

LITERATURE

In addition to the product line Handbooks listed below. the INTEL PRODUCT GUI DE (no charge. Order
No. 210846) provides an overview of Intel's complete product line and customer services.

Consult the INTEL LITERATURE GUIDE fora complete listing of Intel literature. TO ORDER literature
in the United States. write or call the Intel Literature Department. 3065 Bowers Avenue. Santa Clara. CA
95051. (800) 538-1876. or (800) 672-1833 (California only). TO ORDER literature from international
10catlOm. contact the nearest Intel sales office or di;tributor (see listings in the back of most any Intel
literature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contain; all application notes. article reprints. data sheets. and other de;ign information
on RAMs. DRAMs. EPROMs. E2PROM;. Bubble Memone;.

Telecommunication Products Handbook (Order No. 230730)
Contain; all applicatIOn note,. article reprint;. and data ;heet; for telecommunIcatIOn
products.

U.S. PRICE*

$15.00

7.50

Microcontroller Handbook (Order No. 210918) 15.00
Contains all application notes. article reprints. data ;heet;. and de;lgn information for the
MCS-48. MCS-51 and MCS-96 families.

Microsystem Components Handbook (Order No. 230843) 20.00
Contains application notes. article reprint;. data sheets. technical paper; for micropro-
ces;ors and penpherals. (2 Volumes) (Individual User Manuab are abo available on the
8085. 8086. 8088. 186. 286. etc. Consult the Literature GUide for prices and order
numbers.)

Military Handbook (Order No. 210461)
Contains complete data sheets for all military products. InformatIOn on Leadless Chip
Carriers and on Quality Assurance is also included.

Development Systems Handbook (Order No. 210940)
Contains data sheets on development systems and software. support options. and design
kits.

OEM Systems Handbook (Order No. 210941)
Contains all data sheets, application notes, and article reprints for OEM boards and
systems.

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

* Prices are for the U.S. only.

10.00

10.00

15.00

10.00

intJ

MICROSYSTEM
COMPONENTS HANDBOOK

..

VOLUME 2

1984

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the Information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, ~, ICE, iCS, iDBP,
iDIS, 12 1CE, iLBX, im, iMMX, Insite, Intel, intel, intelBOS, Intelevision, inteligent
Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPDS, iSBC, iSBX,
iSDM, iSXM, Library Manager, MCS, Megachassis, MICROMAINFRAME, MUL­
TIBUS, MULTICHANNEL, MULTIMODULE, Plug-A-Bubble, PROMPT,
Promware, QUEST, QUEX, Ripplemode, RMX/SO, RUPI, Seamless, SOLO,
SYSTEM 2000, and UPI, and the combination of ICE, iCS, iRMX, iSBC, MCS, or
UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk Data
Sciences Corporation.

* MULTIBUS is a patehted Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

© INTEL CORPORATION. 1983

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

CHAPTER 1
OVERVIEW

Table of Contents

Introduction. • . • . . . • 1-1

CHAPTER 2
MCP-80/85 MICROPROCESSORS

DATA SHEETS
8080Al8080A-1/8080A02, 8-Bit N-Channel Microprocessor ...•.....•............... 2-1
8085AH/8085 AH-2/8085AH-1 8-Bit HMOS Microprocessors 2-10
8085A18085A-2 Single Chip 8-Bit N-Chanhel Microprocessors•.......• 2-26
8155H/8156H/8155H-2/8156H-2, 2048-Bit Static HMOS RAM

with 1/0 Ports and Timer•..•.................... ',' '2-30
8155/815618155-218156-2, 2048-Bit Static MOS RAM with 1/0 Ports and Timer .,...... 2-42
8185/8185-2, 1024 x 8-Bi\ Static RAM for MCS-85 .•..........•.•................... 2-45
8205 High Speed 1 Out of 8 Binary Decoder 2-50
8212 8-Bit InpuVOutput Port ... 2-55
8216/8226, 4-Bit Parallel Bidirectional Bus Driver 2-63
8218/8219 Bipolar Microcomputer Bus Controllers for MCS-80 and MCS-85 Family ... 2-68
8224 Clock Generator and Driver for 8080A CPU 2-79
8228/8238 System Controller and Bus Driver for 8080A CPU :. 2-84
8237A18237A-4/8237A-5 High Performance Programmable DMA Controller 2~8
8257/8257-5 Programmable DMA Controller ',' .. 2-103
8259A18259A-2/8259A-8 Programmable Interrupt Controller 2-120
8355/8355-2, 16,384-Bit ROM with 1/0•.•....•.•............. 2-138
8755A18755A-2, 16,384-Bit EPROM with I/O 2-146

CHAP:TER3
IAPX 86, 88, 186, 188 MICROPROCESSORS

APPLICATION NOTES
AP-113 Getting Started with the Numeric Data Processor•.......•...... :...... 3-1
AP-122 Hard Disk Controller Design Using the Intel 8089 3-62
AP-123 Graphic CRT Design Using the iAPX 86/11 3-123
AP-143 Using the iAPX 86/20 Numeric Data Processor

in a Small Business Computer ...• 3-194
AP-144 Three Dimensional Graphics Application of the

iAPX 86/20 Numeric Data Processor•.••............ 3-217
AP-186 Introduction to the 80186 ..•.... 3-256

DATA SHEETS
iAPX 86/10 16-Bit HMOS Microprocessor•..•....•...•.•......•.•... 3-334
iAPX 186 High Integration 16-Bit Microprocessor•............................. 3-360
iAPX 88/10 8-Bit HMOS Microprocessor•......•. 3-412
iAPX 188 High Integration 8-Bit,Microprocessor'•..... ~ 3-439
8089 8/16-Bit HMOS 1/0 Processor•.......................•••••.•••....... 3-494
8087 Numeric Data Coprocessor•.......••...•..•....•................ 3-508
80130/80130-2 iAPX 86/30, 88130 iRMX 86 Operating System Processors 3-529
80150180150-2 iAPX 86/50, 88/50, 186/50 CP/M*-86 Operating System Processors •... 3-551
8282/8283 Octal Latch•....•.•..•••..•..••.•...... 3-562
8284A Clock Generator and Driver for iAPX 86, 88 Processors •.•.•...•...••...••..• 3-567
8286/8287 Octal Bus Transceiver ~•.... '" • . . . • . • • . • .. 3-575
8288 Bus Controller for iAPX 86, 88•.......•.......•........•..••.•...•...... 3-580
8289 Bus Arbiter•.. ,•.. , •..•.. 3-587

CHAPTER 4
IAPX 286 NUCROPROCESSORS

DATA SHEETS
iAPX 286/10 High Performance Microprocessor

with Memory Management and Protection ,....................... 4-1
80287 80-Bit HMOS Numeric Processor Extension••. 4-52
82284 Clock Generator and Ready Interface for iAPX 286 Processors • • .• . 4-76
82288 Bus Controller for iAPX 286 Processors • . . . • . • • 4-83

'CPlM-86 is a Trademark of Digital Research, Inc,

CHAPTERS
IAPX 432 MICROMAINFRAMET•

DATA SHEETS
iAPX 43201/43202 General Data Processor .•..........•••...............•..•....• :
iAPX 43203 VLSI Interface Processor•...........•••...
iAPX 43204/43205•............•............... " .•.•.........•.•..•..•....•

CHAPTER 6
MEMORY CONTROLLERS

APPLICATION NOTES
AP-97A Interfacing Dynamic RAM to iAPX 86/88 Using the 8202A & 8203•.
AP-141 8203/8206/2164A Memory DeSign : ;
AP-167 Interfacing the 8207 Dynamic RAM Controller to the iAPX 186 ••.............
AP-168 Interfacing the 8207 Advanced Dynamic RAM Controller to the iAPX 286

ARTICLE REPRINTS
AR-231 Dynamic RAM Controller Orchestrates Memory Systems

TECHNICAL PAPERS
System Oriented RAM Controller
NMOS DRAM Controller•....•....................•...............

DATA SHEETS
8202A Dynamic RAM Controller•.............
8203 64K Dynamic RAM Controller ..•....
82C03 CMOS 64K Dynamic RAM Controller
8206/8206-2 Error Detection and Correction Unit•....... ,
8207 Advanced Dynamic RAM Controller•.................
8208 Dynamic RAM Controller ...•.........

USERS MANUAL

5-1
5-53
5-85

6-1
6-37 •
6-43
6-48

6-55

6-62
6-73

6-77
. 6-91
6-106
6-119
6-152
6-199

Introduction ' ..•..•...•...... 6-218
Programming the 8207 ...•......................................•.•.............. 6-219
RAM Interface ' .•...... '."•..........................•...... 6-224
Microprocessor h'lterfaces ;•......•.......•.. 6-233
8207 \:"lith ECC (8206)•....•..•. :..................................... 6-241
Appendix•....................... :•......................•.......... 6-244

SUPPORT PERIPHERALS
APPLICATION NOTES

-VOLUME2-

AP-153 DeSigning with the 8256 .. 6-248
DATA SHEETS

8231 A Arithmetic Processing Unit .. 6-321
8253/8253-5 Programmable Interval Timer ..•......................•.....•........ 6-331
8254 PrograrT)mable Interval Timer ..•...... 6-342
8255A18255A-5 Programmable Peripheral Interface : 6-358
8256AH Multifunctional Universal Asynchronous Receiver Transmitter (MUART) 6-379
8279/8279-5 Programmable Keyboard/Display Interface .'•... ; 6-402
82285 Clock Generator and Ready Interface for I/O Coprocessors .•................ 6-414

FLOPPY DISK CONTROLLERS
APPLICATION NOTES

AP-116 An Intelligent Data Base System Using the 8272•• 6-421
AP-121 Software Design and Implementation of Floppy Disk Systems•..... 6-455

DATA SHEETS
8271/8271-6 Programmable Floppy Disk Controller•....................... 6-524'
8272A Single/Double Density Floppy Disk Controller 6-553

HARD DISK CONTROLLERS
DATA SHEETS'

82062 Winchester Disk Controller .. 6-572

UPI USERS MANUAL , '
Introduction•......•.•..••........•....••.. 6-598
Functional Description•.................................. 6-602
Instruction Set ... 6-619
Single-Step, Programming, and P.ower-Down Modes•..•..•..•... , 6-646
System Operation•.....................................•.....•.. 6-651
Applications ... 6-657

DATA SHEETS •
8041 Al8641Al8741 A Universal Peripheral Interface 8-Bit Microcomputer 6-777
8042/8742 Universal Peripheral Interface 8-Bit Microcomputer•..•..•..•.....•. 6-789
8243 MCS-48 InpuVOutput Expander ..•.. 6-803
8295 Dot Matrix Printer Controller•..... : , ..•................... 6-809

SYSTEM SUPPORT
ICE-428042 In-Circuit Emulator ,'................................... 6-818
MCS-48 Diskette-Based Software Support Package 6-826
iUP-200/iUP-201 Universal PROM Programmers•...... ~'•. 6-828

CHAPTER 7
DATA COMMUNICATIONS

INTRODUCTION
Intel Data Communications Family Overview 7-1

GLOBAL COMMUNICATIONS
APPLICATION NOTES

AP-16 Using the 8251 Universal Synchronous/Asynchronous Receiver/Transmitter. . . . 7-3
AP-36 Using the 8273 SDLC/HDLC Protocol Controller• 7-33
AP-134 Asynchronous Communications with the 8274 Multiple Protocol

Serial Controller ... 7-79
AP-145 Synchronous Communications with the 8274 Multiple Protocol

Serial Controller '" ,. 7-116
DATA SHEETS

8251A Programmable Communication Interface 7-155
8273/8273-4 Programmable HDLC/SDLC Protocol Controller. .. 7-172
8274 Multi-Protocol Serial Controller (MPSC) ' •............. 7-200
82530/8253-6 Serial Communications Controller (SCC)•.............. 7-237

LOCAL AREA NETWORKS
ARTICLE REPRINTS

AR-186 LAN Proposed for Work Stations .. 7-266
AR-237 System Level Functions Enhance Controller .•............................. 7-272

DATA SHEETS
82501 Ethernet Serial Interface ... 7-276
82586 Local Area Network Coprocessor .. 7-287

OTHER DATA COMMUNICATIONS
APPLICATION NOTES .

AP-66 Using the 8292 GPIB Controller. .. 7-322
AP-166 USing the 8291 A GPIB Talkerl.Listener 7-375

ARTICLE REPRINTS '
AR-208 LSI Transceiver Chips Complete GPIB Interface. .. 7-407
AR-113 LSI Chips Ease Standard 488 Bus Interfacing 7-414

TUTORIAL
Data Encryption Tutorial .. 7-424

DATA SHEETS ,
8291 A GPIB Talker/Listener .. 7-425
8292 GPIB Controller ... 7-454
8293 GPIB Tranceiver•................................... 7-469
8294A Data Encryption Unit ... 7-481

CHAPTER 8
ALPHANUMERIC TERMINAL CONTROLLERS

APPLICATION NOTES
AP-62 A Low Cost CRT Terminal Using the 8275 8-1

ARTICLE REPRINTS
AR-178 A Low Cost CRT Terminal Does More with Less ~.......... 8-43

DATA SHEETS
8275 Programmable CRT Controller '.................. 8-50
8276 Small System CRT Controller ... 8-74

GRAPHICS DISPLAY PRODUCTS
ARTICLE REPRINTS

AR-255 Dedicated VLSI Chip Lightens Graphic Display Design Load 8-91
AR-298 Graphics Chip Makes Low Cost High Resolution, Color Displays Possible.... 8-99

DATA SHEETS
82720 Graphics Display Controller , •............ 8-106

TEXT PROCESSING PRODUCTS
ARTICLE REPRINTS

AR-305 Text Coprocessor Brings quality to CRT Displays 8-143
AR-297 VLSI Coprocessor Delivers High Quality Displays 8-151
AR-296 Mighty Chips ... 8-156

DATA SHEETS
82730 Text Coprocessor ... 8-159
82731 Video Interface Controller ... 8-199

CHAPTER 9
PACKAGING .. 9-1

(

Peripherals
(continued)

. Peripherals
Section

6

inter

© Intel Corporation, 1983.

APPLICATION.
NOTE

6-248

Ap·153

June 1983

ORDER NUMBER: 210907·001

Ap·153

INTRODUCTION
The INTEL 8256 MUART is a Multifunction Univer­
sal Asynchronous Receiver Transmitter designed to be
used for serial asynchronous communication while
also providing hardware support for parallel 1/0, tim­
ing, counting and interrupt control. Its versatile
design allows it to be directly connected to the
MCS~85, iAPX-86, iAPX-88, iAPX-186, and
iAPX-188 microcomputer systems plus the MCS-48
and MCS-51 family of single-chip microcomputers.

The four commonly used peripheral functions con­
tained in the MUART are:

I) Full-duplex, double-buffered serial asynchronous
Receiver/Transmitter with an on-chip Baud Rate
Generator

2) Two - 8-bit parallel I/O ports
3) Five - 8-bit counters/timers
4) 8-level priority interrupt controller

This manual can be divided into two parts. The first
part describes the MUART in detail, including its
functions, registers and pins. This section also
describes the interface between the MUART and Intel
CPUs plus a discussion on programming considera­
tions. The second section provides an application ex­
ample: a MUART-based line printer multiplexer. The
Appendix contains software listings for the line
printer multiplexer and some useful reference infor­
mation.

DESCRIPTION OF THE MUART
The MUART can be logically partitioned into seven
sections:' the miCroprocessor bus interface, the com­
mand and status registers, clocking circuitry, asyn­
chronous serial communication, parallel I/O, timer/e­
vent counters, and the interrupt controller. This can
be seen from the block diagram of the 8256 MUART
as shown in Figure 1. The MUART's pin configura­
tion can be seen in Figure!' 2.

Microprocessor Bus Interface
The microprocessor' bus interface is the hardware
section of the MUA.RT which allows a liP to com­
municate with the MUART. It consists of tristate
bi-directional data-bus buffers, an address latch, a
chip select (CS) latch and bus control logic. In order to
provide all of the MVA.RT's functions in a 4O-pin DIP
while retaining direct register addressing, a multi-
plexed address/data bus is used. '

Address/Data Bus

The MUART contains 16 internal directly addressable
read/write registers. Four of the eight address/data
lines are used to generate the address. When using
8-bit microprocessors such as MCS-85, MCS-48 and
MCS-51, ADO - AD3 are used to address the 16 inter­
nal registers while Address/Data line 4 (AD4) is not
used for addressing. For 16-bit systems, ADI - AD4
are used to generate the address for the internal data
registers and ADO is used as a second active low chip
select.

RD, WR,CS

The 8256 bus interface uses the standard bus control
signals which are compatible with all Intel peripherals
and mi<;roprocessors. The chip select signal (CS).
typically derived from an address decoder, is latched
along with the address on the falling edge of ALE. As
a result, chip select does not have to remain lc;>w for
the entire bus cycle. However, the data bus buffers
will remain tristated unless an tIT> or a WR signal
becomes active while chip select has. been latched in
low.

INT,INTA

The INT and INTA signals are used to interrupt the
CPU and receive the CPU's acknowledgment to the
interrupt request. The MUART can vector the CPU to
the appropriate service routine depending on the
source of the interrupt.

RESET

When a high level occurs on the RESET pin, the
MUART is placed in a known initial state. This initial
state is describe.d under "Hardware Reset." ,

Command and Status Register
There are three command registers and one status
register as shown in Figure 1. ,The three command
registers are read/write registers while the status
register is a read only. The command registers con­
figure the MUART for its operating environment (i.e.,
8 or 16 bits CPU, system clock frequency). In addi­
tion, they direct its higher level functions ,s~ch as con­
trolling the UART, selecting modes of operation for
the interrupt controller, and choosing the fundamen.
tal frequency for the timers. Command Register 3 is
the only register in the MUART which is a bit set/reset
register, allowing the programmer to simply perform
one write to set or reset any of the bits.

6-249 210907·001

Ap·153

11'"."

AD,oAo.
D8,·DB,

p .. ,

Co
RxD

iiii
iii
ALE

RESET

iNrA
.NT TiC

RiC

Figure 1. Block Diagram of the 8258 MUART

r-------------= -------, The status register provides all of the information
ADO Vce
AD1 P10

AD2 P11

AD3 P12

AD4 P13

DBS P14

DB6 P16

DB7 P18

ALE P17

ii6 P20

WR P21

RESET P22

9 P23

~ P24

INT, P25

'EXTINT P28

, eLK P27

IfxC TxD "

RxD ~

GND eft

FIgure 2. MUART Pin Configuration

about the status of the UART's transmitter and
receiver as well as the status" of the interrupt pin. The
status register is the only read only register in the
MUART.

CLOCK CIRCUITRY

The, clock for the five timers and baud rate generator
is derived from the system clock. the system clock,
pin 17 (CLK), is fed into a system clock prescaler
wJ:li,ch, in turn feeds the five pmers and the baud rate
generator. The MUART's system clock can be asyn­
chronous to the microprocessor's.cl~ck.

System Clock Prescaler

The system clock prescaler is a programmable divider
which, normalizes the, internal clocking frequency for
th~ t~ers and baud rate generatc;>r to 'l.024MHz. It
divides the system clock(CLK) by 1, 2, 3, or S,'allow­
ing clock frequencies of' 1.024MHz, 2.048MHz,
3.072MHz or S.12MHz. (The commonly used
6: 144MHz crystal frequency' for the 808S results in a
3.072MHz frequenCy from the 808S's Cl;K pin.) If the
system clock is not one of the four frequencies men­
tioned above, then the frequency of the baud rate
generator and the timers will be nonstandard;

6-250 210907-001

AP·15.3

however, the MUART will still run as long as the
system clock meets the data sheet tcy spec.

Tlm.er Prescaler

The timer prescaler permits the user to select one of
two fundamental timing frequencies for all of the
MUART's timers, either 1KHz or 16KHz. 'The fre­
quency selection is made via Command Register O.

Asynchronous Serial Interface

The asynchronous serial interface of the MUART is a
full-duplex double-buffered transmitter and receiver
with separate control registers. The standard asyn­
chronous format is used as shown in Figure 3. The
operation of the UART section of the MUART is very
similar to the operation of the 8251A USART.

Receiver Section of the UART

The serial asynChronous receiver section contains a'
serial shift register, a receiver buffer register and
receiver control logic. The serial input data is clocked
into the receive shift register from the RxD pin at the
specified baud rate. The sampling actually takes place
at the rising edge of RxC, assuming an external clock,

GENERATED
0001----011 BY 8258

STO~
BrrS L

RECEIVER INPUT
DOES NOT APPEAR

DO 0, ----011 ON THE DATA BUS

R.O

I I I

PROGRAMMED
CHARACTeR

LENGTH

8ft.:!
erTs L

TRANSMISSION'FORMAT

CPU BYTe f5 8 SITS/CHAR)

DATA C~~RACTER
ASSEMBL.ED SERIAL. DATA OUTPUT (T.O)

START [lATA CHARACTER STOt;'!
L....;B:;;,IT:......J __ --< __ ...L.....:;.;'-'L....;"iBITt-J

RECEIVE FORMAT

SERIAL DATA INPUT (AxO)

STARr DATA CHARACTER SlOO .
Io-B_'T_'--'-___ -4 ~-'--.l.-..:;;;......I_B::.ITS

CPU BVTElS:' fBITS/CHAR" .

, DATA CHARACTER

. ·1-1--......

"NOTE IF CHARACTER LENGTH IS DEFINED AS 5, 6 OR 7
BITS THE UNUSED BITS ARE SET TO "ZERO"

Figure 3. Asynchronous Format

or at the rising edge of the internal baud clock. When
the receiver is enabled but inactive, the receive logic is
sampling RxD at either 32 or 64 times the bit rate,
looking for a change from the Mark (high) to the
Space (low) state. This is commonly referred to as the
start bit search mode. When:· this state change occurs,
the receive logic waits one half of a bit time and then
samples RxD again. If RxD is still in the Space state,
the receive logic begins to clock in ,the receive data
beginning one bit period later. If RxD has returned to
the Mark state (Le., false start bit), the receive logic
will return to the start bit search mode.

Normally~the received data is sampled in the center of
each bit, however it is possible to . adjust the location
where the bit is sampled. This feature is controlled by
the modification register.

The bit rate of the serial receive data is derived from
either the internal baud rate generator or an external
clock. When using an external clock, the programmer
has a choice of three sampling rates: lx, 32x, or 64x,
Using the internal baud rate generator, the sampling
rates are all 64x except for 19.2 Kbps which is 32x.

When the serial shift register clocks in the stop bit, an
internal load pulse is generated which transfers the
contents of the shift register into the receive buffer.
This transfer takes place' during the first half of the
firststop bit. The load pulse also triggers several other
signals relevant to the receive section including
Receive Buffer Full (RBF), Parity Error (PE), Over­
run Error (OE), and Framing Error (FE). These four
status bits are updated after the middle of the first
stop bit when the receive buffer has already been
latched. Each one of these four status bits are latched.
They are reset on the rising edge of the first read pulse
(RD) addressed to the status register. A complete
description of the status register is given in the section
"Description of the Registers."

When the serial receiver is disabled (via bit 6 of Com­
mand Register 3) the load pulse is suppressed. The
result is that the receive buffer is not loaded with the
contents of the shift register, and the RBF, PE, OE,
and FE bits in the status register are not updated.
Even though the receiver is disabled, the serial shift
register will still be clocking in the data from RxD, if
any. This means that the receiver. will still be syn­
chronized with the start and stop bits. For example, if
the receiver is enabled via: Command Register 3 in the
middle of receiving a' serial character, the character
will still be assembled correctly. When the receiver is
disabled the last character received will remain in the
receive buffer. On power-up the value'in the receive
buffer is undefined.

6-251 21090]'()01

• _IOll I •• ~ , Ap·153

Whenever a character length of fewer than 8 bits' is
programmed, the most significant bits of a reCeived
character will read as zero. Also, the receiver will only
check the first stop bit of any character, regardless of
how manY stop bits are programmed into the device.

, ' • ; I

Receive Break Detect

A Receive Break occurs when RxD remains in the
space state for one character time, including the,parity
bit (if any) and the first stop bit. The MUART Will set
the Break, Detect status bit (BD) when it receives a
break. The Break Detect status bit ,is set after the mid·
dIe ofthe-il1"st st~p bit. Iftlte MUART detects a break
it will inhibit the receive buffer load pulse, thus the
receive buffer will not be loaded with the null
character, and none of the four status bits (PE, OE,
FE, and RBP) will be updated. The last character
received will remain in the receive buffer. A break
deteCt state haS the same effect as disabling the'
receiver-they both inhibft the load pulse-therefore
one can think of the break status as disabling ,the
receiver.'

The Break Detect status bit is latched. It is cleared by
the riSml edge, of $e read pulse addr.essed to the status
register. If a break occurs, and then the RXD data lin\,
returns to the Mark state before the status register is
read, ,the BD status bit will remain set until it is read.
If RxD returns to the Mark state after the BD status '
bit has been read true, 'the BD status bit will be reSet
automatically without readillg the statu,s register.

The receive break detect logi~~of the MUART is,in­
dependent of whether, the r~iver is enabled or dis­
abled; therefore even if the receiver is disab.ed the
MUART will recognize a break. When, the RxD I~ne
returns to the Mark state after a break, the 8256 will
be in the start bit search mod¢. '

If the receiver interrupt level is enabled. break will
generate an interrupt'request regardless of whether the
receiver.is enabled. Another receive interrupt will not
be 'generated until the RxD pin returns to the Mark
state.

Tran8mltter ~ctjOn of the UART

The seri8I asynchronous transmitter section of the
MUART co~ists of a transn¥t bJlffer; a transmit
(shift),r~gister, and the asso.ciated cOl\trollogic. There
are two bit~ in the status register which indicate the
status of tIie transmit buff~r and' tranSJW.t regi,ster:
TBE (transmit buffer empty) and TRE (transmit
register empty). "

To transmit a clu\racter, a byte is written to the
transmit buffer. The transmit buffer Should only be
written to when TBE = 1. When the transmit register is
empty and Cf§ = 0, the character will be automatic­
ally transferred from the transmit, buffer into the
transmit register. The data transfer from the transmit
buffer, to the transmit register takes place during the
transmission of the start bit . .After this transfer takes
place, sometime at the beginning of the transmission
of the, il1"st data bit. TBE is set to 1.

When the transmitter is idle, both TBE and TRE will
be set to 1. After a character is written to the transmit
buffer, TBE = 0 and TRE = 1. This state will remain
for a short Period of time, then the character will be
transferred into the transnnt register and the status
bits, will rea4 TBE = 1 and TRE = 0: At this point a se­
cond character may be written to the transmit buffer
after which TBE=O and :rRE=O. TBE will not beset
to 1 again until the transmit register becomes empty
and is reloaded ,with the byte in the transmit buffer.

I

The transmitter can be disabled only one way-using
the CTS pin. When CTS = 0 the transmitter is enabled,
and when CTS = 1 the transmitter is disabled. If the
transn1itter is idle and ~ goes from 0 to 1, disabling
the transmitter, TBE and TRE will remain set to 1.
Since TBE = 1 a' character can be written into the
transmit buffer. The character will be stored in the
transmit buffer but it will not be transferred to the
transmit register until ffi goes low.

If ffi goes from low to high during transmission of a
character, the character in transmission will be com­
pleted and TxD will return to the Mark state. If the
transmitter is full (i.e., TBE and TRE = 0), the
transmit shift register will be emptied but the transmit
buffer will not; therefore TBE = 0 and TRE = 1.

Tran8mltter Break Fe.ture8

The MUART has three transmit breat features:
Break-In Detect, Transmit ,Break O:BRK). and Single
Character Break (SBRK).

Break-In Detect - A Break-In condition occurs when
the MUART is sending a serial message and the
trans~ission line is forced to the space state by the
recei~ing station. Break-In is usually used' with half­
duplex transmission so that the receiver can signal' a
break to the tr!Ulsmitter. Port 16 ,must be connected
externally to the transmission line in order to detect a
Break·In. If transmission voltage levels\ other than
TTL are used, then proper buffering must be provided
so that Port 16 on the MUART will receive the correct
polarity and voltage Ie,vels.

6-252 210907'()()1

Ap·153

When Break-In Detect is enabled, Port 16 is polled in­
ternally during the transmission of th!= last or only
stop· bit of a character. If this pin is low during
transmission of the stop bit, the Break Detect status
bit (BD) will be set. Break-In Detect and receive Break
Detect are OR-ed to set the BD status bit. (Either one
can set this bit.) The distinction can be made through
the interrupt controller. If the transmit and receive in­
terrupts are enabled, a Break-In will generate an inter­
rupt on level S, the transmit interrupt, while Break will
generate an interrupt oli level 4, the receive interrupt.
If RxC and TxC are used for the serial bit rates,
Break-In cannot be detected.

Transmit Break - This causes the TxD pin to be forced
low for as \ong as the TBRK bit in Command Register
3 is set. While TranSmit Break is active, data transfers
from the Transmit Buffer to the Transmit register will
be inhibited.

If both the Transmit Buffer and the Transmit Register
are full, and a Transmit Break cominand is issued
(command register 3, TBRK= I), the entire character
in the Transmit register is sent including the stop bits.
TxD is then driven low and the character in the
Transmit Buffer remains there until Transmit Break is
disabled (command register 3, TBRK';' 0). At this time
TxD will go high for one bit time and then send the
character in the Transmit Buffer.

Single Character Break - This causes TxD to be set
low for one character including start bit, data bits,
parity bit, and stop bits. The user can send a specific
number of Break characters using this feature.

If both the Transmit Buffer and the Transmit Register
are full and a Send Break command is,.issued (com­
mand register 3, SBRK = 1) the entire character in the
Transmit Register is sent including the stop bits. TxD
is driven low for one complete character time followed
by a high for two bit times after which the character in
the'Transmit Buffer is sent.

Modification Register

The modification register is used to alter two standard
functions of the receiver (start bit check, and sampling
time) and to enable a special indicator flag for half­
duplex operation (transmitter status). Disabling start
bit check means that the receiver will not return to the
start bit search mode if RxD has returned to the Mark
state in the center of the start bit. It will simply pro­
ceed to assemble a character from the RxDpin
regardless of whether it received a false start bit or
not. The modification register also allows the user to

define where within the receive data bits the MUART
will sample.

Parallel I/O
The MUART contains 16 parallel 1/0 pins which are
divided into two 8-bit ports. These two parallel I/O
ports (Port 1 and Port 2) can be used for basic digital
I/O such as setting a bit high or low, or for byte
transfers using a two-wire handshake. Port 1 is bit
programmable for input or output, so any combina­
tion of the eight bits in Port 1 can be selected as either
an input or an output. Port 2 is nibble programmable,
which means that all four bits in the upper or lower
nibble have to be selected as either inputs or outputs.
For byte transfers using the two- wire handshake,
Port 2 can either input or output the byte while two
bits in Port 1 are used for the handshaking signals.

All of the bits in Port 1 have alternate functions other
than 1/0 ports. As mentioned above, when using the
byte handshake mode, two bits on Port 1 are used for
the handshaking signals. As a result, these two bits
cannot be used for general purpose 1/0. The other six
bits in Port 1 also have alternate functions if they are
nbt used as 1/0 ports. Table 1 lists each bit from Port
1 and its corresponding alternate function.

The bits in the Port 1 Control Register select whether
the pins on Port 1 are inputs or outputs. The pins on
Port 1 are selected as control pins through the other
programming registers which are relevan~ to the con­
trol signal. Configuring a bit in Port 1 as a control
function overrides its definition in the Port 1 Control
Register. If the pins on Port 1 are redefined as control
signals, the definition of whether the pin is an input or
an output in the Port 1 Control Register remains un­
changed. If the pins on Port 1 are converted back to
I/O pins, they assume the state which was defined in
the Port 1 Control Register.

Each parallel 1/0 port has a latch and drivers. When
the port is in the output mode, the data written to the
port is latched and driven on the pins. The data which
is latched in the 1/0 ports remains unchange4 unless
the port is written to again. Reading the ports,
whether the port is an input or output, gates the state
at the pins onto the data bus. Writing to an input port
has.no effect on the pin, butthe data is stored in the
latch and will be QutP\1t if the direction on the pin is
changed later. Writing to a control pin on Port 1 has
the same effect as writing to an input pin. If pins 2, 3,
S, and 6 iri Port 1 are used for control signals, the con­
tents of the respective output latches will be read, not
the state of the control signals. If pins 0, I, and 7 on

6-253 210907'()()1

"n+_I® ,I •• ~ AP·153

Table 1. Port 1 ContmJ Signals ..
Pin Pin
Symbol Number Control Function Condition

, ,PIO: 39 A.CK Contro}' signals for P?rt 2 ' Mode register
PH 38 OBF 8-bit h~dshake output ' P2C2.,. P2CO= 101

PIO 39 STB Control signals for Port 2 Mode register
Pll ,38 IBF 8-bit handshake input ' PlC2": P2CO = 100

PI2 37 lIvent couriter ,2
, clock input

, PI3 36 Event counter 3 ; '.

clock input

PI4 ' ' 35 I,nternal baud rate
generator clock output

PI5 34 Timer 5 trigger input

1:>16 33 Break-In detection input

PI7 32 External edge sensitive
interrupt input

Port I are used for control signals, the state of the
control signals will be read. If pin 4 on Port I is used
as a test output for. the internat baud rate, th~s clock
signal will be output ~ough the output latch, thus the
information in the output latch will be lost.

The Two.Wlre Byte Handshake

The 8256 can be programmed, via the Mode Register;
to implement ~ input or output two-wire byte hand­
shake. When the Mode Register is programmed' for
the byte handshake, Port 2 is used to transmit or
receive the byte; and pins PIO and PII are used for the
two 'handshake control signals. Figures 4 and 5 on
pages 7 through 10 show a block 'di~ram and timing
signals for the two-wire handshake input and output.

To set up the two-w4i'handshake output using inter" '
rupts one must flrst program the Mode Register, and
then enable"the interrupt via the interrupt 'mask
register. An interrupt will not oC'Cur immediatelya(ter
the two-wire handshake'int!m1lpt is enabled.' nie "in­
terrupt is triggered by the rising edge of ACK. ,There
are two ways to generate the first interrupt. Either the

Mode register
CT2=1

Mode register
CT3=1

M!>deword
P2CO - P2C2 = III
Port I control word P14= I
Command Register 2
B3 - BO > 3H

,
Mode register

, T5C=1

Command Register I'
BRKI=I

" Command Register I
BITI=I

first data byte must be written to Port 2 and complete­
ly transferred before an interrupt will occur, or the
two-wire handshake interrupt is enabled while A.CK is
low, and then ACK goes high.

Event CountersITlmers
'I;h~ MllART's, five 8-bit 'programmab~ counters/
timers' are binary presettable down couitters.· The
distim;tion between timer ~d counter is determined
by the clock source. A timer measw:es, an absolute
time interval, and its input clock frequency is d~ved
from the MUART's system clQck. A counter's mput
clock frequency is derived from a pulse applied to an

, external pin. The counter is decremented qn the rising
edge of-this pulse.

When the cOunter~/timers are conflgured' as timers
their clOck source passes through two diViders: the
systeM,' Clock 'prescaler, and the' timer prescaler. As
mentioned before, the system clock prescalet normali­
zeS the internal system clack to 1.024 MHz. The timer
prescaler receives this normalized syStem clock and
devides it down;to either 1 kHz ot i6 kHZ, depending'

'6-254 210907-001

Ap·153

INT OBF

iNTA AcK

iii)

Processor 8258 Equipment
WR

Databus P2IJ.P27

Figure 4. Block Diagram of Handshake Output

on how Command Register I is programmed. If more
timing resolution is needed the clock frequency can be
input externally through the 110 ports.

By programming the Mode Register, four of the 8-bit
counters/timers can be cascaded to form two 16·bit
counters. Counters/timers 3 and 5 can be cascaded
together, and counters/timers 2 and 4 can be cascaded
together. Counters/timers 2 and 3 are the lower bytes,
while counters/timers 4 and 5 are the upper bytes in
the cascaded mode.

Each counter can be loaded with an arbitrary initial
value. Timer S is the only timer which has a special
save register which holds its initial value. Whenever
Timers is loaded with an initial value the special save
register is also loaded with this value. Timer 5 can be
reloaded to its initial value from the detection of a
high-to-Iow transition on Port PIS.

The counters are decremented on the first rising edge
of the clock after the initial value has been loaded.
The setup time for loading the counter when using an
external clock is specified in the data sheet. When us·
ing internal clocks, the user has no way of knowing
the phase relationship of the clock to the write pulse;
therefore the timing accuracy is one clock period.

The timers are counting continuously, and an inter­
rupt request is issued any time a single counter or pair
of cascaded counters reaches zero. If the timers are
geing to be used with interrupts, then the programmer
should first load the timer with the initial value, then
enable the interrupt. If the programmer enables the in­
terrupt first, it is possible that the interrupt will occur
before the initial value is loaded. When an interrupt
from anyone of the timers occurs, the corresponding

bit in the interrupt mask register is automatically
reset, preventing further interrupt requests from oc­
curing.

The event counters/timers can be used in the follow­
ing modes of operation:

Timer I
- Serves as an 8-bit timer.

Event Counter/Timer 2
- Serves as an 8-bit timer or event counter, or

cascaded with Timer 4 as a 16-bit timer or event
counter.

Event Counter/Timer 3
- Serves as an 8-bit timer or event counter, or

cascaded with Timer 5 as a 16-bit timer or event
counter, with the additional modes of operation
selectable for Timer 5.

Timer 4
- Serves as an 8-bit timer, or cascaded with Event

Counter/Timer 2 as a 16-bit' timer or event
counter.

Timer 5
I) Non-retriggerable 8-bit timer
2) Retriggerable 8-bit timer whose initial value is

loaded from a save register which starts following
the negative transition of an external signal. Subse­
quent transitions of this signal after the counting
has started, reloads the il1itiai value and restarts the
counting. .

3) Cascaded with Event Counter/Timer 3, non­
retriggerable 16l bit timer, which can be loaded
with an initial value by two write operations.

6-255 210907-001

INT

iNTA
or
iiD

A~AD4
DB5-0B7

PZo.PZ7

...........
........... ® , ,

Ap·153

..... ----------------~~\

-----'

Data

Figure 48. Timing of Handshake Output

CD The 8256 signals with INT that the equipment has accepted the last character and that the output latches are empty again.

eD Ther~upon, the microprocessor transfers the next data to the 8256.

@The rish~g edge of WR latch~ the data into port 2 (P20 ... P27) and "Output Buffer Full" (OBF) IS set which indicates that a
new byte is available. .

@The.equipment acknowledges with the f8Iling edge ofA'CK that it recognized OBF.

0Thereupon, the 8256 releases OBF.

@The equipment acknowl~ges the data transfer with a rising edge of ACK which causes the 8256 to.set INT.

6-256 210907-001

Ap·153

INT S'fi

iNTA IBF

Ro
Processor 8256 EquIpment

Databus P20·P27

Figure 5. Block Diagram of Handshake Input

4) Cascaded with event counter/timer 3, non·
retriggerable 16·bit event counter, which can

. be loaded with an initial value by two write
operations.

5) Cascaded with Event Counter/Timer 3, retrig·
gerable 16·bit .timer. The most significant byte
(Timer 5) will be loaded with its initial value from
the save register, while the least significant byte
(Event Counter/Timer 3) will be set to OFFH
automatically, Loading, starting, and retriggering
operation~ follow the same. pattern as in 2).

6) Cascaded with Event Counter/Timer 3, retrig·
gerable 16·bit event counter. The most significant
byte (Timer 5) will be loaded with its initial value
from the save register, while the least significant
byte (Event Counter/Timer 3) will be set to OFFH
automatically. Loading, starting, and retriggering
operations follow the same pattern as in 2).

Interrupt Controller
In a micrOl;omputer system there are several ways for
the CPU to recognize that a peripheral device needs
service. Two of the most common ways are the polling
method and the interrupt service method.

In the polling method the CPU reads the status of
each peripheral to determine whether it needs service.
If the peripheral does not need service, the time the
CPU spends polling is wasted; therefore this overhead
results in increasing the execution time. Some systems
must meet a specific request to response time such as a
real time' signal. In this case the programmer must
guarantee that the peripheral is polled at a certain fre·
quency. This polling frequency cannot always easily

be met when the CPU must execute a main program as
well as subroutines. Usually each peripheral has its
own request to response time requirements; therefore
the user must establish a priority scheme.

The interrupt method provides certain advantages
over the polling method. When a peripheral device
needs service it signals the CPU through hardware
asynchronously, thus reducing the overhead of polling
a device which does not need service. The CPU would
typically finish the instruction it is executing, save the
important registers, and acknowledge the peripheral's
interrupt request. During the acknowledgment, the
CPU reads a vector which directs the CPU to the start·
ing location of the appropriate interrupt service
routine. If several interrupt requests occur at the same
time, special logic can prioritize the requests so that
when the CPU acknowledges the interrupt, the highest
priority request is vectored to the CPU.

An interrupt dri~en system requires additional hard·
ware to control the interrupt request signal, priority,
and vectoring. The 8256 integrates this additional
hardware onto the chip. The interrupt controller on
the MUART is directly compatible with the MCS·85,
iAPX·86, iAPX·88, iAPX·186, iAPX·188 family of
microcomputer systems, and it can also be used with
other microprocessors as well. It contains eight priori·
ty levels, however, there are a total of 12 interruptable
sources: 10 internal and 2 external. Since there are
eight priority levels, only eight interrupts can be used
at one time. The assi~ent of the interrupts used is
selected by Command Register 1 and by the mode
register. The MUART's interrupt sources have a fixed
priority. Table 2 displays how the 12 interrupt sources
are mapped into the 8 priority levels.

6-257 210907-001

Ap·153

. P2D-P27 -v Data yi l~ !~
.J\'----~'l~i ------il~1------i10---

Data

INT

~~~g;--------~-------;~~:~---------
Figure Sa. Timing for Handshake Input 

CD The equipmc;nt indicates with the falling ~ of STB (Strobe) that a new character is available at port 2. The 8256 
acknowledges the indication bYilctivating IBF (Input Buffer Full). . . 

CD Thereupon, the equipment releases STB and the 8256 latches the character. 

CD The 8256 informs the microprocessor through INT that a new c/laracter is ready for transfer. 

@ the microprocessor reads the character. 

CD The rising edge' of signal RD resets signal iBF. 
@Thi,s action signals to the equipment that the input latches of the 8256 are empty and the next char~cter can be transferred. 

6-258 210907·001 



inter Ap·153 

Table 2. Mapping of Interrupt Source. to 
Priority Level. ' MEMORY ADDRESS 

\ 

Priority Source 

Highest LO Timer 1 
LI Timer 2 or Port Interrupt 
L2 ~ternal Interrupt (EXTINT) 
L3 Timer 3 or Timers. 3 & 5 
L4 Receiver Interrupt 
L5 Transmitter Interrupt 
L6 Timer 4 or Timers 2 & 4 

Lowest L7 Timer 5 or Port 2 Handshaking 

MCS~·85/8256 Interrupt Operation 

The 8256 is compatible with the 8085 interrupt vector­
ing method when the 8086 bit in Command Register 1 
of the MUART is. set to O. This is th~ default condition 
after a hardware reset. The 8085 has five hardware in­
terrupt pins: INTR, RST 7.5, RST 6.5, RST 5.5, and 
TRAP. When the MUART's interrupt acknowledge 
feature is enabled (lAB bit 5 Command Register 3 = I) 
the MUART's INT Pin IS should be tied to the 8085's 
INTR, and both the 8085 and the MUART's INTA 
pins should be tied together. All of the interrupt pins 
on the 8085 except INTR automatically vector the pro­
gram counter to a specified location in memory. When 
the INTR pin becomes active (HIGH), assuming the 
8085 has interrupts enabled, the 8085 fetches the next 
instruction from the data bus where it has been placed 
by the 8256 'or some other interrupt controller. This 
instruction is usually a Call or an RSTO through 
RST7. Figure 6 shows the memory locations where the 
8085 will vector to based on which type of interrupt 
occurred. 

The 8085 can receive an interrupt request any time, 
since its INTR input is asynchronous. The 8085, 
however, doesn't always acknowledge an interrupt re­
quest immediately. It can accept or disregard requests 
under software control using the EI (Enable .Interrupt) 
or DI (Disable Interrupt) instructions. 

At the end of each instruction cycle, the 8085 ex­
amines the state of its INTR pin. If an interrupt re­
quest is present and interrupts are enabled, the 8085 
enters an interrupt machine cycle. During the inter­
rupt machine cycle the 8085 autQmaUcally disables 
further interrupts until the EI instruction is executed. 
Unlike normal machine cycles, the interrupt machine 

TRAP 

RST 7.5 
RST 6.5 
RST 5.5 

r------, OOH 

j------i 08H 

.1-____ -1 10H 

-;--___ --I 18H 

.;/------i 20H 
~~ ________ ~24H 

.....+-------1 28H 

............. -----I 2CH 

·~~----~30H 

~---------; 34H 
~-----l~!.I-__ "':"---l38H 
B08SA 

EXECUTING 
SOFTWARE 

RST INSTRUCTIONS 
IN RESPONSE TO INTR 

'--...... ___ --1 3CH 

S08SA 
SYSTEM 
MEMORY 

Figure 6. 8085A Hardware and Software RST 
Branch Locations 

cycle doesn't increment the program counter. This en­
sures that the 8085 can return to· the pre-interrupt 
program location after the interrupt service is com­
pleted. The 8085 issues an INTA pulse indicating that 
it is honoring the request and is ready to process the 
interrupt. 

The 8256 can now vector program execution to the 
corresponding service routine. This is done during the 
first and only INTA pulse. Upon receiving the'lN'i'A 
pulse, the 8256 places the opcode RSTn on the data 
bus; where n equals 0 through 7 based on the level of 
the interrupt requested. The ·RSTn instruction causes 
the contents of the program counter to be pushed onto 
the stack, then transfers control to the instruction 
whose address is eight times n, as shown in Figure 6. 

Note that because interrupts are disabled during the 
interrupt acknowledge sequence, the EI instruction 
must be executed in either the service routine or the 
main program before further interrupts can be proc­
essed. 
For additional information on the 8085 interrupt 
operation and the RSTn instruction, refer to the 
MCS-85 User's Manual. 

210907-001 



Ap·153 

IAPX·88188 - 8256,lnterrupt Operation 

The MUART is compatible with. the 8086/8088 
method of interrupt vectoring when the 8086 bit in 
Commud Register 1 is set to 1. The MUART's INT 
pin is tied to the 8086/8088 INTRJIlt and its INTA 
pin connected to the 8086/88's I pin. Like the 
8085, the 8086/8088's INTR pin is also asynchronous 
so that' an interrupt request can occur at any time. The 
8086/8088 can accept or disregard requests on the 
INTR pin under software control instructions. These 
instructions set or clear the interr\lpt-enabled flag IF. 
When the 8086/8088 is powered· on or reset, the IF 
flag is cleared, disabling external interrupts on INTR. 

Although there are some basic similarities, the actual 
processing of interrupts with an 8086/8088 is different 
from the 808,5. When an interrupt request is present 
and interrupts are enabled, the 8086/8088 enters its in­
terrupt acknowledge machi.ne cycle. The interrupt 
acknowledge machine cycle pushes the flag registers 
onto the stack (as in PUSHF ·instruction). It then 
clears the IF flag, which disables interrupts. Finally, 
the contents of both the code segment register and the 
instruction pointer are pushed onto the stack. Thus, 
the stack retains the pre-interrupt flag status and pro­
gram lo~on which are used to return from the sel" 
vice routine. The 8086/8088 then issues the first of 

MUART'S 
INTERRUPT 
LEVELS 

VI" 

INTERRUPT 

INTERRUPT 

l::~., 

,INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

INTERRUPT 

'ItJlTERRUPT . 
l::~ f . 

INTERRI/PT 

INTERRUPT 

INTERRUPT 

two INTA pulses which signals the 8256 that the 
8086/8088 has honored its interrupt request. 

, , 
The 8256 is now ready to vector program execution to 
the appropriate service routine. Unlike the 8085 whe,re 
the first INTA pulse is used to place an mstruction on 
the data bus, the first INT A pUlse from the' 8086/8088 
is used only to signal'the 8256 of the honored request. 
The second INTA pulse causes the 8256 to place a 
single interrupt vector byte onto the data bus. The 
8256 plaCes the interrupt vector bytes 40H through 
47H corresponding to the level of the interrupt to be 
serviced. Not used as a direct address, this interrupt 
vector byte pertains to one of 256 interrupt "types" 
supported by the 8086/8088 memory. Program execu­
tion is vectored to the corresponding service routine 
by the contents of a specified interrupt type. 

All 25.6 interrupt types are locaied in absolute memory 
locations 0 through 3FFH which make up the 
8086/8088's interrupt vector table. Each type in the, 
interrupt vector table requires 4 bytes of memory and 
stores a" code segment address and an instruction 
pointer 'address. Figure 7 shows a block diagram of. 
the interrupt vector· table. When the 808618088 
receives an interrupt,vector byte, it multiplies its value 
by four to acquire the address of the int,errupt type. 

Cr' 
TYPE2SS (FFH) 

TYPE 254 (FEH) 

· · , ~~ 

· 
TYPE 71 (47H) 

TYPE 70 (46H) 

TYPE 69 (45H) 

tyPE: 68 144H) 

TYPE 67 (43HI 

TYPE 68 '(42H) , 

TYPE 65 (41 H) 

TYPE 64 (40H) 

l::R 
1'Y.PE ~ , '. (2H) 

TYPE 1 I1HI. ' 

TYPE 0- ,·iOH) 

3FCH 

3F8H 

11CH 

l18H 

l14H 

110H 

lOCH 

10SH 

104H 

l00H 

8H, 

4H 

OH 

Figure 7. 808818088 Interrupt Vector Table 

6.-260 210907'()()1 



Ap·153 

Once the service routine is completed the main pro­
gram may be reentered by using an IRET (Interrupt 
Return) instruction. The IRET instruction will pop the 
pre-interrupt instruction pointer, code segment and 
flags off the stack. Thus the main program will 
resume where it was interrupted with the same flag 
status regardless of changes in the service routine. 
Note especially that this includes the state of the IF 
flag; thus interrupts are re-enabled automatically 
when returning from the service routine. For further 
information refer to the iAPX 86,88 User's Manual. 

Using the 8258's Interrupt Controller 
Without INTA 

There are several configurations where the 8256 will 
not have an INTA signal connected to it. Some ex­
amples are when using the 8256 with an 8051 or 8048, 
or when connecting the INT pin on the 8,256 to the 
8085's RST 7.5, RST 6.5, or RST 5.5 inputs. In these 
configurations the lAB bit in Command Register 3 is 
set to 0, and the INTA pin on the ,8256 is tied high. 
When the interrupt occurs the CPU should branch to 
a service routine which reads the interrupt address 
register to determine which interrupt request level oc­
cured. The interrupt address register contains the level 
of the interrupt mUltiplied by four. Reading the inter­
rupt address register is equivalent in effect to the 
fNTj\ signal; it clears the INT pin and indicates to the 
MUART that the interrupt request has been 
acknowledged. After the CPU reads the value in the 
interrupt address register, it can add an offset to this 
value and branch to an interrupt vector table which 
contains jump instructions to the appropriate ihter­

,rupt service routines. An 8085 program which 
demonstrates this routine is given is Figure 8. 

Table 3 summarizes the priority levels and the in­
terrupt vectors which the 8256 sends back to the CPU. 
Note that when using Timer I there is a conflict pre-

sent between RSTO in the 8085 mode and a hardware 
reset, bec~use both expect instructions starting at 
address OH. However, there is a way to distinguish 
between the two. After a hardware reset, all control 
registers are reset to a value of QH; therefore when 
using Timer I, Reset and RSTO can be distinguished 
by reading one of the control registers of the 8256 
which has not been programmed with a value of OH. 
The control registers will contain the previously 
programmed values if RSTO occurs. 

Interrupt Registers 

The 8256's interrupt controller has several registers 
associated with it: an Interrupt Mask R~gister, an In­
terrupt Address Register, an Interrupt Request 
Register, an Interrupt Service Register, and a Priority 
Controller. Only the Interrupt Mask Registers and the 
Interrupt Address Register can be accessed by the 
user. 

Interrupt Mask Registers 
The Interrupt Mask Registers consist of two write 
registers - the Set Interrupts Register and Reset Inter­
rupts Register, and one read register - the Interrupt 
Enable Register. Each one of the eight levels of inter­
rupts may be individually enabled or disabled through 
these registers. Writing a one to any of the bits in the 
Set Interrupts Register enables the corresponding in­
terrupt level, while writing a one to a bit in the Reset 
Interrupts Register disables the corresponding inter­
rupt level. Reading the Interrupt Enable Register 
allows the user to determine which interrupt levels are 
enabled. The pits which are set to one in the Interrupt 
Enable Register correspond to the levels which are 
enabled. All of the interrupt levels will remain enabled 
until disabled by the Reset Interrupts Register except 
the counter/timer interrupts which automatically 
disable themselves when they reach zero. 

INTA: IN 
MOV 
XRA 
MOV 

INTADD 
L, A 

;Read the Interrupt Address Register 
;Put the interrupt address in HL 

LXI 
DAD 
PCHL 

A 
H,A 

B, TABLE 
B 

;Load BE with the interrupt table offset 
;Add the offset to the interrupt address 
;Jump to the interrupt vecor table 

Figure 8. Software Interrupt Acknowledge Routine 

6-261 210907-(101 



Ap·153 

Table 3. Assignment of Interrupt Levels to Interrupt Sources 

Restart Inter~ 

Com· rupt 
mand Vector Inter· Sources , 

Interrupt 8085 8086 rupt Trigger (Only one s.ource can be Selection 
Level mode mode Address Mode assigned at any time) by 

Highest RSTO 40H OH edge Timer 1 - . 
Priority 
0 

1 RSTI 41H 4H edge Event Counter/Timer 2 or Command 
external interrupt request word 1 BITI 
on Port 1 P17 (bit 2) 

2 RST2 42H SH ,level Input EXTINT -
3 RST3 43H CH edge Event Counter/Timer 3 or Mode word 

cascaded event counters/ T35 (bit 7) 
timers 3 and 5 

4 RST4 44H lOH edge Serial receive,r -
5 RST5 45H 14H edge Serial transmitter -
6 ,RST6 46H 2SH edge Timer 4 or cascaded event Mode word 

counters/timers 2 and 4 T24 (bit 6) -7 RST7 47H lCH edge Timer 5 or port 2 with Mode word 
Lowest handshaking interrupt P2C2 - P2CO 
Priority request (bits 2 ... 0) 

Note: 

If no interrupt requests are pending and INTA cycle occurs, interrupt level 2 will be the default value vectored to the CPU. 

Interrupt requests occurring when the corresponding 
interrupt .level is disabled are lost. An interrupt will 
only occur if the .interrupt is enabled before the 
interrupt request occurs. 

Interrupt Address Register 
The Interrupt Address Register contains an identifier 
for the currently requested interrupt level. The 
numerical value in this register is equal to the interrupt 
level mutliplied by four. It can be used in lieu of an 
iNTA signal to vector the CPU to the appropriate in­
terrupt service routine. Reading this register has the 
same effect as the INTA pulse: it clears the INT pin 
and indicates an interrupt acknowledgement to the 
MUART. If the Interrupt Address Register is read 
while no interrupts are pending, the external interrupt 
EXTINT will be the default value, OSH. 

Interrupt Request Register 
The Interrupt Request Register latches all pending in­
terrupt requests unless they are masked off. The re­
quest is set whenever the associated event occurs. 

Interrupt Service Register 
In the fully nested mode of operation, every interrupt 
request which is granted service is entered into this 
register. The appropriate bit will be set whenever the 
interrupt is acknowledged by iNTA or by reading the 
Interrupt Address Register. At the same time., the cor­
responding bit in the Inten:upt Request Register is 
reset. The Interrupt Service Register bit remains set 
until the microcomputer transfers the End Of Inter-

, rupt command (EDI) to the device by writing it into 
Command Register 3. In the normal mode the bits in 
the Interrupt Service Register are never set. 

6-262 210907-001 



Ap·153 

Priority Controller 
The priority controller selects the highest priority 
reciuest in the Interrupt Request Register from up to 
eight requests pending. If the INTA signal is enabled 
and becomes active, the priority controller will cause 
the highest priority level in the Interrupt Request 
Register to be vectored ba<;.k to the CPU, regardless of 
whether the &256 is in the normal mode or the nested 
mode. In the normal mode, if any bits are set in the 
Interrupt Request Register, the INT pin is activated. 
The highest priority level in the Interrupt Request 
register will be transferred to the Interrupt Address 
Register at the same time the interrupt request occurs. 
In the Fully Nested mode, the priorities of all pending 
requests are compared to the priorities in the Interrupt 
Service Register. If there is a higher priority in the 
Interrupt Request Register than in the Interrupt Ser­
vice Register, the INT signal will be activated and the 
new interrupt level will be loaded into the Interrupt 
Address Register. 

Interrupt Mode. 
There are two modes of operation for the interrupt 
controller: a normal mode and a Cully nested mode. In 
the normal mode the CPU should only be a maximum 
of one interrupt level deep; therefore, the CPU can be 
interrupted only while in the main program and not 
while in an interrupt service routine. In the fully 

, nested mode it is possible for the CPU to be nested up 
to eight interrupt levels deep. Using the fully nested 
mode, the MUART will activate the INT pin only 
when a higher priority than the one in service is re­
quested. The fully nested mode is used to protect high 
priority interrupt service routines Jrom being 
interrupted by equal or lower priority requests. 

Normal Mode 
In the normal mode of operation the 8256 will activate 
the INT pin whenever any of the bits in the Interrupt 
Request Register are set. The bits in the Interrupt 
Request Register can be set only if the corresponding 
interrupts are enabled. If more than one interrupt re­
quest bit is set, the MUART will always place the 
highest priority level in the Interrupt AddresirfTlister 
and vector this level to the CPU during an cy­
cle. When the CPU acknowledges the interrupt 
request, using either, the iN"fA signal or by reading the 
Interrupt Address Register, the corresponding inter­
rupt Request Register bit is reset. Since the Interrupt 
Service Register bits are never ,set, there is no indica­
tion in the MUART that an interrupt service routine is 
in progress. Therefore, the priority controller will in­
terrupt the CPU again if any of the interrupt request 
bits. are. set, regardless of whether the next request is a 
higher, lower, or equal priority. 

The implied way to design a program using the normal' 
mode is to have the CPU's interrupt flag enabled dur­
ing portions of the main program, but to leave the in­
terrupt flag disabled while the CPU is executing code 
in an interrupt service routine. This way, the CPU can 
never be interrupted in an interrupt service routine. 
Upon completion of an interrupt service routine the 
program can enable the CPU's interrupt flag, then 
return to the main program. 

Figure 9 shows an-example of how the normal mode 
of interrupts may operate. As the CPU begins 
executing code in the main program, certain I/O 
ports, variables, and arrays need to be initialized. 
During this time the CPU's interrupt flag is disabled. 
Once the program has completed the initialization 
routine and can accept an interrupt, the interrupt flag 
is enabled. In the 8085 this is done with the assembly 
language instruction EI, and on the 8086 with STI. 

A short time later, an interrupt request comes in on 
Level 4. Since the CPU's interrupt flag is enabled, the 
interrupt acknowlec;tge signal is activated and the CPU. 
branches off to Interrupt Service Routine 4. While the 
CPU is executing code in Interrupt Service Routine 4, 
an interrupt request comes in on Level 6 and then a 
short time later on Level 2. The 8256 activates the INT 
signal; however, the CPU ignores this because its in­
terrupt flag is disabled~ Upon returning to the main 
program the interrupt flag is enabled. When the inter­
rupt acknowledge signal is activated, the MUART 
places the highest priority interrupt request on the 
data bus regardless of the order in which the requests 
came in. Therefore, during the interrupt acknowledge 
the MUART vectors the indirect address for InterruDt 
Level 2. The INT signal is not cleared after the 
acknowledge because there is still a pending interrupt. 

The normal mode of operation is advantageous in that 
it simplifies programming and lowers code re­
quirements within interrupt routines; however, there 
are also several disadvantages. One disadvantage is 
that the interrupt response time for higher priority in­
terrupts may'be excessive. For example, if the CPU is 
executing code in an interrupt service routine during a 
higher priority request, the CPU will not branch off to 
the higher priority service routine until the current in­
terrupt service routine is completed. This delay time 
may not be acceptable for interrupts such as the serial 
receiver or a real time signal. For these cases the 
MUART provides the nested mode. 

Ne.ted Mode ' 
In the nested mode of operation, whenever a bit in the 
Interrupt Request Re$ister is set, the Priority Con-

6-263 210907·001 



Ap·153 

INTERRUPT 
REQUEST 4 

I 

I 

, 

MAIN PROGRAM 

• 
t 

EI OR STI 

t 

i 
..J 

I 
, • , 

• 
• L...:....--
t 

-.I 
t 

1 

----- -~ 

riNTERRUPr-j 
SERVICE I 

ROUTINE 4 I 
I 

,l. 
I 
I 

t ..!. 
t : 

I 
RET OR IRET I ________ .J 

r-iNTERRUPT -, 
I SERVICE I 

ROUTINE 2 I 

I I 
I I 
I I 
I t I 
I I 
I 

t 
I 

I I 
I RET R I ... _______ .J 

r-iNTER'RuPi"- , 
, SERVICE I 
i ROUTINE 6 I 

I • I 
l I I 
I I I 
I , 
I T R I ________ 1 

INTERRUPT 
REQUEST 6 

INTERRUPT 
REQUEST 2 

Figure 9. Normal Interrupt Mode Example 

troller compares the Interrupt Request Register to the· 
Interrupt Service Register. If the bit set in the Request 
Register is of a higher priority,than the highest priority 
bit set in the Service Register, the MUART will ac­
tivate the INT signal and update the Interrupt Address 
Register. If the.bit in the Request Register is of equal 
or lower priority than the highest priority bit set in the 
Service Register, the INT signal. will not be activated. 
When an INTA signal is activated or the Interrupt 
Address Register is read, the corresponding bit in the 
Request Register which caused the INT signal to be 
asserted is reset and set in the Service Register. When. 

an EO! (End Of Interrupt) command is issued, the 
highest priority bit in the Service Register is reset. 

Figure 10 shows an example of the program flow using 
the nested mode of interrupts. During the main pro­
gram an interrupt request is generated from Level 4. 
Since the interrupt flag is enabled, the interrupt 
acknowledge signal is activated, and the 
microprocessor is vectored to Service Routine 4. 
During Service Routine 4, Level 2 requests an inter­
rupt. Since Level 2 is a higher priority than Level 4, 
the 8256 activates its INT signal. An· interrupt 

6-264 210907-001 



AP·153 

MAIN PROGRAM 

EIORSTI 

r INTERRUPT ., INTERRUPT E 

REQUEST 41 - ~-~.~~~~ICR~~~EU~~V~I~C~E~4::J : 

• ~~~~~iINTERRUPT • I REQUEST2 

I r ';"INTERAUPf'" ' 
EI OR STI I I R~U~y~CEE 2 : 

• • 
• 

EI I 

I ~~~;: ~~~§ I ~=i=~tINTERRUPT ~ EOI I I REQUEST 6 

I~i_' E I 
41 :E: ~:~ J UU!_~_~_§_~J 

,Mr' 
E6 I 

I 
I I 
I I 
I EOI I 
I I 
I RET OR IRET I 

I I ____ :..J 

Figure 10. Fully Nested Interrupt Mode Example 

Edge Triggering acknowledge is not generated because the interrupt 
flag is disabled. This section of code in Service 
Routine 4 is protected and cannot be interrupted. A 
protected section ofcade may reinitialize a timer, take 
a sample, or update a global variable. When the inter­
rupt flag is enabled the microprocessor acknowledges 
the interrupt and vectors into Service Routine 2. Ser­
vice Routine 2 immediately enables the interrupt flag 
because it does not have a protected section of code. 
During Service Routine 2, Interrupt Request 6 is 
generated. However, the MUART will not interrupt 
the microprocessor until service routines 2 and 4 have 
issued the EOI command. 

The MUART has a maximum of two external inter­
rupts-EXTINT and PI7. EXTINT is a dedicated 
interrupt pin which is level triggered, where PI7 is 
either an 1/0 port or an edge triggered interrupt. If 
PI7 is selected as an interrupt through Command 
Register I and its interrupt level is enabled, it will 
generate an interrupt when the level on this pin 
changes from low to high. The edge triggered mode in­
corporates an edge lockout feature. This means that 
after the rising edge of an interrupt request and the 
acknowledsment of the request, the positive level on 

6-265 210907'()01 



"nt_l® 
-111'e' AP·153 

P17 won't generate further interrupts. Before another 
interrupt ,can be generated P17 must return low. 

External devices which generate a pulse for an inter- , 
rupt request can use the edge triggered mode as long as 
the minimum high time specified in the data sheet is 
met. 

Level Triggerin,g 

The external interrupt (EXTIN't pin 16) is the only 
level triggered interrupt on the MUART. The 8256 will 

- recognize any active (high) level on the EXTINT as an 
interrupt request. The EXTINT pin must stay high un­
til a short time after the rising edge of the first INTA 
pulse. If the voltage level on the EXTINT pin is high 
then goes low, the bit in the, interrupt request register 
corresponding to EXTINT will be reset. 

In the normal mode of operation if EXTINT is still 
high after the iNTA pulse has been activated, the INT 
signal will remain active. If the microprocessor's inter­
rupt flag is immediately reenabled, another interrupt 
will occur. Unless repeated interrupt generation is 
desired, the programmer should not reenable the 
CPU's interrupt flag until EXTINT has gone low. 

In the nested mode of operation, if EXTINT is still 
high after the INTA pulse has been activated, the INT 
signal will not be reactivated. This is because in the 
nested mode only a higher priority interrupt than the 
one being serviced can activate the INT signal. The 

8085 
8088 

INTR 

8256 

EXTINT pin should go inactive (low) before the EOI 
command is issued if an immediate interrupt is not 
desired" 

Depending upon the particular design and applica­
tion, the EXTINT pin has ~ number of uses. For 
example, it can provide repeated interrupt generation 
in the normal mode. This is useful in cases when a ser­
vice routine needs to be continually executed until the 
interrupt request goes inactive. Another use of the 
EXTINT pin is that a number of external interrupt re-

, quests can be wire-ORed. This can't be done using 
P17, for if a device makes an interrupt request while 
P17 is high (from another request), its transition will 
be shadoweii. Note that when a wire-OR'ed scheme is 
used, the actual requesting device has to be deter­
mined by the software in the service routine. 

Cascading the MU:4RT's 
Interrupt Controller 

Cascading the MUART's interrupt controller is 
necessary in 'an interrupt driven system which contains 

. more than one interrupt controller, such as a system 
using more than one MUART, or using a MUART 
with another interrupt controller like the 8259A. For a 
system which uses several MUART's, one of them is 
tied directly to the microprocessor's INT and INTA 
pins, while the remaining MUARTs are daisy-chained 

'using the EXTINT and INT pins. This is shown in 
Figure 11. -

8256 8256 

INT 

INTA 
Vee Vee 

Figure 11. Cascading- the MUART's Interrupt Controller 

6-266 210907-001, 



AP-153 

Using the configuration in Figure 11, when the 
microprocessor receives an interrupt, it generates an 
interrupt acknowledge and branches into an interrupt 
service routine. For the interrupt service routine of the 
external interrupt, EXTINT Level 2, the micro­
processor will read the next MUART's interrupt ad­
dress register and branch to the appropriate service 
routine. In effect, this would be a software interrupt 

acknowledge. An example of this type of interrupt 
acknowledge is given in Figure 8. If the last MUART 
in the chain indicated an external interrupt, the 
microprocessor would simply return to the main pro­
gram; however, this would be an error condition 
caused by a spurious interrupt. A flow chart of the 
software to handle cascaded jnterrupts' is given in 
Figure 12. 

. SECOND 
MUART 

LEVEL 0 
INTERRUPT 

SERVICE 
ROUTINE 

LEVEL 1 
INTERRUPT 

SERVICE 
ROUTINE 

READ 
NEXT 

INTERRUPT 
·ADDRESS 
REGISTER. 
BRANCH 

• • • 

r----------r::::::::~LT1~~g~~~~~~~I~=EJI~:-:;-------------------, 

READ 
NEXT 

INTERRUPT 
ADDRESS 
REGISTER. 
BRANCH 

TO SERVICE 
ROUTINE 

• 
• 
• 

• • • 
LEVEL 7 

INTERRUPT 
SERVICE 
ROUTINE 

Figure 12. Flow Chart to Resolve Interrupt Request When Cascading MUART 
Interrupt Controllers . 

6-267 210907·001 



Ap,·153 

Some consideration should be given to the priority of 
the mterrupts when cascading MUARTs.If all of the 
MUART's Level 0 and Level t interrupts are disabled, 
the highest priority interrupt is the EXTINT. In this 
case the last MUART in the chain would have the 
highest priority; however, it would take the longest 
time to propagate back' to the CPU. If, however, 
Level 0 or Level 1 interrupts were enabled, the closer 
to the microprocessor the MUART is, the higher the 
priority these two levels would have. 

When using the 8256 interrupt controller along with 
, some othe~ interrupt controller, such as the 8259A, 

the MUAR:T's INT signal would simply be tied to one 
of the interrupt controller's request inputs. The ser­
vice routine for the MUART's interrupt request would 
initially perform the software interrupt acknowledge 
before servicing the MUART's interrupt request. 
A block diagram of this cOllfiguration is given 'in 
Figure 13. 

" 

Polling the MUART 

If intel'fQpts are not used, the only other way to con­
trol the MUART is tc;> poll it. It is still possible to use 
the priority stnicture of the MUART with polling. In 
this mode; of operation the MUA~Ts INT signal (Pin 
15) is not used. and the INTA pin is tied high. Since 
the INT pin;s level is duplicated in the MSB of the 
Status Register, a program can poll this bit. When it 
becomes set, the program could read the Interrupt 
Address Register to determine the cause. Either the 
normal or nested mode of operation can be used. Note 
that 'the functions used with this polled method must 
have their interrupts enabled.' 

It is also possible to poll the counters/timers, parallel 
I/O, and UART sc;parately. To control the UART, 
one could poll the Status Register. Byte handshakes 
with the parallel I/O can be controlled by polling Port', 
1. Finally, each counter/timer has its own. register 
which can be polled. 

8086A 82S9A 8258 
8088 '. 

INTR 
r ~ INT, IRm ~ INT 

INTA r--- INTA' vet"" INTA 

, Figure 13. Connecting the 8256 to the 8259A Interrupt Controller 



Ap·153 

PIN DESCRIPTIONS 

Symbol Pin No. Type Name and Function 
~~~--.--r------~-. 
Symbol Pin No. Type Name and Function

A[)()..AD4

DBS-DB7

ALE

RD

WR

RESET

CS

1-5

6-8

9

10

11

12

13

110 Address/Data: Three·
, state address/data lines'

which interface to the
lower 8 bits of the micro­
processor's multiplexed
address/data bus. The
S·bit address is latched on
the falling edge of ALE.
In the 8-bit mode, ADO·
AD3 are used to select the
proper register, while
ADI-AD4 are used in the'
16-bit mode. AD4 in the
8-bit mode is ignored as~

an address, while ADO in
the 16-bit mode is used as
a second chip select, active
low.
I
Address Latch Enable:
Latches the 5 address lines
on ADO-AD4 and CS on
the falling edge.

Read Control: When this
signal is low, the selected
register is gated onto the
data bus.

Write Control: When this
signal is low, the value on
the data bus is written in­
to the selected register.

Reset: An active high
pulse on this pin forces
the Ghip into its initial
state. The chip remains in
this state until control in­
formation is written.
Chip Select: A low on this
signal - enables the
MUART-: It is latched
with the address on the
falling edge of ALE, and
RD and WR have no ef­
fect unless CS was latched
low during the ALE cycle.

6-269

14

INT 15

EXTINT 16

CLK 17

RxC 18

I Interrupt Acknowledge:
If the MUART has been
enabled to respond to in­
terrupts, this signal in­
forms the MUART that
its interrupt request is be­
ing acknowledged by the
microprocessor. During
this acknowledgement the
MUART puts an RSTn
instruction on the data
bus for the 8-bit mode or
a vector for ,the 16-bit
mode.

o Interrupt Request: A high
signals the microproc­
essor that the MUART
needs service.

I External Interrupt: An ex-,
ternal device can request
interrupt service through
this input. The 'input is
level sensitive (high),
therefore it must be held
high until an INTA occurs
or the interrupt address
register is read.

I System Clock: The
reference clock for the
baud rate generator and
the timers.

110 Receive Clock: If the
baud rate bits in Com­
mand Register 2 are ail 0,
this pin is an input which
clocks serial data into the
RxD pin on the rising
edge of RxC. If baud rate
bits in Command Register
2 are programmed from
I-OFH, this pin outputs a
square: wave whose rising

210907·001

inter Ap·153

PIN DESCR,IPTIONS (CONTINUED)

Symbol Pin No. Type Name an~ Functi,on
edge indicates when the
data on RxD is being
sampled. This output re­
mains high during start,
stop, and parity bits.

19

CTS 21

I Receive Data: Serial data
input.

I Clear To Send: This input
enables the serial ,trans­
mitter. If 1,1.5, or 2 stop
bits are selected, CTS is
level sensitive. As long as
CTS is ~ow, any character
loaded into the transmit­
ter buffer register will be
transmitted serially. A
single negative going
pulse causes the transmis­
sion of a single character
previously loaded into the
transmitter buffer
regis-ter. If a baud rate'
from 1-0FH is selected,
CTS must be low for at
least 1132 of a bit, or it
will be ignored. If the

. transmitter buffer is emp­
ty, this pulse will be ig­
nored. If this pulse occurs
during the transmission of
a character up to the time
where 112 of the first (or
only) stop bit is sent out,
it will be ignored. If it oc­
curs afterwards, but
before the end of the stop
bits, the next character
will be transmitted im­
mediately following the
current one. If CTS is still
high when the transmitter
register is sending the last
stop bit, the transmitter
will enter its idle state un­
til tqe next ~-to-low
transition on CTS ,occurs.

6-270

Symbol Pin No. TYPE Name and Function
If 0.75 stop bits is chosen,
the CTS input is edge sen­
sitive. A negative edge on
CTs results in the im­
mediate transmission of
the next character. The
length of the stop bits is
determined by the time in­
terval between the begin­
ning of the first stop bit
and the next negative edge
on CTS. A high-to-low
transition has no effect if
the transmitter buffer is
empty or if the time inter­
val between the beginning
of the stop bit and next
negative edge is less than
0.75 bits. A high or a low
level or a low-to-high
transition has no effect on
the transmitter for the
0.75 stop bit mode.

TxC 22 I/O Transmit Clock: If the
baud rate bits in com­
mand register 2 are all set .
to 0, this input clocks data
out of the transmitter on
the falling edge. If baud
rate bits are programmed
for 1 or 2, this input per­
mits the user to provide a
32x or 64x clock which is
used for the receiver and
transmitter. If the baud
rate bits are programmed
for 3-0FH, the internal
transmitter clock is out­
put., As an output it
delivers ,the transmitter
clock at the selected bit
rate. If 1 Vz or 0.75 stop
bits are selected, the
transmitter divider will be
asynchronously reset at
the beginning of each

210907·001

inter Ap·153

PIN DESCRIPTIONS (CONTINUED) DESCRIPTION OF THE REGISTERS

Symbol Pin No. Type Name and Function

start bit, immediately
causing a high-to-low
transition on TxC. TxC
makes a high-to-low tran­
sition at the beginning.-of
each serial bit, and a low­
to-high transition at the
center of each bit.

TxD 23 0 Transmit Data: Serial
data output.

P27-P20 24-31 110 Parallel I/O Port 2: Eight
bit general purpose 110
port. Each nibble (4 bits)
of this port can be either
an input or an output.
The outputs are latched
whereas the input signals
are not. Also, this port
can be used as an 8-bit in­
put or output port when
using the two-wire hand­
shake. In the handshake
mode both inputs and
outputs are latchcll.

PI7-PlO 32-39 110 ParaDel I/O Port 1: Each

,

pin can be programmed as
an input or an output to
perform general purpose
I/O. ,All outputs are
latched whereas inputs are
not. Alternatively these
pins can serve as control
pins which extend the
functional spectrum of
the chip.

GND 20 PS Ground: Power supply

Vcc 40

,'and logic ground
reference.

PS Power: + SV power sup­
ply.

The following section will provide a description of the
registers and define the bits within the registers where
appropriate; Table 4 lists the registers and their
addresses.

Command Register 1

I L1 1 LO 1 S1 1 SO 1 BRKI I BITI 18086 I FRal
(OR) (OW)

FRQ - Timer Frequency Select

This bit selects between two frequencies for the five
timers. If FRQ = 0, the timer input frequency is
16KHz (62.Sus). If FRQ = I, the timer input frequen­
cy is 1 KHz (lms). The selected clock frequency is
shared by all the counter/timers enabled for timing;
thus, all·timers must run with the same time base.

8088 - 8088 Mode Enable

This bit selects between 8085 mode and 8086/8088
mode. In 8085 mode (8086 = 0), AO to A3 are' used to
address the internal registers, and an RSTn instruction
is generated in response to the first INTA. 10 8086
mode (8086 = I), Al to A4 are used to address the in­
ternal registers, and AO is used as an extra chip select
(AO must equal zero to be enabled). The response to
INTA is {or 8086 interrupts where the first INTA is ig­
nored, and an interrupt vector (40H to 47!1) is placed
on the bus in response to the second iNTA.

BITI - Interrupt on Bit Change

This bit selects between one of two interrupt sources
on Priority Levell, either Counter/Timer 2 or Port 1
PI7 interrupt. When this bit equals 0, Counter/Timer
2 ",ill be mapped into Priority Levell. If BITI equals
o and Level 1 interrupt is enabled, a transition from I
to 0 in Counter/Timer 2 will generate an interrupt re­
quest on Levell. When BITI equals I, Port 1 P17 ex­
ternal edge triggered interrupt source is mapped into
Priority Level 1. In this case if Level I is enabled, a
low-to-high transition on PI7 generates an interrupt
request on Level 1.

BRKI - Break-In Detect Enable

lfthis bit equals 0, Port I P16 is a general purpose I/O
port. When BRKI equals I, the Break-In Detect
feature is enabled on Port 1 P16. A ~reak-In condi-

, tion is present on the transmission line when it is forc­
ed to the start bit voltage level by the receiving station.
Port I P16 must be connected externally to ,the
transmission line in order to detect a Break-In. A

6-271 21090Hl01

Ap·153

r'[]~ ~ MN/MX !-Vcc
M/m

8284 RESET AD
...... ClK WR CLOCK

- READY INT GENERATOR
RES iNn

\
ALE

L STB

!1!!B 1---', I I DEN I---"n-II
8086

Il : I ADo·ADI5 A 8282 ADDR
Ale·AII ~DRlUATA LATCH

- 11'1
2 OR 3

BHE I-- . II
~

I III '.::..b-
I I I I ,.r.-=----' II ----"I,
I I I I I 8286 : I

: : I I : I TRANS I
DATA

(16)~ CEIVER I II . t ~ ~ (2)11
. ~ II
I 'T .jJl-i-
L I J<iPTIONAl I CS ALE INTA INTWR RD RESET ClK
---- I <:=> ,--------- . PORT 1

ADDRIDATA (8) ADo-AD, 8256 <==>
D5-D7 PORT 2

CTS TxD RxD TxC RxC EXTINT

~ t
SERIAL 110

Figure 16. 8086 Min Mode/8256 Interface

, I SHE A. CHARACTERISTICS

0 0 WHOLE WORD
0 1 UPPER BYTE FROMrro ODD ADDRESS

, MUART II 1 0 LOWER BYTE FROMrro EVEN ADDRESS
1 1 NONE

00
ADDRESS • A.-A,

~
8205 ! prVEN ADDRESS EI - BYTe PERIPHERALS

M/iO E, 110 MAPPED

BHE E, 0,

Figure 16a. Technique for Generating the MUART's Chip Select

6-272 210907-001

Ap·153

f~~~ RES ~!fEADY
RESET.

tacK C
GEN ERATOR 8088

CPU

A1.A8
Ao,.Ao.

.1ir·R-

..

1",",:",-

Lr~8~~ER
COMMAND BUS

1'1
"[l=h- .

IL STB
8282
OR n-u 1 U .8283
OE

" • 'MEMO Rl ERIPHERA It IH> ~ ,
8205 J OAT A DATA

Jl 11 DECODER

~
8288

T OR
8287

DE

1
RESETCLK INT ALE ADo·AD, CSWRRDINTA

0,·0,
8258

PORT1 PORT2 EXTINT TiC RxC TxD Rxb CTS

0 0 1 ~ Serial lID

Figure 17. 8088 Max Mod!,8256 Interface

READING PORT 1 AND PORT 2

Reading the ports gates the state at the pins onto the
data bus if they are defmed as I/O pins. A read opera­
tion transfers the contents of 1h,e associated output
latches of pins P12, P13, PIS, and P16, which are de­
fined as control function pins. Reading control pins"
PI0, PH, and P17 delivers the state of these pins.

Operating" the "Event CountersJTimers
The event counters/timers can be loaded with an
initial value at any time. Reading event
counters/timers is possible without interfering with
the counting process.

LOADING EVENT COUNTERSITIMERS

Loading event counters/timers I-S under their respec­
tive addresses transfers the data present on the data

bus as an initial value into the addressed event
counter/timer. The event counter/timer counts froin
the new initial value unmediately following the data
transfer (exception: retriggerable mode of Timer S, or
3 and S)

Cascaded counters/timers can be loaded with an
initial value using one of two procedures:
1) Only the event counter/timer representing the most
significant byte will be loaded. The event
counter/timer representing the least significant byte is
set to OFFH automatically. Counting is started im­
mediately after the data transfer.
2) The event counter/timer representing" the most
significant byte will be loaded, causing the least
significant byte to be set to OFFH automatically.
Counting is started immediately following tile data
transfer. Next, the counter representing the least
significant byte will be loaded and counting is started

6-273 210907'()()1

Ap·153 ',,"

~ClK ClK~
j'

r~ MNIMX i-GND
,

; S. MWTC , S, §", AMYlQ rt ' '
8284 • ~ RESET S. S, ~

CLOCK - READY' DEN ~
GENERATOR I"- DTlii AIQY& f-i

,INTR
ALE

8086 ' r----'
I

~
I
I ..a.- 8282 li

ADo·AD" lATCH
At.·A,e (2 OR 3)

J
BHE

8286 ,
TRANS·

CEIVERS

L...- iT
(2)

~IOE
~ II

ALE INT INTA WR RD' CS ClK RESET
D ID TA Abo·AD, P 05.0, 8256 • PORT1

CTS TxD IIxD TxC RxC EXTINT PORT2 P
, ~ ,

SERIAL I/O

Figure 18. 8086 Max Mode:S256 Interface

again, but this time with a complete 16-blt initial
value. The least significant byte of the initial value
must be transfe(red before the counter representing
the least significant 1;>yte exhibits its zero transition tei
prevent ~e most significant byte of the initial value
from being decremented improperly ..

In the case of an 8-bit initial value for Timer 5 or for
cascaded Event Counter/Tjmer 3 and 5" the initial
value for Timer 5 is'loaded from a save register, if it is
operated in retriggerable counting mode. CoUnting is
start~d after an initial' value has been transferred
whenever a high-to-low transition occurs on Port
PIS. '

Ca&caded Event Counter/Timer 3 and 5 operating in
ret.rigg~rable counting mode can be loaded qirectIy
with an initial value for Timer 5 representing the most
significant byte; Event Counter/Timer 3 wHi be set to,
OFFH automatically.

READING EVENT COUNTERSITIMERS

Reading event counters/time~s .1-5 from their respec­
tive addresses gates the counter contents onto the data
bus. The counter contents gated onto the data bus re­
main stable during the read operation while the
counter just being 'read continues t9 count. The
~inimum time between the two read operations from
the same co~ter is I usee:

The procedure to be followed when reading cascaded
event counters/timers is:
1) The event counter/timer representing the' most
significant byte will be read first. At this time, the
least sigrtificant byte is latched into read latches ..
2) When the event counter/timer representing the
least significant byte is addres~ed, the byte stored in
the read latches will be gateCI onto the. data bus. The
value stored in the read latches remains valid until it is
read, the cascading condition is removed, or a'write

210907-001

inter Ap·153

18 MHz
VCC r~

Ji x, X, RESET
iiii

liD WII

'. INTO

V_ SRDY
INTAO / +5

ALE

.f NMI
DT/If

1
.r HO'D 1m!

~r;=;
\ 8282

ADo·AD j ·, r- ADDRIDATA LATCH ADDRESS > 80188 (2)

PCSO DE

.-C:;-
8288

TRCVR
(181 DATA >

(2)

I~T-~
/

GENERATOR rL CLOCK RI

ALE INTA INT WR RDRESET CLK

(81 ADo·AD, M 0,·0,
8258 PORTl

CS PORT2 1.-.
CTS TxD RxD TxC RxC EXTINT I,....!!L.;
t , f , , t
'---v-----J

SERIAL 110

Figure 19. 8018618256 Interlace

operation affecting one of the two event
counters/timers is execute4.

The time between' reading the most significant byte
and the least significant byte must be at least 1 usec.

Note:
For cascaded event counters/timers the least significant
counter/timer is latched after reading the most significant'
counter/timer. If the lower byte changes from OOH to OFFH
between the readina of the MSB and the latching of the LSB,
the carry from the most significant event counter/timer to the
least significant event counter/timer is lost.

Therefore, it is necessary to repeat the whole reading once if
the value of the least significant event counter/timer is OFFH.
Doing this ~ -avoid. working' with a wrong value (correct
value + 255).

APPLICATION EXAMPLE

This section describes how the 8256 was designed into
a Line Printer Multiplexer (LPM). This application
example waS chosen because it employs a majority of
the MUART's features. The information in this sec­
tion will be applicable to many other designs since it
describes some cOnUnon software and hardware
aspects of using the MUART.

Description of the Line Printer Multiplexer
(LPM)

The Line Printer Multiplexer allows up to eight
workstations to share one printer" The workstations
transmit serial asynchronous data to the LPM. The
LPM receives the serial data, buffers it, then transmits

(6-275 210907·001

AP·153

Table 4. MUART Registers

Read Registers Write Registers
8085 Mode: AD3 AD2 AD1 ADO
8086 Mode: AD4 AD3 AD2 AD1

111 LO I S1 I SO I BRKII BITI 180861 FRO I 0 o 0 0 1 L1 1 LO! SI 1 SO 1 BRKII BITI 1 80861 FRO I

Command 1 Command 1

1 PENI EP I Cl I CO I B31 B2 I Bl I BO I 0 o 0 1 I PEN I EP I Cl 1 CO I B3 I B2 I Bl I BO 1

Command 2 Command 2

I 0 I Rx~IIAE I NIE I 0 ISBRKITS£IiiJ 0 0 o 1 SET 1 RxE I IAE I NIE 1 END ISBR~TBR~ RST!

Command 3

1 T3S1 T241 TSC I CT3! CT21 P2C21 P2Cli P2CO! ,'0 0

Mode

I Pl?1 P161 PIS 1 P141 PIS I P12 I Pl1 I Pl0 I 0 0

Port 1 Control

L7 I L6"1 LS 1 L4 I LS I L2 ILl I LO I 0 o
Interrupt Enable

I 07 I 06 I OS I 04 I 03. I 02 I 01 I DO I 0

Interrupt Address

I 07 1 06 I OS I 04 I D3 I 02 I 01 1 DO I 6
Receiver Buffer

Command 3

I T351 T241 TSC 1 cral CT21 P2C21 P2Cli P2coI
Mode .

o I P171 PIS I PIS I P141 PIS I P121 Pll I Pl0 I
Port 1 Control

1 lul~I~lul~IL2ll1 ~I
Set Interrupts

o lul~I~IUI~IL2ll1l~1
Reset Interrupts

IWID6ID6I~lool~!~!DOI
Transmillar Buller

I 07 I 06 I 05 I 04 1 03 I 02 I 01 I DO 1 1

Port 1

o 0 0 I 07 I 06 I OS I 04 I 03 I 02 1 01 I DO I
Port 1 .

1 07 1 06 1 OS 1 04 I 03 I 02 1 01 1 DO I 1 o 0 I! 07 I 06 I 05 1 04 I 03 I 02 1 01 I DO I
Port 2 Port 2

IWID6ID6I~lool~I~IDOI o o IWID6ID6!~loo!~I~IDOI
Time, 1 Timer 1

I 07 ! 06 ! OS 1 04 I 03 I 02 101 'I DO 1 I, 0 1 07 I .06 I OS I 041 03 I 02 I DilDO 1

Timer 2 Timer 2

Timer 3 Timer 3

IwID6ID6I~lOOI~I~IDOI 1 o IwID6ID6I~lool~!~IDO!
Timer 4 Tlm~r 4

I 07 I 06 ! 061 04 I 03 I 02 I 01 I DO ! o I 07 I OS I 05. I ~ I 03 I 02 I 01 I DO ·1
Timer 5 Timer 5

liNT I RBF I TBE I TRE I BO I PE I OE I FE I 1

Status.

1 I 0 I RS4 IRS3 I RS2 I RSI I RSO ITME lose I
.' MOdification . .

6-276 210907'()OI

inter Ap·153

Break-In is polled by the MUART during' the
transmission of the last or only stop bit of a character.

A Break-In Detect is OR-ed with Break Detect In Bit 3
of the Status Register. The distinction can be made
through the interrupt controller. If the transmit and
receive interrupts are enabled, a Break-In Will generate
an interrupt on LevelS, the transmit interrupt, while
Break will generate an interrupt on Level 4, the receive
interrupt. '

SO, S1 - Stop Bit Length

'S1 SO
o 0
o 1
1 0
1 1

Stop Bit Length
1
1.5
2
0.75

The relationship of the number of stop bits and the
function of input CTS is discussed in the Pin Descrip­
tion section under "CTS".

LO, L 1 - Character Length

L1 LO

o
o
1
1

o
1
o
1

'Command Register 2

Character
Length

8
7
6
5

(PEN 1 EP ,I Cl CO B3 B2 HI BO

(IR) (IW) ,

Programming bits 0 .. ,'3 with values from 3H to FH
enables the internal baud rate generator as a common
clock source ,"for the transmitter and receiver and
determines its divider ratio.

Programming bits 0 ... 3 with values of IH or 2H
enables input TxC as a common clock source for the
transmitter and receiver. The external clock must pro­
vide a,frequency of either 32x or 64x the baud rate.
The data,'transmission rates range from 0 ... 32
Kbaud.

''',

If bits O ... 3 are set to 0, separate clocks must be input
to pin Rxe for the receiver and pin TxC for the
transmitter"Thus, different baud rates can be used for

transmission and reception. In this case, prescaiers are
disabled and the input serial clock frequency must
match the baud rate. The input serial clock frequency
can range from 0 to 1.024 MHz.

BO, B1, B2, B3 - Baud Rate Select

These four bits select the bit clock's source, sampling
rate, and serial bit rate for the internal baud rate
generator.

