper 4-bits of
the STATUS register. These bits are thus user
definable.

The UPI can test the flags at any time during its in­
ternal program execution. It essentially "polls" the
STATUS register for changes. If faster response is
needed to master commands and data, the UPI's in­
ternal interrupt structure can be used. If IBF inter­
rupts are enabled, a master write to DBBIN (either
command or data) sets IBF which generates an in­
ternal CALL to location 03H in program memory. At
this point, working register contents can be saved
using bank switching, the accumulator saved in a
spare working register, and the DBBIN register read
and serviced. The interrupt logic for the IBF inter­
rupt is shown in Figure 4. A few observations con­
cerning this logic are appropriate. Note that if the
master writes to DBBIN while the UPI is still servic­
ing the last IBF interrupt (a RETR instruction has
not been executed), the IBF Interrupt Pending line

is made high which causes a new CALL to 03H as
soon as the first RETR is executed. No EN I (Enable
Interrupt) instruction is needed to rearm the inter­
rupt logic as is needed in an 8080 or 8085A system;
the RETR performs this function. Also note that ex­
ecuting a DIS I to disable further IBF interrupts
does not clear a pending interrupt. Only a CALL to
location 03H or RESET clears a pending IBF inter­
rupt.

Keeping in mind that the actual master/UPI proto­
col is dependent on the application, probably the
best way to illustrate correct protocol is by example.
Let's consider using the UPI as a simple parallel I/O
device. (This is a trivial application but it embodies
all of the important protocol considerations.) Since
the UPI may be either interrupt or non-interrupt
driven internally, both cases are considered.

Let's take the easiest configuration first; using the
UPI PORT 1 as an 8-bit output port. From the UPI's
point-of-view, this is an input-only application since
all that is required is that the UPI input data from
the master. Once the master writes data to the UPI,
the UPI reads the DBBIN register and transfers the
data to PORT 1. No testing for commands versus
data is needed since the UPI "knows" it only per­
forms one task-no commands are needed.

TIMER COUNTER
OVERFLOW 01----,

FORCE
INTERRUPT
CALL

EN TCNTI
EXECUTED

RESET
DIS TeNTI

EXECUTED

Ol-----~

TIMER
INTERRUPT

ENABLE

TIMER INTERRUPT
CALL EXECUTED

WR

Cs

RESET
IBF INTERRUPT

CALL EXECUTED

RESET
DIS I

EXJ:CUTED

EN I
EXECUTED

TIMER
INTERRUPT
REOUEST

o

IBF INTERRUPT
ENABLE

RESET

RHR EXECUTED

Figure 4. UPI-41A Interrupt Structure

5-702

INTERRUPT
IN PROGRESS

AFN-Ql536A

APPLICATIONS

Non-interrupt driven UPI software is shown in Fig­
ure 5A while Figur~ 5B shows interrupt based soft­
ware. For Figure 5A, the UPI simply waits until it
sees IBF go high indicating the master has written a
data byte to DBBIN. The UPI then reads DBBIN,
transfers it to PORT 1, and returns to waiting for the
next data. For the interrupt-driven UPI, Figure 5B,
once the EN I instruction is executed, the UPI sim­
ply waits for the IBF interrupt before handling the
data. The UPI could handle other tasks during this
waiting time. When the master writes the data to
DBBIN, an IBF interrupt is generated which per­
forms a CALL to location 03H. At this point the UPI
reads DBBIN (no testing of IBF is needed since an
IBF interrupt implies that IBF is set), transfers the
data to PORT 1, and executes an RETR which re­
turns program flow to the main program.

Software for the master 8085A is included in Figure
5C. The only requirement for the master to output
data to the UPI is that it check the UPI to be sure
the previous data had been taken before writing new
data. To accomplish this the master simply reads the
STATUS register looking for IBF=O before writing
the next data.

, UPIINPUT ONLY EXAMPLE-PORT I USED AS OUTPUT PORT
UPI POLLS IBF FOR DATA -

RESET JNIBF RESET
IN A,DBB
OUTL PI,A
JMP RESET

, WAIT ON IBF FOR INPUT
; INPUT THERE, SO READ IT
, TRANSFER DATA TO PORT 1
, GO WAIT FOR NEXT DATA

Figure SA. Single Output Port Example-P~lIing

, UPIINPUT ONLY EXAMPLE-PORT I USED AS OUTPUT PORT
DATA INPUT IS INTERRUPT·DRIVEN ON'IBF

RESET EN I
JMP RESET+I

IBFINT' IN A,DBB
OUTL PI,A
RETR

; ENABLE IBF INTERRUPTS
, LOOP WAITING FOR INPUT
; READ DATA FROM DBBIN
; TRANSFER DATA TO PORT I
, RETURN WITH RESTORE

Figure 5B. Single Output Port Example-Interrupt

, 8085 SOFTWARE FOR UPIINPUT-ONLY EXAMPLE
DATA FOR OUTPUT IS PASSED IN REG C

UPIOUT IN
ANI
JNZ
MOV
OUT
RET

STATUS
IB~
UP lOUT
A,C
DBBIN

; READ UPI STATUS
; LOOK AT IBF
; WAIT FOR IBF=O
, GET DATA FROM C
; OUTPUT DATA TO DBBIN
; DONE, RETURN

Figure 5C. 8085A Code for Single Output Port Ex­
ample

Figure 6A illustrates the case where UPI PORT 2 is
used as an 8-bit input port. This configura.tion is
termed UPI output-only as the master does not
write (input) to the UPI but simply reads either the
STATUS or the DBBOUT registers. In this example
only the OBF flag is used. OBF signals the master
that the UPI has placed new port data in DBBOUT.
The UPI loops testing OBF. When OBF is clear, the
master has read the previous data and UPI then
reads its input port (PORT 2) and places this data in
DBBOUT. It then waits on OBF until the master
reads DBBOUT before reading the input port again.
When the master wishes to read the input port data,
Figure 6B, it simply checks for OBF being set in the
STATUS register before reading DBBOUT. While
this technique illustrates proper protocol, it should
be noted that it is not meant to be a good method of
using the UPI as an input port since the master
would never get the newest status of the port.

5-703

: UPI OUTPUT ONLY EXAMPLE-PORT 2 USED AS INPUT PORT
PORT DATA IS AVAILABLE IN DBBOUT

RESET JOBF RESET
IN A,P2
OUT DBB,A
JMP RESET

, LOOP IF OBF=I (DATA NOT READ)
, DBBOUT CLEAR, READ PORT
, TRANSFER PORT DATA TO DBBOUT
, WAIT FOR MASTER TO READ DATA

• Figure 6A. Single Input Port Example

; 8085 SOFTWARE FOR UPI OUTPUT -ONLY EXAMPLE
INPUT DATA RETURNED IN REG A

UPIIN IN STATUS
ANI OBF
JZ UP liN
IN DBBOUT
RET

, READ UPI STATUS
,LOOK AT OBF
, WAIT UNTIL OBF= I
, READ DBBOUT
, RETURN WITH DATA IN A

Figure 6B. 8085A Single Input Port Code

The above examples can easily be combined. Figure
7 shows UPI software to use PORT 1 as an output
port simultaneously with PORT 2 as an input port.
The program starts with the UPI checking IBF to
see if the master has written data destined for the
output port into DBBIN. If IBF is set, the UPI reads
DBBIN and transfers the data to the output port
(PORT 1). IfIBF is not set or once the data is trans­
ferred to the output port if it was, OBF is tested. If
OBF is reset (indicating the master has read
DBBOUT), the input port (PORT 2) is read and
transferred to DBBOUT. If OBF is set, the master
has yet to read DBBOUT so the program just loops
back to test IBF.

The master software is identical to the separate
input/output examples; the master must test IBF

AFN-Q1536A

APPLICATIONS

; UPIINPUT /OUTPUT EXAMPLE-PORT lOUTPUT, PORT 2 INPUT

RESET'

OUT1:

JNIBF
IN
OUTL
JOBF
IN
OUT
JMP

OUT1
A,DBB
PI, A
RESET
A, P2
DBB, A
RESET

, IF IBF=O, DO OUTPUT
; IF IBF= 1, READ DBBIN
, TRANSFER DATA TO PORT 1
; IF OBF=I, GO TEST IBF
, IF OBF=O, READ PORT 2
; TRANSFER PORT DATA TO DBBOUT
; GO CHECK FOR INPUT

Figure 7. Combination Output/Input Port Example

and OBF before writing output port data into
DBBIN or before reading input port from DBBOUT
respectively.

In all of the three examples above, the UPI treats
information from the master solely as data. There
has been no need to check if DBBIN information is a
command rather than data since the applications do
not require commands. But what if both PORTs 1
and 2 were used as output ports? The UPI needs to
know into which port to put the data. Let's use a
command to select which port.

Recall that both commands and. data pass through
DBBIN. The state of the AO pin at the time of the
write to DBBIN is used to distinguish commands
from data. By convention, DBBIN writes with' AO=O
are for data, and those with AO=1 are commands.
When DBBIN is written into, Fl (FLAG 1) is set to
the state of AO. Ti).e UPI tests Fl to determine if the
information in the DBBIN register is data or
command.

For the case of two output ports, let'.s assume that
the master selects the desired port with a command
prior to writing the data. (We could just use Fl as a
Rort select but that would not illustrate the subtle
differences between commands and data). Let's de·
fine the port select commands such that BIT 1 = 1 if
the next data is for PORT 1 (Write PORT 1=0000
0010) and BIT 2=1 if the next data is for PORT 2
(Write PORT 2=0000 0100). (The numper of the set
bit selects the port.) Any other bits are ignored. This
assignment is completely arbitrary; we could use any
command structure, but this one has the advantage
of being simple.

Note that the UPI must "remember" from DBBIN
write to write which port has been selected. Let's use
FO (FLAG 0) for this purpose. If a Write PORT 1
command is received, FO is reset. If the command is
Write PORT 2, FO is set. When the UPI finds data in
DBBIN, FO is interrogated and the data is loaded
into the previously selected port. The UPI software
is shown in Figure 8A.

: UPI DUAL OUTPUT PORT EXAMPLE-BOTH PORT 1 AND 2 OUTPUTS
COMMAND SELECTS DESIRED PORT
WRITE PORT 1-00000010 (02H)
WRITE PORT 2-0000 0100 (04H)

FLAG 0 USED TO REMEMBER WHICH PORT WAS SELECTED
BY LAST COMMAND.

RESET JNIBF RESET
IN A,DBB
JFl CMD
JFO PORT2
OUTL Pl,A
JMP RESET

PORT2 OUTL P2,A
JMP RESET

CMD JBl PTl
JB2 PT2
JMP RESET

PTI CLR Fa
JMP RESET

PT2 CLR Fa
CPL Fa
JMP RESET

; WAIT FOR MASTER INPUT
; READ INPUT
.IF Fl= " COMMAND INPUT
, INPUT IS DATA, TEST FO
; FO=O, SO OUTPUT TO PORT 1
, WAIT FOR NEXT INPUT
, FO= 1, SO OUTPUT TO PORT 2
; WAIT FOR NEXT INPUT
• TEST COMMAND BITS (BIT 1)
• TEST BIT 2
, NEITHER BIT SET, WAIT FOR INPUT
, PORT 1 SELECTED, CLEAR FO
• WAIT FOR INPUT
• PORT 2 SELECTED, SET FO

; WAIT FOR INPUT

Figure SA. Dual Output Port Example

Initially, the UPI simply waits until IBF is set indi·
cating the master has written into DBBIN. Once
IBF is set, DBBIN is read and Fl is tested for a com·
mand. If Fl =1, the DBBIN byte is a command. As·
suming a commimd, BIT 1 is tested to see if the
command selected PORT 1. If ~o, FO is cleared and
the program returns to wait for the data. If BIT 1 =0,
BIT 2 is tested. If BIT 2 is set, PORT 2 is selected so
FO is set. The program then loops back waiting for
the next master input. This input is the desired port
data. If BIT 2 was not set, FO is not changed and no
action is taken.

When IBF=1 is again detected, the input is again
tested for command or data. Since it is necessarily
data, DBBIN is read and FO is tested to determine
which port was previously selected. The data is then
output to that port, following which the program
waits fo): the next input. Note that since FO still se·
lects the previous port, the next input could be more
data for that port. The port selection command
could be thought of as a port select flip· flop control;
once a selection is made, data may be repeatedly
written to that port until the other port is selected.
Master software, Figure 8B, simply must check IBF
before writing either a command or data to DBBIN.
Otherwise, the master software is straightforward.

• For the sake of completeness, UPI software for im·
plementing two input ports is given in Figure 9. T~is
case is simpler than the dual output case since the
UPI can assume that all writes to DBBIN are port
selection commands so no command/data testing is
required. Once the Port Read com}lland is input, the
selected port is read and the port data is placed in
DBBOUT. Note that in this case FO is used as a UPI

5-704

APPLICATIONS

error indicator. If the master happened to issue an
invalid command (a command without either BIT 1
or 2 set), FO is set to notify the master that the UPI
did not know how to interpret the command. FO is
. also set if the master commanded a port read before
it had read DBBOUT from the previous command.
The UPI simply tests OBF just prior to loading
DBBOUT and if OBF=I, FO is set to indicate the
error.

All of the above examples are, in themselves, rather
trivial applications of the UPI although they could
easily be incorporated as one of several tasks in a
UPI handling multiple small tasks. We have covered
them primarily to introduce the UPI concept and to
illustrate some master/UPI protocol. Before moving
on to more realistic UPI applications, let's discuss
two UPI features that do not directly relate to the
master/UPI protocol but greatly enhance the UPI's
transfer capability.

In addition to the OBF and IBF bits in the STATUS
register, these flags can also be made available di­
rectly on two port pins. These port pins can then be
used as interrupt sources to the master. By execut­
ing an EN FLAGS instruction, PORT 2 pin 4 re­
flects the condition of OBF and PORT 2 pin 5
reflects the inverted condition of IBF (IBF). These
dedicated outputs can then be enabled or disabled
via their respective port bit values; i.e., P24 reflects
OBF as long as an instruction is executed which sets
P24 (i.e. ORL P2,#10H). The same action applies to
the IBF output except P25 is used. Thus P24 may
serve as a DATA AVAILABLE interrupt output.
Likewise for P25 as a READY-TO-ACCEPT-DATA
interrupt. This greatly simplifies interrupt-driven
master-slave data transfers.

, 8085 SOFTWARE FOR DUAL OUTPUT PORT EXAMPLE
THIS ROUTINE WRITES DATA IN REG, C TO PORT 1
(SAME ROUTINE FOR PORT 2-JUST CHANGE COMMAND)

PORT1 IN STATUS ,READ UPI STATUS
ANI IE\F , LOOK AT IBF
JNZ PORT 1 , WAIT UNTIL IBF =0
MVI A,OOOOOO108, LOAD WRITE PORn CMD
OUT UPICMD , OUTPUT TO UPI COMMAND PORT

P1 IN STATUS , READ UPI STATUS AGAIN
ANI IBF , LOOK AT IBF
JNZ P1 , WAIT UNTIL COMMAND ACCEPTED
MOV A, C , GET DATA FROM C
OUT DBBIN , OUTPUT TO DBBIN
RET , DONE, RETURN

Figure BB. BOS5A Dual Output Port Example Code

The UPI also supports a DMA transfer interface. If
an EN DMA instruction is executed, PORT 2 pin 6
becomes a DMA Request (DRQ) output and P27 be­
comes a high impedance DMA Acknowledge

, UPI DUAL INPUT PORT EXAMPLE-BOTH PORT 1 AND 2 INPUTS
COMMAND SELECTS WHICH PORT IS TO BE READ

RESET

ERROR

PT1

PT2

FLAG a USED AS ERROR FLAG

JNIBF
CLR
IN
JB1
JB2
CPL
JMP
IN
JOBF
OUT
JMP
IN
JOBF
OUT
JMP

RESET
FO
A, DBB
PT1
PT2
Fa
RESET·
A, P1
ERROR
DBB, A
RESET
A, P2
ERROR
DBBI A
RESET

, WAIT FOR INPUT
, CLEAR ERROR FLAG
; READ INPUT (COMMAND)
, TEST BIT 1 (PORT 1)
, TEST BIT 2 (PORT 2)
, ERROR-COMPLEMENT Fa
, WAIT FOR INPUT
,READ PORT 1
, TEST OBF BEFORE LOADING DBBOUT
, LOAD PORT 1 DATA INTO DB BOUT
, WAIT FOR INPUT
,READ PORT 'Z
, TEST OBF BEFORE LOADING DBBOUT
; LOAD PORT 2 DATA INTO DB BOUT
; WAIT FOR INPUT

Figure 9. Dual Input Port Example

(DACK) input. Any instruction which would nor­
mally set P26 now sets D~ DR~ cleared when
DACK is low and either RD or WR is low. When
DACK is low, CS and AO are forced low internally
which allows data bus transfers between DBBOUT
or DBBIN to occur, depending upon whether WR or
RD is true. Of course, the function requires the use
of an external DMA controller.

Now that we have discussed the aspects of the UPI
protocol and data transfer interfaces, let's move on
to the actual applications.

EXAMPLE APPLICATIONS
Each of the following three sections presents the
hardware and software details of a UPI application.
Each application utilizes one of the protocols men­
tioned in the last section. The first example is a sim­
ple 8-digit LED display controller. This application
requires only that the UPI perform input operations
from the DBBIN; DBBOUT is not used. The reverse
is true for the 'second application: a sensor matrix
controller. The final application involves both
DB BOUT and DBBIN operations: a combination
serial/parallel I/O device.

The core master processor system with which these
applications were developed is the iSBC 80/30 single
board computer. This board provides an especially
convenient UPI environment since it contains a
dedicated socket specifically interfaced for the UPI-
41A. The 80/30 uses the 8085A as the master proces­
sor. The I/O and peripheral complement on the
80/30 include 12 vectored priority interrupts (8 on
an 8259 Programmable Interrupt Controller and 4
on the 8085A itself), an 8253 Programmable Interval
Timer supplying three 16-bit programmable timers
(one is dedicated as a programmable baud rate gen­
erator), a high speed serial channel provided by a
8251 Programmable USART, and 24 parallel I/O

5-705
I: i
I"

APPLICATIONS

lines implemented with an B255A Programmabl~
Parallel Interface. The memory complement con­
tains 16K bytes of RAM using 2117 16K bit Dynamic
RAMs and the B202 Dynamic RAM Controller, and
up to BK bytes of ROM/EPROM with sockets com­
patible with 2716, 275B, or 2332 devices. The BO/30's
RAM uses a dual port architecture. That is, the
memory can be considered a global system resource,
accessible from the on-board BOB5A as well as from
remote CPUs and other devices via the
MULTIBUS. The BO/30 contains MULTIBUS con­
trollogic which allows up to 16 BO/30s or other bus
masters to share the same system bus. (More de­
tailed information on the iSBC BO/30 and other
iSBC products may be found in the latest Intel
Systems Data Catalog.)

·A block diagram ofthe iSBC BO/30 is shown in Fig­
ure 10. Details of the UPI interface are shown in Fig­
ure 11. This interface decodes the UPI registers in
the following format:

Register

Read STATUS
Write DBBIN (command)

Read DBBOUT (data)
Write DBBIN (data)

Operations

INE5H
OUTE5H
INE4H

OUTE4H

8-Digit Multiplexed LED Display
The traditional method of interfacing an LED dis­
play with a microprocessor is to use a data latch
along with a BDC-to-7-segment decoder for each
digit of the display. Thus two ICs, seven current
limiting resistors, and about 45 connections are re­
quired for each digit. These requirements are, of
course, multiplied by the total number of digits de­
sired. The obvious disadvantages of this method are
high parts count and high power dissipation since
each digit is "ON" continuously. Instead, a scheme
of time multiplexing the display can be used to de­
crease both parts count and power dissipation. ,

Display multiplexing basically involves connecting
the same segment (a, b, c, d, e, f, or g) of each digit in
parallel and driving the common digit element (an­
ode or cathode) of each digit separately. This is
shown schematically in Figure 12. The various digits
of the display are not all on at once; rather, only one
digit at a. time is energized. As each digit is ener­
gized, the appropriate segments for that digit are
turned on. Each digit is enabled in this way, in se­
quence, at a rate fast enough to ensure that each
digit appears to be "ON" continuously. This implies
that the display must be "refreshed" at periodic in­
tervals to keep the digits flicker-free. If the CPU had
to handle this task, it would have to suspend normal

processing, go update the display, and then return to
its normal flow. This extra burden is ideally handled
by a UPI. The master CPU could simply give charac­
ters to the UPI and let the UPI do the actual seg­
ment decoding, display multiplexing, and
refreshing.

As an example of this technique, Figure 13 shows the
UPI controlling an B-digit LED display. All digit
segments 'are connected in parallel and are driven
through segment drivers by the UPI PORT 1. The
lower 3 bits of PORT 2 are inputs to a 3-to-B decoder
which selects an individual digit through a digit
driver. A fourth PORT 2 line is used as a decoder
enable input. The remaining PORT 2 lines plus the
TEST 0 and TEST 1 inputs are available for other
tasks.

Internally, the UPI uses the counter/timer in the in­
terval timer mode to define the interval between dis­
play refreshes. Once the timer is loaded with the
desired interval and started, the UPI is free to han- I

die other tasks. It is only when a timer overflow in­
terrupt occurs that the UPI handles the short
display multiplexing routine. The display multiplex­
ing can be considered a background task which is en­
tirely interrupt-driven. The amount of time spent
multiplexing is such that there is ample time to han­
dle a non-timer task in the UPI foreground. (We'll
discuss this timing shortly.)

When a timer interrupt occurs, the UPI turns off all
digits via the decoder enable. The next digit's seg­
ment contents are retrieved from the internal data
memory and output via PORT 1 to the segment
drivers. Finally, the next digit's location is placed on I

PORT 2 (P20-P22) and the decoder enabled. This
displays the digit's segment information until the
next interrupt. The timer is then restarted for the
next interval. This process continues repeatedly for
each digit in sequence.

As a prelude to discussing the UPI software, let's ex­
amine the internal data memory structure used in
this application, Figure 14. This application requires
only 14 of the 64 total data memory locations. The
top eight locations are dedicated to the Display
Map; one location for each digit. These locations
contain the segment and decimal point information
for each character. Just how characters are loaded
into this section of memory is covered shortly. Regis­
ter R7 of Register Bank 1 is used as the temporary
Accumulator store during the interrupt service
routines. Register R3 stores the digit number of the
next digit to be displayed. R2 is a temporary storage
register for characters during input routine. RO is

5-706

APPLICATIONS

16K X B
RAM
2117

RS232C
COMPATIBLE

DEVICE

POWER FAIL
INTERRUPT

41NTEARUPT
REQUEST LINES

USER DESIGNATED
PERIPHERALS

42 PROGRAMMABLE
PARALLEL I/O LINES

8 INTERRUPT
REQUEST LINES

2 INTERRUPT
REQUEST LINES

MULTIBUSTM

Figure 10. iSBC 80/30 Block Diagram

the offset pointer pointing to the Display Map loca­
tion of the next digit. That makes 12 locations so far.
The remaining two locations are the two stack loca­
tions required to store the return address plus status
during the timer and input interrupt service
routines. The remaining unused locations, all of
Register Bank 0, 14 bytes of stack, 4 in Register
Bank 1, and 24 general purpose RAM locations, are
all available for use by any foreground task.

The UPI software consists of only three short
routines. One, INIT, is used strictly during
initialization. DISPLA is the multiplexing routine
called at a timer interrupt. INPUT is the character
input handler called at an IBF interrupt. The flow

charts for these routines are shown in Figures 14A
through 14C.

INIT initializes the UPI by simply turning off all
segment and digit drivers, filling the Display Map
with blank characters, loading and starting the
timer, and enabling both timer and IBF interrupts.
Although the flow chart shows the program looping
at this point, it is here that the code for any fore­
ground task is inserted. The only restrictions on this
foreground task are that it not use I/O lines dedi­
cated to the display and that it not require dedicated
use of the timer. It could share the timer if precau­
tions are taken to ensure that the display will still be
refreshed at the required interval.

5-707

APPLICATIONS

+sv

VOO
Pl.

lOW WR

toR
P11

ReSET RESET
P12

P13
A' A. ., cs

A3 Al
PORT 1

P14

A4 A2
Pl. 8205

M As El

As A7 E2
Pl.

M As .3

TO IOPOfIT TEST.
CONTROl E. 31 T1
DATA E4 +sv TEST 1

8041A EVENT CLOCK (8253)

8741A

~~IR~23'
~CHANNEL

4'
0 80851NTR

P'~
OBo- 0.-

OB7 07
P21

P22

P23

+sv +sv
PORT 2 P24

• 2. .2 •

P2'

55296 XTAL 1
P2.

MH,

P27
XTAL2

vss

• Figure 11. UPllnterface on iSBC 80/30

+ 5V

DO

Figure 12. LED Multiplexing

5-708

+ 5V

CS

RD

WR

PORT2/

3 AO

c ,. ... ,. DATA

8041A/
8741A

PORT 1

APPLICATIONS

E3 00

01
E2

02

8205 03

E1 O'
A2 05

A1 06

AO 07

SEGMENT
DRIVERS

Figure 13. UPI Controlled a-Digit LED Display

63

31

2'
23

DISPLAY MAP
8x8

USER RAM
24 X 8

INOT USED)

ACCUMULATOR STORE

NOT USED

NOT useD

NOT USED

DIGIT COUNTER

TEMPORARY STORE

NOT USED

DISPLAY MAP POINTER

STACK
16 x 8

UNUSED
8x8

R7

A6

AS

A. REGISTER

A3
BANK 1

A2

A1

AO

REGISTER
BANK 0

Figure 14. LED Display Controller Data Memory
Allocation

INIT

INITIALIZE
REGISTERS

TURN OFF ALL
DRIVERS

FILL DISPLAY MAP WITH
BLANK CHARACTERS

CLEAR DIGIT COUNTER

LOAD AND START
TIMER

ENABLE TIMER AND
ISF INTERRUPTS

WAIT LOOP OR
FOREGROUND TASK CODE

Figure 14A. INIT Routine Flow

5-709

DIGIT
DRIVERS

APPLICATIONS

INPUT

SWITCH TO RB1
SAVE AQ:UMULA TOR

READ AND SAVE DBBIN

ISOLATE OffiIT SELECT

UPDATE DISPLAY MAP POINTER
TO SElfCTED DIGIT LOCATION

RESTORE ACCUMULATOR

RETURN

Figure 14B. INPUT Routine Flow

The INPUT routine handles the character input. It
is called when an· IBF interrupt occurs. After the
usual swapping of register banks and saving of the
accumulator, DBBIN is read and stored in register
R2. DBBIN contains the Display Data Word. The
format for this word, Figure 15, has two fields: Digit
Select and Character Select. The Digit Select field
selects the digit number into which the character
from the Character Select field is placed. Notice that
the character set is not limited strictly to numerics,
some alphanumeric capability is provided. Once
DBBIN is read, the offset for the selected digit is
computed and placed in the Display Map Pointer
Ro. Next the segment information for the selected
character is found through a look-up table starting
in page g of the program memory. This segment in­
formation is then stored at the location pointed at by
the Display Map Pointer. If the Character Select
field specified a decimal point, the segment corre­
sponding to the decimal point is ANDed into the
present segment information for that digit. After the
accumulator is restored, execution is returned to the
main program.

The DISPLA routine simply implements the
multiplexing actions described earlier. It is called
whenever a timer interrupt occurs. After savhlg pre-

OISPLA

SWITCH TO Ra 1
SAVE ACCUMULATOR

TURN OFF ALL DIGIT
DRIVERS

UPDATE DISPLAY
MAP POINTER

GET SEGMENT INFO
FROM DISPLAY MAP

OUTPUT TO SEGMENT
DRIVERS

TURN ON DIGIT
DRIVER

LOAD AND 5T ART TIMER

RESTORE ACCUMULATOR

RETURN

Figure 14C. DISPLA Routine Flow

interrupt status by switching register banks and
storing the Accumulator, all digit drivers are turned
off. The Display Map Pointer is then updated using
the Current Digit Register to point at that digit's
segment information in the Display Map. This infor­
mation is output to PORT 1; the segment drivers.
The number of the current digit, Rg, is then sent to
the digit select decoder and the decoder is enabled.
This turns on the current digit. The digit counter is
incremented and tested to see if all eight digits have
been refreshed. If so, the digit counter is reset to
zero. If not, nothing is done. Finally, the timer is
loaded and restarted, the Accumulator is restored,
and the routine returns execution to the main pro­
gram. Thus DISPLA refreshes one digit each time it
is CALLed by the timer interrupt. The digit remains
on until the next time DISPLA is executed.

The UPI software listing is included as Appendix
AI. Appendix A2 shows the SOS5A test routine used

AFN.Q1536A

5-710

APPLICATIONS

DISPLAY DATA WORD

I 7 I 6 I 5 I 4 3 I 2 I 1 I 0 I

I
DIGIT SELECT

7 5 6 DIGIT

0 0 0 1

0 0 1 2
0 1 0 3

0 1 1 ' 4

1 0 0 5
1 0 1 6

1 1 0 7

1 1 1 8

I
CHARACTER SELECT

4 3 2 1 0 CHAR

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0 c'
0 0 0 1 1 i
0 0 1 0 0 ._,

0 0 1 0 1 5

0 0 1 1 0 b

0 0 1 1 1 .,
0 1 0 0 0 B

0 1 0 0 1 q

0 1 0 1 0 " 0 1 0 1 1 " 0 1 1 0 0 [

0 1 1 0 1 d

0 1 1 1 0 E

0 1 1 1 1 F

1 0 0 0 0

1 ·0 0 0 1 c.
1 0 0 1 0 H

1 0 0 1 1 ,
1 0 1 0 0 " 1 0 1 0 1 L

1 0 1 1 0 "
1 0 1 1 1 "
1 1 0 0 0 p

1 1 0 0 1

1 1 0 1 0 t

1 1 0 1 1 ' 1.1

1 1 1 0 0 " 1 1 1 0 1

1 1 1 1 0

1 1 1 1 1 blank

Figure. 15. LED Display Controller Display Data
Word Format

to display the contents of a display buffer on the dis­
play. The 8085A software takes care of the display
digit numbering. Since the application is input-only
for the UPI, the only protocol required is that the
master must test IBF before writing a Display Data
Word into DBBIN.

On the iSBC 80/30, the UPI frequency is at 5.5296
MHz. To obtain a flicker-free display, the whole dis­
play must be refreshed at a rate of 50 Hz or greater.

If we assume a 50 Hz refresh rate and an 8-digit dis­
play, this means the DISPLA routine must be
CALLed 50X8 or 400 times/sec. This transfers, using
the timer interval of 87 !lS at 5.5296 MHz, to a timer
count of 227. (Recall from the UPI-41A User's Man­
ual that the timer is an "8-bit up-counter".) Hence
the TIME equate of 227D in the UPI listing. Obvi­
ously, different frequency sources or display lengths
would require that this equate be modified.

With the UPI running at 5.5296 MHz, the instruc­
tion cycle time is 2.713 !lS. The DISPLA routine re­
quires 28 instruction cycles, therefore, the routine
executes in 76 !lS. Since DISPLA is CALLed 400
times/sec, the total time spent refreshing the display
during one second is then 30 ms or 3 % of the total
UPI time. This leaves 97.0% for any foreground
tasks that could be added.

While the basic UPI software is useful just as it
stands, there are several enhancements that could be
incorporated depending on the application. Auto-in­
crementing of the digit location could be added to
the input routine to alleviate the need for the master

, to keep track of digit numbers. This could be (op­
tionally) either right-handed or left-handed entry a
la TI or HP calculators. The character set could be
easily modified by simply changing the lookup table.
The display could be expanded to 16 digits at the
expense of one additional PORT 2 digit select line,
the replacement of the 3-to-8 decoder with a 4-to-16
decoder, and 8 more Display Map locations.

5-711

Now let's move on to a slightly more complex appli­
cation that is UPI output-only-a sensor matrix
controller.

Sensor Matrix Controller
Quite often a microprocessor system is called upon
to read the status of a large number of simple SPST
switches or sensors. This is especially true in a proc­
ess or industrial control environment. Alarm sys­
tems are also good examples of systems with a large
sensor population. If the number of sensors is small,
it might be reasonable to dedicate a single input port
pin for each sensor. However, as the number of sen­
sors increase, this technique becomes very wasteful.
A better arrangement is to configure the sensors in a
matrix organization like that shown in Figure 16.
This arrangement of 16 sensors requires only 4 input
and 4 output lines; half the number needed if dedi­
cated inputs were used. The line saving becomes
even more substantial as the number of sensors
increases.

AFN.Q1536A

APPLICATIONS

In Figure 16, the basic operation of the matrix in­
volves scanning individual row select lines in se- ,
quence while reading the column return lines. The
state of any particular sensor can then be deter­
mined by decoding the row and column information.
The typical configuration pulls up the column re­
turn lines and the selected row is held low. De­
selected rows are held high. Thus a "return line re­
mains high for an open sensor on the selected row
and is pulled low for a closed sensor. Diode isolation
is used to prevent a phantom closure which would
occur when a sensor is closed on a selected row and
there are two or more closures"on a deselected row.
Germanium diodes are used to provide greater noise
margin at the return line input.

ROW
SELECT

LINES,

"+v 2 +v o +v

Figure 16. 4X4 Senaor Matrix

I

A-

V -v

.

FIFO NOT
EMPTY

OBF

DO"
D7

cs
AD

WR

AO

P2'

P2S

If the main processor was required to control such a
matrix it would periodically have to output at the
row port and then read the column return port. The
processor would need to maintain in memory a map
of the previous state of the matrix. A comparison of
the new return information to the old information
would then be made to determine whether a sensor
change had occurred. Any changes would be pro­
cessed as needed. A row counter and matrix m.a~
pointer also require maintenance each scan. Since in
most applications sensors change very slowly com­
pared to most processing actions, the processor
probably would scan the rows only periodically with
other tasks being processed between scans.

Rather than require the processor to handle the
rather mundane tasks of scanning, comparing, and
decoding the matrix, why not use a dedicated pro­
cessor? The UPI is perfect.

Figure 17 shows a UPI configuration for controlling
up to 128 sensors arranged in a 16X8 matrix. The 4-
to-16 line decoder is used as the row selector to save
port pins and provides the expansion to 128 sensors
over the maximum of 64 sensors if the port had been
used directly. It also helps increase the port drive ca­
pability. The column return lines go directly into
PORT 1. Features of this design include complete
matrix management. As the UPI scans the matrix it
compares its present status to the previous scan. If
any change is detected, the location of the change is
decoded and loaded, along with the sensor's present
state, into DBBOUT. This byte is called a Change
Word. The Master processor has only to read one
byte to de'termine the status and coordinate of a
changed sensor. If the master had not read a pre­
vious Change Word in DBBOUT (OBF=l) before a
ne,w sensor change is detected, the new Change

I

PORT 1 B RETURN LINES

8041A/
87411A 74154

P23 -D

P22 -c

"~
16 x 8

J 16 SENSOR
P21 _B MATRIX

P~O A r-
G1 G2

~ ~ SELEC~ tiNES

Figure 17. 128 Senaor Matrix Controller

5-712

APPLICATIONS

Word is loaded into an internal FIFO. This FIFO
buffers up to 40 changes before it fills. The status of
the FIFO and OBF is made available to the master
either by polling the UPI STATUS register, Figure
18A, or as interrupt sources on port pins P24 and'
P25 respectively, Figure 17. The FIFO NOT EMP­
TY pin and bit are true as long as there are changes
not yet read in the FIFO. As long as the FIFO is not
empty, the UPI monitors OBF and loads new
Change Words from the FIFO into DBBOUT. Thus,
the UPI provides complete FIFO management.

71s15141312 1 0

L ~
I ~ OBF - CHANGE WORD READY (P25)

IBF

F1

FO

FIFO NOT EMPTY (P24)

NOT useD

Figure 18A. Sensor Matrix Status Register Format

OBBOUT REGISTER - CHANGE WORD

SENSOR COORDINATE I I I I

'----------- SENSOR STATE
o =ClOSED
1 =OPEN

Figure 188. Sensor Matrix Change Word Format

Internally, the matrix scanning software is pro­
grammed to run as a foreground task. This allows
the timer/counter to be used by any background task
although the hardware configuration leaves only 2
inputs (TEST 0 and TEST 1) plus 2 I/O port pins
available. Also, to add a background task, the FIFO
would have to be made smaller to accommodate the
needed register and data memory space. (It would be
possible however to turn the table here and make the
scanning software timer/counter interrupt-driven
where the timer times the scan interval.)

The data memory organization for this application is
shown in Figure 19. The upper 16 bytes form the
Matrix Map and store the sensor states from the
previous scan; one bit for each sensor. The Change
Word FIFO occupies the next 40 locations. (The top
and bottom addresses of this FIFO are treated as
equate variables in the program so that the FIFO
size may easily be changed to accommodate the reg­
ister needs of other tasks.) Register Ro serves as a
pointer into the matrix map area for comparisons

and updates of the sensor status. Rl is a general
FIFO pointer. The FIFO is implemented as a circu­
lar buffer with In and Out pointer registers which
are stored in R4 and R5 respectively. These registers
are moved into FIFO pointer Rl for actual transfers
into or out of the FIFO. R2 is the Row Select
Counter. It stores the number of the row being
scanned.

63

48
47

MATRIX MAP
16 x 8

FIFO
40 x 8

COMPARE RESULT

CHANGE WORD STORE

FIFO OUT

FIFO IN

COLUMN COUNTER

SCAN ROW SELECT

FIFO POINTER

MATRIX MAP POINTER

R7

RS

R5

R4

R3

R2

R1

RO

Figure 19. Sensor Matrix Data Memory Map

Register R3 is the Column Counter. This counter is
normally set to OOH; however, when a change is de­
tected somewhere in a particular row, it is used to
inspect each sensor status bit individually for a
change. When a changed counter sensor bit is found,
the Row Select Counter and Column Counter are
combined to give the sensor's matrix coordinate.
This coordinate is temporarily stored in the Change
Word Store, register Rs. Register R7 is the Compare
Result. As each row is scanned, the return informa­
tion is Exclusive-OR'd with the return infQrmation
from the previous scan of that row. The result of this
operation is stored in R7. If R7 is zero, there have
been no changes on that row. A non-zero result indi­
cates at least one changed sensor.

The basic program operation is shown in the flow
chart of Figure 20. At RESET, the software ini­
tializes the working registers, the ports, and clears
the STATUS register. To get a starting point from
which to perform the sensor comparisons, the cur­
rent status of the matrix is read and stored in the
Matrix Map. At this point, the UPI begins looking
for changed sensors starting with the first row.

5-713

APPLICATIONS

INITIALIZATION

SCAN AND
COMPARE

CHANGEWORO
ENCODING

FIFO DBBOUT
MANAGEMENT

Figure 20. Sensor Matrix Controller Flow Chart,

Before delving further into the flow, let's pause to
describe the general format of the operation. The
UPI scans the matrix one row' at a time. If no
changes are detected on a particular row, the UPI
simply moves to the next row after checking the sta­
tus of DBBOUT and the FIFO. If a change is de­
tected, the UPI must check each bit (sensor) within
the row to determine the actual sensor location.
(More than one sensor on the scanned row could
have changed.) Rather than test ailS bits of the row
before checking the DBBOUT and FIFO status
again, the UPI performs the status check in between
each of the bit tests. This ensures the fastest re­
sponse to the master reading previous Change
Words from DBBOUT and the FIFO.

With this general overview in mind, let's go first
, thru the flow chart assuming we are scanning a row
where no changes have occurred. Starting at the
Scan-and-Compare section, the UPI first checks if
the entire matrix has been scanned. If it has, the var­
ious pointers are reset. If not, the address of the
next row is placed on PORTs 20 thru 23. This selects
the desired row. The state of the row is then read
on PORT 1; the column return lines. This present
state is compared to the previous state by retriev­
ing the previous state from the matrix map and
performing an Exclusive-OR with the present state.
Since we are assuming that no change has occurred,
the result is zero. No coordinate decoding is needed
and the flow branches to the FIEO-DBBOUT Man­
agement section.

The FIFO-DBBOUT Management section simply
maintains the FIFO and loads DBBOUT whenever
Change Words are present in the FIFO and
DBBOUT is clear (OBF=O). The section first tests if
the FIFO is full. (If we assume our "no-change" row
is the first row scanned, the FIFO obviously would
not be full.) If it is, the UPI waits until OBF=O, at
which point the next Change Word is retrieved from
the FIFO and placed in DBBOUT. This "unfills" the
FIFO making room for more Change Words. At this
point, the Column Counter, R3, is checked. For rows
with no changes, the'Column Counter is always zero
so the test simply falls through. (We cover the case
for changes shortly.) Now the FIFO is tested for be­
ing empty. If it is, there is no sense in any further
tests so the flow simply goes back up to scan the next
row. If the FIFO is not empty, DBBOUT is tested
again through OBF. If a Change Word is in
DBBOUT waiting for the master to read it, nothing
can be done and the flow likewise branches up for
the next row. However, if the DBBOUT is free and
remembering that the previous test showed that the
FIFO was not empty, DBBOUT is loaded with the
next Change Word and the last two conditional tests
repeat.

5-714

APPLICATIONS

Now let's assume the next row contains several
changed sensors. Like before, the row is selected, the
return lines read, and the sensor status'compared to
the previous scan. Since changes have occurred, the
Exclusive-OR result is now non-zero. Any l's in the
result reflect the positions of the changed sensors.
This non-zero result is stored in the Compare Result
register, R7. At this point, the Column Counter is
preset to B. To determine the change,d sensors' loca­
tions, the Compare Result register is shifted bit-by­
bit to the left while decrementing the Column
Counter. After each shift, BIT 7 of the result is test­
ed. If it is a one, a changed sensor has been found.
The Column Counter then reflected the sensor's ma­
trix column position while the Scan Row Select reg­
ister holds it row position. These registers are then
combined in R6, the Change Word Store, to form the
sensor's matrix coordinate section of the Change
Word. The Bth bit of the Change Word Store is cod­
ed with the sensor's present state (Figure 1B). This
byte forms the complete Change Word. It is loaded
into the next available FIFO position. If BIT 7 of the
Compare Result had been zero, that particular sen­
sor had not changed and the coordinate decoding is
not performed.

In between each shift, test, and coordinate encode (if
necessary), the FIFO-DBBOUT Management is
performed. It is the Column Counter test within this
section that routes the flow back up to the Change
Word Encoding section if the entire Compare Result
(row) has not been shifted and tested.

The FIFO is implemented as a circular buffer with
IN and OUT pointers (R4 and R5 respectively). The"
operations of the FIFO is best understood using an.
example, Figure 21. This series of figures show how
the FIFO, DBBOUT, and OBF interact as changes
are detected and Change Words are read by the mas­
ter. The letters correspond to sequential Change
Words being loaded into the FIFO. Note that the fig­
ures show only a 4X8 FIFO however, the principles
are the same in the 40XB FIFO.

Figure 21A shows the condition where no Change
Words have been loaded into the FIFO or DBBOUT.
In Figure 21B a change, "A", has been detected, de­
coded, and loaded into the FIFO at the location
equal to the value of the FIFO-IN pointer. The
FIFO-OUT pointer is reset to the bottom of the
FIFO since it had reached the FIFO top. Now that a
Change Word is in the FIFO, OBF is checked to see
if DBBOUT is empty. Because OBF=O, DBBOUT is
empty and the Change Word is loaded from the
FIFO location pointed at by the FIFO-OUT pointer.
This is shown in Figure 21C. Loading DBBOUT
automatically sets OBF. OBF remains set until the

master reads DBBOUT. Figures 21D and 21E show
two more Change Words loaded into the FlEO. In
Figure 21F the first Change Word is finally read by
the master resetting OBF. This allows the next
Change Word to be loaded into DBBOUT. Note that
each time the FIFO is loaded, the FIFO-IN pointer
increments. Each time DBBOUT is read the FIFO­
OUT pointer increments unless there are no more
Change Words in the FIFO. Both pointers wrap­
around to the bottom once they reach the FIFO top.
The remaining figures show more Change Words be­
ing loaded into the FIFO. When the entire FIFO fills
and DBBOUT can not be loaded (OBF=l), scanning
stops until the master reads DBBOUT making room
for more Change Words.

As was mentioned earlier, two interrupt outputs to
the master are available: Change Word Ready (P25,
OBF) and FIFO NOT EMPTY (P24). The Change
Word Ready interrupt simply reflects OBF and is
handled automatically by the UPI since an EN
FLAGS instruction is executed during initialization.
The FIFO NOT EMPTY interrupt is generated and
cleared as appropriate, each pass through the FIFO
management code.

No debouncing is provided although it could be
added. Rather, the 'Scan time is left as an equate
variable so that it could be varied to account for both
debounce time and expected sensor change rates.
The minimum scan time for this application is
2msec when using a 6MHz clock. Since the matrix
controller is coded as a foreground task, scan time
simply uses a software delay loop.

The UPI software is included as Appendix Bl. Ap­
pendix B2 is BOB5A test software which builds a
Change Word buffer starting at BUFSRT. This soft­
ware simply polls the STATUS register looking for
Change Word Ready to go true. DBBOUT is then
read and loaded into the buffer. Now let's move on to
an application which combines both the foreground
and background concepts.

Combination I/O Device
The final UPI application was designed especially to
add additional serial and parallel I/O ports to the
iSBC 80/30. This UPI simulates a full-duplex UART
(Universal Asynchronous Receiver/Transmitter)
combined with an B-bit parallel I/O port. Features of
the UART include: software selectable baud rates
(110, 300, 600; or 1200 baud), double buffering for
both the transmitter and receiver, and receiver test­
ing for false start bit, framing, and overrun errors.
For parallel I/O, one B-bit port is programmable for
either input or output. The output port is statically
latched and the input port is sampled.

5-715

APPLICATIONS

AI FI

oo,~ ~. [::J c:J ,~ : OBF OBF

IN 8
DBBOUT FIFO DBBOUT FIFO

FIFO EMPTY (MASTER REAOS CHANGE A
OaaOUT) FINALLY READ

BI GI

-['" [::J D OUT. C

OBF !}. OBF

c=J OUT A 8
DBBOUT FIFO DBBOUT FIFO

CHANGE A DETECTED CHANGE B LOADED
INTO DBBOUI

C)

~tl
HI

~. D D OUT

OBF
IN

OBF

c=J c=J
OaBOUT FIFO DBBOUT FIFO

CHANGE A LOADED INTO DBBOUT, CHANGE 0 DETECTED-
FIFO EMPTY

0)

~~ D IN D O~~ OBF OBF
IN

c=J c=J E ,

OBBOUT FIFO DBBOUT FIFO
CHANGE B DETECTED CHANGE E DETECTED

E)

oo,~
J)

OO'~.
IN

D D
OBF

c=J
DBBOUT FIFO OaBQUT FIFO

CHANGE C DETECTED CHANGE F DETECTED, FIFO FULL,
SCANNING STOPPED UNTIL B IS READ

Figure 21A-J. FIFO Operation Example

5-716

APPLICATIONS

Figure 22 shows the interface of this combination
I/O device to the dedicated UPI socket on the iSBC
80/30. The only external requirement is a 76.8 kHz
source which serves as the baud rate standard. The
internal baud rates are generated as multiples of this
external clock. This clock is obtained from one of the
8253 counters. Otherwise, an RS-232 driver and re­
ceiver already available for UPI use in serial I/O ap­
plications. Sockets are also provided for termination
of the parallel port.

PARALLEL PORT

TxD

RxD

TICK SAMPLE

EXT CLOCK(76 a KHz)
FROM 8253

Figure 22. Combination 1/0 Device

There are three commands for this application.
Their format is shown in Figure 23. The CON­
FIGURE command specifies the serial baud rate
and the parallel I/O direction. Normally this com­
mand is issued once during system initialization.
The I/O command causes a parallel I/O operation to
be performed. If the parallel port direction is out,
the UPI expects the data byte immediately following
an I/O command to be data for the output port. If
the port is in the input direction, an I/O command
causes the port to be read and the data placed in
DBBOUT. The RESET ERROR command resets
the serial receiver error bits in the STATUS register.

COMMAND FORMAT

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0
CONFIGURE COMMAND

A C P A-1200 BAUD SELECT
B- 600 BUAD SELECT
c- 300 BAUD SELECT
0- 110 BAUD SELECT
P-PARALLEL 1/0 DIRECTION

O-INPUT
1-0UTPUT

0 1/0 COMMAND

·0 0 RESET ERROR COMMAND

Figure 23. Combination 1/0 Command Format

The STATUS register format is shown in Figure 24.
Looking at each bit, BIT 0 (OBF) is the DATA
AVAILABLE flag. It is set whenever the UPI places
data into DBBOUT. Since the data may come from

either the receiver or the parallel input port, the FO
and Fl flags (BITs 2 and 3) code the source. Thus,
when the master finds OBF set, it must decode FO
and Fl to determine the source.

STATUS FORMAT

OBF-DATA AVAILABLE
ISF-BUSY

lJ::~FO F1
NOT USED

'------- Tx INTERRUPT
'--------- FRAMING ERROR

'---------- OVERRUN ERROR

FO F1 OPERATION (SF::: 1)

NO OPERATION

PARALLEL I 0 DATA
SERIAL I 0 DATA
COMMAND ERROR

Figure 24. STATUS Register Format

BIT 1 (IBF) functions as a busy bit. When IBF is set,
no writes to DBBIN are allowed. BIT 5 is the TxINT
(Transmitter Interrupt) bit. It is asserted whenever
the transmitter buffer register is empty. The master
uses this bit to determine when the transmitter is
ready to accept a data character.

BITS 6 and 7 are receiver error flags. The framing
error flag, BIT 6, is set whenever a character is re­
ceived with an invalid stop bit. BIT 7, overrun error,
is set if a character is received before the master has
read a previous character. If an overrun occurs, the
previous character is overwritten and lost. Once an
error occurs, the error flag remains set until reset by
a RESET ERROR command. A set error flag does
not inhibit receiver operation however.

Figure 25 shows the port pin definition for this ap­
plication. PORT 1 is the parallel I/O port. The
UART uses PORT 2 and the Test inputs. P20 is the
transmitter data out pin. It is set for a mark and re­
set for a space. P23 is a transmitter interrupt output.
This pin has the same timing as the TxINT bit in the
STATUS register. It is normally used in interrupt­
driven systems to interrupt the master processor
when the transmitter is ready to accept a new data
character.

The OBF flag is brought out on P24 as a master in­
terrupt when data is available in DBBOUT. P26 is a
diagnostic pin which pulses at four times the se­
lected baud rate. (More about this pin later.) The re­
ceiver data input uses the TEST 0 input. One of the
PORT 2 pins could have been used, however, the

5-717

APPLICATIONS

PORT PIN DEFINITION

~ !!.!. ~
0-7 PARALLEL I/O

0 Tx Oata
1 NOT USED
2 NOT USED
3 Tx INTERRUPT

OBF INTERRUPT
NOT USED

6 NOT USeD (TICK SAMPLE)
7 NOT USED

TO Rx DATA

T1 EXTERNAL CLOCK (76.8 kHz)

F:lgure ~5. Combination I/O Port Definition

software can test the TEST 0 in one instruction
without fIrst reading a port.

The TEST 1 input is the baud rate external source.
The UART divides this input to determine the tim­
ing needed for the selected baud rate. The input is a
non-synchronous -76.8 kHz source.

Internally, when the CONFIGURE command is re­
ceived and the selected baud rate is determined, the
internal timer/counter is loaded with a baud rate
constant and started in the event counter mode.
Timer/counter interrupts are then enabled. The
baud rate constant is selected to provide a counter
interrupt at four times the desired baud rate. At
each interrupt, both the transmitter and receiver are
handled. Between interrupts, any new commands
and data are recognized and executed.

As a prelude to discussing the flow charts, Figure 26
shows the register defInition. Register Bank 0 serves
the UART receiver and parallel I/O while Register
Bank 1 handles the UART transmitter and com­
mands. Looking at RBO fIrst, R3 is the receiver sta­
tus register, RxSTS. Reflected in the bits of this
register is the current receiver status in sequential
order. Figure 27 shows this bit defInition. BIT 0 is
the Rx flag. It is set whenever a possible start bit is
received. BIT 1 signifIes that the start bit is good
and character construction should begin with the
next received bit. BIT 1 is the Good Start flag. BIT 2
is the Byte Finished flag. When all data bits of a
character are received, this flag is set. When all the
bits, data and stop bits are received, the assembled
character is loaded into the holding register <R4 in
Figure 27) BIT '3, the Data Ready flag, is set. The
foreground routine which looks for commands and
data continuously, looks at this bit to determine
when the receiver has received a character. BITS 4
and 5 signify any error conditions for a 'particular
character.

63

32

1

30

2.
28

27

28

2'
2'

23

USER RAM
(NOT USED)

AC TEMP STORE

COMMAND STORE

Tx STATUS - TxSTS

Tx BUFFER

Tx SERIAUZER

Tx TICK COUNTER

BAUD RATE CONSTANT

NOT useD

STACK
(ONE LEVEL USED)

STATUS STORE

Rx DESERIALIZER

Rx TICK COUNTER

Rx HOLCHNG

Rx STA1US-RxSTS

NOT USED

NOT USED

NOT USED

R7

R8

R'

R' REGISTER

R3
BANK 1

R'

Rl

RO

R7

R6

RS

R' REGISTER

R3
BANKO

R'

Rl

RO

Figure 26. Combination I/O Register Map

RxSTS FORMAT

Rx FLAG-POSSIBLE START BIT
START FLAG-GOOD START BIT

lJ~~~g~~~BYTE FINISHED FLAG DATA READY FLAG
FRAMING ERROR
OVERRRUN ERROR
I/O DIRECTION

'-----------1/0 FLAG

Figure 27. RxSTS Register

The parallel I/O port software uses BITS 6 and 7.
BIT 6 codes the I/O directi~n specifIed by the last
CONFIGURE command. BIT 7 is set whenever an
i/o command is received. The foreground routine
tests this bit to determine when an I/O operation has
been requested by the master.

As was mentioned, R4 is the receiver holding regis­
ter. Assembled characters are held in this register
until the foreground routine fInds DBBOUT free, at
which time the data is transferred from R4 to
DBBOUT. R5 is the receiver tick counter. Recall
that counter interrupts occur at four times the baud
rate. Therefore, once a start bit is found, the receiver
only needs to look at the data every four interrrupts
or tick counts. R5 holds the current tick count.

Ra is the receiver de-serializing register. Data char­
acters are assembled in this register. Ra is preset to
SOH when a good start bit is received. As each bit is

5-718

APPLICATIONS

sampled every four timer ticks, they are rotated into
the leftmost bit of R(;. The software knows the char­
acter assembly is complete when the original preset
bit rotates into the carry.

An image of the upper 4 bits of the STATUS register
is stored in R7. These bits are the TxINT, Framing
and Overrun bits. This image is needed since the
UPI may load the upper 4 STATUS register bits
from its accumulator; however, it cannot read STA­
TUS directly.

In Register Bank 1 (Figure 26), Rl holds the baud
rate constant which is found from decoding the baud
rate select bits of the CONFIGURE command. The
counter is reloaded with this constant every timer
tick. Like the receiver, the transmitter only needs to
update the transmitter output every four ticks. R2
holds the transmitter tick count. The value of R2 de­
termines which portion of the data is being trans­
mitted; start bit, data bits, or stop bit. The transmit
serializer is Ra. Ra holds the data character as each
character bit is transmitted.

R4 is the transmitter holding register. It provides
the double buffering for the transmitter. While
transmitting one character, it is possible to load the
next character into R4 via DBBIN. The TxINT bit
in STATUS and pin on PORT 2 reflect the "full­
ness" of R4. If the holding register is empty, the in­
terrupt bit and pin are set. They are reset when the
master writes a new data byte for the transmitter
into DBBIN. The transmitter status register
(TxSTS) is R5. Like RxSTS,TxSTS contains flag
bits which indicate the current state of the transmit­
ter. This flag bit format is shown in Figure 28.

TxSTS BIT 0 is the Tx flag. It is set whellever the
transmitter is transmitting a character. It is set from
the beginning of the start bit until the end of the
stop bit. BIT 1 is the Tx request flag. This bit is set
by the foreground routine when it transfers Ii new
character from DBBIN to the Tx holding register,
R4. The transmitter software uses this flag to tell if
new data is available. It is reset when the transmitter
transfers the character from the holding register to
the serializer.

TxSTS FORMAT

Figure 28. TxSTS Register

BIT 2 is the pipelined Tx data bit. The transmitter
uses a pipelining technique which sets up the next
output level in BIT 2 after processing the current
timer tick. The output level is always changed at the
same point after a timer tick interrupt. This tech­
nique ensures that no bit timing distortion results
from different length processing paths through the
receiver and transmitter routines.

BIT a of TxSTS is the Start Bit flag. It is set by the
transmitter when the start bit space is set up in the
pipelined data bit. This allows the transmitter to
differentiate between t\le start bit and the data bits
on following timer ticks.

The flow charts for this application are shown in
Figures 29A-F. At reset, the INIT routine is exe­
cuted which initializes the registers and port pins.
After initialization, IBF and OBF are tested in
MNLOOP. These flags are tested continually in this
loop. If IBF is set, Fl is tested for command or data
and execution is transferred to th!! appropriate rou­
tine (CMD or DATA). If IBF=O, OBF is checked. If
OBF=O (DBBOUT is free), the Rx data ready and
I/O flags in RxSTS are tested. If Rx data ready is set,
the received data is retrieved from the Rx holding
register and transferred to DBBOUT. Any error
flags associated with that data are also transferred to
STATUS. If the I/O flag is set and the I/O direction
is input, PORT 1 is read and the data transferred to
DBBOUT. In either case, FO and Fl are set to indi­
cate the data source.

If IBF is set by a command write to DBBIN, CMD
reads the command and decodes the desired oper­
ation. If an I/O operation is specified, the I/O flag is
set to indicate to the MNLOOP and DATA routines
that an I/O operation is to be performed. If the com­
mand is a CONFIGURE command, the constant for
the selected baud rate is loaded into both Baud Rate
Constant register and the timer/counter. The timer/
counter is started in the event counter mode and
timer/counter interrupts are ena,bled. In addition,
the I/O port is initialized to alil's'ifthe I/O direction
bit specifies an input port. If the command is a RE­
SET ERROR command, the two error flags in STA­
TUS are cleared.

lithe IBF flag is set by a data write, the DATA rou­
tine reads DBBIN and places the data in the appro­
priate place. If the I/O flag is set, the data is for the
output port so the port is loaded. If the I/O flag is
reset, the data is for the UART transmitter. Data for
the transmitter resets the TxlNT bit and pin plus
sets the Tx request flag in TxSTS. The data is trans­
ferred to the Tx holding register, R4.

5-719

APPLICATIONS

SET FRAMING
ERROR IN STATUS

OUTPUT

Figure 29A. INIT Flow Chart

Once a CONFIGURE command is received and the
counter started, timer/counter interrupts start oc­
curring' at four times the selected baud rate. These
interrupts cause a vector to the TIMINT routine,
Figure 29D. A 76.8 kHz counter input provides a
13.02 ~s counter resolution. Since it ,requires several
UPI instruction cycles to reload the counter, the
counter is set to two counts less than the desired
baud rate and the counter is reloaded in TIMINT
synchronous with the second low-going transition
after the interrupt. Once the counter is reloaded, an
output port (P26) is toggled to give an external indi-

cation of internal counter interval. This is a helpful
diagnostic feature. After the tick sample output, the
pipelined transmitter data in TxSTS is output to the
TxD pin. Although this occurs every timer tick, the
pipelined data is changed only every fourth tick.

The receiver is now handled, Figure 29E. The Rx
flag in RxSTS is examined to see if the receiver is
currently in the process of receiving a character . .Jf it
is not, the RxD input is tested for a space condition
which might indicate a possible start bit. If the input'
is a mark, no start bit is possible and execution

AF~1538A

5-720

APPLICATIONS

Figure 29B.. CMD Flow Chart

branches to the transmitter flow, XMIT. If the input
is a space, the Rx flag is set before proceeding with
XMIT.

If the Rx flag is found set when entering ReV, the
receiver is in the process of receiving a character. If
so, the start bit flag is then tested to determine if a
good start bit was received. The Rx tick counter is
initialized to 4 and the Rx deserializer is set to BOH.
A mark indicates a bad start bit; the Rx flag is reset
to abort the reception.

If the start bit flag is set, the program is somewhere
in the middle of the received character. Since the
data should be sampled every fourth timer tick, the
tick counter is decremeI\ted and tested for zero. If
non-zero no sampl!l is needed and execution contin­
ues with XMIT. If zero, the tick counter is reset to
four. Now the byte finished flag is tested to deter­
mine if the data sample is a data or stop bit. If reset,
the sample is a data bit. The sample is done and the
new bit rotated into the Rx deserializer. If this rotate Figure 29C. Data Flow Chart

5-721
AFN'()l536A

(

\

APPLICATIONS

Figure 29D. TIMINT Flow Chart

sets the carry, that data bit was the last so the byte
finished flag is set. If the carry is reset, the data bit is
not the last so execution simply continues with
XMIT.

Had the byte finished flag been set, this sample is for
the stop bit. The RxD input is tested and if a space,
the framing error flag is set. Otherwise, it is reset.
Next, the Rx data ready flag is tested. If it is set, the

, master has not read the previous character so the
overrun error flag is set. Then the Rx data ready flag
is set and the received data character is transferred
into the Rx holding register. The Rx, start bit, and
byte finished flags are reset to get ready for the next
character.

Execution of the transmitter routine, XMIT, follows
the receiver, Figure 29F. The transmitter starts by
checking the start bit flag in TxSTS. Recall that the
actual transmit data is output at the beginning of
the timer routine. The start bit flag indicates wheth­
er the current timer tick interrupt started the start
bit. If it is set, the pipelined data output' earlier in
the routine was the start of the start bit so the flag is
reset and the Tx tick counter is initialized. Nothing
else is done this timer tick so the routine returns to
the foreground.

If the start bit flag is reset, the Tx tick counter is
incremented and tested. The test is performed mod­
ulo 4. If the counter mod 4 is not zero, it has not been
four ticks since the transmitter was handled last so
the routine simply returns. If the counter mod 4 is
zero, it is time to handle the transmitter and the Tx
flag is tested.

The Tx flag indicates whether the transmitter is ac­
tive. If the transmitter is inactive, no character is
currently being transmitted so the Tx request flag is
tested to see if a new character is waiting in the Tx
buffer. If no character is waiting (Tx request
flag=O), the Tx interrupt pin and bit are set before
returning to the foreground. If there is a character,
waiting, it is retrieved from the buffer and placed in
the Tx serializer. The Tx request flag is reset while
the Tx and start bit flags are set. A space is placed in
the Tx pipelined data bit so a start bit will be output
on the next tick. Since the Tx buffer is now empty,
the Tx interrupt bit and pin are set to indicate the
availability of the buffer to the master. The routine
then returns to the foreground.

If the tick counter mod 4 is zero and the Tx flag in­
~icates the transmitter is in the middle of a charac­
ter, the tick counter is checked to see what transmit­
ter operation is needed. If the counter is 28H (40D),
all data bits plus the stop bits are complete. The
character is therefore done and the Tx flag is reset. If
the counter is 24H (36D), the data bits are complete
and the next output should be a mark for the stop bit
so a mark is loaded into the Tx pipelined data bit.

If neither of the above conditions are met for the
counter, the transmitter is some place in the data
field, so the next data bit is rotated out of the Tx
serializer into the pipelined data bit. The next tick
outputs this bit. ' .

At this point the program execution is returned to
the foreground.

That completes the discussion of the combination
I/O device flow charts. The UPI software listing is
shown in Appendix Cl. Appendix C2 is example
8085A driver software.

5-722

Several observations concerning the drivers are ap­
propriate. Notice that since the receiver and input
port of the UPI use the OBF flag and interrupt out­
put, the interrupt and flag are cleared when the mas­
ter reads DBBOUT. This is not true for the
transmitter. There is always some time after a mas­
ter write of new transmitter data before the trans­
mitter bit and pin are cleared. Thus in an interrupt­
driven system, edge-sensitive interrupts should be

APPLICATIONS

)

Figure 29E. RCV Flow Chart·

used. For polled-systems, the software must wait
after writing new data for IBF=O before re-examin­
ing the Tx interrupt flag in STATUS.

Notice that this application uses none of the user
data memory above Register Bank 1 and only 361
bytes of program memory. This leaves the door open
for many improvements. Improvements that come
to mind are increased buffering of the transmit or
received data, modem control pins, and parallel port
handshaking inputs.

This completes our discussion of specific UPI appli­
cations. Before concluding, let's look briefly at two
debug techniques used during the development of

these applications that you might find useful in your
own designs.

DEBUG TECHNIQUES
Since the UPI is essentially a single-chip microcom­
puter, the classical data, address, and control buses
are not available to the outside world during normal
operation. This fact normally makes debugging a
UPI design difficult; however, certain "tricks" can be
included in the UPI software to ease this task.

If a UPI is handling multiple tasks, it is usually
easier to code and debug each task individually. This
is fairly standard procedure. Since each task us~lly
utilizes only a subset of the total number of I/O pins,

5-723

APPLICATIONS

(XMIT

INC Tx TICK
COUNTER

SETTxlNT

(• ETA

(RET.

SETTx INT

(.ETA)

)

(

(

(

)

IJITIAUZETx
TICK COUNTER

RET.

.....

RET •

MARK TO PlPEUNED
DATA FLAG (STOP)

RET.

)

)

)

)

. Figure 29F. XMIT Flow Chart

coding only one task leaves some I/O pins free. Port
output instructions can then be added in the task
code being debugged which toggle these unused pins
to determiIie which section of task code is being ex­
ecuted at any particular time. The task can also be
made to "wait" at various points by using an extra
pin as an input and adding code to loop until a par­
ticular input condition is met.

,
One example of using an extra pin as an output is
included in the combination serial/parallel device
code. During initial development the receiver was
not receiving characters correctly. Since this could
be caused by incorrect sampling, three lines of code
were added to toggle BIT 6 of PORT 2 at each tick of
the sample clock. This code is at lines 184 and 185 of
~e listing. Thus by looking at the location of the tick

\

sample pulse with respect to the received bit, the
UPI sampling interval can be observed. The tick
sample .time was incorrect and the code was modi­
fied accordingly. Similar techniques could be ap­
plied at other locations in the program.

The EPROM version of the UPI (8741A) also con­
tains another feature to aid in debug: the capability
to single step thru a program. The user may step
thru the program instruction-by-instruction. The
address of the next instruction to be fetched is avail­
able on PORT 1 and the lower 2 bits of PORT 2. Fig­
ure 30 shows the timing used in the diScussion below.
When the single step input, SS, is brought low, the
internal processor responds by stopping during the
fetch portion of the next instruction. This action is
acknowledged by the processor raising the SYNC

5-724

APPLICATIONS

PORTS X PORT OAT A VALID X ADDRESS

Figure 30. Single Step Timing

output. The address of the instruction to be fetched
is then placed on the port pins. This state may be
held indefinitely. To step to the next instruction, SS
is raised high, which causes SYNC to go low, which is
then used to return SS low. This allows the processor
to advance to the next instruction. If SS is left high,
the processor continues to execute at normal speed
until SS goes low.

To preserve port functionality, port data is valid
while SYNC is low. Figure 31 shows the external cir­
cuitry required to implement single step while pre­
serving port functionality. S1 is the RUN/STOP
switch. When in the RUN position, the 7474 is held
preset so SS is high and the UPI executes normally.
When switched to STOP, the preset is removed and

+5
+5

+s 51

>S RUN

0
P

7474
0 55

c
7400 +s

B041A/
8741A

7407

SYNC

the next low-going transition of SYNC causes the
7474 to clear, lowering SS. While sync is low, the
port data is valid and the current instruction is ex­
ecuting. Low SYNC is also used to enable the tri­
state buffers when the ports are used as inputs.
When execution is complete, SYNC goes high. This
transition latches the valid port data in the
74LS374s. SYNC going high also signifies that the
address of the next instruction will appear on the
port pins. This state can be held indefinitely with
the address data displayed on the LEDs.

When the S2 is depressed, the 7474 is set which
causes SS to go high. This allows the processor to
fetch and execute the instruction whose address was
displayed. SYNC going low during execution, clears

74lS374

20 20

10 10

LATCHED

P21 80 80 PORT
DATA

74lS374

• 1 OF 10 PORT . LINES

P10 10 10

+5

Figure 31. Single Step External Circuitry

5-725

I
.)I
i~1

,I
.1

I;
1"1
'/

APPLICATIONS

,
the 747 4 lowering SS. Thus the processor again stops
when execution is complete and the next fetch is
started ..

All UPI functions continue to operate while single
stepping (the processor is actually executing NOPs
internally while stopped). Both IBF and timer/
counter interrupts can be serviced. The only change
is that the interval timer is prescaled on single
stepped instructions and, of course, will not indicate
the correct intervals in real time. The total number
of instruction which would have been executed dur­
ing a given interval is the same however.

The single step circuitry can be used to step through
a complete program; however, this might be a time­
consuming job if the program i",long or if only a por­
tion is to be examined. The circuitry could easily be
modified to incorporate the output toggling tech­
nique to determine when to run and stop. If you
would like to step thru a particular section of code,

an extra port pin could replace switch S1. Extra
instructions would then be added to lower the port
when entering the code section and raise the port
when exiting the section. The program would then
stop when that section of CQde is reached allowing it
to be stepped through. At the end of the section, the
program would execute at normal speed. .

CONCLUSION
Well, that's it. Machine readable (floppy disk or pa­
per tape) source listings of UPI software for these
applications are available in Insite, the Intel library
of user-donated programs. Also available in Insite
are the source listings for some of Intel's pre-pro­
grammed UPI products.

For information about Insite, write to:
Insite
Intel Corp.
3065 Bowers Ave.
Santa Clara, Ca 95051

APPENDIX A

5-727

APPLICATIONS

Fl ASM48 F3 LED PRINT(LP) NOOBJECT

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V3 0 PAGE

LOC OBJ LINE SOURCE STATEMENT

1 $NOD41A

2 ***
3 * UPI-41A a-DIGIT LEO DISPLAY CONTROLLER

4 *** 5
6
7
8 ,THIS PROGRAM USES THE UPI-41A AS A LED DISPLAY CONTROLLER
9 • WHICH SCANS AND REFRESHES EIGHT SEVEN-SEGMENT LED DISPLAYS

10 ,THE CHARACTERS ARE DEFINED BY INPUT FROM A MASTER CPU IN THE
11 • FORM OF ONE EIGHT BIT WORD PER DIGIT-CHARACTER SELECTION
12
13
14
15 ; •• ; ••••••• ***************
16
17 • REGISTER DEFINITIONS
18 REGISTER RBI
19
20
21
22
23
24
25
26
27

RO
RI
R2
R3
R4
R5
R6
R7

DISPLAY MAP POINTER
NOT USED
DATA WORD AND CHARACTER
DIGIT COUNTER
NOT USED
NOT USED
NOT USED
ACCUMULATOR StORAGE

RBO

NOT USE.D
NOT USED

STORAGE NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED

28 ; ** 29 ,
30 ; PORT PIN DEFINITIONS
31 PIN
32
33
34 ,
35 .EJECT

PO-7

PORT 1 FUNCTION PORT 2 FUNCTION

SEGMENT DRIVER CONTROL DIGIT DRIVER CONTROL

5-728

APPLICATIONS

ISIS-I I MCS-4B/UPI-41 MACRO ASSEMBLER. V3 0 PAGE 2

LOC OBJ LINE SOURCE STATEMENT

36 · **
37 ,DISPLAY DATA WORD BIT DEFINITION·
38 BIT FUNCTION
39
40 0-4 CHARACTER SELECT
41 5-7 DIGIT SELECT
42 ,
43 • CHARACTER SELECT,
44 D4 D3 D2 DI DO CHARACTER
4. 0 0 0 0 0 0
46 0 0 0 0 1 1
47 0 0 0 1 0 2
48 0 0 0 1 1 3
49 0 0 0 0 4
~O 0 0 0 1 ~

~I 0 0 1 0 6
~2 0 0 1 1 1 7
53 0 0 0 0 8
~4 0 0 0 1 9
~5 0 0 1 0 A
~6 0 0 1 1 B
57 0 1 0 0 C
~8 0 1 1 0 1 D
59 0 1 1 1 0 E
60 0 1 1 1 1 F
61 0 0 0 0
62 0 ~O 0 1 G
63 0 0 1 0 H
64 0 0 1 1 I
65 0 1 0 0 J
66 0 1 0 1 L
67 0 1 0 N
6B 0 1 1 0
69 0 0 0 P
70 0 0 1 R
71 0 1 0 T
72 0 1 1 U
73 1 0 0 y
74 1 0 1
7. 0 I
76 1 "BLANK"
77
78 • DIGIT SELECT
79 D7 D6 D5 DIGIT NUMBER
80 0 0 0 1
BI 0 0 1 2
82 0 0 3
B3 0 1 4
B4 0 0 5
B. 0 1 6
86 1 0 7
B7 B
BB

I *****11'***
B9 .EJECT

5-729

APPLlCAT~ONS

ISIS-IX MCS-4B/UPI-41 MACRO ASSEMBLER. \13 0 PAGE 3

LOC • DB.)

FFFI

0000
0000 0409
00001 00
0003 0436
OOO~ 00
OOOb 00
0007 0410

0009 D5
OOOA BA08
OOOC B838
OOOE 0!3FF
0010 AD
0011 18
0012 F8
0013 820E
0015 OBOO
0017 23Ft
0019 62
001A 55
0018 25
ODIC 05

LINE SOURCE STATEMENT

90 I ************************************oft********************************** 91 ; EOUATES
9.2 ; THE FOLLOWING CODE DESIGNATES "TIME" AS A VARIABLE THIS
93 ; AD.JUSTS THE AMOUNT OF CYCLES THE TIMER COUNTS BEFORE
94 ; A TIMER INTERRUPT OCCURS AND REFRESHES THE DISPLAY APPROXIMATELY
95 ; 50 TIMES PER SECOND
96 TIME EGU -OFH I TIMER VALUE 2 5MSEC

97 ; ** 98 J INTERRUPT BRANCHING·
99 ; THIS PORTION OF MEMORY IS DEDICATED FOR USE OF RESET AND

100 ; INTERRUPT BRANCHING WHEN THE INTERRUPTS ARE ENABLED THE
101 • CODE AT THE FOLLOWING DESIGNATED SPOTS ARE EXECUTED WHEN A
102 ; RESET OR A INTERRUPT OCCURS
103 ORG 0
104 JMP START ,RESET
10~ NOP ;
106 vMP INPUT I IBF INTERRUPT
107 NOP
loa NOP
109 vMP DISPLA J TIMER INTERRUPT
110 • ***
111 J INITIALIZATION
112 I THE FOLLOWING CODE SETS UP THE VPI-41 AND DISPLAY HARDWARE
113 ; INTO OPERATIONAL FORMAT. THE DISPLAY IS TURNED OFF. THE DISPLAY
114 • MAP IS FILLED WITH "BLANK" CHARACTERS. THE TIMER SET AND THE
11 ~ J INTERRUPTS ARE ENABLED
lib.
117 START' SEL RBI
liB ORL P2 •• aSH ; TURN DIGIT DRIVERS OFF
119 MOV RO •• 3SH ; DISPLAY MAP POINTER. BOTTOM OF DISPLAY MAP
120 BLKMAP. MOV A •• OFFH I FF."BLANK"
121 MOV @RO. A • BLANK TO DISPLAY MAP
122 INC RO • INCREMENT DISPLAY MAP POINTER
123 MOV A. RO j DISPLAV MAP POINTER TO ACCUMULATOR
124 JB~ BLKMAP I BLANK DISPLAY MAP TILL FILLED
125 MOV R3. tlOOH ,SET DIGIT COUNTER TO 0
126 MOV A. _TIME • TIMER VALUE
127 MOV T. A ; LOAD TIMER
12B STRT T i START TIMER
12Cj1 EN TCNTI ,ENABLE TIMER INTERRUPT
130 EN I ; ENABLE IBF INTERRUPT
131 ; **
132 ; USER PROGRAM
133 I A USERS PROGRAM WOULD INITIALIZE AT THIS POINT THE FOLLOWING
134 ; CODE IS UNO CONCLUDED WITH
135 • SYNC CHARACTERS (OAAH) A CHECKSUM BYTE IMMEDIATELY PRECEEDS THE
136 • FINAL SYNC WHEN READING. THE caNTROLL.E******************************.******
137 .EJECT

5-730

APPLICATIONS

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER, V3 0 PAGE

LOC aBv

0010 D:t
001E AF
OOIF SAOS
0021 FB
0022 4338
0024 AS
00215 FO
0026 39
0027 F8
0028 3A
0029 18
002A 0307
002C 9630
002E B800
0030 23Fl
0032 62
0033 ~~
0034 FF
003:t 93

LINE SOURCE STATEMENT

13B ,* ••••• * ••• *"'*********************** ••••• **.*.*********.****************
139 DISPLAY ROUTINE
140 • THIS PORTION OF THIS PROGRAM IS AN INTERRUPT ROUTINE WHICH IS
141 ,ACTED UPON WHEN THE TIMER COUNT IS COMPLETED THE ROUTINE UPDATES
142 ,ONE DISPLAY DIGIT FROM THE DISPLAY MAP PER INTERRUPT SEGUENTIALLY,
143 ,THUS EIgHT TIMER INTERRUPTS WILL HAVE REFRESHED THE ENTIRE DISPLAY
144 ,REGISTER BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAVED UPON
1415 • ENTER ING THE ROUTINE ONCE THE DISPLAY HAS BEEN REFRESHED THE TIMER
146 • IS RESET AND THE ACCUMULATOR AND PRE-INTERRUPT REGISTER BAN~ IS RESTORED
147
148 DISPLA SEL RBl • REGISTER BANK 1
149 MOV R7. A • SAVE ACCUMULATOR
1:50 ORL P2. "OSH • TURN DIGIT DRIVERS OFF
1:51 MOV A. R3 • DIGIT COUNTER TO ACCUMULATOR
152 ORL A •• 38H • "OR" TO GET DISPLAY MAP ADDRESS
153 MOV RO. A • DISPLAY MAP POINTER
1:54 MOV A. eRO • GET CHARACTER FROM DISPLAY MAP
1:5:5 OUTL Pl. A • OUTPUT CHARACTER TO SEGMENT DRIVERS
1:56 MOV A. R3 • DIGIT COUNTER VALUE TO ACCUMULATOR
1:57 DUTL P2. A • OUTPUT TO DIGIT DRIVERS
1:58 INC R3 • INCREMENT DIGIT COUNTER
1:59 XRL A. "07H • CHECK IF AT LAST DIGIT
160 .JNl SETIME • RESET TIMER IN NOT LAST DIGIT
161 MOV R3 ... OOH • RESET DIGIT COUNTER
162 SETIME MOV A ... TIME i TIMER VALUE
163 MOV T. A i LOAD TIMER
164 STRT T • START TIMER
169 MOV A, R7 I RESTORE ACCUMULATOR
166 RETR , RETURN

167 ,** 168 SE.JECT

5-731

APPLICATIONS

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V;3,O PAGE

LOC DB..}

0036 DS
0037 AF
0038 22
0039 AA
003A 47
0038 77
ooac 5307
003E 4338
0040 A8
0041 FA
0042 531F
0044 E3
0045 AA
0046 D37F
004B C64E
004A FA
0048 AO
004C 04:51
004E FA
004F :50
00:50 AO
0051 FF
0052 93

LINE SOURCE STATEMENT

169

170 J ***
171 INPUT CHARACTER AND DigIT ROUTINE
172 , THIS PORTION OF THE PROGRAM IS AN INTERRUPT ROUTINE WHICH
173 I IS ACTED UPON WI;tEN THE IBF JUT IS SET THE ROUTINE GETS tHE
174 ; DISPLAY DATA WORD FROM THE DBB AND DEFINES BOTH THE DIGIT AND
175 ,THE CHARACTER TO BE DISPLAYED. THIS IS DONE BY MEANS OF A
176 j CHARACTER L..OOP-UP TABLE AND A DISPLAY MAP FOR DIGIT AND CHARACTER
177 • LOCATION. SPEC IAL CONSIDERATION IS TAKEN FOR A DEC IHAL POINT WHICH IS
178 ,SIMPLY ADDED TO THE EXISTING CHARACTER IN THE DISPLAY MAP REGISTER
17'1 • BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAVED UPON ENTERING
180 J THE ROUTINE ONCE THE DATA WORD HAS BEEN FULLY DEFINED' THE ACCUMULATOR
181 I AND THE PRE-INTERRUPT REGISTER BANK IS RESTORED
182
183 INPUT.
184
180
186
187
188
189
190
191
192
193
194 ,
195
196
197
198
199
200
201 DPOINT
202
203
204 RETURN
205

SEL
MOV
IN
MOV
SWAP
RR
ANL
ORL
MOV
MOV
ANL
MOVP3
MOV
XRL
JZ
MOV
MOV
JMP
MOV
ANL
MOV
MOV
RETR

RB1
R7.A
A,DBB
R21A
A
A
A. *07H
A. *38H
RO. A
A,R2
A,4HFH
A.C!A
R:;!. A
A, *7FH
OPOINT
A. R2
eRO,A
RETURN
A. R2
A. C!Re
eRo, A
A. R7

• REG I STER BANK 1
,SAVE ACCUMULATOR
; GET DATA
• SAVE DATA WORD
I DEFINE DIGIT LOCATION

,DIGIT LOCATION IN DIGIT POINTER
,SAVED DATA WORD TO ACCUMULATOR
• DEFINE CHARACTER LOOK-UP-TABLE LOC
• GET CHARACTER
I SAVE CHARACTER
• IS CHARACTER DEC IMAL POINT

• SAVED CHARACTER TO ACCUMULATOR
• CHARACTER TO DISPLAY MAP

I SAVED CHARACTER TO ACCUMULATOR
• "AND" WITH OLD CHARACTER
• BACK TO DISPLAY MAP
,RESTORE ACCUMULATOR

206 I ** 207 .EJECT

5-732

APPLICATIONS

1918-1 I f'lCS-48/UPI-41 "ACRO ASSEMBLER, Y30 PAQE "
LOC DB.! LINE SOURCE BTATEI'IENT

20B ; *****.*** ••• * ••• *****.*****************.*****************.***********
209 LOOK-UP TABLE
210 THIS LOOK-UP TABLE ORIGINATES IN PAGE 3 OF THE UPI-41 PRDGRNI
211 .. 'EI'IORY IT IS USED TO DEFINE THE CORRECT LEVEL OF EACH BEGl'lENT
212 ,AND DECIMAL. POINT FOR It SELECTED CHARACTER FRDrI THE INPUT ROUTINE
213 ,INVERSE LOGIC IS USED BECAUSE OF THE SPECIFIC DRIVER CIRCUITRY, THUS
214 • A 1 ON A QIVEN SEgMENT MEANS IT 19 OFF AND A 0 MEANS IT IS ON I 21:5 J

21" • *******SEOI1ENTS******** : ~~I
0300 217 ORg 300H ,DP g F E 0 C B A I'
0300 CO 21B CHO DB OCOH d 1 0 0 0 0 0 0 i,
0301 F9 219 CHI' DB OF9H d 1 1 1 1 0 0 1 1

0302 A4 220 CH2 DB OA4H d 0 1 0 0 1 0 0
0303 BO 221 CH3 DB OBOH ,1 0 1 1 0 0 0 0
0304 99 222 CH4 DB 99H d 0 0 1 1 0 0 1
030~ 92 223 CH~ DB 92H ,1 0 0 1 0 0 1 0
030" B2 224 CH'" DB B2H 11 0 0 0 0 0 1 0
0307 FB 22~ CH7 DB OFBH d 1 1 1 1 0 0 0
0308 80 226 CHe DB BOH II 0 0 0 0 0 0 0
0309 9B 227 CH9 DB 9BH .1 0 0 1 1 0 0 0
030A BB 22B CHA DB BBH .1 0 0 0 1 0 0 0
030B B3 229 CHB DB B3H .1 0 0 0 0 0 1 1
030C C6 230 CHe DB OC"H .1 1 0 0 0 1 1 0
030D Al 231 CHD DB 0A1H .1 0 1 0 0 0 0 1
030E B" 232 CHE DB BbH .1 0 0 0 0 I I 0
030F BE 233 CHF DB BEH II 0 0 0 I I 0
0310 7F 234 CHOP DB 7FH ,0 I I I I I I
0311 C2 23~ CHQ' DB OC2H .1 I 0 0 0 0 I 0
031289' 236 CHH DB B"H .1 0 0 0 I 0 0
0313 FB 237 CHI DB OFBH ,I I I I I 0 I
0314 EI 238 CH.J DB OEIH .1 I I 0 0 0 0
031~ C7 239 CHL DB OC7H ,I I 0 0 0 I
031" AD 240 CHN- DB OABH .1 0 I 0 I 0
0317 A3 241 CHO DB OA3H .1 0 I 0 0 0 I I
0318 BC 242 CHP DB BCH .1 0 0 0 I I 0 0
0319 AF 243 CHR DB OAFH .1 0 I 0 I I 1 I
031A B7 244 CHT DB B7H .1 0 0 0 0 I I
0318 CI 24" CHU DB OC1H .1 I 0 0 0 0 0
031C 91 246 CHY DB 91H .1 0 0 I 0 0 0
031D BF 247 CHDASH DB OBFH .1 0 I I I I I
031E FD 248 CHAPOS DB OFDH .1 0
031F FF 249 BLANK DB OFFH .1

2~O . **********.************************* *.********************************
2~1 END

USER SYMBOLS
BLANK 031F BLKI'IAP OOOE CHO 0300 CHI 0301 CH2 0302 CH3 0303 CH4 0304 CH5 030:5
CH" 0306 CH7 0307 CHB 030B CH9 0309 CHA 030A CHAPOS 031E CHB 030B CHC 030C
CHD 030D CHDASH 0310 CHOP 0310 CHE 030E CHF 030F CHG 0311 CHH 0312 CHI 0313
CH.! 0314 CHL 031~ CHN· 0316 CHO 0317 CHP 031B CHR 0319 CHT 031A CHU 031B
CHY 031C DISPLA 0010 DPOINT 004E INPUT 0036 RETURN 00~1 SETIME 0030 START 0009 TIME' FFFl

ABSEI'IBLY COMPLETE. NO ERRORS

5-733

APPLICATIONS

Fl ASM4B F3 SENSOR NOOBvECT PRINT(LP)

ISIS-I I HCS-4B/UPI-41 MACRO ASSEMBLER. V3 0 PAGE

L.OC OD~ LINE

I
2
3
4
5

" 7
8
'I

10
II
12
13
14
15
I"
17
18
1'1
20
21
22
23
24
25
2"
27
28
29
30
31
32
33
34
35
3"
37
38
3'1
40

SMOOIIJIA

SOURCE STATEMENT

,
*********************************.************

UPI-4IA SENSOR MATRIX CONTROL.L.ER

**
THIS PROGRAM USES THE UPI-41A AS A SENSOR MATRIX CONTROLLER

, IT HAS MONITORING CAPABIL.ITlES OF UP TO 128 SENSORS THE COORDINATE
,AND SENSOR STATUS OF EACH DETECTED CHANOE IS AVAIL.ABL.E TO THE MASTER
,MICROPROCESSOR IN A SINGL.E BYTE A 40X8 FIFO QUEUE IS PROVIDED FOR
,DATA BUFFERING BOTH HARDWARE OR POLLED INTERRUPT METHODS CAN BE USED
,TO NOTIFY THE MASTER OF A DETECTED SENSOR CHANGE

. ***
,REGISTER DEF INITIONS

REGISTER RBO

RO MATR I X MAP POINTER
RI FIFO POINTER
R2 SCAN ROW SEL.ECT
R3 COL.UMN COUNTER
R4 FIFO-IN
R5 FIFO-OUT
R6 CHANGE WORD
R7 COMPARE

RBI

NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED
NOT USED

I ****************il.***
,PORT PIN DEFINITIONS

,PIN PORT 1 FUNCTION PIN

, PO-7 COLUMN LINE INPUTS PO-3
P4
P5
P,,-7

PORT 2 FUNCTION

ROW SELECT OUTPUTS
FIFO NOT EMPTY INTERRUPT
OBF INTERRUPT
NOT USED

,*** ••••••••••••

5-734

APPLICATIONS

ISIS-I I MCS-48/UPI-41 MACRO ASSEMBLER. V3 0 PAGE 2

LOC DB,,}

OOOF
OOOB
002F

LINE SOURCE STATEMENT

41 • ********.*.*.*****.************************* •••• ******.* ••• * •••• *** ••
42
43 • CHANGE WORD BIT DEFINITION
44
4~ BIT FUNCTION
46
47
4B
49

00-0
07

SENSOR COORDINATE
SENSOR 5 T ATUS

~O •• *.******.*****.*.********.******************* •• ******** •••• ** ••••• *.*.
~1

52 • STATUS REGISTER BIT DEFINITION
53

BIT

DO
01-3
04
05-7

FUNCTION

OBF
IDF. FQ, Fl (NOT USED)
FIFO NOT EMPTY
USED DEF I NED (NOT USED)

60 I

61 • ****.**** •• *** •• ******** ••••• ****** ••• ** ••• *** •••• ** ••• ** ••• * ••••••••••
62
63 EQUATES
64
65 ,THE FOLLOWING CODE DESIGNATES THREE VARIABLES. SCANTM, FIFOBA
00
07
68
69
70
71
72
73
H
75
70
77
7B

,AND FIFOTA SCANTM AD.JU5TS THE LENGTH OF A DELAY BETWEEN
• SCANNING SWITCH THIS SIMULATES DEBOUNCE FUNCTIONS FIFOBA
, IS THE BOTTOM ADDRESS OF THE FIFO FIFOTA IS THE TOP ADDRESS
• OF THE FIFO THIS MAKES IT POSSIBLE TO HAVE A FIFO 3 TO 40
• BYTES IN LENGTH

, -.......... -.. __ ._ _ -.
SCANTM EQU
FIFOBA EGU
FIFOTA EGU

"EJECT

OFH
OBH
2FH

, SC AN T I ME ADJUST
.FIFO BOTTOM ADDRESS
, F I Fa TOP ADDRESS

5-735

APPLICATIONS

ISIs 11 MCS-4B/UPI-41 "ACRO ASSEMBLER. \13 0 PAQE 3

LOC OBJ

0000
0000 BB3F
0002 BAOF
0004 BCOB
0006 BD2F
OOOB B9FF
OOOA 2300
OOOC 90 \
0000 FA
OOOE 3A
OOOF 09
0010 AD
0011 FA
0012 CblB
0014 CB
0015 CA
OOlb 0400
OOIB BAIO
OOIA FA
0010 3A
ODIC F5

LINE SOURCE STATIfMENT

7f:1 • *************************.****************** •• ********************1"*.
BO
BI
B2
B3
B4
B5
Bb
B7
BB
B9
90
91

INITIALIZATION

• THE PROGRAM STARTS AT THE FOLLOWING CODE UPON RESET ,,"ITHIN
• THIS INITIALIZATION SECTION THE REGISTERS THAT MAINTAIN THE MATRIX
• MAP. FIFO AND RO,," SCANNING ARE SET UP PORT 1 IS SET HIGH FOR USE
• AS AN INPUT PORT FOR THE COLUMN STATUS BIT 4 OF STATUS REGISTER 15
• WRITTEN TO CONVEY A FIFO EMPTV CONDITION THE INITIAL COLUMN STATUS
• OF ALL THE RO,,"S IN THE SENSOR MATRIX 15 THEN READ INTO THE MATRIX
• MAP ONCE THE MATRIX MAP 15 FILLED THE OBF INTERRUPT (PORT 2-4) IS
• ENABLED

92 , •• ****** •• **.********* ••• ********.******* ***.*******************
93
94
9~ INITI'IX
9b
97
ge
99

100
101
102
103
104
105
lOb
107
lOS
109

FILLMX

110
1I10BFINT
112
113
114
115
lib .EJECT·

\

ORG
MOV
MOV
MOV
MOV
ORL
MOV
MOV
MOV
OUTL
IN
MOV
MOV
JZ
DEC
DEC
.IMP
MOV
MOV
OUTL
EN

0
RO, tt3FH
RO!.IIOFH
R4.IIFIFOBA
,,~, ttFIFOTA
PI.IIOFFH
A •• OOH
STS, A
A. R2
P2. A
A. PI
IIRO. A
A.R2
OBFINT
RO
R2
FILLMX
R2.IIIOH
A. R2
P2. A
FLAGS

• MATRIX I"IAP POINTER REQISTER. TOP ADDRESS
• SCAN RO,," SELECT REGISTER. TOP RO,,"
• FIFO INPUT ADDRESS REGISTER. BOTTOM OF FIFO
• FIFO OUTPUT ADDRESS REGISTER. TOP OF FIFO
• INITIALIZE PORT I HIGH FOR INPUTS
• INITIALI ZE STATUS REGISTER. FIFO EMPTY
• ""RITE TO STATUS REGISTER. BITS 4-7
• SCAN RO,," SELECT TO ACCUMULATOR
• OUTPUT SCAN RO,," SELECT TO PORT 2
• INPUT COLUMN STATUS PORT I
• LOAD MATRIX MAP ,,"ITH COLUMN STATUS
I CHEC~ SCAN ROW SELECT REGISTER VALUE FOR 0
• IF 0 ENABL.E OBF INTERRUPT
• DECREMENT TO NEXT MATR I X MAP ADDRESS
• DECREMENT TO SCAN NEXT RO,,"
.FILL NEXT MATRIX MAP ADDRESS
.BIT 4 HIGH IN RO,," SCAN SELECT REGISTER
,ROW SCAN SELECT VALUE TO ACCUMULATOR
• INITIALIZE PORT 2. BIT 4 FOR "EN FLAGS"
• ENABLE OBF INTERRUPT, PORT 2. BIT 4

5-736

APPLICATIONS

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER. V3 0 PAGE 4

LOC OBJ

0010 FA
OOlE ~30F
0020 C626
0022 C8
0023 CA
0024 042C
0026 883F
0028 FA
0029 430F
002B AA
002C FA
0020 3A
002E BBOF
0030 E830
0032 09
0033 20
0034 00
0035 AF
0036 C669

LINE

117
118
119
120
121
122
123
124
12~

126
127
128
129
130
131
132
133
134
13~

136
137
138
139
140
141
142
143,
144
14~

146
147
148
149
150
1~1

1~2

SOURCE STATEMENT

· ***********.*.*.*******************.****************** ••• ********* •• **
SCAN AND COI'IPARE

• THE FOLLOWINQ CODE IS THE SCAN AND COI'IPARE SECTION OF THE PROGRAI'I
• UPON ENTERING THIS SECTION A CHECK IS I'IADE TO SEE IF THE ENTIRE I'IATRIX
• HAS BEEN SCANNED IF SO THE REgISTERS THAT I'IAINTAIN THE I'IATRIX I'IAP AND ROW
• SCANNING ARE RESET TO THE BEQINNINQ OF THE SENSOR MATRIX IF THE ENTIRE
.I'IATRIX HASNT BEEN SCANNED THE REGISTERS INCREI'IENT TO SCAN THE NEXT ROW
• FROI'I THIS POINT ON THE ROW SCAN SELECT REgiSTER IS USED FOR TWO FUNCTIONS
• BITS 0-3 FOR SCANNING AND BITS 4 AND ~ FOR THE EXTERNAL INTERRUPTS THUSLY
• ALL USAGE OF THE REgiSTERS IS DONE BY LOQICALLY I'IASKING IT SO AS TO ONLY
• AFFECT THE FUNCTION DESIRED ONCE THE REGISTERS ARE RESET. ONE ROW OF THE
• SENSOR MATRIX IS SCANNED A DELAY IS EXECUTED TO ADJUST FOR SCAN TIME
• (DEBOUNCE) A BYTE OF COLUI'IN STATUS IS THEN READ INTO THE I'IATR'IX I'IAP
• AT THE TII'IE THE NEW COLUI'IN STATUS IS COI'IPARED TO THE OLD THE RESULT IS
• STORED IN THE COI'IPARE REGISTER THE PROGRAI'I IS THEN ROUTED ACCORDING TO
• WHETHER OR NOT A CHANGE WAS DETECTED

,* ••• *************.*.************ •• *.************.* •• ********.********

AOJR£Q MOV
ANL
,JZ
DEC
DEC
,JI'IP

RSETRG I'IOV
MOV
ORL
MOV

5CANMX MOV
OUTL
MOV

DELAY2 D.JNZ
IN

A. R2
A. _OFH
RSETRG
RO
R2
SCANMX
RO •• 3FH
A. R2
A •• OFH
R2. A
A. R2
P2. A
R3 •• SCANTI'I
R3. DELAY2
A. PI

• SCAN ROW SELECT TO ACCUMULATOR
,CHECK FOR 0 SCAN VALUE ONLY. NOT INTERRUPT
• IF 0 RESET REGISTERS
• DECREI'IENT I'IATRIX MAP POINTER
I DECREMENT SCAN ROW SELECT
• SCAN MATRIX
• RESET MATRIX MAP POINTER REGISTER. TOP ADDRESS
• SCAN ROW SELECT TO ACCUMULATOR
• RESET SCAN ROW SELECT. NO INTERRUPT CHANGE
• SCAN ROW SELECT REG I STER
"SCAN ROW SELECT TO ACCUI'IULATOR
.OUTRUT SCAN ROW SELECT TO PORT 2
• SET DELAY FOR OUTPUT SCAN TII'IE
• DELAY

153 XCH A. C!RO
• INPUT COLUMN STATUS FROM PORT 1 TO ACCUMULATOR
,STORE NEW COLUMN STATUS SAVE OLD IN ACCUMULATOR

1:)4 XRL
155 MOV
156 JZ
1~7

158 SEJECT

A. I!RO
R7. A
CHFFUL

• COMPARE OLD WITH NEW COLUMN STATUS
• SAVE COMPARE RESULT IN COI'IPARE REGISTER
,IF THE SAME, CHECK IF FIFO IS FULL

fH37

APPLICATIONS

1515-1 I MCS-4B/UPI-41 MACRO ASSEMBLER. V3 0 PAGE

LOC OBJ

0038 aa08
003A ca
0038 FO
003C 77
0030 AD
003E FF
003F 77
0040 AF
0041 F24~
0043 0469
004~ FA
0046 ~30F
0048 E7
0049 E7
004A E7
004B 4~

004C AE
0040 FO
004E 5380
oo::m 4E
OO~l AE

LINE SOURCE STATEMENT

159 .**
160
161 CHANGE WORD ENCODING
162
163 ,THE FOLLOWING CODE IS THE CHANGE WORD ENCODING SECTION THIS
164 • SECTION IS ONLY EXECUTED IF A CHANGE WAS DETECTED THE COLUMN COUNTER
165 ,IS SET AND DECREMENTED TO DESIGNATE EACH OF THE 8 COLUMNS THE COMPARE
166 • REGISTER IS LOOKED AT ONE BIT AT A TIME TO FINO THE EXACT LOCATION OF
167 • THE CHANGE<S) WHEN A CHANGE IS FOUND IT IS ENCODED BY GIVING IT A
168 • COORDINATE FOR ITS LOCATION THIS IS DONE BY COMBINING THE PRESENT VALUE
169 • IN THE ROW SCAN SELECT REGISTER AND THE COLUMN COUNTER THE ACTUAL STATUS
170 • OF THAT SENSOR IS ESTABLISHED BY LOOKING AT THE CORRESPONDING BYTE IN
171 ,THE MA"TRIX MAP THIS STATUS IS COMBINED WITH THE COORDINATE TO ESTABLISH
172 • THE CHANGE WORD THE CHANGE WORD IS THEN STORED IN THE CHANGE WORD REGISTER
173
174 ,**.******.**.*.
175
176 MOV
177 RRLOOK DEC
178 MOV
179 RR
180 MOV
181 MOV
182 RR
183 MOV
184 JB7
18~ JMP
1 S6 ENC ODE MOV
187 ANL
188 RL
189 RL
190 RL
191 QRL
192
193 MOV
194 MOV
195 ANL
196 ORL
197 MOV
198
199 SEJECT

R3. _08H
R3
A. C!RO
A
I!RO. A
A, R7
A
R7. A
ENCODE
CHFFUL
A. R2
A. WOFH
A
A
A
A, R3

R6, A
A.@RO
A, .SOH
A. R6
R6, A

• SET COLUMN COUNTER REGISTER TO 8
• DECREMENT COL.UMN COUNTER
• COLUMN STATUS TO ACCUMULATOR
• ROTATE COLUMN STATUS RIGHT
• ROTATED COLUMN STATUS BACK TO MATRIX MAP
• COMPARE REGISTER VALUE TO ACCUMULATOR
• ROTATE COMPARE VALUE RIGHT
,ROTATED COMPARE VALUE TO COMPARE REGISTER
,TEST BIT 7 IF CHANGE DETECTED ENCODE CHANGE WORD
• IF NO CHANGE IS DETECTED CHECK FOR FIFO FULL
,SCAN ROW SEl:ECT TO ACCUMULATOR ODOOXXXX
,ROTATE ONLY SCAN VALUE
,ROTATE LEFT oooxxxxo
• ROTATE LEFT OOXXXXOO
• ROTATE LEFT OXXXXOOO
• ESTABLISH MATRIX COORDINANT OXXXXXXX
,(OR) COLUMN COUNTER VALUE WITH ACCUMULATOR
,SAVE COORDINANT IN CHANGE WORD REGISTER
• COLUMN STATUS FROM MATRIX MAP TO ACCUMULATOR
,0 ALL BITS BUT BIT 7
, (OR) SENSOR STATUS WITH COORDINATE FOR COMPLETED CHANGE WORD
• SAVE CHANGE WORD XXXXXXXX

5-738

APPLICATIONS

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3 0 PAGE 6

LOC OB,J

00~2 FC
00~3 A9
OO~4 FE
0055 AI
00~6 2310
OO,S 90
0059 SA20
005B FA
OO'C 4320
OO~E AA
005F 232F
0061 DC
0062 C667
0064 IC
0065 0469
0067 BCOS
0069 FC
006A DO
006B 9670
0061;> 8660
006F 232F
0071 DO
0072 C677
0074 10
0075 0479
0077 ODOS
0079 FD
007A A9
0078 FI
007C 02
0070 FB
007E 963A
OOBO 2308

LINE SOURCE STATEMENT

200 .**************************************.********************.**.******
201
202 FIFO-DBBOUT MANAGEMENT
203
204
20~
206
207
208
209
210
211
212
213
214

• THE FOLLOWING CODE IS THE FIFO-OBBOUT MANAGEMENT SECTION OF THE
,PROGRAM THIS SECTION TAKES AN ENCODED CHANGE WORD AND LOADS IT INTO
• THE FIFO THE FIFO NOT EMPTY INTERRUPT IS THEN SET AND THE FIFO-IN
• POINTER GETS UPDATED A FIFO FULL CONDITION IS THEN CHECKED FOR AND
,ROUTED ACCORDINGLY IF BOTH THE FIFO AND OBF HAVE CHANGE WORDS THE
,PROQRAM LOCKS UP UNTIL THIS HAS CHANGED IF THE FIFO ISNT FULL COLUMN
j COUNTER'" 0. FIFO EMPTY AND OBF CONDITIONS ARE CHECKED THE FIFO-OUT
j POINTER IS SET AND DBBOUT IS LOADED IF THE FIFO ISNT EMPTY AND OBF ISNT
, SET IF THIS ISNT THE SITUATION, PROGRAM FLOW IS ROUTED BACK TO THE
,THE SCAN AND COMPARE SECTION TO SCAN THE NEXT ROW

215
216

.***

217
21S
219
220

LOADFF

221 STATNE
222
223 INTRHI
224
22~

226
227 AD.JFIN
228
229
230
231
232 RSFFIN
233 CHFFUL
234
23~

236 CHOBFt
237 AO.JFOT
23S
239
240
241
242
243
244
245
246

RSFFOT
LOADOB

247 CHCNTR
248
249 CHFFEM
250
251 .EJECT

MOV
MOV
MOV
MOV
MOV
MOV
ORL
MOV
ORL
MOV
MOV
XRL
,JZ
INC
JMP
MOV
MOV
XRL
,JNZ
JOBF
MOV
XRL
,JZ
INC
..IMP
MOV
MOV
MOV
MOV
OUT
MOV
JNZ
MOV

A, R4
Rt. A
A. R6
@R1,A
A. *10H
STS, A
P2,.20H
A. R2
A, .20H
R2.A
A. *FIFOTA
A. R4
RSFFIN
R4
CHFFUL
R4, ttFIFOBA
A, R4
A, R::;
CHCNTR
CHOBF!
A,4tFIFOTA
A, R5
RSFFOT
R~

LOADDB
RS, *FIFQBA
A, R::;
Rt. A
A, (!Rl
DBB, A
A, R3
RRLOOK
A,4tFIFOBA

• FIFO INPUT ADDRESS TO ACCUMULATOR
,FIFO POINTER USED FOR INPUT
,CHANGE WORD TO ACCUMULATOR
,LOAD FIFO AT FIFO INPUT ADDRESS
,SIT 4 FOR FIFO NOT EMPTY
,WRITE TO STATUS REGISTER. FIFO NOT EMPTY
,FIFO NOT EMPTY INTERRUPT PORT 2-5 HIGH
,ROW SCAN SELEC T TO ACCUMULATOR
,SAVE INTERRUPT. NO CHANGE TO SCAN VALUE
,ROW SCAN SELECT REGISTER
,FIFO TOP ADDRESS TO ACCUMULATOR
,COMPARE WITH CURRENT FIFO INPUT ADDRESS
,IF THE SAME RESET FIFO INPUT REGISTER
,NEXT FIFO INPUT ADDRESS
,CHECK FIFO FULL
,RESET FIFO INPUT REGISTER, BOTTOM OF FIFO
,F'IFO INPUT ADDRESS TO ACCUMULATOR
,COMPARE INPUT WITH OUTPUT FIFO ADDRESS
• IF NOT SAME CHECK COLUMN COUNTER VALUE
, IF OSF IS 1 THEN CHECK OBF
,FIFO TOP ADDRESS TO ACCUMULATOR
,COMPARE TOP TO OUTPUT FIFO ADDRESS
,IF THE SAME RESET FIFO OUTPUT REGISTER
,NEXT FIFO OUTPUT ADDRESS
,LOAD CBBOUT
,RESET FIFO OUTPUT ADDRESS TO BOTTOM OF FIFO
,OUTPUT FIFO ADDRESS TO ACCUMULATOR
,FIFO POINTER USED FOR OUTPUT
,CHANGE WORD TO ACCUMULATOR
,CHANGE waRD TO onnOUT
,COLUMN COUNTER TO ACCUMULATOR
, IF NOT ° FINISH CHANGE WORD ENCOOING
,FIFO BOTTOM ADDRESS TO ACCUMULATOR

5-739

APPLICATIONS

1515-1 I MCS-48/UPI-41 MACRO ASSE.MBLER. V3 a PAGE

LOC O"J LINE SOURCE STATE~ENT

0082 DC 252 XRL A, R4 ,COMPARE FIFO INPUT ADDRESS WITH FIFO BOTTOM ADD
0083 Cb8e 253 JZ AOJFEM J IF THE SAME. AO.JU5T TO CHECK FOR FIFO EMPTY
0085 FC 254 MOV A. R4 · FIFO INPUT ADDRESS TO ACCUMULATOR
0086 07 255 DEC A ,DECREMENT FIFO INPUT ADDRESS IN ACCUMULATOR
0087 DD 256 XRL A, R~ , COMPARE INPUT TO OUTPUT FIFO ADDRESSES
0088 C691 257 JZ STATMT ,IF SAME. WRITE STATUS REGISTER FOR FIFO EMPTY
GOBA 049C 258 JMP CHOBF2 J CHECK OSF
ooee 232F 259 ADJFEM MOV A. ttFIFOTA • FIFO TOP ADDRESS TO ACCUMULATOR
008E OD 260 XRL A, RS ,COMPARE TOP TO OUTPUT FIFO ADDRESS
DOBF 969C 261 JNZ CHOBF2 • IF NOT SAME THEN FIFO IS NOT EMPTY. CHECK OSF
0091 2300 262 STAT.MT MOV A,.OOH ,CLEAR BIT 0 FOR FIFO EMPTY
0093 90 263 MOV 5T5. A .WRITE TO STATUS REGISTER
0094 9ADF 264 INTRLO ANL P2, .. OOFH ,FIFO EMPTY, INTERRUPT PORT 2-5 LOW
0096 FA 265 MOV A, R2 ,SCAN ROW SELECT TO ACCUMULATOR
0097 53 OF 266 ANL A, .. OOFH • SAVE INTERRUPT. NO CHANGE TO SCAN VALUE
0099 AA 267 MOV R2, A ,SCAN ROW SELECT REGISTER
009A 0410 268 JMP ADJREG ,ADJUST REGISTERS
009C 8610 269 CHOBF2 JOBF ADJREG • IF OBF=1 THEN ADJUST REG I STERS
009E 046F 270 JMP AOJFOT ,ADJUST FIFO OUT ADDRESS TO LOAD oaOOUT

271
272 END

USER SYMBOLS
AOJFEM 008C AOJFIN 005F AOJFOT 006F AOJREG 0010 CHCNTR 0070 CHFFEM 0080 CHFFUL 0069 CHOBFl 0060
CHDBF2 009C DELAY2 0030 ENCODE 0045 FIFOBA 0008 FIFOTA 002F FILLMX 0000 INITMX 0000 JNTRHl 0059
INTRLO 0094 LOAOOD 0079 LOA OFF 0052 OBFINT 0018 RRLOOK 003A RSETRG 0026 RSFFIN 0067 RSFFQT 0077
SCANMX OO:2C SCANTM OOOF STATMT 0091 STATNE 0056

ASSEMBLY COMPLETE. NO ERRORS

5-740

APPLICATIONS

PROGRAMMABLE KEYBOARD INTERFACE

• Simultaneous Keyboard and Display
Operations

• Interface Signals for Contact and
Capacitive Coupled Keyboards

• 128-Key Scanning Logic

• 10.7msec Matrix Scan Time for 128 Keys
and 6MHz Clock

• Eight Character Keyboard FIFO

This application is a general purpose programmable
keyboard and display interface device designed for
use with 8-bit microprocessors like the MCS-SO and
MCS-85. The keyboard portion can provide a
scanned interface to 128-key contact or capacitive­
coupled keyboards. The keys are fully debounced
with N-key rollover and programmable error genera­
tion on multiple new key closures. Keyboard entries
are stored in an 8-character FIFO with overrun sta-

Rl Vcc

x, ClR

X2 ·3

RESET ·2

NC .,
Os BO

GND KCl

Ro Me

AO M.

ViR M.

SYNC M3

DO M2

0, M,

02 MO

03 VDD

D. NC

D. ERROR

De IRQ

07 HYS

GND BP

Figure 1. Pin Configuration

• N-Key Rollover with Programmable
Error Mode on Multiple New Closures

• Sixteen or Eight Character Seven­
Segment Display Interface

• Right or Left Entry Display RAM

• Depress/Release Mode Programmable

• Interrupt Output on Key Entry

tus indication when more than 8 characters are en­
tered. Key entries set an interrupt request output to
the master CPU.

The display portion of the UPI-41A provides a
scanned display interface for LED, incandescent
and other popular display technologies. Both nu­
meric displays and simple indicators may be used.
The UPI-41A has a 16X4 display RAM which can be

DATA
BUS

Ro
ViR
Os
AO

x,

X2

DATA
BUS

BUFFER
REGISTER

TIMING

+. -
PWR ---.

GND ---+-

INTERNAL
BUS

Figure 2. Block Diagram

5-741

SCAN
OUTPUTS

r-'-.
Me

MO

TQ
DISPCAY
DIGITS

APPLICATIONS

loaded or interrogated by the CPU. Both right entry
calculator and left entry typewriter display formats
are possible. Both read and write of the display
RAM can be done with auto increment of the display
RAM address.

PRINCIPLES OF OPERATIO,"",
The following is a description of the major elements
of the Programmable KeyboardlDisplay interface
device. Refer to the block diagram in Figure 1.

1/0 Control and Data Buffers
ORDERING INFORMATION: The I/O control section uses the CS, AO,RD, and

WR lines to control data flow to and from the var­
ious internal registers and buffers (see Table 2). All
data flow to and from the 8278 is enabled by CS. The
8-bits of information being transferred by the CPU
is identified by AO. A logic one means information is
command or status. ~c zero means the informa­
tion is data. RD and WR determine the direction of
data flow through the Data Bus Buffer (DBB). The

This part may be ordered as an· 8041A with ROM
code number 8278. The source code is available
through Insite.

Throughout this application of the UPI-41A, it will
be referred to by its ROM code number, 8278. The
8278 is packaged in a 40-pin DIP. The following is a
brief functional description of each pin.

Table 1. Pin Description

Signal Pin. No. Type Name and Function

DO-D7 12-19 I/O Data Bus: Three-state, bi-directional data bus lines used to transfer data and com-
mands between the CPU and the 8278.

WR 10 I Write: Write strobe which enables the master CPU to write data and commands be-
tween the CPU and the 8278.

RD 8 I Read: Read strobe which enables the master CPU to read data and status from the
8278 internal registers.

CS 6 I Chip Select: Chip select input used to enable reading and writing to the 8278.

AO 9 I Control/Data: Address input used by the CPU to indicate control or data.
RESET 4 I Reset: A low signal on this pin resets the 8278.

X1,X2 2,3 I Freq. Reference Inputs: Inputs for crystal, L-C or external timing signal to deter-
mine internal oscillator frequency.

IRQ 23 0 Interrupt Request: Interrupt Request Output to the master CPU. In the keyboard
mode the IRQ line goes low with each FIFO read and returns high if there is still infor-
mation in the FIFO or an ERROR has occurred.

Mo-M6 \ 27-33 0 Matrix Scan Lines: Matrix scan outputs. These outputs control a decoder which
scans the key matrix ,columns and the 16 display digits. Also, the Matrix scan outputs
are used to multiplex the return lines from the key matrix.

RL 1 I Keyboard Return Line: Input from the multiplexer which indicates whether the key
currently being scanned is closed.

HYS 22 0 Hysteresis: Hysteresis output to the analog detector. (Capacitive keyboard configu-
ration). A "0" means the key currently being scanned has already been recorded.

KCL 34 0 Key Clock: Key Clock output to the analog detector (capacitive keyboard configura-
tion) used to reset the detector before scanning a key.

SYNC 11 0 Output Clock: High frequency (400 kHz) output signal used in the key scan to detect
a closed key (capacitive keyboard configuration).

BO-B3 35-38 0 Display Outputs: These four lines contain binary coded decimal display information
synchronized to the keyboard column scan. The outputs are for multiplexed digital
displays.

ERROR 24 , 0 Error Signal: This line is high whenever two new key closures are detected during a
single scan or when too many characters are entered into the keyboard FIFO. It is reset
by a system RESET pulse or by a "1" input on the CLR pin or by the CLEAR ERROR
command.

CLR 39 I Clear Error: Input used to clear an ERROR condition in the 8278.
BP 21 0 Tone Enable: Tone enable output. This line is high for 10ms following a valid key

closure; it is set high and remains high during an ERROR condition.

VCC, VDD 40,26 I Power: +5 volt power input: +5V ± 10%.
GND 20,7 I Ground: Signal ground.

5-742

APPLICATIONS

DBB register is a bi-directionaI8-bit buffer register
which connects the internal 8278 bus buffer register
to the external bus. When the chip is not selected
(CS = 1) the DBB is in the high im~an~ state.
The DBB acts as an input when (RD, WR, CS) = (1,
0,0) and an output when (RD, WR, CS) = (0, 1,0).

Table 2. 1/0 Control and Data Buffers

CS Ao WR RD Condition

0 0 1 0 Read DBB Data

0 1 1 0 Read STATUS

0 0 0 1 Write Data to DBB

0 1 0 1 Write Command to DBB

1 X X X Disable 8278 Bus,
High Impedance

Scan Counter
The scan counter provides the timing to scan the
keyboard and display. The four MSB's (M3-M6)
scan the display digits and provide column scan to
the keyboard via a 4 to 16 decoder. The three LSB's
(MO-M2) are used to multiplex the row return lines
into the 8278.

Keyboard Debounce and Control
The 8278 system configuration is shown in Figure 3.
The rows of the matrix are scanned and the outputs

are multiplexed by the 8278. When a key closure is
detected, the debounce logic waits about 12 msec to
check if the key remains closed. If it does, the ad­
dress of the key in the matrix is transferred into a
FIFO buffer.

FIFO and FIFO Status
The 8278 contains an 8X8 FIFO character buffer.
Each new entry is written into a successive FIFO lo­
cation and each is then read out in the order of entry.
A FIFO status register keeps track of the number of
characters in the FIFO and whether it is full or emp­
ty. Too many reads or key entries will be recognized
as an error. The status can be read by a RD with CS
low and Ao high. The status logic also provides a
IRQ signal to the master processor whenever the
FIFO is not empty ..

Display Address Registers and Display RAM
The Display Address registers hold the address of
the word currently being written or read by the CPU
and the two 4-bit nibbles being displayed. The
read/write addresses are programmed by CPU com­
mand. They also can be set to auto increment after
each read or write. The display RAM can be directly
read by the CPU after the correct mode and address
is set. Data entry to the display can be set to either
left or right entry.

TO TONE GENERATOR

ANALOG
DETECTOR

TO
8080 8085 OR 8048

MASTER
PROCESSOR

a

RLHysr!7 BP

ERROR KCL
CLR "!2

IRQ' M3
8041A/
8741A

DO-D7

WR SYNC
AD

"!6
AO

cs
RESET ";0

83···· ·SO

8 OR 16 DIGIT DISPLAY

I
ANALOG I

MULTIPLEXER

--8-

roo---

! k 4 TO 16
DECODE 16

fi
i.---

I
I

I

CAPACITIVE
KEYBOARD

MATRIX

~TSCAN
Figure 3. System Configuration for Capacitive-Co\lpled Keyboard

5-743

APPLICATIONS

TO
8080, 8085 OR &048

MASTER
PROCESSOR

-

8

ep Rl

ERROR

ClR
M.

:
IRO MO

8041A1
8741A

00-07

WR
RD

"!6
AO
CS :
REseT M3

83···· .BO

.., TO TONE GENERATOR

.'

I
DIGITAL I

MULTIPLEXER

-~8--

-
I

h 4 TO 16 I
DeCODe 16

i

I I '---4 TO 16 I I
DeCODe I

CONTACT

f- 16 --I 16 DIGIT SCAN
KEYBOARD

MATRIX

8 OR 16 DIGIT DISPLAY

Figure 4. System Configuration for Contact Keyboard

COMMANDS
The 8278 operating mode is programmed by the
master CPU using the AO. WR and DO-D7 inputs as
shown below:

AO. Co 3'--___ V_AL_ID ___ --'X'--_IN_VA_l_ID_

\ /
00-07 INVALID X VALID X INVALID

The master CPU presents the proper command on
the DO-D7 data lines with Ao =1 and then sends a
WR pulse. The command is latched by the 8278 on
the rising edge of the WR and is decoded internally
to set the proper operating mode_ See the
804IA/874IA data sheetfor timing details.

Command Summary

KEYBOARD/DISPLAY MODE SET

CODE lolololNIElllDIK

Where the mode set bits are defined as follows:
K-the keyboard mode select bit

O-normal key entry mode
I-special function mode: Entry on key closure

and on key release
D-the display entry mode select bit

O-left display entry
I-right display entry

I-the interrupt request (IRQ) output enable bit.
O-enable IRQ output
I-disable IRQ output

E-the error mode select bit
O-error on multiple key depression
I-no error on multiple key depression

N-the number of display digits select
0-16 display digits
1-8 display digits

NOTE:
The default mode fOllowing a RESET input is all bits zero:

READ FIFO COMMAND

CODE 101'101010 ~Iolo

READ DISPLAY COMMAND

CODE I 0 I ' I ' I AI I A3 IA2 lA, I AO I

5-744

APPLICATIONS

Where AI indicates Auto Increment and A3-AO is
the address of the next display character to be read
out.

AI = 1 AUTO increment
AI = 0 no AUTO increment

WRITE DISPLAY COMMAND

CODE I 1 I 0 I 0 I AI I A3 I A2 I Al I Ao I

Where AI indicates Auto Increment and A3-AO is
the address of the next display character to be
written. -

CLEAR/BLANK COMMAND

CODE 11 1011 IUDIBDICDICFICEI

Where the command bits are defined as follows:
CE = Clear ERROR
CF = Clear FIFO
CD = Clear Display to all High
BD = Blank Display to all High
UD = Unblank Display

The display is cleared and blanked following a
Reset.

Status Read
The status register in the 8278 can be read by the
master CPU using the AO, RD, and DO-D7 inputs as
shown below:

AO,CS =:::x VALID

AD \,------,1

The 8278 places 8-bits of status information on the
Do-D7lines following (AO, CS, RD) = 1,0,0 inputs
from the master.

Status Format

I S31 821 Sl I So I BIKE IIBF IOBF I
D7 D6 D5 D4 D3 D2 Dl DO

Where the status bits are defined as follows:
IBF = Input Buffer Full Flag
OBF = Output Buffer Full Flag
KE = Keyboard Error Flag (multiple depression)
B = BUSY Flag
S3-So = FIFO Status

STATUS DESCRIPTION

The S3-So status bits indicate the number of entries
(0 to 8) in the 8-level FIFO. A FIFO overrun will lock
status at 1111. The overrun condition will prevent
further key entries until cleared.

A multiple key closure error will set the KE flag and
prevent further key entries until cleared.

The IBF and OBF flags signify the status of the 8278
data buffer registers used to transfer information
(data, status or commands) to and from the master
CPU.

The IBF flag is set when the master CPU writes
Data or Commands to the 8278. The IBF flag is
cleared by the 8278 during its response to the Data
or Command.

The OBF flag is set when the 8278 has output data
ready for the master CPU. This flag is cleared by a
master CPU Data READ.

The Busy flag in the status register is used as a
LOCKOUT signal to the master processor during re­
sponse to any command or data write from the
master.

The master must test the Busy flag before each read
(during a sequence) to be sure that the 8278 is ready
with valid DATA.

The ERROR and TONE outputs from the 8278 are
set high for either type of error. Both types of error
are cleared by the CLR input, by the CLEAR ER­
ROR command, or by a reset. The FIFO and Display
buffers are cleared independently of the Errors.

FIFO status is used to indicate the number of char­
acters in the FIFO and to indiate whether an error
has occurred. Overrun occurs when the entry of an­
other character into a full FIFO is attempted. Un­
derrun occurs when the CPU tries to read an empty
FIFO. The character read will be the last one en­
tered. FIFO status will remain at 0000 and the error
condition will not be set.

Data Read
The master CPU can read DATA from the 8278
FIFO or Display buffers by using the AO, RD, and
DO-D7 inputs.

The master sends a RD pulse with AO = 0 and CS = 0
and the 8278 responds by outputting data on lines
~D7. The data is strobed by the trailing edge of
RD.

5-745

APPLICATIONS

DATA READ SEQUENCE

Before reading data, the master CPU must send a
command to select FIFO or Display data. Following
the command, the master must read STATUS and
test the BUSY flag and the OBF flag to verify that
the 8278 has responded to the previous command. A
typical DATA READ sequence is as follows:

BUSY J L

OBF 1-.. __ --11
f

READ DISPLAY FIRST MASTER NEXT
OR FIFO COMMAND DATA BYTE READS DATA BYTE READY

FROM MASTER READY 8278
PROCESSING
NEXT BYTE

After the rust read following a Read Display or Read
FIFO command, successive reads may occur as soon
as OBF rises.

Data Write
The master CPU can write DATA to the 8278 Dis­
play buffers by using the AO, WR and DO-D7 inputs
as follows:

AO.CS 3 ___ V_AL_'D ___JX INVALID

The master CPU presents the Data on the DO-D7
lines with Ao=O and then sends a WR pulse. The
data is latched by the 8278 on the rising edge of WR.

DATA WRITE SEQUENCE

Before writing data to the 8278, the master CPU
must rust send a command to select the desired dis­
play entry mode and to specify the addreBB of the
next data byte. Following the commands, the master
must read STATUS and test the BUSY flag (B) and
mF flag to verify that the 8278 has responded. A
typical sequence is shown below.

~J L
IBF

WRITE DISPLAY 8278 MASTER 8278 8278
COMMAND READY DATA WRITE READY READY

FOR FIRST BYTE
COMMAND MASTER WRITES
OR DATA NEXT BYTE

INTERFACE CONSIDERATIONS
Scanned Keyboard Mode
With N-key rollover each key depression is treated
independently from all others. When' a key is de­
pressed the debounce logic waits for a full scan of
128 keys and then checks to see if the key is still
down. If it is, the key is entered into the FIFO.

If two key closures occur during the same scan the
ERROR output is set, the KE flag is set in the Status
word, the TONE output is activated and IRQ is set,
and no further inputs are accepted. This condition is
cleared ~h signal on the CLEAR input or by a
system RESET input or by the CLEAR ERROR
command.

In the special function mode both the key closure
and the key release cause an entry to the FIFO. The
release is entered with the MSB=1.

Any key entry triggers the TONE output for 10ms.

The HYS and KCL outputs enable the analog multi­
plexer and detector to be synchronized for interface
to capacitive coupled keyboards. '

Data Format
In the scanned keyboard mode, the code entered
into the FIFO corresponds to the position or address
of the switch-in the keyboard. The MSB is relevant
only for special function keys in which code "0" sig­
nifies closure and "1" signifies release. The next four
bits are the col{imn count which indicates which col­
umn the key was found in. The last three bits are
from the row counter.

BIT

Display

6 5 4 3 2 o

1 FOR SPECIAL FUNCTION
MODE AND K~Y RELEASED
o FOR KEY DEPRESSED

Display data is entered into a 16X4 display register
and may be entered from- the left, from the right or

5-746

APPLICATIONS

COUNT

MO

"YS {___--'x'___--Ix'___~X'___~X'___~X'__ _ ___JX___
KCL ll..-------In n n n n nL...-_

RL SAMPLED t t

Figure .5. Keyboard Timing

SCAN CYCLE

IRQ

BP

--------------------~

ERROR

------~----------------------------------~

KEY 1
DEPRESSED

KEY 1 KEY 1
ENTERED READ BY MASTER

KEY 2 KEY 3
DEPRESSED DEPRESSED

Figure 6. Key Entry and Error Timing

DISPLAY
CHARACTER

M3

M4

----------------~

Ms __ ~1

Bo-B3 \\----,1 __----JI \I...-----JI \\-----JI \\-----JI \\----,1 \~ __

Figure 7. Display Timing

5-747

APPLICATIONS

into specific locations in the display register. A new
data character is put out on BO-B3 each time the
M6-M3lines change (i.e., once every O.75ms with a 6
MHz crystal). Data is blanked during the time the
column select lines change by raising the display
outputs. Output data is positive true.

LEFT ENTRY
The left ~ntry mode is the simplest display format in
that each display position in the display corresponds
to a byte (or nibble) in the Display RAM. ADDRESS
o in the RAM is the left-most display character and
ADDRESS 15 is the right-most display character.
Entering characters from position zero causes the
display to fill from the left. The 17th character is en­
tered back in the left-most position and filling again
proceeds from there.

RIGHT ENTRY

Right entry is the method used by most electronic
calculators. The first entry is placed in the right­
most display character. The next entry is also placed
in the right-most character after the display is
shifted left one character. The left-most character is
shifted off the end and is lost.

DISPLAY
2 14 15 0 RAM

1ST ENTRY I I I 11
I ADDRESS

2 3 15 0

2ND ENTRY LLI 1
1 1 2

3 4 0

3RD ENTRY 11 1 2 3 1

0 13 14 15

16TH ENTRY 11 1 2 1141151161

2 14 15 0

17TH ENTRY 1 2 3 1 1151161171

2 3 15 0

18TH ENTRY 1 3 I 4 116117 1 18 1
~-'

Note that now the display position and register ad­
dress do not correspond. Consequently, entering a
character to an arbitrary position in the Auto Incre­
ment mode may have unexpected results. Entry
starting at Display RAM ADDRESS 0 with sequen­
tial entry is recommended. A Clear Display com­
mand should be given before display data is entered
if the number of data characters is not equal to 16 (or
8) in this mode.

AUTO INCREMENT
In the Left Entry mode, Auto Incrementing causes
the address where the CPU will next write to be in­
cremented by one and the character appears in the
next location. With non-Auto Incrementing the en­
try is both to the same RAM address and display po­
sition. Entry to an arbitrary address in the Left
Entry-Auto Increment mode has no undesirable
side effects and the result is predictable:

DISPLAY
023458 RAM

r--,r--r-'-'--'-'--'----'I ADDRESS
1ST ENTRY I 1 .

~~~~~--~~~~ 

o 2 3 4 5 e 

2ND ENTRY LI _1.J1L..2 ...L..--L_-'----'-_-'--'----' 

COMMAND 
10010101 

o 3 4 5 e 

11 121 1 1 1 1 1 1 

ENTER NEXT AT LOCATION 5 AUTO INCREMENT 

0 3 4 5 6 

3RD ENTRY 11 1 2 1 3 

0 3 4 5 e 

4TH ENTRY 
1 ' 1 2 1 3 1 4 1 

In the Right Entry mode, Auto Incrementing and 
non-Incrementing have the same effect as in the Left 
Entry except that the address sequence is inter­
rupted. 

DISPLAY 
3 4 5 e 0 RAM 

1ST ENTRY 11 
1 ADDRESS 

2 3 4 5 e 0 

2ND ENTRY 11 1 2 

2 3 4 5 6 0 
COMMAND 

1 1 1 1 1 1 
11 12 1 

10010101 

ENTER NEXT AT LOCATION 5 AUTO INCREMENT 

3 4 5 e 0 2 

3RD ENTRY 1 3 11 I 2 

4 5 6 0 3 

4TH ENTRY I 3 1 4 11 1 2 

5-748 



APPLICATIONS 

Starting at an arbitrary location operates as shown 
below. 

DISPLAY 
o 234 5 8 7 RAM 

COMMAND 
10010101 

r--T", ,--.-, -,---" ,r--T",--'-, -,---" ,ADDRESS 

ENTER NEXT AT LOCATION 5 AUTO INCREMENT 

2 3 4 5 8 7 0 

1ST ENTRY I 1 I 
2 3 4 6 8 7 0 

2ND ENTRY 11 I 2 I 

81HENTRY I 4 I 6 I 8 I 7 I 8 11 I 2 I 3 I 

91HENTRY I 5 I 8 I 7 I 8 I 9 I 2 I 3 I 4 I 
Entry appears to be from the initial entry point. 

5-.749 



e INTEL CORPORATION, 1983 

APPLICATION 
NOTE 

5-750 

AP-161 

September 1983 

NOVEMBER 1983 
ORDER NUMBER: 230795-001 



inter 
COMPLEX PERIPHERAL 
CONTROL WITH THE 
UPI-42 

AP-161 

5-751 

TABLE OF CONTENTS 

INTRODUCTION 
DOT MATRIX PRINTING 
THE PRINTER MECHANISM 
HARDWARE INTERFACE 
TECHNICAL BACKGROUND 
SOFTWARE 

Introduction 
Functional Overview. 
Memory and Register Allocation 
Description of Functional 

Blocks and Flowcharts 
CONCLUSION 

APPENDICES 
Appendix A. Software Listing 
Appendix B. Printer Enhancements 
Appendix C. Printer Mechanism 

Drive Circuit Schematics 

FIGURES 

1. UPI-42 Pin Configuration 
2. UPI-42 Block Diagram 
3. UPI-41A, 42 Functional 

Block Diagram 
4. Character E in 5 x 7 Dot 

Matrix Format 
5. Carriage Stepper Motor Assembly 
6. Print Head Solenoid Assembly 
I Hardware Interface Block Diagram 
8. Hardware Interface Schematic 
9. UPI-42 and 8243 I/O Port Map 

10. Stepper Motor Step 

n. 
~egl:lence_ Waveforms 
Carriage Stepper Motor 
Step Sequence 

12. Paper Feed Stepper Motor 
Step Sequence 

13. Carriage Stepper Motor 
Drive Timing 

14. Carriage Stepper Motor 
Predetermined Time Constants 

15. Paper Feed Stepper Motor 
Predetermined Time Constants 

16. PTS Lags PT Timing 
11 PTS Leads PT Timing 
18. Components of Print Head Assembly 

Line Motion and Printing 
19. Data Memory Allocation Map 
20. Register Bank 0 

Register Assignment 
21. Register Bank 0 Status 

Byte Flag Assignments 

230795-001 



AP-161 

22. Register Bank 1 
Register Assignment 

23. Register Bank 1 Status 
Byte Flag Assignments , 

24. Program Memory Allocation Map 
25. ASCII Character Code TEST 

Output and Print Example 
26. Carriage Stepper Motor 

Phase/Step Dat~ 

FLOWCHARTS 

1. Main Program Body 
2. Power-On/Reset Initialization 
3. Home Print Head Assembly 
4. External Status Switch Check 
5. Character Buffer Fill 
6. Carriage Stepper Motor Drive 

and Line Printing 
7. Carriage Stepper Motor 

Acceleration Time Storage 
8. Process Characters for Printing 
9. Translate Character-to-Dots 

10. Decelerate Carriage 
Stepper Motor , 

11. Paper Feed Stepper Motor Drive 

Addtional sources of information on Intel's UPI 
devices; 

"UPI User's Manual" 
Includes the following Application Notes; 

Programmable Keyboard Interface 
Using the 8295 Dot Matrix Printer Controller 
An 8741 A/8041 A Digital Cassette Controller 

"8048 Family Applications Handbook" 

"1983 Microprocessor and Peripheral Handbook" 

"MCS-48 and UPI-41A/42 Assembly Language 
Manual" " ' 

"Specifications for Impact Dot Matrix Printer 
Model-3210", Epson, Jan 8,1981 

5-752 230795-001 



AP-161 

INTRODUCTION 
The UPI-42 is the newest member of Intel's Universal 
PeripherarInterface (UPI) microcomputer family. It 
represents a significant growth in UPI capabilities 
resulting in a broader spectrum of applications. The 
UPI-42 incorporates twice the EPROM/ROM of the 
UPI-41 A, 2048 vs 1024 bytes, twice the RAM, 128 vs 64 
bytes, and operates at a maximum speed twice that of 
the UPI-4IA, i.e. 12 MHz vs 6 MHz. The ROM based 
8042 and the EPROM based 8742 provide more highly 
integrated solutions for complex stepping motor and 
dot matrix printer applications. Those applications 
previously requiring a microprocessor plus a UPI chip 
can now be implemented entirely with the UPI-42. 

The software features of the UPI-42, such as indirect 
Data and Program Memory addressing, two inde­
pendent and selectable 8 byte register banks, and 
directly software testable I/O pins, greatly simplify the 
external interface and software flow. The software and 
hardware design of the UPI-42 allows a complex 
peripheral to be controlled with a minimum of external 
hardware. 

TEST 0 Vee 

XTAl1 TEST1 

XTAL2 P27 DACK 

RESET P26 DRO 

55 P25 iiF 

Os P24 1 0 af 

EA 'H 
AD "6 
AO '" 

ViR '1. 

SYNC '13 

DO '" 
0, '" 
02 '10 

03 Voo 

D. 'Roo 
Os '23 

Os '22 

07 '21 

Vss '20 

Figure 1. UPI-42 Pin Configuration 

Many microcomputer systems need real time control of 
peripheral devices such as a printer, keyboard, complex 
motor control or process control. These medium speed 
but still time consuming tasks require a fair amount of 
system software overhead. This processing burden can 
be reduced by using a dedicated peripheral control 
processor 

Until recently, the dedicated control processor approach 
was usually not cost effective due to the large number of 
components needed; CPU, RAM, ROM, I/O, and 
Timer / Counters. To help make the approach more cost 
effective, in 1977 Intel introduced the UPI-41 family of 
Universal Peripheral Interface controllers consisting of 
an 8041 (ROM) device and an 8741 (EPROM) device. 
These devices integrated the common microprocessor 
system functions into one 40 pin package. The UPI-42 
family, consisting ofthe 8042 and 8742, further extends 
the UPI's cost effectiveness through more memory and 
higher speed. 

Another member of the UPI family is the Intel 8243 
Input/Output Expander chip. This chip provides the 
UPI-4IA and UPI-42 with up to 16 additional inde­
pendently programmable I/O lines, and interfaces 
directly to the UPI-4IA/42. Up to seven 8243s can be 
cascaded to provide over 100 I/O lines. 

The UPI is a single chip microcomputer with a standard 
microprocessor interface. The UPI's architecture, illus­
trated in F:igure 3, features on-chip program memory, 
ROM (804IA/8042) or EPROM (874IA/8742), data 
memory (RAM), CPU, timer/counter, and I/O. Spe­
cial interface registers are provided which enable the 
UPI to function as a peripheral to an 8-bit central 
processor. 

U sing one of the UPI devices, the designer simply codes 
his proprietary peripheral control algorithm into the 
UPI device itself, rather than into the main system 
software. The UPI device then performs the peripheral 
control task while the host processor simply issues 
commands and transfers data. With the proliferation of 
microcomputer systems, the use of UPls or slave 
microprocessors to off load the main system micropro­
cessor has become quite common. 

This Application Note describes how the UPI-42 can be 
used to control dot matrix printing and the printer 
mechanism, using stepper motors for carriage/ print 
head assembly and paper feed motion. Previous Intel 
Application Notes AP-27, AP-54, and AP-91 describe 
using intelligent processors and peripherals to control 
single solenoid driven printer mechanisms with 80 
character line buffering and bidirectional printing. This 
Application Note expands on these previous themes 
and extends the concept of complex device control by 
incorporating full 80 character line buffering, bidirec­
tional printing, as well as drive and feedback control of 
two four phase stepper motors. 

The Application Note assumes that the reader is famil­
iar with the 8042/8742 and 8243 Data Sheets, and 
UPI-4IA/42 Assembly Language. Although some back­
ground information is included, it also assumes a basic 
understanding of stepper motors and dot matrix printer 
mechanisms. A complete software listing is included in 
Appendix A. 

5-753 230795-001 



/ 

AP-161 

lD%; 

MASTER 

~1i~, .. 
m;-

" '0 

"'" STATUS 
REGISTER 

{ 

'00 --_ PROM PROGRAM SUPf'lV 

POWER Vee --_ +5'!iUPPLY 

'" --_ GAOU~D 

INTERNAL 

"" 

DATA 
MEMORY 

11\X821(X8 
PROM ROM 
PROGR"" 
t,IIEMQRV 

POR1"4·7 
EXPANDER 
INTERFACE 

TIMEI'I/ 
eVENTCOUMTEfI 

......... " INTl!:AFACE 

Figure 2. UPI-42 Block Diagram 

DOT MATRIX PRINTING 
A dot matrix printer print head typically consists of 
seven to nine solenoids, each of which drives a stiff wire, 
or hammer, to impact the paper through an inked rib­
bon. Characters are formed by firing the solenoids to 
form a'matrix of "dots" (impacts of the wires). Figure 4 
shows how the character "E" is formed using a 5 x 7 
matrix. The columns are labeled Cl through C5, and 
the rows Rl through R7. The print head moves left-to­
right across the paper, so that at time TI the head is over 
column CI. The character is formed by activating the 
proper solenoids as the print head sweeps across the 
character position. 

Dot matrix printers are a cost effective way of provid­
ing good quality hard copy output for microcomputer 
systems. There is an ever increasing demand for the 
moderately priced printer to provide more functional­
ity with improved cost and performance. U sing stepper 
motors to control the paper feed and carriage/ print 
head assembly motion is one way of enabling the dot 
matrix printer to provide more capabilities, such as 
expanded or contracted characters, dot or line gra­
phics, variable line and character spacing, and subscript 
or superscript printing. 

However, stepper motors require fairly complex contol 
algorithms. Previous solutions involved the use of a 

main CPU, UPI, RAM, ROM, and I/O onboard the 
peripheral. The CPU acted as supervisor and used 
parallel processing to achieve accurate stepper motor 
control via a UPI, character buffering via the I/O 
device, RAM, and ROM. The CPU performed real­
time decoding of each character into a dot matrix patt­
ern. This Application Note demonstrates that the 
increased memory and performance of the UPI-42 facil­
itates integrating these control functions to reduce the 
cost and component count. 

THE PRINTER MECHANISM 
The printer mechanism used,in this application is the 
Epson Model 3210. It consists of four basic sub­
assemblies; the chassis or frame, the paper feed mecha­
nism and stepper motor, the carriage motion mecha­
nism and stepper motor, and the print head assembly. 

The paper feed mechanism is a tractor feed type. It 
accomodates up to 8.5 inch wide paper (not including 
tractor feed portion). There is no platen as such; the 
paper is moved through the paper guide by two sprock­
eted wheels mounted on a center sprocket shaft. The 
sprocket shaft is driven by a four phase stepper motor. 
The rotation of the stepper motor is transmitted to the 
sprocket shaft through a series off our red uction gears. 

5-754 230795-001 



AP-161 

I CLOCK I 
1 1 

1024 x 8, 2048 x 8 
8-BITCPU PROGRAM 64x8,128x8 8-BIT 

MEMORY DATA MEMORY TIMER/COUNTER 
(ROM/EPROM) 

, l II II I 
I II II I 

8-BIT 8-BIT 8-BIT 18 DATA BUS DATA BUS STATUS 
INPUT REGISTER OUTPUT REGISTER REGISTER I/O LINES 

, 

I II II 
-

SYSTEM PERIPHERAL INTERFACE 
INTERFACE AND 

I/O EXPANSION 

Figure 3. UPI-41A, 42 Functional Block Diagram 

C1 

R1 

R2 

R3 

R4 

C2 C3 C4 CS 

DODD 
DODD 

RS DODD 
R6 DODD 
R7 

Figure 4. Character E In 5 x 7 Dot Matrix Format 

5-755 

The carriage motion mechanism consists of another 
four phase stepper motor which controls the left-to­
right or right-to-left print head assembly motion. The 
print speed is 80 CPS maximum. Both the speed of the 
stepper motor and the movement of the print head 
assembly are independently controllable in eitherdire<r 
tion. The rotation of the stepper motor is converted to 
the linear motion of the print head assembly via a series 
of reduction gears and a toothed drive belt. The drive 
belt also controls a second set of reduction gears which 
advances the print ribbon as the print head assembly 
moves. 

Two optical sensors provide feedback information on 
the carriage assembly position and speed. The first of 
these optical sensors, called the 'HOME RESET' or 
HR, is mounted near the left-most physical position to 
which the print head assembly can move. As the print 
head assembly approaches the left-most position, a 
flange on the print head assembly interferes with the 
light source and sensor, causing the output of the sensor 
to shift from a logic level one to zero. The right-most 
printer position is monitored in software rather than by 
another optical sensor. The right-most print position is 
a function of the number of characters printed and the 
distance required to print them. 

The second optical sensor, called the 'PRINT TIMING 
SIGNAL' or PTS, provides feedback on carriage 
stepper motor velocity and relative position within a 

230796-001 



AP-161 

PRINT HEAD ASSEMBLY 
TOOTHED DRIVE BELT 

OPTICAL SENSOR 

STEPPER MOTOR 

~ 

REDUCTION GEARS 

Figure 5. Carriage Stepper Motor Assembly 

given step of the motor. The feedback is generated by 
the optical sensor as an "encoder disk"' moves across it. 
Figure 5 illustrates the carriage stepper motor, optical 
sensor, encoder disk and reduction gears, and drive belt 
assembly. The optical sensor outputs a pulse train with 
the same period as the phase shift signal used to drive 
the stepper, but slightly out of phase with it when the 
motor is at a constant speed (see Software Functional 
Block: Phase Shift Data for additional details). The 
disk acts as a timing wheel, providing feedback to the 
UPI software of the carriage speed, position, and opti­
mum position for energizing the print head solenoids. 
The two optical sensors are monitored under software 
and provide the critical feedback needed to control the 
print head assembly and paper feed motion accurately. 
The process of stepper motor drive and control via 
feedback signals is called "closed loop"' stepper motor _ 
control, and is covered in more detail in the software 
discussion. 

The print head assembly consists of nine solenoids and 
.nine wires or hammers. Figure 6 illustrates a print head 
assembly. The available dot matrix measures 9 x 9. This 
large matrix enables the Epson 3210 print mechanism to 
print a variety of character fonts, such as expanded or 

5-756 

contracted characters, as well as line or block graphics 
(see Appendix B, Printer Enhancements). It also facili­
tates printing lower case ASCII characters with "lower 
case descenders."' That is to say, certain lower case 
letters (e.g. y, p, etc.) will print below the bottom part of 
all upper case letters. 

DOT WIRE 

/ 

MAGNETIC POLE MAGNET 

Figure 6. Print Head Solenoid Assembly 

230795-001 



AP-161 

w 

'" <I: 
l: 
U) 
o 
Z 
<I: 
l: 
~ 
Ii: 
o 
Q. 

, ,?'5V 

.... ~--O 'o---J 
ON LINE/SELECT 

ul OATA STROBE 
...J 
...J 

T~ 

UPI-42 

WR T1 

STEPPER MOTOR 
CONTROL 

P40-43 

CONTROL: P50-53 
(CURRENT LIMITING) 

HR OPTICAL SENSOR 

PTJ OPTICAL SENSOR 

PRINT 
MECHANISM 

ORIVE 
CIRCUIT 

<I: 
a: 
~ 
t;; 

P24 P27!--____ --'P'-'-R'-"IN"-T'--H'-'E"'A"'O'--T-'-'R-"I"'G"'G"-ER"----_____ ~ 

P25 
o 
l: P10-17!--------------------' 

PRINT HEAD SOLENOID DATA 

P26~---------------_, 

Figure 7. Hardware Interface Block Diagram 

HARDWARE DESCRIPTION 

Figure 7 shows a block diagram of the UPI-42 and 8243 
interface to the printer mechanism drive circuit. A 
complete schematic is shown in Figure 8. The UPI-42 
provides all signals necessary to control character buf­
fering and handshaking, paperfeed and carriage motion 
stepper motor timing, print head solenoid activation, 
and monitoring of external status switches. 

The Epson 3210 printer mechanism manual recom­
mends a specific interface circuit to provide proper 
drive levels to the stepper motors windings and print 
head solenoids. The hardware interface used for this 

Application Note followed those recomendations 
exactly (see Appendix C, Printer Mechanism Drive 
Circuit Schematics). 

1/0 Ports 
The lower half of the UPI-42 Port 2, pins 0-3, provides 
an interface to the 8243 Ii 0 expander. The PROG pin 
of the UPI-42 is used as a strobe to clock address and 
data information via the Port 2 interface. The extra 16 
110 lines of the 8243 become PORTS 4, 5, 6, and 7 to 
the UPI software. Combined, the UPI-42 and 8243 
provide a total of 28 independently programmable 1/0 
line. These lines are used as follows: 

5-757 230795-001 



inter 

.... 
STROBE 15 

ACK ~ m!d:====tI 

Port 

1 
2 
2 
2 

·4 
5 
5 
6 
6 
7 

No of 
lines 

8 
1 
1 
2 
4 
3 
1 
1 
3 
5 

Bits 

0-7 
6 
7 
4,5 
0-3 
1-3 
0 
1 
0,2,3 
0-3 

\ -

AP-161 

r,--------IJI(MPI!flI!NDh 

PM>------ c.. ~ C .... , ..... 

~ _,.nm .. 

"I""'-------7-7*"-<:w~~+_-- HIt~I(HfI1 

11 
PII 3C ... " ,,, 
" 

.... INTHI!AD "" ... 

"COL IC..'i'r:\r 
L..4--I)o-y)o----- 13ICOL CA 1M . .. 

r 
" .. 

'---------- HTHEADPROGPo 

Figure 8. Hardware Interface Schematic 

1/0 

o 
o 
o 
o 
o 
o 
I 
o 

Description 

Character dot column data to print head solenoids 
(same) 
Print head solenoid trigger 
Host system data transfer handshaking (ACK/BUSY) 

'Carriage & paper feed stepper motors 
Stepper motor select and current limiting 
Paper End sense ' 
Print head trigger reset 
(unused) 
External status switches; (LF, FF, TEST, 

ON/OFF Line) 

Figure 9. UPI-42 and 8243 I/O Port Map 

Note: The notation used in the balance of this Applica­
tion Note, when referring to a port number and a par­
ticular pin or bit, is Port 23 rather than Port 2 bit 3. 

The two printer mechanism optical sensors, discussed 
in the Printer Mechanism discription, are tied to the 
two "Test Input" pins, TO and TI, of the UPI-42 
through a buffer c,ircuit for noise supression. These 
inputs are directly testable in software. 

5-758 230795-001 



AP-161 

Host System Interface 
The host system interfaces to the printer through a 
parallel port to the UPI-42 Data Bus. Four handshak· 
ing signals are used to control data transfer; Data 
Strobe (STBj), Acknowledge (ACK), Busy (BUSY), 
and Online or Select. The Data Strobe line of the host 
parallel port is tied directly to the UPI-42 WRI pin. 
This provides a low going pulse on the UPI-42 WRI pin 
whenever a data byte is written to the UPI-42. The ACK 
and BUSY handshake signals are tied to two UPI-42 
110 port lines for software control of data transfer. The 
"On Line" handshake signal is tied to a single-pole 
single-throw fixed position switch, which externally 
enables or disables character transfer from the host 
system. Characters transmitted to the UPI-42 by the 
host are loaded into the UPI-42 Data Bus Buffer In 
(DBBIN) register, and the Input Buffer Full (lBF) inter­
rupt and UPI-42 status flag are set (see Figure 9. UPI-42 
and 8243 1/0 Ports). 

Stepper Motor Interface 

Port 4 (41-43) of the 8243, provides both carriage and 
paper feed stepper motor phase shift signals to the 
printer mechanism drive circuit. Each of the two 
stepper motors is driven by 2 two phase excitation 
signals (4 phases). Figure 10 shows the wave form for 
each stepper motor. Each signal consists of two compo­
nents (Sig. I AI B & Sig. 2 Cj D) 180 degrees out of 
phase with the other. Each of these signal pairs (AI B & 
Cj'O) is 90 degrees out of phase with the other pair. For 
each signal pair, one port line supplies both halves by 
using an inverter. 

Each of the resulting eight stepper motor drive signals is 
interfaced to a discrete drive transistor through an 
inverter. The emitter of the drive transistor is tied to the 
open collector of the inverter to provide high current 
sinking capability for the drive transistor. Each half of 
the motor winding is tied to the collector of the drive 
transistor (see Appendix C, Printer Mechanism Drive 
Circuit Schematic). 

Each stepper motor requires two current levels for 
operation. These levels are called "Rush" current and 
"Hold" current. Rush current refers to the high current 
required to cause the rotor to rotate within its windings 
as the polarity of the power applied to the windings is 
changing. Each change in the polarity of the power 
applied to the motor windings is called a step or phase 
shift. Hold current refers to the low level of current 
required to stabilize and maintain the rotor in a fixed 
position when the the polarity applied to the windings is 
not changing. Hold current is simply Rush current with 
a current limiting transistor switched in. Switching 
from Hold to Rush current "selects" or enables that 
stepper motor to move with the next step signal output. 
In the balance of. this Application Note, the term 
"select" will be used to refer to turning on Rush curre'nt, 
and "deselect" will refer to switching to Hold currrent. 

5-759 

~ PHASECRA~ 
PHASE CRB : : 
PHASE CRe I I , 
PHASE CRD 

I 
I I L 

CARRIAGE STEPPER MOTOR DRIVE SIGNALS (FORWARD) 

~ PHASELFA~ 
PHASE lFB : : 
PHASE LFC I 

I 
I , 

PHASE LFD I I L 
PAPER FEED STEPPER MOTOR DRIVE SIGNALS 

Figure 10. Stepper Motor Step Sequence 
Waveforms 

Three 8243 port lines are dedicated to the selectl dese­
lect control of the two stepper motors. One line is for 
the paper feed stepper motor, and two lines are for the 
carriage motion stepper motor (80 and 132 column). 
These lines are labeled SLF, 80Col, and 132Col, and are 
8243 PORT 53, 52, and 51, respectively. 

By varying the voltage applied to the stepper motor 
biasing circuit and the current, it is possible to vary the 
distance the motor moves the print head assembly with 
each step. Enabling one of two different voltage biasing 
levels, and changing the timing rate at which the motor 
is stepped, facilitates either 80 ot 132 character column 
printing. Only 80 character column printing is imple­
mented in the software design. Appendix B, Printer 
Enhancements, details the software algorithm for han­
dling 132 character printing. 

Print Head Interface 

A total of eleven 110 lines are used to control the print 
head solenoids and solenoid firing (see Figure 9 above). 
Nine are used for character dot data, one for the Print 
Head Trigger, and one for Reset of the Print Head 
Triggercircuit. Each of the nine character dot data lines 
is buffered by an open collector hex inverter. 

230795-001 



AP-161 

The Print Head Trigger output is tied to the Trigger 
input of a 555 Monostable Multivibrator. The output 
pulse generated by the 555 triggers the print head sole­
noids to fire. The 555 Output pulse width is independ­
ent of the input trigger waveform. The pulse width is 
determined by an RC network across the 555 inputs and 
the voltage level applied to. the Control Voltage 555 
input. The 555 Output is tied to the base of a PNP 
transistor through an inverter, biased in a normally off 
configuration. The PNP transistor supplies enough 
drive to pull up the open collector inverter on each print 
head solenoid line, Port 10-17 and 26. The 555 output 
pulse momentarily enables the print head solenoid line 
open collector inverter output, turning on the solenoid 
drive transistor, and firing the print head hammer. The 
555 Ouput pulse width is approximately 400 us. Further 
details of the print head firing operation can be found in 
the software description below. 

Miscellaneous Interface Signals 

The 8243 Port 5 pin 0 is tied to the Paper End Detector, 
a reed switch located on the printer paper guide. This 
sensor detects when the paper is nearly exhausted. 

Three LED status lights complete the hardware inter­
face design. One status light is used for each of the 
following: Power ON I OFF, OnlOff Line, and Out of . 
Paper. 

BACKGROUND 

Before a detailed discussion of (the software begins, a 
few terms and software functions referenced througb­
out the software need introduction. 

A. What is a Stepper Motor? 

A stepper motor has the ability to rotate in either 
direction as well as start and stop at predetermined 
angular positions. The stepper motor's shaft (rotor) 
moves in precise angular increments foreaeh input step. 
The displacement is repeated for each inp~t step com­
mand, accurately positioning the rotor for a given 
number and sequence of steps. 

The stepper motor controls position, velocity, and 
direction. The accuracy of stepper motors is generally 5 
percent of one step. The number of steps in each revolu­
tion of the shaft varies, depending oil the intended 
application. 

B. Open/Closed Loop Stepper Motor Drive and 
Control 

The carriage stepper motor is closed loop driven. The 
paper feed stepper motor is open loop driven. . 

There are two major types of stepper motor control 
known by the broad headings of open and closed loop. 

Open loop is simply continuous pulses to drive the 
motor at a predetermined rate based on the voltage, 
current, and the timing of the step pulses applied. 
Closed loop control is characterized by continuous 
monitoring of the stepper motor, through feedback 
signals, and adjusting the motor's operation based upon 
the feedback received. 

C. Stepper Motor Drive Phase Shift 
or Step Sequence 

Each change in the polarity of the power applied to the 
motor windings is called a step or phase shift. The 
sequence of the steps or phase shifts, and the pattern of 
polarity changes output to the stepper motor, determines 
the direction of rotation. 

Figure 10 shows the waveforms for each of the two 
stepper motors. Figure 11 lists the step sequence for 
carriage motor clockwise rotation, which moves the 
print head assembly Left-to-Right. Figure 11 also lists 
the step sequence for counterclockwise rotations; the 
print head assembly moves Right-to-Left. Figure 12 
lists the step sequence for the paper feed stepper motor 
clockwise drive. The phase sequence, for either stepper 
motor, may begin at any point within the sequence list, , 
but must then continue in order. 

Step No. A-Step B-Step C-Step D-Step 

1 On Off Off On 

2 On Off On Off 

3 Off On On Off 

4 Off On Off On 

Carriage stepper motor rotates clockwise 
Print head assembly moves from left to right 

Step No. A-Step B-Step C-Step D-Step 

1 On Off On Off 

2 On Off Off On 

3 Off On Off On 

4 Off On On Off 

Carriage stepper motor rotates counter clockwise 
Print head assembly moves from right to left 

Figure 11. Carriage Stepper Motor Step 
Sequence 

5-760 230795-001 



AP-161 

Step No. A-Step B-Step C-Step D-Step 

1 On Off On Off 

2 On Off Off On 

3 Off On Off On 

4 Off . On On Off 

Figure 12. Paper Feed Stepper Motor Step 
Sequence 

C. Acceleration and Deceleration 
of Stepper Motors 

The carriage stepper motor starts from a fixed position, 
accelerates to a constant speed, maintains constant 
speed, and then decelerates to a fixed position. Printing 
may occur from the time and position the print head 
assembly rcaches constant speed, until the time and 
position the print head assembly begins to decelerate 
from constant speed. Whether printing occurs during 
any carriage stepper motor drive sequence is controIled 
by software. Figure 18, below, iIlustrates these com­
ponents of print head assembly line motion. 

Due to inertia, a finite time interval and angular dis-

HR SIGNAL 

PT. 

placement is required to accelerate a stepper motor to 
its fuIl speed. Conversely, deceleration must begin some 
time before the final angular position. The time interval 
and angular displacement of the carriage stepper motor 
translates into the distance the print head assembly 
travels before it reaches a constant speed. The distance 
traveled during acceleration is constant. The distance 
the print head assembly travels during deceleration 
must be the same as the distance traveled during accel­
eration in order to accurately align the character dot 
columns from one line to the next. 

E. Stepper Motor Predetermined 
Time Constant 

Whenever the stepper motor is stepped, or energized, 
the angular velocity of the rotor is greater than the 
constant speed which is ultimately required. This is 
caIled "overshoot." The frictional load of the carriage 
assembly (motor rotor, reduction gears, drive belt and 
print head assembly, or paper feed sprocket shaft and 
wheels) provides damping or frictional load. Damping 
slows the motor to less than the required constant speed 
and is caIled "undershoot" (see Figure 13, Carriage 
Stepper Motor Drive Timing). A constant rate of speed 
is achieved through the averaging of the overshoot and 
undershoot within each step. 

DOT COLUMN 
PRINT 

Tx Tx Tx ~ TSIGNAL 
UNDER· RUNS 

PTe - OVER ACCELERATES. 
NEXT PTc STABILIZES S.M. 

NOTE: PT. MOVES FROM LAGGING 
PTe TO LEADING PTe 

I 

I tnllill t I 
I ·~ ______ ....!.A~C::C::'EL~E:::R~AT':":I~O::'::NC~O'::NT':":R::O::'::L:.::P..:E:::RI:::O:::D----T&P;:;:--~il S.M. STABILIZES 
r T & PTe T LEADS PTe 

PTe = T S.M. OVER ACCEL. T" PTe 

,/ OVERSHOOT ! t 
LCONSTANT SPEED 

UNDERSHOOT 7 Q 

ill 
0. 
(I) 

EQUATIONS: 

PTe = PREDETERMINED TIME CONSTANT 
PTs= T,- TN 

T1 .•. T6 TIME = PTc + Tx 
T,TIME= PTe 
Ta .. · T11 Time = PTc 

figure 13. Carriage Stepper Motor Drive 
Timing 

5-761 

STEP 
SIGNAL 
OUTPUT 

230795·001 



Ap-161 

The Predetermined Time (PT) Constant is the time 
required to average the overshoot and undershoot of 
the particular stepper motor for a desired constant rate 
of speed. The PT also is the time required to move the 
print head assembly a specific distance, acounting for 
both overshoot and undershoot of the stepper motor. 

Changing the Predetermined Time Constant changes 
the angular displacement of the stepper motor rotor, 
this in turn changes the output. Figure 14 lists the Time 
Constants for both standard and condensed character 
printing. Figure 15 lists the paper feed stepper motor 
Time Constants used for various line spacing formats. 
This Application Note implements standard character 
print and paper feed (6 lines per inch) Time Constants,. 
See Appendix B, Printer Enhancements, for details on 
implementing non-standard Time Constants. 

Character mode Predetermined time 

Standard or Enlarged 2.0Sms +10% 
Character -4% 

Condensed Character 4.16ms +10% 
-4% 

Figure 14. Carriage Stepper Molor 
Predetermined Time Constants 

Paper feed pitch 

Paper feed time 
150ms/423mm 
113ms/318mm 
100ms/282mm 

o 12mm(1/21S") 11 pulse 
4 23mm(1/S") 136 pulses 
318mm(1/8") 127 pulses 
2 82mm(1/9") 124 pulses 

Approx S S Imesls (continuous feed) 
Approx 8.8 Imesls (continuous feed) 
Approx 10 Imesls (continuous feed) 

Figure 15. Paper Feed Stepper Motor 
Predetermined Time Constants 

D. Relationship Between PTS and PT 

Figure 13 illustrates how PTS lags PT at the start of 
acceleration, and moves to lead PT as the motor 
achieves constant speed. Figure 13 also illustrates the 
relationship between HR, PTS, PT, acceleration, con­
stant speed, and printing. Figure 16 and 17 illustrate the 
relationship between PTS and PT during acceleration 
and at constant speed. 

5-762 

PTS SIGNAL 

SOLENOID 
DRIVE PULSE 

MOTOR A PHASE 

B PHASE 

C PHASE 

o PHASE 

~.--(PRED TERM.NED TIME) .l..rL" 
I II 

I I~ 
r-i I I 

II 
-.J II 

Figure 16. PTS Lags PT Timing 

PTS SIGNAL 

SOLENOID 
DRIVE PULSE 

MOTOR A PHASE 

B PHAse 

C PHASE 

o PHASE 

~I'AP ::jm •• 1 
(PREDETERMINED TIME) 

_-+ __ ~n SOLENOID DRIVE PULSE (0 4ms 24V) 

i I :!-: ---

I I 
J~-,---

Figure 17. PTS Leads PT Timing 

PTS is the point of peek angular velocity within a step 
of the motor. PTS is a function of the slot spacing on 
the encoder disk, shown in Figure 5. The spacing is 
determined by the mechanics of the printer mechanism. 

When the carriage stepper motor is accelerated from a 
fixed position, the effects of damping slows the angular 
velocity of engergizing the stepper motor. This causes 
PTS to occur after the PT, or PTS lags PT. When PTS 
lags PT, the next step signal is output at PTS rather 
than at PT. If the step signal is outputted at PTS, the 
rotor could be midway through a rotation. Energizing 
the motor at PT could cause it to bind or shift in the 
wrong direction. When the carriage stepper motor is at 
a constant rate of speed, PTS leads PT and the step 
signal is output at PT (see Figure 13).G. Stored Time 
Constants. 

230795-001 



AP-161 

The time between each step, for a constant number of 
steps, required for the motor to reach a constant speed, 
is calculated and stored in Data Memory during accel­
eration. The values stored are used, in reverse order, 
during deceleration as the Predetermined Time (PT) 
Constants. This ensures that the acceleration and decel­
eration distance traveled by the print head assembly is 
the same, and that it accurately aligns character dot 
columns from one line to the next during printing. The 
time values stored are called "Stored Time Constants." 
Steps TI through TIl in Figure 13, represent the Stored 
Time Constants. 

The equations for the Stored Time Constants are given 
at the bottom of Figure 13, Carriage Stepper Motor 
Drive Timing. 

Left-to-Right Printing: 

Acceleration 
Begins 

Constant 
Speed, Printing 
Can Begin 

.. 

H. Print Head Assembly "Home" Position 

The "logical" Horne position for the print head assem­
bly is the left-most position at which printing begins 
(for L-to-R motion) or ends (for R-to-L motion). The 
"physical" Home position is the logical HOME posi­
tion, plus the distance required by the carriage stepper 
motor to fully accelerate the print head assembly to a 
constant speed. Printing can only occur when the print 
head is moving at a constant speed. The printer mecha­
nism manual stipulates eleven step time periods are 
required to ensure the the print head assembly is at a 
constant speed. These eleven step time periods are the 
Stored Time -Constants described above. Figure 18 
illustrates the components of print head assembly line 
motion and character printing. 

Deceleration 
Begins 

I (direction of printing) 

Store Time Output I Constants Stored 
Time Constants 

'I 

Physical Home Space Available For Printing Right-most Physical 
Left-most (HR) Print Right-most 
Position Position Position 

Right-to-Left Printing: 

Output 
Stored 
Constants 

I I Store Time 
Constants 

.. I I (direction of printing) 
Constant 
Speed, Printing 
Can Begin 

Deceleration 
Begins 

Figure 18. Components of Print Head 
Assembly Line Motion and Printing 

5-763 

I 
Acceleration 
Begins 

230795-001 



AP-161 

SOFTWARE 

Introduction 

The software description is presented in three sections. 
First, a brief overview of the software to familiarize the 
reader with the interdependencies and overall program 
flow. Second, data and program memory allocation and 
status register flag definitions. And third, each of the ten 
software blocks is presented with its own flowchart. 

Softwar.e Overview 

The software is written in Intel UPI-4IA/42 Assembly 
Language. A block structure approach is used for ease 
of development, maintance, and comprehension. The 
software is divided into five principal parts. 

I. Initialization 
2. Character Buffering or Input 
3. Stepper Motor Drive and Control 
4. Character Processing 
5. Character Printing or Output 

, MAIN PROGRAM BODY 

CARRIAGE STEPPER MOTOR DRIVE & LINE PRINTING 
(FLOWCHART _6) 

The five principal parts are incorporated into ten soft­
ware blocks, listed below. 

I. Power Onl Reset Initialization 
2. Home Print Head Assembly 
3. External Status Switch Check 
4. Character Buffer Fill 
5. Carriage Stepper Motor Drive and 

Line Printing 
6. Accelerate Stepper Motor Time Storage 
7. Process Characters for Printing 
8. Translate Character-to-Dots 
9. Decelerate Carriage Stepper Motor 
10. Paperfeed Stepper Motor Drive 

Flow Chart No. I illustrates the overall software algo­
rithm. Below, is a description of the algorithm. 

Flow Chart No.1. Main Program Body 

230795-001 



inter AP-161 

Upon power-on or reset, a software and hardware 
initialization is performed. This stablizes and sets inac­
tive the printer hardware and electronics. The print 
head assembly is then moved to establish its HOME 
position. The default status registers are set for charac­
ter buffering, carriage, and paper feed stepper motor 
drive. The External Status switches are checked; 
FORMFEED, LINEFEED, ON/OFF LINE, and 
Character Print TEST. If the printer is ON LINE, the 
software will loop on filling the Data Memory Charac­
ter Buffer. 

Character or data input to the UPI-42 is interrupt 
driven. Characters sent by the host system set the Input 
Buffer Full (IBF) interrupt and the IBF Program Status 
flag. Character input servicing (completed during the 
paper feed and carriage stepper motor drive end Delay 
subroutine) tests for various ASCII character codes, 
loads characters into the Character Buffer (CB), and 
repeats until one of several conditions sets the CB Full 
status flag. Once the CB Full flag is set, further charac­
ter transmission by the host system is inhibited and 
printing can begin. 

The carriage stepper motor is initialized, and drive 
begins forthe direction indicated. The motor is acceler­
ated to constant speed, printable character codes are 
translated to dot patterns and printed (if printing is 
enabled), and the motor is decelerated to a stop. Two 
timing loops gua,rantee both constant speed and protec­
tion (Failsafe Time) against stepper motor burn out due 
to high current overload. The two optical sensors, des­
cribed in the Printer Mechanism section above, are 
constantly monitored to maintain constant speed, and 
trigger print head solenoid firing. 

Once the line is printed and the carriage stepper motor 
drive routine has been completed, a Linefeed is forced. 
The paper feed stepper motor drive subroutine tests the 
number of lines to move, and energizes the paper fe~d 
stepper motor for the required distance. The lines per 
page default is 66; if 66 lines have been received, a 
Formfeed to Top-of-Next-Page is performed. The Top­
Of-Page is set at Power On/ Reset. 

When the EOF code is received, the EOF status flag is 
set. When the last line has been printed, the EOF check 
will force the print head assembly to the HOME posi­
tion. The EOF flag is tested following each Paper Feed 
stepper motor drive. The next entry to the External 
Status Check subroutine begins a loop which waits for 
input from either the external status switches or the 
host system. 

The software character dot matrix used in this applica­
tion is 5 x 7 of the available 9 x 9 print head solenoid 
matrix. Although lower case descenders and block/ line 
graphics characters are not implemented, Appendix B, 
Printer Enhancements, discusses how and where these 
enhancements could be added. The software imple­
ments the full 95 ASCII printable characters set. 

Memory and Register Allocation 

Data Memory Allocation (RAM) 
The UPI42 has 128 bytes of Data Memory. Sixteen 
bytes are used by the two 8 byte register banks (RBO and 
RBI). Sixteen additional bytes are used for the Pro­
gram Stack. The Stored Time Constants utilize II 
bytes, while the stepper motor phase storage requires 4 
bytes. Below is a detailed description of Data and Pro­
gram Memory 

Hex Address Description 

2F·7FH 

25·2EH 

24H 

23H 

22H 

21H 

2," 

18-1FH 

8·17H 

O·07H 

80 Character Line But'er (80 Bytes, 

StoNd Time Constants Bullar (11 Bytes) 

Unused 

Character Print Test ASCII Code 
Starl '&mporary Siorage 

Pseuclo Register PaperfHd Stepper 
Molor Last Phase Indarect Addres, 

Pseudo Reglsler Camage Stepper 
Motor Forward/Reverse La.1 Phase 

Pseudo Register Last Phlse 01 
Stepper Motor Not Being Orlyen 

Regl.ter Bank 1 Character Processing 

8 L.eVflISt;II;:k 

R.glI~ler Bank 0 Stepper Motor 
Forward/Reverse Accelerallon/Drlve 

Figure 19. Data Memory Allocation Map 

Register Bank 0 is used for stepper motor drive functions. 
Register Bank I is used for character processing. Each 
register bank's register assignments is listed in Figure 20 
and 22, respectively. Each register bank has one register 
allocated as a Status Register. Figure 21 and 23 detail the 
Status Register flag assignments. Note that bit 7 of each 
Status Byte is used as a print head assembly motion 
direction flag. This saves coding of the Select Register 
Bank (SEL RBn) instruction at each point the. flag is 
checked. 

Register Bank 0 

Register Program 
Label 

RO ,TmpROO 
R1 • TStrRO 
R2 GStR20 
R3 PhzR30 
R4 CntR40 
R5 TConRO 
R6 LnCtRO 
R7 OpnR70 

Description 

RBO Temporary Register 
Store Time Register 
General Status Register 
Stepper Motor Step Register 
Count Register 
Time Constant Register 
Lme Count Register 
Available, Scratch 

Figure 20. Register Bank 0 Register Assignment 

5-765 ' 230795-001 



inter AP-161 

Bit Definillon 

Accel/Oecelerate Dnve 
Readyc l/NotRdycO 

1 Do Not PnntlO= Pnnt 
1 Form Feed/O= Line Feed 
1 FailSafe/O=Constant MI 

Time Wmdow ,., '~ 

Accei/Oeceleratlon Initialization, 
1 Done/O=Not Done 

Stepper Motor at Speed and 
Print Head Not Left of Home 

1 SynclO=Not Sync'd. Print 
Head Initialize and Fire 

Stepper Motor Direction 
L-to-R-l R-to-LcO 

Figure 21. Register Bank 0 Status Byte 
Flag Assignments 

Register Program Description 
Label 

RO TmpRl0 RBO Temporary Register 
Rl CAdrRl Character Data Memory 

Address Register 
R2 ChStRl Character Processing 

Status Byte Register 
R3 CDtCRl Character Dot Count Register 
R4 CDotRl Character Dot Temporary 

Storage Register 
R5 CCntRl Character Count Temporary 

Register 
R6 StrCRl Store Character Register 
R7 OpnR71 Available/Scratch 

Fig~re 22. Register Bank 1 Register Assignment 

Bit Definition 

,CB Registers 1=lnlttallze 
/0=00 Not Initialize, 

l cCR/(LF)/OcNot CR/(LF) 
Character Buffer 

Fullc l/Not FullcO. 
l cEOF/OcNot EOF 
(unused) 
Character Lookup Table Page 

l cPg 1,OcPg 2 
Character Initialized, 

1 = Done/O=: Not Done 

'--------- Carnage Stepper Motor Direction 
L-to-Rc " R-to-LcO 

Figure 23. Register Bank 1 Status Byte 
Flag Assignments 

Program Memory Allocation (EPROM/ROM) 
The UPI-42 has 2048 bytes of Program' Memory 
divided into eight pages, each 256 bytes, Figure 24 

5-766 

illustrates the Program Memory allocation map by 
page, 

Page 

Page 7 

Page 6 

Page 5 

Page 4 

Page 3 

Page 2 

Page 1 

Hex Address Description 

1792-2047 

, 
1536-1791-

1280-1535 

1024-1279 

768-1023 

51-767 

256-511 

0-255 

Character to Dot Paltern 
l.ookup Table; Page 2: 
ASCII sOH-7EH 

Character to Dot Pattern 
Lookup Table; Page 1: 
ASCII 20H-4FH (sp-M) 

Miscellaneous Subroutines: 
InltAIiAIiOff 
Clear Data Memory 
Home Print Head Assembly 
Character Print Test 
Initialize Carnage Stepper 

Motor 
Delay 

Stepper Motor Deselect 

Paper Feed Stepper 
Motor Drive 

Stepper Motor Step LookUp 
Table(lndexed) 

Character Processmg and 
Translation 

Print Head Firing 

Carnage Stepper Motor 
Acceleration 

Time Calculation and 
Storagp 

Stepper Motor Deceleration 

Carnage Stepper Motor Drive 

Initialization - Jump-an-Reset 
Main Program Body 
External Status SWitch 

Check ' 
Character Buffer Fill 

Figure 24. Program Memory Allocation Map 

Software Functional Blocks 
Below is a decription and flow chart for each of the ten 
software blocks listed above, 

1.· Power-On/Reset Initialization 

The first operational part in Flow Chart No, I is the 
Power-On or Reset Initialization, Flowchart No, 2 
illustrates the Ini'tialization sequence in detail. 

230795-001 



AP-161 

I 

I 

Gp 
OISABLE INTERRUPTS I 

~ 

+ 

RESET PRINT HEAD TRIGGER 
TURN OFF ALL PRINT HEAD SOLENOIDS 

SET PRINT HEAD TRIGGER INACTIVE 
SeT HOST SYSTEM HANDSHAKE ACTIVE 

CLEAR RBO/RB1 STATUS REGISTERS 

CLEAR DATA MEMORY (20H-7FH) I 

I INITIALIZE CARRIAGE AND PAPER FEED STEPPER MOTORS J 
~ 

/ HOME PRINT HEAD ASSEMBLY 
(FLOWCHART #4) 

! 
I IISET DEFAULT REGISTERS AND FLAGS 

1 
I RETURN I 

/ 

I 

Flow Chart No.2. Power-On/Reset Initialization 

Initialization first disables both interrupts. This is done 
as a precaution to prevent the system software from 
hanging-up should an interrupt occur before the proper 
registers and Data Memory values are initialized. 

Initialization then deactivates the system electron­
ics. This is also a precaution to protect the printer 
mechanism and includes the print head solenoid (trigger 
and data) lines and the stepper motor select lines. The 
host system handshake signals are activated to inhibit 
data transfer from the host until the printer is ready to 
accept data. 

Next, Data Memory is cleared from 20H to 7FH. This 
includes; the 80 byte Character Buffer, the II byte 
Stored Time Constants buffer, and the 4 bytes used as 
pseudo registers. The pseud 0 registers are Data Memory 
locations used as if they were registers. They serve as 
storage loacations for step data used in accurately 
reversing the direction of the carriage stepper motor, 
and stablizing either of the stepper motors not being 
driven. 

5-767 

The Data Memory locations OOH through I FH are not 
cleared. These locations are Register Bank 0 (OOH-
07H), Program Stack (OSH-17H), and Register Bank 1 
(ISH-I FH) (see Figure 19). Clearing the Program Reg­
isters or Stack would cause the initialization subroutine 
to become lost. The registers are used from the begin­
ning of the program. Care is taken to initialize the 
registers and stack accurately prior to each program 
subroutine as required. 

Upon power-on, it is necessary to initialize the two 
stepper motors, verify their operation, and locate the 
print head assembly in the left-most 'HOME' position. 
This sequence serves as a system checkout. If a failure 
occurs, the motors are deselected and the external status 
light is turned on. Each stepper motor is selected and 
energized for a sequence of four steps. This serves to 
align 'and stabilize each stepper motor's rotor position, 
preventing the rotor from skipping or binding when the 
first drive sequence begins. 

At the end of each stepper motor's initialization, the last 
step data address is stored in one of the Data Memory 
pseudo registers. The last step data address is recalled at 
the beginning of the next corresponding stepper motor 
drive sequence, and used as the basis of the next step 
sequence. This ensures that the stepper motor always 
receives the exact next step data, in sequence, to garan­
tee smooth stepper motor motion. This also garantees 
the motor never skips or jerks, which would misalign 
the start, stop, and character dot column positions. A 
stepper motor not being driven has its last phase data 
output held constant to stabilize it. 

Following any stepper motor drive sequence of either 
motor, a delay of 30-60 ms occurs by switching the 
current to Hold Current, stabilizing the motor before it 
is deselected. 

2. Home Print Head Assembly . 

At the end of the carriage stepper motor four step 
initialization, the output of the HR optical sensor is 
tested. The level of the HR signal indicates which drive 
sequence will be required to 'HOME' the print head 
assembly. If the print head assembly is to the right of 
HR, HR is high, the print head assembly need only be 
moved to from Right-to-Left until HR is low, then 
decelerated to locate the physical home position. If HR 
is low, the print head assembly must be moved first 
Left-to-Right until HR is high, then Right-to-Left to 
locate both the logical and physical 'HOME' positions. 
In each case, the software accelerates the carriage 
stepper motor, generating the Stored Time Constants 
then decelerates the stepper motor using the Stored 
Time Constants (see Background section above). Flow 
Chart No.3 details the HOME print head assembly 
subroutine. Figures 13 and 18 illustrate the components 
of acceleration and print head assembly line motion. 

230795-001 



inter AP-161 

I 

I 

L 
I 

SCT 00 NOT PRINT STATUS FLAG I 

< HR=1 

+N 
CARRIAGE STEPPER MOTOR DRIVE (L-TO-R) 

"LINE PRINT {FlOWCHARTfi} 

CARRIAGE STEPPER MOTOR DRIVE (R-To-LJ 
"LINE PRINT (flOWCHART #6) 

+ 
CLEAR DO NOT PRINT FLAG I 

J 
I R,TURN I 

/ 

/ 

Flow Chart No.3. HOME Print Head Assembly 

The carriage stepper motor drive subroutines used to 
HOME the print head assembly and to print, are the 
same. A status flag, called Do-Not-Print, determines 
whether the Character Processing subroutine is called. 
The flag is set by the subroutine which calls the Carriage 
Stepper Motor Drive subroutine. Details of the car­
riage and paper feed stepper motor drive and character 
processing subroutines are covered separately below. 

3. External Status Switch Check 

Once the system is initialized and the print head is at the 

HOME position, the software enters a loop which ,:on­
tinually monitors the four external status switches, and 
exits if anyone is active. Flow Chart No.4 details the 
External Status Switch Check subroutine. 

Flow Chart No.4. External Status Switch Check 

If the LINEFEED or FORM FEED switch is set, the 
Paper Feed subroutine is called. The Paper Feed sub­
routine is discussed.in detail below. If the ONLINE 
switch is set, the Character Buffer (CB) Fill subroutine 
is called. 

If the Character Print TEST switch is set, the Data 
Memory Character Buffer (CB) is automatically loaded 
with the ASCJl code sequence, beginning at 20H (a 
Space character), the first ASCII printable character 
code. The software then proceeds as if the CB had been 
filled by characters received from the host system. The 
External Status Switch Check subroutine is exited and 
character printing begins. When the line has finished 
printing, a linefeed occurs (as shown in the main pro­
gram Flow Chart No.1) and the program returns to the. 
External Status Switch Check subroutine. If the TEST 
switch remains active, the ASCII character code is 
incremented and program continues as before. This will 
eventually print all 95 ASCJl printable characters. An 
example of the TEST printer output, the complete 
ASCII character code printed, is shown in Figure 25. 

CHARACTER BUFFER FILL 
(FLOWCHART liS) 

Flow Chart No.4. External Status Switch Check 

5-768 230795-001 
/ 



inter AP-161 

4. Caracter Buffer Fill 

The Character Buffer (CB) Fill subroutine is called 
from three points within the main' program; External 
Status Switch subroutine, and the Delay subroutine 
following the carriage and paper feed stepper motor 
drive subroutines. Flowchart No.5 details the Charac­
ter Buffer Fill subroutine operation. 

C? 
<CHAR-fulI[R BUFFER" 

Y RETURN 

~N 

,.--,,< ""'"~JgR au,,"";> 
y N ~ 

I ENABLE INTERRUPTS I 
~ 

< INPUT BUFFER FULL 
N 

RETURN I 
~ y 

CHARACTER BUFFER "- INITIALIZE CHARACTER 
INITIALIZATION DONE /N BUFFER FILL 

" I DECREMENT CHARACTER I 
BUFFER SIZE 

~ 
< END OF CHARACTER BUFFER , SET EXIT FLAGS 

N 

~ 
< CHARACTER BUFFER PAD , lOAD CB WITH 20H I-

~N 

ACKNOWLEDGE & READ CHARACTER I 
~ 

-< ASCII PR~NTABLE CHARACTER ~ 

< eR OR LF '"l N 

I LOAD CHARACTER INTO I LOAD CB WITH eft 
CHARACTER BUFFER SET CB PAD FLAG 

ENABLE INTERRUPTS 
READ NEXT CHARACTER 

ASSUME IT S LF & IGNORE 

< EOF 

~ N 

SET EOF .. CB FULL FLAGS I 
CLEAR ca PAD FLAG 

~ 
RETURN 

< FORMFEED >vt N 

SET FF & CB FULL FLAGS 
CLEAR CB PAD FLAG 

t 
RETURN 

L LOAD CB WITH 20H I 

DeCREMENT CB ADDRESS 

+ 
CBFULL OR "- RETURN I CBPAC /, 
+ N 

l ENABLE INTERRUPTS J 

l RETUR. I 

Flow Chll!rt No.5. Character Buffer Fill 

The approximate 80 ms total pre-deselect delay at the 
end of each stepper motor drive sequence, 40 ms car­
riage and 40 ms paper feed stepper motor pre-deselect 
delay, is sufficient to load an entire 80 character line. 
Half the CB is filled at the end of printing the current 
line, and the second half is filled at the end of a paper 
feed. There is no time lost in printing throughput due to 
filling the character buffer. 

Character input is interrupt driven. When the IBF 
interrupt is enabled, a transmitted character sets the 
IBF interrupt and IBF Program Status flag. Three 
instructions make up the IBF interrupt service routine. 
This short routine disables further interrupts, sets the 
BUSY handshake line active, inhibiting further trans­
mission by the host, and returns. The subroutine can be 
executed at virtually any point in the software flow 
without effecting the printer mechanism operation. 
Processing of the received character takes place during 
one of the three program segments mentioned above. 
The BUSY line remains active until the character is 
processed by the CB Fill subroutine. 

The CB is 80 bytes from the top of Data Memory 
(30H-7FH). It isa FIFO forforward,left-to-right print­
ing, and a LIFO for reverse, right-to-Ieft, printing. 
Loading the CB always begins at the top, 7FH. One 
character may be loaded into the buffer each time the 
CB Fill subroutine is called. 

The CB is always filled with 80 bytes of data prior to 
printing. If the total number of characters input up to a 
Carriage Return (CR)/Linefeed (LF), does not com­
pletely fill the CB, the CR code is loaded into the CB 
and the balance of the CB is padded with 20H (Space 
Character) until the CB is full. A Linefeed (LF) charac­
ter following a Carriage Return is ignored. A LF is 
always forced at the end of a printed line. When the CB 
is full, the CB Full status byte flag is set and printing can 
begin. 

A LF character alone is treated as a CR/ LF at the end 
of a full 80 character line. This is a special case of a 
printed line and is handled during character processing 
for printing (see No.7, Processing Characters for Print­
ing, below). A Formfeed (FF) character sets the FF 
status byte flag. The flag is tested at each paper feed 
stepper motor drive subroutine entry. 

When the software is available to load the CB with a 
character, entry to the CB Fill subroutine checks three 
status flags; CB Full, CB Pad, and IBF flag. If the CB 
Full flag is set, the program returns without entering the 
body of the CB Fill subroutine. The CB Pad flag will 
cause another Space character to be loaded. If the IBF 
flag is not set, the program returns. If the IBFflag is set, 
the character is read from the Data Bus Buffer register, 
tested for printable or nonprintable ASCII code, and, if 
printable, loaded into the CB. If the character is a 
non-printable ASCII code and not an acceptable 
ASCII control code (CR, LF, FF, EOF), Ii 20H (Space 
Character) is loaded into the CB. C 

Exiting the CB Full subroutine with the CB Full or CB 

~769 230795-001 



AP-161 

Jo"( '''**'.2'' ,t+,-. 01.23456;'89 ' = "(!'HB(l'EFGHI)~LMtIOP('PSTUIIW)-:'l::[ J _ "bede.f"h •.• II., 
.. , '''* t·.~'''' ,t + , -. (11':: 345t: ;"'89 ' = ',7'?HBC r'EFc,H I )~ L~lNOP(lP':' TU' II'I:~','::[ J _ .. bcde. f "h. , 1 lr.n 

'''IU·'.:.'', 't~, '. '31'::3456;"8::> ' ~ '7r:i:'HBCl'E:FGHI)I'L~1tIOP('P'=,1UIII'I::'r'Z[ J _ "bcde.f"h.,llr',I'",o 
'''**,.:;0', ,t+, -. (11..:3456;"1::<9 ' = '7'?HB(['EFGHI II L~lNPPOPSTUIIW:~','::[ ~'_ ,,~cde.f;th ... I!to,no" 
"**'.:;0 " ,t + , -. 'J I..: 34'."'b ;":39 , = '7 ';:'HB' ['EFGH I )1 I. ~1tIOP(lPS TU"~I: :',';::[ J _ .. bede. f "h. , 1 1"'1'"10,", =i 
**'.:.' " 'j +, -'. .) L' ::45':;;"89 ' = '7'?HSf r'E'Fr;'HI )1 L~1tI')P(lP-:, nllll'I:~',::[ J _ "bcde.f "h ... I'!to,no,", oj r 
*:.2 " 'j + ,"'. I11~' :~4'56;"89 ' = '7 '''HBC ['EFGH I I~ L~1tIOP('PS rUIII,I: :','::[ J _ abcde.f "h, , Id",no,", 01 ... ", 
'.:i' " '* t , -. 01:' ~4 '5.~;'89 ' = ': '?HBC ['EFGH I )1 u1tlopnps TIJ' 11·1: :','::[ J _, "bcde. f ",I',,, 1 b',noF =i ... .5t 
~ ... ", '*+' -. (112::4,:,h~.,,:::~=t . ':: '~I~HE:C('EFc:'HI j~ Lt·1t~OP(IP·=.TUII~'l: :',':'[ ] _ ;.bcde.f ::Ih.a. J J b'tno!:: =irEt u 
. I 1*"" -. 111.2 3~ I:;it-:,~:::'::' , = ''';'I}lH8C ['EFGH I J~ Lt'1t40POP':;. TUIIj..~: :','::r ] __ abed€. t" =-h ... 1 J Is'trlcll= =i n:-'t UII 

I 1*+. -. n t:' ::4 '56 ~8';, , =- '~iPHB( r·EFGH 1 J~ LNt~OP'-'P'::.l U1Il·J: :'t':~[ ] ~" :sbcde. f !!IIh.l. 1 ~ l"lnOF =i rEt U' '1.1 

,*+,-. [11 ... ~::4-St.:;-O:~::'1. = '7IPtiB(['r.:FGHIJtLt·1t~OPI"IPo:..:,TUII"~::'I'::[ ]"" 9bcd€.t3h.l._'Jll'lnoi==ir=tu'JI~Joi 

:I: .. , -. ~"11 ... ' ~:4~1~,7"8'~ , ::;:: ';IPH[:([IEt C,HI _If 1 t'ltIOP(IP'~,TUII"J: :',':::( 1 ~bl-:d€.f :;IhJ J J LI'InoF =irEt 1J"1.1M::t 
+ , -. (11 ~~ :: ... 10::;6 ,"::::'~ -: ': 'Pf-iE:'- [,e=r(~H J .It Lt'1t~OF't"IP':',TUI Il,l: :'1',:::[ 1 _ 3bcdl?_f 3h.l. J l b'lnOF =it"=-t I_I' '1.1 H ~:;:: 
• -. ~-11.' :·':P-,t",~::':'-I , "7 '~f!'HE:f l'EFbHl It 1 r'1t~'IPI)F",::::rulll'J: :',':[ 1 ::.bcde.t" :th.l. _, J It,,t"tCiF =irEt U"',I ... ::t::::: 
-"" (11,' .:..j.e;t;; ;--S'~ , :: ',,'toIHnt" ['F::FI-'H 1 )t L 1·1t~rlf"'(IF"::, 1 IJltH: :'.':[ ] _ 9bcde. f :.'d. L _, J ] "II-IC,j::" =i r =-t U' '1.1 ... :::tz C : 
.. 0 1 ~' ":·P-,~':; ,"';~'=t , -" "I~HE-rt L 'F-FI ~H I It L t-1thJPC'f."=:, Tllllt,J: :','::-'[ 1"_ 3Ld::,:k f ;lh • , J 1,·tnOF =i t" =-t U' 'I" .... _ .. =: : J 

n1 ..: 3·~O::;t-; ;-o:::q . -::- ',(hiH( [·e=F(~H 1 .II LI'ltKIF,j-'P'-,T '-""'J: :',':-:[ J -,~",,:-,:f,:::" t 'Jh J , f It'tl"lcti= =II" "-=-t U' 'I.IH '::I::: :.. : J "I 
~11 .. :3,~':.~~~~::::'~ = ";''''H[a"[·FFGH r I~ LI'1t4flF'nF"j. fUIII,J: r','~T J 'Elb('",~I': f ::th L 1 I L I'lne"lj:: =t t" :t U' 11,1 H 'J:::!'": : -j ". 

~L,::dE.t 'Elh.1. J J It'tt 1('1i=" =irE't '-111101101 !.-I'Z C: J... I ! .c::·I'5~:,'::"~ , ~ ,; '~Hf~,'r'Fr,r:,HI II 1 l'ltlClP'W',TU'I!'l: :','::[ ] _ 
.' _:~ ~,,,, ,':'::- ,,' '"HE:r ['I' ~ '-,H 1 If L t'lt IOr"'p'" "11.1' 'I,j: :',::r _ :=tbcd..;. f -.~, I 1 J l"lt-,.:,~ =i I" ":ot I)' It.11-i :::t~ :- : -j '" I" 

:;:: 4 c=:j":; • ~:':::'? :::: ,; '?HE.:( t 'F ~: '-IH 1 J~ Lt'H I'-'F'C'I;":, T II' I~,t: :'I':T 
·1C~j .... ~":'::'':1 -:;: ';1",,,,[:1" ['f F , .. HI _H Lf'1tKlf'(IP'-,:."1 t II'l,l: :'I',=--[ 

~bc,-:te:.f =1hJ J ~ l",noi;:: :o1t".::-t 1_" q.tH:::I';:: (: j '" I "# 
=il",.-d'=i =thlt,l l"'tll-lt-;:::jtEtIP'I.tH._~::;::::j .. , ,-11#* 

'.:~t..~~~::::'=~ ',:;" '71'to1, iElI~ ['FFI IH I II l t,1t~rlF" 'fo-":', 11 II Il,t: :',':T ~bl:-d.:: t =th • , l II'lt ,n~ :o.j t-;:-1' 1.11 'I,'.' ~-r::" t : "~'" I "# $"; 

I ,~'::::9 " '''t ,1:-:'- [IF'F-l J II II l f'1t4r"IF'nt .. ":, r I Illl,J: ;',':'[ ] _ .... b,· de t ~h ~ T l l!'ln, ,j.= ::j t- _=1' I I' 'I,'''' '::I:;' : : : '" I 1/# t-.:! 
,':-::~ - '-~I?Hr:t [IEFI~HI If I t'1t~crF'('f.-'·~,TUllf.I::'I:.~r ] .. -..hcdl?t ~h~ ,1 It'lt-I(',i::'::..jt"Et t.tI 11.111 '::1.:":::-;'" I "*,"*-_:?c' 

":IL,:-,J~ f ~t I ~ I I L t',t II ,i::' ~ t- £1' '}' 11,11-1 '::I:;:' : J~" I "# t".'l 'I 
:=t ' "::. ,- IPHf~I' L IEr C .. H 1 1\ I r'lt~(IF'CIF":, Till Il,J: ",'=-:[] ~Lc:d.=." t :?Ih • .11 L !'It",eli::' =-.j t· _=-t U. '1,1 ... ::,I:;: :: : ::: '" I "#l· _:! " I 

. = '71"'Hf-:r ['t f (,i-! I " I Nt IOPr tfr":, T IIIIL·I: :','::r 1 _ ::.bc-,·h; f 3h L , ~ l"lt"II:';- -11" .=-1' I I' '1.1 ... :.-r:;:: 1-: '" 1 I/#.:l-'~' " 1:1: 

, -:- '71}tH8I.['EFI~HJ It L!·ltK'P(If."-,TlJIIH::·,·,"l 1 " =II- .. -:d':"i .'::Ih .. _,~ 1,'ltll-.j.::-.jt·:tl.'.'"H:.. .. -=:·:~''' III#t-.'l'. '*+ 
:" '~I?HEa- r ·FF CH t Jt L t'lt IrIF'CI"'''~, TUllloI' :',';:--'[ ] ::-.1::.1-:.-1..= f .;Ih i J ~ ll',n.-,j.~ -:j r:;-t 1.1' '1,1 ... ',!::" C : .: '" I I/#:f-.~ 'I '* + , 

':" '~I~H8CI'EFI.:tH [ It lJ'H~1 tF"'f'fr'::.TtlilloJ: :',';:-'[ 'j "_ .=tb,=d':_1 ~t-'i J ~ J I',t-.. :.j·-::it ::01' '" 11,1",:=--;::::: J '" I I/#l-.:!' " .t +. -
·~t'p1-i8C[IEf-I:"H[ It Lf'1t~rl~'I'F'O::'TUII'·t:·,' •. '[ j -=tb.-:d...::t :::ah.l.'~ It'tn'·I~'.:jt :::t.ylll ... ·:':;:: :j,,, 11/#"-,,2', ,,*,-+ -. 

'7@HFa-t'EF:I .. Hl .It l r'1t~I.IF'(IF":, flJIII'f: :'t'::T J __ -..b.:dEf 3h, .1l 11·,1-"-';:: =-h"_=t tll'!"M '.~7::: j '" I nit .. ·s" It+, - _ ' 
IP.HBC r'E F r.H L .It L r'lt IrlF'I-,tr "':, r 1.11 IL,t :',':-"L 1 -=,r'I:-.-t~ t ~h L 1 J ltflt"le.j= ~ t .::. l' 1_1' tid M '::I::::' : : .i '" ,I "# f".::- " ,t ,t , -. 0 
HBI [,roo FI:;'H L It L l'lt~OPI)P': T 11I11,t: :'r'::r] ~t-.. :d.; t ~h • .1l l!,lt"tcd:-:o.j t"::-t til '1.1'" :::I::: ,- : ~ '" I "#"" .:e' '1 I t -I- , -. 01 
[:," ('E F CH [ 't I r'ltKlr'r'p':, I , II 1101: :','::::r 1 :!-il· .. :,je: t ;;;th ~ , I t "tt"tC'F :o11~.=t 1.1 1 'I,' '" '::1= :" : _: '" I 1/# t·.? " 't -+ • '. 6 (t 1::' 
C['F-Fr~H 1 I'" l t'1t~I..IF'CtF":,TIIIIH: :','':[ ] ::tbcd .... t ~h.L..l ~ 1 "tt"tOF =it-:t U' .MH :.:t::: :: : :: ,,' I 11#*,".::- 'I ,t +, -- _ (112 '3 
['FFC,Hl It' t·1t~l)pnp'':,lIJII',I::'I':[ 1 _ ~b,.:,"J.::.t"::th~.1~ 11'1f"tt)~::it"Etu'·I,I ... ':I::.:::r:1,,, 1 "#*._~" 't+ '-- .. (11,::34 
EFGH I n l r'1t~OP(tF'":., TUI't,t :',':-"[ ] _ :::.b c dE'_ t ;lh.l. J l 11'II"U':'i::' =i t- =1' 1.1' 11,1 ... :=-;:: :.. : J '" I "#$ft _~. " 'l i- , .-. (1]::" 34'5 
f-r3 HIJt Lt·1tKIPI-IF"::,TlIll',~::·I';~r 1 _* .3LedEt ~h, lJ l"ltlnF it-=-t II' ".t ... ';;I'':: : j'" IlIttl·.~" ':1:-+ -. OL"::::4-Sr:-
GHI It LI'1t~Of'np'~.TU'IL'J::'I';:'[ J __ 3bcd-=.t .::ah",J ]1'lnclj.·=it-£'I.II",hl~~~(: J'" I "=Mr-.:?', ,t-+ ,"" (11.::"3456;-' 
HT Jt LHtIIIPI-'F":, TUIIf..~: :',';:--,r 1 _ ::.b,-.::IEt" ~h.l. , J It'It"iOf: =it-Et U"IoIH::,I-::':..i '" I 1I#_1-.:? " ,t+, - _ (11.234':,"=.';-':::: 
I .It LI'UKIF'OF'S' lI,I,·t; :','~:r J _. 9bcdc. f .::ah.L J J 1 ",nc,j:: =I t".=t '-II 'I,'''' ~::: :: : J II. I u#..f-,,~ • I '* + , -. (11 23456;-':3'3 
,I. l Mtlbpftf.-"-:flJ11f..1: :','2:[ -I _ =.!bcd~f 9h.l. J I 11'1t"lOF ::it-.=-' U. ''''H:.:I::;"::i '" ,I "#j-,,:! " '. 1-, -. 01.234'567"89 
"'LNt~OPI"IF'STIIII~'J::','::C ] -_" Esbc:de.f9h.L.l~,]I'lnClj:::=ir?1'I"""H'::I::::::..i'" I 1t1t.f-_~', ,tt ,-. 01:::':345t57";39 . 
Lt'1tIOPC'P'~,TLUlt'I::'I'::C J _ ::.bcdl:..f:ghL l~ 11'lnQF=irEtu"II"':::I:;::::C:-:,,, I "#,f-_:? 'I '.-+ ,MM • .::t123451:57'"89 ,'" 
Muopnp':. T U1Il'J: :','':( J _ ::.t-<cde. f :!Ih.l. .1 J 11'lt ,elF :::j t* =' U' '1,1 ... ::t:;:::: :" : ] II. I "#l" _~ 'I ,++ "". 01:': 34'51:57"89 ' -= 

Figure 25. ASCII Character Code TEST 
Output and Print Example 

Pad flag set does not re-enable IBF interrupts or reset 
the BUSY line. If neither of these flags is set, exiting the 
CB Fill subroutine sets BUSY inactive and IBF inter­
rupts are enabled. Once the CB Full status byte flag is 
set, IBF interrupts are disabled until the CB has been 
entirely emptied, the line printed, or the system Reset. 

5. Carriage Stepper Motor Drive and Line Printing 

The carriage stepper motor drive subroutine controls 

both L-to-R and R-to-L print head assembly motion,' 
Upoq entering the subroutine, the HR signal level is 
tested to determine the direction of print head assembly 
motion and the Direction status flag is set. The default 
control register values are loaded and balance of the 
default status flags are set for stepper motor control and 
character processing. The default control register values 
inClude PT and the step sequence look-up table start 
address for the direction indicated, 

5-770 230795-001 



-inter AP-161 

The direction flag is tested throughout the carriage 
stepper motor drive and character processing subrou­
tines. This enables the same subroutines to control 
activities for either direction, simplifying and shorting 
the overall program. Flow Chart No.6 illustrates the 
,carriage stepper motor drive subroutine. 

lETUP NEXT lTEP DUA Ttl OUTPUT 
INITIALIZE 11M! CONSTANT RI!GISTER 
Sl!LeCTCAARWlEITEPPERMOTCIfI 

Flow Chart No.6. Carriage Stepper 
, Motor Drive/Line Printing 

Next, the carriage and paper feed stepper motor step 
data is initialized. The last step data output to the paper 
feed stepper motor is loaded into the Last Phase pseudo 
register. This data is masked with each step data output 
to the carriage stepper motor. Masking the step data in 
this manner guarantees the paper feed motor signals do 
not change as the carriage stepper motor is being 
driven. 

Figure 26 illustrates the carriage stepper motor step 
sequence verses the actual step data output for clock­
wise rotation, Left-to-Right motion, and counterclock­
wise rotation, Right-to-Left print head assembly 
motion. An eight step sequence is depicted in the figure. 
Note that the sequence for Right-to-Left motion is the 
reverse ofthe sequence for Left-to-Right motion. Note 
also, that for the L-to-R sequence step 4 is the same as 
step 0, step 5 the same as step I, etc., through step 7 
matching step 3. The four step sequence simply repeats 
itself until the motor is stopped via the Deceleration 
subroutine. 

L-to-R Phase/Step R-to-L BCD 
Motion Data Motion 

Sequence (3210) Sequence (3210) 

0 1001 7 0000 
1 1010 6 0001 
2 0110 5 0010 
3 0101 4 0011 

4 1001 3 0100 
5 1010 2 0101 
6 0110 1 0110 
7 0101 0 0111 

Figure 26. Carriage Stepper Motor 
Phase/Step Data 

When the carriage stepper motor is driven for a specific 
direction of print head assembly motion, the step 
sequence must be consistant for the motion to be 
smooth and accurate. The same holds true for the tran­
sition from one direction of motion to the other. Since 
the sequence for one direction is the opposite for the 
other d~rection, incrementing the sequence for {,-to-R 
and decrementing for R-to-L provides the needed step 
data flow. For example, referring to Figure 26, if the 
print head assembly moved L-to-R and the last step 
output was#l, the first step for R-to-L motion would be 
#7. Thus, when the carriage stepper motor is initialized 
for a clockwise (L-to-R) or counterclockwise (R-to-L) 
rotation, the last step sequence number is incremented 
or decreinc;nted to obtain the proper next step. In this 
way, the smooth motion of the stepper mC?tors is 
assured. 

The step data is referenced indirectly via the step 
sequence number. The step data is stored in a Program 
Memory look-up table whose addresses correspond to 
the step sequence numbers. For example, as shown in 

5-771 230795-001 



AP-161 

Figure 26, at location 0 the step data "1001" is stored. 
This method is particularly well suited to the UPI-42 
software. The UPI-42 features a number of instructions 
which perform an indirect move or data handling oper­
ation. One ofthese instructions, MOVP3 A,@A, unlike 
the others, allows data to be moved from Page 3 of 
Program Memory to any other page of Program 
Memory. This instruction allows the step data to be 
centrally located on Page 3 of Program Memory and 
accessed by various subroutines. 

Each time the carriage stepper motor step data is out­
put, the step data lookup table address is incremented 
or decremented, depending upon the direction of rota­
tion, and tested for restart of the sequence. The address 
is tested becaus,e the actual step data, Figure 26, is not a 
linear sequence and thus is not an easily testable condi­
tion for restarting the sequence. The sequence number 
is tested for rollover of the sequence count from 03H to 
04H and clockwise motor rotation via the Jump on 
Accumulator Bit instruction (JBn), with OOH loaded to 
restart the sequence. The same bit is tested when decre­
menting the sequence count for counterclockwise motor 
rotation, R-to-L motion, because the count rolls over 
from OOH to OFFH, with 03H loaded to restart the 
sequence. 

At this point the UPI-42 Timer/ Counter is loaded, the 
step signal is output, and the timer started. The next 
step data to be output has been determined and the 
At-Speed flag is tested for entry to one of two subrou­
tines; Stepper Motor Acceleration Time Storage or 
Character Processing. 

The first entry to the Acceleration Time Storage sub­
routine initializes the subroutine and returns. All other 
entries to one of the two subroutines perform the neces-

. sary operations, detailed below (Blocks 6 and 7), and 
, returns. The program loops until the PT times out or the 

PTS level change is detected. PTS is tied to TO' of the 
UPI-42. The level present on TO is directly tested via 
conditional jump instrunctions. The software loops on 
polling the timer Time Out Program Status flag and the 
TO input level. 

As described in the Background section above (shown 
in Figure 13), ifPT times out before PTS is detected, the 
software waits for PTS before outputing the next step 
signal. If PT times out before PTS, a second timer 
count value is loaded into the UPI-42 timer. The timer 
value is called "Failsafe."This is the maximum time the 
stepper motor can be selected, with no rotor motion, 
and not damage the motor. If PTS is not detected, 
either the carriage stepper motor is not rotating or the 
optical sensor is defective. In either case, program excu­
tion halts, the motor is deselected, and the external 
status light is turned on to indicate a malfunction. A 
system reset is required to recover from this condition. 
The Failsafe time is approximately 20 milliseconds, 
including PT. 

The Failsafe time loop also serves as a means of track­
ing the elapsed time between PT time 'out and PTS. 

5-772 

Entry to the Failsafe time loop sets the Failsafe/ Con­
stant Time Window status flag. This flag is tested by the 
Acceleration Time Storage subroutine for branching to 
the proper time storage calculation to be perform (see 
Figure 13 and Block 6 below for further description). 

During the Failsafe timer loop, if PTS is detected and 
verified as true, the Failsafe timer value is read and 
stored in the Time Storage register. This value is used 
during the next Acceleration Time Storage subroutine 
call to calculate the Stored Time Constant (see Block 6 
below). If PTS is invalid, the flow returns to the timer 
loop just exited, again waiting for PTS or Failsafe time 
out. 

During the PT time loop, if PTS is detected and veri­
fied, the Sync flag is tested for entry to the print head 
solenoid firing subroutine. This'flag is set by the first 
entry to the Character Processing subroutine. The flag 
synchronizes the solenoid firing with character process­
ing. Only if characters are processed for printing will 
the solenoids be enabled, via the Snyc flag, for firing. 
This prevents 'the solenoids from being fired without 
valid character dot data present. 

As described in the Background section "Relationship 
Between PTS and PT," PTS is the point of peek angular 
velocity within a step of the motor. After PTS is 
detected the motor speed ramps down, compensating 
for the overshoot of the rotor motion. PTS is the opti­
mum time for pHnt head solenoid firing, as shown in 
Figure 13. This is the most stable point of motor rota­
tion and, thus, the. print head assembly motion. If PTS 
is detected during PT, printing is enabled, the Sync flag 
is set, and the solenoid trigger is fired. 

The firing of the solenoid trigger, following PTS, is very 
time critical. The time between PTS and solenoid firing 
must be consistant for accurate dot column alignment 
throughout the printed line. The software is designed to 
meet this requirement by placing all character process­
ing and motor control overhead before the solenoid 
firing subroutine is called. The actual instruction 
sequence which fires the print head solenoid trigger is 
plus or minus one instruction for any call to the 
subroutine. 

Once the timer loop is complete, the software tests for 
Exit conditions. If the Exit conditions fail, the software 
loops to output the next step signal, starts the PT timer, 
and continues to accelerate the carriage stepper motor, 
or proces's, and print characters. If the Exit test is true, 
the carriage stepper motor is decelerated to a fixed 
posit\on, and the program returns to the main program 
flow (see Flowchart I). 

The exit conditions are different for the two directions 
of print head assembly motion-:- For L-to-R printing, if a 
Carriage Return (CR) character code is read from CB, 
the carriage stepper motor drive terminates and the 
motor is decelerated to a fixed position. There are two 
conditions for terminating carriage stepper motor drive 
upon detecting a CR during L-to-R motion. Ifless than 
half a character line (40 characters) has been printed, 

230795-001 



inter AP-161 

the print head assembly returns to the HOME position 
to start the next printed line. Otherwise, the print head 
assembly continues to the right-most position for a full 
80 character line, and then begins printing the next line 
from R-to-L. R-to-L printing always returns the print 
head assembly to the HOME position before the next 
line is printed L-to-R. When HR is high, character, 
printing always stops and the carriage stepper motor 
drive subroutine exits to the deceleration subroutine. 

6. Accelerate Stepper Motor Time Storage 

As described above, when the carriage stepper motor is 
accelerated the step time required to guarantee the 
motor is at a constant rate of speed translates to a 
specific distance traveled by the print head assembly 
(see Figure 18).' In order to position the print head 
assembly accurately for bi-directional printing, the dis­
tance traveled during deceleration must be the same as 
during acceleration. The Carriage Motor Acceleration 
Time Storage subroutine calculates the step times 
needed to accelerate the carriage stepper motor, and 
stores them in Data Memory for use as PT during 
deceleration. 

The first call of the Carriage Stepper ¥otor Accelera­
tion Time Storage subroutine initializes the required 
registers and status flags. The time calculation begins 
with the second carriage stepper motor step signal out­
put. The program returns to the carriage stepper motor 
drive subroutine and loo"ps on PT. Each subsequent call 
of the Acceleration Time Storage subroutine tests the 
Failsafe/ Constant flag and branches accordingly (see 
Flow Chart 7). The Acceleration Time Storage subrou­
tine has two parts which correspond to PTS leading or 
PTS lagging PT. 

9 
rv< TIME STORAGE INITIALIZATION DONE ;> 

~N 

I INITIALIZE TIME STORAGE REGISTERS J 
I 
t 

r;;< TIME STORAGE DONE 

P 
;:. 

I INITIALIZE CHARACTER PROCESSING J REGISTERS 

t 
< FAILSAFE TIME WINDOW ENTERED 

~ ~Y 

If the Failsafe/ Constant flag is set, PTS lagged PT. The 
time from PT time out to PTS, Tx (see Figure 13), must 
be added to the PT and stored in Data Memory. As 
described above, if PT lagged PT, the Failsafe time is 
loaded and PTS is again polled during the time loop. 
When PTS occurs within the Failsafe time, the timer is 
stopped and the timer value stored. The UPI42 timer is 
"an up timer, which means that the value stored is the 
time remaining of the Failsafe time when PTS occured. 
The elapsed time must be calculated by subtracting the 
time remaining (the value stored) from the Failsafe time 
constant. This is done in software by using two's 
complement arithmetic. If the Failsafe flag is not set 
PTS led PT, and PT is the Stored Time Constant stored. 

Indirect addressing of Data Memory is used to reference 
the Stored Time Constant Data Memory location. The 
Data Memory location address is decremented each 
time the Acceleration Time Storage subroutine is exited 
and a Stored Time Constant has been generated. 

The last Acceleration Time Storage subroutine exit sets 
the At-Speed status flag and initializes the character 
processing registers and flags. 

3. Process Characters for Printing 

The CharaCter Processing subroutine is entered only if 
the Home Reset (HR) optical sensor signal is high and 
printing is enabled. Otherwise, the software simply 
returns to the Carriage Stepper Motor Drive subrou­
tine. There are two cases when printing is not enabled; 
during the HOME subroutine operation, and when the 
print head assembly returns to the HOME position 
after printing less than half an 80 character line. If 
printing is enabled, the Sync status flag is set. 

I CALCULATE TIME TO STORE I I STORE PT J 

All character processing operations use the second UPI-
42 Data Memory Register Bank, RBI. Register Bank I 
is independent of Data Memory Register Bank 0, used 
for stepper motor control. The use oftwo independent 
register banks greatly simplfies the software flow, and 
helps to ensure the accuracy of event sequences that 
must be handled in parallel. Each register bank must be 
initialized only once for any entry to either the Carriage 
Stepper Motor Drive or Character Processing subrou­
tines. A single UPI42 Assembly Language instruction 
selects the appropriate register bank. Initializing the 
character processing registers includes loading the max­
imum character count (80), dot matrix size count (6), 
and CB start address. The CB start address is print 
direction dependant, as described in Block 4, above. 

(PT + TX) REseT FAILSAFE FLAG 

I I 
+ 

I DECREMENT DATA MEMORY ADDRESS I ./ DECREMENT STEPS TO SOTAE COUNT 

~ 
I RETURN J 

Flow Chart No.7. Carriage Stepper Motor 
Acceleration Time Storage 

Character processing reads a character from the CB, 
tests for control codes, translates the character to dots, 
and conditionally exits, returning to the Carriage 
Stepper Motor Drive subroutine. Flow Chart 8 details 
the character processing subroutine. 

5-713 230795-001 



inter AP-161 

RETURN 

Flow Chart No.8. Process Characters for Printing 

Each character requires six steps of the carriage stepper 
motor to print; five for the 5 character dot columns and 
I for the blank dot column between each character. 
Reading a character from the CB and character-to-dot 
pattern translation takes place dllring the last character 
dot column, or blank column, time. 

The first character line entry to the Character Process­
ing subroutine appears to the software as if a last char-

acter dot column (blank column) had been entered. The 
next character, in this case the first character in the line, 
is translated and printing can begin. This method of . 
intiializing the Character Processing subroutine utilizes 
the same software for both start-up and normal charac­
ter flow. Once a character code has been translated to a 
.dot matrix pattern starting address in the look-up table, 
all subsequent entries to the Character Processing sub­
routine simply advance the dot column data address 
and outputs the data. 

The decision to translate the character to dots during 
the blank column time was an arbitary one. As was the 
choice of the blank column following rather than 
preceding the actual character dot matrix printing. 

4. Translate Character-to~Dots 

Character-to-dot pattern translation involves convert­
ing the ASCII code into a look-up table address, where 
the first of the five bytes of charcter dot column data is 
stored. Thehaddress is then incremented for the next 
column of dot pattern data until the full character has 
been printed. 

The dot pattern look-up table occupies two pages, or 
approximately 512 bytes of Program Memory. A prin­
table ASCII character is tested for its dot pattern loca­
tion page and the offset address, from zero, on that 
page. Both the page test and page offset calculations use 
two's complement arithmetic, with a jump on carry or 
not carry causing the appropriate branching. Once the 
pattern page and address are determined the indirect 
addressing and data move instructions are used to read 
and output the data to the print head solenoids. Flow­
chart 9 details the Character-to-Dots Translation sub­
routine. 

In the case of R-to-L printing, although the translation 
operation is the same, the character is printed in 
reverse. This requires that the character dot pattern 
address be incremented by five, before printing begins, 
so that the first dot column data output is the last dot 
column data of the character. The dot pattern look-up 
table address is then decremented rather that incre­
mented, as in L-to-R printing, for the balance of the 
character. Translation still takes place during the last 
character dot column, the blank column,and the blank 
column follows the character matrix. 

Only one control code, a Carriage Return (CR), is. 
encountered by the character translation subroutine. 
Linefeed (LF) characters are stripped offby the CB Fill 
subroutine. If a CR code is detected the software tests 
for a mid-line exit condition; less than half the line 
printed exits the stepper motor drive subroutine and 
HOMEs the print head assembly before printing the 
next line. If the test fails, more than half the line has 
been printed, the CR is replaced by a 20H (Space char­
acter) and printing continues for the balance of the line; 
the space characters padding the CB are printed. 

5-774 230795-001 



inter AP-161 

< ASCII CHARACTER ~ 
'----r------" N I 

~'_~H~"~'~O'~'l,.7E'~'~,.~":O~~~N~----~ 

I SET DO NOT PRINT FLAG I 
SET EOLN FLAG 

I 

REPLACE CR WITH 10K J 

TEST CHAAACTEA DOT PAGE J 
SET PAGE FLAG 

COMPUTE CHARACTER PAGE ADDRESSDFFSET 

I 
~r-:-:~' '~O:,:-1" ::::"N-:-::c"N:::G ::->---, 
I [ADJUST OFfSET ADDRESS 

SET CHARACTER I~ITIALIZATION FLAG 

I 

FlowChart No.9. Translate Character-to-Dots 

As mentioned above, the character dots are printed and 
the print head trigger is fired when the PTS signal is 
detected and verified and the carriage stepper motor is 
At Speed. 

When the character to print test fails the CB Buffer size 
count equals zero, the Carriage Stepper Motor Drive 
subroutine exit flags are set, and the flow passes to the 
Deceleration and Delay subroutines and programs 
returns to the main program flow. 

9. Decelerate Carriage Stepper Motor 

The transition from 'the Carriage Stepper Motor Drive 
subroutine to the Deceleration subroutine outputs the 
next step signal in sequence, and then initializes the 
Deceleration subroutine registers; Stored Time Con­
stants Data Memory buffer end address and size. The 
Stored Time Constant Buffer is a LIFO for deceleration 
of the carriage stepper motor. The buffer size is u.sed as 
the step count. When the step count decrements to zero, 
the step signal output is terminated, and the last step 
sequence number is stored in the carriage stepper motor 
Next Step pseudo register. The last step sequence 
number is recalled, during initialization of the next 
carriage stepper motor drive, as the basis of the next 
step data signal to be output. See Flow Chart 10. 

5-775 

RESTART SEQUENCE 

Flow Chart No. 10. Decelerate Carriage 
Stepper Motor 

When the carriage stepper motor is decelerated, Fail­
safe protection and PTS monitoring are not necessary. 
The Deceleration subroutine acts as its own failsafe 
mechanism. Should the stepper motor hang-up, the 
subroutine would exit and deselect the motor in suffi­
cient time to protect the motor from burnout. Since 
neither Failsafe nor print head solenoid firing take 
place during deceleration, PTS is not needed. PT is 
replaced by the Stored Time Constant values in Data 
Memory. The Deceleration subroutine determines the 
next step signal to output, loads the Timer with the 
Stored Time Constant, starts the UPI-42 Timer, and 
loops until time out. The subroutine loops to output the 
next step until all of the Stored Time Constants have 
been used. The program returns to the Carriage 
Stepper Motor Drive subroutine and the motor is dese­
lected following the Delay subroutine execution. The 
Delay subroutine is called to stablize the stepper motor 
before it is deselected. During the DELAY subroutine, 
the I BF interrupt is enabled and characters are pro­
cessed. A paper feed is forced following the carriage 
stepper motor being deselected. 

10. Paper Feed Stepper Motor Drive 

The paper feed stepper motor subroutine outputs a 
predefined number of step signals to advance the paper, 
in one line increments, for the required number oflines. 
The number of step signals per line increment is a func­
tion of the defined number of lines per inch, given the 
distance the paper moves in one step. Figure 16 lists 
three step (or pulse) count and line spacing configura-

230795-001 



AP-161 

tions, as well as the distance the paper moves in one 
step. Standard 6 lines per inch spacing has been imple­
mented in this Application Note (Appendix B details 
how variable line spacing could be implemented). 
Flowchart II illustrates the Paper Feed subroutine. 

Flow Chart No. 11. Paper Feed Stepper Motor 
. Drive 

The number of lines the paper is to be moved is called 
the "Line Count." The Line Count defaults to one 
unless the Formfeed flag is set, or the total number of 
lines previously moved equals a full page. The default 
total lines per page for this application is 66. When the 
total number of lines moved equals 66, the paper is 
moved to the top of the next page. The Top-of-Page is 
set at power-on or reset. 

If the Formfeed flag has been set in the Character Buffer 
Fill subroutine, the software calculates the number of 
lines needed for a top of next page paper feed. The 
resulting line count is loaded in the Line Count Regis­
ter. The Paper Feed subroutine loops on the line count 
until done and then returns to the main program body. 

Once the Paper Feed subroutine is complete, the soft­
ware loops to test the End of File (EOF) Flag (see 
Flow Chart I). If EOF is set, the print head assembly is 
moved to the HOME position, the program again 
enters the EXlternal Status Switch Test subroutine, and 
begins polling the external status switches. If EOF is not 
set, the program directly calls the External Status 
Switch Check subroutine, and the program repeats for 
the next line. 

CONCLUSION 
Although the full speed, 12 MHz, of the UPI-42 was 
used, the actual speed required is approximately 8-9 
MHz. 1400 bytes of the available 2K bytes of Program 
Memory were used; 500 bytes for the 95 character 
ASCII code dot pattern look-up table, 900 bytes for 
operational software. This means that the UPI-42 has 
excess processing power and memory space for imple­
menting the additional functions such as those listed 
below and discussed in Appendix B. 

Special Characters or Symbols 
Lower Case Descenders 
Inline Control Codes 
Different Character Formats 
Variable Line Spacing 

The software developed for this Application Note was 
not fully optimized and could be further packed by 
combining functions. This would require creating 
another status register, which could also serve to 
implement some of the features listed above. Since the 
full 16 byte stack is not used for subroutine nesting, 
there are 6-8 bytes of Program Stack Data Memory that 
could be used for this purpose. In several places, extra 
code w.as added for clarity of the Application Note. For 
example, each status byte flag is set with a separate 
instruction, using a equate label, rather than setting 
several flags simultaneously at the same point in the 
code. 

This Application Note has demonstrated that the UPI-
42 is easily capable of independently controlling a com­
plex peripheral device requiring real time event moni- . 
to ring. The moderate size of the program required to 
implement this application attests to the effectiveness of 
the UPI-42 for peripheral control. 

230795-001 



AP-161 

APPENDIX A. 
SOFTWARE LISTING 

1 SMOD42 TITLE('UPI 42 APP NOTE'); 
2 $MACROFILE NOSYMBOLS NOGEN DEBUG 
3 
4 $INCLUDE(:FI:ANECD.OV1) 

= 5 PG 
6 
7 

= 8 
9 

= 10 
= 11 
= 12 

13 
14 

= 15 
16 
17 
18 
19 

= 20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Complex Peripheral Control With the UPI-42 

Intel Corporation 
3065 Bowers Avenue 
Santa Clara, Ca. 95051 

Written By Christopher Scott 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
Notes and Comments 

Three Assembly Language files comprise the full Application 
Note SOUTee code;. 

ANECD.OVI App Note E~uates, Constants, Declarations. Overlay 

2. 42ANC.SRC UPI-42 App Note Code Source 

3 CHRTBL.OVI Character Table Overlay (Character Lookup Tables) 

= 34 PG 
35 

= 36 
37 
38 

= 39 
40 

= 41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

* * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * Equates, Constants and System Definltions 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Data & Program Memory Allocations 
Program Memory 
Page No. Hex Addr 

Page 7 

Page 6 

Page 5 

Page 4 
Page 3 

Page 2 

Page 

Page 0 

1792-2047 

1536-1791 

1280-1535 

1024-1279 
768-1023 

512-767 

256-511 

0-255 

Description 

Char to Dot pattern lookup table 
Page 2. ASCII 50H-7FH (N-~) 

ChaT' to Dot pattern lookup table 
Page 1: ASCII 20H-4FH (sp-M) 

Mise called routlnes: 
Ini tAl/AllOH 
Clear Data Memory 
CR Home 
Cha~ Print Test - load Ascii char codes 
Initial,.e CR Stpr Mtr 
Delay short/long/very long 
Stpr Mtr deselect 

PaperFeed Stpr Mtr Init and Drive 
Stpr Mtr Phase LookUp Table - Indexed 
Character Translation and processing 
PrintHead firing 
Stp~ Mtr Accel. Time calc. and me~orization 
Stpr Mtr DeceleratIon 
SMDriv (FAccel/RAccel) - Forward & Reverse 

Stpr Mtr acceleration & drive 
Initiaization ~mp-on-Reset 
Program Bod~ - all calls 
Character Input test and Cha~ Buffer fill loop 
Interrupt service routines 

5-777 



inter 

0050 
00D9 

007F 
0080 
002F 
0051 

002F 
OOOB 
OOOA 
002F 
0025 
007F 
005D 

0020 
0021 
0022 
0023 

0000 
0001 
0002 
0003 
0004 

0005 
0006 

0007 

AP-161 

= 71 PG 
72 , ---------------------------------------------------------------------------

= 73 Data Memory 
74 
75 
76 , 
77 
78 
79 
80 
81 
82 
83 
84 
85 , 
86 
87 
88 
89 
90 

TOP 

Dec, 

48-127 
37-47 

36 
35 
34 
33 
32 

24-31 
8-23 
0-7 

Hex 

2F-7FH 
25-2EH 

24H 
23H 
22H 
21H 
20H 

18-1FH 
8-17H 
0-07H 

Description 

80 Characte~ Line Buffer 
Stpr Mtr Accel/Decel time, memorization­
lInused 
Char Print test ASCII code start tmp store 
LF SM last Phz Inderect Addr psuedq reg 
CR SM Forward/ReveT'se last Phz psuedo reg 
Psu~o Reg: Last Phase of stpr mtr not 

beIng driven 
Register Bank I: Character Handling 
8 Level Stack 
Reg iste" Bank O' Stpr Mtr FIR Accel/Dr,ve 

91 
92 
93 

BOTTOM 

94 
95 
96 CHBFSZ 
97 HlfCp I 
98 
99 

= 100 
= 101 
= 102 
= 103 
= 104 

105 
106 
107 

= 108 
= 109 
= 110 

III 
= 112 
= 113 

114 
115 
116 

= 117 

FCBfSt 
FCBfIS 
RCBfIS 
ChBfIS 

ENDBUF 
ASBfSz 
DS,BfSz 
5MBFST 
5MBEnd 
DMTop 
DMSi ,. 

LastPh 
CPSAdr 
LPSAdr 
PTAscS 

PG 

Data Memorv Equates. 

EGU SOH 
Equ OD9H 

Equ 7fH 
Equ 80H 
Equ 2FH 
Equ 81 

EGU 2FH 
EGU OBH 
Equ OAH 
EGU 2FH 
Equ 25H 
Equ 7FH 
Equ 93 

Equ 20H 
EGU 21H 
Equ 22H 
Equ 23H 

,char buffer size 0-79 = ao 
.Cpl(1/2 CbBfSz) => cpi of 27H = OD9H 

istart of char buffer 
j init CD strt-allows xtra Dec by 1 
j init CB strt-alloW5 xtra Inc bV 1 
; load char cnt reg wlchar bufT' Init 

,END OF CHAR BUFFER 
iAecelerate stpr mtr buf count 
iDecelerate stpr mtr bUT count 
,STPR KTR BUFFER START 
.Stpr Mtr Data Memory Address end 
;Oata Memory Top 

Size 

;Data Memory Size Cless two ~o~king regis) 

;Iast ph! psuedo reg add~ 
iCR ph! psuedo reg 
iLF ph! psuedo reg 
iChal' Print Test code start tmp store 

= 118 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
= 119 
= 120 

121 
= 122 
= 123 
= 124 
= 125 

126 

= 127 
= 128 
= 129 
= 130 

131 
132 
133 
134 

= 135 
136 
137 
138 

= 139 
= 140 
= 141 

Register allocation 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

TmpROO 
TStrRO 
GStR20 
PhzR30 
CntR40 

TConRO 
LnCtRO 

OpnR70 

, 

All Indl~ect Data Memory Addr~ssing via @Rn lnst must use 
only registers 0 & 1 of either reiistel' bank. Any other ~ill 
be reJected b~ the Assembler 

Last character in lable indicates Register Bank referenced 

Register Bank 0 
Equ RO 
EGU RI 
EGU R2 
EGU R3 
Equ R4 

Equ R5 
Equ R6 

EGU R7 

,RBO Temporary Register 
iStore Time Register RBO 
iGeneral Status Register RBO 
,Stpr Mtr Phase Register RBO 
;Count Reg. Phase CDunt-Stpl' Mtl' loops 

AceellDecel Count 
iTime constant reg RBO 
iLine count 

I avallable 

Reglster Bank 0 Data Memory Address 
---------------------------------------------------------------------------

5-778 230795-001 



0000 
0001 
0002 
0003 
0004 

0005 
0006 

0007 

0000 
0001 
0002 
0003 
00'14 
0005 
0006 

0007 

= 142 
= 143 
= 144 

145 
= 146 
= 147 
= 148 
= 149 
= 150 
= 151 
= 152 

153 

= 154 
= 155 

= 156 
= 157 

158 
= 159 
= 160 
= 161 

162 
163 

= 164 
165 
166 

= 167 
168 
169 
170 
171 

= 172 
= 173 
= 174 

175 
= 176 

177 
178 

= 179 
180 
181 
182 
183 
184 
185 

= 186 
= 187 
= 188 

189 
= 190 

191 
192 

= 193 
194 

= 195 
196 

= 197 
= 198 
= 199 
= 200 

= 201 
= 202 
= 203 

204 
= 205 
= 206 
= ,207 

208 
209 
210 
211 
212 

= 213 
= 214 

TmpAOO 
TSt~AO 
GStRAd 
PhzA20 
CntRAO 

TConAO 
LnCtAO 

OpnA70 

PG 

Equ OOH 
EGU 01H 
Equ 02H 
EGU 03H 
Equ 04H 

Equ OSH 
Equ 06H 

EGU 07H 

AP-161 

;Temporary Register DM address 
iTime Store Register DM addresl 
,RBO Char Status Reg OM add~e •• 
,Stpr Mtr Phase Register OM addr ••• 
,Count Reg. Phase CDunt-Stpr Mtr loops 

Ace.I/Deeel Count OM addre.s 
,Tim. constant reg OM addr •• s 
iLin. Count Register DM address 

RHO Status Byte Bit DefinItion 

DefinItion 

Stpr Mtr Direction. L-to-R. 1, R-to-L = 0 7 
6 
5 
4 

1 - Sink I 0 = Not Sink ed, Print Heat Init and Fire 
Stp~ Mtr at speed and CR not l.ft of Home 
Ace.I/Decel Init, 1 - Done / 0 - Not Done 

3 
2 
1 
o 

1 • FaIlSafe I 0 - Constant, Time Window 
1 = Form Feed / 0 = Line Feed 
1 = Do Not Print I 0 = Print 
FAceeI/DAccel drive Ready = l/NotRd~ = 0 (exit 

drive & decel stpr mtr) 

Bit Masks: RBO 
Stepper Motor control bit masks function on QStRl0 

LRPrnt Equ 
RLPrnt Equ 
SnkSet Equ 
CI~Snk Equ 
AtSpdF Equ 
NAtSpd Equ 
AOlntO Equ 
AOlntN Equ 

FsCTm Equ 
CI~FsC Equ 
F~mFd Equ 
LlneFd Eq,u 
OoNotP Equ 
OkP~nt Equ 
Ready Equ 
NotRdy Equ 

PG 

80H 
7FH 
40H 
OBFH 
20H 
OOFH 
10H 
OEFH 

08H 
OF7H 
04H 
OFBH 
02H 
OFOH 
01H 
OFEH 

: 
,Left to Right P~inting (ORL) 
,Right to Left Printlng (ANL) 
,Readv P~int flag 
iclea~ Ready to P~int Bit 
,Stp~ Mt~ at constant spe.d 
,Stpr Mt~ Not at speed 
iAccel/Decel Init Done 
iAccel/Decel Init Not Done 

iFailSafe/Canstant Time 
;Clea~ FailSafe/Canst time flag 
ida farmfeed 
ida line feed 
,set Do Not P~int Stat bit 
iReset - Ok to Print 
iReadv drlve Stpr Mtr 
iNot Readv exit Stpr Mtr drive 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Register allocation (cont) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Register Bank 1 
TmpRl0 Equ RO 
CAd~Rl EGU Rl ,char data memory addr register 
ChStRI EGU R2 ; char processing status byte ~egi5ter 
COtCRI EGU R3 I Cha~ Dot count ~egiste~ 
COotRI Equ R4 , Cha~ dot temp storage T'egiste~ 
CCntRI Equ R5 , Char count temp register 
StrCRI EGU R6 , Store Char Register 

OpnR71 EGU R7 ; Available 

Register Bank 1 Data Memory Address 

5-779 230795-001 



ifltel® 
0018 
0019 
001A 
001B 
001C 
0010 
001E 

001F 

0080 
007F 
0040 
OOBF 
0020 
OOOF 
0010 
OOEF 

0008 
00F7 
0004 
OOFB 
0002 
OOFO 
0001 
OOFE 

0004 

0020 
007F 

OOF3 
OOF6 
00F4 
00E5 
OOEO 
00C8 
0000 
0020 

0081 
0082 
007F 
0042 
00C4 
001B 

215 TmpAl0 
= 216 ChARRI 

217 ChStAd 
= 218 COtCAI 

219 COotAI 
= 220 CCntAI 

221 StrCAI 
222 
223 OpnA71 
224 

= 225 

= 226 PG 
227 

= 228 
229 

= 230 
231 
232 
233 

= 234 
= 235 
= 236 
= 237 

'= 238 
= 239 

240 
241 
242 
243 
244 
245 

= 246 ChrPrn 
= 247 ClrCPr 

248 ChlntO 
249 ClntNO 
250 ChOnPI 

= 251 ChOnP2 
= 252 TstPrn 

253 Nl'mPrn 
= 254 
= 255 EOF 
= 256 ClrEOF 
= 257 CRLF 

258 ClrCR 
= 259 CBFLn 
= 260 NCBFLn 
= 261 IntCBR 

262 CllCBR 
263 
264 

= 265 PG 

EIlU 24 
EGU 25 
EIlU 26 
EGU 27 
EIlU 28 
EIlU 29 
EGU 30 

EGU 31 

AP-161 

tempo~a~~/scratch register 
char data memory add" register 
RBI Char Status Reg address 

,Char Dot count register 
iChar dot temp storage register 
,Char count temp register 
iStore Char RegIster 

; Available 

RBi Status Byte Bit Definition 

Bit 

7 
6 
5 
4 

3 
2 
1 
o 

Definltion 

Stpr Mtr Direction: L-to-R = 1, R-to-L = 0 
Char Init. 1 = Done / 0 = Not Done 
Char Lookup Tab!. Page: 1 = PgL 0 = Pg2 
1 = Test I 0 = Normal char print/input 

I = EOF I 0 = Not EOF 
Full = l/Not Full = O. Line in Char ~u9fer 
1 = CR/(LF) I 0 = Not CR/(LF) 
1 = Init I 0 = Do Not Init. CD registers done 

Bit Masks. RBI 
Character printlng bit masks function on ChStRl 

EIlU 80H ;Stpr Mtr Direction: L-to-R I 
Ellu 7FH iStpr Mtr Direction. R-to-L = 0 
EIlU .040H J Set Char Init Done 
EIlU OBFH i Reset Char Inlt Not Done 
EIlU 20H iPage 1 chaT'. set rentry bit (ORLl 
EIlU OOFH iPage 2 chaT', reset rentT'1:j bit (ANL) 
EIlU 10H jehel' print test 
EIlU OEFH i Normal char Input 

EIlU 08H .set EOF Flag 
E'lu OF7H , clear EOF flag - Not EOF 
Equ 04H .CR/LF 
EIlU OFBH j Clear CR/LF 
EIlU 02H ; Full Line in ChaT' Buffer 
EIlU OFOH ,Not Full Line in Char BuffeT' 
Equ OIH j Init of CB registers done 
EIlU OFEH J Ini t 09 CB registers not done 

266 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
= 267 
= 268 
= 269 

270 

Equates (cant) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Mise 
271 J --------------------------------------------------------------

= 272 RLPSh9 JR-to-L~print lookup table addr shift EIlU 04H 
273 
274 Ascii 
275 A.cLst 
276 

- 277 
278 
279 

= 280 
281 

= 282 
283 

CRCpl 
LFCpl 
FFCpl 
EscCpl 
AscCpl 
FTCpl 
CR 

284 Space 
285 
286 
287 
288 
289 
290 
291 
292 

LAsEnd 
PAsEnd 
AscStp 
PgLnCt 
PgLCpl 
EOFCpl 

293 , 
= 294 

Ellu 20H 
EIlU 7FH 

Ellu OF3H 
EIlU OF6H 
EIlU OF4H 
Ellu OE5H 
EIlU OEOH 
Ellu OCBH 
EIlU OOH 
Equ 20H 

EIlU 81H 
EIlU B2H 
EIlU 7fH 
EIlU 66 
EIlU OC4H 
EIlU IBH 

Loop count values 

ihex nmbr of fi~st Ascii Char 
,hex nmbr of last Ascii Char 

,ASCII control code 2'$ complement 

JAstii code (hex) 
.ASCli code (hex) 

JAscii End 2'$ cpI - test line start 
iAscil End 2'5 cpI - within line print 
iAscil mask, stT'lP off MSB 
iPage Line Count- Default = 66 
,Printed lines per page test 
iEOF ascii code cpt 

230795-001 



intel® 
0006 
OOOA 
0004 

0004 
0024 
OOIB 
0018 

0001 
0042 
0003 

0080 
0030 
OOCC 
0000 
OOCC 
OOBA 
0092 
OOCO 
0098 

OODF 
0020 
OOEF 
0010 

OOOC 
0003 

0040 
OOCO 

0000 
0003 
0008 

0001 
0003 
0002 
0000 

0004 
oooe 
oooa 
0000 

295 NDtCCt 
296 EDtCCt 

= 297 PHCntl 
298 
299 ILFCnt 
300 LPI6p6 
301 LPI8p8 
302 LPIIO 
303 
304 L,neCt 
305 FmFdCt 
306 Status 
307 

= 308 
309 

= 310 PG 

Equ 06H 
Equ OAH 
EQU 04H 

Equ 04 
Equ 36 
Equ 27 
Equ 24 

Equ 01 
Equ 66 
EQU 03H 

AP-161 

,Normal Dot Column Count 
,Expanded Dot Column Count 
; NUMBER OF SM PHASES ON INIT 

; Inlt LF step/phz count 
iLines Per Inch 0.6 
iLlnes Per Inch 88 
iLlnes Per Inch 10 

j 11 nefeed c aunt 
I 1 ines per fOT'mfeed count 
,SEE BELOW FOR STATUS BYTE DEF 

TEST' SET FOR CR STPR MTR CONTROL 

311 
312 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TIMER VALUES - UPI Tlmer/Count.r i. UP Count.r 

= 313 
= 314 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 12 MHz Clk timings 

315 
= 316 DLYCL 
= 317 DLYCS 

318 DlyTim 
319 FailTm 
320 CrTmrl 

CrTmr2 
CrTmr3 
IntTm2 
LFTMRI 

321 
= 322 
= 323 

324 
325 
326 

= 327 
328 
329 

= 330 
331 
332 

NotBsy 
Busy 
Ack 
ReSAck 

333 StrpLF 
334 StrpCR 
335 

= 336 , 
337 
338 PTRGLO 
339 PTRGHI 

= 340 

EQU 80H 
EQU 30H 
EQU 256-52 
EQU 256-256 
EQU 256-52 
EQU 256-70 
EQU 256-110 
EQU 256-64 
EQU 256-104 

; DELAY COUNT Long 
; DELAY COUNT Short 
iTIME DELAY constant ~2.0mS 
iFailSafe TIME = ~17.0mS 
,CR Stpr Mtr Phase TIME = 
,CR Stpr Mtr Phase TIME = 
iCR Stpr Mtr Phase TIME = 
; Inlt Stpr Mtr Phase TIME 

~2,08mS 

~2 40mS 
~4, 16mS 
= ~2,40mS 

iLF Stpr Mtr Phase TIME = ~4 16mS 

1/0 port blt masks 
Equ 
Equ 
Equ 
Equ 

Mise 
Equ 
Equ 

Prlnt 
bit 

EQU 
EQU 

ODFH 
20H 
OEFH 
10H 

blt Masks 
OCH 
03H 

Head flT'eS 
119 In dot 

40H 
OCOH 

; Not Busy 
; Busy 
; Ack 
; ReSet Ac k 

;Strip off all bits but LF Stpr Mtr 
,StrIp off all bIts but CR Stpr Mtr 

on low gOIng edge of Trigger 
column is masked off, a1111aY5. 

;PH TRIGGER BIT - LOW 
;PH TRIGGER BIT - HIGH 

P2, bi t 6 

341 
= 342 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Steppe~ Mato~ Phase State E~uates 
343 
344 

= 345 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
Stepper 
EQU 
EQU 

Phase ShIft Index Offset Offset 
addr 
addr 

346 
347 
348 
349 

FStCRP 
RStCRP 
STLFF Equ 

Matal' 
OOH 
03H 
OSH 

iF CR stpr mtr phase data start 
iR CR stpr mtr phase data start 
iPaper feed stpr mtr phase data start addr 

350 
351 
352 
353 
354 
355 
356 

= 357 
358 

CRMFPl 
CRMFP2 
CRMFP3 
CRMFP4 

359 LFMFPI 
= 360 LFMFP2 
= 361 LFMFP3 
= 362 LFMFP4 
= 363 

= 364 j PG 

CARRIAGE STEPPER MOTOR PHASE EQUATES 
Forward (1 thru 4) & Reverse (4 thru t) : 
EQU 01B ;CR STPR MTR PHASE 1 
EQU liB ;CR STPR MTR PHASE 2 
EGU lOB ;CR STPR MTR PHASE 3 
EQU OOB ;CR STPR MTR PHASE 4 

; LINE FEED STEPPER MOTOR PHASE EQUATES 
Forward: 
EQU 0100B LF STPR MTR PHASE 1 
EQU 1100B LF STPR MTR PHASE 2 
EQU 1000B LF STPR MTR PHASE 3 
EQU OOOOB LF STPR MTR PHASE 4 

5-781 230795-001 



i~ AP-161 

0008 

OOOC 

0006 

000£ 

0000 

0000 040B 

0003 
0003 1423 
0005 93 

0007 
0007 1429 
0009 C5 
OOOA 83 

OOOB 13 
OOOC 33 
0000 B40F 
OOOF B42F 

0011 B44B 
0013 9400 

0013 B422 

0017 B400 
0019 142C 

- 365 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * = 3bb STEPPER MOTOR SELECT & CONTROl [CURRENT LIMITING] 
• 367 ; * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * 
- 368 
= 369 , PORT BIT ASSIGNMENT: 
• 370 
• 371 , 
• 372 
- 373 
= 374 , 
• 375 , 
- 376 , 
·377 , 
·378 
• 379 , 
- 3i10 , 
- 381 , 
• 38M! J 
= 383 

CODING: 

= 384 , 
• 383 
= 386 , 
= 3S7 ; 

- 388 
- 389 
• 390 
• 391 
• 392 SCR80 
• 393 
• 394 SCR132 
·393 
• 396 SLF 
- 397 
- 398 SMOFF 

399 
400 

401 PG 

SLF 
SCRSO 
SCR132 
SMOFF 

ECiU 

ECiU 

ECiU 

ECiU 

, , , 
S S S -
L C C < 

F R R 
8 1 
03 

2 

5 5 5 5 
321 0 

o 1 1 0 06H 
1 0 0 0 QAH 
1 1 0 0 OCH 
1 1 1 0 OEH 
W/SCR80 ~ SCR132 '0' [BOTH SELECTED] 

DEFAUl..T IS TO 80 COL. 
[DO NOT KNOW WHETHER SCR80='O' WILL 
SELECT 80 COL ONLY] - REGUIRES TEST. 

08H • SELECT , .. /LF 
OCH , SELECT , .. /LF 
06H • SELECT , .. /CR 
OEH , SELECT 

CR STPR MTR - 80 COL 
STPR MTR OFF 
CR STPR MTR - 132 COL 
STPR MTR OFF 
LF STPR MTR ON 
STPR MTR OFF 
CR ~ LF STPR MTR OFF 

402 J * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *c* * * 
403 MAIN PROGRAM BODY 
404 s * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 405 

406 Po~er ,On I Reset Program Entrg 
407 
408 , 
409 
410 
411 

PROGRAM START 

412 START: 
413 
414 
413 
416 IBFIV: 
417 
418 , 
419 
420 TMRIV: 
421 
422 
423 
424 
425 
426 Re"eT: 
427 . 
428 
429 
430 
431 
432 
433 
434 
435 , 
436 

, JMP 

INPUT 
ORG 
Call 
RETR 
TIMER 
ORG 
Call 
SEL 
Rat 

Dis 
Dis 
Call 
Call 

Call 
Call 

437 Home: 
438 

\Call 

Call 
CBInpt: Call 

439 
440 
441 
442 

OOH 

RESET 

BUFFER FULL INTERRUPT CALL ENTRY AND VECTOR 
03H 
IBFIS 

OVERFLOW INTERRUPT CALL ENTRY AND VECTOR 
07H 
TMRIS 
RBO 

INITIALIZATION 

I 
TCnt! 
'InitAl 
ClrDM 

InltCR 
InitLF 

.set all critical Dutputs inactive 
'clear all data memory - 93H to 7FH 
, do not clear RBO, RBl or Stack 
• CALL CR SM POWER ON INIT 
.CALL LF SM POWER ON INIT 

MAIN PROGRAM LOOP 

CRHome 

Dafalt 
ESCBfF 

5-782 

JC.II Home CR routine -
fix •• logical and physical CR Home 

'set default register value. 
,Stat S .. ltch I CB Input Service T •• t 

t •• t for: CB fuil/fill, LF, FF, 
Char Prnt Te.t 

230795-001 



0018 3400 
0010 9400 
001F 05 
0020 FA 
0021 7215 
0023 0419 

0025 8A20 
0027 15 
0028 83 

0029 15 
002A 35 
0028 83 

002C 05 
0020 FA 
002E 53EF 
0030 AA 
0031 C5 

0032 OF 
0033 1230 
0035 3245 
0037 5249 
0039 725E 
0038 042C 

003D FA 
003E 4304 
0040 AA 
0041 9400 
0043 042C 

0045 9400 
0047 042C 

0049 05 
004A FA 
004B 4310 
0040 AA 
004E 8823 
0050 FO 
0051 0381 
0053 9657 

0055 8020 
0057 FO 
0058 AF 
0059 10 
005A B439 
005C C5 
0050 83 

443 
444 
445 
446 
447 
448 
449 

450 

Repeat: 

PG 

Call 
Call 
SEL 
Mov 
-.183 
-.Imp 

SMDriv 
LFDrlv 
RBl 
A.ChStRl 
Home 
CBInpt 

AP-161 

ieall Forward Stpr Mtr Drive 
,Call Lin.feed Stpr Mtr Drive 

;get the Char Status Register RB1 
'Jump to CR SM Home if EOF bit set 
l loop to Char Buffer Input test 

451 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
452 Interrupt Service Routine 
453 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
454 
455 ) ------------------------------------------------------------------------
456 . Input Buffer Full Interrupt Service Routlne 
457 ------------------------------------------------------------------------
458 
459 IBFIS: 

460 ------------------------------------------------------------------------
461 Acknowledge Char input and set Hold/Bus~ Active 
462 ORL P2.*Busy 'get ~ set OBB ACK/Busy Bits 
463 Dis I idlsable IBF interrupts 
464 Rot 
465 

466 ------------------------------------------------------------------------
467 Timer I Counter Interrupt Service Routine 
468 ------------------------------------------------------------------------
469 ITF interrupt service routine disables all int" during 
470 stpr mtr phase shifting 
471 TMRIS. Dis I ,disable IBF ,nterrupts 
472 0" TCntI ,dicable ITF interrupts 
473 Ret 
474 

475 PG 
476 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 

Ext~rnal Status Switch Ch~ck/Char. Buff~r Fill 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ESCBfF' ;P~ep fD~ no~mal cha~act.~ handling/input 

SEL 
Mov 
ANL 
Mov 
SEL 

Test 
MovD 
J50 
-.151 
-.152 
-.153 
-.Imp 

FormFd, Mov 
ORL 
Mov 
Call 
-.Imp 

LinFd Call 
-.Imp 

RBI 
A. ChStRl 
A,*N~mP~n 

ChStRl.A 
RBO 

External Status 
A.P7 
Fo~mFd 

LinFd 
ChrTst 
OnLlne 
ESC5FF 

A.GStR20 
A,#FrmFd 
GStR20.A 
LFOr,v 
ESC5FF 

LfDT'iv 
ESC5fF 

;get the character stat reg bvte 
iset normal character input 
,store the stat byte 

Port 
iget the stat sWltch port bits 

service Formfeed 
service Linefeed 
service Character TEST 
service Char Buffer Check/Fill 

i Loop 

,get the status b~te 
,set the FormF.ed stat Flag 
istore trhe status b~te 
ido a formfeed 

ida a line drive 

i ---------------------------------------.• --------------------------------

ChrTst SEL RBl 
Mov A.ChStRl 'get the character stat reg byte 
ORL A.IITstPrn ; set character test flag 
Mov ChStRl.A ; store the stat byte 
Mov TmpRIO.*PTA,cS i load the psuedo Ascii code tmp reg addr 
Mov A. (HmpRl0 i get the inc'd ascii code 
AOO A.*LAsEnd i test foT' code end 
-.lNZ AscCLd j If not code end Jmp to load 

,IF end T'estal"t ascii at begining 
Mov @TmpRl0. *Asc Ii ; store the ascii code start 

AscCLd· Mov A.@TmpRl0 ;get the ascii code'again 
Mov OpnR71. A , place ,n the empty register 
Inc @TmpRl0 j Inc start ASCII char in data memDr~ 
Call PrnTst i call the OM load procedure 
SEL RBO i reselect reg bank 0 
Ret 

5-783 230795-001 



,inter 

005E 05 
005F 05 
OO~O FA 
0061 3267 
0063 1460 
0065 0460 
0067 C5 
0068 83 

0069 05 
006A FA 
006B 32EC 
0060 527C 

006F 05 
0070 D6EC 

0072 FA 
0073 127C 

0075 4301 
0077 AA 
0078 B97F 
007A BD50 

007C ED86 
007E FA 
007F 4302 
0081 53FB 
0083 53FE 
0085 AA 
0086 FA 
0087 52EI 

0089 9AEF 
008B 22 
008C 537F 
008E A8 
008F 8AIO 

0091 03EO 
0093 F697 
0095 049C 
0097 97 
0098 F8 
0099 Al 
009A 04E3 

009C F8 
0090 03F3 
009F C6C3 
OOAI Fe 
00A2 031B 
00A4 96AA 
00A6 F8 
00A7'AI 
00A8 04B9 
OOAA F8 
OOAB 03F4 
OOAD 96EI 
OOAF C5 
0000 FA 
OOBI 4304 
00B3 AA 
00B4 05 
0005 FA 
0006 4304 

00B8 AA' 
00B9 FA 

520 
521 
522 
523 
524 
525 
526 
527 
528 

529 

OnLine: 

COfCkl: 

IBfCk: 

COCkEx: 

PG 

SEL 
EN 
Mav 
JBI 
Call 
Jmp 
SEL 
Ret 

RBI 
I 
A,ChStRI 
CBCkEx 
COFill 
COFCkl 
RBO 

AP-161 

iseleet cha~ buffer registers 
ienable'interrupts 
'get the Char Stat Byte 
;il Chr Buf has full line exit 
iTead a char into Char Buffer 
; loop to Char Suf Ful te.t 

530 ------------------------------------------------------------------------
~31 Character Input 
532 
533 
534 
535 IBFSrv: 
536 
537 

Input Buffer Full service routine: test for Char buffer full-exit 
else load char into char buffer 

SEL RBI 
Mav A,ChStRI Iget the RBO stat byte 
JBI CBFull 

538 CBFill: J02 COPad 
.if Do Not Pr.nt Bit Set - EXIT 
Itest for CB padding flag 

539 
540 
541 
542 
543 
544 
545 
546 

EN 
JNIBF 

I 
CBFlEx 

if not pad enable char input 
tall the host to send char's 

Acknowledge Char input and set Hold/Busy Active 
Mav A,ChStRI Iget the RBI Char Stat Byte 
JBO Skplnt .test for CB has been Initialized 

547 , ------------------------------------------------------------------------
548 all Char handling registers 
549 
550 
551 
552 

Init of 
ORL A,~IntCBR Iset CB Reg skip In.tializatian stat bit 

553 CBP.d: 
554 Skplnt: 
555 
556 
557 

Mav 
Mav 
Mav 

DJNZ 
Mov' 
ORL 
ANL 

ChStRI.A I save the altered stat byte 
CAdrRI,MFCBfSt .laad char reg w/char bufr strt 
CCntRl,.ChBfSz j load ch~r cnt reg w/cher bufr size 

CCntRI.LdChaT' 
A, Ch'StR 1 
A.~CBFLn 
A.~ClT'Cr 

,I DECREMENT BUFFER SIZE 
.get the status byte 
,set Char Buffer Full Line stat'bit 
.clear the CR/(LF) stat bit 

558 ANL 
559 Mav 

A, ~Cl ICBR 
ChStRI. A 

; reset CB Init bit: lnit CB reg on entry 
; store the status byte 

560 LdChar: 
561 
562 
563 
564 
565 
566 
567 
568 

Mav 
JB2 

ANL 
In 
ANL 
Mav 
ORL 

A,ChStRI 
CBPadl 

P2.~Ack 

A,DBB 
A,~AscStp 
TmpRIO,A 
P2,~ReSAck 

;get the status byte 
I CBnat full but' CR/LF previously 

received so pad CB 
; output DBB Ack low 
; read the ChaT' 
I strip off MSB 
i temp save char 
• output DBB ACK High 

569 test for ASCII printable character 
570 ADD A,#ASCCpl ;test for Carriage RetuT'n 
571 JC AsciiC iJmp to service 
572 Jmp ChrChk 
573 AsciiC: Clr C 

A,TmpRIO 
@CAdrRI,A 
IBFSrE 

ic1ea1' carry flag 
;get the char back Mav 

Mav 
Jmp 

ilo.d data memory wlChar 

test for CR/LF: if CR/LF Strip off LF and e'xit setting 

574 
575 
576 
577 
578 
579 
5ao 
581 
582 
583 
584 
585 
586 
587 
588 

• Char Buffer Init stat bit 
ChrChk: Mav A,TmpRl0 .get the char back 

589 ChrCkl: 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 

ADD A,#CRept itest faT' Carriage Return 
JZ CRChr ; if CR go service it 
Mav A,TmpRl0 Iset the char back 
ADD A,*EOFCpl Itest for End Of File 
JNZ ChrCkl I if not EOF Jmp to CB Pad 
Mav A,TmpRl0 j if EOF, place it in CB 
Mav @CAdrRl~A i load data memory wieR ChaT' 
Jmp ExtSet .Exit 
Mav A,TmpRl0 ;get the status byte 
ADD A, ~FFCp 1 I test for FarmFeed 
JNZ CBPadl • if not FF Pad the CB 
SEL RBO 
Mav A,GStR20 
ORL A,~F,.mFd 

Mav GStR20,A 
SEL RBI 
Mav A,ChStRI 
ORL A. ~CRLF 

!get the status byte 
,set the formfeed flag 
istore the status byte 

.get the status byte 
• set CRLF stat bi t pad balance of CD 

wlth Spaces until fill 
600 Mav 
601 ExtSet: Mav 

ChStRl, A 
A,ChStRI 

,store the status byte 
,get the status byte 

5-784 230795-001 



intel® 
OOBA 4302 
OOBC ~3FB 

OOBE 53FE 
OOCO AA 
OOCI 04EC 

00C3 F8 
00C4 Al 
00C5 C~ 
00C6 IE 
00C7 FE 
00C8 03C4 

OOCA E600 
OOCC FA 
OOCO 4304 
OOCF AA 
0000 O~ 
0001 05 
0002 9AOF 
0004 0604 
0006 9AEF 
0008 22 

0009 FA 
OOOA 4304 

OOOC AA 
0000 8AI0 
OOOF 04E3 

OOEI B120 

00E3 C9 
00E4 FA 
00E5 32EC 
00E7 52EC 

00E9 05 
OOEA 9AOF 

OOEC 83 

0100 

0100 3622 

0102 FA 
0103 53BF 
0105 53DF 
0107 4380 
0109 4301 
010B 53EF 
0100 AA 
010E 05 
OIOF FA 
OliO 4380 
0112 AA 
0113 C5 

0114 B821 
0116 FO 
0117 AB 

602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 

CRChr 

NoFmFd. 

ORL 
ANL 
ANL 
Mov 
Jmp 

Store 
Mov 
Mov 
SEL 
INC 
Mov 
Add 

JNC 
Mov 
ORL 
Mov 
SEL 
En 
ANL 

AP-161 

A.#CBFLn 
A.#ClrCr 
A. #ClICBR 
ChStRI. A 
CBFIEx 

CR c,",aT' read 
A.TmpRI0 
@CAdrRl.A 
RBO 
LnCtRO 
A.LnCtRO 
A.*PgLCpl 

NoFmFd 
A.GStR20 
A.#FrmFd 
GStR20.A 
RBI 
I 
P2.#NotBsy 

set Char Buffer Full Line stat bit 
clear the CR/(LF) stat bit 
reset CB Init bit. Init cn reg on entry 
store the status byte 

, EXIt 

in LF char (assume its alwa~s there) and Ign01' it 
iget the char back 
; load data memory wIeR Char 

iinc the line count 
iget the line count 
ite.t faT' page feed In cnt 

if LnCt => PgLnCt set formfeed flag 
i if not at end of page skip 
iget the status byte 
;set the form feed status flag 
isave the status byte 

623 LFTe.t: 
624 

JNIBF 
ANL 

LFTnt 
P2,:lAck 

,enable the IBF service 
,output a not busy to Host 
; loop to next char 
iDutput DBB Ack low 

62~ 

626 
627 
628 SetPad: 
629 
630 
631 
632 
633 

In 

Mov 
ORL 

Mov 
ORL 
Jmp 

A.OBB 

A.ChStRI 
A.#CRLF 

ChStRl. A 
P2.*ReSAck 
IBfSrE 

iget next Char - assume it's a LF 
and Ign01' It (LF is forced upon 
detection of CR at print time) 

'get the status byte 
,set CRLF stat bit' pad balance of CB 

with Spaces until fill 
jstore the status byte 
,output DBD ACK High 
; Jmp to addr step & exit 

634 , ------------------------------------------------------------------------
635 fill Char Buffer with space 
636 CBPedl: Mov @CAdrRl.*Space, load data memory wlCher 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 

; ------;;;;-;;;-;;;;-;;;;;;;-~;;;-;;;-~B-;~;~-~;;;-;;;-------------------
IBFSrE: DEC CAdrRl iDecrement dat memory location 

Mov A.ChStRI 'get the status byte 
JDI CBFull ,test for CD Full 
JB2 CBFIEx ,test for CD pad - exit w/Busy set 

------------------,--------------------------..:.---------------------------
Set Busy Line Low - Not Busy 
EN I 
ANL P2.*NotBsy ioutput a not busy to Host 

eXIt wi Busy StIll set hlgh 
649 CBFull: 
650 CBFIEx: Ret 
651 

652 
653 

654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 

PG 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * L-to-R/R-to-L Carriage Stepper Motor Drive 

and Line Printing 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

ORG 100H 

SMOriv: JTO RAccel j if Print Head at left drive right 
else drive left ' 

, F==========================================================m:==_== 
FAccel: 

CBRDir: 

Set the 
Mov 
ANL 
ANL 
ORL 
ORL 
ANL 
Mov 
SEL 
Mov 
ORL 
Mov 
SEL 

iL-to-R Accelerate Stepper Motor 
Forward acceleration/drive Entry status bits 
A.GStR20 'get the status byte 
A,#ClrSnk iset not at speed flag = 0 
A.*NAtSpd .set Not At Speed flag = 0 
A,#LRPrnt ,set L-to-R prnt stat bit = 
A,.Ready ;set stpr mtr, ready - Drive On 
A,#AOIntN iset A/D Init Not Done 
GStR20.A ,store the status byte 
RBI 
A.ChStRI 
A.#LRPrnt 
ChStRl. A 
RBO 

iget the Char Stat Reg Data Mem Addr 
,Set L~to-R print bit 
isave the Char Stat byte 

Restore the phase regIster index addresses 
Mov TmpROQ,#CPSAdr 1get Phz Storage Addr psuedo reg 
Mov A.@TmpROO get stored CR last phase index addr 
Mov PhzR30,A Iplace last LF phase index addr in Phz Reg 

5-785 230795-001 



0116 IB 
0119 FB 
OIIA 521E 
OIlC 2440 
OIlE BBOO 
0120 2440 

0122 FA 
0123 53BF 
0125 530F 
0127 537F 
0129 4301 
012B 53EF 
0120 AA 
012E 05 
012F FA 
0130 537F 
0132 AA 
0133 C5 

0134 S621 
0136 FO 
0137 AB 

0136 CB 
0139 FB 
013A 523E 
013C 2440 
013E BB03 

0140 B622 
0142 FO 
0143 E3 
0144 B620 
0146 AO 

0147 SDDA 

0149 2306 
014B 30 

014C FO 
014D 62 
014E FB 
014F E3 

0150 B620 
0152 40 
0153 3C 
0154 55 

0155 740C 

0157 FA 
0156 F264 

015A CB 
015S FB 
OISC 5260 
015E 2462 
0160 DB03 
0162 246C 

AP-161 

5-786 230795-001 



0164 IB 
0165 FB 
0166 526A 
0168 246C 
016A BBOO 

016C 1682 
016E 5672 
0170 246C 
0172 00 
0173 5677 
0175 246C 

0177 FA 
0178 027C 
017A 247E 
017C 74CA 

017E 1698 
0180 247E 

0182 2300 
0184 62 
0185 55 

0186 FA 
0187 4308 
0189 AA 
018A 5690 
018C 16AC 
018E 248A 
0190 00 
0191 5695 
0193 248A 
0195 65 
0196 42 
0197 Al 

0198 FA 
0199 F2A7 

0198 26AC 
0190 FA 
019E 124C 

OIAO 4302 
0lA2 53BF 
0lA4 AA 
0lA5 244C 

0lA7 FA 
0lA8 124C 

OIAA 24AC 

OIAC 5437 

OIAE FA 
OlAF F2B3 

767 
768 
769 

; forward: 

770 Ac IF2: 
771 
772 
773 
774 AFZroP: 
775 ANxtPh: 

Set up 
INC 
MOV 
JB2 
JMP 
MOV 

AP-161 

for next phase 
PhzR30 
A,PhzR30 
AFZroP 
ANxtPh 
PhzR30,41FStCRP 

bit output before entering timing 
; STEP PHASE DB ADDRESS 
; CHECK THE PHASE COUNT REQ 
;CHK FOR COUNT BIT ROLLOVER 
;skip adT' index reset 
; ZERO CR SM PHASE REGISTER 

loops 

776 ; ---------------------------------------------------------------
777 
778 
779 TLOOP2: 
780 
781 
782 tCHKI: 
783 
784 
785 tTruWI: 
786 

stage one timer 
wait for time 

JTF FAILSF 
JTl tCHKl 
JMP TLOOP2 
NOP 
JT1 
JMP 

tTruWI . 
TLOOP2 

loop - T occurs before Std timeout 
out 

;JMP ON TIME OUT-t DOES NOT OCCUR 1ST 
; IS T HIQH-JMP TO tCHK 
; LOOP FOR JTl OR JTF 
;d~la~, then double check T signal 
; JUMP T TEST TRUE-WAIT FOR JTF 

787 
test for Print Read~ bit - was Print Head Fire setup Done? 
insert acceleration timelstore time count done/notdone flag bit 

788 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
800 

RdyPr2: 
PNRdy2: 
SkpPHF. 
tTruW2: 

801 FAILSF: 
802 
803 

Mov A,QStR20 ,get the status byte - prep for prnt 
JB6 RdVPr2 ,if Readv Print bit set call PHFire 
Jmp SkpPHF el •• skip Print Head Fire 
Call PHFire iprint head solenoid fIre routine 

JTF 
JMP 

NXTPHZ 
tTruW2 

; JUMP TO SM ERROR 
; LOOP TO TLOOP3 

Step into faIlsafe/startup timer setup - T does not 
occurs before Std Time timeout, load faIlsafe SM protection 
time and walt for failsafe timeout or T. If T occurs 
output phase immediatel~ after T verify. 

MOV A,41FaiITm ; LOAD TIMER W/~15.0mS 
MOV T,A SM PROTECTION TIMEOUT 
STRT T ; START TIMER 

804 ; ---------------------------------------------------------------
805 ; 
806 
807 
808 
809 TLOOP3: 
810 
811 
812 tCHK2: 
813 
814 
815 StrTml: 
816 
817 
818 
819 
820 

set the 
Mov 
ORL 
Mov 
JT1 
JTF 
JMP 
NOP 
JTI 
JMP 
stop 
Mav 
MOV 

Status bit 
A,QStR20 
A,41FSCTm 
QStR20,A 
tCHK2 
OSLECT 
TLOOP3 

StrTml 
TLOOP3 
TCnt 
A,T 
@TStrRO,A 

for Store tim. test 
iget the status bute 
;set Failsafe/constant time flag 
istore the status byte 
; IS T HIQH 
;IF TIME OUT GO SM ERROR 
; LOOP UNTIL T HIQH OR T-OUT 
; WAIT 
i Jump out and store elapsed time 

JMP TO FAILSF LOOP 
i.top the failSafe Timer 
,read the timer 
;St9re the time read in indexed addr 

- next entT~ to A/D MemoriZe Time 
routine will add time constant to it 

821 
822 

Test IS CR Stpr Mtr Drive is finished prior to next phase output 

823 NXTPHZ: 
824 
825 

test for forward / reverse phase start indirect Index to l~ad 
Mov A,QStR20 ; store stat b~te 
JB7 FOriv. 826 

827 
828 
829 

Reverse test for Reverse Stpr Mtr Drive procedure exit 

830 
831 
832 
833 
834 
835 
836 
837 

ALWAYS drive the CR to the left most HOME po.ition 
JNTO EOLn ;t •• t if hame position Jmp .top 
Mov A,GStR20 ;get the status bute 
JBO StrtT ;test Ready stat bit: 

ORL 
ANL 
Mav 
Jmp 

A,410oNotP 
A,41ClrSnk 
QStR20,A 
StrtT 

if bit 0 ~ 1 then Print More 
.set the do not print flag 
iclear Print Ready bit 

,save the status byte 
icontinue CR 8M drive 

- only exit is HR 
838 Forward 
839 FDrive: 
840 Mav 

JBO 

test for Forward Stpr Mtr DrIve procedure exit 

A,QStR20 ,get the ~tatu5 byte 
itast Ready stat bit. 841 

842 
843 Jmp 
844 
845 OSLECT' 

StrtT 

EOLn 
if bit 0 = I then Print 
el •• Jmp to End 0' Line 

; Jump to start timer again 

More 
exit 

846 EOLn' Call OeclSM ;call Sptr Mtr Deceleration 

847 --------------------------------------------------------------------
848 test fo~ fo~ward reverse phase start indirect index to load 
849 Mav A,GStR20 ;store stat byte 
850 JB7 FOrvFS ; Jmp to f drlve flag set 

5-787 230795-001 



inter 
01Bl 53FO 

01B3 53BF 

01B5 530F 
01B7 AA 
01B6 63 

0200 

0200 '120C 

0202 B'I2F 
0204 BeOB 
020b FA 
0207 4310 
020'1 AA 
020A 443b 

020C EC2b 

020E FA 
020F 4320 
0211 AA 

0212 322b 

0214 05 
0215 FA 
021b 4340 
0216 AA 
021'1 F21F 

021B B'I2F 
0210 4421 

021F B'IBO 

0221 B051 
0223 BBOI 
0225 C5 

022b 722C 

022B FO 
022'1 AI 
022A 4435 

022C Fl 
0220 03C6 
022F bO 

0230 Al 

0231 FA 
0232 53F7 

651 
652 
653 
654 
655 
6Sb 
657 
65B 
6S'I 
BbO 
861 

FOrvFS: 

PG 

ANL 

update 
ANL 

ANL 
Mov 
RET 

A.IIOkPrnt 

the status 
A.IIClrSnk 

A.IINAtSpd 
GSta20.A 

AP-161 

byte 

;~eset print flag - Ok Print 
, only if printing R-to-L 

,clear Print Ready bIt 
iset the Status bit for Store time test 
iCIeaT' At Print Speed Bit 
;save the status byte 

862 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
863 Stepper Motor Accel. Time Storeage 
6b4 
6bS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
66b 
6b7 

ORG 

BbB AOMmTS: .JB4 
6b'l 

200H' 

OADlnt 
Entry has Gen Stat Byte in A 

; is AID init done - then Jmp 

670 , 
671 
672 
673 
674 
675 
B76 
677 
676 

1st 
Mov 
Mov 

Entry in1tializes the AID Time store workIng registers 
TStrRO.IISMBfSt ,Load the Stpr Mtr Buffer Start Addr 
CntR40.IIASBfSz 'Load the Buffer Size 

Mov 
ORL 

A.GStR20 'get the status byte 
A,#ADlntD ;set not 1st Acee! Entry Flag 
GStR20,A ; store the status byte Mov 

.Jmp ADExit iexit - 1st entry has nat generated 
a closed time W1ndow 

67'1 Step the AID Store count 
880 DADInt: D~NZ CntR40,StD~Ct idee Times to store count 
881 j if not 0 store the count 
882 ;sIse at end-set done flag 
6B3 Mov A.GStR20 .get the status byte 
664 ORL A.IIAtSpdF lset at speed/no more to store 
665 Mov GStR20.A ,.tore the status byte 
66b 
6B7 
B66 
68'1 
B'IO 

Initialize Char Print Registers' if printing enabled 
.JBl StorCt , if Do Not Print stat bit set 

Skip the Char register inlt 

Initialize all Char Reg's 
Test for L-to-R (forward) 
SEL RBI 

or R-to-L (reverse) print~ng 

Mov A.ChStRl iget the status byte 

flag 

6'11 
6'12 
6'13 
6'14 
6'15 
B'I6 
6'17 
B'IB 

ORL A.IICHlntD 
Mov ChStRI.A 

,set Char Init Done flag - bypass 
isava the status byte 

.JB7 LdCBRI 

6'1'1 LdCBR: Mov 
'100 .Jmp 
'101 
'102 LdCBR1: Mov 
'103 
'104 LdCBR2: Mov 
'105 
'106 
'107 

, Mov 
SEL 

CAdrRI. #RCBUS 
LdCBR2 

CAd rR 1. IIFCB II S 

CCntRI. #ChBfIS 
CDtCRI.#OI 
RBO 

itest Chr Stat Byte Returned 
if bit 7 = 1 then Print L-to-R 

; load char reg w/char bufr strt R-to-L 

; load char reg w/char bufr strt L-to-R 

i load char cnt reg w/char bufr size 
;set the chr dot column cnt 

'106 Test for t > Tc or t < Tc 
'10'1 StorCt: .JB3 FailST ,test for failsafe time switch 
'110 

t < Te Constant in use '111 
'112 
'113 
'114 
'lIS 
'lIb 
'117 
'116 
'11'1 
'120 

Mov 
Mov 
.Jmp 

= store Time 
A.TConRO 
@TStrRO.A 
ADPRet 

JQet time constant currentl~ in use 
iMemorize/Store the time - indirect addT 

'121 
'122 
'123 
'124 
'125 
'12b 
'127 
'126 
'12'1 
'130 
'131 
'132 

t > Tc = store Time Constant + FailSafe 
(see Accel/Cnst SpeedlDecel WaveForm] 

Time Elapsed 

e~uation is: Trd - FailSafe Time = Tx 

FaiIST: Mov 
Add 
Add 

=> Trd + Cpl(FailSafe Time) 
Tx + Tcnst = T 
Store/Memorize T 

Tx 

A. @TStrRO , 
A. #FTi:p I 
A.TConRO 

get the stored time 
2'5 cpl add 
Add: Time stored + Time constant 

currentl~ in use 
Mov @TStrRO,A Memorize/Store the time 
Reset the Status bit for Store time test 

Mov 
ANL 

A.GStR20 
A.IIClrFSC 

get the status byte 
reset Failsafe/constant.tlme flag 

assumes entr~ via constant time 

230795-001 



0234 AA 
0235 C9 
0236 83 

0237 8925 
0239 BCOA 
023B FB 
023C E3 

0230 B820 
023F 40 
0240 3C 
0241 Fl 
0242 62 
0243 55 
0244 19 

0245 FA 
0246 F252 

0248 CB 
0249 FB 
024A 524E 
024C 445A 
024E BB03 
0250 445A 

0252 lB 
0253 FB 
0254 5258 
0256 445A 
0258 BBOO 

025A FB 
025B E3 

025C B820 
025E 40 
025F 1663 
0261 445F 
0263 3C 
0264 EC41 

0266 B821 
0268 FB 
0269 AO 
026A B478 
026C B490 
026E 83 

0300 

933 Mov 
934 ADPRet: Dec 
935 ADExit Ret 
936 
937 PG 

GStR20.A 
TSt~RO 

AP-161 

;store the status byte 
istep the AID time data store addr 

938 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 939 Carrlage Stepper Motor Deceleratlon 
* * * * * *' * * * * * * * * * * * * * * * * * * * * * * * * * * 

Dec ISM. 

St~tTD: 

the DeceleratIon registers 
TStrRO,#SMBEnd iLoad the Stpr Mtr Buffer End Addr 
CntR40 •• DSB'Sz lLoad the Bu"e~ Size 
A,PhzR30 iget phase index address 
A.@A iget phase from indexed address 

togethe~ the CR last and LF next phase bits 
TmpROO,#LastPh i load Last Phz psuedo reg to Temp Reg 
A,@TmpROO ipatch together CR existIng & new LF 
P4.A • OUTPUT BITS 
A,@TStrRO ,get time from indexed data memory 
T. A I load timer 
T • START TIMER 

940 
941 
942 
943 
944 
945 
946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 
987 
988 
989 
990 
991 
992 
993 
994 
995 

SetUp 
tiov 
Mov 
MOV 
MovP3 
patch 
Mov 
ORL 
MOVD 
MOV 
MOV 
STRT 
Inc 
test 
Mov 
JB7 

TStrRO ;step the Memorized time addr index reg 

996 
997 

998 
999 

1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
1011 

for forward reverse phase start indirect index to load 

reverse' 
Set up 
Dec 
MOV 
JB2 
JMP 

DRZroP MOV 
Jmp 

i forward' 
Set up 

Dc lF2: Inc 
MOV 
JB2 
JMP 

DZ~oPh. MOV 
DNxtPh 
DclR2: MOV 

A.GStR20 .sto~e stat byte 
DclF2 

for neJet phase 
PhzR30 
A.PhzR30 
ORZ~oP 

DNxtPh 
PhzR30 •• RStCRP 
DclR2 

faT' next phase 
PhzR30 
A. Ph zR30 
DZ~oPh 

DNxtPh 
PhzR30 •• FStCRP 

bIt output before entering timing 
idecrement the phase addT' 
.Get the phz data add~ 
.CHK FOR COUNT BIT ROLLOVER 

• ZERO CR SM PHASE REGISTER 

bit output before entering timing 
i increment the phase addr 
.Get the phz data add~ 
.CHK FOR COUNT BIT ROLLOVER 
iskip adr index reset 
• ZERO CR SM PHASE REGISTER' 
iset up for next phase shift 

A,PhzR30 iget phase index address' 
A,@A iget phase from indexed address 

together the CR last and LF next phase bits 

loops 

loops 

MovP3 
patch 
Mov 
ORL 

TmpROO •• La.tPh • load Last Phz psuedo ~eg to Temp Reg 
A.@TmpROO .patch togethe~ CR existing L new LF 

TLoopD: JTF 
JMP 

NxtPD2: MOVD 
DJNZ 

NxtPD2 .JMP ON TIME OUT TO NEXT PH 
TLoopD .LOOP UNTIL TIME OUT 
P4.A ,OUTPUT BITS 
CntR40.St~tTD .Exit Test 

Set Storeage of next phase data in psuedo addr. This insures 
next phase is sequence correct for stpr mtr drIve dIrection 

S.tRN: Mov TmpROO •• CPSAd~ 'get Phz Sto~eage Add~ psuedo ~eg 
MOV A.PhzR30 .get Phz data 
Mov @TmpROO,A ; store CR Next phase index addT 

DMExit Call DlyLng 
Call DeSlSM 
RET 

PG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Stepper Motor Phase Shift Definltions 
All program procedures call this data 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
ORG 300H 

DEFINE PHASE ADDRESSES 
THE PHASE DATA IS ENCODED TO THE ADDRESS CALLED DURING THE 
STPR MTR ENERGIZE SEQUENCE CORRESPONDING TO THE NEXT PHASE' 
OF THE SEQUENCE REQUIRED. 

CARRAGE MOTOR ENCODING' FORWARD 
REVERSE 

5-789 

LEFT-to-RIGHT 
RIGHT-to-LEFT 

230795-001 



0300 01 
0301 03 
0302 02 
0303 00 

0308 

0308 04 
0309 OC 
030A 08 
030B 00 

030C FA 
030D B211 

030F 4400 

0311 2668 
0313 326A 
0315 D21B 
0317 FA 
0318 '4340 
031A AA 
031B D5 
031C FA 
031D D23A 

031F Fl 
0320 03F3 
0322 C626 
0324 6437 
0326 FA 
0327 F22B 

0329 6432 

1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 , 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 

AP-161 

Reverse direction ENCODING is t~e same bytes accessed in 
reverse dIrection 

DB CRMFPI 
DB CRMFP2 
DB CRMFP3 
DB CRMFP4 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

PG 

LF MOTOR PHASE ENCODE & DECODE. FORWARD (CLOCKWISE) 
Forward direction ENCODING: 

ORG 308H 

DB LFMFPI 
DB LFMFP2 
DB LFMFP3 
DB LFMFP4 

1035 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1036 Accel/Decel I Character Handling Test 
1037 
1038 i 

1039 
1040 
1041 
1042 

* * * * * * * * * * * * * * * * * * * * * * * * * * .-* * * * * * * * * * * TEST > Is CR Stpr Mtr At Speed ?? 
Yes - SetUp do Character Processing 
No - Calculate / Store the Acceleration' Phase Shift Time (II) 

-----------------------~---------------------------------------------------

1043 ADPTst, Mov 
1044 JB5 

A,GStR20 
PHFS.t 

;get the status byte 
,test if Stpr Mtr At Speed 

1045 
1046 
1047 
1048 

Jmp ADMmTS 
, Jmp to Prnt Head Fire Setup 
ielsa Call Aceel/Oecel Memor~ Time Store 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1049 Process Characters for Prlntin~ 
1050 
1051 
1052 
1053 
1054' 
1055 
1056 
1057 
1058 
1059 
1060 
1061 
1062 
1063 
1064 
1065 
1066 
1067 
1068 
1069 

.1070 
1071 
1072 
1073 
1074 
1075 
1076 

* * * * * * * * * * * * * * * * * * ~ * * * * * * * *'* * * * * * * * * * * 

PHFSet: 

SinkSt: 

1077 PG 

Character dot matrix - normal char 
Dot Column 

b = Blank, Column 

b d d d d d 
(Char Matt'ix) 
000 0 b 
000 1 d 
001 '0 d 
001 1 d 
010 0 d 
010 1 d 

JNTO RetT'n 
JBl NPRet 
JB6 SinkSt 
Mov A,GStR20 
ORL A,IISnkSet 
Mov GStR20,A 
SEL RBI 
Mov A,ChStRI 
JB6 PageCk 

; if R=O not read~ to pT'int-exit 
, if Do Not Print stat bit set - EXIT 
I if bit previously set-skip setting it 
ig.t the status byte 
.set Prnt Read~ Sink bit 
isave the status byte 

iget chaT' status T'egisteT' addT' 
itest Char Init Done, 1 = Print Dot 

o = Qet Char 

1078 --------------------------------------------------------------------------

!g~6 ------:~::-~~:-:~~:~:~~~:-:~~:~:~~:-~:~:~~~:~!~--~:~-::~:-:~~~-:~-:~~~~~~-
1081 GetChr: 
1082 is the test pOSition in the line 
1083 CRChCk. iget character 
1084 itest for Carriage Return 
1085 if CR go s.T'vice it 
1086 i if not CR Insert Space Char 
1087 CRLnCk: j get chaT' status T'egister .,ddr '-(I 

1088 i test Chr Stat Byte Returned' 
1089 if bit 7 = I then Print .L-to-R 
1090 ,if R-to-L print skip exit. up.on CR detect 
1091 i -----------------------------------------------------------------------

230795-001 



inter 
032B FD 
032C 03D9 
032E F632 

0330 648A 

0332 97 
0333 2320 
0335 6438 

0337 Fl 
0338 7498 

033A FA 
033B B241 
033D F4EB 
033F 6443 
0341 D4FO 

0343 EB61 

0345 FA 
0346 53BF 
0348 AA 
0349 ED58 
0348 53FD 
034D 53FE 
034F AA 

0350 C5 
0351 FA 
0352 53FE 
0354 AA 
0355 D5 
0356 6468 

0358 FA 
0359 F25E 

0358 19 
035C 6468 
035E C9 
035F 6468 

0361 FA 
0362 F267 

0364 CC 

0365 6468 
0367 lC 

1092 
1093 HlfLn: 
1094 

AP-161 

If L-to-R prInting 
Mav A,CCntRl 
ADD A •• HlfCpl 

exit the line if less than 1/2 lIne prInted 
; load char cnt reg wIthal' bufr size 
;add the 2'5 cpt of 1/2 chr buf sIze 

1095 
1096 

-iC LnPad • if CB>1/2 full set CR/LF stat bit for pad 
; If CB<1/2 set buffer full stat b,t 

1097 -imp 
1098 SpFi I L 
1099 LnPad, Clr 
1100 Mov 
1101 -imp 
1102 

MdLnEx 

C 
A,#Space 
Ch Isrt 

; mid-line exit 

,clear carry flag 
,Insert a space char 
ichar Inserted Jmp over get char 

1103 
1104 

AsciCl Mav 
ChIsrt: Call 

A.I!CAdrRI 
GCharl 

iget character 
;cal1 the char lookup/trns table 

1105 ; ----------------------------------------------------------------
1106 
1107 
1108 
1109 
1110 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 

PageCk, 

Fx-imp 1. 

PG 

1120 MtxTst: 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1136 
1137 
1138 

fetch the char dot 

Mov A.ChStRI 
-is 5 Fx-impl 
Call ChrPg2 
-imp MtxTst 
Call ChrPgl 

column data 
ipage test faT' balance of char 
;get the status byte 
jfix Jmp over page boundries 
iAscii char 50 - 7F Hex 
; Jump to Matrix Test 
iAscii char 20 - 4F Hex 

fall thru to print matrix 
and CB count tests 

test the Char dot column print matrix count and Char buffer count 

D-iNZ CDtCR1.PrntDt 

Mov A.ChStRI 
ANL A •• ClntND 
Mov ChStRl.A 
D-iNZ CCntRl.NotLCh 
ANL A.tlNCBFln 
ANL A •• ClICSR 
Mov ChStRl.A 

SEL RBO 
Mov A.GStR20 
ANL A •• NotRdy 
Mov GStR20.A 
SEL RBI 
-imp Retrn 

,test for dot color blank 
istatus byte in A upon entry here 
iget the status byte 
,set Char Init NotDone stat Flag 
,store the ~tatus byte 
,dec char cnt-Jmp if Not Last Char 
ilf 0 reset stat bIt Not CB Full Line 
,reset CB Reg Inlt Flag - do Inlt 
,save the status byte 

,get Gen Status register addr 
,clear the ready bIt 
,store the -General Status Byte 

Test for L-to-R (forWard) Dr R-to-L (reverse) printing 
(see GChar1 ASCII char code translation procedure) 

1139 
1140 
1141 
1142 

; --------------------------------------------------------------------------
NotLCh' ;A contains LR/RL bit properly set 

1143 
1144 StpCh I' 
1145 
1146 StpCh2: 
1147 
1148 
1149 
1150 
1151 
1152 ; 
1153 
1154 
1155 

Mov 
-iB7 

Inc 
-imp 
Dec 
-imp 

A.ChStRI 
StpCh2 

CAdrRI 
Retrn 
CAdrRI 
Retrn 

,get char status regIster addr 
itest Chr Stat Byte Returned 

if bit 7 = 1 then Print L-to-R 
,Increment char data memory addr 

iDecrement char data memory addr 
fall thru to Get Char 

Re-Entry Exit point for same char: 
(before returning step the matrix) 

Test for L-to-R (forward) or R-to-L (reverse) printing 
(se~ GChar1 ASCII char code translation procedure) 

1156 j --------------------------------------------------------------------------
1157 
1158 PrntDt: 
1159 PrnDir: Mov 
1160 -iB7 
1161 
1162 StpCD1: Dec 
1163 
1164 -imp 
1165 StpCD2: INC 
1166 
1167 
1168 

1169 PG 

A.ChStRI 
StpCD2 

CDotRI 

Retrn 
CDotRI 

5-791 

iget char status byte 
;~est Chr Stat Byte Returned 

if bit 7 = 1 then Print L-to-R 
,reverse step char dot col index 

addr if R-to-L print 
iskip over L-to-R prInt addr inc 
iforward step char dot col index 

addr if L-to-R print 
; EXIT 

230795-001 

" 

!~, 
\' 
'I, 



0368 C5 
0369 83 

036A D5 
036B FA 
036C F27C 

036E C5 
036F FA 
0370 53BF 
0372 83 

0373 D27C 

0375 4340 
0377 AA 
0378 B807 
037A 6488 
037C E888 
037E FA 
037F 53BF 
0381 AA 
0382 C5 
0383 FA 
0384 53FE 
0386 AA 
0387 83 
0388 C5 
0389 83 

038A FA 
038B 53FD 
038D 53FE 
038F AA 
0390 C5 
0391 FA 
0392 4302 
0394 53BF 
0396 AA 
0397 83 

0398 AE 

0399 03EO 
039B F69F 
039D 64C9 
039F 97 
03AO FE 

03AI 03BO 
03A3 F6AE 

03A5 FA 
03A6 4320 
03A8 AA 
03A9 FE 
03AA 03EO 
03AC 64B8 

AP-161 

1170 , --------------------------------------------------------------------
1171 ChaT"a,~ t~T' 'Pr i nt SetUp' Ex it Proc ad ure5 
1172 
1173 
1174 

Clean Standard Exit 

1175 RetT'n: SEL 
1176 
1177 

Ret 

1178 Do Not 
1179 NPRet: SEL 
1180 
1181 
1182 
1183 

Mov 
JB7 

ReveT'se 
SEL 

RBO 

Print exit. 
RBI 
A.ChStRI 
SkpNPI 

iEXIT - return wI Re~ Bank 0 Reset 

set Stpr Mtr drive routine iount loop 

'get the status byte 
itest prInt directIon 

iget the status byte , 1184 
1185 
1186 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 
1200 
1201 
1202 

Mov 
ANL 

RBO 
A.GStR20 
A.#ClrSnk ireset the print ready bit- skips PHFire c~ll 

Ret 
For",ard 

~B6 SkpNPI itest for first PHFSet entry reg init 
InitialIze register variables upon first entry 

end of count clears char to prInt bit in status byte 
ORL A.#ChlntD 'set ChaT' Reg In.t Dane stat bit 
Mov ChStRI.A • save the status byte 
Mav TmpRIO,#07H iload CR stpr mtr count durIng NoPrnt 
Jmp NPExit 

SkpNPI" DJNZ TmpRIO.NPExit 
Mov A.ChStRI 
ANL A.#ClntND 
Mov ChStRI.A 
SEL RBO 
Mav A.GStR20 
ANL A.#NotRdy· 
Mov GStR20.A 

iget the status byte 
iT'eset - char init not done 
isave the status byte 

;get Gan Status register addr 
iclear the read~ bit 
istore the General Status B~te 

1203 NSetEx 
1204 NPEXlt: 
1205 

Ret 
SEL 
Ret 

RBO 

1206 
1207 Mid-Line Exit 
1208 
1209 EXIT - if CR and not > 
1210 MdLnEx: 
1211 

Mav 
ANL 

A. C'1,StRI 
A.#NCBFln 

1/2 line done during L-to-R print 
iget the status byte 
'if 0 reset stat bit NDt CB Full Line 

1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 

1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 

PG 

GCHARI: 

ANL A. #CIICBR 
Mov ChStRI.A 
SEL RBO 
Mav A.GStR20 
ORL A.#DaNatP 
ANL A.#ClrSnk 
Mav GStR20.A 
Ret 

ireset CB Reg Init Flag - do Init 
isave the status byte 

1get the RBO status byte 
iset the Do Not Print Flag(for RAccel) 
ireset the print ready bit-exit FAccel 
isava the status byte 

Character Dot Generator Math 
Look-up Table Page Vectoring 
Print Head Firing 

MOV StrCRI. A ,STORE THE CHAR 

screen foT' pr.ntable char [chaT' +(cpl 20 Hex + I = EO Hex)] 
ADD 
JC 
Jmp 

PT'ntCh: Clr 
Mov 

screen for 
if carry 

ADD 
JC 

A.#OEOH 
PrntCh 
CntlCh 
C 
A.St,.CRI 

i Jmp to control char lookup table 
iciesr carry ~lag 
1get the char aga~n 

char page (char +(cpl 50 Hex + 1 ~ BO Hex)] 
char on page 2 else page 1 

A.#OBOH 
Page2 

Page Character -- ASCII 20 Hex thru 4F Hex 
Correct offset for lookup table page 
«char + EO Hex)*5 = Page 1 index addr) 

Pagel: Mav A.ChStRI 
OrL A.#ChOnPI 
Mov ChStRI. A, 
Mov A.StT'CRI 
ADD A.#OEOH 
Jlnp Multi5 

5-792 

get the status byte 
set the page rent,ry flag bit 
store the status byte 
get the char sgian 
set page 1 relative 00" offset 
Jump to address math function 

230795-001 



inter 

03AE 97 
03AF FA 
0380 53DF 
03B2 AA 
03B3 FE 
03B4 03BO 
03B6 64BB 

03BB AE 
03B9 E7 
03BA E7 
03BB 6E 
03BC AC 

03BD FA 
038E F2C4 

03CO FC 
03Cl 0304 

03C3 AC 

03C4 FA 
03C5 4340 
03C7 AA 
03CB B3 

03C9 B3 

03CA D5 
03C8 FB 
03CC 96D2 

OXE B806 
0300 640B 
0302 2340 
9304 3A 
0305 23CO 
0307 3A 
03DB C5 
03D9 B3 

0400 

0400 BC04 
0402 BB22 
0404 230B 
0406 AO 

0407 BEOI 

0409 B41B 

AP-161 

1253 Page 2 Character -- ASCII 20 He'. thru 4F Hex 
1254 Correct offset for lookup table p.ge two's complement 
1255 of ASCII chr code LookUp Table p.ge bois. char of 50H plus 
1256 , char * 5 {(char + BO H •• ).5 - Page 2 index addr) 

1257 , ----------------------------------------------------------------
125B P.ga2· Clr C ,c'lear carrU flag 
1259 Mov A,ChStRI 'get the status ~ut. 
1260 AnL A,.ChOnP2 ,.et the page rentru flag b1t 
1261 Mov ChStRl,A ,store the status bute 
1262 Mov A,StrCRI 'get the char .gi.n 
1263 AOO A,.OBOH ,s.t page 2 relat,va 00 off •• t 
1264 ~mp Multi5 ,f.ll thru to address math function 
1265 
1266 , 
1267 MULTI': 
126B 
1269 
1270 
1271 
1272 
1273 , 
1274 , 

Compute 
Mov 
RL 
RL 
AOD 
MOV 

ch.",ecter 
StrCR1, A 
A 
A 
A,StrCRI 
CDotRl, A 

page off.et dot pattern index address 
• stare the zero off •• t chat" 
,MULTIPLY CHR BY 5 TO 
, FIND THE ADDRESS 
,ADD 1 TO COMPLETE 5X 
,SAVE THE ADDRESS 

Test for L-to-R (forward) or R-to-L (reverse) print1ng 
(sea QCharl ASCII char coda translation procedure) 

127' , ----------------------------------------------------------------
1276 
1277 
127B 
1279 
12BO 
12Bl 
12B2 
12B3 
12B4 

Mov 
~B7 

MOV 
AOO 

MOV 

A,ChStRI 
LRPrn 

A,CDotRI 
A,.RLPShf 

CDotRl,A 

,get char status bute 
,t.st Chr Stat Bute Raturned 

if bit 7 - 1 then Print L-toR 
;get the cha", index add", 
,.odd char offset - start at end 
iO' ch."" p",int It R-to-L 
,SAVE THE ADDRESS 

Set the status bvte for Charect,,,, SetUp done 
12B5 
12B6 
12B7 
12BB 

, ----------------------------------------------------------------
LRPrn: Mov A,ChStRI ,get the st.tus but. 

12B9 
1290 , 
1291 CntlCh: 
1292 

ORL A,.ChlntD ,set 1st char col tast bit - 0 
Mov ChStRl,A ,.tore the status bUta 
Ret ,return w/statuB but. in A 
te.t for non printable ch."'.cters goes he",. 
Ret 

1293 
1294 , * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * PT'lnt Head FIr, 
1295 
1296 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1297 Entrv point for print head solenoid firing 
129B 
1299 
1300 
1301 

- test for status bute for dotlblank column position 
PHFire: SEL RBI 

Mov A,COtCRI 
~NZ Flre 

1302 
1303 SetCnt' Mov 
1304 ~mp 
1305 Fire. MOV 
1306 OUTL 
1307 MOV 
1308 OUTL 
1309 Retrnl: SEL 
1310 Ret 
1311 

1312 PG 

CDtCR1,.NDtCCt 
Retrnl 
A,.PTrgLo 
P2,A 
A,.PTrgHi 
P2,A 
RBO 

,set the chr dot column cnt 
.if ch.t" cnt not O~ Fire Head Sol. 
'if Chr Dot Cnt 0, reset the 

char dot column 
,skip PH Fire 
'get the Prnt Head 
,FIRE PRINT HEAD 

count 

Trigger bUh 

,get the Prnt Head Trigger bute 
,FIRE PRINT HEAD 

1313 , * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1314 PaperFeed Stpr Mtr Drive 
1315 J * * * * * * * * * * * * * * * * * *,* * * * * * * * * * * * * * * * * * 
131Et 
1317 
1318 
1319 , 
1320 , 
1321 In1tLF 
1322 
1323 
1324 
132:1 
1326 
1327 
1328 
1329 
1330 
1331 

ORG 400H 

Inlt psuedo ~.gi.te~ ~ith LF inde~.ct addr start - sub •• ~u.nt 
exchanges of the psuedo ~egister will ~i.ld co~rect value 

MOV CntR40,.ILFCNT ,INIT PHASE COUNT REG 
Mov TmpROO,.LPSAdr 'get PhI Inderect Addr psuedo reg 
MOV A,.StLFF 'get LF starting addr 
Mov eTmpRqO,A ,store LF ph •• e index eddr start 

Mov 

~mp 

, J in psuedo r.gi.t.~ 
LnCtRO,IL1neCt ,set line count rag for 1 1n 

LfDrvl 
, enable ••• it following LF SM lnit 
J Jump ove~ line/form feed amd variable 

11n8 sp.cing tests & .etup. 

LinaFeed I FormFeed Drive 

5-793 230795-001 

I:, 
! 

.,' 
" 

II 
!~ 
I'" I~ 



inter 

040ll BC1B 

040D FA 
040E 5214 
0410 BEOI 
0412 841B 
0414 FE 
0415 37 
0416 0301 
0418 0342 

041A AE 

041B 8821 
041D FO 
041E E3 
041F B820 
0421 AO 

0422 8822 
0424 FO 
0425 AB 
0426 BD98 

0428 2306 
042A 3D 

042ll FB 
042C E3 

0420 B820 
042F 40 

0430 3C 

0431 FO 
0432 62 
0433 55 

0434 lB 
0435 FB 
0436 523A 
0438 843C 
043A BB08 

043C FB 
043D E3 

043E B820 
0440 40 

0441 1645 
0443 8441 

0445 3C 
0446 EC31 

0448 BC1B 
044A EE31 

044C FA 
044D 53FB 
044F AA 

0450 B822 

AP-161 

1332 , -----------------------------------------------------------------------
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 • 
1341 LfDr'v: 
1342 
1343 LnCtL~. 
1344 
1345 FmFd. 
1346 
1347 
1348 
1349 
1350 
1351 
1352 
1353 , 
1354 
1355 LFOrvl: 
1356 
1357 

load step count constant for standard 11ne spacing 

test for various line/inch spacing would go here 
(and removal of constant setup below) 

MOV CntR40 •• LPI8p8 ,init cnt reg for standard line feed 

LineFeed/FormFeed Test 
Mov A.GStR20 
JB2 FmFd 
Mov LnCtRO •• LineCt 
.Imp LfD'rvl 
~ov A.LnCtRO 
Cpl A 
Add A •• Ol 
Add A •• PgLnCt 

Mov LnCtRO.A 

'get the status byte 
j if linefeed Jmp to cnt 
iset line count reg for 
'Jmp to Start of Drive 
iget the line count 
;2's cpI Line Count 

,Add 2's cpl for Paging 

load 
1 line 

PgLnCt - LnCt m n Lines to move 
PgLnCt+(cpl(LnCt) = n lines to move 

i.at the line coun~ for FF 

for stablization of unused stpr mtr during CR stpr mtr drive, 
store the unused stpr mtr current phase bits 

Mov TmpROO •• CPSAdr 'get the CR phz storeage addr 
Mov A.~TmpROO 'get the byute stored there 
MovP3 A.@A 'get the phz data byte 
Mov TmpROO •• LastPh, load Last Phz psuedo reg to Temp Reg 
Mav @TmpROO,A istore Last Phase ~ltS - inderect 
exchange/store the phAse register index addresses 
Mov TmpROO •• LPSAdr ,get Phz Inderect Addr psuedo reg 
Mov A.@TmpROO 'get LF last phase index addr 

,1358 
1359 
1360 
1361 
1362 
1363 
1364 
1365 
1366 
1367 
1368 
1369 
1370 
1371 
1372 
1373 
1374 
1375 
1376 
1377 
1378 
1379 
1380 

Mov PhzR30,A ,place last LF phase index addr in Phz Reg 

1381 StrtLF' 
1382 STRLFT: 
1383 
1384 
1385 
1386 
1387 
1388 
1389 
1390 ZROPHL: 
1391 

MOV TConRO •• LFTMRI .Load time constant Reg 

Select the Stpr Mtr 
MOV A •• SLF ,GET CR SM SELECT BITS 

,SELECT SM [SCR80] MOVD P5.A 

LineFeed / FormFeed Drive Loop 

MOV 
MovP3 
patch 
Mov 
ORL 
start 
MOVO 

MOV 
MOV 
STRT 
setup 
INC 
MOV 
JB2 
.IMP 
MOV 

A,PhzR30 iget the phz reg indirect addr index 
A,@A ida indl~ect get of phz bits 

together the CR last and LF next phase bits 
-TmpROQ,*LastPh iload Last Phz psuedo reg to Temp Reg 
A,@TmpROO ,patch together CR existing L new LF 

timer and step motor 
P4.A ,OUTPUT BITS 

A, TConRO i get time constant fT'om reg 
T.A , load the timer 
T ,START TIMER 

the next phase to output 
PhzR30 ,STEP PHASE DB ADDRESS 
A.PhzR30 'get tho phase index address 
ZROPHL j test phase 
NXTPHL 
PhzR30,.STLFF ,re-init phase regIster 

1392 NXTPHL: MOV A,PhzR30 iget the phz reg indirect addr index 
,1393 
1394 
1395 
1396 
1397 

MovP3 ' 
patch 
Mov 
ORL 

A,@A ida indirect get af phz bits 
together the CR last and LF next phase bits 

TmpROO •• La.tPh 'load Last Phz p.uedo reg to Tem~ Reg 
A.@TmpROO ,patch together CR existing & new LF 

1398 TLoopL JTF 
1399 .IMP 

NXPHLF 
TLOOPL 

, Jmp on time out to Dutput nxt phz 
iloop until timer times out 

1400 
1401 NXPHLF. MOVD 
1402 DJNZ 

P4.A 
CntR40.StrLFT 

.step motor - OUTPUT BITS 
itest for end of phase count for li~e 

iprep for next line 1403 
1404 
1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 SetLRN' 

test for various line/lnch spacing would go here 
MOV CntR40,*LPI8p8 i init cnt reg for standard line feed 
DJNZ LnCtRO.StrtLF ,test for end of l,ne count 

Mov 
ANL 
Mov 

A.GStR20 
A,*LineFd 
G5tR20.A 

,Get the status byte 
ireset for line feed 
isave the status byte 

store the phase register index addresses 
Set LineFeed Stpr Mtr' Next Pha~e index address 
Mov ,TmpROQ,*LPSAdr iget Phz Storage Addr psuedo reg 

5-794 230795-001 



0452 FO 
0453 AO 
0454 8478 
0456 8490 

0458 83 

0500 

0500 D5 
0501 FA 
0502 53F7 
0504 AA 
0505 0823 
0507 B020 
0509 C5 

050A FA 
0500 53FD 
050D AA 
050E 83 

050F C5 
0510 230F 
0512 3E 
0513 23FF 
0515 39 
0516 23CO 
0518 3A 
0519 8A03 
05113 BAOO 
051D D5 
051E BAOO 
0520 C5 
0521 83 

0522 FA 
0523 4302 
0525 AA 
0526 362A 

0528 3402 
052A 3422 

052C 0474 
052E 83 

052F B87F 
0531 095D 
0533 0000 

1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 

1428 

Mov 
Mov 
Call 
Call 

AP-161 

A.PhzR30 
GlTmpROO.A 
Dl~Lng 
DeS1SM 

;get the phase index address 
istore LF Next phase index addT 

Check if Char Buffer contain. full I1no (80 char or nChar L CR) 
extt otheT~i5e continue to read in characters 

Mov A.GStR20 .get the st.t byte 
~Bl B,P •• 1 ;if Do Not Print Bit Set - EXIT 
Call C8Fc k 

ByPesl: Ret 

PG 
1429 ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1430 Minor Software Subroutines 
1431 I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1432 
1433 
1434 
1435 
1436 
1437 

ORG 500H 

System initialization subroutines 

1438 Defalt. 
1439 
1440 
1441 
1442 
1443 
1444 
1445 
1446 
1447 
1448 
1449 
1450 
1451 
1452 
1453 

reset/set EOF status flag bit = 0 
SEL RBI 
Mov A.Ch5tRI 
ANL A.#ClrEOF 
Mov Ch5tRl.A 
Mav TmpRl0,#PTAscS 
Mav @TmpRl0,.Ascii 
5EL RBO 

reset/set Ok-to-Print 
Mov A.G5tR20 
ANL A.#OkPrnt 
Mov G5tR20.A 
RET 

iget the char status byte 
.clear the EOF flag bit 
I.tore the char status byte 
,get the Ascii code tmp store addr 
; load the tmp stOT reg wl.scil start 

status flag bit = 0 
iget the status byte 
;reset pr1nt flag - Ok 
isava the status byte 

Print 

1454 Ini tAl: 
1455 AllOH: 
1456 
1457 
1458 
1459 
1460 
1461 
1462 
1463 
1464 
1465 
1466 
1467 
1468 
1469 
1470 
1471 

1472 
1473 
1474 
1475 
1476 
1477 
1478 
·1479 
1480 
1481 
1482 
1483 
1484 
1485 
1486 
1487 
1488 
1489 
1490 
1491 
1492 
1493 
1494 
1495 
1496 

PG 

CLEAR 
5EL 
MOV 
MOVD 
MOV 
OUTL 
MOV 
OUTL 
ORL 
Mov 
SEL 
Mav, 
5EL 
RET 

all outputs 
ROO 
A.#OFH 
P6.A 
A.#OFFH 
Pl. A 
A.#PTRGHI 
P2.A 
POl. #03 
G5tR20.#00H 
RBI 
Ch5tRI. #OOH 
ROO 

• FORCE PORT HI - RI OF 555 

; TURN ALL PRNT 50L's OFF 

iprint head fire tirgger inactive 

iset comm hdsk to ACK hi/Busy hi 
;clear the status registers 

; RETURN TO INIT ROUTINE 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
Home Carriage / P~int Head Assembly 

* * * * * * * *' * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
CRHome: Mov 

ORL 
Mev 
~TO 

Call 
RtoL: Call 

Call 
Ret 

* * * * * * Clear 

A.G5tR20 
A.#DoNotP 
GStR20.A 
RtoL 

FAccel 
RAccel 

,get the status byte 
isat the do not p~int flag 
; save the status... byte 
itest for position af PH .ssembly 

d~ive acco~dingly 

,drive CR Stpr Mtr 
j find the logical left home' CR position 
idelaya long time befo~e contin~ing 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Data Memorlj 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
At PowerUp or Reset. fallowing CR L LF Stpr Mtr Init. this 
procedure clears data memory above RBO, Stack and RBt. 

ClrDM: MOV RO.#DMTop ; GET BUFFER 5TART LOCATION [HEXl 
MOV Rl.#DM5IZE 

ClrDM1: MOV GlRO.#OOH ; ZERO MEMORY LOCATION 

5-795 230795-001 



inter 
0535 C8 
0536 E933 
0538 83 

0539 B97F 
053B BD50 

053D FF 
053E AI 
053F C9 
0540 IF 
0541 03B2 
0543 9647 
0545 BF20, 
0547 ED3D 
0549 C5 
054A 83 

054B BC04 
054D 2308 
054F 3D 
0550 BDCO 
0552 BBOO 
0554 FB 
0555 E3 
0556 3C 
0557 FD 
0558 62 
0559 55 
055A IB 
0559 FB 
055C 5260 
055E A462 
0560 BBOO 

0562 FB 
0563 E3 
0564 1669 
0566 A464 
056B 3C 
0569 EC:l7 

056B BB21 
056D FB 
056E AO 
056F B47B 
0571 8490 
0573 83 

0574 B87F 
0576 A47E 

057B BBBO 
057A A47E 

1497 
149B 
1499 
1500 

1501 PG 

DEC 
D.JNZ 
RET 

AP-161 

RO 
RI.CI~DMI ; dec buff.r, loop if not zero[endJ 

,RETURN TO INIT ROUTINE 

1502 
1503 
1504 
1505 
1506 
1507 
1508 
1509 
1510 
1511 
1512 
1513 
1514 
1515 
1516 
1517 
151B 
1519 
1520 
1521 
1522 
1523 
1524 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
Cha~act.~ P~int TEST 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
P~nTst: 

TEST 

CTInt: Mav 
Mav 

load the char buffer with successive increments of 
the ascii cade start. test for end of ascii 
printable char. and ,..init the char stream loaded. 

CAdrRI.IIFCBfSt 
CCntRI.IIChBfSz 

Iload char reg w/ehar buf,. strt 
iload char cnt ,..g w/eh.r bufl' size 

ChTst. ,Test char buffe~ fill with ASCII Char Code 

1525 

\ Mav 
Mav 
DEC 
INC 
ADD 
.JNZ 
Mav 

Ch~TGa: D.JNZ 
SEL 
RET 

PG 

A,opnr71 
etCAdrRI. A 
CAdrRI 
opnT'71 
A,tJPAsEnd 
ChrTGa 
OpnR71.IIAscii 
CCntRt. ChTst 
RBO 

Jget the ascii char \ 
j load data memory wlehar 
iDecrement dat memory location 
j Increment Ascii char number 
it.st for ascii code end 
; if not end Jmp over code restart 

Jdec buffer, loop if not zero[endl 

,ELSE RETURN TO INIT ROUTINE 

1526 J * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1~27 CR Stpr Mtr Power On Initialization and 
1528 
1529 
1530 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
This routine drives the CR aT LF stPT mt~ fo~ fOUT phase 

1531 INITeR: 
1532 
1533 
1534 
1'535 
1536 
1537 
1538 
1539 
1540 STR TTR : 
1541 
1542 
1543 
1544 
1545 
1546 
1547 ZroRg2: 
154B NxtPhR: 
1549 
1550 
1551 TLoopR: 
1552 
1553 
1554 NXPHR 1 : 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 

1564 
1565 
1566 

PG 

shifts for initialization. 

MOV 
MOV 
MOVD 
MOV 
MOV 
MOV 
MovP3 
MOVD 
MOV 
MOV 
STRT 
INC 
MOV 
.JB2 
.JMP 
MOV 

MOV 
MovP3 
.JTF 
.JMP 
MOVD 
D.JNZ 

store 
Mov 
Mov 
Mov 
Call 
'Call 
RET 

CntR40.IIPhCntl 
A.IISCRBO 
P5. A 
TConRO.IIIntTm2 
PhzR30.IIFStCRP 
A.PhzR30 
A.etA 
P4.A 
A.TConRO 
T.A 
T 
PhzR30 
A.PhzR30 
ZroRg2 
NxtPhR 
PhzR30.IIFStCRP 

A.PhzR30 
A.etA 
NXPHRI 
TLoopR 
P4.A 
CntR40.STRTTR 

,POWER ON INIT STPR MTR 
.Ioad phase cnt r.g for INIT 
,GET CR SM SELECT BITS 
,SELECT SM [SCRBO] 
JLoad time constant Reg 
j ze~o 8M phase ~eg - fo~waTd 

iget phase index register byte 
'load indexed phase shift byte 
• OUTPUT BITS 
,GET TIMER CONSTANT 

,START TIMER 
istep phase index register 
,CHECK THE PHASE COUNT REG 

j zero SM phasa reg - forward 

;get phase index Tegister byte 
; load indexed phase shift byte 
,.JMP ON TIME OUT TO NEXT PH 
,LOOP UNTIL TIME OUT 
,OUTPUT BITS 

the last phase regist8T index addresses 
TmpROO.IICPSAdr .get Ph, Storage Addr psuedo reg 
A.PhzR30 .place last CR phase index addr in 
etTmpROO.A store CR last phase index addr 
DIvLng 
DeSISM 

Time Daiay Subrouti~es 
1567 • ----------------------------------------------------------------
156B 

Very Long 1569 
1570 
1571 
1572 

DlyVLg: MOV TmpROO.1I7FH • LOAD DELAY COUNT IN REG. 
.Jmp DlyST 

1573 Long 
1574 DlyLng: MOV 
1575 
1576 

.Jmp 
,TmpROO.IIDIVCL 
DlyST 

5-796 

,LOAD DELAY COUNT IN REG. 

Phz Reg 

230795-001 



inter 
057C B830 

057E 23CC 
0580 62 
0581 55 

0582 1680 

0584 05 
0585 FA 
0586 928A 

0588 1469 
058A C5 
058B A482 
0580 E880 
058F 83 

0590 230E 
0592 3D 
0593 83 

0600 

AP-161 

Not So'Long - Short 
DlySht: MOV TmpROO •• DlyCS ; LOAD DELAY COUNT IN REG, 

DlyST: 
NxtTLd' 

DIVLop, 

Start 
MOV 
MOV 
STRT 

JTF 

Char 
SEL 

Delay 
A.IIDlyTim 
T.A 
T 

DlyTO 

buffer fill 
RBI 

; GET MAX TIMER DELAY 
; LOAD TIMER 
; START TIMER 

; LOOP 

during time loop: 

1577 
'1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
1588 
1589 
1590 
1591 
1592 
1593 
1594 
1595 
1596 
1597 
1598 
1599 
1600 
1601 
1602 
1603 
1604 
1605 
1606 

Mov 
JB4 

A.ChStRI 
SkpCI 

;get the character .t.t reg byte 
test for normal char input 

IBFSrv 
RBO 

or .kip if char prnt test 
iseTvie. the char buf~.r fill Call 

SkpCI: SEL 
JMP 

DlyTO: DJNZ 
RET 

DlyLOP 
TmpROO.NxtTLd Jdec d.la~ count & test fOT exit 

Stpr Mtr D ••• lect 

Stepper Motor DeSelect 
DESLSM. 
SMEROR, MOV 

MOVD 
RET 

A.IISMOFF 
P5.A 

.INCLUDE(:F1.CHRTBL.OV1) 

Routine 
; DESELECT LF/CR SM 
;GET LF/CR SM DE-SELECT BITS 
; DE-SELECT CIl SM 

=1607 
=1608 * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * =1609 Chara,cter Dot Generator Look-up Table Page 1 
=1610 j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * =1611 
=1612 

=1613 Character Table Page 1, contains 
-1614 
=1615 , 20H ----------------------------------------> 4FH 
=1616 
=1617 .. (.p)! .... 7.s..()*+.-, 10123456789';<->?@ABCDEFGHIJKLM .. 
=1618 
=1619 
=1620 
=1621 
=1622 
=1623 

=1624 
=1625 
-1626 

ORG 600H 

Page 1 Character Dot Pattern Fetch 
<<< actual assembled character t.~le code not listed »> 

=1627 .NoList 
=1676 .Li.t 
=1677 
=1678 

Listing below 15 for reference onl~, actual code is not listed 
at assembly time. 

=1679 
=1680 
=1681 
-1682 
=1683 
=1684 
=1685 
=1686 ; 
=1687 
=1688 
=1689 
=1690 
=1691 
-1692 
=1693 
=1694 
=1695 
=1696 
=1697 J 

-1698 
-1699 
-1700 
=1701 
=1702 
-1703 
=1704 
-1705 

"5c20: 
asc21 : 
a5c22: 
.5c23: 
a5c24: 
a5c25: 
a5c26: 
a5c27: 
a5c28: 
a5c29. 
asc2A' 
a5c2B: 
asc2C: 
a5c2D: 
asc2E: 
asc2F 
a5c30: 
ase31: 
a5c32. 
85C33: 
a5c34: 
ase35: 
a5c36: 
a5c37. 
a.c38: 

DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 

7FH. 7FH. 
7FH. 7FH. 
7FH. 7FH. 
6BH. OOH. 
5BH. 55H. 
5CH. 6CH, 
19H, 26H. 
7FH, 7FH. 
63H, SOH, 
7FH, 7FH, 
SOH, 6BH, 
77H, 77H, 
7FH, 3FH, 
77H, 77H, 
7FH, IFH. 
5FH, 6FH, 
41H, 2EH. 
7FH, 3DH, 
3DH, lEH, 
5DH, 3EH, 
67H, 6BH, 
58H, 3AH, 
43H, 35H, 
7EH, OEH, 
49H, 36H, 

5-797 

7FH. 7FH. 7FH ; SPACE 
20H. 7FH. 7FH j! 
78H. 7FH. 78H 
6BH,~ OOH. 6BH ;. 
OOH. 55H. 6DH ;. 
77H, IBH, IDH ;7. 
26H, 59H, 2FH .s. 
7CH. 7FH, 7FH ; , 
3EH, 7FH, 7FH ; ( 

3EH, 5DH, 63H , ) 
OOH, 6BH. 5DH ; * 
41H, 77H. 77H ;+ 
4FH, 7FH, 7FH ; , 
77H, 77H, 77H ; -
IFH, 7FH, 7FH ;, 
77H, 7BH, 7DH ; I 
36H, 3AH, 41H ; 0 
OOH, 3FH, 7FH , 1 
2EH, 36H. 39H ; 2 
36H. 36H, 49H ;3 
6DH, OOH, 6FH ; 4 
3AH, 3AH, 46H ; 5 
36H, 36H, 4EH ;6 
76H, 7AH, 7CH ; 7 
36H, 36H, 49H ;8 

230795-001 



inter 

06FO FC 
06F1 A3 

06F:2 43BO 
06F4 39 
06F5 B3 

0700 

AP·161 

-1706 • • sc39: DB 39H. 36H. 36H. 56H. 61H ,9 
-1707 • •• e3A: DB 7FH. 7FH. 6BH. 7FH. 7FH .: 
-170B ... e3B' DB 7FH. 3FH. 4BH. 7FH. 7FH ., 
=1709 •• e3C: , DB 77H. 6BH. 5DH. 3EH. 7FH 

• <: -1710 • • le3D: DB 6BH. 6BH. 6BH. 6BH. 6BH .-
-1711 ... e3E: DB 7FH. 3EH. 5DH. 61lH. 77H ,> 
=171:2 , .. se3F: DB 79H. 7EH. :26H. 7AH.' 7DH .1 
-1713 , •• e40' DB 41H. 3EH. 22H. 36H. 71H ,I 
(=1714 • ... e41: DB 03H. 6DH. 6EH. 6DH. 03H , A 
=1715 • • le42:' DB OOH. 36H. 36H. 36H. 49H , B, 
=1716 • •• e43: DB 41H. 3EH. 3EH. 3EH. 5DH ,C 
-1717 ase44: DB OOH. 3EH. 3EH. '5DH. 63H' 

, 
.D 

-171B • •• e!l5, DB OOH • 36H. 36H. 36H. 36H IE' 
-1719 •• c46: DB OOH. 76H. 76Hi 76H. 76H .F 
-17:20 •• e47: DB 41H. 3EH. 3EH. :2EH. ODH ,Q 
-17:21 , ... e48: DB ooH. 77H. 77H. 71H. OOH ,H 
-17:2:2 •• c49: DB 7FH. 3EH. OOH. 3EH.' 7FH 

• I -17:23 .le4A: DB 5FH. 3FH. 3FH. 3FH. 40H • .J 
~ -17:24 •• e4B, DB OOH. 77H. 6BI:I • SOH. 3EH .K 

-17:25 • •• e4C: DB OOH. 3FH. 3FH. 3FH. 3FH .L 
-17:26,' •• e4D: DB OOH. 7DH. 73H. 7DH. OOH ,11 
=17:27,. •• e4E: DB O •• H, OdfH. O.fH. Of7H. O •• H • telt 
-172B • ... c4F: DB 55H, Odf'H. Oef'H. 0f'7H. 55H ; t •• t 
-17:29 ... e4E: DB OOH. 7BH. 77H. 6FH. OOH .N 
-1730 ... e4F: DB 41H. 3EH. 3EH. 3EH. 41H .0 
-1731 , ---------------------------------------------------------------------
-1732 End P.ge 1 Ch.~ .. et.r Dot P.tt.~n Fetch 
-1733 
-1734 • ---------------------------------------------------------------------
=1735 Character Dot Pattern Fetch 
-1736 ; ---------------------------------------------------------------------
-1737 
-173B Ch~Pgl: 110V A.CDotRI 

A.IA 
.g.t eh.~ ind.x .. dd~.s. off •• t 
,g.t column dot p .. t.~n byte -1739" 110VP 

-1740 
-1741 • 
-174:2 • 
-1743 
-1744 
~1745 
=1746 
=1747 
-174B 
-1749 

this bit fix n.e •••• ~v to not und.~lin ••• eh eh.~.et.~ 
this •• vel fixing, •• eh bit in the look up t .. bl. 

ORL 
OutL 
RET 

A.IBOH 
Pl.A 

END P"ge 1 

• eh .. ~ bit fix 
.output the dot)p.tt.~n , 
,.xit ~ith byte in .ec 

I -1750 , -----------------------~---------~-----------------------------------
-1751 
-1752 

=1753 PAGE 2 .. Character Dot Generator Look-Up Table 
-1754 -----------------~-----------~---------------------------------------
-1755 

=1756 
-1757 
-175B • 
-1759 
-1760 J 

"1761 
-176:2 
-1763 
-1764 
-1765 
-1766 

=1767 

Character Table Page 2, contains, 
I 

50H ------------------------------------------> 7EH 

.. NOPORSTUVWXYZ[\]A _(?I;obedef'ghi JklmnOPlll'stuv ... xy z( I)~ .. 

DRQ 700H 

Page 2 Character 'Dot Pattern Fetch 
-176B • <:<:<: Actual .... e~bled ch.~.ct.~ t.ble code not list.d »> 
-1769 ---------------------------------------------------------------------
-1770 .NoLIST 
-IBIB .List 
-IBI9 • 
=IB:20 • 
-lB21 

Listing balow IS fo~ ~efe~.nce onl~, actual code is not listed 
at .. s .... b l~, time" 

-IB22 -----------------------------------------------------------)---------
-IB:23 • 
-IB24 • 
-'1B:25 
-lB:26" 
-lB27 • 
-lB:2B 
-IB:29 • 
-IB30 , 
=IB31 
-IB32, 

".e50, \ DB OOH. 76H. 76H. 7hH. 79H .P 
• sc51: DB 41H. 3EH. :2EH. 5EH. :21H .0 
•• e52: DB OOH. 76H. 66H. 56H. 39H ,R 
•• c53: DB '5'*1. 36H, 36H. 36H. 4DH ,s 
..c54: DB 7EH. 7EI1. OOH. 7EH. 7EH ,T 
"sc55' I;IBB' 4OH. '3FH. 3FH. 3FH. 40H ,U 
•• c56' 0 601;i. 5FH. 3FH. 5FH. 60H 'Ii 
... c57: DB ool;i. 5FI:-!. 67H. 5FH. OOH ,W 
•• e5B' DB lCH. 6BH. 77H. 6BH. lCH .X 
•• c59: ,DB 7CH. ,7BH. 07H. 7BH. 7CH • Y 

5-7.98 23079S'()01 



inter AP-161 

=1833 asc5A DB lEH, 2EH, 36H, 3AH, 3CH , Z 
=1834 aseSE. DB OOH, 3EH, 3EH, 3EH, 7FH , [ 

=1835 asese: DB 7DH, 7BH, 77H, 6FH, 5FH , \ 
=1836 ase 50. DB 7FH, 3EH, 3EH, 3EH, OOH ; J 
=1837 aseSE DB 6FH, 77H, 7BH, 77H, 6FH 
=1838 asc SF- DB 3FH, 3FH, 3FH, 3FH, 3FH 
~1839 a5c60 DB 7DH, 7BH, 77H, OFFH, OFFH , \ 
=1840 asc61. DB ODFH, OABH, OABH, OABH, 087H ,a 
=1841 a5c'02. DB 080H, OB7H, OB7H, OB7H, OCFH , b 
=1842 a5c63 DB OC7H, OBBH, OBBH, OBBH, OBBH ; c 
=1843 a5c64. DB OCFH, OB7H, OB7H, OB7H, 080H ; d 
=1844 a5c65 DB OC7H, OABH, OABH, OABH, OB7H ; It· 

=1845 a5c66 DB OF7H, 081H, OF6H, OFEH, OFDH ; f 
=1846 asc67. DB OF7H, OABH, OABH, OABH, OC3H ; 9 

,1\' 

=1847 a5c68. DB 080H, OF7H, OFBH, OFBH, 087H ; h 
=1848 asc69 DB OFFH, OBFH, 08BH, OBFH, OFFH j i 
=1849 ascbA- DB ODFH, OBFH, OBBH, OC2H, OFFH , J 
=1850 ascbB DB OFFH, 080H, OEFH, OD7H, OBBH ; k 
=1851 asebC. DB OFFH, OBEH, 080H, OBFH, OFFH ; 1 
=1852 asc6D DB 087H, OFBH, OE7H, OFBH, 087H , m 
=1853 ascbE' DB 083H, OF7H, OFBH, OFBH, 087H ; n 
=1854 ascaF. DB OC7H, OBBH, OBBH, OBBH, OC7H ; 0 

-1855 a5c70. DB 084H, OEBH, OEBH, OEBH, OF7H ; P 
=1856 asc71 : DB OF7H, OEBH, OEBH, OEBH, 084H , q 
=1857 asc72 DB OFFH, 083H, OF7H, OFBH, OFBH ; r 
=1858 asc73 DB OB7H, OABH, OABH, OABH, ODBH ; s 
=1859 a5c74 DB OFBH, OC1H, OBBH, ODFH, OFFH ; t 
=1860 sse75 DB OC3H, OBFH, OBFH, OBFH, OC3H ; u 
=1861 asc76 DB OE3H, ODFH, OBFH, ODFH, OE3H 'v 
=1862 asc77 DB OC3H, OBFH, OCFH, OBFH, OC3H ;'UJ 

=1863 asc78 DB OBBH, OC7H, OEFH, OC7H, OBBH ; x 
=1864 a5c79. DB OFFH, OB3H, OAFH, OAFH, OC3H ; y 
=1865 asc7A DB OBBH, 09BH, OABH, OB3H, OBBH , z 
=1866 ASC7B DB 07FH, 077H, 049H, 03EH, 03EH ; < 
=1867 ASC7C: DB OFFH, OFFH, 088H, OFFH, OFFH ; I 
=1868 ASC7D. DB 03EH, 03EH, 009H, 077H, 07FH ; } 

=1869 ASC7E' DB 067H, 07BH, 067H, 05FH, 067H ; ~ 

=1870 
=1871 --------------------------------------------------------------
=1872 Character Dot Pattern Fetch 
=1873 --------------------------------------------------------------
=1874 

07EB FC =1875 ChrPg2 MOV A,CDotRI ;get char index address offset 
07EC A3 =1876 MOVP A,c!A iget column dot patern byte 

=1877 
=1878 th 1$ bit fix necessary to not underline each character 
=1879 this saves flxing each bit in tho look up tab Ie 
=1880 

07ED 4380 =1881 ORL A,1I80H ,char bit fix 
07EF 39 =1882 OutL PI, A i output the dot pattern 
07FO 83 =1883 RET , ex it with byte .n ace 

1884 
1885 
1886 
1887 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
1888 Program End 
1889 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
i890 
1891 END 

ASSEMBLY COMPLETE, NO ERRORS 

5-799 230795-001 



AP-161 

APPENDIX B. 
SOFTWARE PRINTER 
ENHANCEMENTS 

This section describes several software enhancements 
which could,be implemented as additions to the soft­
ware developed for this Application Note. Space is 
available for most of the itt:ms described. Approxi­
mately 5 bytes of Data Memory would be required to 
imptement most of the features. Two bytes would be 
used for status flags, and two bytes for temporary data 
or count storage. It is possible to use less than five bytes, 
but this would require the duplicate use of some flags, 
or other Data Memory storage, which will significantly 
complicate the software coding and debug tasks. 

Special Characters or Symbols 
Dot matrix printing lends itself well to the creation of 
custom characters and symbols. There are two aspects 
to implementing special characters. First, a character 
look-up table, and second, additional software for dec 
oding and processing the special characters or symbols. 
Special characters might be scientific notation, mathe­
matical symbols, unique language characters, or block 
and line graphics characters. 

The character 10Qk-up table could be an additional 
page' of Program Memory dedicated to the special 
characters, or replace part, or all, of the existing look­
up tables. If an additional look-up table is used, a third 
page test would be needed at the beginning of the Char­
acter Translation subroutine. There is fundamentally 
no difference between the processing of sPecial charac­
ters and standard ASCII printable ,characters. If the 
characters require the same 5 x 7 dot matrix, the bal­
ance of the software would remain the same. If, how­
ever, the special characters require a different matrix, or 
the manipulation of the 'matrix, the software becomes 
more complex. 

In general, the major software modification required to 
implement special charac,ters is the size of the dot 
matrix printed or the dot matrix configuration used. In 
the case of scientific characters, it would often be 
necessary to shift the 5 x 7 matrix pattern within the 
available 9 x 9 matrix. Block or line graphics characters, 
on-the-other-hand, would require using the entire 9 x 9 
print head matrix and printing during normally blank, 
dot columns. This would require suspending the blank 
column blanking mechanism imple'mented in th,is Appli­
cation Note. This would be the most complex aspect of 
implementing special characters. It would possibly 
change the number of required instructions, and thus 
the timing between PTS detection and print bead 
solenoid trigger firing. This could cause the dot columns 
to be misaligned within a printed line and between lines. 

In the case of a matrix change, two approaches are 
possible: dynamically changing the matrix, in line, as 

standard ASCII characters are being printed, or 
isolating the special characters to a separate processing 
flow where special characters are handled as a unique 
and compl,ete line of characters only. A discussion of in 
line matrix changes for special characters is beyond the 
scope of this Appendix. It is sufficient to say that the 
changes would require the comli'tions setting the EOLN 
flag, character count, and dot column count software be 
modified during character processing and printing. 

Lower case Descenders 
The general principle of implementing lower case des­
cenders is to shift the 5 x 7 character dot matrix within 
the available 9 x.9 print head solenoid matrix. Iniple­
menting lower case de,scenders requires two software 
modifications and the creation of status flag for the 
purpose. First, the detection of characters needing des­
cenders and setting a dedicated status tJag during the 
character code to dot pattern translation subroutine. 
Second, the character dot column !lata output to the 
print head solenoids 'must be shifted for each dot 
column of the character. At the end of the character, the 
flag would be reset. 

Inllne Control. Codes 
Inline control codes are two to three character sequen­
ces, which indicate special hardware conditions or 
software flow control and branching. The first charac­
ter indicates that the control code sequence is beginning 
and is typically an ASCII Escape character (ESC), 
I BH. Terminatio.n of the inline code sequence would be 
indicated by a default number of code sequence charac­
ters. This would decrease the buffer size available for 
characters. Full 80 character line buffering would 
require loading the Character Buffer with a received 
character as a' character is removed from it and 
processed. 

The In1ine ControVCode test would be performed in 
two places: in the Character Buffer Fill subroutine and 
in the Character Processing (translation) subroutine. 
The test would be performed in the same manner that a 
Carriage Return (CR) character' code test is imple­
mented. EXamples are horizontal tabs and expanded or 
condensed character fonts. In the case of horizontal 
tabs, 20H (Space Character) would have to be placed in 
the Character Buffer for inline processing during char­
acter processing and printing. Unless fil(ed posihon 
tabs are used, a minimum of a nibble of Data Memory 
would be required to maintain a "spaces-to-tab" count. 
Fixed tab positions could be set via, another inline 
control code, 'by default of the printer software, or 
through the use of external hardware switch settings. 
The control code method of setting the tab positions is 
the most desireable, but the most cOlpplex to implement. 

Different Character Formats 
Figure Bl illustrates three different character fonts; 
standard, condensed, and enlarged or expanded char­
acters. As the the figure illustrates, condensed and 

,5-800 230795-{)01 



AP-161 

enlarged characters are variations in either the number 
of dots and/ or the space used to print them. Thus, each 
character is a variation of the stepper motor and/ or 
print head solenoid trigger timings. Figure B2 illus­
trates the timings required to implement the additional 
character printing. 

In addition to the three character fonts shown, it is 
possible to print each in bold face by printing eacp dot 
twice per dot column position. This would require little 
software modification, but would require a status flag. 
Again, care must be used to ensure that the delay in 
retriggering the solenoids is precisely the same for each 
type of event. Without this precise timing the dot 
column alignment will not be accurate. The software 
modifications needed to implement enlarged or con­
densed characters is essentially the same. The carriage 
and print head solenoid firing software flow is the same, 
but the timing for each changes. For condensed charac­
ters, the step Time Constant is doubled to approxi­
mately 4.08 ms, and the solenoids are fired four times 
within each step time. The step rate actually becomes a 
multiple of the solenoid firing time, and a counter 
incrementing once for each solenoid firing would be 
needed. At the count of four, the carriage stepper motor 
is stepped and the counter reset. 

Ih the case of condensed characters, PTS does not play 
the same roll as in standard or enlarged character print­
ing. PTS is not used to indicate the optimum print head 
solenoid firing time. Solenoid firing is purely a time 
function for condensed characters. PTS would only be 
used for Failsafe protection. 

Enlarged characters would require the solenoids be 
fired twice per dot column data, in two sequential dot 
columns, at the same rate as standard characters. The 
character dot column data and dot column count would 
not be incremented at each output but at every other 
output. A flag could be used for this purpose. 

When printing either condensed or enlarged characters, 
the maximum character count would have to compen­
sate for the increased or decreased characters per line 
count. When printing enlarged characters, the maxi-

mum characters per line would be 40. The Character 
Buffer could hold two complete lines of characters. But, 
condensed characters presents a quite different situa­
tion. The available character per line increases to 132, 
well beyond the 80 character Character Buffer size. The 
solution is to re-initialize the Character Buffer Size 
Count register count during condensed character pro­
cessing. This will effectively inhibit the carriage stepper 
motor drive EOLN detection. 

Two status flags would be required; one for standard or 
enlarged characters, and the second for condensed 
cnaracters. A third status flag would be required to 
implement bold face printing. Activating one of the 
alternate character fonts could be either through the use 
of external status switches or through inline control 
code sequences, as detailed above. Note, that if the 
alternate character fonts are implemented in such a way 
that format changing is to occur dynamically during 
any single line being printed, the saine control code 
problems described above also apply. In addition, the 
effect on the timing and dot column alignment must 
~lso be investigated. 

Variable Line Spacing 

Variable line spacing is another feature which could be 
implemented either through the use of external status 
switches or inIine control codes. The line spacing is a 
function of the number of steps the stepper motor 
rotates for a given line. Figure 15, Paper Feed Stepper 
Motor Predetermined Time Constants, in the Back­
ground section above, lists the Time Constants required 
for three different line spacings; 6, 8, and JO lines per 
inch. At the beginning of the Paper Feed Stepper 
Motor Drive subroutine, the default line step count is 
loaded. The software required is a conditional load for 
the line spacing, indicated by a status flag set in the 
External Status Switch Check subroutine or the Char­
acter Buffer Fill subroutine. Implementing the three 
different line spacings would require two additional 
sta tus flags. 

5-801 230795-001 



APPENDIX C. 
PRINTER MECHANISM 
DRIVE CIRCUIT 

AP-161 

SOLENOID 1 
PRINT PULSE 1 

500 ± 20115 ~~--~----~~I 

PRINT PULSE 9 I 
SOLENOID 9 

24V.::-10% 

'--i--;::::;::f;;:::;"';;';;:'::""'1:=::;--,r-<i 5V±5% 

C4 

TRIGGER PULSE 
• 200115 OR LESS 

RESET PULSE 

Recommended Solenoid Drive Circuit 

PARTS NO. TYPE MAKER 
IC1-IC10 SN7406 TI 

IC11 I1A555 Fairchild 

01-09 DIODE S5277B Toshiba 

01-09 TRANSISTOR 2SD986 NEC 

010 TRANSISTOR 2SA1015 Toshiba 

011 TRANSISTOR 2SD633 Toshiba 

R1-R9 RESISTOR 1.2kO V. 

R10 RESISTOR 220 V. 

R11 RESISTOR 58002 

R12 RESISTOR 
15kO V. 

Carbon fil= 

R13 RESISTOR 1.2kO V. 

VR1 VARIABLE RESISTOR 20kO V. 

C1 CAPACITOR 111F 100V 

C2 CAPACITOR 0.0111F 

C3 CAPACITOR 0.00111F 

C4 CAPACITOR 10l1F 16V 

C5 CAPACITOR 0.111F fil= 

ZD1 ZENOR DIODE HZ24 Hitachi 

ZD2 ZENOR DIODE HZ5C1 Hitachi 

5-802 230795-001 



AP-161 

Recommended Carriage Motor Drive Circuit 

HOLD SIGNAL DRIVE SIGNAL 
A 

5V±5%~----'-----~--1-----~--~-----+--~----~~-' 

R6 

RI 
24V±100f0 

C (BLUE) (GREEN) D (YELLOW) 

INCASE OF Tc=4.16ms 
(CONDENSED CHARACTER 
PRINTING), V=14±2O'1o 

---- ----- ----- -~ 
B (WHITE) 

_____________________________ ~~~!~~T~ ___ _ 

PARTS NO, TYPE· MAKER 

R1 Resistor 1kn±10% 14 

R2-R5 'Resistor 2200±10% 14 

R6 Resistor 10kn±10% 14 

R7 Resistor 47Dn±10% 3 

RS Resistor 1300±10% 7 

R9 Resistor 33Dn±10% 3 

01 Transistor 25C1S15 Toshiba 

02-05 Transistor 25D526-Y Toshiba 

06 Transistor 258669 Matsushita 

01-04 Diode 15954 NEC 

QTY 

1 

4 

1. 

1 

1 

1 

1 

4 

1 

4 

230795-001 



inter AP-161 

Recommended Paper Feed Motor Drive Circuit 

HOLD SIGNAL DRIVE SIGNAL 

5V:!:5% ---.---+--.... --+-..... ---+--1'--~~-, 

RB A (RED) (GREEN) C (BLUE) (GREEN) 0 (YELLOW) --. 
B (WHITE) I 

PULSE MOTOR 

PARTS NO. TYPE MAKER QTY 

R1 Resistor 1kO±10% V. 1 

R2-R5 Resistor 2200±10% V. 4 

R6 Resistor 10kO±10% ';" 1 

R7 Resistor 4700±10% 3 1 

H8 , Resistor 1300±10% 7 1 

R9 Resistor . 3300±10% 3 1 

01 Transistor 28C1815 Toshiba 1 

02-05 . Tra(lsistor 28D526-Y Toshiba 4 

06 Transistor " 288669 Matsushita 1 

01-04 Diode 18954 NEC 4 

5-804 230795-001 



H1 

H2 

H3 

H4 

H5 

H6 

H7 

H8 

H9 

FP 

555Q 

HEAD TRIGGER 

CR A 

CR B 

CR C 

CR 0 

80 

140 

13 2 

A LF 

LF B 

LF C 

LF 0 

SL F 
24 

G P 

33-1 

AP-161 

9 x 33K 

r-- 01 
~ ~ 

-
02 -L""' 03 :-o+-t ~ 
~ 

04 -~ 05 !-*"1 ~ 
-

06 ..... -
r"'"' 07 ~ r"'"' 
~ 

r- 09 l..c:>I-I 
l> TO 

2W 
GNO '? 680 

"*,~'6 V 

1.2""'G'N5"1iC'C ?' 15 2057K 
o 555 

2 20K 15K 
100 

T VTH 

~ t'000P 
001" 1 015 

R V, 

.5 t I01/1 

12K 
010 ~ 

-, 
~ 

12KL':' 011 ~ 
12Kr- 012 ~~ 
12Kr"""" 013 --

~j~tl* 
2W 
820 

1 
~ 2W 1~:J.ff 820 

~i 12K r""""' 014 001/1 

12K I""""" 015 ~I 
12K~ 016 ,rlOI-< I 

1 

r- 017 .. _--
2W 

En5'"1 820 

5-805 

1 

.... 

1205W 

..oH1 (UI 

..oH2 

H 

H4 

-OH5 

-OH 

-"H 

-OH 

...()H 9 (LI 

..n 

...() 

JI 

..0 

S OL 

CRA 

CRB 

CRC 

CRO 

SCA 

1205W~ 

..n 

.J> 

J'> 

..n 

LFA 

LFB 

LFC 

LFO 

SLF 

230795-001 



intJ APPLICATION 
NOTES 

5-806 

AP-90 

May 1980 

231314-001 



APPLICATIONS 

INTRODUCTION 

The microcomputer system designer requiring a 
low-cost, non-volatile storage medium has a difficult 
choice. His options have been either relatively 
expensive, as with floppy discs and bubble memories, 
or non-transportable, like battery backed-up RAMs. 
The full-sized digital cassette option was open but 
many times it too was too expensive for the applica­
tion. Filling ·this void of low-cost storage is the 
recently developed digital mini-cassette. These 
mini-cassettes are similar to, but not compatible 
with, dictation cassettes. The mini-cassette trans­
ports are inexpensive (well under $100 in qwmtity), 
small (less than 25 cu. in.), low-power (one watt), 
and their storage capacity is a respectable 200K 
bytes of unformatted data on a 100-foot tape. These 
characteristics make the mini-cassette perfect for 
applications ranging from remote datalogging to 
program storage for hobbyist systems. 

The only problem associated with mini-cassette 
drives is controlling them. While these drives are 
relatively easy to interface to a microcomputer 
system, via a parallel I/O port, they can quickly 
overburden a CPU if other concurrent or critical 
real-time I/O is required. The cleanest and probably 

the least expensive solution in terms of development 
cost is to use a dedicated single-chip controller. 
However, a quick search through the literature 
turns up no controllers compatible with these new 
transports. What to do? Enter the UPI-41A family 
of Universal Peripheral Interfaces. 

The UPI-41A family is a group of two user­
programmable slave microcomputers plus a com­
panion I/O expander. The 8741A is the "flag-chip" 
of the line. It is a complete microcomputer with 
1024 bytes of EPROM program memory, 64 bytes of 
RAM data memory, 16 individually programmable 
I/O lines, an 8-bit event counter and timer, and a 
complete slave peripheral interface with two inter­
rupts and Direct Memory Access (DMA) control. 
The 8041A is the masked ROM, pin compatible 
version of the 8741A. Figure 2 shows a block 
diagram common to both parts. The 8243 I/O port 
expander completes the family. Each 8243 provides 
16 programmable I/O lines. 

Using the UPI concept, the designer can develop a 
custom peripheral control processor for his par­
ticular I/O problem. The designer simply develops 
his peripheral control algorithm using the UPI -41A 
assembly language and programs the EPROM of 

Figure 1. Comparison of Mini-Cassette and Floppy Disk Transports and Media. 

5-807 231314-001 

I 
I 



APPLICATIONS 

SYSTEM BUS PERIPHERAL BUS 

Figure 2. 8741A/jJ041A Block Diagram 

the 8741A. Voila! He has a single-chip dedicated 
controller. Testing may be accomplished using 
either an ICE-41A or the Single-step mocje of the 
8741A. UPI-4IA .peripheral interfac.es are being 
used to control printers, keyboards, displays, custom 
serial interfaces, and data encryption units. Of 
course, the UPI family is perfect for developing a 
dedicated controller for digital mini-cassette tran­
sports. To illustrate this application fpr the UPI 
family let's consider the job of control'iing the 
Braemar CM-600 Mini-Dek®. 

THE CM-600 MINI-DEK* 

The Braemar CM-600 is representative of digital 
mini-cassette transports. It is a single-head, single­
motor transport which operates entirely from a 
single 5-volt power supply. Its power requirements, 
including the motor, are 200m a for read or write 
and 700ma for rewind. Tapes speeds are 3 inches 
per second (IPS) during read or write, 5 IPS fast 
forward, and 15 IPS rewind. With these speeds and 
a maximum recording density of 800 bits 'per inch 
(BPI), the maximum data rate is 2400 bits per 
second (BAUD). The data capacity using both sides 
of a IOO-foot tape is 200K bytes. On top .of this, 

the. transport occupies only 22.5 cubic inches 
(3 I x3 I x2.5"). 

All I/O for the CM-600 is TTL-compatible and can 
be divided into three groups: motor control, data. 
control; and cassette status. The motor group con­
troIs are GO/STOP, FAST/SLOW, and FORWARD/ 
REVERSE. The data controls are READ/ WRITE, 
DATA IN, and DATA OUT. The remaining 
group of outputs give the transport's status: CLEAR 
LEADER, CASSETTE PRESENCE, FILE PRO­
TECT, and SIDE SENSOR. These signals, shown 
schematically in figure 3 and table 1, give the pin 
definition of the eM-600 I6-pin I/O connector. 

RECORDING FORMAT) 

The CM-600 does not provide either encoding or 
decoding of the recorded data; that task is left for 
the peripheral interface. A multitude of encoding 
techniques from which the user .may choose are 
available. In this single-chip dedicated controller 
application, a "self-clocking" phase encoding scheme 
similar to that used in floppy discs was chosen. This 
scheme specifies that a logic "0" is a bit cell with no 
transition; a cell with a transition is a logic "1." 

5-808 231'314-001 



APPLICATIONS 

Table 1. CM·600· 1/0 Pin Definition 

Pin I/O Function 
1 - Index pin-not used 
2 - Signal ground 
3 0 Cassette side (O-side E, I-side A) 
4 I Data input (O-space, I-mark) 
5 0 Cassette presence (O-cassette, I-no 

cassette) 
6 I Read/Write (O-read, I-write) 
7 0 File protect (O-tab present, I-tab 

removed) 
8 - +5v motor power 
9 - Power ground 

10 - Chassis ground 
11 I Direction (O-forward, I-rewind) 
12 I Speed (O-fast, I-slow) 
13 0 Data output (O-space, I-mark) 
14 0 Clear leader (O-c1ear leader, I-off 

clear leader) 
15 I Motion (O-go, I-stop) 
16 - +5v logic power 

INPUTS BLOCK DIAGRAM OUTPUTS 

+5V MOTOR POWER-----" 
+5V LOGIC POWER---" 
TAPE DIRECTION (I WD/REW) ... BRAEMAR f---+- CASSETTE SIDe TAPE MOTION (STOPfGO)---+-
TAPE SPEED (FAST/SlOW)----+ 

CM-600'~ f-+- FILE PROTECT 

SELECT READ/WRITE------+-
DIGITAL f-+- CASSETTE PRESENCE 

DATA INPUT 
MINI CASSETTE ~ CLEAR LEADER 

POWER GROUND • TRANSPORT ~ DATA OUTPUT 

SIGNAL GROUND . 
CHASSIS GRQUNO-------. 

Figure 3. Braemar CM·600· Block Diagram 

Figure 4 illustrates the encoding of the character 
3AH assuming the previous data ended with the 
data line high. (The least significant bit is sent 
first.) Notice that there is always a "clocking" 
transition at the beginning of each cell. Decoding is 
simply a matter of triggering on this "clocking" 
transition, waiting 3/4 of a bit cell time, and 
determining whether a mid-cell transition has 
occurred. Cells with no mid-cell transitions are data 
O's; cells with transitions are data l's. This encoding 
techrtique has all the benefits of Manchester encod­
ing with the added advantage that the encoded data 
may be "decoded by eyeball:" long cells are always 
O's, short cells are always l's. 

Besides the encoding scheme, the data format is also 
up to the user. This controller uses a variable byte 
length, checksum protected block format. Every 
block starts and ends with a SYNC character 

Figure 4. Modified Phase Encoding of 
Character 3A Hex 

(AAH), and the character immediately preceeding 
the last SYNC is the checksum. The checksum is 
capable of catching 2 bit errors. The number of data 
characters within a block is limited to 64K bytes. 
Blocks are separated by an Inter-Record Gap (IRG). 
The IRG is of such a length that the transport can 
stop and start within an IRG, as illustrated in the 
data block timing, figure 5. Braemar specifies a 
maximum start or stop time of 150ms for the 
transport, thus the controller uses 450ms for the 
IRG. This gives plenty of margin for controlling the 
transport and also for detecting IRGs while skipping 
blocks. 

THE UPI·41A™CONTROLLER 

The goal of the UPI software design for this applica­
tion was to make the UPI-41A microcomputer into 
an intelligent cassette control processor. The host 
processor (8086, 8088, 8085A, etc.) simply issues a 
high-level command such as READ-a-block or 
WRITE-a-block. The 8741A accepts the command, 
performs the requested operation, and returns to 
the host system a result code telling the outcome of 
the operation, ego Good-Completion, Sync Error, 
etc. Table 2 shows the command and result code 
repertoire. The 8741A completely manages all the 
data transfers for'reading and writing. 

As an example, consider the WRITE-a-block com­
mand. When this command is issued, the UPI-41A 
expects a 16-bit number from the host telling how 
many data bytes to write (up to 64K bytes per 
block). Once this number is supplied in the form of 
two bytes, the host is free to perform other tasks; a 
bit in the UPI's STATUS register or an interrupt 
output will notify the host when a data transfer is 
required. The 8741A then checks the transport's 
status to be sure that a cassette is present and not 
file protected. If either is false, a result code is 

5-809 231314-001 



APPLICATIONS 

Ir-Oe-----SLOCK WRITE OPERATION---~.~I 

I SYNC I pATA II I CHECKSUM I SYNC I I SYNC I DATA 

~ 450MS ---+-1 ' 
'START TRANSPORT 

~450MS~1 
'STOP TRANSPORT 

FigureS. IRG/Block Timing Diagram (not to scale) 

Table 2. Controller Command/Result Code Set 

Command Result 
Read (OlH) Good-Completion (OOH) 

Buffer Overrun Error (4lH) 
Bad Synchl Error (42H) 
Bad Synch2 Error (43H) 
Checksum Error (44H) 
Command Error (45H) 
End of Tape Error (46H) 

Rewind (04H) Good-Completion (OOH) 
Skip (03H) Good-Completion (OOH) 

End of Tape Error (47H) 
Beginning of Tape Error (48H) 

Write (02H) Good-Completion (OOH) 
Buffer Underrun Error (8IH) 
Command Error (82H) 
End of Tape Error (83H) 

returned to the host; otherwise the transport i~ 
started. After the peripheral controller checks to 
make sure that the tape is off the clear leader and 
past the hole in the tape, it writes a 450ms IRG, a 
SYNC character, the block of data, the checksum" 
and the final SYNC character. (The tape has a clear 
leader at, both ends and a small hole 6 inches from 
the end of each leader.) The data transfers from the 
host to the UPI -41A slave microcomputer are double 
buffered. The controller requests only the desired 
number of data bytes by keeping track of the count 
internally. 

If nothing unusual happened; such as finding clear 
leader while writing. it returns a Good-Completion 
result code to the host. If clear leader was encoun­
tered, the transport is stopped immediately and an 
End-of-Tape result code is returned to the host. 
Another possible error would be if the host is late in 
supplying data, If this occurs, the controller writes 

5-810 

an IRG, stops the drive, and returns the appropriate 
Data-Underrun result code. 

The READ-a-block command also provides error 
ch()cking. Once this command is issued by the host, 
the controller checks for cassette presence. If 
present: it starts the transport. The data output 
from the transport is then examined and decoded 
continuously. If the first character is not a SYNC, 
that's an error ,and the controller returns a Bad­
First-SYNC result code (42H) after advancing to 
the next IRG. If the SYNC is good, the succeeding 
characters are read into an on-chip 30 character 
circular buffer .. This continues until an IRG is 
encountered, When this occurs, the transport is 
stopped. The controller then tests that the last 
character. If it is a SYNC, the controller then 
compares the accumulated internal checksum to 
the block's checksum, the second to the last character 
of the block. If they match, a Good-Completion 
result code (OOH) is returned to the host. If either 
test is bad, the appropriate error result code is 
returned. The READ command also checks for the 
End-of-Tape (EaT) clear leader and returns the 
appropriate error result code if it is found before the 
read operation is complete. 

The 30 character circular buffer allows the host up 
to 30 character times of response time before the 
host must collect the data. All data transfers take 
place thru the UPI-41A Data Bn;; Buffer Output 
register (DBBOPT). The controller continually 
monitors the status of this register and moves 
characters from the circular buffer to the register 
whenever it is empty. -

The SKIP-n-blocks command allows the host to skip 
the transport forward or backward up to 127 
blocks. Once the command is issued, the controller 
expects one data byte specifying the number of 

231314-001 



APPLICATIONS 

blocks to skip. The most significant bit of this byte 
selects the direction of the skip (O=forward, 
l=reverse). SKIP is a dual-speed operation in the 
forward direction. If the number of blocks to skip is 
greater than 8, the controller uses fast-forward (5 
IPS) until it is within 8 blocks of 'the desired 
location. Once within 8 blocks, the controller 
switches to the normal read speed (3 IPS) to allow 
accurate placement of the tape. The reverse skip 
uses only the rewind speed (15 IPS). Like the READ 
and WRITE commands, SKIP also checks for EOT 
and beginning-of-tape (BOT) depending upon the 
tape's direction. An error result code is returned if 
either is encountered before the number of blocks 
skipped is complete. 

The REWIND command simply rewinds the tape to 
the BOT clear leader. The ABORT command allows 
the termination of any operation in progress, except 
a REWIND. All commands, including ABORT, 
always leave the tape positioned on an IRG. 

THE HARDWARE INTERFACE 

There's hardly any hardware design effort required 
for the controller and transport interface in figure 
6. Since the CM-600 is TTL compatible, it connects 

1 8741A 
8041A 

CLOC~ XTAl1 

r;1 "", vee 
VDD 
ss 

CS 
RD TEST1 
WI'i 
AO PIO 

PI1 

Do~07' P12 
P13 
P14 

OBF 
p" 

P24 p" 

lI!l' P25 P20 

RESET EA 
VSS 

~ 

f-! 

directly to the I/O ports of the UPI controller. If the 
two are separated (Le. on different PC cards), it is 
recommended that TTL buffers be provided.) The 
only external circuitry needed is an LED driver for 
the DRIVE ACTIVE status indicator. 

The 8741A-to-host interface is equally straightfor­
ward. It has a standard asynchronous peripheral 
interface: 8 data lines (Do-D7), read (RD), write 
(WR), regist,er select (AO), and chip select (CS). 
Thus it connects directly to an 8086, 8088, 8085A, 
8080, or 8048 bus structure. Two interrupt outputs 
are provided {or data transfer requests if the 
particular system is interrupt-driven. DMA transfer 
capability is also available. The clock input can be 
driven from a crystal directly or with the system 
clock (6MHz max). The UPI-41A clock may be 
asynchronous with respect to other clocks within 
the system. 

This application was developed on an Intel iSBC 
80/30 single board computer. The iSBC 80/30 is 
controlled by an 8085A microprocessor, contains 
16K bytes of dual-ported dynamic RAM and up to 
8K bytes of either EPROM or ROM. Its I/O comple­
ment consists of an 8255A Programmable Parallel 
Interface, an 8251A Programmable Communica-

eM-GOO 

L 
MOTOR POWER 
LOGIC POWER 

DATA OUT 

DIRECTION 
MOTION 
SPEED 
READ/WRITE 
CLEAR LEADER 
FILE PROTECT 
PRESENCE 

DATA IN 

r POWER GND 
SIGNAlGND 

~ '5V L CHASSJSGND 

P21~J.;VE 
ACTIVE 

Figure 6. Controller/Transport System Schematic 

5-811 231314-001 



/ 

APPLICATIONS 

tions Interface, an 8253 Programmable Interval 
Timer, and an 8259A Programmable Interrupt 
Controller. The iSBC 80/30 is especially convenient 
for UPI development since it contains an uncom­
mitted socket dedicated to either an 804IA or 
874IA. complete with buffering for its I/O ports. 
The iSBC 80/30 to 874IA interface is reflected in 
figure 8. (Optionally. an iSBC 569 Digital Controller 
board could be used. The iSBC 569 board contains 
three uncommitted UPI sockets with an interface 
similar to that in figure 8.) 

Looking at the host-to-controller interface. the host 
sees the 874IA as three registers in the host's I/O 
address space: the data register. the command 
register. and the status register. The decoding of 
these registers is shown in figure 7. All data and 
commands for the controller are written into the 
Data Bus Buffer Input register (DBBIN). The state 
of the register select input. AO. determines whether 
a command or data is written. (Writes with AO set 
to 1 are commands by convention.) All data and 
results from the controller are read by the host from 
the Data Bus Buffer Output register (DBBOUT). 

CS RD WR AO Register 

0 0 I o OBBOUT 
0 0 I I STATUS 
0 I 0 o OBBIN (DATA) 
0 I 0 I DBBIN (COMMAND) 
I X X X NONE 

Figure 7. 8741A/8041A Interface Register 
Decoding 

STATUS 

oaF-OUTPUT BUFFER FULL 
ISF-INPUT BUfFER FULL 
FO-FLAG 0 

ll~~~~~F1-FLAG 1 DRIVE ACTIVE 
FILE PROTECT 
CASSETTE PRESENCE 

'--------BUSV 

Figure 8. Status Register Bit Definition 

The Status register contains flags which .give the 
host the status of various operations within the con­
troller. Its format is given in figure 8. The Input 
Buffer Full (IBF) and Output Buffer Full (OBF) 
flags show the Status of the DBEIN and DBBOUT 
registers respectively. IBF indicates when the 
DBEIN register contains data written~y the host. 
The host may write to DBBIN only whenJBF is O. 
Likewise. the host may read DB BOUT only wherr 
OBF is set to a 1. These bits are handled automa­
tically by the UPI-4IA internl!! hardware. FLAG 0 
(Fo) and FLAG 1 CF\) are general purpose flags 
used internally by the controller which have no 
meaning externally. 

The remaining four bits are user-definable. For this 
application they are DRIVE ACTIVE. FILE PRO­
TECT. CASSETTE PRESENCE. and BUSY flags. 
The FILE PROTECT and CASSETTE PRESENCE 
flags reflect the state of the corresponding I/O lines 
from the transport. DRIVE ACTIVE is set whenever 
the transport motor is on and the controller is 
performing an operation. The BUSY flag indicates 
whether the contents of the DBBOUT register is 
data or a result code. The BUSY flag is set whenever 
a command is issued by the host and accepted by the 
controller. As long as BUSY is set. any character 
found in DB BOUT is a result code. Thus whenever 
the host finds OBF set, it should test the BUSY flag 
to determine whether the character is data or a 
result code. 

Notice the OBF and IBF are available as interrupt 
outputs to the host processor. figure 6. These outputs 
are self-clearing. that is. OBF is set automatically 
upon the controller loading DBBOUT and cleared 
automatically by the host reading DBBOUT. Like­
wise IBF is cleared to a 0 by the host writing into 
DBEIN: set to a 1 when the controller reads DBBIN 
into the accumulator. 

The flow charts of figure 9 show the flow of sam pre 
host software assuming a polling software interface 
between the host and the controller. The WRITE 
command requires two additional count bytes which 
form the I6-bit byte count. These extra bytes are 
"handshaked" into the controller using the IBF flag 
in the STATUS register. Once these bytes are 
written. the host writes data in response to IBF 
being cleared. This continues until the host finds 
OBF set indicating that the operation is complete 
and reads the result code from DBBOUT. No 
testing of BUSY is needed since only the result code 
appears in the PBBOUT register. 

The READ command does require that BUSY be 
tested. Qnce the READ command is writte-n into the 

5-812 231314-001 



APPLICATIONS 

controller, the host must test BUSY whenever OBF 
is set to determine whether the contents of DBBOUT 
is data from the tape or the result code. -

THE CONTROLLER SOFTWARE 

The UPI-41A software to control the cassette can be 
divided up into various commands such as WRITE, 
READ and ABORT. In a previous version of this appli­
cation note (May 1980), software was described that 

implemented these commands. This code however did 
not adequately compensate for speed variations of the 
motor during record and playback nor for data distor­
tion caused by the magnetic media. Since then, new 
code has been written to include these effects. This 
revised software is now available through the INTEL 
User's Library, INSITE. For more information on this 
software or INSITE, contact your local INTEL Sales 
Office. 

.. 

5-813 231314-001 



8041 AJ8641 AJ8741 A 
UNIVERSAL PERIPHERAL INTERFACE 

8·BIT MICROCOMPUTER 
• 8·BitCPU plus ROM, RAM, 110, Timer 

and Clock in a Single Package . 

• One 8·Bit Status and Two Data Regis· 
ters for Asynchronous Slave·to·Ma.ster 
Interface . 

• DMA, Interrupt, or Polled Operation ' 
Supported 

• 1024)( 8 ROM/EPROM, 64)( 8 RAM, 
8·Bit Timer/Counter, 18 Programmable 
110 Pins 

) 

• Fully Compatible with All 
Microprocessor Families 

• Interchangeable ROM and EPROM 
Versions 

• 3.6 MHz 8741A·8 Available 

• Expandable 110 

• RAM Power· Down Capability 

• Over 90 Instructions: 70% Single Byte 

• Available in EXPRESS 
-Standard Temperature Range 
-Extended Temperature Range 

The Intel'" 8041A/8741A is a general purpose, programmable interface device designed for use with a variety of 8-bit . 
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8-bit CPU, I/O 
ports, timer/counter, and.clock in a single 40'pin package. Interface registers are included to enable the UPI device to 
function as a peripheral controller in MCS·48™, MCS-80™, MCS-85™, MCS·86™, and other 8-bit systemr. 

The UPI·41A™ has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the 
program memory is available as ROM in the 8041 A version or as UV-erasable EPROM in the 8741A version. The 8741A 
and the 8041A are fully pin compatible for easy transition from prototype to production level designs. The 8641 A is a 
one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The 
substitution of 8641A's for 8041A's. allows for very fast turnaround for initial code verification and evaluatioh results. 

The device has two 8-bit, TTL compatible I/O ports and two test inputs. Individual port lines can function as either in­
puts or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 
16 I/O lines. An 8-bit programmable timer/counter is included in the UPI de.vice for generating timing sequences or 
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (iri the 8041A), 
single-step mode for debug (in the 8741 A), and dual working register banks. 

Because it's a completemicrocomputer, the UPI provides more flexibility for the designer than conventional LSI inter­
face devices. It is deSigned to be an efficient controller as well as an arithmetic processor. Applications include key­
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral 
devices to microprocessor systems. 

PIN CONFIGUR~TION 

-:::;:: r' 
"""~'j .. -

L ~-- CONTROl 

EII-_ lOGIC 
SYNC 

R--·­
"00 ..... -~ 

BLOCK DIAGRAM 

I 

I" .. ,""" ~ lNTUIFACE 

->.., •. : 
----/p" 

Intel Corporation Assumes No Aeaponsibilty for the Use of Any CirCUitry Other Than CirCUitry Embodied In an Intel Product. No Other Circuit Patent (Icenses are Implied 

©INTELCORPORATION.1982 5-814 2~~~~~~~~ 



8041AJ8641AJ8741 A 

Table 1. Pin Description 

Signal Description Signal Description 

Do-D7 Three-state, bidirectional DATA BUS BUF- XTAL1, Inputs for a crystal, LC or an external timing 
(BUS) FER lines used to interface the UPI-41 A to an XTAL2 signal to determine the internal oscillator 

8-bit master system data bus. frequency. 

P1O-P17 8-bit, PORT 1 quasi-bidirectional I/O lines. SYNC Output signal which occurs once per UPI-
41 A instruction cycle. SYNC can be used as a 
strobe for external circuitry; it is also used to 
synchronize single step operation. 

P20-P27 8-bit, PORT 2 quasi-bidirectional I/O lines. 
The lower 4 bits (P20-P23) interface directly 
to the 8243 I/O expander device and contain 
address and data information during PORT EA External access input which allows emula-
4-7 access. The upper 4 bits (P24 -P27) can tion, testing and PROM/ROM verification. 

PROG Multifunction pin used as the program pulse 
input during PROM programming. 

be programmed to provide Interrupt Request 
and DMA Handshake capability. Software 
control can configure P24 as OBF (Output 
Buffer Full), P25 as IBF (Input Buffer Fu~ During I/O expander access the PROG pin 
as DRO (DMA Request), and P27 as DACK acts as an address/data strobe to the 8243. 
(DMA ACKnowledge). 

RESET Input used to reset status flip-flops and to set 
WR I/O write input which enables the master CPU the program counter to zero. 

RESET is also used during PROM program-
ming and verification. 

to write data and command words to the UPI-
41A INPUT DATA BUS BUFFER. 

RD I/O read inpi:'t which enables the master CPU RESET should be held lowfora minimum of8 
Instruction cycles after power-up. to read data and status words from the OUT-

PUT DATA BUS BUFFER or status register. 
SS Single step input used in the 8741A in con-

junction with the SYNC output to step the 
program through each instruction. 

CS Chip select input used to select one UPI-41 A 
out of several connected to a common data 
bus. 

Vee +5V main power supply pin. 

VDD +5V during normal operation. +25V during 
programming operation. Low power standby 
pin in ROM version. 

Ao Address input used by the master processor 
to indicate whether byte transfer is data or 
command. During a write operation flag F1 is 
set to the status of the Ao input. 

TEST 0, Input pins which can be directly tested using VSS Circuit ground potential. 
TEST 1 conditional branch instructions. 

Tl also functions as the event timer input 
(under software control). To is used during 
PROM programming and verification in the 
8741 A. 

5-815 231316-001 



intJ 8041AJ8641 AJ8741 A 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8741A EPROM ' 

Programming Verification 

In brief, the programming process consists of: activating 
the program m'ode; applying an address, latching the 
address, applying data, and applying a programming pulse. 
Each word is programmed completely before moving on to 
the next and is followed by a verificati6n step. The fpllow· 
.i~g i~ a list of the,pins used for programming and a descrip· 
tion of their functions: 

Pin, Function 

XTAI:.1 Clock Input (1 to 6MHz) 

Reset Initialization and Address Latching 

, Test 0 Selection of Program or Verify Mode 

EA Activation of ProgramNerify Modes 

BUS Addre~s and Data Input 
Data Output During Verify 

P20·1 Address Input 

Voo Programming Power Supply 

PROG Program Pulse Input 

WARNING, 

An attempt to program a mlssocketed 8741A will result In severe 
damage to the part. An ,indication of a properly socketed part IS the 
appearance of the SYNC clock output. The lack of thIS clock may 
be used to disable the programmer. 

The ProgramNerify sequence is: 

1. AO= OV, CS = 5V. EA = 5V, RESET = OV, TESTO = 5V, 
VOD = 5V, clock applied or Internal oscillator operating, 
BUS and PROG floating. ' 

2. Insert 8741A In programming socket 

3. TEST a = Ov (select program mode) 

4. EA = 23V (activate program mode) 

5. Address applied to BUS and P2()'1 

6. RESET = 5v (latch addre .. ) 

7. Date applied to BUS 

8. V DO = 26v {programming powed 

9. PROG = Ov followed by one 50ms pulse to 23V 

10. VOO=5v 

11. 'TEST 0 = 5v (verify mode) 

12. Reed and verify data on BUS 

13. TEST 0 = Ov 

14. RESET = Ov and repeat from step 5 

15. Programmer should be at conditions of step 1 when 
8741 A is removed from socket .. 

8741A Erasura Characteristics 

The erasure characteristics of the 8741 A-are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than apprpximately 4000 Ang· 
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps hl:lve Wavelengths in the 
3000-4000A range. Data show that constant exposure to 
room level fluorescent lighting could erase the typical 
8741A in approximately 3 years while it would take ap· 
proximately one week to cause erasure when exposed 
to direct sunlight. If the 8741A is to be exposed to these 
types of lighting conditions for extended periods of 

,time, opaque labels are available from Intel which 
should be placed over the 8741A window to prevent 
unintentional erasure. 

The recommended erasure procedure for the 8741A is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 A. The Integrated dose (i.e., UV inten­
sity x exposure time) for erasure should be a minimum 
of 15 w-sec/cm2• The erasure time with this dosage is 
approximately 15 to 20 minutes using an ultraviolet 
lamp with a 12,000 ,..W/cm2 power rating. The 8741A 
should be placed within one inch of the lamp tubes duro 
ing erasure. Some lamps have a filter on their tubes 
which shouid be removed before erasure. 

5-816 231316-001 



8041 AJ8641AJ8741 A 

UPI·41A'" FEATURES AND 
ENHANCEMENTS 

1. Two Data Bus Buffers, one for Input and one for out· 
put. This allows a much cleaner Master/Slave pro­
tocol. 

2. 8 Bits of Status 

INPUT 
DATA 
BUS 

BUFFER 
(8) 

OUTPUT 
DATA 
BUS 

BUFFER 
(8) 

INTERNAL 
DATA BUS 

I~I~I~ ~ ~ ~ ~ ~I 
~ ~ ~ ~ ~ ~ ~ ~ 

ST 4-ST 7 are user definable status bits. These bits are 
defined by the "MOV STS, A" single byte, single 
cycle instruction. Bits 4-7 of the ac;cumulator are 
moved to bits 4-7 of the status register. Bits 0-3 of 
the status registe~ are not affected. 

MOV STS, A Op Code SOH 

DO 

3. RO and WR are edge triggered. IBF, OBF, F1 and INT 
change internally after the trailing edge of Rfi or iNA. 

FLAGS AFFECTED 

AD orWR 

4. P24 and P25 are port pins or Buffer Flag pins which 
can be used to interrupt a master processor. These 
pins default to port pins on Reset. 

If the "EN FLAGS" instruction has been executed, 
P24 becomes the OBF (Output Buffer Full) pin. A "1" 
'written to P24 enables the OBF pin (the pin outputs 
the OBF Status Bit). A "0" written to P24 disables the 
OBF pin (the pin remains lOW). This pin can be used 
to indicate that valid data is available from the UPI· 
41 A (in Output Data Bus Buffer). 

If "EN FLAGS" has been executed, P25 becomes the 
IBF (Input Buffer Full) pin. A "1" written to P25 
enables the IBF pin (the pin outputs the inverse of the 
IBF Status Bit). A "0" written to P25 disables the ~ 
pin (the pin remains low). iThis pin can be used to 
indi1cate that the UPI·41 A is ready for data. 

OBF (INTERRUPT REQUEST) 

iBi' (INTERRUPT REQUEST) 

DATA BUS BUFFER INTERRUPT CAPABILITY 

I , 
EN FLAGS Op C_: OF5H 1\ 

5. P26 and P27 are port pins or OMA handshake pins for 
use with a OMA controller. These pins default to port 
pins on Reset. 

5-817 

If the "EN OMA" Instruction has been executed, P26 
becomes the ORO (OMA ReOuest) pin. A "1" written 
to P26 causes a OMA request (ORO is activated). ORO 
is deactivated by OACK· RO, OACK· WR, or execution 
of the "EN OMA" instruction. 

If "EN OMA" has been executed, P27 becomes the 
OACK (OMA ACKnowledge) pin. This pin acts as a 
chip select input for the Data Bus Buffer registers 
during OMA transfers. 

DRQI:5!: DROn 
8041A1 8257 
8741A 

DACK~ DACK 

DMA HANDSHAKE CAPABILITY 

EN DMA Op Code: OE5H 

231316-001 



8041AJ8641 AJ8741 A 

APPLICATIONS 

DATA~ __ ~ __ ","oc.~ 

8085A 

ADDR~~~~IJ 
CONTROLI-______ r-rll 

~Igure 1. 8085A-8041A Interface 

8243 
EXPANDER 

DATA BUS 

CONTROL BUS 

8041AJ8741A 

KEYBOARD 
MATRIX 

Figure 3. 8041A-8243 Keyboad Scanner 

8048 

5-818 

, 

jijj RD ~ " a 
WR WR 8041A1 W m 

~ cs 8741A m 
PORT CONTROL 2 -TO 

.. 
lIo 

BUS DATA BUS 8 DBB -Tl 

Figure 2. 8048-8041A Interface 

DATA BUS 

CONTROL BUS 

Figure 4. 8041A Matrix Printer Interface 

231316-001 



8041 AJ8641 AJ8741 A 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O'C to 70'C 
Storage Temperature •............. - 65'C to + 150'C 
Voltage on Any Pin With Respect 

to Ground .......................... 0.5V to + 7V 
Power Dissipation ......................... 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS 
TA=O'C to 70'C, Vss=OV, Vcc=Voo=+5V ±10%' 

Symbol Parameter 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. This Is a stress 
rating only and functional operation of the device at these or any other 
conditions above those indicated In the operational sections of this 
specification is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability. 

Min. Max. Unit Test Conditions 

VIL Input Low Voltage (Except XTAL 1, XTAL2, RESET) -0.5 0.8 V 

VIL1 Input Low Voltage (XTAL 1, XTAL2, RESET) 

VIH Input High Voltage (Except XTAL1, XTAL2, RESET) 

VIH1 Input High Voltage (XTAL1, XTAL2, RESET) 

VOL Output Low Voltage (00-07) 

VOL1 Output Low Voltage (P10P17 , P20P27, Sync) 

VOL2 Output Low Voltage (Prog) 

VOH Output High Voltage (00-07) 

VOH1 Output High Voltage (All Other Outputs) 

IlL Input Leakage Current (To, T1, RD, WR, CS, Ao, EA) 

102 Output Leakage Current (00-07, High Z State) 

III Low Input Load Current (P10 P17, P20P27) 

ILl1 Low Input Load Current (RESET, SS) 

100 Voo Supply Current 

lee+ 100 Total Supply Current 

A.C. CHARACTERISTICS' 
TA=O'C to 70'C, Vss=OV, Vcc=Voo=+5V ±10%' 
DBB READ 

Symbol Parameter 

tAR CS, Ao Setup to RDI 

tRA CS, Ao Hold After RDI 

tRR RD Pulse Width 

tAO CS, Ao to Data Out Delay 

tRO RDI to Data Out Delay 

tOF Imt to Data Float Delay 

tey Cycle Time (Except 8741A·8) 

tCY Cycle Time (8741A·8) 

DBB WRITE 

Symbol Parameter 

tAW' CS, Ao Setup to WRI 

tWA CS, Ao Hold After WRt 

tww WR Pulse Width 

tow Data Setup to WRt 

two Data Hold AfterWRt 

5-819 

-0.5 0.6 V 

2.2 Vcc 

3.8 Vee V 

0.45 V 10L =2.0 mA 
0.45 V 10L = 1.6 mA 

0.45 V 10L = 1.0 mA 

2.4 V 10H= -400p.A 

2.4 V 10H= - 50 p.A 

±10 p.A Vss ,; VIN ,; Vee 
±10 p.A Vss + 0.45 ,; VIN ,; Vee 
0.5 mA VIL =0.8V 

0.2 mA VIL =0.8V 

15 mA Typical = 5 mA 

125 mAo Typical = 60 mA 

Min. Max. Unit Test Conditions 

0 ns 

0 ns 

250 ns 

225 ns CL=150pF 

225 ns CL=150pF 

100 ns 

2.5 15 P.s 6.ClMHz XTAL 
4.17 15 P.s 3.6 MHz XTAL 

Min. Max. Unit T-est Conditions 

0 ns· 

Q ns 

250 ns 

150 ns 

0 ns 

231316-001 



8041 Al8641 Al8741 A 

A.C. TIMING SPECIFICATION FOR PROGRAMMING 
TA=O°C to 70°C, V cc= +5V ± 10% • 

Symbol Parameter Min. 

tAW Address 'Setup Time to RESET t 4tcy 

tWA Address Hold Time After RESET t 4tcy 

tow Data In Setup Time to PROG t 4tcy 

two Data In Hold Time After PROG ! 4tcy 

tpH RESET Hold Time to Vertfy 4tcy 

tv DOW ' Voo Setup Time to PROG t 4tcy 

tVOOH Voo Hold Time After PROG ! 0 

tpw Program Pulse Width 50 

tTW Test 0 Setup Time for Program Mode 4tcy 

tWT Test 0 Hold Time After Program Mode 4tcy 

too Test 0 to Data Out Delay 

tww RESET Pulse Width to Latch Address 4tcy 

tr. tf Voo and PROG Rise and Fall Times 05 

tCY CPU Operation Cycle Time 50 

tRE RESET Setup Time Before EA t. 4tcy 

Not.: If TEST 0 IS high. too can be triggered by RESET t . 
• "For Extended Temperature EXPRESS. use M8741 A electrical parameters. 

D.C. SPECIFICATION FOR PROGRAMMING 
T", = 25·C ±5·C, Vee = 5V ±5%, Voo = 25V ± 1V 

Symbol Parameter Min~ 

VOOH Voo Program Voltage High Level 240 

VOOL Voo Voltage Low Level 475 

VPH PROG Program. Voltage Hfgh Level 215 

VPL PROG Voltage Low Level 

VEAH EA Program or Verify Voltage 'High Level 21.5 

VEAL EA Voltage Low Level 

lob Voo High Voltage Supply Current 

IpROG PROG High Voltage Supply Current 

lEA EA High Voltage Supply Current 

A.C. CHARACTERISTICS-PORT 2 
TA=O·C to 70·C,: Vcc= +5V ± 10% 

Symbol Parameter Min. 

tcp Port Control Setup Before Falling 
Edge of PROG 110 

tpc Port Control Hold After Falling 
Edge of PROG 100 

tPR PROG to Time P2 Input Must Be Valid 

tPF Input Data Hold Time 0 

top Output Data Setup Time 250 

tpo Output Data Hold Time 65 

tpp PROG Pulse Width 1200 

5-820 

Max. Unit Tesl Conditions 

( 

60 mS 

4tcy 

20 J.<s 

J.<s 

Max. Unit Test Conditions 

260 V 

525 V 

24.5 V 

02 V 

245 V 

525 V 

300 mA 

16.0 mA 

10 mA 

Max. Unit Test Conditions 

ns 

ns 

810 ns 

150 ns 

ns 

ns 

ns 

2313113 .. 001 



inter 8041 AJ8641 AJ8741 A 

A.C. CHARACTERISTICS-DMA 
Symbol Parameter 

tACC DACK to WR or RD 

tCAC RD or WR to iJACR 

tACD DACK to Data Valid 

tCRo RD or WR to ORO Cleared 

CRYSTAL OSCILLATOR MODE 

r-----d XTAL1 : 1·6mHz 
< 15 pF I 

(INCLUDES XTAl, -L. c::l 
SOCKET, STRAY) -; 

I 
I 3 
L_____ XTAl2 

15-25 pF 
(INCLUDES SOCKET, I 

STRAY) -=-

CRYSTAL SERIES RESISTANCE SHOULD BE 
<75Q AT 6 MHz, <180n AT 3 6 MHz 

LC OSCILLATOR MODE 

..b. ~ NOMINAL I 

4S"H 20pF 5.2 MHz 
120"H 20pF 3.2 MHz 

Min. Max. Unit Test Conditions 

0 ns 

0 ns 

225 ns CL =150pF 

200 ns 

DRIVING FROM EXTERNAL SOURCE 

+sv 

470Q 

}>-+-----''-! XTAL1 

+ SV 

470Q 

'---....... --'-fXTAL2 

SOTH XTAL1 AND XTAL2 SHOULD BE DRIVEN 
RESISTORS TO Vee ARE NEEDED TO ENSURE VIH = 3 BV 
IF TTL CIRCUITRY IS USED 

rIc I' 
,....---r---=-!XTALl 

C,=C+3Cpp 
2 

-=- TC 

L--...... --'-!XTAL2 
Cpp:::: 5-10 pF PIN·TO·PIN 
CAPACITANCE 

EACH C SHOULD BE APPROXIMATElY 20 pF, INCLUDING STRAY CAPACITANCE 

TYPICAL 804118741A CURRENT A.C. TESTING LOAD CIRCUIT 
80 rnA 

60 rnA 

DEVICE 
40 rnA 

20 rnA 

UNDER n CL~l50pF TEST 

I --

5-821 231316-001 



inter 8041A/8641AJ8741 A 

WAVEFORMS 
READ OPER~TION-DATA BUS BUFFER REGISTER. 

C1 OR AO ~ ~ 
-'Ao-I 

I ' .. -'RA-

Y '\ 

-'RO-- --'OF 

----.. 0----

WRITE OPERATION-DATA BUS BUFFER REGISTER. 

(SVSTEM'S 
ADDRESS BUS) 

(READ CONTROL) 

~ X ISYSTEM'S 
ell OR '0 _ ['---____________ .....,I'--_~ _______ .DDRESS.USI 

- ". -~ ~~-~--'.A---.,------'------,WRITE CONTROLI 

DATA BUS DATA) IV 
(lNPUTI MAY CHANGE --OATAVALlO--V\. 

-------------~ ~---------

DATA 
MAY CHANGE 

PORT 2 TIMING 

SYNC 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

PORT ~O-3 ,DATA 

peRT 20_3 DATA 

5-822 231316-001 



inter 8041 AJ8641 AJ8741 A 

WAVEFORMS FOR PROGRAMMING 

COMBINATION PROGRAMIVERIFY MODE (EPROM'S ONLY) 

EA 
23V / 
sv _____ J 

- PROGRAM - ------t-~- VERIFY -.t-l'~--- PROGRAM ---­

r----~ 
TESTO 

J--
LAST 

ADDRESS 

DATA TO BE 
PROGRAMMED VALID 

ADDRESS (8-9) VAliD 

---< NEXT ADDR x== VALID 

NEXT 
ADDRESS 

Voo +25-~~·--- "----.---- -- -'.:U:~' 
,::_ _ _ __ '=rr--TIW I tpw i]i'-WD -------

PROG '5----------- I ,. __________ , 
'0 ' ___ J ,,", _______ _ 

VERIFY MODE (ROM/EPROM) 

'ww 

RESET V 

j---'AO 
'WA 

DBo-DB7 J-- ADDRESS DATA our --(0-7) VALID VALID 

P20- P , X ADDRESS (8-9) VALID 

NOTES: 
'- PROG MUST FLOAT IF EA IS LOW (t." ¢23V), OR IF T0=5V FOR THE 8741A. FOR THE 

8041A PROG MUST ALWAYS FLOAT. 

X 

2. XTAL1 AND XTAL 2 DRIVEN BY 3.6 MHz CLOCK WILL GIVE 4.17 ~sec tCY. THIS IS ACCEPT. 
ABLE FOR 8741A·8 PARTS AS WELL AS STANDARD PARTS. 

3. AO MUST BE HELD LOW (I ••• , = OV) DURING PROGRAMIVERIFY MODES. 

The 8741A EPROM can be programmed by either of two 
Intel products: 

1. PROMPT-48 Microcomputer Design Aid, or 
2. Universal PROM Programmer (UPP series) peripheral 

of the Intellec'" Development System with a UPP-848 
Personality Card. 

5-823 

~ 
NEXT NEXT DATA 

ADDttESS OUT VAL1D -------

NEXT ADDRESS VALID 

231316-001 

I; 
I: 



intJ 8041~8641AJ8741A 

WAVEFORMS-DMA 

~ ------~~----------------------_r~ 

DATA BUS ------~~--"""' 

ORO Jl~ 
INPUT AND OUTPUT WAVEFORMS FOR A.C. TESTS 

2.4----..... X2.2...... ......2.2V 
0.45 ____ ...J ~.a---TEST POINTS ...... o.aA ______ _ 

Table 2. UPI™ Instruction Set 

Mnemonic Description I,Bytes Cycles Mnemonic Description Bytes Cycles 

Accumulator XRL A,@Rr Exclusive OR data 1 1 
ADD A,Rr Add register to A 1 1 memory to A 
ADD A,@Rr Add data memory to A ·1 1 XRL A,#data Exclusive OR imme- 2 2 
ADD A,#data Add immediate to A 2 2 diate to A 
AD DC A,Rr Add register to A with 1 1 INCA Increment A 1 1 

carry 
ADDC A,@Rr Add data memory to A 1 1 

DEC A Decrement A 1 1 
CLR A ·Clear A 1 1 

with carry CPL A Complement A 1 1 
ADDC A, Add immed. to A with 2 2 DAA Decimal Adjust A 1 1 
#data carry SWAP A Swap nibbles of A 1 1 
ANL A,Rr AND register to A 1 1 RL A Rotate A left 1 1 
ANL A,@Rr AND data memory to A 1 1 RCL A Rotate A left through 1 1 
ANL A,#data AND immediate to A 2 2 carry 
ORL A,Rr OR reg ister to A 1 1 RR A Rotate A right 1 1 
ORL A,@Rr OR data memory to A 1 1 RRCA Rotate A right through 1 1 
ORL A,#data OR immediate to A 2 2 carry > 

XRL A,Rr. Exclusive OR register 1 1 
to A 

5-824 231316-001 



intJ 8041 AJ8641 AJ8741 A 

Table 2. UPITII Instruction Set (Cont'd.) 

Mnemonic Description Bytes ICycles Mnemonic Description Bytes Cycles 

Input/Output Control 
In A,Pp Input port to A 1 2 ENDMA Enable DMA Hand- 1 1 
OUTL Pp,A Output A to port 1 2 shake Lines 
ANL Pp.#data AND immediate to port 2 2 ENI Enable IBF Interrupt 1 1 
ORL Pp,#data OR immediate to port 2 2 DISI Disable IBF Interrupt 1 1 
In A,DBB Input DBB to A, 1 1 EN FLAGS Enable Master 1 1 

clear IBF 
OUT DBB,A Output A to DBB, 1 1 

Interrupts 
SEL RBO Select register 1 1 " ," 

set OBF bank 0 
MOV STS,A A4-A7 to Bits 4-7 1 1 

of Status 
SEL RBl Select 'register 1 1 

bank 1 
MOVD A,Pp Input Expander port 1 2 NOP No Operation 1 1 

to A 
MOVD Pp,A Output A to Expander 1 2 

port 
ANLD Pp,A AND A to Expander 1 2 
ORLD Pp,A OR A to Expander 1 2 

port 

Registers 
INC Rr Incremeflt register 1 1 
INC@Rr Increment data 1 1 

memory 
DECRr Decrement register 1 1 

Data Moves 
MOVA,Rr Move register to A 1 1 
MOVA,@Rr Move data memory 1 1 

to A 
MOVA,#data Move immediate to A 2 2 

Subroutine 
CALLaddr Jump to subroutine 2 2 
RET Return 1 2 
RETR Return and restore 1 2 

status 

MOV Rr,A Move A to register 1 1 
MOV@Rr,A Move A to data 1 1 

Flags 
CLRC Clear Carry 1 1 

memory 
MOV Rr,#data Move immediate to 2 2 

register 
MOV@Rr, Move immediate to 2 2 
#data data memory 
MOV A,PSW Move PSW to A 1 1 

CPLC Complement Carry 1 1 
CLR FO Clear Flag 0 1 1 
CPL FO Complement Flag 0 1 1 
CLR Fl Clear Fl Flag 1 1 
CPLFl Complement Fl Flag 1 1 

MOV PSW,A Move A to PSW 1 1 Branch 
XCH A,Rr Exchange A and 1 1 

register 
XCH A,@Rr Exchange A and data 1 1 

memory 
XCHD A,@Rr Exchange digit of A 1 1 

and register 
MOVPA,@A Move to A from 1 2 

JMPaddr Jump unconditional 2 2 
JMPP@A Jump indirect 1 2 
DJNZ Rr,addr Decrement register 2 2 

and jump 
JC addr . Jump on Carry=l 2 2 
JNCaddr Jump on Carry",O 2 2 
JZ addr Jump on A Zero 2 2 

current page 
MOVP3, A,@A Move to A from 1 2 

JNZ addr Jump on A not Zero 2 2 
JTOaddr Jump on TO=l 2 2 

page 3 

Timer/Counter 
MOVA,T Read Timer/Counter 1 1 
MOVT,A Load Timer/Counter 1 1 
STRTT Start Timer 1 1 
STRT CNT Start Counter 1 1 
STOP TCNT Stop Timer/Counter 1 1 
EN TCNTI Enable Timer/Counter 1 1 
DIS TCNTI Disable Timer/ 1 1 

Counter Interrupt 

JNTO addr Jump on TO=O 2 2 
JT1 addr Jump on Tl=l 2 2 
JNTl addr Jump on Tl=O 2 2 
JFO addr Jump on FO Flag=1 2 2 
JFl addr Jump on Fl Flag=1 2 2 
JTF addr Jump on Timer 2 2 

Flag=l, Clear Flag 
JN1BF addr Jump on IBF Flag=O 2 2 
JOBF addr Jump on OBF Flag=l 2 2 
JBb addr Jump on Accumulator 2 2 

Bit 

5-825 231316-001 



8042/8742 
UNIVERSAL PERIPHERAL INTERFACE 

8·BIT MICROCOMPUTER 
• 8042:/8742: 12 MHz 
• Pin, Software and Architecturally 

Compatible with 8041A18741A 
• 8·Bit CPU plus ROM, RAM, I/O, Timer 

and Clock in a Single Package 
• 2048 x 8 ROM/EPROM, 128 x 8 RAM, 

8·Bit Timer/Counter, 18 Programmable 
I/O Pins 

.• One 8·Bit Status and Two Data 
Registers for AsynChronous 
Slave·to·Master Interface 

• DMA, Interrupt, or Polled Operation 
Supported 

• Fully Compatible with all Intel and 
Most Other Microprocessor 
Families 

• Interchangeable ROM and EPROM 
Versions 

• Expandable I/O 

• RAM Power· Down Capability 

• Over 90 Instructions: 70% Single Byte 

• Available in EXPRESS 
-Standard Temperature Range 

The Intel 804218742 is a general-purpose Universal Peripheral Interface that allows the designer to grow his own 
customized solution for peripheral device control. It contains a low-cost microcomputer with 2K of program memory, 
128 bytes of data memory, 8-bit CPU, I/O ports, 8-bit timer/counter, and clock generator in a single 40-pin package. 
Interface registers are included to enable the UPI device to function as a peripheral controller in the MCS-48™, 
MCS-51™, MCS-80™, MCS-85™, iAPX-88, iAPX-86 and other 8-, 16-bit systems. 

The 8042/8742 is software, pin, and architecturally compatible wit·h the 8041 A, 8741 A. The 804218742 doubles the on-chip 
memory space to allow for additional features and performance to be incorporated in upgraded 8041 N8741 A designs. For 
new designs, the additional memory and performance of the 8042/8742 extends the UPI concept to more complex motor 
control tasks, 80-column·printers and process control applications as examples. 

To allow full user flexibility, the program memory is available as ROM in the 8042 version or as UV-erasable EPROM in 
the 8742 version. The 8742 and the 8042 are fully pin compatible for easy transition from prototype to production level 
designs. 

lNTfllN4l ". 

:::;::{~.~ 
'''.,,~ ... -,,­

OJ-

~- ~=:::::J 
SVNC .. -.... ..... -

""'''{"'''-B lC,OJl '1111",,0 
ClOCII: nAU_ 

{ 
.~-_PJlOM"~IIA.tul'fllT 

_Ell Vcc __ +511,1I'f1lY 

'. __ OIlO!JNO 

Figure 1. Block Diagram 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responslbllty for the Use of Any CirCUitry Other Than CirCUitry Embodied In an Intel Product No Other CircUIt Patent licenses 8'& Implied 

©INTEL CORPORATION, 1983 FEBRUARY 1983 
5-826 ORDER NUMBER: 210393.001 



inter 804218742 

Table 1. Pin Description 

Pin Pin 
Symbol No. Type Name and Function Symbol No. Type Name and Function 

TEST 0, 1 I Test Inputs: Input pinS which can be SYNC 11 0 Output Clock: Output signal which 
TEST 1 39 directly tested using condItIonal occurs once per UPI-42 instruction 

branch instructions. cycle. SYNC can be used as a strobe 
for external circuitry; it is also used to 

Frequency Re'erence: TEST 1 (T ,) synchronize single step operation. 
also fU<lctions as the event timer in· 
put (under software control). TEST 0 
(To) is used during PROM program· 
mlng and verification in the 8742. 

00-07 12-19 1/0 Data Bus: Three-state, bidirectional 
(BUS) DATA BUS BUFFER lines used to in· 

terface the UPI·42 microcomputer to 
an 8-bit master system data bus. 

XTAL 1, 2 I Inputs: Inputs for a crystal, LC or an 
XTAL2 3 external tIming signal to determine 

the Internal oscillator frequency. 

RESET 4 I Reset: Input used to reset status flip-
flops and to set the program counter 
to zero. 

P1O-P17 27-34 1/0 Port 1: 8-blt, PORT 1 quasi-bidirec-
tIonal I/O lines. 

P20-P27 21-24 I/O Port 2: 8-bit. PORT 2 quasi-bldlrec-
35-38 tlonal i/O lines. The lower 4 bIts (P20 -

P23) Interface directly to the 8243 i/O 
expander device and contaIn address 

RESET is also used dUring PROM pro-
gramming and verifIcatIon. 

and data informatIon during PORT 4-7 
access The upper 4 bIts (P2.-P27) can 
be programmed to provIde Interrupt 

SS 5 I Single Step: Single step input used Request and DMA Handshake capa-
in conjunction with the SYNC out· 
put to step the program through 

bility. Software control can cOl\flgure 
P2• as Output Buffer Full (OBF) inter-

each instruction. (8742 only) rupt, P2• as Input Buffer Full (IBF) 

CS 6 I Chip Select: Chip select input used to 
select one UPI microcomputer out of 
several connected to a common data 

interrupt, P2• as DMA Request 
(ORO), and P27 as DMA ACKnowledge 
(DACK). 

bus. PROG 25 1/0 Program: Multifunction pin used as 

EA 7 I External Access: External access the program pulse input dUring 

Input which allows emulatIon, testing PROM programming. 

and PROM/ROM verification. This 
pin should be tied low if unused. 

RD 8 I Read: I/O _read input which enables 
the master CPU to read data and 

During 1/0 expander access the PROG 
pin acts as an address/data strobe to 
the 8243. This pin should be tied high 
if unused. 

status words from the OUTPUT DATA 
BUS BUFFER or status register. Vcc ,40 Power: +5V main power supply pin. 

Ao 9 I Command/Data Select: Address input 
used by the master processor to in· 
dicate whether byte transfer is data 
(Ao=O, Fl is reset) or command 

Voo 26 Power: + 5V during normal opera· 
tion. + 21V during programming 
operation. Low power standby pin in 
ROM version. 

(Ao= 1, Fl is set)· Vss 20 Ground: Circuit ground potential. 

WR 10 I Write: I/O write input which enables 
the master CPU to write data and 
command. words to the UPI INPUT 
DATA BUS BUFFER 

5-827 210393-001 



intel" 804218742 

UPI·42 FEATURES 

1. Two Data Bus Buffers, one for input and one for out· 
put. This allows a much cleaner Master/Slave pro­
tocol. 

INPUT 

~ 
DATA 
BUS 

BUF-FER 
, (8) 

00- 0 , . L...------Ig 
OUTPUT r 

DATA 
BUS 

BUFFER -
(8) 

2. 8 Bits of Status 

INTERNAL 
DATA BUS 

IOF loaF I 

ST 4-ST 7 are user definable status bits These bits are 
defined by the "MOV STS, A" single byte, single 
cycle Instruction Bits 4-7 of the accumulator are 
moved to bits 4-7 of the status register. Bits 0-3 of 
the status register are not affected 

MOV 5TS, A Op Code 90H 

I ' I 0 I il' I 0 I 0 I 0 I ~ 
~ ~ 

3. RD and WR are edge triggered IBF, OBF, F, and INT 
change Internally after the trailing edlte of RD or WR 

RD or WR 

During the time that the host CPU is reading the 
status register, the 8042/8742 is prevented from up­
dating this register or is 'locked out.' 

4. P24 and P25 are port pins or Buffer Flag pins which. 
can be used to Interrupt a master processor. These 
pins default to port pinS on Reset. 

If the "EN FLAGS" instruction has been executed, 
P24 becomes the OBF (Output Buffer Full).pin. A "1" 
written to P24 enables the OBF pin (the pin outputs 
the OBF Status Bit). A "0" written to P24 disables the 
OBF pin (the pin remains low) ThiS pin can be used 
to indicate that valid data IS available from the UPI-
41 A (In Output Data Bus Buffer) 

~EN FLAGS" has been executed, P25 becomes the 
IBF (Input Buffer Full) pin. A "1" written to P25 

enables the IBF pin (the pin outputs the inverse of the 
IBF Status Bit). A "0" written to P25 disables the IBF' 

pin (the pin remains low). This pin can be used to 
indicate that the UPI-42 is ready for data. 

08F (lNTER~UPT REQUEST) 

iijF (INTERRUPT REQUEST) 

'DATA BUS BUFFER INTERRUPT CAPABILITY 

EN FLAGS Op Code OF5H 

0, DO 

5. P26 and P27 are port pins or DMA handshake pins for 
use with a DMA controller. These pins default to port 
pins on Reset. 

If the "EN DMA" instruction has been executed, P26 
becomes the DRQ (DMA ReQuest) pin. A "I" written 
to P26 causes a DMA request (DRQ is activated). DRQ 
IS deactivated by DACK· RD, DACK 'WR, or execution 
of the "EN DMA" instruction. 

If "EN DMA" has been executed, P27 becomes the 
DACK (DMA ACKnowledge) pin. This pin acts as a 
chip select input for the Data Bus Buffer registers 
during DMA transfers. 

DR05 ORQn 
8041AH/ 8257 
8741A 

OACK~ DACK 

DMA HANDSHAKE CAPABILITY 

EN DMA Op Code- OE5H 

I 0 Ii] 
DO 

6. The RES,ET input on the 8042/8742 includes a 2-stage 
synchronizer to support reliable reset operation for 
12 MHz operation. 

7. When EA is enabled on the 804218742, the program 
counter is placed on Port 1 and the lower three bits of 
Port 2 (MSB = P22, LSB = P,ol. On the 8042/8742 this' 

. information is multiplexed with PORT DATA (see port 
timing diagrams al end of this data sheet). 

5-828 210393-00' 



804218742 

APPLICATIONS 

" 
) 

DATA ~=:I=~=:;~ 
8088 

ADDR 

CONTROlE===;;~ 

8 I W TO 

-TO 

-~T1 

PERIPHERAL 
DEVICES 

Figure 3. 8088·8042/8742 Interface 

P41,,: __ L- (I) 

8243 
PS¢=c ~ 

KEYBOARD 

EXPANDER P61~~ MATRIX 

p,l('----,- -
8 ROWS 

tl t gl ~l ~l ~l H I 
PORT 2 PROG ,-' PORT 1 

PORT 2 

8042 
8742 

DBB CONTROL 

~~ H 
DATA 8US 

I L 
CONTROL BUS 

Figure 5. 804218742·8243 Keyboard Scanner 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8'742 EPROM 
Programming Verification 

In brief, the programming process consists of: activating 

the program mode, applYing an address, latching the 
address, applying data, and applying a programming pulse. 
Each word IS programmed completely before moving on to 

the next and is followed by a verificatIOn step. The follow· 

Ing IS a list of the pins used for programming and a descrlp' 
tlon of their functions: 

Pin Function 

XTAL1 Clock Input 

Reset Initialization and Address Latching 

Test 0 Selection of Program or Verify Mode 

EA Activation of Program!Verify Modes 

BUS Address and Data Input 

Data Output DUring Verify 

P20-12 Address Input 

VDD Programming Power Supply 

PROG Program Pulse Input 

RDI---------- RD 

WR 
8048H 

PORT 

BUS 

-----IWIl 
8042 

CONTROL ~\ CS 8742 -----------'1 AO 

_ DATA BU~ Dee 

I TO 
PERIPHERAL 
DEVICES 

Figure 4. 8048H·804218742 Interface 

CONTROL BUS 

Figure 6. 804218742 80·Column Matrix Printer Interface 

WARNING 

An attempt to program a mrssQcketed 8742 will result In severe damage 
to the part An Indication of a properly socketed part IS the appearance 

of the SYNC clock output The lack of thiS clock may be used to disable 

the programmer 

The Program!Verify sequence is: 

1. Ao ~ OV, CS ~ 5V. EA ~ 5V, RESET ~ OV, TESTO ~ 5V. 

Voo = 5V, clock applied or Internal OSCillator operating, BUS 

floating, PROG ~ 5V 

2. Insert 8742 In programming socket 

3. TEST 0 = Ov (select program mode) 

4. EA = 18Y (active program mode)' 

5. Address applied to BUS and P20.22 

6. RESET = 5v (latch address) 

7. Data applied to BUS" 

8. Voo = 21V (programming power)"* 

9. PROG ~ Vee followed by one 50 ms pulse to 18V" 

10. V OD = 5v 

11. TEST 0 = 5v (venfy mode) 

5-829 210393-001 

I 
I, 



8042/8742 

12: Read and verify data on BUS 

13. TEST 0 0 Ov 

14. RESET 0 Ov and repeat from step 5 

15. Programmer should be at conditIOns of step 1 when 

8742 is removed from socket -

'When verifying ROM, EA = 12V . 
.. Not used in verifying ROM proGedure. 

8742 Erasure Characteristics 

The erasure characteristics o·f the 8742 are such .that 
erasure beQins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Ang­
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps have wavelengths in the 
3000-4000A range. Data show that constant exposure to 
room level fluorescent lighting could erase the typical 
8742 in approximately 3 years while it would take ap-

.. 

proximately one we'ek to cause erasure when exposed 
to direct sunlight. If the 8742 is to be exposed to these 
types of lighting conditions~ for extended periods of 
time, opaque .Iabels are available from Intel which 
should be placed over the 8742 window to prevent unin­
tentional erasure. 

The recommended erasure procedure' for the 8742 is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 A. The integrated dose (I.e., UV inten· 
sity x exposure time) for erasure should be a minimum 
of 15 w-sec/cm2. The erasure tim.e with this dosage is 
approximately 15 to 20 minutes using an ultraviolet' 
lamp with a 12,000 ,..W/cm2 power rating. The 8742 
should be placed within one inch of the lamp tubes dur­
ing erasure. Some lamps have a filter on their tubes 
which should be removed before erasure. 

5'830 210393-001 



inter 8042/8742 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias . O·C to 70·C 
Storage Temperature. . ...... - 65·C to + 150·C 
Voltage on Any Pin With Respect 

to Ground . . - 0.5V to + 7V 
Power Dissipation. . .. 1 5 Watt 

"NOTICE' Stresses above those listed under "Absolute 
MaXimum Ratings" may cause permanent damage to the 
deVice This IS a stress rating only and functIOnal opera­
tIOn of the deVice at these or any other conditIOns above 
those indicated In the operational sectIOns of thiS specifi­
cation IS not Implied Exposure to absolute maximum 
rating conditions for extended periods may affect deVice 
reliability. 

D.C. CHARACTERISTICS (TA = 0° to +700 e, Vee = VDD = +5V± 10%) 

804218742 

Symbol Parameter Min. Max. Units Notes 

vlL Input Low Voltage (Except XTAL 1, XTAL2, RESET) -0.5 08 V 

VIL1 Input Low Voltage (XTAL 1, XTAL2, RESET) -0.5 06 V 

VIH Input High Voltage (Except XTAL 1, XTAL2, RESET) 20 VCC V 

VIH1 Input High Voltage ,(XTAL 1. RESET) 35 VCC V 

VIH2 Input High Voltage (XTAL2) 22 VCC V 

VOL Output Low Voltage (00-07) 045 V 10L = 20 mA 

VOL1 Output Low Voltage (P10P17. P20P27. Sync) 045 V 10L = 16 mA 

VOL2 Output Low Voltage (PROG) 045 V 10L = 10 mA 

VOH Output High Voltage (00-07) 24 V 10H = -400 /J.A 

VOH1 Output High Voltage (All Other Outputs) 24 10H = -50 /J.A 

IlL Input Leakage Current (TO, T1. RO. WR, CS. AO, EA) ± 10 /J. A VSS';;; VIN';;; VCC 

10FL Output Leakage Current (00-07. High Z State) ± 10 /J. A 
VSS + 045 
,;;; VOUT';;; VCC 

III Low Input Load Current (P10P17, P20P27) 03 mA VIL = 08V 

1U1 Low Input Load Current (RESET, SS) 02 mA VIL = 08V 

100 VOO Supply Current 20 mA TYPical = 5 mA 

ICC + 100 Total Supply Current 135 mA TYPical = 60 mA 

IIH Input Leakage Current (P1O-P17. P20-P27) 100 /J. A VIN = VCC 

CIN Input Capacitance 10 pF 

CIO 1/0 Capacitance 20 pF 

D.C. CHARACTERISTICS-PROGRAMMING (TA=25·C ±5°C, Vcc=5V ±5%, Voo=21V ±0.5V 

Symbol Parameter Min. Max. Units Test Conditions 

VOOH Voo Program Voltage High Level 20.5 21.5 V 

VOOL Voo Voltage Low Level 4.75 5.25 V 

VPH PR6.G Program Voltage High Level 17.5 18.5 V 

VPL PROG Voltage Low Level Vee-0.5 Vee V 

VEAH EA Program or Verify Voltage High Level 17.5 18.5 V 

VEAL EA Voltage Low Level 5.25 V 

100 VOO High Voltage Supply Current 30.0 mA 

IpROG PROG High Voltage Supply Current 1.0 mA 

lEA EA High Voltage Supply Gurrent 1.0 mA 

5-831 210393-001 

i. 
I 

I: 
I 

" 



804218742 

A.C. CHARACTERISTICS (TA=O°C to +70°C. Vss=ov, Vcc=VOO= +5V ± 10%) 

DBB READ 

8042 
Symbol Parameter Min. Max. Min. 

tAR CS. Ao Setup to ROt 0 0 

tRA CS. Ao Hold After RDf 0 0 

tRR RD Pulse Width 160 160 

tAD CS. Ao to Data Out Delay 130 

tRO Rl?t to Data Out Delay 130 

tOF RDi to Data Float Delay 85 

DBBWRITE 

Symbol Parameter Min. Max. Min. 

tAw CS. Ao Setup to WRt 0 0 

tWA CS. Ao Hold After WRf 0 0 

tww WR Pulse Width 160 160 

tow Data Setup to WRi 130 130 

two Data Hold After WRi o' 0 

CLOCK 

8042 

Symbol Parameter Min. Max. Min. 

tCY Cycle TIme 1.25 9.20 1.25 

ICYC ' Clock Period 83.3 613 833 

tpWH Clock HIgh Time 33 38 

tpWL Clock Low TII)1e 33 38 

IR Clock RIse Time 10 

IF Clock Fall Time 10 

NOTE: 
1. ICY = 15/f(XTAL) 

5-832 

8742 
Max. Units 

ns 

ns 

ns 

130 ns. 

130 ns 

85 ns 

Max. Units 

ns 

ns 

ns 

ns 

ns 

8742 

Max. Units 

920 jJs('] 

613 ns 

ns 

ns 

10 ns 

10 ns 

210393-001 



intel· 8042/8742 

A.C. CHARACTERISTICS (TA=25°C±5°C. Vcc=5V±5%. Voo=21V ±0.51/) 

PROGRAMMING 

Symbol Parameter Min. Max. 

tAW Address Setup Time to RESETj 4tCY 

tWA Address Hold Time After RESETj 4tCY 

tow Data in Setup Time to PROGj 4tCY 

two Data in Hold Time After PROG~ 4tCY 

tpH RESET Hold Time to Verify 4tCY 

tvoow < VOO Setup Time to PROGj 0 1.0 

tvoOH VOO Hold Time After PROGj 0 1.0 

tpw Program Pulse Width 50 60 

tTW Test 0 Setup Time for Program Mode 4tCY 

tWT Test 0 Hold Time After Program Mode 4tCY 

too Test 0 to Data Out Delay 4tCY 

tww RESET Pulse Width to Latch Address 4tCY 

tr • tf Voo and PROG Rise and Fall Times 0.5 100 

tCY CPU Operation Cycle Time 4.0 

tRE RESET Setup Time Before EAt 4tCY 

NOTE: 
If TEST 0 is high, too can be triggered by RESETj. 

A.C. CHARACTERISTICS DMA 

8042 

Symbol Parameter Min. Max. 

tACC DACK to WR or RD 0 

tCAC RD or WR to DACK 0 

tACO DACK to Data Valid 130 

tCRO RD or WR to DRO Cleared 110 

NOTE: 
1. CL = 150 pF. 

A.C. CHARACTERISTICS PORT 2 (TA=O°Cto +70·C, Vcc= +5V ±10%) 

Symbol Parameter '(tCY) 

tcp Port Control Setup Before Falling Edge of PROG 1/15 tCy-28 

tpc Port Control Hold After Falling Edge of PROG 1/10tCY 

tpR PROG to Time P2 Input Must Be Valid 18/15 tCy-16 

tpF Input Data Hold Time 

top Output Data Setup Time 2/10TCY 

tpo Output Data Hold Time 1/10tCy-80 

tpp PROG Pulse Width 6/10 tCY 

NOTES: 
1. Cl =80 pF. 
2. Cl =20 pF. 
3. tCY= 1 25/<s 

5-833 

Unit Test Conditions 

mS 
I.'i 

mS 

mS' 

/AoS 

/AoS 

8742 

Min. Max. Units 

0 ns 

0 ns 

130 ' ns 

130 ns[1] 

8042/8742 [3] 

Min. Max. Units 

55 ns[1] 

125 ns[2] 

650 ns[1] 

0 150 ns[2] 

250 ns[1] , 

45 Fls[2] 

750 ns 

210393-001 



inter ,8042/8742 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT.IOUTPUT 

-
DEVICE 
UNDEA 

~CL~I50PF TEST 

/ 

. 

DRIVING FROM EXTERNAL SOURCE-TWO OPTIONS 

>6 MHz 

'~ 

~ 

LC OSCILLATOR MODE 

~ ~ .!!QMINAll 

4S .• H 20pF 52 MHz 
120 .• H 20pF 32 MHz 

·L S -ric 3 L 

XTALI 

XTAL2 

I;:; 2~;lC' 
2 

XTAL1 
C'= ~+3Cpp 

2 . ~ 

3 
XTAL2 

Cpp;= 5-10 pF PI~ TO PIN 
CAPAC IT ANCE 

EACH C SHOULD BE APPROXIMATELY 20 pF INCLUDING STRAY CAPACITANCE 

5-834 

+ 5V 

470Q 

J<>--+------"-!XTAl1 

+5V 

470Q 

'------<--"-j XTAL2 

AISE AND FALL TIMES SHOULD NOT EXCEED 

E~~~:'EA:':~~:'SI:Orifg~~I~=~~:~:D' 

CRYSTAL OSCILLATOR MODE 

C1 2 XTAL1 

J ~c, --L.- 17=~~:~12 ,- i-I = I 
f---'---'-----::-l XTAL2 

C3 

g~ ~~i:t~ siG!}' / F 
C3 2O-3OpF INCLUDIN~ S3:AY 

CAYSTAL SEAlES AESISTANCE SHOULD BE LESS THAN 
300 AT 12 MHz; LESS THAN 750 AT 6 MHz; LESS rHAN 
laon AT 3.8 MHz. 

210393-001 



8042/8742 

WAVEFORMS 

READ OPERATION-DATA BUS BUFFER REGISTER 

es OR AO =:) K 
-""-I '"" -'IlA-

~ \ 

" -'H()- -'0' 
_--IAIJ--_ 

WRITE OPERATION-DATA BUS BUFFER REGISTER 

ISYSTEM S 
ADDRESS BUS) 

IREAD CONTROLI 

==:)<t X ISYSTEM S 

tsaR Ao _ 1:----------------1'1~---------- ADDR,sseuSi 

~ - •• -~ ~, __ ~--'··---,,----------lwRITEcaNTROLI 

DATA BUS DATA \J W DATA 
(INPUT) MAY CHANGE. ,,--DATAVAlIO-_~ MAY CHANGE ________________ J ~ __________________ __ 

CLOCK TIMING 

2.4V 

XTAL2 1.6V 

.4SV ----------

.. teye 

5-835 210393-001 



intel' 804218742 

WAVEFORMS (Continued) 

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY) 

18V 
EA ------/ 5V 

f---tTW­

TESTO ~ 

PROGRAM ----------t~-VERtFY~ •• ---- PROGRAM ----

I 

f------ tww -

RESET ~ ,---------------------------+-------------~ 

DBO-DB7 J--
LAST 

ADDRESS 

ADDRESS 
(0-71 VALID 

DATA TO BE 
PROGRAMMED VALID 

I-- too ----j 
_V---V--D-AT-A"""" 

---~ VALID 

ADDRESS 18·101 VALID 

---< NEXT ADDR C VALID 

NEXT 
ADDRESS 

.. ~:::.--- ____ n n~JdE~-:·-"~---_-~~~~~~~~~~~~~~~~-_--_--_--_--_--_---_--_--_--_---_-
VERIFY MODE (ROM/EPROM) 

18V 

EA 5V--./ 

50 V / 
TESTo .-J 

~~tww =t 
RESET 'L- _ 

~tAW 
I tWA 

~ ADDRESS 
DBo-DB7 ~-- (O-7JVALID 

DATA OUT 
VAllO 

ADDRESS 18·101 VALID 

NOTES; 

- - -<"' __ A_~_~_~_:S_S_....JX NEXT DATA 
OUT VALID 

\'------
}------_. 

NEXT ADDRESS VAllO 

1 PROG MUST FLOAT IF EA is LOW OR IF TESTO= 5V FOR THE 8742 FOR THE 8042 PROG MUST ALWAYS FLOAT. 

2 Ao MUST BE HELD LOW II •• =OV) DURING PROGRAMNERIFY MODES. 
3 TEST 0 MUST BE HELD HIGH. 

The 8742 EPROM can be programmed by the following 
Intel products: ' 

1. Universal PROM Programmer (UPP 103) peripheral 
of the Intellec® Development System with a UPP·549 
Personality Card. 

2. iUp·200/iUP·201 PROM Programmer with the iUP· 
F87/44 Personality Module. 

5·836 210393-001 



804218742 

WAVEFORMS (Continued) 

DMA 

DATA BUS 

ORa 

PORT 2 

EXPANDER 
PORT 

SYNC 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

-
~ 

lAce - -'CAe -

~ 
-'Aco~l~ 

JJ 

PORT 20-3 DATA 

peRT 20_3 DATA 

~ 

- 'Ace - -tcAe -
r-----'o. 

~ 

'\ 
- leR ----------

PORT TIMING DURING EA 

SYNC 

P'O·'7 

P 20.22 

/ \ / 
PORT X DATA PC X PORT 

DATA 

ON THE RISING EDGE OF SYNC AND EA IS ENABLED, PORT DATA IS VALID ANO'CAN BE 
STROBED ON THE TRAILING EDGE OF SYNC THE PROGRAM COUNTER CONTENTS ARE 
AVAILABLE 

5-837 

X 
\ 

PC 

210393-001 



8042/8742 

Table 2. UPI™ Instruction Set 

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles 

ACCUMULATOR DATA MOVES 

ADD A, Rr Add register to A 1 1 MOVA, Rr Move register to A 1 1 
ADD A, @Rr Add data memory 1 1 MOVA,@Rr Move data memory 1 1 

to A to A 
ADD A, #data Add immediate to A 2 2 MOV A, #data Move immediate 2 2 
AD DC A, Rr Add register to A 1 1 ~ TOA 

with carry MOV Rr,A Move A to register 1 1 
.ADDCA,@Rr Add data memory 1 1 MOV@Rr,A Move A to data 1 1 

to A with carry memory 
ADDC A, #data Add immediate 2 2 MOV Rr, #data Move immediate to 2 2 

to A with carry register 
ANL A', Rr AND register to A 1 1 MOV@Rr, Move immediate to 2 2 
ANLA,@Rr AND data memory 1 1 #data data memory 

to A MOVA, PSW Move PSWto A 1 1 
ANLA, #data AND Immediate to A 2 2 MOVPSW, A Move A to PSW 1 1 
ORL A, Rr OR register to A 1 1 XCH A, Rr Exchange A and 1 1 
ORLA,@Rr OR data memory 1 1 register 

to A XCHA,@Rr Exchange A and 1 1 
ORLA, #data OR immediate to A 2 2 data memory 
XRL A, Rr Exclusive OR regis· 1 1 XCHDA, @Rr Exchange dig it of A 1 , 1 

ter to A and register 
XRLA, @Rr Exclusive OR data 1 1 MOVPA,@A Move to A from 1 2 

memory to A current page 
XRL A, #data Exclusive OR imme· 2 2 MOVP3, A,@A Move to A from 1 2 

diate to A page 3 
INCA Increment A 1 1 
DECA Decrement A 1 1 

TIMER/COUNTER 

CLRA Clear A 1 1 MOVA, T Read Timer/Counter 1 1 
CPLA Complement A 1 1 
DAA Decimal Adjust A 1 1 
SWAP A Swap nibbles of A 1 1 
RLA Rotate A left 1 1 

MOVT,A Load Timer/Counter 1 1 
STRTT Start Timer 1 1 
STRTCNT start Counter 1 1 
STOP TCNT Stop Timer/Counter 1 1 

RLCA Rotate A left through 1 1 
carry 

RRA Rotate A right 1 1 
RRCA Rotate A right 1 1 

EN TCNTI Enable Timer/ 1 1 
Counter Interrupt 

DIS TCNTI Disable Timer/ 1 1 
Counter Interrupt 

through carry CONTROL 
INPUT/OUTPUT ENDMA Enable DMA Hand· 1 1 
IN A, Pp Input port toA 1 2 
OUTL Pp, A Output A to port 1 2 
ANL Pp, #data AND immediate to 2 2 

shake Lines 
EN I Enable IBF Interrupt 1 1 
DISI Disable IBF tnter· 1 1 

port 
ORL Pp, #data OR immediate to 2 2 

rupt 
EN FLAGS Enable Master 1 1 

port 
IN A, DBB Input DBB to A, 1 '1 

clear IBF 

Interrupts 
SEL RBO Select register, 1 1 

bank 0 
OUTOBB,A Output A to DBB, 1 1 

set OBF 
SEL RB1 Select register 1 1 

bank 1 
MOV STS, A A4-A7 to Bits 4-7 of 1 1 NOP No Operation 1 1 

Status REGISTERS 
MOVDA, Pp Input Expander 1 2 

port to A 
MOVD Pp, A Output A tp 1 2 

Expander port 
ANLDPp, A AND A to Expander 1 2 

INC Rr Increment register 1 1 
INC@Rr Increment data 1 1 

memory 
DEC Rr Decrement register 1 1 

port SUBROUTINE 
ORLD Pp, A OR A to Expander, 1 2 

port 
CALL addr Jump to subroutine 2 2 
RET Return 1 2 
RETR Return and restore 1 2 

status 

! 
" 

5-838 210393-001 



804218742 

Table 2. UPI'M Instruction Set (Continued) 

Mnemonic Description Bytes Cvcles 

FLAGS 

CLR C Clear Carry 1 1 
CPL C Complement Carry 1 1 
CLR FO Clear Flag 0 1 1 
CPL FO Complement Flag 0 1 1 
CLR F1 Clear F1 Flag 1 1 
CPL F1 Complement F1 Flag 1 1 

BRANCH 

JMP addr Jump unconditional 2 2 
JMPP@A Jump indirect 1 2 
DJNZ Rr, addr Decrement register 2 2 

and jump 
JC addr Jump on Carry= 1 2 2 
JNC addr Jump on Carry=O 2 2 
JZ addr Jump on A Zero 2 2 
JNZ addr Jump on A not Zero 2 2 
JTO addr Jump on TO=1 2 2 
JNTO addr Jump on TO=O 2 2 
JT1 addr Jump on T1 =1 2 2 
JNT1 addr Jump on T1 =0 2 2 
JFO addr Jump on FO Flag = 1 2 2 
JF1 addr Jump on F1 Flag=1 2 2 
JTF addr Jump on Timer Flag 2 2 

= 1, Clear Flag 
JNIBF addr Jump on IBF Flag 2 2 

=0 
JOBF addr Jump on OBF Flag 2 2 

=1 
JBb addr Jump on Accumula- 2 2 

tor BIt 

5-839 210393-001 



8243 
MCS-48® INPUT/OUTPUT EXPANDER 

• Low Cost 
• Simple Interface to MCS-48® 

Microcomputers 
• Four 4-Bit 1/0 Ports 
• AND and OR Directly to Ports 

• 24-Pin DIP 
• Single SV Supply 
• High Output Drive 
• Direct Extension of Resident 8048 1/0 

Ports 

The Intel® 8243 is an input/output expander designed specifically to provide a low cost means of liD 
. expansion for the MCS-48® family of single chip microcomputers. Fabricated in 5 volts NMOS, the 8243 
combines low cost, single supply voltage and high drive current capability. 

The 8243 consists of four 4-bit bidirectional static liD ports and one 4-bit port which servj3s as an interfaceto 
the MCS-48 microcomputers. The 4-bit interface requires that only 4 liD lines of the 8048 be used for liD 
expansion, and also allows multiple 8243's to be aqded to the same bus. 

The liD ports of the 8243 serve as a direct extension of the resident liD facilities of the MCS-48 microcomputers 
and are accessed by their own MOV, ANL, and ORL instructions. 

PORT 2 

-B 

Figure 1. 8243 
Block Diagram 

PORT 4 

PORT 5 

PORT 6 

PORT 7 

P50 vee 
P40 P51 

I'll P52 

P42 P53 

P43 P60 

cs P61 

PROG P62 

P23 P63 

P22 P}3 

P21 P72 

P2D P71 

GND P70 

Figure 2. 8243 
Pin Configuration 

Intel Corporation Assum,es No Responslbllty for the Use of Any CircUItry Other Than Circuitry Embodied In an Intel Product No Other CirCUli Patent Licenses are Implied 

INl EL CORPORATION. 1980 5-840 231317-001 



8243 

Table 1. Pin Description 

Symbol Pin No. Function 

PROG 7 Clock Input. A high to low transi-
tion on PROG signifies that ad-
dress and control are available on 
P20-P23, and a low to high transi-
tion signifies that data IS available 
on P20-P23. 

CS 6 Chip Select Input. A high on CS 
Inhibits any change of output or 
I nternal status. 

P20-P23 11-8 Four (4) bit bi-dlrectional port con-
tains the address and control bits 
on a high to low transition of 
PROG. DUring a low to high tran-
sition contains the data for a sel-
ected output port If a write opera-
tion, or the data from a selected 
port before the low to high transI-
tion if a read operation. 

GND 12 o volt supply 

P40-P43 2-5 Four (4) bit bl-directional I/O ports. 
P50-P53 1,23-21 May be programmed to be input 
P60-P63 2.0-17 (during read), low Impedance 
P70-P73 13-16 latched output (after write), or a tri-

state (after read). Data on pins 
P20-P23 may be directly written, 
ANDed or ORed with previous. 
data. 

VCC 24 +5 volt supply 

FUNCTIONAL DESCRIPTION 

General Operation 
The 8243 contains four 4-bit I/O ports which serve 
as an extension of the on-chip I/O and are ad­
dressed as ports 4-7. The follOWing operations may 
be performed on these ports: 

• Transfer Accumulator to Port. 
• Transfer Port to Accumulator. 
• AND Accumulator to Port. 
• OR Accumulator to Port. 

All communication between the 8048 and the 8243 
occurs over Port 2 (P20-P23) with timing provided 
by an output pulse on the PROG pin of the proces­
sor. Each transfer consists of two 4-bit nibbles: 

The first containing the "op code" and port address 
and the second containing the actual4-bits of data. 
A high to low transition of the PROG line indicates 
that address is present while a low to high transition 
indicates the presence of data. Additional 8243's 
may be added to the 4-bit bus and chip selected 
using additional output lines from the 8048/8748/ 
8035. 

5-841 

Power On Initialization 
Initial application of power to the device forces 
input/output ports 4, 5,6, and 7 to the tri-state and 
port 2 to the input mode. The PROG pin may be 
either high or low when power is applied. The first 
high to low transition of PROG causes device to 
exit power on mode. The power on sequence is 
initiated if vee drops below 1V. 

Address Instruction 
P21 P20 Code P23 P22 Code 

0 0 Port 4 0 0 Read 
0 Port 5 0 1 Write 

0 Port 6 0 ORlD 
1 Port 7 ANlD 

Write Modes 
The device has three wnte modes. MOVD PI, A dir­
ectly writes new data into the selected port and 011:1 
data is lost. ORlD Pi, A takes new data, OR's it with 
the old data and then writes it to the port. ANlD Pi, A 
takes new data, AND's it with the old data and then 
writes It to the port. Operation code and port ad­
dress are latched from the Input port 2 on the high 
to low transition of the PROG pin. On the low to high 
transition of PROG data on port 2 is transferred to 
the logic block of the specified output port. 

After the logic manipulation is performed, the data 
is latched and outputed. 'ffie old data remains 
latched uritil new valid outputs are entered. 

Read Mode 
The device has one read mode. The operation code 
and port address are latched from the input port 2 on 
the high to low transition of the PROG pin. As soon 
as the read operation and port address are decoded, 
the appropriate outputs are tri-stated, and the input 
buffers switched on. The read operation is termina­
ted by a low to high transition of the PROG pin. The 
port (4, 5, 6 or 7) that was selected is switched to the 
tri-stated mode while port 2 is returned to the input 
mode. 

Normally, a port will be in an output (write mode) or 
input (read mode). If modes are changed during 
operation, the first read following a write should 
be ignored; all following reads are valid. This is to 
allow the external driver on the port to settle after 
the first read instruction removes the low imped­
ance drive from the 8243 output. A read of any port 
will leave that port in a high Impedance state. 

231317-001 



824~ 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias. . . . . . .. 0° C to 70° C 
Storage Temperature ............... _65° C to +150° C 
Voltage on Any Pin 

With Respect to Ground .............. -0.5 V to +7V 
Power Dissipation ............................ 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS TA = O°C to 70°C, Vee = 5V 10% 

Test 
Symbol Parameter Min Typ Max Units Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 VCC+0.5 V 

VOL1 Output Low Voltage Ports 4-7 0.45 V IOL = 4.5 mA' 

VOL2 Output Low Voltage Port 7 1 V IOL = 20 mA 

VOH1 Output High Voltage Ports 4-7 2.4 V IOH = 240JJA 

IJL1 Input Leakage Ports 4-7 -10 20 JJA Vin = VCC to OV 

IIL2 Input Leakage Port 2, CS, PROG -10 10 JJA Vin = Vec to OV 

VOL3 Output Low Voltage Port 2 .45 V IOL = 0.6 mA 

ICC VCC Supply Current 10 20 mA 

VOH2 Output Voltage Port 2 2.4 IOH = 100JJA 

IOL Sum of all IOL from 16 Outputs 72 mA 4.5 mA Each Pin 

'See follOWing graph for additional Sink current capability 

A.C. CHARACTERISTICS TA = O°C to 70°C, VCC = 5V 10% 

Symbol Parameter Min Max Units Test Conditions 

tA Code Valid Before PROG 100 ns 80 pF Load. 

tB Code Valid After PROG 60 ns 20 pF Load 

te Data Valid Before PROG 200' ns 80 pF Load 

to Data Valid After PROG 20 ns 20 pF Load 

tH Floating After PROG 0 150 ns 20 pF Load 

tK PROG Negative Pulse Width 700 ns 

tcs CS Valid BeforelAfter PROG 50 ns 

tpo Ports 4-7 Valid After PROG 700 ns 100 pF Load 

tLP1 Ports 4-7 Valid Beforel After PROG 100 ns 

IACC PorI 2 Valid After PROG 650 ns 80 pF Load 

24~X02.'80> TEST POINTS 

045----J 

5-842 231317-001 



inter 8243 

WAVEFORMS 
i, 

il 
,1, 
'I 

PROG 

'. I 
PORr2 FLOAT FLOAT il 

I~ 

~'"x 
'I 

'~0=>1 
~! 

PORT 2 OUTPUT 
VALID 

'PO 

PORTS 4-7 PREVIOUS OUTPUT VALID OUTPUT 
VALID 

',p - "P 

PORTS 4-7 INPUT VALID 

'cs 'cs 

5-843 231317-001 



8243 

125 

100 

i 
:; 
~ 
d- 75 .. z .. 
0: 
0: GUARANTEED WORST CASE 

" U CURRENT SINKING CAPABILITIES .. OF ANY 1/0 POAT PIN ... TOTAL Z 
;; 50 SINK CURRENT OF ALL PINS ... 
:! 
0 .. 

25 

13 

MAXIMUM SINK CURRENT ON ANY PIN @ .45V 
MAXIMUM IOL WORST CASE PIN (mA) 

Figure 3 

Sink Capability 

The 8243 can sink 5 mA@ .45V on each of its 161/0 
lines simultaneously. If, however, all lines are'not 
sinking simultaneously or all lines are not fully 
loaded, the drive capability of any individual line 
increases as is shown by the accompanying curve. 

For example, if only 5 of the 16 lines are to sink. 
current at one time, the curve shows that each of 
those 5 lines is capable of sinking 9 mA @ .45V (if 
any lines are to sink 9 mA the total 10l must not 
exceed 45 mA or five 9 mA loads). 

Example: How many pins can drive 5 TTL loads (1.6 mAl 
assuming remaining pins are unloaded? 

10l = 5 x 1.6 mA = 8 mA 
dOL = 60 mA from curve 
# pins = 60 mA + 8 mA/pin = 7 5 = 7 

In this case, 7 lines can sink 8 mA for a total of 
56mA. This leaves 4 mA Sink current capability 
which can be divided in any way among the 
remaining 8 1/0 lines of the 8243. 

Example: This example shows how the use of the 20 mA 
sink capability of Port 7 affects the sinking 
capability of the other 1/0 lines. 

An 8243 will drive the following loads simul­
taneously. 

210ads-20 mA@ lV (port 7 only) 
8 loads-4 mA @ .45V 
6 loads-3.2 mA@ .45V 
Is this within the specified limits? 

.10l = (2 x 20) + (8 x 4) + (6 x 3,2) = 91.2 mAo 
From the curve: for 10l = 4 mA, dOL"" 93 mAo 
since 91.2 mA < 93 mA the loads are within 
specified limits. 

Although the 20 mA @ 1V loads are used in 
calculating .10l, it is the largest current re­
qUired @ .45V which determines the maximum 
allowable .10l. 

NOTE: AID to 50Ki} pullup resistor to +5V should be added to 8243 outputs when drovlng to 5V CMOS directly 

231317-001 



8048 
PORT 1 

8243 

n 
~I/O CS 

P4 

PROG PROG 

~TEST PS 

8048 3 INPUTS 8243 

P6 

P20-P23 4 DATA IN 
P2 

P7 

Figure 4. Expander Interface 

PROG ~ / 

\\-, -----' 

P20·P23 --< .... __ ..JX .... ___ -..J)>----
ADDRESS (4-BITS) DATA (4·BITS) 

4 I/O 

4 I/O 

4 I/O 

4 I/O 

BITS 3,2 BITS 1,0 

00 READ 00 
01 WRITE 01 
10 OR 10 
11 AND 11 

Figure 5. Output Expander Timing 

PROG~---------------+-----------------4-----------------4----------------~ 

Figure 6. Using Multiple 8243'5 

5-845 231317-001 



inter APPLICATION 
NOTE 

Multimodule ™ 
\ Winchester Controller 

Using the 82062 

@INTELCORPORATION,1984 

J.SLEEZER 
TECHNICAL MARKETING 

AP-182 

July 1984 

Order Number: 231133-002 



MUL TIMODULETM 
WINCHESTER 

CONTROLLER USING 
THE 82062 

CONTENTS PAGE 

INTRODUCTION ....................... 1 

ST506 Winchester Drive Overview ........ 1 

82062 WINCHESTER DISK 
CONTROLLER ....................... 2 

Clock Inputs ............................ 2 

Microprocessor Interface ................ 2 

Sector Buffer Control .................... 4 

Data Transfer Logic ..................... 4 

Drive Interface .......................... 6 

Microprocessor Interfaces ............... 8 

PIN DESCRIPTIONS .................. 10 

TASK REGISTER FILE ................ 12 

Error Register ......................... 12 

Reduce Write Current Register .......... 1 a 
Sector Count Register .................. 13 

Sector Number ....................... : 13 

Cylinder Number Low Register ........... 13 

Cylinder Number High Register .......... 13 

Sector/Drive/Head Register ............ 14 

Status Register ........................ 14 

Command Register .................... 15 

PROGRAMMING THE 82062 ........... 16 

Commands ........................... 16 

Software Section: General 
Programming ........................ 23 

APPLICATION EXAMPLE ............. 29 

iSBX Bus Multimodule Boards ........... 29 

The SBX82062 DeSign Example ......... 31 

Software Driver Overview ............... 34 

5-847 231133-002 



CONTENTS 
APPENDIX A 

PAGE 

ST5061NTERFACE .................. A-1 

THE ST506 INTERFACE .......... f •.• A-1 

Oata Transfer Rate .................... A-1 

10 Fields ................ , ............. A-2 

Sector Interleaving .................... A-2 

Electrical Interface .................... A-3 
i 

ST412 HP (High Performance) 
Interface ........................... A-4 

CONTENTS 
APPENDIX B 

PAGE 

SOFTWARE'DRIVER ................. 8-1 

APPENDIX C 

SCHEMATICS ....................... C-1 

APPENDIX D 

PAL SCHEMATiCS ................... 0-1 

231133-002 



Ap·182 

INTRODUCTION 

The 82062 Winchester Disk Controller (WDC) was de­
veloped to ease the complex task of interfacing Win­
chester disk drives to microprocessor systems. Specifi­
cally, the 82062 WDC interfaces to drives that conform 
to the ST506 specification, which IS the dominant inter­
face for 51/. inch drives. This Application Note pro­
vides some background on the 82062 WDC, the drive 
interfaces and general software routines. It concludes 
with a design example using the 82062 WDC interfaced 
to the SBXTM bus. Appendix B contains the listing of 
the software necessary to operate this controller board. 

ST506 W.nchester Drive Overview 

Since the 82062 WDC interfaces only to drives con­
forming to the ST506 specification, this overview will 
limit itself to those drives. A summary of the ST506 
specification is shown in Appendix A for those who are 
not familiar with it. The ST506 Winchester Disk con­
tains from I to 8 hard disks (or platters) with the aver­
age being 2 to 3 disks. These disks are made from alu­
minum (hence the term hard disk) anct are coated with 
some type of recording media. The recording media is 
typically made of magnetic-oxide, which is similar to 
the material used on floppy disks and cassette tapes. 
Each side of a hard disk is coated with recording media 
and each side can store data. Each surface of a disk has 
its own read/write head. 

Hard disk drives are sealed units because the R/W 
heads actually fly above the disk surface at about 8 to 
20 microinches. A piece of dust'or dirt, which appears 
as a boulder to the gap between the heads and the disk 
surface, will wreak havoc upon the disk media. 

The R/W heads are mechanically connected together 
and move as a single unit across the surface of the disk. 
There are 2 basic methods for positioning the heads. 
The first is with stepper motors, which is the most com­
mon method and is also used on most floppy disk 

drives. These positioner~ are used mainly because of 
their low co~t. 

T.he second method of positioning the heads i~ to use a 
voice-coil mechanism. The~e units do not move in steps 
but swing across the disk. These mechanisms generally 
permit greater track density than steppers, but also re­
quire complex feedback electronics which increases the 

, cost of the drive. Generally, voice-coil head positioners 
use closed loop servo positioning, as compared to the 
open loop positioning used with stepper motors. 

The surface of a disk is divided logically into concentric 
circles radiating from the center as shown in Figure I. 
Each concentric circle is called a track. 

The group of same tracks on all cylinders is collectively 
called a cylinder. The number of tracks on a surface 
(which affects storage density) is determined by the 
head positioners. Typically, stepper head positioners 
have fewer tracks than drives that use a voice coil posi­
tioner. Which type of positioner is used is irrelevant to 
the 82062 as positioners are part of the drive electron­
ics. The 82062 can access up to 1024 tracks per surface. 

Once the surface is divided into cylinders it is further 
divided radially (as with a pie). The area between the 
radial spokes is referred to as a sector. The number of 
~ectors per track is determined by many variables, but 
is basically determined by the number of data bytes and 
the length of the ID field (which locates a sector). Fig­
ure 2 shows one manufacturer's specifications for their 
drive. The manufacturer formats the drive with 32-256 
byte sectors per track. Alternatively, the drive could be 
reformatted to contain 17-512. byte sectors per track. 
This second option has fewer sectors per track but 
stores more data. Determining how many bytes each 
sector contains is done by extensive analysis of the 
hardware and operating system. The 82062 WDC is 
programmable for sector size during formatting. 

The order in which sectors are logically numbered on 
the track is called interleaving. An interleave factor of 
four would have three sectors separating logically se-

231133-1 

Figure 1 

5-849 231133-002 

'. 
" 

" 



AP-182 

Capacity 
Unformatted 

Per Drive 
Per Surface 
Per Track 

Formatted 
Per Drive 
Per Surface 
Per Track 
Per Sector 
Sectors per Track 

Transfer Rate 

Access Time 
Track to Track 
A verage (Inc. Settle) 
Maximum (Inc. Settle) 
Settling Time 

Average Latency 

Functional Specifications 
Rotational speed 
Recording density 
Flux density 
Track density 
Cylinders 
Tracks 
R/W Heads 
Disks 

6.38 Megabytes 
1.59 Megabytes 
10416 Bytes 

5.0 Megabytes 
1.25 Megabytes 
8192 Bytes 
256 Bytes 
32 

5.0 Megabits 
per second 

3 ms 
170 ms 
500 ms 
15 ms 

8.33 ms 

3600 rpm± 1% 
7690 bpi max 
7690 fci 
255 tpi 
153 
612 
4 
2 

Figure 2. A Typical Drive Specification 

quential sectors. Starting at the index pulse, an example 
of four way interleaving is: 

Sector I, Sector X, Sector Y, Sector Z, Sector 2, Sec­
tor ... 

Interleaving is used primarily because one sector at a 
time is transferred from disk to sector buffer to system 
RAM. Without interleaving, the delay in transferring 
data would result in sectors on the disk rotating past 
the heads. The operating system would then have to 
wait one disk revolution to get to the next sector (a 16.7 
msec delay). With interleaved sectors, the next logical 
sector would be positioned beneath the heads after the 
previous sector of data had been transferred to the sys­
tem RAM. Interleaving unfortunately slows down the 
overall transfer rate from the disk. A 5 Mbit/second 
transfer rate averages out to a 1.25 Mbit/second trans­
fer rate when many sectors are transferred with four 
way interleaving. Again, how much interleaving to use 

. is determined by extensive hardware/software bench­
marking. 

Whenever data is stored on a multiple platter disk 
drive, the same track on all surfaces whould be used 

before repositioning the heads to another track. Repo­
sitioning the heads generates a longer delay due to the 
mechanical delay of moving the heads. Switching to 
another h.ead incurs no mechanical positioning delay. 
Only one head can be selected at a time. 

Hard disk drives tend to be faster than floppies for two 
reasons. The speed at which the disk spins is about 10 
times faster than the floppy (a floppy spins at 360 rpm). 
This yields an immediate one-tenth reduction in access 
times for the same size drive. While both ST506 drives 
and floppies use stepper motors, the steppers utilized by 
the hard disk drives are approximately twice as fast as 
those used by floppies. 

82062 WINCHESTER DISK 
CONTROLLER 

The 82062 WDC provides most of the functions neces­
sary to interface between a microprocessor and an 
ST506 compatible disk drive. The 82062 converts the 
high level commands and parallel data of a microproc­
essor bus into ST506 compatible disk control signals 
and serial MFM encoded data. This section presents a 
detailed description of the 82062 and a discussion of 
various techniques which can be used to interface the 
82062 to a microprocessor. 

The internal structure of the 82062 is divided into sev­
eral sections as shown in Figure 3. They are: 

I. the microprocessor interface which includes the 
status and task registers; 

2. sector buffer control; 

3. the drive interface; 

4. and the data transfer section, which includes the 
CRC logic and the conversion and MFM encoding/ 
decoding of microprocessor data. 

Clock Inputs 

The 82062 has two clock inputs: read clock (RD 
CLOCK) and write clock (WR CLOCK). The PLA 
controller, the processor interface, buffer control and 
MFM encoding sections operate off the WR CLOCK 
input. The RD CLOCK input is used only for decoding 
the MFM data stream. The clocks may be asynchro­
nous to one another. Both clocks have non-TTL com­
patible inputs. The easiest method to interface to TTL 
requires a pull-up resistor to satisfy their input voltage 
needs. The resistor's value must be compatible with the 
VIL specification of these pins. See the Pin Descrip­
tions Section for more specific information. 

. Microprocessor Interface 

The microprocessor interface of the 82062 contains the 
control logic which permits commands and data to be 

5-850 231133-002 



AP-182 

OB0-7 

iii) 

WR 

AO·2 

INTRQ 

RESET 

CS 

BCR 
BROY 

BORQ 

BCS 

-I 
I 

.... 
3 I 

.J 
HOST 
IFC 

vcc­
GNO_ 

PLA 
CONTROLLER 

WR DATA 
WR CLOCK 

RD CLOCK 

RD DATA 

STEP 
OIR 
EARLY 
LATE 
OROY 
WR FAULT 
TRACK 000 

INDEX 
sc 
RWC 
WRGATE 
RD GATE 
ORUN 

231133-2 

Figure 3. 82062 Internal Block Diagram 

transferred between the host and the 82062. The inter­
face consists of an 8 bit, tri-state, bidirectional data bus; 
the task registers; a 3 to 8 address decoder for selecting 
one of the seven registers; and the general read, write, 
'and chip select logic. Externally, the 82062 expects a 
buffer equal in size to a sector on the disk, and tri-state 
transceivers between the sector buffer and the micro­
processors data bus in order to isolate itself from the 
microprocessor during disk data transfers. 

AO-A2, Data Bus 

These three address lines are active high signals and 
select one of the seven register locations in the 82062. 
They are not latched' internally. If the three addresses 
are equal to 0 and the 82062 is selected, the data bus is 
kept tri-stated to ease interfacing to a sector buffer. The 
82062's data bus is controlled by both the microproces­
sor and the 82062. The microprocessor has control for 
loading the registers and command. During disk reads 
or writes, control switches to the 82062 so that it may 
access the local sector buffer when transferring data 
between the disk and the buffer. 

5-851 

RD,WR,CS 

The chip select (CS) is ty~ally decoded from the high­
er order address lines. CS only permits data to be 
placed into, or read from, th~82062's task registers. 
Once a disk operation starts, CS no longer eflTects the 
82062. RD and WR are bidirectional lines and are used 
to read or write the 82062's re~ers by the host micro­
processor and are valid only if CS is present. The 82062 
will drive RD and WR when transferring data between 
the sector buffer and the disk. A signal is provided to 
tri-state the RD and WR lines from the host during a 
buffer access. This is covered in the Sector Buffer Con­
trol Section. 

Interrupts 

An interrupt is issued at the end of all commands, and 
the interrupt is cleared by reading any register. For the 
Read Sector command only, the 82062 allows the user 
the option of an interrupt either at the termination of 
the command, as is the case with all other commands, 

231133-002 

II'!, 
'~ 

I;"~ 

II~ 

I I,; 
,I,' 

\ 

I; 
Ii 
I" 

I, 

Ii 
;j 
Ii 



AP-182 

or when data needs to be transferred to the host from 
the sector buffer. This is discussed further i)l the Inter­
rupt Mode Section. When selecting the data transfer 
option, the interrupt line will go active at the same time 
as the BDRQ line and the interrupt will be removed 
only when the proper handshake occurs with the sector 
buffer. 

Task Registers 

The Task Register File contains the command, status, 
track number, sector number, and other information 
necessary to properly execute a command. These regis­
ters are accessed with AO-A2, RD (or WR), and CS 
being valid and are not cleared by a reset. The registers 
are covered in detail in the Task Register File Section. 

Sector Buffer Control 

The 82062 was designed to operate with an external 
buffer equal in size to one sector. To ease the design-in 
of this buffer, the 82062 provides all of the control sig­
nals it needs to operate the buffer. This buffer must be 
isolated from the system bus, using tri-state buffers, 
during disk transfers to prevent contention during the 
period that the 82062 is accessing the buffer. A sector 
buffer is generally used to ease interfacing to the system 
due to the high disk data rates (625 kbytes/sec), al­
though 'it is not required. 

The Buffer Chip Select (BCS) line goes active whenever 
the 82062 is accessing the sector buffer. This signal 
should remove the microprocessors ability to access the 
82062 and sector buffer and must enable the sector 
buffer for use by the 82062. 

. At a 5 Mbit/sec disk data rate, the 82062 will access 
the buffer every 1.6 microseconds (8 bits X 200 ns/bit). 
BCS will remain low the entire time the 82062 is access­
ing the buffer. The 82062 will pulse the appropriate RD 
or WR line for each byte transferred. 

Buffer Counter Reset (BCR) goes active each time that 
BCS changes state. Its purpose is to reset the address 
counter of the sector buffer back to zero before and 
after the 82062 uses the sector buffer. Its function is 
optimized for single sector transfers. Multiple sector 
transfers should use a software controlled buffer coun­
ter reset and not use BCR as the sector buffer will be 
reset to the beginnif;1g after each sector is transferred. 

BORQ, BROY 

Buffer Data Request (BDRQ) and Buffer Ready 
(BRDY) provide the handshake needed to transfer data 
between the sector buffer and the host. BDRQ signals 
that data must be moved to/from the sector buffer and' 
the host. BRDY has two functions. Once the transfer 
signaled by BDRQ is finished, asserting BRDY will 
inform the 82062 that the transfer is completed and 
that it may finish executing the command. BRDY is 
also used in multiple sector commands. BRDY going 
high during a multiple sector transfer indicates that the 
buffer is full (or empty-depending upon the com­
mand) and the transfer should wait until the buffer is 
serviced. The sector that was being transferred will fin­
ish and the 82062 will' deactivate' BCS and activate 
BDRQ. The host microprocessor must then transfer 
the data between the buffer and system memory. When 
this transfer is finished, asserting BRDY will cause the 
82062 to resume the command. . 

The handshaking between BDRQ and BRDY occurs 
only in full sector increments-not on a byte basis. A 
high on BDRQ indicates a full sector's worth of data is 
required; BRDY going high indicates a full sector of 
data is available to the 82062 without interruption. 

Only the rising edge of BRDY IS valid. A falling edge 
may occur at any time without effect. BCR will pulse 
and BCS will go active eight byte times (8 bytes X 8 
bits/byte X 200 ns/bit = 12.8 microseconds) before 
the first data byte is transferred from the sector buffer 
to the disk. 

COUNTER 

~ E 
82062 

RD;:D- p- BRDY 
WRf 

t BCR 

231133-3 

Figure 4. BRDY GeneratlorM.gglc 

Data Transfer Logic 

This section of the 82062 is responsible for conversion 
of serial disk data to parallel data (and vice versa); en­
coding/decoding of the disk's MFM serial bit stream; 
detecting the address mark; and verifying data integrity 
through its CRC generation and checking logic. 

5-852 231133-002 



AP-182 

I 
I 
o 

Figure 5. Data Address Mark 

MFM Encoding/Decoding 

The MFM encoding section will receive 8 bit parallel 
data when a valid command has been recognized and 
BRDY has gone high. The parallel data is first serial­
ized and converted to an intermediate, NRZ encoded, 
data stream. The serial NRZ data is sent to the MFM 
encoding section and then transferred to the disk. De­
coding of the MFM bit stream (during disk reads) hap­
pens in reverse order. 

The control logic operates off the write clock (WR 
CLOCK) running at a frequency of the desired tranfer 
rate. The MFM decoding portion operates off of the 
read clock (RD CLOCK) input, which is supplied by 
an external phase lock loop. The two clocks need not be 
synchronized to each other. Data is written (and hence 
read) with the most significant bit first. 

Address Mark Detector 

The address mark is a unique 2 byte code written at the 
beginning of each ID field and data field. This address 
mark serves two purposes. It tells the controller what 
type of data is about to be received so that internal 
computations can be performed, and to ensure that ID 
fields are not sent to the host. The second purpose is to 
align the serial data back to the original 8 bit bounda­
ries that existed when data was written (there are no 
byte boundaries on a disk). 

An address mark is ,always preceded by the all zeros 
synchronization field. The 82062 starts comparing the 
incc;>ming data stream when the synchronization field 
ends. A high speed comparator is used since the 82062 
does not yet know where the proper byte boundaries 
are. When a proper comparison of the address mark is 
made the controller starts assembling bytes, starting 
with the second byte of the address mark. 

The first byte of the address mark is an "AI" Hex, but 
purposely violates the MFM encoding rules by remov­
ing a clock pulse. In Figure 5, the first example is of a 
normal MFM encoded AIH. The second example is of 
the address mark and shows the missing clock pulse. 
The non-MFM compatible Al is to prevent the host 

from issuing a similar data byte and possibly confusing 
detection logic. 

The second byte specifies either an ID or data field and 
is encoded according to normal MFM rules. It is either 
an "F8" Hex for a data field, or "FC" through "FF" 
for an ID field. The different values' correspond to a 
range of cylinders on the drive in increments of 256 
tracks. The 82062 makes no use of this information, but 
writes it for compatibility with the ST506 specification 
during formatting. 

CRC Generation/Checking 

The CRC generator computes and checks the cyclic 
redundancy check bytes that are appended to the ID 
and data fields. CRC generation/checking is always 
done on ID fields. Data fields have a choice between 
82062 CRC or externally supplied ECC. Read Sector 
commands with a CRC error will still have transferred 

: the data into the sector buffer. When bit 7 in the SDH 
register is low (enabling CRC for data fields) the CRC 
bytes are not transferred to the. sector buffer or host. 

The generator polynomial for the CRC-CCITT (CRC-
16) code is: 

x16 + x12 + x5 + 1 = (x + 1) (x15 + x14 + x13 + 
x12 + x4 + x3 + x2 + x + 1) 

The code's capability is as follows: 

a) Detects all occurrences of an odd .number of bits in 
error. 

b) Detects all single, double, and triple bit errors if the 
record length (including check bits) is less than 
32,767 bits. 

c) Detects all single-burst errors of sixteen bits or less. 

d) Detects 99.99695% of all possible 17 bit burst er­
rors, and 99.99847% of all possible longer burst, as­
suming all errors are possible and equally probable. 

The CRC code has some double-burst capability when 
used with short records (sectors). For a 256 byte sector 
the code will detect double-bursts as long as the total 
number of bits in error does not exceed 7. 

5-853 231133-002 



AP-182 

PLA Control 

The PLA Controller interprets. command sent by the 
microprocessor. Its operation is synchronized to the 
WR CLOCK input. The PLA controller is started 
when a.,command is written into the command register. 
It generates control signals and operates in a handshake 
/TIode when communicating with the MFM decoding 
block. 

Magnitude Comparator 

A 10 bit magnitude comparator is used to calculate the 
direction and number of step pulses needed to move the 

2X 
DATA RATE 

-~~n 
EARLY 

head from the present cylinder position to the desired 
position. A separate high speed equivalence comparator 
is used to compare ID field bytes when searching for a 
sector ID field. 

Drive Interface 

The drive interface ~f the 82062 contains the logic that 
makes possible the storage and reliable recovery of 
data. This interface consists of the drive and head select 
logic, the disk control signals, and read and write'data 
logic as shown in Figure 6. This section describes the 
external circuitry which is required to complete the 
82062's drive interface. 

WRITE 
LATE PRECOMP ~n 
RWC 

WINCHESTER DRIVE 0 

/2 
WRITE DATA 

READ DATA 
READ CLOCK PHASE 

DRUN 
LOCK 
LOOP 

READ GATE 

82062 
TO NEXT WDC 

DATA DRIVE 

WR CLOCK RATE ~ 
OSC 

~ 

SC : 
INDEX ... 

~ 

TRACK 000 : DRDY :: , 

WR FAULT :: 
DIR 

~ 
WR GATE 

'~ 
STEP • 

DATA BUS- 0 
. 7/ 

ADDRESS-
Or/ 

(HOLDS DRIVE AND HEAD 
SELECTS) 

DATA LATCH 

Figure 6. Drive Interface 

5-854 

/,2 
READ DATA 

I 
r---- DRIVE SEL 

~ STEP 

~ DIRECTION 

~ READY 

~ WRITE FAULT 

~ TRACK 000 

~ UiDEX 

~ SEEK COMPLETE 

~ RWC 

~ HEAD NUMBER 

~ WRITE GATE 

c 

DAISY CHAIN TO 
NEXT DRIVE 

( 

231133-5 

231133-002 



AP-182 

MULTIPLEXOR 

WR DATA 

8 

A 

~OELAY LlNE~ -f> B 
FLIP C - TO 01 

"'LOP 
SK 

2 
0 
8 EARLY 2 

LATE 
RWC 

10 MHz- ~ ..... 

J J } SELECT 
LINES 

J 
231133-6 

Figure 7. Write Precompensation Logic 

Drive/Head Select 

The 82062 has no outputs for selecting the head or 
drive. Therefore these signals must be generated by the 
user as shown in Figure 6. Data bits 0-4 should be 
latched whenever the SDH register is written. Bits 0-2 
would then be driven onto the drive cable with open 
collector buffers. Bits 3 and 4 would be decoded after 
being latched, then buffered for the cable. The head 
information written to the 82062's SDH register is used 
to write the proper ID fields during formatting. Chang­
ing the drive bits in the SDH register will cause a Scan 
ID to be performed by the 82062 to update non user 
accessible registers. 

Drive Control 

The drive control (STEP, DIR, WR FAULT, TRACK 
000, INDEX, SC, RWC, and WR GATE) signals are 
merely conditioned for transmission over the drive 
cable. The purpose of each pin can be found in the sec-

tion on Pin Descriptions and their use in the Command 
Section. 

WR DATA, EARLY, LATE 

Figure 7 is a diagram of the interface required on the 
write data line. The final stage of the MFM encoding 
requires applying the WR DATA to an external flip·· 
flop clocked at 10 MHz. The 82062 monitors the serial 
write data output for particular bit patterns that require 
precompensation to prevent bit shifting. EARLY and 
LATE are active on all cylinders and will normally re­
quire that RWC be factored into them to activate the 
data precompensation on the proper cylinder. 

A delay line is required t6 generate the delayed data for 
precompensatiOIi since the actual delay varies between 
drive manufacturers. EARLY and LATE go active in 
the same clock period that generates the data bit to be 
shifted. 

t-------------------~ORUN 

r-----------------------------------------------~ROGATE 
82082 

FROM 
DISK 

10 MHz 
OSC 

VCO 1-__ .-1 RO CLOCK 

1------_~'wR CLOCK 

Figure 8. Data Recovery Logic 

5-855 

231133-7 

231133-002 



AP-182 

RD Data, DRUN, RD Gate 

The read data interface is shown in Figure 8, and con­
,sists of the data run (DRUN) signal and a phase lock 
loop to generate the RD CLOCK input to decodt< the 
serial data. DRUN is generatea from a retriggerable 
one-shot with a period just exceeding one bit cell. A 
sync field consisting of a string of clock pulses will con­
tinually retrigger the one-shot producinj!; a steady high 
level on DRUN. The 82062 counts off 16 clock pulses 
internally, and if DRUN is still active, will make RD 
GATE active. Any byte other than an address mark 
will deactivate RD GATE and the sequence starts over. 

The phase lock loop generates RD CLOCK which is 
used to decode the incoming serial data. Until RD 
GATE is activated by the 82062, the phase lock loop 
(PLL) should be locked onto a local 10 MHz clock to 
minimize PLL lock-up times. When RD GATE is acti­
vated, the PLL starts locking onto the incoming data 
stream, which should consist of the all zeros sync field. 
Once the PLL locks onto this, synch field, the 82062 
will start examining the serial data for a non-zero byte. 
A non-zero byte will be indicated by DRUN dropping 
since the address mark follows the sync field and is an 
"AI" Hex. This sequence is shown in Figure 9. If the 
address mark is detected, and if it was preceded by at 
least 9 bytes of zeros, RD GATE will stay active. The 
82062 will then assemble bytes of data, and ensure the 
proper ID field is found. If a non-zero or non-address 
mark byte was detected, RD GATE will go inactive for 
a minimum of 2 byte times. If a data field or the wrong 
ID field is detected, or the ID field was not preceded by 
8 bytes of zeros, then RD GATE goes inactive and the 
sequence starts over with the 82062 examining the 
DRUN input. 

Microprocessor Interfaces 

This section shows the general 82062 interfaces to a 
microprocessor system. There are essentially four inter­
faces which consist of a combination of polled, DMA, 
and interrupts. While the 82062 was designed to inter­
face directly to one type, it accommodates all with mi­
nor additional logic. 

DMA Interface 

The 82062 is designed to use a DMA controller for data 
transfer between its sector buffer and the host system, 
and to interrupt the host when the command has fin­
ished. This interface is shown in Figure 10. 

When the 82062 determines that a transfer is needed 
between the sector buffer and the host (either at the 
beginning of a command or through BRDY going ac­
tive in a multiple sector transfer), it will assert BDRQ. 
BDRQ will initiate a DMA transfer via the DMA re-, 

quest input. The DMA controller will gen~rate reads or 
writes which will increment an address counter. BRDY 
indicates that the data transfer has finished and is is­
sued off the carry-out line (or high order address line) 
of'the counter. The 82062 will assert BDRQ at this 
point and activate BC~to prevent the host from intefer­
ing with disklbuffer transfers. There can be no polling 
for a data transfer or a register read without an inter­
rupt in this scheme. 

RESET 
RD GATE 

231133-8 

Figure 9. PLL Control Sequence 

5-856 231133-002 



AP-182 

82062 

8237A .... -1>----... -+---------1 

ORaO .... ________________________________ ___I 

231133-9 

Figure 10.82062 DMA Interface 

I----IBROY 

82062 

t-------~~~~--------------___IBCSf 

~~.)_------__I-4_+----------------~RW 

;;.;;..H.)_------__I--... ----------------~ WRf 
BORa 

Figure 11. 82062 Polled Interface 

I----IBRDY 

82062 ---,I 

.~;;;....---_IH--------_IBCSf 

~_{>----------4~----------------__fRDf 

W~R~f;;>-----------~------------~--__IWRf 
INT 0 BORa 

INTRa 

Figure 12. 82062 Interrupt Interface 

5-857 

231133-10 

231133-11 

231133-002 

,­
" i~ 

I 
~ 
'I 

'I~ 
i~' 



AP-182 

Polled Interface 

Since the 82062 isolates itself from the host during sev­
eral commands, the host cannot read the status register 
during some periods to determine what course should 
be taken. In Figure 10, trying to read the status register 
when BeS is active ·will return indeterminate data. To 
prevent the microprocessor from reading this indeter­
minate data, a hardware generated "Busy" pattern 
should be driven onto the data bus if Bes is active. 
This is shown in Figure n. The status register contains 
a data request (DRQ) bit whose timiQg is equal to the 
BDRQ output signal, thus making a polled operation 
possible. DRQ will stay set in the status register until a 
BRDY is generated. 

cycle may almost be finished, and.the read access peri­
od of the 82062 will not be satisfied. The data returned 
to the microprocessor will be invalid. 

Interrupt Interface 

There are cases where the designer does not want to tie 
up the microprocessor with polling. The typical 82062 
design will need two interrupts per command. One for a 
data transfer and one for the completion of the com­
mand. The 82062 has an output to issue an interrupt 
when the command has finished. However for data 
transfers an interrupt must be generated from the 
BDRQ line as shown in Figure 12 (whether a DMA 
controller is used or not). When a data transfer is need­
ed, the 82062 will activate the BDRQ line. The micro­
processor will be interrupted and do the data transfer 
function. BDRQ will stay active until BRDY is gener­
ated, so the system must either use edge(triggered inter­
rupts or must not write the end-of-interrupt byte until 
BDRQ is removed (this is true of Intel's 8259A). 

One design issue with the polled interface occurs when 
the microprocessor is polling the status and the 82062 
deactivates BeS. The microprocessor would normally 
read the hardware busy pattern. If Bes is deasserted, 
the hardware pattern is disabled and the microproces­
sor will start to read the real status register. The read 

PIN DESCRIPTIONS 

Symbol Pin. No. Type Name and Function 

BCS 1 0 Buffer Chip Select: Output used to enable reading or writing of the 
external sector buffer by the 82062. When low, the host should not 
be able to drive the 82062 data bus, RD, or WR lines. 

BCR 2 0 Buffer Counter Reset: Output that is strobed by the 82062 prior to 
readlwrite operation. This pin is strobed whenever BCS changes 
state. Used to reset the address counter of the buffer memory. 

INTRQ 3 0 Interrupt Request: Interrupt generated by the 82062 upon 
command termination. It is reset when any register is read. 
Optionally signifies when a data transfer is required on Read Sector 
commands. 

N/C 4 No connection. Reserved for future use. 

RESET 5 I Reset: Initializes the controller and clears all status flags. Does not 
clear the Task Registers.' 

RD 6 1/0 Read: As an input, RD controls the transfer of information from the 
82062 registers to the host. RD is an output when the 82062 is 
reading data from the sector buffer (BCS low). 

WR ? 1/0 Write: As an input, WR controls the transfer of command or task 
information into the 82062 registers. WR is an output when the 
82062 is writing data to the sector buffer (BCS iow) .. 

cs 8 I Chip Select: Enables RD and WR as inputs for access to the Task 
Registers. It has no effect once a disk command starts. 

AO-A2 9-11 I Ai!dress: Used to select a register from the task register file. 

DBO-DB? 12-19 1/0 Data Bus: Bidirectional 8-bit Data Bus with control determined by 
. BCS. When BCS is high the microprocessor has full control of the 

data bus for reading and writing the Task Registers. When BCS is 
low the 82062 controls the data bus to transfer data to or from the 

" buffer. 

5-858 231133-002 



AP-182 

Pin Descriptions (continued) 

Symbol Pin. No. Type Name and Function 

GND 20 Ground. 

WR DATA 21 0 Write Data: Open drain output that shifts out MFM data at a rate 
determined by Write Clock. Final stage requires an external flip-flop 
clock at 10M Hz. See note 1. 

LATE 22 0 Late: Open drain output used to derive a delay value for write 
precompensation. Valid when WR GATE is high. Active on all 
cylinders. See note 1. 

EARLY 23 0 Early: Open drain output used to derive a delay value for write 
precompensation. 'ilalid when WR GATE is high. Active on all 
cylinders. See note 1. 

WRGATE 24 0 Write Gate: High when write data is valid. WR GATE goes low if 
the WR FAULT input is active. This output is used by the drive to 
enable head write current. 

WRCLOCK 25 I Write Clock: Clock input used to derive the write data rate. 
Frequency - 5 MHz for the ST506 interface, 4.34 MHz for the SA 
1 000 interface. See Note 2. 

DIR 26 0 Direction: High level on this output tells the drive to move the head 
inward (increasing cylinder number). The state of this signal is 
determined by the 82062's internal comparison of actual cylinder 
location vs desired cylinder. 

STEP 27 0 Step: Provides 8.4 microsecond pulses to move the drive head to 
another cylinder at a programmable frequency. 

DRDY 28 I Drive Ready: If DRDY from the drive goes low, the command will 
be terminated. 

INDEX 29 I Index: Signal from the drive indicating the beginning of a track. It is 
used by the 82062 during formatting, and for counting retries. Index 
is edge triggered. Only the rising edge is valid. 

WR FAULT 30 I Write Fault: An error input to the 82062 which indicates a fault 
condition at the drive. If WR FAULT from the drive goes high, the 
command. will be terminated. 

\ 

TRACK 000 31 I Track Zero: Signal from the drive which indicates that the head is 
at the outermost cylinder. Used by the Restore command. 

SC 32 I Seek Complete: Signal from the drive indicating to the 82062 that 
the drive head has settled and that reads or writes can be made. 
SC is edge triggered. Only the rising edge is valid. 

RWC 33 0 Reduced Write Current: Signal goes high for all cylinder numbers 
above the value programmed in the Write Precomp Cylinder 
register. It is used by the precompensation logic and by the drive to 
reduce the effects of bit shifting. 

DR UN 34 I Data Run: This Signal informs the 82062 when a field of ones or 
zeros has been detected by an external one-shot. This indicates 
the beginning of an ID field. RD GATE is brought high when DRUN 
is sampled high for 16 clock periods. See Note 2. 

BRDY 35 I Buffer Ready: Input used to signal the controller that the buffer is 
ready for reading (full), or writing (empty), by the host J1-P. Only the 
rising edge indicates the condition. 

5-859 231133-002 



Ap·182 

Pin Descriptions (continued) 

Symbol Pin. No. Type Name and Function 

BDRQ 36 0 Buffer Data Request: Activated during Read or Write commands 
when a data transfer between the host and the 82062's sector 
buffer is required. Typically used as a DMA request line, or to 
generate an interrupt. 

RD DATA 37 I Read Data: Single ended input that accepts MFM data from the 
drive. See note 2 .. 

RDGATE 38 0 Read Gate: Output that is high for data and ID fields. Goes active 
when DRUN has been high for 16 WR CLOCK periods to permit the 
external phase lock loop to lock onto the incoming disk data 
stream. 

RDCLOCK 39 I Read Clock: Clock input derived from the external data recovery 
circuits. See note 2. 

Vee 40 I D.C. Power: + 5V 

NOTES: 
LThis pin requires a pull-up resistor to function properly. A value of 1000 ohms will work satisfactorily. 
2. This pin requires input levels that are npt TTL compatible. These lines can be interfaced to TTL with a pull-up resistor. Too small 
of a resistor will produce a VIL level that is too high. Too large of a resistor will degrade the signal's rise time. A minimum value for 
the resistor is determined as follows: 

(Vee max) - (82062 V IL max) = Resistor 
(TTL IOL min.) - (82062 IlL max) 

TASK REGISTER FILE 

The Task Register File is a bank of registers used to 
hold parameter information pertaining to each com­
mand. These registers and their addresses are: 

A2 A1 AO READ WRITE 

0 0 0 (Bus Tri-Stated) (Bus Tri-Stated) 
0 0 1 Error Flags Reduce Write Current 
0 1 0 Sector Count Sector Count 
0 1 1 Sector Number Sector Number 
1 0 0 Cylinder Low Cylinder Low 
1 0 1 Cylinder High Cylinder High 
1 1 0 SDH SDH 
1 1 1 Status Register Command Register 

NOTE: 
Registers are not cleared by RESET 

Error Register 

This read-only register contains specific error status af­
ter, the completion of a command. If any bit in this 
register is set, then the Error bit in the Status Register 
will also be set. The bits are defined as follows: 

76543210 

Bit 7 - Bad Block Detect 

This bit is set when an ID field has been encountered 
that contains a bad block mark. The bad block bit is set 
only during formatting. The 82062 will terminate a 
command if an attempt is made to read a sectot that 
contains this bit. 

Bit 6 - eRe Data Field 

This bit is set when a data field eRe error has oc­
curred. The sector buffer may still be read but will con­
tain errors. 

Bit 5 - Reserved. 

Not used. Set to zero. 

Bit 4 - ID Not Found 

This bit is set when the desired cylinder, head, sector or 
size parameter cannot be found after 8 revolutions of 
the disk, or if an ID field eRe error has occtirred. 

Bit 3 - Reserved. 

I BBD I CRC I-liD I-I AC I TKOOO I DM I Not used. Set to zero. 

5-860 231133-002 



AP-182 

Bit 2 - Aborted Command 

This bit is set if a command was issued or in progress 
while DRDY (Pin 28) was deasserted or WR FAULT 
(Pin 30) was asserted. The Aborted Command bit will 
also be set if an undefined command is written into the 
COMMAND register, but an implied seek will be exe­
cuted. 

Bit 1 - TRACK 000 

This bit is set only by the RESTORE command. It 
indicates that TRACK 000 (Pin 31) has not gone active 
after the issuance of 1024 stepping pulses. 

Bit 0 - Data Address Mark 

This bit is set during a READ SECTOR command if 
the Data Address Mark is not found after the proper 
Sector ID is read. 

Reduce Write Current Register 

This register is used to define the cylinder number 
where RWC (Pin 33) is asserted: 

7 65432 o 
CYLINDER NUMBER I 4 

The value (0-255) written into this register is internally 
multiplied by 4 to specify the actual cylinder where 
RWC is asserted. Thus a value of01H will cause RWC 
to activate on cylinder 4, 02H on cylinder 8 and so on. 
RWC will be asserted when the present cylinder is 
greater than or equal to the cylinder indicated by this 
register. For example, one ST506 compatible drive re­
quires precompensation on cylinder 128 (80H) and 
above. Therefore the REDUCE WRITE CURRENT 
register should be loaded with 32 (20H). A value of 
FFH will keep the RWC output inactive regardless of 
the actual cylinder number. 

Sector Count Register 

This register is used to define the number of sectors 
that need to be transferred to the buffer during a 
READ MULTIPLE SECTOR or WRITE MULTI­
PLE SECTOR command. 

7 6 543 2 o 
# OF SECTORS 

The value contained in the register is decremented after 
each sector is transferred to/from the sector buffer. A 
zero represents a 256 sector transfer, a one a 1 sector 
transfer, etc. This register is ignored when single sector 
commands are specified in the Command register. 

Sector Number 

This register holds the sector number of the desired 
sector: 

7 6 5 432 o 
SECTOR NUMBER 

For a multiple sector command it specifies the first sec­
tor to be transferred. It is decremented after each sector 
is transferred to/from the sector buffer. The SECTOR 
NUMBER register may contain any value from 0 to 
255. The ID Not Found bit will be set if the desired 
sector cannot be located on the track. 

The SECTOR NUMBER register is also used to pro­
gram the Gap I and Gap 3 lengths to be used when 
formatting a disk. See the WRITE FORMAT com­
mand description for further explanation. 

Cylinder Number Low Register 

This register holds the lower byte .of the desired cylin­
der number: 

7 6 5 4 3 2 o 
LS BYTE OF CYLINDER NUMBER 

It is used in conjunction with the CYLINDER NUM­
BER HIGH register to specify a range of 0 to 1024 
tracks. 

Cylinder Number High Register 

This register holds the two most significant bits of the 
desired cylinder number: 

7 6 5 4 3 2 o 
I x x x x x x (9) (8) 

X = ignored 

The 82062 contains a pair of registers that store the 
actual position where the R/W head are located. The 
CYLINDER NUMBER HIGH and LOW registers are 
considered the cylinder destination registers for seeks 
and other commands. Th\! 82062 compares its internal 
registers to the destination registers and issues the num­
ber of steps in the right direction to make both sets of 
registers 'equal. After a command is executed, the inter­
nal cylinder position registers' contents are equal to the 
cylinder high/low registers. If a drive number change is 
detected on a new command, the 82062 automatically 
reads an ID field to update its internal cylinder position 
registers. This affects all commands except a RE­
STORE. 

5-861 231133-002 

I
; 

" ,,, 



AP-182 

Sector IDrive/HeadRegister 

The SDH register contains the desired sector size, drive 
number, and head number parameters. The format is 
shown below. 

7 

EXT 

6 5 4 3 

SECT I 
SIZE. DRIVE 

2 1 ·0 

HEAD # 

Both head number and sector size are compared against 
the disk's ID field. Head select and drive select lines are 
not available as outputs from the 82062 and must be 
generated externally. 

Bit 7, the extension bit (EXT), is used to extend the 
data )ield by seven bytes when using ECC codes for 
READ/WRITE SECTOR commands. When EXT = I, 
the CRC is not appended to the end bf the data field 
and the data field becomes "sector size + 7" bytes 
long. The CRC is checked on the ID field regardless of 
the state of EXT. The SDH byte written into the ID 
field is different than the SDH Register contents. The 
reccorded SDH byte does not have the drive number 
(DRIVE) written but does have the BAD BLOCK 
mark written. The EXT bit must not be set during the 
Format command. 

Note that use of the extension bit requires the gap 
lengths to be modified as described in the WRITE 
FORMAT command description. 

Status Register 

The status register is a read-only register which informs 
the host of certain events. This register is a flow­
through latch until the microprocessor reads it at 
which point the drive status· lines are latched. The 
INTRQ line will be reset when this register is read. The 
format is: 

76543210 

.1 BUSY I READY I WF I SC I ORO I-I CIP I ERROR I 
Bit 7 - Busy 

This bit is set whenever the 82062 is transferring data 
between its sector buffer and the disk and reflects the 
state of the BCS pin. When BCS is active, the host 
should not access the sector buffer or any 82062 regis­
ter. The 82062 will be generating a RD or WR pulse 
every 1.6 JLsec and the host must not interfere with 
these data transfers. Busy is cleared when the data 
transfer operation is completed. 

During other non-data transfer commands, Busy 
should be ignored as it will go active for short periods. 

Bit 6 - Ready 

This bit reflects the state of the DRDY (Pin 28) line at 
the time the microprocessor reads the status register. 
Transitions on the DRDY line will abort a command 
and set the aborted command bit in the error register. 

Bit 5 - Write Fault 

This bit reflects the state of the WR FAULT (Pin 30) 
line. Transitions on this line will abort a command and 
set the aborted command bit in the error register. 

Short transitions on DRDY and WR FAULT may not 
show up in the status register. These pins are not 
latched until the microprocessor reads the status and by 
that time the error condition may have disappeared. 
However the aborted command bit will be set to notify· 
the host of an error. To hold short transitions on these 
pins it is recommended that they be latched. 

Bit 4 - Seek Complete 

This bit reflects the state of the SC (Pin 32) line. Com­
mands which initiate a seek will pause until Seek Com­
plete is set. 

Bit 3 - Data Request 

The Data request bit (DRQ) reflects the state of the 
. BDRQ (Pin 36) line. It is set when the sector buffer 

should be loaded with data or read by the host proces­
sor, depending upon the command. The DRQ bit and 
the BDRQ line remain high until BRDY is sampled, 
indicating the operation has completed. . 

Bit 2 - Reserved 

Not used. Set to zero. 

Bit I - Command in Progress 

When this bit is set, a command is being executed and a 
new command should not be loaded until it is cleared. 
Although a command may be executing, the sector 
buffer is still available for access by the host processor. 
If CIP is set, only the status register can be read regard­
less of which register is selected. 

Bit 0 - Error 

This bit is an OR of the contents of the error register. 
Any bit being set in the error register sets this bit. This 
bit is cleared when a new command is loaded. 

5-862 231133-002 



AP-182 

Command Register 

This write-dnly register is loaded with the desired com; 
mand: 

7 6 5 4 3 2 o 
COMMAND 

The 82062 begins to execute immediately upon loading 
any value into this register. This register should not be 
written while the Busy or Command in Progress bits 
are set in the STATUS register. The INTRQ line (Pin 
3) if set, will be cleare~ by a write to the COMMAND 
register. 

Instruction Set 

The 82062 WDC instruction set contains six com­
mands. Prior to loading the command register, the host 
processor must first set up the Task Register File with 
the information needed for the command. Except for 
the COMMAND register, the registers may be loaded 
in any order. If a command is in progress, a subsequent 
write to the COMMAND register will be ignored. A 
command is finished when the command in progress 
(CIP) bit in the STATUS register is cleared. See the 
Command Section for an explanation of each com­
mand. 

COMMAND 7 6 5 4 3 2 1 

RESTORE 0 0 0 1 R3 R2 R1 RO 
SEEK 0 1 1 1 R3 R2 R1 RO 
READ SECTOR 0 0 1 0 I M 0 T 
WRITE SECTOR 0 0 1 1 0 M 0 T 
SCAN 10 0 1 0 0 0 0 0 T 
WRITE FORMAT 0 1 0 1 0 0 0 0 

R 3-0 = Rate Field 

For 5 MHz WR Clock: 

0000 - ::::; 35 P.s 
0001-0.5 ms 
0010-1.0 ms 
0011-1.5mS 
0100-2.0 ms 
0101-2.5 ms 
0110-3.0ms 
0111 -3.5 ms 
1000-4.0 ms 
1001-4.5ms 
1010-5.0 ms 
1011-5.5ms 
1100-6.0 ms 
1101-6.5ms 
1110-7.0ms 
1111 -7.5 ms 

COMMAND 7 6 

T = Retry Enable 

T = 0 Enable Retries 
T = 1 Disable Retries 

5 

M = Multiple Sector Flag 

M = 0 Transfer 1 Sector 

4 

M = 1 Transfer Multiple Sectors 

I = Interrupt Enable 

I = 0 Interrupt at BDRQ time 

3 

I = 1 Interrupt at end of command 

Programming the 82062 

2 

This section consists of two parts. The first part gives 
an explanation of each command, a flowchart showing 
the 82062's sequence of events, and the commands' se­
quence of events as seen by the host microprocessor. 
The second section shows flowcharts of general soft­
ware routines and their PLM equivalent, for both 
polled and interrupt driven software. 

The designer must remember that the 82062 expects a 
full sector buffer that can be isolated from the host 
during data transfers between the 82062 and the disk. 
Since the 82062 assumes a full sector buffer is available, 
it does not check for data overrun or underrun error 
conditions. If such a condition occurs, corruption of 
data will happen and the host will have no indication of 
an error. The design must guarantee against over-run 
and under-run conditions when not using the sector 
buffer approach. 

Commands 

A command is placed into the command regi~ter only 
after the Task Registers have been written with proper 
values. The Task Registers may be loaded in any order. 
A command, once started, can only be terminated by a 
hardware reset to the 82062. This may corrupt data on 
the disk by removing necessary control signals out of 
sequence. 

The general sequence of a command is as follows: 

- The host loads the Task Registers 

- The host loads the Command Register 

- The 82062 locates the correct cylinder 

- Data transfer takes place 

- The 82062 issues an interrupt 

5-863 231133-002 



AP-182 

Restore Command -
o 0 0 1 ~3 ,R2 R 1 RO 

The Restore command is used to position the heads to 
cylinder O. This command must b€ issued to the 82062 
on power-up to initialize internal registers. The user 
specified rate field (R3-RO) is stored internally for FU­
TURE use in commands with implied seeks. The step 
rate value is not used with this command. The actual 
stepping rate used is dependent upon the handshake 
delay between the 82062 issuing a step pulse and the 
drive returning a seek complete for each track (roughly 
20 ms). After each step pulse is issued, the 82062 waits 
for a rising edge on the Seek Complete (SC) line before 
issuing the, next pulse. If 8 index pulses are received 
without a rising edge on SC, the 82062 will switch to 
sampling the level of the SC line. If after 1,024 step 
pulses the Track 00 signal has not gone active, the 

SET ABORTED 
COMMAND BIT 

231133-12 

Figure 13. Restore Command Flow 

82062 will terminate the cominand and set the TRACK 
000 bit in the Error Register. The command will termi­
nate if WR Fault goes active or DRDY goes inactive at 
imy time. Figure 13 is a flow chart of the command. 

This command should precede the format command. 
The format command will be aborted if an ID field is 
not present (because the disk was never formatted) and 

231133-13 

Figure 14. Seek Command Flow 

5-864 231133-002" 



AP-182 

a new drive is selected. Recall the 82062 will do a Scan 
ID to update internal registers when the drive is 
changed. This information is used to calculate the num­
ber of steps required to get to the destination cylinder. 
When the heads are positioned to track zero the 82062 
will not try to read an ID field, but will issue the cor­
rect number of steps. 

Seek Command -
o 1 1 1 R3 R2 R 1 RO 

The Seek command positions the heads to the cylinder 
specified in the Task Registers. The direction and num­
ber of step pulses issued is calculated by comparing the 
cylinder high/low registers to an internal "present posi­
tion" cylinder register. The present position register is 
updated after all step pulses are issued and the com­
mand is terminated. The Seek Complete input is not 
checked. 

The actual stepping rate is taken from the rate field bits 
(R3-RO) and stored for future use. The command ter­
minates at once if WR FAULT goes active or DRDY 
goes inactive at any time. Figure 1"4 is a flowchart of the 
command. 

Since the data transfer commands feature implied 
seeks, tl;tis command is of use mainly to those using 

'\ multiple drives and software that can take advantage of 
overlapped seeks. 

Scan 10 Command -
0100000T 

The Scan ID command is used by both the 82062 and 
the host to update the SDH, the Sector Number, Cylin­
der and internal present position registers. Once the 
command is issued, the Seek Complete line is sampled 
until valid. The first ID field found, as indicated by the 
address mark, is loaded into the previously mentioned 
registers. The Bad Block bit will be set if detected, and 
the command will terminate. ID CRC errors will start 
the search sequence over for a maximum of 10 index 
pulses, but the registers will be loaded with whatever 
data the 82062 had perceived as ID information. Im­
proper states on WR Fault on DRDY will terminate 
the command. Figure 15 is the flow chart of the cqm­
mand. 

, 
The main use for this command is to determine where 
the heads are currently located and what size the sec­
tors are (i.e. 256, 512 etc.). Without this command, it 
would be necessary to recall the heads to track zero and 
then step out to the desired cylinder each time a drive 
was changed. Specifying the wrong sector size would 
yield an ID not found error. This command enables the 
system to read the disk drive to determine what size 
sectors were recorded. 

Read Sector Command -
0010lMOT 

The READ SECTOR command is used to transfer one 
or more sectors of data from the disk to the sector 
buffer. Upon receipt of the READ SECTOR com­
mand, the 82062 checks the CYLINDER NUMBER 
LOW/HIGH register pair against an internal cylinder 
position register to see if they are equal. If not, the 
direction and number of steps are calculated and a seek 
takes place. If an implied seek is performed, the 82062 

SET INTRQ, AC 
RESET BUSY, CIP 

SET BAD BLOCK BIT 

-IF RETRIES ARE DISABLED, PATH 
IS TAKEN AFTER 2 INDEX PULSES 

231133-14 

Figure 15_ Scan 10 Command Flow 

5-865 231133-002 

II~'· " 

I, 

I~ 
!;1 
I,. 



AP-182 

will search until a rising edge of SC is received. The 
WR FAULT and DRDY lines are monitored through­
out the command. 

Once the Seek Complete (SC) line is high (with or with-' 
out an implied seek having occurred), the search for an 
ID field begins. If T = 0 (retries, enabled), the 82062 
must find an ID with the correct cylinder number, 
head, sector size, and CRC within 10 revolutions, or a 
Scan ID and re-Seek will be performed. The search for 
the proper ID will again be tried for up to 10 revolu­
tions. If the correct sector is still not found, the appro­
priate error bits will be set and the command terminat­
ed. Data CRC errors will also,be retried for up to 10 
revolutions (if T = 0). 

If T = 1 (retries disabled), the ID search must find the 
correct sector within 2 revolutions or the appropriate 
error bits will be set and the command terminated. 

Both the READ SECTOR and WRITE SECTOR 
commands feature a "simulated completion" to ease 
programming. DRQ/BDRQ will be generated upon de­
tecting an error condition. This allows the same pro­
gram flow for successful or unsuccessful completion of 
a command. ' 

When the data address mark is found, the 82062 is 
, ready to tranfer data to the sector buffer. After the data 

has ,been transferred, the I bit is checked. If I = 0, 
INTRQ is made active coincidellt with BDRQ, indicat­
ing that a transfer of data from the buffer to the host 
processor is required. If I = 1, INTRQ will occur at 
the end of the command, i.e. after the buffer is unload­
ed by the host. 

The M bit is set for multiple sector transfers. When 
. M = 0, one sector is transferred and the SECTOR 

COUNT register is ignored. When M = I, multiple 
sectors are transferred. After each sector is transferred, 
the 82062 decrements the SECTOR COUNT register 
and increments the SECTOR NUMBER register. The 
next logical sector will be transferred regardless of any 
interleave. Sectors are numbered at format time. 

Multiple sector transfers continue until the SECTOR 
COUNT register egHals zero, or the BRDY line goes 
active (low to high). If the SECTOR COUNT register 
is non-zero (indicating more sectors are to ,be trans­
ferred but the buffer is full), BDRQ will be made active 
and the host must unload the buffer. After this occurs, ' 
the ,buffer will again be free to accept the remaining 
sectors from the 82062. This scheme enables the user to 
transfer more sectors than the buffer memory has ca­
pacity for. 

In summary then, READ SECTOR operation is as follows: 

( 1) 
( 2) 
( 3) 
( 4) 
( 5) 
( 6) 
( 7) 
( 8) 
( 9) 
(10) 
(11 ) 

( 1) 
( 2) 
( 3) 
( 4) 
( 5) 
( 6) 
( 7) 
( 8) 
( 9) 
(10) 
(11 ) 

When M = 0 (READ SECTOR) 

Host: 
82062: 
82062: 
82062: 
82062: 
82062: 
Host: 
82062:' 
82062: 
Host 
82062: 

Sets up parameters; issues READ SECTOR command. 
Strobes BCR; sets BCS = O. 
Finds sector specified; transfers data to buffer. 
Strobes BCR; sets BCS = 1. ' 
Sets BDRa = 1; DRa = 1. 
If I bit = 1 go to (9). 
Reads contents of sector buffer. 
Waits for BRDY, then sets INTRa = 1: END. 
Sets INTRa = 1. 

" 

Reads out contents, of buffer; END. 
If I = 1 wait for BRDY, then clear BDRa; END. 

When M = 1 (READ MULTIPLE SECTOR) 

Host: 
82062: 
82062: 
82062: 
82062: 
82062: 
Host: 
82062: 
82062: 
82062: 
82062: 

Sets up parameters; issues READ SECTOR command .• 
Strobes BCR; sets BCS = O. 
Finds sector specified; transfers data to buffer. 
Decrements SECTOR COUNT register; increments SECTOR NUMBER register. 
Strobes BCR; sets BCS = O. 

',Sets BDRa = 1; DRa = 1. 
Reads out contents of buffer. 
Waits for BRDY. 
When BRDY = 1, if Sector Count = 0 then go to (11). 
Go to (2). ' 
Set INTRa = 1; End. 

, A flowchart of the READ SECTOR command is shown in Figures 16A and 16B. 

5-866 231133-002 



AP-182 

Write Sector Command -
01110MOT 

The WRITE SECTOR command is used to write one 
or more sectors of data to the disk from the sector 
buffer. Upon receipt of a WRITE SECTOR command 
the 82062 checks the CYLINDER NUMBER LOW / 
HIGH register pair against the internal cylinder posi­
tion register to see if they are equal. If not, the direction 
and number of steps calculation is perfomied and a 
seek takes place. The WR FAULT and DRDY.lines 
are checked throughout the command. 

When the Seek Complete (SC) line is found to be true 
(with or without an implied seek having occurred), the 
BDRQ signal is made active and the host proceeds to 
load the buffer. Once BRDY goes high, the ID field 
with the specified cylinder number, head, and sector 
size is searched for. Once found, WR GATE is made 

active and the data is written to the disk. If retries are 
enabled (T = 0), and if the ID field cannot be found 
within 10 revolutions, a Scan ID and re-Seek are per­
formed. If the correct ID field is not found within 10 
additional revolutions, the ID Not Found error bit is 
set and the command is terminated. If retries are dis­
abled, (T = 1) and if the ID field cannot be found 
within 2 revolutions, the ID Not Found error bit is set 
and the command is terminated. ' 

During a WRITE MULTIPLE SECTOR command 
(M = 1), the SECTOR NUMBER register is decre­
mented and the SECTOR COUNT register is incre­
mented after the transfer to the disk takes place. Dur­
ing multiple sector transfers if BRDY is asserted after 
the first sector is transferred from the buffer, the 82062 
will transfer the next sector before issuing BDRQ. The 
82062 will set BDRQ and wait for the host processor to 
place more data in the buffer. 

hi summary then, the WRITE SECTOR operation is as follows: 

When M = 0, 1 (WRITE SECTOR) 

(1) Host: 
(2) 82062: 

Sets up parameters; issues WRITE SECTOR command. 
Sets BDRa = 1, DRa = 1. 

(3) Host: Loads sector buffer with data. 
Waits for BRDY = 0 to 1. (4) 82062: 

(5) 82062: 
(6) 82062: 
(7) 82062: 
(8) 82062: 
(9) 82062: 

Finds specified ID field; writes sector to disk. 
If M = 0, then set INTRa = 1; END. 
Increment SECTOR NUMBER register; decrement SECTOR COUNT register. 
If SECTOR =' 0, then set INTRa = 1; END. 
Go to (2). 

A flowchart of the WRITE SECTOR command is shown in Figure 17. 

Write Format Command 
01010000 

The, WRITE FORMAT command is used to format 
one track using the Task Register File and the sector 
buffer. During execution of this command, the sector 
buffer is used for additional parameter information in­
stead of sector data. Shown in Figure 18 is the contents 
of the sector buffer for a 32 sector/track format with an 
interleave factor of two. Each sector requires a two byte 
sequence. The first byte designates whether a bad block 
mark is to be recorded in the sector's ID field. A 00 
Hex is normal; an 80H indicates a bad block mark for 
the sector. In the example of Figure 18, sector 04 will 
get a back block mark recorded. Any attempt to access 
sector 4 in the future will terminate the command. 

The second byte indicates the logical sector number to 
be recorded. This allows sectors to be recorded with 
any interleave factor desired. The remaining memory in 
the sector buffer may contain any value. Its only pur­
pose is to generate a BRDY to tell the 82062 to begin 
formatting the track. An implied seek is in effect on this 

command. As for other commands, if the drive number 
has been changed an ID field will be scanned for cylin­
der position information before the implied seek is per­
formed. If no ID field can be read (because the track 
had been, erased or because an incomplete format had 
been used), an ID Not Found error will result and the 
WRITE FORMAT command will be aborted. This can 
be avoided by issuing a RESTORE command before 
formatting. 

The SECTOR COUNT register is used to hold the total 
number of sectors to be formatted (OIH = 1 sector; 
OOH = 256 sectors), while the SECTOR NUMBER 
register holds the number of bytes (minus three) to be 
used for Gap 1 and Gap 3. For instance, if the SEC­
TOR COUNT register value is 02H and the SECTOR 
NUMBER register value is OOH, then 2 sectors are 
written on a track and 3 bytes of 4EH are written for 
Gap I and Gap 3. The data fields are filled with FFH 
and the CRC is automatically generated and appended. 
All gaps are filled with 4EH. After the last sector is 
written, the track is filled with 4EH until the index 
pulse terminates the write. The Gap 3 value is deter-

5-867 231133-002 



'IF T = 1 THEN DASHED PATH IS TAKEN 
AFTER 2 INDEX PULSES. 

AP-182 

PERFORM 
SEEK 

COMMAND 

PULSE BCR 
SETINTRQ,AC 

RESET BUSY, CIP, iiCs 

Figure 16A, Read Sector Command Flow 

5-868 

231133-15 

231133-002 



RESET BORa 
PULSE BCR 
SET INTRa 
RESET CIP 

AP-182 

PULSE BCR 
SET ERROR, INTRa 

RESET BUSY CIP 

Figure 16B. Read Sector Command Flow 

5-869 

231133-23 

231133-002 



AP-182 

Figure 17. Write Sector Command Flow 

5-870 

'IF RETRIES ARE DISABLED THE 
DASHED PATH IS TAKEN AF'rER 
2 INDEX PULSES 

231133-002 



AP-182 

00 00 00 10 00 01 00 11 00 02 00 12 00 03 00 13 
SO 04 00 14 00 05 00 15 00 06 00 15 00 07 00 17 
00 OS 00 1S 00 09 00 19 00 OA 00 19 00 OB 00 1B 
00 OC 00 1C 00 00 00 10 00 OE 00 1E 00 OF 00 1F 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

, 
Figure 18. Sector Buffer Contents For Format 

mined by the drive motor speed variation, data sector 
length, and the interleave factor. The interleave factor 
is only important when I: I (no) interleave is used. The 
formula for determining the minimum Gap 3 length 
value is: 

Gap 3 = (2 • M * S) + K + E 

M = motor speed variation (e.g., 0.03 for ± 3%) 

S = sector length in bytes 

K = 25 for interleave factor of 1 

K = 0 for any other interleave factor 

E = 7 if the sector is to be extended 

As with all commands, a WR FAULT or drive not 
ready condition, will terminate execution of the 
WRITE FORMAT command. Figure 19 shows the 
format that the 82062 will write on the disk. The ex­
tend bit in the SDH register must not be set during the 
Format command. 

A flowchart of the WRITE FORMAT command is 
shown in Figure 20. 

SOFTWARE SECTION: GENERAL 
PROGRAMMING 

This section describes the software needed to communi­
cate with the 82062 in order to store and retrieve data. 

This chapter describes the software in a general manner 
and Appendix B contains the actual implementation 
used to exercise the 82062 SBX board. 

Polled Mode 

As discussed in the Polled Interface Section, the 82062 
does not directly support polled operation for data 
transfers without the addition of hardware. This section 
is based upon the polled interface as described in the 
Polled Interface Section. 

The six 82062 commands can be divided into two 
groups, those with data transfers and those without. 
The commands that do not use the sector buffer are: 
Restore, Seek and Scan ID. The functions of each com­
mand are explained in the Commands Section. Figure 
21 is a flowchart of a polled operation and a PLM ex­
ample. 

The last status that was read will contain any error 
conditions that might have occurred during the com­
mand. 

For commands that do make use of the sector buffer, 
the size of the sector buffer will affect the software. If 
the sector buffer is equal in size to one sector, then a 
carry out of an address counter (for the sector buffer) 
as the buffer is being filled will indicate to the 82062 
that the command should continue. If the sector buffer 

10 FIELD 

REPEATED FOR EACH SECTOR ~~-~~~~---~ 

.---DATA FIELD-

I 

GAP 4 GAP 1 14 BYTES A 
0 C 

4E 4E 00 1 
E Y 
N L 
T 

S C C 
S E R R 3 BYTES 12 BYTES A F 
0 

C C C 00 00 1 8 
USER DATA 

H 
# 1 2 

WRITE GATE -.J 

Figure 19.82062 Sector Format 

5-S71 

C C 
R R 3 BYTES GAP 3 
C C 00 4E 
1 2 

231133-17 

231133-002 

I' 

Ii 



SET ABORTED 
COMMAND BIT 

AP-182 

Figure 20. Write Format Command Flow 

5-872 

231133-18 

231133-002 



AP-182 

size is equal to two or more disk sectors, and 'only one 
sector is being transferred, then the carry out signal 
would not go active, and the 82062 will be forever wait­
ing for BRDY. In this case an I/O port would have to 
be used to generate this signal for the 82062 so that 
command execution can finish. Figure 22 is a flowchart 
of the READ SECTOR command, and its PLM repre­
sentation. The WRITE SECTOR and FORMAT 
TRACK commands are equivalent in terms of software 
interfacing. Their flowcharts and their PLM equiva­
lents are shown in Figure 23. 

Once the command register is written the 82062 re­
quests a data transfer before locating the proper track. 
Once the buffer is filled and BRDY is asserted, the 
82062 will locate the target track and sector. If the ID 
is not located before the selected number of retries have 
occurred, the 82062 will terminate the command. The 
data transferred to the sector buffer will not have been 
used. Once the command has finished (i.e., CIP = 0), 
the status and error registers will inform the host of an 
error. 

) 

Figure 24 is the PLM routine that allows for all six of 
the commands. It differs from the READ and WRITE 
routines in that the direction that data is to be trans­
ferred is determined by the command. 

Disk$Operation: Procedure; 

Figure 24 also works for multiple sect:or transfers. 
However, the BRDY signal must be generated in hard­
ware (the carry-out of an address counter). 

Interrupt Mode 

Interrupt driven software is chosen when the micro­
processor must execute other tasks and cannot sit wait­
ing for the disk to reposition its heads, as in a polled 
environment. The delay in repositioning heads can be 
anything from a couple of milliseconds to a second or 
more. 

The 82062's interrupt (INTRQ) pin goes active to indi­
cate that the command has finished. The READ SEC­
TOR command provides the programmable choice of 
having the interrupt occur at the end of the data trans­
fer or the normal end of the command. The reason for 
this option is that when the 82062 signals that a data 
transfer is required (via BDRQ, DRQ) the disk has 
been read and the data has been placed in the buffer. 
The host would remove the data and issue BRDY. The 
82062 would then issue an interrupt indicating that the 
command has finished. The interrupt procedure would 
only have to read the status register. If the interrupt is 
issued at BDRQ the host would remove the buffer data 

>-__ --' YES 

231133-19 

Call ~rite$82062$Task$Reg's; '* Write Task Registers ., 
Output (Command$Reg) = Command; 
Status = Input (Status$Reg); r Read Status Reg *' 
Do while Status and CIP = CIP; r· Wai t until command finishes ., 

Status = Input (Status$Reg); 
End; 

End Disk$Operation; 

Figure 21. Polling Status 

5-873 231133-002 

.~ 
1'1, 

1 



AP-182 

READ S~CTOR COMMAND 

.Disk$Operation: Procedure; 
Call Write$82062$Task$Regs; 
Output (Command $ Reg) = Command; 
Status = Input (Status$Reg); 
Do while Status and CIP = CIP; 

231133-20 

If Status and DRQ = DRQ then Do; 
Call Read$Data$From$Buffer; 
Output (BRDY$PORT) = 01; 

End; 
Status = Input (Status$Port) 

End; 
End Disk$Operation; 

Figure 22. Polling For Read Data 

5-874 231133-002 



AP-182 

WRITE, FORMAT COMMANDS 

NO 

MOVE DATA 
FROM SYSTEM 

RAM TO SECTOR 
BUFFER 

Disk$Operation: Procedure; 
Call Write$82062$Task$Regs; 
Output (Command$Reg) = Command; 
Status = Input (Status$Reg); 
Do while status and CIP = CIP; 

If status and DRQ = DRW then do; 
Call Write$Data$to$Buffer; 

231133-21 

Output (BRDY$Port) = 01; /* Make BRDY go active '/ 
End; 
Status = Input (Status$Reg) 

End; 
End Disk$Operation; 

Figure 23. Polling For Write Data 

5-875 231133-002 



AP-182 

Disk$Operation: Procedure; 
Call Write$82062$Task$Regs; f* Write registers *f 
Output (Command$Reg) = Command; f* Start command *f 
Status = Input (Status$Reg); /* Read status * f 
Do while status and CIP = CIP; /* Is a command in progress * f 

If status and DRQ = DRQ then do; f* Data transfer? = yes * f 
If command = Read$Sector then 

Call Read$Data$From$Buffer; f* Remove data *f 
Else Call Write$Data$to$Buffer; f* Send data *f 
Output (BRDY$PORT) = 01; /* Toggle BRDY 0 to 1 * f 

End; 
End Disk$Operation; 

Figure 24. Complete Polled Flow 

, 
Start$Disk$Operation: Procedure; 

Call Write$82062$Task$Reg's; 
Output. (Command $ Reg) = Command; 

End Start$Disk$Operation; 

Figure 25; Interrupt Mode; Starting a Disk Transfer 

and generate BRDY. At this point the status and error 
registers contain valid information. Generating an in­
terrupt at BDRQ time may save some systems some 
software overhead. 

The WRITE SECTOR and FORMAT commands do 
not have this option because the sector buffer is filled 
before the track and sector are located. Hence, there 
can be significant delays between asking for data and 
the command terminating. 

In an interrupt driven environment, the 82062 can in­
terface to a DMA controller for data transfers between 
the sector buffer and the host's RAM. If a DMA con­
troller is not available an interrupt must be generated 
via the BDRQ line. However, BDRQ can stay active, 
for long periods oftime (until BRDY is generated). The 
interrupt sensing 'Jogic must take this into account to 
avoid being retriggered constantly. Intel's 8259A Inter­
rupt Controller 8259A provides that capability. It 
should be programmed for edge triggered interrupts or 
the end of interrupt byte must not be issued until 
BDRQ is removed to prevent retriggering. 

Figure 25 is a PLM example of starting a disk opera­
tion in an interrupt driven environment. The command 
starts, and some indefinite amount of time later an in­
terrupt would be generated, indicating service is re­
quired. 

If a DMA controller is used, it would have to be pro­
grammed and initialized before the command is issued 
to the 82062. Recall that once a data transfer between 
the microprocessor and 82062 has finished, BRDY 
must be set high. As long as BRDY is generated from 
hardware, no microprocessor intervention is needed. If 
BRDY is generated by an I/O port the microprocessor 
will have to perform this function (this will be the case 
with any system that has a sector buffer larger than one 
sector). (One option could be to generate an interrupt 
from the terminal count pin of the DMA controller. 
The microprocessor would then issue a BRDY.) Data 
transfers between host RAM and the sector buffer 
would be handled without mic~oprocessor intervention. 
The interrupt would then signal that the command has 
finished as shown in Figure 26. The only operation the 
host processor would perform is to check the status 
register of the 82062 for any error conditions. 

If BDRQ is used to generate an interrupt in addition to 
the normal interrupt, then the routines shown in Figure 
27 will' check the status register to see if a data transfer 
should be executed or if the command is finished. If 
DRQ is not set, the command has finished and any 
error conditions would be in the status register. 

Another possibility would be to have separate interrupt 
routines for the two possible sources of interrupts 

5-876 231133-002 



AP·182 

End$of$Transfer: Procedure Interrupt; 
Status = Input (Status$Register); 
Output (8259A PIC) = End$of$Interrupt; 

End End$of$Transferl 

Figure 26. Checking Status via Interrupt 

Service$Disk$Controller: Procedure Interrupt; 
Status = Input (Status$Port); 
If Status and DRQ = DRQ then 

Call Transfer$Data$To/From$Buffer;/* Enable DMAC */ 
Output (8259A PIC) = End$of$Interrupt; 

End Service$Disk$Controller; 

Figure 27. Complete Interrupt Procedure 

. (INTRQ, BRDQ). There would then be no need to test 
the status to see which interrupt had occurred. 

APPLICATION EXAMPLE 

This section shows an application using the 82062 in­
terfaced to the SBX bus. A quick overview of the SBX 
bus is provided (pin descriptions, general wave forms) 
as a background for the application. Designing the 
82062 onto an SBX Multimodule board was chosen to 
highlight the size and complexity differences between 
earlier TTL, MSI, LSI-based disk controller boards arid 
what is possible using the 82062. Both the hardware 
and software sections will be applicable to most other 
designs using the 82062. This design example is called 
SBX82062 and does not represent a real product of­
fered by Intel Corporation. Appendix C contains the 
schematic of the SBX board. 

The advantage of the SBX Multimodule is that it per­
mits the system to be tailored for specific needs with a 
minimum of effort. The advantage of an SBX based 
disk controller is that a current system can make use of 

. the capacity, reliability and speed of a hard disk with 
no (or minimal) hardware redesign. 

iSBX Bus Multimodule Boards 

The iSBX Multimodule boards are small, specialized, 
I/O mapped boards which plug onto base boards. The 
iSBX boards connect to the iSBX bus connector and 
convert the iSBX bus signals to a defined I/O interface. 

Base Boards 

The base board decodes I/O addresses and generates 
the chip selects for the iSBX Multimodule boards. In 8-
bit systems, the base board decodes all but the lower 
three addresses in generating the iSBX Multimodule 
board chip selects. In 16-bit systems, the base board 
decodes all but the lower order four addresses in gener­
ating the iSBX Multimodule board chip selects. Thus, a 
base board would normally reserve two blocks of 8 I/O 
ports for each iSBX socket it provides. 

There are two classes of base boards, those with Direct 
Memory Access (DMA) support and those without. 
Base boards with DMA support are boards with DMA 
controllers on them. These boards, in conjunction with 
an iSBX Multimodule board (with DMA capability), 
can perform direct I/O to memory or memory to I/O 
operations. 

iSBX Bus Interface 

The iSBX bus interface can be grouped into six func­
tional classes; 

1. Control Lines 

2. Address and Chip Select Lines 

3. Data Lines 

4. Interrupt Lines 

5. Option Lines 

6. Power Lines 

5-877 231133-002 



AP-182 

iSBX BOARD 
USER CONNECTOR 

INTEL SUPPLIED ~:. g i i 
CONNECTOR ~ !I~ 

~ 

231133-22 

Figure 28. iSBX Multimodule Board Concept (Double Wide) 

Control Lines 

The following signals are classified as control lines: 

COMMANDS: 

DMA: 

lORD (I/O Read) 
IOWRT (I/O Write) 

MDRQT (DMA Request) 
MDACK (DMA Acknowledge) 
TDMA (Terminate DMA) 

INITIALIZE: 
RESET 

CLOCK: 
MCLK (iSBX Multimodule Clock) 

SYSTEM CONTROL: 
·MWAIT 
MPST (iSBX Multimodule Board Present) 

Command Lines (lORD, IOWRT) 

The command lines are active low signals which pro­
vide the communication link between the base board 
and the iSBX Multimodule board. An active command 
line, conditioned by chip select, indicates to the iSBX 
Multimbdule board that the address lines are valid and 
the iSBX Multimodule board should perform the speci­
fied operation. , 

DMA Lines (MDRQT, MDACK, TDMA) 

The DMA lines are the communication link between 
the DMA controller device on the base board and the 
iSBX Multimodule board. MDRQT is an active high _ 
output signal from the iSBX Multimodule board to the 

base board's DMA device requesting a DMA cycle. 
MDACK is an active low input signal to the iSBX 
Multimodule board from the base board DMA device 
acknowledging that the requested DMA cycle has been 
granted. TDMA is an active high output signal from 
the iSBX Multimodule board to the base board. 
TDMA is used by the iSBX Multimodule board to ter­
minate DMA activity. The use of the DMA lines is 
optional as not all base boards will provide DMA chan" 
nels and not all iSBX Multimodule boards will be capa­
ble of supporting a DMA channel. 

Initialize Lines (Reset) 

This input line to the iSBX Multimodule board is gen­
erated by the base board to put the iSBX Multimodule 
board into a known internal state. 

Clock Lines (MCLK) 

This input to the iSBX Multimodule board is a timing 
signal. The 10 MHz (+0%, -10%) frequency can 
vary from base board to base board. This clock is asyn­
chronous from all other iSBX bus signals. 

System Control Lines 
(MWAIT, MPST) 

These output signals from the iSBX Multimodule 
board control the state of the system. 

An active MW AIT (Active Low) will put the CPU on 
the board into wait states providing additional time for 
the iSBX Multimodule board t<,> perform the requested 
operation. MW AIT must be generated from address 

5-878 231133-002 



AP-182 

(address plus chip select) information only. If MW AIT 
is driven active due to a glitch on the CS line during 
address transitions, MW AIT must be driven inactive in 
less than 75 ns. 

The iSBX Multimodule board present (MPST) is an 
active low signal (tied to signal ground) that informs 
the base board I/O decode logic that an iSBX Multi­
module board has been installed. 

Address and Chip Select Lines 

The address and chip select lines are made up of two 
groups of signals. 

Adress Lines: MAO-MA2 

Chip Select Lines: MCSO-MCSI 

The base board decodes I/O addresses and generates 
the chip selects for the iSBX Multimodule boards. The 
base board decodes all but the lower order three ad­
dresses in generating the iSBX Multimodule board chip 
selects. 

Address Lines (MAO-MA2) 

These positive true input lines to the iSBX Multimod­
ule boards are generally the least three significant bits 
of the I/O address. In conjunction with the command 
and chip select lines, they establish the I/O port ad­
dress being accessed. In 16-bit systems, MAO-MA2 
may be connected to ADRI-ADR3 of the base board 
address lines. 

Chip Select Lines (MCSO-MCS1/) 

In an 8-bit system, these input lines to the iSBX Multi­
module board are the result of the base board I/O de­
code logic. MCS is an active low signal which condi­
tions the I/O command signals and thus enables com­
munication with the iSBX Multimodule boards. 

The SBX82062 Design Example 

The SBX82062 Multimodule board will interface an 
ST506 compatible drive to any host board having an 
SBX connector. Two restrictions on the disk drive are 
that there is a maximum of 1024 cylinders and/or 8 
heads. The SBX connector cannot supply the power-up 
current requirements of the drive. The drive must be 
connected directly to the power supply. The SBX82062 
in Appendix C does not support DMA transfers. The 
version in Appendix D does support DMA transfers. 
Since this multimodule has a 2 kbyte sector buffer, the 
host microprocessor must generate a BRDY by access­
ing an I/O port during data transfers. 

The software for communicating to the SBX board is 
intended to be interrupt driven. Polling for data trans­
fers is not supported. Reading the status without an 
interupt is not recommended. During the times the 
82062 is accessing the sector buffer, the SBX82062 will 
isolate itself from the host. To support polling, a hard­
ware generated busy pattern should be driven onto the 
hosts's data bus as is shown in the Polled Interface 
section. The sector buffer stores up to 2 kbytes of disk 
data, for multiple sector transfers. The SBX board only 
interfaces to one drive (for space reasons), but four 
drives could be used with the addition of a read data 
multiplexor (one IC) and the drive data cables. 

Microprocessor Interface 

Figure 29 is a block diagram of the SBX82062's micro­
processor interface. The I/O port assignments are listed 
in Table 1. The functional blocks of the interface are: 

Sector Buffer Isolation Logic 

Wait State Logic 

Sector Buffer 

Sector/Drive/Head Register Logic 

Table 6-1.1/0 Port Assignments 

Port Address Read Write 

80H Sector Buffer Sector Buffer 
82H Error Reg RWCReg 
84H Sector Count Sector Count 
86H Sector Number Sector Number 
88H Cylinder Low Cylinder Low 
8AH Cylinder High Cylinder High 
8CH SOH Reg SOH Reg 
8EH Status Reg Command Reg 
90H None None 
92H None Asserts BCR 
94H None Asserts BROY 

NOTE: 
Address assignments are determined by the host board. 

Sector Buffer Isolation Logic 

The host will be isolated from the SBX board whenever 
the 82062 is accessing its sector buffer which is enabled 
by BCS. The host's control signals, RD, WR, MCSO, 
and MCSI and data bus are also disabled at the same 
time to prevent any data in the sector buffer from being 
corrupted. The host should wait for an interrupt before 
reading the 82062's Status register. Attempting to read 
the SBX board while BCS is active will return invalid 
data, since the SBX board will have the data bus tri­
stated. 

5-879 231133-002 

'i
l " 
i 

!:., 



MWAIT 

AP-182 

74 
LS374 

I 

Figure 29 

·5-880 

7438 

-MFM WR ~TA 
+MFM WR DATA 

+MFM RODATA 
-MFM RDOATA 

INDEX 
TRACKD 
SC 
READY 
WRFAULT 

HOG 
HO. 
HO' 
DSO 
OS. 
OS. 
OS3 

231133-002 



S 7 6 

74504 
/ 3 to. 4 

"'11 
{li 
c .. 
CD 

o 
~1 74lS164 

15 lORD rl-A 
QA 2-

~ Pl 
2 B QB ~ 

-to ClR QC .;.....-
10 MHZ 

QD 
6 

To-
QE ~ 
QF 

QG ~ 
..!!..... QH 

4A6 

N 
!D 
OJ 
:gl C 
." 
N 
en 
m 
>< 

(J'I 

== , 
ex> §: 
~ 3" 

DELAYED READ 

L. PAL 16L8 

19 
BCS 

I 
2 lS BDWR 

22 MCSO 3 17 ClK 

P1 4 16 IOBCR 

20 MCSl 5 15 IOBRDY 

101 

0 
Q. P1 6 14 CS 
C 
ii ~ 13 IOWR I MAO 7 13 lTCH SOH 
ml B 
0-

Pl 
MAl S 12 BDRD 

n 
;0; 

MA2 9 11 

0 7 MA2 

iii" Pl 
(Q 

iil 
3 

9 MAl 

Pl 

I 
• 

" 11 MAO 

Pl 

,,37 MDACK 

A P1 

RESET 
Pl __ _ 

'" 

) a MPST 

P1 V 
~ 7 6 

~ 

~-----,~'~"-- -~' -,-,-, -,--

5 4 3 

~ 

+5V 
7 RPl iT 

~74 64 

2 0 PR Q~ 
UB2 

3 
_ 6 
Q 

ClR 

1 74S0S 1 ;5~ 
3 

2 UB3 
9 74S0S 

RP1 RP1 S 
10 UB3 lK 

I RAMSEl 

I 

74S04 
9 £>0 S 

UDl 

5 4 3 

RP1 

2 

lORD 2CS ._-- --

MWAIT 16 

Pl 
::> 

o 

C 
BDWR ' 2CS, 3CS 

RAMSEL 2CS 

IOBCR 2CS 

IOBRDY 3DS 

CS 3CS 2CS,: 

lTCH SOH 2AS 
B 

BDRD ,3CS 2DS,: 

MDACK 2CS 

AO-2 3ca 

MR 3ca 

-

I I 

INTEL CORPORATION 
~-----------------------1IA 
TITLE 

82062 sax 
SIZE I CODE I NUMBER 
a 
DATE SEPT 19S4 

REV 
062PAL.DWG I A 

SHEET 1 OF 4 

231133-35 

-_--~-:_:O'--=-~~. i~ ~=.,,---::::;~""'-~..::;...~~~~~~-~ 

» 
l' ... 
CXI 
N 

'::::f:;'-~~-..:c..-" 



AP-182 

Wait State Logic 

The wait state logic drives the 'not ready' line, 
MW AIT, active whenever the host reads the SBX 
board. MW AIT does not go active for' buffer or 82062 
register writes. This logic was required for two reasons. 
First, a delayed read is generated, because the address 
setup to RD margin of the SBX bus is less than the 
82062's needs (50 ns vs 100 ns). Second, the RD to data 
valid access period of the 82062 (375 ns), is greater than 
the SBX bus' full' speed read cycle (275 ns) permits. 
MW AIT is deactivated after allowing for the delayed 
RD and the access period of the 82062. This delay is 
accomplished with a 500 ns delay line. The first tap at 
100 ns generates the read request to allow for the ad­
dress setup margin. The next tap 400 ns later removes 
MW AIT to allow the host to continue. 

Sector Buffer 

The sector buffer consists of an address counter (using 
'ls393's) and a 2 kbyte static RAM. The address coun­
ter is incremented on the trailing edge of a valid RD or 
WR cycle, either host microprocessor or 82062 initiat­
ed. The counter is reset by a hardware reset, the 82062 
buffer reset BCR, or by accessing an I/O port to pro­
vide software control. The 82062 will issue BCR each 
time BCS changes state (i.e. twice per sector). Resetting 
the buffer counter can be put under software control for 
multiple sector transfers. BRDY going high tells the 
82062 that fhe buffer is available for its use. BRDY is 
generated by the address counter, by filling or emptying 
the entire buffer in multiple sector transfers, or from an 
I/O port when single sector transfers are done (since 
single sectors won't use all 2 kbytes of the buffer, the 
hardware signal will not be generated). When the 82062 
is using the buffer, BCS will be low, and the RD or WR 
line will be pulsed every 1.6 microseconds. 

When the 82062 is using the buffer it prevents access by 
the host by tristatin~e read, write, select and' data 
lines with a low on BCS. 

SDH Register Logic 

The drive and head select bits must be latched external­
ly to the 82062, since these outputs are not provided. 
An 8 bit latch is strobed on the trailing edge of the WR 
pulse when the SDH register is selected. The two drive 
select bits are then demultiplexed to provide a one of 
four drive select line. If multiple drives are used then 
these outputs would also be used to select which disk's 
read data line would be gated into the PLL. 

Interrupts 

While the interrupt line is programmable (to notify of 
an end of command or data transfer request for the 
Read Sector command only), software will ensure that 
the interrupt from the 82062 signifies command termi­
nation. The BDRQ line is OR'ed with the 82062's 
INTRQ line or BDRQ can generate its own interrupt. 
BDRQ is also gated off-board for a DMA controller. 

Disk Interface 

Figure 30 is a block diagram of the, interface between 
the 82062 and the disk drive. The functional blocks are: 

Write Data Logic 

Read Data Logic (PLL) 

Drive Control 

Write Data Logic 

The WR DATA output requires a D flip-flop clocked 
at 10 MHz to complete the conversion of data to MFM. 
The output of this D flip-flop is true MFM and is sent 
to a delay line. A delay line determines the amount of ' 
delay for precompensation. No delay corresponds to 
shifting ~he data bit early; the first tap is approximately 
12 ns of delay and is the "normal", or no delay and the 
second'tap provides 12 ns of delay, referenced to the 
"normal" write data. Which output is selected is deter­
mined by the states on RWC, Early and Late. This 
function was generated with a 74sl5l multiplexer. 
When RWC is inactive EARLY and LATE only select 
"normal" data since they are always active. The pre­
compensated write data is then driven onto the data 
cable by an RS-422 driver. 

Read Data Logic 

The PLL generates the RD CLOCK that is used to 
decode the serial MFM data from the drive. A sel~cted 
drive issues read data, unless WR GATE is active. A 
one-shot generates a pulse of 220-270 ns to provide the 
DRUN input. Only during an all zero's or one's field 
will the DRUN input stay high, as it will be retriggered 
every 200 ns (the minimum distance that separates con­
tinuous clock and data bits). As soon as DRUN is de­
termined to be valid, the RD GATE output will go 
active, switching the PLL from the 10 MHz local clock 
input to disk data. The PLL will synchronize to the 
incoming serial data and generate a Read Clock of the 
proper timing and phase. The 82062 will then start to 
search for the address mark which is indicated by 
DRUN going low at the address mark. 

5-882 231133-002 



AP-182 

RD GATE 
DRUN DATA 

I-RD DATA RECOVERY 

RD CLOCK 

82062 

WR DATA WRITE 

EARLY PRECOMPENSATION fSI DATA/CTRL 
LATE AND l DRIVE 
RWC SYNCHRONIZATION 

HOST 

STEP 
DIR 

.i DRDY , 

WR FAULT BUFFERI 
TRACK 000 RECEIVERS 

INDEX 

SC 

WR GATE 

231133-24 

Figure 30. 82062 Disk Interface Block Diagram 

No detail is provided herein on PLL design, as it is 
beyond the scope of this document. PLL design should 
be left to experienced designers, since minute. changes 
in temperature and component values will drastically 
affect the soft error rate. As an alternative, several com­
panies manufacture very high speed PLL chips for 
MFM encoded disk drives. Besides being fairly easy to 
design in, they reduce the number of components and 
board area needed for the sophisticated PLL. 

Software Driver Overview 

Presented in Appendix B is a listing of the software 
used to exercise the SBX 82062 board. Communication 
between the host software and the SBX driver routine is 
done through a structure located in system RAM. The 
host routine fills in required parameters, then passes the 
address of this communication block to the SBX driver 
routine. The driver routine pulls necessary values from 
this command block (CBL), executes a disk operation, 
then fills the CBL with the 82062's register contents, 
plus status .and error information. The command block 
structure is shown in Figure 31. 

Command 
Rwc Reg 
SectorCnt. 
Sector Num. 
Cyl Low 
Cyl High 
SDH Reg 
Status Reg 
Error Reg 
Host Buffer 

Figure 31 

Byte 
Byte 
Byte 
Byte 
Byte 
Byte 
Byte 
Byte 
Byte 
Pointer 

The host board did not have a DMA controller avail­
able, so an interrupt is issued from the BDRQ line and 
OR'ed with the 82062's interrupt line as interrupt 
sources were limited by the host. When an interrupt 
occurs, the interrupt procedure checks for either a data 
transfer, and executes it, or the completion of the com­
mand. If the interrupt signifies command completion, 
the interrupt procedure fills the command block with 
the 82062's task, status and error registers. 

5-883 231133-002 

I', 
I 



" In this example, the host software examines one byte in 
the command block and until this byte is changed to a 
00, no other command blocks will be passed to the disk 
driver routine. An alternative would be to issue a soft­
ware interrupt to notify the microprocessor that the 
disk operation has finished and the command block 
contains parameters from the last <operation and that a 
new disk command could start. 

The driver for this example allows polling for non-data 
transfer commands, and must use interrupts for data 
transfers. As mentioned earlier, microprocessor inter­
vention is required since the sector buffer is much larg­
er than one sector and will not generate a BRDY. The 
microprocessor must write to an I/O port, which sets 
BRDY, after each host to sector buffer transfer. An 
actual software bnplementation would not include the 
polling and interrupt routines together, as only one 
method would generally be used. 

The calling routine, which would normally be a direc­
tory program, places the values for which sector, num­
ber of sectors, etc., in the CBL. The disk routine is 
called' and the address of this structure is passed on the 
stack. The disk driver places these parameters in the 
82062's Task registers and initiates a command. 

If the interrupt driven method was chosen, the disk 
driver routine returns to the calling routine. This per­
mits other processing to be performed while the disk is 
executing a command. At some point, an interrupt will 
be generated, either from BRDY or INTRQ. Control 
will pass to the driver and the status register will be 
checked. If a data transfer is needed, either the micro­
processor can transfer data or a DMA controller can 
perform the function. Once the transfer of data to the 
buffer is finished. the microprocessor must set BRDY 
thrQugh an I/O port. 

5-884 , 231133-002 



APPENDIX A 
ST506 INTERFACE 

THE ST506 INTERFACE 

The ST506 interface is a modified version of Shugarts 
floppy disk drive interface and has been promoted by 
Seagate Technology. This interface is intended to be 
easy and low in cost to implement, yet provide a medi­
um level of performance. The interface rigidly defines 
several areas: the hardware interconnects, the data 
transfer rate, the data encoding method, and how the 
disk is formatted. 

Data Transfer Rate 

The data transfer rate depends upon the linear bit den­
sity of the disk media and the speed at which the disk 
spins. ST506 specifies a 5 Mbit/second transfer rate. 
The typical ST506 drive has a nominal linear density of 
10,416 bytes and a disk speed of 3600 rpm, which yields 
a 5 Mbit/second data transfer rate. No deviation from 
5 M/bits second is allowed. 

Increasing the linear density to increase storage capaci­
ty would require a decrease in disk speed. 'Otherwise, 
the data rate would increase. This decrease in disk 
speed would cause access times to increase, which 
many would deem unacceptable. To increase storage 
capacity, and remain ST506 compatible, either the 
number of cylinders and/or the number of platters can 
increase. 

Data Encoding 

ST506 requires that the serial data, sent between the 
drive and the controller, be encoded according to MFM 
rules. The basic unit of storage is a bit cell, which stores 
one bit infromation. This bit cell is divided into two 
halves, consisting of a clock bit and a data bit (see Fig­
ure A-I). 

CLOCK BIT DATA BIT CLOCK BIT I DATA BIT 

THIS WOULD EQUAL A USER 0 THIS WOULD EQUAL A USER 1 

-B~~C~~L-
231133-25 

Figure A-1 

:TIle encoding rules for MFM are fairly simple: 

1. A clock bit is written when the previous and the cur­
rent bit cell does not contain a data bit. 

2. A data bit is written whenever there is a "one" from 
the user. 

Sync fields are composed of zeroes which generates a 
series of clock bits ,in the bit cell's. A phase lock loop 
locks on to the data stream during this period and gen­
erates a signal of the proper phase and frequency which 
is used to decode the combined clock and data serial 
data stream. 

Disk Format 

All disk media must be written with a specified format 
so that data may be reliably stored and retrieved. The 
smallest unit of controller accessible data is the sector 
which typically contains sync fields, ID fields, and a 
data field, and buffer fields. 

The format of the disk required by ST506 is shown in 
Figure A-2. It should be noted that this format is fixed 
in the 82062. The user has options only for GAPI and 
3 length (when changing sector size or ECC) and 
whether to have 82062 CRC checking or user supplied 
ECC syndrome bits. 

Gap 1 - Index Gap 

Gap I serves two purposes. The first is to allow for 
variations in the index pulse timing due to motor speed 
variations. The second purpose is to allow a small delay 
to permit a different head to be selected without miss­
ing a sector. This is more of a data transfer optimiza­
tion function and requires the disk controller to know 
which head is to be selected, when the last sector of a 
track has been read, and the next logical sector in the 
file exists on another platter. The 82062 does not switch 
heads automatically. Whether this scheme can be used 
or not depends upon the IlP being able to alter one 
register in the 82062, before the next sector passes be­
neath the heads. 

This gap is typically 12 bytes long and is written by the 
82062 as 4E Hex. 

Gap 2 - Write Splice Gap 

This gap follows the CRC bytes of the ID field and 
continues up to the data field address mark. When up-

5-885 231133-002 

i~ 
1.1 



AP-182 

( 

dating a previously written sector, motor speed varia­
tions could tum on the write coil, as the head was pass­
ing over the ID field. This gap prevents this from oc­
curring. The value written is OOH and also serves as 
the PLL sync field for the data field. The minimum 
value is determined by the "lock up" performance of 
the PLL. The 82062 writes sixteen bytes for this field 
once WG is activated. The user has no control over this 
field. 

Gap 3 - Post Data Field Gap 

Gap 3 is very similar to Gap 2 as it is used as a speed ' 
tolerance buffer also. Without this gap, and with the 
motor speed varying slightly, it would be possible for 
the upcoming sector's sync field and ID field to 'be 
overwritten. This value is '4E' H and is typically 15 
bytes long. The 82062's Gap 3 length is programmable. 
The exact value is dependent upon several factors. Re­
fer to 82062 Format command, Software Section: Gen­
eral Programming Section. 

Gap 4 - Track Buffer Gap 

This gap follows the last sector on a track and is written 
until an index pulse is received. Its purpose is to pre­
vent the last sector from overflowing past the index 

. gap, and absorb track length variations when Eee is 
used (Eee uses more bytes than eRC). The value is 
'4E' H and is about 320 bytes when eRe and 256 byte 
sectors are used. The 82062 writes this field only during 

formatting. The user has no control over the number of 
bytes written with the 82062. 

ID Fields 

The controller uses ID fields to locate any individual 
sector. An address mark of two bytes precedes the ID 
field and ,the data field in a sector. An address mark 
tells the controller the nature of the upcoming informa­
tion. ID fields are used by the disk controller and ate 
not passed to the host. 

Sector Interleaving 

Sector interleaving occurs when logical sectors are in a 
non-sequential order, which is determined during for­
matting. An advantage is that there is a delay between 
logically sequenti~l sectors. This delay can be used for 
data processing and then deciding if the next sector 
should be read. Without interleaving, the next sector 
could slip by, imposing a one revolution delay (approx. 
16.7 ms). An additional benefit to this delay is that bus 
utilization is reduced by spreading the data transfer 
over a greater amount of time. The delay between sec­
tors can be determined as follows: 

1 Revolution Period. 
Sectors/Track x (Interleave factor - 1) = Delay 

For the typical ST506 drive with four-way interleaving 
this yields 1.57 ms of delay. 

~ 
- REPEATED FOR EACH SECTOR -.-

,--10 FIELD+ 

I 
S o CL H C C 

GAP 4 GAP 1 14 BYTES A E YO E E R R 3 BYTES 
4E 4E' 00 1 N L W A C C C 00 

, T 0 # 1 2 

WRITE GATE ---.J 
10 FIELD 

A1 = 'A1 ,HEX WITH OA HEX CLOCK 
IDENT = 2lS.B. = CYLINDER HIGH 

FE = 0·255 CYLINDERS 
FF = 256-511 CYLINDERS 
FC = 512·767 CYLINDERS 
FD = 768-1023 CYLINDERS 

HEAD = BITS 0, 1, 2 = HEAD NUMBER 
BITS3,4=0 
BITS 5, 6 = SECTOR SIZE 
BIT 7 = BAD BLOCK MARK 

SEC # = LOGICAL SECTOR NUMBER 

12 BYTES 
00 

~-DATA FIELD---1 
-0' 

C C 
A F 

USER DATA R R 3 BYTES GAP 3 
1 8 C C 00 4E . 

1 2 

DATA FIELD 

Al = Al HEX WITH OA HEX CLOCK 
F8 = DATA ADDRESS MARK; NORMAL CLOCK 

USER = DATA FIELD 128 TO 1024 QYTES 

231133-26 

Figure A-2. Format Field 

5-&86 231133-002 



Ap·182 

FLAT CABLE OR TWISTED PAIR 
HOST SYSTEM 20 FEET MAXIMUM ST506 

1 
RESERVED 2 

3 
- RESERVED (HD SELECT 22)_ 4 

5 
-WRITE GATE 6 

7 • 
-SEEK COMPLETE 8 

9 • 
-TRACK 0 10 

11 
-WRITE FAULT 12 

13 
-HEAD SELECT 2' 14 

15 ~ 
RESERVED 16 

17 
-HD SELECT 2' 18 

19 ~ 
-INDEX 20 

21 
-READY 22 

23 ~ 
-STEP 24 

25 
-DRIVE SELECT 1 26 

27 
-DRIVE SELECT 2 28 

29 
-DRIVE SELECT 3 30 

31 ~ 
-DRIVE SELECT 4 32 

33 
-DIRECTION IN 34 

V 
231133-27 

Figure A·3 

The disadvantage to interleaving is that file transfers 
take longer, which may slow down the overall system. 
A four-way interleaved disk will have the transfer rate 
reduced to an average of 1.25 Mbit/sec. 

host of certain conditions. A diagram of the 34 pin 
control connector is shown in Figure A-3. 

The 82062 leaves the logical sector sequence to the 
user. 

ELECTRICAL INTERFACE 

The interface to the ST506 drive is divided into three 
categories and they are: 

1. control signals, 

2. data signals, 

3. power. 

Control Signals 

The functions of the control signals are not covered in 
detail here. Their purpose can be found in the pin de­
scriptions section. All control lines are digital in nature 
and either provide signals to the drive or inform the 

The driver/receiver logic diagram is shown in Figure 
A -4 and the electrical characteristics are: 

5-887 

True 
False 

7438 

Voltage 
0.0 VDC to 0.4 VDC 
2,5 VDC to 5.25 VDC 

20 FT. 

Figure A·4 

Current 
-40 mA (IOL max.) 
250 J.!A (IOH open) 

+5V 

2200 

74LS14 

231133-28 

231133-002 



AP-182 

Data Signals 

The lines associated with the transfer ohead/write data between the host and the drive are differential in nature and 
may not be multiplexed between drives. There is one pair of balanced li~es for each read and write data line per drive 
and must conform to the RS-422 specification. Figure A-5 shows the receiver/transmitter combination. 

20 FT. 

HIGH TRUE 

Z=105 

231133-29 

Figure A-5. E1A RS22 Driver/Receiver Pair Flat Ribbon or Twisted Pair 

5-888 231133-002 



APPENDIX B 
SOFTWARE DRIVER 

SERIES-III PL/M-B6 V2 3 COMPILATION OF MODULE DISK_IO_MODULE 
OBJECT MODULE PLACED IN F2 DISKIO OBJ 
COMPILER INVOKED BY PLMB6 B6 F2 DISKIO PB6 

2 

3 

4 

STITLE('B2062/SBX DISK CONTROLLER') 
DISK_IO_MODULE:DO, 

1* CBL-PTR IS A POINTER TO A COMMAND BLOCK- HENCE CBL 
THIS COMMAND BLOCK RESIDES IN RAM AND CONTAINS ALL 
VALUES REOUIRED BY THIS PROGRAM TO OPERATE THE 92062 
DISK CONTROLLER ONCE THIS PROCEDURE IS CALLED, THE 
CBL IS REMAIN UNTOUCHED UNTIL THE COMMAND BYTE IS 
SET TO A 00 VALUE THIS ROUTINE WILL CALL THE CALLING 
PROGRAM WHEN A COMMAND IS,COMPLETED 

*1 

REV 

I 0 

DATE NAME 

I/~UL/94 J SLEEZER 

DESCR I PTI ON 

INITIAL 

1* PROGRAM CONSTANTS *1 

DECLARE LIT LITERALLY 'LITERALLY' , 
TRUE LIT 'OFFH' , 
FALSE LIT 'OOH', 
FOREVER LIT 'WHILE TRUE', 

1* BOARD ADDRESSING FOR THE 96/0~ *1 

DECLARE BASE_ADDR LIT 'BOH', 
SCTR_BFFR LIT 'BASE_ADDR' , 
ERR_REG LIT 'BASE_ADDR + 02H', 1* READ 
SEC_CNT _REG LIT 'BASE_ADDR + 04H', 
SEC_NUM_REG LIT 'BASE~DDR + 06H', 
CYL_LOW_REG LIT 'BASE_ADDR + OBH', 
CYL!,.HI_REG LIT 'BASE_ADDR + OAH', 
S_DR_HD_REG LIT 'BASE~DDR + OCH', 

ONLY *1 

STATUS..REG LIT 'BASE_ADDR + OEH', 1* READ ONLY *1 
COMMAND_REG LIT 
WR-PCMP _REG LIT 
BFFR_RESET LIT 
BFFRJlDY LIT 
SEC_BUF LIT 

1******* 92062 COMMANDS 

DECLARE RESTORE 
SEEK 

'BASE_ADDR + OEH', 
'BASE_ADDR + 02H', 
'92H' , 
'94H', 
/2049', 

********1 

'lFH', 
'7FH', 
'50H', 
'40H', 
'20H', 
'30H', 

1* WRITE ONLY *1 
1* WRITE ONLY *1 

FORMAT 
SCAN_ID 
READ_SEC 
WRITE_SEC 
ECC_EN 
NO_INTERPT 
INTR_ON_CMD 
MULT_SCTR 

LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

'BOH', 1* TO BE OR'D WITH VALUE IN SOH REG *1 
'OOH', 
'09H', 
'04H', 

231133-36 

5-889 231133-002 



5 

6 

7 

8 

9 2 

10 2 
11 2 
12 2 
13 3 
15 3 
17 4 
lB 4 
19 3 
20 3 
21 3 

22 2 

23 

24 2 

AP-182 

1* STATUS REGISTER BITS *1 

DECLARE ERR LIT 'OIH', 
CIP LIT '02H' , 
ORO LIT 'BOH', 
SC LIT '10H', 
WRF lIT '20H'}, 
DRDY LIT '40H', 
BUFBSY lIT 'BOH', 1* USER WIll NEVER SEE THIS BIT SET *1 

1* PROGRAM VARIABLES' *1 

DECLARE CMD_BlOCK_PTR POINTER, 
CBl BASED CMD_BlOCK.J'TR STRUCTURE ( 

COMMAND BYTE, 
PRECMP BYTE, 
S3NT BYTE, 
SCTR BYTE, 
lOW_CYl BYTE, 
HI3Yl BYTE, 
SDH BVTE, 
STATUS BYTE, 
ERRS BYTE, 
INTERUPT BYTE, 
RET _PROC POINTER, 
BUFF _PTR POINTER ), 

DECLARE BUFFER_PTR POINTER, 
BUFF BASED BUFFER _PTR (I) BYTE, 
STATUS BYTE, 
ERRORS BYTE, 
COMMAND BYTE, 

$EJECT 

1***************************.********1 

1* 82062 POll ROUTINE *1 

1************************************1 

POll: PROCEDURE, 

DECLARE COUNT DI~ORD, 

COUNT = 7FFFFH, 1* lOOP FAILSAFE - TWEAK AS REOUIRED *1 
STATUS = INPUT (STATUS_REQ) , 
DO WHilE «STATUS AND (CIP OR DRDY)) - (CIP OR DRDY)), 

IF COUNT = 00 THEN RETURN. 
IF (STATUS AND DRO) - DRO THEN DO. 

CAll XFER DATA, ' 
END, -
STATUS = INPUT(STATUS_REG), 
COUNT - COUNT - 1, 

END, 1* IF THE ROUTINE EXPIRES DUE TO COUNT = 0, All DISK *1 
1* REG VALUES IN THE CBl Will CONTAIN THE STATUS REG *f 
1* WHICH WIll - A BUSY PATTERN AND CBl COMMAND WILL *f 
1* CONTAIN 00, INDICATING THE COMMAND IS FINISHED *1 

END POLL, 

1*******************.************************************************1 

1* TRANSFER DATA BETWEEN HOST RAM AND ONBOARD SECTOR BUFFER *1 

/*************************~******************************************1 

XFER_DATA PROCEDURE, 

DECLARE CNT 
INDEX 
Sll 
SECTR_Sl 

BYTE, 
WORD, 
BYTE, 
WORD, 231133-37 

5-890 231133-002 



25 2 
26 2 
28 2 
30 2 
32 2 

34 2 
35 2 

36 2 
37 2 
38 3 
39 3 
40 4 
41 4 
42 3 
43 3 

44 2 
46 3 
47 4 
48 4 
49 3 
50 2 
51 3 
52 4 
53 4 
54 3 

55 2 

56 2 

57 

58 2 
59 2 
60 2 
61 2 
62 2 
63 2 
64 :2 

65' 2 

66 

67 
68 
69 
70 
71 
72 

73 

2 
2 
2 
2 
2 
2 

2 

Ap·182 

SZI = (SHR(CBL SDH, 51 AND 03HI, 
IF SZI = 00 THEN SECTR SZ = 256, 
ELSE IF SZI 01 THEN SECTR_SZ 
ELSE IF SZI = 02 THEN SECTR SZ 
ELSE IF SZI = 03 THEN SECTR=SZ 

1* OBTAIN SECTOR SIZE BITS 
1* REGISTER *1 

FROM SOH *1 

512, 
1024, 
128, 

IF CBL SOH AND ECC_EN = ECC_EN THEN 
SECTR_SZ = SECTR_SZ + 7, 

IF«(CBL COMMAND AND OFOH = READ SEC) OR(CBL COMMAND AND OFOH = WRITE SECl) 
AND (CBL COMMAND AND OFH = MULT SCTRI) THEN DO,I* VARIOUS SECTOR SIIES*I 
Cr-tT = (SEC BUF/CBL S CNT), - 1* ARE POSSIBLE THIS FIGURES «I 
DO WHILE (eNT * SECTR Sl) > SEC_BUF, 1* HOW MANY SECTORS WILL FIT *1 

CNT = CNT - I, - 1* INTO THE BOARDS SECTOR BFFR *1 
END; 
SECTR SZ = SECTR SZ * CNT, 

END, - -

1* OUTPUT(BFFR_RESET) = 00, *1 

IF (SHR(CBL COMMAND, 4) AND 03HI = 02H THEN DO, 1* READ COMMAND *1 
DO INDEX = 0 TO (SECTR SZ - 1), 

BUFF(INOEX) INPUT(SCTR_BFFR), 
END, 

END, 
ELSE DO, 1* WR ITE OR FORMAT COMMAND *1 

DO INDEX = 0 TO (SECTR_SZ - I), 
OUTPUT(SCTR_BFFR) = BUFF(INDEX), 

END, 
END, 

OUTPUT (IlFFR_RDY) 00, 1* ACTIVATES 062'S BRDY LINE *1 

SEJECT 

1************************************1 

UPDATE COMMAND BLOCK *1 

1************************************1 

UPDATE_CBL PROCEDURE, 

CIlL S_CN r = INPUT<SEC_CNT _REG);. 
CBL seTR = INPUT(SEC NUM REG), 
CIlL LOW3YL = INPUT(CYL_LOW_REG), 
CIlL HI_CYL = INPUT(CYL_HI_REG); 
CIlL SDH = INPUT(S DR HD REG); 
CBL STATUS = STATUS, - -
CIlL ERRS = INPUT< ERR'_REG); 

END UPDATE_CIlL, 

I********************************~****I 

wRITE THE caL TO 82062 

1*************************************1 

OUTPUT(WR PCMP REG) CBL PRECMP; 
OUTPUT(SEC CNT-REG) CBL S_CNT' 
OUTPUT (SEC-NUM-REG) CBL SCTR, 
OUTPUT (CYL-LOW-REG) CBL LOW CYL; 
OUTPUT(CYL-HI REG) = CBL HI CYL, 
OUTPUT (S_DR_HD_REG) = CBL SDH, 

END WR3BL, 

SEJECT 

5-891 

231133-38 

231133-002 



74 

75 2 

76 2 
77 2 

78 2 
79 2 
81 3 
82 3 
83 3 
84 3 
85 3 

86 2 
88 3 
89 3 
90 3 
91 3 

92 2 

93 2 
94 2 

95 2 
96 2 
97 2 
99 3 

100 3 
101 3 
102 3 
103 3 

104 2 

105 

106 2 
107 2 

108 2 
110 3 
111 3 
112 3 
113 3 
114 3 
115 2 

116 2 

117 

AP-182 

1******************************************1 
1***** MAIN PROGRAM ***********1 

DISK PROCEDURE(CBL_PTR) PUBLIC. 

DECLARE CBL-fTR·POINTER. 

CMD_BLOCK_PTR = CBL_PTR. 
BUFFER_PTR = CBL BUFF_PTR. 

CALL WR_CBL' 
IF CBL. COMMAND = 99H THEN DO. 

END. 

CALL UPDATE_CBL. 
CBL COMMAND = 00. 
CBL STATUS = INPUT(STATUS_REG). 
RETURN, 

IF (INPUT(STATUS_REG) AND DRDY) <> DRDY 
CBL STATUS = INPUT(STATUS_REG). 
CBL CDMt1AND = OOH. 
RETURN, 

END. 

OUTPUT (BFFR_RESET) = OOH. 

1* ADDRESS OF STRUCTURE *1 
1* THAT CONTAINS 82062 *1 
1* TASK REG DATA *1 

1* A DUMMY COMMAND TO READ~I 
I*THE CURRENT REG VA'-UES *1 

THEN 00, 1* NO COMMAND IS ISSUED *1 
1* IF THE 82062 SEES *1 
1* THAT THE SELECTED *1 
1* DRIVE IS NOT READY .1 

IF (CBL.COMMAND AND OFOH) = READ_SEC THEN 1* FOR PROGRAM CONSISTENCY *1 
CBL COMMAND = CBL COMMAND OR INTR_ON_CMD.I* SET INTERUPT FOR COMMAND*I 

1* TERMINATION *1 

OUTPUT(COMMAND_REG) = CBL COMMAND, 
CALL TIME( 100). 
IF CBL INTERUPT = NO INTERPT THEN DO. 

END, 

CALL POLL. -
CALL UPDATE_CBL. 
CBL COMMAND = DO. 
RETURN. 

END DISK, 

.EJECT 

1* A DELAY 15 NEEDED BECAUSE FAST*I 
1* UP'S CAN READ THE STATUS REG *1 
1* BEFORE A VALID STATUS 15 READY*I 

1*******************************************1 

1* INTERRUPT SERVICE ROUTINE *1 

1*******************************************1 

DISK_SERVICE PROCEDURE PUBLIC. 

CALL TIME(500) 
STATUS = INPUT\STATUS~EG), 

IF (STATUS AND CIP) = 00 THEN DO, 
CALL UPDATE3BL. 

END, 

CBL COMMAND = 00. 
OUTPUT(BFFR_RESET) = OOH. 
RETURN. 

ELSE CALL XFER_DATA. 

END DISK_SERVICE, 

MODULE INFORMATION 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
272 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

= 02EEH 
= OOOOH 
= OOIlH 
= OOOAH 

750D 
00 

17D 
10D 

231133-39 

S;:S92 231133-002 



AP-182 

DICTIONARY SUMMARY 

31KB MEMORY AVAILABLE 
SKB MEMORY USED (16%) 
OKB DISK SPACE USED 

END OF PL/M-86 COMPILATION 

SERIES-III PL/M-86 V2,3 COMPILATION OF MODULE HOST~ODULE 
OB~ECT MODULE PLACED IN 'F2:DSKHST OB~ 
COMPILER 'INVOKED BY PLM8b 8b 'F2' DSKHST P8b 

2 
3 
4 

5 
b 

1 
2 
2 

I 
2 

$TITLE('DEMO PROGRAM FOR SBXOb2') 
HOST _MODULE' DO; 

1* PROGRAM TO EXERCISE THE 820b2/SBX BOARD USING THE 957 MONITOR 
ON AN SBC 8bl05 THIS PROGRAM DEMONSTRATES HOW THE DISKIO MODULE 
IS USED, THE CASE STATEMENTS IN THE MAIN SECTION SHOW THE VA~IOUS 
ROUTINES THE TYPICAL ROUTINES LIKE HEX TO ASCII, ETC, WERE 
NOT INCLUDED IN THIS LISTING SEVERAL OF THE ROUTINES USE 
STATEMENTS THAT COULD BE REDUCED CONSIDERABLY BUT WERE LEFT 
SIMPLIFIED 50 THAT ALL WOULD UNDERSTAND 

REV DATE NAME 

1 0 20/JULl84 ~ SLEEZER 
*1 

1* EXTERNAL ROUTINES 

CO PROCEDURE(CHAR) EXTERNAL, 
DECLARE CHAR BYTE, 

END CO, 

CI PROCEDURE BYTE EXTERNAL; 
END CI; 

*1 

DESCR I PTI ON 

INITIAL 

7 
8 
9 

I 
2 
2 

DISK'PROCEDURE(CMD BLK PTR) EXTERNAL,I* THIS ROUTINE STARTS A DISK OPERATION *1 
DECLARE CMD_BLK_PTR POINTER, 

10 
II 

12 

2 

END DISK, 

DISK_SERVICE PROCEDURE EXTERNAL,I* THIS ROUTINE SERVICES THE 82062 INTERUPTS*I 
END DISK_SERVICE, 

1* PROGRAM CONSTANTS *1 

DECLARE LIT LITERALLY 'LITERALLY', 
TRUE LIT 'OFFH', 
FALSE LIT 'OOH', 

'FOREVER LIT 'WHILE TRUE', 
SPACE LIT '20H', 
CR LIT 'ODH', 
LF LIT 'OAH', 
RUB LIT '7FH' , 
BACKSP LIT '08H', 
ESC LIT 'IBH', 

1* 82062 COMMANDS *1 
231133-40 

5-893 231133-002 



13 

14 

15 

/ 

16 

17 

, IS 

DECLARE RESTORE 
SEEK 
FORMAT 
SCAN_ID 
READ_SECT 
WRITE_SCT 
MULT_SCTR 
NO_RETRYS 
NO_CRC 

P _COMP 
SEC_CNT 
SECTOR 
CYL_LB 
CYL_HB 
SOH 

LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

1* STATUS REGISTER BITS 

DECLARE'ERR 
CIP 
DRG 
SC 
WRF 
DRDY 
BUFBSY 

LIT 
LIT 
LIl 
LIT 
LIT 
LIT 
LIT 

1* ERROR REGISTER BITS 

DECLARE VALID_BITS 
AM NT FND 
TKOOj~'RR 
ABRTD_CMD 
ID_NT _FND 
DATA..ERR 
BAD_BLK 

LIT 
LIT 
LIT 
LIT 
LIT 
LIT 
LIT 

AP-182 

'IOH', 
'70104', 
'50H', 
'40H', 
'2SH', 
'30H', 
'04H', 
'01H', 
'SOH', 

1* INTR ONLY ON COMMAND'TERMINATIDN *1 

1* TO BE OR'D WITH COMMAND *1 
1* TO BE OR'D WITH COMMAND *1 
1* TO BE OR'D WITH VA~UE IN SOH REG *1 

'0', 1* INDEXING INTO DISK_REG ARRAY *1 
'1', 
'2', 
'3'. 
'4', 
'5'. 

*1 

'01H', 
'02H', 
'SOH', 
'10H', 
'20H', 
'40H', 
'BOH', 1* USER WILL NEVER SEE THIS BIT SET *1 

*1 

'OD7H' , 
'OOlH', 
'002H', 
'.004H', 
'010H', 
'040H', 
'OBOH', 

1***** PROGRAM VARIABLES *****1 ' 

DECLARE CMD_BLK("l) STRUCTURE 

DECLARE COUNT WORD, 

CHAR BYTE, 
ERRORS BYTE, 
COMMAND BYTE. 
STEP_RATE BYTE. 
I WORD, 
12 BYTE, 
BUFFER (! 100) BYTE, 
INDEX WORD, 
~~:~K~S_NOT _BUSY BYTE. 

BYTE, 
PLATTERS BYTE. 
PLAT_CNT BYTE. 
TRACK_CNT BYTE, 
IJACTOR BYTE, 
FRMT _BFFR_SIZE BYTE, 
LOG_SECT_NUM BYTE. 
MAKING_TABLE BYTE. 
AA BYTE. 
INDX BYTE, 

DECLARE DISK_REGS (6) BYTE. 

SNOLIST 
.EJECT 

5-894 

COMMAND 
PRECMP 
S_CNT 
SCTR 
LOWB_CYL 
HIB.:..CYL 
SDHD 
STATUS 
ERRS 
INTERUPT 
RET]ROC 
BUFF _PTR 

BYTE. 
BYTE. 
BYTE. 
BYTE. 
BYTE, 
BYTE. 
BYTE. 
BYTE. 
BYTE. 
BYTE. 
POINTER. 
POINTER) . 

231133-41 

231133-002 



337 

338 2 
339 2 
340 2 
341 2 
342 2 
343 2 
344 3 
345 3 
346 2 
347 2 
348 2 
349 2 
350 2 
351 2 
352 2 
353 2 
354 2 
355 2 
356 2 

357 2 
358 3 
360 4 
361 4 
362 4 
363 4 
364 4 
365 4 
366 4 
367 4 
368 4 
369 5 
371 6 
372 6 
373 6 
374 6 

375 5 
376 5 
377 5 
378 5 
379 4 

380 5 
381 6 
382 6 
383 6 
384 6 
385 6 
386 6 
387 6 
389 7 
390 7 

391 7 
392 7 
393 6 

394 6 
395 6 
396 6 
398 7 
399 7 

400 7 
401 6 

402 6 
403 6 

Ap·182 

1******************************************1 

1********* MAIN PROGRAM *******1 

1******************************************1 

STEP _RATE = OFH, 
PLAT _CNT =OFFH, 
TRACII_CNT =OFFH, 
PLATTERS = 00, 
TRACIIS = 00. 
00 I = 0 TO 5, 

DISII_REGS(I) = 00, 
END, 
DISII_REGS(P_COMP) = OFFH, 
CALL UPDATE_CMD_BLII, 
CMD_BLII(INDX) INTERUPT = 00, 
CALL WRITEA(@(LF,LF,LF,LF,LF,OO», 
CALL WRIT~A(eSIGN ON), 
OUTPUT(OC2H) - OFDH, 1* PERMITS AN INTERRUPT I *1 
INDX = 0, ' 
CMD_BLII( INDX) BUFF ]TR = @BUFFER, 
CALL SET$INTERRUPT(2IH,CHECII DISII). 
~M~. -
DISII_IS_NOT _BUSY = TRUE, 

00 FOREVER, 
IF DISII_IS_NOT_BUSY THEN 00, 

Ct1D_BLII ( INDX) COMMAND = OFFH, 
CALL WRITEA«!(CR, LF, 'COMMAND ;",00», 
CHAR = CI, 
CALL CO (CHAR), 
CALL CO(CR), 
CALL CO(LF), 
COMMAND = FALSE, 
12 • O. 
00 WHILE (COMMAND = FALSE), 

END, 

IF 12 ) LENGTH(VALID_CMDS) THEN 00, 

END, 

CALL WRITEA(e( 'INVALID COMMAND'.CR,LF,OO», 
12 = O. 
CHAR = el, 

IF CHAR = VALID CMDS(12) THEN 
COMMAND = TRUE, 

12=12+1, 

00 CASE <12 - 1), 

1* CASE 0 - READ SECTOR *1 
00, 

CALL WRITEA(e('READ SECTOR COMMAND'.CR,LF.LF.OO», 
CALL WR ITE_REGS, 
DISII_IS_NOT_BUSY - FALSE, 
CMD_BLII(INDX) COMMAND = READ_SECT, 
CALL WRITEA(@('MULTIPLE SECTOR'S? )'.00», 
CHAR. eli 
IF CHAR = 'Y' THEN DO, 

CALL WRITEA(e( 'YES - ',00», 
CMD BLK(INDX).COMMAND. 

- CMD BLK(INDX).COMMAND OR MULT SCTR. 
CALL WRITEA(@('DO NOT EXCEED BUFFER LIMIT ",CR,LF,OO». 

END, 
ELSE CALL WR,ITEA <41( 'NO', CR, LF, 00) ), 

CALL WRITEA(I( 'AUTOMATIC RETRIES? )',00», 
CHAR = CI, 
IF CHAR = 'N' THEN DO, 

END, 

CALL WRITEA(e( 'NO', CR, LF, 00», 
CMD_BLK(INDX) COMMAND = 

CMD_BLII(INDX) COMMAND OR NO_RETRYS, 

ELSE CALL WRITEA(@( 'YES',CR,LF,OO», 

CALL DISK(ICMD_BLII(INDX», 
END. 

5-895 

231133-42 

I,', 

:1 

i'l 

i~ 
I" 

!~ 
i,l 
I" 



404 5 
405 6 
406 6 
407 6 
408 6 
409 6 
410 6 
411 6 
412 6 
414 7 
415 7 

416 7 
417 7 
418 6 

419 6 
420 6 
421 6 
423 7 
424 7 

425 7 
426 6 

427 6 
428 6 

429 5 
430 6 
431 6 
432 ,6 
433 6 
434 6 
435 6 
436 6 
437 6 
438 6 
439 6 
440 6 
441 7 
442 7 
443 6 
444 6 
445 6 
446 6 
447 7 
448 8 
449 8 
450 8 
451 8 
452 7 
454 8 
455 8 
456 8 
457 8 
458 7 
459 7 
460 6 
461 6 
462 6 
463 6 
464 6 
465 6 
466 b 
467 6 
468 6 
469 6 

AP·182 

1* CASE 1 - WRITE SECTOR *1 
DO, 

CALL WRITEA(e('WRITE SECTOR COMMAND',CR,LF,LF,OO», 
CALL WRITE_REGS, 
CALL DATA]AT, 
DISK_IS_NOT _BUSY. FALSE, 
CMD_BLK(INDX) COMMAND - WRITE_SCT' 
CA~L WRITEA(e('MULTIPLE SECTOR'S? )',00», 
CHAR - CI, 
IF CHAR· 'Y' THEN DO, 

CALL WRITEA(e('YES - ',00», 
CMD_BLK(INDXl.COMMAND. 

CMD-PLK(INDX) COMMAND OR MULT SCTR, 
CALL WRITEA(e( 'DD NOT EXCEED BUFFER LIMIT" ',CR,LF,OO», 

END, 
ELSE CALL WRITEA(e( 'NO', CR, LF, 00», 

CALL WRITEA(e('ENABLE RETRIES? )',00», 
CHAR = CI, 
IF CHAR = 'N' THEN DO, 

\ 

END, 

CALL WRITEA(e('NO',CR,LF,OO», 
CMD BLK(INDX).'COMMAND-

- CMD_BLK(INDX) COMMAND OR NO_RETRYS, 

ELSE CALL WRITEA(t('VES',CR,LF,OO», 

CALL DISK(eCMD_BLK<INDX»; 
END, 

1* CASE 2 - FORMAT TRACK *1 
DO, 

CALL WRITEA(!!( 'FORMAT TRACK', CR, LF, LF, 00», 
CALL WR ITE_REGS, 
DISK_IS_NOT_BUSV = FALSE, 
CM~BLK(INDX).COMMAND. FORMAT, 
CALL WRITEA(e(' INTERLEAVE FACTOR? (1 TO ?»',OO», 
I FACTOR. CI - '0', 
CALL CO(IJACTOR + '0'), 
CALL CO(CR)., 
CALL CO(LF), 
FRMT_BFFR_SIZE • (2 * (CMD_DLK<INDX) S_CNT) + I), 

DO I = 0 TO FRMT _DFFR_SIZE, 
BUFFER(I) = 00, 

END, 
LOG_SECT _NUM • 0, 
1- 1, 
MAKING_TABLE • TRUE, 
DO WHILE MAKING_,ADLE; . 

DO WHILE I (= FRMT_BFFR_SIZE' 
BUFFER(I) - LOG_SECT_NUM, 
LOG_SECT_NUM - LOG_SECT_NUM + I, 
I = I +(I_FACTOR * 2), 

END, 
IF LOG_SECT_NUM <,CMD_BLK(INDX) S~CNT THEN DO, 

I • I - (FRMT_BFFR_SIZE + I), 

IF (I • 1) OR (BUFFER(I) () 00) THEN 
I = I + 2, 

END, 
ELSE MAKING_TABLE = FALSE, 

END, 
CALL WRITEA(e('256 TRACKS IS THE LIMIT',CR,LF,OO», 
CALL WRITEA(@('HOW MANv'TRACKS? IN HEX )',00», 
TRACKS = HEXIN(TRACKS), 
CALL CO( CR), 
CALL CO(LF), 
CALL WRITEA(@('HOW MANV SURFACES? I E ,01 )',00»; 
PLATTERS· HEXI!HPLATTERS),i 
CALL CO(CR), 
CALL CO(LF), 
TRACK3NT = 1, 

5-896 

231133-43 

231133-002 



470 0 
471 7 
472 7 
473 8 
474 8 
475 8 
476 8 
477 8 
478 8 
479 8 
480 8 
481 8 
482 8 
483 9 
484 8 
485 8 
486 8 
487 7 
488 7 
489 7 
490 "7 
491 7 
492 7 
493 7 
494 6 
495 6 
496 0 

497 5 
498 6 
499 6 
500 6 
501 6 
502 6 
503 6 

504 5 
505 6 
506 6 
507 6 
508 6 
509 6 
510 0 

511 5 
512 6 
513 6 
514 6 
515 6 
510 6 
517 0 

518 5 
519 6 
520 6 
521 6 
522 6 
523 6 
524 6 

525 5 
526 6 
527 6 
528 6 

529 5 
530 6 
531 6 

AP-182 

DO WHILE TRACK_CNT <= TRACKS, 
PLAT CNT = 1, 
DO WHILE PLAT CNT <= PLATTERS. 

END, 

CALL UPDATE_CMD_BLK, 
CALL CO(CR), 
CALL WRITEA(@( 'TRAC'" = ',00». 
CALL DISP HEX(@TRACK CNT,I), 
CALL WRITEA(&(', HEAD = ',00», 
AA = DISK REGS(SDH) AND 07H, 
CALL DISP :HEX «!AA, I). 
CMD BLK(INDX) COMMAND = FORMAT. 
CALL DISK(@CMD_BLK(INDX», 
DO WHILE CMD_BLK( INDX) COMMAND '::; 00, 
END. 
PLAT_CNT • PLAT_CNT + 1, 
DISK_REGS(SDH) = DISK_REGS(SDH) + 1, 

DISK_REGS(SDH) • DISK_REGS(SDH) - (PLATTERS), 
DISK_REGS(CYL_LB) = DISK_REGS(CYL_LB) + 1. 
IF DISK_REGS(CYL_LB) = 00 THEN 

DISK_REGS(CYL_HB) DISK_REGS(CYL_HB) + 1. 

END. 

END. 

TRACK CNT = TRACK CNT + 1,· 
CALL UPDATE_CMD_BLK, 

CALL CO(CR), 
CALL CO(LF), 

1* CASE 3 - SCAN ID *1 
DO, 

CALL WRITEA(I(' SCAN ID',CR,LF,LF,OO», 
CALL WR ITE REGS, 
DISK_IS_NOT_BUSY - FALSE, 
criD_BLK( INDX). COMMAND = SCAN_ID. 
CALL DISK(@CMD BLK(INDX». 

END, -

1* CASE 4 - SEEK TRACK *1 
DO, 

CALL WRITEA(@('SEEK TRACK',CR,LF,LF,OO», 
CALL WR ITE_REGS, 
CMD_BLK(INDX) COMMAND = SEE'" OR STEP_RATE, 
DISK_IS_NOT_BUSV = FALSE, 
CALL DISK(@CMD BLK(INDX», 

END. -
1* CASE 5 - RESTORE *1 
DO, 

CALL WRITEA(& (' RESTORE COMMAND', CR, LF, LF, 00) ), 
CALL WR ITE REGS. 
CriD_BL .... ( INDX) COMMAND = RESTORE OR STEP _RATE, 
DISK 15 NOT BUSY = FALSE, 
CALL-DISK(I!CMD BLK(INDX». 

END, -

1* CASE 6 - READ DISK REGISTER FILE *1 
DO, 

CALL WRITEA(@(' READ DISK REGISTERS',CR.LF.LF,OO», 
CMD_BLK(INDX) COMMAND = 99H, 
CALL DIS"'(I!CMD BLK(INDX», 
CALL 0 ISP _CMD JILK, 
CMD_BLK(INDX) COMMAND = OFFH, 

END, 

1* CASE 7 - HELP TABLE *1 
DO. 

END, 

CALL WRITEA(I!HELP), 
CALL CO(LF), 

1* CASE 8 - EXAMINE COMMAND BLOCK *1 
. DO, 

CALL DISP _CMD_BLK, 
END, " 

5-897 

231133-44 

231133-002 



AP-182 

1* CASE 9 - DISPLAY BUFFER DATA *1 
DO. 532 5 

533 6 
534 6 
535 6 
536 6 
537 6 
538 6 
540 7 
541 7 
542 8 
543 9 
544 9 
545 8 
546 8 
547 8 
548 7 
549 6 
551 7 
552 7 
553 8 
554 8 
555 8 
556 8 
557/ 7 
55B 6 

CALL WRITEAC(!C 'DISPLAY ASCII<A) OR HEX (H) 0 >'.00». 
CHAR = CI. 

559 
560 
561 
562 
563 

564 
566 
567 
568 

569 

570 
571 

5 
4 
3 
4 
4 

3 
4 
4 
4 

3 

2 
1 

END. 

END. 

CALL COCCHAR). 
CALL COCCR). 
CALL CDC LF). 
IF CHAR = 'A' THEN DO. 

END. 

INDEX = O. 
DO WHILE CHAR <> ESC. 

END. 

DO I = 0 TO 255. 
CALL COCBUFFERCINDEX + I». 

END. 
INDEX = INDEX + I. 
CHAR = eI. 

IF CHAR = 'H' THEN DO, 
INDEX = O. 

END. 

DO WHILE CHAR <> ESC. 

END. 

CALL DISP_HEXC(!BUFFERCINDEX).256). 
INDEX = INDEX + 256. 
CHAR = CI. 

END. 1* DO CASE *1 
END, 1* IF *1 
ELSE DO. 

CALL WRITEAC@C'*** DISK IS BUSY ***·.CR.OO». 
END, 

IF ,CMD_BLKCINDX) COMMAND = 00 THEN DO, 
DISK_IS_NOT_BUSY'= TRUE. 
CALL DISP STATUS. 

END, -

1* FOREVER *1 

END MAIN, 
END HOST _MODULE. 

MODULE INFORMATION 

CODE AREA SIZE = OFD8H 
CONSTANT AREA SIZE = 093CH 
VARIABLE AREA SIZE = 0480H 
11AXIMUM STACK SIZE = 003EH 
868 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY 

31KB MEMORY AVAILABLF 
12KB MEMORY USED C38%) 
OKB DISK SF-ACE USED 

END OF PL/M-86 COMPILATION 

40560 
23640 
11520 

620 

5-898 

231133-45 

231133-002 



-
15 iiiiiD 

-PI IIP1 

22 iiCiO ~~ 14 1 +IY 

, -PI ~4 IIP1 
1 .SY 

20 iiCii 
74LS1" • 12 ... 11 

-PI 
~ 13 RP1 

74LS12I 5 1 +SY 
"13 ilWiiii .... - -'PI ~1O 
iCi 

: --

i 
l 11P1 3 

iii +IY 

MAl -
+5V 

I 
1 
IIP1 

iCii 2 

7 MAl 
-PI I - llIAl 

PI 

.... "_ I 
~7 • - PI 

SIIEIIET 

~~I 74LSIM 
I .. 1 

Wt 
- -

- - -
RPI-

.sv 1 
71 

~-X4 
2 D PR at!-74LS04 Ll t..... 2 

.... UDt I.! 
U82 

I>CLR Q p.!... 
.~S08 1 74S08 

2 3 y, 
I. f<7" -

• 02A - ~ L..rfc - '10 
G28 Y1 14 

G1 '1:1 13 
3 c _ 

~ 2 8 741131!! 
~ 1 A !! 

VI ~ ii 
IIA2 W p!- -

• 74S08 

10 :JIJII!, • 4 iii 1ii II 

I iiiii Vi ~ 8 
G1 'it 1-

3 12 

~3 C 741131 Vi ~ 2 
B Vi 

1 
A Vi ~ • VI 

1M3 wi>!-

. 

-

TTL 
DELAY 
UNE -TAP 

U8t 

-
lORD 

IIIWAIT ~ ::> ,. 
'.SY 

~ 74L812t 
4 2 3 iiiiiii 

~ 1 fllAl • 
~ IIP1 

~ 
1 

+IY 

iiiWii 

iiiiCii 
~ 

m 

-
iiiiiiiL 

L'fiiii"iijjj 

IIA 
MR 

INTeL CORPORATION 

TITLE 
82082 sax 

S:E / CODE / NUMBER J/"EV O82AIIY.OWQ A 
DATE JUNE 1 ... 'SHEET 1 OF 4' 

-
231133-31 

-~~..-..-~""" ....... "'"" 

I 

-

I 

~ 

I 

, 

CI)> 
(')-U 
%-U 
rnm 
:S:Z »0 
::! )(" 
~(') 

-=- .~-«=~ ~-~"" -:- - .--



RAMSEL 

BOWR 13 74508 ~ 9 74LS04 8 1 ~ 
UB3 

11 10 ue1 8 1QA~~ I BCRD 12 
UD1 r2- R1 10B ~ ~ 

1QC ~r¥.-
74LS393 100 ~ ? 

~ ~-----2QA ~ 
~R2 2Q81;0:: 

2QC~ 

UE1 200~ 

~ 

74508 74LS04 ~ ~ lQA ~ IOSCR 
5 612 2 4 A9 

BeR 4 UB3 -:~ R1 lOB ~ 

UD1 74LS393 ~~~ ~ * ~ RP2 2 .rli-< ~-----2QA fo-
R2 :~~ t= 

UE2 zoo"";"'" 

MOO 33 2 
AD 

~ 1! 

MDt 31 3 
A1 ' 

I M0229 4 
A2 

Moa 27 , 5 
A3 

MD4 25 • A4 
MOS 23 7 AS 74LS245 B5 13 
MOG 21 8 AS B6 12 
MD719 • A7 B7 11 
lORD 1 

T 

~ 10 1Q 2 
HDSELO 
HOSEL1 

OS 
OE ue2 

~2D 20 5 
HDSEL2 

1. ~3D 30 6 
T 1, B-OUTPUT 40 4Q 9 DSELO,1 

13 50 74LS374 sa 12 DSEL2,3 

~80 .Q~ .g7D 7Q~ 
~80 8Q~ iTCHSffii 
11 CEq UD2 0 

~ • , 7 , 6 , 5 , 4 

c;; 
'" 
~ 

eLR 

8 • 7 
AD o. 
A1 01 10 

• A2 02 11 

• A3 03 13 

• A4 o.~ 
3 

AS 05 rii--2 201. 
1 

AS D6";t-
23 A7 D7 

22 AS 
A9 ,. 
AtO UE3 

~ WECi OE 
V18 2. 

A11 

D. 
D1 
02 

03 

O. 

• D. 
DO 
D7 

INTEL CORPORATION 

• TITLE 
82062 sax 

S~E 1 CODE ,NUMBER ,l REV 
062PAL2.DWG A 

DATE SEPT 1984 SHEET 2 OF 4 

, 3 2 , 1 

113332 INT 023 

~ 

! 
011 
N 



iOiiiiDV 

~ 

~7'S7' A'0 
1 RP2212 D PR QL MDRQT 

P1> 
E1 E3 * MINTR1 

~~> 
E2f::±E' 

...... ~ 
A11 11 UB2 ~:~ 11 ~ MINTRO 14> 

CK CLR (le!-
V 74Ls32 

~ CTO 26LS31/4 ..:. 
¥,3 

10 74S08 7.LS04 ,1:...07'0 CLR 
flL Mil~8 11);; 10 WG6 

BRDY 
9~4068 'liD1 003 BCR 2 BCR 2. RWC2 WG 

BCS 3 1 1 
BCS RWC 

33 ~U11 11 7406 10 

~ LL 27 STEP 24 

Mil 
INTRQ STEP ~UI1 13~06'2 74508 5 Mil DIR 

26 OIR IN 34 
BDRD 6 AD ~FROMUH2 +;UI1 7 BDWR 7 

WCLK 
WR 74LS14 rvvv- INDEX 20";';' CS 8 CS INDEX 

29 6 ..... 5 

c...2L BORa TRKOO 31 7'LS!1 UK1 -wv-~ TRACK 000 10 

r-+. AD sc 32 
UK1 7:LS1~ >-'VVV"' .rJIM-MA 30 SEEK COMPLETE 8 

A1 WR FAULT 

'---* A2 DRDY 
28 I ~~'3 UK1 ~ WRITE FAULT 12 

DO 19 
DO 82062 

5102 

WR DATA I UK1,~~14, ~~ D1 18 21 PULWP READY 22 
D1 WD 

02 17 02 RC 39 RDCLK UK1 ~ ~~ "":i;-
D3 16 03 RD 37 RDDATA SHT 4 ~ 7 NOTE ALL UNUSED CONN D. 15 04 RG 38 RDGATE 
05 14 05 34 PINS ARE TIED TO GRND 

DRUN DRUN 
06 13 06 LATE 

22 
LATE 

D7 12 D7 EARLY 
23 

EARLY 

! 
~ 

7.06 
UF3 HD014-HDSElO 

HDSEL1 UI1 3 7406 4 H01la 

HDSEL2 5 7406 6 ~1 HD2 4 

UI1 74155 7'07 
DSO 26 1 2 

2G 1YO UD3 
7407 

Ds128 3 • 1Y1 
7'07 

1Y2 
UD3 05230 5 6 INTEL CORPORATION 
7407 1C UD3 DS3 32 DSEL2,3 8 

DSELO.1 
B TITLE 13 
A UD3 J1 82082 sax 

SIZE REV 

a A 
UC3 '" ~ 

~ 
lG 

-;"',- ~~ i!ji t:t.oa il-_------:;=-:;:- --=-- ~ ~;~ 



~ 

'" ~ 
c;; 
'" 6 
0 

'" 

o 

-

c 

8 

.. sv 
t-

3Bl WI'! DATA 
1 R~2 

B13B1Wi:.V 

'1 RP2 

381 LATE 

-I4A81OMHZ 

AI 

,301 AWe 

a 

i 7 

PUP! 

7 I G I 

-12 ns 

.. 12 ns 
n' 

5 I 

lC8,4B6 
405 

4 

1 3 L 2 I 

o 

I-

C 

1'Ri151 

26LS31 

6 z:i:lINC wr ~IN~ OUTA"ff2 OUTA- 3 
OUTI)- 13 
OUTO .. 14 

l­

t-UK2 

STB 

~17 

1 3 

INB OUTB .. 

INA OUTB-

EN OUTC-
11 13 

EN UL20UTC .. 
10 14 

-
INTEL CORPORATION 

IA ~ln~T~LE~~--82--06-2~S:.x:------- I 

r- --2 
231133-34 

REV 
A 

)10 

l' .... 
~ 



APPENDIX D 

This appendix contains a schematic of the previous design using PAL's to replace the random logic. The previous 
design could not do DMA transfers and inserted a large delay when transferring data from butTer RAM to the 
system. The PAL version does do DMA transfers and butTer reads happen at full SBX bus speed. One other minor 
change was to replace the 500 ns delay line with a 74LSl64, which is a more cost effective solution. 

This schematic is only a paper design since only random logic was replaced with the PAL's. 
PAL Equation 's 

PAL - Page 1: 
BDRDI = (IORDI • MDACK/) + (IORDI • MCSOI • MAO • MAl • MA2) + 

(DELAYED-READI • CLK) IF BCS 

LTCHSDHI = (MCSOI • MAOI • MAl * MA2 • IOWR/) 

RAMSELI (MCSO • MAO • MAl • MA2) + (BCS/) + (MDACK/) 

IOBRDYI (MCSll • MAOI • MAl • MA21 • IOWR/) 

IOBCRI = (MCSll • MAO • MAli • MA21 • IOWR/) 

BDWRI = (IOWR/) IF BCS 

CSI = (MCSO/) IF BCS 

CLK = (MCSOI • MAO • MAli • MA2/) + (MCSOI • MAOI • MAl • MA2/) + (MCSOI 
• MAO • MAl • MA2/) .+ (MCSOI • MAOI • MAli • MA2) +'~(MCSOI • MAO • MAli • 
MA2) + (MCSOI • MAOI • MAl • MA2) + (MCSOI • MAO • MAl • MA2) 

PAL - Page 2: 
MINTR1/MDRQT = (PlNl) 

MINTRO = (PIN2) + (INTRQ) 

COUNT = (BDWRI + BDRD/) • (RAMSEL/) 

RSTCOUNT = (IOBCR/) + (BCR/) 

OEI = (MDACK/) + (CS/) 

CLRI = (IOBCR/) + (BCR/) 

5-903 231133-002 

I; 
I~ 
I~ 
I~ 



3 2 

D 
D 

4AI .. I> 

API 

I I I 1D~ ~ 1K ~ ~ I DaAVED READ '- • ~ ~ ~ 
C 

~ ",~ : I !' 1 :1 1= ~I ' 1 I -- >CO I I ~ § l ftft .... _ _ _ ••• _ .... r N 

8 

UD1 

INTI!L CORPORATION 
A 

~~ ________________ ~IA 

'" .~ 7 8 5 4 3 

~ 
231133-35 



8 

D 

c 

~ 

B 

A 

~ 8 
;;; 
'" b 
o 
'" 

7 

3D1 8DRQ W1 

~I~t:° 4 
3Dt 

tit 
tet 

3CI 
tit 
tat 
tat 

tAt 

tet 

tit 

INTRO 

-.. 
lOW" -...... 
C2 

I08CR 

MDACK 

_os _st _ .. _17 
MD4H 

MOl .. 

MOl'" 

-" lORD 

ifiiiiiii 

• 
0 

I 

• 
7 

• • 

• • 
0 

I 

• 
7 

• • , 
~ 

7 

8 

WI 

~~I PAL , .... 
to 
r;r 

17 CI." 
to COUNT 
to RlTCOUNT 

~ 

5l 
INTRO ON IIDfIQ W2. W4, W7, WI 
1NTR1 ON BORG W1, W3, WI. W7 
IIDRQT ON IDAQ .,, WI, WI. WI 

_os 

" III .. 
17 

At It 

AI 
.. 

82 t. 
AS IS 

t. 
AI .. 

13 
AS 80 

12 
AI II 1t 
A7 117 
T 

Oiuca 

T-1, a-OUTPUT 

8 

5 4 3 

II 
~ 

t tOA ~~ ~ III 
'., taB ~~ ~ At DO' 

74LS313 toe ~ ~ ~ AI D1: 
,aD -:\"'~ ~ AS DO " >---- 11 M 4 11 .;;c -~ ~AI DO 

~ R2 2G1 ~ H. AS 201' D4 14 

CUi 

2 _ .. 
.mit t2 

. :> 

.:> 
jiLiL: :3 -V 

- +4 H- AI as to 
UEt ..... T ~A7 DO~ 

,*AI Q7~ 
~ ~AlUES .sv t ~ tOA +..;. ~ A10 

, -.L., tQ8~ ~WECiOi 
RP2 74LS313 lQC +* " 20 

tao 

2 ~:F---D ~ -.. --=--..;-
UE2 ..... ~ 

74L .... 

• a HDSEUI 
to ta • 2D 3D • HD8EI. .... 

7 • HD8EI.l 

• 3D 3D • DSEU,t ".. 
4Q 4Q 

to .. OIIEU •• 

11 'l1li)' -
DO 
Dt 

DO 
DO ... 
DC 
as 
DO 
Q7 

INTELCORPC 'ORATION 

D 

C 

B 

------II A sa sa 
~ sa IQ~ TITLE 
H;- 1D 7Q~ 

* ID IQ~ 

OE~ V UDO 

5 4 3 

82082 S 

SIZE CODE I NUMBER 
B ----DATE SEPT 1984 

2 

ax 
REV 

0I2PAL2.DWG I A 
·SHEET 20F 4 

231133-32 

l> 
l' .... 
011 
~ 

--:~~~-~---=~..;~~,.-- -;-"'~~;.o..~_~--- -_ -~-=-~"'~:;;';~~ 



C1I 
I 

<0 

al 

'" ~ 
c;; 
':' 
o 
o 
'" 

lBl 

0 2CI 

2Dl 

2C8 

lAl 
lBl 
leI 
lBl 

c lBl 

2Bl 

B 
2Al 

2Al 

2Al 

A I 2Al 
2Al 

I 7 

iOiiiiiiY 

+ 5V ~. 74S74 -.! 10 

~ PRol' 
STBADV 11 CK ~ II ~ 

eLlI J13 

BCR 

iii 
BORD 
BOWR 
cs 

AQ.2 

DO 
D1 
D2 
D3 
DC 
D5 
DB 
D7 

7408 
HDSELO 

HDSEL1 un 3 7408 4 

HDSEL2 57401 6 un 

Ull 

+5Y 

DSEL2.3 
DSELO.l 

8 7 

8 

1~11 
lUUaa) --35 BRDY 

2 BCR 24 
WG 

1 BCS 33 
AWe 

~ INTRO STEP 
27 

5 iii 26 
DIR 

6 25 AD WCLK 
7 WR 
8 cs INDEX 2' 

~ BDRQ TRKOO 
31 

AU 9 AU se 32 

~ 
30 Ai WR FAULT 

A2 11 
A2 DRDY 28 

I' DO 82082 
18 Dl. 21 WD 
17 D2 RC 3. 

16 D3 RD 
37 

15 DC RG 38 

14 os DRUN 34 

13 DB LATE 
22 

12 D7 EARLY 
23 

UF3 

74155 

lYO 7 

lYl 8 

lY2 
Ie 
B 

13 
A 

UC3 

I 

5 4 3 

rWGEN 484 
10 74$08 74LS04 Il~10 lAl iii~8 l1Jo" 10 

Uo3 ~088 UDI 

I PUll 1~0610 

2 

WG6 

AWe 2 

STEP 24 

_ORO 
INTRO 

BCS 

AWe 

-

208 
208 

lea 
4A8 '0 

PUll _13l.408..l2. DIR IN 34 

WCLK 488 

I 
510 

WR DAllI ;;=t PULWP 

RDCLK 4C8 
RD DATA 4C8 
RD GATE eel 
DRUN 4Dl 
EARLY 488 
LATE 4B8 

7407 
1 2 

UD3 
7407 

3 

7407 UD3 5 

UD3 7407 

UD3 

5 4 

~un t 

~ ~ 
7~~~ UKI ~ 

UKI 7:~~ JINo. 

'4~~: UKI 
UKl1~~141 r--.rI\M-

UKI ~~ 
~~ 

iiiiii14-

iiiii 18 

HD2 4 

DS028 
iiii28 
DS230 

iiii32 
TITLE 

.II 

SIZE 
B 
DATE 

3 

7,-
INDEX 20 -

TRACK 000 10 c 
SEEK COMPLETE 8 

WRITE FAULT 12 

READY 22 

T 

B 

INTEL CORPORATION 
----I A 

82082 sax 
NUMBER 

SEPT 1114 

2 

082PAL3.~ 
REV 

'WGI A 
SHEET 30F 4 

231133-33 

~ 
l' .... 
011 
t.) 



a 7 & 5 4 3 2 

+5V PLL 

+5V 

- DP8460 I " "' .. I 
2 R1 1 

DRUN 381 
RP3 

26LS32 10 

PUP1 
UG2 

265n. 
CLR 

3 

.~ un;,: 
11 L _.. ~!.. 

~E UL1 INA-r. S- ~~ I IC 

8 Htr .. 1 '-' J2 
C1I ~381 RO'DA1l' 

~-J 
:.. 

cb 381 1 RP2 28LS31 " ~ 
• 

6 2 -INC OUTA+ CIt 

381 WR DATA 
7 ,. I\) 

1 RP2 

8 '381 EARLY 

1 ~~ 

~.~ 
3B1 LATE ~LR I I 

OUTB- 8 9 

lllA 1301 WGEN 4 r= OUTC- 11 
WCLK 3C4 

10 B 
UK2 12 = 

4A610MHZ 9 - _ .. _ 10 

"'1.101 I I T PUP1 OUT 

t 
10MHz 1 ca, 4B8 INTEL CORPORATION 

A I UF1 4D5 A 
20MHz TITLE 

82062 sax 
NUMBER REV 

3D1 AWC ... A 

'" DATE SEPT 1984 
~ 
C;; 8 7 6 5 4 3 2 

'" b 231133-34 
0 

'" 

-~~-,:-~*"-~-~~ .. ~--"",-- . @j'FF:iiir= __ -~~~::-~ 
:--~~~-@¥iii-yp-~c-i! -- -..-;;o.~-~~.;;,.-~~-::=-:-~ -.--.-



ICE™ -42 
8042 IN-CIRCUIT EMULATOR 

• Precise, full-speed, real-time emulation • Full symbolic debugging 
Load, drive, timing characteristics 

Single-line assembly and disassembly Full-speed program RAM • 
Parallel ports for program instruction changes 
Data Bus 

• Macro commands.and conditional 
• User-specified breakpoints block constructs for automated 

• Execution trace debugging sessions 

User-specified qualifier registers 
HELP facility: ICETM-42 command Conditional trigger • 

Symbolic groupings and display syntax reference at the console 
Instruction and frame modes 

User confidence test of ICETM-42 • 
• Emulation timer hardwar.e 

The ICETM_42 module resides in the Intel/ec Microcomputer Development System and interfaces to 
any user-designed 8042 or 8041 A system through a cable terminating in an 8042 emulator micropro­
cessor and a pin-compatible plug. The emulator processor, together with 2K bytes of user program 
RAM located in the ICE-42 buffer box, replaces the 8042 device in the user system white maintaining 
the 8042 electrical and timing characteristics. Powerfullntellec debugging functions are thus extended 
into the user system. Using the ICE-42 module, the designer can emulate the system's 8042 chip in 
real-time or single-step mode. Breakpoints allow the user to stop emulation on user-specified' 
conditions, and a trace qualifier feature allows the conditional collection of 1000 frames of trace data. 
Using the single-line 8042 assembler the user may alter program memory using the 8042 assembler 
mnemonics and symbolic references, without leaving the emulator environment. Frequently used com­
mand sequences can be combined into compound commands and identified as macros with user­
defined names. 

© INTEL CORPORATION, 1983 5-908 
MAY 1983 

ORDER NUMBER: 210818-002 



inter ICETM_42 IN-CIRCUIT EMULATOR 

FUNCTIONAL DESCRIPTION 

Integrated Hardware and Software 
Development 

The ICE-42 emulator allows hardware and soft­
ware development to proceed interactively. This 
approach is more effective than the traditional 
method of independent hardware and software 
development followed by system integration. 
With the ICE-42 module, prototype hardware 
can be added to the system as it is designed. 
Software and hardware integration occurs while 
the product is being developed. Figure 1 shows 
the ICE-42 emulator connected to a user 
prototype. 

The ICE-42 emulator assists four stages of 
development: 

SOFTWARE DEBUGGING 

This emulator operates without being connected 
to the user's system before any of the user's 
hardware is available. In this stage ICE-42 de­
bugging capabilities can be used in conjunction 
with the Intellec text editor and 8042 macro­
assembler to facilitate program development.' 

HARDWARE DEVELOPMENT 

The ICE~42 module's precise emulation charac­
teristics and full-speed program RAM make it a 
valuable tool for debugging hardware. 

SYSTEM INTEGRATION 

Integration of software and hardware begins 
when any functional element of the user system 
hardware is connected to the 8042 socket. As 
each section of the user's hardware is 
completed, it is added to the prototype. Thus, 
each section of the hardware and software is 
"system" tested in real-time operation as it be­
comes available. 

SYSTEM TEST 

When the user's prototype is complete, it is 
tested with the final version of the user system 
software. The ICE-42 module is then used for 
real-time emulation of the 8042 chip to debug 
the system as a completed unit. 

The final product verification test may be per­
formed using the 8742 EPROM version of the 

8042 microcomputer. Thus, the ICE-42 module 
provides the ability to debug a prototype or pro­
duction system at any stage in its development 
without introducing extraneous hardware or soft­
ware test tools. 

Symbolic Debugging 

The ICE-42 emulator permits the user to define 
and to use symbolic, rather than absolute, refer­
ences to program and data memory addresses. 
Thus, there is no need to recall or look up the ad­
dresses of key locations in the program, or to 
become involved with machine code. 

When a symbol is used for memory reference in 
an ICE-42 emulator command, the emulator sup­
plies the corresponding location as stored in the 
ICE-42 emulator symbol table. This table can be 
loaded with the symbol table produced by the as­
sembler during application program assembly. 
The user obtains the symbol table during soft­
ware preparation simply by using the "DEBUG" 
switch in the 8042 macroassembler. Further­
more, the user interactively modifies the emula­
tor symbol table by adding new symbols or 
changing or deleting old ones. This feature pro­
vides great flexibility in debugging and minimizes 
the need to work with hexadecimal values. 

Through symbolic references in combination 
with other features of the emulator, the user can 
easily: 

• Interpret the results of emulation activity col­
lected during trace. 

• Disassemble program memory to 
mnemonics, or assemble mnemonic instruc­
tions to executable code. 

• Reference labels or addresses defined in a 
user program. 

Automated Debugging and Testing 

MACRO COMMAND 

A macro is a set of commands given a name. A 
group of commands executed frequently can be 
defined as a macro. The user executes the 
group of commands by typing a colon followed 
by the macro name. Up to ten parameters may 
be passed to the macro. 

Macro commands can be defined at the begin­
ning of a debug session and then used through­
out the whole session. One or more macro defini­
tions can be saved on diskette for later use. The 
Intellec text editor may be used to edit the macro 
file. The macro definitions are easy to include in 
any later emulation session. 

5-909 210818-002 



. intel" ICE™ -42 IN-CIRCUIT EMULATOR 

The' power of the development system can be 
applied to manufacturing testing as well as 
development by writing test sequences as 
macros. The macros are stored on diskettes for 
use during system test. 

COMPOUND COMMAND 

Compound commands provide conditional exe­
cution of commands (IF command) and execu­
tion of commands repeatedly until certain condi­
tions are met (COUNT, REPEAT commands). 

Compound commands may be I)Jested any 
number of times, and may be used in macro 
commands. 

Example; 

"DEFINE .1 =0 
"COUNT 100H 

.*IF.I AND 1 THEN 

.. "CBYTE.I=.1 

.. "END 

.".1-.1+1 

.*END 

; Define symbol .I to 0 
; Repeat the followir;Jg 
commands 100H times . 

; Check if .1 is odd 
; Fill the memory at 
location .I to value .I 

; Increment.l by 1. 
; Command executes 
upon carriage-return 
after END 

(The asterisks are system prompts; the dots, 
indicate the nesting revel of compound 
commands.) 

Operating Modes 

The ICE-42 software is an Intetiec RAM-based 
program that provides easy-to-use commands 
for initiating emulation, defining breakpoints, 
contrOlling trace data collection, and displaying 
and controlling system parameters. ICE-42 com­
mands are configured with a broad rl,\nge of 
modifiers that provide maximum flexibility in de­
scribing the operation to be performed. 

EMULATION 

The ICE-42 module can emulate the operation of 
prototype 8042 system, at real-time speed (up to 
12M Hz) or in single steps. Emulation commar,lds 
to the ICE-42 module control the process of set­
ting up, running, and halttng an emulation of the 
user's 8042-based system. Breakpoints and tra­
cepoints enable the ICE-42 emulator to halt emu­
lation and provide a detailed tf8ce of execution 
in any part of the user's program. A summary of 
the emulation commands is shown in Table 1. 

Table 1 Major Emulation Commands 

I 

Command Description 

GO Begins real-time 
emulation and optionally 
specifies break 
conditions. 

BRO, BR1, BR Sets or displays either or 
both Breakpoint Registers 
used for stopping 
real-time emulation. 

STEP Performs single-step 
emulation. 

QRO,QRl Specifies match 
conditions for qualified 
trace . 

~ 

TR Specifies or displays 
trace-data collection 
conditions and optionally 
sets Qualifier Registe.r 
(QRO, QR,l). 

Synchronization Sets and displays status 
Line Commands of synchronization line 

outputs or latched inputs. 
Used to allow real-time 
emulation or trace to start 
and stop synchronously 
with external events. 

Breakpoints 

The ICE-42, hardware includes two breakpoint 
< registers that allow halting of emulation when 

specified conditions' are met. The emulator con­
tinuously compares the values' stored in the 
breakpoint registers with the status of specified 
address, opcode, operand" or port values, and 
halts emulation when this comparison is 
satisfied. When an instruction initiates a break, 
that ins'truction is executed completely before 
the break takes place. The ICE-42 emulator then 
regains control of the console and' enters the in­
terrogation mode. With the breakpOint feature, 
the user can request an emulation break WhEln 
the, program: 

• Executes an instruction at a specific address 
or within a range of addresses. 

5-910 240818-002 



intel" ICE™·42IN·CIRCUIT EMULATOR 

• Executes a particular opcode., 

• Receives a specific signal on a port pin. 

• Fetches a particular operand from the user 
program memory. 

• Fetches an operand from a specific address 
in program memory. 

Trace and Tracepoints 

Tracing is used with real-time and single-step 
emulation to record diagnostic information in the 
trace buffer as 1'1 program is executed. The infor­
mation collected includes opcodes executed, 
port values, and memory addresses. The ICE-42 
emulator collects 1000 frames of trace data. 

If desired this information can be displayed as 
assembler instruction mnemonics for analysis 
during interrogation or single-step mode. The 
trace-collect!on facility may be set to run condi-

tionally or unconditionally. Two-unique trace 
qualifier registers, specified in the same way as 
breakpoint registers, govern conditional trace 
activity. The qualifiers can be used to condition 
trace data collection to take place as follows: 

• Under all conditions (forever). 

• Only while the trace qualifier is satisfied. 

• For the frames or instructions preceding the 
time when a trace qualifier is first satisfied 
(pre-trigger trace). 

• For the frames or instructions after a trace 
qualifier is first satisfied (post-triggered 
trace). 

Table 2 shows an example of trace display. 

INTERROGATION AND UTILITY 

Interrogation and utility commands give conve­
nient access to detailed information about the 

Table 2 Trace Display (Instruction Mode) 

FRAME LOC OBJ INSTRUCTION Pl P2 TO T1 DBYIN YOUT YSTS TOVF 

0000: 100H 2355 MOV A,#55H FFH FFH 0 0 66H DFH 02H 0 
0004: 102H 39 OUTL Pl,4 FFH FFH 0 0 66H DFH 02H 0 
00011: 103H 3A OUTL P2,A 55H FFH 0 0 66H DFH 02H 0 
0012: 104H 22 IN A,DBB 55H 55H 0 0 66H 02H 0 
0014: 105H 37 CPL A 55H 55H 0 0 DFH 02H 0 
0016: 106H 02 OUT DBB,A 55H 55H 0 0 66H OOH 0 
00111 : 107H BA03 MOV R2,#03H 55H 55H 0 0 66H 99H OOH 0 
0022: 109H BII40 MOV RO,#.TABLEO 55H 55H D 0 66H 99H 01H 0 
0026: 10BH B9I:;{) MOV Rl,#.TABLEl 55H 55H 0 0 66H 99H 01H 0 
.LOOP 
0030: 10DH FO MOV A,@RO 55H 55H 0 0 99H D1H 0 
0032: 10EH Al MOV @Rl,A 55H 55H 0 0 66H 01H 0 
0034: 10FH 111 IN.C RO 55H 55H 0 0 99H 01H 0 
0036: 110H 19 INC Rl 55H 55H 0 0 66H 01H 0 
00311: l11H EAOD DJNZ R2,.LOOP 55H 55H 0 0 66H 99H 01H 0 
.LOOP 
0042: 10DH FO MOV A',@RO 55H 55H 0 0 99H 01H 0 
0044: 10EH Al MOV @Rl,A 55H 55H 0 0 66H 01H 0 
0046: 10FH 111 INC RO 55H 55H 0 0 99H 01H 0 
00411: 110H 19 INC Rl 55H 55H 0 0 66H 01H 0 
0050: l11H EAOD DJNZ R2, .LOOP 55H 55H 0 0 66H 99H 01H 0 
.LOOP '-

0054: 10DH FO MOV A,@RO 55H 55H 0 0 99H 01H' 0 
0056: 10EH Al MOV @Rl,A 55H 55H 0 0 66H 01H 0 
00511: 10FH 111 INC RO 55H 55H 0 0 99H 01H 0 -
0060: 110H 19 INC Rl 55H 55H 0 0 66H 01H 0 
0062: l11H EAOD DJNZ R2,.LOOP 55H 55H 0 0 66H 99H 01H 0 
0066: 113H 00 NOP 55H 55H 0 0 99H 01H 0 

5-911 210818-002 

I; 
I:: 
I 
'. 



ICETM_42 IN-CIRCUIT EMULATOR 

user program and the state of the 8042 that is 
useful in debugging hardware and software. 
Changes can be made in memory and in the 
8042 registers, flags, and port values. Com­
mands are also provided for various utility opera­
tions such as loading and saving program files, 
defining symbols, displaying trace data, controll­
ing system synchronization and returning control 
to ISIS-II. A summary of the basic interrogation 
and utility commands is shown in Table 3. Two 
additional time-saving emulator features are dis­
cussed below. 

Single- Line Assembler IDisassembler 

The single-line assembler/disassembler (ASM 
and DASM commands) permits the designer to 
examine and alter program memory using as­
sembly language mnemonics, without leaving 
the emulator environment or requiring time­
consuming program reassembly. When assem­
bling new mnemonic instructions into program 
memory, previously defined symbolic references 
(from the original program assembly, or subse­
quently defined during the emulatiol') session) 

Table 3 Major Interrogation and Utility Commands 

Command Description 

HELP Displays help messages for ICE-42 emulator command-entry assistance. 

LOAD Loads user object program (8042 code) into user-program memory, and 
lIser symbols into ICE-42 emulator symbol table. 

, 

SAVE Saves ICE-42 emulator symbol table a.nd/or user object program in ISIS-II 
hexadecimal file. 

LIST Copies all emulator console input and output to ISIS-II file. 

EXIT Terminates ICE-42 emulator operation. 

DEFINE Defines ICE-42 emulator symbol or macro. 

REMOVE' Removes ICE-42 emulator symbol or macro. 

ASM Assembles mnemonic instructions into user-program memory. 

DASM Disassembles and displays user-program memory contents. 

Change/Display Change or display value of symbolic reference in ICE-42 emulator symbol 
Commands table, contents of key-word references (including registers, I/O ports, and 

status flags), or memory references. 

EVALUATE Evaluates expression and displays resulting value. 

MACRO Displays ICE-42 macro or macros. 

-
INTERRUPT Displays contents for the Data Bus and timer interrupt registers. 

SECONDS Displays contents of emulation timer, in microseconds. 

trace Commands Position trace buffer pOihter and select format for trace dis-play.' 

PRINT Displays trace data pOinted to by trace buffer pOinter. 

MODE Sets or displays the emulation mode, 8041 A or 8042. 

5-912 210818-002 



inter ICETM_42 IN-CIRCUIT EMULATOR 

Table 4 HELP Command 

*HELP 
Help is available for the following items. Type HELP followed by the item name· 
The help items cannot be abbreviated. (for more information, type HELP HELP or 
HELP INfO. ) 
Emulation: 
GO GR SYO 
BR BROBR1 
STEP 

Change/ 
<CHANGE> 
<DISPLAY> 
REGISTER 

SECONDS 
DEfINE 

Macro: 
DEfINE 
DISABLE 
INCLUDE 

Trace Collection: 
TR QR QRO QR1 SY1 

Trace Display: 
TRACE MOVE PRINT 
OLDEST NEWEST 

Misc: 
BASE 
DISABLE 
ENABLE 
ERROR 
EVALUATE 
HELP 

Display/ Define/ Remove: INfO 
REMOVE 'CBYTE < LIGHTS> 
SYMBOL DBYTE DASM LIST 
RESET ASM LOAD 

WRITE 
STACK 

Compotlnd 
DIR Commands: 
ENABLE COUNT 
PUT If 

SY 

MODE 
SAVE 
SUffIX 
SYMBOLIC 

<MACRO$DISPLAY> REPEAT 
< MACROHNVOC ATION > 

* 
* 
*HELP If 

<address> 
<CPU$keyword> 
<expr> 
<ICE42 #.keyword> 
< identi fier> 
<instruction> 
< masked#constant > 
<match$cond> 
< numer ic $cons tant > 
<partition> 
<string> 

< s tr i ng $constant > 
<symbolic$ref> 
<mode> 
< trace $re ference > 
< un I imi te d$match$cond >, 
<user$symbols> 

If - The conditional command allows conditional execution of one or more commands 
based on the values of boolean conditions. 

If <expr> '.'tHEN <cr> <true$list>: :='<command> <cr> @ 

<true$list> <false$list>;;='<command> <cr> @ 

'ORIf <expr> ,<.cr> <command>: :=An ICE-42 command· 
<true$list> @ 

'ELSE <cr> 
<false$list> 
END 

The <expr>s are evaluated in order as 16-bit unsigned integers. If one is 
reached whose value has low-order bit 1 (TRUE), all commands in the <true$list> 
following that <expr> are then executed and all commands in the other <true$­
list>s and in the < False$list> are skipped. If all <expr>s have value with low­
order bit 0 (fALSE), then all commands in all <true$list>s are skipped and, if 
ELSE is present, all commands in the <false$list> are executed· 

* 
* 
* 
* 
*EXIT 

(EX: If .L~OP=5 THEN 
STEP 
ELSE. 
GO 
END) 

5-913 210818-002 

, 
I~' 

) 
1;1 

~ 
!~ 

" 



inter ICETM_42 IN-CIRCUIT EMULATOR 

may be used in the instruction operand field. 
The emulator supplies the absolute address or 
data values as stored in the emulator symbol 
table. These features eliminate user time spent 
translating to and from machine code and 
searching for absolute addresses, with a corre­
sponding reduction in transcription errors. 

HELP 

The HELP file allows display of ICE-42 command 
syntax information at the Intellec console. By 
typing "HELP", a listing of all items for which 
help messages are available is displayed. 
Typing "HELP <Item>" then displays relevant 
information about the item requested, including 
typical usage examples. Table 4 shows some 
sample HELP messages. 

EMULATION ACCURACY 

The speed and interface demands of Ii high­
performance single-chip microcomputer require 
extremely accurate emulation, including full­
speed, real-time operation with the full function 
of the microcomputer. The ICE-42 module 
achieves accurate emulation with an 8042 
emulator chip, a special configuration of the 
8042 microcomputer family, as its emulation 
processor. 

Each of the 40 pins on the user plug is connected 
directly to the corresponding 8042 pin on the 
emulator chip. Thus the user system see,s the 
emulator as an 8042 microcomputer at the 8042 
socket. The resulting characteristics provide ex­
tremely accurate emulation,of the ~042 including 

SPECIFICATIONS 

ICE™·42 Operating Requirements 

Intellec Model 800, Series II, Series III, or Series 
IV Microcomputer Development SYstem (64K 
RAM required) 

System console (Model 800 only) 

Intellec Diskette Operating System: ISIS 
(Version 3.4 or later). 

Equipment Supplied 

• Printed circuit boards (2) 

• Emulation buffer box, Intellec interface 
cables, and user-interface cable with 8042 
emulation processor 

speed, timing characteristics, load and drive 
values, and crystal operation. However, the 
emulator may draw more. power from the user 
system than a standard 8042 family device. 

Additional emulator processor pins provide sig­
nals such as internal address, data, clock, and 
control lines to the emulator buffer box. These 
Signals let static RAM in the buffer box substitute 
for on-chip program ROM or EPROM. The emula­
tor chip also gives the ICE module "back-door" 
access to inter,nal chip operation, allowing the 
emulator to break and trace execution without in­
terfering with the values 'on the user-system 
pins. . 

Figure 1 A Typical 8042 Development 
Configuration. The host system is 
an Intellec Series IV. The ICE-42 
module is connected to a user pro-
totype system. \ 

• Crystal power accessory 

• Operating instructions manuals 

• Diskette-based ICE-42 software (single and 
double density) 

Emulation Clock 

User's system clock (up to 12M Hz) or ICE-42 
crystal power accessory (12 MHz) 

Environmental Characteristics 

Operating Temperature - 0° to 40°C 

Operating Humidity - Up to 95% relative humidi­
ty without condensation .. 

5-914 210818-002 



Ice™.42 IN-CIRCUIT EMULATOR 

Physical Characteristics 

Printed Circuit Boards 

Width: 12.00 in. (30.48 cm) 
Height: 6.75 in. (17.15 cm) 
Depth: 0.50 in. (1.27 cm) 

Buffer Box 

Width: 8.00 in. (20.32 cm) 
Length: 12.00 in. (30.48 cm) 
Depth:,1.75 in. (4.44 em) 
Weight: 4.0 lb. (1.81 kg) 

ORDERING INFORMATION 

Part Number Description 

ICE-42 8042 Microcontroller In-Circuit 
Emulator, cable assembly and in­
teractive diskette software 

5-915 

Electrical Characteristics 

DC Power Requirements 
(from Intellec® system) 

Vcc = +5V, ± 5% 
Icc = 13.2A max; 11.0A typical 
Voo = +12V, ±5% 
100 = 0.1A max; 0.05A typical 
VBB = -10V, ±5% 
IBB = 0.05A max; 0.01 A typical 

User piug characteristics at 8042 socket -
Same as 8042 or 8742 except that the user 
system sees an added load of 25 pF capacitance 
and 50JLA leakage from the ICE-42 emulator 
user plug at ports 1,2, TO, and T1. 

210818-002 



MCS®-48 
DISKETTE-BASED SOFTWARE 

SUPPORT PACKAGE 

• Extends Intellec microcomputer 
development system to support MCS-48 
development 

• MCS·48 assembler provides conditional 
assembly and macro capability 

\ 

• Takes advantage of powerfullSIS·1I file 
h'aildling and storage capabilities 

• Provides assembler output in standard 
Intel hex format 

The MCS-48 assembler tran&lates symbolic 8048 assembly language instructions into the appropriate machine 
operation codes, and provides both con'ditional and' macroassembler programming. Output may be loaded 
either to an ICE-~ module for debugging or into the iUP Universal PROM Programmer for 8748 PROM 
programming. The MCS-48 assembler operates under the ISIS-II operating system on Intel Development 
systems. 

(£' INTEL CORPORATION, 1983 MAY 1983 

5-916 Order Number. 231323-001 



intJ MCS·48 

FUNCTIONAL DESCRIPTION 

The MCS-48 assembler translates symbolic 8048 
assembly language instructions into the appropriate 
machine operation codes. The ability to refer to program 
addresses with symbolic names eliminates the errors of 
hand translation and makes it easier to modify programs 
when adding or deleting instructions. Conditional 
assembly permits the programmer to specify which por­
tions of the master source document should be includ­
ed or deleted in variations on a basic system design, 
such as the code required to handle optional external 
devices. Macro capability allows the programmer use of 
a single label to define a routine. The MCS-48 assembler 
will assemble the code required by the reserved routine 
whenever the macro label is inserted in the text. Output 
from the assembler is in standard Intel hex format. It 
may be either loaded directly to an in-circuit emulator 
(ICE-49) module for integrated hardware/software 
debugging, or loaded into the iUP Universal PROM 
Programmer for 8748 PROM programming. A 
sample assembly listing is shown in Table 1. 

The MCS 48 assembler supports the 8048, 8049, 8050, 8020, 
8021, 8022, 8041 and 8042. The MCS 48 assembler can also 
support CMOS versions of the 8048 family. 

SPECIFICATIONS 

Operating Environment 
(All) Intel Microcomputer Development Systems 

(Series II, Series Ili/Senes IV) 
Intel Personal Development System 

Ordering Information 

Part Number 

MDS-D48' 

Description 

MCS-48 Disk Based Assembler 
Requires Software License 

Table 1. Sample MCS·48 Diskette-Based 

ISIS n BO.e MACROASSEMBLEA V1 a 

""''' "'" "'" "'''' 
0100 BalE 
01029928 

010.1. AI 
010618 
Dloe 19 
0100 fAC7 

SYMBOL CROSS REFERENCE 

" " cOUl-a 1511 17 
INIT 7. 17 
11 19/1 
LP 2a 28 

SOURCE STATEMENT 

DECIMAL ADDITION ROUTINE ADO BCD NUMBER 
AT LOCATION BETA TO BCD NUMBER AT ALPHA WITH 
RESULT IN ALPHA LENGTH OF NUMBER IS COUNT DIGIT 
PAIRS IASSUME eOTH SETA AND ALPHA AAE SAME LENGTH 
AND HAVE EVEN NUMBER OF DIGITS OR MSQ IS 0 IF 
ODD) 

INIT 

, " 
" " " 13 ALPHA EQU 
14 BETA EOU 
15 COUNT fOU 
16 ORG 

" ", 
19+Ll 

" 22 lP 

" " " " " " DJNI 

'" 

.lr,UGND ADONO CNT 
AD 'AUGNO 
At 'ADONO 
R211CNT 

" ., , 
'OOH 
ALPHA BETA COUNT 

R211COUNT 
C 
.1.",1'10 
Aq,RI , 
rp;ROA 

'" " 

Documentation Package 
Titles of: User Guides 

Operating Instructions 
Reference Manuals 

SUPPORT: 
Hotline Telephone Support, Software Performance 
Reports (SPR), Software Updates, Technical 
Reports, Monthly Newsletters are available. 

:MDS is an ordering code only and is not used as a product name or trademark. MDS IS a registered trademark of 
Mohawk Data Sciences Corporation. 

5-917 231323-001 

,I 
Ii 



iUP·,200A/iUP·201 A UNIVERSAL 
PROM PROGRAMMERS 

MAJOR iUP-200A/iUP-201 A FEATURES: 

• Support for all Intel PROM families 
through multiple-device personality 
modules, which may also be used with 
the Intel personal development 
system (jPDSTM). 

• Serial interface to allintellec@ 
development systems. 

• Powerful PROM ,programming 
software (jPPS). 

• iUP system self-tests plus device 
integrity checks. 

I 1 

• Support for new personality modules 
that provide state of the art fast 
programming algorithms, the 
inteligent Identifier™, and a security 
bit. 

ADDITIONAL iUP-201A FEATURES: 

• Off-line editing, device duplication, 
and PROM memory locking. 

• 32K-byte iUP RAM. 

• 24-character alphanumeric display. 

• Full hexadecimal plus 12-function 
keypad. 

The iUP-200A ,and iUP-201 A universal programmers program and verify data in all the Intel pro­
grammable ROMs (PROMs). They can also program the PROM memory portions of Intel's single-chip 
microcomputer and peripheral devices, When used with any Intellec@ development system, the 
iUP-200A and iUP-201 A universal programmers provide on-line programming and verification using 
the Intel PROM programming software (iPPS), In addition, the iUP-201A universal pt:egrammer sup-, 
ports off-line, stand-alone program editing, PROM duplication, and PROM memory locking, The 
iUP-200A universal programmer is expandable to an iUP-201 A model. 

The following are trademarks of Intel Corporation and may be used only to describe Intel products CREDIT, Index, Intel, Inslte, Intellec, 
Library Manager, Megachassis, Mlcromap, MUL TIBUS, PROMPT, UPI, I'Scope, Prom ware, MCS, ICE, iRMX, ISBC, ISBX, intellgent 
Identifier, MUL TlMODULE and ICS Intel Corporation assumes no responsibility for the use of any circUitry other than circuitry embodied 
in an Intel product No other cirCUit patent licenses are implied 
'INTEL CORPORATION, 1984 5-918 March,1984 

Order Number: 210319-003 



inter iUP 200A/iUP 201 A 

FUNCTIONAL DESCRIPTION 

The iUP-200A universal programme~ operates in 
on-line mode. The iUP-201 A universal program­
mer-operates in both on-line and off-line mode. 

On-line System Hardware 

The iUP-200A and iUP-201 A universal program­
mers are free-standing units that, when connect­
ed to any Intel development system having at 
least 64K bytes of host memory, provide on-line 
PROM programming and verification of Intel pro­
grammable devices. In addition, the universal 
programmer can read the contents of the ROM 
versions of these devices. 

The universal programmer communicates with 
the host throtJgh a standard RS-232C serial data 
link. A serial converter is needed when using the 
MDS 800 as a host system. (Serial converters 
are available from other manufacturers.> 

Each universal programmer contains an 8085 
CPU, selectable power supply, 4.3K bytes of 
static RAM, a programmable timer, an interface 
for personality modules, an interface for the host 
system, and 12K bytes of programmed EPROM. 
The iUP-201A also has a keyboard and display. 
The programmed EPROM contains the firrpware 

needed for all universal programmer editing and 
control functions. 

A personality module adapts the universal pro­
grammer to a family of PROM devices; it contains 
all the hardware and firmware necessary to pro­
gram either a family of Intel PROMs or a single 
Intel device. The user inserts the personality 
module into the universal programmer front 
panel. The personality module comes ready to 
use; no additional sockets or adapters are 
required. 

Figure 1 shows the iUP-200A on-line system 
configuration, and Figure 2 shows the on-line 
system data flow. 

On-line System Software 

The Intel PROM programming software (iPPS) is 
included with both the iUP-200A and iUP-201 A 
models of the universal programmer. Created to 
run on any Intellec development system, the 
iPPS software provides user control through an 
easy-to-use interactive interface. The iPPS soft­
ware performs the/following functions to make 
PROM programming quick and easy: 

• Reads PROMs and ROMs 

• Programs PROMs directly or from a file 

Figure 1 On·Line System Configuration 

5-919 Order Number 210319-003 



iUP 200A/iUP 201 A 

HOST DEVELOPMENT SYSTEM 

'"'" 
iPPS iPPS t- ISIS 
BUFFER tj SOFTWARE FILE 

\... 1------

RS-232 INTERFACE 
" 

UNIVERSAL PROGRAMMER 
(IUP-200A OR iUP-201 A) 

PERSONALITY I' '" 
r------, 

I----J ~---I I MODULE UNIVERSAL 
I iUP-201A 

PROM J PROGRAMMER .-t URAM I 

f-------I " 
FIRMWARE r- I 

DEVICE(S) ./ L ______ ..J 
/ 

0026 

Figure 2 On-Line System Data Flow 

• Verifies PROM data with buffer data 

• Locks EPROM memory from unauthorized 
access (on devices which support this 
feature) , 

• Prints PROM contents on the network or de­
velopment system printer 

• Performs interactive formatting .operations 
such as interleaving, nibble swapping, bit 
reversal, and block moves 

• Programs multiple PROMs from the source 
file, prompting the user to insert new· PROMs 

• Uses a buffer to change PROM contents 

All iPPS commands, as well as program address 
and data information, are entered through the 
development system ASCII keyboard and dis­
played on the system CRT. Table 1 summarizes 
the iPPS commands. 

The iPPS software lets the user load programs 
into a PROM from, Intellec system memory or 

directly from a disk file. Access to the disk lets 
the user create and manipulate data in a virtual 
buffer with an address range up to 16tJ1. This 
large block of data can be formatted into dif­
ferent PROM word sizes for program storage 
into several different PROM types. In addition, a 
program stored in the target PROM, the Intellec 
system memory, or a system disk file can be in­
terleaved with a second program and entered 
into a specific target PROM or PROMs. 

The iPPS software supports data manipulation 
in thE1 following Intel formats: 8080 hexadecimal 
ASCII, 8080 absolute 9bject, 8086 hexadecimal 
ASCII, 8086 absolute object, and 80286 absolute 
object. Addresses and data can be displayed in 
binary, octal, decimal, or hexadecimal. The user 
can easily change default data formats as well 
as number bases. 

The user invokes the iPPS software from the 
ISIS operating system (lntellec 800, Series II, 
and Series III, versions V3.4 and later; Series IV, 
versions V1.0 and later). The software can be 
run under control of ISIS submit files, thereby 
freeing the user from repetitious command entry. 

5-920 Order Number: 210319-003 



Command 

PROGRAM CONTROL GROUP 
EXIT 

<ESC> 
REPEAT 
ALTER 

UTILITY GROUP 

DISPLAY 
PRINT 
QUEUE 
HELP 
MAP 
BLANKCHECK 
OVERLAY 
TYPE 
INITIALIZE 
WORKFILES 

BUFFER GROUP 
SUBSTITUTE 
LOADDATA 
VERIFY 

'" FORMATTING GROUP 
FORMAT' 

COPY GROUP 
COPY (file to PROM) 
COPY (PROM to file) 
COPY (buffer to PROM) 
COPY (PROM to buffer) 
COPY (buffer to file) 
COPY (file to buffer) 
COPY (file to URAM) 
COPY (URAM to file) 
COPY (buffer to URAM) 
COPY (URAM to buffer) 

SECURITY GROUP 

KEYLOCK 

IUP 200AIIUP 201 A 

Table 1 IPPS Command Summary 

Description 

CONTROLS EXECUTION OFTHE iPPS SOFTWARE. 
Exits the iPPS software and returns control to the ISIS operating 
system. 
Terminates the current command. 
Repeats the previous command. 
Edits and re-executes the previous command. 

DISPLAYS USER INFORMATION AND STATUS AND SETS 
DEFAULT VALUES. 

Displays PROM, buffer, or file data on the console. 
Prints PROM, buffer, or file data on the local printer. 
Prints PROM, buffer, or file data on the network spooled printer. 
Displays user assistance information. 
Displays buffer structure and status. 
Checks for unprogrammed PROMs. 
Checks whether non-blank PROMs can be programmed. 
Selects the PROM type. 
Initializes the default number base and file type. 
Specifies the drive device for temporary work files. 

EDITS, MODIFIES, AND VERIFIES DATA IN THE BUFFER. 
Examines and modifies buffer data. 
Loads a section of the buffer with a constant. . 
Verifies data in the PROM with buffer data. 

REARRANGES DATA FROM THE PROM, BUFFER, OR FILE. 
Formats and interleaves buffer, PROM, or file data. 

COPIES DATA FROM ONE DEVICE TO ANOTHER. 
Programs the PROM with data in a file on disk. 
Saves PROM data in a file on disk. 
Programs the PROM with data from t,he buffer. 
Loads the buffer with data in the PROM. 
Saves the cQntents of the buffer in a file on disk. 
Loads the buffer from a file on disk. 
Loads file data into the iUP RAM (iUP-201 A model only). 
Saves iUP URAM data in a file on disk (iUP-201 A model only). 
Loads the buffer into the iUP URAM (iUP-201 A model only). 
Loads iUP URAM data into the buffer (iUP-201 A model only). 

LOCKS SELECTED DEVICES TO PREVENT UNAUTHORIZED 
ACCESS. 

Locks the PROM from unauthorized access. 

5-921 Order Number 210319-003 

Ii 
I~ 



inter iUP 200A/iUP 201 A 

System Expansion 

The iUP-200A universal programmer can be 
easily upgraded (by the user) to an iUP-201 A 
universal programmer for off-line operation. The 
upgrade kit (iUP-PAK-A) is available from Intel 
or your local Intel distributor. 

Off· line System 

The iUP-201A universal programmer has all the 
on-line features of the iUP-200A universal pro­
grammer plus off-line editing, PROM 
duplication, program verification, and locking of 
PROM memory independent of the host system. 
The iUP-201A universal programmer also ac­
cepts Intel hexadecimal programs developed on 
non-Intel development systems. Just a few key­
strokes download the program into the iUP RAM 
for editing and loading into a PROM. 

irup READY 

H COMMAND 

Off-line commands are entered using the off-line 
command keys summarized in Table 2.-

In addition to the hardware comporients included 
as part of the iUP-200A, the iUP-201 A contains 
a 24-character alphanumeric display, full hexa­
decimal 12-function keypad, and 32K bytes of 
iUP RAM. Figure 3 illustrates the iUP-201 A key­
board and display. 

The two logical devices accessible during off­
line operation are the PROM device and the iUP 
RAM. A typical operation is copying the data 
from a PROM (or ROM) into the iUP RAM, modify" 
ing this data in iUP RAM, and programming the 
modified data back into a PROM device. The ad­
dress range of the iUP RAM is automatically 
determined by the universal programmer when 
PROM type selection is made. Figure 4 shows 
the off-line system data flow. 

000000 

ADDRESS I OATA 

ss 

--- -------~--------.----------~~-~-~.-

----~t ----------------~-.,,--

~ U 
© POWER 

Figure 3 iUP-201 A Keyboard and Display 

5-922 

0157 

Order Number 210319-003 
\ 



Key 

rr=:1 
lb:JJ 

/ 

: DEVICE 
~ SELECT 

tr:11 
~ 

E] 

8 
E 
N 
T 
E 
PI 

Sffi 
BEn 
Bm 
SHIFT ~ 
....... ~ 

iUP 200A/iUP 201 A 

Table 2 Off-Line Command Keys Summary 

Function 

Selects either on-line or off-line operation. When on-line, all other function keys 
are disabled. 

Selects the PROM type when using a personality module able to program 
multiple PROM de~ices. 

Verifies the contents of the installed PROM device with the contents of the iUP 
RAM. The universal programmer display indicates the address and the XOR of 
any mismatches. 

Performs a device blank check and then programs the target PROM with data 
from the iUP RAM. If the blank check fails, pressing PROG again performs an 
overlay check to verify that non-blank PROMs can be programmed. 

Loads the iUP RAM with the data from the PROM device installed in the 
personality module. 

Terminates the current off-line function, clears a user entry, or restores the 
display after an error. 

Transfers information from the universal programmer display (addresses, data, 
or baud rate) into the iUP RAM. 

Selects an address field for display. 

Selects a data field for keypad editing and entry. 

Loads a contiguous section of iUP RAM locations with a constant. 

Downloads Intel hexadecimal data from any development system which has an 
RS-232C port. 

I '"'''~ ~ ''4'] Lock,. PROM ',om ""'"tho,;,od eee",. 

5-923 Order Number' 210319-003 



inter iUP 200A/iUP 201 A 

UNIVERSAL PROGRAMMER (lUP-201 A) 

PERSONALITY f..t---( UNIVERSAL l+-MODULE PROGRAMMER iUP-201A 

PROM I FIRMWARE URAM 

DEVICE(S) 
~ (MANUAL FRONT 

" PANEL CONTROL) 
1----

RS232 INTERFACE 

HOST 
SYSTEM 
(OPTIONAL) 

0027 

Figure 4 Off-Line System Data Flow 

SYSTEM DIAGN.OSTICS 

Both the IUP-200A and iUP-201 A universal pro­
grammers include self-contained system diag­
nostics that verify system operation and aid the 
user in fault Isolation. Diagnostics are performed 
on the power supply, CPU internal firmware 
ROM, internal RAM, timer, the iUP-201 A 
keyboard, and the iUP RAM. In addition, tests 
are made on any personality module installed in 
the programmer the first time the module is 
accessed. The personality module tests include 
the ppwer select circuitry and up to 4K of 

. module firmware. Straight-forward messages 
are provided on the development system display 
in on-line mode and on the iUP-201 A display in 
off-line mode. ( 

PERSONALITY MODULES 

A personality module is the interface between 
the iUP-200AliUP-201 A universal programmer 
(or an iPDS system) and a selected PROM (or 
ROM). Personality modules contain all the hard­
ware and firmware for reading and programming 
a family of Intel devices. Each personality 
module is a single molded unit inserted into the 
front panel of the universal programmer. No addi­
tional adapters or sockets are needed. Table 3 
lists the available personality modules. 

Each personatity module connects to the univer­
sal programmer through a 41-pln connector. 
Module firmware is uploaded into the iUP RAM 
and executed by the internal B085A processor. 

Table 3 IUP Personality Modules 

Personality Module PROM Type PROMs and ROMs Supported 

IUP-Fast 271K EPROM 2764,2764A,2712B,27256 
iUP-F27/128 E2/EPROM 2716,2732,2732A,2764,2712~,2B15,2816 

IUP-FB7/51A Mlcrocontroller 874B, B74BH, B04B, B749H, B04BH, 8049, 8049H, 
B050H,8751,B751H,B051 

IUP-F87/44A Peripheral 8741A,8041A,8742,B042,8744H,B044AH,B755A 

5-924 Order Number. 210319-003 



iUP 200A/iUP 201 A 

The personality module firmware contains rou­
tines_necessary to read and program a family of 
PROMs. In addition, the personality module 
~ends specific information about the selected 
PROM to the universal programmer to help per­
form PROM device integrity checks. 

LEOs on each personality module indicate 
operational status. On some personality 
modules a column of LEOs indicate which PROM 
device type the user has selected. On some per­
sonality modules an LED below the socket indi­
cates which socket is to be used. A red indicator 
light tells the user when power is Qeing sLWplied 
to the selected device. Figure 5 snows the per­
sonality modules supported on the universal 
programmer. 

In addition to the testing done by the iUP system 
self-tests, each personality module contains di­
agnostic firmware that performs selected PROM 

tests and indicates status. These tests are per­
formed in both on-line and off-line modes. The 
PROM installation test verifies that the device is 
installed in the module correctly and that the ZIF 
socket is closed. The PROM blank check deter­
mines whether a device is blank. The universal 
programmer automatically determines whether 
the blank state is all zeros or all ones. The over­
lay check· (performed when a PROM is not 
blank) determines which bits are programmed, 
compares those bits against the program to be 
loaded, and allows programming, to continue If 
they match. As with the system self-tests, 
straight-forward messages are provided. The 
user can invoke all of the PROM device integrity 
checks except the installation test (which 
occurs automatically any time an operation is 
selected). 

Figure 6 illustrates a typical testing sequence. 

Figure 5 Personality Modules 

5-925 Order Number "216319-003 



inter IUP 200A/iUP 201 A 

PERFORM 
BLANK CHECK 

YES 

PROGRAM 
A 

LOCATION 

PERFORM 
VERIFY 

NO 

PERFORM 
OVERLAY 

CHECK 

Figure' 6 PROM Testing Sequence 

5-926 

DISPLAY 
MESSAGE 

Order Number 210319-003/ 



inter iUP 200A/iUP 201 A 

iUP-200A/iUP-201 A SPECIFICATIONS 

Control Processor 
Intel 8085A microprocessor 
6.144 MHz clock rate 

Memory 
RAM ~ 4.3 bytes static 
ROM - 12K bytes EPROM 

Interfaces 
Keyboard - 16-character hexadecimal and 12-
function keypad (iUP-201 A model only) 
Display 24-character alphan umeric 
(iUP-201 A model only) 

Software 
Monitor - system controller in pre-programmed 
EPROM 
iPPS - Intel PROM 'programming software on 
supplied diskette 

Physical Characteristics 
Depth - 15 inches (38.1 cm) 
Width - 15 inches (38.1 cm) 
Height - 6 inches (15.2 cm) 
Weight - 15 pounds (6.9 kg) 

Electrical Characteristics 

Selectable 100, 120, 200, or 240 Vac ± 10%; 
50-60 Hz 
Maximum power consumption - 80 watts 

Environmental Characteristics 
Reading temperature - 10°C to 40°C 
Programming temperature - 25°C ± 5° 
Operating humidity - 10% to 85% relative 
humidity 

Reference Material 
164852 - iUP-200A1201A Universal Program­

mer User's Guide. 

O~DERING INFORMATION 

Part number 

iUP-200A 

iUP-201 A 

Description 

Intel on-line universal 
programmer 

Intelon-line/off-line 
universal programmer 

164861 - iPPS PROM Programming Software 
User's Guide. 

164853 - iPPS PROM Programming Soft­
wareliUP-200A1201 A Universal Pro­
grammer Pocket Reference. 

PERSONALITY MODULE 
SPECIFICA TlONS 

Memory 
EPROM - up to 4K bytes 

PhYSical Characteristics 
Width - 5.5 inches (1.4 em) 
Height - 1.6 inches (4.1 cm) 
Depth - 7.0 inches (17.8 cm) 
Weight - 1 pound (.45 kg) 

Electrical Characteristics 
Maximum power consumption (module) - 7.5 
watts 
Maximum power consumption (device) - 2.5 
watts 
Maximum power consumption (total from iUP) -
10 watts 

Environmental Characteristics 
Reading temperature - 10°C to 40°C 
Programming temperature - 25°C ± 5° 
Operating humidity - 10% to 85% relative 
humidity 

Reference Material 
Appropriate personality module user's guide: 

164376. - iUP-Fast 271K Personality Module 
User's Guide. 

162848 IUP-F271128 Personality Module 
User's Guide. 

164855 iUP-F87IS1A Personality Module 
User's Guide. 

164853 iUP-F87144A Personality Module 
User's Guide. 

iUP-Fast 27/K* 

iUP-F27/128 

5-927 

EPROM personality 
module 

EPROM and E2PROM 
personality module 

Order Number 210319-003 



iUP-F87/51A 

iUP-F87/44A 

iUP-200/201 Ul 
Upgrade Kit 

iUP-PAK-A Upgrade 
Kit 

iUP 200A/IUP 201 A 

M icrocontroller 
personality module 

Peripheral personality 
module 

Upgrades an 
iUP-200/201 universal 
programmer'to an 
IUP-200Al201 A 
universal programmer 

Upgrades an iUP-200A 
universal programmer 
to an iUP-201 A 
universal programmer 

·The iUP-Fast 27/K personality module can be used only with an iUP-200A/201 A universal programmer or an iUP-200 
liUP-201 universal programmer upgraded to an A with the iUP-200/201 U1 upgrade kit. If used in an iPOS, this per­
sonality module requires version 1.4 or later of the iPPS-IPOS software. All iPOS-140 units shipped after June 1984 
will contain this software. 

5-928 Order Number 210319-003 



Data Communications 

Peripherals 
Section 

6 





inter 
INTEL DATA COMMUNICATIONS 

FAMILY OVERVIEW 

Data Communications has become an increasingly 
important factor in computer system design with the 
evolution of distributed processing and remote, net­
worked peripherals. Intel's data communications pro­
duct line provides a range of components to satisfy the 
broad spectrum of speed, protocol support and protocol 
flexibility needs (Figure I). 

GLOBAL DATA COMMUNICATIONS: 
ASYCHRONOUSANDSYNCHRONOUSPRomoCOLS 

Dedicated data communications controllers 

For low-to-medium speed (up to 19.2 Kbps), the 8251A 
USART (U niversal Synchronous Asynchronous Receiver/ 
Transmitter) is the industry standard for asynchronous 
communications. It can be used in such applications as ' 
personal computers, workstations, word processors, CRT 
terminals point-of-sale terminals, banking terminals, 
printers, communications processors, data concentra­
tors, industrial control networks, etc. 

The 8256 MUART (Multi-function Universal Asynchro­
nous Receiver/Transmitter) i's an highly competent 
asynchronous communications controller. It considera­
bly minimizes the number of LSI required in a system 
with an asynchronous interface. The 8256 integrates the 

SPEED 

10Mbps 

1 Mbps e 
64 Kpbs e 

19.2 Kbps e 

four more common peripheral functions of a micropro­
cessor based system as well as a full-duplex, double buf­
fered serial asynchronous receiver/ transmitter with an 
on-chip baud rate generator. 

The 8273 is a dedicated high level peripheral controller 
for SDLCj HDLC protocol support. It provides an high 
level of Data Link Control support for IBM-SNA or 
CCITT X.25 compatible microcomputer systems. This 
device minimizes CPU overhead by supporting a com­
prehensive frame level operation. The 8273 is compatible 
with every telephone network-based communication sys­
tem due to its speed (up to 64 Kbps) and flexible modem 
interface. 

Multlprotocol controllers 

Multi-protocol controllers bridge the gap between byte 
oriented and bit oriented protocols (HDLCjSDLC). 
They provide an easy migration path for the user through 
a single software reconfiguration. Design of high-level 
protocols like X.25 are considerably simplified when they 
are coupled with the power of high performance proces­
sors such as the iAPX 86/88/186, or 188. They are also 
used to implement custom high-level protocols on top of 
standard bit-synchronous protocols. 

The dual-channel 8274 MPSC (Multi-Protocol Serial 

(§ 82501 

@ 8274 

ASYNC SOLC/HOLC MULTI PROTOCOLS; CSMAICO PROTOCOL 
ASYNC, BYTE SYNC, SUPPORT 

BIT SYNC 

FIGURE 1:, A Spectrum of Data Communications Solutions 

6-1 



Controller) provide a solution for Asynchronous, Byte 
Synchronous (IBM Bisync) and Bit Synchronous 
(HDLCjSDLC) protocols support. It is optimized for 
high-speed applications requiring the flexibility of the 
protocol support and the integration of mUltiple com­
munications channels. 

The 82530 SCC (Serial Communications Controller) is 
another dual channel multiprotocol controller. It con­
tains new functions including 9n-chip baud rate genera­
tors, digital phase locked loops, various data encoding/­
decoding schemes and extensive diagnostic capabilities. 
All these added features reduce the need for external logic 
and greatly improve the reliability and maintainability of 
the system. 

Distributed Intelligence Systems 

The 8044/ 8744 is a microcontroller with an on chip serial 
communication processor. It simplifies control of remote 
subsystems (subsystems that are physically separated 
from the host CPU and communicate over a serial link). 

The 8044 and 8051 CPUs are identical. The serial com­
munication is handled by an additional processor called 
the Serial Interface Unit (SIU). The SIU operates concur­
rently witli the CPU and offers a high level of intelligence 
and performance for HDLCjSDLC based communica­
tions. The SIU can handle 2.4 Mbps in Half-Duplex 
mode. 

In addition to controlling communications with the host 
CPU, the 8044 provides significant peripheral control. 
Examples include local keyboard, CRT and printer con­
trol as well as design of network for Distributed Intelli­
gence Systems (Med~cal instrumentation, CATV, PABX, 
etc .... ) 

Detailed 8044/8744 information is contained in the Intel 
Microcontroller Handbook. 

Instrumentation 

The 8291 A, 8292, and 8293 family of components provide 
complete, high-performance support for IEEE-488 
(GPIB) standard interface. GPIB is used in instrumenta­
tion applications. 

6-2 

The 8291A implements the Talker/Listener functions of 
the GPIB. 

The 8292 provides the controller functions. Operating in 
tandem with the 8291 A, it complements its interface func­
tions to provide a full-capability GPIB interface. 

The 8293 is a low-power, high-current, HMOS 8-line 
transceiver. It provides the electrical interface to the 
GPIB. 

Local Area Networks 

Intel has developed the first complete VLSI solution for 
Local Area Networks (LANs) and Ethernet in particular: 
the 82586 Local Area Network Coporcessor and the 
82501 ESI (Ethernet Serial Interface). 

Four on chip DMA channels allow the 82586 to operate 
as a bus master. The 82586 manages the entire process of 
transmitting and receiving frames, thereby relieving the 
host processor of the tasks of managing the com­
munication interface to the network. 

An extensive set of diagnostic capabilities, implemented 
'in silicon, simplifies the design of more reliable local 
networks and facilitates their maintenance. In order to 
take full advantage of the LAN concept and CSMA/ CD 
access method, the 82586 architecture is software config­
urable. This allows the 82586 to be "customized" for 
other applications including serial backplanes (serial 
peripheral interconnection); low cost short distance 
LANs, broadband networks and medium speed (1-2 
Mbps) LANs. . 

The 82501 is designed to work directly with the 82586 in 
Ethernet applications. The major functions of the ESI are 
to generate the 10 MHz transmit clock for the 82586, to 
perform Manchester encoding/ decoding of transmitted/ -
received frames, and to provide the electrical interface to 
the Ethernet transceiver cable 

The Intel Data Communications product family provides 
a wide range of solutions for the needs of data communi­
cations systems. 



8251 A 
PROGRAMMABLE COMMUNICATION INTERFACE 

• Synchronous and Asynchronous • Asynchronous Baud Rate-DC to 
Operation 19.2K Baud 

• Synchronous 5-B Bit Characters; • Full-Duplex, Double-Buffered 
Internal or External Character Transmitter and Receiver 
Synchronization; Automatic Sync • Error Detection-Parity, Overrun and 
Insertion Framing 

• Asynchronous 5-B Bit Characters; • Compatible with an Extended Range 
Clock Rate-1, 16 or 64 Times Baud of Intel Microprocessors 
Rate; Break Character Generation; • 2B-Pin DIP Package 
1,1112, or 2 Stop Bits; False Start Bit • All Inputs and Outputs are TTL 
Detection; Automatic Break Detect Compatible 
and Handling • Available in EXPRESS • Synchronous Baud Rate-DC to -Standard Temperature Range 
64K Baud -Extended Temperature Range 

The Intel® 8251A is the enhanced version of the industry standard, Intel 8251 Universal Synchronous/ 
Asynchronous Receiver/Transmitter (USART), designed for data communications with Intel's microprocessor 
families such as MCS-48, 80, 85, and iAPX-86, 88. The 8251 A is used as a peripheral device and is programmed 
by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM 
"bi-sync"). The USARTaccepts data characters from the CPU in parallel format and then converts them into a 
continuous serial data stream for transmission. Simultaneously, it can receive serial data streams and convert 
them into parallel data characters for the CPU. The USARTwili signal the CPU whenever it can accept a new 
character for transmission or whenever it has received a character for the CPU. The CPU can read the 
complete status of the USARTat any time. These include data transmission errors and control signals such as 
SYNDET, TxEMPTY. The chip is fabricated using N-channel silicon gate technology. 

°7°0 

/ 
// 

INTERNAL 
DATA BUS 

TRANSMIT 
BUFFER 

(P-SI 

TRANSMIT 
CONTROL 

Figure 1. Block Diagram 

"hO 

TIIRDV 

T,E 

__ Txe 

RKRDY 

_SYNDET 

0, 0, 

0 3 Do 

A,D Vee 

GND A,C 

0, DTA 

Os ATS 

Do DSA 

0, RESET 

T,C eLK 

WA hD 

cs TxEMPTY 

c/o CTS 

AD SYNDET/BD 

RxADY TxRDY 

Figure 2. Pin Configuration 

Intel CorporaliOn Assumes No Responsibility for the Use of Any CircUitry Other Than CircUitry Embodied In an Intel Product No Other ClrcUlt Patent Licenses are Impllea 

. INTEL CORPORATION 1984 September 1984 
6-3 205222-002 

II 

I·j· 

.~ 

~ 
~ 
I 



inter 8251A 

FEATURES AND ENHANCEMENTS 

The 8251A is an advanced design of the -industry 
standard USART, the Intel~ 8251. The 8251 A 
operates with an extended range of Intel 
microprocessors and maintains compatibility with 
the 8251. Familiarization time is minimal' because of 
compatibility and involves only knowing the addi­
tional features and enhancements, and reviewing 
the AC and DC specifications of ~he 8251A. 

The 8251A incorporates all the key features of the 
8251 and has the following additional features and 
enhancements: ' 

• 8251A has double-buffered data paths with sepa­
rate I/O registers for control, status, Oata In, and 
Data Out, which considerably simplifies control 
programming and min,imizes CPU overhead. 

• In asynchronous operations, the Receiver detects 
and handles "break" automatically, relieving the 
CPU of this task. 

• A refined Rx initialization prevents the, Receiver 
from starting when in "break" state, preventing 
unwanted interrupts from a disconnected USART. 

• At the conclusion of a transmission, TxD line will 
always return to the marking state unless SBRK is 
programmed. 

• Tx Enable logic enhancement prevents a Tx Dis­
able command from halting transmission until all , 
data previously written has been transmitted. The 
logic also prevents the transmitter from turning 
off in the middle of a word. 

• When External Sync Detect is programmed, Inter-­
nal Sync Detect is disabled, and an External Sync 
Detect status is provided via a flip-flop which 
clears itself upon a status read. 

• Possibility of false sync detect is minimized by 
ensuring that if double character sync is pr,ogram­
med, the characters be contiguously detected and 
also by clearing the Rx register'to all ones 
whenever Enter Hunt command is issued in Sync 
mode. 

• As long as the 8251A is not selected, the RD and 
WR do not affect the internal operation of the 
device. 

• The 8251A Status can be read at any time but the 
status update will be inhibited during status read. 

• The 8251A is free from extraneous glitches and 
has enhanced AC and DC characteristics, provid­
ing higher speed and better operating margins. 

• Synchro~ous Baud rate from DC to 64K. 

6-4 

FUNCTIONAL DESCRIPTION 

General 

The 8251A Is a Universal Synchronous/Asynchro­
nous Receiver/Transmitter designed for a wide 
range of Intel microcomputers such as 8048, 8080, 
8085, 8086 and 8088. Like other 1/0 devices in a 
,microcomputer system, its functional cQnfiguration 
is programmed by the system's software for maxi­
mum flexibility. The 8251A can support most serial 
data techniques in use, including IBM Ubi-sync." 

In a communication environment an interface 
device must convert parallel format system data into 
serial format for transmission and convert incoming 
serial format data into parallel system data for recep­
tion. The interface device must also delete or insert 
bits or characters that are functionally unique to the 
communication technique. In essence, the interface 
should appear "transparent" to the CPU, a simple 
input or outpyt of byte-oriented system data. ' 

Data Bus Buffer 

This 3-state, bidirectional, 8-bit buffer is used to in­
terface the 8251A to the system Data Bus. Data is 
transmitted or received by the buffer upon execution 
of INput or OUTput instructions of the CPU. Control 
words, Command words and Status information are 
also transferred through the Data Bus Buffer. The 
Command Status, Data-In and Data-Out registers 
are separate, 8-bit registers communicating with the 
system bus through the Data Bus Buffer. 

This functional block accepts inputs from the system 
Control bus and generates control signals for overall 
device operation. It contains the Control Word Reg­
ister and Command Word Register that store the 
various control formats for the device functional 
definition. 

RESET (Reset) 

A "high" on this input forces the 8251A into an "Idle" 
mode. The device will remain at "Idle" until a new set 
of control words is written into the 8251A to program 
its functional definition. Minimum RESET pulse 
width is 6 tey (clock must be running). 

A command reset operation also puts the device into 
the "Idle" state. 

205222·002 



inter 8251A 

ClK (Clock) 

The ClK input is used to generate internal device 
timing and is normally connected to the Phase 2 
(TTL) output of the Clock Generator. No external 
inputs or outputs are referenced to ClK but the 
frequency of ClK must be greater than 30 times the 
Receiver or Transmitter data bit rates. 

WR (Write) 

A "low" on this input informs the 8251A that the CPU 
is writing data or control words to the 8251A. 

RD (Read) 

A "low" on this input informs the 8251A that the CPU 
is reading data or status information from the 8251 A. 

Figure 3. 8251A Block Diagram Showing Data 
Bus Buffer and Read/Write Logic 
Functions 

CID RD WR cs 
0 0 1 0 B251A DATA = DATA BUS 
0 1 0 0 DATA BUS = B251A DATA 

0 0 STATUS = DATA BUS 
0 0 DATA BUS = CONTROL 

X 0 DATA BUS = 3·STATE 
X X X DATA BUS= 3·STATE 

6-5 

C/O (Control/Data) 

This input, in conjunction with the WR and RD in­
puts, informs the 8251A that the word on the Data 
Bus is either a data character, control word or status 
information. 

1 = CONTROL/STATUS; 0 = DATA. 

CS (Chip Select) 

A "low" on this input selects the 8251A. No reading or 
writing will occur unless the device is selected. 
When CS is high, the Data Bus is in the float state and 
RD and WR have no effect on the chip. 

Modem Control 

The 8251A has a set of control inputs and outputs 
that can be used to simplify the interface to almost 
any modem. The modem control signals ar!l general 
purpose in nature and can be used for functions 
other than modem control, if necessary. 

DSR (Data Set Ready) 

The DSR input signal is a general-purpose, 1-bit in­
verting input port. Its condition can be tested by the 
CPU using a Status Read operation. The DSR input 
is normally used to test modem conditions such as 
Data Set Ready. ' 

DTR (Data Terminal Ready) 

The DTR output signal is a general-purpose, 1-bit 
inverting output port. It can be set "low" by pro­
gramming the appropriate bit in the Command In­
struction word. The om output signal is normally 
used for modem control such as Data Terminal 
Ready. 

RTS (Request to Send) 

The RTS output signal is a general-purpose, 1-bit 
inverting output port. It can be set "low" by pro­
gramming the appropriate bit in the Command In­
struction word. The RTS output signal is normally 
used for modem control such as Request to Send. 

CTS (Clear to Send) 

A "low" on this input enables the 8251A to transmit 
serial data if the Tx Enable bit in the Command byte 
is set to a "one." If either a Tx Enable off or CTS off 
condition occurs while the Tx is in operation, the Tx 
will transmit all the data in the USART, written prior 
to Tx Disable command before shutting down. 

205222-002 



8251A 

Transmitter Buffer 

The Transmitter Buffer accepts parallel data from the 
Data Bus Buffer, converts it to a serial bit stream, 
inserts the appropriate characters or bits (based on 
the communication technique) and outputs a com­
posite serial stream of data on the TxD output pin on 
the falling edge of TxC. The, transmitter will begin 
transmission upon being enabled if CTS = O. The 
TxD line will be held in the marking state immedi­
ately upon a master R~set or when Tx Enable or CTS 
is off or the transmitter is empty. 

Transmitter Control 

The Transmitter Control manages all activities asso­
ciated with the transmission of serial data. It accepts 
and issues signals both externally and Internally to 
accomplish this function. -

TxRDY (Transmitter Ready) 

This output signals the CPU that the transmitter is 
ready to accept a data character. The TxRDY output 
pin can be used as an interrupt to the system, since it 
is masked byTxEnable; or, for Polled operation, the 
CPU can check TxRDY using a Status Read opera­
tion. TxRDY is automatically reset by the leading 
edge of WR when a data character is loaded from 
the CPU. 

Note that when using the Polled operation, the 
TxRDY status bit is not masked QY TxEnable, but will 
only indicate the Empty/Full Status of the Tx Data 
Input Register. \ 

TxE (Transmitter Empty) 

When the 8251 A has no characters to send, the 
TxEMPTYoutputwili go "high." It resets upon receiv­
ing a character from CPU if the transmitter is en­
abled. TxEMPTY remains high when the transmitter 
is disabled. TxEMPTY can be used to indicate the 
end of a transmission mode, so that the CPU "knows" 
when to "turn the line around" in the half-duplex 
operational mode. 

In the Synchronous mode, a "high" on this output 
indicates that a character has not been loaded and 
the SYNC character or characters are about to be or 
are being transmitted automatically as "fillers." 
TxEMPTY does not go low when the SYNC charaC­
ters are being shifted out. 

6-6 

Figure 4. 8251 A Block Diagram Showing Modem 
. and Transmitter Buffer and Control 
Functions 

TxC (Transmitter Clock) 

The Transmitter Clock controls the rate at which the 
character is to be transmitted. in the Synchronous 
transmission mode, the Baud Rate (1x) is equal to 
the TxC frequency. In Asynchronous transmission 
mode, the baud rate is a fraction of the actual TxC 
frequency. A portion of the mode instruction selects 
this factor; it can be 1, 1/16 or 1/64 the TxC. 

For Example: 

If Baud Rate equals 110 Baud, 
TxC equals 110Hz in the 1 x mode. 
TxC equals 1.72 kHz in the 16x mode. 
TxC equals 7.04 kHz in the 64x mode. 

The falling edge of TxC shifts the serial data out of 
the 8251A. 

Receiver Buffer 

The Receiver accepts serial data, converts this serial 
input to parallel format, checks for bits or characters 
that are unique to the communication technique 
and sends an "assembled" character to the CPU. 
Serial data is input to RxD pin, and is clocked in on 
the rising edge of RxC. 

205222-002 



inter 8251A 

Receiver Control 

This functional block manages all receiver-related 
activities which consists of the following features. 

The RxD initialization circuit prevents the 8251A 
from niistaking an unused input line for an active 
low data line in the "break condition." Before 
starting to receive serial characters on the RxD 
line, a valid "1" must first be detected after a chip 
master Reset. Once this has been determined, a 
search for a valid low (Start bit) is enabled. This 
feature is only active in the asynchr.onous mode, 
and is only done once for each master Reset. 

The False Start bit detection circuit prevents false 
starts due to a transient noise spike by first detect­
ing the falling edge and then strobing the nominal 
cen~er of the Start bit (RxD = low). 

Parity error detection sets the corresponding 
status bit. 

The Framing Error status bit is set if the Stop bit is 
absent at the end of the data byte (asynchronous 
mode). 

RxRDY (Receiver Ready) 

This output indicates that the 8251A contains a char-

Rie (Receiver Clock) 

The Receiver Clock controls the rate at which the 
character is to be received. In Synchronous Mode, 
the Baud Rate (1 x) is equal to the actual frequency of 
RxC. In Asynchronous Mode, the Baud Rate is a 
fraction of the actual RXC frequency. A portion of 
the mode instruction selects this factor: 1, 1/16 or 
1/64 the RxC. 

For example: 

Baud Rate equals 300 Baud, if 
RXC equals 300 Hz in the 1x mode; 
RxC equals 4800 Hz in the 16x mode; 
RxC equals 19.2 kHz in the 64x mode. 

Baud Rate equals 2400 Baud, if 
RXe equals 2400 Hz in the 1x mode; 
RxC equals 38.4 kHz in the 16x mode; 
RiC equals 153.6 kHz in the 64x mode. 

Data is sampled into the 8251 A on the rising edge of 
RxC. 

NOTE: In most communications systems, the 8251A 
will be handling both the transmission and reception 
operations of a single link. Consequently, the 
Receive and Transmit Baud Rates will be the same. 
Both TxC and RXC will require identical frequencies 
for this operation and can be tied together and con­
nected to a single frequency source (Baud Rate 
Generator) to simplify the interface. 

acter that is ready to be inpuHo the CPU. RxRDY can D, 

be connected to the interrupt structure of the CPU 
or, for polled operation, the CPU can check the con-
dition of RxRDY using a Status Read operation. 

RxEnable, when off, holds RxRDY in the Reset Con­
dition. For Asynchronous mode, to set RxRDY, the 
Receiver must be enabled to sense a Start Bit and a 
complete character must be assembled and trar;ls­
ferred to the Data Output Register. For Synchronous 
mode, to·set RxRDY, the Receiver must be enabled 
and a character must finish assembly and be trans­
ferred to the Data Output Register. 

Failure to read the receiv~d character from the Rx , 
Data Output Register prior to the assembly of the 
next Rx Da~ character will set overrun condition 
error and ths.previous character will be written over 
and lost. If the Rx Data is being read by the CPU 
when the internal transfer is occurring, overrun er­
ror will be set and the old character will be lost. 

6-7 

Figure 5. 8251A Block Dlagram,Showing 
Receiver Buffer and Control Functions 

205222-002 



8251A 

SYNDET (SYNC Detect/ 
BRKDET Break Detect) 

This pin is used in Synchronous Mode for SYN­
DET and may be used as either input or output, 
programmable through the Control Word. It is reset 
to output mode low upon RESET. When used as an 
output (internal Sync mode), the SYNDET pin will go 
"high" to indicate that the 8251A has located the 
SYNC character in the Receive mode. If the 8251A is 
programmed to use double Sync characters (bi­
sync), then SYNDETwili go "high" in the middle of 
the last bit of the second Sync character. SYNDET is 
automatically reset upon a Status Read operation. 

When used as an input (external SYNC detect mode), 
a positive going signal will cause the 8251A to start 
as!Sembling data characters on the rising edge of the 
next RxC. Once in SYNC, the "high" input signal can 
be removed. When External SYNC Detect is pro­
grammed, Internal SYNC Detect is disabled. 

BREAK (Async Mode Only) 

This output will 'go high whenever the receiver 
remains low through two consecutive stop bit se­
quences (including the start bits, data bits, and 
parity bits). Break Detect may also be read as a 
Status bit. It is reset only upon a master chip Reset or 
Rx Data returning to a "one" state. 

\ ADDRESS BUS 

Ao 

CONTROL BUS 

I/O RI i'76'W RESET °2 
(TTL) 

DATA BUS 

:. 

• 

e/f5 1m" 0,-°0 lID i'IIi RESET elK 

82!?1A 

Figure 6. 8251A Interface to 8080 Standard 
System Bus 

6-8 

DETAILED OPERATION DESCRIPTION 

General 

The complete functional definition of the 8251A is 
programmed by the system's software. A set of con­
trol words must be sent out by the CPU to initialize 
the 8251A to support the desired communications 
format. These control words will program the: BAUD 
RATE,CHARACTER LENGTH, NUMBER OF STOP 
BITS, SYNCHRONOUS or ASYNCHRONOUS OPER­
ATION, EVEN/ODD/OFF PARITY, etc. In the 
Synchronous' Mode, options are also provided to 
select either internal or external character 
synchronization. 

Once programmed, the 8251 A is ready to perform its 
communication functions. The TxRDY output is 
raised "high" to'signal the CPU that the 8251A is 
ready to receive a data character from the CPU. This 
output (TxRDY) is reset automatically when the CPU 
writes a character into the 8251A. On the other hand, 
the 8251A receives serial data from the MODEM or 
I/O device. Upon receiving an entire character, the 
RxRDYoutput is raised "high" to signal the CPU that 
the 8251A has a complete character ready for the 
CPU to fetch. RxRDY is reset automatically upon the 

, CPU data read operation. 

The 8251A cannot begin transmission until the Tx 
Enable (Transmitter Enable) bit is set in the Com­
mand Instruction and it has received a ClearTo Send 
(CTS) input. The TxD output will be held in the mark­
ing state upon Reset. 

ciD= 1 

cic = 1 

cio= 1 

ciD" 1 

ciD =0 

c15,. 1 

cic = 0 

ciD = 1 

T 

MODE INSTRUCTION 

SYNC CHARACTER 1 

SYNC CHARACTER 2 

COMMAND INSTRUCTION 

DATA 

COMMAND INSTRUCTION 

DATA 

COMMAND IfolSTRUCTlON 

} 
SYNC MODE 

ONLY· 

I 

'THE SECOND SYNC CHARACTER IS SKIPPED IF MODlINSTRucnGN HAS PRO­
GRAMMED THE 8251A TO SINGLE CH~AACTER SYNC MODE. 80TH SYNC 
CHARACTERS ARE SKIPPED IF MODE INSTRUCTION HAS PRoGRAMMED THE 
8211A TO ASVNC MODE. ' 

Figure 7. Typical Data Block 

205222-002 



8251A 

Programming the 8251A 

Prior to starting data transmission or reception, the 
8251A must be loaded with a set of control words 
generated by the CPU. These control signals define 
the complete functional definition of the 8251A and 
must immediately follow a Reset operation (internal 
or external). 

The control words are split into two formats: 

1. Mode Instruction 
2. Command Instruction 

Mode Instruction 

This instruction defines the general operational 
characteristics of the 8251A. It must follow a Reset 
operation (internal or external). Once the Mode In­
struction has been written into the 8251A by' the 
CPU, SYNC characters or Command Instructions 
may be written. ' 

Command Instruction 

This instruction defines a word that is used to control 
the actual operation of the 8251A. 

Both the Mode and Command Instructions must 
conform to a specified sequence for proper device 
operation (see Figure 7). The Mode Instruction must 
be written immediately following a Reset 
operation, prior to using the 8251A for data 
communication. 

All control words written' into the 8251A after the 
Mode Instruction will load the Command Instruc­
tion. Command Instructions can be written into the 
8251Aat any time in the data block during the opera­
tion of the 8251 A. To return to the Mode Instruction 
format, the master Reset bit in the Command In­
struction word can be set to initiate an internal Reset 
operation which automatically places the 8251A 
back into the Mode Instruction format. Command 
Instructions must follow the Mode Instructions or 
Sync characters. 

Mode Instruction Definition 

The 8251A can be used for either Asynchronous or 
Synchronous data communication. To. understand 
how the Mode Instruction defines the functional 
operation of the 8251A, the designer can best view 
the device as two separate components, one 
Asynchronous and the other Synchronous, sharing 

6-9 

the same package. The format definition can be 
changed only after a master chip Reset. Forexplana­
tion purposes the two formats will be isolated. 

NOTE: When parity is enabled it is not considered 
as one of the data bits for the purpose of program­
ming the word length. The actual parity bit received 
on the Rx Data line cannot be read on the Data Bus. 
In the case of a programmed character length of less 
than 8 bits, the least significant Data Bus bits will 
hold the data; unused bits are "don't care" when 
writing data to the 8251 A, and will be "zeros" when 
reading the data from the 8251A. 

Asynchronous Mode (Transmission) 

Whenever a data character is sent by the CPU the 
8251A automatically adds a Start bit (low level) fol­
lowed by the data bits (least significant bit first), and 
the programmed number of Stop bits to each char­
acter. Also, an even or odd Parity bit is inserted prior 
-to the Stop bit(s), as defined by the Mode Instruc­
tion. The character is then transmitted as a serial 
data stream on the TxD output. The serial data is 
shifted out on the falling edge ofTxC at a rate equal 
to 1, 1/16, or 1/64 that of the TxC, as defined by the 
Mode Instruction. BREAK characters can be contin­
uously sent to the TxD if commanded to do so. 

When no data characters have been loaded into the 
8251A theTxD output reamins "high" (marking) un­
less a Break (continuously low) has been 
programmed. 

Figure 8. Mode Instruction Format, 
Asynchronous Mode 

205222-002 



inter 8251A 

Asynchronous Mode (Receive) 

The RxD line is normally high. A falling edge on this 
line triggers the beginning of a START bit. The 
validity of this START bit is checked by again strob­
ing this bit at its nominal center (16X or 64X mode 
only). If a low is detected again, it is a valid START bit, 
and thEjl bit counter will start counting. The bit coun­
ter thus locates the center of the data bits, the parity 
bit (if it exists) an,d the stop bits. If parity error oc­
curs, the parity error flag is set. Data and parity bits 
are sampled on the RxD pin with the rising edge of 
RxC. If a low level is detected as the STOP bit, the 
Framing Error flag will be set. The STOP bit signals 
the end of a character. Note that the receiver re­
quires only one stop bit, regardless of the number of 
stop bits programmed. This character is then loaded 
into the parallel I/O buffer of the 8251 A. The RxRDY 
pin is raised to signal the CPU that a character is 
ready to be fetched. If a previous character has not 
been fetched by the CPU, the present character 
replaces it in the I/O buffer, and the OVERRUN Error 
flag is raised (thus the previous character is lost). All 
of the error flags can be reset by an Error Reset 
Instruction. The occurrence of any of these errors 
will not affect the operation of the 8251A. 

GENERATED 
00°1---- Ox BY 8251A 

STt.! 
BITS L 

DOES NOT APPEAR 

RECEIVER INPUT DO 01----0x ON THE DATA BUS 

t t t t 
RxD 1 ... _S..:.T: __ ,;T--IG __ DA_TooiA B\-'T_S --'-__ -' 

TRANSMISSION FORMAT 

PROGRAMMED 
CHARACTER 

LENGTH 

CPU BYTE (5·8 BITS/CHAR) 

DATA C~+ACTER 
ASSEMBLED SERIAL DATA OUTPUT (lxD) 

ST6.I arrs L 

STOD '--"'-'---'-_D_AT_A.....,CHA ... R_AC_T_ER_...J...--"'"'--.L--"jBITS 

RECEIVE FORMAT 

SERIAL DATA INPUT (AxD) 

DATA CHARACTER sroO 
'----'-----4 I-__ .L--=-:'--L",--B~'TS 

CPU BYTE (58 BITS/CHAR)­

DATA CH~~I-A_CT_E_R _..J 

-NOTE IF CHARACTER LENGTH IS DEFINED AS 5. 6 OR 7 
BITS THE UNUSED BITS ARE SET TO "ZERO" 

Figure 9. Asynchronous Mode 

Synchronous Mode (Transmission) 

The TxD output is continuously high until the CPU 
sends its first character to the 8251Awhich usually is 
a SYNC character. When the CTS line goes low, the 
first character is serially transmitted out. All charac­
ters are shifted out on the falling edge ofTxC. Data is 
shifted out at the same rate as the TxC. 

Once transmission has started, the data stream at 
the TxD output must continue at the TxC rate. If the 
CPU does not provide the 8251A with a data charac­
ter before the 8251A Transmitter Buffers become 
empty, the SYNC characters (or character if in single 
SYNC character mode) will be automatically in­
serted in the TxD data stream. In this case, the 
TxEMPTY pin is raised high to signal that the 8251A 
is empty and SYNC characters are being sent out. 
TxEMPTY does not go low when the SYNC is being 
shifted out (see figure below). The TxEMPTY pin is 
internally reset by a data character being written 
into the 8251A. 

AUTOMATICALLY INSERTED BY USART 

I \ 
TxD I DATA I DATA I SYNC 1 I SYNC 21 DATA I - - - - -

TxEMPTY ___ -{ 

FALLS UPON CPU WRITING A I CHARACTER TO THE USART 

NOMINAL CENTER OF LAST BIT 

Synchronous Mode (Receive) 

In this mode, character synchronization can be inter­
nally or externally achieved. If the SYNC mode has 
been programmed, ENTER HUNT command should 
be included in the first command instruction word 
written. Data on the RxD pin is then sampled on 
the rising edge of RxC. The content of the Rx buffer 
is compared at every bit boundary with the first 
SYNC character until a match occurs. If the 8251A 
has been programmed for two SYNC characters, the 
subsequent received character is also compared; 
whe'n both SYNC characters have been detected, 
the USARTends the HUNT mode and is in character 
synchronization. The SYNDET pin is then set high, 
and is reset automatically by a STATUS READ. If 
parity is programmed, SYNDETwili not be set until 
the middle of the parity bit instead of the middle of 
the last data bit. 

In the external SYNC mode, synchronization is 
achieved by applying a high level on the SYNDET 
pin, thus forcing the 8251A out of the HUNT mode. 
The high level can be removed after one RxC cycle. 
An ENTER HUNT command has no effect in the 
asynchronous mode of operation. 

6-10 205222-002 



intJ 8251A 

Parity error and overrun error are both checked in 
the same way as in the Asynchronous Rx mode. 
Parity is checked when not in Hunt, regardless of 
whether the Receiver is enabled or not. 

0, 0, D. 0, 0, 0, 0, 0, 

IlscslESDI EP IpENI L,I L, I ° I 0 I 

I I 
CHARACTER LENGTH 

0 , 0 , 
0 0 , , 
5 6 7 8 

BITS BlTS BITS BITS 

PARITY ENABLE 
11 '" ENABLE) 
(0'" DISABLE) 

EVEN PARITY GENERATION/CHECK 
1 = EVEN 
0"000 

EXTERNAL SYNC DETECT 
1 = SYNDET IS AN INPUT 
0'" SYI\JOET IS AN OUTPUT 

SINGLE CHARACTER SYNC 
1 '" SINGLE SYNC CHARACTER 
0= DOUBLE SYNC CHARACTER 

NOTE IN EXTERNAL SYNC MODE, PROGRAMMING DOUBLE CHARACTER 
SYNC WilL AFFECT aNl Y THE Tx 

Figure 10. Mode Instruction Format, 
Synchronous Mode 

The CPU can command the receiver to enter the 
HUNT mode if synchronization is lost. This will also 
set all the used character bits in the buffer to a 
"one," thus preventing a possible false SYNDET 
caused by data that happens to be in the Rx Buffer at 
ENTER HUNT time. Note that the SYNDET F/F is 
reset at each Status Read, regardless of whether 
internal or external SYNC has been programmed. 
This does not cause the 8251A to return to the HUNT 
mode. When in SYNC mode, but not in HUNT, Sync 
Detection is still functional, but only occurs at the 
"known" word boundaries. Thus, if one Status Read 
indicates SYNDET and a second Status Read also 
indicates SYNDET, then the programmed SYNDET 
characters have been received since the previous 
Status Read. (If double character sync has been 
programmed, then both sync characters have been 
contiguously received to gate a SYNDET indication.) 
When external SYNDET mode is selected, internal 
Sync Detect is disabled, and the SYNDET F/F may be 
set at any bit boundary. 

6-11 

I . SYNC 

• CHAR 1 

RECEIVE FORMAT 

SYNC 
CHAR 1 

CPu BYTeS (5·8 BITS/CHAR) 

DATA C~~RACTERS 
ASSEMBLED SERIAL DATA OUTPUT (Txo) 

SYNC 
CHAR 2 DATA CH~~,...AC_T_ER_S_---' 

SERIAL DATA INPUT (RKO) 

SYNC I 
CHAR 2 DATA CHA:RA .... C_TE_R_S _--' 

CPU BYTES (58 BITS/CHAR) 

DATA CHARACTERS ;1 

Figure 11. Data Format, Synchronous Mode 

COMMAND INSTRUCTION DEFINITION 

Once the functional definition of the 8251A has been 
programmed by the Mode Instruction and the sync 
characters are loaded (if in Sync Mode) then the 
device is ready to be used for data communication. 
The Command Instruction controls the actual opera­
tion of the selected format. Functions such as: 
Enable Transmit/Receive, Error Reset and Modem 
Controls are provided by the Command Instruction. 

Once the Mode Instruction has been written into the 
8251A and Sync characters inserted, if necessary, 
then all further "control writes" (C/D = 1) will load a 
Command Instruction. A Reset Operation (internal 
or external) will return the 8251A to the Mode In­
struction format. 

Note: Internal Reset on Power-up 

When power is first applied, the 8251A may come up 
in the Mode, Sync character or Command format. To 
guarantee that the device is in the Command In­
struction format before the Reset command is is­
sued, it is safest to execute the worst-case 
initialization sequence (sync mode with two sync 
characters). Loading three OOHs consecutively into 
the device with C/O = 1 configures sync operation 
and writes two dummy OOH sync characters. An In­
ternal Reset command (40H) may then be issued to 
return the device to the "Idle" state. 

205222-002 



inter 8251A 

D, D, ' 0, 0, OJ 0, 0, Do 

II EH I 'IR I RTS I ER ISBRKI RICE I OTR ITXENI 

Lr TRANSMIT ENABLE I 1 ~ enable 
a : disable 

LI DATA TERMINAL I, READY 
"high" will force DTA 

, output to zero 

.1 RECEIVE ENABLE I 1 ~ enable I 0 disable 

I SEND BREAK 

j CHARACTER I' . forces TxD "low" 
o = normill operation 

.1 ERROR RESET I 11 = reset error flags 
PE, DE, FE 

I REOUEST TO SE~ 

I I "hlgn" Will force RIS 
output to leto 

I INTERNAL RESET 

I "high" returns 8251A to -l Mode InstructIOn Format 

I ENTER HuNT MODE' I 
1 - enable se<l'ch for Sync I Characters < 

• (HAS NO EFFECT 
IN ASVNC MODEl 

Note: Error Reset must be performed whenever RxEnable 
and Enter Hunt are programmed. 

Figure 12. Command Instruction Format 

STATUS READ DEFINITION 

In data communication systems it is often necessary 
to examine the "status" of the active device to ascer· 
tain if errors have occurred or other conditions that 
require the processor's attention, The 8251A has 
facilities that allow the programmer to "read" the 
status of the device at any time during the func­
tional operation. (Status update is inhibited during 
status read.) 

A normal "read" command is issued by the CPU with 
C/O = 1 to accomplish this function. 

Some of the bits in the Status Read Format have 
identical meanings to external output pins: so that 
the 8251A can be used in a completely polled or 
interrupt-driven environment. TxRDY is an 
exception. 

Note that status update can have a maximum delay 
'of 28 clock periods from the actual event affecting 
the status. 

6-12 

0, D, D, 0, OJ 0, 0, Do 

I 

DSR I SYNDETI I BRKDET FE 

I 

DE 

I 

PE _I T'EMPT~I R,RDY l T,RDY 

I j j ~ 
SAME DEFINITIONS AS 1/0 PINS 

PARITY ERR9R 
The PE flag IS set when a panty 
error IS detected It IS reset by 
the E R bit of the Command 
Instruction PE does not inhIbIt 
operation of the 8251 A 

OVERRUN ERROR 
The OE flag IS set when the CPU 
does not read a character belore 
the next one becomes available 

~ It IS reset by the ER bIt of the 
Command InstructIOn OE does 
not mhlblt Operation of the 8251 A 
however, the preViously ov~rrun 
character IS lost 

FRAMING ERROR (Async only) 
The FE flag IS set when a valid 
Stop bit IS not detected at the 
end of every character It IS reset 
by the E R bit of the Command 
Instruction FE does not inhibit 
the operation of the 8251 A 

DATA SET READY Indicates 
that the DSA IS at a zero level 

Note l' TxROY status bit has different meanings from the 
TxRDY output ptn The former IS not conditIOned 
by CTS and TxEN, the latter IS conditIOned by both 
CTS and TxEN 

I.e. TxADY status bit = DB Buffer Empty 

TxRDY Pin out - DB Buffer Empty' leTS-OI· 
ITxEN-ll 

Figure 13. Status Read Format 

APPLICATIONS OF THE 8251A 

ADDRESS BUS 

I 
CONTROL 'BUS ( 

r=l I 
DATA BUS 

UB~ I 
I 
I r----' 

R,D -------t ElA TO TTL I~ 
CONVERT J 

8251A 
TxD I (OPT) I----+-- _ 
RiC L - - - - J _ff€7/JI~ 

- ~ I BAUD RATE I CRT 
TxC I GENERATOR TERMINAL 

Figure 14. Asynchronous Serial Interface to CRT 
Terminal, DC-9600 Baud 

205222-002 



intJ 8251A 

ADDRESS BUS 

I 

~l 
CONTROL BUS 

I 
DATA BUS 

~D~ 
RkO 

TkO SYNCHRONOUS 
TERMINAL 

8251A RiC h OR PERIPHERAL 

TkC DEVICE 

SVNDET 

Figure 15. Synchronous Interface to Terminal or 
Peripheral Device 

ADDRESS BUS ~ 

I 
CONTROL BUS 

I I 
\ DATA BUS \ 

~JB~ 
RkO 1-
TkO r------ t---

PHONE 
158Ft p- ASVNC LINE 

om F----- MODEM INTER-

!--------- FACE 
8251A m p-

ATS p----. 

1 RXC ~ BAU~ 
T.lCC 

RATE 
GENERATOR TELEPHONE 

LINE 

Figure 16. Asynchronous Interface to Telephone 
Lines 

6-13 

SYNC 
MODEM 

PHONE 
LINE 

INTER· 
FACE 

TELEPHONE 
LINE 

Figure 17. Synchronous Interface to Telephone 
Lines 

205222-002 



, inter 8251A 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias .......... ooc to 70·C 
Storage Temperature ................ -65·C to +150·C 
Voltage On Any Pin 

With Respect To Ground .... . ....... -0.5V to + 7V 
Power Dissipation ............................. 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional operation 

, of the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reli~bility. 

D.C. CH~RACTERISTICS (TA = o·c to 70'C, Vee = 5.0V ± 5%, GND = OV)" 

Symbol Parameter Min. Max. Unit 

VIL ' Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee V 

VOL Output Low Voltage 0.45 V 

VOH Output High Voltage 2.4 V 

IOFL Output Float Leakage ±10 /LA 

IlL Input Leakage ±10 /LA 

Icc Power Supply Current 100 rnA 

CAPACITANCE (TA = 25·C, Vee = GND = OV) 

Symbol Parameter Min. . Max. Unit 

CIN Input Capacitance 10 pF 

CIA:> 1/0 Capacitance 20 pF 

A.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = 5.0V ±10%, GND = OV) " 
Bus Parameters (Note 1) 
READ CYCLE 

Symbol Parameter Min. Max. Unit 

tAR Address Stable Before READ (CS, C/D) 0 ns 

tRA Address Hold Time for READ (CS, C/D) 0 ns 

tRR READ Pulse Width 250 ns 

tRO Data Delay from READ 200 ns 

tOF READ to Data Floating 10 100 ns 

WRITE CYCLE 

Symbol Parameter Min. Max. Unit 

tAW Address Stable Before WRITE 0 ns 

tWA Address HoldTime for WRITE 0 ns 

tww WRITE Pulse Width 250 ns 

tow Data Set-Up Ti me for WRITE 150 ns 

two Data Hold Time for WRITE 20 ns 

tRY ~ecovery Time Between WRITES - 6 tey 

&-14 

Test Conditions 

IOL = 2.2 rnA 

IOL = -400/LA 

VOUT = Vee TO 0.45V 

VIN = Vee TO O.45V 

All Outputs = High 

Test Conditions 

fc = 1MHz 

Unmeasured pins returned 
toGND 

Test Conditions 

Note 2 

Note 2 

3, CL = 150 pF 

Test Condtlons 

, . 
Note 4 

205222-002 



8251A 

A.C. CHARACTERISTICS (Continued) 

OTHER TIMINGS 

Symbol Parameter Min. Max. Unit Test Conditions 

tCY Clock Period 320 1350 ns Notes 5, 6 

tp Clock High Pulse Width 120 tCy-9O ns 

t.o' Clock Low Pulse Width 90 ns 

tR, tF Clock Rise and Fall Time 20 ns 

tDTx TxD Delay from Falling Edge ofTxC 1 j.LS 

fTx Transmitter Input Clock Frequency 
1x Baud Rate DC 64 kHz 
16x Baud Rate DC 310 kHz 
64x Baud Rate DC 615 kHz 

tTPW Transmitter Input Clock Pulse Width 
1x Baud Rate 12 tCY 
16x and 64x Baud Rate 1 tCY 

tTPD Transmitter Input Clock Pulse Delay 
1x Baud Rate 15 tCY 
16x and 64x Baud Rate 3 tCY 

IRx Receiver Input Clock Frequency 
1x Baud Rate DC 64 kHz 
16x Baud Rate DC 310 kHz 
64x Baud Rate DC 615 kHz 

tRPW Receiver Input Clock Pulse Width 
1x Baud Rate 12 tCY 
16x and 64x Baud Rate 1 tCY 

tRPD Receiver Input Clock Pulse Delay 
1x Baud Rate 15 tCY 
16x and 64x Baud Rate 3 tCY 

tTxRDY TxRDY Pm Delay from Center of Last Bit 14 ICY Note? 

tTxRDY CLEAR TxRDY ~ from Leading Edge ofWR 400 ns Note? 

tRxRDY RxRDY Pin Delay from Center of Last Bit 26 tCY Note? 

tRxRDY CLEAR RxRDY t from Leading Edge of RD 400 ns Note? 

tiS Internal SYNDET Delay Iro(l1 Rising 
Edge of RxC 26 tCY Note? 

tES External SYNDET Set-Up Time After 
Rising Edge of RxC 18 tCY Note? 

tTxEMPTY TxEMPTY Delay from Center of Last Bit 20 tCY Note? 

twc Control Delay from Rising Edge of 
WRITE (TxEn, DTR, RTS) 8 ICY Nole? 

tCR Control to READ Set-Up Time (DSR, CTS) 20 tCY Note? 

-NOTE: 
1 For Extended Temperature EXPRESS, use M8251 A electrical parameters, 

6-15 205222-002 



inter 

A.C; CHARACTERISTICS (Continued) 
NOTES: 

8251A 

1. AC timings measured VOH = 2.0 VOL = 2.0. VOL = 0.8. and with load circuit of Figure 1. 
2. Chip Select (CS) and Command/Data (C/O) are considered as· Addresses. 
3. Assumes that Address is valid before RD~. 
4. This recovery time is for Mode Initialization only. Write Data is allowed only when TxRDY·= 1. RecoveryTime between 

Writes for Asynchronous Mode is 8 tCY anp for Synchronous Mode is 16 tCY: 
5. TheTxC and RxC frequencies have the following limitations with respect to ClK: For 1x Baud Rate. fTx or fRx <;; 1/(30 

tCY): . 
For 16x and 64x Baud Rate. fTx or fRx <;;1/(4.5 tCY). 

6. Reset Pulse Width = 6 tCY minimum; System Clock must be running during Reset. 
7. Status update can have a maximum delay of 28 clock periods from the event affecting the status. 

TYPICAL ~ OOTPUT DELAY VS. ~ CAPACITANCE (PF) 

+20 
/ 

+10 / 
, V .s ,. 

~ 
0 

/ "SPEC 

V 

... 
::> 
~ 
::> 
0 
-1 

-10 

/ '20 
\- -100 -50 +50 +100 

..l CAPACITANCE (pF) 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUTtOUTPUT 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND a 8V FOR A LOGIC 0 

Cl = IS0pF 

6-16 . 

/ 

205222-002 



8251A 

WAVEFORMS 

SYSTEM CLOCK INPUT 

CLOCK ~ 

TRANSMITTER CLOCK AND DATA 

TiE (ht MODE) 

~(16xMODE) 

T~ OAT A 

RECEIVER CLOCK AND DATA 

(Rx BAUD COUNTER STARTS HERE) 

RI< DATA 

Rxe (1)( MODE) 

Rxe (16 MODE) 

tNT SAMPLING 
PULSE ---------

WRITE DATA CYCLE (CPU ~ USART) 

hRDY _____ 1 

____ ~DO~N2'T~C~AR~'~_~~~~~:j~-~0~O~N~'T~C~A~R'~­DATA IN (0 B) 

CID 

READ DATA CYCLE (CPU <- USART) 

R,ROY _______ 1 
I f--• .r;~:~Y CLEA~I 

iid ----------,rr- 71"---
-lI I--'RO - I-: 'OF 

DATA OUT (D.B I ___ ----"D~AT!'A~F~L~O~AT~ __ +-{~~§~~~t--!!D~AT!!A'-'F',1,L~OA~T 

c/o _______ -:l~+-----+_..J.~--

6-17 205222-002 



intJ 8251A 

WAVEFORMS (Continued) 

WRITE CONTROL OR OUTPUT PORT CYCLE (CPU ~ USART) 

(~~~ ___________________________ ====x~ ______ ___ 
I: ,wc:::..j 

-----___ ----,I-'ww-I 
w; ~ 

I-I tow -- ::l two 

DATAIN(DB} ----------------~==t===~==~------------
I~ 'AW 1---1 'WA 

CID ______________ ~JI I\~ ________ __ 

Os --------------~~~I ____ 'A_W ____ ---1~lr'W~A~--------

READ CONTROL OR INPUT PORT (CPU -- USART) 

(~~~'E~ ---------xr.-----------,;----------------------
i~ 'CR -11. ___ 'RR-I 

Rd ---------------~ Ytr-~--

-i-II-'RO ~ I-'OF 
DATA OUT -------------------t-t=========+J--------(DBl 

~I 'AR I-- -- 'RA r--
c/o ______________ ---'/1 ~ 

-I tAR 1-- ............... tRA t:== 
Os ----------------\~ ________________ ~y______ 

NOTE 4"1 TWC INCLUOES THE RESPONSE TIMING Of A CONTROL BYTE 

NOTE..,,2 TCR INCLUDES THE EFFECT OF ers ON THE TlIENBL CIRCUITRY 

TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE) 

Til EMPTY -----------<i 
tTxEMPTV -1,Fr---------, 

I~---r____<) 

Tx RE(~~~ ____ ---,;'> 

CID 

TxDATA 

DATA CHAR 1 DATA CHAR 2 DATACHAA 3 

eXAMPLE FORMAT = 7 BIT CHARACTER WITH PARITY & 2 STOP BITS 

6-18 205222-002 



inter 8251 A 

WAVEFORMS (Continued) 

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE) 

____________________________________________ ~r---~-----------------
FIIA~'T'!.~~~:~,~ ----------------------------------------r-------'i---t------------,---------
OVE~:T~~~~T~ =============== _~"I--~:::"'-:C'~"--r------_ ---_ -ii1"""LC~OST:~:...~r~~~~~~ll-;---~-----+r-------1i--------------------_-_-_-_+~----------------

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE) 

hAEAQV 
ISTATlISSlTI 

r. READV 
IPINI 

------. 

~~L-
-=J-;IL-

WrOAlA WrOAlA 

~ MARKING STATE CHAR 1 
DATA 

CHAR2 

n.. 
I 
I 
i\ 

I 
WrDATA 
CH .... A J 

S N~\ 
CHAR 1 

~ 
r-' 

'--

1.-

W.OA14 
CHAR4 

1..\ C~~TRA~ SYNC CHAR 2 CHAR 3 

'---

~ \......, 

W,COMMANO 
SIIRII 

""COMMA'::! II 
w. DATA 

SIIAK CHAR!> 

MA~ OATA ~~:~ STATE SlATE STATE CHAR ~ '" 
o. ". • Il,. D , • ~ • • , I.' 0"" ., ,3' ., I , • 01' •• . " 

~. ... .. ... ~ .. 

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE) 

SVIIIOET 
IPIfIIJNOTE I -~OTE.L." 

'15_ - tes_ 

~L-

~ c"n 

~~.us .~ 
I---

---1:::.: Rd5TATUS L 
WI(HO RdOAfA 

CHAR 1 

---v .6 OON' "NC "NC DATA 
CARE CHAR 1 CHAR 2 CHARI CHARZ ... ••• 0' I J': D I ••• • • , ','A' DIl" c 

III I t ~ CHAR AS5Y BEGINS 

JlJ1J1fif 
LEXIT HUNT MODE 

NOTE 1 INHRNALSYi'IC 2SYNCCHARACTEAS 5 BITS WITH PARITY 
NOTE 2 fXTEANAL SYNC 5 BITS WITH PARITY 

CHAA.J CHAR 1 

t hlr >--- IV 
DATA 

CHARl CHAR 1 SVNceHAR 2 OOH T CARE 

'" J' 
efl' r J' cO, J JO ~ ...... 

II II 

J1J1 
EXIT HUNT MODE 

sn SYNOET jSTATUSBIT! 

6-19 

. .. ... 

~ 
t--

:----
,--

- ....... 
Rd STATUS 

'r-
RdOAfA 

DATA l 
Ir---

DATA 
CHARI CHARl He 

.01. J' CO, I J' e 

'H",~ fu- "GON' I 

205222-002 

i 
, I 



inter 
8273,827~4 . 

PROGRAMMABLE HOLC/SOLC PROTOCOL 
, CONTROLLER 

• CCITT X.25 Compatible • Programmable NRZI Encode/Decode 

• HDLC/SDLC Compatible • Two User Programmable Modem 

• Full Duplex, Half Duplex, or Loop Control Ports 
SDLC Operation • Digital Phase Locked Loop Clock 

• Up to 64K Baud Synchronous Recovery 
Transfers (56K Baud with 8273-4) • Minimum CPU Overhead 

• Automatic FCS (CRC) Generation and 
Checking • Fully Compatible with 8048/8080/8085/ 

• Up to 9.6K Baud with On· Board Phase 
8088/8086/80188/80186 CPUs 

, 
Locked Loop • Single +5V Supply 

The Intel@ 8273 Programmable HOLC/SOLC Protocol Controller is a dedicated device designed to support the ISO/ 
CCITT's HOLC and IBM's SOLC communication line protocols. It is fully compatible with Intel's new hiQh performance 
microcomputer systems such as the MCSl 88/186'", A frame level command set is achieved by a unique microprogrammed 
dual processor chip architecture, The processing capability supported'by the 8273 relieves the system CPU of the low 
level real-time tasks normally associated with controllers, 

REGISTERS 

TxlNT RESULT 

TEST MODE 

INTERNAL DATA sus 

PB'_4 
ill 
co 
PA.2_4 

r-~'-'""'L~_ R,O 

r;;c 

CPU INTERFACE MODEM INTERFACE 

FIAG15Ef Veo 

Tx INT I'D4 
elK i'II3 

RESET 

"'" TxOACK ;;a; 
TxDRQ ;m 

RxOACK PA; 
RxORO PA, 

RD PA; 
WR CD 

Rx INT CfS 

000 T,D 

DBl TiC 

DB2 RiC 

DB3 R,D 

OM 32xC(R 

DBS cs 
DBO DPU 

DB7 A, 

GND A, 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other CirCUlI Patent Licenses are Implied Information Contained 
Herein Sup~sedes Previously Published SpeCifications On The DeVICes From Inlel 

©INTEL CORPORATION, 1984 6-20 
!'IOVEMBER 1983 

ORDER NUMBER- 210479-002 



inter 8273, 8273·4 

A BRIEF DESCRIPTION OF HOLC/SOLC 
PROTOCOLS 

General 

The High Level Oata Link Control (HOLC) is a standard 
communication link protocol established by International 
Standards Organization (ISO), HOLC is the discipline 
used to implement ISO X.25 packet switching systems. 

The Synchronous Oata Link Control (SOLC) is an IBM 
communication link protocol used to implement the 
System Network Architecture (SNA). Both the protocols 
are bit oriented. code independent. and ideal for full 
duplex communication. Some common applications 
include terminal to terminal. terminal to CPU. CPU to' 
CPU. satellite communication. packet switching and other 
hi,9h speed data links. In systems which require expensive 
cabling and interconnect hardware. any of the two 
protocols could be used to simplify interfacing (by going 
serial). thereby reducing interconnect hardware costs. 
Since both the protocols are speed independent. reducing 
interconnect hardware could become an important 
application. 

Network 
In both the HOLC and SOLC line protocols. according to a 
pre-assigned hierarchy. a PRIMARY (Controil STATION 
controls the overall network (data link) and issues 
commands to the SECONDARY (Slave) STATIONS. The 
latter comply with instructions and respond by sending 
appropriate RESPONSES. Whenever a transmitting 
station must end transmission prematurely it sends an 
ABORT character. Upon detecting an abort character. a 
receiving station ignores the transmission block called a 
FRAME. Time fill between frames can be accomplished by 
transmitting either continuous frame preambles called 
FLAGS or an abort character. A time fill within a frame is 
not permitted. Whenever a station receives a string of 
more that fifteen consecutive ones. the station goes into 
an IDLE state. 

Frames 
A single communication element is called a FRAME which 
can be used for both Link Control and data transfer 
purposes. The elements of a frame are the beginning eight 
bit FLAG (F) consisting of one zero. six ones. and a zero. 
an eight bit ADDRESS FIELD (A). an eight bit CONTROL 
FIELD (C). a variable (N-bitlINFORMATION FIELD (I). a 
sixteen bit FRAME CHECK SEQUENCE (FCS). and an 
eight bit end FLAG fF). having the same bit pattern as the 
beginning flag. In HOLC the Address (A) and Control (C) 
bytes are extendable. The HDLC and the SDLC use three 

types of frames; an Information Frame is used to transfer 
data. a Supervisory Frame is used for control purposes. 
and a Non-sequenced Frame is used for initialization and 
control of the secondary stations. 

Frame Characteristics 
An important characteristic of a frame is that its con­
tents are made code transparent by use of a zero bit 
insertion and deletion technique. Thus. the user can adopt 
any format or code suitable for his system - it may even 
be a computer word length or a "memory dump". The 
frame is bit oriented that is. bits. not characters in each 
field. have specific meanings. The Frame Check 
Sequence (FCS) is an error detection scheme similar to 
the Cyclic Redundancy Checkword (CRC) widely used in 
magnetic disk storage devices. The Command and 
Response information frames contain sequence numbers 
in the control fields id!'!ntifying the sent and received 
frames. The sequence numbers are used in Error 
Recovery Procedures (ERP) and as implicit acknowledge­
ment of frame communication. enhancing the true full­
duplex nature of the HDLC/SDLC protocols. 

In contrast. BISYNC is basically half-duplex (two way 
alternate) because of necessity to transmit immediate 
acknowledgement frames. HOLC/SOLC therefore saves 
propagation delay times and have a potential of twice the 
throughput rate of BISYNC. 

It is possible to use HDLC or SOLC over half duplex lines 
but there is a corresponding loss in throughput because 
both are primarily designed for full-duplex communi­
cation. As in any synchronous system. the bit rate is 
determined by the clock bits supplied by the modem. 
protocols themselves are speed independent. 

A byproduct of the use of zero-bit insertion-deletion 
technique is the non-return-to-zero invert (NRZI) data 
transmission/reception compatibility. The latter allows 
·HDLC/SDLC protocols to be used with asynchronous 
data communication hardware in which the clocks are 
derived from the NRZI encoded data. 

References 
IBM Synchronous Data Lmk Control General InformatIon, IBM, GA27-

3093-1 
Standard Network Access Protocol SpecifIcation, DATAPAC, Trans­

Canada Telephone System CCG111. 
Recommendation X 25. ISO/CCITT March 2, 1976 
IBM 3650 Retail Store System Loop Interface OEM Information, IBM, GA 

27-3098-0 
GUidebook to Data CommUniCatIons, Training Manual, Hewlett-Packard 

5955-1715 
IBM Introduction to Teleprocessmg, IBM, GC 20-8095-02 
System Network Architecture, Techntcal OverVIew, IBM, GA 27-3102 
System Network Architecture Format and Protocol, IBM GA 27-3112 

OPENING 
FLAG (F) 

ADDRESS 
FIELD (A) 

CONTROL 
FIELD (CI 

I~JFORMA nON 
FIELD (II 

FRAME CHECK 
SEQUENCE (FCS) 

CLOSING 
FLAG (FI 

01111110 8 BITS 8 BITS 
VARIABLE LENGTH 

16BITS 01111110 (ONLY IN I FRAMESI 

Figure 3. Frame.Format 

6-21 210479-002 , 

: 
11 

II 
" 



Pin 
Symbol No. Type 

Vcc 40 

GND 20 

RESET 4 I 

CS 24 I 

DB7-DBo 19- I/O 
12 

WR 10 I 

RD 9 I 

TxlNT 2 0 

RxlNT 11 0 

TxDRQ 6 0 

RxRDQ 8 0 

TxDACK 5 I 

RxDACK 7 I 

A,-Ao 22- I 
21 

TxD 29 0 

TxC 28 I 

RxD 26 I 

RxC 27 I 

\ ·8273, 8273-4 

Table 1. Pin Description 

Name and Function 

Power Supply: +5V Supply. 

Ground: Ground. 

Reset: A high signal on this pin will 
force the 8273 to an idle state. The 
8273 will remain ,die until a command 
is issued by the CPU. The modem 
interface output signals are forced 
high. Reset must be true for a 
minimum of 10 TCY. 

Chip Select: The RD and WR inputs 
are enabled by the chip select input. 

Data Bus: The Data Bus lines are bi-
directional three-state lines which in-
terface with the system Data Bus. 

Write Input: The Write signal is used 
to control the transfer of either a 
command or data from CPU to the 
8273. 

Read Input: The Read signal is used 
to control the transfer of either a data 
byte or a status word from the 8273 
to the CPU. 

Transmitter Interrupt: The Trans-
mitter interrupt signal indicates that 
the transmitter logic requires service. 

Receiver Interrupt: The Receiver 
interrupt signal indicates that the Re-
ceiver logic requires service. 

Transmitter Data Request: Re-
quests a transfer of data between 
memory and the. 8273 for a transmit 
operation. 

Receiver DMA Request: Requests a 
transfer of data between the 8273 and 
memory for a receive operation. 

Transmitter DMA Acknowledge: 
The Transmitter DMA acknowledge 
signal notifies the 8273 that the 
TxDMA cycle has been granted. 

Receiver DMA Acknowledge: The 
Receiver DMA acknowledge signal 
notifies the 11273 that the RxDMA 
cycle has been granted. 

Address: These two lines are CPU 
Interface Register Select lines. 

Transmitter Data: This line trans-
mits the serial data t9 the communi-
cation channel. 

Transmitter Clock: The transmitter 
clock is used to synchronize the 
transmit data. 

Receiver Data: This line receives 
serial data from the communication 
channel. 

Receiver Clock: The Receiver Clock 
is used to synchronize the receive 
data. 

Pin 
Symbol No. Type Name and Function 

32X ClK 25 I 32X Clock: The 32X clock is used to 
provide clock recovery when an 
asynchronous modem is used. In 
loop configuration the loop station 
can run without an accurate lX clock 
by using the 32X ClK in conjunction 
with the DPll output. (This pin must 
be grounded when not used.) 

DPll 23 0 Digital Phase Locked Loop: Digital 
Phase locked loop output can be 
tied to RxC and/or TxC when 1 X clock 
is not available. DPll is used with 
32X ClK. 

FLAGDET 1 0 Flag Detect: Flag petect signals that 
a flag (01111110) has been received 
by an active receiver. 

RTS 35 0 Request to Send: Request to Send 
signals that the 8273 is ready to trans-
mit data. 

CTS 30 I Clear to Send: Clear to Send signals 
th'at the modem is ready to accept 
data from .the 8273. 

CD 31 I Carrier Detect: Carrier Detect sig-
nals that the line transmission has 
started and the 8273 may begin to 
sample data on RxD line. 

PA2.4 32- I G"neral purpose Input ports: The 
34 logic levels on these lines can be 

Read by the CPU through the Data 
Bus Buffer. 

PB'-4 36- 0 General purpose output ports: The 
39 CPU can write these output lines 

through Data Bus Buffer. 

ClK 3 I Clock: A square wave TTL clock. 

FUNCTIONAL DESCRIPTION 
General 
The Intel® 8273 HOlC/SOlC controller is a microcom­
puter peripheral device which supports the International 
Standards Organization (ISO) High level Data Link 
Control (HOlC), and IBM Synchronous Data Link Control 
(SOlC) communications protocols. This controller 
minimizes CPU software by supporting a comprehensive 
frame-level instruction set and by hardware implemen­
tation of the low level tasks associated with frame 
assembly/disassembly and data integrity. The 8273 can be 
used in either synchronous or asynchronous aj:lplications. 

In asynchronous applications the data can be program­
med to be encoded/decoded in NRZI code. The clock is 
derived from the NRZI data using a digital phase locked 
loop. The data transparency is achieved by using a zero­
bit insertion/deletion technique. The frames are automati­
cally checked for errors during reception by verifying the 
Frame. Check Sequence (FCS); the FCS is automatically 
geoerated and appended before the final flag in transmit. 

6-22 210479-002 



8273, 8273-4 

The 8273 recognizes and can generate flags (01111110' 
Abort, Idle, and GA (EOP) characters. 

The 8273 can assume either a primary (control) or a 
secondary (slave) role. It can therefore be readily 
implemented in an SDLC loop configuration as typified by 
the IBM 3650 Retail Store System by programming the 
8273 into a one-bit delay mode. In such a configuration, a 
two wi re pai r can be effectively used for data transfer 
between controliers and loop stations. The digital phase 
locked loop output pin can be used by the loop station 
without the presence of an accurate Tx clock. 

CPU Interface 
The CPU interface is optimized for the MCS-80/85'· bus 
with an 8257 DMA controlier. However, the interface is 
flexible, and allows either DMA or non-DMA data 
transfers, interrupt or non-interrupt driven. It further 
allows maximum line utilization by providing early 
interrupt mechanism for buffered (only the information 
field can be transferred to memory) Tx command, over­
lapping. It also provides separate Rx and Tx interrupt 
output channels for efficient operation. The 8273 keeps 
the interrupt request active until all the associated 
interrupt results have been read. 
The CPU utilizes the CPU interface to specify commands 
and transfer data. It consists of seven registers addressed 
via CS, Al, Ao, RD and WR signals anc! two independent 
data registers for receive data and transmit data. Al, Ao are 
generally derived from two low order bits of the address 
bus. If an 8080 based CPU is utilized, the RD and WR 
signals may be driven by the 8228 I/OR and I/OW. The 
table shows the seven register select decoding: 

REGISTERS 

TxlNl' RESULT COMMAND 

DPLL 
32X eLK 

RTs 
PB,-4 

.---'1-- R,D 

R,C 

FLAG DET 

INTERNAL DATA BUS -

CPU INTERFACE U MODEM INTERFACE 

Figure 4. 8273 Block Diagram Showing CPU 
Interface Functions 

6-23 

Al Ao TxDACK RxDACK 

0 0 1 1 
0 0 1 1 
0 1 1 1 
0 1 1 1 
1 0 1 1 
1 0 1 1 
1 1 1 1 
1 1 1 1 
X X 0 1 
X X 1 0 

Register Description 
Command 

~ AD WR Register 

0 1 0 Command 
0 0 1 Status 
0 1 0 Parameter 
0 0 1 Result 
0 1 0 Reset 
0 0 1 TxlNT Result 
0 1 0 -
0 0 1 RxlNT Result 
1 1 0 Transmit Data 
1 0 1 Receive Data 

Operations are initiated by writing an appropriate 
command in the Command Register. 

Parameter 

Parameters of commands that require additional informa­
tion are written to this register. 

Result 

Contains an immediate result describing an outcome of an 
executed command. 

Transmit Interrupt Result 

Contains the outcome of 8273 transmit operation 
(good/bad completion). 

Receive Interrupt Result 

Contains the outcome of 8273 receive operation (good/ 
bad completion), followed by additIOnal results which de­
tail the reason for interrupt. 

Status 

The status register reflects the state of the 8273 CPU 
Interface. 

DMA Data Transfers 

The 8273 CPU interface supports two Independent data 
interfaces: receive data and transmit data. At high data 
transmission speeds the data transfer rate,of the 8273 is 
great enough to justify the use of direct memory access 
(DMA) for the data transfers, When the 8273 is configured 
in DMA mode, the elements of the DMA Interfaces are' 

TxDRQ: Transmit DMA Request 

Requests a transfer of data between memory and the 
8273 for a transmit operation. 

TxDACK: Transmit DMA Acknowledge 

The TxDACK signal notifies the 8273 that a transmit DMA 
cycle has been granted. It is also used with WR to transfer 
data to the 8273 in non-DMA mode. Note: RD must not be 
asserted while TxDACK is active. 

RxDRQ: Receive DMA Request 

Requests a transfer of data between the 8273 and mem­
ory for a receive operation. 

210479-002 



8273, 8273·4, , 

RXDACK: Receive DMA Acknow~ge 

The RxDACK signal notifies the 8273 that a receive DMA 
cycle has been granted. It is also used with RD to read 
data from the 8273 in non-DMA mode. Note: WR must not 
be asserted while RxDACK is active. 

RD, ViR: Read, Write 

The RD and WR signals are used to specify the direction of 
the data transfer. 

DMA transfers require the use of a DMA controller such as 
the Intel 8257. The function of the DMA controller is to 
provide sequential addresses and timing for the transfer, 
at a starting address determined by the CPU. Counting of 
data block lengths is performed by the 8273. 

To request a DMA transfer the 8273 raises the appropriate 
DMA REQUEST. DMA ACKNOWLEDGE and READ en­
ables DMA data onto the bus (independently of CHIP 
SELECT). DMA ACKNOWLEDGE and WRITE transfers 
DMA data to the 8273 (independent of CHIP SELECT). 

It is also posSible to configure the 8273 in the non-DMA 
data transfer mode. In this mode the CPU module must 
pass data to the 8273 in response to non-DMA data re­
quests indicated by the status word. 

Modem Interface 

The 8273 Modem interface provides both dedicated and 
user defined modem control functions. All the control 
signals are active low so that EIA RS·232C inverting 
drivers (MC 1488) and inverting receivers (MC 1489) may 
be used to interface to standard modems. For asynchro· 
nous operation, this interface supports programmable 
NRZI data encode/decode, a digital phase locked loop 
for efficient clock extraction from NRZI data, and 
,modem control ports with automatic CfS, CD monitor· 
ing and RTS generation. This interface also allows the 
8273 to operate in PRE·FRAME SYNC mode in which the 
8273 prefixes 16 transitions to a frame to synchronize 
idle Ii nes before transmission of the first flag. 

It should be noted that all the 8273 port operations deal 
with logical values, for instance, bit DO of PortA will be a 
one when CTS (Pin 30) is a physical zero (logical one). 
Port A - Input Port 

During operation, the 8273 interrogates input pins CTS 
(Clear to Send) and Co (Carrier Detect). CTS is used to 
condition the start of a transmission. If during transmis­
sion CTS is lost the 8273 generates an interrupt. During 
reception, if CD i~ lost, the 8273 generates an interrupt. 

'---C-~'I I CTS - CL"AR TO SEND 

CD - CARRIER DETECT 
---- -'"--- - -._-----"---

us~~_"I?_EFI~~~_ ~r..JP~+T PA4"PA3. PAz ~ 

The user defined input bits correspond to the 8273 PA., 
PA, and 'PA, pins. The 8273 does not Interrogate or mao 
nipulate these bits. 

6-24 

REGISTERS 

INTERNAL DATA BUS -

CPU INTERFACE 

i5PIT. 
32X elK 

RTs 
PB,-4 
CTs 
CD 
PA2_4 

r---,-_ R,D 

R;c 

MODEM INTERFACE 

Figure 5. 8273 Block Diagram Showing Control 
Logic Functions 

Port B - Output Port 

During hormal operation, if the CPU sets RTS active, the 
8273 will not change this pin: however, if the CPU sets RTS 
inactive, the 8273 will activate it before each transmission 
and deactivate it one byte time after transmission. While 
the receiver is active the flag detect pin is pulsed each time 
a flag sequence is detected in the receive data stream. 
Following an 8273 reset, all pins of Port B are set to a high, 
inactive level. 

USER DEFINED OUTPUT PB4, pe3, pez, PBl 

FLAG DETECT 

The user defined output bits correspond to the state of 
PB4-PB., pins. The,8273 does not interrogate or manipu­
late these bits. 

210479-002 



8273, 8273·4 

Serial Data Logic 
The Serial data is synchronized by the user transmit (TxC) 
and receive (RxC) clocks, The leading edge of TxC 
generates new transmit data and the trailing edge of RxC 
is used to capture receive data, The NRZI encoding/ 
decoding of the receive and transmit data is program­
mable, 

The diagnostic features included in the Serial Data logic 
are programmable loop back of data and selectable clock 
for the receiver, In the loop-back mode, the data presented 
to the TxD pin is internally routed to the receive data input 

circuitry in place of the RxD pin, thus allowing a CPU to 
send a message to itself to verify operation of the 8273, 

In the selectable clock diagnostic feature, when the data is 
looped back, the receiver may be presented incorrect 

'sample timing by the external circuitry, The user may 
select to substitute the TxC pin for the RxC input on-chip 
so that the clock used to generate the loop back data is 
used to sample it. Since TxD is generated off the leading 
edge of TxC and RxD is sampled on the trailing edge, the' 
selected clock allows bit synchronism, 

\----J1 \.----JI \-----Ir-
TxD _----JX'-____ ...IX'-____ ..JX'-___ _ 

RxD 

Figure 6. Transmit/Receive Timing 

Asynchronous Mode Interlace 

Although the 8273 is fully compatible with the HDLC/ 
SDLC communication line protocols, which are primarily 
designed for synchronous communication, the 8273 can 
also be used in asynchronous applications by using this 
interface, The interface employs a digital phase locked 
loop (DPLLl for clock recovery from a receive data stream 
and programmable NRZI encoding and decoding of data, 
The use of NRZI coding with SDLC transmission 

guarantees that within a frame, data transitions will occur 
at least every five bit times - the longest sequence of ones 
which may be transmitted without zero-bit insertipn, The 
DPLL should be used only when NRZI coding is used 
since the NRZI coding will transmit zero sequence as line 
transitions, The digital phase locked loop also facilitates 

'full-duplex and half-duplex asynchronous implemen-
tation with, or without modems, 

6-25 210479-002 



8273, 8273·4 

Digital Phasa Locked Loop 

In asynchronous applications, the clock is derived from 
the receiver data stream by the use of the digital phase 
locked loop (DPLL). The DPLL requires a clock input at 32 
times the required baud rate. The receive data (RxO) Is 
sampled with this ~ and the 8273 DPLL supplies a 
sample pulse nominally centered on the ~xD bit cells. The 
DPLL has a built-in "stiffness" which reduces sensitivity to 
line noise and bit distortion. This is accomplished by 
making phase error adjustments in discrete increments. 
Since the nominal pulse is made to occur at 32 counts of 
the 32X CLK, these counts are subtracted or added to the 
nominal, depending upon which quadrant ofthe four error 
quadrants the data edge occurs in. For example If an RxD 
edge is detected in quadrant A 1, it is apparent that the 
DPLL sample" A" was placed too close to the trailing edge 
of the data cell; sample "B" will then be placed at T = 
(T nominal - 2 counts), = 30 counts of the 32X CLK to move 
the sample pulse "B" toward the nominal center of the next 
bit cell. A data edge ocquring in quadrant B1 would cause 
a smaller adjustment of phase with T = 31 counts of the 
32X CLK. Using this technique the DPLL pulse will 
converge to nominal bit center within 12 data bit times, 
worst case, with constant incoming RxD edges. 

A method of attaining bit synchronism following a line idle 
is to use PRE-FRAME SYNC mode of transmission. 

RXD_----'X'-____ ---'X'-______ X~ __ _ 
om 
SAMPLES 

j J 
~-I: ., ·1· .. -!- .. ·1· ~ :1 

ADJUSTMENT -2 -1 +1 +2 

Figure 7. DPLL Sample Timing 

6-26 210479-002 



intJ 8273, 8273-4 

Synchronous Modem - Duplex or Half Duplex Operation 

RxC 

8273 RxD A .... 
TxC MDDEM ( ) TxD 

~ V 

32xCLK 1lI'IT 

J 1 
GND N.C. 

Asynchronous Modems - Duplex or Half Duplex Operation 

8273 
MODEM 

Asynchronous - No Modems - Duplex or Half Duplex 

6-27 

Ir.il" 
RxD 

MODEM fiiC 
TxD 

ni'C[i 

f 
GND 

MODEM 
t----+-~ RxD 

8273 

i5PiI 

1 
N.C. 

8273 

8273 

210479-002 

I' 

" 

! 
! 



inter 8273, 8273·4 

SOLe Loop 

The DPLL simplifies the SDLe loop station implementa­
tion. In this application, each secondary station on a loop 
data link is a repeater set in One-bit ~elay mode. The 
signals sent out on the loop by the loop controUer (primary 
station) are relayed from station to station then, back to 
the controller. Any secondary station finding its address in 
the A field captures the frame for action at that station. All 
received frames are relayed to the next station on the loop. 

Loop stations are required to derive bit timing from the 
incoming NRZI data stream. The DPLL generates sample 
Rx clock timing for reception and uses the same clock to 
implement Tx clock timing. 

8273 
LOOP 

CONTROLLER 

.-------ITxD RxD 1--------, 

RxD ~xc TxC TxO 

.8273 8273 
LOOP LOOP 

TERMINAL TERMINAL 
TxD 1----I-------i--..... RxD. 

Figure 8. SOLe Loop Application 

6-28 210479-002 



inter 8273, 8273·4 

PRINCIPLES OF OPERATION 

The 8273 is an intelligent peripheral controller which 
relieves the CPU of many of the rote tasks associated with 
constructing and receiving frames. It is fully compatible 
with the MCS-80/85'· system bus. As a peripheral device, 
it accepts commands from a CPU, executes these 
commands and provides an Interrupt and Result back to 
the CPU at the end of the execution. The communication 
with the CPU is done by activation of CS, RD, WR pins, 
while the A1, Ao select the appropriate registers on the 
chip as described in the Hardware Description Section. 

The 8273 operation is composed of the following 
seq uence of events: 

CPU WRITES COMMAND AND PARAMETERS INTO THE 
8273 COMMAND AND PARAMETER REGISTERS 

THE 8273 IS ON ITS OWN TO CARAY OUT THE COMMAND 

THE 8273 SIGNALS THE CPU THAT THE EXECUTION 
HAS FINISHED. THE CPU MUST PERFORM A READ 
OPERATION OF ONE OR MORE OF THE REGISTERS. 

. The Command Phase 

During the command phase, the software writes a com­
mand to the command register. The command bytes pro­
vide a general description of the type of operation re­
quested. Many commands require more detailed infor­
mation about the command. In such a case up to four 
parameters are written into the parameter register. The 
flowchart of the command phase indicates that a com­
mand may not be issued if the Status Register indicates 
that the device is busy. Similarly if a parameter is issued 
when the Parameter Buffer shows full, incorrect operation 
will occur. 

The 8273 is a duplex device and both transmitter and 
receiver may each be executing a command or passing 
results at any given time. For this reason separate 
interrupt pins are provided. However, the command regis­
ter must be used for one command sequence at a time. 

Status Register 

The status register contains the status of the 8273 activity. 
The description is as follows. 

0,0,1\;04 03 0,0, 0" 
I CBsvl CBF I CPBF ICRBF I RXINT[ TxlNT IRxlRAI TxlRA I 

Bit 7 CBSY (Command Busy) 

Indicates in-progress command, set for CPU poll when 
Command Register is full, reset upon command phase 
completion. It is improper to write a command when CBSY 
is set; it results in' incorrect operation. 

6-29 

VES 

NO 

END OF COMMAND PHASE 

VES 

Figure 9. Command Phase Flowchart 

Bit 6 CBF (Command Buffer Full) 

Indicates that the command register is full, it is reset when 
the 8273 accepts the command byte but does not imply 
that execution has begun. 

Bit 5 CPBF (Command Parameter Buffer Full) 

CPBF is set when the parameter buffer is full, and is reset 
by the 8273 when it accepts the parameter. The CPU may 
poll CPBF to determine when additional parameters may 
be written. 

Bit 4 CRBF (Command Result Buffer Full) 

Indicates that an executed command immediate result is 
present in the Result Register. It is set by 8273 and reset 
when CPU reads the result. 

210479-002 

i 

! 

! 



inter 8273, 8273-4 

Bit 3 RxlNT (Receiver Interrupt) 

RxlNT indicates that the receiver requires CPU attention. 
It is identical to RxlNT (pin 11) and isset by the 8273 either 
upon good/bad completion of a specified command or by 
Non-DMA data transfer. It is reset only after the CPU has 
read the result byte or has received a data byte from the 
8273 in a Non-DMA data transfer. 

'Bit 2 TxlNT (Transmitter Interrupt) 

The TxlNT indicates that the transmitter requires CPU 
attention. It is identical to TxlNT (pin 2), It is set by 8273 
either upon good/bad completion of a specified command 
or by Non-DMA data transfer. It is reset only after the CPU 
has read the result byte or has transferred transmit data 
byte to the 8273 in a Non-DMA transfer. 

Bit 1 RxlRA (Receiver Interrupt Result Available) 

The RxlRA is set by the 8273 when an interrupt result 
byte is placed in the RxlNT register. It is reset after the 
CPU has read the RxlNT register. 

Bit 0 TxlRA (Transmitter Interrupt Result Available) 

The TxlRA is set by the 8273 when an interrupt result 
byte is placed in the TxlNT register. It is reset when the 
CPU has read the TxlNT register. 

I, 
" 

D7 D8 

All 8 bits received} 
DO received / 
°1-00 received . 
02-00 received 

03-00 received 

04-00 received 

OS-DO received 

De-Do received 

{ : 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
"Partial Byte Received 0 0 

1 

Ds 

0 
0 

0 

0 

0 

0 

0 

0 

0 

The Execution Phase 

Upon accepting the last parameter, the 8273 enters intb 
the Execution Phase, The execution phase may consist 
of a DMA or other activity, and mayor may not require 
CPU intervention. The CPU intervention is eliminated in 
this phase if the system utilizes DMA for the data trans­
fers, otherwise, for non-DMA data transfers, the CPU is 
interrupted by the 8273 via TxlNT and RxlNT pins, for 
each data byte request. 

The Result Phase 

During the result phase, the 8273 notifies the CPU of the 
execution outcome of a command. This phase is initiated 
by: 

1. The successful completion of an operation 
2. An error detected during an operation, 

To facilitate quick network software decisions, two types 
of execution results are provided: 

1. An Immediate Result 
2, A Non-Immediate Result 

0, 

D4 D3 D2 D1 DO Receiver Interrupt R.sult Code Rx Stilus After INT 

0 0 0 0 0 A1 match or general receive Active 

0 0 0 0 1 A2 match Active 

0, 0 0 , 1 CACerror Active 

0 0 , 0 0 Abort detected Active 

0 0 1 0 1 Idle detect Disabled 

0 0 1 1 0 EOP detected _ Disabled 

0 0 1 1 1 Frame less than 32 bits Active 
(). 1 0 0 0 OMA overrun detected Disabled 

0 1 0 0 1 Memory buffer overflow Disabled 

0 1 0 1 0 Carrier detect failure Disabled 

0 1 0 1 1 Receive Interrupt overrun Disabled 

Figure 10. Rx Interrupt Result Byte Format 

Os 05 

o 

0, Do 

0 4 03 02 0, 00 

1 0 Early transmit Interrupt 

Frame trOlnsmlt complete 

DMA underrun 

Clear to Send leTS) error 

Abort complete 

Figure 11. Tx Interrupt Result Byte Format 

6-30 

( 

210479-002 



inter 8273, 8273-4 

Immediate result is provided by the 8273 for commands 
,such as Read Port A and Read Port B which have 
information (CTS, CD, RTS, etc.) that the network 
software needs to make quick operational decisions. 

A command which cannot provide an immediate result will 
generate an interrupt to signal the beginning of the Result 
phase. The immediate results are provided in the Result 
Register; all non-immediate results are available upon 
device interrupt, through Tx Interrupt Result Register 
Txl/R or Rx Interrupt Result Register Rxl/R. The result 
may consist of a one-byte interrupt code indicating the 

r----
N~~g~A I 

I 

READ STATUS 
REGISTER 

condition for the interrupt and, if required, one or more 
bytes which detail the condition. 

Tx and Rx Interrupt Result Registers 

The Result Registers have a result code, the three high 
order bits 07-05 of which are set to zero for all but the 
receive command. This command result contains a count 
that indicates the numberof bits received in the last byte. If 
a partial byte is received, the high order bits of the last data 
byte are indeterminate. 

All results indicated in the command summary must be 
read during the result phase. 

I DMA 
I MODE 

I 
I 
I 
I 
I 
I 

r-______ ~YE~S~ ~N~O~--------~, 

DATA REQUEST 
NON·DMA MODE 

USE DACK + AD OR 
WR TO READ OR 

WRITE DATA 

( END) 

Figure 12. Result Phase Flowchart-Interrupt Results 

6-31 210479-002 



inter 
IMMEDIATE RESULTS 

8273, 8273·4 

AFTER COMMAND PHASE COMPLETION (READ PORT A, PORT B) 

READ STATUS 
REGISTER 

READ RESULT 
REGISTER 

Figure 13. (Rx Interrupt Service) 

6-32' 210479-002 



8273, 8273-4 

DETAILED COMMAND DESCRIPTION 

General 
The 8273 HDLC/SDLC controller supports a comprehen­
sive set of high level commands which allows the 8273 to 
be readily used in full-duplex, half-duplex, synchronous, 
asynchronous and SDLC loop configuration, with or 
without modems. These frame-level commands minimize 
CPU and software overhead. The 8273 has address and 
control byte buffers which allow the receive and transmit 
commands to be used in buffered or non-buffered modes. 

In buffered transmit mode, the 8273 transmits a flag 
automatically, reads the Address and Control buffer 
registers and transmits the fields, then via DMA, it fetches 
the information field. The .8273, having transmitted the 
information field, automatically appends the Frame Check 
Sequence (FCS) and the end flag. Correspondingly, in 
buffered read mode, the Address and Control fields are 
stored in their respective buffer registers' and only 
Information Field is transferred to memory. 

In non-buffered transmit mode, the 8273 transmits the 
beginning flag automatically, then fetches and transmits 
the Address, Control and Information fields from the 
memory, appends the FCS character and an end flag. In 
the non-buffered receive mode the entire contents of a 
frame are sent to memory with the exception of the flags 
and FCS. 

HOLe Implemenation 

HDLC Address and Control field are extendable. The 
extension is selected by setting the low order bit of the 
field to be extended to a one, a zero in the low order bit 
indicates the Illst byte of the respective field. 

,Since Address/Control field extension is normally done 
with software to maximize extension flexibility, the 8273 
does not create or operate upon contents of the extended 
HDLC Address/Control fields. Extended fields are 
transparently passed by the 8273 to user as either 
interrupt results or data transfer requests. Software must 
assemble the fields for transmission and interrogate them 
upon reception. 

However, the user can take advantage of the powerful 
8273 commands to minimize CPU/Software overhead and 
simplify buffer management in handling extended fields. 
For instance buffered mode can be used to separate the 
first two bytes, then interrogate the others from buffer. 
Buffered mode is perfect for a two byte address field. 

The 8273 when programmed, recognizes protocol 
characters unique to HDLC such as Abort, which is a 
stri ng of seven or more ones (01111111). Si nce Abort 
character is the same as-the GA (EOP) character used in 
SDLC Loop applications, Loop Transmit and Receive 
commands are not recommended to be used in HDLC. 
HDLC does not support Loop mode. 

Initialization Set/Reset Commands 

6-33 

These commands are used to manipulate data within the 
8273 registers. The Set commands have a single param­
eter which is a mask that corresponds to the bits to be set. 
(They perform a logical-OR of the specified register with 
the mask provided as a parameter>. The Register 
commands have a single parameter which is a mask that 
has a zero in the bit positions that are to be reset. (They 
perform a logical-AND of the specified register with the 
mask). 

Set One-Bit Delay (CMD Code A4) 

When one bit delay is set, 8273 retransmits the receivea 
data stream one bit delayed. ThiS mode is entered at a 
receiver character boundary, and should only be used by 
Loop Stations. 

Reset One-Bit Delay (CMD Code 64) 

The 8273 stops the one bit delayed retransmission mode. 

Set Data Transfer Mode (CMD Code 97) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~::I: I: I: I 0 I: 1'1: I: I: 1'1 
When the data transfer mode is set, the 8273 will interrupt 
when data bytes are required for transmission or are 
available from a receive. If a transmit interrupt occurs and 
the status indicates that there is no Transmit Result 
(TxIRA = 0), the interrupt is a transmit data request. If a 
receive interrupt occurs and the status indicates that there 
is no receive result (RxIRA = 0), the interrllpt is a receive 
data request. 

Reset Data Transfer Mode (CMD Code 57) 

If the Data Transfer Mode is reset, the 8273 data transfers 
are performed through the DMA requests without interrupt· 
ing the CPU. 

210479-002 



8273,8273-4 

Set Operating Mode (CMO Code 91) 

l 11 = FLAG STREAM MOOE 

1 • PREFRAME SYNC MOOE 

1 '" BUFFERED MODE 

1 • EARLY INTERRUPT MOOE 

1 '" eop INTERRUPT MODE 

1 = HOLCMOOE 

Reset Operating Mode (CMO Code 51) 

Any mode switches set in eMO code 91 can be reset using 
this command by placing zeros in the appropriate 
positions. 

(05) HOLC Mode 
In HOLe mode, a bit sequence of seven ones (01111111)js 
interpreted as an abort character. Otherwise, eight ones 
(011111111) signal an abort. 

(04) EOP Interrupt Mode 

In EOP interrupt mode, an interrupt is generated 
whenever an EOP character (01111111) is detected by an 
active receiver. This mode is useful forthe implementation 
of an SOLe loop controller in detecting the end of a 
message stream after a loop poll. 

(03) Transmitter Early Interrupt Mode (Tx) 

The early interrupt mode is specified to indicate when the 
8273 should generate an end of frame interrupt. When set, 
an early interrupt is generated when the last data 
character has been passed to the 8273. If the user software 
responds with another transmit command before the final 
flag is sent, the final flag interrupt will not be generated· 
and a new frame will immediately begin when the current 
frame is complete. This permits frames to be separated by 
a single flag. If no additional Tx commands.are provided, a 
final interrupt will follow. 

Note: In buffered mode, if a supervisory frame (no Infor­
mation) Transmit command is sent in response to an early 
Transmit Interrupt, the 8273 will repeatedly transmit the 
same superv.isory frame with one flag in between, until a 
non-supervisory transmit is issued. 

Early transmitter interrupt can be used in buffered mode 
by waiting for a transmit complete interrupt instead of 
early Transmit Interrupt before issuing.a transmit frame 
command for a supervi.sory frame. See Figure 14. 

6-34 

OTHER 

TRANSMIT COMPLETION 
(ODH) INTERRUPT 

NO 

Figure 14. 

If this bit is zero, the interrupt will be generated only after 
the final flag has been transmitted. 

(02) Buffered Mode 

If the buffered mode bit is set to a one, the first two bytes 
(normally the address (A) and control (e) fielc;ls) of,a frame 
are buffered by the 8273.lfthis bit is a zero the address and 
control fields are passed to and from memory. 

(01) Preframe Sync Mode 

If this bit is set to a one the 8273 will transrnit two charac­
ters before the first flag of a frame. 
To guarantee sixteen line transitions, the 8273 sends two 
bytes of data (OO)H if NRZI is set or data (55)H if NRZI is not 
set. . 

(DO). Flag Stream Mode 

If this bit is set to a one, the following table outlines the 
operation of the transmitter. 

TRANSMIl:TER STATE ACTION 

Idle Send Flags immediately. 

Transmit or Transmit} Send Flags after the 

Transparent Active transmission complete 

Loop Transmit Active Ignore commend. 

1 Bit Delay Active Ignore command. 

210479-002 



inter 8273, 8273·4 

If this bit is reset to zero the following tabfe outlines the 
operation of the transmitter. 

TRANSMITTER STATE ACTION 

IDLE Send Idles on next character 
boundary. 

Transmit or Transmit- } Send Idles after the transmission 
Transparent Active is complete. 

Loop Transmit Active Ignore command. 
1 Bit Delay Active Ignore command. 

Set Serial I/O Mode (CMD Code AO) 

! 1 '" NRZ1 MODE 

1'" TxC--RxC 

1 '" LOOP BACK TxD .... RxD 

Reset Serial I/O Mode (C~D Code 60) 
This command allows bits set in CMO code AO to be reset 
by placing zeros in the appropriate positions. 

(02) Loop Back 

If this bit is set to a one, the transmit data is internally routed 
to the receive data circuitry. 

(01) TxC'" RxC 
If this bit is set to a one, the transmit clock is internally 
routed to the receive clock circuitry. It is normally used 
with the loop back bit (02), 

(0.0) NRZI Mode 

If this bit is set to a one, NRZI encoding and decoding of 
transmit and receive data is provided. If this bit is a zero, the 
transmit and receive data is treated as a normal positive logic 
bit stream. 

NRZI encoding specifies that a zero causes a change in the 
polarity of the transmitted signal and a one causes no polarity 
change. NRZI is used in all asynchronous operations. 
Refer to IBM document GA27-3093 for details. 

Reset Device Command 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

TMR'I' 
TMR: 1 111:1:111:1:1:1 

An 8273 reset command is executed by outputlng a (01)H 
followed by (OO)H to the reset register (TMR). See 8273 
AC timing characteristics for Reset pulse specifica­
tions. 

&-35 

The reset command emulates the action of the reset pin. 
1. The modem control signals are forced high (inactive 

level). 
2. The 8273 status register flags are cleared. 
3. Any commands in progress are terminated immedi­

ately. 

4. The 8273 enters an idle state until the next command is 
issued. ) 

5. The Serial 1/0 and Operati ng Mode registers are set 
to zero and OMA data register transfer mode is 
selected. 

6. The device assumes a non-loop SOLe terminal role. 

Receive Commands 

The 8273 supports three receive commands: General 
Receive, Selective Receive, and Selective Loop Receive. 

General Receive (CMO Code CO) 

General receive is a receive mode in which frames are 
received regardless of the contents of the address field. 

CMO 

PAR 

, 0 
0 

0 , '1'101010101010 
LEAST SIGNIFICANT BYTE OF THE 
RECEIVE BUFFER LENGTH (BO) 

PAR 0 , MOST SIGNIFICANT BYTE Of RECEIVE 
BUFFER LENGTH (S1) 

NOTES: 
1. If buffered mode is specified, the RO; R1 receive frame length 

(result) is the number of data bytes received. 
2. If non-buffered mode is specified, the RO, R1 receive frame 

length (result) is the number of data bytes received plus two 
(the count includes the address and control bytes). 

3. The frame check sequence (FCS) IS not transferred to 
memory. 

4. Frames with less than 32 bits between flags are ignored (no 
interrupt generated) If the buffered mode is specified. 

5. In the non-buffered mode an interrupt is generated when a 
less than 32 bit frame is received, since data transfer requests 
have occurred. 

6. The 8273 receiver is always disabled when an Idle is received 
after a valid frame. The CPU module must issue a receive 
command to re-enable the receiver. , 

7. The intervening ABORT character between a final flag and an 
IDLE does not generate an interrupt. 

8. "an ABORT Character is not preceded by a flag and is fol­
lowed by an IDLE, an interrupt will be generated for the ABORT 
followed by an IDLE interrupt one character time later. The 
reception of an ABORT will disable the receiver. 

Selective Receive (CMO Code C1) 

CMO 

PAR 

PAR 

PAR 

PAR 

, 
, 
, 

, 
, 

0 0 
0 , 
0 , 
0 , 
0 , 

'J'-' 0 o 1 0 1 0 1 0 1 ' 
LEAST SIGNIFICANT BYTE OF THE 
RECEIVE BUFFER LENGTH (BO) 

MOST SIGNIFICANT BYTE OF RECEIVE 
BUFFER LENGTH (B1) 

RECEIVE FRAME ADDRESS MATCH 
FIELD ONE (All 

RECEIVE FRAME ADDRESS MATCH 
FIELD TWO (A2) 

210479-002 



inter 8273, 8273.4 

Selective receive is a receive mode in which frames are 
ignored unless the address field matches anyone of two 
address fields given to the 8273 as parameters. 

When selective receive is used in HOLe the 8273 looks at 
the first character, if extended, software must then decide 
If the message is for this unit. 

Selective Loop Receive (CM~ Code C2) 

CMD : ° ° '.1 ' ° ° ° ° , '0 
: ° ° LEAST SIGNIFICANT BYTE OF THE 

RECEIVE BUFFER LENGTH (BOI PAR 

PAR : ° , MOST SIGNIFICANT BYT~ OF RECEIVE 
BUFFER LENGTH (B', 

PAR : ° , RECEIVE FRAME ADDRESS MATCH 
FIELD ONE (A" 

: ° , RECEIVE FRAME ADDRESS MATCH 
FIELD TWO (A21 PAR 

Selective loop receive operates like selective receive ex­
cept that the transmitter is placed in flag stream mode 
automatically after detecting a(l EOP (01111111 ) following 
a valid received frame. The one bit delay mode is also 
reset at the end of a selective loop receive. ' 

Receive Dissble (CMD Code C5) 

Terminates an active receive command fmmedfately. 

~ ~ ~.~ ~ ~ ~ ~ ~ ~ 

CMD·I ° I 0 I ' I ' I ° I ~ I ° I' I ° I ' 
PAR. NONE 

Thlnsmlt ,~ommands 

The 8273 supports three transmit commands: Transmit 
Frame, Loop Transmit, Transmit Transparent. 

Transmit Frame (CMD Code C8) 

CMD 

PAR 

PAR 

PAR 

PAR 

: ° 
: ° 
: ° 
: ° 
: ° 

° 1I'jOjOj1\OjOjO , LEAST SIGNIFICANT BYTE OF 
FRAME LENGTH (UI , MosiSIGNIFICANT BYTE OF 
FRAME LENGTH (L', , ADDRESS FIELD OF TRANSMIT FRAME (AI , CONTROL FIELb OF TRANSMIT FRAME (CI 

Transmits one frame including: initial flag, frame check 
sequence, and the final flag. ' 

If the buffered mode is specified, the LO, L1, frame length 
provided as a parameter is the length of the information 
field and the address and control fields must be input. 

In unbuffered mode the frame length provided must be the 
length of the information field plus two and. the address 
and control fields must be the first two bytes of data. Thus 
only the frame length bytes are required as parameters. 

Loop Transmit (CMD Code CAl 

: CMD 

PAR : 

PAR : 

A, Ao 07 0, Ds D~' 03 02 0, Do 

° ° 'j'jOjOj1l 0j'jO 

° 
, LEAST SIGNIFICANT BYTe"OF 

FRAME LENGTH (LOI 

° , MOST SI!lNIFICANT BYTE OF 
FRAME LENGTH (LlI 

)' 

PAR : ° ., ADDRESS FIELD OF TRANSMIT FRAME (AI 

PAR : ° , CONTROL FIELD OF TRANSMIT FRAME (CI 

Transmits one frame in the same manner as the transmit 
frame command except: [ 

1. If the flag stream mode is not active transmission will 
begin after a rec'eived EOP has been converted to a 
flag. 

2. If the flag stream mode' is, active transmission will 
begin at the nextflag boun,dary for buffered mode or at 
the third flag boundary for non-buffered mode. 

3. At the end of a loop transmit the one-bit delay mode is 
entered and the flag stream mode is reset. 

Transmit Transparent (CMD Coded C9) 
A1 Ao 07 06 06 04 03 02 0, Do 

CMD : ° ° , , ° ° , ° ° 
, 

: ° , LEAST SIGIIIIF ICANT BYTE OF 
FRAME LENGTH (UI PAR 

: ° 
, ;,.cST SIGNIFICANT BYTE OF 

FRAME LENGTH (LlI PAR 

The 8273 will transmit a block of raw data without 
protocol, i.e., no ~ero ,bit insertion, flag,s, or frame check 
sequences. 

Abort Thlnsmlt Commands 

An abort command is supported for each type of fransmit 
command. The abort commands are ignored if a transmit 
command is not in progress. 

Abort Transmit Frame (CMD Code CC) 

A1 Ao 0,' De 05 D4 D3 02 0, Do 

CMDd 01 °1,1,1°1 01,1,1 01 ° I 
PAR: NONE 

After an !wort character (eight contiguous ones)' is trans­
mitted, the transmitter reverts to sending flags or idles as a 
function of the flag strea,m mode sp~cified. 

Abort Loop Trans'mit (CMD C~de CE) 

A, Act 0, O. 05 04 03 02 0, Do 

CMD·I ° I ° I ' I ' I ° I ° I' I' I ' I ° 
PAR: ,~~ 

After a flag is transmitted the tr~nsmitter reverts to one bit 
delay mode. ' 

Abort Transmit Transparent (CMD Code CD) 

A, Au 0, 06 05 04 03 02 0, Do 

,CMD'( ° 10 I, I, I ° I ° I, I , I ° 11 
PAR'., NONE 

'! ',' 

The transmitter reverts to sending flags or idle~, as a func­
tion of the flag stream mode specified. 

210479-002 



8273, 8273·4 

Modem Control Commands 
The modem control commands are used to manipulate the 
modem control ports. 

When read Port A or Port B commands are executed the 
result of the command is returned in the result register. 
The Bit Set Port B command requires a parameter that is a 
mask that corresponds to the bits to be set. The Bit Reset 
Port B command requires a mask that has a zero in the bit 
positions that are to be reset. 

Read Port A (CMO Code 22) 
A1 AD 07 06 Os 04 03 02 01 00 

CMO: I 0 I 0 I 0 I 0 I ' I 0 I 0 I 0 I ' I 0 
PAR· NONE 

Read Port B (CMO Code 23) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

CMO I 0 I 0 0 I 0 I ' I 0 I 0 0 I ' I ' I 
PAR NONE 

Set Port B Bits (CMO Code A3) 

This command allows user defined Port B pins to be set. 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~::.I: I 0 I : I: 1'1 0 10 101'1' I 
I RTS - REQUEST TO SEND 

USER DEFINED 

FLAG DETECT 

8273 Command Summary 

Command 
Parameter . Command Description (HEX) 

Set One Bit Delay A4 Set Mask 

Reset One Bit Delay 64 Reset Mask 

Set Data Transfer Mode 97 Set Mask 

Reset Data Transfer Mode 57 Reset Mask 

Set Operating Mode 91 Set Mask 

Reset Operating Mode 51 Reset Mask 

Set Serial 110 Mode AO Set Mask 

Reset Serial 110 Mode 60 Reset Mask 

General Receive CO BO,B1 

Selective Receive C1 BO,B1,A1,A2 

Selective Loop Receive C2 BO,B1,A1,A2 

Receive Disable C5 None 

Transmit Frame C8 LO,L 1,(A,C)(') 

Loop Transmit CA LO,L 1,(A,C)(') 

Transmit Transparent C9 LO,L1 

Abort Transmit Frame CC None 

Abort Loop Transmit CE None 

Abort Transmit Transparent CD None 

Read Port A 22 None 

Read Port B 23 None 

Set Port B Bit A3 Set Mask 

Reset Port B Bit 63 Reset Mask 

NOTES: 

(05) Flag Detect 

This bit can be used to set the flag detect pin. However, it 
will be reset when the next flag is detected. 

(04-01) User Defined Outputs 

These bits correspond to the state of the PB4-PB1 output 
pins. 

(Do) Request to Send 

This is a dedicated 8273 modem control signal, and 
reflects the same logical state of RTS pin. 

Reset Port B Bits (CMO Code 63) 

This command allows Port B user defined bits to be reset. 

~::I:I~I~I'I'I 01 01 01'1'1 
IRIS - REQUeST TO SEND 

USER DEFINED 

FLAG DETECT 

This command allows Port B (04-01) user defined bits to 
be reset. These bits correspond to Output Port pins (PB4-
PB1l. 

Result Completion 
Results Port Interrupt 

None - No 

None - No 

None - No 

None - No 

None - No 

None - No 

None - No 

NO(le - No 

RIC,RO,R1,(A,C)(2 RXIIR Yes 

RIC,RO,R1,(A,C)(2) RXIIR Yes 

RIC,RO,R1,(A,C)(2) RXI/R Yes 

None - No 

TIC TXI/R Yes 

TIC TXI/R Yes 

TIC TXI/R Yes 

TIC TXI/R Yes 

TIC TXI/R Yes 

TIC TXI/R Yes 

Port Value Result No 

Port Value Result "No 

None - No 

None - No 

1. Issued only when in buffered mode. 6-37 210479-002 
2. Read as results only in buffered mode. 

I 
I 
I", 

!. 



intJ 8273; 8273-4 

8273 Command Summary Key 

80 - Least significant byte of the receive buffer 
length. 

81 - Most significant byte of the receive buffer 
length. 

LO - Least significant byte of the Tx frame length. 
L 1 - Most significant byte of the T)< frame length. 
A 1 - Receive frame address match field one .. 
A2 - Receive frame address match field two. 
A - Address field of received frame. If non-buffered 

mode is specified, this result is not provided. 
C - Control field of. received frame. If non-buffered 

mode is specified this result is not provided. 
RXI/R - Receive interrupt result register. 
TXI/R - Transmit interrupt result register. 
RO - Least significant byte of the length of the frame 

. received. . ' 
R1 - Most significant byte of the length of the frame 

received. 
RIC - Receiver interrupt result code. 
TIC - Transmitter interrupt result code. 

COMMAND 

DATA IN 

I GENERAL t RECEIVE 
(Ro, R,I 

DMA REOUESTS t t t 
DATA ~~ERRUPTS _____________ ~----L...A--J'-C--.J...:.I,-----------

L........,--J 
NON·BUFFERED MODE 

FRAME 
CPU INTERRUPTS ________________________ CO_M_P..;L ... ET_E_.J-..;;...;..;_...:._.L...._ 

Figure 15. Typical Frame Reception 

NOTE: 
In order to ensure proper operation to the maximum baud rate, Receive commands or Read/Write Port commands should be written 
only when either the transmitter or the receiver is inactive. In full duplex systems, it is recomlnended that these commands be issued 
after servicing a transmitter interrupt but before a new transmit command is issued. 

6-38 210479-002 



-inter 
LAST PARAMETER 
OF Tx COMMAND 

I 1-2 BYTES-I 

RTS __ .... 1---J7 

CTS _____ ---1 

8273,8273-4 

ORO ________________________ ~tI1~~t~b __ ~t~~ __________________________ ___ 
BUFFER MODE 

INT 
--------~------------------------------~EA~R~~~------------------~F~INA~L~---

TxlNT TxlNT 

Figure 16a. Typical Frame Transmission, Buffered Mode 

LAST PARAMETER 

I 1---3 IYTES--I 

RTS __ .... 1--J7 

~S ______________ ~ 

DRO_~_~~~~~~t_A~tC_~tl~1~tl~.~tl~. ___________ ___ 

NON-BUFFER _MODE 

INT 
------------------------------------L-----~-=EA~R~~~------------------~F~IN~A~L----

TxlNT TxlNT 

Figure 16b. Typical Frame Transmission, Non·Buffered Mode 

I MEMORIES I 
} , SYSTEM BUS ~ 

'" OB0-7 
:>-. 

AO,A, 
MEMR DBQ.7 
lOW RD 
MEMW WR 
lOR CS 
CS TXINT 
HRO RXINT 

'" 
~HACK 

'" ~ 

RXC 
TxDRO RXD 

8257 TXC DMA TxDACK TXD CONTROLLER 
8273 MODEM 

RxDRQ 

RxDACK A MODEM CONTROLS r 

~ 

Figure 17. 8273 System Diagram 

6-39 210479-002 



8273, 8273·4 

WAVEFORMS 

COMMAND PHASE 

~ COMMAND / PARAMETER PARAMETER 

~ \ 1 ~ \ 2 / 

" r--n-: 1--T2--.1 
I 

casy / 
_--I 

I" 
I I 
1-T3--Jo1 

_Cp_a_F ________________________ :~~~ ______ _JJ' 

LAST 
\ PARAMETER / 

I I 
I--T4--1 

Table 2. Comman"d Phase Timing (Full Duplex) 

Buffered Non·Buffered " 
Symbol Timing Parameter 

Min. Max. Min. Max. 

T1 Between command & first parameter 13 756 13 857 

T2 Between consecutive parameters 10 604 10 705 

T3 Command Parameter Buffer full bit' 10 604 10 705 
Reset after Parameter loaded 

T4 Command busy bit reset after last 128 702 128 803 
parameter 

T5 CPBF bit reset after "last parameter 10 604 10 705 

6-40 

Unit 

tcy 

tcy 

tcy 

tcy 

tcy 

( 

210479-002 



inter 8273,8273-4 

WAVEFORMS (Continued) 

RECEIVER INTERRUPT 

RD 
__ \ LAST 

INTERRRUPT RESUL'l 

RxlRA \\..---
I I 

~T2~ 

RxlNT / 

_--J : \'----

Table 3. Receiver Interrupt Result Timing 

Symbol Timing Parameter (clock cycles) 
Buffered Non·Buffered 

Unit 
Min. Max. Min. Max. 

T1 RxlRA bit set after RIC read 18 29 18 29 tcy 

T2 RxlNT goes away after last Int. Result 16 27 16 27 tcy 
read 

6-41 210479-002 



8273, 8273-4 

WAVEFORMS (Continued) 

TRANSMIT INTERRUFIT 

RD o STATUS ,..-______ ---, INTERRUPT ,..-____ _ 

\ / LJ 
TxlRA 

TxlNT / 

---' 

Table 4. Transmit Interrupt ResuH 

Buftered Non-Buffered 
Unit Symbol Timing (Clock Cycle) 

Min. I Max. Min. I Max. 

T1 TxlNT inactive after Int. Results read 13 J 353 13 1 454 tcy 

/ 

6-42 210479-002 



inter 8273,8273-4 

ABSOLUTE MAXIMUM RATINGS* 

AmbientTemperature Under Bias ........ O·C to 70·C 
Storage Temperature ............... -6S·Cto+1S0·C 
Voltage on Any Pin With 
Respectto Ground ..................... -O.SVto +7V 

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 Watt 

·NOTICE: Stresses above those listed under '''Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (8273, 8273-4) (T A = O"C to 70"C, Vee = +S.OV ± 5%) 

Symbol Parameter Min. Max. Unit 

Vil Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee + 0.5 V 

VOL Output Low Voltage 0.45 V 

VOH Output High Voltage 2.4 V 

III Input Load Current :t10 j.iA 

IoFl Output Leakage Current :tl0 ".A 

Icc Vee Supply Current 180 mA 

CAPACITANCE (8273, 8273-4) (TA = 25·C, Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. 

CIN Input Capacitance 10 

CliO 110 Capacitance 20 

A.C. CHARACTERISTICS (TA=O'C to 70'C, Vcc= +5.0V:t5%) 

CLOCK TIMING (8273) 

Symbol Parameter Min. Typ. Max. 

tCY Clock 250 1000 

tCl Clock Low 120 

tCH Clock High 120 

CLOCK TIMING (8273-4) 

Symbol Parameter Min. Typ. Max. 

tCY Clock 286 1000 

tCl Clock Low 135 

tCH Clock High 135 

• 6-43 

Test Conditions 

IOl = 2.0 mA for Data Bus Pins 
IOl= 1.0mA for Output Port Pins 
IOl= 1.6mA for All Other Pins 

IOH= -200j.iA for Data Bus Pins 
IOH= -100j.iA for All Other Pins 

VIN = Vee to OV 

VOUT = Vee to .45V 

Unit Test Conditions 

pF to=l MHz 

pF Unmeasured Pins 
Returned to GND 

Unit Test Conditions 

ns 
64K Baud Max 

ns Operating Rate 
ns 

Unit Test Conditions 

ns 
56K Baud Max 

ns Operating Rate 
ns 

210479-002 



inter 8273, 8273-4 

A.C. CHARACTERISTICS (8273.8273-4) (TA = O"Cto 70°C. VCC = +5.0V ± 5%) 

READ CYCLE 

Symbol Parameter Min. Max. Unit 

tAC Select Setup to RD 0 ns 

tCA Select Hold from RD 0 ns 

tRR AD Pulse Width 250 ns 

tAD Data Delay from Address 300 ns 

tRO Data Delay from m5 200 ns 

tOF Output Float Delay 20 100 ns 

toc DACK Setup to RD 25 ns 

tco DACK Hold from RD 25 ns) 

tKO Data Delay from DACK 300 ns 

WRITE CYCLE 

Symbol Parameter Min. Max. Unit 

tAC Select Setup to WR 0 ns 

tCA Select Hold from WR 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR 150 ns 

two Data Hold from "iiim 0 ns 

toc DACK Setup to "iiim 25 ns 

tco DACK Hold from "iiVI'! 25 ns 

DMA 

Symbol: Parameter Min. Max. Unit 

tca 
Request Hold from WR or RD 

200 ns (for Non·Burst Mode) 

OTHER TIMING 

Symbol Parameter Min. Max. Unit 

tRSTW Reset Pulse Width 10 tCY 

tr Input Signal Rise Time 20 ns 

tf Input Signal Fall Time 20 ns 

tRSTS Reset to First IOWR 2 tCY 

tCY32 32X Clock Cycie Time 13.02' tCY ns 

tCL32 32X Clock Low Time 4' tCY ns 

tCH32 32X Clock High Time 4· tCY ns 

tOPLL' DPLL Output Low l' tcy-50 ns 

tOCL Data Clock Low l' tcy-50 ns 

tOCH Data Clock High 2' tCY ns 

tOCY Data Clock 62.5' tCY ns 

tTD Transmit Data Delay 200 ns 

tos Data Setup Time 200 ns 

tOH Data .Hold Time 100 ns 

tFL.O FLAG DET Output Low 8' tCY± 50 ns 

NOTES: 

Test Conditions 

Note 2 
Note 2 

Note 2 

CL= 150pF, Note ~ 

CL=2OpF for Minimum; 
. 150pF for Maximum 

Test Conditions 

Test Conditions 

Test Conditions 

, 

Note 3 

1. All timing measurements are made at the reference voltages unless otherwise specified: Input, "1" at 2.0V, "0" at O.SV; 
Output "1" at 2.0V. "0" at O.SV. 

2. tAD, tRO. tACo and tCA are not concurrent specs. 
3. If receive commands or Read/Write Port commands are issued while both the transmitter and receiver are active, this specificati'on 

will be B1.5TCY min. 

6-44 210479-002 



intJ 8273, 8273,;4 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

"~.. "X= > TEST POINTS < ' 
0.8 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 08V FOR A LOGIC 0 

WAVEFORMS 

READ 

DACK ~ 
'DC 

-) 

'" I--'AC~ 

DATA BUS .- - r---- - ---
lAD 
'KD 

WRITE 

DACK ~ 
--:;::;;;;; I 

~ 
~IAC-

OATA BUS X 

A.C. TESTING LOAD CIRCUIT 

DeVICE 
UNDER '1Cl "'50 PF 

TEST 

CL = 1S0pF 
CL INCWDE$ JIG CAPACITANCE 

X 
CD 

X 
'RR 1-'CA-I 

'RO 

~ 
I,--'OF~ 

)--------

'0_ 
X 

'ww -'CA-I 

X 
lOW ,...--tWD~ 

~----------------------------------------------------,-------------------------~ 

6-45 210479-002 

~j 
~ i: 
I: 

~ 1 
~ 
11 
I,: 
I; 
,! 



8273, 8273-4 

WAV.EFORMS (Continued) 

DMA 

rtCQ~ 
\~----~----------------------------__ I 

MOR~ ~L ______________________________ _ 

ORO ----f 

CHIP CLOCK 

32XCLOCK 

TRANSMIT 

j \ 

----tOCl--- , ~--tDCH-~ 

. toCY . , 

TxO ~ 
--tTD --

RECEIVE 

6-46 210479-002 



inter 

WAVEFORMS (Continued) 

DPLLOUTPUT 

FLAG DETECT OUTPUT 

8273,8273-4 

6-47 210479-002 

I 

il 
i '~ 
I 



8274 
MULTI-PROTOCOL SERIAL 

CONTROLLER (MPSC) 

• Asynchronous, Byte Synchronous and 
Bit Synchronous Operation 

• Two Independent Full Duplex 
Transmitters and Receivers 

• Fully Compatible with 8048, 8051, 8085, 
8088, 8086, 80188 and 80186 CPU's; 8257 
and 8237 DMA Controllers; and 8089 1/0 
Proc. 

• 4 Independent DMA Channels 

• Baud Rate: DC to 880K Baud 

• Asynchronous: 
-5-8 Bit Character; Odd, Even, or No 

Parity; 1, 1.5 or 2 Stop Bits 
-Error Detection: Framing, Overrun, 

and Parity 

• Byte Synchronous: 
- Character Synchronization, Int. or Ext. 
- One or Two Sync Characters 
- Automatic CRC Generation and 

Checking (CRC-16) 
-IBM Bisync Compatible 

• Bit Synchronous: 
- SDLC/HDLC Flag Generation and 

Recognition 
- 8 Bit Address Recognition 
- Automatic Zero Bit Insertion and 

Deletion 
- Automatic CRC Generation and 

Checking (CCITT-16) 
- CCITT X.25 Compatible 

• Available in EXPRESS 
-Standard Temperature Range 

The Intel@8274Multi-Protocol Series Controller (MPSC) is designed to interface High Speed Communications 
Lines using Asynchronous, IBM Bisync, and SDLC/HDLC protocol to Intel microcomputer systems. It can be 
interfaced with Intel's MCS-48, -85, -51; iAPX-86, -88, -186 and -188 families, the 8237 DMA Controller, or the 8089 
110 Processor in polled, interrupt driven, or DMA driven modes of operation. 

The MPSC is a 40 pin device fabricated using Intel's High Performance HMOS Technology. 

OB07 

elK 

RnE'i' 

A. ___ .. 

A,----i. __ ...J 
cs---~ 
Rll-___ .....J 

WR _____ .....J 

SYSTEM INTERFACE 

Tl<D, 

TxC", 

CD, 

eTSA 

fITS", 

SYNDETA 

OTR, 

SYNDET slRTSs 

DTRs 
RXCe 

L-_____ ....r~-RxD8 

NETWORK INTERFACE 

CDA 

RDYs/TxDRQA 

RiCA 

iPOlTxDRQB 

iPilRxDRQ e 

iNT 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any CircUitry Other Than Circuitry Embodied In an Intel Product No Other CirCUli Patent Licenses are Implied Information Contained 
Herein Supersedes Previously Published SpecificatIOns On The Devices From Intel ' 

170102-001 
©INTEL CORPORATION, 1984 6-48 



8274 

Table 1. Pin Description 

Pin - Pin 
Symbol No. TYpe Name and Function Symbol No. TYpe Name and Function 

ClK 1 I Clock: System clock, TTL compat- RDY./ 11 0 Ready (Channel B)/Transmltter DMA 
ible. TxDRQA Request (Channel A): In mode 0 this 

pin is RDY. and is used to syn-
chronize data transfers between the 
processor and the MPSC (Channel 
B) In modes 1 and 2 this pin is 
TxDRQA and is used by the Channel 
A transmitter to request a DMA 
transfer 

rfEm' 2 I Reset: A low signal on this pin will 
force the MPSC to an idle state. TxDA 
and TxD. are forced high The 
modem interface output Signals are 
forced high. The MPSC will remain 
idle until the control registers are 
initialized. Reset must be true for one 
complete ClK cycle. DB7 12 I/O Data Bus: The Data Bus lines are bi-

directional three state lines which 
interface with the system's Data Bus. 

DB6 13 

em; . 3 I Carrier Detect (Channel A): This 
interface signal is supplied by the 
modem to indicate that a data carrier 
signal has been detected and that a DB5 14 
valid data signal is present on the DB4 15 

DB3 16 RxDA line If the auto enable control 
is set the 8274 will not enable the 
serial receiver until rnA has been DB2 17 
activated. DBl 18 

RxC. 4 I Receive Clock (Channel B): The DBO 19 
serial data are shifted into the Re- GND 20 Ground. 

Vee 40 Power: +5V Supply. 

CTSA 39 I Clear to Send (Channel A): This 
interface signal is supplied by the 
Modem In response to an active RTS 
signal. CTS indicates that the data 
terminal/computer equipment is per-
mitted to transmit data In addition, if 
the auto enable control is set, the 
~will not transmit data bytes until 
CTS has been activated. 

ceive Data input (RxD.) on the rising 
edge of the Receive Clock. 

CD. 5 I Carrier Detect (Channel B): This 
interface signal is supplied by the 
modem to indicate that a data carrier 
signal has been detected and that a 
valid data signal is present on the 
RxD. line If the auto enable control 
is set the 8274 will not enable the 
serial receiver until eo. has been 

RTSA 38 0 Request To Send (Channel A): gen-
eral purpose output commonly used 
to signal that Channel A is ready to 
send data. 

TxDA 37 0 ll'ansmlt Data (Channel A): This pin 
transmits serial data to the communi-
cations channel (Channel A) 

TxCA 36 I ll'ansmit Clock (Channel A): The 
serial data are shifted out from the 

activated. 

CTS. 6 I Clear to Send (Channel 8): This 
interface signal is supplied by the 
modem in response to an active RTS 
signal. CTS indicates that the data 
terminal/computer equiprnent is per-
mitted to transm/tdata In addition. if 
the auto enable control is set, the 
8274 will not transmit data bytes until 
rn has been activated. 

Transmit Data output (TxDA) on the 
falling edge of the Transmit Clock 

TxC. 7 I ll'ansmlt Clock (Channel 8): The 
serial data are shifted out from the 
Transmit Data output (TxDa) on the 'i"iX"G,. 35 I Receive Clock (Channel A): The 
falling edge of the Transmit Clock serial data are shifted into the Re-

ceive Data input (RxDA) on the rising 
edge of the Receive Clock 

TxDa 8 0 Transmit Data (Channel B): This pin 
transmits serial data to the communi-
cations channel (Channel B) RxDA 34 I Receive Data (Channel A): This pin 

receives serial data from the com-
munications channel (Channel A). 

RxD. 9 I Receive Data (Channel 8): This pin 
receives serial data from the com-
munications channel (Channel B). SYNDETA 33 I/O Synchronous Detection (Channel A): 

This pin is used in byte synchronous 
mode as either an internal sync 
detect (output) or as a means to 
force external synchronization (in-
put) In SDlC mode, this pin is an 
output indicating flag detection In 
asynchronous mode it is a general 
purpose input (Channel A). 

~ 10 I/O Synchronous Detection (Channel B): 
iR'i'Sa This pin is used in byte synchronous 

mode as either an internal sync 
detect (outP.ut) or as a means to 
force external synchronization (in-
put) In SDlC mode, this pin is an 
output indicating Flag detection. In 
asynchronous mode it is a general 
purpose input (Channel B) RDYA/ 32 0 Ready: In mode 0 this pin is RDYA 

RxDRQ, and is used to synchronize data 
transfers between the processor 
and the MPSC (Channel A). In 
modes 1 and 2 this pin is RxORQ. 
and is used by the channel A receiVer 

Request to Send (Channel 8): Gen-
eral purpose output, generally used 
to signal that Channel B is ready to 
send data 

to request a DMA transfer 
SYNDEr. or RTSa selection is done DTRA 31 0 Data Terminal Ready (Channel A): 

, by WR2; D7 (Channel A) General purpose output. 

170102-001 
6-49 



inter 827.4 

Table 1. Pin Description 

Pin 
Symbol No. lYpe Name and Function 
iPC5I 30 0 Interrupt Priority Outl1l'ansmltter 
TxDROa DMA Request (Channel 8): In modes 

o and 1, this pin is Interrupt Priority 
Out It is used to establish a hardware 
interrupt priority scheme with if5l. It 
is low only if if5l is low and the 
controlling processor is not servicing 
an interrupt from this MPSC. In mode 
2 it is TxDRQ. and is used to request 
a DMA cycle for a transmit operation 
(Channel B). 

iPT/ 29 I/O Interrupt Priority In/Receiver DMA 
RxDROa Request (Channel 8): In modes 0 

and 1, iPlJs Interrupt Priority In. A 
low on IPI means that no higher 
priority device is being serviced by 
the controlling processor's interrupt 
service routine. In mode 2 this pin is 
RxOROa and is used to request a 
DMA cycle for a receive operation 
(Channel B). In Interrupt mode, this 
pin must be tied low. 

1m 28 0 Interrupt: The interrupt signal indi-
cates that the highest priority internal 
interrupt requires service (open col-
lector). Priority can be resolved via 
an external interrupt controller or a 
daisy-chain scheme. 

RESET 

When the 8274 RESET line is activated, both MPSC 
channels enter the idle state. The serial output lines are 
forced to the marking state (high) and the modem 
interface Signals (R"FS, OTR) are forced high. In addi­
tion, the pOinters registers are set to zero. 

GENERAL DESCRIPTION 

The Intel 8274 Multi-Protocol Serial Controller is a 
microcomputer peripheral device which supports 
Asynchronous, Byte Synchronous (Monosync, IBM 
Bisync). and Bit Synchronous (ISO's HOLC, IBM's 
SOLC) protocols. This controller's flexible architecture 
allows easy implementation of many variations of these 
three protocols with low software and hardware 
overhead. 

The Multi-Protocol Serial controller (MPSC) imple­
ments two independent serial receiver/transmitter 
channels. 

The MPSC supports several microprocessor interface 
options: Polled, Wait, Interrupt driven and OMA driven. 
The MPSC is designed to support INTEL'S MCS-85 
and iAPX 86, 88, 186, 188 families. 

6-50 

Pin 
Symbol No. lYpe Name and Function 
rr:;n"A 27 I Interrupt Acknowledge: This Inter-

rupt Ackowledge signal allows the 
highest priority interrupting device 
to generate an interrupt vector. This 
pin must be pulled high (inactive) in 
non-vector mode. 

15Wf. 26 0 Data Terminal Ready (Channel 8): 
ThIS is a general purpose output 

Ac 25 I Address: This line selects Channel A 
or B during data or command trans-
fers. A low selects Channel A. 

A, 24 I Address: This line selects between 
data or command information trans-
fer. A low means data. 

~ ·23 I Chip Select: ThIS Signal selects the 
MSPC and enables reading from or 
writing into its registers 

Rl5 22 I Read: Read controls a data byte or 
status byte transfer from the MPSC 
to the CPU. 

\Wl 21 I Write: Write controls transfer of data 
or commands to the MPSC. 

FUNCTIONAL DESCRIPTION 

Additional information on Asynchronous and Syn­
chronous Communications with the 8274 is available 
respectively in the Applications Notes AP 134 and AP 
145. 

Command, parameter, and status information is stored 
in 21 registers within the MPSC (8 writable registers for 
each channel, 2 readable registers for Channel A and 3 
readable registers for Channel B). 

In the following .discussion, the writable registers will 
be referred to as WRO through WR7 and the readable 
registers will be referred to as RRO through RR2. 

This section of the data sheet describes how the 
Asynchronous and Synchronous protocols are imple­
menteg in the MPSC. It describes general considera­
tions, transmit operation, and receive operation for 
Asynchronous, Byte Synchronous, and Bit Synchro­
nous protocols. 

170102-001 



inter 8274 

ASYNCHRONOUS OPERATIONS 

TRANSMITTER/RECEIVER INITIALIZATION 

(See Detailed Command Description Section for com­
plete information) 

In orderto operate in asynchronous mode, each MPSC 
channel must be initialized with the following infor­
mation: 

1. Transmit/Receive Clock Rate. This parameter is 
specified by bits 6 and 7 of WR4. The clock rate may 
be set to 1, 16,32, or 64 times the data-link bit rate. If 
the X1 clock mode is selected, the bit synchroniza­
tion must be accomplished externally. 

2. Number of Stop Bits. This parameter is specified by 
bits 2 and 3 of WR4. The number of stop bits may be 
set to 1, 1 1/2, or 2. 

3. Parity Selection. Parity may be set for odd, even, or 
no parity by bits 0 and 1 of WR4. 

4. Receiver Character Length. This parameter sets the 
length of received characters to S, 6, 7, or 8 bits. This 
parameter is specified by bits 6 and 7 of WR3. 

S. Receiver Enable. The serial-channel receiver opera­
tion may be enabled or disabled by setting or 
clearing bit 0 of WR3. 

6. Transmitter Character Length. This parameter sets 
the length of transmitted characters to S, 6, 7, or 8 
bits. This parameter is specified by bits Sand 6 of 
WRS. Characters of less than S bits in length may be 
transmitted by setting the transmitted length to five 
bits (set bits Sand 6 of WRS to 0). 

The MPSC then determines the actual number of 
bits to be transmitted from the character data byte. 
The bits to be transmitted must be right justified in 
the data byte, the nextthree bits must be set to 0 and 
all remaining bits must be set to 1. The following 
table illustrates the data formats for transmission of 
1 to S bits of data: 

Number of 
Bits Transmitted 

D7 D6 DS D4 D3 D2 D1 DO (Character Length) 
1 1 1 1 0 0 0 c 1 
1 1 1 0 0 0 c c 2 
1 1 0 0 0 c c c 3 
1 0 0 0 c c c c 4 
0 0 0 c c c c c S 

6-S1 

7. Transmitter Enable. The serial channel transmitter 
operation may be enabled or disabled by setting or 
clearing bit 3 of WRS 

8. Interrupt Mode. 

For data transmission via a modem or RS-232-C 
interface, the following information must also be 
specified: 

1. The Request To Send (RTS) (WRS; D1) and Data 
Terminal Ready (DTR) (WRS; D7) bits must be set 
along with the Transmit Enable bit (WRS; D3). 

2. Auto Enable may be set to allow the MPSC to 
automatically enable the channel transmitter when 
the clear-to-send Signal is active and to automatically 
enable the receiver when the carrier-detect signal is 
active. However, the Transmit Enable bit (WR3; D3) 
and Receive Enable bit (WR3; D1) must be set in 
order to use the Auto Enable mode. Auto Enable is 
controlled by bit S of WR3. 

When loading 'Initialization parameters into the MPSC, 
WR4 information must be written before the WR1, WR3, 
WRS parameters commands. 

During initialization, it is desirable to guarantee that the 
external/status latches reflect the latest interface 
information. Since up to two state changes are 
internally stored by the MPSC, at least two. Reset 
External/Status Interrupt commands must be issued. 
This procepure is most easily accomplished by simply 
issuing this reset command whenever the pointer 
register is set during initialization. 

An MPSC initialization procedure (MPSC$RX$INIT) 
for asynchronous communication is listed in Intel 
Application Note AP 134. 

TRANSMIT 

The transmitfunction begins when the Transmit Enable 
bit (WRS; D3) is set. The MPSC automatically adds the 
start bit, the programmed parity bit (odd, even or no 
parity) and the programmed number of stop bits (1, 1.S 
or 2 bits) to the data character being transmitted. 1.S 
stop bits option must be used with X16, X32 or X64 
clock options only. 

170102·001 

[:; 
III 
I~ 

II 



8274 

The serial data are shifted out from the Transmit Oata 
(TxO) ou.tput on the falling edge of the Transmit Clock 
(TxC) input at a rate programmable to 1, 1/16th, 1/32nd, 
or lI64th of the clock rate supplied to the TxC input. . 

The TxO output is held high when the transmitter has 
no data to sena, unless, under program control, the 
Send Break (WR5; 04) 'command is issued to hold the 

'TxO.low. 

If the External/Status Interrupt bit (WR1; 00) is set, the 
status of rn5, rn and SYNDET are monitored and, if 
any changes occur for a period of time greater than the 
minimum specified pulse width, an interrupt is gener­
ated. C'rn is usually rnonitored using this interrupt 
feature (e.g. Auto Enable option). 

The Transmit Buffer Empty bit (RRO; 02) is set by the 
MPSC when the data byte from the buffer is loaded in 
the transmit shift register. Oata should be written to the 
MPSC only when the Tx buffer becomes empty to 
prevent overwriting. 

Receive 

The receive function begins when the Receive Enable 
(WR3; 00) bit is set. If the Auto Enable (WR3: 05) 
option is selected, then Carrier Detect (m) must also 
be low. A valid start bit is detected if a low persists for at 
least 1/2 bit time on the Receive Oata (RxO) input. 

The data is sampled at mid-bit time, on the rising edge 
of RxC, until the entire character is assembled. The 
receiver inserts 1 's when a character is less than 8 bits. 
If parity (WR4; 00) is enabled and the character is less 
than 8 bits the parity bit is not stripped from the 
character. 

Error Reporting 

The receiver also stores error status for each of the 3 
data characters in the data buffer. Three error condi­
tions may be encountered during data reception in the 
asynchronous mode: 

1. Parlly. If parity bits are computed and transmitted 
with each character and the MPSC is set to check 
parity (bit 0 in WR4 is set), a parity error will occur 
whenever the number of "1" bits within the character 
(including the parity bit) does not match the 
odd/even setting of· the parity check flag (bit 1 in 
WR4). When a parity error is detected, the parity 
error flag (RR1; 04) is set and remains set until it is 
reset by the Error Reset command (WRO; 05, 04, 
03). 

6-52 

2. F..amlng. A framing error will occur if a stop bit is not 
detected immediately following the parity bit (if 
parity checking is enabled) or immediately following 
the most-significant data bit (if parity checking is not 
enabled). When a Framing Error is detected, the 
Framing Error bit (RR1; 06) is set. Thedetectionofa 
Framing Error adds an additional 1/2 bit time to the 
character time so the Framing Error is not interpreted 
as a new start bit. 

3. OvemAn. If the CPU fails to read a data character 
while more than three characters have been received, 
the Receive Overrun bit (RR1; 05) is set. When this 
occurs, the fourth character assembled replaces the 
third character in the receive tiUffers. Only the 
overwritten character is flagged with the Receive 
Overrun bit. The Receive Overrun bit (RR1, 05) is 
reset by the Error Reset command (WRO; 05, 04, 03). 

External/Status Latches 

The MPSC continuously monitors the state of five 
external/status conditions: 

1. CTS - clear-ta-send input pin. 

2. CO - carrier-detect input pin. 

3. SYNOET - sync-detect input pin. This pin may be 
used as a general-purpose input in the asynchronous 
communication mode. 

4. BREAK - a break condition (series of space bits on 
the receiver input pin). 

5. Tx UNOERRUN/EOM - Transmitter Underrun/End 
of Message. 

A change of state in any of these monitored conditions 
will cause the associated status bit in RRO to be latchecl 
(and optionally cause an interrupt). 

If the External/Status Interrupt bit (WR1; 00) is enabled, 
Break Detect (RRO; 07) and Carrier Detect (RRO; 03) 
will cause an interrupt. Reset External/Status interrupts 
(WRO; 05, 04, 03) will clear Break Oetect and Carrier 
Detect bits if they are set. 

170102-001 



8274 

Asynchronous Mode Register Setup 

07 06 05 04 03 02 01 DO 
00 Rx 5 b/char 

WR3 01 Rx 7 b/char AUTO 0 0 0 0 Rx 
10 Rx 6 b/char ENABLE ENABLE 
11 Rx 8 b/char 

00 X1 Clock 
EVENI 

WR4 01 X16 Clock 0 0 01 1 STOP BIT ODD PARITY 
10 X32 Clock 10 1 Y2 STOP BITS PARITY ENABLE 
11 X64 Clock 11 2 STOP BITS 

00 Tx:55 b/char 
WR5 DTR 01 Tx 7 b/char SEND Tx 0 RTS 0 

10 Tx 6 b/char BREAK ENABLE 
11 Tx 8 b/char 

SYNCHRONOUS OPERATION-
MONOSYNC, BISYNC ' 

General Transmit Set-Up-Monosync, Bisync 

The MPSC must be initialized with the following pa­
rameters: odd or even parity (WR4; 01,00), X1 clock 
mode (WR4; 07, 06), 8- or 16-bit sync character 
(WR4; OS, 04), CRC polynomial (WRS; 02), Trans­
mitter Enable (WRS; 03), interrupt modes (WR1, 
WR2), transmit character length (WRS; 06, OS) and 
receive character length (WR3; 07, 06). WR4 pa­
rameters must be written before WR1, WR3, WRS, 
WR6 and WR7. 

The data is transmitted on the falling edge of the 
Transmit Clock, (TxC) and is received on the rising 
edge of Receive Clock (RxC). The X1 clock is used 
for both transmit and receive operations for all three 
sync modes: Mono, Bi and External. 

Transmit data is held high after channel reset, or if 
the transmitter is not enabled. A break may be pro­
grammed to generate a spacing line that begins as 
soon as the Send Break (WRS; 04) bit is set. With the 
transmitter fully initialized and enabled, the default 
condition is continuous transmission of the 8- or 
16-bit sync character. 

Using interrupts for data transfer requires that the 
Transmit InterruptiOMA Enable bit (WR1; 01) be set. 
An interrupt is generated each time the transmit buf­
fer becomes empty. The interrupt can be satisfied 

Synchronous Mode Register Setup-Monosync, Bisync 

07 06 05 04 03 02 01 DO 
00 Rx 5 b/char ENTER SYNC 

WR3 01 Rx 7 b/char AUTO HUNT Rx CRC 0 CHAR Rx 
10 Rx 6 b/char ENABLE MODE ENABLE LOAD ENABLE 

·11 Rx 8 b/char INHIBIT 

00 8 bit Sync EVENI 
WR4 0 0 01 16 bit Sync 0 0 ODD PARITY 

11 Ext Sync PARITY ENABLE 

00 Tx:55 b/char 1 
WR5 DTR 01 Tx 7 b/char SEND Tx (SELECTS RTS Tx CRC 

10 Tx 6 b/char BREAK ENABLE CRC-16) ENABLE 
11 Tx 8 b/char 

6-S3 170102-001 



,8274 

COMMAND/STATUS 
POINTER 

~ 1 ~ : R : o : : 1 

o ~ I w R --~~ ______________ ~I I~·_R ___ R ____________ _ 

~I w R ---I~ ________ ~I r=R __ R ______ ~1 
MSB LSB 

~I w R 

Read Registers 

·1 o O-'--_~ w R 

o ·1 w R 

~I w R 6 

·1 w R 

MSB LSB 

Write Registers 

Figure 3. Command/Status Register Architecture (each serial channel) 

Command, parameter, and status information is stored 
in 21 registers within the MPSC (8 writable registers for 
each channel, 2 readable registers for Channel Aand 3 
readable registers for Channel B). They are all acce­
ssed via the command ports. 

An internal pointer register selects which of the 
command or status registers will be read or written 
dUring a command/status access of an MPSC 
channel. 

6-54 

After reset, the contents of the pOinter registers are 
zero. The first write to a command register causes 
the data to be loaded into Write Register 0 (WRO). 
The three least significant bits of WRO are loaded 
into the Command/Status Pointer. The next read or 
write operation accesses the read or write register 
selected by the pointer. The pointer is reset after the 
read or write operation is completed. 

170102-001 



8274 

either by writing another character into the transmit­
ter or by resetting the Transmitter Interrupt/OMA 
Pending latch with a Reset Transmitter Interrupt/ 
OMA Pending Command (WRO; 05, 04, 03). If noth­
ing more is written into the transmitter, there can be 
no further Transmit Buffer Empty interrupt, but this 
situation does cause a Transmit Underrun condition 
(RRO; 06). 

Oata Transfers using the ROY signal are for software 
controlled data transfers such as block moves. ROY 
tells the CPU that the MPSC is not feady to accept! 
provide data and that the CPU must extend the 
output/input cycle. OMA data transfers use the 
TxORQ A/B signals which indicate that the transmit 
buffer is empty, and that the MPSC is ready to accept 
the next data character. If the data character is not 
loaded into the MPSC by the time the transmit shift 
register is empty, the MPSC enters the Transmit 
Underrun condition. 

The MPSC has two programmable options for solv­
ing the transmit underrun condition: it can insert 
sync characters, or it can send the CRC characters 
generated so far, followed by sync characters. Fol­
lowing a chip or channel reset, the Transmit 
Underrun/EOM status bit (RRO; 06) is in a set condi­
tion allowing the insertion of sync characters when 
there is no data to send. The CRC is not calculated 
on these automatically inserted sync characters. 
When the CPU detects the end of message, a Reset 
Transmit Underrun/EOM command can be issued. 
This allows CRC to be sent when the transmitter has 
no data to send. 

In the case of sync insertion, an interrupt is gener­
ated only after the first automatically inserted sync 
character has been loaded in the Transmit Shift Regis­
ter. The status register indicates the Transmit Underrunl 
EOM bit and the Transmit Buffer Empty bit are set. 

In the case of CRC insertion, the Transmit 
Underrun/EOM bit is set and the Transmit Buffer 
Empty bit is reset while CRC is being sent. When 
CRC has been completely sent, the Transmit Buffer 
Empty status bit is set and an interrupt is generated 
to indicate to the CPU that another message can 
begin (this interrupt occurs because CRC has been 
sent and sync has been loaded into the Tx Shift Reg­
ister). If no more messages are to be sent, the pro­
gram can terminate transmission by resetting RTS, 
and disabling the transmitter (WR5; 03). 

Bisync CRC Generation. Setting the Transmit CRC 
enable bit (WR5; 00) inaicates CRC accumulation 
when the program sends the first data character to 

6-55 

the MPSC. Although the MPSC automatically 
transmits up to two sync characters (16 bit sync), it is 
wise to send a few more sync characters ahead of 
the message (before enabling Transmit CRC) to 
ensure synchronization at the receiving end. 

The Transmit CRC Enable bit can be changed on the 
fly any time in the message to include or exclude a 
particular data character from CRC accumulation. 
The Transmit .CRC Enable bit should be in the de­
sired state when the data character is loaded into 
the transmit shift register. To ensure this bit in the 
proper state, the Transmit CRC Enable bit must be 
issued before sending the data character to the 
MPSC. 

Transm it Transparent Mode. Transparent mode 
(Bisync protocol) operation is made possible by the 
ability to change Transmit CRC Enable on the fly and 
by the additional capability of inserting 16 bit sync 
characters. Exclusion of OLE characters from CRC 
calculation can be achieved by disabling CRC calcu­
lation immediately preceding the OLE character 
transfer to the MPSC. 

In the transmit mode, the transmitter always sends 
the programmed number of sync bits (8 or 16) (WR4; 
05,04). When in the Monosync mode, the transmit­
ter sends from WR6 and the receiver compares 
against WR7. One of two CRC polynomials, CRC 16 
or SOLC, may be used with synchronous modes. In 
the transmit initialization process, the CRC 
generator is initialized by setting the Reset Transmit 
CRC Generator command (WRO; 07, 06). 

The External/Status interrupt (WR1; 00) mode can 
be used to monitor the status of the CTS input as 
well as the Transmit Underrun/EOM/latch. Option­
ally, the Auto Enable (WR3; 05) feature can be used 
to enable the transmitter when CTS is active. The 
first data transfer to the MPSC can begin when the 
External/Status interrupt occurs (CTS (RRO; 05) 
status bit set) following the Transmit Enable com­
mand (WR5; 03). 

Receive 

After a channel reset, the receiver is in the Hunt 
phase, during which the MPSC looks for character 
synchronization. The Hunt begins only when the re­
ceiver is enabled and data transfer begins only when 
character synchronization has been achieved. If 
character synchronization is lost, the hunt phase 
can be re-entered by writing the Enter Hunt Phase 
(WR3; 04) bit. The assembly of received data con­
tinues until the MPSC is reset or until the receiver is 

170102-001 



8274 

disabled (by command or by CD while in the Auto 
Enables mode) or until the CPU sets the Enter Hunt 
Phase bit. Under progra'm control, all the leading 
sync characters of the message can be inhibited 
from loading the receive buffers by setting the Sync 
Character Load Inhibit (WR3; 0.1) bit. After character 
synchronization is achieved the assembled charac­
ters are transferred to the receive data. FIFO. After 
receiving the first data character, the Sync Character 
Load Inhibit bit should be reset to zero so that all 
characters are received, including the sync charac­
ters. This is important because the received CRC 
ma), look like a sync character and not get received. 

Data may be transferred with or without interrupts. 
Transferring data without interrupts is used for a 
purely polled operation or for off-line conditions. 
There are three interrupt modes available for data 
transfer: Interrupt on First Character Only, Interrupt 
on Every Character, and Special Receive Conditions 
Interrupt. 

Interrupt on First Character Only mode is normally 
used to start a polling loop:a block transfer se­
quence using ROY to synchronize the CPU to the in­
coming data rate, or a DMA transfer using the RxORQ 
signal. The·MPSC interrupts on the first character 
and thereafter only interrupts after a Special Re­
ceive Conditioll is detected. This mode can be 
reinitialized using the Enable Interrupt On Next Re­
ceive Character (WRO; OS, 04:03) command which 
allows the next character received to generate an 
interrupt. Parity Errors do not cause interrupts, but 
End of Frame (SOLC operation) and Receive Over­
run do cause interrupts in this mode. If the externa~ 
status interrupts (WR1; DO) are enabled an interrupt 
may be generated a~y time the CD changes state. 

Interrupt On Every Character mode generates an 
interrupt whenever a character enters the receive 

buffer. Errors and Special Receive Conditions gen­
erate a special vector if the Status Affects Vector 
(WR1 B; 02) is selected. Also the Parity Error may be 
programmed (WR1; 04, 03) not to generate the spe­
cial vector while in the Interrupt On Every Character 
mode. 

The Special Receive Condition interrupt can only 
occur while in the Receive Interrupt On First Charac­
ter Only or the Interrupt On Every Receive Character 
modes. The Special Receive Condition interrupt is 
caused by the Receive Overrun (RR1; 05) error con­
dition. The error status reflects an error in the cur­
rent word in the receive buffer, in addition to any 
Parity or Overrun errors since the last Error Reset 
(WRO; OS, 04, 03). The Receive Overrun and Parity 
error status bits are latched and can only be reset by 
the Error Reset (WRO; OS, 04, 03) command. 

The CRC check result may be obtained by checking 
for CRC bit (RR1; 06). This bit gives the valid CRC 
result 16 bit times after the second CRC byte has 
been read from the MPSC. After reading the second 
CRC byte, the user software must read two more 
characters (may be sync characters) before check­
ing for CRC result in RR1. Also for proper CRC com­
putation by the receiver, the user software must reset 
the Receive CRC Checker (WRO; 07, 06) after receiv­
ing the first valid data character. The receive CRC 
Enable bit (WR3; 03) may also be enabled at this 
time. 

SYNCHRONOUS OPERATION-SOLC 

General 

Like the other synchronous operations the 'SOLC 
mode must be initialized with the following parame­
ters: SOLC mode (WR4; OS, 04), SOLC polynomial 
(WR5; 02), Request to Send, Data Terminal Ready, 

Synchronous Mode Register Setup-SOLC/HOLC 

07 06 05 04 03 02 01 00 
00 Rx Sb/char ENTER Rx ADDRESS Rx 

WR3 01 Rx 7b/char AUTO HUNT CRC SEARCH 0 ENABLE 
10 Rx 6b/char ENABLES MODE ENABLE MODE 
11 Rx 8b/char 

0 0 1 0 0 0 0 0 
WR4 (SELECTS SDLCI 

HDLC MODE) 

00 Tx "'Sb/char 
0 

WR5 DTR 
01 Tx 7b/char 

SEND Tx (SELECTS RTS Tx 

10 Tx 6b/char 
BREAK ENABLE SOLei CRC 

11 Tx 8b/char 
HDLC ENABLE 
CRC) 

6-56 170102-001 



8274 

transmit character length ,(WR5; 06, 05), interrupt 
modes (WR1; WR2), Transmit Enable (WR5; 03), 
Receive Enable (WR3; 00), Auto Enable (WR3; 05) 
and External/Status Interrupt (WR1; 00).WR4 
parameters must be written before WR1, WR3, 
WR5, WR6 and WR7. 

The Interrupt modes for SOLC operation are similar 
to those discussed previously in the synchronous 
operations section. 

Transmit 

After a channel reset, the MPSC begins sending 
SOLC flags. . 

Following the flags in an SOLC operation the a-bit 
address field, control field and information field may 
be sent to the MPSC by the microprocessor. The 
MPSC transmits the Frame Check Sequence using 
the Transmit Underrun feature. The MPSC automat­
ically inserts a zero after every sequence of 5 con­
secutive1's except when transmitting Flags or 
Aborts. 

SOLC-like protocols do not have provision for fill 
characters within a message. The MPSC therefore 
automatically terminates an SOLC frame when the 
transmit data buffer aod output shift register have 
no more bits to send. It do,es this by sending the two 
bytes of CRC and then one or more flags. This allows 
very high-speed transmissions under OMA or CPU 
control without requiring the CPU to respond 
quickly to the end-of-message situation. 

After a reset, the Transmit Underrun/EOM status bit 
is in the set state and prevents the insertion of CRC 
characters during the time there is no data to send. 
Flag characters are sent. The MPSC begins to send 
the frame when data is wri'tten into the transmit buf­
fer. Between the time the first data byte is written, 
and the end of the message, the Reset Transmit 
Underrun/EOM (WRO; 07, 06) command must be 
issued. The Transmit Underrun/EOM status bit (RRO; 
06) is in the reset state at the end of the message 
which automatically sends the CRC characters. 

The MPSC may be programmed to issue a send 
Abort command (WRO; 05, 04, 03). This command 
causes at least eight 1 's but less than fourteen 1's to 
be sent before the line reverts to continuous flags. 

6-57 

Receive 

After initialization, the MPSC enters the Hunt phase, 
and remains in the Hunt phase until the first Flag is 
received. The MPSC never again enters the Hunt 
phase unless the microprocessor writes the Enter 
Hunt command. The MPSC will also detect flags 
separated by a single zero. For example, the bit pat­
tern 011111101111110 will be detected as two flags. 

The MPSC can be programmed to receive all frames 
or it can be programmed to the Address Search 
Mode. In the Address Search Mode, only frames with 
addresses that match the value in WR6 or the global 
address (OFFH) ilre received by the MPSC. Extended 
address recognition must be done by the micropro­
cessor software. 

The control and information fields are received as 
data. 

SOLC/HOLC CRC calculation does not have an a-bit 
delay, since all characters are included in the calcu­
lation, unlike Byte Synchronous Protocols. 

Reception of an abort sequence (7 or more 1 's) will 
cause the Break/Abort bit (RRO; 07) to be set and will 
cause an External/Status interrupt, if enabled. After 
the Reset External/Status Interrupts Command has 
been issued, asecond interrupt will occur at the end 
of the abort sequence. 

MPSC 

Detailed Command/Status Description 

GENERAL 
The MPSC supports an extremely flexible set of se­
rial and system interface modes. 

The system interface to the CPU consists of a ports 
or buffers: 

cs A, Ao Read Operation Writ. Operation 

0 0 0 Ch A Data Read Ch A Data Wnte 
0 1 0 Ch A Status Read Ch A Com""and/Parameter 
0 0 1 Ch B Data Read Ch 8 Data Wnte 
0 1 1 Ch B Status Read Ch B Command/Parameter 
1 X X HIgh Impedance HIgh Impedance 

Oata buffers are addressed by A, = 0, and Command 
ports are addressed by A, = 1. ' 

170'02-001 



8274 

COMMAND/STATUS DESCRIPTION 
The following command and status bytes are used 
during initialization and execution phases of opera"" 
tion. All Command/Status operations on the two 
channels are identical, and independent, except 
where noted. 

Detailed Register Description 

Write Register 0 (WRO): 

WRO 

NULL CODE 

COMMAND/STATUS POINTER 

REGISTER POINTER 

NULL CODE 

SEND ABORT (SDLC) 

RESET EXT/STATUS INTERRUPTS 
CHANNEL RESET 
ENABLE INTERRUPT ON NEXT Rx 
CHARACTER 

RESET TxINTfDMA PENDING 

ERROR RESET 

END OF INTERRUPT 

RESET Ax CRe CHECKER 
RESET 1)( CRe GENERATOR 

RESET Tx UNDERRUN/EOM LATCH 

02, 01, OO~Command/Status Register Pointer bits 
determine which write-register the next byte is to be 
written into, or which read-register the next byte is to 
be read from. After reset, the first byte written into 
either channel goes into WRO. Following a read or 
write to any register (except WRO) the pOinter will 
point to WRO. -" . 

05, 04, 03-Command bits determine which of the 
basic seven commands are to be performed. 

6-58 

Command 0 

Command 1 

Command 2 

Command 3 

Command 4 

Command 5 

Command 6 

Command 7 

07,06 

00 

01 

Null-has no effect. 

Send Abort-causes the genera­
tion of eight to thirteen 1 's when 
in the SOLC mode. 

Reset External/Status Interrupts­
resets the latched status bits of 
RRO and re-enables them, allowing 
interrupts to occur again. 

Channel Reset-resets the Latch­
ed Status bits of RRO, the 
interrupt prioritization logic and 
all control registers for the 
channel. Four extra system 
clock cycles should be allowed 
for MPSC reset time before any 
additional commands or controls 
are written into the channel. 

Enable Interrupt on Next Receive 
Character-if the Interrupt on 
First Receive Character mode is 
selected, this command reacti­
vates that mode after each com­
plete message is received to 
prepare the MPSC for the next 
message. 

Reset Transmitter Interrupt/OMA 
Pending-if The Transmit 
Interrupt/OMA. Enable mode is 
selected, the MPSC automatically 
interrupts or requests OMA data 
transfer when the transm it buffer 
becomes empty. When there are no 
more characters to be sent, 
issuing this command prevents 
fu rther transm itter i nterru pts or 
OMA requests until the next 
character has been compiete'ly 
sent. 

Error Reset-error latches, Pari­
ty and Overrun errors in RR1 are 
reset. 

End of Interrupt-resets the 
interrupt-in-service latch of the 
highest-priority internal device 
under service. 

CRC Reset Code 

Null-has no effect. 

Reset Receive CRC Checker­
resets the CRC checker to O's. If in 
SOLC mode the CRC checker is 
initialized to ali 1 'so 

170102-001 



8274 

10 

11 

Reset Transmit CRC Generator 
-resets the CRC generator to 
O's. If in SDLC mode the CRC 
generator's initialized to all 1·s. 

Reset Tx Underrun/End of Message 
Latch. 

Write Register 1 (WR1): 

MS8 LSB 

1071061 osl 04: 031 02101100 I 

WR1 

DO 

'----.,.---I 

I EXT INTERRUPT 

ENABLE 

TxlNTERRUPTI 
DMAENABLE 

1"'" VARIABLE 
STATUS AFFECTS VECTOR 
VECTOR (CH B ONLY) o - FIXED 
(NULL CODe CH A) VECTOR 

,--------., 
0 0 RxlNT/DMA DISABLE 

0 1 RxlNT ON FIRST CHAR OR SPECIAL 
CONDITION 

1 0 tNT ON ALL Rx CHAR (PARITY AFFECTS 
VECTOR) OR SPECIAL CONDITION 

1 1 tNT ON ALL Rx CHAR (PARITY DOES 
NOT AFFECT VECTOR) OR SPECIAL 
CONDITION 

1 = WAIT ON Rx, 0 =; WAIT ON Tx 

MUST BE ZERO 

WAIT ENABLE 1 = ENABLE', 0 ..; DISABLE 

External/Status Interrupt Enable 
-allows interrupt to occur as the 
result of transitions on the CD, 
CTS or SYNDET inputs. Also 
allows interrupts as the result of a 
Break/Abort detection and termi­
nation, or at the beginning of CRC, 
or sync character transmission 
when the Transmit Underrun/EOM 
latch becomes set. 

D1 

D2 

D4, D3 

o 0 

o 

D5 

6-59 

D6 

D7 

o 

Transmitter Interrupt/DMA Enable 
-allows the MPSC to interrupt or 
request a DMA transfer when the 
transmitter buffer becomes empty. 

Status Affects vector-(WR 1, D2 
active in channel B only,) If this 
bit is not set, then the fixed vector, 
programmed in WR2, is returned 
from an interrupt acknowledge 
sequence. If the bit is set then the 
vector returned from an interrupt 
acknowledge is variable as shown 
in the Interrupt Vector Table. 

Receive Interrupt Mode 

Receive Interrupts/DMA Disabled 

Receive Interrupt on First Charac­
ter Only or Special Condition 

Interrupt on All Receive Charac­
ters or Special Condition (Parity 
Error is a Special Receive Condi­
tion) 

Interrupt on All Receive Charac­
ters or Special Condition (Parity 
Error is not a Special Receive 
Condition). 

Wait on Receive/Transmit-when 
the following conditions are met 
the RDY pin is activated, otherwise 
it is held in ttle High-Z state. 
(Conditions: Interrupt Enabled 
Mode, Wait Enabled, CS = 0, 
AO = 0/1, and A1 = 0). The RDY 
pin is pulled low when the trans­
mitter buffer is full or the receiver 
buffer is empty and it is driven 
High when the transmitter buffer is 
empty or the receiver buffer is full. 
The RDYA and RDYB may be 
wired OR connected since only 
one signal is active at anyone time 
while the other is in the High Z 
state. 

Must be Zero 

Wait Enable-enables the wait 
function. 

170102-001 

I"~ 
Ii. 
I
,;, 
/' 



intJ 

WR2 

01,00 

o 0 

o 

o 

02 

o 

Channel A 

System Configuration-These 
specify the data transfer from 
MPSC,channels to the CPU, either 
interrupt or OMA based. 

Channel A and Channel Rboth use 
, interrupts 

Channel A uses OMA, Channel B 
uses interrupt 

Channel A and Channel B both 
use OMA 

Illegal Code 

Priority-this bit specifies the 
relative priorities of the internal 
MPSC interrupt/OMA sources, 

(Highest) RxA, TxA, RxB, TxB 
ExTA, ExTB (Lowest) 

(Highest) RxA, RxB, TxA, TxB, 
ExTA, ExTB (Lowest) 

8274 

05, D4, 03 Interrupt Code-specifies the 
behavior of the MPSC when it re­
ceives an interrupt acknowledge 
sequence from the CPU. (See Inter­
rupt Vector Mode Table). 

o X X Non-vectored interrupts-in­
tended for use with external OMA 
CONtROLLER. The Oata Bus re­
mains in ,a high impedence state 
during INTA sequences. 

o 0 8085 Vector Mode 1-intended for 
use as the primary MPSC in a daisy 
chained priority structure. (See 
System Interface section) 

1 0 

o 

8085 Vector Mode 2-intended for 
use as any secondary MPSC in a 
daisy chained priority structure. 
(See System Interface section) 

8086/88 Vector Mode-intended 
for use as eit~er a primary or 
secondary in a daisy chained 
priority structu reo (See System 
Interface section) 

Must be zero, 

Write Register 2 (WR2): Channel A 

06 

D7 zero Pin 10 = RTSB 

one Pin 10 = SYNDETB 

Msa Lsa 

1 07 : 061 05 1 04 : 03 1 02 1 01 : DO 1 

~ ~ 

0 0 BOTH INTERRUPT 

0 1 A DMA, B INT 

1 0 BOTHOMA 

1 1 ILLEGAL 

1 PRIORITY RxA Rxa TxA Txa 

0 PRIORITY RxA TxA Rxa Txa 
,---..-, 

0 0 8085 MODE 1 

0 1 8085 MODE 2 

1 0 8086/88 MODe 

1 1 ILLEGAL . 
1 VECTORED INTERRUPT 

0 NON veCTORED INTERRUPT 

MUST BE ZERO 

1 PIN 10 SYNDET 6 

0- PIN 10 RT5 B 

"EXTERNAL STATUS INTERRUPT-
ONLY IF EXT INTERRUPT ENABLE (WR1; DO)IS SET 

6-60 

EXTA' EXlS· 

EXlA" EXlS: 

170102-001 



8274 

The following table describes the MPSC's response to an interrupt acknowledge sequence: 

D5 D4 D3 IPI MODE INTA Data Bus 

D7 DO 

0 X X X Non-vectored Any INTA High Impedance 

1 0 0 0 85 Mode 1 1st INTA 1 1 0 0 1 1 0 1 

2nd INTA V7 V6 V5 V4' V3' V2' Vl VO 

3rd INTA 0 0 0 0 0 0 0 0 

1 0 0 1 85 Mode 1 1st INTA 1 1 0 0 1 1 0 1 

2nd INTA High Impedance 

3rd INTA High Impedance 

1 1 0 0 86 Mode 1st INTA High Impedance 
2nd INTA V7 V6 V5 V4 V3 V2' Vl'VO' 

1st INTA High Impedance 

1 0 1 0 85 Mode 2 2nd INTA V7 V6 V5 V4' V3' V2' Vl VO 

3rd INTA 0 0 0 0 0 0 0 0 

1 0 1 1 85 Mode 2 1st INTA High Impedance 

2nd INTA High Impedance 
3rd INTA High Impedance 

1 1 0 1 86 Mode 
1st INTA High Impedance 
2nd INTA High Impedance 

'These bits are variable If the "status affects vector" mode has been programmed, (WR1B, D2). 

Interrupt/DMA Mode, Pin Functions, and Priority 

.lnt/OMA 
Ch. A WR2 Mode Pin Functions Priority 

ROYAl ROYel IPI! IPOI 
RxORQA )JxORQA RxORQe TXORQe 

O2 0, Do CH.A CH.B Pin 32 I-pin 11 Pin 29 Pin 30 Highest Lowest 

0 0 0 INT INT RxA,TxA,RxB,TxB, EXT~ EXTe 
RDYA RDYe iPi IPO , 0 0 INT INT RxA, RxB, TxA, TxB, EXTA, EXT e 

0 0 , DMA RxA, TxA (DMA) 
r-- --- - r------------

INT - .- RxA', RxB, TxB, EXTA, EXT e (INT) 
RxDROA TxDROA IPI IPO , 0 1 DMA RxA, TxA (DMA) 

- - - - -- 1---------------
INT RxA " RxB, TxB, EXT A' EXT e (INT) 

0 1 0 DMA DMA RxA" TxA, ~xB, TxB (DMA) 
RxA , RxB , EXTA, EXT e (lNT) 

RxDROA TxDROA RxDROe TxDRO e RxA, RxB, TxA, TxB, (DMA) 
1 1 0 DMA DMA RxA" RxB', EXTA, EXT e (INT) 

'Special Receive Condition 

6-61 170'02-001 

\ 



I 
8085 Modes V4 

8086/88 Mode V2 

Note 1: Special 0 
Receive Condition~ 0 
Parity Error, 0 
Rx Overrun Error, 0 
Framing Error, 
End of Frame (SDLC) 

1 
1 
1 
1 

Write Register 2 (WR2): Channel B 

.MS8 LSB 

In:w:~:~:n:~: ~:~I 

L, 
Vector 

. Write Register 3 (WR3): 

8274 

Interrupt Vector Mode Table 

V3 
V, 
0 
0 
1 
1 

0 
0 
1 
1 

V2 

Vo 
0 
1 
0 
1 

0 
1 
0 
1 

Channel Condition 

B Tx Buffer Empty 
Ext/Status Change 
Rx Char. Available 
Special Rx Condition 

(Note 1) 

A Tx Buffer Empty 
Ext/Status Change 
Rx Char. Available 
Special Rx Conditi0fl 

(Note 1) 

WR2 CHANNEL B 

07-00 Interrupt vector-This register contains 
the value of the interrupt vector placed 
on the data bus during interrupt ac­
knowledge sequences. 

Rx ENABLE 

SYNC CHAR LOAD INHIBIT 

'----- ADDR SRCH MODE (SDLC) 

'------- Rx CRe ENABLE 

'--------ENTER HUNT MODE 

'----------AUTO ENABLES 

Rx 5 BITSfCHAR 

Rx 7 BITS/CHAR 

Rx 6 BITS/CHAR 

Rx 8 BITS/CHAR 

, 6-62 170102·001 



8274 

WR3 
00 

01 

Receiver Enable-A one enables the re­
ceiver to begin. This bit should be set only 
after the receiver has been initialized. 

Sync Character Load Inhibit-A one pre­
vents the receiver from loading sync 
characters into the receive buffers. In 
SOLC, this bit must be zero. 

02 Address Search Mode-If the SOLC mode 
has been selected, the MPSC will re­
ceive all frames unless this bit is a 1. If this 
bit is a 1, the MPSC will receive only frames 
with address bytes that match the global 
address. (OFFH) or the value loaded into 
WR6. This bit must be zero in non-SOLC 
modes. 

03 

04 

I 

Receive CRC Enat5le-A one in this bit 
enables (or re-enables) CRC calculation. 
CRC calculation starts with the last charac­
ter placed in the Receiver FIFO. A zero in 
this bit disables, but does not reset, the 
Receiver CRC generator. 

Enter Hunt Phase-After initialization, the 
MPSC automatically enters the Hunt mode. 
If synchronization is lost, the Hunt phase 
can be re-entered by writing a one to this 
bit. 

05 Auto Enable-A one written to this bit causes 
CD to be automatic enable signal for the 
receiver and CTS to be an automatic enable 
signal for the transmitter. A zero written to 
this bit limits the effect of CD and C'iS signals 
to setting/resetting their corresponding bits 
in the status register (RRO). 

07, 06 Receive Character length 

o 0 Receive 5 Oata bits/character 

o Receive 7 Oata bits/character 

o Receive 6 Oata bits/character 

Receive 8 Oata bits/character 

6-63 

Write Register 4 (WR4): 

WR4 
00 

01 

1 '" EVEN PARITY 

o == ODD PARITY 

o 0 ENABLE SYNC MODES 

o 1 1 STOP BIT 

1 0 1.5 STOP BITS 

1 1 2 STOP BITS 

o 0 8BITSYNCCHAR 

o 1 16 BIT SYNC CHAR 

o SOLe/HOLe MODE(01111110) FLAG 

1 EXTERNAL SYNC MODE 

o 0 Xl CLOCK 

o 1 X16 CLOCK 

o X32 CLOCK 

X64 CLOCK 

Parity-a one in this bit causes a parity 
bit to be added to the programmed number 
of data bits per character for both the 
transmitted and received character. If the 
MPSC is programmed to receive 8 bits per 
character, the parity bit- is not transferred 
to the microprocessor. With other receiver 
character lengths, the parity bit is trans­
ferred to the microprocessor. 

Even/Odd Parity-if parity is enabled, a 
one in this bit causes the MPSC to transmit 
and expect even parity, -and a zero causes 
it to send and expect odd parity_ 

03, 02 Stop bits/sync mode 

170102-001 



8274 

0 0 Selects synchronous modes. I 

0 Async mode, 1 stop bit/character 

0 Async mode, 1-112 stop bits/character 
1 Async mode, 2 stop bits/character 

05,04 Sync mode select 

0 0 8 bit sync character 

0 16 bit sync character 

0 SOLC mode (Flag sync) 

External sync mode 

07,06 Clock mode-selects the clock/data rate 
multiplier for both the receiver and the 
transmitter. 1x mode must be selected for 
synchronous modes. If the 1x mode is 
selected, bit synchronization must be done 
externally. 

0 0 Clock rate = Oata rate x 

0 Clock rate = Data rate x 16 

0 Clock rate = Data rate x 32 

Clock rate = Data rate x 64 

Write Register S (WRS): 

RTS 

,"-__ SOLe/eRe,'6 (eRT MODE) 

'------TlC ENABLE 

'"-_____ SENO BREAK 

Tx 5 BITS OR LESS/CHAR 

Tx 7 BITS/CHAR 

Tx 6 BITS/CHAR 

1x 8 BITS/CHAR 

'"-__________ OTR 

6-64 

WRS 
DO Transmit CRC Enable-a one in this bit 

enables the transmitter CRC generator. 
The CRC calculation is done when a 
character is moved from the transmit 
buffer into the shift.register. A zero in this 
bit disables CRG calculations. If this bit is 
not set when a transmitter underrun 
occurs, the CRC will not be sent. 

01 Request to Send-a one in .this bit forces 
the RTS pin active (low) and zero in this bit 
forces the RTS pin inactive (high). 

02 CRC Select-a one in this bit selects the 
CRC -16 polynomial (X16 + X15 + X2 + 1) 
and a zero in this bit selects the CCITT-CRC 
polynomial (X16 + X12 + X5 + 1). In SOLC 
mode, CCITT-CRC must be selected. 

03 Transmitter Enable-a zero in this bit 
forces a marking state on the transmitter 
output. If this bit is set to zero during data 
or sync character transmission, the mark-
ing state is entered after the character has 
been sent. If this bit is set to zero during 
transmission of a CRC character, sync or 
flag bits are substituted for the remainder 
of the CRC bits. 

04. Send Break-a one in this bit forces the 
transmit data low. A zero in this bit allows 
normal transmitter operation. 

06, 05 Transmit Character length 

o 0 Transmit 1 - 5 bits/character 

o Transmit 7 bits/character 

o Transmit 6 bits/character 

Transm it 8 bits/character 

Bits to be sent must be right justified least significant 
bit first, eg: 

07 06 05 04 03 02 01 DO 

o 0 B5 B4 B3 B2 B1 BO 

170'02-001 



intJ 8274 

Five or less mode allows transmission of one to five bits per 
character. The micropr'ocessor must format the data in 
the following way: 

07 06 05 04 03 02 01 DO 

0 0 0 BO Sends one data bit 

0 0 0 B1 BO Sends two data bits 

0 0 0 B2 B1 BO Sends three data bits 

0 0 0 B3 B2 B1 BO Sends four data bits 

0 0 0 B4 B3 B2 B1 BO Sends five data bits 

07 Data Terminal Ready-when set, this bit 
forces the OTR pin act~(low). When 
reset, this bit forces the OTR pin inactive 
(high). 

Write Register 6 (WR6): 

WR6 

MSB lSB 

loo:~:~:~:OO:M:~:ool 

Least sign\flcant 

Sync byte (Address 
in SOLe/HOle Mode) 

07-00 Sync/Address-this register contains the 
transmit sync character in Monosync 
mode, the low order 8 sync bits in Bisync 
mode, or the Address byte in SOLC mode. 

6-65 

Write Register 7 (WR7): 

WR7 

MSB LSB 

loo:~:~:~:OO:M:~:ool 

,tOB' Slgnlfican' 
Sync byte (must 
be 01111110 in 
SOLe/HOLe Mode) 

07-00 Sync/Flag-this register contains the re­
ceive sync character in Monosync mode, 
the high order 8 sync bits in Bisync mode, 
or the Flag character (01111110) in SOLC 
mode. WR7 is not used in External Sync 
mode. 

170102-001 



8274 

Read Register 0 (RRO): 

MB. LB8 

I D71 DO I D5 I D4 I D3 I D2 I D1 I DO I 
I 

RRO 
DO Receive Character Available-this bit is 

set when the receive FIFO contains data 
and is reset when the FIFO is empty. 

01 Interrupt Periding'-This Interrupt-Pend­
ing bit is reset when an EOI command is 
issued and there is no other interrupt re­
quest pending at that time. 

02 Transmit Buffer Empty-This bit is set 
whenever the transmit buffer is empty 
except when CRC characters are being 
sent in a synchronous mode. This bit is 
reset when the ~ra.nsmit buffer is loaded. 
This bit is set after an MPSC reset. 

03 Carrier Detect-This bit contains the state 
of ttie CD pin at the time of the last change 
of any of the External/Status bits (CD, 
CTS, Sync/Hunt, Brea,k/Abort, or Tx 
Underrun/EOM). Any change of state of the 
CD pin causes the CD bit to be latched and 
causes an External/Status interr~t. This bit 
indicates current state of the CD pin im­
mediately following a Reset External/Status 
Interrupt command. 

'In vector mode this bit is'set at the falling edge of 
the second INTA in an INTA cycle for an internal 
interrupt request. In non-vector mode, this bit is 
set at the falling edge of AD input after pointer 2 
is specified. This bit is always zero in Channel B. 

Jo 

R. CHAR AYAILABLE 

Int PENDING (CHA DNL y) 

,.. BUFFER EMPTY 

CARRIER DETECT 
,I 

SYNC/HUNT 

eTS EXTERNAL STATUS 
INTERRUPT MDDE 

,.. UNDERRUNIEDM 

BREAK/ABORT 

04 Sync/Hunt-:-In asynchronous modes, the 
operation of this bit is similar to the CD 
status bit, except that Sync/Hunt sho",s the 
state of the SYNDET ~Any High-to­
Low transition on the SYNDET pin sets this 
bit, and causes an External/Status inter­
rupt {it enabled). The Reset External/Status 
Interrupt command is issued to clear the 
interrupt. A Low-to-High transition clears 
this bit and sets the External/Status inter­
rupt. When the External/Status interrupt is 
set by the change in state of any other input 
or condition, this bit shows the inverted 
state of the SYNDET pin at time of the 
chang<il. This bit must be read immediately 
following a Reset External/Status Interrupt 
command to read the current state of the 
SYNDET input. 

In the External Sync mode, the Sync/Hunt 
bit operates in a fashion similar to the 
Asynchronous mode, except the Enter 
Hunt Mode control bit enables the external 
·sync detection logic. When the External 
Sync Mode and Enter Hunt Mode bits are 
set (for example, when the receiver is 
enabled following a reset), the SYNDET 
input must be held High by the external 
logic until external character synchroniza­
tion is achieved. A High at the SYNDET 
input holds the Sync/Hunt status in the 
reset condition. 

170102-001 



8274 

When external synchronization is 
achieved, SYNOET must be driven Low on 
the second rising edge of RxC after the 
rising edge of RxC on which the last bit of 
the sync character was received. In other 
words, after the sync pattern is detected, 
the external logic must wait for two full 
Receive Clock cycles to activate the SYN­
OET input. Once SYNOET is forced Low, it 
is good practice to keep it Low until the 
CPU informs the external sync logic that 
synchronization has been lost or a new 
message is about to start. The High-to-Low 
transition of the SYNOET output sets the 
Sync/Hunt bit, which sets the External/ 
Status interrupt. The CPU must clear the 
interrupt by issuing the Reset External/ 
Status Interrupt,Command. 

When the SYNOET input goes High again, 
another External/Status interrupt is gener­
ated that must also be cleared. The Enter 
Hunt Mode control bit isset whenever 
character synchronization is lost or the end 
of message is detected. In this case, the 
MPSC again looks for a High-to-Lowtransi­
tion on the SYNOET input and the opera­
tion repeats as explained previously. This 
implies the CPU should also inform the ex­
ternallogic that character synchronization 
has been lost and that the MPSC is waiting 
for SYNOET to become active. 

In the Monosync and Bisync Receive 
modes, the Sync/Hunt status bit is initially 
set to 1 by the Enter Hunt Mode bit. The 
Sync/Hunt bit is reset when the MPSC es­
tablishes character synchronization. The 
High-to-Low transition of the Sync/Hunt bit 
causes an External/Status interrupt that 
must be cleared by the CPU issuing the 
Reset External/Status Interupt command. 
This enables the MPSC to detect the next 
transition of other External/Status bits. 

When the CPU detects the end of message 
or that character synchronization is lost, it 
sets the Enter Hunt Mode control bit, which 
sets the Sync/.Hunt bit to 1. The Low-to­
High transition of the Sync/Hunt bit sets the 
External/Status Interrupt, which must also 
be cleared by the Reset External/Status 
Interrupt Command. Note that the SYNOET 
pin acts as an output in this mode, and 
goes low every time a sync pattern is de­
tected in the data stream. 

6-67 

05 

06 

07 

In the SOLC mode, the Sync/Hunt bit is 
initially set by the Enter Hunt mode bit, or 
when the receiver is disabled. In any case, it 
is reset to ° when the opening flag of the 
first frame is detected by the MPSC. The 
External/Status interru pt is also generated, 
and should be hand led as discussed 
previously. 

Unlike the Monosync and Bisync modes, 
once the Sync/Hunt bit is reset in the SOLC 
mode, it does not need to be set when the 
end of message is detected. The MPSC au­
tomatically maintains synchronization. 
The only way the Sync/Hunt bit can be set 
again is by the Enter Hunt Mode bit, or by 
disabling the receiver. 

Clear to Send-this bit contains the in­
verted state of the CTS pin at the time of the 
last change of any of the External/Status 
bits (CO, CTS, Sync/Hunt, Break/Abort, or 
Tx Underrun/EOM). Any change of state of 
the CTS pin causes the CTS bit to be 
latched and causes an External/Status 
interrupt. This bit indicates the inverse of 
the current state of the CTS pi n im­
mediately following a Reset External/ 
Status Interrupt command. 

Transmitter Underrun/End of Message­
this bit is in a set condition following a reset 
(internal or external). The only command 
that can relet this bit is the Reset Transmit 
Underrun/EOM Latch command (WRO, 06 
and 0 7), When the Transmit Underrun con­
dition occurs, this bit is set, which causes 
the External/Status Interrupt which must 
be reset by issuing a Reset External/Status 
command (WRO; command 2). 

Break/Abort-in the Asynchronous Re­
ceive mode, this bit is set when a Break 
sequence (null character plus framing 
error) is detected in the data stream. The 
External/Status interrupt, if enabled, is set 
when break is detected. The interrupt ser­
vice routine must issue the Reset 
External/Status Interrupt command (WRO, 
Command 2) to the break detection logic 
so the Break sequence termination can be 
recognized. 

170102-001 

I 

1,1 
H, 



8274 

SOLC ReSidue Code Table (I Field Bits in 2 Previous Bytes) 

8 bits/char 7 bits/char 6 bits/char 5 bits/char 

RR1 Previous 2nd Prevo Previous 2nd Prevo Previous 2nd Prevo Previous 2nd Prev 
03,02,01 Byte Byte Byte Byte Byte Byte Byte Byte 

1 0 

0 1 

1 1 

0 0 

1 0 

0 1 

1 1 

0 0 

0 0 3 0 

0 0 4 0 

0 0 5 0 

1 0 6 0 

1 0 7 0 

1 0 8 0 

1 1 8 -
0 2 8 1 

The Break/Abort bit is reset when the ter­
mination of the Break sequence is detected 
in the incoming data stream. The termina­
tion of the Break sequence also causes the 
External/Status interrupt to be set. The 
Reset External/Status Interrupt command 
must be issued to enabie the break detec­
tion logic to look for the next Break se­
quence. A single extraneous null character 
is present in the receiver after the termina­
tion of a break; it should be read and 
discarded. 

In the SOLC Receive mode, this status bit is 
set by the detection of an Abort sequence 
(seven or more 1 's). The External/Status 
interrupt is handled the same way as in the 
case of a Break. The Break/Abort bit is not 
used in the Synchronous Receive mode. 

2 

3 

4 

5 

6 

-
-
7 

6-68 

0 1 
, 

0 5 

0 2 0 1 

0 3 0 2 

" 0 4 0 3 

0 5 -
- - -
- - -
0 6 0 4 

00 All sent-this bit is set when all charac­
ters have been sent, in asynchronous 
modes. It is reset when characters are in 
the transmitter, in asynchronous mocles. 
In synchronous modes, this bit is always 
set. 

03, 02, 01 Residue Codes-bit synchronous pro­
tocols allow I-fields that are not an inte­
gral number of characters. Since trans­
fers from the MPSC to the CPU are char­
acter oriented, the resid ue codes 
provide the capability of receiving 
leftover bits. Residue bits are right jus­
tified in the last two data bytes received. 

04 Parity Error-If parity is enabled, this bit 
is set for received characters whose par­
ity does not match the programmed 
sense (Even/Odd). This bit is latched. 
Once an error occurs, it remains set until 
the Error Reset command is written. 

170102-001 



intel' 8274 

Read Register 1 (RR1): (Special Receive Condition Mode) 

05 

06 

MSB LSB 

I 07 1 06 I 05 1 04 I 03 : 02 : 01 I DO I 

'-----------", L ALL SENT 

I FIELD BITS 
~ PREVIOUS BYTE 

o 0 0 

o 0 1 

o 1 0 

o 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

I FIELD BITS 
2ND PREVIOUS BVTe 

RESIDUE DATA 
8 BITS/CHAR. MODE 

'--------__ PARITY ERROR 

'------------Rx OVERRUN ERROR 

'--___________ CRC/FRAMING ERROR 

'--_____________ ENO OF FRAME (SDLC/HDLC MODE) 

Receive Overrun Error-this bit indi· 
cates that the receive FI FO has been 
overloaded by the receiver. The last 
character in the FIFO is overwritten and 
flagged with this error. Once the over· 
written character is read, this error con· 
dition is latched until reset by the Error 
Reset command. If the MPSC is in the 
status affects vector mode, the overrun 
causes a special Receive Condition 
Vector. 

CRC/Framing Error-In async modes, a 
one in this bit indicates a receive fram· 

07 

6-69 

ing error. In synchronous modes," a one 
in this bit indicates that the calculated 
CRC value does not match the last two 
bytes received. It can be reset by issuing 
an Error Reset command. 

End of Frame-this bit is valid only in 
SOLC mode. A one indicates that a valid 
ending flag has been received. This bit is 
reset either by an Error Reset command 
or upon reception of the first character 
of the next frame. 

170102·001 

I 

.~ 
!~ 
~ I'; 
,'I 
!; 



8274 

Read Register 2 (RR2): 

MSB LSB 

I V7 : V6 : vs : V4' : V3' ;V< Vl' : vo'l 

L ;::'~~.;:.. 
Vector Vector Mode (WR1; D2) 

RR2 Channel B 
D7-DO Interrupt vector-contains the interrupt 

vector programmed into WR2. If the status 
affects vector mode is selected (WR1; D2), it 
contains the modified vector (See WR2). RR2 
contains the modified vector for the highest 
priority interrupt pending. If no interrupts are 
pending, the variable bits in the vector are set 
to one. 

SYSTEM INTERFACE 

General 
The tylPSC to Microprocessor System interface can 
be configured in many flexible ways. The basic inter­
face types are polled, wait, interrupt driven, or direct 
memory access driven. 

Polled operation is accomplished by repetitively 
reading the status of the MPSC, and making deci­
sions based on that status. The MPSC can be polled 
at any time. 

Wait operation allows slightly faster data throughput 
for the MPSC by manipulating the Ready inputto the 
microprocessor. Block Read or Write Operations to 
the MPSC are started at will by the microprocessor 
and the MPSC deactivates its RDY signal if it is not 
yet ready to transmit the new byte, or if reception of 
new byte is ndt completed. 

Interrupt driven operation is accomplished via an 
internal or external interrupt controller. When the 
MPSC requires service, it sends an interrupt request 
signal to the microprocessor, which responds with 
an interrupt acknowledge signal. When the internal 
or external interrupt controller receives the ac­
knowledge, it vectors the microprocessor to a ser­
vice routine, in which the transaction occurs. 

DMA operation is accomplished via an external DMA 
controller. When the MPSC needs a'data transfer, it 
request a DMA cycle from the DMA controller. The 
DMA controller then takes control of the bus and 
simultaneously does a read from the MPSC and a 
write to memory or vice-versa. 

The following section describes the many config­
urations of these basic types of system interface 
techniques for both serial channels. 

POLLED OPERAlIION: 

In the polled mode, the CPU must monitor the de­
sired conditions within the MPSC by reading the ap­
propriate bits in the read registers. All data available, 
status, and error conditions are represented by the 
appropriat~ bits in read registers 0 and 1 for chan­
nels A and B. 

There are two ways in which the software task of 
monitoring the status of the MPSC has been re~ 
duced. One is the "ORing" of all conditions into the 

. Interrupt Pending bit. (RRO; D1 channel A only). This 
bit is set when the MPSC requires service, allowing 
the CPU to monitor one bit instead of four status reg­
isters. The other is available when the "status­
affects-vector" mode is selected. By reading RR2 
Channel B, the CPU can read a vector who's value 
will indicate that one or more of group of conditions 
has occurred, narrowing the field of possible condi­
tions. See WR2 and RR2 in the Detailed Command 
Description section. 

Software Flow,Polled Operation 

RAO, DO IS reset automatICally when the data IS read 

RRO, 02 IS reset automatically when the data IS written 

170102-001 

6-70 



8274 

.. 
Hardware Configuration, Polled Operation 

A ADDRESS BUS .,.- l! 

~DATA BUS " Iili 
Viii 

bfCC ., - 080.7 iN'fA 
8205 ~ '----- A, 

'-- ~'--- A, MPSC 

Ci 

WAIT OPERATION: 
Wait Operation is intended to facilitate data trans­
mission or reception using block move operations. If 
a block of data is to be transmitted, for example, the 

, CPU can execute a String I/O instruction to the 
MPSC. After writing the first byte, the CPU will at­
tempt to write a second byte immediately as is the 
case of block move. The MPSC forces the ROY 
signal low which inserts wait states in the CPU's 
write cycle until the transmit buffer is ready to ac­
cept a new byte. At that time, the ROY signal is high 
allowing the CPU to finish the write cycle. The CPU 
then attempts the third write and the process is 
repeated. 

Similar operation can be programmed for the re-
o ceiver. During initialization, wait on transmit (WR1; 
05 = 0) or wait on receive (WR1; 05 = 1) can be 
selected. The wait operation can be enabled/ 
disabled by setting/resetting the Wait Enable Bit 
(WR1; 07). 

CAUTION: ANY CONDITION THAT CAN CAUSE THE 
TRANSMITTER TO STOP (EG, CT'S GOES INAC­
TIVE) OR THE RECEIVER TO STOP (EG, RX DATA 
STOPS) WILL CAUSE THE MPSC TO HANG THE 
CPU UP IN WAIT STATES UNTIL RESET. EXTREME 
CARE SHOULD BE TAKEN WHEN USING THIS FEA­
TURE. 

INTERRUPT DRIVEN OPERATION: 
The MPSC can be programmed into several inter­
rupt modes: Non-Vectored; 8085 vectored, and 
8088/86 vectored. In both vectored modes, multiple 
MPSC's can be daisy-chained. 

In the vectored mode, the MPSC responds to an 
interrupt acknowledge sequence by placing a call 

6-71 

RD 

WR 

instruction (8085 mode) and interrupt vector (8085 
and 8088/86 mode) on the data bus. 

The MPSC can be programmed to cause an interrupt 
due to up to 14 conditions in each channel. The 
status of these interrupt conditions is contained in 
Read Registers 0 and 1. These 14 conditions are all 
directed to cause 3 different types of internal inter­
rupt request for each channel: receive/interrupts, 
transmit interrupts and external/status interrupts (if 
enabled). 

This results in up to 6 internal interrupt request 
signals. The priority of those signals can be pro­
grammed to one of two fixed modes: 

Highest Priority Lowest Priority 

RxA RxB TxA TxB ExTA ExTB 
RxA TxA RxB TxB ExTA ExTB 

The interrupt priority resolution works differently for 
vectored and non-vectored modes. 

PRIORITY RESOLUTION: VECTORED MODE 
Any interrupt condition can be accepted internally 
to the MPSC at any time, unless the MPSC's internal 
INTA signal is active, unless a higher priority inter­
rllpt is currently accepted: or if TJ5T is inactive (high). 
The MPSC's internallNTA is set on the leading (fail­
ing) edge of the first External INTA pulse and reset 
on the tramng (rising) edge of the second External 
INTA pulse. After an interrupt is accepted internally, 
an External INT request is generated and the jj5(5 
goes inactive. i15li and fI5T are used for daisy­
chaining MPSC's together. 

170102-001 



8274 

Interrupt Condition Grouping 

INTERNAL 
INTERRUPT 
ACCEPTED 

INTERRUPT 
(EXTERNAL) 

INTA' 
(EX-rERNAL) 

INTA 
(INTERNAL) 

CONDITION MODE 

RECEIVE CHARA_e_T_E_R~=======:;:::~;~;~~;---I"'1 R~~1~:ER~~l~:c~~~s 
PARITY ERROR 
RECEIVE OVERRUN ERROR --. 
FRAMING ERROR • 

. INTERNAL INTERRUPT 
REQUEST 

END OF FRAME (SOLe ONLY)_L..!.t!.!.5=I!!;.I.J 

FIRST DATA CHARACTER'~~~~~~~~~=~"[~~~~~::J FIRST NON-SYNC CHARACTER (SYNC MODES) .. INTERRUPT ON FIRST 
VALID ADDRESS BYTE (SOLe ONLY) R l CHARACTER 

co TRANSITION~~:~~~~~~~~~~~~~~~~~~~~~~~;,~~ ers TRANSITION 
SYNC TRANSITION 
T)I UNDERAUN/EOM 
BREAK/ABORT DETECT 

TRANSMIT BUFFER EMPTY 

LOWER PRIORITY INTERRUPTS NOT ACCEPTED 

HIGHER 

....... +Ot-____ NO ~~J~=~~&TS-, -----+'\..~I:,.~I~:~~~S-----. 
ACCEPTED 

The MPSC's internallNTA is set on the leading (fail­
ing) edge of the first external INTA pulse, and reset 
on the trailing (rising) edge of the second external 
INTA pulse, After an interrupt is accepted internally, 

an externallNT request is generated and IPO goes 
inactive (high). fi50 and fi5i are used for daisy­
chaining MPSC's together. 

170102-001 

6-72 



In-Service Timing 

INTERNAL INTERRUPT ~ 
ACCEPTED 

8274 

(~~~~~~J ~~ __________________________________ J~ 

iN'fA 
(EXTERNAL) 

INTA 
(INTERNAL) 

IN-SERVICE 
(INTERNAL) 

Each of the six interrupt sources has an associated 
In-Service latch. After priority has been resolved, the 

6-73 

highest priority In-Service latch is set. After the In­
Service latch is set, the iiiiT pin goes inactive (high). 

170102.-001 



inter 

EOI Command Timing 

8274 

-"""'" ROUTINE - r--------------------------~: ~----~ 
INTERNAL INTERRUPT / 

ACCEPTED ~ 

INTERRUPT \. / 
(EXTERNAL) _ \ .... __________ -J 

iII'D: 
(EXTERNAL) 

INTA / (INTERNAL) 

----J 

wo~ 

IN-SERVICE / (INTERNAL) 
__ ..-.:.........J 

EOICOMMAND 
(INTERNAL) 

Lower priority interrupts are not accepted internally 
while the In-Service latch is set. However, higher 
'priority interrupts are accepted internally and a new 
external INT'request is generated. If the CPU re­
sponds with a new INTA sequence, the MPSC will re­
spond as before, suspending the lower priority 
interrupt. 

6-74 

LOWER 
~PRIORITY 

INTERRUPTS 
ACCEPTED 

After the interrupt is serviced, the End-of-Interrupt 
(EOI) command should be written to the MPSC. This 
command will cause an internal pulse that is used to 
reset the In-Service Latch which allows service for 
lower priority interrupts in the daisy-chain to re­
sume, provided a new INTA sequence does not start 
for a higher priority interrupt (higher than the high­
est under service). Ifthere is no interrupt pending in­
ternally, the IPO follows IPI. 

170102-001 



8274 

Non-Vectored Interrupt Timing 

SERVICE 
ROUTINE 

INTEANALINTERFlUPT 
ACCEPTED 

):======~L;OW;'E;.~'.~IOo..~'T~YI;'NT~E.;'.~U~~SN~~;;"C~C"E~~E!oD~=-=-=-=-=--~ ~======~~ 

INTERRUPT 
(EXTERNAL) 

iffi 
(EXTERNAl) 

INTERNAL POINTER 
SETTOREG2 

IN·SEAVICE 
(INTERNAL) 

EOICOMMAND 
(INTERNAL) 

PRIORITY RESOLUTION: 
NON-VECTORED MODE 

In non-vectored mode, the MPSC does not respond 
to interrupt acknowledge sequences. The INTA input 
(pin 27) must be pulled high for proper operation. 
The MPSC should be programmed to the Status­
Affects-Vector mode, and the CPU should read RR2 
(Ch. B) in its service routine to determine which inter­
rupt requires service. 

6-75 

In this case, the internal pointer being set to RR2 
provides the same function as the internal INTA 
signal in the vectored mode. It inhibits acceptance 
of any additional internal interrupts and its leading 
edge starts the interrupt priority resolution circuit. 
The interrupt priority resolution is ended by the lead­
ing edge of the read signal used by the CPU to 
retrieve the modified vector. The leading edge of 
read sets the In-Service latch and forces the external 
INT output inactive (high). The internal pointer is 
reset to zero after the trailing edge of the read pulse. 

170102-001 



inter 8274 

Vee 

'NT~f 
.NTA 

CPU ! 
iiI'f iiI'fA 

~ 
11Ii 1l'l5 

MPSC 
HIGHEST PRIORITY 

Note that if RR2 is specified but not read, no internal 
interrupts, regardless of priority, are accepted. 

DAISY CHAINING MPSC: 
In the vectored interrupt mode, multiple MPSC's can 
be daisy-chained on the same INT, INTA signals. 
These signals, in conjunction with the'iPf and IPO 
allow a daisy - chain - like interrupt resolution 
scheme. This scheme can be configured for either 
8085 or 8086/88 based system. 

In either mode, the same hardware configuration is 
called for. The INT request lines are wire-OR'ed to­
gether at the input of a TTL inverter which drives the 
INT pin of the CPU. The INTA signal from the CPU 
drives all of the daisy-chained MPSC's. 

The MPSC drives IPO (Interrupt Priority Output) in­
active (high) if fI51 (Interrupt Priority Input) is inactive 
(high), or if the MPSC has an interrupt pending. 

The IPO of the highest priority MPSC is connected to 
the iPf of the next highest priority MPSC, and so on. 

TPl 

! ! 
iiI'f iii'fA 1m' 11m 

;po TPl !PO 

MPSC MPSC 
LOWEST PRIORITY 

I 

If IPI is active (low), the MPSC knows that all higher 
priority MPSC's have no interrupts pendin·g. The IPI 
pin of the highest priority MPSC is strapped active 
(low) to ensure that it always has priority over the 
rest. 

MPSC's Daisy-chained on an 8088/86 CPU should be 
programmed to the 8088/86 Interrupt mode (WR2; 
D4, D3 (Ch. A). MPSC's Daisy-chained on an 8085 
CPU should be programmed to 8085 interrupt mode 
1 if it is the highest priority MPSC. In this mode, the 
highest priority MPSC issues the CALL instruction 
during the first INTA cycle, and the interrupting 
MPSC provides the int.errupt vector during the fol­
lowing INTA cycles. Lower priority MPSC's should 
be programmed to 8085 interrupt mode 2. 

MPSC's used alone in 8085 systems should be pro­
grammed to 8085 mode 1 interrupt operation. 

170102-001 



inter 
\ 

.' 
DMA Acknowledge Circuit 

DMATlming 

DACK, ------, 

!IXlm", ---, 
~,--~~~-4 
~3---~~+--~ 

A, 
Al 
cs 

8274 

A, 
A, 
cs 

DRQ,J \\....-----
A"A"Cii---""X .... __________ >C 

~,WR-------~,,~_~ _______ J/ 

DMA OPERATION 
Each MPSC can be programmed to utilize up to four 
OMA channels: Transmit Channel A, Receive Chan­
nel A, Transmit Channel B, Receive Channel B. Each 
OMA Channel has an associated OMA Request line. 
Acknowledgement of a OMA cycle is done via nor­
mal data read or write cycles. This is accomplished 
by encoding the DACK signals to generate Ao, A1, 

and CS signals, and multiplexing them witti the 
normal Ao, ~, and CS signals. 

PERMUTATIONS 
Channels A and B can be used with different system 
interface modes. In all cases it is impossible to poll 
the MPSC. The following table,shows the possible 

6-77 

permutations of interrupt., wait, and DMA modes for 
channels A and B. Bits 0 1, .00 of WR2 Ch. A deter­
mine these permutations. 

Permutation 
WR2 Ch. A 
~Do Channel A ChannelB 

Wait Wait 
00 Interrupt Interrupt 

Polled Polled 
o 1 DMA Interrupt 

Polled Polled 

1 0 DMA DMA 
Polled Polled 

01, DO = 1,1 IS illegal. 

170102-001 

I 

I' I i' 



inter 

8284,1, 

I-­
I--

\ 

8274 

00 ~ 

.282 

"'16-A19 DI DO ,1,11-... 19 

ALE STa 
-y 

'---
"'I-A15 

r '274 ...... A15~==~;;=;======~======================~~~==============~ r-N"'- Y" .--

.- , 'Ft iii> ~-{ il ~ ~:~ ~ :~:O ~========~~========:-:]ji:~:::!) 
Wi! a~ ~ O'~~ .... 

A~ 0, 

14 OE ~ r DO DO i-
elK L--t1ltll-lltlr-~ 1-----i>~~--~~~ .... ~~~;~TaJ RESET I " . OE DI,-DI 7 

ADa-AD71:========~~~!=~ HOLD HLDA I-

8088 

READY 

rtt=:====::::1 Da, r DBa 

A ... a 

cs--[>"'o--
(FROMI20S) .... L-____________________________________________________ ~iii> 

L-------------------------------------------------------d~ 

6-78 170102-001 



PROGRAMMING HINTS 

This section will describe some useful programming 
hints which may be useful in program development. 

Asynchronous Operation 

At the end of transmission, the CPU must issue "Reset 
Transmit InterruptiOMA Pending" command in WRD to 
reset the last 'transmit empty request which was not 
satisfied. Failing to do so will result in the MPSC 
locking up in a transmit empty state forever. 

Non-Vectored Mode 

In non-vectored mode, the Interrupt Acknowledge pin 
(INTA) on the MPSC must be tied high through a 
pull-up resistor. Failing to do so will result in unpre­
dictable response from the 8274. 

HOlC/SOlC Mode 

When receiving data in SOLC mode, the CRC bytes 
must be read by the CPU (or OMA controller) just like 
any other data field. Failing to do so will result in 
receiver buffer overflow. Also, the End of Frame Inter­
rupt indicates that the entire frame has been received. 
At this point, the CRC result (RRt06) and re~idue code 
(RR1;03, 02, 01) may be checked. 

Status Register RR2 

RR2 contains the vector which gets modified to indicate 
the source of interrupt (See the section titled MPSC 
Modes of Operation). However, the state of the vector 
qoes not change if no new interrupts are generated. 
The contents of RR2 are only changed when a new 
interrupt is generated. In order to get the correct 
information, RR2 must be read only after an interrupt is 
generated, otherwise it will indicate the previous state. 

Initialization Sequence 

The MPSC initialization routine must issue a channel 
Reset Command at the beginning. WR4 should be 
defined before other registers. At the end of the 
initialization sequence, Reset External/Status and Error 
Reset commands should be issued to clear any 
spurious interrupts which may have been caused at 
power up. 

6-79 

Transmit Under-run/EOM latch 

In SOLC/HOLC, bisync and monosync mode, the 
transmit under-run/EOM must be reset to enable the 
CRC check bytes to be appended to the transmit frame 
or transmit message. The transmit under-run/EOM 
latch can be reset only after the first character is loaded 
into the transmit buffer. When the transmitter under­
runs at the end of the frame, CRC check bytes are 
appended to the frame/message. The transmit under­
run/EOM latch can be reset at any time during the 
transmission after the first character. However, it should 
be reset before ihe transmitter under-runs otherwise, 
both bytes of the CRC may not be appended to the 
frame/message. In the receive mode in bisync opera­
tion, the CPU must read the CRC bytes and two more 
SYNC characters before checking for valid CRC result 
in RRt . 

Sync Character load Inhibit 

In bisync/monosync mode only, it is possible to prevent 
loading sync characters into the receive buffers by 
setting the sync character load inhibit bit (WR3;01=1). 
Caution must be exercised in using this option. It may 
be possible to get a CRC character in the received 
message which may match the sync character and not 
get transferred to the receive buffer. However, sync 
character load inhibit should be enabled during all 
pre-frame sync characters so the software routine does 
not have to read them from the MPSC. 

In SOLC/HOLC mode, sync character load inhibit bit 
must be reset to zero for proper operation. 

EOI Command 

EOI command can only be issued through channel A 
irrespective of which channel had generated the 
interrupt. 

Priority in OMA Mode 

There is no priority in OMA mode between the fol­
lowing four signals: TxORQ(CHA), RxORQ(CHA), 
TxORQ(CHB), RxORQ(CHB). The priority between 
.these four signals must be resolved by the OMA 
controller. At any given time, all four OMA channels 
from the 8274 are capable of going active. 

170102-001 

i.: 

I. 



8274 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature' 
Under Bias .............. i .......•.. O°C to + 70°C 
Storage Temperature 
(Ceramic Package) ............. -65°C to + 150°C 
(Plastic Package) .............. -40°C to + 125°C 
Voltage On Any Pin With 
Respect to Ground .............. -0.5V to + 7.0V 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°C; Vee = +5V ±10%) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage +2.0 Vee +0.5 V 

VOL Output Low Voltage +0.45 V IOL = 2.0mA 

VOH Output High Voltage +2.4 V IOH = -200/LA 

IlL Input Leakage Current ±10 /LA VIN = Vee to OV 

IOL Output Leakage Current ±10 /LA VOUT= VCC toOV 

ICC Vee Supply Current 200 mA 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Max. Units Test Conditions 

C IN Input Capacitance 10 pF Ic = 1 MHz; 

COUT Output Capacitance 15 pF Unmeasured 

CliO Input/Output Capacitance 20 pF pins returned 

toGND 

6-80 170102-001 



inter 8274 

A.C. CHARACTERISTICS (T. = O°C to 70°C; Vcc = +5V ±10%) 

Symbol Parameter Min. Max. 

tCY ClK Period 250 4000 

tCl ClK low Time 105 2000 

tCH ClK High Time 105 2000 

tr ClK Rise Time 0 30 

tf ClK Fall Time 0 30 

tAR AO, A 1 Setup to RD I 0 

tAD AO, A 1 to Data Output Dlay 200 

tRA AO, A 1 Hold After RD 1 0 

tRO RD I to Data Output Delay 200 

tRR R15 Pulse Width 250 

tOF Output Float Delay 120 

tAW CS, AO, A1 Setup to WRI 0 

tWA CS, AO, A1 Hold'after WRj 0 

tww WR Pulse Width 250 

tow Data Setup to WR 1 150 

two Data Hold After WR 1 0 

tpi Wi Setup to INTA) 0 

tiP IPI Hold after INTA 1 10 

til INTA Pulse Width 250 

tplPO IPI) to IPO Delay 100 

tID INTAI to Dala Oulput Deay 200 

tca AD or WR to DROI 150 

tRY Recovery Time Between Controls 300 

tcw CS, AO, A 1 to ROY A or ROY B Delay 140 

toCY Data Clock Cycle 4,5 

tOCl Data Clock low Time 180 

tOCH Data Clock High Time 180 

tTO TxC to TxD Delay 300 

loS RxD Setup to RxC 1 0 

tOH RxD Hold after RxC 1 ' 140 

tlTO TxC 10 INT Delay 4 6 

tiRO RxC to INT Delay 7 10 

Ipl CTS, CD, SYNDET low Time 200 

tpH CTS, CD, SYNDET High Time 200 

t lPO External INTlrom CTS, CD, SYNDET 500 

6-81 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Icy 

ns 

ns 

ns 

ns 

ns 

tcy 

Icy 

ns 

ns 

ns 

Test Conditions 

C l =150 pi 

C l =150 pi 

170102-001 

Ii 

';'1 
:t 
Ii 
" 
I 
,., 



inter 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2. -V20 2.0V-
O'5~08 > TEST POINTS < 08~ 
A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND a 45V FOR 
A LOGIC a TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 BV FOR A LOGIC 0 

WAVEFORMS 

CLOCK CYCLE 

READ CYCLE 

CS. AO, A1 

8274 

A.C. TESTING LOAD CIRCUIT 

DeVICE 
UNDER 

IJCt~I50PF TEST 

Cl = 150pF 
Cl INCLUDES JIG CAPAQlTANCE 

1----.••• ----1 

HIGH IMPEDANCE 
1------·,0-,,.-----< ... 1 

6-82 
170102-001 



intJ 8274 

WAVEFORMS (Continued) 

WRITE CYCLE ~ 

.. / 'b.'~ _____ '- J , •• d< 

INTA CYCLE 

DMA CYCLE 

ORO / -
eI,AO,A1 

iiDORWR 

NOTES: 
1. iNTA signal acts as RD signal. 
2. iPi signal acts as CS signal. 

6-83 
170102-001 



inter 827,4 

WAVEFORMS (Continued) 

READ/WRITE CYCL,E (SOFTWARE POLLED MODE) 

CS, .1.0,"'1 

AD OR WA 

14;--------.,,--------t 

"'-------

TRANSMIT DATA CYCLE i-------1ocv------i 

1----- ',o------'~ 

OTHER T:::~N~"~ ~.-, -----'."-,,-----;0----.'"----~ .... ---
1 ."0---,--(1--1"'--__ _ 

6-84 170102-001 



82530/82530-6 
SERIAL COMMUNICATIONS CONTROLLER (SCC) 

• 1\No Independent full duplex serial 
channels 

• On chip crystal OSCillator, Baud-Rate 
Generator and Digital Phase Locked Loop 
for each channel 

• Programmable for NRZ, NRZI or FM data 
encoding/decoding 

• Diagnostic locallodpback and auto,matic 
echo for fault detection and isolation 

• System Clock Rates: 
-4 Mhz for 82530 
-6 Mhz for 82530-6 

• Max Bit Rate (4 Mhz) 

- Externally clocked: 1 Mbps 

-Self clocked: 
250 Kbps FM coding 
125 Kbps NRZI coding 

• Interlaces easily with any INTEL CPU, 
DMA or I/O processor 

\ 

• Asynchronous Modes 
- 5-8 bit character, odd, even or no 

parity; 1, 1.5 or 2 stop bits 
- Independent transmit and receive 

clocks. 1X, 16X, 32X or 64X 
programmable sampling rate 

- Error Detection: Framing, Overrun and 
Parity 

- Break detection and generation 

• Bit synchronous Modes 
- SDLC Loop/Non-Loop Operation 
- CRC-16 or CCITT Generation Detection 
- Abort generation and detection 
- I-field residue handling 
- CCITT X.25 compatible 

• Byte synchronous Modes 
- Internal or external character 

synchronization (1 or 2 characters) 
- Automatic CRC generation and 

checking (CRC 16 or CCITT) 
- IBM Bisync compatible 

The INTEL 82530 Serial Communications Controller (SCC) is a dual-channel, multi-protocol 
data communications peripheral. It is.designed to interface high speed communications lines 
using Asynchronous. Byte synchronous and Bit synchronous protocols to INTEL's micro­
processors based systems. It can be interfaced with Intel's MCS51, iAPX86/88/186 and 188 in 
polled, interrupt driven or DMA driven modes of operation. 

The SCC is a 40 pin device manufactured using INTEL's high-performance HMOS" technology. 

Intel Corporation Assumes No ResponSibility forthe Use of Any CirCUitry Other Than CirCUitry Embodied In an Intel Product No Other CirCUit Patent Licenses 
are Implied 

@INTELCORPORATION.1984 

6-85 
JANUARY 1985 

ORDER NUMBER 830834-002 



inter 82530/82530-6 

OATA 
080-7 IUS 

BUFfERS 

CHANNEL A 

SAUD 
TXO ... 

RATE 
GENERATOR RaO ... 

TAANSUITTERI 
1I'IIie. RECEIVER 

~. 

READ 
REGISTERS 

~. 
CONTROL 

LOGIC 

WRITE 1iTI. 
IRT REGISTERS m. 

1m alA 

lED 

leo ... 0. 

RaD. 

IIIi'ItJIIID. 
~ 

lID'IoIfIIae CHANNELS 
~. 

~ 
a:Mo/IIIIIa fiIiC. 

AlIi OIl! elWllIID liiio 
SY8TD1INTERFACE 

CTte 
ClIo 

SERIAL COMIIUNtCATtON 
INTERFACE 

Figure 1. 82530 Intemal Block DI~gram 

DB1 DOD 

DB3 DB' 

DB. DB' 

DB7 DB. 

lIlT ill) 

lED I'/Ii 

lEI Alii 

ilITA B 

Vee Die 
IIlIVNAmA OND 

S'IIICA imYBlREOa 
ilTiieA S'IIIC. 

RaDA 1IfiC. 

TllieA R .. Da 

",D. TRil:. 

IrfRAiRmA "'D. 

IIR. Il'fRa/AEQ. 

C'fSA 1iTI. 

CD. CTte 
eLK ClIo 

Figure 2. Pin configuration 

6-86 230834-002 



82530/82530-6 

The following section describes the pin functions 
of the SCC. Figure 2 details the pin assignments 

Table 1. Pin Description 

Symbol Pin No. 'TYpe Name and Function 

DBo 40 I/O Data Bus: The Data Bus lines are bi-directional three-state lines which 
DB1 1 I/O interface with the system's Data Bus. These lines carry data and 
DB2 39 I/O commands to and from the SCC. 
DB3 2 I/O 
DB4 . 38 I/O 
DB5 3 I/O 
DB6 37 I/O 
DB7 4 I/O 

INT 5 0 Interrupt Request: The interrupt signal is activated when the SCC 
requests an interrupt. It is an open drain output. 

lEO 6 0 Interrupt Enable Out: lEO is High only if lEI is High and- the CPU is not 
servicing an SCC interrupt or the SCC is not requesting an interrupt 
(Interrupt Acknowledge cycle only). lEO is connected to the next lower 
priority device's lEI input and thus inhibits interrupts from lower priority 
devices. 

lEI 7 I Interrupt Enable In: lEI is used with lEO to form an interrupt daisychain 
when there,is more than one interrupt-driven device. A High lEI indi-
cates that no other higher priority device has an interrupt under service 
or is requesting an interrupt. 

INTA 8 I Interrupt Acknowledge: Th is sig nal i nd icates a n active Interrupt Ac knowl-
edge cX£le. During this cycle, the SCC interrupt daisy chain settles. 
When RD becomes active, the SCC places an interrupt vector on the 
data bus (if lEI is High). INTA is latched by the rising edge of ClK. 

Vr.r. 9 Power: +5V Power supply 

RDYA/REQA 10 0 Ready/Request (output, open-drain when programmed for a Ready 
RDYs/R'rns 30 0 function, driven High or low when programmed for a Request function). 

These dual-purpose outputs may be programmed as Request lines for a 
DMA controller or as Ready lines to synchronize the CPU to the SCC 
data rate. The reset state is Ready. 

SYNCA 11 I/O Synchronization: These pins can act either as inputs, outputs or part of 
SYNCs 29 I/O the crystal oscillatorcircu-it. In the Asynchronous Receive mode (crystal 

oscillator option not selected), these pins are inputs similar to CTS and 
CD. In this mode, transitions on these lines affect the state of the 
Synchronous/Hunt status bits in Read Register 0 (Figure 9) but have no 
other function. 

In External Synchronization mode with the crystal...2.§.£!!lator not 
selected, these lines also act as inputs. In this mode, SYNC must be 
driven lOW two receive clock cycles after the last bit in the synchronous 
character is received. Character assembly begins on the rising edge of 
the receive clock immediately preceding the activation of SYNC. 

In the Internal Synchronization mode (Monosync and Bisync) with the 
crystal oscillator not selected, these pins act as outputs and are active 
only during the part of the receive clock cycle in which synchronous 
characters are recognized. The synchronous condition is not latched, so 
these outputs are active each time a synchronization pattern is 
recognized (regardless of characters boundaries). In SDlC mode, these 
pins act as outputs and are valid on receipt of a flag. 

6-87 230834·002 



inter 82530/82530-6 

Table 1. Pin Description (Cont.) 

Symbol Pin No. Type Name and Functlqn 

RTxCA 12 I Recelve/l}'ansmlt clocks: These pins can be prR,rCmmed in several 
RTxCs 28 I different modes of operation. In each channel, x may supply the 

receive clock, the transmit clock, the clock for the baud rate generator, 
or the clock for the Digital Phase locked lOop. These pins can be 
programmed for. use with the respective SYNC pins as a crystal 
oscillator. The receive clock may be 1, 16,32, or 64 times the data rate in 
Asynch'ronous modes 

RxDA 13 I Receive Data: These lines receive serial data at standard TTL levels. 
RxDs 27 I 

TRxCA 14 I/O Transmit/Receive clocks: These pins can be programmed in several 
iRxCs 26 110 different modes of operation. T1ixC may supply the receive clock or the 

transmit clock in the input mode or supply the output of the Digital 
Phase locked loop, the crystal oscillator, the baud rate generator, or the 
transmit clock in the output mode. 

TxDA 15 0 Transmit Data: These output signals transmit serial data at standard TTL 
TxDA 25 0 levels 

DTRAREQA 16 0 Data Terminal Ready/Request: These outputs follow the state pro-
DTRsREQs 24 0 grammed into the DTR bit They can also be used as general purpose 

outputs or as Request lines for a DMA controller. 

RTSA . 17 0 Request To Send: When the Request to Send (RTS) bit in Write Register 5 
RTSs 23 0 is set (figure 10), the RTS signal goes low When the RTS bit is reset in 

the Asynchronous mode and Auto Enable is on, the signal goes High 
afterthe transmitter is empty. In ~hronous mode or in Asynchronous 
mode with Auto Enable off, the RTS pin strictly follows the state of the 
RTS bit. Both pins can be used as general-purpose outputs. 

CTSA 18 I Clear To Send: If these pins an;! programmed as Auto Enables, a low on 
CTSs 22 I the inputs enables the respective transmitters. If not programmed as 

Auto Enables, they may be used as general-purpose inputs. Both inputs 
are Schmitt-trigger buffered to accommodate slow rise-time inputs, 
The SCC detects pulses on these inputs and can interrupt the CPU on 
both logic level transitions. 

eDA 19 I Carrier Detect: These pins function as receiver enables if they' are 
eDs 21 I programmed for Auto Enables, otherwise they may be used as general-

purpose Input pins Both pins are Schmitt-trigger buffered to accom-
modate slow rise time signals. The see detects pulses on these pins and 
can interrl:lpt th's epu on both logic level transitions. 

elK 20 I Clock: This is the system see clock used to synchronize internal 
signals. elK is a TTL level signal 

GND 31 Ground i 

Die 32 I Data/Command Select: ThiS Signal defines the type of information 
transferred to or from the see A High means data IS transferred. a Low 
Indicates a command 

- 33 1 Chip Select:This signal selects the sec for a read or write operation. es 

AlB 34 I Channel A/Channel B Select: ThiS Signal selects the channel In which 
the read or write operatIOn occurs 

WR 35 I Write: When the sec IS selected this signal Indicates a write operation 
The COinCidence of RD and WR IS Interpreted as a reset 

RD 36 I Read: ThiS Signal indicates a read operation and when the see IS 
selected, enables the.See's bus drivers. DUring the Interrupt Acknowl-
edge cycle, thiS Signal gates the Interrupt vec.tor onto the bus if the sec 
IS the highest priority deYlcerequestlng an Interrupt 

6-88 230834-002 



, 

82530/82530-6 

GENERAL DESCRIPTION 

The INTEL 82530 Serial Communications Con­
troller (SCC) is a dual-channel, multi-protocol data 
communications peripheral. The SCC functions as 
a serial-to-parallel, parallel-to-serial converter/con­
troller. The SCC can be software-configured to 
satisfy a wide range of serial communications appli­
cations. The device contains new, sophisticated 
internal functions including on-chip baud rate gen­
erators, digital phase locked loops, various data 
encoding and decoding schemes, and crystal oscil­
lators that dramatically reduce the need for external 
logic. 

In addition, diagnostic capabilities - automatic echo 
and local loopback - allow the user to detect and 
isolate a failure in the network. They greatly improve 
the reliability and maintainability of the system. 

The SCC handles Asynchronous'formats, Synch­
ronous byte-oriented protocols such as IBM Bisync, 
and Synchronous bit-oriented protocols such as 
HDLC and IBM SDLC. This versatile device sup­
ports virtually any serial data transfer application 
(Terminal, Personal Computer, Peripherals, Indus­
trial Controller, Telecommunication system, etc.). 

The 82530 can generate and check CRC codes in 
any Synchronous mode and can be programmed to 
check data integrity in various modes. The SCC also 
has facilities for modem controls in both channels. 
In applications where these controls are not needed, 
the modem controls can be used for general­
purpose I/O. 

The INTEL 82530 is designed to support INTEL's 
MCS51, iAPX86/88 and iAPX186/188 families. 

ARCHITECTURE 

The 82530 internal structure includes two full­
duplex channels, two baud rate: generators, internal 
control and interrupt logic, and a bus interface to a 
non-multiplexed CPU bus. Associated with each 
channel are a number of read and write registers for 
mode control and status information, as well as 
logic necessary to interface to modems or other 
external devices. 

The logic for both channels provides formats, syn­
chronization, and validation for data transferred to 
and from the channel interface. The modem control 
inputs are monitored by the control logic under 
program .control. All of the modem control signals 
are general-purpose in nature and can optionally be 
used for functions other than modem control. 

The register set for each channel includes ten con­
trol (write) registers, two synchronous character 
(write) registers, and four status (read) registers. In 
addition, each baud rate generator has two (read/w­
rite) registers for holding the time constant that 
determines the baud rate. Finally, associated with 
the interrupt logic isa write registerforthe interrupt 
vector accessible through either channel, a write­
only Master Interrupt Control register and three 
read registers: one containing the vector with status 
information (Channel B only), one containing the 
vector without status (A only), and one containing 
the Interrupt Pending bits (A only). 

The registers for each channel are designated as 
follows: 

WRO-WR15 - Write Registers 0 through 15. 
RRO-RR3, RR10, RR12, RR13, RR15 - Read Registers 

o through 3, 10, 12, 13, 15 

Table 21ists the functions assigned to each read or 
write register. The SCC contains only one WR2 
and WR9, but they can be accessed by either 
channel. All other registers are paired (one for 
each channel). 

6-89 

DATA PATH 

The transmit and receive data path illustrated in 
Figure 3 is identical for both channels. The receiver 
has three 8-bit buffer registers in a FIFO arrange­
ment, in addition to the 8-bit receive shift register. 
This scheme creates additional time for the CPU to 
service an interrupt at the beginning of a block of 
high-speed data. Incoming data is routed through 
one of several paths (data or CRC) depending on 
the selected mode (the character length in asynch­
ronous modes also determines the data path). 

The transmitter has an 8-bit transmit data buffer 
register loaded from the internal data bus and a 
20-bit transmit shift register that can be loaded 
.either from the synC-Character registers or from the 
transmit data register. Depending on the opera­
tional mode, outgoing data is routed through one of 
four main paths before it is transmitted from the 
Transmit Data output (TxD). 

230834-002 



82530/82530-6 

Table 2. Read and WrIte Register Functions 

READ REGISTER FUNCTIONS WRITE REGISTER FUNCTIONS 

RRO TransmiVReceive buffer status and 
External status 

RR1 Special Receive Condition status 

RR2 Modified.interrupt vector 
(Channel B only) 

Unmodified interrupt 
(Channel A only) 

RR3 Interrupt Pending bits 
(Channel A only) • 

RR8 Receive buffer 

RR10 Miscellaneous status 

RR12 Lower byte of baud rate generator time 
constant 

RR13 Upper byte of baud rate generator time 
constant 

RR15 External/Status interrupt information 

WRO CRC initialize, initialization commands for 
the various modes, shift righVshift left 
command 

WR1 Transmit/Receive interrupt and data 
transfer mode definition 

WR2 Interrupt vector (accessed through either 
channel) , 

WR3 Receive parameters and control 

WR4' TransmiVReceive miscellaneous parame-
ters and modes 

WR5 Transmit parameters and controls 

WR6 Sync characters or SOLC address field 

WR7 Sync character or SOLC flag 

WR8 Transmit buffer 

WR9 Master interrupt control and reset 
(accessed through either channel) 

WR10 Miscellaneous transmitter/receiver control 
bits 

WR11 Clock mode control 

WR12 Lower Byte of baud rate generator time 
constant 

WR13 Upper byte of baud rate generator time 
constant 

WR14 Miscellaneous control bits 

WR15 External/Status interrup~ control 

6-90 230834-002 



'T' 
~ 

'" 

! 
'" 

!! 
CIlI 
c: c; 
Co) 

o 
III 

Dr 
-: 
:T 

BR GENERATOR 
INPUT 

DPLL ----.1. ____ .... 

CPUl/a 

SA GENERATOR OUTPUT 3 
DPLlOUTPUT 

TR.C 

RTxC 

SYNC 
(OSCILLATOR I 

CLOCK 
MUX 

RECEIVE CLOCK 

TRANSMIT CLOCK 

DPLl CLOCK 

8R GENERATOR CLOCK 