B3 B2 B1 BO Baud Sampling
Rate Rate

0 0 0 0 TxC,RxC 1
0 0 0 1 TxC/64 64
0 0 1 0 TxC/32 32'
0 0 1 1 19200 32
0 1 0 0 9600 64
0 1 0 1 4800 64
0 1 1 0 2400 64
0 1 1 1 ' 1200 64
1 0 0 0 600 64
1 0 0 1 300 64
1 0 1 0 200 64
1 0 1 1 150 64
1 1 0 0 110 64
1 1 0 1 100 64
1 1 1 0 75, 64
1 1 1 1 50 64

The following table gives an overview of the function
of pins TxC and RxC:

Bits 3 to
o (Hex.)

o

1,2

3 to F

TxC RxC

Input: 1 x baud input: 1 x baud
rate clock for the rate clock for the
transmitter receiver
Input 32 x or 64 x Output: receiver bit
baud rate for trans- clock with a low-to­
mitter and receiver high transition at

data bit sampling
time. Otherwise:
high level

Output: baud rate Output: as above
clock of the
Itran~mitter

As an output, RxC outputs a low-to-high transition at
sampling time of evary data bit of a character. Thus,
data can be-loaded, e:g., into 'a shift register external-

6-277 210907-091

"nt_l® 111'e' ' Ap·153

Iy. The transition occurs only if data bits of a
character are present. It does not occur for start, pari­
ty, and stop bits (RxC = high).

As an output, TxC outputs the internal baud rate
clock of the transmitter. There will be a high-to-Iow
transition at every beginning of a bit.

CO, C1 - System Clock Prescaler
(Bits 4, 5)

Bits 4 and 5 define the system clock prescaler divider
ratio. The internal operating frequency of 1.024 MHz
is derived from the system clock.

C1 CO Divider Ratio

0 0 5
0 1 3
1 0 2
1 1 1

EP - Even ParIty (Bit 6)

EP = 0: Odd parity
EP = 1: Even parity

PEN - Parity Enable (Bit 7)

Clock at Pin
ClK

5.12 MHz
3.072 MHz
2.048 MHz
1.024 MHz

Bit 7 enables parity generation and checking.

PEN = 0: No parity bit
PEN = 1: Enable parity bit

The parity bit according to Command Register 2 bit 6
(see above) is inserted between the last data bit of a
character and the first or only stop bit. The parity bit
is checked during reception. A false parity bit
generates an error indication in the Status Register
and an Interrupt Request on Level 4:

Command Register 3

, I SET I RxE I IAE I NIE I ~NO I SBRKfrBRK I RST I
(2R) (2W)

Command Register 3 is 'different from the first two
registers because it has a bit set/reset capability.

Writing a byte with Bit 7 high sets any bits which were
also high. Writing a byte with Bit 710w resets any bits
which were high. If any bit 0-6 is low, no change oc­
curs to that bit. When Command Register 3 is read,
bits 0, 3, and 7 will always be zero.

RST - Reset

If RST is set, the following events occur:

1) All bits in the Status Register except bits 4 and 5
are cleared, and bits 4 and 5 are set.

2) The Interrupt Enable, Interrupt Request, and In­
terrupt Service Registers are cleared. Pending re­
quests and indications for interrupts in service will
be cancelled. Interrupt signal INT will go low.

3) The receiver and transmitter are reset. The
transmitter goes idle (TxO is high), and the receiver
enters start bit search mode.

4} If Port 2 is programmed for handshake mode, IBP
and OBP are reset high.

RST does not alter ports, data registers or command
registers, but it halts any operation in progress. RST is
automatically cleared.

RST = 0 has no effect. The reset operation triggered
by Command Register 3 is a subset of the hardware
reset.

'.
TBRK - ,Transmit Break

The trans,mission data output TxO will be set low as
soon as the transmission of the previous character has
been finished. It stays low until TBRK is cleared. The
state of CTS is of no significance for this operation.
As, long as break is active, data transfer from the
Transmitter Buffer to the Transmitter RegIster will be
inhibited. As soon as TBRK is 'reset, the break condi-,
tion will be deactivated and the transmitter will be re­
enabled.

SBRK - Single Character Break

This causes the transmitter data to be set low for one
character including start bit, data bits, parity bit, and
stop bits. SBRK is automatically cleared when time
for the last data bit has passed. It will start after the
character in progress completes, and will delay the
next data transfer from the Transmitter Buffer to the
Transmitter Register until TxO returns to an idle

6-278 210907·001

Ap·153

(marking) state. If both TBRK and SBRK are set,
break will be set as long as TBRK is set, but SBRK will
be cleared after one character time of break. If SBRK
is set again, it remains set for another character. The
user can send a definite number of break characters in
this manner by clearing TBRK after setting SBRK for
the last character time.

END - End of Interrupt.

If fully nested interrupt mode is sele<;ted, this bit resets
the currently served interrupt level in the Interrupt
Service Register. This command must occur at the end
of each interrupt service routine during fully nested in­
terrupt mode. END is automatically cleared when the
Interrupt Service Register (internal) is cleared. END is
ignored if nested interrupts are not enabled.

NIE - Nested Interrupt Enable

When NIE equals I, the interrupt controller will
operate in the nested interrupt mode. When NIE
equals 0, the interrupt controller will operate in the
normal interrupt mode. Refer to the ~'Interrupt con­
troller" section under "Normal Mode" and "Nested
Mode" for a detailed description of these operations.

IAE - Interrupt Acknowledge Enable

This bit enables. an automatic response to INTA. The
particular response is determined by the 8086 bit in
Command Register 1.

RxE - Receive Enable

This bit enables the serial receiver and its associated
status bits in the status register. If this bit, is reset, the
serial receiver will be disabled and the receive status
bits will not be updated.

Note that the detection of break characters remains
enabled while the receiver is disabled; i.e., Status
Register Bit 3 (BD) will be set while the receiver is
disabled whenever a break character has been
recognized at the receive data input RxD.

SET - Bit SetiReset

If this bit is high during a write to Command Register
3, then any bit marked by a high will set. If this bit is
low, then any bit marked by a high will be cleared.

Mode Register

I T35! T24! T5C ! CT3! en! P2C2! P2Cl! P2col
(3R) (3W) .

P2C2, P2C1, P2CO - Port 2 Control

Direction
P2C2 P2C1 P2CO Mode Upper Lower

o 0 0 nibble input input
o 0 1 nibble input output
o 1 0 nibble output input
o 1 1 nibble output output
1 0 0 byte handshake input

'1 0 1 byte handshake output
1 1 0 DO NOT USE
1 1 1 test

If test mode is selected, the output from the internal
baud rate generator is placed on bit 4 of Port 1 (pin
35).

To achieve this, it is necessary to program bit 4 of Port
. 1 as an output (Port 1 Control Register Bit P14 = 1),

and to program Command Register 2 bits B3 - DO
with a value ~ 3H:

Note:.
If Port 2 is operating in handshake mode, Interrupt Level 7 is
not available for Timer 5. Instead it is assigned to Port 2 hand­
shaking.

CT2, CTa - Counterfrlmer Mode

Bit 3 and 4 defines the mode of operation of event
counter/timer~ 2 and 3 regardless of its use as a single
unit or as a cascaded one.

If CT2 or CT3 are high, then counter/timer 2 or 3
respectively is configured as an event counter on bit 2
or 3 respectively of Port 1 (pins 37 or 36). The event
counter decrements the count by one on each low-to­
high transition of the external input. If CT2 or CT3 is
low, then the respective counter/timer is configured as
a timer and the Port 1 pins are used for parallel I/O.

T5C - Timer 5 Control

If T5C is set, then Timer 5 can be preset and started by
an external signal. Writing to the Timer 5 register
loads the Timer 5 save register and stops the timer. A
high-to-low transition on bit 5 of Port 1 (pin 34) loads
the timer with the saved value and starts the timer,.
The next high-to-low transition on pin 34 retriggers
the timer by reloading it with the initial value and con­
tinues timing.

Following a hardware reset, the save register is reset to
OOH and both clock and trigger inputs are disabled.
Transferring an instruction with T5C = 1 enables the
trigger inpat; the save register can now be loaded with

I

6-279 210907-001

AP·153

an initial value. The first trigger pulse causes the initial
value to be load.ed from the save register and enables
the,coullter to «ount down to zero. '

When the timer reaches zero it issues an interrupt re­
quest, disables its interrupt level and continues count­
ing" A subsequent high-to-low transition on pin 5
resets Timer 5 to its initial value. For another timer in­
terrupt, the Timer 5 interrupt enable bit must be set
again.

T35, T24 - Cascade Timers

These two bits cascade Timers 3 and 5 or 2 and 4.
Timers 2 and 3 are the lower bytes, while Timers 4 and
5 are the upper bytes. If T5C is set, then both Timers 3
and 5 can be preset and started by an external pulse.

When a high-to-low transition occurs, Timer 5 is
preset to its saved value, But Timer, 3 is always preset
to all ones. If either CT2 or CT3 is set, then the cor­
responding timer pair is a 16-bit event counter.

A summary of the counter/timer control bits is given
in Table 5.

Note:
Interrupt levels assigned to single counters are partly not oc'
cupied if event counters/timers are cascaded. Level 2 will be
vacated if event counters/timers 2 and 4 are cascaded.
Likewise, Level 7 will be vacated if event counters/timers 3
and 5 are cascaded.

Single event counters/timers generakan interrupt request on
the transition from OlH to OOH, while cascaded ones generate
it on the transition from OOOlH to OOOOH.

Table 5. Event CounterslTlmers Mode of Operation

Event Counterl Programming
Timer Function (Mode Word) 'Clock Source

1 8-bit timer - internal clock

2 8-bit timer T24=0, CT2=0 internal clock

8-bit event counter T24=0, CT2=1 P12 pin 37

3 S-bit timer T35=0, CT3=0 internlil clock

8-bit event counter T35 =0, CT3 = 1 P13 pin 36

4 S-bit timer T24=0 internal clock

S-bit timer, T35=0, T5C=0 internal 910ck

5 normal mode

S-bit timer, T35=0, TSC=l internal clock
retriggerable mode

2 and 4 16-bit timer T24=1, CT2=0 internal clock
cascaded 16-bit event counter T24=1, CT2=1 P12'pin 37

16-bit timer, T35 = I, T5C=0, internal clock
normal mode CT3=O

3 and 5 16-bit event counter, T35 = I, T5C =0, P13 pin 36
cascaded normal mode CT3=1

16-bit timer, T35 = 1, T5C = I, internal clock
Retriggerable mode CT3=O

16-Bit event counter, T35=1, T5C=I, PI3 pin 36
Retriggerable mode CT3=1

~

6-280 210907-001

inter Ap·153

Port ,1 Control Register

\ PI7 \ P16\ PIS \ P14\ PI3 \ P12\ Pll \ PIO I.
(4R) (4W)

Each bit in the Port I Control Register configures the
direction of the corresponding pin. If the bit is high,
thePin is an output. and if it is low the pin is an input.
Every Port 1 pin has another function which is con­
trolled by other registers. If that special function is
disabled, the pin functions as a general 1/0 pin as
specified by this register. The special functions for
each pin are described below.

Port 10, 11 - Handshake Control

If byte handshake control is enabled for Port 2 by the
MQsIe Register, then Port lOis programmed as
STBI ACK handshake control input, and Port II is
programmed as IBF/OBF handshake control output.

If~ handshake mode is enabled for o~tput on Port
2, OBF indicates that a character has been loaded into
the Port 2 output buffer. When an external device
reads the data, it acknowledges this operation by dri,v­
ing ACK low. OSF is set low by writing to Port 2 and
is reset high byAcK.

If byte handshake mode is enabled for input on Port
2, STS is an input. IBF is driven low after STii goes
low. On the rising edge of STB the data from Port 2 is
latched. '

IBF is reset high when Port 2 is read.

Port 12, n - Counter 2, 3 Input

If Timer 2 or Timer 3 is programmed as an event
counter by the Mode Register, then Port 12 or Port 13
is the counter input for Event Counter 2 or 3, respec­
tively.

Port 14 - Baud Rate 'Generator OutputClotk

If test, mode is enabled by the Mode ,Register and
Command Register 2 baud rate select is greater than 2,
then Port 14 is an output from the internal baud rate
generatQr.

PI4 in Port I control register must be set to I for the
baud rate generator clock to be output. The baud rate
generator clock is 64 x the serial bit rate 'except at
19.2Kbps when it is 32 x the bit rate. '

Port 15 - Timer 5 Trigger

If T5C is set in the Mode Register enabling a retrig­
gerable timer, then Port IS is the input which starts
and reloads Timer 5.

A high-to-low transition on PIS (Pin 34) loads the
timer with the save register and starts the timer.

Port 16 - Break·ln Detect

If Break·ln Detect is enabled by BRKI in Command
Register I, then this input is used to sense a Break-In.
lf Port 16 is low while the serial transmitter is sending
the last stop bit, then a Break-In,condition is signaled.

Port 17 - Port Interrupt Source

If BITI in Command Register I is set, then a low-to­
high transition on Port 17 generates an interrupt re­
quest on Priority Level I.

Port 17 is edge triggered.

Interrupt Enable Register

L7 I L6 I L5 I' L4 I L3 I L2 Ll LO

(5R) (5W = enable,
6W = disable)

Interrupts are enabled by writing to the Set Interrupts
Register (5W). Interrupts are disabled by writing to
the Reset Interrupts Register (6W). Each bit set by the
Set Interrupts Register' (SW), will enable that leVel in­
terrupt, and each bit set in the Reset Interrupts
Register (6W) will disable that level interrupt. The
user can determine which interrupts are enabled by
reading the Interrupt Enable Register (5R).

Priority
Highest LO

Ll
L2
L3
L4
L5'
L6'

Lowest L7

Source
Timer I

Timer 2 or Port Interrupt
External Interrupt (EXTINT)

Timer 3 or Timers 3 & 5
Receiver Interrupt

Transmitter Interrupt
Timer 4 or Timers 2 & 4

Timer 5 or
Port 2 Handshaking

Interrupt Address Register

o D4 D3 L D2 1 0 1 0 1
21nterrupt Level

o o

(6R) Indication

6-281 , 210907,001'

AP·153

Reading the interrupt ac;Idress· register transfers an
identifier for the currently requested interrupt level on
the systeM' data bus. This identifier is the number of
the interrupt level multiplied by 4. It can be used by
the CPU as an offset address for interrupt handling.
Reading the interrupt address register has the same ef­
fect as a hardware interrupt acknowledge INTA; it
clears the interrupt request pin (lNT) and indicates an
interrupt acknowledgement to the interrupt con-

. troller.

Receiver and Transmitter Buner

I 07' 1 06 I ~5 1 04 .1 03 I 02 I oi I DO
,(7R) (7W)

Both the receiver and transmitter in the MUART are
double buffered. This means that the transmitter and
receiver have a shift register and a buffer register. The
buffer registers are directly addressable by reading or
writing to register seven. After the receiver buffer is
full, the RBF bit in the status register is set. Reading
the . receive buffer clears the RBF status bit. The
transmit buffer should be written to 'only if the TBE
bit in the status register is set. Bytes written to the
transmit buffer are held there until the transmit shift

, register is empty, asSuming CTS is low. If the transmit
buffer and shift· r~gister are empty, writing to the
transmit buffer immediately transfers the byte to the
transm~t shift register. If a serial character length is
less than 8 bits, the unused most signlficant,bitsare set
to zero when reading the receive buffer" and are ig­
nored when writing to ~e transmit buffer.

Port 1

071061 OS I 041 031 021 D1 IDOl
(8R) (8W)

Writing to Port 1 sets tlie data in the Port 1 output
latch. Writing to an input pin,does not affect the pin,
but' the data is stored and win be output 'if the direc­
tion of the pin is changed later. If the. Pin is used as Ii
control signal, the pin will not be affected, but the
data is stored. 'Reading Port 1 transfers the data in
Port 1 ~mto the data bus.

Port 2 .. '~

D7 I 06' 1 OS 1 D4 I 03 02 01 DO

(9R) (9W)

Writing to Port 2 sets the data in the :port 2 output
latch. Writing to an input pin does not affect the pin,
but It does store the data in the latch. Reading Port 2 '
puts the input,pins onto the bus or the contents of the
output latch for output pins. . .

Timer 1·5

07 I 06 I OS I 04 ,I 03 D2 D1 DO I
(OAI6-OEI6R) (OAI~-OEI6W)

Reading Timer N puts the cdnterits of'the timer onto
the data bus. If the counter changes while RD is low,
the value on the data bus will not change. If two
timers are cascaded,. reading the high-order byte will
cause the low-order byte to. be latched. Reading the
low-or4er byte will unlatch t~em both. Writing to
either timer or decascading them also clears the latch
condition. Writing to a tinier sets tile starting value of
tnat timer. If two timers are cascad¢d; writing to the
high-order byte presets the low-order byte io all ones.
Loading only the high-order byte with a value of X
leads to a count of X 2S6+2S5. Timers count down
continuously. If the' interrupt is enabled, it 'ocCurs
when the counter 'changes from 1 to O. .

The timer/counter interrupts are automatically dis-
abled when the interrupt request is generated. .

Status Register:

lINT I RBF I,TBE I TRE·I BO I PE I 'DE I FE I
" (OFI6R)

Reading the status register gates its contents onto the
data bus. It holds the operational status of the serial
iriterface as well as the status of the iriterrupt pin INT.
The status register can be read at any time. The flags
are stable and well defmed at alI'instants'.

FE - Framing Error, Transmission Mode

Bit 9 ·.can be used in two modes. Normally, FE in­
~cates frllIlling error Which can be changed to
transmission mode indication by setting the TME bit
in the modification r\igist,er.

6-282 210907'()()1

Ap·153

If transmission mode is disabled (in Modification
Register), then FE indicates a framing error. A fram·
ing error is detected during the first stop bit. The error
is reset by reading the Status Register or by 'a chip
reset. A framing error does not inhibit the loading of
the Receiver Buffer. If RxD remains low, the receiver
will assemble the next character. The false stop bit is
treated as the next start bit, and no high·to-low transi­
tion on RxD is requied to synchronize the receiver.

When the TME bit in the Modification Register is set,
FE is used to indicate that the transmitter was active
during the reception of a character, thus indicating
that the character received was transmitted by its own
transmitter. FE is reset when the transmitter is not ac­
tive during the reception of character. Reading the
status register will not reset the FE bit in the transmis­
sion mode.

OE - Overrun Error

If the user does not read the character in the Receiver
Buffer before the next character is received and
transferred to this n:gister, then the OE bit is set. The
OE flag is set during the reception of the first stop bit
and is cleared when the Status Register is read or when
a hardware or software~ reset occurs. The first
character received in this case will be lost.

PE - Parity Error

This bit indicates that a parity error has occurred dur­
ing the reception of a character. A parity error is pres­
ent if value of the parity bit in the received character
is different from the one expected according to com­
mand word 2 bits 6 EP. The parity bit is expected and
checked only if it is enabled by command word 2 bit 7
PEN. '

A parity error is set during the first stop bit and is reset
, by reading the Status Register or by a chip reset.

BD - Break/Break·ln

The BD bit flags whether a break character has been
received, or a Break-In condition exists on the
transmission line. Command Register 1 Bit 3 (BRKI)
enables the Break-In Detect function.

Whenever a break character has been received, Status
Register Bit 3 will be set and in addition an interrupt
request on Level 4 is generated. The receiver will be
idled. It will be started again with the next high-to-low
transition at pin RxD.'

The break character received will not be loaded into
the receiver buffer register.

, If Break-In Detection is enabled and a Break-In condi­
tion occurs, 'Status Register Bit 3 will be set and in ad­
dition an interrupt request on Level 5 is generated.

The BD status bit will be reset on reading the status
register or on a hardware or software reset. For more
information on Break/Break-In, refer to the "Serial
Asynchronous Communication" sectioI), under
"Receive Break Detect"and, "Break-In Detect."

TRE - Transmit Register Empty

When TRE is set the transmit register is empty and an
interrupt request is generated on Level 5 if enabled.
When TRE equals 0 the transmit register is in the pro­
cess of sending data. TRE is set by a chip reset and
when the last stop bit has left the transmitter. It is
reset when a character is loaded into the Transmitter
Register. If CTS is low, the Transmitter Register will
be loaded during the transmi,ssion of the start bit. If
CTS is high at the end of a character, TRE will remain
high and no character will be loaded ,into the
Transmitter Register until CTS goes low. If t1!e
transmitter was inactive before a character is loaded
into the Transmitter Buffer, the Transmitter Register
will be empty temporarily while the buffer is full.
However, the data in the buffer will be transferred to
the transmitter register immediately and TRE will be
cleared while TBE is set.

TBE - Transmitter Buffer Empty

TBE indicates the Transmitter Buffer is empty and is
ready to accept a character. TBE is set by a chip reset
or the transfer of data to the Transmitter Register,
and is cleared when a character is written to the
transmitter buffer. When TBE is set, an interrupt re­
quest is generated on Level 5 if enabled.

RBF - Receiver Buffer Full

RBF is set when the Receiver Buffer has been loaded
with a new character during the sampling of the'first
stop bit. RBF is cleared by reading the receiver buffer
or by a chip reset.

INT - Interrupt Pending

The INT bit reflects the state of the INT Pin (Pin 15)
and indicates an interrupt is pending. It is reset by
INTA or by reading the Interrupt Address Register if ,
only one interrupt is pending and by a chip reset.

6-283 210907·001

Ap·153

FE, OE, PE, RBF, and Break Detect all generate a
Level 4 interrupt when the receiver samples the fmt
stop bit. TRE, TBE, and Break-In Detect generate a
Level 5 interrupt. TRE generates an intCjffUpt when
TBE is set and the Transmitter Regisfer finished
transmitting. The Break-In Detect interrupt is issued
at the same time as TBE or Tlut

~odlflcatlon Register

I 0 I RS41 RS31 RS21 Rsd RSO I TME I DSC I
(OFI6W)

DSC - Disable Start Bit Check

DSC disables the receiver's start bit check. In this state
the teceiver will not be reset if RxD is not low at the
center of the start bit.

TME -Transmission Mode Enable

TME enables transmissiqn mode and disables framing
error detection. For information on transmission
mode,see the description of the framing error bit in the
Status Register.

RsO, RS1, RS2, RS3, RS4 - Receiver sample" .
Time

The ,number in RSn alters when the receiver samples
RxD. The receiver sample time can be modified only if
the receiver is not clocked by RxC.

Note:
The modifiCation register cannot be reacl. Reading from ad·
dress OFH, 8086: lEH gates the contents of the status register
onto the data bus.

- A hardware reset (reset, Pin 12) resets all modifica­
tion register bits to 0, i.e.:
• The start bit check is enabled.

,. Status Register Bit 0 (FE) indicates framing error.
• The, sampling t~e of the ,serial receiver is the bit

center.·

A software reset (Command Word 3, RST) does not
affect the modifi!=lltion register.

Hardware Reset
, .

A reset signal on p~ RESET (HIGH level) forces the
device 8256 into a,well-defmed initial state., This state
is characterized as follows:

RS4 RS3 RS2 RS1 Rs(Point of time between
start of bit and end of
bit measllred In' steps of
1/32 bit .Iength

0 1 1 1 1 1 (Start of Bit)
0 1 1 1 0 2
0 1 1 0 1 3
0 1 1 0 0 4
0 1 0 1 1 5
0 I 0 I 0 6
0 'I 0 0 1 7
0 1 0 0 0 8
0 0 I I I 9
0 0 I I 0 10
0 0 I 0 I 11
0 0 1 0 0 12
0 0 0 I 1 13
0 0 0 1 0 14
0 0 0, 0 1 15
0 0 0 0 0 I~ (Bit center)
I I 1 1 1 17
1 I' 1 1 ,0 HI
1 1 1 0 1 19
1 1 1 0 0 20
1 J 0 I I 21
1 1 0 1 0 22
I I 0 0 I 23
I I 0 0 0 24
1 0 1 I I 25
1 0 1 1 0 26
I 0 1 0 1 27
I 0 I 0 0 28
I 0 0 I I 29
1 0 0 I 0 30
I 0 0 0 I 31
1 0 0 0 0 32 (End of Bit)

1) Command registers 1,2 and 3, mode register, Port
1 control 'register, and modification register are
reset. Thus, all bits of the parallel interface are set
to be inputs and event counters/timers are con­
figured as independent 8-bit timers.

2) Status register bits are reset with the ~cepti()n of
bits 4 and 5. Bits 4 and 5 are set indicating that
both transmitter register and transmitter buffer
register are empty.

6-284 210907-001

"

inter Ap·153

3) The interrupt mask, interrupt request, and inter­
rupt service register bits are reset and disable all re­
quests. As a consequence, interrupt signal INT is
inactive (LOW).

4) The transmit data output is set to the marking state
(HIGH) and the receiver section is disabled until it
Is enabled by Command Register 3 Bit 6.

5) The start bit w~1 be checked at sampling time. The
receiver will return to start bit search mode if input
RxD is not LOW at this time.

6) Status Register Bit 0 implies framing error.

7) The receiver samples input RxD at bit center.

Reset has no effect on the' contents of receiver buffer
register, transmitter buffer register, the intermediate
latches of parallel ports, and event counters/timers,
respectively.

INTERFACING
This section describes the hardware interface between
the 8256 MUART and the 8085, 8086, 8088, and 80186
microprocesors. Figures 14 through 19 display the
block diagrams for these interfaces. The MUARJ' can
be interfaced to many other microprocessors using
these basic principles.

In all cases the 8256 will be connected directly ~o the
CPU's multiplexed address/data bus. If latches or
data bus buffers are used in a system, the ~UART
should be on the microprocessor side of the ad­
dI'ess/data bus. The MUART latches the address in­
ternally on $e falling edge of ALE. The address con­
sists of Chip Select (CS) and four address lines. For-
8-bit microprocessors, ADO-AD3 are the address
lines. For 16-bit microprocessors, ADI-AD4 are the
address lines; ADO is used as a second chip select
which is active low. Since chip select is internally lat­
ched along with the 'address, it does not have to re-

. main active during the entire instruction cycle. As long
as the chip select setup and hold times are, met, it can

" be derived from multiplexed address/data lines or
multiplexed address/status lines.

In Figure 15, the 8088 min mode, the 8205 chip select
decoder is connected to the 8088's address bus lines
A8-AI5. These address lines are stable throughout the
entire instruction cycle. However, the MUAR1"s chip
select signal' could have been derived from AI6/S3-
AI9/S6. '

Figure 16 'shows the 8256 interfaced with an 8086 in
the min mode. When the 8256 is in the 16-bit mode,
AO serves as a second chip select. As a result the
MUART's internal registers will all have even ad­
dresses since AO must be zero to select the device. Nor­
mally the MUART will be placed on the lower data
byte. If the MUART is placed on the upper data byte
the internal registers will be 512 address locations
apart and the chip would occupy an 8 K word address
space. Figure 16A shows a table and a diagram of how
the 8256 may be sel~ted in an 8086 system where the
MUART is I/O mapped and used on the lower byte of
the address/data bus.

PROGRAMMING
Initialization
In general the MUART's functions are independent of
each other and only the registers and bits associated
with a particular function need to be initialized, not
the entire chip. The command sequence is arbitrary
since every register is directly addressable; however,
Command Word 1 must be loaded fIrst. To put the
device into a fully operational condition, it is
necessary to write the following commands:

Command byte 1
Command byte 2
Command byte 3

Mode byte
Port 1 control
Set Interrupts

The modification register may be loaded if required
for special applications; normally this operation is not
necessary. It is a good idea to reset the part before in­
itialization. (Either a hardware or a software reset will
do.)

Operating th~ Serial Interface
The microprocessor transfers data to the serial inter­
face by writing bytes to the Transmit Buffer Register.
Receive characters are transferred by reading the
Receiver Buffer Register. The Status Register provides
all of the necessary information to operate'the serial '
I/O, including when to write to the Transmit Buffer,
and when to read the Receive Buffer and error infor­
mation.

Transmitting
The transmitter and the r~eiver may be operated by
using either pOlling or interrupts. If polling is used
then the software may poll the Status Register and.
write a byte to the Transmit Buffer whenever TBE = 1.
Writing a byte to the Transmit Buffer clears the TBE

6-285 210907-001

AP·153

v v
~o~ fS r l

:::: TRAP x, x, RESET IN HO~D ::: RST 7.5 H~DA

:::: RST 8.5 SOD ;::
RST 5.5 SID

8085A SI :::: So
II:
Q

I jj vm CLK~~~E~NT ffm ~ 10 M ~~~~ A~E
II: '~ Q
Q

< i
€ Q

Q
<

€
,

I DE~~~ER I
..................... L.-

~
8282
~TeH I ~

W
Q

€
€ v

TO NON·MULTIP~EXED
PERIPHERALS

IL..~ irxC '

RxD
:::} Serla RESET Til:

TxD :::: ClK rn
lifO

WIi
iUi ... (8)
ALE

Port 1
T

ADO·AD4
DBS·DB7

'(ar')
CS Port 2

v---Y

EXTINT I-

Vee GND

, t t

Figure 14. 8085/8256 Interface

status bit. If the CTS pin is low, then the Transmit
Buffer will transfer the data to the Transmit Register
when it becomes empty. When this transfer takes
place the TRE bit is reset, and the TBE bit is set in­
dicating the next byte may be written to the Transmit
Buffer. If ffi is high, disabling the' transmitter, the
data byte will remain in the Transmit Buffer and TBE
will remain low until CTS goes low. The transmitter
can only buffer one byte if it is disabled.

There is no way of knowing that the transmitter is
disabled unless the CTS signal is fed into one of the
I/O ports. Using the transmitter interrupt will free up
the CPU to perform other functions while the
transmitter is disabled or while the Transmit Buffer is
full.

To enable the transmit interrupt feature Bit L5 in the
Set Interrupt Register must be set. An interrupt re­
quest will not occur immediately after this bit has been
set. Before any transmit interrupt request will occur a

byte must be written to the, Transmit Buffer. After the
first byte has been written to the Transmit Buffer, a
transmit interrupt request will occur, providing the
transmitter is enabled.

There are three sources of transmitter interrupt re­
quests: TBE= 1, TRE= 1, and .Break-In Detect.
Assuming the Break-In Detect feature is disabled,
after the transmit interrupt is enabled and the first
byte is written, a transmit interrupt request will be
generated by TBE ,going active. The microprocessor
can immediately write a byte to the Transmit Buffer
without reading any status. However if Break-In
Detect is enabled, the Status Register must be read to
determine whether' the transmit interrupt request was
generated by Break-In Detect or TBK'

The TRE interrupt request can be used to indicate
when the transmitter has completely sent all of the
data. For example, using half-duplex conimunica-

210907·001

Ap·153

-ClK

'-'",.... 1 n ;;;lttt R '".,,~
AD,.AD, ADDRIDATA' IIII -r:::-. eI f'---o'
MNlMX -vcc ADO-ADIoPORT 2 P

-I-
A~ D5-D7

R ~
101M 8258 RiC - READY
INTR TxD SERIAL UO

8088 iNn iN'i'A RxD
--" INTR C'B ,8284A

ClK A,,1S3-A,,IS8 --.I' IJMET

READY ~

m I r-- RESET
RESET f-l

X, x.
'-oJ

lID
at~ EXTINT-

Figure 15. 8088 Min Model8256 Interface Multiplexed Bus

tions, all of the data written to the MUART must be
transmitted before the line can be turned around.
After the last byte is written, an iDterrupt request will
be generated by TBE. If this interrupt is acknowl­
edged without writing another byte, then the next
transmitter ipterrupt request, TRE = 1, will iDdicate
that the' transmitter is empty and the line may be
~UrQ.ed around.

RECEIVINQ

Valid data may be read from the Receive Buffer
whenever the RBF bit iD the Status'Register is set.
Reading the Receive Buffer resets the UF status bit.
The RBF bit iD the Status Register can be used for
polling. When the RBF bit is ,set, the 'three receive
status bits, PE, OE, and FE are updated. These three
status bits are reset when they are read. Therefore
when the status register is read with UF set, the three
error status bit should be tested too., .

If iDterrupts are used for serial' rectiV'e: data, the
receiver must be enabled by setting the RxE bit iD
Command Register 3, and Bit lA must be set iD the Set
Interrupt Register. When the receive iDterrupt ,request

occurs the Receive Buffer may be read, but, the status
register should also be read since the receive interrupt
could have been generated by the Break Detect. -Also,
reading the status register will indicate whether there
were any errors in the received character.

Operating the Parallel Interface

Data can be transferred tel or read from Port 1 and
Port 2 by using the appropriafe write and read opera­
tions.

LOADING PORT 1 and PORT 2

Writing to the ports transfers the data present on the
data bus into the output latches. This operation is in­
dependent of the programmed I/O characteristics of
the individual port pins. Writing to control or input
ports' has. no effect on the state of the pins. Pins de­
fined as outputs immediately assume the state which is
associated with the transferred data. If inputs or con­
trol piDs are reprogrammed into outputs, they assume
the states stored iD'their output latches which were
transferred by the most recent port write operation.

6-287 210907'()01

Ap·153

Line Printer

Figure 20. Using the Line Printer Multiplexer to Share a Line Printer

it to the line printer using a two-wire byte handshake
Dataproducts interface. A conceptual diagram of this
,system is shown in Figure 20. Note that only one
workstation can transmit at a time. This workstation
will transmit its entire. file before another workstation
will be allowed to transmit.

The LPM sequentially polls each of the eight RS-232
ports for a Request To Send (RTS). When it finds a
serial port which has asserted RTS, it configures itself
for the appropriate data format and bit rate,
esiablishes the connection and sends back to the serial
port a Clear To Send (CTS) which enables transmis­
sion. The LPM receives the' serial asynchronous data,
buffers it in a software FIFO, and transmits the data
to the Ii~e printer. If the LPM detects an error in any
of the serial characters it receives, it transmits an error
message to the serial port and ignores the bad
character. If the LPM does not receive a serial
character after 18 seconds, it assumes that the
transmission is complete. It transmits the final status
to the serial port, and returns to scanning.,

This LPM was designed to be used with single-user'
workstations and a 300 lines per minute line printer.
These workstations are not multitasking; therefore in
the middle of a file transfer when the CPU needs to
reload its buffer from' the disk, no serial data is
transmitted. During this time the LPM is emptying its
FIFO; thus, the line printer never stops printing.

The buffer size on the LPM was chosen to comple­
ment the disk access time on the workstations. Figure
21 illustrates the buffer size calculation. The line
printer can print up to 300 lines per minute, or ap­
proximately 660 characters per second. This cor­
responds to a serial transmission rate of 6,600bps
(assuming ASCII character codes and a parity bit) as
shown· in equation 1.

(1) Serial bit rate = (300 Iines/min)*(l32 char/line)*(10 bits/char)

for the line I>rinter ' . (60 sec/min)

The bottleneck in this data transfer is the line printer
since the MUART and the, workstations can both
transmit and receive at 19.2Kbps. To realize the max­
imum data transfer rate of this system the, LPM mUst
guarantee that the average transfer rate to the line
printer is 660 characters per second. The maximum
amount of dead time that the serial port on· the
workstation is not transmitting, multiplied by 660 is
the number of bytes which the LPM should buffer. It
was cietermined through experimentation that it takes
about 3 seconds to load 40K bytes of data from the
disk into the workstation's RAM. During these 3
seconds no serial data is being sent; therefore the buf­
fer size on the LPM should be 2K bytes. (Note: even
though only a 2K byte FIFO is required, this design
used an 8 Kbyte FIFO.~

To keep the LPM's buffer full the ,serial data rate must
be greater than6.6Kbps. The two bit rates which the·

6-288 210907·001

Ap·153

LPM

LINE
PRINTER

"IODBPS
OR

19,200 BPS iii 300 LINES/MIN

Fig 21. I,:PM Buffer Size Calculation

FIRST BYTE

•
L1 LO
o 0 .. BIT
o 1 7
1 0 •
005

UPPER NIBBLE ,

LOWER NIBBLE

SECOND BYTE LoI_x.......ll...-x_ ... 1 _x --L1_x--r.1_B.;.3 1...;.B2~ ... 1 ~B1.......1II...-BO;.;...-,
~

BAUD RATE SELECT

B3 B2 B1 BO
o 0 0 0
000 1
001 0
001 1
o 1 0 0
o 1 0 1
o 1 1 0
o 1 1 1
100 0
100 1
101 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

BIT RATE
DO NOT USE
DO NOT USE
DO NOT USE
19200

9800
4800
2400
1200

IOD
300

, 200
150
110
100
75
50

Figura 22. Programming Words Format for LPM

workstations use are 9.6Kbps and 19.2Kbps. The crs
signal is used to control the flow of the serial data so
that the LPM buffer will not overflow.

Each serial port on.the LPM can have a different bit
rate, character length, and parity format. These
parameters are programmable through the serial port.
When the LPM powers up, or is reset, it expects a bit
rate of 9600 bps. 7 bit characters,' and odd parity.

When a serial port receives an ASCU ESC character
(lBH), it puts that port in the program mode. The
next two bYtes will program these three "parameters.
Only the lower mobles of these ,two bytes are used,
and the upper nibbles are" discilrded. The format of
these programming words is given in FIgUre 22. If the
word following the ESC is an ASCR NUL (0), the

, LPM will exit from ~e programming mode and not
change any of its parameters.

6-289 210907'()()1

AP·153 "

. Description 'of the 'Hardware full. Parallel Port 2 and two'bits fr.om Port I are con·

Figure 23 shows a block dIagram of the LPM. In addi- nected to the line printer implementing a two-wire
byte handshake transfer. These signals are passed '

don to the standard' components of most ,through a line .driver so that ttley can reliably drive.a
microp~ocessor systems such as Cpp, RP,.,M, and i b' . "
R.OM this particular design reqjlires a UART, timers;,' , :" ong ca Ie. :f}, . '
parallel I/O and an interrupt controller': The MUA'R1" , 1. . " '., ,','
is the ideal choice for this design since it integrates :there are three timing,funliioq§ needed for the LPM:
t~ese four functions ont~ one, device. a scan timer, a debounee timer, and a recieve timeout.

. The Scan timer determines the amount of time spent
The eight serial 1/0 ports,use four.signals: Transmit
Data (TxD), Receive Data ~), Request TQ. Send , '
(RTS), and Clear To Send (CTS). These four signals,
controlled by the MUART, are connected to one port

sampling RTS on each port ·b.efore the next port is ad- '
dress~. By usiJl,g one of the MUART's timers to do
this function, the' CPU is free to perform other func-
tions instead of implementing the timer in software. If
RTS is recOpized as true, the CPU branches into a ~t a time using TTL multiplexers. The TTL ll1ultiplex­

ers are interfaced to RS-232 transceivers to' be -elec­
trically compatible with the RS-232 spec. The serial
Port select address is derived ,from three bits of, the
MUART's parallel 1/0 port (Port 1). 1:wo more bits
from Port 1 control CTS and RTS, and another bit
lights up an LED to indicate when the LPM's buffer is

.. debounce procedure. This procedure uses another one
.. of the MUART's diners. to wait 10' msec then sample

!

. m ag~, ~,~us preventing any glitches from register- ,
.irig as,a·false ttTS". The receive timeout timer uses two,
8-blt' tifqerS ill- the cascaded mode to measure an .
IS-seCond 'int~iV8I. After a validt RTS is recognized,

r-----;:---- ----------l
I

I
I
I
I
I
I
L-.

'1--; .CJ=. '=:'1".-:c=.....;='=:--h:c:J=. ::::-t:' "---J;:::~. :1 Be"al I , , VO porls

L.J', ,C......J 'L.J. C).

Figure ,23. Functional Block Diagram of the Line Printer Multiplexer

6,..290 , 210907-001

"n+_I® 111'eII· Ap·153

the LPM sends back a CTS and initializes the receive
timeout timer for 18 seconds. Each time a character is
received by the LPM, this timer is reinitialized. If this
timer times out, the LPM considers the transmission
complete and returns to scanning.

registers occupy even addresses from 0 to lEH. Using
an 8088 CPU the MUART must be placed in the 8086
mode since the INTA signal is used; hence the register
addresses are all even numbers.

The line printer used provides a choice of two stan·
The schematic diagram of the LPM is shown in Figure dard parallel interfaces: Centronics or Dataproducts.
24. The CPU is an 8088 used in the min mode. It is in. The Centronics interface uses a two·wire handshake
terfaced directly to the 8256. An 8282 latch is pulsed strobe where the transmitter asserts a complete
employed in the system so that nonmultiplexed bus strobe pulse before .an acknowledge is received. The
memory can be used. A 2716 holds the entire pro- Dataproducts interface is an interlocking two-wire
gram, and six 2016s (2K x 8 static RAMs) are used to handshake. The Dataproducts interface was chosen
store the buffer, temporary data, stack area, and in- since it is directly compatible with the MUART's
terrupt vector table. The 2716 is located in the upper two-wire byte handshake. The MUART could also be
2K of the 8088 address space (FF8oo-FFFFFH) so that connected to the Centronics interface; however, addi-
the reset vectors can be stored starting at location tional hardware would be necessary to generate the
FFFFOH. The RAM address space spans 0-2FFFH so pulsed strobe for correct interrupt operation. Figure
that the interrupt vector table can be stored starting at 25 shows the timing of the Dataproducts interface and
location O. The MUART is I/O mapped and its Table 6 lists the connector pin configuration.

Table 6. Dataproducts Interface Line Functions

Signal Description Connector Pin

Data Request Sent by printer to synchronize data transmission. When E(return C)
true, requests a character. Remains true until Data
strobe is received, then goes false within 100 nsec.

I

Data Strobe Sent by user system to cause printer to accept j(return m)
information on data lines. Should remain true until
printer drops Data Request line. Data lines must
stabilize for at least 50 nsec before Data Strobe is sent.;

Data Bit 1 B(return D)
Data Bit 2 F(return J)
Data Bit 3 L(return N)
Data Bit 4 Bit 8 controls optional character set R(return T)
Data Bit 5 Refer to Commands and Formats. V(return X)
Data Bit 6 Z(return b)
Data Bit 7 n(return k)
Data Bit 8 h(return e)

VFU Control Optional control from user system. Used for VFU p(return s)
(PI) control. Data Request/Strobe timing is same as for data

lines.

Ready Sent to user system:by printer. Title when no Check Cqreturn EE)
condition exists.

On Line Sent to user system by piihter. True when Ready y(return AA)
line is true and operator has activated ON LINE
Pushbutton. Enables interface activity.

Interface Jumper in printer connector. Continuity informs user x to v
Verify system that connector is properly seated.

+5V Supply voltage for Exerciser only. HH

6-291 210907'()01

.' -RUIET IN
-:...L ' ". r 110Q

T021"'1f)

T021211(E)

T021_

T021111C1

T02121(8)

TvltlCAL
, OF.

••• $TA11C
0II1111A/
THAU
01111(1'1

Ap·153

.,
1

1 1
'I 1
I I
1 1
I I
I
I
I ,1 I L ________ ~ ___ J

Figure 24. Sch8matlc of LPM

6-292

.1 t11

21 0907-001

3

. 'f!

LED

" .

Ap·153

Figure 24. Schematic oi LPN! (Continued) .

6-293

I --1
m· m •
T_D :I

'''0 3

r::I.

:£j:
~------i .. 0'

r=I.

~~

210907-(lOl

Ap·153

, ~~I------------------------------~n
READ~

ON· LINE
----./1-1 i1t---------:-2~ SEC MIN ------------l~~'1

I

DATA REQUEST '----_____ ---,1 III _ 100 NSEC ,t-----1

DATA LIN,ES _
1 THROUGH 8 & Pl

-+l • ~ 50 NSEC MIN

DATA_ST_R_O_B_E _______ ' _I-Jlf?' \'-----
Figure 25. Timing of Dataproducts Interface

Only ten signals are uS,ed to interface the LPM to the
line pri\1ter: Data Request, Data Strobe, and the eight
data lines. The most significant data line is not used
since the character code is 7-bit ASCII. Data Strobe
connects to OBF on the MUART; however, for the
Datapro?ucts interface this signal must be inverted.
Data Request is connected to ACK on the MUART.
When the line printer is ready to accept data, the Data
Request signal goes high. The 8256 will not interrupt
the CPU to transmit parallel data unless this'signal is
high.

The Dataproducts interface is slightly different from
the MUART's two-wire handshake in that it latches

'the data on the leading edge of the strobe signal.
When the MUART receives bytes it latches the data on
the trailing edge. As a result the Dataproducts inter­
face has a,50 nsec setup time for data stable to the'

, leading edge of Data Strobe. In the LPM hardware a
delay line was used to realize this setup time.

Description of the Software

The software is written in PLiM and is broken up into
four separate modules, each containing several pro­
cedures. A block diagram of the software structure is
given in Figure 26. The modules are identified by the
dotted boxes, and the procedures are identified by the
solid boxes. Two or more procedures connected by a
solid line means the procedure above calls the pro­
cedure below. The procedures without any solid lines

connected above, are interrupt procedures. They are
entered when the MUART interrupts the CPU and
vectors an indirect address to it.

The LPM program uses nested interrupts; the priority
of the interrupt procedures is given in Table 7.

Table 7. Line Printer Multiplexers' Interrupt
Priority

Priority Source

Highest 0 Debounce timer
1 Not Used
2 Not Used
3 Receive timer
4 RxD Interrupt
5 TxD Interrupt
6 Scan timer
7 LP Interrupt

The priority of the interrupts is not,programmable but
they are logically oriented so that for this application
the priority is correct. In the steady state of the LPM's
operation the UART will be receiving data, and the
parallel port will· be' transmitting data. The serial
receiver should be the highest priority since it can have
overrun errors. This is the case because the debounce
timer will be disabled, and the receive timeout inter­
rupt will only occur when serial reception has ended.
Therefore the RxD request can interrupt any other ser­
vice routine, thus preventing any possibility of an

, overrun error.

6-294 21090HlOl

AP-153

~------------,
MAIN_MOD SCAN I

I I

r.;--- --...,
,PON_MOD

I I
I POWER$ON , L _______ J

I
I
I
I
I

I I L ____________ J

i'NLMOD- -­

I I SCAN$TIME

--------------- ---,
I DEBOUNCE$TlME I I RECEIVE$TIME I LOADINTTABLE I

I I
I
'---

D!IJ I ____________ .J

Figure 26. Block Diagram of LPM Software Structure

On power-up the CPU branches from OFFFFOH to
the INITCODE routine which is included in the
machine code by the MDS locater utility. INITCODE
initializes the 8088's segment registers, stack pointer,
and instruction pointer, then it disabled interrupts and
jumps into MAIN_MOD. The first executable in­
struction in MAIN~OD calls POWER$ON, which
initializes the MUART, flags, variables, and arrays.
The MAIN~OD calls LOADINTTABLE, which
initializes the interrupt vector table. The CPU's inter­
rupt is then enabled and the program enters into a DO
FOREVER loop which scans the eight serial ports for
antrrn.

There ar.e three software functions which employ the ,
MUART's timers and interrupt controller to measure
time intervals: SCAN, debounce, and INIT­
$RECEIVER. DEBOUNCE and INIT$RECEIVER
procedures, employ the MU~RT's ,timers and inter­
rupt controller to measure time intervals. The CPU re­
mains in a loop for a specific amount of time before it
proceeds with the next section of code. In this loop the
CPU is waiting for a global status flag to change while

servicing any interrupts which may occur. When the
appropriate timer interrupt occurs, the interrupt ser­
vice routine will set the global flag which causes the
CPU to exit the loop anll proceed to the next section
of code. An example can be seen from the scan flow
chart in Figure 27.
The fir'st thing the program does before entering the
loop is set the flag (in this case SCAN$DELAY)
TRUE. The timer is initiatized and the loop is entered.
As long as SCAN$DELA Y is TRUE the CPU will
continue to sample RTS. If RTS remains false Jor
more than 100 msec, the timer interrupts the CPU and

'the interrupt service routine sets SCAN$DELAY
FALSE. This causes the CPU to exit the loop and ad­
dress the next port. The process is then repeated: If
RTS becomes true while it is being sampled, the DE­
BOUNCE procedure is called.
DEBOUNCE does n~thing more than wait 10 msec
and sample RTS again using the saJIle technique
discussed above. . If RTS is' still valid IN­
IT$RECEIVER is called, otherwise the CPU returns
to scan.

6-295 . ,210907·001

Ap·153

ADDRESS NEXT PORT

Flgu~ 27. Scan Flow Chart

INIT$RECElVER calls CONFIGURE which pro­
grams the MUJ\RT fOf the l1it r:ate, number of bits in a
character" an~parity fprm4t. This information is
stored in an array calle4 SERI~$FORMAT, which
contains .. a byte for each pori. The bytes, in tlte
SERIAL$FORMAT array have the same bit def'mition
as the two nibbles in the pr9glamnii~ words j.n, Figure
22. Upon returning to INIT$RECEIVER the receiver
is enabled, the reCeive tiineout timer is initialized. IlIld
the timer and receiver interrupts are enabled. CTS on
the:serial,poit is then set true, and the 'CPU ~iers Ii
loop which does nothing except wait for 18 seconds. If
no characters are received within 18 seconds, the
receive timeout interrupt occurs'arid the loop flag is
set false, which caps,es the CPU to exit the'loop. If a
character is ,tcic"ived, a receive inter:rupt oc'curs, and
the' CPU veCtors into the RiD interrupt 'service
routine.

Figure 28 shows a flow chart of the RxD interrupt ser­
vice routine. This routine begins by reading the receive
buffer and reinitializing the receiv'e timeout timer.
There are two conditions to check for before the
character can be inserted into the FIFO. First, if there

CALL ERROR
PROCEDURE

FigUre 28. RxD Interrupt Procedure Flow Chart

are any errors in the received character, an ERROR
procedure is called which reports back, to the serial
port what the error condition was. The character ,in er­
ror is discarded and the routine, returns. The other
condition is that if the received character is an ASCII
ESC, the PROGRAM procedure is called. If neither
one of these conditions occurs, the character is'placed
in the FIFO by the BUFFsIN procedure.

The LP interrupt routine is entered when the byte
handshake interrupt r:eQuest is acknowledged. This
routine simply calls the BllFFSqUT procedure, which
extracts a byte out of the ;FIFO. BUFFSOUT returns
the byte to the LP interrupt proc,~dure, which then
writes it to Port 2. One small problem with getting the
handshake,interrupt going is'that the first byte has to
be written to Port 2 J;!efore the first hlmdshake inter­
rupt will' occur. The problem is that the line printer
may not be ready for the first byte. This would be in­
dicated by DATA REQUEST being low. If the byte
was written to the LP while DATA REQUEST is low,
it would be lost. Note that if the handshake interrupt
is enabled while DATA REQUES~ is low, then DATA
REQUEST goes high, the interrupt will occur without

6-296 21090HlOl

Ap·153

writing the first byte. There are several ways to solve
this problem. Port 1 can be read to find out what ·the
state of the DATA REQUEST line is. If DATA RE­
QUEST is low, the CPU can simply wait for the inter­
rupt without writing the first byte. If DATA RE­
QUEST is high, then the first data byte may ~ writ­
ten. Another solution would be to write a NUL
character as the first &yte to Port 2. If DATA
REQUEST is low, then a worthless character is lost. If
DATA REQUEST is high, the NUL character would
be sent to the line printer; however, it is not printed
since NUL is a nonprintable character. The LPM pro­
gram uses the NUL character solution.

BUFFER MANAGEMENT

The FIFO implementation uses an 8K byte array to
store the characters. There are two pointers used as in­
dexes in the array to address the characters:
IN$POINTER and OUT$POINTER. IN$POINTER
points to the location in the array which will store the
next' byte of data inserted. OUTSPOINTER points to
the next byte of data which will be removed from the
array. Both IN$POINTER ~d OUT$POINTER are
declared as words. Figure 29 illustrates the FIFO in a
block diagram.

The BUFFSIN procedure receives a byte from the
RxD interrupt routine and stores it in the array loca­
tion pointed to by IN$POINTER, then IN$POINTER
is incremented. Similarly, when BUrnOUT is called

(0)

, l+- FIF~ (oUT$POINTERI

t-- FIFO (lN$POINTERI

Figure 29. FI FO Structure and Status

by the LP interrupt routine, the byte in the array
pointed to by OUT$POINTER is read.
OUT$POINTER is incremented, and the byte which
was read is passed back to the LP interrupt routine.
Since IN$POINTER and OUTSPOINTER are always
incremented, they must be able to roll over when they
hit the top of the 8K byte ,address space. This is done
by clearing the upper three bits of each pointer after it
is incremented.

IN$POINTER and OUT$PONTER not only point to
the locations in the FIFO, they also indicate how
many bytes are in the FIFO and whether the FIFO is
full or empty. When a character is placed into the
FIFO and IN$POINTER is incremented, the FIFO is
full if IN$POINTER equals OUTSPOINTER. When
a character is read from the FIFO and OUT$­
POINTER is incremented, the FIFO is empty if
OUTSPOINTER equals IN$POINTER. If the buffer
is neither full nor empty, then it is in use. A byte called
BUFFER$STATUS is used to indicate one of these
three conditions.

The software uses the buffer status information to
control the flow into and out of the FIFO. When the
FIFO is empty the handshake interrupt must be turned
off. When the FIFO is full, CTS must be sent false so
that no more data will be received. If the buffer status
is in use, rn is true and the handshake interrupt is
enabled.

Figure 30 shows the tlow chart of the Burn IN pro­
cedure. The BUFFS IN procedure begins by checking
the BUFFER$STATUS. If it is empty and the
character to be inserted into the FIFO is a CR or LF,
Ithe handshake interrupt is enabled, a NUL character
is output, and the BUFFERSSTATUS is set to IN­
USE. The character passed to BUrnIN from RxD is
put into the FIFO. If the FIFO is now full, the BUF­
FERSSTATUS is set to FULL, CTS is set false, and
the buffer full LED is turned on.

Figure 31 shows the flow chart of the BUFF$OUT
procedure., After the character is read from the FIFO;
the FIfO is tested to deter~ne if it is empty. If it is·
not-empty, the BUFFER$STATUS,is FULL and there
are 200 bytes available in the fIFO, serial data recep­
tion is reenabled, and the FIFO fi~ again~ile data'
is being received from the workstation, CTS toggles
high 'and low, ,mling up and emptying the last 200
bytes in the FIFO. ~eferring to the top of the flow
chart (FIFO empty test) if it's empty, the BUF­
FER$STATUS is set to EMPTY, and the handshake
interrupt is disabled. During this time all interrupts

6-297 210907'()()1

Ap·153,

Figure 30. Flow Chart of the BUFF$IN Procedure

are disabled at the CPU. (Remember that the RxD in­
terrupt routine- can interrupt the LP and BUFF$OUT
proced\H'es since it 'has a higher priority,- and the
MUART'is in the nested mode.) "

If the CPU interrupt w,as not disabled during this
time, the following' events could occur' which would
cause the LPMto crash. Assume that the RxD inter~'
rupt occured where the asterisk is in the flow 'chart,
after BUFFER$STATUS is set 'to EMPTY. The
BUFF$IN procedure wduld set.BUFFER$STATUS to
INUSE and enable.the handshake interrupt. When the
RxD interrupt routine returned to BUFF$OUT, tl).e
handshake interrupt is disabled, but, the BUF­
FER$STATUS is'INUSE. Thehandsh8ke interrupt
could never be reertabled,. and the FIFO would' fill up. . -

, This is known as a critical section of code. Suspicion
should arise for a critical section of code when two or
more ·nested interrupt routilies can affect the same
status. One solution is to disable the interrupt flag at
the CPU while the status and conditional operations
are peing modified.

The flow chart for the TxD interrupt proce9ure is
given in Figure 32. For this program five different
messages can be transmitted;' .and they are stored in
ROM. It is possible to downioad the messages into a
dedIcated RAM Duffer; however, the RAM buffer
would have to be as large .as the largest message. A
'more efficient way to transmit the messages is to read
them from ROM. In this c~~ the address of the first
byte of the message would have to be accessible by the
transmit interrupt procedure. Since parameters cannot
be passed to. interrupt., procedures, this message
pointer is declared PUBLIC in one module and EX­
TERNAL in the'other modules.

To get the traqsmit interrupt started, the first byte of
the message must be Written to the transmit buffer.
When a section of code decides to transmit a message
serially, it loads the global message pointer with the
address of the first byte of the message, enables the
transmit interrupt, and calls the TxD interrupt pro­
cedure. Calling the TxD interrupt procedure writes the
first byttl to the transmit buffer to initiate transmit in­
terrupts. This 'can be done by calling PL/M's built-in
procedure CAUSE$INTERRUPT.

The transmit interrupt routine checks each byte before
it writes it to the transmit buffer. The last character in
each message is a 0, so if the character fetched is 0, the
transmit interrupt is disabled and the character is
ignored.

USING THE LPM WITH THE INTELLE~
MICROCOMPUTER DEVELOPMENT
SYSTEM, SERIES II OR SERIES III

A special driver program was written for the MDS to
communicate to the LPM. This program, called,
WRITE, reads a specified file from the di$k, expands
any TAB characters, and transmits the data through
Serial Channel 2 to the LPM. Serial Channel 2 was
chosen because CTS and RTS-are brought out ~o the
RS-232 connector. The WRITE program is listed in
appendiX B. It wi!.s also necessary to modify the b~ot
ROM of 'the development 'systeqt so that Serial Chan­
ne12 initializes with RTSJalse anll a bit rate of 9600
bps .. , .

6-298 210907'()01

AP·153

Flgl!re 31. Flow Chart of the BUFF$OU,T Procedure

Figure 32. Flow Chart for TxD Interrupt Procedure

6-299 210907·001

Ap·153

APPENDIX A
LISTING OF THE LINE PRINTER

MULTIPLEXER SOFTWARE

Q-300 210907-001

Ap·153

PL/M-B6 COMPILER MAlj~f'IUn

SERIES-Ill PL/M-86 VI 0 CoMPILAIIUN OF MODULE MAINMoD
OB.!ECT MODULE PLACED IN FI MAIN DB.!
COMPILER INVO~ED BY PLM86 86 FI MAIN SRC

2

/**********~***

*
*
*

MAIN MODULE FOR THE LINE PRINTER MULTIPLEXER
..

************.***1

$DEBUG
MAIN$MOD DO,

1**
* PORT I BIT CGNFIGURATION ..
* ..
• BUFFER FULL
.. B7

CTS
B6

ADDRESS
B5 B4 B3

RTS
B2

TWO WIRE HANDSHA~E
BI BO

.. ..
~1

DECLARE LIT LITERALLY 'LITERALLY',
TRUE LIT 'OFFH',
FALSE LIT '0',
FOREVER LIT 'WHILE J ' ,

CMD$I LIT '0', 1*8256 REGISTERS<-I
CMD$2 LIT '2',
CMD$3 LIT '4',
MODE LIT '6',
PORTICTRL LIT 'S',
SET$INT LIT 'OAH',
INT$EN LIT 'OAH',
RST$INT LIT 'OCW,
INT$ADDR LIT 'OCW,
TX$BUFF LIT 'OEH',
RxnUFF LIT 'OEH',
PORT$I LIT 'IOH' ,
PORT$2 LIT '12W,
DEBOUNCESTIMER LIT '14H' '
SCANSTIMER LIT 'lAW,
RECEIVE$TIMER LIT 'ICH' ,
STATUSSREG LIT 'lEW,

SCAN$INT LIT '40H',
DEBOUNCESINT LIT 'OtH' ,
RECEIVERSINT LIT 'lOW,
TIMESOUTSINT LIT 'OSH',
TRANSMITSINT LIT '20H' ,

EMPTY LIT '0',
INUSE LIT ' I ' ,
FULL LIT '2',

RTS LIT '(INPUT(PORTSI) AND 04H) "

./

6-301 210907·001

Ap·153

PL/M-B6 COMPILER MAINMOO

3
4

5
6

7
B
9

10
11

12
13
14
15
16
17
18

19

20
21

22
23
24
25

1
2

1
:2

1
2
2
2
2

1
2
2
2
2
2
2

2

2
3

2
2
2
2

BEGIN LABEL

TEMP BYTE
SCANS DELAY BYTE

PUBLIC,

PUBLIC,
PUBLIC,
PUBLIC,
PUBLIC,

OEBOUNCESDE.LAY BYTE
RECEIVESDELAY BYTE
PORTSPTR BYTE
SERIALSFORMAT(8)BYTE PUBLIC, 1* PEN EP LI LO 133 B2 Bl BO *1

MESSAGESPTR
,J
OK(I)
llUFFERSSTATUS

POINTER
BYTE
BYTE
BYTE

EXTERNAL,
EXTERNAL.,
EXTERNAL,
EXTERNAL,

1******************************)*************************************** * EXTERNAL PROCEDURE DECLARATIONS *
***1

POWERSON PROCEDURE EXTERNAL;
END POWERSON, '

LOADSINTSTABLE, PROCEDURE EXTERNAL,
END'LOADSINTSTABLE;

1***
* SET THE BIT RATE AND DATA FORMAT FOR THE SERIAL PORT *
***/

CONFIGURE:PROCEDURE , I*Initialize b,t rate and data format*1
TEMP=SERIALSFORMATCSHRCPORTSPTR, 3»;
OUTPUTCCMDSI)=«SHLCTEMP,2) AND OCOH) OR 03H),
OUTPUTCCMDS2)=CTEMP OR 30H);
END CONFIGURE,

1***
* INITIALIZE SERIAL RECEIVER *
***1

INITSRECEIVER PROCEDURE,
CALL CONFIGURE,
RECEIVESDELAY=TRUE,
OUTPUTCCMDS3)=OGOH,
OUTPUTCRECEIVESTIMER)=70,
OUTPUTCSETSINT)=18H,
IF CBUFFER$STATUS~>FULL)

I*Initiallze 8256 se~lal port*1

I*Enable serIal receiver*1 '
1*18 second TIMESOUT*I
I*Enable RECEIVER and TIMESOUT lnterrupts*1

THEN
OUTPUTCPORTSI)=CINPUTCPORTSI) AND OBFH), I*Send CTS TRUE*I

00 WHILE RECEIVE$DELAY=TRUE. 1* Walt here wh1le recelvlng serl~l data *1
END,

1* After 18 seconds o~ not recelvlng a charar.te~, proceed *1

OUTPUT(SETSINT)=TRANSMI1SINT,
-J=O, '
MESSAGESPTR= @OKCO);
CAUSES INTERRUPT (45H),

1* Send the termlnatlng message *1

6-302 210907·001

inter Ap·153

PL/M-86 COMPILER MA)NMOD

26
27
28
29

30
31
32
33
34
35
36
38

39

40

41

42

43

2
2
2
2

1
2
2
2
2
3
2
2

2

OUTPUT(PORT$I)=(INPU1(PORT$I)
OUTPUT(RS1$INT)=18H,
OUTPUT(CMD$3)=40H,
E~D INIT$RECEIVER,

DR 40H), I*Send CTS FALSE*I
I*Clear RECEIVER and TIMER Interrupts*1
I*Dlsabl@ serial recelver*1

1***
* DEB OUNCE RTS *
***1

DEB OUNCE PROCEDURE,
DEBOUNCE$DELAY=TRUE,
OUTPUT <DEBOUNCE$T IMER) =10, i* 10 msor debounc e tlme de~"y .1
OUTPUT(SET$INT)=DEBOUNCESINT,

DO WHIL.E DEBOUNCE$DELAY=TRUE,
END,

IF RTS=O THEN CALL INIT$RECEIVER,
END DEBOUNCE,

1***
* BEGrN MAIN PROGRAM *
.**.* •• *.* •••• * ••• *.***.** •••• * •• ** •• ** ••• *.* •••• ***.****************1

BEGIN CAL.L POWER$ON,

CALL LOAD$INTSTABLE,

ENABLE,

DO FOREVER,

SCAN$DELAY=TRUE,
44 2 OUTPUT(SCAN$TIMER)=100, I*Spend 100 msec on each .orl") port sampllng RTS*I
45 2

46 2
47 3

48 3
49 3

50 2
51 2
52 2
53 2

OUTPUT(SET$INT)=SCAN$INT,

DO WHILE SCANSDELAY=TRUE,
IF RTS=O

THEN
CALL DEB OUNCE,

TEMP=INPUT(PORTS1),
PORT$PTR=TEMP AND 38H,
TEMP=TEMP AND (NOT 38H),
PORT$PTR=(PORT$PTR+B) AND 38H,

I*Increment PORT$PTR*I

54 2
55 2

OUTPUT(PORT$I)=TEMP OR PORT$PTR, I*Look at next .erl") port*1
END, I*DO FOREVER*I

56 1 END MAIN$MOD,

MODULE INFORMATION

CODE AREA SIZE, 011CH

PL/M-86 COMPILER MAINMOD

CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
159 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

OOOOH
OOODH'
OOOCH

2840

OD
130
12D

6-303 210907·001

AP·153

PL/M-86' COMPILER INTMOD

SERIES-III PL/M-86 ,,': 0 COMPILATION OF MODULE INTI10D
OBJECT MODULE PLACED It, FlINT OBJ
COMPILER INVOKED BY PLMfl6 86 FlINT SR(

3

4
5
6

7
8

9
10
II

12
13

14

1
2
2

1
2

1
2
2

1
2

I***********~~*******~**********~***~**~~**********~*~~K~***~**~******

*
*

INTE~RUPT MODULE" :;ONTAINS ALL INTERRUPT ROUrINES
PLUS LOAD INTERRUPT lADLE PROCEDURE *

*
********************~***************~*******************~************/

$DEBUG
INT$MOD DO,
$NOLIST

DECLARE
ESC
SCAN$DELAY
DEBOUNCESDELAY
RECEIVESDELAY
MESSAGE$PTR
J

LIT
BYTE
BYTE
BYTE
POINTER
BYTE

'ISH' ,
EXTERNAL,
EXTERNAL,
EXTERNAL,
EXTERNAL,
EXTERNAL,

I*****************************~***************************~*~*********
* MESSAGES SENr TO SERIAL PORTS *
***1

OK (*) BYTE PUBLIC DATA ('TRANSMISSION COMPLETE',OAH,ODH,OO),
BREAK (*) BYTE PUBLIC DATA ('BREAK DETECT ERROR',OAH,ODH,OO),
PARITY (*)BYTE PUBLIC DATA ('PARITY ERROR DETECTED',OAH,ODH,OO),
FRAME (*) BYTE PUBLIC DATA ('FRAMING ERROR DETECTED',OAH,ODH,OO),
OVE,R$RUN(*)BYTE PUBLIC DATA('OVER RUN ERROR DETECTED',OAH,ODH,OO),

1***
* EXTERNAL PROCEDURES CALLED BY THE INTERRUPT ROUTINES
~****************1

ERROR PROCEDURE (STATUS) EXTERNAL,
DECLARE STATUS BYTE,
END ERROR,

PROGRAM, PROCEDURE EXtERNAL,
END PROGRAM,

BUFFSIN PROCEDURE (CHAR) EXTERNAL,
, DECLARE CHAR EYTE,

END BUFFSIN,

BUFF$OUT PROCEDURE BYTE EXTERNAL,
END BUFF$OUT.

I****************************~************~***************~***********
• LOAD THE INTERRUPT TABLE
******~**~********* •• I

LOAD$INTSTABLE PROCEDURE PUBLIC,

6-304 210907-001

Ap·153

PL/M-86 COMPILER INTMOD

15
16
17
18
19
20

21

22

23
24
25
26

27
28
29
30

31
32
33
34
35

36

37

3S
39
40

2
2
2
2
2
2

2

2
2
2
2

1
2
2
2

1
2
2
2
2

2

2
2
2

CALL SET$INTERRUPT (40H.DEBOUNCE$TIME).
CALL SET$INTERRUPT (43H.RECEIVE$TIME).
CALL SET$INTERRUPT (44H.RXD).
CALL SET$INTERRUPT (45H.TXD).
CALL SET$INTERRUPT (46H.SCAN$TIME).
CALL SET$INTERRUPT (47H.LP).

END LOADINTTABLE.

/**~************************
* INTERRUPT ROUTINES *
**************************!**1

1***
* SET SCAN DELAY FLAG FALSE *
***1

SCAN$TIME PROCEDURE INTERRUPT 46H.

ENABLE.
SCAN$DELAY=FALSE.
OUTPUT (CMD$3)=BBH,
END SCAN$TIME.

I*Output end for nested mode*/

1***
* SET DEB OUNCE DELAY FLAG FALSE *
***1

DEBOUNCE$TIME,PROCEDURE INTERRUPT 40H.
DEBOUNCE$DELAY=FALSE.
OUTPUT(CMD$3)=BBH.
END DEBOUNCE$TIME.

1***
* SET RECEIVE DELAY FLAG FALSE *
~********************************.*******************************1

RECEIVE$TIME PROCEDURE INTERRUPT 43H.
ENABLE,
RECEIVE$DELAY=FALSE.
OUTPUT(CMD$3)=S8H,
END RECEIVE$TIME.

1***
* READ SERIAL RECEIVE BUFFER *
***1

RXD PROCEDURE INTERRUPT 44H.

DECLARE
STATUS BYTE.
CHAR BYTE.

CHAR=INPUT(RXSBUFF).
OUTPUT<RECrrVE$TIMER)=70. 1* REINlTIALIZE RECEIVE TIME OUT .1
STATUS=INPUT(STATlJS$REG) AND OFH.

6-305

12/09/82

210907-()01

inter
;1

PL/M-86 COMPILER INTMO[J

41

42

43

44

45
46
47

48
49
50
51
52

53
54

55
56
57

59
60
61
62

63

2

2

2

2

2
2
2

1
2
2
2
2

1
2

2
2
2

2
2
2
2

IF' STATIJS :",0
lHlN

CALL ERROR (STATUS),

ELSE IF CHAR=ESC
THEN

CALL PR()(;~AM,

ELSE
CALL BUFFSIN (CHAR),

OUTPUT(CMDS3)=88H,
END RXD,

1***
* SEND A BYTE TO THE LINE PRINTER *
**************************************~******~***********************1

LP'PROCEDURE INTERRUPT 47H,
ENABLE,
OUTPUT (PORTS2) =BUFFSOUT,
OUTPUT(CMDS3)-88H,
END LP,

1***
* SEND A BYTE TO THE SERIAL PORTS *
***1

TXD PROCEDURE INTERRUPT 45H,
DECLARE

MESSAGE BASED I'IESSAGEsPTR (1) BY1E,
I BYTE,

ENABLE,
I=MESSAGE C J).

IF 1<:>0
THEN OUTPUT(TXSBUFF)-I.

ELSE OUTPUTCRSTSINT)=TRANSMITSINT.
J=J+l,
OUTPUT(CMDS3l=88H,

END T)(D.

END INTSMOD,

MODULE INFORMATION

CODE AREA SIZE '. 01BDH
CONSTANT AREA SIZE = 0078H
VARIABLE AREA SIZE = 0003H
MAXIMUM STACK SIZE = 0022H .
181 LINES REAO
o PROGRAM WARNINGS
o PROGRAM ERRORS

E~O OF PL/M-86 COMPILATION

44'50
1200

30
340

6-306 210907'()()1

Ap·153

PL/M-Sb COMPILER BUFFMOD

SERIES-III PL/M-Sb VI 0 COMPILATION OF MODULE BUFFMOD
OB')ECT MODULE PLACED IN FI BUFF OB')
COMPILER INVOKED BY PLMSb Sb 'FI BUFF SRC

3

4
5

7
S
9

10

11

12
13

14

15

I
:2

:2
3
3
3

3

:2
:2

1***
* *
*
*
*
*

BUFFER MODULE' INSERTS AND REMOVES CHARACTERS FROM FIFO
REPORTS SERIAL RECEIVE ERRORS AND
RE-PROGRAMS SERIAL PORTS

*
*
*
* ***.*************************1

$DEBUG
BUFF$MOD'DO,
$NOLIST

DECLARE
MESSAGE$PTR POINTER
,) BYTE
OK(I) BYTE
BREAK(I) BYTE
PARITY(I) BYTE
FRAME(I) BYTE
OVER$RUN(I) BYTE
SERIAL$FORMAT(I)BYTE
PORT$PTR BYTE

FIFO(SI92)
IN$POINTER
OUUPOINTER
BUFFER$STATUS

BYTE,
WORD
WORD
BYTE

PUBLIC,
PUBLIC,
EXTERNAL,
EXTERNAL,
EXTERNAL,
EXTERNAL,
EXTERNAL,
EXTERNAL,
EXTERNAL,

PUBLIC,
PUBLIC,
PUBLIC,

1***. * INSERT CHARACTER INTO FIFO *
***1

BUFF$IN,PROCEDURE (CHAR) PUBLIC,
DECLARE

CHAR BYTE,

IF «BUFFER$STATUS=EMPTY) AND «CHAR=LF) OR (CHAR-CR»)
THEN

DO;
OUTPUT(SET$INT)=HANDSHAKE$INT, 1* Enable two-Wlre handshake interrupt *1
BUFFER$STATUS=INUSE,
OUTPUT(PORT$2)=O, 1* Output NULL character to get

END,
the lnterrupt started *1

FIFOCIN$POINTER)=CHAR,' 1* Put CHAR lnto FIFO and lncrpmpnt pOinter I'
IN$POINTER~«WPOINTERH) AND IFFFH),'

IF «((IN1iPOINTER+4) AND lFFFH):,.OUT$.,OnJ1ER) 1* If thi" bttfft-'r' 1'. fljll. 'itop l'el.t:'ptlOrl ft

THEN
DO. 1* Send CTS FALSE. cHld 11qht up buffer-full ltl) It,'

6-307 210907·001

,

inter AP·t53

FL/M-B6 COMPILER BUFFMOD

16 ,:3
17 3
IB 3
19 <I

20 1
ill iii
22 iii
23 iii
::!ol iii

2!1 iii
::Z .. :3
27 :3
:;Ie 3
29 :3
30 3

:31 i1

32 2
33 3
34 3
35 3

37 <I

38 1
39 ;/

40 2

41 ;/
42 2

43 2
44 ;/

45 ;/
46 2

47 2

49 3
50 3

QUTI'UT'PORTSI)=((INPUT(PORTSi) t;lR 40H), AND 7FH).
BUFFER$STATUS=FULL.

END.
!;:ND IiUFF$IN,

1**~******.***
* A£MOVE CHARAcTER FROM FIFO *
*.***.*.**~.*****************.**********.****************************'

DUFF$OUT PROCEDURE BYTE PUa~IC.
DECLARE CHAR , BYTE,
CHAft~FIFO(OUT$POINT~R).
OUT.POINTEA~((QUTfPCJINtER+l) AND IFFFH).
If'" QU,..POINTI:R=IN$P01NtER, 1* If th. buffer " EMPTY d ... bl. the output to LI" *1

tHEN
DO.

DISABLE.
DUFFER$StATUS*EMPTY.
OUTPUT (RST$%NT)sHANDSHAKE$INT,
ENABLE,

END.

1* If tht buffer I. r •• d~ to fill up .g.,n th.h SInd CTa TRUE *1

E~.E IF «BUFFER$STATUB&FULL) AND «(OUT$POINtEN-200) AND IFFFHI=IN.~OINTER)1
THEN

DO. 1* Turn' Off buffef'-fwll LED' .and tU!'n on CTa *1
DUTPUT(PORT'I)~«(INPUT(PORT$l) AND ODFHI OR SOH).
BUFFER$STATUI=!NUSE.

END.
R!;:TURN CHAR,

END BUFFSOUT.

1**.**************************
* SEND !;:RROR MI:SSAQE TO SERIAL PORT *
*** *********,****** **'1;* ***** * *** ** * ***** __ ** * ** ***.oM ******* ******* ***** I

ERROR PROCEDURE (STATUS) PUBLlG,
DECLARE STATUS BYTE,

I'1ESSAQE BASED MESSAGE$PTR (I) BYTE,

IF (STATUS AND 02H);0
-THEN

STATUS=2.
ELSE IF, (STATUS AND 04H)~0

THEN
STATUS~3.

ELSE IF (STATUS AND 08H»O
THEN

STATUS=4,
ELSE IF (STATUS AND OlHI~O

THEN
STATUS=l.

DO CASE STATUS,

MESSAGESPTR=@FRAME(O),

..

,6-308 210907-001

PL/M-86 COMPILER BUFF MOD

51
52
53
54

55
56
57
58

59
60

61
62

63

64

65
66
67
68
69

70

71
72

73

74
75

76

3
::l
3
3

2
2
2
2

1
2

2
::l

O!

2

2
3
3
3
3

2

:2
::l

2

2
:2

MESSAGESPTR=@OVERSRUN(O),
MESSAGESPTR=@PARITY(O),
MESSAGE$PTR=@BREAK(O),

END,

~=1. 1* POInt to second character In string *1
OUTPUT(SET$INT)=TRANSMIT$INT,
OUTPUT(TX$BUFF)=MESSAGE(O),

"END ERROR,

I**~******************
* RELOAD SERIAL PORT CONFIGURE BYTE *
***1

PROGRAM PROCEDURE PUBLIC,
DECLARE TEMP BYTE,

CHAR BYTE,

DO WHILE (INPUT(STATUSSREG) AND 40H)=O, 1* Walt for next byh *1
END,

CHAR=INPUTCRXSeUFF);

IF CHAR=O
THEN

DO,

END,

1* If second byte 15 0, eXlt program mod. *1

OUTPUT(RECEIVESTIMER)=70;
CALL BUFFSIN (CHAR),
RETURN,

TEMP=(CHAR AND OFH),

DO WHILE (INPUT(STATUSSREG) AND 40H)=0,
END,

TEMP=CINPUTCRXBUFF) AND OFH) OR SHLCTEMP,4),

SERIALSFORMAT CSHRCPORT$PTR,3»=TEMP,
END PROGRAM,

END]lUFFSMOD,

MODULE INFORMATION

CODE AREA SIZE - 01E4H
CONSTANT AREA SIZE = OOOOH
VARIABLE AREA SIZE = 200BH
MAXIMUM STACK SIZE = OOOAH
199 LINES READ
o PROQRAM WARNINGS
o PROQRAM ERRORS

END OF PL/M-96 COMPILATION

4840
00

82030
100

6-309 21090HlO1

{

"n+_I® III-e-

PL/M-86 COMPI~ER

Ap·153

SERIES-III PL/M-86 VI 0 COMPILATION OF MODUL. PON_MOD
OB~ECT MODULE PLACED IN FI PON OB~
COMPILER INVOKED BY PLM86 86 Fl PON SRC

$DEBUG

1***

3

4

S 2

6 2

7 2

8 2

9 2
10 2

II 2

12 2

13 2

14 2
IS 2
17 2

18 2

*
*
*

POWER ON INITIALIZATION OF THE LINE PRINTER MULTIPLEXER *
*
*

*************************************~*********.***************************1

PON_MOO DO.

$NOL.IST

DECLARE BUFFER$STATUS BYTE
IN$POINTER WORD
OUT$POINTER WORD
PORT$PTR BYTE
SERIAL$FORMAT(8)BYTE

POWER$ON PROCEDURE PUBLIC,

DECLARE I BYTE.

DISABLE.

EXTERNAL.
EXTERNAL.
EXTERNAL.
EXTERNAL.
EXTERNAL.

1* INITIALIZE THE MUART *1

OUTPUT(CMD$!)=OIOOOOIIB.

,OUTPUT(CMD$2)=IOIIOIOOB.

OUTPUT(CMO$3)=0111111IB.
OUTPUT1CMD$3)=1011000IB.

OUTPUT (MODE)-IOOOOI'OIB.

1*8086 MODE. FREG=lKHz. 1 STOP BIT. &
7 BITS/CHARACTER.I

1*000 PARITY. SYSTEM CLOCK=I 024 MHz. &
9600 bp.*1

I*CLEAR CMD$3 REGISTER*I
I*RESET. INTERRUPT ACKNOWLEDGE ENABLE. &

NESTED INTERRUPT MODE*I
I*CASCADE TIMERS 35 FOR THE

RECEIVE$TIME$OUT TIMER. BYTE OUTPUT MODE*I

OUTPUT(PORTICTRL)=IIII1000B, I*PORT I RTS=INPUT. THE REST ARE OUTPUTS*I

OUTPUT(PORT$I)=IIOOOOOOB. I*POINT TO THE FIRST PORT. CTS IS FALSE.
AND BUFFER IS NOT FULL*I

1* INITIAL.IZE FLAGS. VARIABLES. AND ARRAYS *1

BUFFER$STATUS=EMPTY.
IN$POINTER-O. OUT$POINTER-O.
PORT$PTR=O.

DO 1=0 TO 7.

6-310 210907-001

Ap·153

PL/M-86 COMPILER

19 3 SERIAL.FORMAT(I)=10010100B,

20 3 END,

21 2 END POWER.ON,

22

MODULE INFOR~ATION.

CODE AREA SIZE = 0058H 880
CONSTANT AREA SIZE = OOOOH 00
VARIABLE AREA SIZE = 0001H 10
MAXIMUM STACK SIZE - 0002H 20
98 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

6-311

1* ON POWER-UP ALL EIGHT SERIAL PORTS
DEFAULT TO 9600 bps, ODD PARITY, AND
7 BITS/CHARACTER*I

210907'()()1

AP·153

APPENDIX.B
-LISTING OF THE WRITE PROGRAM

6-312 210907-001

AP·153

PL/M--80 ('Of1P lLFh

ISIS-II PL/M-BO V4 ° COMPILA1ION OF MODULE WRITEMOD
OBJECT MODULE PLACED IN Fl '~R ITE OBJ
COMPILER INVOKED BY F2 PLM80 FI WRITE SRC

2

3

4

5
6

7

8
'I

10

2
2

2
;/

$DEBUG
WR I TE$MOD DO.

/*******.*********************.~**************************************

* * * WRITE PROGRAM READS A FILE FROM A DISK AND COPIES *
* IT TO SER IAL CHANNEL 2 ON THE-. MDS *
* *
*
*

SYNTAX OF WRITE WRITE. DEVICE. NAME EXTENSION *
*

~~**********·****1

DECLARE LIT LITERALLY 'LITERALLY' .
USART$DATA LIT 'OF6H',
USART$STATUS LIT 'OF7H' ,
RTS LIT '20H',
TXEN LIT 'OIH',
RXE LIT '04H',
CR LIT 'ODH',
LF LIT 'OAH',
TAB LIT '09H' ,
SP LIT '20H'.
ESC LIt 'IBH' ,
FOI'lM$FEED LIT 'OCH',

DECLARE AFT$IN ADDRESS,
FILENAME(IS) BYTE,
STATUS ADDRESS,
BUFFER (32000) BYTE,
ACTUAL ADDRESS,
CHAR$COUNT ADDRESS,
BYE(42) BYTE INITIAL

,('WROTE ',0,0,0,0,0,0,0,0.0,0,0,0,0,0, TO THE LINE PRINTER',OAH.ODH),
I
J

ADDRESS.
BYTE,

I*************.***********************************~*******************
* EXTERNAL SYSTEM LIB PROCEDURES *
*************.*******************************-***********************1

OPEN
PROCEDURE (AFTNPTR,FILE,ACCESS,MODE,STATUS) EXTERNAL,
DECLARE (AFTNPTR,FILE,ACCESS,MODE,STATUSl ADDRESS,

END OPEN,

READ
PROCEDURE (AFTN,BUFFER,COUNT,ACTUAL, STATUS) EXTERNAL,
DECLARE (AFTN,BUFFER,COUNT,ACTUAL,STATUS) ADDRESS,

END READ,

WRITE.

6-313 210907-001

AP·153

PL/M-BO COMPILER

11
12

13

14
15

16

17
lB

19

20

21

22
23
24

25

26

27

28

29

30

31

32

33

34

35

36

2
2

2
2

2
3
2

PROCEDURE (AFTN. BUFFER. CO(JNT. STATUS) EXTERNAL.
DECLARE (AFTN.BUFFER.COUNT.STATUS) ADDRESS.

END WRITE;

CLOSE'
PROCEDURE (AFTN.STATUS) EXTERNAL,
DECLARE (AFTN.STATUS) ADDRESS.

END CLOSE.

ERROR
PROCEDURE (ERRNUM) EXTERNAL.
DECLARE (ERRNUM) ADDRESS.

END ERROR;

EXIT'
PROCEDURE EXTERNAL,

END EXIT.

1***~*************
* WAIT UNTIL USART TRANSMITTER IS READY *
***1

TXRDY'
PROCEDURE,
DO WHILE ((INPUT(.USARHiSTATUS) AND 01H)
END,

END TXRDY,

o).

1***
* BEGIN MAIN PROGRAM *
***1

BEGIN.
STATUS=O,

CALL READ(!. FILENAME. 15. ACTUAL. STATUS). 1* R""d in fih and path name *1

REPEAT'

IF STATUS <> 0
THEN

GO TO DONE,

CALL OPEN(AFTSIN •. FILENAME. 1. O. STATUS'). 1* Open up the file *1

IF STATUS <> 0
THEN

GO TO DONE;

CALL READ(AFTSIN •. BUFFER.32000 •. ACTUAL. STATUS),

IF STATUS <> 0
THEN

GO TO DONE.

CHAR$COUNT-O, r- CHAR_COUNT keeps t~ack of the tab columns In each lIne *1

OUTPUT(USARTSSTATUS)= RTS.OR TXEN.

210907-<l01

inter AP·153

PL/M-80 Cu.1F'lLER

37

39 !
39 2
40 2
41 2

42

43 2

44 2
45 3
46 3
47 3

49 3
49 4
50 4
51 4
52 4
53 3

54 2

55 2
56 3
57 3
59 3

59 2
60 3
61 3
62 3

63 3

64 3

65 3
66 3
67 2

69

69

70
71
72

IF RUFFER(O);FORMSFEED 1* If th. flr~t ch~TaLter 15 a form feed
remove It rorm f~eds are lnserted at the
end of a file *1

THEN
DO,

BUFFI?R(Q)=OOH,
CHARSCOUNT=-I,

END,

DO I 0 TO (AC TUAL - 1),

END,

IF (BUFFER(I)=TAB) 1* Replaco TAB character. wlth the
appropriate number of spac •• *1

ELSE

THEN
DO,

END,

CALL TXRDY,
OUTPUT(USARTSDATA)=SP,
CHARSCOUNT=CHARSCOUNT+1;

DO WHILE «CHARSCOUNT AND 0007H)CO},
CALL TXRDY,

END,

OUTPUT (USARTSDATA) =SP,
CHARSCOUNT=CHARSCOUNT+!,

IF BUFFER(I}=ESC 1* If outputtlng ESC, then output a
o neKt 50 the LPM does not get

THEN
DO J=O TO 1,

CALL TXROY,

re-programmed *1

OUTPUT (USART$DATA)=O,
END,

ELSE 1* If the character IS not an ESC or TAB then ~utput It *1
DO,

CALL TXRDY,
OUTPUT(USARTSDATA}~BUFFER(I},

IF (BUFFER(I>:'IFH AND BUFFER(I}':: 7FH)

THEN 1* Only lncrement CHARSCOUNT
for printable characters *1

CHARSCOUNT=CHARSCoUNT+!,

IF' ((BUFFI?R (j) =CR} OR (BUFFER (J) =LF} }
THEN 1* Ro.et CHARSCOUNT for CR or LF *1

CHAR$CoUNT=O,
END,

IF ACTUAL = 32000 1*1 f th e f 11 e 1 s more than :J2K. get some more data *1
THEN

GO TO REPEAT,

CALL TXRDY, 1* Termln,ate File With CR, LF, and FF *1
OUTPUT(USART$DATA)=CR,
CALL TXRDY,

6-315 210907-001

Ap·153

PL/M-80 COMPILER

73
74
75

76

77

78 1
79 2

80 2
81 2
82 2

83

84

85

86

87

SKIP'

DONE:

NEXT:

OUTPUT (USAR T$DA 1 A) =LF;
CALL TXRDY,
OUTPUT (USART$DATA)=FORM$FEED,

OUTPUT(USART$STATUSl=RXE OR TXEN; 1* Shut oFF RTS *1

CALL CLOSE (AFT$IN, STATUS);

DO 1=0 TO 'i4; ",* Output slgn off message *1

END;

IF FILENAME(I)=CR
THEN

GO TO SKIP,
BYE(I+S)=FILENAME(I),

CALL WRITE(0"BYE,42, STATUS);

GO TO NEXT;

CALL ERROR (STATUS) ,

CALL EXIT.

END WRITE$MOD;

MODULE INFORMATION:

= 0209H
7D44H
0008H

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE =
191 LINES READ
o PROGRAM ERRORS

END OF PL/M-80 COMPILATION

521D
32068D

80

6-316 210007-()01

AP·153

APPENDIX C
MUART REGISTERS

6..;317 21090Hl01

Ap·153

I

8085 Mode: AD3 AD2 AD! ADO
8086 Mode: AD4 AD3 AD2 Ant

0000

0001

0010

0011

Timer Frequency Select
~--- 8086 Mode Enable

Interrupt on Bit Change
Break-in Detect Enable c

Stop Bit Length
Character Bit Length

'------ Baud Rate Select
'------------- System Clock Divider

Even Parity
'------------------ Parity Enable

I SET .. 1 RxE I IAE I NIE I END ISBRKtrBRK I RST I
Command 3 I L

I I

I T35 I T24 I T5C I CT3 I CT2 I P2C21p2Cli P2CO I

Software Reset
Transmit Break
Single Character Break
End of Interrupt .
Nested Interrupt Enable
Interrupt Acknowledge Enable
Receiver Enable
Bit Set/Reset

Mode I l i J

f '--1 __ - Port 2 Control
Counter/Timer 2

~---------- Counter/Timer 3
'-------------- Timer 5 Retriggerable

'---------------- Cascade Counter/Timer 2 & 4
'------------------ Cascade Counter/Timer 3 & 5

6-318 210907-001

Ap·153

0100

'------------ Output/Input of Port 1 pins

(Write only)

0101 L7 L6 I L5 I LA I L3 I L2 I Ll I LO I Enable
Set Interrupts

(Write only)

OlIO L7 L6 I L5 I LA I L3 I L2 Ll I LO I Disable

Reset Interrupts

(Read only)

0101 L7 L6 I L5 I LA I L3 I L21 LI I LO I Interrupt Levels Enabled

0110

1111

Interrupt Enable

(Read only)

'---t==-______ Interrupt Level in Service

(Write only)

Disable Start Bit Check
'----- Transmit Mode Enable

L..... __________ Receiver Sampling Point

6-319 210907·001

, inter Ap·153

Status Register (Read only)

1111 lINT I RBF I TBE I TRE I BD I PE I OE I FE I

I

,

Framing Error/Transmission Mode
Indication '
Overrun Error
Parity Error
Break Detect or Break-in Detect
Transmitter Register ,Empty
Transmitter Buffer Empty
Receiver Buffer Full
Interrupt Pending

Response to INTA
B085-Mode (RST-instruction in response to INTA)

D5 D4 I D3
I ,

1..-__________ Interrupt Level

8086-Mode (Interrupt Vector in response to secon~ INTA)

o o o o 021DlIDOI
'----- Interrupt Level

6-320 210907'()()1

8231 A
ARITHMETIC PROCESSING UNIT

• Fixed Point Single and Double . • Compatible with all Intel and most
Precision (16/32 Bit) other Microprocessor Families

• Floating Point Single Precision • Direct Memory Access or
(32 Bit) Programmed 110 Data Transfers

• Binary Data Formats • End of Execution Signal
• Add, Subtract, Multiply and Divide General PurposeS·Blt Data Bus

Trigonometric and Inverse • • Interface
Trigonometric Functions

Standard 24 Pin Package • Square Roots, Logarithms, •
Exponentiation • + 12 Volt and + 5 Volt Power

• Float to Fixed and Fixed to Float Supplies
Conversions • Advanced N·Channel Silicon Gate

• Stack Oriented Operand Storage HMOS Technology
The Intell!> 8231 A Arithmetic Prpcessing Unit (APU) is a monolithic HMOS LSI device that provides high performance fixed
and floating point arithmetic and floating pOint trigonometric operations. It may be used to enhance the mathematical
capability of a wide variety of processor-oriented systems. Chebyshev polynomials are used in the implementation of the
APU algorithms.

All transfers, including operand, result, status and command information, take place over an 8-bit bidirectional data bus.
Operands are pushed onto an internal stack and commands are issued to perform operations on the data in the stack.
Results are then available to be retrieved from the stack.

Transfers to and from the APU may be handled by the associated processor using conventional programmed 1/0, or may be
handled by a direct memory access controller for improved performance. Upon completion of each command, the APU
issues an end of execution signal that may be used as an interrupt by the.CPU to help coordinate program execution.

Figure 1. Block Diagram . Figure 2. Pin Configuration

6-321

intJ

Pin
Symbol No. ~pe

Vee 2

Voo 16

Vss 1

CLK 23 I

RESET 22 I

CS 18 I

Ao 21 I

Ao RD

0 1
0 0
1 1
1 0

RD 20 I .
WR 19 I

EACK 3 I

SVACK 4 I

ENE) 24 0

8231A

Table 1. Pin Des,crlption

I'
Name and Function

Power: +5 VCllt power supply,

Power: +12 Volt pOIYer supply.

Ground.

Clock: An external,' TTL compatible,
timing source is applied to the CLK pin.

Reset: The active high reset signal pro-
vides initialization' for the chip, RESET
also tllrminates, any operation in pro-
gress.RESET clears the status register
and places the 8231A into the idle state.
Stack contents and command registers
are not affected (5 clock cycles). '

Chip Select: CS is an active low input
signal which selects the 8231A and en-
ables communication with the data bus.

Address:' In' conjunction with the m5
and WR signals; the Ari control, line es-
tablishes the type of communication
that is to be performed with the 8231 A as
shown below:

WR Function

0 Enter data byte into stack
1 Read data byte from stack ,
0 Enter command ,
1 Read status

,

Read: This active low input indicates
that data or status is to be read from the
8231A if CS is low.

Write: This active low input indicates
that data or a command is to be written
into the 8231A if CS is low.

End of Execution: This active low input
clears the end of execution output sig-
nal (8iiD). If EACK is tied low, the END
output will be a pulse that is one clock
period wide.

Service Request: This active low input
clears the service request output
(SVREQ).

End: This active low, open-drain output
indicates that execution of the pre-
viously entered command is complete. It
can be used as' an interrupt request and
is cleared by EACK, RESET or any read
or write access to the 8231.

6-322

Pin
Symbol No. ~pe Name and Function

SVREQ 5 0 Service Req\leat: This acti~e hJ,gh out-
put signal il1d,icates that command
execution is 'complete and that' post
execution service .."as requested in the
previous command byte. It is cleared by
SVACK, the next command output'to the
devic$, or by RESET.

READY ,1,7 0 Ready: This active high output Indi-
cates that the 8231A is able to accept
communication with the data bus. When
an attempt is made to read 'data, write
data or to enter a new command while
the 8231A Is' executing a command,
READY goes low until executi,on of the
current command Is complete (See
READY Operation" p. 5).

DBO- 8- I/O Data Bus: These eight bidirectional
DB7 15 lines provide for transfer of commands,

status and data between the 8231A and
theCPU.,The '8231A can drive the data
bU~ only when CS and RD are low.

COMMAND STRUCTURE
Each command entered I nto the 8231 A consists of a 51 ngle
B-bit byte having the format illustrated below:

Bits 0·4 select the operation to be performed as shown
in the table. Bits 5·6 select the data format appropriate
to the selected operation. If bit 5 is a 1, a fixed point data
format is specified. If bit 5 is a 0, floating point format is
specified. Bit 6 selects the precision of the data to be
operated upon by fixed pOint commands only (if bit
5 = 0, bit 6 must be 0). If bit 6 is a 1, single'precision
(16·bit) operands are assumed. If bit 6 is a 0, double·
precision (32·bit) operands are indicated. Results are
undefined for all illegal combinations of bits in the com·
mand byte. Bit 7 indicates whether a service request is
to be issued after the command is executed. If bit 7 is a
1, the service request output (SVREQ) will go high at the
conclusion of the command and will remain high until
reset by a low level on the service acknowledge pin
(SVACK) or until completion of execution of the suc·
ceeding command where service request (bit 7) is O.
Each command issued to the 8231A requests post execu­
tion service based upon the state of bit 7 in the command
byte. When bit 7 is a 0, SVREQ remains low.

AFN'()1251B '

inter 8231A

Table 2. 32·81t Floating Point Instructions

Hex(1) Slick (:onlenls(2) Slllus FIIgS(4)
Inslrucllon Description After Execullon

Code A B C D Allecled

ACOS Inverse Cosine of A 0 6 R U U U S, Z, E

ASIN Inverse Sine of A ,0 5 R U U U S, Z, E

ATAN Inverse Tangent of A 0 7 R B U U S, Z

CHSF Sign Change of A t 5 R B C 0 S, Z

COS Cosine of A (radians) 0 3 R B U U S, Z

EXP ell Function 0 A R B U U S, Z, E

FADD Add A and B t 0 R C 0 U S, Z, E

FDIV Divide B by A 1 3 R C D U S, Z, E

FLTD 32·BIt Integer to Floating Point Conversion 1 C R B C U S, Z

FLTS 16·Bit Integer to Floating POint Conversion 1 0 R B C U S, Z

FMUL Multiply A and B 1 2 R C 0 U 5, Z, E

FSUB Subtract A from B 1 1 R C 0 U S, Z, E

LOG Common Logarithm (base 10) of A 0 8 R B U U S, Z, E

LN Natural Logarithm of A 0 9 R B U U S, Z, E

POPF Stack Pop 1 B B C 0 A S, Z

PTOF Stack Push 1 7 A A B C S,Z

PUPI Push n onto Stack 1 A R A B C S, Z

PWR sA Power Function 0 B R C U U S, Z, E

SIN Sine of A (radians) 0 2 R B U U S, Z

SORT Square Root of A 0 1 R B C U S, Z, E

TAN Tangent of A (radians) 0 4 R B U U S, Z, E

XCHF Exchange A and B 1 9 B A C 0 S,Z

Table 3. 32·81t Integer Instructions

Hex(1) Stack Contents(2) Sialus Flags(4)
Instruction De.crlpllon Aller Execullon , Code

A 8 C D
Allecled

CHSD SIgn Change of A 3 4 R B C 0 S,Z,O

DADO Add A and B 2 C R C 0 A S, Z, C, E

DDIV Divide B by A 2 F R C 0 U S, Z, E

DMUL Multiply A and B (R = lower 32·bits) 2 E , R C 0 U S,Z,O

DMUU Multiply A and B (R = upper 32·bits) 3 6 R C 0 U S,Z,O

DSUB Subtract A from B 2 0 R C 0 A S,Z, C, 0

FIXD Floating Point to Integer Conversion 1 E R B C U S,Z,O

POPD Stack Pop 3 8 B C 0 A S, Z

PTOD Stack Push 3 7 A A B C S, Z

XCHD Exchange A and B 3 9 B A C 0 S,Z

Table 4. 16-8it Integer Instructions

Hex(1) Slack Conlenl.(3) Stalus Flags(4)
Inslructlon Descrlpllon

Code After Execullon Allecled) Au AL Bu BL Cu CL Du DL

CHSS Change Sign of Au 7 4 R AL Bu BL Cu CL Du DL S, Z, 0

FIXS Floating Poont to Integer ConversIon I F R Bu BL Cu CL U U U S,Z,O

POPS Stack Pop 7 8 AL Bu BL Cu CL Du DL Au S, Z

PTOS Stack Push 7 7 Au Au AL Bu BL Cu CL Du S, Z

SADD Add Au and AL 6 C R Bu BL Cu CL Du DL Au S, Z, C, E

501 V Divide AL by Au 6 F R Bu BL Cu CL Du DL U S, Z, E

SMUL Multiply AL by Au (R = lower 16'blts) 6 E R Bu BL Cu CL Du DL U S, Z, E

SMUU Multiply AL by Au (R - upper 16·bits) 7 6 R Bu BL Cu CL Du DL U S, Z, E

SSUB Subtract Au from AL 6 0 R Bu BL Cu CL Du DL Au S, Z, C, E

XCHS Exchange Au and AL 7 9 AL Au Bu BL Cu CL· Du DL S, Z

NOP No Operation 0 0 Au AL Bu BL Cu CL Du DL

Note •• 1. In the hex code column, SVREQ IS a O.
2. The stack initially is composed of four 32·bil numbers (A, B, C, D). A is eqUIvalent to Top Of Staak (TOS) and B IS Next On Stack (NOS). Upon

completion of a command the stack IS composed of: the result (R); undefined (U), or the initial contents (A, B, C, or D).
3. The stack initially Is composed Of eight 16·bit n~mbers (Au, AL, Bu, BL, Cu, Clo Du, DU' Au is the TOS and AL is NOS. Upon completion of a

command the stack is composed of: the result (R); undefined (U); or the initial contents (Au, AL, Bu, BL, ...).
4. Nomenclature: Sign (S); Zero (Z); Overflow (0); Carry (C); Error Code Field (E).

6-323 AFN~01251B

intJ 8231 A , "
1,1',

DATA FORMATS
The 6231 A arithmetic processing unit handles operands
In -both fixed point and floating -point formats. Fixed
point oparands may be represented in either single
(16-bit operands) or double precision (32-blt operands),
and are always represented as binary, two's comple-
ment values. .

SINGLE PRECISION FIXED POINT FORMAT

I VALUE I
-I II I I-I I I I I I I I I I
~ .

DOUBLE PRECISION FIXED POINT FORMAT

I -VALUE I
·1 I I I I I I I 1'1 I
~ .
The sign (positive or negative) of the operand is located
in the most significant bit (MSB). Positive values are
represented by a sign bit of zero (S = 0). Negative values
are represented by the two's complement of the corre­
sponding positive value with a sign bit equal to 1 (S = 1).
The range of values that may be accommodated by each
of these formats is - 32,768 to +' 32,767 for single preci­
Sion and -2,147,483,648 to +2,147,483,647 for double
precision. '

Floatini;l'point biliary values are represented in a format
'that permit's arithmetic to be performed in a fashion
analogous to operations with decimal values expressed
in scientific notation.

In the decimal system, data may be expressed as values
between 0 and 10 times 10 raised to a power that effec­
tively shifts the Implied decimal pOint right or left the
number of places necessary to express the result in con­
ventional form (e.g., 47,572.8). The value-portion of the
data is called the mantissa The exponent may be either
negative or positive. '

The concept of floating point notation has both a gain
and a loss associated with it. The gair:J is the ability to
represent the significant digits of data with values span­
ning a large dynamic range limited only by the capacity

. of the exponent field. For example, in decimal notation
if the exponent field is two digits wide, and the mantissa
is five digits, a range of values (positive or negative)
from 1.0000 x 10- 99 to\ 9.9999 x 10+99 can be accom­
modated. The loss is that only the significant digits of
the value can be represented. Thus there is no distinc­
tion in this representation between the values 123451
and 123452, for example, since 'each would be ex­
pressed as: 1.2345 x 105. The sixth digit' has been
discarded. In most applic/itions where the dynamic

.' range of values to be represented is large, the loss of
significance, and hence accuracy of results, is a minor
consideration. For greater precision a fixed point format
could be chosen, although with a loss of potential

, dynamic range. .

. The 8231A is a binary arithmet1c processor and requires
that floating pOint data be represented ·by a fractional
mantissa value between .5 and 1 multiplied by 2 raised
to an appropriate power. This is expressed as follows:

value = mantissa, x 2e~ponent

For example, the value 100.5 expressed in this form Is
0.1100' 1001 x 27. The decimal equl,valent of this value
may be computed by s~mmlng the components (powers
of two) of the mantissa and then multiplying by the ex­
ponent as shown below:

value = (2- 1 + 2- 2+ 2- 5 + 2- S)x 27
= 0.5 + 0,25 + 0:03125 + 0:00290625) x 128
= 0.78515625 x 128
= 100.5

FLOATING POINT FORMAT
The format for floating point values in the 8231A is given
below. The mantissa Is expressed as a 24-bit (fractional)
value; the exponent Is expressed as a two's comple,ment
7-blt value having a range of -64 to +163. The most
significant bit Is the "ign of the mantissa (0 = positive,
1 = negative), for a total of 32 bits. The binary point is
assumed to be to the left of the most significant man­
tissa bit (bit 23). All floating point data values must be
normalized. Bit 23 must be equal to 1, except for the
value zero, ,which is represented by ali zeros.

I EXPONENT I MANT'SSA I
~I~I I I I I I I I I I II I I I I I II I II I I I I I I I
3130 2423 0

The range of values that can be represented in this for­
mat is ± (2.7 x 10-20 to 9.2 x lO'S) and zero.

FUNCTIONAL DESCRIPTION

STACK CONTROL

The user interface to the 8231A in'eludes access to an 8
level 16-bit wide data stack. Since Single precision fixed

'" point operands are 16-bits in length, eight such values
may be maintained In the stack. When using double
precision fixed point or floating point formats four
values may be store'd. The stack in these two cenfigura­
tions can be visualized as shqwn below:

TOS

NOS
-- A2 A'

82 B'

-18-'

T05-

NOS

A4 A3 A2 A.

B4 as 82 B.

-32-

Data are written onto the stack, eight bits at a'time, In
the order shown (A 1, A2, A3, ...). Data are removed from
the stack in reverse byte order (A4, A3, A? ..). 'oata
should be entered onto the stack in multiples of the
number of bytes appropriate to the chosen data format.

" .'

6-324 A~'()'251B

i.nter 8231 A

\ DATA ENTRY

Data entry is accomplished by bringing the chip select
(CS), the command/data line (Ao), and WR low, as shown
in the timing diagram. The entry of each new data word
"pushes down" the previously entered data and places
the new byte on the top of stack (TOS). Data on the bot­
tom of the stack prior to a stack entry are lost.

DATA REMOVAL

Data are removed' from the stack in the 8231 A by bringing
chip select (CS), command/data (Ao), and An low as
shown in the timing diagram. The removal of each data
word redefines TOS so that the next successive byte to
be removed becomes TOS. Data removed from the stack
rotates to the bottom of the stack.

COMMAND ENTRY

After the appropriate number of bytes of data have been
entered onto the stack, a command may be issued to
perform an operation on that data. Commands which re­
quire two operands for execution (e.g., add) operate on
the TOS and NOS values. Single operand commands
operate only on the TOS.

Commands are issued to the 8231A by bringing the chip
select (CS) line low, command data (Ao)lIne high, and
WR line low as indicated by the timing diagram. After a
command is issued, the CPU can continue execution of
its program concurrently with the 8231A command
execution.

COMMAND COMPLETION

The 8231 A signals the completion of each command exe­
cution by lowering the End Execution line (END).
Simultaneously, the busy bit in the status register Is
cleared and the Service Request bit of the command
register is checked. If it is a "1" the service request out­
put level (SVREQ) is raised. END is cleared on receipt of
an active low End Acknowledge (EACK) pulse. Similarly,
the service request line is cleared by recognition of an
active low Service Acknowledge (SVACK) pulse.

READY OPERATION

An active high ready (READY) is provided. This line is
high in its quiescent state and is pulled low by the 8231A
under the following conditions:

1. A previously initiated operation is in progress (device
busy) and Command Entry has been attempted. In
this case, the READY line will be pulled low and re­
main low until completion of the current command
execution. It will then go high, permitting entry of the
new command.

2. A previously initiated operation is in progress and
stack access has been attempted. In this case, the
READY line will be pulled low, will remain In that
state until execution is complete, and will then be
raised to permit completion of the stack access.

3. The 8231A is not busy, and data removal has been re­
quested. READY will be pulled low for the length of
time necessary to transfer the byte from the top of
stack to the interface latch, and will then go high,
indicating availability of the data.

4. The 8231A is not busy, and a data entry has been re­
quested. READY will be pulled low for the length of
time required to ascertain If the preceding data byte,
if any, has been written to the stack. If so READY will
Immediately go high. If not, READY will remain low
until the Interface latch Is free and will then go high.

5. When a status read has been requested, READY will
be pulled low for the length of time necessary to
transfer the status to the Interface latch, and will
then be raised to permit completion of the status
read. Status may b.e read whether or not the 8231A is
busy.

When READY goes. low, the APU expects the bus con­
trol signals present at the time to remain stable until
READY goes high.

DEVICE STATUS

Device status Is provided by means of an internal status
register whose format is shown below:

I BUSY I SIGN I ZERO tJ ERROR I CODE -I --I CARRY I
BUSY: Indicates that 8231A is currently executing a com­

mand (1 =Busy)
SIGN: Indicates that i'he value on the top of stack is

negative (1 = Negative)
ZERO: Indicates that· the value on the top of stack Is

zero (1 = Value is zero)
. ERROR CODE: This field contains an indication of the

validity of the result of the last opera­
tion. The error codes are:

0000 - No error
1000 - Divide by zero
0100 - Square root or log of negative number
1100 - Argument of inverse sine, cosine, or

eX too large
XX10 - Underflow
XX01 - Overflow

CARRY: Previous operation resulted in carry or borrow
from most significant bit. (1 = Carry/Borrow,
0= NoGarry/No Borrow.)

If the BUSY bit in the status register is a one, the other
status bits are not defined; if zero, indicating not busy,
the operation is complete and the other status bits are
defined as given above.

READ STATUS

The 8231 A status register can be read by the CPU at any
time (whether an operation is in progress or not) by
bringing the chip select (CS) low, the command/data line
(Ao) high, and lowering RD. The status register is then
gated onto the data bus and may be input by the CPU.

EXECUTION TIMES
Timing for execution of the 8231A command set is con­
tained below. All times are given in terms of clock
cycles. Where substantial variation of execution times

6-325 AFN-01251B

8231A

is possible, the minimum and maximum values are
qljoted; otherwise, typical values are given. Variations
are data dEl pendent.

Total ,execution times may require allowances for
operand transfer into the APU, command exeCution; and
result retrieval from the APU.Except for command exe·

cution, these times will be heavily influenced by the
nature of the data, the control interface used, the speed
of memory, the CPU used, the priority allotted to DMA
and Interrupt operations, the size and number of
operands to be transferred', and the use of chained
calcuiations, etc.

Table 5. Command Execution Times

Command Clock Command Clock
Mnemonic ' Cycles Mnemonic Cycles

SADD 17 FADD 54·368
SSUB 30 FSUB 70·370
SMUL 84·94 FMUL 146·1fl8
SMUU 80·98
SDIV 84·94 FDIV 154·184
DADD 21 SORT 800
DSUB 38 SIN 4464
DMUL 194·210 COS 4118
DMUU 182·218
DOIV 208 TAN 5754

• FIXS 92·216 ASIN 7668
FIXD 100·346 ACOS 7734
FLTS 98·186 ATAN 6006
FLTO 98·378 LOG 4474·7132

DERIVED FUNCTION DISCUSSION
Computer approximations of transcendental functions
are ofterr based on some form of polynomial equation,
such as: '

(1·1)

The primary shortcoming of an approximation in this
form is that it typically exhibits ttery large errors when
the magnitude of IXI is large, although the errors are
small when IXI is small. With polynomials in !hi,s form,
the error distribution is markedly uneven' over any
arbitrary interval. '

A set of approximating functions exists that not only
minimizes the maximum error but also provides an even
distribution of errors within the selected data represen·
tation interval. These are known as Chebyshev Poly·
nomials and are are based upon cosine functions. These
functions are defined as follows:

T n(Xl = Cos nO; where n = 0,1,2 ...
O=COS-1X

(1·2)

The various terms of Ihe Chebyshev series can be com·
puted as shown below:

To(Xl= Cos (0 . 9)= Cos (0)= 1 (1':!I)
T1(X) = Cos (Cos-1j(1= X (1·5)
T 2(X) = Cos 29 =' 2COS2 e - 1 == 2Cos2 (Co's -1 X) - 1 (1·6)

=2X2_1

Command Clock Command Clock
Mnemonic Cycles Mnemonic Cycles

6-32,6

LN 4298·6956 POPF 12
EXP 3794·4878 XCHS 18
PWR 8290·12032 XCHD, 26

NOP 4 XCHF 26
CHSS 23 PUPI 16
CHSD 27
CHSF 18

PTOS 16
PTOD 20
PTOF 20
POPS 10
PO PO 12

In general, the next term in the Chebyshev series can be
re?ursively derived from the previous term as follows:

(1·7)

Common I'ogarithms are computed by multiplication
of the natural logarithm by the conversion factor
0.43429448 and the error function is therefore the same
as that for natural logarithm. The power function is
realized by combination of natural log and exponential
functions according to the equation:

The error for the power function is a combination of that
for the logarithm and exponential functions.

Each of the derived functions is an approximation of the
true function. Thus the result of a derived function will
have an error. The absolute error is the difference be·
tween the function's result and the true result. A more
useful measure of the function's error is relative er'ror
(absolute errorltrue result). This gives a measurement of
the significant digits of algorithm accuracy. For the
derived functions except LN, LOG, and PWR the relative
error is typically 4 x 10 -7. For PWR the relative error is
the summation of'the EXP <lnd LN errors, 7x 10-7. For
LN and LOG; the absolute error is 2 x 10 -7.

AFN-D1251B

intJ 8231 A
\

APPLICATION INFORMATION can be simplified as shown in Figure 3. The 8231A APU is
designed with a general purpose 8·blt data bus and In·
terface control so that it can be conveniently used with
any general 8-bit processor.

The diagram in Figure 4 shows the interface connec­
tions for the APU with operand transfers handled by an

. 8237 DMA controller, and CPU coordination handled by
an Interrupt Controller. The APU Interrupts the CPU to
indicate that a command has been completed. When the
performance enhancements provided by the DMA and
Interrupt operations ~re not required, the APU interface

In many systems it will be convenient to use the
microcomputer system clock to drive the APU clock
input. In the case of 8080A systems it would be the
t/>2TIL signal. Its cycle time will usually fall in the range
of 250 ns to 1000 ns, depending on the system speed.

~
AQ~A.16 I

HLOA

HOLD

CLOCK

iiiiii

.EMW

11Ii\
CPU

iO\i

READY

III1'A

INT

DBO-Da7

... ~

"' !.-
,

CPU iOii 10------01 liD
iOW Wii

CLOCK CLK

READY READY

.. ei
8231A

ARITHMETIC
PROCE880R

UNIT .