~~~-,~,,;iO;;.;ii:-~..:&;:;::;-,,-~40_~- ~....;~~-<--

cf

CD
N
U1
(,)

~
N
U1
(,)
o
0,

\ '

82530/82530-6

FUNCTIONAL DESCRIPTION
The functional capabilities of the SCC can be des­
cribed from two different points of view: as a data
communications device, it transmits and receives
data in a wide variety of data communications pro­
tocols; as a microprocessor peripheral, it interacts
with the CPU and provides vectored interrupts and
handshaking signals.

DATA COMMUNICATIONS
CAPABILITIES
The SCC provides two independent full-duplex
channels programmable for use in any common'
asynchronous or synch ronous data-comm un ications
protocol. Figure 4 and the following description
briefly detail these protocols.

Asynchronous Modes
Transmission and reception can be accomplished
independently on each channel with five to eight
bits per character, plus optional even or odd parity.
The transmitter can supply one, one-and-a-half or
two stop bits per character and can provide a break
output at any time. The receiver break-detection
logic interrupts the CPU both at the start and at the

MARKING LINE

SYNC DATA : ;
MONOSYNC

SYNC DATA ::
SIGNAL

BISYNC
~

I DATA :;
EXTERNAL SYNC

FLAG ADDRESS I INFO:~ATION
SDLC/HDLC/X.25

end of a received break. Reception is protected from
spikes by a transient spike-rejection mechanism
that checks the signal one-half a bit time after a Low
level is detected on the receive data input (RxDA or
RxDs). If the Low does not p~rsist (as in the case of a
transient), the character assembly process does not
start.

Framing errors and overrun errors are detected and
buffered together with the partial character on
which they occur. Vectored interrupts allow fast ser­
vicing or error conditions using dedicated routines.
Furthermore, a built-in checking process avoids the
interpretation of framing error as a new start bit: a
framing error results in the addition of one-half a bit
time to the point at which the search for the next
start bit begins.

The SCC does not require symmetric transmit and
receive clock signals - a feature allowing use of the
wide variety of clock sources. The transmitter and
receiver can handle data at a rate of 1, 1/16, 1/32, or
1/64 of the clock rate supplied to the receive and
transmit clock inputs. In asynchronous modes, the
SYiij'C pin may be programmed as an input used for
functions such as monitoring a ring indicator.

MARKING LINE

DATA CRC1 CRC2

DATA CRC1 CRC2

DATA CRC1 CRC2

CRC1 . CRC2 FLAG

Figure 4. SCC Protocols

6-92 230834-002

82530/82530-6

Synchronous Modes
The SCC supports both byte-oriented and bit­
oriented synchronous communication. Synchronous­
byte-oriented protocols can be handled in several
modes allowing character synchronization with a
6-bit or 8-bit synchronous character (Monosync),
any 12-bit synchronous pattern (Bisync), or with an
external synchronous signal. Leading.synchronous
characters can be removed without interrupting the
CPU.

Five- or 7-bit synchronous characters are detected
with 8- or 16-bit patterns in the SCC by overlapping
the larger pattern across multiple incoming syn­
chronous characters as shown in Figure 5.

CRC checking for Synchronous byte-oriented
mode is delayed by one character time so that the
CPU may disable CRC checking on specific charac­
ters. This permits the implementation of protocols
such as IBM Bisync.

Both CRC-16 (X'6 + X'5 + X' + 1) and CCITT (X'6 + X 12

+ X5 + 1) error checking polynomials are supported.
Either polynomial may be seJected in all synchro­
nous modes. Users may preset the CRC generator
and checker to all 1s or all Os. The SCC also pro­
vides a feature that automatically transmits CRC
data when no other data is available for transmis­
sion.
This allows for high-speed transmissions under
OMA control, with no need for CPU intervention at
the end of a message. When there is no data or CRC
to send in synchronous modes, the transmitter
inserts 6-, 8-, or 16-bit synchronous characters,
regardless of the programmed character length.

The SCC supports synchronous bit-oriented pro­
tocols, suCh as SOLC and HOLC, by performing
automatic flag sending, zero insertion, and CRC
generation. A special command can be used to
abort a frame in transmission. At the end of a mes­
sage, the SCC automatically transmits the CRC
and trailing flag when the transmitter underruns.
The transmitter may also be programmed to send an
idle line consisting of continuous flag characters or
a steady marking condition.

5 BITS

SYN~ SYNC DATA

---------16

If a transmit underrun occurs in the middle of a
message, an external status interrupt warns the
CPU of this status change so that an abort may be
issued. The SCC may also be programmed to send
an abort itself in case of an underrun, relieving the
CPU of this task. One to eight bits per character can
be sent allowing reception of a message with no
prior information about the character structure in
the information field of a frame.

The receiver automatically acquires synchroniza­
tion on the leading flag of a frame in SOLC or HOLC
and provides a synchronization signal on the SYNC
pin (an interrupt can also be programmed). The
receiver can be programmed to search for frames
addressed by a single byte (or four bits within a
byte) of a user-selected address or to a global
broadcast address. In this mode, frames not match­
ing either the user-selected or broadcast address
are ignored. The number of address bytes can be
extended under software control. For receiving
data, an interrupt on the first received character, or
an interrupt on every character, or on special condi­
tion only (end-of-frame) can be selected. The
receiver automatically deletes all Os inserted by the
transmitter during character assembly. CRC is also
calculated and is automatically checked to validate
frame transmission. At the end of transmission, the
status of a received frame is available in the status
registers. In SOLC mode, the SCC must be pro­
grammed to use the SOLC CRC polynomial, but the
generator and checker may be be preset to all 1 s or
all Os. The CRC is inverted before transmission and
the receiver checks against the bit pattern
0001110100001111.

NRZ, NRZ I or FM coding may be used in any 1 X
mode. The parity options available in asynchronous
modes are available in synchronous modes.

The SCC can be conveniently used under DMA
control to provide high-speed reception or trans­
mission. In reception, for example, the SCC can
interrupt the CPU when the first character of a mes­
sage is received. The CPU then enables the OMA to
transfer the message to memory. The SCC then
issues an end-of-frame interrupt and the CPU can

DATA DATA DATA

Figure 5. Detecting 5- or 7- Bit Synchronous Characters

6-93 230834-002

inter 82530/82530-6

check the status of the received message. Th us, the
CPU is freed for other st;lrvice while the message is
being received. The CPU may also enable the OMA
first and have the SCC interrupt only on end-of­
frame. This procedure allows all data to be trans­
ferred via OMA.

SOLe LOOP MODE

The SCC supports SOLC Loop mode in addition to
normal SOLC. In an SOLC Loop, there is a primary
controller station that manages the message traffic
flow and any number of secondary stations. In
SOLC Loop mode, the SCC performs the functions
of a secondary station while an SCC operating in
reg ular SO LC mode can act asa controller (Fig ure 6).

Figure 6. An SOLe Loop ,

A secondary station .in an SOLC Loop is always
listening to the messages being sent around the
loop, and in fact must pass these messages to the
rest of the loop by retransmitting them with a one­
bit-time delay. The secondary station can place its
own message on the loop onlyat specific times. The
controller signals that secondary statiors may
transmit messages by sending a special character,
called an EOP (End ofPOITj;-aro und The loop: The'
EOP character isthe-61tpattern 111TffiO. Because
of zero insertion during messages, this bit pattern is
unique and easily r~cognized.

When a secondary station has a message to trans­
mit and recognizes _ an EOP on the line, it changes
the last binary one of the EOP to a zero before
transmission. This has the effect of turning the EOP
into a flag sequence. The secondary station now
places its message on the loop and terminates the
message with an. EOP Any secondary stations

further down the loop with messages to transmit
can then append their messages to the message of
the first s~condary station by the same process. Any
secondary stations without messages to send merely
echo the incoming messages and are prohibited
from placing messages on the loop (except upon
recognizing an EOP).

SOLC Loop mode is a programmable option in the
SCC. NRZ, NRZI, and FM coding may all be used in
SOLC Loop mode.

BAUD RATE GENERATOR
. Each channel in the SCC contains a programmable
Baud rate generator. Each generator consists of two
8-bit time constant registers that form a 16-bit time
constant, a 16-bit down counter, and a flip-flop on
the output producing a square wave. On startup, the
flip-flop on the output is set in a High state, the value
in the time constant register is loaded into the coun­
ter, and the counter starts counting down. The out­
put of the baud rate generator toggles upon reach­
ing zero, the value in the time constant register is
loaded into the counter, and the process is repeated.
The time constant may be changed at any time; but
the new value does not take effect until the next load
of the counter.

The output of the baud rate generator may be used
as either the transmit clock, the receive clock, or
both. It can also drive the digital phase-locked loop
(see next section). . ,

If the receive clock or tra'1§.!!!lLclock is not pro­
grammed to come from the TRxC pin, the output of
the baud rate generator may be echoed out via the
TRxC pin.

The following formula relates the time constant to
the baud rate. (The baud rate is in bits/second and
the BR clock period is in seconds.)

1
baud rate -. , .

2 (time constant + 2) x (BR clock penod)

6-94 230834-002

inter 82530182530-6

Time Constant Values
for Standard Baud Rates at BR Clock = 3.9936MHz

Rate Time Constant
(Baud) (decimal notation) Error

19200 102 -
9600 206 -
7200 275 0.12%
4800 414 -
3600 553 0.06%
2400 830 -
2000 996 0.04%
1800 1107 0.03%
1200 1662 -
600 3326 -
300 6654 -
150 13310 -
134.5 14844 0.0007%
110 18151 0.0015%
75 26622 -
50 39934 -

DIGITAL PHASE LOCKED LOOP
The SCC contains a digital phase locked-loop
(DPLL) to recover clock information from a data­
stream with NRZI or FM encoding·. The DPLL is
driven by a clock that is nominally 32 (NRZI) or 16
(FM) times the data rate. The DPLL uses this clock,
along with the datastream, to construct a clock for
the data. This clock may then be used as the SCC
receive clock, the transmit clock, or both.

For NRZI coding, the DPLL counts the 32X clock to
create nominal bit times. As the 32X clock is
counted, the DPLL is searching the incoming data­
stream for edges (either 1/0 or 0/1).Whenever an
edge is detected, the DPLL makes a. count adjust­
ment (during the next counting cycle), producing a
terminal count closer to the center of the bit cell.

For FM encoding, the DPLLstill counts from 1 to 31,
but with a cycle corresponding to two bit times.
When the DPLL is locked, the clock edges in the
datastream should occur betwee~ counts 15 and.16
and between counts 31 and O. The DPLL looks for
edges only during a time centered on the 15/16
counting transition.

The 32X clock for the DPLL can be programmed to
come from either the RTxC input or the output of the
baud rate generator. The DPLL output may biaprC
grammed to be echoed out of the SCC via the Rx
pin (if this pin is not being used as an input).

DATA ENCODING
The SCC may be programmed to encode and
decode the serial data in four different ways (Figure
7). In NRZ encoding, a 1 is represented by a High
level and a 0 is represented by a Low level. In NRZI

6-95

encoding, as 1 is represented by no change in level
and a 0 is represented by a change in level. In FM1
(more properly, bi-phase mark) a transition occurs
at the beginning of every bit cell. A 1 is represented
by an additional transition at the center of the bit cell
and a 0 is represented by no additional transition at
the center of the bit cell. In FMo (bi-phase space), a
transition occurs at the beginning of every bit cell. A
o is represented by an additional transition at the
center of the bit cell. and a 1 is represented by no
additional transition at the center of the bit cell. In
addition to these four methods, the SCC can be
used to decode Manchester (bi-phase level) data by
using the DPLL in the FM mode and programming
the receiver for NRZ data. Manchester encoding
always produces a transition at the center of the bit
cell. If the transition is 0/1 the bit is a O. If the transi­
tion is 1/0 the bit is a 1.

AUTO ECHO AND LOCAL LOOPBACK
The SCC is capable of automatically echoing every­
thing it receives. This feature is useful mainly in
asynchronous modes, but works in synchronous
and SDLC modes as well. In Auto Echo mode TxD
is RxD. Auto Echo mode can be used with NRZI or
FM encoding with no additional delay, because the
datastream is not decoded before retransmission. In
Auto Echo mode, the CTS input is ignored as a
transmitter enable (although transitions on this
input can still cause interrupts if programmed to do
so). In this mode, the transmitter is actually bypassed
and the programmer is responsib~e for disabling
transmitter interrupts and READ i'REOUEST on
transmit.

The SCC is also capable of local loopback. In this
mode, TxD is RxD just as in Auto Echo mode. How­
ever, in Local Loopback mode, the internal transmit
data is tied to the internal receive data and RxD is
ignored (except to be echoed out via TxD) .. CTS
and CD inputs are also ignored as transmit and
receive enables. However, transitions on these inputs
can still cause interrupts. Local Loopback works in

. asynch ronous, synchronous and SDLC modes with
NRZ, NRZI or FM coding of the data stream.

SERIAL BIT RATE
To run the 82530 (4Mhz) at 1 Mbps the receive and
transmitclocks must be externally generated and
synchronized to the system clock. If the serial
clocks (RTxC and TRxC) and the system clock
(CLK) are asynchronous, the maximum bit rate is
880 Kbps. Forself-clocked operation, i.e using the
on chip DPLL, the maximum bit rate is 125 Kbps if
NRZI coding is used and 250 Kbps if FM coding is
used.

230834-002

DATAl

:----;----;
NRZ I
NRZI~---+----~

FM,
(BIPHASE MARK)

FMo
(BIPHASE SPACE) ~ ___ ~

82530/82530·6

o I BIT CELL LEVEL:

!-__ ~ HIGH = 1

I
LOW = 0

'-----f NO CHANGE = 1 .--- I CHANGE = 0

BIT CENTER TRANSITION:

TRANSITION = 1
!--~~I NO TRANSITION ~ 0

NO TRANSITION ~ 1

TRANSITION = 0

I HIGH LOW = 1 I LOW -HIGH = 0

Figure 7. Data Encoding Methods

Mode

Serial clocks
generated
externally

Self-clocked
operation

NRZI

FM

System
clock

4Mhz

6 Mhz

4 Mhz

6 Mhz

4 Mhz
6 Mhz

4 Mhz
6Mhz

System clock! Serial bit rate Conditions
Serial clock

4 1 Mbps Serial clocks synchronized with
sy~tem clock. Reter to parameter #3
and #10 in general timings.

4 1.5 Mbps Serial clocks synchronized with
system clock. Reterto parameter #3 and
#10 in general timings.

4.5 ··880 Kbps' Serialc!ocks and system
clock asynchronous. 0.

4.5 1.3 Mbps Serial clocks and system
cloclt-flsynchronous

32 125 Kbps
32 187 Kbps

16 250 Kbps
16 375 kbps

6-96 230834-002

inter 82530/82530-6

1/0 INTERFAC.E CAPABILITIES
The SCC offers the choice of Polling, Interrupt (vec­
tored or nonvectored) and Block Transfer modes to
transfer data, status, and control information to and
from the CPU. The Block Transfer mode can be
implemented under CPU or OMA control.

POLLING
All interrupts are disabled. Three status registers in
the SCC are automatically updated whenever any
function is performed. For example, end-of-frame in
SOLC mode sets a bit in one of these status registers.
The ide$! behind polling is for the CPU to periodi­
cally read a status register until the register contents
indicate. the need for data to be transferred. Only
one register needs to be read; depending on its
contents, the CPU either writes data, reads data, or
continues. Two bits in the register indicate the need
for data transfer. An alternative is a poll of the Inter­
rupt Pending register to determine the source of an
interrupt. The status for both channels resides in
one register.

INTERRUPTS
~hen a SCC responds to an Interrupt Acknowledge
signal (l"IiiTA) from the CPU, an interrupt vector may
be placed on the data bus. This vector is written in
WR2 and may be read in RR2A or RR2B (Figures 9
and 10).

\

To speed interrupt response time, the SCC can mod­
ify three bits in this vector to indicate status. If the
vector is read in Channel A, status is never included'
if it is read in Channel B, status is always inCluded:

+5V

SCC
HIGHEST PRIORITY

Each of the six sources of interrupts in the SCC
(Transmit, Receive and External/Status interrupts in
both channels) has three bits associated with the
interrupt source: Interrupt Pending (I P), Interrupt
Under Service (IUS), and Interrupt Enable (IE).
Operation of the I E bit is straightforward. If the I E bit
is set for a given interrupt source, then that source
can request interrupts. The exception is when the
MIE (Master Interrupt Enable) bit in WR9 is reset
and no interrupts may be requested. The IE bits are
write-only.

The other two bits are related to the interrupt prior­
ity chain (Figure 8). As a peripheral, the SCC may
request an interrupt only when no higher-priority
device is requesting one, e.g., when lEI is High. Ifthe
device....!!l question requests an interruRt, it pulls
down INT. The CPU then responds with INTA. and
the interrupting device places the vector on the data
bus.

In the SCC, the IP bit signals a need for interrupt
servicing. When an IP bit is 1 and the lEI input is
High, the INT output is pulled Low, requesting an
interrupt. In the SCC, if the IE bit is not set by
enabling interrupts, then the IP for that source can
never be set. The IP bits are readable in RR3A.

The IUS bits Signal that an interrupt request is being
serviced. If an IUS is set, all interrupt sources of
lower priority in the SCC and external to the SCC
are prevented ~rom requesting interrupts. The inter­
nal interrupt sources are inhibited by the state of the
internal daisy chain, while lower priority devices are
inhibited by the lEO output of the SCC being pulled

scc SCC
LOWEST PRIORITY

DBO-DB7 'v---::;---.,-r----------.-...--------...J
INT

INTA .--~~~----~-----~---~----------~

+5V

Flg,ure 8_ Daisy Chaining SCC's

6-97 230834-002

i
.~
II

82530/82530-6

Low and propagated to subsequent peripherals. An
~US bit is set during an Interrupt Acknowledge cycle
~f there are no higher priority devices requesting
Interrupts.

There are three types of interrupts: Transmit, Receive
~nd External/Status interrupts. Each interrupt type
IS enabled under program control with Channel A
having higher priority than Channel B, and with
Receiver, Transmit and External/Status interrupts
prioritized in that order within each channel. When
the Transmit interrupt is enabled, the CPU is inter­
rup!e~ wh.en the transmit buffer becomes empty.
(This Implies that the transmitter mList have had a
data character written into it so that it can become
empty.) When enabled, the receiver can interrupt
the CPU in one of three ways:

• Interrupt on First Receive Character or Special
Receive condition.

• Interrupt on all Receive Characters or Special
Receive condition.

• Interrupt on Special Receive condition only.

Interrupt on First Character or Special Condition
and Interrupt on Special Condition Only are typi­
cally used with the Block Transfer mode. A Special
Receive Condition is one of the following: receiver
overrun, framing error in Asynchronous mode, End­
of-Frame in SDLC mode and, optionally, a parity
error. The Special Receive Condition interrupt is
different from an ordinary receive character avail­
able interrupt only in the status placed in the vector
during the Interrupt-Acknowledge cycle. In Inter­
rupt on First Receive Character, an interrupt can
occur from Special Receive conditions any time
after the first receive character interrupt.

The main function of the External/Status interrupt is
to monitor the signal transitions of the cts Co and
~ pins; however, an ExternaliStatus interr~pt is
also caused by a Transmit Underrun condition, or a
zero count in the baud rate generator, or by the
detection of a Break (asynchronous mode), Abort
(SDLC mode) or EOP (SDLC Loop mode) sequence
in the data stream. The interrupt caused by the Abort
or EOP has a special feature allowing the SCC to
interrupt when the Abort or EOP sequence is
detected or terminated. This feature facilitates the
proper termination of the currerit message, correct
initialization of the next message, and the accurate
timing of the Abort condition in external logic in
SDLC mode. In SDLC Loop mode this feature
allows secondary stations to recognize the wishes
of the primary station to regain control of the loop
during a poll sequence. '

6-98

CPU/DMA BLOCK TRANSFER
The SCC provides a Block ,ransfer mode to ac­
commodate CPU block transfer functions and DMA
controllers. The Block Transfer mode uses the
READY/REQUEST output in conjunction with the
READY/REQUEST bits in WR1. The READY/RE­
QUEST output can be defined under software con­
trol as a REAt5V line in the CPU Block Transfer
mode (WR1; D6=0) or as a request line in the DMA .
Block Transfer mode (WR1; D6=1), To a DMA con­
troller, the SCC REQUEST output indicates that
the SCC is ready to transfer data to or from
memory. To the CPU, the READY line indicates that
the SC~ is not ready to transfer data, thereby
requesting that the CPU extend the I/O cycle, The
DTR/REQUEST line allows full-duplex operation
under DMA control.

PROGRAMMING
Each channel has fifteen Write registers that are
individually programmed from the system bus to
configure'the functional personality of each chan­
nel. Each channel also has eight Read registers from
which ime system ca~ read Status, Baud rate, or
Interrupt information.

Only the four data registers (Read, Write forchannels
A and B) are directly selected by a High on the D/G
input and the appropriate levels on the RD, WR and
Am pins, All other registers are addressed indirectly
by the content of Write Register 0 in conjunction
with a Low ~ the D/e: inp~t and the appropriate
levels on the RD, WR and AlB pins. If bit 4 in WWO is
1 and bits 5 and 6 are 0 then bits 0,1,2 address the
higher registers 8 through 15. If bits 4,5,6 contain a
different code, bits 0, 1,2 address the lower registers
o through 7 as shown on Table 3.

Writing to or reading from any register except RRO,
WRO and the Data Registers thus involves two
operations: '

First write the appropriate code into WRO,then fol­
low this by a write or. read oP!lration on the register
thus specified. BitsOthrough 4 in WWOare automat­
ically clearecf after this operation, so that WWO then
points to WRO or RRO again.

Channel AlChannel B selection is made by the AlB
input (High = A, Low = B)

The system program first issues a series of com­
mands to initialize the basic mode of operation. This
is followed by other commands to qualify condi-

230834-002

82530/82530-6

TABLE 3. REGISTER ADDRES.sI~~ _ .. -

DIC "Point High" 02 01
Code In WRO InWRO

High Either Way X
Low Not True 0
Low Not True 0
Low Not True 0
Low Not True 0
Low Not True 1
Low Not True 1
Low Not True 1
Low Not True 1
Low True 0
Low True 0
Low True 0
Low True 0
Low True 1
Low True 1
Low True 1
Low True 1

tions within the selected mode. For example, the
asynchronous mode, character length, clock rate,
number of stop bits, even or odd parity might be set
first. Then the interrupt mode would be set, and
finally, receiver or transmitter enable.

READ REGISTERS
The SCC contains eight read registers (actually
nine, counting the receive buffer (RR8) in each
channel). Four of these may be read to obtain status
information (RRO, RR1, RR10, and RR15). Two regis­
ters (RR12 and RR13) may be read to earn the baud
rate generator time constant. RR2 contains either
the unmodified interrupt vector (Channel A) or the
vector modified by status information (Channel B).
RR3contains the Interrupt Pending (IP) bits (Chan­
nel A). Figure 9 shows the formats for each read
register.

X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

6-99

Do Write Read
Register Register

X Data Data
0 0 0
1 1 1
0 2 2
1 3 3
0 4 (0)
1 5 (1)
0 6 (2)
1 7 (3)
0 Data Data
1 9 -
0 10 10
1 11 (15)
0 12 12
1 13 13
0 14 (10)
1 15 15

The status bits of RRQanQ RR1 are C:!lr~tuJlyg~ouped
to simplify status monitoring: e.g. when ttre inter­
rupt vector indicates a Special Receive Condition
interrupt, all the appropriate error bits can be read
from a single register (RR1).

WRITE REGISTERS
The SCC contains 15 write registers (16 counting
WR8, the transmit buffer) in each channel. These
write registers are programmed separately to con­
figure the functional "personality" of the channels.
In addition, there are two registers (WR2 and WR9)
shared by the two channels that may be accessed
through either of them. WR2 contains the interrupt
vector for both channels, while WR9 contains the
interrupt control bits. Figure 10 shows the format of
each write register.

230834-002

II·~· .,
,

i
II:
i

82530/82530-6

Rx CHARACTER AVAILABLE

ZERO COUNT
..... ____ ,.,. BUFFER EMPTY

'-_____ CD

..... ________ SYNC/HUNT

..... --------CTS
..... -----------'- T. UNDERRUNJEOM

'-------------- BREAK/ABORT

:1 ----V,
'------- II:! INTERRUPT VECTOR-

'----------------~\
-MODIFIED IN B CHANNEL

ON LOOP

... --....,.----- LOOP SENDING
L..------__ O

'--------------TWOCLOCKSM~NG

..... -----------..:........;. ONE CLOCK MISSING

:~: I
'-----TC1D

L.. ______ Te" UPPER BYTE OF

TC'2 \ TIME CONSTANT

..... ---------- TC" L... ____________ TC"

L.. _____________ TC"

ALL SENT

RESIDUE CODE 2
..... ____ RESIDUE CODE 1

.... ------ RESIDUE CODE 0
..... ________ MRITY ERROR

'------------ R. OVERRUN ERROR

'------------- CRC/FRAMING ERROR

.... ------------- END OF FRAME (SDLC)

CHANNEL B EXT/STAT ,,..

CHANNEL 8 Tx Ip·

'-----CHANNEL B R. ''''

'-------CHANNEL A EXT/STAT IP­

... --------CHANNEL A TxlP"

'-----------CHANNEL A Rx Ip·

'·~WAV:S 0 IN B CHANNEL

TCol TC,

TC,

~~:j
TC.

TCe
TC,

LOWER BYTE OF
TIME CONSTANT

ZERO COUNT IE

..... ---0
'----,---CD IE

'--------- SYNC/HUNT IE L.. _________ CTS IE

.... ---------'--- T. UNDERRUNJEOM IE
L.. _____________ BREAK/ABORT IE

Figure 9_ Read Register Bit Functions

6-100 230834-002

82530/825~O-6

WRITE REGISTER 0

I 0,

0

f-o r;-..,
'--

06105104 031 02 0, D°l

0

1
0 -;--

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

NULL CODE

POINT HIGH REGIS

FRESET EXT/STATU

SEND ABORT

00'

1o,

20'

3o,

40'

5o,

So,

70'

REGISTER

S INTERRUPTS

ENABLE INT ON HE XT Rx CHARACTER

ING RESET Tx INT PEND

ERROR RESET

RESET HIGHEST IU

NULL CODe

RESET Rx CRe CHECKER

RESeT Tx CRe GENERATOR

REseT Tx UNDERRUN/EOM LATCH

EXT. INT ENABLE

Tx INT ENABLE

'-----'PARITY IS SPECIAL CONDITION

o Rx INT DISABLE

RxlNT ON FIRST CHARACTER OR SPECIAL CONDITION

INT ON All Rx CHARACTERS OR SPECIAL CONDITION

1 Rx INT ON SPECIAL CONDITION ONLY

.... -----,REAQY/DMA REQUEST ON RECEIVEITRANSMIT

..... -------IREADY/DMA REQUEST FUNCTION
L-________ IREADy/DMA REQUEST ENABLE

~ I
L-____ v,!

..... ------v, INTERRUPT VECTOR

~: \ '------------- v, L-__________________________ ~

SYNC, SYNCs SYNCs SYNC4
SYNC, SYNCo SYNCs SYNC4
SYNC7 SYNCs SYNCs SYNC4
SYNC3 SYNC2 SYNC, SYNCo
ADR7 ADRe ADRs ADR4
ADR, ACRe ADRs ADR4

Rx ENABLE

SYNC CHARACTER LOAD INHIBIT

L-____ ADDRESS SEARCH MODe (SOLe)

'------ Rx CAe ENABLE

.... ------- ENTER HUNT MODE
'-_________ AUTO ENABLES

o Rx 5 BITS/CHARACTER

1 Rx 7 BITS/CHARACTER

o Ax 6 BITS/CHARACTER

1 Rx 8 siTS/CHARACTER

PARITY ENABLE

PARITY EVEN/ODD

SYNC MODES ENABLE

1 STOP BIT/CHARACTER

1 '12 STOP BITS/CHARACTER

2 STOP BITS'CHARACTER

, 0 8 BIT SYNC CHARACTER

16 BIT SYNC CHARACTER

SOLe MODE (01111110 FLAG)

EXTERNAL SYNC MODE

Xl CLOCK MODE

X1, CLOCK MODE

X32 CLOCK MODE

X_114 CLOCK MODE

WRITE REGISTER 5

SYNC3
SYNC3
SYNC3

1
ADR3

1

Tx CRC ENAB~E

ATS

.... ---- §l5lC/CRC-1S

'------- Tx ENABLE
L-________ SEND BREAK

Tx 5 BITS (OR LESS)/CHAAACTER

Tx 7 BITS/CHARACTER

Tx 6 BITS/CHARACTER

Tx 8 BITS/CHARACTER

L-_____________ orR

SYNC2 SYNC, SYNCo MONOSYNC 8 BITS
SYNC2 SYNC, SYNCo MONOSYNC 8 BITS
SYNC2 SYNC1 SYNCa BISYNC 16 BITS

1 1 1 BISYNC 12 BITS
ADR2 ADR, AORo SDLC

1 1 1 SDLC (ADDRESS 0)

Figure 10. Write ~eglster Bit Functions

6-101 230834-002

82530/82530-6

SYNCr SYNC,
SYNCs SYNC.
SYNCs SYNC,.
SY~C1t SYNC,o ,

V,S

NV
..... ---DLC _____ M ..

SYNCs SYNC.
SYNC, SYNC,
SYNell SYNC12
SYNC, SYNC, , ,

'--------ST ... TUSHIGH/~

~-------O
o NO RESET

CHANNEL RESET B

o CHANNEL RESET A

FORCE HARDWARE RESET

6 BITi8 BIT SYNC

LOOP MODE

~ ___ ABORTIF"L"AG"O""NrrUIiiNO'"E'"."'.""'N

'------- MARK/FLAG IDLE

'-------- GO ACTIVE ON ROLL

NRl

NRZI

FMl (TRANSMISSION ')

FMO (TRANSMISSION 0)

..... ----------- CRe PRESETI/O

~O/I

TRANSMIT CLOCK = IWie PIN

TRANSMIT CLOCK: ~ PIN

o TRANSMIT CLOCK : SR GENERATOR OUTPUT

1 TRANSMIT CLOCK: DPlL OUTPUT

L..---------_fi'fiCXTALIAO-xtiI

SYNe3 SYNC2 SYNC, SYNCo MONQSYNC 8 aiTS , , SYNC, SYNCo
SYNC, SYNC.

MONQSYNC 8 BITS
SYNC" SYNC,o

SYNCS SYNC.
BISYNC 'Ii BITS

SYNC7 SYNC, BISYNC 12 BITS , , ,
° sble

WAITE Ii'EGISTEA 12

I 0, I D. I Os I 0, I 0, I 0, I 0, I 0, I

I~ TC'/
TC,

TC,

Te3 LOWER BYTE OF

TC, \ TIME CONSTANT

Tes'

Te,
Te, '

:~: \
..... --- Te'D

'------ Te" UPPER BVTE OF

TC" \ TIME CONSTANT

'--------- Teu

'----------- TC1'

'------------- TCu

SR GENERATOR ENABLE

SR GENERATOR SOURCE

m REQUEST FUNCTION L-____ AUTO ECHO

'-______ lOCAL LOOPBACK

..... : +,;:*0;., .f:~~~AC:~:::~ODE
0' AESET MISSING CLOCK
o , DISABLE DPLL

SET SOUACE = BA GENERATOR

SET SOUACE = ~
SET FM MODE ttjj:tt, j SET NAZI MODE

ZEAO COUNT IE L-___ o

L.. _____ CD'.
L.. _______ SYNC/HUNT IE

'---------CTS'.
'----------- Tit UNDEARUNlE0M1E

'------------- BREAK/ABORT IE

Figure 10. Write Register Bit Functions (Cont.)

6-102 230834-002

82530/82530-6

82530 TIMING
The SCQJ!enerates internal control signals from
WR and "RO that are related to CLK. Since CLK has
no phase'relationship with WI!! and lm, the circuitry
generating these internal control signals must pro­
vide time for metastable conditions to disappear.
This gives rise to a recovery time related to CLK. The
recovery time applies only between bus transac­
tions involving the SCC. The recovery time required
for~per ~raton is specified (rom the rising edge
of WA or "RO in the first transaction involving the
SCC to the falling edge of WI!! or'm1 in the second
transaction involving the SCC. This time must be at
least 6 CLK cycles plus 200ns.

Read Cycle Timing
Figur! 11 illusgates Read cycle timing. Addresses
on AlB and o/Cand the status on INTA must remain
stable throughout the cycle. If OS falls after FID falls
or if it rises before Rb rises, the effective AD is
shortened

AlB. Ole X
iNfAJ

c; \
AD \

DBO·DB7 <

Write Cycle Timing
Figure 12 illustrates Write cycle timing. Addresses
on AlB" and Om and the status on iN'fA must remain
stable throughout th~cle. If'eSfalis after WR" falls
or if it rises before WR rises, the effective WR is
shortened.

Interrupt Acknowledge Cycle Timing
Figure 13 illustrates Interr~Acknowledge cycle
timing. Between the time INTA goes Low and the
falling edge of l!ID, the internal and externallEl/lEO
daisy chains settle. If there is an interrupt pending in
the SCC and I EI is High when 1fO falls, the Acknow­
ledge cycle is intended forthe SCC. In this case, the
SCC may be programmed to respond to AD Low by
placing its interrupt vector on 0 0-07 and it then sets
the appropriate Interrupt-Under-Service internally.

ADDRESS VALID X

\

/

/

X DATA VALID)

Figure 11. Read Cycle Timing

6-103 230834-002

82530/82530-6

Alii. DIe X ADDRESS VALID X
INTAJ \

Co \ /
Viii \ /

DBo-DB7 < DATA VALID)

Figure 12. Write Cycle Timing

INTA\

IJ /
AD II \ /

DBO-DB7 II < X VECTOR)

Figure 13. Interr~t Acknowledge .cycle Timing

6-104 , 230834-002

82530/82530-6

ABSOLUTE MAXIMUM RATINGS·

Case Temperature
Under Bias O°C to + 70°C
Storage Temperature
(Ceramic Package) .. , -65°C to + 150°C
(Plastic Package) , ,. - 40°C to + 125°C
Voltage On Any Pin With
Respect to Ground .,., - 0.5V to +7 .OV

'NOTlCE: Stresses above those listed under '·Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditirJns above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Tc=Oo C to 70° C; Vcc=+5V±5%)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage -0.3 +0.8 V

VIH Input HIgh Voltage +2.0 Vee + 0 3 V

VOL Output Low Voltage +0.40 V IOL = 20mA

VO H Output HIgh Voltage +2.4 V 10H = -250 IJA,

IlL Input Leakage Current ±10 I'A 04 to 2.4V

IOL Output Leakage Current -,,10 I'A 04t02.4V

ICC Vee Supply Current 250 mA

CAPACITANCE (Tc=25°; Vcc=GND=OV)

Symbol Parameter Min. Max. Units Test Conditions

C IN Input Capacitance 10 pF Ic = 1 MHz;

COUT Output Capacitance 15 pF Unmeasured

CliO Input/Output CapacItance 20 pF ptnS returned

to GND

6-105 230834-002

10

I~

11

'I~.·; !

inter 82530/82530-6

A.C CHARACTERISTICS (Tc=O°C to 70°C; Vcc=+5V±5%)

READ AND WRITE TIMING

Number Symbol Parameter

1 tCl CL..K low Time
2 tCH ClK High Time

3 tf ClK Fall Time

4 tr ClK Rise Time

5 tCY ClK Cycle Time

6 tAW Address to WR! Setup Time
7 tWA Address to WR! Hold Time

8 tAR Address to Ri5i Setup Time

9 tRA Address to RD! Hold Time

10 tiC INTA to ClK! Setup Time

11 tlW INTA to WRi Setup Time (Note 1)
12 tWI ii\I'TA to iiV'm Hold Time

13 tlR iNTA to RD! Setup Time (Note 1)

14 tRI iNtA to ~! Hold Time

15 tCI INTA to ct:Rf Hold Time
16 tClW CS low to WR! Setup Time

17 tWCS ~ to WAf Hold Time

18 tCHW OS High to WR! Setup Time
19 tClR CS low to RD! Setup Time (Note 1)
20 tRCS O"S to m51 Hold Time (Note 1)

21 tCHR CS High to m5! Setup Time (Note 1)

22 tRR Ri5 low Time (Note 1)

24 tRDI R15! to D~ta Not Valid Delay

25 tRDV Ro! to Data Valid Delay

26 tDF Ri5f to Output Float Delay (Note 2)

NOTES:
1. Parameter does not apply to Interrupt Acknowledge transactions.
2. Float dellly. is defined as the time required for, a + O.SV change

in the output with a maximum D.C load and minimum A.C load.

"Timings are preliminary and subject to change.

6-106

82530 (4MHz)

Min Max

105 2000

105 2000

20

20

250 4000

80

0

80

0

0

200

0

200

0

100

0

0

100

0

0

100

390

0

250

70

82530-6 (6 MHz)

Min Max Units

70 1000 ns

70 1000 ,ns

10 ns

15 ns

165 2000 ns

80 ns
0 ns

80 ns

0 ns

0 ns

200 ns

0 ns

200 ns

0 ns

100 ns

0 ns

0 ns

70 ns

0 ns

0 ns

70 ns

250 Ins

0 ns

180 ns

45 ns

230834-002

82530/82530-6

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT OUTPUT

24
2.0 20

> TEST POINTS <'
,¥ '" 08 08

045--...../

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 045V
FOR A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A
LOGIC·1 AND 0 8V FOR A LOGIC 0

A.C. TESTING LOAD CIRCUIT ,

DEVICE
UNDER

TEST

CL=150pF

i CL=150pF

CL INCLUDES JIG CAPACITANCE

OPEN DRAIN TEST LOAD

+5V

2.2K

SOpF I

6-107 230834-002

eLK

Ali. DI c:J

-

7 OlIO-DB -
DBO·DB7

WRITE

READY/REO
READY

READY/REO
REOUEST

iii'iiiRiQ
REOUElrr

82530/82530-6

C\-. ~~0r ---:

~ r\-. ~ ~, 0
0-'" r-~ !-<D

pc.
1--(1)-- I----®-~ '--=i@ t-

~~ ~®-No 3<.
-tj4'I @1--= ®.-- -

PI t-@ ..
.~ -

L-J
I-- @- t--@)-

f--®' r:::;:-@
~@....:j\.. r-

~
)]

@- H ® '-I
@ I-r® ~®-

'Ii'

~ f\-
®

.)1 .x
®-I- I---@ r-- j-+@ ,

r---
32

I
~ 1- I-®-

.!!.
.J

'ii'

\.
, @

Figure 14. Read and WrIte Timing

. 6-108 230834-002

i"

inter 82530/82530-6

INTERRUPT ACKNOWLEDGE TIMING, RESET TIMING, CYCLE TIMING

82530 (4MHz) 82530-6 (6 MHz)

Number Symbol Parameter Min Max Min Max Units

27 tAD Address Required Valid to Read Data 590 420 ns

Valid Delay

28 TWW WR low Time 390 250 ns

29 tOW Data to Wfi! Setup Time 0 0 ns

30 tWD Data to WRI Hold Time 0 0 ns

31 tWRV WR! to Ready Valid Delay (Note 4) 240 200 ns

32 tRRV RD! to Ready Valid Delay (Note 4) 240 200 ns

33 tWRI WR! to READY/REO Not Valid Delay 240 200 ns

34 tRRI liD! to READY/REO Not Valid Delay 240 200 ns

35 tOWR WRI to DTR/REO Not Valid Delay 5 tCY 5tCY ns
+ 300 + 250

39 til RD (Acknowledge) low Time 285 250 ns

40 .tlDV RD! (Acknowledge) to Read Data
Valid Delay 190 180 ns

41 tEl lEI to RD! (Acknowledge) Setup Time 120 100 ns

42 tiE lEI to RDI (Acknowledge) Hold Time 0 0 ns

43 tEIEO lEI to lEO Delay Time 120 100 ns

44 tCEO ClKI to lEO Delay 250 250 ns

45 tRIl RD! to INT Inactive Delay (Note 4) 500 500 ns

46 tRW RDI to WR! Delay for No Reset 30 15 ns

47 tWR WRI to RD! Delay for No Reset 30 30 ns

48 tRES WR and RD Coincident low
for Reset 250 250 ns

49 tREC Valid Access Recovery Time 6tCY 6tCY ns
(Note 3) + 200 + 130

NOTES:
3. Parameter applies only between transactions involving the sec.
4. Open-drain output. measured with open-drain test load.
S. Parameter is system dependent. For any sec in the daisy chain. tllD must be greater than the sum of tCEQ for the highest

priority device in the daisy chain. tEl for the sec and tEIEO for each device separating them in the daisy chain.

*Timings are preliminary and subject to change.

6-109 230834-002

82530/82530-8

eLK
INTA _______ '"

® ~--@,----~
~,---------~~----~

D_DB7 ____ --:-____ +-_____ I+~

lEI

lEO

t----®----,~ ~ ___________________________ _J.r-----------
INTI_ •

Figure 15. Inter~upt AcMowledge Timing

Figure 16. Reset Timing

cs ___ I \ __ -:----__
}
t-----@I ~---::I\

_ ---J \'--__ ---J/s-ROOR WR _. ~ __

Figure 17. Cycle Timing

6-110 230834-002

82530/82530-6

GENERAL TIMING

82530 (4MHz) 82530-6(6 MHZl

Number Symbol Parameter Min Max Min Max Units

3 tRCC RxC! to ClK! Setup Time (Notes 1,4) 50 50 ns

4 tRRC RxD to RxC! Setup Time (X1 Mode)
(Note 1) 0 0 ns

5 tRCR RxD to RxC! Hold Time (X1 Mode)
(Note 1) 150 150 ns

6 tORC RxD to RxCI Setup Time (X1 Mode)
(Notes 1,5) 0 0 ns

7 tRCD RxD to RxCI Hold Time (X1 Mode)
(Notes 1,5) 150 150 ns

8 tSRC SYNC to RxC! Setup Time (Note 1) -200 -200 ns

9 tRCS SYNC to RxC! Hold Time (Note 1) 3tCY 3tCY ns
+ 200 + 200

10 tTCC TxCI to ClK! Setup Time (Notes 2,4) . 0 0 ns

11 tTCT TxCI to TxD Delay (X1 Mode)
(Note 2) 300 300 ns

12 tTCD TxC! to TxD Delay (X1 Mode)
(Notes 2,5) 300 300 ns

13 tTDT TxD to TRxC Delay (Send Clock
Echo) ns

14 tOCH RTxC High Time 180 180 ns

15 tOCl RTxC low Time 180 180 ns

16 tOCY RTxC Cycle Time 4TCY 4TCY ns

17 tClCl Crystal Oscillator Period
(Note 3) 250 1000 250 1000 ns

18 tRCH TRxC High Time 180 80 ns

19 fRCl TRxC low Time 180 180 ns

20 tRCY TRxC Cycle Time 4TCY 4TCY ns

21 tCC CD or CTS Pulse Width 200 200 ns

22 tSS SYNC Pulse Width 200 200 ns

NOTES:
1. ~ is RTxC or TRxC, whichever is supplying the receive clock.
2. "i'X'C is fRXC or RTxC, whichever is supplying the transmit clock.
3. Both RTxC and SYNC have 30pF capacitors to ground connected to them.
4. Paramet9!!e.plies only if t~ata rate is one-fourth the system clock (CLK) rate. In all other cases, no phase relationship

between RxC and CLK or TxC and CLK is required.
5. Parameter applies only to FM encoding/decoding.

"Timings are preliminary and subject to change.

6-111 230834-002

82530/82530-6

Figure 18. General Timing

6-112 230834-002

inter

© Intel Corporation, 1976

APPLICATION
NOTE

6-113

AP-16

Order Number 231309-001

Using the 8251
Universal Synchronousl

Asynchronous
Receiverrrransmitter

Contents

INTRODUCTION

COMMUNICATION FORMATS

BLOCK DIAGRAM

Receiver
Transmitter
Modem Control
1/0 Control

INTERFACE SIGNALS

CPU-Related Signals
Device-Related Signals

MODE SELECTION

PROCESSOR DATA LINK

CONCLUSION

APPENDIX A

8251 Design Hints

6-114 . 231309-001

APPLICATIONS

INTRODUCTION
The Intel 8251 is a Universal Synchronous/ Asyn­
chronous Receiver/Transmitter (USART) which is
capable of operating with a wide variety of serial
communication formats. Since many peripheral
devices are available with serial interfaces, the 8251
can be used to interface a microcomputer to a
broad spectrum of peripherals, as well as to a serial
communications channel. The 8251 is part of the
MCS-80™ Microprocessor Family, and as such it is
capable of interfacing to the 8080 system with a
minimum of external hardware.

This application note describes the 8251 as a com­
ponent and then explains its use in sample applica­
tions via several examples. A specific use of the
8251 to facilitate communication between two
MCS-80 systems is discussed in detail from both
the hardware and software viewpoints. The first
two sections of this application note describe the
8251 first from a functional standpoint and then
on a detailed level. The function of each input and
output pin is fully defined. The next section de­
scribes the various operating modes and how they
can be selected, and finally, a sample design is dis­
cussed using the 8251 as a data link between the
MCS-80 systems.

COMMUNICATION FORMATS

Serial communications, either on a data link or
with a local peripheral, occurs in one of two basic
formats; asynchronous or synchronous. These for­
mats are similar in that they both require framing
information to be added to the data to enable
proper detection of the character at the receiving
end. The major difference between the two for­
mats is that the asynchronous format requires
framing information to be added to each character,
while the synchronous format adds framing infor­
mation to blocks of data, or messages. Since the
synchronous format is more efficient than the
a~ynchronous format but requires more complex
decoding, it is typically found on high-speed data
links, while the asynchronous format is used on
lower speed lines.

The asynchronqus format starts with the basic data
bits to be transmitted and adds a "START" bit to
the front of them and one or more "STOP" bits
behind them as they are transmitted. The START
bit is a logical zero, or SPACE, and is defined as
the positive voltage level by RS-232-C. The STOP
bit is a logical one, or MARK, and is defined as the
negative voltage level by RS-232-C. In current loop
applications current flow normally indicates a
MARK and lack of current a SPACE. The START
bit tells the receiver to start assembling a character
and allows the receiver to synchronize itself with
the transmitter. Since this synchronization only

6-115

has to last for the duration of the character (the
next character will contain a new START bit), this
method works quite well assuming a properly
designed receiver. One or more STOP bits are
added to the end of the character to ensure that
the START bit of the next character will cause a
transition on the communication line and to give
the receiver time to "catch up" with the transmit­
ter if its basic clock happens to be running slightly
slower than that of the transmitter. If, on the other
hand, the receiver clock happens to be running
slightly faster than the transmitter clock, the re­
ceiver will perceive gaps between characters but
will still correctly decode the data. Because of this
tolerance to minor frequency deviations, it is not
necessary that the transmitter and receiver clocks
be locked to the identical frequency for successful
asynchronous communication.

The synchronous format, instead of adding bits to
each character, groups characters into records and
adds framing characters to the record. The framing
characters are generally known as SYN characters
and are used by the receiver to determine where
the character boundaries are in a string of bits.
Since synchronization must be held over a fairly
long stream of data, bit synchronization is nor­
mally either extracted from the communication
channel by the modem or supplied from an ex­
ternal source.

An example of the synchronous and asynchronous
formats is shown in Figure I. The synchronous
format shown is fairly typical in that it requires
two SYN characters at the start of the message.
The asynchronous format, also typical, requires a
START bit preceding each character and a single
STOP bit following it. In both cases, two 8-bit
characters are to be transmitted. In the asynchro­
nous mode I O*n bits are used to transmit n charac­
ters and in the synchronous mode 8N + 16 bits are
used. For the example shown the asynchronous
mode is actually more efficient, using 20 bits
versus 32. To transmit a thousand characters in the
asynchronous mode, however, takes 10,000 bits
versus 8,016 for the synchronous format mode.
For long messages the synchronous format be­
comes much more efficient than the asynchronous
format; the crossover point 'for the examples
shown in Figure I is eight characters, for which
both formats require 80 bits.

In addition to the differences in format between
synchronous and asynchronous communication,
there are differences with regards to the type of
modems that can be used. Asynchronous modems
typically employ FSK (Frequency Shift Keying)
techniques which simply generate one audio tone
for a MARK and another for a SPACE. The receiv­
ing modem detects these tones on the telephone

231309-001

APPLICATIONS

;~P-B!! _I --IO-AT~I A_I-_I r 1 \LI -'-L-Llo...JA~LAJ..I-'-.L.l--.,lCARTBIT
START BIT STOP BIT

ASYNCHRONOUS

----------~----------,----~----------------DATA SYN
CHAR #2

- SYN
CHAR #1

Figure 1. Transmission Formats

line, converts them to logical signals, and presents
them to the receiving terminal. Since the modem
itself is not concerned with the transmission speed,
it can handle baud rates from zero to its maximum
speed. Synchronous modems, in contrast to asyn­
chronous modems, supply timing information to
the terminal and require data to be presented to
them in synchronism with this timing information.
Synchronous modems, because of this extra clock­
ing, are only capable of operating at certain preset
baud rates. The receiving modem, which has an
oscillator running at the same frequency as the
transmitting modem, phase locks its clock to that
of the transmitter and interprets changes of phase
as 'lata.
In some cases it is desirable to operate in a hybrid
mode which involves transmitting data with the
asynchronous format using a synchronous modem.
This occurs when an increase in operating speed is
required without a change in the basic protocol of
the system. This hybrid technique is known as
isosynchronous and involves the generation of the
start and stop bits associated with the asynchro­
nous format, while still using the modem clock for
bit synchronization.

The 8251 USART has been designed to meet a
broad spectrum of requirements in the. synchro­
nous, asynchronous, and isosynchronous modes. In
the synchronous mode the 8251 operates with 5,
6, 7, or 8-bit characters. Even or odd parity can be
optionally appended and checked. Synchronization
can be achieved either externally via added hard­
ware or internally via SYN character detection.
SYN detection can be based on one or two charac­
ters which mayor may not be the same. The single
or double SYN characters are inserted into the
data stream automatically if the software fails to
supply data in time. The automatic generation of
SYN characters is required to prevent the loss of
synchronization. In the asynchronous mode the
8251 operates with the same data and parity struc­
tures as it does in the synchronous mode. In addi­
tion to appending a START bit to this data, the

6-116

8251 appends I, I Yl, or 2 STOP bits. Proper fram­
ing is checked by the receiver and a status flag set
if an error occurs. In the asynchronous mode the
USART can be programmed to accept clock rates
of 16 or 64 times the required baud rate. Isosyn­
chronous operation is a special case of asynchro­
nous with the multiplier rate programmed as one
instead of 16 or 64. Note that X I operation is only
valid if the clocks of the receiver and transmitter
are synchronized.

The 8251 USART can transmit the three formats
in half or full duplex mode and is double-buffered
internally (Le., the software has a complete charac­
ter tim,e to respond to a service request). Although
the 8251 supports basic data set control signals
(e.g., DTR and RTS), it does not fully support the
signaling described in EIA-RS-232-C. Examples of
unsupported signals are Carrier Detect (CF), Ring
Indicator (CE), and the)secondary channel signals.
In some cases an additional port will be required to
implement these signals. The 8251 also does not
interface to the voltage levels required by EIA­
RS-232-C; drivers and receivers must be added to
accomplish this interface.

BLOCK DIAGRAM

A block diagram of the 8251 is shown in Figure 2.
As can be seen in the figure, the 8251 consists of
five major sections which communicate with each
other on an internal data bus. The five sections are
the receiver, transmitter, modem control, read/
write control, and I/O Buffer. In order to facilitate
discussion, the I/O Buffer has been shown broken
down into its three major subsections: the status
buffer, the transmit data/command buffer, and the
receive data buffer.

Receiver

The receiver accepts serial data on the RxD pin and
converts it to parallel data according to the appro­
priate format. When the 8251 is in the asynchro­
nous mode and it is ready to accept a character

. 231309-001

APPLICATIONS

RESET_

TRANSMIT
(CONTROL)

RECEIVER
(CONTROL)

RECEIVER
(S-PI

TxRDY

T,'
T,C

RxRDY

SYNDET

R,C

Figure 2. 8251 Block Diagram

(i.e., it is not in the process of receiving a charac­
ter), it looks for a low level on the RxD line. When
it sees the low level, it assumes that it is a START
bit and enables an internal counter. At a count
equivalent to one-half of a bit time, the RxD line is
sampled again. If the line is still low, a valid
START bit has probably been received and the
825 I proceeds to assemble the character. If the
RxD line is high when it is sampled, then either a
noise pulse has occurred on the line or the receiver
has become enabled in the middle 'of the transmis­
sion of a character. In either case the receiver
aborts its operation and prepares itself to accept a
new character. After the successful reception of a
START bit the 825 I clocks in the data, parity, and
STOP bits, and then transfers the data on the
internal data bus to the receive data register. When
operating with less than 8 bits, the characters are
right-justified. The RxRDY signal is asserted to
indicate that a character is available.

In the synchronous mode the receiver simply
clocks in the specified number of data bits and
transfers them to the receiver buffer register,
setting RxRDY. Since the receiver blindly groups
data bits into characters, there must be a means of
synchronizing the receiver to the transmitter so
that the proper character boundaries are main­
tained in the serial data stream. This synchroniza­
tion is achieved in the HUNT mode. .

In the HUNT mode the 825 I shifts in data on the

6-117

RxD line one bit at a time. After each bit is re­
ceived, the receiver register is compared to a regis­
ter holding the SYN character (program loaded).
If the two registers are not equal, the 825 I shifts in
another bit and repeats the comparison. When the
registers compare as,. equal, the 825 I ends the
HUNT mode and raises the SYNDET line to indi­
cate that it has achieved synchronization. If the
USART has been programmed to operate with two
SYN characters the process is as described above,
except that two contiguous characters from the
line must compare to the two stored SYN charac­
ters before synchronization is declared. Parity is
not checked. If the USART has been programmed
to accept external synchronization, the SYNDET
pin is used as an input to synchronize the receiver.
The timing necessary to do this is discussed in the
SIGNALS section of this note. The USART enters
the HUNT mode when it is initialized into the
'synchronous mode or when it is commanded to do
so by the command instruction. Before the receiver
is operated, it must be enabled by the RxE bit (D2)
of the command instructions. If this bit is not set
the receiver will not assert the RxRDY bit.

Transmitter

The transmitter accepts parallel data from the
processor, adds 'the appropriate framing informa­
tion, serializes it, and transmits it on the TxD pin.
In the asynchronous mode the transmitter always

231309-001

APPLICATIONS

adds a START bit; depending on how the unit is
programmed, it also adds an optional even or odd
parity bit, and either 1, 1 %, or 2 STOP bits. In the
synchronous mode no extra bits (other than parity,
if enable) are generated by the transmitter unless
the computer fails to send a character to the
USART. If the USART is ready to transmit a char­
acter and a new character has not been supplied by
the computer, the US ART will transmit a SYN
character. This is necessary since synchronous

I communications, unlike asynchronous communica­
tions, does not allow gaps between characters. If
the USART is operating in the dwil SYN mode,
both SYN characters will be transmitted before the
message can be resumed. The USART will not
generate SYN characters until the software has sup­
plied at least one character; i.e., the USART will
fill 'holes' in the transmission but will not initiate
transmission itself. The SYN characters which are
to be transmitted by the USART are specified by
the software during the initialization procedure. In

• either the synchronous or asynchronous modes,
transmission is inhibited until TxEnable and the
CTS input are asserted.

An additional feature of the transmitter is the abil­
ity to transmit a BREAK. A BREAK is a period of
continuous SPACE on the communication line and
is used in full duplex communication to interrupt
the transmitting terminal. The 8251 USART will
transmit a BREAK condition as long as bit 3
(SBRK) of the command register is set.

Modem Control

The modem control section provides for the gener­
ation of RTS and the reception of CTS. In addi­
tion, a general 'purpose output and a general pur­
pose input are provided. The output is labeled
DTR and the input is labeled DSR. DTR can be
asserted by setting bit 2 of the command instruc­
tion; DSR can be sensed as 'bit 7 of the status
register. Although the USART itself attaches no
special significance to these signals, DTR (Data
Terminal Ready) is normally assigned to the
modem, indicating that the terminal is ready to
communicate and DSR (Data Set Ready) is a signal
from the modem indicating that it is ready for
communications.

I/O Control

The Read/Write Control Logic decodes control­
signals on the' 8080 control bus into signals which
gate data on and off the USART's internal bus and
controls the external I/O bus (DBo-DB7). The
truth table for these operations is as follows:

If neither READ or WRITE is a zero, then the
USART will not perform an I/O function. READ

6-118

CE c/o READ WRITE Function'

0 0 0 1 CPU Reads Data from
USART

0 1 0 1 CPU Reads Status from
USART

0 0 1 0 CPU Writes Data to
USART

0 1 1 0 CPU Writes Command to
USART

1 X X X USART Bus Floating
(NO-OP)

and WRITE being a zero at the same time is an
illegal state with undefined results. The Read/
Write' Control Logic contains synchronization cir­
cuits so that the READ and WRITE pulses can
occur at, any time with. respect to the clock inputs
to the USART .
The I/O buffer contains the STATUS buffer, the
RECEIVE DATA buffer and the XMIT DA T A/
CMD buffer as shown in Figure 2. Note, that al­
though there are two registers which store data for
transfer to the CPU (STATUS and RECEIVE
DATA), there is only one register which stores data
being transferred to the USART. The sharing of
the input register for both transmit data and com­
mands makes it important to ensure that the
USART does not have data stored in this register
before sending a command to the device. The
TxRDY signal can be monitored to accomplish
this. Neither data nor commands should be trans­
ferred to the USART if TxRDY is low. Failure to
perform this check can result in erroneous data
being transmitted.

INTERFACE SIGNALS
The interface signals of the 8251 USART can be
broken down into two groups - a CPU-related
group and a device-related group. The CPU-related
signals have been designed to optimize the attach­
ment of the)8251 to a MCS-80™ system. The
device-related signals' are intended to interface a
modem or like device. Since many penpherals
(TTY, CRT, etc.) can be obtained with a modem­
like interface, the USART has a broad range of
applications which do not include a modem. Note
that although the USART provides a logical inter­
face to an EIA-RS-232 device, it does not provide
EIA comp,atible drive, and thjs must be added via
circuitry external to the 8251. As an example of a
peripheral interface application and, to aid in
understanding the signal descriptions which follow,
Figure 3 shows a system configured to interface
with a TTY or CRT.

231309-001

~

~gH~~
~

APPLICATIONS

,-------------;;"Iltl 8 Q t: 8 3 If 8 0
~ ~ III '"

I~M ~ 8 8 ~ ~ 8 ~ ~
~ ~

N ~8 0 eN 8 ~ If (f [;

5i l-;~~Io
--Kt---~L«-__ ~_r II'

~

6-119 231309-001

APPLICATIONS

CPU-Related Signals
Vee (26) I +5 Volt Supply

+5 Volt Common GND (4) I

CLK (20) I The CLK input generates in-

RESET (21)

DB7-DBo
(8,7,6,5,2,1,
28,27)

CS (II)

C/i) (12)

lID (13)

. ternal device timing. No ex­
ternal inputs or outputs are
referenced to CLK, but the
frequency of CLK must be
greater than 30 times the
Receiver or Transmitter
clock inputs for synchronous
mode or 4.5 times the clock
inputs for an asynchronous
mode. An additional con­
straint is imposed by the
electrical specifications (ref.
Appendix B) which require
the period of CLK be be­
tween 0.42 iJ.sec and 1.35
iJ.sec. The CLK input can·
generally be connected to the
Phase 2 (TTL) output of the
8224 clock generator.

A high on this input per­
forms a master reset on the
8251. The device returns to
the idle· mode and will re­
main there until reinitialized
with the appropriate control
words.

I/O The DB signals form a three­
state bus which can be con­
nected to the CPU data bus.
Control, status, and data are
transferred on this bus. Note
that the CPU always remains
in control of the bus and all
transfers are initiated by it.
Chip Select. A Iowan this
input enables communica­
tion between the US ART
and the CPU. Chip Select
should go· low when the
USAR T is being addressed by
the CPU.
Control/Data. During a read
operation this pin selects
either status or data to be in­
put to the CPU (high=status,
low=data). During a write
operation this pin causes the
USART to interpret the data
on the bus as a command if it
is high or as data if it is low.
A .low on this input causes
the USART to gate either

WR (l0)

TxRDY (15)

TxE (18)

RxRDY (14)

6-120

status or data onto the data
bus.
A Iowan this input causes
the USART to accept data
on the data bus as either a
command or as a data char­
acter.

o Transmitter Ready. This out­
put signals the CPU that the
USART is ready to accept a
data character or command,
It can be used as an interrupt
to the system or, for polled
operation, the CPU can
check TxRDY using the
status read operation. Note,
however, that while the
TxRDY status bit will be as­
serted whenever the XMIT
DATA/CMD buffer is empty,
the TxRDY output will be
asserted on,ly if the buffer is
empty and the USART is en­
abled to transmit (Le., CTS is
low and TxEN is high).
TxRDY will be reset when
the USAR T receives a charac­
ter from the program.

o Transmitter Empty. A high
output on this line indicates
that the parallel to serial
converter in the transmitter
is empty. In 'the synchronous
mode, if the CPU has failed
to load a new character in
time, TxE will go high mo­
mentarily as SYN characters
are loaded in to the trans­
mitter to fill the gap in trans­
mission.

o Transmitter Ready. This out­
put goes high to indicate that
the 8251 has received a char­
acter on its serial input and is
ready to transfer it to the
CPU. Although the receiver
runs continuously, RxRDY
will only be·· asserted if the
RxE (Receive Enable) bit in
the command register has
been set. RxRDY can .be con­
nected to the interrupt struc­
ture or, for polled operati?n,
the CPU can check the condi­
tion of RxRDY using a status
read operation. RxRDY will
be reset when the character is
read by the CPU.

231309-001

APPLICATIONS

SYNDET (16) I/O Synch Detect. This line is used
in the synchronous mode only.
It can be either an input or
output, depending on whether
the initialization program sets
the USART for external or in­
ternal synchronization. SYN­
DET is reset to a zero by RE­
SET. When in the internal
synchronization mode, the
USART uses SYNDET as an
output to indicate that the
device has detected the re­
quired SYN character(s). A
high output indicates syn­
chronization has been achiev­
ed. If the USART is pro­
grammed to operate with
double SYN characters, SYN­
DET will go high in the mid­
dle of the ,last bit of the
second SYN character. SYN­
DET will be reset by a status
read operation. When in the
external sync)uonization mode
a positive-going input on the
SYNDET line will cause the
8251 'to start assembling
characters on' the next falling
edge of RxC. The high input
should be maintained at least
for one RxC cycle following
this edge.

\
Device-Related Signals

DTR (24) 0 Data Terminal Ready. This is a
general purpose output signal
which can be set low by pro­
gramming a '1' in command
instruction bit 1. This signal
allows additional device con­
trol.

DSR(22) Data Set Ready.' This is a gen­
eral purpose input signal. The
status of this signal can be
tested by the CPU through a
status read. This pin can be
used to test device status and
is read as bit 7 of the status .
register.

RTS (23) o Request to Send. This is a gen-
eral purpose output signal
equivalent to DTR. RTS is
normally used to request that
the modem prepare itself to
transmit (Le., establish car­
rier). RTS can be asserted

6-121

CTS (17)

RxC (25)

RxD (3)

TxC (9)

TxD (19)

,
(brought low) by setting bit 5
in the command instruction.
Clear to Send. A low on this
input enables the USART to
transmit data. CTS is normally
generated by the modem in re­
sponse to a RTS.

Receiver Clock. This clock
controls the, data rate of char­
acters to be received by the
USART. In the synchronous
mode RxC is equivalent to the
baud rate, and is supplied by
the modem. In asynchronous
mode RxC is 1, 16, or 64
times the baud rate. The clock
division is preselected by the
mode control instruction.
Data is sampled by the USART
on the rising edge of RxC.

Receiver Data. Characters are
received serially on this pin
and assembled into parallel
characters. RxD is high true
(Le., High = MARK or ONE).

Transmitter Clock. This clock
controls the rate at which
characters are transmitted by
the USART. The relationship
between clock rate and baud
rate is the same as for RxC. ,
Data is shifted out of the
USART on the falling edge of
TxC.

o Transmit Data. Parallel charac­
ters sent by the CPU are trans­
mitted serially by the USART
on this line. TxD is high true
(Le., High = MARK or ONE).

MODE SELECTION
The 8251 USART is capable of operating in a num­
ber of modes (e.g., synchronous or asynchronous).
In order to keep the hardware as flexible as possi­
ble (both at the chip and end product level), these
operating modes are selected via a series of control
outputs to the USART. These mode control out­
puts must occur between the time the USAR T is
reset and the time it is utilized for data transfer.
Since the :USARTneeds this information to struc­
ture its internal logic it is essential to complete the
initialization before any attempts are made at data
transfer (including reading status).

A flowchart of the initialization process appears in
Figure 4. The first operation which must occur
following a reset is the loading of the mode control

231309-001

I.
I

APPLICATIONS

SYSTEM RESET
INITIALIZATION

Figure 4. Initialization Flowchart

register. The mode control register is loaded by the
first control output (C/O=l, 1m=I, Wit=O, CS'=O)
following a reset. The format of the mode control
instruction is shown in Figure 5. The instruction
can be considered as four 2-bit fields. The first
2-bit field (Di'Do) determines whether the USART
is to operate in the synchronous (00) or asynchro­
nous mode. In the asynchronous mode this field
also controls the clock scaling factor. As an exam­
ple, if DI and Do are both ones, the RXC and TxC
will be divided by 64 to establish the baud rate.
The second field, D3-D2, determines the number
of data bits in the character and the third, Ds-D4,
controls parity generation. Note that the parity bit
(if enabled) is added to the data bits and is not
considered as part of them when setting up the
character length. As an example, standard ASCII
transmission, which is seven data bits plus even
parity, would be specified as:

XXIIIOXX

6-122

-- --L -.~"'-\ OO"SYNMOOE
r O'=-ASVNX1

10 "'ASVNX16
. 11·ASYNX64

, CHARACTER LENGTH

00"581TS
01=-68118
10·781TS
11 "'S8ITS

PARITY CONTROL

X 0 .. NO PARITY
o 1 .. 000 PARITY
11 .. EVEN PARITY

FRAMING CONTROL

SVN
NO- ASYN 10, DO¢OOJ 00 ... NOT VALID , 01"'lSTOPBIT

1 0 ,% STOP BITS
11·2STOPBITS

VES
10, DO=OI SYN CONTROL

X 0 INTERNAL SYN
X, EXTERNAL SVN
o X DOUBLE SVN CHAR
1 X SINGLE SYN CHAR

Figure 5. Mode Instruction Format

The last field, D7-D6, has two meanings, depend-,
ing on whether operation is to be in the synchro­
nous or asynchronous mode. For the asynchronous
mode (Le., DI Do * 00), it controls the number of
STOP bits to be transmitted with the character.
Since the receiver will always operate with only
one STOP bit, D7 and D6 only control the trans­
mitter. In the synchronous mode (DI Do = 00),
this field controls the synchronizing process. Note
that the choice of single or double SYN characters
is independent of the choice of internal or external
synchronization. This is because even though the
receiver may operate with external synchronization
logic, the transmitter must still know whether to
send one or two SYN characters should the CPU
fail to supply a character in time.
Following the loading of the mode instruction the
appropriate SYN character (or characters) must be
loaded if synchronous mode has been specified.
The SYN character(s) are loaded by the same con­
trol output instruction used to load the mode in­
struction. The USART determines from the mode
instruction whether no, one, or two SYN charac­
ters are required and uses the control output to
load SYN characters until the required number are
loaded.

At completion of the load of SYN characters (or
after the mode instruction in the asynchronous
mode), a command character is issued to the
USART. The command instruction controls the
operation of the USART within the basic frame­
work established by the mode instruction. The
format of the command instruction is shown in

231309-001

APPLICATIONS

Figure 6. Note that if, as an example, the USART
is waiting for a SYN character load and instead is
issued an internal reset command, it will accept the
command as a SYN character instead of resetting.
This situation, which should only occur if two
independent programs control the USART, can be
avoided by outputting three all zero characters as
commands before issuing the internal reset com­
mand. The USART indicates its state in a status
register which can be read under program control.
The format of the status register read is shown in
Figure 7.

TRANSMIT ENABLE
1'" ENABLE
0= DISABLE

DATA TERMINAL
READY

"HIGH" WILL FORCE
OTA OUTPUT TO ZERO

RECEIVE ENABLE
L.. ___ ~I 1 = ENABLE RxRDY

0'" DISABLE RxROY

SEND BREAK

'-----__ lcH1A=R~g~~~s litO "lOW"

0'" NORMAL OPERATION

ERROR RESET
"---~ ___ ~_I 1 = RESET ALL ERROR

FLAGS (PE, DE, FE)

REQUEST TO SEND '-_________ 1 ~H"wrlL FORCE

RTS OUTPUT TO ZERO

INTERNAL RESET
"HIGH" RETURNS 8251
TO MODE INSTRUCTION
fORMAT

ENTER HUNT MODE

When operating the receiver it is important to real­
ize that RxE (bit 2 of the command instruction)
only inhibits the assertion of RxRDY; it does not
inhibit the actual reception of characters. Because
the receiver is constantly running, it is possible for
it to contain extraneous data when it is enabled.
To avoid problems this data should be read from
the USART and discarded. The read should be
done immediately following the setting of Receive
Enable in the asynchronQus mode, and following
the setting of Enter Hunt in the synchronous
mode. It is not necessary to wait for RxRDY be­
fore executing the dummy read. '-_____________ 1 1'" ENABLE SEARCH FOR

D7 D6

I DSR I SYNDET I "
I 1

SYN CHARACTERS

Figure 6. Command 1 nstruction Format

D, DO

I
DE PE

I
T,E I R,RDY I T,RDY I

1 1 1 1
j

PARITY ERROR
THE PE FLAT IS seT WHEN
A PARITY ERROR IS DE
TEeTED IT IS RESET BY
THE ER BIT OF THE COM-
MAND INSTRUCTION PE
DOES NOT INHIBIT OPER·
ATION OF THE 8251

OVERRUN ERROR
THE OE FLAG IS SET WHEN
THE CPU DOES NOT AEAD A
CHARACTER BEFORE THE
NEXT ONE BECOMES AVAil·

'-- ABLE. IT IS RESET,BY THE
ER BIT OF THE COMMAND
INSTRUCTION OE DOES
NOT INHIBIT OPERATION OF
THE 8251, HOWEVER, THE
PREVIOUSLY OVERRUN
CHARACTER IS LOST'

FRAMING ERROR (ASYNC
ONLY)

THE FE FLAG IS SET WHEN
A VALID STOP BIT IS NOT
DETECTED AT THE END OF
EVERY CHARACTER IT IS
RESET BY THE ER BIT OF
THE COMMAND INSTRUC·
TION FE DOES NOT INHIBIT
THE OPERATION OF THE 8251

Figure 7. Status Register Format

6-123

SAME DEFINITIONS
AS I/O PINS EXCEPT
THAT TxRDY IS NOT
CONDITIONED BY
TxENOR CiS"

231309-001

APPLICATIONS

PROCESSOR DATA LINK

The ability to change the operating mode of the
USART by software makes the 8251 an ideal
device to use to implement a serial communication
link. A terminal initially configured with a simple
asynchronous protocol can be upgraded to a syn­
chronous protocol such as IBM Binary Synchro­
nous Communication by a software only upgrade.
In order to demonstrate the use of the 825 I
USART, the remainder of this document will
describe the implementation of an interrupt-driven,
full duplex communication link on the Intel
MDSTM system. With minor modifications, the
program developed could be used on the Intel
SBC-80!lOTM OEM card, thus implementing a data
link between the two systems. Such a facility can
be used to down~load programs, run diagnostics,
and maintain common data bases in multiprocessor
systems.

The'factors which must be considered in the design
of such a link include the desired transmission rate
and format, the error checking requirements, the
desirability of full duplex operation, and the phys­
ical implementation of the link. The basic require­
ment of the system described here is that it allow
an Intel SBC-80!1O OEM card to be loaded from
. an MDS development system, either locally or on
the switclfed telephone network. An additional
constraint is that the modem used on the switched
network be readily available and inexpensive.
These requirements led to the choice of a modem
such as the Belll03A to implement the link. These
modems, which support full duplex communica­
tion at up to 300 baud, are readily available from a
number of sources at reasonable cost. These
modems are also available in acoustically coupled
versions which do not reql.lire permanent installa­
tion on the telephone network. Interface to' the
103A modem is accomplished with nine wires:
Protective Ground, Signal Ground, Transmitted
Data, Received Data, Clear to Send, Data Set
Ready, Data Terminal Ready, Carrier Detector,
and Ringing Indicator.

The utilization of the interface signals to the
modem is as follows:

Protective
Ground

Signal
Ground

Transmitted
Data

Protective Ground is used to bond
the chassis ground of the modem to
that of the terminal.

Signal Ground provides a common
ground reference between the mo­
dem and the terminal.

Transmitted Data is used to transfer
serial data from the terminal to the
modem.

6-124

Received
Data

Clear to
Send

Data Set
Ready

Dat~
Terminal
Ready

Carrier
Detector

Ringing
Indicator

Received Data is used to transfer
serial' data from the modem to the
terminal.

Clear to Send indicates that the
modem has established a connec­
tion with a remote modem and is
ready to transmit data.

Data Set Ready indicates that the
modem is connected to the tele­
phone line and is in the data mode.

Data Terminal Ready is a signal
from the terminal whi(;h permits
the modem to enter the data mode.

Carrier Detector is identical to
Clear to Send in the 103 modem
and will not be used in this inter­
face.

Ringing Indicator indieates that the
modem is receiving a ringing signal
from the telephone system. This
signal will not be used in the inter­
face, since it is possible for the
terminal to assert Data Terminal
Ready whenever it is ready for the
modem to "answer the telephone" .
The modem uses Data Set Ready to
indicate that it has answered the
call.

A block diagram showing the connections between
the MDS and the SBC-80!1O through the modems
is shown in Figure 8. Figure 9 shows the portion of
the MDS monitor board devoted to the USARTs
and Figure 10 shows the equivalent section of the
SBC-80!1O board. Note that several signals on the
MDS to not have the proper EIA defined voltage
levels, and for this reason the adapter shown in
Figure II was added to the MDS. The 390 pF
capacitor was added to the 1488 driver to bring the
rise time within EIA imposed limits of 30 volts!
flsec. In Figure 7 the signal labels within the MDS
and SBC-80!10 blocks correspond to the labels on
the schematics, the signal labels within the modem
blocks correspond to EIA conventions, and the
signal labels on the wires between the blocks are
abbreviations for the English language names of the
signals.

As an example of how the USART clocks can be
generated, circuits A27, A16, and AI5 of Figure 9
form a divider of the OSC signal. The OSC signal
has a frequency of 18.432 MHz and is generated by
the 8224 which generates system timing for the
8080A. The 18.432 MHz signal results in a state
time of 488 ns versus the normal 500 ns for the
8080A. (This does not violate 8080A specifica­
tions.) The 18.432 MHz signal can be divided by

231309-001

APPLICATIONS

--------l

I

CRr USART RTSI

CRr Tx DATA

CRT Ax DATAl

CRT OTRI

CRr DSR/

CRr SIG GND

'CRT' INTERFACE

I
_____ ~ __ .J

CB

BA

BB

CD

CC

COM
AB

MODEM

r--------
I

REQ TO SEND

RECEIVE DATA

TRANSMITTED DATA

DATA SET ROY

DATA TERM'L ROY

COM
AB GND

MODEM 'CRT'INTERFACE

I SBC10 L _______ _

Figure 8. System Block Diagram

I ---<3------< CTS

~DSR

Figure 9. EIA Adapter

30 and then 64 to give a 9600 baud communica­
tion standard. The 9600 baud signal can be further
divided to give 4800, 2400, 1200, 600, and 300
baud signals. The 1200 baud signal can be divided
by 11 to give a 109.1 baud signal which is within
1 % of the 110 baud standard signal rate. Note that
because of constraints on the CLK input 9600
J>aud operation is not possible in the X64 mode.
The divide by 64 can be accomplished by dividing
by 4 with a counter and then 16 within the
USART.

In order to keep the system as general purpose as
possible, it was decided to transmit 8-bit data char­
acters with an appended odd parity bit. Having a
full 8-bit byte available for data enables the trans­
mission of codes such as ASCII (which is 7-level
with an additional parity bit) to be transmitted
and received transparently in the system. Also, of
course, it allows 8-bit bytes fTom the 8080A mem­
ory to be transferred in one transmission character.
If error checking beyond the parity check is re­
quired, it could' be added to the data record to be
transmitted in the form of redundant check charac­
ters.

6-125

Before the software design of the system could be
undertaken, it was necessary to decide whether
service requests from the USART would be han­
dled on a polled or interrupt driven mode. Polled
operation normally results in more compact code
but it requires that whatever programs are running
concurrently with a transmission or reception must
periodically either check the status of the USART
or call a routine that does. Since it was not possible
to determine what program might be running dur­
ing a receive or transmit operation, it was decided
to operate in an interrupt driven mode.
The program which operates the 8251 must be
instructed as to what data it should transmit or
teceive from some other program resident in the
8080 system. To facilitate the discussion of the
operation of the software, the following definitions
will be made:

USRUN is the program which controls the
operation of the 825 I.
USER is a program which utilizes USRUN in
order to effect a data transmission.

USER passes commands and parameters to
USRUN by means of the control block shown in
Figure 12. The first byte of the block contains the
command which USER wants US RUN, to execute.
Valid contents of this byte are "C" which causes
USRUN to initialize itself and the 825 I, "R"
which causes the execution of the data input (or
READ) operation, and "W" which causes a data
output (WRITE) operation. The second byte of the
control block is used by USRUN to inform USER
of the status of the requested operation. The third
and fourth bytes specify the starting address of a
buffer set up by USER which contains the data for
a transmit operation or which will be used by
USRUN to store received data. The fifth and sixth
bytes are concatenated to form a positive binary

231309-001

~
~

~

I

c

"l4SOO :14aOO %ae.:.YlhI/ I"Z£§.
"lZloL"", WH/ ~======~;~" "3ZI!I.CS1I "1'2'& XO"" - "5lI>L ""'"

II ~ riP CU< , 'Fe-50

{

CR2

~ t; ,.-~~~ I
ADllla ----t----'-I;;o---

+51/ ~

TZ&o=
AIr. +Iitv

UA14-:.a_tl!...-,
,13. _ I"

,.
TTY T.w.

REC.EI'I/EtIIXrA

III ~~~§~~~" 0A7ASETRDY ~

~1~c:.MO &.-----tr~
- : : -~ -:

I '

: :~H L~I~ r-1::~~ ~. .
lsi 'II

T1fAfI!!UITTEC O"T~ I I 4 1 I ..

T .. Cll< AMrAThI!I.I'L/t7I' I J \ I Is

-.::~ L_Etr .11 II
~i~L.)~~~~~~~:::U iH\",,,U :::::::::

II -r .~t· .~ in:
J'

1:"-~~---------=ii~;;;;;;;::=Il.~ TlV RO c.oNT~
'-__ -'V\""'4--.-fC ~ -1211' It _ I TTY RD CONTROl- FltT

~ ~

Figun! 10. SBC 80/10 Serial I/O

»
"1J
"1J
£:
(')

~
(5
z
en

~
N
--.j

'" ~
'"
%
~

~UMPER COt.J.FI6\..IRA.TlOI>JS
'F~ ~8) ~IOOO)(IG; +-14-
t.R:r ~ ... '.I. ;;::00 X 16 H.

uS RT" (5) .10 X I"'H,.

CCLKI ~
9.8304 MH~

IOI.7eS n5~

~PT'F'l!O"Y/_
z:-z.ru J.'!ST F'rP oUi{ ------,,--,

~~ "2. ~ " .. ~6.-IW ~'1"i ~ 0 CRT TlI- DATAl 3ZR.I f'T\e-et:>Y(

~ ~:~ ... ~< nD ' ,) , : cn D5"'T .TO,

~~: ". _ " ... JU."'" CO","UW"".5 ,"', cn D5O"'- CT5/ .5T en'DPI

~'"' B.51 OiS" r~C"TS'.GUO' =
DAT • ,~ ~.. ~cn S>G GUO < CPCACK/ db I <no,

AD". -" .. D 7,' • ~'''li _ :';< CRT _ " ,'. 'u, - '--j. t
• <TEU) _ "w~,/ _ • ' : "3Z&J <5TCHDUTI ~.
'" ROT ~, ~~T ~, , 'fZr.3 cenn/ ' ~4 '

, :~~ ... " ! C<T OS"/ 'Zl>l "". • :
~ DATI +,_ ~E> @

1lI(<:.'-II.) ~-~., IBI I +--V+. I I ' fie. D t5V tIl CI"-TDTRI
C~!.JT/

~D/>'T4

3Zhl "" CU ,"pi I 111111111111111 I I I I-I3!-="" Till. PT CT L / -----++-.-----­
~'D/>'T5

,~ .5T caT DDT I 1111111111111111 '''''00,.,,- n.oHol I M> ~".P" C~'UT' '= ~H
3Zru 'O/>,T3

"" "1-30 .1\
~T\V TX o..a.TA RET
, 'w -

IZ..!;g TTY EI.J.I ~TTyeD~CTL "'"IZ£.aLPTD/>'\/~

~ I B:J~~~~~~ ~~~~~~~~~~ ===~=':$E~;;m'--~~

TZ<l TTYAOVUR/ I Id ,~"II f ,h'. I.'~"A"C 11111-
~ PIeOM A.t>11: IoI'6H-CTL

J) 1, Yi~ .. IZV RI4- ~TTY~)(Mr ~ ~~~ :~ ~;w e'ia

~ TTV Rl(t.I/I.T RET
4;.n,

-toy mT TYDSI7:)

111>1_3 .>1
LPT ST",,\/ ~ ;"'4 , 1i.~"'"eo":I-r '[E

+5V ----..1\1\1'---
1"- .II

rTTYS'GG\JO
1\J:tTJ ~r..~'r"3l"----

PTPOUTII,.JT'~

PTR1IJ.PIIJ,Tj ~

LPTOUT I\..IT/ ~

LPT CTLIb/

LP, eTLI)

T,,, ACN "t.Df!/
~

----c....J
t

PTe. D~V LFr/

LPT OAT sr~e,'

P~O"'" Wi:T I)poo,T f'Lsj

C.TI.. 'PLS/

""DePl..~1

DAT0/!Zf! ~

o Tril

DATI} 1Z9. ~
D/IIT'/

svseST ~
5yseST/ ~

3Zl II..ITI LI~E /

~Ia. TTVII..lP'IJ.'! ~ peOM~nSTATUS '''~
~ ~PIeOM~Oo,o..TA "'~

peo"", 1i:.CSTKr/

. "'
!fI PI:.OM 2DDAT/

= ~ P'eo'" 510;;;;"1-11:) I
- -=- P20M ~1Ci.G\JDe.

3Zlu nTH""", ~'=;ar1 1-1-'" ..,,'iI" Tn OUT '"'1=
~ ~-:'TTT'!'ou"l - I

Figure 11. MDS Monitor Module

::--=---=---=-0-,~""_,,,:~- :"~,",,_-g-_ .~~~-... ::;'":,",.-

l>
"tJ
"tJ
C
0
~
0
Z
CJ)

APPLICATIONS

number which specifies how many bytes of data
USER wants transferred. The seventh and eighth
bytes are concatenated and used by USRUN to
count the number of bytes that have been trans- ~
ferred. When the required number of characters
have been transferred, or if USRUN terminates a
READ or WRITE due to an abnormal condition,
then USRUN calls a subroutine at an address de­
fined by the ninth and tenth bytes of the com­

·mand block. This subroutine, which is provided by
USER, must determine the state of the process and
then take appropriate action.

Since USRUN must be capable of operation in a
full duplex mode (i.e., be able to receive and trans­
mit simultaneously), it keeps the address of two
control blocks; one for a READ operation and one
for a WRITE. The address of the controlling com­
mand block is kept in RAM locations labeled
RCBA for the READ operation and TCBA for the
WRITE operation. If RCBA (Receive Control
Block Address) or TCBA (Transmit Control Block
Address) is zero, it indicates that the corresponding·
operation is in an idle status.

Flowcharts of USRUN appear in Figure 13 and the
listings appear in Figure 14. The first sectiori of the
flowcharts (Figures 13.1 and 13.2) consists of two
subroutines which are used as convenient tools for
operating on the control blocks. These routines are
labeled LOADA and CLEAN. LOADA is entered
with the address of a control block in registers H
and L. Upon return registers D and E have been set
equal to the address in the buffer which is the
target of the next data transfer (i.e., D,E = BAD+
CCT); and CCT (transferred byte count) has then
been incremented. In addition, the B register is set
to zero if the number of bytes that have been
transferred is equal to the number requested (i.e.,
CCT = RCT). CLEAN, the second routine, is also
entered with the address of a command block in
the Hand L registers. In addition, the Accumulator
holds the status which will be placed in the
STATUS byte of the command block. On exit the
STATUS byte has been updated and the address of
the completion routine has been placed in Hand L.

Upon interrupt, control of the MCS-80 system is
transferred to VECTOR (Figure 13.3). Vector is a
program which saves the state of the system, gets
the status of the USART and jumps to the RISR
(Receive Interrupt Service Routine) or the TISR
(Transmit Interrupt Service Routine), depending
on which of the two ready flags is active. If neither
ready flag is active, VECTOR restores the status of
the running program, enables interrupts, and re­
turns. (Interrupts are automatically disabled by the
hardware upon an interrupt.) This exit from VEC­
TOR, which is labeled VOUT, is used from other

6-128

COMMAND

STATUS

BAD LOW

BAD HIGH

ACT LOW

RCT HIGH

eeT LOW

eeT HIGH

eRA LOW

eRA HIGH

I THESE TWO Bv,:res FORM
THE BUFFER ADDRESS

I THESE TWO BYTES INDICATE
THE NUMBER OF BYTES TO
BE TRANSFERRED I THESE TWO BYTES INDICATE
THE NUMBER OF BYTES THAT
HAVE BEEN TRANSFERRED I THESE TWO BYTES FORM
THE ADDRESS OF A SUB­
ROUTINE TO BE CALLED
WHEN THE OPERATION
IS TERMINATED

Figure 12. Control Block

Figure 13.1. LOADA Subroutine

Figure 13.2. CLEAN Subroutine

231309-001

APPLICATIONS

INT

Figure 13.3. Interrupt Entry

Figure 13.4. Transmit Interrupt Service Routine

6-129

portions of US RUN if return from the interrupt
mode is required.

In addition to handling normal data transfers,
TISR (Figure 13.4) checks a location in memory
named TCMD in order to determine if the receive
program wishes to send a command to the USART.
Since the transmit data and command must share a
buffer within the USART, any command output
must occur when TxRDY is asserted. If TCMD is
zero, TISR proceeds with the data transfer. If
TCMD is non-zero, TISR calls TUTE (Transmit
Utility, Figure 13.5) which, depending on the value

Figure 13.5. Transmit Utility Routine

231309-001

APPLICATIONS

in TCMD, turns, off the receiver, turns on the re­
ceiver, or clears error conditions. Note that the
error flags (parity, framing, and overrun)!' are al­
ways cleared by the software when the receiver is
first enabled. '

The flowchart of the RISR is shown in Figure
13.6. Note that in addition to terminating when­
ever the required number of characters have been
received, the RISR also terminates if one of the
error flags becomes set or if the received character
matches a character found in a table pointed to by
the label ET AB. This table, which starts at ET AB
and continues until an all "ones" entry is found,
can be used by USER to define special characters,
such as EOT (End Of Transmission), which will ter­
minate a READ operation. The remainder of Fig­
ure 13 (13.7) shows the decoding of the commands
to USRUN. The listings also include a test USER
which exercises USRUN. Tl1is program sets up a
256-byte transmit buffer and transfers it to a simi­
lar input buffer by means of a local loop. When
both the READ and ,WRITE operations are com­
plete, the test USER checks to insure that the two
buffers are identical. If the buffers differ, the MDS
monitor is called; if the data is correct, the test is
repeated.

CONCLUSION
The 8251 USART has been described both as a
device and as a component in a system. Since not
only modems but also many peripheral devices
have a serial interface, the 8251 is an extremely
useful component in a microcQmputer system. A
particular advantage of the device is that it is capa­
ble of operating in various modes without requir­
ing hardware modifications to the system of which
it is a part. As with any complex subsystem, how­
ever, the 8251 USART must be carefully applied
so that it can be utilized to full advantage in the
overall system. It is hoped that this application
note will aid in the designer in the application of
the 8251 USART. As a further aid to the applica­
tion of the 8251, the appendix of this document
includes a list o(design hints based on past experi­
ence with the 8251.

Figure 13.6. Receive Interrupt Service Routine

6-130
231309-001

APPLICATIONS

Figure 13.7. URUN Command Decode

6-131
231309-001

APPLICATIONS

Figure 14. Program Listing

•••••• ,

SYSTEM ORIGIN STATEMENT
j
j •••••

4000 ORG 4000H

,
•••••• ,

DATA STORAGE FOR TEST USER
j
j •••••

4000 BUFIN: DS 100H jINPUT BUFFER
4100 BUFOUT: DS 100H jOUTPUT BUFFER
4200 5200 RBLOCK: DB 'R' ,OOH jRECEIVE CONTROL BLOCK
4202 0040 RBAD: DW BUFIN
4204 FFOO RRCT: DW OFFH
4206 0000 RCCT: DW OOH
4208 1742 RCRA: DW RCR
420A 5700 TBLOCK: DB 'II" ,OOH jTRANSMIT CONTROL BLOCK
420C 0041 TBAD: DW BUFOUT
420E FFOO TRCT: DW OFFH
4210 0000 TCCT: DW OOH
4212 2742 TCRA: DW TCR
4214 4300 GBLOCK: DB 'c' ,OOH
4216 00 FLAG: DB OOH

•••••• ,

COMPLETION ROUTINES
j
j •••••

4217 AF RCR: XRA A jCLEAR A
4218 323B42 STA RCBA jTURN OFF RECEIVE
421B 323C42 STA RCBA+1
421E 3A 1642 LDA. FLAG JGET FLAG
4221 E60F ANI OFH jCLEAR UPPER FOUR BITS
4223 321642 STA FLAG jRESTORE FLAG
4226 C9 RET
4227 AF TCR: XRA A jCLEAR A
4228 323942 STA TCBA jTURN 'OFF TryANSMIT
422B 323A42 STA TCBA+l
422E 3A1642 LDA FLAG JGET FLAG
4231 E6FO ANI OFOH jCLEAR LOWER FOUR BITS
4233 321642 STA FLAG jRESTORE FLAG
4236 C9 RET jTHEN RETURN

6-132
231309-001

00F5
00F5
00F4
00F4
0000
OOFF
0001

4237
4238
4239
423B
423D

00
00
0000
00.00
FF

.***** ,

j
.***** ,

USTAT
USCMD
USDAI
USDAO
GSTAT
BSTAT
CEND

.***** ,

j
.***** ,

LCMD:
TCMD
TCBA
RCBA
MTAB

APPLICATIONS

SYSTEM EQUATES

EQU
EQU
EQU
EQU
EQU
EQU
EQU

OF5H
OF5H
OF4H
OF4H
OOH
OFFH
01H

jUSART STATUS ADDRESS
jUSART CMD ADDRESS
jUSART DATA INPUT ADDRESS
jUSART DATA OUTPUT ADDRESS
jGOOD STATUS
jBAD STATUS

SYSTEM DATA TABLE

DB OOH jCURRENT OPERATING COMMAND
DB OOH jIF NON ZERO A COMMAND TO BE
DW OOH jADDRESS OF XMIT CBLOCK
DW OOH jADDRESS OF RECEIVE CBLOCK
DB OFFH jEND CHARACTER TABLE

6-133

SENT

231309-001

i
i

423E
423F
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
424A
424B
424C
424D
424E
424F
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
425A

23
23
5E
23
56
23
23
23
4E
23
46
EB
09
EB
03
70
2B
71
OB
2B
7E
90
47
CO
2B
7E
91
47
C9

.***** ,

j
;*****

LOADA:

APPLICATIONS

LOAD ADDRESS ROUTINE
LOADA IS ENTERED WITH THE AQDRESS OF A CONTROL
BLOCK IN H,L. ON EXIT D,E CONTAINS THE ADDRESS
WHICH IS THE TARGET OF THE NEXT DATA TRANSFER (BAD+CCNT)
AND B HAS BEEN SET TO ZERO IF THE REQUESTED NUMBER OF
TRANSFERS HAS BEEN ACCOMPLISHED. CCNT IS INCREMENTED
AFTER THE TARGET ADDRESS HAS BEEN CALCULATED.

INX H jD,E GET3 BUFFER ADDRESS
INX H
MOV E,M
INX H
MOV D,M jDONE
INX H jB,C GETS COHPLETED COUNT (CCNT)
INX H
INX H
HOV C,H
INX H
MOV B,M jDONE
XCHG jD,E GETS BAD+CCNT
DAD B
XCHG 'j DONE
INX B jCCNT GETS INCREMENTED
MOV t1, B
DCX H
MOV t1, C jDONE
DCX B JDOES OLD CCNT=RCNT?
DCX H
MOV A,M
SUB B
MOV !l,A
RNZ JNO-RETURN WITH B NOT ZERO
DCX H
HOV A,M
SUB C
MOV B,A
RET jRETURN WITH B=O IF RCNT=CCNT

6-134
231309-001

425B 5D
425C 54
425D 23
425E 77
425F 010700
4262 09
4263 7E
4264 23
4265 66
4266 6F
4267 C9

4268 F5
4269 C5
426A D5
426B E5
426c DBF5
426E DBFA
4270 OF
4271 OF
4272 DA8842
4275 07
4276 07
4277 DAD442
427A 3EFC
427C D3F3
427E E1
427F D1
4280 C1
4281 3E20
4283 D3FD
4286 FB
4287 C9

;*****

;
.***** ,

APPLICATIONS

CLEAN-UP ROUTINE
CLEAN IS ENTERED WITH THE ADDRESS OF A CONTROL
BLOCK IN H,L AND A NEW STATUS TO BE
ENTERED INTO IT IN A. ON EXIT THE ADDRESS OF THE
CONTROL BLOCK IS IN D,E; THE STATUS OF THE BLOCK
HAS BEEN UPDATED; AND THE ADDRESS OF THE COMPLETION
ROUTINE IS IN ~,L.

CLEAN: HOV E,L ;SAVE THE ADRESS OF THE COHMAND BLOCK

.***** ,

,
;*****

MOV D,H
INX H ;POINT AT STATUS
MOV M,A ;SET STATUS EQUAL TO A
LXI B,7 ;SET INDEX TO SEVEN
DAD B ;POINT AT COMPLETION ADDRESS
MOV A,M ;GET LOWER ADDRESS
INX H ;POINT AT UPPER ADDRESS
MOV H,M ;H GETS HIGH ADDRESS BYTE
MOV L,A ;L GETS LOW ADDRESS BYTE
RET

INTERUPT VECTOR ROUTINE
VECTOR SAVES THE STATUS OF THE RUNNING PROGRAM
THEN READS THE STATUS OF THE USART TO DETERMINE
IF A RECEIVE OR TRANSMIT INTERUPT OCCURRED.
VECTOR THEN CALLS THE APPROPRIATE SERVICE ROUTINE.
IF NEITHER INTERUPTS OCCURRED THEN VECTOR RESTORES
THE STATUS OF THE RUNNING PROGAM. THE SERVICE
ROUTINES USE THE EXIT CODE, LABLED VOUT, TO EFFECT
THEIR EXIT FROM INTERUPT MODE.

VECTOR: PUSH
PUSH
PUSH
PUSH

PSW
B
D
H
USTAT
OFAH

;PUSH STATUS INTO THE STACK

IN

RISR

;GET USART ADDRESS
;MDS-GET MONITOR CARD INT. STATUS
;ROTATE TWO PLACES
;SO THAT CARRY=RXRDY
;IF RXRDY GO TO SERVICE ROUTINE
;IF NOT ROTATE BACK
;LEAVING TXRDY IN CARRY

IN
RRC
RRC
JC
RLC
RLC
JC
MVI
OUT

TISR
A,OFCH
OF3H

;IF TXRDY THEN GO TO SERVICE ROUTINE
;MDS-CLEAR OTHER LEVEL THREE INTERUPTS
;MDS

VOUT: POP
POP
POP
MVI
OUT
EI
RET

H
D
B
A,20H
OFDH

;ELSE EXIT FROM ~NTERUPT MODE

;MDS-RESTORE CURRENT LEVEL
;MDS
;ENABLE INTERUPTS

6-135
231309-001

4288 2A3B42
428B 3E82
428D D3F3
428F 2C
4290 2D
4291 C29942
4294 24
4295 25
4296 CA7E42
4299 CD3E42
429C DBF4
429E 12
429F 4F
42AO DBF5
42A2 E638
42A4 C2B942
42A7 04
42A8 05
42A9 C2BE42
42AC 3EOO
42AE 217E42
42B1 E5
42B2 2A3B42
42B5 CD5B42
42B8 E9

42B9 3EFF
42BB C3AE42
42BE 213D42
42C 1 7E
42C2 FEFF
42C4 CA7E42
42C7 B9
42C8 CACF42
42CB 23
42CC C3C142
42CF 3E01
42D1 C3AE42

.***** ,

APPLICATIONS

RECEIVE INTERUPT SERVICE ROUTINEj
RISR PROCESSES A RECEIVE INTERUPT
AT THE END OF RECEIVE THE USER SUPPLIED
COMPLETION ROUTINE IS CALLED AND THEN AN
EXIT IS TAKE. THROUGH VOUT OF THE

j V?CTOR
.***** ,

RISR: LHLD
MVI
OUT
INR
DCR
JNZ
INR
DCR
JZ

RISRB: CALL
. IN

STAX.
MOV
IN
ANI
JNZ
INR
DCR
JNZ
MVI

RISRA: LXI
PUSH
LHLD
CALL
PCHL

RISRE: MVI
JMP

EXCHAR: LXI
EXA: MOV

CPI
JZ
CMP
JZ
INX
JMP

PEND: MVI
JMP

RCBA
A,82H
OF3H
L
L
RISRB
H
H
VOUT
LOADA
USDAI
D
C,A
USTAT
38H
RISRE
B
B
EXCHAR
A,GSTAT
H,VOUT
H
RCBA
CLEAN

A,BSTAT
RISRA
H,MTAB
A,M
OFFH
VOUT
C
PEND
H
EXA
A,CEND
RISRA

jMDS-CLEAR RECEIVE INTERUPT
jMDS

jREADY-SET UP ADDRESS
jGET INPUT DATA
jAND PUT IN THE BUFFER
jSAVE INPUT DATA IN C
jGET STATUS AGAIN
jMASK FOR ERROR FIELD
jNOT ZERO-TAKE ERROR EXIT
jB WAS 00 IF DONE

·NOT DONE-EXIT
IA GETS GOOD STATUS
jGET RETURN ADDRESS
jAND PUSH IT INTO THE STACK
jPOINT H,L AT THE CMD BLOCK
jCALL CLEANUP ROUTINE
;EFFECTIVELY CALLS COMPLETION ROUTINE
jRETURN IS TO VOUT BECAUSE OF PUSH H
jA GETS BAD STATUS
jOTHERWISE EXIT IS NORMAL
jTEST CHARACTER AGAINST EXIT TABLE

jEND OF TABLE

jMATCH~TERMINATE READ

231309-001
6-136

APPLICATIONS

.***** ,

TRANSMIT INTERUPT SERVICE ROUTINE
TISR PROCCESSES TRANSMITTER INTERUPTS
WHEN THE END OF A TRANSMISSION IS
DETECTED THE USER SUPPLIED COMPLETION
ROUTINE IS CALLED AND THEN AN EXIT IS
TAKEN THROUGH VOUT OF VECTOR

j
.***** ,

42D4 3A3842 TISR: LDA TCMD jGET POTENTIAL COMMAND
42D7 B7 0RA A jDESIGNATE ON IT
42D8 C40443 CNZ TUTE JDO UTILITY COMMAND
42DB 3E81 MVI A,081H jI1DS-CLEAR XMIT INTERUPTS
42DD D3F3 OUT OF3H jMDS
42DF 2A3942 LHLD TCBA
42E2 2C INR L jMAKE SURE HAVE VALID CONTROL BLOCK
42E3 2D DCR L
42E4 C2EC42 JNZ TISRA jGOOD
42E7 24 IN R H
42E8 25 DCR H
42E9 CA7E42 JZ VOUT JNON VALID BLOCK (H, L= 0)
42EC CD3E42 TISRA: CALL LOADA jSET UP ADDRESS
42EF 1 A LDAX D jGET DATA FROM BUFFER
42FO D3F4 OUT USDAO jAND OUTPUT IT
42F2 04 IN R B jB WAS 00 IF DONE
42F3 05 DCR B
42F4 C27E42 IN Z VOUT JNOT DONE-EXIT FROM SERVICE ROUTINE
42F7 217E42 LXI H,VOUT jSET UP RETURN ADDRESS
42FA E5 PUSH H jAND PUSH IT INTO THE STACK
42FB 3EOO MVI A,GSTAT jA GETS GOOD STATUS
42FD 2A3942 LHLD TCBA jPOINT H,L AT COMMAND BLOCK
4300 CD 5B 4 2 CALL CLEAN jCALL CLEANUP ROUTINE
4303 E9 PCHL jCALL COMPLETION ROUTINE

jRETURN WILL BE TO VOUT
4304 FEO 1 TUTE: CPI 01 jRECEIVER OFF
4306 CA2443 JZ TUTE1
4309 FE02 CPI 02 jRECEIVER ON
430B CA1443 JZ TUTE2
430E FE03 CPI 03 jCLEAR ERRORS,
4310 CA1C43 JZ TUTE3
4313 C9 RET
4314 3A3742 TUTE2: LDA LCMD
4317 F604 ORr 04
4319 323742 STA LCMD
431C 3A3742 TUTE3: LDA LCMD
431F F610 ORI 10H
4321 D3F5 TUTE4: OUT USCMD
4323 C9 RET
4324 3A3742 TUTE 1: LDA LCMD
4327 E6FB ANI OFBH
4329 323742 STA LCMD
432C C32143 JMP TUTE4

6-137
231309-001

432F 1A
4330 FE43
4332 CA4043
4335 FE52
4337 CA5D43
433A FE57
433C CA9D43
433F C9
4340 F3
4341 AF
4342 D3F5
4344 D3F5
4346 D3F5
4348 3E40
434A D3F5
434C 3E5E

434E D3F5
4350 AF
4351 213942
4354 77
4355 23
4356 77
4357 23
4358 77
4359 23
435A 77
435B FB
435C C9

435D 213B42
4360 7E
4361 B7
4362 C26B43
4365 23
4366 7E
4367 B7
4368 CA7743
436B 3EFE
436D 217643
4370 E5
4371 EB
4372 CD5B42
4375 E9
4316 C9

4377 EB
4378 223B42
437B 3A3742
437E F616
4380 323742
4383 OF

•••••• ,

APPLICATIONS

USART COMMAND BLOCK INTERPRETER
USRUN IS C-ALLED BY USER WITH THE ADDRESS
OF THE COMMAND BLOCK IN H,L. USRUN EXAMINES
THE BLOCK AND INTIALIZES THE REQUESTED OPERATION

j .. -._­,

USRUN: LDAX
CPI
JZ
CPI
JZ
CPI

'JZ
RET

UCLEAR: DI
XRA
OUT
OUT
OUT
MVI
OUT
MVI

OUT
XRA
LXI
MOV
INX
MOV
INX
MOV
INX
MOV
EI
RET

UREAD: LXI
MOV
ORA
JNZ
INX
MOV
ORA
JZ

UROUT: MVI
LXI
PUSH
XCHG
CALL
PCHL

URDB:' RET

URDA: XCHG
SHLD
LDA
ORI
STA
RRC

D
'c'
UCLEAR
'R'
UREAD
'w'
UWRITE

A
USCMD
USCMD
USCMD
A,40H
USCMD
A,05EH

USCMD
A
H,TCBA
M,A
H
M,A
H
M,A
H
M,A

H,RCBA
A,M
A
UROUT
H
A,M
A
URDA
A,OFEH
H,URDB
H

CLEAN

RCBA
LCMD
16H
LCMD

jGET THE CMD FROM THE BLOCK
JIS IT A CLEAR COMMAND?
jYES GO TO CLEAR ROUTINE
JIS IT A READ COMMAND?
jYES-GO TO READ ROUTINE
JIS IT A WRITE COMMAND?
jGO TO WRITE ROUTINE
JNOT A GOOD COMMAND-RETURN
jDISABLE INTERUPTS
jCLEAR A
jOUTPUT THREE TIMES TO ENSURE
jTHAT THE USART IS IN A KNOWN, STATE

,
JCODE TO RESET USART ,
jOUTPUT ON CMU CHANNEL
JCE IMPLIES ASYN MODE (X16)

8 DATA BITS
ODD PARITY

j 1 STOP BIT
jOUTPUT ON CMD CHANNEL
jCLEAR A, SET Z~RO
jCLEAR TCBA AND RCBA

jENABLE INTERUPTS
jAND RETURN TO USER

j

jCHECK READ IDLE

jREAD IS IDLE-PROCEDE
jALREADY RUNNING-ERROr STATUS
jSET UP RETURN ADDRESS
jPUSH IT INTO STACK
jH GETS COMMAND BLOCK ADDRESS
jCALL CLEANUP ROUTINE
jEFFECTIVELY CALLS END ROUTINE
jRETURN TO USER

jH GETS COMMAND BLOCK ADDRESS
jRCBA GETS COMMAND BLOCK ADDRESS
jGET LAST COMMAND
jSET RXE AND DTR AND RESET ERRORS
jAND RETURN TO MEMORY
jSET CARRY EQUAL TO TXE

6-138
231309-001

APPLICATIONS

4384 D28C43 JNC URDC
4387 3E02 MVI A,2
4389 323842 STA TCMD
438C 07 URDC: RLC
438D D3F5 OUT USCMD ;OUTPUT CMD
438F DBF4 IN USDAI ;CLEAR USART OF LEFT OVER CHARACTERS
4391 DBF4 IN USDAI
4393 3E82 MVI A,82H ;MDS-CLEAR RECEIVE INTERUPT
4395 D3F3 OUT OF3H ;MDS
4397 3EF 6 MVI A,OF6H ;MDS-ENABLE LEVEL THREE i',:;,

4399 D3FC OUT OFCH ;MDS I.
439B FB EI ;ENABLE INTERUPTS i~ 439C C9 RET ;RETURN TO USER i· ,'.1.

;~
439D 213942 UWRITE: LXI H,TCBA ;CHECK vlRITE IDLE !,I'

ii,'
43AO 7E MOV A,M
43A1 B7 ORA A
43A2 C26B43 JNZ UROUT ;BUSY-EXIT
43A5 23 INX H
43A6 7E MOV A,M
43A7 C26B43 JNZ UROUT ;BUSY-EXIT
43AA EB XCHG ;OK-H GETS COt1MAND BLOCK ADDRESS
43AB 223942 SHLD TCBA ;TCBA GETS COMMAr,D BLOCK ADDRESS
43AE 3A3742 LDA LCMD ;GET LAST COMMAND
43B1 F6?3 ORI 023H ;SET RTS,DTR, AND TXEN
43B3 323742 STA LCMD
43B6 D3F5 OUT USCMD
43B8 3EF6 MVI A,OF6H MDS-ENABLE LEVEL THREE INTERUPTS
43BA D3FC OUT OFCH MDS
43BC FB EI ENABLE SYSTEM INTERUPTS
43BD C9 RET AND RETURN

6-139
231309-001

APPLICATIONS

.***** ,

USER IS A TEST PROGRAM WHICH EXERCISES USBUN
;
;*****

43BE 3EC3 USER: MVI A,OC3H ;MDS-SET INTERUPT VECTOR
43CO 321800 STA 018H
43C3 216842 LXI H,VECTOR
43C6 221900 SHLD 019H
43C9 3E43 MVI A, 'c' ;SET GENERAL BLOCK TO A 'c'
43CB 111442 LXI D,GBLOCK
43CE 12 STAX D
43CF CD2F43 CALL USRUN
43D2 210040 LXI H,BUFIN ;CLEAR INPUT BUFFER
43D5 AF XRA A
43D6 77 MOV M,A
43D7 2C INR L
43D8 C2D643 JNZ $-2
43DB 210041 LXI H,BUFOUT ; INITIALIZE OUTPUT BUFFER
43DE 75 MOV M,L
43DF 2C INR L
43EO C2DE43 JNZ $-2
43E3 65 MOV H,L ;REINTIALIZE CONTROL BLOCKS
43E4 2E52 MVI L, 'R'
43E6 220042 SHLD RBLOCK
43E9 2E57 MVI L, 'w'
43EB 220A42 SHLD TBLOCK
43EE 6C MOV L,H
43EF 220642 SHLD RCCT
43F2 221042 SHLD TCCT
43F5 110042 LXI O,RBLOCK ;START READ
43F8 CD2F43 CALL USRUN
43FB 110A42 LXI O,TBLOCK ;START WRITE
43FE C02F43 CALL USRUN
4401 3EFI." MVI A,OFFH ;LOOP WAITING COMPLETION
4403 32.1642 STA FLAG ; FLAG WILL BE SET BY COMPLETION ROUTINES
4406 3A1642 LOA FLAG
4409 B7 ORA A
440A c20644 JNZ $-4
4400 210040 LXI H,BUFIN ;TEST INPUT BUFFER=OUTPUT BUFFER
4410 7E COMLP: MOV A,M
4411 24 INR H
4412 BE CMP M
4413 C21E44 JNZ COMER
4416 25 DCR H
4417 2C INR L
4418 C21044 JNZ COMLP
441B C3BE43 JMP USER ;GOOD COMPARE-REPEAT TEST

)441E C7 COMER: RST 0 ;ERROR-RETURN TO MONITOR

0000 END

6-140 .
231309-001

"

APPLICATIONS Ii
I" Il~

BSTAT OOFF BUFIN 4000 BUFOU 4100 CEND 0001

It CLEAN 4"25B COMER 441E COMLP 4410 EXA 42C1
EXCHA 42BE FLAG 4216 GBLOC 4214 GSTAT 0000 ~ LCMD 4237 LOADA 423E MTAB 423D PEND 42CF ,'II
RBAD 4202 RBLOC 4200 RCBA 423B RCCT 4206 .~
RCR 4217 RCRA 4208 RISR 4288 RISRA 42AE
RISRB 4299 RISRE 42B9 RRCT 4204 TBAD 420C
TBLOC 420A TCBA 4239 TCCT 4210 TCMD 4238
TCR 4227 TCRA 4212 TISR 42D4 TISRA 42EC
TRCT 420E TUTE 4304 TUTE1 4324 TUTE2 4314'
TUTE3 431C TUTE4 4321 UCLEA 4340 URDA 4377
U RDB 4376 URDC 438C UREAD 435D UROUT 436B
USCMD 00F5 USDAI 00F4 USDAO 00F4 USER 43BE
USRUN 432F USTAT 00 F5 UWRIT 439D VECTO 4268
VOUT 427E

6-141 231309-001

AP.PLlCATtONS

APPENDIX A

8251 DESIGN HINTS

1. Output of a command to the USART destroys
the integrity of a transmission in progress if
timed incorrectly.

Sending a command into the USART will over­
write any character which is stored in the buffer
waiting for transfer to the parallel-to-serial con­
verter in the device. This can be avoided by
waiting for TxRDY to be asserted before send­
ing a command if transmission is taking place.
Due to the internal structure of the USART, it is
also possible to disturb the transmission if a
command is sent while'a SYN character is being
generated by the device. (The USART generates
a SYN if the software fails to respond to
TxRDY.) If this occurrence is possible in a sys­
tem, commands should be transferred only when
a positive-going edge is detected on the TxRDY,
line.

2. RxE only acts as a mask to RxRDY; it does not
control the operation of the receiver.

When the receiver is enabled, it is possible for it
to already contain one or two characters. These
characters should be read and discarded when
the RxE bit is first set. Because of these extrane­
ous characters the proper sequence for gaining
synchronization is as follows:

1. Disable interrupts

2. Issue a command to enter hunt mode, clear
errors, and enable the receiver (EH,ER,RxE=
1)

3. Read USART data (it is not necessary to
check status)

4. Enable interrupts
The first RxRDY that occurs after the above
sequence will indicate that the SYN character or

6-142

characters have been detected and the next char­
acter has been assembled and is ready to be read.

3. Loss of cts or dropping TxEnable will immedi­
ately clamp the serial output line.
TxEnable and RTS should remain asserted until
the transmission is complete. Note that this im­
plies that not only has the USART completed
the transfer of all bits of the last character, but
also that they have cleared the modem. A delay
of 1 msec following a proper occurrence of
TxEmpty is usually sufficient (see item 4). An
additional problem can occur in the synchro­
nous mode because the loss of TxEnable clamps
the data in at a SPACE instead of the normal
MARK. This problem, which does not occur in
the asynchronous mode, can be corrected by an
external gate combining RTS and the serial out­
put data.

4. Extraneous transitions can occur on TxEmpty
while data (including USART generated SYNs)
istransferted to the parallel-to-serial convertl;!r..

This situation can be avoided by ensuring that
TxEmpty occurs during several consecutive
status reads before assuming that the transmitter
is truly in the empty state.

5. A BREAK (Le., long space) detected by the
receiver results in a string of characters ,which
have framing errors.

If reception is to be continued after a BREAK,
care must be taken to ensure that valid data is
being received; special care must be taken with
the last character perceived during a BREAK,
since its value, including any framing error asso­
ciated with it, is indeterminate:

231309-001

8251 PROGRAMMABLE COMMUN ICATION INTERFACE

6-143 231309-001

© Intel Corporation, 1978

APPLICATION
NOTE

6-144 .

AP·36

March 1978

Order Number 231311-001

Using the 8273
SOLC/HOLC

Protocol Controller

Contents

INTRODUCTION

SDLC/HDLC OVERVIEW

BASIC 8273 OPERATION

HARDWARE ASPECTS OF THE 8273

CPU Interface
Modem Interface

SOFTWARE ASPECTS OF THE 8273

Command Phase Software
Execution Phase Software
Result Phase Software

8273 COMMAND DESCRIPTION

Initialization I Configuration Commands
Operating Mode Register
Serial 1/0 Mode Register
Data Transfer Mode Register
One Bit Delay Register

Receive Commands
General Receive
Selective Receive
Selective Loop Receive
Receive Disable

Transmit Commands
Transmit Frame
Loop Transmit
Transmit Transparent

Abort Commands
Reset Commands I

Modem Control Commands

HDLC CONSIDERATIONS

LOOP CONFIGURATIONS

APPLICATION EXAMPLE

CONCLUSION

APPENDIX A

6-145 231311-001

APPLICATIONS

INTRODUCTION

The Intel 8273 is a Data Communications Protocol Con­
troller designed for use in systems utilizing either SOLC
or HOLC (Synchronous or High-Level Data Link 'Control)
protocols. In addition to the usual features such as full
duplex operation, automatic Frame Check Sequence
generation and checki ng, automatic zero bit insertion
and deletion, and TTL compatibility found on other
single component SOLC controllers; the 8273 features a
frame level command structure, a digital phase locked·
loop, SOLC loop operation, and diagnostics.

The frame level command structure is made possible by
the 8273's unique internal dual processor architecture.
A high-speed bit processor handles the serial data
manipulations and character recognition. A .byte pro­
cessor implements the frame level commands. These
dual processors allow the 8273 to control the necessary
byte-by-byte operation of the data channel with a
minimum of CPU (Central Processing Unit) intervention.
For the user this means the CPU has time to take on
additional tasks. The digital phase locked loop (OPLL)
provides a means of clock recovery from the received
data stream on-chip. This feature, along with the frame
level commands, makes SOLC loop operation extremely
simple and flexible. Diagnostics in the form of both data
and clock loopback are available to simplify board
debug and link testing_ The 8273 is a dedicated function
peripheral in the MCS-80/85 Microcomputer family and
as such, it interfaces to the 8080/8085 system with a
minimum of external hardware.

This application note explains the 8273 as a component
and shows its use in a generalized loop configuration
and a typical 8085 system. The 8085 system was used to
verify the SOLC operation of the 8273 on an actual IBM
SOLC data communications link.

The first section of this application note presents an
overview of the SOLC/HOLC protocols. It is fairly tutorial
in nature and may be skipped by the more knowledge­
able reader. The second section describes the 8273 from
a functional standpoint with explanation of the block
diagram. The software aspects of the 8273, including
command examples, are discussed in the third section.
The fourth and fifth sections'discuss a loop SOLC con­
figuration and the 8085 system respectively.

SOLC/HOLC OVERVIEW

SOLC is a protocol for managing the flow of information
on a data communications link. In other' words, SOLC
can be thought of as an envelope - addressed,
stamped, and containing an s.a.s.e. - in which informa­
tion is transferred from location to location on a data
communications link. (Please note that while SOLC is
discussed specifically, all comments also apply to
HOLC except where noted.) The link may be either point­
to-point or multi-point, with the point-to-point configura­
tion being either switched or nonswitched. The informa­
tion-flow may use either full or half duplex exchanges.
With this many configurations supported, it is difficult
to find a synchronous data communications application
where SOLC would not be appropriate.

Aside from supporting a large number of configurations,
SOLC offers the potential of a 2 x increase in through­
put over the presently most prevalent protocol: Bi-Sync.
This performance increase is primarilyduetotwocharac­
teristics of SOLC: full duplex operation and the implied
acknowledgement of transferred information. The per­
formance increase due to full duplex operation is fairly
obvious since, in SOLC, both stations can communicate
simultaneously. Bi-Sync supports only half-duplex (two­
way alternate) communication. The increase from im­
plied acknowledgement arises from the fact that a sta­
tion using SOLC may acknowledge previously received
information whHe transmitting different information. Up
to 7 rnessages may be outstanding before an acknowl­
edgement is required. These messages may be acknowl­
edged as a block rather than singly. In Bi-Sync, acknowl­
edgements are unique messages that may not be
included with messages containing information and
each information message requires a separate acknowl­
edgement. Thus the line efficiency of SOLC is superior
to Bi-Sync. On a higher level, the potential of a 2 x
increase in performance means lower cost per unit of
information transferred. Notice that the increase is not
due to higher data link speeds (SOLC is actually speed
independent), but simply through better line utilization.

Getting down to the more salient characteristics of
SOLC; the basic unit of information on an SOLC link is
that of the frame. The frame format is shown in Figure 1.
Five fields comprise each frame: flag, address, control,
information, and frame check sequence. The flag fields
(F) form the boundary of the frame and all other fields
are positionally related to one of the two flags. All
frames start with an opening flag and end with a closing
flag. Flags are used for frame synchronization. They
also may serve as time-fill characters between frames.
(There are no intraframe time-fill characters in SOLC as
there are in Bi-Sync.) The opening flag serves as a refer­
ence point for the address (A) and control (C) fields. The
frame check sequence (FCS) is referenced from the
closing flag. All flags have the binary configuration
01111110 (7EH).

SOLC is a bit-oriented protocol, that is, the receiving
station must be able to recognize a flag (or any other
special character) at any time, not just on an 8-bit
boundary. This, of course, implies that a frame may be
N-bits in length. (The vast majority of applications tend
to use frames which are multiples of 8 bits long,
however.)

FRAME
CHECK

OPENING ADDRESS CONTROL INFORMATION SEQUENCE CLOSING
FLAG FIELD (A) FIELD (e) FIELD (I) (FCS) FLAG

Figure 1 .. SDLC Frame Formal

6-146 231311-001

APPLICATIONS

The fact that the flag has a unique binary pattern would
seem to limit the contents of the frame since a flag pat·
tern might inadvertently occur within the frame. This
would cause the receiver to think the closing flag was
received, invalidating the frame. SOLC handles this
situation through a technique called zero bit insertion.
This techniques specifies that within a frame a binary 0
be inserted by the transmitter after any succession of
five contiguous binary 1s. Thus, no pattern of 01111110
is ever transmitted by chance. On the receiving end,
after the opening flag is detected, the receiver removes
any 0 following 5 consecutive 1s. The iiiserted and
deleted Os are not counted for error determination.

Before discussing the address field, an explanation of
the roles of an SOLC station is in order. SOLC specifies
two types of stations: primary and secondary. The
primary is the control station for the data link and thus
has responsibility of lhe overall network. There is only
one predetermined primary station, all other stations on
the link assume the secondary station role. In general, a
secondary station speaks only when spoken to. In other
words, the primary polls the secondaries for responses.
In order to specify a specific secondary, each secondary
is assigned a unique a-bit address. It is this address that
is used in the frame's address field.

When the primary transmits a frame to a specific sec·
ondary, the address field contains the secondary's ad·
dress. When responding, the secondary uses its own
address in the address field. The primary "is never iden·
tified. This ensures that the primary knows which of
many secondaries is responding since the primary may
have many messages outstanding at various secondary
stations. In addition to the specific secondary address,
an address common to all secondaries may be used for
various purposes. (An all 1 s address field is usually used
for this "All Parties" address.) Even though the primary
may use this common address, the secondaries are ex·
pected to respond with their unique address. The
address field is always the first a bits following the
opening flag.

The a bits following the address field form the control
field. The control field embodies the link-level control of
SOLC. A detailed explanation of the commands and
responses contained in this field is beyond the scope of
this application note. Suffice it to say that it is in the
control field that the implied acknowledgement is car·
ried out through the use of frame sequence numbers.
None of the currently available SOLC single chip con·
trollers utilize the control field. They simply pass it to
the processor for analysis. Readers wishing a more
detailed explanation of the control field, or of SOLC in
general, should consult the IBM documents referenced
on the front page overleaf.

In some types of frames, an information field follows
the control field. Frames used strictly for link manage·
ment mayor may not contain one. When an information
field is used, it is unrestricted 'in both content and
length. This code transparency is made possible
because of the zero bit insertion mentioned earlier and
the bit·oriented nature of SOLC. Even main memory core
dumps may be transmitted because of this capability.
This feature is unique to bit-oriented protocols. Like the

control field, the information field is not interpreted by
the SOLC device; it is merely transferred to and from
memory to be operated on and interpreted by the
processor.

The final field is the frame check sequence (FCS). The
FCS is the 16 bits immediately preceding the closing
flag. This 16·bit field is used for error detection through
a Cyclic Redundancy Checkword (CRG). :rhe 16·bit
transmitted CRC is the complement of the remainder
obtained when the A, C, and I fields are "divided" by a
generating polynomial. The receiver accumulates the A,
C, and I fields and also the FCS into its internal CRC
register. At the closing flag, this register contains one
particular number for an error-free reception. If this
number is not obtained, the frame was received in error
and &hould be discarded. Discarding the frame causes
the station to not update its frame sequence numbering.
This results in a retransmission after the station sends
an acknowledgement from previous frames. [Unlike all
other fields, the FCS is transmitted MSB (Most Signifi·
cant Bit) first. The A, C, and I fields are transmitted LSB
(Least Significant Bit) first.) The details of how the FCS
is generated and checked is beyond the scope of this
application note and since all single component SOLC
controllers handle thfs function automatically, it is
usually sufficient to know only that an error has or has
not occurred. The IBM documents contain more detailed
information for those readers desiring it.

The cloSing flag terminates the frame. When the closing
flag is received, the receiver knows that the preceding
16 bits constitute the FCS and that any bits between the
control field and the FCS constitute the information
field.

SOLC does not support an interframe time-fill character
such as the SYN character in Bi-Sync. If an unusual con­
dition occurs while transmitting, such as data is not
available in time from melTlory or CTS (Clear-to-Send) is
lost from the modem, the transmitter aborts the frame
by sending an Abort character to notify the receiver to
invalidate the frame. The Abort character consists of
eight contiguous 1s sent without zero bit insertion. In­
traframe time-fill consists of either flags, Abort charac­
ters, or any combination of the two.

While the Abort character protects the receiver from
transmitted errors, errors introduced by the transmis­
sion medium are discovered at the receiver through the
FCS check and a check for invalid frames. Invalid
frames are those which are not bounded by flags or are
too short, that is, less than 32 bits between flags. All in­
valid frames are ignored by the receiver.

Although SOLC is a synchronous protocol, it provides
an optional feature that allows its use on basically asyn­
chronous data links - NRZI (Non-Return-to-Zero­
Inverted) coding. NRZI coding specifies that the signal
condition does not change for transmitting a binary 1,
while a binary 0 causes a change of state. Figure 2 illus­
trates NRZI coding compared to the normal NRZ. NRZI
coding guarantees that an active line will have a transi­
tion at least every 5-bit times; long strings of zeroes
cause a transition every bit time, while long strings of 1s
are broken up by zero bit insertion. Since asynchronous

6-147 231311-001

APPLICATI,ONS

operation requires that the ~eceiver sampling clock be
derived from the received data, NRZI encoding plus zero
bit insertion make the design of clock recovery circuitry
easier.

All of the previous discussion has applied to SOLC on
either point·to-point or multi-point data networks, SOLC
(but not HOLC) also includes specification for a loop
configuration. Figure 3 compares these three configura­
tions. IBM uses this loop configuration in its 3650 Retail
Store System. It consists of a single loop controller sta·
tion with one or more, down-loop secondary stations.
Communications on a loop rely on the secondary sta·
tlons repeating a received message down loop with Ii
delay of one bit time. The reason for the one bit delay
wtll be evident shortly.

DATA 1 1 0

BIT SAMPLE I I I I I I I II I
NRZ

NRZI

Figure 2. NRZI va NRZ Encodlnll'

POINT·TO·POINT

MULT~POINT '

Loop ,operation defines a new special ,character: -the'
EOP (End-of-PolI) charaoter which conaists of, a 0 fol­
lowed by 7,contiguous, non-zero bit inserted, ones. After
the loop controller transmits a message, it idles the line
(sends all 1s). The final zero of the closing flag plus the
first 7 1s of the idle form an EOP character. While
repeating, the secondaries monitor their incoming line
for an EOP character. When an EOP is detected, the
secondary checks to see if it has a message to transmit.
If it does, it changes the seventh 1 to a 0 (the one bit
delay allows tlme,for thiS) and repeats the modified EOP
(now alias flag). After this flag Is transmitted, ,the sec­
ondary terminates its repeater funct,ion and inserts its
message (with multipl~ preceding flags if necessary).
After the closing flag, the secondary resumes its one bit
delay repeater function. Notice that the final zero of the
seoondary's closing flag plus the repeated 1s from the
controller form an EOP for the next down-loop sec­
ondary, allowing it to insert a message if it desires.

One might wonder if the secondary missed any mes­
sages from the controller while it was inserting its own
mess,age. It does n~t. Loop operation is basically half­
duplex. The controller waits until it receives an EOP
before it transmits its next message. The controller's
reception of the EOP signifies that the original message
has propagated around the loop followed by any mes­
sages inserted by the secondaries. Notice that second­
aries cannot communicate with one another directly, all
secondary· to-secondary commun'ication takes place by
way of the controller.

LOOP

Fillure 3. Network Configuration.

&:148 231311-001

APPLICATIONS

Loop protocol does not utilize the normal Abort charac­
ter. Instead, an abort is accomplished by simply trans­
mitting a flag character. Oown loop, the receiver sees
the abort as a frame which is either too short (if ttie
abort occurred early in the frame) or one with an FCS
error. Either results in a discarded frame. For more
details on loop operation, please refer. to the IBM
documents referenced earlier.

Another protocol very similar to SOLC which the 8273
supports is HOLC (High-Level Oata Link Control). There
are only three basic differences between the two: HOLC
offers extended address and control fields, and the
HLOC Abort character is 7 contiguous 1s as opposed to
SOLC's 8 contiguous 1s.

Extended addressing, beyond the 256 unique addresses
possible with SOLC, is provided by using the address
field's least significant bit as the extended address
modifier. The receiver examines this bit to determine if
the octet should be interpreted as the final address
octet. As long as the bit is 0, the octet that contains it is
considered an extended address. The first time the bit is
a 1, the receiver interprets that octet as the final address
octet. Thus the address field may be extended to any
number of octets. Extended addressing is illustrated in
Figure 4a.

A similar technique is used to extend the control field
although the extension is limited to only one extra con­
trol octet. Figure 4b illustrates control field extension.

Those readers not yet asleep may have noticed the simi­
larity between the SOLC loop EOP character (a 0 follow­
ed by 7'1s) and the HOLC Abort (7 1s). This possible in­
compatibility is neatly handled by the HOLC protocol
not specifying a loop configuration:

This completes our brief discussion of the SOLC/HOLC
protocols. Now let us turn to the 8273 in particular and
discuss its hardware aspects through an explanation of
the block diagram and generalized system schematics.

FtAST BIT TFIANSMITIED (LSB FIRST)

A HOLe ADDRESS FIELD EXTENSION

Figure 4a

C EXTENSION BIT (1 MAX)

FLAG I Ali c,IC2111 1121 FCs,I FCS21 FLAG

B HOLe CONTROL FIELO EXTENSION

Figure 4b

BASIC 8273 OPERATION

It will be helpful for the following discussions to have
some idea of the basic operation of the 8273. Each
operation, whether it is a frame transmission, reception
or port read, etc., is comprised of three phases: the
Command, Execution, and Result phases. Figure 5
shows the sequence of these phases. As an illustration
of this sequence, let us look at the transmit operation.

Figure 5. 8273 Operational Phases

When the CPU decides it is time to transmit a frame, the
Command phase is entered by the CPU issuing a Trans­
mit Frame command to the 8273. It is not sufficient to
just instruct the 8273 to transmit. The frame level com­
mand structure sometimes requires more information
such as frame length and address and control field con­
tent. Once this additional information is supplied, the
Command phase is complete and the Execution phase
is entered. It is during the Execution phase that the
actual operation, in this case a frame transmission,
takes place. The 8273 transmits the opening flag, A and
C fields, the specified number of I field bytes, Inserts
the FCS, and closes with the closing flag. Once the clos­
ing flag is transmitted, the 8273 leaves the Execution
phase and begins the Result phase. Ouring the Result
phase the 8273 notifies the CPU of the outcome of the
command by supplying interrupt results. In this case,
the results would be either that the frame is complete or
that some error condition causes the transmission to be
aborted. Once the CPU reads all of the results (there is
only one for the Transmit Frame command), the Result
phase and consequently the operation, is complete.
Now that we have a general feeling for the operation of
the 8273, let us discuss the 8273 in detail.

HARDWARE ASPECTS OF THE 8273

The 8273 block diagram is shown in Figure 6. It consists
of two major interfaces: the CPU module interface and
the modem interface. Let's discuss each interface
separately.

6-149 231311-001

Ii

APPLICATION~S

REGISTERS

Txl/R

Rxl/R

. TEST MODE

D80_7

TxDRO----!

TxiiACK ---...oj

RxDRO -----;

RxDACK ---.. ",

Rii---.Oj
WR­
CS---~

Ao---I
A1----I

COMMAND

READI
WRITEI

CONTROL
L!,GIC

RESET -----'

OCLK-------'
hl~T _____ --'

RxlNT ______ ----'

CPU MODULE INTERFACE

r---------F~GDUE~

r---------CD
r-------- CTS

r----- RTS

DATA
TIMING
LOGIC

jO.----TxC

1-----TxD

jO.---- RiC
!------RxD

'--------iiPLi
'---------32XCLK

MODEM INTERFACE

Figure 8. 8273 Block Dlagrem

CPU Interface

The CPU Interface. consists of four major blocks: Con­
trol/Read/Write logic (C/RIW), internal registers, data
transfer Jogic, and data bus buffers.

The CPU module utilizes the C/RlW logic to issue com·
mands to the 8273. Once the 8273 receives a command
and executes it, it returns the results (good/bad comple·
tion) of the command by way of the CIRIW logic. The
C/RIW logic is supported by seven registers which are
addressed via the Ao, A1, RD, and WR signals, in addi­
tion to CS. The Ao and A1 signals' are generally derived
from the two low order bits of the CPU module address
bus while RD and WR are the normal 1/0 Read and Write
signals found on the system control bus. Figure 7
shows the address of each register using the C/RlW
logic. The function of each register Is defined as
follows:

ADDRESS INPUTS CONTROL INPUTS

A1 .Ao CS.RD CS.WR

0 0 STATUS COMMAND
0 1 RESULT PARAMETER
1 0 Txl/R TEST MODE
1 1 Rxl/R -

Figure 7. 8273 Register Saleelton

Command - 8273 operat'ions are initiated by writing
the appropriate command byte into this register.

Parameter - Many commands require more informa­
tion than found in the command Itself. This addi­
tional information is provided by way of the param­
eter register.

Immediate Result (Result) - The completion infor­
mation (results) for commands which execute im­
mediately are provided In this register.

Transmit Interrupt Result (TxIlR) - Results' of
transmit operations are passed to the CPU in this
register.

Receiver Interrupt Result (RxIlR) - Receive opera­
tion results are passed to the CPU v[a this register.

Status - The general status of the 8273 is provided
in this register. The Status register supplies the
handshaking necessary during various phases of the
8273 operation.

Test Mode - This register provides a software reset
function for the 8273.

The commands, parameters, and bit definition of these
registers are discussed in the following software sec­
tion. Notice that there are not specific transmit or
receive data registers. This feature is explained in the
data transfer logh:: discussion.

6-1r50 231311-001

APPLICATIONS

The final elements of the C/RlW logic are the interrupt
lines (RxINT and TxINT). These lines notify the CPU
module that either the transmitter or the receiver reo
quires service; i.e., results. should be read from the
appropriate interrupt result register or a data transfer is
required. The interrupt request remains active until all
the associated interrupt results have been read or the
data transfer is performed. Though using the interrupt
lines relieves the CPU module of the task of polling the
8273 to check if service is needed, the state of each
interrupt line is reflected by a bit in the Status register
and non·interrupt driven operation is possible by exam­
ing the contents of these bits periodically.

The 8273 supports two independent data interfaces
through the data transfer logic; receive data and trans·
mit data. These interfaces are programmable for either
DMA or non-DMA data transfers. While the choice of the
configuration is up to the system designer, it is based
on the intended maximum data rate of the communica­
tions channel. Figure 8 illustrates the transfer rate of
data bytes that are acquired by the 8273 based on link
data rate. Full-duplex data rates above 9600 baud usu­
ally require DMA. Slower speeds mayor may not require
DMA depending on the task load and interrupt response
time -of the processor.

Figure 9 shows the 8273 in a typical DMA environment.
Notice that a separate DMA controller, in this case the
Intel 8257, is required. The DMA controller.supplies the
timing' and addresses for the data transfers while the
8273 manages the requesting of transfers and the actual
counting of the data block lengths. In this case,
elements of the data transfer interface are:

TxDRQ: Transmit DMA Request - Asserted QY the
8273, this line requests a DMA transfer from memory
to the 8273 for transmit.

TxDACK: Transmit DMA Acknowledge - Returned
by the 8257 in response to TxDRQ, this line notifies
the 8273 that a request has been granted, and pro­
vides access to the transmitter data register.

RxDRQ: Receiver DMA Request - Asserted by the
8273, it requests a DMA transfer from the 8273 to
memory for a receive operation.

TxDACK: Receiver DMA Acknowledge - Returned by
the 8257, it notifies the 8273 that a receive DMA cycle
has been granted, and provides access to the
receiver data register.

RD: Read - Supplied by the 8257 to indicate data is
to be read from t~e 8273 and placed in memory.

WR: Write - Supplied by the 8257 to indicate data is
to be written to the 8273 from memory.

To request a DMA transfer the 8273 raises the appropri­
ate DMA request line; let us assume it is a transmitter
re~uest (TxDRQ). Once the 8257 obtains control of the
system bus by way of its HOLD and HLDA (hold
acknowledge) lines, it notifies the 8273 that TxDRQ has
been granted by returning TxDACK and WR. The
TxDACK and WR signals transfer data to the 8273 for a
transmit, independent of the 8273 chip select pin (CS). A
similar sequence of events occurs for receiver requests.
This "hard select" of data into the transmitter or out of

6-151

the receiver alleviates the need for the normal transmit
and receive data registers addressed by a combination
of address lines, CS, and WR or RD. Competitive
devices that do not have this "hard select" feature re­
quire the use of an external multiplexer to supply the
correct inputs for register selection during DMA. (Do not
forget that the SDLC controller sees both the addresses
and control signals supplied by the DMA controller dur­
ing DMA cycles.) Let us look at typical frame transmit
and frame receive sequences to better see how the 8273
truly manages the DMA data transfer.

Before a frame can be transmitted, the DMA controller is
supplied, by the CPU, the starting address for the
desired information field. The 8273 is then commanded
to transmit a frame. (Just how this is done is covered
later during our software discussion.) After the com­
mand, but before transmission begins, the 8273 needs a
little more information (parameters). Four parameters
are required for the transmit frame command: the ad­
dress field byte, the control field byte, and two bytes
which are the least significant and most significant
bytes of the information field byte length. Once all four
parameters are loaded, the 8273 makes RTS (Request-to·
Send) active and waits for CTS (Clear-to-Send) to go ac­
tive. Once CTS is active, the 8273 starts the frame trans'
mission. While the 8273 is transmitting the opening flag,
address field, and control field; it starts making trans­
mitter DMA requests. These requests continue at char­
acter (byte) boundaries until the pre-loaded number of
bytes of information field have been transmitted. At this
point the requests stop, the FCS and closing flag are
transmitted, and the TxlNT line is raised, signaling the
CPU that the frame transmission is complete. Notice
that after the initial command and parameter loading,
absolutely no CPU intervention was required (since
DMA is used for data transfers) until the entire frame
was transmitted. Now let's look at a frame reception.

sec/byte

800"s

80"s

I I ! I

100 1K 10K 10l)K

SAUD RATE (bps)

Figure 8. Byte Transfer Rate vs Baud Rate

BUS reOOTROL

~OATABUS
Figure 9. DMA, Interrupt-Driven System

231311-001

APPLICATIONS

The receiver operation is very similar. Like the initial
transmit sequence, the DMA controller is loaded with a
starting address for a receiver data buffer and the 8273
is commanded to receive. Unlike the transmitter, there
are two different receive commands: General Receive,
where all received frames are transferred to memory,
and Selective Receive, where only frames having an ad­
dress field matching one of two preprogrammed 8273
address fields are, transferred to memory. Let's assume
for now ,that we want' to general receive. After the
receive command, two parameters are required before
the receiver becomes active: the least significant and
most significant bytes of the receiver buffer length.
Once these bytes are loaded, the receiver is active and
the CPU may return to other tasks. The next frame
appearing at the receiver input is transferred to memory
using receiver DMA requests. When the closing flag is
received, the 8273 checks the FCS and raises its RxlNT
line. The FPU can then read the results which indicate if
the frame was' error-free or not. (If the received frame
had been longer than the pre-loaded buffer length, the
CPU would have been notified of that occurrence earlier
with a receiver error interrupt. The command description
section contains a complete list of error conditions.)
Like the transmit example, after the initial command,
the CPU is free for other tasks until a frame is com­
pletely received. These examples have illustrated the
8273's management of both the receiver and transmitter
DMA channels.

It is possible to use the DMA data transfer interface in a
non·DMA interrupt-driven environment. In this case, 4 in­
terrupt levels are used: one each for TxlNT and RxINT,
and one each for TxDRO and RxDRO. This configuration
is shown in Figure 10. This configuration offers the
advantages that no DMA controller is required and data
requests are still separated from result (completion) re­
quests. The disadvantages of the configuration are that
4 interrupt levels are required and that the CPU must ac­
tually supply the data transfers. This, of course, reduces
the maximum data rate compared to the configuration
based strictly on DMA. This system could use an Intel
8259 8-level Priority Interrupt Controller to supply a vec­
tored CALL (subroutine) address based on requests on
its inputs. The 8273 transmitter and receiver make data
requests by raising the respective DRO line. The CPU is
interrupted by the 8259 and vectored to a data transfer
routine. This routine either writes (for transmit) or reads
(for receive) the 8273 using the respective TxDACK or
RxDACK line. As in the case above, the DACK lines
serve as "hard" chip selects into and out of the 8273.
(TxDACK + WR writes data into the 8273 for transmit.
RxDACK + RD reads data from the 8273 for receive.)
The CPU is notified of operation completion and results
by way of TxlNT and RxlNT lines. Using the 8273, and
the 8259, in this way, provides a very effective, yet sim­
ple, interrupt-driven interface.

Figure 11 illustrates a system very similar to that
described above. This system utili;!:es the 8273 in a non­
DMA data transfer mode as opposed to the two DMA ap­
proaches shown in Figures 9 and 10. In the non-DMA
case, data transfer requests are made on the TxlNT and
RxlNT lines. The DRO lines are not used. Data transfer
requests are separated from result requests by a bit in

the Status register. Thus, in response to an interrupt,
the CPU reads the Status,register and branches to either
a result or a data transfer routine based on the status of
one bit. As before, data transfers are made via using the
DACK lines as chip selects to the transmitter and
receiver data registers.

IDA
AD

lOW
WA

07-00

lk1 ~DATA BUS

Figure 10. Inlerrupt·Based DMA Syslem

1-' IDA
BUS

AD

8273
lOW

WA

07-00

lk1 ~DATABUS
Figure 11. Non·DMA Inlerrupl·Drlven Syslem

Figure 12 illustrates the simplest system of all. This
system utilizes polling for all data transfers and results.
Since the interrupt pins are reflected in bits in the
Status register, the software can read the Status
register periodically looking for one of these to be set. If
it finds an INT bit set, the appropriate Result Available
bit is examined to determine if the "interrupt" is a data
transfer or completion result. If a data transfer is called
for, the DACK line is used to enter or read the data from
the 8273. If the interrupt is a completion result, the ap­
propriate result register is read to determine the goodl
bad completion of the operation.

The actual selection of either DMA or non-DMA modes
is controlled by a command issued during initialization.
This command is covered in detail during the software
discussion.

6-1!12 231311-001

APPLICATIONS

The final block of the CPU module interface is the Data
Bus Buffer. This block supplies the tri-state, bidirec­
tional data bus interface to allow communication to and
from the '8273_

Modem Interface

As the name implies, the modem interface is the modem
side of the 8273. It consists of two major blocks: the
modem control block and the serial data timing block.

The modem control block provides both dedicated and
user-defined modem control functions. All signals sup­
ported by this interface are active ,low so that EIA
inverting drivers (MC1488) and -inverting receivers
(MC1489) may be used to interface to standard modems.

Port A is a modem control input port. Its representation
on the data bus is shown in Figure 13. Bits Do and 0 1
have dedicated functions. Do reflects the logical state of
the CTS (Clear-to-Send) pin. [If CTS is active (low), Do is a
1.J This signal is used to condition the start of a trans­
mission. The -8273 waits until CTS is active before it
starts transmitting a frame. While transmitting, if CTS
goes inactive, the frame is aborted and the CPU is inter­
rupted. When the CPU reads the interrupt result, a CTS
failure is indicated.

0 1 reflects the logical state of the CD (Carrier Detect)
pin. CD is used to condition the start of a frame recep­
tion. CD must be active in time for a frame's address
field. If CD is lost (goes inactive) while receiving a frame,
an interrupt is generated with a CD failure result. CD
may go inactive between frames.

Bits 02 thru 0 4 reflect the logical state of the PA2 thru
PA4 pins respectively. These inputs are user defined.
The 8273 does not interrogate or manipulate these bits.
Bits 0 5, 06,and 0 7 are not used and each is read as a 1
for a Read Port A command.

Port B is a modem control output port. Its data bus
representation is shown in Figure 14. As in Port A, the
bit values represent the logical condition of the pins. Do
and 05 are dedicated function outputs. Do represents
the RiS (Request-to-Send) pin. RTS is normally used to
notify the modem that the 8273 wishes to transmit. This
function is handled automatically by the 8273. If RTS is
inactive (pin is high) when the 8273 is commanded to
transmit, the 8273 makes it active and then waits for
CTS before transmitting the frame. One byte time after
the end of the frame, the 8273 returns RTS to its inactive
state. However, if RTS was active when a transmit com­
mand is issued, the 8273 leaves it active when the frame
is complete.

Bit 05 reflects the state of the Flag Detect pin. This pin
is activated whenever an active receiver sees a flag
character. This function is useful to activate a timer for
line activity timeout purposes.

Sits 0 1 thru 04 provide four user-defined outputs. Pins
PB1 thru PB4 reflect the logical state of these bits. The
8273 does not interrogate or manipulate these bits. 0 6
and 0 7 are not used. In addition to being able to output
to Port B, Port B may be read using a Read Port B com­
mand. All Modem control output pins are forced high on

reset. (All commands mentioned in this section are
covered in detail later.).

The final block to be covered is the serial data timing
block. This block contains two sections: the serial data
logic and the digital phase locked loop (OPLL).

Elements of the serial data logic section are the data
pins, TxO (transmit data output) and RxO (receive data
input), and the respective data clocks, TxC and RxC. The
transmit and receive data is synchronized by the TxC
and RxC clocks. Figure 15 shows the timing for these
signals. The leading edge (negative tranSition) of TxC
generates new transmit data and the trailing edge
(positive transition) of RxC is used to capture the
receive data.

It is possible to reconfigure this section under program
control to perform diagnostic functions; both data and
clock loopback are available. In data loopback mode, the
TxO pin is internally routed to the RxO pin. This allows
simple board checkout since the CPU can send an SOLC
message to itself. (Note that transmitted data will still
appear on the TxO pin.)

Ne Ne Ne Ne

lOR BUS

AD

lOW
W,

~ ~DATABUS
Figure 12. Polled System

07 06 05 D4 03 02 01 DO

111111 1 Lh
I I I, .. _____ CTS - CLEAR TO SEND

. ~ CD - CARRIER DETECT

L---':===== ~:: I USER DEFINED INPUTS

"4

Figure 13. Port A (Input) Bit Definition

0] 06 0s 04 03 02 01 DO

1.1.1
111

11 LSH::~':::'·_
. FLAG DETeCT

Figure 14. Port B (Output) Bit Definition

6-153 231311-001

APPLICATIONS

When data loopback is utilized, the receiver may be
presented incorrect sample timing (RxC) by the external
circuitry. Clock loopback overcomes this problem by
allowing the internal routing of TxC and RxC. Thus the
same clock used to transmit the data is used to receive
it. Examination of Figure 15 shows that this method en­
sures bit synchronism. The final element of the serial
data logic is the Digital Phase locked loop.

The DPll provides a means of clock recovery from the
received data stream. This feature allows the 8273 to in­
terface without external synchronizing logic to low cost
asynchronous modems (modems which do not supply
clocks). It also makes the problem of clock timing in
loop configurations trivial.

To use the DPll, a clock at 32 times the required baud
rate must be supplied to the 32 x ClK pin. This clock
provides the interval that the DPll samples the received
data. The DPll uses the 32 x clock and the received
data to generate a pulse at the DPll output pin. This
DPLl pulse is positioned at the nominal center of the
received data bit cell. Thus the DPll output may be
wired to RxC and/or TxC to supply the data timing. The
exact position of the pulse is varied depending on the
line noise and bit distortion of the received data. The ad­
justment of the DPll position is determined according
to the rules outlined in Figure 16.

Adjustments to the sample phase of DPll with respect
to the received data is made in discrete increments.
Referring to Figure 16, following the occurrence of
DPll pulse A, the DPll counts 32 x ClK pulses and ex­
amines the received data for a data edge. Should no
edge be detected in 32 pulses, the DPLl positions the
next DPll pulse (6) at 32 clock pulses from pulse A.
Since no new phase information is contained in the data
stream, the sample phase is assumed to be at nominal
1 x baud rate. Now assume a data edge occurs after

RxD

NO TRANSITION

32XCLKW.

[)15[[pulse 6. The distance from 6 to the next pulse C is
influenced according to which quadrant (A1> 6

"
62, or

A2) the data edge falls in. (Each quadrant represents 8
32 x ClK times.) For example, if the edge is detected in
quadrant A" it is apparent that pulse 6 was too close to
the data edge and the time to the next pulse must be
shortened. The adjustment for quadrant A, is specified
as - 2. Thus, the next DPll pulse, pulse C, is posi­
tioned 32 - 2 or 30 32 x ClK pulses following DPll
pulse 6. This adjustment moves pulse C closer to the
nominal bit center of the next received data cell. A data
edge occurring in quadrant 62 would have caused Jhe
adjustment to be small, namely 32 + 1 or 33 32 x ClK
pulses. Using this technique, the DPll pulse converges
to the nominal bit center within 12 data transitions,
worse case - 4-bit times adjusting through quadrant A,
or A2 and 8-bit times adjusting through 6 , or 62,

Figure 15. Transmit/Receive Timing

, BIT TIME

x
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A

1--""----,-. 32 CLOCKS ------\ 1---4---30 CLOCKS --"'!.~--I C-2

f

B 1

I I
1 1

I

I
I

1_. --+I--33CLOCKS --1----_
1 1 I
1 1 1

: 1 I F 1 I 32 CLOCKS --+-----1 C NOMINAL

1 1 1
1 I 1 1
1 I 1 I

QUADRANT 1 A1 I B, 1 B2 A2 I
ADJUSTMENT 1 -2 I -, I +, +2 I

Figure 16. DPLL Phase Adjustments

6-154 23,311-001

APPLICATIONS

When the receive data stream goes idle after 15 ones,
DPlL pulses are generated at 32 pulse intervals of the
32x ClK. This feature allows the DPlL pulses to be
used as both transmitter and receiver clocks.

In order to guarantee sufficient transitions of the re­
ceived data to enable the DPLl to lock, NRZI encoding
of the data is recommended. This ensures that, within a
frame, data transitions occur at least every five bit times
- the longest sequence of 1 s which may be transmitted
with zero bit insertion. It is also recommended that
frames following a line idle be transmitted with pre­
frame sync characters which provide a minimum of 12
transitions. This ensures that the DPLl is generating
DPLl pulses at the nominal bit centers in time for the
opening flag. (Two OOH characters meet this require­
merit by supplying 16 transitions with NRZI encoding.
The 8273 contains a mode which supplies such a pre­
frame sync.)

Figure 17 illustrates 8273 clock configurations using
either synchronous or asynchronous modems. Notice·
how the DPll output is used for both TxC and RxC in
the asynchronous case. This feature eliminates the
need for external clock generation logic where low cost)
asynchronous modems are used and also allows direct
connection of 8273s for the ultimate in low cost data
links. ·The configuration for loop applications is dis­
cussed in a following section.

This completes our discussion of the hardware aspects
of the 8273. Its software aspects are now discussed.

SOFTWARE ASPECTS OF THE 8273

The software aspects of the 8273 involve the communi­
cation of both commands from the CPU to the 8273 and
the return of results of those commands from the 8273

8273

TxC

TxD

RxC

-=- NC

to the CPU. Due to the internal processor architecture of
the 8273, this CPU-8273 communication is basically a
form of interprocessor communication. Such communi·
cation usually requires a form of protocol of its own.
This protocol is implemented through use of handshak·
ing supplied in the 8273 Status register. The bit defini­
tion of this register is shown in Figure 18.

CBSY: Command Busy - CBSY indicates when the
8273 is in the command phase. CBSY is set when the
CPU writes a command into the Command register,
starting the Command phase. It is reset when the last
parameter is deposited in the Parameter register and
accepted by the 8273, completing the Command
phase.

CBF: Command Buffer Full - When set, this bit in­
dicates that a byte is present in the Command
register. This bit is nomially not used.

CPBF: Command Parameter Buffer Full- This bit in­
dicates that the Parameter register contains a
parameter. It is set when the CPU deposits a
parameter in the Parameter register. It is reset when
the 8273 accepts the parameter.

CRBF: Command Result Buffer Full - This bit is set
when the 8273 places a result from an immediate
type command in the Result register. It is reset when
the CPU reads the result from the Result register.

RxINT: Receiver Interrupt - The state of the RxlNT
pin is reflected by this bit. RxlNT is set by the 8273
whenever the receiver needs servicing. RxlNT is reset
when the CPU reads the results or performs the data
transfer.

TxINT: Transmitter Interrupt - This bit is identical to
RxlNT except action is initiated based on transmitter
interrupt sources.

SYNC
MODEM

SYNCHRONOUS MODEM INTERFACE

32X
CLOCK

ASYNCHRONOUS MODEM INTERFACE

Figure 17. Serial Data Timing Configuration

6-155 231311-001

APPLICAtiONS

RxIRA: Receiver Interrupt Result Available - RxlRA
is set when the 8273 places an interrupt result byte
into the Rxl/R register. RxlRA Is reset when the CPU
reads the Rxl/R register.

TxIRA: Transmitter Interrupt Result Available -
TxlRA is the corresponding Result Available bit for
the transmitter. It is set when the 8273 places an in­
terrupt result byte in the Txl/R register and .reset
when the CPU reads the register.

The significance of each of these bits will be evident
shortly. Since the software requirements of each
8273 phase are essentially independent, each phase
is covered separately.

Ix'RA _ hiNT RESULT AVAILABLE
RxlRA - RxlNT RESULT AVAILABLE

L-'====TXINT - Tx INTERRUPT
RxlNT _ Rx INTERRUPT

'-~~~~~-CRBF - COMMAND RESULT
- BUFFER FULL

'-~~~~~~~CPBF _ COMMAND PARAMETER
BUFFER FULL

L-'========= CBF - COMMAND BUFFER FULL
casy - COMMAND BUSY

Figure 18. Slalus Reglsler Formal

Command Phase Software

Recalling the Command phase description in an earlier
section, the CPU starts the Command phase by writing a
command byte into the 8273 Command register. If fur­
ther information about the command is re~uired by the
8273, the CPU writes this information into the Parameter
register. Figure 19 is a flowchart of the Command
phase. Notice that the CBSY and CPBF bits of the
Status register are used to handshake the command
and parameter bytes. Also note that the chart shows
that a command may not be issued if the Status register
indicates the 8273 is busy (CBSY = 1). If a command is
issued while CBSY = 1, the original command is over­
written and lost. (Remember that CBSY signifies the
command phase is in progress and not the actual execu­
tion of the command.) The flowchart also includes a
Parameter buffer full check. The CPU must wait until
CPBF = 0 before writing a parameter to the Parameter
register. If a parameter is issuec;l while" CPBF= 1, the
previous parameter is overwritten and lost. An example
of comma[ld output assembly language software is pro­
vided in Figure 20a. This software assumes that a com­
mand buffer exists in memory. The buffer is pOinted at
by the HL register. Figure 20b shows the command buf-
fer structure. .

The 8273 is a full duplex device, i.e., both the transmitter
and receiver may be executing commands or passing in­
terrupt results at any given time. (Separate Rx and Tx in­
terrupt pins and result registers are provided for this
reason.) However, there is only one Command register.
Thus, the Command register must be used for only one'
command sequence af a time and the transmitter and
receiver may never be simultaneously in a command

phase. A detailed description of the commands and
their parameter!! is presented in a following section.

Figure 19. Command Phase Flowcharl

;FUNCTION: COMMAND DISPATCHER
;INPUTS: HL - COMMAND BUFFE.R ADDRESS
; OUTPUTS t NONE
.CALLS: NONE
;DES,TROYS: A,B,H,L,F/F'S
; OESCRIPTION: CMOOUT ISSUES THE COMMAND + PARAMETERS
; IN THE COMMAND BUFFER POINTED AT BY HL
;
CMDOUIT: LXI

MOV
INX

CMOI: IN
RLC
JC
MOV
OUT

CM02: MDV
ANA
RZ
INX
DCR

CMD3: IN
ANI
JNZ
MOV
OUT
JMP

H,CMDBUF;POINT HL AT BUFFER
BrM ; 1ST ENTRY IS PAR. COUNT
H ; POIt<oT AT COMMAND BYTE
STAT73 ;READ 8271 STATUS
,ROTATE CBSY INTO CARRY
CMD1 1WAIT UNTIL CBSY=Ql
ArM ;MOVE COMMAND BYTE' TO A
COMM71 ; PUT COMMAND IN COMMAND REG
A,B ;GET PARAMETER COUNT
A ;TEST IF ZERO
; IF " THEN DONE
H ;NOT DONE, so POINT AT NEXT PAR
B ; DEC PARAMETER COUNT
STAT71 ;READ 8271 STATUS
CPBF ;TEST cpeF BIT
CMD3 ;WAIT UNTIL CPBF IS "
ArM ;GET PARAMETER FROM BUFFER
PARM73 ;OUTPUT PAR TO PARAMETER REG
CMD2 ;CHECK IF MORE PARAMETERS

Figure 20A. Command Phase Software

6-156 ~31311-001

APPLICATIONS

+4 PARAMETER 3

+3 PARAMETER 2

+2 PARAMETER 1

+1 COMMAND

CMDBUF: PARAMETER COUNT -HL

Figure 2OB. Command Bulfar Format

Execution Phase Software

During the Execution phase, the operation specified by
the Command phase is performed. If the system utilizes
DMA for data transfers, there is no CPU involvement
during this phase, so no software is required. If non­
DMA data transfers are used, either interrupts or polling
is used to signal a data transfer request.

For interrupt-driven transfers the 8273 raises the appro­
priate INT pin. When responding to the interrupt, the
CPU must determine whether it is a data transfer re­
quest or an interrupt signaling that an operation is com·
plete and results are available. The CPU determines the
cause by reading the Status register and interrogating
the associated IRA (Interrupt Result Available) bit (Tx·
IRA forTxlNT and RxlRA for RxINT).1f the IRA = 0, the in·
terrupt is a data transfer request. If the IRA = 1, an
operation is complete and the associated Interrupt
Result register must be read to determine the comple­
tion status (good/bad/etc.). A software interrupt handler
implementing the above sequence is presented as part
of the Result phase software. .

When polling is used to determine when data transfers
are required, the polling routine reads the Status
register looking for one of the INT bits to be set. When a
set INT bit is found, the corresponding IRA bit is ex­
amined. Like in the interrupt-driven case, if the IRA = 0, a
data transfer is required. If IRA= 1, an operation is com­
plete and the Interrupt Result register needs to be read.
Again, example polling software is presented in the next
section.

Result Phase Software

During the Result phase the 8273 notifies the CPU of the
outcome of a command. The Result phase is initiated by
either a successful completion of an operation or an er­
ror detected during execution. Some commands such
as reading or writing the I/O ports provide immediate
results, that is, there is essentially no delay from the
issuing of the command and when the result is avail·
able. Other commands such as frame transmit, take
time to complete so their result is not available im·
mediately. Separate result registers are provided to
distinguish these two types of commands and to avoid
interrupt handling for simple results.

Immediate results are provided in the Result register.
Validity of information in this register is indicated to the
CPU by way of the CRBF bit in the Status register. When
the CPU completes the Command phase of an im­
mediate command, it polls the Status register waiting
until CRBF = 1. When this occurs, the CPU may read the

Result register to obtain the immediate result. The
Result register provides only the results from immedi­
ate commands.

Example software for handling immediate results is
shown in Figure 21. The routine returns with the result
in the accumulator. The CPU then uses the result as is
appropriate.

All non-immediate commands deal with either the trans­
mitter or receiver. Results from these commands are
provided in the TxllR (Transmit Interrupt Result) and
RxllR (Receive Interrupt Result) registers respectively.
Results in these registers are conveyed to the CPU by
the TxlRA and RxlRA bits of the Status register. Results
of non-immediate commands consist of one byte result
interrupt code indicating the condition for the interrupt
and, if required, one or more bytes supplying additional
information. The interrupt codes and the meaning of the
additional results are covered following the detailed
command description.

Non-immediate results are passed to the CPU in
response to either interrupts or polling of the Status
register. Figure 22 illustrates an interrupt-driven result
handler. (Please note that all of the software presented
in this application note is not optimized for either speed
or code efficiency. They are provided as a guide and to
illustrate concepts.) This handler provides for interrupt­
driven data transfers as was promised in the last sec­
tion. Users employing DMA-based transfers do not need
the lines where the IRA bit is tested for zero. (These
lines are denoted by an asterisk in the comments col­
umn.) Note that the INT bit is used to determine when all
results have been read. All results must be read. Other­
wise, the INT bit (and pin) will remain high and further in­
terrupts may be missed. These routines place the
results in a result buffer pointed at by RCRBUF and
TxRBUF.

A typical result handler for systems utilizing polling is
shown in Figure 23. Data transfers are also handled by
this routine. This routine utilizes the routines of Figure
22 to handle the results.

At this point, the reader should have a good conceptual
feel about how the 8273 operates. It is now time for the
particulars of each command to be discussed.

:FUNCTION: IMDRLT
;lNPUTS: NOt-lE
(Jl/l'PU'l'S: RE.SULT REGIS'!'ER IN A
CALLS: NONE
DES'l'RUYS: A, F IF' 5
DLSCkIPTION: IM[;RLT IS CALLED AFTeR A CMDOUT FOR AN
IMMf:..LIATE CUMl>IANu TO READ THE. RESULT RE.GISTER

MLRL'l': IN
ANI
JZ
IN

STA'I71
CkBF
IMDRL T
RESL 7,

Id:.'f jl\l:,'IURN

jRJ:.AD 8271 STATUS
:TI:.ST IF RESULT REG Rf:..ADY
;nA!T If' CRBF:1i)
; Rf:.AD RESULT REGISTER

Figure 21. Immediate Result Handler

6-157 231311-001

• I

APPLICATIONS

,FUNCTION: aXI - INTERRUPT DRIVEN RESULT/DATA HANDLER
, INPUTS I ReRaUF, RCVPNT
,CALLS I NONE
,OUTPUTS; RCRSUF, RCV.PNT
,DESTROYS: NOTHING

:~:~c;~;~~~~~ ~~ ~~S;:~B~~~ ~!T: ~~~~~~= ~~~~:~pT.
,OR RESULT (IRA-l). FOR DATA TRANSFER, THE DATA IS
,PLACED IN A BUFFER AT RCVpNT. RE'SULTS ARE PLACED IN
, A BUFFER AT RCRBUF.
,A FLAG(RXFLAG) IS SET IF THB INTERRUPT WAS A RESULT.
,(DATA TRANSFER INSTRUCTIONS ARE DENOTED BY '(*) AND
,MAYBE ELIMINATED BY USERS USING DMA. , .
RXI: .PUSH

PUSH
PUSH
IN
ANI
JZ

aXIl: LULD
IN
ANI
JZ
IN
ANI
JZ
IN

I MOV
INX
SHLD
JMp

RXI2: SHLD
IN
MOV
INX
JMp

RXU: MVI
STA

RXI'3: POP
PO.P
PO.P
EI
RET

H
PSW
B
STAT71
RXIRA
RXI2
RCRBUF
STAT71 ,
RXINT
RXI4
STAT71
RXIRA
RXIl
RXIR71
M,A
H
RCaBUF
RXIl
RCVPNT
RCVDAT
M,A'
H
Rxn
A,IUH
RXFLAG
B
psw ..
H
, EhABLE
;DONE

,SAVE HL
;SAVE PSW
,SAVE B
, (*) READ 8271 STATUS
, (*) TEST IRA BI1'
J (*) IF H, DA'l'A TRAhSFEk NJ:.t:DED
;GET RESULT 8UFFEk POINTER
,RE-AD 8271 S'l'A'l'US ACAIN
;TEST II11T BIT
1 IF ", 'l'Ht.N DONE:
,READ 8271 Si'ATUS AGAIN
;TEST UtA AGAIN
,LOOP UN'l'IL RtStJLT IS READ'¥
;READY, READ RXI/R
,STORE RESULT It.! BUFFER
;BUMP RESULT POINTER
,RESTORE BUFFER POINTER
,GO BACK TO SEE IF, MOk~

(*) GE.T DATA BUFFER POINTER
, (*) RE-AD DATA VIA RXDACK
; (*) STORE DATA IN 81JFFEk
I (*) BUMP DATA POINTER
, (*) DONE
,SET RX FLAG TO SHOW COMpLEi'ION
;COMPLE.TIOh
,RESTORE BC
,RES TORt PS"
,Rt:STORt. HL
INTERRUPTS

:FlJhCTION: 'IXI - IhTt.RRUPT DRIVEN RESULT/DATA HANDLER
; INPUTS: 'l'XaBUF f TXPNT f TXFLAG
;OUTPU'l'S: TXRBUF, TXPNT, TXFLAG
,CALLS: NONE
; DESTkOYS : NOTHING
;DI:.l:)CRIPTIOl\l: TXI IS ENTERED AT A TRANSM.I'1'TER INTERRU~T.
;'HtE INTERRUJilT IS TES'l'ED BY WAY OF THE IRA BIT TO SEE
,If A DATA TRANSFER OR RESULT COMPLETION HAS OCCURED.
;FOR DATA 'l'RANSFERS' (IRA"") f THE DATi\. IS OBTAl64£D FROM.
;A BUFfl:.k LOCATION POINTED AT BY TXPN'l'. FOR COMPLETION,
;,(IRA-I), TdE RESULTS ARE READ AND PLACED A'l' A RESULT
,BUFFtR POINTED AT BY TXRBUF, AND THE TXFLAG IS SET
,TO IOtICATE'TO THL MAIO PROGRAM THAT A OPERATION IS
;COMPLETE. -!XX OPERATIONS HAVE ONLY ONE RESULT.
~LATA TRANSFER INSTRUCTIONS ARE DENOTED BY (*). THESE
;folAYBE REMOVED BY USt.RS USING DHA.

TXI1:

TXI2:

PUSH
PUSH
10
ANI
JZ
III
LHLD
MOV
INX
SHLD
MVI
STA
POP
POP
tI
RET
LHLD
MOV
OUT
INX
saLe
JMP

H
PSW
STAT71
TXIRA
TXI2
TXIR71
TXRBUF
M,A
H
TXRBUF
A,01H
TXFLAG
psw
H
, EhABLE
,DONE
TXpNT
A,M
TXDATA
H
TXpNT
TXIl

;SAVE aL
,SAVE PSW
, (*) READ 8271 STATUS
, (*) TEST TXIRA ~lT
; (*) IF 8, DATA TRANSFER
J 1, THEN REAr. TXIR
,GET RESULT BUFFER POINTER
,STORE RESULT IN BUFFER
; BUMP RESULT POINTER
,RESTORE RESULT, POINTER
,SET TXFLAG TO SHOW COMPLETIOII
;SET FLAG
; RESTORE PSW
;RESTORE HL
IhTERRUPTS

(*) GET DATA POINTER
(*) GET DATA FROM BUFFER
(.) OUTPUT TO 8271 VIA TXDACK
(*) BUMP DATA POINTER
(*) RESTORE POINTER
(*) RETURN AFTER RESTORE

Fillure 22. Interrupt·Drlven Result Handl
with Non·DMA Data T ... ns

, FUIICTlqN: ,.POLOp
;INPUTS; NON£.
;OUTPUTS: C-" (NO STATUS), -I (RX COM.PLETION),
, =2 (TX COMPLETION), -1 (BOTH)
;CALLS: TXI, RXI
;DESTROYS: B,C
;DESCRIPTION; POLOP IS CALLEtl TO POLL THE 8211 FOR
JDATA TRANSFERS AND COMPLETION RE.SULTS. THE
; ROUTINES TXI AND RXI ARE USED FOR THE ACTUAL
,TRANSFLRS AND BUFFER WORK. POLOp RETURNS
JThE S'1'ATJ.lS OF THEIR ACTION. ,
POLOJil: PUS. PSW ;SAVE PSW

MVI C,."H ;CLEAR C
POLOpl: I. STAT71 ,RtAD 8271 STATUS

ANI IN'1' ;ARE TXINT OR RXINT SET?
JZ PEXIT ;NO, EXIT
IN STA'l'H ;READ 8211 STATUS
ANI RXINT iTt-ST RX I~T
JNZ RXIC JYES, GO SERVICE RX
CALL TXI ;MUST BE TX, GO SERVICE IT
LOA TXFLAG ;GE't TX FLAG
CPI 01H ,WAS IT A COMPLETION? (01)
JNZ PEXIT ;NO, SO JUST EXIT
INR C rYES, UPDATE C
INk C
JMp pOLOpl ,T'RY AGAIN ,

1<XIC: CALL RXI ;GO SERVICE RX
LOA RXFLAG ,GET RX FLAG
CPI 01H ;WAS IT A COMPLE'1'ION? (01)
JNZ PEXIT lNO, so JUST EXIT
INR C ;~ES, UPDATE C
JMP POLOpl ;TRY AGAIN ,

PE.XIT: POP PSW ;RI:.STORE. PSW
RE'l' ,RETURbi 'It. ITH COMP. STATUS IN C

Figure 23. Polling Result Handle,

8273 COMMAND DESCRIPTION

In this section, each command Is discussed In detail. In
order to shorten the ncitatlon, please refer to the com·
mand key In Table 1. The 8273 ,utilizes five different
command types: Initl.alizatlon/Conflguratlon, Receive,
Transmit, Reset, and Modem Control. '

Initialization/Configuration Commands

The, Initialization/Configuration commands manipulate
registers internal to, the 8273 that define the various
operating modes. These commands either set or reset
specified bits in the registers depending on the type of
command. One parameter Is required. Set commands
perform a logical OR operation of the parameter (mask)
and the internal register. This mask contains 1s where
register bits are to be sel. A 0 In the mask causes no
change in the corresponding register bil. Reset com­
mands perform a logical AND operation of the param­
eter (mask) and the internal register, I.e., the mask Is 0 to
reset a register bit and a 1 to cause no change. Before
presenting the commands, the register'bit definitions
are discussed.

Bo, B,
Ro, R,
La, L,
A"A2 -
RIC
TIC
A
C

6-158

TABLE 1. COMMAND SUMMARY ~EY

LSB AND MSB OF RECEIVE BUFFER LENGTH
LSB AND MSB OF RECEIVED FRAME LENGTH
LSB AND MSB OF TRANSMIT FRAME LENGTH
MATCH ADDRESSES FOR SELECTIVE RECEIVE
RECEIVER INTERRUPT RESULT CODE­
TRANSMITTER INTERRUPT RESULT CODE
ADDRESS FIELD OF RECEIVED FRAME
CONTROL FIELD OF RECEIVED FRAME

231311-001

APPLICATIONS

Operating Mode Register (Figure 24)

0 7-06: Not Used - These bits must not be manipu­
lated by any command; i.e., 07-06 must be 0 for
the Set command and 1 for the Reset command.

HDLC Abort - When this bit is set, the 8273 will
interrupt when 7 1s (HOLC Abort) are received
by an active receiver. When reset, an SOLC
Abort (8 1s) will cause an Interrupt.

EOP Interrupt - Reception of an EOP character
(0 followed by 7 1s) will cause the 8273 to inter­
rupt the CPU when this bit is set. Loop con­
troller stations use this mode as a signal that a
polling frame has completed the loop. No EOP
interrupt is generated when this bit is reset.

Early Tx Interrupt - This bit specifies when the
transmitter should generate an end of frame in­
terrupt. If this bit is set, an interrupt is gener­
ated when the last data character has been
passed to the 8273. If the user software Issues
another transmit command within two byte
times, th~ final flag interrupt does not occur and
the new frame is transmitted with only one flag
of separation. If this restriction is not met, more
than one flag will separate the frames and a
frame complete interrupt Is generated after the
closing flag. If the bit is reset, only the frame
complete interrupt occurs. This bit, when set,
allows a single flag to separate consecutive
frames.

Buffered Address and Control - When set, the
address and control fields of received frames
are buffered in the 8273 and passed to the CPU
as results after a received frame interrupt (they
are not transferred to memory with the informa­
tion field). On transmit, the A and C fields are
passed to the 8273 as parameters., This mode
simplifies buffer management. When this bit is
reset, the A and C fields are passed to and from
memory as the first two data transfers.

Preframe Sync - When set, the 8273 prefaces
each transmitted frame with two characters
before the opening flag. These two characters
provide 16 transitions to allow synchronization
of the opposing receiver. To guarantee 16 tran­
sitions, the two characters are 55H-55H for non­
NRZI mode (see Serial 1/0 Register description)
or OOH-OOH for NRZI mode. When reset, no
preframe characters are transmitted.

Flag Stream - When set, the transmitter will
start sending flag characters as soon as it is
idle; i.e., Immediately if idle when the command
is issued or after a transmission If the transmit­
ter Is active when this bit is set. When reset, the
transmitter starts sending Idle characters on
the next character boundary If idle already, or at
the end of a transmission if active.

6-159

PLAT STREAM MODE

PAEFRAME SYNC MODE
L-___ BUFFERED MODe

l_1~~~~~~ EARLVTx INTERRUPT ENABLE EOP INTERRUPT ENABLE

HDLe ABORT ENABLE
NOT USED - DO NOT CHANGE

Figure 24. Operating Mode Raglster

Serial 1/0 Mode Register (Figure 25)

07-03: Not Used - These bits must be 0 for the Set
command and 1 for the Reset command.

Data Loopback- When set, transmitted data
(TxO) is Internally routed to the receive data cir­
cuitry. When reset, TxO and RxO are indepen­
dent.

Clock Loopback - When set, TxC is internally
routed to RXC. When reset, the clocks are inde­
pendent.

NRZI (Non-Return to Zero Inverted) - When set,
the 8273 assumes the received data Is NRZI en­
coded, and NRZI encodes the transmitted data.
When reset, the received and transmitted data
are treated as a normal positive logic bit stream.

Data Transfer Mode Register (Figure 26)

07-01: Not Used - These bits must be 0 for the Set
command and 1 for the Reset command.

Do: InterrIJpt Data Transfer - When set, the 8273
will interrupt the CPU when data transfers are
required (the corresponding IRA Status register
bit will be 0 to signify a data transferJnterrupt
rather than a Result phase interrupt). When
reset, 8273 data transfers are performed through
OMA requests on the ORO pins without inter­
rupting the CPU.

, CLOCK LOOPBACK -
DATA LOOP'ACK

L¥?r¥¥ ~N.nOOE
NOT USED - DO NOT CHANOE

Figure 25. Serial 110 Mode Raglster

W1?I¥WJ L--1--'L-+t-=_==-~L= INTERRUPT DATATAANSFERS
NOT USED - DO NOT CHANGE

Figure 28. Data Transler Mode Raglstar

231311-001

"I'
'I,

I'
Ii 'I~
I" 1:1

i
1~
I';

I"

, ,

!

APPLICATIONS

One Bit Delay Register (Figure 27)

0 7: One Bit Delay - When set, the 8273 retransmits
the received data stream one bit delayed. This
mode is entered and exited at a received char­
acter boundary. When reset, the transmitted and
received data are independent. This mode is
utilized for loop operation and is discussed in a
later section. '

0 6-00: Not Used - These bits must be 0 for the Set
command and 1 for the Reset command.

NOT USED _ DO NOT CHANGE

ONE BIT DELAY ENABLE

Figure 27. One Bit Delay Mode Register

Figure 28 shows the Set and Reset commands associ­
ated with the above registers. The mask which sets or
resets the desired bits is treated as a single parameter.
These commands do not interrupt nor provide results
during the Result phase. After reset, the 8273 defaults to
all of these bits reset.

REGISTER COMMAND
HEX

PARAMETER
CODE

ONE BIT DELAY MODE
SET A4 SET MASK

RESET 64 RESET MASK

DATA TRANSFER MODE
SET 97 SET MASK

RESET 57 RESET MASK

OPERATING MODE
SET 91 seT MASK

RESET 51 RESET MASK

SERIAL 110 MODE
SET AO SET MASK

RESET 60 RESET MASK

Flgur. 28. InltlalizallonfConllguratlon Command Summary

Receive Commands

The 8273 supports three receive commands plus a
receiver disable funct,ion.

Gener~1 Receive

When commanded to General Receive, the 8273 passes
all frames either to memory (DMA mode) or to the CPU
(non-DMA mode) regardless of the contents of the
frame's address field. This command is used for primary'
and loop controller stations. Two parameters are re­
quired: Bo and B, . These parameters are the LSB and
MSB of the receiver buffer size. Giving the 8273 this
extra information alleviates the CPU of the burden of
checking for buffer overflow. The 8273 will interrupt the
CPU if the received frame attempts to overfill the
allotted buffer space.

Selective Receive

In Selective Receive, two ad_ditional parameters besides
Bo and B, are required: A, and A2. These parameters are
two address match bytes. When commanded to Selec­
tive Receive, the 8273 passes to memory or the CPU
only those frames having an 'address field matching
either A, or A2. This command is usually used for sec­
ondary stations with A, being the secondary address
and A2 is the "All Parties" address. If only'one match
byte is needed, A, and A2 should be equal. As in General
Receive, the 8273 counts the incoming data bytes and
interrupts the CPU if Bo, B, is exceeded.

Selective Loop Receive

This command is very similar in operation to Selective
Receive except that One Bit Delay mode must be set and
that the loop is captured by placing transmitter in' Flag

. Stream mode automatically after an EOP character is
detected following a selectively received frame. The
details of using the 8273 in loop configurations is
discussed in a later section so please hold questions
until then.

The handling of interrupt results is common among the
three commands. When a frame is received without
error, I.e., the FCS is correct a'nd CD (Carrier Detect) was
active throughout the frame or no attempt was made to
overfill the buffer; the 8273 interrupts the CPU following'
the closing flag to pass the completion results. These
results, in order, are the receiver interrupt result code
(RIC), and the byte length of the information field of the
received frame (Ro, R,). If Buffered mode is selected, the
address and control fields are passed as two additional
results. If Buffered mode is not selected, the address
and control fields are passed as the first two data
transfers and Ro, R, reflect the information field length
plus two. '

Receive Disable

The receiver may also be disabled using the Receive
Disable command. This command terminates any
receive operation immediately. No parameters are re­
quired and no results are returned.

The details for the Receive command are shown in
Figure 29. The interrupt result code key is shown in
Figure 30. Some explanation of these result codes is
appropriate.

The interrupt result code is the first byte passed to the
CPU in the RxllR register during the Result phase. Bits
0 4-00 define the callse of the receiver interrupt. Since
each result code has specific implications, they are
discussed separately below.

COMMAND
HEX PARAM· RESULTS'

CODE ETERS RxllR

GENERAL RECEIVE CO Bo.81 RIC, RO, R1, A, C

SELECTIVE RECEIVE C1 BO, B1,A1,A2 RIC, RO, R" A, C

SELECTIVE LOOP RECEIVE C2 BO' ~1>A1,A2 RIC, RO' R" A, C
DISABLE RECEIVER C5 NONE NONE

• A AND C ARE PASSED AS RESULTS ONLY IN BUFFERED MODE

Figure 29. Receiver Command Summary

6-160 23131,1-001

APPLICATIONS

RIC R.STATUS
D7-DO RECEIVER INTERRUPT ResULT CODE AFTER INT

00000 Al MATCH OR GENERAL RECEIVE ACTIVE
00001 A2 MATCH ACTIVE

000 00011 CRC ERROR ACTIVE
000 00100 ABORT DETECTED ACTIVE
000 00101 IDLE DETECTED DISABLED
000 00110 EOP DETECTED DISABLED
000 00111 FRAME < 32 BITS ACTIVE
000 01000 DMA OVERRUN DISABLED
000 01001 MEMORY BUFFER OVERFLOW DISABLED
000 01010 CARRIER DETECT FAILURE DISABLED
000 01011 RECEIVER INTERRUPT OVERRUN DISABLED

'D7-D5 PARTIAL BYTE RECEIVED

111 ALL 8 BITS OF LAST BYTE
000 Do
100 Dl-DO
010 D2-Do
110 Il3-Do
001 D4D-0
101 D5-Do
011 De-Do

Figure 30. Recel_ Interrupt Result Codes (RIC)

The first two result codes result from the error·free
reception of a frame. If the frame is received correctly
after a General Receive command, the first result is
returned. If either Selective Receive command was used
(normal or ioop), a match with Al generates the first
result code and a match with A2 generates the second.
In either case, the receiver remains active after the inter·
rupt; however, the internal buffer size counters are not
reset. That is, if the receive command indicated 100
bytes were allocated to the receive buffer (Bo, B1) and an
80·byte frame was received correctly, the maximum next
frame size that could be received without recomman·
ding the receiver (resetting Bo and B1) is 20 bytes. Thus,
it is common practice to recommand the receiver after
each frame reception. DMA and/or memory pOinters are
usually updated at this time. (Note that users who do
not wish to take advantage of the 8273's buffer manage·
ment features may simply use Bo, Bl = OFFH for each
receive command. Then frames of 65K bytes may be
received without buffer .overflow errors.)

, The third result code is a CRC error. This indicates that
a frame was received in the correct format (flags, etc.);
however, the received FCS did not check with the Inter­
nally generated FCS. The frame should be discarded.
The receiver remains active. (Do not forget that even
though an error condition has been detected, all frame
Information up until that error has either been trans­
ferred to memory or passed to the CPU. This informa­
tion should be invalidated. This applies to all receiver
error conditions.) Note that the FCS, either transmitted or
received, Is never available to the CPU.

The Abort Detect result occurs whenever the receiver
sees either an SDLC (8 1s) or an HDLC (7 1s), depending
on the Operating Mode register. However, the interven­
ing Abort character between a closing flag and an Idle
does not generate an ,interrupt. If an Abort character
(seen by an active receiver within a frame) is not pre­
ceded by a flag and Is followed by an Idle, an interrupt
will be generated for the Abort, followed by an Idle inter-

6-161

rupt one character time later. The Idle Detect result oc·
curs whenever 15 consecutive 1s are received. After the
Abort Detect Interrupt, the receiver remains active. After
the Idle Detect interrupt, the receiver Is disabled and
must be recommanded before further frames may be
received.

If the EOP Interrupt bit is set in the Operating Mode
register, the EOP Detect result is returned whenever an
EOP character Is received. The receiver is disabled, so
the Idle following the EOP does not generate an Idle
Detect Interrupt.

The minimum number of bits in a valid frame between
the flags is 32. Fewer than 32 bits indicates an error. If
Buffered mode is selected, such frames are ignored, i.e.,
no data transfers or Interrupts are generated. In non­
Buffered mode, a < 32-blt frame generates an interrupt
with the < 32-bit Frame result since data transfers may
already have disturbed the 8257 or Interrupt handler. The
receiver remains active.

The DMA Overrun result results from the DMA controller
being too slow in extracting data from the 8273, i.e., the
~ signal Is not returned before the next received
byte is ready for transfer. The receiver Is disabled if this
error condition occurs.

The Memory Buffer Overflow result occurs when the
number of received bytes exceeds the receiver buffer
length supplied by the Bo and Bl parameters in the
receive command. The receiver is disabled.

I
The Carrier Detect Failure result occufs when the CD
pin goes high (inactive) during reception of a frame. The
CD pin Is used to qualify reception and must be active
by the time the address field starts to be received. If CD
Is lost during the frame, a CD Failure Interrupt Is
generated and the receiver Is disabled. No Interrupt Is
generated If CD goes Inactive between frames.

If a condition occurs requiring an Interrupt be generated
before the CPU has finished reading the previous inter­
rupt results, the second interrupt is generated after the
current Result phase Is complete (the RxlNT pin and
status bit go low then high). However, the interrupt
result for this second Interrupt will be a Receive Inter­
rupt Overrun. The actual cause of the second Interrupt Is
lost. One case where this may occur Is at the end of a
received frame where the line goes Idle. The 8273
generates a received frame interrupt after the closing
flag and then 15-blt times later, generates an Idle Detect
interrupt. If the interrupt service routine is slow in
reading the first interrupt's results, the internal RxllR
register stili contains result Information when the Idle
Detect Interrupt occurs. Rather than wiping out the
previous results, the 8273 adds a Receive Interrupt Over­
run result as an extra result. If the system's Interrupt
structure is such that the second Interrupt is not
acknowledged (Interrupts are stili !llsabled from the first
interrupt), the Receive Interrupt Overrun result Is read as
an extra result, after those from the first interrupt. If the
second interrupt is serviced, the Receive Interrupt Over­
run is returned as a single result. (Note that the INT pins
supply the necessary transitions to support a Program-

231311-001

,1

I'

I
I,

I

APPLICATIONS

mabie Intetrupt Controller such as the Intel 8259. Each
interrupt generates a positive-going edge on the appro­
priate INT pin and the high level is held until the inter­
rupt is completely serviced.) In general, it is possible to
have interrupts occurring at one character time inter­
vals. Thus the interrupt handling software must have at
least that much response and service time.

The occurrence of Receive Interrupt Overruns is an in­
dication of marginal software design; the system's inter­
rupt response and servicing time is not sufficient for the
data rates being attempted. It is advisable to configure
the interrupt handling software to simply read the inter­
rupt results, place them into a buffer, and clear the inter­
rupt as quickly as possible. The software can then ex­
amine the buffer for new results at its leisure, and take
appropriate action. This can easily be accomplished by
using a result buffer flag that indicates when new
results are available. The Interrupt handler sets the flag

'and the main program resets it once the r'esults are
retrieved.

Both SOLC and HOLC allow frames which are of arbi­
trary length (>32 bits). The 8273 handles this N-bit
reception through the high order bits (07-05l of the
result code. These bits code the number of valid re­
ceived bits in the last received information field byte.
This coding is shown in Figure 30. The high order bits of
the received partial btye are indeterminate. [The ad­
dress, control, and information fields are transmitted
least significant bit (Ao) first. The FCS is complemented
and transmitted most significant bit first.]

Transmit Ciommands

The 8273 transmitter is supported by three Transmit
commands and three corresponding Abort commands.

Transmit Frame

The Transmit Frame command simply transmits a
frame. Four parameters are required when Buffered
mode is selected and two when it is not. In either case,
the first two parameters are the least and the most
significant bytes of the desired frame length (Lo, L,). In
Buffered mode, Lo and L, equal the length in bytes of
the desired information field, while in the non-Buffered
mode, Lo and L, must be specified as the information
field length plus two. (Lo and L, specify the number of
data transfers to be performed.) In Buffered mode, the
address and control fields are presented to the transmit­
ter as the third and fourth parameters respectively. In
non-Buffered mode, the A and C fields must be passed

, as the first two data transfers.

When the Transmit Frame command is issued, the 8273
makes RTS (Request-to-Send) active (pin low) if it was
not already. It then waits until CTS (Clear-to-Send) goes
active (pin low) before starting the frame. If the Preframe
Sync bit in the Operting Mode register is set, the trans­
mitter prefaces two characters (16 transitions) before
the opening flag. If the Flag Stream bit is set in the
Operating Mode register, the frame (including Preframe
Sync if selected) is started on a flag boundary.Other­
wise the frame starts on a character boundary.

At the end of the frame, the transmitter interrupts the
CPU (the interrupt results are discussed shortly) anc;t
returns to either Idle or Flag Stream, depending on the
Flag Stream bit of the Operating Mode register. If RTS
was active before the transmit command, the 8273 does
not change it. If it was inactive, the 8273 will deactivate
it within one character time.

Loop Transmit

Loop Transmit is similar to Frame Transmit (the param­
eter definition is the same). But since it deals with loop
configurations, One Bit Delay mode must be selected.

If the transmitter is not in Flag Stream mode when this
command is issued, the transmitter waits until after a
received EOP character has been converted to a flag
(this is done automatically) before transmitting. (The
one bit delay is, of course, suspended during transmit.)
If the transmitter is already in Flag Stream mode as a
result of a selectively received frame during a Selective
Loop Receive command, transmission will begin at the
next flag boundary for Buffered mode or at the third flag
boundary for non-Buffered mode. This discrepancy is to
allow time for enough data transfers to occur to fill up
the internal transmit buffer. At the end of a Loop Trans­
mit, the One Bit Delay mode is re-entered and the flag
stream mode is reset. More detailed loop operation is
covered later.

Transmit Transparent

The Transmit Transparent command enables the 8273 to
transmit a block of raw data. This data is without SOLC
protocol, i.e., no zero bit insertion, flags, or FCS. Thus it
is possible to construct and transmit a Bi-Sync message
for front-end processor switching or to construct and
transmit an SOLC message with incorrect FCS for diag­
nostic purposes. Only the Lo and L, parameters are used
since there are not fields in this mode. (the 8273 does
not support a Receive Transparent command.)

Abort Commands

Each of the above transmit commands has an associ­
ated Abort command. The Abort Frame Transmit com­
mand causes the transmitter to send eight contiguous
ones (no zero bit insertion) immediately and then revert
to either idle or flag streaming based on the Flag Stream
bit. (The 8 1s as an Abort character is compatible with
both SOLC and HOLC.)

For Loop Transmit, the Abort Loop Transmit command
causes the transmitter to send one flag and then revert
to one bit delay. Loop protocol depends upon FCS
errors to detect aborted frames.

The Abort Transmit Transparent simply causes tl:le
transmitter to revert to either idles or flags as a function
of the Flag Stream mode specified.

The Abort commands require no parameters, however,
they do generate an interrupt and return a result when
complete.

A summary of the Transmit commands is shown in
Figure 31. Figure 32 shows the various transmit inter­
rupt result codes. As in the receiver operation, the
transmitter generates interrupts based on either good

6-162 23'3"-00'

APPLICATIONS

completion of an operation or an error condition to start
the Result phase.

The Early Transmit Interrupt result occurs after the llist
,data transfer to the 8273 if the Early Transmit Interrupt
bit Is set In the Operating Mode register. If the 8273 Is
commanded to transmit again within two character
times, a single flag will separate the frames. (Buffered
mode must be used for a single flag to separate the
frames. If non·Buffered mode is selected, three flags
will separate the frames.) If this time constraint is not
met, another Interrupt Is generated and multiple flags or
idles will separate the frames. The second Interrupt Is
the normal Frame Transmit Complete Interrupt. The
Frame Transmit Complete result occurs at the closing
flag to signify a good completion.

The OMA Underrun result is analogous to the OMA Over·
run result In the receiver. Since SOLC does not support
Intraframe time fill, if the OMA controller or CPU does
not supply the data in time, the frame must be aborted.
The action taken by the transmitter on this error is auto­
matic. It aborts the frame just as if an Abort command
had been issued.

Clear·to·Send Error result is generated if CTS goes inac·
tive during a frame transmission. The frame is aborted
as above.

The Abort Complete result is self·explanatory. Please
note however that no Abort Complete interrupt is
generated when an automatic abort occurs. The next
command type consists of only one command.

COMMAND HEX PARAMETERS' RESULTS
CODE TxllR

TRANSMIT FRAME C8 Lo. L1. A. C TIC
ABORT CC NONE TIC.
LOOP TRANSMIT CA Lo. L1. A, C TIC
ABORT CE NONE TIC
TRANSMIT TRANSPARENT CO Lo. L1 TIC
ABORT CD NONE TIC

'A AND C ARE PASSED AS PARAMETERS IN BUFFERED MODE ONLY.

Figure 31. Transmitter Command Summary

TIC TxSTATUS
D7-DO TRANSMITTER INTERRUPT RESULT CODE AFTER INT

000 01100 EARLY Tx INTERRUPT ACTIVE
000 01101 FRAME Tx COMPLETE IDLE OR FLAGS
000 01110 DMA UNDERRUN ABORT
000 01111 CLEAR TO SEND ERROR ABORT
000 10000 ABORT COMPLETE IDLE OR FLAGS

Figure 32. Transmitter Interrupt Result Codes

Reset Command

The Reset command provides a software reset function
for the 8273. It is a special case and does not utilize the
normal command interface. The reset facility is provided
in the Test Mode register. The 8273 is reset by simply
outputting a 01 H followed by a OOH to the Test Mode
register. Writing the 01 followed by the 00 mimicks the
action required by the hardware reset. Since the 8273 re­
quires time to process the reset internally, at least 10
cycles of the "'CLK clock must occur between the

6-163

writing of the 01 and the 00. The action taken is the
same as if a hardware reset is performed, namely:

1. The modem control outputs are forced high
inactive).

2. The 8273 Status register is cleared.

3. Any commands in progress cease.

4. The 8273 enters an idle .state until the next com·
mand is issued.

Modem Control Commands

The modem control ports were discussed earlier In the
Hardware section. The commands used to manipulate
these ports are shown in Figure 33. The Read Port A and
Read Port B commands are immediate. The bit defini·
tion for the returned byte is shown In Figures 13 and 14.
00 not forget that the returned value represents- the
logical condition of the pin, i.e., pin active (low) = bit
set.

PORT COMMAND PARAMETER
REG

RESULT

Figure 33. Modem Control Command Summary

The Set and Reset Port B commands are similar to the
Initialization commands in that they use a mask paramo
eter which defines the bits to be changed. Set Port B
utilizes a logical OR mask and Reset Port B uses a
logical ANO mask. Setting a bit makes the pin active
(low). Resetting the bit deactivates the pin (high).

To help clarify the numerous timing relationships that
occur and their consequences, Figures 34 and 35 are
provided as an illustration of several typical sequences.
It Is suggested that the reader go over these diagrams
and re-read the appropriate part of the previous sections
If necessary.

HLDC CONSIDERATIONS

The 8273 supports HOLC as well as SOLC. Let's discuss
how the 8273 handles the three basic HOLC/SOLC dif­
ferences: extended addressing, extended control, and
the 7 1 s Abort character.

Recalling Figure 4A, HOLC supports an address field of
indefinite length. The actual amount of extension used
is determined by the least significant bit of the charac·
ters immediately following the opening flag. If the LSB
is 0, more address field bytes follow. If the LSB is 1, this
byte is the final address field byte. Software must be
used to determine this extension.

If non-Buffered mode is used, the A, C, and I fields are in
memory. The software must examine the initial charac·
ters to find the extent of the address field. If Buffered
mode is used, the characters corresponding to the
SOLC A and C fields are transferred to the CPU as inter­
rupt results. Buffered mode assumes the two characters
following the opening flag are to be transferred as inter·
rupt results regardless of content or meaning. (The 8273

231311-001

APPLICATIONS

does not know whether it is being used in an SDLC or an
'HOLC environment.) ,In SDLC, these characters are
necessarily the A and C field bytes, however in 'HDLC,
their meaning may change depending on the amount of
extension used. The software must recognize this and
examine the transferred results as possible address
field extensions.

Frames may still be selectively received as is needed for
secondary stations. The Selective Receive command is
still used. This command qualifies a frame reception on
the first byte following the opening flag matching either
of the Al or A2 match byte parameters. While this does
not allow qualification over the complete range of HDLC
addresses, it does perform a qualification on the first
address byte. The remaining address field bytes, if any,
are then examined via software to completely qualify
the frame.

Once the extent of the address field is found, the follow­
ing bytes form the control field. The same LSB test used
for the address field is applied to these bytes to deter­
mine the control field extension, up to two bytes maxi­
mum. The remaining frame bytes in memory represent
the information field.

Th'e Abort character difference is handled in the
Operating Mode register. If the HOLC Abort Enable bit is
set, the reception of seven contiguous ones by an active
receiver will generate an Abort Detect interrupt rather
than eight ones. (Note that both the HDLC Abort Enable
bit and the EOP Interrupt bit must not be set simultane­
ously.)

Now let's move on to the SDLC loop configuration
discussion.

CARRIER DETECT ~

LOOP CONFI~URATION

Aside from use in the normal data link applications, the
8273 is extremely attractive In loop configuration due to
the special frame-level loop commands and the Digital
Phase Locked' Loop. Toward this end, this section
details the hardware and software considerations when
using the 8273 in a loop application.

The loop configuration offers a simple, low-cost solu­
tion for systems with multiple stations within a small
physical location, i.e., retail stores and banks. There are
two primary reasons to consider a loop configuration.
The interconnect cost is lower for a loop over a multi­
point configuration since only one twisted ~air or fiber
optic cable is used. (The loop configuration does not
support the passing of distinct clock Signals from sta­
tion to station.) In addition, loop stations do not need
the intelligence of a multi-point station Since the loop
protocal is simpler. The most difficult aspects of loop
station design are clock recovery and Implementation of
one bit delay (both are handled neatly by the 8273).

Figure 36 illustrates a typical loop configuration with
one controller and two down-loop secondaries. Each
station must derive its own data timing from the
received data stream. Recalling our earlier discussion 01
the DPLL notice that TxC and RxC clocks are provided
by the DPtt output. The only clock required ,in the
secondaries is a Simple, non-synchronized clock at 32
Umes the desired baud rate. The controller requires both
32 x and 1 x clocks. (The 1 x is usually implemented by
dividing the 32x clock with a 5-bit divider. However,
there is no synchronism requirement between these
clocks so any convenient implementation may be used.)

\'----

Rx COMMAND t 1 ! !
A C 11

OR ~~~:~N~~~~~~~~----------------7I--1 --;.,--,,;....;---------

NON·BUFFERED ! FRAME ! POSSIBLE
MODE COMPLETE IDLE INT

IN~~~~~~;~----------------------"";;'''-------

A. ERROR·FREE FRAME RECEPTION

CARRIER DETECT ~ , \\\\\\\\\\\\
RxD

Rx COMMAND t! CD
CD
LURE FAILURE IN~~~~~~;~--------' :......::F.:.AI:::::.::::...:.I---:~.:..-..:..-=-.....:_.:.-....:-_---' ____ _

B. CARRIER DETECT FAILURE DURING FRAME RECEPTION

Figure 34. Sample Receiver Timing Diagrams
------------------------~---

6-164 231311-001

Tx COMMAND!

TxD

RTS~
CTS----.......I

APPLICATIONS

L
L

IA Ic I~ I~
OR~~~:~;~~~~~~~----------~,---,--~,---

NON·BUFFERED I

IN~~:~~~i~--------------M-O-D-E_---F-R-A-M-E_C_O_M_P_L __ ETE

A ERROR·FREE FRAME TRANSMISSION

'ST FRAME

Tx COMMAND l
TxD

RTS~

2ND FRAME
I 1'1 I I
I I I I I

OR~~~:fN;~~~~;i;-~-----------------I-I'-----------------------------------'I-, ____ '_1_2 ________ __

tEARLY Tx

,N~~:~~~i~---
B. DIAGRAM SHOWING Tx COMMAND CUEING AND EARLY Tx INTERRUPT

(SINGLE FLAG BETWEEN FRAMES) BUFFERED MODE IS ASSUMED.

Tx COMMAND 1

CTS-----.....

L

, CTS

IN~~:~~~i~--O~R~A7.~R~YR~O~R~--------------
C. CTS FAILURE (OR OTHER ERROR) DURING TRANSMISSION ERROR

INTERRUPT

Figure 35. Sample Transmitter Timing Diagrams

6-165 231311-001

I'"

I:
1\

Il
1

01
;~'
,'I

I'

I

APPLICATIONS

r--­
I
I

1xLOOP
OSCILLATOR

OR
DIVIDER

RxD Rxe

TxD

TxC TxD

8273 8273
LOOP TxD I---l-t--I RxD LOOP

TERMINAL TERMINAL

TxC RxC

Figura 36. SDLC Loop Application

A quick review of loop, protocol is appropriate. All com­
munication on the loop is controlled by the loop con·
troller. When the controller wishes to allow the sec­
ondaries to transmit, it sends a polling frame (the con­
trol field contains a poll code) followed by an EOP (End­
of-Poll) character. The secondaries use the EOP
character to capture the loop and insert a response
frame as will be discussed shortly.

The secondaries normally operate in the repeater mode,
retransmitting received data with one bit time of delay.
All received frames are repeated. The secondary uses
the one bit time of delay to capture the loop.

When the loop Is idle (no frames), the controller trans­
mits continuous flag characters. This keeps transitions
on the loop for the sake of down-loop phase locked
loops. When the controller has a non-polling frame to
transmit, it simply transmits the frame and continues to
send flags. The non-polling frame is then repeated
around the loop and the centroller receives it to signify a
cemplete traversal of the loop. At the particular second­
ary addressed by the frame, the data is transferred to
memory while being repeated. Other secondaries simply
repeat it.

If the controller wants to poll the secondaries, it
transmits a polling frame followed by all1s (no zero bit
insertion). The final zero of the closing frame plus the
first seven 1s form an EOP. While repeating, the secon­
daries monitor their incoming line for an EOP. When an
EOP is received, the secondary checks if it has any
response for the controller. If not, it simply continues
repeating. If the secondary has a response, it changes
the seventh EOP one into a zero (the one bit time of
delay allows time for this) and repeats it, forming a flag
for the down-loop stations. After this flag is transmitted,

the secondary terminates its repeater function and in~

serts its response frame (with multiple preceding flags
if necessary). After the closing flag of the response, the
secondary re-enters its repeater function, repeating the
up-loop controller 1 s. Notice that the final zero of the
response's closing flag plus the repeated 1 s from the
controller form a new EOP for the next down-loop
secondary. This new EOP allows the next secondary to
insert a response· if it desires. This gives each secon­
dary a chance to respond.

Back at the controller, after the polling frame has been
transmitted and the continuous 1s started, the con­
troller waits until it receives an EOP. Receiving an EOP
signifies to the controller that the original frame has
propagated around the loop followed by any responses
inserted by the secondaries. At this pOint, the controller
may either send flags to idle the loop or transmit the
next frame. Let's assume that the loop is implemented
completely with the 82735 and describe the command
flows for a typical controller and secondary.

The loop controller is initialize\!l with commands which
specify that the NRZI, Preframe Sync, Flag Stream, and
EOP Interrupt modes are set. Thus, the controller en­
codes and decodes all data using NRZI format. Preframe
Sync mode specifies that all transmitted frames be
prefaced with 16 line transitions. This ensures that the
minimum of 12 transitions needed by the DPLLs to lock
after an all1s line have occurred by the time the second­
ary sees a frame's opening flag. Setting the Flag Stream
mode starts the transmitter sending flags which idles
the loop. And the EOP Interrupt mede specifies that the
controller processor will be interrupted whenever the
active receiver sees an EOP, indicating the completipn
of a poll cycle.

When the controller wishes to transmit a non-polling
frame, it simply executes a Frame Transmit command.
Since the Flag Stream mode is set, ne EOP is formed
after the closing flag. When a polling frame is to be
transmitted, a General Receive command is executed
first. This enables the receiver and allows reception of
all incoming frames; namely, the original polling frame
plus any response frames inserted by the secondaries.
After the General Receive command, the frame is trans­
mitted with a Frame Transmit command. When the
frame Is complete, a transmitter interrupt is generated.
The leop controller processor uses this interrupt to
reset Flag Stream mode. This causes the transmitter to
start sending all 1 s. An EOP is formed by the last flag
and the first 7 1 s. This completes the loop controller
transmit sequence.

At any time following the start of the polling frame
transmission the loop controller receiver will start
receiving frames. (The exact time difference depends, of
course, en the number of down-loop secondaries due to
each inserting one bit time of delay.) The first received
frame is simply the original polling frame. However, any
additional frames are those inserted by the secondaries.
The ·Ioop controller processor knows all frames have
been received when it sees an EOP Interrupt. This inter­
rupt is generated by the 8273 since the EOP Interrupt
mode was set during initialization. At this pOint, the
transmitter may be commanded either to enter Flag

6-166 231311-001

APPLICATIONS

Stream mode, idling the loop, or to transmit the next
frame. A flowchart of the above sequence is shown in
Figure 37.

The secondaries are initialized with the NRZI and One
Bit Delay modes set. This puts the 8273 Into the repeater
mode with the transmitter repeating the received data
with one bit time of delay. Since a loop station cannot
transmit until it sees and EOP character, any transmit
command is queued until an EOP is received. Thus
whenever the secondary wishes to transmit a response,
a Loop Transmit command is issued. The 8273 then
waits until it receives an EOP. At this point, the receiver
changes the EOP into a flag, repeats it, resets One Bit
Delay mode stopping the repeater function, and sets the
transmitter into Flag Stream mode. This captures the
loop. The transmitter now inserts its message. At the
closing flag, Flag Stream mode is reset, and One Bit
Delay 'mode is set, returning the 8273 to repeater func·
tion and forming an EOP for the next down·loop station.
These actions happen automatically after a Loop
Transmit command is issued.

MUST BE
ERROR -
DO RECOVERY
PROCEDURE

o DENOTES COMMAND

c:) DENOTES INTERRUPT CODE

Figure 37. Loop Controller Flowchart

SET FLAG
STREAM,
MODE

6-167

When the secondary wants its receiver enabled, a Selec·
tive Loop Receive command is issued. The receiver then
looks for a frame having a match in the Address field.
Once such a frame is received, repeated, and trans·
ferred to memory, the secondary's processor is inter·
rupted with the appropriate Match interrupt result and
the 8273 continues with the repeater function until an
EOP is received, at which point the loop is captured as
above. The processor should use the interrupt to deter­
mine if it has a message for the controller. If it does, it
simply issues a Loop Transmit command and things
prcigress as above. If the processor has no message, the
software must reset the Flag Stream mode bit in the
Operating Mode register. This will inhibit the 8273 from
capturing the loop at the EOP. (The match frame and the
EOP may be separated in time by several frames de·
pending on how many up·loop stations inserted meso
sages of their own.) If the timing is such that the
receiver has already captured the loop when the Flag
Stream mode bit is reset, the mode is exited on a flag
boundary and the frame just appears to have extra clos·
ing flags before the EOP. Notice that the 8273 handles
the queuing of the transmit commands and the setting
and resetting of the mode bits automatically. Figure 38
illustrates the major points of the secondary command
sequence.

o DENOTES COMMANDS

c:) DENOTES INTERRUPT CODES

Figure 38. Loop Secondary Flowchart

231311-001

APPLICATIONS

When an off-line secondary wishes to come on-line, it
must do so In a manner which does not disturb data on
the loop. Figure 39 shows a typical hardware interface.
The line labeled Port could be one of the 8273 Port Bout­
puts and is assum!!d to be high (1) initially. Thus up-loop
data is simply passed down-loop with no delay; how­
ever, the receiver may still monitor data on the loop. To
come on-line, the secondary is initialized with only the
EOP Interrupt mode set. The up-loop data is then moni­
tored until an EOP occurs. At this pOint, the secondary's
CPU is interrupted with an EOP interrupt. This signals
the CPU to set One Bit Delay mode in the 8273 and then
to set Port low (active). These actions switch the sec­
ondary's one bit delay into the loop. Since after the EOP
only 1s are traversing the loop, no loop disturbance oc­
curs. The secondary now waits for the. next EOP, cap­
tures the loop, and inserts a "new on-line" message.
This signals the controller that a new secondary exists
and must be acknowledged. After the secondary re­
ceives its acknowledgement, the normal command flow
is used.

It is hopefully evident from the above discussion that
the 8273 offers a very simple and easy to implement
solution for qesigning loop stations whether they are
controllers or down-loop secondaries.

R,O i-----;------uP lOOP DATA

DOWN·LOOP OATA

"01---+----1,
PORT i-----'>-----j:>O-~

Figure 39. Loop I~ierlace

APPLICATION EXAMPLE

This section describes the hardware and software of the
827318085 system used to verify the 8273 implementa­
tion of SDLC on an actual IBM SDLC Link. This IBM link
was gratefully volunteered by Raytheon Data Systems in
Norwood, Mass. and I wish to thank them for their
generous c.ooperation. The IBM system consisted of a
370 Mainframe, a 3705 Communications Processor, and
a 3271 Terminal Controller. A Comlink 11 Modem sup­
plied the modem interface and all communications took
place at 4800 baud. In addition to observing correct
responses. a Spectron D601 B Datascope was used to
verify the data exchanges. A block diagram ot the
system is shown in Figure 40. The actual verification
was accomplished by the 8273 system receiving and
responding to polls from the 3705. This method was
used on both pOint-to-point and multi-point configura­
tions. No attempt was made to implement any higher
protocol software over that of the poll and poll re­
sponses since such software would not affect the veri­
fication of the 8273 implementation. As testimony to the
ease of use of the 8273, the system worked on the first
try.

370
MAINFRAME

3705
COMM

PRoceSSOR

Figure 40. Raytheon Block Diagram

An SDK-85 (System Design Kit) was used as the core
80R5 system. This system provides up to 4K bytes of
ROM/EPHOM, 512 bytes of RAM, 76 I/O pins, plus two
timers as provided in two 8755 Combination EPROMIIIO
devices and two 8155 Combination RAMIIIO/Timer
devices. In addition, 5 interrupt inputs are supplied on
the 8085. The address, data, and control buses are buf­
fered by the 8212 and 8216 latches and bidirectional bus
drivers. Although it was not used in this application, an
8279 Display DriverlKeyboard Encoder is included to in­
terface the on-board display and keyboard. A block
diagram of the SDK-85 is shown in Figure 41. The 8273
and associated circuitry was constructed on the ample
wire-wrap area provided for the user.

The example 8273/8085 system is interrupt-driven and
uses DMA for all data transfers supervised by an 8257
DMA Controller. A 2400 baud asynchronous line, imple­
mented with an 8251A USART, provides communication
between the software and the user. 8253 Programmable
Interval Timer is used to supply the baud rate clocks for
the 8251A and 8273. (The 8273 baud rate clocks were
used only during initial system debug. In actual opera­
tion, the modem supplied these clocks via the RS-232 in­
terface.) Two 2142 1Kx4 RAMs provided 512 bytes of
transmitter and 512 bytes of receiver buffer memory.
(Command and result buffers, plus miscellaneous
variables are stored in the 8155s.) The RS-232 interface
utilized MC1488 and MC1489 RS-232 drivers and
receivers. The schematic of the system is shown in
Figure 42.

One detail to note is the DMA and interrupt structure of
'the transmit and receive channels. In both cases, the
receiver is always given the higher priority (8257 DMA
channel 0 has priority over the remaining channels and
the 8085 RST 7.5 interrupt input has priority over the
RST 6.5 input.) Although the choice is arbitrary, this
technique minimizes the chance that received data
could be lost due to other processor or DMA com­
mitments.

Also note that only one 8205 Decoder is used for both
the peripherals' and the memorys' Chip Selects. This
was done to eliminate separate memory and 110
decoders since it was known beforehand that neither
address space would be completely filled.

The 4 MHz crystal and 8224 Clock Generator were used
only to ver~fy that the 8273 operates correctly at that
maximum spec speed. In a normal system, the 3.072
MHz clock from the 8085 would be sufficient. (This fact
was verified du~ing initial checkout.)

6-168 231311-001

APPLICATIONS'

K'EVIOAADDI$PLAV

DATA
FIELD

L __ .J

8 ~~~A

r---,
INTERRUPT

INPUTS

i~:-'JV
8216 '

L_...l

'"

..
101M

SOK8S

'"

~:~JJ ~~-
r---'

ADDRi:C==~~t:=-~::::t==~~~=t::===~=+=====--=~===t:=;; 8212 I L __ ...l

r---,
CONTAOLC==~~+====t===~~:::jt::=====:t===========~=Y. 3~8218 !¢=¢CONTROL BUS I L __ ..J 8US

! I I I
r - - -.., OPTIONAL A PLACE HAS BEEN PROVIDED ON THE PC BOARD FOR THE DEVICE IUTTHE L ___ .J DEVICE IS NOT INCLUOED

Figure 41. SDK·85 Functional Block Diagram

,
" MEM" ,
" 0'

.
iOii .

" " " MEMW

" " " " " " '"

Figure 42. 82731SDK·85 System

6-169 231311-001

, APPLICATIONS

The software consists of the normal monitor, program
supplied with the SDK-85 and a program to input com­
mands to the 8273 and to display results, The SDK-85

, monitor allows the user to read and write on-board RAM,
start execution at any memory location, to single-step
through a program, and to examine any of the 8085's In­
ternal registers. The monitor drives either the on-board
keyboard/LED display or a serial TTY interface. This
monitor was modified slightly in order to use the 8251A
with a 2400 baud CRT as opposed to the 110 baud nor­
mally used. The 8273 program implements monitor-like
user interface. 8273 commands are entered by a two­
character code followed by any parameters required by
that command. When 8273 Interrupts occur, the source
of the interrupt Is displayed along with any results
associated with it. To gain a flavor of how the user/pro­
gram Interface operates, a sample output is shown in
Figure 43. The 8273 program prompt character Is a " - "
and user inputs are underlined.

The "SO 05" implements the Set Operating Mode com­
mand with a parameter of 05H. This sets the Buffer and
Flag Stream modes. "SS 01" sets the 8273 in NRZI mode
using the Set Serial I/O Mode command. The next com­
mand specifies General Receiver with-a receiver buffer
size of 0100H bytes (Bo = 00, Bl = 01). The "TF" com­
mand causes the 8273 to transmit a frame containing an
address field of C2H and control field of 11H. The Infor­
mation field is 001122. The "TF" command has a special
format. The Lo and Ll parameters are computed from the
number of information field bytes entered.

After the TF command is entered, the 8273 transmits the
frame (assuming that the modem protocol Is observed).
After the closing flag, the 8273 Interrupts the 8085. The
8085 reads the interrupt results and places them in a
buffer. The software examines this buffer for new'
results and If new results exist, the source of the inter­
rupt is displayed along with the results.

In this 'example, the ODH result indicates a Frame Com­
plete interrupt. The~e is only one result for a transmitter
Interrupt, the interrupt's trailing zero results were in­
cluded to simplify programming.

The next event is a frame reception. The interrupt
results are displayed in the order read from the 8273.
The EOH Indicates a General Receive interrupt with the
last byte of the Information field received on an 8·blt
boundary. The 03 00 (Ro, R1) results show that there are
3H bytes of 'information field received. The remaining
two results indicate that the received frame had a C2H
address field and a 34H control field. The 3 bytes of in­
formation field are displayed on the next line.

8273 MONITOR V1.2

.I2..Ql
- I:U1.
- MJ!!Ul
- !FC211 001122

TxlNT - OD 00 00 00 00

(RxINT - EO 03 00 C2 34
FF EE DD

Figure 43. Sample 8273 Monitor 1/0

Figures 44 through 51 show the flowcharts used for the
8273 program dev~lopment. T.he actual program listing .
is included as Appendix A. Figure 44 Is the main status
poll loop. After all devices are initialized and a prompt
character displayed, a loop is entered at LOOPIT. This
loop checks for a change of status in the result buffer or
if a keyboard character has been received by the 8251 or
if a poll frame has been received. If any of these condi­
tions are met, the program branches to the appropriate
routine. Otherwise, the loop is traversed again.
The relllult buffer is Implemented as a 255-byte circular
buffer with two pointers: CNADR and LDADR. CNADR Is
the console pointet. It points to the next result to be
displayed LDADR is the load pOinter. It points to the
next empty position in the buffer Into which the inter-'
rupt handler places the next result. The same buffer ,is
used for both transmitter and receiver results. LOOPIT
examines these pOinters to detect when CNADR Is not
equal to LDADR indicating that the buffer contains
results which have not been displayed. When this oc­
curs, the program branches to the DISPL Y routine.

DISPL Y determines the source of the undlsplayed
results by testing the first result. This first result is
necessarily the Interrupt result code. If this result is
OCH or greater, the result Is from a transmitter interrupt.
Otherwise it is from a receiver source. The source of the
result code is then displayed on the console along with
the next four results from the buffer. If the source was a
transmitter Interrupt, the routine merely repoints the
pol~ter CNADR and returns to LOOPIT. For a receiver
source, the receiver data buffer Is displayed in addition
to the receiver interrupt results before returning to
LOOPIT.

START

CMDREC

LOOPIT

Figure 44. Main Stltua Poll. Loop

&-170 231311-001

APPLICATIONS

Figure 45. DISPLY Subroutine ------

Figure 47. TF Subroutine

Figure 48. TxPOL Subroutine

PARAMETER #2

PARAMETER #1

COMMAND

B - __ I # OF PARAMETERS I

Figure 46. GETCMD Subrouline Figure 49. COMM Subroutine with Command Buller Format

6-171 231311-001

APPLICATIONS

READ RESULTS
AND PLACE IN
RESULT BUFFER

EXIT TO
MONITOR

Figure SO. Txl (Transmitter Interrupt) Routine

If the result buffer pointers indicate an empty buffer, the
8251A is polled for a keyboard character. If the 8251 has
a character, GETCMD is called. There the character is
read and checked if legal. Illegal characters simply
cause a reprompt. Legal characters indicate the start of
a command input. Most commands are organized as two
characters signifying the command acdon; I.e., GR -
General Receive. The software recognizes the two char·
acter command code and takes the appropriate action.
For non·Transmit type commands, the hex equivalent of
the command is placed in the C register and the number
of parameters associated~with that command is placed
in the B register. The program then branches to the
COMM routine.

The COMM routine builds the command buffer by
reading the required number of parameters from the
keyboard and placing them at the buffer pOinted at by
CMDBUF. The routine at COMM2 then issues this com·
mand buffer to the 8273.

If a Transmit type command is specified, the command
buffer is set up similarly to the the COMM routine;
however, since the information field data is entered
from the keyboard, an intermediate routine, TF, is
called. TF loads the transmit data buffer pOinted at by
TxBUF. It counts the number of data byies entered and
loads this number into the command buffer as Lo,
L1. The command is then issued to the 8273 by jumping
to CMDOUT.

One command does not directly result in a command be·
ing issued to the 8273. This command, Z, operates a
software flip·flop which selects whether the software
will respond automatically to received polling frames. if

) the PolI·Response mode is selected, the prompt
character is changed to a '+'. If a frame.is received
which contains a prearranged poll control field, the
memory location POLIN is made nonzero by the receiver
interrupt handler. LOOPIT examines this location and if
it is nonzero, cau'ses a branch to the TxPOL routine. The
TxPOL routine clears POLIN, sets a pointer to a special
command buffer at CMDBUF1, and issues the command
by way of the COMM2 entry in t.he COMM routine. The
special command buffer contains the appropriate
response frame for the poll frame received. These ac·
tions only occur when the Z command has changed the
prompt to a '+ '. If the prompt is normal' -', polling
frames are displayed as normal frames and no response
is transmitted. The PolI·Response mode was used duro
ing the IBM tests.

Figure 51. Rxl (Rece.ler Inlerrupt) Routine

6-172 231311·001

APPLICATIONS

APPENDIX A

6-173 231311-001

APPLICATIONS

The final two software routines are the transmitter and
receiver interrupt handlers. The transmit interrupt
handler, Txl, simply saves the registers on the stack and
checks if .loading the result buffer will fill it. If the result
buffer will overfiil, the program is exited and control is
passed to the SDK-85 monitor. If not, the results are
read from the Txl/R register and placed in the result buf·
fer at LDADR. The DMA pOinters are then reset, the
registers restored, and interrupts enabled. Execution
then returns to the pre-interrupt location.

The receiver interrupt handler, Rxl, is only slightly more
complex. As in Txl, the registers are saved and the
possibility of overfilling the result buffer is examined. If
the result buffer is not full, the results are read from
Rxl/R and placed in the buffer. At this point the prompt
'character is examined to see if the PolI·Response mode
is selected. If so, the control field is compared with two
possible polling control fields. If there is a match, the

special c,ommand buffer is loaded and the poll indicator,
POLIN, is made nonzero. If no match occurred, no action
is taken. Finally, the receiver DMA buffer pOinters are
reset, the processor status restored, and interrupts are
enabled. The RET instruction returns execution to the
pre-interrupt location.

This completes the discussion of the 8273/8085 system
design.

CONCLUSION

This application note has covered the 8273 in some
detail. The simple and low cost loop configuration was
explored. And an 8273/8085 system was presented as a
sample design illustrating the DMA/interrupt·driven in·
terface. It is hoped that the major features of the 8273,
namely the frame-level command structure and the
Digital Phase Locked Loop, have been shown to be a
valuable asset in an SOLe system design.

6-174 231311-001

APPLICATIONS

APPENDIX A

fb1180 . Fl· RAmI 5RC

ISIS-II 80B9':Sfl85 MACRO ASSEMBLER,)(1£18 MODULE PAGE 1

LOC OBJ

9000

0009

0099

SE(;I SOURCE STATEMENT

1 $NQPAGING I'l0085 NOCOND
2 TRUE EOU OOH ,99 FOR R~'t'THEON
3 , ; FF FOR SELF-TEST
4 TRUE1 E(lU 99H ; 99 FOR NORMAL RESPONSE
5, .' FF FOR LOOP RESPO"SE
6 DEM EQU 09H ,00 FOI1 NO [000

7 ; ,FF FOR I)EHO
8 ,
9 ;

19 ,GENERftL S27S HONITOI1 ~HTH RftYTHEOt1 POLL HOOE ADDED
11 ;
17 ;
18 ;
19 ,COMMAND SUPPORTED ARE' RS - RESET SERIAL I/O MODE
29 i 5S - SET SERIAL 110 HODE
21 ; PO - FESET OPERATING HODE
22 ; SO - SET OPERATING t1OI)E
n ; F[l - RECEIVER roISABLE
24 , GR - GENEP.AL RECE I VE
25 , 5R - 5ELECTIIIE RECEllJE;
26 ; TF - TRANSMIT FRAME
27 ; AF - ABORT FRAME
28 ; Sf. - SET PORT B
29 ; RP - RESET PORT S
30 ; R8 - RESET 0NE SIT DELfW (PAR = 7Fi
31 , 58 - SET ONE SIT DELfW (PAP = 80)
32 .' SL - SELECTIVE LOOP RECEIIIE
33 ; TL - TRANSMIT LOOP
24 , Z - CHANGE MOOES FLIP/FLOP
38;
39 i .*"**>t*"***,,,****: .. *****'1<**_****"'_**"****~*"* __ ***"_*************
40;
41 ; NOTE. 'SE1' COMt1ANOS IIf'LEMENT LOGICAL ' OR' FUNCTIONS
42 , ,'RESET' COI'1MANDS IMPLEMENT LOGICAL 'AND' FUNCTIONS
4J;

44 ; *** .. ********"1<*_****************_************"'************_*_*_*
~, .

46 ; SUFFERED HODE PUST BE SELECTED IoIHEIi SELECTIVE RECEllIE IS USED.
47 ;
48 ,COtlHANC> FORMAT IS: 'COMMAND (2 LTRSi l 'PAR.11' 'PAR. 12' ETC.
49 ;
50 ; THE TRANSMIT FRAME COtIHIHl FORMAT IS: 'IF' 'A' 'C' 'SUFFER CONTENTS".
51 1 NO LENGTH COUNT IS NEEDED. SUFFER CONTENTS IS ENDED WITH A CR.
52 ;

53 ; .. ****110 .. _***_******* *********-******--* ... **********-**-***
541
55 IPOLLED 1'10[1£: WHEN POLLED MOOE IS SELECTED (DENOTED SY A '+' PROtlPT), IF

6-175 231311-001

0090
0090
9091
0091
0992
0091
0092
BB2B
0004
0008
€l001
0002

0B98
009C
009[)
009E
aeac

~0036

OOB6
2017
2018

OOA8
BOAO
0>JAl
OOR2
OOA]
BeAS
8200
8000
0062
41FF
00€1
0061
8iFF

56 ;
'57 ;
62.;

APPLICATIONS

. A SNRM-P OR RRdf·-P IS RECEIVED, A RESPONSE FRANE OF NSA-F
OR RR(0)-F IS TRANSl1lTiED. OTHER COi1MANDS OPERATE NOR.t1ALL

63 ; ******** .• ,.****t****** .. *****,.*.t-", .. H.*** .. *",*****+", .. **************************
64 .'
65; 827:$ EI)'IJRTES

66 '
67 STArrl EQlj 9f.lH ,STATUS REGISTER
68 CO~l~l71 EOIJ 9flH ; COMMAND REG I STER
69 PAPM'?3 EelU 9tH ; PARAl1ETER REGISTER
78 RESLn E@J 91H ; RESULT REI3l STEP
,1 TXIP;'3 EOU 92H ,TX INTERRUPT RESULT REGISTER
72 RXIR?: EQU 93;H ; RX INTERRUPT RESULT REGISTER
i1 rESTn EQI.! 92H ; TEST MODE REGISTER
74 CPBF EQU 2BH ,PARA~lETER BIJFFER FIJLL BIT
75 TXINT EQIJ 04H i TX INTERRUPT BIT IN STATUS REGISTER
76 RXWT EOIJ B8H ,Ri; INTERRUPT BIT IN STATUS REGISTER
77 TXIRA EO,U 01H ,n: INT RESULT AVAILABLE BIT
78 R>':IPA Et:1U 0211 ' .' R;\ INT RESULT AVAILABLE BIT
79 }
Stl, 825:;, EOLIATES

81 .'
82 MO[·ES:: EOU 9BH ,S253 MODE WORD REGISTER
S:':; CNT05:? EOU 9CH ,COUNTER €l REGI STER
84 [NT15]' EQiJ 9uH .' COUNTER 1 REGISTER
85 CNT2'.E mu 9EH .; COliNTER 2 REGISTER
86 CORP. EOU (le0CH) CONSOLE BRUD RATE (2400:'
87 fl[oCNT0 EI~ll 36H i rl00E FOR COUNTER it
SS t1[1CNT2 EOLI 086H i MODE FOR COUNTER 2
8:9 U(BRl EQU 2€l17H ,8273 BAliD RATE L5B ADR
90 LKBR2 EPl! 2818H ; 827? Si'ltlt· RATE M5B ADR
91 '
92; BAUO RATE TABLE' BAUD RATE LKBRi LKBR2
93 i *~******* ***** "'*""',, 94; 96013 2E €l0
95.; 4etl0 5C 00
96 i 24913 69 ~0

97 ; 120€l 72 01
98 ' 608 E5 02
99 i 100 C9 05

100 '
101 ;
1132 ; 825;' EQUATES
101 i

104 Mor·E57 EOLI f.lA8H ,8257 MODE PURT
1135 CH0ADR Eill! \:1A0H ,CHB (RiO ADR REGISTER
106 CHflTG EQlI 0A1H ; CH0 TERt1INAL COUNT REGISTER
107 CHlADR mu 0A2H ,CHl (IX) ADR REGISTER
100 CHHC EQU . €lAsH .' CHi TERMINAL COUNT REGISTER
1€l9 STATS7 EOU BASH i STATUS REGISTER
119 R:.IBUF EOLI 8200H .' R'1. BUFFER START ADDRESS
111 r:~BIJF· EQlI 13000H i TX BUFFER STAR T AC![lRE5S
112 DPDMA EQU 62H ; Dl SABLE RX DI'lA CHANNEL, TX STILL ON
113 R:~TC EQU 41FFH ; TERmNAL COUNT AND MODE FOR RX CHANNEL
114 ENN1il EQU 61H i ENABLE BOTH TX AND RX CHANNELS-EXT. WR, TX STOP
115 DTDI'lA EOLI 61H ; OISfjBlE TX DMA CHANNEL, RX STILL ON
116 TXTC EQU B1FFH ; TERMINAL COLINT AND MODE FOR TX CHANNEL
117 i

6-176 231311-001

131389
01389
0088
0088
eBCE
002;'
0002

06iF
e5F8
e7SE
e59B
0SEB
06Ci

2ece
0003
01308
2£11313
2020
000rJ
800A
2004
20CE
20113
2013
2809
909?
00-11
1397:
0011
2015
2016
2027

APPLICATIONS

118. 8251A EQUATES
119 ,
120 (NTL51 EQIj 89H .' CONTROL t.lOP.D REGISTER
121 STATS1 EOU 89H · STATUS REG I 5 fER
in r:~D% Eell! 88H ; TX DATA REGISTER
12] RX[J51 E9U 88H · R~ DATA REG I STER
124 MfoE51 EQU OCEH · ~100E 16~:, 2 STOP, NO PARITY
125 CMDS1 EQU 27H .' COMMAND, ENABLE TX&RX
126 P.D~· EQlJ 02H ,RXRD.~' BIT
127 '
128 ; MON ITOR SUBROIJTI HE EQUATES
129 ;
He GETCH EQIJ 061FH ; GET CHP. FROM KEYBOARD. ASCII IN CH
131 ECHO EOIJ 05FSH ,ECHO CHR TO DISPLAY
132 IIAWG EQlj 075EH ; CHECi< IF VALW DIGIT .. CARR~' SET IF YALID
m CNVBN Eljl) 05BBH ; CONVERTS ASCI! TO HEr:
134 'CPLF EQU 05EBH ; DISPLAY CR, HENCE LF TOO
135 NMOIJT EOO 86C7H ; CONVERT BYTE TO 2 ASCII CHR AND DISPLAY
1:>6;
H7 ,Mise EQlIi1TES
138 ;
139 STrSRT EQU 20CBH ; STACK START
140 CNTLC' EtllJ 03H , CNTL -C EQlJlYALENT
141 MONTOR EQU 0008H .; MONITOR
142 Ct1[·BI.iF E'~U 200BH ; START OF C~1MAr1t> BUFFER
143 eMDEn EgU 202011 .; POLL MODE SPEC I AL TX COMMAND BUFFER
144 CR EQIJ 0DH ; ASCII CR
145 LF EQU BAH .; ASCII LF
146 P5T75 EG!U 2004H ; R5T7 5 JU~1P ADDRESS
147 RST65 EgU 20CEH ; R5T6. 5 .J~lP ADDRESS
14B Lr'AN~ EOU 2010H ; RESIJL T BUFFER LOAD POINTER STORAGE
149 CNADR EQU 2013H ; RE.."lU BUFFER CONSOLE POINTER STORAGE
150 RESBUF Ef!IJ 2808H ,RESULT BUFFER START - 255 BYTES
151 SNRMP EOl! 93H ,SNRtH CONTROL COOE
152 RR0P EOU :11H ; RR(O:'-P CONTROL CODE
151 N5AF EOU 73H ; NSA-F CONTROL COC,f
154 RR0F EOU l1H ;RR(9',-F CONTROL COOE
155 PRt1PT EQU 2015H .; PRMPT S fORAGE
156 POLIN EQU 2016H ,POLL HODE SELECTION INDICATOR
15i' DEMODE EGIJ 2027H ; DEMO MODE INDICATOR
161 ,

162 ,*****.***** ****~*************-4<****_*** .. *************"'*_**********"'***
16~ ;
164 ; RAM STORAGE DEFINITIONS:
165 ; LOG DEF
166 ;
167 ; 2000-200F COI1MAND BUFFER
168 ; 2018-2011 RESUL T BUFFER LOAD POINTER
169 , 2013-2014 RESIJL T BUFFER CONSOLE POI NTER
170 ; 20"15 PROMPT CHARACTER STORAGE
171 , 2916 POLL ~1ODE INDICATOR
172 .; 2817 BAUD PATE LSB FOR SELF-TEST
173 ; 2918 BAUD RATE HSB FOR SELF-TEST
177 j 2019 SPARE
179 . 2020-2026 RESPONSE COMMAND BUFFER FOR POLL MODE
180 .; 2800-28FF R£SIJL T BUFFER
1B1 .;

192 ; **"'*******************'***

6-177

:~ ,
Ii,

;"~

231311-001

0000

13S00 31C020
080] 3EJ6
0S05 D39B
0807 3A1729
089R D3S1e
0S0e 3A1820
080F D39C
0S11 (,OlAOS
08:14 CD350B
0017 3E01
0819 D392
0BIB 3EOO
00lD C(j92
081F 3E2D
13821 32152€l
0824 3Ee0
0826 121620
0829 J22720
1382C 21A30C
082F CV920C

0832 211:-420
€l835 01000(:
13838 J6C3
B8JA 2:>
003B 71
13S3C 21
883D 70
0S3E 21CE20
0841 01CEOC
0844360
13846 23
0847 71
0048 23
0049 70
084A 3E18
084C 30
0S4D FB

084E 210028
13851 221320
13854 221020

APPLICATIONS

is} .'
184 : PROGRAN START
185 ,
186 .: INITIf<llZE 8253.. 8257.. 8251A. ~v RESET em.
lS? ; ALSO ,SET NORMAL MODE .. AN[J PRINT SIGNON MESSAGE
188 :
1139 ORG S00H
190 ,/
191 START: LXI sp, STKSRi .: INITIALI i:E SP
192 ~fYI tt,rlOCNT0 ; 8253 11®E SET
193 OUT MODE53 .: 8253 l'IODE PORT
194 L('lA U:BRl . GET 8273 BAllO RATE LSB
195 ollr CNT0S3 ; USING COUNTER 0 AS BAUD RATE GEN
196 LDA LKBR2 ; GET 8273 BIJAD PATE MSB
197 OUT CNT053 ;COllNTEP 0
198 CALL RXN'lA ; INITIALIZE 8257 Ri< DMA CHANNEL

' 199' CALL TXOMA ; INITIALIZE 8257 T:~ DMA CHANNEL
200 rlVi A .. 01H ; OUTPUT 1 FOLLOWED BY A €I
201 OUT TEST73 i TO TEST rl0DE REGISTER
282 Mill A .. WH ; TO RESET THE 8273
203 OUT TESTn
2134 MVI A, "-' ; NORMAL MODE PROMPT CHR
205 STA PRrlPT .: PUT IN STORAGE
206 NIII A .. OOH , n: POLL RESPONSE INDICATOR
207 STA POLIN .. 13 NEAN5 NO SPECIAL TX
208 STA DEMODE ; CLEAR r,EMO MODE
212 LXI H .• SIGNON .: 5 I GNON MESSAGE AOO
213: CALL T't'~lSG .: I)!5PLAY SIGNON
214 ;
215 .: MONITOR IJSES JUMPS IN RAM TO DIP-Ecr INTERRUPTS
216 :
217 U,:I H, R5T75
218 LXI B, R:~I
219 ~IVI M .. 0C3H
220 IN~: H
221 MOil M .. C
222 INX H
223 MOV M .. B
224 UII H, RST65
225 LXI B, nil
226 rtvI M,0C3H
227 INX H
228 MOil M,C
229 INX H
230 MOV M .. B
231 rtvI A .• 1SH
232 . 5IM
233 EI
234 i

235 ; INITIALIZE BUFFER POINTER
236 :
2J7 ;
238
239
240
241 ;

L:~I

SHLD
SHLD

H, RE5BUF
CNADR
LDADR

; RST7. :; JU'lP LOCATION USED BY MONITOR
i ADDRESS OF RX INT ROUTINE
; LOAD / JMP' OPCOC-E
; INC POINTER
; LOAD RXI LSB
; INC POINTER
; LOAD RXI MSB
.: RST6. 5 JUMP LOCATION USED BI' MONITOR
.: ADDRESS OF TX INT ROUTINE
; LOAD 'JMP' OPCOI?E
; INC POINTER
; LOAD TXI LSB
; INC POINTER
; LOAD TXI MSB
.: GET SET TO RESET INTERRUPTS
; RESET INTERRUPTS
.: ENABLE INTERRUPTS

; SET RESULT BUFFER POINTERS
i RESULT CONSOLE POINTER
i RESULT LOAD POINTER

242 .' MAIN PROGRAM LOOP - CHECK5 FOR CHANGE IN RESULT POINTERS, USART STATUS,
243 ; OR POlL STATUS

6-178 231311-001

APPLICATIONS

244 i

BB57 CDEB05 245 CMOREe. CALL CRLF i DISPLA'r' CR
e85A 1A1520 246 LDA PRHPT i GET CURRENT PROMPT CHR
eS5D 4F 247 MOV C.' A .: MOVE TO C
QSSE CDFSQ5 248 CALL ECHO .:DISPLA'r' IT
08612Ame 249 LOOPIT: LHLD CNADR ; GET CONSOLE POINTER
0864 7f! 250 MOIl A,L ; SAVE POINTER LSB
0865 2A1020 251 LHLD LDAOR i GET LOAD POINTER
0868 BD 252 CMP L .: SAME LSB? t
0869 cmeA 253 JNZ DISP'r' ,NO, RESULTS NEED DISPLAYING

[j 9S6C DBS9 259 IN STATS1 ; YES, CHECK KE'r'BOARD
BS6E E602 269 ANI RDY ; CHR RECEIVED?
0879 G27D08 261 JNZ GETCMD ; MUST BE CHR 50 GO GET IT

' ..
II 0873 3A1629 262 LDA POLIN .' flET POLL MODE STATUS I~:

9876 A7 263 ANA A ;IS IT 9?
BBl? (24('09 264 JNZ TXPOL ; NO, THEN POLL OCCURRED
io187A C16108 265 J~1P LOOPIT ; YES, TRY AGAIN

266 ;
267 ;
268 ; COMMAND RECOGNIZER ROUTINE
269 ;
270 i

BB7D C01F06 271 GETCMfI. CALL GETCH iGETCHR
BBB0 CDFOO5 272 CALL ECHO .: ECHO IT
0883 79 273 rlO11 A.. c ,SETUP FOR COMPARE
0884 FE52 274 CPI ·R' ;R?
0886 CAAF0S 275 JZ RDWN ;GET MORE
0889 FE53 276 CPI '·5· ;S?
flS88 CAD708 277 JZ SOWN i GET MORE
0S8E FE47 278 CPI .'(y ;G?
0890 CAFFi.l8 279 JZ GOWN ; GET MORE
0:m FE54 280 [PI T ; T?
0895 CR0E09 281 JZ roWN ; GET MORE
BB98 FE41 282 CPI 'A' ;A?
BB9A CA2209 283 JZ ADWN .: GET MORE
13890 FE'SA 2134 CPI "2' ;2?
089F CfG109 285 J2 Ct'IODE ; 'T'ES, GO CHANGE MooE
138A2 FE0l 290 CPI CNTLC .: CNTl-C·'
0BA4 CA0S00 291 JZ MONTOR .; mT TO NONITOR
eSA70BF 292 ILLEG. t1YI C,'T .; PRINT?
08A9 CDF80'5 m CALL ECHO ;DISPlAY IT
!leAC 05708 294 JMP Cf10REC , ; LOOP FOR COMMA~ID

295
08RF COiF06 296 RI)WN: CALL GETCH ,GET NEn CHR
0882 CDF805 297 CALL ECHO ; ECHO IT
0895 79 298 MOil A,C .' SETUP FOR COMPARE
13886 FE4F 299 CPI '0·' ;O?
(J8B8 CA5D09 300 Ii: ROCMD i RO COMMAND
08B8 FE53 301 CPI 15' ; S?
088D CA6709 302 JZ RSCMD iRS COMMAND
BBce FE44].03 CPI 'f)'. .• D?
138(:2 CA71e9 304 JZ RDCMD iRD COMMAND
08(:5 FE50 305 CPI 'pI .;p?

08C7 CAD8e9 306 JZ RPCMfI i RP COMMAND
BBCA FE52 307 CPI 'R; iR?
08e(CA0008 308 JZ START i START OVER
OOCF FE42 309 CPI ·8; ;8?
08[01 CA7B09 310 JZ RBCMD ; RB COMMAND

6-179 231311-001

APPLICATION:S

0SD4 GA798 311 JMP ILLEG ; ILLEGAL TRY AGAIN
312

9807 CD1F06 313 SDWN: CALL GETCH ; GET NEXT CHR
8SDA CDFS05 314 CALL ECHO ; ECHO IT
98DD 78 315 HOY A,8 ; SETUP FOR COMPARE
0aDE FE4F 316 CPl '0' ;O?
98E0 CAA609 317 JZ SOCMl) ; SO COftlANl)
08E3 FE53 318 CPI '5' ;5?
BeES CA80B9 319 J2 55CI'fI) ; 55 COM/1AND
08E8 FE52 320 CPI 'R' iR?
08EA CABA09 321 J2 SRCI1I) ; 5R CO/t1fIND
0eED FE50 322 CPI 'P' ;P?
08EF CAE289 323 JZ SPCI1D ;SPCOlt1AN[l
98F2 FE42 324 CPI '8' ;8?
98F4 CA8509 325 J2 5BCI1D ; 58 COMMAND
0SF7 FE4C 126 CPI 'L' ;L?
98F9 CASF89 327 J2 SLCMI) ; SL COM/1ANI)

88FG G3A798 328 JMP ILLEG .: ILLEGAL.. TRI' AGAIN
329

98FF CD1FB6 :BB GOWN: CALL GETCH ; GET NEXT CHI(
8902 CDF805 m CALL ECHO ; ECHO IT
8905 78 I>2 MOil A,8 ; SETUP FOR COMPARE
0906 FES2. IB CPI 'R' ; R? •.
0908 CAC409 334 .JZ OROO ; OR C!JMI1AND
9908 CA708 335 JMP ILLEG .: ILLEGAL TRY AGAIN

336
090E CD1F06 337 TflWN: CALL GETCH ; GET NEXT CHI(
8911 CDF805 338 CALL ECHO ; ECHO IT
0914 78 339 HOY A,S ; SETUP FOR COMPARE
9915 FE46 340 CPI "F' .:F?
8917 CAEC99 341 J2 TFCI'fI) ; TF COMMAND
891ft FE4C 342 CPI 'L' ; L?
891C CA9909 343 JZ TLCI'fI) .: TL C~lMAND
991F C3A798 344 JMP ILLEG ;ILLEGAL, TRY AGAIN

345
8922 CMF06 346 ADWN. CALL GETCH ; GET NEXT CHR
0925 CDFS05 347 CALL ECHO i ECHO IT
0928 ?B :NB MOil A .. 8 ; SETUP FOR COMPARE
0929 FE46 349 CPI 'F' iF?
092B CACE@9 159 JZ AFCI1D ; AF COMMAND
092E GA708 351 JMP ILLEG ; ILLEGAL, TRY AGAIN

352 }
353 .: RESET POLL MODE RESPONSE - CHANGE PROMPT CHI(AS INDICATOR
354 i

89:>1 F3 355 CMODE DI .: DISABLE INTERRUPTS
9912 3A1520 356 LDA PRMPT i GET CURRENT PROMPT
8935 FE2D 357 CPI '-' i NORMAL MOOE?
0937 C24309 358 JNZ 5W ; NO, CHANGE IT
093A 3E2B 359 Mill A, ,+, ; NEW PROtlPT
093C 321529 369 STR PRMPT .: STORE NEW PROMPT
093F FB 365 EI ; ENABLE INTERRUPTS
09413 05708 ~66 IMP CPIOREC ; RETURN TO LOOP
0941 3E20 367 5W: Mill A, /_~ i NEW PR~lPT elf!
0945 321520 368 STA PRMPT ,STORE IT
0948 Fe 369 . EI ; ENABLE INTERRUPTS
0949 G35798 :m Jt'IP Cl'IDREC ; RETURN TO LOOP

. 371; .
:m ,

6-180 231311-001

094C 1E00
094E 321620
0951 216108
0954 E5
0955 06B4
0957 212020
89511 GFF0A

895D 0601
095F 8E51
0961 (,OES@A
8964 C35?B8

0967 0601
9969 0E60
096B CDE50A
096E 05708

0971 0600
0973 BEGS'
0975 CDES0A
0978 G5708

097B 0601
897D 0E64
e97F CDEseR
8982 C357e8

0985 0601
8987 0EA4
!l989 COEseA
098C C15708

998F 9694
9991 9EC2
0993 COE50A
0996 C35798

APPLICATIONS

:m ,TRANSMIT ANSWER TO POLL SETUP
374 ;
382 TXPOL' Mill
184 STR
385 LXI
386 PUSH
387 MI/I
188 LXI
389 JMP
199 ;
391,;
392 ;

A,. !l0H
POLIN
H, UJOPlT
H
B,04H
H,CMDBFl
CONM2

:$9] ; CONMAND II1PLEMENTING ROUTINES
394 ;
395,
396 ; RO - RESET OPERATING MOUE
:m,.
398 ROCI1[': MVI
399 Mill
400 CALL
401 JMP
482 ;

B,8tH
C,51H
CONM
Ct1DREC

; CLEAR POLL INDICATOR
; IND ICATOP ADR
,; SETUP SIAC K FOR COMMAND OUTPUT
,; PUT RETURN TO CMDREG ON STACK
-' GET i OF PARAMETERS READY
,; POINT TO SPECIAL BUFFER
-' JUMP TO CONMAND OUTPUTER

i II OF PARAMETERS
; C-OMHANv
,; GET PARAMETERS AND ISSUE COMMAND
-' GET NEr;T GONMAND

4B~ ; RS - RESET SERIAL 1/0 MODE COMMAND
404 -'
405 ~:5CMD' MVI
406 MVI
40i' CALL
408 .JMP
409 "

B,91H
C,.60H
COMM
CMDREC

418 ; RD - RECEIVER DISABLE CONMAND
411.
412 RDCMD,
413
414
415
416 ;

Mill
Mill
CALL
JMP

B,00H
C,.0CSH
COMM
CMDREC

,II OF PARAMETERS
; COMMAND
; GET PARAMETERS AND ISSUE COMMAND
,: GET NEXT COMMAND

-' II OF PARAMETERS
, CGMt-IAND
-' ISSUE COMMAND
; GET NEXT COMMAND

417 .. RB - RESET ONE BIT DELAY COtll1AND
418 ,;
419 RBCHD: 1'11/1
420 MVI
421 CALL
422 JMP
423 ;

B,01H
C,64H
COMM
CMDREC

424 ; 58 - SET ONE BIT DRAl' COItlAND
425 ;
426 SBCMD: MV I
427 tIll I
428 CALL
429 JMP
439 ;

B,91H
C,0A4H
COMM
CMDREC

; II OF PARAMETERS
i COMMAND
,; GET PARAMETER AND ISSUE COMMAND
i GET NEXT CONt1AND

,: I OF PARAMETERS
iCONMAND
; GET PARAMETER AND ISSUE COMMAND
i GET NEXT COHMAND

431 ; SL - SELECTIVE LOOP RECEIVE COMMAND
432 ;
433 SLCt1D: "VI
434 1'11/1
435 CALL
436 JMP
437 ;

B,04H
C,IiIC2H
COMM
CMDREC

438 ; TL - TRANSI'IIT LOOP COMMAND

6-181

; I OF PARAMETERES
; COMMAND
; GET PARAMETERS AND ISSUE CQNMAND
; GET NEXT COMMAND

231311-001

APPLICATIONS

439 ;
0999 210029 449 TLC.MD: LXI H .. CHDBUF ; SET COMMAND BUFFER PO INTER
099C B692 441 !'IVI B,92H ; LOAD PARAl'lETER COUNTER
999E 36CA 442 I'IYI M,9CAH ; LOAD COMMAND INTO BUFFER
99110219220 443 LXI H,CHDBUF+2 ; POINT AT ADR AND CNTL POSITIONS
09R3 C3F689 444 JI'IP TFCMDi -' FINISH OFF COMI'IAND IN TF ROUTINE

445 -'
446 -' SO - SET OPERATING I1ODECOI'II'IAND
447 ;

09R6 0691 448 SOCHD· I'IYI B,9iH ;, OF PARAI'IETERS
!!9A8 9E91 449 1'1\11 C,9iH ; COMMAND
09AA CDE58A 459 CALL COI'II'I i GET PARAl'lETER AND ISSUE COMMANO
09AD C:;5798 451 JI'IP CHDREC ; GET NEXT COI1I'IAND

452 ;
453 ; SS - SET SERIAL 1/0 COMMAND
454 ;

11989 06111 455 S;;CHD: MVI B,111H -'. OF PARA~lETERS
1J9B2 0EA!! 456 MVI C,9A!!H ; COMMAND
119B4 CDE50A 457 CflLL COM" -' GET PARAI'IETER AND ISSUE COI'II'IAND
1J9B7 CJ5798 458 JI1P CHDREC ; GET NEXT COI'II'IAND

459 i

469 i SR - SELECTIVE RECEIVE COI'II'IAND
461 i (

fl9BA 06114 462 SRGHD: MVI B,94H i' OF PARAl'lETERS
I19BC 0EC1 463 MVI C,I1CiH i COMMANO
IJ9BE CDE50A 464 CAlL COMM ,GET PARAMETERS AND ISSUE COMI'IANO
09C1 CJ570S 465 JI1P C!'!DREC i GET NEXT COMMAND

466 ;
467 ; OR - GENERAL RECEIVE COMMANO
468;

99C4 1J6IJ2 469 GRCMD: MVI B,02H ; NO PA~1ETERS
99C6 0EC9 479 1'1111 C,9C0H ; COMMAND
B9C8 CDE50A 471 CALL GOMM ; ISSUE COI'II'IAND
99GB CJ5708 472 IMP CHDREC . -' GET NEXT COMl1AND

473;
474 -' AF - ABORT FRAI'IE COMMAND
47'5 ;

09GE 0609 476 AFCHD: Mill B,00H -' NO PARAMETERS
9900 0EGG 477 MVI G, IJCCH .; COI'II'IAND
8902 CDE50A 478 CAlL COMM -' ISSUE COMMAND
0905 G57e8 479 JMP CMDREC ; GET NEXT COMMAND

4B8 ;
481 ; RP - RESET PORT COMMANO
482 ;

8908 0601 483 RPCMD· Mill B,81H ; I OF PARAl'lETERS
89M 0E63 484 tm C,63H ; COMMAND
09DC CDE50A 485 CALL com ; GET PARAI'IETER AND ISSUE COrtlAND
090F C35708 486 JI'IP CMDREG ; GET NEXT COI1I1AND

487.;
488 ; SP - SET PORT C~1I1AND
489 ;

99E2 0691 499 SPCMD: Mill B,91H ;, OF PARAMETERS
09E4 0EA3 4!l1 Mill C,0A3H .;COMMANO
09E6 CDE50A 492 CALL COMM ; GET PARAMETER AND ISSUE COttlAND
09E9 C3~ 49J

494 ;
JI'IP CI1DREC ; GH HEX COMI'IAND

495 ; TF - TRANSMIT FRfll'IE COMMAND
496 ;

6-182 231311-001

I ,~I

II
APPLICATIONS l~

89EC 210020 497 TFCtID: LXI H, CtIDBUF ; SET cot1I'IANI) BUFFER POINTER
89EF 0602 498 HIlI B,02H ; LOAD PARAMETER COUNTER 'I
99F1 36C8 499 ",,'I M,0C8H ; LOAD COMtfANI) INTO BUFFER i'Ljl

"j

09Fl 210220 see LXI H, CMDBUF+2 ; POINT AT ADR AND CNTL POSITIONS ~
09F6 78 501 TFCMD1: MOil A,B ; TEST PARAf'ETER COUNT .,~

"I 09F7 A7 502 ANA A ,: IS IT 0?
09FB COO70A 503 JZ TBUFL ,: 'lES, LOAD IX DATA BUFFER
09FB CDAD0A ' 504 CALL PARIN ,: GET PARAMETER
99FE DAA708 50S JC ILLEG ; ILLEGAL CHR RETURNED

'. 0A01 23 506 INX H ; INC COMi'IAND BUFFER POINTER 1
1\

0A02 05 507 OCR B ; DEC PARAMETER COUtIrER

~ 0A03 77 50S MOil M,A ; LOAD PARAl'ETER INTO COMtfANl) BUFFER i'

0A04 C3F609 5e9 II1P TFOO1 ; GET NE';(T PARAMETER

! 510
0Re7 219080 511 TBUFL: LXI It TXBUF ,: LOAD TX DATA BUFFER PO INTER
IlReA 0-10090 '512 LXI B,0908H ; CLEAR BC - BYTE COUNTER 'I

1:1

0AeD C5 5B TBlfL1: PUSH B ; SAVE BI'TE COUNTER
0A0E CDADeR '514 CALL PAR IN ; GET DATA, ALIAS PARAMETER
0A11 DA1B0A 515 JC ENDCHK ; MAYBE END IF ILLEGAL
0A14 77 516 MOl! M,A ; LOAD DATA BYTE INTO BUFFER
0A1S 23 517 INX H ; INC BUFFER POINTER
0A16 C1 518 POP B ; RESTORE BYTE COUNTER
0A17 83 519 IN:.: B ; INC BYTE COUNTER
eR18 C3eD0R 520 .IMP TBUFL1 : GET NEXT DATA
0A1B FEOO 521 ENDCHK: CPI CR ; RETURNED ILLEGAL CHR CR'
0AiD CA240A 522 JZ. iBIJFFL ; YES, THEN IX BUFFER FULL
0A20 C1 523 POP B ,RESTORE B TO SAllE STACK
0A21 C3A708 524 JMP ILLEG ; ILLEGAL CHR
0A24 C1 ~"5 TBUFFL, POP B ,RESTORE BYTE COUNTER
0A25 210120 526 LXI H, CMDBUF+1 ; POINT INTO COMMAND BUFFER
0A28 71 527 Mol/ M, C ,: STORE BYTE COUNT LSB
0A29 23 528 INX H ; INC POINTER
0A2A 70 529 MOIl M,B : STORE B't'TE COUNT MSB
@A2B 06@4 538 MIll B,84H i LOAD PARAMETER COUNT INTO B
0A2D 2B60A 531 LXI H,. TFRET ; GET RETURN ADR FOR THIS ROUTINE
BAl0 C5 532 PUSH B ,PUSH ONCE
eRJ1 E3 533 XTHL ; PUT RETURN ON STACK
0A32 C5 534 PUSH B i PUSH IT 50 CMOOUT CAN iJSE IT
0A33 C3FB0A 535 JMP CMDOUT ; ISSUE COMMAND
0A36 C3570B 536 TFP.ET: JI1P CMOREC ; GET NEXT CONMAND

537 ;
538 ;
539 ; ROUTINE TO r,ISPLAY RESULT IN RESiJL T BUFFER WHEN LOAD AND CONSOLE
540 ; POINTERS ARE r,IFFERENT.
541;
542 ;

0A39 1605 543 DISPY HilI D,.05H ; DIS RESULT COliNTER
0AsB 2AB20 544 LHLD CNADR ,GET CONSOLE PO INTER
0A3E E5 545 PUSH H ; SAVE IT
0A3F 7E 546 HOI/ A,H ; GET RESULT IC
0A40 E61F 547 ANI 1FH ; LItlIT TO RESULT COOE
0A42 FE0C 548 CPI OCH ; TEST IF RX OR TX SOURCE
0A44 DA620A 549 JC RXSORC ; CARRY, THEN RX SOURCE
0A47 21C30C 550 TXSORC, LXI H, TXIMSG ; IX INT MESSAGE
9A4A C0920C ,551 CALL TYM5G .: OISPLAY IT
0A4D E1 552 DISP'r'2: POP H ; RESTORE CONSOLE POINTER
0A4E 7E 553 D 15P'r'1: MOil A,M ;GET RESULT
0A4F COC706 554 CALL NMOUT ; CONI/ERT AND DISPLAY

6-183 231311-001

APPLICATI(jNS

0A52 0E20 555 !'WI C, f f ; SP CHR
0A54 CDF805 556 CALL ECHO ;DISPLAY IT
0A57 2C 557 INR L .; INC BUFFER POINTER
0A58 15 558 OCR D ; DEC RESULT COUNTER
0A59 C24E0A 559 JNZ DI5M ;OOT DONE
0A5C 221320 560 SHLD CNADR ; UPDATE CONSOLE POINTER
tlA...'iF CJ5708 561 JIIP CHDREC .; RETURN TO LOOP

562;
563;
564 ; RECEIVER SOURCE - DISPLAY RESULTS AND RECEYIE BUFFER CONTENTS
565 i

566 ;
0A62 2-1B80C 567 RXSORC: LXI H, RXIHSG ; RX INT MESSAGE ADR
0A65 CD920C . 568 CALL TYHSG ; DISPLAY MESSAGE
0A68 El 569 POP H ; RESTORE CONSCLE POINTER
0A69 7E 570 RXS1: HOV A,t1 ; RETR IEIIE RESULT FRI11 BUFFER
0A6A COC706 571 CAI,.L NHOUT ; CONVERT AND DISPLAY IT
0A6D 0E20 572 HVI C, I I ;ASCII SP
0A6F CDF805 573 CALL ECHO ;DISPLAY IT
0A72 2C 574 INR L ; INC C.ON5OLE PO INTER
0fl73 15 575 DCR D ; DEC RESULT COUNTER
0A74 7A 576 t1OI/ A,D ; GET SET TO TEST COUNTER
0A75 FE04 577 CPl' 04H ; IS THE RESULT R9?
0A77 CAA20A 578 JZ R0PT ; YES, GO SAllE IT
0A7A FE0l 579 CPI 03H ; IS THE RESULT R1?
0A7C CAA70A 580 JZ R1PT ; YES, 00 5A~'E IT
0A7F A7 581 RXS2: ANA A ; TEST RESULT COUNTER
0A80 C2690A 582 JNZ RXS1 ; NOT DONE YET, GET NEXT RESULT
0A8l 221320 583 SHLD CNADR ; DONE, SO UPDATE CONSOLE POINTER
0A86 CDEB05 584 CALL CRLF ,DISPLAY CR
9AB9 210082 585 LXI H .. RXBUF i POINT AT R'1i SUFFER
0ASC C1 586 POP B i RETRIEVE RECEIVED COUNT
0A8[1 78 587 RX53' HOY A,S ; IS COUNT 01
0A8E B1 588 ORA C
9ASF CA5708 589 JZ CMDREC ; YES, GO BACK TO LOOP
9A92 7E 590 HOV A,M ; NO, GET CHR
9A93 C5 591 PUSH S i 5AVE BC
9A94 CDC706 592 CALL NHOUT ; COOI/ERT AND DISPLAY CHR
0A97 0E20 593 MII.I C.' I I' ; ASCII SP
0A99 CDFB05 594 CALL ECHO ; [lISPLAY IT TO SEPARATE DATA
0A9C C1 595 POP B ;RE5TORE Be
9A9D 0B 596 Del< B ;DEC COUNT
9A9E 23 597 INX H .; INC POINTER
0A9F CSSD9A 598 JIIP RXS3 ; GET NEXT CHR

599
0AA2 4E 600 R0PT: MOil C,M ; GET R0 FOR RESULT SUFFER
0AA3 C5 601 . PUSH B ; SAllE IT
9AA4 C37F9A 602 tHP RXS2 ; RETURN

603
0AA7 C1 604 R1PT: POP B iGET R9
BAAS 46 605 MOV B,M ;GETR1F~RESlJLTBUFFER

0AA9 C5 606 PUSH B ; SAllE IT
0AAA C37F0A 607 JIIP RXS2

608 ;
609 ;
610 ;
611 .; PARAMETER INPUT - PARAMETER RETURNED IN E REGISTER
612 ;

6-184 231311-001.

APPLICATIONS

613 i
0AAD C5 614 PARIN: PUSH B i SAVE Be
0AAE 1691 615 M\lI D,91H ; SET CHR COUNTER
9flB9 CD1F06 616 CAlL GETCH iGET CHR
9A83 CllF895 617 CAlL ECHO ; ECHO IT
9flB6 79 618 HO\I A,C ; PUT CHR IN A
9flB7 FE28 619 CPI ;SP?
0AB9 C2E90A 629 JHZ PARINl ; NO, ILLEGAL TRY AGAIN
9A8C CD1F06 621 PAR INJ: CAlL GETCH ; GET CHR OF PARAMETER ,'I'

9flBF CDF805 622 CAlL ECHO ; ECHO IT ' ~'
'I'

9AC2 CDSE97 623 CALL YAlOO ; IS IT A VAlID CHR?
If 8AC5 D2EOOA 624 JtlC PARINi i NO, TRY AGAIN

OAC8 CDBB05 625 CALL CNYBN ; ClJlIlERT IT TO HEX
~ : '

8ACB 4F 626 HO\I C,A ; SAllE IT IN C
0ACC 7A 627 HOY A,D ; GET CHR COUNTER
0ACD A7 628 ANA A ; IS IT 9"
0ACE CADG9A 629 JZ PARIN2 i YES, DONE WI TH TH IS PARAMETER
0AD115 639 OCR D ; DEC CHR COUNTER
OAD2 AF m liRA A ; CLEAR CARRY
0AD3 79 632 "0\1 A,C ; RECOIlER 1ST CHR
0AD4 17 m RAl i ~OTATE LEFT 4 PLACES
0Al,S 17 634 RAl
0AD6 17 635 RAL
OAD7 17 636 RAL
BAD8 SF m HOI/ E, A ; SAllE IT IN E
0AD9 GBC0A 638 JMP PARIN3 i GET NEXT CHR
0ADC 79 639 PAP.IN2: HOY A,C .; 2ND CHR IN A
0A00 B3 640 ORA E ; COMBINE BOTH CHRS
0ADE C1 641 POP B ; RESTORE Be
0ADF C9 642 RET .; RETURN TO CALLING PROGRAM
0AE0 79 643 PAR IN1: MOil A .• C .; PUT ILLEfR CHR IN A
0AE1 J7 644 STC i SET CARRY' AS I LLEGAl STATUS
0AE2 C1 645 POP B .; RESTORE Be
0AE3 (9 646 RET .; RETURN TO CALLING PROGRAM

647 ;
648.;
649 .; JUMP HERE IF BUFFER FULL
65iL

0AE4 CF 651 BUFFIJL: DB 0CFH ; EXIT TO tlONITOR
652 ,;
653 ;
654 ; COMMAND DISPATCHER
655 I

656 i

0AE5 210029 657 COMM: LXI H .. CMIJBIJF ; SET POINTER
0AE8 C5 658 PUSH B i SAVE Be
0AE9 71 659 MOY pI,(' i LOAD COt1l1AND INTO BUFFER
0AEA 78 660 COt1l11· HOY A .. B ; CHECK PARAMETER COUNTER
0AEB A7 661 ANA A ; IS IT 9?
0AEC CAFB0A 662 J2 CMDOUT ; YES, GO ISSUE COMMAND
0AEF CDAD0A 663 CALL PARIN ; GET PARAMETER
9AF2 DAA708 664 .IC ILLEG , ILLEGAL CHR RETURNED
0AF5 23 665 INX H ; INC BUFFER POINTER
0AF6 05 666 DCR B ; DEC PARAtlETER COUNTER
9AF7 77 667 MOI/ M,A .; PARAMETER TO BUFFER
0AF8 C3EA9A 668 .IMP COMM1 ; GET NEXT PARAMETER
0AFB 210029 669 Ci'IOOlIT: LXI H.. C.t1l)BUF ; REFOrNT POINTER
0AFE C1 679 POP B ; RESTORE PARAMETER COUNT

6-185 231311-001

. APPLICATIONS

0AFF DB90 671 COMM2: IN STAm ; READ 82n STATUS
0801 87 672 RLC ; ROTATE eBSY INTO CARRY
8802 DAFFflA 673 IC COIt12 ; WAIT FOR OK
0805 7E 674 1'1011 A,M ; OK, HOVE COMHAND INTO A
0806 0398 675 . OUT cortin ; OUTPUT COMMAND
8888 78 676 PARi: MOV A,B ; GET PARAMETER COUNT
0809 A7 677 ANA A ,IS IT II?
080A C8 678 RZ ; YES, DONE. RETURN '
e888 23 679 INX H ; INC 'COrtlAND BUFFER POINTER
880C 85 680 OCR B ; OEC PARAMETER COUNT
8890 0890 • 681 PAR2: IN STAm ; READ STATIJ5
9B9F E628 682 ANI CPBF ; IS CPBF BIT SET?
8811 C29D8B 683 JHZ PAR2 ,WAIT TIL ItS 9
8814 7E 684 1'1011 A,M ; OK, GET PARAMETER FROM BUFFER
8815 0391 685 OUT PARI'I73 ; OUTPUT PARAMETER
8817 C3980B 686 JMP PAR1 ; GET NEXT PARAMETER

687.;
0588 ;
689 ; I NITI AUZE ANI) ENABLE RX DMA CHANNEL
69B;
691 ;

881A 3E62 692 RXDMA: 1'1111 A, DRDMA ; DISABLE RX DMA CHANNEL
881C D3A8 693 OUT I'IODE57 .; 8257 MODE PORT
BB1E 010982 694 LXI B,RXBUF ; RX BUFFER START ADDRESS
8B21 79 695 1'1011 A,C ; RX BUFFER L58
8822 D3A9 696 OUT CH0ADR .; CHe ADR PORT
0B24 78 697 1'101/ A,B ; RX BUFFER M58
9B25 01.A9 698 our CIi0ADR ; CH0 ADR PORT
9B27 91FF41 699 LXI B, RXTC ; RX CH TEERMINAL COLINT
0B2A 79 700 1'10\1 A,C ; RX TERMINAL COUNT LSB
882B D3A1 791 OliT CHeTC ; CHB TC PORT
0B20 78 702 1'1011 A,B ; RX TERMINAL COUNT M5B
882E D3A1 7e3 OUT . CH9TC ; CHe TC PORT
aBf0 3E63 784 MVI A, ENDMA .; ENABLE DMA WORD
9B32 D3A8 785 OUT MODE57 ; 8257 MODE PORT
0834 C9 706 RET ; RETURN

797 ;
79B ;
7e9 ,; INITIALIZE AND ENABLE IX DMA CHANNEL
71e ;'
711 ;

8835 3E61 712 TXDMA: Mill A, DTDMA ,; 0 ISABLE TX DMA CHANNEL
9837 03AB 7B OliT MODES7 ; 8257 HOllE PORT
8B39 810080 714 LXI B, TXBUF ; IX BUFFER START ADDRESS
883C 79 7i5 MQII R.C ; IX BUFFER L58
8B3D D3A2 716 ollr CH1ADR ,; CHi ADR PORT
9B~F 78 717 t101/ A,B ; TX BUFFER M5B
8B48 D3A2 718 OUT CHiADR i CHi ADR PORT

. 8842 01FF81 719 TXDMA1: LXI B, mc ; TX CH TERMINAL COUNT
8845 79 729 I'1OV A,C ; TX TERMINAL COUNT LSB
8846 D3A3 721 OUT CH1Te ; CI'I1 Te PORT
8848 78 722 MOV A,B ; TX TERMINAL COUNT I'I5B
8849 D3A3 723 OUT CHiTC ;CHi Te PORT
0B48 3E63 724 1'1111 A,ENDMA ; ENABLE DI'IA WOl<,O
884D WAS 725 OUT MODES? ; 8257 MODE PORT
8B4F C9 726 RET ; RETlIRN

727 ;
728 ;

6-186 231311-001

APPLICATIONS

729: INERRUPT PROCESSING SECTION
738 ;

OC80 731 ORG 0C~BH
732 :
733:
734 ; RECEIVER INTERRUPT - RST 7. 5 (LOC 3CH)
735 :

ecOB E5 736 R:~I' PUSH H ; SAVE HL
aCe! F5 m PUSH PSW ; SAVE PSW
0("02 C5 718 PUSH B ; SAVE BC
oce} D5 m PUSH D ; SAVE DE
OC94 3E62 740 ~1\1! A,uRDt1R .: DISABLE RX DMA
OC96 D3AB 741 OUT MODE5, J 8257 MODE PORT
OC0S JE1S i'42 MVI A,iSH ; RESET RST7. 5 F IF
0C0A 30 743 51H
BC0B 1604 744 MVI D,04H ; DIS RESULT COLINTER
9COO 2111(120 745 LHLD LDADR ; GET LOAD POINTER
9m E5 746 PUSH H ; SAVE IT
0C11 E5 747 PUSH H .: SAVE IT AOO IN
OC12 45 748 MOIl B,L ;SAVE LSB
ocn 2A1320 749 LHLD CNADR .: GET CONSOLE PO INTER
OC16 94 750 R~m. INR B ; BUMP LOAD POINTER LSB
OC1? 78 751 MOl! A,B ; GET SET TO TEST
OC1S BD 752 CMP L : LOAD=CONSOLE':'
OC19 CAE49A 753 JZ BUFFUL ; YES, BlIFFER FULL
OC1C 15 754 OCR D .. DEC COlII/TER
OC1D C2160C 755 JNZ RXI1 ; NOT DONE, TRY AGAIN
9C20 1605 756 MVI D .• t.l5H ; RESET COLINTER
0C22 E1 757 POP H ; RESTORE LOAD POINTER
OC23 DB90 758 RXI2 IN STAT73 .. READ STATIJS
8C25 E608 759 ANI RXINT .. TEST RX INT BIT
0(27 CA:l.90C 760 JZ RXB ; DONE.. GO FINISH UP
OC2A 0898 761 IN STAm .. READ 5TATUS AGA I N
OC2C E602 762 ANI RXIRA ; 15 RE5Ul T READY?
0C2E CA23fJC 763 JZ RXI2 .: NO, TEST AGAIN
en1 DB93 764 IN RXIR73 ; VES, READ RESUlT
em 77 765 MOil M,f'l ; STORE IN BUFFER
9C34 2C 766 INR L .: INC BUFFER PO INTER
OC35 15 767 DCR D .: DEC COlII/TER
OC36 c:moc 768 JI'IP RXI2 ; GET /'lORE RE5Ul TS
0C39 7A 769 R'liB: MOil A,D ; GET SET TO TEST
OC3A A7 77Q ANA A .. ALL RESUlTS?
OC3B CA45fK 771 JZ RXI4 ; YES, SO FINISH UP
0C3E 3609 772 MVI M,B0H ; NO.. LOAD 9 TIl DONE
OC40 2C 773 INR L ,BlIMP POINTER
OC4115 774 DCR D ; DEC COlII/TER
OC42 C3390C 775 JMP RXB ; GO AGAIN
OC45 221920 776 RXI4: SHlD LDADR ; UPDATE LOAD POINTER
OC48 3A1529 777 LOA PRMPT ; GET MODE INDICATOR
0C4B FE2ll 778 CPI '-' ; NORmL MODE?
OC4D eA850C 779 JZ RXI6 ; YES, CLEAN UP BEFORE RETURN

780 ;
781 ; POLL MODE SO CHECK CONTROL BYTE
782 ; IF CONTROL IS A POlL. SET UP SPECIAl TX COI'1t1AND BUFFER
783; AN~ RETURN WITH POLL INDICATOR NOT 0
784;

OC50 El 785 POP H ; GET PREVIOUS LOAD ADR POINTER
9C51 7E 786 MOl! A .• M .. GET IC B'r'TE FROM BUFFER

6-187 231311-001

APPLICATIONS

9(52 E61E 787 ANI lEH ; LOOK AT GOOO FRAME BITS
OC54 C2B90C 788 JNZ RXI5 ; IF NOT 0, INTERRUPT IoIASN'T FRO/'! A GoOD FRAME
0C57 2C 789 INR L ; BYPASS R0 AND Rl IN BUFFER
9C58 2C 790 INR L
OC59 2C 791 INR L
OC5A 56 m MOil D. H ; GET ADR· BYTE AND SAllE IT IN D
OC5B- 2C m INR L
eC5C 7E 794 MOY A,M ; GET CNTL BYTE FROM BUFFER
OC5D FE93 795 CPI SNRMP ; WAS IT SNRM-P?
0C5F CA6C0C 7% JZ 11 ; YES, GO SET RESPONSE
0C62 FE1l 797 CPI RR0P i WAS IT RR(9)-P?
OC64 C2898C 798 JNZ RXIS ; YES, GO SET RESPONSE, OTHERWISE RETURN
OC67 1E11 799 MVI . E,RR0F ; RR(0)-P SO SET RESPONSE TO RR(8)-F
OC69 CJ6EOC 880 JMP TXRET ; GO FINISH LOADING SPECIAL BUFFER
OC6C1E73 801 H: Mill E, NSAF ,; SNRtH SO SET RESPONSE TO NSA-F
OC6E 212820 S02 TXRET' LXI H,.Ct1DBFi ; SPECIAL BUFFER ADR
OC71 36C8 S06 Mill 1'1,0C8H ; LOAD TX FRAME COt1t1AND
OC73 23 808 INX H ; INC POINTER
am 3680 889 t1VI M,00H ;L9=8
OCl6 23 810 INX H ; IOC POINTER
OC7? 3680 811 MVI M,80H ;L1=9
OC79 23 812 INX H ; INC POINTER
0C7A 72 813 MOIl M,D ; LOAD RCVD ADR BYTE
OC7B 23 814 INX H ; INC POINTER
9ClC 73 815 MOil M,E ; LOAD RESPONSE CNTl BYTE
eC7D 3Eel 816 Mill A,e1H ,;·SET POlL INDICATOR NOT 0
OC7F 321620 817 STR ~IN ; LOAD POLL INDICATOR
8C82 G890C 818 JMP RXIS ; RETURN

819
0C85 El 820 RXI6: POP H ; CLEAN UP STACK IF NORMAL t«lDE
OC86 C3ageC 821 JMP RXIS ; RETURN

822
OC89 CDIA0B 823 RXIS: CAlL RXDI1A ; RESET DMA CHANNEL
0C8C Di 824 POP D ; RESTORE REGISTERS
OC8D C1 825 POP B
OCSE Fl 826 POP PSW
OC8F E1 827 POP H
9C90 FB 828 EI ; ENABlE I NTERRIJPTS
OC91 C9 829 RET ; RETURN

839 ;
831,;
832 ; MESSAGE TVPER - AS5IJt1ES MESSAGE STARTS AT tit
8:n;
834 ;

OC92 C5 835 TYt1SG: PUSH B ; SAllE Be
OC93 7E 836 TYt1SG2: MOil A,M ; GET ASC II CHR
8C94 23 837 INX H ,; INC POINTER
OC9S FEFF 838 CPI 8FFH ; STOP?
OC97 CAR10C 839 JZ TYt1SG1 ; YES, GET SET FOR EXIT
OC9A 4F 848 MOV C,A . ; SET UP FOR DISPLAY
8C9B C[)F8elS 841 CALL ECHO ; DISPLAY CHR
8C9E C3930C 842 . JMp T'r'MSG2 ; GET NEXT CHR
OCA1 C1 843 TYt1SG1: POP B ; RESTORE Be
OCR2 C9 844 RET ; RETURN

845 ;
846 ;
847 ; SIGNON MESSAGE
848 ;

6-188 231311-001

OCA3 00
flCA4 38323733
0CAS 204D4F4E
(leAC 49544F52
0CB0 29205631
OC.B4 2E~1
geB6 00
0CB7 FF

0CB8 eD
0CB9 52582049
0CBD 4E54202D
OCCl 20
0CC2 FF

0CC3 9D
0CC4 54582049
0Cce 4E54202D
0CCC 20
OCCD FF

0CCE E5
0CCF FS
0CD0 C5
0CDl DS
0C1)2 3E61
0CD4 D~A8
0CD6 1604
0CD8 2A1020
0C08 E5
0CDC 45
0CDD 2AB20
0CE0 04
0CE1 78
IlCE2 SO
0CEJ CAE40A
0CE6 15'
0CE7 C2E90C
0CEA E1
0CEB 0892
0CED 77
0CEE 2C
0CEF 3600
0CF1 2C
0CF2 3600
0CF4 2C
IlCFS 3600
IlCF7 2C

APPLICATIONS

849 SIGNON: DB CR. '8273 MONITOR Vl.1'", CR, BFFH

850 ;
851 ..
852 ;
853 .' RECEIVER INTERRUPT MESSAGES
854 i

855 i

856 RXIt1SG: DB CR, 'RX INT - I, 0FFH

857 ;
858 ,TRANSI'1lTTER INTERRUPT MESSAGES
859 ;
860 TXIMSG: DB CR, 'TX INT - ; dilFFH

861 ,
862;
863 ; TRANSMITTER I NTERRUPT ROUTINE
864 ;
865 TXI. PUSH H ; SAllE Hl
866 PUSH PSW ; SAVE PSW
S67 PUSH B ; SAVE Be
B68 PUSH D .' SAVE DE
869 Mill A, DTDI'IA ; DISABLE TX DI1A
870 OUT MODES7 ; 8257 MODE PORT
871 MVI D,04H ; SET COUNTER
872 lHlD LDADR i GET LOft[) POINTER
873 PUSH H i SAVE IT
874 MOV B,l ; SAVE LSB IN B
875 lHLD CNADR ; GET CONSOLE POINTER
876 TXI1: INR B ; INC POINTER
877 MOil A,B i GET SET TO TEST
878 CMP L i lOft[)=CONSOlE?
879 JZ BUFFUL i YES, BUFFER FULL
sse DCR D j NO, TEST NEXT LOCATION
B81 JHZ TXI1 ; TRY AGAIN
882 POP H ; RESTORE lOft[) POINTER
883 IN TXIR73 i READ RESULT
884 i'IOV M,A ; STORE IN BUFFER
885 INR L ; INR POINTER
886 t1III 11,80H ; EXTRA RE5UL T SPOTS 0
887 INR L
888 Mill M,00H
889 INR L
890 MVI M,80H
891 INR L

6-189 231311-001

APPLICATIONS

9CF83600 892 Mill M,OOH
0CFA 2C 893 INR L '
ecFB 221020 894 SHLD LDADR ; UPDATE LOAD POINTER
0CFE CD350B 899 CALL TXDMR .' RESET DMR CHANNEL
0001 D1 900 POP D ;RESTORE DE
0002 C1 991 POP B ; RESTORE BC
0003 Fl 992 POP PSW ; RESTORE PSW
0004 E1 993 POP H ! RESTORE HL
0005 FB 904 EI ; ENABLE INTERRUPTS
00fI6 C9 905 RET ; RETURN

906 ;
907 '
952 ;
953 !

954 END

PIJBL I C SI'M8OLS

EXTERNAL SI'M8OLS

USER SI'M8OLS
fIDWN A 0922 AFCHD A 09CE BliFFUL A 0AE4 CH0fIDR A 90R9 . CHeTC A 90A1 CH1ADR A 90A2 CHiTC A 00A3
0051 A 9027 CHDBFi A 2020 CHDBIJF A 2000 Ct1OO1JT A 0AFB CruEC A 0857 CIIOOE A 0931 CNADR A 2013
CNT0S3 A 009C CNT153 A 909D • CNT2SJ A 909E CNTLS1 A 00B9 CNTLC A 0003 CN\IBN A 05BB COBR A 000C
COIt1 A 9AES COI!t11 A 9AEA Cmt12 A 0AFF COIt173 A 9090 CPBF A 0020 CR A 0IlIII) CRLF A 95EB
DEt1 A 0000 DEt10DE A 2027 DISPY A 0A39 D ISPY1 A 0A4E D ISPY2 A 0A4D DRDtfA A 9062 DTDMR A 9061
ECHO A 05F8 ENDCH!(A 0A1B ENDMR A 0063 GOWN A 0BFF GETCH A 061F GETCt1D A 087D. GRoo A 09C4
ILLEG A 08A7 LDADR A 2010 LF A 0E1eA LKBR1, A 2017 LKBR2 A 201B LOOP IT A 0861 t1OCNT9 A 9036
I'IDCNT2 A 0086 HDE51 A 00CE MODE53 A 909B t1ODE57 A 00AB MONTOR A 900B Nt10IJT A 06C7 N5AF A 9073
PARi A 0B0B PAR2 A 0BeD PARIN A. 0AAD PARIN! A 0AE0 PARIN2 A MDC PARIN3 A 0ABC PARM73 A 9091
POLIN A 2016 PRt1PT A 2015 RePT A 0AA2 R1PT A 9AA7 RBCMD A 097B RDCt1D A 0971 RDJoi.I A 0SAF
RD'r' A 9002 RESBlIF A 2890 RESL 73 A 0091 ROCHD A 0950 RPCHD A 091)8 RR0F A 0011 RRIIP A 9011
R5Ct1D A 0967 RST65 A 20CE RST75 A 2004 RXBIJF A 8200 0051 A 08SS RXDMR A 081A RXI A 9COO
RXI1 A eC16 RXI2 A 9C23 RXB A 9C39 RXI4 A 0C45 RliI5 A 0C89 RXI6 A0C85 RXlltSG A 0CBS
RXINT A 0908 RliIR73 A 9093 RXIRA A 0002 RXS1 A 0A69 RXS2 A 0A7F RXS3 A 0ASI) RXSORC A 0A62
RXTC A 41FF SBCHD A 9985 SOWN A 9SD7 SIGNON A 0CA3 SLCHD A 09SF 5NRI1P A 9093 SOCI'I) A 99A6
SPCHD A 99E2 SRCHD A 09BA SSCt1D n 09B0 START A 0809 STAT51 A 00B9 STATS? A 09AS STAm A 099i!
STKSRT A 20C0 5W A 0943 T1 A 0C6C TBlJFFL A 0A24 TBlJFL A 0A97 TBlfL1 A 0fIi!I) TDWN A 09i!E
TESm A 0092 TFCHDA 99EC TFCHD1 A 09F6 TFRET A 0A36 TLCPII) A 0999 TRUE A 0900 TRUE1 A 0909
TXBIJF A 8909 TXD51 A 09BS TXDMR A 0835 TXDMA1 A 0842 TXI A eccE TXI1 A 0CE0 TXIItSG A 0CC3
TXINT A 0004 TXIRn A em TXIRA A 9091 TXPOL A 094C TXRET A 9C6E TXSORC A 0A47 mc A 81FF
TYMSG A 0C92 TYMSG1 A 0CA1 TYI1SG2 A 0C93 \IAI.OO A 975E

A55EI'IBL'r' COMPLETE, NO ERRORS

6-190 231311-001

©INTELCORPORATION,1981 ,

APPLICATION
NOTE

6-191

AP-134

October 1981

, I

Order number: 210311-001

AP-134 , I

INTRODUCTION

The 8274 Multiprotocol serial controller (MPSC) is a
sophisticated dual-channel communications controller
that interfaces microprocessor systems to high-speed
serial data links (at speeds to 880K bits per second)
using synchronous or asynchronous protocols. The
8274 interfaces easily to most common microproces­
sors (e.g., 8048, 8051, 8085, 8086, and 8088), to DMA
controllers such as the 8237 and 8257, and to the 8089
110 processor. Both MPSC cOinmunica,tion channels
are completely independent and can operate in a full­
duplex communication mode (~multaneous data trans­
mission and reception).

Communication Functions

The 8274 performs many communications-oriented
functions, including:

-Converting data bytes from a microprocessor system
into a serial bit stream for transmission over the data
link to a receiving system.

'-Receiving serial bit streams and reconverting the
data into parallel data bytes that can easily be pro­
cessed by the microprocessor system.

-Performing error checking during data transfers. Er­
ror checking fuhcti!)ns include computing!
transmitting error codes (such as parify bits or CRC
bytes) and using these codes to cl/eck the v~idity of
received data. ' '

-Operating independently of the system processor in a
manner designed to reduce the system overhead in­
volved in data transfers.

System Interface

The MPSC system interface is extremely flexible,
suppoiting the following data transfer modes:

1. Polled Mode. The system processor periodically
reads (polls) an 8274 status register to determine
when a character has been received, when a charac­
ter is needed for transmission, and when transmis­
'sion errors are detected.

2. Interrupt Mode. The MPSC interrupts the system
processor when a character has been received, when
a character is needed for transmission, and when
transmission ,errors are detected.

3. DMA Mode. The MPSC automlitically requests data
transfers from system memory for both transmit and
receive functions by means of two DMA request
signals per serial channel. These DMA request sig­
nals may be directly interfaced to an 8237 or 8257
DMA controller or to an 8089 I~O processor.

4. WAIT Mode. The MPSC ready signal is used to
synchronize processor data transfers by forcing the
processor to enter wait states until the 8274 is ready
for another data byte. This feature enables the 8274
to interface directly to an 8086 or 8088 processor by
means of string 110 instructions for very high-speed
data links.

Scope

This application note describes the use of the 8274 in
asynchronous communication modes. Asynchronous
communication is typically used to transfer data
to!from video display terminals, modems, printers, and
other low-to-medium-speed peripheral devices. Use of
the 8274 in both interrupt-driven and polled system
environments is described. Use of the DMA and WAIT
modes are not described since these modes are
employed mainly in synchronous communication sys­
tems where extremely hig~ data rates are common.
Programming examples a~ written in PLlM-86
(Appendix B and Appendix C). PL/M-86 is executed by
the iAPX-86 and iAPX-88 processor families. In addi­
tion, PL/M-86 is very similar to PLlM-80 (executed by
the MCS-80 and MCS-85 processor families). In addi­
tion, Appendix D describes a simple application exam­
ple using an SDK-86 in an iAPX-86/88 environment.

SERIAL-ASYNCHRONOUS DATA LINKS

A ,serial asynchronous interface is a method of data
transmission in which the receiving and transmitting

. systems need not be synchronized. Instead oftransmit­
ting clocking information with the data, locally
generated clocks (16, 32 or 64 times as fast as the data
transmission rate) are used by the transmitting and
receiving systems. When a character of information is
sent by the transmitting system, the character data is
fr~ed (preceded and followed) by special START and
STOP bits. This framing information permits the receiv­
ing system to temporarily synchronize with the data
transmission. (Refer to Figure 1 during the following
discussion of asynchronous data transmission.)

6-192

TIME~
I I 1 I I I I I I I I I I I I I I I I

1 0 1 1 0 ,0 1 0 1 0 1_1_

DA(!:A~:I~~LE S1~T ~ i PARITYS~~P DA:A~:I~~LE

PARITY CHARACTER (UPPER CASE S 53H)

1 0 1 0 0 1 1

Figure 1. Transmission of a 7-81t ASCII Character
with Even Parity

210311-001

AP-134

Normally the data link is in an idle or marking state,
continuously transmitting a "mark" (binary 1). When a
character is to be sent, the character data bits are imme­
diately preceded by a "space" (binary 0 START bit).
The mark-to-space transition informs the receiving sys­
tem that a character of information will immediately
follow the start bit. Figure 1 illustrates the transmission
of a 7-bit ASCII character (upper case S) with even
parity. Note that the character is transmitted immedi­
ately following the start bit. Data bits within the charac­
ter are transmitted from least-significant to
most-significant. The parity bit is transmitted immedi­
ately following the character data bits and the STOP
framing bit (binary 1) signifies the end of the character.

Asynchronous interfaces are often used with human
interface devices such as CRT/keyboard units where
the time between data transmissions is extremely
variable.

Characters

In asynchronous mode, characters may vary in length
from five to eight bits. The character length depends on
the coding method used. For example, five-bit charac­
ters are used when transmitting Baudot Code, seven-bit
characters are required for ASCII data, and eight-bit
characters are needed for EBCDIC and binary data. To
transmit messages composed of multiple characters,
each character is framed and transmitted separately
(Figure 2).

This framing method ensures that the receiving system
can easily synchronize with the start and stop bits of
each character, preventing receiver synchronization er­
rors. In addition, this synchronization method makes
both transmitting and receiving systems insensitive to
possible time delays between character transmissions.

t: iii ..
~ ~ ~ ., .-
CHARACTER

"

iii

~
I

VARIABLE DELAY BETWEEN
CHARACTERS

ct: iii iii t; ~ o~

inS In

iii
e .,

I I >---I
CHARACTER CHARACTER CHARACTER ••

iii Ii
I< ~ ~
o---t
CHARACTER

os

Figure 2. Multiple Character Transmission

Framing

Character framing is accomplished by the START and
STOP bits described previously. When the START bit
transition (mark-to-space) is detected, the receiving
system assumes that a character of data will follow. In
order to test this assumption (and isolate noise pulses
on the data link), the receiving system waits one-half bit
time and samples the data link again. If the link has
returned to the marking state, noise is assumed, and the
receiver waits for another START bit transition.

When a valid START bit is detected, the receiver
samples the data link for each bit of the following char­
acter. Character data bits and the parity bit (if required)
are sampled at their nominal centers until all required
characters are received. Immediately following the
data bits, the receiver samples the data link for the
STOP bit, indicating the end of the character. Most
systems permit specification of 1, lY2, or 2 stop bits.

Timing

The transmitter and receiver in an asynchronous data
link arrangement are clocked independently. Normally,
each clock is generated locally and the clocks are not
synchronized. In fact, each clock may be a slightly
different frequency. (In practice, the frequency differ­
ence should not exceed a few percent. If the transmitter
and receiver clock rates varY substantially, errors will
occur because data bits may be incorrectly identified as
START or STOP framing bits.) These clocks are de­
signed to operate at 16, 32, or 64 times the communica­
tions data rate. These clock speeds allow the receiving
device to correctly sample the incoming bit stream.

Serial-interface data rates are measured in bits/second.
The term "baud" is used to specify the number of times
per second that the transmitted signal level can change
states. In general, the baud is not equal to the bit rate.
Only when the transmitted signal has two states
(electrical levels) is the baud rate equal to the bit rate.
Most point-to-point serial data links use RS-232-C, RS-
422, or RS-423 electrical interfaces. These specifica­
tions call for two electrical signal levels (the baud is
equal to the bit rate). Modem interfaces, however, may
often have differing bit and baud rates.

While there are generally no limitations on the data
transmission rates used in an asynchronous data link, a
limited set of rates has been standardized to promote
equipment interconnection. These rates vary from 75
bits per second to 38,400 bits per second. Table 1 il­
lustrates typical asynchronous data rates and the asso­
ciated clock frequencies required for the transmitter
and receiver circuits. .

6-193 210311-001

AP·134

Table 1. Communication Data Rates and
Associated Transmitter/Receiver
Clock Rates

Data Rate (bits/sacon,d) Clock Rate (kHz)

X16 X32 X64

75 1.2 2.4 4.8
150 2.4 4.8 9.6
300 4.8 9.6 19.2
600 9.6 19.2 38.4

1200 19.2 38.4 76.8
2400 38.4 76.8 153.6
4800 76.8 153.6 307.2
9600 153.6 307.2 614.2

19200 307.2 614.4 -
38400 614.4 - -

Parity

In order to detect transmission errors, a parity bit may
be added to the character data as it is transferred over
the data link. The parity bit is set or cleared to make the
total number of "one" bits in the character even (even
parity) or odd (odd parity). For example, the letter "A"
is represented by the seven-bit ASCII code 1000001
(4IH). The transmitted data code (with parity) for this
character contain~ eight bits; 01000001 (4IH) for even
parity and 11000001 (OCIH) for odd parity. Notethat a
single bit error changes the parity of the received char­
acter and is therefore easily detected. The 8274 sup­
ports both odd and even parity checking as well as a
parity disable mode to support binary data transfers.

Communication Modes

Serial data transmission between two devices can oc­
cur in one ofthree modes. In the simplex transmission
mode, a data link can transmit data in one direction
only. In the half-duplex mode, the data link can transmit
data in both directions, but not simultaneously. In the
full-duplex mode (the most common), the data link can
transmit data in both directions simultaneously. The
8274 directly supports the full-duplex mode and will
interface to simplex and half-duplex communication
data links with appropriate software controls.

BREAK Condition

Asynchronous data links Qften include a special se­
quence known as a break condition. A break condition
is initiated when the transmitting device forces the data
link to a spacing state (binary 0) for an extended length
of time (typically 150 milliseconds). Many terminals
contain keys to initiate a break sequence. Under

software control, the 8274 can initiate a break sequence
when transmitting data and detect a break sequence
when receiving data.

MPSC SYSTEM INTERFACE

Hardware Environment

The ·8274 MPSC interfaces to the system processor over
an 8-bit data bus. Each serial 110 channel responds to
two 110 or memory addresses as shown in Table 2. In·
addition, the MPSC supports vectored and daisy­
chained interrupts.

The 8274 may be configured for memory-mapped or
1I0-mapped operation.

Table 2. 8274 Addressing

CS A, AD Read Operation Write Operation

0 0 0 Ch A Data Read Ch A Data Wnte
0 1 0 Ch A Status Read Ch A Command/Parameter
0 0 1 Ch. B Data Read Ch B Data Wnte
0 1 1 Ch B Status Read Ch B Command/Parameter
1 X X High Impedence HIgh Impedence

The 8274-processor hardware interface can be con­
figured in a flexible manner, depending on the operating
mode selected-polled, interrupt-driven, DMA, or
WAIT. Figure 3 illustrates typical MPSC cOllfigurations
for use with an 8088 microprocessor in the polled and
interrupt-driven 'modes.

All serial-to-parallel conversion, parallel-to. serial COIl­

version, and parity checking required during
asynchronous serial 110 operation is automatically per­
formed by the MPSC.

Operational Interface

Command, parameter, and status information is stored
in 22, registers within the MPSC (8 writable registers
and 3 readable registers for each channel). These regis­
ters are all accessed by means of the command! status
ports for each channel. An internal pointer register
selects which of the command or status registers will be
written or read during a command!status access of an
MPSC channel. Figure 4 diagrams the command! status
register architecture for each serial channel. In the
following discussion, the writable registers will be
referred to as WRO through WR7 and the readable regis­
ters will be referred to as RRO through RR2.

6-194 210311-001

AP·134

a) Polled Configuration

~ ADDRESS BUS "f" ... 11

~ DATA BUS J}

RD

WR
Vee

..... ~
DBO-7 ~

P - INTA ~ 8205 P Ao

'-- ~
A, MPSC
CS

RD

WR

b) Daisy-chained Interrupt Configuration

Vee

INT~
INTA

CPU 6 6 j
INT INTA INT INTA INT INTA

~
IPI IPO IPI IPO IPI IPO

MPSC MPSC MPSC
HIGHEST PRIORITY LOWEST PRIORITY

Figure 3_ 8274 Hardware Interface for Polled and Interrupt-driven Environments

The least-significant three bits of WRO are automati­
cally loaded into the pointer register every time WRO is
written. After reset, WRO is set to zero so that the first
write to a command register causes the data to be
loaded into WRO (thereby setting the pointer register).
After WRO is written, the following read or write acces­
ses the register selected by the pointer. The pointer is
reset after the read or write operation is completed. In
this manner, reading or writing an arbitrary MPSC
channel register requires two I/O accesses. The first
access is always a write command. This write command
is u~d to set the pointer register. The second access is
either a read or a write command; the pointer register
(previously set) will ensure that the correct internal
register is read or written. After this second access, the
pointer register. is automatically reset. Note that writ­
ing WRO and reading RRO does not require presetting of
the pointer register. .

During initialization and normal MPSC operation,
various registers are read and/or written by the system
processor. These actions are discussed in detail in the
following paragraphs. Note that WR6 and WR7 are not
used in the asynchronous communication modes.

RESET

When the 8274 RESET line is activated, both MPSC
channels enter the idle state. The serial output lines are
forced to the marking state (high) and the modem inter­
face signals (RTS, DTR) are forced high. In addition,
the pointer register is set to zero.

6-195 210311-001

Ap..134

COMMAND/STATUS
POINTEI'I

r "" D2 D1 DO _I W: 1'1 : : : 1 I 1 0 0 0 0 1'1 1'1 0

0 0 _I W 1'1 I 1 1'1 1'1

0 0 -IW 1'1 2 I I 1'1 1'1 2 I
MSB LSB

·1
l'I.ad 1'18glal.r.

0 W 1'1

0 0 ·1 W 1'1 4

0 -I W 1'1 5

0 -I w 1'1 8

_, W
1'1 7 I

MSB LSB

Wrll. 1'18glal ...

Figure 4. Command/Status Register Architecture (Each Serial Channel)

External/Status Latches

The MPSC continuously monitors the state offour ex­
ternal/ status conditions:

1. CTS-clear-to-send input pin.

2. CD-carrier-detect input pin.

3. SYNDET-sync-detect input pin. This pin may be
used as a general-purpose input in the asynchro~ous
communication mode.

4. BREAK-a break condition (series of space bits on
the receiver input pin).

A change of state in any of these monitored conditions
will cause the associated status bit in RRO (Appendix A)
to be latched (and optionally cause an interrupt).

Error Reporting

Three error conditions may be encountered during data
reception in the asynchronous mode: '

6-196 210311-<101

AP-134

1. Parity. If parity bits are computed and transmitted
with each character and the MPSC is set to check
parity (bit 0 in WR4 is set), a parity error will occur
whenever the number of " 1 " bits within the charac­
ter (including' the parity bit) does not match the
odd/even setting of the parity check flag (bit 1 in
WR4).

2. Framing. A framing error will occur if a stop bit is
not detected immediately following the parity bit (if
parity checking is enabled) or immediately following
the most -significant data bit (if parity checking is not
enabled).

3. Overrun. If an input character has been assembled
but the receiver buffers are full (because the previ­
ously received characters have not been read by the
system processor), an overrun error will occur.
When an overrun error occurs, the input character
that has just been received will overwrite the imme­
diately preceding character.

Transmitter/Receiver Initialization

In order to operate in the asynchronous m6de, each
MPSC channel must be initialized with the following
information:

1. Clock Rate. This parameter is specified by bits 6 and
7 ofWR4. The clock rate may be set to 16, 32, or 64
timt<s the data-link bit rate. (SeeAppendixA forWR4
details.)

2. Number of Stop Bits. This parameter is specified by
bits 2 and 3 of WR4. The number of stop bits may be
setto 1, 1\-2, or2. (See Appendix A forWR4 details.)

3. Parity Selection. Parity may be set for odd, even, or
no parity by bits 0 and 1 of WR4. (See Appendix A
for WR4 details.)

4. Receiver Character Length. This parameter sets the
length of received characters to S, 6, 7, or 8 bits. This
parameter is specified by bits 6 and 7 of WR3. (See
Appendix A for WR3 details.)

S. Receiver Enable. The serial-channel receiver opera­
tion may be enabled or disabled by setting or clear­
ing bit 0 ofWR3. (See Appendix A forWR3 details.)

6. Transmitter Character Length. This parameter sets
the length of transmitted characters to S, 6, 7, or 8
bits. This parameter is specified by bits Sand 6 of
WRS. (SeeAppendixAforWRS details.) Characters
of less than S bits in length may be transmitted by
setting the transmitted length to five bits (set bits S
and 6 of WRS to 1).

The MPSC then determines the actual number of
bits to be transmitted from the character data byte.
The bits to be transmitted must be right justified in
the data byte, the next three bits must be set to 0 and

all remaining bits must be set to 1. The following
table illustrates the data formats for transmission of
I to S bits of data:

Number of
Bits Transmitted

07 06 05 D4 03 02 01 DO (Character Length)
0 0 0 c

0 0 0 c c 2

1 0 0 0 c c c 3

0 0 0 c c c· c 4

0 0 0 c c c c c 5

7. Transmitter Enable. The serial channel transmitter
operation may be enabled or disabled by setting or
clearing bit 3 of WRS. (See Appendix A for WRS
details.)

For data transmissions via a modem or RS-232-C inter­
face, the following information must aiso be specified:

1. Request-to-Send/Data-Terminal-Ready. Must be
set to indicate status of data terminal equipment.
Request-to-send is controlled by bit 1 of WRS and
data terminal ready is controlled by bit 7. (See Ap­
pendix A for WR5 details.)

2. Auto Enable. May be set to allow the MPSC to
automatically enable the channel transmitter when
the clear-to-send signal is active and to automati­
cally enable the receiver when the carrier-detect
signal is active. Auto Enable is controlled by bit 5 of
WR3. (See Appendix A for WR3 details.)

During initialization, it is desirable to guarantee that the
externallstatus latches reflect the latest interface infor­
mation. Since up to two state changes are internally
stored by the MPSC, at least two Reset External/Status
Interrupt commands must be issued. This procedure is
most easily accomplished by simply issuing this reset
command whenever the pointer register is set during
initialization.

An MPSC initialization procedure (MPSCRXINIT)
for asynchronous communication is listed in Appendix
B. Figure 5 illustrates typical MPSC initialization
parameters for use with this procedure.

6-197

call MPSCRXINIT(41, 1,1,0,1, 3,1,1, 3,1,1,0,1),

initializes the 8274 at address 41 as follows.

X16 clock rate Enable transmitter and receiver
1 stop bit Auto enable set
Odd parity DTR and RTS set
8·bit characters (Tx and Rx) Break transmiSSion disabled

Figure 5. Sample 8274 Initialization Procedure
for Polled Operation

210311-001

AP-134

Polled Operation

In the polled mode, the processor must monitor the
MPSC status by testing the appropriate bits in the read
register. Data available, status, and error conditions are
represented in RRO and RRI for channels A and B. An
example of MPSC-polled transmitter/receiver routines
are given in Appendix B. The following routines are
detailed:

1. MPSC$POLL$RCV$CHARACTER-This proce­
dure receives a character from the serial data link.
The routine waits until the character-available flag in
RRO has been set. When this flag indicates that a
character is available, RRI is checked for errors
(overrun, parity, or framing). If an error is detected,
the character in the MPSC receive buffer must be
read and discarded and the error routine
(RECEIVE$ERROR) is called. If no receive errors
have been detected, the character is input from the
8274 data port and returned to the calling program.

MPSC$POLL$RCV$CHARACTER requires
three parameters-the address of the 8274 channel
data port (data$port), the address of the 8274 chan­
nel command port (cmd$port), and the address of a
byte variable in which to store the received charac­
ter (character$ptr).

2. MPSC$POLL$TRAN$CHARACTER-This pro­
cedure transmits a character to the serial data link.
The routine waits until the transmitter-buffer-empty
flag has been set in RRO before writing the character
to the 8274.
. MPSC$POLL$TRAN$CHARACTER requires
three parameters-the address of the 8274 channel
data port (data$port), the address of the 8274 chan­
nel command port (cmd$port), and the character of
data that is to be transmitted (character).

3. RECEIVE$ERROR-This procedure processes
receiver errors. First, an Error Reset command is
written to the affected channel. All additional error
processing is dependent on the specific application.
For example, tiJ.e receiving device may immediately
request retransmission of the character or wait until
a message has been completed.

RECEIVE$ERROR requires two parameters­
the address of the affected 8274 command port
(cmd$port) and the error status (status) from 8274
register RR1.

Interrupt-driven Operation

In an interrupt-driven environment, all receiver
operations are reported to the system processor by
means of interrupts. Once a character has been
received and assembled, the MPSC interrupts the sys­
tem processor. The system processor must then read

the character from the MPSC data buffer and clear the
current interrupt. During transmission, the system pro­
cessor starts serial I/O by writing the first character of a
message to the MPSC. The MPSC interrupts the system
processor whenever the next character is required (i.e:,
when the transmitter buffer is empty) and the processor
responds by writing the next character of the message
to the MPSC data port for the appropriate channel.

By using interrupt-driven I/O, the MPSC proceeds in­
dependently of the system processor, signalling the
processor only when characters are required for trans­
mission, when characters are received from the data
link, or when errors occur. In this manner, the system
processor may continue execution of other tasks while
serial I/O is performed concurrently.

Interrupt Configurations

The 8274 is designed to interface to 8085- and 8086-type
processors in much the same manner as the 8259A is
designed. When operating in the 8085 mode, the 8274
causes a "call" to a pre specified , interrupt-service
routine location. In the 8086 mode, the 8274 presents
the processor with a one-byte interrupt-type number.
This interrupt-type number is used to "vector" through
the 8086 interrupt service table. In either case, the
interrupt service address or interrupt-type number is
specified during MPSC initialization.

To shorten interrupt latency, the 8274 can be prognun­
med to modify the prespecified interrupt vector so that
no software overhead is required to determine the
cause ofan interrupt. When this "status affects vector"
mode is enabled, the following eight interrupts are dif­
ferentiated automatically by the 8274 hardware:

I. Channel B Transmitter Buffer Empty.

2. Channel B External/Status Transition.

3. Channel B Character Available.

4. Channel B Receive Error.

5. Channel A Transmitter Buffer Empty.

6. Channel A External/Status Transition.

7. Channel A Character Available.

8. Channel A Receive Error.

Interrupt Sources/Priorities

The 8274 hasthree interrupt sources for each channel:

6-198

1. Receiver (RxA, RxB). An interrupt is initiated when
a character is available in the receiver buffer or when
a receiver error (parity, framing, or overrun) is
detected.

210311-001

AP·134

2. Transmitter (TxA, TxB). An interrupt is initiated
when the transmitter buffer is empty and the 8274 is
ready to accept another character for transmission.

3. External/Status (ExTA, ExTB). An interrupt is in­
itiated when one of the external/status conditions
(CD, CTS, SYNDET, BREAK) changes state.

'The 8274 supports two interrupt priority orderings
(selectable during MPSC initialization) as detailed in
Appendix A, WR2, CH-A.

Interrupt Initialization

In addition to the initialization parameters required for
polled operation, the following parameters must be sup­
plied to the 8274 to specify interrupt operation:

1. Transmit Interrupt Enable. Transmitter-buffer­
empty interrupts are separately enabled by bit I of
WRI. (See Appendix A for WRI details.)

2. Receive Interrupt Enable. Receiver interrupts are
separately enabled in one of three modes: a) inter­
rupt on first received character only and on receive
errors (used for message-oriented transmission sys­
terns), b) interrupt on all received characters and on
receive errors, but do not interrupt on parity errors,
and c) interrupt on all received characters and on
receive errors (including parity errors). The ability
to separately disable parity interrupts can be ex­
tremely useful when transmitting messages. Since
the parity error bit in RRI is latched, it will not be
reset until an error reset operation is performed.
Therefore, the parity error bit will be set if any parity
errors were detected in a multicharacter message. If ,
this mode is used, the serial I/O software must poll
the parity error bit at the completion of a message
and issue an error reset if appropriate. The receiver
interrupt mode is controlled by bits 3 and 4 of WRI.
(See Appendix A for WRI details.)

3. External/Status Interrupts. External/Status inter­
rupts clm be separately enabled by bit 0 of WRI.
(See Appendix A for WRI details.)

4. Interrupt Vector. An eight-bit interrupt-service
routine location (8085) or interrupt type (8086) is
specified through WR2 of channel B. (See Appendix
A for WR2 details). Table 3 lists interrupt vector
addresses generated by the 8274 in the "status af­
fects vector" mode.

5. "Status Affects Vector" Mode. The 8274 will auto­
matically modify the interrupt vector if bit 3 ofWRI
is set. (See Appendix A for WRI details.)

6. System Configuration. Specifies the 8274 data trans­
fer mode. Three configuration modes are available:
a) interrupt-driven operation for both channels, b)

DMA operation for both channels, and c) DMA
operation for channel A, interrupt-driven operation
for channel B. The system configuration is specified
by means of bits 0 and I of WR2 (channel A). (See
Appendix A for WR2 details.)

7. Interrupt Priorities. The 8274 permits software
specification of receiveltransmit priorities by means
of bit 2 of WR2 (channel A). (See Appendix A of
WR2 details.)

8. Interrupt Mode. Specifies whether the MPSC is to
operate in a non-vectored mode (for use with an
external interrupt controller), in an 8086-vectored
mode, or in an 8085-vectored mode. This parameter
is specified through bits 3 and 4 ofWR2 (channel A).
(See Appendix A for WR2 details.)

Table 3. MPSC-generated Interrupt Vectors in
"Status Affects Vector" Mode

Original Vector
(specified during

V7 V6 V5 V4 V3 V2V1 VO V1V6V5Y4V3V2V1 VO Initialization)

8086 8085 Interrupt,
Interrupt Type Interrupt Location Condition

V7 V6 V5 V4 V3 0 0 0 V7 V6 V5 0 0 0 VI VO Channel 8 TransmItter
Buffer Empty

V7 V6 V5 V4 V3 o 0 1 V7 V6 V5 0 0 1 VI VO Channel B External/Status
Change

V7 V6 V5 V4 V3 0 1 0 V7 V6 V5 0 1 o VI VO Channel B ReceIver
Character AvaIlable

V7 V6 V5 V4 VJ 0 1 1 V7V6V5 0 1 1 VI VO Channel B ReceIVe Error

V7 V6 VS V4 V3 1 o 0 V7 V6 V5 1 o 0 VI VO Channel A Transmitter
Buffer Empty

V7 V6 V5 V4 V3 1 0 1 V7 V6 V5 1 0 1 VI VO Channel A External/Status
Change

V7 V6 V5 V4 V3 1 I 0 V7 V6 V5 1 1 o VI VO Channel A ReceIver
Character AvaIlable

V7 V6 V5 V4 V3 1 1 1 V7 V6 V5 1 1 1 VI VO Channel A ReceIve Error

An MPSC interrupt initialization procedure
(MPSCINTINIT) is listed in Appendix C.

Interrupt Service Routines

Appendix C lists four interrupt service procedures, a
buffer transmission procedure, and a buffer reception
procedure th~ illustrate the use of the 8274 in interrupt­
driven environments. Use ofthese procedures assumes
that the 8086/8088 interrupt vector is set to 20H and
that channel B is used with the "status affects vector"
mode enabled.

I. TRANSMIT$BUFFER-This procedure begins
serial transmission of a data buffer. Two parameters
are required-a pointer to the buffer (buf$ptr) and
the length of the buffer (buf$length). The procedure
first sets the global buffer pointer, buffer length, and

6-199 210311-001

t
:~

I

AP-134

initial index for the transmitter-interrupt service
routine and initiates transmission by writing the first
character of the buffer to the 8274. The procedure
then enters a wait loop until the I/O completion
status is set by the transmit-interrupt service routine
(MPSC$TRANSMIT$CHARACTER$INT).

2. RECEIVE$BUFFER-This procedure inputs a line
(terminated by a line feed) from a serial I/O port.
Two parameters are required-a pointer to the input
buffer (buf$ptr) and a pointer to the buffer length
variable (buf$length$ptr). The buffer length will be
set by this procedure when the complete line has
been input. The procedure first sets the global buffer
pointer and initial index for the receiver interrupt
service routine. RECEIVE$BUFFER then enters a
wait loop until the I/O completion status is set by the
receive interrupt routine (MPSC$RECEIVE$­
CHARACTER$INT).

3. MPSC$RECEIVE$CHARACTER$INT - This
procedure is executed when the MPSC Tx-buffer­
empty interrupt is acknowledged. If the current
transmit buffer index is less than the buffer length,
the next character in the buffer is written to the
MPSC data port and the buffer pointer is updated.
Otherwise, the transmission complete status is
posted. .

4. MPSC$RECEIVE$CHARACTER$INT - This
procedure is executed when a character has been
assembled by the MPSC and the MPSC has issued a
character-available interrupt. If no input buffer has
been set up by RECEIVE$BUFFER, the character
is ignored. If a buffer has been set up, but it is full, a
receive overrun error is posted. Otherwise, the
received character is read from the MPSC data port
and the buffer index is updated. Finally, if the
received character is a line feed, the reception com­
plete status isposted.

S. RECEIVE$ERROR$INT-This procedure is ex­
ecuted when a receive error is detected. First, the
error conditions are read from RRI and the charac­
ter currently in the MPSC receive buffer is read and
discarded. Next, an Error Reset command is written
to the affected channel. All additional error proces­
sion is application dependent.

6. EXTERNAL$STATUS$CHANGE$INT -This
procedure is executed when an external status con­
dition change is detected. The status conditions are
read from RRO and a Reset External/Status Inter­
rupt command is issued. Further error processing is
application dependent.

DATA LINK INTERFACE

Serial Data Interface

Each serial I/O channel within the 8274 MPSC inter­
faces to two data link lines-one line for transmitting
data and one for receiving data. During transmission,
characters are converted from parallel data format (as
supplied by the system processor or DMA device) into
a serial bit stream (with START and STOP bits) and
clocked out on the TxD pin. During reception, a serial
bit stream is input on the RxD pin, framing bits are
stripped out of the data stream, and the resulting char­
acter is converted to parallel data format and passed to
the system processor or DMA device.

Data Clocking

As discussed previously, the frequency of data trans­
mission/ reception on the data link is controlled by the
MPSC clock in conjunction with the programmed clock
divider (in register WR4). The 8274 is designed to permit
all four serial interface lines (TxD and RxD for each
channel) to operate at different data rates. Four clock
input pins (TxC and RxC for each channel) are available
for this function. Note that the clock rate divider speci­
fied in WR4 is used for both RxC and TxC on the
appropriate channel; clock rate dividers for each chan­
nel are independent.

Modem Control

The following four modem interface signals may be
connected to the 8274:

1. Data Terminal Ready (DTR). This interface signal
(output by the 8274) is software controlled through
bit 7 of WRS. When active, DTR indicates that the
data terminal/computer equipment is ~ctive and
ready to interact with .the data communications
channel. In addition, this signal prepares the inodem
for connection to the communication channel and
maintains connections previously established (e.g.,
manual call origination).

2. RequestTo Send (RTS). This interface signal (output
by the 8274) is software controlled through bit I of
WRS. When active, RTS indicates that the data ter­
minal/computer equJpment is ready to transmit
data.

3. Clear To Send (CTS). This interface signal (input to
the 8274) is supplied by the modem in response to an
active RTS signal. CTS indicates that the data termi­
nal/computer equipment is permitted to transmit

6-200 210311-001

AP·134

data. The state of CTS is available to the program­
mer as bit 5 of RRO. In addition, if the auto enable
control is set (bit 5 of WR3) , the 8274 will not trans­
mit data bytes until RTS has been activated. If CTS
becomes inactive during transmission of a character,
the current character transmission is completed
before the transmitter is disabled.

4. Carrier Detect (CD). This interface signal (input to
the 8274) is supplied by the modem to indicate that a
data carrier signal has been detected and that~ valid
data signal is present on the RxD line. The state of
CD is available to the programmer as bit 3 ofRRO. In

addition, if the auto enable control is set (bit 5 of
WR3), the 8274 will not enable the serial receiver
until CD has been activated. If the CD signal be­
comes inactive during reception of a character, the
receiver is disabled, and the partially received char­
acter is lost.

In addition to the above modem interface signals, the
8274 SYNDET input pin for channel A may be used as a
general-purpose input in the asynchronous communi­
cation mode. The status of this signal is available to the
programmer as bit 4 of status register RRO. '

6-201 210311-001

AP-134

APPENDIX A
COMMAND/STATUS DETAILS FOR ASYNCHRONOUS

COMMUNICATION

Write Register 0 (WRO):

r 0

COMMAND/STATUS POINTER

_ REGISTER POINTER

NULL CODE

NOT USED IN ASYNCHRONOUS MODES

RESET EXT/STATUS INTERRUPTS
CHANNEL RESET

ENABLE INTERRUPT ON NEXT Rx
CHARACTER

RESET TxlNT PENDING

ERROR RESET

END OF INTERRUPT

NOT USED IN ASYNCHRONOUS MODES

02,01,00 Command/Status Register Pointer bits
determine which write-register the next
byte is to be written into, or which read­
register the next byte is to be read from.
After reset, the first byte written into
either channel goes into WRO. Following
a read or write to any register- (except
WRO) the pointer will point to WRO.

05,04,03 Command bits determine which of the ba­
sic seven commands are to be performed.

Command 0 Null--:has no effect.

Command 1 Not used in asynchronous modes.

Command 2 Reset External/Status Interrupts­
resets the latched status bits of RRO and
reenables them, allowing interrupts to oc­
cur again.

Command 3 Channel Reset-resets the Latched
Status .bits of RRO, the interrupt
prioritization logic and all control regis­
ters for the channel. Four extra system
clock cycles should be allowed for MPSC
reset time before any. additional com­
mands or controls are written into the
channel.

Command 4 Enable Interrupt on Next Receive
Character-if the Interrupt-on-First­
Receive Character mode is selected, this
command reactivates that mode after
each complete message is received to pre­
pare the MPSC for the next message.

Command 5 Reset Transmitter Interrupt Pending-if
The Transmit Interrupt mode is selected,
the MPSC automatically interrupts data
when the transmit buffer becomes empty.
When there are no more characters to be
sent, issuing this command prevents fur­
ther transmitter interrupts until the next
character has been completely sent.

Command 6 Error Reset-error latches, Parity and
Overrun errors in RRI are reset.

Command 7 End ofInterrupt-resets the interrupt-in­
service latch of the highest-priority inter­
nal device under service.

00

D1

02

6-202

External/ Status Interrupt Enable­
allows interrupt to occur as the result of
transitions on the CO, CTS or SYNOET
inputs. Also allows interrupts as the
result of a Break/ Abort detection and ter­
mination, or at the beginning of CRC, or
sync character transmission when the
Transmit Underrun/EOM latch becomes
set.

Transmitter Interrupt/OMA Enable
-allows the MPSC to interrupt or re­
quest a OMA transfer when the trans­
mitter buffer becomes empty.

Status Affects Vector-(WR1, 02 active
in channel B only.) If this bit is not set,

210311-001

AP·134

Write Register 1 (WR1):

MSB LSB

107 1 0 I D5ID4:D'ID2ID'1 Dol

04,D3

00

01

10

I I

D5

'----' I EXT INTERRUPT

ENABLE

TxINTERRUPTI
DMAENABLE

1 ~ VARIABLE
STATUS AFFECTS VECTOR
VECTOR (CH B ONLY) 0- FIXED
(NULLCODECH A) VECTOR

~
0 0 RxlNT/DMA DISABLE

0 , AxlNT ON FIRST CHAR OR SPECIAL
CONDITION , 0 INT ON ALL Rx CHAR (PARITY AFFECTS
VECTOA)OA SPECIAL CONDITION

, , INT ON ALL Rx CHAR (PARITY DOES
NOT AFFECT VECTOR) OR SPECIAL
CONDITION

1 '" WAIT ON Rx. 0 '" WAIT ON Tx

MUST BE ZERO

WAIT ENABLE 1"'" ENABLE, 0 '" DISABLE

then the fixed vector, programmed in
WR2, is returned from an interrupt ac­
knowledge sequence. If the bit is set, then
the ve~tor returned from an interrupt ac­
knowledge is variable as shown in the
Interrupt Vector Table.

Receive Interrupt Mode.

Receive Interrupts/DMA Disabled.

Receive Interrupt on First _Character
Only or Special Condition.

Interrupt on All Receive 'Characters of
Special Condition (Parity Error is a Spe­
cial Receive Condition).

Interrupt on All Receive Characters or
Special Condition (Parity Error is not a
Special Receive Condition).

Wait on Receive/Transmit-when the
following conditions are met, the RDY pin
is activated, otherwise it is held in the

D6

D7

MSB

High-Z state. (Conditions: Interrupt En­
abled Mode, Wait Enabled, CS =0,
AO=O/1, and A I =0). The RDY pin is
puIIed low when the transmitter buffer is
fuII or the receiver buffer is empty and it
is driven High when the transmitter buf­
fer is empty or the receiver buffer is full.
The RDYA and RDYB may be wired or
connected since only one signal is active
at anyone time while the other is in the
High Z state.

Must be Zero.

Wait Enable-em;lbles the wait function.

Write Register 2 (WR2): Channel A

ID7: °ID5ID4:D3102ID,:Dol

'----' '----'
0 0 BOTH INTERRUPT

0 , A DMA. B INT

, 0 BOTHDMA

, ! ILLEGAL

1 = PRIORITY RxA>RxB>TxA>
TxB >eXTA* > EXlS"

D - PRIORITY RxA >TxA >RxS>

~ TxB >EXTA" >eXTB*

0 0 8085 MODE 1

0 , 8085 MODE 2

, 0 8086188 MODE

, , ILLEGAL

i-VECtORED INTERRUPT

o = NON VECTORED INTERRUPT

MUST BE ZERO

, PIN 10 = SYNDEl B

o PIN 10 = RlS s

"EXTERNAL STATUS INTERRUPT-

DI,OO

00

6-203

ONLY IF EXT INTERRUPT ENABLE (WR1. DOllS SET

System Configuration-These specify
the data transfer from MPSC channels to
the CPU, either interrupt or DMA based.

Channel A and Channel B both use
interrupts.

210311-001

AP-134

01

10

I I

D2

o

Channel A uses DMA, Channel Busses
interrupt.

Channel A and Channel B both use DMA.

Illegal Code.

Priority-this bit specifies the relative
priorities of the internal MPSC inter­
rupt/DMA sources.

(Highest) RxA, TxA, RxA, RxB,
TxBExTA, ExTB (Lowest).

(Highest) RxA, RxB, TxA, TxB, ExTA,
ExTB (Lowest).

D5,D4,D3 Interrupt Code-specifies the behavior
of the MPSC when it receives an interrupt
acknowledge sequence from the CPU.
(See Interrupt Vector Mode Table).

o X X Non-vectored interrupts-intended for
use with an external interrupt controller
such as the 8259A.

100

1 0 I

1 10

D6

D7

o

8085 Vector Mode I-intended for use as
the primary MPSC in a daisy-chained
priority structure.

8085 Vector Mode 2-intended for use as
any secondary MPSC in a daisy-chained
priority structure.

8086/88 Vector Mode-intended for use
as either a primary or secondary in a
daisy-chained priority structure.

Must be Zero.

Pin 10 = RTSB.

Pin 10 = SYNDETB.

Write Register 2 (WR2): Channel B

D7-DO Interrupt vector-this register contains
the value of the interrupt vector placed on
the data bus during acknowledge
sequences.

Write Register 3 (WR3):

DO

D5

D7,D6

00

01

10

1 1

6-204

Ax ENABLE

L-____ :~:N~S~:C:=ous
MODES

L----...,_----AUTO ENABLES

Rx 5 BITS/CHAR

Ax 7 BITS/CHAR

Rx 6 BITS/CHAR

Rx 8 BITS/CHAR

Receiver Enable-A one enables the
receiver to begin. This bit should be set
only after the receiver has been
initialized.

Auto Enables-A one written to this bit
causes CD to be an automatic enable sig­
nal for the receiver and CTC to be an

, automatic enable signal for the transmit­
ter. A zero written to this bit limits the
effect of CD and CTS signals to set­
ting/resetting their corresponding bits in
the status register (RRO).

Receiver Character length.

Receive 5 Data bits/character.

Receive 7 Data bits/character.

Receive 6 Data bits/character.

Receive 8 Data bits/character.

210311-001

AP-134

Write Register 4 (WR4):

DO

Dl

03,02

o 0 X1 CLOCK

o 1 X18CLOCK

1 0 X32 CLOCK

1 1 X64CLOCK

LSB

1 = ENABLE PARITY
o " DISABLE PARITY

1 " EVEN PARITY

Q = ODD PARITY

o 0 ENABLE SYNC MODES

o 1 1 STOP BIT

1 0 1.5 STOP BITS

1 1 2 STOP BITS

NOT USED IN ASYNCHRONOUS MODES

Parity-a one in this bit causes a parity
bit to be added to the programmed num­
ber of data bits per character for both the
transmitted and received character. If the
MPSC is programmed to receive 8 bits
per character, the parity bit is not trans­
ferred to the microprocessor. With other
receiver character lengths, the parity bit
is transferred to the microprocessor.

Even/Odd Parity-if parity is enabled, a
one in this bit causes the MPSC to trans­
mit and expect even parity, and zero
causes it to send and expect odd parity.

Stop Bits.

o 0 Selects synchronous modes.

01 Async mode, 1 stop bit/character.

1 0 Async mode, lY.z stop bits/character.

1 1 Async mode, 2 stop bits/character.

07,06 Clock mode-selects the clock/data rate
multiplier for both the receiver and the
transmitter. If the Ix mode is selected, bit
synchronization must be done externally.

00 Clock rate = Data rate x 1.

01 Clock rate = Data rate x l6.

10 Clock rate = Data rate x 32.

1 1 Clock rate = Data rate x 64.

Write Register S (WRS):

NOT USED IN
ASYNCHIIONOUS MODES

RTS

NOT USED IN
ASYNCHRONOUS MODES

'------lIi ENABLE

'--_____ SEND BREAK

Tx 5 BITS OR LESS/CHAR

Tx 7 BITS/CHAR

Tx 8 BITS/CHAR

Tx 8 BITS/CHAR

'--______ --:-___ DTR

01

03

D4

06,05

Request to Send-a one in this bit forces
the RTS pin active (low) and zero in this
bit forces the RTS pin inactive (high).

Transmitter Enable-a zero in this bit
forces a marking state on the transmitter
output. If this bit is set to zero during data
or sync character transmission, the mark­
ing state is entered after the character has
been sent. If this bit is set to zero during
transmission of a CRC character, sync or
flag bits are substit.uted for the remainder
of the CRC bits.

Send Break-a one in this bit forces the
transmit data low. A zero in this bit allows
normal transmitter operation.

Transmit Character length.

00 Transmit 5 or less bits/character.

01 Transmit 7 bits/character.

10 Transmit 6 bits/character.

6-205 210311-001

i"
I"

1

,"

1\

I~ ,I
i'l
I"
1'1'
,i

i I,:
,~

AP-134

1 1 Transmit 8 bits/character.

Bits to be sent must be right justified, least-significant
bit first, e.g.: '

D7 D6 D5 D4 D3 D2 Dl DO
o 0 B5 B4 B3 B2 Bl BO

Read Register 0 (RRO):

Tx BUFFER EMPTY

'---_____ SYNDET

'--______ CTS ~li::~~T s~~~~s

L-_______ ~~;NU~:~~=Ous MODES

CARRIER DETeCT)

'-_________ BREAK

DO

D1

D2

D3

Receive Character Available-this bit is
set when the receive FIFO contains data
and is reset when the FIFO is empty.

Interrupt Pending-This Interrupt­
Pending bit is reset when an EOl com­
mand is issued and there is no other
interrupt'request pending at that time. In
vector mode, this bit is set at the falling
edge of the second INTA in an INTA
cycle for an internal interrupt request. In
non-vector mode, this bit is set at the
falling edge of RD input after pointer 2 is
specified. This bit is always zero in
Channel B.

Transmit Buffer Empty-This bit is set
whenever the transmit buffer is empty
except when CRC characters are being
sent ih a synchronous mode. This bit is
reset when the transmit buffer is loaded.
This bit is set after an MPSC reset.

Carrier Detect-This bit contains the
state of the CD pin at the time of the last
change of any of the External/ Status bits
(CD, CTS, SynclHunt, Break/Abort, or
Tx Underrun/EOM). Any change of state
of the CD pin causes the CD bit to be
latched and causes an External/ Status in­
'terrupt. This bit indicates current state of
the CD pin immediately following a Reset
External/Status Interrupt command.

D4

D5

D7

SYNDET-In asynchronous modes, the
operation of this bit is similar to the CD
status bit, except that it shows the state of
the SYNDET input. Any High-to-Low
transition on the SYNDET pin sets this
bit, and causes an External/Status inter­
rupt (if enabled). The Reset Exter­
nal/Status Interrupt command is issued
to clear the interrupt. A Low-to-High
transition clears this bit and sets the Ex­
ternal/ Status interrupt. When the Exter­
nal/Status interrupt is set by the change
in state of any other input or condition,
this bit shows the inverted state of the

. SYNDET pin at time of the change. This
bit must be read immediately following a
Reset External/Status Interrupt com­
mand to read the current state of the
SYNDET input.

Clear to Send-this bit contains the in­
verted state of the CTS pin at the time of
the last change of any of t1).e Exter­
nal/Status bits (CD, CTS, Sync/Hunt,
Break/ Abort, or Tx Underrun/EOM).
Any change of state of the CTS pin causes
the CTS bit to be latched and causes an
Exterpal/Status interrupt. This bit indi­
cates the inverse of the current state of
the CTS pin immediately following a
Reset External/Status Interrupt
command.

Break-In the Asynchronous Receive
mode, this bit is set when a Break se­
quence (null character plus framing error)
is detected in the data stream. The Exter­
nal/Status interrupt, if enabled, is set
when break is detected. The interrupt ser­
vice routine must issue the Reset Exter­
nal/Status Interrupt command (WRO,
Command 2) to the break detection logic
so the Break sequence termination can be
recognized.

The Break bit is re&,et when the termination of the Break
sequence is detected in the incoming data stream. The
termination of the Break sequence also causes the Ex­
ternal/ Status interrupt to be set. The Reset Exter­
nal/Status Interrupt command must be issued to enable
the break detection logic to look for the next Break
sequence. A single, extraneous null character is present
in the receiver after the termination of a break; it should
be read and discarded.

6-206 210311-001

AP-134

Read Register 1 (RR1)

Msa LSB

I D'I D'I D51 D'I D3: D2 ~ D, foo I

DO

D4

D5

, CALLS.
MOTU

NT

seD IN ASYNCHRONOUS MODES

PARITY ERROR

A. OVERRUN ERROR

CAe/FRAMING ERROR

END OF FRAME (SDLe/HDLe MODE)

All sent-this bit is set when all charac­
ters have been sent, in asynchronous
modes. It is reset when characters are in
the transmitter, in asynchronous modes.
In synchronous modes, this bit is always
set.

Parity Error-ifparity is enabled, this bit
is set for received characters whose
parity does not match the programmed
sense (Even/Odd). This bit is latched,
Once an error occurs, it remains set until
the Error Reset command is written.

Receive Overrun Error-this bit indi­
cates that the receive FIFO has been
overloaded by the receiver. The last char­
acter in the FIFO is overwritten and ftag-

D6

ged with this error. Once the overwritten
characte~ is read, this error condition is
latched until reset by the Error Reset
command. If the MPSC is in the "status
affects vector" mode, the overrun causes
a special Receive Error Vector.

Framing Error-in async modes, a one in
this bit indicates a receive framing error.
It can be reset by issuing an Error Reset
command.

Read Register 2 (RR2):

MSB LSB

1~:w:w:w:~:w:w:~1

RR2

D7-DO

6-207

L=-..:.. Vector Vector Mode (WR1; D2)

Channel B

Interrupt vector-contains the interrupt
vector programmed into WR2. If the
"status affects vector" mode is selected,
it contains the modified vector. (See
WR2.) RR2 contains the modified vector
for the highest priority interrupt pending.
If no interrupts are pending, the variable
bits in the vector are set to one.

210311-001

AP';134

APPENDIX B
MPSC-POLLEO TRANSMIT/RECEIVE CHARACTER ROUTINES

MP~CRXINIT: procedure

declare cmd$port
clock$rate
stop$bits
parity$type
parity$enable
rx$char$length
rx$enable
auto$enable
tx$char $leng th
tx$enable
dtr
brk
rts

output(cmd$port)=30H;

(cmd$port, ,
clock$rate,stop$bits,parity$type,parity$enable,
rx$char$length,rx$enable,auto$enable,
tx$char$length, tx$enable ,dtr, brk, rts) ;

byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte;

/* channel reset */

output(cmd$port)=14H; /* point to WR4 */
/* set clock rate, stop bits, and ,parity information */
output(cmd$port)=shl(clock$rate,6) or shl(stop$bits,2) or

or parity$enable;
shl(parity$type,l)

;

output(cmd$port)=13H; /* point to WR3 */
/* set up teceiver parameters */
output(cmd$port)=shl(rx$char$length,6) or rx$enable or shl(auto$enable,5);

output(cmd$port)=15H, /* point to WR5 */
/* set up transmitter parameters */
output(cmd$port)=shl(tx$char$length,5) or shl(tx$enable,3) or shl(dtr,7)

or shl(brk,4) or shl(rts,l),

end MPSCRXINIT;

6-208 210311-001

AP-134

MPSC$POLL$RCV$CHARACTER: procedure{data$port,cmd$port,character$ptr) byte;

declare data$port byte,
cmd$port byte,
character$ptr pointer,
character based character$ptr byte,
status byte;

declare char$avail literally '1' ,
rcv$error literally '70H';

/* wait for input character ready */
while (input{cmd$port) and char$avail) <> 0 do; end;

/* check for errors in received character */
output{cmd$port) =1; /* point to RRl */
if (status:=input{cmd$port) and rcv$error)

then do;
character=input{data$port) ;
call RECElVE$ERROR{cmd$port,status);
return 0;

/* read character to clear MPSC */
/* clear receiver errors */
/* error return - no character avail */

end;
else do;

character=input{data$port) ;
return OFFH; /* good return - character avail */
end;

end MPSC$POLL$RCV$CHARACTER;

MPSC$POLL$TRAN$CHARACTER: procedure{data$port,cmd$port,charact~r);

declare data$port
cmd$port
character

byte,
byte,
byte;

declare tx$buffer$empty literally '4';

/* wait for transmitter buffer empty */
while not (input{cmd$port) and tx$buffer$empty) do; end;

/* output character */
output{data$port)=character;

end MPSC$POLL$TRAN$CHARACTER;

RECElVE$ERROR: procedure{cmd$port,status):

declare cmd$port byte,
status byte:

Output{cmd$port)=30H: /* error reset */

/* *** other application dependent
error processing should be placed here *** */

end RECElVE$ERROR;

6-209 210311-001

AP.·134

TRANSMIT$BUFFER: procedure (buf$pt,r, buf$length)

declare
buf$ptr
buf$length

pointer,
byte;

/* set up transmit buffer pointer and buffer length in global variables for
interrupt service */

tx$buffer$ptr=buf$ptr;
transmit$length=buf$length;

transmit$status=not$complete;
output(data$port)=transmit$buffer(O);
transmit$index=l;

/* setup status for not complete */
/* transmit first character */
/* first character transmitted */

/* wait until'transmission complete or error detected */
while transmit$status = not$complete do; end;
if'transmit$status <> complete

then return false;
else return true;

end TRANSMIT$BUFFER;

RECElVE$BUFFER: procedure (buf$ptr,buf$length$ptr);

declare
buf$ptr
buf$length$ptr
buf$length

pointer,
pointer,
based buf$length$ptr byte;

/* set up receive buffer pointer in global variable for interrupt ~ervice */
rx$buffer$ptr=buf$ptr;
receive$index=O;

receive$status=not$complete; /* set status to not complete */
/* wait until buffer received */
while receive$status = not$complete~do; end;
buf$length=receive$length;
if receive$status = complete

then return true;
else return false;

end RECElVE$BUFFER';

6-210 210311-001

AP-134

MPSC$RECElVE$CHARACTER$INT: procedure interrupt 22H;

/* ignore input if no open buffer */
if receive$status <> not$complete then return;

/* check for receive buffer overrun */
if receive$index = 128

then receive$status=overrun;
else do;

/* read character from MPSC and place in buffer - note that the
parity of the character must be masked off during this step if
the character is less than 8 bits (e.g., ASCII) */

receive$buffer (receive$index) ,character=input (data$port) and 7FH;
receive$index=receive$index+l; /* update receive buffer index */

/* check for line feed to end line */
if character = line$feed

then do; receive$length=receive$index; receive$status=complete; end;
end;

end MPSC$RECElVE$CHARACTER$INT;

MPSC$TRANSMIT$CHARACTER$INT: procedure interrupt 20H;

/* check for more characters to transfer */
if transmit$index <. transmit$length

then do;
/* write next character from buffer to MPSC */
output(data$port)=transmit$buffer(transmit$index);
transmit$index=transmit$index+l; /* update transmit buffer index */

end;
else tr ansmi t$s ta tus=comple te;

end MPSC$TRANSMIT$CHARACTER$INT;

RECElVE$ERROR$INT: procedure interrupt 23H;

declare
temp

output(cmd$port)=l;

byte;

rece ive$sta tus=input (cmd$por t) ;
temp=input (data$port) ;
output(cmd$port)=error$reset;

/* temporary character storage */

/* point to RRl */

/* discard character */
/* send error reset */

/* *** other application dependent
error processing should be placed here *** */

end RECElVE$ERROR$INT;

EXTERNAL$STATU~$CHANGE$INT: procedure interrupt 21H;

transmit$status=input(cmd$port)
output(cmd$port)=reset$ext$status;

/* input status change information */

/* *** other application dependent
error processing should be placed here *** */

end EXTERNAL$STATUS$CHANGE$INT;

6-211 210311-001

j

ii"

I:

~
i~
Ii

AP-134

APPENDIXC
INTERRUPT.;DRIVEN TRANSMIT/RECEIVE SOFTWARE

declare'
/* global variables for buffer manipulation */

rx$buffer$ptr
receive$buffer based
receive$status
receive$index
receive$length

tx$buffer$ptr
transmit$buffer based
transmit$status
transmit$index
transmit$length

cmd$port
data$port
acmdport
bcmdport
line$feed
not$complete
complete
overrun

channel$reset
error$reset
resetextstatus

pointer,
rx$buffer$ptr(~28)

byte initial (0) ,
byte,
byte,

pointer,
tx$buffer$ptr(12B)
byte initial (0) ,
byte,
byte,

literally ',43H' ,
literally , 4lH' ,
literally '42H',
literally , 4 3H' ,
literally 'OAH',
literally '0' ,
literal:!,y 'OFFH',
literally "'1'''' ,

1 terally '18H',
1 terally '30H',
1 terally 'lOH':

/* pointer to receive buffer */
byte,

/* indicates receive buffer status */
/* current index into receive buffer */
/* length of final receive buffer */

/* pointer to transmit buffer */
byte,
/* indicates transmit buffer status */
/* current index into transmit buffer */
/* lerigth of buffer to be transmitted */

6-212 210311-001

AP-134

MPSCINTINIT: procedure (clock$rate,stop$bits,parity$type,parity$enable,
rxichar$length,rx$enable,auto$enable,
tx$char$length,tx$enable,dtr,brk,rts,
exten,txen,rx$en,stat$affects$vector,
config,priority,vectorintmode,int$vector) ;

declare
clock$rate byte, /* 2-bit code for clock rate divisor */
stop$bits byte, /* 2-bit code for number of stop bits */
parity$type byte, /* I-bit parity type */
parity$enable byte, /* l-bit parity enable */
rx$char$length byte, /* 2-bit receive character length */
rx$enable byte, /* l-bit receiver enable */
auto$enable byte, /* l-bit auto ena,ble flag */
tx$char$length byte, /* 2-bit transmit character length */
tx$enable byte, /* l-bit transmitter enable */
dtr byte, /* I-bit status of DTR pin */
brk byte, /* I-bit data link break enable */
rts byte, /* I-bit status of RTS pin */
ext$en byte, /* I-bit external/status enable */
tx$en byte, /* I-bit Tx interrupt enable */
rx$en byte, /* 2-bit Rx interrupt enable/mode */
stataffvector byte, /* l-bit status affects vector flag */
config byte, /* 2-bit system config - int/DMA */
priority byte, /* l-bit priority flag */
vectorintmode byte, /* 3-bit interrupt mode code */
int$vector byte; /* 8-bit interrupt type code */ ,~

output(bcmdport)=channel$reset; /* channel reset */

output(bcmdport)=l4H; /* point to WR4 */
/* set clock rate, stop bits, and parity information */
output(bcmdport)=shl(clock$rate,6) or shl(stop$bits,2) or shl(?arity$type,l)

or parity$enable;

output(bcmdport)=13H; /* point to WR3 */
/* set up receiver parameters */
output (b,Scmd$port) =shl (rx$char$length, 6) or rx$enable or shl (auto$enable, 5) ;

output(bcmdport)=l5H; /* point to WR5 */
/* set up transmitter parameters */
output(bcmdport)=shl(tx$char$lenqth,5) or shl(tx$enable,3) or shl(dtr,7)

or shl(brk,4) or shl(rts,l);

output(bcmdport)=12H;
/* set up interrupt vector */
output(bcmdport)=int$vector;

/* point to WR2 */

output(acmdport)=12H; /* point to WR2, channel A */
/* set up interrupt modes */
output(acmdport)=shl(vectorintmode,3) or shl(priority,2) or config;

output(bcmdport)=IIH; /* point to WRl */
/* set up interrupt enables */
output(bcmdport)=shl(rx$en,3) or shl(stat$aff$vector,2) or shl(tx$en,l)

or ext$en;

end MPSCINTINIT;

6-213 210311-001

AP-134

APPENDIX D
APPLICATION EXAMPLE USINGSDK-86

This application example shows the 8274 in a simple
iAPX-86/88 system. The 8274 controls two separate
asynchronous channels using its internal interrupt con­
troller to request all data transfers. The 8274 driver
software is described which transmits and receives data
buffers provided by the CPU. Also, status registers are
maintained in system memory to allow the CPU to
monitor progress of the buffers and error conditions.

THE HARDWARE INTERFA~E

Nothing could be easier than the hardware design of an
interrupt-driven 8274 system. Simply connect the data
bus lines, a few bus control lines, supply a timing clock
for baud rate and, voila, it's done! For this example, the
ubiql1itous SDK-86 is used as the host CPU system. The
8274"interface is constructed on the wire-wrap area
provided. While discussing the hardware interface,
please refer to Diagram 1.

Placing the 8274 on the lower 8 bits oftbe 8086 data bus
allows byte-wide data transfers at even I/O addresses.
For simplicity, the 8274's CS/ input is generated by
combining the M-10/ select line with address line A 7 via
a 7432. This places the 8274 ad4ress range in multiple
spots within the 8086 I/O address space. (While fine for
this example, a more complete address decoding is
recommended for actual prototype systems.) The
8086's Al and A2 address lines are connected to the AO
and Al 8274 register select inputs respectively. Al­
though other port assignments are possible because of
the overlapping address spaces, the following I/O port
assignments are used in this example:

Port Function I/O Address
Data channel A

Command/status A
Data channel B

Command/status B

OOOOH

0002H

0004H

0006H

To connect the 8274's interrupt controller into the sys­
tem an inverter and pull-up resistor are needed to con­
vert the 8274's active-low, interrupt-request output,
IRQ, into the correct polarity for the 8086's INTR
interrupt input. The 8274 recognizes interrupt­
acknowledge bus cycles by connecting the INTA
(INTerrupt Acknowledge) lines of the 8274 and 8086
together.

The 8274 ReaD and WRite lines directly connect to the
respective 8086 lines. The RESET line requires an in­
verter. The system clock for the 8274 is provided by the
PCLK (peripheral clock) output of the 8284A clock
generator:

On the 8274's serial side, traditional 1488 and 1489
RS-232 drivers and receivers are used for the serial
interface. The onboard baud rate generator supplies the
channel baud rate timing. In this eXilmple, both sides of
both channels operate at the same baud rate although
this certainly is not a requirement. (On the SDK-86, the
baud rate selection is hard-wired thrujumpers. A more
flexible approach would be to incorporate an 8253 Pro­
grammable Interval Timer to allow software­
configurable baud rate selection.)

That's all there is to it. This hardware interface is
completely general-purpose and supports all of the 8274
features except the DMA data transfer mode which
requires an external DMA controller. Now let's look at
the software interface.

SOFTWARE INTERFACE

In this example, it is assumed that the 8086 has better
things to do rather than continuously run a serial chan­
nel. Presenting the software as a group of callable pro­
cedures lets the designer include them in the main body
of ano~her program. The interrupt -driven data transfers
give the effect that the serial channels are handled in the
background while the main program is executing in the
foreground. There are five basic procedures: a serial
channel initialization routine and buffer handling
routines for the transmit and receive data buffers of
each channel. Appendix D-I shows the entire software
listing. Listing line numbers are referenced as each
major routing is discussed.

The channel initialization routine (INITIAL 8274),
starting with line #203, simply sets each channel into a
particular operating mode by loading the command reg­
isters of the 8274. In normal operation, once these
registers are loaded, they are rarely changed. (Although
this example assumes a simple asynchronous operating
mode, the concept is easily extended for the byte- and
bit-synchronous modes.)

6-214 210311-001

Ap·134

(FOR DETAILED DESCRIPTION ON SDK-86, REFER TO SDK-&6 MCS-86 SYSTEM DESIGN KIT
ASSEMBLY MANUAL)

SDK-86
EXPANSION

BUS

INTR
.. 2.

RO 46 22

WR 46 21

iNfA 50 27

PCLK
.. 1

AST '4

07
,. 12

O.
14 13

0'
12 14

D4
10 15

0'
,.

D.
17

01
,.

DO
,.

MilO

A7

Al 2'

A2
.4

5V

40

iNT

RO

WR

INTA

eLK

RESET

OB7

DB.

8274
DB'

OB4

DB'

OB2

OBl

OBO

cs

AO

Al

WI
29

TxDA

RlSA

RxDA

eTSA

eOA

DTRA

TxDB

RIse

RxDB

elsa

COil

DTRB

TxCA

RxCA

TxCB

Rxes
GNO

20

CHANNEL
A

751489

CHANNEL
B

Figure 0·1. 8274/S0K-86 Hardware Interface

6-215

CONTROL
LINES

CONNECTOR

ADDRESS
BUS EXPANSION

CONNECTOR

210311-001

I'

I'~
'.

AP-134

The channel operating modes are contained in two
tables starting with line #163. As the 8274 has only one
command register per channel, the remaining seven
~egisters are loaded indirectly through the WRO (Write
Register 0) register. The first byte of each table entry is
the register pointer value which is loaded into WRO and
the second byte is the value for that particular register.

The indicated modes set the 8274 for asynchronous
operation with data characters 8 bits long, no parity,
and 2 stop bits. An X 16 baud rate clock is assumed. Also
selected is the "interrupt on all RX character" mode
with a variable interrupt vector compatible with the
8086/8088. The transmitters are enabled and all model
control lines are put in their active state.

In addition to initializing the 8274, this routine also sets
up the appropriate interrupt vectors. The 8086 assumes
the first lK bytes of memory contain up to 256 separate
interrupt vectors. On the SDK-86 the initial2K bytes of
memory is RAM and therefore must be initialized with .
the appropriate vectors. (In a prototype system, this
initial memory is probably ROM, thus the vector set-up
is not needed.) The 8274 supplies up to eight different
interrupt vectors. These vectors are developed from
internal conditions such as data requests, status
changes, or error conditions for each channel. The in­
itialization routine arbitrarily assumes that the initial
8274 vector corresponds to 8086 vector location SOH
(memory location 200H). This choice is arbitrary since
the 8274 initial vector location is programmable.

Finally, the initialization routine sets up the status and
flag in RAM. The meaning and use of these locations are
discussed later.

Following the initialization routine are those for the
transmit commands (starting with line #268). These
commands assume that the host CPU has initialized the
publically declared variables for the transmit buffer
pointer, TX_POINTER_CHx, and the buffer length,
TX_LENGTH_CHx. The transmit command routines
simply clear the transmitter empty flag, TX EMPTY
CHx, and 10ll-d the first character of the buffer into the
transmitter. It is necessary to load the first character in
this manner since transmitter interrupts are generated
only when the 8274's transmit data buffer becomes
empty. It is the act of becoming empty which generates
the interrupt not simply the buffer being empty, thus the
transmitter needs one cqaracter to start.

The ·host CPU can monitor the transmitter empty flag,
TX_EMPTY _CHx, in order to determine when trans­
mission of the buffer is complete. Obviously, the CPU
should only call the command routine after first check­
ing that the empty flag is set.

After returning to the main program, all transmitter
data transfers are handled via the transmitter-interrupt
service routines starting at lines #360 and #443. These
routines start by issuing an End-Of-Interrupt command
to the 8274. (This command resets the internal­
interrupt controller logic ofthe· 8274 for thiS particular
vector and opens the logic for other internal interrupt
requests. The routines next check the length count. If
the buffer is completely transmitted, the transmitter
empty flag, TX_EMPTY _CHx, is set and a command is
issued to the 8274 to reset its interrupt line. Assuming
that the buffer is not completely transmitted, the next
character is output to the transmitter. In either case, an
interrupt return is executed to return to the main CPU
program.

The receiver commands start at line #314. Like the
transmit commands, it is assumed that the CPU has
initialized the receive-buffer-pointer public variable,
RX_POINTER-CHx. This variable points to the first
location in an empty receive buffer. The command
routines clear the receiver ready flag, RX_READY­
_CHx, and then set the receiver enable bit in the 8274
WR3 register. With the receiver now enabled, any
received characters are placed in the receive buffer
using interrupt-driven data transfers.

The received data service routines, starting at lines
#402 and #485, simply place the received character in
the buffer after first issuing the EOI command. The
character is then compared to an ASCII CR. An ASCII
CR causes the routine to set the receiver ready flag,
RX_READY _CHx, and to disable the receiver. The
CPU can interrogate this flag to determine when the
buffer contains a new line of data. The receive buffer
pointer, RX_POINTER_CHx·, points to the last
received character and the receive counter, RX­
_COUNTEILCHx, contains the length.

That completes our discussion of the command routines
and their associated interrupt service routines. Al­
though not used by the commands, two additional ser­
vice routines are included for completeness. These
routines handle the error and status-change interrupt
vectors.

The error service routines, starting at lines #427 and
#510, are vectored to if a special receive condition is
detected by the 8274. These special receive conditions
include parity, receiver overrun, and framing errors.
When this vector is generated, the error condition is
indicated in RRI (Read Register I). The error service
routine issues an EOI command, reads RRI and places
it in the ERROR_MSG_CHx variable, and then issues

6-216 210311-001

inter AP-134

a reset error command to the 8274. The CPU can moni­
tor the error message location to detect error condi­
tions. The designer, of course, can supply his own error
service routine.

read RRO, place its contents in the STATUS_MSG­
_CHx variable and then issue a reset external status
command. Read Register 0 contains the state of the
modem inputs at the point of the last change;

Similarily, the status-change routines (starting lines
#386 and #469) are initiated by a change in the modem­
control status lines CTS/, COl, or SYNDET/. (Note
that WR2 bit 0 controls whether the 8274 generates
interrupts based upon changes in these lines. Our WR2
parameter is such that the 8274 is programmed to ignore
changes for these inputs.) The service routines simply

Well, that's it. This application example has presented
useful, albeit very simple, routines showing how the
8274 might be used to transmit and receive buffers using
an asynchronous serial format. Extensions for byte- or
bit-synchronous formats would require no hardware
changes due to the highly programmable nature of the
8274's serial formats.

8274 APPLICATION BRIEF PROGRAM

ISIS-II II:S-86 IRRO A5SEIII.ER Y2.1 fl55Ellll.Y OF IDlU.E RSYNCB
OBJECT IIOOlJ..E PLACED IN F1.RSYNCB. OBJ
RSSEIIlLER INYa<EI) BY: RSII86 .F1.RSYNCB.5RC

LOC IlIJ LIN: SlUICE

1 ; IIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIUII

2 ;* *
3 ;* 8274 IFPlICATII* BRIEF PROGRAI! *
4 ;* *
5 ;* •
6 ,* *
7 ; * TI£ 8274 IS INlTlfllZED FIll SIIflE RS~ SERlfl * 8 ; * flIIIfIT IN) YECTIRED INTERRIPT -DRIVEN DATA TRfI6ERS. *
9 ; * TI£ INlTlflIZATlI* ROOrIl£ flSO LOf¥)S TI£ 81186'5 INTERRIPT * 18 ;. YEC11J! TIRE FRIll TI£ COOE saJ£NT INTO l.!II RIll 1* TI£ *

11 ; * SIlK-86. TI£ TRMSIIITTER IN) RECEIVER ME LEFT ENABl.EI). •
12 ;* *
13 ; * FIR TRIIISIIIT, TI£ CPU PASSES IN PEIIl!Y TI£ POINTER OF A *
14 ; * BlfFER 10 TRIIISIIIT IN) TI£ BYTE LEIIlTH OF TI£ BlfFER. *
15 ;* TI£ DATA TRIWSFER PROCEED USIIIlINTERRlPT-DRIVEN'TRfIfSfERS. *
16 ,* A STRTUS BIT IN PEIIl!Y IS SET IKN IF IllfFERS IS EII'TY. * 17 ;* •
18 ; * FIll RECEIVE. TI£ CPU PASSES TI£ POINTER OF A BlfFER TO FILL •
19 ; * TI£ BlfFER 15 FillED OOIL A 'CR..CIR' CIRKTER IS RECEI't'ED. •
28 ; * R STATUS BIT IS SET IN) TI£ CPU lIlY READ TI£ RX POINTER 10 •
21 ; * omRIIll£ TI£ LOCATII* OF TI£ LAST CIfIRII:TER. * 22 ;* * 23 ; * ALl ROOTII£S ME RSSII£I) 10 EXIST IN TI£ SAI£ COOE SEIJENT. * 24 ; * Cfll'S 10 TI£ SERVICE ROOTI~ fIRE RSSII£I) 10 BE "SHORT' IR * 25 ; * INTRfISEIJ£NT (ONLY TI£ RE1IRf fIlDRESS IP IS ON TI£ STfQ(). * 26 ;* *
27 ;* *
28 ;* *
29 ;* •
38 j 111 ...

6-217 210311-001

AP·134

IICS-86 IIACRO ASSEI1BLER AS'lNCB

LOC OBJ LINt: SOURCE

31
32 NAI'IE ASI'NCB ,HO!)ULE NAI'IE
33
34 ; PUBlIC DECLARATIONS FOR COMMAND fIOIJTINES
35
36 PUBLIC INlTIAL8274 , INITIALIZATION ROLITINt:
37 PUBLIC TILCOMMAN[UHB , TX BLfFER CfJI1HflNI) CHANNEL B
38 PUBlIC TX-COMltANO_CHA ' TX BUFFER COI1MAND CHANNEL A
39 PUBlIC RX_COMIIAND_CHB ,~X BLfFER COI1MAND CHANNEL B
40 PUBLIC RX_COMMAND_CHA ,RX BUFFER COMMAND CHANNEL A
41
42 ,PUBLIC DECLARATIONS FO~ STATUS VARIABLES
43
44 PUBlIC RX"READY _CHB ,~X READI' FLAG CHB
45 PUBlIC ~ILREADY _CHA ,RX READY FLAG CHA
46 PUBLIC TX..EMPTY _CHll , TX El1PTY FLAG CfIB
47 PUBLIC TILEI1PTY-CHA , TX EMPT'f FLAG CHA
48 PUBLIC RlLCOUNT _CHll ,RX BLfFER COUNTER CfIB
49 PUBLIC RX_COUNLCHA ,RX BLfFER COUNTER CHA
50 PUBLIC ERROR.JISG_CHll ,EAAOR FLAG CHB
51 PUBLIC ~OR_MSG_CHA ,ERROR FLAG CHA
52 PUBLIC STATlJS_MSG_CHll ,STATUS FLAG CHB
53 PUBLIC STATlJS_MS(LCHA ,STATUS FLAG CHA
54
55 ,PUBLIC DECLARATIONS FW VARIABLES PASSEr, TO THE TRANSllIT
56 ,AND RECEIIIE COMMANDS.
57
58 PUBLIC TX-POINTE~_CHB , TX BLfFE~ POINTER FOR [HB
59 PUBlIC TX_LENGTH_CHB , T:, LENGTH OF BUFFER FOR CfIB
60 PUBLIC TILPOINTEP_CHA ,Tli BUFFER POINTER F~ CHA
61 PUBLIC TX_LENGTH_CHA ' TX LENGTH OF BUFFER FOP CHA
62 PUBlIC RX_POINTEIUfIB ,PX BUFFEP POINTER FOR CHB
63 PUBLIC RlLPOINTE~_CHA ,RX BLfFER POINTER FW CHA
64
65 , 110 PORT ASSIGNMENTS
66
67 ,CHANNEL A PORT ASSIGNMENTS
68

0000 69 [lATA_PORT _CHA EIlU e ,DATA I/O POPT
0002 70 COMMAND_PORLCHA EIlU 2 ,[OMMAND PORT
0002 71 STATUS_P~T _CHA EIlU C-OMt'lAl-ll:' _PORT _CHA ,STATUS POPT

72
73 ,CHANNEL B PORT ASSIGNMENTS
74

0004 75 DATA_PORT _(HB EGU ,DATA 1i0 PORT
OOB6 76 COMMAND_POPLCHB EIlU 6 ,COMMAND POPT
0aB6 77 STATUS_POPT _(fIB EIlU COMMANkPOPT _CHB ,STATUS PORT

78
79 ' MIS[SI'STEM EQUATES
80

000[) 81 CP_CHR EOU 0VH ,ASCII (R CHAPACTEP [O['E
82aa 82 INLTABLC8A5E EQU 200H , !NT 'IEOIJ!; BASE A['DRE5S
0500 8:; CoeoCSTAPT EQU 500H ,STAF'T LOCATION FOP COCoE

84
8-5 +1 $EJECT
86
8~ ,PAI'I ASS51GNMENTS FOP flATA SEOMENT

-' 88
89 flATA 5EGI'lENT
90

6-218 210311-001

AP-134

11(5-8'; 11AC.RD A5SEHBLER ASYHCB

LOC OS,l LINE SOUPCE

91 ,YECTOR INTERPUPT TABLE - ASSUME INITIAL 8274 INTEPPUPT
go ." · VECTOR 15 NUMBER 80 (@200H;o H~' EACH VECfOR. THE TABLE
93 • CONTAINS STA~T LOCATION AND CODE SEGt'ENT PEGISTEP VALUE
94 • THE TABLE IS LOAVm F~OM PROI1
95

0200 96 ORG WL TABLE_BASE
q" .f

0200 0000 9B TX_VE(TOR_CHB DW • T,: INTERRUPT VEcrOp FOR [HB
0202 0000 99 TX_CS_CHB [41

100
0204 0000 101 STS_VECTOR_CHB ON · STATUS INTE~IJPT VECTOP FOR CHB
0206 0000 162 STS_CS_CHB VW

103
9203 0000 184 ~r~ VECTOUHB DW 0 ,~X I NTEPPUPT VECTOP FOP [HB
020A 0000 195 ~_CS_CHB DW 8

106
020C 0000 107 ERR_VECTOP _CHB ON · E~OP INTERRUPT VECTOP FOP (HB
029E 0000 103 ERR_l'S_CHB VW

109
9210 0000 110 TX-YECTOR_CHA r+l · TX IIHERRUPT YE(TOt< FOR (. HA
0212 0000 111 TX_CS_CHA OW

112
0214 0000 113 STS_ VECTOR_CHA DN 0 · STATUS INTERRUPT VECTOR FOR CHA
0216 0000 114 STS_C5_CHA VW 0

115
0218 0000 116 R'iL VECTOR_CHA [+I • RX INTEPFUPT VECTOP FOR CHA
021A 0000 117 PX_CS_CHA OW e

118
021C 0000 119 ERR_ VECTOR_CHA ON 0 · E~P INTERRUPT VECTOR FOR CHA
021E 0000 129 ERP_CS_CHA OW 9

121
122 ,MISC PAM LOCATIONS FOP CHANNEL STATUS ANr' POINTERS
12]

124 ,CHANNEL B POINTERS AND STATUS
125

0229 0000 126 TX_POINTEUHB DN 0 · TX BUFFER POINTER FOR (HB
0222 !lIlOO 127 TX_LENGTH_CHB OW 0 , TX BUFFEP LENGTH FOP CHB
0224 0000 128 RX_POlNTER_CHB OW 0 ,RX BUFFER POINTER FOR [HB
0226 !lIlOO 129 RX_COUNT _CHB DW e · ~X LENGTH COUNTER FOR CHB
0228 00 130 TUI1PTY_CHB DB 9 , fli DONE FLAG
0229 09 131 RX_READY _CHB OS B • READY FLAG -(1 IF CR_CHP PECEIVH·· ELSE 0'
022A 1!9 132 STAWS_MSG.EljB DB • STATUS C1iANGE MESSAGE
022B 1!9 m ERROR_MSG_CHB \DB 0 • ERROR STATUS LOCATION 10 IF NO ERROP'

134
13'3 ,CHANNEL A POINTERS AND STATUS
136

022C 0000 137 TX_POIHTER_CHA OW 0 , TX BUFFER POINTEI' FOR CHA
022E 0000 138 TXiENGTH_CHA DW 0 , TX BUFFER LENGTH FOR CHA
9239 0000 139 RX_POINTEF_CHA OW 0 · RX BUFFER POINTER F~ CHA
0232 eooe 140 PX-COUNT _CHA OW 0 ,RX LENGTH COUNTER FOR CHA
0234 09 141 TUI1PTY.CHA DB 0 • TX DONE FLAG
9235 09 142 RlLREADY _CHA OS B ·READY FLAG (1 IF CP_CHP RECEIVED. ELSE 0)
0236 09 143 STATIJSJ1SUHA DB e ,STATIJS CHANGE 11E5SAGE
9237 00 144 ERROR_MSG_CHA DB 0 · ERROR STATlJS LOCATION (6 IF NO ERR~'

145
146 DATA ENDS
147
148 +1 $EJECT

6-219 210311-001

MCS-B6 l1ACRo ASSEMBlER A5YNCB

LOG OBJ

0500 01
9501 16

05e2 82
9503 80

9504 93
95e5 ~

9506 94
9507 4C

8500 95
!l5e9 EA

850C 01
8500 12

950E 92
050F 39

9518 93
9511 C9

9512 94
9513 4C

9514 95
8515 EA

8516 90
9517 09

LINE

149
159
151
152
153
154
155
156
157
158
159
168
161
162
161

164
165

166
167

168
169

179
171

172
173

174
175
176
177
178

179
180

181
182

183
194

195
1B6

187
188

189

AP-134

SOURCE

ABC SEGMENT
ASSUf'IE CS. ABC, OS. DATA, 55. DATA
ORG CODUTART

, ******.fI***********************,fq:1t****~***********iC**ic**.**,****,fc*
;* ,. ,. PARAlETERS FOR CHfNfl INlTlALIZATlOH • •
; **************************************.fc**************.fI**********
,CHANNEL B PARAt1ETERS

,WRl - INTERRUPT ON ALL RX CHR, VRPIABLE INT VECTOR, TX INT ENABLE
Ci'1OSTRB DB 1, 16H

; WR2 - INTERRUPT VECTOR
DB 2, (INLTABLE..BASE/4,

; WR3 - RX 8 B1T5ICIf1, RX DISABLE
DB],9CeH

.1114 - X16 CLOCK, 2 STOP BITS. NO PARITV
DB 4,4CH

,WR5 - DTR ACTIVE, TX S BIT5ICHR, TX ENABLE, RTS ACTIVE
DB 5,9EAH

,1116 AND WR7 NOT REQUIRED FOR ASYNC
DB 9,9

,CHAIf£L A PARflHETERS

;1111 - INTERRUPT ON ALL RX CHR, TX INT ENABLE
Cll)STRA DB 1, 12H

; 1112 - VECTORED INTERRUPT FOR Il096
DB 2,39H

,1113 - RX 8 BIT5ICHR, RX DISABLE
DB],9C9H

; WR4 - X16 CLOCK, 2 STOP BITS, NO PARITY
DB 4,4CH

; IIR5 - DTR ACTIVE, IX 8 BITSICHR. IX ENABLE. RTS ACTIVE
DB 5,9EAH

,1OR6 AN) 1117 NOT REIlUIRED FOR AS'INC
DB' 9,9

1ge +1 $EJECT

6-220 210311-001

AP-134

MCS-86 MACRO ASSEI'IBLER ASYNCB

LOG OBJ LINE S(lURCE

191
192 ,START OF COItI1AND fIOUTINE5
193
194 ; *****ft,.fc*********************U*,.fcfc4rt: ... "'**+: +-**'*.+.* f.f*ir.f: t;*****lf...f!*,
195 " 196 .. INITIALIZATION COI1l!AN[' FOP THE 8274 - THE 8274
197 ,~ 15 SETUP ACCORDING TO THE PAI'·At1ETE~S STOFH IN
198 , . PROi'I AB!JYE STARTING AT CMSWB FOR CHANNEL BAND
199 .. CMSTRA FOP CHANNEL A
200 ,0

291 , ***********.fc****************.******..fc*-;**-*** .. ******"*******+'***,-+:'fc
292

0518 293 INITIAL_8274.
294 • CfJ?Y INTERRUPT VECTOR IP AND CS VALUES FROt1 PROM TO PAti

0518 (79608020096 205 MOV TX-VECTOR_CHB, OFFSET XtiTINB ,T, DATA VECTOR (HB
051E 8C9E0292 206 MOV TX-CS_CHB, CS

. 0522 C79694823506 207 HOV STS_YECTOIUHB. OFFSET STAINB • STATUS YECTOP CHB
0528 8C9E0602 288 HOV 5TS_CS_CHB, CS
052C C7e688824906 299 HOV RlL'lECTOR_CHB, OFFSET I/(VINB ,RX DATA VECTOP (HB
8532 8C8E8A02 218 t10V RX-C5_C$. C5
8536 C7060C027706 211 t10V ERR_YECTOR_CHB, OFFSET ERRINB ,ERROP VECTOP CHB
8S3C 8C8E8A82 212 HOV RX-CS_CHB, CS
8548 C7e610028C06 213 MOV Tx...YECTOR_CHA, OFFSET XMTINA , TX DATA YECTOR CHA
0546 8C8E1292 214 HOY TX_CS_CHA, CS
854A C70614829906 215 MOV STS_YECTOR_CHA. OFFSET STAINA • STATUS VECTOP CHA
0558 8C8E1602 216 t10V STS_CS_CIfI, CS
8554 C7061802C006 217 MOV RUECTOR_CHA, OFFSET PCVINA ; RX DATA 'lECTOR CHA
855A 8C8E1AiJ2 218 t10V RlLCS_CHA. C5
855£ C7061(82FB06 219 HOY ERR..YECTOR_CHA. OFFsET ERRINA • EP.POP \~CTOP CHfi
8564 8C8E1E82 229 MOV ERR_CS_CHA. CS

221
222 ,CfJ?Y SETUP TABLE PARAMETERS INTO 8274
223

8568 BFOO85 224 t10V D I. OFFSET Ct10STRB , INITIALEE CHB
856B BAiJ600 225 t10V DX, COIt1ANILPOPLCHB
856E E82EOO 226 CALL SETUP ,copy CHB PARAMETERS
8571 BF8C85 227 t10V D J, OFFSET CMDSTRA • INITIALIZE CHA
8574 BAiJ298 228 MOV DX, COi'IMAND_PORLCHA
0577 E82588 229 CALL SETUP ,COP', CHfi PARAMETEPS

238
231 , INITIALIZE STATUS BYTES AND FLAGS
232

057A BI3988Il 233 MOV AX. 8
8570 A22882 234 MOV ERROR..MSfLCHB, AL ; CLEAR ERROR FLAG CHB
8588 A23782 235 MOV ERROUSG_CHA, AL ,CLEAR ERROR FLAG CHA
8583 A22AiJ2 236 MOV STATUS_tL',(LCHB, AL ,CLEAR STATUS FLAG CHB
0586 A23682 237 MOV STATUS_MSG_CHA, AL • CLEAR STATUS FLAG CHA
8589 A32682 238 MOV RX_COUNLCHB, AX ,CLEAR RX COUNTER CHB
858C A33282 239 MOV RX_COONLCIfI. AX ,CLEAR RX COUNTER CHA
05BF BOO1 248 MOV Al., 1
0591 A22ge2 241 t10V Rx...REAW _CHB, AL ,SET RX DONE FLAG CHB
8594 A23582 242 MOV RX_READY _CHA, AL ,SET RX DONE FLAG CHA
0597 A22882 243 MOV Tx...EMPTY _CHB. AL ,SET TX DONE FLAG (HB
859A A23482 244 MOV TUMPTY _CHA, AL · SET TX DONE FLAG CHA
8590 FB 245 STI • ENABLE INTERRUPTS
059E C3 246 RET ,RETUPN - DONE WITH SETUP

247
859F 8AiJ5 248 SETUP MOV AL, [Oil ,PARAMETER COPYINli ROUTINE
85A1 3COO 249 ClIP AL, 9
85A3 7494 258 JE DONE

6-221 210311-001

LOC OBJ

95A5 EE
95A6 47
85A7 EBF6
85R9 C3

0.'5AA
e5AA 58
85A8 57
95AC 52
95fII) C686280288
85e2 BA0488
8585 883£2882
85B9 8A85
ll5BB EE
850C SA
8581) SF
85BE 58
95BF C3

85C8
85C8 58
esc1 57
8SC2 52
85C3 C606348280
85C8 BAII8Il0
85C8 883E2C82·.
I15CF 8A95
8501 EE
1151)2 SA
1151)3 SF
II5D4 58
1151)5 C3

LINE

251
252
253
254
255
256+1
257
2S8
259
268
261
262
263
264
265
266
267
268
269
278
271
272
273
274
275
276
277
278
279
280
281
282
283
284
2115
286
287
288
2~
298
291
292
293
294
295
296
297
298
299
3e9
301
382
383
304
3115
306
307
3e9
~
319

SOURCE

OOT
INC
JMP

DX, AL
01
SEW

AP-134

,OUTPUT PARAl'lETER
,POINT AT NEXT PARAMETE~
,GO loro IT

DONE. RET ; DONE - SO RETURN

$EJECT

I ***********************ic**
,* * , * Tli CHAIftL B COI1I'Ml ROUTINE - ROUTINE IS CALLED TO
,* TRANSIIIT A BUFFER Tff: BUFFER STARTING ADDRESS,
,* TX-POINTER_CHB, AND Tff: BUFFER LENGTH. TX_lENGTH_CHB,
,* I'RJST BE INlTIALI2EO BY THE CALLING PROGRAM.
,* BOTH ITEMS ARE WORD YARIABLES.
,* *
i .**-**ir********************
TXJ:J1'I1ANlUHB .

PUSH AX ,SfIIIE REGISTERS
PUSH 01
PUSH OX
110\1 TlLEHPTUHB, 8 ,CLEAR EMPTY Flfll
f10V OX, OATA_PORLCHB ,SETlf' PORT POINTER
f10V 01, TX-POINTEUHB ,GET TX BUFFER POINTER CHB
110\1 AL, [Oil ,GET FIRST CHARACTER TO TX •
ooT OX, AL ,OUTPUT IT TO 8274 TO GET IT STARTED
P(f OX
P(f 01
POP AX
RET , RETURN

i **
,* *

., *
,* ,.
;*

TX CHANNEL A COMIftN[) ROUTII£ - ROUTINE IS CAlLED TO
~IT A BUFFER. TNE BUFFER STARTING fW1ESS,
TX_POINTER_CHAo AND Tff: BUFFER lENGTH. TX-LENGTH_CHA,
I1UST BE INlTIALI2EO Bl'THE CALLING PROGRAH.
BOTH ITEI1S ARE WORD YARIABLES.

j ***~*******************
TX-COl'llftIUHA .

PUSH AX ; SAllE REGISTERS
PUSH 01
PUSH DX
I10V TX-EHPTY J:lf!, 9 ; CLEAR EHPTY FLfll
!'lOY Ox, OATfLPORLCHA ,SElU' ~T POINTER
HOY 01, TXJ>OINTER_CHA .; GET TX BUFFER POINTER ellA
I10V FL, EDI J ,GET FIRST CHARACTER TO TX
OUT ox, AL ; OUTPUT IT TO 8274 TO GET IT STARTED
P(f DX
POP 01
POP AX
RET ; RETURN

,* RX C!H'1fII«) FOR CHANNEL B - THE CAlLING ROUTINE IlIST
,* INITIALIZE RX-POINTER_CHB TO POINT AT THE RECEIVE
,* BUFFER BEFORE CAlLING THIS ROUTINE *

6-222 210311-001

~S-86 MACIIO ASSEi'l8LER

LOC OBJ

~
95D6 58
95D7 52
95D8 C686299299
8500 (79626Il2II009
85E3 8A968Il
85E68093
85E8 EE
II5E9 B8C1
85EB EE
85EC SA
95EJ) 58
II5EE C3

95EF
95EF 58
95F852
85F1 C686359288
85F6 C70632828088
85FC BA828II
85FF 8093
9681 EE
8682 B8C1
8694 EE
9685 SA
86Il6 58
Il687 C3

8688 52
86Il9 57
868A 58
969B E88281
96(£ FF862882
8612 FF8E2282
8616 748E
8618 BA8488
861B 883E2882
861F 8fI85
8621 EE

ASYNCB

LINE

311
:S12
3ti
314
315
316
317
:SiS
ill
328
321
322
m
324
325
326
327
328
329
338
331
m
3D
334
335
336
337
338
339
348
341
342
343
344
345
346
347
348
349
358 +1
351
352
353
354
355
356
357

'358
359
368
361
362
363
364
365
366
367
368
369
378

FlWJ111ANUItI
PUSH
PUSH
lIlY
I10Y
lIlY
lIlY
ruT
lIlY
ruT
Plf'
Plf'
RET

AP-134

AX ,SAVE REGISTERS
OX
RlLREADY-CIII, 9 • CLEAI1 RX READY FLAG
RlLCOIHLCHB: 0 ,CLEAI1 RX COUNTER
DX. CatlfNLI'ORLCIll • POINT AT (OMIND POllY
AL. 3 • SET UP FOR W113
OX, AL
ill, 9C1H • IIU - 8 BITS,'CIfI, ENABLE FX
OX, AL
OX
AX

.RET~

•• RX aJIIfHl FOR CIfH£l R - TI£ CALLING RruTINE P1UST
•• INITIALIZE RlLPOINTER..CNA TO POINT AT THE FECElVE
, * BlfFER BEFORE CALLING THIS I100TINE •
•• •
I ... ************** ************** '*" I III I 1 1 1***********

RlLC(JIIfH)-C1fI
PUSH
PUSH
lIlY
lIlY
I10Y
lIlY
ruT
lIlY
ruT
Plf'
Plf'
RET

fEJECT

AX ,SAYE REGISTEFS
OX
RX..REfI>Y _elf!, 9 ,CLEAR RX READY FLAG
RlLClUlLCIfI. 9. CLEAR RX CIXHTER
OK. ClMHl_PORT _CHA ,POINT AT toIIfIII) PORT
AI.. 3 • SET IJ' FOR WR3
DX.AL
AI., 9CiH • IIU - 8 BI~, EIflBI.E RX
OX. AL
OX
AX

'RET~

.---------­it *
START OF INTERRIJ'T SERVICE RruTINES •

;*
, 11111111111111

• CIfH£l B TRANSIIIT DATA SERVICE RruTINE

XllTINB, PUSH
PUSH
PUSH
CALL
INC
DEC
JE
lIlY
lIlY
lIlY
ruT

OX • SAVE REGISTERS
01
AX
EOI ,SEND EOI COIf1AN) TO 8274
TlLPOINTER..CHB ; POINT TO NEXT CHARACTER
TlLLENGTH..CHB • DEC LENGTH mMER
XIB ; TEST IF DONE
DX. DATR_PORLCHB • NOT OONE - GET NEXT ~ER
01. TlLPOINTER..CHB
AI.. WI I • PUT CHARACTER IN AL
OK. AL .OUTPUT IT TO 8274

6-223 210311-001

AP·134

HCS-86 HACRO ASSEMBLER ASI'NCB

LOC OOJ LINE S(QCE

8622 58 371 POP AX ; RESTORE REGISTERS
9623 SF 372 POP 01
9624 5A 373 POP OX
9625 CF 374 IRET ,RETURN TO FORE6ROlJPf)
9626 8A9689 375 XIS. ItJII OX, ro1l'1If~D-PORLCHB ; ILL Clil'RRCTERS HAVE BEEN SEND
9629 B828 376 t10V fl., 28H ,RESET TRANS"ITTER INTERRUPT PENDING
9628 EE 377 OUT DX, AL
962C C696289291 378 I'IOV Tx..EII'TY _CHB, L DONE - SO SET TX EMPTY FLAG CHe
9631 58 379 POP AX ,RESTORE REGISTERS
9632 SF 389 POP DI
9633 5A 38i POP OX
9634 CF 382 IRET ; ~£TURN TO FOREGROUND

383
384 ,CHANNEL B STATUS CNAI«lE SERVICE ROllTINE
385

9635 52 386 STAINB: PUSH OX ; SIl\IE REGISTERS
9636 57 387 PUSH 01
9637 50 389 PUSH AX ~.

9638 EBDS99 389 CALL EOI ; SEND EOI COMIftID TO 8274
8638 BA8699 399 I'IOV DX, COItfANI)_PORLCHB
863E EC 391 IN fl., OX ;READ RR9
863F A22A92 392 I10Y STATUS_t1SG_CHB, AL ; PUT RR9 IN STATUS HESSAGE
8642 8010 393 I'IOV AL 1SH ; SEND RESET STATUS INT COMMAND TO 8274
9644 EE 394 ruT DX, AL
8645 58 395 POP AX ; RESTORE REGISTERS
9646 SF 396 POP 01
9647 SA 39i' POP DX
0648 CF 398 IRET

399
499 ,CIffiNEL B RECEIVED DATA SERVICE ROUTINE
491

0649 52 492 ReYINB. PUSH DX ;SAVE REGiSmS
864A 57 493 PUSH vI
8648 58 494 PUSH AX
964(EBC1ge 495 CALL EOI ,SEND EOI COIt1AND TO 8274
964F 1lB3E2402 486 I10V DI, RX_POINTER_CHB ,GET RX CHe StIFFER POINTER
0653 BA94ge 497 MOIl DX, DATA_PORLCHB
8656 EC 498 IN AL, DX ; READ CHAAACTE~
8657 8B05 499 HOY [Dn AL ,STORE IN BtIFFEP
8659 FF962492 410 INC RX_POINTEP _CHB ,13IJI'1I' THE 8UFFE~ PO WTER
965!' FF962692 411 INC RlLCOIJNT _CHB ,BlJIoIP THE COIJNTER
8661 3COO 412 CI1P AL, CR_CHR ,TEST IF LAST CHAAACTER TO BE PECEIVED"
8663 7"..0E 413 JNE RIB
8665 C696299201 414 MOl,' R>:_FEADY _CHB, 1 ,YES, SET READ,' FLAG
866A BA9699 415 I'IOV DX, COHtIAND_PORLCHB ,POINT AT COMMAND PORT
9660 Bees 416 I10Y AL, 3 '" ,POINT AT WR3
966F EE 417 OIJT DX, AL
8670 BOCa 418 ltJy AL· 0C8H ,DISABLE RX
9672 EE 419 OUT DK, AL
86?} 58 429 RIB POP Al\ . EITHEP HA~, ~ESTORE PEGI5TEK'S
9674 SF 421 POP DI
8675 SA 422 POP D:~
9676 IT 42:; IRE1 ,~ETIJFN TO FORE&OIJND

424
425 ,':HANNEL B ERROl? SEPVICE ROIJTlNE
426

06(7 52 427 ERRINB PUSH N'; ,SAVE PEG15T£1I5
96~8 50 428 PUSH AX
9679 E8O'40e 429 CALL EOl ,SENI) EOI COMllAND TO 82;'4
96~(BA0699 430 MOV DX, C0MI'If\I1[l_PO,'T JHB

6-224 210311-001

AP·134

11CS-86 IIfQO ASSEIIUR ASYNC8

lOC !aT L11£ 500lCE

867F 88111 431 lIlY fl, 1 ; POINT AT RR1
9681 EE 432 (lIT I)X,fl
8682 EC 433 IN fLDX ; ReI) RR1
11683 A22882 434 lIlY ERR!IUISG...CIIl, fl ; SAYE IT IN ERRa1 Fl";
8686 8838 435 lIlY fl, 38H ; SEN) RESET ERRa1 COIMI) TO 8274
8688 EE 416 (lIT Ox, fl
8689 58 437 Pa> AX ; ~ REGISTERS
868ft 51! 438 Pa> DX
9688 CF 439 IRET ; RETI.RN TO FOREGRIlN)

448
441 ; CIRf£I. A TRANSltIT DATA SERVICE ROOTII£
442

968C 52 443 XllTINA: PUSH OX ,SAVE REGISTERS
8680 57 444 PUSH 01
86SE 58 445 PUSH AX
868f E87E89 446 au EDI ; SEND EDr COtfAIt) TO 8274
8692 FF962C112 447 IN: TX..POINTElLCItl ,POINT TO NEXT CIHRCTER
8696 FF8E2E82 448 DEC TlLLENGTlLCItl ; DEC lEl«lTH CWITER
869ft 748E 449 JE XIA ,TEST IF 001£
869C BA9888 458 lIlY ox, DAT~LCHfI ,NOT 001£ - GET I£XT CItlRACTER
869F 883E2C82 451 lIlY DI, TX..POINTER.CItl
86A3 8A95 452 19)Y' fl,COIl ; PUT CItlRACTER IN fl
86A5 EE 453 (lIT DX, fl ,OOTPUT IT TO 8274
Il6fI6 58 454 POP AX ; RE5T~ REGISTERS
86A7 5F 455 Pa> DI
86A8 51! 456 POP DX
96A9 CF 457 lRET ; RETI.RN TO F~GR(lN)
86fIR BA8289 458 KIA: PlOY DX, COIMI)~LCItl ; All CIflRACTERS HAVE BEEN SEtf)
86AI) B828 459 lIlY At, 28H ; RESET TRfliSI1ITTER INTERRlfT PENDING
86AF EE 468 (lIT ox, At
868tI C686348291 461 PlOY TlLElf>TY _CHA, 1 ; 001£ - so SET TX EltPTY Fl"; CIIl
86B5 58 462 Pa> AX ; REST~ REGISTERS
8686 5F 463 Pa> 01
968751! 464 POP DX
8688 CF 465 lRET ; RETI.RN TO F~GR(lN)

466
467 ; CHfIN£l A STATUS CItlNGE SERVICE RruTII£
468

968952 469 STAINR PUSH DX ; SAYE REGISTERS
868ft 57 478 PUSH DI
96B8 58 471 PUSH AX
96BC E85189 472 CIl.l EOI ,SEND EOI COIItRIf) TO 8274
96BF BR8208 473 HOY ox, CCf1"ANILPORT..cHR
86C2 EC 474 IN fl, DX ,READ RR8
86C3 A23682 475 HOY STATUS_IISG_CHfI, fl • P\IT RR8 IN STATUS IlESSRGE
86C68819 476 HOY fl, 1SH ,SEI(l RESET STATUS INT COIt1RND TO 8274
96CS EE 477 OUT ox,fl
86C9 58 478 POP AX ,RE5~ REGISTERS
96CR 5F 479 POP 01
96CB SA 489 POP DX
86CC CF 481 IRET

482
483 ,CHANNEL A RECEIVED DATA SERVICE ROUTII£
484

96CD 52 485 RCVINR· PUSH DX ,SAVE REGISTERS
96CE 57 486 PUSH DI
86CF 58 487 PUSH AX
9600 E83D99 488 CAll EOI .. SEND EOI C~D TO 8274
8603 883B992 489 MOIl 01, RX-POINTER_CHR ,GET RX CHR BUFFEF POINTER
8607 BAOO89 491l PIOI/ DX, DATA_POFT _CHR

6-225 210311-001

AP·134

HC5-86 MACIIO ASSEtmLER AS'INCB

LOG OBJ LINE SOURC£

060fl EC . 491 IN AI., OX • READ CHARACTER
96D8 8005 492 MOV (OIJ, AL ,STORE IN BUFFER
8600 FFB63BB2 493 INC RX_POINTEIUHA ,BUMI' THE BUFFER PO INTE~
B6E1 FFB632B2 494 INC RX_COIJNT _CHA ; BlQ>IP THE COUNTER
B6E5 3COO 495 CHI' AL CR_CHR ,TEST IF LAST CHARACTER TO BE RECEIIlED?
B6E7 75BE .496 JNE RIA
B6E9 C6B6358201 497 I10V RUEAD\' _CHA, 1 ,VES, SET READV FLAG
B6EE BA02BB 498 110V OX, COi'IMflND_PORLCHA ,POINT AT cor1l1flNi) PORT
96F1 B003 499 HOY AI., 3 ; POINT AT WR3
06F3 EE 5BB OUT Ox, AL
06F4 BOCe 591 HOY AL, BCeH ,DISABLE RX
B6F6 EE 5B2 OI.IT DX, AL
06Fi' 58 5!l3 RIA PDP AX ,EITHER WAY, RESTORE REGISTERS
06FS SF 5B4 PDP 01
06F9 SA 5B5 PDP DX
B6FA CF 5B6 IRET ,RETURN TO FDREGROIJND

587
sea ; CHANNEL A ERROR SERVICE IIOIJTINE
5!l9

B6FB 52 510 ERRINA. PUSH OX ,SAllE REGISTERS
96FC 59 511 PUSH AX
06FD E81000 512 CALL EOI ; SEND EOI CJJItIANO TO 8274
0700 BA9200 5B t10Y Ox, CottIAND_PORLCHA
8793 B001 514 I10V AL, 1 ,POINT AT RR1
0785 EE 515 OUT DX, AL
8706 EC 516 IN AL, DX ,READ RR1
9797 A23792 517 MOV ERROR_MSG_CHA, AL ; SAllE IT IN ERROR FLAG
078A 81130 51B HOY II., 30H ; SEND RESET ERI?OI1 COI1!1AND TO 8274
87BC EE 519 OUT DX, AL
8700 58 52B PDP AX ,RESTORE REGISTERS
070E SA 521 POP DX
970F CF 522 IRET ,RETIJ1N TO FOREGROtNl

523
524 ; END-OF-INTERRIJ'T ROIJTII£ - SENDS EOI COI91AND TO 8274
525 ; THIS CIJI1'IfINl) MUST ALWAYS TO ISSUED ON CHANNEL A
526

0710 58 527 EO!: PUSH AX ,SAllE REGISTERS
0711 52 52B PUSH DX
9712 BA9200 529 MOV Ox, CO/t1ANI)_PORLCHA) ALWftVS FOR CHANNEL A !!!
8715 BI138 530 MOV AL, 30H
0717 EE 531 OUT OX, AI.
8718 SA 532 POP OX
0719 58 533 POP AX
e71A C3 534 RET

535
536) END OF CODE ROUTINE
537
538 ABC ENDS
539 END

ASSEl'IBl Y COMPLETE, NO ERRORS FOUND

6-226 210311-001

· AP-134

REFERENCES

1. 8274 Multiprotocol Serial Controller (MPSC) Data
Sheet, Intel Corporation, California, 1980. '

2. Basics of Data Communication, Electronics Book
Series, McGraw-Hill, New York, 1976.

3. Telecommunications and the Computer, J. Martin,
Prentice-Hall, New Jersey, 1976.

4. Technical Aspects of Data Communications, J.
McNamara, DEC Press, Massachusetts, 1977.

5. Miscellaneous Data Communications Standards
-EIA RS-232-C, EIA RS-422, EIA RS-423, EIA
Standard Sales, Washington, D.C.

6-227 210311-001

inter

@ INTEL CORPORATION, 1982

APPLICATION
NOTE

6-228

AP-145

June 1982

ORDER NUMBER: 210403-001

AP-145

INTRODUCTION:
.'

The INTEL 8274 is a Multi-Protocol Serial Controller,
capable of handling both asynchronous and synchronous
communication protocols. Its programmable features al­
low it to be configured in various operating modes, provid­
ing optimization to given data communication
application.

This application note describes the features of the MPSC
in Synchronous Communication applications only. It is
strongly recommended that the reader read the 8274 Data
Sheet and Application Note API34 "Asynchronous Com­
munication with the 8274 Multi-Protocol Serial Control­
ler" before reading this Application Note. This
Application note assumes that the reader is familiar with
the basic structure of the MPSC, in terms of pin descrip-

OPENING ADDRESS' CONTROL"
FLAG FIELD{A) FIELD(C)
BYTE

tion, Read/Write registers and asynchronous communi­
cation with the 8274. Appendix A contains the software
listings of the Application Example and Appendix B
shows the MPSC Read/Write Registers for quick
reference.

The first section of this application note presents an over­
view of the various sysnchronous protocols. The second
section discusses the block diagram description of the
MPSC. This is followed by the description of MPSC inter­
rupt structure and mode of operation in the third and
fourth sections. The fifth section describes a hardware/
software example, using the INTEL single board comput­
er iSBC88 / 45 as the hardware vehicle. The sixth section
consists of some specialized applications of the MPSC. Fi­
nally, in section seven, some useful programming hints are
summarized.

DATA FRAME CLOSING
FIELD CHECK FLAG

SEQUENCE BYTE

Figure 1. HOLC/SOLC Frame Format

• Extendable to 2 or More Bytes
,. Extendable to 2 Bytes

SYNCHRONOUS PROTOCOL OVERVIEW
This section presents an overview of various synchronous
protocols. The contents of this section are fairly tutorial
and may be skipped by the more knowledgeable reader.

Bit Oriented Protocols Overview

Bit oriented protocols have been defined to manage the
flow of information on data communication links. One of
the most widely known protocol is the one defined by the
International Standards Organization: HDLC (High
Level Data Link Control). The American Standard Asso­
ciations' protocol, ADCCP is similar to HDLC. CCITT
Recommendation X.25 layer 2 is also an acceptable ver­
sion of HDLC. Finally, IBM's SDLC (Synchoronous
Data Link Control) is also a subset of the HDLC.

In this section, we will concentrate most of our discussion
on HDLC. Figure I shows a basic HDLC frame format.

A frame consists of five basic fields: Flag, Address, Con­
trol, Data and Error Detection. A frame is bounded by
flags - opening and closing flags. An address field is 8 bits
wide, extendable to 2 or more bytes. The control field is
also 8 bits wide, extendable to two bytes. The data field or
information field may be any number of bits. The data
field mayor may not be on an 8 bit boundary. A powerful
error detection code called Frame Check Sequence con­
tains the calculated CRC (Cycle Redundancy Code) for
all the bits between the flags.

ZERO BIT INSERTION

The flag has a unique binary bit pattern: 7E HEX. To
eliminate the possibility of the data field containing a 7E
HEX pattern, a bit stuffing technique called Zero Bit In­
sertion is used. This technique specifies that during trans­
mission, a binary 0 be inserted by the transmitter after any
succession of five contiguous binary 1 'so This will ensure
that no pattern of 0 1 I I I 1 lOis ever transmitted be­
tween flags. On the receiving side, after receiving the flag,
the receiver hardware automatically deletes any 0 follow­
ing five consecutive l's.The 8274 performs zero bit inser­
tion and deletion automatically in the SDLC/HDLC
mode. The zero-bit stuffing ensures periodic transitions in
the data stream. These transitions are necessary for a
phase lock circuit, which may be used at the receiver end
to' generate a receive clock which is in phase to the re­
ceived data. The inserted and deleted O's are not included
in the CRC checking. The address field is used to address
a given secondary station. The control field contains the
link-level control information which includes implied ac­
knowledgement, supervisory commands and responses,
etc. A more detailed discussion of higher level protocol
functions is beyond the scope of this application note. In­
terested readers may refer to the references at the end of
this application note.

6-229

The data field may be of any length and content in
HDLC. Note that SDLC specifies that data field be a
multiple of bytes only. In data communications, it is gen-

210403-001

I,:

1

\

, II l
1'1

Ii
I':!

inter AP-145

erally desirable to transmit data which may be of any con­
tent. This requires that data field should not contain
characters which are defined to assist the transmission
protocol (like opening flag 7EH in HDLC/SDLC com­
munications). This property is referred to as "data trans­
parency". In HDLC/SDLC, this code transparency is
made possible by Zero Bit Insertion discussed earlier and
the bit orientated nature of the protocol.

The last field is the FCS (Frame Check Sequence). The
FCS uses the error detecting techniques called Cyclic Re­
dundancy Check. In SDLC/HDLC, the CCITT-CRC
must be used.

NON-RETURN TO ZERO INVERTED (NRZI)

NRZI is a method of clock and data encoding that is well
suited to the HDLC protocol. It allows HDLC protocols to
be used with low cost asynchronous mod~ms. NRZI cod­
ing is done at the transmitter to enable clock recovery
from the data at the receiver terminal by using standard
digital phase locked loop techniques. NRZI coding speci­
fies that the signal condition does not change for transmit­
ting a I, while a ° causes a change of state. NRZI coding
ensures that an active data line will have transition at least
every 5-bit times (recall Zero Bit Insertion), while contig­
uous O's will cause a change of state. Thus, ZBI and NRZI
encoding makes it possible for a phase lock circuit at the
receiver end t6 derive a receive clock (from received data)
which is synchronized to the received data and at the same
time ensure data transparency.

Byte Synchronous Communication

As the name implies, Byte Synchronous Communication
is a synchronous communication protocol which means
that the transmitting station is synchronized to the receiv­
ing station through the recognition of a special sync char­
acter or characters. Two examples of Byte Synchronous
protocol are the IBM Bisync and Monosync. Bisync has
two starting sync characters per message while monosync
has only one$ync character. For the sake of abrevity, we

will only discuss Bisync here. All the discussion is valid for
Monosyne also. Any exceptions will be noted. Figure 2
shows a typical Bisync message format.

The Bisync protocol is defined for half duplex communi­
cation between two or more stations over point to point or
multipoint communication lines. Special characters con­
trol link access, transmission of data and termination of
transmission opera tions for the system. A detailed discus­
sion of these special control characters (SYN, ENQ,
STX, ITB, ETB, ETX, DLE, SOH, ACKO, ACKI,
WACK, NAK and EaT, etc) is beyond the scope of this
Application Note. Readers interested in more detailed
discussion are directed to the references listed at the end of
this Application Note.

As shown in Figure 2, each message is preceded by two
sync characters. Since the sync characters are defined at
the beginning of the message only, the transmitter must
insert fill characters (sync) in order to maintain synchro­
nization with the receiver when no data is being
transmitted.

TRANSPARENT TRANSMISSION

Bisync protocol requires special control characters to
maintain the communication link over the line. If the data
is EBCDIC encoded, then transparency is ensured by the
fact that the data field will not contain any of the bisync
control characters. However, if data does not conform to
standard character encoding techniques, transparency in
bisync is achieved by' inserting a special character DLE
(Data Link Escape) before and after a string of characters
which are to be transmitted transparently. This ensures
that any data charaters which match any of the special
dharacters are not confused for special characters. An ex­
ample of a transparent block is shown in Figure 3.

In a transparent mode, it is required that the CRC(BCC)
is not performed on special characters. Later on, we will
show how the 8274 can be used to achieve transparent
transmission in Bisync mode.

HEADER STXTEXT ETXORETB

Figure 2. Bisync Message Format

TRANSPARENT TRANSM'ISSION

Enter transparent mode return to normal mode

Figure 3. Bisync Transparent Format

6-230 210403-001

AP-145

BLOCK DIAGRAM

This section discusses the block diagram view of the 8274.
The CPU interface and serial interface is discussed sepa­
rately. This will be followed by a hardware example in the
fifth section, which will show how to interface the 8274
with the Intel CPU 8088. The 8274 block diagram is
shown in Figure 4.

CPU Interface

The CPU interface to the system interface logic block uti­
lizes the AO, AI, CS, RD and WR inputs to communicate
with the internal registers of the 8274. Figure 5 shows the
address of the internal registers. The DMA interface is
achieved by utilizing DMA request lines for each channel:
TxDRQA' TxDRQB' RxDRQA' RxDRQB' Note that

r----------,
CHANNEL A

CHANNEL A
WRITE

REGISTERS

CHANNEL A
TRANSMITIER

TxDA

TxCA

CLK

RESET

RDYB/TxDRQA 1 k:':::;::=====~ CHANNEL A CONTROL
LOGIC

DCDA

CTSA

RTSA

SYNDETA

DTRA

CS A1 AD

° 0 0
0 1 0

° 0 1
0 1 1

1 x X

RDYA/RxDRQA

IPO/TxDRQB

IP1/RxDRQB

INT

INTA

AO

A1

Cs
Ro
WR

SYSTEM
INTERFACE
CONTROL

LOGIC ,

+ f
SYSTEM INTERFACE

VL-'---I CH~~~~L A

REGISTERS

CHANNEL A
RECEIVER

CHANNEL B

NETWORK INTERFACE

TxDB

TxCB

DCDB

rnB

RxDA

RxCA

{ SYNDETB
RTSB

i5T1fB

RxCB

RxDB

Figure 4. 8274 Block Diagram

Read Operation Write Operation

CHA DATA READ CHA DATA WRITE
CHA STATUS REGISTER CHA COMMAND/PARAMETER

(RRO,RR1) (WRO-WR7)

CHB DATA READ CHB DATA WRITE
CHB STATUS REGISTER CHB COMMAND/PARAMETER

(RRO,RR1,RR2) (WRO-WR7)

HIGHZ HIGHZ

Figure 5. Bus Interface

6-231 210403-001

AP·14.5

TxDRQB and RxDRQB becomes IPO and IPI respective­
ly in non-DMA mode. IPI is the Interrupt Priority Input
and IPO is the Interrrupt Priority Output. These two pins
can be used for connecting multiple MPSCs in a daisy
chain. If the Wait Mode is programmed, then TxRDQA

and RxDRQA pins become RDY Band RDY A pins. These
pins can be wire-or'ed and are usually hooked up to the
CPU RDY line to synchronize the CPU for block trans­
fers. The INT pin is activated whenever the MPSC re­
quires CPU attention. The INTA may be used to utilize
the powerful vectored mode feature of the 8274. Detailed
discussion on these subjects will be done later in this Ap­
plication Note. The Reset pin may be used for hardware
reset while the clock is required to click the internal logic
on the MPSC.

Serial Interface

On the serial side, there are two completely independent
channels: Channel A and Channel B. Each channel con­
sists of a transmitter block, receiver block and a set of
read/write registers w~ich are used to initialize the de­
vice. In addition, a control logic block provides the modem
interface pins. Channel B serial interface logic is a mirror
image of Channel A serial interface logic, except for one
exception: there is only one pin for RTSB and SYNDET B'

At a given time, this pin is either RTSB or SYNDETB•

This mode is programmable through one of the internal
registers on the MPSC.

Transmit And Receive Data Path
Figure 6 shows a block diagram for transmit and receive
data path. Without describing each block on the diagram,
a brief discussion of the block diagram will be presented
here.

TRANSMIT DATA PATH

The transmit data is transferred to the twenty-bit serial
shift register. The twenty-bits are needed to store two
bytes of sync characters in bisync mode. The last three bits
of the shift register are used to indicate to the internal con­
trollogic that the current data byte has been shifted out of
the shift register. The transmit data in the transmit shift
register'is shifted out through a two bit delay onto the
TxData line. This two bit delay is used to synchronize the
internal shift clock with the external transmit clock. The,
data in the shift register is also presented to zero bit inser­
tion logic which inserts a zero after sensing five contiguous
ones in the data stream. In parallel to all this activity, the
CRC-generator is computing CRC on the transmitted
data and appends the frame with CRC bytes at the end of
the data transmission.

CPU 1/0

TxDA

TxCA

Figure 6. Transmit and Receive Data Path

6-232 210403-001

AP-145

RECEIVE DATA PATH

The received data is passed through a one-bit delay before
it is presented for flag/sync comparison. In bisync mode,
after the synchronization is achieved, the incoming data
bypasses the sync register and enters directly into the
three bit buffer on its way to receive shift register. In
SDLe mode, the incoming data always passes through the
sync register where data pattern is continously monitored
for contiguous ones for zero deletion logic. The data then
enters the three bit buffer and the receive shift register.
From the receive shift register, the data is transferred to
the three byte deep FIFO. The data is transferred to the

FIRST DATA CHARACTER

FIRST NON-SYNC
CHARACTER (SYNC MODES)

VALID ADDRESS
BYTE (SDLC)

PARITY ERROR

RX OVER·RUN ERROR

FRAMING ERROR

END OF FRAME
(SDLC ONLY)

DCD TRANSITION

CTS TRANSITION

SYNC TRANSITION

TX UNDER·RUN/EOM

BREAK/ABORT DETECT

• TX BUFFER EMPTY

INTERRUPT
ON FIRST RECEIVE

CHARACTER

INTERRUPT ON
ALL RECEIVE
CHARACTERS

SPECIAL
RECEIVE

CONDITION
INTERRUPT

top of the FIFO at the chip clock rate (not the receiver
clock). It takes three chip clock/periods to transfer data
from the serial shift register to the top of the FIFO. The
three bit deep Receive Error FIFO shifts any error condi­
tion which may have occured during a frame reception.
While all this is happening, the eRe checker is checking
the eRe on the incoming data. The computed eRe is
checked with the eRe bytes attached to the incoming
frame and an error generated under a no-check condition.
Note that the bisync data is presented to the eRe checker
with an 8-bit delay. This is necessary to achieve transpar­
ency in bisync mode as will be shown later in this Applica­
tion Note.

EXTERNAL
STATUS

INTERRUPT

TRANSMIT
INTERRUPT

MPSC
INTERRUPTS

Figure 7. MPSC Interrupt Structure

6-233 210403-001

AP-145

MULTI-PROTOCOL SERIAL CONTROLLER
(MPSC) INTERRUPT STRUCTURE

The MPSC offers a very powerful interrupt structure,
which helps in responding to an interrupt condition very
quickly. There are multiple sources of interrupts within
the MPSC. However, the MPSC resolves the priority be­
tween various interrupting sources and interrupts the
CPU for service through the interru'pt line. This section
presents a comprehensive discussion on all the 8274 inter­
rupts and the priority resolution between these interrupts.

All the sources of interrupts on the 8274 can be grouped
into three distinct catagories. (See Figure 7)

I. Receive Interrupts
2. Transmit Interrupts
3. External/Status Interrupts.

An internal interrupt priority structure sets the priority
between the interrupts. There are two programmable op­
tions available on the MPSC. The priority is set by
WR2A, 02. (Figure 8)

PRIORITY

~R2A:D2 Highest Lowest

0 RxA TxA RxB TxB EXTA EXTB

I RxA TxA RxB TxB EXTA EXTB

Figure 8. Interrupt Priority

Receive Interrupt

All receive,interrupts may be catagorized into two distinct
groups: Receive Interrupt on Receive Character and Spe­
cial Rec~ive Condition Interrupts.

RECEIVE INTERRUPT ON RECEIVE CHARACTER

A receive interrupt is generated when a character is re­
ceived by the MPSt. However, as will be discussed later,
this is a programmable feature on the MPSC . A Rx char­
acter available interrupt is generated by the MPSC after
the receive character has been assembled by the MPSC. It
may be noted that in OMA transfer mode too, a receive
interrupt on the first receive character should be pro­
grammed. In SOLC mode, if address search mode has
been programmed, this interrupt will be generated only
-after a valid address match has occured. In bisync mode,
this interrupt is generated on receipt of a character after
at least two valid sync characters. In monosync mode, a
character followed by at least a single valid sync character
will generate this iI;lterrupt. An interrupt on first receive
character signifies the beginning of a valid frame. An end
of the frame is characterized by an "End of Frame-" Inter­
rupt (RRI: 07).* This bit (RRI:07) is set in
SOLC/HOLC mode only and signifies that a valid ending

flag (7EH) has been received. This bit gets reset either by
an "Error Reset" command (WRO: 050403 = 110) or
upon reception of the first character of the next frame. In
multiframe reception, on receiving the interrupt at the
"End of Frame" the CPU may issue an Error Reset com­
mand which will reset the interrupt. In OMA mode, the
interrupt on first receive character is . accompanied by a
RxORQ (Receiver OMA request) on the appropriate
channel. At the end of the frame, an End of Frame inter­
rupt is generated. The CPU may use this interrupt to jump
into a, routine which may redefine the receive buffer for
the next incoming frame,

*RRl:07 is bit 07'in Read Register 1.

SPECIAL RECEIVE CONDITION IN,TERRUPTS

So far, we have assumed that the reception is error free.
But this is not a 'typical' case in most real life applications.
Any error condition during a frame reception generates
yet another interrupt - special receive condition inter­
rupt. There are four different error conditions which can
generate this interrupt.

(i) Parity error
(ii) Receive Overrun error
(iii) Framing error
(iv) End of Frame

(i) Parity error: Parity error is encountered in asynchro­
nous (sta~t-stop bits) and in bisync/monosync protocols.
Both odd or even parity can be programmed. A parity er­
ror in' a received byte will generate a special receive condi­
tion interrupt and sets bit 4 in RRI.

(ii) Receive Overrun error: If the CPU or the OMA con­
troller (in OMA mode) fails to read a received character
within three byte times after the received character inter­
rupt (or OMA request) was generated, the receiver buffer
will overflow and this will generate a special receive condi­
tion interrupt and sets bit 5 in RR 1.

(iii) Framing error: In asynchronous mode, a framing er­
ror will generate a special receive interrupt and set bit 06
in RRI. This bit is not latched and is updated on the next
received character.

(iv) End of frame: This interrupt is encountered in
SOLC/HOLC mode only. When the MPSC receives the
closing flag, it generates· the special receive condition in-
terrupt and sets bit 07 in RRI. .

All the special receive condition interrupts may be reset by
issuing an Error Reset Command. .

CRC Error: In SOLC/HOLC and synchronous modes, a
CRC error is indicated by bit 06 in RRI. When used to
check CRC error, this bit is normally set until a correct
CRC match is obtained which resets this bit. After receiv­
ing a frame, the CPU must read this bit (RRI :06) to de­
termine if a valid CRC check had occured. It may be
noted that a eRC error does not generate an interrupt.

6-234 210403-001

inter AP-145

It may be also be pointed out that in SDLC/HDLC mode,
receive DMA requests are disabled by a special receive
condition and can only be re-enabled by issuing an Error
Reset Command.

Transmit Interrupt

A transmit buffer empty generates a transmit interrupt.
This has been discussed earlier under "Transmit in Inter­
rupt Mode" and it would be sufficient to note here that a
transmit buffer empty interrupt is generated only when
the transmit buffer gets empty - assuming it had' a data
character loaded into it earlier. This is why on starting a
frame transmission, the first data character is loaded by

, the CPU without a transmit empty interrupt (or DMA re­
quest in DMA mode). After this character is loaded into
the serial shift register, the buffer becomes empty, and an
interrupt (or DMA request) is generated. This interrupt is
reset by a "Reset Tx Interrupt/DMA Pending" command
(WRO: D5 D4 D3 = 101).

External/Status Interrupt

Continuing our discussion on transmit interrupt, if the
transmit buffer is empty and the transmit serial shift reg­
ister also becomes empty (due to.the data character shift­
ed out of the MPSC), a transmit under=run interrupt will
be generated. This interrupt may be reset by "Reset/Ex­
ternal Status Interrupt" command (WRO: D5 D4 D3 =

101).

The External Status Interrupt can be caused by five dif­
ferent conditions:
(i) DCD Transition
(ii) CTS Transition
(iii) Sync/Hunt Transition
(iv) Tx under-run/EOM condition
(v) Break/Abort Detection.

DCD,CTS TRANSITION

Any transition on these inputs on the serial interface will
generate an External/Status interrupt and set the corre­
sponding bits in status register RRO. This interrupt will
also be generated in DMA as well as in Wait Mode. In or­
der to find out the state of the CTS or DCD pins before the
transition had occurred, RRO must be read before issuing
a Reset External/Status Command through WRO. A read
of RRO after the Reset External/Status Command will
give th.e condition of CTS or DCD pins after the transition
had occurred. Note that bit D5 in RRO gives the comple­
ment of the state of CTS pin while D3 in RRO reflects the
actual state of the DCD pin.

SYNC HUNT TRANSITIO\",

Any transition on the SYNDET input gener~tes an inter­
'rupt. However, sync input has different functions in dif­
ferent modes and we shall discuss thl(m individually.

SDLC Mode

In SDLC mode, the SYNDET pin is an output. Status
register RRI, D4 contains the state of the SYNDET pin.
The Enter Hunt Mode initially sets this bit in RO. An
opening flag in a received SDLC frame resets this bit and
generates an external status interrupt. Every time the re­
ceiver is enabled or the Enter Hunt Code Command is is­
sued, an external status interrupt will be generated on
receiving a valid flag followed by a valid address/data
character. This interrupt may be reset by the "Reset Ex­
ternal Status Interrupt" command.

External SYNC Mode

The MPSC can be programmed into External Sync Mode
by setting WR4, D5 D4 = II. The SYNDET pin is an in­
put in this case and must be held high until an external
character synchronization is established. However, the
External Sync mode is enabled by the Enter Hunt Mode
control bit (WR3: D4). A high at the SYNDET pin holds
the sync/Hunt bit (RRO,D4) in the reset state. When ex­
ternal synchronization is established, SYNDET must be
driven low on second rising edge of RxC after the rising
edge of RxC on which the last bit of sync character was
received. This high to low transition sets the Sync/Hunt
bit and generates an external status interrupt, which must
be reset by the Reset ExternaljStatus command. If the
SYNDET input goes high again, another External Status
Interrupt is generated, which may be cleared by Reset Ex­
ternal Status command.

Mono-Sync/Bisyn~ Mode

SYNDET pin acts as an output in this case. The Enter
Hunt Mode sets the Sync/Hunt bit in RO. Sync/Hunt bit
is reset when the MPSC achieves character sysnchroniza­
tion. This high to low transition will generate an external
status interrupt. The SYNDET pin goes active every time
a sync pattern is detected in the data stream. Once again,
the external status interrupt may be reset by the Reset Ex­
ternal Status command.

Tx UNDER-RUN/END OF MESSAGE (EOM)

The transmitter logic includes a transmit buffer and a
transmit serial shift register. The CPU loads the character
into the transmit buffer which is transferred into the
transmit shift register to be shifted out of the MPSC. If
the transmit buffer gets empty, a transmit buffer empty
interrupt is generated (as discussed earlier). However, if
the transmit buffer gets empty and the serial shift register
gets empty, a transmit under-run condition will be cre­
ated. This generates an External Status Interrupt and the
interrupt can be cleared by the Reset External Status
command. The status register RRO, D6 bit is set when the
transmitter under-runs. This bit plays an important role in
controlling a transmit operation, as will be discussed later
in this application note.

6-235 210403-001

I
I~
I" ,
"i

ii
d

i'i' i,
I,,'

I':

I~

AP-145

BREAK/ABORT DETECTION

In asynchronous mode, bit 07 in RRO is set when a break
condition is detected on the receive data line. This also
generates an External/Status interrupt which may be re­
set by issuing a Reset External/Status Interrupt com­
mand to the MPSC. Bit 07 in RRO is reset when the break
condition is terminated on the receive data line and this
causes another External/Status interrupt to be generated.
Again, a Reset External/Status Interrupt command will
reset this interrupt and will enable the break detection log­
ic to look for the next break sequence.

In SOLC Receive Mode, an Abort sequence (seven or
more I's) detection on the receive data line will generate
an External/Status interrupt and set RRO,07. A Reset
External/Status command will clear this interrupt. How­
ever, a termination of the Abort sequence will generate
another interrupt and set RRO, 07 again. Once again, it
may be cleared by issuing Reset External/Status
Command.

This concludes our discussion on External Status
Interrupts.

Interrupt Priority Resolution
The internal interrupt priority between various interrupt
sources is resolved by an internal prority logic circuit, ac­
cording to the priority set in WR2A. We will now discuss

INTERNAL 'N0
ACCEPTED

~\TERNAL \ _________ --'~
\

the interrupt timings during the priority resolution. Fig­
ures 9 and 10 show the timing diagrams for vectored and
non-vectored modes.

VECTORED MODE

We shall assume that the MPSC accepted an internal re­
quest for an interrupt by activating the internal INT sig­
nal. This leads to generating an external interrupt signal
on the INT pin. The CPU responds with an interrupt ac­
knowledge (INTA) sequence. The leading edge of the first
INT A pulse sets an internal interrupt acknowledge signal
(we will call it Internal INTA). Internal INTA is reset by
the high going edge of the third INT A pulse. The MPSC
will not accept any internal requests for an interrupt dur­
ing the period when Internal INTA is active (high). The
MPSC resolves the priority during various existing inter­
nal interrupt requests during the Interrupt Request Prior-·
ity Resolve Time, which is defined as the time between the
leading edge of the first INT A and the leading edge of the
second INTA from the CPU. Once the internal priorities
have been resolved, an internal Interrupt-in-service Latch
is set. The external INT is also deactivated when the In­
terrupt-in-Service Latch is set.

The lower priority interrupt requests are not accepted in­
ternally until an EOI (WRO: 05 04 03 = 111) command
is issued by the CPU. The EOI command enables the low­
er priority interrupts. However, a higher priority interrupt

\~--------------~\~------------~~------~

INTA

INTERNAL ------1.----INTA I

----".,.,.".._....:.. _______ N_O_IN_TE_\-'N~ r.L{INTERRUPTS ACCEPTED

INT.IN.SERV~E .Y
(INTERNAL LATCH)

EOICOMMA.~ND~ __________________________ ~

Figure 9. 8274 in 8085 Vectored Mode Priority Resolution Time

6-236 210403-001

intJ AP-145

INTERNAL INT

ACCEPTED

EXTERNAL INT ---,

POINTER 2
SPECIFIED

t--PRIORITY
I RESOLVE

TIME

\

INT.IN.SERVICE. ____________ -'

(INTERNAL LATCH)

EOICOMMAND---------------------------------------~T_----~

Figure 10. 8274 Non Vectored Mode Priority Resolve Time

request will still be accepted (except during the period
when internal INTA is active) even though the Internal­
in-Service Latch is set. This higher priority request will
generate another external INT and will have to be han­
dled by the CPU according to how the CPU is set up. If the
CPU is set up to respond to this interrupt, a new INTA
cycle will be repeated as discussed earlier. It may also be
noted that a transmitter buffer empty and receive charac­
ter available interrupts are cleared by loading a character
into the MPSC and by reading the character received by
the MPSC respectively.

NON-VECTORED MODE

Figure 10 shows the timing of interrupt sequence in non­
vectored mode. The explanation for non-vectored is simi­
lar to the vector mode, except for the following exceptions.

- No internal priority requests are accepted during the
time when pointer 2 for Channel B is specified.

- The interrupt request priority resolution time is the
time between the leading edge of pointer 2 and leading
edge of RD active. It may be pointed out that in non-vec­
tored mode, it is assumed that the status affects vector
mode is used to expedite interrupt response.

On getting an interrupt in non-vectored mode, the CPU

6-237

must read status register RR2 to find out the cause of the
interrupt. In order to do so, first a pointer to status register
RR2 is specified and then the status read from RR2. It
may be noted here that after specifying the pointer, the
CPU must read status register RR2 otherwise, no new in­
terrupt requests will be accepted intern,ally.

Just like the vectored mode, no lower internal priority re­
quests are accepted until an EOI command is issued by the
CPU. A higher priority request can still interrupt the
CPU (except during the priority request inhibit time). It is
important to note here that if the CPU does not perform a
read operation after specifying the pointer 2 for Channel
B, the'interrupt request accepted before the pointer 2 was
activated will remain valid and no other request (high or
low priority) will be accepted internally. In order to com­
plete a correct priority resolution, it is advised that a read
operation be done after specifying the pointer 2B.

IPI and IPO

So far, we have ignored the IPI and IPO signals shown in
Figures 9 and 10. We may recall that IPI is the Interrupt­
Priority-Input to the MPSC. In conjunction with the IPO
(Interrupt Priority Output), it is used to daisy chain multi­
ple MPSC's. MPSC daisy chaining will be discussed in
detail later in this application note.

210403-001

EOI Command

The EOI command as explained earlier, enables the lower
'priority interrupts by resetting the internal In-Service­
Latch, which consequently resets the IPO output to a low
state. See Figures 9 and 10 for details. Note that before
issuing any EOI command, the internal interrupting
source must be satisfied otherwise, same source will inter­
rupt again. The Internal Interrupt is the signal which gets
reset when the internal interrupting source is satisfied (see
Figure 9).

This concludes our discussion on the MPSC Interrupt
Structure.

MUL TI·PROTOCOL SERIAL CONTROLLER
(MPSC) MODES OF OPERATION

The MPSC provides two fully independent channels that
may be configured in various modes of operations. Each
channel can be configured into full duplex mode and may
operate in a mode or protocol different from the other
channel. This feature will be very efficient in an applica­
tion which requires two data link channels operating in
different protocols and possibly at different data rates.
This section presents a detailed discussion on all the 8274
modes and shows how to configure it into these modes.

Interrupt Driven Mode

In the interrupt mode, all the transmitter and receiver op­
erations are reported to the processor through interrupts.
Interrupts are'generated by the MPSC whenever it re­
quires service. In the following discusson, we will discuss
how to transmit and receive in interrupt driven mode.

TRANSMIT IN INTERRUPT MODE

The MPSC can be configured into interrupt mode by ap­
propriately setting the bits in WR2 A (Write Register 2,
Channel A). Figure 11 shows the modes of operation. ,

WR2A

01 DO MODE

0 0 CH A and CH B in Interrupt Mode _
0 1 CH A in DMA and CH B in Interrupt

Mode
1 0 CH A and CH B in DMA Mode
1 1 Illegal

Figure 11. MPSC Mode Selection for Channel A
and Channel B.

We will limit our discussion to SOLC transmit and receive
only. However, exceptions for other synchronous protocols
will be pointed out. To initiate a frame trans!l)ission, the

first data character must be loaded from the CPU, in all
cases. (OMA Mode too, as you will notice later in this ap­
plication note). Note that in SOLC mode, this first data
character may be the address of the station addressed by
the MPSC. The transmit buffer consists of a transmit
buffer and a serial shift register. When the character is
transferred from the buffer into the serial shift register, an '
interrupt due to tra'nsmit buffer empty is generated. The
CPU has one byte time to service this interrupt and load
another character into the transmitter buffer. The MPSC
will generate an interrupt due to transmit buffer under­
run condition if the CPU does not service the Transmit
Buffer Empty Interrupt within one byte time. ,

This process will continjle until the CPU is, out of any more
data characters to be sent. At this point, the CPU does not
respond to the interrupt with a character but simply issues a
Reset Tx INT /OMA pending command (WRO: 05 0403
= 1 0 1). The MPSC will ultimately under-run, which sim­
ply means that both the transmit buffer and transmit shift
registers are empty. At this point, flag character, (7EH) or
CRC byte is loaded into the transmit shift register. This sets
the transmit under-run bit in RRO and genera~es "Transmit
Under-run/EOM" interrupt (RRO:06= 1).

You will recall that an SOLC frame has two CRC bytes
after the data field. 8274 generates the CRC on all the
data that is loaded from the CPU. Ouring initialization,
there is a choice of selecting a CRC-16 or CCITT-CRC
(WR5: 02). In SOLC/HOLC operation, CCITT-CRC
must be ,selected. We wjll now see how the CRC gets in-'
serted at the end of the data field. Here we have a choice of
ha,ving the CRC attached to the data field or sending the
frame without the CRC bytes. Ouring transmission, a
"Reset Tx' Under-run/EOM Latch" command (WRO:
07 06 = 11) will ensure that at the end of the frame when
the transmitter underruns, CRC bytes will be automati­
cally inserted at the end of the data field. If the "Reset Tx
Under-run/EOM Latch" command was not issued during ,
the transmission of data characters, no CRC would be in­
serted and the MPSC will transmit flags (7ER) instead.

However, in case of CRC transmission, the CRC trans­
mission sets the Tx Under-run/EOM bit anc;i generates a
Transmitter Under-run/EOM Interrupt as discussed ear­
lier. This will have to be reset in the next frame to ensure
CRC insertion in the next frame. It is recommended that
Tx Under-run/EOM latch be reset very early in the trans­
mission mode, preferably after loading the first character.
It may be noted here that Tx Under-run/EOM latch can­
not be reset if there is no data in the transmit buffer. This
means that at least one character,has to be loaded into the
MPSC before a "Reset Transmit Under-run/EOM
Latch" command will be accepted by the MPSC.

6-238

When the transmitter is under-run, an interrupt is gener­
ated. This interrupt is generated at the beginning of the
CRC transmission, thus giving the user enough time
(minimum 22 transmit clock cycles) to issue an Abort

210403-001

inter Ap·145

command (WRO: D5 D4 D3 = 00 I) in case if the trans­
mitted data had an error. The Abort Command will en­
sure that the MPSC transmits at least eight I's but less
than fourteen I's before the line reverts to continuous
flags. The receiver will scratch this frame because of bad
CRC.

However, assuming the transmission WaS good (no Abort
Command issued), after the CRC bytes have been trans­
mitted, closing flag (7EH) is loaded into the transmit
buffer. When the flag (7EH) byte is transferred to the ser­
ial shift register, a transmit buffer empty interrupt is gen­
erated. If another frame has to be transmitted, a new data
character has to be loaded into the transmit buffer and the
complete transmit sequence repeated. If no more frames
are to be transmitted, a "Reset Transmit INT /DMA
Pending" command (WRO: D5 D4 D3 = 10 I) will reset
the transmit buffer empty interrrupt.

For character oriented protocols (Bisync, Monosync), the
same discussion is valid, except that during transmit un­
der-run condition and transmit under-run/EOM bit in set
state, instead of flags, filler sync characters are transmit­
ted.

CRC Generation:

The transmit CRC enable bit (WR5: DO) must be set be­
fore loading any data into the MPSC. The CRC generator
must be reset to all I's at the beginning of each frame be­
fore CRC computation has begun. The CRC computation
starts on the first data character loaded from the CPU and
continues until the last data character. The CRC generat­
ed is inverted before it is sent on the Tx Data line.

Transmit Termination:

A successful transmission can be terminated by issuing a
"Reset Transmit Interrupt/DMA Pending" command, as
discussed earlier. However, the transmitter may be dis­
abled any time during the transmission and the results will
be as shown in Figure 12.

RECEIVE IN INTERRUPT MODE

The receiver has to be initialized into the appropriate re­
ceive mode (see sample program later in this application
note). The receiver must be programmed into Hunt Mode
(WR3: D4) before it is. enabled (WR3: DO). The receiver
will remain in the Hunt Mode until a flag (or sync charac­
ter) is received. While in the SDLC/Bisync/Monosync
mode, the receiver does not enter the Hunt Mode unless
the Hunt bit (WR3, D4) is set again or the receiver is en­
abled again.

SDLe Address byte is stored in WR6. A global address
(FFH) has been hardwired on the MPSC. In address
search mode (WR3: D2 = I), any frame with address
matching" with the address in WR6 will be received by the
MPSC. Frames with global address (FFH) will also be re­
ceived, irrespective of the condition of address search

Transmitter Disabled during Result

I. Data Transmission Tx Data will send idle
characters' which will
be zero inserted.

2. eRe Transmission 16 bit transmission,
corresponding to 16
bits of eRe will be
completed. However,
flag bits will be
substituted in the
eRe field.

3. Immediately after issuing Abort will still be
ABORT command. transmitted - output

will be in the mark
state.

Figure 12. Transmitter Disabled During
Transmission

*Idle characters are defined as a string of 15 or more con­
tiguous ones.

mode bit (WR3: D2). In general receive mode (WR3:
D2=0), all frames will be received.

Since the MPSC only recognizes single byte address field,
extended address recognition will have to be done by the
CPU on the data passed on by the MPSC. If the first ad­
dress byte is checked by the MPSC, and the CPU deter­
mines that the second address byte does not have the
correct address field, it must set the Hunt Mode (WR3:
D2 = I) and the MPSC will start searching for a new ad­
dress byte preceded by a flag.

Programmable Interrupts: The receiver may be pro­
grammed into anyone of the four modes. See Figure 13
for details.

WR1, CHA

04 03 Rx Interrupt Mode

0 0 Rx INT jDMA disable
0 1 Rx INT on first character
1 0 INT on all Rx characters

(Parity affects vector)
1 I INT on all Rx characters

(Parity does not affect vector)

Figure 13. Receiver Interrupt Modes

All receiver interrupts can be disabled by WR I: D4 D3 =
00. Receiver interrupt on first character is normally used
to start a DMA transferor a block transfer sequence using
WAIT to synchronize the data transfer to received or
transmitted data.

External Status Interrupts:

Any change in DCD input or Abort detection in the re­
ceived data, will generate an interrupt if External Status
Interrupt was enabled (WRI: DO). '

6-239 210403-001

AP-145

Special Receive Conditions:

The receiver buffer is quadruply buffered. If the CPU
fails to respond to "receive character" available interrupt
within a period of three byte times (received bytes), the re­
ceiver buffer will overflow and generate an interrupt. Fi­
nally, at the end of the received frame, an interrupt will be
generated when a valid ending flag has been detected.

Receive Char~cter Length:

The receive character length (6,7 or 8 bits/character)
may be changed during reception. However, to ensure that
the change is effective on the next received character, this
must be done fast enough such that the bits specified for
the next character have not been assembled.

CRC Checking:

The opening flag in the frame resets the receive CRC gen­
erator and any field between the opening and closing flag
is checked for the CRC. In case of a CRC error, the
CRC/Framing Error bit in status register I is set (RRI:
06=1). Receiver CRC may be disabled/enabled by
WR3,03. The CRC bytes on the received frame are
passed on to the CPU just like dat~, and may be discarded
by the CPU.

Receive Terminator:

An 'end of frame is indicated by End of Frame interrupt.
The CPU may, issue an "Error Reset" command to reset
this interrupt.

DMA (Direct Memory Access) Mode

The 8274 can be interfaced directly to the Intel OMA
Controllers 8237A, 8257A and Intel I/O Processor 8089.
The 8274 can be programmed into OMA mode by setting
appropriate bits in WR2A. See Figure II for details.

TRANSMIT IN DMA MODE:

After initializing the 8274 into the OMA mode, the first
character must be loaded from the CPU to start the OMA
cycle. When the first data character (may be the address
byte in SOLC) is tranferred from the transmit buffer to
the transmit serial shift register, the transmit buffer gets
empty and a transmit OMA request (TxORQ) is generat­
ed for the channel. Just like the interrupt mode, to ensure
that the CRC bytes are included in the frame, ~he trans­
mit under-run/EOM latch must be reset. This should
preferably be done after loading the first character from
tl,1e CPU. The OMA will progress without any CPU inter­
vention. When the OMA controller reaches the terminal
count, it will not respond to the OMA request; thus letting
the MPSC under-run. This will ensure CRC transmission.
Howc;ver, the under-run condition will 'generate an inter­
rupt due to the Tx under-run/EOM bit getting set (RRO:

. 06). The>CPU should issue a "Reset TxInt/ORQ pend-

ing" command to reset TxORQ and issue a "Reset Exter­
nal Status" command to reset Tx Under-run/EOM
interrupt. Following the CRC transmission, flag (7EH)
will be loaded into the transmit buffer. This will also gen­
erate the TxORQ since the transmit buffer is empty fol­
lowing the transmission of the CRC bytes. The CPU may
issue a "Reset TxINT /ORQ pending" command to reset
the TxORQ. "Reset TxlNT /ORQ pending" command
must be issued before setting up the transmit OMA chan­
nel on the OMA Controller, otherwise the MPSC will
start the OMA transfer immediately after the OMA
channel is set up.

RECEIVE IN DMA MODE

The receiver must be programmed in RxINT on first re­
ceive character mode (WRl: 0403 = 0 1). Upon receiv­
ing the first character, which may be the address byte in
SOLC, the MPSC generates an interrupt and also gener­
ates a Rx OMA Request (Rx ORQ) for the appropriate
channel. The CPU has three byte times to service this in­
terrupt (enable the OMA controller, etc.) before the re­
ceiver buffer will overflow. It is advisable to initialize the
OMA controller before receiving the first character. In
case of high bit rates, the CPU will have to ~rvice the in­
terrupt very fast in order to avoid receiver over-run.

Once the OMA is enabled, the received data is transfered
to the memory under OMA control. Any received error
conditions or external status change condition will gener­
ate an interrupt as in the interrupt driven mode. The End
of Frame is indicated by the End of Frame interrupt which
is generated on reception of the closing flag of the SPLC
frame. This End of Frame condition also disables the Re­
ceive OMA request. The End of Frame interrupt may be
reset by issuing an "Error Reset" command to the MPSC.
The "Error Reset" command also re-enables the Receive
OMA request. It may be noted that the End of Frame con- .
dition sets bits 07 in RRI. This bit gets reset by "Error
Reset" command. However, End of Frame bit (RRl:07)
can also be reset by the flag of the next incoming frame.
For proper operation, Error Reset Command should be is­
sued "after" the End of Frame Bit (RRI :07) is set. In a
more general case, "Error Reset" command should be is­
sued after End of Frame, Receive over-run or Receive par­
ity bit are set in RRI.

6-240

Wait Mode

The wait mode is normally used for block transfer by syn­
chronizing the data transfer through the Ready output
from the MPSC, which may be connected to the Ready in­
put of the CPU. The mode can be programmed by WR 1,
07 05 and may be programmed separately and indepen­
dently on CH A and CH B'. The Wait Mode will be opera­
tive if the following conditions are satisfied.

210403-001

inter AP-145

(i) Interrupts are enabled.
(ii) Wait Mode is enabled (WRI: 07)
(iii) CS = 0, AI = 0

The ROY output becomes active when the transmitter
buffer is full or receiver buffer is empty. This way the
ROY output from the MPSC can be used to extend the
CPU read and write cycle by inserting WAIT states.
ROY A or ROY B are in high impedance state when the
corresponding channel is not selected. This makes it possi­
ble to connect ROY A and ROY B outputs in wired OR
configuration. Caution must be exercised here in using the
ROY outputs of the MPSC or else the CPU may hang up
for indefinite period. For example, let us assume that
transmitter buffer is full and ROY A is activ6, forcing the
CPU into a wait state. If the CTS goes inactive during this
period, the ROY A will remain active for indefinite period
and CPU will continue to insert wait states.

Vectored/Non-Vectored Mode
The MPSC is capable of providing an interrupt vector in
response to the interrupt acknowledge sequence from the
CPU. WR2, CH B contains this vector and the vector can
be read in status register RR2. WR2, CH A (bit 05) can
program the MPSC in vectored or non-vectored mode.
See Figure 14 for details.

In both cases, WR2 may still have the vector stored in it.
However, in vectored mode, the MPSC will put the vector
on the data bus in response the INTA (Interrupt Ac­
knowledge) sequence as shown in Figure 15. In non-vec-

WR2A

WR2A,05 Interrupt Mode

0 Non-vectored Interrupt
I Vectored Interrupt

Figure 14. Vectored Interrupts

tored mode, the MPSC will not respond to the INT A
sequence. However, the CPU can read the vector by poll­
ing Status Register RR2. WR2A, 04 and 03 can be pro­
grammed to respond to 8085 or 8086 INTA sequence. It
may be noted here that IPI (Interrupt Priority In) pin on
the MPSC must be active for the vector to appear on the
data bus.

Status Affect Vector

The vector stored in WR2B can be modified by the source
of the interrupt. This can be done by setting the Status Af­
fect Vector bit (WRl: 02). This powerful feature of the
MPSC provides fast interrupt response time, by eliminat­
ing the need of writing a routine to read the status of the
MPSC. Three bits of the vector are modified in eight dif­
ferent ways as shown on Figure 16. Bits V4,V3,V2 are
modified in 8085 based system and bits V2, VI, VO a~e
modified in 8086/88 based system.

In non-vectored mode, the status affect vector mode can
still be used and the vector read by the CPU. Status Regis­
ter RR2B (Read Register 2 in Channel B) will contain
this modified vector. '

05 04 03 IPI MODE 1STINTA 2NOINTA 3ROINTA
0 X X X NON-VECTORED HIGH·Z HI-Z H1-Z
I 0 0 0 8085-1 11001101 V7 V6 V5 V4 V3 V2 VI VO 00000000
I 0 0 I 8085-1 , 11001101 HI-Z HI-Z
I 0 I 0 8085-2 HI-Z V7 V6 V5 V4 V3 V2 VI VO 00000000
I 0 I I 8085-2 H1-Z HI-Z HI-Z
I I 0 0 8086 HI-Z V7V6V5V4V3V2VI VO -
I I 0 I 8086 \ HI-Z HI-Z -

Figure 15. MPSC Vectored Interrupts

(8085) V4 V3 V2 Channel Interrupt Source \

(8086) V2 V1 VO

0 0 0 B Tx BUFFER EMPTY
0 0 I EXT/STAT CHANGE
0 I 0 RX CHAR AVAILABLE
0 I I SPECIAL Rx CONDITION

I 0 0 A Tx BUFFER EMPTY
I 0 I EXT/STAT CHANGE
I I 0 RX CHAR AVAILABLE
I I I SPECIAL Rx CONDITION

Rx Special Condition: Parity Error, Framing Error, Rx Over-run Error,
EOF(SDLC)

EXT /STA T Change: Change in Modem Control Pin Status: CTS,
DCD, SYNC, EOM, Break/Abort Detection

Figure 16. Status Affect Vector Mode

6-241 210403-001

Ap·145

8273,8274
SERIAL

I/O

CHANNELC

DUAL PORT ACCESS
CONTROL

8255A
PARALLEL

I/O

LED'S

8254-2
PIT

COUNTERS

8259A
INTERRUPT
CONTROL

MULTIBUS
ADDRESS BITS

ADR14/-17/

Figure 17. Functional Block Diagram - iSBCQ!) 88/45

APPLICATION EXAMPLE

This section describes the hardware and software of an
8274/8088 system. The hardware vehicle used is the IN­
TEL Single Board Computer iSBC 88/45 - Advanced
Communication Controller. The software which exercises
the 8274 is written in PLM 86.This example will demon­
strate how 8274 can be configured into the SDLC mode
and transfer data through DMA control. The hardware
example will help the reader configure his hardware and
the software examples will help in developing an applica­
tion software. Most software examples closely approxi­
mates a real data link controller software in the SDLC
communication and may be used with very little
modification.

iSBC® 88/45
A brief description of the iSBC 88/45 board will be pre­
sented here. For more detailed information on the board

6-242

and the schematics, refer to Hardware Manual for the
iSBC 88/45, Advanced Communication Controller. iSBC
88/45 is an intelligent slave/multimaster communication
board based on the 8088 processor, the 8274 and the 8273
SDLC/HDLC controller. Figure 17 shows the functional
block diagram of the board. The iSBC 88/45 has the fol­
lowing features.

• 8 MHz processor
• 16K bytes of static RAM

(l2Kduai port)
• Multimaster/Intelligent Slave Multibus Interface
• Nine Interrupt Levels 8259A
• Two serial channels through 8274
• One Serial channel through 8273
• S/W programmable baud rate generator
• Interfaces: RS 232, RS422/449, CCITT V,24
• 8237A DMA controller
• Baud Rate to 800k Baud

210403-001

intJ AP-145

INITIALIZE_8274:PROCEDURE PUBLIC,

1**1
1* *1
1* INITIALIZE THE 8274 FOR SDLC MODE *1
1* *1
1* 1. RESET CHANNEL *1
1* 2. EXTERNAL INTERRUPTS ENABLED *1
1* 3. NO WAIT *1
1* 4. PIN 10 = RTS *1
1* 5. NON-VECTORED INTERRUPT-808b MODE *1
1* b. CHANNEL A DMA. CH B INT *1
1* 7. TX AND RX = 8 BITS/CHAR *1
1* 9. ADDRESS SEARCH MODE *1
1* 10.CD AND CTS AUTO ENABLE *1
1* 11. Xl CLOCK *1
1* 12. NO PARITY *1
1* 13.SDLC/HDLC MODE *1
1* 14.RTS AND DTR *1
1* 15.CCITT - CRC *1
1* lb. TRANSMITTER AND RECEIVER ENABLED *1
1* 17.7EH = FLAG *1
1* *1
1**1

DECLARE C BYTE,

1* TABLE TO INITIALIZE THE 8274 CHANNEL A AND B *1
1* FORMAT IS: WRITE REGISTER. REGISTER DATA *1
1* INITIALIZE CHANNEL A ONLY *1

DECLARE TABLE_74_A(*1
(OOH. 18H.
00H.80H.
02H. llH.
04H.20H.
07H.07EH.
01H.OBH.
05H.OEBH.

06H.55H.
03H.OD9H.

OFFHI,

DECLARE TABLE_74_B(*1
(02H.00H.
01H. lCH.
OFFHI,

BYTE DATA
1* CHANNEL RESET *1
1* RESET TX CRC *1
1* PIN 10=RTSB. A DMA. B INT *1
1* SDLC/HDLC MODE. NO PARITY *1
1* SDLC FLAG *1
1* RX DMA ENABLE *1
1* DTR. RTS. 8 TX BITS. TX ENABLE. *1
1* SDLC CRC. TX CRC ENABLE *1
1* DEFAULT ADDRESS *1
1* 8 RX BITS. AUTO ENABLES. HUNT MODE. *1
1* RX CRC ENABLE *1
1* END OF INITIALIZATION TABLE *1

BYTE DATA
1* INTERRUPT VECTOR *1
1* STATUS AFFECTS VECTOR *1
1* END *1

1* INITIALIZE THE 8274 *1

C=O,
DO WHILE TABLE_74_B(CI <> OFFH,

END,

C=O,

OUTPUT (COMMAND_B_74 I TABLE_74 B(CI,
C=C+l,
OUTPUT (COMMAND_B_74I TABLE_74_B(CI,
C=C+l,

DO WHILE TABLE 74 A(CI <> OFFH,
OUTPUT(COMMAND_A_74I TABLE_74_A(CI'
C=C+l,

END,
RETURN,

OUTPUT (COMMAND_A_74 I TABLE_74_A(CI'
C=C+l,

END INITIALIZE_8274'

Figure 18. Typical MPSC SOLC Initialization Sequence

6-243

I.

I !.

;~

210403-001

intJ AP-145

For this application, the CPU is nin at 8 MHz. The board
is configured,to operate the 8274 in SDLC operation with
the data transfer in DMA mode using the 8237A. 8274 is
Configured first in non~vectored mode in which case the
INTEL Priority Interrupt Controller 8259A is used to re­
solve priority betweeen various interrupting sources on the
board and subsequently interrupt the CPU. However, the
vectored mode of the 8274 is also verified by disabling the
8259A and reading the vectors from the 8274. Software
examples for each case will be shown later.

The application example is interrupt driven and uses
DMA for all data transfers under 8237A control. The
8254 provides the transmit and receive 'Clocks for the
8274. The 8274 was run at 400K baud with a local loop­
back Uumper wire) on Channel A data.The board was
also run at 800K baud' by modifying the software as will be
discussed later in the Special Applications section. One
detail to note is that the Rx Channel DMA request line
from the 8274 has higher priority than the Tx Channel
DMA request line. The 8274 master clock was 4.0 MHz.
The on-board RAM is used to define transmit and receive
data buffers. In this application, the data is read from
memory location 800H through 810H and transferred to '
memory location 900H to 910H through the 8274 Serial
Link. The operation is full duplex. 8274 modem control
pins, CTS and Ci) have been tied low (active).

SoftWare

The software consists of a monitor program and a pro­
gram to exercise the 8274 in the SDLC mode. Appendix A
contains the entire prograllilisting. For the sake of clarity,
each source module has been rewritten in a simple lan­
guage and will be discussed here individually. Note that
some labels in the actualli~tings in the Appendix will not
match with the labels here. Also ,the listing in the Appen­
dix se~s up some flags to communicate with the monitor.
Some of these flags are not explained in detail for the rea­
son that they are not pertinent to this discussion. The mon­
itor takes the command from a keyboard and e1lecutes this
program, logging any error condition which might occur.

8274 Initialization

The MPSC is initialized in the SDLC mode for Channel
A. Channel B is disabled. See Figure 18 for the initializa­
tion routine. Note that WR4 is initialized before setting
up the transmitter and receive parameters. However, it
may also be pointed out tpat otherJhan WR4, all the other
registers may be programmed in any order. Also SDLC­
CRC has been programmed for correct operation. An in­
correct CRC selection will result in incorrect operation.
Also note'that receive interrupt on first receive character
has been programmed although Channel A is in the DM{\.
mode.

Interrupt Routines

The 8274 interrupt routines will be discussed here. On an
8274 interrupt, program branches off to the "Main Inter­
rupt Routine". In main interrupt routine, status register
RR2 is read. RR2 contains the modified vector. The cause
of the interrupt is determined by reading the modified bits
of the vector. Note that the 8274 has been programmed in
the non-vectored.mode·and status affects vector bit has
been set. Depending on the value of the modified bits, the
appropriate interrupt routine is called. See Figure 19 for
the flow diagram and Figure 20 for the source code. Note
that an End of Interrupt Command is issued after servic­
ing the interrupt. This is necessary to enable the lower pri­
ority interrupts.

Figure 21 shows all the interrupt routines called by the
Main Interrupt Routine. "Ignore - Interrupt" as the name
implies, ignores any interrupts and sets the FAIL flag.
This is done because this prog'ram is for Channel A only
and we are ignoring any Channel B interrupts. The impor­
tant thing to note is the Channel A Receiver Character
available routine. This routine is called after receiving the
first character in the SDLC frame. Since the transfer
mode is DMA, we have a maximum of three character
times to service this interrupt by enabling the DMA
controller·

IF V2V1VO 0, CALL IGNORE -INTERRUPT
IF V2V1VO 1, CALL IGNORE -INTERRUPT
IF V2V1VO 2, CALL CHB Rx CHAR
IF V2V1VO 3, CALL IGNORE -INTERRUPT
IF V2V1VO 4, CALL IGNORE -INTERRUPT
IP V2V1VO 5, CALL CHA - EXTERNAL CHANGE

INTERRUPT
IF V2V1VO - 8, CAU CHA Rx CHAR
IF V2V1VO - 7, CAU CHA Rx SPECIAL

Figure 19. ,Interrupt Response Flow Diagram

6-244 210403-001

AP-145

1**************************1
1* MAIN INTERRUPT ROUTINE *1
1**************************1
OUTPUT (COMMAND_B_74) = 2; 1* SET POINTER TO 2*1
TEMP = INPUT (STATUS_B_74) AND 07H; 1* READ INTERRUPT VECTOR *1

1* CHECK FOR CHA INT ONLY*I
1* FOR THIS' APPLICATION CH B INTERRUPTS ARE IGNORED*I
DO CASE TEMP,

CALL IGNORE_I NT; 1* V2VIVO 000*1
CALL IGNORE INT; 1* V2VIVO 001*1
CALL CHB_RX_CHAR, 1* V2VIVO 010*1
CALL IGNORE_I NT; 1* V2VIVO 011*1
CALL IGNORE INT; 1* V2VIVO 100*1
CALL CHA_EXTERNAL_CHANGE; 1* V2VIVO 101*1
CALL CHA_RX_CHAR; /* V2YIVO 110*1
CALL CHA_RX_SPEC IAL; 1* V2VIVO 111*1

END;
OUTPUT (COMMAND_A_74) =38H;
RETURN;

1* END OF INTERRUPT FOR 8274 *1

END INTERRUPT_8274;

Figure 20. Typical Main Interrupt Routine

1**1
1* CHANNEL A EXTERNAL/STATUS CHANGE INTERRUPT HANDLER *1
1**1
CHA_EXTERNAL_CHANGE" PROCEDURE,

TEMP = INPUT(STATUS A 74);
IF (TEMP AND END_OF=TX_MESSAGE)

TXDONE_S=DONE;
ELSE DO;

TXDONE_S=DONE;
RESULTS_S=FAIL;

END;
OUTPUT (COMMAND_A_74) = 10H;
RETURN;

1* STATUS REG 1*/
END_OF_TX_MESSAGE THEN

1* RESET EXT/STATUS INTERRUPTS *1

END CHA_EXTERNAL_CHANGE;
1**1
1* CHANNEL A SPECIAL RECEIVE CONDITIONS INTERRUPT HANDLER *1
1**1
CHA_RX_SPECIAL: PROCEDURE;

OUTPUT(COMMAND_A_74) = I;
TEMP = INPUT(STATUS_A_74),

RETURN;

IF (TEMP AND END_OF_FRAME) = END_OF_FRAME THEN
DO;

IF(TEMP AND 040H) = 040H THEN
RESULTS_S = FAIL, 1* CRC ERROR *1

RXDONE_S = DONE;
OUTPUT (COMMAND_A_74) = 30H, I*ERROR RESET*I

END;
ELSE DO;

IF (TEMP AND 20H) 20H THEN DO;
RESULTS_S = FAIL, 1* RX OVERRUN ERROR*/
RXDONE S = DONE,
OUTPUT(COMMAND_A_74) 30H; I*ERROR RESET*I
END,

END,

END CHA_RX_SPECIAL;

1***1
/* CHANNEL A RECEIVE CHARACTER AVAILABLE *1
1***1
CHA RX CHAR: PROCEDURE;
OUTPUT(SINGLE MASK) = CHO SEL; /*ENABL~ RX DMA CHANNEL*I
RETURN; - -
END CHA_RX_CHAR;

Figure 21. 8274 Typical Interrupt Handling Routines

6-245

i
'I
i~
I~

210403·001

inter AP-145

It may be recalled that the receiver buffer is three bytes
deep in addition to the receiver shift register. At very high
data rates, it may not b~ possible to have enough time to
read RR2, enable the DMA controller without overrun­
ning the receiver. In a case like this, the DMA controller
may be left enabled before receiving the Receive Charac­
ter Interrupt. Remember, the Rx DMA request and inter­
rupt for the receive character appearsat the same time. If
the DMA controller is enabled, it would service the DMA
request by reading the received character. This will make
the 8274 interrupt line go inactive. However, the 8259A
has latched the interrupt and a regular interrupt acknowl­
edge sequence still occurs aftel' the D MA controller has
completed the transfer and given up the bus. The 8259A
will return Level 7 interrupt since the 8274 interrupt has
gone away. The user software must take this into account,
otherwise the CPU will hang up.

The procedure shown for the Special Receive Condition
Interrupt checks if the interrupt is due to the End of
Frame. If this is not, TRUE, the FAIL flag is set and the

program aborted. For a real life system, this must be fol­
lowed up by error re,covery procedures which obviously are
beyond the scope of this Application Note.

The transmission is terminated when the End of Message
(RRO, D6) interrupt is generated. This interrupt is ser­
viced in the Channel A External/Status Change interrupt
procedure. For any other change in external status condi­
tions, the program is aborted and a FAIL flag set.

Main Program
Finally, we will briefly discuss the main program. Figure
22 shows the source program. It may be noted that the
Transmit Under-run latch is reset after loading the first
character into the 8274. This is done to ensure CRC trans­
mission at the end of the frame. Also, the first character is
loaded from the CPU to start DMA transfer of subse­
quent data. This concludes our discussion on hardware
and software example. Appendix A also includes the soft­
ware written to exercise the 8274 in the vectored mode by
disabling the 8259A.