~ r ,..:, ~
~~~ ____ ~SY~M~E~M=DA~T~A~~~s __ ~_J __ ~ ____ --,;> 

Figure 3. Minimum Configuration Example 

, 
ADDRESS BUS 

.... ! 1T 
DECODER cs AO-.A7 

p-
8237 

DMA CONTROLLER 
' HLDA 

i ~ ~ 
HRQ ~ ~ ~ I~ ~ ~ 

J r 

i 
WIi IiII lSI .. If! 

t... "EN ... 
ADST8 

IA DBa~ 

.87 ['r-

; i 3 
INT" ..... 100 rvee 

!liD i ~ ~ 8231 • 
INTERRUPT r ARITHMET1C 

INT 
CONTROLLER ncR PROCESSOR UNIT 

DBO-D87 DBO-DB7 

, ... 
"" 

.., ?'-

... :,.. "" 
,.. 

SYSTEM DATA IUS . 
Figure 4. High Performance Configuration Example 

~ v 

J. A8·A15 

I i5f ADDRESS 
] LATCH 

STa 8282 

... 
"" 

L-..1\ 
V 

"" :,.. 

V 

AFN-D1251B 



inter 8231A 

ABSOLUTE MAXIMUM RATINGS· 
Storage Temperature ............. - 65·C to + 150·C 
Ambient Temperature Under Bias ......... O·C to 70·C 
V DO with Respect to V ss ............ - 0.5V to + 15.0V 
Vee with Respect to Vss ........ : .... - 0.5V to, + 7.0V 
All Signal Voltages with Respect 

to Vss .......•.......... ; .•..... - 0.5V to + 7.0V 
Power Dissipation.' ......................••... 2.0W 

"NOTICE: Stresses above'those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is, not implied. Exposure to absolute maximum 
rating conditions for extended pe"iods may effect device 
reliability. 

D.C. AND OPERATING CHARACTERISTICS (TA .. O"C to 70"C, Vss = OV, Vee = +5V ± 10%, 

VDO = +12V ± 10%>' 

Parameters Description Min., 

VOH dutput HIGH Volt,age 3.7 

VOL Output LOW Voltage 

VIH Input HIGH Voltage 2.0 

VIL Input LOW Voltage -0.5 

IlL Input Load Current 

IOFL , Data Bus Leakage 

lee Vee Supply Current 

100 VOO Supply Current 

Co Output CapaCitance 

CI 
1 Input CapaCitance 

CIO 110 Capaclt,nce 

A.C. TESTING ·INPUT, OUTPUT WAVEFORM 

3.7=>\ )C 2.0 2.0 

>,TEST POINTS< 

0.8 0.8 
0.4 

A,C TEsTING. INPUTS ARE DRIVEN AT 3.7V FOR A LOGIC "1" AND 0.4V FDR 
A LOGIC ':0," TIMING MEASUREMENTS ARE MADE AT2.OV FOR A LOGIC "1" 
AND OHi FOR A LOGIC "0." 

I 

Typ. Max: Units Test Conditions 

Volts IOH= -200p.A 

0.4 Volts IOL'=3.2 mA 

Vee Volts 

0.8 Volts 

±10 p.A Vss s VIN s Vee 

± 10 p.A Vss +0.45 .;; VOUT .;; Vee 
, 50 95 mA 

50 95 'mA 

8 pF 

5 pF Ic = 1.0 MHz, Inputs = OV 

10 pF 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER '1".'.' TEST 

6-328 AFN'()1251B 



inter 8231 A 

A.C. CHARACTERISTICS (TA = ooe to 700C. vss = OV. Vce = +5V ± 10%. VDD = +12V ± 10%) 

READ OPERATION 

Symbol Parametar 8231A·I 8231A Unit. 
MIn. Max. Min. Max: 

tAR Ao. CS Setup to RD 0 0 ns 

tRA Ao. CS Hold from RD 0 0 ns 

tRY READY I from lID I Delay (Note 2) 150 100 n. 

tYR READY t to RD t 0 0 ns 

Data '3.StCY 3.StCY ns 
tRRR READY Pulse Width (Note 3) +50 +50 

Status 1.StCY 1.StCY ns 
+50 +50 

tROE Data Bus Enable from RD I 50 SO ns 

tORY Data Valid to READY t 0 0 ns 

tOF Data Float after RD t 50 200 50 100 n. 

WRITE OPERATION 

Symbol Parameter '8231A-8 8231A Units 
Min. Max. Min. IMax. 

, 
tAW Ao. CS Setup to WR 0 0 ns 

tWA Ao. CS Hold alter WR 60 2S ,no 

tWY READY I from WR I Delay (Note 2) 150 100 no 

tyW READY t to WR t 0 0 ns , 
tRRw READY Pulse Width (Note 4) 50 50 ns 

tWI Write Inactive Time (Note 4) I Command 4tCY 4tCY ns 

I Data StCY SICY n. 

tow Data Setup to WR 150 100 ns 

two Data Hole! alter WR I 20 20 ns 

OTHER TIMINGS 

Symbol Param.tar 8231A-8 8231A Units 
Min. Max. Min. Max. 

tCY Clock Period 460 5000 250 2500 ns 

tCPH Clock Pulse High Width 200 100 ns 

tCPL Clock Pulse Low Width 240 120 ns 

tEE END Pulse Width (Note S) 400 200 ns 

tEAE EACK I 10 END t Delay 200 ISO ns 

tM EACK Pulse Width 100 50 ns 

tSA §VACR I to SVREQ I Delay 300 
I 

lS0 ns 

Iss SVACK Pulse Width 100 50 ns 

NOTES: ' , 
1. Typical values are for TA =25°C. nominal supply voltages and nominal pkesslng parameters. 
2. READY is pulled low for both command and data operations. 
3. Minimum values shown assume no previously entered command is being executed for the data access. If a previously entered 

command is being executed. READY low pulse width is the time to complete execution plus the time shown. Status may be read at any 
time without exceeding the time shown. 

4. READY low pulse width is less than 50 ns,when writing into the data port or the control port as long as the duty cycle requirement (tWI) is 
observed and no previous command is being executed. tWI may be safely violated as long as the extended tRRW that results is 
observed. If a previously entered command is being executed. READY low pulse width is the time to complete execution plus the time 
shown. These timings refer specifically to the 8231 A. , 

5. EN!) low pulse, width is specified for EACK tied to'VSS. Otherwise tEAE applies. 

6·329 



8231 A 

WAVEFORMS 

READ OPERATION 

CLOCK 

READY 

DATA 
BUS 

WRITE OPERATION 

Ao.~ ~_-tA-w_---------------t~~. 
tWY 

1-----------tvw-_-"t -:, }-

READY 

~-tDw-I-.L~D 
D:~: -----------~ INPUT STABLE ,t--------

INTERRUPT OPERATION 

am _____________ ~_---__ t~_.~.-------~~-----
• EACR '\l--.JI 

SVREQ, /;. 

--------~ ~'~--~--~ 
svm-__ tSA=tt.s~.v-----

6-330 , AfN.Ol251B 



8253/8253·5 
PROGRAMMABLE INTERVAL TIMER 

• MCS·85™ Compatible 8253·5 

.3 Independent 16·Blt Counters 

• DC to 2.6 MHz 

• Programmable Counter Modes 

• Cou.,t Binary or BCD 

• Single + 5V Supply 

• Available In EXPRESS 
-Standard Temperature Range 
-Extended Temperature Range 

The Intel4!> 8253 is a programmable counter/timer device designed for use as an Intel microcomputer peripheral. It uses nMOS 
technology with a single +5V supply and is packaged in a 24-pin plastic DIP. 

It is organized as 3 independent 16-bit counters, each with a count rate of up to 2.6 MHz. All modes of operation are software 
programmable. 

eLK 0 

DATA 
D7 Do BUS GATEO 

BUFFER 

DUTO 

AD 
elK 1 Vee WR- READ/ WR 

WRITE GATE 1 

Ao LOGIC 

OUTl 
A, 

A, 

0, Ao 

CS eLK 2 

elK 2 
GATE 2 

CONTROL 
COUNTER 

elK 1 
WORD 

=2 GATE 2 GATEO GATE 1 
REGISTER 

OUT 2 GNO 

INTERNAL BUS / 

Figure 1. Block Diagram Figure 2. Pin Configuration 

@@lINTELCORPORATION, 1983 
6-331 

AFN.oo745C 



inter 8253/8253·5 

FUNCTIONAL DESCRIPTION 
General 

''\ 

The 8253 is a programmable interval' tlmer/co~nter . 
specifically designed for use with the Intel'" Micro­
computer systems. Its function is that of a general 
purpose, multi-timing element that can be treated as an 
array of 1/0 ports in the system software. 

The 8253 solves one ofthe most common problems in any 
microcomputer system, the generation of accurate time 
delays under software control. Instead of setting up timing 
loops in systems software, the programmer configures the 
·8253 to match his requirements, initializes one of the 
counters of the 8253 with the desired quantity, then upon 
command the 8253 will count out the delay and interrupt 
the CPU when it has completed its tasks. It is easy to see 
that the software overhead is minimal and that multiple 
delays can easily be maintained by assignment of priority 
levels. 

Other counterltimer functions that are non-delay in 
nature but also common to most microcomputers can be 
implemented with the 8253. • 

• Programmable Rate Generator 
• Event Counter 
• Binary Rate Multiplier 
• Real Time Clock 
• Digital One-Shot 
• Complex Motor Controller 

Data Bus Buffer 

This 3-state, bi-directional, 8-bit buffer is used to interface 
the 8253 to the system data bus. Data is transmitted or 
reclilived by the buffer upon execution of INput or OUTput 
CPU .instructlons. The Data Bus Buffer has three basic 
functions. 

1. Programming the MODES of the 8253. 
2. Loading the co.unt registers. 
3. Reading the count values. 

ReadIWrlte Logic 

The ReadlWrile Logic accepts inputs from the system bus 
and in turn generates control signals for overall device 
operation. II is enabled or disabled by CS so that no 
operation can occur to change the function unless the 
device has been selected by the system logic. 

RD (Read) 
A "low" on this input informs the 8253 that the CPU is 
inputting data in the form of a counters value. 

WR (Write) 
A "low" on this input informs the 8253 that the CPU is 
outputting data in the form of mode information or loading 
counters. 

AO,A1 
- These inputs are normally connected to the address bus. 
Their function Is to selElct one of'the three counters to be 
operated on and to address the control word register for 
mode selection. 

CS (Chip Select) 
A "low" on this input enables the 825~. No reading or 
writing will occur unless the device is selected. The CS 
input has no effect upon the actual operation of the 
counters. 

ClKO 

GATED 

eLK 1 

GATE 1 

OUT 1 

ClK2 

GATE 2 

Figure 3. Block Diagram Showing Data Bus Buffer and 
Read/Write logic Functions 

CS RD WR Al Ao 
0 1 0 0 0 lqad Counter No. 0 

0 1 0 0 1 Load Counter No. 1 

0 1 0 1 0 Load Counter No. 2 

0 1 0 1 1 Write Mode Word 

0 0 1 0 0 R\lad Counter No. 0 

0 0 1 0 . 1 Read Counter No.1 

0 0 1 1 0 Read Counter No. 2 

0 0 1 1 1 No-Operation 3-State 

1 X X X X Disable 3-State 

0 1 1 X X No-Operation 3-State 

6-332 AFN-00745C 

j 



825318253·5 

Control Word Reglater 
The Control Word Register is selected when AO, A 1 are 11. 
It then accepts information from the data bus buffer and 
stores it in a register. The informatiori stored in this 
register controls the operational MODE of each counter, 
selection of binary or BCD counting and the loading of 
each count register. 

The Control Word Register can only be written into; no 
read operation of its contents is available. 

Counter #0, Counter #1, Counter #2 
These three functional blocks are identical in operation so 
only a single Counter will be described. Each Counter 
consists of a single, 16-bit, pre-setlable, DOWN counter. 
The counter can operate in either binary or BCD and its 
input, gate and output are configured by the selection of 
MODES stored in the Control Word Register. 

The counters are fully independent and each can have 
separate Mode configuration and counting operation, 
binary or BCD. Also, there are special features in the 
control word that handle the loading of the count value so 
that software overhead can be minimized for these 
functions. 

The reading of the contents of each counter is available to 
the programmer with simple READ operations for event 
counting applications and special commands and logic 
are included in the 8253 so that the contents of each 
counter can be read "on the fly" without having to inhibit 
the clock input. 

8253 SYSTEM INTERFACE 
The 8253 is a component of the Intel'· Microcomputer 
Systems and interfaces in the same manner as all other 
peripherals of the family. It is treated by the systems 
software as an array of peripheral 1/0 ports; three are 
counters and the fourth is a control register for MODE 
programming. 

Basically, the select inputs AO, A 1 connect to the AO, A 1 
address bus signals of the CPU. The CS can be derived 
directly from the address bus using a linear select method. 
Or it can be connected to the output of a decoder, such as 
an Intel@ 8205 for larger systems. 

II 

1\ 

Rii---<t 
wn---<t 

At---~ 

cs------' 

Figure 4. Block Diagram Showing Control Word 
Register and Counter Functions 

ADDRESS BUS (16) 

At Ao 

CONTROL BUS 

I/OR I/OW 

DATA BUS (8) 

B 
At Ao cs °0.°7 

RO WR 

8253 

COUNTER COUNTER COUNTER 
0 t 2 
I 

lOUT GATE elK I 
I 

r OUT GATE elK r r OUT G~TE elK I 

Iii 1 i i 1 i i 
Figure 5. 8253 System Interface , 

1 

\ 

6-333 AFN-00745C 



8253/$253·5 

OPERATIONAL DESCRIPTION 

General 
The complete functional definition of the 8253 is 
programmed by the systems software. A set of control 
words must be sent out by the CPU to initialize each 
counter of the 8253 with the desired MODE and quantity 
information. Prior to initialization, the MODE, count, and 
output of all counters is undefined. These control words 
program the MODE, L.oading sequence and selection of 
binary or BCD counting. . 

M - MODE: 

M2 Ml MO 

a a a Mode 0 

a a 1 Mode 1 

X 1 a Mode 2 

X 1 1 Mode 3 

1 a a Mode 4 

1 0 1 Mode 5 

Once programmed, the 8253 is ready to perform whatever BCD: 
timing tasks it is assigned to accomplish. 

The actual counting operation of each counter is 
completely independent and additional logic is provided 
on-chip so that the usual problems associated with 
efficient monitoring and management of external, 
asynchronous events or rates to the microcomputer 
system have been eliminated. 

Programming the 8253 
All of the MODES for each counter are programmed by the 
systems software by simple I/O operations. 

Each counter of the 8253 is individually programmed by 
writing a control word into the Control Word Register. 
(AO, Al ~ 11) 

Control Word Format 

01 Do 

o B,inary Counter 16-bits 

Binary Coded Decimal (BCD) Counter 
(4 Decades) 

Counter Loading 

The count register is not loaded until the cQunt value is 
written (one or two bytes, depending on the mode 
selected by the RL bits), followed tfya rising edge and a 
falling edge of the clock. Any read of the counter prior to 
that falling clock edge may yield invalid data. 

MODE Definition 

SCI sca RL1 RL.a 1 M21 Ml MO BCD I. 
MODE 0: Interrupt on Terminal Count. The output will 
be initially low after the mode set operation. After the 
count is loaded into the seleqted count register, the out· 
putwill remain low and the counter will count.Whenter· 
minal count is reached the output will go high and reo 
main high until the selected count register is reloaded 
with the mode or a new count is loaded. The counter, 
continues to decrement after terminal count has been 
reached. 

Definition of Control 

SC - Select Counter. 

SCI sca 

0 a Select Counter a 

a 1 Select Counter 1 

1 a Select Counter 2 

1 1 '"egal 

RL - ReadlLoad: 

RL1 RLa 

0 a Counter Latching oPilration (see 
READ/WRITE Procedure Section) 

1 0 Read/Load most significant byte only. 

a 1 Read/Load least significant byte only. 

1 1 Read/Load least signi~ican{ byte first, 
then most significant byte. 

Rewriting a counter register during counting Tesults in 
the following: 

(1) Write 1st byte stops the current counting.' 
(2) Write 2nd byte starts the new count. 

MODE 1: Programmable One·Shot. The output will go 
low on the count following the rising edge 'of the gate in· 
put. 

The output will go high on the terminal count. If a new 
count value is loaded while the output is low it will not 
affect the duration of the one·shot pulse until the suc­
ceeding trigger. The current count can be read at any 
time without affecting the one·shot pulse. 

The one·shot is retriggerable, hence the output will reo 
main low for the full count after any rising "edge of the 
gate .input. 

6-334 AFN.()()745C 



825318253·5 

MODE 2: Rate Generator. Divide by N counter. The out· 
put will be low for one period of the Input clock. The 
period from one output pulse to the next equals the 
number of Input counts in the count register. If the 
count register is reloaded between output pulses the 
present period will not be affected, but the stJbsequent 
period will reflect the new value. 

The gate Input, when low, will force the output high. 
When the gate Input goes high, the counter will start 
from the Initial count. Thus, the gate input can be used 
to synchronize the counter. 

When this mode is set, the output will remain high until 
after the count register is loaded. The output then can 
also be synchronized by software. 

MODE 3: Square Wave Rate Generator.Simiiar to MODE 
2 except that the output will remain high until one half 
the count has been completed (for even numbers) and 
go low for the other half of the count. This is accom· 
plished by decrementing the counter by two on the fall· 
ing edge of each clock pulse. When the counter reaches 
terminal count, the state of the output is changed and 
the counter Is reloaded with the full count and the whole 
process is repeated. 

If the count is odd and the output is high, the first clock 
pulse (after the count is loaded) decrements the count 
by 1. Subsequent clock pulses decrement the clock by 
2. After timeout, the qutput goes low and the full count 
is reloaded. The first clock pulse (following the reload) 
decrements the counter by 3. Subsequent clock pulses 
decrement the count by 2 until timeout. Then the whole 
process is repeated. In this way, if the count is odd, the 
output will be high for (N + 1)/2 counts and low for 
(N -1)/2 counts. . 

In Modes 2 and 3, if a elK source other than the system 
clock is used, GATE should be pulsed immediately following 
'WR of a new count value. 

MODE 4: Software Triggered Strobe. After the mode Is 
set, the output will be high. When the count is loaded, 
the counter will pegin counting. On terminal count, the 

output will go low for one Input clock period, then will 
go high again. 

If the count register is reloaded during counting, the new 
count will be loaded on the next elK pulse. The count will 
be inhibited while the GATE input is low. 

MODE 5: Hardware Triggered Strobe. The counter will 
start counting after the rising -edge 91 the trigger input 
and will go low for one clock period when the terminal 
count Is reached. The counter Is retrlggerable. The out· 
put will not go low until the full count after the rising 
edge of any trigger. 

~ 
Low 

StatuI Or Going 
Modes Low Rising High 

0 Disables -- Enables 
countmg counting 

1 -- 1) Initiates --
counting 

2) Resets output 
after next clock 

2 1) Disables 
1) Reloads 

counting Enables 
2) Sets output counter countmg , 

Immediately 2) Irl'itiates 

high counting 

3 1) Disables 1) Reloads 
countmg counter Enables 

2) Sets output 2) Initiates counting 
Immediately counting 
h'gh 

4 Disables -- Enables 
counting counting 

5 -- 'Oltlates --
counting 

Figure 6. Gate Pin Operations Summary 

6-335 AFN'()()745C 



inter 825318253·5 

MODE 0: Interrupt onT.l'minal Count MODE 3: Square Wave Generator 

CLOCK CLOCK 

OUTPUT (n = 4) 

OUTPUT (INTERRUPT) OUTPUT In = 5) 

(n-4) i--J-n---l 
I I 
I I 

vmm~ 
" ' ,I I 

GATE----~~----~:L_.._Jr-+:---------

OUTPUT (INtERRUPT) 
(m = 5) '-..,-J '----V---' 

A • 
A+B=m 

MODE 1: Programmable One·Shot MODE 4: Software Triggered Strobe 

LOA~n~-----------------------

TR'GGER~ 

t~3~~2~4~~3~:2~'~j-______ __ 
OUTPUT --, 

GATE 

OUTPUT 

MODE 2: Rate Generator MODE 5: Hardware Triggered Strobe 

CLOCK CLOCK 

OUTPUT 

~----------~~r-------
4 3 2 1 0(41 3 2 1 013) 2 1 0 

~ 
0(3! 3 2 1 0(3) 2 1 0(3) 2 1 

OUTPUT In = 3) 

GATE --Jr---------­
__ ...;.4......;;....,,-""-;0 

W OUTPUT In = 4) 

RESET ----,L ______ I-------
GATE~ 

OUTPUT (n "" 4) 4 3 4 3 2 1 Lr-------

Figure 7. 8253 Timing Diagrams 

6-336 " AFN·OO745C 



826318263-6 

8263 READIWRITE PROCEDURE 
Write Operations 

The systems software must program each counter of the 
8253 with the mode and quantity desired. The program­
mer must write out to the 8253 a MODE control word and 
the programmed number of count register bytes (lor 2) 
,prior to actually using the selected ~ounter. 

The actual order of the programming is quite flexible. 
Writing out of the MODE control word can be in any 
sequence of counter selection, e.g., counter #0 dpes not 
have to be first or counter #2 last. Each counter's MODE 
control. word register has a separate address so that its 
loading is completely sequence independent. (SCO, SC1) 

The loading of the Count Register with the actual count 
value, however, must be done in exactly the sequence 
programmed in the MODE control word (RLO, RL 1). This 
loading of the counter's count register is still sequence 
independent like the MODE control word loading, but 
when a selected count register is to be loaded it must be 
loaded with thE!, number of bytes programmed in the 
MODE control word (RLO, RL 1). The one or two bytes to 
be loaded in the count register do not have to follow the 
associated MODE control word. They can be programmed 
at any time following the MODE control word loading as 
long as the correct number of bytes is loaded in order: 

All counters are down counters. Thus, the value loaded 
into the count register will actually be decremented. 
Loading all zeroes into a count register wiH result in the 
maximum count (2'· for Binary or 1()4 for BCD).ln MODE 0 
the new count will not restart until the load has been 
completed. It will accept one of two bytes depending on 
how the MODE control words (RLO, RU) are program­
med. Then proceed with the restart operation. 

6-337 

MODE Control Word 
Counter n 

LSB 
Count Register byte 

Counter n 

MSB 
Count Register byte 

Counter n 

Note: Format shown is a simple example of loading the 8253 and 
does not imply that it is the only forinat that can be used. 

Figure.. Programming Forma. 

A1 AO 

No.1 
MODE Control Word 

1 1 
Counter 0 

MODE Control Word 
1 1 

Counter 1 No.2 

MODE Control Word 
1 1 

Counter 2 
No.3 

LSB 
Count Register Byte 

0 1 
Counter 1 

Count Register Byte 
0 1 

MSB Counter 1 No.5 

LSB 
Count Register Byte 

1 0 
Counter 2 

No.6 

MSB 
Count Register Byte 

1 0 
Counter 2 

No. 7 

LSB 
Count Register Byte 

0 0 
Counter 0 

No.8 

MSB 
Count Register Byte 

0 0 
<:qunter 0 

No.9 

Note: The exclusive add' ..... of each counter', count register make 
tha task of PJ091'ammlng the 8253 a very simple matter. and 
maximum effective use of the device will result if this feature 
is fully utilized. 

Figure 9. Anerna" Programming Forma .. 



.·8.253/8253·5 

Rel!d Operations 
In most counter appllcattons it becomes necessary to read 
the value of the count ·In progress and make a 
computational decision based On this quantity. Event· 
counters are probably the most common application that 
uses this function The 8253 contains logic that will allow 
the programmer to easily read the contents of any of the 
three counters without disturbing the actual count in 
progress. 

Thereare two methods that the programmer can use to 
read the value of' the counters The first method Involves 
the use of simple I/O read operations of the selected 
counter. By controlling the AO, A 1 Inputs to the 8253 the 
programmer can select the counter to be read (remember 
that no read operation of the mode register IS allowed AO, 
A1-11) The only requirement with thl's method IS that In 
order to assure a stable count reading the actual operation 
of the selected counter must ~ inhibited either by 
controlling the Gate Input or by external logic that inhibits 
the clock Input The contents of the counter selected will 
be available as follows 

first I/O Read contains the least slgniflc~nt byte (lSB). 

second I/O Read contains the most Significant byte 
(MSB) 

Due to the Internal logiC of the 8253 It IS absolutely 
necessary to complete the entire reading procedure If two 
bytes are programmed to be read then two bytes must be 
read before any loading WR command can be sent to the 

. same counter 

3MHz 
ClK -2 

8085 

Read Operation Char1 . 

Al Ai) RD 

0 0 0 Read Counter No. 0 

0 1 0 Read Counter No.1 

1 0 0 Read Counter ,No, 2 

1 1 0 Illegal 

Reading While Counting 
In order for the programmer to read the contents of any 
counter without effecting or disturbing the counting 
operation the 8253 has special internal logiC that can be 
acoessed uSing simple WR commands' to the MODE 
register BaSically, when the programmer;wlshes to read 
the contents of a selected counter "on the fly" he loads the 
MODE register with a special code which latches the 
present count' value Into a storage register so that ItS 
contents contain an accurate, stable quanttty.· The 
programmer then Issues a normal read command to tne 
selected counter and the contents of the latched register IS 
available 

MODE Register for Latching Count. 

AO, A1 = 1t 

SC1,SCO- speCify counter to be latched 

DO 

x 

05,04 -c- 00 deSignates counter latching operatIon. 

X - don't care 

Tht! same limitation applies to this mode of reading the 
. counter as the previous method. That is, it is mandatory 

to complete the entire read operation as programmed. 
This command has no effect on the counter's mode. 

• 1.5MHz 
ClK 

8253-5 

"If an 8085 clock output is to drive an 8253-5 clock input, it must be reduced to 2 MHz or less. 

Figure 10. MCS·85™ Clock Interface" 

6-338 AFN-00745C 



8253/8253-5 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias . . . . . . .. 0° C to 70°C 
Storage Temperature . . . . . . . . . . . . .. -6So C to +1Soo C • 
Voltage On Any Pin 

With Respectto Ground .............. -O.S V to +7 V 
Power Dissipation '" . . . . . . . . . . . . . . . . . . . . . . .. 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this 
specification is not implied. Exposure to abso./ute maxi­
mum rating conditions for extended periods may affect 
device reliability. 

D.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = SV ±10%) , 

Symbol Parameter Min. Max. Unit Test CondHlons 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.2 Vee+·5V V 

VOL Output Low Voltage 0.45 V Note 1 

VOH Output High Voltage 2.4 V Note 2 

IlL Input Load Current ±10 J.lA VIN = Vee to OV 

IOFL Output Float Lea kage ±10 J.lA VOUT = Vee to .4SV 

Icc Vee Supply Current 140 mA 

CAPACITANCE (TA = 2SOC, Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN Input Capacitance 10 pF fc = 1 MHz 

. CliO 1/0 Capacitance .20 pF Unmeasured pins returned to Vss 

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = S.ov ± 10%, GND = OV) , 

Bus Parameters (Note 3) 

READ CYCLE 

8253 8253-5 

Symbol Parameter Min. Max. Min. Max. :Unlt . 

tAR Address Stable Before READ 50 30 ns 

tRA Address !'lold Time for READ 5 5 ns 

tRR READ 'Pulse Width 400 300 ns 

tRD Data Delay Frorn READ [4] 300 200 ns 

tOF READ to Data Floating 25 . 125 25 100 ns 
------

tRY Recovery Time Between READ 
1 1 /.1.5 and Any Other Control Signal 

6-339 AFN-C0745C 



&/, ';.,' .. inter 825318253-5 

·A.C. CHARACTERISTICS (Continued) 

WRITE CYCLE 

8253 , 8253·5 
" 

Sym~1 Parameter ·Mln. Max. Min. Max. 

tAW Address Stable Before Wifi'fE 50 CalC 
twA Address Hold Ti me for ViiRi'i'E 30 30 

tww WRITE Pulse Width 400 300 

tow Data Set Up Time for Wifi'fE 300 250 

twp. Data Hold Time for Wifi'fE 40 30 

tRY Recovery Time Between wm'fE" 1 1 
and Any Other Control Signal . 

CLOCK AND GA"J:E TIMING 

~253 8253-5 
Symbol Parameter Min. Max. Min. Max. 

tCLK Clocl< Per iod 380 dc 380 dc 

tPWH High Pulse Width 230 230 

tPWL Low Pulse Width 150 150 

tGW Gate Width High 150 150 

tGL Gate Width Low 100 . 100 

tGs Gate Set Up Time to CLKt 100 100 

tGH Gate Hold Time 'Afte~ CLKt 50 
.. 

50 

too Output Delay From CLK.J,[4} 400 400 

toOG Output Delay From Gate.J, [4) 300 300 

NOTES: 
1. IOL = 2.2 mAo 
2. IOH = -400 /IA. 
3. ,,"C timings measured at VOH 2.2, VOL = 0.8 .. 
4. CL = 15OpF. • 
• For Extended Temperatura EXPRESS, use M8253 electrical parameters. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

M~_. -x= : . > TEST POINTS <, 
0.45 0.8 '. 0.8 

A.C. TESTING' INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "'" AND O.45V FOR A 
LOGIC ''O,n TiMING MEASUREMENTS ARE MAoe AT 2.2V FOR A LOGIC "1" AND 
OJV FOR A LOGIC O. • .• • • . 

A.C. TESTING l.OAD CIRCUIT 

DEVICE 
UNDER 

lc.-'~PF· TEST 

l 

, 

c.lNOWOES JIG CAPACIT!,NCE 

. 6-340 

~ ,{ 

," ,~h ", ' 

Unit 

ns 

ns 

ns 

ns 

ns 

~ 

Unit 

ns 

ns 

ns 

ns 

ns . .. 

ns 

ns 

ns 

ns 



inter 825318253·5 

WAVEFORMS 

WRITE TIMING 

Ao-l,C8 __ ,.,.. _______ +..,..,_~_ 

DATA BUS 

----------~~~--+---~~---

. CLOCK AND GATE TIMING 

REAOTIMING 



. 8254 
PROGRAMMABLE INTERVAL TIMER 

: /,' ','\ 

ill Compatible with Most Mlcr~ 
processors Including 8080A,' 8085A, 
IAPX 88 and IAPX 88 

• Three Independent 16·blt Counters 

• Handles Inputs from DC to 8 MHz 
(10 MHz for 8254·2) 

• Six Programmable Counter Modes 

• Status Read·Back Command 

.Bln~ry or BCD Counting 

• Single +5V Supply 

• Available In EXPRESS 
-Standard Temperature Range 

The Intelill> 8254 is a counter/timer device designed to solve the common timing control problems in microcom­
puter system design. It pro)/ides three independent 16-bit counters. each capable of handling clock inputs up to, 
:10 MHz. All modes are software programmable. The 8254 is a superset of the 8253. 

;The 8254 uses HMOS technology and comes in a 24~pin plastic or CERDIP package. 

o,·Do 

Figure 1. 8254 Block Diagram 

CLK 0 

GATEG 

OUT 0 

CLK 1 

GATE 1 

OUT 1 

CLK2 

GATE 2 

OUT2 

6-342 ' 

D. 

GATE 1 

OUT 1 

Figure 2. Pin Configuration 



f 
8254 

Table 1. Pin Description 

Symbol PinHo. Type H ..... and FuncUan 

DrDo HI UO 01118: BI-dlrectional three state data bus 
lines, connected to system data bus. 

ClKO 9 I Clock 0: Clock Input of Counter O. 

OUT 0 10 0 Output 0: Output 9f Counter O .. 

GATE 0 11 I G_~ 0: Gate Input of Counter O. 

GND 12 Ground: Power supply connection. 

I 

FUNCTIONAL DESCRIPTION 

General 

The 8254 is a programmable interval timer/counter de­
signed lor use with Intel microcomputer systems. It is a 
general purpose,. multi-timing element that can be treat~d 
as an array 01 I/O ports in the system software. 

The 8254 solves oneol the most common problems in 
any microcomputer system, the generation 01 accurate 
time delays under software control. Instead 01 setting 
up'liming loops In software, the programmer configures 
the 8254 to match his requirements and prograrns one of 
the counters for the desired OelaY. After. the desired 
delay, the 82~ will interrupt the CPU. Software over­
head is minimal and variable length delays can easily be 
accommodated. 

Some of the other counter/timer fUnctions common' to 
microcomputers which can be implemented with the 
8254 are: 

• Reat time clock 
• Event counter 

. Dlgit~1 one-shot 
• Programmable rate generator 
• Square wave generator 
• Binary rate' multiplier 
• Complex waveform generator 
• Complex motor controller 

Symbol Pin No. Ty~ 

Vcc 24 

WA' 23 I 
, 

RD 22 I 

. CS 21 I 

A1,Ao 20-19 I 

ClK2 18 I 

OUT 2 17 0 

GATE 2 16 I 

ClK 1 15 I 

GATEI 14 I 

OUTI 13 0 

Block Diagram 
DATA BUS BUFFER 

Name -(III FuncUan 

Power: +5V power supply connection. 

WrIte Control: This Input Is low during, CPU 
write operations. , . 
Read Conlrol: This Input Is low during CPU 
~ad operallons. 

Chip Select: A low.on this Input enables the 
. 8254 ~o respond to Ri5 and WR Signals. AD 
and· WR ere Ignored otherwise. 

Addre •• : Used to select one of the three 
Counters or the Control Word Register for 
read or write operations. Normally con-
nected to the system address bus. 

A, Ao' Selects 

0 0 Counter 0 

0 1 Counter 1 
" 0 Counter 2 

1 1 Control Word Register 

Clock 2: Clock Input of Counter 2. 

Oul 2: Output of Counter 2. 

Gale 2: Gate Input of Counter 2. 

Clock 1: Clock Input of Counter 1. 

Gale 1: Gate Input of Counter 1. 

Oull: Output 01 Counter. 1. 

This 3-state, bi-directionai, 8-bit buffer is used to inter­
face the 8254 to the system bus (see Figure 3). 

6-343 

CLKO 

GATE 0 

OUT 0 

eLK 1 

GATE 1 

OUT 1 

Cl,K2 

OUT 2 

Figure 3. Block Dlagr.am Showing Data Bus Buffer and 
ReadlWrlte Logic Functions 

AFN-00217D 



READIWRITE LOGIC 

,The ReadlWrite Logic accepts inpu~s frol'!J the system 
bus and generates control signals for the other func­
tional blocks o'f the 8254. Al and' Ao select one of the 
thr~e counters or the Control Word Register to be read 
from/written into. A "low" on the RD input tells the 8254 
that the CPU is reading one of'the counters. ,A "low" on 
the WR input tells the 8254 that the CPU is writing either 
a Control Word or an:initialcount. Both' RD and WR are 
qualified I:)y CS; AD and WR are ignored unless the 8254 
has been selected by holding'CS low. 

CONTfJPL WORD REGISTER 

The Control Word Register (see Figure 4) is selected by 
the ReadlWrite Logic when A1.Ao= 11. If the CPU then 
does a write operation to the 8254, the data is stored in 
the ContrElI Word Register and is interpreted as a' Con­
trol Word used to define the ope~ation of the Counters. 

The Control Word Register can only be written to; status 
information is available with the Head-Back Command. 

Figure 4_ Block Diagram Showing Control Word 
Register and Counter Functions 

.cOUNTER 0, COUNTER 1, COUNTER,2 

Thesethree tunctional blocks are identical in operation, 
so only a single Counter will be described. The internal 
block diagram of a single counter is ~hown in Figure 5. 

The Counters are fully independent. Each Counter may 
operate in a different Mode. 

,The Control Word Register is shown, in the figure; it 'is 
not part of the Counter itsell,"but its contents determine 
how the Counter'operates; 

6-344 

Figure 5. Internal Block Diagram of a Counter 

The status register, shown in the Figure, when latched, 
contains the current contents of the Control Word 
Register and status of the output and null count flag. 
(See detailed explanation of the Read-Back command.), 

The actual counter is labelled CE (for "Counting Eie­
ment"). It is a 16-bit presettable synchronous down 
counter. 

OLM and OLl are two S-bit latches. OL stands for "Out­
put Latch"; the subscripts M and L stand for "Most sig­
nificant byte" and "Least significant byte" respectively. 
Both are normally referred to as one unit and called just 
OL. These latches nOrmally "follOw" the CE, 'but if a 
suitable Counter Latch Command'is sent to the"8254, 
the latches "latch" the present count until read by the 
CPU and then return to "fOllowing" tiie CEo One latch at 
a time is enabled by the countl!r's Control Logic to drive 
the internal bus. This is how the 16-bit Counter com­
municates over the .8-bit internal bus. Note'that the ,CE 
itself cannqtberead; whenever you read the count, it is 
th~ .OL that ,is being read. ' 

Similarly; there are two 8-b1t registers called CRM and 
CRl (for "Count Register"). Both are normally referred to 
as one unit and called juS! CR. When a new count is writ­
ten to the Counter, the count is stored in theCR and 
latertransferred tO,the CEo The Control Logic allows one 
register at atim,e to ,be ,loaded hom the iniernal bus. 
Both bytes are transferred to the CE simultaneously . 
CRM and CRl are cleared when the Counter is pro­
grammed. In this way, if the Counter has be!'!,n pro; 
grammed for one byte counts (either mpst ,~Ignific;;ant 
byte only or least Significant byte only) the '!?therbyt!l 
will be zero. Note that the CE ,c:;annot be written into; 
whenever a count is written, it is, wti'tteninto the CR. 

The Control Logic is also shown' In the diagram. CLK n, 
GATE n, and OUT n are all connected to the outside 
world through the Control Logic,. 

AFN-00217D 



intJ 8254 

8254 SYSTEM INTERFACE 

The 8254 is a component of the Intel Microcomputer Sys­
tems and interfaces in the same manner as all other pe­
ripherals of the family. It Is treated by the systems software 
as an array of peripheral 110 ports; three are counters and 
the fourth Is a control register for MODE programming. 

Basically, the select inputs Ao, A1 connect to the Ao, A1 
address bus signals of the CPU. The CS can be derived 
directly from the address bus using a linear select method. 
Or It can be connected to the output of a decoder, such as 
an Intel 8205 for larger systems. . 

Figure 6. 8254 System Interface 

OPERATIONAL DESCRIPTION 

General 
After power-up, the state of the 8254 Is undefined. The 
Mode, count value, and output of all Counters are 
undefined. . 

How each Counter operates is determined when It Is 
programmed. Each Counter must be programmed 
before It can be used. Unused counters need not be pro­
grammed. 

Programming the 8254 
Counters are programmed by writing a Control Word 
and then an Initial count. 

All Control Words are written Into the Control Word 
Register, which Is selected when Al,Ao= 11. The Con­
trol Word Itself specifies which Counter Is being pro· 
grammed. 

By contrast, initial counts are written Into the Counters, 
not the Control Word Register. The Al,Ao Inputs are 
used to select the Counter to be written Into. The format 
of the Initial count is determined by the Control Word 
used. 

Control Word Format 
Al,Ao=11 Cs=o RD=1 'WR=O 

I SC1 I SCO I RW1 I RWO I M2 M1 MO I BCD I 
sc - Select Counter: 

SCl SCO 

0 0 Select Counter 0 

0 1 Select Counter 1 

1 0 Select Counter. 2 

1 1 Read-Back Command 
(See Read. Operations) 

RW - ReadlWrlle: 
. RWl RWO 

0 0 Counter Latch Command (see Read 
Operations) 

0 1 ReadlWrite least significant byte only. 

1 0 ReadlWrite most significant byte only. 

1 1 ReadlWrite least significant byte first, 
then most significant byte. 

NOTE: DON'·T CARE BITS (Xl SHOULD BE 0 TO INSURE 
COMPATJBILIT~ WITH FUTURE INTEL PRODUCTS. 

M- MODE: 

M2 Ml 

0 0 

0 0 

X 1 

X 1 

1 0 

1 0 

BCD: 

Figure 7. Control Word Format, 

'6-345 .. 

MO 

0 Mode 0 

1 Mode 1 

0 Mode 2 

1 Mode 3 

0 Mode 4 

1 ModeS 

Binary Counter l6-bits 

Binary Coded Decimal (BCD) Counter 
(4 Decades) 

AFN-()()217D 



8254 

Write Operations 
The programming procedure for the 8254 is very flexible. 
Only two conventions need to be remembered: . 

1) For each, Counter, the Control Word must be written 
before the Initial count is written. 

2) The Initial count must follow the count format 
specified In the Control Word (least significant byte 
only, most significant byte only, or least significant 
byte and then mOst significant byte). 

Since the Control Word Register and the three Counters 
have separate addresses (selected by the AhAO inputs), 
and each Control Word specifies the Counter it applies 
to (SCO,SC1 bits), no special Instruction sequence is reo 

A1 Ao 

Control Word,... Counter 0 1 1 
LSB of count- Counter 0 0 0 
MSB of count - Counter 0 0 0 
Oontrol Word - Counter 1 1 1 
LSB of count - Counter 1 0 1 
MSB of count - Counter 1 0 1 
Control Word - Counter 2 1 1 
LSB of count - Counter 2 1 I> 
MSB of count - Counter 2 1 0 

A1 Ao 

Control Word - Counter 0 1 1 
Control' Word - Counter 1 1 1 
Oontrol Word - Counter 2 1 1 
LSB of count - Counter 2 1 0 
LSB of count - Counter 1 0 1 
LSB of count - Counter 0 0' 0 
MSB of count - Counter 0 0 0 
MSB of count - Counter 1 0 1 
MSB of count - Counter 2 1 0 

qulred. Any, programming sequence that follows the 
conventions above is acceptable. 

A new initial count may be written to a Counter at any' 
time wlthput affecting the Counter's programmed Mode 
In any way. Counting will be affected as described in the 
Mode definitions. The new count must ,follow the pro­
grammed count format. 

If a Counter is programmed' to read/write two·bYte 
counts, the following precaution applies: A program' 
must not transfer control between writing the first and 
second byte to another routine which also writes into 
that same ,Counter. Otherwise, the Counter will be 
loaded with an incorrect count. 

A1 Ao 

Control Word - Counter 2 1 1 
Control Word - Counter 1 1 1 
Control Word - Counter 0 1 1 
LSB of count,... Counter 2 1 0 
MSB of count - Counter 2 1 0 
LSB of, count - Oounter 1 0 1 
MSB of count - Counter 1 0 1 
LSB of count - Counter 0 0 0 
MSB of count - Counter 0 0 0 

A1 Ao 

Control Word - Counter 1 1 1 
Control Word - Counter 0 1 1 
LSB of count - Counter 1 0 1 
Control Word - Counter 2 1 1 
LSB of count - Counter 0 0 0 
MSB of count - Counter 1 0 1 
LSB of· count - Counter 2 1 ,0 
MSB of count - Counter 0 0 0 
MSB of count - Counter 2 1 0 

NOTE: IN ALL FOUR EXAMPLES. ALL COUNTERS ARE PROGRAMMED TO READlWRrrE TWO-BYTE COUNTS. 

THESE ARE ONLY FOUR OF MANY POSSIBLE PROGRAMMING SEQUENCES. 

Figure 8. A Few Possible Programming Sequences 

Read Operations 
It is often desirable to read the value of a Counter 
without disturbing the count in progress. This is easily 
done in the 8254. 

There are three possible methods for reading the Coun­
ter~. The first is through the Read-Back command. The' 

6-346 

second is a simple read operation of the Counter, which is 
selected with the A1,Ao inputs. The only requirement is 
that 1) the CLK input of the selected Counter must be 
inhibited by using either the GATE input or external logic; 
or 2) the counlmust first be latched. Otherwise, the count 
may be in process of changing when it is read, giving an 
undefined result. 

AFN-OO~17D 



inter 8254 

COUNTER LATCH COMMAND 

The other method Involves a special software command 
called the "Counter Latch Command". like a Control 
Word, this command III written to the Control Word 
Register, whicH Is sele9ted when A1,Ao= 11. Also'like a 
Control Word, the SCO,SC1 bits select one of the three 
Counters, but two other bits, 05 and 04, distinguish this 
command from a Control Vlford. 

A"Ao=11; CS=O; RD=1; WR=O 

D7 Ds Ds D4 D3 D2 D, Do 

I SC1 I SCO I 0 I 0 I X I X I X I xl 
SC1,SCO - specify counter to be latched 

8C1 seo Counter 

0 0 0 
0 1 1 
1 0 2 
1 1 Read·Back Command 

05,04 - 00 designates Counter Latch Command 

X - dOfl't ca~EI 

NOTE: DON'T CARE BITS (XI SHOU~D BE 0 TO INSURE 
COMPATIBILITY WITH FUTURE INTEL PRODUCTS. 

Figure 9. Counter latching Command Format 

The seledted Counter's output latch (Ol) latches the 
count at. the time the Counter Latch Command is reo 
celved. This count is held In the latch untl! it is read by 
the CPU (or until the Counter Is reprogrammed). The 
count is then unlatched automatically and the Ol 
returns to "following" the counting element (CE). This 
allows reading the contents of the Counters "on the fly" 
without ,affeqting counting in progress. Multiple 
Counter Latch Commands may be used to latch more 
than one Counter. Each iatched Counter's Ol holds Its 
count until It is read. Counter Latch Commands do not 
affect the programmed Mode of the Counter in any way. 

If a Counter, Is latched and then, some time later, latCh­
ed again before the count is read, the second Counter 
Latch Command is ignored. The count read will be'the 
count at the time the first Counter Latch Command was 
issued. 

With either method, the count must be read according 
to the programmed format; specifically, if the Counter Is 
programmed for two byte counts, two bytes must be 
read. The two bytes do not have to be read one right 
after the other; read or write or programming operations 
of other Counters may !>e inserted between them. 

Another feature of the 8254 Is that reads and writes of 
the same Counter may be Interleaved; for example, If the 
Counter Is programmed for two byte counts, the fqllow­
Ing sequence Is valid. 

1. Read least significant byte. 
2. ,Write new least significant byte. 
3. Read most significant byte. 
4. Write new most significant byte. 

If a Counter Is programmed to read/write two-byte 
counts, the following precaution applies: A program 
must not transfer control between reading the first and 
second byte to another routine which also reads from 
that same Counter. Otherwise, an Incorrect count will be 
read. 

READ-BACK COMMAND 

The read-back command allows the user to check the 
count value, programmed Mode, and current state of the 
OUT pin and Null Count flag of the selected counter(s). 

The command is written into the Control Word Register 
and has the format sho~n in Figure, 10. The command 
applies to the counters selected by setting their corre-
sponding bits 03,02,01=1. ' 

AO,A'." Ci-o liJj=1 vm=o 

~ ~ ~ ~ ~ ~ ~ ~ 

, I ' I COUNflmml cml CNT, I CNT 0 I 0 I 
DS: 0 = LATCH COUNT OF SELECTED COUNTEII(8) 
114: 0 = LATCH STAtUS OF SELECTED COIJNTEIII8I 
D:I: , - SELECT COUNTER 2 
D:I: 1 - lllLECT COUtIJI!R 1 
D,: 1 = SELECT COUNTER 0 
_ 00: _lIVED' POR PUlUIIE EXPANSION; ..-r IE 0 

Figure 10. Read-Back Command Format 

The read-back command may be used to latch multiple 
,counter output latches (Ol) by setting the COiJNT bit 
05=0 and selecting the desired counter(s). This Single 
command is functionally equivalent to several counter 
latch commands, one for each counter latched. Each 
counter's latched count Is held until it is read (or the 
'counter is reprogrammed). That counter is automatically 
unlatched when read, but other counters-remain latched 
until they are read. If multiple count read-back commands 
are issued tothe same counter without reading the count, 
all but the first are ignored; i.e., the count which will be 
read is the count at the time the first read-back command 
was issued. 

The read-back command may also be used to latch 
status information of sEllected counter(s) by setting 
STATUS bit 04=0. Status must be latched to be read; 

, status of a counter Is accessed by a read from that 
counter. 

AfN.OO217D 



8254 

ThE! counter status format Is shown In Figure 11. ~Its 05 
thr~)l.igh.D.o contain the counter's programmed Mode ex· 
actly as written In the last MO.de Control Word. OUTPUT 
pit 07 contains the current state of the OUT pin. This 
allows the user to monitor the counter's output via soft· 
ware, possibly eliminating some hardware from a 
syotem. 

Dr De D. D. Do 

Dr , - OUT PIN IS·' 
0- ISO 

lie' = 
0-

Ds-Do 

Flg,ure 11. StatuI Byte 

ICD 

NULL COUNT bit 06 Indicates when the last count writ· 
ten to .th,. counter register (CR) has been.loaded Into the' 
counting· element (CE). The exact time this happens de· 
pends on the Mode of the counter and Is described In 
the'Mode Definitions, but until the count Is loeded Into 
the Counting element (CE), It can't be read from the 
counter. If the count Is latched or read before this time, 
the count value will not reflect ,he new count just writ· 
ten. The operation of Null Count Is shown In Figure 12. 

11118 ACTION: CAU .. : 
A. WRITE 10 lHE CON1IIOL WORD IIIiCIIIrE!IPI NULL COUNT-' 
I. WRITE 10 lHE·CouNr ......... (CfI)l21 NIlLL COUNT.' 
c. . NeW COUNT II LOADID INTO CE (CII-oCE); NULL 'COUNT-O 

(11 ONLY 11IE COUNTER SPECIFIED BY 11IE CONTROL WORD WILL HAVE 
ITS NULL COUNT SET TO 1, NULL,COUNT BITS OF O11IER COUNTERS 
AIlE UNAFFECTED. 

121 IF 11IE COUNTER 18 PROGRAMMED FOR TWO-BYTE COUNTS '(LEAST 
SlCJNIFICANT BYTE THEN MOST SICJNIFICANT BYTE) NULL COUNT 
CJOES TO 1 WHEN THE SECOND BYTE IS WRITTEN. 

Flg~re 12~ Null Count Operetlon 

If multiple status latch operations ,of the counter(s), are 
performed without reading the status, all but the first 
are ignored; I.e., the status that will be read Is the status 
of the counter at the time the first status read·back com· 
mand was issued. 

Both count and status of the selected counter(s) may be 
latched simultaneously by setting both. COUNT and 
STATUS bits 05,04=0. This Is functionally the same as· 
Issuing two separatl? read·back commands. at once, and 
the above discussions apply here also. Specifically, If mul­
tiple count and/or status read-back commands are issued 
to the same counter(s) without any intervening reads, all 
but the first are.ign~~ed. This Is lIIustraiEld In Figure 13. 

Command 
D7 De Ds D4 D3 D2 'D, Do Description Result 

1 1 0 0 0 '0 1 0 Read back count and. status of Count and status latched 
Counter 0 for Counter 0 . , ' .. 

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1 

" 1 1 0 1 1 0 0 Read back status of Counters 2, 1 ,Status latc~ec! for count~r 
\ 2, but notCoul'lte,r 1 . 

1 1 0 1 1 0 0 0 Read back count of Counter 2 Count latched for Counter 2 

1 1 0 0 0 1 0 0 Read back count and sta,tus of 90unt latched for Counter 1, 
Counter 1· but not stlitus 

1 1 1 0 0 '0 1 .0 Read b!lck status of Counter 1 . Command Ignored, status 
already latched for Counter1 

Figure 13. Read·Back Command Example 

" ~ , 

6-3:48 



inter 

If both count and status of a counter are latched, the 
first read operation of that counter will return latched 
status, regardless of which was latched first. The next 
one or two reads (depending on whether the counter Is 
programmed for one or two type counts) return latched 
count. Subsequent reads return unlatched count. 

CI 1m VIR A1 Ao 
0 1 0 0 0 Write into Counter 0 

0 1 0 0 1 Write 'Into Counter 1 

0 1 '0 1 0 Write Into Counter 2 

'0 1 0 1 1 Write Control Word 

0 '0 1 0 0 Read from Counter 0 

0 0 1 0 1 Read from Counter 1 

0 0 1 1 0 Read from Counter 2 

0 0 1 1 1 No-Operation (3-State) 

1 X X X X No-Operation (3-State 

0 1 1 X X No-Operatlon (3-State) 

Figure 14. ReadIWrlte Openitlons Summary 

Mode Definitions 

8254 

1) Writing the first byte disables counting. OUT Is set 
low Immediately (no clock pulse required), 

2) Writing the second byte allows the new col,lnt to be 
!oeded Qn the ,next ClK pulse. 

This allows the counting sequence to be synchronized 
by aoftware. Again, OUT does not go high until N + 1 
CLK pulses after the new count of N is written •. 

If an Initial count Is written while GATE=O,ltwlll'stlll be 
loaded on the next ClK pulse. When GATE goes high, 
OUT will go high N ClK pulses later; no elK 'pulse is 
nesCledto load the Counter as this has already been 
done. 

OW •• O L88.4r.-______ -:-__ _ 

WIi l....lL.J 
CLK 

GATE ---------------

OUT ~_"'-____ _:_----' 

CW.10 LlI.a W1iLJUr--------
CLK 

The following are defined for use In describing the GATE 

operation of the 8254. 

ClK pulse: a rising edge, then a failing edge, in that 
. order, of a Counter's ClK input. 

trigger: a rising edge of a Counter's GATE input. 
Counter loading: the transfer of a count from the CR 

to the CE (refer to the "Functional 
Description") 

MODE 0: INTERRUPT ON TERMINAL COUNT 

Mode 0 Is typically used for event counting. After the 
Control Word is written, OUT is initially low, and will re' 
main IQw until the Counter reaches zero. OUT then goes 
'high and remains high until a new count or a new Mode 
o Control Word Is written into the Counter. 

,GATE = 1 enables counting; GATE = 0 disables count­
Ing. GATE has no effect on'OUT. 

After the Control Word and Initial count are written to a 
Counter, the initial count will be loaded on the next ClK 
pulse. This ClK pulse does not decrement the count, so 
for an Initial count of N, OUT does not go high until N + 1 
ClK pulses after the Initial couht is written. 

If a new count Is written to the Counter, It will be loaded 
on the next ClK pulse and counting will contlnue'from 
-the new count. If a two-byte count is written, the follow-
ing happens: <, 

• 
6-349 

CLK 

GATE 

OUT:::J r--
1 N 1 N 1 N 1 Nil: 1 I: 1 ~ 1 : 1== 1 

NOTE: THE FOLLOWING CONVENTIONS APPLY TO ALL MODE nMING DIAGRAMS: 
•• COUNTERIARE PROGRAMMED FOR BINARY (NOT BCD) COUNTING AND FOR 

READINOIWRmNG LEAST SIGNIFICANT BYTE (1.81) ONLY. 
2. THE COUNTER IS ALWAYS SELECTED (eJ ALWAYS LOW). 
3. ow STANDS FOR "CONTROL WORD"; CW •• 0 MEANS A CONYROL WORD OF '0. 

HEX IS WRlmN Tq THE COUNTER. 
4. LIB STANDS FOR "LEAST SIGNIFICANT BYTE" OF COUNT • 
.. NUMIERl8ELOW DIACI~. ARE CQUNT VALUES. 

THE LOWER NUMBER IS THE LEAST SIGNIFICANT 8VTE. 

r.H=:::~=~~~?N~':::'~~:~=~W:: 
CANNOT IE READ. 

=E="~ ~~:'A:H:!,::~:;g:!iETWEEN COUNT VALUES. 

Figure 16. ModeO 

AFIi-G02.7D 



inter.' '·8254 

MODE 1: HARDWARE.RETRIGGERABLE ONEooSHOT 

OUT will be initially high.'OUT will go low on the ClK 
purse following a trigger to begin the one-shot pulse, 
and will remain low untH·the Counter reaches·zero. our " 
wJJl thel) go. high and,remain high until the Y.lK pulse 
after the next trigger. ( 

After writing ·the Cpntrol Word and Initial oount, the 
Counter Is, . armed. A trigger re",ults .In loading the 
Counter. and setting OUr IpW O{l the next ClK pulsf/, 
thus starting the one-shot pulse. An Initial count of N 
will res~lt in a one,sbot pulse NClK, qYC!~1I1 in duration. 
The one-shot Is retrlggerable, hence OUT will remain 
low for N ClK pulses after any trigger. The one-shot 

. pulse can be repeated without rewriting the same count 
into the counter. GATE has no effect on OUT. 

II a I'Iew cou'nt is iNi"itten to the Counter during a o'ne­
shot pulse, the current one-shot is not affected unless 
the Counter Is ,retr!ggered. In that case, tile Counter is 
loaded with the new count and the one-shot pulse con­
tinues until the new count expires. 

CW=12 lS"3~ __________ _ 

W1iLJU 
ClK 

------, n--------..,,'n-----
GATE ' , I" I 

OUT 

1 ~ 1 1 ~ 1 1 ~ 1 

OUT =:J '--___ ---Ir-
.1 N 1 N 1 ~ 1 N 1 N 1 :' 1 U ~ n, 1 ~ 1 ~ 1 

GATE -------'n-;---:--:--' rr-''--
------"". '. ,. , .. , ,I. - • 

OUT' 

Figure 16. Mode 1 

MODE 2: RATE GENERATOR 

This Mode functions like a divide-by-N counter. 1t ,is 
typiclaly used to generate a'Real Time Clock interfupt. 
OUT will initially' be high: When the In'itlal count has 
'decremented to 1, OUT go~s low for one elK pU,lse:OUT 
then goes high again, the Counter 'reloads the Initial 
count and the process is repeated. Mode 2 is periodic; 
the same -sequence is repeated Indefinitely. For an in­
Itial count o'f N, the sequence repeats every N ClK· 
cycles. . , 

GATE",1 enables counting; GATE=O ·dlsables count­
Ing.lf GATE goes low during an output pulse, OUT is set 
high immediately. A trigger reloads the Counter with the 
Initial count on the Aexf ClK pulse; OUT goes low N 
CLl< pulses after the trigger. Thus the GATE input can 
be used to synchronize the Counter. 

After writing' a' Control \yord and initial couAt, the 
Counter will be 10l\ded on the next ClK pulse. OUT goes 
loW N ClK Pulses after the Initial count is written. This 
allows the Counter to be synchronized by software aiso. 

CW_14 LSB.3~ _________ _ 

W1iLJU 
ClK 

BAn -----------------

OUT 

1 ~ 1 I ~ I 
CW-14 LSB.3-", _____ -----

W1iLJU 
eLK. 

GATE LJ 

. eLK 

QATE -------:----~.".------

O:UT ,:..:.:)' u 
. . 

NOTE: A GATE tie_IOn ohouk! ftOI occur one clock prior to terminal ' 
count. 

Figure 17_ Mode 2 

• 
6-350 AFN.Q0217D 



inter 8254 

Writing a new count while counting does not affect the 
current counting sequence. If a trigger Is received after 
writing a new count but before the end of the current 

, period, the Counter will be loaded with the new count on 
the next CLK pulse and counting will continue from the 
new count. Otherwise, the new count will be loaded at 
the end of the current counting cycle. In mode 2, a 
COUNT of 1 is illegal. 

MODE 3: SQUARE WAVE MODE 

Mode 3 is typically used for Baud rate generation. Mode 
3 is simil.ar to Mode 2 except for the duty cycle of OUT. 
OUT will initially be high. When half the initial count has 
expired, OUT goes low for the remainder of the count. 
Mode 3 is periodic; the sequence above is repeated in­
definitely. An initial count of N results In a square wave 
with a period of N CLK cycles. I 

GATE = 1 enables counting; GATE = 0 disables coun­
ting. If GATE goes low while OUT is low, OUT is set high 
immediately; no CLK pulse is required. A trigger reloa~s 
the Counter with the initial count on the next CLK pulse. 
Thus the GATE input can be used to synchronize the 
Counter. 

After writing a Control Word and initial count, the 
Counter will be loaded on the next CLK pulse. This 
allows the Counter to be synchronized by software also. 

Writing a new count while counting does not affect the 
current counting sequence. If a trigger is received after 
writing a new count but before the end of the current 
half-cycle of the square wave, the Counter will be loaded 
with the new count on the next CLK pulse and counting 
will continue from the new count. Otherwise, the new 
count will be loaded at the end of the current half-cycle. 

M~de 3 is Implemented as follows: 

Even counts: OUT is initially high. The initial count is' 
loaded on one CLK pulse.and then is decremented I)y 
two on succeeding CLK pulses. When the count expires 
OUT changes value and the Counter is reloaded with the 
initial count. The above process is repeated indefinitely. 

Odd counts: OUT is initially high. The initial count 
minus one (an even number) is loaded on one CLK pulse 
and then is decremented by two 0(1 succeeding CLK 
pulses .. One CLK pulse after the count expires, OUT 
goes low and the Counter is reloaded with the initial 
count minus one. Succeeding CLK pulses decrement 
the count by two. When the count expires, OUT goes 
high again and the Counter Is reloaded with the initial 
count minus one. The above process is repeated in­
definitely. So for 'odd counts, OUT will be high for 
(N + 1)/2 couritsand low for (N - 1)/2 counts. 

6-351 

elK 

GAlE ------------------

OUT 

CW_11J L88_'~-------------1i1!"LJLJ 
elK 

GATE ------------------

OUT 

CW",16 LSB_'4 _____________ _ 

1i1!l.JU 
elK 

GATE 

OUT 

I " I " I" I ", I ~ I : I ~ I : I : I : I : I : I ~ I : I 
NOTE: A GATE IraneMlon should not occur one clock prior to terminal 
count. 

Figure 18_ Mode 3 

MODE 4: SOFTWARE TRIGGERED STROBE 

OUT will be initially high. When the initial count expires, 
OUT will go low for one eLK pulse and then go high 
again. The counting sequence is "triggered" by writing 
the initial COunt. 

GATE= 1 enables counting; GATE = 0 disables count­
Ing. GATE has no effect on OUT. 

After writing a Control Word and initial count, the 
Counter will be loaded on the next CLK pulse. This CLK 
pulse does not decrement the count, so for an initial 
count of 'N, OUT does not strobe low until N + 1 CLK 
pulses after'the initial count Is written. 

If a new count is written during counting, it will be load­
ed on the nex! eLK pulse and counting will continue 
from the new count. If 'a tWO-byte count is written, the 
following happens: 

1) Writing the first byte has no effect on counting. 
2) Writing the second byte allows the new count to be 

loaded on the 'next CLK pulse. 

This allows the sequence to be "retriggered" by soft­
ware. 'OUT strobes low N + 1· CLK pulses after the new 
count·of N.ls·written. 

AFN-00217D 



cw.,. LS8=-3 

fill L....JL.J~~~-----

ClK 

GATE 

OUT ::J, U 
I N 1 N 1 N I N I 1·.1· I· IFFIFFIFFI 10 FF FE,FD 

CW.1. LSBI&3r-_________ _ 

fIIIL....JL.J 
ClK 

GATE 

------~ 

,OUT =.:J l,F 
• I • I FF I 1 0 FF 

I N I N I N I N I : I ~ I ~ I ~ I ~ I ~ I~~ I 

Flg~re 19. Mode 4, 

MODE 5: HARDWARE TR~GOERED STROBE 
(RETRIGGERABL,E) 

OUT will initially be high. Counting is triggered by a ris· 
ing edge of GATE. When the Initial count h'as expired, 
OUT will go low for one ClK pulse and then go high 
again. ' ' 

After' wrltin~, the Control Word and Inltla! ~o~nt, the 
c9unter will 'not be loaded until the CL,K pulse after a 
trlgger. This ClK pul,se does, not decrement the cou,nt, 
so for an·lnitial covnt of N, OUT does nOt.strobe low un· 
til N + 1 ClK pulses after a trigger. ' , 

A trigger r~s,ults In'theCount~r being load~9 with the In­
itial count on the' next ClK pulse. The co:untjng. se­
quence'is retrlggerable. OUT will not stro~e lo,w' f,or 
N + 1 ClK pulses after any trigger. GATE has'no effect 
on OUT. " 

If a new count is wtltteh 'dvring coulltlng, the curent 
counting sequence wili 'n-ot be' affected.: if 8' trigger oc· 
curs after the new.count Is written llut before the :cur­
rent count expires, the Counter will be 'loaded with ,the 
new count on the next ClK pulse and counting,wlll ,cwn­
tinue from there. 

8254 

6-352 

, : j 

CW.1A LSB.a_.,..... ______ ~_ 

WIIlJl..J 
,eLK 

---"--'--, rr--------, n:.::::: GATE" , \ 

OUT 

CWc1A L .... r-__________ _ 
fIIIlJl..J 

• eLK 

GATE ---------1f\:.:l/l~----------7" 

OUT =.:J, LJ 
r N I N 1 N, 1 ~ 1 N 1 N 1 f 1 : 1 : 1 : 1 ~ 1 ~ ,I ~n 

, 
GATE --n----vr--:-------Vc.:.= 

OUT :=J u 

Figure 20. Mode 5 

SIgnal Low 
, 

SllIIuB ' O.Oolng Rlelng High 
Mode. ,'Low 

0 Dlsal!les -- Enables 
counting counting 

1 -- 1) Initiates' --
I counllng 

2) Resets output 
after nexl clock 

2 , 1) Dlsable~ 
counllng Iniliaies ' Enables 

: 2) Sets output counting counllng 
Irnmedlat~ly 
high 

3 1) Disables 
counting Inillates Enables 

" , '2) Sets outpuf counting , oounllng' 
, Immediately 
high 

4 Disables, -- Enables • , cou(l,tl~g cpuntlng 

5 -- ',I Inltlatee ,\"1 --
'" 

q()\Intlng , 
" 

" v , , 
Figure 21. Oate Pin Operations Summary 



inter 

Mode Min Max 
Count Count 

0 1 0 

1 1 0 

2 2 0 

3 2 0 

4 1 0 

5 1 0 

NOTE: 018 EQUIVALENT TO 218 FOR BINARY COUNTING AND 104 FOR 
BCD COUNTING. 

Figure 22. Minimum and Maximum Initial Count. 

Operation Common to All Modes 

PROGRAMMING 

When a Control Word Is written to a Counter, all Control 
Logic Is Immediately reset and OUT goes to a known 
Initial state; no CLK pulses are required for this. 

8254 

6-353 

GATE 

The GATE input Is always sampled on the rising edge of 
CLK. In Modes 0, 2, 3, and 4 the GATE Input Is level 
senllltlve, and the logic level Is sampled on the rising 
edge of CLK. In Modes 1, 2, 3, and 5 the GATE Input Is 
rlslng·edge sensitive. In these Modes, a rising edge of 
GATE (trigger) sets an edge·sensltlve flip·flop In the 
Counter, This fllp·flop Is then sampled on the next rising 
edge of CLK; the fIIp·flop Is reset Immediately after It Is 
sampled. In this way, a trigger will be detected no matter 
when It occurs-a high logic level does not have to be 
maintained until the next rising edge of CLK. Note that 
In Modes 2 and 3, the GATE Input Is both edge· and level· 
sensitive. In Modes 2 and 3, If a CLK source other than the 
system clock is used, GATE should be pulsed immediately 
following iiiiR of a new count value. 

COUNTER 

New counts are loaded and Counters are decremented 
on the failing edge of CLK. 

The largest possible Initial count Is 0; this Is equivalent 
to 218 for binary counting and 104 for BCD counting. 

The Counter does not stop when it reaches zero. In 
Modes 0,1,4, and 5 the Counter "wraps around" to the 
highest count, either FFFF hex for binary counting or 
9999 for BCD counting, and continues counting. Modes 
2 and 3 are periodic; the Counter reloads Itself with the 
Initial count and continues counting from there. 

AFN-002170 



. inter 8254 

ABSOLUTE MAXIMUM RATINGS· 

AmbientTemperalure Under Bias ....•.... O·C 10 70·C 

Storage Temperature ... '" ......... .,.~S·C to + 1S0!C 

Voltage on Any Pin with 
Respect 10 Ground ..........•...... -O.SVto + 7V 

Power Dissipation .••...... , ....... ~ ...... , .•. 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratlngs" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above. 
t/Jose indicated in the operational sections of this specifi­
cation is not implied. Exposure to Absolute Maximum 
Rating conditions for extended per/ods may affect device 
reliability. 

D.C. CHARAC:rERISTICS (TA=O·C 10WC, Vee = SV:I: 10%) 

Symbol Parameter . Min. Max. 

VIL Input Low Voltage. -O.S 0.8 

VIH Input High Voltage 2.0 Vee+ O.SV 

VOL Output Low Voltage 0.45 

VoH ' Output liigh Voltage 2.4 

.IIL Inpul Load Current :1:10 

I.OFL Output Float Leakage :1:10 

Icc Vee Supply Current 170 

CAPACITANCE (TA=2SoC, Vee=GND=OV) 

Symbol Parameter Min. Max. 

CIN Input Capacitance 10 

CliO 110 Capacitance 20 " , 

-'A.C. CHARACTERISTICS (TA= O·C to 70·C, Vee = SV:I: 10%, GND=OV) 

Bus Parameters (Note 1) 

READ CYCLE 
/ 

8254 

Symbol Parameter Min. Max. 

tAR Address Stable Before RD! 45 

tSR CS Stable Before RD! 0 

tRA Address Hold Time After ROt 0 

tRR RD Pulse Width 150 

tRO Data Delay from RD! 120 

tAD Data Delay from Addifts 220 

tOF ROt to Data Floating S 90 

IAv Command RecoveryTime 200 

Note 1: Ae timings measured at VOH = 2.0V, VOL = O.BV. 

Units Test Conditions 

V 

V 

V IOL=2.0 mA 

V IOH= -400,..A 

,..A V1N=Vccto OV 

,..A VOUT.= Vee toO.45" 

mA 
" 

Units Test Condltipns 

pF le= 1 MHz 

pF Unmeasured pins 
returned to Vss 

8254-2 

Min. Max. Unit 

30 ns 

0 ns 

0 ns 

9S' ns 

85 ns 

185 ns 

S 65 ns 

16S ns 

AFN.(J(J2170 



A.C. CHARACTERISTICS (Continued) 

WRITE CYCLE 

Symbol Parameter 

tAW Address Stable Before WRJ, 

tsw CS Stable Before WRJ, 

tWA Address Hold Time WRt 

tww WR Pulse Width 

tow Data Setup Time Before WRt 

two Deta Hold Time After WJ!$;t 

tRY Command Recovery Time 

8254 

8254 

Min. Max. 

0 

0 

0 

150 

120 

0 

200 

CLOCK AND GATE (TA= O·C to 70·C, Vee = 5V± 10%, GND=OV) 

8254 

Symbol Parameter Min. Max. 

tClK Clock Period 125 DC 

tpWH High Pulse Width 60[31 

tpWl Low Pulse Width 60[31 

tR Clock Rise Time 25 

tF Clock Fall Time 25 

lGw Gate Width High 50 

tGl Gate Width Low 50 

tQs Gate Setup Time to ClKt 50 

tGH Gate Hold Time After Cl1<t 50[21 

too Output Delay from ClKJ, 150 

tOOG Output Delay from GateJ, 120 

twc elK Delay for loading 0 55 

tWG Gate Delay for Sampling -5 50 

two OUT Delay from Mode Write 260 

tCl ClK Set Up for Count latch -40 45 

8254-2 

Min. Max. Unit 

0 ns 

0 ns 

0 ns 

95 ns 

95 ns 

0 ns 

165 ns 

8254-2 

Min. Max. Unit 

100 DC ns 

30[31 ns 

50[31 ns 

25 ns 

25 ns 

50 ns 

,50 ns 

40 ns 

50[21 ns 

100 ns 

100 ns 

0 55 ns 

-5 40 ns 

240 ns 

-40 40 ns 

Nole 2: In Modes 1 and 5 triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 8254-2) of the 
rising clock edge may not be detected. 

Nole 3: Low-going glitches that violate tpWH. tpWL may cause errors requiri~g counter reprogramming. 

6-355 AFN-00217D 



A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 =XU 2.0X= > TEST POINTS < 
0.8 0.8 

0.45 

A.C. TESTING' INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC .. , .. AND 0.45V FOR 
A LOGIC "0:' TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC , .. 
AND O.8V FOR A LOGIC' 0 .. 

A.C. TESTIN.G LOAD CIRCUIT 

DEVICE 
UNDER 

iJCl= 150pF 
TEST 

Cl = 150pF 
Cl INCLUDES JIG CAPACITANCE 

6-356 



inter . 8254 

WAVEFORMS 

WRITE 

110 .• 

4---tAW---"" 

cs 

DATA BUS· 

two--.. 

READ 
110., 

1+---1.\.,----+1 

cs 

DATA BUS---

I~~RY 

CLOCK' AND GATE 

CLK 

GA~ ----____ ~ ________ ~~ 

" O~TPUT 0 __ ..... .....; __ ~ _______________ + __ -'.,... ______ .;...;.-". ___ ..... ____________ _ 

'LAST BYTE Of.COUNT BEING WRITTEN 

6-357 AFN-OOI!17D 



inter· 
8255A18255A-5 

PROGRAMMABLE PERIPHERAL INTERFACE 

• MCS·85™ Compatible 8255A·5 

• 24 Programmable 110 Pins 

:. Completely TTL Compatible 

a Fully Compatible with IntelC!> Micro­
processor Families 

• Improved Timing Charac~.ristlcs 

• Direct Bit SetlReset Capability Easing 
Control Application Interface . 

• Reduces System Package Cdunt 
.• Improved DC Driving Capability 

• Available In EXPRESS 
-Standard Temperature Range 
-Extended Temp~rature, Range 

.The Intel'" 8255A is a ge.neral purpose programmable 110 device designed for use with Intel'" microprocessors, It has 
24110 pins which may be Individually programmed in 2 groups of 12 and used In 3 major modes of operation. In the first 
mode (MODE 0), each group of 12110 pins may be programmed In s~ts Qf 4 to be input or output. In MODE 1, the secqnd 
mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for hand· 
shaking and Interrupt control signals . .The·thlrd mode of operation (MODE 2) Is a bidirectional bus mode which uses 8 
lines for a bidirectional bus, and 5 IInes,.borrowing one from the other grQup, for handshaking. 

..... 

III .. 
" .. 

.. -----' 
Flgure:l. 8255A Bloc~ .Dlagr.",_ . 

"INTEL CORPORATION. 1982. 
6-358 

vo .. ,..., 

,,., 
"" .... 

" . ....... 

vo ..,-

Figure 2. Pin CQnflguratlon 



inter 8255A18255A·5 

8255A FUNCTIONAL DESCRIPTION (RD) 

General 

The 8255A is a programmable peripheral Interface (PPI) 
device designed for use In Intel<!> microcomputer 
systems. Its function Is that of a general purpose I/O 
component to interface peripheral equipment to the 
microcomputer system bus. The functiQnal configura­
tion of the 8255A is programmed by the system software 
so that normally no external logic Is necessary to Inter­
face peripheral devices or structures. 

Data Bus Buffer 

This 3·state bldlrectlonal8·blt buffer Is used to Interface 
the 8255A to the system data bus. Data is transmitted or 
received by the buffer upon execution of input or output 
instructions by the CPU. Control words and st~tus infor­
mation are also transferred through the data bus buffer. 

ReadlWrlte and Control Logic 

The function of this block is to manage all of the internal 
and external transfers of both Data and Control or Status 
words. It accepts inputs from the CPU Address and cOn­
trol busses and in turn, issues commands to both of the 
Contro I Grou ps. 

(CS) 

Chip Select. A "low" on this input pin enables the com­
munlction between the 825M and the CPU. 

1-·" POWER 
SUPPLIES __ '" 

"'----" 

,Read. A "low" on this input pin enables the 8255A to 
send the data or status Information to the CPU on the 
data bus. In essence, It allows the CPU to "read from" 
~he 8255A. 

(WR) 

Write. A "low" on this Input pin enables the CPU to write 
data or control words into the 8255A. 

(Aoand Ad 
Port Select 0 and Port Select 1, These Input signals, in 
conjunction with the RD and WR inputs, control t!le 
selection of one of the three ports or the control word 
registers. They are normally connected to the least 
significant bits of the address bus (Ao and Al ). 

8255A BASIC OPERATION 
A1 AO RD WR 

0 0 0 1 
0 1 0 1 
1 0 0 1 

0 0 1 0 
0 1 1 0 
1 0 1 0 
1 1 1 0 

X X X X 
1 1 0 1 

X X 1 1 

---=--
INPUT OPERATION (READ) cs 

0 
0 
0 

0 
0 
0 
0 

1 
0 

0 

PORT A="oATA BUS 
PORT B'" DATA BUS 
PORT C- DATA BUS 
OUTPUT OPERATION 
(WRITE) 

DATA BUS-PORT A 
DATA BUS - PORT B 
DATA BUS- PORT C 
DATA BUS - CONTROL 
DISABLE FUNCTION 

DATA BUS" 3-STATE 
ILLEGAL CONDITION 

DATA BUS" 3-STATE 

"0 
PA, PAo 

'0 
PC7P~ 

"0 
PB,PBo 

Figure 3_ 8255A Block Diagram Showing Data Bus Buffer and Read/Write Control Logic Functions 

6-359 AFN-00744C 



82SSAI825SA·5 ' 

(RESET) 

R ... t.,A "high",on this'il1Put clears tl1e control register 
and al~ ports CA, B"O) are setto the,input mode. " 

, Group A and Group B Controls 
The functional configuration 'of each port Is program· 
med by the systems software. In essence, the CPU "out· 
p'uts" a control word 'to the 8l1SSA. The control word con· 
tains information such as "mode", "blt set", "bit reset", 
etc., that Initializes the functional configuration of the 
8255A. ' 

Each ,of the Contreil blocks (Group A ~nin:Jroup B) accepts \ 
"commands" from the Read/Write Control Logic, receives 
"con'trol words" trom the inter~al data b~'s and issu~ the 
proper commands to its associated ports. 

Control Group A - Port A and Port C upper (C7·C4) 
Control Group B - ~?ft B and~rt~ lower (C,3·CO) 

The _ Convol Worq R,egister can Only be written. into. No 
Re~d 'Ope~?tion cif the Controi, Word Register is allowed. 

.. 

, ;' 

",",,{_+5V ...... , --"" 

Ports A, B,and,C ,,-

The 8255A contains three 8·blt ports (A, B, an~,_C), ~r,,, 
can be configured In a wide variety of functional charac­
teristics by, the !!ystem software but each has,lts:'pwn 
speclai feature!! o,r ·,,~personallty" to further enhance.the ' 
power and flexibility of the 8255A. 

Port A. One 8-bit'data output latchlbuffer and' one 8-bit 
data input latch. ' 

Port B. One 8-blt data Input/output latch/buffer and 'one 
8-bit data input buffer. 

Port C. One 8·bit data output latch/buffer and one 8-blt 
data input buffer (no latch for Input). This port can be 
divided Into two 4-,bit ports under the mode control. 
Each 4-bit port ,contains a 4·bit latch and It can be used 
for the control signal outputs and status signal Inputs In 
conjul)ction ,with ports A and B., 

. , , ,~, :: 

PIN CONFIGURATiON 

PIN NAMES' 

D7 Do DATA BUS 181 DIRECTIONAL) 
ReSET RESET INPUT 
CS CHIP SELECT 
Rli READ INPUT 
WR WRITE INPUT 
AO,A1 PORT ADDRESS 
PA7-PAO PORT A 181Tl 
P87 P90 PORT B f81TI 

PC7 PCO PORT C fBIT) 

Vee +5VOLlS 
GND 'VOLTS 

Figure 4. 8225A Block OIagra'" Showing Group A and 
Group B Control Functions 

, .. ' 

6-360 AFN.Q0744C 



8255A18255A·.6 

8255A OPERATIONAL DESCRIPTION 

Moda Salactlon 
There are three basic modes of operation that can be select­
ed by the system software: 

Mode 0 - Basic Input/Output 
Mode 1 - Strobed Input/Output 
Mode 2 - Bi-Directional Bus 

When the reset Input goes "high" all ports will be Stt to 
the Input mode (I.e., all 24 lines will be In the high im­
pedance state). After the reset is removed the 8255A can 
remain in the input mode with no additional initialization 
required. During the execution of the systel)'l program 
any of the other modes may be selected using a single 
output instruction. This allows Ii single 8255A to service 
a variety of peripheral devices with a simple software 
maintenance routine. 

The modes for Port A and Port B can be separately defined, 
while Port C is divided into two portions as required by the 
Port A and Port B definitions_ All of the output registers, in­
cluding the status flip-flops, wilt be reset whenever the 
mode is changed. Modes may be combined so that their 
functional definition can be "tailored" to almost'any I/O 
structure. For instance;, Group B can be programmed in 
Mode 0 to monitor'simple switch closings or display compu­
tational results, Group A could be programmed in Mode 1 
to monitor a keyboard or tape reader on an interrupt-driven 
basis. 

ADDRESSaUS 

CONTROL BIll 

MODE 0 

MODE 1 -...r B 
c 

A r 

& t tt t tttt ~O 
PB,.f'80 CONTROL CONTROL PA,.f'Ao 

OR 110 OR 110 

MODE 2 --..t a 
c 

A l' , , 
,go tIt 1 I fI f '~.QlRECTIONAL 

Pa,-Pa" 110 ' , 
CO..t..OL 

. - PA,-PAo 

Figura 5. 'Baalc Mode Deflnltlona 
and Bua Interface 

CONTROL WORD 

10,10. Os I D·I D31 0.1 D, I Do I 
LJ 

/ GROUP a \ 
PORT C (LOWERI - '-INPUT 
0- OUTPlIT 

PORTa 
L..--..... ,-INPlIT 

O-OUTPUT 

MOOE SELECTION 
O'MODEO 
'-~ODE' 

/ GROUP A \ 
PORT C (UPPERI 
,-INPlTT 
O-OUTPUT 

PORTA 
,-INPUT 
0- DUTPlTT 

MODE SELECTION 
OO-MODEO 
O,-MODE, 
,X-MOOE2 

MODE SET FLAG 
,- ACTIVE 

Figure 8. Mode Definition Format 

The mode definitions and possible mode combinations 
may seem confusing at first but after a cursory review of 
the complete device operation a simple, logical I/O ap­
proach will surface. The design of the 8255A has taken 
Into account things such as efficient PC board layo,ut, 
control signal definition vs PC layout and complete 
functional flexibility to support almost any peripheral 
device with no external logic. Sucll design represents 
the maximum use of the available pins. , 

6-361 

Singia 81t Savaa .. t Feature 

Ar.v of the eight bits of Port C can be Set or Reset using a 
single OUTput instruction. This featUre reduces software 
requirements in Control-based applications. ' 



inter 8255A18255A·5 

CONTROL WORD 

II 07 1 o. I 05 1 d. I 0,1 021 0, I DO I 
I I I Lr BIT SET/RESET I I X X X I 1 =SET 

I ' 0= RESET 
DON'T 
CARE 

BIT SELECT 

01234567 

0101010180 
0011001181 

OPOOl111B21 

BIT SET/RESET FLAG I O=ACTIVE 

Figure 7. Bit Set/Reset Format 

Operating Modes 

MODe 0 (Basic Input/Output). This functional configura­
tion provides simple input and output operations for 
each of the three ports. No "handshaking" is required, 
data is simply written to or read from a specified ,port. 

. 
.co-

t=IR-
INPUT 

I::==.:AR-
C$,.Al.AO 

---- ----'--'-

MODe 0 (Basic Input) 

I------t~w-----~ 

a,Al,AD 

OUTPUT 

MODE 0 (Basic Outpul) 

tRD 

When Port C is being used as status/control for Port A or B. 
these bits car:J be, set or reset by using the Bit Set/Reset op­
eration 'Just as'if they were data output ports. 

Interrupt Control Functions 
When the B255A is progrnmmed, to operate in mode 1 or 
mode 2, control signals are provided that can be used as 
interrupt request Inputs to the CPU. The interrupt reo 
quest signals, generated t'rom port C, can be inhibited or 
enabled by setting or resettll'!g'the associated INiE flip­
flop, using the bit set/reset function of port C. 

This function allows the Programmer to disallow or' allow a 
specific ,I/O device to interrupt the CPU without affecting 
any other device in the' irlterrupt structure. 

INTE .flip-flop definition: 

(BIT-SET) '-- INTE'is SET - Interrupt enable' 
(BIT-R'ESET) - INTE is RESET - Interrupt disable 

Note: All Mask flip-flops are automatically reset during 
mode selection and device Reset. 

Mode OBasi~ Functional Definitions: 

• ' Two B,bit ports and two 4-bit ports. 
• Any port can be input or output. 
• Outputs are latched. 
• Inputs are not latched. _ 
• 16 different Input/Output configurations are possible 

in this Mode. 

'tRR . 
---+-

- I--tHR-1 

-tRA-1 

---. ,tOF . 

'wD 

1------ 'wA------+I 

,6-362 AF"'-OO744C 



8255A18255A·5 

MODE 0 Port Definition 

A B GROUPA GROUP B 

04 03 01 DO PORTA 
PORTC PORTC 

(UPPER) 
# PORTB 

(LOWER) 

0 0 0 0 OUTPUT OUTPUT 0 OUTPUT OUTPUT 

0 0 0 1 OUTPUT OUTPUT 1 OUTPUT INPUT 

0 0 1 0 OUTPUT OUTPUT 2 INPUT OUTPUT 

0 0 1 1 OUTPUT OUTPUT 3 INPUT INPUT 

0 1 0 0 OUTPUT INPUT 4 OUTPUT OUTPUT 

0 1 0 1 OUTPUT INPUT. 5 OUTPUT INPUT 

0 1 1 0 OUTPUT INPUT 6 INPUT OUTPUT 

0 1 1 1 OUTPUT INPUT 7 INPUT INPUT 

1 0 0 0 INPUT OUTPUT 8 OUTPUT OUTPUT 

1 0 0 1 INPUT OUTPUT 9 OUTPUT INPUT 

1 0 1 ' 0 INPUT OUTPUT 10 INPUT OUTPUT 

1 0 1 1 INPUT OUTPUT 11 INPUT INPUT 

1 1 0 0 INPUT INPUT 12 OUTPUT OUTPUT 

1 1 0 1 INPUT INPUT 13 OUTPUT INPUT 

1 1 1 0 INPUT INPUT 14 INPUT OUTPUT 

1 1 1 1 INPUT INPUT 15 INPUT INPUT 

MODE 0 Configurations 

CONTROL WORD >;0 CONTROL WORD #2 

0, 0, 0, 0, 0, 0, 0, Do 0, 0, 0, 0, 0, 0, 0, Do 

I, I 0 I o I 0 I 0 I 0 I o I 0 I I , I 0 I 0 I 0 I 0 I 0 I , I 0 I 
A 

8 
PArPAo A 

8 
PA,.PA, 

8255A 8255A 

4 
P~.PC4 • PC7"PC4 c{ c{ °7-0 0 °7-0 0 

• pel-peO • pe3-peO 

B 
8 

PB7-PBo B 
,8 

PB7"PBO I 

\ 

CONTROL WORD #1 CONTROL WORD #3 

0, 0, 0, 0, 0, 0, 0, Do 0, 0, 0, 0, 0, 0, 0, Do 

I, I 0 I o I 0 I 0 I 0 I o I ' I 1 
, I 0 I 0 I 0 I 0 I 0 I , 1,1 

A 
8 

PA7-,PAo A 
8 

PA,.PA, 

8255A 82S5A 

• PC7-PC4 
4 

PC7-PC4 

°7-00 • . I c{ °7-0 0 • . c{ . " PC3-PCO . " PC3-peO I I 

B 
8, 

p.,·pSo B 
8 p.,·pSo 

6-363 AFN·OO744C 



·8255A18255A-5 

CONTROL WORD #4 CONTROL WORD =8 

0, D. Os 04 0 3 02 0, DO 07 0, 05 DC 0 3 02 0, DO 

1,1010101,1010101 I, 1010 I, I 0 10 I 0'1 01\ 

A 1-_+8,,-__ PA,-PAo 

82SSA 82SSA 

c ,{ 1---+,::'-- "",.pc. 

I---f~- !'Ca.""" 

91-_+'::.8 -- PB,'PIIo 91-_+::.8 -. PB,'PIIo 

----------------~----~----------+----------------------------------
CONTROL WORD #6 CONTROL WORD #9 

0, D6 05 0 4 03 02 0, 00 0,.0. Da DC 03 DZ 0,00 

1,1010101,10101,1 1,10101,1010101,1 

A t-_+8~ __ PA,·pAo A 1-_+::.8 __ PA,'PAo 

.' 

0,0°0 ... ____ .o( 

• 
C {I---F.-- Pc,.PC. 

1--+'-- !'Ca.""" 

9 t----,~8=---- ""-l'B" 9 1-_-f.:.8 __ PB,.~ 

CONTROL WORD #6 CONTROL WORD #10 

07 06 Os DC 0 3 02 0, 00 0., D. 05 0 4 03 02 0,'00 

1,1010101,101,101 1,10101,1°101,101 

A 1-_+::.8 -. PA,.PA, 

82SSA 

o,.D, -o----.J 
C {I--+::'-- "",.PC, 

1---+"--- pc,·pCo 

'91--+,,8-_ ""'PIIo 91---f8=-- PB,'PB, 

CONTROL WORD #7 CONTROL WORD #11 

0, 0 8 05 04 03 Q1 ,0,. DO' 07 D. Os 04 03 02 01 DO 

I, I 0 I 0 I 0 I ; I 0 I, I, I I, I 0 I 0 I, I 0" I 0,1, I, I 
A 1--_-1-.:.8 __ PA,'pAo A ...... -+.:.8-- PA,-PAo 

D,.D, .... ----1 
• 

C {I---+"'.-- !'C,'pc. 

t--+'--- !'Ca'pc. 

D,.o ..... -----1 

B ..... _+::.8 __ ""-Plio ~ ..... -+.:.8-- ""'PIIo 
'-_--'-__ .J 

6-364 AFN-00744C 



8255A18255A·5 

CONTROL WORD =12 

DO 

I 1 1 1 1 1 1 1 I 
A . , ,8 

PA7 PAO 

8255A 

c{ 
, " . 
• 

PC7·PC4 

pel-peO 

B 
8 

PB7,PRo 

CONTROL WORD #13 

07 0 6 05 '04 03 02 0, DO 

I 1 1 1 1 1 1 1 I 
A 

8 

8255A 

c{ i 
/ . 

. . 
• 
8 

B 

Operating Modes 

MODE 1 (Strobed Input/Output). This functional con· 
figuration provides a means for transferring 110 data to 
or from a specified port in conjunction with strobes or 
"handshaking" signals. In mode 1, port A and Port B use 
the lines on port C to generate or accept these "hand· 
shaking" signals. 

6-365 

CONTROL WORD #14 

07 06 05 04 03 02 01 DO 

I 1 1 1 1 1 I, 1 0 I 
A , ,8 

PA7·PAo 

8255A 

c{ , , . PCr PC4 

°7-0 0 . 
pel-peO 

B . , ,8 
PB7,PSO 

CONTROL WORD #15 

A 
8 

8255A 

• . c{ • 

\ B 
8 

Mode 1 Basic Functional Definitions: 

• Two Groups (Group A and Group B) 
• Each group contains one 8·bit data port and one 4-bit 

control/data port. 
• The 8-bit data port can be either input or output. 

Both inputs and outputs are latcl)ed. 
• The 4-bit port is used for control and status of the 

8-bit data port. 



Input Control Signal Definition 

STB (Strobe Input). A "low" on this input loads data into 
the input latch. 

IBF (Input Buffer Full F/F) 

A "high" on this output indicates that the data has been 
loaded into the input latch; in essence,an acknowledgement 
IBF is set by STB input being low and is reset by the rising 
edge of the R 0 input. 

INTR (Interrupt Request) 

A "high" on this output can be used to interrupt the CPU 
when an input device is requesting service. I NTR is set by 
the STB is a "one", IBF is a "one" and INTE is a "one". 
It is reset by the falling edge of RD. This procedure allows 
an input device to request service from the CPU by simply 
strobing its data into the port. ' 

INTE A 

Controlled by bit set/reset of PC 4. 

INTE B 

Controlled by bit set/reset of PC 2. 

~--tsT·-~-~ 

ST. \ 

IBF 

~tSl.Ji 

tSIT 

INTR 

AD 

1/ 

-~1 

)' 

~tpH-:1 

MODE 1 (PORT AI 

MODE 1 (PORT B) 

Figure 8. MODE 1 Input 

\ 
l~tRI.~) 

~7 ' ' / , 

1/ I 

• 
INPUT FROM ___ ---------------------PERIPHERAL 

j-------tPS~~----

I 
Figure 9,. MODE 1 (Strobed Input) 

6·366' AFN.Q0744C 



8255A18255A·5 

Output Control Signal Definition 

OBF (Output Buffer Full F/F). The OBF output will go 
"low" to indicate that·the CPU has written data out to 
the specified port. The OBF F/F will be set by the rising 
edge of the WR input and reset by ACK Input being low. 

ACt< (Acknowledge Input). A "low" on this input informs 
the 8255A that the data from port A or port B has been ac· 
cepted. In essence, a response from' the peripheral 
devi'ce indicating that it has received the data output by 
the CPU. 

INTR (Interrupt Request). A "high" on this output can be 
used to interrupt the CPU when an output device has ac· 
cepted data transmitted by the CPU. INTR is set when 
ACK is a "one", OBF is a "one" and INTE is a "one". II is 
reset by the falling edge of WR. 

INTEA 

Controlled by bit set/reset of PCs. 

INTE B 

Controlled by bit set/reset of PC 2. 

I 
CONTROL WORD 

CONTROL WORD 

07 06 05 04 0 3 02 0, Do 

I, k><lXNXH 0 N 

MODE 1 (PORT AI 

r- - ., 
I INTE t 
I A I __ J 

MODE 1 (PORT B) 

PC, ~B 

Figure 10. MODE 1 Output 

t Aoe -

INTR 

I----IWIT 

-tAK 

OUTPUT 

Figure 11. Mode 1 (Strobed Output) 

6-367 AFN·OO744C 



intJ 
Combinations of MODE 1 

Port A and Port B can be individually defined as input or 
output in Mode 1 to support a wide variety of strobed I/O 
applications. 

PA7-PAO 

PC. STsA 

PC, IBFA 

PC, INTRA 

2 
PC',7 --I- I/O 

PC, 

PORT A - (STROBED INPUT) 
PORT B - (STROBED OUTPUT) 

INTRB 

pe3 INTRA 

2 
PC4,5 --f-- I/O 

PC, 

PC, 

PORT A - (STROBED OUTPUT) 
PORT 8 - (STROBED INPUT) 

IBFB 

INTRB_ 

Figure 12. Combinations of MODE 1 

Operating Modes 

MODE 2 (Strobed Bidirectional Bus 110). This functional 
configuration provides a means for communicating with 
a peripheral device or structure on a single 8-bit bus for 
both transmitting and receiving data (bidirectional bus 
110). "Handshaking" signals are provided to maintain 
proper bus flow discipline in a similar manner to MODE 
1. Interrupt generation and enable/disable functions are 
also available. 

MODE 2 Basic Functional Definitions: 
• Used in Group A only_ 
• One 8-bit. bi-directional bus Port (Port A) and a 5-bit 

cuntrol Port (Port C)_ 
• Both inputs and outputs are latched_ 
• The 5-bit control port (Port C) is used for control 

and status for the 8-bit. bi-directional bus port (Port 
A). 

Bidirectional Bus 1/0 Control Signal Definition 

INTR (Interrupt Request). A high on this output can be 
used to interrupt the CPU for both input or output opera­
tions. 

Output Operations 

OBF (Output Buffer Ful). The OBF output will go "low" 
to indicate that the CPU has written data out to port A. 

ACK (Acknowledge). A "low" on this input enables the 
tri-state output buffer of port A to send out the data. 
Otherwise, the output buffer will be in the high im-, 
pedance state._ 

INTE 1 (The INTE Flip·Flop Associated with OBF). Con­
trolled by bit sel/reset of PCs. 

Input Operations 

STB (Strobe Input) 

STB (Strobe Input). A "low" on this input loads data into 
the input latch. 

IBF (Input Buffer Full F/F). A "high" on this output in­
dicates that data has been loaded into the input latch. 

INTE 2 (The INTE Flip·Flop Associated with IBF)_ Con­
trolled by bit set/reset of PC4. 

6-368 AFN·OO744C 



'NTR 

8255A18255A·5 

CONTROL WORO 

PC,4 
,-INPUT 
O-OUTPUT 

PORTB 
, -INPUT 
O·OUTPUT 

GROUP B MODE 
O-MODEO 
1 "'MODE 1 

Figure 13. MODE Control Word 

/ 

DATA FROM /:I CPU TO_ 

_t
ST

_ 

!---.'NTR. 

OBF. 

ACK,. 

pc. STB. 

!'Co' IBFA 

PC24 I/O 

Figure 14. MODE 2 

----------------~ r--~~----~-------------

'BF 

PER':~RAL _-_-_-__ -_-_-_-__ -_-_-_.....,'-_______ -_..;..tP_H.:..._ .... __ :=~2~~~~--_-:_-~ -----l:.: 
DATA FROM 

PERIPHERAL TO 8255A 

FJgure 15. MODE 2 (Bidirectional) 

I NOTE: Any sequence where WR occurs before ACK and STB occurs before RO is permissible. 
(lNTR = IBF • MASK' STB • AD + OBF • MASK' ACK • WR ) 

6-369 

oAtAFROM _TO _ 

AfN.00744C 



intJ 8255A18255A·5 

MODE 2 AND MODE 0 (INPUT) MODE 2 AND MODE 0 (OUTPUT) 

PC, INTRA PC, INTRA, 

PA-,'PAo M PA-,'PAo ~ 
PC, OSF. oe, OBFA . 

CONTROL WORD PC, -ACKA CONTROL WORD pc. -ACKA. 

07 De Os 04 03 02 01 "O~ ~D.D&D4D3D2D,DO 

1,1" M>®012fl PC, ST". I, I, M>® ° I "]°1 PC, -STBA 

, , 
PC,,4 pc. IBfA pc .. Pc, IBFA 
1 "'INPUT 1· INPUT 
0" OUTPUT O-OUTPUT 

3 3 

PC'4 I/O pc .. -f- I/O 
I RD __ C RD __ C 

....... 
PB,'P" • J PB,.PBo • V -y 

WFi----"-<: WFi-----;:c 

I 

; 

MODE 2 AND MODE 1 (OUTPUT) MODE 2 AND MODE 1 (INPUT) 

PC, INTRA PC, INTRA, 

.. 
~ P~7-PAo K=O PA-,'PAo 

PC, r--------: OBF. oe, , 
OBFA 

CONTROL WORD pc, ACKA 
CONTROL WORD 

Pes -ACKA 

07 0 6 -Os 04 03 02 01 Do ,0., De Os 04 03 02 0, Do 

I' I, NXlXJ.loN PC, ST"A I,I'MXN,I'[><J PC, ST"A 

PC, IBFA PC, IBFA 

PB,·p .. ~ PB7·pBo ~ 
PC, OBFs PC, -iTBs 

l 
-
RD PC, ACKa , RO_ PC, 1BFa 

. , 

WR pc. -INTRa WR_C ..-PC. INTRa 

, 

Figure 16. MODE 114 Combinations 

6~70 AFN-OD744C 



inter 8255A18255A·5 

Mode Definition Summary 

MOOED MODEl MODE 2 
IN OUT IN 

PAD IN OUT IN 
PAl IN OUT IN 
PA2 .IN OUT IN 
PA3 IN OUT IN 
PA4 IN OUT IN 
PA5 IN OUT IN 
PA6 IN OUT IN 
PA7 . IN OUT IN 

PBO IN OUT IN 
PBl IN OUT IN 
PB2 IN OUT IN 
PB3 IN OUT IN 
PB4 IN OUT IN 
PB5 IN OUT IN 
PB6 IN OUT IN 
PB7 IN OUT IN 

PCO IN OUT INTRB 
PCl IN OUT IBFB 
PC2 IN OUT STBB 
PC3 IN OUT INTRA 
PC4 IN OUT .STBA 
PC5 IN OUT IBFA 
PC6 IN OUT I/O 
PC7 IN OUT I/O 

Special Mode Combination Considerations 
There are several combinations of modes when not all of the 
bits in Port C are used for control or status. The remaining 
bits can be used as follows: 

I f Programmed as Inputs -
All input lines can be accessed during a normal Port C 
read. 

If Programmed as Outputs-
Bits in C upper (PCrPC41 must be individually accessed 
using the bit set/reset function. 

Bits in Clower (PC3,PCol can be accessed using the bit 
set/reset function or a"cessed as a threesome by writing 
into Port C. 

S()urce Current Capability on Port B and Port C 

Any set of eight output buffers, selected randomly trom 
Ports Band C can source lmA at 1.5 volts. this feature 
allows the 8255 to directly drive Darlington type drivers 
and high-voltage displays that require such source current. 

Reading Port C Status 
In Mode 0, Port C transfers data to or from the peripheral 
device. When the 8255 is programmed to function in Modes 
1 or 2, Port C generates or .accepts "hand-shaking" signals 
with the peripheral devite. Reading the· contents of Port C 

OUT 
OUT 
OUT 
OUT 
OUT 
OUT 
OUT 
OUT 
OUT 

OUT 
OUT 
OUT 
OUT 
OUT 
OUT 
OUT 
OUT 

INTRB 
OBFB 
ACKB 
INTRA 

I/O 
I/O 

ACKA 
OBFA 

GROUPAONLY ---------------
--
--
--
--
--
--
--

I/O 
I/O 
I/O 

INTRA 
STBA 
IBFA 

ACKA 
OBFA 

MOOED 
OR MODE 1 
ONLY 

allows the programmer to test or verify the "status" of each 
peripheral device and change the program flow accordingly .. 

There is no special instruction to read the status informa­
tion from Port C. A normal read operation of Port C is 
executed to perform this function. 

INPUT CONFIGURA nON 

OUTPUT CONFIGURATION 

Figure 17. MODE 1 Status Word Format 

07 °6 , Os 04 03 02 0 1 Do 

I OBFA I INTE~ I IBFA I INTE, I INTRA IXIXI><I 
L-_ T _~ _"_------I.l....- - ~ 

GROUP A ___ ------- GROUP B 

(DEFINED BY MODE 0 OR MODE 1 SELECTION) 

Figure 18. MODE'2 Status Word Format 

6-371 \AFN-Q0744C 



8255A18255A:5 

APPLICATIONS OF THE 8255A 

The 8255A is a very powerful tool for interfacing 
peripheral equipment JQ the microcomputer system. It 
represents the optimum use of available pins and is flex­
ible enough to interface almostany 110 device without 
the need for additional external logic. 

Each peripheral device in a microcomputer system 
usually has a "service routine" associated with it. The 
routine manages the software interface between the 
device and the CPU. The functional definition of the 
8255A is programmed by the 110 service routine and 
becomes an extension of the system software. By ex­
amining the 110 devices interface characteristics for 
both data transfer and timing, and matching this infor­
mation to the examples and tables in the detailed opera­
tional description, a control word can easily be devel­
oped to initialize the 8255A to exactly "fit"' the applica­
tion. Figures 19 through 25 present a few examples of 
typical applications of the 8255A. 

INTERRUPT 
REQUEST 

MODE 1 
{OUTPUTl 

"'SA 

MODE t 
(OUTPUT) 

INTERRUPT 
REQUEST 

PC, DATA READY 

pe2 ACK 

CONTROL LOGIC AND DRIVERS 

HIGH·SPEED 
PRINTER 

HAMMER 
RELAYS 

Figure 19. Printer Interface 

6-372 

INTERRUPT 
REQU EST I 

PC, 

82SSA 

MODE 1 
flNPUT) 

MODE1 
(OUTPUT) 

PCo 

UPT~ INTERR 
REQUEST 

~~ PA, 

PA, 

I PA3 
I PA4 
I 

PA, 

P,,-

PA, 

PC, 

PC, 

~Bo 
i PB, 

PB, 

I PB, 
I 

PB, 

PB, 
-, 'PB6 

Pa, 

I 
'PC, 

PC, 

PC, 
PC, 

Ro 

R, 

R, FULLY 

R, DECODED 
KEYBOARD 

R, 

R, 

SHIFT 

CONTROL 

STROBE 

ACK 

Bo 

B, 

B, 
BURROUGHS 
SELF-SCAN 

B, DISPLAY 

B, 

B, 

BACKSPACE 

CLEAR 

DATA READY 

ACK 

BLANKING 

CANCEL WORD 

Figure 20. Keyboard and Display Interface 

INTERRUPT 
REa UE.ST-i 

PC, ' 

MODE 1 
tlNPUTj 

8255A 

----

MODE 0 

PAo 
PA, 

PA, 

PA, 

PA, 

PAs 

PA, 

PA, 

PC, 

PC, 

PC, 

i ~C7 
PB, 

PB, 

PB, 

PB, 
-~ 

!INPUT) ' PB4 

PB, 

i ::6 
e , 

R, 

R, 

Ri 

", FULLY 
DECODED 

R, KEYBOARD 

R, 

SHIFT 

CONTROL 

STROBE 

ACKNOWLEDGE 

BUSY LT 

TEST LT 

--..,,-
--..,,--'":-
--~-
--",------0.-:. 

~--'b----; 

i-
i-
i-
I-
I-

i-
i-
i-

TERMINAL 
ADDRESS 

Figure 21. Keyboard and Terminal Address 
Int~rface 

AFN-00144C 



inter 8255A18255A·5 

PA, LSB 

PA, 

PA, 

PA, 

PA, 

MODE 0 PA, r---~ 
(OdTPUT) PA, 12811 

PA, D·A I-CONVERTER 
ANALOG OUTPUT 

PC, (OAC) 

PC, --
'25SA 

PC, 

PC, MSB 

r STB DATA. 

PC, OUTPUT EN 

BIT 
SET/RESET 

PC, SAMPL.E EN 

PC, STB 

PB, LSB 

PB, 8BIT 
AD 

PB, -- CONVERTER - ANALOG INPUT 

MODE 0 PB, 
(ADe) 

(INPUT) PB, 

PB, 

PB, 

PB, MSB 

Figure 22. Digital ~o Analog, Analog to Digital 

INTERRUPT 
REa UEST I 

pc, 

MODE 1 
(OUTPUT} 

8255A 

MODE 0 
(OUTPUT) 

PA" 

PA, 

PA, 

PA, 

PA, 

PA, 

PA, 

PA, 

PC, 

PC, 

PC, 

PC, 

PC, 

PC, 

PC, 

f..'Bo 

PB, 

PB, 
PB, 

PB, 

Po, 

PB, 

PB, 

R, 
R, CRT CONTROLLER 

R, • CHARACTER GEN 

R, • REFRESH BUFFER 

R, • CURSOR CONTROL 

R, 

SHIFT 

CONTROL 

DATA READY 

ACK 

BLANKED 

BLACK/WHITE 

ROWSTB 

COLUMN STB 

CURSOR HN STS 

}'""" .. -~~ ADDRESS 
H.V 

Figure 24. Basic CRT Controller Interface 

INTERRUPT 
REQUE ST t 

PC, PA, 

PA, 

PA, 

PA, 

PA, 

PA, 

MODE 2 PA, 

PA, 

PC, 

PC, 
PC, 
PC, 

825M 
PC, 

PC, 

PC, 

r 
PB, 

PB, 

MODE 0 PBl 
(OUTPUT) PB4 

PB, 

PB, 

PB, 

0, 

0, 

0, 

0, FLOPPY DISK 

0, 
CONTROLLER 

AND DRIVE 
0, 
0, 

0, 

DATA STe 

ACK (IN) 

DATA READY 

ACK (OUT) 

TRACK "0" SENSOR 

SYNC READY 

INDEX 

f;NGAGE HEAD 

FORWARD/REV 

READ ENABLE 

WRITE ENABLE 

'bISC SELECT 

ENABLE CAe 

TEST 

BUSY LT 

Figure 23. Basic Floppy Disk Interface 

REQUEST 
INTERRUPT I 

PC, PA" --Ro 
PA, R, 

PA, -~ R, 8 LEVEL 
PAPER 

PA, R, TAPE 

PA, R, REAOER 

MODE 1 
PA, R, 

(INPUT) 
PA, R, 

PA, R, 

PC, STB 

PC, ACK 
PC, STOP/GO 

8255A MACHINE TOOL 

'fC' 
START/STOP 

MODE 0 PC - LIM1T SENSOR (HIV) ONPUT~ 1 
PC, OUTOF FLUID 

r 
CHANG!: TOOL 

PB, LEFT/RIGHT 

PB, UP/DOWN 

MODE 0 PB3 HOR STEP STROBE 

(OUTPUT) PB4 VERT STEP STROBE 

I PB, SLEW/STEP 

PB, FLUID ENABLE 

PB, 1--- EMERGeNCY STOP 

Figure 25. Machine Tool Controller Interface 

IIFN-Q0744C 



inter 

A~SOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature ... .' .... .' ..... -65°C to +150°C 
Voltage on Any Pin 

, With Respect to Ground ....•....... -0.5V, to +7V 
Pbwer Dissipation .............•.. , ..... : 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only ~nd fuhctional opera­
tion of the device at these or any other conditions above 
those Indicated In the oparational sections of this specifi­
cation Is not Implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
,reliability. ~ , 

D.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = +5V ± 10%, GND = OV) " 

Symbol Parametar Min. Max. Unit Test Conditions 

VIL Input Low Voltage -0.5 O.S V 

VIH Input High Voltage 2.0 Vee V 

VOL (DB) Output Low Voltage (Data Sus) 0.45" V 10L = 2.5mA 

VoLlPER) Output L~w Voltage (Peripheral Port) 0.45" V 10L = 1.7mA 

VOH(OB) Output High Voltage (Data Bus) 2.4 V 10H = -4QO,uA 

VOH(PER) Output High Voltage (Peripheral Port) 2.4 V 10H = -2001lA 

IOARI1] Darlington Drive Current -1.0 -4.0 rnA REXT = 750!l; VeXT= 1.5V 

ICC. Power Supply Current 120 mA 

II~ Input Load Current tl0 iJ.A VIN = Vee to OV 

IOFL Output Float Leakage tl0 ItA VOUT = Vee to .45V 

NOTE: _ / 
'1, 'Available on ani 8 pins from Port Band e. 

CAPACITANCE (TA = 25·C, Vee = GND = OV) 

Symbol. Paramatar Min. Typ. Max. Unit Tast Conditions 

CIN Input Capacitance 10 pF fc = lMHz 

CI/O 1/0 Capacitance 20 pF Unmeasured pins returned to GNO 

A.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = +5V ±10%, GND = OV)" 

Bus Parameters 
READ 

8255A 8255A·5 

Symbol Paramatar 'Min. Max. Min. Max· Unit 

tA~ Address Stable B~fore READ 0 0 ns' 

tR,/\ Address~ Stable After READ 0 0 ns 

tRR REA[}-,Pulse Width 300 300 ns 

tRO Data Valid From READI1] 250 200 ns 

tOF Data Float After READ 10 150 10 100 ns 

tRv '{ime Be,twee!) READs andlor WRITEs 850 " S~: ns 

6-374 AFN-00744C 



inter 8255A18255A·5 

A.C. CHARACTERISTICS (Continued) 
WRITE 

Symbol Parameter 

tAW Address Stable Before WR ITE 

tWA Address Stable After WR ITE 

tww WRITE Pulse Width 

tow Data Valid to WR ITI: (T.E.) 

two Data Valid After WR ITE 

OTHER TIMINGS 

Symbol Parameter 

tWB WR = 1 to Outputl11 

tlR Peripheral Data Before RD 

tHR Peripheral Data After RD 

tAK ACK Pulse Width 

tST STB Pulse Width 

tps Per. Data Before T.E. of STB 

tpH Per. Data After T.E. of STB 

tAD ACK = 0 to Output l11 

tKO ACK = 1 to Output Float 

tWOB WR = 1 to OBF = 0111 

tAOB ACK=.OtoOBF = 1111 

tSIB S'fB = 0 to IBF = 1111 

tRIB . RD=ltoIBF=OI1I 

tRIT RD = .0 to INTR = 011 1 

tSIT STB = 1 to INTR = 1111 

tAIT ACK = 1 to INTR = 1111 

tWIT WR = Oto INTR = 01 1•31 

NOTES: 
1. Test Conditions: CL = 150 pF. 

8255A 

Min. 

0 

20 

400 

100 

30 

8255A 

Min. 

0 

0 

300 

500 

0 

180 

20 

, 

8255A·5 

Max. Min. Max. Unit 

0 ns 

20 ns 

300 ns 

100 ns 

30 ns 

8255A·5 

Max. Min. Max. Unit 

350 350 ns 

0 ns 

0 ns 

·300 ns 

500 ns 

0 ns 

100 ns 

300 300 ns 

250 20 250 ns 

650 650 ns 

350 350 ns 

300 300 ns 

300 300 ns 

400 400 ns 

300 300 ns 

350 350 ns 

450 450 ns 

2. Period of Reset pulse must be at least SOI-'S during or after power on. Subsequent Reset pulse can be 500 ns min. 
3. INTRt may occur as early as WR~ . 
• For Extended Temperature EXPRESS, use M8255A electrical parameters. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 
2.0 2.0 > TEST POINTS <:: 
0.8 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 BV FOR A LOGIC a 

6-375 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
y-----O VEXT' UNDER 

TEST i Co. = lS0pF 

-= . 
*~XT IS SET AT VARIOUS VOLTAGES DURING TESTING TO GUARANTEE THE 
S ECIFICATION CllNCLUDES JIG CAPACITANCE . 

AFN.Q0744C 



8255A18255.A·5 

WAVEFORMS 

MODE 0 (BASIC INPUT) 

. too 

RD ~r --c'--

~IR- -"'0-1 
INPUT 

~tAR- -tRA~\ 

CS. A1. AO 

---------~( ---
too . toF . 

MODE·O (BASIC OUTPUT) 

'wW----~ 

~ r 7 F-

J+---tow 'w~ 

tAW twA 

~.A1,AO 1<..-
OUTPUT 

.1---'wO--

6-376 AFN-00744C 



825.5A18255A·5 

WAVEFORMS (Continued) 

MODE 1 (STROBED INPUT) 

--tST -

INTR 

INPUT FROM 
PERIPHERAL 

, 

---

-'SlB11 

tSlT 

'PS . 

MODE 1 (STROBED OUTPUT) 

INTR 
_twIT_ 

OUTPUT 

\ -} 1--'.'B~l 

i) / 
'I / 

I--'.H-I 
---------------------

'I 

1\ I ~.'AOB=1· 

~{ ~/1 
L/ -,.d-,."-

H-'wB 

{j-377 AFN.()()744C 



8255A182$5A·5 

WAVEFORMS (Continued) 

MODE 2 (BIDIRECTIONAL) 

DATA FROM 
/ 8080 TO 8255 

/ 
/ 

\ I 

INTR-~\\\@-'_\t--~ _~/f4r-' -~-tAK-~I-+~. J~-"---
ACK \ ~/ / 

r-tST~y' ic i,' i 

IBF ________ t_Sl._I·~-f-, .:I~~ .... ~--+--+-i --.... i------L1 
~ltAol_ 

Ir---'-"""""'\I 
PERIPHERAL - - - - _ - - - - - - - - - - -r - - -

8~ I 

/ 
DATA FROM 

PERIPHERAL TO 8255 

DATA FROM 
8255 TO 8080 

~I l..,............t R1B 

NOTE: Any sequence where WR occurs before ACK and STBoccurs before RD IS permissible. 
tlNTR = IBF • MASK' STB • RD + OBF • MASK' ACK • WR ) 

WRITE TIMING READ TIMING 

VAllO ;H1GH IMPEDANCE 

Ao-,.CS=:::>t--:_ tAw----*1 ~:tw~'-~-.--
DATUU. ~; ~ x= 

i.. tow ---1- two ~ 
WR------.jW~, ~-

AO_l.CS==x: _______ ~~\...----
I 

1'* tAR ., ~ l---tRA 

----~~ .. I-.t.RRRR-*'lj~·---
AD :--L-..;f 

~t~ot-- -jtOFI..--

DATA BUS /:;/ ~~ HIGH IMPEDANCE 

l---ftww 

6-378 AFN-D0744C 



intJ 
8256AH 

MULTIFUNCTION UNIVERSAL 
,ASYNCHRONOUS RECEIVER~TRANSMITTER (MUART) 

I ' 

• Programmable Serial Asynchronous 
Communications Interface for 5·,8·,7·, 
or 8·Blt Characters, 1, 11f2, or 2 Stop 
Bits; and Parity Oeneratlon 

• On·Board Baud Rate Generator 
Programmable for 13 Common Baud 
Rates up to 19.2K Bits/second, or an 
Exte...,al Baud Clock Maximum of 1 M 
Bit/second 

• Five 8-Blt Programmable Timer/ 
Counters; Four Can Be Cascaded to 
Two 18-Blt Timer/Counters 

• Two 8·Blt Programmable Parallel I/O 
Ports; Port 1 Can, Be Programmed for 
Port 2 Handshake Controls and Event 
Counter Inputs 

• Eight-Level Priority Interrupt Controller 
Programmable for 8085 or IAPX 86, 
IAPX 88 Systems and for Fully Nested 
Interrupt Capability 

• Programmable System Clock to 1 )( , 
2)( , 3)(, or 5)( 1.024 MHz 

The Intel~ 8256AH Multifunction Universal Asynchronous Receiver-Transmitter (MUART) combines five com­
monly used functions into a single 4O-pin device. It is designed to interface to the 8086188, iAPX 186/188,· 
and 8051 to perform serial communications, parallel I/O, timing, event counting, and priority interruptfunc­
tions. All of these functionS are fully programmable through nine inte,rnal, registers. In addition, the five 
timer/countEtrs and two parallel I/O ports can be accessed directly by the microprocessor. 

ADO-AD4 

91-087 

iii 
iiii 

WI! 
ALE 

RESET 
JIiITl 
INT~--,. __ ...... 

. Figure 1. MUART Block Diagram 

AD1 

ADZ 

P14 

088 P11 
CLK DB7 P1. 

ALE P17 

iiii P20 

Viii 

PM 

RaD 

TaD 

RiC CLK 
TaC IiiC Ciii 

RaD 

GND 

, Figura 2. MUART Pin Configuration 

Intel Corporation Assumes No ResponSibility for the Use of Any Circuitry Other Than Circuitry Entlodled In an Intel Prodtd. No Other CircUit Patent Licenses are Implied 

• INTEL c;oRPORATION. 1983 ORDER NUM8E~~:~~~S:~ 
6~79 



8256AH 

Table 1. Pin Description 

Type 
, 

Symbol Pin Name and Function 
AQO-A:D4 1-5 110 ADDRESSIDATA: ThreHtate addl'ess/data lines wtlich,interface: to the, lower 
DBS-DB7 a.:a . 8 bits of the microprocessor's multiplexed address/data bus. The 5-bit 

address is latched on the falling edge of ALE. In the 8-bit mode, ADO-AD3 
are used to select the proper register, while AD1-AD4 are used in the 16-bit , 
mode. AD4 in the &obit mode Is ignored as an address, while ADO in the 
1 &obit mode is used as a second chip select, .ae,tive low. 

ALE 9 I ADDRESS LATCH ENABLE: Latches the 5 address lines on ADQ-A~ and OS:on the 
falling edge. 

'Air 10 I READ, CONTROL: When this signal is low, the selected [eglster is gated 
'onto the data bus. ' 

WR' 11 I WRITE CONTROL: When this signal is low, the value on the data bus is 
written into the selected register. 

RES~ 12 I I:tI;SET: An active hilt! pulse ,on this pi~ forCes, the chip into its initial' state. 
The chip remains in this state until control information Is written. . , 

e§ 13 I CHIP, SELECT: A low on this signal enables ,the MUART. It ill latched with 
the addrees on the falling edge of ALE. and AD and WR' have no effect 
unless CS was latched low during the ALE cycle. 

fRTA 14 I INTERRUPT ACKNOWLEDGE: If the MUART has been enabled to respond 
,to interrupts. this signal informs the MUART that its interrupt request is being 
acknowledged by the microprocessor. During this acknowledg8rJ1ent the 
MUART puts an ASTn instruction on the data bus for the 8-bit mode or 
a vector for the HI·bit mode. 

INT_ 15 0 INTE"RUPT REQU,EST: A high signals the microprocessor that the MUAAT 
needs service. 

EXTINT 16 I EXTERNAL INTERRUPT: An external, device. can request interrupt service 
through this input. The input is level sensitive' (hilt!), therefore It must be 
held high until an iN'fA occurs or'the interrupt address register is read. 

elK 17 I SYSTEM CLOCK: The reference clock for the baud rate generator and the timers. 

Axe 18 I/O RECEIVE CLOCK: If the baud rate bits in the Command Aegister 2 are all 0, 
this pin is an input which Clocks serial data into the AxD pin on the rising 
edge of AxC. If baud rate bits in Command Register 2 are programmed from 
1-OFH. this pin outputs a square wave whose rising edge indicates when 
the data on RxD is being sampled.' This output remairs high during start: 
stoP. and parity bits. '" 

RxD 19 I RECEIVE DATA: Serial data input. 

GND 20 PS GROUND: Power supply and logic ground reference. 

'/ , . 

6~O 23075g.()()1 



8256AH 

Table 1. Pin Description (continued) 

Symbol Pin Type Name and Function 
CTS 21 I CLEAR TO SEND: Thi~ut enables the serial transmitter. If 1, 1.5, or 2 

stop bits are selected is level sensitive. As ,long as CTS is low, any 
character loaded, into the trans/TIitter buffer register will be transmitter serially. 
A single negative going pulse causes the transmission of a single char~er previously 
loaded into the transmitter buffer register., If a 'baud rate from 1"()FH is 
selected, C'i'§' must be low for at least .1/32 m a bit, or it will be ignored. If 
the transmitter buffer is empty, this pulse will be ignored. If this pulse 
occurs during the transmission of a character up to the time where V2 the first 
(or only) stop bit is sent out, it will be ignored. If it occurs afterwards, but 
before the end of the stop bits, the next character will be transmitted 
immediately following the current one. If C'i'S is still high when the transmitter 
register is sending the last stop bit, the transmitter will enter its idle state 
until the next high-to-Iow transition on ~ oCcurs. If 0.75 stop bits is 
chosen, the C'i'S input is edge sensitive. A negative edge on C'M results in the 
immediate transmission of the next character. The length of the stop bits is 
determined by the time interval between the beginning of the first stop bit and 
the next negative edge on m A high-to-low transition has no effect if the 
transmitter buffer is empty or if the time interval betWeen the beginning of the 
stop bit and next negative edge is less than 0.75 bits. A high or a low level 
or a low-to-high transition has no effect on the transmitter for the 0.75 stop bit mode. 

TxC 22 I/O TRANSMIT CLOCK: If the baud rate bits 'in command register 2 are all set 
to 0, this input clocks data out of the transmitter on the falling edge. If baud 
rate bits are programmed for 1 or 2, this input permits the user to provide a 
32x or 64x clock which is used for the reoeiver and transmittei. If the baud rate 
bils are programmed for 3-OFH, the internal transmitter clock is output. As an 
output it delivers the transmitter clock at the selected bit rate. If 11h or 0.75 
stop bits are seleCted, the transmitter divider will be asynchronously reset at 
the beginning of each start bit, immediately causing a high-to-Iow transition 
on TxC. TxC makes a high-to-Iow transition at the beginning of each serial 
bit, and a low-to-high transition at the center of each bit. 

TxD 23 0 TRANSMIT DATA: Serial data oulput. 

P27-P20 24-31 I/O PARALLEL 110 PORT 2: Eight bit general purpose I/O port. Each nibble (4 bits) 
of this port can, be either an input or an output. The outputs are latched whereas 
the input signals are not. Also, this port can be used as an 8-bit input or output 
port when using the two-wire handshake. In the handshake mode both inputs 
and outputs are latched. , ' 

P17·P10 32-39 I/O PARALLEL 110 PORT 1: Each pin can be programm'ed as an input or an output 
to "perform general purpose I/O. All .outputs are latched whereas inputs are 
not. Alternatively these pins can serve as control pins which extend ,the 
functional spectrum of the Chip. 

Vee 40 PS POWER: +5V power supply. ' 

230759-001 



8256AH 

FUNCTIONAL DESCRIPTION 

The 8256AH Multi-Function Universal Asynchronous 
Receiver-Transmitter (MUART) combines.five com­
monly used functions into a single 40-pin device. The 
MUART per10rms asynchronous serial communica­
tions, parallel I/O, timing, event counting, and inter­
rupt control. For detailed application information, see 
Intel Ap Note #153, Designing with the 8256. 

Serial Communications 

The serial communications portion of the MUART 
contains a full-duplex asynchronous receiver­
transmitter' (UART). A programmable baud rate 
generator is included on the MUART to permit a varIe­
ty of operating speeds without external components. 
The UART can be programmed by the CPO for a 
variety of character sizes, J)&rity generation and detec­
tion, error detection, and start/stop bit handling. The 
receiver checks the start and stop bits In the center 
of the bit,and a break halts the reception of data. The 
transmitter can send breaks and can be controlled 
by an external enable pin. 

Parallel 1/0 

The MUART includes 16 bits of general purpose 
parallel I/O. Eight bits (Port 1) can be individually 
changed from input to output or used for special I/O 
functions. The other eight bits (Port 2) can be used 
as nibbles (4 bits) or as bytes. These eight bits also 
include a handshaking capability using two pins on 
Port 1., 

CounterlTimers 

Tbere are five 8-blt counter/timers on the MUART. 
The timers can be programmed to use, either a 1 kHz 
or 16 kHz clock generated from the system clock. 
Four of the 8-blt counter/timers can be cascaded'to 
two 16-bit counter/timers, and one of the 8-bit 
counter/timers can be reset to its initial value by an 
external signal. 

Interrupts 

An eight-level priority interrupt controller can be con­
figured for fully nested or normal interrupt priority. 
Seven of the eight interrupts service functions on the 
MUART (counter/timers, UART), and one external in­
terrupt is provided which can be used for a particular 
function or for chaining interrupt controllers or more 
MUARTs. The MUARTwili support 8085 and 8086/88 
systems with direct interrupt vectoring, or the MUART 
can be polled to determine the cause of the interrupt. 
If additional interrupt control capability is needed, the 
MUART's interrupt controller can be cascaded into 

another MUART, into an Intel 8259A Programmable 
Interrupt Controller, or into the interrupt controller of 
the iAPX 186/188 High-Integration Microprocessor: 

INITIALIZATION 

In general the MUART's functions are independent 
of each other' and only the registers and bits 
associated with a particular function need to be in­
itialized, not the entire Chip. The command sequence 
is arbitrary since every register is directly addressable; 
however, Command Byte 1 must be loaded first. To 
put the device into a fully operational.condition, it is 
necessary to write the following commands: 

Command byte 1 
Command byte 2 

, Command byte 3 
Mode byte 

Port 1 control 
Set Interrupts ' 

The modification register may be loaded'if required 
for special applications; normally this operation is not 
necessary. The MUART should be reset before in­
itialization. (Either a hardware or a software reset will 
do.) , 

INTERFACING 

This section describes the hardware interface bet­
ween the 8256 MUART and the 80186 
microprocessor. Figure 3 displays the block diagram 
for this interface. The MUART can be interfaced to 
many other microprocessors using these basic 

. principles. ' 

In all cases the 8256 will be connected directly to the 
CPU's multiplexed address/data bus. If latches or 
data bus buffers are used in a system, the MUART 
should be on the microprocessor side of the ad­
dress/data bus. The MUART latches the address in- • 
ternally on the falling edge of ALE. The address con­
sists of Chip Select (CS) and four address lines. For 
8-bit microprocessors, ADO-AD3 are the address lines. 
For 16-bit microprocessors, AD1-AD4 are the address 
lines; ADO is used as a second chip select which is 
active low. Since chip select is internally latched along 
with the address, it does not have to remain active 
during the entire instruction cycle. As long as the chip 
select setup and hold times are met, it can be deriv­
ed from multiplexed address/data lines or multiplex­
ed address/status lines. When the 8256 is in the 16-bit 
mode, AO serves as a second chip select. As a result . 
the MUART's internal registers will all have even ad­
dresses since AO must be zero to select the device: 
Normally the MUART will be placed on the lower data 
byte. If the MUART is placed on the upper data byte. 

6-382 230759-001 



inter 8256AH 

Vee 16 MHz 

n r°'" 
X X RESET 

1 2R6 

RES WR 

J 
INTO 1/ 

INTAO 
ALE 

+-sv- SRDY DT/R I-
~ 

r STB 
DEN I- 8282 

NMI lATCH ADDRESS 
v -r ADo-15 rv ADDR/DATA 

(2) OE 
HOLD 

.f" - f pcso 
80186 

8286 
(16) TRCVR DATA r1 CLOCK II 
~~E(2) v GENERATOR 

'"""" 
. ALE INTA INT WR RD RESET ClK 

(8) ADo-4 
8256 

PORT 1 (8) ... 
°5-7 ~ (8) 
CS CTS TxD RxD TxC RxC EXTINT 

f , -SERIAL 1/0 

Figure 3_ 80186/8256 Interface 

the internal registers will be 512 address locations 
apart and the chip would occupy an 8 K word address 
space. 

DESCRIPTION OF THE REGISTERS 

The following section will provide a description of the 
registers and define the bits within the registers where 
appropriate. Table 2 lists the registers and their 
addresses. 

Command Register 1 

L1 I LO I 51 I 50 IBRKI! BITI. I 8086 I FRO I 

(OR) (OW) 

FRO - Timer Frequency Select 

This bit selects between'two frequencies for the five 
timers. If FRO = 0, the timer input frequency is 16 
kHz (62.5fLS). If FRO = 1, the timer input frequency 
is 1 KHz (1 ms), The selected clock frequency is 

, shared by all the counter/timers enabled for timing; 
thus, all timers must run with the same time base. 

8086 - 8086 Mode Enable 

This bit selects between 8085 mode and 8086/8088 
mode. In 8085 mode (8086 = 0), AO to A3 are used 
to address the internal registers, and an R5Tn instruc­
tion is generated in response to the first INTA. In 
I." 8086 mode (8086 = 1), A1 to A4 are used to ad­
dress the internal registers, and AO is used as an ex­
tra chip select (AO must equal zero to be enabled). 
The response to INTA is for 8086 interrupts where 
the first INTA is ignored, and an interrupt vector (40H 
to 47H'i!..E!aced on the bus in response to the 
second INTA. 

BITI - Interrupt on Bit Change 

This bit selects between one of two interrupt sources 
on Priority Level 1, either Counter/Timer 2 or Port 1 
P17 interrupt. When this bit equals 0, CounterlTimer 
2 will be mapped into Priority Level 1. If BITI equals 
o and Level 1 interrupt is enabled, a transition from 
1 to 0 in CounterlTimer 2 wiU generate an interrupt 
request on Level 1. When BITI equals 1, Port 1 P17 
external edge triggered interrupt source is mapped 
into Priority Level 1. In this case if Level 1 is en­
abled, a low-to-high transition on P17 generates an 
interrupt request on L~vel 1. 

6-383 250759·001 



intJ 8256AH 

Table 2. MUART Registers 

Read Registers 
8085 Mode: AD3 AD2 AD1 ADO 
8086 Mode: AD4 AD3 AD2 AD1 

Write Registers 

L1 1 LO 1 Sl 1 so 1 BRKII BITI1808s1 FROI 0 o 0 0 I II I LO I Sl I ;0 IBRKII BITI IS08S1 FROI 
Command 1 Command 1 

I PENI EP 1 C1 1 CO 1 B31 B2 1 B1 1 BO I 0 o 0 1 I PEN 1 EP I C1 I CO 1 B3 1 B2 1 B1 1 BO 1 
Command 2 Comml!nd2 

1 0 I RxE 1 IAE I NIE I 0 ISBRKITBRKI 0 I 0 o 0 I SET 1 RxE 1 IAE 1 NIE I END ISBR*BR~ RST 1 
Command 3 Command 3 

I T351 T241 T5C I CT31 CT21 P2C21 P2C1 I P2coI 0 
, Mode 

o 1 I T351 T241 T5C I CT31 CT21 P2C21 P2C11 P2coI 
Mode 

I P171 P1s1 P151 P141 P131 P121 P111 P10 I 0 o 0 I P171 P1S1 P15 I P14 I P131 P12 I P11 I P10 I 
Port 1 Control Port 1 Control 

I L7 I LS I L5 I L4 I L3 I L2 III I LO I 0 o 1 I L7 I LS I L5 I L4 I L3 I L2 I II I \,0 I 
Interrupt Enable Set Interrupts 

I 07 I Osl 05 1 04 1 03 I 02 I 01 I DO I 0 o lul~I~IUI~IUlll wi 
Interrupt Address Reset Interrupts 

I 07 I Osl 05 1 04 I 03 1 02 I 01 I 00'1 0 '107 I OS I 05 I 04 I 03 I 02 I 01 I DO I 
Receiver Buffer Transmitter Buffer , 

I 07 I 06 I 05 I 04 I 03 I 02 I 01 I 00 I 1 0 0 0 I 07 I 06 I 05 I 04 I 03 I 02 I 01 I 00 I 
Port 1 Port 1 

[ 07 I OS I ,05 I 04 I 03 I 02 I 01 I DO I 1 0 0 1~1061~1~looloolmlool 
Port 2 Port 2 

Iwl06I~I~looloolmlool o o Iwl06I~I~looloolmlool 
Timer 1 Timer 1 

Iwl06I~I~looloo[mlool 1 o IwIMI~~~looloolmlool 
Timer 2 Timer 2 

Iwl06I~I~looloolmlool 1 o 0 I 07 I 06 I- 05 I' b4 I 03 I 02 I 01 I DO I 
Timer 3 Timer 3 

Iwlool~I~I~I~lm,lool 1 o I 07 I OS I 05 I 04 I 03 I 02 I 01 I-DO I 
Timer 4 Timer 4 

I 07 I 06 I' 05 I 04 I 03 I 02 I 01 I DO I 1 o I 07 1 06 I 05 I 04 I 03 I 02 I 01 I 00 I 
, Timer 5 Timer 5 

liNT I R,t;!F I TaE l TRE I Bo·1 PE I OE I FE I 1 1 I 0 I~S4IRS3IRS2IRS1 IRSolJME losci 
Status Modification 

6.,.384 230759·001 



intJ 8256AH 

SRKI - Break-In Detect Enable 

If this bit equals 0, Port 1 P16 is a general purpose 
1/0 port. When BRKI equals 1, the Break-In Detect 
feature is enabled on Port 1 P16. A Break-In condi­
tion is present on the· transmission line when it is 
forced to the start bit voltage level by the receiving 
station. Port 1 P16 must be connected externally to 
the transmisSion line in order to detect a Break-In. 
A Break-In is polled by the MUART during the 
transmission of the last or only stop bit of a character. 

A Break-In Detect 'is OR-ed with Break Detect in Bit 
3 of the Status Register. The distinction can be made 
through the interrupt controller. If the transmit and 
receive interrupts are enabled, a Break-In will 
generate an interrupt on Level 5, the transmit inter­
rupt, while Break will generate an interrupt on Level 
4, the receive interrupt. 

SO, S1 - Stop Bit Length 

S1 SO Stop Bit Length 

Q 0 1 

0 1 1.5 

1 0 2 

1 1 0.75 

The relationship of the number of stop bits and the 
function of input CTS is discussed in the Pin Descrip­
tion section under "CTS". 

LO, L 1 - Character Length 

L1 LO Character Length 

0 0 8 
0 1 7 

1 0 6 

1 1 5 

Command Register 2 

IPEN I EP I C1 I CO I B3 B2 B1 BO 

(1R) (1W) 

Programming bits O ... 3 with values from 3H to FH 
enables the internal b\iud rate generator as a com­
mon clock source for the transmitter and receiver and 
determines its divider ratio. 

Programming bits O ... 3 with values of 1H or 2H 
el'lables input TxC as a common clock source for the 
transmitter and receiver. The external clock must pro-

vide a frequency of either 32x or 64x the baud rate. 
The data transmission rates range from O. • .32 
Kbaud. 

If bits O ... 3 are set to 0, separate clocks must be 
input to pin RxC for the receiver and pin TxC for the 
transmitter. Thus, different baud rates can be used 
for transmission and reception. In this case, 
prescalers are disabled and the input serial clock fre­
quency must match the baud rate. The input serial 
clock frequency can range from 0 to 1.024 MHz. 

BO, B1, B2, 83 - Baud Rate Select 

These four bits select the bit clock's source, ampl­
ing rate, and serial bit rate for the internal baud rate 
generator. 

Baud Sampling 
B3 B2 B1 BO Rate Rate 

0 0 0 0 TxC, RxC 1 

0 0 0 1 TxC/64 64 

0 0 1 0 TxC/32 32 

0 0 1 1 19200 32 

0 1 0 0 9600 64 

0 1 0 1 4600 64 

0 1 1 0 2400 64 

0 . 1 1 1 1200 64 

1 0 0 0 600 64 

1 0 0 1 300 64 

1 0 1 0 200 64 

1 0 1 1 150 64 

1 1 0 0 110 64 

1 1 0 1 100 64 

1 1 1 0 75 64 

1 1 1 1 50 64 

The following table gives an overview of the function 
of pins TxC and RxC: 

Bits 3 to 
o (Hex.) TxC RxC 

0 Input: 1 x baud Input: 1 x baud 
rate clock for the rate clock for the 
transmitter receiver 

1,2, Input: 32 x or 64 'x Output: receiver bit 
baud rate for trans- clock with a low-to-
mitter and receiver high transition at 

data bit sampling 
i time. Otherwise: 

high level 
3 to F Output: baud rate Output: as above 

clock of the 
transmitter 

6-385 230759-001 



inter 8256AH 

As an output; RxCoutputs a low-ta-high transition at 
sampling time of every-data bit of a character. Thus; 
data can be loaded, e.g., into a shift register exter­
'nally, The ,transition occurs pnly if oata bits of, a 
character are present. It does,not occur for start, pari-
ty, and stQP bits (Rxe = high)., " 

As an output, TxC outputs the internal baud rate clock 
of the transmitter. There will beahigh-to-Iow transi~ 
tion at every beginning of a bit. 

CO, C1 :- System, Clock ~rescaler 
(Bits 4, 5) , 

Bits 4 and 5 define the system clock prescaler.divider 
ratio; The internal operating frequency of 1.024 MHz 
is derived from the system clock. 

C1 CO Divider Ratio , 

0 0 ,5 

0 1 3 

1 0 2 

1 1 1 

EP ~ Even Parity (Bit 6) 

EP = 0: Odd parity 
EP = 1: Even parity 

Clock at Pin 
CLK 

' 5.12 MHz 

3.072 MHz 

2.048 MHz 

' 1.024 MHz 

PEN - Parity Enable (Bit 7) 

Bit 7 enables parity generation and checking. 

PEN = 0: No parity bit 
PEN = 1: Enable parity bit 

The parity bit according to Command Register 2 bit 
'6 (see above) is inserted between the last data bit of 
a character and the first or only stop bit. The parity 
bit is checked during reception. A false parity bit 
generates an error indication in the Status· Register 
and an Interrupt Request on Level 4. 

Command Register 3 

!$ET! RxE IIAE I NIW I END 1 SB.RK I TBRK I, RST 
(?R) . (2W) 

.' , 

Command Register 3 is different from the first two 
registers because it has a bit set/reset capability. 
Writing a byte with Bit 7 high sets any bits which were 
also high. Writing a byte with Bit 7 low resets any bits 
which were high. If any bit 0-6 isjoVv, no change oc~ 

curs to that bit. When 99mmandRegister 3 is read, 
bits 0, 3, and 7 will always be zero. 

RST - Reset 

If RST is set, the following ev,ents occur: 

1. All bits in the Status Register except bits 4 and 5 
are cleared, and bits 4 and 5 are set. 

2. The Interrupt Enable; Interrupt Request, and)n­
terrupt Service Registers are cleared. Pending re­
quests and indications for interrupts in service will 
be cancelled. Interrupt signal INT will go low. 

3. The receiver and transmitter are reset. The 
transmitter goes idle (TxD is high), and the receiver 
enters start bit search mode. 

4. If Port 2 is programmed for handshake mode, IBF 
and OBF are reset high. 

RST doeS not alter ports, data registers or command 
registers, but it halts any operation in progress. RST 
is automatically cleared. 

RST '= 0 has not effect. The reset qperation triggered 
by Command Register 3 is a subset of Ihe hardware 
reset. 

TBRK - Transmit Break 

The transmission data output TxD will be set low as 
soon as the transmission of the previous character 
has been finished. It stays low until TBRK is cleared. 
The state of CTS i~ of no significance for this 
operation. As long as break is active, data transfer 
from the Transmitter Buffer to the Transmitter 
Register will be inhibited. As soon as TBRK is reset, 
the break condition will be deactivated and the 
transmitter will be re-enabled. 

SBRK - Single Character Break 
\ ", ' { 

This causes the transmitter data to be set low for one 
character including start bit, data bits, parity bit, and 
stop bits. SBRK is automatic~IIY c,leared when time 
for the last data bit has passed. It will ,start after the 
character in progress completes, and will delay the 
next data transfer from the Transmitter Buffer to the 
Transmitter Register until TxD refurns to an idle 
(marking) state. If both TBRK and'SBRK are set, 
break will be set as long as TBRK is set, but SBRK 
will be cleared after one character time of break. If 
SBRK is set again, it remains set for another 
ctlaracter. The user can send a definite number of 
break characters in this manner by blearing TBRK 
after setting SBRK tor the last charactertir'r1e. 

230759·001 



intJ 8256AH 

END - End of Interrupt 

If fully nested interrupt mode is selected, this bit reset 
the currently served interrupt level in the Interrupt Ser­
vice Register. This command must occur at the end 
of each interrupt service routine during fuily nested 
interrupt mode. 'END is automatically cleared when 
the Interrupt Service Register (internal) is cleared. 
END is ignored if nested interrupts are not enabled. , . 

NIE - Nested Interrupt Enable 
When NIE equals 1, ttie interrupt controller will 
opera.te in the nested interrupt mode. When NIE 
equals 0, the interrupt controller will op(;lrate in the 
normal interrupt mode. Refer to the "Interrupt con­
troller" section of Ap·153 under "Normal Mode" 
and "Nested Mode" for a detailed description of 
these operations. 

IAE - Interrupt Acknowledge Enable 

This bit enables an automatic response to INTA. The 
particular. response is determined by the 8086 bit in 
Command Register 1. ' 

RxE - Receive Enable 

This bit enables the serial rec'eiver and its associated 
status bits in the status register. If this bit is reset, 
the serial receiver will be disabled and the receive 
status bits will not be updated. 

Note that the de.tection of break characters remains 
enabled while the receiver is disabled; i.e., Status 
Register Bit 3 (BD) will be set while the receiver is 
disabled whenever a break character has been 
recognized at the receive data input RxD. 

SET - Bit Set/Reset 

If this bit is high during a write to Command Register 
3, then any bit marked by a high will set. If this bit 
is low, then any bit marked by a high will be cleared. 

Mode Register 

I T351 T24! TSC ! CT3! CT2! P2C2! P2C1 ! P2CO ! 

(3R) (3W) 

If test mode is selected, the output from the internal 
baud rate generator is placed on bit 4 of Port 1 (pin 
35). 

To achieve this, it is necessary to program bit 4 of . 
Port 1 as an Ol,!tput (Port 1 Control Register Bit P14 
= 1), and to program Command Register 2 bits B3 
- BO with a value ~ 3H. 

P2C2, P2C1, P2CO - Port 2 Control 
Direction 

P2C2 P2C1 P2CO Mode Upper Lower 
0 0 0 Nibble Input Input 

0 0 1 Nibble Input Output 

0 1 0 Nibble Output Input 

0 1 1 Nibble Output Output 
1 0 0 Byte 

Handshake 
Input 

1 0 1 ~e Output 
Han shake 

1 1 0 DO NOT USE 
1 1 1 Test 

NOTE: 
If Port 2 is operating in handshake mode, Interrupt Level 7 
is not available for Timer 5. Instead it is assigned to Port 2 
handshaking. 

CT2, CT3 -Counter/Timer Mode 

Bit 3 and 4 defines the mode of operation of event 
counter/timers 2 and 3 regardless of its use as a single 
unit or as a cascaded one. 

If CT2 or CT3 are high, then counter/timer 2 or 3 
respectively is configured as an event counter on bit 
2 or 3 respectively of Port 1 (pins 37 or 36). The event 
counter de.crements the count by one on each low­
to-high transition of the external input. If CT2 or CT3 
is low, then the respective counter/timer is configured 
as a timer and the Port 1 pins are used for parallel 110. 

T5C - Timer 5 Control 
If T5C is set, then Timer 5 can be preset and started 
by an external signal. Writing to the Timer 5 register 
loads the Timer 5 save register and stops the timer. 
A high-ta-Iow transition on bit 5 of Port 1 (pin 34) loads 
the timer with the saved value and starts the timer. 
The next high-to-Iow transition on pin 34 retriggers 
the timer by reloading it with the initial value and con­
tinues Vming. 

Following a hardware reset, the save register is reset 
to OOH and both clock and trigger inputs are dis­
abled. Transferring an instruction with T5C = 1 
enables the trigger. input; the save register can now 
be loaded with an initial value. The first trigger pulse 
causes the initial val,ue to be loaded from the save 
register and enables the counter to count dowrr'to 
zero. ' 

When the timer reaches zero it issues an interrupt 
request, disables its interrupt level and continues 
counting. A subsequent high-to-Iow transition on pin 
5 resets Timer 5 to its initial value. For another timer 
interrupt, the Timer 5 interrupt enable bit must be set 
again. 

" 6-387 230759-001 



inter 8256AH 

T35, T24 - Cascade Timers 

These two bits cascade Timers 3 and 5 or 2 and 4. 
Timers 2 and 3 are the lower bytes, .While Timers 4 
and 5 are the upper bytes. If T5C is set, then both 
Timers 3 and 5 can be preset and started by an ex­
ternal pulse. 

When a high-to-Iow transition occurs, limer 5 is preset 
to its saved value, Bl,lt Timer 3 is always preset to all 
ones. If either CT2 or CT3 is set, then the correspon­
ding timer pair is a 16·bit event counter. 

A summary of the counter/timer control bits is given 
in Table 3. , 

NOTE: 
Interrupt levels assigned to single counters are partly not oc­
cupied if event countersltimers are cascaded. Level 2 will be 
vacated if event countersltimers 2 and 4 are cascaded. 
Ukewise, Level 7 wUl be vacated if event countersltlmers 3 
and 5 are cascaded. . 
Single event countersltimers generate an interrupt request 
on the transition from 01H to OOH, while·cascaded ones 
generate it on the transition from 0001 H to QOOOH. 

Port 1. Control Regl$t~r 

I P171 P161 P15, I P141 P131.P12 I' P11 P10 

(4W) (4W) 

Each bit in the Port 1 Control Register configures the 
direction of the corresponding pin. If the bit i!iS high, 
the pin is ari output, and if it low the pin is an input. 
Every Port 1 pin has another function which is con­
trolled by other registers. Jf that special function: i. 
disabled, the pin functions as a general 110 pin ,as 
specified by tl)is register. The speeial functions for 
each pin are described below. . 

Port to, 11 - Handshake Control 

If byte handshake control is enabled for ~rt 2 by 
t1!!...Mode Register, then Port 10 is programmed as 
STB/ACK handshake.£Qntroi input, and Port 11 is 
programmed as IBF/OBF handshake control output. 

If ~e:andShake mode is enabled for output on Port 
2 iIJdicates that a character has been loaded 

Table 3. Event CountersITlmers Mode of Operation 

Event Counter/ Programming 
Timer Function (Mode Word) Clock Source 

1 8-bit timer - Internal clock 

2 8-bit timer' T24=O, CT2=O Intefl;lal clock . 

8-bit event counter T24=O, CT2=1 P12 pin 37 

2 8-bit timer T35=O, CT3=0 Internal clock 

B-bit event counter T35=O, CT3= 1 P13 pin 36 
4 B-bit timer T24=O Internal clock 

8-bit timer, T35=O, T5C=0 Internal clock 

5- normal mode 

8-bit timer, T35=O, T5C=1 Intemal.clock 
retrigger.able mode 

2 and 4 16-bit timer T24=1, CT2=0 Internal clock J 

cascaded 16-bit event counter T24=1, CT2=1 P12 pin 37 

16-bit timer, T35=1, T5C=O, Internal clock 
normal. mode CT3=0 

3 and 5 16-bit event counter, T35=1, T5C=O, 
. 

P13 pin 36 
cascaded normal mode CT3=1 

16-bit timer, T35=1, T5C=~, Internal clock 
,retriggerable mode CT3=0 

16-bit event counter, T35=1, T5C=1, . P:13 pin 36 
retriggerable mode CT3=1 ) 

6-388 230759-001 



inter 8256AH 

into the Port' 2 output buffer. When an external 
device reads the data, it acknowledges this opera­
tion by driving ACK low. OBF is set low by writing to 
Port 2 and is reset by ACK. 

If b.lillthandshake mode is enabled for input on Port 
2, STB is an input. IBF is driven low after STB goes 
low. On the rising edge of STB the data from Port 2 
is latched. 

IBF is reset high when Port 2 is read. 

Port 12, 13 - Counter 2, 3 Input 

If Timer 2 or Timer 3 is programmed as an event 
counter by the Mode Register, then Port 12 or Port 
13 is the counter input for Event Counter 2 or 3, 
respectively. ' 

Port 14 - Baud ~at(! Generator Output 
Clock 

If test modEl is enabled by the Mode Register and 
Command Register 2 baud rate select is greater than 
2, then Port 14 is an output from the internal baud 
rate generator. 

P14 in Port 1 control register must be set to 1 for the 
baud rate generator clock to be output. The baud rate 
generator clock is 64 x the serial bit rate except at 
19.2Kbps when it is 32 x the bit rate. 

Port 15 -Timer 5 Trigger 

If TSC is set in the Mode Register enabling a retrig­
ger/ilble timer, then Port 1S is the input which starts 
and reloa~s Timer S. 

A high-to-Iow transition on P1S (Pin 34) loads the timer 
with the saye register and starts the timer. 

Port 16 - Break-In Detect 

If Break-In Oetect is enabled by BRKI in Command 
Register 1, then this input is used to sense a Break­
In. If Port 16,is low while the serial transmitter is sen­
ding the last stop bit, then a Break-In condition is 

, signaled., 

Port· 17 - Port Interrupt Source 

If BITI in Command Register 1 is set, then a low-to­
high tran$i,tion on Port 17 generates an.interrupt re­
quest on PrioTity lElvel 1. 

Port 17 is edge triggered. 

Interrupt Enable Reglater 

1 L7 1 L6 1 LS 1 L4 L3 I L2 L1 LO 

(SR) (5W=enable, 
(6W = disable) 

Interrupts are enabled py writing to the Set Interrupts 
Register (SW). Interrupts are disabled by writing to 
the Reset Interrupts Register (6W). Each bit set by 
the Set Interrupts Register (5W) will enable that level 
interrupt, and each bit set in the Reset Interrupts 
Register (6W) will disable that level interrupt. The user 
can determine which interrupts are enabled by 
reading the Interrupt enable Register (SR). 

Priority Source 
Highest LO Timer 1 

L 1 Timer 2 or Port Interrupt 
L2 External Interrupt (EXTINT) 
L3 Timer 3 or Timers 3 & S 
L4 Receiver Interrupt 
LS Transmitter Interrupt 
L6 Timer 4 or Timers 2 & 4 

Lowest L7 Timer S or Port 2 Handshaking 

Interrupt Address Register 

(6R) 

o 0 
Interrupt Level 
Indication 

Reading the interrupt address register transfers an 
identifier for the currently requested interrupt level 
on the system data bus. This identifier is the number 
of the interrupt level multiplied by 4. It can be used 
by the CPU as an offset address for interrupt handl­
ing. Reading the interrupt address register has the 
same effect as a hardware interrupt acknowledge 
INTA; it clears the interrupt request pin (INT) and 
indicates an interrupt acknowledgement to the inter­
rupt controller. ' 

Receiver and Transmitter Buffer 

1 07 1 06 1 OS 1 04 1 03 1 02 01 00 ·1 
(7R) (7W) 

Both the receiver and t'ransmitter in the MUART ~re 
double buffered. This means that the transmitter and 
receiver have a shift register and a buffenegister. 
The buffer registers' are ~i~ectly addressable by 
reading or writing to register seven. After the. receiver 
buffer is full, the RBF bit in the status register is $.et. 

6-389 23075~1 



8256AH 

Reading the receive bl.!ffer clears ·the RBF statl!s bit. 
The transmit buffer should be written to only if the 
TBE bit in the status register is set. Bytes written to 
the transmit buffer are held there until the transmit' 
shift registec is empty, assuming eTS is low. If the 
transmit buffer and ,shift register are empty, writing 
to the transmit buffer immediately transfers the byte 
to the transmit shift register. If a serial character 
length is less than S btts: the unu$ed most significant 
bits are set to zero when reading the receive buffer, 
and are ignored when writing to the transmit buffer; 

Port 1 

I 07 I 06 I 05 I 04 03 02 01 00 
(SR) (SW) 

Writing'to Port) sets the data in the Port 1 output 
latch. Writing to an input pin does not affect the pin, 
but the data is stored and will be output if the direc­
tion of the pin is changed later. If the pin is used as 
a control signal, the pin will notbe affected, but the 
data is stored. Reading Port 1 transfers the data in 
Port 1 onto the data bus. 

Port 2 

I 07 I 06 I 05 1 04 ·1 03 DO 
(9R) (9W) 

Writing to Port 2 sets the data in th~ Pan 2 output 
latCh. Writing to an input p,n does not affect the pin, 
but.it does store ~he ~ata in the lat<::h. Reading Port 
2 puts the input pins onto the bus or the contents of 
the output latch for outP!Jt pins. . 

Timer 1·5 

I 07 I 06 I ·05 1 04 1 '03 ·1 02 01 001 

'. 
Reading Timer N puts the contents of the timer onto 
the data biJ~. Ifthe counter changes while RO is low, 
the value on the data bus will not change. If two timers 
are cascaded, reading the high-order byte will cause 
the low-orc!er byte to be latched. Reading the low­
order byte will unlatch them both. Writing to either 
timer or decascading them also clears the latch con­
dition:. Writing ttl a timer !lets the starting value of that 
timer: If two timers are cascaded, writing to the high­
order byte presets the low-order byte t«;l all o"'es. 

, Loading only the high-order byte with a'value of X 

leads to· a count of X. *256 + 255. Timers count 
down ·continuously, If the interrupt is enabled, it 
occurs when the counter changes._from 1 to. O. 

The timer/counter interrupts are automatically disabl­
ed when the interrupt request is generated. 

Status Register 

liNT I RBF I TBE I TRE I BO I PE OE FE 

(OF16R) 

Reading the statiJs register gates its contents onto 
the data bus. It holds the operational status of the 
serial interface as well as the status of the interrupt 
pin INT. The s~atus register can be read at any time. 
The flligs are stable arid well defined at all instants. 

FE - Framing Error ,Transmission 
Mode' , 

Bit 0 can be used in two modes. Normally, FE in­
dicates framing error which can be changed to 
transmission mod,e indication by setting the TME bit 
in the modification register. 

If transmission mode is disabled (in Modification 
Register), then FE indicates a framing error. A fram­
ing error is detected during the first stop bit. The er­
ror is reset by reading the Status Register or by a' chip 
reset. A framing error does not inhibit the loading of 
the Receiver Buffer. If RxO remains low, the receiver 
will assemble· the next character. The false stop bit 
is treated as the next start bit, and no high-to-Iow tran­
sition on RxO is required to synchronize the receiver. 

When the TME bit in the Modification Registefis set, 
FE is used to indicate that the transmitter was active 
during the reception of a character, thus indicating 
that the character received was transmitted by its own 
transmitter. FE Is reset' when the transmitter is not 
active during the recepti,on of character. Reading the 
status register wiU not reset the FE bit in the transmis­
sian mode. 

OE - Overrun Error 
If the user does nilt read the character in the Receiver' 
Buffer before the next character is received and' 
tranSferred to' this register, then the OE bit.is set. The 
OE flag is set during the' reception of the,first stop 
bit and is cleared when the Status"Register is read 
or when a hardware or software reset occurs. The first 
character received in this caSe will be lost. 

6"390 230759-001 



intJ 8256AH 

PE - Parity Error 

This bit indicates that a parity error has occurred dur­
ing the reception of a character. A parity error is pre~ 
sent if value of the parity bit in the received character 
is different from the one expected according to com­
mand word 2 bits 6 EP. The parity bit is expected and 
checked only if it is enabled by command word 2 bit 
7 PEN. 

A parity error is set during the first stop bit and is reset 
by reading the Status Register or by a chip reset. 

BD - Break/Break-In 
The BD bit flags whether a break character has been 
received, or a Break-In condition exists on the 
transmission line. Command Register 1 Bit 3 (BRKI) 
enables the Break-In Detect function. 

Whenever a break character has been received, 
Status Register Bit 3 will be set and in addition an 
interrupt request on Level 4 is generated. The receiver 
will be idled. It will be started again with the next high­
to-low transition at pin RxD. 

The break character received will not be loaded into 
the receiver buffer register. 

If Break-In Detection is enabled and a Break-In con­
dition occurs, Status Register Bit 3 will be set and 
in addition an interrupt request on Level 5 is 
generated. 

The BD status bit will be reset on reading the status 
register or on a hardware or software reset. For 
more information on BreakIBreak"ln, refer to the 
"Serial Asynchronous Communication" section of 
AP-153 under "Receive Break Detect" and "Break­
In Detect." ' 

TRE - Transmit Register Empty 
When TRE is set the transmit register is empty and 
an interrupt request is generated on Level 5 if en­
abled. When TRE equals 0 the transmit register is 
in the process of sending data. TRE is set by a chip 
reset and when the last stop bit has left the transmit­
ter. It is reset when a character is loaded into the 
Transmitter Register. if CTS is low, the Transmitter 
Register wil!J2e loaded during the transmission of the 
start bit. If CTS is high at the end of a character, TRE 
will remain high and no character will be loaded into 
the Transmitter Register until CTS goes low. If the 
transmitter was inactive before a character is load­
ed into the Transmitter Buffer, the Transmitter 
Register will be empty temporarily while the buffer 
is full. However, the tlata in the buffer will be transfer­
red to the transmitter register immediately and TRE 
will be cleared while TBE is set. 

TBE' - Transmitter Buffer Empty 

TBE indicates the Transmitter Buffer is empty and 
is ready to accept a character. TBE is set by a chip 
reset or the transfer of data to the Transmitter 
Register, and is cleared when a character is written 
to the transmitter buffer. When TBE is set, an inter­
rupt requ,est is generated on Level 5 if enabled. 

RBF - Receiver Buffer Full 

RBF is set when the Receiver Buffer has been load­
ed with a new character during the sampling of the 
first stop bit. RBF is cleared by reading the receiver 
buffer or by a chip reset. 

INT - Interrupt Pending 

The INT bit reflects the state of the INT Pin (Pin 15) 
and indicates an interrupt is pending. It is reset by 
INTA or by reading the Interrupt Address Register if 
only one interrupt is pending and by a chip reset. 

FE, OE, PE, RBF, and Break Detect all generate a 
Level 4 interrupt when the receiver samples the first 
stop bit. TRE, TBE, and Break-In Detect generate a 
Level 5 interrupt. TRE generates an interrupt when 
TBE is set and the Transmitter Register finished 
transmitting. The Break-In Detect interrupt is issued 
at the same time as TBE or TRE. ' 

Modification Register 

o IRS41 Rssl RS21 ~S1 I RSO I TME I DSC I 
(OF1sW) 

DSC - Disable Start Bit Check 

DSC disables the receiver's start bit check. In this 
state the receiver will not be reset if R~D is not low 
at the center of the start bit. ' 

TME - Transmission Mode Enable' 

TME enables transmissiOn mode and disables fram­
ing error detection. For information on transmission 
mode see the description of the framing error bit in . 
the Status Register. . 

RSO, RS1, RS2, RS3, RS4 - Receiver 
Sample Time 

The number in RSn alters when the receiver samples 
RxD. The receiver sample time can be modified only 
if the receiver is not clocked by RxC. 

6-391 23075&-001 



inter 8256AH 

NOTE: . 
The modification reg'ister cannot be read. Reading from ad­
dress OFH, 8086: 1 EH gates the contents of the status 
register onto the data bus., . , 

A hardware reset (reset, Pin 12) resets all modifica­
tionregister-bits to 0, i.e.: ' 
• The start bit check is enabled. 
• Status Register Bit 0 (FE) indicates framing error. 
~ The sampling time of,the serial receiver is the bit 

center. 

A software reset (Command Word 3, RST) does not' 
affect the modification register. ' 

Hardware Reset 

A reset signal on pin RESET (HIGH level) forces the 
device 8256 into a well-defined initial state. This state 
is characterized as follows: 

1. Command registers 1, 2 and 3, mode register, Port 
, J control register, and modification register are 

reset. Thus, all bits of the parallel interface are set 
to be inputs and event counters/timers are con­
figured as independent 8-bit timers. 

2. Status regist~r bits are reset with the exception of 
bits 4 and 5. Bits 4 and 5 are set indic~ting tha,t 
both transmitter register and transmitter buffer, 
register are empty. 

3. The interrupt maSk, interrupt request, and inter­
, rupt service register bits are reset and disable all 

requests. As a consequence, interrupt signallNT 
IS INACTIVE (LOW). 

4. The transmit data output is set to the marking state 
(HIGH) and the receiver section is disabled until 
it i~ enabled by Command R~gister 3 Bit 6. 

5. The start bit will be checked at sampling time. The 
receiver wm'return'to start bit search mode if in~ 

'pul RxD is not LOW at this time. 
-

6. St"tu~ Register ~it 0 implies framing error. 

7. The receiver samples input RxD at bit center. 

\ 

Reset has no effect on the c,ontents of; receiver bl,l,­
fer register, transmitter buffer register, the in­
termediate latches of parallel ports, and event 
coun!ers/timers, respectively. 

RS4 RS3 RS2 RS1 RSO Point of time between 
start of bit and end of 
bit measured in steps 
of 1 J:f2 bit length 

0 1 ' 1 1 1 1 (Start of Bit) 
0 1 1 1 0, 2 
0 1 1 0 1 3 
0 1 1 0 0 4' 
0 1 0 1 1 5 
0 1 0 1 0 6 
0 1 0 0 1 7 
0 1 0 0 0 8 
0 0 1 1 1 9 
0 0' 1 1 0 10 

'0 0 1 0 1 11 
0 0 1 0 0 12 
0 0 0 1 1 13 
0 0 0 1 0 14 
0 0 0 0 1 15 
0 0 0 0 0 16 (Bit center) 
1 1 1 1 1 17 
1 1 1 1 0 18 . 
1 1 1 0 1 19 
1 l' 1 0 0 20 
1 1 0 1 1 21 

,1 1 0 1 0 22 
1 ' 1 0 0 1 23 
1 1 0 0 0 24 
1 ,0 1 1 1 25 
1 0 1 1 0 26 . ' 
1 0 1 0, '1 27 
1 0 1 0, 0 28 
1 0 0 1 1 29 
1 0 0 1 0 30 
1 0 0 0 1 31 
1 0 0 0' 0 32 (End of Bit) 

/' 

6-392 230759-001 



8256AH 

ABSO'LUTE MAXIMUM RATINGS * 

Ambient Temperature Under Bias OOC to 70°C 
Storage Temperature -65°C to -150°C 
Voltage On Any Pin 

With Respect to ground -0.5V to -7V 
Power Dissication 1 Watt 

"NOTICE: Stresses above those listed under. "Ab­
solute Maximum Ratings" may cause permanent 
damage to the device. This is a stress rating only and 
functional operation of the device at these or any other 
conditions abov~ those indicated in the operational 
sections of this specification is not implied. Exposure 
to absolute maximum rating conditions for extended 
periods may affect device reliability. 

D.C. CHARACTERISTICS (TA- ooe to 700 e. Vee= +5.0V ± 10%) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee+ 0.5 V 

VOL Output Low Voltage 0.45 V IOL= 2.5 mA 

VOH Output High Voltage 2.4 V IoH= -400 ,IAA 

ilL Input Leakage 10 ~ VIN= Vee 
-10 VIN= OV 

ILO Output Leakage 
. 10 

~ VOUT= Vee 
-10 VOUT= O.45V 

lee Vee SUPJ: y Current 160 mA 

CAPACITANCE 

Symbol Parameter lin. Max. Unite Teet COndhions 

QN Input Capacitance 10 pF fc= 1 MHz 

ClIO 1/0 Capacitance 20 pF Unmeasured pins 
returned to Vss 

,6-393 230759-001 



intJ 825($AH 

A.C. CHARACT~RISTICS. 
BUS PARAMETI;RS 

, (T A = oDe to 700C, V cc ~: + 5.0V:. ± ) 0%, GND ::= OV) , 

" 8256AH 
Symbol ' , Parameter Units . ' . Min . Max. 

tLL ALE Pulse Wldtn . 
.. 

70 ns 

tCSL CS to ALE Setup Time 0 ns 

tAL Address to ALE Setup Time 20 ns 

tLA Address Hold Time After ALE 30 ns 

tLC ALE to RDJ\Wt 20 ns 

tCC RD, WR, INTA Pulse Width 200 ns 

tRD Data Valid from RD (1) 150 ns 

tDF Data Float After RD (2) 
, " 

70 ns 

tOW Data Valid to WR 200 ns 

tWO Data Valid After WR '. 50 ns 

tCL RD/.WR Control to Latch Enable 25 ns 

tLDR · ALE to Data Valid 
.. 

180 ns 

tRST Reset Pulse Width 500 ns 

tRV Recovery Time Between RDIWR 500 ns 

TIMER/COUNTER PARAMETERS 

tCPI Counter Input Cycle Time (P12, P13) 2.2 lAs 

tCPWH Counter Input Pulse Width High 1.1 lAS 
tCPWL Counter Input Pulse Width Low 1.1 /AS 
tTPI . Counter Inpl,ltt to INn at Terminal Count 2.5 /AS 
tTIH · LOAD Pulse High Time Counter 5 1.1 lAs: 
tTIL LOAD P41se Low Time Counter "5 1.1 lAS 
tPP Counter 5' Load Before Next' Clock Pulse on P13 1.1 lAs 

,tCR · External Count Clockt. to RD. to Ensure Clock is '"2.2 lAS 
Reflected in Count 

tRC Frnt to External Count Clockt to Ensure Clock 0 ns 
is not Reflected in Count 

tCW External Count Clockt ro WRt to Ensure Count 2.2 . lAS 
Written is Not Decremented 

tWC WAt to External Count Clock to Ensure Count 0 ns 
Written is Decremented 

INTERRUPT PARAMETERS 

tDEX EXTINn to ·INTt 200 ns 

tDPI Interrupt request on P17t to INn 2tCY , +500 ns 

tPI Pulse Width of Interrupt Request on P17 tCY+ 
100 ns 

tHEA INTAt or ROt to EXTINTt 30 ns 

tHIA INTAt or ROt to INn 300 ns 

6-394' 23075~·OOl 



8256AH 

A.C. CHARACTERISTICS (continued) 
SERIAL INTERFAcE AND CLOCK,PARAMETERS 

Symbol Parameter 
" 

tCY Clock Period 

tCLKH Clock High Pulse Width 

tCLKL Clock Low Pulse Width 

tR Clock Rise Time 

tF Clock Fall Time 

tSCY Serial Clock Period (4) 

tSPD Serial Clock High (4) 

tSPW Serial Clock Low (4) 

tSTD Internal Status Update Delay From Center of 
Stop Bit (5) 

tDTX TxC to TxD Data Valid 

tlRBF INT Delay From Center of First Stop Bit 

tlTBE INT Delay From Falling Edge of Transmit Clock at 
end of Start Bit 

tCTS Pulse Width for Single Character Transmission 

PARALLEL I/O PORT PARAMETERS • 

tWP WR t to P1/P2 Data Valid 

tPR P1/P2 Data Stable, Before RD + (7) 

tRP P1/P2 Data Hold Time 

tAK ACK Pulse Width 

tST Strobe Pulse Width 

tPS Data Setup to STB t 
tPH Data Hold After S'l'Bt 
tWOB WR t to qBF t 
tAOB AKC + OBF. 

tSIB' STB + to IBF + 
tRI RD t to IBF t 
tSIT STB t to INT t 

tAil ACK t to INT t 

tAED OBF. to ACK + Delay 

NOTES: , 

8256AH 

Min. Max. 
Units 

195 10,000 ns 

65 ns 

65 ns 

30 ,j.IS 

30 ns 

975 ns 

350 ns 

350 ns 

300 ns 

300 ns 

2tCY ns 
+500 

2tCY ns 
+500 

(6) 

, 0 ns 

300 ns 

50 ns , 

150 ns 

tSIB ns , 
50 ns 

50 ns 

250 ns 

250 ns 

250 ns 
" 

250 ns 

2tCY ns 
+500 

2tCY ns 
+500 

0 ns 

1. CL = pF all outputs. 
2. Measured from,logic "one" or "zero" 

5. The center of the Stop' Bit will be the receiver 
sample"time, as programmed by the modification register. 

to 1.5" at CL = 150 pF. " 
,3. P12, P13 are external clock inputs, , 
4. Note that Rxe may be used as an input only 

in 1X mode, otherwise it will be an output. 

6. 1/16th bit length for 32X, 64X; 100 ns for 1X. 
7. To ensure tRO spec is met. 

6-395 230759-001 



inter 
WAVEFORMS 
A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT U=>e )C 2.0' 2.0 , 
, TEST POINTS , 

0.45 0.8 0.8 

NOTES:, , 
A.C. testing: inputs are driven at 2.4V for a logic "1" and 
O.45V for a logic "0". timing measurements are made at 2.0V 
for a logic "1" and O.BV for a logic "0". 

SYSTEM CLOCK 

ClK 

. WRITE CYCLE ' 

READ CYCLE 

6~96 

A.C: tEsnNG LOAD aRCUIT 

DEVICE 

~ ',.'"'' 
'UNDER 

TEST 

NOTES: 
Cl - 150 pF 
Cl includes jig capacitance 

DATA 

230759001 



inter 8256AH 

WAVEFORMS (Continued) 

PARALLEL PORT HANDSHAKING - INPUT MODE 

P 20-27 

P 
, " 
(IBF) 

INT 

II 

11 

., 

:~:7 :::::::::::::::::::::11:X __ ...Jr.:X ~:~:; >-
PARALLEL PORT HANDSHAKING - OUTPUT MODE 

DB~7:X ~m X 
Af1.3 :: ::X-__ >--

~-------~!----~I.!---------------

P" 

(OBF) 

(ACK) 

INT 

WOR RD 