CHA_SDLC_TEST: PROCEDURE BYTE PUBLIC,

CALL
CALL

ENABLE_INTERRUPTS_S,
INIT_8274_SDLC_S,

ENABLE,
OUTPUT(COMMAND_A_74) = 28H,
OUTPUT (COMMAND_B_74) = 28H,
CALL INIT_8237_S,
OUTPUT (DATA_A_74) = 55H,

1* RESET TX INTIDMA *1
1* BEFORE INITIALIZING 8237*1

~*LOAD FIRST CHARACTER FROM *1
I*CPU *1

1* TO ENSURE CRC TRANSMISSION. RESET TX UNDERRUN LATCH *1
OUTPUT (COMMAND_A_74) = OCOH,
RXDONE_S.TXDONE_S=NOT_DONE,
RESUL TS_S=PASS,
DO WHILE TXDONE_S=NOT_DONE,
END,

1* CLEAR ALL FLAGS
1* FLAG SET FOR MONITOR
1* DO UNTIL TERMINAL COUNT

DO WHILE(INPUT(STATUS_A_74) AND 04H) <> 04H,
1* WAIT FOR CRC TO GET TRANSMITTED *1
1* TEST FOR TX BUFFFER EMPTY TO VERIFY THIS*I
END.
DO WHILE RXDONE_S=Nor_DONE, 1* DO UNTIL TERMINAL COUNT *1
END,
CALL STOP _8237 _S,

END CHA_SDLC_TEST,

Figure 22. Typical 8274 Transmit/Receive Set-Up in SDLe Mode

6-246 210403-001

intJ AP-145

Vee

CPU
INTr-o(J-~--------~--------------~----------------

INTAP---------~~--t_----------~--_4----------------

8085 CPU

IAPX·88/86
CPU

8085 INTERRUPT
MODE 1

8088/86
INTERRUPT MODE

8088/86
INTERRUPT MODE

<OTHERS>

8085 INTERRUPT
MODE 3

8088/86
INTERRUPT MODE

Figure 23. 8274 Daisy Chain Vectored Mode

SPECIAL APPLICATIONS

In this section, some special application issues will be dis­
cussed. This will be useful to a user who may be using a
mode which is possible with the 8274 but not explicitly ex­
plained in the data sheet.

MPSC Daisy Chain Operation
Multiple MPSC can be connected in a daisy-chain config­
uration (see Figure 23). This feature may be useful in an
application where multiple communication channels may
be required and because of high data rates, conventional
interrupt controller is not used to avoid long interrupt re­
sponse times. To configure the MPSCs for the daisy chain
operation, the interrupt priority input pins (IPI) and inter­
rupt priority output pins (lPO) of the MPSC should be
connected as shown. The highest priority device has its IPI
pin connected to ground. Each MPSC is programmed in a
vectored mode with status affects vector bit set. In the
8085 basic systems, only one MPSC should be pro­
grammed in the 8085 Mode 1. This is the MPSC which
will put the call vector (CD Hex) on the data bus in re­
sponse to the first INTA pulse (See Figure 15). It may be
pointed out that the MPSC in 8085 Mode I will provide

System Priority Resolution Time
Configuration Min (ns)

8086-1 400
8086-2 500
8086 800
8088 800
8085-2 1200
8085A 1920

Note: Zero wait states have been assumed.

the call vector irrespective of the state of IPI pin. Once a
higher priority MPSC generates an interrupt, its IPO pin
goes inactive thus preventing lower priority MPSCs from
interrupting the CPU. Preferably the highest priority
MPSC should be programmed in 8085 Mode I. It may be
recalled that the Priority Resolve Time on a given MPSC
extends from th falling edge of the first INT A pulse to the
falling edge of the second INT A pulse. During this period,
no new internal interrupt requests are accepted. The
maximum number of the MPSCs that can be connected in
a daisy chain is limited by the Priority Resolution Time.
Figure 24 shows a maximum number of MPSCs that can
be connected in various CPU systems. It may be pointed
out that IPO to IPI delay time specification is lOOns.

Bisync Transparent Communication

Bisync applications generally require that data transpar­
ency be established during communication. This requires
that the special control characters may not be included in
the CRC accumulation. Refer to the Synchronous Proto­
col Overview section for a more detailed discussion on
data transparency. The 8274 can be used for transparent
communication in Bisync communications. This is made

Number of 8274s Daisy Chained
(Max)

4
5
8
8

12
19

Figure 24. 8274 Daisy Chain Operation

6-247
210403-001

'\i

inter AP-145

possible by the capability of the MPSC to selectively turn­
on/turnoff the CRC accumulation while transmitting or
receiving. In bisync transparent transmit mode, the spe­
cial characters (DLE, DLE SYN etc) are excluded from
CRC calculation. This can be easily accomplished by
turning off the transmit CRC calculation (WR5: D5 =0)
before loading the special character into the transmit
buffer. If the next character is to be included in the CRC
accumulation, then the CRC can be enabled (WR5:
D 5 = 1). See Figure 25 for a typical flow diagram.

Figure 25. Transmit in Bisync Transparent Mode

During reception, it is possible to exclude received charac­
ter from CRC calculation by turning off the Receive CRC
after reading the special character. This is made possible
by the fact that the received data is presented to receive
CRC checker 8 bit times after the character has been re­
ceived. During this 8 bit times, the CPU must read the
character and decide if it wants it to be included in the·
CRC calculation. Figure 26 shows the typical flow dia­
gram to achieve this.

It should be noted that the CRC generator must be en­
abled during CRC reception. Also, after reading the CRC
bytes, two more characters (SYNC) must be read before
checking for CRC check result in RRI.

Auto Enable Mode

In some data communication applications, it may be re­
quired to. enable the transmitter or the receiver when the
CTS or the DCD lines respectively, are activated by the
modems. This may be done very easily by programming
the 8274 into the Auto Enable Mode.The auto enable
mode is set by writing a 'I' to WR3,D5. The function of
this mode is to enable the transmitter automatically when
CTS goes active. The receiver is enabled when DCD goes
active. An in-active state of CTS or DCD pin will disable
the transmitter or the receiver respectively. However, the
Transmit Enable bit (WR5:D3) and Receive Enable bit

Figure 26. Receive in Bisync Transparent Mode

(WR3:Dl) must be set in order to use the auto enable
mode. In non-auto mode, the transmitter or receiver is en­
abled if the corresponding bits are set in WR5 and WR3,
irrespective of the state CTS or DCD pins. It may be re­
called that any transition on CTS or DCD pin will gener­
ate External/Status Interrupt with the corresponding bits
set in RRI. This interrupt can be cleared by issuing a Re­
set External/Status interrupt command as discussed ear­
lier.

Note that in auto enable mode, the character to be trans­
mitted must be loaded into the transmit buffer after the
CTS becomes active, not before. Any character loaded
into the transmit buffer before the CTS became active will
not be transmitted.

High Speed DMA Operation

In the section titled Application Example, the MPSC has
been programmed to operate in DMA mode and receiver
is programmed to generate an interrupt on the first receive
character. You may recall that the receive FIFO is three
bytes deep. On receiving the interrupt on the first receive
character, the CPU must enable the DMA controller
within three received byte times to avoid receiver over-run
condition. In the application example, at 400K baud, the
CPU had approximately 60 ILS to enable the DMA con­
troller to avoid receiver buffer overflow. However, at high­
er baud rates, the CPU may not have enough time to
enable the DMA controller in time. For example, at 1M
baud, the CPU should enable the DMA controller within
approximately 24 ILS to avoid receiver buffer overrun. In
most applications, this is not sufficient time. To solve this
problem, the DMA controller should be left enabled be­
fore getting the interrupt on the first receive character
(which is accompanied by the Rx DMA request for the
appropriate channel). This will allow the DMA controller
to start DMA transfer as soon as the Rx DMA request be­
comes active without giving the CPU enough time to re-

6-248 210403-001

intJ AP-145

spond to the interrupt on the first receive character. The
CPU will respond to the interrupt after the DMA transfer
has been completed and will find the 8259A (See Applica­
tion Example) responding with interrupt level 7, the low­
est priority level. Note that the 8274 interrupt request was
satisfied by the DMA controller, hence the interrupt on
the first receive character was cleared and the 8259A had
no pending interrupt. Because of no pending interrupt, the
8259A returned interrupt level 7 in response to the INTA
sequence from the CPU. The user software should take
care of this interrupt.

PROGRAMMING HINTS

This section will describe some useful programming hints
which may be useful in program development.

Asynchronous Operation

At the end of transmission, the CPU must issue "Reset
Transmit Interrupt/DMA Pending" command in WRO to
reset the last transmit empty request which was not satis­
fied. Failing to do so will result in the MPSC locking up in
a transmit empty state forever.

Non-Vectored Mode

In non-vectored mode, the Interrupt Acknowledge pin
(INTA) on the MPSC must be tied high through a pull-up
resistor. Failing to do so will result in unpredictable re­
sponse from the 8274.

) HOLC/SOLC Mode

When receiving data in SDLC mode, the CRC bytes must
be read by the CPU (or DMA controller) just like any oth­
er data field. Failing to do so will result in receiver buffer
overflow. Also, the End of Frame Interrupt indicates that
the entire frame has been received. At this point, the CRC
result (RRl:D6) and residue code (RRl:D3, D2, DI)
may be checked.

Status Register RR2

RR2 contains the vector which gets modified to indicate
the source of interrupt (See the section titled MPSC
Modes of Operation). However, the state of the vector
does not change if no new interrupts are generated. The
contents of RR2 are only changed when a newiinterrupt is
generated. In order to get the correct information, RR2
must be read only after an interrupt is generated, other­
wise it will indicate the previous state.

Initialization Sequence

The MPSC initialization routine must issue a channel Re­
set Command at the beginning. WR4 should be defined
before other registers. At the end of the initialization se­
quence, Reset External/Status and Error Reset com­
mands should be issued to clear any spurious interrupts
which may have been caused at power up.

Transmit Under-run/EOM Latch

In SDLC/HDLC, bisync and monosync mode, the trans­
mit underrun/EOM must be reset to enable the CRC
check bytes to be appended to the transmit frame or trans­
mit message. The transmit under-run/EOM latch.can be
reset only after the first character is loaded into the trans­
mit buffer. When the transmitter under-runs at the end of
the frame, CRC check bytes are appended to the fra­
me/message. The transmit under-run/EOM latch can be
reset at any time during the transmission after the first
character. However, it should be reset before the transmit­
ter under-runs otherwise, both bytes of the CRC may not
be appended to the frame/message. In the receive mode in
bisync operation, the CPU must read the CRC bytes and
two more SYNC characters before checking for valid
CRC result in RRI.

Sync Character Load Inhibit

In bisyric/monosync mode only, it is possible to prevent
loading sync characters into the receive buffers by setting
the sync character load inhibit bit (WR3:DI = I). Cau­
tion must be exercised in using this option. It may be possi­
ble to get a CRC character in the received message which
may match the sync character and not get transferred to
the receive buffer. However, sync character load inhibit
should be enabled during all pre-frame sync characters so
the software routine does not have to read them from the
MPSC.

6-249

In SDLC/HDLC mode, sync character load inhibit bit
must be reset to zero for proper operation.

EOI Command

EOI Command can only be issued through channel A irre­
spective of which channel had generated the interrupt.

Priority in OMA Mode

There is no priority in DMA mode between the following
four signals: TxDRQ(CHA), RxDRQ(CHA),
TxDRQ(CHB), RxDRQ(CHB). The priority between
these four signals must be resolved by the DMA control­
ler. At any given time, all four DMA channels from the
8274 are capable of going active.

210403-001

[

I

I.

I:
I,~
~

AP-145

APPENDIX A
APPLICATION EXAMPLE: SOFTWARE LISTINGS

6-250 210403-001

AP-145

PL/M-B6 COMPILER iSBC BB/45 B274 CHANNEL A SDLC TEST

SERIES-III PL/M-B6 V2.0 COMPILATION OF MODULE INIT_B274_S
OBJECT MODULE PLACED IN :Fl.SINI74. OBJ
COMPILER INVOKED BY: PLMBb. Bb :Fl:SINI74. PLM TITLE(iSBC BB/45 B274 CHANNEL
A SDLC TEST) COMPACT NOINTVECTOR ROM

2

3

1***1
1* *1
1*
1*
1*
1*
1*
1*
1*
1*.
/*
1*
/*
1*
1*
1*
1*
1*
/*
1*
1*

INITIALIZE THE B274 FOR SDLC MODE

1. RESET CHANNEL
2. EXTERNAL INTERRUPTS ENABLED
3. NO WAIT
4. PIN 10 = RTS
5. NON-VECTORED INTERRUPT-B08b MODE
b. CHANNEL A DMA, CH B INT
7. TX AND RX = B BITS/CHAR
9. ADDRESS SEARCH MODE
10.CD AND CTS AUTO ENABLE
11. Xl CLOCK
12. NO PARITY
13.SDLC/HDLC MODE
14.RTS AND DTR
15. CC I TT - CRC
lb. TRANSMITTER AND RECEIVER ENABLED
17.7EH = FLAG

1***1

INIT_8274_S: DO;

$INCLUDE (:Fl:PORTS. PLM)

1***1
1* *1
1* ISBC 8B/45 PORT ASSIGNMENTS *1
1*
1**1

DECLARE LIT LITERALLY 'LITERALLY';

1* B237A-5 PORTS */

DECLARE CHO_ADDR LIT 'oaOH',
CHO_COUNT LIT 'OB1H',
CHl _ADDR LIT '082H',
CH1_COUNT LIT 'OB3H',
CH2_ADDR LIT 'OB4H',
CH2_COUNT LIT 'oaSH',
CH3_ADDR LIT '08bH',
CH3_COUNT LIT '087H',
STATUS_37 LIT '08SH',
COMMAND 37 LIT 'oeSH'"
REGUEST ::::REG_37 LIT 'OB9H',
SINGLE_MASK LIT '08AH',
MODE_REG_37 LIT 'oaBH',

PL/M-8b COMPILER iSBC BB/45 B274 CHANNEL A SDLC TEST

CLR_BYTEJ'TR_37 LIT 'OBCH',
TEMP _REG_37 LIT 'OSDH',
MASTER_CLEAR_37 LIT '08DH',
ALL_MASK_37 LIT 'OBFH';

1* 8254-2 PORTS *1

4 DECLARE CTR_OO LIT '090H',
CTR_Ol LIT '091H',
CTR_02 LIT '092H',

6-251 210403-001

inter

6

7

8

AP-145

CONTROL.O_54
STATUSO_54
CTR_IO
CTR_11
CTRl2
CONTROL.I_54
STATUSI_54

1* 8255 PORTS *1

DECL.ARE PORTA 55
PORTB-55
PORTC-55
CONTROL._55

1* 8274 PORTS *1

DECL.ARE' DATA_A_74
DATA_BJ4
STATUS_A_74
COMMAND_A_74
STATUS_B_74
COMMAND_B_74

1* 8259A PORTS *1

L.IT
L.IT
L.IT
L.IT
L.IT
L.IT
LIT

L.IT
L.IT
L.IT
L.IT

L.IT
LIT
L.IT
L.IT
L.IT
L.IT

DECL.ARE STATUS_POL.L._59 L.IT
ICWI_59 L.IT
OCW2_59 L.IT
OCW3_59 LIT
OCWI_59 L.IT
ICW2_59 L.IT
ICW3_59 L.IT
ICW4_59 L.IT

I

'093H',
'093H',
'098H',
'099H',
'09AH',
'09BH',
'09BH'j

'OAOH',
'OAtH',
'OA2H',
'OA3H',

'ODOH',
{ODIH', ,
'OD2H',
'OD2H',
"OD3H',
'OD3H';

'OEOH',
'OEOH',
'OEOH',
'OEOH',
'O,EIH',
'OEIH',
'OEtH',
'OE1H',

1* 8274 REGISTER BIT ASSIGNMENTS *1
1* READ REGISTER 0 *1

DECL.ARE RX_AVAIL.
INT PENDING
TX_EMPTY
CARRIER_DETECT
SYNC HUNT
CL.EAR_TO_SENO

L.IT
L.IT

,L.IT
LIT
L.IT
LIT

'OIH',
'02H',
'04H',
'OSH',
'tOH',
'20H',

PL/M-86 COMPIL.ER iSBC 88/45 8274 CHANNEL. A SOL.C TEST

9

10

ENO_OF_TX~ESSAGE LIT
BREAK_ABORT L.IT

1* READ REGISTER 1 *1

DECL.ARE ALL._SENT
PARITY_ERROR
RX_OVERRUN
CRC ERROR
ENO::::OF_FRAME

1* READ REGISTER 2 *1

DECLARE TX_B_EMPTY
EXT B CHANGE
RX B AVAIL.
RX::::B::::SPECIAL.
TX_A_EMPTY
EXT _A_CHANGE
RX A AVAIL.
RX::::A::::SPECIAL

6-252

LIT
LIT
L.IT
LIT
LIT

L.IT
L.IT
UT
L.IT
L.IT
L.IT
L.IT
L.IT

'40H',
'80H',

'01H',
'10H "
'20H',
'40H',
'SOH';

'OOH',
'OlH',
'02H',
'03H',
'04H',
'05H',
'06H',
'07H'j

210403-001

AP-145

1* 8237 BIT ASSIGNMENTS *1

11 DECLARE CHO_SEL LIT 'OOH',
CHi _SEL LIT 'OlH',
CH2_SEL LIT '02H',
CH3_SEL LIT '03H',
WRITE_XFER LIT '04H',
READ_X FER LIT 'OBH',
DEMAND_MODE LIT 'OOH',
SINGLE MODE LIT '40H',
BLOCK_MODE LIT 'BOH',
SET_MASK LIT '04H';

12 1 DELAY S: PROCEDURE PUBLIC,
13 2 DECLARE 0 WORD,
14 2 0=0,
15 2 DO WHILE D<800H,
16 3 0=0+1,
17 3 END,
18 2 END DELAY _S,

19 INIT_B274_SDLC_S. PROCEDURE PUBLIC,

20 2 DECLARE C BYTE,

$E.JECT

PL/M-86 COMPILER iSBC B8/45 8274 CHANNEL A SDLC TEST

21

22

23
24
25

26
27
2B
29
30
31
32

2

2

2
2
2

2
2
3
3
3
3
3

1* TABLE TO INITIALIZE THE 8274 CHANNEL A AND B *1

1* FORMAT IS: WRITE REGISTER, REGISTER DATA *1
1* INITIALIZE CHANNEL ONLY *1

DECLARE TABLE_74_A(*) BYTE DATA
(00H,18H, 1* CHANNEL RESET *1
00H,80H, 1* RESET TX CRC *1
02H,liH, 1* PIN 10=RTSB, A DMA, B INT *1
04H,20H, 1* SDLC/HDLC MODE, NO PARITY *1
07H,07EH, 1* SDLC FLAG *1
01H,OBH, 1* RX DMA ENABLE *1
05H,OEBH, 1* DTR, RTS, 8 TX BITS, TX ENABLE, TX CRC
06H,55H, 1* DEFAULT ADDRESS *1
03H,OD9H, 1* 8 RX BITS, AUTO ENABLES, HUNT MODE, *1

1* RX CRC ENABLE *1
OFFH) , 1* END OF INITIALIZATION TABLE *1

BYTE DATA
1* INTERRUPT VECTOR *1

DECLARE TABLE_74_B(*)
(02H,OOH,
01H, lCH,
OFFH) ,

1* STATUS AFFECTS VECTOR *1
1* END *1

1* INITIALIZE THE 8254 *1

OUTPUT(CONTROLO_54)=36H,
OUTPUT (CTR_OO) = LOW(20),
OUTPUT(CTR_OO) = HIGH(20),

1* INITIALIZE THE B274 *1

C=Oi

1* BAUD RATE
1* BAUD RATE

DO WHILE TABLE_74 B(C) <> OFFH,
OUTPUT (COMMAND_B_74) TABLE_74_B(C),
C=C+l;
OUTPUT (COMMAND_B_74)
C=C+l,

END,

6-253

400K_BAUD*1
400K_BAUD*1

ENABLE *1

210403-001

AP-145

REFERENCES
1. IBM Document No. GA27-3004-2: General Informa­

tion - Binary Synchronous Communications

2. Application Note API34: Asynchronous Communi­
cation with the 8274 Multiple Protocol Serial Con­
troller. Intel Corp., Ca.

3. 8274 MPSC Data Sheet, Intfl Corporation, Ca.

4. iSBC 88/45 Hardware Reference Manual, Intel
Corp., Ca.

5. Computer Networks and Distributed Processing by
James Martin. Prentice Hall, Inc., N.J.

6-254 210403-001

AP-145

33 2 C=O;
34 2 DO WHILE TABLE_74_A(C) <> OFFH.
35 3 OUTPUT(COMMAND_A_74) • TABLE_74_A(C).
36 3 C-C+lI
37 3 OUTPUT (COMMAND_A_74) D TABLE_74_A(C).
38 3 C=C+1.
39 3 END.
40 2 CALL DELAY_S.

41 2 RETURN.
42 2 END INIT_8274_SDLC_S.
43 1 END INIT_8274_S.

PL/M-86 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TE8T

MODULE INFORMATION:

CODE AREA SIZE D 00A8H 168D
CONSTANT AREA 8IZE .. OOOOH OD
VARIABLE AREA SIZE .. 0003H 3D
MAXIMUM STACK SIZE .. 0OO6H 6D
213 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

PL/M-86 COMPILER tSBC 88/45 8274 CHANNEL A SDLC TEST

SERIES-III PL/M-86 V2.0 COMPILATION OF MODULE INIT_8237_CHA
OBJECT MODULE PLACED IN :Fl:SINI37.0BJ
COMPILER INVOKED BY: PLM86.86 :Fl:SINI37.PLM TITLE(1SBC 88/458274 CHANNEL A SDLC
TEST) COMPACT NOINTVECTOR ROM

1**.*****************************1

12

13 2
14 2
15 2
16 2
17 2
18 2'
19 2
20 2
21 2
22 2
23 2
24 2
25 2
26 2

1* *1
1* 8237 INITIALIZATION ROUTINE FOR DMA TRANSFER *1
1* *1
1**1

INIT_S237_CHA: DOl

$NOLIST

OUTPUT(MASTER_CLEAR_37)=0.
OUTPUT(COMMAND_37) .. 20H. 1* EXTENDED WRITE *1
OUTPUT(ALL_MASK_37) .. OFH. 1* MASK ALL REGUE8TS *1
OUTPUT (MODE_REG_37) .. (SINGLE_MODE OR WRITE_XFER OR CHO_SEL).
OUTPUT (MODE_REQ_37) .. (SINGLE_MODE OR READ_X FER OR CH1_SEL).
OUTPUT(CLR~YTE_PTR_37) .. O.
OUTPUT(CHO~DDR) .. 00. 1* RECEIVE BUFF AT ~OOH *1
OUTPUT(CHO_ADDR)." 09H.
OUTPUT (CHO_COUNT) .. OH.
OUTPUT(CHO_COUNT) .. 01.
OUTPUT(CH1_ADDR) .. 00. 1* TRANSMIT BUFF AT SOOH *1
OUTPUT(CH1~DDR) .. OSH.
OUTPUT (CH1_COUNT) .. 010H.
OUTPUT (CH1_COUNT) = OOH.

6-255 210403-001

inter AP·145

27 2
2~ 2

29 2

30 1
31 2
32 2
33 2
34 2
35 1

1* ENABLE TRANSFER *1
.OUTPUT(SINGLEjMASK) - CH1_SEL.
RETURN.

1* ENABLE TX DMA *1

1* TURN OFF THE 8237 CHANNELS 0 AND 1 *1

STOP_8237_S: PROCEDURE PUBLIC.
OUTPUT(SINGLE_MASK) CH1_SEL OR SETjMASK.
OUTPUT (SINGLE_MASK) z CHO_SEL OR SET_MASK.
RETURN.
END STOP_S237_S.
END INIT_8237_CHA.

MODULE INFORMATION:

CODE AREA SIZE • 004CH 76D
CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE = OOOOH OD

PL/M-B6 COMPILER iSBC BB/45 B274 CHANNEL A SDLC TEST

MAXIMUM STACK SIZE = 0002H 2D
163 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-B6 COMPILATION

PL/M--86 COMPILER lSBC 88/45 8274 CHANNEL A SDLC TEST

SERIES--!II PL/M-86 V2 0 COMPILATION OF MODULE INTR 8274_S
OB-JECT t10DULE PLACED IN F1 SINTR OBJ
COMPILER INVOKED BY PLM86 86 F1 SINTR PLM TI1LE(,SBC 88/45 8274 CHANNEL
A SDLC TEST) COMPACT NOINTVECTOR ROM

12
13
14
15
16
17

18

19
20
21

2
2
2

/*~~~*~************************************/
1* . *1
I'!' 8274 INTERRUPT ROUTINE *1

)***~/

DO,

TEMP BYTE,

INTR_8274_S
$NOLIST
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

(RESULTS S,TXDONE S,RXDONE S)
INT VEC POINTER AT (140),
INT:VEC_STORE POINTER,

BYTE EXTERNAL,

MASK_59 BYTE,
DONE
NOT_DONE
PASS
FAIL

LIT
LIT
LIT
LIT

1****************************1
1* IGNORE INTERRUPT HANDLER *1
/********~*******************/

IGNORE_INT PROCEDURE,

RESULTS_S = FAIL,
RETURN,
END IGNORE_I NT,

6-256

'OFFH',
'OOH',
'OFFH',
'OOH',

210403-001

inter

22

23
24
25
2b
27
28
29
30
31

. 32

2
2
2
2
3
3
3
2
2
2

AP-145

1**1
/* CHANNEL A EXTERNAL/STATUS CHANGE INTERRUPT HANDLER */
1**1

CHA_EXTERNAL_CHANGE. PROCEDURE.

TEMP = INPUT(STATUS_A_74l.
IF (TEMP AND END_OF_TX_MESSAGEl

TXDONE_S=DONE.
ELSE DO.

TXDONE S=DONE.
RESUL TS_S=FAIL.

END,

/* STATUS REG 1*1
END_OF_TX_MESSAGE THEN

OUTPUT (COMMAND_A_74 l = 10H, /* RESET EXT/STATUS INTERRUPTS */
RETURN,
END CHA_EXTERNAL_CHANGE •

"'EJECT

PL/M-8b COMPILER lSBC 66/45 6274 CHANNEL A SDLC TEST

33

34
35
3b
37
38
39
40
41
42
43
44
4b
47
48
49
50
51
52

53
54
55
5b

2
2
2
2
3
3
:3
3
3
2
3
4
4
4
4
3
2
2

1
2
2
2

1**1
;. CHANNEL A SPECIAL RECEIVE CONDITIONS INTERRUPT HANDLER */
1**1

OUTPUT (COMMAND_A_74 l = 1,
TEMP = INPUT (STATUS_A_74l.
IF (TEMP AND. ENO_OF _FRAME l = END_OF _FRAME THEN

DO.

RETURN.

IF (TEMP AND 040H l '= 040H THEN
RESULTS S = FAIL. /* CRC ERROR */

RXDONE_S ; DONE.
OUTPUT(COMMAND_A_74l = 30H, I*ERROR RESET*/

END.
ELSE DO,

IF (TEMP AND 20Hl = 20H THEN DO,
RESULTS_S = FAIL. 1* RX OVERRUN ERROR*/
RXDONE_S = DONE.
OUTPUT(COMMAND_A_74l = 30H, /*ERROR RESET*/
END.

END.

END CHA_RX_SPECIAL.

/ ************,***************************** / /* CHANNEL A RECEIVE CHARACTER AVAILABLE */
1***1

CHA_RX_CHAR- PROCEDURE.
OUTPUT (SINGLE_MASK l = CHO_SEL.
RETURN.
END CHA_RX_CHAR.

"'EJECT

I*ENABLE RX DMA CHANNEL*/

PL/M-6b COMPILER lSBC 66/45 6274 CHANNEL A SOLC TEST

/* ENABLE 6274 INTERRUPTS - SET UP THE 6259A */

57 ENABLE_INTERRUPTS_S PROCEDURE PUBLIC.

56 2

59 2 DISABLE.

bO 2 CALL SET"'INTERRUPT(39.INT_39l.

6-257 210403-001

i
"

"

intJ

61
62
63

64

65
66

67

68

69

2
2
2

2

2
2

2

2

70 2
71· 2

72
73

74

75

76
77
78

2
2

2

2
2
2

AP·145

INT VEC STORE = INT VEC;
INT-VEC-= INTERRUPT$PTR(INT 8274 S),
MASK_59 = INPUT(OCW1_59), -

RETURN,
END ENABLE_INTERRUPTS_S;

1* DISABLE 8274 INTERRUPTS - SET UP THE 8259A *1

DISABLE_INTERRUPTS_S PROCEDURE PUBLIC,

DISABLE,

OUTPUT(OCWI 59)
ENABLE, -

RETURN,
END DISABLE_INTERRUPTS_S,

1* CHANNEL B RECEIVE CHARACTER AVAILABLE *1

CHB_RX_CHAR PROCEDURE;

TEMP=INPUT(DATA_B_74),

OUTPUT(COMMAND_B_74)
RETURN,
END CHB_RX_CHAR,

$EJECT

38H;

PL/M-86 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TEST

79

80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

2
2

2
3
3
3
3
3
3
3
3
3
2
2
2
2
2

1**************************1
1* MAIN INTERRUPT ROUTINE *1
1**************************1

INT_8274_S· PROCEDURE INTERRUPT 35 PUBLIC;

OUTPUT (COMMAND_B_74) = 2; 1* SET POINTER TO 2*1
TEMP = INPUT(STATUS_B_74) AND 07H;

1* FOR THIS APPLICATION CH B INTERRUPTS
DO CASE TEMP;

1* READ INTERRUPT VECTOR *1
1* CHECK FOR CHA INT ONLY'I
ARE IGNORED*I

CALL IGNORE_I NT;
CALL IGNORE_I NT;
CALL CHB_RX_CHAR;
CALL IGNORE_I NT;
CALL IGNORE INT,
CALL CHA_EXTERNAL_CHANGE;
CALL CHA_RX_CHAR;
CALL CHA_RX_SPECIAL,

END;

1* V2VIVO
1* V2V1VO
1* V2V1VO
1* V2VIVO
1* V2V1VO
1* V2VIVO
1* V2VIVO =
1* V2V1VO

000*1
001*1
010*1
011*1
100*1
101*1
110*1
111*1

OUTPUT (COMMAND_A_74) =38H, 1* END OF INTERRUPT FOR 8274 *1
OUTPUT(OCW2 59) 63H, 1* 8259 EOI *1
OUTPUT(OCW1=59) INPUT(OCW1_59) AND OF7H;
RETURN;
END INT _8274_5,

1* DEFAULT INTERRUPT ROUTINE - 8259A INTERRUPT 7 *1
1* REQUIRED ONLY WHEN DMA CONTROLLER IS ENABLED *1
1* BEFORE RECEIVING FIRST CHARACTER WHICH IS *1
1* AT HIGH BAUD RATES LIKE 800K BAUD READ APP. *1
1* NOTE SECTION 6 FOR DETAILS *1

6-258 210403-001

97
98
99

100
101

102

2
2
2
2

AP-145

INT_39' PROCEDURE INTERRUPT 39,
OUTPUT(OCW2_59) = 20H, 1* NON-SPECIFIC EOI *1
OUTPUT(OCWI 59) = INPUT(OCW1_59) AND OF7H,
RESULTS S =-FAIL,

END INT_39, -

t10DULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
295 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

OlBFH
OOOOH
0006H
0022H

4470
00
60

340

PL/M-86 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TEST

SERIES-III PL/M-86 V2.0 COMPILATION OF MODULE STEST
OB~ECT MODULE PLACED IN :Fl:STEST.OB~ •
COMPILER INVOKED BY: PLM86.86 :Fl:STEST.PLM TITLE(1SBC 88/45 8274 CHANNEL A SDLe TEST)
COMPACT NOINTVECTOR ROM

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
2

1
2

1
:2

1
2

1
2

1
:2

1
:2

1
2

1**1
1* *1
1* iSBC 545 PORT A (8274) SDLC TEST *1
1* *1
1**1

STEST: 00,

DELAY_S: PROCEDURE EXTERNAL,
END DELAY _S,

ENABLE_INTERRUPTS_S: PROCEDURE EXTERNAL,
END ENABLE_INTERRUPTS_S,

DISABLE_INTERRUPTS_S: PROCEDURE EXTERNAL,
END DISABLE_INTERRUPTS_S,

INIT_8274_SDLC_S: PROCEDURE EXTERNAL,
END INIT_8274_SDLC_S,

INIT_8237_S: PROCEDURE EXTERNAL,
END INIT_8237_S,

STOP_8237_S: PROCEDURE EXTERNAL,
END STOP_8237_S,

VERIFY_TRANSFER_S: PROCEDURE EXTERNAL,
END VERIFY_TRANSFER_S,

INT_8274_S: PROCEDURE INTERRUPT 35 EXTERNAL,
END INT _8274_S,
$NOLIST
$E~ECT

PL/M-86 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TEST

28
29

DECLARE (RESULTS_S,TXDONE_S,RXDONE~S) BYTE PUBLIC,
DECLARE DONE LIT 'OFFH',

NOT_DONE LIT 'OOH',
PASS LIT 'OFFH' ,
FAIL LIT 'OOH',

6-259 210403-001

AP-145

$E.JECT

PL/M-86 COMPILER iSBC 8S/45 6274 CHANNEL A SDLC TEST

30 CHA_SDLC_TEST: PROCEDURE BYTE PUBLIC.

31 2
32 2
33 2
34 2
35 2
36 2
37 2

38 2
39 2
40 2

CALL
CALL
ENABLE.

ENABLE_INTERRUPTS_S.
INIT_6274_SDLC_S.

OUTPUT CCOMMAND_A_74 l - 26H.
OUTPUTCCOMMAND_B_74l - 26H.
CALL INIT_6237_S.

1* RE6ET TX INTIDMA *1
1* BEFORE INITIALIZING 8237*1

OUTPUTCDATA_A_74l - 55H. 1* LOAD FIRST CHARACTER FROM CPU*I

1* TO ENSURE CRC TRANSMISSION RESET TX UNDERRUN LATCH*I
OUTPUTCCOMMAND_A_74l - OCOH.
RXDONE_S.TXDONE_S-NOT_DONE. 1* CLEAR ALL FLAGS *1
RESULTS_S-PASS. 1* FLAG SET FOR MONITOR*I

41 2 DO WHILE TXDONE_S-NOT_DONE.
END.

1* DO UNTIL TERMINAL COUNT*I
42

43

44

3

2

3

~O WHILECINPUTCSTATUS_A_74l AND 04Hl <> 04HI
1* WAIT FOR CRC TO GET TRANSMITTED *1
1* TEST FOR TX BUFFFER EMPTY TO VERIFY THIS*I
END.

45 2 DO WHILE RXDONE_S-NOT_DONE. 1* DO UNTIL TERMINAL COUNT*I
46 3

47 2

48 2

49 2

50 2

51 2
52 1

END.

CALL STOP_6237_S.

CALL DISABLE_INTERRUPTS_S.

RETURN RESULTS_S.

END CHA_SDLC_TEST.
END STEST.

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE -
VARIABLE AREA SIZE -
MAXIMUM STACK SIZE =
196 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-66 COMPILATION

0063H
OOOOH
0003H
0004H

99D
OD
3D
4D

PL/M-66 COMPILER tSBC 6S/45 6,274 CHANNEL A SDLC TEST

SERIES-III PL/M-66 V2.0 COMPILATION OF MODULE VECTOR_MODE
OB.JECT MODULE PLACED IN :Fl:VECTOR. OB.J
COMPILER INVOKED BY: PLM66,66 :Fl:VECTOR, PLM TITLECiSBC 66/456274 CHANNEL A SDLC TESTl

1***1
1* *1
1* 6274 INTERRUPT HANDLING ROUTINE FOR *1
1* 6274 VECTOR MODE *1
1* STATUS AFFECTS VECTOR *1
1* *1
1***1

6-260 210403-001

12
13
14

15
16
17
18

19
20
21
22
23
24

1
2
2
2

1
2
2
2
2
3

Ap·145

/* THIS IS AN EXAMPLE OF HOW 8274 CAN BE USED IN VECTORED MODE */
/* THE lSBC88/45 BOARD WAS REWIRED TO DISABLE THE PIT B259A AND */
1* ENABLE THE 8274 TO PLACE ITS VECTOR ON THE DATABUS IN RESPONSE *1
1* TO THE INTA SEGUENCE FROM THE BOBB. OTHER MODIFICATIONS INCLUDED *1
1* CHANGES TO B274 INITIALIZATION PROGRAM (SINI74) TO PROGRAM B274 *1
/* INTO VECTORED MODE (WRITE REGISTER 2A D5=1) *1

VECTOR_MODE· DO;
$NOLlST

DECLARE TEMP BYTE;
DECLARE (RESULTS S,TXDONE,RXDONE) BYTE EXTERNAL;
DECLARE DONE LITERALLY 'OFFH',

NOT_DONE LITERALLY 'OOH',
PASS LITERALLY 'OFFH',
FAIL LITERALLY 'OOH';

1***1
1* TRANSMIT INTERRUPT CHANNEL A INTERRUPT WILL NOT BE SEEN IN THE *1
/* DMA OPERATION. *1
1***1

TX INTERRUPT_CHA PROCEDURE INTERRUPT B4;
OUTPUT(COMMAND A 74) = 00101000B; /*RESET TXINT PENDING*I
OUTPUT (COMMAND-A-74) = 00111000B; /*EOI*/
END TX_INTERRUPT:CHA;

1***1
/* EXTERNAL/STATUS INTERRUPT PROCEDURE: CHECKS FOR END OF MESSAGE *1
/* ONLY. IF THIS IS NOT TRUE THEN THE FAIL FLAG IS SET HOWEVER, */
/* A USER PROGRAM SHOULD CHECK FOR OTHER EXT/STATUS CONDITIONS *1
1* ALSO IN RR1 AND THEN TAKE APPROPRIATE ACTION BASED ON THE *1
1* APPLICATION *1
1***1

EXT_STAT_CHANGE_CHA·PROCEDURE INTERRUPT B5;
TEMP = INPUT(STATUS A 74).
IF (TEMP AND END OF TX-MESSAGE) = .END_OF_TX_MESSAGE THEN

TXDONE = DONE~ - -
ELSE DO;

TXDONE DONE.

PL/M-B6 COMPILER iSBC B8/45 8274 CHANNEL A SDLC TEST

25
26

27
28
29
30

31
32
33
34

3
3

2
2
2
2

1
2
2
2

FAIL;

OUTPUT(COMMAND A 74) = 00010000B;
OUTPUT (COMMAND_A_74) = 00111000B;
RETURN;

END EXT_STAT_CHANGE_CHA.

I*RESET EXT STAT INT*I
I*EOI*/

1***1
/* RECEIVER CHARACTER AVAILABLE INTERRUPT WILL APPEAR ONLY ON FIRST*I
1* RECEIVE CHARACTER SINCE DMA CONTROLLER HAS BEEN ENABLED BEFORE */
1* THE FIRST CHARACTER IS RECEIVED. THE RECEIVER REGUEST IS *1
1* SERVICED BY THE DMA CONTROLLER *1
1***1

RX_CHAR_AVAILABLE_CHA·PROCEDURE INTERRUPT B6;
OUTPUT(COMMAND A 74) = 00111000B. I*EOI*I

RETURN; --
END RX CHAR AVAILABLE CHA;
$EJECT- - -

6-261 210403-001

AP-145

PL/M-86 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TEST

35

36 2
37 2
38 2
39 2
40 2
41 3
42 3
43 3
44 2
45 2
46 2
47 2

48 1
49 2
50 2
51 2
52 2
53 2
54 2
55 2

56

1***1
1* SPECIAL RECEIVE CONDITION INTERRUPT SERVICE ROUTINE CHECKS FOR *1
1* END OF FRAME BIT ONLY. SEE SPECIAL SERVICE ROUTINE FOR NON- *1
1* VECTORED MODE FOR CRC CHECK AND OVERRUN ERROR CHECK. *1
I**~**********************1

SPECIAL_RX_CONDITION_CHA:PROCEDURE INTERRUPT 87.

OUTPUT (COMMAND_A_74l - 1, I*POINTER 1*1
TEMP = INPUT (STATUS_A_74l,
IF (TEMP AND END_OF_FRAMEl = END OF_FRAME THEN

RXDONE = DONE,
ELSE DO,

RXDONE = DONE,
RESULTS S = F~IL,

END, -
OUTPUT(COMMAND_A_74l = 00110000B,
OUTPUT (COMMAND_A_74l = 00111000B,

RETURN,
END SPECIAL_RX_CONDITION_CHA,

ENABLE_INTERRUPTS: PROCEDURE PUBLIC,
DISABLE,
CALL SET$INTERRUPT(84.TX_INTERRUPT_CHAl,
CALL SET$INTERRUPT(85.EXT_STAT_CHANGE_CHAl,

I*ERROR RESET*I
I*EOI*I

CALL SET$INTERRUPH86. R,X_CHAR_AVAILABLE_CHAl'
CALL SET$INTERRUPT(87.SPECIAL_RX_CONDITION_CHAl,
RETURN,
END ENABLE_INTERRUPTS,

END VECTOR_MODE,
I ***************************************,************************************1
1***1

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
226 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

= 012EH
= OOOOH
- 0001H

001EH

END OF PL/M-86 COMPILATION

302D
OD
.1D

30D

6-262 210403-001

AP-145

APPENDIX B
MPSC READ/WRITE REGISTER DESCRIPTIONS

6-263 210403-001

AP-145

WRITE REGISTER 0 (WRO):

MSB LSB

1071061051041031021011001

I LoOMMANO STATUS POINTER
REGISTER POINTER

o 0 NULL CODE
o 1 SEND ABORT (SOLC)
1 0 RESET EXT STATUS INTERRUPTS
1 1 CHANNEL RESET
o 0 ENABLE INTERRUPT ON NEXT RX CHARACTER
o 1 RESET TXINT OMA PENDING
1 0 ERROR RESET
1 1 END OF INTERRUPT

o NULL CODE
1 RESET RX CRC CHECKER
o RESET TX CRO GENERATOR
1 RESET TX UNOERRUN EOM LATCH

WRITE REGISTER 1 (WR1):

MSB LSB

l01°10101°1°1°10~ I I ~I:;::~~::RUPT
L OMAENABLE

STATUS AFFECTS VECTOR ~ ~~~~i~¥!5~TOR
/ ~ 1~~~LO~~J~ CH A)

o 0 RxINT/OMA DISABLE
o 1 RxlNT ON FIRST CHAR OR SPECIAL CONDITION
1 il INT ON ALL Rx CHAR (PARITY AFFECTS VECTOR) OR

SPECIAL CONDITION
1 liNT ON ALL Rx CHAR (PARITY DOES NOT AFFECT

VECTOR) OR SPECIAL CONDITION

~ 1 WAIT ON Rx, 0 WAIT ON Tx

- MUST BE ZERO

~ WAIT ENABLE, 1 ENABLE, 0 DISABLE

6-264 210403-001

AP-145

WRITE REGISTER 2 (WR2): CHANNEL A

MSB LSB

107101051041031021011001

o 0 BOTH INTERRUPT
o 1 AOMABINT
1 0 BOTHOMA
1 1 ILLEGAL I '-v-'

'- ~ ~::g::~ ::~~;:~~~~~~~:~~~::~m::

o 0 8085 MOOE 1
o 1 8085 MOOE 2
1 0 8086/88 MOOE
1 1 ILLEGAL

- ~ ~~W~:gc::g~:¥:,rRUPT
- MUST BE ZERO

,-.1 PIN 10 SYNOET6
o PIN 10 RTSs

* EXTERNAL STATUS INTERRUPT ONLY IF EXT
INTERRUPT ENABLE (WR1:DO) IS SET

WRITE REGISTER 2 (WR2): CHANNEL B

MSB LSB

I~I~I~I~I~I~I~IWI

_ INTERRUPT
VECTOR

6-265

WRITE REGISTER 3 (WR3):

AODR SRCH MOOE (SOLC)

o

Rx CRC ENABLE

ENTER HUNT MOOE

AUTO ENABLES

Rx5 BITS/CHAR

Rx7 BITS/CHAR

Rx6 BITS/CHAR

Rx8 BITS/CHAR

210403-001

WRITE REGISTER 4 (WR4):

o
o
1
1

1 ENABLE PARITY
o DISABLE PARITY

EVEN PARITY
ODD PARITY

o ENABLE SYNC MODES
1 1 STOP BIT
o 1.5 STOP BITS
1 2 STOP BITS

o 8 BIT SYNC CHAR
1 16 BIT SYNC CHAR ,
o SOLC/HOLC(01111110)FLAG
1 1 EXTERNAL SYNC MODE

o Xl CLOCK
1 X16 CLOCK
o X32 CLOCK
1 X64 CLOCK

WRITE REGISTER 6 (WRS):

MSB LSB

10710SI051041031021011001

L' LEAST SI:NIFICANT
SYNC BYTE (ADDRESS
IN SOLC/HOLC MODE)

WRITE REGISTER 7 (WR7):

MSB LSB

107 106105 104 103 102 1011ltOI

" L M~SJ SI~IFICANT
SYNC BYTE (MUST
BE 01111110 IN
SOLC/HOLe MODE)

AP-145

6-266

WRITE REGISTER S (WRS):

o 0
o 1
1 9
1 1

OTR

Tx CRC ENABLE

RTS

'-----1Wkg~~gEis
'------ Tx ENABLE

'------- SEND BREAK

TxS BITS OR LESS/CHAR
Tx7 BITS/CHAR
TxS BITS/CHAR
Tx8 BITS/CHAR

210403-001

Inter AP-145

READ REGISTER 0 (RRO):

MSB LSB

ID7 1D6 1D5 1D4 1D31 D21D1LDOJ

L Rx CHAR AVAILABLE

INT PENDING (CHA ONLY)

Tx BUFFER EMPTY

CARRIER DETECT

SYNC/HUNT

EXTERNAL CTS }

Tx UNDERRUN/EOM !lTATUS
INTERRUPT MODE

BREAK/ABORT

READ REGISTER 1 (RR1):
(SPECIAL RECEIVE CONDITION MODE)

MSB LSB

lD1D1D~D1D1D1D1D~ :c LALLSENT

I FIELD BYTE
PREVIOUS BYTE

000 2
o 0 1 0
o 1 0 0
o 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

~ PARITY ERROR

'-- Rx OVERRUN ERROR

'-- CRC/FRAMING ERROR

~ END OF FRAME (SDLC HDLC MODE)

I FIELD BYTE
2ND PREVIOUS BYTE

!} RESIDUE DATA
3 BITS CHAR
7 MODE

5
8

READ REGISTER 2 (RR2):

MSB LSB

I v71 V61 VSlwIV3-1V2-IV,.IVO-1

'.
\. ;/

1 INTERRUPT -VARIABLES IN

L...;.V~ECT~O:-::R:';"";'- ~m~~ :6~rS

6-267 210403-001

intJ APPLICATION·
NOTE

AP-222

November 1984

Asynchronous and SOLC
Communications with 82530

SHARAD GANDHI

® Intel Corporation, 1984 Order Number: 231262-001

6-268

ASYNCHRONOUS
ANDSDLC

COMMUNICATIONS WITH
82530

6-269

CONTENTS

INTRODUCTION
1. SCC Port Definition
2. Accessing the SCC Registers
3. Initialization fo ASYNC Operation
4. ASYNC Communication in POlling

Mode
5. ASYNC Communication in Interrupt

Mode
6. Initialization for SOLC

Communication
7. SOLC Frame Reception
8. SOLC Frame Transmission
9. SOLC Interrupt Routines

CONCLUSIONS

REFERENCES

APPENDIX A-8253Q-BAUD RATE
GENERATORS

APPENDIX B-MODEM CONTROL
PINS ON THE 82350

APPENDIX c-INTERFACING 82530
TO 80186

231262·001

AP-222

INTRODUCTION

INTEL's 82530, Serial Communications Controllef
(SCC), is a dual channel, multi-protocol data communi­
cations peripheral. It is designed to interface to high
speed communications lines using asynchronous, byte
synchronous and bit synchronous protocols. It runs up to
1.5 Mbitsl sec, has on-chip baud rate generators and
on-chip NRZI encoding and decoding circuits - very
useful for SOLC communication. This application note
shows how to write 110 drivers for the 82530 to do initiali­
zation and data links using asynchronous (ASYNC) and
SOLC protocols. The appendix includes sections to show
how the on-chip baud rate generators could be pro­
grammed , how the modem control pins could be used and
how the 82530 could be interfaced to INTEL's 80186 I 188
processors.

This article deals with the software for the following:

1. SCC port definition

2. Accessing the SCC registers

3. Initialization for ASYNC communication

4. ASYNC communication in polling mode

5. ASYNC communication in interrupt mode

6. Initialization for SOLC communication

7. SOLC frame reception

8. SOLC frame transmission

9. SOLC interrupt routines

The description is written around illustrations of the
actual software written in PLM86 for a 80186 - 82530
system.

I. SCC Port Definition

The Figure 1 shows how the 4 ports (2 per channel) of
the SCC can be defined. Note that the sequence of ports
in the ascending order of addresses is not the one that is
normally expected. In the ascending order it is: com­
mand (B), data (B), command (A) and data (A). In an
80186 - 82530 system, the interconnection is as follows:

PCSn
A1

80186 pins A2
RD
WR

CS
D/C
AlB 82530 pins
RD
WR

2. Accessing the SCC Registers

The SCC has 16 registers on each of the channels (A
and B). For each channel there is only 'one port, the
command port, to access all the registers. The register
#0 can be always accessed directly through the com­
mand port. All other registers are accessed indirectly
through register #0. First, the number of the register to
be accessed is written to the register # 0 - see the state­
ment, in Figure 2: 'output (cLlL-command) = re8-
no and oth'. Then, the desired register is written to or
read out of the register #0. The Figure 2 shows 4 pro­
cedures: rra and wra, for reading and writing channel A
registers; rrb and wrb, for reading and writing channel
B registers. The read procedures ar~ of the type 'byte' -
they return the contents of the register being read. The
write procedures require two parameters - the register
number and the value to be written.

1 *---- .. ---.--.. ---- --. -------------.. -- -----.------------- ------------------------* I
declare ch_b_command

ch_b_data
ch_a_command
ch_a_data

literally 'pcsS'" 0'. 1* sec channel_b command lIIord*1
liter.ally 'pcsS ... 2', 1* scc ehannel_b data lIIord *1
literally 'pcsS + 4', 1* lice channel __ a command lIIord *1
liter.aU\j 'pcsS ... 6'1' 1* scc channel_a data lIIord *1

1*--_·-------________________ *1
231262-1

Figure 1. see Port Definition

'6-270 231262-001

inter AP-222

1*-------------------------- --- ---------------------------- --- ----------- ··------------*1

:* read selected scc register */'

1'1'3, procedur. (reg_no) bVte.
declare reg_no bvte,

11' (reg_no and OiOh) C' 0
then output(ch_a_command) reg __ no and 04'h,
return input(ch_a_command),

end 7'ra'

rrb_ procedure C'reg __ nol byte.
dec lare r,eg __ no byte.

i4' (reg_no and Of h) <> 0
then output <ch_b_commandl reg_no and 04'h.
return Input(ch_b_commandl,

end rrb.

/* wrIte selected scc register *1

U1ra: procedure (reg_no. value).
declare reg_no bvte.
declare value byte;

if' (reL.no and Of'h) <:> 0
then output (ch_a_,ommClndl =: reg_no and Of'h;
output < ch_a __ command) = value.

end IIIra.

u,rb. procedure (reg_no. val up),
~eclare reg_no byte.
declilre value byte.

if' (reg_no and OH) <:> 0
then outPl.t (ch_b_commandl = reg_no and Ol'h.
output <ch_b_command) = value,

end IIIrb.

1*--- -------- --- ... -.- ------.-- ----- ---- ------._-.- -.- .------ ---·_----0-----·_----------*1
231262-2

Figure 2. Accessing the see Registers

6-271 231262-001

intJ AP-222

3. Initialization for ASYNC Operation

Channel B of the SCC is used to perform ASYNC com­
munication. Figure 3 shows how the channel, B is ini­
tialized and configured for ASYNC operation. This is
done by writing the various channel B registers with the
proper parameters as shown. The comments in the pro­
gram show what is achieved by each statement. After-a
software reset of the channel. register "4 should be
written before writing to the other registers. The on­
chip Baud Rate Generator is used to generate a 1200
bits/sec clock for both the transmitter and the receiver.
The interrupts for transmitter and/or receiver are en­
abled only for the interrupt mode of operation; for poll­
ing. interrupts must be kept disabled.

4. ASYNC Communication In Polling
Mode

Figure 4 shows the procedures for reading in a received
character from the 82530 (sec~n) and for writing out
a character to the 82530 (sec_out) in the polling mode.

The sec~n pr(Y ..edure returns a byte value which is the
character read in. The receiver is polled to find if a
character has been received by the SCC. Only when a
character has been received. the character is read in
from the data port of the SCC channel B.

The sec_out procedure requires a byte parameter
which is the cp.aracter being written out. The transmit-

1 *---.------------ -.- -------.. --- . ----------,..-------------------------------------* 1

1* ICC ch B register initialization for ASVNC mode *1

call wrb(09. OtoDOOOOb);
call l111'b(04. It001110b);
call W1'b(02. OOlOOOOOb);
call l111'b(03. 11000000b);
call l111'b(05. 0110000011-);
call l111'b(06. OOOOOOOOb);
call IIIrb(07. OOOOOOOOb);
call IIIrb(09. 00000001b);
call l111'bCI0. OOOOOOOObl1
call w1'b(11. 01010110b);
call w1'b(12. 00011000bli
call l111'b(13. OOOOOOOObl1
call W1'b(14. 00000011bl;
call l111'b(15. OOOOOOOObl;

1* .nables *1

caU l111'b(O::3., 11000001b);
call l111'b(05~ 11101010b);

1* channel B reset *1
1* 2 stop. no pa1'itu. b1'f. 64. *1
1* vector = 20h *1
1* 1'X 8 bits/cha1'. no auto-enable *1
I. tx 8 bits/cha1' */(

1* vector includes status *1

1* rxc • txc = BRG • t1'XC • BRG out *1
1* to generate 1200 baud. x64. 4 mhz *1

1* BRG source. BVS eLK. enable IRQ *1
1* all ext status interrupts off *1

1* scc-b 1'eCelVe enable *1
1* scc-b transmit enable. dt1' an. 1'ts on *1

,1* enable interrupts - anlu for interrupt driven ASVNC 110 *1

call l111'b(09. 00001001b);
call l111'b(Ol. 00010011bl;

1* master IE. vector includes status *1
1* tx .rx. ext interrupts enable *1

1*------------------------------_·_------------------------------------~-----*I
231262-3

Figure 3. Initialization for ASYNC Communication

6-272 231262-001

intJ AP-222

'*---------------7--*1

1* ~cc data character input from channel B *1

do whih (input(ch_b_command) and lh) = 0; end;
char. input(ch_b_datall 1* if rx data character is available *1
return chari 1* then input it to buffer *1

1* IICC data character output to chann.l B *1

$CC_out: procedure (char);

declare char byte;

do while (input(ch_b_command) and 4h) - 0; end;
output(ch_b_datal .. char; 1* if tx buff emptll then transfer the *1

1* data character to tx buff *1

1*--. --.------ -.-.----.-.--------------* 1
231262-4

Figure 4. ASYNC Communication In Polling Mode

ter is polled for being ready to transmit the next charac­
ter before writing the character out to the data port of
see channel B.

Typical calls to these procedures are:

abc_variable = scc~n;
call scc_out (xyz_variable);

5. ASYNC Communication in Interrupt
Mode

In contrast to polling for the receiver and/or the trans­
mitter to be ready with/for the next character, the
82530 can be made to interrupt when it is ready to do
receive or transmit.

The on-chip interrupt controller of the see can be
made to operate in the vectored mode. In this mode, it
generates interrupt vectors that are characteristic of the
event causing the interrupt. For the example here, the
vector base is programmed at 20h and 'Vector

6-273

Includes Status' (VIS) mode is set - WR9 =
XXXOXXOl. Vectors and the associated events are:

Vector Procedure Event Causing Interrupt

20h txintr b ch b - transmit buffer empty

22h esij ch b . external/ status change

24h rxintr b cIL-b - receive character available

26h src b ch b - special receive condition'

28h txintr a cIL-a - transmit buffer empty

2ah esi_a cLa - external/status change

2ch rxintr a cIL-a - receive character available

2eh src a cIL-a - special receive condition

NOTE:
Odd vector numbers do not exist.

Figure 5 shows the interrupt procedures for the channel
B operating in ASYNe mode. The tninsmitter buffer
empty interrupt occurs when the transmitter can accept
one more character to output. In the interrupt proce­
dure for transmit, the byte char_out_530 is output.
Following this, is an epiloge that is common to all the

231262-001

inter AP-222

interrupt procedures; the first statement is an end of
interrupt command to the 82530 - note that it is issued
to channel A - and the second is an End of Interrupt
(EO!) command to the 80186 interrupt ~ntroller
which is, in fact, receiving the interrupt from the 82530.

The receive buffer full interrupt occurs when the receiv­
er has at least one character in its buffer, waiting to be
read in by the CPU.

The esLb is not enabled to occur and src_b cannot
occur in the ASYNC mode unless the receiver is over­
run or a parity error occurs.

1*--*1

1* channel B lnterrupt procedures *1

txintr _b: procedure

call wra(OO,38h);
output (eoir_18b) m 8000h;
return)

end tx i ntr _b;

1* reset highest IUS ~I
1* non specific EOI *1

procedure interrupt 22h;

call wrb (00.10h h

call wra(OO.38h);
output (eoir_186) • 8000h;
return;

end eli_b;

1* reset ESI *1

1* reset highest rus *1
1* non specific EOr *1

l' xi ntr _b: procedure interrupt 24h)

call wra(OO.38h);
output (eoir_186) • 8000h;
return)

end rXlntr_b)

1* reset highest IUS *1
1* non specific EOr *1

procedure interrupt 26h;

call wrb(OO.30h);

call wra(OO.38h);
output (eoir_186) .8000h;
return;

end !lrc_b;

1* error reset *1

1* reset highest IUS *1
1* non specific EOr *1

1*--------------_·_--*1
231262-5

Figure 5. ASYNC Communication In Interrupt Mode

6-274 231262-001

inter Ap·222

'6. Initialization for SOLC
Communication

Channel A of the SCC is programmed for being used
for SOLC operation. It uses the OMA channels on the
80186. Figure 6 shows the initialization procedure for
channel A. The comments in the software show the
etTect of each statement. The on-chip Baud Rate Gener­
ator is used to generate a clock of 125 KHz both for
reception and transmission. This procedure is just to
prepare the channel A for SOLC operation. The actual
transmission and reception of frames is done using the
procedures described further. .

7. SOLC Frame Reception

Figure 7 shows the entire set-up necessary to receive a
SOLC frame. First the OMA controller is programmed
with the receive butTer ad&ess (@rx_bufl), byte count,
mode etc and is also enabled. Then a flag indicating
reception of the frame is reset. An Error Reset com­
mand is issued to clear up any pending error condi­
tions. The receive interrupt is enabled to occur at the
end of frame reception (Special Receive Condition);
lastly, the receiver is enabled and put in the Hunt mode
(to detect the SOLC flag). When, the first flag is detect-

ed on the RxOA pin, it goes from the Hunt to the Sync
mode. It receives the frame and the end of frame inter­
rupt (src_b, vector = 2eh) occurs.

8. SOLC Frame Transmission

Figure 8 shows the procedure for transmitting a SOLC
frame once the channel A is initialized. The OMA con­
troller is initialized with the transmit butTer address
(@tlL-butT(I» - note, it is the second byte of the trans­
mit butTer - and the byte count - again one less than the
total butTer length. This is done because the first byte in
the butTer is output directly using an I/O instruction
and not by OMA. Then the flag indicating frame trans­
mitted is reset. The events following are very critical in
sequence:

a. Reset external status interrupts

b. Enable the transmitter

c. Reset transmit CRC

d. Enable transmitter underrun interrupt

e. Enable the OMA controller

f. Output first byte of the transmit block to data port

g. Reset Transmit Underrun Latch

1*---. -----------*1

scc_init_a: proc ed urei

1* scc ch A register initialization I'or SDLC mode *1

call wro1l(09, 1 OOOOOOOb) ; 1* channel A reset *1 ,.11 wra(04, 00100000b) ; 1* SDLC mode *1
c.11 wra(Oi'. 01100000b); 1* DMA I'or Rx *1
ca1l wra(03, 11000000b) ; 1* a bit Rx char. Rx disable *1
call wra(05. 01100000b) ; 1* S bit Tx char. Tx dis.ble *1
call wra(06. 01010101b). 1* node address *1
collI 1 wra(07, 01111110b); 1* SDLC I'lag *1
call wra(10. I OOOOOOOb) ; 1* preset CRC. NRZ encoding *1
call wra(II. OlOlOl10b) ; 1* rxc -txc = BRG . trxc = BRG out *1
c.ll wra(12. 00001110b) i 1* to gener.te 125 Kb.ud. xl (! 4 mhz *1
call wra(13. OOOOOOOOb) ;
call wra(14. 00000110b) ; 1* BRG source = SYS CLK. DMA I'or Tx *1
call wra(15. OOOOOOOOb) i 1* all ext status interrupts off *1

1* enables *1

call wra(14, 00000111 b); 1* enable : BRC *1
call wra(OL 11100000b) i 1* enable : drell. *1
call wra(09, 00001001b)i 1* master IE. vector includes status *1

end 5cc_init_o1Ii

1*-----------------------_·_---*1
231262-6

Figure 6. Initialization for SDLC Communication

6-275 231262-001

AP·222

1*---*/

declare dma_O_mode literallv '1010001001000000b';
1* src-IO. dest=M(inc). sllnc-src. Te. noint. priority. byte *1
outword<dma_O_dpl) c 10w16(@rx_buff);
outword(dma_O_dph) • high16C@rx_buff)1
outword (dma_O_spl) • ch_a_data;
outwordCdma_O_sph) • 0;

1* +2 for eRe *1 outword(dma_O_tc) • block_length + 21
outword(dma_.O_cw) • dma_O_mode or 0006hl 1* start DMA channel 0 *1

1* reset frame received flag *1
call wraCOO.30hll 1* error reset *1
call wra(Ol. llt11001b);
ca11·lIIra(03. 11010001b);

1* sp. cond intr only. ext int enable *1
1* enable receiver. ent~ hunt mode *1

1*--*1
231262-7

Figure 7. SDLC Frame Reception

1*--*1

declare dma 1 mode literallv '0001011010000000b';
1* src-I'I(inc); destalO. sllnc=dest. Te. no i nt. nopr i or. bll te *1
outlllord(dma_l_.spl) = 10w16(ttx_buff(1l);
outlllordCdma_l_sph) • high16C@tx_buffCl»;
outlllordCdma_l_dpl) • ch_a_data;
outlllord(dma_l_dph) • 0;
outlllord(dma_l_tc) .. blocw_length - 1; 1* -1 for first byte *1

call 1111' a (00.
call IIIraC05.
,all 1111' a (00.
call 1111' a (15.

00010000b) ;
011010111i) ;
10101000b);
01000000b) ;

1* re .. t ESI *1
1* enable transmitter *1
1* reset tx CRC. TxINT pending
1* enable TxU int *1

*1
,

outlllordCdma_l_'III) • dma_l_mode or 0006h; 1* Itart DMA channell *1
output(ch_a_data) • tx_buffCO); 1* first bllte - addresl field *1
call 1111' a (00. 11000000b); 1* Relet Tx Underrun latch *1

1*--*1
231262-8

Figure 8. SDLC Frame Transmission

6-276 231262-001

inter AP-222

Ift---.----------------------------*1

1* channel A interrupt procedures *1

txintr _a: procedure i ntllrrup t 28h.

call wra(OO,38h).
output (eoir_186) = BOOOh.
return;

end txintr_ai

1ft reset highest IUS ftl
1ft non spec1fic Eor *1

procedurll i roterrup t 2ah.

,all wra(OO,10h),
tv_stat .. rra(O).
frame_tx .. Offh.

call wraI.OO,38h).
output (eoir_186) a 8000h,
return.

end es i_a.

1ft reset ESI *1
1* read in status *1
1* set fpame transmitted flag *1

1* rllset highest IUS *1
1* non specific EOr *1

rxintr _a: procedure interrupt 2ch.

call wra(OO,38h)",
output (eo1r_1B6) = BOOOh.
return.

end rxintr_a,

1* reset highllst IUS *1
1* non specific EOr *1

procedurll interrupt 2eh.

rx_stat .. rra(l).
call wra(OO,30h),
call wra(03,11000000b),
frame_recd = Offh.

call wra(OO,3Bh).
output (eoir_186) - BOOOh;
return.

end src_a.

1* error reset *1
1* disable rx *1
1* set frame received flag *1

1* reset highest IUS *1
1* non specific EOI *1

1*---*1
231262-9

Figure 9_ SDLC Interrupt Routines

6-277 231262-001

AP-222

The frame gets transmitted out with all bytes, except
the first one, being fetched by the sec using the DMA
controller. At the end of the block the DMA controller
stops supplying bytes to the sec. This makes the trans­
mitter underrun. Since the Transmitter Underrun

, Latch is in the reset state at this moment, the CRC
bytes are appended by the SCC at the end of the trans­
mit block going out. An External Status Change inter-

. rupt (esLa, vector = 2ah) is generated with the bit for
transmitter underrun set in RRO register. This inter­
rupt occurs when the CRC is being translnitted out and ,-
1Iot when the frame, is completely transmitted out.

9. SDLC Interrupt Routine.

Figure 9 shows all the interrupt procedures for channel
A when operating in the SDLC mode. The procedures
of significance here are esLa and src~.

The end of frame reception results in the src_a proce­
dure getting executed. Here the status in register RRl
is stored in a variable rlLJtat for future examination.
Any error bits set in status are reset, receiver is disabled
and the flag indicating reception of a new frame is set.

The esLa procedure is executed when CRC of the
transmitted frame is just going out of the SCC. Reset
External Status Interrupt command is executed, the ex­
ternal status' is stored in a variable tJLJtat for future

examination and the flag indicating transmission of the
frame is set. ,

End of frame processing is required a1,'ter both of these
interrupt procedures. ,It involveS' looking at
rlLJtat and tJLJtat and checking if the desired opera­
tion was succesaful. The buffers ~, may have to be
reCovered or new ones obtained to start another frame
translnission or reception.

CONCLUSIONS

This 'article should ease the process of writing a com­
plete data link driver for ASYNC and SDLC modes
since most of the hardware dependent procedures are
illustrated here. It was a 'conscious decision to make the
procedures as small and easy to understand as possible.
This had to be done at the expense of making the proce­
dures general and not dealing with various exception
conditions that can occur.

REFERENCES

1. 82530 Data Sheet, Order #230834-001

2. 82530 SCC Technical Manual, Order
#230925-001

6-~78 231262-001

inter AP-222

APPENDIX A
8253O-BAUD RATE GENERATORS

The 82530 has two Baud Rate Generators (BRG) on
chip-one for each channel. They are used to provide
the baud rate or serial clock for receive and transmit
operations. This article describes how the BRG can be
programmed and used.

Step 1: Baud Rate Time Constant (BRTC)

The BRTC is determined by a simple formula:

Serial Clock Frequency
BRTC = - 2

2 X (Baud Rate X Baud Rate Factor)

Example:

The BRG for each channel is totally independent of
each other and have to be programmed separately for
each channel. This article describes how anyone of the
two BRGs can be programmed for operation. To use
the BRG, four steps have ,to be performed:

For Serial Clock Frequency = 4 MHz

1. Determine the Baud Rate Time Constant (BRTC)
to be programmed into registers WR12 (LSB) and
WR13 (MSB).

Baud Rate

Baud Rate Factor

400000O

= 9600

16

2. Program in register WR11, to specify where the
output of the BRG must go to. BRTC = - 2

3. Program the clock source to the BRG in register
WR14.

2 X (9600 X 16)

4. Enable the BRG.
= 13,021 - 2 = 11.021

1~1~1~1~1~~21~1~1

II ~ I ! I ",' ."' -nAC ."''"' , o 1 TRxC OUT = TRANSMIT CLOCK

1 0 TRxC OUT = BR GENERATOR OUTPUT

1 1 TRxC OUT = DPLL OUTPUT

TRxC 011

r!!-.!- TRANSMIT CLOCK = RTxC PIN

r!!-~ TRANSMIT CLOCK = TRxC PIN

r!..!- TRANSMIT CLOCK = BR GENERATOR OUTPUT

...!...!... TRANSMIT CLOCK = DPLL OUTPUT

..Q. J!.- RECEIVE CLOCK = RTxC PIN

..Q."!'" RECEIVE CLOCK = TRxC PIN

1 J!.. RECEIVE CLOCK = BR GENERATOR OUTPUT

J:..!... RECEIVE CLOCK = DPLL OUTPUT

~--------------- RTxCXTAUNOXTAL

Figure 1. Write Register .11

6-279

231262-10

231262-001

"

','I

I~

I
I,
~

I,~
~
I'

Ap·222

Table 1 BRTC, Baud Rate Time Constant

1
9600 206.333
4800 414.667

Baud 2400 831.333
Rate 1200 1664.667

600 3331.333
300 6664.667

Since only integers can be written into the registers
WRI2/wR13 this will have to be rounded off to II
and it will result in an error of:

fraction 0.021 100 - 0190<
--- x 100 = -- X -. yO
BRTC 11.021

This error indicates that the baud rate signal generated
by the BRG does not provide the exact frequency re­
quired by the system. This error is more serious for
smaller baud rate factors. For asynchronous systems,
errors up to 5% are considered acceptable.

Note that for BRTC = 0, BRG output frequency = 1/4 X
Serial Clock Freq.

Table I shows the BRTC for a 4 MHz serial clock with
various baud rates on the Y-axis and baud rate factors
on the X - axis. The constant that is really programmed
into registers WRI2/WR13 is the integer closest to the
BR TC value shown in the table. .

Step 2: BRG Output

The output of the BRG can be directed to the Receiver,
Transmitter and the TRxC output. This is programmed
by setting bits D6 D5, bits D4 D3, and bits DI DO in
register WRII to 10. See Figure 1. The output of the
BRG can also be directed to the Digital Phase Locked
Loop (DPLL) for the on-chip decoding of the NRZI
encoded received data' signal. This is done by writing
100 into bits D7 D6 D5 of register WRI4 as shown in
Figure 2.

Step 3: BRG Source Clock

Register WRI4 is used to select the input clock to the
BRG. See Figure 2.

Baud Rate Factor

16 32 64
11.021 4.510 1.255
24.042 11.021 4.510
50.083 24.042 11.021

102.167 50.083 24.042
206.333 102.167 50.083
414.667 206.333 102.167

'D7IDaIDsID4ID31i>21 DIlDo'

0
0

0

0
1

1

1

1

0 0
0 1

1 0
1 1

0 0
0 1

1 0
1.1

~LSL BR GENERATOR ENABLE
L BR GENERATOR SOURCE

DTRlREQUEST FUNCTION

AUTO ECHO
. LOCAL LOOPBACK

NULL COMMANb
ENTER SEARCH MODE

RESET MISSING CLOCK

DISABLE DPLL
SET SOURCE = BR GENERATOR

SET SOURCE • RTxC

SETFM MODE
SET NRZI MODE

231262-11

Figure 2. Write Register 14

WR 14 / bit D I = 0 - Clock comes from pin
RTxC

WRI4 / bit DI = I - Clock comes from System
Clock (PCLK)

On RESET WRI4 / bit DI = O.

It should be noted that for the case of Bit D I = 0, the
clock comes either from:

a. Clock on pin RTxC - ifWRll / D7 = 0

orb. Crystal on pins RTxC & SYNC

-ifWRll /D7 = 1

Step 4: BRG Enable

This is the last step where bit DO ofWRI4 is set to start
the BRG. The BRG can also be disabled by resetting
this bit.

6-280 231262-001

Ap·222

APPENDIX B
MODEM CONTROL PINS ON THE 82530

Introduction

This article describes how the CTS/ and CO/ pins on
the 82530 behave and how to write software to service
these pins. The article explains when the External
Status Interrupt occurs and how and when to issue the
Reset External Status Interrupt command to reliably
determine the state of these pins.

Bits 03 and 05 of register RRO show the inverted state
oflogic levels on CO/ and CTS/ pins respectively. It is
important to note that the register RRO does not always
reflect the current state of the CO/ and CTS/ pins.
Whenever a Reset External Status Interrupt (RESI)
command is issued, the (inverted) states of the CO/
and the CTS/' pins get updated and latched into the
RRO register and the register RRO then reflect the in­
verted state of the CO/ and CTS/ pins at the time of
the write operation to the chip. On channel or chip
reset, the inverted state of CO/ and CTS/ pins get '
latched into RRO register.

Normally, a transition on any of the pins does not nec­
essarily change the corresponding bit(s) in RRO. In cer­
tain situations it does and in some cases it does not. A
sure way of knowing the current state of the pins is to
read the register RRO after a RESI command.

There are two cases:

I. External Status Interrupt (ESI) enabled.

II. Polling (ESI disabled).

Case I: External Status Interrupt (ESI) Enabled

Whenever ESI is enabled, an interrupt can occur when­
ever there is a transition on CO/ or CTS/ pins - the IE

RESET

co/ OR CTS/
TRANSITION

RESI

bits for CO/ and/or CTS/ must also be set in WR15
for the interrupt to be enabled.

In this case, the first transition on any of these pins will
cause an interrupt to occur and the corresponding bit in
RRO to change (even without the RESI command). A
RESI command resets the interrupt line and also latch­
es in the current state of both the CO/ and the CTS/
pins. If there was just one transition the RESI does not
really change the contents of RRO.

If there are more than one transitions, either on the
same pin or one each on both pins or multiple on both
pins, the interrupt would get activated on the first tran­
sition and stay active. The bit in RRO corresponding
only to the very first transition is changed. All subse­
quent transitions have no effect on RRO. The first tran­
sition, in effect, freezes all changes in RRO. The first
RESI command, as could be expected, latches the final
(inverted) state of the CO/ and CTS/ pins into the
RRO register. Note that all the intermediate transitions
on the pins are lost (because the response to the inter­
rupt was not fast enough). The interrupt line gets reset
for only a brief moment following the first RESI com­
mand. This brief moment is approximately 500 ns for
the 82530. After that the interrupt becomes active
again. A second RESI command is necessary to reset
the interrupt. Two RESI commands resets the interrupt
line independent of the number of transitions occurred.

Whenever operating with ESI enabled, it is recom­
mendable to issue two back-to-back RESI commands
am! then read the RRO register to reliably determine
the state of the CO/ and CTS/ pins and also to reset
the interrupt line in case multiple transitions may have
occurred.

CO/ OR CTS/
TRANSITION

RESI

SUBSEQUENT
TRANSITIONS

231262-12

State Diagram

6-281 231262-001

intJ Ap·222

Case II: Polling RRO for CDI and CTSI Pins CONCLUSIONS

If RRO is polled for deterinining the state of the CD/
and CTS/ pins, then the External Status Interrupt
(ESI) is kept disabled . .In this case the bits in.RRO may
not change even for the first transition. The best way to
handle this case to always issue a RESI command be­
fore reading in the RRO register to determine the state
of CD/ and CTS/ pins. Note, however, if two back-to­
back RESI commands were to be issued every time be­
fore reading in the RRO register, the first subsequent
transition will change the corresponding bit in RRO.

The state diagram above illustrates how each transition
on CD/ and CTS/ pins affect the 82530 and what effect
the RESI command has.

State 0

It is entered on reset. No ESI due to CTS/ or CD/
are pendi~g in this state. Any transition on CTS/ or
CD/ pins lead to the state 1 accompanied by an im­
mediate change in the RRO register.

State 1

Interrupt is active (if enabled). If a RESI command
is issued, state 0 is reached where interrupt is again
inactive. However, a further transition on CTS/ or
CD/ pin leads to state 2 without an immediate
change in RRO register.

State 2

Interrupt is active (if enabled). Any further tran­
sitions have no effect. A RESI command leads to
state 1, temporarily making the interrupt inactive.

Register RRO does not always reflect the current (in­
verted) state of the CD/ and CTS/ pins. The most reli­
able way to determine the state of the pins in interrupt
or polling mode is to issue two back-to-back RESI com­
mands and then read RRO. While polling, the second
RESI is redundant but harmless. When issuing the
back-to-back .RESI commands to 82530 note that the
separation between the two write cycles should be at
least 6 CLK + 200 ns; otherwise the second RESI will
be ignored.

6-282 231262-001

AP-222

APPENDIX 'C.
Interfacing 82530 to 80186

INTRODUCTION FOUR TTL PACKAGE INTERFACE

The 82530 is Intel's new sophisticated dual channel
multiprotocol serial communications controller. It can
run up to 1.5 Mb/s in synchronous mode. It has useful
features like on-chip baud rate generators and oscilla­
tors. It can be operated in polled, interrupt, half-duplex
DMA, or full-duplex DMA modes. It is also capable of
supplying its own interrupt vector during INT A cycles
(like the 8274).

A method of interfacing the 82530 to the 80186 CPU
with four 14-pin TTL packages is described in this ap­
plication note. The circuitry is shown in Figure 2. The
TTLs are 74LS04, 74LS74, and 74LS08.

The interface supports the following operational modes:

1) Polled
2) Interrupt in vectored mode

Interfacing the 82530 to the 8086/88 and 80186/188
processors requires the extemallogic shown in Figure 1.

3) Interrupt in non-vectored mode
4) Half-duplex - DMA on both channels
5) Full-duplex - DMA on one channel

--------,

D
A A D A '-80186 I. l(82530

~

D
~ ,

D
L _______ ,...

TTL Glue
(74LS04, 74LSOB, 74!-S74)

Figure 1.80186/82530 lnterface

6-283

-

231262-13

231262-001

"

','

',I

II
\
!~

00-7

RD

74LS04 1~8
RESET 1 2 21 U2

3

~3
12~8 i6,:S04 3 4 ,
13] U2)

11

U3 --
4 ~8 74LS74 4

WR 2 D PR Q 5 U2)
6

5

:!!
fa 8 c: ..
CD 0
N .. 1
=I 8
r- 6 co
N
CII
Co)

cp 0
I\) I

~ co
0
co co

74LS04 U4
CLKOUT 5 6 3

CLR O p!.
U3 r----:-

Hb 1

A2
Al

PCS6 10 74LS08

PCS5 9 1112
8 74LS74 ~4 . 74LS74n 10

r2 D
PR 5 ~ o PR Q 9

Q

INTAO 3 Ul 6 11 Ul 8

OLRO~ CLR ole>!-
113 b

:i -CD
~ .. -DI

H-, 74LS74n 10

2
(")

~ c: ;::;:

L...E. PR Qr--!-D

u!f?04
U4

13 12 11
CLR a ~

U3
913

DRQ1

INTO

DROO

CLOCK

GENERATOR

!

I
-

D

4 DB7 TxDA ~ 37 DB6 RxDA 13
3 ~ 38

DB5 TRxCA
DB4 RlXCA ~ 2 DB3 SYNCA

~ Cha.
39 17 A

DB2 RTSA ~ 1 DBl CTSA 40 DBO ODA ~
OTRlREQA 16

36
RD 8 35

34 WR

32 AlB 2
Die lJcDB ~ 33 os 5 RxDB ~

3 TRxCB ~ 5 H 8 INT imCa ~
INTA 0 SYNCB ~

~
RTSB~

30 RDYIREQA CTSB ~
RDY/AEQB DCDB ~

7 DTRlREQB ~. 5V
H lEI +

6
lEO vee W El tcr
CLK GND ~ U5

E2

74LS04
9 .~ 8

U3

i?l 11 10

U3

NOTES:

1. H = PULLED HIGH THROUGH 1K OHM
- ...
3. U2 = 74LS08
4. U3 = 74LS04
5. U4 = 74LS74

nel

Channel
·B

231262-14

l

:.
'V
I
~
~
~

intJ
PRINCIPLES AND CIRCUIT
DESCRIPTION

AP-222

WR signals, as shown in Figure 3, is equivalent to a
hardware reset of the 82530. This requires ORing of
RESET with RD and WR signals to the 82530.

The principles shown can be used easily to extend full
duplex DMA to both channels. This can in fact be done
using the same 4 TIL packages if an 8288 were also
used in the system-more of that later. The reason why
TIL interfacing is necessary and how it is done is now
described.

B) Write

A) Reset

The 82530 does not have an explicit hardware reset
input; however, simultaneous activation of RD and

The falling edge of WR should not occur before the
data (to be written to the 82530) is valid (see Figure
4). Nor should the rising edge of WR occur after
the data becomes invalid. This means that the WR
active phase should occur entirely during the time
when the data is valid. The WR signal from 8086/
88/186/188 goes active before the data is valid. A
D flip-flop and two inverters are used to delay the
WR going to 82530 so that it becomes active after

WR \ I
RD

NO RESET

DATA

tow = 0 min

I~

\ /
I+-- 250 ns ----+l

min

\ /

+ RESET +
Figure 3. RESET Timing

DATA VALID

twp min
390 n8

(250 ns for -6)

Figure 4. WR Signal Timing

6-285

\ ,-
NO RESET

231262-15

231262-16

231262-001

AP-222

"'I .. t--------- :;:;:800 ns ~I

iNTi
from
80186

iNTi
to
82530

U1
Pin 5

RDto
82530

231262-17

Figure 5. INTA Signal Processing

the data is valid. Note that if an 8288 is used to
generate the IOWR signal (as in all big systems),
then the flip-flop and inverters are not required
since IOWR from the 8288 is compatible with the
82530 timing requirements.

C) DMA

The 82530 has two types of DMA request outputs;
also, it has no DACK inputs. This means that the
82530 requires either a two cycle type of DMA
transfer (a la 80186/88 or 8089), or DACK from
the DMA controller (e.g. 8237A) has to be used to
generate CS, AlB, and Die signals.

The first type of DMA request is RDY IREQ. It
can be programmed to function as RDY or
DMAREQ (WR1: Bit 6). It can further be pro­
grammed as DMAREQ for transmit or for receive
(WR1: Bit 5). This enables using just one signal for
both the receive and transmit functions-ideal for
half-duplex operation. This signal needs just an in­
version to be fed into the DRQ input of the 80186.

The second DMA request signal is DTRlREQ. It
can be programmed to function as DTR (Data Ter­
minal Ready) or as DMAREQ for transmitter (ac­
tive on transmitter buffer empty) in WRI4: Bit 2.
Thus, full-duplex DMA is possible by using DTRI
REQ as TxDRQ and RDY IREQ as RxDRQ.

DTRlREQ requires a little over 5 CLK cycles to
become inactive. This would cause the DMA con­
troller to run multiple DMA cycles, causing loss of
data. A flip-flop is set by DTR/REQ whose output
is DRQl to the 80186. The response ofthe 80186 to
DRQI is a read or write at PCS5 address to do the
DMA TRANSFER. This resets the flip-flop cut­
ting off the DMA request to the 80186 which pre­
vents false DMA transfer.

The DMA configurations supported by the interface
are: r

• Half-duplex on Channel A and Channel B

• Full-duplex on Channel A and no DMA on Chan­
nel B

D) INTA Processing

80186 generates 2 back-to-back INTA cycles in re­
sponse to an interrupt and expects to read the inter­
rupt vector on the second cycle. Two flip-flops (Ul)
are used to'convert these two cycles to one INTA
cycle and a RD pulse as required by the SCC. See
timing diagram in Figure 5. SCC requires that the
RD pulse is contained within the INT A pulse. This,
alon~ith the pulse width requirements for INTA
and RD signals are easily met.

6-286 231262-001

intJ AP·222

WAIT STATE REQUIREMENTS

The 82530 requires wait states in a normal single buff­
ered system, as shown in Figure 6. They arise primarily
due to the WR pulse width (= 390 ns) and its timing
with respect to data valid as shown in Figure 4.

SCC

82530 82530-6
(4 MHz) (6 MHz)

80186-6
2 1

(6 MHz)

Processor

80186
3 2 (8 MHz)

Figure 6. Walt State Requirements

It is assumed in this interface design that the 80186
generates the chip selects and the appropriate number
of wait states. In an 8086/88 system, chip select and
wait states must be generated externally just as for all
other peripheral components attached to the CPU.

The PCS6 chip select output from the 80186 is used to
select the 82530 for all operations except to service
DMA on Channell of the 80186 when PCS5 is used.
Note that it is necessary to pulse PCS5 signal before

enabling the DMA Channell. This resets the DRQl
flip-flop. A block for clock generator is also shown-al­
though it is not considered a part of the CPU interface.
It may be easily derived from CLKOUT.

The 4 TTL pack interface presented here covers all fea­
tures of the SCC usage. In many cases the interface
need not be as extensive as shown here and results in
saving board space. Two cases where considerable sav­
ing is achieved are:

Case 1: System Using 8288

If the system uses an 8288 bus controller for 80186,
pre-processing of WR input is not necessary and the
IOWC output of 8288 can be fed directly to pin S ofU2
(74LS08). This is because IOWC signal meets the tim­
ing requirements of the SCC. Also note, that the inter­
face circuit is then totally independent of the 80186
clock.

Case 2: System Using Non-Vectored Interrupt
Mode for SCC

Such a system will not need the component Ul
(74(S74) nor the AND gate U2 ~s 11, 12, 13). Pin 3
of U2 can be fed directly to the RD input of SCC.

CONCLUSION

This four TTL package interface solution is low cost
and compact (1.2 sq. inch). It should satisfy 82530 in­
terfacing for almost all applications. In fact, as already
mentioned, many applications may require only 2-3
TIL packages for interfacing the 82530 to 80186 or to
other INTEL processors.

6-287 231262-001

82501 ETHERNET SERIAL INTERFACE

• Compatible with IEEE 802.3/Ethernet
and Cheapernet Specifications

• 10-Mbs Operation

• Replaces 8 to 12 MSI Components

• Manchester Encoding/Decoding and
Receive Clock Recovery

• 10-MHz Transmit Clock Generator

• Driving/Receiving IEEE 802.3
Transceiver Cable

• Fail-Safe Watchdog Timer Circuit to
Prevent Continuous Transmissions

• Diagnostic Loopback for Fault
Detection and Isolation

• Directly Interfaces to the 82586
LAN Coprocessor

The 82501 Ethernet Serial Interface (ESI) chip is designed to work directly with the 82586 LAN Coprocessor in IEEE
802.3/Ethernet and non-Ethernet 10-MBps local-area network applications. The major functions ofthe 82501 are to
generate the 10 MHz transmit clock for the 82586, perform Manchester encoding/decodIng of the transmitted/
received frames, and provide the electrical interface to the Ethernet transceiver cable. Diagnostic loopback control
enables the 82501 to route the signal to be transmitted from the 82586 through its Manchester encoding and
decoding circuitry and back to the 82586. The combined loopback capabilities of the 82586 and 82501 result in
efficient fault detection and isolation by providing sequential testing of the communications interface. An
on-chip fail-safe watchdog timer circuit prevents the station from locking up in a continuous transmit mode.

NTERFACE

I I
INTER':AC

82586 GND Vee TRANSCEIVER CABLE
E

-- CLSN , ,
COLLISION· XCVR CABLE , , - PRESENCE INTERFACE &

, , , ,
GENERATION NOISE FILTER \ J

I ,--
I

CARRIER-PRESENCE GENERATION

1 /'-.... ,

~~
, ,

MANCHESTER XCVR CABLE J
,

DECODER AND INTERFACE AND , ,
CLOCK NOISE FILTER , ,

RECOVERY \, __ /1

RXD

RCV

Cl VCC

C2 TRMT

TRMT

ReV TXD

RCV TXC

CRS TEN

RCV

COT Xl

~ ~' -2 COUNTER CLOCK
~CRYS GENERATION

X,

RXC X2

RXD CLSN

GND CLSN
TAL

r,

(, , TXD TRMT

MANCHESTER
f----- TRANSCEIVER , J

ENCODER CABLE DRIVER i ,
J

\ , , ,-- TAMT

WATCHDOG TIMER worD

(1
LOOPBACKIWDTD

Figure 1. 82501 Functional Block Diagram Figure 2. Pin Configuration

Intel CorporatIon Assumes No Responslbllty for the Use of Any CircUitry Other Than Circuitry Embodied 10 an Intel Product No Other Circuit Patent Llcenses a1'a Implied.
@INTELCORPORATlON, 1982 6-288 Septembe, t984

ORDER NuMBER 210783-003

inter 82501

Table 1. Pin Description

Pin Pin
Symbol No. Type Name and Function Symbol No. Typa Nama and Function

m 16 0 Transmit Clock: A lo-MHz clock out- LPBKI 3 I Loopback: A TTL-level control SIgnal
put wIth 5 nsec rise and fall times WOTD to enable the loopback mode In thIS
ThIS clock IS prOVIded to the 82586 mode, serial data on the TXD Input IS
for serial transmIssion. routed through the 82501 Internal

ffiiI 15 I Transmit Enable: An active low,
TTL-level signal synchronous to
i'XC that enables data transmission
to the transceIver cable. TEfiI can be
driven by ms from the 82586.

Circuits and back to the RXD output
without driVIng the TRMTITRMT out-
put pair to the transceiver cable.
When LPBK is asserted, the collISIon
circuit will also be turned on at the
end of each transmIssion to SImulate

TXO 17 I Transmit Data: A TTL·level input the colliSIon test The on-chIp watch-

sIgnal that IS directly connected to
the serial data ouput, TXO, of the

dog timer can be dIsabled byapply-
Ing a 12V level through a 4k ohm

82586. resIstor to thIS pin LPBK must not
be asserted at power up to ensure

RXC 8 0 Receive Clock: Clock output wIth 5 proper COT and CRS SIgnals to
nsec rise and fall tImes and 50% duty 82586 at start of operatIon
cycle ThIS output IS connected to
the 82586 receIve clock Input RXC TRMT 19 0 Transmit Pair: An output driver pair
There IS a maxImum 1 4 /lsec dIS-
contInUIty at the beginning of a frame

whIch generates the dIfferentIal slg-
TRMT 18 0 nal for the transmit pair of the Ether-

reception when the phase-locked net transceIver cable FollOWing the
loop SWItches from the on-ChIp oscil- last tranSItIon, whIch IS always POSI-
lator to the incoming data DUring tIve at TRMT, the dIfferentIal voltage
Idle (no Incoming frames) the clock
frequency. wIll be half that of the 20

IS slowly reduced to zero volts The
output stream IS Man'chester

MHz crystal frequency encoded

CRS 6 0 Carrier Sense: A TTL-level, actIve
low output to notIfy the 82586 that
there is activIty on the coaXIal cable.
ThIS SIgnal is asserted when valid
data or a collisIon SIgnal from the
transceiver IS present It is deas-
serted at the end of a frame
synchronous wIth RXC, or when the
end of the collisIon-presence SIgnal
(CLSN and CLSN) is detected,

RCV 4 I Receive Pair: A dIfferentIally driven
Input pair whIch IS tIed to the

RCV 5 I receIve pair of thE! Ethernet trans-
ceIver cable The first transItIon on
RCV WIll be negatIve-going to indI-
cate the beginnIng oi a frame The
last transItIon should be posltlve-
gOing, indIcating the end of a frame
The receIved bIt stream IS assumed
to be Manchester encoded

whIchever occurs later. CLSN 12 I Collision Pair: A dIfferentIally

RXO 9 0 Receive Data: An MOS-Ievel output
tied directly to the RXO Input of the
82586 controller and sampled by
the 82586 at the negative edge of
RxC. The bit stream received from
the transceiver cable is Manchester
decoded prior to being transferred
to the controller. This output
remains high during idle.

driven Input pair tIed to the
CLSN 11 I collISIon-presence pair of the Ether-

net transceIver cable The colllslon-
presence SIgnal IS a 10 MHz:!: 15%
square wave The first transItIon' at
CLSN IS negatIve-going to Ind Icate
the beginning of the SIgnal, the last
transItIon IS posItIve-going to indI-
cate the end of the SIgnal

COT 7 0 Collision Detect: A TTL, active low
signal whIch drives the COT input of
the 82586 controller. It IS asserted as

Cl 1 I PLL Capacitor: Phase-locked-loop
capacItor Inputs

C2 2 I

long as there IS actIvIty on the colhsion- X1 14 I Clock Crystal: 20-MHz crystal
presence pair (CLSN and CLSN), I Inputs
and dUring SQE test in loopback X2 13 I

--
Vee 20 Power: 5 ± 10% volts
_. __ . _.

GNO 10 Ground: Reference
- --.

6-289 210783-003

82501

FUNCTIONAL DESCRIPTION

Clock Generation

A 20 MHz crystal-controlled oscillator is provided as
t,he basic clock source. This 20 MHz signal is then
divided by 2 to generate a 10 MHz ± .01% clock as
required in the IEEE 802.3 specification. The oscilla­
tor requires an external parallel resonant fundamen­
tal mode, 20 MHz crystal.

Manchester Encoder and
Transceiver Cable Driver

The 20 MHz clock is used to Manchester encode
data on the TXD input line. The clock is also divided
by 2 to produce the 10 MHz clock required by the
82586 for synchronizing its RTS and TXD signals.
See Figure 3. (Note that the 82586 RTS is tied to the
82501 TEN input as shown in Figure 4.)

Data encoding and transmission begins with TEN
going low. Since the first bit is a '1', the first transition
on the transmit output TRMT is always negative.
Transmission ends with the TEN Iloing high. The last
transition is always positive at TRMT and may occur
at the center of the bit cell (last bit = 1) or at the
boundary of the bit cell (last bit = 0). A one-bit delay
is introduced by the 82501 between its TXD input and
TRMT/TRMT output as shown in Figure 3. Following
the last transition, the output TRMT is slowly brought
to its high state so that zero differential voltage exists
between TRMT and TRMT. The undershoot for return
to idle is less than 100 mV. This will eliminate DC
currents in the primary of the transceiver's coupling
transformer. See Figure 4.

An internal watchdog timer is started at the begin­
ning of the frame. The duration of the watchdog
timer is 25 msec ± 15%. If the transmission ter­
minates (by deasserting the TEN) before the timer
expires, the timer is reset (and ready for the next
transmission). If the timer expires before the trans­
mission ends, the frame is aborted. This is accom­
plished by disabling the output driver for the
TRMT/TRMT pair and deasserting CRS. RXD and
RXC are not affected. The watchdog timer is reset
only when the TEN is deasserted.

The cable driver is a differential gate requiring exter­
nal resistors or a current sink of 20 mA (on both
terminals). In addition, high-voltage protection of +16
volts maximum and short circuit to ground is provided.

Receive Section

CABLE INTERFACE AND NOISE FILTER
The 82501 input circuits can be driven directly from the
Ethernet transceiver cable receive pair. In this case the

6-290

cable is terminated with a 78-ohm resistor for proper
impedance matching. The 82501 has internal resistors
that establish the common mode voltage. See Figure 4.

The input circuits can also be driven with ECl voltage
levels. In either case, the input common mode voltage
must be in the range of 0 - Vee volts to allow for a wide
driver supply variation at the fransceiver. The input
terminals have a 16-volt maximum protection and
additional clamping of low-energy, high-voltage noise
signals.

A noise filter is provided at the RCV/RCV input pair
to prevent spurious signals from improperly trigger­
ing the receiver circuitry. The noise filter has the
following characteristics:

A negative pulse which is narrower than 15 ns or is
less than -150 mV in amplitude is rejected during
idle.

At the beginning of a reception, the filter is turned off by
the first negative pulse which is more negative than
-275 mV and is wider than 30 ns.

As soon as the first valid negative pulse is recognized
by the noise filter, the data threshold is lowered to 160
mV. The CRS signal is asserted to inform the 82586
controller o.f the beginning of a transmission, and the
RXC will be held low for 1.4 ILsec maximum while the
internal phase-locked-loop is acquiring lock.

The frame is ended if no negative transition occurs
within 160 ns from the last positive transition.

Immediately after the end of a transmission, the filter
blocks all the signals for 5 Jlsec minimum, 7 Jlsec
maximum. This dead time is required to block-off
spurious transitions which may occu'r on the coaxial
cable at the end of a transmission and are not filtered
out by the transceiver.

MANCHESTER DECODER AND
CLOCK RECOVERY
The filtered data enters the clock recovery and decoder
circuits. An analog phase-locked-loop (PLL) technique
is used to extract the received clock from the data,
beginning from the third' negative transition of the
incoming data. The Pll will acquire lock within the first
14 bit times, as seen from the RCv/RCV inputs. During
that period of time, the RXC is held low. Bit cell timing
distortion which can be tolerated in the incoming
signal is ± 15 nsec for the preamble and ± 18 nsec for
data. This distortion must have less than ± 5 ns bias
distortion. The voltage-controlled oscillator (VCO) of
the Pll corrects its frequency to match the incoming
signal transitions.

210783-003

intJ 82501

Its VCO cycle time stays within 5% of the RXD bit cell
time regardless of the time distortion allowed at the
RCV/RCV input. The RCV/ReV input is decoded

,from Ma-nchester to .NRZ and transferred
synchronously with the receive clock to the 82586
controller.

At the end of a frame, the receive clock is used to
detect the absence of RCV/RCV transitions and
report it to the 82586 by deasserting CRS while RXD
is held high.

Collision-Presence Section

The CLSN/CLSN input signal is a 10 MHz ±15% square
wave generated by the transceiver whenever two or
more data frames are superimposed on the c~
cable. The maximum asymmetry in the CLSN/CLSN
signal is 60/40% for low-to-high or high-to-Iow levels.
This signal is filtered for noise rejection in the same
manner as RCv/RCV. The noise filter rejects signals
which are less negative than -150 mV and narrower
than 15 ns during idle. It turns on at the first negative
pulse which is more negative than -275 mVand wider
than 30 ns. After the initial turn-on, the filter remains
active indicating that a valid collision signal is present,
as long as the negative CLSN/CLSN Signal pulses are
more negative than -275 mV. The filter returns to the
"off" state if the signal becomes less negative than
-150 mV, or if no negative transition occurs within
160 ns from the last positive transition. Immediately
after turn-off, the collision filter is ready to be
reactivated.

The common mode voltage and external termination
are identical to the RCv/RCV input (See Figure 4.) The
CLSN/CLSN input also has a 16-volt maximum
protection and additional clamping against low-energy,
high-voltage noise signals.

A valid collision-presence signal will assert the 82501
COT output which can be directly tied to the ClJf
input of the 82586 controller.

During the time that valid collision-presence transitions
are present on the CLSN/CLSN input, invalid data
transitions will be present on the receive data pair due
to the superposition of signals from two or more
stations transmitting simultaneously. It is possible for
RCv/RCV to lose transitions for a few bit times due to
perfect cancellation of the signals. which may cause
the 82501 to abort the reception.

6-291

When a valid collision-presence signal is present the
CRS signal is asserted (along with COT). However, if
this collision-presence signal arrives withi n 6.0 ± 1.0 J,IS
from the last transmission only COT is generated.

Internal Loopback

When asserted, LPBK causes the 82501 to route serial
data from its TXD input, through its transmit logic
(retiming and Manchester encoding), returning it
through the receive logic (Manchester decoding and
receive clock generation) to RXD output. The internal
routing prevents the data from passing through the
output drivers and onto the transmit output pair,
TRMTITRMT. When in'loopback mode, all of the
transmit and receive circuits, including the noise filter,
are tested except for the transceiver cable output driver
and input receivers. Also, at the end of each frame
transmitted in loopback mode, the 82501 generates the
SQE test (heartbeat) signal within 1 J,lSec after the end
of the frame. Thus, the collision circuits, including the
noise filter, are also tested in loopback mode.

The watchdog timer remains enable~ in loopback
mode, terminating test frames that exceed its time-out
period. The watchdog can be inhibited by placing the
LPBK to a 4K resistor connected to 12V ± 3V. The
loopback feature can still be used to test the integrity of
the 82501 by using the circuit shown in Figure 5.

In the normal mode (LPBK not asserted), the 82501
operates as a full duplex device, being able to transmit
and receive simultaneously. This is similar to the
external loop back mode of the 82586. Combining the
internal and external loop back modes ofthe 82586 and
the internalloopback and normal modes of the 82501,
incremental testing of an 82586/82501-based interface
can be performed under program control for systematic
fault detection and fault isolation. LPBK must not be
asserted at power up to ensure proper COT and CRS
signals to 82586 at start of operation.

Interface Example

The 82501 IS deSigned to work directly with the 82586
controller in Ethernet as well as non-Ethernet 10
Mbps LAN applications. The control and data signals
connect directly between the two devices without
the need for additional external logic. The complete
82586/82501 I Ethernet Transceiver cable interface is
shown in FIGURE 4. The 82501 provides the driver
and receivers needed to directly connect to the
transceiver cable, requiring only terminating resis­
tors on each input signal pair.

210783-003

82501

20MHz INTERNAL CLOCK

fXD "1" "0" "0"

-----_ ... '
"0" "1"

-~--TRMT

(MANCHESTER-ENCODED DATA)

Figure 3. Start of Transmission and Manchester Encoding

TO CPU
BUS

ETHERNET TRANSCEIVER
5V OV CABLE

20 10 / "
TXC

26 15 TXC Vee GND
TRMT

RTS
28 15

TEN

27 17
TRMT TXD TXD

CTS
29 C1 C1

82501.
82586 GND

C2
RCV ,

RXC
23 8

RXC
, ,

31
CRS CLSN 12 ') ~

CRS I \
25 , COLLISION-

RXD RXD 18n , PRESENCE

30 t
11

COT

LOOPBACK
INPUT FROM PROCESSOR

NOTE:

C1 = 0.0221JF ± 10%
C2 = C3 = 30 - 35 pF (Including trace capacitance).

Figure 4. 82586/82501 Transceiver Cable Interface

6-292

"0"

210783-003

·82501

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias •.••• O"C to 70"C
Storage Temperature -6S0C to +15O"C
All Output and Supply Voltages•.• -O.SV to + 7V
All Input Voltages .•..........••.•• -1.0V to +S.SV
Power Dissipation ...•..•.......•.......• 1.S Watt

D.C. CHARACTERISTICS (T A = 0-70° C. Vee = 5V ± 10"10)

Symbol Parameter Min.

Vil Input Low Voltage (TTL) -0.5

VIH Input High Voltage (TTL) 2.0

"NOTICE: Stresses above those listed under '!4bsolute
Maximum Ratings" may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at these or any other conditions
above those indicated in the operational sections of
this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may
affect device reliability.

Max. Un"s Conditions

+0.8 V

Vee + 0.5 V

VIDF Input Differential Voltage ±300 ± 1500 mV RCVand CLSN

VeM Input Common Mode Voltage 0 Vee V RCV and CLSN

VOll Output Low Voltage TTL or MOS 045 V 10l = 4 mA

VOL2 Output Low Voltage TXC, RXC 0.6 V 10l = 4 mA

VoeM Common Mode Output 1.0 45 V Rl = 78 Ohms Differential
Termination and 1200
pulldown

VOHl Output High Voltage TTL 2.4 V 10H = -1.0 mA

VOH2 Output High Voltage MOS 3.9 V 10H = -400p.A

VOH3 Output High Voltage RXC, TXC 3.3 V 10H = -400p.A

VODF Differential Output Swing .6 1.1 V Rl = 78 Ohms Differential
Termination and 1200
pulldown (TRMT)

III Input Leakage Current (TTL) +200 p.A VIN = Vee

CIN Input Capacitance 10 pF f = 1 MHz

COUT Output Capacitance 20 pF f':: 1 MHz

lec 225 mA 1200 Pulldowns

IF Input Current (TTL) -500 p.A VF = .45V

....... Note: All specifications are prellmmary values and are subject to change without notice Contact your local Intel Sales Office for the latest speclflcallOns

A.C. CHARACTERISTICS

A.C. Measurement Conditions

I) TA = 0° to 70°C, Vee = SV ± 10%

II) The AC measurements are done at the following
voltage levels for the various kinds of inputs and
outputs

a) TTL inputs and outputs: 0.8V and 2.0V
The input voltage swing is at least 0.4 to 2.4V
with 3-10 ns rise and fall times.

b) Cloak outputs: The rise and fall times are
measured between 0.6V and 3.0V pOints. The
high time is measured between 3.0V points and
the low time is measured between 0.6V points.

6-293

e) Differential inputs and outputs:
The SO% points of the total swing are used for
delay measurements. The rise and fall times of
outputs are measured at the 20 to 80% points.
The differential voltage swing at the inputs is at
least ±27SmV with rise and fall times of 3-1S ns
measured at ±.2 volts. Once the squelch
threshold has been exceeded the inputs will
detect less than ±160mV signals.

III) The AC loads for the various kind of outputs are
as follows:

a) TTL and MOS: A 1S-pF Capacitance to GND
including test fixture and probe. '

b) Differential: A 1Q-pF Capacitance from each
terminal to GND and a termination load resistor
of 78 ohms in parallel with a 27 micro-henries
inductor between the two terminals.

210783-003

fl.
I~

82501

TRANSMIT TIMING

Symbol Parameter Min. Max. Unit

t1 TXC Cycle Time 99.99 100.01 ns

t2 TXC Fall Time 5 ns

t3 TXC Rise Time
~~

5 ns

4 TXC Low Time (at 0.9V) 40 ns

ts TXC High Time (at 3.0V) 40 ns

t6 Transmit Enable/Disable to TXC Low 50 ns

t7 TXD Stable to TXC Low 50 ns

t8 Bit Cell Center to Bit Cell Center of Transmit Pair Data 99.5 100.5 ns

t9 Transmit Pair Data Fall Time [1] 1 .. 0 5.0 ns

tlO Transmit Pair Data Rise Time [1] 1.0 5.0 ns

t11 Bit Cell Center to Bit Cell Boundary of Transmit Pair Data 49.5 50.5 ns

t12 TRMT held low from Last Positive Transition of
, 200 ns

Transmit Pair Data during idle:

t12A From Last Positive Transition of Transmit Pair Differential 8000 ns
Output Approaches Within 40mV of zero volts.

TRANSMIT TIMING

r- t3

~--+-f~-~--t-+:-----J~ · ~
1 " l=

~ ________ ~/~----~\~L~A~~~BI=T-7r--------------------TXD

I
1/0

----t"A----_~

+
!!!M];
TRMT (LAST BIT ~ 1)

TRMT,TRMT(LASTBIT~1) 8
1+ 1

Note:
1. Measured per 802.3 Para 6 511

6-294 210783-003

82501

RECEIVE TIMING

Symbol Parameter Min. Max. Unit

t13 Receive Pair Signal Pulse Width (at -0.275V) differential signal) of First
Negative Pulse for
a) Signal Rejection by Noise filter, 15 ns
b) NOise Filter Turn-on in order to Begin Reception 30 ns

t14 Duration which the RXC is held at low state 1400 ns

t15 Receive Pair Signal Rise/Fall Time at ± .2 volt 20 ns
t16[1] Receive Pair Bit Cell Center from crossover timing distortion:

In preamble ± 15 ns
In data ± 18 ns

t17[1] Receive Pair Bit Cell Boundary allowing for timing distortion:
In data ± 18 ns

t18 Receive Idle Time Before the Next Reception can Begin in a transmitting
station (as measured from the deassertion of CRS) 8 J1s

t19 Receive Pair Signal Return to Zero Level from Last valid
Positive Transistion 160 ns

t20 CRS Assertion delay from the First received valid Negative Transition
of Receive Pair Signal 100 ns

Symbol Parameter Min. Max. Unit

t21 CRS Deassertion delay from the Last valid positive transition received
300[2] (when no Collision-Presence signal exists on the transceiver cable) ns

t24 RXC Jitter ± 5.0 ns

t25 RXC Rise/Fall time 5.0 ns

t26 RXC Low Time (at 0.9V) 40 ns

t26A RXC High Time (at 3.0V) 36 ns

t27 Receive Data Stable before the Negative Edge of RXC 30 ns

t28 Receive Data Held valid past the Negative Edge of RXC 30 ns

t29 Carrier Sense Inactive Setup Time to RXC High 60 ns

t29A Carrier Sense Active Hold Time from RXC High 10 ns

t30 Receive data Rise/Fall time 10 ns

t31 From the time CRS is de asserted until the time for a transmitting station it
can be asserted again 5 7 J1S

NOTES:
1. ± 5 ns of bias distortion-the remainder is random distortion.
2. CRS IS deasserted synchronously with the RXc ThiS condition is not speCified in the IEEE 802.3 specification.

12V
82501

LPBK WDTD Function
LPBK/WDTD 1 X LPBK mode

0 0 Normal mode
WDTD

0 *1 Normal mode with
watchdog timer disabled

1< = Open Collector

Figure 5. Watchdog Timer Disable

6-295 . 210783-003

intJ 82501

RECEIVE TIMING: START OF FRAME .

I I 0 I I 0 I 0 I I I

~~~ :Jl"x ~ 
t------. I,4·------1 

RXD 

"THIS CLOCK PULSE MAY NOT BE A VALID CLOCK PULSE 

RECEIVE TIMING: END OF FRAME 

Rev (LAST BIT = 0) 
Rev 

RCV (LAST BIT = 1) 
Rev 

RXD 

I 0 I 0 I 
+ - + - :: 

~I 0 + I + II-I --119--1 
1~·-----118 

+ 

=x x ~. 
.~~ 

I_----~i~---~,--~-
'------

1+---131---~·1 

"NOTE CRS CAN BE TRIGGERED ON AGAIN BY THE COLLISION·PRESENCE SIGNAL 

6-296 210783-003 



82501 

COLLISION TIMING 

Symbol Parameter Min. Max. 

t32 CLSN/CLSN Signal Pulse Width (at -.30V differential signal) of first 30 
Negative Pulse for Noise Filter Turn-on 

t33 CLSN/CLSN Cycle Time 813 118 

t34 CLSN/CLSN Rise/Fall Time at :±:.2 volts 15 

t35 CLSN/CLSN Transition Time 35 70 

t36 COT Assertion from the First Valid Negative Edge of Collision Pair Signal 75 

t37 em Deassertion from the Last Positive Edge of CLSN/CLSN Signal 200 

t38 CRS Deassertion from the Last Positive Edge of CLSN/CLSN signal (If no 450 
post-collision signal remains on the receive pair.) 

t39 CRS Inactive after Collision Setup Time to RXC High 60 35 

t39A CRS Active Hold Time from RXC High after Collision 10 

COLLISION TIMING 

~ -1 r13
• + , 

g~~~------~~~----------------~, 

132 ~ + \- ~133~ ~ ~t3' I / 

--+--1
36 -1 

COT ""\.1 ~ ______________________ ~--J 

. RXC 

NOTES: 
1 CRS WILL BE DEASSERTED FOR A PERIOD UP TO 7 "SEC MAXIMUM 

WHEN RCV/RCV OR CLSN/CLSN TERMINATES, WHICHEVER OCCURS 
LATER 

2 CRS WILL REMAIN ASSERTED AFTER THE CLSN/CLSN SIGNAL 
TERMINATES IF RCV/RCV SIGNALS CONTINUE 

LOOPBACK TIMING 

Symbol Parameter 

40 LPBK asserted before the first attempted transmission 

t41 Simulated collision test delay from the end of each attempted transmisssion 

42 Simulated collision test duration 

43 LPBK deasserted after the last attempted transmission 

NOTE: 
In Loopback mode, RXC, RXD and CRS function in the same manner as a normal Receive. 

6-297 

Min. Max. 

500 

.5 1.5 

.5 , 1.0 

5 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Unit 

ns 

/JoS 

/JoS 

/JoS 

210783-003 



inf.el" 82501 

LOOPBACK TIMING 

I "I" I "0" I "I" I "0" I "0" I "I" I 
TXD . ~ 
~ ______ ~tl1-1-I42-t--

COT ~I ~ 

\~----------~~~,--------~I 

RXD 
I "1" I "0" I "1" I I "I" 

--------------~~~~~~---

TESTABILITY 

NOTES: 

NOTE: 
1 DURING LOOPBACK, THE 82501 RECEIVE CIRCUITRY USES 12 BIT TIMES 

WHILE THE PLL LOCKS ON THE I1ATA AS A RESULT, THE FIRST 12 BITS 
ARE LOST 

1. All AC parameters become valid after the PLL has sta­
bilized: 1001'5 after the application of power. 

6-298 210783-003 



inter 
82C502 

ETHERNET TRANSCEIVER CHIP 
• Conforms to IEEE 802.3, Ethernet Rev. 

2, and Cheapernet Standards 
• Requires minimum boardspace 

- On-Chip voltage reference 
- Anti-Jabber function -16 pin DIP 
- Receiver based collision detection 
- Signal Quality Error (heartbeat) test • No external adjustments required 

- Supports redundant jabber timer • Reliable CHMOS technology 

The 82C502 Ethernet Transceiver Chip is a CHMOS LSI device that provides the complete set of transmit, 
receive, and collision detection functions as specified by the IEEE 802.3/Ethernet and Cheapernet 10 Mbps 
standards. The 82C502 along with Intel's 82586 LAN Coprocessor and 82501 Ethernet Seriallnteriace realize 
highly integrated IEEE 802.3/Ethernet and Cheapernet systems. 

The device consists of 3 sections: transmit, collision detection and receive. The transmit section transmits 
data received from the transceiver (AUI) cable on to the 50n coax cable. The collision detect section detects 
collisions (simultaneous transmission of two or more stations) on the coax and indicates a collision by trans­
mitting a 10 MHz signal on the collision presence pair of the transceiver cable. The receiver section receives 
data from the coax, and transmits the data onto the receive pair of the transceiver cable. The 82C502 can 
drive transceiver ,<cables up to 50 meters in length. 

The 82C502 is fabricated in Intel's reliable 10V CHMOS II process. 

TRANSCEIVER 
CABLE 

INTERFACE 

TRANSMIT SECTION 

COAX CABLE 
INTERFACE 

1-+-+ XIIT 

COLLISION DETECTION SECTION 

............ _RCV 

231243-1 

Figure 1. 82C502 Block Diagram 

231243-2 

Figure 2. 
82CS02 Pin Diagram 

Intel Corporation assumes no responsibility for the use of any Circuitry other than circuitry embodied in an Intel product. No other circuR patent 
licenses are implied. Information contained herein supersedes previously published Specifications on these devices from Intel. November 1984 
@ Intel Corporation. 1984 Order Number: 231243-001 

6-299 



82C502 

Applications 

The 82C502 is intended to be used in high performance (10 Mbps) LAN applications such as IEEE 802.31 
Ethernet and Cheapernet. IEEE 802.3/Ethernet require that the 82C502 transceiver chip be located·in a tap 
box attached directly to the coax cable. A drop cable up to 50 meters in length connects the transceiver tap 
box to the data terminal equipment (OTE), see Figure 3. 

In Cheapernet applications, the 82C502 would be located inside the OTE, and transformer coupled to the 
82501, see Figure 4. In both applications, the IEEE specifications require that a OC isolated power supply 
power the 82C502. 

SHARED ~E~ORY 

SYSTE~ OR LOCAL BUS 

INT. 
IAPX 186 CHANNEL 

ATTENTION 

82586 
LAN 

COPROCESSOR 

82501 
ETHERNET 

SERIAL INTERFACE 

TRANSCEIVER CABLE 

Figure 3. IEEE 802.3/Ethernet configuration supports 
100 users per segment, each segment Is 500 meters long 

6-300 

231243-3 

231243-001 



intJ 82C502 

SHARED UEUORY 

SYSTEU OR LOCAL BUS 

INT. 
IAPX 186 CHANNEL 

ATTENTION 

ISOLATED 
POWER 
SUPPLY 

82586 
LAN. 

COPROCESSOR 

82501 
ETHERNET 

SERIAL INTERFACE 

Figure 4. IEEE 802.3 Cheapemet configuration supports 
30 users per segment, each segment Is 185 meters long 

6-301 

231243-4 

231243-001 



./ 

. inter,;, 

• 

• 

• 

• 

82586 
LOCAL AREA NETWORK COPROCESSOR 

Performs Complete CSMAlCD Data Link • 
Functions without CP~ Overhead 
- High level commandlfnterface 

Supports Established and Emerging LAN 
Standards • 
- IEEE 802.3/Ethemet 
- IEEE 802.3/Cheapemet 
- IBM PC Network (2 Mbps Broadband) 
- 1 Mbps Networks 

On-Chip Memory Management 
- Automatic buffer chaining saves • 

memory 
- Reclaim of buffers after receipt of bad 

frames 
- Save bad frames 

Interfaces to 8-blt and 16-bit • 
Microprocessors 

.................. 

Figure 1. 82588 Functional Block Diagram 

Supports Minimum Component Systems 
- Shared bus configuration 
- No TTL Interface to IAPX 186 and 

188 microprocessors 

Supports High Performance Systems 
- Bus master, with on-chip ,DMA 
- 4 MBytes/second ~us bandwidth 
- Compatible with dual port memory 
- Back to back frame reception at 

'10 Mbps 

Network Diagnostics: 
- Frame CRC error tally 
- Frame alignment error tally 
- Location of cable opens/shorts 
- Collision tally 

Self Test Diagnostics 
- Intemalloopback 
- Extemalloopb"ck 
- Internal register dump 
- Backoff timer check 

... Vee 
A11181 .. , ... A22(1ilIi 

'17 ~.(Wiil 
"8 • IH! 

AD11 8 HOLD 
.D1. 1 "LDA 
.D13 • n (DTIIiI 
AD12 • iii iBIIII 
ADt1 ,. READY (ALE) 
AD10 [ 11 INT 
Vss 12 ARDYIIRDY 
'DO " Vee ... .. CO 
•• 1 " RElET ... .. MN/ • ... '1 eLK ... .. Ciii ... 11 Cl1i' ... .. CTI .. , 21 iii'i ... " 11" 
lie .. 'lie 
v.s •• RX. 

NOTE THE SYMBOLS IN MRENTHE8ES 
CORRESPOND TO MINIMUM MODe:. 

Figure 2. 82588 Pinout 

• IBM Is a trademark of International Business Machines Corp. 

Intel Corporation Assume. No Re.ponaibihy for the U.e of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit Patent Llcen •••• relmplied. 
@INTELCORPORATION.ll182 September. 1984 

6-302 Order Number: 231246-001 



82586 

The 82586 is an intelligent, high performance Local 
Area Network coprocessor, implementing the 
CSMA/CD link access method (Carrier Sense Mul­
tiple Access with Collision Detection). 

The 82586 performs a large range of link manage­
ment and channel interface functions including: 
CSMAlCD link access, framing, preamble genera­
tion and stripping, source address generation, des­
tination address checking, CRC generation and 
checking. Any data rate up to 10 Mb/s can be used. 

The 82586 features a powerful host system inter­
face. It automatically manages memory stn.Jctures 
with command chaining and bidirectional data 
chaining. An on-chip DMA controller manages 4 
channels transparently to the user. Buffers contain­
ing errored or collided frames can be automatically 
recovered. The 82586 can be configured for 8-bit or 
16-bit data path, with maximum burst transfer rate of 
2 or 4 Mbyte/sec, respectively. Memory address 
space is 16 Mbyte maximum. 

The 82586 provides two independent 16 byte FIFO's, 
one for receiving and one for transmitting. The 
threshold for block transfer to/from memory is 

programmable, enabling the user to optimize bus 
ove~head for a given worst case bus latency. 

The 82586 provides a rich set of diagnostic and 
network management functions including: internal 
and externalloopbacks, exception condition tallies, 
channel activity indicators, optimal capture of all 
frames regardless of destination address, optional 
capture of errored or collided frames, and time 
domain reflectometry for locating fault points in the 
cable. 

The 82586 can be used in conjunction with either 
baseband or broadband networks. The controller. 
can be configured for maximum network efficiency 
(minimum contention overhead) for any length 
network operating at any data rate within the 
82586's range. The controller supports address field 
lengths of 1, 2, 3, 4, 5, or6 bytes. It can be configured 
for either the IEEE 802.3/ Ethernet or HDLC method 
of frame delineation. Both 16-bit and 32-bit CRC are 
supported. 

The 82586 is packaged in a 48 pin DIP and fabri­
cated in Intel's reliable HMOS II 5 volt technology. 

Table 1. 82586 Pin Description 

Symbol Pin No. TYpe Name and Function 

VCC,VCC 48, 36 System Power: +5 volt power supply. 

VSS,VSS 12, 24 System Ground. 

RESET 34 I RESET is an active HIGH internally synchronized signal, causing the 
82586 to terminate present activity immediately. The signal must be 
HIGH forat leastfourclock cycles. The 82586 will execute RESET within 
ten system clock cycles starting from RESET HIGH. When RESET 
returns LOW, the 82586 waits for the first CA to begin the initialization 
sequence. 

TxD 27 0 Transmitted Serial Data output signal. This signal is HIGH when not 
transm itti ng. 

TxC 26 I Transmit Data Clock. This signal provides timing information to the 
internal serial logic, depending upon the mode of data transfer. For NRZ 
m·ode of operation, data is transferred to the TxD pin on the HIGH to 
LOW clock transition. 

RxD 25 I Received Data input signal. 

RxC 23 I Received Data Clock. This signal provides timing informatiQn to the 
internal shifting logic depending upon the mode of data transfer. For 
NRZ data, the state of the RxD pin is sampled on the HIGH to LOW clock 
transition. 

RTS 28 0 Request To Send signal. When LOW, notifies an external interface that 
the 82586 has data to transmit. It is forced HIGH after a Reset and while 
the Transmit Serial Unit is not sending data. 

6-303 231246-001 



82586 

Table 1. 82586 Pin Description (Cont'd.) 

Symbol Pin No. Type Name and Function 

OTS 29 I Active LOW Clear To Send input enables the 82586 transmitter to 
actually send data. It is normally used as an interface handshake to R'fS. 
This Sig~Oing inactive stops transmi,ssion. It is internally synchro-
nized. If goes inactive, me~ the setup time to ~ negative edge, 
transmission is stopped and R goes inactive within, at most, two 
TxC cycles. 

CRS 31 I Active LOW Carrier Sense input LJsed to notify the 82586 that there is 
traffic on the serial link. It is used only if the 82586 is configured for 
external Carrier Sense. When so configured, external circuitry is 
required for detecting serial link traffic. It is internally synchronized. To 
be accepted, the signal must stay active for at least two serial clock 
cycles. 

CDT 30 I Active LOW Collision Detect input is used to notify the 82586 that a 
collision has occurred. It is used only if the 82586 is configured for 
external Collision Detect. External circuitry is required for detecting the 
collision. It is internally synchronized. To be accepted, the signal must 
stay active for at least two serial clock cycles. During transmission, the 
82586 is able to recognize a collision one bit time after preamble 
transmission has begun. 

INT 38 0 Active HIGH Interrupt request signal. 

CLK 32 I The system clock input from the 80186 or another symmetric clock 
generator. 

MN/MX 33 I When HIGH, MN/MX selects RD, WR, ALE, DEN, DT/A (Minimum 
Mode). When LOW, MN/MXselectsA22,A23, READY,SO,51 (Maximum 
Mode). Note: This pin should be static during 82586 operation. 

ADO-AD15 6-11, 1/0 These lines form the time multiplexed memory address (t1) and 
13-22 data (t2, t3, tW, t4) bus. When operating with an 8-bit bus, the high byte 

will output the address during the entire cycle. ADO-AD15 are floated 
after a RESET or when the bus is not acquired. 

A16-A18, 1,3-5, 0 Used maximum mode only. These lines constitute 7 out of 8 most 
A2o-A23 45-47 significant address bits for memory operation. They switch during t1 

and stay valid during the entire memory cycle. The lines are floated after 
RESET or when the bus is not acquired. 

A19/S6 2 0 During t1 it forms line 19 of the memory address. During t2 through t4 it 
is used as a status indicating that this is a Master peripheral cycle, and is 
HIGH. Its timing is identical to that of ADO - AD15during write operation. 

HOLD 43 0 HOLD is an active HIGH signal used by the 82586 to request local bus 
mastership at the end of the current CPU bus transfer cycle, or at the end 
of the current DMA burst transfer cycle. In normal operation, HOLD 
goes inactive before HLDA. The 82586 can be fo'rced off the bus by 
HLDA going inactive. In this case, HOLD goes inactive, at most, three 
bus cycles after HLDA goes inactive. , 

HLDA 42 I HLDA is an active HIGH Hold Acknowledge signal indicating that the 
CPU has received the HOLD request and that bus control has been 
relinquished to the 82586. It is internally synchronized'. After HOLD is 
detected as LOW, the processor drives HLDA LOW. Note, CONNECTING 
VCC TO HLDA IS NOT ALLOWED because it will cause a deadlock. 
Users wanting to give permanent bus access to the 82586 should 
connect HLDA with HOLD. If HLDA goes inactive before HOLD, the 
82586 will release the bus (by HOLD going inactive), within three bus 
«ycles at most. 

6-304 231246-001 



inter 82586 

Table 1. 82586 Pin Description (Cont'd.) 

Symbol Pin No. "TYpe Name and Function 

CA 35 I The CA pin is a Channel Attention input used by the CPU to initiate the 
82586 execution of memory resident Command Blocks. The CA signal is 
synchronized internally. The signal must be HIGH for at least one system 
clock period. It is latched internally on HIGH to LOW edge and then 
detected by the 82586. 

BHE 44 0 The Bus High Enable signal (BHE) is used to enable data onto the most 
significant half of the data bus. Its timing is ipentical to that of A16-A23. 
With a 16-bit bus it is LOW and with an 8-bit bus it is HIGH. Note: after 
RESET, the 82586 is configured to 8-bit bus. 

READY 39 I This active HIGH signal is the acknowledgement from the addressed 
memory that the transfer cycle can be completed. While LOW, it causes 
wait states to be inserted. This signal must be externally synchronized 
with the system clock. The Ready signal internal to the 82586 is a logical 
OR between READY and SRDWARDY. 

SRDY/ARDY 37 I This active HIGH signal performs the same function as READY. If it is 
programmed at configure time to SRDY, it is identical to READY. If it is 
programmed to ARDY, the positive edge of the Ready signal is internally 
synchronized. Note, the negative edge must still meet setup and hold 
time specifications, when in ARDY mode. The ARDY signal must be 
active for at least one system clock HIGH period for proper strobing. The 
Ready signal internal to the 82586 is a logical OR between READY (in 
Maximum Mode only) and SRDY/ARDY. Note that following RESET, this 
pin assumes ARDY mode. 

SO,S1 40,41 0 Maximum mode only. These status pins define the type of DMA transfer 
~rin..9.. the current memory cycle. They are encoded as follows: 
S1 SO 
0 o Not Used 
0 1 Read Memory 
1 o Write Memory 
1 1 Passive 

Status is active from the middle of t4 to the end of t2. They return to the 
passive state during t3 or during tW when READY or ARDY is HIGH. 
These signals can be used by the 8288 Bus Controller to generate all 
memory control and timing signals. Any change from the passive state 
signals the 8288 to start the next t1 to t4 bus cycle. These pins are pulled 
HIGH and floated after a system RESET and when the bus is not 
acquired. 

RD 46 0 Used in minimum mode only. The Ci!!!d strobe indicates that the 82586 is 
performing a memory read cycle. RD is active LOW during t2, t3 and tW 
of any read cycle. This signal is pulled HIGH and floated after a RESET 

-. and when the bus is not acquired. 

WR 45 0 Used in minimum mode only. The write strobe indicates that the 82586 is 
performing a write memorycycle.Vii'Ris active LOW during t2, t3 and tW 
of any write cycle. It is pulled HIGH and floats after RESET and when the 
bus is not acquired. 

ALE 39 0 Used in minimum mode only. Address Latch Enable is provided by the 
82586 to latch the address into the 8282/8283 address latch. It is a HIGH 
pulse, during t1 ('clock low') of any bus cycle. Note that ALE is never 
floated. 

DEN 40 0 Used in minimum mode only. Data ENable is provided as output ~Ie 
forthe 8286/8287 transceivers in a stand-alone (no 8288) system. DEN is 
active LOW during each memory access. For a read cycle, it is active 
from the middle of t2 until the beginning of t4. For a write cycle, it is 
active from the beginning of t2 until the middle of t4. It is pulled HIGH 
and floats after a system RESET or when the bus is not acquired. 

6-305 231246-001 



inter 82586 

Table 1. 82586 PI~ Description (Cont'd.) 

Symbol Pin No. Type Name and Function 

DT/R 41 0 Used in minimum mode9nly. DT/R is used in non-8288 systems using an 
8286/8287 data bus transceiver. It controls the direction 'of data flow 
through the Transceiver. Logically, DT/R is equivalent to S1. It becomes 
valid in thet4 preceding a bus cycle and remains valid until the final t4 of 
the cycle. This signal is pulled HIGH and floated after a RESET or when 
the bus is not acquired. 

82586/HOST CPU INTERACTION 

Communication between the 82586 and the host is 
carried out via shared memory. The 82586's direct 
access to memory capability allows autonomous 
transfer of data blocks (buffers, frames) and relieves 
the CPU of byte transfer overhead. The 82586 is 
optimized for operating with the iAPX 186, but due 
to the small number of hardware signals between 
the 82586 and the CPU, the 82586 can operate easily 
with other processors. In discussing 82586/Host 
interaction, the logical interface and the hardware 
bus interface are referred to separately. 

The 82586 consists of two independent units: 
Command Unit (CU) and Receive Unit (RU). The • 
CU executes commands from shar!ld memory. The 
RU handles all activities related to frame reception. 
The CU and RU enable the 82586 to engage in the 
two activities simultaneously: the CU may be fetch­
ing and executing commands out of memory, and 
the RU may be storing received frames in memory. 
CPU intervention is only required after the CU exe­
cutes a sequence of commands or the RU stores a 
sequence of frames. 

-

The only hardware signals that connect the CPU 
and the 82586, are the INTERRUPT and CHANNEL 
ATTENTION, see Figure 3. Interrupt is used by the 
82586 to draw the CPU's attention to a change in the 
SCB. The Channel Attention is used by the CPU to 
draw the 82586's attention. 

82586 SYSTEM MEMORY STRUCTURE 

The Shared Memory structure is composed of four 
parts: Initialization Root, System Control Block 
(SCB), Command List, and Receive Frame Area 
(RFA), see Figure 4. 

The Initialization Root is at a predetermined loca­
tion in the memory space, (OFFFFF6H), known to 
both the host the CPU and the 82586. The root is 
accessed at initialization and points to the System 
Control Block. 

The System Control Block (SCB) serves as a bidi­
rectional mailbox between the host the CPU, CU 
and RU. It is the central element through which the 
CPU and the 82586 exchange control and status 

CHANNEL ATTENTION 
CA CPU 

INTERRUPT 82586 
INTR 

..c;~ 
SHARED MEMORY 

I INITIALIZATION I ROOT 

+ 
1\ I SYSTEM CONTROL I Vt BLOCK (SCB): 

V 
"MAILBOX" N 

! ! 
RECEIVE ., COMMAND 
FRAME LIST 
AREA 

Figure 3. 82586/Host CPU Interaction 

6-306 231246-001 



82586 

information. The SCB is composed of two parts. 
First, instructions from the CPU to the 82586. These 
include: control of the CU and RU (START, ABORT, 
SUSPEND, RESUME), a pointer to the list of com­
mands for the CU, a pointer to the receive frame 
area, and a set of interrupt acknowledge bits. 
Second, information from the 82586 to the CPU that 
includes: state of the CU and RU (e.g. IDLE, ACTIVE 
READY, SUSPENDED, NO RECEIVE RESOURCES), 
interrupt bits (command completed, frame received, 
CU gone not ready, RU gone not ready), and statis­
tics. See Figure 4. 

INITIALIZATION ROOT 

The Command List serves as a program for the CU. 
Individual commands are placed in memory units 
called a Command Block, or CB. CB's contain 
command specific parameters and command spe­
cific statuses. SRecifically, these high level com­
mands are called Action Commands (e.g. Transmit, 
Configure). 

A specific command, Transmit, causes transmission 
of a frame by the 82586. The Transmit command 
block includes Destination Address, Type Field, and 
a pOinter to a list of linked buffers that holds the 
frame to be constructed from several buffers scat­
tered in memory. The Command Unit performs, 

COMMAND LlST~L) 

COMMAND 
COMMAND LIST 

POINTER 

RECEIVE FRAME 
POINTER 

STATISTICS 

RECEIVE FRAME AREA (RFA) 

'--__ --' (N) 

Figure 4. 82586 Shared Memory Structure 

6-307 231246-001 



82586 

without the CPU intervention, the DMA of each 
buffer and the prefetching of references to new 
buffers in parallel. The CPU is notified only after 
successful transmission or retransmission. 

The Receive Frame Area is a list of Free Frame 
Descriptors (Descriptors not yet used) and a list of 
buffers prepared by the user. It is conceptually dis­
tinct from the Command List. Frames arrive without 
being solicite9 by the 82586. The 82586 must be 
prepared to receive them even if it is engaged in 
other activities and to store them in the Free Frame 
Area. The Receive Unit fills the buffers upon frame 
reception and reformats the Free Buffer List into 
received frame structures. The frame structure is 
virtually identical to the format of the frame to be 
transmitted.The first frame descriptor is referenced 
by SCB, and the reclaimed and returned to the Free 
Buffer List, unless the chip is configured to Save 
Bad Frames. 

Receive buffer chaining (i.e. storing incoming 
frames in a linked list of buffers) improves memory 
utilization significantly. Without buffer chaining, the 
usermust allocate consecutive blocks of the maxi­
mum frame size (1518 bytes in Ethernet) for each 
frame. Taking into account that a typical frame size 
may be about 100 bytes, this practice is very ineffi­
cient. With buffer chaining, the user can allocate 
small buffers and the 82586 uses only as many as 
needed. 

In the past, the drawback of buffer chaining was the. 
CPU processing overhead and the time involved in 
the buffer switching (especially at 10 Mb/s). The 

" 82586 overcomes this drawback by performing 
buffer management on its own (completely trans­
parent to the user). 

The 82586 has a 22-bit memory address range in 
minimum mode and 24-bit memory address range 
in maximum mode. All memory structures, the Sys­
tem Control Block, Command List, Receive Des­
criptor List, and all buffer descriptors must reside 
within one 64K-bytememory segment. The Data 
Buffers can be located anywhere in the memory 
space. 

TRANSMITTING FRAMES 

The 82586 executes high level or action commands 
jrom the Command List in external memory. Action 
commands are fetched and executed in parallel with 
the host CPU's operation, thereby signJ/icantly 
improving system performance. The general action 
commands format is shown in Figure 5. 

COMMAND STATUS 
CONTROL 

FIELDS 
COMMAND 

LINK FIELD 
I-- co~~IND (POINTER TO NEXT COMMAND) 

PARAMETER FIELD 
(COMMAND-SPECIFIC 

PARAMETERS) 

Figure 5. Action Command Format 

,Message transmission is accomplished by using the 
"Transmit command. A single Transmit command 
contains, as part of the command-specific parame­
ters, the destination address and type field for the 
transmitted frame along with a pointer to a buffer 
area in memory containing the data portion of the 
frame. (See Figure·15.) The data field is contained in 
a memory data structure consisting of a Buffer Des­
criptor (BD) and Data Buffer (or a linked list of 
buffer descriptors and buffers) as shown in Figure 6. 
The BD contains a Link Field which pOints to the 
next BD on theJlist and a 24-bit address pOinting to 
the Data Buffer itself. The length of the Data Buffer 
is specified by the Actual Count field of the BD. 

TRANSMIT (BD) 

ACTUAL COUNT 

LINK FIELD 

.W-NEXTBUFF ER DESCRIPTOR 

DB ADDRESS 'r-- DATA (24 BITS) BUFFER (DB) 

Figure 6. Data Buffer Descriptor and Data Buffer 
Structure 

6~308 231246-001 



82586 

Using the BD's and Data Buffers, multiple Data 
Buffers can be 'crained' together. Thus, a frame 
with a long Data Field can be transmitted using 
multiple (shorter) Data Buffers chained together. 
This chaining technique allows the system designer 
to develop efficient buffer management policies. 

When transmitting a frame as shown below in Fig­
ure 7: 

Figure 7. Frame Format 

The 82586 automatically generates the preamble 
(alternating 1's and O's) and start frame delimiter, 
fetches the destination address and type field from 
the Transmit command, inserts its unique address 
as the source address, fetches the data field from 
buffers pointed to by the Transmit command, and 
computes and appends the CRC at the end of the 
frame. 

The 82586 can be configured to generate either the 
Ethernet or HDLC start and end frame delimiters. In 
the Ethernet mode, the start'frame delimiter is two 

SYSTEM 
CONTROL .1-

BLOCK 

r - - I- - - - - -
I 

FRAME 

I DESCRIPTOR (RFD) 

I 
. 

I 

I RECEIVE 
BUFFER 

I DESCRIPTOR (BD) 

• 
I 

I 
I 

DATA 
I BUFFER (DB) 

I 

consecutive 1 bits and the end frame delimiter indi- . 
cated by the lack of a signal after transmitting the 
last bit of the frame-check sequence field. When in 
the HDLC mode, the 82586 wilt generate the 01111110 
'fla'g' for the start and end frame delimiters and per­
form the standard 'bit stuffing/stripping.' In addition, 
the 82586 will optionally pad frames that are shorter 
than the specified minimum frame length by 
appending the appropriate number of flags to the 
end of the frame. 

In the event of a collision (or collisions), the 82586 
manages the entire jam, random wait and retry pro­
cess, reinitializing DMA pointers without CPU inter­
vention. Multiple frames can be sent by linking the 
appropriate number of Transmit commands together. 
ThiS is particularly useful when transmitting a mes­
sage that is larger than the maximum frame size 
(1518 bytes for Ethernet). 

RECEIVING FRAMES 

In order to minimize CPU overhead, the 82586 is 
designed to receive frames without CPU supervi­
sion. The host CPU first sets aside an adequate 
amount of receive buffer space and then enables the 

- - - -

FD or--

FREE BUFFER LIS T(FBL) 

RBD --. ,-•• RBD 

, • 
1 1 

DB DB 

Figure 8. Receive Frame Area Diagram 

6-309 231246-001 



inter 82586 

82586's Receive Unit. Once enabled, the RU 
'watches' for any of its frames which it automatically 
stores in the Receive Frame Area (RFA). The RFA 
consists of a Receive Descriptor List (RDL) and a list 

· of free buffers called the Free Buffer List (FBL-) as 
shown in Figure 8. The individual Receive Frame 
De~criptors that make up the RDL are u!led by the 
82586 to store the destination and source address, 
type field and status of each frame that is received. 
(Figure 9.) 

RECEIVE FRAME STATUS 

LINK FIELD • - FR!,::;,:~g~:~OR 

BUFFER DESCRIPTOR • _ BUFFER DESCRIPTOR 
LINK FIELD 

DESTINATION ADDRESS 

SOURCE ADDRESS 

TYPE FIELD 

Figure 9. Receive Frame Descriptor 

The 82586, once enabled, checks each passing 
frame for an address match. The 82586 will recog­
nize its own unique address, one or more multicast 
addresses or the broadcast address. If a match 
occurs, it stores the destination and source address 
and type field in the next available RFD. It then 
begins filling the next free Data Buffer on the FBL 
(which is pointed to by the current RFD) with the 
data portion of the incoming frame. As <llle DB is 
filled, the 82586 automatically fetc;hes the next DB 
on the FBL until the entire frame is received. This 
buffer chaining technique is particularly memory 
efficient because it allows the system designer to set 
aside buffers that fit a frame size that may be much 
shorter than the maximum allowable frame. • 

Once the entire frame is received without error, the 
82586 performs the following housekeeping tasks: 

• Updates the Actual Count field of the last Buffer 
Descriptor used to hold the frame just received 
with the number of bytes stored in its associated 
Data Buffer. 

• Fetches the address of the next free Receive 
Frame Descriptor. 

• Writes the address of the next free Buffer Descrip­
tor into the next free Receive Frame Descriptor. 

• Posts a 'Frame Received' interrupt status bit in fhe 
SCB. 

• Interrupts the CPU. 

In the event of a frame error, such as a CRC error, the 
82586 automatically reinitializes its DMA pointers 
and reclaims any data ·buffers containing the bad 
frame. As long as Receive Frame Descriptors and 
data buffers are available, the 82586 will continue to 
receive frames without further CPU help. 

82586 NETWORK MANAGEMENT 
AND DIAGNOSTIC FUNCTIONS 

The behavior of data communication networks is 
typically very complex due to their distributed and 
asynchronous nature. It is particularly difficult to 
pin-point a failure when it occurs. The 82586 was 
designed in anticipation of these problems and 
includes a set of features for improving reliability 
and testability. 

The 82586 reports on the following events after each 
frame transmitted: 

• Transmission successful. 

• Transmission unsuccessful; lost Carrier Sense. 

• Transmission unsuccessful; lost Clear-to-Send. 

• Tl:ansmission unsuc'cessful; DMA underrun 
because the system bus did not keep up with the 
transmission. 

• Transmission unsuccessful; number of collisions, 
exceeded the maximum allowed. 

The 82586 checks each incoming frame and reports 
on the following errors, (if configured to 'Save Bad 
Frame'): 

• CRCerror: incorrect CRC in a well aligned frame. 

• Alignment error: incorrect CRC in a misaligned 
frame. 

• Frame too short: the frame is shorter than the 
configured value for minimum frame length. 

• Overrun: the frame was not completely placed in 
memory because the system bus did not keep up 
with incoming data. 

• Out of buffers: no memory resources to store the 
frame, so part of the frame was discarded. 

NETWORK PLANNING AND 
MAINTENANCE 

To perform proper planning, operation, and mainte­
nance of a communication network, the network 
management 'entity must accumulate information 
on network behavior. The 82586 provides a rich set 
of network-wide diagnostics that can serve as the 
basis for a network management entity. 

6-310 231246-001 



inter 82586 

Network Activity information is provided in the sta­
tus of each frame transmitted. The activity indica-
~~are: . 

• Number of collisions: number of collisions the 
82586 experienced in attempting to transmit this 
frame. 

• Deferred transmission: indicates if the 82586 had 
to defer to traffic on the link during the first 
transmissjon attempt. 

Statistics registers are updated after each received 
frame that passes the address filtering,'and is longer 
than the Minimum Frame Length configuration 
parameter. ) 

• CRC errors: number of frames that experienced a 
CRC error and were properly aligned. 

• Alignment errors: number of frames that expe­
rienced a CRC error and were misaligned. 

• No-resources: number of correct frames lost due 
to lack of memory resources. 

• Overrun errors: number of frame sequences lost 
due to DMA overrun. 

The 82586 can be configured to Promiscuous 
Mode. In this mode it captures all frames trans­
mitted on the Network without checking the Des­
tination Address. This is useful in implementing a 
monitoring station to capture all frames for 
analysis. 

The 82586 is capable of determining if there is a 
short or open circuit anywhere in the Network 
using the' built in Time Domain Reflectometer 
(TOR) mechanism. 

STATION DIAGNOSTICS 

The chip can be configured to External Loopback. 
The transmitter to receiver interconnection can be 
placed anywhere between the 82586 and the link to 
locate faults, for example: the 82586 output pins, the 
Serial Interface Unit, the Transceiver cable, or in the 
Transceiver. 

The 82586 has a mechanism recognizing the trans- • 
ceiver 'heart beat' signal for verifying the correct 
operation of the Transceiver's collision detection 
circuitry. 

82586 SELF TESTING 

The 82586 can be configured to Internal Loopback. 
It disconnects itself from the Serial Interface Unit, 
and any frame transmitted is received immediately. 
THe 82586connects the Transmit Data to the Receive 
Data signal and the Transmit Clock to the Receive 
Clock. 

The Dump Command causes the chip to write over 
100 bytes of its internal registers to memory. 

The Diagnose command checks the exponential 
Backoff random number generator internal to the 
82586. 

CONTROLLING THE 82586 

The CPU controls operation of the 82586's Com­
mand Unit (CU) and Receive Unit (RU) of the 82586 
via the System Control Block. 

THE COMMAND UNIT (CU) 

The Command Unit is the logical unit that executes 
Action Commands from a list of commands very 
similar to a CPU program. A Command Block (CB) 
is associated with each Action Command. 

The CU can be modeled as a logical machine that 
takes, at any given time, one of the following states: 

• IDLE- CU is not executing acommand and is not 
associated with a CB on the list. This is the initial 
state. 

• SUSPENDED - CU is not executing a command 
but (different from IDLE) is associated with a CB 
on the list. 

• ACTIVE - CU is currently executing an Action 
Command, and points to its CB. 

The CPU may affect the CU operation in two ways: 
issuing a CU control Command or setting bits in the 
COMMAND word of the Action Command. 

THE RECEIVE UNIT (RU) 

The Receive Unit is the logical unit that receives 
frames and stores them in memory. 

The RU is modeled as a logical machine that takes, 
at any given time, one of the following states: 

• IDLE - RU has no memory resources and is dis­
carding incoming frames. This is the initial RU 
state. 

• NO-RESOURCES - RU has no memory resour­
ces and is discarding incoming frames. This state 
differs from the IDLE state in that RU accumu­
lates statistics on the number of frames it had to 
discard. 

• SUSPENDED - RU has free memory resources to 
store incoming frames but discards them anyway. 

• READY - RU has free memory resources and 
stores incoming frames, 

The CPU may affect RU operation in three ways: 
issuing an RU Control Command, setting bits in 
Frame Descriptor, FD, COMMAND word of the 
frame currently being received, or setting EL bit of 
Buffer Descriptor, BD, of the buffer currently being 
filled. 

6-311' 231246-001 

" 

I 
11 
I" 



.. 

82586 

15 ODD BYTE EVEN BYTE 0 

STAT 0 CUS 0 RUS 0 0 o 1 0 
SCB 
(STATUS) 

~ 
R 1\\\\\ \\\\\~ SCB+2 ACK CUC E ·RUC (COMMAND) 
S 

CBLOFFSET SCB+4 

" 

RFAOFFSET SCB+6 

CRCERRS SCB+8 

ALNERRS SCB+ 10 

RSCERRS SCB+ 12 

OVRNERRS SCB+ 14 

Figure 10. System Control Block (SCB) Format 

SYSTEM CONTROL BLOCK (SCB) 

The System Control Block is the communication 
mail-box between the 82586 and the host CPU. The 
SCB format is shown in Figure 10. 

The host CPU for issuing Control Commands to the 
82586 via the SCB. These commands may appear at 
anytime during routine operation, as determined by 
the host Cpu. After the required Control Command 
is setup, the CPU sends a CA signal to the 82586. 

SCB is also used by the 82586 to return status 
information to the host 'CPU. After inserting the 
required status bits into SCB, the 82586 issues an 
Interrupt to the CPU. 

The format is as follows: 

STATUS word: Indicates the status of the 82586. 
This word is modified only by the 82586. Defined 
bits are: 

CX (Bit 15) - A command in the CBl 
having its 'I' (interrupt) 
bit set has been 
executed. 

FR (Bit 14) - A frame has been 
received. 

CNR (Bit 13) - The Command Unit left 
the Active state. 

. 

6-312 

RNR (Bit 12) - The Receive Unit left 
the Ready state. 

CUS (Bits 8-10) - (3 bits) this field con-
tains the status of the ' 
Command Unit. 
Valid values are: 
0 -Idle 
1 - Suspended 
2 - Active 
3-7 - Not used 

RUS (Bits 4-6) - (3 bits) this field 
contains the status of 
the Receive Unit. Valid 
values are: 

0 - Idle 
1 - Suspended 
2 - No Resources , 

3 - Not used 
4 - Ready 
5-7 - Not used 

COMMAND word: Specifies the action to be per­
formed as a result of the CA. This word is set by the 
CPU and cleared by the 82586. Defined bits are: 

ACK-CX (Bit 15) 1- Acknowledges the 
command executed 

. event. 

231246-001 



ACK-FR (Bit 14) - Acknowledges the 
frame received event. 

ACK-CNA (Bit 13) - Acknowledges that the 
Command Unit became 
not ready. 

ACK-RNR (Bit 12) - Acknowledges that the 
Receive Unit became 
not ready. 

CUC (Bits 8-10) - (3 bits) this field con-
tains the command to 
the Command Unit. 
Valid values are: 

0 - NOP (doesn't affect 
current state of the unit). 

1 - Start execution of the 
first command on the 
CBL. If a command is 
in execution, then com-
plete it before starti ng 
the new CBL. The 
beginnng of the CBL is 
in CBL OFFSET. 

2 - Resume the operation 
of the command unit by 
executing the next 
command. This opera-
tion assumes that the 
command unit has been 
previously suspended. 

3 - Suspend execution of 
commands on CBL after 
current command is 
complete. 

4 - Abort execution of 
commands immediately 

5-7 - Reserved, illegal for use. 

RUC (Bits 4-6) - (3 bits) Th is field con-
tains the command to 
the receive unit. Valid 
values are: 

0 - NOP (does not alter 
current state of unit). 

1 - Start reception of 
frames. If a frame is 
being received, then 
complete reception 
before starting. The 
beginnng of the RFA is 
contained in the RFA 

82586 

OFFSET. 

2 - Resume frame receiving 
(only when in sus-
pended state.) 

3 - Suspend frame receiv-
ing. If a frame is being 
received, then complete 
its reception before 
suspending. 

4 - Abort receiver operation 
immediately. 

5-7 - Reserved, illegal for use. 

RESET (Bit 7) - Reset chip (logically the 
same as hardware 
RESET). 

CBl-OFFSET: 
gives the 16-bit offset address of the first command 
(Action Command) in the command list to be 
executed following CU-START. Thus, the 82586 
reads this word only if the CUC field contained a 
CU-START Control Command. 

RFA-OFFSET: 
Points to the first Receive Fr.ame Descriptor in the 
Receive Frame Area 

CRCERRS: 
CRC Errors - contains the number of properly 
aligned frames received with a CRC error. 

AlNERRS: 
Alignment Errors - contains the number of mis­
aligned frames received with a CRC error. 

RSCERRS: 
Resource Errors - records the number of correct in­
coming frames discarded due to lack of memory re­
sources (buffer space or received frame descriptors). 

OVRNERRS: 
Overrun Errors - counts the number of received 
frame sequences lost because the memory bus was 
not available in time to transfer them. 

ACTION COMMANDS 

The 82586 executes a 'program' that is lTlade up of 
action commands in the Command List. As shown 
in Figure 5, each command contains the command 
field, status and control fields, link to the next action 
command in the CL, and any command-specific 
parameters. This command format is called the 
Command Block. 

6-313 231246-001 



82586 

15 ODD BYTE EVEN BYTE 0 

C B CK 
o 

(STATUS) 

2 EL S CMD = 0 
~ __ ~ __ ~ __ ~~~~~~~~~~~~~~~~~~~~~ __ ~ __ ~ __ ~(COMMAND) 

LINK OFFSET 4 

Figure 11. The NOP Command Block 

The 82586 has a repertoire of 8 commands: 

NOP 
Setup Individual Address 
Configure 
Setup Multicast Address 
Transmit 
TOR 
Diagnose 
Dump 

NOP 

This command results in no action by the 82586, 
except as performed in normal command proc­
essing, It is present to aid in Command List 
manipulation, 

NOP command includes the following fields: 

STATUS word (written by 82586): 

C (Bit 15) - Command completed 
B (Bit 14) - Busy executing 

command 
OK (Bit 13) - Error free completion 

15 ODD BYTE 

C B OK A I ZEROS 

EL S I 

LINK OFFSET 

2ND BYTE I 
I 
I , --- I 

COMMAND word: 

EL (Bit 15) - End of command list 
S (Bit 14) - Suspend after 

completion 
I (Bit 13) - Interrupt after 

completion 
CMD (Bits 0-2) - NOP = 0 

LINK OFFSET: Address of next Command Block 

lA-SETUP 

This command loads the 82586 with the Individual 
Address, This address is used by the 82586 for 
recognition of Destination Address during recep­
tion and insertion of Source Address during 
transmission, 

The lA-SETUP ,command includes the following 
fields: 

EVEN BYTE 0 

I CMD= 1 

1ST BYTE ~ 

o 
STATUS) ( 

2 
(COMMAND) 

4 

6 

INDIVIDUAL ADDRESS -
--- I ---I 

I 1 o 
NTH BYTE I 

Figure 12. The lA-SETUP Command Block 

6-314 231246-001 



82586 

STATUS word (written by 82586): 

C (Bit 15) - Command completed 
B (Bit 14) - Busy executing 

command 
OK (Bit 13) - Error free completion 
A (Bit 12) - Command aborted 

COMMAND word: 

EL (Bit 15) - End of command list 
S (Bit 14) - Suspend after 

completion 
I (Bit 13) - Interrupt after 

completion 
CMO (Bits 0-2) - lA-SETUP = 1 

LINK OFFSET: Address of next Command Block 

INDIVIDUAL ADDRESS: Individual Address 
parameter 

The least significant bit of the Individual Address 
parameter must be zero for IEEE 802.3/Ethernet. 
However, no enforcement of 0 is provided by the 
82586. Thus, an Individual Address with least 
significant bit 1, is possible. 

CONFIGURE 

The CONFIGURE command is used to update the 
82586 operating parameters. 

15 ODD BYTE 

C B OK A 

EL S I 

The CONFIGURE command includes the following 
fields. 

STATUS word (written by 82586): 

C (Bit :\-5) - Command completed 
B (Bit 14) - Busy executing 

command 
OK (Bit 13) - Error free completion 
A (Bit 12) - Command aborted 

COMMAND word: 

EL (Bit 15) - End of command list 
S (Bit 14) - Suspend after 

completion 
I (Bit 13) - Interrupt after 

completion 
CMD (Bits 0-2) - Configure = 2 

LINK OFFSET: Address of next Command Block 

Byte 6-7: 

BYTE CN (Bits 0-3) - Byte Count, Number of 
bytes including this one, 
holding the parameters 
to be configured. A 
number smaller than 4 
is interpreted as 4. A 
number greater than 12 
is interpreted as 12. 

EVEN BYTE 0 

ZEROS 00 

I CMD=2 02 

LINK OFFSET 04 

. 
1 FIFO LIM BYTE CNT 06 

EXT INT 
PREAM AC SAV SRDY~ LP LP ADDR LEN 

BCK BCK LEN LOC BF ARDY 
08 

INTER FRAME SPACING BOF 
ACR I I LIN PRIO MET 

I 

OA 

RETRY NUM SLTTM (H) SLOT TIME (L) oc 

CDT CDTF CRS CRSF PAD BT I CRC INcRtoNol ~~ 1 BC rRM SRC SRC STF 16 INS CRS NRZ DIS 
OE 

MIN FRM LEN 10 

Figure 13. The CONFIGURE Command Block 

6-315 231246-001 



82586 

SAV-BF. (Bit 7) 
o 

- SRDY/ARDY pin 
operates as ARDY 
(internal 
synchronization). 

- SRDY/ARDY pin 
operates as SRDY 
(external 
synchronization). 

- Received bad frames are 
not saved in memory. 

- Received bad frames are 
saved in memory. 

ADDR-LEN(Bits 8-10) - Number of address 
bytes. NOTE: 7 is 
interpreted as O. 

AT-LOC (Bit 11) 
o - Addr~ss and Type 

PREAM- (Bits 
LEN .12-13) 

INT-LPBC~(Bit 14) 

EXT-LPBCk(Bit 15) 

Byte 10-11: 

Fields separated from 
data and associated 
with Transmit Com­
mand Block or Receive 
Frame Descriptor. For 
transmitted Frame, ' 
Source Address is 
inserted by the 82586. 

- Address and Type Fields 
are part of the Transmit/ 
Receive data buffers, 
including Source 
Address (which is not 
inserted by the 82586). 

- Preamble Length 
including Beginning of 
Frame indicator: 
00 - 2 bytes 
01 - 4 bytes 
10 - 8 bytes 
11 - 16 bytes 

- Internal Loopback 

- External Loopback. 
NOTE: Bits 14 and 15 
'configured to 1, cause 
Internal Loopback. 

I L1N-PRIOI (Bits 0-2)1- Linear Priority I· 

ACR (Bits 4-6) 

BOF-MET (Bit 7) 

INTER- ,(Bits 8-15) 
FRAME 
SPACING 

Byte 12-13' 

SLOT- (Bits 0-7) 
TIME (L) 

SLT-TM (H)(Bits 8-10) 

RETRY- (Bits 
.NUM 12-15) 

Byte 14-15 

PRM (Bit 0) 

BC-DIS (Bit 1) 
MANCH/ (Bit 2) 
NRZ 

0 
1 

TONO-CRS(Bit 3) 

0 

1 

NCRC-INS (Bit 4) 

. CRC-16 (Bit 5) 
0 

1 

BT-STF (Bit 6) 
0 

1 

PAD (Bit 7) 
0 

6-316 

- Accelerated Contention 
Resolution (Exponential 
Priority) 

- Exponential Backoff 
Method 
0- IEEE 802.3/Ethernet 
1 - Alternate method 

- Number indicating the 
Interframe Spacing in 
TxC period units 

- Slot Time number, low 
byte 

- Slot Time number, high 
bits 

- Maximum number of 
transmission retries on 
collisions 

- Promiscuous Mode 

- Broadcast Disable 
- Manchester or NRZ 

encoding/decoding 
- NRZ 
- Manchester 

- Transmit on No Carrier 
Sense 

- Cease transmission if 
CAS goes inactive dur-
ing frame transmission 

- Continue transmission 
even if no Carrier Sense 

- No CRC Insertion 

- CRC Type: 
- 32 bitAutodin II CRC 

polynomial 
- 16 bit CCITT CRC 
. polynomial 

Bitstuffi ng: 
- End of Carrier mode 

(Ethernet) 
- HDLC like Bitstuffing 

mode 

- Padding 
- No Padding 

231246-001 



82586 

1 - Perform padding by 
transmitting flags for 
remainder of Slot Time 

CRSF (Bits 8-9) - Carrier Sense Filter in 
bit times 

CRS-SRC (Bit 11) Carrier Sense Source 
0 - External 
1 - Internal 

CDTF (Bits - Collision Detect Filter in 
12-14) bit times 

CDT-SRC (Bit 15) - Collision Detect Source 
0 - External 
1 - Internal 

jayte 16: 

MIN-FRM- (Bits 0-7) - Minimum number of 
LEN. bytes in a frame 

CONFIGURATION DEFAULTS 

The default values of the configuration parameters 
are compatible with the IEEE 802.3/Ethernet Stan­
dards. RESET configures the 82586 according to 
the defaults shown in Table 2. 

15 ODD BYTE 

C B OK 

EL S 

2ND BYTE 

NTH BYTE 

LINK OFFSET 

I 

MC~D 

Table 2. 82586 Default Values 

Preamble Length 
Address Length 
Broadcast Disable 
CRC-16/CRC-32 
No CRC Insertion 
Bitstuffing/EOC 
Padding 
Min-Frame-Length 
Interframe Spacing 
Slot Time 
Number of Retries 
Li near Priority 
Accelerated Contention Resolution 
Exponential Backoff Method 
Manchester/NRZ 
Internal CRS 
CRS Filter 
Internal COT 
COT Filter 
Transmit On No CRS 
FIFO THRESHOLD 
SRDY/ARDY 
Save Bad Frame 
Address/Type Location 
INT Loopback 
EXT Loopback 
Promiscuous Mode 

MC-SETUP 

2 
6 
o 
o 
o 
o 
o 

64 
96 

512 
15 
o 
o 
o 
o 
o 
o 
o 
o 
o 
8 
o 
o 
o 
o 
o 
o 

This command sets up the 82586 with a set of 
Multicast Addresses. Subsequently, incoming 
frames with Destination Addresses from this set are 
a?cepted. 

EVEN BYTE 0 

0 
(STATUS) 

CMD=3 2 
(COMMAND) 

4 

MC-CNT 6 

MCLIST 
1ST BYTE 

ADDITIONAL MC-tD'S 

Figure. 14. The MC-SETUP Command Block 

6-317 231246-001 



82586 

The MC-SETUP command includes the following 
fields: 

STATUS word (written by 82586): 

C (Bit 15) - Command completed 
B (Bit 14) ~ Busy executing 

command 
OK (Bit 13) - Error free completion 
A (Bit 12) - Command aborted 

COMMAND word: 

EL (Bit 15) - End of command list 
S (Bit 14) - Suspend after 

completion 
I (Bit 13) - Interrupt after 

completion 
CMD (Bits 0-2) - MC-SETUP = 3 

LINK OFFSET: Address of next Command Block 

MC-CNT: A 14-bit field indicating the number of 
bytes in the MC-LlST field. MC-CNT is truncated to 
the nearest multiple of Address ,Length (in bytes). 
Issuing a MC-SETYP command with MC-CNT=O 

,disables reception of any incoming frame with a 
Multicast Address. 

MC-LIST: A list of Multicast Addresses to be 
accepted by the 82586. Note that the most significent 
byte of an address is followed immediately by the 
least significant byte of the next address. Note also 
that the least significant bit of each Multicast 
Address in the set must be a one. 

The Transmit-Byte-Machine' maintains a 64-bit 
HASH table used for checking Multicast Addresses 
cturing reception. 

15 ODD BYTE 

An incoming frame is accepted if it has a Destination 
Address whose least significant bit is a one, and 
after ha~hing points to a bit in the HASH table 
whose value is one. The hash function is selecting 
bits 2 to 7 of the CRC register. RESET causes the 
HASH table to become all zeros. 

After the Transmit-Byte-Machine reads a MC­
SETUP command from TX-FIFO, it clears the HASH 
table and reads the bytes in groups whose length is 
determined by the ADDRESS length. Each group is 
hashed using CRC logic and the bit in the HASH 
table to which bits 2-7 of the CRC register point is set 
to one. A group that is not complete has no effect on 
the HASH table. Transmit-Byte-Machine notifies 
CU after completion. ' 

TRANSMIT 
The TRANSMIT command causes transmission 
(and if necessary retransmission) of a frame, 

TRANSMIT CB includes the following fields: 

STATUS word (written by 82586): 

C (Bit 15) - Command completed 
B (Bit 14) - Busy executing 

command 
OK (Bit 13) - Error free completion 
A (Bit 12) - Command aborted 
S10 (Bit 10) - No Carrier Segse signal 

during transmission 
(between beginning of 
Destination Address 
and end of Frame 
Check Sequence). 

S9 (Bit9) - Transmission 
unsuccessful (stopped) 
due to loss of Clear-to-
Send signal. 

EVEN BYTE II 

c B OK A I 0 I S10 I S9 I S8 I 57 I S6 I S5 r 0 I MAXCOLL 
0 
(STATUS) 

EL S I CMD=4 
2 
(COMMAND) 

LINK OFFSET 
4 

, NEXT BD OFFSET 
6 

. 2ND BYTE I 1ST BYTE ~> I 
DESTINATION ADDRESS A 

I 

NTH BYTE 
, 

C 

TYPE FIELD 
E 

Figure 15. The Ti'ansmit Command Block 

6-318 231246-001 



S8 (Bit 8) 

S7 (Bit 7) . 

S6 (Bit 6) 

S5 (Bit 5) 

MAX- (Bits 3-0) 
Call 

COMMAND word: 

El (Bit 15) 
S (Bit 14) 

I (Bit 13) 

CMD (Bits 0-2) 

82586 

- Transmission 
unsuccessful (stopped) 
due to DMA underrun, 
(Le. data not supplied 
from the system for 
transmission). 

- Transmission had to 
Defer to traffic on the 
link. 

- Heart Beat, indicates 
that during Interframe 
Spacing period after the 
previous transmission, a 
pulse was detected on 
the Collision Detect pin. 

- Transmission attempt 
stopped due to number 
of collisions exceeding 
the maximum number 
of retries. 

- Number of Collisions 
experienced by this 
frame. S5 = 1 and MAX-
Call = 0 indicates that 
there were 16 collisions. 

- End of command list 
- Suspend after 

completion 
- Interrupt after 

completion 
- TRANSMIT = 4 

DESTINATION ADDRESS: Destination Address of 
the frame. 

TYPE FIELD: Type Field of the frame. 

STATUS word: 

EOF - Indicates that this is the 
Buffer Descriptor of the 
last buffer of this 
frame's Information 
Field. 

ACT- (BitsO-13) - Actual number of data 
COUNT bytes in buffer (can be 

even or odd). 

NEXT BD OFFSET: points to next Buffer Descriptor 
in list. If EOF is set, this field is meaningless. 

BUFFER ADDRESS: 24-bit absolute address of 
buffer. 

TIME DOMAIN REFLECTOMETER - TOR 

This command performs a Time Domain Reflect­
ometer test on the serial link. By performing the 
command, the user is able to identify shorts or opens 
and their location. Along with transmission of 'All 
Ones: the 82586 triggers an internal timer. The timer 
measwes the time elapsed from transmission start 
until 'echo' is obtained. 'Echo' is indicated by 
Collision Detect going active or Carrier Sense 

'signal drop. 

TDR command includes the following fields: 

STATUS word (written by 82586): 

LINK OFFSET: Address of next Command Block 
C. (Bit 15) - Command completed . 
B (Bit 14) - Busy executing 

command TBD OFFSET: Address of list of buffers holding the 
Information field. TBD-OFFSET = OFFFFH indicates 
that there is no Information field. 

OK (Bit 13) - Error free completion 

EVEN BYTE 0 

ACT COUNT 

NEXT BD OFFSET 
~ __________________________ ~ ____________________ ~2 

BUFFER ADDRESS 
4 

~~~~LLLLLLLLLL~~~~~ ______________________ ~6 

Figure 16. The li'an.mlt Buffer Descriptor

6-319 231246-001

..

82586

15 ODD BYTE . EVEN BYTE 0

c B OK o
~--~~r--i~~~"rT"rT"r7"r7"T7"T7-r,,-r7>~--~--,-~(STATUS)

EL s 2
~ __ L----JL..-......I..L..I.'....L.L..I.'....L.L...J.'--'-.L...J.'--'-LLLLLLLLLLLL:.LL.L:.L.d... __ ...L __ .L----I(COMMANDf

LINK OFFSET

r-~--'--'--1rT7r---------------------------------~4
LNK
OK TIME

Figure 17. The TOR Command Block

6

COMMAND word: ET-SRT (Bit 12) ,- Short on the link
identified (valid only in

EL (Bit 15) - End of command list the case of a
S (Bit 14) - Suspend after Transceiver that retu rns

completion Carrier Sense during
I (Bit 13) - Interrupt' after transmission).

completion TIME (Bits 0-10) - Specifying the distance
CMD (Bits 0-2) - TOR =5 to a problem on the link

(if one exists) in
transmit clock cycles.

LINK OFFSET: Address of next Command Block

RESULT word:

LNK-OK I (Bit 15)

XCVR-PRB(Bit 14)

ET-OPN (Bit 13)

15

- No liok problem
identified

- Transceiver Cable
Problem identified (valid
only in the case of a
Transceiver that does
not return Carrier Sense
during transmission).

- Open on the link .
identified (valid only in
the case of a
Transceiver that returns
Carrier Sense during
transmission).

DUMP

This command causes the contents of over a
hundred bytes of internal registers to be placed in
memory. It is supplied as a self diagnostic tool, as
well as to supply registers of interest to the user.

DUMP command includes the following fields:

STATUS word (wriHen by 82586):

C (Bit 15)' - Comniand completed
B (Bit 14) - Busy executing

command
OK (Bit 13) - Error free completion

o

o C B OK
~ __ ~~~-4~~~~~~~~~~~~~~~~~~~~ __ -r __ ~~(STATU~

EL S CMD~6 2
~ __ L----JL..-~~~~~~~~~~~~~~~~~~~~~ __ ~ __ ~~(COMMAND)

LINK OFFSET
~ __ ~ ____________ ~ ____________________________________ ~4

BUFFER OFFSET
~ ____________ ~ __ ~6

Figure 18. The DUMP Command Block

6-320 231246-001

inter 82586

COMMAND word:

EL (Bit 15) - End of command list
S (Bit 14) - Suspend after

completion
I (Bit 13) - Interrupt after

completion
CMD (Bits 0-2) - DUMP = 6

LINK OFFSET: Address of next Command Block

BUFFER OFFSET: This word specifies the offset
portion of the memory address which points to the
top of the buffer allocated for the dumped registers J

contents. The length of the buffer is 170 bytes.

DUMP AREA FORMAT

Figure 18 shows the format of the DUMP area. The
fields are as follows:

Bytes OOH to OAH: These bytes correspond to the
82586 CONFIGURE command field (except bit 6 of
the first word).

Bytes OCH to 11H: The Individual Address Register
content. IARO is the Individual Address least sig­
nificant byte.

Bytes 12H to 13H: Status word of last command
block (only bits 0-13).

Bytes 14H to 17H: Content of the Transmit CRC
generator. TXCRCRO is the least significant byte.
The contents are dependent on the activity before
the DUMP command:

After RESET - 'All Ones.'

After successful transmission - 'All Zeros.'

After MC-SETUP command - Generated CRC
value of the last MC address, on MC-LlST.

After unsuccessful transmission, depends on
where it stopped.

NOTE

For 16-bit CRC only TXCRCRO and
TXCRCR1 are valid.

\

Bytes 18H to 1BH: Contents of Receive CRC
Checker. RXCRCRO is the least significant byte.
The contents are dependent on the activity per­
formed before the DUMP command:

6-321

After RESET -'All Ones.'

After good frame reception -

1. For CRC-CCITT - OD1 FOH.

2. For CRC-Autodin-II - C704DD7BH

After Bad Frame reception - corresponds to the
received information.

After reception attempt, i.e. unsuccessful check
for address match, corresponds to the CRC
performed on the frame address.

NOTE

Any frame on the serial link modifies this
register contents.

.5 .4 '3 '2 •• .0 9 I 7 • 5 4 3 2 • 0

XXXIX FIFO LIM 0 :::. 0 0 0 0 0 0

~I!.I ~~:- L~IADDR LEN ':' _I. I. • ·111·
INTER FRAME SPACING ~ ACR • LIN PRIO

RETRY NUM • ~LT TM [H] SLOT TIME (LOW)

COT CDTF CA' CRSF PAD :,."FIC1~CI"":clrcc:ol;; 8C PAM
IOC "C 0"

• • ·1· • '1'1' MIN FRM LEN

JAR 1 JAR 0

IAR 3 IAR 2

IAR 5 IAR 4

"cc:.'1 0 I ~ I 0 I 0 I~:~I~~~IURN J:F SOE~~a~ 0 COLL NUM

TXCRCR. TXCRCRO

TXCRCR 3 TXCRCR2

AXCACA' AXCACAO

RXCACA3 AXCACA 2

TEMPA. TEMPRO

TEMPR3 TEMPA 2

TEMPA 5 TEMPA4

• o I~: • CI'IC ALN 0 o •• ~ SItAT NO 1 1 1 1 1 1 EAA EA" ,- EO"

HASHA 1 HASHA 0

HASHR 3 HASHR2

HASHR 5 HASHR 4

HASHA7 HASHR6

LN!! -co- n " X X X X X X X X X X X ~ .. -... 'AT
" 1 1 1 1 1 X X X X X X X X X I)('

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X X X 'X X X X X X X X X X X X I)('

0 0 0 0 0 0 0 0 0 0 0 0 0 ADA LEN

EL~ NXT AB SIZE

Figure 19. The DUMP Area

00

02

04

01

01

OA

DC

OE

10

12

14

16

II

lA

lC

IE

2D

22

24

26

28

2A

2C

2E

30

32

3'

36

38

3A

3C

3E

40

231246-001

15 14 13 12 11 10 9 8 1 6 5 • 3 2 1 0 Bytes 1 CH to 21 H: Temporary Registers.
'I I II I I I I I I 1111LlJ NXT AB ADA (HIGH)

NXT AB ADA (LOW)

ELIXI CUR RBSIZE

LA RBDAOR

NXT RBO ADR

CUR RBo ADR

CUA RB EBC

NXT FQ ADR

CUA FD ADR

TEMPORARY

EOFIXI NXT T8 CNT

aUF ADR

NXT TB ADR

LAT80 ADR

NXTTBO ADR

EL S I V I I I I I IJ'ILllililillliJ. g~~:~~~
NXT CB ADR

CUR CB ADR

•

•
•
• A

4 C

4

5

5

5

5

5
(

8

5

5

5

6

6
6

A

C

Bytes 22H to 23H: Receive Status Register. Bits
6,7,8,10,11 and 13 assume the same meaning as
corresponding bits in the Receive Frame Descriptor
Status field.

Bytes 24H to 2BH: HASH TAB.LE.

Bytes 2CH to 2DH: Status bIts of the last time TOR
command that was performed.

NXT-RB-SIZE: Let N be the last buffer of the last
received frame, then NXT-RB-SIZE is the number of
bytes of available in the N+1 buffer. EL - The EL bit of
the Receive Buffer Descriptor.

NXT-RB-ADR: Let N be the last Receive Buffer used,
then NXT-RB-ADR is the BUFFER-ADDRESS field
in the N+1 Receive-Buffer Descriptor, i.e. the pointer
to the N+1 Receive Buffer.

~XXX~XXXXXXXX6
CUR-RB-SIZE: The number of bytes in the last
buffer of the last received frame .. EL - The EL bit of
the last buffer in the last received frame. 0 0 0

0 0 0

0 0 0

0 0 0

AI)< A

~12< ~
XI)< X
0 0 0

0 0 O.

I>< X X

12<0 0

o C><; 0

CX FR c"'

16 16 IX
0 0 0

IX IX X
C><; 12< 2S
I>< I)< ;<,

12< I)<)<

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 1 0

0 0 0

0 0 0

SCB ADR

0 0 0 0 0 0 0 0 0 0 0 o '0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

;x.. ;x.. LX. [)<, ;x.. X X X IX IX IX 16
~ ~ 16 ~ ~ IX X X X IX IX IX IX
C>< FIFO LIM 0 X 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

o· 0 0 0 0 0 0 0 0 0 0 0 0

X I>< 12< lX 12\ I2S X x. X x. X 16
O~ s:"FV :~ l'6~ 0 0 0 .. 0 0 0 0

.~ I)< I)< I2S 01><
ENo CU

0 0 0 0 ,"0
O. sus

'"' 01)< 1 0 RU RU
,.ASRC '" 0 0 0 0 IOl ROV '"'

IX IX 1)< IX IX IX IX IX IX IX IX ~ ~
0 0 0 0 0 0 0 0 0 0 0 0 0

X XIX 12< ;><:J2<- I2S ~ zsl2< 12< ;><: ;><:
;X 2S IX 1)< Xl)< 1)<)< X~ 12< ~ ~
;X ;<,tx I)< XIX I)<)< XI)<)<)<,)<,

)<)<1)< 12< ~~ ~ 12< ~~ ~ lS lS
0 0 0 0 0 BUF ADA PTR (HIGH)

BUF ADA PAT (LOW)

ACV DMA BC

SR ... aUF ADA. H

0 0 0 0 0 Rev OMA ADR H

Rev OMA AOR L

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 " 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 o S.Oy
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19. DUMP Area (con't)

6
6 A

6 C

6 LA-RBD-ADR: Look Ahead Buffer Descriptor, i.e.
10 the pointer to N+2 Receive Buffer Descriptor.
12

1.

16

18

NXT-RBD-ADR: Next Receive Buffer Descriptor
Address. Similar to LA-RBD-ADR but points to N+1
Receive Buffer Descriptor.

1A CUR-RBD-ADR: Current Receive Buffer Descriptor
1C Address. Similar to LA-RBD-ADR, but points to Nth
1E Receive Buffer Descriptor.
80

82

84

86

88

8A

8C

8E

90

92

94

96

98

9A

9C

9E

AO

CUR-RB-EBC: Current Receive Buffer Empty Byte
Count. Let N be the currently used Receive Buffer.
Then CUR-RB-EBC indicates the Empty part of the
buffer, i.e. the ACT-COUNT of buffer N is given by
the difference between its SIZE and the CUR­
RB-EBC.

NXT-FD-ADR: Next Frame Descriptor Address.
Define N as the last Receive Frame Descriptor with
bits C=1 and B=O, then NXT-FD-ADR is the address
of N+2 Receive Frame Descriptor (with B=C=O) and
is equal to the LINK-ADDRESS field in N+1 Receive
Frame Descriptor:

CUR-FD-ADR: Current Frame Descriptor Address.
Similar to next NXT-FD-ADR but refers to N+1
Receive Frame Descriptor (with B=1, C=O).

A2 Bytes 54H to 55H: Temporary register.
A4

A6

A8

6-322 231246-001

82586

NXT-TB-CNT: Next Transmit Buffer Count. Let N be
the last transmitted buffer of the TRANSMIT com­
mand executed recently, the NXT-TB-CNT is the
ACT-COUNT field in the Nth Transmit Buffer
Descriptor. EOF - Corresponds to the EOF bit of the
Nth Transmit Buffer Descriptor. EOF=1 Indicates
that the last buffer accessed by the 82586 during
Transmit was the last Transmit Buffer in the data
buffer chain associated with the Transmit Command.

BUF-ADR: Buffer Address. The BUF-PTR field in
the DUMP-STATUS Command Block.

NXT-TB-AD-L: Next Transmit Buffer Address Low.
Let N be the last Transmit Buffer in the transmit
buffer chain of the TRANSMIT Command performed
recently, then NXT-TB-AD-L are the two least sig­
nificant bytes of the Nth buffer address.

LA-TBD-ADR: Look Ahead Transmit Buffer Descrip­
tor Address. Let N be the last Transmit Buffer in the
transmit buffer chain of the TRANSMIT Command
performed recently, then LA-TBD-ADR is the NEXT­
BD-ADDRESS field of the Nth Buffer Descriptor.

NXT-TBD-ADR: Next Transmit Buffer Descriptor
Address. Similar in function to LA-TBD-ADR but
related to Transmit Buffer Descriptor N-1. Actually, it
is. the address of Transmit Buffer Descriptor N.

Bytes 60H,61 H: This is a copy of the 2nd word in the
DUMP-STATUS command presently executing.

NXT-CB-ADR: Next Command Block Address. The
LINK-ADDRESS field in the DUMP Command Block
presently executing. POints to the next command.

CUR-CB-ADR: Current Command Block Address.
The address of the DUMP Command Block currently
executing.

SCB-ADR: Offset of the System Control Block
(SCB).

Bytes 7EH, 7FH:

RU-SUS-RQ (Bit 4) - Receive Unit Suspend
Request.

Bytes 80H, 81 H:

CU-SUS-RQ (Bit 4) - Command Unit Suspend
Request

END-OF-CBL (Bit 5) - End of Command Block
List. If '1' indicates that DUMP-STATUS is the
last command in the command chain.

ABRT-IN-PROG (Bit 6) - Command Unit Abort
Request.

RU-SUS-FD (Bit 12) - Receive Unit Suspend
Frame Descriptor Bit. Assume N is the Receive

6-323

Frame Descriptor used recently, then RU-SUS­
FD is equivalent to the S bit of N+1 Receive
Frame Descriptor.

Bytes 82H, 83H:

RU-SUS (Bit 4) - Receive Unit in SUSPENDED
state.

RU-NRSRC (Bit 5) - Receive Unit in NO
RESOURCES state.

RU-RDY (Bit 6) - Receive Unit in READY state.

RU-IDL (Bit 7) - Receive Unit in IDLE state.

RNR (Bit 12) - RNR Interrupt In Service bit.

CNA (Bit 13) - CNA Interrupt In Service bit.

FR (Bit 14) - FR Interrupt In Service bit.

CX (Bit 15) - CX Interrupt In Service bit.

Bytes 90H to 93H:

BUF-ADR-PTR - Buffer pOinter is the absolute
address of the bytes following the DUMP
Command block.

Bytes 94H to 95H:

RCV-DMA-BC - Receive DMA Byte Count. This
field contains number of bytes to be transferred
during the next Receive DMA operation. The
value depends on AT-LOCation configuration
bit.

1. If AT-LOCation = 0 then RCV-DMA-BC =
(2 times ADDR-LEN plus 2) if the next
Receive Frame Descriptor has already
been fetched.

2. If AT-LOCation = 1 then it contains the size
of the next Receive Buffer.

BR+BUF-PTR+96H - Sum of Base Address plus
BUF-PTR field and 96H.

RCV-DMA-ADR - Receive DMA absolute Ad­
dress. This is the next RCV-DMA start address.
The value depends on AT-LOCation configura­
tion bit.

1. If AT-LOCation = 0, then RCV-DMA-ADR
is the Destination Address field located in
the next Receive Frame Descriptor.

2. If AT-LOCation = 1, then RCV-DMA-ADR
is the next Receive Data Buffer Address.

231246-001

82586

15 o

CMD=7

LINK OFFSET L-____________________________ ~
4

Figure 20. The DIAGNOSE Command Block

The following nomenclature has been used in the
DUMP table:

o - The 82586 writes zero in this location.

- The 82586 writes one in this location.

X '- The 82586 writes zero or one in this

III

location.

- The 82586 copies this location from
the corresponding position in the
memory structure.

DIAGNOSE

The DIAGNOSE Command triggers an internal self
test procedure of backoff related registers and
counters.

The DIAGNOSE command Includes the fol40wlng:

STATUS word (written by 82586):

C (bit 15) - Command completed
B (bit 14) - Busy executing

command
OK (bit 13) - Error free

completion
FAIL (bit 11) - Indicates that the self

test procedured failed
,

C9MMAND word:

EL (bit 15) - End of command list
S (bit 14) - Suspend after

completion
I (bit 13) - Interrupt after

completion
CMD (bits 0-2) - DIAGNOSE = 7

LINK OFFSET: Address of next Command Block

6-324

RECEIVE FRAME AREA (RFA)

The Receive Frame Area, RFA, is prepared by the
host CPU, data is placed into the RFA by the 82586
as frames are received. RFA consists of a list of
Receive Frame Descriptors (FD), each of which is
associated with a frame. RFA-OFFSET field of SCB
points to the first FD of the chain; the last FD is
identified by the End-of-Listflag (EL). See Figure 21.

FRAME DESCRIPTOR (FD) FORMAT
The FD includes the following fields:

STATUS word (set by the 82586):

C (bit 15) - Completed storing
frame.

B (bit 14) - FD was consumed by
RU.

OK (bit 13) - Frame received
successfully. If this bit is
set, then all others will
be reset; if it is 'reset,
then the other bits will
indicate the nature of
the error.

S11 (bit 11) - Received frame
experienced CRC error.

S10 (bit 10) - Received frame
experienced an
alignment error.

S9 (b'it 9) 1. RU ran out of resources
during reception of this
frame.

S8 (bit 8) - RCV-DMA overrun.
S7 (bit 7) - Received frame had

fewer bits than
configured Minimum

, Frame Length.
S6 (bit 6) - No EOF flag detected

(only when configured
to Bitstuffing).

COMMAND word:

EL (bit 15) - Last FD in the list.
S (bit 14) - RU should be

suspended after
receiving this frame.

231246-001

inter 82586

LINK OFFSET: Address of next FD in list.

RBD-OFFSET (initially prepared by the CPU and
later may be updated by 82586): Address of the first
RBD that represents the Information Field. RBD­
OFFSET = OFFFFH means there is no Information
Field.

DESTINATION ADDRESS (written by 82586): Con­
tains Destination Address of received frame. The
length in bytes, it is determined by the Address
Length configuration parameter.

·c

L SCB

r-~

RFAPOINTEF -'
STATISTICS

TO
OMMAND
BLOCK

LIST

I. RECEIVE FRAME AREA
RFD1

L-.-!.o STATUS

U
STATUS lr STATUS

~
RECEIVE
FRAME

DESCRIPTORS

RECEIVE
BUFFER

DESCRIPTORS

RECEIVE
BUFFERS

- - -
~n EM~~ VALID

PARAMETERS EMPTY

L RBD1 RBD2 [RBD3

o I ACt: r 1 ACT:'~ 0 ACT-cnt -

.--1..--1..- r-I..-

VALID VALID
DATA DATA

'---- '----- I.......-

BUFFER 1 BUFFER 2 BUFFER 3
1

1_ RECEIVE FRAME LIST -11 ----
I I

Figure 21. The Receive Frame Area

6-325

RBD4

I.- o ACT-cnt r -

r-I..-

"----
BUFFER 4

FREE FRAME LIST

.
STATUS 1.-

-
EMPTY

RBDS

0 ACT-cnt r • -

-'--

-BUFFERS

231246-001

inter 82586

15 ODD BYTE EVEN BYTE 0

C 8 o
r--!--+-:""""-::::O--"':: __ '=-':::"""""---±""""-:!::o---::!"'-"::::::o"-:::"'-"::::::o"-:::_:::::o--=oI(STATUS)

EL

LlNKOFl'SET

RBD-OFFSET

2ND BYTE 1ST BVTE

DESTINATION ADDRESS
10

NTH BYTE
12

2ND BYTE 1ST BYTE
14

SOURCE ADDRESS
16

NTH BYTE 18

1ST BYTE
2ND BYTE TYPE FIELD 20

Figure 22. The Frame Descriptor (FD) Format

SOURCE ADDRESS (written by 82586): Contains
Source Address of received frame_ Its length is the
same as DESTINATION ADDRESS.

NEXT RBD OFFSET: Address of next BD in list of
BD~ -

TYPE F,IELD (written by 82586): Contains the 2 byte
Type Field of received frame .

BUFFER ADDRESS: 24-bit absolute address of
buffer.

. RECEIVE BUFFER
DESCRIPTOR FORMAT

ELISIZE·

EL (bit 15) - Last BO in list, The Receive Buffer Descriptor (RBD) holds informa­
tion about a buffer; size and loc.ation, and the means
for forming a chain of RBDs, (forward pOinter and
end-of-frame indication).

SIZE (bits 0-13) - number of bytes the
buffer is capable of
flolding.

The Buffer Descriptor contains the following fields:
STATUS word (written by the 82586):

EOF

F

ACT
COUNT

(bit 15) - Last buffer in received
frame_

(bit 14) - ACT COUNT field is
valid.

(bits 0-1~) - Number of bytes in the
buffer that are actually
occupied.

15

EOF ACT COUNT o
r--'---'-----'----'----''---'---'--........ - -'---'---'---..L-................ --I (STATUS)

NEXT BD OFFSET

t--------------------------I~
BUFFER ADDRESS

A23

SIZE

Figure 23. The Receive Buffer Descriptor (RBD) Format

6-326 231~46-001

inter 8258(i

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O·C to 70·C
Storage Temperature -65°C to 150°C
Voltage on Any Pin With

Respect to Ground -1.0V to +.7V
Power Dissipation 3.0 Watts

·NOTICE: Stresses above those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. This IS a stress rating only and functional.operation
of the device at these or any other conditions abov13 those
indicated In the operational sections of this specification
is not Implied. Exposure to absolute maximum rating con­
ditions for extended period may affect device reliability.

D.C. CHARACTERISTICS

TA = 0-70°C. Vee = 5V.± 10% CLK. TxD. TxC. RxD. RxC have MOS levels (see VM1L. VM1H• VMOL. VMOH)' All other
signals have TTL levels (see V1L• V1H. VOL. VOH)'

Symbol Parameter Min. Max. Units Test Conditions

V1L Input Low Voltage (TTL) -0.5 +0.8 V

V1H Input high Voltage (TTL) 2.0 Vec+0.5 V

VOL Output Low Voltage (TTL) 0.45 V IOL=2.5mA

VOH Output High Voltage (TTL) 2.4 V IOH=-400uA

VM1L Input Low Voltage (MOS) -0.5 0.6 V

VM1H Input High Voltage (MOS) 3.9 Vee+0.5 V

VMOL Output Low Voltage (MOS) 0.45 V IOL =2.5mA

VMOH Output High Voltage Vee-0.5 V IOH=-400uA

III Input Leakage Current ±10 . uA O:5V ,N'5,VCC

ILO Output Leakage Current ±10 uA 0.45'5,VOUT'5,VCC

C'N Capacitance of Input Buffer 10 pF FC=1MHz

COUT Capacitance of Output Buffer 20 pF FC=1MHz

lee Power Supply Current 550 mA TA = O°C
• 450 TA = 70°C

SYSTEM INTERFACE A.C. TIMING CHARACTERISTICS

TA=0-70° C. Vcc=5V±10% Figure 24 and Figure 25 define how the measurements should be done:

/
INPUT AND OUTPUT WAVEFORMS FOR AC TESTS

2.4==><:>.5 --TEST POINTS --l.S)C
0.45 .

AC TESTING INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC 1 AND
0.45 FOR A LOGIC O. TRiMMING MEASUREMENTS ARE MADE
AT 1.5V FOR BOTH A LOGIC 1 AND 0

Figure 24. TTL Input/Output Voltage Levels For Timing Measurements

6-327 231246-001

T6

T4 ..

MOS 1(0 MEASUREMENTS ARE TAKEN AT
01 AND 09 OF THE VOLTAGE SWING

82586

T2_

Tl

HIGH LEVEL MAY
VARY WITH vee

. Figure 25. System Clock MOS Input Voltage Levels for Timing Measurements

INPUT TIMING REQUIREMENTS (SMHz)*

Symbol Parameter Min. Max. Comments
T1 ClK cycle period 125 2000
T2 ClK low time at 1.5V 55 1000
T3 ClK low time at 0.6V . 42.5 1000
T4 ClK high time at 1.5V 55

T5 ClK high time at 3.8V 42.5
T6 ClK rise time 15 Note 1

T7 ClK fall time 15 Note 2
T8 Data in setup time 20

T9 Data in hold time 10
T10 Async ROY active setup time 20 Note 3
T11 Async ROY inactive setup time , 35 Note 3

T12 Async ROY hold time 15 Note 3
T13 Synchronous ready/active setup 35
T14 Synchronous ready hold time 0
T15 HlOA setup time 20 Note 3

T16· . HlOA hold time 10 Note 3
T17 Reset setup time 20 Note 3
T18 Reset hold time 10 Note 3
T19 CA pulse width 1 T1

T20 CA setup time 20 Note 3

T21 CAhold time 10 Note 3

6-328 231246-001

82586

OUTPUT TIMINGS (8 MHz)*.

Symbol Parameter

T22 DT/R valid delay

T23 WR, DEN active delay

T24 WR, DEN inactive delay

T25 Int. active delay

T26 Int. inactive delay

T27 Hold active delay

T28 Hold inactive delay

T29 Address valid delay

T30 Address float delay

T31 Data valid delay

T32 Data hold Time

T33 Status active delay

T34. Status inactive delay

T35 ALE active delay

T36 ALE inactive delay

T37 ALE width

T38 Address valid to ALE low

T39 Address hold to ALE inactive

T40 RD active delay

T41 REi inactive delay

T42 Ri5 width

T43 Address float to RD active

T44 RD inactive to Address active

T45 WR width

T46 Data hold after WR

T47 Control inactive after reset

* All units are in ns
**CL on all outputs is 20-200 pF unless otherwise specified.

NOTE LIST:

1 1.0V to 3.5V
2 3.5V to 1.0V
3 to guarantee recognition at next clock
4 CL = 50 pF
5 CL = 100 pF
6 Affects:

MIN MODE: 1iQ, l!Y,.R, DT/R, DEN
MAX MODE: SO, S1

7 - High address lines (A16-A24, SHE) become valid
one clock before T1 only on first memory cycle after
the 82586 acquired the bus.

6-329

Min. Max. Comments

0 60

0 70

0 65

0 85 Note 4

0 85 Note 4

0 85 Note 4

0 85 Note 4

0 60

0 50

0 60 Note 7

0 -
10 60

10 70

0 45 Note 5

0 45 Note 5

T2-10 Note 5

T2-30

T4-10

0 95

0 70

2T1-50

10

THO

2T1-40

T2-25

0 60 Note 6

Figure 26. INT Output Timing

Figure 27. CA Input timing

231246-001

82586

ClK

_ T17

RESET

RD. WR. DEN. DT/Fi.

sc.s.

ClK
80186 OR·

82285 OUTPUT
PClK

ARDY
82586
INPUT

SREADY
OR

READY

82586 INPUTS

Figure 28. RESET Timing

READY SIGNAL

Figure 29. ARDY and SRDY Timings Relative to CLK

T28

HOLDA
BHE ADO-AQ1§

T18 _

T16 A~6T~~O~
cpu- MASTER 1~~;!82~5~86B-M~A~SITT~ER~~~-------

T30

Figure 30. HOLD/HLDA Timing Relative to CLK

6-330 231246-001

irlter 82586

T1 T2 T3 T4

T1 H ~ I)!.£!!--, v---'

II" ,r-------..~r---gg!.... 1'--
VCl I~
§l)§1

~} y /

i!!!
HT.4

n9_ -
A16-A18 A20-A23

I ir--
19/56 A19 56 l:=-T.2- ' I'--'-

A

A lE
} r-~ ,'- --

-10-
iAF"T36

-- -
T35-

~ TO T9

ADO-AC1S AO-A15 DATA IN

Ta- t- .' T44 -,
1m T.O

~~ ~T43 T41_ ~

~ T40 T42 - T22 OT/R

,
DEN - T2. - i--T24

} ~
Figure 31. Read Cycle Timing

T1 ~tJL ~ r--\ Ir----;
~. '-----' ~ '--
VCl f--I!- I. i-lL.
~~ .

I I
T •• --)T34 ,W. Ta- b-

fill A1B-A1B A20-A23)(

A19/56 A19 .. f--
~ I--

f-'\. - i--T31 T32- -y- I
,.. --

ALE ---T35- r-~T'6 T38 _
.T., T.2 _ =-c ADO-AD15 AD-A15 DATA OUT

T29- r- 'I -n9
-Tao ~ -WI! T40

~ -I ~T2' T2!.!
T24- I-

D!Ii - T24

I II

Figure 32. Write Cycle Timing

SERIAL INTERFACE A.C. TIMING CHARACTERISTICS
CLOCK SPECIFICATION

Applies for TxC, AXe
for NRZ:

for Manchester, symmetry is needed:
1

TS1, TS2 = 2f ±S%
f min = 100 kHz ± 100 ppm
f max = 10 MHz ± 100 ppm
for Manchester:
f min = 500 kHz ± 100 ppm
f max = 10 MHz ± 100 ppm 231246-001

I;
I" ~

I:

",
I,

82586

A.C. CHARACTERISTICS

TRANSMIT AND RECEIVE TIMING PARAMETER SPECIFICATION'

I Symbol I Parameter Min. Max. Comments I

TRANSMIT CLOCK PARAMETERS

T48 TxC Cycle 100 1000 Notes 1, 2

T48 TxC Cycle 100 Notes 1, 3

T49 TxC Rise Time 5 Note 1

T50 TxC Fall Time 5 Note 1

T51 TxC High Time 40 1000 Note 1

T52 TxC Low Time 40 Notes 1, 4

TRANSMIT DATA PARAMETERS

T53 TxD Rise Time 10 Notes 5,13

T54 TxD Fall Time 10 Notes 5,13

T55 TxD Transition - Transition Min(T51, Notes 1, 2, 5
T52)-7

T56 TxC Low to TxD Valid , 40 Notes 1, 3, 5

T57 TxC Low to TxD Transition 40 Notes 1, 2, 5

T58 TxC High to TxD Transition 40 Notes 1, 2, 5

T59 TxC Low to TxD High at the Transmission end 40 Notes 1, 5

REQUEST TO SEND/CLEAR TO SEND PARAMETERS

T60 TxC Low to RTS Low.Time to Activate RTS 40 Note 6

T61 CTS Valid to TxC Low. CTS Set-Up Time 45

T62 TxC Low to CTS Invalid. CTS Hold Time 20 Note 7

T63 TxC Low to RTS High. time to deactivate RfS 40 Note 6

RECEIVE CLOCK PARAMETERS

T64 RxC Clock Cycle 100 Notes 1, 3

T65 RxC Rise Time 5 Note 1

T66 RxC Fall Time
"

5 Note 1

T67 RxC High Time 36 1000 Note 1

T68 RxC Low Time 40 Note 1

RECEIVE DATA PARAMETERS

T69 RxD Setup Time 30 Note 1

T70 RxD Hold Time' 30 Note 1

T71 RxD Rise Time 10 Note 1

T72 RxD Fall Time 10 Note 1

• All units are in ns.

6-332 231246-001

82586

TRANSMIT AND RECEIVE TIMING PARAMETER SPECIFICATION· (cont'd.)

I Symbol Parameter Min.

CARRIER SENSE/COLLISION. DETECT PARAMETERS

T73 COT Valid to TxC Low Ext. Collision
Qetect Setup Time

T74 TxC Low to COT Inactive. COT Hold Time

T75 COT Low to Jamming Start

T76 CRS Valid to TxC Low Ext. Carrier Sense Setup time

T77 TxC Low to CRS Inactive.CRS Hold Time

T78 CRS Low to Jamming Start

T79 Jamming Period

T80 CRS Inactive Setup Time to R'i<C High.
End of Receive Frame

T81 CRS Active Hold Time From RxC High

INTERFRAME SPACING PARAMETERS

I T82 I Inter Frame Delay

'All units are in ns.

NOTES:

1 MOS levels.
2 Manchester only.
3 NRZonly.
4 Manchester requires 50% Duty Cycle.
5 1 TTL Load + 50 pF.
6 1 TTL Load + 100 pF.
7 Abnormal End of Transmission. CTS Expires Before RTS.
8 Programmable value:

T75 = NCDF x T48 + (12.5 to 23.5) x T48 if collision occurs after preamble.
NCDF - The Collision Detection Filter Configuration Value.

9 - Programmable value:
T78 = NCSF x T48 + (12.5 to 23.5) x T48.
NCSF - The Carrier Sense Filter Configuration Value.
TBD is a function of Internal/External Carrier Sense Bit.

10 T79 = 32 x T48.
11 Programmable value:

T88 = NIFS x T48.
NIFS - the IFS Configuration Value.
If NIFS is less than 31, then NIFS is enforced to 32.

'12 - To guarantee recognition on the next clock.
13 - Applies to TIL Levels.

6-333

30

20

30

20

60

10

Max. Comments I

Note 12

Note 12

Note 8

Note 12

Note 12

Note 9

Note 10

, I Note 11

231246-001

inter 82586

A.C. TIMING CHARACTERISTICS

3.3V ""
3.0V -"" --'" --
0.9V

INPUT AND OUTPUT WAVEFORMS FOR AC TESTS

2.4=X:1.5 --- TEST POINTS --1.5 x==
0.45

AC TESTING I"lPUTS ARE DRIVI'N AT 2.4V FOR A LOGIC 1 AND
0.45 FOR A LOGIC O. TRIMMING MEASUREMENTS ARE MADE
AT 1.5V FOR BOTH A LOGIC 1 AND 0

Figure 33. TTL Input/Output Voltage Levels for Timing Measurements

T48 ,....-­
~- --,
"'----~

HIGH LEVEL
MAY VARY
WITHVCC

0.6V ___ - 1"------ - - -_.

T49 T65

MOS 110 MEASUREMENTS ARE TAKEN AT
0.1 AND 0.9 OF THE VOLTAGE SWING

T51
T67

T50 T66

Figure 34. Serial Clock Input Voltage Levels for TIming Measurements

:tt:-t--t-----i-t-----::IIL:.--y- - \'------

aoT---~+_~_+~----~------~r_

CRS----+_~_+-----~-------4~
T56

TxO- -­
(NRZ)

TxD __ _
(MANCHESTER) -'-:A:~~t~

T57 T59 T53 T54

Figure 35. Transmit and Control an.d Data Timing

6-334 231246-001

m-----+- - - -- --

EfS-----t- - - --- - -
T73

CDT---....;.-;q r-
~-----

CR!;----...., L ____ _

82586

-..h74 T76

_ ../-r--T7-7 ---="\ r-

(1~~) >e==-.r--- \ / =~
T55

TXD -ru=~=~.r---~ =~~
(MANCHESTER)

Figure 35. Transmit and Control and Data Timing (cont.)

!-----T64------!

t---T68 ---~
T66

RxD

Figure 36. RxD Timing Relative to RxC

Ail:!

/"
I

./'

V
CAS / - TScr I-- T81 I-

Figure 37. CRS Timing Relative to RxC

6-335 231246·001

II
1'1

82588
Single Chip, LAN Controller

82588: High Integration Mode
82588-5: High Speed Mode

• Integrates ISO Layers 1 and 2
- CSMA/CD .Data Link Controller
- On-Chip Manchester, NRZI

Encoding/Decoding
- On-Chip Logic based Collision

Detect and Carrier Sense

• Supports Emerging IEEE 802.3
Standards
- 2 Mbps Broadband
- 1 Mbps Baseband

• High level command interface offloads
the CPU

• Efficient memory use via Multiple
Buffer Reception

• User Configurable
- Up to 2 Mbps Bit rates with on-chip

Encoder/Decoder (High Integration
Mode)

- Up to 5 Mbps with External Encoder/
Decoder (High Speed Mode)

• No TTL Glue required with iAPX 186
and 188 microprocessors

• Network Management and Diagnostics
- Short or Open Circuit localization
- Station Diagnostics (External

loopback)
- Self test Diagnostics

Internal loopback
User readable registers

The 82588 is a highly integrated device designed for realizing cost sensitive Local Area Network applications such
as Personal Workstations. ~

At data rates of up to 2 Mbps, it provides a highly integrated interface and performs: CSMA/CD Data Link Control,
Manchester, Differential Manchester or NRZI encoding/decoding, clock recovery, Carrier Sense, and Collision
Detection. This mode is called "High Integration Mode." In the 82588 "High Speed Mode", the user can transfer
data at a rate of up to 5 Mbps. In this mode the physical link functions are done external to the 82588.

The 82588 is packaged in a 28 pin DIP and fabricated in Intel's reliable HMOS II 5 volt technology.

CSMAICD

OATA LINK

CONTROLLER

SYSTEM INTERFACE DATA LINK

Figure 1. 82588 Block Diagram

SERIAL INTE~

231161-1

W.

D.

D,

,. vee
27 limn .. INT

•• RESIT ,. CRSITCLK

125 ..
21 ii'ii

10

" '7
D_

231161-2

Figure 2. 82588 Pin
Configuration

Intel Corporation assumes no responsibility for the ~se of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are Implied Information contained herein supersedes previously published specifications on these devices from Intel. December 1984
@lnteICorporation. 1984. Order Number: 231161-001

6-336

82588

Table 1. Pin Description

Symbol Pin No. Type Name ;md Function

D7 6 110 DATA BUS: The Data Bus lines are bi-directional three
D6 7 state lines connected to the system's Data Bus for the
D5 8 transfer of data, commands, status and parameters.
D4 9
D3 10
D2 11
D1 12
DO 13

RD 5 I READ: Together with CS, DACKO or DACK1, Read controls
data or status transfers out of the 82588 registers.

WR 3 I WRITE: Together with CS, DACKO or DACK1, Write
controls data or command transfers into the 82588
registers.

CS 2 I CHIP SELECT: When this signal is lOW, the 82588 is
selected by the CPU for transfer of command or status.
The direction of data flow is determined by the RD or WR
inputs.

ClK 4 I CLOCK: System clock. MaS compatible signal.

RESET 25 I RESET: A HIGH signal on this pin will cause the 82588 to
terminate current activity. This signal is internally
synchronized and must be held HIGH for at least four Clock
cycles.

INT 26 a INTERRUPT: Active HIGH signal indicates to the CPU that
the 82588 is requesting an interrupt.

DRQO 17 a DMA REQUEST (CHANNEL 0): This pin is used by the
82588 to request a DMA transfer. DRQO remains HIGH as
long as 82588 requires data transfers. Burst transfers are
done by having the signal active for multiple transfers.

DRQ1 18 a DMA REQUEST (CHANNEL 1): This pin is used by the
82588 to request a DMA transfer. DRQ1 remains HIGH as
long as 82588 requires data transfers. Burst transfers are
done by having the signal active or multiple transfers.

DACKO 1 I DMA ACKNOWLEDGE (CHANNEL 0): When lOW, this
input signal from the DMA Controller notifies. the 82588 that
the requested DMA cycle is in progress. This signal acts
like chip select for data and parameter transfer using DMA
channelO.

DACK1 27 I DMA ACKNOWLEDGE (CHANNEL 1): When lOW, this
input signal from the DMA controller notifies the 82588 that
the requested DMA cycle is in progress. This signal acts
like chip select for data and parameter transfer using DMA
channel 1.

6-337 231161-001

inter 82588

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

High -Integration Mode

X1/X2 15/16 I OSCILLATOR INPUTS: These inputs may be used to
connect a quartz crystal that controls the internal clock
generator for the serial unit.

X1 may also be driven by a MOS level clock whose
frequency is 8 or 16 times the bit rate of Transmit/Receive
data. X2 must be left floating if X1 has an external MOS
clock.

High Speed Mode

TxC 15 I TRANSMIT CLOCK: This signal provides timing
information to the internal serial logic, depending upon the
mode of data transfer. For NRZ encoding, data is
transferred to the TxD pin on the HIGH to LOW clock
transition. For Manchester encoding the transmitted bit
center is aligned with the TxC LOW to HIGH transition.

RxC 16 I RECEIVE CLOCK: This signal provides timing information
to the internal serial logic. NRZ data should be provided for
reception (RxD). The state of the RxD pin is sampled on
the HIGH to LOW transition of RxC.

The operating mode of the 82588 is defined when
configuring the chip.

TCLK/CRS 24 I In High Speed Mode, this pin is Carrier Sense, input CRS,
and is used to notify the 82588 that there is activity on the
serial link . .

0 In High Integration Mode, this pin is Transmit Clock, TCLK,
and is used to output the transmit clock.

CDT 23 I COLLISION DETECT: This input notifies the 82588 that a
colli~fon has occurred. It is sensed only if the 82588 is
configured for external Collision Detect (external circuitry is
then required for detecting the collision).

RxD 19 I RECEIVE DATA: This pin receives serial data. Requires
MOS level signal.

TxD 20 0 TRANSMIT DATA: This pin transmits data to the Serial
Link. This signal is HIGH when not transmitting. It
generates a MOS level Signal.

RTS 21 0 REQUEST TO SEND: When this signal is LOW, the 82588
notifies an external interface that it has data to transmit. It
is forced HIGH after a reset and when transmission is
stopped.

CTS 22 I CLEAR TO SEND: CTS enables the 82588 to start
transmitting data. Raising this signal to HIGH stops the
transmission.

VCC 28 POWER: + 5V Supply

VSS 14 Ground

6-338 231161-001

inter 82588

FUNCTIONAL DESCRIPTION

High Integration Mode

The 82588 Single Chip LAN Controller is a highly
integrated device designed for Cost Sensitive LAN
applications such as LANS for personal computers.
Included on the chip is a programmable CSMAlCD
controller, a NRZI and Manchester and encoder/de­
coder with clock recovery, and two collision detec­
tion mechanisms. With the addition of simple trans­
ceiver line drivers or RF Modem, the 82588 takes
care of all the major functions of the_ ISO Physical
and Data Link Layers.

CSMAlCD Controller

The 82588 on-chip CSMA/CD controller is program­
mable which allows it to operate in a variety of LAN
environments inlcuding emerging IEEE 802.3 stan­
dards such as 1 Mbps baseband and 2 Mbps base­
band (IBM PC Network). Programmable parameters
include:

- Framing (End of Carrier or SDLC)

- Address field length

- Station Priority

- Interframe spacing

- Slot time

- CRC-32 OR CRC-16

Encoder/Decoder

The on-chip NRZI and Manchester encoder/decoder
supports data rates up to 2 Mbps. Manchester en­
coding is often times used in baseband applications
and NRZI is used in broadband applications.

Collision Detection

A major innovation with the 82588 is its on-chip logic
based collision detection. To ensure high probability
of collision detection two mechanisms are provided.
The Code Violation method defines a collision when
a transition edge occurs outside the area of normal
transitions as specified by either the Manchester or
NRZI encoding methods. The Bit Comparison method
compares the signature of the transmitted frame to
the recieve frame signature (re-calculated by the
82588 while .listening to itself). If the signatures are
identical the frame is assumed to have been trans­
mitted without a collision.

6-339

System Interface

The 82588 goes beyond providing the designer With
the functions necessary for interfacing to the LAN It
has an extremely friendly system Interface that makes
It easy to deSign With. First, the 82588 has a high level
command interface, that IS the CPU sends the 82588
commands such as Transmit or Configure ThiS
means the deSigner does not have to write low level
software to perform these tasks, and It offloads the
CPU In the application. Second, the 82588 supports
an effiCient memory structure called Multiple Buffer
Reception in which buffers are chained together to
receive frames. ThiS is an important feature in appli­
cations With limited memory such as personal com­
puters. Third, the 82588 has two independent sixteen
byte FIFO's, one for reception and one for trans­
mission. The FIFO's allow the 82588 to tolerate bus
latency. Finally the 82588 provides an eight byte data
path that supports up to 4 Mbytes/second uSing
external DMA.

Network Management & Diagnostics

The 82588 provides a rich set of diagnostic and net­
work management functions including: internal and
external loopbacks, channel activity indicators, op­
tional capture of all frames regardless of destination
address (Promiscuous Mode), capture of collided
frames, (if address matches), and time domain re­
flectometry for locating fault points in the network
cable. The 82588 Register Dump Command ensures
reliable software by dumping the content of the
82588 registers into the system memory,

The next section will describe the 82588 system bus
interface, the 82588 network interface, and the
82588 internal architecture.

82588/Host CPU Interaction

The CPU communicates with the 82588 through the
system's memory and 82588's on-chip registers.
The CPU creates a data structure in the memory,
programs the external DMA controller with the start
address and byte count of the block, and issues the
command to the 82588.

The 82588 is optimized for operating with the iAPX
186/188, but due to the small number of hardware
signals between the 82588 and the CPU, the 82588
can operate easily with other processors. The data
bus is 8 bits wide and there is no address bus.

Chip select and Interrupt lines are used to communi­
cate between the 82588 and the host as shown in
the Figure 3. Interrupt is used by the 82588 to draw
the CPU's attention. The Chip Select is used by the
CPU to draw the 82588's attention.

231161-001

inter 82588

There are two kinds of transfer over the bus: Com­
mand/Status and data transfers. Command/Status
transfers are always performed by the CPU. Data
transfers are requested by the 82588, and are typi­
cally performed by a DMA controller. The table given

231161-

Figure 3. 82588/HOST CPU Interaction

Pin Name

CS· RD WR

1 x x
0 1 1

0 0 0

0 0 1

0 1 0

DACKO[DACK11· RD WR

1 x x
0 1 1

0 0, 0

0 0 1

0 1 0

in Figure 4 shows the Command/Status and data
transfer control Signals.

The CPU writes to 82588 using CS and WR signals.
The CPU reads the 82588 status register using CS
and RD Signals.

To initiate an operation like Transmit or Configure
(see Figure 5), a Write operation command from
CPU to 82588 is issued by the CPU. A Read opera­
tion from CPU gives the status of the 82588. Al­
though there are four status registers they're read
using the same port in a round robin fashiol1 (Figure
6).

Any parameters or data associated with command
are transferred between the memory and 82588 us­
ing DMA. The 82588 has two data channels, each
having Request anQ Acknowledge line. Typically one
channel is used to receive data and other to transmit
data and to do all the other initialization and mainte­
nance operations like Configure, Address Set-Up,
Diagnose etc. The channels are identical and can be
used interchangeably.

When 82588 requires access to the memory for pa­
rameter or data transfer it activates the DMA request
lines and uses the DMA controller to achieve the
data transfer. Upon the completion of an operation,
the 82588 interrupts the CPU. The CPU then reads
results of the operation (or the status of the 82588).

Function

No transfer to/from Command/Status

Illegal ,

Read from status register

Write to Command register

No DMA transfer

Illegal

Data Read from DMA channel 0 [or 11

Data Write to DMA channel 0 [or 11
• Only one of CS, DACKO and DACK1 may be acltve at any time.

Figure 4. DATABUS CONTROL SIGNALS AND THEIR FUNCTIONS

6-340 231161-001

intJ 82588

7 6 5 4 3 2 1 0
I I I I

INT.
PNTR CHNL COMMANDS

ACK.
I I I I

COMMAND REGISTER

COMMANDS VALUE COMMANDS VALUE

i NOP 0 ABORT 13

lA-SETUP 1 RECEIVER-ENABLE 8 '>1

CONFIGURE 2 ASSIGN NEXT BUF 9 :;
!

MC-SETUP 3 RECEIVE-DISABLE 10

TRANSMIT 4 STOP-RECEPTION 11

TDR 5 RESET 14

DUMP 6 FIXPTR 15 (CHNL= 1)

DIAGNOSE 7 RLSPTR 15 (CHNL=O)

RETRANSMIT 12

Figure 5. Command Format and Operation Values

7 6 5 4 3 2 1 o

Status 0 INT. RCV EXEC CHNL

Status 1 RES~LT 1

Status 2 RES~LT2

Status 3
RCV

RCVSTATE
BUFF CHNG EXEC

EXEC STATE
CHNL NO. OF BUF CHNL

EVENTS VALUE (STATUS 0)

IA-SETUP-DONE

CONFIGURE-DONE 2

MC-SETUP-DONE 3

TRANSMIT-DONE 4
TOR-DONE 5

DUMP-DONE 6

DIAGNOSE-PASSED 7

ENDOFFRAME 8

REQUEST NEXT BUFFER 9

RECEPTION A,BORTED 10

RETRANSMIT -DONE 12

EXECUTION-ABORTED 13

DIAGNOSE-FAILED 15

Figure 6. Status Registers and Event Values

6-341 231161-001 '

82588

Transmitting a Frame

To transmit a frame, the CPU prepares a Transmit
Data Block in memory as shown in Figure 7. Its first
two bytes specify the length of the rest of the block.
The next few bytes (Up to 6 bytes long) contain the
destination address of the node it is being sent to.
The rest of the block is the data field. The CPU pro­
grams the DMA controller with the start address of
the block, length of the block and other control infor­
mation and then issues the Transmit command to
the 82588.

Upon receiving the command, the 82588 fetches the
first two bytes of the block to determine the length of
the block. If the link is free, and the first data byte
was fetched, the 82588 begins transmitting the pre­
amble and concurrently fetches the bytes from the
Transmit Data Block and loading them into a 16 byte
FIFO to keep them ready for transmitting. The FIFO
is a buffer between the serial and parallel part of the
82588. The on-chip FIFOs help the 82588 to tolerate
system bus latency as well as provides efficient us­
age of system bandwidth.

The destination address is sent out after the pream­
ble. This is followed by the source or the station indi­
vidual address, which is stored earlier on the 82588
using the IA-$ETUP command. After that, the entire
information field is transmitted followed by a CRC
field calculated by the 82588. If during the transmis­
sion of the frame, a collision is encountered, then
the transmission is aborted and a jam pattern is sent
out after completion of the preamble. The 82588

BLOCK BYTE COUNT

generates an Interrupt indicating the experience of a
collision and the frame has to be re-transmitted. Re­
transmission is done by the CPU exactly as the
Transmit command except for using the Re-Trans­
mit command which keeps track of the number of
collisions encountered. When the 82588 gets the
Retransmit command and the exponential back-off
time is expired, the 82588 transmits the frame again.
The transmitted frame can be coded to either Man­
chester, Differential Manchester or NRZI methods.

Collision Detection

The 82588 eliminates the need for external collision
detection logic, in most applications, while easing or
eliminating the need for complex transceivers. Two
algorithms are used for collision detection: Bit Com­
parison and Code Violation. The Bit Comparison
Method is useful in)Broadband networks where
there are separate transmit and receive channels.
Bit Comparison compares the "signature" of the
transmitted data and received data at the end of the
collision' window in any network configuration. This
algorithm calculates the CRC after a programmable
number of transmitted bits, holds this CRC in a regis­
ter, and compares it with received data's CRC. A
CRC or "Signature" difference indicates a collision.
The code violation is detected if the encoding of the
receil(ed data has any bit that does not fit the encod­
ingrules. The code violation method is useful in
short bus topology and serial backplane applications
where bit attenuation over the bus is negligible.

PREAMBLE } GENERATED BY 82588
BOF FLAG

DESTINATION ADDRESS DESTINATION ADDRESS FROM 82588

DATA FIELD ~
INDIVIDUAL

SOURCE ADDRESS ADDRESS

{ TYPE FIELD
cpu GENERATED

DATA STRUCTURE IN MEMORY INFORMATION FIELD
(TRANSMIT DATA BLOCK)

FRAME CHECK SEQUENCE

I EOF FLAG (OPTIONAL) GENERATED BY 82588

PADDING (OPTIONAL)

231161-4

Figure 7. The 82588 Franle Structure and location of Data element in System Memory

6-342 231161-001

inter 82588

Receiving a Frame

The 82588 can receive a frame when its receiver
has been enabled. The received frame is decoded
by either on-chip Manchester, Differential Manches­
ter.or NRZI decoders in High Integration Mode and
NRZI in High Speed Mode. The 82588 checks for an
address match for an Individual address, a Multicast
address or a Broadcast address. In the Promiscuous
mode the 82588 receives all frames. Only when the
address match is successful does the 82588 trans­
fer the frame to the memory using the DMA control­
ler. Before enabling the receiver, the CPU makes a
memory buffer area available to the Receive Unit,
and programs the starting address of the DMA con­
troller. The received frame is transferred to the
memory buffer in the format shown in Figure 8. This
method of reception is called "Single Buffer" recep­
tion. The entire frame is contained in one continuous
buffer. Upon completion of reception the total num­
ber of bytes written into the memory buffer is loaded
into status registers 1 and 2 and the status of the
reception itself is appended to the received frame.
An interrupt to CPU follows.

If the frame size is unknown then to optimize the
memory usage "Multiple buffer" reception is used.

BLOCK
LENGTH

BLOCK LENGTH
BL

DESTINATION
ADDRESS

INFORMATION

This way the user does not have to allocate large
memory space for short frames. Instead, the 82588
can dynamically allocate memory space as it re­
ceives frames. This method requires both DMA
channels alternately to receive thE! frame. As the
frame reception sta~s, the 82588 interrupts the CPU
and automatically requests assignment of sequen­
tially the next buffer. The CPU does this and loads
the second DMA channel with the next buffer infor­
mation so that the 82588 can immediately switch to
the other channel as soon as the current buffer is
full. When the 82588 switches from the first to the
second buffer it again interrupts the CPU requesting
it to allocate another buffer on the other (previous)
channel in advance. This process continues until the
entire frame is received. The received frame is
spread over a multiple memory buffer. The link be­
tween the buffers is easily maintained by the CPU
using a buffer chain descriptor structure in memory
(see Figure 9).

This dynamic (pre) allocation of memory buffers re­
sults in efficient use of available storage when han­
dling frames of widely differing sizes. Since the buff­
ers are pre-allocated one block in advance, the sys­
tem is not time critical.

DESTINATION
ADDRESS

SOURCE
ADDRESS

INFORMATION

DATA BLOCK IN MEMORY FOR
TRANSMISSION

FRAME STATUS

SINGLE BUFFER RECEPTION
231161-5

Figure 8. Single Buffer Reception

6-343 231161-001

intJ 82588

DEST ADDR

SOURCE ADDR BUFFER #1

@ BUFFER 1

@ BUFFER 2

• • •
@ BUFFER N

o
o
o

BUFFER CHAIN DESCRIPTION
(MANAGED BY CPU)

INFO 1

INFO 2

•

BUFFER #2

• •
INFO N

STATUS

BUFFER #N

231161-6

Figure 9. Multiple Buffer Reception

80188 Based System

Figure 10 shows a high-performance, high-integra­
tion configuration of the 82588 witth the 80188 in a
typical iAPX188-based microcomputer. The 80188
controls the 82588, as well as providing DMA control
services for data transfer,using its 'on chip' two
channel DMA controller.

Link Interface

The Serial Interface Mode configuration parameter
selects either a highly integrated Direct Link Inter­
face (High Integration Mode) or a highly flexible
Transceiver Interface (High Speed Mode).

Application

In this mode it is possible to connect the 82588 on a
very short 'Wired OR' link, on a longer twisted pair
cable, or a broadband connection.

Twisted Pair Connection

The link consists of a twisted pair that interconnects .
the 82588 (See Figure 11). The transmit data pin is
connected via a driver and the receive data pin is
connected via a buffer. The twisted pair must be
properly terminated to prevent reflections.

In the minimum configuration, TxD and RxD are con­
nected to the twisted pair and CTS is grounded. The

, 82588 may control the driver with the RTS pin. It is
also possible to use external circuitry for performing
collision detection, and feeding it to the 82588
through the COT pin.

Broadband Connection

The 82588 supports data communications over a
broadband link in both its modes. Proper MODEM
interface should be provided. Collision Detection by
Bit Comparison, in High Integration Mode, fits trans­
mission over broadband links.

6-344 231161-001

intJ 82588

~ 8282·0R k r 8283
r' LATCH r-'

r- r- STS
OE

.16 MHz

+ VCC dD~ r-

ff
Xl X2

"' RES UCS ~ ~
I til I~

~
LE ~

C(

RD r--- t-
WR r--- t-

MCSO·3
I---

r---
A(B-1S)

I---

t--

LCS t-- I I
I I

AD(0·7)

80188

~ ARDY
~

V- NMI

.
V- HOLD DRao

DRal

PCSl

PCS2

RESET

PCSO

INT

CLKOUT

Figure 10.80188 Based System

6-345

cs

RESET
ROM

AD

RD D(O.7)

:J
RD D(0-7)

WR

PROGRAM
RAM

AD

CS

RD

WR

LOW RAM

AD

CS

D(O·7)

i(oh
Xl X2
WR

Ri5
CDT

D(O·7)
RXD

DRao TXD

DROl RTS

DACKO CTS

DACKl TCLK

RESET

cs
INT 82588
CLK

Vee

IJ
I-
~
:........ --

,

SERI
LIN

AL
K

,., ~
DRIVERS,tJ

OR
RF

MODEM

231161-7

231161-001

inter 82588

0
Xl X2

RTS
CTS SERIAL

LINK
82588

TXD

RXD

0
Xl X2

RTS
CTS

82588

TXD

RXD

231161-30

Figure 11. Twisted Pair Connection

6-346 231161-001

inter 82588

Absolute Maximum Ratings*

Ambient Temperature Under Bias O·C to 70·C
Storage Temperature - 65·C to 150·C
Voltage on Any Pin With

Respect to Ground - 1.0V to + 7V
Power Dissipation 1.7 Watts

'Notice: Stresses above those listed under Absolute
Maximum Ratings may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at these or any other condi­
tions above those indicated in the operational sec­
tions of this specification is not implied Exposure to
absolute maximum rating conditions for extended
period may affect device reliability.

D.C. Characteristics (TA = o·C to 70·C; VCC = + 5V ± 10%)

ClK, TxD, TxC, RxD, RxC have MOS levels (See VMll, VMIH, VMOl, VHOH). All other signals have TTL
levels (See Vll, VIH, VOL, VOH).

Symbol Parameter Min Max

Vil Input low Voltage -0.5 +0.8
(TTL)

VIH Input High Voltage 2.0 VCC+
(TTL) 0.5

VOL Output low Voltage 0.45
(TTL)

VOH Output High Voltage 2.4
(TTL)

VMll Input low Voltage -0.5 0.6
(MOS)

VMIH Input High Voltage 3.9 VCC+
(MOS) 0.5

VMOl Output low Voltage 0.45
(MOS)

VMOH Output High Voltage VCC-
(MOS) 0.5

III Input leakage Current +10

IlO Output Leakage Current ±10

ICC Power Supply Current 400
300 '-------

A.C. Characteristics (TA = O·C to 70·C; VCC = + 5V ± 10%)

System Clock Parameters

Symbol Parameter Min Max

T1 ClK Cycle Period 125

T2 ClKlowTime 53 1000

T3 ClK High Time 53

T4 ClK Rise Time 15

T5 ClK Fall Time 15

·6-347

Units Test Conditions

V

V

V IOl = 2.0mA

V IOH = - 400 p,A

V

V

V IOl = 2.0mA

V IOH = -400 p,A

p,A O=VIN=VCC

p,A 0.45 = VOUT = VCC

mA IA = O·C
mA IA = 70·C

Units Test Conditions

ns

ns *5

ns *6

ns '1

ns '2

\

intJ
A.C. Characteristics (Continued)

I Symbol I Parameter

Reset Parameters

T6 Reset Active to
Clock low

T7 Clock low to Reset
Inactive

T8 Reset Pulse Width

T9 Controllractive
After Reset

Interrupt Timing Parameters

T10 ClK High to Inter-
ruptActive

T11 WR Idle to Inter-
rupt Idle

Write Parameters

T12 CS or DACKO or DACK1
Setup to WR low

T13 WR Pulse Width

T14 C$ or DACKO or DACK1
Hold After WR High

T15 Data Setup to WR High

T16 Data Hold After WR High

Read Parameters

T17 CS or DACKO or DACK1
Setup to RD low

T18 RD Pulse Width

119 ~ or DACKO or DACK1
Address Valid
After RD High

T20 RD low to Data Valid

T21 Data Float After
RDHigh

DMA Parameters

T22 ClK low to DRQO \

or BRQS Active

T23 WR or RD low to
ARQS or DRQ1 Inactive

NOTE:
*1 - 1.0V to 3.5V
*2 - 3.5V to 1.0V

./

"3 - to guarantee recognition at next clock
*4 -'Cl = 50 pF

82588

Min

20

20

411

0

95

0

75

0

0

95

0

Max Units

ns

ns

ns

T1 ns

85 ns

85 ns

ns

ns

ns

ns

ns

ns

ns

ns

80 ns

55 ns

85 , ns

60 ns

"5 ..:... measured at 1.5V
42.5 ns measured at 0.6V
"6 - measured at 1.5V
42.5 ns measured at 3.8V

6-348

Test Conditions

"3

"3

"4

, "4

"4

231161-001

3.OV
2.5V

1.5V

1.OV
0.6V

T4

82588

A.C. TESTING INPUT. OUTPUT WAVEFORM

2.4 =X.5_TEST POINTS-1.5X==

0.45

AC TESTING INPUTS ARE DRIVEN AT 2AV FOR A LDGIC 1
AND 0.45V FOR A LOGIC Q TIMING MEASUREMENTS ARE

MADE AT 1.5V FOR BOTH A LDGIC 1 AND Q

MOS 1/0·0.1 AND 0.9 OF THE VOLTAGE SWING
231161-8

TTL Input/Output Voltage Levels for Timing Measurements

•

T3 _

,-------\ r------
r----"\
/----'--\ ,------_\ , \ /

MOS UO MEASUREMENTS ARE TAKEN AT 0.1 AND 0.9
OF THE VOLTAGE SWING

T5

System Clock MOS Output Voltage Levels for Timing Measurements

CLK

110 _ INT __ -+ __ _ -
231161-10

Interrupt Timing (Going Active)

6-349

231161-9

231161-001

82588

cs "

~----________________ -J /

7 "
D7

--------________ -J

" fn'i INT

231161-11

Interrupt Timing (Going Inactive)

----.. ~ ----.
elK

I - T6 - T7 --' ~
J.!!:'

18 I-~ RESET ----'

I f'-

DRQO.DRQ1 '1\ INT -- 19 -5118
231161-12

Reset Timing

6-350
231161-001

inter 82588

Serial Interface A.C. Timing Characteristics
High Integration Mode

TFC is the crystal clock of the serial clock at pin 15 (TCLK).
TFC Frequency Range:

For Oscillator Frequency = 1 to 16 MHz (HIGH)

xSSampling x 16 Sampling

TCLK Frequency 0.125-2 MHz 62.5 KHz-1 MHz
T29 = TCLK Cycle Time SxT24 16xT24
T30 = TCLK High Time T24 T24
T31 = TCLK Low Time 7 xT24-10 ns 15 x T24-10 ns

For Oscillator Frequency = 0 to 1 MHz (LOW)'

xSSampling· x 16 Sampling

TCLK Frequency 0-0.125 MHz 0- 62.5 KHz
T29 = TCLK Cycle Time SxT24 16xT24
T30 = TCLK High Time T25 T25
T31 = TCLK Low Time 7 x T24 + T26-10 ns 15xT24 + T26-10ns

• A non-symmetrical clock should be provided so that T25 is less than 1000 ns.
T24 = Serial Clock Period
T25 = Serial Clock High Time
T26 = Serial Clock Low Time

High Speed Mode
• Applies for TxC, RxC
• f max = 5 MHz ± 100 ppm 1
• For Manchester, symmetry is required: T2, T3 = 2t ±5%

High Integration Mode
I Symbol I Parameter Min Max Units Test Conditions

External (Fast) Clock Parameters

T24 Fast Clock Cycle 62.5 ns '1

T25 TFC High Time 20 1000 ns '1, '14

T26 TFCLowTime 20 ns *1

T27 TFC Rise Time 5 ns '1

T2S TFC Fall Time 5 ns '1

Transmit Clock Parameters

T2~ Transmit Clock Cycle 500 ns '3, '12

T30 TCLK High Time 62.5 1000 ns '3, 'S

T31 TCLK Low Time '9 ns '3

T32 TCLK Rise Time 15 ns '3

T33 TCLK Fall Time 15 ns '3

6-351 231161-001

82588

High Integration Mode (Continued)

I Symbol I Parameter Min Max Units Test Conditions

Transmit Data Parameters (Manchester)

T34 TxD Transition- 250 ns *12
Transition

T35 TCLK Low to TxD *11 ns *2, *12
Transition Half
Bit Cell

T36 TCLK Low to TxD *10 ns *2, *12
Transition Full
Bit Cell

T37 TxD Rise Time 15 ns *2

T38 TxD Fall Time 15 ns "2

Transmit Data Parameters (NRZI)

T39 TxD Transition - 8T24-10 ns *12
Transition

T40 TCLK Low to TxD "10 ns *2, *12
Transition

T41 TxD Rise Time 15 ns *2

T42 TxD Fall Time , 15 ns *2

RTS,CTS, Parameters

T43 TCLK Low to RTS Low *10 ns *3, *12

T44 CTS Low to TCLK Low 65 ns
CTS Setup Time

T45 TCLK Low to RTS
High *10 ns *3, *12

T46 TCLK Low to CTS 20 ns *4, *13
Invalid. CTS Hold
Time

T47 CTS High to TCLK 65 ns *4
Low. CTS Setup
Time to Stop
Transmission.

IFS Parameters

T48 I Il.1terframe Delay *5 ns

Collision Detect Parameters'

T49 COT Low to TCLK 50 ns *13
High. External
Collision Detect

I

Setup Time

T50 COT High to TCLK 50 ns *13
Low '.

T51 TCLK High to COT 20 ns *13
Inactive. COT Hold
Time

6-352 231161-001

inter 82588

High Integration Mode (Continued)

1 Symbol 1 Parameter Min ·1 Max Units Test Conditions

Collision Detect Parameters (Continued)

eDT Low to Jamming Start

Jamming Period

Received Data Parameters (Manchester)

RxD Transition -
Transition

RxD Rise Time

RxDFaliTime

Rece·ved Data Parameters (NRZI) I

T57 RxD Transition- 8T24-10 ns *12
Transition

T58 RxD Rise Time

T59 RxDFaliTime

NOTES:
* 1 - MOS levels.
* 2 - 1 TTL load + 50 pF.
* 3 - 1 TTL load + 100 pF. _
* 4 - Abnormal end to transmission: CTS expires
before RTS.
* 5 - Programmable value: T 48 + NIFS x T29 (ns)
NIFS - the IFS configuration value.
If NIFS is less than 32, then it is enforced to 32.
• 6 - Programmable value:
T52 = NCDF x T29 + (12 to 15) x T29
(if colli~ion occurs after preamble).

- T12 I-

10 ns *1

10 ns *1

* 7 - T53 =, 32 x T29
* 8 - Depends on T24 frequency range:
High Range: T24
Low Range: T25
* 9 - T31 = T29 - T30- T32 - T33
*10 - 2T24 + 40 ns
*11 - 6T24 + 40 ns
*12 - For x16 sampling clock parameter minimum
value should be multiplied by a factor of 2.
*13 - To guarantee recognition on the next clock.
*14 - 62.5 ns minimum in Low Range.

- T14 I-

I*--T13--

T15_
-to T16 ~7 :::::::::::::::~~;r:::~:~L~ID::~~~::::::::

231161-13

Write Timing

6-353 231161-q01

inter 82588

-- T19 +--

D~CKO '(
K1 -- T17 +--

- T18----1

1
I -- T20 ~-- T21 ~

D~ 7 Ie ~

231161-14

Read Timing

CLK~
• T22

DRQO 0RQ1

231161-15

DMA Request (Going Active)

DRQO DRQ1 -----"""

I

231161-16

DMA Request (Going Inactive)

6-354 231161-001

intJ 82588 ~@\VJ~OO©~ ooo~@rru~~jj"O@OO

TFC

TCLK---I1 T26

~
ri n

~T43 1 ~~ RTS

CTS

COT

TxD 1:= I
--1ST BIT CELL .1

TxC

RTS

CTS

COT

TxD

TxD

r r
I+-T45-+J -+ -T47

.::.."""!_...I'4--- T46

- HALF BIT CELL ~

Transmit Timings: Clocks RTS and CTS

----f1 r.

.--T35_ T36
[1

_T34---! I ~-
~--~ '."---~DATA BIT CELL _I. DATA BIT CELL

Transmit Timings - Manchester Data Encoding

TxD ______ -11.1 ___________ --11

Transmit Timings - Lost CTS

6-355

231161-17

~
.1
231161-18

231161-19

231161-001

I',

I"

i

I~ ~
.1

inter 82588

----f1 r

!--T40_ ~4!-
IL

TxO 1:

1r-
DATA BIT CELL DATA BIT CELL -I

231161-20

Transmit Timings - NRZI Data Encoding

=_---11 _______ 'l_'47-'1j t~1=
CM----------~---------------------------

TXO) \ I
231161-21

Transmit Timings - Lost CTS

T55
231161-22

/
.I

RxO -=t-_-_-T54-_===111-~~T56~--:t=
i

Receive Data Timings (Manchester)

6-356 231161-001

inter 82588

JL

RxO =t_T_S_9 -----TS7 ______ J+lfTS8

231161-23

Receive Data Timings (NRZI)

TFC

TCLK ---1'"---------§f
RTS ---4.tt------.----C.T48~:::;::::::;:::::::!t::=~---___r-
~------------------~! . ~
CDT S
TxO I I S

Transmit Timings - Interframe Spacing

FIRST DATA BIT
FROM HERE TO

THE RIGHT
231161-24

TFC .f\J\.I'V'\J'\$ sJ1..f'\J\J\.(,
~ S~ __________ -Jn~ ____ _

Sp------~S ~S-----------------------r-
I§------cj~1 ~ -------

TxO ""---j;:::::~Sr5J.::::::::~~U~--- ''''T;;53~::::::::~' ___ --.:1 .. 1 " *SsI T -r
231161-25

Transmit Timings - Collision Detect and Jamming

6-357 231161-001

intJ 82588

High Speed Mode
I Symbol I Parameter Min Max Units Test Conditions

Transmit/Receive Clock Parameters
T60 RxC TxC Cycle 200 *13 ns

T61 'i'XC Rise Time 10 ns '1

T62 TxCFaliTime 10 ns *1

T63 TxC High 80 1000 ns *1, *3

T64 TxCLow 80 ns *1, *3

Transmit Data Parameters
T65 TxD Rise Time 20 ns *1, *4

T66 TxDFaliTime 20 ns *1, *4

T67 TxC Low to TxD 60 ns '1, *4, *6
Valid

T68 TxC Low to TxD 60 ns *1, *2, *4
Transition

T69 TxC High to TxD 60 ns '1, *2, *4
Transition

T70 TxD TransitiQn- 70 '1, *2, *4
Transition

T71 TxC Low to TxD High. 60 ns *1, '4
(At the Transmission End.)

RTS, CTS Parameters
T72 TxC, Low to RTS Low. 60 ns *5

Time to Activate RTS.

T73 CTS Low to TxC Low. 65 ns
CTS Setup Time.

T74 TxC Low to RTS High. 60 ns '5

T75 TxC Low to CTS Invalid 20 ns

T75A CTS High to TxC Low 65 ns *7
CTS Set-up Time to
Stop Transmission

Interframe Spacing Parameters
T76 I Inter Frame Delay *9 ns

CRS,CDT,Parameters
T77 COT Low to TxC High 45 ns

External Collision
Detect Setup Time

T78 TxC High to COT Inactive 20 ns *14
COT Hold Time

T79 COT Low to Jamming '10 ns
Start I

T80 Jamming Period *11 ns

T81 CRS Low to TxC High. 45 ns
Carrier Sense Setup Time.

T82 TxC High to CRS Inactive. 20 ns '14
CRS Hold Time

6-358 231161-001

intJ 82588

High Speed Mode (Continued)

I Symbol I Parameter Min Max

CRS, CDT, Parameters (Continued)

. T83 CRS High to Jamming ·12
(Internal Collision Detect)

T84 CRS High to 'RxC High. 80
End of Receive Packet

T85 FIxC High to CRS High. 20
End of Receive Packet.

Receive Clock Parameters

T86 RxC Rise Time 10

T87 RxC Fall Time 10

T88 Axe High Time 80

T89 RxCLowTime 80

Received Data Parameters

T90 RxD Setup Time 45

T91 RxD Hold Time 45·

T92 RxD Rise Time 20

T93 RxDFaliTime 20

NOTES:

• 1 - MOS levels.
• 2,- Manchester only.
• 3 - Manchester. Needs 50% duty cycle.
• 4 -:- 1 TTL load + 50pF.
• 5-1 TIL load + 100pF.
• 6 - NRZ only.
• 7 - Abnormal end to transmissions: e'i'S expires before RTS.
• 8 - Normal end to transmission.
• 9 - Programmable value.
T76 = NIFS x Teo (ns)
NIFS - the IFS configuration value.
If NIFS is less than 32, then NIFS is enforced to 32.
·10 - Programmable value:

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

T79 = NCDF x Teo + (12 to 15) x T60 (ns) (if collision occurs after preamble).
·11-T80 = 32xT60
·12 - Programmable value:
NCSF x TIRC + (12 to 15) x TTRC
T83 = NCSF x Teo + (12 to 15) x T60
NCDF - collision detect filter configuration value.
·13 - 2000 ns if configured for Manchester encoding.
·14 - To guarantee recognition on the next clock.

6-359

Test Conditions

·1

·1

·1

·1

·1

·1 I

·1

·1

231161-001

82588.

CRS~ •• _ ••

TxO :::J..·····r··-···~ "rL-
[NRZ) :Hi..... ..

TxO ••• \- r' ,--.. "-'\,....,. r .. , r--• __ ~ __ J U \.-J __ OU

[MANCHESTER)
231161-26

COT --+H--I-+--4-

CRS --+H--I-+---+
T67 T67 T71

(NRZ) T69 ."r;;-TxO _. ijff-y::rt· r--'~
TxO -11'-#:r.: "'"""l!lJ

(MANCHESTER) T68 T68 T71 T65 T66
231161-27

Transmit Data Waveforms

6-360 231161-001

82588

Receive Data Waveforms (NRZ)

Receive Data Waveforms

6-361

291181-28

291181-29

231161-001

I::
I.'

i.(
I.'

inter ARTICLE
REPRINT

AR 345

Build a VLSI -based workstation
for the Ethe111et enviroI1ll1ent

In a shared-resources) distributed-system environment)
you can design a compact computer system using the

latest chips to keep network node component count
low and operations at hard-disk speeds.

Michael Webb, Intel Corp

Early distributed minicomputer systems used a variety
of dissimilar networking methods, services and expan­
sion provisions. As C-based workstations invade the
business environment, the need arises for standardized
local networking that can quickly transfer information
and make optimum use of shared resources. You can
build an Ethernet workstation that's relatively simple
and inexpensive by configuring a network using the
system, hardware an'd software considerations de­
scribed in this article.

Choosing Ethernet· as the network environment
makes good sense. For example, Ethernet makes it
possible to share large, high-speed, remote file facilities
and thus minimize or e,ven eliminate the need for disk
storage at the workstation. Similarly, you can eliminate
printers at most stations by sharing higher quality
printers that provide automatic print spooling and such
special features as graphics with text and electronic
typesetting.

These remote high-quality services are possible
because Ethernet permits rapid, 10M-bps data trans­
mission with even a large number of network users, and
sharing makes the services cost effective. This shared
approach to overall system configuration allows you to
build a compact, high-performance workstation that is
optimal for a local-area-network (LAN) environment.

Although most major components used in this

EUN FEBRUARY 23, 1984

workstation are Intel parts, many are available from
second sources. You can substitute other parts with
some design adjustment. For example, you can use a
high-speed 68000 CPU. Its system interface is more
complex, and the total parts count would increase. In
the design described, the total component count can be
fewer than 75 ICs, even with 256k bytes of 64k-bit
dynamic RAM (32 ICs).

A system overview
Fig 1 shows an Ethernet workstation configured

without disk drives or a printer. The two JEDEC
28-pin EPROMs that reside on the system bus store
bootstrap, diagnostic and utility programs. The boot­
strap program locates the correct file server on
power-up and downloads the operating system over the
net. File accesses to remote file servers depend on
Ethernet speed to keep performance at the level
experienced when hard disks are dedicated to a single
workstation. With large system memory, say, 256k
bytes with 64k RAMs or 1M byte with 256k RAMs,
large applications programs and data files can reside in
the workstation once loaded over the network.

Of course, to connect to the network, the workstation
needs an Ethernet interface. This formerly required a
board of MSI devices and one or more DMA channels.
Today, a dedicated LAN coprocessor combined with an
Ethernet serial interface chip can provide the complete
Ethernet interface. An 82586 LAN coprocessor, which

Reprinted With permission from EON Febru'ary 23, 1984 Copynght A Cahners Publishing Co All rights reserved. ORDER NUMBER' 231207·001

6-362

Available shared LAN resources
provide lower cost workstations

implements the full Ethernet specification and is
compatible with the IEEE 802.3 LAN standard,
provides buffer management both concurrently and in
real time so that you can take full advantage of
Ethernet performance.

Using a dual-port memory system permits the
various system processors to share as much as 1M byte
of 150-nsec dynamic RAM, which runs at 8 MHz,
without any wait states. One memory port is tied to the
system bus, while the other port is tied to a display
system through a multiplexed bus. Using this dual-bus
arrangement offloads the system bus from such tasks
as screen refresh.

The dual-channel communications controller has two
serial I/O channels, each of which can be configured for
a different protocol; one of its ports is used for the
workstation's keyboard, and the other channel supports
a local modem interface. The keyboard contains a
battery-backed CMOS single-chip microcontroller
(80C51) that controls the keyboard, has an interface for
a mouse or digitizing pad and maintains semipermanent
system configuration and real-time clock information
even when the system is powered down.

The logic needed to read and execute high-level

Ethernet communications tasks is in the LAN coproc­
essor. It accesses the Ethernet through a serial
interface chip and a transceiver (Fig 2). The interface
between the serial interface chip and the transceiver -
requires a crystal clock and a few capacitors and
resistors.

The hardware interface between the LAN coproces­
sor and CPU (Fig 3) is even more straightforward,
requiring only an inverter and transistor. The LAN
coprocessor, which has the same pin configuration as
the CPU, resides on the multiplexed CPU bus. To gain
control of this bus, the LAN coprocessor uses its
Hold/Hold Acknowledge (HOLD/HLDA) lines, which
are directly wired to the CPU. The LAN coprocessor
and CPU share a set of octal noninverting address
latches and transceivers, through which they access the
system bus and communicate with system memory. All
commands and status concerning the Ethernet link are
exchanged between the two through this memory.

The dual-port controller, through which system
memory is accessed (Fig 4), gives priority to Port A,
the port shared by the CPU and LAN coprocessor,
thereby minimizing latency when receiving an Eth­
ernet packet. This arrangement allows time for the

Fig 1-Consisting of four main subsection&-a network-roterface control system, CPU, dual-port memory system and display
controller-thls Ethernet workstation relies on VLSI parts for hIgh-speed performance EPROM memory contains the bootstrap
program that gets the system onto the net at power-up, whIle the dual-channel controller prOVIdes a keyboard interface and modem
commUnicatIon

6-363 231207-001

(
'\

VLSI reduces a board of components
to a single coprocessor chip

workstation to receive a maximum-size Ethernet pack- Con~urrent display of data from different files in
et, while the text coprocessor, wjJich resides on Port B separate areas of a CRT screen, called windows, has
of the memory controller, simultaneously fills a display proven desirable in business applications and should be
buffer. By using a dual-port memory controller, you part of any modern workstation. In the past, hardware
also shift the overhead incurred in filling a display . support for multiple windows was available only in
buffer away from the main system bus, freeing it for $10,OOO-and-up workstations. A text coprocessor with
other application tasks, such as communicating via the on-chip DMA simplifies list-based manipulation of
modem. ' multiple overlaid text windows, as used with the Xerox

Because high-quality, low-cost printing is to be a Star and Apple Lisa workstations.
network resource, your workstation should let you
generate documents with different type fonts and ,Looking at bandwidth realities
graphics. A text display of 25 lines x 132 characters and Considering the memory- intensive nature of this
proportional-spacing capability is suitable for most design, sufficient bandwidth in the dual-port memory
business applications. Integrating a text coprocessor system is a key factor. There must be sufficient
into the display system (Fig 5) makes sense because it bandwidth to support the data-rate requirements for
can generate the proportionally spaced text using an display refresh. At the same time, the LANcoproces­
LSI video interface component. Add a character sor must be able to access memory frequently enough
generator and three latches for synchronization, and during packet reception or transmission to avoid
the display interface is complete. overrun or underrun in its on-c~ip FIFO buffers.

TO CPU
BUS

5V OV

20 10

ill
26 16 TXC Vee

RTS 28

TXD 27

82586
CONTROLLER

15
TEN

17
TXD

CRS~3 ... 1 __ "'16 el'i§

RXD ~25~ __ -9qIRXD

82501
ESI

ETHERNET
TRANSCEIVER

CABLE

CDT~30~ __ -7~\CDT CLSNf1~1~-6~>-__ ~~~~'-____ i-~
~ ________ ~ ~~K~X~1 __ ~X~

LOOPBACK INPUT
FROM PROCESSOR

3' 14 13 I ~:~R,...-,....-----

20 ~HZ 12TO 1~_~8B--IJ~~'-<t_---------I
I I
1.---------.1 T T

Fig 2'--A serial interface chip (82501) provldee a path from LAN controller to cable transceiver, Its six outputs correspond with the
six major signal lines of the 8-wire Ethernet cable, The remaining two lines' are for dc power and return,

6-364 231207-001

An Ethemet workstation
should support windows

, To refresh a video display, you must till the row
buffer once for each character row displayed. If you use
a display with 14 scan lines per character row, you can
generate characters in a 9x 14-character cell, which
provides good character definition. Assuming that it
takes 49 ,""sec to write a line (this timing depends on
monitor selection), it would take 686 flSec to display a
single row of characters. .

If the text coprocessor must wait during every
memory access for the LAN coprocessor or CPU to
complete a cycle, and Port A of the dual-port controller
has priority, then the worst-case memory-access time
would be approximately 800 nsec per word. With 132
words per row and 20% overhead for string and pointer
manipulation, 126.72 IJ-8eC are needed to till the next
row buffer. This is easily within the display refresh
requirements, because 686 ,""sec are required to display
a row. Because the text processor has dual row buffers,
it makes no bus accesses 81% of the time and still
provides continuous screen refresh.

When receiving packets from the Ethernet, the LAN
coprocessor takes charge of the bus for the time

RErT rD~
RESET IN X, X2 ,

HOLD

HLDA

CLKOUT
IAPX 188

RESETOUT

INTO PCSO
UVcc READY iiME A,,-A .. ADo-AD" S;; S; S;

III
:-----:

required to store two maximum-size packets (1518
bytes each) that can arrive with a minimum interfrarne
spacing of 9.6 f1Sec (the worst-case situation defined in
the Ethernet specification). The LAN processor uses
the 9.6-f1Sec gap between frames to set up pointers to
the next free buffer. Without an intelligent controller,
this time would be insufficient to prepare for the neXt
frame.

Data arrives over the Ethernet at 800 nsec per byte.
At 800 nsec per byte multiplied by 3036 (2 x 1518) bytes,
it takes 2.4288 msec to receive these frames. During
this time, for 126.72 f1SeC of every 686 ,""sec, the text
coprocessor is contending with the LAN coprocessor
for data to load its row buffers. Under worst-case
conditions, the LAN processor can write a word every
800 nsec during this contention interval; without
contention, it can write a word every 400 to 450 nsec.
Either way, there is plenty of time to store data coming
in at 1600 nsec per word.

In fact, the LAN processor in this system can
continuously store incoming packets with the minimum
interfrarne spacing as long as receive-buffer space is

~
DrOSERIAL

INTERFACE

MNMX

HOLD

HLDA

CLK

RESET 82588

INT

CA
S;; S, BME AlI-AlI ADo-AD" READY ARDY

(;-U =---;

I MULTIPLEXED CPU BUS I

l> ~ + ~ PI
OCTAL 15l

~
Dil S, 52 CLK

OCTAL DATA T
ADDRESS LATCHES TRANSCEIVERS

~
8288 ~X~~H [fHREE 82828) (TWO 82878) ~ DEN' STB

ALE --~YNCHR

I READY
~ ,.

RONOUS

ONOUS

ADDRESS
'< ,ATA COMMAN~

SYSTEM BUS

Fig 3--For the core of an Ethernet worbtatlon, an 80186 tJP is teamed with an 82586 LAN controller to provide computational
power and network communication, respectively. The units share the local CPU bus. No random logic is needed to interface them
because they have Identical illterface structures and timing requirements. f

6-365 231207-001

I SYSTEM BUS I J Ie
f I 2t; f""

l DATA I LATCHES

I
SHARED 16 PORTA PORTA
MEMORY DATA I

CONTROL ADDRESS

'.8 .. .A. 2O,L
MUX MUX'D 1. 8207 .L AODRESSES

~ ,
.'11 MEMORY PORTB PORTB

CONTROL , CONTROL AOORESS

• J
I DATA

LATCHES
20~

'e I
MULTIPLEXED MEMORY BUS ...1

1
- I - DISPLAY SUBSYSTEM

fig 4-The memory .pIeIn'" two port. tied to u,e system bus and the memory bus, which communicate with /he display.
Offloading disp/ay-mefr!Ory accasses keeps the system bus open for Ethernet opera,ttons and user applications.

I
~

1-'\
~

~ ADo-AD .. ['r-v
rn
=>
ID 82730
~ TEXT
0 COPROCESSOR
:I

!!il -"
fill'r--v' A11-Au ,

~
~
=>
:I

r--- BUS
CONTROL

......

HSYNC

VSYNC

82731

PIPELINE OW
REGISTER h l PROG

t--+ HOOT

~ f---'\ CHARACTER I----'"
WO-WI

~ENERATOR

LINE ADDRESS

~ Do-D"

RRVV
CSYN

CRimi
ATTRIBUTE AND

CONTROL SIGNALS CBLANK
CRVV

WOEF

CCLK

RCLK

-.

o = ,BBSOS VARACTOR DIODE OR EQUIVALENT

VIDEO CZ) r--l CRT ,

X'r1 1---J6.25 MHz

X.

T,

T.

V.

°fl-
3300 nH

J-.fn
i=o I.F 1

, lk :::: ...:.~,onF

l~" t'OOPF

Fig ~or the CRT,' .ulNtphlln. the 82730 and 82731 CO(Ivsrt bytes from /he worlcstation bus to charactelS on a
25-/lne x 132-charactar CRT so_no The text coprocessor a/so handles multipia windows.

6-366 231207·001

Providing dual-ported memory
?ft1oads the system bus

available in memory. At the same time, % to 'AI of the
bus bandwidth is still available for the CPU to continue
program execution. In previous systems, program
execution virtually stopped while high-bandwidth pe­
ripherals are using the bus. Because both peripherals
are coprocessors, they run asynchronously and concur­
rently with other system activity.

With plenty of leftover bandwidth, the two OMA
channels on the CPU can be used to add efficiency and
performance to the dual-cbannel communications con­
troller. Data from the keyboard-input buffer is trans­
ferred to the CPU via OMA, and the other OMA
channel makes possible a 64k-baud synchronous or
HOLC modem link on the communications controller's
other port. Baud-rate timing for the two channels is
generated using two of the CPU's three on-chip timers.

The CPU also directly generates chip selects, channel
attentions and wait states for the system peripherals.
The CPU's on-chip interrupt controller services inter­
rupt inputs from the LAN coprocessor, text coproces­
sor, communications controller and other peripherals.

The software relationship
Most of the system's hardware relationships are

easily grasped, but a firm understanding of the
software architecture is essential to building an opti-

SERIAL
DATA OUT

Fig &-Seen from a softwa,. perspective, the LAN
coprocessor looks like Receive and Command units. When
receiving data packets from Ethernet, the coprocessor
converts them from serial form and places them in frame area
locations it manages within the memory system. The CPU
directs the coprocessor using hendshake lines and messag­
es left In the shared-memory system's command-block list.

mum workstation. Fig 6 shows how the LAN coproces­
sor interacts with the system from a software point of
view. Receive and Command units are software
constructs rather than physical segments of the LAN
coprocessor; in reality, the same hardware performs
both functions.

As previously noted, all communications between the
CPU and the LAN coprocessor occur in system
memory. The CPU builds a command block, stores it in
memory, updates the command-block list and then
activates channel attention to get the LAN coprocessor
to look at the command-block list for one or more new
commands. If requested by the command block, the
LAN coprocessor interrupts the CPU on completion of
one or more commands.

The focal point for all interaction is the system
control block (Fig 7). This data structure contains chip
status, pointers to the command-block list and receive­
frame areas, and universal statistics on faults such as
CRC errors and alignment errors.

Both the command-block list and receive-frame area
use the same concept, or model, to manage data buffers .
for either transmission or reception. The buffer man­
agement model employs one or more arbitrarily sized
buffers to construct each data frame. Pointers control
and access the buffers, and linked lists manipulate
them.

This model offers distinct advantages over more
primitive approaches. Allowing the physical buffers to
be arbitrary sizes gives the system designer maximum
flexibility in selecting the buffer size and in alloca~ion
methods. Because you can locate the memory for these
buffers anywhere In the 16M-byte address space, this
buffer management support simplifies the task for the

CONTROL INFORMATION

~15
STAT Idl cus 101 RUS 10101010
ACK I I cuc I~I RUC I

COMMAND BLOCK LIST POINTER

RECEIVE FRAME AREA POINTER

CRC ERROR COUNTER

ALIGNMENT ERROR COUNTER

RESOURCE ERROR COUNTER

OVERRUN ERROR COUNTER

SCB

SCB + 2

SCB + 4

SCB + 6

SCB + 8

SCB + 10

SCB + 12

SCB + 14

Fig 7-A special memory block, the systam control block,
serves as a bulletin board whereby the CPU and LAN
controller communicate. The system control block holds
control and status information pointers to the command­
block list, where the CPU stores instructions for the LAN
coprocessor, and the receive-frame area, where data from
the Ethernet is stored by the LAN coprocessor. The block
also contains error Information of interest to the CPU.

6-367 231207-001

The CPU and LAN coprocessor
communicate through shared memory

operating system's dynamic memory-allocation scheme.
Communication buffers for the LAN coprocessor are
dynamic by dlltinitilon.

A buffer needn't be the size of the largest frame ever
expected; it can be any convenient size. If a frame
larger than the selected size arrives, the LAN
coprocessor automatically allocates as many buffers as
necessary to contain the frame, and updates the
pointers and links to indicate where the fr8.me starts
and which buffers are occupied by the frame.

This flexible buffer size avoids the waste of large,
dedicated buffers for receive frames when most of the.
frames actually received are much smaller than the
maximum size (ie, are control frames rather than data
frames). Also, this automatic buffer chaining of receive
data increases communications performance and effi­
ciency; even if several frames arrive before the CPU is
free to examine incoming data, the workstation seldom,
if ever, misses a frame addressed to it.

The effectiveness of this buffer management scheme is

perhaps best understood by examining what happens
when a packet comes in from Ethernet. The LAN
coprocessor's Receive section handles all frame recep­
tion activities. It manages a pool of memory space-the
receive-frame area (Fig 8)-using the receive-frame
and free-frame lists.

Within each list are receive-frame descriptors
(RFDs) that contain status data and pointers. The
RFDs in the receive-frame area point both to the tirst
buffer that has been tilled with received data, and to
the tirst RFD of the free-frame area. The CPU can .
organize the pointers in linear, random or circular
fashion. Once a pointer structure is adopted, the LAN
coprocessor allocates buffers and maintains the proper
linkage automatically.

When the LAN coprocessor begins receiving a
frame, it uses the first RFD in the free-frame list to
hold status and information concerning the frame, and
then allocates and links in as many free buffers as
necessary to contain the frame data. The linking

SYSTEM
CONTROL

Ir-I .. I-------------RECEIVE FRAME AREA------------.,.I
I

L BLOCK

SIC

r-r-
RFA POINTER

STATISTICS

TO COMMAND
BLOCK LIST

I
RFD 1 I RFD2 RFD3 RFD4 I I

lJi STATUS
I

STATUS

J
STATUS lr STATUS

111 w - - - --f- -VALID EMPTY. EMPTY EMPTY PARAMETERS

~
L RBDl RBD2 RBD3 RBD4 RBD5 I

o I ACT·CNT Lr 1 I ACT·CNT o I ACT·CNT J o I ACT·CNT lr o I ACT·CNT lJ1 .- - - -I
I I

I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I
I I
I -'-- r-- I r-~ r-~ I I I I
I VALID I EMPTY EMPTY EMPTY I DATA I
I I
I '""-- '""-- I '--- '""-- -I I I BUFFER 1 BUFFER 2 I BUFFER 3 BUFFER 5 BUFFER 4

I I
I I I
... I ... I----RECEIVE FRAME LlST-----.,.~1 .I-------FREE FRAME LlST------...,~~1
I I I

Fig 8-Recelved packets are stored in a receive-frame area conSisting of two linked lists-the receive-frame list and free-frame list.
The LAN coprocessor pulls into the receive-frame list as many buffers of any size as needed to store an incoming packet. Buffers
used are pomted to by receive-frame descriptor (RFD) and receive-buffer descriptor (RBD) blocks. The variable-size message block
saves memory, with packets stored according to actual size rather than maximum size. .

6-368 2:n,207-001

process is accomplished using a receive-buffer des­
criptor (RBD) to point to the next buffer containing
contiguous data.

Once frame data is complete, the LAN coprocessor
writes the frame status into the associated RFD and

_ the actual count of valid data into each RBD used by the
frame. It then flags the last RBD used to contain the
frame and updates the first RFD on the free list to
point to the first free RBD. All this is done in time to
catch a second frame sent to the workstation address, if
one is transmitted immediately following completion of
the previous frame using Ethernet's 9.6-.... sec minimum
frame spacing.

In effect, the LAN coprocessor can receive continu­
ous data packets from the network as long as buffer
space remains available. This is achieved by dedicating
a complete microcoded machine in the LAN coproces­
sor to generating buffer management primitives, and
giving this machine DMA control to speed its bus
requests. No DMA setup or control is needed from the
CPU, reducing overhead and simplifying the system.

Data transmission is accomplished in a similar
fashion. To transmit a frame .over the Ethernet via the
LAN coprocessor, the CPU constructs a command
block (Fig 9). Included in this command block is a
pointer to a buffer descriptor, which points to one or
more buffers containing the data to transmit.

If more than one buffer is used, the LAN coprocessor
automatically links the buffers together as it transmits
the frame. In addition, the LAN coprocessor automati-

CONTROL INFORMATION

~"ooo"m EVEN BYTE 0

c I B I STATUS

ELI S I J I I CMD

A15 LINK ADDRESS TO NEXT COMMAND AD

A15 POINTER TO TRANSMIT BUFFER DESCRIPTOR AD

2ND BYTE
I

1ST BYTE E I
I

DESTINATION ADDRESS
I

NTH BYTE I
I

B15 TYPE FIELD BO

Fig 9-The system control block points at the command
block containing instructions from CPU to LAN controller
concerning a transmission. These Include control mforma­
tion, a link to the next command, a pointer to a transmit-buffer
descriptor, the packet's destination address and the type of
field it contains. The command area is organized similarly to
the receive-frame area.

6-369

cally inserts the frame preamble, source and destina­
tion addresses, type field, and CRC during the
transmission process. The CPU can choose to be
interrupted following the transmission of one frame, or
it can link together several transmission requests and
be interrupted following the final frame
transmission. EDII

References
1. Metcalf, R M, and Boggs, D R, "Ethernet: Distributed

Packet Switching for Local Computer . Networks," Com­
munications of the ACM, Vol 19 .. No.7, July 1976, pp
395-403.

2. Shoch, J F, and Hupp, J A, "Performance of an
Ethernet Local Network: A Preliminary Report," Proceed­
ings of the Local Area Communications Network Sympo­
sium, May 1979, pp 113-124.

3. Tobagi, F A, "Message-based priOrity functions in
Multiaccess/Broadcast Communications Systems with
carner sense capability," Stanford University Electronic
Labs Technical Report, No. 181, October 1979.

4. Digital Equipment Corp, Intel Corp, and Xerox Corp,
"The Ethernet Specification," Ver 2.0, November 1982.

Author's biography
Michael Webb is a regional
applications specialist for Intel
Corp (Dallas, TX), where hiS
primary job IS to help custom­
ers define architectures and
deSigns for distributed sys­
tems, such as the Ethernet
system deSCribed In this arti­
cle. No stranger to Ethernet,
Mike previously worked at
Xerox Corp In the Office Prod­
ucts Div where he was engi­
neering manager for Ethernet commUnications software.
Mike's hobbies include devising game software and
chess.

INTEL CORPORATION, 3065 Bowers Ave.
Santa Clara, CA 95051; Tel. (408) 987-8080

INTEL INTERNATIONAL CORPORATION Ltd.
Swindon, United Kingdom; Tel. (0793) 488 388

INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511

Printed in\U S.A.lD·4043/10K/9-84/SCP/PM
peripherals

231207-001

inter ARTICLE
REPRINT

AR-346

September 1984

VLSI Solutions for Tiered Office
Netw·orks

BOB DAHLBERG AND CHARLES GOPEN

. @ Intel Corporation, 1984 Order Number: 231194-002

6-370

intJ
VLSI SOLUTIONS FOR

TIERED OFFICE
NETWORKS

CONTENTS PAGE

Introduction 1

The Tiered Network Model 1

Applications and Tiers 2

Evolution Scenarios 2

VLSI and the LAN Backbone 4

VLSI for the Human Interface Tier 5

Cheapernet 5

1 Mbps CSMAICO LAN 5

Voice/Data PBX •.......................... 6

Conclusion 6

References 6

APPENDIX A

INTEL LAN SOLUTIONS A-1

The 82586 LAN Coprocessor A-1

The 82501 Ethernet Serial Interface A-1

iNA Transport Software A-2

Transport Services A-2

Network Management Services A-2

User Environment A-2

6-371 231194-002

inter AR-346

Introduction

Local area networks, or LANs, were developed as a
response to the development of distributed intelligence.
In the past decade the performance/price ratio of mi­
croprocessors has increased well over 1000 fold. It is
these low cost microprocessors that have enabled com­
putational capability formerly residing in a centralized
computer to be placed on users' desks. However, the
cost of computer peripherals (such as letter quality
printers. disk memories, and communication servers) has
not dropped in a similar fashion (because of high electro­
mechanical content). Also, there is an increasing need to
share timely and accurate information among users in a
business setting. LAN technology is the solution to these
problems by allowing users to share the cost of peripherals
and access common data bases.

As LANs begin to proliferate, it is becoming clear that
no single network type can cost effectively meet all of­
fice users' requirements. Some applications require high
data rates; for example, real time graphic display infor­
mation. Other applications require the lowest cost per
connection; for example, data entry terminals. This fun­
damental tradeoff between performance and cost drives
the evolution of a tiered network architecture for the
office. A model based on tiered network architecture
predicts that user workstations within a department
will be clustered together, and that these clusters will be
interconnected through a LAN Backbone network.

Today these two types of networks (cluster and LAN
Backbone) can be realized by using available VLSI
technology. Intel's 82586 LAN Coprocessor supports
LAN Backbone technologies such as IEEE 802.3/Eth­
ernet. The 82586 also supports the.cluster networks by
realizing 1 Mbps CSMA/CD networks. 1 Mbps net­
works are significantly cheaper than LAN Backbone
networks because lower cost cabling and electronics
can be used, and fewer repeaters are required between
cable segments. In the future, PBXs will play an impor­
tant role in this clustering tier as true two wire voice/
data communication becomes a reality.

The Tiered Network Model

An office network can be thought of as consisting of
three performance tiers. End users can optimize their
network cost/performance ratio by building up net­
works with different performance attributes.

The Three Tier Network Model is shown in Figure 1.
Tier 1, the highest performance tier, is referred to as the
Computer-to-Computer tier. A network in this tier is
characterized by a very high data rate, 50 to 100 Mbps.
Solutions for this tier take the form of loops or rings
and even fiber optics. An example of this type of net­
work is Network Systems' Hyperchannel.

Tier 2, the LAN Backbone, is a high performance tier
generally operating in the 10 Mbps data rate range and
cover a distance sufficient for ~ single building. An ex­
ample of this kind of network is the IEEE 802.3/Ether­
net. This tier is the main highway over which informa­
tion travels throughout a building connecting expensive
peripherals (e.g. laser printers and file servers) to end
users located in the clustered tier.

Tier 3, or the Human Interface tier, is characterized by
the clustering of end user workstations. Networking ca­
pability in this tier exhibits the most cost sensitivity
because the workstations themselves are numerous and
low cost ($500 for a terminal to $3000 for a personal
computer). Fortunately humans can tolerate display
screen latencies of 0.5 to 1 second that lower bit rates
provide. These lower bit rates enable low cost networks
to be realized. The need for low cost is the reason why
data rates in this tier are generally 1 Mbps or less. Ex­
amples of Tier 3 networks are personal computer net­
works such as Corvus Systems' Omninet, Orchid Tech­
nology's PCnet, Nestar's Plan Series and JEEE 802.3
Star LAN.

Voice/data PBXs will play an important role in Tier 3.
Telecommunication suppliers have a big advantage in
the office in that almost everyone has a phone on his
desk. Today users take advantage of this installed net­
work capability through modems. PBX manUfacturers
have already begun to make cluster products available
in the form of voice/data PBXs. The data rates offered
are 19.2 to 64 kbps in addition to voice, which is suffi­
cient for terminal applications. These manufacturers
are already reducing the terminal/station apparatus
footprint size by offering teleterminal (combined termi­
nal and phone) products.

6-372

A Three Tier Network Office/Commercial

A TIERED NETWORK OPTIMIZES COST
AND PERFORMANCE

nER 1: COMPUTER-To-coMPUTEA
c ,'!"_)

TIER 2: LAN BACKBONE
(2-10 MbpI) I

231194-1

Figure 1. Three Tier Network Model

231194-002

inter AR·346

The tiered network model is analogous to a road sys­
tem. Tier I is the 10 lane freeway in a major metropoli­
tan area. This highway is responsible for moving very
large volumes of traffic. This type of highway is very
expensive to build, but the traffic volume warrants it.
Tier 2 can be thought of as an Interstate Highway in
which a large amount of traffic can be transported over
long distances. Tier 3, or the Human Interface tier, can
be thought of as the streets within a city which inter­
connect onto the interstate highway. In this scheme, no
single user has a freeway butting up to his driveway; in
a similar fashion no user is connected to a Tier I net­
work. This tiered approach maximizes the performance
of Tier 2, because most of the Tier 3 traffic stays within
Tier 3; just as farm tractors primarily stay on dirt
roads, not super highways. .

Another way to view the model is to draw an analogy
to microprocessors. To meet the requirements of di­
verse applications there are 4-bit, 8-bit, 16-bit and 32-
bit processors available. Nobody questions that a 32-bit
microprocessor is overkill for a microwave oven. In a
similar fashion no single network can cost effectively
solve the problems of each networking need. It is
through this tiered approach that users achieve the best
cost/performance ratio for moving vehicle traffic.

Applications and Tiers

This model can be mapped into application perform­
ance requirements found in the office. Figure 2 shows a
graph of cost and performance for various applications.
Experience has shown that end users are willing to pay
no more than 10 to 15 percent of their system cost in
order to obtain data communication capability; this
percentage is an important assumption.

Application data rate requirements can be placed into
three groups analogous to the three tiers of Figure 1. At
the very high end is the computer-to-computer commu­
nication requirements, in which end users will spend
S50k to S60k per connection.

At the high end is the CAD/CAM user requirements in
which very expensive peripherals such as electrostatic
plotters and disks need to be shared. The cost of an
Ethernet connection, Sik to 1.5k, is very affordable at
this tier.

At the lowest end is the terminal and personal comput­
er requirements. This application space spans a wide
spectrum of performance requirements. At the low end,
data entry can tolerate very low data rates with not
much performanre degradation, and consequently is
the most cost sensitive. Using modems as a benchmark,
users are willing to pay upwards to S450 for a 1200 bps
serial connection. At the higher end, resource sharing
and graphic requirements for PCs require in the range
of I Mbps. Popular personal computer LANs cost S500
to SIOOO per connection (not including wiring cost).

Networking at Tier 3 provides an overall lower cost
solution because the cost of the network is less than the
cost of each user ha;ing his own peripheral. This obser­
vation is validated in that a major trend in the market
place today is diskless workstations.

It is the wide range of personal computer and terminal
data rate requirements that make the Tier 3 the most
interesting. It is possible for a user to spend too much
for performance hewilJ not use. In fact, for personal
computer networks, bit rate is not the major limitation,
rather it is the restrictions of electro-mechanical periph­
erals such as Winchester disks and software overhead
on the local CPU that cannot keep up with I Mbps
continuous (as opposed to bursty) data rates.

Evolution Scenarios

Two scenarios have been developed to explain how a
tiered network will be realized in the real world. Sce­
nario I, the local optimization scenario', assumes that
departments within an organization will make their
networking decision in isolation.

In this scenario the particular application requirements
of a department are very well known. For example, an
Engineering department has very high data rate re­
quirements to support its CAD environment; whereas
Sales has low data rate requirements for their order
entry and order inquiry needs. Because the applications
are well known, a decision can be made quickly on
which network to purchase. Departmental budgets usu­
ally can cover the costs of these networks, so approval
of a higher authority is not required. The result is that
each department will develop its own cluster network
(Tier 3).

6-373 231194-002

inter AR·346

OFFICE APPLICATION PERFORMANCE
SPECTRUM

1000X

RELATIVE
NETWORK
CONNECT

COST

100X

nER 1:
MAINFRAMES

10X
TIER 3: PC AND TERMINALS

1X~------~------~~----~~------~----~~
1K 10K 100K 1M 10M 100M

BIT RATE (BPS)

Figure 2. Application Performance Spectrum

HoweveJ;, over time many departments will develop
their own cluster tier; each department will realize they
have a need to interconnect among each other. For ex­
ample, the Marketing department may have to access
cost information from the Finance department as well

. as last month's order rate from Sales. When cluster-to­
cluster communication requirements become impor­
tant, the company will make a conscious decision to
provide interconnect capability. This interconnec~ ca­
pability is realized through the LAN Backbone. A
growing concern is whether gateways/bridges will ex­
ist. This concern leads to Scenario 2.

Scenario 2, the global optimization scenario, occurs
when the users make a conscious decision to solve their

networking requirements at one time. In this scenario,
the decision is centralized because it impacts the entire
operation or company. The advantage of this approach
is built-in cotQpability to interconnect the users. How­
ever, at this time the decision Can be very difficult be­
cause the technology is not stable, and user reqllire­
ments are not fully understood.

In this scenario the Tiered Network model predicts that
clustering will occur as well. For example, it will not be
cost effective for each user to connect onto an Ethernet .
cable ($1'500 cost). Thus, each department will have a
cluster optimized for its particular application intercon­
necting through a LAN Backbone.

6-374 231194-002

AR-346

To summarize, we can see that there is no single net­
work that solves aU user problems. Whether a user op­
timizes locally or globally, clustering is likely to occur.
Each end user group will have a cluster that is optim­
ized for its particular application requirements. It is
through this clustering with inttrconnection through a
LAN Backbone that end users wiU realize the most cost
effective network.

VLSI and the LAN Backbone

The IEEE 802.3/Ethernet standard has gained wide ac­
ceptance by a number of system suppliers. IEEE
802.3's Popularity has been driven primarily by its ac­
ceptance by major minicomputer manufacturers, the
approved IEEE specification itself, and the availability
of low cost VLSI controller chips. From a technical
viewpoint, the IEEE 802.3 shares the benefits of Carri­
er Sense Multiple Access/Collision Detection, CSMA/
CD, technology. These benefits are:

1. Proven technology. Ethernet has been in use since
1975 by Xerox. The technology is well-understood,
and has resulted in the IEEE standard.

2. Performance. Elimination of the centralized (or hier­
archical) control network communications results in

greater efficiency and bandwidth utilization and
shorter delay in getting the message to its destina­
tion.

3. Reliability. The CSMA/CD media access method
enables the network to operate without central con­
trol or switching logic. If a station on the network
malfunctions, it does not affect the ability of other
stations to intercommunicate.

4. Easy expansion. The passive, distributed nature of a
CSMA/CD network permits easy expansion. Sta­
tions can be added to the existing network without
reinitialization of all the other stations. Such capabil­
ity supports future growth requirements through
simple expansion of the network.

Figure 3 shows the basic building blocks for an IEEE
802.3/Ethernet system and how it relates to the Inter­
national Standards Organization (ISO) Open Systems
Interconnect model for networking. Basic components
consist of a coaxial cable for transmission media, a
transceiver to transmit and receive signals that come
over the media and detect collisions, a transceiver cable
to connect the data terminal equipment to the trans­
ceiver which allows flexibility of the location of the ter­
minal, and a controUer board.

~ DATA LINK LAYER

PHYSICAL LAYER I--

DATA LINK CONTROLLER

I

I
ETHERNET CONTROLLfR, BOARD

TYPICAL
IMPLEMENTATION

TO 1/0 BUS ETC.

PHYSICAL CHANNEL

Figure 3. Ethernet Data Link and Physical Links

6-375

231194-3

, 231194-002

intJ AR-346

Today, Intel supplies VLSI for the controller board
function. Intel's 82586 LAN Coprocessor performs the
IEEE 802.3 data link functions without any CPU in­
volvement:

• frame assembly/disassembly

• handling of source and destination addressing

• detection of physical channel transmission errors

• CSMA/CD network link management

-collision detection

-backoff and retransmission after a collision

In addition the 82586 supports the designer with diag­
nostic capability to make system design easier. For ex­
ample PMA underrun and overrun errors, frames that
are received in error, and number of deferrals are re­
ported. Loopback capability is allowed to facilitate self
diagnostics. These capabilities are performed without
any involvement from the host CPU.

Intel's 82501, Ethernet Serial Interface, performs Man­
chester encoding and decoding of the data and timing
information.

More details on operation and design support capabili­
ties of the 82586 are included as an appendix to this
paper.

VLSI For The Human Interface Tier

From a technology viewpoint, the Human Interface
Tier is an interesting one. Traditional computer manu­
facturers and PBX manufacturers are providing solu­
tions that leverage their traditional strengths. Comput­
er manufacturers are providing solutions via LANs
based on their data communications expertise. PBX
manufacturers, on the other hand, are beginning to of­
fer voice/data PBXs. While these are two competing
technologies, both suppliers realize they do not have
the complete solution. Minicomputer and PBX manu­
facturers have cooperated in developing the standard
"Computer-to-PBX" interface. These technologies are
discussed in greater detail below:

Cheapernet

Within the IEEE 802.3 committee is a subgroup defin­
ing a lower cost version of Ethernet called Cheapernet
(also known as Thin Ethernet or Skinny Ethernet).
Cheapernet maintains Ethernet's 10 Mbps data rate, but
cost is reduced through a lower cost cabling scheme.
Ethernet's yellow cable, cable tap box, and transceiver
drop cable are replaced by low cost RG58 CATV coax­
ial cable. The Ethernet transceiver function is located
within the terminal itself. The coax cable is attached
directly to the terminal through a T-connector. Instal­
lation does not require a specialized craft person to in­
stall.

While this approach is lower in cost than Ethernet, it
has two limitations. First, the segment length is restrict­
ed to 185 meters. For the office this distance limitation
requires the use of repeaters that increase the cost and
reduce system reliability. Second, the cable/terminal
(ground) isolation scheme is the same as for Ethernet
which requires D.C. isolation between the transceiver
and the terminal (because of ground). This isolation
scheme limits the potential cost reduction because it
does not allow integrating the transceiver, encoder/de­
coder and controller functions into a single chip. Ether­
net/Cheapernet require DC/DC converters to the
transceiver. ..
1 Mbps CSMA/CD LAN

Today there are a number of personal computer net­
work products that are unique to a single vendor. These
networks lack the ability to electronically (physical
link) interconnect, much less have compatible software
link among other vendors. These networks are charac­
terized by bit rates in the 1 Mbps area and are generally
of the CSMA variety. In an effort to see a standard
emerge in this area, Intel is working with AT&T,
Wang, Tandem, Toshiba, and others to arrive at a 1
Mbps standard within the IEEE 802.3 committee.

1 Mbps networks offer a lower cost of connection than
do 10 Mbps networks. First, cabling cost can be re­
duced by using low cost CATV coax, or twisted pair
wire. Second, the length of cable segments can be much
greater for 1 Mbps than in 10 Mbps technologies: going
from less than 200 meters in Cheapernet, to 500 meters
for Ethernet to over 1000 meters for 1 Mbps CSMA/
CD. Longer cable segments mean few repeaters are
needed on the network. Third, is that 1 Mbps networks
allow VLSI interface costs to be reduced significantly.
For 1 Mbps networks, it is possible with available tech­
nology to cost effectively integrate the controller func­
tion with the serial interface function and the transceiv­
ers into one chip. This level of integration is not
achieveable in Ethernet/Cheapernet networks because
the transceiver chip and serial interface chip are electri­
cally isolated through transformers as mentioned
above.

A concern is that 1 Mbps may riot offer adequate per­
formance for personal computer applications. The per­
formance of 1 Mbps networks, such as Omninet and
PCnet, is not limited by the serial bit rate, but rather
electro-mechanical peripherals, particularly Winchester
disk access time. Network performance (as measured
by the time required for many users to down load a
common file) can be significantly (3-4X) improved by
using "RAM Disks" within the file server. RAM Disks
are really extensions of the file server's local RAM
memory that can hold commonly accessed files (such as
a spread sheet program or BASIC language). Several
personal computer ndwork vendors already have these
products available.

6-376 231194-002

AR-346

1 Mbps CSMA/CD networlcs can be cost effectively
realized using the 82586 LAN Coprocessor from Intel.
The 82586 is unique among present LAN controllers in

. that data rates and CSMA/CD network parameters
(slot time, back-offpriority, framing, etc.) are program­
mable. This programmability allows the 82586 to be
used as a 1 Mbps controller. The advantage of this ap­
proach is that software developed for Ethernet worksta­
tions can be immediately transferred to 1 Mbps net­
works because the system interfaced to the 82586 re­
mains the same. Available 1 Mbps Manchester encod­
er/decoders and a low cost 'discrete transceiver com­
plete the 1 Mbps physical interface. Future cost reduc­
tions can be realized by integrating the controller and
Manchester encoder/decoder and transceiver functions
onto a single chip.

Voice/Data PBX

Many PBX manufacturers are touting voice/data capa­
bility. This capability usually takes the form of four
wire systems in which voice and data are carried over
separate twisted wire pairs. The data rates generally ate
19.2 kbps or 56 kbps, depending on the asynchronous
and synchronous nature of the data. Fourth generation
PBXs, some using two wires, are beginning to enter the
market now and will continue through the 1980's. Even
these products have data rates ranging from 64 to 128
kbps, although 256 kbps for data is talked about. These
data rates are adequate only for the Human Interface
Tier.

Presently PBX manufacturers are focusirlg on the ter­
minal application market as indicated by the numerous
IBM 3270 interfaces offered. A 19.2 kbps data rate is
more than adequate for data entry, data inquiry and
editing applications. It is not clear whether this data
rate is adequate for personal computers. Certainly ,for a
personal computer working in an editing type environ­
ment, this performance is adequate. The PBX may not
be adequate for applications that require heavy use of

, file access, file transfers and graphics.

Intel currently offers a family of components specifical­
ly designed to facilitate the design of voice/data PBXs.
At the heart of the system is the 2952 Integrated Line
Card Controller. This device supports 8 analog or digi­
tal subscribers simultaneously. It includes an interface
to 2 PCM highways and 1 HDLC control highway.
Analog subscribers interface to the 2952 through the
29C51 high feature CHMOS combo. The combo em­
bodies both PCM codec and anti-alias filter functions
on chip. In. addition, integrated signaling test and line
balancing are performed by the 29C5 1. Future products
will allow PBX manufacturers to easily upgrade their
2952 based products to include true two wire voice/
data subscribers.

Conclusion

There is no single local area network that meets every
user's needs cost effectively. IEEE 802.3/Ethemet of­
fers users a high performance Local Area Network suit­
able for Ii LAN Backbone, but it is too costly for per­
sonal computer and terminal networking. 1 Mbps net­
works and voic,e/data PBXs solve this problem. At
present, Intel's 82586 LAN Coprocessor is the only
VLSI chip that solves both Ethernet and 1 Mbps LAN
requirements while simultaneously maintaining soft­
ware compatibility from the system point of view. In
the future it can be expected that LAN controllers op­
timized for 1 Mbps networks that include on chip en­
coder/decoder and transceiver functions will appear.
Intel also offers a family of components to facilitate the
realization of voice/data PBXs.

In the long run, office networks will be structured into
department clusters that will be interconnected through
a LAN Backbone or PBX. The ultimate choice will be
related to application performance requirements.

References:
1. LAN Components User's Manual Intel Corp. Order

Number: 230814-001 ,

2. Telecommunication Products Handbook Intel Corp.
Order Number: 230730-002

6-377 231194-002

AR-346

APPENDIX A
INrEL LAN SOLUTIONS

Intel otTers a broad range of products to realize LANs.
These products are in the form of components (82586
and 82501), boards (iSBC 186/51), and network soft­
ware (iNA 960). See Figure A. A functional summary
of components and software solutions is below:

The 82586 LAN Coprocessor

The 82586 is an intelligent peripheral that completely
manages the processes of transmitting and receiving
frames over a network. It offioads the host CPU of the
tasks related to managing communication activities.
More importantly, it does not depend on the. host CPU
for time critical functions (e.g. transmission and recep­
tion of frames) because it contains its own processor
allowing it to be a coprocessor along with the host
CPU.

The 82586 interfaces easily to available microproces­
sors. Systems requiring minimum component count can
take advantage of its direct interface (no 'TIL glue') to
Intel's 80188 (8-bit bus) and 80186 (16-bit bus) micro­
processors.

The 82586 efficiently uses memory through data chain­
ing. System memory is not wasted because short frame

I NETWORK I
MANAGEMENT I

INTEL INA 960, -{ TRANSPORT SOFTWARE/
NETWORK MANAGER

INTel 82586. -[LAN CO·PROCESSOR

INTEL 82501. ETHERNET --C SERIAL INTERFACE

~

f-------

f-------

~

(75% of network traffic is less than 100 bytes) can be
saved in minimal size butTers, while long frames are
stored by successively chaining butTers together. It
manages this chaining process without CPU interven­
tion, thereby maintaining high system performance.

The 82586 facilitates network management by main­
taining error tallies in system memory to count:

- Number of frames incorrectly received due to CRC
errors

- Number of frames incorrectly received due to misa­
ligned frames

The 82586 counts number of collisions that occurred
while attempting to transmit a specific frame which is
an indicator of traffic loading. It also monitors the
transceiver's collision detection failure reporting mech­
anism.

The 82586 assists in developing and maintaining LAN
systems by maintaining tallies that count the:

- Number offrames lost due to lack of receive butTers

- Number of frames lost due to DMA overrun while
receiving frames

STANOARgS

APPLICATION

PRESENTATION

SESSION

TRANSPORT }-- ISO 8073

NETWORK

DATA LINK }-,~-. ETHERNET

PHYSICAL

231194-4

Figure A. Intel LAN Solution

6-378 231194-002

AR-346

The 82586 provides diagnostic capability via internal
and externa1loopback service. Distance to cable breaks
and shorts is provided by on-chip time domain reflecto­
metry.

The 82586's network parameters are programmable so
that LANs optimized to specific applications can be
realized; for example: broadband networks, short topol­
ogy networks that require higher throughput than
IEEE 802.3 and low cost (I Mbps) networks.

The 82501 Ethernet Serial Interface

The 82501 is designed to work directly with the 82586
in 10 Mbps LAN applications. The primary function of
the 82501 is to perform Manchester encoding/decod­
ing, provide 10 MHz transmit and receive clocks to the
82586, and to drive the transceiver cable. The 82501
provides for fault isolation via an internal loopback.
Continuous transmission (babbling) is prevented by an
on-chip watchdog timer.

INA 960 Transport Software

iNA 960 is a general purpose Local Area Network soft­
ware package that provides the user with guaranteed
end to end message delivery. iNA 960 conforms to the
International Standards Organization's 8073 specifica­
tion including up to Class 4 transport layer services.
iNA 960 also provides network management functions,
and 82586 device drivers.

Transport Services

The iNA 960 transport layer implem~nts two kinds of
message delivery services: virtual circuits and data­
gram. Virtual circuits provide a reliable point-to-point
message delivery service ensuriil.g maximum data integ­
rity and are fully compatible with the ISO 8073 Class 4
protocol. In addition to guaranteeing message integrity,
iNA 960:

- Provides flow control (data rate matching between
sender and receiver)

- Supports multiple simultaneous connections (proc­
ess multiplexing)

- Handles variable length messages (independently of
physical frame size)

- Supports expedited delivery (to transmit urgent
data)

The datagram option provides 'best effort' delivery
service for non-critical messages. The datagram service
does not guarantee message integrity but requires less
channel overhead than virtual circuits.

Network Management Services

The Network Management facility supports the users
of the network in planning, operating and maintaining
the network by providing network usage statistics, by
allowing the monitoring of network functions and by
detecting, isolating and correcting network faults.

The Network Management facility also supports up­
line dumping and down-line loading of data bases or to
boot systems without a local mass storage.

User Environment

In the iRMX (Intel's real time, multitasking operating
system) environment, both the user programs and iNA
960 run under iRMX 86. The communications software
is implemented as an iRMX 86 job requiring the nucle­
us only for most operations. The only exception is the
boot server option, which also needs the Basic I/O Sys­
tem. iNA 960 will run in any iRMX environment in­
cluding configurations based on the 80130 software on
silicon component.

In those systems where iRMX 86 is not the primary
operating system, or where off-loading the host of the
communicatons tasks is necessary for performance rea­
sons, the user may wish to dedicate a processor for
communication purposes. iNA 960 can be configured
to support such implementations by providing network
services on an 8086, 8088, or 80186 microprocessor.

231194-5

. Figure B. Intel LAN Components

6-379 231194-002

I
I
1
" "J

1

inter ARTICLE
REPRINT

AR·342

, September 1984

Chips Support Two
Local Area Networks

BOB DAHLBERG
LAN Component Pro'duct Line Manager

Reprinted withpermission from May, 1984 issue of Computer Design, Order Number: 231208-001
Copyright ©, Penn Well Publications

6-380

AR·342

CHIPS SUPPORT TWO
LOCAL AREA NETWORKS
Data communication ICS permit easy implementation of
Ethernet and high level data~link control networks.

by Bob Dahlberg

The main rationale for local networks Is resource
sharing. Today, small, powerful computers using
VLSI components sell for less than $2000. Under
the circumstances, companies intending to use
several such systems are reluctant to equip each one
with a disk drive and printer that could more than
double the price per station. Rather, they prefer to
share disks and printers among several systems in
order to spread the cost of peripherals across
several users.

By connecting these small computers to a local
area network (LAN), resource sharing with little
degradation in overall system performance
becomes practical. However, if the network inter­
face costs $1000 or more per computer, the
economic advantage of resource sharing wanes.
Thus, network interface cost is a primary criterion
in selection, particularly for low cost computers.

Access methodologies represent another impor­
tant factor in network selection. And, although an
equal access, first-come, first-served method might
be appropriate for an office system environment, it
could be the curse of a process control system. In
the latter case, a priority-based (or controlled)
access method might be the only realistic choice.

Bob Dahlberg is a product manager responsible for
local area network components at Intel Corp, 3065
Bowers Ave, Santa Clara, CA 95051. He holds a BS in
electrical engineering and computer science from the
University of California, Berkeley, and an MBA from
the University of Chicago.

COMPUTER DESISN/May 1984

All else being equal, networks supported by avail­
able LSI and VLSI components exhibit cost and
development speed advantages over board-based
LANS. Now, available chips support both priority­
based and equal access schemes. One such network
is based on the IEEE 802.3 specification, while
another uses a variety of physical interface schemes
overlaid by high level data-link control/synchronous
data-link control (HDLC/SDLC) protocols.

Costly copper
In short distance networks, one can choose' a

serial, two-wire scheme or a patallel, multiwire inter­
face. Parallel bus structures are implicitly faster
than serial structures but tend to be more expensive
and less reliable. The amount and cost of the copper

6-381 231208-001

inter AR·342

(0)

(b)

Fig 1 A multidrop configuration is the simple~t means of
network expansion (a). Adc!itional stations are connected
directly to the network cable, but some addressing method
must be used to avoid party-line reception by all stations.
HDLC/SDLC protocols provide a controlled-access technique
where a primary station controls all b\lS access and determines
which secondary stations respond to its commands (b).

wire are much greater, and the number of connec­
tions (inversely related to reliability) is also much
greater. Thus, the networks described are both
serial, two-wire types.

A fundamental assumption in data communica­
tions is that noise will corrupt the transmitted data.
Error detection schemes can be employed to deter­
mine the validity of received data. One common
data error detection method applies a numerical
algorithm to the message bit pattern and produces
a unique sum. This sum is appended to the end of
the message and is used by a receiving system as a
quick check for the proper bit pattern. Called a
cyclic redundancy check (CRC), this process permits
a receiving station to discard erroneous data and
request retransmission. If the message frames are
sequentially numbered, the retransmission request
can be made specific to that frame to dispense with
the request for a larger group of data. Thus, the
process can be made more efficient.

As needs grow, users may want to add more work­
stations and intelligent peripherals to a network. It
would be ideal to attach each station to the net­
work by simply connecting the station directly to
the serial network bus cable. This is called a multi­
drop configuration and it resembles a party line
telephone circui~ [Fig l(a»). As a party line, each
station attached to the cable receives all the data '
transmitted on the cable. In order to route
messages to their intended recipients, the messages
are logic switched, or specifically addressed, to one
or more receiving stations. All others will ignore
the data after learning that no match existed between
their addresses and those of the data being sent.

Each data packet or frame contains a set of
address bits that determines which stations receive
the data. In a sense, address bits constitute overhead
because they are not part of the information being
sent between stations. Any loss in data transfer

COMPUTER DESIGN/May 1984

efficiency, however, is made up by the simplicity of
the network expansion interconnect scheme.

The Ethernet specification (a modified version
of which was recently accepted as IEEE standard
802.3) describes its physical link characteristics in
full detail. Coaxial cable is 'used as the network
cable bus, and each station is connected to that
cable via a transceiver and transceiver cable.
Minimum distance between station transceivers is
2.5 m, and a network segment can extend to 500 m
(and contain up to 200 nodes). Because up to five
seg~ents can be joined using active repeaters be­
tween each segment, the overall Ethernet network
can be 2500 m long and support up to 1000 nodes.
Individual nodes can COnnect to more than one sta­
tion, and the number of stations connected to an
Ethernet network can exceed 1000.

Data is sent at a IO-Mbitls rate using a self­
clocking Manchester encoding format. Only one
data packet can be sent at a time using Ethernet,
and acc~ss is on a first-come, first-served basis.
Carrier sense multiple access/collision detection
(CSMAlCO) methodology is used. The maximum
and minimum distances between transceivers are
derived from the cSMA/cD requirements based on
interframe-spacing and the collision detection
procedures.

A second alternative requires no specific physical
link. Speed; distance, and cost parameters dictate
actual implementation. The simplest and least
expensive method is to drive a twisted-pair cable
with off-the-shelf transceiver chips.

Choosing protocols
Both the IEEE 802.3/CSMAICO and the HOLC/SOLC

protocols provide logic-switched messaging and
frame-by-frame error detection. IEEE 802.3/Ethernet
treats each station equally and does not permit
priority network access, whereas HOLC/SOLC
enforces a primary/secondary hierarchy [Fig l(b}).
A primary station controls the overall network by
issuing commands to the secondary stations. Sec­
ondary stations comply.with the primary station's
commands and access the bus for retransmitting
data only in response to those commands. Hnlike
Ethernet, which is based on probabilistic network
access, HOLC/SOLC provides deterministic (or con­
trolled) access.

SOLC is an IBM standard communication protocol
and a subset of HOLC, a standard communication
link control established by the International Stan­
dards Organization (ISO). HOLC and its subset are
data-transparent protocols, which means the arbi:
trary data streams can be sent without concern that
some of the data might be mistaken for control
characters. Thus, unlike the Bisync protocol and its
controller, an HOLC/SOLC controller need not
detect special characters except for, the unique
opening/closing flag bytes. Moreover, unlike an

6-382 231208-001

AR·342

check sequence. The destination
and source fields both contain 6
octets (8 serial bits), for a total of

OPENING
FLAG (~

ADDRESS CONTROL
fiELD (A) FIELD (C)

INFORMATION
FIELD (I)

FRAME CHECK
SEQUENCE (FCS)

CLOSING
FLAG (~

48 bits. The type field contains 2
octets. The data field can have as
few as 46 octets or as many as
1,500. Finally, the frame check
sequence consists of 4 octets,

VARIABLE LENGTH
(ONLY IN INFORMATION FRAMES)

allowing a 32-bit CRC code to be
calculated and appended to the
rest of the frame. The first trans­
mitted Ethernet frame is preceded

Fig 2 The prescribed format for HDLe/SDLe frames consists of four basic fields
bounded by opening and closing fiags. This avoids the need for start/stop bits
often used in asynchronous protocols. by a 64-bit preamble, made up of

seven groups of 10101010 followed by an eighth
group of 10101011. The next bit that follows is the
first bit of the first destination octet.

asynchronous protocol and its controller, the HDLC/
SDLC need not provide start and stop bits.

Both HDLC/SDLC and Ethernet protocols specify
particular message formats (or frames). The
HDLC/SDLC protocol consists of five basic fields­
flag, address, control, data, and error detection.
Each frame is enclosed by an opening and closing
flag. Both the opening and closing flags form a
similar bit sequence-oil I 1 1 IO-that is an indi­
vidual character in SOLC/HOLC. Inserting a 0 in the
information data flow whenever a sequence of five
Is occurs achieves flag character individuality in
SDLC/HOLC. These inserted 0 bits are automatically
stripped out upon reception. For SOLC, the address
field is 8 bits wide, but can be 2 (or more) bytes
long in HDLC. Similarly, the control field in SDLC is
8 bits wide, but can also be longer in HOLC. The
SDLC data or information field can contain any
number of bytes. However, the same is true for
HOLC in certain instances where the data field must
end on an 8-bit boundary. Finally, the frame check
sequence field contains the 16-bit CRC result for all
of the bits between flags (Fig 2).

Three types of frames are used in HDLC and
SDLC. A nonsequenced frame establishes initializa­
tion and control of the secondary stations. A
supervisory frame handles control, and an infor­
mation frame is used for data transfers.

The SOLC protocol appears in low cost asyn­
chronous modems using nonreturn to zero inverted
(NRZI) coding and decoding. NRZI coding is used at
the transmitter to enable clock recovery from data
at the receiver terminal. Clock recovery is accom­
plished using a digital phase locked loop technique.
NRZI coding specifies that the signal condition does
not change for transmitting a 1, but changes state
whenever a 0 is transmitted. Hence, NRZI coding
ensures that an active data line will have a transi­
tion at least every 6 bit times (by virtue of the O-bit
insertion requirement). Both O-bit insertion and
NRZI coding/decoding maintain the data
transparency characteristics of the HOLC protocol
and its SOLC subset.

Like HOLC/SOLC, Ethernet specifies a frame for­
mat (Fig 3). It contains a destination field, source
field, frame t~e field, data field, and a frame

COMPUTER OESIGI/Mav 1984

In the CSMA/CD scheme, a "collision" occurs
when two stations attempt to gain access to the bus
at the same time. Thus, it is important that all sta­
tions on the network are notified of the collision.
This way, any transmitted data can be flagged as
invalid. To solve this problem IEEE 802.3/Ethernet
specifies that, after collision detection, transmitting
stations send a jam signal to ensure that stations on
the network recognize the collision. At the end of
the jam interval, each station delays bus access
according to an individually calculated random
backoff time interval. Should a collision occur
again when bus access attempts are renewed, the
next backoff interval increases in length. Up to 16
repeated attempts can occur before a system fault
is automatically assumed. Thus, even during
periods of high bus demand, ample bandwidth
should be available and delays relatively short.

It's in the cIlips
Any of the working LANs can be implemented

using various components. If there is enough time
and a large budget, custom VLSI chips can be

PHYSICAl/MULTICAST BIT

60CTE TS

60CTE TS

10CTE TS

46 to 15000CTE TS

40Cl ETS

14--1 OCTn ----i
DESTINATION

SOURCE

TVPE

DATA

FRAME CHECK
SEQUENCE

LSB I ! ! ! ! ! ! ! I MSB

l OCT:iTiR~~~~~TTEo ...
LEfT·TO·RIGHT

OCTETS WITHIN
FRAME TRANSMITTED

TOP TO BonOM

j

Fig 3 Each Ethernet frame consists of five fields.
Destination and source fields indicate where the message is
gning and from which station it originated. The data field
can contain as few as 46 bytes of data and as many as 1500.

6-383 231208-001

j

AR·342

developed and an elegant solution forged. Most
engineers, however, have neither luxury. For this
reason, the two networks selected are supported by
off-the-shelf VLSI components.

Intel's '8273 and 8274 data communication controller
ICs offer HDLC/SOLC capabilities. Teamed ~th a
microprocessor and some random logic .ICs, a
capable network data-link controller could be
built. The 8051 single-chip microcontroller has
become a popular component for many terminal
applications because of its high performance 8-bit
cP,u, 'large internal program and data memory
capacity, plus onchip counter timers and interrupt
controllers. In addition, Intel has combined an intel­
ligent HOLC/SOLC controller and 8051 core processor
onto a single chip, the 8044. The resulting single­
'chip microcontroller with onchip serial communi­
cation controller allows low cost network terminal
and peripheral design.

HOLC/SOlC
PORT

FIg 4 The 1044 combiDes aD 1IG51 CPU. program and data
memory, plus HDLC/SPLC CODtroUer OD a single chip to build
a simple. low cost Detwork statiOD or peripheral.

Each station would contain an 8044 (with its pro­
grammable I/O ports to provide local control) and
serial HOLC/SOLC interface. Thus, to manage the
network interface, 8044-based stations would be
capable of acting as a secondary station within an
HOLC/SOLC network (Fig 4). Since data transfer
speed and electrical characteristics are not specified
for,these protocols, the designer has a wide choice
in tailoring the physical link to the application. The
single VLSI device provides local intelligence and
network management, thus permitting low cost net­
work development. '

Various Ethernet controllers have been an­
nounced, with several already sampled and avail­
able. Among these is the 82586 general-purpose
CSMA/CO controller. It is designed to come up in
the Ethernet mode on power up, but can be pro­
grammed for other parameters as well. A compan­
ion chip (the 82501) provides the Manchester
encoding/decoding function between the 82586 and
a transceiver.

This chip pair operates in conjunction with the
iAPX 86 microprocessor family, and is most cost­
effectively used with the 80186 microprocessor. The
80186 and 82586 have identical bus interface and con­
trol signal requirements. Hence, they can be linked
without adding randomlogic ICs. Essentially, these
three ICs-the 80186. ~2586. and 82501-provide the
basis for an Ethernet interface. Therefore, only

COM~RDE~8~May1984

sbme buffer memory artd bus interface chips are
additionally required (Fig 5).

A subsystem built using these components pro­
vides an intelligent Ethernet interface that can con­
tinuously operate at the full 10-Mbitis network
speed. Moreover, these components can implement
a complete computer and communication system.
It is therefore possible to create an appropriate Ilnd
usable Ethernet workstation out of these few VLSI
components.

Different strokes
The HOLC/SoLC-based network is intended for

non-Ethernet applications. HDLC/,80LC has
become an accepted standard supported by a variety
of hardware and software products. There is no
specified standard for physical link implementa­
tion or for the software layers beyond the data-link
level. Therefore, networks based on these pro­
tocols are usually "closed." That is, the vendor
provides all the pieces to the network. Vendors, of
course, are familiar with their own network archi­
tecture and are free to provide compatible systems.
But such networks do not encourage others to
develop compatible systems unless the vendor's
market share is large enough and vulnerable
enough to attract competition. The IBM SNA is an
example. '

HOLC/SOLC-based LANS are suitable for system
clusters where distances are less than those of
Ethernet, and where priority access is important.
Networks within a box (eg, a copier), and networks
on table-tops (eg, an instrumentation cluster), are
examples. Although there is a parallel bus interface
standard (IEEE 488), an instrumentation manufac­
turer may want to provide for longer distances using
two-wire cables and simpler protocols.

An HOLC/SOLC LAN cluster could also be used for
process' control applications and data acquisition
systems. An example is Intel's recent distributed
control module products for the fact6ry. Again, a
priority bus access capability would be important
in these applications. Office system applications
where Ethernet offers too much performance at too
high a cost (eg, an electronic typewriter networked
to a me server) might use this network as well.

The concept of open-system compatibility comes
from the ISO's Open System Interconnection (OSI)
model. This provides a seven-layer model in which
each layer is characterized by a unique set of func­
tions and a specific interface to adjacent layers.
The goal is to eventually arrive at a set of standards
that would permit systems from several vendors to
communicate with one another through common
physical, data-link, and software layer protocols.

Xerox Corp developed Ethernet as a local network
for its systems, but the company later joined with
Digital Equipment Corp and Intel to develop a set
of specifications for Ethernet that would allow it to

6-384 231208-001

inter AR·342

HOLD I--- HOLD TX TXD TRANSMIT

HOLD A r----- HOLD A '!Xl:" '!Xl:" TRANSMIT TO

CLOCK OUT f------- CLOCK RXD RXD RECEIVE ETHERNET
CABLE

80186 RESET OUT r----- RESET 82586 m m 82501 RECEIVE TRANSCEIVER c---

INTO I--- INT Ciif CIif COLLISION

PC50 r----- CHANNEL m- eR" COLLISION

ATTENTION m TEN

ADORESSl1 Um AOORESSU !}m
AD~l

MULTIPLEXEO BUS)

Jam
n ADDRESS 1 LATCHES n DATA;I TRANSCEIVERS l ROM r l RAM

r

11 1 OATA11 IIAI DATA 1 1k;1 AODRESS AODRESS

< SYSTEM BUS

Fig 5 A combination of 110186, 82586, and 82501 cbips completes the logic needed for a fully functional Ethernet
interface. Data bus interface chips 811d some memory complete the Ethernet subsystem.

map into the first two layers of the OSI model­
physical and data-link. The IEEE adopted its 802.3
specification as a result of these efforts. Efforts to
develop standards for the other layers continue. An
example is the ISO transport layer protocol, 8073,
which provides "return receipt" quality communi­
cation services.

Today, Ethernet supports OSI physical and data
packet level protocols. It is an emerging technology
that is still closer to the top than to the bottom of
the learning (and pricing) curve. Nevertheless,
many vendors support Ethernet and will no doubt
manufacture products equipped to swap data with
other Ethernet systems.

Open and closed
Office automation constitutes the biggest apparent

application area for Ethernet. The office has tradi­
tionally been a multivendor site in which the com­
puter, copier, and printer are likely to come from
different vendors. An open system appeals to users
seeking vendor independence.

When the LAN concept was first proposed, it was
described as an all-encompassing network, con­
necting all the intelligent subsystems throughout a
facility. In fact, that is not the way local network
installations have progressed. Instead, clusters of
user stations (typically 10 or so) are cropping up in
various places within a facility. Most analysts expect
local networking to occur in tiers. The cluster tier
provides the lowest cost per connection. An example
is a I-Mbitls CSMAICO LAN used for personal com­
puters. Clusters woul~ be interconnected through a
longer and faster data highway (called a LAN back­
bone) such as Ethernet.

COMPUTER DESIGNIMay 1984

Will closed and open networks be able to coop­
erate and coexist? Quite simply, they have to. Eco­
nomics will determine the network types used for
connecting the systems within a cluster, and
standardization will drive the methods by which
clusters are ultimately joined.

Closed systems, such as microcontrollers con­
necting the HOLC/soLe-based network, represent
the least expensive and most flexible LAN configu­
ration. Open systems, because of the push for stan­
dardization and subsequently larger user base, are
more likely to benefit from future cost reduction
through multiple-sourced VLSI components than
closed systems. Similarly, open systems probably
attract more third-party suppliers and enjoy
greater variety and lower cost software.

Gateways will join closed and open systems.
These hardware/software intermediaries will pave
the way for data transfer between formerly incom­
patible networks. By such means, a closed engi­
neering workstation network will· glrln access to
information stored in the corporate data base and
be available on the Ethernet data highway.

6-385 231208-001

8291 A
GPIB TALKER/LISTENER

• Designed to Interface
Microprocessors (e.g., 8048/49, 8051,
8080/85, 8086/88) to an IEEE Standard
488 Digital Interface Bus

• Programmable Data Transfer Rate

• Complete Source and Acceptor
Handshake

• Complete Talker and Listener
Functions with Extended Addressing

• Service Request, Parallel Poll, Device
Clear, Device Trigger, Remote/Local
Functions

• Selectable Interrupts

• On-Chip Primary and Secondary
Address Recognition

• Automatic Handling of Addressing and
Handshake Protocol

• Provision for Software Implementation
of Additional Features

• 1-8 MHz Clock Range
• 16 Registers (8 Read, 8 Write), 2 for

Data Transfer, the Rest for Interface
Function Control, Status, etc.

• Directly Interfaces to External
Non-Inverting Transceivers for
Connection to the GPIB

• Provides Three Addressing Modes,
Allowing the Chip to be Addressed
Either as a Major or a Minor Talker/
Listener with Primary or Secondary
Addressing

• DMA Handshake Provision Allows for
Bus Transfers without CPU
Intervention

• Trigger Output Pin
• On-Chip EOS (End of Sequence)

Message Recognition Facilitates
Handling of Multi-Byte Transfers

The 8291 A is an enhanced version of the 8291 GPIB Talker/Listener designed to interface microprocessors to
an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface functions
except for the controller. The controller function can be added with the 8292 GPIB Controller, and the 8293
GPIB Transceiver performs the electrical interface for Talker/Listener and Talker/Listener/Controller
configurations.

I 8291A

I
I
I

8291A I
GPIBDATA

INTERFACE

FUNCTIONS ~==-:::'\.
SH GPIB CONTROL

AH
TE
LE
SR
RL

Figure 1. Block Diagram

I
T/RCONTROL

TO NON· INVERTING

BUS TRANSCEIVERS

Figure 2. Pin Configuration ,

tntel Corporation A •• um •• No Aeaponlibilty for the U •• of Any CircUitry Other Than Circuitry Embodied in an Intel Product. No Other Clrcuh Patent Lleen Impltad.

©INTEL COhPORATION. 1981. ORDER NUMBER: 205248-002
6-386

8291A

8291A FEATURES AND IMPROVEMENTS

The 8291A is an improved design of the 8291 GPIB
Talker/Listener. Most of the functions are identical to
the 8291, and the pin configuration is unchanged.

The 8291A offers the following improvements to the
8291 :

1. EOI is active with the data as a ni nth data bit
rather than as a control bit. This is to comply
with some additions to the 1975 IEEE-488 Stan­
dard incorporated in the 1978 Standard.

2. The BO interrupt is not asserted until RFD is
true. If the Controller asserts ATN
synchronously, the data is guaranteed to be
transmitted. If the Controller asserts A'fN
asynchronously, the SH (Source Handshake)
will return to SIDS (Source Idle State), and the
output data will be cleared. The, if ATN is
released while the 8291A is addressed to talk, a
new BO interrupt will be generated. This change
fixes 8291 problems which caused data to be
lost or repeated and a problem with the RQS bit
(sometimes cannot be asserted while talking).

3. LLOC and REMC interrupts are setting flipflops
rather than toggling flipflops in the interrupt
backup register. This ensures that the CPU
knows that these state changes have occurred.
The actual state can be determined by checking
the LLO and REM status bits in the upper nibble
of the Interrupt Status 2 Register.

4. DREQ is cleared by DACK (RD + WR). DREQ on
the 8291 was cleared only by DACK which is not
compatible with the 8089 I/O Processor.

5. The INT bit in Interrupt Status 2 Register is du­
plicated in bit 7 of the Address 0 Register. If
software polling is used to check for an inter­
rupt, INT in the Address 0 Register should be
polled rather than the Interrupt Status 2 Regis­
ter. This ensures that no interrupts are lost due
to asynchronous status reads and interrupts.

6. The 8291A's Send EOI Auxiliary Command
works on any byte including the first byte of a
message. The 8291 did not assert EOI after this
command for a one byte message nor on two
consecutive bytes.

6-387

7. To avoid confusion between holdoff on DAV ver­
sus RFD if a device is readdressed from a talker
to a listener role or vice-versa during a holdoff,
the "Holdoff on Source Handshake" has been
eliminated. Only "Holdoff on Acceptor Hand­
shake" is available.

8. The rsv local message is cleared automatically
upon exit from SPAS if (APRS:STRS:SPAS) oc­
curred. The automatic resetting of the bit after
the serial poll is complete simplifies the service
request software.

9. The SPASC interrupt on the 8291 has been
replaced by the SPC (Serial Poll Complete) in­
terrupt on the 8291A. SPC interrupt is set on exit
from SPAS if APRS:STRS:SPAS occurred, indi­
cating that the controller has read the bus status
byte after the 8291A requested service. The
SPASC interrupt was ambiguous because a
controller could enter SPAS and exit SPAS gen­
erating two SPASC interrupts without reading
the serial poll status byte. The SPC interrupt also
simplifies the CPU's software by eliminating the
interrupt when the serial poll is half way done.

10. The rtl Auxiliary Command in the 8291 has been
replaced by Set and Clear rtl Commands in the
8291A. Using the new commands, the CPU has
the flexibility to extend the length of local mode
or leave it as a short pulse as in the 8291.

11. A holdoff RFD on GET, SOC, and DCL feature
has been added to prevent additional bus ac­
tivity while the CPU is responding to any of
these commands. The feature is enabled by a
new bit (B4) in the Auxiliary Register B.

12. On the 8291, BO could cease to occur upon IFC
going false if IFe occurred asynchronously. On
the 8291A, BO continues to occur after IFC has
gone false even if it arrived asynchronously.

13. User's software can distinguish between the
8291 and the 8291A as follows:

a) pon (OOH to register 5)
b) RESET (02H to register 5)
c) Read Interrupt Status 1 Register. If BO inter­

rupt is set, the device is the 8291. If BO is clear,
it is the 8291A.

This can be used to set a flag in the user's
software which will permit special routines to be
executed for each device. It could be included
as part of a normal initialization procedure as
the first step after a chip reset.

205248-002

8291A

Table 1. Pin Description
--

Symbol
Pin

Type Name and Function
No.

Pin I .
$ymbol N Type Name and Function

o. l

Do-D, 12-19 I/O Data ·Bus Port: To be con· RESET 4 I Reset Input: When high,
nected to microprocessor forces the device into an
data bus. "idle" (initialization) mode.

RSo-RS, 21-23 I Register Select: Inputs, to
be connected to three nOn-
multiplexed mIcroproces-
sor add ress bus lines.
Select which of the 8 inter-

The device will remain at
"Idle" until released by the
microprocessor, with the
"Immediate Execute pon"
local message.

nal read (write) registers DIO,-DIO, 28-35 I/O 8-Bit GPIB Data Port: Used
will be read from (written for bidirectional data byte
into) with the execution of transfer between 8291 A
RD(WR.)

'..

CS 8 I Chip Select: When low,

and GPIB via non-inverting
external line transceivers.

enables reading from or DAV 36 I/O Data Valid: GPIB hand-
writing into the register se- 'shake control line. Indi-
lected by RSo-RS,. cates the availability and

RD / 9 I Read Strobe: When low
with CS or DACK low, se-
lected register contents

valid!.!L0f information~
the DIO,-DIO, and EOI
lines.

are read. NRFD 37 I/O Not Ready for Data: GPIB

WR 10 I Write Strobe: When low
with CS or DACK low, data
is written into the selected
register.

handshake control line. In-
dicates the condition of
readiness Of device(s) con-
nected to the bus to accept
data.

INT (INT) 11 0 Interrupt Request: To the
microprocessor, set high
for request and cleared
when the appropriate reg-
ister is accessed by the
CPU. May be software con-
figured to be active low.

NDAC 38 I/O Not Data Accepted: GPIB
handshake control line. In-
dicates the condition of ac-
ceptance of data by the
device(s) connected to the
bus.

DREQ 6 0 DMA Request: Normally
low, set high to indicate
byte output or byte input in
DMA mode; reset by DACK.

ATN 26 I Attention: GPIB command
line. Specifies how data on
DIO lines are to. be inter-
preted.

DACK 7 I DMA Acknowledge: W~en
low, resets DREQ and
selects data in/\Jata out
register for DMA data

IFC 24 I Interface Clear: GPIB
command line. Places the
interface functions in a
known quiescent state.

transfer ~ctual transfer SRQ 27 0 Service Request: GPIB
done by RD/WR pulse). command line. Indicates

the need for attention and
Must be high if OMA is not requests an interruption of

, used. the current sequence of

TRIG 5 0 Trigger Output: Normally events on the GPIB.

low; generates a triggering REN 25 I Remote Enable: GPIB
pulse with 1 J1.sec min. command line. Selects (in
width in response to the conjunction with other
GET bus command or Trig- messages) remote or local
ger auxiliary command. control of the device.

CLOCK 3 I External Clock: Input, EOI 39 I/O End or Identify: GPIB com-
used only for T, delay mand line. Indicates the
generator. May be any end of a multiple byte
speed in 1-8 MHz range. transfer sequen~r, In

conjunction with ATN, ad-
dresses the device during a
polling sequence.

6-388 205248-002

intJ 8291 A

Table 1. Pin Description (Continued)

Symbol
Pin

Type Name and Function
No.

T/R1 1 0 External Transceivers
Control Line: Set high to
indicate output datal
sign~n the DIO,-DIO.
and DAV lines and Input
signals on the NRFD and
NDAC lines (active source
handshake). Set low to m-
dicate i!!.eut~ta/slgnals
on the DIO,-DIO. and DAV
lines and output signals on
the NRFD and NDAC lines
(active acceptor fland-
Shake)

r" - - DREG
I DMA

I ~g~~:b~ttLE)R I DACK
L_:" ___ ..I

Symbol
Pin

Type Name and Function
No.

T/R2 2 0 External Transceivers
Control Line: Set to mdi-
cate output signals on the
EOi line. Set low to mdicate
expected mput signal on
the EOIlme during parallel
poll.

Vee 40 PS. Positive Power Supply:
(5V ±10%).

GND 20 P.S. Circuit Ground Potential.

NOTE:
All Signals on the 8291A PinS are speCified with positive logiC.
However, IEEE 488 speCifies negative logiC on Its 16 signal lines
Thus, the data is Inverted once from 0 0-0, to 0100-010, and
non-inverting bus transceivers should be used.

Figure 3. 8291A System Diagram

THE GENERAL PURPOSE INTERFACE
BUS (GPIB)

The General Purpose Interface Bus (GPIB) is
defined in the IEEE Standard 488-1978 "Digital In­
terface for Programmable Instrumentation."
Although a knowledge of this standard is assumed,
Figure 4 provides the bus structure for quick refer­
ence. Also, Tables 2 and 3 reference the interface
state mnemonics and the interface messages
respectively. Modified state diagrams for the 8291A
are presented in Appendix A.

General Description

The 8291A is a microprocessor-controlled device
designed to interface microprocessors, e.g.,
8048/49, 8051, 8080/85, 8086/88 to the GPIB. It im­
plements all of the interface functions defined in the

6-389

IEEE-488 Standard except for the controller func­
tion. If an implementation of the Standard's Control­
ler is desired, it can be connected with an Intel® 8292
to form a complete interface.

The 8291A handles communication between a mi­
croprocessor-controlled device and the GPIB. Its
capabilities include data transfer, handshake
protocol, talker/listener addressing procedures,
device clearing and triggering, service request, and
both serial and parallel polling. In most procedures,
it does not disturb the microprocessor unless a byte
has arrived (input buffer full) or has to be sent out
(output buffer empty).

The 8291A architecture includes 16 registers. Eight
of these registers may be written into by the micro­
processor. The other eight registers may be read by
the microprocessor. One each of these read and

205248-002

I,

I

I,

8291A

write registers is for direct data transfers. The rest of
the write registers control the various features of the
chip, while the rest of the read registers provide the
microprocessor with a monitor of GPIB states, vari­
ous bus conditions, and device conditions.

GPIB Addressing

Each device connected to the GPIB must have at
least one address whereby the controller device in
charge of the bus can configure it to talk, listen, or
send status. An 8291A implementation of the GPIB
offers the'user three alternative addressing modes
for which the device can be initialized for each appli­
cation. The first of these modes allows for the device
to have two separate primary addresses. The second
mode allows the user to implement a single
talker/listener with a two byte address (primary ad­
dress + secondary address). The third mode again
allows for two distinct addresses but in this instance,
they can each have a ten-bit address (5 low-order
bits of each of two bytes). However, this mode re­
quires that the secondary addresses be passed to
the microprocessor for verification. These three
addressing schemes are described in more detail in
the discussion of the Address Registers.

DEVICE A

ABLE TO
TALK USTEfII

AND
CONTROL

I~ 'I ~"I,ul"WIJ

DEVICE B

ABLE TO
TALK ANO

LISTEN

(e 9 floppy
disk)

DEVICE C

ON~ Y ABLE
TO LISTEN

leys,gnal
yenll ... lorl

DEVICE 0

ONLY ABLE
TO TALK

legcounle,1

11111 111 f
~ DATA8US

~
DATA BYTE
TRANSFER

(>-
CONTROL r-------

f::::::::
GENERAL

INTERfACE

(MANAGEMENT

f::::::::

~}DIOl 8

t~
DAV
NRFD
NDAC

lFe
ATN
SRa

R'N
EDI .. Figure 4. Interface Capabilities and Bus Structure

,-.,----__ r:-______ ..:.Ta=b=.cl:..:e:..:2=--cI:..:E:..:E:..:E=--4.:..:8:..:8c.:I:.:..;nterface State Mnemonics
Mnemonic State Represented Mnemonic

ACDS Accept Data State
ACRS Acceptor Ready State
AI DS Acceptor Idle State
ANRS Acceptor Not Ready State
'APRS Affirmative Poll Response State
AWNS Acceptor Walt for New Cycle State ..

------------------------,
: CACS Controller Active State I
I CADS Controller Addressed State I
I CAWS Controller Active Walt State I
I CIDS Controller Idle State I
I CPPS Controller Parallel Poll State I
I CPWS Controller Parallel Poll Walt State I
: CSBS Controller Standby State :
I CSNS Controller Service Not Requested State I
I CSRS Controller Service Requested State I
I CSWS Controller Synchronous Walt State I

~ ~T~~ _ ~o~t~:_ol!:rJ.':.a.'2.s!=r ":>t~t:... ______ J
DCAS Device Clear Active State
DCIS Device Clear Idle State
DTAS Device Trigger Active State
DTIS Device Trigger Idle State

LAC~ Listener Active State
LADS Listener Addressed State
LI DS listener Idle State
LOCS Local State
LPAS
LPI'S
LWLS

NPRS

Listener Primary Addressed State
Listener Primary Idle State
Local With Lockout State

Negative flail Response State

"The Controller function IS Implemented on the Intel® 8292.

6-390

PACS
PPAS
PPIS
PPSS
PUCS

REMS
RWLS

SACS
SDYS
SGNS
SIAS
SIDS
SIIS
SINS
SIWS
SNAS
SPAS
SPIS
SPMS
SRAS
SRIS
SRNS
SROS
STRS
SWNS

TACS
TADS
TlDS
TPIS

Slate Represented

Parallel Poll Addressed to Configure State
Parallel Poll Active State
Parallel Poll Idlll State
Parallel Poll Standby State
Parallel Poll Unaddressed to Configure State

Remote State
Remote With Lockout State

System Control Active State
Source Delay State
Source Generate State
System Control Interface Clear Active State
Source Idle State
System Control Interface Clear Idle State
System Control I nterface Clear Not Active State
Source Idle Walt State
System Control Not Active State
Serial Poll Active State
Serial Poll Idle State
Serial Poll Mode State
System Control Remo'te Enable Active State
System Control Remote Enable·ldle State
System Control Remote Enable Not Active State
Service Request State
Source Transfer State
Source Walt for New Cycle State

Talker Active State
Talker Addressed State
Talker Idle State
Talker Primary Idle State

205248-002

intel 8291A

Table 3. IEEE 488 Interface Message Reference List

Mnemonic Message Interface Functlon(s)

LOCAL MESSAGES RECEIVED (By Interface Functionsl

'gts go to standby C
ist individual status PP
Ion listen only L, LE
Ipe local poll enable PP
nba new byte available SH

pon power on SH,AH,T,TE,L,LE,SR,RL,PP,C
rdy ready AH

'rpp request parallel poll C
'rsc request system control C
rsv request service SR

rll return to local RL
lsic send interface clear C
lsre send remote enable C
'tca take control asynchronously C
'tcs take control synchronously AH,C
ton talk only T, TE

REMOTE MESSAGES RECEIVED

ATN Attenllon SH,AH,T,TE,L,LE,PP,C
DAB Data Byte (Via L, LEI
DAC Data Accepted SH
DAV Data Valid AH
DCL Device Clear DC

END End (via L, LEI
GET Group Execute Tngger DT
GTL Go to Local RL
lOY Identify L,LE,PP
IFC Interface Clear T,TE,L,LE,C

LLO Local Lockout RL
MLA My Listen Address L,LE,RL,T,TE
MSA My Secondary Address TE,LE,RL
MTA My Talk Address T,TE,L,LE
OSA Other Secondary Address TE

OTA Other Talk Address T, TE
PCG Primary Command Group TE,LE,PP

'PPC Parallel Poll Configure PP
'[PPD] Parallel Poll Disable PP
'[PPE] Parallel Poll Enable PP

'PPRN Parallel Poll Response N (via CI
'PPU Parallel Poll Unconfigure PP
REN Remote Enable RL
RFD Ready for Data SH
ROS Request Service (via L, LEI

[SOC] Select Device Clear DC
SPD Senal Poll Disable T, TE
SPE Serial Poll Enable T, TE

'SOR Service Request (via CI
STB Status Byte (via L, LEI

'TCT or [TCT] Take Control C
UNL Unlisten L, LE

NOTE:
1 These messages are handled only by Intel's 8292.
2. Undefined commands which may be passed to the microprocessor

6-391 205248-002

8291A

Table 3. (Cont'd)
IEEE 488 Interface Message Reference List

Mnemonic Message 31nterface Functlon(s)

REMOTE MESSAGES SENT

ATN Attention C
DAB Data Byte (via T, TEl
DAC Data Accepted AH
DAV Data Valid SH
DCL Device Clear (Via CI

END End (via TI
GET Group Execute Trigger (via CI
GTL Go to Local (via CI
IDY Identify C
IFC Interface Clear C

LLO Local Lockout (Via CI
MLA or IMLAI My Listen Address (via CI
MSA or IMSAI My Secondary Address (via CI
MTA or IMTAI My Talk Address (Via Ci
OSA Other Secondary Address (via CI

OTA Other Talk Address (via CI
peG Pnmary Command Group (via CI
PPC Parallel Poll Configure (Via CI
IPPDI Parallel Poll Disable (via CI
IPPEI Parallel Poll Enable (Via CI

PPRN Parallel Poll Response N PP
PPU Parallel Poll Unconflgure (via CI
REN Remote Enable C
RFD Ready for Data AH
RQS Request Service T, TE

ISOCI Selected DeVice Clear (via CI
SPD Senal Poll Disable (Via CI
SPE Serial Poll Enable (via CI
SRQ Service Request SR
STB Status Byte (via T, TEl

TCT Take Control (via CI
UNL Unlisten (via CI

NOTE:
3. All Controller messages must be sent via Intel's 8292.

8291A Registers Data Registers

A bit-by-bit map of the 16 registers on the 8291 A is
presented in Figure 5. A more detailed explanation
of each of these registers and their functions fol­
lows, The access of these registers by the
microprocessor is accomplished by using the es,
RO, WR, and RSo-RS2 pins.

Register CS RD WR RSo-RS2

All Read Registers 0 0 eee
All Write Registers 0 0 eee
High Impedance d d ddd

6-392

1 017 1 016 1 015 1 014 1 013 1 012 1 011 1 010 1

OATA-IN REGISTER (OR)

100710061005100410031002100110001

OATA-OUT REGISJER (OW)

The Oata-In Register is used to move data from the
GPIB to the microprocessor or to memory when the
8291A is addressed to listen. Incoming information
is separately latched by this register, and its con-
tents are not destroyed by a write to the data-out

205248-002

8291 A

register. The RFD (Ready for Data) message is held
false until the byte is removed from the data in regis­
ter, either by the microprocessor or by DMA. The
8291A then completes the handshake automatically.
In RFD holdoff mode (see Auxiliary Register A), the
handshake is not finished until a command is sent
telling the 8291A to release the holdoff. In this way,
the same byte may be read seveal times, or an over
anxious talker may be held off until all available data
has been processed.

When the 8291A is addressed to talk, it uses the
data-out register to move data onto the GPIB. After
the BO interrupt is received and a byte is written to
this register, the 8291A initiates and completes the
handshake while sending the byte out over the bus.
In the BO interrupt disable mode, the user should
wait until BO is active before writing to the register.
(In the DMA mode, this will happen automatically.) A
read of the Data-In Register does not destroy the
information in the Data-Out Register.

,
Interrupt Registers

ICPTIAPTIGETIEND I DEC I ERR I BO I BIJ

INTERRUPT STATUS 1 (1R)

[INTISPASILLOIREMI SPC I LLOCIREMCIADScl

INTERRUPT STATUS 2 (2R)

ICPTIAPT I GET I END I DEC I ERR I BO / BI I
INTERRUPT ENABLE 1 (1 W)

I 0 I 0 I DMAO IDMAllsPC I LLOC/REMC/ADSC I
INTERRUPT ENABLE 2 (2W)

ADDRESS 0 REGISTER

Figure 5. 8291 A Registers

1 017 016

~PT

~~I SPAS I

I S8 SRQSI

Sion

READ REGISTERS

015 014 013 012 I 011 ! 010

DATA IN

GET I END I DEC I ERR I 8.0 I 81

INTERRUPT STATUS 1

lLO I REM I SPC ILLOC! REMCI ADScl
INTERRUPT STATUS 2

S6 I S5 I S4 I S3 I S2 Iii]
SERIAL POLL STATUS

EOI ! LPA~ TPAS ! LA ! T A ! MJMN]

ADDRESS STATUS

I CPT?j CPT6] CPTS] CPT4j CPT3j CPT2 ! CPTl I CPTO I

COMMAND PASS THROUGH

[INT oTO OLD I ADS 01 3A0301 AD2 oj ADl oj

ADDRESS 0

[x I on i DL 1 ! ADS1j AD41] AD3"] AD2 11 AD11]

ADDRESS 1

REGISTER SELECT
CODE

RS2 RSl RSO

I 0.07 I 0.06 I

WRITE REGISTERS

0.05 I 0.04 I 0.03 I 0.02

DATA OUT

1 I CPT I APT I GET I END"j DEC I ERR

INTERRUPT ENABLE 1

a I a I a DMAOjOMAlj SPC ILLOcl
INTERRUPT ENABLE 2

1 I S8 I", I S6 I S5 I S4 I S3

SERIAL POLL MODE

olTOILOlo 10 1010

ADDRESS MODE

0.01 I 000

80 I 81

REMcl ADSC I

S2 I Sl

1 ! CNT21 CNTlj eNTol COM4j COM3j COM2] COM1j COMO]

AUX MODE

I ARS I DT OL I ADS I AD4 I AD3 AD2 [AD1

ADDRESS 0·1

1 I EC7 I ECG I EC5 I E~4 I EC3 I EC2 ECl i ECO~ I
EOS

6-393 205248-002

8291 A

.,
The 8291A can be configured to generate an inter­
rupt to the microprocessor upon the occurrence of
any of 12 conditions or events on the GPIB. Upon
receipt of an interrupt, the microprocessor must
read the Interrupt Status Registers to determine
which event has occurred, and then execute the
appropriate service routine (if necessary). Each of
the 12 interrupt status bits has a matching enable bit
in the interrupt enable registers. These enable bits
are used to select the events that will cause the INT
pin to be asserted. Writing a logic "1" into any of
these bits enables the corresponding interrupt
status bits to generate an interrupt. Bits in the Inter­
rupt Status Registers are set regardless of the states
of the enable bits. The Interrupt Status Registers are
then cleared upon being read or when a local pon
(power-on) message is executed. If an event occurs
while one of the Interrupt Status Registers is being
read, the event is held until after its register is
cleared and then placed in the register.

The mnemonics for each of the bits in these regis­
ters anda brief description of their respective func­
tions appears in Table 4. This tables also indicates

. how each of the interrupt bits is set.

NOTE: The INT bit in the Address 0 Register is a duplicate of the
INT bit in the Interrupt Status 2 Register. It is only a status
bit. It does not generate interrupts and thus does not have
a corresponding enable bit.

The BO and BI interrupts enable the user to perform
data transfer cycles. BO indicates that a data byte
should be written to the Data Out Register. It is set by
TACS . (SWNS + SGNS) . RFD.lt is reset when the
data byte is written, ATN is asserted, or the 8291A
exits TACS. Data should never be written to the Data
Out Register before' BO is set. Similarly, BI is set
when an input byte is accepted into the 8291A and
reset when the microprocessor reads the Data In
Register. BO and BI are also reset by pon (power-on
local message) and by a read of the Interrupt

Table 4. Interrupt Bits

Indicates Undefin<i>d Commands

Set by (TPAS +' LPAS).SCG.ACDS.MODE 3

Set by DTAS

Set by (EOS + EOI).LACS

Set by DCAS

Set by TACS.nba.DAC.RFD

,lACS.(SWNS + SGNS)

Set by LACS.ACDS

CPT

APT

GET

END

DEC

ERR

60

61

Shows status of the. INT pin INT

The device has been enabled for a serial poll

The device is in local lock out state.
ILWLS+RWLSI

SPAS

LLO

The device is in a remote state. REM
IREMS+RWLSI

An undefined command has been received.

A secondary address must be passed through
to the microprocessor for recognition.

A group execute trigger has occurred.

An EOS or EOI message has been received.

Device Clear Active State has occurred ..

Interface error has occurred, no listeners
are active.

A byte should be output.

A byte has been input.

These are status only. They will not generate
interrupts, nor do they have corresponding
mask bits.

SPAS ->SJ5AS if APRS:STRS:SPAS was true SPC Serial Poll Complete interrupt.

LLCNO LLO LLOC Local lock out change interrupt. ---RemotEL.,..Local REMC Remote/Local change interrupt.

AddresseCUnaddressed. ADSC Address status change interrupt.'

NOTE: 'In ton (talk-only) and Ion (listen-only) modes, no ADSC interrupt is generated.

6-394 205248-002

8291A

Status 1 Register. However, if it is so desired, data
transfer cycles may be performed without reading
the Interrupt Status 1 Register if all interrupts except
for BO or BI are disabled; BO and BI will auto­
matically reset after each byte is transferred.

If the 8291A is used in the interrupt mode, the
INT and DREO pins can be dedicated to data input
and output interrupts respectively by enabling BI
and DMAO, provided that no other interrupts are
enabled. This eliminates the need to read the inter­
rupt status registers if a byte is received or
transmitted.

The ERR bit is set to indicate the bus error condition
when the 8291 A is an active talker and tries to send a
byte to the GPIB, but there are no active listeners
(e.g., all devices on the GPIB are in AIDS). The logi­
cal equivalent of (nba . TACS . DAC . RFD) will set
this bit.

The DEC bit is set whenever DCAS has occurred.
The user must define a known state to' which all
device functions will return in DCAS. Typically this
state will be a power-on state. However, the state of
the device functions at DCAS is at the designer's
discretion. It should be noted that DCAS has no
effect on the interface functions which are returned
to a known state by the IFC (interface clear) message
or the pon local message.

The END interrupt bit may be used by the micropro­
cessor to detect that a multi-byte transfer has been
completed. The bit will be set when the 8291A is an
active listener (LACS) and either EOS (provided the
End on EOS Received featu re is enabled in the AUXil­
iary Register A) or EOI is rt:lceived. EOS will generate
an interrupt when the byte in the Data In Register
matches the byte in the EOS register. Otherwise the
interrupt will be generated when a true input is
detected on EOL

The GET interrupt bit is used by the microprocessor
to detect that DTAS has occurred. It is set by the
8291A when the GET message is received while it is .
addressed to listen. The TRIG output pin of the
8291A fires when the GET message is received.
Thus, the basic operation of device trigger may be
started without microprocessor software interven­
tion.

The APT interrupt bit indicates to the processor that
a secondary address is available in the CPT register
for validation. This interrupt will only occur if
Mode 3 addressing is in effect. (Refer to the section
on addressing.) In Mode 2, secondary addresses will
be.recognized automatically on the 8291A. They will
be ignored in Mode 1.

The CPT interrupt bit flags the occurrence of an
undefined command and of all secondary com­
mands following an undefined command. The Com­
mand Pass Through feature is enabled by the BO bit
of Auxiliary Register B. Any message not decoded by
the 8291A (not included in the state diagrams in
Appendix B) becomes an undefined command. Note
that any addressed command is automatically ig­
nored when the 8291A is not addressed.

Undefined commands are read by the CPU from the
Command Pass Through register of the 8291A. This
register reflects the logic levels present on the data
lines at the time it is read. If the CPT feature is
enabled, the 8291A will hold off the handshake until
this register is read.

An especially useful feature of'the 8291 A is its ability
to generate interrupts from state transitions in the
interface functions. In particular, the lower 3 bits of
the Interrupt Status 2 Register, if enabled by the
corresponding enable bits, will cause an interrupt
upon changes in the following states as defined in
the IEEE 488 Standard.

Bit 0 ADSC change in LIDS or TIDS or MJMN
Bit 1 REMC change in LOCS or REMS
Bit 2 LLOC change in LWLS or RWLS

The upper 4 bits of the Interrupt Status 2 Register
are available to the processor as stattls bits. Thus, if
one of the bits 0-2 generates an interrupt indicating
a state change has taken place, the corresponding
status bit (bits 3-5 may be read to determine what
the new state is. To determine the nature of a change
in addressed status (bit 0) the Address Status Regis­
ter is available to be read. The SPC interrupt (bit 3 in
Interrupt Status 2) is set upon exit from SPAS if
APRS:STRS:SPAS occurred which indicates that the
GPIB controller has read the bus serial poll status
byte after the 8291A requested service (asserted
SRO). The SPC interrupt occurs once after the con­
troller reads the status byte if service was requested.

6-395 205248-002

intel 8291A

The controller may read the status byte later, and the
byte will contain the last status the 8291 A's CPU
wrote tolthe Serial Poll Mode Register, but the SROS
bit will not be set and no interrupt will be generated
Finally, bit 7 monitors the state of the 8291 A INT pin,
Logically, it is an OR of all enabled Interrupt status
bits, One should note that bits 3-6 of the Interrupt
Status 2 Register do not generate Interrupts, but are
available only to be read as status bits by the proces­
sor. Bit 7 In Interrupt Status 2 is duplicated in Ad­
dress a Register, and the latter should be used when
polling for Interrupts to avoid lOSing one of the inter­
rupts in Interrupt Status 2 Register.

Bits 4 and 5 (DMAI, DMAO) of the Interrupt Mask 2
Register are available to enable direct data transfers
between memory and the GPIB; DMAI (DMA in)
enables the DREO (DMA request) pin of the 8291 A to
be asserted upon the occurrence of BI. Similarly,
DMAO (DMA out) enables the DREO pin to be as­
serted upon the occurrence of BO. One might note
that the DREO pin may be used as a second interrupt
output pin, monitoring BI and/or BO and enabled by
DMAI and DMAO. One should note that the DREO
pin is not affected by a read of the Interrupt Status 1
Register. It is reset whenever a byte is written~o the
Data Out Register or read from the Data In Register.

To ensure that an interrupt status bit will not be
cleared without being read, and will not remain un­
pleared after being read, the 8291A implements a
special interrupt handling procedure. When an
enabled interrupt bit is set in either of the Interrupt
Status Registers, the input of the registers are
blocked until the set bit is read and reset by the
microprocessor. Thus, potential problems arise
when interrupt status changes while the register is
being blocked. However, the 8291A stores all new
interrupts in a temporary register and transfers them
to the appropriate Interrupt Status Register after the
interrupt has been reset. This transfer takes place
only if the corresponding bits were read as zeroes.

Serial Poll Registers

IS8IsRosls6Is5Is4Is3/S2/S1/

SERIAL POLL STATUS (3R)

S8 I rsv I S6 ! S5 I S4 ~ I S3 I S2 I S 1 I
SERIAL POLL MODE (3W)

6-396

The Senal P'oll Mode Register determines the status
byte that the 8291A sends out on the GPIB data lines
when it receives, the SPE (Serial Poll Enable)
message. Bit 6 of this register is reserved for the rsv
(request service) local message Setting this bit to 1
causes the8291A to assert its SRO line, indicating its
need for attention from the controller-in-charge of
the GPIB. The other bits of this register are available
for sending status information over the GPIB.
Sometime after the microprocessor initiates a re­
quest for service by setting bit 6, the controller of the
GPIB sends .the SPE message and then addresses
the 8291A to talk. At this pOint, one byte of status is
returned by the 8291A via the Serial Poll Mode Reg- ,
ister After the status byte is read by the controller,
rsv is automatically cleared by the 8291A and an SPC
interrupt is generated. The'CPU may request service
again by wriiing another byte to the Serial Poll Mode
Register with the rsv bit set. If the controller per­
forms a serial poll when the rsv bit is clear, the last
status byte written will be read, but the SRO line will
not be driven by the 8291A and the SROS bit will be
clear in the status byte.

The Serial Poll Status Register is available for read­
ing the status byte In the Serial Poll Mode Register.
The processor may check the status of a request for
service by polling bit 6 of this register, which corre­
sponds to SROS (Service Request State). When a
Serial Poll is conducted and the controller-in­
charge reads the status byte, the SROS bit is
cleared. The SRO line and the rsv bit are tied
together

Address Registers

I ton lion I EOII LPASITPAS I LA I, TA I MJMN I

ADDRESS STATUS (4R)

liNT I DTO I DLO I AD5-0IAD4-0 IAD3-0IAD2-0IAD1-0 I

ADDRESS 0 (6R)

x I DT11 DL1IAD5-11 AD4-1IAD3-1IAD2-11 AD1-1

ADDRESS 1 (7R)

I TO I LO I 0 I 0 0 I 0 I ADM11ADMO /

ADDRESS MODE (4W)

I ARS I OT I DL I AD5 I AD4 I AD3 I AD2 I AD1 I

ADDRESS 011 (6W)

205248-002

intel 8291A

The Address Mode Register is used to select one of
the five modes of addressing available on the 8291A.
It determines the way in which the·8291A uses the
information in the Address 0 and Address 1
Registers.

-In Mode 1, the contents of the Address 0 Register
constitute the "Major" talker/listener address while
the Address 1 Register represents the "Minor"
talker/listener address. In applications where only
one address is needed, the major talker/listener is
used, and the minor talker/listener should be dis­
abled. Loading an address via the Address 0/1 Regis­
ter into Address Registers 0 and 1 enables the major
and minor talker/listener functions respectively.

-In Mode 2 the 8291A recognizes two sequential
address bytes: a primary followed by a secondary.
Both address bytes must be received in order to
enable the device to talk or listen. In this manner,
Mode 2 addressing implements the extended talker
and listener functions as defined in IEEE-488.

To use Mode 2 addressing the primary address must
be loaded into the Address 0 Register, and the Sec­
ondary Address is placed in the Address 1 Register.
With both primary and secondary addresses resid­
ing on chip, the 8291A can handle all addressing
sequences without processor intervention.

-In Mode 3, the 8291A handles addressing just as it
does in Mode 1, except"that each Major or Minor
primary address must be followed by a secondary
address. All secondary addresses must be verified
by the microprocessor when Mode 3 is used. When
the 8291A is in TPAS or LPAS (talker/listener primary
addressed state), and it does not recognize the byte
on the 010 lines, an APT interrupt is generated (see
section on Interrupt Registers) and the byte is avail­
able in the CPT (Command Pass-Through) Register.
As part of its interrupt service routine, the micropro­
cessor must read the CPT Register and write one of
the following responses to the Auxiliary Mode
Register:

1. 07H implies a non-valid secondary address

2. OFH implies a valid secondary address

Setting the TO bit generates tlie local ton (talk­
only) message and sets the 8291A to a talk-only
mode. This mode allows the device to operate as a
talker in an interface system without a controller.

6-397

Setting the LO bit generates the local Ion (Iisten­
only) message and sets the 8291A to a listen-only
mode. This mode allows the device to operate as a
listener in an interface system without a controller.
The above bits may also be used by a controller-in­
charge to set itself up for remote command or data
communication.

The mode of addreSSing implemented by the 8291A
may be selected by writing one of the following bytes
to the Address Mode Register.

Register <?ontents Mode

10000000 Enable talk only mode (ton)
01000000 Enable listen only mode (Ion)
11000000 The 8291 may talk to itself
00000001 Mode 1, (Primary-Primary)
00000010 Mode 2 (Primary-Secondary)
00000011 Mode 3 (Primary/APT-Primary/APT)

The Address Status Register contains information
used by the microprocessor to handle its own
addressing. This information includes status bits
that monitor the apdress state of each talker/
listener, "ton" and "Ion" flags which indicate the
talk and listen only states, and an EOI bit which,
when set, signifies that the END message came with
the last data byte. LPAS and TPAS indicate that the
listener or talker primary address has been received.
The microprocessor can use these bits when the
secondary address is passed through to determine
whether the 8291A is addressed to talk or listen. The
LA (listener addressed) bit will be set when the
8291A is in LACS (Listener Active State) or in LADS
(Listener Addressed State). Similarly, the TA (Talker
Addressed bit) will be set to indicate TACS or TAOS,
but also to indicate SPAS (Serial Poll Active State).
The MJMN bit is used to determine whether the
information in the other bits applies to the Major or
Minor talker/listener. It is set to "1" when the Minor
talker/listener is addressed. It should be noted that
only one talker/listener may be active at anyone
time. Thus, the MJMN bit will indicate which, if
either, of the talker/listeners is addressed or active.

The Address 0/1 Register is used for specifying the
device's addresses accordi ng to the format selected
in the Address Mode Register. Five bit addresses
may be loaded into the Address 0 and Address 1
Registers by writing into the Address 0/1 Register.
The ARS bit is used to select which of these registers
the other seven bits will be loaded into. The DT and
DL bits may be used to disable the talker or listener
function at the address signified by the other five

205248-002

8291A

bits. When Mode 1 addressing is used and only one
primary address is desired, both the talker and the
listener should be disabled at the Minor address.

As an example of how the Address 0/1 Register
might be used, consider an example where two pri­
mary addresses are needed in the device. The Major
primary address will be selectable only as a talker
and the Minor primary address will be selectable
only as a listener. This configuration of the 8291A is
formed by the following sequence of writes by the
microprocessor.

Operation cs RD WR Data RS2-RSO

1 Select addressing Mode 1 0 1 0 00000001 100

2 load major add ress Into 0 1 0 001AAAAA 110
Address 0 Register with
listener function disabled,

3. load minor address Into 0 1 0 110BBBBB 110
Address 1 Register with
talker function di~abled

At this point, the addresses AAAAA and BBBBB are
stored in the Address 0 and Address i Registers re­
spectively, and are available to be read by the micro­
processor. Thus, it is not necessary to store any
address information elsewhere, Also, with the in­
formation stored in the Address 0 and Address 1
Registers, processor intervention is not required to
recognize addressing by the controller. Only in
Mode 3, where secondary addresses are passed
through, must the processor intervene in the
addressing sequence.

The Address 0 Register contai ns a copy of bit 7 of the
'Interrupt Status 2 Register (I NT). This is to be used
when polling for interrupts. Software should poll
register S checking for INT (bit 7) to be set. When INT
is set, the Interrupt Status Register should be read to
determine which interrupt was received.

Command Pass Through ,Register

ICPT71 CPTslCPTSI CPT4\ CPT31 CPT2\CPT11 CPTO \

COMMAND PASS THROUGH (SR)

The Command Pass Through Register is used to
transfer undefined 8-bit remote message codes
from the GPIB to the microprocessor. When the CPT
feature is enabled (bit BO in Auxiliary Register B),
any message not decoded by the 8291 A becomes an
undefined command. When Mode 3 addressing is
used secondary addresses are also passed through

the CPT Register. In either case, the 8291A will hold­
off the handshake until the microprocessor reads
this register and issues the VSCMD auxiliary
command.

The CPT and APT interrupts flag the availablility of
undefined commands and secondary addresses in
the CPT Register. The details of these interrupts are
explained in the. section on Interrupt Registers.

An added feature'of the 8291A is its ability to handle
undefined secondary commands following unde­
fined primaries. Thus, the number of available
commands for future IEEE-488 definition is in­
creased; one undefined primary command followed
by' a sequence of as many as 32 secondary com­
mands can be processed. The IEEE-488 Standard
does not permit users to define their own com­
mands, but upgrades of the standard are thus pro­
vided for.

The recommended use of the 8291A's undefined
command capabilities is for a controller-configured
Parallel Poll. The PPC message is an undefined pri­
mary command typically followed by PPE, an unde­
fined secondary command. For details on this proce­
dure, refer to the section on Parallel Poll Protocol.

Auxiliary Mode Register

@NT2lcNT1IcNTOlcOM4\COM3\COM2ICOM1IcOMO\

AUX MODE (SW)

CNTO-2:CONTROL BITS
COMO-4:'COMMAND BITS

The Auxiliary Mode Register contains a three-bit
control field and a five-bit command field. It is used
for several purposes on the 8291A:

1. To load "hidden" auxiliary registers on the
8291A. .

2. To issue commands from the microprocessor to
the 8291A.

3. To preset an internal counter used to generate
T1, delay in the Source Handshake function, as
defined in IEEE-488.

Table S summarizes how these tasks' are performed
with the Auxiliary Mode Register. Note that the three
control bits determine how the five command bits
are interpreted.

6-398 205248-002

8291A

Table 5

CODE
CONTROL COMMAND COMMAND

BITS BITS
000 OCCCC Execute auxiliary command

CCCC
001 ODDDD Preset internal counter to

match external clock
frequency of DDDD MHz
(DDDD binary representation
oflt08MHzI

100 DDDDD Write DDDDD mto auxiliary
register A

101 DDDDD Write DDDDD into auxiliary
register B

all USP3P2P, Enable/disable parellel poll
either in response to remote
messages (PPC fOllowed by
PPE or PPD) or as a local
Ipe message. (Enable if U = 0,
disable if U = 1.)

AUXILIARY COMMANDS

Auxiliary commands are executed by the 8291A
whenever OOOOCCCC is written into the Auxiliary
Mode Register, where CCCC is the 4-bit command
code.

OOOO-immediate Execute pon: This command
resets the 8291A to a power up state (local pon
message as defined in IEEE-488).
The following conditions constitute the power up
state:
1. All talkers and listeners are disabled.
2. No interrupt status bits are set.
The 8291A is designed to power up in certain states
as specified in the I.EEE-488 state diagrams. Thus,
the following states are in effect in the power up
state: SIDS, AIDS, TIDS, LIDS, NPRS, LaCS, and
PPIS.
The "0000" pon is an immediate execute command
(a pon pulse). It is also used to release the "initialize"
state generated by either an external reset pulse or
the "0010" Chip Reset command.

0010-Chip Reset (Initialize): This command has the
same effect as a pulse applied to the Reset pin.
(Refer to the section on Reset Procedure.)

0011 -Finish Handshake : This command fi nishes a
handshake that was stopped because of a holdoff
on RFD. (Refer to Auxiliary Register A.)

6-399

0100-Trigger: A "Group Execute Trigger" is forced
by this command. It has the same effect as a GET
command issued by the centroller-in-charge of the
GPIB, but does not cause a GET interrupt.

0101, 1101-Clear/Set rtl: These commands corre­
spond to the local rtl message as defined by the
IEEE-488. The 8291A will go into local mode when a
Set rtl Auxiliary Command is received if local
lockout is not in effect. The 8291A will exit local
mode after receiving a Clear rtl Auxiliary Command
if the 8291A is addressed to listen.

0110-Send EOI: The EOlline of the 8291A may be
asserted with this command. The command causes
EOI to go true with the next byte transmitted. The
EOI line is then cleared upon completion of the
handshake for that byte.

0111, 1111-Non ValidNalid Secondary Address or
Command (VSCMD): This command informs the
8291A that the secondary address received by the
microprocessor was valid or invalid (0111 = invalid,
1111 = Vl;llid). If Mode 3 addressing is used, the
processor must field each extended address and
respond to it: or the GPIB will hang up. Note that the
COM3 bit is the invalid/valid flag.

The valid (1111) command is also used to tell the
8291A to continue from the command-pass­
through-state, or from RFD holdoff on GET, SOC
or DCL.

1000-pon: This command puts the 8291A into the
pon (power on) state and holds it there. It is similar to
a Chip Reset except none of the Auxiliary Mode
Registers are cleared. In this state, the 8291A does
not participate in any bus activity. An Immediate
Execute pon releases the 8291A from the pon state
and permits the device to participate in the bus
activity again.

0001,100"1-Parallel Poll Flag (local "ist" message):
This command sets (1001) or clears (0001) the paral­
lel poll flag. A "1" is sent over the assigned data line
(PRR = Parallel Poll Response true) only if the paral­
lel poll flag matches the sense bit from the Ipe local
message (or indirectly from the PPE message). For a
more complete description of the Parallel Poll
features and procedures refer to the section on Par­
allel Poll Protocol.

INTERNAL COUNTER

The internal counter determines the delay time al­
lowed for the setting of data on the 010 lines. This
delay time is defined as T, in IEEE-488 and appears
in the Source Handshake state diagram between the

205248-002

8291A

SDYS and STRS. As such, DAV is asserted T, after
the 010 lines are driven. Consequently, T, is a major
factor in determining the data transfer rate of the
8291A over the GPIB (T, = TWRDV2-TWRD15).

When open-collector transceivers are used for con­
nection to the GPIB, T, is defined by1EEE-488 to be
2/Lsec. By writing 001 ODDDD into the Auxiliary Mode
Register, the counter is preset to match a fc MHz
clock input, where DDDD is the binary representa­
tion of NF [1 ",NF",;8, NF=(DDDD).J. When NF = fc, a
2/Lsec T, delay will be generated before each DAV
asserted.

T1(p.sec) = 2f~F + tSYNC , 1 ",;NF",;8

tSYNC is a synch ronization error, greater than zero
and smaller than the larger of T clock high and T
clock low. (For a 50% duty cycle clock, tSYNC is less
than half the clock cycle).

If it is necessary that T, be different from 2JLsec, NF
may be set to a value other than fc. In this manner,
data transfer rates may be programmed for a given
system. In small systems, for example, wher~ trans­
fer rates exceeding GPIB specifications are re­
quired, one may set NF<fc and decrease T,.

When tri-state transceiVers are used, IEEE-488 al­
lows a higher transfer rate (lower T,). Use of the
8291A with such transceivers is enabled by setting
B, in Auxiliary Register B.ln this case, setting NF=fc
causes a T, delay of 2JLsec to be generated for the
first byte transmitted - all subsequent bytes will
have a delay of 500 nsec.

T,(High Speed) JLsec = ~: + tSYNC

Thus, the shortest T, is achieved by setting NF=1
using an 8 MHz clock with a 50% duty cycle clock
(tsyNc <63 nsec):

1
T1(HS) = 2x8 + 0.063 = 125 nsec max.

AUXILIARY REGISTER A

Auxiliary Register A is a "hidden" 5-bit register
which is used to enable some of the 8291A features.
Whenever a 100 A.A3A,A,Ao byte is written into the

Auxiliary Register, it is loaded with the data
A.A3A,A,Ao. Setting the respective bits to "1"
enables the following features.

Ao- RFD Holdoff on all Data: If the 8291A is listen-
'ing, RFD will not be sent true until the "finish hand­
shake" auxiliary command is issued by the
microprocessor. The holdoff will be in effect for each
data byte.

A,-RFD Holdoff on End: This feature enables the
holdoff on EOI or EOS (if enabled). However, no
holdoff will be in effect on any other data bytes.

A,-End on EOS Received: Whenever the byte in the
Data In Register matches the byte in the EOS Regis­
ter, the END interrupt bit will be set in the Interrupt
Status 1 Register.

A3-Output EOI on EOS Sent: Any occurrence of
data in the Data Out Register matching the EOS
Register causes the EOI line to be sent true along
with the data.

A.-EOS Binary Compare: Setting this bit causes
the EOS Register to function as a full 8-bit word.
When it is not set, the EOS Register is a 7-bit word
(for ASCII characters).

If Ao:;A, =1, a special "continuous Acceptor Hand­
shake cycling" mode is enabled. This mode should
be used only in a controller system configuration,
where both the 8291Aand the 8292 are used. It
provides a continuous cycling through the Acceptor
Handshake state diagram, requiring no local mes­
sages from the microprocessor; the rdy local mes­
sage is automatically generated when in ANRS. As
such, the 8291A Acceptor Handshake serves as the
controller Acceptor Handshake. Thus, the controller
cycles through the Acceptor Handshake without de­
laying the data transfer in progress. When the tcs
local message is executed, the 8291A should be
taken out of the "continuous AH cycling" mode, the
GPIB will hang up in ANRS, and a BI interrupt will be
generated to indicate that control may be taken. A
simpler procedure may be used when a "tcs on end
of block" is executed; the 8291A may stay in "con­
tinuous AH cycling". Upon the end of a block (EOI or
EOS received), a holdoff is generated, the GPIB
hangs up in ANRS, and control may be taken.

6-400 205248-002

.. \

8291A

AUXILIARY REGISTER B

Auxiliary Register B is a "hidden" 4-bit register
which is used to enable some of the features of the
8291A. Whenever a 101 B.B3B2B,BO is written into
the Auxiliary Mode Register, it is loaded with the
data B.B3B2B, Bo. Setting the respective bits to "1"
enables the following features:

Bo-Enable Undefined Command Pass Through:
This feature allows any commands not recognized
by the 8291A to be handled in software. If enabled,
this feature will cause the 8291 A to holdoff the hand­
shake when an undefined command is received. The
microprdcessor must then read the command from
the Command Pass Through Register and send the
VSCMD auxiliary command. Until the VSCMD com­
mand is sent, the handshake holdoff will be in effect.

B,-Send EOI in SPAS: This bit enables EOI to be
sent with the status byte; EOI is sent true in Serial
Poll Active State. Otherwise, EOI is sent false in
SPAS.

B2-Enable High Speed Data Transfer: This feature
may be enabled when tri-state external transceivers
are used. The data transfer rate is limited by T, delay
time generated in the Source HandSi'rake function,
which is defined according to the type of transceiv­
ers used. When the "High Speed" feature is enabled,
T, = 2 microseconds is generated for the first byte
transmitted after each true to false transition of ATN.
For all subsequent bytes, T, = 500 nanoseconds.
Refer to the Internal Counter section for an explana­
tion of T, duration as a function of B2 and of clock
frequency.

B3-Enable Active low Interrupt: Setting this bit
causes the polarity of the INT pin to be reversed,
providing an output signal compatible with Intel's
MCS-48® Family. Interrupt registers are not affected
by this bit.

B.-Enable RFD Holdoff on GETor DEC: Setting this
bit causes RFDto be held false until the "VSCMD"
auxiliary command is written after GET, SDC, and
DCl commands. This allows the device to hold off
the bus until it has completed a .clear or trigger
similar to an unrecognized command.

PARALLEL POLL PROTOCOL

Writing a 011USP3P2P, into the Auxiliary Mode Reg­
ister will enable (U=O) or disable (U=1)the 8291A for
a parallel poll.When U =0, this command is the "Ipe"
(local poll enable) local message as defined in
IEEE-488. The "S" bit is the sense in which the
8291A is enabled; only if the Parallel Poll Flag ("ist"
local message) matches this bit will the Parallel Poll
Response, PPRN , be sent true (Response= S + ist).
The bits P3P2P, specify wruch of the. eight data lines
PPRN will be sent oyer. Thus, once the 8291A has
been configured for Parallel Poll, whenever it senses
both EOI and ATN true, it will automatically compare
its PP flag with the sense bit and send PPRN true or
false according to the comparison.

If a PP2* implementation is desired, the "Ipe" and
"ist" local messages are all that are needed. Typi­
cally, t~e user will configure the 8291A for Parallel
Poll immediately after initialization. During normal
operation the microprocessor will set or clear the
Parallel Poll Flag (ist) according to the device's need
for service. Consequently the 8291 A will be set up to
give the proper response to IDY (EOI • ATN) without
directly involving the microprocessor.

If a PP1* implementation is desired, the undefined
command features of the 8291A must be used. In
PP1, the 8291A is indirectly configured for Parallel
Poll by the active controller on the GPIB. The se­
quence at the 8291A being enabled or disabled re­
motely is as follows:

1. The PPC message is received and is loaded into
the Command Pass Through Register as an un­
defined command. A CPT Interrupt is sent to the
microprocessor; the handshake is automatically
held off .

2. The microprocessor reads the CPT Register and
sends VSCMD to the 8291 A, releasing the
handshake.

3. Having received an undefined primary com­
mand, the 8291A is set up to receive an undefined
secondary command (the PPE or PPD message).
This message is also received into the CPT Regis­
ter, the handshake is held off, and the CPT inter­
rupt is generated.

NOTE: 'As defined in IEEE Standard 488.

6-401 205248-002 '

'i'

i
Ii

I
1'1

8291A

4. The microprocessor reads the PPE or PPD mes­
sage and writes the command into the Auxiliary

.. Mode Register (bit 7 should be clea~ed first). Fi­
nally, the microprocessor sends VSCMD and the
handshake is released.

End of Sequence (EOS) Register

IEC71EC6jEC51EC41EC31EC21EC11 ECO I

EOS REGISTER

The EOS Register and its features offer an alterna­
tive to the "Send EOI" auxiliary command. A seven
or eight bit byte (ASCII or binary) may be placed in
the register to flag the end of a block or read. The
type of EOS byte to be used is selected in Auxiliary
Register bit A •.

If the 8291A is a listener, and the "End on EOS
Received" is enabled with bit A2 , then an END inter­
rupt is generated in the Interrupt Status 1 Register
whenever the byte in the Data-In Register matches
the byte in the EOS Register.

If the 8291A is a talker, and the ';Output EOI on EOS
Sent" is enabled with bit A3 , then the EQIline is sent
true with the next byte whenever the contents of the
Data Out Register match the EOS register.

Reset Procedure

The 8291 A is resetto an initialization state either by a
pulse applied to its Reset pin, or by a reset auxiliary
command (02H written into the Auxiliary Command
Register). The following conditions are caused by a
reset pulse (or local reset command):

1. A, "pon" local message as defined by IE\OE-488 is
held true until the initialization state is released.

2. The Interrupt Status Registers are cleared (not
Interrupt Enable Registers).

3. Auxiliary Registers A and B are cleared.
4. The Serial Poll Mode Register is cleared.
5. The Parallel Poll Flag is cleared.
6. The EOI bit in the Address Status Register is

cleared.
7. NF in the Internal Counter is set to 8 MHz. This

setting causes the longest possibleT, delay to be
generated in the Source Handshake (16 /Lsec for
1 MHz clock).

8. The rdy local message is sent.

The initialization state is released by an "im­
mediate execute pon" command (OOH written into
the Auxiliary Command Register).

The suggested initialization sequence is:

1. Apply a reset pulse or send the reset auxiliary
command.

2. Set the desired intial conditions by writing into
the Interrupt Enable, Serial Poll Mode, Address
Mode, Address 0/1, and EOS Registers. Auxiliary
Registers A and B, and the internal counter
should also be initialized.

3. Send the "immediate execute pon" auxiliary
command to release the initialization state.

4. If a PP2 Parallel Poll implementation is tobe used
the "Ipe" local message may be sent, enabling
the 8291A for a Parallel Poll Response on an
assigned line. (Refer to the section on Parallel
Poll Protocol.)

Using DMA

The 8291A may be connected to the Intel® 8237 or
8257 DMA Controllers or the 8089 I/O Processor for
DMA operation. The.8237 will be used to refer to any
DMA controller. The DREO pin of the 8291A requests
a DMA byte transfer from the 8237. It is set by BO or
BI flip flops, enabled by the DMAO and DMAI bits in
the Interrupt Enable 2 Register. (After reading, the
INn register BO and BI interrupts will be cleared but
not BO and 81 in DR EO equation.)

The DACK pin is driven by the 8237 in response to
the DMA request. When DACK is true (active low) it
sets CS= RSO= RS1 = RS2=0 such that the RD and
WR signals sent by the 8237 refer to the Data In and
Data Out Registers. Also, the DMA request line is
reset by DACK (RD + WR).

DMA input sequence:

1. A data byte is accepted from the GPIB by the
8291A.

2. A BI interrupt is generated and DREO is set.
3. DACK and RD are driven by the 8237, the contents

of the Data In Register are transferred to the
system bus, and DR EO is reset.

4. The 8291A sends RFD true on the GPIB and pro­
ceeds with the Acqeptor Handshake protocol.

DMA output sequence:

1. A BO interrupt is generated (indicating that a byte
should be output) and DREO is asserted.

6-402 205248-002

intel 8291A

2. DACK and WR are driven by the 8237, a byte is
transferred from the MCS bus into the Data Out
Register, and DREQ is reset.

3. The 8291A sends DAV true on the GPIB and ·pro-
ceeds with the Source Handshake protocol.

It should be noted that each time the device is ad­
dressed (MTA + MLA + ton + Ion), the Address
Status Register should be read, and the 8237 should
be initialized accordingly. (Refer to the 8237 or 8257
Data Sheets.)

APPLICATION BRIEF

System Configuration

MICROPROCESSOR BUS CONNECTION
The 8291 A is 8048/49, 8051, 8080/85, and 8086/88

TO
MICROPROCESSOR

INTERFACE

GPIB TRIGGER OUTPUT

...!.!.
13 -
~
~
...!!

17 -
...!!
.J!.
.2.!.
.E.
...!l
2
-2
.-!I!.
~

--.2.
~

2.
2.
2

8291A ,

0101 ~ DO

01 0102 ~
30

02 0103

03 0104
31

04 0105
32

05 ffi06 33

06 0101
34

01 i5i08 35

RSO OAV
36

RS1 TfFh
1

RS2 ATN
26

.cs EOI
39

AD TiR2
2

WR NOAC
38

INT NRFO
31

CLOCK SRO
21

RESET REN 25

OREO we 24

OACK

TRIG

, = GPIB BUS TRANSCEIVER

compatible. The three address pins (RSo, RS" RS2)

should be connected to the non-multiplexed ad­
dress bus (for example: A., A9 , A,o). In case of 8080,
any address lines may be used. If the three lowest
address bits are used (Ao, A" A2), then they must be
demultiplexed first.

EXTERNAL TRANSCEIVERS CONNECTION
The 8293 GPIB Transceiver interfaces the 8291A di­
rectlyto the IEEE-488 bus. The 8291A and two 8293's
can be configured as a talker/listener (see Figure 6)
or with the 8292 as a talker/listener/controller (see
Figure 7). Absolutely no active or passive external
components are required to comply with the com­
plete IEEE-488 electrical specification.

25
0101

23
0102

10
0103

9
0104

8 ii10s
1

0106
6

0101
5

0108
24

OAV
1

TfR1

~ ATN

---2. EOI

3
EOI

4·
'--- ill

1 TfR1
2 TfR2

10
NOAC

9 NRFO
8

SRO
6 REN
5

IFC

8293

0101'

0102'

0103'

0104'

0105'

0106'

0101'

0108'

OAV'

OPTA

OPTB

MOOE1

8293
EOI'

ATW

NOAC'

NRFO'

SRO'

REN'

IFC'

OPTA

OPTB

MOOEO

rE-
2!...
~
17 -
~
~
~

~
21 -
~

~

~
~

~
r1l-
~
e!!-
rE-
~
~

TO
IEEE·488
BUS .

Vee

GNO

TO
IEEE·488
BUS

GNO

GNO

Figure 6, 8291A and 8293 System Configuration

6-403 205248-002

i'i

TO
MICROPROCESSOR

GPIB
TRIGGER
OUTPUT

TO MICROPRO£ESSOR

..!!
--!!
~

~
16

17

18

19

21

22

23

9

10

•
6

7

8

3

11

5

-1.t
c....!2.
~

---..!2..
16

17

18

19

9

8

10

00

01

02

03

D.

05

06

07

RSO H91A

RSl

RS2

AD
WR
RESET

~

OREO
--
DACK

CS
CLOCK

INT

TRIG

00

01

02

D3

D'
D5

DI>

07

AO 8292

lffi
WR

-t> • RESETtt

J
MICROPROCESSOR 1

OSCILLATOR
OUTPUT

6

32

33

35

36

11

vcc~

~
~1

15.25PFt ~
• = GPIB BUS TRANSCEIVER

cs
TCI

SPI

OBFI

ISFI

SYNC

SS
X,,
X,,
EA

,= SEE BO"A DATA SHEET FOR ALTERNATE
CRYSTAL CONFIGURATIONS

It = CAN CONNECT TO SYSTEM RESET SWITCH,
SEE BO.,A DATA SHEET

8291A

0101
28 25

0101

0102
29 23

0102

0103
30 10

0103

0i04
31 9

0104

0105
32 8

0105

0106
33 7

0106

Di01 3. 6
0107

0108 35 5
0108

TIRl
1 1

TIRl

DAV
36 2.

OAV

EOI
39 3

EOI

ATN
26 • ATN

SRO
27

IFC
2.

NOAC
38

NRFD 37

l/R2
2 ,---!-'- ATNO

REN ~ r- ,2. IFCL

OAV E. r--1.. riRl
• ATN

10
NOAC

9
NFRD

2 riR2
SRO

21 8
SRO

REN
38 6

REN

IFC
23 5 iFC

ATNO
29 23

ATNO

C,OUNT
39 3

EOI

EOl2
3. 7

EOl2

ATNI
22 11

ATNI

1
IFCL

25
IFCL

CIC
31 2.

CIC

CLTH
27 21

CLTH

SYC
2. 22

SYC

Uc ON SYSTEM
CONTROLLER

1..0FF SWITCH

Figure 7, 8291A, 8292, and 8293 System Configuration

6-404

0101"

0102"

0103'

0104"

0105"

0106'

0107'
8293

OIOS·

DAV·

OPTA

OPTB
MODE 3

NOAC

NRFD

SRO'

REN°
8293 IFe·

ATN·

EO'"

QPTA

OPTB

MODE 2

E...
..!.!..
J!..
..!L
.1!...
.1!...
.!.!..
E-

..!!...

Lv
~V

~
r!!-

TO
IEEE·488
BUS

cc

cc

t.1!...
~'

TO
EEE·488

BUS

~
r!!-
~

~Vs
~Vc

205248-002

8291A

Start-Up Procedures

The following section describes the steps needed to
initialize a typical 8291A system implementing a
talker/listener interface and an 8291N8292 system
implementing a talker/listener/controller interface.

TALKER/LISTENER SYSTEM
Assume a general system configuration with the
following features: (i) Polled system interface; (ii)
Mode 1 addressing: (iii) same address for talker and
listener; (iv) ASCII carriage return as the end-of­
sequence (EOS) character; (v) EOI sent true with the
last byte; and, (vi) 8 MHz clock.

Initialization. Initialization is accomplished with
the following steps:

1. Pulse the RESET input or write 02H to the Auxil­
iary Mode Register.

2. Write OOH to the Interrupt Enable Registers 1 and
2. This disables interrupt and OMA.

3. Write 01 H to the Address Mode Register to select
Mode 1 addressing.

4. Write 28H to the Auxiliary Mode Register. This
loads 8H to the Auxiliary Register A matching the
8 MHz clock input to the internal T1 delay counter
to generate the delay meeting the IEEE spec.

5. Write the talker/listener address to the Address
0/1 register. The three most significant bits are
zero.

6. Write an ASCII carriage return (OOH) to the EOS
register.

7. Write 84H to the Auxiliary Mode Register to allow
EOI to be sent true when the EOS character is
sent.

8. Write OOH to the Auxiliary Mode Register. Thls
writes the "Immediate Execute pon" message
and takes the 8291A from the initialization state
into the idle state. The 8291 A will remain idle until
the controller initiates some activity by driving
ATN true.

Communication. The local CPU now polls the
8291A to determine which controller command has
been received.

The controller addresses the 8291A by driving ATN,
placing MLA (My Listen Address) on the bus and
driving OAV.lf the lower five bits of the MLA message
match the address programmed into the Address 0/1
register, the 8291A is addressed to listen. It would be
addressed to talk if the controller sent the MTA mes­
sage instead of MLA.

6-405

TheAOSC bit in the Interrupt Status 2 Register indi­
cates that the 8291 A has been addressed or
unaddressed. The TAand LA bits in the Address
Status Register indicate whether the 8291A is talker
(TA=1), listener (LA=1), both (TA=LA=1) or unad­
dressed (TA=LA=O).

If the 8291 A is addressed to listen, the local CPU can
read the Data-In Register whenever the BI (Byte In)
interrupt occurs in the Interrupt Status 1 Register. If
the END bit in the same register is also set, either EOI
or a data byte matching the pattern in the EOS regis­
ter has been received.

In the talker mode, the CPU writes data into the
Byte-Out Register on BO (Byte Out) true.

TALKER/LISTENER/CONTROLLER SYSTEM
Combined with the Intel 8292, the 8291A executes a
complete IEEE-488-1978 controller function, The
8291A talks and listens via the data and handshake
lines (NRFO, NOAC and r5AV). The 8292 controls four
of the five bus management lines (IFC, SRO, ATN and
iiEN). ro, the fifth line, is shared. The 8291A drives
and receives EOI when EOI is used as an end-of­
block indicator. The 8292 drives EDT along with AiN
during a parallel poll command.

Once again, assume a general system configuration
with the following features: (i) Polled system inter­
face; (ii) 8292 as the system controfler and
controller-in-charge; (iii)ASCIl carriage return (OOH)
as the EOS identifier; (iv) ro sent with the last
character; and, (v) an external buffer (8282).used to
monitor the TCI line.

.
Initialization. In order to send a command across
the GPIB, the 8292 has to drive ATN, and the 8291A
has to drive the data lines. Both devices therefore
need initialization

To initialize the 8292:

1. Pulse the RESET input. The 8292 will initially drive
all outputs high. TCI, SPI, OBFI, IBFI and CLTH
will then go low. The Interrupt Status, Interrupt

. Mask, Error Flag, Error Mask and Timeout regis­
ters will be cleared. The interrupt counter will be
disabled and loaded with 255. The 8292 will then
monitor the status of the SYC pin. If high, the
8292 will pulse IFC true for at least 100ILS in com­
pliance with the IEEE-488-1978 standard. It will
then take control by asserting ATN.

To initialize the 8291A, the following is necessary:

1. Write OOH to Interrupt Enable registers 1 and 2.
This disables interrupt and OMA.

205248-002

inter 8291 A

2. With the 8292 as the controller-in-ch'arge, it is
impossible to address the 8292 via the GPIB.
Therefore, the ton or Ion modes of the 8291 A must
be used. To send comands, set the 8291A in the
ton mode by writing 80H to the Address Mode
Register.

3. Write 26H to the Auxiliary Mode Register to match
the T1 data settling time to the 6 MHz clock input.

4. Write an ASCII carriage return (ODH) to the EOS
Register.

5. Write 84H to the Auxiliary Mode Register in order
to enable "Output EOI on EOS sent" and thus
send EOI with the last character.

6. Write OOH-Immediate Execute pon-to theAux­
iliary Mode Register to put the 8291A in the idle
state.

Communication. Since the 8291A is in the ton
mode, a BO interrupt is generated as soon as the
immediate Execute pon command is written. The
CPU writes the command into the Data Out Register,
and repeats ·it on BO becoming true for as many
commands as necessary. ATN remains continuously

true unless the GTSB (Go To Standby) command is
sent to the 8292. I

ATIiI has to be false in order to send data rather than
commands from the controller. To do this, the follow­
ing steps are needed:

• 1. Enable the TCI interrupt if not already enabled.

2. Wait for IBF (Input Buffer Full) in the 8292 Inter­
rupt Status Register to be reset.

3. Write the GTSB (F6H) command to the8292 Com­
mand Field Register.

4. Read the'8282 and wait for TCI to be true.

5. Write the ton (80H) and pon (OOH) command to
the 8291A Address Mode Register and Auxiliary
Mode Registers respectively.

6. Wait for the BO interrupt to be set in·the 8291A.

7. Write the data to the 8291A Data-Out Register.

Identically, the user could command the controller
to listen rather than talk. To do that, write Ion (40H)
instead of ton into the Address Mode Register. Then
wait for BI rather than BO to go true. Read the data
Register.

205248-002

8291.A

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias O"C to 70"C
Storage Temperature -65°C to +150°C
Voltage on Any Pin
With Respect to Ground -0.5V to +7V
Power Dissipation 0.65 Watts

·NOTlCE: Stresses above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the deVice
This IS a stress ratmg only and functional operation of the
device at these or any other conditions above those mdlcated
in the operational sections of this specification Is not implied.
Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS [Vee = 5V :!:10%, T. = O°C to 70"C (Commercial)]

Symbol Parameter Min. Max. Unit Test Conditions

V,L Input Low Voltage -0.5 08 V

V,H Input High Voltage 2 Vee+0.5 V

VOL Output Low Voltage 0.45 V IOL=2mA 14mA for TR1 Pin)

VOH Output High Voltage 2.4 V IOH = -400IlA 1-1501'A for SRO pin)

VOH-INT Interrupt Output High Voltage 24 V IOH=-4OOIlA

35 V IOH=-50I'A

ilL Input Leakage 10 I'A V'N=OV to Vee

IOFl Output Leakage Current :!:10 I'A VOUT=0.45V, Vce

Icc Vee Supply Current 120 mA TA=O·C

A.C. CHARACTERISTICS [Vee = 5V :!:10%, T. = O"C to 70·C (Commercial)]

Symbol Parameter Min. Max. Unit Test Conditions

tAR Address Stable Before READ 0 nsec

tRA Address Hold After READ 0 nsec

tRR m:Ai)width 140 nsec

tAD Address Stable to Data Valid 250 nsec

tRO ~ to Data Valid 100 nsec

tROF Data Float After FrEAD 0 60 nsec

tAW Address Stable Before WRITE 0 nsec

tWA Address- Hold After WRITE 0

tww WRITE Width 170 nsec

tow Data Set Up Time to the Trailing
Edge of WRITE 130 nsec

two Data Hold Time After WRi'i"£ 0 nsec

tOKOR4 ROt or WRt to DREOt 130 nsec

tOKOA6 RD! to Valid Data 200 nsec ~! to Rl)! 0 ,.;t .;;50nsec
(00-0,)

6-407 205241HlO2

I'.

WAVEFORMS

READ

WRITE

DMA

CS/RS, =:J
I' tRR ~

'AD .
I

~

..--tAR ----... -+---tRD~

DATA BUS
(DATA OUT!

DATA BUS
(DATA INI

~

./

"

-'AW]

DATA MAY CHANGE

DREQ --___ ..11

DACK --"(""""------"'"

~

'ww

)

K . I-'RA-Oo

I

-. i--'ROF

VALID DATA r

I< . -'WA-!

...-tow_

I

-- 'WO-

VALID DATA K DATA MAY CHANGE

RDorWR ----------------_

6-408 205248-002

8291A

A.C. TIMING MEASUREMENT POINTS AND LOAD CONDITIONS

INPUT/OUTPUT

" ~ =X;20 > TEST POINTS < 2.0

0.8 08
045

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A lOGIC 1 AND 0 45V FOR
A LOGIC 0 TIMING M~ASUREMENTS..AAE MADE AT 2 av FOR A LOGIC 1
AND a BV FOR A LOGIC 0

GPIB TIMINGSl

Symbol Parameter

TEOT13' EOI~ toTRlj

TEOD16 EOT~ to DIO Valid

TEOT12 EOI! toTR1!

TATND4 ATN~ to NDAC!

TATT14 ATN~toTR1~

TATT24 ATN~ toTR2~

TDVND?-C DAV~ to NDACj

TNDDVl NDACj to DAVj

TNRDRl NRFDj to DREQj

TDVDR3 DAV~ to DREQj

TDVND2-C DAV, to NDAC~

TDVNR1-C DAVj to NRFDj

TRDNR3 RD~ to NRFDj

TWRD15 WRj to DIOValid

TWRE05 WRj to EOI Valid

Max.

135

155

155

155

155

155

650

350

400

600

350

350

500

280

350

TWRDV2 WRj to DAV~ 830 + tsvNC

NOTES:
1. All GPIB timings are at the pins of the 8291A.

DEVICE
UNDER

ICL~l50PF rEST

Units Test Conditions

nsec PPSS, ATN=0.45V

nsec PPSS, ATN=0.45V

nsec PPSS, ATN=0.45V

nsec TACS, AIDS

nsec TACS, AIDS

nsec TACS, AIDS

nsec AH,CACS

nsec SH,STRS

nsec SH

nsec AH, LACS, ATN=2.4V

nsec AH,LACS

nsec AH, LACS, rdy=True

nsec AH, LACS

nsec SH, TACS, RS=0.4V

nsec SH,TACS

nsec
High Speed Transfers Enabled,
NF = fc, tSVNC = 1I2-fc

2. The last number in the symbol for any GPIB timing parameter is chosen according to the transition directions of the reference
signals. The follOWing table desCribes the numbering scheme.

110 i 1

Ito ! 2

1to 1 3
!to 1 4

Ito VALID 5
1 to VALID 6

6-409 205248-002

8291A

APPENDIX A

MODIFIED STATE DIAGRAMS

Figure A-1 presents the interface function state
diagrams. It is derived from IEEE Std. state dia­
grams, with the following changes:

A. The 8291 A supports the complete set of IEEE-488
interface functions except for the controller. These
include: SH1, AH1, T5, TE5, L3, LE3, SR1, RL 1, PP1,
OC1, OT1, and CO.

B. Addressing modes included in T,L state
diagrams.

Note that in Mode 3, MSA, OSA are generated only
after secondary address validity check by the micro­
processor (APT interrupt).

C. In these modified state diagrams, the IEEE-488-
1978 convention of negative (low true) logic is
followed. This should not be confused with the Intel
pin- and Signal-naming convention based on posi­
tive logic. Thus, while the state diagrams below car­
ry low true logic, the signals described elsewhere in
this data sheet are consistent with Intel notation and
are based on positive logic.

pon

ATN + F1
~WITHtN t2)

Fl '" TACS +5PAS

Convention
Level Logic IEEE-488 Intel

0 T OAV OAV
1 F OAV OAV
0 T NOAC NOAC
1 F NOAC NOAC
0 T NRFO NRFO
1 F NRFO NRFO

Consider the condition when the N9t-Ready-For­
Data signal (pin 37) is active. Intel indicates this
active low signal with the symbol NRFD (VouT,,,NoL for
AH; V'N,,;V'L for SH). The IEEE-488-1978 Standard, in
its state diagrams, indicates the active state of this
signal (True condition) with NRFO.

O. All remote multiline messages decoded are con­
ditioned by ACOS. The multiplication by ACOS is not
drawn to simplify the diagrams.

E. The symbol

indicates:

1. When event X occurs, the function returns to
state S.

2. X overrides any other transition condition in
the fUl'lction.

Statement 2 simplifies the diagram, avoiding the
explicit use of X to condition all transitions from S to
other states.

r----'
I I
I SH I
I ,
l _____ .J

DAV

Figure A·1. 829"\A State Diagrams (Continued next,page)

205248-002

PO"---~

po"----.j

PO"---.-.

8291A

F3"'ATN+rdy

T3'",T3·CPT·APT
F3 + T3" ATN

F4 =0 OTA + (QSA' TrAS + MSA· LPAS),

MODE1 + ML,,,"' MODE 1

81

NRFD

EOI IF DAB ~ EOS

RQS IN STS

DAV

r----,
I

A H I
I I
L ____ J

"THIS TRANSITION WILL NEVER
OCCUR UNDER NORMAL OPERATIoN

'tTOElAY IS ABOUT 300 NS
FOR DEBOUNCING DAV

END IF (EOI + EOS) RECEIVED

r----'
I I
I TE I
I I
L ____ J

STB AND Ras AVAILABLE
TO SH

r----
I I
I SAO I

I

SPAS

Figure A-1. 8291A State Diagrams (Continued next page)

6-411 205248-002

intel'

pon---~

F6 = DCl + SOC, LADS

pon---~

*IDY = ATN . EOI

8291A

r-- --,
I I
I L E J

r----'
I I
I DC I
I I L ____ J

I

pon---~

F5" (MLA,' MODE 1 + LPAS. MSA • MODE 1)

r-----,
I I
I P P 2 I
I I
L ____ J

Figure A-1, 8291A State Diagrams

6-412

LLO

r ----,
I I
I R L I
I I
~ ____ J

r----'
I I
I DT I
I I L ____ ..J

205248-002

intel 8291A

APPENDIX B

Table B-1. IEEE 488 Time Values

Time Value
Identifier' Function (Applies to) Description Value

T1 SH Settling Time for Multiline Messages 2: 2p.S2

t2 LC,fC,SH,AH,T,L Response to A TN :S 200ns

T3 AH Interface Message Accept Time" > O'

t4 T,TE,L,LE,C,CE Response to IFC or REN False < 1001's

t5 PP Response to ATN+EOI :S 200ns

Te C Parallel Poll Execution Time 2: 21's

T7 C Controller Delay to Allow Current Talker 2: 500 ns
to see A TN Message

Ts C Length of IFC or REN False > 1001's

Tg C Delay for EOI' 2: 1.5p.s·

NOTES:
'Time values specified by a lower case t indicate the maximum time allowed to make a state transition. Time values speCified by an
upper case T indicate the mmimum time that a function must remain in a state before eXltmg.

21f three-state drivers are used on the 010, OAV, and EOllines, T, may be:
1. '" 1100ns.
2. Or 2: 700 ns if It IS known that within the controller ATN is driven by a three-state driver.
3. Or 2: 500ns for all subsequent bytes following the first sent after each false transition of ATN (the first byte must be sent in accord­

ance with (1) or (2).
4. Or 2: 350ns for all subsequent bytes following the first sent after each false transition of ATN under conditions specified in Section

5.2.3 and warning note. See IEEE Standard 488.
'Time required for interface functions to accept, not necessarily respond to interface messages.
'Implementation dependent. ' ~.
'Dellfy required for EOI, NOAC, and NRFO signal lines to indicate valid states.
'2: 600 ns for three-state drivers.

6-413 205248-002

8291A

APPENDIXC
THE THREE-WIRE HANDSHAKE

TWRDIS

~
I VALID I NOT VALID I VALID

t.T1+ ~~ _TNDDV1_~TDVNR1- _TWRDV2

-;

~I-TRDNR3_

...,~

TDVND3 Fl
DREQ(SH)

M
Jf

_TDVDR3

DREQ(AH)

Figure C-1. 3-Wire Handshake Timing at 8291A

6-414 205248-002

8292
GPIB CONTROLLER

• Complete IEEE Standard 488 Controller
Function

• Interface Clear (IFC) Sending Capability
Allows Seizure of Bus Control and/or
Initialization of the Bus

• Responds to Service Requests (SRQ)

• Sends Remote Enable (REN), Allowing
Instruments to Switch to Remote
Control

• Complete Implementation of Transfer
Control Protocol

• Synchronous Control Seizure Prevents
the Destruction of Any Data
Transmission in Progress

• Connects with the 8291 to Form a
Complete IEEE Standard 488 Interface
Talker/Listener/Controller

The 8292 GPIB Controller is a microprocessor-controlled chip designed to function with the 8291 GPIB Talker/Listener
to implement the full IEEE Standard 488 controller function, including transfer control protocol. The 8292 is a pre-
programmed Intel@ 8041A. ' ,

Tiiti

GENERAL PURPOSE INTERFACE BUS

8292
GPIB

CONTROLLER

Figure 1_ 8291, 8292 Block Diagram

IFCL

X1

X2

RESET

VCC

Cs
GND

liD

AO

WR

SYNC

DO

D1

D2

D3

D4

DS

D6

D7

Vss

Figure 2_

VCC

COUNT

REN

DAV

IBFI

OBFI

EO!

SPI

TCI

CIC

NC

ATNO

Ne

CLTH

VCC

NC

SYC

IFC

l\fNi
SRQ

Pin Configuration

Inlel Corporation Assumes No Responsibility for the Use of Any CirCUitry Other Than CirCUItry Embodied In an Intel Product No Other CirCUit Patent licenses are Implied
@INTEL CORPORATION, 1984 SEPTEMBER, 1984

ORDER NUMBER AFN-00741D

6-415

, \

intJ 8292

Table 1. Pin Description

PIn PIn
Symbol No. ~ Name and Function Symbol No. ~ Name and Function

IFCL 1 I IFe Received (latChed)! The 8292 Vee 5,26,40 P.S. VDHa98: +5V supply input ±10%.
monitors the IFC Line (when not
system controller) through this pin.

Xl, X2 2,3 I Cry.tellnpute: Inputs for a crystal,

COUNT 39 I Event Count: When enabled by the
proper command the internal
counter will count external events

LC or an external timing signal to through this pin. High to low transi-
determine the internal oscillator tion will increment the, internal
frequency. counter-by one. Tlie pin is sampled

RESET 4 I Reset: Used to initialize the chip to
a known slllte during power on.

es 6 I Chip Select Input: Used to select
tlie 8292 from other devices on the

once per three internal instruction,
cycles (7.5jLsec sample period
whftn using 5 MHz XTAL). It can be
used for byte counting when con-
nected to NDAC, or for block count-

common data bus. ing when connected to the EOI.

Ro 8 I Reed Enable: Allows the master REN 38 0 Remote Enable: The Remote ,En-
CPU to read from the 8292. able bus signal selects remote or

Ao 9 I Address Line: Used to select be-
tween the date bus and the status

local control of the device on the
bus. A GPIB bus management line,

register during read operations and as defined by IEEE Std. 488-1978.

to distinguish between data and
commands written into the 8292

DAV 37 I/O Data Valid: Used during parallel
poll to force the 8291 to accept the

during write operations. parallel poll status bits. It IS also
WR '10 I WrHe'Eneble: Allows the master used during the tcs procedure.

CPU to write to the 8292. IBFI 36 ,0 Input Buffer Not Full: UselJ to

SYNC 11 0 Sync: 8041A instruction cycle syn-
chronization signal; it is an output
clock with a frequency of XTAL ~
15.

interrupt the cen,tral processor
while the input buffer of the 8292 is
empty. This feature is enabled and
disabled by the Interrupt mask

00-0-, 12-19 I/O Dete: 8 bidirectional lines used for
communication between the cen-

register.

OBFI 35 0 Output Buffer Full: Used as an

tral processor and the 8292's data
t1IJs buffers and status register.

Vss 7,20 P.S. Ground: Circuit ground potential.

interrupt to the central processor
while the output buffer oflhe 8292 is
full. The feature can be enabled end
disabled by the interrupt mask

SRQ 21 I ServICe Request: One of the IEEE' register.
control lines. Sampled by the 8292
when it is controller in charge. If
true, SPI interrupt to the master will
be generated.

E012 34 I/O End Or Identify: One of the GPIB
management lilles, as defined by
IEEE Std. 488-1978. Used with ATN
as Identify Message dUring parallel

ATNI 22 I Attention In: Used by the 8292 to poll.
monitor the GPI B ATN control line. It
is used during the transfer control
procedure.

SPI 33 0 Speclallnterrupt: Used as an inter-
rupt on events not initiated by the
central processor.

IFC 23 I/O Interface Clear: One of the GPIB
management lines, as defined by
IEEE Std. 488-1978, places all de-
vices in a known quiescent state.

TCI 32 0 Task Complete Interrupt: Interrupt
to the control processor used to in-
dicate that the task requested was
completed by the 8292 and the in-

SYC 24 I System Conroller: Monitors the formation requested is ready in the
system controller switcl). data bus buffer.

CLTH 27 0 Claer Latch: Used to clear the IFCR
latch after being recognized by the

CIC 31 0 Controller In Charge: fontrols the
SIR input of the "SRQ bus trans-

8292. Usually low (except after ceiver. It can also be used to indi-
hardware R~, it will be pulsed cate that the 8292 is in charge of the
high when IFCR is recognized by GPIB bus.
the 8292.

ATNO 29 0 Attention Out: Controls the ATN
control line of the bus through ex·
ternal log ic for tcs and tca proce-
dures. (ATN Is a GPIB control line, as
defined by IEEE Std. 488-1978.)

~16 231322-001

8292

FUNCTIONAL DESCRIPTION
The 8292 is an Intel 8041A which has been programmed
as a GPIB Controller interface element. It is used with
the 8291 GPIB Talker/Listener and two 8293 GPIB Trans·
ceivers to form a complete IEEE-488 Bus Interface for a
microprocessor. The electrical interface is performed by
the transceivers, data transfer is done by the talker/
listener, and control of the bus is done by the 8292.
Figure 3 is a typical controller interface using Intel's
GPIB peripherals.

GPIB

TO
PROCESSOR

BUS

TO
PROCESSOR

BUS

GPIB

Figure 3_ Talker/Listener/Controller Configuration

The in'ternal RAM in the 8041A is used as a special
purpose register bank for the 8292. Most of these
registers (except for the interrupt flag) can be accessed
through commands to the 8292. Table 2 identifies the
registers used by the 8292 and how they are accessed,

Interrupt Status Register

I SYC I ERR ISRO I EV x IFCR IBF OBF

~ ~

The 8292 can be configured to interrupt the microproc­
essor on one of several conditions. Upon receipt of the
interrupt the microprocessor must read the 8292
interrupt status register to determine which event
caused the interrupt, and then the appropriate subrou­
tine can be performed. The interrupt status register is
read with Ao high. With the exception of OBF and IB'F,
these interrupts are enabled or disabled by the SPI
interrupt mask. OBF and IBF have their own bits in the
interrupt mask (OBFI and IBFI).

OBF Output Buffer Full. A byte is waiting to be read by

IBF

IFCR

EV

the microprocessor. This flag is cleared when the
output data bus buffer is read.
Input Buffer Full. The byte previously written by
the microprocessor has not been read yet by the
8292. If another byte is written to the 8292 before
this flag clears, data will be lost. IBF is cleared
when the 8292 reads the data byte.
Interface Clear Received. The GPIB system
controller has set IFC. The 8292 has become idle
and is no longer in charge of the bus. The flag is
cleared when the lACK command is issued.
Event Counter Interrupt. The requested number
of blocks or data bytes has been transferred. The
EV interrupt flag is cleared by the lACK
command.

SRQ Service Request. Notifies the 8292 that a service
request (SRQ) message has been received. It is
cleared by the lACK command.

ERR Error occurred. The type of error can be deter­
mined by reading the error status register. This
interrupt flag is cleared by the lACK command.

SYC System Controller Switch Change. Notifies the
processor that the state of the system controller
switch has changed. The actual state is con­
tained in the GPIB Status Register. This flag is
cleared by the lACK command.

Table 2_ 8292 Registers

READ FROM 8292 WRITE TO 8292

INTERRUPT STATUS AO INTERRUPT MASK AO

SYC ERR I SRO
I

EV
I

X IIFCR IBF OBF I
I

, SPI TCI SYC I OBFI IIBFI I 0 I SRO I

07 DO 07 DO
ERROR FLAG ERROR MASK

I
X x I USER I X

I
x I TOUTS I TOUT2! TOUT,I 0-

I
0

I
0 I USER I 0

I
0 I TOUTS I TOUT21 TOUT, I

CONTROLLER STATUS COMMAND FIELD

I CSBS I CA X X I SYCS I IFC REN SRO I 0-
I

,
I

,
I

,
I

OP
I

C
I

C
I

C
I

C

GPIB (BUS) STATUS EVENT COUNTER

REN OAV EOI X I SYC I IFC ANTI SRO I O· I 0 I 0 I 0 I 0 I 0
I

0
I

0
I

0 o·

EVENT COUNTER STATUS TIME OUT

I
0

I
0

I
0

I
0

I
0

I
0

I
0 0

I
O·

I
0

I
0

I
0

I
0

I
0

I
0

I
0

I
0 O·

TIME OUT STATUS

I
0

I
0 I 0 I 0

I
0 I 0 I 0 0 I o· Note: These registers are accessed by a special utility command,

see page 6.

6-417 231322-001

I"
I'I

ii' I'

'I
I~

intJ 8292

Interrupt Mask Register

I I SPI I TCI I svc OBFI IBFI SRQ

DO

The Interrupt Mask Register is used to enable features
and to mask the SPI and TCI interrupts. The flags In the
Interrupt Status Register will be active even when
masked out. The Interrupt Mask Register is written
when Ao is low and reset by the RINM command. When
the register is read, 0 1 and 07 are undefined. An inter­
tupt is enabled by setting the corresponding register bit.

SRQ Enable interrupts on SRQ received.

IBFI Enable interrupts on input buffer empty.

OBFI Enable interrupts on output buffer full.

SYC Enable interrupts on a change in the system
controller switch.

TCI Enable interrupts on the task completed.

SPI Enable interrupts on special events.

NOTE: The event counter is enabled by the GSEC
command, the error interrupt is enabled by the error
mask register, and IFC cannot be masked (it will always
cause an interrupt).

Controller Status Register

ICSBSI CA I x I X IsvcsllFC REN SRO

~ ~

The Controller Status Register is used to determine the
status of the controller function. This register is
accessed by the RCST command.

SRQ Service Request line active (CSRS).

REN Sending Remote Enable.

IFC Sending or receiving interface clear.

SYCS System Controller Switch Status (SACS).

CA Controller Active (CACS + CAWS + CSWS).

CSBS Controller Stand-by State (CSBS, CAl = (0,0) -
Controlier Idle

GPIB Bus Status Register

I REN I DAV I EOI I x svc IFC ATNI SRO

DO

This register contains GPIB bus status information. It
can be used by the microprocessor to monitor and
manage the bus. The GPIB Bus Register can be read
using the RBST command.

Each of these status bits reflect the current status of
the corresponding pin on the 8292.

SRQ Service Request

ATNI Attention In

IFC Interface Clear

SYC System Controller Switch

EOI End or Identify

DAV Data Valid

REN Remote Enable

6-418

Event Counter Register

1 ~ I ~ 1 ~ 1 ~ 1 ~
The Event Counter Register contains the Initial value for
the event counter. The counter can count pulses on pin
39 of the 8292 (COUNT). It can be connected to EOI or
NDAC to count blocks or bytes respectively during
standby state. A count of zero equals 256. This register
cannot be read, and is written using the WEVC
command.

Event Counter Status Register

This register contains the current value in the event
counter. The event counter counts back from the initial
value stored in the Event Counter Register to zero and
then generates an Event Counter Interrupt. This register
cannot be written and can be read using a REVC
command.

Time Out Register

~

The Time Out Register is used to store the time used for
the time out error function. See the individual timeouts
(TOUT1, 2, 3) to determine the units of this counter. This
Time Out Register cannot be read, and it is written with
the WTOUT command.

Time Out Status Register

1 ~ 1 ~ 1 ~ I ~ 1 ~
This register contains the current value in the time out
counter. The time out counter decrements from the
original value stored in the Time Out Register. When
zero is reached, the appropriate error interrupt is gen­
erated. If the register is read while none of the time out
functions are active, the register will contain the last
value reached the last time a function was active. The
Time Out Status Register cannot be written, and it is
read with the RTOUT command.

Error Flag Register

I x 1 x I USER 1 x 1 X 1 TOUT3 1 TOUT2 1 TOUT1

~ ~

Four errors are flagged by the 8292 with a bit in the Error
Flag Register. Each of these errors·can be masked by
the Error Mask Register. The Error Flag Register cannot
be written, and it is read by the lACK command when the
error flag inthe Interrupt Status Register is set.

TOUT1 Time Out Error 1 occurs when the current can­
trolier has not stopped sending ATN after
receiving the TCT message for the time period
specified by the Time Out Register. Each count
in the Time Out Register is at least 1800 tCY'
After flagging the error, the 8292 wili remain in a
loop trying to take COf!!fol until the current
controlier stops sending ATN or a new com­
mand is written by the microprocessor. If a new
command is written, the 8292 will return to the
loop after 'executing it.

231322-001

inter 8292

TOUT2 Time Out Error 2 occurs when the transmission
between the addressed talker and listener has
not started for the time period specified by the
Time Out Register. Each count In the Time Out
Register is at least 45 tCY. This feature Is only
enabled when the controller Is In the CSBS
state.

TOUn Time Out Error 3 occurs when the handshake
signals are stuck and the 8292 is not succeed­
ing In taking control synchronously for the time
period specified by the Time Out Register. Each
count in the Time Out Register Is at least 1800
tCY. The 8292 will continue checking ATNI until
It becomes true or a new command is received.
After performing the new command, the 8292
will return to the A'i'liil checking loop.

USER User error occurs when request to assert IFC or
REN was recelyed and the 8292 was not the
system controller.

Error Mask Register

o USER o 1 TooT31 TOUT21 TOUT1

The Error Mask Register is used to mask the interrupt
from a particular type of error. Each type of error inter·
rupt is enabled by setting the corresponding bit in the
Error Mask Register. This register can be read with the
RERM command and written with Ao low.

Command Register

OP I c c

Commands are performed by the 8292 whenever a byte
Is written with Ao high. There. are two categories of
commands distinguished by the OP bit (bit 4). The first
category is the operation command (OP= 1). These
commands initiate some action on the interface bus.
The second category is the utility commands (OP = 0).
These commands are used to aid the communication
between the processor and the 8292.

OPERATION COMMANDS
Operation commands initiate some action on the GPIB
Interface bus. It Is using these commands that the
control functions such as pOlling, taking and passing
control, and system controller functions are performed.

FO - SPCNI - Stop Counter Interrupts

This command disables the Internal counter Interrupt so
that the 8292 will stop interrupting the master on event
counter underflows. However, the counter will continue
counting and its contents can still be used.

F1 - GIDL - Go To Idle

This command Is used during the transfer of control

procedure while transferring control to another con·
troller. The 8292 will respond to this command only If It
Is In the active state. ATNO will go high, and CIC will be
high so that this 8292 will no longer b8 driving the ATN
line on the GPIB interface bus. Tel will be set upon
completion.

F2 - RST- Reset

This command has the same effect as asserting the
external reset on the 8292. For detailS, refer to the reset
procedure described later.

F3 - RSTI - Reset Interrupts

This command resets any pending interrupts and clears
the error flags. The 8292 will not return to any loop It was
in (such as from the time out interrupts).

F4 - GSEC - Go To Standby, Enable Counting

The function causes ATNO to go high and the counter
will be enabled. If the 8292 was not the active controller,
this command will exit Immediately. If the 8292 Is the
active controller, the counter will be loaded with the
value stored In the Event Counter Register, and the
Internal Interrupt will be enabled so that when the
counter reaches zero, the SPI Interrupt will be gener·
ated. SPI will be generated every 25& counts thereafter
until the controller exits the standby state or the SPCNI
command is written. An initial count of 256 (zero In the
Event Counter Register) will be used If the WEVC
command Is not executed. If the data transmission does
not start, a TOUT2 error will be generated.

FS - EXPP - Execute Parallel Poll

This command initiates a parallel poll by asserting EOI
when ATN is already active. Tel will be set at the end of the
command. The 8291 should be previously configured as a
listener. Upon detection of DAV true, the 8291 enters
ACDS and latches the parallel poll response (PPR) byte
into its data in ,egister. The master will be interrupted by
the 829l BI interrupt when the PPR byte is available. No
interrupts except the IBFI will be generated by the 8292.
The 8292 will respond to this command only when it is the
active controller.

Fe - GTSB - Go To Standby

If the 8292 is the active controller, ATNO will go high
.then TCI will be generated. If the data transmission does
not sfart, a TOUT2 error will be generated.

F7 - SLOC - Set Local Mode

If the 8292 is the system controller, then REN will be assert­
ed false and TCI will be set true. If it is not the system
controller, the User Error bit will be set in the Error Flag
Register.

Fa - SREM - Set Interface To Re",ote Control

This command will set REN true and Tel true if this 8292 is
the system controller. If not, the User Error bit will be set in
the Error Flag Register.

6-419 231322-001

inter 8292

Fe - ABORT - Abort All Operation, Clear Interface

ThiJl command will cause IFC to be asserted true for at
least 100 ,.sec if this 8292 is the system controller. If it is
in CIOS, it will take control over the bus (see the TCNTR
command). '

FA - TCNTR i Take Control

The transfer of control procedure is coordinated by the
master with the 8291 and 8292. When the master
receives a TCT message from the 8291, itshould issue
the TCNTR command to the'8292. The followinq events
occur to take control:

1. The 8292 checks to see if it is in CIOS, aAd if not, it
exits.

2. Then ATNI is checked until it becomes high. It the
current controller does not release ATN for the time
specified by the Time Out Register, then a TOUT1
error is generated. The 8292 will return to this loop
after an error or any' command except the RST and
RSTI commands. '

3. After the current controller releases ATN, the 8292
will assert ATNO and eiC low.

4. Finally, the TCI interrupt is generated to inform the
master that it is in control of the bus.

FC - T~ASY - Take Control Asynchronously

TCAS transfers the 8292 from CSBS to CACS indepen·
dent of the handshake lines. If a bus hangup is detected
(by an error flag), this comPland will force the 8292 to
take controi (asserting ATN) even if the AH function is
not in ANRS (Acceptor Not Ready State). This command
should be used very carefully since it may cause the
loss of a data byte. Normally, control should be taken
synchronously. After checking the controller function
for being in the CSBS (else it will exit immedi/itely),
AiiiiO will go low, and a TCI interrupt will be generated.

FD - TCSY - Take Control Synchronously

There are two different procedures used to transfer the
8292 from CSBS to CACS depending on the state of the
8291 in the system. If the 8291 is in "continuous AH
cycling" mode (Aux. Reg. AO= A1 = 1), then the
following procedure should be followed:

1. The master microprocessor stops the continuous AH
cycling mode in the 8291;

2. The master reads the 8291 Interrupt Status 1
Register;'

3. If the END bit is set, the master sends the TCSY
command to the 8292;

4. If the END bit was not set, the master reads the 8291
Data In Register and then walts for another BI
interrupt from the 8291. When It occurs, the master
sends the 8292 the TCSY command.

If the 8291 is not in AH cycling mode, then the master
just waits for ,a BI interrupt and then sends the TCSY
command. After the TCSY command has been issued,
the 8292 checks for CSBS. If CSBS, then it exits the
routine. Otherwise, it then checks the DAV bit in the
GPIB status. When DAV becomes false, the 8292 will

~420

wait for at least 1.5 ,.sec. (T10) and then ATNO will go
low. If DAV does not go low, a TOUT3 error will be
generated. If the 8292 successfully takes control, it sets
TCI true.

FE - STCNI - Start Counter Interrupts

This command enables the internal counter interrupt.
The counter Is enabled by the GSEC command.

UTILITY COMMANDS
All these commands are either Read or Write to registers
in the 8292. Note that writing to the Error Mask Register
and the Interrupt Mask Register are done directly.

E1 - WTOUT - Write To Time Out Register

The byte written to the data bus buffer (with Ao= 0)
following this command will determine the time used
for the time out function. Since this function is imple­
mented'in software, this will not be an accurate time
measurement. This feature is enable or disable by the
Error Mask Register. No interrupts except for the IBFI
will be generated upon completion.

E2 - WEVC - Write To Event Counter

The byte written to the data bus buffer (with Ao= 0)
foilowing this command will be loaded into the Event
Counter Register and the Event Counter Status for byte
counting or EOI counting. Only itWI will indicate
completion of this command.

E3 - REVC - Read Event Counter Status

This command transfers the contents of the. Event
Counter into the data bus buffer. A TCI is generated
when the data is available in the data bus buffer.

E4 - RERF - Read Error Flag Register

This command transfers the contents of the Error Flag
Register into the data bus buffer. A TCI is generated
when the data is available.

E5 - RINM - Read Interrupt Mask Register

This command transfers the contents of the Interrupt
Mask Register into the data bus buffer. This register is
available to the processor so that it does not need to
store this information elsewhere. A TCI is generated
when the data is available in the data bus buffer.

E6 - RCST - Read Controller Status Register

This command transfers the contents of the Controller
Status Register into the data bus buffer and a TCI inter-
rupt is generated. '

E7 - RBST - Read GPIB Bus Status Register

This command transfers the contents of the GPIB Bus
Status Register into the data bus buffer, and a TCI
interrupt is generated when the data is available.

231322-001

intJ 8292

E9 - RTOUT - Read Time Out Status Register

This command transfers the contents of the Time Out
Status Register Into the data bus buffer, anc! a TCI
Interrupt is generated when the data Is available.

EA - RERM - Read Error Maak Regliter

This command transfers the contents of the Error Mask
Register to the data bus buffer so that the processor
does not need to store this information elsewhere. A TCI
interrupt Is generated when the data is available.

Interrupt Acknowledge

SYC ERR SRQ EV IFCR I 1

Each named bit In an Interrupt Acknowledge (lACK)
. corresponds to a flag in the Interrupt Status Register.
When the 8292 receives this command, it will clear the
SPI and the corresponding bits in the Interrupt Status
Register. If not all the bits were cleared, then the SPI will
be set true again. If the error flag is not acknowledged
by' the lACK command, then the Error Flag Register will
be transferred to the data bus buffer, and a TCI will be
generated.

NOTE: XXXX1X11 is an undefined operation or utility
command, so no conflict exists between the lACK
operation and utility commands.

SYSTEM OPERATION
8292 To Maater Processor Interface

Communication between the 8292 and the Master
Processor can be either interrupt based communication
or based upon polling the interrupt status register in
predetermined intervals.

Interrupt Based Communication

Four different In,errupts are available from the 8292:

OBFI Output Buffer Full Interrupt
IBFI Input Buffer Not Full Interrupt
TCI Task Completed Interrupt
SPI Special Interrupt

Each of the Interrupts Is enabled Or disabled by a bit in
the Interrupt mask register. Since OBFI and IBFI are
directly connected to the OBF and IBF flags, the master
can write a new command to the input data bus buffer
as soon as the previous command has been read.

Tho TCI Interrupt Is useful when the master Is sending
commands to the 8292. The pending TCI will be cleared
with each new command written to the 8292. Commands
sent to the 8292 can be divided into two major groups:

1. Commands that require response back from the 8292
to the master, e.g., reading register.

2. Commands that initiate some action or enable
features but do not require response back from the
8292, e.g., enable data bus buffer Interrupts.

6-421

With the first group, the TCI interrupt will be used to
indicate that the required response is ready in the data
bus buffer and the master may continue and read It.
With the second group, the Interrupt will be used to
indicate completion of the required task, so that the
master may send new commands.

The SPI should be used when Immediate Information or
special events Is required (see the Interrupt Status
Regillter).

"Polling Status" Based Communication

When Interrupt based communication Is not deSired, all
Interrupts can be masked by the Inte~rupt mask register.
The communication with the 8292 Is based upon
sequential poll of the Interrupt status register. By
testing the OBF and IBF flags, the data bus buffer
status Is determined while special events are deter·
mined by testing the other bits .

Receiving IFC

The IFC pulse defined by the IEEE-488 standard is at
least 100 "sec. In this time, all operation on the bus
should be aborted. Most important, the current control­
ler (the one that is in charge at that time) should stop
sending ATN or EOI. Thus, IFC must externally gate CIC
(controller in charge) and ATNO to ensure that this
occurs.

Raset and Power Up procedure

After the 8292 has been reset either by the external reset
pin, the device being powered on; or a RST pommand,
the following sequential events will take place:

1. All outputs to the GPIB Interfac~1I go high (~,
ATIiiT, fFC, SYC, CLTH, ATNO, "CIC, TCI, SPI, EOI,
OBFI, fS'FT, DAv. REV).

2. The four Interrupt outputs (TCI, SPI, OBFI, IBFI) and
CL TH output will go low. .

3. The following registers will be cleared: ,
Interrupt Status
Interrupt Mask
Error Flag
Error Mask
Time Out
Event Counter (= 256), Counter is disabled.

4. If the 8292, Is the system controller, an ABORT
command will be executed, the 8292 will become the
controller in charge, and it will enter the CACS state.

If It Is not the system controller, It will remain In
CIDS.

System Configuration

The 8291 and 8292 must be Interfaced to an IEEE-488
bus 'meeting a variety of specifications including drive
capability and loading characteristics. To Interface the
8291 and the 8292 without the 8293's, several external
gates are required, using a configuration similar to that
used in Figure 5.

231322-001

i'

;:
i~
I!
!i
" II:

intJ 8292

OPIB
TRANSCEIVERS

NOTE 1
30 EOI

I

i
f4.7K I

3b ATN

PROCessOR BUS

I NOTE 2 ,
I

INTERRUPT Wii Rii RST CLK ADD DATA
I ~

r­
r­
r-

'-- ---

NOTES:
1. CONNECT TO NOAC FOR

BYTE COUNT OR TO EOI
FOR BLOCK COUNT.

2. OATE ENSURES OPEN
COLLECTOR OPERATION
DURINO PARALLEL POLL.

-
-
-...:

-

l­
I-

1----< .. 1 RS,

1----< .. 1 RS.

1----0'"1 CLOCK

1----0'"1 RESET

1----I'"IRii
1----I'"IWii
I-,.---IINT

Cs

L-J.,
DATA

Ao

Cs

Rii
WR

RESET

8292

~
X,

=c
±

X.

~
EA

T 55

CLTH

ATNO

CIC

TCI -
SPI

EOi2

ATNi

IFC

SYC

~
~

DAY

REN

SRO

T,
COUNT

To
IFCL

It)
........
~

~
toi

14'7~ ...
1 A

~
J. ~

rL-'
-'-""

-U

UK

SYSTEM ON
CONTROLLER ~.,.,---<>---'

SWITCH

Figure 4. 8291 and 8292 System Configuration

6-422

.".

3" NOAC

.".

3d NRFO

t..~
.)1 45 1010

~
STDAV

.. 2 • ATN

'-- -=

A
~

ld EOI

....
,. IFC

~
Ie SRO

231322-001

TO
MICROPROCESSOR

GPIB
TRIGGER
OUTPUT

TO·l MICROPROCESSOR

OSCillATOR
OUTPUT

TO MICROPRPCESSOR

~ DO

~ D.

~ 02

r-!!- 03
.6

04
.7

05
'8 06
.9

07
2' RSO
22

RS'
23

RS2 • liD
'0 WR
4

RESET
6

DREO
7 OACK
8 Cs
3

CLOCK •• INT

5
TRIG

..E.. DO

-.!1. d'
~ 02
~ 03

.6
04

.7
05

'8 06 •• 07 • AO
8 liD

.0
WR 4 REsErIt

V" 6 Cs
32 Tell
33 SPI
35

OBFI
38

IBFI •• SYNC
Ycc~ ss

2 -::r;:-=- x,"
~. x,,

.5.25 PF± rEA

" = GPIB BUS TRANSCEIVER
I =SEE 8041A DATA SHEET FOR ALTERNATE

CRYSTAL CONFIGURATIONS
It = CAN CONNECT TO SYSTEM RESET SWITCH,

see 8041A DATA SHEET

8291

8292

8292

010.
28 25 Di01

0102
29 23

0102

0103
30 '0 0103

0104
3. 9

0104

0105
32 8 i5iOs

0106
33 7

0108

0107
34 8 Di07

Dios 35 5
0108

TiR1 • • TIR.

DAY
38 24

DAY

EOI
3. 3 WI

ATN
26 4

ATN

SRO
27

IFC
24

NOAC
38

NRFO
37

TIR2
2 ~ AfNci

REN 2!. ,!. iFCL

DAY J!.. t-r-!- TIR.
4

ATN
'0 NDAC
9 iiiJ!lii5
2

TIR2

SRO
2. 8

SRO

REN
38 6

REN

IFC
23 5

IFC

AfNci 29 23 A:fNO
COUNT

39 3 WI
Eoi2 34 7

EOl2

ATNI
22 •• ATNI

iFCL • 25
IFCl

CIC 3' 24
CIC

ClTH
27 2.

ClTH

SYC
24 22

SYC

LJ ON SYSTEM
CONTROllER

~OFF SWITCH

Figure 5" 8291,8292, and 8293 System Configuration

6-423

010."

0102"

0103"

0104"

0105"

0106"

0107"
8293

0108"

DAV·

OPTA

OPTB
MODE 3

NOAC

NRFO

SRO"

REN"
8293 IFC"

ATN"

EOI"

OPTA

OPTB

MODE 2

.B..

.1!.

.!!.

..!!...

.lL

.!L

.!!..

.!!..

1!...

:!!....V
1!.v

.!!.

..!!...

.!!.

.!!..

.!!..

.!!.

~

TO
IEEE·488
BUS

cc

cc

TO
IEEE·488
BUS

flLvs
f1!. VC

231322-001

i';
,I
Il
.. ~

8292

ABSOLUTE MAXIMUM RATINGS·
A-mbient Temperature Under Bias O·C to 70·C
Storage Temperature, , -65·C to + 150·C
Voltage on Any Pin With Respect .

to Ground 0.5Vto +7V
Power Dissipation 1.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
(eliability.

D.C. CHARACTERISTICS (TA = O"C to 70°C. VSS = OV: 8292. Vee = ±5V ±10%)

Symbol Parameter Min. Max.

VIL1 Input Low Voltage (All Except X1, X2, RESEn -0.5 0.8

VIL2 Input Low Voltage (X1, X2, RESET) -0.5 0.6

VIH1 Input High Voltage (All Except X1, X2, RESE'f) 2.2 Vec

VIH2 Input High Voltage (X1, X2, RESET) 3.8 Vcc

VOL1 Output Low Voltage (00-07) 0.45

VOL2 Output Low Voltage (All Other Outputs) 0.45

VOH1 Output High Voltage (00-07) 2.4

VOH2 Output High Voltage (All Other Outputs) 2.4

IlL Input Leakage Current (COUNT, IFCL, RD, WR, CS, Aol ±10

loz Output Leakage Current (00-07, High Z State) ±10

ILI1 Low Input Load Current (Pins 21-24, 27-38) 0.5

ILI2 Low Input Load Current (RESEn 0.2

Icc Total Supply Current 125

IIH Input High Leakage Current (Pins 21-24. 27-38) 100

CIN Input Capacitance 10

ClIO 1/0 Capacitance 20

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vss = OV: 8292, Vee = +5V ±10%)

DBB READ

Symbol Parameter Min. Max.

tAR CS, Ao Setup to AD~ 0

tRA CS, Ao Hold After ADt 0

tRR AD Pulse Width 250

tAD CS, Ao to Data Out Delay 225

tRo AD~ to Data Out Delay 225

tOF ADt to Data Float Delay 100

tCY Cycle Time 2.5 15

DBBWRITE

Symbol Parameter Min. Max.

tAW CS, Ao Setup to WR~ 0

tWA CS, Ao Hold After WAf 0

tww WA Pulse Width 250

tow Data Setup to WAt 150

two Data Hold After WA~ 0

6-424

Unit Test Conditions

V

V

V

V'

V IOL=2.0 rnA

V 10L= 1.6 rnA

V 10H= -400,.A

V 10H= -50,..A

,..A Vss '" VIN '" Vcc
,..A Vss+ 0.45", VIN'" Vcc

rnA VIL=0.8V

rnA VIL=0.8V

rnA Typical = 65 rnA

/LA ~N = Vee

pF

pF •

Unit Test Conditions

ns

ns

ns

ns CL= 150 pF

ns CL= 150 pF

ns

,..,s

Unit Test Conditions

ns

ns

ns

ns

ns

231322-001

intJ 8292

COMMAND TIMINGS!1 .3)

Execution
TCII2I Code Nlm. Time iiFii SPI ATNO CIC ~ REN EOI DAY Comment.

E1 WTOUT 63 24

E2 WEYC 63 24

E3 REYC 71 24 51

E4 RERF 67 24 47

E5 RINM 69 24 49

E6 RCST 97 24 77
E7 RBST 92' 24 72

E8

E9 RTOUT 69 24 49

EA RERM 69 24 49

FO SPCNI 53 24 Count Stops After 39

Fl GIOL 88 24 70 161 161

F2 RST 94 24 152 Not System Controller

F2 RST 214 24 192 152 1179 1174 1101 System Controller

F3 RSTI 61 24

F4 GSEC 125 24 107 198

F5 EXPP 75 24
153 155
159 157

F6 GTSB 118 24 100 191

F7 SLOC 73 24 55 146

F8 SREM 91 24 73 164
F9 ABORT 155 24 133 1120 1115 142

FA TCNTR 108 24 86 171 168

FC TCAS 92 24 67 155

FD TCSY 115 24 91 180

FE STCNI 59 24 Starts Count After 43

PIN RESET 29 - 17 17 Not System Controller

X lACK 116 - 173
196 If Interrupt Pending

Notes:
1. All times are multiples of tCY from the 8041A command Interrupt.
2. TCI clears after 7 tCY on all commands.
3. 1 Indicates a level transition from low to high. I indicates a high to low transition.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4 =X2.0 2.ox= > TEST POINTS <
08 0.8

045

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FDA A LOGIC 1
AND 0 8V FOR A LOGIC a

6-425

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER 'lCL

TEST

-=

CllNCLUDES JIG CAPACITANCE

231322-001

8292

CLOCK DRIVER CIRCUITS

CRYSTAL OSCILLATOR MODE DRIVING FROM EXTERNAL SOURCE

;-----0 XTAlI I 1·6mHz
< 15 pF I

(INCLUDES XTAl. '* =
SOCKET. STRAY) I

I

~_____ 3 XTAL2

15-25 pF
(INCLUDES SOCKET. I

STRAY) .".

+ SV

470Q

.SV

»--t----.....:=..t XTAll

470Q

'---....... --'-1 XTAl2

CRYSTAL SERIES RESISTANCE SHOULD BE
<15Q AT 6 MHz; <180Q AT 3.6 MHz

BOTH XTAl1 AND XTAl2 SHOULD BE DRIVEN
RESISTORS TO Vee ARE ,NEEDED TO ENSURE VIH = 3.SV
IF TTL CIRCUITRY IS USED.

LC OSCILLATOR MODE
-.h.. ~
45 .. H 20pF

120 .• H 20pF

C,=£+3Cpp
. 2

Cpp :;;' 5 - 10 pF PIN TO PIN
CAPACITANCE

EACH C SHOULD BE APPROXIMATEl Y 20 pF, INCLUDING STRAV CAPACITANCE

WAVEFORMS

READ OPERATION-DATA BUS BUFFER REGI~TER

CS'OR Ao
(SYSTEM'S

ADDRESS BUS)

Rii
(READ CONTROL)

~
-IAR-!

IRR

\

X
-tRA-!

y
IRV "

"\
-tRD- -tOF-

_IAD ____ ~~~~~~~ ____________ ~~r-----D-A-T-A-V-A-Ll-D------l~~-----------------

WRITE OPERATlOI\I- DATA BUS BUFFER REGISTER

CSORAOJE r (SYSTEM:S ADDRESS BUS) '-____________________ _

•• -~~-,W-W-~--~.--
WR

(WRITE CONTROL)

IWD
-tow- ~

~~ ~ V V ~
(INPUT) _______ M_A_Y_C_H_A_N_G_E ______ -'/'J.,... ____ DA_T_A_V_A_Ll_D ___ ~t\.'-------..,;M;;,A,;;Y..,;C;,;H;;,A;;,N;;;G,;;E ________ _

~26 231322-001

intJ 8292

APPENDIX
The following tables and state diagrams were taken
from the IEEE Standard Digital Interface for Program-

mabie Instrumentation, IEEE Std. 488-1978. This docu­
ment Is the official standard for the GPIB bus and can be
purchased from IEEE, 345 East 41th St., New York, NY
10017.

Messages

pon = power on
rsc = request system control
rpp = request parallel poll
gt& = go to standby
tca = take control asynchronously
tcs = take control synchronously
siC = send Interface clear
sre = send remote enable

IFC = Interface clear
ATN = attention
TCT = take control

• T10> 1.5,.eec
t THE MICROPROCESSOR MUST WAIT FOR THE 10

INTERRUPT BEFORE WRITING THE OTl8 OR OSEC
COMMANDS TO ENSURE THAT (ITIII "IDYl)
IS TRUE.

CMNEMONICS

CIOS
CADS
CTRS
CACS
CPWS
CPPS

CSBS
CSHS
CAWS
CSWS
CSRS
CSNS
SNAS
SACS
SRIS
SRNS
SRAS
SIIS
SINS
SIAS

~
(ANRS)

~
WB§)

crAm

Interface States

= controller Idle state
= controller addressed state
= controller transfer state
= controller active state
= controller parallel poll walt state
= controller parallel poll state

= controller standby state
= controller standby hold state
= controller active walt state
= controller synchronous walt state
= controller service requested state
.. controller service not requested state
= system control not active state
= system control active state
= system control ramote enable Idle state
'" system control remote enable not active state
= system control remote enable active state
= system control Interface clear Idle slate
= system control interface clear not active state
= system control interface clear active state

= accept data state (AH function)

= acceptor not ready state (AH function)

= source delay state (SH function)

= source transfer state (SH function)

= talker addressed stllte (T function)

SRO

roc

Figure A.1. C State Dlegrem

6-427 231322-001

inter 8292

REMOTE MESSAGE CODING

Bu. Slgn.I' Une(') .nd CodIng That,
A ... rt. the True V.lue of the M.nage

C
T l D D NN
y A I I, DRD A E SIR
p S 0 0 AFA TOR F E

MnemonIc M ge N.m. E S 878 5 4 3 2 1 VDC .NIQCN

ACG Addressed Command Group M AC, Y 0 0 0 X X X X XXX 1 X X X X
ATN Attention U UC XXXXXXXX XXX 1 X X X X
DAB Data Byte '(Notes 1, 9) M DO DDDDDDDD XXX o X X X X

87654321
DAC Data Accepted U HS XXXXXXXX XXO X X X X X
DAV Data Valid U HS XXXXXXXX 1XX X X X X X
DCl Device Clear M UC Y 0 0 1 0 1 0 0 XXX 1 X X X X
END End U ST XXXXXXXX XXX o 1 X X X
EOS End of String (Notes 2, 9) M DO E E E E E E E E XXX o X X X X

8765432 1
GET Group Execute Trigger M AC Y 0 0 0 1 000 XXX 1 X X X X
GTL Go to Local M AC Y 0 0 000 0 1 XXX 1 X X X X
lOY Identify U UC XXXXXXXX XXX X 1 X X X
IFC Interface Clear U UC XXXXXXXX XXX X X X 1 X
LAG Listen Address Group M AD Y 0 1 X X X X X XXX 1 X X X X
LLO Local Lock Out M UC Y 0 0 1 000 1 XXX 1 X X X X
MLA My Listen Address (Note 3) M AD Y 0 1 L L L L L XXX 1 X X X X

5 4 3 2 1
MTA My Talk' Address (Note 4) M AD Y 0 T T T T T XXX X X X X

5 4 3 2 1
MSA My Secondary Address (Note 5) M SE Y S S S S S XXX X X X X

5 4 3 2 1
NUL Null Byte M DO o 0 o 0 0 0 0 0 XXX X X X X X
OSA Other Secondary Address M SE (OSA = SCG A MSA)
OTA Other Talk Address M AD (OTA=TAG AMTA)
PCG Primary Command Group M (PCG = ACG v UCG v LAG v TAG)
PPC Parallel Poll Configure M AC Y o 0 0 0 1 0, 1 XXX 1 X X X X
PPE Parallel Poll Enable (Note 6) M SE Y 110S'PPP XXX 1 X X X X

3, 2 1
PPD Parallel Poll Disable (Note 7) M SE Y 1 1 1 0 0 0 0 XXX X X X X

4 3 2 1
PPR1 Parallel Poll Response 1 U ST X X X X X X X 1 XXX X X, X
PPR2 Parallel Poll Response 2 U ST X X X X X X 1 X XXX X X X
PPR3 Parallel Poll Response 3 U ST X X X X X 1 X X XXX X X X
PPR4 Parallel Poll Response 4 (Note 10) U ST X X X X 1 X X X XXX X X X
PPR5 Parallel Poll Response 5 U ST X X X 1 X X X X XXX X X X
PPR6 Parallel Poll Response 6 U ST X X 1 X X X X X XXX X X X
PPR7 Parallel Poll ,Response 7, U ST X 1 X X X X X X XXX X X X
PPR8 Parallel Poll Response 8 U ST 1 X X X X X X X XXX 1 X X X
PPU Parallel Poll Unconfigure M UC Y 0 0 1 0 1 0 1 XXX 1 X X X X
REN , Remote Enable U UC XXXXXXXX XXX X X X X 1
RFD Ready for Data U HS XXXXXXXX XOX ,X X X X X
RQS Request Service (Note 9) U ST X 1 X X X X X X XXX o X X X X
SCG Secondary Command Group M SE Y 1 1 X X X X X XXX 1 X X X X
SOC Selected Device Clear M AC Y 0 0 0 0 1 0 0 XXX 1 X X X X
SPD Serial Poll Disable M UC Y0011001 XXX 1 X X X X
SPE Serial Poll Enable M UC Y 0 0 1 1 000 XXX 1 X X X X
SRQ Service Request U ST XXXXXXXX XXX X X'1 X X
STB Status Byte (Notes 8, 9) M ST S X S S S S S S XXX o X X X X

8 6 5 4' 3 2 1
TCT Take Control M AC Y 0 0 0 1 001 XXX X X'X X
TAG Talk Address Group M AD Y 1 0 X X X X X XXX X X X X
UCG Universal Command Group M UC Y 0 0 ,1 X X X X 'XXX XX X X
UNL Un listen M AD Y0111111 XXX X X X X
UNT Untalk (Note 11) 'M, AD Y1011111 XXX XXXX

The 1/0 coding on ~TN when sent concurrent with multiline messages has been added to this revision for Interpre-
tive convenience.

6-428 231322-001

8292

NOTES:

1. 01-08 specify the device dependent data bits.
2. E1-E8 specify the device dependent code used to indicate the EOS message.
3. L 1-L5 specify the device dependent bits of the device's listen address.
4. T1-T5 specify the device dependent bits of the device's talk address.
5. S1-S5 specify the device dependent bits of the device's secondary address.
6. S specifies the sense of the PPR.

Response = S EEl ist

P1-P3 specify the PPR message to be sent when a parallel poll is executed.

P3 P2 P1 PPR Message
o 0 0 PPR1

PPR8

7. 01-04 specify don't·care bits that shall not be decoded by the receiving device. It is recommended that all zeroes
be sent.

8. S1-S6, S8 specify the device dependent status. (0107 is used for the RQS message.)
9. The source of the message on the ATN line is always the C function, whereas the messages on the 010 and EOI

lines are enabled by the T function.
10. The source of the messages on the ATN and EOI lines is always the C function, whereas the source of the

messages on the 010 lines is always the PP function.
11. This code is provided for system use, see 6.3.

6-429 231322-001

8294A
DATA ENCRYPTION/DECRYPTION UNlt-

• Certified by National Bureau of
Standards

• 400 Byte/Sec Data Conversion Rate

• 64·Bit Data Encryption Using 56·Bit
Key

• DMA Interface

• 3 Interrupt Outputs to Aid in Loading
and Unloading Data

• 7·Bit User Output Port

• Single 5V :t 10% Power Supply

• Fully Compatible with iAPX-86,88,
MCS-85™, MCS-80™, MCS-51 TM, and
MCS-48™ Processor-s

• Implements Federal Information
Processing Data Encryption Standard

• Encrypt and Decrypt Modes Available

The Intel<l!> 8294A Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt 64·bit
blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. The DEU
operates on 64-bit text words using a 56·bit user·specified key to produce 64·bit cipher words. The operation is reversible:
if the cipher word is operated upon, the original text word is produced. The algorithm itself is permanently contained in the
8294A; however, the 56·bit key is user·defined and may be changed at any time.

The 56-bit key and 54-bit message data are transferred to and from the 8294A in 8-blt bytes by way of the system data bus: A
DMA interface and three interrupt outputs are available to minimize software overhead associated with data transfer. Also,
by using the DMA interface two or more DEUs may be operated in parallel to achieve effective system conversion rates
which are virtually any multiple of 400 bytes/second. The 8294A also has a 7-bit TTL compatible output port for
user"specified functions.

Because the 8294A implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer
applications as well as other electronic banking and data ~andling applications where data must be encrypted.

NC VCC

DATA NC

BUS BACK
ORO

SRO
cs OAV

GNO NC
R5 P6

SRO
P5

OAV WR P4

ceMP SYNC P3

PoPs DO P2

.... ~ 01 P1
SYNC-~- 02 PO

03 VOO
x, 04 VCC
X2 TIMING 05 CCMP

06 NC
.'V--

INTERNAL 07 NC POWER-_
GNO~_

BUS GNO NC

Figure 1. Block Diagram Figure 2. Pin Configuration

Intel CorporatIOn Assumes No Responsibility for the Use of Any Clrcuiby Other Than Circuitry Embodied tn an Intel Product No Other Circuit Patent Licenses are ImplJed Information Contained
iHereln Supersedes Previously Pubhshed SpectflC8tJOns On The Devices From Intel

©INTEL CORPORATION. 1984 SEPT 1""
ORDER NUMBER: 21_

intJ 8294A

Table 1. Pin Description

Pin Pin
Symbol No. Type Name and Function Symbol No. Type Name and Function

NC 1 No Connection. NC 39 No Connection

Xl 2 I Crystal: Inputs for crystal, L-C or exter-
X2 3 nal timing signal to determine Internal

DAt;K 38 I DMA Acknowledge: Input signal from
the 8257 DMA Controller acknowledg-

oscillator frequency Ing that the requested DMA cycle has

RESET 4 I Reset: A low signal to this pin resets the been granted

8294A. DRO 37 0 OMA Request: Output signal to the

Vee 5 Power: Tied high. 8257 DMA Controller requesllng a DMA

CS 6 I Chip Select: A low signal to this pin
enables reading and writing to the 8294A.

cycle.

SRO 36 0 Service Request: Interrupt to the CPU

GND 7 Ground: This pin must be tied to
ground.

indicating that the 8294A is awaiting
data or commands at the input buffer.
SRO=1 implies IBF=O.

RD 8 I Read: An active low read stlobe at this
Pin enables the CPU to read data and
status from the Internal DEU registers

OAV 35 0 Output Available: Interrupt to the CPU
indicating that the 8294A has data or
status available in Its output buffer.

Ao 9 I Address: Address Input used by th!, OAV=1 implies OBF=I.
CPU to select DEU registers dUring read
and write operations.

NC 34 No Connection.

WR 10 I Write: An active low write strobe at this
pin enables the CPU to send data and
commands to the DEU.

P6 33 0 Output Port: User output port lines
P5 32 Output lines available to the user via a
P4 31 CPU ~ommand which can assert sel-
P3 30 ected port lines These lines have no-

SYNC 11 0 Sync: High frequency (Clock - 15) out- P2 29 thing to do with the encryption function
put. Can be used as a strobe for external Pl 28 At power-on, each line IS In a 1 state
circuitry PO 27

Do 12 I/O Data Bus: Three-state. bi-directional VDD 26 Power: +5V power Input (~5V 0,10%)
D, 13 data bus lines used to transfer data be- Low power standby pin
D2 14 tween the CPU and the 8294A.
D3 15
D4 16

Vce 25 Power: Tied high.

CCMP 24 Ci Conversion Complete: Interrupt to the

Ds 17 CPU indicating that the encryptlon/

D6 18 decryption of an 8-byte block IS com-

D7 19 plete

GND 20 Ground: This pin must be tied to NC 23 No Connection.
ground NC 22 No Connection.

Vcc 40 Power: +5 volt power Input. +5V 0, NC 21 No Connection.
10%.

6-431 210465-004

inter 8294A

FUNCTIONAL DESCRIPTION
OPERATION

The data conversion sequence is as follows:

1. A Set Mode command is given, enabling the desired
Interrupt outputs

2. An Enter New Key command is issued, followed by 8
data inputs which are retained by the DEU for encryp­
tion/decryption. Each byte must have odd parity.

3. An Encrypt Data or Decrypt Data command sets the
DEU in the desired mode.

After this, data conversions are made by writing 8 data
bytes and then reading back 8 converted data bytes. Any
of the above commands may be issued between data
conversions to change the baSic operation of the DEU;
e.g., a Decrypt Data command could be Issued to
change the DEU from encrypt mode to decrypt mode
without changing either the key or the interrupt outputs
enabled

INTERNAL DEU REGISTERS

Four internal registers are addressable by the master
processor: 2 for input, and 2 for output. The following
table describes how these registers are accessed.

RD WR CS Ao • Register

10 0 0 Data input buffer
o 1 0 0 Data output buffer
1 0 0 Command input buffer
o 0 Status output buffer
x x x Don't care

The functions of each of these registers are described
below.

Data Input Buffer - Data written to this register is inter­
preted in one of three ways, depending on the preceding
command sequence.

1. Part of a key.
2. Data to be encrypted or decrypted

3. A DMA block count.

Data Output Buffer - Data read from this register is the
output of the encryption/decryption operation.

Command Input Buffer - Commands to the DEU are
written into this register. (See command summary
below.) .

Status Output Buffer - DEU status is available in thiS
register at all times. It is used by the processor for poll­
driven command and data transfer operations.

STATUS BIT:

FUNCTION: x KPE CF DEC IBF

OBF Output Buffer Full; OBF = 1 indicates that output
from the encryption/decryption function is
available in the Data Output Buffer. It is reset
when the data' is read.

IBF Input Buffer Full; A write to the Data Input Buffer­
or to the Command Input Buffer sets IBF = 1 The
DEU resets this flag when it has accepted the
Input byte. Nothing should be written when
IBF= 1.

DEC Decrypt; indicates whether the DEU IS in an en­
crypt or a decrypt mode. DEC = 1 implies the
decrypt mode. DEC = 0 implies the encrypt
mode

After 8294A has accepted a 'Decrypt Data' or
'Encrypt Data' command, 11 cycles are required to
update the DEC bit.

CF Completion Flag; This flli9 may be used to indi-'
cate any or all of three events in the data transfer
protocol.

1. It may be used in lieu of a counter in the
processor routine to flag the end of an 8-
byte tr.ansfer.

2. It must be used to indicate the validity of
the KPE flag.

3. It may be used in lieu of the CCMP interrupt
to indicate the completion of a DMA oper­
ation.

KPE Key Parity Error; After a new key has been
entered, the DEU uses this flag in conjunction
with the CF flag to indicate correct or incorrect
parity.

COMMAND SUMMARY

1 - Enter New Key

OP CODE r-lo~1 ~'I~o~l-o ~I o~l-o ~I 0~1"01

MSB LSB

This command is followed by 8 data byte inputs which
are retained in the key buffer (RAM) to be used in
encrypting and decrypting data. These data bytes must
have odd parity represented by the LSB.

2 - Encrypt Data

OP CODE' 'I 0-'1 ""0 Ir-,T'I -', 1-0 'I 0-'-1-0 .-\ 0 I
MSB LSB

This command puts the 8294A into the encrypt mode.

3 - D.ecrypt Data

OP CODE Ir-o '--1 0-'--1,-'1-0 '--1 0-'-1 0-'-1-'0 1'----'0 I
MSB LSB

This command puts the 8294A into the decrypt mode.

4 - Set Mode

OP CODE \ 0 I 0 I 0 I 0 I A ! B I C r OJ
MSB LSB

where:

6-432

A is the OAV (Output Available) interrupt enable
B is the SRQ (Service Request) interrupt enable
C is the DMA (Direct Memory Access) transfer enable
D is the CCMP (Conversion Complete) interrupt enable

210465-004

inter 8294A

This command determines which interrupt outputs will
. be enabled. A "1" in bits A, B, or D will enable the OAV,

SRO, or CCMP interrupts respectively. A "1" in bit C Will
allow DMA transfers. When bit C is set the OAV and
SRO interrupts should also be enabled (bits A,B = 1).
Following the command in which bit C, the DMA bit, is
set, the 8294 Will expect one data byte to specify the
number of 8·byte blocks to be converted using DMA.

5 - Write to Output Port

OPCODE '1-1'lp-6'I-P5-rlp-4'I-P3-rlp-2'l-p-1'lp-'ol
MSB LSB

This command causes the 7 least significant bits of the
command byte to be latched as output data on the 8294
output port. The initial output data is 1111111. Use of
thiS port is Independent of the encryption/decryption
function

PROCESSO~DEUINTERFACEPROTOCOL

ENTERING A NEW KEY

The timing sequence for entering a new key is shown in
Figure 3. A flowchart shOWing the CPU software to
accommodate thiS sequence is given In Figure 4

IBF ~ ___ Jl,--__
CF ::oJ L

KPE ______ IN_V_Al_'D _____ ~

A,-IL.-Lj--U---'--LI------SL

~---lJ WR KEY KEY KEY
DATA DATA DATA

NEW
KEY
COMMAND

Figure 3. Entering a New Key

CHECKU KPE

After the Enter New Key command is issued, 8 data bytes
representing the new key are written to the data input
buffer (most significant byte first). After the eighth byte is
entered into the DEU, CF goes true (CF=l). The CF bit
goes .false again when KPE is valid. The CPU can then
check the KPE flag. If KPE=l, a parity error has been
detected and the DEU has not accepted the key. Each byte
is checked for odd parity, where the parity bit is the LSB of
each byte.

Since CF = 1 only for a short period of time after the last
byte is accepted, the CPU which polls the CF flag might
miss detecting CF=l momentarily. Thus, a counter should
be used, as in Figure4, to flag the end of the new key entry.
Then CF is used to indicate a valid KPE flag.

DATA REGISTER 1 BYTE OF KEY

1--1+1

Figure 4. Flowchart for Entering a New Key

6-433 210465-004

8294A

ENCRYPTING OR DECRYPTING DATA

Figure 5 shows the timing sequence for encrypting or
decrypting data, The CPU writes 8 data bytes to the
O'EU's data input buffer for encryption/decryption, CF
then goes true (CF = 1) to indicate that the OEU has
accepted the 8-byte block. Thus, the CPU may test for
IBF = 0 and CF = 1 to terminate the Input mode, or It
may use a software counter. When the encryption/­
decryption is complete, the CCMP and OAV inte'rrupts
are asserted and the OBF flag is set true (OBF == 1). OAV
and OBF are set false again after each of the converted
data bytes is read back by the CPU. The CCMP interrupt
is set false, and remains false, after the first read. After
8 bytes have been read back by the CPU, CF goes false
(CF = 0). Thus, the CPU may test for CF = 0 to terminate
the read mode Also. the CCMP Interrupt may be used to
initiate a service routine which performs the next series
of 8 data reads and 8 data writes

ceMPi
(IF ENABLED) n

SRaLJL n IF ENABLED) _

IBFJLJl_~
OAV llIl._rr (IF ENABLED}

OSF IlIl. rr
CFJ I I
RD LnJ-u
WR~-LJ

--8 DATA WRITES 20 m. - MAXIMUM 8 DATA READS

Figure 5. Encrypting/Decrypting Data

Figure 6 otfers two flowcharts outlining the alternative
means of implementing the data conversion protocol.
Either the CF flag or a software counter may be used to
end the read and write modes.

SRQ = 1 implies IBF =0, OAV = 1 Implies OBF = 1. This'
allows interrupt routines to do data transfers without
cbecking status first. However, the OAV service routine
must detect and flag the end of a data conversion.

6-434

---_._--------
USING SOFTWARE COUNTER

DATA REGISTER -1 DATA BYTE

NO

NO

.... '+1

USING CF FLAG

IBF=O?)

I YES

I DATA REGISTER-1 DATA BYTE 1
~ YES

L-___ --"N"-{Or CF = 1?)

1 ____ --'-"'NO><.j(OBh 1?)

!YES
r READ 1 COOED DATA ByrE 1

I

Figure 6_ Data Conversion Flowcharts

210465-004

inter 8294A

USING DMA

The timing sequence for data conversions using DMA is
shown in Figure 7. This sequence· can be better
understood when considered In conjunction with the
hardware DMA interface in Figure 8. Note that the use of
the DMA feature requires 3 external AND gates and 2
DMA channels (one for input, one for output). Since the
DEU has only one DMA request pin, the SRO and OAV
outputs are used in conjunction with two of the AND
gates to create separate DMA request outputs for the 2
DMA channels. The third AND gate combines the two
active· low DACK inputs.

(I'EN~;L~~ ~_..L _______________ -lr
CF TlL--____ ---1!

SRa Lf1JLJ--l
(IFENASLEO) '-_______ _

OAV 11 11
(IF ENABLED) __________ ..JI L_--1 L-

DRQ~-Lrl __ JL
DACK --U-1IU--U-­

---u-----u­
w.1f1JlJu1J

SET DMA ----
DMA BLOCK 8 DMA READS 8 OMA WRITES
MODE COUNT (n) ------_____ _

Figure 7. DMA Sequence

INT----~C;

RO------~.J

8257

WR----~4!~_.J

Figure 8. DMA Interface

To initiate a DMA transfer, the CPU must first Initialize
the two DMA channels as shown in the flowchart In
Figure 9. It must then issue a Set Mode command to the
DEU enabling the OAV, SRO, and DMA outputs The
CCMP interrupt may be enabled or disabled, depending
on whether that output is deSired. Following the Set
Mode command, there must be a data byte giving the
number of 8-byte blocks of data (n<256) to be converted.
The DEU then generates the required number of DMA
requests to the 2 DMA channels with no further CPU
Intervention. When the requested number of blocks
has been converted. the DEU will :;et CF and assert the
CCMP interrupt (if enabled). CCMP then goes false
again with the next write to the DEU (command or data).
Upon completion of the conversion, the DMA mode is
disabled and the DEU returns to the encrypt/decrypt
mode. The enabled interrupt outputs, however, will
remain enabled until another Set Mode command is
issued.

USING DMA

INITIALIZE OMA READ CHANNEL POINTER

INITIALIZE DMA WAITE CHANNEL POINTER

DATA REGISTER --- NUMBER OF BLOCKS TO BE CODED

~
~
8

Figure 9. DMA Flowchart

SINGLE BYTE COMMANDS

Figure 10 shows the timing and protocol for Single byte
commands. Note that any of the commands is effective
as a pacify command in that they may be entered at any
time, except during a DMA conversion. The DEU is thus
set to a known state. However, if a command is issued
out of sequence, an additional protocol is required
(Figure 11). The CPU must wait until the command is
accepted (IBF = 0). A data read must then be issued to
clear anything the preceding command sequence may
have left in the Data Output Buffer.

210465-004

8294A

CPU/DEU INTERFACES

Figures 12 through 15 Illustrate four interface configura­
tions used In the CPUIDEU data transfers In all cases
SRO will be true (If enabled) and IBF Will be false when
the DEU IS ready to accept data or commands

SRQ U !IF ENABLED)

IBF n
WR U
c-s U
AD n

~
~ lBF = O?

IVES

I COMMAND REGISTER ~COMMAND I
1

G
Figure 10. Single Byte Commands

PACIFY

COMMAND REGISTER -DOH

[o~
~
READ DATA REGISTER

G
Figure 11. Pacify Protocol

6-436

(g:'y=)

~~~~:~8:0~O::sg= AD -----0 
cs ----0 

8294A 
OEU 

INTERF'ACE TO 8086, 8088, tWA ---__ 0 

Ao----I 
~--~ 

Figure 12. Polling Interface 

rrnr~-

MASTER oO'y=) 
PROCESSOR- D7~ 
INTERFACE RD----C 

8294A 

WA----c OEU 

cs---_o 
CCMP~ Ao 

Figure 13. Single Interrupt Interface 

INn 
iNT2 

MASTER o0¢:I=> 
~ PI~~~~~!~~-

07 , ' 8 SRQ 

RD-C 

WA-----c 8294A 
OEU 

cs_c 

Ao---- OAV~ 

Figure 14. Dual Interrupt Interface 

210465-004 



INT----~o« 

RD------~~ 

8257 

WR----~~~__.J 

OMARO IS FOR MEMORY TO OEU DATA TRANSFER 
OMAR1 IS FOR DEU TO MEMORY DATA TRANSFER 
USE OF CCMP IS OPTIONAL 

Figure 15. DMA Interface 

OSCILLATOR AND TIMING CIRCUITS 

8294A 

The 8294A's internal timing generation is controlled by a 
self-contained oscillator and timing circuit. A choice of 
crystal, L-G or external clock can be used to derive the 
basic oscillator frequency. 

The resident timing circuit consists of an oscillator, a state 
counter and a cycle counter as illustrated in Figure 16. 

'-v---' 
INTERNAL TIMING 

SYNC 
OUTPUT 
(1 25-15 ~ .. c) 

Figure 16. Oscillator Configuration 

6-437 

OSCILLATOR MODE 

C1 r_. i ',I--..----.r---'2,XTAL1 
I ~.63-12 
I MHz 

_.L_ 

C21'T' ¥ 
..----lll-_IL-_ ....... 1--o-IXTAL2 

-L :; 
C1 • 5 pF 
C2 = CRYSTAL + STRAY < 15 pF 
C3 = 20-30 pF 

CRYSTAL SERIES RESISTANCE SHOULD 
BE LESS THAN 750 AT 6 MHz; LESS 
THAN 1800 AT 3.6 MHz; LESS THAN 
300 AT 12 MHz. 

LC OSCILLATOR MODE 

_L __ C_ 

9.uH 20pF 
45.uH 20 pF 

120 p.M 20 pF 

1 
1"---

21TVLC' 

C +3 Cpp 
C'"---

2 

Cpp '" 5·10 pF 
PIN-lO-PIN 
CAPACITANCE 

NOMINAL 

11.5 MHz 
5.2 MHz 
3.2 MHz 

EACH C SHOULD BE APPROXIMATELY 20 pF 
INCLUDING STRAY CAPACITANCE 

Figure 17. Recommended Crystal 

210465-004 



8294A 

DRIVING FROM EXTERNAL SOURCE-TWO OPTIONS 

~~' 
4XTAL2 

+5v 

470n /.------''-1 XTAL 1 

470~r 
-0»---4----=1 XTAL 2 

FOR THE 8294A XTAL2 MUST BE HIGH 
35-65% OF THE PERIOD 

RISE AND FALL TIMES MUST 
NOT EXCeeD 10 ns 

RESISTOR TO Vee IS NEEDED 
TO ENSURE VIH = 3.0v IE TTL 
CIRCUITRY IS USED 

Figure 18. Recommended Connection for External Clock Signal' 

ABSOLUTE MAXIMUM RATINGS· "NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those Indicated In the operational sections of this specifi­
cation IS not implied Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

Ambient Temperature Under Bias ....... O'C to 70'C 

Storage Temperature - 65'C to + 150'C 

Voltage on Any Pin With 
Respect to Ground ·-0 5V to + 7V 

Power Oissipation ........................... 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS (TA = O°C to 70°C, Vce = +5V :': 10%, Vss = oy) 

Limits 
Symbol Parameter Min. "TYP. Max. Unit Test Conditions 
VIL Input Low Voltage (All -0.5 0.8 V 

Except X" X2, RESET) 

VILl Input Low Voltage (Xl, X2, -0.5 0.6 V 
RESET 

VIH Input High Voltage (All 2.0 Vee V 
Except Xl, RESET) 

VIHl Input High Voltage (Xl, 3.5 Vee V 
RESET) 

VIH2 Input High Voltage (X2) 2.2 Vee V 

VOL Output Low Voltage (00-07) 0.45 V IOL = 2.0 mA 

VOL1 Output Low Voltage (All 0.45 V IOL = 1.6 mA 
Other Outputs) 

VOH Output High Voltage (00-07) 2.4 V IOH = - 40O fJA 

VOHl Output High voltage (All 2.4 V IOH = -50 fJA 
Other Outputs) 

IlL Input Leakage Current ± 10 fJA Vss~ VIN~ Vee 
(RO, WR, CS, Ao) 

IOFL Output Leakage Current ± 10 fJA Vss + 0.45~ VOUT~ Vee 
(00-07, High Z State) 

100 Voo Supply Current 5 20 mA 

100 + Icc Total Supply Current 60 135 mA 

III Low Input Load Current 0.3 mA VIL = 0.8V 
(Pins 24, 27-38) 

ILil Low Input Load Current 0.2 rnA VIL = 0.8V 
(RESET) 

IIH Input High Leakage Current 100 fJA VIN = Vee 
(Pins 24, 27-38) 

CIN Input Capacitance 10 pF 

CliO I/O Capacitance 20 pF 

6-438 210465-004 



A.C. CHARACTERISTICS (TA = ooe to 70oe, Vee = Vaa = +5V ± 10%, Vss = OV) 

DBB READ 

Symbol Parameter Min. Max. Unit 

tAR cr;, Ao Setup to RD • 0 ns 

tRA cr;, Ao Hold After 1m t 0 ns 

tRR RLi Pulse Width 160 ns 

tAO cr;, Ao to Data Out Delay 130 ns 

tRo RO • to Data Out Delay 130 ns 

tOF RLi t to Data Float Delay 85 ns 

tey Cycle Time 1.25 15 fls 

DBB WRITE 

Symbol Parameter Min. Max. Unit 

tAW CS, Ao Setup to iiVf'l • 0 ns 

tWA CS, Ao Hold After WR t 0 ns 

tww WR Pulse Width 160 ns 

tow Data Setup to WR t 130 ns 

two Data Hold to WR t 0 ns 

DMA AND INTERRUPT TIMING 

Symbol Parameter Min. Max. Unit 

tACC DACK Setup to Control 0 ns 

tCAC DACK Hold After Control 0 ns 

tACO DACK to Data Valid 130 ns 

tCRO Control L.E. to ORO T,E. 110 ns 

tCI Control T.E. to Interrupt T.E. 400 ns 

CLOCK 
8042 8742 

Symbol Parameter Min. Max. Min. Max. 

tCY Cycle Time 1.25 9.20 1.25 9.20 

tCYC Clock Period 83.3 613 83.3 613 

tpWH Clock High Time 33 38 

tPWL Clock Low Time 33 38 

IR Clock Rise Time 10 10 

IF Clock Fall Time 10 10 

NOTES: 
1. ICY = 15/f(XTAL) 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

24 
20 20 :> TEST'POINTS < Cl 1S0pF 

08 08 
045 

6-439 

Test Conditions 

CL = 100 pF 

CL - 100 pF 

1-12 MHz Crystal 

Test Conditions 

Test Conditions 

CL =100 pF 

Units 
1-'5[1] 

ns 

ns 

ns 

ns 

ns 

210465-004 

I 

Ii 



8294A 

WAVEFORMS 

READ OPERATION-OUTPUT BUFFER REGISTER 

CS OR AO ~ 
-,AR-I 

IRR 

1 
_IRA-

\ RD 

I 
-IRD- - tOF 

---tAD~ 

WRITE OPERATION-INPUT BUFFER REGISTER 

K 

\. (R 

(SYSTEM'S 
ADDRESS BUS) 

EAD CONTROL) 

~ :x (SYSTEM'S 
___ ....J~ [ J ~ ADDRESS BUS) 

• ." ~~--~'" l,.-IW-A--~-D---------------(-WRITE CONTROL) 

S OR AO 

WR 

DATA BUS DATA V_-DATA VALID_V DATA 
(INPUT) ____ -'M"'A:.;.Y-=C""HA::::N.:.:G:,:E'--__ --'i'l ~'\.... _____ ::.:MA::::Y~C:.:;H::;:A:.::NG:::E=__ ____ _ 

DMA AND INTERRUPT TIMING 

DACK 

"---tAce-

"- -- tCAe 

Fffi'orWR 

"- / 
"- / 
I 

ORO 

............-.--tCRQ ----

-----tAcD 

'\ V VALID 
/1\ 

DATA BUS 

OAVorSRQ 

--TCI ___________ 

6-440 210465-004 



intJ 

CLOCK TIMING 

XTAL2 

2.4Y- --

1.6Y_ 

.4SV-

1+------tCYC------~ 

6-441 210465-004 



inter 

.sINTEl CORPORATION, 1980 

APPLICATION 
NOTE 

6-442 

AP-66 

January 1980 

Order Number: 231324-001 



Using the 8292 
GPIB Controller 

Contents 

INTRODUCTION 

GPIB/IEEE 488 OVERVIEW 

HARDWARE ASPECTS OF THE SYSTEM 

8291 Talker/Listener 
8292 Controller 
8293 Bus Transceivers 
ZT7488/18 GPIB Controller 

8292 COMMAND DESCRIPTION 

SOFTWARE DRIVER OUTLINE 

Initialization 
Talker/Listener 

Send Data 
Receive Data 
Transfer Data 

Controller 
Trigger 
Device Clear 
Serial Poll 
Parallel Poll 
Pass Control 
Receive Control 
Service Request 

System Controller 
Remote 
Local 
Interface Clear/Abort 

INTERRUPT AND DMA CONSIDERATIONS 

APPLICATION EXAMPLE 

CONCLUSION 

APPENDIX A 

Source Listings 

APPENDIX B 

Test Cases for the Software Drivers 

APPENDIX C 

Remote Message Coding 

6-443 

1:1 

231324-001 



APPLICATIONS 

INTRODUCTION 

The Intel® 8292 is a pre programmed UPI'M-41A that 
implements the Controller function of the IEEE Std 
488~1978 (GPIB, HP-IB, IEC Bus, etc.). In order to 
function the 8292 must be used with the 8291 
Talker / Listener and suitable interface and trans­
ceiver logic such as a pair of Intel 8293s. In this 
configuration the system has the potential to be a 
complete GPIB Controller when driven by the 
appropriate software. It has the following capa­
bilities: System Controller, send IFC and Take 
Charge, send REN, Respond to SRQ, send Interface 
messages, Receive Control, Pass Cont~ol, Parallel 
Poll and Take Control Synchronously. . 

This application note will explain the 8292 only in 
the system context of an 8292,8291, two 8293s and 
the driver software. If the reader wishes to learn 
more about the UPI-41A aspects of the 8292, Intel's 
Application Note AP-41 describes the hardware 
features and programming characteristics of the 
device. Additional information on the 8291 may be 
obtained in the data sheet. The 8293 is detailed in its 
data sheet. Both chips will be covered here in the 
details that relate to the G PIB controller. 

The next section of this application note presents an 
overview of the GPIB in a tutorial, but compre­
hensive nature. The knowledgable reader may wish 
to skip this section; however, certain basic semantic 
concepts introduced there will be used throughout 
this note. 

. Additional sections cover the view of the 8292 from 
the CPU's data bus, the interaction of the 3 chip 
types (8291, 8292, 8293), the 8292's software 
protocol and the system level hardware/software 
protocol. A brief description of interrupts and 
DMA will be followed by an application example. 
Appendix A contains the source code for the system 
driver software. 

GPIB/IEEE 488 OVERVIEW 

DESIGN OBJECTIVES 

What is the IEEE 488 (GPIB)? 

The experience of designing systems for a variety of 
applications in the early 1970's caused Hewlett­
Packard to define a standard intercommunication 
mechanism which would allow them to easily assemble 
instrumentation systems of varying degrees of com­
plexity. In a typical situation each insttument dec 
signer designed his/ her own interface from scratch. 
Each one was inconsistent in terms of electrical 
levels, pin-outs on a connector, and types of con­
nectors. Every time they built a system they had to 
invent new cabl~s and new documentation just to 
specify the cabling and interconnection procedures. 

\ 

6-444 

Based on this experience, Hewlett-Packard began to 
define a new interconnection scheme. They went 
further than that, however, for they wanted to 
specify the typical communication protocol for 
systems of instruments. So in 1972, Hewlett­
Packard came out with the first version of the bus 
which since has been modified and standardized by a 
committee of several manufacturers, coordinated 
through the IEEE, to perfect what is now known as 
the IEEE 488 Interface Bus (also known as the HP­
lB, the GPIB and the IEC bus). While this bus 
specification may not be perfect, it is a good 
compromise of the various desires and goals of 
instrumentation and computer peripheral manu­
facturers to produce a common interconnection 
mechanism. It fits most instrumentation 'systems in 
use today and also fits very well the microcomputer 
I/O bus requirements. The basic design objectives 
for the GPlB were to: 

I. Specify a system that is easy to use, but has all of 
the terminology and the definitions related to 
that system precisely spelled out so that every­
one uses the same language when discussing the 
GPlB. 

2. Define all of the mechanical, electrical, and func­
tional interface requirements of a system, yet not 
define any of the device aspects (they are left up 
to the instrument designer). 

3. Permit a wide range of capabilities of instruments 
and computer peripherals to use a system simul­
taneously and not degrade each other's per­
formance. 

4. A1l9w different manufacturers' equipment to be 
connected together and work together on the 
same bus. 

S. Define a system that is good for limited dis­
tance interconnections. 

6. Define a system with minimum restrictions on 
performance of the devices. 

7. Define a bus that allows asynchronous communi­
cation with a wide range of data rates. 

8. Define a low cost system that does not require 
extensive and elaborate interface logic for the 
low cost instruments, yet provides higher capa­
bility for the higher cost instruments if desired. 

9. Allow systems to exist that do not need a central 
controller; that is, communication directly from 
one instrument to another is possible. 

Although the GPIB was originally designed for 
instrumentation systems, it became obvious that 
most of these systems would be controlled by a 
calculator or computer. With this in mind several 
modifications were made to the original proposal 
before its final adoption as an international stan­
dard. Figure I lists the salient characteristics of the 

231324-001 



APPLICATIONS 

GPIB as both an instrumentation bus and as a 
computer I/O bus. 

Data Rate 
1 M bytes/s, max 
250k bytes/s, typ 

Multiple Devices 
15 devices, max (electrical limit) 
a devices, typ (interrupt flexibility) 

Bus Length 
20 m, max 
2 m/device, typ 

Byte Oriented 
a·bit commands 
a·bit data 

Block Multiplexed 
Optimum strategy on GPIB due to 

setup overhead for commands 
I nterrupt Driven 

Serial poll (slower devices) 
Parallel poll (faster devices) 

Direct Memory Access 
One DMA facility at controller 

serves all devices on bus 
Asynchronous 

One talker } . 
Multiple listeners 3,wlre handshake 

I/O to I/O Transfers 
Talker and listeners need not 

include microcomputer/controller 

Figure 1. Major Characteristics of 
GPIB as Microcomputer 1/0 Bus 

The bus can be best understood by examining each 
of thesl; characteristics from the viewpoint of a 
general microcomputer I/O bus. 

Data Rate - Most microcomputer systems utilize 
peripherals of differing operational rates, such as 
floppy discs at 31k or 62k bytes/s (single or double 
density), tape cassettes at 5k to 10k bytes / s, and 
cartridge tapes at 40k to 80k bytes / s. In general, the 
only devices that need high speed I/O are OS' (1.3-
cm) magnetic tapes and hard discs, operational at 
30k to 781 k bytes / s, respectively. Certainly, the 
250k-bytes/ s data rate that can be easily achieved by 
the IEEE 488 bus is sufficient for microcomputers 
and their peripherals, and is more than needed for 
typical analog instruments that take only a few read­
ings per second. The IM-byte/s maximum data rate 
is not easily achieved on the GPIB and requires 
special attention to considerations beyond the scope 
of this note. Although not required, data buffering 
in each device will improve the overall bus per-

6-445 

formance and allow utilization of more of the bus 
bandwidth. 

Multiple Devices - Many microcomputer systems 
used as computers (not as components) service from 
three to seven peripherals. With the GPIB, up to 8 
devices can be handled easily by I controller; with 
some slowdown in interrupt handling, up to 15 
devices can work together. The limit of 8 is imposed 
by the number of unique parallel poll responses 
available; the limit of 15 is set by the electrical drive 
characteristics of the bus. Logically, the IEEE 488 
Standard is capable of accommodating more device 
addresses (31 primary, each potentially with 31 
secondaries). 

Bus Length - Physically, the majority of micro· 
computer systems fit easily on a desk top or in a 
standard 19" (48-cm) rack, eliminating the need for 
extra long cables. The GPIB is designed typically to 
have 2 m of length per device, which accommodates 
most systems. A line printer might require great'er 
cable lengths, but this can be handled at the lower 
speeds involved by using extra dummy termina­
tions. 

Byte Oriented - The 8-bit byte is almost universal 
in I/O applications; even 16-bit and 32-bit com­
puters use byte transfers for most peripherals. The 8-
bit byte matches the ASCII code for characters and 
is an integral submultiple of most computer word 
sizes. The GPIB has an 8-bit wide data path that may 
be used to transfer ASCII or binary data, as well as 
the necessary status and control bytes. 

Block Multiplexed - Many peripherals are block 
oriented or are used in a block mode. Bytes are 
transferred in a fixed or variable length group; then 
there is a wait before another group is sent to that 
device, e.g., one sector of a floppy disc, one line on a 
printer or tape punch, etc. The GPIB is, by nature, a 
block multiplexed bus due to the overhead involved 
in addressing various devices to talk and listen. This 
overhead is less bothersome if it only occurs once for 
a large number of data bytes (once per block). This 
mode of operation matches the needs of micro­
computers and most of their peripherals. Because of 
block multiplexing, the bus works best with buffered 
memory devices. . 

Interrupt Driven - Many types of interrupt systems 
exist, ranging from complex, fast, vectored/ priority 
networks to simple polling schemes. The main 
tradeoff is usually cost versus speed of response. The 
GPIB has two interrupt protocols to help span the 
range of applications. The first is a single service 
request (SRQ) line that may be asserted by all 
interrupting devices. The controller then polls all 
devices to find out which wants service. The polling 
mechanism is well defined and can be easily 

231324-001 



APPLICATIONS 

automated. For higher performance, the parallel 
poll capability in the IEEE 488 allows up to eight 
devices to be polled at once - each device is 
assigned to one bit of the data bus. This mechanism 
provides fast recognition of an interrupting device. 
A drawback is the frequent need for the controller to 
explicitly conduct a parallel poll, since there is no 
equivalent of the SRQ line for this mode. 

Direct Memory Access (DMA)- In many applica­
tions, no imediate processing ofi/O data on a byte­
by-byte basis is needed or wanted. In fact, 
programmed transfers slow down the data transfer 
rate unnecessarily in these cases, and higher speed 
can be obtained using OMA. With the GPIB, one 
OMA facility at the controller serves all devices. 
There is no need to incorporate complex logic in 
each device. 

Asynchronous Transfers - An asynchronous bus is 
desirable so that each device can transfer at its own 
rate. However, there is still a strong motivation to 
buffer the data at each device when used in large 
systems in order to speed up the aggregate data rate 
on the bus by allowing each device to transfer at top 
speed. The GPIB is asynchronous and uses a special 

11111 
DEVICE A 

AILElO t== TALK, LISTEN, 
AND 

CONTROL 

(e.g. computer) 

DEVICE B 

ABLE TO 

~ TALK AND 
LISTEN 

(e.g.dlglta' 
mullimeterl 

DEVICE C 

ONLY ABLE F= TO LISTEN 

(e.g ,Ignal 
generator) 

DEVICE 0 

ONLY ABLE t== TO TALK 

(egcounter) 

"If 
DATA BUS 

DATA BYTe 
TRANSFER 
CONTROL 

GENERAL 
INTERFACE 

MANAGEMENT 

~}OI01 
" 
DATA 
NPUT/OUTPUT) 

l....--- DAY (DATA VALID) 
NAFO(NO 
NDAC (NO 

T READY FOR DATA) 
T DATA ACCEPTED} 

• Fe {INTER 
ATH {ATTE 

FACE CLEAR) 
NTION) 

SAQ (SERV ICE REQUEST) 
aTe ENABLE) 
OR-IDENTIFY} 

REN (REM 
£01 (END-

Figure 2. Interface Capabilities and Bus Structure 

6-446 

3-wire handshake that allows data transfers from 
one talker to many listeners. 

I/O To I/O Transfers - In practice, I/O to I/O 
transfers are seldom done due to the need for 
processing data and changing formats or due to 
mismatched data rates. However, the GPIB can 
support this mode of operation where the micro­
computer is neither the talker nor one of the 
listeners. 

GPIB SIGNAL LINES 

Data Bus 

The lines 0101 through 0108 are used to transfer 
addresses, control information and data. The 
formats for addresses and control bytes are defined 
by the IEEE 488 standard (see Appendix C). Oata 
formats are undefined and may be ASCll (with or 
without parity) or binary. 0101 is the Least Sig­
nificant Bit (note that this will correspond to bit 0 
on most computers). 

Management Bus 

A TN - Attention This signal is asserted by the 
Controller to indicate that it is placing an address or 
control byte on the Data Bus. A TN is de-asserted to 
allow the assigned Talker to place status or data on 
the Oata Bus. The Controller regains control by re­
asserting ATN; this is normally done synchronously 
with the handshake to avoid confusion between 
control and data bytes. 

EOI - End or Identify This signal has two uses as 
its name implies. A talker may assert EOI simul­
taneously with the last byte of data to indicate end of 
data. The. Controller may assert EOI along with 
A TN to initiate a Parallel Poll. Although many 
devices do not use Parallel Poll, all devices should 
use EOI to end transfers (many currently available 
ones do not). 

SRQ - Service Request This line is like an 
interrupt: it may be asserted by any device to request 
the Controller to take some action. The Controller 
must determine which device is asserting SRQ by 
conducting a Serial Poll at its earliest convenience. 
The device deasserts SRQ when polled. 

IFe - Interface Clear This signal is asserted only 
by the System Controller in order to initialize all 
device interfaces to a known state. After deasserting 
IFC, the System Controller is the active controller of 
the system . 

REN - .Remote Enable This signal is asserted 
only by the System Controller. Its assertion does not 
place devices into Remote Control mode; REN only 
enables a device to go remote when addressed to 
listen. When in Remote, a device should ignore its 
front panel controls. 

231324-001 



APPLICATIONS 

Transfer Bus 

NRFD ~ Not Ready For Data This handshake 
line is asserted by a listener to indicate it is not yet 
ready for the next data or control byte. Note that the 
Controller will not see NRFD deasserted (i.e., ready 
for data) until all devices have deasserted NRFD. 

NDAC ~ Not Data Accepted This handshake 
line is asserted by a Listener to indicate it has not yet 
accepted the data or control byte on the DIO lines. 
Note that the Controller will not see NDAC 
deasserted (i.e., data accepted) until all devices have 
deasserted NDAC. 

DA V ~ Data Valid This handshake line is 
asserted by the Talker to indicate that a data or 
control byte has been placed on the DIO lines and 
has had the minimum specified settling time. 

DID --ri.. ___ ---I~---( i.. ____ ..... ~-

H­
DAV 

L-

H-,.., n NRFD L _---J 1 ______ --' L.. ___ _ 

H- r-I ,..., 
NDAC L _____ ....1' '1. _____ .... ' L 

Figure 3. GPIB Handshake Sequence 

GPIB INTERFACE FUNCTIONS 

There are ten (10) interface functions specified by 
the IEEE 488 standard. Not all devices will have all 
functions and some may only have partial subsets. 
The ten functions are summarized below with the 
relevant section number from the IEEE document 
given at the beginning of each paragraph. For 
further information please see the IEEE standard. 

1. SH ~ Source Handshake (section 2.3) This 
function provides a device with the ability to 
properly transfer data from a Talker to one or 
more Listeners using the three handshake lines. 

2. AH ~ Acceptor Handshake (section 2.4) This 
function provides a device with the ability to 
properly receive data from the Talker using the 
three handshake lines. The AH function may 
also delay the beginning (NRFD) or end 
(NDAC) of any transfer. 

3. T ~ Talker (section 2.5) This function allows a 
device to send status and data bytes when ad­
dressed to talk. An address consists of one 
(Primary) or two (Primary and Secondary) 

6-447 

bytes. The latter is called an extended Talker. 
4. L ~ Listener (section 2.6) This function allows 

a device to receive data when addressed to listen. 
There can be extended Listeners (analogous to 
extended Talkers above). 

5. SR ~ Service Request (section 2.7) This func­
tion allows a device to request service (inter­
rupt) the Controller. The SRQ line may be 
asserted asynchronously. 

6. RL ~ Remote Local (section 2.8) This function 
allows a device to be operated in two modes: 
Remote via the GPIB or Local via the manual 
front panel controls. 

7. pp ~ Parallel Poll (section 2.9) This function 
allows a device to present one bit of status to the 
Controller-in-charge. The device need not be 
addressed to talk and no handshake is required. 

8. DC ~ Device Clear (section 2.10) This function 
allows a device to be cleared (initialized) by the 
Controller. Note that there is a difference 
between DC (device clear) and the IFC line 
(interface clear). 

9. DT ~ Device trigger (section 2.11) This func­
tion allows a device to have its basic operation 
started either individually or as part of a group. 
This capability is often used to synchronize 
several instruments. 

10. C ~ Controller (section 2.12) This function 
allows a device to send addresses, as well as 
universal and addre,ssed commands to other 
devices. There may be more than one controller 
on a system, but only one may be the controller­
in-charge at anyone time. 

At power-on time the controller that is hand wired to 
be the System Controller becomes the active 
controller-in-charge. The System Controller has 
several unique capabilities including the ability to 
send Interface Clear (IFC ~ clears all device 
interfaces and returns control to the System 
Controller) and to send Remote Enable (REN ~ 
allows devices to respond to bus data once they are 
addressed to listen). The System Controller may 
optionally Pass Control to another controller, if the 
system software has the capability to do so. 

GPIB CONNECTOR 

The GPIB connector is a standard 24-pin industrial 
connector such as Cinch or Amphenol series 57 
Micro-Ribbon. The IEEE standard specifies this 
connector, as well as the signal connections and the 
mounting hardware. 

The cable has 16 signal lines and 8 ground lines. The 
maximum length is 20 meters with no more than two 
meters per device. 

231324-001 



APPLICATIONS 

t 
GNO 

~ 
REN 
0108 
0107 
0108 
0105 

2412 

13 1 

SHIELD 
ATN 
SRQ 
IFC 
NOAC 
NRFO 
DAY 
EOI 

0104 
0103 
0102 
0101 

Figure 4. GPIB Connector 

GPIB SIGNAL LEVELS 

The GPIB signals are all TTL compatible, low true 
signals. A signal is asserted (true) when its electrical 
voltage is less than 0.5 volts and is deasserted (false) 
when it is greater than 2.4 volts. Be careful not to 
become confused with the two handshake signals, 
NRFD and NDAC which are also low true (i.e. 
> 0.5 volts implies the device is Not Ready For 
Data). 

The Intel 8293 GPIB transceiver chips ensure that all 
relevant bus driver I receiver specifications are met. 
Detailed bus electrical specifications may be found 
in Section 3 of the IEEE Std 488-1978. The Standard 
is the ultimate reference for all GPIB questions. 

GPIB MESSAGE PROTOCOLS 

The GPIB is a very flexible communications 
medium and as such has many possible variations of 
protocols. To bring some order to the situation, this 
section will discuss a protocol similar to the one used 
by Ziatech's ZT80 GPIB controller for Intel's 
MUL TIBUS™ computers. The ZT80 is a complete 
high-level interface processor that executes a set of 
high level instructions that map directly into GPIB 
actions. The sequences of commands, addresses and 
data for these instructions provide a good example 
of how to use the GPIB (additional information is 
available in the ZT80 Instruction Manual). The 
'null' at the end of each instruction is for cosmetic 
use to remove previous information from the DIO 
lines. 

DATA --'- Transfer a block of data from device A to 
devices B, C ... 
I. Device A Primary (Talk) Address 

Device A Secondary Address (if any) 
2. Universal Unlisten 

. 3. Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
Device C Primary (Listen) Address 
etc. 

6-448 

4. First Data Byte 
Second Data Byte 

Last Data Byte (EOI) 
5. Null 

TRIG R - Trigger devices A, B, ... to take action 
I. Universal Un listen 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Group Execute Trigger 
4. Null 

PSCTL - Pass control to device A 
I. Device A Primary (Talk) Address 

Device A Secondary Address (if any) 
2. Take Control 
3. Null 

C{EAR - Clear all devices 
I. Device Clear 
2. Null 

REMAL - Remote Enable 
I. Assert REN continuously 

GOREM - Put devices A, B, ... into Remote 
I. Assert REN continuously 
2. Device A Primary (Listen) Address 

Devi.ce A Secondary Address (if any) 
. Device B Primary (Listen) Address 

Device B Secondary Address (if any) 
etc. 

3. Null 

GOLOC - Put devices A, B, ... into Local 
I. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B .Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

2. Go To Local 
3. Null 

LOCA L - Reset all devices to Local 
I. Stop asserting REN 

231324-001 



APPLICATIONS 

LLKA L - Prevent all devices from returning to 
Local 
1. Local Lock Out 
2. Null 

SPOLL - Conduct a serial poll of devices A, B, ... 
I. Serial Poll Enable 
2. Universal Unlisten 
3. ZT 80 Primary (Listen) Address 

ZT 80 Secondary Address 
4. Device Primary (Talk) Address 

Device Secondary Address (if any) 
5. Status byte from device 
6. Go to Step 4 until all devices on list have been polled 
7. Serial Poll Disable 
8. Null 

PPUAL - Unconfigure and disable Parallel Poll 
response from all devices 
1. Parallel Poll U nconfigure 
2. Null 

ENAPP - Enable Parallel Poll response in devices 
A, B, ... 
I. Universal Unlisten 
2. Device Primary (Listen) Address 

Device Secondary Address (if any) 
3. Parallel Poll Configure 
4. Parallel Poll Enable 
5. Go to Step 2 until all devices on list have been 

configured. 
6. Null 

DISPP - Disable Parallel Poll response from de­
vices A, B, ... 
I. Universal Unlisten 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Disable Parallel Poll 
4. Null 

This Ap Note will detail how to implement a useful 
subset of these controller instructions. 

HARDWARE ASPECtS OF THE SYSTEM 

8291 GPIB TALKER/LISTENER 

The 8291 is a custom designed chip that implements 
many of the non-controller GPIB functions. It pro­
vides hooks so the user's software can implement 
additional features to complete the set. This chip is 
discussed in detail in its data sheet. The major fea­
tures are summarized here: 

-Designed to interface microprocessors to the GPIB 
-Complete Source and Acceptor Handshake 
-Complete Talker and Listener Functions with ex-

tended addressing 

-Service Request, Parallel Poll, Device Clear, De-
vice Trigger, Remote/ Local functions 

-Programmable data transfer rate 
-Maskable interrupts 
-On-chip primary and secondary address recogni-

tion 
-1-8 MHz clock range 
-16 registers (8 read, 8 write) for CPU interface 

• ~DMA handshake provision 
- Trigger output pin 

6-449 

-On-chip EOS (End of Sequence) recognition 

The pinouts and block diagram are shown in Fig. 5. 
One of eight read registers is for data transfer to the 
CPU; the other seven allow the microprocessor to 
monitor the GPIB states and various bus and device 
conditions. One of the eight write registers is for data 
transfer from the CPU; the other seven control 
various features of the 8291. 

The 8291 interface functions will be software 
configured in this application example to the 
following subsets for use with the 8292 as a 
controller that does not pass control. The 8291 is 
used only to provide the handshake logic and to send 
and receive data bytes. It is not acting as a normal 
device in this mode, as it never sees A TN asserted. 

SH I Source Handshake 
AH I Acceptor Handshake 
T3 Basic Talk-only 
Ll Basic Listen-only 
SRO No Service Requests 
RLO No Remote/Local 
PPO No Parallel Poll response 
DCO No Device Clear 
DTO No Device Trigger 

If control is passed to another controller, the 8291 
must be reconfigured to act as a talker / listener with 
the following subsets: 

SH I Source Handshake 
AH I Acceptor Handshake 
T5 Basic Talker and Serial Poll 
L3 Basic Listener 
SR I Service Requests 
RLI Remote/Local with Lockout 
PP2 Preconfigured Parallel Poll 
DC I Device Clear 
DTI Device Trigger 
CO Not a Controller 

Most applications do not pass control and the con­
troller is always the system controller (see 8292 
commands below). 

8292 GPIB CONTROLLER 

The 8292 is a preprogrammed Intel® 8041A that 
provides the additional functions necessary to 

231324-001 



APPLICATIONS 

PIN CONFIGURATION 

TlR2 
CLOCK 

INT 

00 

OS 

07 

Vss ...... _-_ ... 

, 18291' 

BLOCK DIAGRAM 

GPIB DATA 

GPIB CONTROL 

I 
T/R CONTROL 

TO NON·INVERTING 

BUS TRANSCEIVERS 

Figure 5. 8291 Pin Configuration and Block Diagram 

implement a GPIB controller when used with an 
8291 Talker/Listener. The 8041A is documented in 
both a user's manual and in AP-41. The following 
description will serve only as an outline to guide the 
later discussion. 

The 8292 acts as an intelligent slave processor to the 
main system CPU. It contains a processor, memory, 
I/O and is programmed to perform a variety oftasks 
associated with GPIB controller operation. The on­
chip RAM is used to store information about the 
state of the Controller function, as well as a variety 
of local variables, the stack and certain user status 
information. The timer/counter may be optionally 
used for several time-out functions or for counting 
data bytes transferred. The I/O ports provide the 
GPIB control signals, as well as the ancillary lines 
necessary to make the 8291, 2, 3 work together. 

The 8292 is closely coupled to the main CPU 
through three on-chip registers that may be 
independently accessed by both the master and the 
8292 (iJpI-4IA). Figure 6 shows this Register 
Interface. Also refer to Figure 12. 

The status register is used to pass Interrupt Status 
information to the master CPU (AO = I on a read). 

The DBBOUT register is used to pass one of five 
other status words to the master based on the last 
command written into DBBIN. DBBOUT is accessed 
when AO = 0 on a Read. The five sta,tus words are 
Error Flag, Controller Status, GPIB Status, Event 
Counter Status or Time Out Status. 

DBBIN receives either commands (AO = I on a 
Write) or command related data (AO = 0 on a write) 
from the master. These command related data are 

6-450 

Interrupt Mask, Error Mask, Event Counter or 
Time Out. 

CPU 

CS AO RO WR REGISTER 

0 0 0 1 READOBBOUT 
0 1 0 1 READ STATUS 
0 0 1 0 WRtTE DBBtN (DATA) 
0 1 1 0 WRtTE DBBtH (COMMAND) 
1 X X X NO ACTION 

Figure 6. UPI-41A Registers 

8293 GPIB TRANSCEIVERS 

The 8293 is a multi~use HMOS chip that implements 
the IEEE 488 bus transceivers and contains the 
additional logic required to make the 8291 and 8292 
work together. The two option strapping pins are 
used to internally configure the chip to perform the 
specialized gating required for use with 8291 as a 
device or with 8291/92 as a controller. 

In this application example the two configurations 
used are shown in Fig. 7a and 7b. The drivers are set 
to open collector or three state mode as required and 
the special logic is enabled as required in the two 
modes. 

231324-001 



Figure 7a. 8293 Mode 2 

Dro.j 1-------1-1. 

. b1C56l------+1 

mQ,1------H 

0;0,;1------+1 

Figure 7b. 8293 Mode 3 

APPLICATIONS 

6-451 

8291/2/3 CHIP SET 

Figure 8 shows the four chips interconnected with 
the special logic explicitly shown. 

The 8291 acts only as the mechanism to put 
commands and addresses on the bus while the 8292 
is asserting A TN. The 8291 is tricked into believing 
that the A TN line is not asserted by the A TN2 
output of the ATN transceiver and is placed in Talk­
only mode by the CPU. The 8291 then acts as though 
it is sending data, when in reality it is sending 
addresses and/or commands. When the 8292 
deasserts ATN, the CPU software must place the 
8291 in Talk-only, Listen-only or Idle based on the 
implicit knowledge of how the controller is going to 
participate in the data transfer. In other words, the 
8291 does not respond directly to addresses or 
commands that it sends on the bus on behalf of the 
Controller. The user software, through the use of 
Listen-only or Talk-only, makes the 8291 behave as 
though it were addressed. 

Although it is not a common occurrence, the GPIB 
specification allows the Controller to set up a data 
transfer between two devices and not directly 
participate in the exchange. The controller must 
know when to go active again and regain control. 
The chip set accomplishes this through use of the 
"Continuous Acceptor Handshake cycling mode" 
and the ability to detect EO! or EOS at the end of the 
transfer. See XFER in the Software Driver Outline 
below. 

If the 8292 is not the System Controller as 
determined by the signal on its S YC pin, then it must 
be able to respond to an IFC within 100usec. This is 
accomplished by the cross-coupled NORs in Fig. 7a 
which deassert the 8293's internal version of CIC 
(Not Controller~in-Charge). This condition is latched 
until the 8292's firmware has received the IFCL 
(interface clear received latch) signal by testing the 
IFCL input. The firmware then sets its signals to re­
flect the inactive condition and clears the 8293's latch. 

In order for the 8292 to conduct a Parallel Poll the 
8291 must be able to capture the PP response on the 
DIO lines. The only way to do this is to fool the 8291 
by putting it into Listen-only mode and generating a 
DA V condition. However, the bus spec does not 
allow a DA V during Parallel Poll, so the back-to­
back 3-state buffers (see Fig. 7b) in the 8293 isolate 
the bus and allow the 8292 to generate a local DA V 
for this purpose. Note that the 8291 cannot assert a 
Parallel Poll response. When the 8292 is not the 
controller-in-charge the 8291 may respond to PPs 
and the 8293 guarantees that the DIO drivers are in 
"open collector" mode through the OR gate (Fig. 
7b). 

231324-001 



DAY 

T/lh 

Imn=ii 

RR 

mI 

T/lb 
8291 

we 

NRFD 

NDAe 

ATR 

iiiQ 
i---

DAY 

IFC 

SYC 

REN 

SRO 

8292 ATliII 

mi2 

A'fi'Ri 
COUNT 

iFCi: 
CLTH 

CIC 

APPLICATIONS 

ATNO 

iFCi: 
DAV 

T/lh 

llR:ii 

ImS2 

Di03 

~ 

oms 

ili06 

DI07 

DI08 

mI 

ATN 

NDAC 

Nlmi 
T/R1 

lJ!C 
SYC 
REN 

r 

m 

Afiiil 

ATN 

roi2 
ATNO 

mI 
T/R2 

iFCi: 
CLTH 

CIC 

V 

V 

I 

e 

i 

MODE 3 +5 

0: OPTA 

OPTB ~ 
'f{>-R-

DA 

R-
v* 

DIO 

~- DIO 

R - DI 03* 

tH - DI 

R - DI 05* 

tH= - DI 

[ff DI -

06* 

~ - DI 08* 

MODE 2 

-
-~ 

OPTA 

OPTB 

NDAC* 

~ NRFD* SIR TIC ' 

IFC* @ REN* SIR TIC 

~ SR.O* 

SIR TIer-- ATN* 

~JT 

pM= EOI* 

SIR TIC 

~. 
r ~)<>-

Figure 8. Talker/Listener/Controller 

6-452 231324-001 



APPLICATIONS 

ZT7488/18 GPIB CONTROLLER 

Ziatech's GPIB Controller, the ZT7488/ 18 will be 
used as the controller hardware in this Application 
Note. The controller consists of an 8291, 8292, an 8 
bit input port and TTL logic equivalent to that 
shown in Figure 8. Figure 9 shows the card's block 
diagram. The ZT7488/ 18 plugs into the STO bus, a 
56 pin 8 bit microprocessor oriented bus. An 8085 
CPU card is also available on the STO bus and will 
be used to execute the driver software. 

The 8291 uses I/O Ports 60H to 67H and the 8292 
uses I/O Ports 68H and 69H. The five interrupt lines 
are connected to a three-state buffer at I/O Port 

OATA8US 
00·01 

ADDRESS 
AG·" 
CLOCK· 

6FH to facilitate polling operation. This is required 
for the TCI, as it cannot be read internally in the 
8292. The other three 8292 lines (SPI, IBF, OBF) 
and the 8291's INT line are also connected to 
minimize the number of I/O reads necessary to poll 
the devices. . 

NOAC is connected to COUNT on the 8292 to allow 
byte counting on data transfers. The example driver 
software will not use this feature, as the software is 
simpler and faster if an internal 8085 register is used 
for counting in software. 

OMA 
CONNECTOR 

SYS RESET' 9----L_J------'-I-t-H 
IOEXP" 

lORa" 

ADDRESS 
1.5"1..7 

ADDRESS 
A3.M 

Figure 9. ZT7488/18 GPIB Controller 

READ REGISTERS 

I 017 ! 016 D15! 014 I 013 I 012 011 I DlO 

DATA IN 

1 CPT 1 APT 1 GET 1 END 1 DEC 1 ERR 1 .0 1 ., 
INTERRUPT STATUS 1 

,liNT I SPAS I LLO! REM I SPAscluoc I REMC] Aosel 
INTERRUPT STATUS 2 

I 58 I 5ROSI 56 I 55 I .. 153 I 52 151 

SERIAL POLL STATUS 

I,," I,," I EOI I LPAS I TPAS ILA I I MJMNI 
ADDAESS STATUS 

I~~~I~I-I~I~I~I~I 
COMMAND PASS THROUGH 

1 x I DTO 1 DLO 1 ADS 01 AD4 01 AD301 AD,.ol AD'4 
ADDRESS 0 

I x I Oll I ell I ADS 1] A04 0,1 A030 ,1 A0211 A0111 

ADDRESS 1 

PORT .. WRITE REGISTERS 

- I=I-I~I~I=I-I-I~I 

63H 

DATA OUT 

1 CPT I APT [ GET I END I DEC I ERR I BO I 81 

INTERRUPT MASK 1 

I 0 10 I DMAoIOMA'1 SPAscl LLOC I REMCI AOSC I 
INTERRUPT MASK 2 

I 58 I", 156 Iss I S4 IS3 152 151 I 
SERIAL POLL MODE 

I TO I LO I 0 I 0 I 0 I 0 I AD+'DMOI 
ADDRESS MODE 

I CN"I cNnl CNTOI COM41 COM31 COM'I COM.I CDMOI 
AUX MODE 

1 ARS I DT 1 DL I ADS 1 AD4 I AD3 1 AD' 1 AD. 
ADDRESS OJ1 

~I ECsl EC4 I ECl] EC2 I ECl I ECO 

EOS 

Figure 10. 8291 Registers 

6-453 231324-001 



APPLICATIONS 

roo--
A, ,1 ., 0, 
110 ... 
.,~ ° RD 

i!1Ioii! 0 3 •• 
A4 04 
8. WR 

~---=tf 101M 
RESE T ---' 

INTA 
INT 

07-00 '-
:II 
m 

~ 

' lmili 

1lIR 

i!!iIW 

iliW 

l RST RD WR 

'---y 07-00 INT 

~ DRDO- DREO SRD 

,-
,-

HOLD 
HLOA 

elK :-

-y DACKO :>-----< DACK 

8257-5 - 829' 
-HRD 
"l: HlDA 

I~~ 
RS2 

ROY RS' 
ClK RSO .. 

t-
Z to I ClK .. OJ Q 

ttF CS 

REN 
IFC 

NRFD 
NDAC 

ATN 
EOI 

DAY 
T/R1 
0101 
0108 
T/R2 

1.1'--
r-r 

,1,,1,0:-

V 

lr 
RST RD WR R'Di 

I ~U~ IBF' 
OBFI 2142 

~( 8259-5 • SPI 
CS AO TCI I- CS 

07-00 
'r-SRD 

REN 
IFC 

8292 
COUNT 

~ CIC 
2142 EOl2 

DAY 
ATNI CS 

f-- ATNO 

~ IFCl 
ClTH AD -

I 
r- SYC CS 

I I r 
I I , 

" n .. 
~ !D ;: ~ 

!: 0 00,020 3 8293 
~~zz~~~~~~~~~~p~ 
~~~anZON-!oZnp~n 

8212 8205

MD OS, c~~~f:lCl
MODE 3

8293 MODE 2

I " 1 1 ~ Illlil !!
" ~N" ,.. D :II

~ c:Cc CC ~J,. < 1; ~ AD (!l~!2i1ll ~
.. ..

oPla CC ~
A15· AD

Figure 11. DMAllnterrupt GPIB Controller Block Diagram

The application example will not use OMA or
interrupts; however, the Figure II block diagram
includes these features for completeness.

The 8257-5 OMA Fhip can be used to transfer data
between the RAM and the 8291 Talker/ Listener.
This mode allows a faster data rate on the GPIB
and typically will depend on the 8291's EOS or EOl
detection to terminate the transfer. The 8259-5
interrupt controller is used to vector the five possible
interrupts for rapid software handling of the various
conditions.

8292 COMMAND DESCRIPTION
This section discusses each command in detail and
relates them to a particular GPIB activity. Recall
that although the 804IA has only two read registers
and one write register, through the magic of on-chip
firmware the 8292 appears to have six read registers
and five write registers. These are listed in Figure 12.
Please see the 8292 data sheet for detailed definitions

6-454

of each register. Note the two letter mnemonics to be
used in later discussions. The CPU must not write
into the 8292 while IBF (Input Buffer Full) is a one,
as information will be lost.

DIRECT COMMANDS

Both the Interrupt Mask (1M) and the Error Mask
(EM) register may be directly written with the LSB
of the address bus (AO) a "0". The firmware uses the
MSB of the data written to differentiate between 1M
and EM.

Load Interrupt Mask

This command loads the Interrupt Mask with
07-00. Note that 07 must be a "I" and that
interrupts are enabled by a corresponding" I" bit in
this register. IFC interrupt cannot be masked off;
however, when the 8292 is the System Controller,
sending an ABORT command will not cause an IFC
interrupt.

APPLICATIONS

READ FROM 8292 PORT # WRITE TO 8292

INTERRUPT STATUS COMMAND FIELD

I SYC I ERR I SRO I EV
I

X
I

IFCR I IBF OBF 69H
I

OP
I

C
I

C
I

C
I

C
I

07 Do
ERROR FLAG' INTERRUPT MASK

X X I USER I X
I

X ITOUT31TOUT21TOUT11 6aH SPI TCI I SYC I OBFI I IBFI 0 I SRO I

07 Do
CONTROLLER STATUS' ERROR MASK

I CSBSI CA X
I

X I SYCS I IFC REN SRO 6aH o ' I 0 I USER I 0
I

0 ITOUT·ITOUT3ITOUT11

GPIB (BUS, STATUS' EVENT COUNTER"

I REN I OAV I EOI I X I SYC I IFC I ANTI I SRO I 6aH 0
I

0
I

0
I

0
I

0
I

0
I

0
I

0
I

EVENT COUNTER STATUS' TIMEOUT"

0
I

0
I

0
I

0
I

0
I

0
I

0
I

0
I

6aH 0
I

0
I

0
I

0
I

0
I

0
I

0
I

0
I

TIME OUT STATUS'

0
I

0
I

0
I

0
I

0
I

0
I

0
I

0
I

6aH *Note' These registers are accessed by a special utility command.

Figure 12. 8292 Registers

Load Error Mask

This command loads the Error Mask with 07-00.
Note that 07 must be a zero and that interrupts are
enabled by a corresponding "I" bit in this register.

UTILITY COMMANDS

These commands are used to read or write the 8292
registers that are not directly accessible. All utility
commands are written with AO = I, 07 = 06 = 05 = I,
04 = 0.03-00 specify the particular command. For
writing into registers the general sequence is:

I. wait for IBF = 0 in Interrupt Status Register
2. write the appropriate command to the 8292,
3. write the desired register value to the 8292 with

AO = 1 with no other writes intervening,
4. wait for indication of completion from 8292

(IBF = 0).

For reading a register the general sequence is:

I. wait for IBF = 0 in Interrupt Status Register
2. write the appropriate command to the 8292
3. wait for a TCI (Task Complete Interrupt)
4. Read the value of the accessed register from the

8292 with AO = O.

WEVC - Write to Event Counter
(Command = OE2H)

The byte written following this command will be
loaded into the event counter register and event
counter status for byte counting. The internal

6-455

counter is incremented on a high to low transition of
the COUNT (Tl) input. In this application example
NOAC is connected to count. The counter is an 8 bit
register and therefore can count up to 256 bytes
(writing 0 to the EC implies a count of256). If longer
blocks are desired, the main CPU must handle the
interrupts every 256 counts and carefully observe the
timing constraints.

Because the counter has a frequency range from 0 to
133 kHz when using a 6 MHz crystal, this feature
may not be usable with all devices on the GPIB. The
8291 can easily transfer data at rates up to 250 kHz
and even faster with some tuning of the system.
There is also a 500 ns minimum high time
requirement for COUNT which can potentially be
violated by the 8291 in continuous acceptor
handshake mode (I.e., TNOOVI + TOVN02-C =
350 + 350 = 700 max). When cable delays are taken
into consideration, this problem will probably never
occur.

When the 8292 has completed the command, IBF
will become a "0" and will cause an interrupt if
masked on.

WTOUT - Write to Time Out Register
(Command = OE 1 H)

The byte written following this command will be
used to determine the number of increments used for
the time out functions. Because the register is 8 bits,
the maximum time out is 256 time increments. This

231324-001

APPLICATIONS

is probably enough for most instruments on the
GPIB but is not enough for a manually stepped
operation using a GPlB logic analyzer like Ziatech's
ZT488. Also, the 488 Standard does not set a lower
limit on how long a device may take to do each
action. Therefore, any use of a time out must be able
to be overridden (this is a good general design rule
for service and debugging considerations).

The time out function is implemented in the 8292's
firmware and will not be an accurate time. The
counter counts backwards to zero from its initial
value. The function may be enabled! disabled by a
bit in the Error mask register. When the command is
complete lBF will be set to a "0" and .will cause an
interrupt if masked on.

REVC - Read Event Counter Status
(Command = OE3H)

This command transfers the content of the Event
Counter to the DBBOUT register. The firmware
then sets TCI = I and will cause an interrupt if
masked on. The CPU may then read the value from
the 8292 with AO = O.

RINM - Read Interrupt Mask Register
(Command = OE5H)

This command transfers the content of the Interrupt
Mask register to the DBBOUT register. The
firmware sets TCI = I and will cause an interrupt if
masked on. The CPU may then read the value.

RERM - Read Error Mask Register
(Command = OEAH)

This command transfers the content of the Error
Mask register to the DBBOUT register. The
firmware sets TCI = I and will cause an interrupt if
masked on. The CPU may then read the value.

RCST - Read ControlIer Status Register
(Command = OE6H)

This command transfers the content of the Con­
troller Status register to the DBBOUT register. The
firmware sets TCI = I and will cause an interrupt if
masked on. The CPU may then read the value.

RTOUT - Read Time Out Status Register
(Command = OE9H)

This command transfers the content of the Time Out
Status register to the DBBOUT register. The
firmwar~ sets TCI = I and will cause an interrupt if
masked on. The CPU may then read the value.

If this register is read while a time-out function is in
process, the value will be the time remaining before
time-out occurs. If it is read after a time-out, it will
be zero. If it is read when no time-out is in process, it
will be the Iast'value reached when the previous
timing occurred.

6-456

REST - Read Bus Status Register
(Command = OE7H)

This command causes the firmware to read the
GPIB management lines, DAVand the SYCpinand
place a copy in DBBOUT. TCI is set to "I" and will
cause an interrupt if masked on. The CPU may read
the value. .

RERF - Read Error Flag Register
(Command = OE4H)

This command transfers the content of the Error
Flag register to the DBBO UT register. The firmware
sets TCI = I and will cause an interrupt if masked on.
The CPU may then read the value.

This register is also placed in DBBOUT by an lACK
command if ERR remains set. TCI is set to "I" in
this case also.

lACK - Interrupt Acknowledge
(Command = Al A2 A3 A4 I A5 1 1)

This command is used to acknowledge any combina­
tions of the five SPI interrupts (AI-A5): SYC,
ERR, SRQ, EV, and IFCR. Each bit AI-A5 is an
individual acnowledgement to the corresponding bit
in the Interrupt Status Register. The command
clears SPI but it will be set again if all of the pending
interrupts were not acknowledged.

If A2 (ERR) is "I", the Error Flag register is placed
in DB BOUT and TCI is set. The CPU may then read
the Error Flag without issuing an RERF command.

OPERATION COMMANDS

The following diagram (Fig. 13) is an attempt to
show the interrelationships among the various 8292
Operation Commands. It is not meant to replace the
complete controller state diagram in the IEEE
Standard.

RST - Reset (Command = OF2H)

This command has the same effect as an external
reset applied to the chip's pin #4. The 8292's actions
are:

1. All outputs go to their electrical high state. This
means that SPI, TCI, OBFI, lBFI, CL TH will be
TRUE and all other GPIB signals will be FALSE.

2. The 8292's firmware will cause the above men­
tioned five signals to go FALSE after approxi­
mately 17.5 usec. (at 6 MHz).

3. These registers will be cleared: Interrupt Status,
Interrupt Mask, Error Mask, Time Out, Event
Counter, Error Flag.

4. If the 8292 is the System Controller (SYC is
TR UE), then IFC will be sent TR UE for approxi­
mately 100 usec and the Controller function will
end up in charge of the bus. If the 8292 is not the

231324-001

APPLICATIONS

(RST + ABORT) • sve

RST. iYc IDLE

,---------------,
I ~I I· AST+ .. LOCAL SLoe AEMOTE I I

ABORT-SYe

I I
L ____ ..!Y!!!,~O!!!!'.!!!:.L!!!.. ____ -.J

Figure 13. 8292 Command Flowchart

System Controller then it will end up in an Idle
state.

5. TCI will not be set.

RSTI- Reset Interrupts (Command = OF3)

This command clears all pending interrupts and
error flags. The 8292 will stop waiting for actions to
occur (e.g., waiting for ATN to go FALSE in a
TCNTR command or waiting for the proper
handshake state in a TCSY command). TCI will not
be set.

ABORT-Abort all operations and Clear Interface
(Command = OF9H)

If the 8292 is not the System Controller this
command a<;.ts like a NOP and flags a USER
ERROR in the Error Flag Register. No TCI will
occur.

If the 82~2 is the System Controller then IFC is set
TRUE for approximately 100 p,sec and the 8292
becomes the Controller-in-Charge and asserts ATN.
TCI will be set, only if the 8292 was NOT the CIC.

STCNI- Start Counter Interrupts
(Command = OFEH)

Enables the EY Counter Interrupt. TCI will not be
set. Note that the counter must be enabled by a GSEC
command.

SPCNI- Stop Counter Interrupts
(Command = OFOH)

The 8292 will not generate an EY interrupt when the
counter reaches O. Note that the counter will
continue counting. TCI will not be set.

SREM - Set Interface to Remote Control
(Command = OF8H)

If the 8292 is the System Controller, it will set REN

and TCI TRUE. Otherwise it only sets the User
Error Flag.

SLOC - Set Interface to Local Mode
(Command = OF7H)

If the 8292 is the System Controller, it will set REN
FALSE and TCI TRUE. Otherwise, it only sets the
User Error Flag.

EXPP - Execute Parallel Poll
(Command = OF5H)

If not Controller-in-Charge, the 8292 will treat this
as a NOP and does not set TCI. If it is the Control­
ler-in-Charge then it sets lOY (EOI & ATN) TRUE
and generates a local DAY pulse (that never reaches
the GPIB because of gates in the 8293). If the 8291 is

, configured as a listener, it will capture the Parallel
Poll Response byte in its data register. TCI is not
generated, the CPU must detect the BI (Byte In)
from the 8291. The 8292 will be ready to accept
another command before the BI occurs; therefore
the 829l's BI serves as a task complete indication.

6-457

GTSB - Go To Standby (Command = OF6H)

If the 8292 is not the Controller-in-Charge, it will
treat this command as a NOP and does not set TCI
TRUE. Otherwise, it goes to Controller Standby
State (CSBS), sets ATN FALSE and TCI TRUE.
This command is used as part of the Send, Receive,
Transfer and Serial Poll System commands (see
next section) to allow the addressed talker to send
datal status.

If the data transfer does not start within the specified
Time-Out, the 8292 sets TOUT2 TRUE in the Error
Flag Register and sets SPI (if enabled). The
controller continues waiting for a new command.
The CPU must decide to wait longer or to regain
control and take corrective action.

GSEC - Go to Standby and Enable Counting
(Command = OF4H)

This 'command does the same things as GTSB but
also initializes the event counter to the value pre­
viously stored in the Event Counter Register (default
value is 256) and enables the counter. One may wire
the count input to NDAC to count bytes. When the
counter reaches zero, it sets EY (and SPI if enabled)
in Interrupt Status and will set EY every 256 bytes
thereafter. Note that there is a potential loss of
count information if the CPU does not respond to
the EY I SPI before anoth~r 256 bytes hive been
transferred. TCI will be set at the end of the
command.

TCSY - Take Control Synchronously
(Command = OFDH)

If the 8292 is not in Standby, it treats this command
as a NOP and does not set TCI. Otherwise, it waits

231324-001

APPLICATIONS

for the proper handshake state and sets A TN
TRUE. The 8292 will set TOUT3 if the handshake
never assumes the correct state and will remain in
this command until the handshake is proper or a
RSTI command is issued. If the 8292 successfully
takes control, it sets TCI TRUE.

This is the normal way to regain control at the end of
a Send, Receive, Transfer or Serial Poll System
Command. If TCSY is not successful, then the
controller must try TCA~ (see warning below).

TCAS - Take Control Asynchronously
(Command = OFCH)

If the 8292 is not in Standby, it treats this command
as a NOP and does not set TCI. Otherwise, it
arbitrarily sets ATN TRUE and TCI TRUE. Note
that this action may cause devices on the bus to lose
a data byte or cause them to interpret a data byte as a
command byte. Both Actions can result in anoma­
lous behavior. TCAS should be used only in
emergencies. If TCAS fails, then the System
Controller will have to issue an ABORT to clean
things up.

GIDL - Go to Idle (Command =' OFIH)

If the 8292 is not the Controller in Charge and
Active, then it treats this command as a NOP and
does not set TCI. Otherwise, it se.ts ATN FALSE,
becomes Not Controller in Charge, and sets TCI
TRUE. This command is used as part of the Pass
Control System Command.

TCNTR - Take (Receive) Control
(Command = OFAH)

If the 8292 is not Idle, then it treats this command as
a NOP and does not set TCI. Otherwise, it waits for
the current Controller-in-Charge to set A TN
FALSE. If this does not occur within the specified
Time Out, the 8292 sets TOUTI in the Error Flag
Register and sets SPI (if enabled). it will not proceed
until A TN goes false or it receives an RSTI
command. Note that the Controller in Charge must
previously have sent this controller (via the 8291's
command pass through register) a Pass Control
message. When ATN goes FALSE, the 8292 sets
CIC, ATN and TCI TRUE and becomes Active.

SOFTWARE DRIVER OUTLINE
The set of system commands discussed below is
shown in Figure 14. These commands are imple­
mented in software routines executed by the main
CPU,

The following section assumes that the Controller is
the System Controller and will not Pass Control.
This is a valid assumption for 99+% of all
controllers. It also assumes that no DMA or
Interrupts will be used. SYC (System Control Input)

should not be changed after Power-on in any system
- it adds unnecessary complexity to the CPU's
software.

In order to use polling with the 8292 one must enable
TCI but not connect the pin to the CPU's interrupt
pin. TCI must be readable by some means. In this
application example it is connected to bit I port 6FH
on the ZT7488/ 18. In addition, the other three 8292
interrupt lines and the 8291 interrupt are also on that
port (SPI-Bit 2, fBFl-Bit 4, OBFI-Bit 3, 8291 INT­
Bit 0).

These drivers assume that only primary addresses
will be used on the GPIB. To use secondary
addresses, one must modify the test for valid
talk/listen addresses (range macro) to include
secondaries.

6-458

INIT INITIALIZATION

Talker/Listener

SEND SEND DATA
RECV RECEIVE DATA
XFER TRANSFER DATA

Controller

TRIG
DCLR
SPOL
PPEN
PPDS
PPUN
PPOL
PCTL
RCTL
SRQD

System Controller

REME
LOCL
IFCL

GROUP EXECUTE TRIGGER
DEVICE CLEAR
SERIAL POLL
PARALLEL POLL ENABLE
PARALLEL POLL DISABLE
PARALLEL POLL UNCONFIGURE
PARALLEL POLL
PASS CONTROL
RECEIVE CONTROL
SERVICE REQUESTED

REMOTE ENABLE
LOCAL
ABORT/INTERFACE CLEAR

Figure 14. Software Driver Routines

INITIALIZA TlON

8292 - Comes up in Controller Active State when
SYC is TRUE. The only initialization needed is to
enable the TCI interrupt mask. This is done by
writing OAOH to Port 68H. .

8291 - Disable both the major and minor addresses
because the 8291 will never see the 8292's com­
mands / ~ddresses (refer to earlier hardware discus­
sion). This is done by writing 60H and OEOH to
Port 66H.

231324-001

APPLICATIONS

Set Address Mode to Talk-only by writing 80H to
Port 64H.

Set internal counter to 3 MHz to match the clock
input coming from the 8085 by writing 23H to Port
65H. High speed mode for the handshakes will not
be used here even though the hardware uses three­
state drivers.

INIT:
Enable-8292

Enable TCI
Enable-829I

Disable major address
Disable minor address
ton
Clock frequency
All in terru pts off
Immediate execute pon

TALKER/LISTENER ROUTINES

Send Data

No interrupts will be enabled now. Each routine will
enable the ones it needs for ease of polling operation.
The INT bit may be read through Port 6FH. Clear
both interrupt mask registers.

Release the chip's initialization state by writing 0 to
Port 65H.

;Set up Int. pins for Port 6FH
;Task complete must be on

;In controller usage, the 8291
;Is set to talk only and/ or listen only
;Talk only is our rest state
;3 MHz in this ap note example

;Releases 8291 from init. state

SEND <listener list pointer> <count> <EOS> <data buffer pointer>

This system command sends data from the CPU to always sends Universal Unlisten. If it is desired to
one or more devices. The data is usually a string of send data to the listeners previously addressed, one
ASCII characters, but may be binary or other forms could add a check for a null list and not send UNL.
as well. The data is device-specific. Count must be 255 or less due to an 8 bit register.
My Talk Address (MT A) must be output to satisfy This routine also always uses an EOS character to
the GPIB requirement of only one talker at a time terminate the string output; this could easily be
(any other talker will stop when MT A goes out). The eliminated and rely on the count. Items in brackets
MT A is not needed as far as the 8291 is concerned _ () are optional and will not be included in the actual
it will be put into talk-only mode (ton).. code in Appendix A.

This routine assumes a non-null listener list in that it

SEND:
Output-to-8291 MTA, UNL
Put EOS into 8291
While 20H :::; listener:::; 3EH

output-to-8291 listener
Increment listen list pointer

Output-to-8292 GTSB
Enable-829I

Output EOI on EOS sent
If count < > 0 then

While not (end or count = 0)
(could check tout 2 here)

Output-to-8291 data
Increment data buffer pointer
Decrement count

Output-to-8292 TCSY
(If tout3 then take control async)
Enable 8291

No output EOI on EOS sent
Return

6-459

;We will talk, nobody listen
;End of string compare character
;GPIB listen addresses are
;"space" thru " >" ASCII
;'Address all listeners
;8292 stops asserting A TN, go to standby

;Send EOI along with EOS character

;Wait for EOS or end of count
;Optionally check for stuck bus-tout 2
;Output all data, one byte at a time
;8085 CREG will count for us

;8292 asserts A TN, take control sync.
;If unable to take control sync.
;Restore 8291 to standard condition

231324-001

APPLICATIONS

CONTROLLER
8291,8292

LSTN
CTLR ~ "t"

DEVICE

~ ... TALK
"Q"

DEVICE
to..

V ~ TALK
, "2" , "R"

DEVICE

~
I B 0 .OH \1---1

RECV 5

c=J

LSTN TALK
"+" "K"

"-
DEVICE

... ~ TALK
,,'?", "1\"

Figure 15. Flowchart For Receive Ending Conditions Figure 16. SEND to "1", "2", ">"; "ABCD"; EOS = "0"

Receive Data

RECV<talker> <count> <EOS> <data buffer pointer>

This system command is used to input data from a
device. The data is typically a string of ASCII
characters.

This routine is the dual of SEND. It assumes a new
talker will be specified, a count of less than 257, and
an EOS character to terminate the input. EOI
received will also terminate the input. Figure 15
shows the flow chart for the RECV ending
conditions. My Listen Address (MLA) is sent to
keep the GPIB transactions totally regular to

6-460

facilitate analysis by a GPIB logic analyzer like the
Ziatech ZT488. Otherwise, the bus would appear to
have no listener even though the 8291 will be
listening.

Note that although the count may go to zero before
the transmission ends, the talker will probably be
left in a strange state and may have to be cleared by
the controller. The count ending of RECV is
therefore used as an error condition in most
situations.

APPLICATIONS

RECV:
Put EOS into 8291
·If 40H :5 talker :5 5EH then

Output-to-8291 talker
Increment talker pointer
Output-to-8291 UNL, MLA
Enable-829I

Holdoff on end
End on EOS received
Ion, reset ton
Immediate execute pon

Output-to-8292 GTSB
While not (end or count = 0 (or tout2))

Input-from-8291 data
Increment data buffer pointer
Decrement count

(If count = 0 then error)
Output-to-8292 TCSY
(If Tout3 then take control async.)
Enable-829I

No holdoff on end
No end on EOS received
ton, reset Ion
Finish handshake
Immediate execute pon

Return error-indicator

TALK
"A"

DEVICE

.'{~.
LSTN

'1"

.\ .,
'.
:r ,~. " .. '. , ::.,

LSTN
"2"

DEVICE

LSTN
"+"

DEVICE

LSTN
">"

Figure 17. RECV from "R"; EOS = ODH

TALK
"Q"

TAl-K
HK"

TALK
"1\"

6-461

;End of string compare character
;GPIB talk addresses are
;"@" thru "~' ASCII
;Do this for consistency's sake
;Everyone except us stop listening

;Stop when EOS character is
;Detected by 8291
;Listen only (no talk)

;8292 stops asserting A TN, go to standby
;wait for EOS or EOI or end of count
;optionally check for stuck bus-tout2
;input data, one byte at a time

;Use 8085 C register as counter
;Count should not occur before end
;8292 asserts A TN take control
;If unable to take control sync.
;Put 8291 back as needed for
;Controller activity and
;Clear holdoff due to end

;Complete holdoff due to end, if any
;Needed to reset Ion

LSTN
"I"

CONTROLLER
8291,8292

CTLR
TALK

"A"

"
DEVICE

I' F1 . "1"·

DEVICE

DEVICE

TALK
"Q"

TALK
"K"

LSTN ~
">" f.~.:~~i: .. _

Figure 18. XFER from "/I" to "1", "2", "+"; EOS = ODH

231324-001

APPLICATIONS

Transfer Data

XFER < Talker> < Listener list> < EOS >

This system command is used to transfer data from a
talker to one or more listeners where the controller
does not participate in the transfer of the ASCII
data. This is accomplished through the use of the
8291's continuous acceptor handshake mode while
in listen-only.

XFER:
Output-to-8291: Talker, UNL
While 20H :5 listen :5 3EH

Output-to-829I : Listener
Increment listen list pointer

Enable-829I
lon, no ton
Continuous AH mode
End on EOS received
Immediate execute PON

Put EOS into 8291
Output-to-8292: GTSB

Upon end (or tout2) then
Take control synchronously

Enable-829I
Finish handshake
Not continuous AH mode
Not END on EOS received
ton
Immediate execute pon

Return

CONTROLLER

Group Execute Trigger

TRIG < Listener list>

This system command causes a group execute
trigger (GET) to be sent to all devices on the listener

TRIG:
Output-to-829l UNL
While 20H :5 listener :5 3EH

Output-to-8291 Listener
Increment listen list pointer

Output-to-8291 GET
Return

This routine assumes a device list that has the ASCII
talker address as the first byte and the string (one or
more) of ASCII listener addresses following. The
EOS character or an EOI will cause the controller to
take control synchronously and thereby terminate
the transfer.

;Send talk address and un listen

;Send listen address

;Controller is pseudo listener
;Handshake but don't capture data
;Capture EOS as well as EOI
;Initialize the 8291
;Set up EOS character
;Go to standby
;8292 waits for EOS or EO! and then

;Regains control
;Go to Ready for Data

list. The intended use is to synchronize a number of
instruments.

;Everybody stop listening
;Check for valid listen address
;Address each listener
;Terminate on any non-valid character
;Issue group execute trigger

6-462 231324-001

APPLICATIONS

CONTROLLER
8291,8292

LSTN R TALK
"I" "A"

--"
DEVICE

S TALK
"1" "Q"

DEVICE

LSTN TALK
"2" "R"

--"
DEVICE

I ~~:.,N J y
TALK
"K"

DEVICE

LSTN TALK
">" "A"

Figure 19. TRIG "1", "+"

Device Clear

DCLR < Listener list>

This system command causes a device clear (SDC)
to be sent to all devices on the listener list. Note
that this is not intended to clear the GPIB interface

Serial Poll

DCLR:
Output-to-829l UNL
While 20H :::; Listener:::; 3EH

Output-to-8291 listener
Increment listen list pointer

Output-to-8291 SDC
Return

SPOL < Talker list> < status buffer pointer>

This system command sequentially addresses the
designated devices and receives one byte of status
from each. The bytes are stored in the buffer in the

6-463

LSTN
.. ,"

CONTROLLER
8291,8292

CTLR TALK
"A"

LSTN

LSTN
">"

Figure 20. DCLR "1", "2"

TALK
"Q"

TALK
"R"

DEVICE

TALK
"K"

DEVICE

TALK
"1\"

of the device, but should clear the device-specific
logic.

;Everybody stop listening
;Check for valid listen address
;Address each listener
;Terminate on any non-valid character
;Selective device clear

same order as the devices appear on the talker list.
MLA is output for completeness.

231324-001

APPLICATIONS

SPOL:
Output-to-8291 UNL, MLA, SPE

While 40H ~ talker ~ 5EH
Output-to-8291 talker
Increment talker list pointer
Enable-829I

lon, reset ton
Immediate execute pon

Output-to-8292 GTSB
Wait for data in (BI)
Output-to-8292 TCSY
Input-from-8291 data
Increment buffer pointer
Enable 8291

;Unlisten, we listen, serial poll enable
;Only one byte of serial poll
;Status wanted from each talker
;Check for valid transfer
;Address each device to talk
;One at a time

;Listen only to get status
; This resets ton
;Go to standby
;Serial poll status byte into 8291
;Take control synchronously
;ActlJally get data from 8291

;Resets Ion
ton, reset Ion
Immediate execute pon

Output-to-8291 SPD
Return

;Send serial poll disable after all devices polled

CONTROLLER
8291,8292

,j

TALK
"'A"

LSTN

"'"

LSTN
"2"

LSTN
"+"

LSTN
">"

DEVICE

r~""" .. «'
~TALK,
I' "R"

DEVICE

Figure 21. SPOL "a", "Rn, 16K"," 1\"

Parallel Poll Enable

PPEN < Listener list> < Configuration Buffer pointer>

lSTN
"I"

CONTROLLER
8291,8292

R TALK
"A"

J-..
DEVICE

v LSTN TALK
"1" ~Q"

DEVICE

"
ffi V TALK
,',;2," .- "R"

J'.-
DEVICE

v LSTN TALK
"+" "K"

DEVICE

V LSTN TALK
">" "A"

Figure 22. PPEN "2"; IPaP.P, = 01118

This system command configures one or more list. 'The configuration byte has the format
devices to respond to Parallel Poll, assuming they XXXXIP3P2PI as defined by the IEEE Std. P3P2PI
implement subset PPI. The configuration informa- indicates the bit # to be used for a response and I
tion is stored in a buffer with one byte per device indicates the assertion value. See Sec. 2.9.3.3 of the
in the same order as devices appear on the listener Std. for more details.

/ 6-464 231324-001

APPLICATIONS

PPEN:
Output-to-8291 UNL
While 20H :5 Listener :5 3EH

Output-to-8291 listener
Output-to-8291 PPC, (PPE or data)
Increment listener list pointer
Increment buffer pointer

Return

Parallel Poll Disable

P P DS <listener list>

This system command disables one or more devices
from responding to a Parallel Poll by issuing a

LSTN
"I"

PPDS:
.Output-to-829l UNL
While 20H :5 Listener :5 3EH

Output-to-8291 listener
Increment listener list pointer

Output-to-829l PPC, PPD
Return

CONTROLLER
8291,8292

EJ TALK
"A"

DEVICE
'.

)~ TALK
"0"

DEVICE

~
lSTN TALK

"2" "R"

I\.
DEVICE

ffi II' TALK
"K"

"-
DEVICE

V ~ TALK
"A"

Figure 23. PPDS "1", "+", ">"

; Universal unlisten
;Check for valid listener
;Stop old listener, address new
;Send parallel poll info
;Point to next listener
;One configuration byte per listener

Parallel Poll Disable (PPD). It does not decon­
figure the devices.

; Universal U nlisten
;Check for valid listener
;Address listener

;Disable PP on all listeners

CONTROLLER
8291,8292

LSTN ~ TALK
"A"

I\.

'/

I\. ..

"-
II'

"-
v

Figure 24. PPUN

6-465

DEVICE

LSTN TALK
"1" "0"

DEVICE

LSTN TALK
"2" "R"

DEVICE

LSTN TALK
"K"

DEVICE

LSTN TALK
">" "A"

231324-001

APPLICATIONS

Parallel Poll Unconfigure

PPUN

This system command deconfigures the Parallel Poll
response of all devices by issuing a Parallel Poll
Unconfigure message.

PPUN:
Output-to-8291 PPU
Return

Conduct a Parallel Poll

P!,OL '

This system command causes the controller to con­
duct a Parallel Poll on the GPIB for approximately
12.5 usee (at 6 MHz): Note that a parallel poll does
not use the handshake; therefore, to ensure that the
device knows whether or not its positive response

PPOL:
Enable-829I

Ion
Immediate execute pon

Output-to-8292 EXPP ,
Upon BI

Input-from-8291 data
Enable-829I

ton
Immediate execute pon

Return Data (status byte)

Pass Control

PCTL <talker>

This system command allows the controller to
relinquish active control of the GPIB to another
controller. Normally some software protocol should
already have informed the controller to expect this,
and under what conditions to return control. The

PCTL:
If 40H ~ talker ~ 5EH then

if talker « > MT A then
output-to-8291 talker, TCT
Enable-829I

not ton, not Ion
Immediate execute pon
My device address, mode I
Undefined command pass through
(Parallel Poll Configuration)

Output-to-8292 GIDL
Return

, ;Unconfigure all parallel poll

was observed by the controller, the CPU should
explicitly acknowledge each device by a device­
dependent data string. Otherwise, the response bit
will still be set when the next Parallel Poll occurs.
This command returns one byte of status.

;Listen only
;This resets ton
;Execute parallel poll
; When byte is input
;Read it

;Talk only
;This resets Ion

8291 must be set up to become a normal device
an,d the CPU must handle all commands passed
through, otherwise control cannot be returned (see
Receive Control below). The controller will go idle.

;Cannot pass control to myself
;Take, control message to talker
;Set up 8291 as normal device

;Reset ton and Ion
;Put device number in Register 6
;Required to receive control
;Optional use of PP
;Put controller in idle

6-466 231324-001

APPLICATIONS

CONTROLLER
8291,8292

I L~~N "_

TALK
"A"

< ~

- Z 0 c
0101 DEVICE

LSTN TALK
"1" "0"

DIO 2 DEVICE

LSTN TALK
"2" "R"

DIO 3 DEVICE

LSTN TALK
"+" "K"

DEVICE

LSTH TALK
">" "1\"

Figure 25. PPOL

Receive Control

RCTL

Th,is system command is used to get control back
from the current controller-in-charge if it has passed
control to this inactive controller. Most GPIB
systems do not use more than one controller and
therefore would not need this routine.

To make passing and receiving control a man­
ageable event, the system designer should specify a

RCTL:
Upon CPT,

If (command=TCT) then
If TA then

Enable-8291
Disable major device number
ton
Mask off interrupts
Immediate execute pon

CONTROLLER
8291,8292

LSTN R TALK
"I" "A" .

~
DEVICE

, '
LSTN TALK

"1" "0"

DEVICE

~
V LSTN TALK

"2" "R"

"
DEVICE

V LSTN TALK
"+" "K"

~
DEVICE

V LSTN TALK

LSTN t?t.
">" """ eTLR

"#" , "C"

CONTROLLER

Figure 26. PCTL "C"

protocol whereby the controller-in-charge sends a
data message to the soon-to-be-active controller.
This message should give the current state of the
system, why control is being passed, what to do,
and when to pass control back. Most of these issues
are beyond the scope of this Ap Note.

;Wait for command pass through bit in 8291
;If command is take control and
; Weare talker addressed

;Controller will use ton and Ion
;Talk only mode

6-467 231324-001

APPLICATIONS

LSTN
HI"

LSTN
"#"

Output-to-8292 TCNTR
Enable-829I

Valid command
Return valid

Else
Enable-8291

Invalid command
Else

Enable-8291
Invalid command

Return invalid

CONTROLLER
8291,8292

eTLR ~
>-

~
v LSTN

"1"

"-
v LSTN

"2"

~ v LSTN
"+"

~
J v LSTN

~
">"

TALK
"e"

CONTROLLER

Figure 27. RCTL

DEVICE

DEVICE

DEVICE

DEVICE

Service Request

SRQD

TALK
"0"

TALK
"R"

TALK
"K"

TALK
"A"

This system command i~ used to detect the occur­
rence of a Service Request on the GPIB. One or
more devices may assert SRQ simultaneously, and

;Take (receive) control

;Release handshake

;Not talker addr. so TCT not for us

;Not TCT, so we don't care

SYSTEM
CONTROLLER

8291,8292

LSTN B TALK
"!" "A"

15
a:

DEVICE

LSTN TALK
"1" "0"

DEVICE

LSTN TALK
"2" "R"

DEVICE

LSTN TALK
"+" "K"

DEVICE

LSTN TALK
">" "An

Figure 28. REME

the CPU would normally conduct a Serial Poll
after calling this routine to determine which devices
are SRQing.

6-468

APPLICATIONS

SRQD:
If SRQ then

Output-to-8292 IACK.SRQ
Return SRQ

Else return no SRQ

SYSTEM CONTROLLER

Remote Enable

REME

This system command asserts the Remote Enable
line (REN) on the GPIB. The devices will not go

Local

LOCL

REME:
Output-to-8292 SREM
Return

This system command deasserts the REN line on the
GPIB. The devices will go local immediately.

LOCL:

;Test 92 status bit
;Acknowledge it

remote until they are later addressed to listen by
. some other system command.

;8292 asserts remote enable line

Output-to-8292 SLOC ;8292 stops asserting remote enable
Return

SYSTEM
CONTROLLER

8291,8292

SYSTEM
CONTROLLER

LSTN B TALK
"I" "A"

LSTN III TALK
"I" "A"

I~ u
!!:

OEVICE DEVICE

lSTN TALK LSTN TALK
"1" "0'\ "1" "Q"

OEVICE DEVICE

LSTN TALK LSTN TALK
"2" "R" "2" "R"

DEVICE DEVICE

LSTN TALK LSTN
"+" "K" "+"

DEVICE DEVICE

LSTN TALK LSTN TALK

">" "1\" ">" "/I."

Figure 29. LOCL Figure 30. IFCL

6-469 231324-001

APPLICATIONS

Interface Clear/Abort

IFCL

This system command asserts the GPIB's Interface
Clear (IFC) line for at least 100 microseconds.
This causes all interface logic in all devices to go to
a known state. Note that the device itself ~ay or

IFCL:

may not be reset, too. Most instruments do totally
reset upon IFC. Some devices may require a DCLR
as well as an IFCL to be completely reset. The
(system) controller becomes Controller-in-Charge.

Output-to-8292 ABORT
Return

;8292 asserts Interface Clear
;For 100 microseconds

INTERRUPTS AND
DMA CONSIDERATIONS

The previous sections have discussed in detail how
to use the 8291, 8292, 8293 chip set as a GPIB
controller with the software operating in a polling
mode and using programmed transfer of the data.
This is the simplest moqe of use, but it ties up the
microprocessor for the duration of a GPIB transac­
tion. If system design constraints do not allow this,
then either Interrupts and/ or DMA may be used to
free up processor cycles.

The 8291 and 8292 provide sufficient interrupts that
one may return to do other work while waiting for
such things as 8292 Task Completion, 8291 Next
Byte In, 8291 Last Byte Out, 8292 Service Request

MAIN CODE

USER:

ACTIVATE

INTERRUPT CODE

In, etc. The only difficulty lies in integrating these
various interrupt sources and their matching
routines into the overall system's interrupt structure.
This is highly situation-specific and is beyond the
scope of this Ap Note.

The strategy to follow is to replace each of the WAIT
routines (see Appendix A) with a return to the main
code and provide for the corresponding interrupt to
bring the control back to the next section of GPIB
code. For example WAITO (Wait for Byte Out of
8291) would be replaced by having the BO interrupt
enabled and storing the (return) address ofthe next
instruction in a known place. This co-routine
structure will then be activated by a BO interrupt.
Fig. 31 shows an example of the flow of control.

GPIB SUBROUTINE

SEND:

SEND • (WAIT 0)

_____ INT: ~

::;--- G~O?----
(WAIT 0)

_~INT~p-IB-BO? ___ ------~
... (WAIT 0) ==== ~ INT:= _=
~ GPIBBO?-
.. (WAITT)

. ~INT:GPIBBO~
=~ GPIBTCI?

ETC. ETC.

Figure 31. GPIB Interrupt & Co-Routine Flow of Control

6-470

· ,

APPLICATIONS

DMA is also useful in relieving the processor if the
average length of a data buffer is long enough to
overcome the extra time used to set up a DMA chip.
This decision will also be a function of the data rate
of the instrument. The best strategy is to use the
DMA to handle only the data buffer transfers on
SEND and RECV and to do all the addressing and
control just as shown in the driver descriptions.

tude. It will then tell the counter to measure the
frequency and Request Service (SRQ) when com­
plete. The program will then read in the data. The
assembled source code will be found at the end of
Appendix A.

Another major reason for using a DMA chip is to
increase the data rate and therefore increase the
overall transaction rate. In this case the limiting
factor becomes the time used to do the addressing
and control of the GPIB using software like that in
Appendix A. The data transmission time becomes
insignificant at DMA speeds unless extremely long
buffers are used.

Refer to Figure 11 for a typical DMA and interrupt
based design using the 8291, 8292, 8293. A system
like this can achieve a 250K byte transfer rate while
under DMA control.

APPLICATION EXAMPLE
This section will present the code required to operate
a typical GPIB instrument set up as shown in Fig.
32. The HP5328A universal counter and the
HP3325 function' generator are typical of many
GPIB devices; however, there are a wide variety of
software protocols to be found on the GPIB. The
Ziatech ZT488 GPIB analyzer is used to single step
the bus to facilitate debugging the system. It also
serves as a training/familiarization aid for new­
comers to the bus.

LSTN
"r"

ZT7488118
CONTROLLER

eTLR
TALK

"A"

HP5328A
COUNTER

LSTN TALK
"1" ''0"

HP3325A
FUNCTION

GENERATOR

LSTN TALK
"2" "R"

ZT488
GPIB ANALYZER

This example will set up the function generator to
output a specific waveform, frequency and ampli- Figure 32. GPIB Example Configuration

SEND
LSTN: "2", COUNT: 15, EOS: ODH, DATA: "FUlFR37KHAM2VO (CR)"
;SETS UP FUNCTION GEN. TO 37 KHZ SINE, 2 VOLTS PP
;COUNT EQUAL TO # CHAR IN BUFFER
;EOS CHARACTER IS (CR) = ODH = CARRIAGE RETURN

SEND
LSTN: "I", COUNT: 6, EOS: "T" DATA: "PR4G7T"
;SETS UP COUNTER FOR P:INITIALIZE, F4: FREQ CHAN A

G7:0.1 HZ RESOLUTION, T:TRIGGER AND SRQ
;COUNT IS,EQUAL TO # CHAR

WAIT FOR SRQ
SPOL TALK: "Q", DATA: STATUS 1

;CLEARS THE SRO-IN THIS EXAMPLE ONLY FREQ CTR ASSERTS SRQ

RECV TALK: "Q", COUNT: 17, EOS: OAH,
DATA: " + 37000.0E+O" (CR) (LF)
;GETS 17 BYTES OF DATA FROM COUNTER
;COUNT IS EXACT BUFFER LENGTH
;DATA SHOWN IS TYPICAL HP5328A READING THAT WOULD BE RECEIVED

&-471 231324-001

APPLICATIONS

CONCLUSION
This Application Note has 'shown a structured way
to view the IEEE 488 bus and has given typical code
sequences to make the Intel 8291, 8292, and 8293's
behave as a controller of the GPIB. There are other
ways to use the chip set, but whatever solution is
chosen, it must be integrated into the overall system
software.

The ultimate reference for GPIB questions is the
IEEE Std 488, -1978 which is available from IEEE,
345 East 47th St., New York, NY, 10017. The ulti­
mate reference for the 8292 is the source listing fot it
(remember it's a pre-programmed UPI-41A) which
is available fiom IN SITE, Intel Corp., 3065 Bowers
Ave., Santa Clara, CA 95051.

APPENI)IX A

ISIS-II 8080/8085 MACHO ASSEMBLER, V3.0
GPIB CONTROLLER SUBROU'rINES

LOC OBJ

1 fIIl1J 9

0060
"''''60

"'061
0061
0"'02
011111
01H0
0089

0062

0064
0080
00411
00CII
00111

0064
IIJII20
0002
01191

11065
1l1l23

LINE SOURCE STI'.TEMEN'r

1 $'rITLE (. GPIB CONTROLLER SUBROUTINES ')
2
3 GPIB CONTROLLER SUBROUTINES
4
5
6
7
8
9

10
11
12

.. 13
14
15
H;
17 PRT91
18
19 ;
20 DIN
21 DOUT
22
23 ;
24 INTI
25 INTM'l
26 BOM
27 BIM
28 ENDMK
29 CPT
30
31 ;
32 INT2
33 ;.
34
35
31;
37
38
39
4f11
41
42
43
44
45
46
47 •

;
ADRMD
TON
LON
TLON
MODEl

;
ADRST
EOIST
TA
LA

48 AUXMD
49 CLKRT

for Intel 8291, 8292 on ZT 7488/18
Bert Forbes, ziatech Corpor.atIon
2410 Broad Street
San LuI s ObIspo, CA, USA 93'461

General DefInItIons & Equates
8291 Control Values

ORG 11l1lllH ; For ZT7488/18 w/8085

EQU 60H ;8291 Base Port.

Reg III Data In & Data out
EOU PRT91+1l ;91 Data In reg
EQU PRT91+0 ;91 Data out req

Req
EQU
EQU
EQU
EQU
EQU
EQU

, 1 Interrupt 1 Constants
PRT91+1 ;INT Reg 1
PRT91+1 ; IN'f Mask Reg. 1
02 ;91 BO INTRP Mask
01 ;91 81 INTRP Mask
10H ;91 END INTRP Mask
BIlH ;91 command pass thru

Reg 12 Interrupt 2
EQU PRT91+2

.4 Address Mode Constants

int bit

Reg
EOU
EQU
EQU
EQU
EQU

PRT91+4 ;91 address mode register.

Reg '4
EQU
EOU
EQU
EOU

Reg 15
EQU
EQU

81lH ;91 talk only mode & not listen 'only
40H ;91 listen only & not ton
IlCIlH ;91 talk & listen only
III ;mode 1 addressing for device

(Read)
PRT91+4 ; reg t4
20H

Address Status Register

J 2
1 ; Ii stel'!er acti ve

(Write) AuxilIary Mode Register
PRT91+5 ;91 auxilIary mode reqIster •
23H ;91 3 Mhz clock input

6-472 231324-001

APPLICATIONS

01HJ3 50 FNHSK EQU 03 ;91 fininsh handshake command
0"'06 51 SDEOI EOU 01i ;91 send EOI with next byte
"'080 52 AXRA EQU 8aH ;91 aux. reg A pattern
"'001 53 HOHSK EQU 1 ;91 hold off handshake on all bytes
00"'2 54 HOEND EQU 2 ;91 hold off handshake on end
0003 55 CAHCY EQU 3 ; 91 continuous AH cycling
0004 56 EDEDS EQU 4 ;91 end on EOS received
0008 57 EOIS EQU 8 ;91 output EOI on EOS sent
'Hl0F 58 VSCMD EQU 0FH ;91 valid command pass through
"007 59 NVCMD EOU 07H ;91 invalid command pass through
00A11 60 AXRB EQU 0A01i ;Aux. reg. B pattern
0001 iiI CPTEN EQU 01H ;command pass thru enable

1i2 ,
63 ; Reg ~5 (Read)

0065 'i4 CPTRG EQU PRT91+S
65
66 , Reg #6 Address 0/1 reg. constants

0066 67 ADR01 EQU PRT91+1i
0060 68 D'rDLl EQU 60H ;Disable major talker & listener
f<HlE0 69 DTDL2 EOU IlE0H ;Disahle minor talker & listener

70
71 , Reg n 80S Character Register

0067 72 EOSR EQU PRT91+7
73
74
75 8292 CONTROL VALUES
76
77
78 ,

0068 79 PRT92 EQU PRT91+8 ;8292 Base Port * (CS7)
80 ,

"068 81 INTMR EQU PRT92+0 ;92 INTRP Mask Reg
001'.0 82 INTM EQU IlA0H ;TCI

83 ,
006'8 84 ERRM EQU PRT92+0 ;92 Error Mask Reg
0~01 85 TOUTI EQU 01 ;92 'rime Out for Pass Control
0QJ02 86 TOUT2 EQU 02 ;92 Time Out for Standby
0004 87 TOUT3 EQU 04 ;92 Time Out fo r Take Control Sync
"'0fi8 88 EVREG • EQU PRT92+0 ;92 Event Counter Pseudo Reg
0068 89 TOREG EQU PRT92+0 ;92 Time Out Pseudo Reg

90 ;
0069 91 CMD92 EQU PRT92+l ;92 Command Register

92 ,
0069 93 INTST EQU PRT92+l ;92 Interrupt Sta tus Reg
0010 94 EVBIT EQU 10H ;Event Counter Bit
0002 95 IBFBT EQU O2 ;Input Buffer Full Bit
0020 95 SRQBT EQU 20H ;Seq bit

97 ,
001;8 98 ERFLG EQU PRT92+0 ; 92 Error Flag Pseuno Reg
1"'68 99 CLRST EQU PRT92HJ ;92 Controller Status Pseudo Reg
"068 Hl0 BUSST EQU PRT92+0 ; 92 GPIB (Bus) Status Pseudo Reg
0068 101 EVCST EQU PRT92+0 ;92 Event Counter Status Pseudo Reg
0068 102 TOST EQU PRT92+0 ;92 Time Out Status Pseudo Reg

HI3
104 8292 OPERATION COMMANDS
105
106 ,

00F0 107 SPCNI EQU 0F0H ; Stop Counter Interrupts
00Fl HlJ8 GIDL EQU 0FIH ;Go to idle
00F2 109 RSET EQU QJF2H ;Reset
00F3 110 RSTI EQU 0F3H ;Reset Interrupts
00F4 111 GSEC EQU 0F4H ;Goto standby, enable counting
"0F5 112 EXPP EQU fIlF5H ;P.xecute parallel poll
QJfIlF6 113 GTSB EQU QJF6H ;Gato standby
00F7 114 SLOC EQU QJF7H ;Set local mode
00F8 115 SREM EQU 0F8H ;Set interface to remote
00F9 116 ABORT EQU 0F9H ;Abort all operation, clear inter face
0"FA 117 TCN'rR EQU 0FAH ;Take control (Receive control)
00FC 118 TCASY EQU "'FCH ;Take control asyncronously
0"'FD 119 TCSY E:QU 0FDH ;Take control syncronously
00FE 120 STCNI EQU 0FEH ;Start counter interrupts

121
122

6-473 231324-001

00El
00E2
00E3
00E4
00E5
00E6
00E7
00E9
00EA
000B

006F
0002
0004
0008
0010
0001

00111
0041
0021
003F
0008
0004
0018
0019
0005
0070
0060
0015
0009

123
124
125
12'6
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
!Filll
lfil
1<;2
163
164
11;5
HI';
1<;7
168
169
170
171
172
173
174
175
176
177
17A
179
lAI!
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

;
WOUT
WEVC
REVC
RERF
RINM
RCST
RSST
RTOUT
RERM
lACK

;
PRTF
TCIF
SPIF
OSFF
IBFF
BOF

MDA
MTA
MLA
UNL
GET
SDC
SPE
SPD
PPC
PPD
PPE
PPU
'rCT

SETF

,
WAlTa

WAITL:

;
WAITI

WAITL:

;
WAITX

WAITL:

APPLICATIONS

8292 UTILITY COMMANDS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0EIH
0E2H
0E3H
I'JE4H
0E5H
0E6H
0E7H
0E9H
0EAH
0BH

;Write to timeout reg
;Write to event counter
;Read event counter status
;Read error flag reg
;Read interrupt mask reg
;Read controller status reg
;Read GPIB Bus status reg
;Read timeout status reg
;Read error mask reg
;Interrupt Acknowledge

PORT F BIT ASSIGNMENTS

EQU PRT91+0FH ;ZT7488 port 6F for interrupts
EQU 02H ;Task complete interrupt
EQU 04H ;Special interrupt
EQU 08H ;92 Output (to CPU) Buffer full
EQU 10H ;92 Input (from CPU) Buffer empty
EOU 01H ;91 Int line (BO in this case)

GPIB ~ESSAG~S (COMMANDS)

EQU
EQU
EQU
EQU
8QtJ
EQU
EOU
EQU
EQU
EQU
EQU
EQU
8QU

1
MDA+40H
MDA+20H
3FH
08
04H
18H
19H
05
70H
60H
ISH
09

;My device address is 1
;My talk address is 1 ("A")
;My listen address is 1 ("!")
;Universal unlisten
;Group Execute Trigger
;Device Clear
;Serial poll enable
;Serial poll disable
;Parallel poll configure
;Parallel poll disable
;Parallel poll disahle
;Paral1el poll unconfigured
;Take control (pass control)

MACRO DEFINI'rIONS

MACRO
ORA
END..,

I~ACRO

LOCAL
IN
ANI
JZ
ENDM

MACRO
LOCAL
IN
MOV
ANI
JZ
ENDM

MACRO
LOCAL
IN
ANI
JNZ
ENDM

A

WAITL
INTI
BaM
WAITL

WAITL
INTI
B,A
BIM
WAITL

WAITL
PRTF
TCIF
WAITL

6-474

;Sets flags on A reqister

;Wait for last 91 byte to he done

;Get Inti status
;Check for hyte out
;If not, try again
;until it is

;Wait for 91 hyte to be input

;Get INTI status
;Save status in B
;Check for byte in
;If not, just try again
;until it is

;Wait for 92's TCI to go false

231324-001

11"'0 3EAA
1002 D368
11""4 3E6~
1006 D366
1008 3EE0
HIllA D36<;
1Il0C 3e80
H10E: D364
1010 3(0;23
1012 D3'55

1014 AF
1015 D361
1017 D362
1019 D355
101B C9

196 WAITT
197
198 WAITL:
199
200
201
202
203 RANGE
204
205
206
207
208
209
210
211
212
213
214
215
216 CLRA
217
218
219

MACRO
LOCAL
IN
ANI
JZ
ENDM

MACRO

MOV
CPI
JM
CPI
JP
ENDM

MACRO
XRA
eNDM

APPLICATIONS

WAITL
PRTF
TCIF
WAITL

;Get task complete int,etc.
;Mask it
;Wait for task to be complete

LOWE:R,UPPER,LA8EL

A,M
LOWER
LABEL
UPPER+l
LABEL

A

;Checks for value in range
;branches to label if not
lin range. Falls through if
; l-ower <= ((H) (L)) <= upper.
;Get next byte.

;A XOR A =0

220
221

'All of the following routines have these common
assumptions about the state of the 8291 & 8292 upon entry

222 to the routine and will exit th~ routine in an identical state.
223
224

8291:

8292:

BO is or has been set,
All interrupts are masked off
'faN mode, not LA
No holdoffs in effect or enabled
No holdoffs waiting for finish command

ATN asserted (active controller)
note: RCTL is an exception--- it expects
to not be active controller
Any previous task is complete & 92 is
ready to receive next command.

225
226
227
228
229
230
231
232
233
234
235
236 8085: Pointer registers (DE,HL) end one
237
238
239
240

; beyond last legal entry
;***

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
255
257
258
259+
260
261
252
263
264 ,

IN ITIALI ZATION
;
; INPU'rS: None
;OU'rpUTS: None
;CALLS: None
;DESTRO'lS: A,F

INIT: MVI A,INTM
OUT INTMR
MVI A,DTDL1
OUT ADR0l
MVI A,DTDL2
ou'r ADR01
'1VI A,TON
OUT ADRMD
MVI A,CLKRT
ou'r AUXMD
CLRA
XRA A
ou'r INTI
ou'r INT2
OUT AUXMD
RET

ROUTINE

;Enable TCI
;Output to 92's intr. mask reg
;Disable major talker/listener

;Disable minor talker/listener

;Talk only mode

;3 MHZ for delay timer

;A XOR A =0

;Disable all 91 mask hits
; Immediate execute PO"

265 ;***
2,66
267
268
269

SEND ROU'rINE

6-475 231324-001

101C 3E41
leu 03~0

1020 0661
1022 E602
1024 CA2010
1027 3E3F
1029 0360
1026 78
102C 0357

11'121': 7,;
IB2F FE20
1031 FA4710
1034 ~'E3F

11'136 F24710

1039 OB61
103B E602
1030 CA3910
1040 7E
1041 03~0
1043 23
1044 C32E10

1047 OBH
11149 E602
1I14B CA4710

104E 3EF6
1050 0369
1052 3E88
1054 0365

105~ DB6F
11'158 E632
105A C25~10

105D OB6F
105F e602
1061 CA5DU

1064 79

1065 B7
1065 CA8S10
1069 lA
106A D31;0
106C 88

270
271
272
273
274
275
276
277
278
279
280
281 •
282 SeND:
283
284
285+170001 :
286+
287+
288
289
290
291
292
293 SE1IIol:
294+
29.5+
29~+

297+
298+
299+
300+
301+
302+
303+
304
30S+??0a02:
306+
307+
308
309
310
311
312
313 Se1llD2:
314+??0033:
315+
316+
317
318
319
320
321
322
323
324+170034:
325+
326+
327
328+??0005:
329+
330+
331
332 ;
333 ;
334
335
336+
33.J
338 SEND3:
339
340
341
342

APPLICATIONS

INPu'rs:

ou'rpUTS:
CALLS:

HL listener list pointer
DE data buffer pointer
C count-- 13 will cause no data to be sent
b EOS character-- software detected
none
none

DESTROYS: A, C, DE, HL, F

MVI
ou'r
WAITO

IN
ANI
JZ
MVI
ou'r
MOV
OUT

RANGE

MOV
CPI
JM
CPI
JP
'.AITO

IN
ANI
JZ
MOV
ou'r
INX
J'1P

WAITO
IN

ANI
JZ

MVI
OUT
.,VI
OUT
WAITX
IN
ANI
JNZ
WA~TT
IN
ANI
.1Z

A,MTA
DOUT

IN'U
BOM
1700911
A,U1IIL
DOU1'
A,B
EOSR

; Send .,'rA to turn 0 f f any
; pr ev io us tal ker

;Get IntI status
;Check for byte out
;If not, try aqain
;Send universal un1isten
ito stop previous listeners
;Get EOS character
;Output it to 8291
;while listener •••••

20H,3EH,SEND2 ;Check next listen address

A,M
20H
SEND2
3EH+l
SEND2

IN'U
BOM
??0002
A,M
DOU'r
H
SENDI

INTI
BOM
??0003

;Checks for value in ranqe
;hranches to label if not
;in range. Falls throuqh if
;lower C= ((H) (L)) C= upper.
;Get next hyte.

;Wait for previous listener sent
;Get IntI status
;Check for byte out
;If not. try a·gain

;Get this listener
;Output to GPIB
;Incre~ent listener list pointer
;Loop till non-valid listener
;Enable 91 endin~ conditions

;Wait for Istn addr accepted
;Get IntI status
;Check for byte out
;If not, try again
;WAITO required for early versions
;of 8292 to avoid GTSB before DAC

A,GTSB ;Goto standhy
CMD92 ;
A,AXRA+EOIS ;Send EOI with EOS character
AUXMO

PRTF
TCIF
??0~04

PRTF
TCIF
17A005

;Wait for TCI to go false

;Wait for TCI on GTSR
;Get task complete int,etc.
;Mask it
;Wait for task to he complete

delete next 3 instructions to make count of 0=25"

MOV A,C
SETF
ORA A
JZ SENDIi
LDAX D
OUT DOUT
C"'IP A

;Get count
; Set flags

;If count=0, send no data
;Get data byte
;Output to GPIB
;Test EOS ••• this is faster
;and uses less code than using
;91's END or EOI bits

6-476 231324-001

1MD CA7~'U

1070 DB61
11172 E6\!2
1074 CA7010
1077 13
lIl78 IlD
11179 C26911l
le7C C38811l
11l7F 13
11180 IlD

1081 DS!;l
·11l83 E602
11185 CA8U0

HI88 3EFD
108A D31;9
U8C 3E80
HJSE D365

11'90 DB6F
1092 EI;02
1094 C290HI

1097 DB6F
1099 EI;02
l09B CA971111
109E C9

109F 78
lllAll D367

10A2 7E
11lA3 FE40
10A5 FA3911
10A8 FE5F
10AA F23911

10AD D360
lllAF 23

10B0 DBf'i1
11lB2 &1\02
1084 CAB011l
10B7 3E3F
UB9 D3f'i0

IIlBS DBf'il
UBD E602
10BF CABBHJ

343
344 SEND4:
345+110006:
341;+
347+
348
349
350
351
352 SENDS:
353
354

355+??0007:
356+
357+
35R
.359 SENDI;:
360
361
362
363
31;4+??01l08 :
31i5+
31;,+
31i7
368+??0009:
369+
370+
371

JZ
WAITO

IN
ANI
JZ
INX
DCR
JNZ
J~P

INX
DCR
WAI'rO

IN
ANI
JZ

MVI
OUT
MVI
OUT
WAITX
IN
Alii I
JNZ
WAIT'r
IN
ANI
JZ
RET

APPLICATIONS

SENDS

INTl
80.'1
??0000
D
C
SEND3
SENDS
D
C

INTI
BOM
??01H'17

A,TCSY
CMD92
A,AXRA
AUXMD

PRTF
TCIF
??01""18

PRTF
TCIF
??0009

;If char = EOS , go finish

;Get Intl status
;Check for byte out
;If not, try again
; Increment buffer pointer
;Decrement count
;If count (> 0, go send
;Else go finish
; fo r consi stency
; II

;This ensures that the standard entry
;Get IntI status
;Check for byte out
;If not, try a1ain
;assumptions for the next SUbroutine are
;Take control syncronously

;Reset send EOI on EOS

;Wait for TCI false

;Wait for
;Get task
;Mask it
;Wait for

TCI
complete int,etc.

task to be complete

met

372 ;***
373
374
375
376 ,

RECEIVE ROUTINE

377 ; INPU'r:
378
379
380 ,
381 ;Ou'rpUT:
382 ;CALLS:
383 ; DESTROYS:
384 ;
385 ; RETURNS:
38,
387
388
389
390 RECV:
391
392
393+
394+
395+
395+
397+
398+
399+
400+
4(111+
402+
403
404
405
406
407+??0010 :
408+
409+
410
411
412
413+??0011:
414+
415+

MOV
ou'r
R.ANGE

MOV
CPI
JM
CPI
,JP

ou'r
INX
WAITO

IN
Alii I
JZ
MVI
ou'r
'IIAITO

IN
ANI
JZ

HL talker pointer
D~ data buffer pointer
C count (max buffer size) 0 implies 251\
B EOS character
Fills buffer pointed at by DE
None
A, BC, DE, HL, F

A=1l normal termination--EOS detected
A=40 Error--- count overrun
A(40 or A>5EH Error--- bad talk address

A,S ;Get EOS character
EOSR ;Output it to 91
40H,5EH,RECV6

A,M
40H
RECV6
5EH+l
RECVn

DOUT
H

INTl
BOM
??0010
A,UNL
DOUT

INTI
BOM
??~HlU

;Checks for value in range
;branches to label if not
lin range. Falls through if
;lower (= ((H) (L)) <= upper.
;Get next byte.

;valid if 40H<= talk <=5EH
;Output talker to GPIB
;Incr pointer for consistency

;Get IntI statu~
;Check for byte out
;If not, try again
;Stopother listeners

;Get Intl status
;Check for byte out
;If not, try again

6-477 231324-001

11lC2 3[;;21
11lC4 03'51l
11lC6 3E86
11lC8 0365

HlCA OB61
11lCC E61'12
11lCE CACAHI
10Dl 31>41l
1I'JD3 0364

1005 AF
1Il06 0365.
1"08 3EF6
HlOA 03<;9

100C OB6F
HIDE E61l2
10EIl C20CHI

lIlE 3 DB6F
lIlE5 E602
10EA OB61
lIlEC 47
HIED E611!
11lEF C21l511
lIlF2 78
11lF3 E61l1
If1lF5 CAEAlf1l
If1lF8 OB61'1
lIIFA 12
11lFB 13
lI'IFC 0D
HJFD C2EAlf1l
110" 0640
IHl2 C31711

1105 78
11116 1>61l1
11f1l8 C21011
111lB DB61
110D C30611
'1110 DB60
1112 12
1113 13
1114 00
1115 1'1600

i117 3EFD
1119 D369

lllB DS6F
111D E602
lllF C21Bll

1122 DS6F
1124 E602
1126 CA2211

1129 3E81')
1128 0355
1120 3E81l
112F 0364
1131 3Et;l3
1133 0365

1135 AF
1136 0365
1138 78
1139 C9

416
417
418
419
42f1l
421+??0012:
422+
423+
424
425
426
427+
428
429
430
431
432+??0Bl3:
433+
434+
435
43 fi+??I'I(J 14 :
437+
439 RECVl:
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

,
RECV2:
RECV3:

459 RECv4:
460
461
462
463
464 ;
465 RECV5:
466
467
468+??0015:
469+
470+
471
472+??IlIH6:
473+
474+

;

"lVI
OU'f
MVI
OU'f
WAITO

IN
ANI
JZ
"I VI
OU'f
CLRA
XRA
OUT
MVI
ou'r
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
IN
MOV
ANI
JNZ
MOV
ANI
JZ
IN
STAX
INX
OCR
JNZ
MVI
JMP

MOV
ANI
JNZ
IN
JMP
IN
STAX
INX
OCR
MVI

MVI
OU'f
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ

APPLICATIONS

A,MLA ;For completeness
DOU'r
A,AXRA+HOEND+EDEOS
AUXMD ;EOS or EOI

; Entl when
& Holnoff

INTI
BOM
??01'112
A,LON
ADRI~D

A
AUXMD
A,GTSB
CMD92

PRTF
TCIF
??1'I"'13

PRTF
TCIF
INTI
B,A
ENDMK
RECV2
A,B
BIM
RECVl
DIN
o
o
C
RECVl
B,4f1lH
RECV5

A,B
BIM
RECV4
INTI
RECV3
DIN
o
o
C
B,Il

A,TCSY
CMD92

PRTF
TCIF
??I'I1'I15

PRTF
TCIF
??~016

;Get IntI status
;Check for byte out
;If not, try again
;Listen only

;Immediate XEO PON
;1'. XOR A =1'1

;Goto standby

;Wait for TCI=!!

;Wait for TeI=l
;Get task complete int,etc.
;Mask it
;Get 91 Int status (END &/or BI)
;Save it in B for BI check later
;Check for EOS or EOI
;Yes end--- go wait for BI
;NO, retrieve status &
;check for BI
;NO, go wait for either END or BI
;YES, BI--- get data
;Store it in buffer
;Increment buffer pointer
;Decrement counter
;If count < > 1'1 go back & wait
;E1se set error indicator
;And go take control

;Retreive status
;Check for BI
;If BI then go input data
;Else wait for last BI
;In loop
;Get data byte
;Store it in buffer
;Incr data pointer
;Decrement count, but ignore it
;Set normal completion indicator~

;Take control synchronously

;Wa i t for TCI=0 (7 tcy)

;Wait for
;Get task
,;Mask it
;Wait for

TCI=l
complete int,etc.

task to be complete
475
476
477
478
479
480

;if timeout 3 is to be checked, the above WAITT should
;be omitted & the appropriate code to look for TCI or
;TOUT3 inserted here.

481
482
483
484
485
486
487+
488
489
490 RECV6:

MVI
ou'r
t.1VI
OUT
'MVI
OUT
CLRA
XRA
OU'f
I~OV

RET

A,AXRA
AUXMD
A,TON
ADRMD
A,FNHSK
AUXMO

A
AUXMD
A,B

;Pattern to clear 91 END connitions
;
;This bit pattern al reatly in "A"
;Output TON '
;Finish handshake

;1'. XOR A =1'1
;Immediate execute PON-Reset LON
;Get completion character

6-478 231324-001

11311. 7E:
113B FE40
1130 FABB11
1140 FE5F
1142 F2BB11
1145 0360
1147 23

1148 OB61
11411. E602
114C CA4811
114F 3E:3F
1151 0360

1153 7E:
1154 FE20
1156 FA6C11
1159 FE3F
ll5B F26C11

115E 0661
1160 E602
1162 CA5El1
1165 7E
1166 0360
1168 23
1169 C35311

116C OB61
116E E602
1170 CA6C11
1173 3E87
1175 0365
1177 3E40
1179 0364

1176 AF
117C 0365
117E 78
117F 0367
1181 3EF6
1183 0369

APPLICATIONS

491
492
493

XFER Rou'rINE

494
495 ,
4% ; INPu'rs:

, 497
498
499
500
50J.
502
5('!3

;OU'fPUTS:
;CALLS:
;OESTROYS:
;RETURNS:

504 ; NOTE:
505
506
507
508
5"'9
510
511 XFER:
512+
513+
514+
515+
516+
517+
518+
519+
520+
521+
522
523
524
525+??0017:
526+
527+
528
529
530 XFER1:
531+
532+
533+
534+
535+
536+
537+
538+
539+
540+
541
542+??1l018:
543+
544+
545
546
547
548
549 XFER2:
550+??0019:
551+
552+
553
554
555
556
557
558+
559
560
551
562
563

RANGE

MOV
CPI
JM
CPI
JP
OUT
INX
'.11. ITO

IN
ANI
JZ
'~VI
OUT
RANGE

MOV
CPI
JM
CPI
JP
WAlTa

IN
ANI
JZ
MOV
ou'r
INX
JMP
WAlTa

IN
ANI
JZ
MVI
OUT
MVI
OUT
CLRA
XRA
OUT
.,OV
ou'r
MVI
OUT

HL device list pointer
B EOS character
None
None
A, HL, F
11.=11 normal, 11.<> 0 bad talker

XFER will not work if the talker
uses EOI to terminate the transfer.
Intel will be making hardware
modifications to the 8291 that will
correct this problem. Until that time,
only EOS may be used without possible
loss of the last data byte transfered.
40H,5EH,XFER4 ;Check for valid talker

A,M
40H
XFER4
5EH+l
XFER4
OOUT
H

IN'r!
BaM
??0017
A,UNL
OOUT

;Checks for value in range
;branches to label if not
; in range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

;Send it to GPIB
;Iner pointer

;Get IntI status
;Check for byte out
;If not, try again
;Universal unlisten

20H,3EH,XFER2 ;Check for valid listener
;Checks for value in range
;branches to label if not
lin range. Falls through if
;lower <= ((H)(L)) <= upper.
;Get next byte.

A,M
20H
XFER2
3EH+l
XFER2

INTI
BaM
??0018
A,M
DOUT

;Get IntI status
;Cheek for byte out
;If not, try again
;Get listener

;Iner pointer H
XFERI ;Loop until non-valid listener

INTl ;Get IntI status
BaM ;Check for byte out
??0019 ;If not, try again
A, AXRA+CAHCY+EOE:OS ;Invisible
AUX.,O ;Continuous AH mode
A,LON ;Listen only
AOR.,O

A
AUX.,O
A,B
EOSR
A,GTSB
CM092

;11. XOR A =I'J
; I mmed. XEQ POf>!
;Get E:OS
;Output it to 91
;Go to standby

6-479

handshake

231324-001

118~ DB6F
1187 E602
1189 C28511

118C oB6F
118E E602
1190 CA8Cll
1193 DB61
1195 E6U
1197 CA9311
119A 31':FO
119C D369

119E OB6F
11AI! E602
11A2 C29E11

11A5 OB6F
11A7 E602
11A9 CAA511
11AC 3E80
11AE 0365
11B0 3,EflJ3
11B2 0365
11B4 3E80
11B6 0364

11B8 AF
11B9 D365
11BB C9

llBC 3E3F
llBE 0360

11C0 7E
11C1 FE20
11C3 FA0911
llC6 FE3F
llC8 F20911

llCB OB61
llCO E602
llCF CAC811
1102 7E
1103 D360
11D5 23
1106 C3C011

1109 OB61
110B EI)02
1100 ,CAD911
11E0 3E08
11E2 D3e;~

11E4 OB51
11En E602

564 WAITX
565+??0020: IN
566+ ANI

JNZ
WAITT
IN
ANI
JZ

. 567+
568
569+??0021 :
570+
571+
572 XFER3:
573
574
575
576
577
578+??0022:
579+
580+
581
582+??0023:
583+
584+
585
58n
587
588
589
590
591
592+
593
594 XFf"l4:
595 ,

IN
ANI
,JZ
MVI
OU'f
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ
MVI
OU'f
MVI
OU'f
"1 VI
OU'f
CLRA
XRA
OUT
RET

APPLICATIONS

PRTF
TCIF
??I'1020

PRTF
TCIF
??0(,)21
INTI
ENDMK
XFER3
A,TCSY
C"1D92

PRTF
Tcn'
??0!'l22

PRTF
Tcn'
??0023
A,AXRA
AUX"1D
A,FNHSK
AUXMO
A,TON
ADRMD

A
AUX"10

;Wait for TCS
;Get tasi complete int,etc.
;Mask it
;Wait for task to be compl~te
;Get END status bit
;Mask it

;'fake control syncronously

;Wait for
;Get task
;Mask it
;Wait for
;Not cant

Tel
complete int,etc.

task to be complete
Aij or END on EOS

;Finish handshake

;Talk only

;Normal return A=~
;A XOR A =0
;Immediate XEQ paN

596 ;***************.*.*********************************
597
598
599
600

TRIGGER ROUTINE

,
; INPU'fS:
;OUTPU'fS:
;CALLS:
;DESTROYS:

601
602
603
1504
605
n06
1507 ;
608 TRIG:
609

MVI
OU'f

610 TRIG1: RANGE
<;11+
612+
613+
614+
615+
616+
617+
618+
619+
620+
621
622+??0024:
623+
624+
625
626
627
628
629 TRIG2:
630+??0025:
631+
632+
633
634
635
636+??0026:
637+

MOV
CPI
J"1
CPI
JP
WAITO

IN
ANI
JZ
'10V
OU'f
INX
JMP
WAlTa

IN
ANI
,JZ
>lVI
OUT
WAlTa

IN
ANI

HL listener list pointer
None
None
A, HL, F

A,UNL ;
DOUT ;Send universal unlisten
20H,3EH,TRIG2 ;Check for valin listen

A,M
21lH
TRIG2
3EH+1
TRIG2

IN'rl
BaM
??0024
A,M
OOUT
H
TRI.G1

IN'f1
BaM
??1il~25
A,GET
DOUT

INTI
80M

;Checks for value in range
ibranches to label if not
lin range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

;Wait for UNL to finish
;Get Intl status
;Check for byte ou~
;If not, try again
;Get listener
;Send Listener to GPIB
;Incr. pointer
;Loop until non-valid char
;Wait for last listen to finiSh
;Get IntI status
;Check for byte out
;If not, try again
;Send group execute trigger
Ito all adnressen listeners

;Get Intl status
;Check for byte out

6-480 231324-001

llE8 CAE411
llEB C9

llEC 3E3F
llEE D360

11FI'J 7E
11F1 FE21'J
llF3 FAC!912
llFIi FE3F
llF8 F20912

llFB DBlil
llFD E602
llFF CAFBll
1202 7E
1203 D361'J
1205 23
1201i C3FI'J1l

1209 D861
120B E6I'J2
120D CAl'J912
12H! 3EI'J4
1212 D361'J

1214 D861
1216 E61'J2
1218 CA1412
1218 C9

121C 3E3F
121E D360

1221'J DB61
1222 E61'J2
1224 CA21'J12
1227 3E21
1229 D361'J

1228 D861
1220 E602
122F CA2B12
1232 3E18
1234 D3li0

1236 DB61

638+
639
640 ,

JZ
RET

APPLICATIONS

??0026 ;If not, try again

641 ;**
642 ;
643 ;DEVICE CLEAR ROUTINE
644
645
646 ;
647 ; INPUTS:
648 ;OUTPUT:
649 ;CALLS:
"50 ;OESTROYS:
651 ;
652 DCLR:
653
654 DCLRl:
655+
656+
657+
658+
659+
660+
661+
662+
1;63+
664+
665
li66+??01'J27:
667+
668+
669
670
671
672
673 DCLR2:
674+??0028:
675+
676+
677
678
679
680+??0029:
681+
682+
683
684 ,

MVI
OUT
RANGE

MOV
CPI
JM
CPI
JP
WAlTa

IN
ANI
JZ
MOV
OUT
INX
JMP
WAlTa

IN
ANI
JZ
MVI
OUT
WAITO

IN
ANI
JZ
RET

HL listener pointer
None
None
A, HL, F

A,UNL
OOUT
20H,3EH,DCLR2

A,M
2I'JH
DCLR2
3EH+l
DCLR2

INTI
BOM
??01'J27
A,M
DOUT
H
DCLRI

INTI
BOM
??0028
A,SDC
DOUT

INTI
BOM
??1'J029

;Checks for value in range
;branches to label if not
lin range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

;Get IntI status
;Check for byte out
;If not, try again

;Send listener to GPI8

;Get IntI status
;Check for byte out
;If not, try again
; Send dev,ice clear
;To all addressed listeners

;Get IntI status
;Check for byte out
;If no~, try again

685 ;***
686
687
688 ;

SERIAL POLL ROUTINE

689 ;INPUTS:
690 ;
691 ;OUTPUTS:
692 ;CALLS:
693 ;DESTROYS:
694 ,
695 SPOL:
696
697
698+??0031'J :
699+
700+
701
702
703
71'J4+??""31 :
705+
706+
797
798
709
719+??9032 :

MVI
OUT
WAITO

IN
ANI
JZ
MVI
OUT
WAITO

IN
ANI
JZ
MVI
OUT
WAITO

IN

HL talker list pointer
DE status buffer pointer
Fills buffer pointed to by DE
None
A, BC, DE, HL, F

A,UIiIL
OOUT

INTI
BOM
??0031l
A,MLA
DOUT

INTI
BaM
??1l031
A,SPE
DOUT

INTI

;Universal unlisten

;Get IntI status
;Check for byte out
;If not, try again
;My listen address

;Get IntI status
;Check for byte out
;If not, try ag_in
;Seria1 poll enable
;To be formal about it

;Get IntI status

6-481 231324-001

1238 E6fl2
123A CA3';12

1230 7E
123E FE:40
1240 FA9412
1243 FE5F
1245 F29412
1248 7E
1249 0360
1248 23
124C 3E:40
124E 0364

1250 0861
,1252 E602
1254 CA5012

1257 AF
1258 0365
12511 3EF6
125C 0369

125E DB6F
1260 E602
1262 C25E12

1265 DB6F
121;7 116~2

1269 CM512

126C DB61
126£ 47
126F E601
1271 CA6C12
1274 3E:FD
1276 D359

1278 D81;F
127A E602
127C C27812

127F DBfiF
1281 E:602
1283 CA7F12
1286 DB60
1288 12
1289 13
128A 3E80
U8C D31\4

128E AF
128F D365

1291 C33012

1294 3E19
1296 D360

1298 OB61
129A E:602
129C CA9812

129F AF
12A0 0365
12A2 C9

711+
712+
713 SPall:
714+
715+
716+
717+
718+
719+
720+
721+
722+
723+
724
725
726
727
728
729
730+170033:
731+
732+
733
734+
735
736
737
738
739+??0034:
740+
741+
742
743+170035:
744+
745+
746
747+170036:
748+

, 749+
75H
751
752
753
754+??0037:
755+
756+
757
758+170338:
759+
760+
761
762
763
764
765
76fi
767+
7fi8
769
77qj
771 ,
772 SPOL2:
773
774
775+173qj39:
776+
777+
778
779+
780
781

ANI
JZ '
RANGE

MOV
CPI
JM
CPI
JP
e10V
OUT
INX
MVI
OU'f
WAlTa

IN
Alii I
JZ
CLRA
XRA
OU'f
MVI
OUT
WAITX
IN
ANI
JNZ
WAITT
IN
IINI
JZ
WAI'rI
IN
MOV
ANI
JZ
MVI
OU'f
WAITX
IN
Alii I
JNZ
WAIT'f
IN
ANI
JZ
IN
S'fAX
INX
MVI
OUT
CLRA
XRA
ou'r

JMP

MVI
OUT,
WAI'ro

IN
ANI
JZ
CLRA
XRA

,OUT
RET

APPLICATIONS

BaM ;Check for byte out
??flfl32 ;If not, try again
40H,5BH,SPOL2 ;Check for valid talker

A,M
40H
SPOL2
5EH+l
SPOL2
A,M
DOU'f
H
A,LO'll
AORMD

IN'r!
BO.,
??0033

II
AUXMD
II,GTSB
CMD92

PRTF
TClF
170034

PRTF
TCIF
??0fl35

IN'r!
B,A
BIM
??00'36
II,TCSY
CMD92

PRTF
TClF
170037

PRTF
TCIF
??0IB8
DIN
o
D
A,TON
ADRMD

A
AIJXMD

SPaLl

A,SPD
DOUT

IN'fl
BaM
170039

A
AUXMD

;Checks for valu~ in range
;hranches to label if not
; in range. Falls through if
;lower c= ((H) (L)) C= upper.
;Get next hyte.

;Get talker
;Send to GPIB
;Incr talker list
;Listen only

pointer

;Wait for talk a~dress
;Get Intl status
;Check for byte out
;If not, try again
;Pattern for imme~iate
;A XOR 1\ =0

;Goto standby

;Wait for TCI false

;Wait for TCI

to complete

XEQ paN

;Get task complete int,etc.
;Mask it
;Wait for task to he complete
;Wait for status byte input
;Get INTI status
;Save status in B,
;Check for byte in
;If not, just try again
;Take control sync

;Wait for TCI false

;Wait for TCI
;Get task complete int,etc.
;Mask it
;Wait for task to be complete
;Get serial poll status byte
;Store it 'in buffer
;Incr pointer
;Talk only for controller

;11 XOR A =0
;!mmeditate XEQ paN
;CLR LA
;Go on to next device

;Serial poll disable

on list

;We know BO was set (WAITO above)

;Get IntI status
;Check for byte out
;If not, try aqain

;A XOR A =A
;Immediate XEQ PON to clear LA

782
783
784

6-482 231324-001

121'.3 3E3F
121'.5 0360

121'.7 7E
121'.8 FE20
121'.1'. FAD8l2
l2AD FE3F
l2AF F2D8l2

l2B2 DB6l
l2B4 8602
l2B6 CAB2l2
l2B9 7E
l2BA D35~

l2BC DB6l
l2BE E602
l2C" CABC12
l2C3 3E05
l2C5 J)3~0

l2C7 DB6l
l2C9 E1502
l2CB CAC7l2
l2CE 11'.
l2CF F660
l2Dl D360
l2D3 23
l2D4 13
l2D5 C3A712

l2D8 DB6l
l2DA E602
l2DC CAD8l2
l2J)F C9

l2E0 3E3F
l2E2 D-350

l2E4 7E
l2E5 FE20
l2E7 FAFD12
l2EA FE3F
l2EC F2FD12

l2EF DB6l
l2Fl Ef;02
l2F3 CAEF12

APPLICATIONS

785
786 ,

PARALLEL POLL ENABLE ROUTINE

787 ;INPUTS:
, 788

789
790
791
792
793

; OUTPu'rs:
;CALLS:
;DESTROYS:

794 PPEN:
795
795 PPENl:
797+
798+
799+
800+
801+
8~2+
81)3+
804+
805+
80fi+
807
808+17a040:
809+
811H
811
812
813
814+170041 :
815+
816+
817 .
818
819
821'1+??0042 :
821+
822+
823
824
825
826
827
828
829 PPEN2:
830+170043:
831+
832+
833
834 ,

MVI
OUT
RANGE

MOV
CPI
J'I
CPI
JP
'NAITO

IN
A'll
JZ
MOV
OUT
'NAITO

IN
A'll
JZ
,'1VI
OUT
WAlTa

IN
A'll
JZ
LDAX
ORI
ou'r
INX
INX
JMP
I'IAITO

IN
ANI
JZ
RET

HL listener list pointer
DE configuration byte pointer
None
None
A, DE, HL, F

A,U'IL
DOU'r

;Universal unlisten

20H,3EH,PPEN2 ;Check for valid listener
;Checks for value in range
;branches to label if not

A,M
20H
PPEN2
3EH+l
PPEN2

INTI
BaM
170040
A,M
Dou'r

I'I'r!
BaM
??004l
A,PPC
DOUT

INTI
BaM
170042
D
PPE
DOUT
H
D
PPENI

INTI
BOM
170043

lin range. Falls through if
; lower (= ((H) (L)) <= upper.
;Get I\ext byte.

;Valid wait 91 data
;Get IntI status
;Check for byte out
;If not, try again
~Get listener

;Get IntI status
;Check for byte out

out reg

;If not, try again
;Parallel poll configure

;Get IntI status
;Check for byte out
;If not, try again
;Get matching configuration byte
;Merge with parallel poll enable

;Incr pointers

;Loop until invalid listener char

;Get IntI status
;Check for byte out
;If not, try again

835 ;PARALLEL POLL DISABLE ROU'rI'IE
; 836

837
838
839
840
841

; INPUTS:
; OUTPU'rS:
;CALLS:
; DESTROYS:

842 PPDS:
843

,"VI
OU'f

844 PPOSl: RANGE
845+
8415+
847+
848+
849+
85fH
851+
852+
853+
854+
855
856+??0044:
857+
858+

MOV
CPI
JM
CPI
JP
WAITO

IN
ANI
,JZ

HL listener list pointer
None
None
A, HL, F

A,UNL
DOUT

;Universal unlisten

20H,3EH,PPDS2 ;Check fot valid listener
;Checks for value in range
;branches to label if not

A,M
20H
PPDS2
3EH+l
PPDS2

IN'r!
BaM
170044

lin range. Falls through if
; lower <= ((H) (L)) <= upper.
;Get next byte.

;Get Int! status
;Check for hyte out
;If not, try again

6-483 231324-001

12F~ 7E:
12F7 0360
12F9 23
12FA C3E412

12FO OB61
12~'F E'i9l2
1301 CAF012
1304 3EI'J5
130<; 035~

1311J8 OB61
13I1JA E602
130C CAI1J813
1311JF 3E711J
1311 0360

1313 OB61
1315 E602
1317 CA1313
131,0, C9

131B 3E15
1310 0360

131F OB61
1321 E6~2
1323 CA1F13
1326 C9

1327 3E40
1329 0364

132B AF
132C 0365
132E 3EF5
13311J 0369

1332 DB61
1334 47
1335 E6lin
1337 CA3213
133A 3E80
133C 0364

133E AF
133F 0365
1341 OB60
1343 C9

859
8t;0
81;1
862
8n3 PPOS2:
81;4+??(l~45:

865+
860+
8"7
868
869
871H??11J346 :
871+
872+
873
874
875
87n+??0047:
877+
878+
879
880

MOV
OUT
INX
Jf>lP
WAITO

IN
ANI
,JZ
'~VI

OUT
\~AITO

IN
ANI
JZ
MVI
OU'f
WAITO

IN
ANI
JZ
RET

APPLICATIONS

A,M
OOUT
H
PPOS1

IN'rl
BOf>l
??01'145
A,PPC
OOU'f

IN'rl
BOM
??09146
h,PPO
OOUT

IN'rl
BOf>l
??"047

;Get listener

;Incr pointer
ILoop until invalid listener

IGet IntI stl!ltus
ICheck for byte out
;If not, try aqain
;Paralle1 poll confiqure

IGet IntI status
;Check for byte out
IIf not, try again
IPara1lel poll disable

IGet IntI status
;Check for byte out
IIf not, try again

881 PARALLEL POLL UNCONFIGURE ALL ROUTINE
882
883
884 I INPUTS:
885 IOUTPUTS:
886 ICALLS:
887 10ESTROYS:
888 ,
889 PPUN:
890
891
892+??0048 :
893+
894+
895
89/i ,

MVI
ou'r
WAITO

IN
ANI
JZ
RET

None
None
None
A, F

A,PPU
OOU'f

INTI
BOM
??0048

;Parallel poll unconfigure

IGet IntI status
;Check for byte out
;If not, try again

897 ,** ••
898 I
899 ICONOUCT A PARALLEL POLL
9110
901 ,
902 ;INPU'fS:
903 IOUTPUTS:
904 ICALLS:
905 10ESTROYS:
906 I RETURNS:
907 ;
908 PPOL:
909
910
911+
912
913
914
915
916+??0049:
917+
918+
919+
920
921
922
923+
924
925
926

f>lVI
OU'f
CLRA
XRA.
OUT
MVI
OUT
WAITI
IN
MOV i

ANr
JZ
IWI
OU'f
CLRA
XRA
OU'f
IN
RET

None
None
None
A, B, ~'

,0,= parallel poll sta~us byte

A,LON
ADRMO

A
AUXMO
A,EXPP
CM092

INTI
B,A
BIM
??0~49
A,TON
AORMO

A
AUXMO
OIN

IListen only

IImmediate XEQ PON
IA· XOR A =0
;Reset TON
;Execute parallel poll

;Wait for comp1etion= BI on 91
IGet INTI st.atus
;Save status in B
ICheck for byte in
IIf not, iust try again
ITalk only

IImmediate XEQ
1,0, XOR A =0
;Reset LO'"
IGet PP byte

PON

927
928 **** •••• **.****************************** •• ***
929 PASS CON'fROL ROU'rINE
930
931 INPUTS:
932 OUTPU'fS:

HL pointer to talker
None

6-484 231324-001

1344 7E
1345 FE40
1347 FA8A13
1341'. FE5F
134C F28A13
134F FE41
1351 CA8A13
1354 D3fi0

1356 DB61
1358 E6e ~
1351'. CA5613
135D 3E09
135F D31;0

1361 DB61
1363 E602
131;5 CMU3
1368 3E01
1361'. D364

136C AF
136D D365
136F 3E01
1371 D366
1373 3EAl
1375 D31;5

1377 3EFl
1379 D359

1378 DB6F
137D E602
137F C27B13

1382 DB6F
1384 E602
1385 CA8213
1389 23
1381'. C9

138B DB51
138D E680
138F CACF13
1392 OB65
1394 FE09

APPLICATIONS

933 ;CALLS: None
934 ; DESTROYS:
935 PCTL: RANGE
936+

A, HL, f'
40H,5EH,PCTLl ;Is it a valid talker?

;Checks for value in ranqe
;branches to label if not 937+

938+
939+
940+
941+
942+
943+
944+
945+
946
947
948
949
950+??0350 :
951+
952+
953
954
955
956+110051:
957+
958+
959
960
961
9<;2+
963
91;4
965
96<;

MOV
CPI
J,~

CPI
JP
CPI
JZ
OUT
WAlTa

IN
ANI
JZ
MVI
OUT
WAlTa

IN
ANI
JZ
MVI
OU'f
CLRA

A,M
40H
PCTLI
5EH+l
PCTLI
MTA
PC'rLl
DOUT

INTI
BaM
??005~
A,TCT
DOUT

IN'fl
BaM
??005l
A,MODEI
ADRMD

lin range. Falls through if
; lower <= ((H) (L)) <= upper.
;Get next byte.

;IS it my talker address
;Yes, just return
;Send on GPIB

;Get Int! status
;Check for byte out
;If not, try again
;Take control messaqe

;Get IntI status
;Check for byte out
;If not, try again
;Not talk only or listen only
;Enable 91 adnress mode 1

XRA A ;1'. XOR A =0
OUT AUXMD ;Immediate XEQ paN
·,",VI A,MDA ;My device address
ou'r ADR01 ;enabled to talk and listen
MVI A,AXRB+CPTE"l ;Command pass thr u enable
OUT AUXMD 967

968
91;9
970

;*******optional PP configuration goes here********

971
972+??0052:
973+
974+
975
976+??0~ 53:
977+
978+
979
980 PCTLl:
981
982 ;

MVI A,GIDL ;92 go idle command
OU'f CMD92
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ
INX
RET

PRTF
TCIF
??0052

PRTF
TCIF
??0053
H

;Wait for
;Get task
;Mask it
;Wait for

TCI
complete int,etc.

task to be complete

983 .• *.*.*******.*********************.******
984 ' i
985 ;REC,EIV~ CONTROL ROUTINE
986 ,

None
N6ne
None
A, F

987 ; INPUTS:
988 ; OU'fPUTS:
989 ;CALLS:
990 ; DF:STROYS:
991 ;RETURNS:
992 ,
993 ;NOTE:
994
995
996

0= invalid (not take control to us or CPT bit not on)
< > '" = valid take control-- 92 will now be in control
THIS CODE MUST BE TIG~TLY INTEGRATED INTO ANY USEq
SOFTWARE THA'f FUNCTIONS \~ITH 'rHE 8291 AS A DBVICE.
NORMALLY SOJ~E ADVANCE WARNING OF IMPENDING PASS
CONTROL SHOULD BE GIVEN TO US BY THE CONTROLLER
WITH OTHER USEFUL INFO. THIS PROTOCOL IS SITUATION
SPECIFIC AND WILL NOT BE COVERED HERE.

997
998
999

10"'0 ;
1001 RCTL:
1002
1003
1004
1005

IN
ANI
JZ
IN
CPI

INTI
CPT
RC'rL2
CPTRG
TCT

;Get INTI reg (i.e. CPT etc.)
;Is command pass thru on ?
;No, invalid-- go return
;Get command
;Is it take control?

6-485 231324·001

I

W

1396 C2CAl3
1399 OB64
139B E61l2
1390 CACA13
13MI 3E60
13A2 03156
13M 3E81'1
13M))3<;4

13AB AF
13A9 0361
13AB 03<;2
131'.0 0365
13AF 3EFA
13Bl 1)3<;9
1383 3E:Il1"
13B5 03<;5

13B7 OB<;F
1389 E6~2
13<18 C28713

13dE: OB6F
13C~ E602
13C2 CABEl3
13C5 3EI'I9
13C7 C3CF13
13CA 3E:0F
13CC 0365

13CE: AF
13CF C9

13D0 OB69
1302 E621l
1304 CAE213
1307 1"60B
1309 D369
130B OB69
130D E:602
130F CAOB13
13E2 C9

13E3 3EF8
13E5 0369

13E7 OBfiF
13E9 E602
13E:B C2E713

13E:E' OB6F
13F0 E<;02
13F2 CAEE13

11"";
10117
Hlll8
10119
HlHl
lAll
Hl12
I1n3
1'114
lIH5+
1016
1017
lin 8
1019
lI'l21'l
Hl21

,1NZ
IN
Alii I
,1Z
MVI
OU'f
MVI
OU'f
CLRA
XRA
OUT
OU'f
OU'f
MVI
ou,t
MVI
OU'f

APPLICATIONS

RCTLI
AOR'lT
'fA
RCTLI
A,OTOLI
AORIIJl
A,TON
AORMD

A
IN'rl
INT2
AUXMD

;No, qo return invalid
;Get address status
;Is TA on ?
;No -- qo return invalid
;Oisable talker listener

;Talk only

;1'. XOR A =I'l
;Mask off INT bits

A,TCNTR ;Take (receive) control 92 command
CM092
A,VSCMI) ;Valid command p~ttern for 91
AUXMO 11122

1'123
1024

;******** optional TOUT 1 check could be put here ********

111 25+??,III54 :
lA26+
U27+
1028
HJ29+??0355:
11130+
1031+
lIln
1033
1034 RCTLl:
11135
11'136
1037+
1038 RCTL2:
1039 ;

'flAITX
IN
ANI
JNZ
1,0/1'. ITT
IN
ANI
JZ
MVI
J"'P
MVI
OU'f
CLRA
XRA
RET

PRTF
TCIF
??3054

PRTF
TCIF
??0~55

A,TC'r
RC'rL2
A, VSCo'o\D
AUXMO,.

A

;Wait for Tel
;Get task complete int,etc.
;Mask it
;Wait for task to be complete
;Valid return pattern
;On1y one return per routine
;Acknow1edqe CPT

;E:rror return pattern
;1'. XOR A =0

1040 J**************************** •• *******************
1041
11142 SRO ROU'fINE:

; 1(143
1044
1045
1046
U47
1048
1049

; INPU'fS:
;OU'fPUTS:
;CALLS:
;RE:TURNS:

1050 ;
U5l SRQI):
U52
1053
1054
1Il55
1056 SRQDl:
1057
lA58
1059 SRQ02:
10511 ;

IN
ANI
JZ
O~I

OU'f
IN
ANI
JZ
RET

None
None
None
1'.= II no SRO
A < > 0 SRQ occured

INTST
SROBT
SRQ02
lACK
CM092
INTST
IBFBT
SRQDl

;Get 92's INTRQ status
;"Iask off SRQ
;Not set--- qo return
;Set--- must clear it with

;Get IBF
;Mask it
;Wait if not set

1061 ;***~*************.*.** •• *** •••• **.**.* •• ***.
1Cl'i2 ;
1063 ; REMO'fE ENABLE ROUT,INE
1064 ;
1065 ; INPUTS:
1066 ; OU'fPU'fS:
1067 ; CALLS:
1068 ;OE:STROYS:
1069 ;
lll70 RE:ME::
11171
11'172
1073+??01'15<;:
1074+
1075+
1076
U77+??'HI5i:
11l78+

None
None
NONE
A, F

A, SREM
CM092

PRTF
TCIF
??"'Il56

;92 asserts remote enable
;Wait for TCI = '"

TCI
complete tnt,etc.

lACK

1079+

MVI
OUT
t~AI'rX

IN
ANI
JNZ
WAITT
IN
ANI
JZ

PRTF
TCIF
??(,H'I57

;Wait for
;Get task
;Mask it
;Wait for task to be complete

6-486 231324-001

APPLICATIONS

13F5 C9 1089 RET
HI81 ;
11182 ;**
11183 ;
lA84 ; LOCAL ROUTIN E
11185 I
11186 ;
11187 ; INPU'rS: None
lA88 ;OUTPUTS: None
11189 ;CALLS: None • 111911 ;DESTROYS: A, F : ~
1\191 ;

:~ 13F6 3EF7 Ul92 LOCL: .. VI A,SLOC
l3F8 0369 U93 OUT CMD92 ;92 stops assertinq remote enable

" 1994 WAITX ;Wait for TCI -Il :1
13FA DB6F 1I')95+??\1058: IN PRTF ,I

13FC E602 11196+ ANI TCIF :\
13FE C2FA13 11197+ JNZ ??IIIlS!!

11198 WAIT'r ;Wait for TCI
14111 DB6F 11199+??IIII59: IN PRTF ;Get task complete int,etc.
14113 E602 111111+ ANI TCIF ;Mask it
14115 CAII114 11111+ JZ ??1I1I59 ;Wait for task to be complete
1498 C9 IHl2 RET

1193 ;
1194 ;.***
1105 ;
11116 ; IIIITERFACF. CLEAR / ABORT ROU'rINE
ll11J7
11118 ;
111')9 ; INPU'rS: None
11111 ;OU'rpUTS: None
1111 ;CALLS: None
1112 ;DESTROYS: A, F
1113
1114 ;

14119 3EF9 1115 IFCL: MVI A,ABORT
l4111! 03';9 1116 OUT CMD92 ;Send IFC

1117 WAITX ;Wait for TCI .. II
14110 DR6F 1118+11""'611: IN PRTF
1411F E"i1l2 1119+ ANI TCIF

. 1411 C211D14 11211+ JNZ ??11060
1121 WAITT I'~ait for TCI

1414 DB6F 1122+??1I1I61 : IN PRTF ;Get task complete int,etc.
1416 E6112 1123+ ANI TCIF ;Mask it
1418 CA1414 1124+ JZ ??""';1 ;Wait for task to be complete

1125 ;Delete both WAITX & WAITT if this routine
1126 lis to be called while the 8292 is
1127 ;Controller-in-Charqe. If not C.I.C. then
1128 ;TCI is set, else nothing is set (IFC is sent)
1129 land the WAIT'S will hang forever

14lB C9 1130 RET
1132

6-487 231324-001

0032
0031
0051
0000
0001'.
00FI"
0040

141C 46553146
1420 52333748
1424 48414D32
1428 564F
1421'. 0D
000F
142B 50463447
142F 3754
0006
1431 31
1432 FF
1433 32
1434 FF
1435 51
143~ FF

1437 3600
1439 !!EIlF
1438 ll1C14
143£ 213314
1441 CD1C1!!

1444 0'i54
1446 0E06
1448 112014
144B 213114
144E CD1ClB

1451 CDD013
1454 CA5114

1457 lU03C
1451'. 213514
1450 CDIC12
1460 IB
1461 II'.
1462 E64(11
1464 (:1'.7714

1467 060A
1469 0E11
146B 213514
146E 11013C
1471 CD9FU
1474 C27714

1477 00

3C00
3CI'I0
0011

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

APPLICATIONS

;APPLICATION EXA~PLE CODE FOR 8085 .
FGDNL
I"CDNL
FCDNT
CR
LF
LEND
SRQM
;

EQU
EQU
EQU
EQU
EQU
EQU
EQU

I"GDATA: DB

'2'
'I'
'Q'

"Dt!
IIAH
0FFH
4(11H

;Func gen device nurn "2" ASCII,lstn
;Freq ctr device nurn "I" ASCII,lstn
;Freq ctr talk address
;ASCII carriaqe return
;ASCII line feed
;List end for Talk/Listen. lists
;Bit indicating device sent SRQ

'FUIFR37KHA~2VO',CR ;Data to set up func. gen

1144 LIMI EQU 15
'PF4G7T'

;Buffer length
1145 FCDATA: DB

1146 LIM2
1147 LLl:

1148 LL2:

1149 TLl:

EQU
DB

DB

DB

;SETUP FUNCTION
MVI

;

MVI
LXI
LXI
CALL

Ii
FCDNL, LEND

FGDNL, LEND

FCDNT,LEND

GENERA'rOR
B,CR' ;EOS
C,LIMI ;Count
D,FGDATA
H,LL2 ;Listen
SEND

;Data to set up freq ctr

;Buffer length
;Listen list for freq ctr

;Listen list for func. gen

;Talk list for freq ctr

;Data pointer
1 ist pointer

1150
1151
1152
1153
1154
1155
1156
1157
U58
1159
1160
1161
1162
1163
llfi4
111;5
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
118':;
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

;SETUP FREO COUNTER

MVI
MVI
LXI
LXI
CALL

B, 'T' ;EOS
C,LIM2 ;Count
D,FCDATA
H,LL1 ;Listen
SEND

;Data pointer
list pointer

;It/AIT FOR SRQ FROM FREO CTR
,
LOOP: CALL­

JZ
SRQD
LOOP

;Has SRQ occurred?
;No, wait for it

; SER IAL POLL TO C"LEAR SRQ

LXI
LXI
CALL
OCX
LDAX
ANI
JZ

D,SPBYTE
H,TLI
SPOL
D
D
SRQM
ERROR

;Buffer pointer
;Talk list pointer

;Backup buffer pointer to ctr byte
;Get status byte
;Did ctr assert SRQ ?
;Ctr should have said yes

;RECEIVE READHIG FROM COuwrER

;

MVI
~VI

LXI
LXI
CALL
JNZ

B L~"" ;EOS
c:L1~3 ;Count
H,TLI ;Talk list pointer
D,FCDATI ;Data in buffer pointer
RECV
ERROR

;******* rest of user processing goes here *****
,
ERROR:
;
ORG
SPBYTE:
LI.,3

Nap
ETC.
3C00fl
os
EQU

1
17

;User dependant error, handling

;Location for serial poll byte
;Max freq counter input

6-488 231324-001

3C01 1198 FCOATI: OS
1199 EIIIO

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

US Ell SYMBOLS
ABORT A 00F9 AOl101 A 00~~ AOR'ID A 0A~4
aIM A 0001 BOF A 0An BOM A 0~A2
CLIIST A Ba68 CMD92 A 0~69 CPT A 0RR0
DCLR A llEC DCLRI A llFA DCLR2 A 1209
EDEOS A 0004 ENO"lK " 00H EOIS A 0008
ERROR A 1477 EWIT A 0010 EVCST A 0068
~'CONL A 0031 FCON'r A 0051 FGOATA A l'lC
GS~C A 00F4 GTS8 A 00F6 HOENO A 0002
IFCL 1\ 1489 INIT A 100O INTI 1\ 0O'1
IN'rST A 0069 LI\ A 0001 LEND 1\ 0AFF
LLI A 1431 LL2 A 1433 LOCL A 13F'
"'OOEI 1\ AB01 "'TI\ A 0041 'IVC~D A 0007
PPlY 1\ 8079 PPOS I'. 12E0 PPOSI A 12E'
PPEH2 A 1208 PPOL A 1327 PPU A ~015
RANGE + 0305 RBST 1\ B0E7 RCST 1\ 00E'
RECVl 1\ lHEA RECV2 1\ 1105 RECV3 1\ HO'
RERF A HBE4 RERI'! A nEA REVC A HBE3
SOEOI 1\ 8006 SEND 1\ 101C SENOI II 102E
SEND6 A IB8S SETF + 0000 SLOC 1\ B0F7
SPIF A 0884 SPOL A 121C SPOLI A 1230
SRQOl A 130B SRQD2 1\ 13E2 SRO'" A B848
'rCNTR A BBFI\ TCSY A 80FD TCT 1\ 8009
TOST 1\ 0068 TOU'rl A B001 TOUT2 A 0002
UNL 1\ H83F VSCMO 1\ B0BF WI\ITI + 0~~2
WDu'r A 00El XFER 1\ 1131\ XFERI 1\ 1153

ASSEI~BLY COMPLETE, NO ERRORS

APPLICATIONS

LIM3 ;Freq ctr input buffer

ADRST A 0Q'4 AUX~D A 00'~ ~XRA

BUSST A 00,R CAHCY A 00Al CLKRT
CPTE" A 00Al CPTRG A AA'~ CR
01. A 0~'" OOUT A 09~0 DTOLI
EOIST A 0020 EOSII A 00~7 ERFLG
EVREG A AA6R EXPP A 00FS FCOATA
FGI)NL A 0032 FNHSK A 0eAl GET
HOIIS~ A AA01 lACK A 000B IBFST
INT2 1\ 80'2 INT'" A 00A0 I'ITMI
LF 1\ B0AA LIMI 1\ 009F LIM2
LO. A 00~0 LOOP 1\ 14'1 MOIl
OBFF 1\ 009R PCTL A 13~4 PCTLI
PPOS2 1\ 12FO PPE 1\ HH'A PPE'"
PPUN A 1318 PRT91 1\ Q0,H PR'r92
RCTL II 139B RCTLI A 13CA RCTL2
RECV4 1\ lllA RECVS A 1117 RECV6
RI"" A ~0ES RSET 1\ 00F2 RSTI
SEN02 A 1047 SEN03 1\ 10'9 SEND4
SPBYTE A 3C00 SPCNI 1\ B0FB SPD
SPOL2 A 1'-94 SRB"! 1\ 0BF~ SQOBT
STCHI 1\ B~FE TA A 0002 TC~SY

'rL1 A 143~ TLO'" A A0CA TO'"
TOUT3 II B004 TRIG II 11BC TRIGI
WAITO + 00Hl WAITT + 0~~4 WAITX
XFER2 .. l1'C XFERl II 1193 XFEII4

~9

~ 0080
A 002l
A OA~I)
A 00,0
A A0~8
~ 1~2B
A 0AA8
A 00.2
A 0o,1
1\ 000'
A 0001
A 1381\
A 121'.3
1\ A~'~
A 13CF
1\ 1139
1\ 0AF3
~ 1070 .. A019
1\ 002A
1\ BAFC
A A0""
1\ llCB
+ 0B03
1\ 11BB

AXRB A 0AA0
CLRA + 3097
DCL A 0914
DTDL2 A 00Ea
ERII~ A 00'S
FCOATI A 3C01
GIOL A 00Fl
18FF A 0018
INTMR A 00'S
LIM3 1\ 0011
MLA A 0021
PPC A 0~0S
PPENI A 12A7
PRTF A 00~F
RECV A 109F
REME A 13E3
RTou'r 1\ 00E9
SENDS A 107F
SP~ A BAlS
SROD A 1300
'I'CIF A 00~2
TOREG A eer,s
TRIG2 II 1109
:~EVC 1\ ABe2

231324-001

I
I'

I
!~

i
"

APPENDIXB

TEST CASES FOR THE SOFTWARE DRIVERS

The following test cases were used to exercise the
software routines and to check their action. To
provide another device/controller on the GPIB a
ZT488 GPIB Analyzer was used. This analyzer

acted as a talker, listener or another controller as
needed to execute the tests. The sequence of out­
puts are shown with each test. All numbers are
he~adecimal.

SEND TEST CASES

B = 44
C = 30

DE = 3E80
HL = 3E70

3E70: 20 30 3E 3F
3E80: 11 44

GPIB output: 41 ATN
3F ATN
20ATN
30ATN
3EATN
11
44EOI

Ending B =44
Ending C = 2E
Ending DE = 3E82
Ending HL = 3E73

RECEIVE TEST CASES

B = 44 44
C = 30 30

DE = 3E80 3E80
HL = 3E70 3E70

3E70: 40 50
GPIB output: 40ATN 50ATN

3F ATN 3F ATN
21ATN 21ATN

ZT488 Data I I
In 2 2

3 3
4 4
44 5,EOI

Ending A =0 0
Ending B =0 0
Ending C = 2B 2B
Ending DE = 3E85 3E85
Ending HL = 3E71 3E71

SERI,AL POLL TEST CASES

C = 30
DE = 3E80
HL = 3E70

3E70: 40
50
5E

'5F

44
2
3E80
3E10

41 ATN
3FATN
20ATN
30ATN
3EATN
11
44 EOI

44
0
3E82
3E73

44 44
30 30
3E80 3E80
3E70 3E70
5E 5F
5EATN
3F ATN
21 ATN
I
2
3
44,EOI

0 5F
0 44
2C 30
3E84 3E80
3E71 3E70

C = 30
DE = 3E80
HL::: 3E70

3E70: 5F
GPIB output: 3F ATN

. 21 ATN
18 ATN

6-490

44
0
3E80
3E70

41ATN
3FATN
20ATN
30ATN
3EATN

44
0
3E80
3E73

44 44 44
4 4 0=256
3E80 3E80 3E80
3E70 3E70 3E70
40 40 40
40ATN 40ATN 40ATN
3FATN 3F ATN 3F ATN
21ATN 21 ATN 21ATN
I II I
2 22 2
3 ,33 3
4 44 44

40 0 0
40 0 0
0 0 FC
3E84 3E84 3E84
3E71 3E71 3E71

231324-001

APPLICATIONS

GPIB output: 3F ATN
output: 21 ATN
output: 18 ATN
output: 40 ATN
input*: 00
output: 50 ATN

19ATN
, Ending C = 30
Ending DE = 3E80
Ending HL = 3E70

input*: 41
output: 5E A TN
input*: 7F
output: 19 ATN

*NOTE: leave ZT488 in single steP mode even on input
Ending C = 30
Ending DE = 3E83
Ending HL = 3E73

Ending 3E80: 00 41 7F

PASS CONTROL TEST CASES

HL = 3E70 3E70 3E70
3E70: 40 41(MTA) 5F

GPIB output: 40 A TN
09ATN
-Am

Ending HL = 3E71 3E70 3E70
Ending A = 02 41(MTA) 5F

RECEIVE CONTROL TEST CASES

GPIB input IOATN 40ATN
Am 09ATN

Run Receive Control
GPIB Input Am
Ending A = 0 0

PARALLEL POLL ENABLE TEST CASES

DE = 3E80 3E80
HL = 3E70 3E70

3E70: 20 30 3E 3F 3F
3E80: 01 02 03

GPIB output: 3F ATN
20ATN
05ATN
61 ATN
30ATN
05ATN
62ATN
3EATN
05ATN
63ATN

Ending DE = 3E83
Ending HL = 3E73

3FATN

3E80
3E70

PARALLEL POLL DISABLE TEST CASES

HL = 3E70 3E70
3E70: 20 30 3E 3F 3F

6-491

41ATN
O9ATN

Am
09,

231324-001

APPLICATIONS

GPIB output: 3F ATN
20ATN
30ATN
3EATN
05ATN
70ATN

Ending HL = 3E73

3FATN
05 ATN
70ATN

3E70

PARALLEL POLL UNCONFIGURE TEST CASE

GPIB output: 15 ATN

PARALLEL POLL TEST CASES

Set DIO # 1 2 3 4 5 6 7 8 None
EndingA 1 248 10 20 40 80 0

SRQ TEST

Set SRQ momentarily Reset SRQ
Ending A = 02 00

TRIGGER TEST

HL = 3E70
DE = 3E80
BC = 4430

3E70: 20 30 3E 3F
GPIB output: 3F A TN

20ATN
30ATN
3EATN
08ATN

Ending HL = 3E73
DE = 3E80
BC = 4430

DEVICE CLEAR TEST

HL = 3E70
DE = 3E80
BC = 4430

3E70: 20 30 3E 3F
GPIB output: 3F ATN

20ATN
30ATN
3EATN
14 ATN .

Ending HL = 3E73
DE = 3E80
RC = 4430

6-492 231324-001

XFER TEST

B = 44
HL = 3E70

3E70: 40 20 30 3E 3F
GPIB output: 40 ATN

3F ATN
20ATN
30ATN
3EATN

GPIB input: 0
I
2
3
44

Ending A = 0
B = 44

HL = 3E74

APPLICATION EXAMPLE
GPIB OUTPUT/INPUT

GPIB output: 41 ATN
3F ATN
32 ATN
46
55
31
46
52
33
37
4B
48
41
4D
32
56
4F
ODEOI
41 ATN
3F ATN

• 31ATN
50
46
34
47
37
54 EOI

GPIB input: SRQ
GPIB output: 3F ATN

21 ATN
18 ATN
51 ATN

GPIB input: 40 SRQ
GPIB output: 19 ATN

51 ATN

APPLICATIONS

6-493 231324-001

3F ATN
21 ATN

GPIB input: 20
2B
20
20
20
33
37
30
30
30
2E
30
45
2B
30
OD
OA

GPIB output: XX ATN

Mnemonic

ACG addressed command group

ATN attention

DAB data byte

DAC data accepted

DAV data valid

DCL device clear

END end

EOS end of string

GET group execute trigger

GTL go to local

lOY identify

IFC interface clear

LAG listen address group

LLO local lock out

MLA my listen address

MTA my talk address

MSA my secondary address

APPLICATIONS

APPENDIX C

REMOTE MESSAGE CODING

Bus SIKnal Lmc(H) and
Codlllg Thal Al'I.,prts the

C Tru(' Valu(' 01 thl' M('bsage
T I Il D NN
y a J I DIW II E S I R
p () 0 II~'II T o R F E

Message Name e H 7 (; 5 4 3 2 I VDC N J Q C N

M lie y o 0 0 x x x x XXX 1 X X X X

II lie x x x x x x x x xxx I X XX X

(Notes I, 9) M DO DOD D 0 0 0 0 xxx '» X X X X
H 7 6 5 4 3 2 1

II HS X X X X X X X X XX0 X X X X X

U HS X X X X X X X X lXX X X X X X

M UC y o 0 1 0 1 o 0 XXX 1 X X X X

U ST X X X X X X X X XXX 0 1 X X X

(Notes 2, 9) M DO E E E E E E E E XXX 0 X X X X
8 7 6 5 4 3 2 1

M AC Y 0 0. 0 1 000 XXX 1 X XX X

M AC Y -0 0 0 0 o 0 1 XXX 1 X X X X

U ue X X X XXXX X XXX X 1 X X X

U UC XXXXXXX X XXX X X X 1 X

M AD Y 0 1 XXXX X XXX 1 X X X X

M UC Y 0 0 1 000 1 XXX 1 X X X X

(Note 3) M AD Y 0 L L L L L XXX 1 X X X X
5 4 3 2 1

:Note 4) M AD Y 0 l' 1'1' l' l' XXX 1 X XXX
5 4 3 2 1

. (Note 5) M SE Y S S S S S XXX 1 XXXX
5 4 3 2 1

6-494 231324-001

APPUCATIONS

Mnemonic

NUL

OSA

OTA

PeG

PPe

PPE

PPO

PPRI

PPR2
ppaa
PPM
PPR5

PPR6

PPR7

PPRS

PPU
REN

RFO

RQS

SCG

SOC
SPO

SPE

SRQ

STB

TCT

TAG

UCG

UNL

UNT

null byte

other aeeondary address

oth.r talk address

primary command group

pua1lel poll confilllre

pua11.1 poll .nabl.

parall.1 poll disable

parallel poll response I.!
pua1lel poll response 2

parallel poll reaponse 3

pua1lel poll response 4

pua1lel poll response 5

parallel poll response 61
parallel poll responae 7

parallel poll responae 8

parallel poll unconfilllre

remote enable

ready for data

request aervice

aeeondary command group

aelected device clear

aerial poll disable

aerial poll enable

aervice request

status byte

take control

talk address group

universal command group

unlisten

untalk

MesaalleName

(Note 6)

(Note 7)

(Note 10)

(Note 10)

(Note 9)

(Notes 8, 9)

(Note 11)

T
Y
p
e

M

M
·M
M
M

M

M

U

U

U

U

U

U

U

U
M

U

U

U
M
M

M

M

U

M

M

M

M
M

M

Bus Sillnal Line(s) and
Coding That Asserts the

C True Value of the Message
I 0 0 NN
a I I ORO A E S. I R
5 0 0 AFA TOR F E

8 7 6 5 4 3 2 1 VDC N I Q C N

00 • • e • e. • • • xxx x x x x X

SE (OSA = SCG 1\ MSA)

AO (OTA - TAG 1\ MTA)
- (PeG = ACG v UCG v LAG V TAG)

AC Y 0 0 0 0 1 e 1 xxx 1 X X X X

SEY1 0SPPP XXX1XXXX
321

SEY 1 0000 XXX1XXXX
432 1

STXXXXXXXI

STXXXXXX1X

STXXXXX1XX

STXXXX1XXX

STXXX1XXXX

STXX1XXXXX

STXIXXXXXX

STlXXXXXXX

UC Y 0 0 l. •
UC x x x x x x x X
HS X X X X X X X X

STX XXX XXX

SEYllXXXXX

AC Y • • • 0 1 • 0
UC Y 0 0 • 0 1

UC Y • • 1 •• 0
STXXXXXXXX

STSXSSSSSS
8 654 3 2 1

ACY •• 01 ••

AOY10XXXXX

UC Y.. x x x X
AO Y • 1

AO Y 1 0

XXX 1

XXX 1
xxx
xxx

XXXl XX·X

XXXllXXX

XXXllXXX

XXX X X X
XXX lXXX

XXX lXXX

XXX XXXX

XXXXXXXI

XeX X X X X X

XXXeXX XX

XXX XXXX

XXX XXXX

XXX X X X X

XXX 1 X X X X

XXXXXlXX

XXX • X X X X

XXX X X X X

XXXIXXXX

XXX XXXX

XXX X X X X

xxx XXXX

The 1/0 coding on ATN when sent concurrent with multiline messages has been added to this revision for interp
tive convenience.

NOTES:'
(1) 01-08 specify the device dependent data bits.
(2) EI-E8 specify the device dependent code used to

indicate the EOS messalle.
(3) LI-L5 specify the device dependent bits of the

device's listen address.
(4) T1-T5 specify thl' device dependent bits of the

device's tal k address.
(5) Sl-S5 specify the device dependent bits of the de­

vice's secondary address.
(6) S specifies the sense of the PPR.

P1-P3 specify the PPR messalle to be sent when a paral­
lel poll is executed_

P3 P2 PI PPRMessalle

• • • PPRI

PPR8
(7) 01-04 specify don't-care bits that shall not be

decoded by the receiving device. It is recommended
that all zeroes be sent.

(8) Sl-S6, S8 specify the device dependent status.
(0107 is used for the RQS message.)

(9) The source of the message on the ATN line is
always the C function, whereas the messag"s on the
010 and EOilines are enabled by the T function.

(10) The source of the messages on the ATN and EOI
IineG is always the C function, whereas the source of
the ml'SSages on the 010 lines is always the PP func­
tion.

(11) This code is provided fo~ system use, see 6.3.

231324-001

inter

\
/

"INTEL CORPORATION, 1983

APPLICATION
NOTE

6-496

AP-166 .

October 1983

ORDER NUMBER: 230832-{)01

AP-166

INTRODUCTION

This application note explains the Intel® 8291A GPIB
(General Purpose Interface Bus) Talker/ Listener as a
component, and shows its use in GPIB interface design
tasks.

DEVICE A
r

ABLE TO f--!----< TALK, LISTEN,
AND

CONTROL

(e.g. calculator)

DEVICE B
ABLE TO ~

TALK AND
LISTEN

(e.g. digital
multimeter)

(I-

DEVICEC
ONlY ABLE r-----<
TO LISTEN

(e.g. signal
generator)

(V

DEVICE 0
ONLY ABLE r-----<

TO TALK

(e.g. counler)

-

The first section of this note presents an overview of IEEE
488 (GPIB). The second section introduces the Intel®
GPIB component family. A detailed explanation of the
8291A follows. Finally, some application examples using
the component family are presented.

f
(- DATA BUS

DATA BYTE
TRANSFER
CONTROL

GENERAL
INTERFACE

MANAGEMENT

}DI01 ••• 8 Data Input/Output

DAV

NRFD

NDAC

IFC

ATN

SRD

REN

EOI

Data Available

Ready for Data

Data Accepted

Not

Not

Intert ace Clear

lion Allen

Serv

Rem

Ice Request

ole Enable

or Identify End

Figure 1. Interface Capabilities and Bus Structure

6-497 230832-601

AP·166

OVERVIEW OF IEEE 488/GPIB

The GPIB 'is a parallel interface bus with an asynch­
ronous interlocking data exchange handshake mecha­
nism. It is designed to provide a common communication
interface among devices over a maximium distance of 20
meters at a maximum speed of I Mbps. Up to 15 devices
may be connected together. The asynchronous interlock­
ing handshake dispenses with a common synchronization
clock, and allows intercommunication among devices
capable of running at different speeds. During any
transaction, the data transfer occurs at the speed of the
slowest device involved.

The GPIB finds use in a diversity of applications
requiring communication among digital devices over
short distances. Common examples are: programmable
i.nstrumentation systems, computer to peripherals, etc.

The interface is completely defined in the IEEE
Std.-488-1978.

A typical implementation consists of logical devices
which talk (talker), 'listen (listeners), and control GPIB
activity (controllers).

Interface Functions

The interface between any device and the bus may have a
combination of several different capabilities (called
'functions,). Among a total of ten functions defined, the
Talker, 'Listener, Source Handshake, Acceptor Hand­
shake and Controller are the more common examples.
The Talker function allows a device to transmit data. The
Listener function allows reception. The Source and
Acceptor Handshakes, synchronized with the Talker and
Listener functions respectively, exchange the handshake
signals that coordinate data transfer. The Controller
function allows a device to activate the interface functions
of the various devices through commands. Other interface
functions are: Service request, Remote local, Parallel
poll, Device clear and Device trigger. Each interface may
not contain all these functions. Further, most of these
functions may be implemented to various levels (called
'subsets') of capability. Thus, the overall capability of an
interface may be tailored to the needs of the communicat­
ing device.

Electrical Signal Lines

As shown in Figure I, the G PIB is composed of eight data
lines (D08-DOI), five interface management lines
(IFC, ATN, SRQ, REN, EOI), and three transfer control
lines (DAV, NRFD, NDAC).

The eight data lines are used to transfer data and
commands from one device to another with the help of
the management and control lines. Each of the five
interface management lines has a specific function.

ATN (attention) is used.by the Controller to indicate that
it (the controller) has access to the GPIB and that its
output on the data Jines is to be interpreted as a
command. ATN is also used by the controller along with
EOI to indicate a parallel poll.

SRQ (service request) is used by a device to request
service from the controller.

REN (remote enable) is used by the controller to specify
the command source of a device. A device can be issued
commands either locally through its front panel or by the
controller.

EOI (end or identify) may be used by the controller as
well as a talker. A controller uses EOI along with ATN to
demand a parallel poll. Used by a talker, EOI indicates
the last byte of a data block.

IFC (interface clear) forces a complete GPIB interface to
the idle state. This could be considered the GPIB's
"interface reset." GPIB architecture aIlows for more than
one controIler to be connected to the bus simultaneously.
Only one of these controllers may be in command at any
given time. This device is known as the controller-in­
charge. Control can be passed from one controIler to
another. Only one among all the controllers present on a
bus can be the system controller. The system controller is
the only device aIlowed to drive IFC.

Transfer Control Lines

The transfer control Jines conduct the asynchronous
interlocking three-wire handshake.

DAV (data valid) is driven by a talker and indicates that
valid data is on the bus.

NRFD (not ready for data) is driven by the listeners and
indicates that not all listeners are ready for more data.

NDAC (not data accepted) is used by the listeners to
indicate that not all listeners have read the GPIB data
lines yet.

The asynchronous 3-wire handshake flowchart is shown
in Figure 2. This is a concept fundamental to the
asynchronous nature of the GPIB and is reviewed in the
following paragraphs.

Assume that a talker is ready to start a data transfer. At
the beginning of the handshake, NRFD is false indicating
that the Jistener(s) is ready for data. NDAC is true
indicating that the listener(s) has not accepted the data,
since no data has been sent yet. The talker places data on
the data Jines, waits for the required settling time, and
then indicates valid data by driving DA V true. All active
listeners drive' NRFD true indicating that they are not

&498, 230832-001

inter AP-166

SOURCE

NRFD SIGNAL LINES GOES HIGH YES
r------'-----...., ONLY WHEN ALL ACCEPTORS ARE READY

DATA IS VALID AND MAY

NOW BE ACCEPTED

DATA IS NOT TO BE CONSIDERED

VALID AFTER THIS TIME

FLOW DIAGRAM OUTLINESSEOUENCE OF EVENTS'DURING TRANSFER
OF DATA BYTE, MORE THAN ONE LISTENER AT A TIME CAN ACCEPT
DATA BECAUSE OF LOGICAL CONNECTION OF NRFD AND NDAC
LINES,

Figure 2. Handshake Flowchart

6-499 230832-001

AP-166

ready for more data. They then read the data and drive
NDAC false to indicate acceptance. The talker responds
by deasserting DA V and readies itself to transfer the next
byte. The listeners respond to DAV false by qriving
NDAC true. The talker can now drive the data lines with
a new data byte and wait for NRFD to be false to start the
next handshake cycle.

Bus Commands

When ATN and DAV are true data patterns which have
been placed by the controller on the G PIB, they are
interpreted as commands by the other devices on the
interface. The GPIB standard contains a repertory of
commands such as MTA (My Talk Address), MSA (My
Secondary Address), SPE (Serial Poll Enable), etc. All
other patterns in conjunction with ATN and DAV are
classified as undefined commands and their meaning is
user-dependent.

Addressing Techniques

To allow thepontroller to issue commands selectively to
specific devices, three types of addressing exist on the
GPIB: talk only/listen only (ton/Ion), primary, and
secondary.

Ton/lon is a method where the ability of the GPIB
interface to talk or listen is determined by the device and
not by the GPIB controller. With this method, fixed roles
can be easily designated in simple systems where reassign­
ment is not necessary. This is appropriate and convenient
for certain applications. For example, a logic analyzer
might be interfaced via the GPIB to a line printer in order
to document some type of failure. In this case, the line
printer simply listens to the logic analyzer, which is a
talker;

The controller addresses devices through three com­
mands, MTA (my talk address), MLA (my listen address),
and MSA (my se~ondary address). The device address is
imbedded in the command bit pattern. The device whose
address matches the imbedded pattern is enabled. Some
devices may have the same logical talk and listen
addresses. This is allowable since the talker and listener
are separate functions. However, two of the same func­
tions cannot have the same address.

In primary addressing, a device is enabled to talk (listen)
by receiving the MTA (MLA) message.

Secondary addressing extends the address field from 5 to
10 bits by allowing an additional byte. This additional
byte is passed via the MSA message. Secondary address­
ing can also be used to logically divide devices into
various subgroups. The MSA message applies only to the
device(s) whose primary address immediately preceed it.

INTEL'S® GPIB COMPONENTS

The logic designer implementing a GPIB interface lias, in
the past, been faced with a difficult and complex discrete
logic design. Advances in LSI technology have produced
sophisticated microprocessor and peripheral devices
which combine to reduce this once complex interface task
to a system consisting of a small set of integrated circuits
and some software drivers. A microprocessor hardware/
software solution and a high-level language source code
provide an additional benefit in end-product mainte­
nance. Product changes are a simple matter of revising
the product software. Field changes are as easy as
exchanging EPROMS.

Intel® has "provided an LSI solution to GPIB interfacing
with a talker/listener device (8291 A), a controller device
(8292), and a transceiver (8293). An interface with all
capabilities except for the controller function can be built
with an 8291A and a pair of 8293's. The addition of the
8292 produces a complete interface. Since most devices in,
a GPIB system will not have the controller function
capability, this modular approach provi"des the least cost
to the majority of interfa.ce designs.

Overview of the 8291 A
GPIB Talker/Listener

The Intel® 8291A GPIB Talker/ Listener operates over a
clock range of I to 8 MHz and 'is compatible with the
M CS-85, iAPX-86, and 8051 families of microprocessors.

A detailed description of the 8291A is given in the data
sheet.

The 8291A implements the following functions: Source
Handshake (SH), Acceptor Handshake (AH), Talker
Extended (TE), Service Request (SRQ), Listener Ex­
tended (LE), RemotetLocal (RL), Parallel Poll (PP2),
Device Clear (DC), and Device Trigger (DT).

Current states of the' 8291 A can be determined by
examining the device's status read registers. In addition,
the 8291 A contains 8 write registers. These registers are
shown in Figure 3. The three register select pins RS3-
RSO are used to select the desired register.

The data - in register moves data from the GPIB to the
microprocessor or to memory when the 8291A is
addressed to listen. When the 8291 A is addressed to talk,
it uses the data - out register to move data onto the G PIB.
The serial poll mode and status registers are used to
request service and program the serial poll status byte.

A detailed description of each of the registers, along with
state diagrams can be found in the 8291 A data sheet.

6-500 230832-001

inter AP-166

READ REGISTERS REGISTER SELECT WRITE REGISTERS
CODE

RS2 RS1 RSO

I 017 , 016 , DIS
, 014 1

013 , 012

I

011

I

010

I

0 0 0

I
007

1
006

1

DOS

1
004

1
003

1
002

1
001 , DOD I

DATA IN DATA OUT

I CPT I APT I GET I END I DEC I ERR I BO

I

BI

I

0 0 I CPT I APT I GET I END I DEC 'ERR , BO

I

BI

I
INTERRUPT STATUS 1 INTERRUPT ENABLE 1

0 0

I

0

I

0 IDMAO I DMAII SPC I LLOC I REMC I ADSCI

INTERRUPT STATUS 2 INTERRUPT ENABLE 2

I S8
'SROS.!

S6

1
S5

I

S4 I S3

I

S2 I S1 I 0 I S8 I RSV I ,S6 I
S5 , S4

1
S3

1
S2 I S1

I
SERIAL POLL STATUS 2 SERIAL POLL MODE

I I I
I LPAS I TPAS 1

I
IMJMNI I 1 I I 1

.
I

IADM1 IADMO\ ton Lon EOI LA TA 0 0 TO LO 0 0 0 0

ADDRESS STATUS ADDRESS MODE

0

COMMAND PASS THROUGH AUXMODE

0
lARS' DT I DL , ADS' AD4~D3 'AD2 I AD1 I

ADDRESS 0/1

1 I EC71EC61 Ecsi EC41 EC31 EC2 I EC1 I ECO I
ADDRESS 1 EOS

Figure 3. 8291A REGISTERS

6-501 230832-001

AP-166

Address Mode

The address mode and status registers are used to
program the addressing modes and track addressing
states. The auxiliary mode register is used to select a
variety of functions. The command pass through register
is used for undefined commands and extended addresses.
The address 0/1 register is used to program the addresses
to which the 8291A will respond. The address 0 and

1. MODE: - Talker has single address of 01 H
- Listener has single address of 02H

CPU WRITES TO: PATTERN

Address Mode Register 0000 0001
Address 0 fl Register 00100001
Address 0/1 Register 1100 0010

2. MODE: - Talker has single address ofOIH
- Listener has single address of 02H

CPU WRITES TO: PATTERN

Address Mode Register 00000001
Address 0 fl Register 0100 0010
Address 0/ I Register 1010 0001

address I registers allow reading of these programmed
addresses plus trading of the interrupt bit. The EOS
register is used to program the end of sequence character.

Detailed descriptions of the addressing modes available
with the 8291A are described in the 8291A data sheet.
Examples of how to program these modes are shown
below. .

COMMENT

Select Mode I Addressing
Major is Talking. Address = 01 H
Minor is Listener. Address = 02H

COMMENT

Select Mode I Addressing
Major is Listener. Address = 02H
Minor is Talking. Address = OIH

Note that in both of the above examples, the listener will respond to a MLA message with five least significant bits equal
to 02H and the talker to a OIH.

3. MODE: - Tatker and listener both share a single address of 03H.
,

CPU WRITES TO: PATTERN COMMENT

Address Mode Register 00000001 Selects Mode I Addressing
Address 0 fl Register 00000011 Talker and Listener Address = 03
Address 0/1 Register 1110 0000 Minor Address is disabled

4. MODE: - Talker and listener have a primary address of 04H and a secondary address of 05H

CPU WRITES TO: PATTERN COMMENT

Address Mode Register 00000010 Selects Mode 2 Addressing
Address 0/ I Register 0000 0100 Primary Address = 04H
Address 0/1 Register 10000101 Minor Address is disabled

5. MODE: - Talker has a primary address of 06H. Listener has a primary address of 07H

CPU WRITES TO: PATTERN COMMENT

Address Mode Register 00000011 Select Mode 3
Address 0/1 Register 0010 OlIO Talker Address = 06
Address 0 fl Register 1100 Olll Listener Primary = 07

The CPU will verify the secondary addresses which could be the same or different.

6-502 230832-001

inter AP-166

APPLICATION OF THE 8291A

This phase of the a,pplication note will examine program­
ming of the 8291A, corresponding bus commands and
responses, CPU interruption, etc. for a variety of GPIB
activities. This should provide the reader with a clear
understanding of the role the 8291A performs in a GPIB
system. The talker function, listener function, remote
message handling, and remote/local operations including
local lockout, are discussed.

'nllker Functions

TALK-ONLY (ton). In talk only mode the 8291A will not
respond to the MTA message from a controller. Gener­
ally, ton is used in an environment which does not have a
controller. Ton is also employed in an interface that
includes the controller function.

When the 8291A is used with the 8292, the sequence of
events for initialization are as follows:

I) The Interrupt/Enable registers are programmed.
2) Ton is selected.
3) Settling time is selected.
4) EOS character is loaded.
S) "Pon" local message is sent.
6) CPU waits for Byte Out (BO) and sends a byte to

the data out register.

Addressed 'nllker (Via MTA Message)

The GPIB controller will direct the 8291A to talk by
sending a My Talk Address (MTA) message containing
the tl291 A's talk address. The sequence of events is as
follows:

I) The interrupt enable and serial poll mode registers
are programmed.

2) Mode I is selected.
3) Settling time is selected.
4) Talker and listener addresses are programmed.
S) Power on (pon) local message is sent.
6) CPU waits for an interrupt. When the controller has

sent the MTA message for the 8291A an interrupt
will be generated if enabled and the ADSC bit will
be set.

7) CPU reads the Address Status register to determine
if the 8291A has been addressed to talk (TA = I).

8) CPU waits for_ an interrupt from either BO or
ADSC.

9) When BO is set, the CPU writes the data byte to the
data out register.

10) CPU continues to poll the status registers.
II) When unaddressed ADSC, will be set and TA reset.

LISTENER FUNCTIONS

LlSTEN-ONLY (Ion). In listen-only mo!ie the 8291A will

not respond to the My Listen Address (MLA) message
from the controller. The sequence of events is as follows:

I) The Interrupt Enable registers are programmed.
2) Lon is selected.
3) EOS characted is programmed.
4) "Pon" local message is sent.
S) CPU waits for BI and reads the byte from the

data-in register.

Note that enabling both ton and Ion can create an internal
loopback as long as another listener exists.

Addressed Listening
(Via the MLA Message)

The GPIB controller will direct the 8291A to listen by
sending a MLA message containing the 8291A's listen
address. The sequence of events is as follows:

I) The Inten:Upt Enable registers are programmed.
2) The serial poll mode register is loaded as desired.
3) Talker and listener addresses are loaded.
4) "Pon" local message is sent
S) The CPU waits for an interrupt. When the controller

has sent the MLA message for the 8291A, the
ADSC; bit will be set.

6) The CPU reads the Address Status Register to
determine if the 8291A has been addressed to listen
(LA = I).

7) CPU waits for an interrupt for BI or ADSC.
8) When BI is set, the CPU reads the data byte from

the data-in register.
9) The CPU continues to poll the status registers.
10) When unaddressed, ADSC will be set and LA reset.

Remote/Local and Lockout

Remote and local refer to the source of control of a device
connected to' the GPIB. Remote refers to control from
the GPIB controller-in-charge. Local refers to control
from the device's own system. Reference should be made
to the RL state diagram in the 8291A data sheet.

Upon "pon" the 8291A is in the local state. In this state the
REM bit in Interrupt Status I Register is reset. When the
GPIB controller takes control of the bus it will drive the
REN (remote enable) line true. This will cause the REM
bit and REMC (remote/local change) bit to be set. The
distinction between remote and local modes is necessary
in that some types of devices will have local controls
which have functions which are also controlled by remote
messages.

In the local state the device is allowed to store, but not
respond to, remote messages which control functions
which are also controlled by local messages. A device

6-503 230832-001

inter AP-166

which has been addressed to listen will exit the local state
and go the the remote state if the REN message is true and
the local rtl (return to'iocal) message is false. The state of
the "rtl" local message is ignored and the device is
"locked" into the local state if the LLO remote message is
true. In the Remote state the device is ndt allowed to
respond to local message which control function that are
also controlled by remote messages. A device wil exit the
remote state and enter the local state when REN goes
false. It will also enter the local state if the GTL (go to
local) remote message is true 'and the device has been
addressed to listen. It will also enter the local state if the
rtl message is true and the LLO message is false or ACDS
is inactive.

A device will exit the remote state and enter R WLS
(remote with lockout state) if the LLO (local lockout)
message is true and ACDS is active. In this mode, th,ose
local message which control functions which are also
controlled by remote messages are ignored. In other
words, the "rtl":' message is ignored. A device will exit
R WCS and to to the local state if REN goes false. The
device will exit RWLS and go to LWLS if the GTL
message is true and the device is addressed to listen.

Polling

The IEEE-488 standard specifies two methods for a slave
device to let the controller know that it needs service.

These two methods are called Serial and Parallel Poll.
The controller performs one of these two polling methods
after a slave device requests service. As implied in the
name, a Serial Poll is when the controller sequentially
asks each device if it requested service. In a Parallel 'Poll
the controller asks all of the devices on the G PIB if they
requested service, and they reply in parallel.

Serial Poll

When the controller performs a Serial Poll, each slave
device sends back to the controller a Serial Poll Status
Byte. One of the bits in the Serial Poll Status Byte
indicates whether this device requested service or not.
The remaining 7 bits are user defined, and they are used
to indicate what type of service is required. The IEEE-488
spec only defines the service request bit, however HP has
defined a few more bits in the Seriai Poll Status Byte.
This can be seen in figure 4.

if: SERVICE REQUESTED

0: SERVICE NOT REQUESTED

8 7 I 6 • • • • •

~-- DEVICE DEPENDENT STATUS BITS ~
TYPICAL HP U~ 1:

I' 10:
SERVICE REQUESTED

SERVICE NOT REQUESTED

., 6 1 8 5 4 • • •

NOT USED WI DEVICE DEFINED
, 1: OPERATION COMPLETE

0: BUSY

J 1: ERROR

'-----------11 0: NORMAL

Figure 4. The Serial Poll Status Byte

6-504 230832-001

AP-166

When a slave device needs service it drives the SRQ line
on the GPIB bus true (low). For the 8291 A this is done by
setting bit 7 in the Serial Poll Status Byte. The CPU in the
controller may be interrupted by SRQ or it may poll a
register to determine the state of SRQ. Using the 8292
one coutd either poll the interrupt status register for the
SRQ interrupt status bit, or enable SRQ to interrupt the
CPU. After the controller recognizes a service request, it
goes into the serial poll routine.

The first thing the controller does in the serial poll routine
is assert ATN. When ATN is asserted true the controller
takes control of the GPIB, and all slave devices on the
bus must listen. All bytes sent over the bus while ATN is
true are commands. After the controller takes control, it
sends out a Universal Unlisten (UNL), which tells all
previously addressed listeners to stop listening. The con­
troller then sends out a byte called SPE (Serial Poll
Enable). This command notifies all of the slaves on the
bus that the controller has put the GPIB in the Serial Poll
Mode State (SPMS). Now the controller addresses the
first slave device to TALK and puts itself in the listen
moQe. When the controller resets ATN the device
addressed to talk transmits to the controller its Serial
Poll Status Byte. If the device just polled was the one
requesting service, the SRQ line on the GPIB goes false,
and bit 7 in the serial poll status byte of the 8291 A is reset.
If more than one device is requesting service, SRQ
remains low until all of the devices requesting service
have been polled, since SRQ is wire-ored. To continue the
Serial Poll, the controller asserts ATN, addresses the next
device to talk then reads the Serial Poll Status Byte.
When the controller is finished polling it asserts ATN,
sends the universal untalk command (UNT), then sends
the Serial Poll Disable command (SPD). The flow of the
serial poll can be seen from the example in figure 5.

O. DEVICE A REQUESTS SERVICE (SRQ)
I. ASSERT ATN
2. UNIVERSAL UNLISTEN (UNL)
3. SERIAL POLL ENABLE (SPE)
4. DEVICE A TALK ADDRESS (MTA)
5. RELEASE ATN
6. DEVICE A STATUS BYTE (STB) (RQS SET)
7. ASSERT ATN
8. DEVICE B TALK ADDRESS (MTA)
9. RELEASE ATN

10. DEVICE B STATUS BYTE (STB) (RQS CLEAR)
11. ASSERT ATN
12. DEVICE C TALK ADDRESS (MTA)
3. RELEASE ATN
4. DEVICE C STATUS BYTE (STB) (RQS CLEAR)
5. ASSERT ATN
6. UNIVESAL UNTALK (UNT)
7. SERIAL POLL DISABLE (SPD)

18. GO PROCESS SERVICE REQUEST

Figure 5. Serial Polling

6-505

The following section describes the events which happen
in a serial poll when 829lA and 8292 are the controller,
and another 8291A is the slave device. While going
through this section the reader should refer to the register
diagrams for the 829lA and 8292.

A. DEVICE A REQUESTS SERVICE
(SRQ BECOMES TRUE)

The slave devices rsv bit in the 8291A's serial poll mode
register is set.

B. CONTROLLER RECOGNIZES SRQ
AND ASSERTS ATN

Thf 8292's SPI pin 33 interrupts the CPU. The CPU
reads the 8292's Interrupt status register and finds the
SRQ bit set. The CPU tells the 8292 to 'Take Control
Synchronously' by writing a OFDH to the 8292's com­
mand register.

C. THE CONTROLLER SENDS OUT THE
FOLLOWING COMMANDS: UNIVERSAL
UNLISTEN (UNL), SERIAL POLL ENABLE
(SPE), MY TALK ADDRESS (MTA).

(MTA isa command which tells one of the devices on the
bus to talk.)

The CPU in the controller waits for a BO (byte out)
interrupt in the 829lA's interrupt status I register before
it writes to the Data Out register a 3FH (UNL), 18H
(SPE), OIOXXXXX (MTA). The X represents the pro­
grammable address of a device on the GPIB. When the
8291A in the slave device receives its talk address, the
ADSC bit in the Interrupt Status register 2 is set, and in
the Address Status Register TA and TPAS bits are set.

D. CONTROLLER RECONFIGURES ITSELF
TO LISTEN AND RESETS ATN

The CPU .in the controller puts the 8291A in the listen
only mode by writing a 40H to the Address Mode register
of the 8291 A, and then a OOH to the Aux Mode register.
The second write is an 'Immediate Execute pan' which
must be used when switching addressing modes such as
talk only to listen only. To reset ATN the CPU tells the
8292 to 'Go To Standby' by writing a OF6H to the com­
mand register. The moment ATN is reset, the 8291A in
the slave device sets SPAS in Interrupt Status 2 register,
and transmits the serial poll status byte. SRQS in the
Serial Poll Status byte of the 8291 A slave device is reset,
and the SRQ line on the GPIB bus becomes false.

E. THE CONTROLLER READS THE SERIAL
POLL STATUS BYTE, SETS ATN,
THEN RECONFIGURES ITSELF TO TALK

The CPU in the controller waits for the Byte In bit (BI) in
the 8291A's Interrupt Status I register. When this bit is set
the CPU reads the Data In register to receive the Serial
Poll Status Byte. Since bit 7 is set, this was the device
which requested service. The CPU in the controller tells
the 8292 to Take Control Synchronously' which asserts
ATN. The moment ATN is asserted true the 8291 A in the
slave device resets SPAS, and sets the Serial Poll Com-

230832-001

AP-166

plete (SPC) bit in the Interrupt Status 2 register. The
controller reconfigures itself to talk by setting the TO bit
in the Address Mode register and then writing a OOH to
the Aux Mode register.

F. THE CONTROLLER SENDS THE
COMMANDS UNIVERSAL UNTALK (UNT),
AND SERIAL POLL DISABLE (SPD) THEN
RESETS THE SRQ BIT IN THE 8292
INTERRUPT STATUS REGISTER

The CPU in the controller waits for the BO Interrupt
status bit to be set in the Interrupt Status '1 register of the
8291A before it writes 5FH (UNT) and 19H (SPD) to the
Data Out register. The CPU then writes a 2BH to the
8292's command register to reset the SRQ status bit in the
Interrupt Status register. When the 8291A in the slave
device receives the UNT command the ADSC bit in the
Interrupt Status 2 register is set, and the TA and TPAS
bits in the Address Status register will be reset. At this
point the controller can service the slave device's request.

Note that in the software listing of AP-66 (USING THE
8292 GPiB CONTROLLER) there is a bug in the serial
poll routines. In the 'SRQ ROUTINE' when the CPU
finds that the SRQ bit in the interrupt status register is
set, it immediately writes the interrupt Acknowledge
command to the 8292 to reset this bit. However the SRQ
GPIB line will still be driven true until the slave device
driving SRQ has been polled. Therefore, the SRQ status
bit in the 8292 will become set and latched again, and as a
result the SRQ status bit in the 8292 will still be set after
the serial poll. The proper time to reset the SRQ bit in the
8292 is after SRQ on the GPIB becomes false.

Parallel Poll

The 8291 A supports an additional method for obtaining
status from devices known as parallel poll (PPOL). This
method limits the controllerto a maximum of8 devices at
a time since each device will produce a single bit response
on the GPIB data lines. As shown in the state diagrams,
there are three basic parallel poll sates: PPIS (parallel poll
idle state), PPSS (parallel poll standby state), and PPAS
(parallel poll active state).

In PPIS, the device's parallel poll function is in the idle
state and will not respond to a parallel poll. PPSS is the
standby state, a state in which the device will respond to a
parallel poll from the controller. The response is inititated
by the controller driving both ATN and EOI true
simultaneously. -

The 8291A state diagram shows a transition' from PPIS
to PPSS with the "lpe" message. This is a PP2 implemen­
tation for a parallel poll. This "lpe" (local poll enable)
local message is achieved by writing 011 USP3P2P 1 to the
Aux Mode Register with u=o. The S bit is the sense bit. If
the "ist" (individual status) local message value matches
the sense bit, then the 8291A will give a true response to a

parallel poll. Bits P 3-P 1 identify which data line is used for
a response.

For example, assume the programmer decides that the
system containing the 8291A shall participate in parallel
poll. The programmer, upon system initialization would
write to the Aux Mode Register and reset the U bit and
set the S bit plus identify a data line (PrP 1 bits). At "pon,"
the 8291 A would not resond true to a parallel poll unless
the parallel poll flag is set (via Aux Mode Register
command).

When a status condition in the user system o.ccurs and the
programmer decides that this condition warrants a true
response, then programmers software should set the
parallel poll flag. Since the S bit value matches the "ist"
(set) condition a true response will be given to all parallel
polls.

An additional method of parallel polling reading exists
known as a PPI implementation. In this case the
controller sends a PPE (parallel poll enable) message.
PPE contains a bit pattern similar to the bit pattern used
to program the "Ipe" local message. The 8291A will
receive this as an undefined command and use it to
generate an "Ipe" message. Thus the controller is specify­
ing the sense bits and data lines for a response. A PP.D
(parallel poll disable) message exists which clears the bits
SP 3P 2P 1 and sets the U bit. This also will be received by
the 8291A and used to generate an "Ipe" false local
message.

The actual sequence of events is as follows. The controller
sends a PPC (parallel poll configure) message. This is an
undefined command which is received in the CPT register
and the handshake is held off. The local CPU reads this
bit pattern, decodes it, and sends a VSCMD message to
the Aux Mode Register. The controller then sends a ppe
message which is also recieved as a undefined command
in the CPT register. The local CPU reads this, decodes it
clears the MSB, and writes this to the Aux Mode Register
generating the "Ipe" message.

The controller then sends ATN and EOI true and the
8291 A drives the appropriate data line if the "ist" (parallel
poll flag) is true. The controller will then send a PPD
(parallel poll disable) message (again, an undefined
command). The CPU reads this from the CPT register
and uses it to write a new "Ipe" message (this "lpe"
message will be false). The controller then sends a PPU
(parallel poll unconfigure) message. Since thi.s is also an
undefined command, it goes into the CPT register. When
the local CPU decodes this, the CPU should clear the
"ist" (parallel poll flag).

APPLICATION EXAMPLES

In the course of developing this application note, two
complete and identical GPIB systems were built. The

6-506 230832-001

AP-166

schelllatics and block diagrams are contained in Appen­
dix I. These systems feature an 8088 CPU, 8237 DMA
controller, serial I/O (8251 A and 8253),RAM, EPROM,
and a complete GPIB talker/listener controller. Jumper
switches were provided to select between a controller
function and a talker /listener function. This system
design is based on the design ofintel's SDK-86 prototyp­
ing kit and thus shares the same I/O and memory
addresses. This system uses the same download software
to transfer object files from Intel development systems.

Two Software Drivers

Two software drivers were developed to demonstrate a
ton/Ion environment. These two programs (BOARD I
and BOARD 2) ar~ contained in Appendix 2.

In this example, one of the systems (BOARD I) initially is
programmed in talk-only mode and synchronization is
achieved by waiting for the listening board to become
active. This is sensed by the lack of a GPIB error since a
condition of no active listener produces an ERR status
condition. Board I upon detecting the presence of an
active listener trllnsmitts a block of 100 bytes from a
PROM memory across the bus. The second system
(BOARD 2) receives this data and stores it in a buffer,
EO! is sent true by the talker (BOARD I) with the last
byte of data. Upon detection of Eo!, BOARD 2 switches
to the talk only mode while BOARD I upon terminal
count switches to the listen only mode. BOARD 2 then
detects the presence of an active listener and transmitts
the contents of its buffer back to BOARD I which stores
this data in the buffer. EO! again is sent with the last byte
and BOARD 2 switches back to listen-only. BOARD I
upon detecting EOI then compares the contents of its
buffer with the contents of its PROM to ensure that no
data transmission errors occured. The process then
repeats itself.

8291A with HP 9835A

An example ofthe 8291 A used in conjunction with a bus
controller is also included in this application note. In this
example, the 8291 A system used in previo,us experiments
was connected via the G PIB to a Hewlett-Packard 9835A
desktop computer. This computer contains, in addition
to a GPIB interface, a black and white CRT, keyboard,
tape drive for high quality data cassettes, and a calculator
type printer. The seftware for the HP 9835A is shown in
Appendix 3, The user should refer to the operation man­
uals for the HP 9835A for information on the features
and programming methods for the HP 9835A.

In this example, the 8292 was removed from its socket
and the OPTA and OPTB pins of the two 8293 trans­
ceiver reconfigured'to modes 0 and I. Optionally, the
mode pins could have been left wired for modes 2 and 3
and the 8292 left in its socket with its SYC pin wired to
ground. This would have produced the same effect.

The first action performed is sending I Fe. Generally, this
is done when a controller first comes on line. This pulse is
at least 100 us in duration as specified by the IEEE-488
standard.

The software checks to see if active listeners are on line.
For demonstration purposes, the' HP 9835A will flag the
operator to indicate that listeners are on line.

The HP 9835A then configures and performs a parallel
poll (PPOL). The parallel poll indicates I bit of status of
each device in a group of up to 8 devices. Such informa­
tion could be used by an application program to deter­
mine whether optional devices are part of a system con­
figuration. Such optional devices might include mass
storage devices, printers, etc. where the application soft­
ware for the controller might need to format data to
match each type of device. Once the PPOL sequence is
finished, the HP 9835A offers the user the opportunity to
execute user commands from the keyboard. At this time
the HP 9835A sits in a loop waiting for an SRQ condi­
tion. When the operator hits a key on the keyboard, the
H P 9835A processor is interrupted and vectors to a
service routine where the key is read and the appropriate
routine is executed. The HP 9835A will then return to the
loop checking for SRQ true. For this application, the
valid keys are G,D,R,H,and X. Pressing the "G" key
causes the GET command to be sent across the bus. A
message to this effect is printed in the CRT and the HP
9835A returns. The "D" key causes the SDC message to
be sent with the 8291 A being the addressed device. Again,
an appropriate message is output on th HP 9835A CRT.
The "R"key causes the GTLmessage to be sent. The CRT
displays "'REMOTE MESSAGE SENT." The "W key
causes a menu to be displayed on the HP 9835A CRT
screen. This menu lists the allowed commands and their
functions. NO GPIB commands are sent. The "X" key
allows the operator to send one line of data across the
bus. The line of data is terminated by a carriage return
and line feed produced by pressing the "CONTINUE"
key on the HP 9835A.

The characters are stored in the sequence entered into a
buffer whose maximum size is 80 characters. Pressing the
"CONTINUE" key terminates storing characters in the
array and all characters including the carriage return and
line feed are sent. EOI is then sent true with a false byte of
OOH. ThiS false byte is due to the 1975 standard which
allows asyncronous sending and reception of EO!. (The
8291A supports the later 1978 standard which eliminates
this false byte).

After any key command is serviced control returns to the
loop which checks for SRQ active. Should SRQ be
active, then the keyboard interrupt is disabled and a
message printed to indicate that SRQ has been received
true.

The controller then performs a parallel poll.

This is an example of how parallel poll may be used to

6-507 230832-001

AP-166

quickly check which group of devices contains a device
sending SRQ. The eight devices in a group would, of
course, have software drivers which allow a true response
to a PPOL if that device is currently driving SRQ true.
This would be a valuable method of isolation of the SRQ
source in a system with a large number of devices. In this
application program, only the response from the 8291 A
is of concern and only the 8291 A's response is considered.
It does, however, demonstrate the tecknique employed. If
a true response from the 8291A is detected, then a mes­
sage to this effect is printed on the HP 9835A CRT
screen. From this process, the controller has identified the
device requesting service and will use a serial poll(SPOL)
to determine the reason for the service request. This
method of using PPOL is not specifically defined by the
IEEE-488 standard but is a use of the resources provided.

The controller software then prints a message to indicate
that it is about to perform a serial poll. This serial poll will
return to the controller the current status of the 8291A
and clear the service request. The status byte received is
then printed on the CRT screen of the HP 9835A. One of
the 8291A status bits indicates that the 8291A system has
a field (on line or less) of data to transfer to the HP
9835A. If this bit is set, then the HP 9835A addresses the
8291A system to talk. The data is sent by the 8291A
system is then printed on the CRT screen of the HP
9835A. The HP 9835 then enables the keyboard interrupts
and goes into its SRQ checking loop.

Appenoix 4 contains the software for the 8291A system
which is connected to the HP 9835A via the GPIB. This
software throws away the first byte of data it receives
since this transfer was used by the HP 9835A to test when
the 8291A system came on line.

Next, both status registers are read and stored in the two
variable STAT I and STAT 2. It is necessary to store the
status since reading the status registers clears the status
bits.

Initially, six status bits are evaluated (END, GET, CPT,
DEC, REMC, ADSC). Some of these conditions require
that additional status bits be evaluated.

If END is true, then the 8291A system has received a
block from the HP 9835A and the contents of a buffer is
printed on the CRT screen. Next, the CPT bit is checked.
PPC and PPE are the only valid undefined commands in
this example.

Next, the GET bit is examined and if true, the CRT
screen connected to the serial channel on the 8291 A
system prints a message to indicate that the trigger com­
mand has been received. A similar process occurs with
the DEC and REMC status bits.