_ _______ .;".'WP~ 
OUTPUT -

_____ X~ATA VALID 

P 20-27 

II 

fl 

6-397 230759·001 



COUNT PULSE TIMINGS 

P12 - P13 
(COUNTER INPUT) 

INT 

8256AH 

LOADING TIMER (OR CASCADED COUNTER/TIMER 3 AND 5) 

P13 
(COUNTER INPUT) 

P15 
(COUNTER INPUT) 

f4-----tTIL-----..I 

INT 

ZERO COUNT 

TRIGGER PULSE FOR TIMER 5 (CASCADED EVENT COUNTER/TIMER 3 AND 5) 

I P15 
(TRIGGER INPUT) 

COUNTER TIMER TIMlt-iG 

EXTERNAL CLOCK 
(P12, P13) 

-
OUTPUT FROM PORT 1 AND PORT 2 

twe 

DB 
0-7 

A 
0-3 

___ -~-'x DATA VALID X ________ _ 
• 

WR 

OUTPUT 

P10-17, P20-27 

" .... ---- if :..-1 
. r~ ... xt_~::::::::::::--------.:: 

·6-398 230759-001 



8256AH 

\ 

INPUT FROM .PORT 1 AND PORT 2 

INPUT >t 1< P10-17, P20-27 ______ _ ____ _ 

DB 
0-7 

AD-3 

INTERRUPT TIMING 

EXTINT 

INT 

INTA OR Ro 

DB 
0-7 

A 
0-3 

-' --:;::,'~q }-----\.p-
_____________ x DATA VALID )>-------

__________ --.Jx DATA )>----

CTS FOR SINGLE cHARACTER TRANSMISSION 

RESET TIMING 

RESET 

.EXTERNAL BAUD RATE CLOCK FOR SERIAL INTERFACE 

TxC 
(64 X AND 32 
BAUD RATE INPUT 

6-399 230759-001 



\ ' 

inter 8256AH 

TRANSMITTER AND RECEIVER CLOCK FROM INTERNAL CLOCK SOURCE 

f4--1/2 tCCY 
,I 1/2 tCCY ......... 
I 

TiC,RiC "\1.- .;r '\ 
(OUTPUT) 

tCCY= 1/BAUD RATE~ 

TRANSMISSION OF CHARACTERS ON SERIAL INTERFACE 

STATUS 
REGISTER 
BIT 5 (TBE) 

STATUS 
REGISTER 
BIT 4 (TRE) 

INT 
(LEVEL 5) 

TxD 

NOTES: 
1. Load transmitter buffer register. 
2. Transmitter buffer register is empty: 
3. Transmitter register is empty. . . 
4. Character format for this example: 7 Data Bits with Parity Bit and 2'Stop Bits. 
5. Loading of transmitter buffer register must be complete before CTS goes low. 
6. Interrupt due to transmitter buffer register empty. . 
7. Interrupt due to transmitter register empty. 

No Status bits are altered when RD is active. 

DATA BIT OU1PUT ON SERIAL INTERFACE 

TxC 
(1 x BAUD RATE INPUT) 

TxC 
(64 x BAUD RATE INPUT) 

TxC 
(32 x BAUD RATE INPUT) 

TxD 

I .... -----DATA BlT----~-.j 

6-400 230759-001 



8256AH 

CONTINUOUS RECEPTION OF CHARACTERS ON SERIAL INTERFACE WITHOUT ERROR CONDITION 

CHARACTER CHARACTER 'CHARACTER CHARACTER CHARACTER 

RxD 1) 

WR 2) 

COMMAND 
REGISTER 
BIT 6 (RxE) 

STATUS 
REGISTER 
BIT 6 (RBF) 

INT 
(LEVEL 4) 

4) RECEIVER ENABLE 

CHARACTER CHARACTER 

RECEIVER DISABLE 

CHARACTER 

NOTES: 
. 1. Character format for this example: 6 data bits with parity bit and one stop bit 

2. Set or reset bit 6 of command register 3 (enable receiver). 
3. Receiver buffer located. 
4. Read receiver buffer register. 

ERROR CONDITIONS DURING RECEPTION OF CHARACTERS ON THE SERIAL INTERFACE 

RxD 1) 

STATUS 
REGISTER 2) 
BIT 6 (RBF) 

INT 
(LEVEL 4) 

STATUS 3) 

CHARACTER CHARACTER 

REGISTER ------++-----' 
BIT 1 (OE) 

CHARACTER CHARACTER CHARACTER 

STATUS 
REGISTER 
BIT 0 (FE) FRAMING ERROR 

NOTES: . 
1. Character format for this example: 6 data bits without parity and one stop bit 
2. Receiver buffer register loaded. 
3. Overrun error. 
4. Framing error. 
5. Interrupt from receiver buffer register loading. 
6. Interrupt from overrun errOL 
7. Interrupt from framing error and loading receiver buffer register. 

No status bits are altered when AD is active. 

6-401 230759-001 



, . ·8279/8279·5 
. PR,OGRANI.MABLE KEYBOARD/DISPL.AY INTERFACE 

, ':'. ~'. " 

,. Simultaneous 'KeYboard Display 
Operations 

• Scanned Keyboard Mode 

• Scanned Sensor Mode 

• Strobed Input Entry Mode 

• a-Character Keyboard FIFO 

• 2-Key Lockout or N-Key Rollover with 
Contact Debounce 

• Dual 8-or 16·Numerlcal Display 

• Slrigle16.Character Display 

, • Right or Left Entry 16-Byte, Display 
RAM . 

.• 'Mode Programmable from CPU 

.• Programmable Scan Timing 

• Interrupt Output on Key Entry 

• Available in EXPRESS 
-Standard Tempera.ure Range 
-Extended 'n!mperature Range 

'1he Intel" 827g.ls a gene~al purpose programmable keyboard and display I/O interface device designed for use with 
Intel" microprocessors. The keyboard portion can provide a scanned Interface to a 64-contact key matrix. The 
keyboard portion will also Interface to an array of senso~s or a strobed interface keyboard, such as the hall effect and 
ferrite variety. Key depressions can be 2-key lockout or N-key·'rollover. Keyboa'rd entries are debounced and strobed in 
an 8-character FIFO. If more than 8 characters are entered, overrun status is :tiel. Key entries set.the interrupt output 
line to the CPU. 

The display portion provides a scanned display interface for LED, Incandescent, and other popular display 
technologies. Both numeric and alphanumeric segment displays may be used as well as simple Indicators. The 8279. 
has 16)(8 display RAM which can be organized Into dual 16X4. The RAM can be loaded or interrogated by the CPU. Both 
right entry, calculator,and left entry typewriter display formats are possible. ,aQth 'read and write of the display RAM 
.can be done. witl1: fu.to-il1crement of the display RAM address,. . " , ' 

CPU 
INTERFACE 

--'---lIRa 

SH .. TI--- - KE~ DATA 

---'I RD 

SL03 SCAN 
t----v" 

---~IAo 

OUT Ao3 l-- RESET t----v" 

elk OUTB03t--_-V 

v .. 

FIgure 1. logic Symbol 

DISPLAV 
DATA 

v ... "-__ """ 

Figure 2. .Pln Co"flguratlc;»n . ' 

.6-402 



inter 827918279·5 

HARDWARE DESCRIPTION 
The 8279 is packaged in a 40 pin DIP. The following is 
a functional description of each pin." 

18ble 1. Pin DeicrlpUona 

Pin 
Symbol No. Name and Function 

DBO"D~ 8 Bkllrecllonal da .. bus: All data 
and commands between the CPU 
and the 8279 are transmitted on 
these lines. 

CLK 1 Clock: Clock from system used to 
generate internal timing. 

RESET 1 Rnet: A high signal on'thls pin re-
sets the 8279, After being reset the 
8279 'Is placed in the following 
mode: 
1) 18 8-bit character display 

-left entrY. 
2) Encoded scan ke~board-2 

key lockout. 
Along with this the program clock 
prescaler Is sat to 31. 

CS 1 Chip Select: A low on this pin en-
ables the Interface functions to 
receive or transmit. 

Ao 1 Buffer Addres.: A high on this 
line indicates the signals in or out 
are interpreted as a command or 
status. A low indicates that they 
are data. 

RD,WR 2 Input/Output Read and Write: 
These signals enable the data 
buffers to either send data to the 
external bus or receive it from the 
external bus. 

IRQ 1 Interrupt Request: 'In a key-
board mode. the .Interrupt line Is 
high when there is data in the 
FIFO/Sensor RAM. The Interrupt 
line goes low with each FIFO/ 
Sensor RAM read and returns 
high If there Is stili Information in 
,the RAM. In a sensor mode, the 
Interrupt line goes high whenever 
a change in a sensor is datected. 

Vss, Vcc 2 Ground and power supply pine. 

SLo-S~ 4 Scan Unes: Scan lineS which are 
used to 'scan the key switch or 
lIensor matrix and the display 
digits. These lines can be either 
encoded (1 of 18) or decoded (1 
of 4). 

RLo-RL1 8 Return Line: Return line Inputs 
which are co'nnected to the scan 
lines through the . keys or sensor 
,SWitches. They have active internal 
pullups to keep them high until a 
switch closure pulls one low. They 
also serve as an 8-blt input In the 
Strobed Input mode. 

Pin 
Symbol No. Name and Function 

SHIFT 1 Shift: The ,shift Input statlls Is, 
stored along with the key poSition 
on key closure in the Scanned Key-
board modes. It has an active In-
ternal pullup to keep It high until a 
switch closure pulls it low. 

CNTUSTB 1- ControII8trobed Input Mode: For 
keybollrd modes this line Is used 
as a control input and stored like 
atatus on a key closure. The line 
is also the strobe line that enters, 
the data Into the FIFO in the 
Strobed Input mode. 

(Rising Edge). It has an active In-
ternal puUup to keep it high until 
a switch closure puUs It low. 

OUTAo-OUT~ 4 Output8: These two porta are the 
OUT Bo-OUT B3 4 outputs for the 18 x 4 dlspley re-

fresh registers. The data from 
these outputs Is synchronized to 
the scan lines, (SLo-S~) for multi-
plexed digit displays. The two 4 
bit ports may be blanked inde-
pendently. These two porta may 
also be considered as one 8-bit 
port. 

BD 1 Blank Display: This output is 
used to blank the display during 
digit switching or by a display 
blanking command. 

FUNCTIONAL DESCRIPTION 

Since data input and display are an integral part of many 
microprocessor deSigns, the system designer needs an 

, interface that can contrbl these functions without placing 
'a large load on the CPU, The 8279 provides this function 
for ,8-bit microprocess~rs. 

6-403 

The 8279 has two sec;'tions: keyboard and display, Th. 
Keyboard section can interface to regular' typewriter style 
keyboards or random toggle or thumb switches. The 
display section drives alphanumenc displays or a bank of 
indicator lights. Thus the CPU IS r.elieved from scanning 
the keyboard or refreshing the display. ' 

The 8279 Is designed to directly' connect to the 
microprocessor bus. Tile CPU can program ali operating 
modes fo~ the 8279. These modes include: 



inter 8279/8279-5 ' 

Input Mode. 
• Scanned Keyboard - with encoded (8 x 8 key 

keyboard) or decoded (4 x 8 key keyboard) scan lines. 
A key depression generates a 6-bit encoding of key 
position. Position and shift and control status are 
stored in the FIFO. Keys are automatically debounced 
with 2-key lockout or N-key rollover. 

• Scanned Sensor Matrix - with encoded (8 x 8 matrix 
switches) or decoded (4 x 8 matrix switches) scan nnes. 
Key status (open or closed) stored in RAM addressable 
by CPU. 

• Strobed Input - Data on return lines during control 
line strobe is transferred to' FIFO. 

Output Mode. 
- 8 or 16 character multiplexed displays that can be or-

ganized as dual 4-bit or single 8-bit (Bo = Do. A3 = 07)' 

• Right entry or left entry display formats. 

Other features of the 8279 include: 

• Mode programming from the CPU, 

• Clock Prescaler 

• Interrupt output to signal CPU when there is keyboard 
or sensor data av\ailable. 

• An 8 byte FIFO to stor,e keyboard information 

• 16 byte internal Display RAM for display refresh. This 
RAM can also be read by the CPU 

eLK RESET DIlO-7 

OUT AO.3 our 80-3 

PRINCIPLES OF OPERATION 

The following is a descripti.on of the major elements of the 
8279 Programmable Keyboard/Display interface device. 

'. Refer to the block diagram in Figure 3. 

1/0 Control and Data Buffers 

The 1/0 control section uses the CS. A.a. RD and WR lines 
to control data flow to and from the various internal 
registers and buffers. All data flow to and from the 8279 is 
enabled by CS. The character of the information. given or 
desired by the CPU. is identified by Ao. A logic one 
means the information is a command or status. A logiC 
zero means the information is data. RD and WR determine 
the direction of data flow. through the Data Buffers. The 
Data Buffers are bi-directional buffers that connect the 
internal bus to the external bus. When the chip is not 
'selected (CS = 1). the devices are l!!.. a high impedance 
state. The drivers input during ijij'R. CS and output during 
RD-CS, 

Control and Timing Regl.ters and Timing Control 

These registers store the keyboard and display modes and 
other operating conditions programmed by the CPU. The 
modes are programmed by presenting the proper 
command on the data lines with Ao = 1 and then sending 
a WR, The command is latched on the rising edge of WR. 

IRQ 

KEYBOARD 
DEBOUNCE 

AND 
CONTROL 

Figure 3_ Internal Blo«k Diagram 
6-404 AFN-00742B 



inter 8279/8279·5 

The command is then decoded and the appropriate 
function is set. The timing control contains the basic 
timing counter chain. The first counter is a + N prescaler 
that can be programmed to yield an, internal frequency, 
of 100 kHz which gives a 5.1 ms keyboard scan time and 
a 10.3 ms debounce time. The other counters divide 
down the basic internal frequency to provide the proper 
key scan, row scan, keyboard matrix scan, and display 
scan times. 

Scan Counter 
The scan counter has tv:.o modes. In the encoded mode. 
the counter provides a binary count that must be 
externally decoded to provide the scan lines for the 
keyboard and display. In the decoded mode, the scan 
counter decodes the least significant 2 bits and provides a 
decoded 1 of 4 scan. Note than when the keyboard is In 

decoded scan, so is the display. This means that only the 
first 4 characters in the Display RAM are displayed. 

In the encoded mode: the scan lines are active high 
outputs. In the decoded mode, the scan lines are active 
low outputs. 

Return Buffers and Keyboard Debounce 
and Control 
The 8 return lines are buffered and latched by the Return 
Buffers. In the keyboard mode, these lines are scanned, 
looking for key closures in that row If the debounce 
circuit detects a closed sWitch, it waits about 10 msec to 
check if the switch remains closed. If it does, the address 
of the switch in the matrix plus the status of SHIFT and 
CONTROL are transferred to the FIFO In the scanned 
Sensor Matrix modes, the contents of the return lines is 
directly transferred to the correspon1lng row of the 
Sensor RAM (FIFO) each key scan time In Strobed Input 
mode, the contents of the return lines are transferred to 
the FIFO on the rising edge of the CNTUSTB line pulse 

FIFO/Sensor RAM and Status 
This block is a dual function 8 x 8 RAM In Keyboard or 
Strobed Input modes, It is a FIFO Each new entry IS 
written into successive RAM posItions and each IS then 
read ,in order of entry. FIFO status keeps track of the 
number of characters In the FIFO and whether It IS full or 
empty. Too many reads or writes Will be recognized as an 
error The status can be read by an RD with CS low and 
Ao high. The status logic also provides an IRQ signal 
when the FIFO IS not empty. In Scanned Sensor Matrix 
mode, the memory IS a Sensor RAM. Each row of the 
Sensor RAM IS loaded with the status of the correspond-

• ing row of sensor in the sensor matrix. In this mode, IRQ is 
high if a change In a sensor is detected. 

Display Address Registers and Display RAM 
The Display Address Registers hold the address of the. 

. word currently being written. or read by the CPU and the 
two 4-bit nibbles being displayed The read/write 
addresses are programmed by CPU command. They also 
can be set to auto Increment after each read or write. The 
Display RAM Cdn be directly read by, the CPU after the 
correct mode and Mc!ress IS set. The addresses for the A 
and B nibbles are .'lJtomatlcaHy updated by the 8279 to 
match data entry by the CPU. The A and B nibbles can be 
entered independently or as one word, according to the 
mode that is set by the CPU Data entry to the display can 
be set to either left or right entry. See Interface 
Considerations for details. 

SOFTWARE OPERATION 

8279 commands 
The following commands program 'the 8279 operating 
modes. The commands are sent on the Data Bus with CS 
low and Ao high and are loaded to the 8279 on the rising 
edge of WR. 

Keyboard/Display Mode Set 

MSB LSB 

Code: 101010iDIDIK IKIKI 

Where DD is the Display Mode and KKK is the Keyboard 
Mode. 

DO 
o 0 8 8-bit character display - Left entry 

o 1 16 8-bit character display - Left entry' 

o 8 8-bit character display - Right entry 

16 8-bit character display - Right entry 

For description of right and left entry, see Interface 
Considerations. Note that when decoded scan IS set in 
keyboard mode, the display IS reduced to 4 characters 
independent of display mode set.· 

KKK 
0 0 0 Encoded Scan Keyboard - 2 Key Lockout' 

0 0 1 Decoded Scan Keyboard - 2-Key Lockout 

0 0 Encoded Scan Keyboard - N-Key Rollover 

0 Decoded Scan Keyboard - N-Key Rollover 

0 0 Encoded Scan Sensor MatriX 

0 1 Decoded Scan Sensor MatriX 

0 Strobed I nput, Encoded Display Scan 

Strobed Input, Decoded Display Scan 

Program Clock 

Code: I 0 I 0 11 I pip I pip I p I 
All timing and multiplexing signals for the 8279 are 
generated by an internal prescaler. This prescaler 
divides the external clock (pin 3) by a programmable 
integer. Bits PPPPP determine the value of this integer 
which ranges from 2 to 31. Choosing a divisor that yields 
100 kHz will give the specified scan and debounce 
times. For instance, if Pin 3 of the 8279 is being clocked 
by a 2 MHz Signal, PPPPP should be set to 10100 to 
divide the clock by 20. to yield the proper 100 kHz operat· 
ing frequency. 

Read FIFO/Sensor RAM 

Code: I 0 'f 1 I 0 I AI I X I A I A I A I X = Don't Care 

The CPU sets up the 8279 for a read of the FIFO/Sensor 
RAM by first writir;.9 this command. In the Scan Key-

'Default after reset 

6-405 AFN.flO742B 



8279/8279·5 

board Mode, the Auto-Increment flag (AI) and the RAM 
address bits (AAA) are irrelevant. The 8279 will automati­
cally drive the data bus for each subsequent read (Ao = 0) 
in the same sequence in which the data first entered the 
FIFO. All subsequent reads will be from the FIFO until 
~nother command is issued. 

In the Sensor Matrix Mode, the RAM address bits AAA 
select one of the 8 rows of the Sensor RAM. If the AI flag 
is set (AI = 1), each successive read will be from the sub­
sequent row of the sensor RAM. 

Read Display RAM 

Code: I 0 11 11 I AliA 1 A 1 A 1 A I 
The CPU sets up the 8279 for a read of the Display RAM 
by first writing this command. The address bits AAAA 
select one of the 16 rows of the Display RAM. If the AI 
flag is set (AI = 1), this row address will be incremented 
after each following read or write to (he Display RAM. 
Since the same counter is used for both reading and 
writing, this command sets the next read or write 
address and the sense of the Auto-Increment mode for 
both operations. ' 

Write'Dlsplay RAM 

Code: 11 1 0 1 a 1 AliA 1 A 1 A IA I 
The CPU sets up the 8279 for a write to the Display RAM 
by first wJiting this command. After writing the com­
mand with Ao = 1, all subsequent writes with Ao = 0 will 
be to the Display RAM. The addressing and Auto­
Increment functions are identical to those for the Read 
Display RAM. However, this command does not affect 
the source of subsequent Data Reads; the CPU will read 
from whichever RAM (Display or FIFO/Sensor) which 
was last specified. If, indeed, the Display RAM was last 
specified, the Write Display RAM will, nevertheless, 
change the next Read location. 

Display Write Inhibit/Blanking 

A B A B 

Code: 11 1 0 11 1 X IIW Ilw I BL 1 BL 1 

The IW Bits can be used to mask nibble A and nibble B 
in applications requiring separate 4-bit display ports. By 
setting the IW flag (IW= 1) for one of the ports, the port 
becomes marked so that entries to the Di$'play RAM 
from the CPU do not affect that portThus, if each nibble 
is input to a BCD decoder, the CPU may write a digit to 
the Display RAM without affecting the other digit being 
displayed. It is important to note that bit Bo corresponds 
to bit Do on the CPU bus, and that bit A3 corresponds 'to 
bit 0 7, 

If the user wishes to blank the display, the BL flags are 
available jor each nibble. The last Clear command issued 
determines the code to be used as a "blan'k." This code 
defaults to all zeros after a reset. Note that both BL 
flags must be set to blank' a display formatted with a 
single 8-bit port. 

Clear 

Code: 11 11 I 0 I Co I CD I Col CF I CA I 
The Co bits are available in this command to clear all 
rows of the Display RAM to a selectable blanking code 
as follows: ' 

1 0 AB = Hex 20 (0010 0000) 

1 1 All Ones 

r~ '~' All "ro, IX • 000''';'''' 

Enable clear display when = 1 (or by CA = 1) 

During the time the Display RAM is being cleared ("'160 /,s), 
it may not be written to. The most significant bit of the 
FIFO status word is set during this time. When the Dis­
play RAM becomes available again, it automatically 
resets. 

If the CF bit is asserted (CF = 1), the FIFO status is 
cleared and the interrupt output line is reset. Also, the 
Sensor RAM pointer is set to row O. 

CA, the Clear All bit, has the combined effect of CD and 
CF; it uses the CD clearing code on the Display RAM and 
also clears FIFO status. Furthermore, it resynchronlzes 
the internal timing chain. 

End Interrupt/Error Mode Set 

Code: 

For the sensor matrix modes this command lowers the 
IRQ line and enables further writin9 into RAM. (The IRQ 
line would have been raised upon the detection of a 
change in a sensor value. This would have also inhibited 
further writing into the RAM until resetl. 

For the N-key rollover mode - If the E bit is programmed 
to "1" the chip will operate In the special Error mode (For 
further details. see Interface Considerations Section,) 

Status Word 
The status word contains the FIFO status, error, and 
display tJnavailable signals. This word is read by the CPU 
when Ao is high and CS and Ri5 are low, See Interface 
Considerations for more detail on status word, 

Data Read 

Data is read when Ao, CS and AD are all low, The source 
of the data is specified by the Read FIFO or Read Display 
commands, Th~ trailing edge of RD wi,lI cause the address 
of the RAM being read to 6e Incremented if·the Auto­
Increment flag is set. FIFO reads always increment (if no 
error occurs) independent of AI. 

Data Write 
Data that is written with Ao, CS and WR low is always 
written to the Display RAM, The address is specified by the 
latest Read Display cir Write Display command. Auto­
Incrementing on the rising edge of WR occurs if AI set by 
the latest display command, 

6-406 AFN·OO742B 



intJ 8279/8279·5 

INTERFACE CONSIDERATIONS 
Scanned Keyboard Mode, 2·Key Lockout 
There are three possible combinations of conditions 
that can occur during debounce scanning. When a key is 
depressed, the debounce logic is set. Other depressed 
keys are looked for during the next two scans. If none 
are encountered, it is a single key depression and the 
key "osition is entered into the FIFO along with the 
status of CNTL and SHIFT lines. If the FIFO was empty, 
IRQ wiil be set to signal the CPU that there is an entry in 
the FIFO. If the FIFO was fuil, the key will not be entered 
and the error flag wiil be set. If another closed switch is 
encountered, no entry to the FIFO can occur. If ail other 
keys are released before this one, then it wiil be entered 
to the FIFO. If this key is released before any other, it 
wiil be entirely ignored. A key is entered to the FIFO 
only once per depression, no matter how many keys 
were pressed aiong with it or in what order they were 
released. If two keys are depressed within the debounce 
cycle, it is a simultaneous depression. Neither key wiil 
be recognized until one key remains depressed alone. 
The last key wiil be treated as a single key depression. 

Scanned Keyboard Mode, N·Key Rollover 
With N-key Rollover each key depression is treated 
independently from all others. When a key is depressed, 
the debounce circuit waits 2 keyboard scans and then 
checks to see if the key is still down. If it is, the key IS 
entered into the FIFO. Any number of keys can be 
depressed ~nd another can be recognized and entered 
into the FIFO. If a simultaneous depression occuts, the 
keys are recognized and entered according to the order 
the keyboard scan found them. 

Scanned Keyboard - Special Error Modes 
For N-key rollover mode the user can program a special 
error mode. This is done by the "End Interrupt/Error Mode 
Set" command. The debounce cycle and key-validity 
check are as in normal N-keyo mode If during a single 
debounce cycle, two keys are found depressed, thiS is 
considered a simultaneous multiple depression, and sets 
an error flag. This flag will prevent any further writing Into 
the FIFO and will. set interrupt (if not yet set). The errorflag 
could be read in this mode by reading the FIFO STATUS 
word. (See "FIFO STATUS" for further details.) The error 
flag is reset by sending the normal CLEAR command with 
CF = 1. 

Sensor Matrix Mode ' 
In Sensor Matrix mode, the debounce logic is inhibited. 
The status of the sensor switch is Inputted directly to the 
Sensor RAM. in this way the Sensor RAM keeps an image 
of the state of the switches in the sensor matrix. Although 
debouncing is not provided, this mode has the advantage 
that the CPU knows how long the sensor was closed and 
when it was released. A keyboard mode can only indicate 
a validated closure. To make the software easier, the 
designer should functionally group the sensors by row 
since this is the formlit In which the CPU will read them. 

The IRQ line goes high if any sensor value change is 
detected at the end of II sensor matrix scan, The IRQ line is 
cleared by the first data read operation if the Auto-

6-407 

Increment flag is set to zero, or by the End Interrupt 
command if the Auto-Increment flag is set to one. 

Note: Multiple changes in the matrix Addressed by (SLo-3 
= Ol may cause multiple interrupts, (SLo = 0 in the Decoded 
Mode). Reset may cause the 8279 to see multiple changes. 

Data Format 
In. the Scanned Keyboard mode, the character entered 
into the FIF.O corresponds to the position of the switch 
in the keyboard plus the status of the CNTL and SHIFT 
lines (non-inverted). CNTL is the MSB of the character 
and SHIFT is tile next most significant bit. The next 
three bits are from the scan counter and indicate the 
row the key was found in. The last three bits are from the 
column counter and indicate to which return ilne the key 
was connected. 

MSB LSB 

~ETUR~ 
SCANNED KEYBOARD DATA FORMAT 

In Sensor Matrix mode, the data on the return lines is 
entered directly in the row of the Sensor RAM that 
corresponds to the row in the matrix being scanned. 
Therefore, each switch postion maps directly to a Sensor 
RAM position. The SHIFT and CNTL inputs are ignored in 
this mode. Note that switches are not necessarily the only 
thing that can be connected to the return lines in this 
mode. Any logic that can be triggered by the scan lines 
can enter data to the return line inputs. Eight multiplexed 
input ports could be tied to the return lines and scanned by 
the 8279. 

MSB LSB 

RL7! RL6! RL5! RL4! RL3! RL2! RL, ! RLo 

In Strobed Input mode, the data IS also entered to the FIf:O 
from the'return lines. The data is entered by the rising 
edge of a CNTLlSTB line pulse. Data can come from 
another encoded keyboard or simple switch matrix. The 
return lines can also be used as a general purpose strobed 
input. 

Mse . LSB 

RL7! RL61 RL51 RL41 RL31 RL21 RL, I RLo 

Display 
Left Entry 

Left Entry mode is ~he simplest display format in that each 
display position directly corresponds to a byte (or nibble) 
in the Display RAM. Address 0 in the RAM is the left-mllst 
display character and address 15 (or address 7 in 8 
character display) is the right most display character. 
Entering characters from position zero causes the display 
to fill from the left. The 17th (9th) character is entered back 
in the left most position and filling again proceeds from 
there. 

AFN-00742B 



intJ 8279/8279-5 

o 1 14 15-_Display 

lst entry [TI = = = = OJ =:d~ess 
o 1 14 15 

2nd entry C2:0 -,"' - '-IT] 
o 1 14 15 ' 

16th entry ~= = = =EEJ 
o 1 14 15 

17th entry ~= = = =EEl 
o 1 14 15 

,18th entry ~= = = =EEJ 
Right Entry 

LEFT ENTRY MODE 
(AUTO INCREMENT) 

Right ,entry IS the method used by most electronic 
calculators, The first entry is placed in the right most 
display character, The next entry is also placed in the right 
most character after the display is shifted left one 
character, The left most character IS shifted off the end 
and is lost 

1st entry 

2nd entry 

3 4 0 1 2 

3rdentry [1]= = = = 1 1 1 2 1 3 1 

1 2 14':15 0 

;7th entry 02:[ = = = 1151161171 

2 3 15 0 1 

18th entry ~= = = = 1161171'81 

RIGHT ENTRY MODE 
(AUTO INCREMENT) 

Note that now the display position and register address do 
not correspond, Consequently, entering a -character to an 
arbl,trary position in the Auto Increment mode may have 
unexpected results, Entry starting at Display RAM address 
o with sequential entry IS recommended, 

Auto Increment 

In the Left Entry mode, Auto Incrementing causes the 
address where the CPU will next write to be Incrernented ' 
by one and the character appears in the next loclltion, 
With non~Auto Incrementing the entry is hoth to the same 
RAM address and display position, Entry to an arbitrary , 
address iii the Auto Increment mode has no undesirable 
side effects and the result is predictable: 

o 1 2. 3 4 5 6 7'-Display 

1st entry l' I I I 1 I 1 I' I =~~es: 
01234567, 

2nd entry 1'121 1111I 

o 1 2 3 4 5 6 7 

Qlmmand l' 12 1 I I, I I I 
10010101 

Enter, next at Location 5 Auto Increment 

o 1 2' 3 4 5 6 7 

3rde\ltry 1'1211113111 

012345,t17 

4th entry l' 12 I I 1 13 14 I 
LEFT ENTRY MODE 
(AUTO INCREMENT) 

'In the Right Entry mode, Auto Incrementing and non 
Incrementing have the same effect as in the Left Entry 
except if the address sequence is interrupted: 

1 2 3 4 5 6 7 0 -4- DISplay 

1st entry 1 1 1 I II 11 I =~~ess 

2nd entry 

Qlmmand 
10010101 

4th entry 

23456701 

! I I 11 121 
234 5 6 7 0 1 

11 121 

Enter next at LocatIon 5 Auto Increment 

34567012 

45670123 

13141 11 \2\ I 1 

RIGHT ENTRY MODE 
(AUTO INCREMENT) 

Starting at an arbitrary location operates as shown t:'.3low: 

Command 
10010101 

lst entry 

2nd entry 

8th entry 

9111, entry 

o 1 2 3 4 5 6 7-4-D,splay 

I I 1 1 I 1 -I I I =:d~ess 
Enter next at Location 5 Autp Increment 

1 2' 3 4 5 6' 7 0 

I \ \ \ 11 I I I 1 

2 ' 3, '4 5 6 7 0 1 

1 I I'll' 2\ 1 1 

14151617181,12131 

15' 16171819121, 3 141 

RIGIi:r EN:rRY MODE 
(AUTO INCREMENT) 

6-408 



8279/8279·5 

Entry appears to be from the initial entry point. 

8/16 Character Dllplay Formatl 

If the display mode is set to an 8 character display. the on 
duty-cycle is double what it would be for a 16 character 
display (e.g .. 5.1 ms scan time for 8 characters'vs. 10.3 ms 
for 16 characters with 100 kHz internal frequency). 

G. FIFO StatuI 
FIFO status is used in the Keyboard and Strobed' Input 
modes to indicate the number of characters in the FIFO 
and to indicate whether an error has occurred. There are 
two types of errors possible: overrun and underrun: 
Overrun occurs when the entry of another character into a 
full FIFO is attempted. Underrun occurs when the OPU 
tries to read an empty FIFO. 

The FIFO status word also has a bit to indicate that the 
Display RAM was unavailable because a Clear Display or 
Clear All command had not completed its clearing 
operation. 

INT SHIFT CNTL 
INT 

S·BIT DATA BUS 
MICRO- DATA 

S/ 0 0_1 PROCESSOR BUS 
SYSTEM 

CONTROLS { 

AD iOli 
WR iliW 

8279 

RESET 
RESET 

cs 
CS ADORESS{ 

BUS Ao 
AO 

CLK 

In a Sensor Matrix lJlode, a bit Is set in the FIFO status 
word to Indicate that at least one sensor closure Indica· 
tion Is contained In the Sensor RAM. 

In SPElcial Error Mode the S/E bit Is showing the error 
flag and serves as an Indication to whether a slmultane· 
ous multiple closure error has occurred. 

SHIFT 

FIFO STATUS WORD 

Error-Overrun 

Number of 
characters in FIFO 

L..~ __ Sensor Closure/Error Flag for 
Multiple Closures 

L-____ Display unavailable 

KEYBOARD 
MATRIX 

CONTROL 

s/ 8 COLUMNS 

RETURN 
LINES 8 ROWS 

5V HS 

Ro·,U 
"oD I 3 - 8 DECODER 

vssll. V ov 3 LSB' 

So.3 4/ 
SCAN LINES (j4 

4--16 DECODER 

CLOCK ClK80~3 80 H. 
r~~~~~Y 

4 ADDRESSES 
IDECODED) , 

DISPLAY 

4 CHARACTERS 

/ 
DATA 

DISPLAY 

'00 not drive the keyboard decoder wiih the MSB of the scan lines, 

Figure 4. System Block Diagram 

6-409 AFN-oG7428 



inter 
~BSOLUrE MAXIMUM ~A~"NGS*.· 

Ambient Temperatu~ ; ..•• ':' •• , ••• : .•• ' O~Cto 70·C 
Storage' Temperatu~e : .' •••••••• :' .•• -65°C to 125"C . 
Voltage on any Pin with .' . .' 

Respect to Ground •••••••••••••• -0.5V to +7V 
Power Dissipation •••• .' ••••••••••••••••• 1 Watt 

"NOTICE: Stresses above those listed under "Abseilute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or a~y other conditio,ns above 
those indicated In the operational sections of this specifi­
catIon Is ·not implied. Exposure to absolute maximum 
rating ·conditlons for extended periods mayaffectd,evice 
reliability. 

D.C. CHARACTERISTICS {TA '" O"C!O 70"C, Vss = Ov. (NOTE 3)]* 

Symbol Parameter ·Mln. Max. 

VIL1 Input Low Voltage for -0.5 1.4 
Return ~ines 

VIL2 Input Low Voltage for All Others -0.5 O.B 

VIH1 Input High Voltage for 2.2 
Return Lines 

VIH2 Input High Voltage for All Others 2.0 

VOL Output Low Voltage 0.45 

VOHl Output High Voltage on Interrupt 3.5 
Line 

VOH2 Other Outputs 2.4 

IILl Input Current on Shift, Control and +10 
Return Lines -100 

f---- ' 
IIL2 Input Leakage Current on All Others ±10 

IOFL Output Float Leakage ±10 

Icc Power Supply Current 120 

CAPACITANCE 
Symbol Parameter Typ. Max. 

CIN Input Capacitance 5 10 

CaUT Output Capacitance 10 20 

A.C. CHARACTI:RISTiCS [TA = O"C to 70"C. VSS = 9V. (Note 3)] " 
Bus Paramete,. 

READ CYCLE 

. ,.8279 

Symbol Parameter Min. Max. 

tAR Address Stable Before READ 50 

tRA Add(ess Hold Time for READ 5 

tRR READ Pulse Width' 420 

tRO[4] Data 'Delay fromR EAD " 300 

tAO [4] Address to Data Valid .. 450 

tOF READ to Data Floating' . . :-
10 

.' " 100 

tRCY Read Cycle Ti me 1 

6-410 

Unit Test ConditionS 

V I 

V 
I 

V 
I 

V 

V Note 1 

V Note 2 

-4OO,.A 8279-5 
IOH = -l00"A 8279 

JJA VIN = Vee 
JJA VIN =OV 

JJA VIN = Vcc to OV 

JJA VOUT = Vee to 0.45V 
--

mA 

Unit Test Conditions 

pF. fe. = 1 MHz Unmeasured 

pF pins returned to VSS 

8279-5 

Min. Max. Unit 

0 ns 

0 ns 

250 ns 

150 ns 

250 ' ns 

10 100 ns 

1 JJS 

AfN.OO742B 

\ 



intJ 8279/8279·5 

A.C. CHARACTERISTICS (Continued) 

WRITE CYCLE 

8279 8279·5 

Symbol Parameter Min. Max. Min. Max. Unit 

tAW Address Stable Before WR IT E 50 0 ns 

tWA Address Hold Time for WRITE 20 0 ns 

tww WR ITE Pulse Width 400 250 
, 

ns 

tow Data Set Up Time for WR ITE 300 150 ns 

two Data Hold Time for WR ITE 40 0 ns 

tWCY Write Cycle Time 1 1 J.lS 

OTHER TIMINGS 

8279 8279·5 

Symbol Parameter Min. Max. Min. Max. Unit ._---
t</>w Clock Pulse Width 230 120 nsee 

tCY Clock Period 500 320 nsee 
---

Keyboard Scan Time ........................ 5.1 msec Digit-on Time .............................. 480ILsec 
Keyboard Debounce Time .................. 10.3 n;Jsec 
Key Scan Time .............................. 80 ILsec 

Blanking Time ............................. 160 ILsec 
Internal Clock Cycle[5] ....................... 10 ILsec 

Display Scan Time ......................... 10.3 msec 

NOTES: 
1. 8279. IOL = 1.6mA; 8279-5. IOL = 2.2mA. 
2. IOH = -100/LA 
3. 8279. Vcc = +5V ±5%; 8279-5. Vcc = +5V ±1()%. 
4. 8279. CL = l00pF; 8279-5. CL = 150pF. 
5." The Prescaler should be progr;immed to provide a 10 /LS internal clock cycle. 
• For Extended Temperature EXPRESS. use M8279A electrical parameters. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

~=x x= 2:0 2.0 > TEST POINTS < 
0.8 0.8 

0.45 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1" AND 0 45V FOR 
A LOGIC '0" TI~ING MEASUREMENTS ARE MADE AT 2 ov FOR A LOGIC' 1" 
AND 08V FOR A LOGIC '0" 

6-411 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

'1CL~I20PF TEST 

Cl =120pF 
CL INCLUDES JIG CAPACITANCE 

AFN'()()742B 



8279/8279·5 

WAVEFORMS 

READ OPERATION 

(SYSTEM'S ,...-------------------"1' "'-_____________ ADDRESS BUSI 

(READ CONTROLI 

DATA BUS 
(OU~UTl~~~~~~~~~~~~~ _______________ ~~~~~~~~~~~~~ 

WRITE OPERATION 

-JE (SYSTEM'S 

Ao, CS W" ' , --tA-W----j-" -I!f-o-.==~~~--~-'w-w====~~~~----~~~~ ________________ ADDRESS BUS) 

"" ~ (WRITE CONTROLI 

"'""-------t-
o
-
w
--- ~ two 

DATA BUS DATA 'J --DATAVALID~I\I DATA 
ClNPUTI _____ M_A_Y_C_HA_N_G_E ___ -'p '-Il\'-_____ M_A_Y_C_H_AN_G_E _____ _ 

CLOCK INPUT 

6-412 AFN-00742B 



WAVEFORMS (Continued) 

SCAN 

ENCODED 
SCAN 

S, 

S, 

8279/8279-5 

L 

L 
L 

~U U U U 
S, 

DECODED 
SCAN 

S, 

S, 

DISPLAY 

S, 

Ao-As 
ACTive HIGH 

BO-83 
ACTIVE HIGH 

Ala-RL7 

~ U 
U 

U 
640 j.4S = 84 ICY 

A(') 

NOTE: SHOWN IS ENCODED SCAN LEFT ENTRY 

U 
U 

BLANK 
CODE· 

8a·Sa ARE NOT SHOWN BUT THEY ARE SIMPLY 81 DIVIDED BY 2 ANO 4 

U U 
U LI 

U 
PRE5CALER PROGRAMMED FOR IN-
TERNAL FREQUENCY: 100 ·kHz SO 
tey = 10~s 

A(') 

*BLANK CODE IS EITHER ALL 
O's OR ALL 1'. OR 20 HEX 

8(1) 

490 ... ----~_I_ 

Lr 

BLANK 
CODE" 

AFN-007428 



82285, 
CLOCK GENERATOR AND 

READY INTERFACE FOR 1/0 COPROCESSORS 

82285 is an 18 pin bipolar clock generator/driverdesigned to provide clock signals forthe 82730, 82586, or 
other master peripherals. It also contains READY multiplexing logic to provide the required RDYO and 
READY timing and synchronization for the peripheraf chips. RESETI,ogic with hysteresis and synchronization 
is also provided. . 

• Uses crystal or TTL signal for Frequency 
Source. " 

• Generates system reset output from 
Schmitt nigger Input. 

• Provides a 50% duty cycle peripheral 
clock output with MOS drive 
characteristics. 

• Provides synchronous READY for peri­
pherals from synchronous and/or 
asynchronous sources. 

RESET 

• Capable of clock synchronization with 
other 82285's. 

ff i------------+-.RESET 

SYNCHRONIZER 1+--------.., 

x,--+---I 

EFI--t----...... 

~c--~------~ 

CSYNe --1------1 

»-.-+---t-- ClK 

I--------f-....... -+--i .. PClK 

~L¥N--~----_----------------~ 

!---...... ---------+--+---i .. RDYO 

!----------------t--.,READY 

Figure,,1. 82285 Block Diagram 

6-414 
NOVEMBER 1983 

ORDER NUMBER'230813-QOl 



inter 

Aiii5Y 
SiiDv 

SiiiffiN 
RDYO 

EFI 

Fie 

Vee 
Aii6YEN 
CSYNC 

PClKIN 

READY 

ClK 

RESET 

REs 
PClK 

82285 

FUNCTIONAL DESCRIPTION 

Clock Generator 

The ClK and PClK clock outputs may be gener­
ated either by an external crystal or by an external 
TTL freqL!ency input. If the frequencylcrystal select 
input (Fie) is high, the EFI input is used. If Fie is low, 
a crystal attached to Xl and X2 pins is used. ClK is a 
TTL output at the crystal or EFI frequency. PClK is a 
MOS-Ievel output which has a 50% duty cycle, 

. operates at 112 the ClK frequenC;y, and can be used 
to d rive the clock inputs ofthe 82586, 82730, or other 
devices. 

Figure 2. 82285 Pin Configuration 

NOTE Reset Logic 

1. ClK is a TTL level output and has the same 
frequency as either the crystal or EFI, 
depending on the state of F/C. 

The reset logic provides a Schmitt Trigger input 
(RES) and two synchronization flip-flops to syn­
chronize the reset timing. The reset signal is syn­
chronized at the falling edge of PClK IN. A simple 
RC network can be used to provide power-on reset 
of proper duration. 

2. PClK is a MOS level output and has half 
the frequency of ClK. 

3. ARDY and ARDYEN are interchangeable. 
4. SRDY and SRDYEN are interchangeable. 

Table 1. Pin Description 

Pin 
Symbol Number Type Name and Function 

RES 11 I RESET IN: RES is an active low signal which is used to gen-
erate RESET. A Schmitt trigger input is provided so that a RC 
connection can be used to establish the power up reset of 
proper duration. 

RESET 12 0 RESET: RESET is an active high Signal which is the synchron-
ized version of the RES input. . 

X1, X2 7,8 I CRYSTAL INPUT: X1 and X2 are attached to a parallel reson-
ant, fundamental mode crystal. If Fie is strapped low to select 
the internal oscillator as the clock source, ClK will be the 
same frequency as the crystal, PClK will be '12 that frequency. 

ClK 13 0 CLOCK: ClK is a TTL output and has the same frequency as 
either the crystal or the external frequency input (EFI). 
depend~nt upon the state of Fie. 

PClK 10 0 PERIPHERAL CLOCK: PCLK is a clock output at h~f the fre-
quency of the crystal input or EFI, depending on F/C input. It 
provides MOS levels to drive the system ClK inputs of 82586 
or 82730 or other device. PClK has a 50% duty cycle. 

PCLKIN 15 I PERIPHERAL CLOCK IN: PClK IN is a clock input which is 
used for clocking the RESET flip-flops and the Al1r5Y' syn-
chronizing flip-flop. It.can be driven by the PClK OiJtput or 
some other system clock. 

F/C 6 I FREQUENCY/CRYSTAl SELECT: FIC is a strapping option. 
When low, ClK and PCLK are generated from an external 
crystal. When high, ClK and PClK are generated from the 
EFI input. 

6-415 230813-001 



inter 

Pin 
Symbol Number 

EFI 5 

ARDYEN 17 

Am5Y 1 
I 

SRDYEN 3 

SRDY 2 

" 

RDYO , 4 

READY 14 

CSYNC 16 

GND 9 

Vee 18 

'RDYO and READY Logic 

Type 

I 

I 

I 

I 

I 

0 

0 

I 

-
-. 

82285 

'DIble 1. 'Pln Descrtptlon (Cont.) . 

Name and Function 

EXTERNAL FREQUENCY IN: When FIC is strapped high, 
CLK and PCLK are generated from the EFI input. CLK will be 
the same frequency as EFI; PCLK will be half that frequency. 

ASYNCHRONOUS READY ENABLE: ARDYEN is ari 
asynchronous active low input which qualifies A'RDY. Set up 
anc;l hold times are given only to guarantee recognition on 
that clock edge. 

ASYNCHRONOUS READY: AJ:U)Y is an asynghronous active 
low input which will be synchronized to provide the RDYO 
output at the falling edge of PCLK IN. Setup and hold times 
are given only'to guarantee recognition on that falling edge of 
~ IN. The RDYO output will also be a function of the 
SRDY input. 

SYNCHRONOUS READY ENABLE: SROYEN is a synchro-
nous active low input which qualifieli SRi5Y. 
SYNCHRONOUS READY: SRDY is a synchronous active low 
input. The RDYO outputs will also be a function of the ARDY 
input. 

SYNCHRONOUS READY OUT: RDYO is an active high . . 
output which is either the SRDY input delayed, or the Am5Y 
input synchronized. RDYO will be inactive (low) if the ready' 
inputs are inactive (high). . 

READY: READY is an active high output which is the RDYO 
signal synchronized with theJalling edge of .PCLK output. 

CLOCK SYNCHRONIZATION: CSYNC is used to provide 
synchronization of PCLK's among multiple 82285's. The 
source of CSYNC come from the PCLK output of the refer-
ence 82285. When synchronization is not used, CSYNC 
should' be connected to Vee. 

Ground. 

+5Vsupply. 

tional ready signal in orderto optimize the operation 
of systems using the 82730, 82586, and 8086. 

RDYO is determined b~ synchronous ready input 
SRDY' qualified by SRD ~N or asynchronous ready 
input ARDY qualified by ARDYEN. For the asyn­
chronous input ARDY, it will be clocked in at the 
falling edge of PCLK IN; and the RDYO output will 
become valid at the same fallilb~gE! of PCLK IN, 
provided ARDY is stable. The A flip-flop Is used 
as the first step In a two flip-flop synchronization 
method for RDYO. For the synchronou~ input SRDY, 
the RDYO output will become valid when SRi5Yis 

WARNING: 

The RDYO output is not fully synchronized 
when the asynchronous mode (Am5V) is used. 

Clock Synchronization Logic 

The clock synchronization logic allows the PCLK 
signal of the device to be synchronized with the 
P,CLK from other 82285's. A typical application of this 
synchronization logic is shown in Diagram 5. Dia­
gram 3 and 4 illustrates typical functional sequences, 
of 82285 .. 

stable. ' 

The READY output is the ROYO output latched at 
the falling edge of·PCLk out. It provides an addi-

6"-416 . 



PClK 

RESET 

ClK 

PClK 
IN&OUT 

AiiiiVEN --i-..,...., 

82285 

Figure 3. Reset Sequence 

SROVEN ___ 4-_____ ~-_r--------------

ROVO 

REAOV _______________________ ~ 

Figure 4. Ready Operation 

6-417 

I 

230813-001 



82285 

82285 #1 

I EFI 

L FIe 
PClK 

CSYNC 

82285 #2 

EFI 

L....,. 
F/C PClK 

CSYNC 

I 
PClK, 

CRYSTAL 

82285 #1 82285#2 

x, 
ClK 1----1 EFI 

PClK, 

F/C 

CSYN'i>ClK 

PClK2 

Figure 5. TYpical Applictions of Clock Synchronization Among Multiple 82285's 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias .......... O"C to 70"C 
Storage Temperature .................. - 65"C to 150"C 
Voltage on any Pin with Respect ' 

, to Ground ............................ -O.5V to +7V 
Power Dissipation ............................ 1.5 Watt 

Electrical Characteristics and Waveforms 

D.C. Characteristics for 82285 
Conditions: TA = 0" C to 700 C; Vee = 5V ± 10% 

Symbol Parameter 

IF Forward Input Current 

For PCLK IN 

For SRDYEN. SRDY 

IR Reverse Input Current 

Ve Input Forward Clamp voltage 

Icc Power Supply Current 

V1L Input "low" voltage 

V1H Input "high" voltage 

V1HR Reset input "hi9h" voltage 

VOL Output "low" voltage 

VOH Output "high" voltage PCLK 

Other outputs 

, VIHR-V,LR RES Input HYsteresis 

C1 Input Capacitance 

• "NOTICE: Stresses above those listed under 
"Absolute Maximum Ratings" may cause perma· 
nent damage to the device. This is a stress rating 
only and functional operation of the device at these 
or any other conditions above those indicated in 
the operational sections of this specification is 
not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

Min. Max. Units Test Conditions 
, 

-0.5 mA VF = 0.45V 

-0.6 mA VF = 0.45V 

-0.85 'mA VF = 0.45V 

50 f..IA VR = Vee 

-1.0 V Ie = -5 mA 

145 mA 

0.8 V 

2.0 

2.6 V 

0.45 V IOl = 5.25 mA 

4.0 V -1.05 mA 

2:4 V -1.05 mA 

0.25 
I , 

10' pF 

6-418 230813-001 



inter 82285 

82285 A.C. Characteristics (Cont.) 
Condition: TA = O°C to 70°C; Vee = %V ± 10% (Note 1) 

Symbol Parameter' Min. Max. Units 

tR ClK and PClK rise time 10 ns Note 2 

tF ClK and PClK fall time 10 ns Note 2 

tL PClK IN and EFI low time 30 ns 

lH PClK IN and EFI high time 30 ns 

t, elK low time 1/2 b-15 ns 

l2 ClK high time 1/2 b-15 ns 

b ClK cycle time ' 56 ns 

to. PClK low time @ 0.6V b-12.5 ns 

PClK low time @ 1.5V b-10 ns 

ts PClK high time @ 3.8V b-17,5 ns 

PClK high time @ 1.5V b-10 ns 

te PClK cycle time 2b ns 

h RES setup time to PClK INI 15 ns Note 3, 4 

ta RES hold time from PClK INI 10 ns Note 3, 4 

t9 PClK delay from ClK low 0 40 ns 

t,o RESET delay from PClK low 0 50 ns 

t" ARDYEN setup time to ARDY 0 ns Note 4 

t'2 ARDYEN hold time from Am5Y 0 ns Note 4 

t'3 ARDY setup time to PClK INI 0 ns Note 3, 4 

t'4 ARDY hold time from PClK INI 30 ns Note 3, 4 

t,~ SRDYEN setup time to SRDY 0 ns Note 4 

t'6 SRDYEN hold time from SR5Y 0 ns Note 4 

t'7 SRDY setup time to PClKI 50 ns 

1,8 RDYOI delay from PClK INI 55 ns 

t'9 RDYOI delay from AROYl 30 ns 

l20 RDYO delay from SRDY 30 ns 

l2, READYI delay from PClKI -20 0 ns 

t22 READYI delay from PClKI -20 8 ns 

Crystal frequency 17.6 4 MHz Note 6 

EFI frequency D.C. 17.6 MHz Note 5 

(see notes next page) 

\ 

6-419 230813-001 



inter 
NOTE 

1. All times are measured at the 1.5V level unless specified otherwise .. 
2. The rise and faJldimes for 9lK are measured b.etween O.8V and 2.0V (TTL level drive 

characteristiCs). The rise and fall times for PClK are measured between 1.0Vand 3.5V (MOS level 
drive characteristics). 

'3. These are asynchronous inputs. 
4. The setup and hold times are measured at the 0.8V and 2.0V levels forthe inputs and at 1.5Vfrom 

the PClK signal. . 
5. To assure proper operation, the rise time or fall time of EFI cannotexceed 100 ns. 
6. The specified timings are given in accordance with the maximum operating 1re quency of 17.6 MHz. 

However, the device will be designed to operate to 24 MHz with a/l timing specs to be determined. 

Loading: For the RDYO output: . 

For READY OUTPUT: 
CL = 30 pt, IOL = 5.25 mA, IOH = -1.05 mA 

Cl = 75.p1, IOL = 5.25 mA, IOH = -1.05 mA 
For the PClK output: 

CL = 175 p1, IOL = 5.25 mA, lo~ =-1.05 mA 
For the ClK output: 

CL = 75 p1, IOL = 5.25 mA, IOH = -1.05 mA 
All input capacitance will be: 

Q = 10.p1 

WAVEFO~MS. 

eLK 

REi 
--_../ 

RESET 

ARi5Y ----------,~ 

SADV 

SRDYEN 

RDVO --------_--~ 

R~DV-----------------~ 

6:-420 230813-001 



APPLICATIONS 

. An Intelligent 
Data Base System 

Using the 8272 

6-421 

Contents 

INTRODUCTION 

The Floppy Disk 
The Floppy Disk Drive 

, 
SUBSYSTEM OVERVIEW 

Controller Electronics 
Drive Electronics 
COl'!troller/Drlve Interface 
Processor/Memory Interface 

DISK FORMAT 

Data Recording Techniques 
Sectors 
Tracks 
Sector Interleaving 

THE 8272 FLEXIBLE DISKETTE CONTROLLER 

Floppy Disk Commands 
Interface Registers 
Command/Result Phases 
Execution Phase 
Multi-sector and Multi-track Transfers 
Drive Status Polling 
Command Details 

THE DATA SEPARATOR 

Single Density 
Double Density 
Phase-Locked Loop Design 
In Itlallzation 
Floppy Disk Data 
Startup 
PLL Synchronization 

AN INTELLIGENT DISKETTE DATA BASE SYSTEM 

Processor and Memory 
Serial 110 
DMA 
Disk Drive Interface 

SPECIAL C~NSIDERATIONS 

APPENDIX 

Schematics 
Power Distribution 



, APPLICATIONS 

1. INTRODUCTION 

Most microcomputer systems in use today require low­
cost, high-density removable magnetic media for informa­
tion storage. In the area of removable media, a designer's 
choice is limited to magnetic tapes and floppy disks 
(flexible diskettes), both of which offer non-volatile 
data storage. The choice between these t,wo technologies 
is relatively straight-forward for a given application. 
Since disk drives are designed to permit random access to 
stored information, they are significantly faster than 
tape units. For example, locating information on a disk 
requires less than a second, while tape movement (even at 
the fastest rewind or fast-forward speed) often re­
quires several minutes. This random access ability per­
mits the use of floppy disks in on-line storage applica­
tions (where information must be located', read, and 
modified/updAted in real-time under program or 
operator control). Tapes, on the other hand, are ideally 
suited to archival or back-up storage due to their large 
storage capacities (more than 10 million bytes of data 
can be archived on a cartridge tape). 

A sophisticated cont~oller is required, to capitalize on 
the abilities of the disk storage unit. In the past, disk 
controller designs have required upwards of 150 ICs. 
Today, the single-chip 8272 Floppy Disk Controller 
(FDC) plus approximately 30 support devices can handle 
up to four million bytes of on-line data storage on four 
floppy disk drives. 

The Floppy Disk 

A floppy disk is a circular piece of thin plastic material 
covered with a magnetic coating and enclosed in a pro­
tective jacket (Figure 1). The circular piece of plastic, 
revolves at a fixed speed (approximately 360 rpm) within 
its jacket in much the same manner that a record revolves 
at a fixed speed on a stereo turntable. Disks are 
manufactured in a variety of configurations for various 
storage capacities. Two standard physical disk sizes are 
commonly used. The 8-inch disk (8 inches square) is the 
larger of the two 'sizes; the smaller' Size (5-114 inches 
square) is often referred to as a mini-floppy, Single­
sided disks can record information on only one side of the 
disk, while double-sided disks increase the storage 
capacity by recording on both sides. Iii addition; disks are 
classified as single-density or double-density. Double­
density disks use a modified recording method to store 
twice as much information in the same disk area as can be 
stored on a single-density disk. Table 1 lists storage 
capacities for standard floppy disk media. 

A magnetic head assembly (in contact with the disk) 
writes information onto the disk surface and subse­
quently reads the data back. This head assembly can 
move from the outside edge of the disk toward the 
center in fixed increments. Once the head assembly is 

6-422 

61===== 
• INDEX HOLE 

o 
I fL--

WRITE PROTECT NOTCH.-/' 

(\ 

Figure 1~ A Floppy Diskette 

positioned at one of these fixed positions, the head can 
read or write information in a circular path as the disk 
revolves beneath the head assembly. This method 
divides the surface into a fixed number of cylinders (as 
shown in Figure 2). There are normally 77 cylinders on a 
standard disk. Once the head assembly is positioned at a 
given cylinder, data may be read or written on either 
side of the disk. The appropriate side of the disk is 
selected by the read/write head address (zero or one). 
Of course, a single-sided disk can only use head zero. 
The combination of cylinder address and head address 
uniquely specifies a single circular track on the disk. The 
physical beginning of a track is located by means of a 
small hole (physical index mark) punched through the 
plastic near the center of the,disk. This hole is optically 
sensed by the drive on every revolution of the disk. 

Table 1. Formatted Disk Capacities 

Single-Density 
Format 

Byte/Sector 128 256 512 1024 
Sectors/Track 26 15 8 4 
Tracks/Disk 77 77 77 ( 77 

Bytes/Disk 256,256 295,680 315,392 315,392 

Double·Denslty 
Format 

Bytes/Sector 128 256 512 1024 
Sectors/Track 52 30 16 8 
Tracks/Disk 77 77 77 77 

Bytes/Disk 512,512 591,360 630,784 630,784 

AFN 01795A 



APPLICATIONS 

Each track is subdivided into a number of sectors (see 
detailed discussion in section 3). Sectors are generally 
128,256, 512, or 1024 data bytes in length. This track 
sectoring Ill1lY be accomplished by one of two tech­
niques: hard sectoring ,or soft sectoring. Hard sectored 
disks divide each track into a maximum of 32 sectors. 
The beginning of each sector is indicated by a sector 
hole punched in the disk plastic. Soft sectoring, the IBM 
standard method, allows software selection of sector 
sizes. With this technique, each data sector is preceded 
by a unique sector identifier that is read/written by the 
disk controller. 

A floppy disk may also contain a write protect notch 
punched at the edge of the outer jacket of the disk. This 
notch is detected by the drive and passed to,the con­
troller as a write protect signal. 

The Floppy Disk Drive 

The floppy disk drive is an electromechanical device 
that records data on, or·reads data from, the surface of 
a floppy disk. The disk drive contains head control elec­
tronics that move the head assembly one increment 
(step) forward (toward the center of the disk) or 
backward (toward the edge of the disk). Since the 
recording head must be in contact with the, disk m~terial 
in order to read or write information, the dis'k drive also 
contains head-load electronics. Normally the read/write 
head is unloaded until it is rtecessary to read or write in­
formation on the floppy disk. Once the head assembly 
has been positioned over the correct track on the disk, 
the head is loaded (brought into contact with the disk). 
This sequence prevents excessive disk wear. A small 
time penalty is paid when the head is loaded. Approx­
imately thirty to fifty milliseconds are needed before 
data may be reliably read from, or written to, the disk. 
This time is known as the head load time. If desired, the 
head may be moved from cylinder to cylinder while 
loaded. In this manner, ortly a small time interval (head 
settling time) is required before data may be read from 
the new cylinder. The head settling time is often shorter 
than the head load time. Typically, disk drives also con­
tain drive select logic that allows mor'e than one physical 
drive to be connected to the same interface cable (from 
the controller). By means of a jumper on the drive, the 
drive number may be selected by the OEM or end user. 
The drive is enabled only when selected; when not 
selected, all control signals on the cable are ignored. 

Finally, the drive provides additional signals to the 
system controller regarding the status of the drive and 
disk. These signals include: 

6-423 

Drive Ready - Signals the system that the drive door 
is closed and that a floppy disk is inserted into the 
drive. 

Track Zero - Indicates that the head assembly is 
located over the outermost track of the disk. 
This signal may be used for calibration of the disk 
drive at system initialization and after an error con­
dition. 

Write Protect - Indicates that the floppy disk loaded 
into the drive is write protected. 

Dual Sided - Indicates that the floppy disk in the 
drive is dual-sided. 

Write Fault - Indicates that an error occurred during 
a recording operation. 

IndeX - Informs the system that the physical index 
mark of the floppy disk (signifying the start of a data 
track) has been sensed. 

CURRENT TRACK 

Figure 2. Concentric Cylinders on a Floppy Diskette 

AFN 01795A 



APPLICATIONS 

2. SUBSYSTEM OVERVIEW 

A disk subsystem consists of the following functional 
electronic units: 

1. Disk Controller Electronics 

2. Disk Drive Electronics 

3. Controller/Di~k Interface. (cables, drivers, termina-
tors) . 

4. Controller/Microprocessor System Interface 

The operation of these functional units is discussed in 
the.following paragraphs. 

Controller Electronics 

The disk controller is responsible for converting high­
level disk commands (normally issued by software ex­
ecuting on the system processor) into disk drive com­
'mands. This function includes: 

1. Disk Drive Selection - Disk controllers typically 
manage the operations of multiple floppy disk 
drives. This controller function permits the system 
processor to specify which drive is to be used in a 
particular operation. 

2. Track Selection - The controller issues a timed se­
quence of step pulses to move the head from its cur­
rent location to the proper disk cylinder from which 
data is to be read or to which data is to be written. 
The controller stores the current cylinder number 
and computes the stepping distance from the current 
cylinder to the specified cylinder. The controller also 
manages the head select signal to select the correct 
side of the floppy disk. 

3. Sector Selection - The controller monitors the 
data on a track until the requested sector is sensed .. ~ 

4. Head Loading - The disk controller determines 
the times at which the head assembly is to be brought 
in contact with the disk surface in order to read or 
write data. The controller is also responsible for 
waiting until the head has' settled before reading or 
writing inf9rmation. Often the controller maintains 
the head loaded' condition for up to 16 disk revolu­
tions (approximately 2 seconds) after a read or write 
operation has been completed. This feature elimi­
nates the head load time during periods 'of heavy disk 
110 activity. 

5. Data Separation - The actual signal recorded on a 
floppy disk is a combination of timing information 
(clock) and dat,a. The serial READ DATA input 
(from the disk drive) must be converted into two sig­
nal streams: clock and data. '(The READ DATA in­
put operates at 250K bits/second for single-density 
disks and 500K bits/second for double-density 

disks.) The serial data must also be assembled into 
8-bit bytes for transfer to system memory. A byte 
must be assembled and transferred every 32 
microseconds for' single-density disks and every 16 
microseconds for double-density. 

6. Error Checking - Information recorded on a flop­
py disk is subject to both hard and soft errors. Hard 
(permanent) errors are caused bY media defects. Soft 
errors, on the other hand, are temporary errors 
caused by electromagnetic noise or mechanical inter­
ference. Disk controllers use a standard error check­
ing technique known as a Cyclic Redundancy Check 
(CRC). As data is written to a disk, a 16-bit CRC 
character is computed and also stored on the disk. 
When the data is subsequently read, the CRC charac­
ter allows the controller to detect data erro~s. Typi­
cally, when CRC errors are detected, the controlling 
software retries the failed operation (attempting to 
recover from a soft error). If data cannot reliably be 
read or written after a number of retries, the system 
software normally reports the error to the operiltor. 
Multiple CRC errors normally indicate unrecover­
able media error on the current disk track. Subse­
quent recovery attempts must be, defined by the sys­
tem designers and tailored to meet system interfacing 
requirements. 

Today, single-chip digital LSI floppy disk controllers 
such as the 8272 perform all the above functions with 
the exception of data separation. A data separation cir­
cuit (a combinatIon of digital and analog electronics) 
synchronizes itself to the actual data rate of the disk 
drive. This data rate varies from drive to drive (due to 
mechanical factors such as motor tolerances) and varies 
from disk to disk (due to temperature effects). In ·order 
to operate reliably with both single- and double-density 
storage, the data separation circuit must be based on 
phase-locked loop (PI;.L) technology. The phase-locked 
loop data separation logic is described in section 5. The 
separation logic, after SYnchronizing with the data 
stream, supplies a data window to .the LSI disk con­
troller.. This window. differentiates data information 
from clock information within the serial stream. The 
controller uses this window to reconstruct the data 
previously recorded on the floppy disk. 

Drive Electronics 

Each floppy disk drive contains digital electronic cir­
cuits that translate TTL-compatible command signals 
into electromechanical operations (such as drive selec­
tion and head movement/loading) and that sense and 
report disk or drive status to the controller (e.g., drive 
ready, write fault, and write protect). In addition, the 
drive electronics contain analog components to sense, 
amplify, and shape data pulses read from, or written to, 
the floppy disk surface by the read/write head. 

6.-424 AFN 01795A 



APPLICATIONS 

Controller/Drive Interface 

The controller/drive interface consists of high-current 
line drivers, Schmitt triggered input gates, and flat or 
twisted pair cable(s) to connect the disk drive electronu:s 
to the controller electronics. Each interface signal line is 
resistively terminated at the end of the cable farthest 
from the line drivers. Eight-inch drives may be directly 
interfaced by means of SO-conductor flat cable. 
Generally, cable lengths should be less than ten feet in 
order to maintain noise immunity. 

Normally, provisions are made for up to four disk 
drives to share the same interface cable. The controller 
may operate as many cable assemblies as practical. LSI 
floppy disk controllers typically operate one to four 
drives on a single cable. 

Processor/Memory Interface 

The disk controller must interface to the system proc­
essor and memory for two distinct purposes. First, the 
processor must specify disk control and command 
parameters to the controller. These parameters include 
the selection of the recording density and specification 
of disk formatting information (discussed in section 3). 
In addition to disk parameter specification, the .proc­
essor must also send commands (e.g., read, write, seek, 
and scan) to the controller. These commands require the 
specification of the command code, drive number, 
cylinder address, sector address, and head address. 
Most LSI controllers receive commands and parameters 
by means of processor I/O instructions. 

In addition to this I/O interface, the controller must 
also be designed for high-speed data transfer between 
memory and the disk drive. Two implementation 
methods may be used to coordinate this data transfer. 
The lowest-cost method requires direct processor in­
tervention in the transfer. With this method, the con­
troller issues an interrupt to the processor for each data 
transfer. (An equivalent method allows the processor to 
poll an interrupt flag in the controller status word.) In 
the case of a disk write operation, the processor writes a 
data byte (to be encoded into the serial output stream) 
to the disk controller following the receipt'of each con­
troller interrupt. During a disk read operaiion, the proc­
essor reads a data byte (previously assembled from the 
input data stream) from the controller after each inter­
'rupt.The processor must transfer a data byte from the 
controller to memory or transfer a data byte from 
memory to the disk controller within 16 or 32 
microseconds after each interrupt (double-densitY/lnd 
single-density response times, respectively). 

If the system processor must service a variety of other 
interrupt sources, this interrupt method may not be 
practicat, especially in double-density systems. In this 
case, the disk controller may be interfaced to a 'Direct 

Memory Access (DMA) controller. When the disk con­
troller requires the transfer of a data byte, it simply ac~ 
tivates the DMA request line. The DMA controller in­
terfaces to the processor and, in response to the disk 
controller's request, gains. control 'of the memory ini.er­
face for a short period of time-long enough to transfer 
the requested data byte to/from memory. See section 6 
for a detailed DMA interface description. 

3. DISK FORMAT 

New floppy disks must be written with a fixed format by 
the controller before these disks may be used to store 
data. Formatting is a method of taking raw media and 
adding the necessary information to permit the con­
troller to read and write data without error. All format­
ting is performed by,the disk controller on a track-by­
track basis under the direction of the system processor. 
Generally, a track may be formatted at any time. 
Ho-.yever, since formatting "initializes" a complete disk 
track, all previously written datli is lost (after a format 
operation). A format operation is normail~ used only 
when initializing,new floppy disks. 'Since soft-sectoring 
in such a predominant formatting technique (due to 
IBM's influence),' the following discussion will limit 
itself to soft-sectored formats. 

Data Recording Techniques 

Two standard data recording techniques are used to 
combine'clock and data information for storage on a 
floppy disk. The single-density technique is referred to 
asFM encoding. In FM encoding (see Figure 3),a dou­
ble frequency encoding technique is used that inserts a 
data bit between two adjacent clock bits. (The presence 
of a data bit represents a binary "one" while the 
absence of a data bit represents a binary "zero. ") The 
two adjacent clock bits are referred to as a bit cell, and 
except for unique field identifiers, all clock bits written 

, on the disk ar~ b,inary "ones." In: FM encoding, each 
data bit is written at the center of the bit cell and the 
clock bits are written at the leading edge of the bit cell. 

The encoding used for double-density recording is 
termed MFM encoding (for "Modified FM"). In MFM 
encoding (Figure 3) the data bits ate again written at the 
center of the bit cell. However, a clock bit is written at 
the leading edge of the bit cell only if no data bit was 
written in the previous bit cell and no data bit will be' 
written in the present bit cell. 

Sectors 

Soft-sectored floppy disks divide each track into a 
number of data sectors. Typically, sector sizes of 128, 
256, 512, or 1024 data bytes are permitted. The sector 
size; is specified'when the track is initially formatted by 
the controller. Table 1 lists the single- and double-

6-425 AFN 01795A 



APPLICATIONS 

density data storage capliCitiC$ for each of the four· sec­
tor sizes. Each sC\;tor within a track is comj)Osed of the 
following four fields (illustrated in Figure 4): 

1. Sector ID Field- This field, consisting of seven 
. ,bYtes, IS Written only wheri the track is formatted. 
The ID field provides the sector identification that is 
used by the controller when a sector must be read or 
written. The first byte of the field is the ID address 
mark, a unique coding that speciijes the beginning of 
the ID field. The second, third, and fOurth bytes are 
the cylinder, head, and sector addresses, respective­
ly, and the fifth byte is the sector length code. The 
last two bytes are the 16-bit eRe character for the 
ID field. During formatting, the controller supplies 
the address mark. The cylinder, head, and sector ad­
dtesses and the sector length code are supplied to the 
controller by the processor' software. The eRe 
character is derived by the controller from the data'in 
the first five bytes. 

2. Post ID Field Gap - The post ID field gap (gap 2) 
is writteillniti8l1y when the track is formatted. Dur­
irig subsequentwrite operations, the drive's write cir­
cuitry is enabled within the gap and the trailing bytes 
of the 'gap are rewritten each time the sector is up­
dated (written). During subsequent read operations, 
the trailing bytes of the gap are used to synchronize 
the data separator logic with the upcoming data 
field. . 

3. Data Field':"" The length (number of data bytes) of 
the data field is determined by software when the 
track is formatted. The first byte· of the data field is 
the data address mark, a unique coding that specifi~s 

the beginning of the data field. When a sector is to be 
deleted, (e.g., a hard error on the disk), a deleted 
data address mark is written in place of the data ad­
dress mark. The last two bytes of the data field com­
prise the eRe character . 

4. Post Data Field Gap - The post data field gap 
, (gap 3) is written when the track is formatted and 

separates the preceding data field from the next 
physiCal ID field on the track. Note that a post data, 
field gap is not written following the last physiCal 
sector on a track. The,gap itself cOntains a program­
selectable number of bytes .. Following a sector up­
date (write) operation, the drive's write logic is 
disabled during the gap. The actual size of gap- 3 is 
determined by the maximum number of data bits 
that can be recorded on a track, the number of sec­
tors per track and the total sector size (data plus 
overhead information). The gap size must be ad­
justed so that it is large enough to contain the discon­
tinuity generated on the floppy disk when the write 
current is turned on or off (at the start or completion 
of a disk write operation) and to contain a syn­
chronization field for the upcoming ID field (of the 
next sector). On the other hand, the gaps must be 
small enough so that the total number of data bits re­
quired on the track (sectors plus gaps) is less than the 
maximum number of data bits that can be recorded 
on the track. The gap size must be specified for all 
read, write, and format operations. The gap size 
used during disk reads and writes must be smaller 
than the size used to format the disk to avoid the 
splice points between contiguous physiCal sectors. 
Suggested gap sizes are listed in Table 9. 

I 1 Ii 11 I 0 I 1 I 0 I 0 I 0 1 I 1 o I 0 I 0 

FM 

MFM 

NOTE THAT THE FM BIT CELL IS TWICE THE SIZE OF THE MFM BIT CELL. THtiS, THE 
FM TIME SCALE IN THIS FIO~RE IS 4 .slBII WHll.E THE MFM TIME SCALE IS 2.slBIT . 

Figura 3. FM IiInd MFM Encoding 

,6-426 AFN 01795A 



~PPLl.CATIONS 

Tracks 
The overall format for a track is Wustratecl in Fisure 4. 
Each track consists of the following fieldsl 

1. Pre-'lndex Gap ...:... The pre-index gap (sap S) is writ­
ten only when the track is forJDattCd. 

2. Index Address Mark - The index address mark 
consists of a unique code that indicates the beginning 
of a data track. One index mark is written on each 
track when the track is formatted. 

3. Post Index Gap - The post index gap (sap 1) is 
used durina disk read and write o~erations to syn-

npHYIICAL ----_ ...... ~: 
f~ FINAL PRE- INDEX POST 

SECTOR INDEX INDEX 
DATA GAP 

GAP ADDRESS GAP 
FIELD (GAP 4) 

(GAP I) MARK (GAP 1) 

I I 

chronize the data separator logic ,with the data to be 
read from the ID field (of the flJ'st sector). The post 
index gap is written only when the disk is formatted. 

4. Sectors - The sector information (discussed above) 
is repeated o~ for each sector on the track. 

S. Final Gap - The fmal gap (sap 4) is written when 
the track is formatted' and extends from the last 
physical data field on the track to the physical index 
mark:' The length of this gap is dependent on the 
number of bytes per sector sPecified, the lengths of 
the program-selectable gaps specified, and the drive 
speed. 

SECTOR POIT-ID 
FIELD SECTOR 1 

1 GAP DATA FIELD 
ID FIELD (GAP II 

HEXFF SYNC, I HEXFF I SYNC (HEXOD) (HEX 00) , 

I 

I DATA I I CRC I CRC I A=~ 121. an USER DATA BYTES BYTE 1 BYTE 2 

" 

JL J 

POBT POST 
POSTID DATA POBTID DATA SECTOR ~,-/ lECTOR FIELD lECTOR 2 FIELD SECTOR FIELD FIELD , 8 2 GAP DATA FIELD GAP DATA ' GAP ID FIELD' GAP IDFIELD 

(GAPS) (GAP II (GAPS) (GAP II J. FIELD 

I I " " . 
I SYNC II I SYNC HEX FF (H~ 00) HEX FF (HEX 00) 

I ID TRACK J 'HEAD 1 SECTOR I SECTOR I CRe I CRe J ADDRESS 
MARK ADDRESS ADDRESS ADDRESS UlNGTH BYTE 1 BYTE 2 

BYTE 1 BYTE 2 SYTE4 BYTES BYTEe BYTE 7 

Figure 4. Standard Floppy Dlske"e Track Format (From sac 204 Manual) 

6-427, AFN 01795A 



APPLICATIONS 

Sector Interleaving '. 
, ' 

The initial formatting of a floppy disk determineS where 
sectors are located within a track. It is not necessary to 
allocate sectors sequentially around the traCk (i.e., 
1,2,3, .. .',26). In fact, is is often advantageous to place 
the sectors ,on 'the track in a non-sequential order.Se­
quential sectQr ordering optimizes sector access times 
during multi-sector transfers (e.g., when a program is 
loaded) by permitting the number of sectors specified 
(up to an entire; track) to be transferred within a single 
revolution of the disk. A technique known ~~ector in­
terleaving optimizes access times when, altho. sectors 
are accessed sequentially, a small amount of processing 
must be performed between sector reads/writes. For ex­
ample, an editing program performing a text search 
reads sectors sequentially, and after each sector is read, 

, performs a software search. If a match is not found, the 
- software issues a read request for the next sector. Since 

the floppy disk continues to rotate during the time that 
the software executes, the next physical sector is already 
passing under the read/write head when the read request 
is issued, and the processor must wait for another com­
plete revolution of the disk (approximately 166 
milliseconds), before the data may actually be input. 
With interleaving, the sectors are not stored sequentially 
on a track; rather, each sector is physically removed 
from the previous sector by soine number (known as the 
interleave factor) of physical seCtors as shown in Figure 

's. This method of sector allocation provides the proc­
essor additional execution time between sectors on the 
disk. For example, wi~ a 26 sector/track format, an in­
terleave factor of 2 provides 6.4 milliseconds of proces­
sing time between sequential 128 byte sector accesses. 

Figure 5. Interleaved Sector Allocation Within a Track 

To calculate the correct interleave factor, the maximum 
processor time between sector operations must be divid­
ed' by the time required for a complete sector to pass 
under the disk readlwrite head. After determining the 
interleave f~or, the correct sector numbers,are p~sed 
to the disk controller (~n the exact order that they are to 
physically appear on the track) during the execution of a 
format operation. ' 

4. THE 8272 FLEXIBLE DISKETTE 
CONTROLLER 

The 8272 is a single-chip LSI Floppy Disk Controller 
(FDq that contains the circuitry necessary to imple­
ment both single-and double-density floppy disk storage 
subsystems (with up to four dual-sided disk drives per 
FDq. The 8272 supports the IBM 3740 single-density 
recording format (FM) and the IBM System 34 double­
density recording format (MFM). With the 8272, iess 
than 30 ICs are needed to implement a complete disk 
subsystem. The 8272 accepts and executes high-level 
disk commands such as formai track, seek, read sector, 
write sector, and read track. All data synchronization 
and error checking is automat,icallY performed by the 
FDC to ensure reliable data storage and subsequent 
retrieval. External logic is reqUired only for the genera­
tion of the FDC master clock and write clock (see Sec­
tion 6) and for data separation (Section S). The FDC 
provides signals that control the startup and base fre­
quency selection of the dat,a separator. These signals 
greatly ~e the design of a phase-locked loop data 
separator. 

In addition to the data separator interface signals, the 
8272 also provides the necessary signals to interface to 
microprocessor systems with or without Direct Memory 
Access (DMA) ~apabilities. In order to interface to a 
large number of commercially avllilable floppy disk 
drives, the FDC permits software specification of the 
track stepping -rate, the head load time, and the head 
unload time. 

The pin configuration and internal block diagram of the 
8272 fs shown in Figure 6. Table 2 contains a description 
for each FDC interface pin. ' 

Floppy Disk Commands 

The 8272 el'ecutes fifteen high-level disk interface 
""mmands: 
Specify 
Sense Drive Status 
Sen~ htterrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read ,Deleted Data 

6.r428 

Write Data 
Write Deleted Data 
Read Track 
Read ID 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 

AFN 01795A 



APPLICATIONS 

Each command is initiated by a multi-byte transfer from 
the processor to the FOC (the transferred bytes contain 
command and parameter information). After complete 
command specification, the FOC automatically ex­
ecutes the command. The command result data (after 
execution of the command) may require a multi-byte 
transfer of status information back to the processor. It 
ill QOIIlvenient to consider each FOC command as con­
sisting of the following thre,e phases: 

COMMAND PHASE: The executing program 
transfers to the FOC all the 
information required to per­
form a particular disk opera­
tion. The 8272 automatically 
enters the command phase 
after RESET and following 
the completion of the result 
phase (if any) of a previous 
command. 

RESET Vee DBo., 
Rii Rw/sEEK 

Viii lCT/DIR 

Ci FRISTP 

Ao HDl 

os. RDY 

WPITS 

FlTITRKO 

PSo 

PS, TERMINAL 
DB, WR DATA COUNT 

DB, DSo 

DB, OS, 

DRQ HDSEl 

DAcK MFM 

TC WE 

IDX Vee 

INT RDDATA 

ClK DW 
e"S 

GND WRClK 
elK ---. 
Vee --.. 

GND -+-

EXECUTION PHASE: The FOC performs the 
operation as instructed. The 
execution phase is entered 
immediately after the last 
command parameter is writ­
ten to the FDC in the 
preceding command phase. 
The execution phase normal­
ly ends when the last data 
byte is transferred to/from 
the disk (signalled by the TC 
input to the FDC) or when an 
error occurs. 

RESULT PHASE: After completion of the disk 
operation, status and other 
housekeeping information 
are made available to the 
processor. After the proc­
essor reads this information, 
the FOC reenters the com­
mand phase and is ready to 
accept another command. 

READY 
WRITE-PROTECTITWO SIDE 
INDEX 
FAULTITRACK 0 

DRIVE SELECT 0 
DRIVE SELECT 1 
MFM MODE 

IIW/sEEK 
HEAD lOAD 
HEAD SELECT 
lOW CURRENT/DIRECTION 
FAULT RESETfSTEP 

Figure 6. 8272 Pin Configuration and Internal Block Diagram 

AFN 01795A 



APPLICATIONS 

Table 2. 8272 FOe Pin Description 

Number Pin 110 To/From Description 
Symbol 

I RST I uP Reset. Active-high signal that places the FDC in the "idle" state and all 
disk drive output signals are forced inactive (low). This input must be 
held active during power on reset while the RD and WR inputs are active. 

2 RD I· uP Read. Active-low control signal that enables data transfer ftom the FDC 
to the data bus. 

3 WR I· uP Write. Active-low control signal that enables data transfer from the data 
bus into the FDC. 

4 CS I uP Chip Select. Active-low control signal that Selects the FDC. No reading or 
writing will occur unless the FDC is selected. 

S Ao I· uP Address. Selects the Data Register or Main Status Register for input/out-
put in conjunction with the RD and WR inputs. (See Table 3.) 

6-13 IlBo-DB? I/O· uP Data Bus. Bidirectional three"state 8-bit data bus. 

14 DRQ 0 DMA DMA Request. Active-high output that indicates an FDC request for 
DMA services. 

15 DACK, I DMA DMA Acknowledge. Active-low control signal indicating that the re-
I quested DMA transfer is in progress. 

16 TC I DMA Terminal Count. Active-high signal that causes the termination of a com-
mand. Normally, the terminal count input is directly connected to the 
TCIEOP output from the DMA controller, signalling that the DMA 
transfer has been completed. In a non-DMA environment, the processor 
must count data transfers and supply a TC signal to the FDC. 

17 lOX I Drive Index. Indicates detection of the physical index mark (the beginning of a 
track) on the selected disk drive. 

1,8 INT 0 uP Interrupt Request. Active-high signal indicating an 8272 interrupt service 
request. 

19 CLK I Clock. Signal phase 8 MHz clock (50"70 duty cycle). 

20 GND Ground. DC power return. 

21 WRCLK I Write Clock. SOO kHz (FM) or I MHz (MFM) write clock with a constant 
pulse width of 2S0 ns (for both FM and MFM recording). The write clock 
must be present at all times. 

22 DW I PLL Data Window. Data sample signal from the phase-locked loop indicating 
that the FDC should sample input data from the disk drive. 

23 RDDATA I Drive Read Data. FDC input data from the selected disk drive. 

24 YCO 0 PLL YCO Sync. Active-high output that enables the, phase-locked loop to 
synchronize witli the input data from the disk drive. 

2S WE 0 Drive Write Enable. Active:high output that enables the disk drive write gate: 

26 MFM 0 PLL MFM Mode. Active-high output used by external logic to enable the 
MFM double-density recording mode. When the MFM output is low, 
single-density FM recording is indicated. 

27 HDSEL 0 Drive Head Select. Selects head 0 or head I on a dual-sided disk. 

28,29 DS .. DSo 0 Drive Drive Select. Selects one of four disk drives. 

30 " WRDATA 0 Drive Write Data. Seriai data stream (combination of clock and'data bits) to be 
writtert on the disk. 

31,32 PSIoPSO 0 Drive Precompensation (pre-shift) Control. Write precompensation output con-
trol d~ring MFM mode. Specifies early, late. and normal timing signals. 
See the discussio,n in Section S. , 

6~430 AFN 01795A 



APPLICATIONS 

Table 2. 8272 FDC Pin Description (continued) 

Number Pin 1/0 ToiFrom Description 
Symbol 

33 FLT/TRKO I Drive Fault/Track O. Senses the disk drive fault condition in the Read/Write 
mode and the Track 0 condition in the Seek mode. 

34 WP/TS I Drive Write Protect/Two-Sided. Senses the disk write protect status in the 
Read/Write mode and the dual-sided media status in the Seek mode. 

35 ROY I Drive Ready. Senses the disk drive ready status. 

36 HDL ·0 Drive Head Load. Loads the disk drive read/write head. (The head is placed in 
contact with the disk.) 

37 FR/STP 0 Drive Fault Reset/Step. Resets the fault flip-flop in the disk drive when 
operating in the Read/Write mode. Provides head step pulses (to move 
the head from one cylinder to another cylinder) in the Seek mode. 

38 LCT/DIR 0 Drive Low Current/Direction. Signals that the recording head has been position-
ed over the inner cylinders (44-77) of the floppy disk in the ReadlWrite 
mode. (The write current must be lowered when recording on the phys-
ically shorter inner cylinders of the disk. Most drives do not track the ac-
tual head position and require that the FDC supply this signal.) Deter-
mines the head step direction in the Seek mode. In the Seek mode, a high 
level on this pin steps the read/write head toward the spindle (step-in); a 
low level steps the head away from the spindle (step-out). 

39 RW/SEEK 0 Drive Read, Write/Seek Mode Selector. A high level selects the Seek mode; a 
low level selects the Read/Write mode. 

40 Vee + SV DC Power. 

"Disabled when es is high. 

Interface Registers 

To support inf.ormation transfer between the FDC and 
the system processor, the 8272 contains two 8-bit 
registers: the Main Status Register and the Data 
Register. The Main Status Register (read only) contains 
FDe status information and may be accessed at any 
time. The Main Status Register (Table 4) provides the 
system processor with the status of each disk drive, the 
status of the FDC, and the status of the processor inter­
face. The Data Register (read/write) stores data, com­
mands, parameters, and disk drive status information. 
The Data Register is used to program the FDe during 
the command phase and to obtain result information 
after completion of FDe operations. Data is read from, 
or written to, the FDe registers by the combination of 
the AO, RD, WR, and CS signals, as described in 
Table 3. 

In addition to the Main Status Register, the FDe con­
tains four additional status registers (STO, STl, ST2, 
and ST3). These registers are only available during the 
result phase of a command. 

Table 3. FDC ReadlWrlte Interface 

cs . Ao RD WR Function 

0 0 0 1 Read Main Status Register 
0 0 I 0 Illegal 
0 0 0 0 Illegal 
0 1 0 0 Illegal 
(l 1 0 1 Read from Data Register 
0 1 1 0 Write into Data Register 
1 X X X Data Bus is three-stated 

6-431 AFN 01795A 



APpLICATIONS 

Table 4. Main Status Register Bit Definitions 

Bit Symbol Description 
Number 

0 DaB Disk Drive 0 Busy. Imk Drive 0 is 
in the Seek mode. 

I DIB Disk Drive I Busy. Disk Drive I is 
in the Seek mode. 

2 D2B Disk Drive 2 Busy. Disk Drive 2 is 
in the Seek mode. 

3 D3B Disk Drive 3 Busy. Disk Drive 3 is 
in the Seek mode. 

4 CB FDC Busy. A read or write com-
mand is in process. ' 

S NDM Non-DMA Mode. The FDe is in 
the non-DMA mode when this bit is 
high. This bit is set only during the 
execution phase of commands in 
the non-DMA mode. Transition to 
a low leve} indicates that the exe-
cution phase has ended. 

6 DIO Data Input/Output. Indicates the 
direction of a data transfer between 
the FOC and the Data Register. 
When DIO is high, data is read 
from the Data Register by the proc-
essor; when DIO is low, data is 
written from the processor to the 
Data Register. 

7 RQM Request for Master. Indicates that 
the Data Register is ready to send 
data to, or receive data from, the 
processor. 

Command/Result Phases 

Table 5 lists the 8272 command set. For each of the fif­
teen commands, command and result phase data 
transfers are listed. A list of abbreviations used in the 
table is given in Table 6, and the contents of the result 
status registers (STO-ST3) are illustrated in Table 7. 

The bytes of data which are sent to the 8272 during the 
command phase, and are read out of the 8272 in the 
result phase, must occur in the order shown in Table S. 
That· is, the command code'must be sent first and .the 
other bytes sent in the prescribed sequence. All bytes of 
the command and result phases must be read/written as 
described. After the last byte of data in' the command 
phase is sent to the 8272 the execution phase 
automatically starts. In a similar fashion, when the last 
byte of data is read from the 8272 in the result phase, 

the command is automatically ended and the 8272 is 
, ready for a new command. A command may be aborted 
by simply raising the terminal count signal (pin 16). This 
is a convenient means of ensuring that the processor 
may always gain control of the 8272 (even if the disk 
system hangs up in an abnormal manner). 

It is important to note that during the result phase all 
bytes shown in Table 5 must be read. The Read Data 
command, for example, has seven bytes of data in the 
result'phase. All seven bytes must be read in order to 
successfully complete the Read Data command. The 
8272 will not accept a new command until all seven 
bytes have been reaq. The number of command and 
result bytes varies from command-to-command. 

In order to read data from, or write data t9, the Data 
Register during the command and result phases, the 
system processor must examine the Main Status Register 
to determine if the Data Register is available. The DIO 

. (bit 6) and RQM (bit 7) flags in the Main Status Regis,ter 
must be low and high, respectively, before each byte of 
the command word may be written into the 8272. Many 
of the commands require multiple bytes, and as a result, 
the Main Status Register must be read prior to each byte 
transfer to the 8272. To read status bytes during the 
result phase, DIO and RQM in the Main Status Register 
'must both be high. Note, checking the Main Status 
Register in this manner before each byte transfer 
to/from the 8272 is required only in the command and 
result phases, and is NOT required during the execution 
phase. 

execution Phase 

All data transfers to (or from) the floppy drive occur 
during the execution phase. The 8272 has two primary 
modes of operation for data transfers (selected by 
the specify command); 

1. DMA mode 

2. non-DMA mode 

In the DMA mode, DRQ (DMA Request) is activated 
for each transfer request. The DMA controller responds 
to DRQ with DACK (DMA Acknowledge) and RD (for 
read commands) or WR (for write commands). DRQ is 
reset by the FDC during the transfer. INT is activated 
after the last data transfer, indicating the completion of 
the execution phase, and the beginning of the result 
phase. In the DMA mode, the terminal count 
(TC/EOP) output of the DMA controller should be 
connected to the 8272 TC input to properly terminate 
disk data transfer commands. 

6-432 AFN 01795A 



APPUCATIONS 

Table 5. aan Command Sat 

I DATA_ I DATA.US 

PtfASE - IDr "- lis D.t IIa Dz II, 1101 -- - - Dr "- lis D.t IIa Dz II, IIa --AEADDATA READATRM:K 

Command W lIT MFM SK 0 0 , , 0 Command~ ~ W 0 MFM SK 0 0 0 , 0 c:omn..I~ 

W 0 0 0 0 0 HOS OS, DSO W 0 0 0 0 0 HOSOS'DSO 
W C Soclor 10 In_ W C Soclor 10 in_Ian 
W H prior to Command W H prior to c:omn..I 
W A _Ian W A ~ W N W N 
W Ear W Ear 
W GPL W GPL 
W DTL W DTL - o.ta Imnster Exocutlan 

DIIIa_ 

_.heFDD 
_ ... FDD _ ... """....,....... _the""" _ 

FOe_.he -" A STO Status Infonnation compIebt 'rock 
A ST, _,Command -_ ... 
A ST2 ..... utlan phyIIcoI-
A C _to Ear 

'A H Sector ID informatiOn 
A A -.......- Resu" A STO Status information 
A N execution A ST' -~ A ST2 _tton 

AEAD DELETED DATA A C 
Command W lIT MFM SK 0 , , 0 0 Command coo.. A H _IDln_ 

W 0 0 0 0 0 HOS OS, DSO 
A. A _COOnmIInd 
A N _ution 

W C _10 in_ 
W H prior to Command AEADID 
W A IIII<ICUIion Command W 0 MFM 0 0 , 0 , 0 Command~ W N 
W EC' W 0 0 0 0 0 HDSOS'DSO 
W GPL 
W DTL Execution _,,,,,,_.10 

Execution DlllallanSter "'-onthe 
tI8Ck Is stontd In _theFDD DalliRag _ _ ... """....,.-

ResuU A _____ STO SlaIusin_ _U A STO Status infomlation 
A ST1 _,Command A ST, _Command 
A ST2 _Ian A ST2 _Ian 
A C A C 
A H _IDinlo_ A, H _IDin_ 
A A _Command A' A during Execution 
A N ..... utlan A N ~ 

WRITE DATA FORMAT A TRACK 

Command W lIT MFM 0 0 0 , 0 , Comm_~ Command W 0 MFM 0 0 , , 0 , Command~ 

W 0 0 0 0 0 HOSOS'DSO W 0 0 0 0 0 HOS OS, DSO 

W C Sector ID information W N er-
W H prior to Command W SC --W A ex_tton W GPL Gop 3 
W N W '0 A_Byte 
W Ear 
W GPL Exocutlan FOC_an 
W ______ OTL ____ -"'-Execution DIIIa .......... Resul' A STO Status information 

between the main· A ST' _Command 
system and the FDD A ST2 execution 

Result R STO Status InformatiOn A C 
R ST' _Command R 'H "'_ ...... heID 
R, ST2 ...... lIon R A Information .... no 
R C R N meaning 

R H Sector 10 information SCAN EQUAL 
R R _COmmand 
R N ...... Iion Command W lIT MFM SK , 0 0 0 , Command~ 

WIUTE DELETED DATA W 0 0 0 0 0 HOS OS, DSO 

Command W lIT MFM 0 0 , 0 0 , Command coo.. W C SacIor 10 information 
W H prior to COmmand 

W 0 0 0 0 0 HOS OS, DSO W R execution 
W C Sector 10 information W N 
W H prior to Command W Ear 
W A execution W GPL 
W N 'W STP 
W Ear 
W GPL Execution Dlllacom"""", 
W OTL _.heFDD 

Execution DeIa .......... -........ ....,....... __ ... FDD - R STO Status intormation 
_the·mai....,.tem A ST1 _Command 

-" R STO SIatus information A ST2 execution 

R ST1 _Command R C 
R ST2 _Ion R H Sector 10 information 

R C R R _Command 

R' H sector 10 inlonnallon R N execution 
R R _COmmand 
R N _bon 

AF~01795A 



APPLICATIONS 

Table 5. Command Set (Continued) 

I OATA BUS I I OATA BUS 

PHASE RIW I 07 °6 Os °4 03 °2 °1 Do REMARKS PHASE RIW °7 De Os °4 °3 °2 °1 00 REMARKS 

SCAN LOW OR EQUAL RECAUMATE 

Command W MY MFM SK 1 1 0 0 1 Command Codes Command W 0 0 0 0 0 1 1 1 COMmand Codes 
W 0 0 0 0 0 HOS OSI OSO W 0 0 0 0 0 0 OSI 0$0 
W C Sector 10 information Execu~~on Head retracted to 
W H prior Command Track 0 
W R execution 
W N SENSE INTERRUPT STATUS 
W EOT 

Command W 0 0 '0 0 1 0 0 0 Command Codes W GPL 
W ______ STP _____ Result R _______ STO ______ Status Informatton at 

R C the end of each seek 
Execution Data compared operation about the 

between the FoD FOC 
and the main-system 

SPECIFY 

Result R STO Stfltus information Command W 0 0 0 0 0 0 1 1 Command Codes 
R ST1 _____ after Command 
R ST 2 execution W ~SPT ___ .. _ HUT - Timer Settings 
R C W HLY • NO 

R _____ H Sector 10 information SENSE DRIVE STATUS 
R R after Command 
R N execullon Command W .0 0 0 0 0 1 0 0 Command Codes 

SCAN HIGH OR EQUAL W 0 0 0 0 0 HOS OS1 DSO 

Result R _____ ST3 Status information 
Command W MT MFM SK 1 1 1 0 1 Command Codes about the FDD 

W 0 0 0 0 0 HOS OSI OSO 
SeEK 

W C Sector 10 information 
W H prior Command Command W 0 0 O· 0 1 1 1 1 Command Codes 
W A executIon W 0 0 0 0 0 HOS DSI OSO 
W N 

W C W EOT ---------
W GPL 
W STP ___ ~_ Execution Head IS pOSItioned 

over proper Cylinder -

Execution Data compared on Diskette 

between the FDD INVALID 
and the main-system v 

Command W ____ Invalid Codes ___ ~ Invalid Command 
Result R STO Status Information Codes (NoOp- FDC 

R ___ ~_STI after Command goes mto Standby 
R ST 2 execution State) 
R C_~ ____ Result R STO S1 0= 80 
R H Sector 10 information (16) 
R R after Command 
R N execution 

Table 6. Command/Result Parameter Abbreviations 

Symbol Description Symbol Description 

C Cylinder Address. The currently selected EOT End of Track. The final sector number of the 
cylinder address (0 to 76) on the disk. current track. 

D Data Pattern. The pattern to be written in GPL Gap Length. The gap 3 size. (Gap 3 is the 
each sector data field during formatting. space between sectors excluding the VCO syn-

DSO,DSI Disk Drive Select. chronization field as defined in section 3.) 

DSI DSO H Head Address. Selected head: 0 or I (disk side, 
0 0 Drive 0 o or I, respectively) as encoded in the sector 
0 I Drive I ID field. 
I 0 Drive 2 HLT Head Load Time. Defines the time interval 
I 1 Drive 3 that the FDC waits after loading the head t 

DTL Special Sector Size. During the execution of before initiating a read or write operation. 
disk read/write commands, this parameter is Programmable from 2 to 254 milliseconds (in 
used to temporarily alter the effective disk sec- increments of 2 ms). 
tor size. By setting N to zero, DTL may be HUT Head Unload Time. Defines the time interval 
used to specify a sector size from I to 256 from the end of the execution phase (of a read 

. bytes in length. If the actual sector (on the 'or write command) until the head is unloaded. 
diskette) is larger than DTL specifies, the re- Programmable from 16 to 240 milliseconds (in 
mainder of the actual sector is not passed to increments of 16 ms). 
the system during read commands; during write 
commands, the remainder of the actual sector MFM MFM/FM Mode Selector. Selects MFM 

is written with all-zeroes bYtes. DTL should double-density recording mode when high, FM 

be set to FF hexadecimal when N is not zero. single-density mode when low. 

6-434 AFN 01795A 



APPLICATIONS 

Tabl. 8. 'Command/R'lult Parameter Abbrevlatlonl (continued) 

Symbol Description Symbol DlICription 

MT Multi-Track Selector. When set, thit flag SK Skip FIaa. When this flag is set, sectors con-
selects the multi-track operating mode. In this tainina deleted data address marks will auto-
mode (used only with dual-sided disks), the maticaIly be skipped durin& the execution of 
FCC treats a complete cylinder (under both multi-sector Read Data or Scan commands. In 
read/write head 0 and read/write head 1) as a the same manner, a sector containina a data 
sinale track. The FDC operates as if this address mark will automatically be skipped 
expanded track started at the first sector under durin& the execution of a multi-sector Read 
head 0 and ended at the last sector under head Deleted Data command. 
1. With this flag set (high), a multi-sector read 

SRT' Step Rate Interval. Dermes the time interval 
opeation will automatically continue to the 

between step pulses issued by the FDC (track-
fIrSt sector under head 1 when the FDC 
finishes operating on the last sector under head 

to-track access time). Programmable from I to 

O. 
16 milliseconds (in increments of 1 ms). 

N Sector Size. The number of data bytes within a 
STO Status Resister 0-3. Resisters within the FDC 
STl that store status information after a command 

sector. (See Table 9;) ST2 has been executed. This status information is 
ND Non-DMA Mode Flag. When set (high), this ST3 available to the processor durin& the Result 

flag indicates that the FDC is to operate in the Phase after command execution. These 
non-DMA mode. In this mode, the processor registers may only be read after a command 
is interrupted for each data transfer. When has been executed (in the exact order shown in 
low, the FDC interfaces to a DMA controller Table S for each command). These registers ' 
by means of the DRQ and DACK signals. should not be confused with the Main Status 

R Sector Address. Specifies the sector number to Register. 

be read or written. In multi-sector transfers, STP Scan Sector Increment. During Scan opera-
this parameter specifICS the sector number of ' tions, this parameter is added to the current 
the first sector to be read or written. sector number in ordei' to determine the next -, 

sector to be scanned. SC Number of Sectors per Track. Specifies the 
number of sectors per track to be initia1ized by 
the Format Track command. 

Table 7. StatuI Regllter Definitions 

Bit Symbol ~ .. crlptlon 
Number 

Status Reatster 0 

7,6 Ie Interrupt Code. 
00 - Normal termination of co~d. The specified command was properly executed and 

completed without error. 
01 - Abnormal termination of command. Command execution was started but could not be 

successfully completed. 
10 - Invalid command. The reqUt;Sted command could not be executed. 
11 - Abnormal termination. During command execution, the disk drive ready signal 

changed state. 

S SE Seek End. This flag is set (high) when the FDC has completed the Seek command and the 
read/write head is positioned over the correct cylinder. , 

4 EC Equipment Check Error. TIns flaa is set (high) if a fault signal isl received from the disk drive . or if the track 0 signal fails to become active after 77 step pulses (Recalibrate command) . 

3 NR Not Ready Error, This flag is set if a read or write command is issued and either the drive is 
not ready or the command specifies side 1 (head 1) of a single-sided disk. . 

2 H Head Address. The head address at the time of ,the interrupt. 

1,0 DSl,DSO Drive Select. The number of the drive selected at the time of the; interrupt. 

6-435 AFN 01795A 



Bit syInboa 
Number 

SlIhI ........ t 

7, 

6 

5 

4 

3 

2 

o 

7 

6 

5 

4 

3 

2 

o 

EN 

DB 

OR 

ND 

NW 

MA 

eM 

DD 

we 

SH 

SN 

Be 

MD 

APPLICATIONS 

End of 1'm:t Error. This flag is set if the FDC atteaipu to _ a sector beyond the final 
sector of the tract. 
~ used. This 1m is always low. 

Data Error. Set when the FDC detects a CRe error in either the ID field or the data field of a 
sector. 

Overlun Error. Set (during data tnmsfers) if the FDC does not receive DMA or processor serv­
ice within the specified time interval. 

Not used. This bit is always low. 

Sector Not Found Error. 'Ibis flag is set by 1lIIY of the following c:onditiODs. 
,a) The FDC caunot locate the sCctor specified in the Read Data. Read Deleted Data. or Scan 

command. 
, b) The FDC c:aunot Ioc:ate the startiDg sector specified in the Read Track command • 

. ' c) The FDC cannot read the ID field without error during a Read ID command 

Write' PrOta:t Error. 'Ibis flag is set if the FDC detects a write protect sipaI from the disk 
drive duriJJ8 the em:ution of a 'Write Data. Write,:beleted Data. or Format Th.ct command. 

Missing Address Mwk Error. Thill flag is set by either of the followina c:onditioDs: 
a) The FDC cannot' detect the ID address mark on the specified tract (after two oa:urrenc:es 
.' of the physical inda mark). 
b) The FDC caonot detect the data address mart or deleted data address mark on the 

specified track. (See also ihe MD bit of Status ReaiJter 2.) 

Not used. This bit is always low. 

Control Mwk. This flag is set when the FDC eacouutcn one of the following c:oncIitioDs: 
a) A cJeIeted data address mark during the execution of a Read Data or Scan ~. 

b) A data address mark during the ~ of a Read Deleted Data command. 

Data Error. Set (biah) when the FDC detects a CRe error in a sector data field. This flag is 
not set when a CRe error is detected in the ID fHlId. 

Cylinder Address Error. Set when the cylinder address from the disk sector ID field is different 
from the correut cylinder address maintained within the FDC. 

Scan Hit •. Set during the eixecution of the Scan command if the scan CODdition is satisfied. 

Scan Not Satisfied. Set during execution of the Scan command if the FDC caunot Ioc:ate a sec­
tor on the specified cylinder that satisfies the scan c:ondition. 

Bad Track Error. Set when the cylinder address from the disk sector ID field is FF heuc!erimal 
and this cylinder address is different from the correut cylinder address maintained within the 
FDC. 'Ibis all "ones" cylinder nUlllber indiattes a bad track (one containing bard errors) IlIl­
,corcIing to the IBM soft-seetored format ~. 

Missing Data Address Mwk Error. Set if the FDC caunot detect a data address mark or 
deleted dat!t address mark ~n the specified track. 

AFN01115A 



APPLICATION,S 

leble 7. Stetul Regllter Deflnltlonl (continued) 

Bit Symbol Description 
Number 

Statlll ReaUter 3 

7 Fr Fauh. This fIaa indicates the status of the fauh signal from the selected disk drive'. 

6 WP Write Protected. This fIaa indicates the status of the write protect signal from the selected disk 
drive. 

S ROY Ready. This fIaa indicates the, statQS of the ready signal from the selected disk drive. 

4 ' TO Track O. This fIaa indicates the status of thl\ track 0 signal from the selected disk drive. 

3 TS Two-Sided. This ~ indicates the status of the two-sided signal from the selected disk drive. 

2 H Head Address. This fIaa indicates the status of the side select signal for the currently selected 
disk drive. 

1,0 DSl,DSO Drive Select. Indicates the currently selected disk drive nQmber. 

In the non-DMA mode, transfer requests are indicated 
by activation of both the INT output signal and the 
RQM flag (bit 7) in the Main Sta~s Register. INT can 
be used for interrupt-driven systems and RQM can be 
used for polled systems. The system processor must re­
spond to the transfer request by reading data from(ac­
tivating RO), or writing data to (activating Wi), the 
FDC. This response removes the t~ansfer request (INT 
and RQM are set inilctive). After completing the last 
transfer, the 8272 activates the INT output to indicate 
the beginning of the reslJlt phase. In the non-DMA 
mode, the processor must activate' the TC signal to the 
FDC (normally by means of an 1/0 port) after the 
transfer request for the last data byte has been received 
(by the processor) and before the appropriate data byte 
has been read from (or written to) the FDC. 

In either mode of operation (DMA or non-DMA), the 
execution phase ends when a terminal count signal is 
sensed· or when the last sector on a track (the BOT 
parameter-Table S) has been read or written. In addi­
tion, if the disk drive is in a "not ready" state at the 
beginning of the execution phase, the "not ready" flag 
(bit 3 in Status Register 0) is set (high) and the command 
'is terminated. 

If a fault signal is received from the disk drive at the end 
of a write operation (Write Data, Write Deleted Data, 
or Format), the FDC sets the "equipment check" flag 
(bit 4 in Status Register 0), and terminates the command 
after setting the interrupt code (bits 7 and 6 of Status 
Register 0) to "01" (bit 7 low, bit 6 high). 

'Multi-s~ctor a"d Multi-track Transfers 

During disk read/write transfers (Read Data, Write 
Data, Read Deleted Data, and Write Deleted Data), the 
FDC will continue to transfer data from sequential sec­
tors until the TC input is sensed. In the DMA mode, the 

TC input is normally connected to the TC/BOP (ter­
minal count) output of the DMA controller. In the non­
DMA mode, the processor directly controls the FDC TC 
input as previously described. Once the TC input is 
received .. the FDC stops requesting data, transfers (from 
the system processor or DMA controller). The FDC, 
however, continues to read data from, or write data to, 
the floppy disk until the end of the current disk sector. 
During a disk read operation, the data, read from the· 
disk (after reception of the TC input) is discarded, but 
the data CRC is checked for errors; ,during a disk write 
operation, the remainder of the sector is filled with all­
zero bytes. 

If the TC signal is not received before the last byte of the 
current sector has been transferred tolfrom the system, 
the FDC increments the sector number by one and ini­
tiates a read or write command for this new disk sector. 

The FDC is also designed to operate in a multi-track 
mode for dual-sided disks. In the multi-track mode 
(specified by means of the MT flag in the command 
byte-Table S) the FDC will automatically increment 
the head address (from 0 to 1) when the last sector (on 
the track under head 0) has been read or written. 
Reading or writing is then continued on the first sector 
(s~or 1) of head 1. 

Drive Status Polling 

After the power-on reset, the 8272 automatically enters 
a drive status polling mode. If a change in drive status is 
detected (all drives are assumed to be "not ready" at 
power-on), an interrupt is generated'. The 8272 con­
tinues this status polling between command executic,lnS 
(and between step pulses in the Seek command). In this 
manner, the 8272 automatically notifies the system 
processor when a floppy disk is 'inserted, removed, or 
changed by the operator. 

6-437 AFN 01795A 



APP,t.lCATIONS 

Command Details 

During the command phase, the Main Status Register 
must be polled by the CPU before each byte is written 
into the Data Register. The 010 (bit 6) and RQM (bit 7) 
flags in the Main Status Register must be low and high, 
respectively, before each byte of the command may be 
written into the 8272. The beginning of the execution 
phase for any of these commands will cause DIO to be 
set high and RQM to be set low. 

The following pat;agraphs describe the fifteen FDC 
commands in detail. 

Specify 

The Specify command is used prior to performing any 
disk operations (including the formattiQg of a new disk) 
to define drive/FDC operating characteristics. The 
Specify command parameters set the values for three in­
ternal timers: 

1. Head Load Time (HLT) - This seven-bit value 
defines the time interval that the FDC waits after 
loading the head before initiating a read or write 
operation: This timer is programmable froin 2 to 254 
milliseconds in increments of 2 ms. 

2. Head Unload Time (HUT) - This four-bit value 
defines the time from the end of the execution phase 
(of' a read or write command) until the head is 
unloaded. This timer is programmable from 16 to 
240 milliseconds in increments of 16 ms. If the proc­
essor issues another command before the head 
unloads, the head will remain loaded and the head 
load wait will be eliminated. 

3. Step Rate Time (SRT) - This four-bit value defines 
the time interval between step pulses issued by the 
FDC (track -to-track access time). This timer is pro­
grammable from 1 to 16 milliseconds in increments 
of 1 ms. 

'The time intervals mentioned above are a direct func­
tion of the fDC clock (CLK on pin 19). Times indicated 
above are for an 8 MHz clock. 

The Specify command also indicates the choice of DMA 
or non-DMA operation (by means of the ND bit). Wben 
this bit is high the non-DMA mode is selected; when ND 
is low, the DMA mode is selected. 

Sense Drive Status 

This command may be used by the processor whenever 
it wishes to obtain the status of the disk drives. Status 
Register 3 (returned during the result phase) contains 
the drive status information as described in Table 7. 

Sense Interrupt Status 

An interrupt signal is generated by the FDC when one or 
more of the following events occurs: 

1. The FDC enters the result phase for: 
a. Read Data command 
b. Read Track command 
c. Read ID command 
d. Read Deleted Data command 
e. Write Data command 
f. Format Track command 
g. Write Deleted Data command 
h. Scan commands 

2. The ready signal from one of the disk drives changes 
state. 

3. A Seek or Recalibrate command completes opera­
tion. 

4. The FDC requires a data transfer during the execu-
tion phase of a command in the non-DMA mode. 

Interrupts caused b~ reasoris (1) and (4) above occur 
during normal command operations and are easily 
discernible by the processor. However, interrupts 
caused by teasons (2) and (3) above are uniquely iden­
tified with the ,aid of the Sense Interrupt Status com­
mand. This command, when issued, resets the interrupt 
signal and by means of bits 5. 6, and 7 of Status Register 
o (returned during the result phase) identifies the cause 
of the interrupt (see Table 8). 

6-438 

Table 8. Interrupt Codes 

Seek End Int~rrupt Code Cause 
Bit 5 Bit 6 Bit 7 

0 1 1 Ready Line changed 
state, either polarity 

1 0 0 Normal Termination 
,of Seek or Recalibrate 
Command 

1 1 0 Abnormal Termination' 
of Seek or Recalibrate 
Command ' 

Neither the' Seek nor the Recalibrate command has a 
result phase. Therefore, it i~ mandatory to use the Sense 
Interrupt Status Command after these commands' to 
effectively terminate them an,d to provide verification of 
the ,disk head, position. 

AFN 01795A 



APPLICATIONS 

When an interrupt is received by the pr.ocessor, the FDC 
busy flag (bit 4) and the non-DMA flag (bit S) may be 
used to distinguish the above interrupt causes: 

bit S bit 4 

o 0 
o 1 
1 1 

Asynchronous event-(2) or (3) above 
Result phase-(l) above 
Data transfer required-(4) above 

/It. single interrupt request to the processor may, in fact, 
be caused by more than one of the above events. The 
processor should, continue to issue Sense Interrupt 
Status commands (and service the resulting conditions) 
until an invalid command code is received. In this man­
ner, all "hidden" interrupts are serviced. 

Seek 

The Seek command causes the drive's read/write head 
to be positioned over the specified cylinder. The FDC 
determines the difference between the current cylinder 
address and the desired (specified) addless, and issues 
the appropriate number of step pulses. If the desired 
cylinder address is larger than the current address, the 
direCtion signal (LCT/DIR, pin 38) is set high (step-in); 
the ditection signal is set low (step-out) if the desired 
cylinder address is less than the current address. No 
head movement occurs (no step pulses are issued) if the 
desired cylinder is the same as the current cylinder. 

The rate at which step pulses are issued is controlled- by 
the step rate time (SRT) in the Specify command. After 
each step pulse is issued, the desired cylinder address is 
compared against the current cylinder address. When 
the cylinder addresses are· equal, the "seek end" flag 
(bit S in Status Register 0) is set (high) and the command 
is terminated. If the disk drive becomes "not ready" 
during the seek operation, the "not ready" flag (in 
Status Register 0) is set (high) and the command is ter­
minated'. 

During the command phase of the Seek operation the 
FDC is in the FDe busy state, but during the execution 
phase it is in the non-busy state. While the FDe is in the 
non-busy state, another Seek collUJl8nd may be issued. 
In this manner parallel seek operations may be in opera­
tion on up to four floppy disk drives at once. The Main 
Status Register contains a flag for each drive (Table 4) 
that indicates whether the aSsociated drive is currently 
operating in tlie seek mode. When a drive has completed 
a seek operation, the FDC generates an interrupt. In 
response to this interrupt, the system software must 
issue a Sense Interrupt Status command. During the 
result phase of this command, Status Register 0 (con~ 
tainin& the drive number in bits 0 and 1) is read by the 
ptocessor. 

Recallbrate 

This command causes the read/write head of the disk 
drive to retract to the track 0 position. The FDe clears 
the contents of its internal cylinder counter, and checks 
the status of the track 0 signal from the disk drive. As 
long as the track 0 signal is low, the direction signal re­
mains high and step pulses are issued. When the track 0 
siJmal goes high, the seek end flag (in Status Register 0) 
is set (high) and the command is terminated. If the track 
o signal is still low after 77 step pulses have been issued, 
the seek end and equipment check flags (in Status 
Register 0) are both set and the Recalibrate command is 
terminated. 

Recalibrate commands for multiple dri~es can be 
overlapped in the same manner that Seek commands are 
overlapped. 

Format Track 

The Format Track command formats or "initializes" a 
track on a floppy disk by writing the ID field, gaps, and 
address marks for each sector. Before'issuing the For­
mat command, the Seek command must be used to posi­
tion the read/write head over the correct cylinder. In ad­
dition, a table of ID field values (cylinder, head, and 
sector addresses and sector length code) must be 
prepared before the command is executed. During com­
mand execution, the FDC accesses the table and, using 
the values supplied, writes each sector on the track. The 
ID field address mark originates from the FDC and is 
written automatically as the f1l'st byte of each sector's 
ID field. The cylinder, head, and sector addresses are 
taken, in order, from the table. The ID field eRe 
character (derived from the data written in the f1l'st five 
bytes) is written as the last two bytes of the ID field. 
Gaps are written automatically by the FDC, with the 
length of the .variable gap determined by one of the For­
mat command parameters. 

The data field address mark is generated by the FDC 
and is written automatically as the rust byte of the data 
field. The data pattern specified in the command phase 
is written into each data byte of each sector. A eRe 
character is derived from the data address mark and the 

'data written in the sector's data field. The two eRe 
bytes are appended to the last data byte. 

6-439 

The formatting of a track begins at the physical index 
mark. As previously mentioned, the order of sector 
assignment is taken directly from the formatting table. 
Four entries are required for each sector: a cylinder ad­
dress, a head address, a sector address, and a sector 
length code. The cylinder address in the ID field should 
be equal to the cylinder address of the track currently 
being formatted. 

AFN 01795A 



APPLICATIONS 

The sector addresses must be unique (no two equal). 
The order of the sector entries in the table is the se: 
quence in which sector numbers appear on the track 
when it is formatted. The number of entry sets 
(cylinder, head, and Sector address and sector length 
code) must equal the number of sectors allocated to the 
track (specified in the command phase). 

Since the sector address is supplied, in order, for each 
sector, . tracks can be formatted sequentially (the flI"st 
sector following the index mark is assigned sector ad­
dress 1, the adjacent sector is assigned sector address 2, 
and so on) or sector numbers can be interleaved (see sec-
tion 3) on a track. ' 

Table 9 lists recommended gap sizes and sectors/track 
for various sector sizes. 

Read Data 

Nine (9) bytes are required to complete the command 
phase specification for the ~ead Data command. Dur. 
ing the execution phase, the FDC loads the head (if it is 
in the unloaded state), waits the specified head load time 
(d~fined in the Specify command), and begins reading 
ID address marks and ID fi~lds. When the requested 
sector address compares' with the sector address read 
from the disk, the FDC outputs data· (from the data 
field) byte-by-byte to the system. The Read Data com­
mand automatica1iy operates in the multi-sector mode 
described earlier. In' addition, multi-track ope,ration 
may be specified by means of the MT command flag 
(Table 5). The amoupt of c:iata that can be transferred 
with a single command to the FDC depends on the 
multi-track flag, the recording density flag, and the 
number of bytes per sector. 

During the execution of read and write commands, tile 
special sector size parameter (DTL) is used to tem­
porarily alter the effective disk sector size. By'setting the 
sector size code (N) to zero, DTL may be used to specify 
a sector size from 1 to 256 bytes in length. If the actual 
sector (on the disk).is larger than DTL specifies, only 
the number of bytes specified by the DTL parameter are 

I 
passed to the system; the remahtder of the actual disk 
sector is not transferred (although the data is checked 
for CRC errors). Multi-sector read operations are per" 
formed in the same lllanner as they are when the sector 
size code is non-zero: (The N and DTL parameters are 
always present in the command sequence. DTL should 
be set to FF hexadecimal when N is not zero.) 

If the FDC detects the physical index mark twice 
without finding the requested s9C1or, the FDC sets the 
"sector not found error" flag (bit 2 in Status Register 1) 
and terminates the Read Data command. The interrupt 
code (bits 7 and 6 of Status Register O)'is set to "01." 
Note that the FDC searches for each sector in a multi­
sector operation. Therefore, a "sector not found" error 
may occur after successful transfer of one or more 
preceding sectors. This error could occur if a particular 
sector number was not included when the track was first 
formatted or if a hard error on the disk has invalidated a 
sector ID field. . 

,After reading the ID field and data field in each sector, 
the FDC checks the CRC bytes. If a read error is detect­
ed (incorrect CRCjn the ID field), the FDC sets the 
"data error" flag in Status Register 1; if a CRC error 
occurs in the data field, the FDC sets the "data error" 
flag in Status Regist~r 2. In either error condition, tlte 
FDC terminates the Read Data command. The interrupt 
code (bits 7 and 6 in Status Register 0) is, set to "01." 

If the FDC reads a deleted data address mark from the 
disk, and the'skip flag (specified during the command 
phase) is not set, the FDC sets the "control mark" flag 
(bit 6 in Status Register 2) and terminates the Read Data 
command (after reading all the data in the sector). If the 
skip flag is set, the FDC skips the sector with the deleted 
data address matk and reads the next sector. Thus, the 
skip flag may be used to cause theFDC to ignore deleted 
data sectors during a multi-sector read operation. 

During disk data transfers between the FDCand the 
system, the FDC must be serviced by the system (proc­
essor or DMA controller) every 27 (JS in the FM mode, 
and every 13 (JS in the MFM mode. If the FDC is not 

Table 9 Sector Size Relationships 

, N SC GPL1 GPL2 
Format Sector Size Sector Size Sectorsl Gap 3 Gap 3 Remarks 

Code Track Length, Length 

128 bytes/Sector 00 IA(I6) 07(16) IB(l6) IBM Diskette 1 
FM Mode 256 01 OF(16) OE(16) 2A(16) IBM Diskette 2 

512 ,02 08 IB(l6) 3A(16) 

256 01 lA(16) OE(16) 36(16) IBM Diskett~ 2D . 
MFMMode 512 02 OF(16) IB(16) 54(16) 

1024 03 08 35(16) 74(16) IBM Diskette 2D 

Notes: 1. Suggested values of GPL in Read or Write commands to avoid splice point between data field and ID field of contiguous sectors. 

2. Suggested values of GPL in, Format command. 

6-440 AFN 01795A 



APPLICATIONS 

serviced within ~ intcnal, the "overrun error" flag 
, (bit 4 in Status Resister n is set and the Read Data com­
mand is terminated. 

H the processor terminates • read (or write) operation in 
the PDC, the m information in the result phase is 
dependent upon the state of the multi-track flag and end 
of track byte. Table 11 shows the values for C, H, ll, 
and N, when the processor terminates the command. 

Write Data 

WIDe (9) bytes are required to complete the command 
phase specif~on for the Write Data command. Dur­
ing the execution phaSe the PDC loads the head (if it is 
in the unloaded state), waits the specified head load time 
(dermed by the Specify command), and begins reading 
sector m fields. When the requested sector address 
compares with the sector address read from the disk, the 
PDC reads data from the processor one byte at • time 
via the data bus and outputs the data to the data field of 
that sector. The CRC is computed on this data and two 
CRC bytes are written at the end of the data field. 

The PDC reads the m field of each sectOr and checks 
the CRC bytes. H the PDC detects • read error (incor­
rect CRC) in one of the m fields, it sets' the "data 
error" flag (bit 5 in Status Register 1) and terminates the 
Write Data command. The interrupt code (bits 7 and 6 
in Status Register 0) is set to "01." 

The Write Data command operates in much the same 
manner as the Read Data command. The following 
items are the same; refer to the Read Data command for 
details: 

• Multi-sector and Multi-track operation 
, Data transfer capacity 

• "End of track error" flag 

• "Sector not found error" flag 

• "Data error" flag 

• Head unload time interva1 
• m information when the processor terminates the 

command(see Table 11) . ' 

• Def"mition of DTL when N = 0 and when N,* 0 

During the Write Data execution phase, data transfers 
between the processor and PDC must occur every 31 J.IS 
in the FM mode, imd every 15 J.IS in the MFM mode. H 
the time interval between data transfers is longer than 
this, the PDC sets the "overrun error" flag (bit 4 in Sta­
tus Register 1) and terminates the Write ,Data command. 

Read Deleied Data 

~ command operates in almost the ~ manner as 
the Read Data command operates. The only difference 
involves the treatment of the data address mark and the 

skip flag. When the PDC detects • data address mart at 
the beainnina of • data field (and the skip flq is not 
set), the PDC reads all the data in the sector, sets the 
"control mark" flag (bit trin Status lle&ister 2), and ter­
minates the command. H the skip flag is set, the PDC 
skips the sector with the data address mark and con­
tinue; reading at the nm sector. Thus, the skip flag may 
be used to cause the PDC to read only deleted data sec­
tOrs during • multi-sector read operation. 

Write Deleted Data 

This command operates in the same manner as the 
write Data command operates except that • cleleted 
data address mark is written at the beainnina of the data 
field instead of the norma1 data address mark. This 
colnmancl is used to mark • bad sector (containing ., 
hard error) on the floppy disk. 

RitadTrack 

Tbe Read Track command is, similar to the Read Data 
command except that the entire data field is read con­
tinuously from each of the sectors of • track. Im­
mediately after encountering the physic:a1 index mark, 
the PDC starts reading all data fIelds on the tract as 
continuous blocks of data. H the FDC rmds an error in 
the m field or data field CRC chect bytes, it continues 
to read data from the track. The PDC compares the m 
information read from each sector with the'values 
specified during the command phase. H the specified m 
rIeld information is not found on the track, the "sector 
not found error" flag em Status Register 1) is set. Multi-. 
track and skip operations are not allowed with this 
command. 

This command terminates when the last sector on the 
tract has been read. (The number of sectors on the track 
is specified by the end of track parameter byte during 
the command phase.) H the FDC does not find an m 
address mark on the disk after it encounters the physic:a1 
index mark for the second time, it sets the "missing ad­
dress mart error" flq (bit 0 in Status Register 1) and 
terminates the command. The interrupt code (bits 7 and 
6 of Status Register 0) is set to 'COl." 

Read ID 

The Read m command transfers (reads) the rU"St correct 
m field from the current disk track (following the 
physiCal index mark) to the processor. H no correct m 
address mark is found on the tract, the "missing ad­
dress mart error" flq is set (bit 0 in Status Register 1). 
H no data mark is found on the track, the "sector not 
found error" flq is also set (bit 2 in Status Resister 1). 
Either, error condition causes the command to be 
terminated. 

6-441 AFN01195A 



APPLICATIONS 

Scan Commands 
The Scan ~mmands aliow the data being read from the 
disk to be compared against data supplied by the system 
(by the processor in non-OMA mode, and by the DMA 
controller in DMA mode). The FDC compares the data 
on a bYte-by-byte basis, and searches for a sectQr of 
data that meets the condjtions of "dis~ data equal to 
system data", "disk data less than or equal to system 
data", or "disk data greater than or equal to system 
data". Simple biniuy (ones complement) arithmetic is 
used for comparison (FF = largest number, 00 = smallest 
nu.mber), If, after a complete sector of dat.a is com­
paled, the conditions are not met, the sector number is 
incremented by the scan, sector increment (specified in 
the command phase), and the scan operation is con­
tinued. The scan operation continues until one of the 
following conditions ~s: the conditions for scan are 
met (equal, low, or high), the last sector on the track is 
reached, or the terminal count signal is received. 

If the conditions fOF scan are met, the FOC sets the 
"scan hit" flag (bit' 3 in Status' Register 2) and ter­
minates the Scan command. If the conditions for scan 

are not met between the starting sector and the last sec­
tor on, the track (specified in the command phase), the 
FDC sets the "scan not satisfied" flag (bit 2 in Status 
Register 2) and terminates the Scan command. The re­
ceipt of a terminal count signal from the processor or 
DMA controller during the scan operation will cause the 
FOe to complete the 'comparison of ihe particulai byte 
which is in process, and to terminate the command. 
Table 10 shows the status of the "scan hit" and "scan 

Table 10. Scan Status Codes 

Command Ststus Raglster 2 Comments 
BIt2=SN BIt3-SH 

Scan Equal 0 1 Dmo= Dp_ 
1 0 Dmo+ DProcessoi 

Scan Low 0 1 Dmo=Dp_ 
or Equal 0 0 Dmo< DProceosor 

1 0 Dmo1t DProceosor 

Scan High' 0 1 Dmo = DProceosor 
or Equal 0 0 I Dmo> DProceosor . 

1 0 Dmo~DProceosor 

Table11 ID Information When Procesior Teimlnates Command 

" Final Sector Transferred 
MT ( £01 10 ID Information at Result Pha .. 

Processor C 

lA Sector 1 to 25 at Side 0 
OF Sector 1 to 14 at Side 0 NC 
08 . Sector 1 to 7 at Side 0 

lA Sector 26 at Side 0 
OF Sector 15 at Side 0 C+l 

0 08 Sector 8 at Side 0 

lA Sector 1 to 25 at Side 1 
OF Sector, 1 to 14 at Side 1 NC 
08, Sector 1 to 7 at Side 1 

lA Sector 26 at Side 1 
. OF Sector 15 at Side 1 C+l 

08 Sector 8 at Side 1 

lA Sector 1 to 25 at Side 0 
, OF Sector 1 to '14 at Side 0 NC 

08 Sector 1 to 7 at Side 0 

lA Sector 26 at Side 0 
OF Sector 15 at Side 0 NC 

1 08 Sector 8 at Side 0 

lA Sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side,l NC 

I) 08 Sector 1 to 7 at Side 1 , 

, ( lA Sector 26 at Side 1 " 
. , OF Sector IS at Side 1 C+l 

'~ 

Q8 Sector '8 at Side 1 

Notes: 1. NC (No Chllll8c): The same value as the one at the beglnllllll of command execution: 
2. LSi (Least Significant Bit): The least Bisnificant bit of H is complemented. 

6-442 

H R 

NC R+l 

NC R=OI 

NC RH 
\ 

NC R=OI 

NC 
, 

R+l 

LSD R=OI 

NC R+l 

LSD R=OI 

N 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

AFN 01795A 



APPLICATIONS 

not satisfied" flags under various scan termination 
conditions. 

If the FDC encounters a deleted data address mark in 
one of the sectors and the skip fl,ag is low, it regards the 
sector as· the last sector on the cylinder, sets the" control 
mark" flag (bit 6 in Status Register 2) and terminates 
the command. If the skip flag is high, the FDC skips the 
sector with the deleted address mark, and reads the next 
sector. In this case, the FDC also sets the "control 
mark" flag (bit 6 inStatus Register 2) in order to show 
that a deleted sector had been encountered. 

NOTE: During scan command execution, the last sector 
on the track must be read for the command to 
terminate properly. For example, if the scan 
sector increment is set to 2, the end of track 
parameter is set to 26, and the scan begins at 
sector 21 , sectors 21, 23, and 25 will be 
scanned. The next sector, 27 will not be found 
on the track and an abnormal command ter­
mination will occur. The command would be 
completed in a normal manner if either a) the 
scan had started at sector 20 or b) the end of 
track parameter had been set to 25. 

During the Scan command, data is supplied by the proc­
essor or DMA controller for comparison against the 
data read from the disk. In order to avoid having the 
"overrun error" flag set (bit 4 in Status Register 1), it is 
necessary to have the data available in less than 27 /Ls 
(FM Mode) or 13 /LS (MFM Mode). If an overrun error 
occurs, the FDC terminates the command. 

Invalid Commands 

If an invalid (undefined) command is sent to the FDC, 
the FDC will terminate the command. No interrupt is 
generated by the 8272 during this condition. Bit 6 and 
bit 7 (010 and RQM) in the Main Status Register are 
both set indicating to the processor that the 8272 is in 
the result phase and the contents of Status Register 0 
must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid com­
mand was received. 

A Sense Interrupt Status command must be sent after a 
Seek or Recalibrate interrupt; otherwise the FDC will 
consider the next command to be an invalid command. 
Also, when the last "hidden" interrupt has been ser­
viced, further Sense Interrupt Status commands will 
result in invalid command codes. 

In some applications the user may wish to use this com­
mand as a No-Op command to place the FDC in a 
stand-by or no operation state. 

5. THE DATA SEPARATOR 

As briefly discussed in section 2, LSI disk controllers 
such as the 8272 require external circuitry to generate a 
data window signal. This signal is used within the FDe 
to is,9late the data bits contained within the READ 
DATA input signal from the disk cWve. (The disk. 
READ DATA signal is a composite signal constructed 
from both clock and data information.) After isolating 
the data bits from this input signal, the FDC assembles 
the data bits into 8-bit bytes for transfer to the system 
processor or memory. 

Single· Density 

In .single-density (FM) recording (Figure 3 ). the bit cell 
is 4 microseconds wide. Each bit cell contains a clock bit 
at the leading edge of the cell. The data bit (if present) is 
always located at the center of the cell. The job of data 
separation is relatively straightforward for single­
density; simply generate a data window 2 /LS wide start­
ing 1 /Ls after each clock bit. Since every cell has a clock 
bit, a fixed window reference is available for every data 
bit and because the window is 2 p.s wide, a slightly 
shifted data bit will still remain within the data window. 

A single-density data separator with these specifications 
may be easily generated using a digital or analog one­
shot triggered by the clock bit. 

Double·Denslty 

Double-density (MFM) bit cells are reduced to 2 /LS (in 
order to double the disk data storage capacity). Clock 
bits are inserted into the data stream only if data bits are 
not present in both the current and preceding bit cells 
(Figure 3). The data bit (if present) still occurs at the 
center of the bit cell and the clock bit (if present) still oc­
curs at the leading edge of the bit cell. 

MFM data separation has two 'problems. First, only 
some bit cells contain a clock bit. In this manner, MFM 
encoc\ing loses the fixed bit cell reference pl,llse present 
in FM encoding. Second, the bit cell for MFM is c;me­
half the size of the bit cell for FM. This shorter bit cell 
means that MFM cannot tolerate as large a playback 
data-shift (as EM can tolerate) without errors~ 

Since most playback data-shift is predicta,ble, the FDC 
can precompensate the write data stream so that 
datal clock pulses will be correctly positioned for subse­
quent playback. This function is completely controlled 

, by the FDC and is oniy required for MFM recording. 
During write operations, the FDC specifies an early, 
normal, or late bit positioning. This timing information 
is specified with respect to the FDe write clock. Early 
and late timing is typically 125 ns to 250 ns before or 
after the write clock transition (depending on disk drive 
requirements). 

6-443 AFN 01795A 



APPLICATIONS 

r The data separator c:in:uitry for double-deusity record­
ing must continuously analyze the total READ DATA 
stream, synchronizing its operation (window genera­
tion) with the actual cIockIdata bits of the data stream. 
The data separation circuit must track the disk input 
data frequency very cIosely-unPrecHctable bit shifts 
leave less than SO ns. margin to the window edges. 

Phas.Locked Loop 
Only an analog phase-locked loop (PLL) can provide 
the reliability required for a double-density data separa­
tion circuit. (A phase-locked loop is an electronic circuit 
that constantly analyzes the frequency of an input signal 
and locks another oscillator to that frequency.) Using 
analog PLL techniques, a data separator can be de­
signed with ± 1 ns reSolution (this would require a 100 
MHz clock in a digital phase-locked loop). The analog 
PLL determines the clock and data bit positions by 
sampling each bit in the serial data stream. The phase 
relationshiP between a data bit and the PLL generated 
data window is constantly fed back to adjust the posi­
tioil of the data window, enabling the PLL to track in­
put data frequency changes,. and thereby reli~blY read 
previously recorded data from a floppy disk. 

PLL Design· 
A block diagram of the phase-locked loop described in 
this application note is shown ~ Figure 7. Basically, the 
phase-locked loop operates by comparing the frequency 
of the input data (from the disk drive) against the frc­
quep.cy of a local oscillator. The difference of these fre­
quencies is used to increase or decrease the frequency of 
the local oscillator iii. order to bring its frequency closer 
to that of the input. The PLL synchronizes the local 
oscillator to the frequency of the input during the all 

. "zeroes" synchronization field on the floppy disk (im­
mediately preceding both the ID field and the data 
field). 

The PLL consists of nine ICs and is located on page 3 of 
the schematics in the Appendix. The 8272 veo output 
essentially turns the PLL circuitry on and off. When the 
PLL is off, it "idles" at its center frequency. The veo 
output turns the PLL on only when valid data is being 
received from the disk drive~ The veo turns the PLL 
on after:. the readlwrite head has been loaded and the 
head load time has e!.apsed. The PLL is turned off in the 
gap between the ID field and the· data fieta and in the 
gap after the data field (before the n~ sector ID field). 
The GPL parameter in the FDC read and write com­
mands specifies the elapsed time (number of data bytes) 
that the PLL is turned off in order to blank out discon­
tinuities that appear in the gaps when the write current is 
turned on and off. The PLL operates with either MFM 
or FM input data. The MFM output from the FDC con­
trols the PLL operation frequency. 

The PLL consists of six functional blocks as follows: 

1. Pulse Shaping - A 96LS02 senses a READ DATA 
pulse and provides a clean output signal to the FDC . 
and to the PLL Phase Comparator and Frequency 
Discriminator circuitry. 

2. Phase Comparator - The phase difference be­
tween the PLL oscillator and the READ DATA input 
is compared. Pump up (PU) and pump down (PD) 
error signals are derived from this phase difference 
and output to the filter. If there is no phase dif­
ference between the PLL oscillator and the READ 
/DATA input, the PU and PD pulse widths are equal. 
If the READ DATA pulse occurs early, the PU dura" 
tion is shorter than the PD duration. If the data pulse 
occurs late, the PU duration is longer than the PD 
duration. 

3. F"llter - This analog circuit illters the PU and PD 
pulses into an error voltage. This error voltage is buf­
fered by an LM3S8 operational amplifier. 

.----____________ ~--_~.:TA 

READ DATA 
~ DISKETTE DRIVE) 

Vco~FDC) ---------.... 
_ ~FDC) ---------.... 

IDiECLAMP 

Figure 7. Phase-Locked Loop Data Separator 

DATAWlNDOW 
(TO FDC) 

AFN01795A 



APPLICATIONS 

4. PLL Oscillator - This oscillator is composed of a 
74LS393, 74LS74, and 96LS02. The oscillator fre­
quency is controlled by the error voltage output by 
the ftlter. This oscillator also generates the data win­
dow signal to the 'FOC. 

5. Frequency Discriminator - This logic tracks the 
READ DATA,' input from the disk drive and 
discriminates between the synchronization gap for 
FM reCording (250 KHz) and the gap for MFM 
recording (500 KHz). Synchronization gaps 'im­
mediately precede address marks. 

6. Start Logic - The function of this logic is to clamp 
the PLL oscillator to its center frequency (2 MHz) 
until the FDe veo signal is enabled and a valid data 
pattern is sensed by the frequency discriminator. The 
start logic (consisting of a 74LS393 and 74LS74) en­
sures that the PLL oscillator is started with zero 
phase error. 

PLL Adjustments 

The PLL must be initially adjusted to operate at its 
center frequency with the veo output off and the ad­
justment jumper removed. The 5K trimpot should be 
adjusted until the frequency at the test point (Q output 
of the 96LS02) is 2 MHz. The jumper should then be 
replaced for normal operation. 

PLL DeSign Details 

The following paragraphs describe the operational and 
design details of the phase-locked loop data separator il-

lustrated in the appendix. Note that the analog section is 
operated from a separately filtered +sv supply. 

Initialization 
As long as the 8272 maintains a low veo signal, the 
data separator logic is "turned off'. In this state, the 
PLL oscillator (96LS02) is not oscillating an4 therefore 
the 2XBR signal is constantly low. In addition, the 
pump up (PU) and pump down (PD) signals are inactive 
(PU low and PD high), the CNT8 signal is inactive 
(low), and the filter input voltage is held at 2.5 volts by 
two IMohm resistors between ground and +5 volts. 

Floppy Disk Data 
The data separator frequency discriminator, the input 
pulse shaping circuitry, and the start logic are always 
enabled and respond to rising edges of the READ DATA 
signal. The rising edge of every data bit from the disk 
drive triggers two pulse shaping one-shots. The first 
pulse shaper generates a stable and well-defined 200 ns 
read data pulse for input to the 8272 and other portions 
of the. data separator logic. The second one-shot 
generates a 2.5 p.s data pulse that is used for input data 
frequency discrimination. 

The frequency discriminator operates as illustrated in 
Figure 8. The 2F output signal is active (high) during 
reception of valid MFM (double-density) sync fields on 
the disk while the IF signal is active (high) during recep­
tion of valid FM (single-density) sync fields. A 
multiplexer (controlled by the 8272 MFM signal) selects 
the appropriate IF or 2F signal depending on the pro­
grammed mode. 

, (a) FM OPERATION: ONE-llHOT TIMES OUT BETWEEN CLOCK PULSES 

FREQ DISC -..,.... __ 

MFM READ DATA 

FREQ DISC~ 

2F LOW. 1F HIGH DURING SYNC DATA INPUT (FM) 

~ 2F HIGH. 1F LOW DURING SYNC DATA INPUT (MFM) _ ... .. ,. 
x = FREQUENCY DISCRIMINATOR SAMPLE POINTS TO GENERATE 1F AND 2F SIGNALS 

Figure 8. Input Data Frequency Discrimination 

6-445 

• • 

AFN 01795A 



APPLICATIONS 

Startup 
The data separator is designed to require reception of 
eight valid sync bits (one sync byte) before enabling the 
PLL oscillator and, attempting to synchronize with the 
input data stream (see Figure 9). This delay ensures that 
the PLL will not erroneously synchronize outside a valid 
sync field in the data stream if the VCO signal is enabled 
slightly early. The sync bit counter is asynchronously 
reset by the CNTEN signal when valid'sync data is not 
being received by the drive. 

READ DATA 

FREQDISe 

Once the VCO signal is active and eight sync bits have 
been counted, the CNT8 signal is enabled, This signal 
turns on the PLL oscillator. Note that this oscillator 
starts synchtonousli with the rising edge of the disk in­
put data (because CNT8 is synchronous with the data 
rising edge) and the oscillator also starts at its center fre­
quency of 2 MHz (because the LM348 filter input is held 
at its center voltage of approximately 2.5 volts). This 
f~equency is divided by two and four to generate the 
2XBR signal (1 MHz for MFM and 500 KHz. for FM). 

2F~L-________________________________ __ 

CNTEN~L-________________ ~ ____ ~ ____________________________ __ 

Veo -
CNn----------------------------______________________ ~ 

PLCLK ________________________________ -.-'-__ -:-________ ...... nnnnnnnnnnnnnnn 
2XBA ______________________________________________________ ~ 

PDCLR ______________________________________________________ ~ 

PUCLR-----------------------------:-----------------------------,LJ 

pu 
_________ --'-_______________________ ~n~~n~---
PD-----------,U LJ 

DW ___________ --:--___ --'-_1L.JLf" 
Figure 9. Typical Data Separator Startup Timing Diagram 

6-446 AFN 01795A 



APPLICATIONS 

PLL Synchronization 

At this point, the PLL is enabled and begins to syn­
chronize with the input data stream. This synchroniza­
tion is accomplished very simply in the following man­
ner. The pump up (PU) signal is enabled on the rising 
edge of the READ DATA from the disk drive. (When 
the PLL is synchronized with the data stream, this point 
will occur at the same time as the falling edge of the 
2XBR signal as shown in Figure 9). The PU signal is 
turned off and the PO signal is activated on the next ris­
ing edge of the 2XBR clock. With this scheme, the dif­
ference between PU active time and the PO active time 
is equal to the difference between the input bit rate and 
the PLLdock rate. Thus, if PU is turned on longer than 
PO is on, the input bit rate is faster than the PLL clock. 

As long as PU and PO'are both inactive, no charge is 
transferred to or from the LM358 input holding 
capacitor, and the PLL output frequency is maintained 
(the LM358 operational amplifier has a very high input 
impedance). Whenever PU is turned on, current flows 
from the + 5 volt supply through a 20K resistor into the 
holding capacitor. When the PO signal is turned, on; 
current flows from the bolding capacitor to ground' 
through a 20K resistor. In this manner, both the pump 
up and pump down charging rates are b8Ianced. 

The change in capacitor charge (and therefore voltage) 
after a complete PU/PO cycle is proportional to the dif­
ference between the PU and PO pulse widths and is also 
proportional to the frequency difference between the in­
coming data stream and the PLL oscillator. As the 
capacitor voltage is raised (PU active longer than PO), 
the PLL oscillator time constant (RC of the 96LS02) is 
modified by the filter output (LM358) to raise the 
oscillator frequency. As the capacitor voltage is lowered 
(pO active longer than PO), the oscillator frequency is 
lowered. If both frequencies are equal, the voltage on 
the holding capacitor does not change, and the PLL 
oscillator frequency remains constant. 

6. AN INTELLIGENT DISKETTE 
DATA BASE SYSTEM 

The system described in this application note is designed 
to function as an intelligent data base controller. The 
schematics for this data base unit are presented in Ap­
pendix A; a block diagram of the unit is illustrated in 
Figure 10. As designeQ, the unit can access over four 

"million bytes of mass storage on four floppy disk drives 
(using a single 8272 FOq; the system can easily be ex­
panded to four FOC devices (and 16 megabytes of on­
line disk storage). Three serial data links are also includ­
ed. These data links may be used by CRT terminals or 
other microprocessor systems to access the data base. 

6-447 

Processor and Memory 

A high-performance 8088 eight-bit microprocessor 
(operating at 5 MHz with no wait states) controls system 
operation. The 8088 was selected because of its memory 
addressing capabilities and its sophisticated string 
handling instructions. These features improve the speed 
of data base search operations. In addition, these 
capabilities allow the system to be easily upgraded with 
additional memory, disk drives, and if required, a bub. 
ble memory or winchester disk unit. 

The schematics 'for the basic design provide 8K bytes of , 
2732A high-speed EPROM program storage and 8K 
bytes of disk directory and file buffer RAM. This , 
memory can easily be expanded to 1 megabyte for 
performance upgrades. 

An 8259A Programmable Interrupt Controller (PIC) is 
also included in the design to field interrupts from both 
the serial port and the' FOC. This interrupt controller 
provides a large degree of programming flexibility for 
the implementation of data base functions in an asyn­
chronous, demand driven environment. The PIC allows 
the system to accumulate asynchronous data base re­
quests from all serial I/O ports while previously 
specified data base operations are.currently in' progress. 
This feature 'is made possible by the ability of the 8251A 
RXROY signal to cause a processor interrupt. After 
receiving this interrupt, the processor can temporarBy 
halt work on existing requests and enter the incoming 
information into a data qase request buffer. Once the 
information has been entered into the buffer, the system 
can resume its previous processing. 

In addition, the PIC permits some portions of data base 
requests to be processed in parallel. For example, once a 
disk record has been'loaded into a memory buffer, a 
memory search can proceed in parallel with the loading , 
of the next record. After the FOC completes the record 
transfer, the memory search will be interrupted and the 
processor can begin another disk transfer before resum­
ing the memory search. 

The bus structure of the system is split into three func­
tional buffered units. A 2O-bit address from the proc­
essor is latched by three-state transparent 74LS373 
devices. When the processor is in control of the address 
and data busses, these devices are output enabled to the 
system buffered address bus. All I/O devices are placed 
directly 011 the local data bus. Finally, the memory data 
bus is isolated from the local data bus by an 8286 octal 
transceiver. The" direction of this transceiver is deter­
mined by the Memory Read signal, while its output 
enable is activated by a Memory Read or Memory Write 
command .. 

AFN 01795A 



APPLICATIONS 

I ---.~ rl- I ~ , ~ ADDRESS I--LATCH 2732A (2114·3) f-Jl CLOCK ~ 
G,ENERATOR ~ PROCESSOR 8-11T LOCAL DATA BUS r--

fR 

f-
(8284) ~ (8088) r-

~ 
I/O AND CS DATA BUS I 110 AND MEMORY COMMANDS MEMORY TRANSCEIVER 

INTA f- ADDRESS RD,WR,CS (8288) 

INT r- DECODE I ;.. r-
.HOLD t HLDA ~ 