Address Status Change (ADSC) is checked to see if the
8291A has been addressed" or unaddressed by the con­
troller. If ADSC is false, then the software checks the
keyboard at the CRT terminal. If ADSC is set, then the
TA and LA bits are read and evaluated to determine
whether the 8291A has been addressed to talk or listen.
The DMA controller is set to start transfers at the start of
the character buffer and the type of transfer is determined
by whether the 8291A is in TADS or LADS. We only
need to set up the DMA controller since the transfers will
be transparent to the system processor. The keyboard
from the CRT terminal is then checked. If a key as been
hit, then this character is stored in the character buffer
and the buffer printer set to the next character location.
This process repeats until the received character is a line
feed. The line feed is echoed to the CRT, the serial poll
status byte updated and the SRQ line driven true. This
allows the 8291 A system to store up to one line of charac­
ters before requesting a transfer to the controller. Recall
that upon receiving an SRQ, the controller will perform a
serial poll and subsequently address the 8291A to talk.
The 8291A system then goes back to reading the status
register thus repeating the process.

CONCLUSION

This application note has shown a basic niethod to view
the IEEE 488 bus, when used in conjunction with Intel's®
8291A.

The main reference for GPIB questions is the IEEE
Standard 488 - 1978. R.eference 8291A's data sheet for
detailed information on it.

Additional Intel® GPIB products include iSBX-488,
which is a multimode board consisting of the 8291A,
8292, and 8293.

REFERENCES

8291A Data Sheet
8292 Data Sheet
8293 Data Sheet
Application Note #66 "Using the 8292 GPIB Controller"
PLM-86 User Manual
HP 9835A User's Manual
IEEE-488-1978 Standard

6-508 230832-001

~

~
'" '"
~

CLOCK
GEN.

CPU

APPENDIX 1
SYSTEM BLOCK DIAGRAM WITH 8088

GPIB

cf

»
'U
~
01
01

AP-166

APPENDIX 2
SOFTWARE DRIVERS FOR BLOCK DATA TRANSFER

PLlM--86 COl1PILER . DOARD 1

ISIS-II PL/t1-86 VI COI'1PILi-I'fJOhl OF MODUI.E P,DIIRD l
OBJECl MOD~LE PLACED TN' FI ORD1 OB~

COMPILER INVOKED BY: PU186 Fl' BRDl. SRC SYMBOLS MEDIUM

2 1
3 2

4 .::
5 3
6 2
7 2

1* BOARD 1 TPT PROGRAM *1
J* THIS IlClt.RD TALi'S TD. niE OTHER BOARD 11Y *1
I~ TRANSFERRING A BLOC~ OF DATA VIA THE 8237
/"" COUPLED llITH THE' 8291A THE 8291A IS PROGRAM- *1
I~ MED TO SEND EO! l,HEN RECOGNIZING THE LAST *1
1* DATA BiTE'S BIT PATTERN WHILE DATA IS BEING *1
1* TRANSFERRED. THE PROCESSOR PERFORMS 1/0 READS *1
1* OF THE (,237 CC'Jtn REGIS1ERS TO SIMULATE BUS *1
,. ACTIVIT,. AND TO DE1ERMINE WHEN TO TURN THE *1
I... LINE AROUND. Ar-TER THF. 8237 HAS REACHED . .,/
1* TERMINAL COUNT. THE 829lA IS PROGRAMMED TO *1
1* THE LIS1:ENER STATE AND WAITS FOR THE BLOCK *1
1* TO DE TRAt .. SMITTED ~ACK FROM THE SECOND BOARD. *1
1* THIS DATA IS PLACED IN A SECOND BUFFER AND *1
!. ITS CONTENTS COMPARED WITH THE ORIGINAL DATA *1
1* TO CHECK FOR INTERFACE INTEGRITY *1

BOARD1.

DO,
1* PROCEDURES */

CO PROCEDURE (XXX)
DECLARE XXX BYTE.
SER$STAT LITERALLY ·OFFF2H·.
SER !l>DA r A LITERAL L Y • OFFFOH ••
TiRDv LITERALLY 'OlH',
DO I~HrLE (INPUT (SER$STATl AND TXRDY) <>
END;
OUTPUT (SER$DATA) = XXX.

END CO;

, -,' SEnJP BUFFERS ill

TXRDY;

8 DECL.ARE BUFF2 (100) BYTE; 1* RAM STORAGE AREA *1
9 DECLARE BUF,Fl (100) BYTE DATA

(1.2,3,4,5.6.7,8.9,lOH.
ttH, 12H, 13H, 14H. 15H, 16H. 17H. 18H, 19H, 20H.
21H, 22H, 23H, 24H. ,25H. 26H. 27H, 28H. 29H, 30H.
~l1H. 32H, 33H. 34H. 35H, 36H, 37H. 38H, 39H. 40H,
41H. 42H, 43H. 44H. 45H. 46H. 47H. 4SH. 49H. 50H,
:711H. 52H, 53H, 54H, 55H. 56H .. 57H. 58H. 59H, bOH,
61H. 62H. 63H, 64H. 65H, 66H. 67H. 6SH. 69H, 70H,
7H·L 72H, 73H. 74H, 75H, 76H, 77H, 78H, 79H, SOH,
81H. 82H, 83H. 84H, 85H. S6H. 87H, 88H. 89H. 90H.

6-510 230832-001

inter AP-166

PL/M-86 COMPILER BOARDl

10

11

12
13

14

15

16

91H, 92H, 93H, 94H, 95H, 96H, 97H, 98H, 99H, ODH);
DECLARE BUFF3(17) BYTE DATA
(ODH, OAH, 'Cot1PARE ERROR', OL:H. CAH), 1* ROM STORAGE AREA *1

1* 8237 PORT ADDRESSES *!

DEr.LARE

CLEAR$FF
STARTOLO
STARTOHI
-O$COUNT$LO
O$COUNHHI
SET$t10DE.
CMD$37
SEUt1ASK

LITERALLY 'OFFDDH', 1* MASTER CLEAR *1
LITERALL) 'OFFDOH',

LITERALLY 'OFFDOH',
LITERALLY 'OFFD1H',
LITERALLY 'OFFD1H',
LITERALLY 'OFFDBH',
LITERALLY 'OFFD8H',

. LITERALLY 'OFFDFH·.

1* 8237 COMt1AND - DATA BYTES "'I
DECLARE DMAADRTALK POINTER;
DECLARE DMA$ADRkSTN POINTER,

DECL4RE

RD$TRANSFER
WR$TRANSFER
NORM$TIME
TC$LOl

LI TERALL Y '48H',
LI TERALL Y '44H',
LI TER ALL Y , 20H' ,

TC$Hl1
TC<$102
TC

LITERALLY 'OFFH',
LITERALLY 'OOH',
LITERALLY '99D', 1* 100 XFERS *1

I

DE.CLARE

LITERALLY 'OlH',
BYTE;

Dt1A$t~RD$TAU<\ ,;2) WORD
Dt1A$t~RO$LSTN (2) t40RD

A'j

AT
(@DM4ADRTALK) ,
(@DMAADRLSTN) ;

I~ 929IA PORT ADDRESSES *1

DECLARE

PORT$OUT LITERALLY 'OFFCOH', 1* DATA OUT*I
PORUIN LITERALLY 'OFFCOH'
STATUS$l LITERALLY 'OFFC1H' , I*INTR STAT 2*1
STATUS$2 LITERALLY 'OFFC2H' , 1* INTR STAT 2 *1
ADDR$STATUS LITERALLY 'OFFC4H' ,
COt1MAND$MOD LITERALLY 'OFFC5H', I*CMD PASS THRU *1
ADDR$O LITERALLY 'OFFC6H',
EOS$REG LITERALLY 'OFFC7H', 1* EOS REGISTER *1

6-511 230832-{)01

inter

PLlM-81l

17

1B

20
21

23
24

25

26
27
28

29
30
31
32
33

/;..

COMPILER

1* CODE

START91.

AP-166

8291A COI1MM~O -- DATA ElvTES i'./

BOARDl

DECLARE

Et~D!I>EOI LITERALLY 'SSH' ,
DNE LITERALLY , lOH',
PON LITERALLV 'OOH',
RESET L.ITERALLV '02H',
CI_EAR L TTERALLV 'OOH' ,
Dt1A!I>REG!i>L L nERALLY '10H' ,
L't1A$RE(1!1>T LITERALLV '20H',
MODUTO LITERALLV 'BOH',
MOD1SLO LITERALLV '40H',
EOS LITERALLV 'ODH',
PRESCALER LITERALLY '23H',
HIGH$SPEED LITERALLY 'OA4H',

·0"'''''' LITERALLY 'OFFFFH' ,
XVZ BYTE.
MATCH t~ORD,

80 LITERALLV '02H',
HI L l TCRALLY '01H'1
EPR LlTERALLY '04H' ,

BEGINS *1

OUTPUT ,8TATU8$2) =CLEAR, 1* SHUT-OFF DMA REG BITS TO *1
1* PREVENT EXTRA DMA REGS *1

l*FROM 8291A

1* MAIHPu"'IHE DMA "DDRESS VARIABLES *l

DMA'''DR$TALK =(@BUFF11;
DMASADR$lSTN =(@BUFF2);
DMASWRDS'-ALK(1) =SHL <DMASWRDSTALK(1 I, 4);
Dt1ASWRDSTAU\(O)=DMAS\~RDSTALK (0) + DMA.WRDSTALK (1 I;
DMASI~RDSLSTN (1 I =SHL (Dt1ASWRDSLSTN (1), 4);
Dt1ASWRDSLSTN(O)=DMASWROSLSTN (0) +DMASWRDSLSTN (1);

[NIT::;T;
1* INIT 8237 FOR TALKER FUNCTIONS *1

OUTPUT (CLEARSFF)
OUTPUT (CMDS37)
OUTPUT (SETSt10DE)
OUTPUT (SETSMASK)
OUTPUT (START.O.LO)
DMASI~RDSTALK (0)
OUTPUT (STARTSO.HI)
OUTPUT ioscnUNTSLO)
OUTPUT (OSCOUNTSHI)
1* INIT 82qlA FOR TALKER

=CLEAR;I* TOGGLE MASTER CLEAR *1
=NORM.TIME;
=RDS TRANSFER;
=CLEAR;

=DMA.WRD.TALK (0);
=SHR (Dt1ASWRDSTALK (0), B);

=DMA.WRDSTALK (0);
=TC.L02;
=TCSHI2;

FUNCTIONS *1

PLtM·-86 COMPILER BOARD1

6-512 230832-001

34
35
36
37
38
39

40
41 ~

Co

42

43 1
44 2
45 3
46 2
47 2

48

49

50 2

51

52
53 2
54
55
56
::"7
58

OUTPUT
59
60

61
62
63

64 1
65 2
66 1

67

68

AP-166

(EOS$REG) =EOS, OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

(COMMAND$MOD) -END$EOr; 1*
IADDR$STATUS) -MOD1$TO. /~

EOI ON EOS SENT *1
TAL'" ONLY *1

(COt1IvIAt.D$MOD)
(C Ot1t1AND$t10D)
'. C OMMAt.O$MOD}

-PRESCALER,
'~H I GH$SPEED.
-PON,

DO WHILE (INPUT ,STATUS'1) AND BO) =0.
END' 1* WAIT FOR BO INTR *1
OUTPUT (PORT$OUT) = OAAH.

DO WHILE (INPUT (STATUS.l) AND ERR) - ERR;
DO WHILE (INPUT (STATUS$I) AND BO) = 0;
END. 1* I~AIT FOR BO INTR *1
OUTPUT (PORT$OUT) -OAAH,

E.ND.

OUT~UT f~lA1US$2f -DMA$REG.T. !~ ENABLE DMA REGS *1

DO WHILE ,INPUT (CMD$J71 AND TC) ~~

/* WAIT FOR TC - 0 *1
END.

INIT37L,

TC;

OUTPUT (STATUS$2) -CLEAR, I. DISABLE DMA REGS *1

/~ INIT 8237 FOR LISTENER FUNCTIONS *1

(11_'·1 PUT
OUTPUT
OUTPUT
OUTPUT

'. CLEAR$F-·~ ,
(cr1D$37)
(SET$MODEI
(SET'MASK)

O=CL~AR. ;- TOGGLE MASTER RESET *1
-NORM$TIME,
=I~R$TRANSFER •
-CLEAR;

OUTPUT (SlARTOLOI -DMAWRDLSTN (0),
DMAWRDLSTN (0) -SHR (DMAWROLSTN (0), 8).

(START OHI) -DMAWRDLSTN (0).

OUTPUT (O$CUUtH$LO) -TceLO!,
OUTPUT (O$COUNT$HI) -TC.HI1·

1* INIT B291A FOR LISTEMER FUNCTIONS ~I

-RESET, OUTPUT
OUTPUT
OUTPUT

(COMMAtJD$MOD)
(ADDR$STATUS)
(COMMAND$t10D)

-MODI$LO; 1* LISTEN ONLY *1
-PON,

DO WHILE (INPUT (STATUSS1) AND BI) =0;
END. 1* WAIT FOR BI INTR *1
XYZ INPUT (PORT$IN).

OUTPUT (STATUS$2) =DMA$REQ$L. ;. ENABLE DMA REGS '~I

DO WHILE (JNPUT (STATUS$!) Aim DNE)'-:>
1* WAIT FOR EOJ RECEIVED ~/

6-513

ONE,

230832·001

AP-166

PL!M-86 CQMPJLEP i3clAFf·

70 CMP[,LVS

1* rC"If'ARE THE HID B'JFFERS CONTENTS *1

t1ATCH=CMFH (@BUFFl, @BUFF2, 100);

71 IF t"ATCH OKAY THEN OOTO START91;

';< SE'lD ERROfI MESSI'GE IN BUFFER 3 *1 ,

73 DO 1=0 ra 16,
74 2
75 ;(2 END,

7",

77 F.:rlD,

MODULE It~FORMAT ION

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
243 LINES READ
o PROGRAM ERRCR (S)

END OF PL/t1-86 COMPILATION

CALL CO (BUFF 3 (1));

=OlDBH
=0075H
=0070H
=0006H

6-514

475D
117D
112D

6D

230832-001

inter AP-166

PL/M-86 COMPILER BOARD2

1515-1 I PL/M-86 VI. 1 Cot1P ILATION OF MODULE BOARD2
OBJECT MODULE PLACED IN FI BRD2. OBJ
COMPILER INVOKED BY. PLM86 Fl· BRD2. SRC

2

3

4

I~ BOARD 2 TPT PROGRAM *1
1* *1
1* THIS BOARD LISTENS TO THE OTHER BOARD (1)
1* AND Dt1A'S DATA INTO A BUFFER. ~\lHILE WAITING
1* FOR THE END ltHERRUPT BIT TO BECOt1E ACTIVE
1* UPON END ACTIVE. THE DATA IN THE BUFFER IS
1* SENT BAC~ TO THE FIRST BOARD VIA THE GPID
1* WHEN THE BLOCK IS FINISHED THE 829IA IS *1
1* PROGRAMMED BACK INTO THE LISTENER MODE *1

*1
*1
*1
*1
*1

BOARD2 •

DO;
1* 8237 PORT ADDRESSES .1

DECLARE

CLEAR$FF
5TARTOLo
STARTOHI
O$COUNT$LO
O$COUtH$HI
SET$MODE
Ct1D$37
SET$MASK

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

'OFFDDH' •
'OFFDOH' •
'OFFDOH' •
'OFFDIH'.
'OFFDIH' .
'OFFDBH' .
'OFFD8H' .
'OFFDFH' ,

I*MASTER CLEAR *1

1* 8237 CUMMAND - DATA BYTES *1

DECLARE

RD$TRANSFER LITERALLY '48H .
WR$TRANSFER LITERALLY '44H'.
ADDR$1A LITERALLY IOOH',
ADDR$lB LITERALLY 'OlH' ,
NORt1$TIME LITERALLY '20H'J
TC$LOI UTERALLY 'OFFH'.
TC$HIl LITERALLY '~OH'.

TC$L02 LITERALLY '99D'.
TC$HI2 LITERALLY IOOH',
TC LITERALLY 'OIH '.

1* 8291A PORT ADDRESSES *1

DECLARE

PORT$OUT
PORT$IN
STATU[.,$l
STA1US$2
ADDR$STATUS
COt1t1AND$t10D

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

6-515

'OFFCOH' •
'OFFCOH'.I* DATA IN *1
'OFFCIH'. 1* INTR STAT 1 *1
'OFFC2H'. 1* INTR STAT 2 *1
'OFFC4H', 1* ADDR STAT *1
'OFFC5H', 1* Ct1D f:>ASS THRU *1

230832-001

I/' .,~
ii~L
;1
1,/
i:i

inl'ef AP-166

5

6

7

8
9
10
11
12
13
14

15
16
17
1S
19 2
20
21

22

ADDR$O
EOS$REG

LITERALLY
LITERALLY

'OFFC6H',
'OFFC7H', 1* EOS REGISTER *1

;* 8291A COMMAND - DATA BYTES *1

DECLARE.

END$EO! LI TERALL Y 'SSH ' ,
ONE LITERALLY 'lOH',
PON L[TERALLY 'OOH',
RESin LITERALLY '02H',
CLEAR LITERALLY "OOH',
Dt1AREGL LI TERALL Y , lOH ' ,
DMAREGT LITERALLY "20H',
MOD1$TO LITERALLY 'SOH',
MOD1.LO LITERALLY "40',
EOS LITERALLV 'ODH',
PRESCALER LITERALLY '23H',
HIGH$SPEED LITERALLY 'A4H',
XYZ BYTE,

. BO LITERALLY '02H',
BI LITERALLY'OlH'.
ERR I ITER ALL Y '04H',

START91,

OUTPUT (STATUS$2) =CLEAR' 1* END INITILIZATION STATE *1

1* I~IT 8237 FOR LISTENER FUNCTION -I

INIT37L.;

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPLUT

(CLEAF/$FF) =CLEAR; 1* TOGGLE MASTER RESET *1
(CMD$37) -NORM$TIME,
(SET$t10DE) -WR$TRANSFER, 1* 'BLOCK XFER MODE *1
(SET$MASK) -CLEAR;
(STARTOLO) =AooR$1A;
(STARTOHI) =ADDR$lB,
(O$COUNT$LO) =TC$LOl.
(Q$COUNT$HIl =TC$HI 1;

1* INIT 8291A FOR LISTENER FUNCTIONS *1

OUTPUT (COMI'1AND$MOo) =RESET;
OUTPUT (ADoR$STATUS) =MOD1$LO;
OUTPUT (COMMAND$MOD) -PON;
DO I~HILE (INPUT (STATUS$l) AND BI) =0;
END; ,* WAIT FOR BI INTR *1
XYZ= INPUT (PORT$IN);
OUTPUT (STATUS$2) =Dt1A$REG$L;

1* IJA"IT UNTIL EOI RCVD AND END INTR-BIT SET *1

DO IJHIL.E (mpUT (STATUS$1) At~o ONE) <> ONE;

6-516 230832-001

AP-166

PLi M--86 CGMP I LER BOARD2

23

24

25
26
27
28
29
30
31
32

33
34
35
36
37
38

39
40 2
41

42 1
43 2
44 3
45 2
46 ~

<-

47

48
49 2

50

51 END;

END.

INIT37T'
1* INIT 8237 fOR TALKER FUtKTION */

OUTPUT
OUTPUT
OUTPUT
OUTPu-r
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

(STATUS$2) =CLEAR; 1* CLEAR
(CLEAR$FF) ~CLEAR;

CCMD$37) -NORM$TIME;
CSET$MODF.) =RD$TRANSFER. 1*
(SET$MASK) -CLEAR;
(STARTOLO) =ADDR$lA;
(STARTOHI) =ADDR$lB.
CO$COUNT$LO) =TC$L02;
(Q$COUNT$HI) .;=TC$HI2.

1* INIT 8291A FOR TALKER FUNCTION *1

(EOS$REG) =EOS;

8291A DRQ *1

BLOCK XFER MODE *1

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

(COMMAND$MOD)
«,DDR$STATUS)
\ COMMAt~O,*,MOD i
(COMt1ANO$t10D)
(COMMAND$MOD)

=END$EOL 1* EOr ON EOS SENT *1
=t10D1$TO; 1* TALK ONLY *1
=PRESCALER.
=HIGH$SPEED.
=PON;

DO I~HILE (INPUT (STATUS$l) AND BO) =0;
END; 1* WAIT FOR BO INTR *1
OUTPUT (PORT.OUT) -OAAH.

DO IJHILE (INPUT (ST,\1US$1) AND ERR) =ERR;
DO I~HILE (INPUT (STATUS$l) AND BO) =0;
END; I * I~AI T FOR BO INTR *1
OUTPUT (PORT$OUT) =OAAH;

END.

OUTPUl ISTATUS$2) =DMA$REG$T;
1* WAIT FOR TC=O *1

DO I~HILE

END;

GOTD START91.

(INPUT (Ct10$37) AND TC) C> TC;

MODULE INt=ORMATlON

CODE AREA SIZE
CONSTANT AREA. SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
152 LINES READ
o PROGRAM ERROR (S)

=0122H
=OOOOH
=OOOlH
-=OOOOH

2900
00
10
00

6-517 230832-001

AP·166

APPENDIX 3
SOFTWARE FOR HP 9835A

10 ~:Et'i ~;E:r-iD IN
TEF.:FACE CLEA~:
2(1 ABOF.:TIO 7
3t1 F.: E t'1 FOF.:CE E
RROF.:S Ut~T ILL I ST
ENERS ACTIVE
40 Freer'r': OUT
PUT 704 USlt~G "#
, K "; II B II
50 Chkstst: ST
ATUS 7~Sto.tl,St.a
t2, Sto.t3, Sto.t4
60 Er·r·=~;.t..'l t. 2 A
t'm 1
70 . IF Er-r-=l TH
EN GOTD Fr·,:.er·r·
8(1 PF.: nn CHF.:$ (
12) , .. L I STEt~EF.:~:; A
PE Ot·~ L H~E ..
'30 F.: E t'l COt'~F I GU
RE PPOLL _
100 PPOLL COt·ir-:
GUF.:E 704; II (H)(10:: 1
~:10 ..
11 (1

! r·e:!:·f.'Clrl::·e or,
bit. 4

12~3 PR HiT CHE.:.;,
12) , .. PAF.:ALLEL PO
LL COt~F I GUF.:ED"
1 :;:(1 REt'! Et·iRBLE
KE ·BOAF.:D I t·iTEF.:PU
PT
140 PF.: I HT II COm'1
AtHI = ? (HIT

"'H'" FOP LIST)"
15(1 Ke':len: OH K
BII GOSUE: 610
160 STATUS 7;St
atl,Stat2,Stat3,

6-518

St. Ilt. 4
1 7(1 Sr"~=E: I HAt·HI (
S t. o. t. 1 , '-2,:::)
18(1 IF Sr'Q=(1 TH
Et~ GOTO ke':' E-n
1 9 f. Ci F r t·:' E Ii
20(1 PF.: nH CHF.:$ (
1 'J ... :. 1:, ;":,! r;-. ~ ,-, i= I ~.I E &.. • ' ,_, Fo. '_', r:. _ i_, _ •

D"
21~3 PRIt~T "SEtHI
ING PARALLEL POL
L RESPONSE MESSA
GE"
220 REt'1 E~'~EC:UT I
NG PARALLEL POL~
230 P~o 11 byt. e=P
POLL(7)
240 PR I t·n "PAF.:A
LLEL POLL B ·TE =

.. ; P f.' 0·1.1 b':l t. e
250 F'F.: I t·iT II ___ _

----------------II

~~i--~f.'ollbyte=B
I HAtHI (Pr.,clll b'it e,
8)
270 IF Pr. .. :.] 1 b'lt
e=(1 THEH GOTO F::'
291
28(1 PF.: an .. SF.>
NOT FF.:Ot·1 8291 II

281 PF.: an .. co r'1['i
AND =? (HIT
"H" FOF.: LIST)"
290 GOTO Ke~"'en
3tH) P:::2'31: PF.: I H
T .. SF.: 0 IS FRDr'1 t·~
CC 8291 ••• THE
ENTEF.:PF.: I SE"
~::10 PF.: nn "PEF.:F

230832-001

OPt'1 HH; SEP I AL FO
LL TO GET STATUS

"
:320 STATU::; 704;
Stl).t
330 PRINT CHR$(
12), "Sto.tus = ";
St (I.t

520 IF D::·::fer·>~3
THEt·~ GOTO F.:C'.}t"·
530 GOTO Keyer.
531 'Rcvr': REt1 R
EADY TO ReV CHAF~
S FROM GPIB
540 II Hl G$ (80J
550 ENTER 704 U
SING "~~,T";G$
560 PF.: I NT CHR$ (
12) , G$
570 PF~INT "COMt'l
AtHI = ? (HIT

"H" FOF.: LIST)"
580 GOTO Keyen
590 REM INTERRlI
PT SERVICE ROUTI
NES
6(10 F.: E t'1 GET KE"('
E:OAF~D DATA
610 l·~h(l.t ke'/: III
~1 K$ (:::(1]
t.20 K$=KE:D$
63(1 IF K$="G" T
HEt·~ GOTO Get
t,40 IF K$="D" i

HEt~ GOTO Ilec
65(1 IF K$="R" T
HEt~ GOTO F.: er··.
6t,(1 IF K$="H" -
HEN GOTO Helr.,
670 IF K$="~-.::" T
HEN GOTO Xfi. it
6 8 0 Get.: T R I ::; ': E

AP-166

6-519

F.: 7(14
69(1 F'R I NT CHF.:$ (
12) , "GF.:OUP E~'::ECU
TE TR I GGEF.~ SEt·n"
70(1 pF.:Itn
71~j PRIt~T "cor'H1
AtHI = 1') (HIT
-'H'" FOR LIST)"
720 RETUF.:N
730 Dec.: F~ESET
704
740 PRINT CHR$(
12l,"SELECTIVE D
EV I CE CLEAF.: SEt·n ..
750 PF~ H~r.~' "
760 PR I HT "cor·1t·1
ANIi = r;. (HIT
"H-' FOP LIST'!"
770 F.:ETU~:h

780 F.: e p', : LOCAL
704
790 PR It~T CHR$ (
12),"REMOTE MESS
AGE SENT"
800 PRINT-" "
810 PRINT "COMt1
ANII = ? (HIT

"H'" FOR LIST)"
820 RETUF.:t~
830 Helr.': . PRINT

CHR$(12)
840 PRINT" @@@
@ OPERATOR ALLOlJ
AE:LE COMMANDS @@
@@ "
850

key
860

PRINT" hit.
result."

PRINT " G
Send GET

e~.SO.9e."
870 F'RINT" II

eSSO.ge"

230832-001

\

,-, :=a1 P ~'. I t~1 T" ~', :: .. ~~ .:. r;"1

-, Send ~:Et'1.,'L
OC ro·JE'::.::.o,ge",

·:::9(1 PF.:It·~T" ::<

oard input. t.o 2~
91 "
900 F'rn t·n" H

Pr·int.::. thi
stable"
910 PF.:INT" II

920 PRINT" •••
90 ahead, TRY IT

! "

AP-166

6-520

940 :x:r''Ji t. : II H1 A
$[80]
950 PR an CH~:$ (
12) , "Ent er· do.t. (;I,

t. (I ::.E'nd o.nd hi t.
COt"T I t·~IJE"
960 INPUT A$
970 OUTPUT 7€14;
A$
971 EOI 7;0
980 PR I NT "COt'H1
AtHI = ? (HIT

"H'" FOR LIST)"
9'90 RETU~:t-1
1000 Et·m

230832-001

AP-166

APPENDIX 4
SOFTWARE FOR HP 8088/HP 9835A VIA GPIB

PL/M-86 COMPILER HPIB

ISIS-II PL/M-86 VI. 1 COMPILATION OF MODULE HPIB
OB~ECT MODULE PLACED IN :FI:HPIB.OB~
COMPILER INVOKED BY: PLM86 :F1:HPIB.SRC LARGE

HPIB:
1*

PARAMETER DECLARATIONS
*1

DOl

DECLARE

ADDR.HI LITERALLY '01H',
ADDR$LO LITERALLY 'OOH',
ADSC LITERALLY 'OIH',
BI LITERALLY 'OIH',
BO LITERALLY '02H',
CHAR$COUNT BYTE,
CHAR BYTE,
CHARS(80) BYTE,
CLEAR LITERALLY 'OOH',
CPT LITERALLY '80H',
CRLF LITERALLY 'OAH',
DEC LITERALLY 'OSH',
DMAADRLSTN POINTER,
DMASADR$TALK POINTER,
DMAWRDLSTN(2) WORD AT (eDMAADRLSTN),
DMA$WRD.TALK(2) WORD AT (@DMAADRTALK),
DMAREGL LITERALLY 'lOH',
DMA$REGST LITERALLY '20H',
DNE LITERALLY 'lOH',
END.EOI LITERALLY '88H',
EOS LITERALLY 'ODH',
ERR LITERALLY '04H',
GET LITERALLY '20H',
I BYTE,
LISTEN LITERALLY '04H',
MLA LITERALLY '04H',
MODE. 1 LITERALLY '01H',
NOSDMA LITERALLY 'OOH',
NO$RSV LITERALLY . 'OOH' ,
NORM$TIME LITERALLY '20H',
PON LITERALLY 'OOH',
PPC LITERALLY '05H',
PPE$MASK LITERALLY '60H',
PPOLL$CNFG$FLAG LITERALLY '01H',
PPOLLSENSBYTE BYTE,
PRI$BUF(80) BYTE AT (@CHARS),
RD.XFER LITERALLY '48H',
RESET LITERALLY '02H',
REMC LITERALLY '02H',
RSV LITERALLY '40H',
RXRDY LITERALLY '02H',

6-521 230832-001

inter AP-166

PL/M-B6 COMPILER HPIB·

:3

4
5
6
7
B

1
1
1
1
1

SRGS LITERALLY '40H' •
STATl BYTE.
STAT2 BYTE.
TALK LITERALLY '02H' •
TA$OR.LA BYTE.
TRG LITERALLY '41H' •
TC LITERALLY '01H' •
TC.HI LITERALLY 'OOH'.
TC$LO LITERALLY 'OFFH' •
TXRDY LITERALLY '01H' •
UDC BYTE.
WR$XFER LITERALLY '44H'.
XYZ BYTE;

1*

PORT DECLARATIONS

*1

DECLARE

ADDR$O LITERALLY 'OFFC6H' •
ADDR$STATUS LITERALLY 'OFFC4H',
CLEAR.FF Lt.Tt::RALLY 'OFFDDH',
CMD.:37 LITERALLY 'OFFDBH'.
COMMAND.MOD LITERALLY 'Of'"i='C5H '.
COUNT.HI LITt::RALLY 'OFFD1H' •
COUNTtLO LITt::RALLY 'OFFD1H' ,
CPTtREG LITERALLY 'OFFC5H'.
EOS.REG LITERALLY 'Of'"FC7H' •
POR,TtIN LITERALLY 'OFFCOH'.
PORTtOUT· LITERALLY 'OFFCOH'.
SER$DATA LITERALLY 'OFFFOH',
SER.STAT LITERALLY 'OFFF2H'.
SETtMASK LITERALLY 'OFFDFH'~
SET.MODE LITERALLY 'OFFDBH',
SPOLL.STAT LITERALLY 'OFFC3H' •
STARTtHI LITERALLY 'OFFDOH'.
START$LO LITERALLY 'OFFDOH',
STATUS$1 LITERALLY 'OF:FC1H' •
STATUS.2 LITERALLY 'OFFC2H';

1* crt message. list *1

DECLARE GETtMSG(11) aYTE DATA (ODH.OAH. 'TRIGGER'. OAH. ODH);
DECLARE DEC$MSG(16) BYTE DATA (ODH,OAH, 'DEVICE CLEAR'.OAH,ODH);
DECLARE REMC.MSQ(10) BYTE DATA (ODH,OAH, 'REMOTE',ODH,OAH);
DECLARE CPT.MSG(22) aYTE DATA (ODH,OAH, 'UNDEF CMD RECEIVED',OAH,ODH);
DECLARt:: HUH.MSG(ll) aYTE DATA (ODH,OAH, 'HUH ???';ODH,OAH);

REGSER: PROCEDURE;

6-522 230832..(J01

inter AP·166

PL/M-86 COMPILER HPIB

10 2

11 2
12 3

13 2

14 2

1~ 1
16 2

17 2
18 3
19 2
20 2
21 1
22 2
23 3
24 3
2~ 2

26 1

27 2
28 2
29 3
30 3
31 3
32 3
33 3
34 3
35 3
36 3
37 3
38 4
39 5
40 4
41 4
42 3
43 3
44 2

4~ 1

46 2

47 2
48 2
49 2

50 2

OUTPUT (SPOLL$STAT)-TRGI

DO WHILE (INPUT (SPOLLfSTAT) AND SRGS)-SRGS,
ENDI

OUTPUT (SPOLLfSTAT)-NOfRSV,

END REGSERI

CO: PROCEDURE(XXX),
DECLARE

XXX BYTE,

DO WHILE (INPUT (SERf STAT) AND TXRDY)<>TXRDY,
ENDI
OUTPUT (SERfDATA)-XXX,

END CO,
HUH:

END

PROCEDURE,
DO 1 .. 0 TO 101 .

CALL CO (HUHfMSQ(I»,
END,
HUH,

C I: PROCEDURE I

IF (INPUT (SERf STAT) AND RXRDY)-RXRDY THEN
DOl

STORE.CHAR:

1-0,
CHARfCOUNT-O,

CHAR-(INPUT (SERf DATA) AND 7FH),
CHARfCOUNT-CHARfCOUNT+1,
CALL CO (CHAR) I
CHARS(I)·CHARI
1"1+1,
IF CHAR <> CRLF THEN

DOl
DO WHILE (INPUT (SERf STAT) AND RXRDY) <>RXRDY;
END;

ENDI
END CII

QOTO STOREfCHARI
ENDI

CALL REGSER;

TALKfEXEC: PROCEDURE,

OUTPUT (STATUSf2)=CLEARI

1*
manipulata addr.ss bits for DMA controll.r
*1

DMAfADRfTALK-(eCHARS)I
DMAfWRDfTALK(1)-&HL(IlMAfWRDfTALK(1),4)1
DMAfWRDfTALK(O)-DMAfWRDfTALK(O)+DMAfWRDfTALK(l),

6-523 230832-001

PL/M-86 COMPILER HPIB

51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 2

59 2
60 2

61 2
62 3
63 2

64 2
65 3
66 4
67 3
68 3
69 2

70 2

71

72 2
73 2
74 2
75 2
76 2
77 2
78 2
79 2
80 2
81 2
82 2
83 2
84 2
85 2

86 2

87

88 2

89 2
90 3
91 3
92 3
93 2

94 2

,

OUTPUT (CMD37)=NORM$TIME;
OUTPUT (SET$MODE)=RD$XFER;
OUTPUT (SET$MASK)-CLEAR;
OUTPUT (START$LO)=DMA$WRD$TALK(O);
DMAWRDTALK(0)=SHR(DMAWRDTALK(0).8);
OUTPUT (START$HI)-DMA$WRD$TALK(O);
OUTPUT (COUNT$LO)=CHAR$COUNT;
OUTPUT (COUNT$HI)=O;

OUTPUT (EOS$REG)=EOS;
OUTPUT (COMMAND$MOD)=END$EOI;

DO WHILE (INPUT (STATUS$l) AND BO)-O;
END;
OUTPUT (PORT$OUT)=OAAH;

DO WHILE (INPUT (STATUS$l) AND ERR)-ERR;
DO WHILE (INPUT (STATUS.1) AND BO)-O;
END;
OUTPUT (PORT.OUT)=OAAH;

END;
OUTPUT (STATUS.2)=DMAREOT;

END TALK$EXEC;

LISTEN$EXEC: PROCEDUREI

PRINTER:

OUTPUT (STATUS$2)-CLEAR;
OUTPUT (CLEAR$FF)-CLEAR;
OUTPUT (CMD$37)=NORM$TIME;
OUTPUT (SET$MODEl=WR$XFER;
OUTPUT (SET$MASK)=CLEAR;
DMAADRLSTN-(@CHARS)I
DMAWRDLSTN(1)=SHL(DMAWRDLSTN(1).4);
DMAWRDLSTN(O)=DMAWRDLSTN(O)+DMAWRDLSTN(l);
OUTPUT (START$LO)=DMA$WRD$LSTN(O)1
DMAWRDLSTN(0)=SHR(DMAWRDLSTN(0).8);
OUTPUT (START$HI)=DMA$WRD$LSTN(O)I
OUTPUT (COUNT$LO)-TC$LO;
OUTPUT (COUNT$HI)=TC$HI;
OUTPUT (STATUS$2)=DMA$REO$L;

END LISTEN$EXEC;

PROCEDURE;

1=0;

DO WHILE PRI$BUF(I) <>CRLF;
CALL CO (PRI$BUF(I»I
1"1+11

END;
CALL CO (PRI$BUF(I»;

END PRINTER;

6-524 230832-001

AP-166

PL/M-B6 COMPILER HPIB

95 ADSC$EXEC: PROCEDURE;

96 2 TAORLA=INPUT (ADDR$STATUS);

97 2 IF (TASOR.LA AND TALK)=TALK THEN
98 2 CALL TALKSEXEC;
99 2 IF (TA.ORSLA AND LISTEN)-LISTEN THEN

100 2 .CALL LISTEN$EXEC;

101 2 END ADSC.EXEC;

102 1 GETSEXEC: PROCEDURE;
103 2 DO 1=0 TO 10;
104 3 CALL CO (GET.MSG(I»;
105 3 ENDI
106 2 END GET.EXEC;

107 1 DEC.EXEC: PROCEDURE;
108 2 DO 1=0 TO 15;
109 3 CALL CO (DEC.MSG(I»;
110 3 END;
111 2 END DEC.EXEC;

112 1 REMC$EXEC: PROCEDUQE;
113 2 DO 1=0 TO 9;
114 3 CALL CO (REMC.MSG(I),>;
115 3 END;
116 2 END REMC$EXEC;

117 PPOLL.CON: PROCEDURE;

118 2 OUTPUT (COMMAND$MOD)=PPOLL.CNFG$FLAGi

119 2 END PPOLL$CON;

120 PPOLL.EN: PROCEDURE;

121 2 PPOLLENBYTE=(UDC AND 6FH);
122 2 OUTPUT (COMMAND.MOD)=PPOLLSENSBYTE;

123 2 END PPOLL.EN;

124 1 CPT.EXEC: PROCEDURE;
125 2 DO 1=0 TO 21;
126 3 CALL CO' (CPT.MSG(I»;
127 3 END;

128 2 UDC-INPUT (CPT.REG);
129 2 UDC=(UDC AND 7FH);
130 2 IF (UDC AND PPC)=PPC THEN

~
131 2 CALL PPOLL$CONi

132 2 IF (UDC AND PPE.MASK)=PPE$MASK THEN
133 2 CALL PPOLL$EN;

6-525 230832-001

AP-166

PL/M-86 COMPILER HPIB

134

135

136
137
13B
139
140

141

142

143
144

145

146

2

1
1
1
1
1

147 1
14B 1
149 1
150 1
151 2
152 2
153 2·
154 1
155 1
156 2
157 2
158 2
159 1
160 1
161 2
162 2
163 2
164 1
165 1
16!. 2
167 2
16B 2
169 1

END CPT$EXEC;
1*
BEGIN CODE
*1

INIT:

OUTPUT (CLEAR$FF) "CLEAR;
OUTPUT (COMMAND.MOD) =RESET;
OUTPUT (ADDR.STATUS) "MODES1;
OUTPUT (ADDR$O) -MLA;
OUTPUT (STATUS$2) -NO$DMAI
OUTPUT (COMMAND.MOD) "PONI ..

LISTENERS:

CMD:

1* response to listeners check *1

DO WHILE (INPUT (STATUS.l) AND BI)=O;
END;

XYZ-INPUT (PORT$IN);
XYZ-INPUT (STATUS$2);

RDSTAT:
1* read status registers and interpret command *1

STAT1=INPUT (STATUS$l)1
STAT2=INPUT (STATUS$2);

IF (STATl AND DNE)-DNE THEN
CALL PRINTER;

IF (STATl AND CPT)-CPT THEN
DO;
CALL CPT.EXEC;
STAT2-(STAT2 AND OFEH);
END;

IF (STAT1 AND Q~T)-QET THEN
DO;
CALL QET$EXEC;
STAT2=(STAT2 AND OFEH);
ENDI

IF (STAT1 AND DEC)-DEC THEN
DOl
CALL DEC.EXEC;
STAT2-(STAT2 AND OFEH);
ENDI

IF (~TAT2 AND REMC)-REMC THEN
DO;
CALL REMC$EXEC; •
STAT2=(STAT2 AND OFEH);
END;

IF (STAT2 AND ADSC)=ADSC THEN
\

6-526 230832-001

AP-166

PL/M-B6 COMPILER HPIB

DO. 170 1
171 2
172 ii!
173 2

CALL ADSCSEXEC.
STAT2-(STAT2 AND OFEHl.
ENOl

174

17'

176 ENOl

CALL CII

GOTO CMD.

MODULE INFORMATION:

CODE AREA SIZE • 047'H
CONSTANT AREA SIZE - OOOOH
VARIABLE AREA SIZE • 0061H
MAXIMUM STACK SIZE • OOOAH
349 LINES READ
o PROGRAM ERROR(Sl

-iiND OF-- PL/M-B6 COMPILATION

6-527

11410
OD

97D
100

230832-001

inter ..

IIIprlnlod wlth pem_ !tom COMPUTER DES/GIN. _ 1882.

ARTICLE
REPRINT

6-528

AR·208

June 1982

O~er Number: 210404-001

I~
• ~ Xl SPECIAL REPORT ON DESIGNING WITH ADVANCED SYSTEM IC.

LSI TRANSCEIVER CHIPS
COMPLETE GPIB
INTERFACE
A GPIB interface meeting IEEE 488 standards can be built with
only three or four chips!

by Pradip Madan and
Jim Friderick

The decision to support the IEEE 488 standard with
integrated circuits was based on the potential
popularity of the interface standard and its applica­

tions potential. Although a serial interface supports
many system throughput requirements, a parallel inter­
face over short distances can provide much higher data
transfer rates, yet remain economical despite the extra
interconnection copper required.

The IEEE 488 standard is for a parallel interface
designed to operate over a limited distance. Its general
purpose nature makes the general purpose interface
bus (OPIB) attractive for a variety of systems, and also
allows manufacturers to design their equipment inter­
faces to a common standard. As a result, users can mix
equipment from different manufacturers without hav­
ing to adapt the interfaces for compatibility. To date
the GPIB has been incorporated in computer peripherals,
such as printers, but the most applications have been in
programmable instrumentation systems. Other GPIB
applications include camera control in computer con­
trolled studios, electronic surveillance, peripheral con­
trol, modular add-ons to photocopiers, and so forth.

Pradip Madan is the product manager for
microprocessor peripheral components at Intel Corp.
2625 Walsh Ave. Sonta Clara. CA 95051, where he
has been employed for 2 years. He has a BSEE, an MS
in computer science. and an MBA in finance.

Integration benefit
Shortly after the IEEE
committee had put the
final touches on its stan­
dard specifications,
engineers began building
GPIB interface sub­
systems. Because the
standard had just been
defined, there were no
large scale integration
(LSi) chips available.
Therefore, the first GPIB
implementations were
board level designs
replete with small scale
integration (SSi) and
medium scale integration
(MSI) logic chips. A typical effort included four or fiVe
rows of ten chips each.

With the advent of integrated circuit GPIB chips, chip
counts dropped dramatically, reliability improved. and
space requirements shrank. Consequently, the price
range of systems for which GPIB had become practical
began to decrease. A fully functional GPIB subsystem
can now be constructed with less than one-tenth the
number of chips formerly required. In fact, the complete

Jim Frederick is a microcomputer design engineer at
Intel Corp. Since joining the company in 1974, he has
been involved in several different projects. Mr '
Frederick has studied at the Col/ege of San Mateo.
and the University of Santa Clara.

6-529 210404-001

AR-208

talker/listener/controller mode logic resides in four LSI
chips: one Intel 8291A talker/listener, one 8292
controller, and two 8293 transceivers. All these LSI,
including the transceiver, are implemented in metal
oxide semiconductor (MOS) technology.

Unlike the controller or talker/listener functions
which could be integrated routinely in N-channel MOS
(NMOS) technology, the transceiver posed special
problems in MOS integtation.

The chip's size includes a . 7-mil ground
line and two ground pads in order to
handle the 432-mA current ..

The standard calls for the transceiver cir.cuitry to be
able to drive each of the 16 bus lines with a nominal
48 mA of current. In addition, it specifies a minimum
required input hysteresis and places a limit on propaga­
tion delays. Driving relatively high currents quickly was
not a familiar province of MOS technology. Certainly
the garden variety NMOS lacked the necessary speed­
power product to handle the task.

However, progress in NMOS technology has produced
the high speed, densely integrated high performance
MOS (HMOS) technology which has the necessary
characteristics to meet the current drive and propa­
gation speed requisites.

DeSigning the 8293 trensceiver
Although the 48-mA drive required by the 16 OPIB lines
had only been implemented with bipolar technology
!>efore, HMOS technology-with its reduced gate
lengths, smaller size, and lower parasitic capaci­
tance-looked like it could handle the job. Architec­
turally, the 8293 contains nine transceiver circuits which
Can be configured fot data or interface management line
transceivers. Nine open collector or 3-state line drivers
that cpuld sink 48 mA, in addition to twelve Schmitt­
type line receivers, were used to implement the nine
transceivers. Fig 1 is a schematic tepresentation of one
of these 3-state drivers.

Additional logic was added for decoding the trans­
mit/receive mode control of each of the transceivers.
Th~ 8293 was conceived· as operating in four distinct
modes: talker/listener control transceiver, talker/lis­
tener / contr~ller control transceiver, talKer/listener data
transceiver , and/or talker/listener/controller data
transceiver. Thus, a 2-pin select scheme allows a user to
select the desired operating mode.

Choosing eppropriate active devices
All of the 8293's functional elements required only four
different types of active field effect transistors (FETs).
Low threshold enhancement type devices show good
high output voltage characteristics, and were used as
output pullup devices in push-pull 3-~tate drivers.
Enhancement type FETs were also used for fast
switching and low leakage: depletion type devices were
used for resistive pullup in buffering. Depletion type
PETs also played an important role in meeting the
hysteresis specifications of the IEEE 488 standard.
Finally, higher threshold depletion type devices were
used to prevent the bus lines from being disturbed Qn
power-up and power-down.

A conventional MOS transistor capable of supplying
48 mA at O.S V would have been physically too large.
HMOS technology, however, permits such a device to be
fabricated in an area of less than ISO Jllil2 (91 mm2 y.
Furthermore, the low speed/power product of HMOS
allowed a multi-stage design so that, like transistor-tran­
sistor logic (TTL) circuitry, natural hysteresis could be
built into the receh:ers.

IEEE 488 Interface standard

ittit ttt!
DEVICE A
ABLE TO

=== TALK, LISTEN, DATA
AND

CONTROL

DEVICE B
ABLE TO == TALK AND I

LISTEN DATA BYTE
TRANSfER
CONTROL

DEVICE C == ONLY ABlE
TO LISTEN GENERAL

INTERFACE

(
MANAGEMENT

DEVICE D = ONLY ABLE
TO TALK

---=1 DID 1...8

DAV
NRFD
NDAC

1Ft
ATN
SRQ
REN

-----EOI

The IEEE 4aa interface standard apecifies an 8-bit
perallel, bidirectional data bus with eight additional
lines for data-byte tranafer control and ,"neral inter­
face mana,"ment. The thres data-byte transfer lines
are data valid (DAV), not ready for data (NRFD), and not
data accepted (NDAC). States of these three lines
determina when data on the 8-bit data bus are valid,
ready to be received, and received, respectively.
General interface·mangement lines are interface clear
(IFC), attention (ATN), service request (SAO), remote
eneble (REN), and end or identify (EOI). These IiIl8ll are
used to c.lear the bus and establish control, initiate
polling, pass control from a controller to another con­
troller or the front panel, and indicate the end of a
transfer sequence.

6-530 210404-001

AR-208

Special layout techniques
The transceiver was implemented using new layout tech­
niques aimed at reducing the series resistance in the
polysilicon gate structures of the large transistors, and
routing ac signal paths over metal interc,onnects in order
to reduce capacitance and series resistance. Chip size,
188 x 156 mils (5 x 4 mm), includes a 7-mil (O.2-mm)
ground line and two ground pads in order to handle the
432-mA current generated when all drivers are on.
Power consumption is 300 m W, typically, with driver or
receiyer speeds of 20 ns under light loads and speeds of
85 ns under the maximum load of 4500 pF.

Signaling a new trend?
Until the advent of the 8293, complex MOS chips relied
on bipolar drivers to handle the heavy bus loading
found in complex systems. The 8293 could point the way
to future microprocessors and controllers that include
their own MOS drivers. Such a scheme would signifi­
cantly reduce the time lost by going through external
buffers. It would also provide all the other benefits of
system integration. "

The 8293 is ess,entially a non inverting buffer chip
capable of driving high currents. The 8291A talker/lis­
tener chip and 8292 GPIB controller chip are designed to
interface with the 8080, 8085, iAPX 86, iAPX 88, and
8048/8051 microprocessors and single-chip microcompu­
ters. However, the 8291A and 8292 cannot electrically
drive a standard IEEE 488 bus by themselves. Thus, the
8293 was designed to interface between the GPIB and a
single 8291A or a combination of the 8291A and 8292. (See
Fig 2.)

The chip is divided into nine distinct transceivers.
Each one's characteristics, such as 3-state or open­
collector outputs, and transmit or receive modes of
operation, are determined by internal logic control. (See
Fig 3.) Thus, in mode 0 talker/listener control config­
uration the attention (ATN) transceiver is forced into an
input-only mode with respect to the bus's ATN line. The
en~ or identify (EO!) transceiver, on the other hand, is
either a transmitter or receiver depending on the state of
the transmit/receive (TlR2) line. Its interface to the GPIB
is 3-state because of the fixed 5 V logic on the EO!
transceiver's output control. In mode I, the talker/lis­
tener data configuration, the 8293 is a true transceiver
with its operations mode controlled by the state of the
T/Rlline and its output characteristics (3-state or open­
collector) determined by the states of the ATN and EO!
lines. (See Fig 3.)

J-r----i~/ ~~~~:
DATA
OUTPUT

CO~~:~\ o--------!E--tE--fE-K

W-TYPE N-TYPE I>TYPE l"TYPE

Fig 1 3-state driver scbematic. Nine sucb open coHeetor
drivers are used In tbe Interface.

TO
PROCESSOR

BUS

TO
PROCESSOR

BUS

TO

19

PROCESSOR a292
BUS

la)

Ib)

Fig 1 Il39 Is designed for use in talker !listener
implementation (a), or for talker /listener / controHer
interface (b).

GPIB

GPIB

GPIB

GPIB

6-531 210404-001

AR-208

MOOE 0

GIOI 1------1

T/RIOI 1--------'

GI02 1----4

T/RI02 1----''---_--'

ifC 1------1

ffii 1------1

ATN I-----i

SiiQ 1------1

EOi 1------1

TlR2 I-----.J
NRFO 1------1

NDAC 1-----+1

T/iil

TIC 1
o

SIR 1
o

3·STATE
OPEN COlLECTOR
SEND TO GPIB
RECEIVE FROM GPIB

3·STATE ONLY

3·STATE ONLY

INPUT ONLY

INPUT ONLY

INPUT ONLY

OPEN·COllECroR
OUT~UT ONLY

3·STATE ONLY

3 =5V

7 = ov
IEEE 488 BUS NON INVERTING ORIVERIRECEIVER

la)

OPTA

OPTB

GIOI'

GI02'

IFC'

REN'

ATN*

SRQ'

EOI'

NRFD*

NOAC'

MOOE 1

001------1

Tliill----'----.----'

01011-------H

Dl021-------+-I

0103 1------'-+-1

01041-------H

01051-----+-1

iii06l-------H

01071-----+-1

01081-------H

Ib) ,

OPTA

OPTB

FIg 3 Internal logic contro .. for eacb tl'lUlSCeiver will be eltber fixed or subject to control via
external logic. In mode 0, cbip Is set up for control, tbus some transceivers are fixed in transmit or
receive mode only. In mode 1, cblp Is configured as true transceiver-aU nine transceivers can
transmit or receive depending on state of T/ih pin. In (a) is talkerllistener control configuration,
and In (b), talkerlllstener data configuration.

The talker/listener/controller control configuration,
mode 2, is a full transceiver mode but the operation
mode of the transceivers is determined by more complex
combinational logic. (See Fig 4.) The fourth mode
(mode 3), which is the talker/listener/controller data
configuration, is again a true transceiver whose mode of
operation is controlled by the state of the T/RI line. In

this mode, some additional interval combinational logic
is enabled to permit the 8293 to support the 82'.12 in taking
bus control synchronously. .

... complete talker/listener !controller
mode logic resides in four LSI chips.

The 8293's overall mode (mode 0, I, 2, or 3) is deter­
mined by the state on the option pins 26 and 27. For ex­
ample, if both pins are tied low (0 V), the chip is in
mode O. If both are high (5 V) it is in mode 3. The par­
ticular state of these pins will determine the
characteristics of the other 26 pins. (See the Table, "8293
Mode Selection Pin Mapping.")

Talkar/listenar only
If the IEEE 488 is to be implemented in a system that is
able to talk and listen (eg, a digital multimeter), only
talk (eg, a counter), or only listen (eg, a signal generator),

6-532 210404-001

AR-208

MODE 1 MODE 3

OPTA ATNO OPTA

OPTB ifC[OPTB

NOAC NDAC* DiW

URI
NRfD NRfO°

0101
URI

m: IFe'"
0101

SYC

REN REN'
0103

SRQ SRQ' 0104

ATNI ATN' 0105

EOll EOI' 0106

ATNO

ffi 0107

URl

0108

EOI
ifC[AfN
ClTH

CiC
(b)

(a)

Fill 4 Mode 1 is control configuration. Operating nodes of individual transceivers are controlled by
external signals and internal combinational logic. Cbip in mode 3 acts like true transceiver, as in
mode I, except some extra functions bave been included in order to support controller function. In
(a), talkerllistener/controller configuration is for control, and in (b), for data.

then the entire interface can be built with a single
8291A and a pair of 8293s. (See Fig 5.) In this configura­
tion, one 8293 handles the eight data lines DIOI to D108
and the other handles the data-byte transfer handshake
lines and general interface management lines. Both
transceivers are connected to the 8291A's ATN, and EOI,
and T/RI lines.

Talker/listener/controller
For an IEEE 488 controller (like the Hl 85 or Tektronix
4051), the system must be able to take control of the bus
or delegate it to another controller. Such an interface
scheme can be implemented using an 8291A, an 8292, and
a pair of 8293s. (See Fig 6.) The arrangement is similar to
that of a talker/listener interface; one 8293 handles the
DIOI through DI08 bus data lines and the other handles
the data byte transfer handshake and general interface
management lines. The difference is that pins 26 and 27
have been selected for modes 2 and 3 and several addi-

tional control functions have been added. The attention
in (ATNI) lines and attention out (ATNO) lines permit the
8292 to monitor the OPIB's ATN line and take control of
the bus. In conjunction with the ATNline, the EOl2line is
used by the 8292 to initiate a polling sequence.

The chip is divided into nine distinct
transceivers and each one's
characteristics are determined by
internal logic.

Lastly, the system controller line (Syc) enables the
control function. If it is low, the 8292 is prevented from
acting as a controller. If it is switched high, the 8292 can
act as a controller. In essence, the SYC controls the
direction of the interface clear (IFC) and remote enable
(REN) signals.

6-533 210404-001

it
!~
'1
:::;
I~l ,II
IJ

TO
MICROPROCESSOR

INTERfACE

GPIB TRIGGER OUTPUT

-.!!.
.....!l
~
...!.§.

...!!
17

la -=
.J1
-2

9
10 -
....!.!
---1
--.!
-1
-.l.
-1

829lA
DO

01

02

03
l).\

OS

D6
07

~
III
!II!
tNT

ClOCK -
RESET

DREQ

~
TRIG

'GPIB TRANSCEIVER

iiiOl

0i0i
Di03
0i04
Diii5
iiW6
lii61
iiiOi
MY
Tliil

ATN

£iii
Vii2

NDAC

NRfD

SilO
rn
m:

AR-208

15
8193

0101
13 0i0i
10 Di03
9

0104
8 Di05

18 7 iiW6
19 6 Iimi
30 5 m
31 14 0lV
32 I T/iii
33 4 KfIi
34 3 £iii
35 MODE 1
36

I \

16
8293

39 3 £iii
1 4 KfIi
38 I

T/iil
37 1

Tlii2
17 10 NoAC
15 9

NRFD
24 8 SilO

6 rn
5 iFC

MDDEO

Fig 5 Tlllker /listener only implementation can be built using just tbree chips":"slngle B19IA and a
pair of 11293S. Firat (upper) transceiver chip is used for bidirectional data flow on 0101 to 0108 data
lines. Lower 8193 handles some of data byte transfer control lines and general Interface management
Unes.

8193 MODE SELECTION PIN MAPPING

TlRI

flRI

Eijj

iFC • Affi
IfC" If mI DATAl

If RlF··· .. DATA2

I ..
In OIOS'

DRIi DATA4

If
If

DATA5

DATA6

r OATA7

;; BUSI
O~I'
T I BUS2 mr
II GNO

6-534

11
0101' "i9 0101'

0103' ~
Df04'

17 -
OIOS'

16

15 0106'
0107'

13
~ OIOS' S-

OA'I"
OPTA

S7
r-

om ~

EOI' lL
AT!I' ..!L

NOAC'
18

NRFD' ru-
. SHQ' ~ r--

REN·! F-
1fC" 11

tv
OPTA r-
OPTB r1L

TO
IEEE 488
BUS

Vee
GND

TO
IEEE 488
BUS

GND

GND

Vee

OPTA

OPTB

OATAIO

DATA9

OATA8

·BUS9

BUS8

GND

BUS)

BUS6

BUS5

BUS4

BUS3

210404-001

TO
MICROPROCESSOR

GPIB
TRIGGER

OUTPUT

TO{ MICROPROCESSOR

OSCILLATOR
OUTPUT

TO MICROPROCESSOR
~

t-M 00

r# 01
~ 02
~ 03

16
D4 17
05

18 D6
19 07
21

RSO 22
RSI

23
9

RS2

10 Rii
\Vii 4
RESET

6 OREQ
7

OACK
8 CS
3

11
CLOCK
INT

S TRIG

c400
~01
~02
~03

16 D4
11 05
18 D6
19 01
9 AD

1~ ~
---{::

WR

:~
32 ~~I
33 SPI
3S OBfl
36 IBfl
1; SYNC

Yee-t
~Xl

~3
·Xl

IST015 Pf± ~

AR-208

0101 28
0102 29

0103 30

0104 31

0105
32

0106
33

8291A
iiiO'i 34
ffi08 3S

TlRl 1
DAY 36

39 EOi
AiN

26

Silij 27
24 we

NOAC
38

Niifii 37

T/R2
2 -

ffij S5 P'-

iiAV fL

Silij 21

lIEN 38
8292 we 23

AiJilj 29

COUNT 39
EOl2 34
AiNi 22

im. 1

m 31

CLTH
27

SYC
24

Ue ON

25 iiiOi
23 iiiOi
10 0103
9 0104
8

OIOS
7 DlD6
6 0101
5 0108
1 Tlii!

24 MY
3 EOi
4AiN

,---!.L ATNO

~ IfCL

~ TlRl
4

AiN
10 NOAC

9 NFRO
2 Tlii2
8 SRQ
6imi
S we

23 Afrili
3 EOi
7 EOl2

11 ATNI

25 IfCL
24 Cit
21

CLTH
22

SYC

SYSTEM
CONTROLLER

0101'
0102'
0103'
0104'

OIOS'
0106'

8293
0107'

0108'

DAY'

OPTA
OPTB

MOOE 3

NDAC
NRfD

SRQ'
REN'

8293 IfC'
ATN'

EOI'

OPTA
OPTS

MODE 2

r1L
ell-
~
rlZ-
~
ell-
rll-
~

r.2.L

!L
1&...

,\L
rlZ-

r!L
rll-
&
~
~

11-
li.

TO
IEEE 488
BUS

Vee
Vee

I TO
IEEE 488
BUS

GNO

Vee

.i Off SWITCH 'GPIB TRANSCEIVER

FIg 6 FuUy functional talkerllistener/I:ontrolier Interflll:e I:an be buHt with only four LSI I:hlps; the
1l9tA, 119l, IIDd a pair of 1l9lIi. Like simpler talkerllistener only I:ase, one 8193 handles data
trusc:eiver functions whUe other hllDdles data byte trusfer I:ontrol and general Interfal:e
muagement. Tbere are additional rontrol Jines enabled whil:h support tbe I:ontroller (119l) activity.

Summary
Before the advent of integrated solutions for IEEE 488
implementation, it usually took forty to fifty SSI and
MSI chips to build this interface. A large portion of
those were eliminated by controllers and interface chips
like the 829IA and 8292. Now, with the last part of the
interface available in LSI, a fully functional interface
can be built using only four LSI chips. The cost of the
original design was typically $400 to $SOO. A set of the
three chips, the 8291A, and two 8293s (for a
talkerllistener function) allows a IS-fold reduction in
cost. The power dissipation of a 4O-chip interface was in

the vicinity of 10 W. The power dissipation of the 4-chip
approach is a mere 1.5 W. The size of the PC board is
considerably smaller, too, and that lowers the manufac­
turing costs and improves reliability.

6-535 210404-001

I

©INTELCORPOAATlON,1980

Reprinted with permission of Computer Design Magazine,

October 1979 Issue.

ARTICLE
REPRINT

6-536

AR·113

January 1980

23132()'OOl

LSI CHIPS EASE STANDARD 488
BUS INTERFACING

Time and cost disadvantages of interfacing to the IEEE Std 488
bus are overcome with a dedicated LSI chip set that incorporates
most of its functional and electrical specifications

Ronald M. Williams Intel Corporation, Santa Clara, California

Historically, interface techniques proliferated as
designers evolved customized links among instruments,
controllers, and processors for realtime test measure­
ments or data communications, resulting in excessive
and expensive codes, formats, signal levels, and timing
factors. Obviously, interface standardization was manda­
tory to save design costs for engineers, development
costs for manufacturers, and system integration costs
for users. Thus, IEEE Standard 488-1978 (a revision of
ANSI/IEEE Std 488-1975) offers a universal instrumenta­
tion system approach to automatic operating measure­
ment configurations that provides compatibility, versa­
tility, and, flexibility. This system approach establishes

6-537

a suitable standard bus for interfacing programmable
devices from dIfferent manufacturers. Outstanding ad­
vantages of the standard bus include byte serial, bit
parallel digital data. handling, synchronized communi­
cation among devices at varying data rates, and hard­
ware interchangeability and interconnection in daisy­
chained fashion. However, some restrictive disadvantages
that have hindered implementation are highly com­
plex logic protocol, time ,!:onsuming design analysis,
and lack of low cost components to perform the intri­
cate logic control functions. To overcome these draw­
backs, a large scale integrated (LSI) chip set has been
designed with built-in IEEE Std 488 logic controls. Thus,

23132()'OO1

interfacing has been significantly simplified for proper­
ly connecting processor buses and programming syst'lm
protocols_

Interface Overview

The IEEE Standard 488-1978 bus interface includes
'electrical, mechanical,' and functional specifications *
for interconnecting both programmable and nonpro­
grammable electronic measuring apparatus with other
apparatus and accessories necessary to assemble in­
strumentation systems. The functional specifications
occupy about 80% of the document and involve a
proportional amount of system design time to imple-

"This article deals with the functional aspects (interface signals
that exist on the physical bus) of IEEE Std 488-1978, and is not
intended as a complete dissertation on the major elements of the
standard. For detailed definitions of the mechanical (physical
cable connections), electrical (timing, voltages, and currents),
and operational (application software routines) technicalities,
interested readers should consult the IEEE Standard Disital
Inter/ace lor Programmable Instrumentation, IEEE Std 488-1978,
Inatitute of Electrical and Electronics Engineers, Inc, New York,
NY lOOl7, Nov 30, 1978-Ed_

ment_ Bus functions encompass 16 active signal lines,
10 interface functions, the protocol by which inter­
face functions send and receive messages, and logical
and timing relationships between signal states.

Functional requirements of the standard can be in­
corporated in either hardware, software, or a cop!.­
bination of both. Some designers have chosen the hard­
ware approach to incorporate all the interface func­
tions, using' about 200 medium scale integrated (MSI)
and small· scale integrated (SSI) packages. This tech­
nique costs about $1000 for a complete interface
board. As a result, many cost sensitive implementa­
tions of the bus interface use only a subset of its
functions custom tailored to the requirements of the
devices involved, thereby reducing package count and
expense by curtailing the interchangeability advantages.

Other designers have selected the software approach
to implement the bus interface. One disadvantage of
this approach is that- programming is an expensive and
extended project; another is that a subroutine has to
be executed with each transferred byte. This overhead
not only burdens the microprocessor within a device,
but also reduces the overall speed of the bus. This
approach costs about $200 for the interfacing functions.

DATA BUS LINES

HANDSHAKE
LINES FOR

1 ••••• III.I=I.I=I~>I~ill-- ~l~~W .. CONTROL

CONTROL
LINES FOR

~~~~~.Iii;~,~r- INTeRFACE ~ MANAGEMENT 

VALIDI 

INPUT/OUTPUT) 
-8 

READY FOR DATA) 
---N'U"~ I"V' DATA ACCEPTED) 

&-538 

Fig 1 IEEE Std 488 active signal lines 
for multiple devices. Peripheral devices 
of different characteristics can be easily 
connected to standard bus interface. 
Controller (or processor), such as mini­
computer. enables and disables talkers 
and listeners and manages overall bus 
activity. Bubble memory functions as 
both talker and listener. As listener: 
printer receives characters to be printed. 
As talker, counter transmits measure­
ments to both controller and listeners 

231320-001 

/ 



Combinational hardware/software approaches, al­
though faster than direct software implementations, 
still require enormous design time and cost about $1000 
for a typical interface board. 

With a recent alternative approach, however, the 
bus interfactl is easier and less expensive to incorporate 
in instrument designs. LSI circuit chips now include as 
built-in capabilities most of the functional and some 
of the electrical portions of the Standard's specifica­
tions, significantly reducing design time and costing 
about $50 for bus interfacing. Additionally, Intel's 
829lj8292 General Purpose Interface Bus (GPIB) 
peripheral chip set also incorporates capabilities for 
bus monitoring, data rate manipulation, and address­
ing to further simplify bus interface designs. 

Bus Signal Definitions 

The IEEE Std 488 signals are defined as negative true, 
where the high state (0 = false, ~2.0 V) and the 
low state (1 = true, ~0.8 V) are based on standard 
transistor-transistor logic (TTL) levels. Of the 16 active 
signal lines, 8 are data lines, 5 are interface manage-

ment lines, and 3 are handshake lines (Fig 1). Data 
input/output lines (DIol-DI08) carry AScII-coded infor­
mation, as well as device addresses, universal com­
mands, or program instructions. Interface management 
lines help to supervise the data lines. The primary 
management line--Attention (ATN)-determines how 
data lines are processed. When ATN is true, data lines 
are interpreted as addresses or universal commands­
by all bus connected devices. When ATN is false, 
only those devices addressed can use the data lines; 
in this case, data transmitted are typically device­
dependent. With another management line, Interface 
Clear (IFC), the bus controller returns the system to 
a known quiescent state. The Service Request (SRQ) 
line can be used by any device on the interface bus 
when it has data to send (talker) or needs to receive 
data (listener). The Remote Enable (REN) line de­
termines whether the system is under front panel or 
program control. The End Or Identify (EO!) line can 
be used as a delimiter by a talker (sending) device 
to indicate an end of message, or by the controller 
as a polling line. 

Handshake lines control the timing relationship of 
the interface bus (Fig 2). The Data Valid (DAV) line 

, { TALKER LETS DAV GO HIGH TO ACKNOWLEDGE 

1 ;=+= TH",T O",T", HAVE BEEN ACCEPTED; TALKER CAN 
NOW CHANGE O ... T .... 

Fig 2 Three-wire handshaking 
between single talker and several 
listeners. Before transfer begins, 
listener indicates it is ready by 
asserting 'Ready For Data (RFD) 
message to 'true. Talker then 
drives all eight data input/output 
lines. 'Following settling time 
specified by standard, talker as­
serts Data Valid (DAV) message 
to true. While data are being 
read, flFD message is asserted to 
false since device is unable to 
receive additional data. As each 
listener completes ils read, it 
Indicates acceptance by assert­
ing Data Accepted (DAC) mes­
sage to true; DAC is not sensed 
true by talker until all listeners 
have completed read. After each 
device indicates acceptance, it 
indicates readiness for data by 
asserting RFD to true. New cycle 
begins when all devices have 
asserted RFD to true 

{
TALKER seES THAT ALL llSTNERS HAVE 
ACKNOWLEDGED THAT OAV IS HIGH; IT HAS 
CHANGED THE DATA AND PULLS DAV lOWTO 

o ... v ---1 I r- TEll LISTENERS T~"'T THE NEw O ... T ... ",RE VALID 

(T ... LKER) ~ :- \ .. : 
y -. O",T", V ... LlO 

NO ... C!l' i ~ (LISTENERS) I ~ { FIRST LISTENER TO "'CKNOWLEDGE O ... V HIGH 
PULLS NOAC lOW 

'---'-__ -,-__ -! ____ { LAST LISTENER HAS fiNALLY ACCEPTED DATA 

NRFO 
(LISTENERS) 

I I I "'NO RELE"'SEO NO ... C. : n~~I_. 
I: t '!-I, ---;--;----,{ FIRST LISTENER 10 "'CKNOWlEDGE O ... V LOW 

, AND ACCEPT C>II.TA PULLS NRFO lOW 

'---i---.,----{ L ... ST LISTENER H"'S FIN"'llY SEEN O ... V HIGH 
I r- I I AND fU:LEASES NRFD 

: I T( { WHEN IT SEES OAV It:1W AND H ... S ... CCEPTEO 

U ~:Ul=~;~"::L~~~~:'A~W "'NO 

. L { WHEN IT SEES OIW HIGH, EACH LISTENER PULLS 
NDAC lOW AND SIMULTANEOOSLY RELEASES NRFO 

6-539 231320-001 



TR/1 

TR/2 

CLOCK 

RESET 

TRIG 

OMA REO 

~ 

~ 

lID 

WIf 
INT I DO 

01 

02 

03 
MICROPROCESSOR 04 

~ DATA LINES 1 

--.....-:--

05 

06 

07 

VSS 

----
READ REGISTERS 

Vee 

rn 
!mAC 
lifRl'ij 

DAV 
0108 

1lT07 
0i06 
1ii05 GPIB LINES 

0i04 
lii03 
il102 
lmn 
SRO 

ATN 

REN 

IFC 

RS2 

RS1 

RSO 

} 
ADDRESS INPUTS 
FROM MICROPROCESSOR 

--- -- -..., 
I 

L ____________________ ~ 

TO 
NON INVERTING 
BUS TRANSCEIVERS 

Fig 3 GPIB talker/listener chip. 8291 chip connects 8·bit microprocessor to nonil'lverting bus trans­
ceivers, which, in turn, connect to IEEE Std 488 bus. Microprocessor manipulates data bytes after 
receipt or before transmission, and monitors talker/listener status. Single chip handles all IEEE Std 488 
interface functions, except controller functions 

6-540 231320-001 



A-CAPABILITY DEFINED BY 488-1978 STANDARD 
B -CAPABILITY DEFINED BY DESIGNER 
1 -INTERFACE BUS SIGNAL LINES 
2 -REMOTE INTERFACE MESSAGES TO AND FROM INTERFACE FUNCTIONS 
3 - DEVICE DEPENDENT MESSAGES TO AND FROM DEVICE FUNCTIONS 
4 - STATE LINKAGES BETWEEN INTERFACE FUNCTIONS 
5 -LOCAL MESSAGES BETWEEN DEVICE FUNCTIONS AND INTERFACE FUNCTIONS 

(MESSAGES TO INTERFACE FUNCTIONS ARE DEFINEDjMESSAGES FROM INTERFACE 
FUNCTIONS EXIST ACCORDING TO DESIGNER 

6 -REMOTE INTERFACE MESSAGES SENT BY DEVICE FUNCTIONS WITHIN CONTROLLER 18292) 

Fig 4 Bus Interface functions. Messages received from interface bus can cause state transitions, just 
as state transitions can cause messages to be sent on bus (1 and 2). Device dependent d"ta are trans­
ferred automatically to microprocessor, without affecting state transitions (3). State changes in one func­
tion can cause state changes in another function, resulting in message to be sent (4). Microprocessor 
can also send local messages to interface functions (5) or remote messages to interface (6) 

6-541 231320-001 

! 
'. 



is used by a talker device to indicate that data are 
ready to transmit. The Not Ready For Data (NRFD) and 
Not Data Accepted (NDAC) lines are used by a listener 
to indicate readiness to receive data and receipt of 
data, respectively. As a result, a talker knows when 
all listenJrs on the bus have received an 8-bit byte 
of information. Thus, the transmission rate of th~ bus 
is only as fast as the slowest listener. 

Messages conveyed by all 16 lines are true or false, 
depending on the states of 10 interface functions. The 
standard defines each of these interface functions with 
state diagrams. A function's state can be changed by 
a controller, another device on the bus, or a state 
change in another function within a device. Of the 
10 interface functions, four provide basic communica­
tion capabilities: Source Handshake (SH), Talker (T), 
Acceptor Handshake (AH), and Listener (L). These 
functions affect the three handshake lines (DAV, NRF», 
and NDAC), eight data lines (DIoI-DI08), and EOI man­
agement line. The Device Clear (DC) and Device Trigger 
(DT) interface functions are used to initialize and to 
trigger a device, respectively. The Parallel Poll (pp) 
function acts with the EOI line to send a single bit 
of status information. The Service Request ('SRQ) func­
tion controls the SRQ management line. The Remote 
Local (RL) interface uses the REN management line in 
conjunction with front panel control. The Controller 
(C) function, which is active in only one device on 
the bus at a time, determines which device talks or 
listens_ 

To date, these 10 interface functions and their intri­
cate interrelationship and timing factors have required 
difficult and time consuming efforts when designing 
the interface bus into a digital system. 

Talker/Listener Chip Capabilities 

The 8291 GPIB talker/listener chip, a 40-pin LSI device 
(Fig 3), performs the inversion necessary to connect 
an 8-bit microprocessor bus to the negative true IEEE 
Std 488 bus. In addition, this chip implements most 
of the Standard's required functions. The microprocessor 
sets the talker/listener chip to an initial state, manipu­
lates bytes before or after transmission, performs inter­
rupt service routines, causes state changes, monitors 
other state changes, and enables and disables chip 
capabilities. 

Without microprocessor involvement, the talker / 
listener chip implements' all interface functions, ex­
cept controller performance, such as handling data 
transfers, handshake protocols, listener/talker address 
procedures, device clearing and triggering, service 
requests, and parallel .and serial polling . schemes 
(Fig 4). 

Within the chip architecture are eight read (output) 
and eight write (input) registers. One input register 
holds the data that are to be moved from the bus 
to the microprocessor when a device is listening. An 
output register holds the data byte that is to be 

transferred to the bus when a device is ready to 
talk. The other seven write· and seven read registers 
control various chip functions. 

Interrupt status registers 1 and 2 store 12 different 
interrupt flags. For example, one bit in the Interrupt 
Status 2 register reflects changes in a device's ad ~ 
dressed state. The microprocessor can poll both regis­
ters to determine which flag caused the interrupt, and 
can then branch to the appropriate service routine. 
Two corresponding interrupt mask registers allow de­
signers to mask any interrupt. A serial poll status 
register holds device status information, and a serial 
poll mode register is available so that the micro­
processor can verify this status_ An address mode 
register contains a device's addressing mode, as de­
termined by the microprocessor. An address status 
register monitors the address status (ie, active talker 
or active listener) of a device. 

Two address registers store the assigned device ad­
dresses. An End-Or-Sequence (EOS) register contains 
a designer specified end of string code for delimiting 
data block transfers by flagging the last byte with 
EO!. A command pass-through register feeds non-GPIB 
commands to the microprocessor. An auxiliary. mode 
register holds local messages to control reset, power 
on, etc. 

Among the chip's capabilities are a programmable 
data transfer rate from 62k to 525k bytes/s, three 
addressing modes, and an EOS message recognition. 
With a programmable data transfer rate, the designer 
controls the handshake rate of the interface to match 
the data transfer rate to the devices on the bus. 

The three addressing modes permit flexibility in 
designating talkers/listeners. The dual primary address 
mode, for example, allows both a talker and a listener 
address to be assigned to a device. With the primary / 
secondary address mode, multiple devices of the same 
type can have the same primary address, but a different 
secondary address. In the third addressing mode, de­
vices can have both dual primary and dual secondary 
addresses. 

Data block transfers are made easier with the EOS 
register. This register holds the character that signals 
an end-of-block transfer. When a data byte loaded 
into the data-out register matches the byte in the EOS 
register, the talker/listener chip asserts the EO! line, 
signaling an end of transfer. 

Controller Chip Capabilities 

The 8292 controller chip (Fig 5) implements the con­
troller function of the Standard. In conjunction with 
the 8291, the controller forms a complete standard 
interface, including the capability of handling the 
tra.nsfer control protocol. This ability gives the designer 
an option to accommodate multiple controllers on a 
single bus. 

6-542 

Additionally, the 8292 performs all the tasks neces­
sary in a complete controller design. It responds to 

231320-001 



MICROPROCESSOR 
SYSTEM 

INTERFACE 

1--------
I 
I 

WR ----------__ ~ 
AD ----------~~ 
CS ----------__ ~ 

Ao -------------. 
RESET -------------;~ 

x, ____________ + 

x, _______ + 

I 
L ____ _ 

---

W!l 

SYNC 

DO 

0, 

0, 

03 

0, 

Os 

0, 

07 

VSS 

-------------, 

---
Vee 

COUNT 

REN 

OAV 

IBFI 

OBFI 

Elil 

SPI 

TCI 

CIl: 

NC 

ATml 
NC 

ClTH 

Vee 

NC 

SYC 

IFe 

ATNI 

SRO . 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

_---J 

REN 
DAV 
181=1 
OBF1 

SYC 

iFC 
ATN'i 
SRQ 

EOi 
SPI 

TCI 

CIC 

AT NO 

ClTH 

IFCR 

COUNT 

Fig S (lIPla controller chip. 8292 chip worb In conjunction with 8291 to perform (lIPla controller Interface 
functioM. It Implement. toeal control commandl from mlcroproc_r according to IEEE Std 488 protocol. 
Addltlonalty. It procenea .uch Inputs from bu. a. SRQ and EOI. Furthermore. It can &end the full repertoire 
of (lIPla control m_g ... Including REN. IFe. ATN. and EOI 

6-543 231320-001 

1
.1,1 

I 
:1 
1, 
1 

I 

I: 
I'" 



PROCESSOR 
INTERRUPT WR AD RST ClK 

NOTES' 
1 CONNECT TO NDAt FOR 

BYTE COUNT OR TO EOI 
FOR BLOCK COUNT 

2 GATE ENSURES OPEN 
COllECTOR OPERATION 
DURING PARAllEL PUll. 

3 THE TRANSCEIVER AND 
GATING FUNCTIONS WilL 
BE INCORPORATED IN A 
FUTURE CHIP FROM INTEL. 

BUS 

GP1B 
TRANSCEIVERS 

~~--------~=f~r-------------------------1I11I1EOI 

~~-----------+lft---lf----------------+---1I11I1ATN 

~~~-'----~rr~t---~----~~----t-------ilIlIiNOAC 

~~~------ti-ti-----------~----i-t------?1I1IIINRFD 

~iillllllll~""IIIIIIII"IIII""~IIII"~IIIIDIO 

Fig '6' System configuration uSing chip set. In conjunction with 8291, 8292 performs complete controller function. 
Togather with shared bus transceivers, chip set forms a complete IEEE Std 488 interface. in addition, DMA inter-
face may be implemented through 8291 with 8237 DMA controller ' 

6-544 231320-001 



service requests (SRQS), configures other devices on the 
bus for remote control by sending Remote . Enable 
(REN), and sends Interface Clear (IFC), allowing for 
control seizure to reinitialize the bus. More important­
ly, the Gontroller chip can take control of, the bus 
synchronously with the handshake, preventing the de­
struction of any data transmission in progress. 

Internally, the controller chip has 10 dedicated 
registers for programming and for monitoring status. 
Through the use of the Interrupt Status and Interrupt 
Mask registers, the designer can configure the con· 
troller to interrupt the microprocessor on selected 
events. An Event Counter and a corresponding status 
register are available to monitor and control either 
byte counts or block counts. A Time-Out register may 
be set by the designer to program a time·out error 
function; a corresponding status register contains the 
current value' in the time·out counter. In conjunction 
with these registers, error control can be programmed 
with the Error Flags and Error Mask registers. Finally, 
Controller and GPIB Status registers are available. Each 
of these registers is read or programmed through a 
dedicated command buffer. 

Chip Set Application 

The talker/listener and controller chips connect to the 
standard interface bus through non inverting bus trans­
ceivers (Fig 6). These transceivers provide the 48-mA 
bus drive capability needed to meet the electrical por· 
tion of the IEEE Std 488 specification-not directly pos· 
sible with existing metal oxide semiconductor (MOS) 

parts. The talker/listener chip can interface directly 
to microprocessor memory through a direct memory 
access (OMA) controller, such as an 8237. 

The microprocessor drives the talker/listener with a 
short stored program (see Table), containing initialization 
conditions, such as data transfer rate, address mode, 
and other designer requirements. Microprocessor data 
,handling is limited to taking bytes off the bus after 
they arrive or putting bytes of data on the bus. Inter· 
rupt service routines are necessary for each unmasked 
interrupt. Although 12 interrupts are available, not all 
have to be used. All other standard bus functions are 
handled by the 8291. 

To send a byte of data, the microprocessor writes 
the byte into the talker/listener data-out register. The 
chip then transmits the data byte over the bus lines 
in conjunction with the handshake lines. Next, the 
NRFO line is checked to see if it is ready for data. 
If a ready for data message is detected, the talker / 
listener sends a OAV signal until it receives a data ac­
cepted message from the interface's NOAC line. The 
8291 also generates a Byte Out (BO) interrupt, setting 
the BO flag in the interrupt status register. When its 
interrupt pin is activated, the microprocessor reads the 
interrupt status register and responds to the interrupt 
with an appropriate service routine. 

The 8292 handles all hardware aspects of the con­
troller function: SRQ input, ATN, IFC, EOI, and REN 

outputs. Meanwhile, the designer .defined aspects of a 

given GPIB system are handled by processor software. 
For example, the processor is responsible for knowing 
which device on the bus corresponds to which device 
address. The processor then uses the 8291 to transmit 
coded Controller commands as the 8292 asserts ATN. 

Summary 

Bus interface designs that previously required 150 or 
200 MSI/SSI chips may now be implemented with a 
GPIB peripheral chip set. For designers, this hardware 
set means less design time and cost, resulting in in­
creased reliability and versatility in IEEE Std 488 bus 
interfaces custom programmed for dedicated applica­
tions. 

Bibliography 

S. C. Rannach, "Design Advantages and Limitations in Connect~ 
ing Computational and Readout Equipment to the GPIB," 

Western Electronic Show and Convention, Sept 1976 
A. Karninker and A. Menachem, "LSI Facilitates GPIB Implementa­

tion," IEEE Proceedings on Microcomputer Based Instrumen­
tation, June 1978 

6-545 

D. C. Loughry and M. S. Allen. "IEEE Standard 488 and Micro· 
processor Synergism," Proceedings of the IEEE, Feb 1978 

Ronald M. Williams is a product man­
ager for peripheral control/ers in IntP'· 
Microcomputer Components D.iv·~n. 
In addition to GP/~ devic?% -of d~~ 
been involved in mtrodu/iirollers H 
namic RAM and CRT Trinity Coli, e 
holds a BS degree,! Rensselaer pe~e, 
an MS degree and an MBA de 0 y­
technic Instllrsity of Chicago. gree 
from th9 

231320-001 



j 

DATA ENCRYPTION , , 

TUTORIAL 

The proliferation of electronic data processing (EDP) 
applications that involve the storage and the distribution 
of potentially sensitive information have demonstrated 
the need for mechanisms to insure data privacy and 
security. As society becomes increasingly dependent on 
computers and data communications networks, this need 
becomes even more acute. 

Cryptography 

The most efficient technique of providing data security is 
cryptography: the transformation of data via a secret 
code into a form which is useless to anyone but autho­
rized recipients. 

A cryptographic algorithm can be presented as a sequence 
of mathematical transformations. Each transformation 
has it's unique inverse operation that changes the 
encrypted data back into the original plain text. In con­
vcmtional cryptosystems, a set of specific parameters 
called a key is supplied along with the plain text/ cipher 
text as an input to the enciphering/ deciphering a.!go­
rithm. The key is specified by the user. The transforma­
tion of the plain text and the cipher text depends On the 
key as well as the enciphering and deciphering algo­
rithms. In fact the algorithms themselves can be made 
public, because the security of the system depends 
entirely on the secrecy of the key. 

The initial interest in encryption for commercial applica­
'tions came from financial institutions, most notably 
banks that are heavily involved in Electronic Fund 
Transfer (EFT). The American banking system alone, 
moves more than $400 billion between,computers every 
day. The rapid rise of personal computers, workstations 
and the use of electronic mail and information retrieval 
services have spread the need for insuring data privacy 
and security to many other applications. 

The DES 

In response to the growing commercial need, the National 
Bureau of Standards has adopted in 1977 a standard 
algorithm know as the Data Encryption Standard (DES). 
The DES, originally developed by IBM, is designed for 
use with sensitive but unclassifiec;i information. The 

National Bureau of Standards requires that the DES be 
implemented in system hardware. The standardization 
insures that certified hardware from different suppliers 
are compatible. 

The DES specifies a method for encrypting 64 bit blocks 
of clear data into corresponding 64 bit blocks of cipher 
text using a 56 bit key user specified. The 56 bit key (64 bit 
with parity) gives the user a total of 256 (seventy quadril­
lion) possible keys. Because the DES algorithm key is so 
long, a state of the art computer would take years to 
explore all,possible permutations required to break the 
code. The most critical factor in protecting the data is 
guaranteeing the secrecy of the key. 

Intel Data Encryption Product Line 

Intel offers two peripherals supporting the DES algo­
rithm: the 8294A Data Encryption Unit (DEU) and the 
82538 Data Ciphering Processor (DCP). 

The 8294A -a preprogrammed 8042- can encrypt and 
decrypt data at a rate up to 400 Byte/Sec. The 8294A is 
very well suited for data file protection, off line data 
encryption prior to transmission, and phone line 
applications. ' 

The 82538 is a much faster device: 1.5 Mbyte/ Sec: This 
encryption rate is needed in satellite communications 
systems,' data storage onto hard disks, high performance 
data communications networks like Ethernet. This rate is 
high enough to accomodate on the fly encryption in most 
of the communications systems and eliminate the need 
for buffers and interfacing circuitry. High encryption and 
decryption'speed is not the only feature ofthis device. The 
82538 supports bi-directional, half-duplex operations at 
its top speed. It contains three separate write only regis­
ters for encryption, decryption and master keys improv­
ing system's security and throughput. The DCP can also 
be configured in any of the three encryption/ decryption 
modes recommended by the NBS (ECB, CBC or CFB). 

The Intel Data Encryption product line solves the need 
for a broad range of applications. Security features can 
now be economically designed in data entry terminal as 
well as in satellite communications systems. 

InteICorporatlonA,~~ ... ,----------------------------------__ 
licenses are Implied ImNo ResponSibility forthe Use of Any Circuitry Other Than CircUitry Embodied In an Intel Product No Other CirCuit Patent 

© INTEL CORPORATION, 1\9~ Contained Herein Supersedes Previously Published Speclflcalions On The D~vlces From Intel 

6-546 JANUARY 1984 
ORDER NUMBER: 231031-001 



Video Display 

Peripherals 
Section 

7 





8275H 
PROGRAMMABLE CRT CONTROLLER 

• Programmable Screen and Character 
Format 

• 6 Independent Visual Field Attributes 

• 11 Visual Character Attributes 
(Graphic Capability) 

• Cursor Control (4 Types) 

• Light Pen Detection and Registers 

• MCS-51®, MC8-85®, iAPX 86, and 
iAPX 88 Compatible 

• Dual Row Buffers 

• Programmable DMA Burst Mode 

• Single + 5V Supply 

• High Performance HMOS-II 

The Intel® 8275H Programmable CRT Controller is a single chip device to interface CRT raster scan displays 
with Intel® microcomputer systems. It is manufactured on Intel's advanced HMOS-II process. Its primary 
function is to refresh the display by buffering the information from main memory and keeping track of the 
display position of the screen. The flexibility designed in the 8275H will allow simple interface to almost any 
raster scan CRT display with a minimum of external hardware and software overhead. 

CCLK 

LC3 vcc 
LC2 LAO 

LCI LAI 

0"0-7 CCO-;-6 LCO LTEN 

ORO RVV 

DACK VSP 

HRTC GPAI 

VRTC GPAo 

AD HLGT 

ORO lCO_J 
WR IRQ 

DACK LPEN CCLK 

IRO DBO CCa 

OBI CCs 

RJj 
DB2 CC4 

LAO_l 
OB3 CC3 

Wi! OB4 CCZ HATe 
VRle OB5 CCI 
HLGT 
RW OB6 CCo LTEN 
vs. OB7 ~ 

os GPAO_l 
Ao GNO 

LPEN 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responslbllty for the Usa of Any CircuItry Other Than Circuitry Embodied In an Intel Product No Other CIfCUlt Patent Licenses aN Implied 
©INTEL CORPORATION. 1984 7-1 SEPTEMBER 1984 

210464-002 



8275H 

Table 1. Pin Descriptions 

Pin Pin' 
Symbol No. Type Name and Function Symbol No. Type Name and Function 

LC3 1 0 LIne Count: Outputfrom the line count- Vcc 40 +5V Power Supply. 
LC2 2 er which is used to address the charac-
LC, 3 ter generator for the line positions on the 
LCo 4 screen. 

LAo 39 0 LIne Attribute Codes: These attribute 
LA, 38 codes have to be decoded externally by 

the dot/timing logic to generate the 
DRQ 5 0 DMA Request: Output signal to the horizontal and vertical line combina-

8257 DMA controller requesting a DMA tions for the graphic displays specified 
cycle. by the character attribute codes. 

DACK 6 I DMA Acknowledge: Input signal from LTEN 37 0 LIght Enable: Output signal used to 
the 8257H DMA controller acknowledg- enable the video signal to the CRT. This 
ing that the requested DMA cycle has output is active at the programmed 
been granted. underline cursor position, and at posi-

HRTC 7 0 Horizontal Retrace: Output signal tions specified by attribute codes. 

which is active during the programmed RW 36 0 Reverse Video: Output signal used to 
horizontal retrace interval. During this indicate the CRT circuitry to reverse the 
period the VSP output is high and the video signal. This output is active at the 
L TEN output is low. cursor position if a reverse video block 

VRTC 8 0 Vertical Retrace: Output signal which 
IS active during the programmed 
vertical retrace interval. During this 

cursor is programmed or at the posi-
tions specified by the field attribute 
codes. 

period the VSP output is high and the VSP 35 0 Video Suppression: Output signal 
L TEN output is low. used to blank the video signal to the 

RD 9 I Read Input: A control signal to read CRT. This output is active: 

registers. -during the horizontal and vertical re-

WR 10 I Write Input: A control signal to write 
commands into the control registers or 
write data into the row buffers during a 
DMA cycle. 

trace intervals. 
-at the top and bottom lines of rows if 

underline is programmed to be num-
ber 8 or greater. 

LPEN 11 I Light Pen: Input signal from the CRT 
system signifying that a light pen signal 
has been detected. 

-when an end of row or end of screen 
code is detected. 

-when a DMA underrun occurs. 

DBo 1-2 I/O BI-Dlrectlonal 'Three-State Data Bus 
DB, 13 LInea: The outputs are enabled during 
DB2 14 a read of the C or P ports. 
DB3 15 
DB. 16 
DB. 17 

-at regular intervals (1/16 frame fre-
quency for cursor, 1/32 frame fre-
quency for character and field attn-
butes)-to create blinking displays as 
specified by cursor, character attri-
bute, or field attribute programming. 

DBs 18 GPA, 34 0 General Purpose Attribute Codes: 
DB7 19 

Ground 20 Ground. 

GPAo 33 Outputs which are enabled by the gen-
eral purpose field attribute codes. 

HLGT 32 0 Highlight: Output signal used to inten-
sify the display at particular positions on 
the screen as specified by the character 
attribute codes or field attribute codes. 

IRQ 31 0 Interrupt Request. 

CCLK 30 I Character Clock (from dot/timing logic). 

CCs 29 0 Character Codes: Output from the 
CC. 28 row buffers used for character selection 
CC. 27 in the character generator. 
CC3 26 
CC2 25 
CC, 24 
CCo 23 

CS 22 I Chip Select: The read and write are en-
abled by CS. 

Ao 21 I Port Address: A high input on Ao 
selects the "c" port or command regis-
ters and a low input selects the "P" 
port or parameter registers. 

7-2 210464-002 



inter 8275H 

FUNCTIONAL DESCRIPTION 

Data Bus Buffer 

This 3-state, bidirectional, 8-bit buffer is used to interface the 
8275H to the system Data Bus. 

This functional block accepts inputs from the System Con­
trol Bus and generates control signals for overall device 
operation. It contains the Command, Parameter, and Status 
Registers that store the various control formats for the 
device functional definition. 

AO OPERATION REGISTER 

0 Read PREG 

0 Wnte PREG 

1 Read SREG 

1 Write CREG 

0 1 0 0 Write 8275H Parameter 

0 0 1 0 Read 8275H Parameter 
1 1 0 0 Write 8275H Command 
1 0 1 0 Read 8275H Status 
X 1 1 0 Three-State 
X X X 1 Three-State 

RD (Read) 

A "low" on this input informs the 8275H that the CPU is 
reading data or status information from the 8275H. 

WR(Wrlte) 

A "low" on this input informs the 8275H that the CPU is 
writing data or control words to the 8275H. 

CS (Chip Select) 
A "low" on this input selects the 8275H. No reading or writing 
will occur unless the device is selected. When CS is high, the 
Data Bus in the float state and RD and WRwili have no effect 
on the chip. 

7-3 

DRQ (DMA Request) 

A "high" on this output informs the DMA Controller that the 
8275H desires a DMA transfer. 

DACK (DMA Acknowledge) 

A "low" on this input informs the 8275H that a DMA cycle is in 
progress. 

IRQ (Interrupt Request) 

A "high" on this output informs the CPU that the 8275H 
desires interrupt service. 

210464-002 

I
, ~ 

" .' 



inter . 8275H 

FUNCTIONAL DESCRIPTION 

Character Counter 
The Character Counter is a programmable counter ,that is 
used to determine the number of chatacters to be displayed 
'per row and the length of the horizontal retrace interval. It 
is driven by the CCLK (Character Clock) input, which 
should be a derivative of the external dot clock. 

Line Counter 
The Line Counter is a programmable counter that is used to 
determine the number of 'horizontal lines (Sweeps) per 
character row. Its outputs are used to address the external 
character generator ROM. 

Row Counter 
The Row Counter is a programmable counter that is used to 
determine the number of character rows to be displayed per 
frame and length of the vertical retrace interval. 

Light Pen Registers 
The Light Pen Registers are two registers that store the con· 
tents of the character counter and the row counter when­
ever there is a rising edge on the LPEN (Light Pen) input. 

Note: Software correction IS re~ul~ed. 

R~ster Timing and Video Controls 
The Raster. Timing circuitry controls the timing of the 
HRTC (Horizontal Retrace) and VRTC (Vertical Retrace) 
outputs. The Video Control circuitry controls the genera­
tion of LAO_1 (Line Attribute), HGL T (Highlight), RVV 
(Reverse Video), LTEN (Light Enable), VSP (Video Sup­
press), and GPA0-1 (General Purpose Attribute) outputs. 

Row Buffers 
The Row Buffers are two 80 cl,aracter buffers. rhey are 
filled from the microcomputer system memory with the 
character codes to be displayed. While one row buffer is 
displaying a row of characters, the other is being filled with' 
the next row of characters. 

aRa_-'-__ 

DACK 

IRa 

eeLK 

CCO_6 

LCO_3 

LAo-, 
HRTe 
VRre 
HLGT 
RW 
LTEN 
v .. 

"r------r'r-' GPAo_, 

LPEN 

Figure 3. 8275H Block Diagram Showing Counter 
, and Register Functions 

FIFOs 
There are two 16 character FIFOs in the 8275H, They are 
used to provide extra row buffer length in the Transparent 
Attribute Mode (see Detailed Operation section). 

Buffer Input/Output Controllers 
The Buffer Input/Output Controllers decode the characters 
being placed in the row buffers. If the character is a charac­
ter attribute, field attribute or special code, these con­
trollers control the appropriate action. (Examples: An 
"End of Screen-Stop DMA" special code will cause the 
Buffer Input Controller to stop further DMA requests. A 
"Highligl)t" field attribute wi'li cause the Buffer Output 
Controller to activate the HGL T output.) 

7-4 210i64-002 



8275H 

SYSTEM OPERATION 

The 8275H is programmable to a large number of different 
display formats. It provides raster timing, display row 
buffering, visual attribute decoding, cursor timing, and light 
pen detection. 

It is designed to interface with the 8257 DMA Controller 
and standard character generator ROMs for dot matrix 
decoding. Dot level timing must be provided by external 
circuitry. 

MEMORIES 

11 
\ SYSTEM BUS ( 

OBo_7 
MEMI'I AD 
lOW DBO_7 
MEMW WR 
lOR RD 
CS CS 
HRO IRO 
HACK 

ORO LCO_3 
8257 VIDEO SIGNAL 
DMA 

DACK 
CHARACTER 

CONTROLLER GENERATOR 

8275H CCO-6 
HORIZONTAL SYNC 

CRT DOT 

CONTROLLER TIMING VERTICAL SYNC 
CCLK AND 

INTERFACE 
INTENSITY 

VIDEO CONTROLS 

Figure 4. 8275H Systems Block Diagram Showing Systems Operation 

7-5 210464-002 



8275H 

General Systems Operational Description 

The 8275H provides a "window" into tt1e microcomputer 
system memory. 

The number of lines per character row, the underline 
position, and blanking of top i'nd bottom lines are program­
mable. (See Programming Sectio,n.) 

Display characters are retrieved from memory and displayed 
on a row by row basis. The 8275H has two row buffers. While 
one row buffer is being used for display, the other is being 
filled with the next row of characters to be displayed. The 
number of display characters per row and the number of 
character rows per frame are software programmable, 
providing easy interface to most CRT displays. (See Program-

The 8275H provides special Control Codes which can be 
used to minimize DMA or software overhead. It also provides 
Visual Attribute Codes to cause special action or symbols on 
the screen without the use of the character generator (See 
Visual Attributes Section). -

ming Section.) . 

The 8275H also controls raster timing. This is done by 
generating Horizontal Retrace (HRTC) and Vertical Retrace 
(VRTC) signals. The ti ming ofthese signals is programmable. 

The 8275H requests DMA to fill the row buffer that is not 
being used for display. DMA burst length and spacing is 
programmable. (See Programming Section.) 

The 8275H can generate a cursor. Cursor location and 
format are programmable. (See Programming Section.) 

The 8275H displays character rows one line at a time. The 8275H has a light pen input and registers. The light pen 
input is used to load the registers. Light pen registers can be 
read on command. (See Programming Section.) 

1st 2nd 3rd 4th 5th i 6th 7th 
Characte, Character Character Character Character Character Character ---------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

First Line of a Character Row 

1st 2nd 3,d 4th 5th 6th 7th 
Character Character Character Character Character Character Character • ---------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

0.0000.00 •• 000.00.0000000000000.000.00.000800800080 

Second Line of a Character Row 

1 st 2nd 3,d 4th 5th 6th 7th 
Character Character Character Character Character Character Character --------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

0.0000800 •• 000.00.00000000000008000.008000800800080 
080000.0080000800.0000000000000.00080080008008000.0 

Third Line of a Character Row 

1st 2nd 3,d 4th 5th 6th 7th 
Character Character Character Character Character Character Character -------------------­OO •••• OOO.ODDO.OO ••••• OOOOOOODd •••• OOOO ••• ODO.OOO.O 

0.0000.00 •• 000.0080000000000000.000.00.000.00.000.0 
0.0000.00.0.00.00.0000000000000.000.00.000.00.000.0 
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0 
0.0000.00.00.0.00.0000000000000.0.0000.000.00.0.0.0 
O.OOOO.OO.OOO •• CO.OOOOOOOODDDOO.OO.OOO.OOO.OO.O.O.O 
00 •••• 000.0000.00 ••••• 000000000.00.0000 •• • 000 O. O. 00 

Seventh Line of 8,_Character Row 

Figure 5. Display of a Character Row 

7-6 210464-002 



8275H 

Display Row Buffering 
Before the start of a frame, the 8275H requests DMA and one 
row buffer is filled with characters 

ORa ____ --, 

OACK 

IRa 

Figure 6. First Row Buffer Filled 

eelK 

CCO_6 

LCO_3 

LAO_l 

HATe 
VAle 
HLGT 
Rvv 
LTEN 
VSP 

GPAO_l 

*..PEN 

When the first horizontal sweep is started, character codes 
are output to the character generator from the row buffer 
just filled. Simultaneously, DMA begins filling the other 
row buffer with the next row of characters. 

OBO_7 

ORO~ ___ , 

,OAC"'~ 
lRa~ , 

AD READ! 
WRITE! 

WR - CO~~:Ol d 
AO-- LOGIC 

~:=:::::J~ 

eeLK 

CCO_6 

LCO_3 

LAO_l 

HATe 
VAle 
HlGT 
RVV 
LTEN 
VSP 

GPAO_l 

LPEN 

Figure 7. Second Buffer Filled, First Row 
Displayed 

7-7 

After all the lines of the character row are scanned, the 
roles of the two row buffers are reversed and the same 
procedure is followed for the next row. 

ORO ____ -, 

OAGK. 

IRa 

eelK 

CCO_6 

lCO_3 ... 

LAO_l 

HRTe 
VRle 
HLGT 
RVV 
LTEN 
VSP 

L.,------..r~ GPAO_l 

LPEN 

Figure 8. First Buffer Filled with Third Row, 
Second Row Displayed 

This is repeated until all of the ~haracter rows are dis· 
played. 

21046,4'()02 



8275H 

Display Format 

Screen Format 

The 8275H can be programmed to generate from 1 to 80 
characters per row, and from 1 to 64 rows per frame. 

123451)789 .............. 80 
2 
3 
4 
5 
6 
7 
8 
9 

64 

Figure 9. Screen Format 

The 8275H can also be programmed to blank alternate rows. 
In this mode the first roV\' is displayed, the second blanked, 
the third displayed, etc. DMA is not requested for the 
blanked rows. • 

123456789 ............... 80 

2 

3 

4 

5 

64 

Figure 10. Blank Alternate Rows Mode 

7-8 

Row Format 

The 8275H is designed to hold the line count stable while 
outputting the appropriate character codes during each 
horizontal sweep. The line count is incremented Quring 
horizontal retrace and the whole row of character codes are 
output again during the next sweep. This is continued until 
the whole character row is displayed. 

The number of lines (horizontal sweeps) per character row 
is programmable f~om 1 to 16. 

The output of the line counter can be programmed to be in 
one of two modes. 

In mode 0, the output of the line counter is the same as the 
line number. 

In mode 1, the line counter is offset by one from the line 
number. 

Note: In mode 1. while the first line (line number 0) is being diS­

played, the last count IS output by the line counter (see 
examples). 

Line Line 
Line Counter Counter 

Number I Modo a Modo 1 

0 0 0 0 0 0 0 0 0 0 0000 1 1 1 1 
1 0 0 0 0 • 0 0 0 0 0001 0000 
2 • 0 0 o • o • 0 0 0 0010 0001 
3 0 0 • 0 0 0 • 0 0 0011 0010 
4 0 • 0 0 0 0 0 • 0 0100 001 1 
5 o • o 0 0 0 o • 0 0101 0100 
6 o • • • • • • • 0 01 10 0101 
7 o • 0 0 0 0 o • 0 01 1 1 01 1 0 
8 o • 0 0 0 0 o • 0 1000 0111 
9 o • 0 0 0 0 o • 0 1001 1000 

10 0 0 0 0 0 0 0 0 0 1010 1 001 
11 0 0 0 0 0 0 0 0 0 1011 1010 
12 0 0 0 0 0 0 0 0 0 1100 1011 
13 0 0 0 0 0 0 0 0 0 1 1 0 1 1 100 
14 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 
15 0 0 0 0 0 o 0 0 0 1111 1 1 10 

Figure 11. Example of a 1.6·Llne Format 

Line Line 
Line Counter Counter 

Number Modo a Model 

0 0 0 0 0 0 0 0 0000 1001 
1 0 0 0 a 0 0 0 0001 0000 
2 0 0 • 0 • 0 0 0010 0001 
3 0 • 0 0 0 • 0 001 1 0010 
4 0 • 0 0 0 • 0 0100 0011 
5 0 • • • • • 0 01 0 1 0100 
6 0 • 0 0 0 • 0 01 1 0 0101 
7 o .• 0 0 0 • 0 01.11 0110 
8 0 0 0 0 0 0 0 1000 01 1 1. 
9 0 0 0 0 0 0 0 1001 1000 

Figure 12. Example of a 10·Llne Format 

Mode 0 is useful for character generators that leave address 
zero blank ~nd start at address 1. Mode 1 is useful for char· 
acter generators which start at address zero. 

210464-002 



8275H 

Underline placement is also programmable (from line num­
ber 0 to 15). This is independent of the line counter mode. 

If the line number of the underline is greater than 7 (line 
number MSB = 1), then the top and bottom lines will be 
blanked. 

Line Line 
Line Counter Counter 

Number Mode 0 Mode' 

0 0 0 0 0 0 0 0 0 0 0000 1011 
1 0 0 0 0 • 0 0 0 0 0001 0000 
2 0 0 0 • 0 • 0 0 0 0010 0001 

0 0 • 0 0 0 • 0 0 00' , 0010 
4 0 • 0 0 0 0 0 • 0 0100 0011 
5 0 • 0 0 0 0 0 • 0 0101 0100 
6 0 • • • • • • • 0 0110 0101 
7 0 • 0 0 0 0 0 • 0 o 1 1 1 0110 
8 0 • 0 0 0 0 0 • 0 1000 011 1 
9 0 • 0 0 0 0 0 • 0 1001 1000 

10 • • • • • • • • • 1010 1001 
11 0 0 0 0 0 0 0 0 0 1011 1010 

Top and Bottom 
Lmes are Blanked 

Figure 13, Underline In Line Number 10 

If the line number of the underline is less than or equal to 7 
(line number MSB = 0), then the top and bottom lines will 
not be blanked. 

Line 
Number 

0 0 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 .. 

0 0 • 0 0 0 

0 • 0 • 0 0 

• 0 0 0 • 0 

• 0 0 0 • 0 

• • • • • 0 

• 0 0 0 • 0 

• 0 {j 0 • 0 

• • • • • • 
Top and Bottom 
Lines are not Blanked 

Line Line 
Counter Counter 
Mode 0 Mode' 

0000 01 1 1 
0001 0000 
0010 0001 
0011 0010 
0100 0011 

. 0 1 0 1 0100 
01 10 0101 
01 1 1 0110 

Figure 14. Underline in Line Number 7 

If the line number of the underline IS greater than the maxi· 
mum number of lines, the underline will not appear. 

Blanking IS accomplished by the VSP (Video SuppressIOn) 
signal. Underline is accomplished by the L TEN (Light 
Enable) signal. 

7-9 

Dot Format 

Dot width and character width are dependent upon the 
external timing and control circuitry. 

Dot level timing circuitry should be deSigned to accej!lt the 
parallel output of the character generator and shift it out 
serially at the rate required by the CRT display. 

VIDEO 

Figure 15. TYpical Dot Level Block Diagram 

Dot width is a function of dot clock frequency. 

Character width is a function of the character generator 
width. 

HOrizontal character spacing is a function of the shift 
register length. 
Note: Video control and timing Signals must be synchronized With 

the Video Signal due to the character generator access delay 

210464-002 



intJ 8275H 

Raster Timing 
The character counter is driven by the character clock input 
(CCLK). It counts out the characters being displayed 
(programmable from 1 to 80). It then causes the line 
coun~er to increment, and it 'starts counting out the hori· 
zontal retrace interval (programmable from 2 to 32). This 
is constantly repeated. 

CCLK~. 
HATe 

1----iI 

PROGRAMMABLE 1 TO 80 CCLKS 

PRESENT LINE COUNT LCO_3 ______________ -J 

Figure 16. Line Timing 

Jl 

NEXT 
LINE COUNT 

The line counter is driven by the character counter. It is 
used 'to generate the line address outputs (LCo_ ) for the 
character generator. After it' counts all of the ~ines in a 
character row (programmable from 1 to 16), it increments 
the row counter, and starts over again. (See Character For· 
mat Section for detailed description of Line Counter 
functions. ) 

7-10 

The row counter is an internal counter driven by the line 
counter. It controls the functions of the row buffers and 
counts the number of character rows displayed. 

ONE CHARACTER ROW . . , 

HRTC Lrl..JUlS 

LC"3~~ 
INTERNAL 
ROW COUNTER PRESENT ROW NEXT ROW 

PROGRAMM!BLE 1 TO 16 
LINE COUNTS 

'. 

Figure 17. Row Timing 

After the row counter counts all of the rows in a frame 
(pr~grammable from 1 to 64), it starts counting out the 
vertical retrace interval (programmable from 1 to 4). 

ONE FRAME . 
ROW'~6~~~:~ JCx:x:x:x2<XXx 

FIRST LAST FIRST LAST 
DISPLAY DISPLAY RETRACE RETRACE 

ROW ROW ROW ROW 

• PROGRAMMABLE 
1 TO 64 ROW COUNTS 

• 
PROGRAMMABLE 

1 TO 4 ROW COUNTS 

Figure 18. Frame Timing 

The Video Suppression Output (VSP"j is active during 
horizontal and vertical retrace intervals. 

Dot level timing circuitry must synchronize these outputs 
with the viqeo signal to the CRT Displ~y. 

210464-002 



8275H 

DMA Timing 

The 8275H can be programmed to request burst DMA 
transfers of 1 to 8 characters. The interval between bursts is 
also programmable (from 0 to 55 character clock periods 
±1). This allows the user to tailor his DMA overhead to fit his 
system needs. 

The first DMA request of the frame occurs one row time 
before the end of vertical retrace. DMA requests continue as 
programmed, until the row buffer is filled. If the row buffer is 
filled in the middle of a burst, the 8275H terminates the burst 
and resets the burst counter. No more DMA requests will 
occur until the beginning of the next row. At that time, DMA 
requests are activated as programmed until the other buffer 
is filled. 

The first DMA request for a row will start at the first char­
acter clock of the preceding row. If the burst mode is used, 
the first DMA request may occur a number .of character 
clocks later. This number IS equal to the programmed burst 
space. 

If, for any reason, there is a DMA underrun, a flag in the 
status word will be set. 

I"!TEII,':.' :x ¥ \( 
COUNTER .------"1' LAST RETll/1,CE ROW /f::..1..._"-"'-'"-"-''"-'-''-"-

"~I 
\\>-, --

__ ---.J)C,~J\,J\.J\ 

'" ROW.BUfFER 
FILLED 

Figure 19. DMA Timing 

N{XI 
IIOWBUHfA 

filLED 

The DMA controller IS typically initialized for the next 
frame at the end of the current frame. 

7-11 

Interrupt Timing 

The 8275H can be programmed to generate an interrupt 
request at the end of each frame. This can be used to 
relnltlahze the DMA controller. If the 8275H Interrupt enable 
flag is set, an Interrupt request will occur at the beginning of 
the last display row. 

INTERNAl~ 
ROW 

COUNTER 
LA 

DISPLAY RETRACE 
ROW ROW 

VRTC ~\-__ $-_-' 

IRQ 

Figure 20. Beginning of Interrupt Request 

I RQ will go inactive after the status register is read. 

IRa t 
RD ~'--------' -

Figure 21. End of Interrupt Request 

A reset command will also cause I RQ to go in<;lctive, but this 
is not recommended during normal service. 

Another method of reinitializlng the DMA controller is to 
have the DMA controller itself interrupt on terminal count. 
With this method, the 8275H interrupt enable flag should not 
be set. 

Note: Upon power-up, the 8275H Interrupt Enable Flag may be set As a 
result, the user's cold start routine should write a reset command to 
the 8275H before system Interrupts are enabled 

210464-002 

~.' 
:~ 

If 
:; 



inter 8275H 

VISUAL ATTRIBUTES AND SPECIAL 
CODES 

The characters processed by the 8275H are 8-bit quantities. 
The character code outputs provide the character generator 
with 7 bits of address. The Most Significant Bit IS the extra bit 
and it is used to determine if it is a normal display character 
(MSB = 0), or if ·it is a Visual Attribute or Special Code 
(MSB = 1). 

There are two types of Visual Attribute Codes. They are 
Character Attributes and Field Attributes. 

J-IORIZ RIGHT 
HALF 

o,r---------t---i 
CHARACTER 

Character Attribute Codes. 
Character attribute codes are codes that can be used to gen· 
erate graphics symbols without the use of 11 character 
generator. This is accomplished by selectively activating the 
Line Attribute outputs (LAO-l), the Video Suppression 
output (VSP). 'and the Light Enable output. The dot level 
timing circuitry can use these signals to generate the proper 
symbols. 

Character attributes can be programmed to blink or be 
highlighted individually. Blinking is accomplished with the 
Video Suppression output (VSP). Blink frequency is equal 
to the screen refresh frequency divided by 32. Highlighting 
is accomplished by activating the Highlight output (HG L T). 

Character Attributes 

MSB LSB 
1 1 -,-C---,-C...-'C_C B H 

I I L HIGHLIGHT 
BLINK 

L _____ CHARACTER ATTRIBUTE CODE 

GENERATORI ---------t:-:r').--t=:::r:==F~() i~~ 03r 
SHIFT 

RfGISTER 

HORIZ LEFT HALF 

VIDEO 

LAO 
PIPELINE 

Figure 22. Typical Character Attribute Logic 

7-12 210464-002 



inter 8275H 

Table 2. Character Attributes 
Character attributes were designed to produce the following graphics: 

CHARACTER ATTRIBUTE OUTPUTS 
SYMBOL 

CODE "CCCC" LA1 LAo VSP LTEN 

Above Underl ine 0 0 1 0 
li'~)~ 0000 Underline 1 0 0 0 

Below Underline 0 1 0 0 
Above Underline 0 0 1 0 

0001 Underline 1 1 0 0 
Below Underline 0 1 0 0 
Above Underline 0 1 0 0 

\~~~ 
Cc 

0010 Underline 1 0 0 0 
Below Underline 0 0 1 0 
Above Underline 0 1 0 0 

~.~~:z;: 0011 Underline 1 1 0 0 
Below Underline 0 0 1 0 
Above Underline 0 0 1 0 

~ 0100 Underline 0 0 0 1 
Below Underline 0 1 0 0 
Above Underline 0 1 0 0 

~~~L 0101 Underline 1 1 0 0 
Below Underline 0 1 0 0
Above Underline 0 1 0 0

.;!~ 0110 Underline 1 0 0 0
Below Underline 0 1 0 0
Above Underline 0 1 0 0

~ 0111 Underline 0 0 0 1
Below Underline 0 0 1 0
Above Underline 0 0 1 0

~ 1000 Underline 0 0 0 1
Below Underline 0 0 1 0
Above Underline 0 1 0 0

1001 Underline 0 1 0 0
Below Underline 0 1 0 0
Above Underl ine 0 1 0 0

1010 Underline 0 0 0 1
Below Underline 0 1 0 0
Above Underline 0 0 0 0 ; ,

1011 Underline 0 0 0 0
Below Underline 0 0 0 0
Above Underline 0 0 1 0

1100 Underline 0 0 1 0
Below Underline 0 0 1 0
Above Underl ine

1101 Underline Undefined
Below Underlme I
Above Underline I

1110 Underline Undefined
Below Underline I
Above Underline I

1111 Underline Undefmed
Below Underline I

DESCRIPTION

Top Left Corner

Top Right Corner

Bottom Left Corner

Bottom Right Corner

Top Intersect

Right Intersect

Left Intersect

Bottom Intersect

Horizontal line

Vertical line
I

Crossed lines

Not Recommended'

Special Codes

Illegal

Illegal

Illegal

'Character Attribute Code 1011 is not recommended for
normai operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate character will be generated.

Character Attribute Codes 1101, 1110, and 1111 are illegal.

Blinking is active when B = 1.

Highlight is active when H = 1.

7-13 210464-002

8275H

Special Code.

Four special codes are available to help reduce memory,
software, or DMA overhead.

Special Control Character

MSB
1 1 1 1 o 0

S S

o 0
o 1

o

LSB
S S '

~ SPECIAL CONTROL COOE

FUNCTION

End of Row

End of Row·Stop DMA

End of Screen
End of Screen·Stop DMA

The End of Row Code (00) activates VSP and holds it to
the end of the line.

The End of Row·Stop DMA Code (01) causes the DMA
Control Logic to stop DMA for the rest of the row when it
is written into the Row Buffer. It affects the display in the
sarne way as the End of Row Code (00).

The End of Screen Code (10) activates VSP and holds it to
the end of the frame.

The End of Screen·Stop DMA Code (11) causes the DMA
COAtrol Logic to stop DMA for the rest of the frame when
it is written into the Row Buffer. It affects the display in
the same way as the End of Screen Code (10).

If the Stop DMA feature is not used, all characters after an
End of Row character are ignored, except for the End of
Screen character, which operates normally. All characters
after an End of Screen character are ignored.

Note: If a Stop DMA character IS not the last character In a burst ~r
row, DMA IS not stopped until after the next character IS

read. In thiS sItuation, a dummy character must be placed in
memory after the Stop DMA character.

Field Attribute.

The field attributes are control codes which affect the
visual characteristics for a field of characters, starting at the

7-14

character following the code up to, and including, the
character which precedes the next field attribute code, or
up to the end of the frame. The field attributes are reset
during the vertical retrace interval.

There are six field attributes:

1.

2.

3.

Blink - Characters following the code are ca~sed
to bl ink by activating the Video Suppression out·
put (VSP). The blink frequency is equal to the
screen refresh frequency divided by 32.

Highlight - Characters following the code are
caused to be highlighted by activating the High·
light output (HGLT).

Reverse Video - Characters following the code are
caused to appear with reverse video by activating
the Reverse Video output (RVV).

4. Underline - Characters follOWing the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5,6. General Purpose - There are two additional 8275
outputs which act as general purpose, independ·
ently programmable field attributes. GPA0-1 are
active high outputs.

Field Attribute Code

LSB Msa
1 0

U

1

RI GTG i ~ HIGHLIGHT
~'---BLINK

GENERAL PURPOSE
L.. _______ REVERSE VIDEO

'---------UNDERLINE '

H = 1 FOR HIGHLIGHTING
B = 1 FOR BLINKING
R = 1 FOR REVERSE VIDEO
U = 1 FOR UNDERLINE

GG = GPA1, GPAo

'More than one attribute can be enabled at the same time.
If the blinking and reverse video attributes are enabled
simultaneously, only the reversed characters will blink.

210464-002

8275H

The 8275H can be programmed to provide visible or invisible
field attribute characters.

If the 8275H is programmed in the visible field attribute
mode, all field attributes will occupy a position on the screen.
They will appear as blanks caused by activation of the Video
Suppression output (VSP). The chosen visual attributes are
activated after this blanked character.

ABC 0 E F G H I J K L M
NOPORSTUV

1 234 5 6 7 8 9

Figure 23. Example of the Visible Field Attribute
Mode (Underline Attribute)

If the 8275H is programmed in the invisible field attribute
mode, the 8275H FIFO is activated.

CCLK

OBO_7 CCO_6

ORO ____ -,
LCO_3

R5

iVA LAO_l

HRTe
VRTe
HLGT
RVV
LTEN
VSP

a; GPAO_l

LPEN

Figure 24. Block Diagram Showing FIFO
Activation

Each row buffer has a corresponding FIFO. These F I FOs
are 16 characters by 7 bits in size.

When a field attribute is placed in the row buffer during
DMA, the buffer input controller recognizes it and places
the next character in the proper FIFO.

When a field attribute is placed in the Buffer Output Con·
troller during display, it causes the controller to Immedi·
ately put a character from the FIFO on the Character Code
outputs (CCO-6). The chosen Visual Attributes are also
activated.

Since the FIFO is 16 characters long, no more than 16 field
attribute characters may be used per line in this mode.
If more are used, a bit In the status word is set and the first
characters In the FIFO are written over and lost.

Note: Since the FIFO 's 7 bits Wide, the MSB of any characters put
In It are stnpped off. Therefore, a Visual Attnbute ol'4Speclal
Code must not Immediately follow a field attnbute code. If
thiS Situation does occur, the Visual Attnbute or SpeCial
Code will be treated as a normal display character.

7-15

ABC 0 E F G H I J K L M
NOPORSTUV

1 234 567 8 9

Figure 25. Example of the Invisible Field Attribute
Mode (Underline Attribute)

Field and Character Attribute Interaction

Character Attribute Symbols are affected by the Reverse
Video (RVV) and General Purpose (GPAO_1) field attri·
butes. They are not affected by Underline, Blink or High·
light field attributes; however, these characteristics can be
programmed individually for Character Attribute Symbols.

210464-002

8275H

Cursor Timing

The cursor loc.ation is determined by a cursor row register
and a chaf"acter position register which are loaded by com·
mand to the controller. The cursor can be~ programmed to
appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non·blinking underline
4. a non·blinking reverse video block

The cursor blinking frequency is equal to the screen refresh
frequency divided by 16.

If a non·blinking reverse video cursor appears in a non·
blinking reverse video field, the cursor will appear as a
normal video block.

If a non·blinking underline cursor appears in a non·blinking
underline field, the cursor will not be visible.

Light Pen Detection

A light pen consists of a micro switch and a tiny light
sensor. When the light pen is pressed against the CRT screen,
the micro switch enables the light sensor. When the raster
sweep reaches the light sensor, it triggers the light pen
output.

If the output of the light pen is presented to the 8275H LPEN
input, the row and character position coordinates are stored
in a pair of registers. These registers can be read on
command. A bit in the status word is set, indicating that the
light pen signal was detected. The LPEN input must be a Oto
1 transition for proper operation.

Note: Due to internal and external delays, the character position
coordinate will be off by at least three character positions.
This has to be corrected in software.

Device Programming

The 8275H has two programming reg'isters, the Command
Register (CREG) and the Parameter Register (PREG). It also
has a Status Register (SREG). The Command Register can
only be written into and the Status Registers can 'only be
read from. They are addressed as follows:

AO OPERATION REGISTER

0 Read PREG

0 Wnte PREG

1 Read SREG

1 Wnte CREG

The 8275H expects to receive a command and a sequence of
o to 4 parameters, depending on the command. If the proper
number of parameter bytes are not received before another
command is given, a status flag is set, indicating an improper
command.

INSTRUCTION SET

The 8275H instruction set consists of 8 commands.

COMMAND

Reset
Start DISplay

Stop DISplay

Read Light Pen
Load Cursor

Enable Interrupt

Disable Interrupt

NO. OF PARAMETER BYTES

4
o
o
2
2
o
o

Preset Counters 0

In addition, the status of the 8275H (SREG) can be read by
the CPU at any time,.

7-16 210464-002

8275H

1. Reset Command:
DATA BUS

OPERATION AO OESCRIPTION MSB LSB

Command Write 1 Reset Command 0 0 0 0 0 0 0 0 -- -- Screen Camp
Write 0 S H H H H H H H

Byte 1

Write 0 Screen Camp
V V R R R R R R

Byte 2
Parameters

Screen Comp Wnte 0 U U U ·U L L L L
Byte 3

Wnte 0 Screen Camp M F C C Z Z Z Z
Bvte 4

Action - After the reset command IS wntten, DMA re­
quests stop, 8275 interrupts are d.isabled, and the VSP
output is used to blank the screen. H RTC and VRTC con­
tinue to run. HRTC and VRTC timing are random on
power-up.

As parameters are written, the screen composition IS

defined.

Parameter - S Spaced Rows

S FUNCTIONS

o Normal Rows

Spaced Rows

Parameter - HHHHHHH Horizontal Characters/Row

NO. OF CHARACTERS
H H H H H H H

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0

o 0 1 1

00000

PER ROW

80
Undefined

Undefined

Parameter - VV Vertical Retrace Row Count

V V NO. OF ROW COUNTS PER VRTC

o 0 1
o 2

o 3

4

Parameter - RRRRRR Vertical Rows/Frame
R R R R R R NO. OF ROWS/FRAME

o 0 0 0 0 0
o 0 0 001
o 0 0 0 0

64

Parameter - UUUU Underl Ine Placement

LINE NUMBER OF
U U U U UNOERLINE

0 0 0 0

0 0 0 2
0 0 0

16

Parameter - LLLL

L L L L

Number of Lines per Character Row
NO. OF LINES/ROW

000 0

000
000 3

16

Parameter - M Line Counter Mode

M LINE COUNTER MODE

o Mode 0 (Non-Offset)

Mode 1 (Offset by 1 Count)

Parameter - F
F

o

Parameter - CC
C C

Field Attnbute Mode
FIELD ATTRIBUTE MODE

Transparent

Non-Transparent

Cursor Format
CURSOR FORMAT

a 0 Blmklng reverse video block

a Blinking underline

o Nonbllnkmg reverse video block

Nonbllnklng underling

Parameter - ZZZZ HorIZontal Retrace Count
NO. OF CHARACTER

Z Z Z Z COUNTS PER HRTC

0 0 0 0 2

0 0 0 1 4

0 0 0 6

32

Note: uuuu MSB determines blanking of top and ,bottom lines
(1 = blanked, 0 = not blanked)

7-17 210464-002

:~
'il

i

8275H

2. Start Display Command:

IOPERATION
DATA BUS

AO DESCRIPTIDN MSB LSB

Command I Wnte 1 Start DIsplay o 0 1 S S S B B

No parameters

SSS BURST SPACE CODE

NO. OF CHARACTER CLOCKS
S S S BETWEEN DMA REQUESTS

0 0 ,0 0
0 0 1
0 0 15
0 1 23

0 0 31
0 1 39

0 47
55

BB BURST COUNT CODE

NO. OF DMA CYCLES PER
B B BURST

0 0 1
0 1 2
l' 0 4

8

Action - 8275 interrupts are enabled, DMA requests begin,
video is enabled, Interrupt Enable and Video Enable status
fl ags are set.

3. Stop Display Command:

IOPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Wrrte 1 Stop DIsplay 0 1 0 0 0 a 0 0

No parameters

Action - Disables video, Interrupts remain enabled, HRTC
and VRTC continue to run, Video Enable status flag IS
reset, and the "Start Display" command must be given to
re-enable the display.

4. Read Light Pen Command
DATA BUS

DPERATION AO DESCRIPTION MSB LSB

Command Write 1 Read LIght Pen 0 1 1 0 0 0 0 0

Parameters
Read 0 Char Number (Char Position In Row)
Read 0 Row Number (Row Numbed

Action - The 8275H is conditioned to supply the contents of
the light pen position registers in the next two read cycles of
the parameter register. Status flags are not affected

Note: Software correction of light pen position IS required.

5. Load Cursor Position:

DATA BUS
OPERATION AO DESCRIPTION MSB' LSB

Command W,nte 1 Load Cursor 1 0 0 0 0 0 a 0

Parameters
Wnte 0 Char Number (Char PositIon In Row)

Wrtte 0 Row Number (Row Numbed

Action - The 8275H is conditIOned to place the next two
parameter bytes into the cursor position registers. Status
flags not affected.

6. Enable Interrupt Command:

10PERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 Enable Interrupt 1 0 1 0 0 0 0 0

No parameters !

Action - The Interrupt enable status fl<ig is set and inter-
rupts are enabled. •

7. Disable Interrupt Command:

I OPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 DIsable Interrupt 1 1 0 0 0 0 0 0

No parameters
--

Action - Interrupts are disabled and the Interrupt enable
status flag is reset.

8. Preset Counters Command:

I OPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 Preset Counters 1 1 1 0 0 0 0 0

7-18.

No parameters

Action - The internal timing counters are preset. corre­
sponding to a screen display position at the top left corner.
Two character clocks are requL<ed for thiS operation. The
counters will remain in thiS state until any other command
is given.

ThiS command is useful for system debug and synchroniza­

tion of clustered CRT displays on a single CPU. After thiS

command. two additional clock cycles are required before

the fi rst character of the fi rst row IS put out.

210464-002

8275H

Status Flags
DATA BUS

MSB LSB

Command OlE IR LP IC VE DU FO

IE - (Interrupt Enable) Set or reset by c9mmand. It
enables vertical retrace interrupt. It is auto·
matically set by a "Start Display" command
and reset with the" Reset" command.

I R - (Interrupt Request) This flag is set at the begin·
ning of display of the last row of the frame if
the interrupt enable flag is set. It is reset after
a status read operation.

LP This flag is set when the light pen input (LPEN)
is activated and the light pen registers have been
loaded. This flag IS automatically reset after a
status read.

7-19

IC - (Improper Command) This flag IS set when a
command parameter string is too long or too
short. The flag is automatically reset after a
~tatus read.

VE - (Video Enable) This flag indicates that video
operation of the CRT IS enabled. This flag is
set on a "Start Display" command. and reset
on a "Stop Display" or "Reset" command.

DU - (DMA Underrun) This flag IS set whenever a
data underrun occurs during DMA transfers.
Upon detection of DU. the DMA operation is
stopped and the screen is blanked until after
the vertical retrace interval. This flag is reset
after a status read.

FO (FIFO Overrun) This flag is set whenever the
FIFO is overrun. It is reset on a status read.

210464-002

inter 8275H

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias o°c to 700 e
Storage Temperature ',' -65°C to +150°C
Voltage On Any Pin

With Respect to Ground -0.5V to +7V
Power Dissipati,on 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the

, device. This is a 'stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied.

D.C. CHARACTERISTICS (TA = erc to 70~C, Vee = 5V ±50/0)

Symbol Parameter Min. Max. Units Test Conditions

VIL Input Low Voltage , -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+0.5V V

VOL Output Low Voltage 0.45 V IOL - 2.2 mA

VOH Output High Voltage 2.4 V IOH = -400/lA

IlL Input Load Current ±10 /lA VIN = Vee to OV

IOFL Output Float Leakage ±10 /lA· VOUT = Vee to 0.45V

Icc Vee Supply Current 160 mA

CAPACITANCE (TA = 25'C, Vee = GND = OV)

Symbol Parame~er Min. Max. Units Test Conditions

CIN Input Capacitance 10 pF fc= 1 MHz

CliO I/O Capacitance 20 pF Unmeasured pins returned to Vss.

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5.0V ±50/0, GND = OV)

Bus Parameters

READ CYCLE

Symbol Parameter Min. Max. Units
tAA Address Stable Before READ 0 ns

tAA Address Hold Time for READ 0 ns

tAA READ Pulse Width , 250 ns

tAD Data Delay from READ 200 ns CL

tOF READ to Data Floating 100 ns CL

WRITE CYCLE

Symbol Parameter Min. Max. Units

tAW Address Stable B~fore WR ITE 0 ns

tWA Address Hold Time for WR ITE a ns

tww WR ITE Pulse Width 250 ns

tow Data Setup Time for WR ITE 150 ns

two Data Hold Time for WR ITE 0 ns

7-20

Test ~ondltlons

150 pF

150 pF

Test Conditions

210464-002

A.C. CHARACTERISTICS (Continued)

CLOCK TIMING

8275

Symbol Parameter Min.

tCLK Clock Period 480

tKH Clock High 240

tKL Clock Low 160

tKR Clock Rise 5

tKF Clock Fall 5

OTHER TIMING

Symbol Parameter

tcc Character Code Output Delay

tHR Horizontal Retrace,Output Delay

tLC line Count Output Delay

tAT Controll Attribute Output Delay

tVR Vertical Retrace Output Delay

tRI IRQl from RDi

tWQ DRQi from WRi

tRQ DRQl from WR1

tLR DACKl toWRl

tRL WRi to DACKi

tpR LPEN Rise

tpH LPEN Hold

tOI DACK Inactive Period

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V
FOR A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A
LOGIC '1 AND 0 BV FOR A LOGIC 0

8275H

8275·2

Max. Min. Max. Units Test
Conditions

320 ns

120 ns

120 ns

30 5 30 ns

30 5 30 ns

8275 8275-2

Min. Max. Min. Max. Units Test
Conditions

150 150 ns CL = 50 pF

200 150 ns CL = 50 pF

400 250 ns CL = 50 pF

275 250 ns CL = 50 pF
--

275 250 ns CL = 50 pF

250 250 ns CL = 50 pF
--

250 250 ns CL = 50 pF
--

200 200 ns CL = 50 pF

0 0 ns

0 0 ns

50 50 ns
--

100 100 ns

120 ns

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER rrc

TEST

-=
Cl INCLUDES JIG CAPACI~ANCE

7-21 210464-002

8275H

WAVEFORMS

TYPICAL DOT LEVEL TIMING

EXT DOT elK

CCLK-l .. ______ --'

CCO_6 FIRST CHARACTER CODE SECOND CHARACTER CODe i'------:-----+.J '-________ --J

1 __ -- - ROM ACCESS ---

I
CHARACTER -'-------, r-------------"\ r----------
GENERATOR FIRST CHARACTER SECOND CHARACTER OUTPUT ________ ...J '-____________ -J '-________ _

ATTRIBUTES
S. CONTROLS

VIDEO
(FROM SHIFT

REGISTER)

ATTRIBUTES
8. CONTROLS

(FROM
SYNCHRONIZER)

LINE TIMING

ceO_6

HRTe

FIRST CHARACTER

ATTRIBUTES & CONTROLS FOR fiRST CHAR

·CCLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8275

~--------~~--~!

SECOND CHARACTER

ATTAIBUTES & CONTROLS
FOR 2ND CHAR

lCO_3 -+ ____ P_RE_S_EN_T_L_'N_E_C_O_U_NT ___ -I 'r--------------x NEXT LINE COUNT

VIDEO ±2=x=x:' I·--'AT :X=X~--\I:I--I: -)(
CONTROLS -

AND ATTRIBUTES· ,)\-, _____ _

I *lAO_l. VSP, LTEN.HGLT,AVV,GPAO_l·

7-22 210464,002

8275H

WAVEFORMS (Continued)

ROW TIMING

CCLK

HATe

LCO_3

PROGRAMMABLE FROM 1 TO 16 liNes ~---I

INTERNAL ----,jr-------------' F
ROW PRESENT ROW NEXT ROW

COUNTER ___ -J .

FRAME TIMING

CCLK

INTERNAL
ROW

COUNTER

VRTe

INTERRUPT TIMING

A.

cs

RD

A
~"j

IRO 1

7-23 210464-002

8275H

WAVEFORMS (Continued)

DMATIMING

ORO ---.I

lPEN_~jJ,,--

WRITE TIMING

VALID INVALID

-----'--1dr-·WW-_.w, '----_
WR

-----.'DW ·-1 r
060_7 INVALID INVALID

CLOCK TIMING

CCLK

'KF

READ TIMING

7-24 210464-002

8276H
SMALL SYSTEM CRT CONTROLLER

• Programmable Screen and Character
Format

• 6 Independent Visual Field Attributes

• Cursor Control (4 Types)

• MCS-51®, MCS-85®, iAPX 86, and
iAPX 88 Compatible

• Dual Row Buffers

• Single +5V Supply

• 40-Pin Package

• 3 MHz Clock with 8276-2

• High Performance HMOS-II

The Intel 8276H Small System CRT Controller is a single chip device intended to interface CRT raster scan displays
with Intel microcomputers in minimum device-count systems. Its primary function is to refresh the display by
buffering character information from main memory and keeping track of the display position of the screen. The
flexibility designed into the 8276H will allow simple interface to almost any raster scan CRT display. It can be used
with the 8051 Single Chip Microcomputer for a minimum IC count design. It is manufactured on Intel's advanced
HMOS-II process.

CCLK
LC3 Vee

LC2 NC

LC, NC

LCD LTEN

DATA
BRDY RVV

OBO-7 BUS CCO- 5 BS VSP
BUFFER

HRTC GPA,

VRTC GPAo

BRDY
liD HLGT

LCO-3
WR INT

NC CCLK

DBo CC.

DB, CC5
liD

READ/ DB2 CC,

WR- WRITE/ d HRTC DB3 CC3 CONTROL VRTC
LOGIC HLGT DB, CC2 C/P- RVV

LTEN DB5 CC,
VSP

cs------.J GPAO- 1 DB.

DB7

GND ciP

Figure 1. Block Diagram Figure 2. Pin Configuration

Intel Corporfltlon Assumes No Responslbllty for the Use of Any ClfcUitry Other Than CircUItry Embodied In an Intel Product No Otht!r Circuit Patenf Licenses a.,e Implied
• < INTEL CORPORATION, 1984 ORDER NUMBER' 210668-002

7-25

intel 8276H

Table 1. Pin Descriptions

I
Pin -I Symbol No. Type Name and Function

LC3 1 0 Line count. Output from the line count-
LC2 2 er which IS used to address the charac-

LC1 3 ter generator for the line positions on

LCo 4 the screen

Pin I Symbol No. Type Name and Function

I
Vee 140 I +5V power supply.

NC 139 I No connection.

NC ' 38 ' No connection.

LTEN 37 0 Light enable. Output Signal used to

BRDY

I
5

I
0

I
Buffer ready. Output signal indicating
that a Row Buffer IS ready for loading of
character data

enable the Video signal to the CRT, ThiS
output IS active at 'the programmed
underline cursor position, and at POSI-
tions specified by attribute codes

BS

I
6

I
I I Buffer select. Input signal enabling

WR for character data Into the Row
Buffers

RVV 36 0 Reverse video. Output signal used to
activate the CRT Circuitry to reverse the
Video signal. ThiS output is active at the
cursor position If a reverse Video block

HRTC 7 0 Horizontal retrace. Output signal
which IS active dUring the programmed
hOrizontal retrace Interval DUring this

cursor is programmed or at the POSI-
tions specified by the field attribute
codes,

period the VSP output IS high and the VSP 35 0 Video suppression. Output signal

L TEN output IS low used to blank the video signal to the
CRT, This output is active:

VRTC 8 0 Vertical retrace. Output signal which
IS active dUring the programmed verti-
cal retrace Interval DUring this period
the VSP output IS high and the L TEN
output IS low

- dUring the horizontal, and vertical re-
trace Intervals

- at the top and bottom lines of rows if
underline is programmed to be num-
ber 8 or greater

- when an end of row or end of screen

RD

\9\

I 'I Read input. A control signal to read
registers

code IS detected.
- when a Row Buffer underrun occurs,

- at regular intervals (1116 frame fre-

WR

1

10
1

I

I
Write input. A control signal to wnte
commands Into the control registers or
write data Into the row buffers

quency for cursor, 1132 frame fre-
quency for attnbutes)-to create
blinking displays as specified by
cursor or field attribute programming,

NC 1111 1
No connection. I

DBa 12 110 Bidirectional data bus. Three-state

•
GPA1

I ;~ I
0 General purpose attribute codes.-

GPAo Outputs which are enabled by the gen-
eral purpose field attribute codes

DB1 13 lines The outputs are enabled d u rI ng a
DB2 14 read of the C or P ports
DB3 15
DB4 16

HLGT

1

32

1

0 1 Highlight. Output signal used to inten-
Sify tne display at particular POSitions
on the screen as specified by the field
attribute codes

DB5 17
DB6 18 INT 131 I 0 I Interrupt output.

DB? 19 CCLK
1

30
1

I 1 Character clock (from dot/timing
logiC)

Ground 20 Ground. CC6 29 0 Character codes. Output from the
CC5 28 row buffers used for character selec-
CC4 27 tlon In the character generator
CC3 26
CC2 25
CC1 24
CCo 23

CS
1221

I I Chip select. Enables RD of status or
WR of command or parameters.

CI P 21

I
I Port address. A high input on thiS pin

selects the "c" port or command regis-
ters and a low Input selects the "P" port
or parameter registers,

I

ORDER NUMBER. 210668-002 7-26

intel' 8276H

FUNCTIONAL DESCRIPTION

Data Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to
interface the 8276H to the system Data Bus.

This functional block accepts inputs from the Sys­
tem Control Bus and generates control signals for
overall device operation. It contains the Command,
Parameter, and Status Registers that store the vari­
ous control formats for the device functional
definition.

C/P OPERATION REGISTER

a Read RESERVED

a Write PARAMETER

1 Read STATUS

1 Write COMMAND

RD (READ)
A "low" on this input informs the 8276H that the CPU is
reading status information from the 8276H.

WR(WRITE)
A "low" on this input informs the 8276H that the CPU is
writing data or control words to the 8276H.

CS (CHIP SELECT)
A "low" on this input selects the 8276H for RD or WRof
Commands, Status, and Parameters.

BRDY (BUFFER READY)
A "high" on this output indicates that the 8276H is ready
to receive character data.

BS (BUFFER SELECT)
A "low" on this input enables WR of character data to
the 8276H row buffers.

INT (INTERRUPT)
A "high" on this output informs the CPU that the 8276H
needs i nterru pt service.

C/F> RD WR CS BS

a a 1 a 1 Reserved
a 1 a a 1 Write 8276H Parameter
1 a 1 a 1 Read 8276H Status
1 1 a a 1 Write 8276H Command
X 1 a 1 a Write 8276H Row Buffer
X 1 1 X X High Impedance
X X X 1 1 High Impedance

7-27

Character Counter

The Character Counter is a programmable counter
that is used to determine the number of characters
to be displayed per row and the length of the hori­
zontal retrace interval. It is driven by the CCLK
(Character Clock) input, which should be derived
from the external dot clock.

Line Counter

The Line Counter is a programmable counter that is
used to determine the number of horizontal lines
(Raster Scans) per character row. Its outputs are
used to address the external character generator.

Row Counter

The Row Counter is a programmable counter that is
used to determine the number of character rows tei
be displayed per frame and length of the vertical re­
trace interval.

Raster Timing and Video Controls

The Raster Timing circuitry controls the timing of
the HRTC (Horizontal Retrace) and VRTC (Vertical
Retrace) outputs. The Video Control circuitry con­
trols the generation of HGL T (Highlight), RVV (Re­
verse Video), L TEN (Light Enable), VSP (Video Sup­
press), and GPAO- 1 (General Purpose Attribute)
outputs.

Row Buffers

The Row Buffers are two 80-character buffers. They
are filled from the microcomputer system memory
with the character codes to be displayed. While one
row buffer is displaying a row of characters, the
other is being filled with the next row of characters.

Buffer Input/Output Controllers

The Buffer Input/Output Controllers decode the
characters being placed in the row buffers. If the
character is a field attribute or special code, they
control the appropriate action. (Example: A "High­
light" field attribute will cause the Buffer Output
Controller to activate the HGL T output.)

ORiJER NUMBER 210668·002

intel' 8276H

SYSTEM OPERATION

The 8276H is programmable tCl a large number of
different display formats. It provides raster timing,
display row buffering, visual attribute decoding and
cursor timing.

It is designed to interface with standard character
generators for dot matrix decoding. Dot level timing
must be provided by external circuitry.

General Systems Operational Description

Display characters are retrieved from memory and
displayed on a row-by-row basis. The 8276H has two
row buffers. While one row buffer is being used for
display, the other is being filled with the next row of
characters to be displayed. The number of display
characters per row and the number of character rows
per frame are software programmable, providing easy
interface to most CRT displays. (See Programming
Section.)

The 8276H uses BRDY to request character data to fill
the row buffer that is not being used for display.

Tne 8276H displays character rows one scan line at a
time. The number of scan lines per character row, the
underline position, and blanking of top and bottom
lines are programmable. (See Programming Section.)

The 8276H provides special Control Codes which can
be used to minimize overhead. It also provides Visual
Attribute Codes to cause special action on the screen
without the use of the character generator. (See Visual
Attributes Section.)

The 8276H also controls raster timing. This is done by
generating Horizontal Retrace (HRTC) and Vertical
Retrace (VRTC) signals. The timing of these signals is
also programmable.

The 8276H can generate a cursor. Cursor location and
format are programmable. (See Programming Sec~ion.)

INT BRDY LCo 3 -A VIOEO SIGNAL

8088 CHARACTER
MICRO- ceo 6 GENERATOR HIGH HORIZONTAL SY"NC PROCESSOR lIS (ROMOR ' y SPEED

J
8276H RAM) DOT
CRT TIMING

os CONTROLLER LOGIC VERTICAL SYNC . AND
I CCLK INTERFACE

TO CRr

INTENSITY I 8205 J DECODER
VIDEO CONTROLS

7- It lr
SYSTEM BUS

.<: i"" .., i"" .<: ?- .., r

~ z... ~ ~:::~

8253·5 PROGRAM .. 82SSA-5
COUNTERI' 8251A DISPLAY KEYBOARD

TIMER USART MEMORY CONTROLLER

t SERIA~ 11
I COMMUNICATIONS KEYBOARD STA CHANNEL TUS

Figure 3. CRT System Block Diagram

7-28 AFN-002248

8278H

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character ----------­DO •••• ooo.noon.ll.u ••••• OUGlUUUUUU •••• OLJOLI ••• U[JIJ.ODO.[J.

1st
Character

2nd
Character

First Line of a Character Row

3rd
Character

4th 5th
Character Character

6th
Character

7th
Character -------------­OO •••• ODO.[JODO.OO ••••• OOOOOO(JUO •••• OC100 ••• ODO.OOO.O

O.OOOO.DO •• ODo.rJOeODOOOOODOOOU08000.00.0DO.oo.oooeo

Second Line of 8 Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Charactef Character Character Character -------------­DO •••• OOO.OOOO.LJO ••••• UOODOODOO •••• OOLlO ••• ODO.OOO.O

o.oooo.oo •• oo["J.oo.ooooooooooooo.o[']o.oo.ooo.oo.ooo.o
o.nono.oneUI][l[J.t-o.LJOOOO[]ooooOr)o.uDtl.00.00o.oo.ooo.u

Third Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character -------------­oo •••• ooo.oooo.oo ••••• ooooooooo •••• ouoo ••• ooo.ooo.o

0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0
O.OOOO.OO.O.OO.CO.OOOODOO~ODOOO.OOO.OO.DOO.OD.ODO.O
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
0.0000.00.00.0.00.0000000000000.0.0000.000.00.0.0.0
o.oooo.oo.ooo •• co.ooooooooooooo.ooeOOO.ODoeoo.o.o.o
00 •••• 000.0000.00 ••••• 000000000.00.0000 ••• 0000.0.00

Seventh Line of a Character Row

Figure 4. Display Of A Character Row

Display Row Buffering

Before the start of a frame, the 8276H us~s BRDY a'nd
BS to fill one row buffer with characters.

When the first horizontal sweep is started, character
codes are output to the character generator from the
row buffer just filled. Simultaneously, the other row
buffer is filled with the next row of characters.

After all the lines of the character row are scanned,
the buffers' ate swapped and the same procedure is
followed for the next row.

This process is repeated until all of the character
rows are displayed.

0110-7 CCO- 6

Row Buffering allows the CPU access to the display
memory at all times except during Buffer Loading
(about 25%). This compares favorably to alternative
approaches which restrict CPU access to the display
memory to occur only during horizontal and vertical
retrace intervals (80% of the bus time is used to re­
fresh the display.) Figure 5. First Row Buffer Filled

7-29 ORDER NUMBER: 21_·002

8276H

OC(l-6

Figure 6. Second Row Buffer Filled, First Row
. Displayed

080 - 7 CCo- s

Figure 7. First Row Buffer Filled With Third Row,
Second Row Displayed

Display Format

SCREEN FORMAT
The 8276H can be programmed to generate from 1 to
80 characters per row, and from 1 to 64 rows per frame.

ORDER NUMBER' 210668-002 7-30

123456789 80
2
3
4
5
6
7
8
9

64

Figure 8. Screen Format

The 8276H can also be programmed to blank alternate
rows. In this mode, the first row is displayed, the
second blanked, the third displayed, etc. Display data is
not requested for the blankecj rows.

123456789 80

2

3

4

5

64

Figure 9. Blank Alternate Rows Mode

ROW FORMAT
The 8276H is designed to hold the line count stable
while outputting the appropriate character codes during
each horizontal sweep. The line count is incremented
during horizontal retrace and the whole row of char­
acter codes are output again during the next sweep.
This is continued until the entire character row is
displayed.

The number of lines (horizontal sweeps) per charac­
ter row is programmable from 1 to 16.

The output of the line counter can be programmed
to be in one of two modes.

In mode 0, the output of the line c.ounter is the same
as the line number.

8276H

In mode 1, the line counter is offset by one from the
line number.

Note: In mode 1. while the '"st hne (line number 0) is being dis­
played, the last count IS output by the line counter (see
examples).

Line
Number

o

2
3
4
5
6

8
9

10
11
12
13
14
15

Lme Line
CQunter Counter
Mode 0 Mode 1

IJ [J U 0 0 U U [J U 0000
[J [J [J U • 0 0 U 0 0 a 01
Ll [] 0 • 0 • 0 [J [] 0010
OOWoDo.oO 0011
U.lJUUUUWU 0100
lJ. 0 0 0 [J U • [] 0101

cl ••••••• OOll0
UWOODOOWO 0111

Ll • 0 'u U 0 U • 0 1 0 0 0
lJ_ODOOU.O 1001

!J l.1 0 0 0 0 0 0 [] 1010
~ lJ !J 0 [J 0 0 [] 0 1 0 1 1

U LJ U 0 [J 0 lJ [J [I 1 1 0 0
[J Ll [J [J 0 U LJ lJ [] 1 101
I J U [J [.J [J U LJ U r'J 1 1 1 0
lJ 0 0 I-I [I :.J L.l U u 1 1 1 1

1111
0000
0001
0010
0011
0100
0101
0110
01 1 1
1000
1001
1010
101 1
1 100
1 101
11 10

Figure 10. Example of a 16-Une Format

Line
Number

o
1
2

4

5
6
7

8
9

U :l 0 [J Cl [J Ll

[J C-l [] • [J U [J

co.u.ou
UWOOC1.U

,I • 0 LJ [1 • U

LJ ••••• [J

Ll • [J [I [1 • []

II • U 0 U • 0

'1 [J iJ U U rl LJ

U II LJ [J U II U

Line Lme
Counter Counter
Mode 0 Mode 1

0000
0001
0010
001 1
0100
0101
01 10
01 1 1
1000
1001

1001
0000
0001
0010
0011
0100
0101
0110
01 1 1
1000

Figure 11. Example of a 10-Une Format

Mode 0 is useful for character generators that leave
address zero blank and start at address 1. Mode 1 is
useful for character generators which start at
address zero.

Underline placement is also programmable (from
line number 0 to 15). This is independent of the line
counter mode.

7-31

If the line number of the underline is greater than 7
(line number MSB = 1), then the top and bottom
lines will be blanked.

Lme
Number

o
1
2

4
5
6
7

8
9

10
11

Line Lane
Counter Counter
Mode 0 Mode 1

[J [J 0 n [I U ['I LJ [) 0000
o q [J [J • [J II II II 0001
OllO.O.I]IJ110010
DO.OL1[J.fIII00ll
n • 0 rJ fJ [J [-I • rJ 01 00
o • 0 IJ 0 I I Il • I I 01 0 1
0 ••••••• 11 0110
o.nooIJ'l.[IOlll
O.OClUlln·l000
o • ["] 0 [J I I II • [-I 1 a 0 1

• • • • • • • •• 1010
uLJOlJU[JiJ[JLJ 1011

Top and Bottom
Lines are Blanked

101 1
0000
0001
0010
001 1
0100
0101
0110
011 1
1000
1001
1010

Figure 12. Underline in Line Number 10

If the line number of the underline is less than or
equal to 7 (line number MSB = 0), then the top and
bottom lines will not be blanked.

Lme
Number

o

2
3
4
5
6

II [J II • II U [J

OU.O.,liJ

IJ • [J r-I fl. IJ

[J • [J IJ Ll • [I

[J ••••• LJ

1l • 0 un_ li

LJ • L:J fl [] • [J . -. -. . .
Top and Bottom
Lines are not Blanked

Line Line
Counter Counter
Mode 0 Mode 1

0000
0001
0010
001 1
0100
0101
01 10
011 1

01 1 1
0000
0001
0010
001 1
0100
0101
0110

Figure 13, Underline in Line Number 7

If the linenumber of the underline is greater than the
maximum number of lines, the underline will not ap­
pear.

Blanking is accomplished by the VSP (Video Sup­
pression) signal. Underline is accomplished by the
L TEN (Light Enable) signal.

ORDER NUMBER 210668-002

8276H

DOT FORMAT
Dot width and character width are dependent upon
the external timing and control circuitry.

Dot level timing circuitry should be designed to ac­
cept the parallel output of the character generator
and shift it out serially at the rate required by the CRT
display.

lC

8276

CC

VSP

.----c--.~VIDED
~ SYNCHRONIZER ~

Figure'14. Typical Dot Level Block Diagram

Dot width is a function of dot clock frequency.

Character width is a function of the character
generator width.

Horizontal character spacing is a f,unctlon of the
shift register length.

Note: Video control and timing signals must be synchronIZed
with the video signal due to the character generator ac­
cess delay

Raster Timing

The character counter is driven by the character
clock input (CCLK). It counts out the characters
being displayed (programmable from 1 to BO).1t then
causes the line counter to increment, and it starts
counting out the horizontal retrace interval (pro­
grammable from 2 to 32). This process is constantly
repeated.

CClK~
HRTe

\----Il

Jl

LC03 __________ --.J

Figure 15. Line Timing

ORDER NUMBER- 210668-002 7-32

The line counter is driven by the character counter. It
is us~d to generate the line address outputs (LCo-3)
for the character generator. After it counts all of the
lines in a character row (programmable from 1 to
16), it increments the row counter, and starts over
again. (See Character Format Section for detailed
description of Line Counter functions.)

The row counter is an internal counter driven by the
line counter. It controls the functions of the row buf­
fers and counts the number of character rows
displayed.

ONE CHARACTER ROW .
r \

HRTC --UUU-U-

lC03~~
INTERNAL
ROW COUNTER PRESE.NT ROW NEXT ROW

• PROGRAMMABLE' TO 16
LINE COUNTS

Figure 16. Row Timing

After the row counter 'counts all of the rows in a
frame (programmable from 1 to 64), it starts count­
ing out the vertical retrace interval (programmable
from 1 to 4).

ONE FRAME .
RDW'~~~~~~~ ti~XXx

FIRST LAST FIRST LAST
DISPLAY DISPLAY RETAACE RETRACE

AOW ROW AOW ROW

• T
PROGRAMMABLE PROGRAMMABLE

1 TO 64 AOW COUNTS 1 TO 4 ROW COUNTS

Figure 17. Frame Timing

The Video Suppression Output (VSP) is active dur­
ing horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these
outputs with the video signal to the CRT Display.

intJ 8276H

Interrupt Timing

The 8276H can be programmed to generate an interrupt
request at the end of each frame. If the 8276H interrupt
enable flag is set, an interrupt request will occur at the
beginning of the last display row.

INTERNAL~
ROW

COUNTER
LAST FIRST

OISPLA Y RETRACE
ROW ROW

VRTC ~'r-----';"_..J

INT

Figure 18. Beginning of Interrupt

INT will go inactive after the status register is read.

INT t
RD ~"---------J -

Figure 19. End of Interrupt

A reset command will also cause INT to go inactive,
but this is not recommended during normal service.

Nole: Upon power-up, the 8276H Interrupt Enable Flag may be set
As a result, the user's cold start routine should write a reset

.' command to the 8276H before system interrupts are enabled.

VISUAL ATTRIBUTES
AND SPECIAL CODES

The characters processed by the 8276H are 8-bit
quantities. The character code outputs provide the
character generator with 7 bits of address. The Most
Significant Bit is the extra bit and it is used to determine
iUt is a normal display character (MSB = 0), or if it is a
Field Attribute or Special Code (MSB = 1).

7-33

Special Codes

Four special codes are available to help reduce bus
usage.

SPECIAL CONTROL CHARACTER

MSB LSB
1111 DOSS

~ SPECIAL CONTROL CODE

S S FUNCTION

o 0 End of Row

o
o

End of Row-Stop Buffer Loading

End of Screen

End of Screen-Stop Buffer Loading

The End of Row Code (00) activates VSP and holds it
to the end of the line.

The End of Row-Stop Buffer Loading (BRDY) Code
(01) causes the Buffer Loading Control Logic to stop
buffer loadin'g for the rest of the row upon being
written into the Row Buffer. It affects the display in
the same way as the End of Row Code (00).

The End of Screen Code (10) activates VSP and
holds it to the end of the frame.

The End of Screen-Stop Buffer Loading (BRDY)
Code (11) causes the Row Buffer Control Logic to
stop buffer loading for the rest of the frame upon
being written. It affects the display in the same way
as the End of Screen Code (10).

If the Stop Buffer Loading feature is not used, ali
characters after an End of Row character are ig­
nored, except for the End of Screen character,
which operates normally. All characters after an End
of Screen character are ignored.

Note: If a Stop Buffer Loading is not the last character in a row,
Buffer Loading IS not stopped until after the next character
is read. In this situation, a dummy character must be
placed in memory after the Stop Buffer Loading character.

Field Attributes

The field attributes are control codes which affect
the visual characteristics for a field of chara.cters,
starting at the character following the code up to,
and including, the character which precedes the
next field attribute code, or up to the end of the
frame. The field attributes are reset during the verti­
cal retrace interval.

ORDER NUMBER: 210668-002

8276H

The 8276H can be programmed to provide visible field
attribute characters; all field attribute codes will occupy
a position on the screen. These codes will appear as
blanks caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are activated
after this blanked character.

Th~He are six field attributes:

1. Blink-Characters following the code are
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is
equal to the sc~een refresh frequency divided
by 32.

2.· Highlight-Characters following the code are
caused to be highlighted by activating the High­
light output (HGL T).

3. Reverse Video-Characters following the code
are caused to appear with reverse video by ac­
tivating the Reverse Video output (RVV).

4. Underline-Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5,6. General Purpose-There are two additional 8276H
outputs which act as general purpose, indepen­
dently programmable field attributes. GPAO_1 are
active high outputs.

ABC D E F G H I J K L M
NOPORSTUV

1 2 3 4 5 6 7 8 9

Figure 20. Example of a Visible Fleld.Attribute
(Underline Attribute)

FIELD ATTRIBUTE CODE

MSB

1 0
LSB

U R G G B H

II T I ,-I ---- HIGHLIGHT

L_~::::::::::::::::::~ ~~I~:RAL PURPOSE

. . REVERSE VIDEO
'----------- UNDERLINE

OADER NUMBER· 210668-002 7-34

H = 1 FOR HIGHLIGHTING
B = 1 FOR BLINKING
R ,; 1 FOR REVERSE VIDEO
U = 1 FOR UNDERLINE

GG = GPAh GPAo

Note: More than one attribute can be enabled at the same time.
I! the blinking and reverse video attributes are enabled
simultaneously. only the reversed characters will blink.

Cursor Timing

The cursor location is determined by a cursor row
register and a character position register which are
loaded by command to the controller. The cursor
can be programmed to appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non-blinking underline
4. a non-blinking reverse video block

The cursor blinking frequency is equal to the screen
refresh frequency divided by 16.

If a non-blinking reverse video cursor appears in a
non-blinking reverse video field, the cursor will ap­
pear as a normal video block.

If a non-blinking underline cursor appears in a non­
blinking underline field, the cursor will not be
visible.

Device Programming

The 8276H,has two programming registers, the C;om­
mand Register and the Parameter Register. It also' has a
Status 'Register. The Command Register can only be
written into and the Status Register can only be read
from. They are addressed as follows:

ciFi OPERATION REGISTER

0 Read Reserved

0 Write Parameter

1 Read Status

1 Write Command

The 8276H expects to receive a cor1'flT1and and a
sequence of 0 to 4 parameters, depending on the
command. If the proper number of parameter bytes are
not received before another command is given, a status
flag is set, indicating an improper command.

intJ

Instruction Set

The 8276H instruction set consists of 7 cornrnands.

COMMAND

Reset
Start Display
Stop Display
Load Cursor
Enable Interrupt
Disable Interrupt
Preset Counters

NO. OF PARAMETER BYTES

4
o
o
2
o
o
o

8276H

In addition,the status of the 8276H can be read by the
CPU at any tirne.

1. RESET COMMAND
DATA BUS

OPERATION C/P DESCRIPTION MS. LSB

Command Write 1 Reset Command 00000000

Wnte 0
Screen Comp SHHHHHHH

Byte 1

Write 0
Screen Comp VVRRARRR

Byte 2
Parameters

Screen Comp
Write 0 Byte 3

UUUULLLL

Write 0
Screen Comp M 1 CCZZZZ

Byte 4

Action-After the reset cornrnand is written, BRDY
goes inactive, 8276H interrupts are disabled, and the
VSP output is used to blank the screen. HRTC and
VRTC continue to run. HRTC and VRTC tirning are
randorn on power-up.

As pararneters are written, the screen corn position is
defined.

Parameter-S Spaced Rows

S FUNCTIONS

o Normal Rows

Spaced Rows

Parameter-HHHHHHH
Horizontal Characters/Row

H H H H H H H

o 0 0 0 0 0 0
o 0 0 0 0 0 1
o 0 0 001 0

o 0 1 1 1 1
o 1 0 0 0 0

1 1 1 1 1 1

NO. OF CHARACTERS
PER ROW

1
2
3

80
Undefined

Undefined

7-35

Parameter-VV Vertical Retrace Row Count

V V NO.OFROWCOUNTSPERVRTC

o 0
o 1
1 0
1 1

1
2
3
4

Parameter-RRRRRR Vertical Rows/Frame

R R R R R R NO. OF ROWS/FRAME

o 0 0 0 001
000001 2
000010 3

1 1 1 1 1 1 64

Parameter-UUUU Underline Placement

LINE NUMBER OF
U U U U UNDERLINE

0 o 0 0 1
0 o 0 1 2
0 o 1 0 3

1 1 16

Parameter-LLLL Number of Lines
per Character Row

L L L L NO. OF LINES/ROW

o 000
000 1
001 0

1
2
3

1 1 16

Parameter-M Line Counter Mode

M LINE COUNTER MODE

o Mode 0 (Non-Offset)
1 Mode 1 (Offset by 1 Count)

Parameter-CC Cursor Format

C C

o 0
o 1
1 0
1 1

CURSOR FORMAT

Blinking reverse video block
Blinking underline
Non-blinking reverse video block
Non-blinking underline

ORDER NUMBER: '1_·00'

intJ 8276H

Parameter-ZZZZ Horizontal Retrace Count 6. DISABLE INTERRUPT COMMAND

z z z z
NO. OF CHARACTER
COUNTS PER HRTC

o 000
000 1
001 0

1 1

2
4
6

32

Note: uuuu MSB determines blanking of top and bottom lines
(1 = blanked, 0 = not blanked) ..

2. START DISPLAY COMMAND

DATA BUS
MSS L8B

00100000

Actlon-8276H interrupts are enabled, BRDY goes
active, video is enabled, Interrupt Enable and Video
Enable status flags are set.

3. STOP DISPLAY COMMAND
DATA BUS

MSS LSB

01000000

Action-Disables video, interrupts remain enabled,
HRTC and VRTC continue to run, Video Enable
status flag is reset, and the "Start Display" com­
mand must be given to reenable the display.

4. LOAD CURSOR POSITION
DATA BUS

OPERATION ClP DESCRIPTION MSB LSB

Command Wnte 1 load Cursor 1 0 0 0 0 0 0 0

Parameters Write 0 Char Number (Char Position In Row)
Wrrte 0 Row Number (Row Number)

AcUon-The 8276H is conditioned to place the next
two parameter bytes into the cursor position registers.
Status flag not affected.

5. ENABLE INTERRUPT COMMAND

Action-The inter.rupt enable flag is set and inter­
rupts are enabled.

OR~R NUMBER: 21_·00. 7-36

DATA BUS
MSS LSB

11000000

Action-Interrupts are disabled and the interrupt
enable status flag is reset.

7. PRESET COUNTERS COMMAND

DATA BUS
MSB LSB

11100000

Action-The internal timing counters are preset,
corresponding to a screen display position at the top
left corner. Two character clocks are required, for
this operation. The counters will remain in this state
until any other command is given.

This command is useful for system debug and syn­
chronization of clustered CRT displays on a single
CPU. After this command, two additional clock cycles
are required before the first character of the first row is
put out.

Status Flags

DATA BUS
MSS LSB

Command o IE IA X Ie VE BU X I

IE - (Interrupt Enable) Set or reset by command.
It enables vertical retrace interrupt. It is auto­
matically set by a "Start Display" command
and reset with the "Reset" command.

IR - (Interrupt Request) This flag is set at the be­
ginning of display of the last row of the frame
if the interrupt enable flag is set. It is reset
after a status read operation.

IC - (Improper Command) This flag is set when a
command parameter string is too long or too
short. The flag is automatically reset after a
status read.

VE - (Video Enable) This flag indicates that video
operation of the CRT is enabled. This flag is
set on a "Start Display" command, and reset
on a "Stop Display" or "Reset" command.

BU - (Buffer Underrun) This flag is set whenever a
Row Buffer is not filled with character data in
time for a buffer swap required by the display.
Upon activation of this bit, buffer loading
ceases, and the screen is blanked until after
the vertical retrace interval.

8276H

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias ooe to 70°C
Storage Temperature -65°C to +150oe
Voltage On Any Pin

With Respect to Ground -O.5V to + 7V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute MaxI­
mum Ratings" may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at
these or any other conditions above those indicated In the opera­
tional sections of this specification is not implied

D.C. CHARACTERISTICS (TA = O°C to 70°C; Vce = 5V ±5%)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

V IL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee + 0.5V V

VOL Output Low Voltage 0.45 V 10L = 2.2 rnA

VOH Output High Voltage 2.4 V 10H = -400 p.A

IlL Input Load Current ±10 p.A VIN = Vee to OV

10FL Output Float Leakage ±10 p.A VOUT = Vee to 045V

Icc Vee Supply Current 160 rnA

CAPACITANCE (TA = 25°C; Vee = GND = OV)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

CIN Input Capacitance 10 pF Ie = 1 MHz

CliO 110 Capacitance 20 pF Unmeasured pins returned to VSS.

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER 'lCI

TEST

-=
CllNCLUDES JIG CAPACITANCE

7-37 ORDER NUMBER. 210668-002

infel 8276H

A.C. CHARACTERISTICS (TA = O°C to 70°C; VCC = 5.0V ±5%; GND = OV)

Bus Parameters

READ CYCLE

Symbol Parameter

tAR Address Stable Before READ

tRA Address Hold Time for READ

tRR READ Pulse Width

tRO Data Delay from READ

tOF READ to Data Floallng

WRITE CYCLE
.- .-

Symbol Parameter

tAW Address Stable Before WRITE
--

tWA Address Hold Time for WRITE

tww WRITE Pulse Width

tow Data Setup Time for WRITE

two Data Hold Time for WRITE

CLOCK TIMING

~.

Symbol Parameter

tCLK Clock Period

tKH Clock High ,

tKL Clock Low

tKR Clock Rise

tKF Clock Fall

OTHER TIMING

Symbol Parameter

tcc Character Code Output Delay

tHR HOrizontal R~trace Output Delay

tLC Line Count Output Delay

tAT Control/Attribute Output Delay

tVR Vertical Retrace Output Delay

·tRI INn from RDj

two BRDYj from WRj

tRO BRDYL from WRL

tLR SSL toWRf

tRL WRj to BSj

ORDER NUMBER. 210868-002

I

Min. Max. Units Test Conditions

0 ns

0 ns

250 ns

200 ns CL = 1S0pF

100 ns

Min. Max. Units Test Conditions

0 , ns

0 ns

250 ns

150 ns

0 ns

8276H 8276·2

Min. Max. Min. Max. Units Test
Conditions

480 320 ns

24,0 120 ns

160 120 ns

5 30 5 30 ns

5 30 5 30 ns

8276H 8276·2

\Min. Max. Min. Max. Units Test
Conditions

150 150 ns CL = 50 pF

200 150 'ns CL = 50 pF

400 250 ns CL = 50 pF

275 250 ns CL = 50 pF

275 250 ns CL = 50 pF

250 250 ns CL = 50 pF

250 250 ns CL = 50 pF

200 200 ns CL = 50 pF

0 0 ns

0 0 ns

7-38

8276H

WAVEFORMS

Typical Dot Level Timing

Line Timing

EXT DOT eLK

CCLK*l
~-------'

CCO_6 FIRST CHARACTER CODE SECOND CHARACTER CODe

ROM ACCESS

GENERATOR FIRST CHARACTER SECOND CHARACTER CHARACTER _________ JI' X
OUTPUT '-____________ ...J '-________ _

ATTRIBUTES =x :TTRIBUTES& CONTROLS FOR FIRST CHAR X x=
& CONTROLS •

~--------------------~

VIDEO
lFROM SHIFT

REGISTER)

ATTRIBUTES
& CONTROLS

(FROM
SYNCHRONIZER)

SHifT REGISTER SETUP

FIRST CHARACTER

ATTRIBUTES & CONTROLS FOR FIRST CHAR

'CCLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8276

CCLK'lf\J\J\J\FJ

CCO_6

SECOND CHARACTER

ATTRIBUTES & CONTROLS
FOR 2ND CHAR

.. tHR tHR - ...

PROGRAMMAblE FROM 1 TO 80 CHARACTERS PROGRAMMABLE FROM 2 TO 32 GeLKS -- ...

'HA

HATC \~-------\(('r-, _~/
--- - IlC

---------~\r'----------------~ r-------
LCo 3 _____ PR_'_S_'N_T_L_'N_'_C_O_UN_T ___ -i! "r, _____________ --'X NEXT LINE COUNT

.. 'AT

ANOATTC~~~~~H =:x=:x------.... ':~\-j _____ ..J)(
VSP L TEN HGL T RVV GPAo 1

7-39 ORDER NUMBER: 210668-002

I

Row Timing

Frame Timing

8276H

celK

HRTe

lCO_3

INTERNAL ----.,. .. -------------\\-----....,.
ROW

COUNT'R ____ J 1"-------------\ \-____ -'

---"'-
1---

INTERNAL
ROW

COUNTER

-- tVA -=4=--- tVR

~AST
RETRACE

ROW

-- PROGRAMMABLE FROM 1 TO 64 ROWS' _ PROGRAMMABLE FROM
, 1 TO 4\-R_O_W_S __

'--__ ~,....___---JI VAle

Interrupt Timing

\
CCLI(~pJ \

os=" /
cc LAST RETRACE X FIRST RETRACE

0-6 CHARACTER CHARACTER --------V ~--------

Ril) "\

'-'"'i INT

lCO_3 FIRST LINE COUNT

HATC
1\'---_-

INTERNAL
ROW lAST DISPLAV ROW

COUNTER --------Ir---------

INT ---+--~ r""
ORDER NUMBER 210668-002 7-40

8276H

Timing for Buffer Loading

CCLK

-jtKot
BRDY ~--------------------,

Write Timing

VALID INVALID

WIi

~d' tww- ----:tWA __

_~to~--1
D8o-7 INVALID INVALID

Clock Timing

CCLK

Read Timing

7-41'

Input and Output Waveforms for A.C. Tests

24 ""J20 20X===
04508> TEST POINTS <:::::08

FOR A C TESTING, INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1
AND 0 45V FOR A LOGIC 0 TIMING MEASUREMENTS FOR INPUT
AND OUTPUT SIGNALS ARE MADE AT 2 OV FOR A LOGIC 1 AND
o 8V FOR A LOGIC 0 '

ORDER NUME'ER: 210868-002

@ Intel CorporatlOn, 1979

APPLICATION
NOTE

7-42

AP-62

November 1979

207780-001

APPLICATIONS

1. INTRODUCTION

The purpose of this application note is to provide the
reader with the design concepts and factual tools
needed to integrate Intel peripherals and microproc­
essors into a low cost raster scan CR T terminal. A
previously published application note, AP-32, pre­
sented one possible solution to the CRT design
question. This application note expands upon the
theme established in AP-32 and demonstrates how
to design a functional CRT terminal while keeping
the parts count to a minimum.

For convenience, this application note is divided
into seven general sections:

I. Introduction
2. CRT Basics

3. 8275 Description

4. Design Background

5. Circuit Description

6. Software Description
7. Appendix

There is no question that microprocessors and LSI
peripherals have had a significant role in the evolu­
tion of CRT terminals. Microprocessors have
allowed design engineers to incorporate an abun­
dance of sophisticated features into terminals that
were previously mere slaves to a larger processor. To
complement microprocessors, LSI peripherals have
reduced component count in many support areas. A
typical LSI peripheral easily replaces between 30
and 70 SSI and MSI packages, and offers features
and flexibility that are usually not available in most
hardware designs. In addition to replacing a whole
circuit board of random logic, LSI circuits also
reduce the cost and increase the reliability of design.
Fewer interconnects increases mechanical reliability
and fewer parts decreases the power consumption
and hence, the overall reliability of the design. The
reduction of components also yields a circuit that is
easier to debug during the actual manufacturing
phase of a product.

Until the era of advanced LSI circuitry, a typical
CRT terminal consisted of 80 to 200 or more SSI
and MSI packages. The first microprocessors and
peripherals dropped this component count to be­
tween 30 and 50 packages. This application note
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan display gets its name from the fact
that the image displayed on the CR T is built up by
generating a series of lines (raster) across the face of
the CRT. Usually, the beam starts in the upper left
hand corner of the display and simultaneously
moves left to right and top to bottom tQ put a series

- - RETRACE LINES
--- DISPLAYED LINES

Figur'l 2-1. Raster Scan

of zig-zag lines on the screen (Fig. 2.1). Two simul­
taneously operating independent circuits control the
vertical and horizontal movement of the beam.

As the electron beam moves across the face of the
CRT, a third circuit controls the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to be as
bright or as dark as the user desires. This allows any
desired pattern to be displayed.

When the beam reaches the end of a line, it is
brought back to the beginning of the next line at a
rate that is much faster than was used to generate

r the line. This action is referred to as "retrace".

7-43

During the retrace period the electron beam is
usually shut off so that it doesn't appear on the
screen.

As the electron beam is moving across the screen
horizontally, it is also moving downward. Because
of this, each successive line starts slightly below the
previous line. When the beam finally reaches the
bottom right hand corner of the screen, it retraces
vertically back to the top left hand corner. The time
it takes for the beam to move from the top of the
screen to the bottom and back again to the top is
usually referred to as a "frame". In the United
States, commercial television broadcast use 15,750
Hz as the horizontal sweep frequency (63.5 micro­
seconds per horizontal line) and 60 Hz as the vertical
sweep frequency or "frame" (16.67 milliseconds per
vertical frame).

Although, the 60 Hz vertical frame and the 15,750 Hz
horizontal line are the standards used by commercial
broadcasts, they are by no means the only frequency
at which CRT's can operate. In fact, many CRT
displays use a horizontal scan that is around 18 KHz
to 22 KHz and some even exceed 30 KHz. As the

207780-001

APPLICATIONS

horizontal frequency increases, the number of hori­
zontallines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu­
tion is needed on high density graphic displays and
on special text editing terminals that display many

. lines of text on'the CRT. '

Although many CRrs operate at non-standard
horizontal frequencies, very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since, in the United States,
the power lil1e frequency happens to be 60 Hz, there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz. .

By dividing the 63.5 microsecond horizontal line
rate into the 16.67 millisecond verticwl rate, it is
found that there are 262.5 horizontal lines per
vertical frame. At first, the half line may seem a bit
odd, but actually it allows-the resolution on the CRT
to be effectively doubled. This is done by inserting a
second set of horizontal lines between the first set
(interlacing). In an interlaced system the line sets are
not generated simultaneously. In a 60 Hz system,
first all of the even-numbered lines are scanned: 0, 2,
4, ... 524. Then all the odd-numbered lines: 1,3,5, ...
525. Each set of lines usually contains different data
(Fig. 2.2).

---------..: -- ' -- ----.............. - --------......... - ---- ---- ---------------------= ----- -------- -------.

--- EVEN FIELD
--ODDFIELD

-

RETRACE LINES
NOT SHOWN

Figure 2-2. Interlaced Scan

Although interlacing provides, greater resolution, it
also has some distinct disadvantages. First of all, the
circuitry needed to generate the extra half horizontal
line per frame is quite complex when compared to a
noninterlaced design, which requires an integer
number of horizontal lines per' frame. Next, the
overall vertical refresh rate is half that of a noninter­
laced display. As a result, flicker may result when the
CRT uses high speed phosphors. To keep things as
simple as possible, this design uses the non interlaced
approach.

The first thing any CRT controller must do is
generate pulses that define the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro­
priate numbers. On most raster scan CRT's the
horizontal frequency is very forgiving and can vary
by around 500 Hz or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequerlcy between 15250 Hz and 16250 Hz, or in
other words, there can be 256 to 270 horizontal lines
per vertical frame. But, as mentioned earlier, the
vertical frequency should be 60 Hz to insure stability ..

The characters that are viewed on the screen are
formed by a series of dots that are shifted out of the
controller while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the dot clock and character clock.
The character clock is equal to the dot c1o'ck divided
by the number of dots used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOT CLOCK (Hz) -:: (N + R) ,* D * \L * F '
where N is the number of displayed characters per
row,
R is the number of retrace character time
increments,
D is the number of dots per character,
L is the number of horizonfallines per frame and
F is the frame rate in Hz.

In this design N = 80, R = 20, D = 7, L = 270, and
F = 60 Hz. If the numbers are plugged in, the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the left and right hand sides of the CRT. In this
particular design R = 20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer'wants to place
b~tween characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find
that D = 7.'

7-44 207780-001

APPLICATIONS

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V

where, H is the number of horizontal lines per
character,
Z is the number of character lines per frame and
V is the number of horizontal lines during vertical

retrace. In this design, a 5 X 7 dot matrix is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the
equation, L is found to be equal to 270 lines per
frame.

The designer should be cautioned that these numbers

08(1.7

DRa~----,

OACK

IRa

BLOCK DIAGRAM

CHARACTER
COUNTER

CClK

CCO·6

LCO_3

LAO_'
HRTe
VRle
HLGT
RVV
LTEN
VSP

'-,-____ .."...1---.' GPAQ.l

LPEN

are interrelated and that to guarantee proper opera­
tion on a standard raster scan CRT, L should be
between 256 and 270. If L does not lie within these
bounds the horizontal circuits of the CRT may not
be able to lock onto the driving signal and the image
will roll' horizontally. The chosen L of 270 yields a
horizontal frequency of 16,200 KHz on a 60 Hz
frame and this number is within the 500 Hz tolerance
mentioned earlier.

The V number is chosen to match the CRT in much
the same manner'as the R number mentioned earlier.
When the electron beam reaches the bottom right
corner of the screen it must retrace vertically to the­
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync times at 61.5 microseconds yield a total of
1234.5 microseconds, which is enough time to allow
the beam to return to the top of the screen.

The choices of Hand Z largely relate to system
design preference. As H increases, the character size
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

PIN CONFIGURATION

LC3 Vcc

LC, LAO

LC, LA,

LCO LlEN

DRa RVV

OACK VSP

HRTe GPAl

VRTe GPAo

1m HLqT

WR IRa

LPEN CCLK

DBO CC.

DB, CC.

DB, CC,

DB3 CC3

DB, CC,

DB. CC,

DSO CCo

DB, os
GND AO

Figure 3-1. 8275 Block Diagram/Pin Configuration

7-45 207780-001

APPLICATIONS

3. 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275, having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters from display memory to the 8275's
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6. External dot timing logic is then
used to transfer the parallel output data from the
character generator ROM serially to the video input
of the CRT. The chara,cter rows are displayed on the
CRT one line at a time. Line count outputs LCO-LC3
are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in' Figure 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the I~Q output line. The
8275 interrupt output will normally be connected to
the interrupt input of the system central processor.

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine typically
re-initializes DMA controller parameters for the
next display refresh cycle, polls the system keyboard
controller, and/ or executes other appropriate func­
tions. A block diagram of a CRT system implemented
with the 8275 CRT Controller is provided in Figure
3.3. Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the begin­
ning of display operation. The 8275 has two types of
programming registers, the Command Registers
(CREG) and the Parameter Registers (PREG). It
also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence offrom 0
to 4 parameters, depending on the command. The
8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
.provides a number of user programmable display
format parameters. Display formats having from I
to 80 characters per row, I to 64 rows per screen, and
I to 16 horizontal lines per row are availabte.

In addition to transferring characters from memory

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character

--------~------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

First Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character ----------------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000.00 •• 000.00.000000000000080008008000.00.000.0

Second Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character ---------------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000800 •• 000.00.0000000000000.000.00.000.00.000.0
o.oooo.oo.oooO.OO.QOOOOOOOOOODO.OOO.OO.ooo.oo.ooo.o

Third Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character -----------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0
0.0000.00.0.00.00.0000000000000.000.00.000.00.000.0
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
0.0000.00.00.0.00.0000000000000.0.00008000800.0.080
o.OOOU.OO.OoO •• Oo.OOOOOOOOOOOOO.OO.OOO.OOO.OO.O.O.o
00 •••• 000.0000.00 ••••• 000000000.000.000 ••• 0000.0. DO

Seventh Line of a Character Row

Figure 3-2. 8275 Row Display

7-46

207780-001

APPLICATIONS

HOLD ORO
LCo-3 ~

8085A TRANSFER CHARACTER ,
MICRO- DECODE CCO-6 ~ GENERATOR HIGH

PROCESSOR HACK LOGIC ~ ROM SPEED 8275 DOT
CRT V TIMING

CONTROLLER
LOGIC

CCLK AND
INTERFACE

VIDEO CONTROLS

;,. .. JJ
SVSTEMBUS

-'" ~ "" ~ '4 ,.
-

!:>- !:>- ". '" !:>-

8253-5 6251 PROGRAMI 8255A·5
COUNTERI USART

OISPLAV KEVBOARO

TIMER MEMORV CONTROLLER

tRJ
tt

COMMUNICATIONS KEVBOARO

CHANNEL

Figure 3-3. CRT System Block Diagram

to the CRT screen, the 8275 features cursor position
control. The cursor position may be programmed,
via X and Y cursor position registers, to any
character position on the display. The user may
select from four cursor formats. Blinking or non­
blinking underline and reverse video block cursors
are available.

3.2 CRT TIMING

The 8275 provides two timing outputs, HRTC and
VRTC, which are utilized in synchronizing CRT
horizontal and vertical oscillators to the 8275
refresh cycle. In addition, whenever HRTC or VRTC
is active, a third timing output, VSP (Video Sup­
press) is true, providing a blinking signal to the dot
timing logic. The dot timing logic will normally
inhibit the video output to the CRT during the time
when video suppress signal is true. An additional
timing output, L TEN (Light Enable) is used to
provide the ability to force the video output high
regardless of the state of VSP. This feature is used
by the 8275 to place a cursor on the screen and to
control attribute functions. Attributes will be
considered in the next section.

COMMAND

RESET

START
DISPLAY

STOP
DISPLAY

READ
LIGHT
PEN

LOAD
CURSOR

ENABLE
INTERRUPT

DISABLE
INTERRUPT

PRESET
COUNTERS

NO. OF
PARAMETER

BYTES

4

0

0

2

2

0

0

0

VIDEO SIGNAL

HORIZONTAL SYNC

TO CRT
VERTICAL SYNC

INTENSITY

I STATUS I

NOTES

Display format pa·
rameters required

DMA operation pa-
rameters included
in command

Cursor X,Y posi·
tion parameters re-
quired

Clears all internal
counters

The HLGT (Highlight) output allows an attribute
function to increase the CRT beam intensity to a
level greater than normal. The fifth timing signal,
RVV (Reverse Video) will, when enabled, cause the
system video output to be inverted.

Figure 3-4. 8275'8 Instruction Set

7-47

APPLICATIONS,

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE OUTPUTS
SYMBOL DESCRIPTION

CODE "CCCC" LA1 LAo VSP LTEN

Above Underline 0 0 .1 0

0000 Underline 1 0 0 0 I Top Left Corner
Below Underline 0 1 0 0
Above Underli"e 0 0 1 0

0001 Underline 1 1 0 0 I Top Right Corner
Below Underline 0 1 0 0
Above Underline 0 1 0 0 L 0010 Underline 1 0 0 0 Bottom Left Corner
Below Underline 0 0 1 0
Above Underl ine 0 1 0 0 --.J 0011 Underline 1 1 0 0 Bottom Right Corner
Below Underline 0 0 1 0
Above Underline 0 0 1 0

0100 Underline 0 0 0 1 -r- Top Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 0

-1 0101 Underline 1 1 0 0 Right Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 0

~ 0110 Underline 1 0 0 0 Left Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 ~ .-L 0111 Underline 0 0 0 1 Bottom Intersect
Below Underline 0 0 1 0
Above Underline 0 0 1 0

1000 Underline 0 0 0 1 --- Honzontal Line
Below Underline 0 0 1 0

,

Above Underl me 0 1 0 0

I 1001 r--------u,;derl ine 0 1 0 0 Vertical Lme
Below Up"erlme 0 1 0 0
Above underline 0 1 0 0 + 1010 Underline 0 0 0 1 Crossed Lmes
Below Underline 0 1 0 0
Above Underlme 0 0 0 0

1011 Underline 0 0 0 0 Not Recommended *
Below Underl ine 0 0 0 0
Above Underl ine 0 0 1 0

1100 Underlme 0 0 1 0 Special Codes
Below Under I me 0 0 1 0
Above Underline

1101 Underline Undefined Illegal
Below Underline I
Above Underline I

1110 Underline Undefined Illegal
Below Underl ine I
Above Underline I

1111 Underline Undefined Illegal
Below Underline I

'Character Attribute Code 1011 is not recommended for
normal operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate character will be generated.

Character Attribute Codes 1101, 1110, and 1111 are illegal.

Blinking is active when B = 1.

Highlight is active when H = 1.

Figure 3·5, Character Attributes

7·48 207780-001

APPLICATIONS

ABC D E F G H I J K L M
NOPORSTUV

1 2 3 4 5 6 7 8 9

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

ABC D E F G H I J K L M
N 0 P OR STU V

1 234 567 8 9

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

Figure 3-6. Field Attribute Examples

3.3 SPECIAL FUNCTIONS

VISUAL ATTRIBUTES-Visual attributes are
special codes which, when retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist, character attributes
and field attributes.

Character Attribute Codes: Character attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is .
accomplished by selectively activating the Line
Attribute outputs (LAO-LA I), the Video Suppres­
sion output (VSP), and the Light Enable output
(L TEN). The dot timing logic uses the~e signals to
generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highlight output (HGLT). Character attributes
were designed to produce the graphic symbols
shown in Figure 3.5.

Field Attribute Codes: The field attributes are
control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ­
ing, the character which precedes the next field
attribute code, or up to the end, of the frame.

There are six field attributes:

I. Blink - Characters following the code are
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32.

7-49

2. Highlight - Characters following the code are
caused to be highlighted by activating the
Highlight output (HGL T).

3. Reverse Video - Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV).

4. Underline - Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5. General Purpose - There are two additional
8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may bi! used to select colors or
\'Ierform other desired control functions.

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3.6. If the 8275 is programmed in the visible field
attribute mode, all field attributes will occupy a
position on the screen. They will appear as blanks
caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character: If the 8275 is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per display row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it and places the next character in the
proper FIFO. When a field attribute is placed in the
buffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also activated.

207780-001

APPLICATIONS

LIGHT PEN DETECTION - A light pen consists
fundamentally of a switch and light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster
sweep coincides with the light sensor position on the
display, the light pen output is input and the row and
character position coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor.

SPECIAL CODES - Four special codes may be
used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in display memory.

I. End OJ Row Code - Activates VSP'. VSP
remains active until the end of the line is
reached. While VSP is active, the screen is
blanked.

2. End OJ Row-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the row when it is written into the row buffer.
It affects the display in the same way as the End
of Row Code.

3. End OJ Screen Code - Activates VSP. VSP
remains active until the end of the frame is
reached.

4. End OJ Screen-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the frame when it is written into the row
buffer. It affects the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL­
The 8275 can be programmed to request single-byte
DMA transfers of DMA burst transfers of 2,4, or 8
characters per burst. The interval between bursts
is also programmable. This allows the user to tailor
the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND

4.1 DESIGN PHILOSOPHY

Since the cost of any CRT system is somewhat
proportional to parts count, arriving at a minimum
part count solution without sacrificing performance
has been the motivating force throughout this design
effort. To successfully design a CRT terminal and
keep the parts count to a minimum, a few things
became immediately apparent.

I. An 8085 should be used.
2. Address and data buffering should be eliminated.
3. Multi-pprt memory should be eliminated.

4. DMA should be eliminated.

Decision I is obvious, the 8085's on-board clock
generator, bus controller and vectored interrupts
greatly reduce the overall part count considerably.

Decision 2 is fairly obvious; if a circuit can be
designed so that loading on the data and address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption
of the design. Both decisions 3 and 4 require a basic
understanding of current CRT design concepts.

In any CRT design, extreme time conflicts are created
because all essential elements require access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the same time, the CRT controller needs to
access the memory to keep the raster scan display
refreshed. To resolve this conflict two common
techniques are employed, page buffering and line
buffering.

In the page buffering approach the entire screen
memory is isolated from the rest of the system. This
isolation is usually accomplished with three-state
buffers or two line to one line multiplexers. Of
course, whenever a character needs to be manipu­
lated the CPU must gain access to the buffered
memory and, again, possible contention between the
CPU and the CRT controller results. This contention
is usually resolved in one of two ways, (I) the CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times.

Approach I is the easiest to implement from a hard­
ware point of view, but if the CPU always has
priority the display may temporarily blink or
"flicker" while the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is
not able to retrieve a character, so the display must
be blanked during this time. Aesethically, this
"flickering" is not desirable, so approach 2 is often
used.

7-50

The second approach eliminates the display flicker­
ing encountered in the previously mentioned tech­
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select lines and this line is
used to control the CPU's ready line. So, if the CPU
wants to use the buffered memory, its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU's overall
through put. '

Both page buffered approaches require a significant
amount of additional hardware .and for the most
part are not well suited for a minimum parts count
type of terminal This guides us to the'line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces a few new problems that must be
solved.

207780-001

APPLICATIONS

·OPTIONAL

VIDEO OUT

PAGE BUFFERING
TECHNIOUE

1----VIDEO OUT

LINE BUFFERING
TECHNIQUE

Figure 4-1. Line Buffering Technique

ClOCl' C\'CLE5 5"[') :-O"Jr'C£ STAm~EIIT

10 PU~rl P:U ,Sfl'lE A RlI:) FLR'J:;
10 f'IJ!"H H I SC,'/e H h!;~ L

l' PU?f1 0 ,:,p,'I[D W[' I:.
Ie l:<I H,0:)(!OK ,zt:rlo H A,ll.! L
10 DAr, " ,I'JT STI,,]: FOIUTEf: III H HlIlI L , ~(HG ,HIT STP.J' III [,0 ~\% E

-16 uu, ('I.'rl"'[' ,GC"T FOiUTEP,
6 5PHL ,PUi (IJ1=fElll Lit ~E IIlTO SF'

9 MV! fI,t1(,OH ,~::T Ill' ;1: ;oJ-, ~ in

10 ~rti ,::;U ~}ECJfil TRn~J5~ER BIT
41)1) 11 pnp ,C{I 40 f'fJF:) , 12 RPC ·SET ur fl , 13 SIn ,liO BiiO' 10 t;O"j:RL ~::j~,~

Ie I' LXI H,@>J.JflH ,:CFt:I HL
19 15 DAD SP '(I(!~ SlflCK
4 lG XCHIj .P!JT 51FrI' III H Rr:r· L
6 17 $/'Hl .fE$lO~;: Slf,1j
19 18 L~I H·18ST ,P"JI BOllOt! (Jj~FUN III H Hr:~ L , L' XCHG ,5~:ilP 1:::m:;lEFS , 20 MOIf e,D ,fur HIllH orr.H' IlIA
4 21 CtI? H ,:E.E IF SR:l;: AS II

7/1C 22 JHZ K?TK , IF HOT LEA'Y"t.
4 23 /1'JV A.E ,PU1 LOW or,~ER W fi
4 2' eM? L ,~,EE If Sf'li':E n; L

7/1~ 25 Jtl2 l:f'TK , IF tm U:.fiVE
W ,6 LXI H, TF'DIS . L~h[' H WD L WITH TOP OF SU'E.[N IiEH(iR','
Ie-' 27 KPn: SHLD ClJ!;flD ,F'JT Oflr:l: CUFHUT AD:,PESS
7 2S «VI A,1;:H ,(1:1 t:R;-J~ 8'HE
4 23 SIM J SCT WTErpUF T tt~Sf.'

Ie 30 f'OP ,Gcr, LI AlIV E
10 31 PUP H ,Gn H tJlD L
10 32 POP F'5~J ,eEl 11 RI,r. FUl':';-,

• 3; EI , EHR3L~ nnm·urTs
10 ?4 RIT .GO EilCf.'

TOTRL CLOD: CW:U:S = 6~,B U!(IF;-T CB;-E)

IoIITH A C 144 MHZ CRYSTFIL TOTAL TIME TO FIll

ROW SlffEF (If! 8275 = 650 * T-'5 = 211 25 M1CrO;ECQtIDS

Figure 4-2. Routine To Load 8275's Row Buffers

In the line buffered approach both the CPU and the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data, normal processing activity is halted and the
CRT controller accesses memory and displays the
data. Just how the CRT controller needs to acquire
the display data greatly affects the performance of
the overall system. Whether the CRT controller
needs to gain access to the main memory to acquire a
single character or a complete line of data depends
on the presence, or absence of a separate line or row
buffer.

If no row buffer is present the CRT controller must
go to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of the time. So much processor
inactivity greatly affects the overall system perform­
ance. I n fact termimils that use this approach are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

7-51

If a separate row buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only a bout 20% to
35% of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniques.

The 8275 CRT controller is ideal for implementing
the row buffer approach because the row buffer is
contained on the device itself. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row bufters allow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer approach enhances CPU performance even
further.

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer has
only been alluded to. In reality. a DMA technique is
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac­
ing them with a special interrupt-driven transfer.

The only real concern with using the 8275 in an
interrupt-driven transfer mode is speed. Eighty
characters must be loaded into the 8275 every 617
microseconds and the processor must also have time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed. This technique involves setting a special

207780-001

APPLICATIONS

transfer bit and executing a string of POP instruc­
tions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085's SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit must do two things: (I) turn
processor reads into DACK plus WR for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does not write into the 8275.
Conventional logic could have been used to imple­
ment this special function, but in this design a small
bipolar programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware.

Ad
Wr =D- Ce

TRANSFER
BIT

'''0

A12

M1
(FETCH
CYCLE)

A1

A2

A3

A.

BIPOLAR
PROM 8275 OACK

8275 Ad

8275 Wr

8275 CS

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a
DACK when no DMA controller exist in the
system. But the reader should be aware that all Intel
peripheral devices that have DMA lines actually use
DACK as a chip select for the data. So, when you
want to write a command or read status you assert
CS and WR or RD, but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn't "know" if a DMA control­
ler is in the circuit or not. In passing, it should be
mentioned that DACK and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This POP technique actually compares quite
favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to execute,
for a net transfer rate of one byte every five clock
cycles. The DMA controller takes four clock cycles
to transfer one byte but, some time is lost in
synchronizati'on. So the difference bet':Veen the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro­
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA.

5. CIRCUIT DESCRIPTION

5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commercial low-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware.

5.2 SYSTEM TARGET SPECIFICATIONS

The design specifications for the CR T terminal were
as follows: "

7-52

Display Format
• 80 characters per display row
• 25 display rows

Character Format
• 5 X 7 dot matrix character contained within a

7 X 10 matrix
• First and seventh columns blanked
• Ninth line cursor position
• Blinking underline cursor

Special Characters Recognized

• Control characters

• Line feed
• 'Carriage Return

• Backspace
• Form feed

Escape Sequences Recognized

• ESC, A, Cursor up
• ESC, B, Cursor down
• ESC, C, Cursor right
• ESC, D, Cursor left
• ESC, E, Clear screen
• ESC, H, Home cursor
• ESC, J, Erase to the end of the screen
• ESC, K, Erase the current line

Char.acters Displayed
• 96 ASCII alphanumeric characters
• Special control characters

207780-001

APPLICATIONS

CRT TERMINAL
SERIAL INPUT LINE

SYSTEM BUS

CHARACTER
GENERATOR ROM

Figure 5-1. CRT Terminal Block Diagram

Characters Transmitted
• 96 ASCII alphanumeric characters
• ASCII control characters

Program Memory

• 2K bytes of 2716 EPROM

Display / Buffer/Stack Memory
• 2K bytes 2114 static memory (4 packages)

Data Rate

• 9600 BAUD using 3MHz 8085

CRT Monitor
• Ball Bros TV-12, 12MHz B.W.

Keyboard
• Any standard un-encoded ASCII keyboard

Screen Refresh Rate

• 60 Hz

5.3 HARDWARE DISCRIPTION

A block diagram of the CRT terminal is shown in
Figure 5.1. The diagram shows only the essential
system features. A detailed schematic of the CRT is
contained in the Appendix. The terminal was
constructed on a simple 6". by 6" wire wrap board.
Because of the minimum bus loading no buffering of
any kind was needed (see Figure 5.2).

The "heart" of the CRT terminal is the 8085
microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, assembles the characters to be trans-

7-53

Worst case bus loading:

Data Bus: 8275
8255A-5
8253-5
8253-5
8251A

2x 2114
2716
8212

20pf
20pf
20pf
20pf
20pf
10pf
12pf
12pf

114pf max

Only As- A15 are important since Ao - A7 are
latched by the 8212

Address Bus: 4x 2114 20pf
2716 6pf

26pf max

This loading assures that all components will be
compatible with a 3MHz 8085 and that no wart
states will be required

Figure 5-2. Bus Loading

mitted, decodes the incoming characters and deter­
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A standard list of LSI peripheral devices surround
the 8085. The 8251A is used as the serial communi­
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a set of

207780-001

APPLICATIONS

switches, and' the 8253 is .used as a baud rate
generator and as a "horizontal pulse extender" for
the 8275.

The 8275 is used as the CRT controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contained in one 2716 EPROM
and the data and screen memory use four 2114-type
RAMs.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all of the addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also turns READs into
DACK's and WR's for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20, not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four ~ 114's could have been
replaced by two 8185's and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally, since both the 8185 and the
2716 have address latches no 8212 would be needed,
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERA TlON

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
the 8251 A to see iLa character has been sent to the
terminal. When a character has been received, the
8085 decodes the character and takes appropriate
action. While the 8085 is executing the above "fore­
ground" programs, it is being interrupted once every
617 microsej::onds by the 8275. This "background"
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was
used to rapidly move the contents of the display
RAM into the 8275's row buffers. The characters are
then synthronously transferred to the character code
outputs CCO-CC6, connected to the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LCO-LC2 from the 8275 are applied
to the character generator address lines\AO-A2. The
8275 displays ch;ifacter rows one line at a time. The
line count outputs are used to determine which line
of the character selected by A3-A8 will be displayed.
Following the transfer of the first liJ)e to the dot
timing logic, the line count is incremented and the
second line of the character row -is selected. This

process continues until the last line of the row is
transferred to the dot'timing logic.

The dot timing logic latches the output of the
character generator ROM into a parallel in,serial
out synchronous shift register. T.his shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

,-______ ~C~HA~RC~LO~C~K ________ ~ -,
lCO-lC2 t=~===:;j AO-A2 VIDEO

HORIZ DR .
. u

s

2708
CHARACTEFI
GENERATO

ROM

A3- AS

I
I

VERT OR

___________ J

Figure 5-3 Character Generator/Dot Timing Logic
Block Diagram

Table 5-1

PARAMETER RANGE

Vertical Blanking Time 900 Ilsec nominal

(VRTC)

yertical Drive Pulsewidth 300 Ilsec .;;; PW <: 1.4 ms

Horizontal Blanking Time 11 Ilsec nominal
(HRTC)

Horizontal Drive Pulsewidth 25 Ilsec .;;; PW .;;; 30 Ilsec

Horizontal Repetition Rate 15,750 ±500 pps

5.5 SYSTEM TlM(NG

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV-12 monitor are shown in Table
5.1. The data from Table 5.1, the 8275 specifications,
and the system target specifications are all that is
needed to calculate the system's timing.

7-54

LINE 1_ •••••••••••••••••••••
e()"0cr •• ('0(C •

e00f'nr •• r ,((

" " •• c

--- ." ~ ,'/ ,
.0" ",1 ••
• (' n r

UNDERLINE • " (, " ,'< •• c
POSITION __ • (' C r () ~ •• ,

..
(.. .

LINE 10 - ••••••••••••••••••••• --..- -.--.-
CHARACTER 1 CHARACTER 2 CHARACTER 3

Figure 5-4. Row Format

207780-001

APPLICATIONS

First, let's select and "match" a few numbers. From
our target specifications, we see that each character
is displayed on a 7 X 10 field, and is formed by a 5 X
7 dot matrix (Figure 5.4). The 8275 allows the
vertical retrace time to be only an integer multiple of

CHARACTER

COUNTER
STATE

.. 189:9;;;-----617no ------.1'1
H

DOT

CLOCK 44.9n5

QA I I
74$163 I

OUTPUTS 1.....:-----+1
COUNTER I I

CHAR~c~~~ ::1;L..-:----:.1
1
'1

CHARACTER ~ rl " 15:r.dMAX

CLOCK TO Ji"ill
8275 II II

~----T+:-----I

8275
CHARACTER

OUTPUT
(CCO·CC6)

FIRST CHARACTER

the horizontal character line. This means that the
total number of horizontal lines in a frame equals 10
times the number of character lines plus the vertical
retrace time, which is programmed to be either 1,2,
3, or 4 character lines. Twenty-five display lines

SECOND CHARACTER THIRD CHARACTER

SHIFT
REGISTER
OUTPUT
(74166)

FIRST CHARACTER VIDEO OUT SECOND CHARACTER VIDEO OUT

HRTe
(8275)

Figure 5-5. Dot Timing Logic

7-55

+V

VIDEO OUT ,.....----,

HORI~

ZONTAL
DRIVE

VERTICAL
DRIVE

CRT
MONITOR

207780-001

APPLICATIONS

require 250 horizontal lines. So, if we wish to have
a horizontal frequency in the neighborhood of
15,750 Hz we must choose either one or two
character lines for vertical retrace. To allow for a
little more margin at the top and bottom of the
screen, two character lines were chosen for vertical
retrace. This choke yields a net 250 + 20 = 270
horizontal lines per frame. So, assuming a 60 Hz
frame:

60 Hz * 270 = 16,200 Hz (horizontal frequency)

This value falls within our target specification of
15,750 Hz with a 500 Hz variation and also assures
timing compatibility with the Ball monitor since, 20
horizontal syncJimes yield a vertical retract time of:

61. 7 microseconds X 20 horizontal sync times =
1.2345 milliseconds

This number meets the nominal VR TC and vertical
drive pulse width time for the Ball monitor. A
horizontal frequency of 16,200 Hz implies a
1/ 16,200 = 61. 73 microsecond period.

It is now known that the terminal is using 250
horizontal lines to display data and 20 horizontal
lines to allow for vertical retrace and that the
horizontal frequency is 16,200 Hz. The next thing
that needs to be determined is how much time must

be allowed for horizontal retrace. Unfortunately,
this number depends almost entirely on the monitor
used. Usually, this number lies somewhere between
15 and 30 percent of the total horizontal line time,
which in this case is 1/16,200 Hz or 61.73
microseconds. Since in most designs a fixed number
of characters can be displayed on a horizontal line, it
is often useful to express retrace as a given number
of character times. In this design, 80 characters can
be displayed on a horizontal line and it was
empirically found that allowing 20 horizontal
character times for retrace gave the best results. So,
in reality; there are 100 character times in every
given horizontal line, 80 are used to display
characters and 20 are used to allow for retrace. It
should be noted that if too many character times are
used for retrace, less time will be left to display the
characters and the display will not "fill out" the
screen. Conversely, if not enough character times
are allowed for retrace, the display may "run ofP' the
screen.

One hundred character times per complete horizontal
line means that each character requires

61.73 microseconds /100 character times = 617.3
nanoseconds.

If we multiply the 20 horizontal retrace times by the

I I 1 "" 1 "" 1 1 """

SWM1'1"
MIHe
IB2751

VIDEO
OUTPUT

CHAR 80 I
I I

! I

Figure 5-6. CRT System Timing

7-56 207780-001

APPLICATIONS

617.3 nanoseconds needed for each character, we find

617.3 nanoseconds * 20 retrace times = 12.345
microseconds

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one-shot mode and was used to extend the horizontal
drive pulsewidth.

Now that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.

-Since each character is formed by placing 7 dots
along the horizontal.

DOT CLOCK PERIOD = 617.3 ns
(CHARACTER CLK PERIOD)/ 7 DOTS
DOT CLOCK PERIOD = 88.183 nanoseconds
DOT CLOCK FREQUENCY = l/PERIOD =
11.34 MHz

Figures 5.5 and 5.6 illustrate the basic dot timing
and the CRT system timing, respectively.

6. SYSTEM SOFTWARE

6.1 SOFTWARE OVERVIEW.

As mentioned earlier the software is structured on a
"foreground-background" basis. Two interrupt­
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDAT is used to move data from the memory
into the 8275's row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USART or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USART and
action will be taken on any data read out of the
USART.

When data has been entered in the terminal the
software first determines if the character received
was an escape, line feed, form feed, carriage return,
back space, or simply a printable character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn't no operation is
performed.

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure
6.2 is a flow chart of the basic software operations;
the program is listed in Appendix 6.8.

7-57

SWITCHED
CHANGED

EXIT

EXIT

Figure 6·1. Frame and Popdat Interrupt Routines

207780-001

APPLICATIPNS

LINE

YES

Figure 6-2. Basic Terminal Software

6.2 SYSTEM MEMORY ORGANIZATION

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFH are
used as system stack and temporary system storage.
2K bytes of PROM located at OOOOH through
07FFH contain the systems program.

6.3 MEMORY POINTERS AND SCROLLING

To calculate the location of a character on the
screen, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of the display must be
known, since scrolling on the 8275 is accomplished
simply by changing the pointer that loads the 8275's
row buffers from memory. So, if it is desired to
scroll the display up. or down all that must be
changed is one 16-bit memory pointer. This pointer
is entered into the system by the variable TOPAD
(TOP Address) and always defines the top line ofthe
display. Figure 6.4 details screen operation during
scrolling.

7-58

1 st Column 2nd Column ... '" 80th Column

ROW 1 0800H 0801 H 084FH
ROW2 0850H 0851 H 089FH
ROW3 08AOH 08A1H 08EFH
ROW4 08FOH 08F1H 093FH
ROW5 0940H 0941 H 098FH
ROW6 0990H 0991 H 090FH
ROW7 09EOH 09E1 H OA2FH
ROW8 OA30H OA31H OA7FH
ROW9 OA80H OA81H OACFH
ROW 10 OADOH OAD1 H OB1 FH
ROW 11 OB20H OB21 H OB6FH
ROW 12 OB70H OB71H OBBFH
ROW 13 OBCOH OBC1 H OCOFH
ROW 14 OC10H OC11H OC5FH
ROW 15 OC60H OC61 H OCAFH
ROW 16 OCBOH OCB1 H OCFFH
ROW 17 ODOOH OD01 H OD4FH
ROW 18 OD50H OD51H OD9FH
ROW 19 ODAOH ODA1H ODEFH
ROW 20 ODFOH ODF1 H OE3FH
ROW 21 OE40H OE41 H OE8FH
ROW 22 OE90H OE91 H OEDFH
ROW 23 OEEOH OEE1 H OF2FH
ROW 24 OF30H OF31H OF7FH
ROW 25 OF80H OF81 H OFCFH

Figure 6-3. Screen Display After Initialization

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate an
absolute memory address. The subroutine CALCU
is used whenever a location in the screen memory
must be altered.

6.4 SOFTWARE TIMING

One important question that must be asked. about
the terminal software is, "How fast does it run". This
is important because if the terminal is running at
9600 baud, it must be able to handle each received
character in 1.04 milliseconds. Figure 6.5 is a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
"worst case" execution times. This means that all
routines assume they must do the maximum amount
of data manipulation. For instance, the PUT routine
assumes that the character is being placed in the last
column and that a line feed must follow the placing
of the character on the screen.

How fast do the routines need to execute in order to
assure operation at 9600 baud? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt req'uests
in every character time (1042 microseconds) at 9600

207780-001

APPLICATIONS

ROW 1 0800H 0801H 084FH ROW2 0850H 0851 H 089FH
ROW2 0850H 0851H 089FH ROW3 08AOH 08A1H 08EFH
ROW3 08AOH 08A1H 08EFH ROW4 08FOH 08Fl H 093FH
ROW4 08FOH 08Fl H 093FH ROW5 0940H 0941H 098FH
ROW5 0940H 0941H 098FH ROW6 0990H 0991 H 090FH
ROW6 0990H 0991 H 090FH ROW7 09EOH 09El H OA2FH
ROW7 09EOH 09El H OA2FH ROW8 OA30H OA31H OA7FH
ROW8 OA30H OA31H OA7FH ROW9 OA80H OA81H OACFH
ROW9 OA80H OA81H OACFH ROW 10 OADOH OAD1H OB1FH
ROW 10 OADOH OAD1H OB1FH ROW 11 OB20H 0821 H OB6FH
ROW 11 OB20H OB21H OB6FH ROW 12 OB70H OB71 H OBBFH
ROW 12 OB70H OB71H OBBFH ROW 13 OBCOH OBC1H OCOFH
ROW 13 OBCOH OBC1H OCOFH ROW 14 OC10H OCllH OC5FH
ROW 14 OC10H OCllH OC5FH ROW 15 OC60H OC61 H OCAFH
ROW 15 OC60H OC61H OCAFH ROW 16 OCBOH OCB1H OCFFH
ROW 16 OCBOH OCB1H OCFFH ROW 17 ODOOH OD01H OD4FH
ROW 17 ODOOH OD01H OD4FH ROW 18 OD50H OD51H OD9FH
ROW 18 OD50H OD51H OD9FH ROW 19 ODAOH ODA1H ODEFH
ROW 19 ODAOH ODA1H ODEFH ROW 20 ODFOH ODF1H OE3FH
ROW 20 ODFOH ODFl H OE3FH ROW 21 OE40H OE41H OE8FH
ROW 21 OE40H OE41H OE8FH ROW 22 OE90H OE91H OEDFH
ROW 22 OE90H OE91H OEDFH ROW 23 OEEOH OEE1H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 OF30H OF31 H OF7FH
ROW 24 OF30H OF31 H OF7FH ROW 25 OF80H OF81H OFCFH
ROW 25 OF80H OF81 H OFCFH ROW 1 0800H 0801 H 084FH

After Initialization After 1 Scroll

ROW3 08AOH 08A1H 08EFH ROW4 08FOH 08F1H 093FH
ROW4 08FOH 08Fl H 093FH ROW 5 0940H 0941H 098FH
ROW5 0940H 0941H 098FH ROW6 0990H 0991 H 090FH
ROW 6 0990H 0991 H 090FH ROW7 09EOH 09El H OA2FH
ROW7 09EOH 09E1H OA2FH ROW8 OA30H OA31H OA7FH
ROW8 OA30H OA31H OA7FH ROW9 OA80H OA81H OACFH
ROW9 OA80H OA81H OACFH ROW 10 OADOH OAD1H OB1FH
ROW 10 OADOH OAD1H OB1FH ROW 11 OB20H OB21H OB6FH
ROW 11 OB20H OB21H OB6FH ROW 12 OB70H OB71H OBBFH
ROW 12 OB70H OB71H OBBFH ROW 13 OBCOH OBC1H OCOFH
ROW 13 OBCOH OBC1H OCOFH ROW 14 OC10H OC11H OC5FH
ROW 14 OC10H OC11H OC5FH ROW 15 OC60H OC61H OCAFH
RO'W 15 OC60H OC61H OCAFH ROW 16 OCBOH OCB1H OCFFH
ROW 16 OCBOH OCB1H OCFFH ROW 17 ODOOH OD01H OD4FH
ROW 17 ODOOH OD01H OD4FH ROW 18 OD50H OD51H OD9FH
ROW 18 OD50H OD51H OD9FH ROW 19 ODAOH ODA1H ODEFH
ROW 19 ODAOH ODA1H ODEFH ROW 20 ODFOH ODF1 H OE3FH
ROW 20 ODFOH ODF1H OE3FH ROW 21 OE40H OE41H OE8FH
ROW 21 OE40H OE41H OE8FH ROW 22 OE90H OE91H OEDFH
ROW 22 OE90H OE91H OEDFH ROW 23 OEEOH OEE1H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 OF30H OF31H OF7FH
ROW 24 OF30H OF31H OF7FH ROW 25 OF80H OF81 H .. : OFCFH
ROW 25 OF80H OF81 H OFCFH ROW 1 0800H 0801 H 084FH
ROW 1 0800H 0801 H 084FH ROW2 0850H 0851H 089FH
ROW2 0850H 0851 H 089FH ROW3 08AOH 08A1H 08EFH

After 2 Scrolls After 3 Scrolls

Figure 6-4. Screen Memory During Scrolling

7-59 207780-001

APPLICATIONS

baud. Each POPDAT interrupt executes in 411
microseconds maximum. This means that each
routine must execute in:

By adding up the times for any loop, it is clear that,
all routines meet this speed requirement, with the
exception of ESC J. This means that ifthe terminal
is operating at 9600 baud, at least one character time
must be inserted after an ESC J sequence. 1042 - 2 ... 211 = 620 microseconds -

(START)

I
INITIALIZE

211.25~s

iii
esc A esc B esc C
78.7~s 324~s 107~s

P011
53~s

I
CHREC

i i T i i
esc 0 esc E esc H esc J esc K
119~ 316~s 105~s 862~s 310~s

Figure 6-5. Timing Flowchart

7-60

1
LF

306~s

r
OUT
456

207780-001

l~ CLR

MD
11 STB

'3 O~

311

6.1~A~a.
o ~

~
ICc'To""""""""'

T
8

7m fa. 10K
36

=¥5"F

+5

LlN~
LOCAL 5,

-=
~~s~~~-.!

ORO 8275---'

IRO 8275---'

ALE
'1

'2

eLK out

RESET

SIO

RESET OUT

RST65

RST55

001
,

002
6

°Oa
B

8212
00,

10

lC2 Oils 15

0Da 11

001
19

DDa 21

018
22

Oil
20

016
lB

015
18

0',
9

013.L-

012~

O'J

.°0 12

'°1
13

ADZ 14

'°3
15

'0,
16

'°5
11

8085
.06 IB

'°1 19

A8 21

IC1 Ag 22

'10
23

All 24

'12 25

AI3 26

'"
27

'15
2B

RO
32

So 81

~~' ~,
7404

7400
IC4 7400

~ IC4
• IC4 -ADDRESS

DECODE " AD CS "
PROM '2

'3

82S123 lin
01

lC3 02

03

0,

°5

°8

°1
3h8 PROM

APPLICATIONS

r--
, - -

lC5

2716
Kcs

1 A • A • AO' • A DEOOOI ~030,050 BOICE .~
1 23' 5 B 11 f 232 21211 9 10 11131415 18 1 8

1

I
CE 2716 47.
Cil2114 HIGH 47.
CS 2114 LOW 47.

8275 WR

8275DACK

s;~ 8275 CS
8275 iii)

.~
47'

'7' +5 +5
• 7K 41 •

Appendix 7.1
CRT TERMINAL SCHEMATICS

7-61 207780-001

I'
I'

"

i~
i'l
1,1

I~
I~

APPLICATIONS

IC6 IC7

CS
2114

~ CS
2114

At A6 AS A4 Aa AZ Al AO AS AgIO,IOZI03104WE At A6 AS A4 Aa A2 Al AO AS Ag IO,IQ210aI04WE

171 23 'I' ' 5 16 1

I
1

L-.-l!'

n. L--.1'l

~ 47'

H +5 22

23

LJ

51' 1312, 0 1112 3 , 171615
11
1

-

~' 7404

87 , 5 4 3 2 I

00 III 02 03 04 05 Os 07 21

'0191 CSp.-'

" 181 B253

IC 20
~PG21C14 GATE 0

GATE 2 OUT 0 ~PG2ICll 9
elK 0 ~PG21C10

iiii

Viii OUT 2 17

eLK 2 '

.'8
TO IC10

BOBS CLK - 2

1615 14 13 2 11 0

ICB IC9

Lc CS
2114

-C CS 2114 \

At A6 AS A4 Aa AZ AI AO AS Agl0,I0210a104 WE At A6 A5 A4 Aa AZAJAO AS AglD,IOZIG:J1D4WE

171 23 , 17 16 5 16 I 514 1312 , 0 171 2 3 '1'1'15 1615

11 11
1 1

-

-

,

t' 7404

27 28 1256 78
DO 0, 02 0304 Os 06 11711

-E CIO CS 0-
~RO B251/1

10 WR IC19
TXO .!.L-... SERIAL OUT

TO RESET OUT ~ RESET RXQ .:....- SERIAL IN
BOBS

9
G

7-62

nc
RiC

t
TO CLK OUT

ON BOBS

14 13 12 0

-

"

207780-001

Ao SHEET 1

A1 SHEET 1

o o SHEET 1

01 SHEET 1

2 SHEET 1 o
o
o
o
o
o
if""

ViI

3 SHEET 1

4 SHEET 1

5 SHEET 1

6 SHEET 1

7 SHEET 1

o SHEET 1

R SHEET 1

VCC

~~
~;

~~
~(

~~
-= BAUD RATE SENSE

SWITCHES AND
LINE-LOCAL

SWITCH

APPLICATIONS

21 28 29 30 31 32 33 34

01 06 05 04 03 02 °1 00
Wii 36

iiii 5

Cs 6

14 PCO AO
9

15 PC1 Al
8

16 PC2 IC17 35

17 PC3 8255A-5 PBO 18

13 PC4 P81
19

12 PC5 PBZ 20

II PC6 PB3
21

10 PCI PB4
2Z

, PB5
23

VCC1! PB6
24

~ PBI

PAO PAl PA2 PA3 PA4 PAS PA6 PAl

4~ 3~ 2~ + 40~ 39~38~ 31 ~
, SLO SL I SLZ SL3 SL4 SL'5 SL6 SL 7

KEYBOARD
RETURN LINES

Appendix 7.1

2S

CRT TERMINAL SCHEMATICS

7-63

TO 05 IC 3

•

KEYBOARD
SCAN LINES

TO AESET OUT 8085

ALO

ALI

ALZ

AL3

AL4

ALS

AL6

ALI

10 K"

VCC

207780-001

APPLICATIONS

11.34 MHz
XTAL 10pF

DI I +5

33011 33011

P T IC18

(4)
171 1101 0 6

7404 7404 -=
DOTOSC

7410

DOT CLOCK

IC 10 7474

10
11 ClK PRESET

0
_12

19 18 17 16 15 14 13 12 IC15 7 IC 16

21 07 06 05 04 03 02 01 Do 29
22 A9 00 9 14 H ClK

AD CC6

CC5 28 23 A8 01 10 12 G
15

lOAD

TO IC3 07 RO CC4 27 I A7 02 11 II F

CC3 26 2 A6 03
13 10 E

TO IC3 03 WR CC2 25 3 A5 2716 04 14 74166

CCI 24 4 A4 05 15 4 C TO CCLK
8'75

TO IC3 06 22 CS CCo 23 5 A3 06 16 3 8
8275
IC 13 l2 2 6 A2 07 17 2 A TO CLKO

8253 PG 1
TO IC3 04 6 OACK LI 3 7 AI

5 ORO
lO 4 8 AD

TO ICI RST 65 OH
13

31 IRO
HRTC 7 TO GATE 0

TO ICI RST 55
VRTC 8

8253 PG 1 +5

TO ILIO PIN 5 30 CClK
LTEN 37 1K

VSP 35
VERTICAL DRIVE

IC13 +5'

1K

VIDEO OUT
/

+5
7410

74175 7404
1K

OUTO IC14 HORIZONTAL
8253 PG 1 CRT TERMINAL (5) (6) DRIVE

IC 11

207780-001
7-64

APPLICATIONS

Appendix 7.2
KEYBOARD INTERFACE

The keyboard used in this design was a simple
unencoded ASCII keyboard. In order to keep the
cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel I/O device.

When the system is initialized the contents of the
eight keyboard RAM locations are set to zero. Once
every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non­
zero value of one of the keyboard RAM locations is
found to be the same as the corresponding current
switch matrix, a valid key push is registered and

SPACE BAR

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
milliseconds is provided.

Figure 7.2A shows the actual physical layout of the
keyboard and Figure 7.2B shows how the individual
keys were encoded. On Figure 7 .2B the scan lines are
the numbers on the bottom of each key position and
the return lines are the numbers at the top of each
key position. The shift, control, and caps lock key
were brought in through separate lines of port C of
the 8255. Figure 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together if two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in. Figure 7.4.

/

Figure 7-2A. Keyboard Layout

TOP NUMBER = RETURN LINE

BOTTOM NUMBER = SCAN LINE

Figure 7-2B. ,Keyboard Encoding

7-65 207780-001

BIT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

NOTE

APPLICATIONS

Appendix 7.3
ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL DISPLAYABLE ESCAPE

CHARACTERS CHARACTER SEQUENCE

000 001 010 0 11 100
101 110 111 010 0 11 100

101

@

NUL OLE SP
'"

@ P P

A DCI Q t SOH A Q A Q A

B R

+ 5TX DC2 2 B R B R B

C -ETX OC3 # 3 C 5 C S C

D T
EOT OC4 $ 4 D T D T - D

u
ENQ NAK % 5 E U E U CLR

v
ACK SYN & 6 F V F V

:::::::~~@::~::;:. w
ETB G W G W

:::::;·::::~~:::~·;t::: x
CAN a H x H X HOME H

Y
HT EM 9 Y Y

;:;: .::::::::.:::a:::::: z
::.:.:<Jf:::::::::::::: sua z z E05

K ::~~Mit: VT + K K EL

FF FS
/

< L L

:::::::i::¢.~:::::j:::: GS M M

N A
50 RS > N i\ N

0
Sl us 0 0

Shaded blocks - functions terminal will react to Others can bp qent'raled but are Iqnored up on recclfJt

7-66

110 111

207780-001

APPLICATIONS

SCAN LINES

o 2 3 4 5

Figure 7-3. Keyboard Matrix

Appendix 7.4
PROM DECODING

As stated earlier, all of the logic necessary to convert
the 8275 into a non-DMA type of device was
performed by a single small bipolar prom. Besides
turning certain processor READS into DACKS and
WRITES for the 8275, this 32 by 8 prom decoded
addresses for the system ram, rom, as well as for the
8255 parallel I/O port.

6 7
+5

10K

10K

10K

10K

10K

10K

10K

10K

SCAN LINES

10k
Any bipolar prom that has a by eight configuration
could function in this application. This particular
device was chosen simply because it is the only "by
eight" prom available in a 16 pin package. The
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in Figure 7.6. Note
that when a fetch cycle (M I) is not being performed,
the state of the SOD line is the only thing that
determines if memory reads will be written into the
8275's row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

----------+---L-------~~L-----~~5V

Also note that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

7-67

RETURN LINES

10k
__________ +-__ L-______ ~-L-----"I~ 5V

Figure 7-4. Isolating Scan Lines With Diodes

207780-001

APPLICATIONS

(Rd' Wr) • A13 Appendix 7.5
CHARACTER GENERATOR

ENABLE
As previously mentioned, the character generator

~o CE2716
used in this terminal is a 2716 or 2758 EPROM. A
I K by 8 device is sufficient since a 128 character 5 by

SOD Ao 01 CE 2114 7 dot matrix only requires 8K of memory. Any
(8085) 0800H·OBFFH

"standard" or custom character generator could
A10 A1 02 CE 2114 have been used.
(8085) OCOOH·OFFFH

The three low-order line count outputs (LCO-LC2)
A11 A2 03 Wi from the 8275 are connected to the three low-order
(8085) 8275 address lines of the character generator and the

A12 A3 04 OACK
seven character generator outputs (CCO-CC6) are

(8085) 8275
connected to A3-A9 of the character generator. The
output from the character generator is loaded into a

M1 ~ D5 cs shift register and the serial output from the shift
(8085) 8255 register is the video output of the terminal.

M1=so:s1 06 cs Now, let's assume that the letter "E" is to be
8275 displayed. The ASCII code for "E" is 45H. So, 45H

VCC VCC is presented to address lines A2-A9 of the character
07 AD

GNO GNO 8275 generator. The scan lines will now count each line
from zero to seven to "form" the character as shown

Figure 7-5. Bipolar Prom (825123) Connection
in Fig. 7.7. This same procedure is used to form all
128 possible characters.

It should be obvious that "custom" character fonts

I~ I~ I~ I~ a:
could be made just by changing the bit patterns in

;;: I ..J the character generator PROM. For reference,
N 0 'C

U') i!? U') i!? i!? " " ~ Appendix 7.6 contains a HEX dump of the U')

:i :;: :;: :;: 0 '" '" '" N N
({) '" '" '" '" '" '" '" charaater generator used in this terminal.

A4 A3 A2 A1 AO D7 D6 D5 D4 D3 D2 D1 DO

0 O· 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1 1 0
0 0 O· 1 1 1 1 1 1 1 1 1 0 45H = 01000101
0 0 1 0 0 1 1 1 1 1 1 0 1

Address to Prom = 01000101 SL2 SL 1 SLO 0 0 1 0 1 1 1 1 1 1 1 0 1
0 0 1 1 0 1 1 1 1 1 0 1 1 = 228H - 22FH
0 0 1 1 1 1 1 1 1 1 0 1 1
0 1 0 0 0 1 0 1 1 0 1 1 1 Depending on state of Scan
0 1 0 0 1 1 0 1 1 0 1 1 1 lines.
0 1 0 1 0 a 0 1 1 1 1 1 1
0 1 0 1 1 0 a 1 1 1 1 1 1
a 1 1 a a 1 1 a 1 1 1 1 1 Character generator output
a 1 1 a 1 1 1 a 1 1 1 1 1
a 1 1 1 a 1 1 a 1 1 1 1 1 Rom Address Rom Hex Output Bit Output* a 1 1 1 1 1 1 a 1 1 1 1 1
1 a a a a 1 1 1 1 1 1 1 a 228H 3E o 1 2 3 4 5 6 7

1 a a a 1 1 1 1 a a 1 1 a 229H 02
1 a a 1 a 1 1 1 1 1 1 1 a 22AH 02 1 0 a 1 1 1 1 1 a a 1 1 a
1 a 1 a 0 1 1 1 1 1 1 0 1 22BH OE
1 0 1 0 1 1 1 1 0 a 1 a 1 22CH 02
1 0 1 1 a 1 1 1 1 1 a 1 1 22DH 02 1 a 1 1 1 1 1 1 a 0 a 1 1
1 1 0 a a 1 a 1 1 a 1 1 1 22EH 3E
1 1 a a 1 1 a 1 1 0 1 1 1 22FH 00
1 1 a 1 a a a 1 1 1. 1 1 1
1 1 a 1 1 a a 1 1 1 1 1 1

Bits 0, 6 and 7 are not used. 1 1 1 a a 1 1 0 1 1 1 1 1
1 1 1 a 1 1 1 a 1 1 1 1 1
1 1 1 1 a 1 1 a 1 1 ' 1 1 1 * note bit output is backward from convention,
1 1 1 1 1 1 1 a 1 1 1 1 1

Figure 7-6. Truth Table Bi"olar Prom Figure 7-7. Character Generation

7-68 207780-001

I,

APPLICATIONS
I

Appendix 7.6
HEX DUMP OF CHARACTER GENERATOR

7-69 207780-001

Appendix 7.7
COMPOSITE VIDEO

APPLICATIONS

. In this design, it was assumed that the monitor
required a separate horizontal drive, vertical drive,
and video input. However, many monitors require a
composite video signal. The schematic shown in
Figure 7.8 illustrates how to generate a composite
video signal from the output of the 8275.

HATC

The dual one-shots are used to provide a small delay
and the proper horizon.tal and vertical pulse to the
composite video monitor. The delay introduced in
the vertical and horizontal timing ,is used to "center"
the display. VRI and V,R2 control the amount of
delay. IC3 is used tomix the vertical and horizontal
retrace and Q I along with the R I, R2, and R3 mix
the video and the retrace signal and provide the
proper DC levels.

7486

VIDEO >---~fV\r--I

15011

Appendix 7.8
SOFTWARE LISTINGS

Figure 7-8, Composite Video

ISIS-II 8080/8085 MACRO ASSBMBLER, X108

LOC 03J

1801il
181ill
1802
181il3
AIilIilI
A01il1il
61il1il1il
61)1il1
601il2
61il1il3
11il1il1
11illilll
141il1
1il81il1il
IilF81il
IilFD(!
1il1il18
IilIilSlil
IilFE0

Iillillill! F3
1il1il1il1 3lEIillilF
1il1il1il4 211il1il08
1il1il1il7 22E31ilE'
IilIilIilA 22E80F
IilIilIilD 3EIil0
IilIilIilF 32E10F
1il1il12 32E2IilF
1il015 32EBIilF
1il1il18 32E71ilF
Iillil1B 32EAIilF

SEQ
1 $1'10005
2
3
4
5
6
7
8
9

10 PORTA
11 PORTS
12 PORTe
13 CNWD55
14 USTF
15 US'ID
16 CNTIil
17 CN'rl
18 CNT2
19 CN'l'It
20 'CRTS
21 CRTIIt
22 INT75
23 TPOIS
24 B'IDIS
25 LAST
26 ClRBOr
27 LOOl'H
28 STPl'R
29
31il
31
32
33
34
35
36
37
38
39
41il
41
42
43

SOURCE STATEMENr

MACROFlLE
;NO Il4A 8275 SOF'lWARE ALL I/O IS "IF>1CRY MAPPED
,SYSTEM ROM 1il01illilH TO 1il7FFH
,SYSTEM RAM 1il8008 TO IilFFF8
;8275 WRITE 11il1il1il8 TO 13FF8
;8275 READ 1401il8 TO 17FF8
,8255 READ/WRITE 1801il8 TO 1FFF
,8253 E~~tED BY A14
'8251 ENABLED BY A15 EQU 18008 ,8255 PORT A ADDRESS
EOO 18018 ,8255 PORT B ADIRESS
EOO 1802H . ,8255 PORT C ADDRESS

~ 1803H· ,8255 CONmOL PORT ADCRESS
1ilA001H ;8251 FLACE .

E QJA0008 ,8251 DATA
E 60008 ·8253 COUNTER 0
E 601il18 i8253 C~ER 1
E 6002H ,8253 c~rER 2
E 6003H ,8253 MODE WCRD

1001H ,8275 CONrROL ADDRESS
1000H ,8275 MODE ADDRESS
1401H ;8275 IN'rERRUPl' CLEAR
0800H ,TOP OF DISPLAY AA"I
IilF808 'Borro4 OF DISPLAY RA"I
IilFOOH iFIRST BYTE AFTER DISPLAY
18H 'BorI'CM Y ClRSOR
1il0S1ilH ; LENGl'H OF ClIIE LINE
0FE0H ,LOCATION OF STJlCK POIN'fER

: START PROORA"I '
;ALL ~RIABLES ARE INITIALIZED BEFORE ANYrHING ELSE

hI ,DISABLE INTERRUPTS
LXI SP STPl'R ;LOAD STACK POIN'fER
LXI 8 TPDIS ,LOAD H&L WITH, TOP OF DISPLAY
S8LO roPAO ,SET '!'OP = TOP OF DISPLAY
SHLO ClRAD ,STORE THE CURRENT ADCRESS
MVI Ar.!,!IIH ;ZERO A
STA CuxSY ,ZERO CURSOR Y POIN'1'ER
STA CURSX ,ZERO CURSOR X POIN'rER
STA KBCHR ,ZERO KBD CHARACTER
STA USCHR ;ZERO USAR'r CHAR BUFFER
STA KEYIJo'IN ,ZERO KEY DO.olN

7-70

VATC

COMPOSITE
VIDEO
OUT

001E 32E00F
0021 32EE0F
0024 C39801l

002C
0eJ2C C35701

0034
0034 F5
0035 E5
0036 05
0037 210000
003A 39
003B m
003C 2AESeJF
993F F9
9040 3EC9
0042 30

0943 El
0044 El
0045 El
9046 El
0047 El
0048 El
0049 El
094A El
004B El
904C El
0040 E1
004E E1
004F El
0050 E1
0051 El
0052 E1
0053 E1
0eJ54 E1
0055 E1
0056 E1
0057 E1
0058 E1
01159 El
00SA £1
005B E1
005C E1
9350 £1
005E E1
0"5F El
0060 E1
0061 El
0062 E1
0963 E1
0064 E1
0065 E1
9066 £1
9067 E1
0068 E1
0069 E1
01l6A El
906B 0F
99Ge 30
9060 219900
0070 39
0071 EB
0972 F9
0073 2lD00F
0076 Etl
0077 7A
0978 BC
0079 C28401l

~~~g-~~ 
007E C28401l 
0081 210038 
0084 22E8eJF 
0eJ87 3E18 
0eJ89 39 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
1;1 POPDAT: 
62 
63 
54 
55 
6f) 
67 
58 
f)9 
70 
71 
72 
73 
74+ 
75+ 
76+ 
77+ 
78+ 
79+ 
80+ 
81+ 
82+ 
83+ 
84+ 
85+ 
86+ 
87+ 
88+ 
'89+ 
90+ 
91+ 
92+ 
93+ 
94+ 
95+ 
96+ 
97+ 
93+ 
99+ 

100+ 
101+ 
102+ 
103+ 
104+ 
105+ 
106+ 
107+ 
108+ 
109+ 
110+ 
111+ 
112+ 
113+ 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 KPTK: 
130 
131 

APPLICATIONS 

STA KEYOK ·ZERO KEYOK 
STA ESCP ; ZERO ESCAPE 
JMP LPKBD ;JU'IP AND SlIT EVERYTHING UP 

; THIS JU"IP VECTffi IS LOCATED AT THE RST 5.5 lDCATION 
;OF THE 8eJ85. IT IS USED 'ro READ THE 8275 STATUS AND 
;READ THE KEYBQlI.RD. THIS ROUTINE IS EXECUTED ONCE EVERY 
; 11).6'i7 i'lILLISECONLS. 

ORG 002CH 
JMP FAA'1E 
; 
;THIS ROU'rINE IS LOCATED AT THE RST 6.5 WCATION OF THE 
;8085 AND IS USED TO LOAD THE mTA TO BE DISPLAYED INTO 
;THE 8275. - THIS ROl1rINE IS EXECUTED ONCE EVERY 617 MICRCEEX:ONLS. 

ORG 34H 
PUSH PSW 
PUSH H 
PUSH 0 
~5 ~p0~0~H 
XCHG 
LHW 
SPHL 
:'WI 
SIM 

CURA[) 

A,0C0H 

REPT (LNGI'tV2) 
POP H 
ENl:M 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
PO'P 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
PoP 
POP 
RRC 
SI'" 
LXI 
DAD 
XCHG 
SPHL 
LXI 
XCHG 
MOV 
C"'P 
JNZ 
"'OV 
CMP 
JNZ 
LXI 
SHW 
MYI 
SI'" 

H 
H 
H 
H 
H 
H 
H 
H 
Ii 
H 
Ii 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
Ii 
Ii 
H 
H 
H 
H 
H 
H 
H 
H 
H 

H,~~~(!H 
SP 

H,LAST 

fi,D 
KPTK t,E 
KPTK 
H,TPDIS 
CLRAD 
A,18H 

7-71 

;SAVE A AND FLAGS 
;SAVE HAND L 
;SAVE D AND E 
;ZERO H AND L 
; pu'r STACK porN'rER IN H AND L 
; PU'f STACK IN D AND E 
;GET POINTER 
;Pl1f CURRENT LINE I~fO SP 
;SlIT MASK FOR S1M 

;SlIT UP A 
;GO BACK TO NOfMAL MODE 
;ZERO HL 
;ADD STACK 
;PUT STACK IN a AND L 
;RESTOOE STACK 
;PUT BOTTO'! DISPLAY IN HAND L 
·SWAP RroISTERS 
IPU'f HIGti ORDER IN A 
;SEE IF SAME AS H 
• IF Nor LEAVE 
; pu'r IJ:M ORDER IN A 
;SEB IF SA'1E AS L 
; IF Nor LEAVE 
;LOAD Ii AND L I>lITH 'rop OF SCREEN ''IEMCRY 
;pu'r BACK CURRENT AD[HESS 
;SlIT I<\ASK 
;OU'TPUT MASK 

207780-001 



APPLICATIONS 

00SA Dl 132 POP D ;GE:T D AND g 
008B E1 133 POP H ;GE:'Y HAND L 
008C F1 134 POP PSW ;GE:T A Ato.ID FIAGS 
008D FB 135 EI ;'YURN ON IN'rERRUPl'S 
008E C9 13'5 RET ;GO BACK 

137 ~'YHIS IS THE EXIT Rou'rINE FOO THE: FAA"!E IN'YERRUPY 138 
139 ~V! ;SET MASK 008F 3E18 140 8YPASS: A,18H 

0091 30 141 SI"! ; OU'YPUT THE "!ASK 
0092 C1 142 POP B ;GET B AND C 
0093 D1 143 POP D ;GED D II.."ID E 
0094 E1 144 POP H ;GET H .boND L 
0095 Fl 145 POP PS'N ;GE'r A ANO FLAGS 
009<; FB 146 gI . ; ENABLE: INTERRUPl'S 
0097 C9 147 RET ;GO BACK 

148 
~THIS CLEARS 'YHE AREA OF RAt'l 'I'HI\'r IS USED 149 

151<! ;FOR KEYBOARD DE80UNCE. 
151 

§TA ;ZERO SHIFT COOYROL 0098 32EF0F 152 LPKBD: SHCa-! 
009B 32F00F 153 S'YA RETLIN ;ZERO RE'I'lJHN LINE 
01<!9E 32Fll<!F 154 S'YA SCNLIN ;ZERO SCAN LINE 

155 ~THIS ROU'YINE CLEARS THE EN'YIRE SCREEN BY PU'rrING 156 
157 ;SPACE CODES. (20H) IN EVERY LOCATION ON THE SCREEN. 
158 

LXI ; PU'Y 'yap OF SCREEN IN HL 00A1 210008' 159 H,TPDIS 
00A4 0lDI<!0F 160 LXI B,IAST ; pu'r BOI'TO'l IN BC 
00A7 31i20 161 LCX)PF: "IV! "I,20H 'PU'Y SPACE IN '''' 
00A9 23 1Ii2 INX H i INCREMEN'r POIN'YER 
00AA 7C Hi3 ''10V A,H ;GE'r H 
00AB B8 164 C''''P B ;SEE IF ~'1E AS B 
00AC C2A700 165 JlIlZ LOOPF ;IF Nor LOOP AGboIN 
00AF 7D 16'5 ·'1OV A,L ;GET L 
0080 B9 167 CMP C ;SEE IF ~'1E AS C 
00B1 C2A700 Hi8 JNZ LCX)PF ; IF Nor LCX)P AGAIN 

169 
;8255 INITIALIZATION 170 

171 
,~VI 00B4 3ESB 172 A,8BH ;"I0VE 82 'j'j COm'ROL WOOD IN'ro A 

00B6 320318 173 STA CbMD55 ; PU'Y COfIrrROL WOOD INTO 825'j 
174 

~ 8251 175 INITIALIZATION 
171'i 

LxI 00B9 2101M 177 H,USTF ;GE'Y 8251 FIAG ADlRESS 
01<!BC 3680 178 MVI M,8~H ;DU>II"'Y S'rol~ 'rD 8251 
00BE 31'i00 179 "IV! M,00H ;RESET 8251 
00C'l 364'l 100 ,'\VI M,40H ;RESET 8251 
00C2 00 181 NOP ;WAIT 
00C3 36EA 182 !'\VI M,0EAH ;LOAD 8251 MODE WOOD 
00C5 3605 183 'IV! "!,05H ; LOAD 8251 COM"'IAND WOOD 

184 
;8253 185 INI'rIALIZATION 

18'5 
~I 00C7 3E32 187 A,32H 'CONTROL WOOD FOO 8253 

00C9 320360 188 STA CNYI~ ;PUT COfIrrROL WOOD IN'YO 8253 
00CC 3E:32 189 MVI A,32H ;LSB 8253 
00CE 320060 190 STA CNf0 ;PUT IT IN 823'j 
00D1 3E00 191 MVI A,00H ;MSB 82'j3 
00D3 32001i0 192 S'YA CNT0 ; pu'r IT IN 8253 
00D6 CDOC00 193 CALL STBAUD ;GO 00 BAUD RATE 
00D9 C3F900 194 J'IP IN75 ;GO 00 8275 

195 
;THIS ROU'YINE REAOO THE BAUD RATE SNITCHES FRO>! PORT C 196 

197 ;OF THE 8255 AND LOOKS UP THE NlMBERS NEEDED TO WAD 
198 ;THE 8253 'YO PROVIDE THE PROPER BAUD RATE. 
199 trY>. 000C 3A0218 200 STBAUD: PORTe ;READ BAUD RATE SNITCHES 

00DF Eli0F 201 ANI 0FH ;STHIP OFF 4 I1SB'S 
01<!E1 32EC0F 202 STA BAUD ;SAVE IT 
00E4 07 203 RLC ;MOVE BITS OVER ONE PLACE 
00E5 21C505 204 LXI H,BDLK ;GET BAUD RATE LOOK UP TABLE: 
00E8 1600 205 !'\VI D,00A ;ZERO D • 
00EA 5F 206 MOV E,A ;PU'f A IN E 
00ES 19 207 DAD D ;GET OFFSET 
00EC 11031i0 208 LXI D,CN'M ; POIN'Y DE 'rD 8253 
00EF 3ESS 209 MYI A,'lB5H ;GE'r COfIrrROL WOOD 
0'lFl 12 210 STAX D ;s'raRE IN 8253 , 
'l0F2 IB 211 DCX D ;POIN'r AT il2 COUN'rER 
00F3 7E 212 MOV ~,M ;GET LSB BAUD RATE 
00F4 12 213 STAX ;PU'r IT IN 8253 
00F5 23 214 INX H ;POIN'Y AT MSB BAUD RATE 
'l0F6 7E 215 MOV A,M ;GET MSB BAUD RA'rE 
0'lF7 12 216 STAX D ;PUT IT IN 8253 
00F8 C9 . 217 RET ;GO BACK 

218 

7-72 207780-001 



APPLICATIONS 

219 ,8275 INITIALIZATION 
22\!1 lxI \!I\!IF9 21 \!Ill \!I 221 IN75: H,CRTS 

\!I\!IFC 36\!10 222 ,'4VI ~,00H ,RESET AND STOP DISPLAY 
~\!IFE 2B 223 DCX ,HL=101'l0H 
\!I\!IFF 364F 224 MVI "'I,4FH ,SCREEN PARAMETER ByrE 1 
\!Il\!11 3558 225 MVI M,58H ,SCREEN PARAMETER ByrE 2 
\!Il\!13 3689 226 MVI M,89H ,SCREEN PARA.'4ETER SYrE 3 
\!Il\!15 3600 227 MVI M,\!IooH ,SCREEN PARAME'rER BYrE 4 
\!Il\!17 23 228 INX H ;HL=1001H 
\!Il\!18 CDB803 229 CALL LOCLR ; LMD THE CURSOR 
\!Il\!1B 36E\!I 230 I>lVI M,0E0H ; PRESE'r COUlifl'ERS 
010D 3623 231 I'\VI M,23H ;START DISPLAY 

232 
;'rHIS ROl1rINE REAOO BarH 'rHE KEYBOI'.RD AND THE USART 233 

234 ;AND TAKES PROPER ACTION DEPENDING ON HOW THE LINE-LOCAL 
235 ,SWITCH IS SET 
~:C36 

~VI \!I 1 \!IF 3E18 237 SETUP: A,18H ;SET IOJ\ASK 
\!Illl 3\!1 238 SIM ;LMD MASK· 
\!I 11 2 FB 239 EI ; ENABLE IN'rERRUPTS 

24\!1 
; READ THE USART 241 

242 
hIM ( 0113 20 243 RXRDY: ;GE'r LINE LOCAL 

\!I1l4 E68\!1 244 ANI 8t'lH ,IS IT ON OR OFF? 
\!I1l6 C221\!11 245 JNZ KEYINP ,LEAVE IF I'r IS ON 
1IJ1l9 3A\!IIA1!! 246 L!)l\ US'lF ;READ 8251 FLAG> 
1IJ1lC E611J2 247 ANI \!I2H ,LOOK AT RXRDY 
011E C25C\!Il 248 JNZ OK7 ,IF HAVE CHARAC'rER GO TO wOOK 
\!I121 3AEA0F 249 KEYINP: L!)l\ KEYlJIIN ,GET KEYBOI'.RD CHARAC'rER 
0124 E6811J 25t'l ANI 80H ; IS IT 'rHERE 
\!I126 C231\!11 251 ~Z KEYS ,IF KEY IS PJSHED LEAVE 
\!I129 3Et'l\!l 252 MVI A,IIJI'lH ;ZERO A 
0128 32EOOF 253 ST!\. KEYOK ,CLEAR KEYOK 
012E C313\!11 254 J"lP RXRDY 'WOp AGAIN 
\!I131 3AEDeF 255 KEYS: LD'\ KEYOK iWAS KEY OONN 
\!I134 4F 256 MOV ~B~HR ;SAVE A IN C 
\!I135 3AEBI'lF 257 L!)l\ ;GET KEYBOI'.RD CHARAC'rER 
\!I138 B9 258 CMP C ; IS IT 'rHE SAME AS t<EYOK 
\!I139 CA1301 259 JZ RXRDY ,IF SA.'IE LOOP AGAI"l 
013C 32ED0F 21'i0 s'rA KEYOK ; IF Nor SAVE IT 
\!I13F 32E70F 21i1 STA USCHR ;SAVE IT 
\!I142 20 21'i2 RIM ;GET LINE LOCAL 
1'l143 E680 263 ANI 80H 'WHICH WAY 
1IJ145 CMBl'll 264 JZ TRANS iLEAVE IF LINE 
\!I148 C34E02 265 JMP CHROC ,TIME TO 00 SO>1E WOOK 
\!I14B 3A\!I1A1!! 266 TRANS: LOA US'lF ,GE'r USART FLAG> 
\!I14E E6\!11 267 ANI \!I1H ,READY TO TRANSMIT? 
U5\!1 CMB\!Il 268 JZ TRANS ; LOOP IF Nor READY 
\!I153 3AE70F 269 . L!)l\ USCHR ;GE'r CHARACTER 
\!I155 32\!111JA\!! 27\!1 STA USTD ,pu'r IN USART 
1IJ159 C3\!1F\!Il 271 JMP SETUP ,LEAVE 
\!Il5C 3A\!I\!IA\!! 272 OK7: LOA US'ID ,READ USART 
\!I15F E67F 273 ANI \!I7FH ;STRIP ,'1S8 
\!I161 32E70F 274 STA USCHR ,P~l'r IT IN MEl>IORY 
1IJ164 C34E\!I2 275 JMP CHROC ; LEAVE 

276 
;THIS ROUTINE CHECKS THE BAUD RATE SNITCHES, RESE'IS THE 277 

278 ,SCREEN POIN'rERS A.IIID REAOO AIIID LOOKS UP THE KEYBOI'.RD. 
279 

f>uSH \!I167 F5 28\!1 FRAME: PSW ;SAVE A Il,ND FLAG> 
\!I168 E5 281 PUSH H ;SAVE HAND L 
\!I169 D5 282 PUSH D ;SAVE D A'ID E 
\!I16A C5 283 PUSH S ;SAVE B AND C 
\!I16B 3A\!1114 284 LD'\ INT75 ;READ 827<; TO CLEAR mrERRUPf 

285 ~SET UP THE pOIN'rERS 281'i 
287 

LHLD \!I16E 2AE30F 288 TOPAD ;WAD TOP IN H .Jl,ND·L 
\!I17l 22EBIIJF 289 SHLD CLRAD ,STORE TOP IN CURREfIrI' AD<RESS 

29\!1 
~SET UP BAUD RATE 291 

292 
LOA \!I174 3A\!I218 293 pORTe ; READ BAUD RATE SNITCHES 

\!Il77 E60F 294 ANI \!IFH ,STRIP OFF 4 'ISB'S 
\!I179 47 295 MOV ~~D ;SAVE IN S 
\!I17A 3AEC\!IF 296 LOA ;GET BAUD RATE 
\!Il7D B8 297 eMP B ;SEE IF SA.'4E AS 8 
\!I17E C4OC\!l\!l 298 CNZ STBAUD ; IF Nor SAME 00 SO>1ETHING 

299 
; READ KEYBQl).RD 3\!1\!1 

3 \!I 1 
~ ;SEE IIF A KEY IS IDNN \!I181 3AEA0F 3\!12 KEYlJIIN 

0184 E54\!1 3 \!I 3 ANI 4\!1H ;SET THE FLAGS 
\!I186 C2C211Jl 3t'l4 JNZ KYOOIoJN ;IF KEY IS OOWN JU'IP AROUND 
1IJ189 CD8F01 305 CALL Rll<B ;GO HEAD 'rnE KEYBOARD 
018C C38F0\!1 3\!16 JMP BYPASS ; LEAVE 

7-73 207780-001 



APPLICATIONS 

fil18F 21EFfilF 3fil7 RDKB: LXI ~~OO ;POIN'r HL AT KEYBQ\RO RN>t fil192 3Afil218 3fil8 Lo\ ;GET CCNIROL AND SHIFT fil195 77 3fil9 MOV M,A ;SAVE IN MDt~Y fil196 3EFE 31fil MIll ~FEH ;SET UP A fil198 32filfil18 311 LOOPK: STA TA 'Ol1l'PUT A fil19B 47 312 MOV ~TS ;SAVE A IN B fill9C 3Afil118 313 LIl\ ; READ KEY8Q\RD fil19F 2F 314 CMA ;INVERT A fillAfil B7 315 ORA A ;SET THE FLA<l> filIAl C2AFfill 316 . JNZ SAVKEY ;LEAVE IF KEY IS lXl'IN filIA4 78 317 I'IOV A,B ;GET SCAN LINE BACK fil1A5 fil7 318 RLC ; ROl'ATE IT OVER ONE 
fillM 0\98fil1 319 JC LOOPK ;00 IT AGAIN fil1A9 3Efilfil 32fil MVI A,filfilH ;ZERO A 
fillAB 32EAfilF 321 STA KEY~ ; SAVE KEY DOlIN filIAE C9 322 RET ; LEAVE fillAF 23 323 SAVKEY: INX II ;POINT AT RETURN LINE 1ll1Bfil 2F 324 CMA ;pu'r A BACK 
fil1B1 77 325 MOV ''',,11. ;SAVE REruRN LINE IN .,Dt~Y fillB2 23 326 INl( H ;POIN'r H AT SCAN LINE fillB3 71ll 327 I'IOV M,B ;SAVE SCAN LINE IN M&1~Y 
fillB4 3E4fil 328 "IV! A~4filH 'SET A 1ll1B6 32EAfilj,' 329 S'm K '{!)IfN ~SAVE KEY 000\'N fil1B9 C9 33fil RET ; LEAVE fillBA 3Efilfil 331 KYCHNG: MVI ~~~ ;ZERO fil fil1BC 32EAfilF 332 STA ;RESET KEY DOlIN fil1BF C38Ffillll 333 JMP BYPASS ; LEAVE fil1C2 21FlfilF 334 KYDO.\'N: LXI H,SCNLIN ;GET SCAN LINE fillC5 7E 335 MOV ~~TA • P'J'r SCAN LINE IN A 1ll1C6 32filfil18 336 S'm ;Ol1l'PUT SCAN LINE TO PORT A fil1C9 2B 337 OCX H ;POIN'r AT RE'ruRN LINE fillCA 3Afil1l8 338 Lo\ PORTS ;GET RETURN LINES fil1CD B6 339 ORA M ; ARE Tl£y 'rHE SA:"E? fillCE 2F 34fil CMA ;INVERT A fil1CF B7 341 ~ A ;SET FLA<l> fillDfil CABAfill 342 JZ KYCHNG . ;IF DIFFERENT KEY HAS CHANGED fil1D3 3AEAfilF 343 Lo\ KEYIJ.m 'GE'r KEY DOlIN fil1D6 E6fil1 344 ANI 1ll1H ;HAS 'rRIS BEEN OONE a~E? fillD8 C28Ffilfil 345 JNZ BYPASS ;LEAVE IF IT IW) fillDB 3Afil118 346 Lo\ PORTB ;GET RETURN LINE fillDE fil6FF 347 MVI B,filFFH ;GET READY TO ZERO B 1'J1EI'J 1'J4 348 UP: INR B 'ZERO B fil1E1 \'IF 349 RRC ;RorA'lE A 1ll1E2 0\E001 351ll JC UP ;00 IT AGAIIII I'JIE5 23 351 INX II ;POIN'r H AT SCAN LINES fil1E6 7E 352 MOIl AM ;GE'r SCAN LINES 1ll1E7 IllEFF 353 MVI C~I'JFFH 'GET READY TO LOOP 1ll1E9 OC· 354 UP1: INR C ; START C COU1I/'rING 1ll1EA IllF 355 RRC ;ROl'A'lE A 1ll1EB 0\E911l1 356 JC UP1 ,JU,,.P TO LOOP fil1EE 78 357 MOV A,B ;GE'r RE'l'URN LINES 1'J1EF fil7 358 RLC 

~=~~~~E fillFfil fil7 359 RLC 
fil1F1 fil7 36fil RLC ;MOVE OVER THREE TIMES fil1F281 361 ORA C ;OR SCAN AND RETJJRN LINES fil1F3 47 362 :10\01/ ~~ 'SAVE A 1111 B fil1F4 3Afil218 363 LJla. ;GET SHIFT CONTRQL fil1F7 E64fil 364 ANI 4filH ;IS CCNl'ROL SET fil1F9 4F 365 MOV C A 'SAVE A IN C fillFA JAEFfilF 356 Lo\ slCoo, iGE'r SHIFT Com'ROL fil1FD 57 367 ~oy, O~A ;SAVE A IN 0 fillFE E64fil 368 4 H ; STR I P CONTROL fil2filfil B1 369 ORA C 'SET BIT ' fil21ll1 CAJEIll2 37fil JZ CNT~ i IF SET LP.AVE fil2fil4 JAfil218 371 LJla. PORTC ; READ IT AGAIN fil2fil7 E62fil 372 ANI 211H ;STRIP SHIFT fil21ll94F 373 !oIOV C,A 'SAVE A fil2M 7,11. 374 MOV A,D ;GET SHIFT CONTROL fil2filB E62fil 375 ANI 2filH ;STRIP CONTROL fil2filD Bl 376 ORA C 'ARE THEY .'rnE SA"'E? fil2filE CA47fil2 377 JZ SHJ:WN ~ IF SE'r LEAVE ,fil211 58 378 SCR: MOV E,B i PlJ'r 'rA~ET IN E 
S~U ~rS~fil5 ~~~ MVI o fil0H 'ZERO 0 

LXI H;KYLKlJP ;GE'r LOOKUP TABLE 111217 19 381 DAD 0 ;GET OFFSE'r fil218 7E 382 MOV A,M ;GET CtMACTER 
fil219 47 383 !oIOV, 

~TC • pu'r CHARACTER IN B fil21A JAIll218 384 LJla. ;GE'r PORTC fil210 E61fil 385 ANI 19H ;STRIP BIT 921F CA2E92 386 JZ CAPLOC 'CAPS tDCI< 9222 78 387 MOV ~HR ;GET A BACK fil223 32EBfilF 388 STKEY: STA ;SAVE CHARACTER fil226 3EC1 389 MVI ~~ 'SET A 9228 32EAfilF 399 S'm iSAVE KEY DOlIN fil22B, C38Ffilll 391 JMP BYPASS ; LEAVE 392 
~ IF THE CAP LOCK BurTON IS PUSHED THIS ROl1l'INE SEES IF 393 

394 ;THE CEV\RACTER IS BmwEEN 61H AND 7AH AND IF IT IS THIS 

7-74 • 207780-001 



APPLICATIONS 

395 :ROOrINE ASSUMES THAT THE CHA.AACTER IS LCMER CASE ASCII 
396 :AND SUBTRACTS 2~H, WHICH CONVERTS THE CHARACTER TO 
397 :UPPER CASE ASCII 
39B 

~OV 022E 7B 399 CAPLOC: A,B :GET A BlICK 
022F FE60 400 CPI 60H :HCJN BIG IS IT? 
0231 ~2302 401 JC STKEY : LEAVE IF IT'S roo SI'lALL 
0234 FE7i3 402 CPI 7BH ; IS l'r 'roo BIG 
0236 D22302 403 JNC STKEY :LEAVE IF TOO BIG 
0239 D620 404 SUI 20H :AllJUST A 
023B C32302 405 JMP STKEY :STORE 'rHE KEY 

406 
;'rHE ROl1rINES SIlrW'I AND CNTI:WN SET BIT 6 AND 7 RESPECTIVLY 407 

408 ;IN 'rHE ACe. 
409 

~ :SET BIT 7 IN A 023E 3E80 410 CNTI:WN: ~,80H 
0240 B0 411 ORA 'OR IIITH CHARACTER 
0241 E6BF 412 ANI 0SFH ;MAKE SURE SHIFT IS NOT SET 
0243 47 413 MOV ~~ :pu'r IT BACK IN B 
0244 C31102 414 JMP :GO BlICK 
0247 3E40 415 SHI:WN: MVI A,40H :SET BIT 6 IN A 
0249 80 416 ORA B lOR WITH CHAAAC'l'ER 
024A 47 417 MOV B A ; pu'r IT BACK IN B 
024B C31102 418 JMP SCR ;GO BlICK 

419 
;THIS ROl1rINE CHECKS Fm ESCAPE CHARAC'rERS, LF, CR, 420 

421 ; FF, AND aACK SPACE 
422 loa. 024E 3AEE0F 423 CHKOC: ESCP ;ESCAPE SEW 

0251 ~'E80 424 CPI 80H ;SEE IF IT IS 
0253 CA7802 425 JZ ESS~ ;LEAVE IF IT IS 
0256 3AE7i1lF 426 LJll'. lEC ;GET CHARACTER 
0259 FEIlA 427 CPI 0AH ;LINE FEED 
025B CAF603 428 JZ LNFD ;CJ TO LINE FEED 
025E FEOC 429 CPI OCH ;FORI,! FEED 
0260 ClICA03 430 JZ FMFD ;00 'ro FCRM FEED 
0263 FE0D 431 CPI 000 'CR 
0265 CAAD03 432 JZ CGRT ;00 A CR 
0268 FE08 433 CPI 08H ;BlICK SPACE 
026A CAGE03 434 JZ LEFT 100 A BlICK SPACE 
026D FE18 435 CPI 18H ; ESCAPE 
026F CAA503 436 JZ ESKAP ;00 AN ESCAPE 
0272 B7 437 ORA A ; CLEAR CARRY 
0273 C6E0 438 ADI 0E0H ;SEE IF CHARAC'l'ER IS PRINrABLE 
0275 Jll'.7704 439 JC CHRPUT ; IF PRINTABLE 00 IT 
0278 C30F01 440 JMP SETUP ;GO BACK A"!D READ tEART AGAI"! 

441 
;THIS ROl1rINE RESETS THE ESCAPE lOCATION AND DECODES 442 

443 ;THE CHAAACTERS FOLLCJNING AN ESCAPE. THE CCM"1ANIb ,f\RE 
444 ;COMPATABLE WITH INTELS CREDIT 'TEXT EDITOR 
445 

~ 027B 3E00 446 ESSQ: ~~~H ;ZERO A 
027D 32EE0F 447 STA ; RESE'r ESCP 
0280 3AE7i1lF 448 LJll'. USCHR ;GET CHARAC'I'ER 
0283 FE42 449 CPI 42H ; DONN 
0285 CAAE02 450 JZ DONN 'MOVE CURSOR OONN 
0288 ~'E45 451 CPI 45H ;CLEAR SCREEN CflARlICTER 
02811. ClICF02 452 JZ CLEAR ;CLEAR THE SCREEN 
028D FE4A 453 CPI 4AH ;CLEAR REST OF SCREE'll . 
028F CAD502 454 JZ CLRST ;GO CLEAR THE REST OF THE SCREEN 
0292 FE4B 455 cpr 4BH ;CLEAR LINE CHARACTER 
0294 CA2703 456 JZ CLRLIN ·GO CLEAR A LINE 
0297 ~'E41 457 CPI 41H iCURsa~ UP CHARACTER 
0299 CA3303 458 JZ UPCUR 'MOVE CURSOO UP 
029C FE43 459 CPI 43H ;CURSCR RIGHT CH,I\RAC'l'ER 
029E CA4503 460 JZ RIGH'r ;MOVE CURSOR TO 'rHE RIGH'T 
02Al FE44 461 CPI 44H ;CURSCR LEFT CHARACTER 
0211.3 CA6E03 462 ,n LEFT ;MOVE CURSOH TO 'rHE w"r 
0211.6 FE48 463 CPI 48H : HO'I£, CURSOR CHARACTER 
0211.8 CA9703 4154 JZ HO'IE ; HO'IE THE: CURSOR 
0211.8 C30F01 465 JMP SETUP ; LEAVE 

41'i1'i 
;'rHIS ROl1rINE "lOVES THE CURSOR OONN ONE CflARl\CTER LINE 467 

41';8 
L~ 02AE 3AE10F 469 OO.olN: CURS'{ ;pu'r CURSOR Y IN II. 

0281 FE18 470 CPI CURBor ;SEE IF ON BO'rrOM OF SCREEN 
02B3 CA0F01 471 JZ SETUP ; LEAyE IF ON BO'rrOM 
0286 3C 472 INR A ;INCREMENT Y CURSOR 
02B7 32E10F 473 STA CURSY ;S!\VE !£W CURSOO 
02BA COO803 474 CALL LOCLR ; LOAD THE CURSOR 
02BD C~504 475 CALL CAU:U ;CAU:ULll.TE l\DffiESS 
02C0 7E 476 MOV ~F~H ;GET FIRST lOCATION OF THE LINE 
02Cl FEF0 477 CPI ;SEE: IF CLEAR SCREEN CHARACTER 
02C3 C20F01 478 JNZ SETUP ;LEAVE IF IT IS Nar 
02C6 22E50F 479 SHLD LOC80 ;SAVE BEGINNING OF THE LINE 
02C9 CDl504 480 CALL CLLINE ;CLEAR 'rnE LINE 
02CC C30F01 481 J'IP SETUP ;LE~VE 

482 

7-75 207780-001 



APPLICAtiONS 

483 ;THIS ROl1rINE CLEARS THe SCREEN. 
484 

tALL ;GO CLEAR THE SCREEN 112CF ClE4113 485 CLEAR: CLSCR 
112D2 C31!F1l1 486 JI'4P SImJP ;GO BACK 

487 ~THIS RoorINE ClEARS ALL LINES BENEATH, 'rHE LOCATION 488 
489 ;rF THE CURSOR. 
4911 

bALL ·CALCULATE ADrRESS 11205 Cll'5114 491 CI:AST: CALCU 
112D8 COCDII4 492 CALL ADX iADD X POSITION 
I12DB 1112114F 493 LXI B~F2'!H ;Pl1r SPACE AND LAST X IN B AND C 
1I2Oe JAE211F 494 LO&. C SX, -GET X ClRSCR , 
112E1 B8 495 CMP B' :SEE IF AT END OF LINE 
112E2 CMC92 495 JZ OVR1 iLEAVE IF X IS AT END OF LINE 
92E5 3C 497 LLP: INR A ;MOVE A OVER ONE X POSITION 
112E6 23 498 INX H I INCR~J:lIT I'4EMCRY POIN'rER 
92E7 71 499 "IJV M,C ; pu'r A SPACE IN MEMCRY 
112E8 BB 5119 CMP B ;SEE IF A = 4FH 
112E9 C2E592 591 JNZ LLP ; IF Nor tOOP AGAIN 
92EC 1I1DII0F 502 OVR1: LXI a' LAST -pu'r LAST LINE IN BC 
02EF 23 503 INX iPOIN'r HL TO LAS'r LINE 

=~! J~ 5114 I4CN ~,B ·GET B -
505 CMP iSAME AS H? 

112F2 C2FOO2 596 JNZ COtCL ;LEAVE IF Nor 
02F5 79 507 MOV _ ~,c ·GET C 
02F6 BD 538 Cl'4P ;SAME AS L? 
02F7 C2FOO2 509 JNZ COtCL ;LEAVE IF Nor 
02FA 2101111J8 5111 LXI H6TPDIS ;GET TOP OF DISPLAY 
112FD 3AE10~' 511 COtCL: LO&. C RSY ~1~TI'¥ ~,~ BarrcM 03011 FE18 512 CPI CURSor 
11302 CMFlll 513 JZ SImJP iLEAVE IF IT IS 
0305 3C 514 INR A I·MOVE rr lXMN ONE LINE 
11306 47 515 MOV B A iSAVE ClRSCR IN B FOR LATER 
113117 1159311 516 LXI D:LNG'rH ;pur LENGrH OF ONE LINE IN D 
1131!A 3l:iFII 517 CLOOP: MVI M,IIFIIH ;pu'r ECR IN MEMCRY 
930C 78 518 N(OV A,B ;GET CURSOR Y 
1131!D FE18 519 CPI CURSor ; ARE WE (}l THE 1301'TQ\\ 
11311F CMFlll 5211 JZ SE'NP ;LEAVE IF WE ARE 
11312 3C 521 INR A ·MOVE ClRSCR 00rlN ONE 
11313 19 522 MD D ;GET NE)fr LINE 
11314 47 523 ,'1OV B,A -SAVE A 
9315 7C 524 I'4OV AFH :ror H IN A 
11316 FEIIF 525 CPI II H jCOMPARE 'ro HIGH LAST 
S318 C2l!AS3 5215 JNZ CLOOP ;LEAVE IF IT IS NOr 
S~lB 7D 527 MOIl ~6~H ·pu'r L IN A 
II 1C FEOO 528 CPI iCO>1PARE 'ro IDII LAST 
1131E C21!A03 529 JNZ CtOOP -LEAVE IF IT IS NOr 
11321 211111118 53S LXI HUi;DIS ;pu'r 'fOP DISPLAY IN H .~ L 
11324 C31!A1I3 531 J.'IP C P ;LOOP AGAIN 

532 
hHIS ROU'rINE CLEARS 'rHE LINE THE CURSOR IS ON. 533 

534 
l:AtL 9327 C0&.5114 535 CI:ALIN: CALCU ;C~ULATE ADIllESS 

It32A 22E50F 536 SHLD LOe8'! ;S E H AND L TO CLEAR LINE 
B320 CDl594 537 CALL CLLINE ;CLEAR THE LINE 
113311 C311Fll1 538 JMP SImJP ;GO BACK 

539 
;THIS RoorINE 1'40VES THE CURSOR UP ONE LINE. 54B 

541 loa. B333 JAE1SF 542 UPCUR: CURSY ;GET Y C~SOR 
11336 FEB0 543 CPI 0BH ;IS IT Z 0 
B338 CMFB1 544 JZ SImJP ; IF IT IS LEAVE 

n~ EE11!F 
545 OCR A ; MOVE , ClRSOR UP 
546 STA CIllSY ;SAVE NEW CURSOR 

B33F CIlB8113 547 CALL LOCIll ; LOAD THE CURSOR 
B342 C311Fll1 548 JMP SETUP ; LEAVE 

549 
iTHIS ROllrINE MOVES THE CURSCR ONE LOCATION TO 'rHE RIGHT 559 

551 loa. B34~ 3AE2BF , 552 RIGH'f: CURSX -GET X CURSOR 
034 FE4F 553 CPI 4FH ;IS IT ALL THE WAY OVER? 
S34A C264B3 554 JtilZ NTOVER ;IF Nor JUI'4P AROUND 
S340 JAE1SF 555 LOA ClRSY -GET Y CURSCR 
113511 FE18 55<; CPI CURsor i SEE IF ON SCYrl'()'ot 
11352 CA59113 557 JZ GD18 I IF WE ARE JUMP 
B355 3C 558 INR A ; INCREMJ:lIT Y CURSOR 
B356 32E111F 559 STA CURSY ;SAVE rr 
B359 3E011 5611 GD18: MVI Aul: IllH ;ZERO A 
B358 32E211F 561 STA 'C SX ;ZERO X CIllSCR 
B35E CD38113 562 CALL LOCIll ; LOAD THE CURSOR 
B3<;1 C31!F1l1 563 J'4P SETUP ; LEAVE 
B364 3C 5154 N'1'OVER: INR A ; INCREMEl'lr X CIllSCR 
11365 32E211F 565 STA CURSX -SAVE ·rr 
11368 CDBBII3 566 CALL LOCIll i LOAD THE CURSOR 
1136B C3BF01 5<;7 JMP SETUP ; LEAVE 

568 
;THIS ROUfINE MOVES THE CURSOIl LEFT OOE CHARACTER POSI'rION 569 

7-76 207780-001 



APPLICATIONS 

579, 
~ ;GET X CURsrn 936E JAE29F 571 LEF'r: CUrtSX 

9371 FE90 572 CPI 0~H ;IS IT ALL THE WAY OVER 
9373 C28D93 573 JNZ !lOVER ; IF Nor JU,'\P AROUND 
9376 3AE10F 574 L1l\ CURSY ;GET CURson 'l 
9379 FE90 575 CPI 09H 'IS IT ZERO? 
o 37B CMF01 576 JZ SETUP ;IF IT IS JUMP 
037E 3D 577 OCR A ;MOVE CURSOR 'l UP 
937F 32E19F 578 STA CURS'l 'SAVE IT 
9382 3E4F 579 MVI ~~~~ ;GET LAST X LOCATION 
9384 32E20F 580 STA ;SAVE IT 
9387 COO803 581 CALL LOCUR ;LOAD THE CURSOR 
038A C30F91 582 JMP SETUP 

; ADJUST X' CURSCR 0380 3D 583 NOVER: OCR A 
938E 32E20F 584 STA CURSX ·SAVE CURSOR X 
9391 CIl3803 585 CALL I.DCUR i LOAD THE CURSOR 
0394 C30F01 586 JMP SETUP ; LEAVE :i, 

587 
;THIS RoorINE H()4ES THE CURSOR. 

t 
588 i 
589 ~VI ;ZERO A ~~ 0397 3E99 590 H()Io\E: AC:0H !,~f; 

0399 32E20F 591 STA C SX 'ZERO X CURsrn 
939C 32E19F 592 STA CURSY ; ZERO 'l CURSOR 
039F COS81B 593 CALL I.DCUR ; LOAD THE CURSOR 
03A2 C30F01 594 JMP SETUP ; LEAVe: 

595 
hHIS R01JrINE SE'l'S THE ESCAPE BIT 596 

597 f.wt ;LOAD A WITH ESCAPE BI'r 03A5 3E80 598 ESKAP: ~~H 93A7 32EE0F 599 s'rA 'SET ESCAPE LOCATION 
03M C39F01 600 JMP SETUP ;GO BACK AND READ USAR'r 

631 
i'fHIS ROl1rINE OOES A CR 602 

693 
AVI 03AD 3E00 604 CGR'r: ~~~~ ;ZERO A 

9lAF 32E29F 605 STA ; ZERO CURSOR X 
03B2 C00893 6:116 CALL LOCUR ;LOAD CURSOR INro 8275 
03B5 C30F01 607 JMP SETUP ;POLL USAR'r AGAIN 

608 
;THIS ROl1fINE WAlE THE CURSOR 609 

619 
"'VI 93B8 3E80 '511 LOCUR: ~R~H ;PU'f 80H INTO A 

03BA 320110 612 STA ;LOAD CURSOR INl'O 8271) 
03BD JAE29F 613 L1l\ CURSX ;GET CURSOR X 
03C0 321'1919 614 STA CR'lM ; pu'r IT IN 8271) 
03C3 JAE10F 615 LJllI. CURSY ;GET CURSOR 'l 
03C6 320010 616 STA CR'lM ; pu'r IT IN 8271) 
03C9 C9 617 RET 

618 ~THIS ROU'rINE OOES A FORM FEED 619 
629 

bALL 03CA ClE403 621 FMFD: Cl.SCR ; CALL CLBAA OCREEN 
03CD 210008 622 LXI ~~IS ;pu'r TOP DISPLA'l IN tiL 
9300 22E50F 623 SHLD ; (7J'f IT IN LOC80 
0303 CD1504 624 CALL CLLINE ;CLeAR 'l'OP LINE 
0306 3E90 625 MVI ~c:~~ ;ZERO A 
9308 32E20F 626 STA ;ZERO CURSOR X 
0300 32E10F 627 STA CURSY ;ZERO CURSOR 'l 
030E C00803 628 CALL I.DCUR ;LOAD THE CURSOR 
93E1 C30F01 629 JMP SETUP ; BACK TO USART 

630 
;THIS RoorINE CLBAAS 'rHE SCREEN B'l WRITI"IG END OF RCW 631 

632 ;CHARACTERS INTO 'fHE FIRS'f WCATION OF ALL LINES Ctl 
633 ;THE SCREEN. 
634 

~VI 93E4 3EF0 635 Cl.SCR: A,9F0H ; pu'r EOR CHARACTeR IN A 
03E6 1'1618 636 MVI B,CURSor ;LOAD B WITH I'\AX 'l 
93E8 04 637 INR B ;GO TO MAX PLUS ONE 
93E9 2199f1l8 638 LXI H,'l1?DIS ;LOAD H AND L WITH TOP OF R~ 
fIl3EC 1150f1l9 639 LXI \ D,LNG'rH ;MOVE 53H = 8f1lD IN'fO 0 AND E 
93EF 77 64f1l LOADX: MOV ~,A ;MOVE EaR INfO MEMOO'l 
fIl3F9 19 641 DAD ;CIl.'\lIKiE PO IN'rER B'l 890 
93Fl 95 642 OCR B ; COlJllT THE WOPS 
93F2 C2EFfIl3 643 JNZ WADX ;CONrINUE IF Nor ZERO 
93F5 C9 644 RET ;GO BACK 

645 
;'rHIS R01JrINE roES A LINE FEED 646 

647 
tALL fIl3F6 CDfCr.l3 648 LNFD: LNFOl ;CALL ROurINE 

93F9 C39F91 649 JMP SETUP ;POLL FIAffi 
650 

;LINE FEED 651 
652 

~ fIl3FC 3AE19F 653 LNFD1: CURSY ;Ge'f 'l LOCATION OF CURSOO 
93FF FE18 654 CPI CURSor ;SEE IF AT BOl'I'(M OF OCREEN 
94f1l1 CA5394 655 JZ ONBOf ;IF WE ARE, LeAVE 
0494 3C 656 INR A ;INCREMENT A 
fIl495 32E19F 657 STA CURSY ;SAVE NE'W CURSOR 

7-77 207780-001 



APPLICATIONS 

0408 CD\504 658 CALL CALCU ;CALCULATE II.DOOESS 0408 22E50F 659 SHLD . LOC80 ;SAW TO CLEAR LINE 040E CD1504 660 CALL CLLINE ;CLEAR THE LINE 0.411 CDB8iB 661 CALL . LOCUR . ; LOAD THE CU~SOR 0414 C9 6152 RET ;LEAW 
663 

;THIS ROl1rINE CLEARS 'mE LINE WHOSE FIRST ADmESS 664 
665 ; IS IN LOC80. PUSH INSTROCTIONS ARE USED TO l'lAPIDLY 
666 ;CLEAR THE LINE 
667 

bI 0415 F3 668 CLLINE: ;NO IN'rEAAUPl'S HERE 0416 2AE50F 669 LHLD LCX:80 ·GET WC80 0419 115000 670 LXI D,lJIIGrH ;GE'r OFFSET 041C 19 671 DAD 0 ·ADD OFFSET 0410 EB 672 XCHG ;PUT STAR'r IN DE: 041E 210000 673 LXI ~p00(IJI'JH ;ZERO HL 0421 39 674 D\D ;GET STPCK 0422 EB 675 XCHG ;pu'r STACK IN DE: 0423 F9 616 SPElL ;PUT START IN SP 0424 212020 677 LXI H,2020H ; pu'r SPACES IN HL 
678 

; NON 00 40 PUSH INSTRUCTIONS TO CLEAR THE LINE 679 
680 

kEPT (LNGrH/2) , 681 
682 PUSH H 
683 ENrM 

0427 E5 684+ PUSH H 
0428 E5 685+ PUSH H 
0429 E5 686+ PUSH H 
042A E5 687+ PUSH H 
042B E5 1)88+ PUSH H 
042C E5 689+ PUSH H 
042D E5 690+ PUSH H 
042E E5 691+ PUSH H 
042F E5 692+ PUSH H 
0430 E5 693+ PUSH H 
0431 E5 694+ PUSH H 0432 E5 695+ PUSH H 
0433 E5 69H PUSH H 
0434 E5 697+ PUSH H 
0435 E5 69S+ PUSH H 
0436 E5 699+ PUSH H 
0437 E5 71"l+ PUSH H 
0438 E5 701+ PUSH H 0439 E5 702+ PUSH' H 
043A E5 703+ PUSH H 
043B E5 704+ PUSH H 
043C E5 705+ PUSH H 
0430 E5 706+ PUSH H 
043E E5 707+ PUSH H 
043F E5 7<18+ PUSH H 
0440 E5 709+ ~ PUSH H 
0441 E5 710+ PUSH H 
0442 E5 711+ PUSH H 
0443 E5 712+ PUSH H 
0444 E5 713+ PUSH H 
0445 E5 714+ PUSH H 
0446 E5 715+ PUSH H 
0447 E5 716+ PUSH H 
0448 E5 717+ PUSH H 
0449 E5 718+ PUSH H 
044A E5 719+ PUSH H 
044B E5 720+ PUSH H 
044C E5 721+ PUSH H 
0440 E5 722+ PUSH H 
044E E5 723+ PUSH H 
044F EB 724 XCIKi ·pu'r STII.CK IN HL 0450 F9 725 SPElL ;pu'r IT BACK IN SP 0451 FB 726 EI • ENABLE IN'rERRUPrs 0452 C9 727 RE'r ;GO BACK 

728 
: IF CURSOR IS ON 'rHE BOrrQ'ol OF THE SCREE"I 'rHIS ROUrINE 729 

730 ; IS USED TO IMPLEMEN'r 'mE LINE FEED 
731 

Ltt.D ;GET TOP AoOOESS 0453 2AE30F 732 ONBO'r: TOPAD 
0456 22E50F 733 SHLD LOC80 ;SAW IT IN LOC80 0459 115000 734 LXI D,lJIIGrH ;LtNE LENGrH 045C 19' 735 DAD D ;ADD HL + DE 0450 01D00F 736 LXI B, [AST ;GET BO'ITQ'o\ LINE 0460 7C 737 il\OV A,H ·GET H 0461 BS 738 CMP B ~SAME l>S B 0462 C26D04 739 JNZ ARND ;LEAW IF NO'r SAotE 0465 70 740 MOV ~,L ·GET L 0466 B9 741 CMP ;SAII1E AS C 0467 C26D04 742 JNZ ARND ;lEAW IF NO'r SII."IE . 046/\ 210008 743 LXI H6TPDIS ;LOAD HL WITH 'rop OF DISPLAY 0460 22E30F 744 ARND: SHLD 'r PAD ;SAVE /lEW TOP ADOOESS 

7-78 207780-001 



APPLICATIONS 

0470 CD1504 745 CALL CLLINE ;CLEAR LINE 
0473 COO803 746 CALL ID:lR ' ; LOAD THE CURSffi 
0476 C9 747 RET 

748 
; THIS ROl1fINE ruTS A CHARAC'rER ON THE SCREEN AND 749 

750 ; INcREMmrs THE X ClRSOR roSITION. A LINE FEED IS 
751 ; INSERTED IF 'fHE INCREMENTED CURSOR EQJArS 810 
752 • 

0477 CD\504 753 CHRPUT: tALL CALCU ;CALCULATE SCREEN POSITION 
"47A 7E 754 MOV AM ;GET FIRST CHl'.RACTER 
0478 FU" 755 CPI 0F0H ; IS I'f A ClEAR LINE 
0470 22E50F 756 SHLD Loe80 ;SAW LINE TO CLEAR 
0480 CC1504 757 CZ CLLINE ;CLEAR LINE 
0483 2AE50F 758 LHLO LOC80 'GET LINE 
"486 COCOO4 759 CALL ADX JAOD CURSOR X 
0489 3AE7"F 760 LDA t.5C iR ;GET CHARACTER 
048C 77 761 MOV ~c;SX ;PU'f IT ON SCREEN 
0480 JAE20F 762 LD\ ;GET CURSOR X 
"490 3C 763 INR A ; INCREMENT CURSOR X 
0491 FE50 764 CPI INGrH ;HAS IT GONE TOO FAR? 
0493 C29C04 765 JNZ OK1 ;IF NOT GOOD 
0496 C~C03 766 CALL LNFDl ; 00 A LINE FEED 
0499 C3A003 767 JMP CGRT ;00 A CR 
049C 32E20F 768 OK1: STA CURSX 'SAVE CURSOR 
049F c008"3 769 CALL LOCUR : LOAD 'rHE CURSOR 
04A2 C30F01 770 JMP SETUP iLEAVE 

771 
; THIS ROl1fINE TAKES THE TOP ADMESS AND THE Y CURSOR 772 

773 ; LOCATION AND CALCULATES THE ADMESS OF 'rHE LINE 
774 ;'rHAT THE CURSOR IS ON. THE RESULT IS RETURNED IN H 
775 ;AND L AND ALL REGISTERS ARE USED. 
776 

LxI 04A5 21D504 777 CALCU: ~ckgrAB ;GET LINE TABLE INTO H AND L 
04A8 3AE10F 778 LD\ ;G ET CURSOR INTO A 
04AB 07 779 RLC ;SET UP A FOR lOOKUP 'fABLE 
04AC 0600 780 ,"\VI B,00H ·ZERO B 
04AE4F 781 MOV C,A i pu'r CURSOR mro A 
"4AF 09 782 DAD B ;ADD LINE TABLE 'ra Y CURSOR 
0480 7E 783 MOV A,M ; PU'f f.J:JN LINE TABLE IN'ro A 
04B1 4F 784 MOV C,A ; PUT LO."l LINE TABLE INTO C 
0482 23 785 INX H ;CHANGE MEMORY roIN'rER 
"4B3 7E 786 MOV A,M ;pu'r HIGH LINE TABLE IN'ra A 
04B4 47 787 MOV B,A ; PUT HIGH LINE 'rABLE INTO B 
04B5 2100F8 788 LXI H,0FR00H ;'lWCS CO'IPLEMENT SCREEN LOCATIO"! 
04B8 09 789 D\O ,B ;SUBTRACT OFFSE'r 
0489 EB 790 XCHG ;SAVE HL IN DE 
04BA 2AE30F 791 LHLD TOPAD ·GET TOP ADMESS IN H AND L 
04BO 19 792 DAD 0 ;GE'r DISPLACED ADffiESS 
04BE f)3 793 XCHG 

H,0F03~H 
;SAVE IT IN D 

04BF 2130F0 794 LXI ;'lWCS COMPLE,'IEN'r SCREEN LOCATION 
04C2 19 795 D\D D ;SEE IF 'I'IE ARE OFF THE SCREEN 
04C3 D\C804 796 JC FIX ;IF WE ARE FIX IT 
04C6 E8 797 XCHG ;GE'r DISPLACED ADffiESS BACK 
04C7 C9 798 RET ;GO Bl'CK 
04C8 2130F8 799 FIX: LXI H,0F83~H ;SCREEN BOONeRY 
04CB 19 800 DAD 0 ;AUJUST SCREEN 
04CC C9 801 RET ;GO BACK 

802 
hHIS ROUTINE ADm 'rHE x CURSOR LOCATION 'fO 'rHE ADDRESS 803 

804 ;THAT IS IN 'rHE H A."ID L RB3ISTERS AND RETlJI}~ 'rHE RESULT 
80S ;IN H AND L 
8"6 ; 

04CO JAE20F 807 ADX: LD\ CURSX ;GE'r CURSOR 
04D0 0600 808 MVI B,I:HlH ;ZERO B 
04D2 4F 809 MOV C,A ; P'J'f CURSOR X IN C 
04D3 09 810 DAD B ;11.00 CURSOR X 'ro H AND L 
04D4 C9 811 RET ; LEAVE 

812 
;'rHIS TABLE CONfAINS THE OFFSET AOMESSES FOR EACH 813 

814 ;OF THE 25 DISPLAYED LINES. 
815 LINN Ll'I SET 0 0000 816 LIN'fAa: 
817 REPT (ClJRBOT+ 1 ) 
818 fJ(l TPDIS+ (LNGrH*LINNlJ'I) 
819 ~~UM SET (LINNU'I+l) 
820 

04D5 0008 821+ fJ(l TPDIS+(LNGfH*LINNU'I) 
"0"1 822+ LINNlJM SET (LItNLl'I+ 1 ) 
04D7 5008 823+ fJ(l TroIS+~GrH*LINNU'l) 
00"2 824+ LINNU'I SET lLI lJ'I+ll 
0409 A008 825+ fJ(l TPD S+ ~NGrH LINNlJ'I) 
0""3 826+ LINNUM SET lLI UM+l) 
0406 F008 827+ fJ(l 'rPD S+(LNGrH*LINNU'I) 
0004 828+ LINNU'I SE'f lLINNU'I+ll 
04DD 4"09 829+ fJ(l TPD S+~GrH LINNU'I) 
0005 830+ LINNlJM SET lLI UM+ll 
040F 90"9 831+ fJ(l TPD S+ (LNGTH LINNU'I) 

7-79 207780-001 



11111136 
11I4E1 EI1I11I9 
1111111117 
11I4E3 3111111A 
11131118 
11I4E5 8111111A 
1111111119 
11I4E7 DI1IM 
I1II1II1IA 
11I4E9 2111111B 
I1II1II1IB 
11I4EB 73111B 
I1II1IOC 
11I4ED CI1I0B 
001110 
04EF 11110C 
000E 
04Fl 61110C 
11I00F 
04F3 BI1IOC 
I1IlHl1I 
11I4F5 01111110 
11111111 
11I4r'7 531110 
11111112 
11I4F9 A0I11D 
011113 
11I4FB FI1JI1JD 
11111114 
11I4FD 4111111E 
11111115 
11I4FF 9111111E 
11111116 
051111 EI1II1I£ 
11111117 . 
111533 30I11F 
11111118 
111535 8I1J0F 
11111119 

11I5I1J7 38 
111538 39 
11I5I1J9 3111 
11I5M 2D 
11I5I1JB 3D 
050C SC 
111511101118 
1'15111E 111111 
11I51'1F 75 
1'15Hl69 
111511 6F 
1'1512 7I1J 
111513 SB 
1'1514 5C 
111515 M 
1'1516 7F 
1'1517 6A 
1'1518 6B 
111519 6C 
1'151A 3B 
11I51B 27 
1'151C 111111 
111510 1110 
11151£ 37 
051F 60 
111520 2C 
111521 2E 
111522 2F 
1'1523 1111'1 
1'1524 00 
1'1525 0111 
0526 00 
0527 111111 
111528 61 
0529 7A 
052A 78 
11I52B 63 
052C 76 
11I52D 62 
052£ 6E 

832+ 
833+ 
834+ 
835+ 
836+ 
837+ 
838+ 
839+ 
84111+ 
841+ 
842+ . 
843+ 
844+ 
845+ 
846+ 
847+ 
848+ 
849+ 
851'1+ 
851+ 
852+ 
853+ 
854+ 
855+ 
851;+ 
857+ 
858+ 
859+ 
860+ 
861+ 
8'52+ 

-863+ 
8'54+ 
8li5+ 
866+ 
81;7+ 
868+ 
869+ 
87111+ 
871 
872 
873 
874 
875 
876 
877 
878 
879 K't'LKUP: 

88111 

881 

882 

883 

884 

885 

886 

887 

888 

889 

890 

891 

892 

893 

894 

895 

896 

897 

898 

APPLICATIONS 

LINNU,\ SET (LINNU'\+l \ 
OW TPDIS+(LNGfH*LINIIIU'\) 
LINNU'\ SE'f (LINNU'\+I) 
OW TPDIS+(LNGfH*LINNlJ'IIl 
LINNU,\ SET CLINNUM+l \ 
OW TPDIS+(LNGl'HtrLINNlJ'IIl 
LINNlJj'i SET (L INNU,\+1 \ 
OW TPDIS+(LNGI'HtrLINNU'I) 
LINNU'\ SET (LINNlJ'1+1 \ 
OW TPDIS+CLNGI'HtrLINNU'I) 
LINNUM SET (L INNll'I+l \ 
OW TPDIS+ (LNGI'HtrLINNU'I) 

. LINNUM SET (LINNU!ot+l \ 
OW TPDIS+(LNGTH*LIN"IU'I) 
LINNUM SET (LINNll'I+l \ 
OW TPDIS+(LNGfH*LINNU'I1 
LINNUM SET (LINNll'I+1) 
OW TPDIS+(LNGfH*LINNU'I1 
LINNlJ'\ SET (LINNll'I+1 \ 
OW 'fPDIS+(LNGI'H*LINNU'I1 
LINlIIlM SET (LnlNU'\+l \ 
OW TPDIS+(LNGTH*LINNU'I) 
LINNU'\ SET (LINNll'I+l \ 
OW 'fPDIS+(LNGfHtrLINNU'I1 
LINNUI" SET (LINNU'I+l1 
OW TPDIS+(LNGfH*LINNU'I) 
LINlIIUI'I SET (LINNll'I+l \ 
OW TPDIS+(LNGfH*LIN"IU'I) 
LINlIIlll1 SE'r (LINNU'I+l \ 
OW TPDIS+(LNGrHtrLINNUI1) 
LINNUM SET (LINNll'I+ 1 \ 
OW TPDIS+ (LNGrH*LINNU'I1 
LINNU'\ SET (LlNNli'I+1) 
OW TIDIS+(LNGfH*LINNU'I1 
LINNUM SET (LINNU'I+l) 
OW TPD!S+(.LNGrH*LINNU'I) 
LINNUM SET (LINNll'I+l \ 
DW TPDIS+ (LNGrH*LIN"IUI11 
LINNll'l SET (LINlIIU'I+l) 

;KEYBQ1I.RD LOOKUP 'rABLE 
;THIS TABLE CCNl'AINS ALL THE ASCII CHARACTERS _ 
• 'rHAT ARE TRANSMITTED BY THE TERMINAL 
;THE CHARAC'rERS ARE ORGANIZED SO THAT BITS 111,1 AND 2 
;ARE 'rHE SCAlII LINES, BITS 3~4 AND 5 ARE 'rlit: RE'rlJRN LINES 
;BIT 6 IS SHIFT AND BIT 7 I~ CONTROL 

be 38H,39H ;8 AND 9 

DB 3111H,2DH ;111 AND -

DB 3DH,SCH ;= AND \ 

DB 08H,I'I0H ;BS AND BREAK 

DB 75H,69H ; LDWER CASE U AND r 
DB 6FH,7I11H ; LDWER CASE 0 AND P 
DB SBH,SCH ; [ AND \ 

DB MH,7FH ;LF AND DELETE 
DB 6AH,6BH ; LDWER CASE J AND K 

DB 5CH,3BH ; LDWER CASE L AND 
DB '27H,0I11H ; I AND NO'rHING 

DB 0DH,37H ;CR AND 7 

DB 6DH,2CH ; LONER CASE M AND C~ 
DB 2EH,2FH ;PERIOD A.1IIl) StASH 

DB I1II1IH,00H ;BlANK AND NO'rHING 

DB 11I0H,I'I0H ;NorHING AND NO'rHING 
DB 11I0H,61H ;NorHING AND LDWER CASE A 
DB 7MI,78H ;LONER CASE Z AND X 
DB '53H,7I;H ;LO~ER CASE C AND V 
DB 52H,6EH ; LDWER CASE B AND N 

7-80 20nao-o01 . 



APPLICATIONS 

052F 79 899 DB 79H,00H ;LOIIER CASE Y AND NOTHING 
0530 00 
0531 00 900 DB 00H,2"'H ;NOrHING AND SPACE 
0532 20 
0533 64 901 DB 64H,66H ; LOIIER CASE D AND F 
0534 66 
0535 67 902 DB 57H,68H ; LONER CASE G AND H 
0536 68 
0537 00 9(H DB 00H,71H ; TAB AlIID LOIIER CASE Q 
0538 71 
053977 
053A 73 

904 DB 77H,73H ;LONER CASE WANDS 

053B 65 905 DB 55H,72H ; LOIIER CASE E AND R 
053C 72 
053D 74 906 DB 74H,00H ; LONER CASE 'r AND NOTHING 
053E 00 
053F 1B 
0540 31 

907 DB 1BH,31H ; ESCAPE AND 1 

0541 32 908 DB 32H,33H 2 AND 3 
0542 13 
0543 4 909 DB 34H,35H 4 AND 5 
0544 35 
0545 36 910 DB 36H,00H 6 AND NQ'rHING 
0546 00 
0547 2A 
0548 28 

911 DB 2AH,28H ;* AND ., 

0549 29 912 DB 29H,5FH ; ( AND -
0541'. 5F 
054B 2B 
054C 00 

913 DB 2BH,00H ;+ AND NOTHING 

054D 08 914 DB 0BH,00H ;BS A.lI/D BREAK 
054E 00 
054F 55 915 DB 55H,49H ;U AND I 
055'" 49 
"'551 4F 916 
0552 50 

DB 4FH,5eJH ;0 AND P 

0553 5D 917 DB 5DH,00H ; 1 AND NO CHARACTER 
0554 00 
0555 lilA 918 DB 0AH,7FH ;L~' AND DELETE 

~~~9 IK 919 DB 4AH,4BH ;J AND K 
0558 4B
0559 4C 920 DB 4CH,3AH ;L AND :
0551'. 31'.
055B 22 921 DB 22H,00H ;" AND NO CHARACTER
055C 00
055D 0D 922 DB eJDH,26H ;CR A."ID &
055E 26
05SF 4D 923 DB 4DH,3C'..H ;M AND <
0560 3C
0561 3E
0562 3F

924 DB 3EH,3FH ;> AND?

0563 00
0564 00

925 DB 00H,00H ;BIANK AND NO'rHING

0565 00
0566 00

926 DB 00H,00H ;NOTHING AND NOTHING

0567 00
0568 41

927 DB 00H,41H ;NOrHING AND A

0569 51'.
0561'. 58

928 DB 5AH,58H ;Z AND X

056B 43 929
050C 56

DB 43H,56H ;C AND V

056D 42 93eJ DB 42H,4EH ;B AND N
056E 4E
056F 59 931 DB 59H,00H ; Y AND NOTHING
0570 00
0571 00
0572 20

932 D8 00H,20H ;NO CHARACTER AND SPACE

0573 44 933 DB 44H,46H - ;D AND F
0574 46
0575 47 934 DB 47H,48H ;G AND H 0576 48
0577 00 935 DB 00H,51H ;TAB AND Q 0578 51
0579 57 936 DB 57H,53H ;W AND S 0571'. 53
057B 45 937 DB 45H,52H ;E AND R 057C 52
0570 54 938 DB 54H,00H ;,r AND NO, CONNECTION 057E 00
057F 18 939 DB IBH,21H ;ESCAPE AND 0580 21
0581 40 940 DB 4eJH,23H ;«1 AND t 0582 23
0583 24 941 DB 24H,25H ;$ AND % 0584 25
0585 5E 942 DB 5EH,00H ; ~ AND NO CCNNECTION

7-81 207780-001

APPLICATIONS
, ,.

0586 00
943

;THIS IS WHERE 'rHE CONTROL CHARACTERS ARE LOOKED UP 944
945 .be 0587 00 946 00H,00H ;NO'rHING

0588 00
0589 00
058A 00

947 DB 00H,00H ;NO'rHING

058B 00
058C 00

948 DB 00H,0~H ;NO'rHING

0580 00 949 DB 00H,00H ;NO'rHING
05SE 00

. 058F 15
0590 09

950 DB 15H,09H ;COm'ROL U AND I

0591 0F
0592 10

951 DB 0FH,10H ;COm'ROL 0 AND P

0593 lIB
0594 0C

952 DB 0BH,0CH ;CONTROL [AND \

0595 1M
0596 7F

953 DB 0AH,7FH ;LF AND DELETE

0597 011. 954
0598 013

DB IMH,0BH ;COm'ROL J AND K

0599 0C
059A 00

955 DB OCH,00H ;CONTROL L AND NO'rHING ~

059B 00
059C 00

956 DB 00H,00H , ;NO'rHING

;CR AND NO'rHING 0590 00 957 DB 0DH,00H
059E 00
059F lID 958
057\0 00

DB 0DH,00H ;CONTROL M AND COMMA

057\1 00 959 DB 00H,00H ;NO'rHING
057\2 00
0511.3 00 960 DB 00H,00H ;NO'rHING
057\4 00
05A5 00 91;1 DB 00H,00H ;NO'rHING AND NO'rHING
057\6 00
05A7 Ill. 962 DB lAH,18H ;COm'ROL Z AND X
05A8 18
05A9 03 963 DB 03H,16H ;CONTROL C AND V 0S7\A 16
05A8 02 964 DB 02H,0EH ;CONTROL B AND N 057\C 0E
05AD 19 965 DB 19H,00H ;CO"l1'ROL Y AND NO'rHING 057\E 00
0SAF 00 956 DB 00H,20H ;NO'rHING AND SPACE 0580 20
0581 04 967 DB 04H,0'>H ;CONI'ROL D AND F
0582 06
0583 07 968 DB 07H,08H ;CONTROL G AND H 0584 1il8
0585 00 969 DB 00H,llH ;NO'rHING AND CONI'ROL Q 0586 11
0587 17 970 08 17H,13H ;CONTROL WANDS 0588 13
0589 06 971 DB IilI;H,12H ;CONTROL E AND R Iil58A 12
0588 14
058C 00

972 DB 14H,00H ;CONTROL W AND NO'rHING

05801B 973 DB lSH,lOH ;ESCAPE AND HOME (CREDIT) 058E 10
058F IE 974 DB lEH,lCH ;CURSOO UP AND OO'IN(CREOIT) 0:£0 lC
0:£1 14
0:£2 IF

975 DB l4H,lFH ;CURSOO RIGHT AND L8FT(CR8DIT)
0:£3 00 976 DB 00H,00H ;NO'rHING 0:£4 00

977
; u)()K UP 'rABLE FOO 8253 BAUD RATE GENERAmR 978

979 IE 0:£5 00 980 80LK: 00H,05H,69H,03H ;75 AND 110 BAUD 0:£6 05
0:£7 69
0:£8 03 ,
05C9 80 981 DB 80H,02H,40H,01H ; 150 AND 300 8AUD 0:£11. 02
05CB 40
0sec 01
05C0 11.0 982 DB 0A0H,00H ;600 BAUD 0:£E 00
05CF 50 983 DB 50H,00H ;1200 BAUD 0500 00
0501 28 984 DB 28H,00H ;2400 BAUD 0502 00
0503 14
0504 00

985 DB l4H,00H ;4800 BAUD

0505011. 986 DB 0AH,00H ;9600 BAUD 0506 00

7-82 207780-001

APPLICATIONS

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

lSERSYMBOLS
ADX A 04CO
CAPLOC A 0221::
CLRLIN A 0327
CN'lM A 6fiJ03
CUrtSX A 0FE2
FMFD A 03CA
KEYJloIN A 0FeA
KYLKUP A 0507
LNFO A 03F6
LPKBD A 0098
POPll.l>.T 11.0034
RXRDY A 11113
STBAUD A III10C
UP1 A 01E9

987
988
989
9911
991 ClJRSY:
992 ClRSX:
993 'rOPAD~
994 LOCBI'J:
995 USCIIR:
996 ClJRAD:
997 KEYilIiN:
998 KaCER:
999 BAUD:

10011 KEYOK:
1001 ESCP:
101'J2 SHCON:
1003 RETLIN:
10114 SCNLIN:
1005

~DATA AReA

6RG 0FE1H
IE 1
IE 1
IE 2
IE 2
IE 1
IE 2
IE 1
IE 1
IE 1
IE 1
IE 1
IE 1
IE 1
IE 1
END

ARND A 0460 BAUD A 0FEC
CHREC A 1124E
CL<)CR A 03E4
COOCL A 02FO

CG!lT A 03AD
CrnST 11.0205
CN'ND55 A 18113
CURSY A 0FE1
FAA .. >lE A 0167
KEYINP A 0121
LAST A Ii'JF00
LNF01 A 03FC
NOVER A 038D
POOTA A 181'J3
SAVKEY A 01AF
STKEY A 0223
U!'ClR A 11333

!X).oIN A 02AE
G018 A 1'J359
KEYOK A 0FEO
LOClJR A 03B8
ING'rH A 1'J050
NTOIfER A 0364
POrtTB A 18111
SCNLIN A 0FF1
STPl'R A 0FEI'J
USCIIR A fiJFE7

ASSEMBLY COMPLETE, NO ERROilS

7-83

BOLl< A I'JSC5
CHRPl1r A 1'J477
CNTIIJ A 1j(IJ011
CRN A 1000
ESCP A 0FEE
HO'>IE A 11397
KEYS A 11131
LEn" A 1IJ36E
LOAOX A 03EF
OK1 A A49C
P~TC 11.1802
SCR A 0211
TOPAD A 0FE3
USTD A A1IJ011

BTDIS A 0F80
CLF.:JI,R A 02CF
CNT1 A 1j01111
CRTS ~ 111J11I1
ESKAP A 03A5
IN75 A 0I'JF9
KPTK A 1'J11I84
LINN()w\ A 01'J19
UJC80 A 0FE5
OK7 A 015C
RDKB A 018F
SETUP A 010F
TPDIS A 0!!001
USTF A 11.0111

BYPASS A 0(IJ8F
CLLINE A 11415
CNT2 A 1j(IJ1'J2
ClJR.1\D A 0FE8
ESSQ A 027B
INT7<; A 14111
KYCIOO A 01BA
LIN'rAa A 0405
LOOPF A I'JIIA7
ONBor A 04<;3
RE'rLIN A 0FF0
SICON A 0FEF
TRANS A 1114B

207780-001

ARTICLE
REPRINT

. .

AR·178

September 1983

Reprinted with permission from Electronic O.sign', Vol.29, No.9; copyright Hayden Publishing Co., Inc., 1981

ORDER NUMBER: 210507-001

7-84

Fewer parts make a microprocessor-based CRT controller cost-effective,
and interrupt-driven software cuts overhead on the system's Cpu.

Low-cost CRT control
does more with less

,
The multitude of components and the CPU over­

head' long associated with cathode-ray-tube con­
trollers are rapidly becoming cunspicuous by their
absence. In particular, an int(,lligent terminal based
on Intel's iAPX 88/10 (8088) microprocessor and 8276
small-system CRT controller eliminates all but 22
of the nearly 40 chips rt'quirt'd by other 'CRT con­
trollers (even those with microprocessors and inte­
grated peripherals). It abo cuts overhead on the
processor to less than 250/0, so that the 88/10 is free
to implement such intelligent terminal functions as
local data processing.

tions. Thret' manual switches on the PC board select
the baud rate, and one of the 8253's three independent
programmablp interval timers generales the 8251A's
baud-rate clock under software control.

The three PC-hoard s\\'itehes arc monitored by the
iAPX 88/10 to de term inc the desired baud rate
When the CPU detects a change in the switch
positions, the 82:;3 is loaded with the appropriate
count for the ne\\' baud rate.

An 8255A provides three 8-bit parallel I/O ports.
Two I/O ports ~ontribllte ke~'board scanning, and the

sync

The iAPX 88/10 implementation supplies charac­
ters directly to the 8276 by means of interrupt-driven
software, eliminating the need for a direct-memor~'­
access (DMA) controllt'r. The design interfaces
directly with standard CRT monitors, contact­
closure keyboards, and RS-232C serial-communica­
tion links (asynchronous or bisynchronous), to pro­
vide a complete stand-alone operator interface.

Video To

vert,ea}

Although the primary design goal-implementing
a low-cost CRT terminal-has excluded some useful
CRT features, these are easily made available
through additional external hardware. For example.
composite video is added with .two TTL packages, a
transistor. and some resistors and capacitors. Anoth­
er simple option involves the two general-purpose
attribute outputs on the 8276 and lets users select
anyone of four colors on a color monitor.

Basic system configuration and architecture

Central to the 22-chip CRT controller design is an
iAPX 88/10 8-bit microprocessor operating at 5 MHz
and supported by two 8185 1-kbit x 8 static RAMs
and a 2716 control software PROM (Fig. 1). An 8251A
programmable communication interface provides
synchronous or asynchronous serial communica-

Thomas Rossi, Applications Mgr Peripheral Gomponents
Intel Corp.
3065 Bowers Ave., Santa Clara, CA 95051

communications
channel

HOrizontal
_sync

(from 8253)

1. Intelligent terminals, built with Intel's iAPX 88/10 (8088)
microprocessor and new 8276 small-system CRT controller,
take this basic configuration to reduce parts count and
minimize overhead on the system CPU.

7-85 Electronic Design. April 30, 1981

210507-001

CAT

Low-cost CRT

third port senses option-switch settings and the
vertical-retrace signal from the 8276 (for CRT syn­
chronization upon reset).

The CRT dot and character timing is generated
by an 8284A clock generator. Another 8253 timer
provides the appropriate horizontal-retrace timing
for the CRT monitor. In its programmable one-shot
mode, this timer generates a 32-1'8 horizontal-retrace
pulse for the CRT monitor (Ball Brothers TV-12). A
simple user-initiated change in the software will
modify this delay time to suit different CRT
monitors. The third and last timer in the 8253 is
available for any user-defined need.

A 2716 EPROM on the controller board serves as
a user-programmable character generator. A shift
register transforms the data from the character
EPROM into a serial-bite stream to illuminate dots
on the CRT screen. The 2716 character generator
helps to create special symbols and characters for
word processing, industrial-control applications, or
foreign-language displays.

The controller hardware is divided into processor
and support, serial and parallel I/O, and CRT-control
sections. The processor and sllPport section consists
of an iAPX 88/10 microprocessor, which is supported
by two 8185 1-kbit x 8 static-RAM devices, and
another 2716 EPROM (containing 2 kbytes of control
firmware). The iAPX 88/10 uses a I5-MHz crystal
(with an 8284A) to operate at a 5-MHz clock rate.
The 8185 memories attach directly to the iAPX 88/10
multiplexed bus. An 8282 latches eight address lines
(Ao-A,) from the multiplexed bus for 2716-program
memory access (Fig. 2).

The serial and parallel I/O section of the terminal
includes the 8255A programmable peripheral in­
terface, and the CRT section contains the 8276 CRT
controller and support circuits. All of the controller's
I/O operations are memory mapped (see table).

How the controller board communicates

The CRT-controller board communicates to com­
puter systems and other CRT units through a serial
interface. Both RS-232C and TTL-compatible in­
terfaces are available at the JI connector. The unit's
standard software supports eight data-transmission
rates: 9600, 4800, 2400, 1200, 600, 300, 150, and 110
baud. These rates are switch-selectable on the PC
board. Since the baud-rate clock is generated by an
8253, baud rates may be easily modified in software.

Keyboard scanning is supported through the A and
B ports of a 8255A programmable peripheral in­
terface. Therefore, low-cost unencoded keyboards
can be used. The eight scan lines (port BJ and eight
return lines (port A) support a 64-contact closure­
key matrix. The three switches attached to port C
permit baud-rate selection. Four general-purpose

Electronic D •• lgn • April 30, 1981
210507-001

Memory map of controller I/O operations
Acldr ... Selected

" range devtce Com

00000 - 00003 RAM Interrupt v.eclqr . ..~
00004 - 00029 RAM StaCk, local yariablla .
00030 - 007FF RAM Di~iay buffer
01000 - 01001 8276 i! 826comm~,.

01900 6276 8276 row buff." ,
12000 - 12001 8251A Serial channel . ,', I-

14000 - 14003 8253 Baud-rata timer
18000 - 18003 8255A Keyboard, SWitch_f.~
FF800 - FFFFF 2715 Program storage ''!:. . ..~..,-

2. The processor and support'section olthe intelligent
terminal's, hardware contains two 8185 RAMs attached
directly to the lAP X 88/10 mUltiplexed bus. An 8282 latches
eight address lines (A.-A,) from the multiplexeo bus for 2716-
program memory access.

CPU
control

De,.,

AD
'WR

ClP

3. Here are the major functional blocks of the 8276
programmable CRT controller. This device permits software
specification of most CRT -screen format charactaristlcs
(cursor pOSition, characters/row, rows/frame).

7-86

inputs on port C permit the software to sense
depression of the caps-lock key, the control key, and
the shift key, as well as the position of the line/local
switch: The last input on port C senses the status
of the vertical retrace (VRTC) output of the 8276, so
that the controller can synchronize with the CRT
display on power up or' after a hardware reset.

All keyboard 110 connects to the terminal board
by means of a 40-pinheader on its edge. All seven
option-switch inputs are also brought to the connec­
tor, so that option switches may be installed on the
keyboard if desired.

Software specifies the screen format

The CRT display is controlled by the 8276 program­
mable CRT controller (Fig. 3). With this device, most
CRT screen-format characteristics-such as the
cursor position, the number of characters per row,
and the numher of rows per frame-can he specified
through softwarp. Thp 8276 handles all displa~' tim­
ing including retrace time delays.

In the current design, 2000 characters are dis­
played on the CRT screen (25 rows of 80 characters).
Each character is formed as a5 x 7-dot matrix within
a larger 7 x 10 matrix (Fig. 4). Other screen formats
(e.g., 16 rows of 64 characters) can be easily im­
plemented with a few software changes and no
hardware changes.

The 8276 contains two 80-character row buffers
(see "Row Buffers Reduce System Overhead"). While
one buffer displays the current character line on the
screen, the 8276 fills the other row buffer from

Line
number

0
0

o 0
0 0

o 0 0 0
• 0 0 0

IlO88

memory. This data transfer begins when the 8276
issues a data request (by means of the BRDY pin),
causing an interrupt to the CPU. In response to this
interrupt, the CPU activates the RAM's CS and RD
inputs, while simultaneously activating the 8276 BS

and WR inputs (Fig. 5). Through this technique, a
single bus cycle suffices to transfer each byte from
the RAM into the CRT row huffer. After the row
buffer is filled, the CPU exits the interrupt-service
routine.

But the 8276 can do more than simply paint
characters on a CRT screen. Its end-of-row-stop
buffer-loading code allows the control software to
blank individual display lines. Also, the end-of-the­
screen-stop buffer-loading code initiates an erase to
the end of the screen

The 8276 supports software selection of visible­
field "attributes" that can blink. underline, or high­
light (intensifyl characters on the screen and can
reverse the video-character fields (black letters on
a white background I. Two general-purpose attribute
outputs are provided to control the user-defined
display capabilities.

Hardware provides three support functions

The 8276 is supported by three hardware func­
tions: a dot/character-clock oscillator. an EPROM
character generator, and a character-shift register
(Fig. 6). The dot/character-clock oscillator consists
of an 8284A operating at 11.34 MHz and providing
an 88.2-ns dot clock. A 74LS163 diviues this clock
by 7 to generate a 1.62-MHz (617-n81 character clock.

0 o • 0 • 0 0 RD

0
• 0

0 0 • rJ

0
• 0

o u • 0
0 • • • • • 0
0

• 0
o 0 • 0

rJ
• 0

0 0 • 0
0 0 0 o 0 0 0
0 0 DOD 0 0

4. The dot-matrix character lont used
In the low-cost CRT controlier creates
a 5 X 7 character In a 7 X 10 matrix
(example shown Is an upper-case A).
Top and bottom lines are blanked for
character saparatlon, and the
remaining line Is reserved for
cursor/underline display.

WR cs RO

8276 8185

5. Row-buffer loading forthe 8276 begins when a single 8088 string Instruction
moves data bytes from the 8185 RAM to the 8276 row buffer. The 8088 CPU "thinks"
It Is loading the AX register. .

7-87 Electronic D.slgn • April 30. 1981
210507-001

Low-cost CRT

The 8276 is programmed to display one raster line
every 61.7 I's-a complete character line every 617
I'S (ten raster lines). The 8276 is also programmed
to refresh the screen every 16.7 ms (60 Hz).

Each character row consists of ten raster lines.
Seven lines display the 5 X 7-character matrix, two
lines are blanked for row spacing, and one line
displays the cursor and underline.

The 8276 uses the line count (LCo-I.C3) outputs to
indicate the current raster line during the display
of each character. These outputs, combined with the
character-code outputs (CCO-CC6), are sent to the
2716, which generates the dot pattern for display.
This dot pattern is loaded into the shift register and
is serially clocked for display by the 11.34-MHz dot
clock.

During the vertical-retrace interval, the row buf­
fer for the first line of the next frame is loaded by
the iAPX 88/10. Whe~ the frame starts, the 8276
outputs the first character on its CCO-CC6 pins; the
LC outputs are all zero. Exactly 617 ns later, the next
character code is emitted by the 8276. This process
continues every 617 ns until all 80 characters have
been output. Then the 8276 generates a horizontal­
retrace pulse, which is converted to the appropriate
pulse width for the CRT monitor by the 8253.

At the end of the first raster line, the 8276
increments the LC outputs. The next nine raster lines

are similar to the first-the 8276 outputs the same
80 character codes on the CCo-CCs pins for each of
the raster lines, and the LC outputs are incremented
after each raster line.

While the ten raster lines are being displayed, the
8276 is also filling the next row buffer. After the
tenth raster line is completed, the 8276 resets the
LC count and outputs character codes for the second
row on the CCo-CCs pins. As this row is displayed,
the first row buffer is filled with information for
the third row. The 8276 alternates row buffers until
all 25 rows are displayed. At this time, the vertical­
retrace signal is activated, and the scanning process
is repeated for the next frame.

During display, the 8276 automatically activates
the video-suppress pin (vsP) and/or light-enable
out!Juts (LTE\ I, as appropriate, to control retrace
blanking, generate the cursor, or underline charac­
ters.

Software is split between two priorities

The software for the CRT controller is divided into
high and low-priority sections. The high-priority
"foreground" software is activated each time the
8276 requests (through the iAPX 88/10 NMI inter­
rupt) that an 80-character row buffer be filled. The
8276 row buffer is filled by performing 80 sequential
memory reads. As each read is performed, the

VSP

lTEN

From
8276

HATe
HOrizontal

out

VAle
VertICal out

6. CRT control logic supports the 8276. Three hardware functions are Involved: a dot/character clock OSCillator,
an EPROM character generator, and a character-shill register.

Electronic Oe.lgn • April 30, 1981
210507-001 7-88

Low~ostCRT

Row buffers reduce system overhead
If no row buffer is present, the CRT controller must

go to main memory to fetch every character during
every dot scan line. Thus, the central processing unit is
forced to relinquish the system bus 90 to 95% of the
time That CPU inactivity (overhead) greatly de­
grades total system performance and efficiency. CRT
terminals using this approach are typically limited to
between 1200 and 2400 baud on their serial-com­
munications channels.

However, with the 8276's row-buffered architec­
ture, the CRT controller need only access the main
memory once for each displayed character row. This
approach reduces system bus overhead for CRT re­
freshing to 25% (maximum). The CPU is then free to
perform other local-processing functions, for instance,
processing data at 9600 baud gn a serial-communica­
tions channel

PUSHF save registers
PUSH SI used by
PUSH ex subroutine

MOV SI,eURAD point to current line
ADD SI,OFFSET
CLD auto increment
MOv eX,40

REP LODS WDPTR move 40 words
CMP SI, LAST check for end of screen
JNZ KTPK Jump if not at end
MOv SI,TOPDIS end-set to top

KTPK MOv eURAD.SI

POP ex restore
POP SI
POPF

7. A screen-refresh routine illustrates how the iAPX 88/10
load-string (LODS) instruction fills an 8276 row buffer. The
15 lines take 167 ~s and are run every ten CRT lines
(every 617 ~.).

XOR AX.AX clear AX
MOV BX.ESCTBL load table. pointer
MOV AL.USCHR read character
CMP AL.41H checkfor41H
JL SETUP not valid
CMP AL.48H check for 48H
JG SETUP nohalid
XLAT translate to routi ne

address
JMP (AX)

8. This routine checks the keyboard character to see If It is
a valid escape-sequence command (41 H through 48H). If the
character Is valid, a translate table jumps to a service routine.
With the powerfullAPX 88/10 translate Instruction, the service
routine takes just 7/ls.

Electronic o.,lgn • Apnl 30, 1981
210507-001

hardware automatically sends a write (over buffer­
select and write pins) to the 8276.

The simultaneous memory-read and 8276-write
commands transfer characters from the 8185 RAM
to the 8276 in a single memory cycle-without a
direct-memor~'-access (DMA) controller. The 80
reads are under the control of the CPU load string
(LODS) instruction, which handles 40 word loads with
iAPX 88/10 code (Fig. 7). The complete refresh
sequence for one line requires approximately 167 /lS.

As a result, processor overhead for refresh opera­
tions is approximately 27%.

Foreground software also involves keyboard scan­
ning that is performed only at the end of each display
frame (after 25 rows or 16.7 ms). If a key depression
is noted during one of these scans, the information
is stored for further background processing. An
iAPX 88/10 routine checks the character to de­
termine whether it is a valid escape-character com­
mand (Fig. 8). In this procedure, the iAPX 88/1O's
translate instruction (XLAT) takes care of table
lookup.

The low-priority software section handles "back­
ground" processing. It monitors the 8251A serial I/O
port and provides processing for characters entered
via the keyboard or with the serial interface. Back­
ground software executes continuously except when
interrupted for the higher-priority foreground proc­
essing.

Cumbersome scrolling technique avoided

A refresh-buffer memory stores all 2000 charac­
ters that can be displayed on the CRT screen. The
foreground software transfers one row (of 80 charac­
ters) at a time to the 8276. Two pointers are employed
during normal operation. Under the control of fore­
ground processing software, the current-row pointer
contains the address of the next row to be displayed.
This pointer must always be correct, so that a row
can be transferred to the 8276 when requested. The
buffer pointer contains the address of the next CRT
buffer location to be written into (from either the
keyboard or the serial port). Controlled by the
background software, the buffer pointer indicates
the cursor's actual location.

The simplest refresh-buffer organization as­
sociates the first memory address with the upper left
position' on the CRT screen. All other characters are
stored sequentially (Fig. 9). But this method makes
CRT screen scrolling difficult. Scrolling requires that
each display line be moved up one row. The top line
of the CRT is lost, the bottom line is blanked, and
the cursor is placed at the beginning of the bottom
line.

With this fixed sequential organization, all charac­
ters in the refresh buffer must be moved forward

7-89

Low-cost CRT

Memory address

30H
80H

7SOH
7AOH

MotnOf'/ -.... ASCII

30H A

31H

32H space

80H I

81H C

7FFH space

He. Not"
41 First character, first row

73

20

49 First character, second row

43

20 last screen character

9. This memory/screen·character relationship exists when all
characters are stored sequentially, making scrolling dillicuit.

Memory address

SOH
DOH

7AOH
30H

Memory -.... ASCII

30H

31H

32H

SOH

81H C

7FFH space

He. Notes

61 First character, 25th row

6E

64

49 First character, 'Irst row

43

20 Last character 'Irst row

10. "sequential memory orientation is retained but
characters do not have to be moved In memory, scrolling can
be much more efficient. Here, scrolling Is accomplished
simply by changing the display-start pointer. The
memory/screen-character relationship Is shown after a scroll
of one line from the positions Illustrated In Fig. 9.

Electronic De.lgn • April 30, 1981
210507-001

by SO (~haracters (memory locations) to scroll the
screen. (Each line moves up one row on the CRT and
the last SO characters in the buffer are blanked.)

. Moving 1920 characters each time the screen scrolls
a single lin0 is very slow and cumbersome.

The low-cost CRT controller avoids this problem
with a slight modification of the fixed-sequential
scrolling technique. Here, sequential memory orien­
tation is retained while the need to move characters
in memory is eliminated. This approach requires an
additional display-start pointer that points to the
memory location of the first character to be dis­
played.

At system initialization. the display-start pointer
is set to 30H, the huffer-start address. During each
vertical-retrace interval, the current-row pointer is
initialized from the displa~'-start pointer. Scrolling
is performed h~' merely changing the display-start
pointer.

For a single row scroll, the display-start pointer
moves ahead SO characters to location SOH, and the
first SO char~cters in the huffer art' hlanked. During
the next vertical ret race, the foreground software
sets the current-row pointer to the display-start
location (SOH), and hegins transferring characters to
the S276 from this address.