~~~ 
~ADPRESS~ I-

LATCHI I-- ~~~
RD,WR,CS -BUFFER a:: a:: 1Ir'

DMA
CONTROLLER I---

(8237'2) .-- I--- 8-BIT COCAL DATA BUS

~

-JJ~ DRO t DACK. t
FLEXIBLE DISKETTE CONTROLLER PROCIIIAMMABLE l- I-- lAUD

DATA INTERRUPT I- SERIAL 110 PORTS I-- RATE I--
(8272FDC) n CONTROLLER (8251A USARTs) GENERATOR

(82SBA PIC) l- I-- (8253 PIll 1 t, VCo.MFM

~~:~ (EAD DATA . PHASE
LOCKED

LOOP
(PLL)

I i DATA
RECEIVERS SEPA· '----RxD

~ hD . itt READY
AxD

INDEX
WRITE PROTECT
TWO SIDED
FAULT
TR"ACKO

READ DATA

DRIY.!RS

III DRIVE SELECT
DIRECTION
STEP
WRITE GATE
FAULT RESET

LOW CURRENT
SIDE SELECT
HEAD LOAD
WAITE DATA

Figure 10. IntelJlgent Date Ba8e Block Diagram

6-448 AFN 01795A

APPLICATIONS

SertalUO

The three RS-232-C compatible saial 110 ports operate
at software-programmable baud rates to 19.2K. Each
110 port is contronedby an 8251A USAllT (Universal
Synchronous/Asynchronous Receiver/Transmitter).
Each USAllT is individually programmable for opera­
tion in many synchronous and asynchronous serial data
transmission formats fmcluc:ling mM Bi-sync). In
operation, USART error detection circuits can check
for parity, data oVemQ1, and framing errors. An 8253
Programmable Interval Timer is employed to generate
the baud rates for the serial 110 ports.

The Transmitter Ready and ReCeiver Ready output
signals of the 8151As are routed to the interrupt inputs
of ~e 8159A interrupt controner. These signaI:s inter­
rupt processor execution when a data byte is received by
a USART and also when the USART is ready to accept
another data byte for transmission.

DMA
The 8272 FDC interfaces to system memory by means of
an 8237-2 high-speed DMA controner. Transfers be­
tween the disk controner and memory also operate with
no wait states when 2114-3 (ISO ns) or faster static RAM
is used. In operation, the 8272 presents a DMA request
to the 8237 for every byte of data to be transferred. This
request causes the 8273 to present a HOLD request to
the 8088. As soon as the 8088 is able to relinquish
dataladdress bus control, the processOr signaI:s a HOLD
acknowledge to the 8237. The 8237 then assumes con­
trol over the data and address busses. After latching the
address for the DMA transfer, the 8237 generates
simultaneous 110 Read and Memory Write commands
(for a disk read)' or simultaneous 110 Write and
Memory Read commands (for a disk write). At the same
time, the 8272 is selected as the 110 device by means of
the DMA acknowledge signal from the 8237. After this
su.sie byte has been transferred between the FDC and
memory, the DMA controner releases the dataladdress
busses to the 8088 by deactivating the HOLD request. In
a short period of time (13 1'5 for double-density and 27
1'5 'for su.sie-density) the FDC requeSts a subsequent
data transfer. This transfer occurs in exactly the same
manner as the previous transfer. After an data transfers
have been completed (specified by the word count pr0-

grammed into the 8237 before the FDC operation was
initiated), the 8237 signaI:s a terminal count (BOP pin).
This terminal count si&naI informS the' 8272 that the
data transfer is complete. Upon reception of this ter­
minal Count signal, the 8272 halts DMA requests and
initiates an "operation complete" interrupt. .

sitlce the system is designed for 2O-bit addressing, a
'four-bit DMA-address latch is included as a processor

addressable 110 port. The prqc:essor writes the upper
four DMA address bits before a data transfer. When the
DMA contro8er assumes bus control, the contents of
this latCh are output enabled on the upper four bits of
the address bus. The only restriction in the use of this
address 1atch is that a single disk read or write transfer
cannot cross a 64K memory boundary.

Disk Drive Interface

The 8272 FDC may be interfaced to a lIUIlIimum of four
eight-inch floppy disk drives. Both su.sie- and double­
density drives are accommodated using the data separa­
tion circuit described in section S. In addition, su.sie- or
dual-sided disk drives may be used. The 8272 is driven
by an 8 MHz crystal contro8er clock produced by an,
8224 clock generator.

Drive select signaI:s are decoded by means of a 74LS139
from the 080, OSI outputs of the FDC. The fault reset,
step, low current, and direction outputs to the disk
drives are generated from the FRlSTEP, LCI'/DIR,
and RW/SEEK FDC output signaI:s by means of a
74LS240. The other half of the 74LS240 functions as an
input multiplexer for the disk write protect, two-sided,
fault, and track zero status signals. These signaI:s are
multiplexed into the WPITS and FLTITRKO inputs to
the 8272.

The 8272 write clock (WR eLK) is generated by a ring
counter/multiplexer combination. The write clock fre­
quency is 1 MHz for MFM recording and SOO KHz for
PM recording (selected by the MFM output of the
8272). The pulse width is a constant 150 ns. The write
clock is constantly generated and input to the FDC (dur­
ing both read and write operations). The FDC write
enable output (WE) is transmitted directly to the write
gate disk drive input.

Write data to the disk drive is preshifted (according to
the PSO, PSI FDC outputs) by the combination of a
74LSI7S four-bit latch and a 74LS1S3 multiplexer. The
amount of preshift is completely controned within the
8272 FDC. Three cases are possible: the data may be
written one clock cycle early, one clock cycle late, or
with no in'eshift. The data preshift circuit is activated by
the FDC only in the double-density mode. The preshift
is required to cancel predictable playback data shifts
when recorded data is 1ater read from 'the floppy disk.

A su.sie SO-conciuctor flat cable connects the board to
the floppy disk drives. FDC outputs are driven by 7438
open conector high-currCnt line-drivers. These drivers
are resistively terminated On the last disk drive by means
ofa ISO ohm resistor to +SV. The line receivers are 7414
Schmitt triggered inverters with ISO ohm puR-up
resistors on board.

6-449 AFN01195A

APPLICATIONS

7. SPECIAL CON,SIDERATIONS

This section contains a quick review of key features and
issues, most of which have been mentioned in .other sec­
tions of this application note. Before designing with the
8272 FDC, it is advisable that the information in this
section be completely understood.

1. Multl·Sector Transfers
The 8272 always operates in a multi-sector transfer
mode. The 8272 continues to transfer data until the TC
input is activated. In a DMA configuration, the TC in­
put· of the 8272 must always be connected to the
EOP/TC output of the OMA controller. When mUltiple
DMA channels are used on a single OMA controller,
EOP must be gated with the select signal for the proper
FDC. If the TC signal is not gated, a terminal count on
another channel will abort FDC operation.

In a processor driven configuration with no DMA con­
troller, the system must count the transfers and supply a
TC signal to the FOC. In a DMA environment, ORing a
programmable TC with the TC from the DMA con­
troller is a convenient means of ensuring that the proc­
essor may always gain control of the FDC (even ifihe

'diskette system hangs up in an abnormal manner).

2. Processor Command/Result Phase Interface
In the command phase, the processor must write the ex­
act number. of parameters in the exact order shown in
Table 5. During the result phase, the processor must
read the complete result status. For example, the For­
mat Track command requires six command bytes and
presents seven result bytes. The 8272 will not accept a
new command until all result bytes are read. Note that
the number of command. and result bytes varies from
command-to-command. Command and result phases
cannot be shortened.

During both the command an.d result phases, the Main
Status Register must be read by the processor' before
each byte of inform;ltion is read from, or written to, the
FDC Data Register. Before each command byte is writ­
ten, 010 (bit 6) must be low (indicating a data transfer
from the processor) and RQM (bit 7) must be high (in­
dicating that the FDe is ready for, data). During the
result ,phase,DIO must be high (indicating a data
transfer to the processor) andRQM must also. be high
(indicating that d~ta is ready for the prQcessQr).

NOTE: After the 8272 receives a command byte, the
RQM flag may remain set for 12 microseconds
(with an 8 MHz, dock). Software should not at­
tempt to read the Main Status Register b~ore
this time interval has elapsed; otherwise, the
software will erroneously assume that the FDe
is ready to accept the nel't byte,

3. Sector Sizes
The 8272 does not support 128 byte sectors in the MFM
(double-density) mode.

4; 'Write Clock
The FOC Write Clock input (WR CLK) must be present
at all times.

5. Reset
The FDC Reset input (RST) must be held active during
power-on reset while the RD and WR inputs are active.
If the reset input becomes inactive while RD and WR
are still active, the 8272 enters the test'mode. Once ac­
tivated, the test mode can only be deactivated by a
power-down condition.

6. Drive S.tatus
The 8272 constantly polls (starting after the power-on
reset) all drives for changes in the drive ready status. At
power-on, the FDC assumes that all drives are not
ready. If a drive application requires that the ready line
be strapped active, the FDC will generate an interrupt
immediately after power is applied.

7. Gap Length
Only the gap 3 size is software programmable. All other
gap sizes are fixed. In. addition, different gap 3 sizes
must be specified in format, read, write, and scan com­
mands .. Refer to Section 3 and Table 9 for gap size
recommendations., ., .

8. Seek Command
The drive busy flag in the Main Status Register remains
set after a Seek command is issued until the Sense Inter­
rupt Status command is issued (following reception of
the seek complete interrupt). ' .

. 'I"
The FDC does not perform implied seeks. Before issu­
ing data read or write commands, the read/write head
must be positi~ed over the correct cylinder. If the head
is not positioned correctly, a cylinder address error is
generl!lted.

After issuing a step pulse, the 8272 resumes drive status
polling. For correct stepper operation in this mode, the
stepper motor must be constantly enabled. (Most drives
provide a jumper to permit the stepper motor to be con-
stantly enabled.) , .

9. Step Rate
'The 8272 can emit a step puise that is. one millisecond
faster than the rate progriunmed by the'SRT parameter
in the Specify command., This ,action .may cause subse­
quent sector' not found errorli. The step rate time should
be programmed to be 1 ms longer than the step rate time
required by the drive.

10. Cable Length
A cable length of less than 10 feet is recolllmended for
drive interfacing.

6-450 AFN 01795A

APPLICATIONS

11. Scan Commands
The current 8272 has several problems when using the
scan commands. These commands should not be used at
this time.

12. Interrupts
When the processor receives an interrupt from the FDC,
the FDC may be reporting one of two distinct events:

a) The beginning of the result phase of a previously re­
quested read, write, or scan command.

b) An asynchronous event such as a seek/recalibrate
completion, an 'attention, an abnormal command
termination, or an invalid command.

These two cases are distinguished by the FDC busy flag
(bit 4) in the Main Status Register. If the FDC busy flag
is high, the interrupt is of type (a). If the FDC busy flag
is low, the interrupt was caused by an asynchronous
event (b).

A single interrupt from the FDC may signal more than
one of the above events. After receiving an interrupt,
the processor must continue to issue Sense Interrupt
Status commands (and service the resulting conditions)
until an invalid command code is received. In this man­
ner, all "hidden" interrupts are ferreted out and
serviced.

13. Skip Flag (SK)
The skip flag is used during the execution of Read Data,
Read Deleted Data, Read Track, and various Scan com­
mands. This flag permits the FDC to skip unwanted sec-
tors on a disk track. .

When performing a Read Data, Read Track, or Scan
command, a high SK flag indicates that the FDC is to
skip over (not transfer) any sector containing a deleted
data address mark. A low SK flag indicates that the
FOC is to terminate the command (after reading all the
data in the sector) when a deleted data address mark is
encountered.

When performing a Read Deleted Data command, a
high SK flag indicates tbat sectors containing normal
data address marks are to be skipped. Note that this is
just the opposite situation from that described in the last
paragraph. When a data address mark is encountered
during a Read Deleted Data command (and the SK flag

is low), the FDC terminates the command after reading
all the data in the sector.

14. Bad Track Maintenance
The 8272 does not internally maintain bad track infor­
mation. The maintenance of this information must be
performed by system software. As an example of typical
bad track operation, assume that a media test deter­
mines that track 31 and track 66 of a given floppy disk
are bad. When the disk is formatted for use, the system
software formats physical track 0 as logical cylinder 0
(C=O in the command phase parameters), physical
track 1 as logical track 1 (C = I), and so on, until
phy.sical track 30 is formatted as logical cylinder 30
(C = 30). Physical track 31 is bad and should be format­
ted as logical cylinder FF (indicating a bad track). Next,
physical track 32 is formatted as logical cylinder 31, and
so on, until physical track 67 is formatted as logical
cylinder 64. Next, bad physical track 66 is formatted as
logical cylinder FF (another bail track marker), and
physical track 67 is formatted as logical cylinder 6S.
This formatting continues until the last physical track
(77) is formatted as logical cylinder 75. Normally, after
this formatting is complete, the bad track information is
stored in a prespecified area on the floppy disk (typical­
ly in a sector on track 0) so that the system will be able
to· recreate the bad track information when the disk is
removed from the drive and reinserted at some later
time.

To illustrate how the system software performs a
transfer operation disk with bad tracks, assume that the
disk drive head is positioned at track 0 and the disk
described above is loaded into the drive. If a command
to read track 36 is issued by an application program, the
system software translates this read command into a
seek to physical track 37 (since there is one bad track
between 0 and 36, namely 31) followed by a read of
logical cylinder 36. Thus, the cylinder parameter C is set
to 37 for the Seek command and 36 for the Read Sector
command .

. 15. Head Load versus Head Settle Time.

6-451

The 8272 does not permit separate specification of the
head load time and the head settle time. When the
Specify command is issued for a given disk drive, the
proper value for the HLT parameter is the maximum of
the head load time and the head settle time.

AFN 01795A

APPLICATIONS

APPENDIX

6-452 AFN 01795A

APPLICATIONS

Power Distribution

Part Ref D .. 1g +5 GND +12 -12

8088 A2 40 1,20
8224 16 9,16 8
8237-2 A6 31 20
82S1A A9,B9,C9 26 4
8253-5 AI0 24 12
82S9A BI0 28 14
8272 010 40 201
8284 Al 18 9
8286 B6,F4 20 10 I

2114 Fl,F2,OI,02,Hl,H2,I1,I2 18 9
2732A O1,D2 24 12

74LSOO El 14 7
74LS04 B2,E6,E8,F8 14 7
74LS27 E2,ES 14 7
74LS32 Bl 14 7
74LS74 A4,OS,H6 14 7
74LS138 F3 16 8
74LS139 EI0 16 8
74LSlS3 13 16 8
74LSlS7 F6 16 8
74LSI64 FS 14 7
74LS173 03 16 8
74LS17S G4 16 8
74LS240 010 20 10
74LS2S7 D3 16 8
74LS367 C:3,E9 16 8
74LS373 B4,C4,D4,C6 20 10
74LS393 IS,F7 , 14 7 ,
74S08 E4 14 7
74S138 D6,E3 16 8

7414 H7 14 7
7438 H8,H9,H1O 14 7

1488 H3 7 14 I
1489 H4 14 7

96LS02 G7 16 8
96LS02 G6 16 8

LM3S8 HS 8 4

6-453 AFN 01795A

APPLICATIONS

REFERENCES
1. Intel, "8272 Single/Double, Density Floppy Disk

Controller Data Sheet," Intel Corporation, 1980.

2. Intel, iSBC 208 Hardware Reference' Manual,
Manual Order No. 143078, Intel Corporation,
1980.

3. Intel, iSBC 204 Flexible Diskette Controller Hard­
ware Reference Manual, Manual Order
No. 9800568A, Intel Corporation, 1978.

4. Shugart, SA800/801 Diskette Storage Drive OEM
Manual, Part No. 50574, Shugart Associates, 1977.

5. Shugart, SA8001801 Diskette Storage Drive Theory
of Operations, Part No. 50664, Shugart Associates,
1977.

6. Shugart, SA800 Series Diskette Storage Drive
Double ~nsityDesign Guide, Part No. 39000,
Shugart Associates, 1977.

7. Shugart, "Applic,ation Notes for Shugart Dual
VFO," Part No. 39101, Shugart Associates, 1980.

8. Pertec, "Soft-sector Formatting for PERTEC Flex­
ible Disk Drives," Pertee Application Note, 1977.

9. Austin Lesea and Rodnay Zaks, "Floppy-disc Con­
troller Design Must Begin With the Basics," EDN,
May 20, 1978.

10. John ,Iioeppner and Larry Wall, "Encoding/
Decoding Techniques Double Floppy Disc Capa­
city," Computer Design, Feb 1980.

11. John Zarrella, System Architecture, Mirocomputer
Applications, 1980.

6-454 AFN 01795A

Software Design and
Implementation of

Floppy Disk
Subsystems

Contents

1. INTRODUCTION

The Physical Interface Level
The Logical Interface Level
The File System Interface Level
Scope 0' this Note

2. DISK I/O TECHNIQU~S

FDC Data Transfer Interface
Ove'rlapped Operations
Buffers

3. THE 8272 FLOPPY DISK CONTROLLER

Floppy Disk Commands
Interface Registers
Command/Result Phases
Execution Phase
Multi-sector and Multi-track
Transfers
Drive Status Polling
Command Details
Invalid Commands

4. 8272 PHYSICAL INTERFACE
SOFTWARE

INITIALlZE$DRIVERS
EXECUTE$DOCB
FDCINT
OUTPUT$CONTROLS$TO$DMA
OUTPUT$COMMAND$TO$FDC
INPUT$RESULT$FROM$FDC
OUTPUT$BYTE$TO$FDC
INPUT$BYTE$FROM$FDC
FDC$READY$FOR$COMMAND
FDC$READY$FOR$RESULT
OPERATION$CLEAN$UP
Modifications for
Polling Operation

5. 8272 LOGICAL INTERFACE
SOFTWARE

SPECIFY
RECALIBRATE
SEEK
FORMAT
WRITE
READ
Coping With Errors

6-455 AFN-Q1949A

'Contents (Continued)' .,

6. FILE SYSTE,MS.

File Allocation
The Intel File System
Disk File System FUnctions

7. KEY 8272 SOFTWARE
INTERFACING CONSIDERATIONS

REFERENCES

APPENDIX A-8272 FDC
DEVICE DRIVER SOFTWARE

APPENDIX 8-8272 FDC
EXERCISER PROGRAM

APPENDIX C-8272 DRIVER FLOWCHARTS

6-456 AFN-01949A

APPLICATIONS

1. Introduction

Disk interface software is a _jor cantributor to the efficient and reliable
operation of a floppy disk subsystea. '!'bis software JlUSt be a well-cJesigned
CCJIIIPrOliise between the needs of the application. software lIodules and the
capabili ties of the floppy disk cantroller (!'DC). In an effort to .eet these
requiraaents. the 1I.pleaentatien of disk interface software is often divided
into several levels of abstraction. ~ purpose of this application note is
to define these software .interface levels and describe the design and illple­
.entation of a lIodular and flexible software ckiver .for the 8272 lDC. This
note is .. caipaIlion to AP-1l6. -An Intelligent Data Blase System Using the
8272.-

'rile physical. Interface Level

'f'be software interface level closest to the lDC hardware is referred. to as the
physical inteJ;face level. At this le~l. interface lIodules (often called disk
drivers or disk handlers) aa.aunicate directly with the lDC device. Disk drivers
accept floppy disk aa.aands frc:.a other software lIodul_. cantrol and aonitor the
lDC execution of the cc.aands. and finally return operational IiItatus inforaation
(at QCWIand termination) to the requesting lIodules.

In order to perfora the~e function~. the dr,ivers aust support the bitjbyte level
lDC interface for status and· data transfers. In addition. the drivers aust field,
classify. and service a variety of me interrupts.

fte Logical. Interface Level

Systelll and application software aodules often specify disk operation paruaeters .
that are not directly ~tible with the lDC device. This software illCClllpati­
bility is typically caused ~ one of the following:

,1. 'f'be change frc:.a an existing lDC to a funCtionally equivalent
design. Replacing a ftL based controller with an LSI device is
an exa.ple of a change that aay result in sOftware in~ti­
bilities.

2. 'f'be upgrade.of an existing lDC subsystem' to a higher capability -
design. ~ ~ion frOll a single-sided. single-density sys-
tem to a dual-sided. double-density system to increase data.
storage capacity is an example of such a system change.

" '.
3., !be abstraction. of the disk software interface to avoid redun-

dancy. Many PDC paraaeters (,in particular, the density. gap
size. mDbex:, 9f sectors per tr,ack and nQlbeJ: of bytes per
sector) are fixed ,for a floppy disk (atter f~J:IIatting). In
fact. in aany syst_ these paraaeters are never changed during
the life of the system.

APPUCATIONS

4. The requir~ment to support a software interface th~t is inde­
pendent of the type of disk attached to the system. In this

'case, a system generated ("logical") disk address (driVe, head,
cylinder, and sector',nl:llDbers) must be mapped into a physical
floppy disk address. " For example, to switch between sihgle­
and dual-sided disks, it'may be easier and more cost-effective
for the software to treat the ,dual-sided disk as'containing
twice as many seotors per track '(52) rather than as'~aving two
sides. with this technique, accesses to sectors 1 through 26
are mapped onto head 0 while accesses to sectors 27 through 52
are mapped onto head 1.

5. The necessity of supporting a bad track map. Since bad tracks
depend on the disk media, the bad track mapping varies from
disk to disk. In general, the system and application software
should not be concerned with calculating bad track parameters.
Instead, these software modules should refer to cylinders
logioally (0 through 76). The logical interface level pro­
cedures must map these cylinders into physical cylinder Posi-
tions in order to avoid the bad tracks;' '

The key to logical interface software design 'is the mapping of the "logical disk
interface" (as seen by the application software) into the "physical disk inter­
face" (as implemented by the flOppy disk drivers). This logical to physical
mapping is tightly coupled to system software design and'the mapping serves to
isolate both applications and system software from the peculiarities of the FCC
device. Typical logical interface procedures are described in Table 1.

~he File System Interface Level

The file syst~m typically comprises'the highest level of disk interface software
used by application programs. The file system 'is designed to treat the disk as
a collection of named data areas (known as files). These files are cataloged in
the disk directory. " File system interface software permits the creation of new
files and the deletion of existing files under software control. When a file is
created, its name and disk addressat:e entered into the directorYJ when a file is
deleted, its name is removed from the directory. Application software requests
the use of a file by executing an OPEN function. Once opened, a file is
normally reserved for use by the' requesting program or 'task and the file cannot
be reopened by other tasks. When a task no longer needs to use an open file,
the task closes the ,file, releasiogit for use by other: 1:ask~.

Most file systems also support a set of file attributes that can be specified
for each file. File attributes may be used to protect files (e.g. , the WRITE
PROTECT attribute ensures that an eX'isting file cannot aCcidentally be over­
written) and to supply system configuration ihformation (e.g., a' FORMAT attri­
bute may specify that a HIe should automatically be created on a new disk
when the disk is format,ted).

At the file system interface level, application programs need not be explicitly
aware of disk storage allocation techniques, block sizes, or file coding strate­
gies. Only a "file name" must be presented in order to open, read or write,
and subsequently close a file.) Typical file system functions are listed in
Table 2.

6-458 AFN-ol949A

APPLICATIONS

Table 1: Bxaaples of Logical Interface Procedures

Name Description

FORMAT DISK

RECALIBRATE

SEEK

READ STATUS

READ SECTOR

WRITE SECTOR

Controls physical disk formatting for all tracks on a disk.
Formatting adds FDC recognized cylinder, head, and sector
addresses as well as address marks and data synchronization
fields (gaps) to the floppy disk media.

I Moves the disk read/write head to track 0 (at' the outside
edge of the disk) •

Moves the disk read/write head to a specified logical
cylinder. The logical and physical cylinder numbers may
be different if bad track mapping is used.

Indicates the status of the floppy disk drive and media. One
important use of this procedure is to determine.whether a
floppy disk is dual-sided.

Reads one or more complete sectors starting at a specified
disk address (drive, head, cylinder, and sector).

Writes one or more complete sectors starting at a specified
disk address (drive, head, cylinder, and sector).

6-459 AFN-G1949A

APPLICATIONS

'I'able 2: Disk Pile Systea Punctions

Hame Description

OPEN

CLOSE

WRITE

CREATE

DELETE

ATTRIBO':l'E

LOAD

INI'l'DISK

Prepare a file for processing. If ~be file is to be opened ·for
input and the file name is not found in the directory, an error
is generated. If the file is opened for output and tbe file name
is not found in the directory,_ tbe file is automatically created.

Terminate processing of an open file.

Transfer data from an open file to memory. The READ function is
often designed to buffer one or more sectors of data from tbe disk
drive and !'lupply tbis data to the requesting program, as required.

Transfer data from memory to an open file. The WRITE function is
often designed to buffer dat~ from the application program until
enough data is available to fill a disk sector.

Initialize a file and enter its name and attributes into the
file directory.

Remove a file from tbe directory and release its storage space.

Change the name of a file in the directory.

Change the attributes of a file.

Read a file of executable code into memory_

Initialize a disk by formatting tbe media and establishing the
directory file, tbe bit map file, and otber system files.

_84M

APPLICATIONS

Scope of this Bote

This applicat,ion note directly addresses the logical and physical interface
levels. A complete 8272 driver (including interrupt service software) is
listed in Appendix A. In addition, examples of recalibrate, seek, format,
read, and write logical interface level procedures are included as part of
the exerciser program found in Appendix B. Wherever possible, specific
hardware configuration dependencies are parametized to provide maximum flexi­
bility without requiring major software changes.

6-461 AFN.()1949A

ApPLICATIONS

2. Disk I/O Techniques

One of the most important software aspects of diSk'interfacing is the fixed sector
size. (Sector sizes are fixed when the disk is formatted.) Individual bytes of
disk storage cannot be read/wrItten, instead, complete sectors must be tr,a,ns.,.
fer red between the floppy disk and system memory.

Selection of the appropriate sector size involves a tradeoff between memory
size, disk storage efficiency, and disk transfer efficiency. Basically, the

/following factors must be weighed:

1. Memory size. The larger the sector size, the larger the memory
area that must be reserved for use during disk I/O transfers.
For example, a lK byte disk sector size requires that at least
one lK memory block be reserved for disk I/O.

2. Disk Storage efficiency. Both very large and very small sectors
can waste disk storage space as follows. In disk file systems,
space must be allocated somewhere on the disk to link the sectors
of each file together. If most files are composed of many small
sectors, a large amount of linkage overhead information is re­
quired. At the other extreme, when most files are smaller than a
single disk sector, a large amount of space is wasted at the
end of each sector.

3. Disk transfer efficiency. A file composed of a few large sectors
can be transferred to/from memory more efficiently (faster and
with less overhead) than a file composed of many small sectors.

Balancing these considerations requires knowledge of the intended system appli­
cations. Typically, for general purpose systems, sector sizes from 128 bytes
to lK byt~s are used. For compatibility between single~density and double­
density recording with the 8272 floppy disk controller, 256 byte sectors or 512
byte sectors are most useful.

FDC Data Transfer Interface

Three distinct software interface techniques may 'be used to interface system mem­
ory to the FCC device during sector data transfers:

1. DMA - In a DMA implementation, the software is only required
to set up the DMA controller memory address and transfer count,
and to ihitiate the data transfer. The DMA controller hardware
handshakes with the processor/system bus in order to perform
each data transfer.

2. Interrupt Driven - The FDe generates an interrupt when a data
byte is ready to be transferred to memory, or when a data byte
is needed from memory. It is the software's responsibility to
perform appropriate memory reads/writes in order to transfer
data,from/to the FCC upon receipt of the interrupt.

3. polling - Software responsibilities in the polling mode are
, identical to the responsibilities in the interrupt driven mode.

The polling mode, however, is used when interrupt service over­
head (context switching) is too large to support the disk data

6-462 AFN-01949A

APPLICATIONS

rate. In this mode, the software determines when to transfer
data by continually polling a data request status flag in the
FOe status register.

The DNA mode has the advantage of permitting the processor to continue executing
instructions while a disk transfer is in progress. (This capability is especially
useful in multiprogramming environments.when the operating system is designed to
permit other tasks to execute while a program is waiting for I/O.) Modes 2 and
3 are often combined and described as non-DNA operating modes. Non-DNA modes
have the advantage of significantly lower system cost, but are often perform-
ance limited fpr double-density systems (where data bytes must be transferred
to/from the FOe every 16 microseconds).

Overlapped Operations

Some FCC devices support simultaneous disk operations on more than one disk
drive. Normally seek and reca1ibrate operations can be overlapped in this
manner. Since seek operations on most floppy drives are extremely slow, this
mode of operation can often be used by the system software to reduce overall
disk access times.

Buffers

The buffer concept is an extremely important element in advanced disk I/O
strategies. A buffer is nothing more than a memory area containing the same
amount of data as a disk sector contains. Generally, when an application pro­
gram requests data from a disk, the system software allocates a buffer (memory
area) and transfers the data from the appropriate disk sector into the buffer.
The address of the buffer is then returned to the application software. In the
same manner, after the application program has filled a buffer for output,
the buffer address is passed to the system software, which writes data from the
buffer into a disk sector. In multitasking systems, multiple buffers may be
allocated from a buffer pool. In these systems, ·the disk controller is often
requested to read ahead and fill additional data buffers while the application
software is processing a previous buffer •. Using this technique, system software
attempts to fill buffers before they are needed by the application programs,
thereby eliminating program waits during I/O transfers. Figure 1 illustrates
the use of multiple buffers in a ring configuration.

6-463 AFN-Ql949A

DISK
DRIVE

APPLICATIONS

BUFFER #4
EMPTY

BUFFER #1
BEING
FILLED

DISK
SU,SSVSTEM

BUFFER #3
EMPTY

BUFFER #2
EMPTY

DATA FLOW FROM DISK
INTO BUFFER

a) The first disk read request by the application,software causes the disk subsystem to begin filling
the first empty buffer, The application software must wait until the buffer is filled before it may
continue execution.

AFN-01~

Figure 1. USing Multiple Memory Buffers for Disk 1/0

6-464 AFN'()1949A

DISK
DRIVE

APPLICATIONS

APPLICATION
SOFTWARE

BUFFER #1
BEING

EMPTIED

BUFFER #2
BEING
FILLED

DISK
SUBSYSTEM

BUFFI;.R#4
EMPTY

~
BUFFER #3

EMPTY

OAT A FLOW FROM DISK
INTO BUFFER

..

b) After the first buffer is filled, the disk system continues to transfer disk data into the next buffer
while the application software begins operating on the first full buffer.

Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued)

6-465 AFN-01949A

BUFFER #2
FULL

BUFFER #3
FULL

APPUCATIONS

APPLICATION
SOFTWARE

BUFFER #4
FULL

t
BUFFER #1

BEING
EMPTIED

DISK
SUBSYSTEM

NO DISK TRANSFER
ACTIVE

c) When all empty buffers. have been filled, disk activity is stopped until the application software
releases one or more buffers for reuse. .

AFN.()1949A

Figure 1. Using Multiple Memory Buffers for Disk 1/0 (Continued)

6-466 AFN'()1949A

DISK
DRIVE

BUFFER #3
FULL

BUFFER #4
FULL

APPLICATIONS

APPLICATION
SOFTWARE

BUFFER #2
BEING

EMPTIED

BUFF.ER #1
BEING
FILLED

OAT A FLOW fROM
DISK INTO BUFFER

DISK
SUBSYSTEM

d) When the application software releases a buffer (for reuse), the disk subsystem begins a disk
sector read to refill the buffer. This strategy attempts to anticipate application software needs by
maintaining a sufficient humber of full data buffers in order to minimize data transfer delays. If
disk data is already in memory when the application software requests it, no disk transfer delays
are incurred.

AFN'()1949A

Figure 1. Using Multiple Memory Buffers for Disk 1/0 (Continued)

6-467 AFN'()1949A

APPLICATIONS

3. '~8272 FLOPPY DISK CONTROLLER

The 8272 is a single-chip LSI Floppy Disk Controller (FDC) that implements both
single- and double-density floppy disk storage subsystems (with up to four
dual-sided disk drives per FDC). The 8272 supports the IBM 3740 single-density
recording format (FM) and the IBM System 34 double-density recording format
(MFM). The 8272 accepts and executes high-level disk commands such as format
track, seek, read sector, and write sector. All data synchronization and error
checking is automatically performed by the FDC to ensure reliable data storage
and subsequent retrieval. The 8272 interfaces to microprocessor systems with
or without Direct Memory Access (DMA) capabilities and also interfaces to a
large number of commercially available floppy disk drives.

Ploppy Disk Co.aands

The 8272 executes fifteen high-level disk interface commands:

Specify
Sense Drive Status
Sense Interrupt Status
Seek
Recalibrate
Format Track
Read Data
Read Deleted Data

Write Data
Write Deleted Data
Read Track
Read ID
Scan Equal
Scan High or Equal
Scan Low or Equal

Each command is initiated by a multi-byte transfer from the driver software
to the FDC (the transferred bytes contain command and parameter information).
After complete command specification, the FDC automatically executes the
command. The command result data (after execution of the command) may require a
multi-byte transfer of status information back to the driver. It is con­
venient to consider each FDC command as consisting of the following three phases:

Command Phase: The driver transfers to the FDC all the information
\ required to perform a particular disk operation. The

8272 automatically enters the command phase after
RESET and following the completion of the result
phase (if any) of a previous command.

Execution Phase: The FDC performs the operation as instructed. The
execution phase is entered immediately after the
last command parameter is written to the FDC in the
preceding command phase. The execution phase
normally ends when the last data byte is transferred
to/from the disk or when an error occurs.

Result Phase: After completion of the disk operation, status and
other housekeeping information are made avail-
able to the' driver software. After this information is
read, the FDC reenters the command phase and is ready
to accept another command.

6-468 AFN-OI949A

APPLICATIONS

Interface Registers
,

To support information transfer between the FDC and the system software, the
8272 contains two 8-bit registers: the Main status Register and the Data '
Register. The Main Status Register (read only) contains FDC status information
and may be accessed at any time. The Main Status Register (Table 3) provides
the system processor with the status of each disk drive, the status of the
FDC, and the status of the processor interface. The Data Register (read/write)
stores data, commands, parameters, and disk drive status information. The Data
Register is used to program the FDC during the command phase and to obtain
result information after completion of FDC operations.

In addition to the Main Status Register, the FDC contains four additional
status registers (STO, STl, ST2, and ST3). These registers are only available
during the result phase of a command.

Ca.aand/Result Phases

Table 4 lists the 8272 command set. For each of the fifteen commands, command
and result phase data transfers are listed. A list of abbreviations used in >

the table is given in Table 5', and the contents of the result status registers
(STO-ST3) are illustrated in Table 6'.

The bytes of data which are sent to the 8272 by the drivers during the command
phase, and are read out of the 8272 in the result phase, must occur in the order
shown in Table 4. That is" the command code must be sent first and the other
bytes sent in the p~escribed sequence. All bytes of the command and result
phases must be read/written as described. After the last byte of data in the
command phase is sent to the 8272 the execution phase automatically starts. In
~ similar fashion, when the last byte of data is read from,the 8272 in the
result phase, the result phase is automatically ended and the 8272 reenters the
command phase. '

It is important to note that during the result phase all bytes shown in Table 4
must be read. The Read Data command, ,for example, has seven bytes of data in the
result phase. All seven bytes must be read in order to successfully complete
the Read Data command. The 8272 will not accept a new command until all seven
bytes have been read. The number of command and result bytes varies from
command-to-command.

In order to read data from, or write data to, the Data Register during the
command and result phases, the software driver must examine the Main Status
Register to determine if the Data Register is available. The DIO (bit 6) and
RQM (bit 7) flags in the Main status Register must be low and high, respective­
ly, before each byte of the command word may be written into the 8272. Many of
the commands require multiple bytes, and as a result, the Main Status Register
must be read prior to each byte transfer to the 8272. To read status bytes
during the result phase, DIO and RQM in the Main Status Register must both be
high. Note, checking the Main Status Register in this manner before each byte
transfer to/from the 8272 is required only in the command and result phases,
and is NOT required during the execution phase.

6-469 AFN-OI949A

BIT SYMBOL
NUMBER

0 DOB

1 DIB

2 D2B

3 D3B

4 CB

5 NDM

6 DIO

7 RQM

APPLICATIONS

'l'able 3: Main status Register Bit' Definitions

DESCRIPTION

:

Disk Drive 0 BUSy. Disk Drive o is seeking.

Disk Drive 1 BUsy. Disk Drive 1 is seeking~

Disk Drive 2 Busy. Disk Drive 2 is seeking.

Disk Drive 3 Busy. Disk Drive 3 is seeking.

FOe BUSY. A read or write command is in progress.

Non-DNA MOde. The FOe is in the non-DNA mode when this flag is
set (1). This flag is set only during the execution phase of
commands in the non-DNA mode. Transition of this flag to a
zero' (0) indicates that the execution phase has ended. '

Data Input/Output. Indicates the direction of a data transfer
between the FOe and the Data Register. When DIO is set (1), data
is read from the Data Register by the processor, when DIO is
reset ,(0), data is written from the processor to the Data Register.

Request for Master. When set '(1,), this flag indicates that
the Data Register is ready to send data ,to, or receive data

, from" the proces~or'.

6-470

APPLICATIONS

~able 4: 8272 Ca.aand Set
DATA IUS DATA 'US ,

PHASE AIW I Dr De DS D4 Da liz Dl Dol REMARKS PHASE AIW Dr De DS D4 D3 liz Dl Do REMARKS

READ DATA READ A TRACK

Command W MT MFM SK 0 0 1 1 0 Command COdes Command 'II 0 MFM SK 0 0 0 1 0 Command Codes
W 0 0 0 0 0 HOS DSI DSO W 0 0 0 0 0 HOS DSI DSO

W C Sector 10 Information W C Sector 10 information
W H prior to Command W H prior to Command
W R execution W R execution
W N W N
W EDT W EDT
W GPl W GPl
W DTl W DTl

Execution Data transfer Data transfer

between the FoD
I Execution between the FDD

and the maln~.y8tem and the main-system.
FDC reada the

Result R STO Status information complete track
R STI after Command con~ents from the
R ST2 execution physical index
A C mark to EOT
A H Sector 10 information
R A alter command Result R STO Status Information
R N execution R ST 1 after Command

A. ST2 execution
READ DELETED DATA A C

Command W MT MFM SK 0 1 1 0 0 Command Codes A H- Sector 10 Information

W 0 0 0 0 0 HDS DSI DSO
A R after Command
A N execution

W C Sector 10 Information
W H prior to Command AEAO 10
W A execution Command W 0 MFM 0 0 1 0 1 0 Command ,Codes
W N
W ECI W 0 0 0 0 0 HOS OSI OSO
W GPl
W OTl Execution The first correct 10

,Execution Data transfer
information on the
track Is stored In

between the FOD Data Register
and the main-system

Result A STO Status Information Result A 5TO Status information
R ST 1 after Command R STI after Command
R S12 execution R ST2 execution
R C R C
R H Sector 10 Information R H Sector 10 information
R R after Command R R during Execution
R N execution R N Phase

WAITE DATA FOAMAT A TAACK

Command W MT MFM 0 0 0 1 0 1 Command Codes Command W 0 MFM 0 0 '1 1 0 1 Command Codes

W 0 0 0 0 0 HDS,OSI DSO W 0 0 0 0 0 HOS OSI 080

W C Sector 10 Information W N Bytes/Sector
W H pnor to Command W SC SectorsfTrack
W R execution W GPl Gap 3
W N W 0 Filter Byte
W EDT
W GPl Execution FOC formats an
W DTl enUre track

Execution Data transfer Result A STO Status Information
between the main· A ST 1 ;;after Command
system and the FDD A ST2 execution

Result R STO Status information A C
R STI after Command R H In this case, the 10
R ST2 execution R A Information has no

R C R N meaning

R H Sector 10 Information SCAN EQUAL A R alter Command
R N execution Command W MT MFM SK 1 0 0 0 1 COmmand Codes

WRITE DELETED DATA W 0 0 0 0 0 HOS OSI DSO

Command W MT MFM 0 0 1 0 0 1 COmmand 'Codes
W C Sector 10 Information
W H pnor to Command

W 0 0 0 0 0 HOS OSI DSO W R execution
W C Sector 10 Information W N
W H prior to Command W EDT
W R execution W GPl
W N W STP
W EDT
W GPl Execution Data compared
W OTl between the FOO

Execution Data transfer
and the main·system

between the FOD Result R STO Status information
and the main-system R STI after Command

Result A STO Status information R 512 execution

R STI after Command A C
A ST2 execution R H Sector 10 Information

R C A R after Command

A H Sector 10 information R N execution

R A after Command
R N execution

Note: 1. Ao = 1 for all operations.

6-471 AF~I949A

APPLICATIONS

I DATA BUS J L DATA BUS

PHASE RIW I D7 De DS D4 D3 D2 D, Do I REMARKS PHASE RIW I Dr 0. DS D4 D3 02 D, DO I REMARKS

SCAN LOW OR EQUAL RECALIBRATE

Command W MT MFM SK , , 0 0 , Command Codes Command W 0 0 0 0 0 , , , Command Codes
W 0 0 0 0 0 HOS OS1 OSO W 0 0 0 0 0 0 OS" DSO
W C $ector 10 information Execution Head retracted to
W H prior Command Track 0
W R execution
W N SENSE INTERRUPT STATUS
W EOT

Command W 0 0 0 0 , 0 0 0 CommSind Codes W GPL
W STP Result R STO Status information at

R C the end of each seek
Execution Data compared operatlo'n about the

between the FOD FOC
and the main-system

SPECIFY

Result R STO Status information Command W 0 0 0 0 0 0 1 1 Command Codes
R ST 1 after Command _SPT ___ ... _HUT
R ST2 execution W - Timer Settings
R C W HLT II NO
R H Sector 10 information SENSE DRIVE STATUS
R R after Command
R N execution Command W 0, 0 0 0 0 1 0 0 Command Codes

SCAN HIGH OR EQUAL W 0 0 0 0 0 HOS OS1 OSO

Result R ST 3 Status information
Command W MT MFM SK 1 1 1 0 1 Command Codes about the FOO

W 0 0 0 0 0 HOS OS1 o'SO SEEK
W C Sector 10 information
W H prior Command Command W 0 0 0 0 1 1 1 1 Command Codes
W R execution W 0 0 0 0 0 HOS OS1 OSO
W N

W C W EOT
W GPL

Execution Head IS pOSItioned W STP
over proper Cylmder

Executlo'n Data compared on Dlskettl:t

bet~een the FOD INVALID
and the main-system

Command W ____ Invalid Codes ____ Invalid Command
Result A STO Status Information Codes (NoOp - FOG'

R ST 1 after Command goes Into Standby
R ST2 execution State)
R C Result R STO STO=80
R H Sector 10 information (16)
R R after Command
R N execution

6-472 AFN-ol~A

SYMBOL

C

D

DSO,DSl

APPLICATIONS

Table 5: Ca.aan4/Result Paraaeter Abbreviations

OESCRIPTION

Cylinder Address. The currently selected cylinder address (0 to 76) on
the disk.

Data p~ttern. The pattern to be written in each sector data field during
formatting.

Disk Drive Select.

DSl DSO
0 0 Drive 0
0 1 Drive 1
1 0 Drive 2
1 1 Drive 3

DTL Special Sector Size. During the execution of disk read/write pommands,
this parameter is used to temporarily alter the effective disk sector
size. By setting N to zero, DTL may be used to specify a sector size
from 1 to 256 bytes in length. If the actual sector (on the'disk)
is larger than DTL specifies, the remainder of the actual sector is not
passed to the system during read commands, during write commands, the
remainder of the actual sector is written with all-zeroes bytes. DTL
should be set to FF hexadecimal when N is not zero.

,EOT End of Track. The final sector number of the current track.

GPL Gap Length. The gap 3 size. (Gap 3 is the space between sectors.)

H

HLT

Head Address. Selected head: 0 or 1 (disk side 0 or 1, respectively)
as encoded in the sector ID field.

Head Load Time. Defines the time interval that the FDC waits after
loading the head before initiating a read or write operation. program­
mable from 2 to 254 milliseconds (in increments of 2 ms).

HUT Head Unload Time. Defines the time interval from the end of the exe­
cution phase (of a read or write command) until the head is unloaded.
programmable from 16 to 240 milliseconds (in increments of 16 ms).

MFM MFM/PM Mode Selector. Selects MFM double-density recording mode when
high, PM single-density mode when low.

MT Multi-Track Selector. When ~et, this flag selects the multi-track
operating mode. In this mode (used only with dual-sided disks),

N

the FDC treats a complete cylinder (under both read/write head 0 and
read/write head 1) as a single track. The FDC operates as if this
expanded track started at the first sector under head 0 and ended at the
last sector under head 1. With this flag set (high), a multi-sector
read operation will automatically continue to the first sector under
head 1 when the FDC finishes operating on the last sector under head O.

Sector Size Code. The number of data bytes within a sector.

6-473 AFN-01949A

APPLICATIONS

NO Non-DMA Mode Flag. When set (1), this flag indicates th~t the FDC
is to operate in the non-DMA mode. In this mode, the processor
participates in each data transfer (by means of an interrupt or by
polling the RQM flag in the Main status Register). When.reset (0),
the FDC interfaces. to a DMA controller.

R Sector Address. Specifies the sector number to be read or written. In
multi-sector transfers, this parameter specifies the sector number of
the first sector to be read or written.

se Number of Sectors per Track. Specifies the number of sectors per track
to be initialized by the Format Track command •.

SK Skip Flag. When this flag is set, sectors containing deleted data
address marks will automatically be skipped during the execution of
multi-sector Read Data or Scan commands. In the same manner, a sector
containing a data address mark will automatically be skipped during
the execution of a multi-sector Read Deleted Data command.

SRT Step .. Rate Interval. Defines the time interval between step pulses
issued by the FDC (track-to-track access time). programmable from
1 to 16 milliseconds (in.increments of 1 ms).

STO Status Register 0-3. Registers within the FDC that store status infor-
STl mation after a command has been executed. This status information is
ST2 available to the proce'ssor during the Result Phase after command exe-
ST3 cution. These registers may only be read after a command has been

executed (in the exact order, shown in Table 4 for each command).
These registers should not be confused with the Main Status Register.

STP Scan Sector Increment. During Scan operations, this parameter is
added to the current sector number in order to determine the next
sector to be scanned.

6-474 AFN-OI949A

APPLICATIONS

~able 6: status Register Definitions

status Register 0

BIT SYMBOL
NUMBER

7,6 IC

5 SE

4 Be

3 NR

DESCRIPTION

Interrupt Code.

00 - Normal termination of command. The spe~ified command was
properly executed and completed without error.

01 - Abnormal termination of command. Command execution was
started but could not be 'successfully completed.

10 - Invalid command. The requested command could not be executed.

11 - Abnormal termination. During command execution, the disk
drive ready signal changed state.

Seek End. Th~s flag is set (1) when the FOe has completed the
Seek command and the read/write bead is positioned over the
correct cylinder,.

Equipment Check Er'ror. This flag is set (1) if a fault signal
is received from the disk drive or if the track 0 signal is
not received from the disk drive after 77 step pulses
(Re9alibrate command).

Not Ready Error. This flag is set if a read or write command is
issued and either the drive is not ready or the command specifies
side 1 (head 1) of a single-sided disk.

2 B Bead Address. The head address at the time of the interrupt.

1,0 DS1,DSO Drive Select. The number of the drive selected at the time of
the interrupt.

Status Register 1

BIT
NUMBER

7

6

5

4

SYMBOL

EN

DE

OR

DESCRIPTION

End of Track Error. This flag is set if the FDC attempts to
access a sectbr beyond th~ fina~ sector of the track.'

Undefined

Data Error. Set when 'the FOe detects a'CRC'error in either the
the ID field or the data field of a sector. ;

Overrun Error. set (during data transfers) if the FDC does not
receive DMA or'processor service within the 'specified time
interval.

6-475

3

2 ND

1 NW

o MA

\

APPLICATIONS'

Undefined

Sector Not Found Error. This flag is set by any of the follow-
ing conditions. '

a) The FOe cannot locate the sector specified in the Read
Data, Read Deleted Data, or Scan command.

b) The FOe cannot locate the starting sector specified in .
the Read Track command.

c) The FOe cannot read the ID fieid without error during
a Read ID command.

Write Protect Error. This flag is set if the FOe detects a
write protect signal from the disk drive during the execution
of a Write Data, Write Delet,ed Data, or Format Track camnand.

Missing Address Mark Error. This flag is set oy either of the
following conditions:

a) The FOe cannot detect the ID address mark on the specified
track (after two rotations of the disk).

b) The FOe cannot dete~t the data address mark or, deleted data
address mark on the specified track. (See also the Me bit
of Status Register 2.)

Status Register 2

BIT SYMBOL
NUMBER

7

6 CM

5 DD

4 we

3 SH

2 SN

DESCRIPTION

Undefined

Control Mark. This flag is set when the FOe encounters one of
the following conditions:

a) A deleted data address mark during the execution of a Read
Data or Scan command.

b) A data address mark during the execution of a Read Deleted
Data command.

Data Error. Set (1) when the FOe detects a CRC error in a
sector data field. This flag is not set when a CRC error is
detected in the ID field.

Cylinder Address Error. Set when the cylinder address from the
d~sk sector ID field is different from the current cylinder
address maintained within the FOe.

Scan Bit. Set during the execution of the Scan camnand
if the scan condi tion is satisfied,.

,Scan Not Satisfied. Set during execution of the Scan command
if 'the FDC cannot ,locate a sector on the specified cylinder
that satisfies the scan condition.

6-476

1 BC

o MD

APPLICATIONS

Bad Track Error. Set when the cylinder address from the disk
sector ID field is FF hexadecimal and this cylinder address is
different from the current cylinder address maintained within
the FDC. This all "ones" cylinder number indicates a bad track
(one containing hard errors) according to the IBM soft-sectored
format specifications.

Missing Data Address Mark Error. Set if the FOe cannot detect
a data address mark or deleted data address mark on the speci­
fied track.

Status Register 3

BIT SYMBOL
NUMBER

7 FT

6 WP

5 RDY

4 TO

3 TS

2 H

DESCRIPTION

Fault. This flag indicates the status of the fault signal from
the selected disk drive.

Write Protected. This flag indicates the status of the write
protect signal from the selected disk drive.

Ready. This flag indicates the status of the ready signal from
the selected disk drive.

Track O. This flag indicates the status of the track 0 signal
from the selected disk drive •.

TWo-Sided. This flag'indicates the status of the two-sided
signal from the selected disk drive.

Head Address. This flag ihdicates the status of 'the side select
signal for the currently selected disk drive.

1,0 DS1,DSO Drive Select. Indicates the currently selected disk drive
number.

6-477

\

APPLICATIONS

Bxecution Phase

All data transfers to (or from) the floppy drive occur during .the execution
ph'ase·. The 8272 has two primary modes of operation for data transfers
(selected by the specify command):

1) DMA mode
2) non-DMA mode

In the.DMA mode, execution phase data transfers are handled by the DMA con-
troller hardware (invisible to the driver software). The driver software, however,
must set all appropriate DMA controller registers prior to the beginning of the
.disk operation. An interrupt is generated by the 8272 after the last data
transfer, indicating the completion of the execution phase, and the beginning of
the result phase.

In the non-DMA mode, transfer requests are indicated by generation of an interrupt
and by activation of the RQM flag (bit 7 in the Main Status Register). The
interrupt signal can be used for interrupt-driven systems and RQM can be used for
polled systems. The driver software must respond to the transfer request by
reading data from, or. writing data to, the FDC. After completing the last
transfer, the 8272 generates an interrupt to indicate the beginning of the
result phase. In the non-DMA mode, the processor must activate the "terminal
count" (TC) signal to the FDC (normally by means of an I/O port) after the
transfer request for the last data byte has been received (by the driver) and
before the appropriate data byte has been read from (or written to) the FDC.

In either mode of operation (DMA or non-DMA), the execution phase ends when a
"terminal count" signal is sensed by' the FDC, when the last sector on a track
(the EDT parameter - Table 4) has been read or written, or when an error
occurs.

Multi-sector and Multi-track ~ransfers

. During disk read/write transfers (Read Data, Write Data, Read Deleted Data,
and Write Deleted Data), the FDC will ~ontinue to transfer data from sequential
sectors until the TC input is sensed. In the DMA mode, the TC input is normally
set by the DMA controller. In the non-DMA mode, the processor directly controls
,the FDC TC input as previously described. Once the TC input is received, the FDC
stops requesting data transfers (from.the system software or DMA controller).
The FDC, however, continues to read data from, or write data to, the floppy disk
until the end of the current disk sector. During a disk read operation, the data
read from the disk (after reception of the TC input) is discarded, but the data
CRC is checked for errors: during a disk write operation, the remainder of the
sector is filled with all-zero bytes.

If the TC signal is not received before the last byte of the current sector has
been transferred to/from the system, the FDC increments the sector number by one
and initiates a read or write command for this new disk sector.

6-478 AfN.Ol949A

APPLICATIONS

The FDC is also designed to operate in a multi-track mode for dual-sided
disks. In the mUlti-track mode (specified by means of the MT flag, in the
command byte - Table 4) the Foe will automatically increment the head address
(from 0 to 1) when the last sector (on the track under head 0) has been read or
written. Reading or writing is then continued on the first sector (sector 1)
of head 1. '

Drive Status polling

After the power-on reset, the 8272 automatically enters a drive status
polling mode. If a change in drive status is detected (all drives are assumed
to be "not ready" at power-on), an interrupt is generated. The 8272 continues
this status polling between command executions (and between step pulses in the
Seek command). In this manner, the,8272 automatically notifies the system
software whenever a floppy disk is inserted, removed, or changed by the operator.

Command Details

During the command phase, the Main Status Register must be polled by the driver
software before each byte is written into the Data Register. The 010 (bit 6) and
RQM (bit 7) flags in the Main Status Register must be low and high, respectively,
before each byte of the command may be written into the 8272. The beginning
of the execution phase for any of these commands will cause 010 to be set high
and RQM to be set low.

Operation of the Foe commands is described in detail in Application Note AP-ll6,
"An Intelligent Data Base system Using the 8272."

Invalid Commands

If an invalid (undefined) command is sent to the FOC, the FDC will terminate
the command. No inteq:upt is generated by the 8272, during this condition.
Bit 6 and bit 7 (010 and RQM) in the Main Status Register are both set indi­
cating to the processor that the 8272 is in the result phase and the contents
of Status Register 0 must be read. When the processor reads Status Register
o it will find an 80H code indicating that an invalid command was received.
The driver software in Appendix B checks each requested command and will not
issue an invalid command to the 8272.

A Sense Interrupt Status command must be sent after '~ Seek or Recalibrate
interrupti otherwise 'the FDC will consider the next command to be an invalid
command. Also, when the last "hidden" interrupt has been 'serviced, further
Sense Interrupt Status commands will xesult in invalid command codes.

6'479 AFN.o1949A

APPLICATIONS

4.' 8272 physical Interface Software

PL/M software driver listings for the 8272 FOe are contained in Appendix A.
These drivers have been designed to operate in a DMA environment (as -described
in Application Note AP-116, "An Intelligent Data Base System U&ing the 8272").
In the following paragraphs, each dri~er procedure is described. (A description
of the driver data base variables is given in Table 7.) In addition, the modi­
fications necessary to reconfigure the drivers for operation in a polled envir­
onment are discussed.

IRI'l',IALI ZE$DRIVBRS

This initialization procedure must be called before any FOe operations are
attempted. This module initializes the DRIVE$READY, DRIVE$STATUS$CHANGE,
OPERATIONINPROGRESS, and OPERATION$COMPLETE arrays as well as the
GLOBAL$DRIVE$NO variable.

EXBCU'l'E$DOCB

This procedure contains the main 8272 driver control software and_handles the
execution of a complete FOe command. EXECUTE$DOcB is called with two parame­
ters: a) a pointer to a disk operation control block and b) a pointer to a
result status'byte. The format of the disk operation control block is illus­
trated in Figure 2 and the result status codes are described in Table 8.

Before starting the command phase for the specified disk operation, the command
is checked for ,validity and to determine whether the FDC is busy. (For an over­
lapped operation, if the FDC BUSY flag is set - in the Main Status Register -
the command cannot be started, non-overlapped operations cannot be s~arted if
the FDC BUSY flag, is set, if any drive is in the process of-seeking/recalibrating,
or if an operation is currently in progress on the specified drive.)

After these checks are made" interrupts are disabled in order to set the
OPERATIONINPROGRESS flag, reset the OPERATION$COMPLETE flag, load a pointer
to the current operation control block into the OPERATION$DOCB$PTR array and
set GLOBAL$DRIVE$NO (if a non-overlapped operation is to be started).

At this point, parameters from the operation control block are output to the
OMA controller and the FDC command phase 'is ini tiated. After completion of the
command phase, a test is made to detetmine the type of result phase required
for the current operation. If no result phase is needed, control is immediate­
ly'returned to the callirlg program. If an immediate result phase is required,
the result bytes are input from the FOe. Otherwise, the CPU waits until the
OPERATION$COMPLETE flag is set (by the interrupt service procedure).

Finally, if an error is detected in the result status code (from the FOe), an
FDC operation error is reported to the calling program.

6-480 AfN.Ol949A

APPLICATIONS

~able 7: Driver 'Data Base

NAME DESCRIPTION

DRIVE$READY A public array containing the current "ready·
status of each drive.

DRIVE$STATUS$CBANGE A public array containing a flag for' each
drive. ~e appropriate flag i~ set when­
ever the ready status of a drive changes.

OPERATION$DOCB$P~ An internal array of pointers to the
operation control block currently in
progress for each drive.

OPERATIONINPROGRESS An internal array used by the driver pro­
cedures tO'determine if a disk operation
is in progress on a given drive.

OPERATION$COMPLETE An internal array used by the-driver pro­
cedures to determine when the execution
phase of a disk operation is complete.

GLDBAL$DRIVE$NO A data byte that records the current drive
number for non-overlapped disk operations.

VALID$COMMAND A constant flag array that indicates

COMMAND$LENGTH

DRIVENOPRESENT

OVERLAP$OPERATION

NO$RESULT

IMMED$RESULT

roSSIBLE$ERROR

whether a specified FDC cOllUDand code is
,valid.

A constant byte array specifying the number
of cOllUDand/parameter bytes to be trans­
ferred to the FDC during the COIlUDand phase.

A constant flag array that indicates whether
a drive number is encoded into an FDC cOllUDand.

A constant flag array that indicates whether
an FDC cOllUDand can be overlapped with other
cOllUDands.

A constant flag array that is used to deter­
mine when an FDC operation does not have a
result phase.

A con~tant flag array that indicates that an
FDC operation has a result phase beginning
immediately after the cOllUDand phase is'
complete.

A constant flag array that indicates if an
FDC operation should be checked for an
error status indication during the result
phase.

6-481 AfN.{)1949A

Address
Offset

o

,1

3

4

6

7

8

9

10

11

12

13

14

15

'16

17

18

19

20

21

22

APPLICATIONS

Disk Operation
Control Block (DOCB)

DMA$OP

- DMA$ADDR

DMA$ADDR$EXT

DMA$COUNT

DISK$COMMAND(O)

DISK$COMMAND(l)

DISK$COMMAND(2)

DISK$COMMAND (3)

DISK$COMMAND(4)

DISK$COMMAND(5)

DISK$COMMAND(6)

DISK$COMMAND(7)

'OISK$COMMAND (8)

DISK$RESULT(O)

DISK$RESULT(l)

DISK$RESULT(2)

DISK$RESULT (3)

DISK$RESULT(4)

, DISK$RESULT(5)

DISK$RESULT(6)

MISC,

Figure 2. Disk Operation Control Siock (OPCS) Format

6-482

I

1

AFN-Ol949A

AFN-Ol949A

Code

o

1

2

3

4

5

APPLICATIONS

~able 8: BXBCO~$DOCB Return Status Codes

Description

No errors. The specified operation was completed without error.

FCC busy. The requested operation cannot be started. This error
occurs if an attempt is made to start an operation before the
previous operation is completed.

FCC error. An error was detected by the FOe during the execution
phase of a disk operation. Additional error information is con­
tained in the result data portion of the disk operation control
block (DOCB.DISK$RESULT) as described in the 8272 data sheet.
This error occurs whenever the 8272 reports an execution phase
error (e.g., missing address mark).

8272 command interface error. An 8272 interfacing error was de­
tected during the command phase. This error occurs when the command
phase of a disk operation cannot be successfully completed (e.g.,
incorrect settittg of the DIO flag, in the Main status Register).

8272 result interface error. An 8272 interfacing error was detected
during the result phase. This error occurs when the result phase
of a disk operation cannot be successfully completed (e.g., incorrect
setting of the DIO flag in the Main Status Register).

Invalid FOe Command.

6-483 AFN-Ol949A

APPLICATIONS

PDCIR", .

This procedure performs all interrupt processing for the 8272 interface drivers.
Basically, two types of interrupts are generated by the 8272: (a) an interrupt
that signals the end.of a command execution phase and the beginning of the re­
sult phase and (b) an interrupt that signals the completion of an overlapped
operation or the occurrence of an unexpected event (e.g., change in the drive
"ready" status).

An interrupt of type (a) is indicated when the FOe BUSY flag is set (in the
Main Status Register). When a type (a) interrupt is sensed, the result bytes
are read from the 8212 and placed in the result·portion of the disk operation
control block, the appropriate OPERATION$COMPLETE flag is set, and the OPERA­
TIONINPROGRESS flag is reset.

When an interrupt of type (b) is indicated (FOe not busy), a sense interrupt
status command is issued (to the FOe). The upper two bits of the result status
register (Status Register Zero - STO) are used to determine the cause of the
interrupt.. The following ,four cases are possible:

1) Operation Complete. An overlapped operation is complete. The
drive number is found· in the lower two bits of STO. The STO data
is transferred to the active operation control biock, the OPERA­
TION$COMPLETE flag is set, and theOPERATIONINPROGRESS flag is
reset.

2) Abnormal Termination. A disk operation has abnormally terminated.
The drive number is found in the lower two bits of STO. The STO
data is transferred to the active control block, the OPERATION$COM­
PLETE flag is set, and the OPERATIONINPROGRESS flag is reset.

3) Invalid Command. The execution of an invalid command (i.e., a
sense interrupt command with no interrupt pending) has been attempt­
ed. This interrupt signals the successful completion of all interrupt
processing.

4) Drive status Change. A change has occurred in the "ready" status
of a disk drive. The drive number is found in the lower two bits
of STO. The DRIVE$READY flag for this disk drive is set to the
new drive "ready" status and the DRIVE$STATUS$CHANGE flag for the
drive is also set. In addition, if a command is currently in
progress, the STO data is transferred to the active control block,
the OPERATION$COMPLETE flag is set, and the OPERATIONINPROGRESS
flag is reset.

A~ter processing a type (b) interrupt, additional sense interrupt status commands
must be issued and processed until an "invalid command" result is returned from
the FOe. This actiqn guarantees that all "hidden" interrupts are serviced.

In addition to the major driver procedures described above, a number of support
procedures are required. These support routines are briefly described in the
following paragtaphs.

6-484 AFN-01949A

APPLICATIONS

OUTPUT$COR2ROLS$TO$DMA

This procedure outputs the DNA mode, the DMA address, and the DMA word count
to the 8237 DMA controller. In addition, the upper four bits of the 20-bit
DMA address are output to the address extension latch. Finally, the disk DMA
channel is started.

OU'l'PUT$COIlMARD$"fO$PDC

This software module outputs a complete disk command to the 8272 FDC. The
number of required command/parameter bytes is found in the CO~$LENGTH table.
The appropriate bytes are output one at a time (by calls to OUTPUT$BYTE$TO$FDC)
from the command portion of the disk ope'ration control block.

IRPUT$RBSULT$FRDM$PDC

This procedure is used to read result phase status information from the disk
controller. At most, seven bytes are read. In order to read each byte, a call
is made to INPUT$BYTB$FROM$FDC. When the last byte has been read, a check is
ma<ie to insure that the FDC is no longer busy.

OUTPUT$BY'rB$TO$PDC

ThiS software' is used to output a single command/parameter' byte to the FDC.
This procedure waits until the FDC is ready for a command byte and then out­
puts the byte to the FDC data port.

INPUT$BY'rB$FRDM$PDC

This procedure inputs a single resiJlt byte from the FDC. The software waits
until the FDC is ready to transfer a result byte and then reads the byte from
the FDC data port.

FDC$RBADY~FOR$COIIMARD

This procedure assures that the FDC is ready to accept a command/parameter byte
by performing the following three steps. First"a small time interval (more
than 20 microseconds) is inserted to assure that the RQM flag has time to become
valid (after the last byte transfer). Second, the master request flag (RQM) is
polled until it is activated by the FDC. Finally, the DIO flag is checked to
ensure that it is properly set for FDC input (from' the processor).

FDC$RBADY$FOR$RBSULT

The operation of this procedure is similar to the FDC$READY$FoR$COMMAND with
the following exception. If the FDC BUSY flag (in the Main Status Register)
is not set, the result phase is complete and no more data is available from
the FDC. Otherwise, the procedure waits for the RQM flag and checks the DIO
flag for FDC output (to the processor).

6-485 AFN'()l949A

APPLICAll.ONS

OPBRATIOR$CLBAR$UP

This procedure. is called after the execution of a disk operation that has no
result phase. OPERATION$CLEAN$UP resets the.PPERATIONINPROGRESS flag and the
GLOBAL$DRIVE$NO variable if appropriate. This procedure is also called to clean
up after some disk operation errors.

Modifications for polling Operation

To operate in the poll~ng mode, the following modifications should be made to
the previous routines:

1. The OUTPUT$cONTROLS$TO$DMA routine should be deleted.

2. In EXECUTE$DOCB, immediately prior to WAITFOROP$COMPLETE, a
polling +oop should be inserted into the code. The loop. should
test the RQM flag (in the Main status Register). When RQM is
set, a data byte should be written to, or, read from, the 8272.
The buffer address may be computed.from the base address con­
tai.ned in DOCB.DMA$ADDR and DOCB.DMA$ADDR$EXT. After the correct
number of bytes have been transferred, an operation complete
interrupt will be issued by the FDC. During data transfer in
the non-DMA mode, the NON-DMA MODE flag (bit 5 of the Main StatlJs
Register) will be set. This flag will remain set for the complete
execution. phase. When the transfer is finished, the NON-DMA MODE
flag is reset and the result phase interrupt is issued by the FDC.

6-486 AFN-ol949A

APPLICATIONS

5. 8272 Logical Interface Soft.are

Appendix B of 'this Application Note cor'tains a PL/M listing of an exerciser
program for the 8272 drivers. This program illustrates the design of logical
interface level proce~ures to specify disk parameters, recalibrate a drive,
seek to a cylinder, format a disk, read data, and write data.

The exerciser program is written to operate a standard single-sided 8" floppy
disk drive in either the single- or double-density recording mode. Only the
.eight parameters listed in Table 9 must be specified. All other parameters
are derived from these 8 basic variables.

Each of these logical interface procedures is described in the following para­
graphs (refer to the listing in Appendix B).

SPBCI:rY

'This procedure sets the FDC signal timing so that the FDC will interface
correctly to the attached disk drive. The SPECIFY procedute requires four
parameters, the step rate (SRT), head load time (BLT), head unload time (BUT),
and the non-DNA mode flag ~). 'This procedure builds a disk operation control

'block (SPECIFY$DOCB), and passes the control block to the FDC driver module
(EXECUTE$DOCB) for execution. (Note carefully the computation required to
transform the step rate, (SRT) into the correct 8272 parameter byte.)

RIlCALIBRA'rB

This procedure causes the floppy disk read/write head to retract to track O.
The RECALIBRATE procedure requires only one parameter - the drive number on
which the recalibrate operation is to be performed. This procedure builds a
disk operation control block (RECALIBRATE$DOCB) and passes the control block
to the FDC driver for execution. '

SEB

This procedure causes the disk read/write head (on the selected drive) to move
to the desired cylinder position. The SEEK procedure is called with three
parameters: drive number (DRV), head/side number (BD), and cylinder number
(CYL). This software module builds a disk operation control block (SEEK$DOC~)

that is executed by t~e FPC driver.

PaRMA'!'

,The FORMAT procedure is designed to initialize a complete floppy disk so that
sectors can subsequently be read and written by system and application programs.
Three parameters must be supplied to this procedure: the drive number (DRV),
the recording density (DENS), and the interleave fa~tor (INTLVE). The FORMAT
procedure generates a data block (FMTBLK) and a disk operation control block
(FORMAT$DOCB) for each track on the floppy disk (normally 77).

• 6.,487 AFN-OI949A

APPLICATIONS

Table 9: Basic Disk Paraaeters

Name . Description

DENSITY

FILLER$BYTE

, TRACKSPERDISK

BYTESPERSECTOR

INTERLEAVE

STEP $ RATE

HEAD $ LOAD $TIMEj
~

HEAD $UNLOAD$TIME

The recording .mode (FM or MFM).

The data byte to be written in all sectors during
fOt:matting.

The number of qylinders on the. floppy disk.

The number of bytes in each disk sector. The
exerciser accepts 128, 256, and 512 in FM mode,
and 256, 512, and 1024 in MFM mode.

The sector interleave factor for each disk track.

The disk drive step rate (1-16 milliseconds).
..

The disk drive head load time .(2-254 milliseconds).

The head unload time (16-240 milliseconds).

6-488 AFN-Ol949A

APPLICATIONS

The format data block specifies the four sector ID field parameters (cylinder,
head, sector; and bytes per sector) for each sector on the track. The sector
numbers need not be sequentialr the interleave factor (INTLVB parameter) is used
to compute the logical to physic,l sector mapping.

After both the format data block and the operation control block are generated
for a given cylinder, control is passed to the 8272 drivers for execution.
After the format operation is complete, a SEEK to the next cylinder is per­
formed, a new format table is gen~rated, and another trac~ formatting operation
is executed by the drivers. ,This track formatting continues until all tracks
on the diskette are formatted.

In some systems, bad tracks must also be specified when a disk is formatted. For
these systems, the existing FORMAT procedure should be modified to format
bad tracks with a cylinder number of OFPB.

BIB

The WRITE procedure transfers a complete se~tor of data to the disk drive. Five
parameters must be supplied to this software module: the drive number (DRV),
the cylinder number (CYL), the head/side number (BD), the sector number (SEC)
and the recording density (DENS). This procedure generates a disk operation
control block (WRITE$DOCB) from these parameters and passes the control block to
the 8272 driver for execution. When control returns to the calling program, the
data has been transferred to disk.

This procedu~e is identical to the WRITE procedure except the direction of data
transfer is reversed. The READ procedure transfers a sector of data from the
floppy disk to system memory.

Coping With Brrors

In actual practice all logical disk interface routines would contain error
processing mechanisms. (Errors have been ignored for the sake of simplicity

'in the exerciser programs listed in Appendix B.) A typical 'error recovery
techniqUe consists of a two-stage procedure. First, when an error is detected,
a recalibrate operation is performed followed by a retry of the failed operation.
This procedure' forces the dr~ve to seek directly to the requested cylinder (low­
ering/the probability of a seek error)' and attempts to perform the requested
operation an additional time. Soft (temporary) errors caused by'mechanical or
electrical interference do not normally recur during the retry operation, hard
errors (caused by media or drive failures), on the other hand, will continue
to occur during retry operations. If, after a number of retries (approximately
10), the operation continues to fail, an error message is displayed to the sys­
tem operator. This error message lists the drive number, type of operation,
and failure status (from the PDC). It is the operator's responsibility to take
additional action as required.

6-489

APPLICATIONS

6. Pile Systeas

The file system provides the disk I/O interface level most familiar to users
of interactive microcomputer and minicomputer systems. In a file system, all
data is stored in named disk areas called files. The user and applications
programs need not be concerned with the exact 10,cation of a file on the disk - the
disk file system' automatically determines the file location from the file name.
Files may be created, read, written, modified, and finally'deleted (destroyed)
when they are no longer needed. Each floppy disk typically contains a directory
that lists all the files existing on the disk. A directory entry for a file
contains information such as file name, file size, and the disk address (track
and sector) of the beginning of the file.

Pile Allocation

File storage is actually allocated on the disk (by the file system) in fixed
size areas called blocks. Normally a block is the same size as a disk sector.
Files are created by finding and reserving 'enough unused blocks to contain the
data in the file. TwO file allocation methods are currently in widespread use.
The first method allocates blocks (for a' file) from a sequential pool of unused
blocks. Thus, a file is always containE!d in a set'of 'sequential blocks on the'
disk. Unfortunately,' as files are created, updated, and deleted, these free­
block pools become fragmented (separated from orie another). When this fragmen­
tation occurs, 'it often becomes impossible for the file system to create a file
even though there is a sufficient number of free blocks on the disk. At this
point, special programs must be run to "squeeze" or compact the disk, in order
to re-create a single con,tiguous free-block pool.

The second file allocation method uses a more flexible technique in which indi­
vidual data blocks 'may be located anywhere on the disk (with rio restrictions).
With this techniquE!, a file directory entry contains the disk address of a file
pointer block rather than the 'disk address of the first data block of the file.
This file pointer block contains pointers (disk addresses) for each data block
in the file. For example, the first pointer in the file pointer block contains
the track and sector address of the first data block in the file, the second
pointer contains the disk address ~f the second data block, etc.

In practice, pointer blocks are usually the same size as data blocks. Therefore,
some files will require multiple pointer blocks. To accommodate this require-,
ment without, loss of flexibility, pointer blocks are linked together, that is,
each pointer block contains the disk 'address of the following pointer block.
The last pointer block of the file is signalled by'an illegal disk address
(e.g., track'O, sector 0 or track OFFH, sector O~).

6-490 AFN-ol949A

APPLICATIONS

The Intel pile systea

The Intel file system (described in detail in the RMX-80 Users Guide) uses
the second disk file allocation method (previously discussed). In order to
lower the system overhead involved in finding free data blocks, the Intel file
system incorporates a free space management data structure known as a bit map.
Each disk sector is represented by a single bit in the bit map. If a bit in the
bit map is set to 1, the corresponding disk sector has been allocated. A zero
in the bit map indicates that the corresponding sector is free. With this
technique, the process of allocating or freeing a sector is accomplished by
simply altering the bit map.

File names consist of a basic file name (up to six characters) and a file ex­
tension (up to three characters). The basic file name and the file extension
are separated by a period (.). Examples of valid file names are: DRIV72.0BJ,
XX.TMP, and FlLE.CS. In addition, four file attributes are supported (see
Figure 3 for attribute definitions).

The bit map and the file directory are placed on prespecified disk tracks
(reserved for system use) beginning at track zero.

Disk Pile System Punctions

Table 2 illustrates the typical functions implemented by a disk file system.
As an example, the disk directory function (DIR) lists disk file information on
the console display terminal. Figure 3 details the contents of a display entry
in the Intel file system. - The PL/M procedure outlined in Figure 4 illustrates
a disk-directory algorithm that displays the file name, the file attributes,
and the file size (in blocks) for each file in the directory.

6-491 AFN-01949A

Directory Bntry
/'

APPliCATIONS

7 0

Y· O-INVISIBLE
I-SYSTEM

. ~ : ~RI~E-PROTECT

'. t f (RESERVED)
B-
7-FORMAT

Presence is a flag that can contain one of three values:

OOOH - The file associated with this entry is present on the disk.

07FH - No,file is associated with this entrY1 the content of the rest
of the entry is undefined. The first entry with its flag set
to 07FH marks the current ldgical end of the directory and
directory searches stop at this entry. '

OFFH - The file named in this entry once existed on the disk but is
currently deleted. The next file added to the directory will
be placed in the first entry marked OFFH. This flag cannot,
therefore, be used to (reliably) find a file that has been
deleted. A value of OFFH should be thought of as simply marking
an open directory entry.

File Name is a string of up to 6 non-blank ASCII characters specifying the
name of the file associated with the directory entry. If the file name is
shorter than six characters, the remaining bytes contain binary zeros. For ex­
ample, the name ALPHA would be stored as: 4l4C50484l00H.

Bxtension is a string of up to 3 non-blank ASCII characters that specifies a~
extension to the file name. Extensions often identify the type of data in the
file such as OBJ (object module), or pLM (PL/M sdurce module). As with the
file name, unused positions in the extension field are filled with binary zeros.

Figure 3. Intel Directory Entry Format

6-492 AFN-oI949A

APPLICATIONS'

Attributes are bits that identify certain characteristics of the file. A 1
bit indicates that the file has the attribute, while a 0 bit means that the file
does not have the attribute. The bit positions and their corresponding' attri­
butes are listed below (bit 0 is the low-order or rightmost bit, bit 7 is the
leftmost bit): '

0:

1:

2:

3-6: .

Invisible. Files with this attribute are not listed by the
ISIS-II DIR command unless the I switch is used. All system
files are invisible.

System. Files with this attribute are copied to the disk in
drive 1 when the S switch is specified with the ISIS-II FORMAT
command.

Write-protect. Files with this attribute cannot be opened for
output or update, nor can they be deleted or renamed.

These positions are reserved for future,use.

7: Format. Files with this attribute are treated as: though they
are write-protected. In addition, these files are created on
a new diskette when the ISIS-II FORMAT command is issued. The
system files all have the FORMAT attribute and it should not
be given to any other files.

BOP count contains the number of the last byte in the last data block of
the file. If the value of this fte1d is 080H, for example, the last byte in
the file is byte number 128 in the last, data block (the last block is ,full).

Ra.ber of Data Blocks is an address variable that indicates the number of
data blocks ,currently used by the file. ISIS-II and the RMX/80 Disk ~ile
system both maintain a counter called LENGTH that is the current number of
bytes in the file. This is calculated as:

«NUMBER OF DATA BLOCKS - 1) x 128 + BOF COUNT.

Header Block pointer is' the address of the file's header block. The high
byte of the field is the sector number and,the low byte is the track number.
The system "finds· a disk file by searching the directory for the name and then
using the header block pointer to seek to the beginning of the file.

Figure 3. Intel Directory Entry Format (Continued)

6-493

dir: procedure (drv,dens)
declare drv·

dens
sector
i
dir$ptr
dir$entry

size (5)

invisible$f1ag
sys ternS flag
protected$flag
forrnat$flag

APPLICATIONS

public:
byte,
byte,
byte,
byte,
byte,
based rdbptr structure (presence byte,
fi.le$narne (6) byte, elttension (3) byte,
attribute byte,eof$count byte,
data$blocks address,header$ptr address),
byte,

literally ~l~,
literally ~2~,
literally ~4~,
literally ~80H~:

/* The disk directory starts at cylinder 1, sector 2 */
call seek(drv,l,O);
do sector=2 to 26:

call read(drv,l,O,sector,dens):
do dir$ptr=O to 112 by 4:

if dir$entry.presence=7FH then return:
if dir$entry.presence=O

then do:
do 1=0 to 5; call Co(dir$entry.file~narne(t»: end:
call co(period):
do i=O to 2: call. co(dir$entry.extension(i»: end:
do i=O to 4; call co(space); end:
call converttodecirnal(@size,dir$~ntry.data$blocks):
do i=O to 4: call co(size(i»; end:
If (dir$entry.attribute and invisible$flag)
If (dir$entry.attribute and systern$flag) <>
If (dir$entry.attribute and protected$flag)
If (dir$entry.attribure and forrnat$flag) <>

<> 0 then call co(~I~):
o then call co(~S~):

end:
end:

end;

end dir:

<> 0 t;hen call co(~W~):
o then call co(-F~):

AFN-Ol949A

Figure 4. Sample PLJM Directory Procedure

6-494 AFN-Ol949A

APPLICATIONS

7. Key 8272 Software Interfacing Considerations

This section contains a quick review of Key 8272 Software design features and
issues. (Most items have been mentioned in Qther sections of this application
note.) Before',designing 8272 software drivers, it is advisabl,e that the infor­
mation in this section be thoroughly understood.

1. Non-DNA Data Transfers

In systems that "operate without a DNA controller (in the polled or
interrupt driven mode), the system software is responsible for counting
data transfers to/from the 8272 and generating a TC signal to the FCC
when the transfer is complete.

2. processor Command/Result phase Interface

In the command' phase, the driver softwar,e must write the exact nUlllber of parameters
in the exact order shown in Table 5. During the result phase, the driver
must read the, complete result status. For example, the Forma,t Track command
requires six,qpmmand bytes and presents ,seven result bytes. The 8272 will not
accept a new CQIIIIIand until all, result by,tes are read. Note that the nUlllber, of
command and result bytes varies from command-to-command. Ca.aand and result
pbases cannot be sbortened.

During both the command and result phases, the Main Status Register must, be read
by the driver before each byte of information is read from, or wr'itten to,
the FCC Data Register., Before each command byte is wri tten. 010 (bit 6)
must be low (indicating a data transfer from the processor) and RQM (bit 7)
must be high ,(indicating that the FCC is ready for data). During the result
phase, 010 must be high (indicating a data transfer to the processor) and RaM
must also be high (indicating that data is ready for the processor).

Rote: 'After the 8272 receives, a command byte, the RQM flag may remain set for
approximately 16 microseconds (with an 8 MHz.'clock). The driver should not
attempt to read the Main Status Register before this time interval has
elapsed, otherwise, the driver may erroneous~y assume that ~he FCC is
ready to accept the_nex~ byte.

3. Sector sizes

The 8272 does not support 128 byte sector~ ,in the MFM (double-density) mode.

4. Drive status Changes,

The 8272 constantly polls all drives for changes in the drive ready status.
This pOlling begins immediately following RESET. An interrupt is generated
every time the FCC senses a change in the drive ready status. After reset,
the FCC assUllles that all drives are Rnot- ready". If a drive is ready
immediately after reset, the 8272 generates a drive status change interrupt.

6-495

APPLlC'ATlQNS,

5. Seek Commands

The 8212 'FCC dOes not petform implied seeks'. Before' issuing 'a data read
.or write command, the'read/~rite'head'must be positioned over' the correct
cylinder by means of an explicit seek command~ 'If the head is not posit~
ioned correctly, a cylinder address error is generated.'

6. Interrupt processing

When the processor 'receives an interrupt from the FCC, the FCC may be re­
porting one of two distinct events:

a) The beginning of the result phase of a previously requested
read, write, or scan command.

b) An asynchronous event such as a'seek/tecalibrate completlun,
an attention, an abnormal command termination, or an invalid
command. '

These two'cailes are 'distinguished by;the FDC BUSY flag (bit 4) in the Main
status Register. If ttte FDC BUSY flag is high, the interrupt iso£ type (a).
If the FCC BUSY flag is low, 'the interrupt was caused by an asynchro~ous
event (b).' ' , " ,

A single interrupt from the FCC may signal more than one of the above events.
After receiving an interrupt, 'the processor mUst continue to issue Sense
Interrupt Status commands (and service the resulting conditions) until an
invalid command code is received. In this manner, all "hidden- interrupts are
ferreted out and serviced. ' ,

7. Skip Flag (SK)

The skip flag is used during the execution of Rea~ Data, Read Deleted Data,
Read Track, and various Scan commands. This flag 'per~its the FCC to skip
unwanted sectors on a disk track.

When performing a Read fiata~'Read Track, or Scan command, a high SK flag indi­
cates that the FDC is to skip over (not transfer) any sector containing a
deleted data address mark. A low SK flag indicates that the FDC is to termi­
nate the command (after reading all the data in the sector) when a deleted

'data address mark is encountered.

When perforllling a Read Deleted Dflta camiland, a high SK flag 'indicates that
sectors containing normal data address marks are to be skipped. Note that
this is just the opposite situation from that described in the last paragraph.
When a data'address mark is encountered during a Read Deleted Data command (and
the SK flag is lOW), the FDC,terminates the command after reading all the data
in the sector2 ' ,,"

, ",Of

I' '1.,'

APPLICATfONS

8. Bad Track Maintenance

The 8272 does not internally maintain bad track information. The maintenance
of this information must be performed by system software. 'AS an example of
typical bad track operation, assume that a media test determines that track
31 and track 66 of a given floppy disk are ba!!. When the disk· is formatted
for use, the system software formats physical track 0 as logical cylinder, .
o (C-O in the command phase parameters), physical track 1 as logical track 1
(C=l), and so on, until physical track 30·is formatted as logical cylinder
30 (C-30). Physcial track 31 is bad and should be formatted as logical
cylinder FF (indicating a bad track). Next, physical track 32 is formatted
as logical cylinder 31, ~nd so on, until physi~l trac~ 65 is formatted as
logical cylinder 64. Next, bad physical track 66 is formatted as logical
cylinder FF (another bad track marker), and physical track 67 is formatted
as logical cylinder 65. This formatting continues until the last phYsical
track (77) is formatted as logical cylinder 75. Normally, after this formatting
is complete, the bad track information is stored in a prespecified area on the
floppy disk (typically ina sector on ttack 0) so that the system will be able
to recreate the bad track information when the disk is removed from the drive
and reinserted at some later time.

To illustrate how the system software performs a transfer operation ,on a disk
with bad tracks, assume that the disk drive head is positioned at track 0 and
the disk described above is loaded into the drive. If a command to read track
36 is issued by an application program, the system software translates ·this
read command into a seek to physical track 37 (since there is one bad track
between 0 and 36, namely 31) followed by a read of logical cylinder 36.,
Thus, the cylinder parameter C is set to 37 for the Seek command and 36.for
the Read Sector command.

6-497 AfN.Ol949A

ARPt,lE:ATIONS

REPBRBIICBS '.j',

,
1. Int.l, ·8272"Single/DOlo1ble'Density':'Fl~pyj,Dlsk Controller Data Sheet,.

Intel' CQrpora,tion, 1980 Ii "" .. \ \ . A~:
r "

2. Intel, "~An-"Int:elUgent Data'Base System Using the 8272,· Int:el Applioation
Notet' AP-1l6,'-198l:~: 'c, ' ," " , - ,,,",, ,i"," '

t,'),'''' , ' ..
3. Intel,.-iSse 20a Hardware Reference 'Manual, Manual'Or6er No. 143078,

Intel COl!poration, 1980. '-
I: :"

4. Intel,,,'RMX/80 User's Guide, Milnual Order No. 9800522, Il'Itel'
Corporation" 1978, . " ,

'/,1

5. Brinch Hansen,"' P., Operating System Pr incipI:es, prentice"'Hall, Inc."
,New Jersey~ 1973.

6.~Flores,'I., Computer'Software: programming Systems for Digital Computers,
prentioe":'Hall, Inc., New Jersl!y, 1965.

'7. Knuth, D. E., Fundamental Algorithms, Addison-Wesley publishing Company,
Massachusetts,' 1975. ;, I" '. ", ' '

8. Shaw, A: C'., The Logical Design of Operating Systenis, prentice-Hall, Il'Ic. ,.
New Jersey, 1974.

9. Watson" R. W.," Time -Sharing System Design Concepts~ McGraW-Hi~l, Inc.,
New,.York,' 1970.

10. Zarrella, J., Operating Systems: Concepts and principles, Microcomputer
Applications, California, 1979.

6-498 .

",

~ I

- 'f'-

APPLICATIONS

, "

APPENDIX A .
8272 FDC DEVICE DRIVER SOFTWARE

" , .
, .'1

" "j

',' ' ,t
T, "

, ., -," ::..'" " , . ~, ,

--

PL/M-86 COMPILER 8272 FLOPPY DISK CONTROLLER DEVICE DRIVERS

ISIS-II PL/M-S6 Vl.2 COMPILATION OF MODULE DRIVERS
OBJECT MODULE PLACED IN :Fl:driv72.0BJ
COMPILER INVOKED BY: plm86 :Fl:driv72.pS6 DEBUG

1

8

9

10 1

$title('S272 floppy disk controller device drivers')
$nointvector
$optimize (2)
$large

drivers! do;

declare
/* floppy disk port
fdc$status$port
fdc$data$port

declare

def ini tions */
literally'30H',
literally '31H',

/* floppy disk commands */
senseintstatus lit~rally ~08H;;

declare
/* interrupt definitions "/
fdcintlevel literally '33',

declare
/* return status and
e'rror
ok
complete
false
true

error codes */
literally '0',
literally '1',
li terally '3',
literally '0',
literally '1',

/* 8272 status port */
/* 8272 data port */

/* fdc interrupt level */

error$in
propagate$error

1i teralJ.y ;not~, +1 l'
literally "'return' e'rr-or~,

stat$ok ' 1.t,1t.erally
stat$busy literally
stat$error li terally

'(d" ,
"'1' ,
'"2",

J* fdc opera,tion cO,mpleted without errors */
/* fdc is husy, operation cannot be started */
1* fde operation error *1

stat$command$error literally
stat$result$error literally
stat$invalid literally

declare
;* masks */
busy$mask, literally
DIO$mask literally
RQM$mask literally
seek$mask literally
result$error$mask literally
result$drive$mask literally
result$ready$mask literally

declare
/* drive numbers */
maxnodrives literally
fdc$general literally

rieclare
/* miscellaneous control *1
any$drive$seeking literally
command$code literally
DIOsetfor$input literally
DIOsetfor$output literally
extract$drive$no literally
fdc$busy literally
nofdcerror literally

waitforop$complete
waitforRQM

deolare
/* structures */

literally
literally

"'3"",
"'4"",
'5',

'lOH',
"'40H",
'SOH',
'OFH',
'aCOH',
'03H',
'08H',

"3"',
'4',

/* fdc not ready for command phase */
/* fdc not ready for r~sult phase */
/" invalid fdc command "/

'«input(fdc$status$port) and seek$mask) <> 0)',
'(docb.disk$command(O) and IFH)', -
'«input(fdc$status$port) and DIO$mask)=O)',
'«input(fdc$status$port) and DIO$mask)<>O)',
'(docb.disk$command(l) and 03H)',
'«input(fdc$status$port) and busy$mask) <> 0)',
'possible$error(command$code) and «docb.disk$result(O)

and result$error$mask) ~ 0)',
'do while not operation$complete(drive$no), end',
'do while (input (fdc$status$port) and RQM$mask) = 0, end,',

dpcb$type literally /* disk operation control block */
'(dma$op byte,dma$addr word, dma$addr$ext byte,dma$count word,

disk$command(9) byte,disk$result(7) byte,misc byte)',

$eject
declare

drive$status$change(4) byte publiC,
drive$ready(4) byte public,

/* when set - indicates that drve status changed */
/* current statys of drives */,

AFNoOI949A

II

12

13

14

15
16
17
18
19
20

21
22
23

24

25

26

27

30

32

33

34

35

36

1

1

2

2
3
3
3
3
3

2
2
2

1

2

2

2

2

1

2

2

,:' ,'" ~ .'

APPUCATIONS

declare
operationinprogress(5) byte,
operation$complete(5) byte,
operation$docb$ptr(5) pointer,
interrupt$docb structure docb$type,
global$drive$no byte,

declare

1* internal flags for operation with multiple drives *1
1* fdc execution phase completed *1
1* pointers for operations in progress *1
1* tempora~y docb·for interrupt processing *1
I*-drive number of non-overlapped operation

in progress - if any *1

1* internal vectors that contain command operational information *1
nO$result(32) byte 1* no result phase to command *1
data(O,O~O,l,O,O,O,o,o,o,a,o,o,o,O,O,O,O,O,O,O,~,O,O~O,O~O,O,O,O,O,O) ,

immed$reBult(32)· byte 1* immediate result 'phase for command *1
data(O,O,O,O,l,O,O,O,l,O,O,O,O,O,o,O,O,O,O,o,O,O,O,O,O,0,0,0,0,0,0,0),

over lap$operat ion (32) byte 1* command permits overlapped'operation of drvies *1
data(O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,O,O ,O,O.O,O,O~O~O),

drivenopresent(32) byte 1* drive number present in command information *1
data(O,O,l,O,l,l,l,l,O,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O ,1,OrO,~,1,O,O),

possible$error (32) byte 1* determi'nes if command can return with an error *1
data(O,O,l,O,O,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0),

command$length(32) byte 1* contains number of command bytes for each command *1
data(O,O,9,3,2,9,9,2,1,9,2,O,9,6,O,3,O,9,O,O,O,O,O,O,O,9,0,0,0,9,0,0),

valid$command(32) byte . 1* flags invalid command codes *1
data(O,O,l,l,l,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0),

$eject

1**** initialization for the 8272 fdc driver. software. This procedure must
. be called prior to execution of any driver software. ****1

initialize$drivers: procedure public,
1* initialize 8272 drivers *1

declare drv$no byte,

do drv$noaO to max$no$drives,
~rive$ready(drv$no).false,
drive$status$change(drv$no)afalse,
operationinprogress(drv$no)-falseJ
operation$complete (drv$no) afalse,

endJ

operationinprogress (fdc$qeneral) =false,
operation$complete(fdc$general)-falseJ
global$drive$no=O,

e~d initialize$driversJ

1**** wait until the 8272 fdc is ready to receive command/parameter bytes
in the command phase. The 8272 is ready to receive command bytes
when the ROM flag is high and the OIO flag is low. ****1

fdc$ready$for$command: procedure byte,
I

1* wait for valid flag settings in status reqister *1
call ti n;'
1* wait for "master request" flag *1
waitforROM,

1* check data direction flag *1
if OIOsetfor$input

then return ok,
else return error,

end fdc$readv$for$command,

1**** wait until the 8272 fdc is ready to return data bytes in the result
phase. The 8272 is ready to return a result byte·when the ROM and DIO "
flags are,both high. The busy flag in tne main status register will
remain Bet until'the iast'data byte of the result phase has been read
by the prooessor'. ' '****1'

fdc$ready$for$result: procedure byte,

1* wait for •. valid settings in st'atus. register *1
call time (1) ,

1* result phase has ended when the 8272 busy flag is reset *1
if not fdc$busy

then return complete,

6-501

38

41

43

44

45
46

47

49

1
2

50\ 2
51 2

52
53
54

55
56

58

60
61
62

63
64
65

66

67

69
70

1
2
2

2
2
2

1
2
2

3
3

APPLICATIONS

/. wait for "master request" flag ./
waitforROM,;

/. check data di'rection flag • /
if PIOset£or$output

then return ok:
else return error:

end fdc$readV$for$:esult;

/ •••• output a single command/parameter, ,byte to the" 8272 'fdc. The "data$byte"
parameter is the byte to be output to the fdc. • ••• /

output$byte$to$fdc. procedure(data$byte) byte;
declare data$bvte byte;

/. check to see if fdc is ready' for command ./
if not fdc$ready$for$command

then propagate$error;

output(fdc$data$port)=data$byte;

return ok;
end output$byte$to$fdc,

/ •••• input a single reslIlt byte from the 8272 fdc. The "data$byte$ptr"
parameter is a pointer to the memory location that is to contain
the input byte. • ••• /

input$byte$from$fdc. procedure (data$bvte$ptr) byte,
declare data$byte$ptr pointer,
declare

data$byte based data$byte$ptr byte,
status byte; ,

/. check to see if fdc is ready ./
status=fdc$ready$for$result,
if error$in status

then propagate$error,

/. check for result phase complete ./
if status=complete

then return complete:

data$byte=input(fdc$data$port),
return ok;

end input$bvte$from$fdc,

$eject

/ •••• output the dma mode, the dma address, and' the dma word count to the
8237 dma controller. Also output the high order four bits of the
address to the address ~tension latch. Finally, start the disk
dma channel. The "docb$ptr" parameter is a pointer to the appropriate
disk operation control block. • ••• ;

output$controls$to$dma: procedure(docb$ptr);
declare docb$ptr painter;
declare docb based docb$ptr structure docbtype;

declare
/. dma port definitions ./
dma$upper$addr$port literally'lOH',
dma$disk$addr$port literally'OOH',
dma$disk$word$count literally'OlH',

1* upper 4 bits of current address */
/. current address'pott,·/'

dma$command$port literally'08H',
dma$mode$port literally'OBH',
dma$mask$sr$port literally ',OAH',
dma$clear$ff$port li terallv' 'DCH' ,
dma$master$clear$port literal:ly 'OPH',
dma$mask$port literally'OFH',

dma$disk$chan$start
dma$extended$write
dma$single$transfer

if docb.dma$op < 3
then do;

literallY,'OOH',
literally'shl(l,s)',
literally 'shl (1,6)'"

/. word count port ./
;. command port ./
/* mode port-/
/* ma'sk set/r<!set port .;
;* clear fir~t/last flip-,flop port • /
/* dma master clear ~rt */
/. parallel mask set,'port* /

/* dma mask to star't disk channel ./
/* extended write flag */

'c/* single transfer flag */

/* set dma mode and clear first/last flip-flop ./
output (dma$mode$port)=shl (docb.dma$op,2) or 40H,
output (dma$clear$ff$port) sO,

AfN.Ol949A

71
72
73

74
75

76
77

78

79
80

81

82

83
84

89

90
91
92

93
94
95

96

97
98
99

104

109
110

111
112

114
115

3
3
3

3
3

3
3

2

1
2

2

2
3

3

2
2
2

1
2
2

2
3
3

3
3

2
2

2
2

116 ,,1
117 2

118
119

2
2

APPLICATIONS

/* set dma address */
output (dma$disk$addr$port)-low(docb.dma$addr),
output (dma$disk$addr$port)=high(docb.dma$addr),
output (dma$upper$addr$port)-docb.dma$addr$ext;

/* output disk transfer word count to dma controller */
output (dma$disk$word$count)-low(docb.dma$count),
output(dma$di8k$wOrd$count)-high(~ocb.dma$c~unt)'

/*. start dIIIa c\lllrinel O' fO.r fdc *1 '. output (dma$maak$sr$port)-dma$disk$chan$start,
end;' " '

end output$controls$to$dma,

/**** output a high-level disk'commana to the 8272 fdc.' The number of bytes
required for each command is contained in the "command$length" table.
The "docb$ptr" parameter is a"pointer to the appropriate disk operation
control block: ****/

output$command$to$fdc. procedure (docb$ptr) byte;
declare docb$ptr pointer,

declare
docb based docb$ptr structure docb$type.
cmd$byte$no byte;

disable;

/* output all command bytes to the fdc */
do cmd$byte$nocO to command$length(command$code)-l;

if error$in output$bytetofdc(docb.disk$command(cmd$byte$no»
then do; enable; propagate$error, end,

end,

enable;
return Ok1

end output$command$to$fdc;

/**** input the result data from the 8272 fdc during the result phase (after
command execution). The "docb$ptr" parameter is a pointer to.the
appropriate disk operation control· block. **,**/

input$result$from$fdc: procedure(docb$ptr) byte;
declare docb$ptr 'pointer,
deolare

doob based doob$ptr structure doob$type.
result$byte$no byte.
temp byte.
status byte,

disable;

do result$byte$no=O to 7;
status=input$byte$from$fdo(@temp);
if error$in status

then dOl enable, propaqate$error; end,
if status=complete.

then do; enable; return ok; end:
doob.disk$result(result$byte$no)-temp;

end:

enable,
if fdo$busy

then return error;
else return ok,

~nd input$result$from$fdc;

/**** cleans up after the exeoution of, a disk operation that has no result
phase. The prooedure is also used after some'disk operation errors.
"drv" is the drive number. and ·oc" is the oommand code for the
disk operation. ****/

,.operation$clean$up. procedure(drv.cc),
deolare (drv.cc) byte,

disable;
operationinprogress(drv)=false;

; . .:

~.~ J. =

120

122

123

124

125
126

127

132

134

135

140

US
146

,152

153
154

ISS

157

1'58
159

161
162
163
164

165

167
168
169
170

2

2

2

1

2
2

2

2

2

2

2
2

2

2
2

2

2

2
2

3
3
3
3

2

3
3
3
3

I

APPLICATIONS

if not overlap$operation(cc)
then global$4rive$no=O,

enable,

end operation$clean$up,

$eject

;** .. execute the disk operation cont~-oi block 'spectfied' by the pointer
parameter "docb$ptr". The "status$ptr~ parameter is a, pointer to,'
a byte variable that is to con~ain the status of the r~~ested
operation when it has been completed. Six status conditions are
possible on return. '

o
1
:2

3
4
5

The sp~cified operation was completed without error.
The fdc is busy and the requested operation cannot be'started.
Fdc,erro~ (further information is contained in the result
,storage.por~ion ~f tbe'disk opera~io~ c~ntrol block - a.
described in tbe 8272 data aheet).
Transfer error' during output of the conaand byte. to tbe fdp.
Transfer error during input of tbe result bytes from the fdc.
Invalid fdc command., •••• ;

execute$docb. procedure (docb$ptr ,statuB$ptr) publicI
;. execute a disk operation, control block .;

declare docb$ptr pointer, status$ptr pointer,
declare ,

docb based docb$ptr structure docb$type,
status based status$ptr byte,
drive$no byte,

;. check command -validity".;
if not valid$command(conaand$code)

tben dOl status=stat$invalid, returnl end,

;. determine, if command bas a drive number field - if not, set the drive
number for a general fdc command .;

if drivenopreBent(command$code)
then drive$no=extrac~$drive$nol
else drive$no=fdc$general,

, , ,

;. an overlapped operation can not ,be performed if the fdc is busy.;
if overlap$operation(cammand$code) and fdc$busy'

then dOl ststus=stat$busYI return, end,
I

;. for a non-overlapped operation, check fdc busy or any drive seeking *;
if' not overlap$operation(command$code) and (fdc$busyor any$drive$seekiftg),

then do, statuBastat$busy, return,', end,

;. check for drive operation in progress - if none, Bet flag and start operation .;
disable,
if operationinprogress(drive$no)

tben do, enable, status.stat$busYI return I end,
else operationinprogress(drive$no)=true, '

;* at this point, an fdc operation is about-to'begin, so.
L reset the operation complete flag
2. Bet the docb pointer for the current 'operation ,
3. if this is not an overlapped operation, set the global drive

number for the subeequent result phase interrupt. .;
operstion$complete(drive$no).O,
operation$docb$ptr(drive$no)adocb$ptr,

if not overlap$operation(command$code)
then global$drive$no=drive$no+l,

enable,

call output$controls$to$dma(docb$ptr) I
if error$in output$commandtofdc(docb$ptr)

then do, '
call operatioll$clean$up (dr,ive$lIo,command$code) ,
statusastat$command$erro~f
retutn, ,-

end,

;. return immediately if the command has no result 'pbase or" complet'ion interrupt - specify·;
if no$result(command$code)

then dOl
call operatioll$clean$up(drive$no,commalld$code) ,
statuBastat$ok,
return,

end,

6"504' AfN.01948A
I

171 2

173 3

175 4
176 4
177 4
178 4
179 3
180 2
181 3
183 3

188 3

189 2

191 2

192 2

193 1
194 2
195 2

196 2

198 3
199 3
202 3
203 3
204 3
205 3

206

APPLICATIONS

if immed$result(coamand$code)
then 0501

if error$in input$result$from$f05c(docb$ptr)
then 050, •

call operation$clean$up(drive$n~,commaad$code),
statua-stat$result$error;
return,

en05,
en05,
else 050,

waitforop$complete,
if 05ocb.misc - error

then do, status-stat$result$error, return, end,'
en05,

if no$f05c$error
then status-stat$ok,
else atatus-stat$error,

end execute$05ocb,

$eject

t*··· copy disk command results from the interrupt control block to the
currently active 05iak operation control block if a disk operation is
in progress. • ••• t

copyintresult: proced'ure (drv) ,
05eclare 05rv byte;
declare

i byte,
docb$ptr pointer,
docb based docb$ptr structure doch$type;

if operationinprogress(05rv)
then do,

docb$ptrz operation$05ocb$ptr(drv),
do i-I to 6; docb.disk$reBult(i)-interrupt$05ocb.disk$result(i); ~n~i
docb.lIisc.ok,
operationinprogress(drv)-false;
ope~ation$complete(drv).true;

end,

end eopyintresult,

t··*· interrupt processing for 8272 f05e 05rivers. Basically, two types of
interrupts are generated by the 8272: (a) when the execution phase of
an operation has been completed, an interrupt, is generated to Signal
the beginning of the result phase (the fdD busy flag is set
when this interrupt is received), ana (b) when an overlapped operation
is completed or an unexpected interrupt is received> (the' fde busy flag
is not set when this interrupt is receiVed). "

When interrupt type (a) is received, the result bytes from the operation
are read from the 8272 and the operation complete flag is set.

When an intefrupt of type (b) is received, ,the interrupt result code is
examined to determine which of the f!'llow:in'g four' actions are indicated:

1. An overlapped option, (recalibrate or seek) has been completed'. The
result data is read from the 8272 and placed in the currently active
disk operation control block. .

2. An abnormal termination of an operation,has.occurred. The result
data is rea05 and placed in the currently active 05isk operation
control block. .

3. The execution of an in~lid cqmmand has been attempted. This
signals the successful cOl!'pleU!'n 'of all 'in~e,r,J::\.tpt processing.

4. The ready status of a drive haa crhange~,." Ttie, 'dr'ive$u~dy' and
"drive$ready$status' change tables are ~P4~\:ed •. :If an operation
is currel,ltly in progress on the affected dd"e. the result 'data
is placed in the currently, ac't:ive ,~Us~ opera't.i,on 'col\tr,o,l block.

After an interrupt is processe05, additionai sense interrupt status' epmmands
must be issued and processed until an invalid command result is r.turned
from the fdc. This action guarantees that all "hidden" interrupts
are serviced. • ••• t

6-505

:1

207 1
208 2

209 2

210 2

211 2

213 3

215 4
216 4

218 4
219 4
220 ,
221 4
222 4
223 3

224 2
225 3
226 3

227 4
229 4

231 4

232 5
233 6
234 6
235 6

236 5
237 6
238 6
239 6

240 5

241 5
242, 6
243 6
244 6
245 6

247 6
248 6
249 5
250 4
251 3

252 2
253 2·

254 1

OI'tIQATIONS..

fdcint. procedure public interrupt fdcintlevel,
declare

invalid byte,
dr1ve$no byte,
docb$ptr pointer,
docb based docb$ptr structUTe 4ocb$type,

declare
1* interrupt port definitions *1
ocw2 literally"OB',
nseoi literally 'shl(l,S)',

declare
1* miscellaneous flags
result$code
result$drive$ready
extract$result$dr,ive$no
endofinterrupt

*1
literally
literally
liter aU:!,
literally

'.hr(interrupt$docb.disk$result(O) and'result$error$m •• k,6)',
'((interrupt$docb.di.k$result(O) .nd result$re.dy$ •• sk) • 0)',
'(interrupt$docb.di8k$result(0) .nd re.ult$drive$ •• sk)',
'output (ocw2)-n.eoi',

1* if the fdc is busy when .n interrupt is received, then the result
phase of the previous non-overlapped operation has bagun *1

if fdc$busy
then do,

1* process interrupt if operation in progress *1
if global$drive$no <> 0

then dOl ' , , , '
docb$ptr-operation$docb$ptr(global$drive$no-l),
if error$in input$result$from$fdc(docb$ptr)

then docb.misc-error,
else docb.misc.ok, '

operationinprogre.s (global$dr ive$no-l) -falsej
operation$complete(global$drive$no-l)-true,
global$drive$no-O,

end,
end,

1* if the'fdc is not busy, tben either an o~erlapped operation has been
coapleted or an unexpected interrupt has occurred (e.g., drive st.tus
chsnge) *1

eUe do,
invalid-false,
do while not invslid,

1* perform a sense interrupt status operation - if errors are detectea,
in the actual fdc interface, interrupt processing is discontinued, '1

if error$in output$bytetofdc(senseintatatua) then go to ignore,
if error$in input$reault$from$fdc(@interrupt$docb) then go to ignore,

do, case result$code,

'1* case 0, - operation complete *1
do, ' , ""

dr i ve$no-extract$result$dr i ve$n,:i"
call copyintresult(drive$no),

end, ' ,

1* caae 1,-' abnormal termination *1

do, . ','" I I

, ,dr,ive$"o-extract$rllsult~dr.ive$no"
call copyintresult(drive$no);

en4"

1* case 2 - i~valid command *1
invalid-true;

/* case' 3 .: 'drive ready change */
40" , ' " 'i

,dr ive$no-extr,ac;t$real\lt$dr i v8$nol
call copyintte,ult(drive$no),

, drlve$stat'us$ch.iJjge(drive$no)l"true, "
, ,if' res~lt~di'"iv.$r.adf " " ",'

then drive$ready(drive$no)-'true,
e1 •• dri~.$r.ady(dri~e$no)~false, ,

end,
ena,

ehd,
end;

ignore, e~dofinterrupt'
end fdcint,'

end drivers,

MODULE INPORMATION,
CODE AREA SIZE ~ 0615H
CONSTANT AREA SIZE • OOOOH
VARIABLE AREA SIZE ~ 0050H
MAXIMUM STACK SIZE • 0032H
564 LINES READ
o PROGRAM ERROR(S)

END OP PL/M-86 COMPILATION

1557D
OD

80D
SOD

APPLICATIONS

APPLICATIONS

APPE~DIX B
8272 FOC EXERCISER PROGRAM

6-508 AFN-01949A .

APPLICATIONS

PL/M-S~ COMPILER S272 FLOPPY DISK DRIVER EXERCISE PROGRAM

ISIS-II PL/M-S6 Vl.2-COMPILATION OF MODULE RUN72
OBJECT MODULE PLACED IN :Fl:run72.0BJ
COMPILER INVOKED BY: plmS6 :Fl:run72.pS6 DEBUG

$title ('S272 floppy disk driver exercise program')
$nointvector
$optimi-ze (2)
$large
run72: do;

1 declare

1

1

1

1

docb$type literally /* disk operation control block */
'(dma$op byte,dma$addr word,dma$addr$ext byte,dma$count word,
disk$command(9) byte,disk$result(7) byte,mise byte)'1

declare
/* 8272 fdc commands */
fm
mfm
dma$mode
nondmamode
recalibrate$command
specify$command
read$command
write$command
format$command
seek$command

declare
dma$verify
dma$read
dma$write
dma$noop

declare

literally
j.iterally
literally
literally
literally
literally
literally
literally
literally
literally

li terally
literally
literally
literally

"0"'"
"'1'" ,
"'0'" ,
"'1'" ,
'7',
"'3'" ,
"'6"',
"'5"" ,
'ODH',
'OFH'I

/* disk operation
format$docb
seek$docb
recalibrate$docb
specify$docb
read$docb
write$docb

control blocks */
structure docb$type,
structure docb$type,
structure docb$type,
structure docb$type,
structure docb$type,
structure docb$typel

declare
step$rate
head$load$time
head$unload$time
f iller$byte
operation$,status
interleave
format$gap
read$write$gap
index
drive
density
multitrack
sector
cylinder
head
tracksperdisk
sectorspertrack
bytespersector$code

/* disk drive head */

bytespersector '

byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
byte,
wo.rd; /* number of bytes in a sector on the disk */

1 declare
1* read and write
fmtblk(104)
wrbuf(1024)
rdbuf (1024)

buffers */
byte public,
byte public,
byte public I

1 dec;lare
;* disk format initialization tables */
sectrktable(3) byte datal,26,lS,S), ,
fmtgaptable(S) byte data(lBH,2~H,3AH,O,O,36H,S4H,74H),
rdwrgap$table(S) .byte data(07H,OEH,lBH,O,O,OEH,lBH,3SH) I

6-509 AFN'()1849A

9

10
11
12

13
14

15
16

17
18
19
20
21

22

23
24

25
26
27
28

29

30
31

32
33
34
35
36

37

1

1
2
2

1
2

1
2

2
2
2
2
2

2

1
2

2
2
2
2

2

1
2

2
2
2
2
2

2

38 1

39 2
40 2

U 2
42 2

43' 3

46 3

47 3
48 4

'",.1

declare
I*texternal pointer
rdeptr (2)
wrbptr (2)
fbptr (2)
intptr (2)
intvec(80H)

" APPUCAT.IONS

tables and interrupt vector *1
word external,
word external,
word external,
word external,
word externalJ

execute$docb, procedure(docb$ptr,status$ptr) external,
declare docb$ptr pcinter, status$ptr pcinter,

end execute$docb,

inltialize$driver!l" procetJ~re externl\l,
end initialize$driversl

$eject

1**** specify step rate ("srt"), head load time ("hlt"j, head unload time ("hut"),
and dma or non-dma ope~ation ("nd"). ****1

specify, procedure(srt,hlt,hut,nd),
declare (srt,hlt,hut,nd) byte,

specify$docb.dma$op=dma$nOOPl
specify$docb.disk$command(O)-specify$command,
specify$docb.disk$command(l)-shl«not srt)+l,4) or shr(hut,4) ,
specify$do~b.disk$command(2)D(hlt and OPEH) or (nd and I),
call execute$docb(@specify$docb,@operation$Btatus),

end specify,

1**** recalibrate disk drive
8272 automatically steps out until the track 0 signal is activated
by the disk drive. ****1

recalibrate, procedure(drv),
declare dry byte,

recalibrate$docb.dma$op-dma$nOoPl
recalibrate$docb.disk$command'(O)=recalibrate$command,
recalibrate$docb.disk$command(l).drv}
call execute$docb(@recalibrate$docb,@operation$status),

end recalibratel

1**** seek drive "drv", head (side) "hd" to cylinder acyl".

seek. procedure(drv,cyl,hd),
declare (drv,cyl,hd) byte,

seek$docb.dma$op=dma$nooPl
seek$docb.disk$command(O)-seek$command,
seek$docb.disk$command(l)=drvor shl(hd,2),
seek$docb.disk$command(2)-cyl,
call execute$docb(@seek$docb,@operation$status)l

end seekp

"**1

1**** format a ,complete side ("head") of a single floppY,disk in "drive "dry". The density,
(single or double) is specified by flag "dens~.. t***1

format, procedure(drv,dens,intlve),
1* format disk *1

declare (drv,dens,intlve) byte I
declare physical$sector byte,

call recalibrate(drv)I
do cylinder=O to tracksperdisk-l,

1* s~t sector numbers in format block to zero before computing interleave *1
do physical$sector-l to sectors$per'$track, flDtblk «physicai$sector-ll *4+2) -0, end,
1* physical seotor 1 equals, log10al sector 1 */
physioal$sector-l, " ,

1* assign interleaved seotors *1
do sector=l to sectorspertrack,

index-(physioal$seotor-l) *41

6-510 AFN-ol_

49

53 4
54 4
55 4
56 4

57
58

60 4

61 3

62 3
63 3
64 3
65 3
66 3
67 3
68 3
69 3
70 3
71 3
72 3
73 3

74 2

75 1
76 2

77 2
78 2
79 2
80 2
81 2
82 2
83 2
84 2
85 2
86 2
87 2
88 2
89 2

91
92

93 2

94 1
95 2

96 2
97 2
98 2
99 2

100 2
101 2
102 2
103 2
104 2
105 2
106 2
107 2

APPLICATIONS

/. change sector and index if sector has already been assigned ./ _
do while fmtb1k(index+2) <> 0: index=index+4, physica1$sector=physica1$sector+1: end,

1* set cylinder, bead, sector, and size code for current sector into table *1
fmtb1k(index)=cy1inder:
fmtb1k(index+1)-head:
fmtb1k(index+2)=sector:
fmtb1k (index+3) =bytespersector$code:

/. update physical sector number by interieave • /
physica1$sector=physica1$sector+int1ve:
if physica1$sector > sectors$per$track

then physica1$sector=physica1$sector-sectorspertrack:
end;

/* seek to next cylinder ./
call seek(drv,cy1inder,head):

/* set up format control block ./
formrt$docb.dma$op=dma$write:
format$docb'.dma$addr=fbptr (0) +sh1 (fbptr (1) ,4) ;
format$docb.dma$addr$ext=O;
format$docb.dma$count=sectorspertrack*4-1;
format$docb.disk$command(O)=format$command or sh1(dens,6);
format$docb.disk$command(l)=drv or sh1(head,2);
format$docb.diskfocommand(2)=bytespersector$code;
format$docb.disk$command (3) =sectorspertrack;
format$docb.disk$command(4)=format$gap;
format$docb.disk$command(5)=fi11er$byte:
call execute$docb(@format$docb,@operation$status) 7

end;

end format;

/**** write sector "sec" on drive "drv" at head "hd" and cylinder "cy1". The
disk recording density is specified by the "dens" flag. Data is expected to be
in the global write puffer ("wrbuf"). • ••• /

write: ptocedure(drv,cyl,hd,sec,dens);
declare (drv,cyl,hd,sec,dens) byte;

write$docb.dma$op=dma$write:
write$docb.dma$addr=wrbptr(0)+sh1(wrbptr(1) ,4);
write$docb.dma$addr$ext=O;
write$docb.dma$count=bytespersector-1:
write$docb.disk$command(O)=write$command or sh1(dens,6) or sh1(mu1titrack,7);
write$docb.disk$command(l)=drvor sh1(hd,2);
write$docb.disk$command(2)=cy1;
wr.te$docb.disk$command(3)=hd;
write$docb.disk$command(4)=sec:
write$docb.disk$command (5) =bytespersector$code:
write$docb.disk$command(6)=sectorspertrack;
write$docb.disk$command (7) =read$write$gap;
if bytespersector$code = 0

then write$docb.disk$command(8)=bytespersector;
else write$docb.disk$command(8)=OFFH;

call execute$docb(@write$docb,@operation$status);

end write;

/**** read sector "sec" on drive "drv" at head "hd" and cylinder "'cy1 R. The
disk recording density is defined by the "dens" flag_ Oata is read into
the global read buffer ("rdbuf"). ***./

read: procedure (drv,cyl,hd,sec,dens) ;
declare (drv,cyl,hd,sec,dens) byte,

read$docb.dma$op=dma$read;
read$docb.dma$addr=rdbptr (0)+sh1 (rdbptr (1) ,4);
read$docb.dma$addr$ext=O;
r~ad$docb.dma$count=bytespersector-1;

,read$docb.disk$command(O)=read$command or sh1(dens;6) or sh1(multitrack,7);
read$docb.disk$command(l)=drvor sh1(hd,2);
read$docb.disk$command(2)=cy1;
read$docb.disk$command(3)=hd;
read$docb.disk$command(4)=sec;
read$docb.disk$command (5) =bytespersector$codel
read$docb.disk$command(6)=sectorspertrack;
read$docb. disk$command'(7) =read$wr i te$gap:

6·511 AFN-01949A

108

110
111

11-2

113
114

115

116
117

118

119
120
121
122
123

·124
125
126
127

128
129
130
131
132
l3l
134
135
136

1
2

,2
2

2
2
2
2
2
2
2
2
2

,2
2
2
2
2
2
2
2
2

A'PLICATIONS

if bytespersector$code = 0
then rj!ad$docb.disk$command(8)=bytespersector,
else read$docb.disk$command(8)=OFFH,

call execute$docb(@read$docb,@operation$status),

end read;

$eject

1**** initialize system by settiQ,g up 8237 dma controller and 8259A interrupt
controller. ****/

initial!ze$system: procedure;
declare

1* 1/0 ports *1
dma$disk$addr$port
dma$disk$word$count$port
dma$command$port
dma$mode$port
dma$mask$sr$port
dma$clear$ff$port
dma$master$clear$port
dma$mask$port
dmacladdr$port
dmaclword$count$port
dma$c2$addr$port
dma$c2$word$count$port
dma$c3$addr$port
dma$c3$word$count$port
iewl
icw2
icw4
oowl
ocw2
ocw3

declare

literally
literally
literally
Ii terally
literally
li tera1ly
literally
literally
11 terally
literally
literally
literally
literally
literally
literally
literally
literally
li terally
literally
literally

1* mise masks and literals *1

"'OOH",
'OlH',
"'08H"",
'OSH',
'OAH',
'OCH' ,
"'ODH",
'OFH',
'02H',
"03B"',
'04H',
"OSH",
'06H',
'07H' ,
'70H' ,
'71H'
"71H":-
'71H' ,
'70H' ,
'70H',

1* current address port *1
1* word count port *1
1* command por t *1
1* mode port *1
1* mask set/reset port *1
1* clear first/last flip-flop
1* dma master clear port *1
1* parallel mask set port*1

cjma$extended$write literally 'shl,(l,5)', 1* extended write flag *1
1* single transfer flag *1 dma$single$transfer literally 'shl(l,~)',

dma$disk$mode literally'40H',
dmaclmode literally'4lH',
ama$c2$mode literally'42H',
dma$c3$mode 'literally '43H'"
mode$8088 literally '1',
interrupt$base literally '20H',
single$controller literally ~shl(l,l)',
level$sensitive literally 'shl (1,3)';
control$word$4$required literally'l',
base$icwl ' literally'lOH',
mask$all literally'OFFH',
disk$interrupt$mask literally '1',

output (dma$master$clear$port) =,0,
output (dma$mode$port) =dma$extended$write,

1* set all dma registers to valid values *1
output (dma$mask$port) =mask$all,

1* set all addresses to zero *1
output (dma$clear$ff$port) =0,
output (dma$disk$addr$port) =0;
output (dma$disk$addr$port) =0,
output (dmacladdr$port)=O,
output (dmacladdr$port) =0,
output(dma$c2$addr$port)=0,
output (dma$c2$addr$port)=0,
output, (dma$c3$addr$port) =0,
output (dma$c3$addr$port) =0,

1* set all word counts to valid values *1
output (dma$clear$ff$port) =0,
output (dma$disk$word$count$port) =1,
output (dma$disk$word$count$port) =1,
output (dmaclword$count$port) =1
output (dmaclword$count$port) =1
output (dma$c2$word$count$port) =1
output (dma$c2$word$count$port) =1
output (dma$c3$word$count$port) =1
output (dma$c3$word$count$port) =1

6-51<!