The character in memory-location SOH (previously
the first character in the second row) now occupies
the first display position on the CRT screen (first
character of the first row I. When the foreground
software reaches the end of the display buffer, the
next row is read from the bt'ginning of the buffer
(location 30Hl. Thus, the first SO characters in the
buffer appear on the last display row (Fig. 10).

Each subsequent scroll moves the display start
pointer forward by 80 characters. Buffer ol)erations
automatically "roll over" to the physical beginning
of the buffer after passing the last buffer location.

Since the row-by-row character display is con­
trolled by iAPX SS/10 software, other display tech­
niques may be used. In particular, a linked list struc­
ture is extremely adaptable to word-processing and
text-editing functions. This method allows each row
within a file to be changed independently of other
rows.

Because the rows are linked or "chained together"
by pointers, rows may be easily inserted or deleted
by simply changing pointers. To display a CRT
frame, the processor simply follows the pointer chain
from one row to the next.O

7-90

How useful?

Immediate design application
Within the next year
Not applicable

Circle

547
548
549

82720
GRAPHICS DISPLAY CONTROLLER

• Displays Low-to-High Resolution
Images

• Draws Characters, Points, Lines, Arcs,
and Rectangles

• Supports Monochrome, Gray Scale, or
Color Displays

• Zooms, Pans and Windows Through a
4 Mpixel Display Memory

FUNCTIONAL DESCRIPTION

Introduction

• Extremely Flexible Programmable
Screen Display, Blanking, and Sync
Formats

• Compatible with Intel's Microprocessor
Families

• High-Level Commands Off Load Host
Processor from Bit Map Loading and
Screen Refresh Tasks

• Supports Graphics, Character, and
Mixed Display Modes

The 82720 Graphics Oisplay Controller (GOG) is an intelligent microprocessor peripheral designed to drive high­
performance raster-scan computer graphics and character CRT displays. Positioned between the video display
memory and Intel microprocessor bus, the GOC performs the tasks needed to generate the raster display and
manage the display memory. Processor software overhead is minimized by the GOC's sophisticated instruction
set, graphics figure drawing, and OMA transfer capabilities. The display memory directly supported by the GOC
can be configured in any number of formats and sizes up to 256K 16-bit words. The display can be zoomed and
partitioned screen areas can be independently scrolled and panned. With its light pen input and multiple controller
capability, the GOC is ideal for most computer graphics applications. Systems implemented with the GOC can
be designed to be compatible with standards such as VOl, NAPLPS, GKS, Core, or custom implementations.

"",.
DAeK

iro
Wii C>-<--< ___ ---'

COMMAND
PROCESSOR

WITH
C0'g~;:OM

+5V 0--­

GND 0---

2l<WCIJ(0---

Figure 1. Block Diagram

V/EXTSYNC

DiiN
2xWCLK 40 'vee

DBIN " .. "
30 A-16

'l/EXT SYNC 37 AD·15

BLANK 5 " AD-14

RAs(ALE) . 3S AD-13

ORO 7 34 AD-12

DACK 33 A0-1'

iffi 32 AD·10

AD-'
AI).8

AD·7

" AD·6

27 AD-S

" AD-4

25 AD-'

GND

Figure 2. Pin Configuration

Intel Corporation Assumed No Responsibility for the Use of Any CircUItry Other Than CIrcuitry Embodied In an Intel Product No Other CircUit Patent licenses are ImplJed Information
contained herem supersedes previously published speCificatIOns on these devices from Intel January 1985
@intei Corporation. 1985 7-91 Orger Number: 210655-003

82720

Table 1. Pin Description

Symbol Pin No. Type Name and Description

2XWCLK 1 I Clock Input

DBIN 2 0 Display Bus Input: Read strobe output used to read display memory data into the GDC.

HSYNC 3 0 Horizontal Sync: Output used to initiate the horizontal retrace of the CRT display.

VlEXT 4 1/0 Vertical Sync: Output used to initiate the vertical retrace of the CRT display. In slave
SYNC mode, this pin is an input used to synchronize the GDC with the master raster timing

I device.

BLANK 5 0 Blank: Output used to suppress the video signal.

RAS (ALE) 6 0 Row Address Strobe (Address Latch Enable): Output used to start the control timing
chain when used with dynamic RAMs. When used with static RAMs, this signal is used
to demultiplex the display addressldata bus.

DRQ 7 0 DMA Request: Output used to request a DMA transfer from a DMA controller (8237) or
1/0 processor (8089).

DACK 8 I DMA Acknowledge: Input used to acknowledge a DMA transfer from a DMA controller
or 1/0 processor.

RD 9 I Read: Input used to strobe GDC Data into the microprocessor.

Wfi 10 I Write: Input used to strobe microprocessor data into the GDC.

AO 11 I Register Address: Input used to select between commands and data read or written.

DBO 12 1/0 Bidirectional Microprocessor Data Bus Line: Input enabled by WR. Output enabled
by RD.

DB1 13
DB2 14
DB3 15
DB4 16
DB5 17
DB6 18
DB7 19

GND 20 Ground.

Vce 40 + 5V Power Supply

A17 39 0 Graphics Mode: Display Address Bit 17 Output
Character Mode: Cursor and Line Counter Bit 4 Output
Mixed Mode: Cursor and Image Mode Flag

A'6 38 0 Graphics Mode: Display Address Bit 16 Output
Character Mode: Line Counter Bit 3 Output
Mixed Mode: Attribute Blink and Line Counter Reset

AD,s 37 1/0 Graphics Mode: Display AddresslData Bits 13-15

A[)'4 36 Character Mode: Line Counter Bits 0-2 Output
AD,3 35 Mixed Mode: Display Address/Data Bits 13-15

AD,2 34 1/0 Display AddresslData Bits 0-12
AD" 33
ADlO 32
AD9 31
ADa 30
AD? 29
ADa 28
ADs 27
AD4 26
AD3 25
AD2 24
AD, 23
ADo 22

LPEN 21 I Light Pen Detect Input

7-92 210655-003

inter 82720

FUNCTIONAL DESCRIPTION (Continued)

Microprocessor Bus Interface

Control of the GOC by the system microprocessor is
achieved through an 8-bit bidirectional interface.
The status register is readable at any time. Access to
the FIFO buffer is coordinated through flags in the
status reg ister.

Command Processor

The contents of the FIFO are interpreted by the com­
mand processor. The command bytes are decoded, and
the succeeding parameters are distributed to their
proper destinations within the GOC. The bus interface
has priority over the command processor when both
-access the FIFO simultaneously.

DMA Control

The OMA Control circuitry in the GOC coordinates data
transfers when using an external OMA controller. The
OMA Request and Acknowledge handshake lines inter­
face with an 8257 or 8237 OMA controller or 8089 1/0
processor, so that display data can be moved between
the microprocessor memory and the display memory:

Parameter RAM

The 16-byte RAM stores parameters that are used
repetitively during the display and drawing processes.
In character mode, the RAM holds the partitioned dis­
play area parameters. In graphics mode, the RAM also
holds the drawing pattern and graphics character.

Video Sync Generator

Based on the clock input, the sync logic generates
the raster timing signals for almost any interlaced,
non-interlaced, or "repeat field" interlaced video for­
mat. The generator is programmed during the idle
period following a reset. In video sync slave mode, it
coordinates timing between the GOC and another
video source.

Memory Timing Generator

The memory timing circuitry provides two memory
cycle types: a two-clock period refresh cycle and the
read-modify-write (RMW) cycle which takes four
clock periods. The memory control signals needed to
drive the display memory devices are easily
generated from the GOC's RAS(ALE) and OBIN'
outputs.

Zoom and Pan Controller

Based on the programmable zoom display factor and
the display area parameters in the parameter RAM,
the zoom and pan controller determines when to
advance to the next memory address for display
refresh and when to go on to the next display area. A
horizontal zoom is produced by slowing down the
display refresh rate while maintaining the video sync
rates. Vertical zoom is accomplished by repeatedly
accessing each line a number of times equal to the
horizontal repeat. Once the line count for a display
area is exhausted, the controller accesses the start­
ing address and line count of the next display area
from the parameter RAM. The system microproces­
sor, by modifying a display area starting address,
allows panning in any direction, independent of the
other display areas.

Drawing Processor

The drawing processor contains the logic necessary
to calculate the addresses and positions of the pixels
of the various graphics figures. Given a starting point
and the appropriate drawing parameters, the draw­
ing processor needs no further assistance to com­
plete the figure drawing.

Display Men,ory Controller

The display memory controller's tasks are numerous.
Its primary purpose is to multiplex the address and
data information in and out of the display memory. It
also contains the 16-bit logic units used to modify the
display memory contents during RMW cycles, the
character mode line counter, and the refresh counter
for dynamic RAMs. The memory controller appor­
tions the video field time between the various types
of cycles.

Light Pen Debouncer

Only if two rising edges on the light pen input occur
at the same point during successive video fields are
the pulses accepted as a valid light pen detection. A
status bit indicates to the system microprocessor
that the light pen register contains a valid address.

7-93

System Operation

The GOC is designed to work with Intel microproces­
sors to implement high-performance computer
graphics systems. System efficiency is maximized
through partitioning and a pipelined architecture. At
the lowest level, the GOC generates the basic video

210655-003

82720

raster timing, including sync and blanking signals.
Partitioned areas on the screen and zooming are
also accomplished at this level. At the next level,
video display memory is modified during the figure
drawing operations and data moves. Third, display
memory address are calculated pixel by pixel as
drawing progresses. Outside the GDC at the next
level, preliminary calculations are done to prepare
drawing parameters. At the fifth level, the picture
must be represented as a list of graphics figures
drawable by the GDC. Finally, this representation
must be manipulated, stored and communicated.
The GDC takes care of the high-speed and repetitive
tasks required to implement graphics systems.

GENERAL OVERVIEW

In order to minimize system bus loading, the 82720 uses
a private video memory for storage of the video image.
Up to 512K bytes of video memory can be directly sup­
ported. For example, this is sufficient capacity to store
a 2048 x 2048 pixel x 1 bit image. Images can be
generated on the screen by:

-Drawing Commands
-Program-Controlled Transfers
-DMA Transfers from System Memory

The 82720 can be configured to support a wide vari­
ety of graphics ap~lications. It can support:

-High Dot Rates
-Color Planes
-Horizontal Split Screen

, -Character-oriented Displays
-Multiplexed Graphic and Character Display

GRAPHIC DISPLAY CONFIGURATIONS
The 82720 provides the flexibility to handle a wide
variety of graphic applications. This flexibility results
from having its own private vide,o memory for storage
of the graphics image. The organization of this
memory determines the performance, the number of
bits/pixel and the size of the display. Several different
video memory organizatio,ns are examined in the fol­
lowing paragraphs.

In the simplest 82720 system, the memory can store up
to a 2048 x 2048 x 1 bit image. It can display a 1024
x 1{)24 x 1 bit section of the image at a maximum dot
rate of 44 MHz, or 88 MHz in wide mode. In this con­
figuration, only 1 bit/pixel is used.

By partitioning the memory into multiple banks, color,
gray scale and higher bandwidth displays can be sup­
ported. By adding various amounts of external logic,

many cost/performance tradeolfs for both display and
drawing are realizable.

The video memory can be partitioned into 4. banks,
each 1024 x 1024 bits. By selecting all 4 memory
banks during display, 4 bits/pixel can be provided by
a single 82720. Each bank of video memory con­
tributes 1 bit to each pixel. This configuration can
support color monitors, again with a maximum dot shift
rate of 44 or 88 MHz.

Higher performance may be achieved by using multi­
ple 82720s. Multiple 82720s can be used to support
mutliple display windows, increased drawing speed,
or increased bits per pixel. For display windows,
each 82720 controls one window of the display. For
increased drawing speed, multiple 82720s are
operated in parallel. For increased bits/pixel, each
82720 contributes a portion of the number of bits
necessary for a pixel.

CHARACTER DISPLAY CONFIGURATION
Although the 82720 is intended primarily for raster­
scan graphics, it can be used as a character display
controller. The 82720 can support up to 8K by 13 bits
of private video memory in this configuration (1 char­
acter ~ 13 bits). This is sufficient memory to store 4
screens of data containing 25 rows by 80 characters.
The 82720 can display up to 256 characters per row.
Smooth vertical scrolling of each of 4 independent
display partitions is also supported.

MIXED DISPLAY CONFIGURATION
The GDC can support a mixed display system for
both graphic and character information. This capa­
bility allows the display screen to be partitioned be­
tween graphic and character data. It is possible to
switch between one graphic display window and one
character display window with raster line resolution.
A maximum of 256K bytes of video memory is sup­
ported in this mode: half is for graphic data, half is for
character data. In graphic mode, a one megapixel
image can be stored and displayed. In character mode,
64K, 16-bit characters can be stored.

DETAILED OPERATIONAL DESCRIPTION

The GDC can be used in one of three basic modes
-Graphics Mode, Character Mode and Mixed Mode.
This section of the data sheet describes the following
for each mode:

1. Memory organization
2. Display timing
3. Special Display functions
4. Drawing and writing

7-94 210655-003

inter 82720

Graphics Mode Memory Organization

The Display Memory is organized into 16-bit words
(32-bit words, in wide mode). Since the display memory
can be larger than the CRT display itself, two width
parameters must be specified: display memory width
and display width. The Display width (in words) is
selected by a parameter of the Reset command. The
Display memory width (in words) is selected by a para­
meter of the Pitch command. The height of the Display
memory can be larger than the display itself. The height
of the [!)isplay is selected by a parameter of the Reset
command. The GDC can directly address up to 4Mbits
(O.SMbytes) of display RAM in graphics mode.

Graphics Mode Display Timing

All raster blanking and display timings of the GDC are
a function of the input clock frequency. Sixteen or
32 bits of data are read from the RAM and loaded into
a shift register in each two clock period display cycle.
The Address and Data busses of the GDC are multi­
plexed. In the first part of the cycle, the address of the
word to be read is latched into an external demultiplexer.
In the second part of the cycle the data is read from
the RAM and loaded into the shift register. Since all 16
(32) bits of data are to be displayed, the dot clock is
8 x (16 x) the GDC clock or 16x (32 x) the Read cycle
rate.

Parameters of the Reset or Sync command determine
the horizontal and vertical front porch, sync pulse, and
back porch timings. Horizontal parameters are speCified
as multiples of the display cycle time, and vertical para­
meters as a multiple of the line time.

Another Reset command parameter selects interlaced
or non-interlaced mode. A bit in the parameter RAM can
define Wide Display Mode. In this mode, while data is
being sent to the screen, the display address counter
is incremented by two rather than one. This allows the
display memory to be configured to deliver 32 bits from
each display read cycle.

The V Sync command specifies whether the V Sync
Pin is an input or an output. If the V Sync Pin is an
output, the GDC generates the raster timing for the
display and other CRT controllers can be synchro­
nized to it. If the V Sync pin is an input, the GDC can
be synchronized to any external vertical Sync signal.

Graphics Mode Special Display Functions:

7-95

WINDOWING
The GDC's Graphics Mode Display can be divided
into two windows on the screen, upper and lower.
The windows are defined by parameters written into
the GDC's parameter RAM. Each window is specified
by a starting address and a window length in lines. If
the second window is not used, the first window
parameters should be specified to be the same as the
active display length.

ZOOMING
A parameter of the GDC's zoom command allows
zooming by effectively increasing the size of the dots
on the screen. This is accomplished'vertically by
repeating the same display line. The number of times
it is repeated is determined by the display zoom fac­
tor parameter. Horizontally, zoom is accomplished by
extending each display word cycle and displaying
fewer words per line, according to the zoom factor. It
is the responsibility of the microprocessor control­
ling the GDC to provide the shift register clock cir- ,
cuitry with the zoom factor required to slow down the
shift registers to the appropriate speed. The fre­
q uency of tHe 2XWCLK should not be changed. The
zoom factor must be set to a known state upon
initialization.

PANNING
Panning is accomplished by changing the starting
address of the display window. In this way, panning is
possible in any direction, vertically on a line by line
basis and horizontally on a word by word basis.

Graphics Mode Drawing and Writing

The GDC can draw solid or patterned lines, arcs, circles,
rectangles, slanted rectangles, characters, slanted char­
acters, filled rectangles. Direct access to the bit map
is also provided via the OMA Commands and the Read
or Write data commands.

MEMORY MODIFICATION
All drawing and writing functions take place at the
location in the display RAM specified by the cursor.
The cursor is not displayed in Graphics Mode. The
cursor location is modified by the execution of draw­
ing, reading or writing commands. The cursor will
move to the bit following the last bit accessed.

210655-003

inter 82720

Each bit is drawn by executing a Read-Modify-Write
cycle on the display RAM. These R/MIW cycles normally
require four 2XWCLK cycles to execute. If the display
zoom factor is greater than two, each R/M/W cycle will
be extended to the width of a display cycle. Write Data
(WDAT), Read Data (RDAT), DMA write (DMAW) and
DMA read (DMAR) commands can be used to exam­
ine or modify one to 16 bits in each word during each
R/M/W cycle. All other graphics drawing commands
modify one bit per R/M/W cycle.

An internal 16-bit Mask register determines which bills)
in the accessed word are to be modified. A one in the
Mask register allows the corresponding bit in the display
RAM to be modified by the R/M/W cycle. A zero in the
Mask register prevents the GDC from modifying the cor­
responding bit in the display RAM.

The mask must be set by the Mask Command prior to
issuing the WDAT or DMAW command. The Mask reg­
ister is automatically set by the CURS command and
manipulated by the graphics commands.

The display RAM bits can be modified in one of four
ways. They can be set to 1, reset to 0, complemented
or replaced by a pattern.

When replace by a pattern mode is selected, lines,
arcs and rectangles will be drawn using the 16-bit
pattern in parameter RAM bytes 8 and 9.

In set, reset, or complement mode, parameter RAM
bytes 8 and 9 act as another level of masking for line
arc and rectangle drawi"g. As each 16-b.it segment
of the line or arc is drawn, it is checked against the
pattern in the parameter RAM. If the pattern RAM bit
is a one, the display RAM bit will be set, reset, or
complemented per the proper modes. If the pattern
RAM bit is a zero, the display RAM bit won't be
modified.

When replace by pattern mode is selected, the
graph'ics character and fill commands will cause the
8 x 8 pattern in parameter RAM bytes 8 to 15 to be
written directly into the display RAM in the appropri-
ate locations. .

In set, reset, or complement mode, the 8 x 8 pattern in
parameter RAM bytes 8 to 15 act as a mask pattern
for graphics character or fill commands. If the appro­
priate parameter RAM bit is set, the display RAM bit
will be modified. If the parameter RAM bit is zero, the
display RAM bit will not be modified. These modes
are selected by issutng a WDAT command without
parameters before issuing graphics commands. The
pattern in the parameter RAM has no effect on WDAT,
RDAT, DMAW, or DMAR operations.

7-96

READING AND DRAWING COMMANDS
After the modification mode has been set and the
parameter RAM has been loaded, the final drawing
parameters are loaded via the figure specify (FIGS)
command. The first parameter specifies the direc­
tion in which drawing will occur and the figure type to
be drawn. This parameter is followed by one to five
more parameters depending on the type of character
to be drawn.

The direction parameter specifies one of eight oc­
tants in which the drawing or reading will occur. The
effect of drawing direction on the various figure
types is shown in Figure 9.

RDAT, WDAT, DMAR, and DMAW Operations move
through the Display memory as shown in the "DMA"
Column.

The other parameters required to set up figure reading
or drawing are shown in Figure 3.

DRAWING TYPE DC o 02 01 OM

INITIAL VALUE' -1 -1

2(laDI - lall) 21aDI

ARC" rsln cpt r-1 2(r-l) -1 ' rsln 8J

RECTANGLE A-l B-1 -1 A-l

AREA FILL B-1 A A

GRAPHIC B-1 A A
CHARACTER'"

WRITE DATA W - 1

DMAW 0-1 C-l

DMAR 0-1 C-2 (C-2)/2t

READ DATA W

'INITIAL VALUES FOR THE VARIOUS PARAMETERS ARE LOADED
WHEN THE FIGS COMMAND BYTE IS PROCESSED.

"CIRCLES ARE DRAWN WITH 8 ARCS. EA\=H OF WHICH SPAN 45',
SO THAT SIN ¢ = 11";2 AND SIN' = O.

"'GRAPHIC CHARACTERS ARE A SPECIAL CASE OF BIT,MAP
AREA FILLING IN WHICH B AND A ::::;8. IF A = 8 THERE IS NO
NEED TO LOAD 0 AND 02.

WHERE:
- 1 = ALL ONES VALUE.

ALL NUMBERS ARE SHOWN IN BASE 10 FOR CONVENIENCE. THE GDC
ACCEPTS BASE 2 NUMBERS (28 COMPLEMENT NOTATION WHERE
APPROPRIATE).

- = NO PARAMETER BYTES SENT TO GDC FOR THIS PARAMETER.
AI = THE LARGER Of .:lX OR Ay.

AD = THE SMALLER OF Ax OR Ay.
r = RADIUS OF CURVATURE, IN PIXELS.
¢ = ANGLE FROM MAJOR AXIS TO END OF THE ARC. ¢ s 45'.
8 = ANGLE FROM MAJOR AXIS TO START OF THE ARC. 8 :s;45C>.
I = ROUND UP TO THE NEXT HIGHER INTEGER.
I = ROUND DOWN TO THE NEXT LOWER INTEGER.
A = NUMBER OF PIXELS IN THE INlnALLY SPECIFIED DIRECTION.
B = NUMBER OF PIXELS IN THE DIRECTION AT RIGHT ANGLES TO

THE INITIALLY SPECIFIED DIRECTION.
W = NUMBER OF WORDS TO BE ACCESSED.
C = NUMBER OF BYTES TO BE TRANSFERRED IN THE INITIALLY

SPECIFIED DIRECTION. (TWO BYTES PER WORD IF WORD
TRANSFER MODe IS SELECTED.)

D. NUMBER OF WORDS TO BE ACCESSED IN THE DIRECTION AT
RIGHT ANGLES TO THE INITIALLY SPECIFIED DIRECTION.

DC = DRAWING COUNT PARAMETER WHICH IS ONE LESS THAN
THE NUMBER OF RMW CYCLES TO BE EXECUTED.

OM = DOTS MASKED FROM DRAWING DURING ARC DRAWING.
t = NEEDED ONLY FOR WORD READS.

Figure 3, Drawing Parameter Details

210655-003

inter 82720

After the parameters have been set, line, arc, circle, rec­
tangle or slanted rectangle drawing operations are
initiated by the Figure Draw (FIG D) command.
Character, slanted character, area fill and slanted area
fill drawing operations are initiated by the Graphics
Character Draw (GCHRD) command. DMA transfers are
initiated by the DMA Read or Write (DMAR or DMAW)
commands. Data Read Operations are initiated by the
Read Data (RDAT) Command. Data Write Operations
are initiated by writing a parameter after the WDAT
command.

The area fill operation steps and repeats the 8 x 8
graphics character pattern draw operation to fill a
rectangular area. If the size of the rectangle is not an
integral number of 8 x 8 pixels, the GDC will auto­
matically truncate the pattern at the edges furthest
from the starting point.

The Graphics Character Drawing capability can be
modified by the Graphics Character Write Zoom Fac­
tor (GCHR) parameter of the zoom command. The
zoom write factor may be set from 1 to 16 (by using
from 0 to 15 in the parameter). Each dot will be
repeated in memory horizontally and vertically
(adjusted for drawing direction) the number of times
specified by the zoom factor.

The WDAT command can be used to rapidly fill large
areas in memory with the same value. The mask is set
to all 1's, and the least significant bit of the WDAT
parameter replaces all bits of each word written.

Character Mode Memory Organization

In character mode, the Display memory is organized
into up to 8K characters of up to 13 bits each. Wide
mode is also available for characters of up to 26 bits.

The display memory can be larger than the display
itself. The display width (in characters) is a parameter
of the reset command. The display memory width (in
characters) is a parameter of the Pitch Command.
The height of the display (in lines) is a parameter of
the Reset Command. The display memory height is
determined by dividing the number of display
memory words by the pitch.

In character mode, the display works almost exactly as
it does in graphics mode. The differences lie in the fact
that data read from the display RAM is used to drive
a character generator as well as attribute logic if
desired. In Character mode, address bits 13-16 become
line counter outputs used to select the proper line of
the character generator, and the address 17 output
becomes the cursor and line counter MSB output.

7-97

Character Mode Display Timing

In character mode, the display timing works as it does
in graphics mode. In addition, the Address 17 output
becomes cursor output. The characteristics of the cur­
sor are defined by parameters of the cursor and
Character Characteristics (CCHAR) command. One bit
allows the cursor output to be enabled or disabled. The
height of the cursor is programmable by selecting the
top and bottom line between which the cursor will
appear. The blink rate is also programmable. The
parameter selects the number of frame times that the
Cl,Jrsor will be inactive and active, resulting in a 50%
duty cycle cursor blinking at 2 x the period specified
by the parameter.

The cursor output pin also provides the lin~ counter bit
4 signal, which is valid 10 clocks after the trailing edge
of HSYNC.

Character Mode Special Display Functions

WINDOWING
The GDC's Character Mode display can be par­
titioned into one to four windows on the screen. The
windows are defined by parameters written into the
GDC's Parameter RAM. Each window is specified by
a starting address and a window length in lines.

If wtndowing is not required, the first window length
should be specified to be the same as the active
display length.

ZOOMING AND PANNING
In character mode, zooming and pan handling com­
mands function the same way as in Graphics Mode.

Character Mode Drawing and Writing

The GDC can 'read or write characters of up to 13
bits into or out of the Display RAM.

All reading and writing functions take place at the
display RAM location specified by the cursor. The cur­
sor location can be read by issuing the CURD com­
mand. The cursor can be moved anywhere within the
display memory by the CURS command. The cursor
location is also modified by the execution of character
read or write commands.

Each character is written or read via a
Read/ModifylWrite cycle. The mask register contents
determine which bites) in the character are modified.
The mask register can be used to change character
codes without modifying,attribute bits or vice-versa. The
Replace with pattern, Set, Reset and Complement

210655-003

82720

modes work exactly as they do in graphics mode, with
the exception that the parameter RAM Pattern is not
used. The pattern used is a parameter of the WDAT
command.

The Figure Specify (FIGS) command must be set to
Character Display mode, as well as specify the direc­
tion the cursor will be moved by read or write data
commands.

In character mode, the FIGD and GCHRD commands
are not used.

Mixed Mode Memory Organization

In mixed mode, the display memory is organized into
two banks of up to 64K words of 16 bits each (32 bits
in wide mode).

The display height and width are programmable by the
same Reset or Sync command parameters as in the
graphics and character modes. The display memory
width (in words) is a parameter of the Pitch Command
and the height of the display memory is determined by
dividing the number of display memory words by the
pitch.

An image mode signal is used to switch the external
circuitry between graphics and character modes in
two display windows.

In a graphics window, the GDC works as it does in
pure graphics mode, but on a smaller total memory
space (64K words vs 512K words).

In a character window, the GDC works as it does in
pure character mode, but the line counter must be
implemented externally. The counter is clocked by
the horizontal sync pulse and reset by a signal sup­
plied by the GDC.

In mixed mode, the GDC provides both a cursor and
an attribute blink timing signal.

Mixed Mode Display Timing

In mi)<ed mode, each word in a graphic area is ~ccessed
twice in succession. The AW parameter of the Reset
or Sync command should be set to twice its normal
value, and the video shift register load signal must be
suppressed during the extra access cycle.

In addition, A16 becomes a Multiplexed Attribute and
Clear Line Counter signal and A17 becomes a multi­
plexed cursor and image mode signal. A16 provides an

active high line counter reset signal which is valid
10 clocks after the trailing edge of HSYNC. During the
active display line time, A16 provides blink timing for
external attribute circuitry. This signal blinks at 1/2 the
blink rate of the cursor with a 75% on, 25% off duty
cycle. A17 provides a signal which selects' between
graphics or character display, which is also valid
10 clocks after the trailing edge of HSYNC. During the
active display time, A17 provides the cursor signal. The
cursor timing and characteristics are defined in exactly
the same way as in pure character mode.

7-98

Mixed Mode Special Display Functions

\
WINDOWING
The GDC supports two display windows in mixed mode.
They can independently be programmed into either
graphics or character mode determined by the state of
two bits in the parameter RAM. The windOw location
in display memory and size are also determined by
parameters in the parameter RAM.

ZOOMING AND PANNING
In mixed mode, zooming and panning commands
function the same as in graphics and character
mode.

Mixed Mode Drawing and Writing

In mixed mode, the GDC can write or draw in exactly
the same ways as in both graphics and character
modes. In addition, the FIGS command has a para­
meter GO (Graphics Drawing Flag) which sets the
image mode signal to select the proper RAM bank.

DEVICE PROGRAMMING

The GDC occupies two addresses on the system micro­
processor bus through which the GDC's status register
and FIFO are accessed. Commands and parameters
are written into the GDC FIFO and are differentiated by
address bit AO. The status register or the FIFO can be
read as selected by the address line.

AO READ WRITE

STATUS REGISTER PARAMETER INTO FIFO
0 I I , , , I , , , I I , , , , I I I

FIFO READ COMMAND INTO FIFO
1 I I I I I I I I I I I I I I I I I I

Figure 4. GDC Mlcroproceaaor Bua Interface
Reglatera

210655-003

82720

Commands to the GOC take the form of a command
byte followed by a series of parameter bytes as
needed for specifying the details of the command.
The command processor decodes the commands,
unpacks the parameters, loads them into the appro­
priate registers within the GOC and initiates the re­
quired operations.

The commands available in the GOC can be organ­
ized into five categories as described in figure 5.

VIDEO CONTROL COMMANDS
1. RESET: RESETS THE GDC TO ITS IDLE STATE.
2. SYNC: SPECIFIES THE VIDEO DISPLAY FORMAT.
3. VSYNC: SELECTS MASTER OR SLAVE VIDEO

SYNCHRONIZATION MODE
4. CCHAR: SPECIFIES THE CURSOR AND CHARACTER ROW

HEIGHTS.
DISPLAY CONTROL COMMANDS

1. START: ENDS IDLE MODE AND UN BLANKS THE DISPLAY.
2. BCTRL: CONTROLS THE BLANKING AND UNBLANKING OF

THE DISPLAY.
3. ZOOM: • SPECIFIES ZOOM FACTORS FOR THE DISPLAY AND

GRAPHICS CHARACTERS WRITING.
4. CURS: SETS THE POSITION OF THE CURSOR IN DISPLAY

MEMORY.
5. PRAM: DEFINES STARTING ADDRESSES AND LENGTHS OF

THE DISPLAY AREAS AND SPECIFIES THE EIGHT
BYTES FOR THE GRAPHICS CHARACTER.

S. PITCH: SPECIFIES THE WIDTH OF THE X DIMENSION OF
DISPLAY MEMORY.

DRAWING CONTROL COMMANDS
1. WDAT: WRITES DATA WORDS OR BYTES INTO DISPLAY

MEMORY.
2. MASK: SETS THE MASK REGISTER CONTENTS.
3. FIGS: SPECIFIES THE PARAMETERS FOR THE DRAWING

PROCESSOR.
4. FIGD: DRAWS THE FIGURE AS SPECIFIED ABOVE.
6. GCHRD: DRAWS THE GRAPHICS CHARACTER INTO DISPLAY

MEMORY. DATA READ COMMANDS
1. RDAT: READS DATA WORDS OR BYTES FROM DISPLAY

MEMORY.
2. CURD: READS THE CURSOR POSITION.
3. LPRD: READS THE LIGHT PEN ADDRESS.

DMA CONTROL COMMANDS
1. DMAR: REQUESTS A DMA READ TRANSFER.
2. DMAW: REQUESTS A DMA WRITE TRANSFER.

Figure 5. GDC Command Summary

171s151. 31-1101

11 111~~-- VERTICAL SYNC ACTIVE
HORIZONTAL BLANK ACTIVE

'------------UOH7 PEN DETECT

Figure 6. Status Register (SR)

Status Register Flags

SR-7: Light Pen Detect: When this bit is set to 1, the
light pen address (LAO) register contains a de­
glitched valUe that the system microprocessor may
read. This flag is reset after the 3-byte LAD is moved
into the FIFO in response to the light pen read
command.

7-99

SR-6: Horizontal Blanking Active: A 1 value for
this flag signifies that horizontal retrace blanking is
currently underway.

SR-5: Vertical Sync: Vertical retrace sync occurs
while this flag is a 1. The vertical sync flag coor­
dinates display format modifying commands to the
blanked interval surrounding vertical sync. This
eliminates display disturbances.

SR-4: DMA Execute: This bit is a 1 during OMA data
transfers.

SR-3: Drawing in Progress: While the GOC is draw­
ing a graphics figure, this status bit is a 1.

SR-2: FIFO Empty: This bit and the FIFO Full flag
coordinate system microprocessor accesses with
the GOC FIFO. When it is 1, the Empty flag ensures
that all the commands and parameters previously
sent to the GOC have been processed.

SR-1: FIFO Full: A 1 at this flag indicates a full FIFO
in the GOC. A 0 ensures that there is room for at least
one byte. This flag needs to be checked before each
write into the GOC.

SR-O: Data Ready: When this flag is a 1, it indicates
that a byte is available to be read by the system
microprocessor. This bit must be tested before each
read operation. It drops to a 0 while the data is trans­
ferred from the FIFO into the microprocessor inter­
face data register.

FIFO Operation & Command Protocol

The first-in, first-out buffer (FIFO) in the GOC
handles the command dialogue with the system mi­
croprocessor. This flow of information uses a half­
duplex technique, in which the single 16-location
FIFO is used for both directions of data movement,
one direction at a time. The FIFO's direction is con­
trolled by the system microprocessor through the GOC's
command set. The microprocessor coordinates these
transfers by checking the appropriate status register
bits.

The command protocol used by the GOC requires
the differentiation of the first byte of a command
sequence from the succeeding bytes. This first byte
contains the operation code and the remaining bytes
carry parameters. Writing into the GOC causes the
FIFO to store a flag value alongside the data byte to
signify whether the byte was written into the com­
mand or the parameter address. The command pro­
cessor in the GOC tests this bit as it interprets the
entries in the FIFO.

210655-003

82720

The receipt of a command byte by the command
processor marks the end of any previous operation.
The number of parameter bytes supplied with a com­
mand is cut short by the receipt of the next command
byte. A read operation from the GOC to the micropro­
cessor can be terminated at any time by the next
command.

The FIFO changes direction under the control of the
system microprocessor. Commands written into the
GOC always put the FIFO into write mode if it wasn't
in it already. If it was in read mode, any read data in
the FIFO at the time of the turnaround is lost. Com­
mands which require a GOC response, such as ROAT,
CURD and LPRO, put the FIFO into read mode after
the command is interpreted by the GOC's command
processor. Any commands and parameters behind
the read-evoking command are discarded when the
FIFO direction is reversed. .

Read·Modify·Write Cycle

Data transfers between the GOC and the display
memory are accomplished using a read-modify-write
(RMW) memory cycle. The four clock period timing of
the RMW cycle is used to: 1) output the address, 2)
read data from the memory, 3) modify the data, and 4)
write the modified data back into the initially se­
lected memory address. This type of memory cycle is
used for all interactions with display memory includ­
ing OMA transfers, except for the two clock period
display and RAM refresh cycles.

The operations performed during the modify portion
of the RMW cycle merit additional explanation. The
circuitry in the GOC uses three main elements: the
P/lttern register, the Mask register, and the 16-bit
Logic unit. The Pattern register holds the data pat­
tern to be moved into memory. It is loaded by the
WOATcommand or, during drawing, from the param­
eter RAM. The Mask register contents determine
which bits of the read data will be modified. Bl;lsed on
the contents of these registers, the Logic unit per­
forms the selected operations of REPLACE, COM­
PLEMENT, SET, or CLEAR on the data read from
display memory.

The Pattern register contents are ANOed with the
. Mask register contents to enable the actual modifica­
tion of the memory read data, on a bit-by-bit basis.
For graphics drawing, one bit at a time from the
Pattern register is combined with the Mask. When
ANOed with the bit set to a 1 in the Mask register, the
proper single pixel is modified by the Logic Unit. For
the next pixel in the figure, the next bit in the Pattern
register is selected and the Mask register bit is

moved to identify the pixel's location within the word.
The Execution word address pointer register, EAD, is
also adjusted as required to address the word con­
taining the next pixel.

In character mode, all of the bits in the Pattern regis­
ter are used in parallel to form the respective bits of
the modify data word. Since the bits of the character
code word are used in parallel, unlike the one-bit-at­
a-time graphics drawing process, this facility allows
any or all of the bits in a memory word to be modified
in one RMW memory cycle. The Mask register must
be loaded with 1s in the positions where modification
is to be permitted.

The Mask register can be loaded in either of two
ways. In graphics mode, the CURS command con­
tains a four-bit dAD field to specify the dot address.
The command processor converts this parameter
into the one-of-16 format used in the Mask register
for figure drawing. A full 16 bits can be loaded into
the Mask register using the MASK command. In addi­
tion to the character mode use mentioned above, the
16-bit MASK load is convenient in graphics mode
when all of the pixels of a word are to be set to the
same value.

The Logic unit combines the data read from display
memory, the Pattern register, and the Mask register
to generate the data to be written back into display
memory. Anyone of four operations can be selected:
REPLACE, COMPLEMENT, CLEAR or SET. In each
case, if the respective Mask bit is 0, that particular bit
of the read data is returned to memory unmodified. If
the Mask bit is 1, the modification is enabled. With
the REPLACE operation, the modify data simply
takes the place of the read data for modification
enabled bits. For the other three operations, a 0 in
the modify data allows the read data bit to be re­
turned to memory. A 1 value causes the specified
operation to be performed in the bit positions with
set Mask bits.

Figure Drawing

The GOC draws graphics figures at the rate of one
pixel per read-modify-write (RMW) display memory
cycle. These cycles take four clock periods to com­
plete. At a clock frequency of 5 MHz, this is equal to
800 ns. During the RMW cycle the GOC simulta­
neously calculates the address and position of the
next pixel to be drawn.

The graphics figure drawing process depends on the
display memory addressing structure. Groups of 16
horizontally adjacent pixels form the 16-bit words

7-100 210655-003

82720

which are handled by the GDG. Display memory is
organized as a linearly addressed space of these
words. Addressing of individual pixels is handled by
the GDG's internal RMW logic.

During the drawing process, the GDG finds the next
pixel of the figure which is one of the eight nearest
neighbors of the last pixel drawn. The GDG assigns
each of these eight directions a number from 0 to 7,
starting with straight down and proceeding
counterclockwise.

Figure 7. Drawing Directions

Figure drawing requires the proper manipulation of
the address and the pixel bit position according to
the drawing direction to determine the next pixel of
the figure. To move to the word above or below the
current one, it is necessary to subtract or add the
number of words per line in display memory. This
parameter is called the pitch. To move to the word to
either side, the Execute word address cursor, EAD,
must be incremented or decremented as the dot ad­
dress pOinter bit reaches the LSB or the MSB of the
Mask register. To move to a pixel within the same
word, it is necessary to rotate the dot address pointer
register to the right or left.

Figure 8 summarizes these operations for each
direction.

Whole word drawing is useful for filling areas in
memory with a single value. By setting the Mask
register to all 1s with the MASK command, both the
LSB and MSB of the dAD will always be 1, so that the
EAD value will be incremented or decremented for
each cycle regardless of direction. One RMW cycle will
be able to affect all 16 bits of the word for any drawing
type. One bit in the Pattern register is used per RMW
cycle to write all the bits of the word to the same value.
The next Pattern bit is-used for the word, etc.

DIR ADDRESS OPERATION(S)

o EAD=EAD+P

EAD=EAD+P
If dAD.MSB = 1 then EAD = EAD + 1
dAD = LR(dAD)

If dAD.MSB = 1 then EAD = EAD + 1
dAD = LR(dAD)

EAD = EAD -P
If dAD.MSB = 1 then EAD = EAD + 1
dAD =LR(dAD)

4 EAD=EAD-P

5 EAD=EAD-P
If dAD.LSB = 1 then EAD = EAD - 1
dAD = RR(dAD)

6 If dAD.LSB = 1 then EAD = EAD - 1
dAD = RR(dAD)

7 EAD=EAD+P
If dAD.LSB = 1 then EAD = EAD - 1
dAD = RR(dAD)

WHERE
P = PITCH, LR = LEFT ROTATE, RR = RIGHT ROTATE

CAD = CURSOR ADDRESS
dAD = DOT ADDRESS
LSB = LEAST SIGNIFICANT BIT
MSB = MOST SIGNIFICANT BIT

Figure 8. Address Calculation Details

7-101 210655-003

i:
I

1* :1
1\
i

82720

For the various figures, the effect of the initial direction
upon the resulting drawing is shown in figure 9.

Note that during line drawing, the angle of the line
may be anywhere within the shaded octant defined
by the DIR value. Arc drawing starts in the direction
inifially specified by the DIR value and veers into an

"

Oir Line Arc Character

000 ~~ ~.-.:.-; .. •
001 ~ ~ ~ I ,

I ,

I' .,

A ..
I I"

010 I "
I .
~

011 t7 r~:~ ... ~
100 ~~ ,,~:'_1 • .. .'

~ 101 ' I
" I ~

110 T r; I, ,
, I

, I ..
111 A -:'~J ~ '1

arc as drawing proceeds. An arc may be up to 45
degrees in length. DMA transfers are done on word
boundaries only, and follow the arrows indicated in
the table to find successive word addresses. The
slanted paths for DMA transfers indicate the GDC
changing both the X and Y components of the word
address when moving to the next word. It does not
follow a 45 degree diagonal path by pixels.

Slant Char Rectangle OMA , 0 N\l
~ <> ~
/ 0 ~

1
~ <> ~ , 0 l\N
~ 0 ~
I 0 ~-- -- - .

- <> ~
Figure 9. Effect of the Direction Parameter

7-102 210655-003

intJ 82720

Drawing Parameters

In preparation for graphics figure drawing, the GDC's
Drawing Processor needs the figure type, direction
and drawing parameters, the starting pixel address,
and the pattern from the microprocessor. Once these
are in place within the GDC, the Figure Draw com­
mand, FIGD, initiates the drawing operation. From
that point on, the system microprocessor is not in­
volved in the drawing process. The GDC Drawing
Processor coordinates the RMW circuitry and ad­
dress registers to draw the specified figure pixel by
pixel.

The algorithms used by the processor for figure
drawing are designed to optimize its drawing speed.
To this end, the specific details about the figure to be
drawn are reduced by the microprocessor to a form
conducive to high-speed address calculations within
the GDC. In this way the repetitive, pixel-by-pixel
calculations can be done quickly, thereby minimizing
the overall figure drawing time. Figure 3 summarizes
the parameters.

Graphics Character Drawing

Graphics characters can be drawn into display
memory pixel-by-pixel. The up to 8-by-8 character is
loaded into the GDC's parameter RAM by the system
microprocessor. Consequently, there are no
limitations on the character set used. By varying the
drawing parameters and drawing direction,
numerous drawing options are available. In area fill
applications, a character can be written into display

7-103

memory as many times as desired without reloading
the parameter RAM.

Once the parameter RAM has been loaded with up to
eight graphics character bytes by the appropriate
PRAM command, the GCHRD command can be used
to draw the bytes into display memory starting at the
cursor. The zoom magnification factor for writing,
set by the zoom command, controls the size of the
character written into the display memory in integer
multiples of 1 through 16. The bit values in the PRAM
are repeated tiorizontally and vertically the number
of times specified by the zoom factor.

The movement of these PRAM bytes to the display
memory is controlled by the parameters of the FIGS
command. Based on the specified height and width
of the area to be drawn, the parameter RAM is
scanned to fill the required area.

For an 8-by-8 graphics character, the firsf pixel drawn
uses the LSB of RA-15, the second pixel uses bit 1 of
RA-15, and so on, until the MSB of RA-15 is reached.
The GDC jumps to the corresponding bit in RA-14 to
continue the drawing. The progression then advances
toward the LSB of RA-14. This snaking sequence is con­
tinued for the other 6 PRAM bytes. This progression
matches the sequence of display memory addresses
calculated by the drawing processor as shown in
figure 9. If the area is narrower than 8 pixels wide, the
snaking will advance to the next PRAM byte before the
MSB is reached. If the area is less than 8 lines high,
fewer bytes in the parameter RAM will be scanned. If
the area is larger than 8 by 8, the GDC will repeat the
contents of the parameter RAM in two dimensions.

210655-003

inter 82720

Parameter RAM Contents

The parameters stored in the parameter RAM,
PRAM, are available for the GDG to refer to
repeatedly during figure drawing and raster­
scanning. In each mode of operation the values in the
PRAM are interpreted by the GDG in a predeter­
mined fashion. The host microprocessor must load
the appropriate parameters into the proper PRAM
locations. PRAM loading command allows the host
to write into any location of the PRAM and transfer as
many bytes as desired. In this way any stored param- .
eter byte or bytes may be changed without influenc­
ing the other bytes.

The PRAM stores two types of information. For
specifying the details of the display area partitions,
blocks of four bytes are used. The four parameters
stored in each block include the starting address in
display memory of each display area, and its length.

In addition, there are two mode bits for each area
which specify whether the area Is a bit-mapped
graphics area or a coded character area, and
whether a normal or wide display cycle is to be used
for that area.

The other use for the PRAM contents is to supply the
pattern for figure drawing when in a bit-mapped
graphics area or mode. In these situations, PRAM
bytes 8 through 16 are reserved for this patterning
information: For line, arc, and rectangle drawing
(linear figures) locations 8 and 9 are loaded into the
Pattern register to allow the GOG to draw dotted,
dashed, etc. lines. For area filling and graphics bit­
mapped character drawing locations 8 through 15
are referenced for the pattern or character to be
drawn.

Details of the bit assignments are shown on the fol­
lowing pages for the various modes of operation.

7-104 210655-003

intJ

)

82720

~01S __ -I _______ S_~_D1_L ______ ~
r· -----r--------.,I '\ DISPLAY PARTITION AREA 1 STARTING

SAD1 H .l- ADDRESS WITH LOW AND HIGH
I I ~~:~~~~~CE FIELDS (WORD

RA-8

9

10

11

RA-12

13

14

15

LENGTH OF DISPLAY PARTITION 1
(LINE COUNT) WITH LOW AND HIGH
SIGNIFICANCE FIELDS.

THE IMAGE BIT AFFECTS THE
OPERATION OF THE DISPLAY ADDRESS
COUNTER IN CHARACTER MODE. IF

'-------------- ~~LI~NAc?REE~IJ~~ ~~~N~T AFTER
EACH READ CYCLE. IF THE IMAGE
BIT IS SET, IT WILL INCREMENT
BY ONE AFTER EVERY TWO
READ CYCLES.

A WIDE DISPLAY CYCLE WIDTH
OF TWO WORDS PER MEMORY CYCLE
IS SELECTED FOR THIS DISPLAY

'--------------- ~~~~I~pI'l~ fJ1'~~::1:6~IMR IS

SAD2L

THEN INCREMENTED BY 2 FOR EACH
DISPLAY SCAN CYCLE. OTHER MEMORY
CYCLE TYPES ARE NOT INFLUENCED.

DISPLAY PARTITION ~ STARTING
--- ADDRESS AND LENGTH

DISPLAY PARTITION 3 STARTING
ADDRESS AND LENGTH

DISPLAY PARTITION 4 STARTING
ADDRESS AND LENGTH

Figure 10. Parameter RAM Contents-Character Mode

7-105 210655-003

82720

RA-O L.1_"-.....J'-..&.._S_A..If_1_L-..I._..&.._"-~I-

RA-4

RA-10

11

12

13

14

15

[SAD1 M I
~-~~~~~--~~~~.

SAlnL

GCHR6

GCHR 5

GCHR4

GCHR 3

GCHR2

DISPLAY PARTITION AREA 1
STARTING ADDRESS WITH LO~
MIDDLE, AND HIGH SIGNIFICANCE
FIELDS (WORD ADDRESS).

LENGTH OF DISPLAY PARTITION
AREA 1 WITH LOW AND HIGH
SIGNIFICANCE FIELDS (LINE COUNT)

IN MIXED MODE, A 1 INDICATES AN
IMAGE OR GRAPHICS AREA, AND A 0
INDICATES A CHARACTER AREA. IN
GRAPHICS MODE THIS BIT MUST BE O.

WIDE DISPLAY CYCLE MODE BIT

DISPLAY PARTITION AREA 2
STARTING ADDRESS AND LENGTH WITH
IMAGE IDENTIFY BIT AS IN AREA 1.

}

PATTERN OF 16 BITS USED FOR
FIGURE DRAWING TO PERFORM
DOTTED, DASHED, ETC. LINES

GRAPHICS CHARACTER BYTES
TO BE MOVED INTO DISPLAY
MEMORY WITH GRAPHICS
CHARACTER DRAWING

Figure 11. Parameter RAM Contents-Graphics and Mixed Graphics and Character Modes

7-106 210655-003

82720

RESET: o I 0 0

SYNC: 0 0 1
I

VSYNC: 0 1
I

CCHAR: 0 0

START:

BCTRL: 0 0
I

ZOOM: 0
I

CURS: 0 1 1

PRAM: o I 1 SA
I

PITCH:

I
0 WDAT:

1 DE MASK:

1
M FIGS:

FIGD:

GCHRD:

1 DE RDAT:

CURD:

LPRD:

DMAR:

DMAW:

1 1 TYjE 1 0 1

0 I 0

0 1 0

1 1 TYPE 11 1 I

TYPE 11 1

MOD
I

0

MOD
I

MOD
I

MOD
I

Figure 12. Command Bytes Summary

VIDEO CONTROL COMMANDS

RESET: I 0 ! 0 ! 0 ! 0 , 0 ! 0 I 0 ! 0 I BLANK THE DISl't-AY, ENTER IDLE MODE,
AND INITIALIZE WITHIN THE GDC:
-FIFO
-COMMAND PROCESSOR
-INTERNAL COUNTERS

Figure 13. Reset Command

RESET COMMAND
This command can be executed at any time and does
not modify any of the parameters already loaded into
the GOC.

7-107

If followed by parameter bytes, this command also
sets the sync generator parameters as described
below. Idle mode is exited with the STARTcommand.

210655-003

82720

MODE CONTROL BITS.
SEE FIGURE 15.

__ ACTIVE DISPLAY WORDS PER LINE -2. MUST
1--''=-'-1---'--'=-'--'-1 BE EVEN NUMBER WITH BIT 0 ~ O.

\. ____ -==== HORIZONTAL SYNC WIDTH -1
VERTICAL SYNC .WIDTH, LOW BITS

"fH I-- VERTICAL SYNC WIDTH, HIGH BITS

L....J---'L..J~===::::~_ HORIZONTAL FRONT PORCH WIDTH -1.

HORIZONTAL BACK PORCH WIDTH -1.

VERTICAL FRONT PORCH WIDTH

ACTIVE DISPLAY LINES PER VIDEO FIELD,
LOW BITS

AL L _ ACTIVE DISPLAY LINES PER VIDEO FIELD,
,--,--,-\~--,--,--,,_H ~ HIGH BITS

'-------- VERTICAL BACK PORCH WIDTH

Figure 14. Optional Reset Parameters

In graphics mode, a word is a group of 16 pixels. In
character mode, a word is one character code and its
attributes, if any.

The number of active words per line must be an even
number from 2 to 256.

An all-zero parameter value selects a count equal to
2n where n = number of bits in the parameter field for
vertical parameters.

All horizontal widths are counted in display words.
All vertical intervals are counted in lines.

Sync Parameter Constraints

HORIZONTAL FRONT PORCH CONSTRAINTS
1. In general:

HFP ;::2 words
2. If DMA is used, or the display zoom factor is greater

than one in interlaced display mode:
HFP ;::3 words

3. If the GDC is used in slave mode:
HFP ;::4 words

4. If the light pen input is used:
HFP ;:: 6 words

HORIZONTAL Sync CONSTRAINTS
1. If dynamic RAM refresh is used:

HS ;::2 words
2. If interlaced display mode is used:

HS ;::5 words

HORIZONTAL BACK PORCH CONSTRAINTS
1. In general:

HBP ;::3 words
2. If interlaced display mode is used, or the IMAGE or

WIDE mode bits change within one video field:
HBP 2: 5 words

MODE CONTROL BITS (FIGURE 15)

Repeat Field Framing: 2 Field Sequence with Y2
line offset between other­
wise identical fields.'

Interlaced Framing: 2 Field Sequence with Y2
line offset. Each field dis­
plays alternate lines.

Noninterlaced Framing: 1 field brings all of the in­
formation to the screen.

Total scanned lines in interlace mode is odd. The
sum of VFP + VS + VBP + AL should equal one less
than the desired odd number of lines.

Dynamic RAM refresh is important when high display
zoom factors or DMA are used in such a way that not
all of the rows in the RAMs are regularly accessed
during display raster generation and for otherwise
inactive display memory.

Access to display memory can be limited to retrace
blanking intervals only, so that no disruptions ofrthe
image are seen on the screen.

7-108 210655-003

intJ 82720

CG DISPLAY MODE

o 0 MIXED GRAPHICS" CHARACTER

o 1 GRAPHICS MODE

1 0 CHARACTER MODE

1 1 INVALID

IS VIDEO FRAMING

o 0 NON INTERLACED

0 1 INVALID

1 0 INTERLACED REPEAT FIELD
FOR CHARACTER DISPLAYS

1 1 INTERLACED

D DYNAMIC RAM REFRESH CYCLES ENABLE

0 NO REFRESH-sTATIC RAM

1 REFRESH-DYNAMIC RAM

F DRAWING TIME WINDOW

0 DRAWING DURING ACTIVE DISPLAY TIME
AND RETRACE BLANKING

1 DRAWING ONLY DURING RETRACE BLANKING

Figure 15. Mode Control Bits

SYNc: 10 , 0 , 0 , 0 I 1 I 1 , 1 IDL '
........................ .L-.L-""T' THE DISPLA V IS ENABLED BY

A 1, AND BLANKED BV A O.

pol I '
HFP •

\1

Pli I I
VBP

\1

MODE CONTROL BITS.
SEE FIGURE 15.

ACTIVE DISPLA V WORDS PER LINE - 2 MUST
BE EVEN NUMBER WITH BIT 0 = O.

I I ~H r--- VERTICAL SYNC WIDTH, HIGH BITS

HORIZONTAL FRONT PORCH WIDTH -1. i:= HORIZONTAL BACK PORCH WIDTH -1

VERTICAL FRONT PORCH WIDTH

ACTIVE DISPLAV LINES PER VIDEO FIELD,
LOW BITS

I I A~H r--- ~~~V:..g:SPLAV LINES PER VIDEO FIELD,

VERTICAL BACK PORCH WIDTH

Figure 16. Sync Command

7-109 210655-003

82720

SYNC Format Specify Command

" This command loads parameters into the sync
generator. The various parameter fields and bits are
identical to those at the RESET command. The GOC
is not reset nor does it enter idle mode.

Vertical Sync Mode Command

, When using two or more GOCs to contribute to one
image, one GOC is defined as the master sync
generator, and the others operate as its slaves. The
VSYNC pins of all GOCs are connected together.

Slave Mode Operation

A few considerations should be observed when
synchronizing two or more GOCs to generate over­
layed video via the VSYNC INPUT/OUTPUT pin. As
mentioned above, the Horizontal Front Porch (HFP)

must be 4 or more display cycles wide. This is equIva­
lent to eight or more clock cycles. This gives the slave
GOCs time to initialize their internal video sync
generators to the proper point in the video field to
match the incoming vertical sync pulse (VSYNC).
This resetting of the generator occurs just after the
end of the incoming VSYNC pulse, during the HFP
interval. Enough time during HFP is required to allow
the slave GOC to complete the operation before the
start of the HSYNC interval.

Once the GOCs are initialized and set up as Master
and Slaves, they must be given time to synchronize. It
is a good idea to watch the VSYNC status bit of the
Master GOC and wait until after one or more VSYNC
pulses have been generated before the display pro­
cess is started. The START command will begin the
active display of data and)will end the video
synchronization process, so be sure there has been
at least one VSYNC pulse generated for the Slaves to
synchronize to.

VSYNc:lo 1101 1 11~
, , , , " O-ACCEPT EXTERNAL VERTICAL

SYNC-SLAVE MODE
l-GENERATE & OUTPUT VERTICAL

SYNC-MASTER MODE

Figure 17. Vertical Sync Mode Command

CCHAR: I o! 1 I 0 , 0 , 1 ! 0 I 1 ! 1 I
r-- LINES PER CHARACTER ROW - 1 Pl loci 0 I 0 I ,LR,

i ... ________ DISPLAY CURSOR IF 1

P2 I Bre Iscl c;ror r-- ~~SQR TOP LINE NUMBER IN THE

t • O-BLINKING CURSOR

I""J.~~~~~~~= l-STEADY CURSOR BLINK RATE. LOWER BITS

P3 I 9B<>;t' I. ?Ru, r-- BLINK RATE, UPPER BITS

'0:... ______ ~~:~~BOTTOM LINE NUMBER IN

Figure 18. Cursor & Character Characteristics Command

7-110 210655-:003

82720

Cursor and Character Characteristics
Command

In graphics mode, LR should be set to O. For interlaced
displays in graphics mode, BR should be set to 3. The
blink rate parameter controls both the cursor and attrib­
ute blink rates. The cursor blink-on-time = blink-off-time
= 2 x BR (video frames). The attribute blink rate is
always 1/2 the cursor rate but with a 34 on-V4 off duty
cycle.

DISPLAY CONTROL COMMANDS

Zoom Factors Specify Command

Zoom magnification factors of 1 through 16 are avail­
able using codes 0 through 15, respectively.

Cursor Position Specify Command

In character mode, the third parameter byte is not
needed. The cursor is displayed for the word time in
which the display scan address (DAD) equals the
cursor address. In graphics mode, the cursor word
address specifies the word containing the starting
pixel of the drawing; the dot address value specifies
the pixel within that word.

START DISPLAY & END IDLE MODE

START: I ° 1 1 ° 1 ° 1 1 1 • ' , ! , , ! I .

DISPLAY BLANKING CONTROL

Parameter RAM Load Command

From the starting address, SA, any number of bytes
may be loaded into the parameter RAM at increment­
ing .addresses, up to location 15. The sequence of
paramet~r bytes is terminated by the next command
byte entered into the FIFO. The parameter RAM
stores 16 bytes of information in predefined loca­
tions which differ for graphics and character modes.
See the parameter RAM discussion for bit
assignments.

Pitch Specification Command

This value is used during drawing by the drawing
processor to find the word directly above or below
the current word, and during display to find the start
of the next line.

The Pitch parameter (width of display memory) is set
by two different commands. In addition to the PITCH
command, the RESET ,(or SYNC) command also sets
the pitch value. The "active words per line" param­
eter, which specifies the width of the raster-scan dis­
play, also sets the Pitch of the display memory. In
situations in which these two values are equal there
is no need to execute a PITCH command.

BCTRL: I ° ° ° ° 1 I 1 I ° IDL
: I I I THE DISPLAY IS ENABLED

, BY A I, AND BLANKED BY
A 0.

ZOOM FACTORS SPECIFY

ZOOM: I 0 ! 1 , 0 to, 0 , 1) 1 , 0 I

CURSOR POSITION SPECIFY

'---- ZOOM FACTOR FOR GRAPHICS r---- CHARACTER WRITING MINUS 1

DISPLAY ZOOM FACTOR MINUS 1

CURS: 0,',0,0,1,0,° 1 ,1
P' EAD I-- EXECUTE WORD ADDRESS, LOW BYTE

~~~'~I~'~~~' 
P2 EAD I-- EXECUTE WORD ADDRESS, MIDDLE BYTE 
~~,=,~. 

P3 dAtD I I ° I ° I ~~ (GRAPHICS MODE ONLY) 

L- WORD ADDRESS, TOP BITS 
'--------- DOT ADDRESS WITHIN THE WORD 

Figure 19. Display Control Commands 

7-111 210655-003 



PRAM: I 0 I 1 I 1 I 1 I 

82720 

SA 

It... ___ STARTING ADDRESS IN 
PARAMETER RAM 

P, I \-1 TO 16 BYTES TO BE LOADED '-. =======~. INTO THE PARAMETER RAM I- STARtiNG AT THE RAM ADDRESS 
Pn I SPECIFIED BY SA 

Figure 20. Parameter RAM Load Command 

PITCH: I 0, 1 ! 0 , 0 , 0 , 1 ! 1 ! 1 I 
P1 I I I I r I I I I-NUMBER OF WORD ADDRESSES 

IN DISPLAY MEMORY IN THE 
HORIZONTAL DIRECTION 

Figure 21. Pitch Specification Command 

WRITE DATA INTO DISPLAY MEMORY 

WDAT: I 0 0 1 I TYPE I 0 I MOD I 

o 
o 
1 
1 

t'--___ RMW MEMORY CYCLE LOGICAL 
OPERATION: 

___ REPLACE WITH PATTERN 
__ COMPLEMENT 
---RESET TO ZERO 
_SETT01 

'---------DATA TRANSFER TYPE 

o 0 ... 1-------WORD, LOW THEN HIGH BYTE 
1 O. LOW BYTE OF THE WORD 
1 1" HIGH BYTE OF THE WORD 
o 1 • INVALID 

P1 L--'_..I..._WO.l.R_D_La..0_R .... B ... YT_E ....... ....I_ .. ~.o---- WORD LOW DATA BYTE OR 
_ I'" _ SINGLE BYTE DATA VALUE 

P21 a.. --' __ ..I........I._WO....a..t_DH .... ,"--....... ....I_ .. I-~~DD1~'1s~iR ONLY: 

Figure 22. Write Data Command 

DRAWING CONTROL COMMANDS 

Write Data Command 
Upon receiving a set of parameters (two bytes for a 
word transfer, one for a byte transfer), one RMW 
cycle into Video Memory is done at the address 
pOinted to by the cursor EAD. The EAD pointer is 
advanced to the next word, according to the previ­
ously specified direction. More parameters can then 

In graphics bit-map situations, only the LSB of the 
WDAT parameter bytes is used as the pattern in the 
RMWoperations. Therefore it is possible to have only 
,an all ones or all zeros pattern. In coded character 
applications all the bits of the WDAT parameters are 
used to establish the drawing pattern. 

be accepted. -

For byte writes, the unspecified byte is treated as all 
zeros during the RMW memory cycle. 

The WDAT command operates differently from the 
other commands which initiate RMW cycle activity. It 
requires parameters to set up the Pattern register 
while the other commands use the stored values in 

. thE' ,JarameterRAM. Like all of these commands, the 

7c112 210655-003 



82720 

Pl I ,,/L I-LOW SIGNIFICANCE BYTE 

~:::::;::::::::::=: 

WDAT command must be preceded ,by a FIGS com­
mand and its parameters. Only the first three para­
meters need be given following the FIGS opcode, to set 
up the type of drawing, the DIR direction, and the DC 
value. The DC parameter + 1 will be the number of 
RMW cycles done by the GDC with the first set of WDAT 
parameters. Additional sets of WDAT. parameters will 
see a DC value of 0 which will cause only one RMW 
cycle to be executed. 

P21 ,,/H I-HIGH SIGNIFICANCE BYTE 

Figure 23. Mask Register Load Command 

FIGS: I ° I 1 0 0 1 1 0 ° I I I I I I I 

P1ISLI R I A IGcl L I IDIR I 1-DRAWING DIRECTION BASE 

f f t FIGURE TYPE SELECT BITS: 
LINE (VECTOR) 
GRAPHICS CHARACTER 
ARC/CIRCLE 
RECTANGLE 
SLANTED GRAPHICS r;HARACTER 

:1o~~ : DI'DfH : : 
L DC DRAWING PARAMETER 

GRAPHICS DRAWING FLAG FOR USE IN 
MIXED GRAPHICS AND CHARACTER MODE 

::~o:oi : :L ~M : : 
r--D DRAWING PARAMETER 

::~ ° : ° i : D:LO~M: : 

r-- D2 DRAWING PARAMETER 

:10: ° i : D:
1L

O;M : : 
r--D1 DRAWING PARAMETER 

P1°1 

P11 : 0 ; 0 i : D:LD~M: : 
r--DM DRAWING PARAMETER 

VALID FIGURE TYPE SELECT COMBINATIONS 

~ !!. A J& J. OPERATION 

0 0 0 0 0 CHARACTER DISPLAY MODE 
~RAWING, INDIVIDUAL DOT 
DRAWING, DMA. WOAT, AND 
RDAT 

0 0 0 0 1 STRAIGHT LINE DRAWING 

[""~-'" J COMBINATIONS 0 0 0 1 0 GRAPHICS CHARACTER ASSURE 
DRAWING AND AREA FILLING CORRECT DRAWING 
WITH GRAPHICS CHARACTER, OPERATION 
PATTERN 

0 0 1 0 0 ARC AND CIRCLE DRAWING 

0 1 0 0 0 RECTANGLE DRAWING 

1 0 0 1 0 SLANTED GRAPHICS 
CHARACTER DRAWING AND 
SLANTED AREA FILLING 

Figure 24. Figure Drawing Parameters Specify Command 

7-113 210655-003 



intJ 82720 

FIGD: I 0 ! 1 ! 1 ! 0 , 1 , 1 ! 0 ,0 I 

Figure 25. Figure Draw Start Command 

GCHRD: I 0 , 1 ! 1 ! 0 , 1 , 0 I 0 , 0 I 

Figure 26. Graphics Character Draw 
and Area Filling Start Command 

Mask Register Load Command 

This command sets the value of the 16-bit Mask reg­
ister of the figure drawing processor. The Mask regis­
ter controls which bits can be moci'ified in the display 
memory during a read-modify-write cycle. 

The Mask register is loaded both by the MASK com­
mand and the third parameter byte of the CURS 
command. The MASK command accepts two param­
eter bytes to load a 16-bit value into the MASK 
register. All 16 bits can be individually one or zero, 
under program contro/. The CURS command on the 
other hand, puts a "1 of 16" pattern into the Mask 
register based on the value of the Dot Address value, 
dAD. If normal sinr;ie-pixel-at-a-time graphics figure 
drawing is desired, there is no need to do a MASK com­
mand at all since the CURS command will set up 
the proper pattern to address the proper pixels as 
drawing progresses. For coded character DMA, and 
screen setting and clearing operations using the 
WDAT command, the MASK command should be 
used after the CURS command if its third parameter 
byte has been output. The Mask register should be set 
to all ones for any "word-at-a-time" operation. 

Figure Draw Start Command 

On execution of this instruction, the GDC loads the 
parameters from the parameter RAM into the draw­
ing processor and starts the drawing process at the 

RDAT: 11 I 0 I 1 1 TYpE I 0 I M9D I 

pixel pointed to by the cursor, EAD, and the dot 
address, dAD. 

Graphics Char. Draw and Area Fill Start 
Command 

Based on parameters loaded with the FIGS com­
mand, this command initiates the drawing of the 
graphics character or area filling pattern stored in 
Parameter RAM. Drawing begins at the address in 
display memory pointed to by the EAD and dAD 
values. 

DATA READ COMMANDS 

Read Data Command 

Using the DIR and DC parameters of the FIGS com­
mand to establish direction and transfer count, 
multiple RMW cycles can be executed without 
speCification of the cursor address after the initial 
load (DC = number of words or bytes). 

As this instruction begins to execute, the FIFO buffer 
direction is reversed so that the data read from dis­
play memory can pass to the microprocessor. Any 
commands or parameters In the FIFO at this time will 
be lost. A command byte sent to the GDC will imme­
diately reverse the buffer direction back to write 
mode, and all RDAT information not yet read from the 
FIFO will be lost. MOD should be set to 00. 

Cursor Address Read Command 

The Execute Address, EAD, points to the display 
memory word containing the pixel to be addressed. 

The Dot Address, dAD, within the word is represented 
as a 1-of-16 code. 

Light Pen Address Read Command 

The light pen address, LAD, corresponds to the dis­
play 'Nord address, DAD, at which the light pen input 
signal is detected and deglitched. 

~ DATA TRANSFER TYPE 

o 0 __ WORD, LOW THEN HIGH BYTE 
1 0 __ LOW BYTE OF THE WORD ONLY 
1 1 __ HIGH BYTE OF THE WORD ONLY 
o 1 -- INVALID 

Figure 27. Read Data from Display. Memory Command 

7-114 210655-003 



82720 

,------------_._-----

CURD: 11 ! 1 I 1 10 ! 0 , 0 ! 0 ! 0 I 
THE FOLLOWING BYTES ARE RETURNED BY THE GDe' LPRD, I, I ' I 0 I 0 10 I 0 I 0 , 0 1 
P1 A7 EAD, AO ...... EXECUTE ADDRESS (EAD), lOW BYTE THE FOLLOWING BYTES ARE RETURNED BY THE GDe. 

P2 A15 AB eXECUTE ADDRESS (EAD). MIDDLE BYTE 
IA7, I LApL! lAO 1-4-- LIGHT PEN ADDRESS, LOW BYTE 

P3 1 x I X I X I X I X I X 1 E-'JD" 1 EXECUTE ADDRESS lEAD), HIGH BITS ~IA:'5:, ==' :LA:,o:M:1 :::;:=,:AB~J-- LIGHT PEN ADDRESS, MIDDLE BYTE 

1 XI X I X I X IX I X 1 LAp" I-LIGHT PEN ADDRESS, HIGH BITS :1 : : ::;::: : : 
x = Undefined 

t DOT ADDRESS (dAD), LJ:1W BYTE 

DOT ADDRESS (dAD), HIGH BYTE x = Undefined 

Figure 28. Cursor Address Read Command Figure 29. Light Pen Address Read Command 

DMA READ REOUEST 

DMAR: 11 0 1 I TYPE 11 I MOD I 

-Li------ DATA TRANSFER TYPE: 

o 0 ~"f----- WORD, LOW THEN HIGH BYTE 

O~"f----- LOW BYTE OF THE WORD 

1 ~"I----- HIG~ BYTE OF THE WORD 

o 1 ~"f-----INVALID 

DMA WRITE REOUEST 

DMAW:lo 0 1 I TYPE I 11 MOD I 

~ RMW MEMORY LOGICAL OPERATION: 

o 0_ REPLACE WITH PATTERN 

1_ COMPLEMENT 

0_ RESET TO ZERO 

1_SETTOONE 

i------ DATA TRANSFER TYPE: 
~'--

o 0 ~"f----- WORD, LOW THEN HIGH BYTE 

o ~.f----- LOW BYTE OF THE WORD 

1 .... 1----- HIGH BYTE OF THE WORD 

o 1 .... I-----INVALID 

Figure 30. DMA Control Commands 

7-115 210655-003 



82720 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias .......... O"C to 70"C 
Storage Temperature .................. -6SoC to 1SO"C 
Voltage on any Pin with Respect 

to Ground .........................•.. -O.SV to +7V 
Power Dissipation ............................ 1.S Watt 

DC. CHARACTERISTICS 
TA = O"C to 70" C; Vee = SV ± 10%; GND =OV 

Symbol Parameter 
Min. 

V,l Input Low Voltage -O.S 

V,H Input High Voltage Except DACK 2.2 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

IOZ Output Leakage Current 

I,l Input Leakage Current 

Vel Clock Input Low Voltage -0.5 

VeH Clock Input High Voltage 3.5 

lee Vee Supply Current 

VIH1 Input High Voltage DACK Only 2.4 

CAPACITANCE (2) 

TA = 25°C; Vee = GND = OV 

Symbol Parameter 
Min. 

C,N Input Capacitance 

Cia I/O Capacitance 

COUT Output Capacitance 

Co Clock Input Capacitance 

'COMMENT: Exposing the device to stresses above 
those listed in Absolute Maximum Ratings could cause 
permanent damage. The device is not meant to be 
operated under conditions outside the limits described in 
the operational sections of this specification. Exposure to 
absolute maximum rating conditions for extended peri­
ods may affect device reJiability. 

limits 
Unit Conditions 

Max. 

0.8 V 

Vee + 0.5 V 

0.45 V IOl = 2.2 mA 

V IOH = -400 !LA 

±10 !LA VSS+0.45 ""V, "" 
Vee 

±10 !LA VSS ""V, ""Vee 

0.6 V 

VCC + O.S V 

270 mA Typical = 150 mA 

Vee + 0.5 V (1) 

Limits 
Unit Conditions 

Max. 

10 pF 

20 pF fc= 1 MHz 

20 pF V = 0 
" 

20 pF 

(1) Suggest pull up resistor to reduce noise sensitivity on DACK only. 
(2) Sample tested initially. 

7-116 210655-003 



82720 

A.C. CHARACTERISTICS (T A ~ O°C to + 70°C, VSS = OV, VCC = + 5V ± 10%) 

DATA BUS READ CYCLE 

82720 82720·1 82720·2 
Test 

Symbol Parameter Units 
Conditions 

Min. Max. Min. Max. Min. Max. 

TAA Ao setup to RD I 0 0 0 ns 

TAA Ao hold after RD I 0 0 0 ns 

TAA RD Pulse Width TAO+20 TAO +20 TAO+20 ns 

TAD RD I to Dala Out Delay 120 80 70 ns CL=50pF 

TOF RD I to Data Float Delay 0 120 0 100 0 90 ns 

TAV RD Recovery Time 4 Tey 4 TCY 4 TCY ns 

DATA BUS WRITE CYCLE 

82720 82720·1 82720·2 
Test 

Symbol Parameter Units 
Conditions 

Min. Max. Min. Max. Min. Max. 

TAW Ao Setup to WR I 0 0 0 ns 

TWA Ao Hold after WRI 0 0 10 ns 

Tww WR Pulse Width 120 100 90 ns 

Tow Data Setup to WR I 100 80 70 ns 

Two Data Hold after WR I 10 10 10 ns 

TAV WR Recovery Time 4 TCY 4 Tey 4 TCY ns 

DISPLAY MEMORY TIMING 

82720 82720·1 82720·2 
Test 

Symbol Parameter Units 
Conditions 

Min. Max. Min. Max. Min. Max. 

TeA Address/Data Delay from 2XWCLK I 30 160 30 130 30 110 ns CL=50pF 

TAC AddressiData Hold Time 30 160 30 130 30 110 ns CL=50pF 

Toc Input Data Setup to 2XWCLK I 0 0 0 ns 

Teo Input Data Hold Time TIE TIE TIE ns 

TIE 2XWCLKI to DBIN 30 120 30 90 30 80 ns CL=50pF 

TCAH 2XWCLKI to ALE I 30 125 30 100 30 90 ns CL=50pF 

TCAl 2XWCLKI to ALE I 15 100 15 80 15 70 ns CL=50pF 

TAL ALE Low Time TCy+30 Tcv+ 3O TCy+30 ns 

TAH ALE High Time TCH -20 TCH-20 TCH -20 ns 

Tco Video Signal Delay from 2XWCLK I 150 120 100 ns 

TllAX Address Valid Hold Time After ALE I 30 30 30 ns 

TAVAl Address Valid Hold Time Before ALE) 20 10 5 ns 

7-117 210655·003 



82720 

A.C. CHARACTERISTICS (Continued) 

OTHER TIMING 

82720 82720-1 82720-2 
Test Symbol Parameter Units 

Conditions 
Min. Max. Min. Max. Min. Max. 

Tpc LPEN or VSYNC Input Setup to 2XWCLK I 30 20 t5 ns 

Tpp LPEN or VSYNC Input Pulse Width TCY TCY TCY ns 

CLOCK TIMING 

82720 82720-1 82720-2 
Test Symbol Parameter Units 

Conditions 
Min. Max. Min. Max. Min. Max. 

TCY Clock Period 250 2000 200 2000 180 2000 ns 

TCH Clock High Time 105 80 70 ns 

TCl Clock Low Time 105 80 70 ns -
TR Rise Time 20 20 20 ns 

TF Fall Time 20 20 20 ns 

DMA TIMING 

82720 82720-1 82720-2 
Test Symbol Parameter Units 

Conditions 
Min. Max. Min. MiilX. Min. Max. 

TAcc DACK Setup to RD I or WR I 0 0 0 ns 

TCAC DACK Hold from RD I or WR I P 0 0 ns 

TRR1 RD Pulse Width TRD1 +20 TRD1 +20 TRD1 +20 ns 

TRD1 RD I to Data Out Delay 1.5 TCY 1.5 TCY 1.5 TCY ns CL=50pF 

+120 +80 +70 

TKO 2XWCLK I to DREQ Delay 150 120 100 ns CL=50pF 

TROAK DREQ Setup to DACK I 0 0 0 ns 

TAKRO DACKI to DREQI Delay TCY+ 150 Tev+ 120 TCy+l00 ns CL=50pF 

TAKH DACK High Time Tcv Tcv TCV ns 

TAK1 DACK Cycle Time, Word Mode 4Tev 4Tev 4T;ev ns 

TAK2 DACK Cycle Time, Byte Mode 5 TCY 5 TCY 5 TCY ns 

7-118 210655-003 



82720 

A.C. TEST CONDITIONS 

Input Pulse Levels (except 2XWCLK) .. .............. . . . . . . . . . . . . . . .. ... . ............... O.45V to 2.4V 
Input Pulse Levels (2XWCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ..... . . . . . . . . . . .. . .... O.3V to 3.9V 
Timing Measurement Reference Levels (except 2XWCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .... O.8V to 2.0V 
Timing Measurement Reference Levels (2XWCLK) .................... r .. . ....................... O.6V to 3.5V 

WAVEFORMS 

QATA BUS TIMING 
READ CYCLE 

TARj '. TRR 

DATA BUS 
(OUTPUT) 

WRITE CYCLE 

"\ 
-
..-TRO --+-

...6 
~ & 

.' ~TRA 

I-ToF -

....... DATAVALID_ 
./ 

TRV 

DATA BUS DATA DATA 
(INPUT) ___ .;;;;M;..;.Ay'-'C:.;.HA;;..;;.;.NG.;;;;E"--__ J 1< _______ '-____ M...;.fII.-'-Y-'-C-'-'HA..;..N....;G_E ___ _ 

7-119 210655-003 



infel" 

WAVEFORMS (Continued) 

DMATIMING 
READ 

2XWCLK 

DREQ 

82720 

fooLI------TAKRQ 

_TKQ....--.I3 ____ --

------------+--.1 !-.---TRR1---.! 'r--I------4-

D~7-------------+_-~------_<1 

!-.-------TAK1 , TAK2 -------.-1 

WRITE 

2xWCLK 

DREQ ~­TAKRQ-j 

7-120 210655-003 



WAVEFORMS (Continued) 

DISPLAY MEMORY TIMING 
READ/MODIFY/WRITE CYCLE 

81 

2xWCLK 

ADO-15 -+--<1 

82 

82720 

S3 S4 

7-121 210655-003 



intJ 

WAVEFORMS (Continued) 

DISPLAY MEMORY TIMING (Continued) 
READ CYCLE 

2xWCLK 

ADo-AD15 -+--<1 

A16,A17 

ALE 

HSYNC 

82720 

81 52 

=;teo 

m~~ . -----'-------. 
LCo., 
g~~IMAGE --------'--......... 
AT,lKANKIca: 

OTHER TIMING 

2xWCLK 

LPEN 

VSYNC ---.-------

CLOCK TIMING 

2xWCLK 

7-122 210655"()03 



WAVEFORMS (Continued) 

DISPLAY AND RMW CYCLES (lX ZOOM) 

2xWCLK 

ALE. 

DBIN. 

ADO·15 

A16,17 

HSYNC. 
BLANK: 

VlEXT SYNC: 

82720 

Ii 
I'; 

7-123 210655-002 



inter 

WAVEFORMS (Continued) 

DISPLAY AND RMW CYCLES (2X ZOOM) 

2xWCLK: 

ALE: 

Zoomed Display 
Cycle 

82720 

Zoomed Display 
Cycle 

RMW 
Cycle 

Olaptay or RMW 
Cycle 

~: -i----------------------t----------------------t--------~ ____ _'----_lr_------

AOO45: _l~EE~~~--------------_t~o~".a"~"'~.~ .. ~--------------_l~o~"~"~'A~"~ ... ~---C]"~.'~'D~~C)-<!O,~"'~~~,,~o,~'.'~'A~"~ .. = .. )-

A16, 17: ~~::::::::::::::::::::::=+)C::::::::::::::::::::::4Jc:::::::::::::::::::::::~::::::: 

Blank: ~~----------------------_+------------------------+r-------:--------------j\===: 

ZOOMED DISPLAY OPERATION WITH RMW CYCLE (3X ZOOM) 

2xWCLK: 

ALE: 

Zoomed Display 
Cycle 

~: -t-------------------------------------;----------, 

RMW 
Cycle 

Display or RMW 
Cycle 

ADO-15: -t-(!!o':!! .. a"~A .. ~.:::.U~----------------------------+(!oa, .. e:::"[3A~":::".~. >-....,Q'"~ .. I:!, .. ~"Q_C~o,~,.,~,,~,,~. )-________ --1~O~' .. ~'~A~."~ ... ;;)_ 

A16,17::tJC::::::::::::::::::::::::::::::::::~~::::::::::::::::::::::::::::::::::::Pc::::::: 

Blank: ::t~------------------------------------~------------------------------------~::==: 

210655-003 

7-124 



82720 

WAVEFORMS (Continued) 

VIDEO SYNC SIGNALS TIMING 

I 'H 'I 
2xWCLD: .../"\/VV\./\.. ____ .f\/V"V"\J\.... __ ~ ___ J"\./"\.. __ A.. 

HBLANK: J ----~ __ ~ 
HSYNC. 

ADO-15: 

LCO·4: 

LCO-4. 

Row. 

Row' 

VBLANK: 

VSYNC: 

I \~-------------------
...A....._J\...-~'--_....J\..-_J\...-----'''-==:x::::x::=:: ::x:=.::::jC 
~ !, 
r---~~---~=------=~~~::_~~=~=:::::_~~==~:::-----~~--j ~ __ ~ __ JCXXX ___________________________ :X:X::X:X:: __ :XX:: 

-.u- ---~ ----yo- ----------- ------------ -- ::::x:::::---:x: ~ ___ -"-- ___ -A--_________________________ _ __ 
~ ~ ,----------------------------------------------------------, -------, I ___________________________________ _ 

±::::=f::::::x::::::::x==x-----:::: :==:::x: 
I 

~--------~ r----------~------------------"--__ ------....I' 
I : 

fol.-------------'v (Fle'd)-------------~ 

INTERLACED VIDEO TIMING 

HBLANK: 

VBLANK: 

VSYNC: 
(Interlace) 

VSYNC: 
(No Interlace) 

JL __ ..JLJL __ JLJL __ ..JL.JL __ ..IL __ JL __ JLJL __ JUL_ 
I '" , , , , L-__ S--- -,------,----1.... __ S----I--I-----I -1---
I I I I I I I I 

: I I I II, L-, , , , , , 
,. O~dA.'d ", 

I 
Even Field-_-'-__ , , 

, I 

I L---

7-125 210655-003 



82720 

WAVEFORMS (Continued) 

VIDEO HORIZONTAL SYNC GENERATOR PARAMETERS 

~----------------------lHI----------------------~ 
I 
I 
I 

HBLANK:~ 
~ __________________________ ~r--

I 
I 

HSVNC: ___ .... I~ __ ....II1L. _____ + ____________________ ..J......,. 

I I 
I I 
I I 

--1 :J: ~HBP-+-_--AW 
VIDEO VERTICAL SYNC GENERATOR PARAMETERS 

~----______________ lV __________________ ~ 

I 
VBLANK: __ ---; ___ -, I 

I ,. I 

I I r-
I I I 
I I I 

vsvNc:--f'"l!-____ -!... ________________ -:-__ ~11 I 

I I I I I 
I I I I I 
I ~ ~ ~I I 

!--VBP-+-----------AL.-------j-l i i VBP-1 
-Ivs~ 

CURSOR-IMAGE BIT FLAG 

-I !-TCV 
2xWCLK ..JUlJ1J1 

rtf " ,,.., 
HBLANK: __ --!. !---10TCV- L..-

HSVNC:----;r--,r 

A17 __ ...... '-II-_ .... __ ...::ln.:::v.="d=--__ '4A,a..;c~u=ra.r 

Image 

7-126 210655-003 



intJ 

VIDEO FIELD TIMING 

Horizontal 
SYNC 
PulH 

DRAWING INTERVALS 

DMA REQUEST INTERVALS 

82720 

Active 
Dl.play 
Lin •• 

Slinking 

~--------------------

7-127 

YSYNC Output 

~ Drawing Interval 

~ Additional Drawing Interval When 
~ In Flash Mode 

II Dynamic RAM Refresh If Enabled, Otherwise 
Additional Drawing Interval 

mm DMA Request Interval 

~ Additional DMA Request Intervals 
~ When in Flash Mode 

210655-003 



ARTICLE 
REPRINT 

AR-255 

By managing tasks like graphics generation and CRT refreshing, a 
dedicated VLSI display controller simplifies the design of intelligent 
graphics work stations. 

Dedicated VLSI chip lightens 
graphics display design load 

The role of graphics is becoming increasingly im~ 
portant for unscrambling the communications traf­
fic between people and computers. Thanks to micro­
processors and dedicated control ICs, designing 
high-reliability graphics work stations is now eas­
ier and less expensive than in the days or'small­
scale integration and expensive discrete-circuit 
CRT technology. Microprocessors simplify work­
station design by transferring some graphics con­
trol tasks from hardware to software. However, a 
dedicated VLSI controller such as the 82720-with 
an on-board graphics processor-can push another 
step forward toward fast and economical design of 
high-quality intelligent graphics systems. 

A typical application for the controller is a 
graphics work station aimed at high-end business 
and low-end engineering systems. Since such a 
station usually fits on the top of a desk, all of the 

. electronics must be contained within a single 

Gary DePalma, Field Applications Engineer 
Mark Olson, Product Marketing Engineer 
Roger Jollis, Design Engineer 
Intel Corp. 
2625 Walsh Ave., Santa Clara, Calif. 95051 

printed-circuit board. This type of system requires 
a resolution of about 512 by 512 pixels and is 
frequently called on to display three-dimensional 
objects in various perspectives. To minimize the 
distortion of rotating objects, horizontal and verti­
cal pixels should be equally spaced. 

A typical display (500 vertices) must be drawn on 
the screen in less thim 1 second to provide satis­
factory interaction with the operator. The display 
may consist of lines, arcs, filled areas, and colors­
seven colors are acceptable (see "A Look into 
Graphics Fundamentals"). 

Serial link interfaces station 

An intelligent work station usually interfaces 
with a mainframe host via a serial communications 
link, a keyboard, and a serial link with an optional 
graphics tablet. This type of graphics input/output 
subsystem is diagrammed in Fig. 1. Two 51/4-in. 
floppy disks can satisfy the mass-storage needs of 
the system. Disk formatting must be compatible 
with the requirements of an IBM personal comput­
er. Moreover, general-purpose software written for 

7-128 

from ELECTRONIC DESIGN· January 20, 1983 

Copyright t983 Hayden Publishing Co .• Inc. 

Order Number: 231310-001 



Computer Graphics: Graphics display controller 

this computer must also be able to run on the work 
station. 

Two of the most basic functions of a graphics 
system are generating and refreshing images on 
the CRT screen. Information pertaining to the 
images is stored in the bit-map memory, where 
monochrome pixels are represented by single bits 
and color pixels by groups of bits. Lines and arcs 
defined in normalized screen coordinates must be 
converted into images of the physical object. 

In a bit-mapped raster graphics system, lines 

described by a transformed display list are reduced 
to a series of dots and placed in the image memory. 
The selection of the dots that will be activated is 
achieved through a scanning conversion algorithm, 
which must create lines that appear very smooth, 
start and end as expected, and look symmetrical no 
matter in which direction they are drawn. The 
algorithm is repeated thousands of times to draw a 
single picture and thus must operate as quickly as 
possible. At the same time, the image in memory 
must be repainted on the screen 30 times/s for 

1. A graphics 1/0 subsystem for an intelligent work station consists of input peripherals 
(a keyboard and tablet), a serial communications link, and mass storage (lloppy disks). 
Intelligence is provided by the microprocessor and the peripheral and memory controllers 
(a). The three basic tasks performed-I/O, transformation processing, and CRT control-all 
require data in the form of display lists stored in a data base (b). 

7-129 231310-001 



interlaced frames and 60 times/s for non interlaced 
frames. Simple tasks, they nevertheless demand a 
high memory bandwidth. 

Unlike other system control tasks, generating 
graphics figures requires both bit-inanipullttion 
and mathematics capabilities. Integer addition and 
multiplication operations calculate the coordinates 
of points on a line or a circle. B'ut since pixels 
generally are neither complete words nor bytes, 
logical operations must be performed on the bits 
within the word that contains the selected pixel. 

The inner loop of a so-called Bresenham line­
drawing algorithm requires two or three addition 
operations, two comparisons or tests, and the mask­
ing of the correct value into the word for each pixel. 
Algorithms for dr:;twing circles or filling areas are 
even more complex. In the inner loop of a filling 
algorithm, for example, the old word must be read 
from the bit map to determine whether some, all, 
or none of the pixels are within the area to be filled. 
If they are, the algorithm tests whether the pixels 
must be modified and then returns the word to the 

2. The 82720 graphics display controller separates the tasks 01 graphics generation and CRT 
relreshing Irom other system tasks. That permits much greater system bandwidth, leading to 
graphics work stations that not only draw sharp pictures, but also oller color. 

3. Three memory planes are implemented in the interlace between the bit map and the graphics display 
controller. Three primary colors-red, green, and blue-are provided, with the controller's upper address bits 
responsible lor selecting the memory planes during read/modify/write cycles. 

7-130 
231310-001 



Computer Graphics: Graphics display controller 

bit map. Because such algorithms are heavily exer­
cised, they must execute at extremely high speeds 
to avoid an adverse impact on the system's overall 
efficiency. 

Memory bandwidth is the most precious com­
modity in a graphics system. In this application, 
screen refreshing requires that 750,000 bits be read 
60 times/s, equating to a bandwidth of almost 6 
Mbytes/s. The picture refreshing, therefore, has 
the highest-priority access to memory because any 
missed readings show up as noise in the picture, a 
situation that sometimes occurs with simple sys­
tems possessing a single-microprocessor, single­
memory scheme. 

In the latter type of design, one processor handles 
all functions except refreshing, which is imple-

men ted by a discrete counter arrangement or a 
simple CRT controller chip. Nevertheless, the re­
fresh memory bandwidth always slows down the 
microprocessor. That loss of speed can be elimi­
nated simply by separating the processor's memory 
system from the bit map, a process that effectively 
doubles system memory bandwidth. 

The 82720 graphics display controller can provide 
the means of separating graphics generation and 
CRT refreshing from the other tasks and also 
perform the two tasks quickly and concurrently 
with the others. Residing between the micro­
processor and the bit-map" memory and video logic, 
the controller refreshes the CRT like other CRT 
controllers, converts high-level commands into im­
ages by placing the proper data into the correct bit 

7-131 231310-001 



map. and interfaces easily and simply with propri­
etary microprocessors. 

The 82720 accepts high-level commands (such as 
DRAW LINE, DRAW ARC. and FILL RECTANGLE) and 
executes them at much faster speeds than general­
purpose microprocessors, primarily because it is a 
dedicated graphics hardware processor. Burst 
drawing rates as high as 1 pixel every 800 ns can be 
achieved. Screen refreshing is handled directly by 
the controller. The displayed portion of the bit-map 
memory can be configured to allow the display to be 
scrolled through memory in any direction. The hor­
izontal and sync periods both are fully pro­
grammable, as is the position of the sync pulse in 
the blanking interval. Furthermore. the controller 
can be programmed to refresh low-cost dynamic 

RAMs. In the design being considered, the 82720 
offloads the microprocessor from low-level graphics 
tasks, as shown in Fig. 2. 

For the bit-map interface. the memory is imple­
mented as three planes, each 16 kwords by 16 bits. 
with each plane driving red. green, or blue (Fig. 3). 
The upper address bits-A16 and A17-select the 
memory planes during read/modify/write cycles 
but are ignored during screen refreshing cycles. 

The graphics display controller generates the 
Row Address Strobe (RAS) signal for the dynamic 
RAMs, but the remaining timing signals must be 
supplied by external devices. These signals are 
produced by a state-machine timing generator con­
sisting of a 4-bit counter and two flip-flops. The 
state machine synchronizes itself with RAS after 

7-132 231310-001 



Computer Graphics: Graphics display controller 

the 82720 has been initialized. Figure 4 shows the 
complete schematic for each plane of the bit-map 
interface. 

The remainder of the hardware design interfaces 
the graphics display processor, the processor 
memory, and the other peripherals with the 80186 
microprocessor. The task is simplified by the pro­
cessor's on-board chip-selertion logic and wait­
state generators. Furthermore, because of the pro­
cessor's highly integrated architecture, the size of 
the overall hardware is quite small. 

Joining processor and controller 

Connecting the graphics display controller to the 
microprocessor is a simple task, as the processor's 
Data, Read, and Write signals are completely com­
patible with those of the 82720. However, because 
the controller has no chip-selection input, the Read 
or Write signals must be qualified through external 
hardware. 

A number of chip-selection lines on the micro-

processor can be programmed to place peripherals 
either in memory or in the processor's 1/0 space. 
Two gates are added to qualify the Read and Write 
signals. The DMA channel on the 80186 uses a 
second chip-select input as the Acknowledge signal, 
and data buffers are used to prevent bus contention 
at the end of a processor read cycle (Fig. 5). 

Without buffers, the display controller must re­
move its data from the multiplexed address and 
data lines before the processor puts out the next 
address. At an 8-MHz clock rate, the processor 
requires that peripherals and memory vacate the 
bus in less than 85 ns; however, the standard speed 
of the controller is 100 ns. A faster version, the 
82720-1, can be used, but it requires faster memory 
chips. A more cost-effective solution is simply add­
ing buffers, if board space permits. 

Serial communications to both the host and the 
optional tablet are handled by a multi protocol 
serial controller (the 8274), which takes care of the 
host's synchronous and the tablet's asynchronous 

4. The bit-map memory interface contains three address planes (one of which is shown here) to complete 
the graphics system. The RAS signal for the RAMs is generated by the graphics display controller. 

7-133 231310-001 



Computer Graphics: Graphics display controller 

80186 
microprocessor 

82720 
graphicS dIsplay 

controller 

5. The interface between the 82720 and the system 
microprocessor is simple to implement because all of the 
processor's signals are compatible with the controller. It is 
necessary, however, to use external gates to qualify the RD 
or WR signals. 

requirements. Interfacing is accomplished simply 
by connecting the buffered data bus, the latched 
lower-address lines, the Read and Write signals, 
and the chip-select. A final link brings the micro­
processor's counter-timer output into the multi­
protocol serial controller as a baud-rate clock. No 
buffering of the TTL support circuitry is necessary. 

Universal chip interfaces keyboard 

A universal peripheral interface chip (the UPI-
42) serves as the keyboard interface and is pro­
grammed to scan the keyboard and interrupt the 
processor only on detection of a valid debotinced 
keystroke. Mass-storage subsystems are managed 
by the 8272A floppy-disk controller. An external 
phase-locked loop circuit generates all of the timing 
signals reequired to connect a 51/4-in. drive to the 
system. On the microprocessor side, a DMA channel 
provides the link to the floppy-disk controller. Thus 

6. A complete graphics control system is centered around an 80186 microprocessor and the 82720 controller. 
Local storage is provided by 32 kbytes of EPROM and 16 kbytes of RAM. The system comprises 85 chips and 
is housed on a single 12-by·12-in. printed-circuit board. 

.7-134 231310-001 



the processor has a high-speed disk interface, 
which loads it lightly. . 

To complete the graphics system illustrated in 
Fig. 6, 32 kbytes of EPROM and 16 kbytes of RAM 
support the microprocessor's program and display 
lists. The two EPROMs (27128s) come in 28-pin 
packages, thereby saving board space. 

Hooking up the RAM chips is almost as straight­
forward. Since the microprocessor is a fully byte­
addressable device, it can write bytes as well as 
words to the RAM. The chip-select input for the low 
(even) address RAM must be qualified with address 
Ao at a logic zero, and the high (odd) address RAM 
must be qualified by the processor's Byte High 
Enable signal (BHE). The RAMs, designated 2186, 
have built-in controllers. 

Since dynamic RAMs latch addresses on the 
leading edge of the chip-select signal, they must be 
qualified with the processor's Address Latch En­
able signal to ensure that selection is made only 
after the address is valid. Then, a RAM latches the 
data to be written on the leading edge of the write 
pulse. The microprocessor's write signal must be 
delayed by one-half of a clock cycle to guarantee 
that data is valid at the correct time. 

At this point, the design meets all of its per­
formance goals. The s,ystem draws lines and circles 

T-I408/5K/03831HP RM 

at about 120,000 bits/so That is approximately 
82,000 pixels for a display consisting of even 
amounts of the three primary colors, as well as 
three secondary colors, and white. The 500 vectors 
of 25 pixels each can be drawn in about 0.15 s, six 
times faster than the 1-s requirement. The worst 
case-drawing all lines in white-can be accom­
plished in about one-third of a second. These spec­
ifications are satisfied when the graphics display 
controller is running from a 2.5-MHz clock. Draw­
ing is performed only during retracing and the 
82720 is programmed to use three memory cycles of 
each horizontal retrace for memory refreshing. 

All of the components fit on a board measuring 
12 by 12 in., so that the desktop size requirements 
are satisfied. The electronic components occupy 
about 100 in.2 of the low-cost, double-sided printed­
circuit board. 0 

Bibliography: 
Bresenham, J.E , "Algorithm for Computer Control of a Digital 

Plotter," IBM System Journal, 1965,4(1) pp. 25-30. 

7-135 231310-00t 



inter ARTICLE 
REPRINT 

AR-298 

Graphics Chip Makes 
Low-Cost, High Resolution 
Color Displays possible 
by Mark Olson and Brad May 

The making of displays that are 
both high-resolution and low-cost is 
the key to producing equipment for 
both the· automated office and the 
engineering workstation. Through 
the introduction of 16-bit f.i.PS such 
as Intel's iAPX 8088, 80186 and 
80286, the processing power has 
been made available to perform 
very sophisticated functions for the 
user while making the human inter­
face very simple. 

That processing power can be 
unnecessarily drained, however, if 
the f.i.P is burdened with the entire 
task of graphics display. Such a 
burden can fill up a significant part 
of the processor's 1/0 bandwidth, 
slow down the refresh rate of the 
display, and decrease the computa­
tional power of the CPU. 

Intelligent 
peripheralICs 

offload processing 
tasks from the CPU. 

The logical way to avoid such 
limitations is to dedicate a special­
ized processor to the handling of 
display function. It should be capa­
ble of accepting high-level com­
mands to minimize the burden on 
the CPU, as well as optimizing 
the execution of such commands 
through raster operations imple-

men ted in hardware at the device 
level. 

Such a chip is Intel's 82720 
Graphics Display Controller (GDC). 
It has features that give systems a 
fast drawing speed while reducing 
graphics display costs by 60% or 
more. It achieves these results by 
taking over the drawing and refresh 
functions from the CPU, by allow­
ing the use of dynamic RAM's in- . 
stead of static RAM's, and by re­
ducing thtl overall parts count 
needed to create a complete graph­
ics system. 

The implementation of the draw­
ing task is a major feature of the 
GDC. Other graphics chips per­
form only the display refresh func­
tion, leaving the more complicated 
drawing function entirely to the 
CPU. Since the CPU is doing every 
pixel of the drawing function on 
these systems, they also require fas-

ter bit map RAM than with the 
GDC. The GDC, on the other 
hand, is capable of handling the 
drawing function itself, drawing 
such objects as characters, slanted 
characters, points, lines, arcs, rec­
tangles, and slanted rectangles 
based only upon lengths, slopes, 
and arc centers supplied by the 
CPU. The GDC's processing, 
moreover, takes place concurrently 
with the processing of the CPU. 

2048 X 2048 Resolution 
With its 4 Megapixel addressability, 
one GDC can handle a mono­
chrome display with resolution as 
high as 2048 x 2048, and multiple 
GDC's can be linked to provide 
even higher resolution, such as col­
or displays at 2048 x 2048. The 
chances are, however, that the 
GDC's full power will not be used 
in most applications. The typical 

Operating System 

o From Independent 
Software Vendor 

Mark Olspn and Brad May are 0 From Intel 

Product Marketing Engineers for 
Peripheral Components Operation, Figure 1: General graphics commands are translated into the VDI interface level 
Intel Corp., Santa Clara, CA 95051. and then into driver device commands. • 
Reprinted from DIGITAL DESIGN © April 1983, Morgan·Grampian Publishing Company, Boston, MA 02215 
231315-001 7-136 Digital Design - April 1983 

231-310-001 



82720 BIT MAP INTERFACE 

I GREEN MEMORY 

l I BLUE MEMORY ;h 14 1,4 INTO 7 
ADO· MUX 7/ I RED MEMORY BLUE ---A015 2 ' 74LS157 AQ·A6 ~ -82720 

I I I 

'~ GREEN -00·016 4~ -
I 

LS - VIDEO RED -ALE 
32 RAS OUT 

4~ -
2XCLK CAS 

TIMING 
DOT CLOCK 10 

LOGIC LOAD SHIFT BANK 

:0-- WRITE SELECT 
DBIN 

I DBIN I 
- "YO 

~ LS 
;:::: Yl 

SYNC 
139 '"' Y2 H V ~ o Y3 I BLANK 

--- - BLANK - SYNC 

SYNC 
LS -32 -

FIgure 2' The memory IS broken lip mto three planes, with each plane feedmg one of the pnmary color gllns of the CRT. 

product considered high resolutIOn 
for office automation applications 
is a 512 x 512 pixel monochrome 
or color display. 

These latter restrictions are not 
imposed by the GDC, but rather 
have more to do with the cost of 
display monitors, the amount of 
RAM memory needed to support 
such displays, and the adequacy of 
such displays for most applications. 
It is possible to build "super graph­
ics" boards with a GDC, such as 
the lK by lK pixel by 8 color plane 
graphics display designed by Phoe­
nix Computer Graphics (Lafayette, 
LA). Such a display is capable of 
rendering 256 different colors on a 
high resolution screen. 

Even higher performance can be 
achieved through the use of multi­
ple GDC's to support multiple dis­
play windows, increased drawing 
speed, or increased bits per pixel. 
For multiple display windows, each 
GDC can be used to control one 
window of the display. For in-

Digital DeSign _ April 1983 

creased drawing speed, multiple 
GDC's can be operated in parallel. 
For increased bits/pixel, each GDC 
can contribute a portion of the 
number of bits necessary for a 
pixel. 

Although the GDC is intended 
primarily for raster-scan graphics, it 
can also be used as a character dis­
play controller. It is capable of sup­
porting up to four screens of data 
containing 25 rows by 80 columns, 
or one screen containing up to 100 
rows by 256 characters. 

Office Automation Display 
High performance applications can 
stretch the usage of the GDC from 
low-end to high-end engineering 
displays, but research has shown 
that for office automation prod­
ucts, a 512 x 512 pixel display is 
quite acceptable, and that color is 
often a requirement. These require­
ments mesh with a major factor in 
display-the cost of the CRT. In 

7-137 

OEM quantities, for example, one 
could expect to find a 512 x 512 
monochrome displa'y for under 
$100, a 256 x 256 color display 
(TV quality) for about $150, a 512 
x 512 color CRT in the $300 range, 
and a lK x lK color display in the 
$800-$1000 category. 

To give an example of the type of 
display that can be built for new of­
fice products using the GDC, con­
sider a 512 x 512 pixel by 3 color 
plane combination CPU and graph­
ics display on a single 12" by 12" 
board. Such a display is capable of 
generating 8 colors. 

The list of parts (Table 2) comes 
to about $175 for 85 IC's taking up 
104 square inches o( board space, 
Even that parts count could be re­
duced by replacing the 48 16K 
DRAMs with 12 64K DRAMs-if 
a 4K x 16 bit DRAM were avail­
able. A very important note about 
the parts list is that the design is 
implemented with inexpensive 2118 
dynamic RAMs, The design does 

. 231315-001 



(;raphics Chip 

not require the faster, more expen­
sive, and less dense static RAMs. 

The parts count is low enough so 
that the processor and graphics 
controller can be placed together in 
a single 12" by 12" board. This is 
important because small overall 
size and footpad are selling points 
for desktop workstations. System 
speed is also enhanced when the 
graphics controller and CPU are on 
the same board, because their com­
munication need not take up bus, 
inter-board bandwidth or experi­
ence any additional delays. 

Pipelining Transformations 
More important than putting the 
graphics display on the same board 

as the CPU is the level of commu­
nication between the CPU and 
graphics controller. If the burden of 
transformation processing is left 
entirely to the CPU while the 
graphics chip is used only as a CRT 
controller, then the CPU must com­
municate one bit per pixel to up­
date a display. With the GDC, the 
CPU input takes higher level forms 
such as the slope and length of a 
line, the length and center point of 
an arc, or the key coordinates of a 
rectangle. Since the average line on 
.a screen is about 25 pixels, that 
means that 25 times fewer CPU bus 
cycles are required to draw a 
graphical object with the GDC. 
These CPU cycles (an average of 
50 IJ-S each to calculate the graphi­
cal object and communicate it to 

the GDC) are the determining fac­
tor in drawing rate. 

Viewed from a larger perspec­
tive, there are four tasks that must 
be performed by a CPU-graphics 
chip combination: 

(1.) The CPU must calculate the 
higher-level graphics operations. 
This is done by the CPU and it in­
volves the processing of macro-op­
erations such as the CORE, GKS, 
PMIG or other graphics protocols. 
These general graphics commands 
are translated into an intermediate 
level, the VDI interface level (Fig­
ure 1) and then into device driver 
commands by software in the CPU. 

(2.) Then, these lower-level 
graphical objects such as the key 
parameters for lines, arcs, charac­
ters, and rectangles, must be trans-

VLSI Takes Aim At Text Processing 
The concept of co-processing is not a new one. Intended 
as a way of offloading computationally intensive tasks from 
a host CPl), it has been around at Intel since the Introduc­
tion of the 8087 numerics processor and the 8089 I/O ma­
chine. A more recently developed product, the 82720 
Graphics Display Contrcller is deSigned to bolster system 
performance by offloading graphics control chores from 
the CPU. The chip accepts high level commands from the 
CPU and, using its own drawing processor, accesses the 
required positions in the bit-map and handles the process­
ing and display control functions. 

Building ol1"the success of these parts come two new 
co-processors designed to partition system intelligence 
even further. The 82586 is a communications co­
processor deSigned to bridge the characteristics of CPU 
and network data rates. Its FIFO buffer and DMA faCIlities 
make it possible for a CPU to operate at the full Ethetnet 
10 Mbits/s transfer rate even in the face of continuous 
bursts of network data traffic. 

Intel's most recent introduction is the 82730 text co-pro­
cessor. Printers and other hard copy peripherals have sup­
ported additional text processing features such as propor­
tiona! spacing and simultaneous superscript and subscript 
for some time. Implementlrl9- these features on the display 
screen has traditionally been a costly procedure. Thus, it is 
typically not done and screen displays often are not identi­
cal to their hard-copy printouts. Aimed to solve this design­
ers headache, the 82730 has its own DMA capability and 
communicates asynchronously with the CPU via shared 
memory messages. It supports the generation of high 
quality text displays through features like proportional 
spacing, simultaneous superscript/subscript, dynamically 
reloadablefonts and user programmable field and charac­
ter attributes. In addition, when coupled with the 82720 
Graphics Display Controller (Figure 1) the 82730 provides 
flexible mixing of text and graphics simultaneously on the 
same display. 

-Wilson 

231315-001 7-138 

,--------, 
I 8C;~6 I 
I Coprocessor I 
L _______ _ 

,--------
82720 

GraphlG;s 
Processor 

82730 
Text 

Coprocessor 

IAPX 186 
General 
Purpose 

Processor 

Memory 

Data 
CommunicatIOns 
Block 

Display 
Processing 
Block 

Data 
Processing 
Block 

Figure 1: Offloading system tasks is simplified by new V LSI 
devices. 

Digital Design'. April 1983 



DRAWING SPEED 

- 50 ",sec - 50 ",sec 
Set up Draw 1 Set up Draw 2 Set up Draw 3 Set up draw 4 

80186 ( •• _________________________ )C ________________________ ------------------------------------) (---------------------------) (---------------------------) 

GDC (2.5MHz) 
Calculate 
Next bit 

GDC 
R/MiW 

Other 
CPU 

(25 pixels) 

-50 ",sec 
Set up draw 1 

(100 pixels) 

Drawl Drawl Drawl Draw2 
(--------->(---------) (---------)(-------_.) 

Bit 2 Bit 3 Bit 25 Bit 1 

(············40 "'sec······· ..................... ) 

Drl Drl Drl Drl 
<.--------)<---------> 

Bltl Blt2 81t24 8,t25 

(············40 "'sec······························) 

Calculate RiM/WB,tt Calc 

Draw2 
(---------). 

Bit 2 

Dr2 Dr2 
<---------> 

Bltl 81tl00 

-50 ",sec 
RIMIW Set up draw 2 

Blt25 

(··················375-500 "'sec···············································) 

Table 1: The 80186 and the CDC work together to accomp!t,h the draWing junctIOn 

formed into changes In the actual 
bits. This function is performed In 

hardware in the GDC concurrently 
with any level one processing done 
by the CPU. Other graphics con· 
trollers leave this task to the CPU 
to execute in software. The con­
trast is that, in such systems, the 
CPU must resolve the graphical ob· 
ject down to every point on a line. 
while with the GDC it need only 
designate the endpoints. 

(3.) With the actual bits for the 
bit map calculated, they must be 
placed in the bit map memory. This 
involves a read-modify-write oper­
ation that requires three CPU' cy­
cles using other methods. With the 
GDC these operations are not the 
responsibility of the. CPU. The 
GDC pipelines its execution so that 
it is calculating the next bit to 
change while it is executing the 
read-modify-write cycles. 

(4.) Finally, the bit map memory 
must be dumped into the CRT. This 
is the refresh function performed 
by other graphics chips as well as 
the GDe. 

The summation is that other sys­
tems require the CPU to process 
steps one to three serially, leaving 
only step four for the graphics con­
troller. Systems with the GDC re­
quire the CPU to process only step 
one, with the GDC concurrently 

Digital Design. April 1983 

processing steps two through four. 
The GDC has another advantage in 
that dunng the transformation pro­
cess In step three, the GDC ex­
ecutes the algonthms in hardware 
while a CPU must execute the al­
gonthms In software. The algo­
nthms are exactly the same in both 
cases They are the Bresenam algo­
nthms from IBM, in whIch the next 
pIxel to be drawn becomes a binary 
deCISIon between two pixels. 

The execution of these algo· 
nthms IS a crUCIal drawing lime fac· 
tor, because they are invoked many 
times for each updated screen. 
Consider that, In the inner loop of 
Bresenam's "line drawing algo­
rithm," there are two or three addi· 
tions, two comparisons or tests, 
and the masking of the proper val­
ue into the word for each pixel. 
The algorithms for drawing circles 
or filling areas are even more com­
plex. In the inner loop of a fill algo­
rithm, the old word must be read 
from the bit map, then tested to see 
if 'all, some, or none of the pixels 
are within the area to be filled. 
Next, it tests whether some or all of 
the pixels must be modified. Final­
ly, the word must be returned to the 
bit map. 

These algorithms are heavily 
used and the speed with which they 
can be executed has a direct effect 

7-139 

upon the overall system effiCIency. 
If they must be executed hy a fLP, 
the instruction fetching process 
slows down the calculations to a 
draWing rate of 15-20 fLS per pixel. 
With a hardware implementation of 
these algorithms In the GDC, the 
calculations can be speeded up to 
achIeve a drawing rate of 1600 ns 
(2.5 MHz version) or 800 ns (5 
MHz version) per pIxel. 

Methods Of Refresh 
In the fourth step, the dumping of 
bit map memory into the CRT, 
there are some differences between 
graphics controller chips. Motoro­
la's MC6845 CRT controller, for ex­
ample, uses a split-cycle refresh 
method in which each refresh cycle 
is alternated with a drawing cycle 
in which the fLP Hpdates the bit 
map. This gives the MC6845 a 50% 
drawing bandwidth. 

With the GDC there are two 
drawing modes. The first is a "draw 
anytime" mode which replaces 
CRT refresh cycles with drawing 
cycles. This is the fastest mode, but 
it does result' in on-screen disrup­
tions. The second mode, which 
does not disrupt the on-screen dis­
play, draws only during the vertical 
and horizontal retracing periods. 
This gives the GDC about a 25% 

231315-001 



1 80186 1 74LS04 1 20 MHz Clock 
1 82720 1 74LS73 2 27128 
2 ,74LS157 9 74LS244 2 2186 
1 74LS139 8 74LS166 1 8274 
1 74LS161 3 74LS32 1 8042 
1 74LS11 2 8286 3 Connectors 
1 74LSOO 1 8 MHz Crystal 1 12 x 12 2 Layer PC 

SUMMARY: 

4 VLSI Controllers 

4 VLSI Memory 

4816K DRAMs 

29 MSI/SSI 

TOTAL: 85 IC'S -'104 Sq .. Inches 

Parts Cost -'About $175 

80186 
82720 
8274 
8042 

27128 
2186 

2118 

Processor 
Graphics 
Senallink 
Keyboard 

EPROM 
IRAM 

DRAM 

Buffers/Glue 

Table 2: Parts list for 512 x 512 x 4 Color DIsplay. 

16 MHz To Dot Clock 

-~D~ r (25 MHz) 

X. X, ~2XCCLK 

WR WR 

RD r AD 
PCSl ro-;. Al AD 

1 I I 
80186 Data 82720 

ADO·7 Buffer DBO-7 
DEN . I I DTIR I 
PCSl 1 DACK 

DROO DREa 

• Asynohronous Processors 
• DMA Access to Bit Map 
.4 Buffers. 1 Glue IC 

FIgure 3: The two chip selects are OR'd together to qualify the RIW SIgnals. 

drawing bandwidth. At first glance 
that gives the GDC a disadvantage 
in drawing rate, but the fact is, 
with its pipe lining and hardware 
execution of transformations, the 
GDC makes much more efficient 
use of its bandwidth. The critical 
timing factor is the amount of CPU 
participation in the drawing pro­
cess, not the refresh bandwidth of 
the graphics controller. Another 
tradeoff is that, with its split-cycle 
architecture, the MC6845 requires 
RAM memory that is twice as fast 
as that required by the GDC in the 

same application. 

Inexpensive RAM Is Fast 
Enough 
Applying this perspective, one can 
begin to build the display with parts 
listed in Table 2. First one notes 
that a square display, as indicated 
by the 512 x 512 pixel initial specifi­
cation, is not pleasing to the eye. It 
is much more appealing to have an 
aspect ratio of about 4:3, in which 
the number of pixels horizontally is 
4/3 the numl?er vertically. If the res­
olution is such that the total num-

7-140 

ber of pixels is not a power ot two, 
it will be necessary to round up to 
the next power of two and waste 
the extra bits. 

The pixel arrangement which 
best meets this requirement is one 
with a 432 x 576 pixel format. It 
also meets the requirement that the 
number of pixels horizontally be an 
even number of 16-bit words. With 
three color bits per pixel (red, 
blue, and green), the total display 
memory is then about 500 x 500 x 3, 
or 750k bits. . 

It makes the most sense to break 
the memory up into three planes, 
with each plane feeding one of the 
primary color guns of the CRT 
(Figure 2). This leads to a memory 
arrangement of 16K x 16 x 3, 
using 16K dynamic RAMs with a 
II<. x 16 architecture. When draw­
ing graphics figures, the memory 
can be treated as one large plane, 
split into the three primary colors, 
Dr~wing in low-order memory 
could represent red, middle-order 
could be used for green, and high­
order for blue. 

One advantage of this 3D mem­
ory is that drawing with a primary 
color requires setting only one bit 
per pixel. Drawing with a secon­
dary color such as cyan, yellow, or 
magenta would take two GDC cy­
cles, and creating white from all 
three colors would take three GDC 
cycles. If this were an issue, addi­
tional hardware could be used to 
draw more than one plane at a 
time. As the results will show, ho~ 
ever, the drawing speed require­
ments can be exceeded without any 
added hardware. 

Calculate The Drawing Rate 
To see if the' proposed design is 
practical, one should first calculate 
the drawing rate to see what the 
user interface will be like. Then 
one should check the refresh rate 
to make sure the design is uninter­
rupted and without flicker. 

The proof of the assumption that 
CPU participation is the dominat­
ing factor lies in the 50 JJ.S average 
time that it takes the CPU to calcu­
late a graphical object and commu­
nicate its key parameters ~ to 'the 
GDC. Assume that the graphical 
object is an average line containing 

231315-001 



25 pixels, and that there are about 
500 vectors on the average screen 
display. 

The GDC's normal clock rate is 
2.5 MHz, giving it a 400 ns period 
(the maximum clock rate is 5 MHz, 
with a 200 ns period.) It takes four 
GDC cycles to execute a read­
modify-write on a bit (because two 
read cycles are required), so that 
the GDC's normal drawing rate is 
one pixel per 1600 ns. To draw the 
25 pixels involved in the average 
line, then, would take 25 x 1600 ns, 
or 40 jLS. Since this operation is 
done concurrently with CPU pro­
cessing, the GDC will be waiting 
for the next graphical object by the 
time the CPU is ready. 

If the screen were filled with 
nothing but 25-pixel vectors, then 
the drawing, rate would be deter­
mined by the 50 jLS average CPU 
calculation and transfer cycle, aver­
aging about 2 jLS per pixel. If all 
the vectors were white (worst 
case), then it would take 1.5 secs of 
drawing time to update the white 
screen. Since, in the undisturbed­
screen mode, drawing is only done . 

ORca 
peso 
OROl 

TMR OUT 0 1 -
'!:iB 
AD 

ALE I-- II 

during the 25 % of the time that the 
screen is undergoing horizontal or 
vertical blanking, this would mean 
6 secs between updates. 

In reality, however, the screen 
will not be filled with vectors. It 
will have an average of 500 vectors, 

'and the color distribution could be 
presumed to be evenly distributed 
as one-third primary colors, one­
third secondary colors, and one­
third white. The 500 vectors will re­
quire the drawing of 12.5K pixels 
in monochrome, or 25K pixels with 
distributed colors. At a drawing 
rate of 2 jLS per pixel, this takes 50 
ms to draw. Drawing only during 
blanking, the screen would be up­
dated in 200 ms. 

Under these conditions, It would 
not help to use the maximum clock 
rate GDC (5 MHz), but If in some 
applications the average vector 
length is 100 pixels, then the CPU 
calculation-and-bus cycle (50 jLs) 
would remain the same and the 
GDC's drawing cycle (1600 ns x 
100 = 160 jLs) would become a 
limiting factor. Using the 5 MHz 
GDC would cut that drawing time 

,--- ADA ADDRESS BUS 
LATCH ,...-- PCS3 

r---- PCS2 L....-
,-- ARDY 

80186 
"p ...---

AD 
BUS DATA 

DATA BUS -

I 
I 

(;',Iphils Chip 

down to 800 ns/pixel, or 80 jLs/vec­
tor. The 500 vector average screen 
would then contain lOOK pixels 
with distributed colors and could 
be drawn in 80 ms. Multiplying by 
four because the drawing is done 
during blanking (25% of the time), 
that is 320 ms'. That is a screen up­
date in less than one-third second 
for a "busy" screen. 

Calculate The Refresh Rate 
These calculations are of little im­
portance if the display flickers due 
to lack of refresh. This exercise is 
actually a demonstration of how 
the basic GDC clock rate was de­
rived. Assume a non-interlaced dis­
play that must be refreshed 60 
times per second. That gives a 
screen refresh rate of 16.67 ms, but 
on a typical CRT some 4.27 ms of 
that is blanked, leaving 12.4 ms of 
active display time. The dot. sweep 
period is the 12.4 ms divided by the 
number of pixels (432 x 576 = 
248.8K), or 49.8 ns. The inverse 
gIves a 20JJ7 MHz dot clock. 

Since the GDC dumps 16 bits 
from the bit map memory into the 

DREG 
-
DACK 

-
WA 

AD 
MONITOR 

1 1 82720 
GDC 

I VIDEO I REFRESH 
LOGIC 

I 
OBO-7 MEMORY BUS 

r- LCS DE~~BUFFER 

1 1'-- ,--- --
- VCS DTAf--L....-

",dO' ,,~1 .L~ ~f:J om 

AXC 
TXC 

27128 r--- 27128 2186 2186 B~;~D 8274 ROVB lXDRQA 
SERIAL 16K· 1 

ill LOW r----- HIGH - LOW HIGH CON· 10 

" o'~ " • -" 0 "y"'y'" \--I CE ~ WE M"EADY CS READY CS CS BIT MAP MEMORY 
16K· 16 

3 PLANES 

TO DMA 
MONITOR SERIAL PORT 

KEYBOARD TO HOST 

+ 
TO 

OPTIONAL 
TABLET 

F,gure 4: Completed graphICS system uses the 80186 and 82720 CDC 

Digital DeSIgn _ AprIl 1983 
7-141 231315-001 



'" DINO·DIN15 0, 0, 0, 0" 

, 
I 

II 

D,N 
2118 

~·A6 .. Ao-At; .. 
VIDEO 

2118 OUT 

AAs .. RAS 2118 ~ 2118 .--
-

CAS • CAS r--
- IN,t. 

WAITE 

~ 
r--WE 2X 

DOUT r-- 74166 

INz 

IN, 

INo 

BSEL ,CLOCK 

::J 32 
DBIN 

I t I 
SINPUT 

2X74L$244 

-:!:--SL 

••• 
DOT eLK 

+ ~ 
I Do 0, 0, 0" 

SH 1FT LOAD 900173 

Figure 5: Since the 186 is a fully byte addressable machine. illS possible 10 write bytes a,1 well as words into the RAMs, 

16-bit shift register during each 
read, and since the shift register 
then feeds these bits out serially to 
the CRT, it makes sense that the 
GDC's read period should be 16 
times the dot sweep period, That 
gives a GDC read period of about 
800 ns. With each GDC read taking 
two cycles, the basic GDC clock 
period is then 400 ns, or 2.5 MHz. 
This gives a rock-solid display, 'and 
one would only want to go to the 5 
MHz GDC to improve drawing 
rate. 

For those who want to examine 
the blanking intervals to see if the 
CRT is indeed "typical," the blank­
ing can be further broken down. 
The vertical blanking interval is 
1.25 ms, leaving 15.42 ms to scan 
the 432 lines on the active portion 
of the display. Dividing 15.42 ms by 
432 lines gives a 35.7 f-LS period per 
line, or a horizontal sweep rate of 
28 KHz. Time is also needed for 
horizontal retrace, in this case, 7 
f-LS of horizontal blanking per line. 
This leaves 28.7 f-LS to scan the 576 

231315-001 

pixels on each line, resulting in the 
dot sweep period of 49.8 ns. Using 
a 20 MHz CRT helps keep the costs 
down. but the GDC can use CRT 
displays as fast as 80 MHz when 
higher resolution is required. 

Mixed Mode 
While it is possible to generate 
8 x 8 characters and slanted charac­
ters in the graphics mode. the GDC 
also offers a mixed mode memory 
organization to display both charac­
ters and graphics drawn from sepa­
rate windows in the display mem­
ory. The advantage of this mode is 
that it allows characters to be ma­
nipulated as 8-bit entities instead of 
the 64 bits that each would require 
in graphics mode. Of necessity, the 
graphics window display memory is 
reduced in this mode (64K 16-bit 
words instead of 256K), but even 
the reduced maximum graphics 
memory is still a megapixel and 
quite sufficient for both office auto­
mation and engineering display 
purposes. 

7-142 

In the character window, the 
GDC operates as it does in the 
pure character mode, with the ex­
ception that the line counter must 
be implemented externally. In addi­
tion to the two windows used for 
graphics and characters in the 
mixed mode, two other windows 
can be supported. These can be 
designated as either character or 
graphics windows by a selection on 
the A 17 line. 

Panning, Zooming, Light Pen 
As special features, the GDC al­
lows both panning and zooming in 
either graphics, character, or mixed 
modes. The zoom is accomplished 
by effectively increasing the size of 
the dots on the screen. Vertically, 
this is done by repeating the same 
display line. The number of repeat 
times is determined by the display 
zoom parameter. Horizontally, 
zoom is accomplished by extending 
each display word cycle and dis­
playing fewer, words per line, ac­
cording to the zoom factor. 

Digital Design _ April 1983 



inter 
82730 

TEXT COPROCESSOR 

• High Quality Display for Text and • Extremely Flexible; Programmable 
Graphics Applications Features Include Screen and Row 

• Provides Proportional Spacing, Formats, Two Cursors, Character and 
Simultaneous Superscript/Subscript, Field AttrIbutes and Smooth 
Soft Font SUPP9rt and Bit Map Scrolling 
Graphics • Supports Multiple Windows 

• High Performance Manipulation of • High Resolution Display; Up to 200 
Text/Graphics Strings Characters/Graphics Cells per Row 

• Programmable Bus Interface and 2048 Scan Lines per Frame 
Handles 8 or 16 Bit Data and 16 or 32 • Separate Bus and Video Clocks 
Bit Addressing; iAPX 86/88/186/188 Allow Opiimization of Overall System 
Compatible Performance 

• On-Chip Processing Unit Simplifies • Provides a Complete LSI Solution for 
Software Design by Executing High Display Control when Used in 
Level Commands and Supporting Conjunction with the 82731 Video 
Linked List Data Structures Interface Controller 

The 82730 Text CQprQcessQr is a high perfQrmance VLSI sQlutiQn fQr raster scan text and graphics displays. 
The 82730 wQrks as a cQprQcessQr and has prQcessing capabilities specifically tailQred to' execute data 
manipulatiQn and display tasks. It prQvides the designer the ability to' functiQnally partitiQn his system 
thereby QfflQading the system CPU and achieving maximum perfQrmance through cQncurrent prQcessing. 
The 82730 SUPPQrts the generatiQn Qf high quality text displays thrQugh features like prQPQrtiQnal spacing, 
simultaneQus superscript/subscript, dynamically relQadable fQnts and user prQgrammable field and 
character attributes. It sUPPQrts high quality graphics with fast manipulatiQn and display Qf bit map strings. 
An intelligent system interface and efficient sQftware capabilities makes 82730 based systems easy to' design. 

BUS CONTROLS 

CA 

SINT 

AOO-ADI5 

MICROCONTROLLER 
UNIT DISPLAY 

1--+----< •• 1 CHARACTERISTICS 
REGISTERS 

MEMORY INTERFACE UNIT -1- DISPLAY GENERATOR 

Figure 1. 82730 Block Diagram 

DISPLAY 
GENERATOR 

CONTROL 

CHAR 
DATA 

VIDEO 
CONTROLS 

Intel CorporatIon Assumes No Responsibility for the Use of Any Circuitry Qther Than CirCUItry Embodied in an Intel Product. No Qther Circuit 
Patent LIcenses are Implied. 

©INTEL Co.RPQRATIQN. 1984 7-143 
AUGUST 1984 

ORDER NUMBER: 210931-004 



82730 

CA ~ 

SO 
51 

READY 
SINT 
IRST 

RESET 
BCLK 

\Iss 
ALE 

RD 
WR 

HLDA 
HOLD 

DEN 
AEN 

UALE 

PIN NO.1 MARK 

Figure 2. 82730 Pinout Diagra,m 

Table 1. 82730 Pin Description 

BonoM 

CRVV 
BLANK 
CHOLD 
LPEN 
RRVV 
VSYNC 
CSYNC 
CCLK 
Vss 
RCLK 
SYNCIN 
HSYNC 
LC4 
LC3 
LC2 
LC1 

.. LCO 

The 82730 is packaged in a 68 pin JEDEC Type A ceramic package. 

I 

Symbol Pin Number Type Name and Function 

AD15-ADO 1-8 1/0 Address Data Bus; these lines output the time 
10-17 multiplexed. address (TU, T1 states) and data (T2, T3, 

T4 and TW) bus. The bus is active HIGH and floats to 
3-state OFF when theB2730 is not driving the bus (Le. 
HOLD is not active or when HOLD is active but not 
acknowledged, or when RESET is active). 

BCLK 59 I Bus clock; provides the basic timing for the Memory 
Interface Unit. 

RD 62 0 Read strobe; indicates that the 82730 is performing a 
memory read cycle on the bus. RD is active low forT2, 
T3 and TW of any read cycle and is guaranteed to re-
main high in T2 until the address is removed from the 
bus.Rr5 is active low and floats to'3-state OFF when 
82730 is not driving the bus. Rl5 will return high before 
entering the float state and will not glitch low when 
entering or I~aving float. 

210931-004 

7-144 



inter 82730 

Table 1. 82730 Pin Description (Continued) 

Symbol Pin Number Type Name and Function 

WR. 63 0 Write strobe; indicates that the data on the bus is to 
be written in a memory device. WR is active for T2, T3 
and TW of any write cycle. It is active LOW and floats 
when 82730 is not driving the bus. WR will return high 
before entering the float state and will not glitch low 
when entering or leaving float. 

ALE 61 0 Lower Address Latch Enable; provided by the 82730 
to latch the address into an external address latch 
such as 8282/8283 (active HIGH). Addresses are 
guaranteed to be valid on the trailing edge of ALE. 

UALE 68 0 Upper Address Latch Enable; it is similar to ALE 
except that it occurs in upper address output cycle 
(TU). 

AEN 67 0 Address Enable; AEN is active LOW during the entire 
period when 82730 is driving the bus. It can be used to 
unfloat the outputs of the Upper and Lower Address 
latches. 

DEN 66 0 Data enable; provided as a data bus transceiver out· 
put enable for transceivers like the 8286/8287. DEN is 
active LOW during each bus cycle and floats when 
82730 is not driving the bus. DEN witl not glitch when 
entering or leaving the float state. 

SO,S1 53, 54 0 Status pins; encoded to provide bus-transaction 
information: 

51 SO Bus Cycle Initiated 

0 0 - - - (Reserved) 

0 1 Memory Read 

1 0 Memory Write 

1 1 Passive (No bus cycle) 

These pins are directly compatible with iAPX 86,186 
status outputs S1 and SO. The status pins are floated 
when 82730 is not driving the bus. They will not glitch 
when entering or leaving the 3-state condition. 

READY 55 I READY; signal to inform the 82730 that the data 
transfer can be completed. Immediately after RESET, 
READY is asynchronous (internally synchronized) 
but can be programmed during initialization to bus 
synchronous. 

210931-004 
7-145 



82730 

Table 1. 82730 Pin Description (Continued) 

Symbol Pin Number Type Name and Function 

HOLD 65 0 HOLD; indicates that the 82730 wants bus access. 
HOLD stays active HIGH during the entire period 
when 82730 is driving the bus. 

HLDA 64 I Hold Acknowledge; indicates to 82730 that it is 
granted the bus access as requested. HLDA may be 
asynchronous to 82730 clock. If HLDA goes inactive 

. XLOW) in the middle of an 82730 bus cycle, the 82730 
will complete the current bus cycle first, then it will 
drop HOLD and float address and ~us control 
outputs. 

CA 52 I Channel Attention; used to notify 82730 that a com· 
mand in the command block is waiting to be proc, 
essed. CA is latched on its falling edge. 

SINT 56 0 Status Interrupt; used to inform the processor that an 
unmasked interrupt has been generated in the 82730 
status register. 

IRST 57 I Interrupt Reset; SINT is cleared by activating the 
IRST pin. 

RESET 58 I Reset; causes 82730 to immediately terminate its 
present activity and enter a dormant state. The signal 
must be active HIGH for at least 4 BCLK cycles and is 
internally synchronized to the bus clock . 

CCLK . 27 I Character clock; input used to clock row ,buffer data, 
attribute, cursor and line count out of 82730. When 
more than one 82730 is connected in cluster mode, 
CCLK is used to synchronize output from both 
master and slave chips. A character data word will be 
output at every rising edge of CCLK. 

RCLK 25 I Reference clock; input used to generate timings for 
the screen layout and to define screen columns for 

/ data formatting. All raster output signals are 
specified relative to the riSing edge of RCLK. 

DATO-DAT14 36-42 0 Video data bus output; the least significant 15 bits of 
44-51 the character data words are passed through the 

82730 row buffer and made available on the pins 
OATO-OAT14. The user has the flexibility to partition 
the data word into character and attribute bits per his 
requirements. The bits that are assigned for inter-
nally generated attributes may also be available at 
pin OATO-DAT14. New character data will be shifted 
to these output pins at every rising edge of the CCLK. 
Together with LCO-LC4, they may be used to address 

, the character generator or as attribute controls. 

7-146 210931-004 



inter 82730 

Table 1. 82730 Pin Description (Continued) 

Symbol Pin Number Type Name and Function 

WDEF 35 0 Width Defeat; is used to indicate when the character 
is allowed to be a variable width or must be of fixed 
width. WDEF is LOW if the character being output is 
normal, but is HIGH if it is a superscript/subscript 

I character or visible attribute (TAB or GPA). Option-
ally, WDEF can be held high by user command. 

LCO-LC4 18-22 0 Line count outputs; used to address the character 
generator for the line positions in a row. The line 
number output is a function of the display mode and 
character attributes programmed by the user. 

CSYNC 28 0 CCLK synchronization output; used to synchronize 
external character clock generator to reference clock 
timing. This output is active (high) outside the display 
field. 

CHOLD 32 0 CCLK Inhibit output; used by external logic to inhibit 
CCLK generation. This output is active (low) during 
the tab and end-of-row function. 

SYNCIN 24 I Synchronization input; used to synchronize the ver-
tical timing counters to an externally generated 
VSYNC signal. Used by slave mode 82730 to syn-

c chronize to a master mode 82730 and by the master 
82730 to lock the frame to an external source such as 
the power line frequency. 

HSYNC 23 o (MASTER) Horizontal Sync; in master mode, it is used to gener-
I (SLAVE) ate the CRT monitor's horizontal sync signal. It is 

active HIGH during the programmed horizontal sync 
interval. In interlace slave mode it is used in conjunc-
tion with SYNCIN to indicate the start of the even 
field for timing counter reset. At RESET, pin is set as 
an output in the LOW state. 

VSYNC 29 0 Vertical Sync; active HIGH during the programmed 
vertical sync interval and used to generate the CRT 
monitor's vertical sync signal. 

BLANK 33 0 Blanking output; used to suppress the video signal to 
the CRT. BLANK is clocked by CCLK. 

CRVV 34 0 Character Reverse Video (CCLK output); used to ex-
ternally invert video data output. CRVV is clocked by 
CCLK. 

RRVV 30 0 Reference Reverse Video (RCLK output); to exter-
nally invert video in the field and border area if so pro-
grammed by user. It is LOW outside the border area, 
RRVV is clocked by RCLK. 

7-147 210931-004 



82730 

Table 1. 82730 Pin Description (Continued) 

Symbol Pin Number Type . Name and Function 

LPEN 31 I Light Pen Input; used to latch the position of a light 
pen. At the rising edge of this input, the column posi-
tion and the row position of the 82730 will be loaded 
into the LPENROW and LPENCOL locations in the 
Command block. 

Vee 9,43 Power; + 5 volts nominal potential. 

Vss 26,60 Power; ground potential. 

FUNCTIONAL DESCRIPTION operation to the one in the 8275 CRT controller). 
The row buffers allow the user to use cheaper and 
slower main memory for display needs, provide 
on-chip attribute and display function gener­
ation, and avoid the conflict of access to the dis­
play memory (that would otherwise take place) 
by using an ordinary DMA access mechanism. 

Figure 1 shows a basie block diagram of the 
82730 Text Coprocessor. The chip is divided into 
two main sections, the Memory Interface Unit and 
the Display Generator. The Memory Interface 
Unit controls fetching of the data and commands 
and handles interrupts and status. The Display 
Generator takes the data fetched by the Memory 
Interface Unit and presents it to the Video Interface 
logic which in turn drives the CRT monitor. 

. SYSTEM BUS INTERFACE 

Memory Interface Unit 
The Memory Interface Unit is divided into two 
sections: the Bus Interface Unit and the Micro­
controller Unit. The Bus Interface Unit does the 
actual interfacing to the memory bus. It fetches or 
writes data under the control of the Microcon­
troller Unit. The Microcontroller Unit is a micro­
programmed controller which is designed to effi­
ciently fetch data from memory (up to 4 
Mbytes/sec), and decode and execute various 
control and data handling commands. The Bus 
Interface Unit may be configured for 8 or 16 bit 
bus operation. With 8 bit bus selection, the user 
may specify either 8 or 16 bit character data. It 
also handles address manipulation automatically 
after being loaded from the Microcontroller Unit. 

Display Generator 
The Display Generator takes the data fetched 
from memory plus the modes programmed into it 
at initialization and produces all the video timing 
and the data transfers to support the CRT monitor 
at the character level. The 82730 works with an 
external character generator and the 82731 Video 
Interface Control.ler. The data is passed to the 
Display Generator from the Memory Interface 
Unit through the dual row buffers (similar in 

7-148 

The Memory Interface Unit provides communi­
cation with system processor as well as memory 
interactions. Communication between the pro­
cessor and the 82730 is performed via messages 
placed in communication blocks in shared 
memory. The processor can issue commands by 
preparing message blocks and directing the 
82730's attention to them by asserting a hardware 
channel attention. The 82730 can cause inter­
rupts on certain conditions, if enabled by the pro­
cessor by activating its System Interrupt output, 
with status and error reporting taking place 
through the communication block in memory. 

BUS INTERFACE UNIT; 

The 82730 Bus Interface Unit provides an 8086 
compatible bus interface which consists of: 

a 16/32 bit multiplexed Address/Data Bus: 
AOo'- AD15 

A complete set of local bus controili9nal~ 
comp!ill!2le with 8086 min mode: RD, WR, 
ALE, DEN and READY _ 
Two status signals SO and S1, compatible 
with 8086 max mode so that a bus con­
troller (8288) can be shared for Multibus® 
access. 
Local bus arbitration through HOLD/ HLDA 
Two .Y.I2Qer Address Latch controls: UALE 
and AEN 

210931-004 



inter 82730 

The BUS INTERFACE UNIT (BIU) utilizes the same 
Bus structure as the 80186 or basically the same 
bus structure as the 8086 in both Min. and Max. 
mode, (with the exception of RQ/GT) and it per­
forms a bus cycle only on demand (e.g., to fetch a 
command from the command block, or fetch a 
character from display data memory). The same 
set of T- states (T1, T2, T3, T 4 and TW) of 8086 are 
used to handle the time multiplexed address/data 
bus. However, adaptations are made to handle 32 
bit addresses as explained in the following sec­
tions where specific details of the BIU operation 
are described. Those details not mentioned can 
be assumed to be the same as those of the 80186. 

ADDRESS BUS 

The 82730 can be programmed during initial­
ization to operate on either 16bitor32 bit (includ­
ing any length between 17 and 32) physical 
addresses. Note that the 82730 does not use 
memory segmentation. The programmer must 
calculate physical addresses from segment and 
offset values to manipulate data structures. 

To support 32 bit physical addresses with a 16 bit 
physical bus, multiplexing is again used. An 
upper address output cycle, TU, is inserted bet­
ween T4 and T1 to output the upper 16 bits of 
address. The upper address latch enable, UALE, 
is used to latch the upper addresses during TU. 
Figure 3 shows the configuration of a 32 bit 
address bus. 

TU occurs only when the 32 bit mode is specified 
and the upper address register of BIU is reloaded 
by MCU. This may result from: 

i) Initialization 

ii) Manipulation of display data or command 
pointers, for example, when a new string 
pointer is loaded during the execution of 
the END OF STRING command. 

iii) . DMA address incrementing across a 64K 
byte segment boundary. 

iv) Regaining the bus after losing it to a higher 
priority master. 

Timing of UALE is identical to that of ALE. AENis 
equivalent to the active period of 82730 driving 
the bus. 

If 16 bit address mode is programmed, TU will 
never occur in any bus cycle since the MIU treats 
all display pOinters as 16 bit quantities and load­
ing of int~rnal upper address register is bypassed 

during addre.M..£alculation. UALE always stays 
inactive, but AEN still goes active to indicate the 
82730 has control of the bus. 

DATA BUS 

The 82730 is capable of operating on either an 8 
bit or a 16 bit Data bus, as programmed during 
initialization on the SYSBUS byte. 

When an 8 bit data bus is specified, the address 
present on AD15 to AD8 Address/Data lines is 
maintained for the complete bus cycle. There­
fore, compatibility with 80188, 8088, 8089 and 
8085 multiplexed address peripherals is main­
tained. Since the internal processing of the 82730 
generally operates on 16 bit data quantities, two 
Bus fetch cycles are performed for each 16 bit 
data item. The first cycle fetches the low order 
byte, the second cycle the high order byte. These 
2 fetch cycles are always executed back to back. 
If HLDAdropsduring the first cycle, the 82730 will 
not respond until the second cycle is completed. 
An 8 bit data mode can be selected in an 8 bit bus 
system that requires only 8 bit character data be 
fetched. 

In 16 bit bus system, the 82730 requires all 16 bit 
quantities to start on even address boundary. 
Word transfer to or from odd boundary is not 
allowed since this type of transfer not only dou­
bles the use of bus bandwidth but also can be 
easily avoided in application software. All that is 
required is to make sure all address pointers be 
an even number (AO=O). 

1-"1~~;:::=====::> ADO"5 

82730 
A.6-3' 

elK CE 

UALE 

AEN 

Figure 3. Address Extension up to 32 Bits 

210931-004 

7-149 



82730 

l!uJs CONTROLS 

The 82730 BIU provides both the 8086 MIN. Mode 
(Local Bus Control) and MAX. mode bus control 
signals simultaneously in any bus cycle. By 
providing a complete set of Local Bus control 
signals, the component count of the,Local pro­
cessing module is minimized. 

Because only two types of Bus operations, 
Memory Read and Memory Write, are executed in 
the 82730 BIU, the 8086's 52 status signal is 
omitted from tM Max. mode controls. S2.!t.Q.LJld be 
set to "1" during any 82730 Bus cycle. AEN can 
be used to produce S2 since it stays active 
whenever 82730 is driving the bus. The status 
signals become valid at the middle of the cycle 
before T1 which could be either T4 or TU. 

"B'HE is not provided on the 82730 because, the 
82730 only writes words to even address boun­
daries and btes to the upper byte position. For 
these writes HE is always high. A PUIiAeNsistor 
or a three-state buffer controlled by . can 
provide this signal. 

DT/R is also not provided on the 82730 because 
its function can be replaced with S1, latched by 
ALE. 

After RESET is applied, READY is set to be an 
asynchronous input. An on-board synchronization 
circuit provides reliable operation for any type of 
system. During initialization, READY may be 
programmed to be bus synchronous. For those 
systems that can meet the set-up time specifi­
cations, this mode provides more efficient bus 
utilization. 

LOCAL BUS ARBITRATION 

The 82730 BIU is designed to function as a bus 
master in a multi master Local bus environment 
using the HOLD/HLDA protocol for Bus arbi­
tration. 

In the Self Contained Arbitration scheme,one 
processor and one 82730 share access to the 
local bus. The 82730 raises its HOLD request 
whenever it needs bus access. After HLDA is 
granted from the processor, the 82730 will not 
start driving the bus until2clock cycles later. This 
latency allows sufficient time for the 8086. or 
80186 processor to get off the bus. When 82730 
completes its bus accesses, it will first float its 
outpu.t drivers before dropping the hold request. 

In a Local bus configuration with three or mor~ 
bus masters, a higher priority DMA Peripheral 

7-150 

device can preempt the HLDA from a 82730 which 
is the current bus master. The 82730 will complete 
its current bus cycle, then float its output driverS 
and drop the HOLD request. However, the 82730 
may raise the HOLD request again 2 clock cycles 
later if it still needs the bus to complete the 
interrupted burst DMA activities. 

DMA BURST AND SPACE 

Some system configurations using the 82730 
would be adversely affected by the long burst 
data transfers which the Memory Interface Unit 
(MIU) may occasionally desire. Since the 82730 
will normally be configured as one of the higher 
priority bus masters, burst lengths must be limited 
for these systems. For this reason, the length of a 
burst transfer and the number of memory cycles 
between burst transfers are both programmable 
via the mode registers: 

15 14 8 7 6 0 
MPTR - BRSTLEN - BRSTSPAC 

BRSTLEN- Burst Length.Determines the num­
ber of conHguous word-fetch cycles which may 
be requested. Programmable from 1 to 127. 
Note that in an 8 bit bus, 16 bit data system, the 
burst counter only increments once for the 2 bus 
cycles required to complete a word fetch. (Note: 
burst length = 0 is not defined and should not be 
programmed with a non-zero burst space) 

BRSTSPAC - Burst Space. Determines a mini­
mum number of bus clocks to occur between 
burst accesses. Programmable from 0-511 in 
increments offour. Zero space selects an infinite 
burst length. 

A DMA burst could be terminated before the 
programmed burst length is reached in the 
following circumstances: 

i) The MIU does not need any more bus 
accesses, for example, when the row 
buffer is filled. 

ii) A datastream command is encountered 
and the MIU must execute the command 
first before it resumes data accessing. 

iii) The bus is taken away by a higher priority 
device in multi-master bus configuration. 

In these cases, the burst counter iscleared. The 
BIU must complete a full burst before it waits 
through'the SPACE cycles. DMA Burst/Space 
will ~e set to ~ero space until the completion of 
the first MODESET command. 

210931-004 



inter 82730 

INITIALIZATION OF BIU 

Upon activation of the RESET input, the 82730 
BIU will stop all operations in progress and 
deactivate all outputs. It will stay in this quiescent 
state until memory access is requested by the 
MCU after MCU receives its fi rst channel attention 
after RESET. The following table shows the state 
of all MIU outputs during and after reset. 

Table 2. 82730 Bus During and After Reset 

Signals Condition 
AD15-O Th ree-state 

RD, WR, DEN Driven to '1' then three-state 
SO,S1 Driven to '1' then three-state 

ALE,UALE Low 
AEN High 
HOLD Low 
SINT Low 

82730 COMPATIBILITY ISSUES 

82730 Bus Clock Compatibility 

The 82730 uses the 50% duty cycle output of the 
iAPX-186 at 8 MHz or that generated by a clock 
generator such as the 82285. A different duty 
cycle clock may be used at lower frequencies, so 
the 82730 is also useable with the iAPX-86, 88 
family. 

82730 Bus Interface Compatibility 

The bus interface compatibility between the 82730 
and another bus master has four main issues: 
data bus width, addressability, control bus struc­
ture and local bus mastership arbitration. 

Data Bus 

Data Bus width compatibility with all 85/86 family 
processors (8085, 8086, 8088, 80188, 80186, and 
80286) is being supported by the 8/16 data bit 
programmability already discussed. This allows 
interfacing to the above processors either directly 
or through a Multibus-like interface. 

Address Bus 

The 82730 uses real 32-bit addresses. The user's 
software must calculate real addresses; this gen­
eral addressing scheme allows the 82730 to be 
used with any microprocessor. 

7-151 

Control Bus 

The 82730 implements both 8086 minimum and 
maximum mode bus control structures. This was 
done to maximize compatibility with the 80186 
which has the same structure. This allows the 
82730 to be run locally (minimum mode) with a 
8085,8086,8088,80188, or 80186. The 80186/188 
and 82730 can run together at 8MHz because of 
clock duty cycle considerations. The 82730 can 
only communicate to an 80286 via a system bus 
(such as MULTI BUS), bus interface, or dual-port 
RAM. 

INITIALIZATION SEQUENCE 

The first CA (Channel Attention) after Reset 
causes an Initialization Sequence to be executed. 
The system processor must set up the appro­
priate initialization information in memory and set 
the BUSY flag in the Intermediate Block to a non­
zero value prior to issuing this CA. 

Initially, 32-bit addressing and 8-bit data bus 
width are assumed until the corresponding in­
formation is fetched during the initialization. First 
the SYSBUS byte is fetched from memory location 
FFFF FFF6. (When the add ress bus is less than 32 
bits wide, the higher order bits are unused.) The 

. format for SYSaUS byte is shown in Figure 4 and 
is the same as that used for 8089. The data bus 
width is specified by the least significant bit w, 
with w=O indicating an 8-bit bus and w= 1 
signifying a 16-bit bus. 

A 32-bit real address pointer is then fetched from 
memory locations FFFF FFFC through FFFF FFFF, 
with lower bytes of the pOinter residing in lower 
addresses. This pointer is used as an Interme­
diate Block Pointer (IBP). 

The Intermediate Block Pointer (lBP) is incre­
mented by two and is used to locate the Command 
Block POinter (CBP). FOlir bytes are fetched 
irrespective of whether a 16-bit or 32-bit address­
ing option is used. The System Configuration 
byte (SCB) is then fetched from location (I BP + 6). 

The least significant bit, (U of the SCB) specifies 
16 or 32-bit addressing option, with U=O indi­
cating 16 bit addressing and U=1 specifying 32-bit 
addressing. The SCB also contains information 
about cluster operation. Since up to four 82730's 
can be connected in a cluster with thei r respective 
data interleaved in memory, cluster information is 
needed for the data access task. The SCB speci­
fies Cluster Number (CL NO), which is the 
number of 82730's connected in a cluster and 
Cluster Position (CL paS) which is the position 

210931-004 



82730 

of this particular 82730 within the cluster. CL NO = 
0,1,2 or3 indicates a cluster containing 1,2,3 or4 
82730's respectively. Similarly, CL POS:; 0, 1, 2 or 
3 indicates 1st, 2nd, 3rd or 4th position respect­
ively. Each 82730 adds an offset equal to 2 • 

" CLPOS to the SPTR fetched from memory and 
increments the pointer by 2 • (CL NO + 1). The 

7 

0 0 0 0 0 

W -
0 
1 

7 6 5 4 
SRDY DTW16 I' MIS CL 

SRDY READY MODE 

0 Asynchronous 
1 Synchronous 

MIS Mode 

0 Slave 
1 Master 

No. of 82730's 
CLNO. In Cluster 

00 1 
01 2 
10 3 
11 4 

programming of CL NO and CL POS is indepen­
dent. No checking is done for CL POS greater 
than CL NO on the 82730. Note that at least one 
82730, in a cluster (even if it is a cluster of one), 
must be assigned as cluster position zero (CL 
POS:; 0) for Virtual Display mode to work properly. 

0 

0 0 W SYSBUS Byte 

Data Bus Width 

8-Bit 
16-Bit 

3 2 1 0 

POS CL NO U SCB Byte 

DTW16 Display Data Mode 

0 8-bit data 
1 16-bit data 

Position in 
CLPOS Cluster 

00 1st 
01 2nd 
10 3rd 
11 4th 

U ADDR BUS WIDTH 

0 16-bit 
1 32-bit 

Figure 4. SYSBUS and SCB Encoding 

7-152 210931-004 



82730 

The SCB also contains an Mis bit which specifies 
a master or slave mode. The MIS bit is stored 
int!l[nally for use by the Display Generator .LPG). 
MIS = 1 indicates a master mode and MIS = 0 
specifies a slave mode. The format forthe System 
Configuration Byte (SCB) is shown in Figure 4. 
Following these actions, the BUSY flag in the 
Intermediate Block at address IBP is cleared 
and a normal Channel Attention sequence is 
then executed. 
The last two bits in the SCB are DTW16 and 
SRDY. DTW16 specifies whether the display data 
in 8 bit bus mode (W=O) is 8 or 16 bit. If a 16 bit 
system is specified (W=1) then DTW16 is ignored 
and forced internally to a "one". SRDY specifies 
whether the clock synchronization circuit for the 
READY pin is internal (SRDY=O) or external 
(SRDY=1). 

The Initialization Control Blocks in memory are 
illustrated in Fig. 5a. How these fit into the control 
structure of the 82730 is shown in Figure 5b. 

INTERMEDIATE 

BLOCK POINTER 

15 

Channel Attention Sequence 

When the processor activates CA, an internal 
latch in 82730 is set on the falling edge of CA 
input and this latch is sampled by the MCU. The 
first CA activation after reset causes the 82730 to 
execute an initialization sequence. Any subse­
quent activation will cause the MCU to start pro­
cessing the command block by fetching a channel 
command. 
If a display is in progress, the MCU will sample CA 
at each end of frame, otherwise it will sample CA 
every cycle until it is found active. When CA is 
found active, the MCU will fetch the command 
byte from "COMMAND" location in the command 
block, execute the command and clear the BUSY 
flag upon completion. The internal CA latch is 
also cleared by the MCU. An invalid command 
code has the effect of NOP and the BUSY flag is 
cleared. It will also cause the Reserved Channel 
Command (RCC) status bit to be set. 

8 7 
IBP UPPER 

IBP LOWER 

o 
FFFF FFFE 

FFFF FFFC 

(RESERVED) SYSBUS FFFF FFF6 

INTERMEDIATE 

BLOCK 

COMMAND 
BLOCK 

(RESERVED) SCB 

CBP UPPER 

CBP LOWER 

(RESERVED) BUSY 

COMMAND BUSY 

LOW SYSTEM MEMORY 

Figure Sa. Initialization Control Blocks 

7-153 

IBP +6 

IBP +4 

IBP + 2 

IBP 

CBP 

210931-004 



--J 
.!.... 
01 
.j>. 

'" 
~ 
b 
~ 

INITIALIZATION BLO~ 

ADDRESS I 
FFFFS-

1-----

INTERMEDIATE 

INTERMEDIATE B 

J SYSTEM BUS WIDTH 

. 

LOCK POINTER lOW 

LOCK POINTER HIGH 

:;J 
INTERMEDIATE BLOC 

CONFIGU RATION BYTE 

COMMANOBLI .OCK POINTER LOW 

.OCK POINTER HIGH COMMANDBLI 

r 

r----. ~- - ....... _- --- -_. 

r 
15 . . 8 7 6 5 . 0 

COMMAND BUSY 

LIST SWITCH AUTO LINE FEED 

MAX DMA COUNT 

LIST BASE 0 LOWER 

LIST BASE 0 UPPER t:=> 
LIST BASE 1 LOWER 

LIST BASE 1 UPPER 

COMMAND BLOCK POINTER LOWER 

COMMAND BLOCK POINTER HIGHER 

STATUS 

INTERRUPT GENERATION CODE 

INTERRUPT MASK 

LIGHT PENRQW LIGHT PEN COLUMN 

CURSOR 1 ROW CURSOR 1 COLUMN 

CURSOR 2 ROW CURSOR 2 COLUMN 

MODE POINTER LOWER 

MODE POINTER UPPER 

STATUS ROW POINTER LOWER 

STATUS ROW POINTER UPPER 

TO MODE BLOCK 

Figure Sb. Control Structure of the 82730 

STRING POINTER 
LIST 

STRING POINTER 1 

STRING POINTER 2 ~ -. 

DISPLAY 
DATA STRINGS 

DATA 

END OF ROW 

END OF STRING 

DATA 

E;NO OF STRING 

DATA 

END OF ROW 

END OF STRING 

~ 

l 

<» 
N ...., 
W o 

"@ 
2EJ 
IiiiiJ 
F 

~ 
~ 
.~ 
~ 
.~ 

® 



82730 

82730 TEST FEATURES 

The 82730 has built in Self-Test features that 
provide testability at the component or at the 
board level. These features include the test com­
mands and the output pin force capability and 
are described below. 

Output Pin Force Capability 

A capability to force logic states (high, low, high 
impedance) on all output pins is provided in the 
82730 Text Co-Processor. This is accomplished 
by providing a stimulus on pins LCO-LC2 during 
chip reset. This feature is used for dc parametric 
tests on the output pins. 

The state of pins LCO-LC2 is monitored during 
chip reset. The state of these pins is latched 
internally on the falling edge of chip reset. If no 
external inputs are applied during reset, the state 
observed wi II be al11 's and no action wi II be taken 
by the 82730. If any external inputs are applied to 
pins LCO-2 during reset, the resulting action will 
depend upon the state latched on the falling 
edge of reset. The 82730 maintains pins LCO-LC2 
in high impedance state for the duration of chip 
reset to avoid contention with external inputs. 
Also internal pull-ups ensure that a state of all 1 's 
will be detected if no external inputs are applied. 

The actions corresponding to each of the ob­
served states of pins LCO-LC2 are summarized in 
Fig. Sa. 

Stand-Alone Self Test 
The built-in Self Test capability of the 82730 can 
be invoked in a stand-alone mode by applying an 
external stimulus through pins LCO-LC2 during 
chip reset. This is the same mechanism as the 
one used for forcing logic states on output pins. 
Fig. Sa. 
If pin LC2 is pulled low during chip reset, the 
82730 executes a built-in self test. Upon comple­
tion of the self-test, a 1S-bit signature, generated 
internally as the test result, is output via pins 
WDEF, DAT14-DATO. The completion is signalled 
by providing a logic "0" output on pin LC3 as a 
completion flag. The signature will remain on the 
output pins until the next chip reset. The 82730 
will enter an idle state awaiting chip reset and will 
not respond to any external inputs until a reset 
signal is applied. During the process of pre­
senting the signature onto WDEF, DAT14-DATO, 
the signature will also appear briefly on the AD 
bus in the form of a bus cycle with two 8-bit 
accesses to addresses, AAAAH, AAABH. How­
ever, this phenomenon is only incidental. Pins 
WDEF, DAT14-DATO should be used for ob­
serving the signature. 
The stand-alone self test includes the testing of 
internal address pointer registers. These registers 
are not tested when the self test is invoked by 
issuing a "Self Test" command. (See under Chan­
nel Commands below). Therefore, the signature 
generated during stand-alone self test will be 
different from that generated by the "Self Test" 
command. 

Action 

Invoke Stand-Alone Self Test 
Force all Outputs to High Impedence State 
Force all Outputs to Logic High State 
Force all Outputs to Logic Low State 

NOP 

Figure 6a. Output Pin Forcing and Stand-Alone Self Test Invocation 

7-155 210931-004 



inter 82730 

82730 CHANNEL COMMANDS 

Table 3. Channel Commands 

COMMAND 

1 START DISPLAY 

2 START VIRTUAL DISPLAY 

3 STOP DISPLAY 

4 MODE SET 

5 LOAD CBP 

6 LOAD INTMASK 

7 LPEN ENABLE 

8 READ STATUS 

9 LD CUR POS 

~O SELF TEST 

~1 TEST ROW BUFFER 

~2 NOP 

~3 (RESERVED) 

The system processor issues channel commands 
to 82730 via the Command Block. The processor 
first checks if the BUSY flag in the command 
block has been cleared. It should wait for the 
BUSY flag to be cleared before proceeding with 
the issuing of a command. When the BUSY flag is 
cleared, the processor places' a command byte in 
the "COMMAND" location in command block, 
sets the BUSY flag to a non-zero value and asserts 
Channel Attention (CA), by activating the CA 
input to 82730. A Channel Attention should n,ot be 
issued, if the BUSY flag has not been cleared. 

START DISPLAY 

0000 0001 CMD Byte 

LlSTSWITCH, Auto Linefeed, Max DMA Count 
and Cursor Position values are fetched from the 
Command Block and stored internally after this 
command is received. The BUSY flag is cleared 
and the normal display process is activated. 

The MCU fetches strings of data from the memory, 
using the parameters LlSTSWITCH, LBASEOand 
LBASE1. The data fetched is interpreted as data-

OPCODE 

0000 0001 01 H 

0000 0010 02 H 

0000 0011 03 H 

0000 0100 04 H 

0000 0101 05 H 

0000 0110 06 H 

0000 0111 07 H 

0000 1000 08 H 

0000 1001 09 H 

0000 1,010 OA H 

0000 1011 DB H 

0000 0000 00 H 

From: 0000 1100 DC H 
To: 1111 1111 FF H 

stream commands 'or character data to be dis:" 
played by the Display Generator. The MCU loads 
the data into one of the two Row Buffers in the 
CRT controller, while the Display Generator 
displays the data from the other buffer, the buffers 
being swapped at the end ofthe row. Any data­
stream com'mandsencountered during data fetch 
are immediately executed. 

The display process is continued until it is deacti­
vated by a STOP DISPLAY command or a Reset. 
Other channel commands can be issued while a 
display is in progress and they wi" be executed 
when CA is found active at one of the periodic 
samplings at ,each end of frame. 

The DIP (Display in Progress) status bit is set and 
the VDIP (Virtual Display in Progress) is cleared 
upon receiving a' START DISPLAY command. 
Both bits are reset upon receiving a STOP'DIS­
PLAY command or a Reset. 

It is necessary to load in proper mode information 
through a MODESET command before activating 
the display. Fo"owing Reset, START DISPLAY 
command wi" not be executed, i.e., will result in a 
NOP until a MODESET command has been 
issued . 

. 7-156 210931-004 



82730 

START VIRTUAL DISPLAY 

0000 0010 CMD Byte 

LlSTSWITCH, Auto Linefeed, Max DMA Count 
and Cursor Positions are fetched from the 
Command Block and stored internally upon re­
ceiving this command. The BUSY flag is cleared 
and the Virtual Screen display process is activated. 

The operation of Virtual Screen display process is 
similar to that of a regular display process, except 
for following a different data access mechanism. 
The parameters LlSTSWITCH, LBASEO and 
LBASE1 in the command block represent AC­
CESS SWITCH, ACCESS BASEO and ACCESS 
BASE1 respectively, in virtual screen display. 

The VDIP (Virtual Display in Progress) status bit 
is set and the DIP status bit is cleared upon 
receiving a START VIRTUAL DISP command: 
Both DIP and VDIP are reset upon receiving a 
STOP DISPLAY command or a Reset. 

START VIRTUAL DISPLAY command will not 
activate a display and results in a NOP until a 
MODESET command is issued after a Reset. 

STOP DISPLAY 

0000 0011 CMD Byte 

The display process is deactivated upon receiving 
this command. The DIP and VDIP status bit are 
reset and the BUSY flag is cleared. 

This command blanks the display. HSYNC and 
VSYNC are not affected. 

MODESET 

0000 0100 CMD Byte 

The Mode Pointer contained in command block 
location (CBP + 30) is used to access the Mode 
Block and the modes are fetched sequentially 
and loaded into the corresponding internal regis­
ters in 82730. LlSTSWITCH, Auto Li,nefeed, Max 
DMA Count and Cursor Positions are fetched 
from the Command Block and stored internally 
upon completion and the BUSY flag is cleared. 

The organization of mode words in the mode 
block and the parameters supplied by them are 
shown below (See Figure 10). Some of these 
parameters which are critical to the operation of a 

text coprocessor are required to remain un­
changed over most of normal operation. No 
provision is made to prevent MODESET from 
changing these parameters and it is left to the 
designer to insure that they are not changed. 

The modes provide horizontal and vertical mode 
display parameters, interlace information, DMA 
burst and spacing specifications, cursor charact­
eristics as well as attribute enables and bit­
selects. Typically, this would be the first command 
issued after initialization. The Mode Block pro­
vides all the parameters needed for a complete 
initialization of the 82730 for display. Thus a 
Single Modeset command can fully initialize the 
chip. Note that until the first Modeset command is 
sent, certain functions such as VSYNC and 
HSYNC are not enabled. 
It is necessary to set up proper mode information, 
before activating a display. Therefore, a display 
activating commands should not be issued unless 
proper mode information has been loaded through 
a MODESET command. START DISPLAY and 
START VIRTUAL DISPLAY commands will result 
in a NOP if a MODESET command has not been 
issued since the most recent Reset. 

LOAD CBP 

0000 0101 CMD Byte 

The address pointer"NEW CBP" contai'ned in the 
command block is fetched and stored in the CBP 
register in the text coprocessor, replacing the old 
CBP. This effectively moves the command block 
in the memory. The Command byte from the new 
Command Block is fetched and the specified 
channel command is executed. The BUSY flag in 
the new Command Block is cleared upon com­
pletion. 

LOADINTMASK 

0000 0110 CMD Byte 

The interrupt mask contained in location "I NT 
MASK" in the command block is fetched and 
stored internally in the CRT controller. When a 
particular mask bit is set, the interrupt is disabled 
for a status bit in the corresponding bit position. 
An interrupt is generated by the text coprocessor 
by activating the SINT pin, if a status bit is 1 and 
the corresponding bit in the interrupt mask is O. 
The BUSY flag is cleared upon completion. 

7-157 210931-004 



82730 

Interrupt~ can be enabled for the following status bits. 

7 6 5 4 3 2 o BIT 
RDC RCC FDE EOF DBOR LPU DUR STATUS WORD 

ROC: Reserved Datastream Command Encountered 
RCC: Reserved Channel Command Executed 
FOE: Frame Data Error (Fetching characters past physical End of Frame) 
EOF: End of "n" frames (Logical end of nth frame) 

OBOR: Data Buffer Overrun (Row .Buffer filled completely without 
encountering END OF ROW command) 

LPU: Light Pen Update 
OUR: Data Underrun (Buffer swap initiated before finishing Row Buf 

loading) 

READ STATUS LD CUR POS 

0000 1000 9MD Byte 

The internal status register is written to"STATUS" 
10catLon in the command block. The status 
register is then cleared, however DIP and VDIP 
status bits are not cleared. LlSTSWITCH, Auto 
Linefeed, Max DMA Count and Cursor Posi­
tions are fetched from the Command Block and 
stored internally. The BUSY flag is then cleared. 

STATUS WORD 

0000 1001 CMD Byte 

The display row and column positions of cursors 
1 & 2 as set in locations "CUR1 ROW," CUR1 
COL," "CUR2 ROW" and "CUR2 COL" in the 
command block are loaded into internal regis­
ters in the CRT controller. Also LlSTSWITCH 
Auto Linefeed and Max DMA Count are loaded 
from the Command Block and the BUSY flag is 

15-9 8 7 6 5 '4 3 2 o 
I - VDIP DIP RDC RCC FDE EOF DBOR LPU DUR 

LPEN ENABLE 

0000 0111 . CMD Byte 

The Light Pen detection process is enabled to 
search for a rising edge on the LPEN pin. The 
BUSY flag is then cleared. 

If the display process is active and a rising edge 
is detected on the L:PEN input, the corre­
sponding row and column position on the 
screen is stored internally. At the next end of 
frame, the LPEN position is written to locations 
"LPENROW" and "LPENCOL" in the command 
block and the LPU (Light Pen Update) status bit 
is set. 

It the display process is not active, this com­
mand has no immediate effect. However, the 
LPEN detection process remains enabled and 
will take effect if a display is activated subse­
quently. 

cleared. This command is used to change the 
cursors only. Note that the cursor positions are 
also updated with the execution of other channel 
commands. 

The cursor characteristics for display are defined 
by the mode. During the display process, a 
cursor will be displayed accordingly at the 
position specified above. . 

TEST COMMANDS 

The test commands for the 82730 are issued in 
the same manner as the normal channel com­
mands. However, the parameters used by test 
commands are different from those used by the 
channel commands in normal operation. There­
fore, a,Test Block which is similar in format to the 
Command Block is defined. Switching between 
Command Block and Test BI9ck is accomplished 
using the "Load CBP" command. The Test Block 
differs only in the parameter locations associated 

7-158 210931·004 



inter 82730 

with the command. The locations for New CPB, 
command byte and busy flag are the same for 
both Command Block and Test Block. The "Test 
Result" location in Test Block corresponds to the 
"Status" location in Command Block. 
The test commands can be executed, following 
chip reset, only until the first Modeset command 
is issued. Once a Modeset command has been 
executed following chip reset, any subsequent 
test commands will not be executed and will 
result in a NOP. 

"Self Test" Command 

0000 0010 CMD Byte 

A built-in Self test is performed using an internal 
test pattern. The signature generated during the 
test is written to the Test Result location (TBP+18) 
in the Test Block. The Busy Flag in the Test Block 
is then cleared. The Self Test command must be 
immediately preceded by a chip reset in order to 
ensure a consistent signature. 
The Test Block format for issuing the Self Test 
command is shown in Figure 6b. 

"Row Buffer Test" Command 

0000 1011 CMD Byte 

The Load Pointer in Test Block is fetched. It 
pOints to the system memory area storing the test 
pattern to be used for testing the on-chip RAM 
(Le. - the Row Buffers). The Store Pointer, which 
pOints to memory area where the data reCJ.d back 
from the RAM will be written, is also fetched from 
Test Block. 
Successive words are fetched from memory and 
written to the Row Buffer, until it is completely 
filled. Note that three extra words beyond the 
maximum Row Buffer capacity will be fetched. If 
N = Max Row Buffer capacity, (N+3) words will be 
fetched from memory. The extra words fetched 
will be ignored. The Row Buffer contents are 
then read back and are written to successive 
locations in memory area pOinted to by the Store 
Pointer. The test is then repeated on the second 
Row Buffer. Note that the (N+4)th word in the 
pattern stored in memory constitutes the first 
word written to the second Row Buffer. The data 
storage for the Row Buffer test patterns is illus­
trated in Figure 6c. 

15 8 7 
BIT 
o TEST BLOCK 

PARAMETER 

LOCATIONS 

NOT USED 

FOR SELF TEST 

COMMAND 

COMMAND BUSY 

NEW CBP LOWER 

NEW CBP UPPER 

TEST RESULT 

Figure 6b. Test Block Format for "Self Test" Command 
. (For both 16-bit and 32-bit addressing modes) 

7-159 

POINTER (TBP) 

TBP+2 

TBP+4 

TBP+6 

TBP+8 

TBP+10 

TBP+12 

TBP+14 

TBP+16 

TBP+18 

210931-004 



inter 1127$0 

Internally, the Row Buffers are 17-bits wide, while 
the data path is 16-bits wide. During the writing of 
data to Row Buffers, a complement of bit 15 is 
written to bit 16 of the Row Buffer in order to test 
all 17 bits. During the read back, two data words 
are stored in system memory for each location in 
the Row Buffer. The first word will consist of bits 
0-15 read from the Row Buffer, while the second 
word will consist of bits 0-14 and bit 16 from the 
Row Buffer. Thus a total of 4*N words will be 
stored back in system memory as a result of the 
Row Buffer Test (2*N for each Row Buffer). 

LOAD pOINTER· ...... . WORD 1 

WORD 2 

WORD 3 

WORDn 

WORD n+3 

WORD n+4 

WORD n+5 

WORD2n+2 

WORD2n+3 

WORD2n+6 

A signature is generated during the test and is 
written to Test Result location in Test Block upon 
completion. The BUSY flag in the Test Block is 
then cleared. 

The Test Block format for issuing the Row Buffer 
Test command is illustrated in Figures 6d.1 and 
6d.2. Note thatthe locations for Load Pointer and 
Store Pointer parameters are different for 16-bit 
and 32-bit addressing modes. 

nWORDS 

nWORDS 

TESTPATIERN 

FOR ROW BUFFER 1 

TESTPATIERN 

FOR ROW BUFFER 2 

n = MAX ROW BUFFER 

CAPACITY 

Figure Be. Data Storage for Row Buffer Test Command 

7-160 210931-004 



82730 

15 8 7 
BIT 
o TEST BLOCK 

15 

COMMAND BUSY 

(RESERVED) 

LOAD POINTER LOWER 

LOAD POINTER UPPER 

STORE POINTER LOWER 

STORE POINTER UPPER 

(RESERVED) 

NEW CBP LOWER 

NEW CBP UPPER 

TEST RESULT 

POINTER (TBP) 

TBP+2 

TBP+4 

TBP+6 

TBP+8 

TBP+10 

TBP+12 

TBP+14 

TBP+16 

TBP+18 

Figure 6d.1 Test Block Format for "Row Buffer Test" Command 
(32-bit addressing mode) 

BIT 
8 7 0 TEST BLOCK 

COMMAND BUSY POINTER (TBP) 

(RESERVED) TBP+2 

(RESERVED) TBP+4 

LOAD POINTER TBP+6 

(RESERVED) TBP+8 

STORE POINTER TBP+10 

(RESERVED) TBP+12 

NEW CBP LOWER TBP+14 

NEW CBP UPPER TBP+16 

TEST RESULT TBP+18 

Figure 6d.2 Test Block Format for "Row Buffer Test" Command 
(16-bit addressing mode) 

7-161 

NOP 

0000 0000 CMD Byte 

LlSTSWITCH, Auto Linefeed, Max DMA Count, 
and Cursor Positions are fetched from the com­
mand block and stored internally as in all other 
channel commands. The Busy flag is then cleared. 

210931-004 



82730 

82730 DATASTREA~ COMMANDS 

Datastream Commands 

Datastream Commands are commands embed­
ded in the data fetched from memory by the 
data access task. These commands are differ­
entiated from character data by the command 
bit. The most significant bit (MSB) of each data 
word is designated as the command bit. If the 
command bit is "1", the lower 15 bits of the data 
word are interpreted as a datastream command, 
while if the command bit is "0" the lower 15 bits 
(or 7 bits if DTW16=0) are interpreted as char­
acter data. 
Datastream Command Operation 

During the data access task, the Micro Controller 
Unit (MCU) examines the command bit of each 
data word fetched. If the command bit is 1, it 
executes the datastream command specified in 
the data word. Otherwise, it stores the lower 15 

Datastream Command List 

bits of the data word in the Row Buifer as 
character data. This process is repeated for 
each data word fetched. 

Da~astream commands can be used for changing 
Row Characteristics on a row by row basis, for 
carrying out editing functions anq for format­
ting data into rows and frames. These com­
mands are executed by the MCU immediately 
after they are encountered. As a convenience 
for the user, the set of all possible command 
codes starting with "11" in the two most signif­
icant bits has been designated as NOP com­
mands. The usercan use these-command codes 
for any desired purpose. All other command 
codes which are not presently defined, are 
reserved for future expansion and should not be 
used by the user. The currently undefined 
codes cause the ROC (Reserved Datastream 
Command) status bit to be set and also generate 
an interrupt, if enabled. Reserved command 
codes should not be used. 

Table 4. 82730 Datastream Commands 

COMMAND CODE 
COMMAND OP CODE 

OP CODE PARAMETERS 

1 ENDROW 1000 0000 XXXX XXXX 80 
2 EOF 1000 0001 XXXX XXXX 81 
3 END OF STRING & END OF ROW 1000 0010 XXXX XXX X 82 
4 FULROWDESCRPT 1000 0011 un" 83 
5 SL SCROLL STRT 1000 0100 XXX SCR LINE 84 
6 SL SCROLL END 1000 0101 XXX END LINE 85 
7 TAB TO n 1000 0110 "n" 86 
8 LD MAX DMA COUNT 1000 0111 COUNT 87 
9 ENDSTRG 1000 1000 XXXX XXXX 88 

10 SKIP n 1000 1001 "n" 89 
11 REPEAT n 1000 1010 "n" 8A 
12 SUB SUP n 1000 1011 "n" 8B 
13 RPT SUB SUP n 1000 1100 un" 8C 
14 SET GEN PUR ATTRIB 1000 1101 GPAOP 8D 
15 SET FIELD ATTRIB 1000 1110 XXXX XXXX 8E 
16 INIT NEXT PROCESS 1000 1111 XXXX XXX X 8F 

(Command process command) 
17 (RESERVED) 10XX' XXXX XXXX XXX X 90-BF 
18 NOP llXX XXXX XXXX XXXX CO-FF 

7-162 210931-004 



82730 

The precedin.g commands are recognized as 
valid datastream commands. The corresponding 
command codes are also indicated. It should be 
noted that the most significant bit of the command 
bit is always 1, in order for the word to be 
interpreted as command. 

The "Init Next Process" command can be issued 
only through a command process in Virtual 
Screen Display. It is included in this list because 
its operation is analogous to a datastream com­
mand in a virtual screen access environment. 
Also, in virtual screen display certain datastream 
commands are interpreted differently, depending 
upon whether they are encountered in a process 
datastream or as command process commands. 
When a command is ignored (becomes a NO-OP) 
in a virtual display, any parameters that are asso­
ciated with it are also ignored. The command 
process command operation is discussed separ­
ately. The operation of all other datastream com­
mands is described below. 

ENDROW 
15 14 8 7 a 
1 000 0000 xxxx xxxx 

This command signifies that no more charac­
ters will be loaded in the Row Buffer for this row 
and an End of Row indicator is stored according­
ly. When the row currently being loaded is 
displayed, the Display Generator (DG) will blank 
the screen from the end of row character position 
until the physical end of row. 

The Micro Controller Unit (MCU) stops fetching 
data and waits for DG to swap the Row Buffers. 
The data access task is resUined following the 
buffer swap. If a physical end of frame is reached 
while the MCU is waiting for a buffer swap the 
MCU ceases to wait and executes an EOF (End of 
Frame) command. 

In virtual display, this command is interpreted as a 
VEOR (Virtual End of Row) if encountered in a 
virtual process datastream. 

VEOR 
ENDROW command in a virtual prQcess data­
stream is interpreted as VEOR (Virtual End of 
Row) and it terminates a virtual row. The current 
LPTR is stored in the process header addressed 
by the "Process Addr" register. The Max Count 
register is also stored in the Max DMA Count 
location in the process header. Similarly, the Field 
Attribute Mask is also stored in the header. In 

addition, in auto linefeed mode (ALF = 1) other 
parameters characterizing the process state are 
also saved in the header. The "process Addr" 
register is loaded with the add~esl? of the header 
of the next process fetched from the Access table. 
The ''Access Tab Addr" register is post-incremented 
by two if a 16-bit addressing option is used and by 
four if 32-bit addressing is used. The data access 
task is then resumed for the next process. 

EOF 
15 14 8 7 a 

000 0001 xxxx xxxx 
This command (End of Frame) signifies that no 
more characters will be loaded in the Row Buffers 
for this frame. The Micro Controller Unit (MCU) 
stops fetching data words and waits for the 
physical end of frame. If a virtual display is in 
progress, this command is interpreted as VEOS 
(Virtual End of Frame), if encountered in a virtual 
process datastream. 

The Display Generator (DG) swaps the row 
buffers at the end of the current display row and 
starts displaying the row containing the EOF 
command. When the character preceding the 
EOF command is displayed, the DG blanks the· 
screen until the physical end of frame. The MCU 
fetches the Status Row data then waits until its 
display is completed. It then performs the actions 
described below. 

If LPEN has been enabled and a rising edge on 
the LPEN input has been detected, the LPENROW 
and LPENCOL positions in the command block 
are updated and the LPU status bit is set. If a 
Channel Attention has occurred, i.e., if CA has 
been activated, the command byte is fetched 
from command block and the specified channel 

"command is executed. If the command issued is a 
"Stop Display" command, the MCU will terminate 
the display process and wait for the next channel 
attention. Otherwise, the MCU resumes the data 
access task by reinitializing pointers for the new 
frame and continues to fill the Row Buffers. 

7-163 

VEOF 
EOF command in a virtual process datastream is 
interpreted as VEOF (Virtual End of Frame). It 
provides for reinitialization of LPTR using LlST­
SWITCH, LBASEOand LBASE1 foreach process, 
analogous to the automatic reinitialization of 
LPTR at each end of frame in a Normal Display. 

210931-004 



inter 

lPTR forthe currentprocess is reinitialized using 
LlSTSWITCH, lBASEO and lBASE1 contained 
in the process header. The End of Display (EOD) 
bit in the headet~is setfo 1. The current process is 
terminated as in a VEOR and the next process in 
Access Table is accessed. 

EOl 
15 14 8 7 o 
1 000 0010 XXXX XXXX 

The EOl (End of Line) command has a combined 
effect of NXTROW and NXTSTRG commands. All 
the actions performed in a END OF ROW com­
mand are carried out. In addition a END OF 
STRING command is executed before resuming 
the data access task. Thus, following, the end of 
row, the data access is continued with the next 
data string. In virtual process datastream, this 
command has the combined effect of VEOR and 
END OF STRING. 

82730 

FULROWDESCRPT 

15 14 8 7 o 
1 000 0011 n 

The next un" words fetched from memory are 
loaded into the Row Characteristics holding 
registers. un" is specified by the lower order byte 
of the command word and should be between 0 
and 7. , 
The parameters loaded by this command will be 
used to define the row characteristics at the time 
the row currently being loaded is displayed. The 
data words defining these characteristics which 
follow the FUlROWDESCRPT command must 
be ordered and organized in memory in a specifc 
format. The format for FUlROWDESCRPT para­
meters is shown below in Figure 6e starting with 
"Lines Per Row" as the first parameter loaded. 
Thiscommand will be ignored if encountered in a 
virtual process datastream. The MSB of all the 
parameters must be zero for proper operation in 
virtual display. 

Upper Byte Lower Byte 
15 14 13 12 11 10 9 8 7 6 5 

RVV BlK DBl W 
ioLines per row ROW ROW HGT DEF 

Normal Start/Stop NRMSTRT 
Superscript Start/Stop SUPSTRT 
Subscript Start/Stop SUBSTRT 
Cursor 1 Start/Stop CUR1 STRT 
Cursor 2 Start/Stop CUR2 STRT 
Underline Line Selects Ul2 LINE SEl 

RVV ROW, when this bit is set the CRVV pin will be inverted for the next full row. 
BlK ROW, when this bit is set the row will be blanked (BLANK high). 

4 3 2 1 0 

lPR 
NRMSTOP 
SUPSTOP 
$UBSTOP 

CUR1STOP 
CUR2 STOP 

Ul1 LINE SEl 

DBlHGT, when the double height bit is set, all character are displayed with twice the scan lines per row. 
WDEF, when the width defeat bit is set, the WDEF pin is activated for the entire tow. 

The following can be programmed from 0 to 31 yielding a range of 1 to 32 lines. 
lPR specifies number of lines per row. 
NRMSTRT, SUPSTRT, SUBSTRT specify line numbers in a display row which mark the start of 

normal, superscript and subscript characters respectively. 
NRMSTOP, SUPSTOp, SUBSTOP specify line numbers in a row where normal, super script and 

subscript characters end respectively. ' 
CUR1 STRT, CUR2 STRT specify the starting line numbers in a row for cursor 1 and cursor 2 

respectively. 
ULlNE1 SEL, ULlNE2 SEl specify the line numbers in a row where underline 2 will appear 

respectively. 

All FUlROWDESCRPT parameters affect the row in which they are programmed'and stay in effect 
until changed by another FULROWDESCRPT command. 

Figure 6e. Format for FULROWDESCRPT 

7-164 210931-004 



inter 82730 

SL SCROLL STRT 

15 14 8 7 5 4 0 

1 000 0100 xxx SCR LINE 

The Slow Scan register in 82C3 is loaded with the 
scroll line specified by the five least significant 
bits of the command word. When the row cur­
rently being loaded is displayed, the line count for 
that row will start with the value specified by the 
Slow Scan register. A "Margin" (MGN) parameter, 
loaded by MODESET, specifies the number of 
blank lines plus one to be added at the top of the 
slow scroll field on the screen. This ensures the 
availability of sufficient DMA time for fetching the 
next row, when only a small number of scan lines 
are displayed in the top row of slow scroll window. 
This command is used for starting a slow scroll. 
(Note: MGN = 0 results in no margin buffer lines) 

This command will be ignored if encountered in a 
virtual process datastream or if a SL SCROLL 
END command is encountered later on the same 
row. 

SL SCROLL END 

15 14 8 7 5 4 0 
1 000 0101 XXX END LINE 

The scroll location in row characteristics holding 
registers is loaded with the number of lines 
specified by the five least significant bits of the 
command word. This number specifies the num­
ber of lines to be displayed when the row currently 
being loaded is displayed. This is used instead of 
the regular LPR (Lines Per Row) characteristics, 
for this particular row. This command is used in 
the last row of a slow scroll for terminating a slow 
scroll. The Margin (MGN) parameter, loaded by 
MODESET, is used ,in the same way as in slow 
scroll start except that the specified number of 
blank lines are inserted at the bottom of the slow 
scroll in this case. This command will be ignored 
if encountered in a virtual process datastream or 
if followed by a SL SCROLL STRT on the same 
row. 

TAB TO n 

15 14 8 7 o 
000 0110 "n" 

The lower byte of the command word specifies 
the column (RCLK count) after SYNCSTRT at 
which a Tab should occur, At display time, after 
the character preceding the Tab command is 

displayed, the screen is blanked until the RCLK 
count specified by the command (Un") is reached. 
After reaching the specified count, display is 
resumed by displaying the character following 
the TAB command. 

If the RCLK count specified by the Tab command 
has already occurred before beginning the 
blanking for Tab, the display will be blanked until 
the end of the row. 

This command is ignored, if encountered in a 
virtual display process datastream, 

LD MAX DMA COUNT 

15 14 8 7 o 
000 0111 MAX COUNT 

The Max Count register in 82730 is loaded with 
the Max DMA Count specified by the lower byte 
of the command word. The DMA Counter is also 
reinitialized with the Max Count value in the 
Command Block after all channel commands. 

MAX DMA Count is programmable in the range of 
1 to 256 (MAX COUNT value 0 equals 256). How­
ever, counts greater than the row buffer capacity 
will cause row buffer overruns if the data strings 
depend on MAX DMA to terminate the fetching. 

The DMA counter is decremented for each data 
word as the Row Buffer is being loaded. Data­
stream commands and words supplying para­
meters for datastream commands as in FULROW­
DESCRPT, are not counted. SuperscripVSubscript 
characters are counted in pairs, i.e., a pair of 
characters causes only one count. 

I n vi rtual screen display, every ti me a new process 
is accessed, the DMA counter is initialized with 
the Max DMA Count contained in the process 
header. This value is also stored in a Max Counter 
register. 

At virtual end of row (VEOR) the Max Count 
register is written to the process header. The "LD 
Max DMA Count" command is ignored if encoun­
tered in a virtual process datastream. 

ENDSTRG 

15 14 8 7 o 
000 1000 XXXX XXXX 

The SPTR register in the 82730 is loaded with a 
new String Pointer (SPTR) value fetched from the 
memory location indexed by the List Pointer 
(LPTR), which is stored in the LPTR register. The 

7-165 
210931-004 



82730 

LPTR register is incremented by two if a 16-blt 
addressing option is used and by four if 32-bit 
addressing is used. When more than one 82730 Is 
connected in a cluster, each of them adds an 
offset, determined by its position jn the cluster, to 
the pointer fetched from memory, before storing 
it in its SPTR register. 

This command directs the data access to the next 
data string in the list of strings indexed by LPTR. 
The operation of this command is identical for a 
Virtual or Normal Display. In virtual display, the 
next data string within the current display pro­
cess is accessed. 

SKIPn 

15 14 8 7 ' o 
000 1001 n 

The next "n" data words fetched from memory are 
ignored. "n" is specified by the lower byte of the 
command word and is programmable from 0 to 255. 
If n equal to 0 is specified, no words are skipped. 
Any datastream commands encountered in the data 
fetch are not counted towards these n words. Also 
parameters following the datastream command as 
in FULROWDESCRPT are not counted. All embedded 
datastream commands are executed with the follow­
ing exceptions. 

If a Tab To N data stream command is encountered 
during the execution of a Skip N command, the Tab 
command will result in a NOp, i.e. a Tab embedded 
in the data to be skipped will be ignored. 

If an EOl (End Of Line) data stream command is 
encountered during the execution of a Skip N 
command, it will be executed with the following 
effect. In non-auto line feed mode, (AlF = 0) the 
EOl command has the combined effect of End Of 
Row imd End Of String commands. In auto line feed 
mode, (ALF = 1) the EOl command has the effect of 
an End Of String command only. 

If the data words skipped include any superscript-
" subscript characters, they are skipped in pairs and a 

pair of characters is counted as only one count in 
"n". If another skip command is encountered its 
value of "n" is added to the present skip count and 
skipping continues. 

REPEAT n 

15 14 8 7 o 
000· 1010' n 

The next data word (byte, if DTW16=0) fetched 
from memory is stored in the Row Buffer "n" 
times, where "n" is specified by the lower byte of 
the command word. "n" is programmable from 0 

7-166 

to 255. If n equal to 0 is specified no repetitions 
will occur, and the word following the Repeat n 
command will be ignored. This character will 
eventually be displayed n times. The DMA counter 
is also made to count n' times. In non-auto 

linefeed mode (ALF = 0), reaching Max OMA 
Count before the n repetitions are completed will 
result in a termination of the Repeat n command. 
This command will also be terminated if the Row 
Buffer gets filled completely before the n repe­
titions are completed. 

It should be noted that the data word immediately 
following the Repeat n command is treated as 
character data, irrespective of the value of its 
command bit. 

SUP/SUB n 

15 14 8 7 o 
000 1011 n 

The next "n" pairs of data words (bytes, if OTW16 
= 0) fetched from memory are treated as super­
scripts or subscript characters. "n" is specified by 
the lower byte of the command word. These n 
pairs are assumed to be ordered with the super­
script preceding the subscript.' 

No datastream commands are permitted in the 2n 
words following this command. All ofthese words 
are interpreted as superscript-subscript pairs. 
The DMA counter is made to count only once for 
each pair of characters. In non-auto linefeed 
mode (ALF=O), reaching the Max OMA Count will 
result in a termination of this command. If n equal 
to zero is specified, no action will result. 

RPT SUB/SUP n 

15 14 8 7 o 
000 1100 n 

The operation of this command is similar to that 
of the "Repeat n" command except that the pair of 
characters following the "RPT SUB/SUP n" com­
mand is repeated n times. "n" is specified by the 
lower byte of the command word and is pro­
grammable from 0 to 255. If n equal to zero is 
specified, no repetitions will occur, 'and the two 
data words following the "RPT Sub/Sup n" com­
mand will be ignored. The two data words (bytes, 
if DTW16=O) immediately following the command 
word are interpreted as a superscript-subscript 
pair arid are repeated. The OMAcounter is made 
to count only once for each repetition of the pair. 
In non-auto linefeed mode (ALF=O), reaching 
Max DMA Count prior to completion of n repeti­
tions will cause a termination of this command. 

ORDER NUMBER: 210931-004 



82730 

SET GEN PUR ATTRIB 

15 14 8 7 o 
000 1101 GPAOPERAND 

This command provides control over the output 
pins assigned to General Purpose Attributes, 
GPA1 through GPA4. 

GPA 
OPERAND 

7 
GPA4 
DATA 

8 
GPA4 

EN 

5 
GPA3 
DATA 

Datastream Command Conventions 

The reaching of Max DMA Count, encountering 
of terminating commands such as ENDROW, 
EOF, etc. and occurrences of these while exe­
cuting a "skip n" command give rise to various 
possible combinations of events. The behaviour 
of 82730 under these circumstances is described 
below: 

4 
GPA3 

EN 

3 
GPA2 
DATA 

2 
GPA2 

EN 

1 
GPA1 
DATA 

o 
GPA1 

EN 

ENCODING GPAx GPAx 
DATA 

0 
1 
0 
1 

The GPA in the Process Header is updated each 
time a SET GPA command is executed. Thus the 
GPA state in the header is updated to reflect any 
changes caused by the "Set Gen Pur Attrib" com­
mand. The GPA command occupies a character 
space on the screen. Consequently, a GPA com­
mand is counted as a character towards MAX DMA 
count. However, a GPA command nested in a Skip N 
or a TAB to N command is skipped, i.e., it has no 
effect. 

The encoding of the operand, specifying GPA 
operation, is sho""," below. 

SET FIELD ATTRtB 

15 14 8 7 o 
000 1110 XXXX XXXX 

o FIELD ATTRIBUTE MASK 

The word following this command is fetched. 
This word is used as a Field Attribute Mask in 
storing all subsequent display data words in 
row buffer. The bits in the data words fetched 
from memory corresponding to the bit positions 
containing a "1" in Field Attribute Mask are all 
set to 1 before storing the data word in row 
buffer. The Field Attribute Mask is used on all 
display data words fetched from memory. The 
mask register will contain all O's upon reset and 
is cleared at the beginning of each frame. 

NOP 
15 14 8 7 , 0 

1XX XXXX XXXX XXXX 

No action is taken. The data access task is 
resumed by fetching the next data word. 

EN 
0 
0 
1 
1 

FUNCTION 
ROW BUFFER DATA 
ROW BUFFER DATA 
GPA DATA = 0 
GPA DATA = 1 

i) When Max DMA Count is reached, it has 
the effect of a VEOR command if a Virtual 
Display is in progress or a ENDROW com­
mand if a Normal Display is in progress. It 
also causes an automatic end of string 
i.e., the effect of a NXTSTRG command in 
non-auto linefeed mode (ALF = 0). 

.'i) In non-auto linefeed mode, "Repeat n", 
"Sub/Sup n" and Rpt Sub/Sup n" com­
mands are terminated upon reaching a 
max DMA count, even if "n" is hot reached. 

iii) "Skip n" command is terminated if EOF 
command is encountered. It is also ter­
minated upon encountering a ENDROW 
command in non-auto linefeed mode 
(ALF = 0). 

iv) "Repeat n" "Sub/Sup n" and "RPT Sub/ 
Sup n" commands can be nested within a 
"Skip n" command. If superscript-subscript 
characters are skipped, each pair of char­
acters counts as one skipped character. If 
the above commands are encountered 
during a "skip n" and if the specified 
count (n) in these commands is not 
reached by the end of execution of the 
"skip n" command, the execution of the 
nested command is continued beyond 
the termination of "skip n" command until 
the remaining portion of the count speci­
fied in the nested command is completed. 

ORDER NUMBER: 21093Hl04 



inter 82730 

VIRTUAL SCREEN MODE 
COl:l1mand Process Commands 
In Virtual Screen Display, 82730 accesses dis­
play processes and command processes through 
the Access table. The command processes 
enable the I/O Driver process to direct 82730' to 
execute certain data stream commands by in­
serting an appropriate command process 
address in the Access table. This capability en­
ables the preservation of uniformity and con­
sistency of operation between normal and virtual 
environments, by assigning different inter­
pretations to the command according to the 
access environment. It is especially useful for 
termination and initialization commands. The 
operation of command process commands is 
analogous to that of data stream commands • 
except for a different access environment. 

'Command Process Command List 

The commands allowed in command processes 
can be·divided into two subsets. The first subset 
consists of commands that can be issued only 
through a command process, while the second 

one consists of normal datastream commands 
that can also be issued through a command 
process. The command code for a datastrea'm 
command issued through a command process 
is the same as that for the normal datastream 
command embedded in the data. However, 
certain datastream commands are interpreted 
differently when they are issued through a com­
mand process as opposed to embedding in the 
datastream of a virtual display process. The 
most significant bit (MSB) of the command 
word must be a "1". In the datastream, this bit 
distinguishes a command word from character 
data. In the process environment, this bit distin­
guishes a command process from a display 
process. The commands permitted in command 
processes are listed below. No other commands 
will be recognized if encountered in a command 
process and will result in a NOP. All undefined 
command codes apart from those designated 
as NOP are reserved and shQuld not be used. 
Encountering an illegal comm/ilnd code causes 
the ROC (Reserved Datastream' Command) 
status bit to be set and will generate an interrupt, 
if enabled. 

Table 5.'Command Process Command List 

INTERPRETATION COMMAND CODE 
COMMAND IN VIRTUAL OP CODE 

PROCESS OPCODE PARAMETERS 
DATASTREAM 

Command Process Only Command: 
1 INIT NEXT PROCESS NOP 1000 1111 XXXX XXXX 8F 

Command Process or Datastream Commands: 
2 ENDROW VEOR 1000 1Q90 XXXX XXXX 80 
3 EOF VEOR 1000 0001 XXXX XXXX 81 
4 EOl VEOR + NXTSTRG 1000 0010 XXXX XXX X 82, 
5 FUlROWDESCRPT NOP 1000 0011 "'n" 83 
6 Sl SCROll STRT NOP 1000 0100 XXX "SCR LINE" 84 
7 Sl SCROll END NOP 1000 0101 XXX ,"END LINE" 85 
8 TAB TO n NOP 1000 0110 Un" 86 
9 .LD MAX DMA COUNT NOP 1000 0111 "COUNT" 87 

10 (RESERVED) RESERVED 10XX XXXX XXXX XXXX 90-BF 
11 No'P NOP 11XX XXXX XXXX XXXX CO-FF 

210931-004 

7-168 



inter 82730 

INIT NEXT PROCESS 

15 14 8 7 o 
000 1111 XXXX XXXX 

This command can be used only in a command 
process to initiate a virtual display "window". 

not directly loaded from the LPTR location in the 
process header. Instead, LlSTSWITCH in the 
process header is examined and LPTR is initial­
ized with the value LBASE 0 or LBA~E 1 depend­
ing upon whether LlSTSWITCH is 0 or 1 respec­
tively. Both LBASEO and LBASE1 are contained 
in the header. 

The PJOcess header format is shown in Figure 7. 
Also the End of Display Bit (EOD) in the header is 
reset. Upon receiving this command, the command 

process is terminated and the next process in 
Access Table is accessed by fetching the new 
process address. However, the LPTR register is 

The data access task for a virtual di:::play is then 
resumed, with this value of LPTR. 

15 14 13 8 7 6 0 LOCATION 

0 ---- EOD ---- PROCESS ADDR 
LS: LlSTSWITCH ---- LS ALF PROC AD DR + 2 
ALF: AUTO LINE --- ... MAX DMA COUNT PROC AD DR + 4 

FEED LBASEO LOWER PROC ADDR + 6 

LBASEO UPPER PROC ADDR + 8 

LBASE 1 LOWER PROC AD DR + 10 

LBASE1 UPPER PROC ADDR + 12 

1 ---- GPA PROC ADDR + 14 

1 FIELD ATTRIBUTE MASK PROC ADDR + 16 

LPTR LOWER PROC ADDR + 18 

LPTR UPPER PROC ADDR + 20 

SPTR LOWER PROC AD DR + 22 

SPTR UPPER PROC ADDR + 24 
SAVE RPT 
AREA SIS SIS RPT -- REPT COUNT PROC ADDR + 26 

1 REPT CHAR PROC AD DR + 28 

1 REPT CHAR 2 PROC AD DR + 30 

15 14 8 7 o 
PROCESS ADDR COMMAND 

C/O 

Figure 7. Process Header for Display and Command Process 

7-169 
210931-004 



inter 82730 

ENDROW 

15' 14 
000 

8 
0000 

7 a 
XXXX XXXX 

The actions performed by a ENDROW data­
stream command in a Normal Display are 
carried out. The next process in Access Table is 
accessed and the data access task is resumed, 
after the next Row Buffer swap 

EOF 

15 14 8 7 a 
000 0001 XXXX XXXX 

The actions performed by an EOF (End of 
Frame) data stream command in a Normal 
Display are carried out. 

EOL 

15 14 8 7 a 
000 0010 XXXX XXXX 

This command is identical to ENDROW com­
mand in Virtual Display in Command Process 
environment. ENDSTRG, which is strictly a data 
operation within a display process is meaning-' 
less in the command process environment. 

I 

FULROWDESCRPT 

15 14 8 7 a 
000 0011 "n" 

The actions performed by the FULROWDES­
CRPT datastream command are carried out. 
The data acc,ess task is resumed by accessing 
the next process in the Access Table. 

SL SCROLL STRT 

15 14 8 7 5 4 a 
1 000 0100 xxx "SCR LINE" 

The same actions as the SL SCROLL STRT 
datastream command. The data access is 
resumed with the next process in Access Table. 

SL SCROLL END 

15 14 8 7 5 4 a 
000 0101 xxx "END LlNEY' 

The actions performed by a SL SCROLL END 
datastream command, in a Normal display, are 
carried out. The data access task is resumed 
with the next process in Access Table. 

TAB TO n 

15 14 8 7 a 
000 0110 lin" 

The effect of this command process command 
is identical to that of the TAB TO n datastream 
command. The TAB can be used to establish the 
left edge of a virtual display "window". 

LD MAX DMA COUNT 

15 14 8 7 a 
1 000 0111 MAX COUNT 

The Max Count register on 82730 is loaded with 
the value specified by the lower byte of the 
command word. The DMA counter is also initial­
ized with this Max Count Value. 

The next process in the Access Table is accessed. 
However, the Max DMA Count value in the 
process header is not used for initializing the 
DMA counter. Instead, the DMA counter as 
initialized by the LD Max DMA Count command 
is used for this process. The virtual display qata 
access task is then resumed normally. When the 
process is terminated, the new Max Count value 
:s written to the process header. Thus the Max 
Count value in the header is updated as a result 
of this command. 

NOP 

15 14 8 7 a 
1XX XXXX XXXX XXXX 

No action is taken. Data access task is resumed 
by fetching the next process address from 
Access Table. 

ERROR AND STATUS HANDLING 

Error Conditions 

Since the MCU and DG function asynchronous­
ly with respect to each other, different relative 
timings in MCU and DG operation are possible, 
some of which result in error conditions. The 
lack of appropriate termination commands for 
row or frame data in the datastream also gives 
rise to certain error conditions. These types of 
situations occurring in display process oper­
ation are described below. 

In normal operation, DG initiates a buffer swap 
at the physical end of a display row. If the MCU 
has not finished loading its row buffer by that 
time, a "Data 'Underrun" occurs. This results in 

210931-004 
7-170 



inter 82730 

blanking of the screen until physical end of frame 
by DG and execution of an EOF (End of Frame) 
command by MCU. Data underrun also occurs 
when the first row of the frame has not finished 
loading by the start of the character field. The 
entire frame will be blanked in this case. 

If a physical end of frame is reached prior to 
encountering an EOF datastream command. a 
"Frame Data Error" occurs. which results in the 
execution of an EOF command by MCU. (Note 
that this does not disrupt the visible display 
action. and may not constitute an error for certain 
data structures. The error indication is included 
as a flag where knowledge of this condition is 
desired.) Similarly. when the MCU fills up a row 
buffer completely. without encountering a END­
ROW command. the "Data Buffer Overrun" flag is 
set. 

All of the above conditions result in the setting of 
an appropriate status bit and generation of an 
interrupt if the corresponding interrupt has been 
enabled. 

15 9 8 7 6 5 
(RESERVED) VDIP DIP ROC RCC 

Status and Interrupt Handling 
A status word Is maintained in an internal register 
by 82730 and it is written to the "STATUS" 
location in command block when the "Read 
Status" channel command is executed. The pro­
cessor can thus read status information by issuing 
this command. the processor can also enable 
interrupts for certain status bits by specifying an 
interrupt mask which is loaded in 82730 as a 
result of a "Load Int Mask" channel command. 
This establishes a communication mechanism 
between 82730 and the processor for error and 
status reporting. 

Status Word 
The format fOr the status word is Shown below. 
The function of each of the status bits is described 
below. 

The status bits get set under the conditions 
described above. I nterrupts can be enabled for all 
status bits except DIP and VDIP bits. The interrupt 
status bits are cleared at the beginning of each 
new display field. DIP and VDIP bits are cleared 
only after receiving a "STOP DISPLAY" command 
or a Reset.' 

All status bits are cleared by a Reset. 

7-171 

VDIP: 
DIP: 
RCC: 
ROC: 
FOE: 

Virtual Display In Progress 
Display In Progress 
Reserved Channel Command 
Reserved Datastream Command 
Frame Data Error 

OUR: Data Under Run 

This status bit is set by Display Generator if the 
Microcontroller Unit (MCU) has not finished 
loading its Row Buffer when the DG initiates a 
buffer swap at the physical end of a display row. 
This condition is defined as data underrun and 
causes the MCU to execute an EOF command 
and the DG to blank the screen until the 
physical end of frame. 

LPU: Light Pen Update 

This status bit is set by the MCU after updating 
the LPENROW and LPENCOL locations in com­
mand block. The detection of LPEN input is 
enabled by the LPEN ENABLE channel com-

4 
FOE 

EOF: 
DBOR: 
LPU: 
OUR: 

321 
EOF DBOR LPU 

End of Frame 
End of Row 
Light Pen Update 
Data Under Run 

o 
OUR 

mand. The detection of a rising edge on the 
LPEN input causes the current row and column 
position to be stored internally. The MCU 
updates the LPEN ROWand LPEN COL loca­
tions in command block atthe next end offrame 
and sets the LPU status bit. Further updates of 
these command block locations are inhibited 
until another LPEN ENABLE command is issued. 

DBOR: Data Buffer Over Run 

This status bit is set when the MCU tries to fill a 
row buffer beyond its capacity. The MCU will 
stop fetching characters after this poi nt and the 
display is blanked following the completion of 
the row currently being displayed. 

210931-004 



82730 

EOF: End of Frame 

This bit is set by the DG at the physical end of 
the nth frame, where 'n' is specified by the 
MODESET parameter FRAME INTERRUPT 
COUNT. This provides the means for timing 
frame related events such as slow scrolls. 

FOE: Frame Data Error 

This status bit is set by the DG at the physical 
end of frame if no EOS dat~stream command 
has been encountered until then. This also 
results in the execution of the EOS command 
by the MCU. 

RCC: Reserved Channel Command 

This bit is set by the MCU upon encountering 
an illegal datastream or com mand process com­
mand. This can be used to trap software errors 
during program development. 

ROC: Reserved Datastream Command 

This bit is set by the MCU upon encountering 
an illegal datastream or com mand process com­
mand. This can be used to trap software errors 
during program development. 

DIP: Display In Progress 

This bit is set by the MCU immediately after 
receiving a "Start Display" channel command. 
It remains set as long as the display process is 
active and is reset upon receiving a "Start 
Virtual Display" or "Stop Display" command or 
a Reset. Interrupts cannot be enabled for this 
status bit. 

VDIP: Virtual Display In Progress 

This bit is set by the MCU immediately after 
receiving a "Start Virtual Display" channel com­
mand and is reset upon receiving a "Start 
Display" or "Stop Display" command or a Reset. 
This bit remains active as long as the virtual 
display process is active. Interrupts cannot be 
enabled for this status bit. 

Interrupt Processing 
The system processor can enable interrupts on 
any of the status bits, with the exception of DIP 
and VDIP bits, by specifying an interrupt mask. 
A "1" in a bit position in the interrupt mask 
disables (masks out) interrupts 8n the status bit 
located in the corresponding bit position in the 
status word. The ·format for I nterrupt Mask is 
shown below. The Int Mask can be loaded into 
82730 from the I NTMASK location in command 
block by a "Load Int Mask" channel command. 
If the interrupt is enabled for a particular status 
bit by programming a "0" in the corresponding 
bit position in INTMASK and if the status bit 
gets set during the course of the display, an 
interrupt will be generated by 82730 at the next 
end of frame. At the end of frame, the 82730 will 
first perform the tasks of updating LPEN posi­
tion (if required) and servicing the Channel 

, Attention (if CA was activated). Then the status 
word in the internal register will be written to 
the INT GENERATION CODE location in the 
Command Block and the SINT output will be 
activated. The SINT pin is not deactivated until 
an interrupt reset signal is received at the IRST 
pin. 
82730 continues to perform its normal display 
task after activating the SINT pin. If no interrupt 
reset is received until the next'end of frame then 
any new interrupts that might have been gen­
erated at that end of frame will be lost. There­
fore, it is essential for the system processor to 
issue an interrupt reset within a frame time after 
an interrupt is generated. 
When the display is not activated, the only 
interrupt that can occur is the Reserved Channel 
Command interrupt. Upon receiving an invalid 
channel command, 82730 will, write the status 
word to INT Generation Code location in the 
Command Block and activate SINT output, if 
that interrupt is ~nabled. 
The processor can use the interrupt capability 
to get status information from 82730. A possible 
interrupt service routine for the system pro­
cessor is shown in flow chart form in Figure 9. 

7-172 
210931-004 



inter 82730 

15 7 6 5 4 3 2 1 0 
ROC RCC FOE EOF DBOR LPU OUR 

(RESERVED) INT INT INT INT INT INT INT 
MASK MASK MASK MASK MASK MASK MASK 

INT MASK = 0_ Enables the ,corresponding interrupt. 
INT MASK = 1 Masks or disables the corresponding interrupt. 

Figure 8. Interrupt Mask 
I~ 

.~ 
·'i 
"-,) 

INTERRUPT 

READ STATUS FROM 
"INT GENERATION CODE" 
LOCATION IN CMD BLOCK 

PERFORM APPROPRIATE 
SERVICE;YASKS 

ISSUE INT RESET (IRST) SIGNAL 
TO 82730 

END 

Figure 9. Interrupt Service Routine For System Processor 

7-173 210931-004 



82730 

82730 VIDEO INTERFACE 

The Mode Pointer in the Command Block points to a parameter block containing the Mode information 
required for the display. The organization of the mode words in the Mode Block is shown below. 

~ ""' ... "' ""'''"'' ""' ........... 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LOCATION 

DMA . BURST LENGTH - I BURST SPACE MPTR 

LINE LENGTH HSYNCSTP MPTR;2 

HORIZONTAL HFLDSTRT HFLDSTP ( 
MPTR; 4 

MODES 

HBRDSTRT HBRDSTP MPTR;6 

- - - - - -. - - - - - SCROLL MARGIN MPTR;8 

- " - - RVV BLKrl DB~ I w - - - LPR 
CHAR ROW ROW ROW HGT DEF MPTR; 10 

CHARACTERISTICS - - - NRMSTRT - - . NRMSTP MPTR; 12 

- - - SUPSTRT - - - SUPSTP MPTR; 14 

(FULROWDESCRPT) - - - SUBSTRT - - - SUBSTP MPTR; 16 

- - - CUR1STRT - - - CUR1STP MPTR; 18 

- - - CUR2STRT - - - CUR2STP MPTR;20 

- - - U2 LINE SEL - - - U1 LINESEL MPTR;22 

- FIELD ATTRIBUTE MASK MPTR; 24 

- - - - - FRAME LENGTH MPTR;26 

VERTICAL - - . - - VSYNCSTP ; MPTR; 28 

MODES - - . - - VFLDSTRT MPTR;30 

- - - - - VFLDSTP MPTR ;32 

(RESERVED) MPTR; 34 

(RESERVED) MPTR;36 
BLINK 

FRAME INT COUNT CONTROL - DUTYCYC CURSOR BLINK - - - - MPTR ;38 

- DUTYCYC CHAR BLINK ILE I RFE'I B BUE CR2 CR1 CR2 CR1 MPTR; 40 i 
POL CD CD BE BE 

REVERSE VIDEO BLINKING CHAR - - - - CR2 CR1 CR2 CR1 MPTR;42 
ATTRIBUTE BIT RVV RVV OE OE 
SELECTS 

ABS LINE COUNT INVISIBLE CHAR UNDERLINE 2 UNDERLINE 1 MPTR; 44 

Figure 10. Mode Block Organization 

210931-004 
7·174 



inter 82730 

CAM ARRAYS 

Three Content Addressable Memory arrays are 
used for generating timing parameters to control 
the video display: the HORIZ MODE CAM, the 
VERT MODE CAM andthe CHAR ROW CAM. 
The user has the flexibility to define his own 
timing parameters by loading them into the CAM 
arrays via the M IU. All of these parameters can be 
modified at the end of every frame. All the 
parameters in the CHAR ROW CAM, except 
MARGIN, are changeable on a row by row basis. 
Each of the three CAM arrays is described 
separately below: 

Timing Sources 

RCLK and CCLK inputs are provided by the 
external video logic to the 82730. The RCLK is 
used to increment the HORIZ COL CNTR and 
hence generates all horizontal timing parameters. 
CCLK is used to clock the character and attribute 
data output from the 82730 to the external display 
dot logic. Data changes on the positive going 
edge of RCLK or CCLK. 

Initialization 

Upon activation of the RESET input, the 82730 
display generator will stop all operations in pro­
gress and deactivate all outputs. It will stay in this 
quiscent state until the MIU executes the MODE­
SET command. The following table shows the 
states of all the Display Generator outputs during 
and after RESET. 

Pin Name Condition 
DATO-14 Low 
WDEF Low 
LCO-4 High 

BLANK Low 
CSYNC High 
CHOLD High 
HSYNC Low 
VSYNC Low 
CRVV Low 
RRVV Low 

7-175 

After reset of the 82730, the CAM arrays are in 
und.etermined states. The CAM arrays are set 
upon the execution by the MIU of the MODESET 
command. The HORIZ and VERT MODE CAM 
contents are especially critical since they are 
used to generate timing control signals to the 
external video logic. Without the generation of 
the timing signals, no display process can take 
place. Hence, START DISPLAY command cannot 
be executed before the first MODESET command 
after the device reset. The START DISPLAY 
command will be ignored if it precedes the 
MODESET command. 

The row buffers also contain unknown infor­
mation after power up and reset. In executing the 
START DISPLAY command, the MIU would first 
load the two row buffers with the first two rows of 
character data to be displayed. Upon completion 
of loading of both buffers, it will signal the DG to 
begin the display process. In this way, only valid 
character data will be output to the external video 
logic. 

Timing Parameters 

The timing parameters read from the MODESET 
Block and stored in the VERT MODE CAM and 
HORIZ MODE CAM are used to control the video 
display and they can be best illustrated in the 
Map of Timing Parameters shown below. All of 
these timings have to be defined after power up 
and reset and can be changed on a frame by 
frame basis during display. 

210931-004 

I 

i: 
I 

Ilil 

i 
I 
I~ 

I
:'·: .. '.··· i 
" 

I,,'.' 

I. 



'n+~liI!) 111'eII •. 82730 

~ J ~ :I 
t"-'-l..------;;;-~ ~, _______ -.-1..J._-1-(HSVNCSTRTI 

, ( /r'--'-"''11 -------:=::----,-----,-----, 
\ I 1 BORDER 

~-~~~ i~rtl-----~==~----------~ 
HBRDSTRT 

J,' - / 
i 

HfLDSTP 

BORDER 
HBADSTP 

L-____ ~ ____________ --LliNELEN 

Figure 11. Timing Parameters 

Row Timing Parameters 

The row timing parameters are stored in HORIZ 
MODE CAM and are programmable from 0 to 255 
RCLK times. These parameters are: 

(a) HSYNCSTRT - Horizontal Sync Start. The 
RCLK count on each scan line where 
HSYNC pin is activated. This parameter is 
not programmable. The RCLK period that 
follows the rising HSYNC edge is define~ 
as column zero. It is used as the reference 
for all other horizontal timing parameters. 

(b) HSYNCSTP - Horizontal Sync Stop. The 
RCLK count on each scan line where the 
HSYNC pin is deactivated. The falling edge 
of HSYNC occ,urs at the leading edge of the 
programmed RCLK period. 

(c) LlNELEN - Line Length. This parameter 
defines the total number of RCLK's in each 
scan line including display time, border 
and horizontal retrace time. There are 
LlNELEN + 1 RCLK periods per horizontal 
line scan. 

(d) HBDRSTRT - Horizontal border start. The 
RCLK count on a scan line where the 
border ~egins. The bOrder begins at the 
leading edge of the programmed RCLK 
period. , 

(e) HBDRSTP - Horizontal Border Stop. The 
RCLK count on a scan lime where the 
border ends. The border terminates at the 
leading edge of the programmed RCLK 
period. 

(f) HFLDSTRT - Horizontal Field Start. The 
RCLK count on a scan line where the 
character display field begins. If the row 
buffer is ready to be displayed, the CSYN 
pin will be deactivated at this point. This 
field begins at the leading edge of the 
programmed RCLK period. 

(g) HFLDSTP - Horizontal Field Stop. The 
RCLK count on a line where the character 
display field stops. When this timing 
point is reached, CSYN will be activated. 
This field ends at the leading edge of the 
programmed RCLK period. 

There is also one pseudo parameter, SYNCDLY. 
It is fixed at one half LlNELEN and is used as 
the start ·and end timing for VSYNC in odd 
frames in interlaced displays: VSYNC starts at 
HSYNCSTRT in even frames for interlaced 

I displays and all' frames for non-interlaced 
displays. . 

7-176 
210931-004 



82730 

There are certain restrictions in the programming 
of HFLDSTRT and HFLDSTP and those restric­
tions are best illustrated below. Therehas to be at 
least 4 RCLKS in between HFLDSTRT and 
HFLDSTP of the same scan line and 15 RCLKS in 
between HFLDSTP of one line and HFLDSTRT of 

Ii: a. 
l- I-
t/) 4 t/) 15 

the next. The minimum delay of 15 RCLKS is for 
the charging of the pipeline from the row buffer to 
the character data output DATO-DAT14 as well as 
the setting of the correct value for the scan line 
output LCO-LC4. 

Ii: ~ l-
t/) t/) 

c c c C 
...J RCLKS ...J RCLKS ...J ...J ... ... ... MIN MIN ... 
:I: :I: :I: :I: 

-- I. 
I- ~I· 

.I. 
~I 

1 

.I 
--

LINE 1 LINE 2 

Figure 12. Horizontal Timing Restrictions 

Frame Timing Parameters 

Frame timing parameters are stored in the VERT 
MODE CAM and are programmable from 0-2047 
scan lines. These parameters are: 

(a) VSYNCSTRT - Vertical Sync Start. The line 
count where the VSYNC is activated. This 
occurs at the end of a field automatically. 
This parameter is not programmable. The 
rising edge of VSYNC occurs with the 
rising edge of HSYNC for all non-interlace 
fields and for odd fields in the interlace 
mode. 

(b) VSYNCSTP - Vertical Sync Stop. The line 
count at which the VSYNC pin is normally 
deactivated. VSYNC changes at the rising 
edge of HSYNC normally. However it occurs 
at SYNCDLY at the beginning of odd fields 
of an interlaced display. 

(c) FRAMELEN - Frame Length. This para­
meter defines the total number of scan 
lines per frame. It is used to reset the 
FRAME LINE CNTR. In an interlaced dis­
play, FRAMELEN must be an even number. 
If an odd number is programmed, one 
additional line will occur automatically. 

7-177 

There will be FRAMELEN + 1 scan lines per 
frame. (Note that iflterlace mode contains 
two fields per frame). 

(d) VFLDSTRT - Vertical Field Start. Programs 
the scan line count where the character 
display field begins. 

(e) VFLDSTP - Vertical Field Stop. Programs 
the scan line count where the regular 
character display field ends. VFLDSTP 
times the beginning of the Status Row. The 
channel attention sequences, interrupt 
handling, row buffer swap and intial­
ization for the next frame are started after 
the display of the Status Row is completed. 
See· below. 

(Character Field Boundrydefinition: The starting 
or ending event is defined to occur at HFLDSTP 
on the scan line following the programmed value. 
Thus the visible character field effectively begins 
two scan lines below the programmed start value 
and ends one scan line below the programmed 
stop value.) 

210931-004 

!i 
Ii 



inter 82730 

Status Row 
The Vertical Frame Timing Parameters have no 
border controls, unlike the Horizontal Row Timing 
Parameters. The top and bottom borders can be . 
replaced with regular display rows that are video­
reversed and contain no data. The top border is 
easily timed from VFLDSTRT. The bottom border 
is more difficult without help from the Vertical 
Timing generators. If there were no help, the user 
would have to keep track of the number of scan 
lines used in each row to know when to stop 
regular display and create the bottom border. 
This would also preclude his ending his regular 
display with an EOF command before the border. 
The 82730 provides this help with the Status Row 
feature. The display of the Status row is timed 
from VFLDSTP and allows the user to display a 
row in a fixed position at the bottom of the screen 
that is independent of the regular data and any 
display errors (display ended by an EOF com­
mand or the DURN, DBOR, or FDE errors). 
(There is one dependency on the regular display 
data: the row format. The last FULROWDESCRPT 
(FRD) set in the regular data will be used on the 
Status Row unless a new command is issued for 
the row. It is recommended that the user include 
a new FRD command in the Status Row data to 
eliminate this dependency). 
Status Row display starts SCROLL MARG I N plus 
one scan line after VFLDSTP. This· margin is 
provided to insure enough DMA time if the 
regular display runs up to VFLDSTP. The user can 
create a bottom border or any end-of-display row 
that he chooses. A display status or system status 
line, or special programmable key function de­
finition line can be implemented with this feature. 

CHARACTER ATTRIBUTES 
The 15 bits of the character word can be parti­
tioned into character address and attribute bits. 
Some common attributes may be individually 
defined and enabled or disabled by fields in the 
attribute parameter registers. Each attribute has 
two means of being enabled. The enable bits 
defined below are set during the MODESET 
channel command and are used as a global 
enable. The user does not .have to enable the 
provided attributes. He may free more data bits 
for his own use this way. The second enable bit is 
contained in each character loaded to the row 
buffer to enable the attribute on a character by 
character basis. They are individually described 
in detail in the following sections. 

7-178 

Reverse Video 

When a character with the reverse video-attribute 
is displayed, the CRVV pin will be inverted during 
the time the character is being displayed. The 
reverse video affects the entire height of the row 
for that character space. For superscripVsubscript 
pairs, the reverse video effect is controlled by 
superscript until SUBSTRT when the subscript 
attribute bit takes control. The parameter for this 
attribute is: 

RVBS - Reverse Video Bit Select. This 
parameter selects one of the 15 bits of a 
character data word. Values 0 through 14 
select the corresponding bit. Value 15 
disables the Reverse Video attribute. 

Blinking Character 

When a character with the blinking character 
attribute is displayed, the BLANK pin will be 
activated and deactivated during the character 
display time according to programmable rate and 
duty cycle. The parameters for this attribute are: 

(a) BCBS - Blinking Character Bit Select. Selects 
one of the 15 bits of a chatacter data word 
as the blinking character attribute control. 
As with Reverse Video above, the value of 
the select determines the controlling bit or 
disables the attribute. 

(b) CHAR BLNK FREQ - Selects one of the 32 
blinking frequencies available for the 
blinking character and blinking underline. 
The character blink rate is calculated as 
below: 

Frame Refresh Rate 
Blink Rate = 4 x CHAR BLNK FREQ 

(cl CHAR DUTY CYCLE - A 2-bit register to 
select 4 duty cycles available for blinking 
character and blinking underline. The 
selection logic is defined to be as follows: 

00=100% always on 
11= 75% on 
10= 50% on 
01= 25% on 

Underline #1 
When a character with underline is displayed, the 
BLANK Pin will be activated and the CRVV pin will 
be inverted during the time the scan line specified 

210931-004 



by the underline select register is displayed. The 
parameters used to define underline #1 are: 

(a) ULS1 - Underline Line Select 1. It deter­
mines which scan line of a character row 
will be used for the underline #1. This 
parameter is modifiable on a row by row 
basis by the FULROWDESCRPT command. 

(b) ULBS1 - Underline Bit Select 1. This para­
meter can only be changed by MODESET. 
It selects one of the 15 bits of a character 
data word as the underline #1 attribute 
control. Again, a value of 15 in the select 
field disables this attribute. 

Underline #2 (Blinking) 

Underline #2 can be made to blink. When its 
blinking feature is deactivated, its visual effect is 
exactly the same as underline #1. When it is 
enabled to blink, its blink rate and blinking duty 
cycle are the same as those defined for blinking 
character. The parameters used to define this 
attribute are: 

(a) UL2SEL - Underline Line Select 2. This 
parameter determines which scan line of a 
character will be the 2nd underline. It is 
changeable on a roW by row basis by the 
FULROWDESCRPT command. 

The next two parameters can only be modified by 
the MODESET Command. 

I 

(b) ULBS2 - Underline Bit Select 2. Selects one 
of the 15 bits of a character data word or 
GPA1 as the second underline attribute 
control. A bit select value of 15 disables the 
second underline. 

(c) BUE- Blinking Underline Enable. Activation 
of this bit will cause the second underline 
attribute to start blinking. 

Invisible 

A character with this attribute will occupy its 
character position on the screen but will not be 
displayed (Le. BLANK will be active). This attribute 
does not affect the Reverse Video attribute ifthey 
are programmed together. The parameter that is 
used to implement this attributes: 

IBS -Invisible Bit Select. Selects one of the 
15 bits of a character data word as the 
invisible attribute control. Value 15 disables 
the invisible attribute. 

82730 

Absolute Line Cntr Attribute 
This character attribute allows the display of 
special graphic characters, or may be used to 
upshift normal characters to implement displays 
with overlapping superscript and subscript fields. 
When a character with this character attribute 
enabled is being displayed, its LCO-LC4 pins will 
reflect the output from the CHAR ROW LNE 
CNTR which counts the absolute line count of a 
row. The activation of this attribute overrides the 
line count mode of both normal and subscript/ 
superscript characters. The parameter used to 
select the attribute is: 

ABS LINE BIT SEL. This four bit register selects 
one of the 15 bits of a character data word as the 
absolute line counter output attribute control. 
Select value 15 disables the ABS Line attribute. 

Cursor Generation 
The cursor characteristic parameters are change­
able on a frame by frame basis by MODESET. 

(a) CUR FREQ - Cursor frequency. Selects the 
blinking frequency for both cursors. The 
selection logic is similar to CHAR BLNK 
FREQ 

(b) CUR DUTY CYCLE - Cursor duty cycle. 
Selects the blinking duty cycle for both 
cursors. Its selection logic is similar to 
CHAR DUTY CYCLE. 

(c) CR1RVV - Cursor 1 Reverse Video Enable 
selects a reverse video type cursor as 
opposed to a solid (blanking) cursor. 

(d) CR1 BE - Cursor 1 Blink Enable changes 
the cursor 1 block or underline to a blinking 
block or underline. Enabling this bit also 
causes DAT 14 pin to "blink" as well, if the 
CR10Ebit is set. 

(e) CR10E i. Cursor 1 Output Enable recon­
figures the DAT 14 pin to indicate when 
cursor 1 is active. CR20E enabled directs 
the cursor 2 signal to DAT 13 pin in a similar 
fashion. 

(f) CR1 CD - Cursor 1 Light Pen Cursor Detect 
directs the CCLK cursor #1 position to be 
translated to its nearest equivalent RCLK 
position through the LPEN facility. 

An identical set of parameters (c) through (f) is 
available for the generation of CURSOR 2. The 
two cursors share the same FREQ and DUTY 
CYCLE parameters. 

210931-004 
7-179 



82730 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature under Bias .... O·C to 70·C 

Storage Temperature ....... , - 65·C to + 150·C 

Voltage on Any Pin with 
Respect to Ground . . . . . . . . . .. - 1.0V to + 7V 

Power Dissipation ................... 3Watts 

"NOTICE: Stresses above those listed under 
"Absolute Maximum Ratings" may cause perma­
nent damage to the device. This is a stress rating 
only and functional operation of the device at 
these or any other conditions above those indi­
cated in the operational sections of this specifica­
tion is not implied. Exposure to absolute maxi­
mum rating ponditions for extended periods may 
affect device reliability. 

D_C. CHARACTERISTICS TA = O·C to 70·C, Vee = 5V ± 10% 

Symbol Parameter Min. Max. 

VIL Input Low Voltage -0.5 +0.8 

VIH Input High Voltage 2.0 Vcc+ 0.5 

VOL Output Low Voltage 0.45 

VOH Output High Voltage 2.4 

Icc Power Supply Current 400 

III Input Leakage Current 10 

ILO Output Leakage Current ±10 

ILCL LCO, LC1, LC2 Input Low Current -125 -Ll'if' 

VBll Bus Clock Input Low Voltage -0.5 0.8 

VBHI Bus,Clock Input High Voltage 2.0 Vcc + 1.0 

VCLl Character Clock Input Low Voltage -0.5 0.8 
r---

VCHI Character Cloeklnput High Voltage 2.2 Vcc +0.5 

VRLI Reference Clock Input Low Voltage -0.5 0.8 

VRHI Reference Clock Input High Voltage 2.2 Vcc +0.5 

NOTE: 
1. 10L = 2.6 rnA on the 51 and SO pins. 
2. Measured after at least 5 BCLK cycles after RESET = High 

A.C. CHARACTERISTICS 

TA = O·C to 70·C, Vcc = 5V ± 10%. All timings in nanoseconds. CL = 50 pF. 

82730 Bus Interface Input Timing Requirements 

Symbol Parameter Min. Max. 

TCLCL BCLK Cycle Period 125 '2500 

TCLCH BCLK Low Time 52 
, 

TCHCL BCLK High Time 52 

TCH1CH2 BCLK Rise Time 30 

TCL1CL2 BCLK Fall Time 30 

TDVCL Data in Set-Up Time 20 

7-180 

Units Test Conditions 

Volts 

Volts 
-

Volts 10L = 2 mA [11. 

Volts IOH = -400p.A 

mA @TA=O·C 

p.A VIN =O-Vcc 

p.A VOUT = 0.45 - Vcc 

IlA VIN = 0 Volts, 
Reset = "1" (2) 

Volts 

Volts 

Volts 

Volts 

Volts 

Volts 

Units Test Conditions 

os 

ns 

ns 

ns 0.45V - 2.4V (1) 

ns 2.4V - 0.45V (1) 

ns 

ORDER NUMBER: 210931-004 



82730 

A.C. CHARACTERISTICS (Continued) 

82730 Bus Interface Input Timing Requirements (Continued) 

Symbol Parameter Min. Max. Units Test Conditions 

TCLDX Data in Hold Time 5 ns 

TARYHCH Async. READY Active Set-Up Time 35 ns 

TSRYHCL Sync. READY Active Set-Up Time 20 ns 

TRYLCL READY Inactive Set-Up Time 10 ns 

TCLRYX READY Hold Time 20 ns 

TCTVCL HLDA, RESET Set-Up Time 35 ns 

TCLCTX HLDA, RESET Hold Time 10 ns 

TCAVCAX CA Pulse Width 100 ns 

TRIVRIX IRST Width 100 ns 

TRLLCH LCx Input Hold Time 5TCLCl ns (2) 

82730 Bus Interface Output Timing Response 

Symbol Parameter Min_ Max. Units Test Conditions 

TCLAV Address Valid Delay 0 55 ns --
TClAX Address Hold Time 0 ns 

TAVAl Address Valid to ALE/UALE Inactive TClCH -30 ns 

TllAX Address Hold to ALE Inactive TCHCL-10 ns 

TCLAZ Address Float Delay TCLAX 45 ns 
--

TAZRL Address Float to RD Active 0 ns 

TLHLL ALE/UALE Width TCLCH -10 ns 

TCLlH ALE/UALE Active Delay 0 45 ns 

TCHLL ALE/UALE Inactive Delay 0 45 ns 
--

TCVCTV Control Active Delay (DEN,WR,AEN) 0 70 ns 
--

TCVCTXW Control Inactiye Delay (WR,AEN) 0 80 ns 

TCVCTXD Control Inactive Delay (DEN) 5 80 ns 

TClDOV Data Out Valid Delay 0 50 ns 

TCLDOX Data, Out Hold Time a \ ns 

TWHDX Data Out Hold Time After WR TCLCL-60 ns 

TCLHV Hold Output Delay 0 85 ns 

TRLRH RD Width 2TCLCL-50 ns 

TClRL RD Active Delay 0 95 ns 
--

TCLRH RD Inactive Delay 5 70 ns 

TRHAV RD Inactive to Next Address Active TCLCL-40 ns 

NOTE: 
2. Applies only to test mode invocation. 

7-181 210931-004 



82730 

A.C. CHARACTERISTICS (Continued) 

82730 Bus Interface Output Timing Response (Continued) 

Symbol Parameter Min. Max. Units Test Conditions 

TCLSIN SINT Valid Delay 0 70 ns 

TRIHSIL RINT Active to SINT Inactive 250 ns 

TCHSV Status Active Delay 0 75 ns 

TCLSH Status Inactive Delay 0 70 ns 
- ---

TWLWH WRWidth 2TCLCL-40 ns 

TFLHL Bus Float to HOLD Inactive 0 ns 

82730 Display Generator Input Timing Requirements 

Symbol Parameter Min. Max. Units Test Conditions 

TRCHRCH RCLK Cycle Period 100 2500 ns 

TRCHRCL RCLK High Time 40 ns 

TRCLRCH RCLK Low Time 40 ns 

TRRCK RCLK Rise Time 30 ns 0.45V-2.4V (1) 

TFRCK RCLK Fall Time '30 ns 2.4V -0.45V (1) 

TCCHCCH CCLK Cycle Period 100 None ns 

TCCHCCL CCLK High Time 30 ns , 

TCCLCCH CCLK Low Time 40 ns 

TRCCK CCLK Rise Time 30 ns 0.45V-2.4V (1) 

TFCCK CCLK Fall Time 30 ns 2.4V -0.45V (1) 

TVCVCR HSYNC. SYNCIN Set-Up Time 30 ns 

TCRVCX HSYNC. SYNCIN Hold Time 10 ns 

TLPVCF LPEN Set-Up Time 30 ns 

TCFLPX LPEN Hold Time 10 ns 

TRCHCCH CCLK/RCLK Skew During CSYNC -10 10 ns 

82730 Display Generator Output Timing Response 

Symbol Parameter Min. Max. Units Test Conditions 

TCCHDV Data, Line Count and Attribute and Output Valid 60 ns. CL = 100 pF 
Delay from the Delay frOfT'l the Rising Edge of CCLK 

TCCHDX Data, Line Count and Attribute and Output Hold Time 5 ns CL = 100 pF 
-

TRCHCV Delay of Outputs CSYNC, VSYNC, HSYNC or RRVV 70 ns CL = 100 pF 
from the Rising Edge of RCLK 

TCCHCL CCLK Rising to CHOLD Low 75 ns CL=50 pF 

TRCLCH RCLK Falling to CHOLD High 60 ns CL =50 pF 

NOTE: 
1. Clock maximum rise and fall times are for functionality only. AC timings are not tested at this condition. 

2. Applies only to test mode invocation 

7-182 ORDER NUMBER: 210931-004 



82730 

WAVEFORMS 

BUS TIMING T4 

DIAGRAM BClK 

TU T1 11 T2 T3 T4 

r f=r r'"1 
,......, 
~ r w-~ 

l-
.-J ~ ~ 

--:i TCVCTV 

-00 r TCHS, -- tTClSH -- r- TCHSV 

-\ + -\ 
-- - TCHl~ 

I 

UAlE ~ """ TlHll ..... 

ALE 

T AD1S-ADO 
I 
I , 

0 « Rii w 
a: 
I 

I 
I 

TlHll- - ..... I-.TClAZ, 
TCllH-- .. ... TCjLl 

TCllH ...... I-" r-J _,J\.... 
TClAV-- .C -- -lAV~l "'"'- - + -I- A3l-A16 t- A15-AO ~, -- it DATAIN~ilO~- =F 

TClAV .... I- - -TAZRL II-TDVCl-- -,TRHAV 

I :'~"" .... I- TCVCTV ...... 

I om l 

T AD15-ADO 

I 
I ~ "'1 

: LVCTXD 

TClRL -- ... 
-00 .t.TClA~ 1- .t TClDOV --

I A3l-A1B l Al.-Ao f DATA OUT t- A15-AO 

w 
t: WR a: 
~ 

TClAV --I j.: -.J I-rCVcTV 

I -- I-" TClDO 
I I 

1 

x 

I 
I 

1 om 

TCVCTV __ ...... I-TCLARYj 
I--TWHDX-

-\ ,... 

TARYHCH -- TCVCTXW --l I--
...... I-" TCVCTXD 

TClRYX 

TClRYX 

7-183 ORDER NUMBER: 210931-004 



-..j 
r 

00 
.j>. 

o 
:II 
o 
rn 
:II 
Z 
C 
I: 
III 
rn 
~ 
~ 
§ 

i 

WAVEFORMS (Continued) 

HOLD, RESET, SINT AND CA TIMING 

BClK' 

HOLD 

HlDA 

ADDRESS 
DATA 

CONTROL 7 \ ( il~7 L-

RESET 

SINT r TCLSlN '=- -I i TClCTX 

----- TRIVRIX a:. + _._f=_TR,;.-I_HSI_l ________________ ..I.-___ - __ _ 

IRST 
-- --

CA _~~CAV~~_-________________ ~ __________ ___ 

lCX· 

-I tTRllCH 

--- '\J ------
---

I 

; 

"@ 
:3ID 
IiiiiI 
IF = 
~ 
~ 
~ 
2S! 
C:g 

@ 



WAVEFORMS (Continued) 

DISPLAY GENERATOR INTERFACE TIMING l 
@ 

RCLK 

CSYNC 
RRVV 

HSYNC 
(VSYNC) 

--J 

h1HCCL1-t nK1H1TFn ~ ~ TRCHCCH -1r TCC,CCHh en .... 
01 1\ 1\ ~ CCLK ' 

OATO-OAT14 
LCO-LC4 

BLANK 
CRVV 
WOEF 

CHOLO 

0 "@) ;., 
0 22J m 
;., IMJ z 
c: F 
i: = UJ 

~ m 
~ = '" (7g 0 
'" ~ '" b 22J 0 

~ .... 

-__ -~""""~.,i,,~~-_" -=--::-~~..:;e.~~~,...¥.<~-;;';;:'~ -



82730 

WAVEFORMS (Continued) 

DISPLAY GENERATOR INTERFACE TIMING 

RCLK 

HSYNC, SYNC IN 

LPEN 

TRCHCCH 

CCLK 

A.C. TESTING INPUT. OUTPUT WAVEFORM 

INPUT OUTPUT 

::,:=x;:: > "" " .. " < ::;C 
A( Tl$lING INPUTSARlORIVENAT24V~ORAL(JGIC I AN(JO.iWf{IR 
A lOGlr 0 TIMING MEASUR[ Mf NTS ARE MADE AT ,) OV FOR A UJr,ll 1 
ANO 0 BV FUR A LOGIC 0 

TVCVCR 
TCRVCX 

TCFLPX 

hpVCF 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER ICC TEST 

-= 

C( INCLuDES-JIG CAPACITANCE 

7-186' ORDER NUMBER: 210931-004 



82731 
VIDEO INTERFACE CONTROLLER 

• Parallel to Serial Data Conversion • On·Chip Character Attribute Processing 

• On·Chip Clock Generator • Control Functions to Provide Screen 

• High Video Dot Rates Reverse Video, Video Clock, 
80 MHz-82731-2 Synchronization and Tab Function 
50 MHz-82731 • Single 5V Power Supply 

• Character up to 16 Dots Wide • 40 Pin DIP 

• Proportional Character Spacing • All Inputs and Outputs TTL Compatible 
Except Video Output which is ECl 

The 82731 is a general purpose video interface which generates a serial video signal output from parallel 
character and attribute information coming from the character generator and the 82730 Text Coprocessor. 
With a character generator and minimal hardware, the 82731 will comprise a complete video interfac.e 
system for the 82730 Text Coprocessor and the CRT monitor. 

CBLANK----+i 

CRVV----+i 

DW---~ 

HDOT----+i 

RRVV----+i 

DO-D15 

DO-D7 

WO-W3 
----,,/ 

PROG----+i 

CSYN---~ 

WDEF----'-+i 

CHOLD----+i 

ATTRIBUTE 
REGISTER 

16-BIT 
SHIFT 

REGISTER 

CCLK{ 
RCLK 

REGISTER & 
GENERATOR 

DOT 
CLOCK 

ATTRIBUTE 
PROCESSING 

OSCILLATOR 
PLL 

Figure 1: 82731 Block Diagram 

.. Vcc 

.. GND 

VIDEO 

RCLK 

CCLK 

Xl 

X2 

VT 

T1 

T2 

D7 Vee 

D6 D8 

D5 D9 

D4 Dl0 

D3 Dll 

D2 D12 

Dl D13 

DO D14 

PROG D15 

VIDEO T2 

RCLK Tl 

CCLK VT 

HDOT X2 

CBLANK Xl 

WDEF DCLK 

CRW RRW 

OW CSYN 

WO CHOLD 

Wl W3 

GND W2 

Figure 2. 82731 Pin 
Configuration 

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit 
Patent Licenses are Implied. NOVEMBER 1983 
©INTELCORPORATlON,1983. 7-187 Order Number 210925-004 



82731 

Table 1. 82731 Pin Description 

Symbol Pin Number lYpe Name and Function 

00-015 8-1.39-32 '1 Characier data parallel inputs. 

PROG 9 I Program control input; used to program default width 
values of CCLK and RCLK; these are latche'd Into the 
82731 via 00-07 at the rising edge of CCLK (PROG IS 
active high) 

VIDEO 10 0 Video output; provides the dot information clocked by 
the Internal dot clock 

RCLK 11 0 Reference Clock output; used to generate timings for 
the screen columns for data formatting and video sig-
nals. The period of RCLK is programmable from 6 to 
21 times the penod of the internal dot clock 

CCLK 12 0 Character clock output; used to clock character and 
attribute information out of the CRT controller. The 
period of CCLK is programmable from 3 to 18 times 
the period of the internal dot clock. 

HOOT 13 I Half dot shift Input; the video slgnal'at the video out-
put will be delayed by half dot clock for character 
rounding (active high). 

CBLANK 14 I Character blank attribute Input. the video output IS 
blanked (active high). 

WOEF 15 I Width defeat attribute input; the CCLK penod is set to 
a preprogrammed default value (active high) . 

CRVV 16 I Character reverse video attnbute Input, inverts the 
character data from 00-015 (active high). .. 

OW 17 I Double width attribute Input. the internal dot clock 
frequency and the CCLK frequency are divided by 
two (active high) The RCLK frequency remains 
unchanged. 

WO-W3 18. 19, 21,22 I Clock width inputs, they are used for programming 
the CCLK clock width on a character by character 
basis. -

CHOLD 23 I CCLK inhibit Input, this signal inhibits CCLK 
generatIOn and is used for TAB function (active low) 

CSYN 24 I CCLK synchronization input, CCLK will be 
synchronized to RCLK and the video output signal IS 
defined by RRVV (active high). 

RRVV 25 I Field reverse video Input; the video signal at the video 
output will be inverted (active high). 

DCLK 26 0 Dot clock output; ECL-Ievel signal; must be con-
nected to a 3.3k resistor to ground if used 

X1-X2 27,28 I Inputs for fundamental mode crystal; ItS frequency 
must be 1/8 of the required dot clock frequency. 

VT 29 0 Tuning voltage for PLL-VCO; this output is used to 
tune the LC-clfcuit and thus control the oscillator fre-
quency of the internal dot clock. 

T1-T2 30,31 I LC-circuit inputs for PLL-VCO. T1 can be used to 
provide the 82731 with an external TTL-level clock at 
twice the dot clock frequency. 

VCC 40 - +5V power supply 

6ND 20 - Ground (OV) 

7-188 210925-004 



inter 82731 

FUNCTIONAL DESCRIPTION 

The Video Interface Controller, 82731, in a typical 
CRT system shown in Figure 3, interfaces the Text 
Coprocessor to the CRT video terminal. It receives 
the parallel data along with the attribute and con­
trol information from the Text Coprocessor, proc­
esses it into a serial video signal which can be fed 
to a video CRT terminal. It also generates the basic 
dot clock (OCLK), character clock (CCLK) and the 
reference clock (RCLK) signals required by the 
Text Coprocessor. 
CRT terminals requiring very high resolution, ex­
tremely stable and absolutely flicker-free picture 
place special demands on the dot rate generator. In 
such applications dot rates up to 80 MHz are neces­
sary. This allows 12.5 ns per dot (pixel) for con- : 
verting data, attribute and control information into 
serial form for the video terminal. 

The functionality of the 82731 is largely deter­
mined by the complexity and the demands of the 
CRT controller it supports. Figure 1 shows the 
block diagram of the Video Interface Controller. 
The dot clock is generated by voltage controlled 
LC circuit connected at T1 and T2. Another clock 
is generated which is crystal controlled and has 
frequency 1/8 of the dot clock. This is used to 
stabilize the dot clock using an on-chip phase 
locked loop (PLL). This two-oscillator concept 
enables the use of low cost, fundamental mode 
crystals even for generating frequencies up to 80 
MHz. 

82730 
TEXT 

DATA 

PIPELINE 
REGISTER 

HSYNC 
VSYNC 

/ 

The 16 bit shift register receives parallel inputs 
from pins 00-015. This allows a maximum char­
acter width of 16 dots. The minimum width is 3 
dots. The character width is programmable 
through pi AS WO-W3 for proportional character 
spacing. This also determines the character clock 
(CCLK) frequency. Programming of the default 
character width and the reference clock (RCLK) 
is done through inputs 00-07 and PROG. Signal 
WOEF can be used to switch between the default 
character width and the one specified dynamic­
ally through the lines WO-W3. When using variable 
character ~idth, for example, in generating tables 
on the screen, it is essential that every entry in a 
column starts at the same dot..distance (and not 
the character distance) from the start of line. The 
82731 supports this requirem~roviding a 
tab function using CSYN and CHOD5 signals to 
synchronize with the reference clock (RCLK). 

It is possible to shift any scan line of any character 
by half a dot using the HOOT signal. This feature, 
known as character rounding, further enhances 
the quality of high resolution character displays. 
Other features, like character blinking, reverse 
video etc., which improve the readability of text on 
screen are directly supported by the 82731 using 
signals CRVV and RRVV from the Text Coproc­
essor, processing them and affecting the final 
video signal to show the characters with t"e de­
sired attributes. 

82731 

VIDEO 

Xl 1---... 

X21---..J 

"p 
SYSTEM· 

BUS 

COPROCESSOR 1-----,.-----....,/ 
..... _-.......1 r----, 

~~I 
ATTRIBUTE AND 

CONTROL SIGNALS 

~--~~----------~CCLK 

~------------~-~RCLK 

Figure 3. CRT System Block Oiagram 

7-189 

Tl 

T2 

VT 

I I 
I 

-11-1 
---JWv- I L ___ ...J 

210925-004 



82731 

Clock Generation 

The most fundamental clock required to run the 
CRT display is the dot clock which provides the 
reference for the dot data to be shifted serially to the 
CRT. In addition, it is the basis for the character 
clock (CCLK) and the reference clock (RCLK) 
required by the 82730. 

Dot Clock 

The dot clock is derived from an on-chip oscillator 
which runs at twice the normal dot clock (DCLK) 
frequency. A voltage-controlled LC circuit is con­
nected to the T1, T2 pins, to create a voltage­
controlled oscillator (VCO). The 82731 compares 
the phase of this oscillator with another on-chip 
oscillator controlled by a crystal attached to the X1, 
X2 pins. This oscillator runs at 118 the normal DCLK 
frequency to allow using inexpensive low-frequency 
crystals. The on-chip PLL circuit produces an error 
voltage via the VT pin which locks the VCO to the 
16th harmonic of the crystal frequency (see Figure 
4a). . 

X1 
CRYSTAL 

X2 
CIRCUIT 

, 

T1 VOLTAGE 
82731 CONTROLLED 

T2 LC-CIRCUIT 

t 
VT FILTER 

I DCLK 

-L 

a) Internal Clock Generation 

Alternatively 'the 82731 can be supplied with an 
external TTL-level clock at twice the normal DCLK 
frequency via the T1 pin, as shown in Figure 4b. 

When the Double Width (DW) input is active, the 
DCLK frequency is divided to 1/2 its normal value. 
This affects the DCLK, CCLK, and VIDEO outputs, 
but not RCLK. 

Designing the Oscillator Circuit 

The whole external oscillator circuit consists of 
three parts: 
-the crystal circuit, 
-the voltage controlled LC-circuit, and 
-the loop filter for the PLL. 

Figure 5a shows the general crystal circuit. The 
crystal must be a fundamental mode series resonant 
type with a resonant frequency of 1/8 of the desired 
dot clock frequency. The capacitor Cx is necessary 
if a fine adjustment of the dot clock rate must be 

X1 
VCC 

X2 

T2 -eN.c. 

ECLK CLOCK 
T1 GENERATOR 

VT ~N.C. 

DCLK 

N C = No Connect 
82731 

\, 

b) External Clock Generation 

Figure 4. Clock Generation 

7-190 210925-004 



inter 

X1 
C1 

t-------It--t~. 

" D-----ii I '''' Ii-----;. 
a) Crystal Circuit 

T1 

T2 

c) YCO circuit 

PRINTED COIL 
TURNS INDUCTANCE. 

2 35 H 
3 68 ~H 
4 115 H 
5 190 ~H 

TRACK WIDTH = 20 mils 

TRACE SPACING = 20 mils 

Rs 

1kl1 

Cd 

e) Example layout for printed circuit 

VT 

82731 

Cx (pF) FDCLK (MHz) 

2.2 64.053 

6.8 64.016 

15 63.987 

33 63.966 

(nominal crystal frequency 8 MHz) 

b) Example of the influence of Cx 
on the dot clock frequency 

VT~-------------'l 
C 

R = 12 kl1 
C = 33 nF 
C1 = 100 pF 

d) PLL - loop filter 

R 

t 3000 

2000 

1000 

500 
400 
300 

200 

100 

50 
40 
30 

20 

20 40 
10 20 

f) L/f-diagram 

60100 
30'50 

DIODE BB 505G 
CD 12pF 
VT 25V 

Cp = 5 pF 
Cp= 10pF 
Cp= 15pF 

200 .... fR MHz 
100 .... fDCLK MHz 

Figure 5. DeSigning the Oscillator Circuit 

7-191 210925-004 



°n+_I® 111'eI .. 82731 

made. Figure 5b shows an example how the dot 
clock frequency can vary with different values of Cx. 
The capacitors C1 and C2 may be necessary to 
suppress overtone oscillations if the crystal fre­
quency is below 6 MHz. The exact values depend on 
the crystal used and must be determined empiri­
cally. The recommended ranges are 0 to 10 pF for C1 
and 0 to 100 pF for C2. 

The voltage controlled LC-circuit is shown in Figure 
5c. The effective resonant circuit consists of the 
inductance L, the capacitance Cd of the varactor 
diode and the parasitic capacitance Cp.lts resonant 
frequency is 

1 
fR = :---;;::.=;;;==;::::; 

21TVL· (Cd + Cp) 

where fR must be 2 x fDCLK. The value of Cp 
depends on many factors (e.g. layout, single/multi­
layer board ... ), thus it changes from application 
to application. However a val.ue of 5to 15 pF seems 
to be a good approximation. 

The value of DC (varactor diode) should be deter­
mined at a control voltage of 2.5 V to get the lock­
in-range as wide as possible. The variation of VT 
ranges from 1 V to VCC-1 which results in a min­
imum frequency shift of about 6-8% in relation to 
the center frequency at 2.5 V. 

The value of the inductance L must be determined 
in such a way that the resulting center frequency 
lies as near as possible to the needed frequency 
fR = 2 x fOCLK to guarantee a stable dot clock 
under all operation conditions. Figure 5f shows a 
diagram that will help to find the needed induc­
tance L. It is based on the use of a varactor diode 
(Siemens BB 505G) that has a capacitance of 12 pF 
at a control voltage of 2.5 V. The use of other diodes 
will of course lead to other diagrams. 

At dot clock frequencies higher than 50 MHz the 
needed inductance becomes lower than 100 MH. In 
these cases it is better to integrate the inductance 
into the board layout. Figure 5e shows a possible 
layoutfor the external oscillator circuit and approx­
imate (measured) values of the inductance of the 
printed coil (trace width and trace spacing 20 
mils). . 

The loop filter converts the current pulses at the VT 
pin into the control voltage VT for the VCO. it is an 
essential part oNhe PLL and affects the lock-in-

range and stability of the Pl.L. A second orMrfilter 
that was found to work well under all operation 
conditions and over the full frequency range is 
shown in Figure 5d. 

Reference Clock (RCLK) 

RCLK is the reference clock output used to gener­
ate video timing and to define screen columns for 
data formatting and tabu lor loc~tions. In addition, it 

. is used to clock the field attribute signals into the 
82731. The period of RCLK is programmable from 6 
to 21 times the period of the dot clock, i.e. the RCLK 
hightime is 3 dot Clock periods and the RCLK low"" 
time is programmable from 3 to 18 dot clock peri­
ods. It is programmed via 04-07 at the rising edge of 
CCLK, when PROG is active (see Table 1 and Figure 
6). 

The RCLK clock width should be programmed only 
once after a system reset. 

Table 1. Programming RCLK 
\ 

RCLK Period 
07 06 05 04 PROG (dot clocks) 

0 0 0 0 1 16 
0 0 0 1 1 17 
0 0 1 0 1 I 18 
0 0 1 1 1 19 

" 
0 1 0 0 1 20 
0 1 0 1 1 21 
0 1 1 0 1 6 
0 1 1 1 1 7 
1 0 0 0 1 8 
1 0 0 1 1 9 
1 0 1 0 1 lO 
1 0 1 1 1 11 
1 1 0 0 1 12 
1 1 0 1 1 13 
1 1 1 0 1 14 
1 1 1 1 1 15 

Character Clock (CCLK) 

CCLK is the fundamental character clock output 
used to clock character and attribute information 
from the 87730. 

It is a rising edge triggered clock and inside the 
active character field its period is programmable 
from 3 to 18 times the period of the dot clock, i.e. the 

7-192 210925-004 



82731 

CCLK hightime is 2 dot clock periods and the CCLK 
low time is programmable from 1 to 16 dot clock 
periods. 

When CSYN is active (normally outside the active 
character field) CCLK is forced to match RCLK. In 
this case the CCLK high time is 3 dot clock periods 
instead of 2. 

In order to support proportional spacing, the period 
of CCLK can be reprogrammed at the beginning of 
each CCLK cycle (i.e. at the beginning of each 
character) if PROG is inactive. 

Programming the character width is done via the 
clock width inputs WO-W3 according to Table 2. The 
WO-W3 input data is clocked into the 82731 at the 
rising edge of CCLK and defines the width of the 
currently displayed character (see Figure 7). 

If the width defeat attribute (WOEF) is active, the 
period of CCLK will be set to the programmed 
default value ignoring the clock width inputs WO­
W3. This value is programmable from 3 to 18 times 
the period of the dot clock via the 00-03 inputs, 
when the PROG input is active (see Figure 6). 

The default CCLK width should be programmed 
only once after a system reset. 

The CCLK clock period will be doubled if the double 
width attribute (OW) is asserted at the rising edge of 
CCLK. 

NOTE 
If width of CCLK is programmed to 17 or 18, 
zeros are shifted out from the Int~rnal shift 
register after the 16 data bits and displayed 
according to the attribute signals. 

Clock Initialization Sequence (PROG) 

After power on the width of RCLK is a random value 
between 6 and 21 and the width of CCLK is a ran­
dom value between 3 and 18. 

The 82731 should be initialized in the following way: 

• Activate the CSYN signal. CCLK is forced to 
match RCLK, which has a minimum clock width 
of 6 dot clock periods. 

• Apply the clock width informations to 00-03 
and 04-07 according to tables. 

• Activate the PROG signal. The default width of 
CCLK and the width of RCLK are programmed 
at the next rising edge of CCLK (see Figure 6). 

• Remove the PROG signal. 

CSYN can be removed at the beginning of the next 
active data field. 

Table 2. Programming CCLK 

PROG = 1 03 02 01 '00 
CCLK Period 

PROG = 0 W3 W2 W1 WO (dot clocks) 

0 0 0 0 16 
0 0 0 1 17 
0 0 1 0 18 
0 0 1 1 3 
0 1 0 0 ~ 

0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 
1 0 1 0 10 
1 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
1 1 1 0 14 
1 1 1 1 15 

-

Note. 
PROG = l' Programming the CCLK default clock width 

during the Initialization phase via 00-03 at the 
• rising edge of CCLK. 

PROG = O. Programming the clock width of the current 
CCLK cycle via WO-W3 at the rising edge of 
CCLK 

Character Data Signals 

The character data signals are normally provided by 
the character ROM and clocked into the 82731 at the 
rising edge of CCLK. 

The character data signals consist of: 

• the character data lines (00-015), 
• the character width information (WO-W3), and 
• the half dot shift signal (HOOT). 

Dot Data (00-015) 

The dot data signals will be clocked into the 82731 
via the 00-015 inputs at the rising edge of CCLK. 
The actual character width is defined by the WO-W3 
inputs or the default width information previously 
programmed. The dot data will be displayed depen­
dent on the control signals and on the correspond­
ing attribute information. The data bits are serially 
shifted out at the video output starting with 00. 

7-193 210925-004 



82731 

oCLK 

PROG .-----------------------r----~ 

CSYN ______ oJ 

CCLK 

RCLK 

oCLK 

W3 

W2 

Wl 

WO 

CCLK 

WloTH~ 

AFTER POWER ON: 
UNDEFINED RCLK AND CCLK 

CLOCK WIDTH 

4 

SYNCHRONIZE RCLK 
ANoCCLK 

Figure 6. Clock Initialization 

6 3 

PROGRAM CCLK DEFAULT 
WIDTH (00-03) AND RCLK 

WIDTH (04-07) 

7 

Figure 7. Action of Clock Width Inputs WO-W3 on CCLK 

7-194 210925-004 



82731 

If CCLK width is greater than 16, zeros are shifted 
out for the rest of the dot clocks and displayed 
according to the attribute signals. 

Character Width (WO-W3) 

The WO-W3 inputs are clocked into the 82731 at the 
rising edge of CCLK and determine the width of the 
currently displayed character. 

Half Dot Shift (HOOT) 

The half dot shift signal is clocked into the 82731 at 
the rising edge of CCLK. When the half dot shift 
signal is active (high), the output of the video data 
will be delayed by half a dot time. The fi rst dot of the 
character dot line is transmitted for one and a half 
dot clock period while the last dot of this character 
dot line is displayed for half a dot clock period. The 
remaining character dots are tranSmitted for o~e 
dot clock period and thus are s~ifted by half a dot. 

The HOOT signal is not a character attribute signal, 
because'it can change from scan line to scan line of 
a character. Thus it is reasonable to generate it from 
the character ROM, together with the dbt'data and 
the width information. 

DCLK 

CCLK---~ 

VIDEO 

(1) -

WIDTH OF CHARACTER IS 5 DCLK PERIODS 
CHARACTER DATA D4-DO = ODH 
(1) 1-1/2 DCLK 
(2) 112 DCLK 

Character Attribute Signals 

These signals are clocked into the 8'2731 at the ris­
ing edge of CCLK. Thus they are valid for the next 
character only. 

The character attribute signals consist of' 

• character blanking CBLANK, 
• character reverse video CRVV, 
•. double width OW, and 
• width defeat WOEF. 

Outside the active character field (which is defined 
by the CSYN signal) all character attribute signals 
are ignored. 

Character Blanking (CBLANK) 

If CBLANK is active (high), the blank attribute will 
produce the effect of blanking the display of the 
character When the CBLANK attribute IS active, the 
corresponding dot data information 00-015 will be 
as if all zeros were forced at the inputs. The video 
output can be inverted to all ones bysimultaneously 
activating the CRVV attribute. Independent of these 
character oriented operations the video output sig­
nal is also affected by the RRVV field attribute signal. 

(2) (1) (2) 

Figure 8. Function of HOOT on VIDEO 

7-195 210925-004 



82731 

Character Reverse Video (CRVV) 

CRVV is an ac\,ive high signal. In the character field, 
the CRVV attribute will produce the effect of revers­
ing the polarity of the display during the transmis­
sion of the current character. CRVV is also effective 
together with the CBLANK attribute (see CBLANK 
description) and the RRVV signal. Outside the char­
acter field, the CRVV attribute is ignored. 

Although the CBLANK signal is normally a charac­
ter attribute, It may change from dot line to dot line 
of a character. Thus one or more underlines or cur­
sors Can be generated by the CRT controller activat­
ing CBLANK and CRVV. 

Double Width (OW) 

The dot clock frequency and the CCLK frequency 
will be halved when the double width attribute is 
active (high), producing characters that are twice as 
wide. The period of RCLK is not changed (see Fig­
ure 9). 

Width Defeat (WOEF) 

The WDEF attribute Signal is clocked into the 
SAB 82731 at the rising edge of CCLK. When the 
width defeat attribute is active (high), the width of 
CCLK will be set to a default width value pre­
viously programmed (see figure 10). 

Field Attribute Signals 

The field attribute s'ignals are clocked into the 82731 
with the rising edge of RCLK. Thus the attributes are 
valid for a specific part of the screen independent of 
how many characters are displayed within this part. 

OCLK 

ow -4------------~--~ 

CCLK 

(1) Character Is displayed normal width 
(2) Character Is displayed double width 

The 82731 supports two field attributes: 

• field reverse video RRVV, and 
• clock synchronization CSYN. 

Row Reverse Video (RRVV) 

RRVV control signal is clocked into the 82731 at the 
rising edge of RCLK. It immediately affects the. dis­
play by the polarity of the video eoutput in both the 
character field and the border of the display. It is an 
active high signal. 

Clock Synchronization (CSYN) 

CSYN is a field attribute signal,because it defines 
the active character field in addition to its function of 
synchronizing CCLK and RCLK. 

CSYN must be inactive (low) during the display of 
characters. At the first rising edge of RCLK after 
CSYN is deactivated (l,ow) , character data is latched 
into the 82731, beginning the display of the active 
character field (see Figure 11). At the next rising 
edge of RCLK after CSYN is activated (I.e. at the 
end of the character field), the video output is 
forced to zero or, if the RRVV control signal is 
active, to a high level. The currently transmitted 
character will be truncated at this location. At the 
same time, CCLK will be forced to match RCLK 
starting with the next rising edge of RCLK (see 
Figure 11). While CSYN is active all character 
attribute and data signals are ignored and only 
the field reverse video signal (RRVV) affects the 
video output. 

Before the deactivation of CSYN, the data and 
attribute pipeline has to be filled by the CRT con­
troller with the information of the first. character. 

Figure 9. Function of OW on OCLK and CCLK 

7-196 210925-004 



inter 82731 

DCLK 

WDEF----t ..... 

CCLK 

W2 

Wl 

WO 

AT (CCLKI), WDEF c 0 
AND <W3:WO> 

DEFINES THE CCLK 
WIDTH AS 3 

AT (CCLKI), WDEF 0 1 
DEFINES CCLK WIDTH 

AS THE DEFAULT VALUE m 
IGNORING <W3:WO> 

AT (CCLKI)<W3:WO> 
DEFINES WIDTH OF CCLK 

when WDEF 0 0 

The defaull width of CCLK was previously defined as 5 

Figure 10. Function of WOEF 

Tabulator Function 

The 82731 supports tabulator functions by provid­
ing the CHOLD (character clock inhibit) input. 

CCLK Inhibit (CHOLD) 

When the CHOLD signal is activated (low) it inhibits 
CCLK and thus freezes the information pipeline 
between CRT-controller and 82731 until the next 
tabulator location is reached. CHOLD Has to be 
activated simultaneously with the display of the 
TAB-character. If the TAB-character doesn't consist 
of all zeros, it must be blanked by activating 
CBLANK. 

The width of the TAB-character can be determined 
brY WO-W3 or by activating WDEF. 

the CHOLD signal is provided by the 82730 and it is 
assumed to be triggered with the rising edge of 
CCLK (Fiqure 12). With the same edqe of CCLK, the 
TAB-character will be latched into the 82731. Thus 
the TAB-character will be displayed completely and 
the CCLK will be inhibited until reaching the speci­
fied tabulator location, which is defined by CHOLD 
inactive (high) at the rising edge of RCLK. 

In the timing diagrams it is assumed that CHOLD is 
deactivated by-the falling edge of RCLK. Figure 12 

7-197 

shows the normal case where the display of the 
TAB-character is finished before deactivation of 
CHOLD. The gap between the TAB- and the follow­
ing character is normally blanked. In this scheme 
the TAB-character will be handled by the 82731 like 
each other character (attributes operate normally). 

In case of CHOLD active width less than the TAB­
character width the TAB-character will be also dis­
played completely. However, we have to distinguish 
three different cases: 
1) TAB-character is terminated before reaching 

TAB-location. The next character Will be dis­
played as described before. In the gap the video 
output is normally blanked. 

2) TAB-character is finished exactly at the TAB­
location. The next character will be displayed 
immediately without delay. 

3) TAB-character is not terminated when 
reaching the TAB-location (see Figure 13). The 
following character will be displayed subse­
quently after the display of the TAB-character 
(i.e. the start of the following character is not at 
the TAB-location). 

If the Ci=i'OLo signal is not deactivated the video 
output will be continuously blanked. In the gap 
between the end of the TAB-character and the TAB­
location all character attr'ibute signals will have no 
effect on the video output signal If the RRVV control 
signal is active the video output signal is inverted. 

210925-004 



-..j 
I 

i.O 
(Xl 

':::1 

~ 
§ 

" cEo 
I: 
ca ... 
:-' 

" I: 
::I 
!l-
0" 
::I 

2-
o 
~ z 

CSYN 

RCLK 

CCLK 

W3 //«««4 

W2 {«{f/?rr 

Wl '«««( 4 

wo {{{ ««<A 

BEGINNING OF CHARACTER FIELD END OF CHARACTER FIELD 
CCLKIS FORCED TO 
MATCH RCLK 
(LAST CHARACTER MAY BE 
TRUNCATED) 

l 

CD 
1'1) ...., 
~ 

~ 
@ 

~ 
~ 
if» 
tiiiil 

~ 
'liil 
© 
2$ 
~ 
~ 
<={J 

© 
~ 



inter 82731 

DCLK 

CHOLD 

RCLK 

CCLK 

(1) 

CBLANK 

(4) 

WDEF 

TAB REQUEST END OF TAB CHARACTER 

(1) TAB character is displayed completely - video output Is blanked 
(2) Video output Is blanked 
(3) Next character 
(4) Default width: 7, TAB character width defined by WDEF 

(2) (3) 

TAB LOCATION 
START OF NEXT CHARACTER 

Figure 12. Function of CHOLD (Normal Case) 

DCLK 

CHOLD -----+---.1 

RCLK -----4i--_!' 

CCLK 

CBLANK 

WDEF 

TAB REcluEST 
START OF NEXT CHARACTER 
END OF TAB CHARACTER 

TAB LOCATION 

NOTE: 
(1) TAB character Is displayed completely - video output Is blanked 
(2) Next character is displayed (not on TAB location) 
(4) Default width = 11. 

Figure 13. Function of CHOLD with CHOLD Width Less than Character Width (Case 3) 

7-199 210925-004 



inter 82731 

Video Output 

The video output provides an ECL:-oriented Signal 
(see Figure 14) and is matched to drive a 50 Ohm 
coax cable (see Figure 15). In case of external 

attribute processing the external logic can be ECL­
or STTL-compatible. 

vee ---.------, 

VIDEO 

Figure 14. Video Output Stage 

eOAX CABLE vee 

0---150n eOAX VIDEOAMPL. 
VIDEO 1 ) 0 

vec 

VIDEO 50neoAX VIDEOAMPL. 

son son 

... F ,. 
~ 

Figure 15. A Video Output Load 

7-200 210925-004 



82731 

ECLLOGIC VCC VCC 

VIDEO 

REFERENCE 

VOLTAGE (3V) 

STTLLOGIC VCC VCC VCC 

VIDEO 

VREF 

Figure 15.8 Proposed Converter for Video Output to TTL Level Output 

VCC VCC VCC 

2N2369A 270n 7sn 

CB 2.7 

330n 27011 1K 

Figure 16. TTL-Level-Output Test Load 

7-201 210925-004 



82731 

ABSOLUTE MAXIMUM RATINGS 

Temperature Under Bias ........... O°C to 70°C 

Storage Temperature ........ - 65°C to + 125°C 

All Output and Supply 
"Voltages ................... - O.5V to + 6V 

All Input Voltages ..... ; ....... - 0.6Vto + 5.5V 

Power Dissipation ... " ................ 1.75 Watt 

• NOTICE: Stresses above those listed undet 
"Absolute Maximum Ratings" may cause perma· 
nent damage to the device. This is a stress rating 
only and functional operation of thedeviceat these 
or any other conditions above those indicated in 
the operational sections of this specification is 
not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (Vee = 5V ± 10%, TA = O°C to 70°C) 

Symbol Parameter Min. Max. Units Test Conditions 

Ve Input Clamp Voltage -1 V le= -5 mA 

IF Forward Input Current -0.7 mA VF=0.5V 

IR Reverse Input Current 50 p,A VR = Vee 

VOL Output Low Voltage 
CCLK 0.5 V IOL=8 mA 
RCLK 0.5 V IOL=4 mA 
VIDEO Vee -1.2V Vee -O.6V - 10L=0 

VOH Output High Voltage 
CCLK, RCLK 2.4 V 10H = - 400 p,A 
VIDEO Vee- 0.2V Vee - IOH=O 

VIL Input Low Voltage 0.8 V 

VIH Input High Voltage 2.0 V 

Icc Power Supply Current 300 mA 

20 Output Impedance VIDEO 40 70 n 

CIN Input Capacitance 15 pF fe=1MHz 

7-202 210925-004 



inter 82731 

A.C. CHARACTERISTICS 

TA = 0 to 70°C; Vcc = 5V ± 10%. All timings measured at 1.5V unless otherwise noted. 

Limit Values 

82731 82731-2 
Test 

Symbol Parameter Min. Max. Min. Max. Unit Conditions 

TDHDH DCLK cycle period 20 125 12.5 125 ns -
TCHCH CCLK cycl~ period 3 18 3 18 TDHDH 

TCLCH CCLK low time TDHDH 16 T DHDH TDHDH 16 T DHDH 
-10 -10 ns 

TCHCL CCLK high time 2 TDHDH - 2 TDHDH -
-5 -5 Fig. 17 

TRHRH RCLK cycle period 6 21 6 21 TDHDH 

TRLRH RCLK low time 3 T DHDH 18 T DHDH 3 T DHDH 18 T DHDH 
-10 -10 

TRHRL RCLK high time 3 T DHDH 3 T DHDH 
-5 -5 

TDRCH Data and attribute 25 20 
input set up time 

TCHDX Data and attribute 0 0 
input hold time 

THLTE CHOLD active before - - ns 
end of T AS-character 

THLHH CHOLD pulse width 25 20 -
THHRH CHOLD inactive set up 

before rising edge of 
RCLK 

THLRH CHOLD inactive hold 0 0 
time after rising edge of 
RCLK 

TCHVV Video output valid after 6 Video output 
rising edge of CCLK measured at 

Vcc - 0.4V 

TOLOH TTL-output rise time 
10 

10 Fig. 17 

TOHOL TTL-output fall time - - ns 

TVLVH Video output rise time 5 3 Fig. 18 

TVHVL Video output fall time 

7-203 210925-004 



inter 82731 

VCC 

VIDEO 

RL 

RCLKlCCLK 

.... 
~7 

~r~ t 
IICLK: RL = 700n 

CCLK: RL = 360n 

Figure 17. TTL-Level-Output Test Load Figure 18. ECL-Level-Output Test 

2.4 ~2.0 TEST ..,......o.x== 
0.50.8> POINTS .......... 2. 

VCC-DAV --- >_TESTP01NTS .... VCC - D.2V ~VC..C' D 3V V~C - o,a:x== 
VCC _ 0.6V VCC D.5V v C - 0.5 

Figure 19. TTL-Level-Output Load Circuit Figure 20. ECL-Level-OutpuU,oad Circuit 

TDHDH 

TCHDX 

Figure 21. Basic Timing 
/ 

7-204 210925-004 



82731 

CCLK ...J f\ \ 

RCLK / 

\ 
"I " 

CHOLD 

't--THLTE 

THLHH 

END OF TAB CHARACTER 
BEGINNIN G OF TAB CHARACTER 

Figure 22. Timing on CHOLD 

cc 

8275 

CCLK~----~~--------~ 

8276 RVV I-------------------------+-------------~ 
UEN~------------------------+_~----------~ 
vsp~--------------------~ 

HRCT~--------------------~~----~ 
VRCT~------------------~+_----~-" 

Figure 23. Example Interface to 8275 

7-205 

~ 

\ 

\ 

'i-
THHRH THLRH 

BEGINNING OF NEXT 
CHARACTER 

210925-004 



COMPONENTS SPECIAL 
• Capacitors • Precision resistors • Shielding materials 

• Selecting electrolytics • Power MOSFETs for switchers 

7-206 210932 



Design AR-305 

The first chip dedicated to text manipulation, the 82730 operates 
as a coprocessor to a host CPU and executes many high-level 
commands that reduce the software needed for processihg text. 

Text coprocessor brings 
quality to CRT displays 

The quality of text in 
raster-scanning CRT 
displays has always 
been a tradeoff against 
the complexity, perfor­
mance, and cost of the 
associated video sys­
tem. By allocating 
many of the complex 
display functions to 
firmware, a dedicated 
text coprocessor chip, 
the first of its kind, re­
places printed-circuit 
boards that contain 
more than 100 ICs 
while increasing sys­
tem performance by re­
lieving many of the 
host processor's text 
manipulation tasks. 
The chip thus makes 
possible the high' qual­
ity and high perfor­
mance sought, without 
the need to compro­
mise because of high design complexity and high 
cost of text-processing hardware: 

Though its speed makes the 82730 text co­
processor beneficial on its own, its utility can be 
enhanced considerably when working with the 
82731 video interface controller. Together they pro­
vide proportional spacing, simultaneous subscript 
and superscript displays, dual cursors, dynamically 
reloadable character fonts, and user-programmable 
field and character attributes. By adding still an-

Anand Balaram, Product Marketing Engineer 
Andrew Volk, Project Manager 
Intel Corp. 
3065 Bowers Ave., Santa Clara, Calif. 95051 

Reprinted from ELECTRONIC DESIGN- February 17, 1983 7-207 

other chip, the 82720 
graphics display con­
troller, the device can 
display high-resolution 
graphics and text at the 
same time. 

Housed in a 68-pin 
package, the 82730 text 
coprocessor combines a 
direct memory access 
channel and a processor 
bus interface that per­
mit it to fetch its own 
instructions and data 
from the host system's 
memory, independent 
of and in parallel with 
the host CPU. 

The two processors 
communicate through 
messages-commands, 
parameters, and status 
words-which are 
placed in a communica­
tion block inside a 
shared memory. The 

host issues commands by preparing messages, stor­
ing them in the communication block, and directi~g 
the cQprocessor's attention to them by activating a 
Channel Attention signal, which is implemented in 
hardware. In return, the coprocessor sets a flag in 
the shared memory that notifies the host when it 
has executed the command .. 

The 29 high-level commands built into the 82730 
break down into two groups: channel commands, 
which work at the system level to start and stop the 
display and to communicate status and similar 
information, and data-stream commands, which 
are incorporated directly into the display-data 
strings to govern the DMA process and control row 

COPYright 1983 Hayden Publishing Co, Inc 

ORDER NUMBER: 210932 



Text coprocessor 

characteristics, character attributes, and so on. 
The 82730 resides on a local system bus with the 

host microprocessor, such as the 80186 CPU, and 
therefore provides the same address, data, and 
control signals as the main processor. By handling 
several of the tasks typically done by the host 
processor-like DMA control and display 
formatting-it leaves the host free for other tasks. 

For example, when the coprocessor is configured 
to share the CPU bus, a portion of the host micro­
processor bus bandwidth must be devoted to the 
DMA process that refreshes the CRT. However, the 
82730's high-speed intelligent DMA controller 
(operating at a maximum data rate of 4' Mbytes/s) 
helps minimize the time spent executing the re­
fresh operation, while simultaneously handling the 
formatting of the display data. A different ap­
proach involves a dual-ported memory architec­
ture, which places the memory between the CPU 
and the coprocessor. That completely frees the 
processor bus of the refresh activity, allowing the 
host more time to execute other tasks. It has become 
a more cost-,effective method, as some dynamic 
memory controllers now contain dual-ported arbi­
tration logic on chip. 

Inside the chip 

The basic architecture of the coprocessor is di­
vided into two main parts: a memory interface and 
a display generator section (Fig. 1). The memory 
interface lets the coprocessor and the system pro-

Mlcrocontroller 
umt 

'cessor comm~nicate via the shared memory. The 
display generator, in turn, responds to the data 
provided by the 'memory interface and carries out 
the display operations. . 

The memory interface actually comprises two 
smaller subsections, a bus interface unit and a 
microcontroller unit. The bus interface provides an 
intelligent connection from the 82730 to the host 
processor bus and also buffers the data transfer 
requests from the microcontroller. Upon initial­
ization, the bus interface can be programmed for 8-
or I6-bit data and 16- or 32-bit addresses. Further­
more, the host interface can be configured for 8- or 
I6-bit-wide data 'buses, making the coprocessor 
compatible with 8- or I6-bit host processors, like 
the 8088/80188 and the 8086/80186. Running at 8 
MHz maximum in I6-bit syste~s, the 82730 handles 
the maximum DMA ~ate of 4 Mbytes/s. 

The microcontroiler unit stores the micro­
instructions forr the 82730's high-level operations. 
The microcontroller's internal processor manages 
the memory transfers, interprets the commands 
embedded in the data stream, and executes those 
commands by sendi~g data to the appropriate con­
trol registers or display data buffers. To optimize 
the transfer of data between the system and the 
CRT interface, the coprocessor uses three clocks­
one for the host interface, the other two for video 
data. The memory interface section runs from the 
bus clock, the CRT interface operates from a refer­
ence and a character clock. 

1. Divided into two mein sections-a memory interface unit and a display generator-the 
82730 text coprocessor can operate at optimum speed since each section cen function 
independently at a different clock speed. 

7-208 210932 



Although the coprocessor packs a considerable 
amount of processing power on a single NMOS chip, 
if cannot handle the high video dot rate needed to 
deliver high character counts to the CRT display. 
For that, it needs the 82731 video interface control­
ler, which gains its high speed and drive capability 
from bipolar technology. In addition, the combina­
tion of the 82730 and 82731 succeeds in reducing the 
video interface to just a few latches and a software 
character generator residing in RAM 01: ROM 
(Fig. 2). 

Inside the 82731 are the reference- and character­
clock generators, a video shift register, and all 
attribute logic (Fig. 3). Housed in a 40-pin package, 
the circuit offers TTL-compatible inputs and out­
puts except for the video output, which is ECL­
compatible and provides a dot-shift clock rate of 50 
MHz maximum on characters up to 16 dots wide. 
The circuit proportionally spaces characters by 
accepting the width sent from the character gener­
ator and sending an appropriate character-clock 
output whose period determines the variable width 
of the character to be displayed. 

The video interface controller can employ an 
inexpensive, low-frequency crystal and internally 
multiply that frequency to generate the high­
frequency dot clock. It also supports control func­
tions such as screen reverse video, synchronized 
character field, and tabbing operations. The dot 
clock drives the internal video shift register, the 
character clock controls the unloading of data from 

the row buffers in the 82730, and the reference clock 
establishes the raster and screen formats. The 
reference clock also supplies the basic timing for 
the horizontal sync, blanking, border, and active 
display time. The corresponding vertical 
attributes-except border:....are driven by the hori­
zontalline time. All seven of these screen parame­
ters are programmable by the system designer with 
the 82730. 

System interfaces are simple 

As a coprocessor, the 82730 has the same bus­
control signals as an 80186 host processor and thus 
can share the system-bus controllers, drivers, and 
latches. The host processor and the 82730 arbitrate 
for control of the local bus through the Hold and 
Hold Acknowledge lines (HLD/HLDA). The Chan­
nel Attention (CA) and System Interrupt (SINT) 
control lines complete the wired interface. With 
this configuration, the 82730 has access to all the 
memory that the 80186 CPU has available. 

Anytime the CPU wants to send a message to the 
82730, it writes the command and busy flag into the 
82730 command block and then pulses the co­
processor's CA input to inform it that a message is 
waiting. The 82730 then raises the HOLD output 
and waits for access to the bus. When the CPU 
relinquishes the bus, it raises the HLDA input of 
the 82730. 

Once the 82730 becomes active, it transmits the 
command block address that was stored in its 

2. A typical system built sround the 82730 snd the 82731 video interface controller requires very lew 
additional ICs to mate with a host proces_ like the 80188. Only the systam bus drive,., lome latches, and 
a character generator are nesdad. 

7-209 210932 



Text coprocessor 

registers during initialization. That address, in 
, conjunction with the appropriate memory control 

signals-including read or write strobes, lower or 
upper address latch enables, upper address output, 
or data enable output-lNill either read the com­
mand block or write to it. All these signals are 
coordinated by the bus clock. , 

Whenever the 82730 must send status informa­
tion to the host CPU, it gains control of the bus and 
places the data into the status location in the 
command block. The bus is then released and the 
coprocessor notifies the CPU through the SINT 
signal. When the coprocessor is using a dual-ported 
memory to communicate with the 82730, the HOLD 
and HLDA signals are not employed. Instead, the 
82730 accesses the dual-ported memory directly 
rather than acquiring the bus from the CPU. 

When the display process is activated, the co­
processor uses its built-in DMA capability to fetch 
display data from the memory. The data consists of 
character data mixed with data-stream commands; 
embedded data-stream commands provide the flex­
ibility to manipulate data on the fly~ 

SoH fonts loaded 

The 82730 also permits soft fonts to be auto­
matically loaded into RAM-based character gener­
ators. Addresses and data stored in the system 
llJemory are then loaded into the row buffers of the 
coprocessor. During blanked rows (generally during 
the vertical retrace), address information is loaded 
into a latch and data is written to the character 
generator. 

The 8273.0's dual row buffers help reduce the 
bandwidth and access time requirements for the 
system memory. The data stored in one buffer is 
being used to display a row on the screen while the 
second buffer is being loaded, by the micro­
controller, with the next display row from the 
system memory. Up to 200 characters can be stored 
and displayed by each row buffer. Furthermore, 
since the display generator section operates asyn­
chronously with the microcontroller unit, each can 
operate at optimal speed. Processing is syn­
chronized by internal flags and shared internal 
storage, and data' that will be displayed is ex­
changed through the row buffers. 

The coprocessor's display generator handles the 
data that defines the timing and the operation of 
the CRT interface. That data, which is stored in the 
display characteristics registers of the chip, con­
trols every aspect of the display-from the screen's 
format to the blink rates of the characters and 
cursors. All the parameters that define the initial 
display characteristics can be set by one 
command,MODEST -thus reducing the time and 

3. The 82731 video interlace controller is manulactured with 
bipolar technology, enabling it to handle video dot rates 01 
50 MHz and higher, which are needed by high-character­
count displays. The controller serializes the parallel 
character outputs Irom the coprocessor and adds the 
desired attrib~tes to each character. 

effort required to establish a screen format. 
Beneath the simplicity of the hardware shown in 

Fig. 2 are the high-level instructions-channel 
commands-and the data-stream commands. When 
combined with a table-driven linked-list data struc­
ture, they ease software development. 

Central to the software is the command block, 
through which all channel commands are trans­
ferred between the coprocessor and the host. This 
block is located within the shared memory, and its 
exaqt position is set during the 82730's initialization 
routIne (Fig. 3a). Once established, it contains all 
the information needed to start the display-data 
fetch; to communicate status, intilrrupt, and cursor 
position information; and to give the location of the 
\!lode block, which contains' all the parameters for 
setting up the display. The START DISPLAY channel 
command begins the sequence (Fig. 3b). 

Since the display data is set up within linked 
lists, the coprocessor can rapidly change any of the 
lists without shifting huge amounts of data. The 
display fetch starts with the value of th~ list-switch 
bit which selects ,one of two list-base pointers in the 
command block.' The pointer points to its string 
pointer list; the pointers in that list direct the 
on-chip DMA to the data strings containing the 
desired display data and data-stream commands. ' 
The programmer can modify one pointer list while 

7-210 210932 



displaying from the other, and can also switch 
screens merely by changing the list-switch bit, thus 
eliminating time-critical data manipulations. 

Two data-stream commands-End of String 
(EOS) and End of Row (EOR)-are key to the linked 
list and DMA activities. Strings are a logical con­
cept: they contain blocks of contiguous data stored 
anywhere in memory. In contrast, rows are a phys­
ical concept and represent a block of characters 
that make up a physical row on the screen. Many 
strings can exist in a display row, or many rows in 
a string. (Only the extra DMA overhead of fetching 
the new string pointer sets a practical limit on the 
number of strings in each row.) 

The actions of the two commands are indepen­
dent. End of String tells the 82730 to get the next 
string pointer from the list, and from there, the 
next data string. End of Row suspends the DMA 
until the row buffers are swapped at the end of the 
current row. The DMA then takes over; into the 
new row buffer. 

Strinq manipulation fosters high speed 

Strings are commonly the next level of text 
organization above single characters. With the 
82730, a string can be as small as a character or it 
can be a word, row, sentence, paragraph, or a page 
of characters. These high-level entities can be 
moved merely by manipulating a small string 
pointer table (Fig. 5). The heart of the algorithm 
for word wraparound, a common feature in text 
processors, can easily be accommodated by a single 
command such as the String Compare command of 
the 80186. Word wraparound is then achieved by 
scanning the data (not moving it) and mariipulating 
a few pointers. Earlier system designs would have 
required a multiple-instruction tloftware loop that 
scanned and moved every individual character. 

An extension of the linked list allows pro­
grammers to set up several independent data win­
dows on the CRT screen in a virtual screen mode. 
That feature is especially helpful if a use'r wants 
both a m,enu window and one or more work-space 
windows. Such a scheme saves a lot of time for the 
end user-elimi~ating the back-and-forth move­
ment between menus and working text. To set this 
up, several data structures, each with its own 
command block, can b\l accessed in a table-driven 
sequence to put data in a given window on the 
screen (Fig. 6). 

The string list and data strings are the same for 
regular or virtual modes; only the structure of their 
command blocks differs. Thus, each virtual window 
can be an independent software entity in the sys­
tem, and the 82730 can present these independent 
data bases simultaneously. 

7-211 

4. Both the host CPU and the COprKHlor go through an 
initialization aequence whan the computer 1,ltem II _t 
(II. Thl 'coproce.lOr then Iookl lor a START DISPLAY 
command 10 thet It can load the varioul data Itringl from 
the 1,ltem memory into the dilpta, generator section, 
attach attributel, and dllpla, the'dlta on the CRT (bl. 

210932 



Text coprocessor 

Multiple 82730s can also be used in a single 
system. Up to four devices can be clustered in a 
single system, with one serving as, a system master 
and the others as slaves. The data for this cluster 
can be interleaved, permitting the cluster to work 
from one data base to get more characters per 
screen or more bits per character. Also, in the slave 
mode, the 82730's video outputs can be synchronized 
to an external video signal, giving the system such 
capabilities as mixed text and graphics, broadcast 
subtitling (text overlay,), and overlays for video 
recording. 

Attributn enhance display quality 

The designers of tqe 82730 have given it the 
ability to highlight various areas of an on-screen 
document through the use of character and field 
attributes. In the 16-bit data word, for example, 
only the most significant bit is committed; it serves 
as the command or data designator. If set to 1, the 
word is a data-stream command, with the remain­
ing 15 bits becoming one of the predefiried in­
structions. However, if the MSB is 0, the other bits 
are, at the discretion of the designer, who may 
choose which and how many are needed for charac-

ter codes, attributes, or user-defined functions. 
The 82730's six predefined attributes-reverse 

video, invisible, blinking character, two underlines, 
and a special graphics, character-can be pro­
grammed to respond to any of the 15 bits, or they 
can be completely disabled. In addition, they can be 
set character by character or through a field­
attribute ma~k. All can ~e attached to any charac­
ter. The bliIlking cparacter can be programmed for 
a wide range. of duty cycles and blink rates. The two 
underlines can be independently positioned any­
where in the row height, and the position can be 
changed,from row to row. Thus the underline can 
be doubled or serve as a strike-through line, a 
fraction line, or an overbar. One of the underlines 
can also be programmed to blink at the same rate 
as a blinking character. 

The graphics character is relatively important, 
since it permits character information to be dis­
played to the full heigh,t of the row. It causes the 
chip's line-counter output to count from zero at the 
top of the display row continuously through to the 
bottom of the row. When'used with special charac­
ters, this attribute allows business forms and 
graphs to be easily constructed. 

5. " a character or word muet be In .. rtad nasr tha beginning of ,8 KrMn of taxt, only tha 
llet JlGlnta,. muet be changed to add the itam. In oIdar e,etam.:j'a" the characta,. following 
the in .. rtlon. or deletion were ehilled In the memory to ...,,1 .. tha diepla,. 

7-212 210932 



Text coprocessor 

Another capability of the 82730 is subscript and 
superscript characters, done by manipulating the 
line-counter outputs. The SUB SUP N data-stream 
command declares which and how many pairs of 
characters will be displayed simultaneously as sub­
scripts and superscripts. 

Proportionally spaced displays could cause some 
subscript and superscript characters to have differ­
ent widths and thus disrupt the vertical alignment 
of a character pair. A special output of the 82730 
called Width Defeat prevents that misalignment by 
causing the 82731 video interface controller to en­
force a predefined width-programmed upon sys­
tem initialization-during the display of subscript 
and superscript characters. 

The proportional spacing is performed by the 
reference and the character clock. Used to shift out 
the character and attribute data, the character 
clock operates during the display field. Its fre­
quency can vary character by character, up to a rate 
of 10 MHz, to set the width of the character 
currently being displayed. The video interface con­
troller takes the character width information that 
has been supplied by the character generator and 

6. The virtual window capability of Ihe B2730 leis Ihe user 
arrange independenl areas in Ihe syslem memory lhal can 
be displayed simullaneously on lhe CRT monilor. 

produces a variable width character clock that 
supports the proportional spacing. This approach 
also greatly reduces system complexity and cost 
compared with previous designs. 
Screen and row formats are flexible 

The reference clock signal in a system that con­
tains the 82730 and 82731 chips is a constant­
frequency cloc~ that forms the time base to gener­
ate the horizontal scan lines and vertical frame 
periods. One scan line can last for 256 reference 
clock periods, and one frame can contain up to 2048 
scan lines. Within these periods, the respective 
synchronization pulses and the border and charac­
ter fields can be Sf!t anywhere within that range. 
All these timing relationships, including the scan 
and frame periods, can be changed on a frame-by­
frame basis to suit changing applications. 

The screen format is flexible all the way down to 
the row level. For instance, the height of a row (up 
to 32 scan lines) and the vertical position of the 
characters within that row can be changed from 
row to row by a single data-stream command called 
FULROWDESCRPT. In addition, the command lets 
the programmer set the starting and ending scan 
lines within the row for the normal, subscript, and 
superscript character fields and the two cursors. 

The same data-stream command that defines the 
row characteristics can also be used to blank the 
row, display it as reverse video, double its height 
(for up to 64 scan lines per row), or eliminate the 
proportional spacing. 

Graphics, too, can be handled by the 82730, al­
though flexibility and resolution are not as high as 
with the 82720 graphics display processor. Business 
applications typically need graphics that are no 
more complex than two- or three-dimensional 
charts or business forms. These formats can be 
stored as special characters in a standard font set 
for the character generator. Even more complex 
graphics can be handled through the use of mosaic 
graphic cells, which can be storea in RAM to permit 
alterations. Of course, as in most systems using 
floppy-disk systems for main storage, the desired 
fonts or graphics forms can be saved on the disks 
and downloaded as needed for the display. 

There are many applications that also require a 
simple graphic display along with text-signature 
verification on banking terminals and general­
purpose credit verification, for example.D. 

7-213 210932 

" i 



PROCESSING 

ARTICLE 
REPRINT 

VLSI Coprocessor 

AR-297 

Delivers High Quality Displays 
Many microprocessor-based systems 
today use VLSI technology in pro­
cessing and, memory components. 
However, designers of subsystems 
have, up until now, not been able to 
incorporate this technology into 
their products because of the lack of 
available ICs. When, in 1981, NEC 
introduced the 7220 graphics display 
controller, users found that they 
could bolster system performance 
by off-loading graphics control 
chores from the system CPU. Sec­
ond-sourced by Iiltel as the 82720, 
the chip uses its own drawing 
processor to access the required 
positions in the bitmap and han­
dles both processing and display 
functions. 

Now, Intel is poised to introduce 
a text coprocessor, the 82730, which 
is specifically tailored to execute 
data manipulation and display tasks. 
Lucio Lanza of Intel explains, JIn 
an intelligent terminal or worksta­
tion, the CPU spends a lot of its 
time manipulating both graphics 
and text. We have identified these 
areas in terms of CPU use and we 
have distributed these blocks so that 
the CPU is not overburdened." 

Coprocessors fall into two cate-

Andrew Wilson 

gories based on their architecture 
and operation. One type expands 
the microprocessor's own architec­
ture by adding additional hardware 
and instructions. This type of tight­
ly coupled coprocessor can be 
thought of as a transparent expan­
sion of the microprocessor's archi­
tecture and works in sychronization 
with the CPU. Intel's first such co­
processor, the 8087, was designed 

Bus controls ADO-AD15 

I 

for numerics processing and in­
creased the microprocessor's math 
performance as much as 100 times. 

The second type of coprocessor 
independently fetches its own data 
and sends instructions in parallel to 
the microprocessor. It therefore al­
lows the microprocessor to process 
the tasks it handles best and dele­
gate to the coprocessor the task it is 
best equipped to handle. In this cate-

Char 
data 

Video 
controls 

Memory Interface unit -4----1 ~ Display generator 

Technical Editor FIGURE 1: Block diagram of the 82730. 
Reprinted from ELECTRONIC IMAGING © April 1983, Morgan·Grampian Publishing Company, Boston, MA 02215 
50 Order Number: 231307-001 7-214 Electronic Imaging 0 April 1983 



gory are I/O channel coprocessors 
and others that deal with communi­
cations and text processing tasks. 

"The 82720 is not yet ilt this lev­
el," Lanza said, "since it does not 
have the capability of going to mem­
ory and extracting its own instruc­
tion and executing it-it needs 
something to spoon feed it." 

Coprocessors of the second cate­
gory do not monitor the CPU in­
struction stream. Instead, they are 
linked to the CPU via messages pre­
pared and stored in shared memory. 
The CPU will prepare data and high 
level directives and then place them 
in memory. Upon completion of this 
control block, the CPU will alert the 
coprocessor by signaling it through a 
common channel attention line. 
From that point on, the coprocessor 
works on its own, fetching required 
data and instructions and then ex­
ecuting those instructions. 

It is not synchronized with the 
CPU but works asynchronously and 
independently. When the coproces­
sor completes its task, it informs the 
CPU by signaling on the CPU's in­
terrupt line. 

The rationale for designing a co­
processor with one or the other ar­
chitectures depends on the applica­
tion requirement. Tightly coupling 
the coprocessor with the CPU gives 
the advantage of a short coprocessor 
preparation time but has the draw­
back of consuming the CPU's bus 
bandwidth. 

In the case of numeric process­
ing, the speed of executing the float­
ing point algorithm is of paramount 
importance. Reducing the prepara­
tion time of the coprocessor task is 
the key because of the number of 
microseconds it takes to execute the 
task. Rapid algorithmic execution 
requires tight coupling. In the appli­
cation of the I/O related coprocessor, 
the task execution time is much 
longer and the requirement for bus 
time can be much higher. And, for 
I/O operations the preparation time 
is not critical. A shared memory 

52 

FIGURE 2: Building block approach. 

coupling is preferred for those types 
of applications because it provides 
greater flexibility in the design of 
the bus structure. 

Text coprocessing 
"In the design of the 82730," said 
Lanza, "we have tried to eliminate 
all the known differences between 
what is visible on the screen and 
what is obtained on the printed 
page. In word processing systems to­
day, even the length of a row on the 
CRT is sometimes not the same as 
the length seen in print. Clearly, 
when you are editing text this be­
comes a major problem." 

The 82730 supports the. genera­
tion of text displays through features 
which include proportional spacing, 
simultaneous superscript/subscript, 
dynamically reloadable fonts and 
user programmable field and charac­
ter attributes. Editing capabilities 
are further enhanced by features 
such as split screen, virtual win­
dows, smooth scrolling and table­
driven linked lists. 

Figure 1 shows a block diagram 
of the 82730. The chip is divided 
into two main sections-the mem­
ory interface unit and the display 
generator. The memory interface 
unit provides the communication 
between the 82730 and the system 
processor, while the display gener­
ator acts on the display data and Car­
ries out the display operation. 

Communication between the 
82730 and the CPU takes place 
through messages placed in commu­
nication blocks in shared memory. 
The processor issues channel com-

mands by preparing' these message 
blocks and directing the 82730's at­
tention to them by activating a hard­
ware channel attention signal eCA). 
The memory interface unit fetches 
and executes these commands. 
When the display process is activat­
ed, the 82730 repeatedly fetches dis­
play data and embedded datastream 
commands from memory utilizing 
its built-in DMA capability, ex­
ecutes any datastream commands as 
encountered on the fly, and loads the 
row buffers with the display data. 
After executing these commands, 
the 82730 clears a busy flag in mem­
ory, to inform the host CPU that it 
is ready for the next command. 

The memory interface unit is di­
vided into two sections-the bus 
unit and the microcontroller unit. 
The bus interface unit provides the 
electrical interface to the system 
bus and the timing signals required 
for the microcontroller unit oper­
ations, making these operations 
transparent to the microcontroller 
unit. The 82730 can be programmed 
during initialization to provide 8 or 
16 bit data, and 16 or 32 bit 
addressing. 

The microcontroller unit contains 
the microinstruction store and the 
associated circuitry required for the 
execution of all channel and data­
stream commands. It uses the bus 
interface unit in carrying out its 
memory access tasks such as loading 
the row buffers with display data. 

The interaction between the mi­
crocontroller unit and the display 
generator takes place through shared 
internal storage. The microcon-

I 

7-215 231307-001 Electronic Imaging 0 April 1883 



"The device provides the ability 
to independently maximize the 

performance of the CPU." 

troller unit fetches data from mem­
ory and writes it.in the internal stor­
age, while the display generator 
reads from the internal storage and 
carries out the display operation. 
The microcontroller unit and display 
generator operate asynchronously 
with respect to each other. Synchro­
nization is accomplished through 
communication via internal flags 
and display timing signals generated 
by the display generator. The inter­
nal shared storage consists of row 
buffers which store the display data 
and internal registers which store 
display parameters. There are two 
row buffers each capable of storing 
up to 200 characters. The data in 
one row buffer is used by the dis­
play generator to display one com­
plete character row on the 'screen, 
while the microcontoller unit is 
loading the second row buffer with 
display data fetched from memory. 
At the end of the row being dis­
played, the buffers are swapped and 
the microcontroller unit and display 
generator resume their tasks. 

The display characteristics regis­
ters contain all the iQformation used 
to control every aspect of display 
characteristics from screen size to 
blink rates. A major portion of this 
register set is the three content 
addressable memory (CAM) arrays 

. that allow flexible timing control for 
row and screen characteristics. The 
user has the power to set the param­
eters for the eQtire screen by invok­
ing a single high-level command. 

By separating the video interface 
clocks from the bus interface clock, 
the 82730 provides the designer with 
the ability to independently maxi­
mize the performance of the CPU 
and video sections of the system. 

The video interface consists of 
two independent clocks: the Refer­
ence Clock (RCLK) and the Charac­
ter Clock (CCLK). While the 
RCLK controls the raster timing 
and defines the screen layout, the 
CCLK independently shifts charac­
ter and attribute information out of' 

54 

the 82730, which allows proportion­
al spacing to be achieved. 

Combining text and graphics 
A major requirement in the design 
of engineering workstations is the si­
multaneous display of both text and 
graphics. In terms of graphics re­
quirements, ,the designer of such 
systems needs a drawing processor 
for fast geometric primitives, a math 
processor for fast transformations 
and a general purpose processor for 
access to the graphics database. 

For text, string processing is 
needed for, manipulation of text prim­
itives and database processing IS 

needed for access to the document 
files. The solution to this problem 
can be solved by using both the 720 
graphics coprocessor and the 730 
text coprocessor (Figure 2). 

Both coprocessors work with In­
tel's new 82586 communications co­
processor. This works in conjunc­
tion with a CPU and the appropriate 
software to provide local area net­
work (LAN) control capabilities. 
Message data to be placed on the 
network by a microprocessor-based 
work station is stored in shared 
memory in transrnit blocks. Pointers 
(starting address information) to 
these blocks are stored along with 
processing instructions in other 
shared memory blocks. Status infor~ 
mation and overall directives are 
stored in system control blocks 
which serve as the mailbox between 
the CPU and the 82586. 

When alerted by a channel atten­
tion signal, the 82586 will perform a 
host of tasks involved in accessing 
data to be transmitted from its loca­
tion ,in memory, framing the mes­
sage packets containing the data and 
seeing to the transmission on the 
network medium, In addition, the 
82586 receives and buffers incoming 
data which it then stores in shared 
memory for the CPU to collect. It is 
the CPU's job to allocate the blocks 
of memory for the LAN coprocessor 
to store the received packet data. IiiI 

7-216 
231307-001 

ElectroniC Imaging 0 April 1983 



ARTICLE 
REPRINT 

"Repnnted by permiSSion of PC World from Volume 1, Issue 5, published at 555 De Haro Street. San FrancIsco, 
CA94107:' 

"SubscnptlOn rates $24/yr PC World CirculatIon Department, PO Box 6700, Berg~nfleJd, NJ 07621 

7-217 

AR-296 

September 1983 

Order Number 230810-001 



Something exciting is going on. But like most significant 
events, it is not happening quickly. Spurred on by 
developments in integrated circuit technology, a new 
generation of personal computers is taking shape, and the 
IBM PC and its clones are at the forefront. 

As IBM PC users, it's sometimes hard to remember that 
the inaoimate metal boxes in front of us are susceptible to 
evolution. But occasionally a product is introduced that 
forces the complete redesign of our personal computers. 

Integrated circuits (lCs), the devices that bring intelligence 
to our machines, have reached a new level of technological 
achievement, and now the computers that use them must 
advance as well. Strange as it seems, these small silicon 
chips are setting the guidelins:s for the next generation of 
cpersonal computers. 

THE CHIP. MAKERS 

Now that personal computers have caught on, the semi­
conductor manufacturers who make ICs are eyeing the 
swelling market for personal computer ICs. 

Dozens of newly developed semiconductor chips are being 
aimed at the personal computer market. These chips range 
from hard disk controllers that speed access time to linear 
predictive coding processors for speech recognition. With 
these new ICs driving personal computer design, we'l 
soon see machines we once only reasoned would cexist: 
diskless computers running a wide array of software 
loaded over telephone lines; computers,that display text 
exactly as it will be printed, with justified margins, 
superscripts and subscripts, and bold and italic typefaces 
on screen; and systems with greater, more accessible 
graphics. 

As computer design is simplified by these advanced ICs, 
product differentiation will become greater. This portends 
the death of those PC clones capable only of basic 
spreadsheet and word processing operations. Instead, to 
sutvive in the increasingly cost-competitive, standardized 
personal computer mark~l, small-system manufacturers 
will tailor their products for niche markets. 

BIG BLUE 

Intel Corporation, located in Northern California's re-
, nowned Silicon Valley, is one of the largest and most 

innovative chip manufacturers in the industry. IBM has 
been committed to Intel products for years; the PC is built 
around Intel's 8088 microprocessor and, as recently as late 
1982, IBM invested $225 million in a minority share of 
Intel stock. A commitment this size is a good indicator of 
IBM's faith in Intel products. IBM's good faith and 
multimillion-dollar investment is guaranteed by Intel's 
long-standing promise that software written for the 8088 
will run on all its future processors. 

By taking a close look at the Intel ICs, we can gain valuable 
insight into the capabilities of the IBM PCs that will be 
built around them. The design philosophy of Intel's IC 
family differs radically from that of competitors Motorola, 

National Semiconductor, and Zilog. Diverse chip designs 
mean that the system designs of the IBM PC and its 
competitors, such as Apple's Lisa (based on the Motorola 
6800 microprocessor), will also be radically different. 

THE MICROPROCESSORS 

Of the many Intel chips being produced, some will have a 
greater impact on the computer industry than others. In 
the vanguard will be the new microprocessors. 

Design of the PC was shaped by IBM's surprising selection 
of the 8088. This choice caught most industry observers off 
guard since IBM, also the world's largest semiconductor 
manufacturer, had traditionally used its own designs for 
computer logic. Once Big Blue settled on the 8088, Intel's 
design philosophy was firmly implanted in the PC-from 
the 8088's segmented memory scheme to its 16-bit registers 
and 8-bit bus. 

Like the 8088, each of the four microprocessors Intel is 
now readying for production could dramatically influence 
the design and performance of tomorrow's PCs. 

The' 80186. The recipe for putting an entire central 
processing unit (CPU) board on one chip is easy. Take an; 
8086 (the 16-bit bus big brother of the 8088), speed it up, 
and then add most of the support chips essential to making 
the 8086 run in a personal computer. Reduce the size with 
the help of computer-aided design until all the chips fit 
onto one sliver of silicon, and voila, you have the 80186 
(186), an entire motherboard on a chip. 

While firming up plans for full-scale production of the 186, 
Intel is currently providing samples of the chip to computer 
manufacturers, including MAD Computer and Durango 
Systems. The rewards for using this newest chip are many: 
manufacturing costs are cut since a single IC is less 
expensive to buy than a boardful of them; physical CPU 
size is reduced, opening the way to shrink overall computer 
size or to put more power in the same box; and deve10p-

. ment time is cut for computer designers, which means 
considerable savings for system makers. 

The 80188. If the 186 is too rich for your taste, the 80188 
(188) may be more suitable. As with the 186; the 188 's core 
CPU and support chips are melded on a siqgle IC; like the 
8088, however, the 188 has an 8-bit interface to the outside 
world (the 186 has a 16-bit interface). The 188 decreases 
costs by allowing computer manufacturers to use less 
expensive 8-bit peripherals. Although the 186 has received 
more publicity so far, the 188, aimed' squarely at the 
massive 8-bit computer market, is expected to be used in 
greater numbers, at least in the short term. 

The 80286. Powerful multiuser systems will benefit the 
most from the 80286 (286), possibly the most powerful 
microprocesor commercially available to date. Squeezing 
150,000 transistors on a chip, the 286's designers have 
integrated a pair of H,MOS-III (Intel's own proprietary 
process technology) 8086s and numerous other very large 
scale integration (VLSI) components. The resultant chip is 
two to three times faster' than the Motorola 68000 even 
though both chips can address about the same amount of 

7-218 230810-001 



memory. The 286 has very high speed (1.5 million instruc­
tions per second, five to six times faster than the 8086), 
about 16 megabytes worth of addressable physical memory, 
the ability to address a virtual memory of I gigabyte per 
task (equal to the capacity of 100 IBM XT Winchester 
drives), and the ability. to provide several layers of 
m1<liltiuser security on chip. 

The 80386. Not yet built, the 80386 (386) is promised for 
1984, but the release date may slide to 1985. If the 286 is 
vastly more powerful than the8088 or8086, then the 386's 
potential is staggering. Complementary metallic oxide 
semiconductor (CMOS) process technology, which lowers 
power consumption, is being used to build this 32-bit chip. 
Intel, Motorola, and National Semiconductor are already 
jockeying for position in what will be an intense compe­
tition for the 32-bit market. Motorola is claiming that its 
68020 will be the first widely available 32-bit micro­
processor when it is introduced later this year, although 
NCR has already scooped the industry with its 32-bit chip. 
Hewlett-Packard, not to be outdone, has put 450,000 
transistors on a single proprietary 32-bit microprocessor, 
which is used in the $20,000 to $30,000 HP 9000 work 
station. 

How will these processors impact the personal computers 
that use them? The most obvious effect will be faster 
performance. Even the budget model 188 boasts two to 
five times the instruction and execution speed of the 8088 
in today's Pc. A 286 is about twice again as fast as the 188, 
and next year's data-gobbling 386 will have more speed 
than anyone can immediately use. 

r ---- -- -

I 
I 

8088 
Or 

CLOCK 8088 

I 
I INTERRUPT STATUS 

8384A I 
CLOCK 

I DRIVER 
ROY 

I INTERRUPT STATUS 

I 
CLOCK 80150 

ACKNOW~EOGE 

L-

BAUD RATE DELAY 
TIMER TIMER 

Since the 188 is ideal for low-priced portable computers, it 
ceates the ironic probability that a PC-compatible portable 
may soon by available that will run the IBM PC's full line 
of software and run it faster than the full-sized Pc. 

SOFTWARE ON SILICON 
One chip ready to plug into the next generation of personal 
computers is the 80150 (150) CP/ M software-in-silicon 
operating system. A complete CP/ M-86 operating system 
is stored in ROM on this chip, along with drivers for input 
and output devices. 

Use of a ISO CP/M chip will eliminate the traditional 
booting up procedure ofloading an operating system disk 
and reading its contents into operating RAM. Instead, the 
user will simply turn on the computer and press a CP/ M-
86 button. Again and more importantly, this chip lowers 
overall computer production costs since a disk drive and 
attendant control circuits are replaced by a solitary chip. 

Another chip, similar to the ISO, has Intel's proprietary 
RMX operating system in silicon. This little-known RMX 
chip is also suitable for present and future IBM PCs. 

Many people question the wisdom of putting software in 
silicon. "Software should be soft," says Bill Gates, chair­
man of the board at Microsoft. He points out that 
operating systems are constantly updated; for instance, 
Microsoft will soon offer a revised version of MS-DOS 
that suppqrts networking. Such updates can't readily be 
added to a hardware production line and certainly won't 
help the ROM chips already in users' computers. 

--

PROGRAM DATA 
MEMORY MEMORY 

BUS 
INTERFACE 

CSLlR 

REOUESTS 

J"" SYSTEM IAPI 86/50. 88150 
TIMER 

BLOCK DIAGRAM OF n~TEL'S 80150 CP/M ON A CHIP WITH THE 8088 OR BOS6 MICROPROCESSOR 

7-219 230810-()(11 



Still, Intel argues that its choice of CP/ M makes the ISO 
practical. "We picked C;P/ M because it is a mature 
operating system," Says Intel's product marketng engineer 
for software on silicon, Carl Buck. "We'd have more 
difficulty with a less developed product." The many 
versions o,f MS-DOS helped eliminate that operating 
system from consideration. Yet according to Digital 
Research President John Rowley, Intel left some room on 
the ISO chip to add to CP/M in the future. 

Also, use of the ISO CP / M chip doesn't preclude the use of 
other operating systems. PC-DOS could still be loaded 
into a system and run, making use of the ISO's input/ output 
drivers. 

PORTABLES 

Having software on silicon opens the way for very 
powerful diskless portable computers. The minimum 
configuration for a 188-based unit with the ISO CP/ M 
operating system could include one or two BASIC 
applications programs in ROM, providing spreadsheet 
and word processing power in a unit the size of a keyboard 
with a small flip-up screen. Intel Product Marketing 
Engineer Tony Zingale suggests we may soon see truly 
usable portables selling for around $500. 

More ambitious and expensive portables could accept 
applications software over telephone lines, loading them 
into a variety of media. Several memory technologies will 
compete for room in portable computers, including mag­
netic bubble memories, already being used in the Grid and 
Teleram computers. Commercially available bubbles have 
4 megabit capacity, while 10- to 16-megabit bubbles are 
projected for the near future. Japan's NEC reported a 
major breakthrough that within 5 years will allow bubbles 
to store I gigabit of data. Of course, 8 of those bits are 
needed to store I byte of data. 

Vying with bubbles in some applications and oomple­
,menting them in others are electronically programmable 
read-only memories, or EPROMs. Like ROM, EPROMs 
are nonvolatile chips. Unlike ROM, EPROMs can be 
reprogrammed. Intel now offers 256K EPROMs, and it is 
anticipated that other companies will offer 256K EPROMs 
before the year's end. 

GRAPHICS 

The space created on the motherboard by the 186 and 
friends will enable computer designers to add more 
graphics capability to their systems. Like the ISO there are 
co-p~ocessor chips ready for the task. 

'A pair of Intel ICs, the 82720 (720) graphics display 
controller and the 82730 (730) text co-processor, are 
touted as providing vastly enhanced and simplified dis­
plays. With the 730, text can be displayed on the computer 
screen as it will be printed out. Italics can be mixed with 
straight text, and superscripts and subscripts are shown 
without the annoying and often misleading arrows 
common in today's software. 

Editing can be speeded up by the 730's support for split 
screens, mUltiple windows, dual cursors, smooth scrolling, 
and table-driven linked lists. Displays of up to 200 
characters per row and 128 lines per screen can be 
supported, and unique character sets, such as Arabic or 
Japanese, can be built. ' 

Even more capability can be added though the 720, an IC 
that works with or without the 730. Introduced in 
September 1982, the 720, a joint effort between Intel and 
NEC, is said to be integral to graphics plans for NEC's 
8086-based Advanced Personal Computer. 

One application in which the 720 and 730 will shine is 
opening windows on-screen. Most computer users are 
familiar with the ability of Apple's Lisa to link spread­
sheets, graphics, and word processing through multiple 
displays, or windows, on one screen. Lisa uses memory­
hungry software and dedicated hardware. Apple's initial 
release uses I full megabyte of RAM, and Lisa will soon be 
offered with 4M of internal memory in addition to a 
mandatory 5M hard disk. 

For comparison, the IBM PC, limited by the range of the 
8088, can address I M tops. VisiCorp's Visi/ ON promises 
Lisa-like graphics and program-linking capabilities for the 
IBM PC, with lower memory d~mands and no dedicated 
hardware other than a mouse. Althougl} Visa/ ON sup­
posedly runs faster with an 8087 math co-processor, 
VisiCorp will not comment on whether its software will 
make use of the 720 or the 730. 

BIT-MAPPED GRAPHICS 

Both Lisa and Visa/ ON use bit-mapping, a process that 
the 720 and the 730 are said to simplify. In plain words, to 
create an image on-screen, the electron gun that illumi­
nates the screen must be positioned and then turned on 
and off. Data to do this is stored in RAM as a bit-map 
memory corresponding to positions of pixels lit on the 
screen. For one-level monochrome displays, I memory bit 
describes each pixel; for color and levels of grey, several 
bits must be used to describe each pixel. 

Creating images is a lengthy chain of simple operations. In 
a system that uses the 8088 alone, the microprocessor is 
heavily burdened and the software runs slowly. Using 
cOlllplementary chips to take up part of the processing 
chore will speed up the process considerably. This is where 
the 720 and the 730 come in By doing tasks such as looking 
up and manipUlating a library of commonly used figures, 
quickly accessing the bit-map memory, and rewriting the 
bit map, both chips speed text and graphics operations. 

FLAT VS. SEGMENTED MEMORY 

Use of the 720 and the 730 demonstrates Intel's design 
philosophy and how this philosophy impacts the IBM Pc. 
Computers such as Lisa that are based on the Motorola 

. 68000 have a flat memory, while computers based on the 
8088 or 8086 use segmented memory. According to Intel, 

7-220 230810-001 



segmented memory (see "How the PC thinks," PC World, 
Vol. I, No. I) works better for text and graphics manipu­
lation than its flat counterpart. Ordinarily in processing 
any string of characters, changing a single letter in a string 
oftext means repositioning every character in a document. 
But since segmentation uses pointers to locate data in 
memory, only the pointers locating the beginning and the 
end of a passage of text have to be changed. Similarly, 
pointers in memory can be used to position bit-map data 
corresponding to multiple windows on-screen, eliminating 
the need to recalculate and manipulate the entire bit map. 
Segmented vs. ·flat memory has become somewhat of a 
religious issue in the semiconductor industry. 

Intel and Motorola also differ on how much burden to put 
on the CPU. Motorola's 68000 is faster than the 8088 and 
the 8086 and can address more memory than either of 
those chips or the 188 or the 186. But the 186 and the 286 
are substantially faster than the 68000. Also, the 286's 
ability to address 16M opens the way to using large 
memory segments, strengthening Intel's case for seg­
mented memory. 

In many 68000-based high-end systems the computer 
designers have decided to use a co-processor, either bit 
slice, or in one case, an 8086, to do graphics. Many people 
are skeptical of Intel's graphics approach, but Intel 
maintains that its approach will allow computer designers 
greater flexibility. In an ultimate system, multiple 720s and 
730s could be combined to handle interactive windows 
under the direction of a 286 processor, while more 
complex imagery (beyond the practical ability of bit­
mapping) could be managed by an 80287 math co­
processor, the next generation cousin of the 8087. The 
creation of three-dimensional graphics that can be rotated 
on screen for advanced computer-aided design and manufacturing 
systems, for instance, is best handled by Vector Graphics 
rather than bit-mapping. 

7-221 

SOFTWARE DEMANDS 

Yet there is more to computer design than hardware. 
Software must be written to take advantage of the new 
IC's promise. In the case of the 286, no operating system 
yet exists that can take full advantage of its operating 
capabilities. Plug-ins currently on the market that add the 
286 to the IBM PC provide little more than a faster 8086. 
Only new operating software will use the new chips to their 
fullest potential. 

One solution on the horizon is a 286 version of XENIX 
due to be introduced mid-1983. XENIX, a multiuser 
operating system with a visual shell similar to MS-DOS, is 
a takeoff on Bell Labs' UNIX operating system. A 
licensing agreement among Intel, Bell Labs, and Microsoft, 
the author of XENIX and MS-DOS, is reported being 
negotiated. Negotiations between Intel and Digital Re­
search to provide a CPj M variant for the 286 have been 
underway for some time but have reportedly stagnated. 

For lower-end systems Microsoft is said to be upgrading 
MS-DOS to accommodate networking. This advance 
comes at the right time, as the 188 and 186 open up sockets 
that could be used for local area network chips such as the 
programmable Ethernet chip from Intel. 

As long as software and hardware keep growing rapidly 
together, PC users will be offered a continuing stream of 
improved computers and ever more capable plug-in 
boards. The variety seems endless and next year's crop 
exciting. 

230810-001 



ARIZONA 

Intel COrp 
11225 N 28th Drive 
Suite 2140 
Phoenix 85029 
Tet (602) 869-4980 

Intel Corp, 
1161 N EI Dorado Place 
Suite 301 
Tucson 85715 
Tel- (602) 299-6815 

c.wFOlllltA 
lmel Corp 
21515 Vanowen Street 
Suite 116 

~~8ra~~Jggg 

~~~ ~k Way, Suite 101 
Sacramento 95815
Tel' (916) 920-8096

Intel Corp
4350 executive DrIve
Suite 150

ra~~)~~~l1
Intel Corp·
2000 Easl 4th Street
Suite 100
Santa Ana 92705

~(7J~=1m2
Intel Corp·
1350 Shorebird Way
MI. VIew 94043

~ (4Jf~3~~~8
910·338-0255

COLORADO
Int8I Corp
4445 Northplllrk Ortva
Suite 100

~rr:3) S~~~0907

.-.cncur
~el M~or~ain Road
Dan"ms 0681.
~ (2713-4~S;~O
EMe Co<p
222 Summer Street
Stamford 06901
Tel (203) 327-2934

FLORIDA

~r: ~estmonte Drive
Suite 105
~) ~mrsJ2714

~r:o ~~ 62nd Street
Suite 104
FI lauderdale 33309
Tel (305) 711-0600
l"Nh 510·956-9407

DOMESTIC SALES OFFICES

fL!""DA (Cont'd)

~'r:60 c~. Street South
Suite 170

f~ ~~~.::,~O2
G_
Intel Corp
3280 Pointe Parkway
SUite 200
Norcross 30092
T~ (404) .;449-0541

OW

Corp,-
GUlf Road

...... 60006
981·7200

TWX -651-5881 -Intel Corp
8777 PlJrdue Road
Suite 125
Indl4nllpOl18 46268
Tel (317) 875-0623

_A

Inlel Corp

~J30~~:&/ve N,E
Cedar Rapids 52402
Tel. (319) 393-5510

.-
Intel Corp
8400 W Hath Street
Suite 170
Overland Park 66210
T~ (9~3) 642-8080

LOUIIIWIA

~':l~'~I0lr':,,~1em8 c..p

IWI'IUND
Intel Corp-
7321 Parkway Onve South
Sulle C
Hanover 21076

~,(~,'~~~~
Inlel Corp.
7833 Walker Drive
Greenbelt 20770
Tel. (301) 441·1020

IIAI8ACItUIIITT
Intel Corp·
27 lndualtial Avenue
ChelmSford 01824

~.(6g6.3~~~S: M_
Intel Corp
7071 Orchard lake Road
Suite 100
Weal Bloomflekt 48033
Tel. (313) 851·8096

M'-A

MIIIOURI

In18I Co<p
4203 Earth City Expre88Way
Suite 131

~':"'(3~:r =~~

NEW """'v
~1Ia~i~tII
-"""'" EdIson 08837

~,(2~,L~~~

M. MEXICO

~Ual Boulevard N.E
B 29'

Ta: _ YORK

I Co<p.'
300 Vanderbilt Motor Parkway
Hau"ft~. 11188 Tel 51 231-3300
TWX 51 ·227-6236

Intel Corp
Suite 28

15~ W. ,
Tal' (94
TWX 51

.... Co<p.'

~=,~r80ulevard
i;!x. (7J~~2~~~

~3~ua;!lord..victor Road
Victor 14564

~ (7J~6.2~~~OJ
_ CAROLINA

m'o~1ff Road
Suite 102

t~9r~~-8022
OHIO
Intel Corp-
6500 Poe Avenue
Dayton 45414

~.(5Jf6..t~~~~

-Intel Corp
4157 S. Harvard Avenue
Suite 123
TuI8a 74t35
Tel' (918) 749-8688 --
PIftNI.'I"VANIA
Inlel
4" Fort
T~
TWX

Intel Corp.-
400 Penn Center Boulevard
Suite 610

~(1f~) ~:~970

300

Intet Corp-
12300 Ford Road
Suite 380
oaHu 75234

~.(2~6.a~=V
Intel Corp.-
7322 S.W Freeway
Suite 1490
Houston 77074

~(7J~~~~~
Industrlll Digital SyatelTl8 Corp
5925 Sovereign
Suite 101
Houston 77036
Tel (713)988·9421

m~l~n Lane
Suite 314
Auslln 78752
Tel. (512) 454·3628

UTAH
Intel Corp.
5201 Green Street
Suite 290

~: fa'~ ~~~~~23
YIRGtIOIA r

Roe, Road

23288
282-5668 w __

Intel Corp
110 110th Avenue N.E.
Suihl 610
Bellevue 98004

~ (2~~H.-4~~~=

CANADA
ONTARIO

Intel SemiConductor of Canada, Lid
Suite 202. Belt Mews
39 HlQhway 7
Nepaan K2H 8R2

t~t~~1~53~,~714
of canada, Ltd

-Intel Semiconductor 01 canada. ltd.
3860 Cote V&rtu Ad
Suite 210
St Laurent H4A 1V4

~LJ51~l~~~