1* master reset *1
1* set dma command mode *1

1* mask all channels *1

1* reset first/last flip-flop *1

1* reset first/last flip-flop *1

port *1

137
138
139
140

141
142
143
144

145
14~

147

148

149

150
151
152
153
154
155
156
157
158
159

160
161
162

167
168

169

170
171

172
173

174
175

176

177

178
179

181

182

183
184
185
186

187

2
2
2
2

2
2
2
2

2
2

2

1

1
1
1
1
1
1
1
1
1
1

1
1
2

1
1

1
1

1
1

1

1
2

1

1
2
3
3

4

APPLICATIONS

I· initialize, all lima channel modes .1
output (dma$mode$port)-dma$disk$mode;
output(~ma$mode$port)-dmaclmode;
output (dma$mode$port)-dma$c2$mode;
output (dma$mode$port)-dma$c3$mode;

I· initialize 8259A interrupt controller ·1
output(icwl)-sing1e$controller or level$sensitive or control$word4$requlred or base$icwl;
output (icw2)-interrupt$base;
output (icw4)-mode$8088;
output(ocwl)-not disk$interrupt$mask;

I· initialize interrupt vector for fdc .1
intvec(40R)-intptr(0);
intvec(41R)-intptr(1);

end initial~e$system;

$eject

I. set 8088 interrupt mode "I
I. mask all interrupts except disk ·1

I···· main program: first format disk (all tracks on side (head) O. Then
r.ead each sector on every track of the disk forever. i ****/

declare drive$ready(4) byte external,

I· disable until interrupt vector setup and initialization complete .1
disable,

I· set initial floppy disk parameters .1
density=mfm;
headeD;
multitrack-OJ
fi11er$byte=55H;
tracksperdisk=77,
bytespersector=1024;
interleave=6i
step$rate-ll;
head$10ad$time=40,
head$unload$time=240;

1* double-density *1
1* single sided *1
;* no multitrack operation .1
1* for format *1
1* normal floppy disk drive *1
1* 1024 bytes in each sector *1
I. set track interleave factor *1
I. lOms for SA800 plus 1 for uncertainty ·1
I. 40ms head load for SA800 ·1
;* keep head loaded as long as possible *1

I. derive dependent parameters from those abov.e *1
bytespersector$code=shr(bytes$per$sector,7) ,
do index=O to 3,

if (bytespersector$code and 1) <> 0
then do, bytespersector$code=index; go to doneho; end,
else bytespersector$code=shr(bytes$per$sector$code,l) ,

end:

doneho:
sectorspertrack=sectrktable(bytespersector$code-density);
format$gap=fmt$gap$table (shl (density,2)+bytespersect or$code),
read$write$gap=rdwrgap$table(shl(density,2)+bytespersector$code),

1* initialize system and drivers .1
call initialize$system;
call initialize$drivers;

;. reenable interrupts and give 8272 a Chance to report on drive status
before proceeding .1

enable;
call time (10);

I. specify disk drive parameters .1
call specify (step$rate,head$load$time,head$unload$time,dma$m ode),

drivecO;

1* wait until drive ready .1
do while 1,

if drive$ready(drive)
then go to start,

start:
call format(drive,4ensity,interleave):

do while 1,
do cylinder=O to tracksperdisk-l,

call seek(drive,cylinder,head);
do sector=l to sectorspertrack;

I· set up write buffer *1

;. run Single disk drive '0 *1

do index=O to byteSpersector-l; wrbuf(index)=index+sector+cylinder; end:

6-513

190'
191

192

194
195
196

197

4
4

4
3
2

1

call write (drive ,cylinder ,head ,sector ,density) t
call read (drive ,cylinder ,head,seator"idensity) I

/* check read buffer against write buffer */
if cmpw(@wrbuf,@rdbuf,shr(bytespersector,l)) <> OFFFFH

then haltl
end;

, end;
end;

end runn,

MODULE INFORMATION:
CODE AREA SIZE - 05708
CONSTANT AREA SIZE = 00008
VARIABLE AREA SIZE = 09078
MAXIMUM STACK SIZE = 00228
412 LINES READ
o PROGRAM ERROR(S)

ENO OF PL/M-86 COMPILATION

13920
'00

23110
340

6-5J4 A~l949A

APPLICATIONS

APPENDIX C
8272 DRIVER FLOWCHARTS

6-515, AFN-Q1949A

RETURN

APPLICATIONS

6-516

RESET
-DRIVE$READY
-DRIVE$STATUS$CHANGE
-OPERATIONINPROGRESS
-OPERATION$COMPLETE

RETURN
ERROR

-------)

RETURN

AFN-Ol949A

APPLICATION$

(

RETURN

a·517

RETURN
COMPLETE)

AFN'()1949A

APptlCATIONSI

YES

6-518 AFN-01949A

REYURN
ERROR

YES

APPLICATIONS

6-519

NO

APPLICATIONS

RETURN
INVALID STATUS

C ReTURN) >=C-____ , BUSY STATUS ----

ENABLE INTERRUPTS

6-520

• C RETURN) , BUSY STATUS ----

A~I_

RESET OPERATION$INfPROGRESS
SET OPERATION$COMPLETE
RESET GLOUL$DRIVEtNO

APPLICATIONS

,

6-521

CALL COPYINTRESULT
TO PUT OPERATION

RESULT INFORMATION
INTO THE DOCB

CALL COPYINTREBULT
TO PUT OPERATION

RESULT INFORMATION
INTO THE DOCB

AfN.0194BA

APPUeA"FIONS

RESET OPERA TlONSlN$PROGRESS FLAG
SET OPERATIOHSPOMPLETE FLAG

(RETURN)

6-522

APPLICATIONS

RETURN
RESULT ERROR STATUS

. ~.

NO

YES

NO

AFN-01949A

8271/8271·6
PROGRAMMABLE FLOPPY DISK CONTROLLER

• IBM 3740 Soft s.ctored Format Compatible

• Programmable Record Length.

• Multl·Sector Capability

• Maintain Dual Drive. with Minimum SoftWare
Overhead Expan~ •. ble to 4 Drive. '

• Automatic ReadIWrlte Head Po.aitlcml"O and
Verification .

• Int.mal CRC Generetlon and Checking . ,

• Programmable Step Rate, Selll. nme, Head
Load Time, tiead Unload Index Count

.• Fully M~TM and MCS-85TM Compatible

• Single + 5V Supply

• 4O-Pln Package

The InteP 8271 Programmable Floppy Disk Controller (FOC) Is an LSI component designed to Interface one to 4 floppy
disk drives to an 8-blt microcomputer system. Its powerful control functions minimize both hardware and software
overhead normally associated with floppy disk' controllers.

ORO ------,

IlACR -----,
INT

RESET

Ci -----'

CPU INTERFACE

INTERNAL
DATA BUS

SERIAL
I"TERfA~E ,

CONTROUER

DISK INTERFACE

Figure 1. Block Diagram

WR DATA

HSYNe

ROCAlA

DATA WINDOW

PLOISS

•• ADVO
iiVIliY1
TiiACKO
COi,j'iiffIOPI
iNDEX
~
FiiiL'f

HlEeTO
SELECT 1
WR ENABLE
LOAD HEAD
HEI/STE'
DIRECTION
LOW CURRENT
FAULT RESETIOPO

FAULi'RESETIOPO

SEUClO

4MHzCLK

RESET

READY 1

SELECT 1

DACK

DRO

R5

"" INT

oeo
OS1

OS2
083

D ..

D85

OSO
DB7

OND

Vee

LOW,CURRENT

LOADttEAO

DIRECTION

SEEKfSTEP

WR ENBLE

INDEX

WR PROTECT

READY 0

TRKO

COUNT/OPI

WR DATA

FAULl

UNSEPDATA

DATA WINDOW

PlOISS

CS

IHSYNe

A,

~ __ -r'"

Figure 2. Pin Configuration

8271/8271·6

Table 1. Pin Description

Pin Pin
Symbol No. Type Nsme and Function S,mbol No. Type Neme and Function

Vcc 40 +5YSuppl,. Fault Reset/ 1 0 Fault R .. et: The optional
OPO fault reset output line Is used

GND 20 Ground. to reset an error condition

Clock 3 I Clock: A squllre wave clock.
which is latched by the drive.
If this line is not used for a
fault reset It can be used as

Reset 4 I Reaet: A high signal on the an optional output line. This
reset Input forces the 8271 to line is set with the write spe-
an idle state. The 8271 re- cial register command.
mains idle until a command is
Issued by th~ CPU. The out-
put signals of the drive inter-

Write Enable 35 0 Write' Enable: This Signal
enables the drive write logic.

face are forced inactive
(LOW). Reset must be active Seek/Step 36 0 SeeklStep: This multi-
for 10 or more clock cycles. function line Is used during

drive seeks.
CS 24 I Chip Select: The I/O Read

and I/O Write inputs are Direction 37 0 Direction: The direction line
enabled by the chip select specifies the seek direction.
signal. A high level on this pin steps

the R/W head toward the
DB7-DBo 19-12 I/O Deta Bu,; The Data Bus lines spindle (step-in), a low level

are bidirectional, thrae-state steps the head away from the
lines (8080 data bus com- spindle (step-out).
patible).

Load Head 38 0 Load Heed: The load head
WR 10 I Write: The Write signal is line causes the drive to load

-used to signal the control the Read/Write head against
logic that a transfer of data the diskette. . from the data bus to the 8271
is required. Low Currenl 39 0 Low Current: This line

notifies the drive ttiat track 43
RD 9 I Read: The Read Signal is or greater is selected.

used to signal the control
. logic that a transfer 0.1 data Ready I, 5 I Read, 1: These two lines in-

from the 8271 to the data bus Ready 0 32 dlcatethat the specified drive
is required. is ready.

INT 11 0 Interrupt: The interrupt sig- Fault 28 I Fault: This line is used by the
nal indicates that the 8271 drive to specify a file unsafe
requireS service. condition.

A,-Ao 22-21 I Addre .. Line: These two
lines are CPU Interface Reg-

, ister select Jines.

Count/OPI 30 I Count/OPl: If the optional
seekl,direction/count seek
modll.ts selected, the count

ORO 8 0 Data Reque't: The DMA pin receives pulses to step
request signal is used to re-
quest a transfer of data be-

the R!W head to the desired
track, Other:wise, this line can

twaen the 8271 and memory. be used as ail olltlonal inpu!. '

DACK 7 I Data Acknowledge: Ttie
DMA acknowledge signal Write Protect 33 I Writ. Protect: This signal
notifies the 8271 that a DMA specifies that the diskette in-
cycle has baen granted. For serted Is write protected.
non-DMA transfers, this sig-
nal should be driven in the TAKO 31 I Track Zero: This signal indi-
manner of a "Chip Selec!." cates when the RlW head is

: positioned .over track zero.
Select 1- 6 0 Selected Drive: These lines
Select 0 2 are used to specify the iiideX 34 I Index:.The Index.slgnal gives

selected drive. These lines an indication of the relative
are set by the command byte. position of the diskette.

6-525 AFN.Q0223B

intJ

Table 1. Pin Description (Continued)

Pin
Symbol' No. Type N.m •• nd Function

pI-oiss ?5 'I Pli Lock.d O.clll/itorl
Singi. Shot: This pin is used

" ',. to specify thl' type of data
separator used. ,

WrltllDSta 29 Q Writ. D.t.: Composite write:
.,. \ data.

LJnseparated 27 I Un •• par.t.d D.t.: This
Oa,ta, ':'

Input is the unseparated data
and clocks.

OataWlndow 2~ I Dat. WIndow: This is a data
window established by a
slngle-ahot or phase-locked

, oscillator data separator.
, , ,

INSYNp 23 ,0" Input Synchronization: This
line is high when 8271 has at-
tained Input data synchroni-
zation, by detecting 2 bytes of

t, " ," zeros followed by an ex-
pected Address Mark. It will
stay high until the end of the
10 or data field.

FUNCTIONAL DE$CRIPTION

General
The 8271 Floppy' Disk COntroller (FOC) interfaces, either
two single or one, ,Qual floppy drive to an eight bit
microprocessor and Is fully compatible with Inte/'s
new high performance MCS-85' microcomputer system.,
With minimum external circuitry, thisinnovative controller
:supports most standard, commonly-available flexible disk
drives including the mini-floppy.

:The 8271 FOC supports-'B' comprehensive sothectored
,format which 'Is IBM' 3740 compatible 'and includes

provision for the dell1gnatlng and handling of bad tracks. It
Is a'hlgh level'controllerth"t relieves the CPU (and user) of
'many of th~ control t~s~s, a~ociated with implementing a'
floppy disk interface.:rhe ,FOC suppbrts a variety' of high
/ev~llnstructions which ililow the user to store and retrieve
data on a floppy disk without dealing with the, low le\(el
details 6f disk operlftibh, ',' "

,In addition to tile s~andarQ read/write commands, a scan
command Is supported. The scan command allows the
user"program to specify, a data pattern and instructs the
FOG,to search for tl!\at .pattern on a track. Any application'
that is requlred.to seateh the,disk for,informatlon (such as,
point of sale price lookup;'disk dlrecti>ry search, etc.l, lriay
use the scan'"cbmmahd to'reduce the CPU overhead. Once
the scan operation is initiated, no CPU intervention is
reql,ljred." '" : ,

CPU lriterface Description
This interface minimizes CPU involvement by supporting
a setQf high level COmmands anp both OMA and non-I;>MA
type data transfers and by providing hierarchical status
information regarding the result of comma,nd execution.

The CPU utilizes the,oontrol interface (see the Block
diagram) to specify the FOC commands and to determine
the result of !In executed command. This Interface 'Is
supported by five Registers which are addressed by the
CPU via the A" Ao, 1m and Vim'signals. If al'l8Q8d based
system Is"uaed; 'the Ri5 and WR signals can be driven by
the ,8228'" 'm5R and i/OW Signals. The registers are
defined as fo,lp,ws:

Command'Regl.ter
,The CPU loads ,an, ,appropriate command Into the
Command ,Register which ",as the following format:

At Act 07 0, os Dill 03 02. 0, Do

1 q 1 0.1 1 1 I. 1 1 .I. 1 1 t' I

. Parameter Ragllter

COMMAND OPCOOE

SURFACE/DRIVE

ISELECT 0, 1)

Accepts parameters of commands that req/Jire further
description;' 'up to five parametera may be required,
example: '

II.:.' '__ _____ EXPECTED PARAMETER

RDult Regllter

The'Result Registeris -used to supply the outcome of FOC
commafld exec!Jtlon (su,ch as a good/bad completion) to
the CPU. The stan~ari:t B~sultbyte format is: .

At .AO ,0, 06 Os 0403' D2 Of Do

,1011 1 0 1 01 1 ,I 1 1 1 0 1

i, ' I r· ..• A[~:.:,;: .. ,
- COMPLETION TVPE

" '
, DUETED OAT A. FOUND

!- !>.

~~-.,-------NOTUS~D·OO

AFN-002238 ,

827118271·6

INTERNAL
DATA SUS

1---- WROATA

S£LECTO
SELECT 1
WA ENABLE
LOAD HEAD
IEEK!STE'
DIRECTION
LOW CURRENT
FAULT RESET!
OPO

Figure 3. 8271 Block Dlegram Showing CPU
Interface FuncUons

Status Register

Reflects the state of the FOC.

A, AD 0, 06 D6 Dc D3 02 0, Do

, • ' .• 1 1 1 1 1 1 1.1. ,

IIII ,.-~,."~-
. 1· INTEARUPT REQUEST

1 .. RESULT REGISTER FULL

1· PARAMETER REGISTER FULL

L-________ ,,, COMMAND REGISTER FUll

'------------1 "COMMAND BUSY

Reset Register

Allows the 8271 to be reset by the program. Reset must
be active for 11 or more chip clocks.

INT (Interrupt Line)

Another element of the control interface is the Interrupt
line (INT). This line is used to signal the CPU that an FOC
operation has been completed. It remains active until the
result register is read.

DMA Operation

The 8271 can transfer data in either OMA or non OMA
mode. The data transfer rate of a floppy disk drive is high
enough (one byte every 32 Ilsec) to justify OMA transfer.
In OMA mode tl)e elements of ,the OMA interface are:

DRQ: OMA Request
The OMA request signal Is used to request a transfer,of
data betwean the 8271 and memory.

DACK: OMA Acknowledge:
The DMA acknowledge signal notifies the 8271 that a OMA
cycle has bean granted.

RD. WR: Read, Write
The read and write signals are used to specify the
direction of the data transfer.

OMA transfers require the use of a DMA controller such as
the Inte~8257. The function of the OMA controller is to
provide sequential addresses and timing for the transfer
at a starting address determined by the CpU. Counting of
data block lengths is performed by the FOC.

To request a OMA transfer, the FOC raises ORO. OACK
and RO enable OMA data onto the bus (independently of
CHIP SELECT). DACK and WR transfer OMA data to the
FOC. If a data transfer request (read or write) is not
serviced within 31 "sec, the command Is cancelled, a late
OMA status Is set, and an interrupt is generated. In OMA'
mode, an interrupt is generated at the completion of the
data block transfer.

6-527

When configured to transfer data in non·OMA mode, the
CPU must pass data to the FOC in response to the n0'l·
OMA data requests Indicated by the status word. The
data is passed to and from the chip by asserting the'
OACK and the RO or WR signals. Chip select should be
inactive (HIGH).

REGISTERS

oa..,

ORO ___ -,
INT

A,

"
RESET

aoulNTERFACE DllklNTt;RFAC'E

Figure 4. 8271 Block Diagram Showing Disk Interface
Functions

AFN.Q0223B

intJ 82711-827'1·&

Disk Drive Interface
The 8271 disk"drlve interface supports the h'lgh level
command structure described in the Command Descrip­
tion section. The 8271 maintains the location of bad tracks
and the current track location for two drives. However,
with minor, software support, this interiace,can support
four drives by expanding the two drive select lines (select
0, select 1) with the addition of minimal support hardware.

The FDC Disk Drive Interlace hlS'the following, major
functions.

READ FUNCTIONS

Utilize the, user supplied data window to ,obtain the clock
and data patterns from, the un"eparated read data.

Establish' byte synchronization.

Compute and verify the 10 I!nd data field CRCs.

WRITE FI,JNCTIONS

Encode composite write data.

Compute the 10 and data field CRes and append them'to
their respective fIelds. "

CONTROL FUNCTIONS
Generate the programmed step rate, head'ioad time, head
settling time, head unload delay, and monitor drive
functKms.

DATA -}--
SEPARATOR

~

UNSEPAAATED DATA .. WRITE DATA

'-=. ~ ..
SEEK/STEP

: Di1fECfiON ..
COUNT!OPI .. L6ADHEAD ..
iNDEX

8271
tRACK 0 FDC

,mfCfO '

:- S~LECT 1

:- tlIWCliIIlffilf ..
WRITE PRotEct

WRITE FAUL'f

.. WfufE FAULT RESETIOPO ..
RiAOVO'

READY 1

NOTE. INPUTS TOCHIP MAY REQUIRE RECEIVERS
(AT LEAST PULL UPIOOWN PAIRS).

Figure 5. 8271 Disk Drive Interface

DUA,
fLOPPY

OISK
DRIVE

Data Separation

the 8271 needs only a data window to separate the data • ,
from thl! composite read data as well as to detect missing
clocks in the Address Marks.

The window generatjon logic may be i'mplemented using
either a single-shot separator or a phase-locked oscillator.

Single-Shot Separator

The single-shot separator approach is the lowest cost
solution.

The FDC samples the value of Data Window on the leading
edge of Unseparated Data and determines whether the
delay from the previous pulse was a half or full bit-cell
(high input = full bit-cell, low input = half bit-cell).
PLO/SS should be tied to Ground.

6~528

Insync Pin

This pin gives an indication of whether the 8271 is
synchronized with the serial data stream during read
operations. This pin can be used with a phase·locked
oscillator fd~ soft and hard locking.

tN SYNC

FOUND SYNC aiD MARK
AEAD ID FIELD BUT
TRACK OR SECTOR
INCORRECT

FOUND svl DATA MARK
NOT AN 10 MARK

FOUND SYNC & ID MARK
ID FIELD CORRECT

/
I

FOUND SYNC. DATA MARK
READ DATA SECTOR

UiliSEPARATED
DATA

8271/8271-8

DATA WINDOW
RETRIGGi:RABLE

SINGLE·SHOT 8271 FDC
2.8!ijls WINDOW*

I }L~/SS

*FOR MINI·FLOPPY DATA WINDOW = 5.7j.ISIC

Figure 8, Single-Shot Data Separator Block Diagram

, UNSEPARATED
DATA,

Phe_Locked OSCillator Separator

los;;>100ns

Flgur. 7. Single-Shot DIde Window nmlng

The FOC samples the value of Data Window on the leading
edge of Unseparated Data and determines whether the
pulse represents a Clock or Data Pulse.

Insync may be used to provide soft and hard locking'
control for the phase· locked oscillator.

PLO/55 should be tied to Vee (+5Vl.

UNSEPARATED
DATA

J PLO I DATAW'NDOW .,

I ·l ... ---rt-__ -_-__ -_: ______ f~ __ ~~:~
IN SYNC· +5V

·OPTIONAL

Figure 8. PLO Da .. Separator Block Diagram

6-529 AFN-00223B

·DATA WINDOW MAY BE 180° OUT OF PHASE IN PLO DATA SEPARATION MODE.

Dllk Drlv. Conlrollnlerf,ce
The disk drive control interface performs the high level
'and programmable flexible disk drive 'operations. It
custom tailors many varied drive performance paraiheters
such as the step rate. settling time. head load time, and
head unload index count. The following is the description
of the control interface.

)

Write En,bl.
The Write Enable controls the read and write functions of a
flexible dislc"drive. When ~rlte,Enable Is a logical one, It
enables the drive write electronics to pass,current through
the Read/Write head. When Write Enable is a logical zero,
the drive Write circuitry Is disabled and the ReadlWrite
head detects the magnetic flux transitions recorded on a
diskette. The write current turn-on is as follows.

"

WRliTEDAT!....Jl.....JL ____ ~

--t I-tWE ~twE-t
WRITE ENABLE • ... ___ _

Flgur. 10. Writ. En,bl. TIming

6.0530

8271/8271-6

Seek Control

Seek Control is accomplished by Seek/Step, Direction,
and Count pins and can be Implemented two ways to
provide maximum flexibility In the subsystem design. One
instance is when the programmed step rate is not equal to
zero. In this case, the 8271 uses the Seek/Step and
Direction pins (the Seek/Step pin becomes a Step pin).
Programmable Step timing parameters are shown.

The Direction pin is a contro1level indicating the direction
in which the R/W head is stepped. A logic high level on this
line moves the head toward ~he spindle (step-in). A logic
low level moves the he~d away from the spindle (step-out).

Another instance Is when the programmable step rate Is
equal to zero, In which case the 8271 holds the seek line
high until the appropriate number of user-supplied step
pulses have been counted on' the cOUht'input pin.

DIRECTION

~
SEEK/ST~ _____ nL ___ _

~ ts --l -1 ~tps
tps=tos=tso =1 OilS

STANDARD: 1 ms';; ts';; 255ms

MINI-FLOPPY: 2ms.;; ts';; 510ms

Figure 11. Seek Timing

SEEK/ST_E_P ___ ~I

-.l i-tsc

I

COUNT

l-tc .~ •• 1

tos=tso =tcs=1 OilS

tsc > 11ls

tpc",20llS

te> 1ms

----l !-tes

-------1fL---
!Pc LAST COUNT

Figure 12. ~eek/Step/Count Timing

AFN-00223B

Htad Saek'SeHII,ng TIme

T,he 8271 allows the head settling time to be programmed
from 0 to 255ms, in,increments of lms. '

The head settling time is defined as the interval of time
from completion of the last step to the time when reading
or writing on the diskette is possible (A/W Enable). The
AIW head is assumed loaded. '

SEEK OR LAST STEP

~LASTSTEPCOMPLETE

I~ r-
WRITE/READ E;NABLE ______,1----

STANDARD: Q.;;;*tsw<;;255ms

MINI·FLOPPY: 0 <;;*tsw'; 510ms
, *RIW HEAD IS AS$!JMED LOADED.

FIgure 13. Head Load SettlIng TImIng

Load Head

When active, load head output pin causes the drive's
read/write head to be loaded on the diskette. When the
head is initially loaded, there is a programmed delay (0 to
60ms in 4ms increments) prior to any read or write
operation. Provision is also made to unload the head

,following an operation within a programmed number of
diskette revolutions.

LOAD HEAD ,"'-----------_.----------_.1.
EARLIEST WRITE ENABLE
OR INTERNAL READ DATA

tLW-J

STANDARD: 0<;; tLW <;; Iiams

MINI·FLOPPY: 0<;; tLW <;; 120ms

r­
., I

Figure 14. Head Load to Read/Write TIming

6-532

inter 8271/8271 •• '

Index

The Index input is used to determine "Seqtor no~·found"
status and to Initiate format trac!</read 10 COmmlinds and
heaQ unload Index and Count .operations.

tPI;;' 0.5"s

Figure 15. Index nmlrig

TrRkO

This input pin indicates that the diskette Is at track o.
During any seek operation, the stepping out of the
actuator ceases when the track 0 pin becomes active.

Select1,O
Only one drive may be selected at a time. The
Input/Output pins that must be externally qualified with
Select 0 and Select 1 are:

Unseparated Data
Data Window
Write Enable
Seek/Step
Count/Optional Input
Load Head
Track 0
Low Current
Write Protect
Write Fault
Fault Reset/Optional Output
Index

When a new set of select bits is specified by a new com·
mand or the FDC finishes the index count before head
unload, the following pins will be set to the 0 state:

Write Enable (35)
Seek/Step (36)
Direction (37)
Load Head (38)
Low Head Current (39)

The select pins will be set to the state specified by the
command or both are set to zero followh'lg the index
count before head unload. .. .

Low Gurrent
This ,output pin IS active wheneyer the,'physical track
location of the selected drive i,s greater than 43. Generally

this signal is used to enable compensation for the lower
velocities encountered ·while recording on the inner
tracks.

Write Protect

The 8271 will not write to a disk when this Input pin Is
active and will interrupt the CPU If a Write attempt Is made.
Operations which check Write Protect are aborted if the
Write Protect line Is active.

This signal normally originates from a sensor which
detects the 'presence or absence of the Write Protect
hole in the diskette Jacket.

Write Fault and Write Fault Reae~

The Write Fault input is normally latched by the drive
and irrdlcates any condition which could endanger data
Integrity. The 8271 interrupts the CPU anytime Write
Fault Is detected during an operation and Immediately
resets the Write Enable, Seek/Step, Direction, and Low
Current signals. The write fault condition can be cleared
by using the write fault reset pin. If the drive being used
does not support write fault, then this pin should be
connected to Vee through a pull-up resistor.

Ready 1, 0

These two plns'indlcate the functional status of the disk
drives. Whenever an operation Is attempted on a drive
which is not ready, an interrupt Is generated. The Inter­
face continually monitors t~is input during an operation

. and if a Not Ready condition occurs, Immediately ter­
minates the operation. Note that the 8271 latches the
Not Ready condition and it can only be reset by the exe­
cution of a Read Drive Status command. For drives that
do not support a ready Signal, either one can be derived
with a one shot and the Index pulse, or the ready Inputs
can be grounded and Ready determined through some
software means.

6-533 AFN-OOI!23B

intJ 827118271·8

PRINCIPLES OF OPERAnON

As an 8080 peripheral device, the 8271 accepts commands
from the CPU, executes them and provides a RESULT
back to the 8080 CPU at the end of command execution.
The communication with the CPU is established by the
activatiori of as and Ri5 or WR. The Al, Ao inputs select
the appropriate registers on the chip:

DACK CS A1 Ao RD ViR " Operitlon. ,.I
1 0 0 0 0 1 Read Statua
1 0 0 0 1 0 Write Command
1 0 0 1 0 1 Read Result
1 0 0 1 1 0 Write Parameter
1 0 1 0 1 0 Write Reset Reg.
0 1 X X 1 0 Write Data
0 1 X X 0 1 Read Data
0 0 X X X X Not Allowed

The FDC operation is composed ot the following
sequence of events.

_ WRITES THE COMMAND AND PARAMETEI\S'INTD
THE 8271 COMMAND AND PARAMETER REGISTERS.

THE 8271 IS ON ITS OWN TO CARRY OUT THE COMMANDS.

THE 8271 SIGNALS THE CN THAT THE EXECUTION HAS
FINISHED. THE CPU MUST PERFORM A READ OPERATION
OF ONE OR MORE OF THE REGISTERS TO DETERMINE
THE'OUTCOME OF THE OPERATION. '

.....

Figure 16. Pa .. lng the Command end Parameters
to the 8271 '

6-534

The Command Phe ..

The software writes a command to the command register.
As a function' of the'command issued, from zero to five
parameters are written to the' parameter r.gister. Refer to
diagram showing a f10)IV chart of the commllnd phase.
Note that the flow chart shows that a command may not be
issued if the FDC status register indicates that the device
is busy. Issuing a command while another command is in
progress Is Illegal. The flow chart also shows a parameter
"buffer full check. The FDC status Indicates the state of the
parameter buffer. If a parameter is -issued while the
parameler buffer is full. the previous parameter is over
written and lost.

END

NOTE:
STANDARD RE8ULT RETURNED CAN IE
DETE"MINED IV MASKING OUT THE
DRfYI!! SELECT ans OP THE COMMAND
BYTE (lilTS 7 AND It AND CHECKING
FOR It. VALUE OF LESS THAN 2C18 (IF
LESS THAN 2C11o STANDARD RlSUl T
IS RETURNED).

IMMEDIATE' ResULT RITURNElJ CAN
IE DITERM,.ED 8Y ADDmONALLY

=:0°::"-:: :::c:': :::
" VALUE OF' C18 OR o.CATER (IF e,.
OR GREATER, IMMEDIATE RESULT
RETURNED).

'FIgure 17. Checking for Result Type ¥ollowlng, 8271
Command lind Parameters

The Execution Phe ..
During the execution phase the ciperation specified
during the command phase is performed. During this
phase, there is no CPU involvement if the system utilizes
DMA for the data transfers. The execution phase of each
command is discussed within tlte -detailed' command
descriptions. The following table summarizes many of the
basic execution phase characteristics.

inter 827118271·8

EXECUTION PHAsE BASIC CHARACTERISTICS

The' following table summarizes the various commands
with corresponding execution phase characteristics.

Table 2. Ex-.:uUon PhaD aa.lc Oh ct.rlatlc.

1 2 3 4 5 6 7 8

Deleted Writel Seek Completion
COMMANDS DIIta Head ANdy Protect Seek Check R .. ult Interrupt

SCAN DATA SKIP LO,AD I x YES YES YES YES

SCAN DATA AND XFER LOAD I x YES YES YES YES
DEL DATA
WRITE DATA x LOAD I I YES YES YES YES

WRITE DEL DATA x LOAD I I YES YES YES YES

READ DATA SKIP LOAD I x YES YES YES YES

READ DATA AND XFER LOAD I x YES YES YES YES
DEL DATA

READ 10 x, LOAD I x YES NO YES YES

VERIFY DATA AND XFER LOAD I x' YES YES YES YES
DEL DATA
FORMAT TRACK' x LOAD I I YES NO YES YES,

SEEK x LOAD Y x YES NO YES YES

READ DRIVE STATUS x x x NO NO NOTE 5 NO

SPECIFY x x x NO NO NO NO

RESET x UNLOAD x x NO NO NO NO

R ~P REGISTERS x x x NO NO NOTE 6 NO
W SP REGISTERS x x x NO NO NO NO
Note: 1. "x" - DON'T CARE; 2. •• /"" - check 3. "-" - No change 14. "y" - Check atend of operatIon 5. See "READ DRIVE STATUS" command.

8. See "READ SPECIAL REGISTER" command. I

Explanation of the execution phase characteristics table.

1. Deleted Data ProcessiFlg

If deleted data Is encountered during an operation that
is marked skip in the table, the deleted data record is
not transferred into memory, but the record is counted.
For example, if the command and parameters specify a
read of five records and one of the records was written
with a deleted data mark, four records are transferred
to memory. The deleted data flag is set In the result
byte. However, if the operation Is marked transfer, all
data is transferred to memory regardless of the type of
data mark.

2. Head

The Head column In the table specifies whether the
ReadIWrlte head 'will be loaded or not. If the table
specifies load, the head is loaded after it is positioned
over the track. The head loaded by' a command remains
loaded until the user specified number of Index pulses
have occurred.

3. Ready

The Ready column indicates if the ready line (Ready
1, Ready 0) associated with the aelected drive Is
checked. A not ready state is latched by the 8271 un·
til the user executes a'read status command.

,6-535

4. Write Protect

The operations that are marked check Write Protect are
immediately aborted if Write Protect line is active at the
beginning of an operation.

5. Seek

Many of the 8271 commands cause a seek to the
desired track. A current track register is maintained for
each drive or surface.

6. Seek Check

Operations that perform Seek Check verify that
selected data in the 10 field is correct before the 8271
accesses the data field.

CPU INTERRUPT POLLED INTERRUPT

(START)

Figure 18. Getting th

Th. R.sult Phase
Ouring the Result Phase, the FOC notifies the CPU of the
outcome of the command execution. This phase may be
initiated by:

1. The successful completion of an operation.
2. An error detected during an operation.

PROGRAMMING

A1 Ao

0 0
0 1
1 0
1 1

STATUS REGISTER

COMMAND BUSY
COMMAND REG FULL

PARAMETER REG FULL

CS RD

Status Reg
Result Reg

-
-

FDC Status

Bit 7: Command Busy

CS WR

Command Reg
Parameter Reg
Reset Reg

-

The command busy bit is set on writing to the command
register. Whenever the FOC is busy processing a
command, the command busy bit is seltoaone. Thisbit is
~et to zero after the command is completed.

Bit 6: Command Full

The command full bit is set on writing to the command
buffer and cleared when the FOC begins processing the
command. '

Bit 5: Parameter Full

This bit indicates the state ofthe.parameterbuffer. This bit
is set when a parameter is written to the FOC and reset
after the FOC has accepted the parameter.

Bit 4: Result Full ..

This bit. indicates the state of the result buffer .. It is valid
only after Command Busy bit is low. This bit is set when
the FOC finishes a command and is reset after the result
byte is read'bythe'CPU. The data in the result buffer is
valid only 'after the FOC has comphited a command.
Reading the result buffer while a command is in progress
yields no useful informatipn .. ·

Bit 3: Interrupt Request

This bit reflects the state of the FOC INT pin. It is set
when FOC requests atten~on as a result of the comple·
tion of an operation or failure to complete an intended
operation. ThiS bit is cleared by reading the result
register.

Bit 2: Non-DMA Data Request

When the FOC Is utilized without a OMA controller, this bit.
is used to indicate FOC data requests. Note that in the
non~OMA mode, an interrupt is .generated (interrupt
request bit is sell with each data byte written to or read
from the diskette.

Bits 1 and 0:

Not used (ze~o returned).

After reading the Status Register, the CPU then reads the
Result Register for more information. ."

THE RESULT REGISTER

This byte format facilitates the use of an address table
to look up error routines and messages. The standard
result byte format is:

I 0 I

t1 I~=~~:::::
L...-------:---DELETED DATA FOUND

L.. __ -'-______ -'---'- NOT USEb. 00

Bits 7 and 6:

Not used (zero returned>'

Bit 5:

Deleted Oata Found: This bit is set when deleted data is
encountered during a transaction.

Bits 4 and 3: Completion Type

The completion type field provides general information
regarding the outcome of an operation.

The completion type field provides general information
regarding the outcome of an operation.

6-536

Completion
Type

00
01
10

11

Event

GoOd Completion"": No Error
System Error - recoverable errors;
operator intervention probably required
for recovery. .
Command/Drive Error - either a program
error or drive hardware failure.

AFN-002238

inter 827118271-8

Blia 2 and 1: Completion Code It is important to note the hierarchical structure of the
result byte. In very Simple systems where only a GO-NO
GO result Is required, the user may simply branCh on a
zero result (a zero.result is a good completion). The next
level of complexity Is at the completion type Interface. The
completion type supplies enough Information so that the
software may distinguish between fatal and non-fatal
errors. If a completion type 01 occurs, ten retries should
be performed before the error is considered un

The completion code field provides more detailed
information about the completion type (See Tablel.,

Completion Completion
Type Code

00 00

00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

01
10

,11
00
01
10
11
00
01
10
11
00
01
10
11

DeIInlUon

Successful Completionl
Scan Not Met

Scan Met Equal

Scan Met Not Equal

Clock Error

-Late DMA

10 Field CRC Error

Data Field CRC Error

Drive Not Ready

Write Prote"t

Track 00 Not Found

Write Fault

Sector Not Found

Event

Good Completion/
Scan Not Met
Scan Met Equal
Scan Met Not Equal coverable. '

Clock Error
Late OMA
10 CRC Error
Data CRC Error
Drive Not Ready
Write Protect
Track 0 Not Found
Write Fault
Sector Not Found

The Completion Type/Completion Code Interface sup­
plies the greatest detail about each type of completion.
This Interface is used when detailed information about the
transaction completion is required.

Bit 0:

Not used (zero returned).

Table 3. Completion Code Interpretation

Interpretetlon

The diskette operation spaclfied was completed without error If scan operation
was specified. the pattern scanned was not foun~ on the track addressed.

The data pallern specified with the scan command WIIS found on the track
'addressed with the speCified comparison. and the equality was mel.

The data pattern specified with the scan command was found With the
specified comparison on the track addressed. but the equahty was not met.

During a diskette read operation. a clock bit was missing (dropped), Note that thiS •
function is disabled when reading any of the 10 address marks (which contaon

,missing clock pulses), If this error occurs. the operation is termonated immedi·
ately and an interrupt is generated.

During either a diskette read or write operation. the data channel did not respond
within the allotted tom" Interval to prevent data from beong overwritten or lost ThiS
error Immediately terminates the operation and generates an interrup\

The CRC word !tWO bytes) derived from the data read on an 10 field did not match
the CRC word written in the 10 field when the track was formatted If thiS error
occurs. the associated diskette operation IS prevented and no data IS transferred.

During a diskette read operation. the CRC word derived from the data field read
did not match the data field CRC word preViously written If thiS error occurs, the
data read from the sector should be conSidered invalid

The drive addressed was not ready. ThiS ondlcatoon IS caused by any of the
following conditions:
1. Drove not powered up
2, Diskette not loaded
3, No'n-exlstent drove addressed
4 Drive went not ready dUring an operation
Note that this completion code is cleared only through an FOC read drive
status' command.

A diskette write operation was specified on a write protected diskette The
intenoed ",;rote operatlbn IS prevented and no data IS written on the diskette.

DUring a seek to track 00 operation. the drive failed to provide a track 00
indication after beong stepped 255 times.

ThiS error IS dependent on the drive supported and indicates that the fault input to
the FOC has been activated by the drove

Either the sect~r addressed could not be found Within one complete revolution of
, the diskette (two index marks encountered) or the track address specified did not

match the track address contained in the 10 field Note that when the track
address spaclfled and the track address read do not match, the FOCautomaticaliy
increments its track address register (steppong the drive to the next track) and
again compares the track addresses. If thO! track addresses stili do not match, the
track address register is incremented a second time and another comparison Is
made before the sector ~ot found completion ,code Is set.

6-537

,

inter 827118271-8

INFrIALiZATION , "1

R.~t Command
Ai 'Ao o~" Ds

::':1 : ,.:" 0 , 0 I 0 I 0 j- 0 I 0 , :.J 0 I
Functlor,:. the ~eset comman~" em.ulates the action' of
tl.1e r,ese. pin.)t is issued by 9utputtlng a one follqwed
by a zero to the Reset register.

1. The drive control signals are forced low.
2. An in-progress command is aborted
3 .. The FOC s.tatus register flags are cleared.
4. The FPC enter.s an idle state until the next command i~

issued.
Reset must be active for 10 or more clock cycles. ,

SPECIFY COMMAND

Many of the Interface characteristics of the FOC are
specified by the systems software. Prior to Initiating any
drive operation command, the software must execute
the three specify commands. There are two types of
specify commands selectable by the first param~ter
issued. .

First Parameter

OOH
10H
.18H

Specify Type

.Initialization
Load bad Tracks Surface '0'
Load bae;! Tracks Surface '1'

The' Specify, commlind is usep prior to performing any
diskette operation (including formatting of a diskette) to
define the drive's inherent operating characteristics and
also is used following a formatting operation or
Installation of another diskette to define the locations of
bad tracks. Since the Specify command only loads
internal registers within the 8271 and does not involve an
actual diskette'operation, command processing is limited
to only Command' Phase. Note .that once the operating
characteristics and bad tracks have been s'pecified for
a given drive and diskette, redefining these values need
pnly be done if a diskette with 'unique bad tracks is to be
used or if the system is powered down,

Initialization:

.. CMD

PAR

PAR :

. PAR

, PAR :

0 0
0 1

0 1

0 1

0 1

o 1 o 1 1 1 1 1 o 1 1 1 o 1
o 1 o 1 0 1 0 1 1 1 1 1 o 1

STEP RATE"

HEAD SET'TLING TIME"

INDEX CNT BEFORE I HEAD LOAD TIME"
HEAD UNtOAO·

·Note: Mini-floppy .parameters .are .doubled, ,
I

1

1

parameter 0 - OOH = Select Specify Initialization.
Parameter 1 - 07-00 = Step Rate (0-255ms in 1 ms steps)'
Parameter 2 - 07-00 = Head Settling Time (0-255ms in 1

ms steps). {O- 510ms in 2ms steps}.O= standard,
{}= mini

Parameter 3 - 07-04 = Index Count - Specifies the
number of Revolutions (0-14) which are to occur before
the FOC automatically unloadS the R/W·head. If 15 is
'specified, the head remains loaded. ' ' '

b3-Do = Head 'Load Time (o-'60ms in, steps of 4';'s):
{0-120ms In 8ms steps} () = standard, {}= mini

Loed Bad Tl'lcka

CMD : 0 0 01 oJ 1 L '1 0'1 1 1 o 1 1

PAR : 0 1 ,0 1 o 1 o 1 ;1 '10 1 0' 1 o 1 0
PAR : 0 1 BAD TRACK,NO 1

PAR 0 ,1 .B~·TRACK NO 2

PAR 0 1, CURR ENT TRACK

Parameter 0: 1 OH = Load Surface zero bad tracks
18H"= Load Surface ,one bad track

Parameter 1: '
Bad track address number 1 (Physical Address).

It Is recommended to program both bad tracks and cur­
rent track to FFIi during Initialization.

SEEK COMMAND

The seek command moves the head to the specified trac)<
wit~out load!,n~ the head or verifying the track.

The seelt operation uses the specified bad tracks to
compute the phySical track address. lhis feature insures
that the seek operation positions the head over the correct
track: .

, When a suk to track zero is specified, the FOC steps
the head until the track 00 signal Is detected.

" ' '"I I'

If the track·oo sign'al is not detected within (FF)H steps, a
track 0 not found error status is returned. "

A seek to track zero is used to position the read/write head,
when the current head position is unknown (such as after'
a power up).

Seek, operations are not verified. A subsequ~lnt read or
write operation must be performed to determine if the
correct track is located .

READ DRIVE STATUS COMMAND

This command is 'used to interrogate the drive status.'
Upon completion the result register will ~old the final
.drl~~ statu~. .

A1' Au 07 06 05 Dot 03 02 0, Do

CMD lot 0 I S~L I S~L I 1 r ~ I ,1, 1 0 1 0 I

"Note the two ready bits are zero latching. Therefore, to clear the drive
not ready condition, asSumlng·the d~lve IIr,ready, and todeteet It via soft·
ware, one must Issue this command twice.

6-r538

inter 8271/8271-8 !-"

liP TO
T

ON DIUYIt

Figure 18. Initialization 01 the 8271 by the U.er

RHcllWrlie Special Regl.te,. .

This command Is used to access special registers within
the 8271.

D . 0 D

CMD: COMMAND OPCODE

PAR:

~~~------------------~ 
Command code: 

3DH Read Special Register 
3AH Write Special Register 

For boih commands. the first parameter is the register 
addreSs; for Write commands a second 'parameter 
specifies data to be written. Only tlie Read Special 
Registilr command supplies a result. . 

Table 4. Special Regl"'r. , ... 

D_rl~ 
R .. I ..... _ 

InH .. Commlnt 

Scan Sactor Number 06 .See Se!,n !Iescrlption , . '/' 
See Scan Descrol1!19n SCln MSB 01 Count 14 

Scan LSB 01 Count 13 See Scan Description 

Surface 0 Current Track 12 , 
Surface 1 Current Track lA 

~ode Register - 17 See Mode Regisier 
Description· 

Drive Control Output Port 23 See Drive Output 
POl'\, Description 

Drive Control Input Port 22 Sae Drive Input 
Port Description 

Surface 0 Bad Track 1 10 

. Surface 0 !lad Track 2 11 

SI/rfac'! 1 Bad Track.l 18, 

Sul'fac!, 1 Bad Track 2 19 

Mode Regl.ler Write 'aram"'r Format 

0, D. Os D. D, D, D, D. 

'111 1010 1010 I ~ 
. ... 0 DMA MODE. '" , NON OMA 

Bit. 8.7 

Must be one. 

Blta 5·2 

• Ii DOUBLE. = 1 SINGLE ACTUATOR 

(Not used), Must be set to zero. 

-Bit 1 

Double/Single Actuator: Selects single or double actullt~r 
mode. If the single 'actuator mode is selected. the FDC 
assumes that the physical track location of both disks is 
always the same. This mode facilitates control of a drive 
which has' a single actuator mechanism to move two 
hes_' . 

-BIIO 

Data Transfer Mode. This bit selects the data transfer 
mode. If this bit Is a zero. the FDC operates In the DMA 
mode (DMA RequestlACK). If this bit is a one. the FCC 
operates in non-DMA mode. When the FDC is operating in 
DMA mode, 'interrupts are generated at the completion of 
commands. If the non~DMA mode is selected. the FDC 
generates an inter~upt for every data bYte transferred. 

"B1I80 and 1 are Inillalized to zero. 

6-539 



inter 827118271-6 

Non-DMA Transfers In DMA Mode 

If the user desires, he may retain the use of interrupts 
generated upon command completions_ This mode Is 
accomplished by selecting the DMA capability, but 
using the DMA REQ/ACK pins as effective INT aOO CS 
Signals, respectively. 

,Drive Control Input Port 

Reading this port will glv~ the CPU exactly the data that 
the FDC sees at the corresponding pins. Reading this 
port will update the drive not ready status, but will not 
clear the status. (See Read Drive Status Command for 
Bit locations.) 

Drive Control Output Port Format 

I I I I I I I L I 

L= WRITE ENABLE 

SEEK/STEP 

DIRECTION 

LOAD HEAD 

lOW HEAD CURRENT 

WAITE FAULT RESET j 
OPTIONAL OUTPUT 

SELECT 0 

SELECT 1 

Each of these signals correspond to the chip pin of the 
same name. On standard-sized drives with write fault 
detection logic, bit 5 is set to generate the write fault 
reset signal. This signal Is used to clear a write fault 
indication within the drive. On mini-sized drives,Jhis bit 
can be used to turn on or off the drive motor prior to initi­
ating a drive operation. A time delay after turn on may be 
necessary for the drive to come up to speed. The regis­
ter must be read prior to writing the register in order to 
save the states of the remaining bits. When the register 
is subsequently written to modify bit 5,the remaining 
bits must be restored to their previous states. 

IBM DISKETTE GENERAL FORMAT 
INFORMATION ' 
The IBM Flexible Diskette used for data storage ,and 
retrieval is organized into concentric circular path!l,or 
TRACKS. There are 77 tracks on either one or both sides 
(surfaces~ of the diskette. On double-sided diskettes, the 
corresponding top and bottom tracks are referred to as a 
CYLINDER. Each track is further divided into fixed length 
sections or SECTORS. The number of sectors petttack ~ 
26, 15 or 8 - is delermined when a track is form'atted and is 
dependent on the sector length -128, '256 or:512 bytes 
respectively - specified. • 

All tracks on thedislsette are referenced to a physical 
index mark (a small hole in the diskette). Each time the 
hole passes a photodetector cell ione revolution of the 
diskette), an Index pulse is generated to indicate the 
logical beginning of a track. This index pulse is used to 
initiate a track formatting operation. 

Track Format 
Each Diskette Surface is divided into 77 tracks with each 
track divided into fixed length sectors. A sector can hold Ii 
whole record or a part of a record. If the record is shortlN' 
than the sector length, the unused bytes are filled with 
binary zeros. If a record is longer than the sector length, 
the' record is written over as many sectors as its length 
requires. The sector size that provides tite most efficient 
use of diskette space can be chos~m depending upon the 
record length.required. 
Tracks are numbered from 00 (outer-most) to 76 (inner­
most> and are used as follows: 

TRACK 00 reserved as System Label Track 
TRACKS 01 through 74 used for data 
TRACKS 75 and 76 used as alternates. 

Each sector consists of an 10 field (which holds a unique 
address for the sector) and a data field. 

The 10 field is seven bytes long and is writfen for each 
sector when the track is formatted. Each 10 field consists 
of an ID'field Address Mark, a Cylinder Number byte which 
identifies the track number, a Head Number byte which 
specifies the head used (top or bottom) to access the 
sector, a Record Number byte identifying the sector 
number (1 through 26 for 128 byte sectors), an N-byte 
specifying the byte length of the sector and two CRC 
(Cyclic RedundancyGheck) bytes. 

The Gaps separating the index mark'and the 10 and data 
fields are written on a track whenjt is formatted. These 
gaps provide both an interval for switching the drive elec­
tronics frolTlreading or writing and compensation for rota­
tional speed and other diskette-to-diskette and drive-to­
drive manufacturing tolerances to ensure that data written 
on a diskette by one system can be read by another 
(diskette'interchangeability). 

IBM Format Implementation Summary 

Track Format 

The disk has 77 tracks, numbered physically from 00 to 76, 
with track 00 being the outermost track. There are 
logically 75 data tracks and two alternate tracks. Any two 
tracks may be initialized as bad tracks. The data tracks are 
numbered logically in sequence from 00 to 74, skipping 
over bad tracks (alternate tracks replace bad tracks). 
Note: In IBM format track 00 cannot be a bad track. 

Sector Format 

Each track is divided into 26,15, or 8 sectors of 128,256, 
or 512 bytes length respectively. The first sector is 
numbered 01, and, is physically the firstsectot after the 
physical index mark. The logical sequence 'of the 
remaining sectors may be nonsequential physically. The 
location of these is determined at initialization by CPU 
software. " , 
Each sector consists of an 10 field and a data field. Ail 
fields are separated by gaps. The beginning of each field 
is indicated by 6 bytes of (OOlH followed by a one byte 
address mark. 

6-540 

Address Marks 

Address Marks are unique bit patterns one byte in length 
which are used to identify the beginning of 10 and Data 
fields. Address Mark bytes are unique from all other dilfa 

AFN-00223B 



inter 

-~- IDFleId 
A 

~-~ 

I L8st Sector 

8271/8271·6 

--
( Go. II Sector 02 :. I Seator 03 

Dete F,eld 
A 

128. 258, or 512 Bytes 

AM2' Data. hex FB or F. 
Fa -dati field 
F8 - control field 
IThe controlf.1d .n 
beginwlthaOorlnF. 
D"dI-..:edrecotd 
F "" defectiva record 
Clock: hex e71 

<D 
@ 
0 

...... lndtx .. p. 

Past-IndeX pp. 

6 bytft of z .... 

Hex 00 for 128 byte .... Mdol far..,.t 
He. 01 for 256 bY'_ per .. etar fornwt 
Hex 02 for 512 byte J* .etor forlhlt I 

0 Cyclic redlA.ney check 
The check byte ..... 
"n.,.hId dun,. I write 

Hex 01 tlrough 1A 'or 128 byte per .etar for .... diIketU 
Hex Q1 .lwough OF for 256 byte per .«or torNt diskette 
Hex 01 through 08 for 512 byte per .etat format dlsket.e 

operltlon. Ttwy .... u_ 
durn •• ,.d op ... tiDn 
to verify t .. t ct.t8" 
, .. dcarrlctly. 

I 

Hex 00 for Qne-lk:Ied dllleettel end stele 0 of two-sided d~. 
Hlx 01 for .cIt 1 of two·SKIed dISkettes @ Post-IDa-p. 

.... x 00 through 4A (Dectmll 1 through 74. Cylinders 7S Ind 76 
.... Uwd.1 a .. ernate cyllnder .. 1 

AM1:ktentlf.IIDfield 
o.t.: hex FE 
Clock: hex C7 

@ Post-dataIlP • 

Figure 20. Track Format 

bytes in that certain bit cells do not contain a clock bit (all 
other data bytes have clock bits in every bit cell.) There are 
four different types of Address Marks used. Each of these 
is used to identify different types of fields. 

Index Addre •• Mark 

The Index Address Mark is located at the beginning of 
eacl:! track and is a fixed number of bytes in front of the 
first record. " 

10 Address Mark 

The 10 Address Mark byte is located at the beginning of 
each ID field on the diskette. . 

Data Addre •• Mark 

The Data Address Mark b~te is located atthe beginning of 
each non-deleted Data Field on the diskette. 

Deleted Data Addre •• Mark 

The Deleted Data Address Mark byte is located at the 
begin~ing of each deleted Data Field on the diskette. 

Clock Data 
Addr ... Mark Summary Pattern Pattern, 

Index Address Mark 07 FC 
10 Address Mark C7 FE 
Data Address Mark C7 FB 
Deleted Data Address Mark C7 F8 
Bad Track 10 Address Mark C7 FE 

10 Field 

H R N CRC CRC 

C = Cylinder (Track) Address, 00-74 
H = Head Address 
R '" Record (Sector) Address, 01-26 
N = Record (Sector) Length, 00-02 
Note: Sector Length = 128 x 2N bytes 
CRC = 16 Bit CRC Character (See Below) 

I)ata Fleljl 

I MARK I DATA CRe 

Data is 128, 256. or 512 b'vtes long. 

Note: All marks,. data, 10 characters and CRC 
characters are recorded and read most 
significant bit first, I , 

CRC Character. 

CRC' 

The 16-bit CRC character. is .generated using the 
~~~erator polynominal X16 + X12 + X5 + 1, normally 
Initialized to (FF)H. It is generated from all characters
(except the CRC,frrthe 1.0 or data field), including the data
(not the clocks) In the address mark. It Is 'recorded and
read most significant bit first.

&.541

8271/8271-6

Data Format

Data Is written (general case) in the following manner:

MISSING
CLOCK CLOCK CLOCK CLOCK

DATA "0" DATA "1" DATA "1" DATA "1"

T F == FULL 81T TIME == NOMINALLY 4,1jS*
T H == HALF 81T nME = NOMINALLY ~ ..

References

"The IBM Diskette for Standard Data Interchange," IBM
Document GA21-9182-0. "System 32," Chapter 8, IBM
Document GA21-9176-0.

Bad Track Format

The Bad Track Format is the same as the good track
format except that the bad track 10 field is initialized as
follows:

C = H = A ;" N = (FF)H

When formatting, bad track registers should be set to
FFH for the drive during the formatting, thus specifying
no bad tracks. Thus, all tracks are left available for for­
matting.

The track following the bad track(s) should be one
higher in number tha,:! track before the bad track(s).

Upon completion of the format the bad tracks should be
set up using the write special register command. The
8271 will then generate an extra step pulse to cross the
bad track, locating a new track that now happens to be
an extra track out.

Format Track
Format Command

CMO. 0 0 S~L I S~L I ' I o I 0 I o I 'I '
PAR 0 1 TRACK ADDRESS

PAR 0 1 GAP 3 SIZE MINUS 6

PAR 0 , RECORD LENGTH I NO-OF SECTORS/TRACK

PAR. 0 , GAP 5 SIZE MINUS 6

PAR 0 , GAP 1 SIZE MINUS 6

The format command can be used to initialize a disk track
compatible with the IBM 3740 format. A Shugart "IBM
Type" mini-floppy format may also be generated.

The Format command can be used. to initiaUze a disk­
ette, one track at a time. When format command is used,
the program must supply 10 fields for each sector on the
track. During command execution, the supplied 10 fields
(track head sector addresses and the sector length) are
written sequentially on the diskette. The 10 address
marks originate from the 8271 and are written auto­
matically as the first byte of each 10 field. TheCAC char­
acter Is· written in the last two bytes of the 10 field and is
derived from the data written in the first five bytes. Our­
I rig the formatting operation, the data field of each sec­
tor Is filled with data pattern (E5)H' The CAC, derived
from the data pattern is also appended to .the last byte.

1. The parameter 2 (07 - Os> of the Format command specify
record length, the bits are coded the same way as in the
Read Data commands.

2·. The programmable gap sizes (gap 3, gap 5, and gap 1) must
be programmed such that the 6 bytes of zero (sync) are sub­
tracted from the intended gap size i.e., 11 gap 1 Is intended
to be 16 bytes long, programmed length must be 16 - 6 = 10
bytes (of FFH'S),

Mini-Floppy Disk Format

The mini-floppy disk format differs from the standard
disk format in the following ways:

1. Gap 5 and the Index Address mark have been elimi­
nated.
2. There are fewer sectors/tracks.

GAPS
The fOllowing is the gap size and description summary:

Gap 1 Programmable
Gap 2 17 Bytes
Gap 3 Programmable
Gap 4 Variable
Gap 5 Programmable

The last six bytes of gaps 1.2,3,and 5 are (OO)H. all other
bytes in the gaps are (FF)H. The Gap 1,3 and 5 count
specified by the user are the numberof bytes of (FF)H. Gap
4 is written until the leading edge of the index pul"e. If a
Gap 5 size ·of zero is specified, the Index Mark is not
written.

Gap 1: This gap separates the index ad-
Nbytes FF's dress mark of the index pulse from
6 bytes O's for sync the first 10 mark. It is used to pro-

tect the first 10 field from a write on
the last physical sector of the cur­
rent track.

Gap 2: This gap separates the 10 field from
11 bytes FF's the data mark and field such that
6 bytes O's fOr sync during a write only the data field

will be changed even if the write
gate turns on early, due to drive
speed changes.

Gap 3: This gap separates a data area from
N bytes FF's the next 10 field. It is used so that
6 bytes O's for sync during drive speed changes the

Gap 4:
FF's only

next 10 mark will not be overwritten,
thus causing loss of data ..

This gap fills out the rest of the disk
and is used for slack during format­
ting. During drive speed variations
this gap will shrink or grow if the
disk is re-formatted.

Gap 5: This gap separates the last sector
N bytes FF's from the Index Address mark and
6 bytes O's for sync is used to assure that the index ad-

dress mark is not destroyed by
writing on the last physical data
sector on the track.

The number of FF bytes is programmable for gaps 1, 3
and 5. .

6-542 AFN.00223B

inter 8271/8271·6

INDEX L

~ INDEX ADDRESS MARK
GAPS

GAP 1: POST INDEX GAP

I'

GAP 2: POST 10 FIELD GAP

I'

GAP 3: POST DATA FIELD GAP

·1'
I

GAP 4: FINAL GAP

I'

GAP 5: INITIAL GAP

I'

L

"I
SYNC ,I

"I
SYNC I

L. WRITE GATE TURN.()N FOR UPDATE OF NEXT
DATA FIELD.

,·1
I SYNC I

NOTE THE WRITE GAte TURN·ON SHOULD BE TIMED
TO WITHIN ± "" 1 BIT BV COUNTING THE BYTES
IN THE GAP UNTIL 1 BYTE BEFORE THE
TURN..QN

WRITE GATE rURN-OfF fROM UPDATE OF PREVIOUS: DATA FIELD

NOTE IBM FORMAT REOUIRES AT LEAST 281NARV "1" BiTS AS A DATA FIELD POSTAMBLE.

"I

"I
I SYNC I

Figure 21. Track Format

6-543 AfN-002238

intJ

nPHYSICAL
INDEX

____ -' MAR'

'1'~"I~~~L DATA (GAP 4)
Fl.LD

.:::X I INDEX , I ,: ISECTO:I P:eJ.~D' I
GAP ADOliesa GAP " ' GAP

CoAl' 5) MARk (GAP 1) 10 FIELD, (GA, 2)

I .~
f HEXF" I (::~ I I HEX FF I IH:;:) I

40 IYTES & BYTES 2e BYTES 8 BYTES

8271/8271·6

SECTOR ~
DATA FIELD

I ~,,:::~, , HEX" I, ,:::~ ,
(TYPICAL) (TYPICA~ , ___ --' ~ 'BYTES l1BYT)5S .BYTES

IA!~tsl 128" 2" US£FI OTA BYTES I B~,1 B~~2) I Af.'i~~S81 A~:i~ I A::::O JAs:g:~~L ~:~~= B$.r~, L B~~2 J

NUMBER GAP 1
OF SECTORS

'ONES

26 26
15 26
8 26
4 26
2 26
1 26

'Program Specified

~PHYSICAL
INDEX
MARK

SYNC

6
6
6
6
6
6

,

BYTE 1 BYTE 2 BYTE' BYTE BYTE' BYTEe BYTE7

NUMBER OF BYTES

GAP 2 GAP 3 GAP 5
ID FIELD DATA FIELD GAP 4

ONES SYNC 'ONES SYNC 'ONES SYNC

7 11 6 131 27 6 275 40 6
7 11 6 259 48 6 129 40 6'
7 11 6 515 90 6 148 40 6
7 11 6 1027 224 6 236 40 6
7 11 6 2051 , 255 6 719 40 6
7 11 6 4099 0 0 1007 40 6

5206 Bytes Per Track

Figure 22. Standard Diskette Track Format

I POS' I : I POST "1 DATA SECTOR FIELD
FIELD 2 GAP
(Q~r3) 10 FIELD (OAP 2)

SECTOR 2
OATA FIELD

poe, 1 DATA SECTOR
FIELD 3
GAP 10 FIELD

, BYTES

I "ff I 121lC2'!U8ERDATAIYTES I B~' I 8~~2 I

POST'" 111''''':"1 FIELD SECTOR
GAP DATA J

(GAP 2) FIELD

• BYTES

BYTE 1 IYTI 2 BYTE 3 BYTE 4 BYTE IS BYTE II BYrE7

NUMBER OF BYTES

NUMBER GAP 1 GAP 2 GAP 3
OF SECTORS ID FIELD DATA FIELD GAP 4

'ONES SYNC ONES SYNC 'ONES SYNC

18 16 6 7 11 6 131 11 6 24
10 16 6 7 11 6 259 21 6 30
5 16 6 7 11 6 515 74 6 86
2 16 6 7 11 6 1027 255 6 740
1 16 6 7 11 6 2051 q 0 1028

'Program Specified 3125 Bytes Per Tra~k

Figure 23. Mini-Diskette Track Format

6-544 AFN-002238

inter 8271/8271·8

TCSTOP::';{
DMA ENABLE BITS '--__ ...,. ___

} :~O LOAD AND .
'--__ --,. ___ -' DMA ENABLE BITS

Figure 24. U •• r DMA Channel Initialization Flowchart

R.ad ID Command

A 1 A • o • o 4 o 1

CMD: ° ° ~l I S~L I 0 I 1 I 1 I ° I 1 I 1

PAR: ° 1 TRACK ADDRESS

PAR: ° 1 °1°1°1°1°1°1°10
PAR: ° 1 NUMBER OF 10 FIELOS

The Read 10 command transfers the specified number of
10 fields into memory (beginning with the first 10 field after
I ndex). The CRC character is checked but not transferred.

These fields are entered into memory In the order In
which they are physically located on the disk, with the
first field being the one starting at the Index pulse.

Data Processing Cqmmands

All the routine ReadlWrlte commands examine specific
drive status lines before beginning execution, perform
an implicit seek to the track address anClload the drive's
read/write head. Regardless of the type of command
(I.e., read, write or verify), the 8271 first reads the 10
fleld(s) to verify that the correct track has been located
(see sector not found completion code) and also to
locate the addressed sector. When a trarisfer Is com·
plete (or cannot be completed), the 8271 sets the Inter·
rupt request bit in the status register and provides an In·
dication of the outcome of the operation In the result
register.

If a CRC error is detected during a multisector transfer, -
processing is terminated with the sector in error. The
address of the failing sector number can be determined by
examining the Scan Sector Number register using the

. Read Special Register command.

6-545

Full power of the multisector read/write commands can be
realized by doing OMA transfer .using Intel@ 8257 DMA
Controller. For example. in a 128 byte per sector
multisector write command. the .entire data block
(containing 128 bytes times the number of sectors) can be
located in a disk memory buffer. Upon completion of the
command phase. the 8271 begins execution by accessing
the desired track. verifying the 10 field. and locating the
data field of the first record to be written. The 8271 then
OM A-accesses the first sector and starts counting and
writing one byte at a time until all 128 bytes are Written. It
then locates the data field of the next sector and repeats
the procedure until all the specified sectors have beE!n
written. Upon completion of the execution phase the 8271
enters into the result phase and interrupts the CPU for
availability of status and completion results. Note that all
read/write commands. single or multisector are executed
without CPU intervention.

Note, execution of multi·sector operations are faster if
the sectors are not interleave&

128 Byte Single Record Format

0 0
PAR: 0 1

PAR: 0 1

Commands

READ DATA

S~l j S~l I COMMAND OPCODE

TRACK ADDR 0·255
SECTOR 0-255

READ DATA AND DELETED DATA
WRITE DATA
WRITE DELETED DATA
VERIFY DATA AND DELETED DATA

-

Opcode

12
16
OA
OE
1E

AFN-002238

inter 827t/82,71-8

Variable length/Multi-Record Format Scan Commands

CMO: 0 0 si L I S~L I COMMAND OPCODE CMD 0 0 S~l f S~ll 0.1 o J 0 I~DAT~I 0 I SDELD
0

PAR- 0 1 TRACK ADOR 0·255 PAR. 0 1 TRACK ADDR 0 255

PAR 0 1 SECTOR 0·255 PAR 0 1 SECTOR 0255

PAR. 0 1 LENGTH I NO. OF SEFTORS PAR. 0 1 LENGTH, I NO OF SECTORS

0 1 'SC'AN TYPE I STEP SIZE

07-05 of Parameter 2 determine the length of the disk
PAR

record. " PAR: 0 'I FIELD lE.NOiTH (KEY)

000
00 1
010
o 1 1
100
1 0 1
1 1 0
1 1 1

128 Bytes
256 Bytes
512 Bytes
1024 Bytes
2048 Bytes
4096 Bytes
8192 Bytes
16,384 Bytes

Commands

READ DATA
READ DATA AND DELETED DATA
WRITE DATA
WRITE DELETED DATA
VERiFY DATA AND DELEl'ED DATA
SCAN DATA
SCAN DATA AND DELETED DATA

Read Commands

Read Data, Read Data and Deleted Data.

Function'

Opcode

13
17
OB
OF
1F
00
04

'r..he reap command transfers data from a specified diSK
record or grou'p 'Of 'records to memory. The operation of
this command is outlined in execution phase table.

, '

Write Commands

'Write Data, Write Deleted Data.

Function

The write command: transfers data from memory to a
specified disk record or group of. records.

Verify Command

Verify Data and Deleted Data.

Function

The verify command is identical to the read data and
deleted data command except that the data is, not
transferred to memory. This command is used to check
that a record or a group of records has been written
correctly by verifying the CRC character.

Command O2 = 0 Scan Data
O2 = 1 Scan Data and Deleted Data

Scan Commands, Scan Data and Scan Data and Deleted
Data, are used to search a specific data pattern or "key"
from memory. The 8271 FDC operation during a scan is
unique in that data is read from memory and from the
diskette simultaneously,

During tnescanope,ration, the key is compared
repetitively (using the 8257 DMA Controller in auto load
mode) with the data read from the diskette (e.g., an eight
byte key would be compared with the fi~stl!illht.bytlls(1-8)
read from the diskette, the second eight bytes (9-16): the
third eigh~ bytes, (17-24), etc.>. The scan operation is
concluded when the key is located or when the specified
number of sectors have been searched ~ithout locating
the key. When concluded, the 8271FDC requests an
interrupt. The Program must then read the re$ult register
to determine if the scan was successful (if the key was
locatedl. If successful, several of the FDC's special
r;egisters can be examined (read special registers
comniand) to determine more specific information
relating to the scan (i.e., the sector hUmber il'l which the
key was'located, ,and the nlimber of bytes within the sector
that were not compared when the key was located).

The 8271 does not do a sliding scan. ,it does a fixj;ld
block Iinearsearch.'TI1is means the key in memory is
compared to an equal length block in a sector; when
these blocks meet the scan condilio(ls the scan will
stop. Otherwise. the scan continues, until ail the sectors
specified have been searched.

The fOllowing' factots' regarding key: ierygth must be
consider",d when establishing'a key in memory.

1. When searching m·ul.tiple sectors, the limgth of the key
must be evenly divisible .into tl'iesector length to
prevent the key from be'ingsplit at subsequent sector
boundaries. Since the character FFH is not compared,
the key in memory c~n be paddedto the re,qui'red length
u~ing thischaracte(For example, if the actual' pattern
compared on lhe'dis'ketle is twelve characters in length,
the field ,'ength should be sixteen and four bytes ofFFH

'6-546 AFN-002238

inter 827118271·8

would be appended to the key. Consequently, the last
block of sixteen bytes compared within the first sec·
tor would end at the sector boundary and the first
byte of the next sector would be compared with the
first byte of the key. Splitting data over sector bound­
arys will not work properly since the FOC expects the
start of key at each sector bounda,ry.

2. Since the first byte of the key is compared with the first
byte of the sector, w.hen the pattern does not begin with
the first byte of the sector, the key must be offset using
the character FF16. For example, if the first byte of a
nine byte pattern begins on the fifth byte of the sector,
four bytes of FF16 are prefixed to the key (and three
bytes of FF16 are appended to the key to meet the
length requirement) so that the first actual comparison
b!"gins on the fifth byte.

The Scan Commands require five parameters:

Parameter 0, Track Addrel~

specifl~s the tra.ck number containing the sectors to be
scanned. Legal values range from OOH to 4CH (0 to 76) for
a standard diskette and from OOH to 22H (0 to 34) for a
mini-sized diskette.

Parameter 1, Sector Addre.s

Specifies the first' sector' to be scanned. The number of
sectors scanned is specified in parameter 2, and the order
in which sectors are scanned is specified in parameter 3,

Parameter 2, Sector Length/Number of Sector.

The sector length field (bits 7-5) specifies the number of
data bytes allocated to each sector (see parameter 2,
routine read and write commands for field interpretation!.
The number of sectors field (bits 4-0) specifies the number
of sectors to be scanned. The number specified ranges
from one sector to the physical number of sectors on the
track.

Parameter 3

01-GEQ

Indicate scan type

Scan for each character within the field
length (key) equal to the corresponding char­
acter within the disk sector. The scan stops
after the first equal condition Is met.

Scan for each character within the disk sec­
tor greater than or equal to the c<?rrespond­
ing character within the field length (key).
The scan stops after the first greater than Or
equal condition Is met.

10-LEQ Scan for each character within the disk sec­
tor less than or equal to the corresponding
character within the field length (key). The
scan stops after the first less than or equal
condition is met.

Step Size: The Step Size field specifies the
offeet to the next sector in, a multisector
scan. In this case, the next sector address is
generated by adding the Step Size to the
current sector address.

Parameter 4, Field Length

Specifies the number of bytes to be compared (length of
key), While the range of legal values is from 1 to 255, the
field length specified should I:)e evenly divisible into the
s,ector length to prevent the key from being split at sector
boundaries, if the multisector scan commands are used.

Scan Command Relults

More detailed information about the completion of Scan
Commands may be obtained by executing Read Special
Register commands,

Read Special Register

Parameter
(Hex)

Results

06

14

Tlie sector number of the sector in which the
specified scan data pattern was located,

MSB Count - The number of 128 byte blocks
remaining to be compared in the current sector
when the scan data pattern' was located, This
register is decremented with each 128 byte block

, read,

13 LSB Count - The number of bytes remaini'ng to
be compared in the current sector when the scan
data pattern is located. This register is initialized
to 128 and is decremented with each byte
compared.

Upon a scan met condition, the equation below can be
used to determine the last byte in the located pattern.

Pointer; sector length - ((Register 14H)-128+(Register 13H))

6-547 AFN-00223B

8271/82711'61

8~71 Scan .Comm",.d Example

Assume there are only 2 records on track 0 with the
following data:

RecOrd 01: 01 0203 0405 06 07 08 000 00
Record 02: 01 02 AA 55 00 00 00 00 00

Fleldl'l Starting # of Completion Special Reglstersl'l

Command Length Sector # Sectors Keyl21 Codel31 R06 R14 R13 Comment
"

• SCAN EO 2 1 1 01,02 SME 01 0 1270 Met in fi rst field

SCAN EO 2 1 1 02,03 SNM X X X Not met
SCAN EO 2 1 1 FFI51,05 SNM X X X Not met with don't care

• SCAN EO 2 1 1 FF151 ,06 SME 01 0 1230 Met with don't care
• SCAN EO 2 1 2 AA,55 SME 02 0 1250, Met in Record 02
• SCAN EO 2 2 1 01,02 SME 02 0 1270 Starting sector'" 1
• SCAN EO 4 1 1 05,06,07,OS SME 01 0 1210 Field, Key length = 4

• SCAN GEO 4 1 1 05,06,07,OS SME 01 'Q 1210 GEO-SME
• SCAN GEO 4 1 1 05,04,07,08 SMNE 01 0 1210 GEO-SMNE
• SCAN GEO 4 1 2 00,03,AA,44 161 SNM X X X GEO':SNM

• SCAN LEO 4 1 1 01,03,FF,04 SMNE 01 0 1250 LEO"SMNE
• SCAN lEO 4 1 1 01,02,FF,04 SM.E 01 0 1250 LEO-SME

NOTES:

1. Field Length - Each record is partitioned into a number of fields equal to the record size divided by the fi~ld length.
Note that the record sIze should be evenly divisable by the field length to insure proper operation of multi record
scan. Also. maximum field length = 256 bytes.

2. Key - The key IS a SlrlO9 of bytes located in the user system memory. The key length should equal the field length.
By programming the 8257 DMA Controller into the auto load mode, the key will be recursively read in by the chip
lonce per field!.

3. Completion Code - Shows how. Scan command was met or not met.
SNM - SCAN Not "!let - 0 0 lalso Good Complete)
SME - SCAN Met Equal - 0 1
SMNE - SCAN Met Not Equal - 1 0

4. SpecIal RegIsters
~06 - This regIster contains the record number where the scan was met.
R14 - This· register contains the MSB count and is decremented every 128 characters.

R14 = 21 -1
Lenglh (R) (Inillalize al

(07-05 of PAR 2) Record Size Beginning of Record)

000 128 Bytes 0
·001 256 Bytes 1
010 512 Bytes 3
011 1024 Bytes 7
• • • • • • • • •

R13 - This register contains a modulo 128 LSB count which is Initialized to 128 at beginning of each record. This
count IS decremented after each character IS compared except for the last character in a pattern match
Sl\uatlon.

5. The OFFH character 10 the key IS treated as a don't care character position.

6. The Scan comparison is done on a byte by byte basis. That is, byte 1 of each field is compared to byte 1 of the key,
byte 2 of each field is compared to byte 2 of the k~y, etc.

6-54S AFN-00223B

intJ 827118271·6

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias. : , .o·c to 70·C1

Storage Temperature - 65·C to + 150·C
Voltage on Any Pin with

Respect to Ground - 0.5V to + 7V
Power Dissipation 1 Watt

D.C. CHARACTERISTICS (Vcc= +5.0V :1:5%

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

8721: TA=O·C to 70·C; 827HI: T A=O·C to 5O·C)

Symbol Parametar Min. Max. Unit Tast Conditions

Vil Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 (Vcc+ 0.5) V

VOlD Output Low Voltage (Data Bus) 0.45 V IOl=2.0 mA

VOll Output Low Voltage (Interface Pins) 0.5 V 10l= 1.6 mA

VOH Output High Voltage 2.4 V 10H= -220,.A

III Input Load Current :1:10 ,.A VIN=VCC to OV

loz Off·State 'Output Current ± 10 ,.A VOUT=VCC to 0.45V

'Icc V cc Supply Current 180 rnA

CAPACITANCE (TA = 25°C; Vcc = GND = OV)

Symbol Parameter Min. Typ. Max. Unit Test Conditions

CIN Input Capacitance 10 pF te = 1 MHz

CliO 110 Capacitance 20 pF Unmeasured Pins Returned to GND

NOTE: 1. Ambient temperature under bias for 8271-6 Is o·c to so·c.

A.C. CHARACTERISTICS (Vcc = +5.0V ±5%)
(8271: TA= COC to 70°C; 8271-6: TA= COC to 5COC)

READ CYCLE

Symbol Parameter Min. Max. Unit Test Conditions

tAC Select Setup to RD 0 ns Note 2

tCA Select Hold from RD 0 ns Note 2

tRR RD Pulse Width 250 ns

tAD Data Delay from Address 250 ns Note 2

tRD Data Delay from RD 150 ' ns Cl = 150 pF, Note 2

tOF Output Float Delay 20 100 ns Cl = 20 pF for Minimum;
150 pF for Maximum

tDC DACK Setup to RD 25 ns

tCD DACK Hold from RD , 25 ns

tKD Data Delay from DACK 250 ns

6-549 . AFN.00223B

8271/8271~6

A.C. CHARACTE.RISTICS (Continued)

WRITE CYCLE

Symbol Parameter Min. Max. Unit Test Conditions

tAc Select'Setup to WR 0 ns

tCA Select Hold from WR . 0 ns

tww WR Pulse Width 250 ns

tDW Data Setu'p to WR 150 ns

tWD Data Hold from WR 0 ns

tDC DACK Setup to WR 25 ns-

tCD DACK Hold from WR 25 ns

DMA

Parameter Test Conditions

Request Hold from WR or RD (for Non·Burst Mode)

OTHER TIMINGS

8271/8271-8
Symbol Parameter

Min. Max.
unit Te8t Conditions

t ASTW Reset Pulse Width 10 tCY

tr Input Signal Rise Time 20 ns

t f Input Signal Fall Time 20 ns

t ASTS Reset to First IOWR 2 tCY

tCY Clock Period 250 Note 3

tCL Clock Low Period 110 ns

tCH Clock High Period 125 ns

tDS Data Window Setup to Unseparated Clock and Data 50 ns

tDH Data Window Hold from Unseparated Clock and Data 0 ns

NOTES:
1. All tlmmg measurements are made at the reference voltages unless otherwise specified: Input "'" at 2.0V, "0" at O.BV

Output "1" at 20V. "0" at O.BV .

2. tAD. tAD. tAco and tCA are not concurrent specs.
3 Standard Floppy: tCy:250 ns ;;0.4% Mini·Floppy: tCY = 500 ns ;;0.4%

A.C. TESTING INPUT, OUTPUT WAVI:FORM

"~" "x= . > TEST POINTS < .'
08 0.8

045

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOA A LOGIC 1 AND 0 45V FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FDA A LOGIC 1
AND 0 8V FDA A lOGIC 0

6-550

A.C. TESTING LOAD CIRCUIT

DEVICE '1c,

UNDER
TEST

C, INCLUDES JIG CAPACITANCE

!

. AFN-00223B

intJ 8271/8271·8 .

WAVEFORMS

READ

DACK } -]{ - -
-IDC- I---ICD-I

} X
IRR • f"-tcA-1

~ 1 116

-IAC- IRD

~
I--IDF-}-____ ..:. __ --- ------------

lAD
IKD

DATA.US

WRITE

DACK

IDC- I----tcD

~ J(- I---IAC-, tww f"-ICA-l

~

DATA BUS)(](

IDW IWD----=---..J

DMA

r tcc=4
\~----+------------------------------

~OR~ ----------------~~L ____________________________________ _

DRQ _~I

CHIP CLOCK

AFN.()()223B

inter
WAVEFORMS (Continued)

<

READ DATA

·tCY -= 250 n8 • "'tCY 1m 500 n8

F s IS ICY ",SICY
H = BICy",4tcy

'STANDARD FLEXIBLE DISK DRIVE TIMING
"MINI·FLOPPY TIMING

SINGLE-SHOT DATA SI;PARATOR

UNSEPARATED
IilTA

, "
" ''',

8271/8271-6

6-552

WRITE DATA

PULSE WIDTH PW = ICY'" 30 n.
H (HALF BIT CELL) = S ICY
F (FULL BIT CELL) • IS ICY

-tCY =- 250 ns :t:O.4%· .. tey = 500 na ::to.4%
250 ns :t 30 ns 500"1 :t: 30 ns
2.0JolI:t: 8ns 4.o,,1::I:18nl
4.0". :t: 16 ftl 8.0". :t 32 na

I

PLO DATA SEPARATOR

·DATA WINDOW MAY BE 180- OUT o~ PHASE
IN PLO DATA SEPARATION MODE.

t:: ,
"

inter

•
•
•
•

8272A
SINGLE/DOUBLE DENSITY

FLOPPY DISK CONTROLLER

IBM, Compatible In Both Single and • Data Transfers In DMA or Non·DMA
Double Density Recording Formats Mode

Programmable Data Record Lengths: • Parallel Seek Operations on Up to
128,256,512, or 1024 Bytes/Sector Four Drives •

Multl·Sector and Multi· Track Transfer • Compatible with all Intel and Most
Capability Other Mlcrop~essors

Drives Up to 4 Floppy or Mlnl·Floppy • Single· Phase 8 MHz Clock
Disks • Single + 5 Volt Power Supply (± 10%)

The 8272A'is an LSI Floppy Olsk Controller (FDC) Chip, which contains the circiJitry and control functions for inter­
facing a processor to 4 Floppy Disk Drives. It is capable of supporting either IBM 3740 single density format (FM), or
IBM System 34 Double Density format (MFM) including double sided recording. The 8272A provides control signals
which simplify the deSign of an external phase locked loop and write precompensation circuitry. The FDC simplifies
and handles most of the burdens associated with implementing a Floppy Disk Drive Interface. The 8272A is a pin­
compatible upgrade to the 8272.

DBo.r

TERMINAL
COUNT

R~DY

WRITE PROTECTITWO SIDE
INDEX
FAULTITRACK 0

DRIVE SELECT 0
DRIVE SELECT 1
MFM MODE

IIWfSEEK
HEAD LOAD

elK -... HEAD SELECT
Vee -... LOW CURRENT/OrRECTfON

GND -. FAUl-T RESETISTEP

FLT/TRKO

!'So
PS,

WR DATA

DSo
DS,

RD DATA

Figure 1. 8272A Internal Block Diagram Figure 2. Pin Configuration

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodted in an Intel product. No other circuit patent licenses are Implied.
© Intel Corporation, 1982 ORDER NUMBER210606-001

6-553

inter 8272A

Table 1. Pin Description

Pin Connec~
Symbol No. Type lion To Heme and FlinCllon

RESET 1 I p,P' '. "e .. I:, Places FDC in
'Idle state. Resets' oul·
put lines to FDD to ;'0"
(lOW). Does not clear the

"last specify command.

RD 2 I['J p,P Read: Control signal
for transfer of data from

, FDC to Data Bus, when
"Oi, (low). ' ,

WR 3 1[1] p,P Wrlle;, Control, signal
for transfer of data to

• FD,C via Data Bus,when
"0" (low), .

CS 4 I p,P Chip Selecl: IC selected
.' whe~O" (lo!1,allow-

109 RD and WR to be
enabled,

Ao 5 ,111["p , 0,181 Statlls Reglsler
$eJecl: Selects Data
Reg (Ao = 1) or Status
Reg (Ao = 0) contents
to:be sent to Data Bus.

DBo-DB7 6-13 110[1] p,P Data Bus: Bidirectional
8-Bit Data Bus.

ORO 14 0 DMA Data DMA Requeat:
DMA Request is being
made by FDC when
ORO "1,"13J

DACK 15 I DMA DMA Acknowledge:
DMA cycle is active
when "0" (low) and
Controller is perform-
ing DMA transfer.

TC 16 I DMA Terminal Counl: Indi-
cates the termination of
a DMA transfer when
"1" (high)[2J.

lOX 17 I FDD Index: Indicates the
beginning of a disk
track,

INT 18 0 p,P Interrupt: Interrupt Re..
quest Generated by
FDC.

ClK 19 I Clock: Single Ph,ase 8
MHz (4 MHz fOf mini
floppies) Squarewave
Clock,

GND 20 Ground: D.C. Power
Return.

Note 1. Disabled when CS= 1 J
Note 2 TC m!-.", ,be actJva~~ to t~rmtna~e the: Exec lion Phase of any command
Note'3 ORO is also an Input for certain test mbdes It should have a 5kU pull-up

resIstor to prevent activation

, ",

6-554

Pin Connec-
No. 'Typ~ tlon To Name and Function iiSym~ol

40 D.C. Power: +5V

RW/SEEK 39 0 FDD Read Write / SEEK:
When "1" (high) Seek
mode selected' and
when" "0" (low) Read/
Write mode selected.

38 o FDDLow~urre"t/DjI'l!C\llon:
lowers Write current

lCT/QIR

FR/STP 37 o

HDl 36 o

ROY 35 I

WPiTS 34. I

Fl TiTRKO 33 I

PS"PSo 31,32 '0

WR DATA 30 0

DS"DSo 28,29 0

HDSEl 27 0

. . on inner" tracks In
Read/Write mode, de­
terminesdirection head
will step ,in Seek ~ode.

FDD Fault Reaet/Step: Re­
sets fault FF in FDD in
Read/Write mode, pro­
vides step pulses to
move head to another
cyliride'r, it:> Seek mode.

,FDD '. Head Load: Command
which causes read/write
head in FDD to contact

, diskette,

FDD

FDD

FDD

FDD

FOD

FDD

Ready: Indicates FDD
is ready to send or re­
ceive data. Must be tied
high (gated by the index
pulse) for mini floppies
which do not normally
have a Ready line.

Write. Prolect / Two­
Side: Senses Write Pro­
tect status in Read/
Write mode, and'Two
Side Media in Seek
mode,

FaultiTrack 0: Senses
FDD fault condition in
Read/Write mode and
Track 0 condition in
Seek mode.

PrecompanBatlon (pre­
ahltt): Write precom­
pensation stetus during
MFM m<lde: Dstermines
eerly.' late, ·and normal
times.

Write Data: Serial clock
and data bits to FDD,

Drive Select: Selects
FDD unit.

FDD Head Select: Head 1
Selected when "1"
(high) Head 0 selected
when "0" (low).

AFN·O'259C

inter 8272A

Table,1. Pin De.crlptlon (Continued)

Pin Corin.c. "

Symbol. ' ,No. Type tron To, ,,,!'lama and Function

MFM 28 0 PLL MFM"':'MFM"mode
when "1," FM mode
when "0."

WE 25 0 FDD W Inlllle: Enables
write date I'nto FDD. ,

vco 24 0 PLL VCO Sync: InhlbltiVCO
In PLL when "0" (low),
enables VCO when "1."

RDDATA 23 I FOD Read Data: Read data

"
from FDD, containing
,clock ~d data bite.

"

'. , '

CPU I ..

.. ~.'
SYSTEM BUS

~
,

, , !7 ~ 'DATA' 'f ,
",

WIN-'·Er DRQ
RD DATA)

WRDATA

DRNE ~ BU7 DiCK 1..1 DMA FDC INTERFACE CDNTROLL_R ' INPUT CONTROL

'\
1'4 t.-

, TC
OUTPUT CONTRO

r
, ,T~"o~:::L '--:-

Figure 3. 82~ S,.tem :Block Diagram
, 1 • ,

DESCRIPTION,
. I,' .,:l : '"

Hand·shaklng slgn.ls are prOVided In the 8272A which
make OMA operation edy to If!C6rporate with the aid of
an external OMA Controller chip, such as the 8237 A.'The
FOC will 'operate In either' DMA or Non-OMA mode: hi
the Non·OMA mode, the FOC, generat~s Interrupts to'the
processor for evSty'transfer of It data byfebetween the
CPU and the 8272A. In the DMAt'nOde, theproceisllOr
need only load a command'into the'FOe and all data
transfers occur under control of 'the 8272A and DMA

, controller.'" " \,

Ther~l,ere 15 sep~rate QOmmands,wh1ph, the~272A ~Iil
execute. Each of t~es,e commil.l1ds require multiple 8-blt
bytes to fully specify the openitlon which the processor
wishes the FOC to perform. The following commands
are available. . , , ' ." '"

AeadOata Write Data
Read 10 FOrmat a Trsck '
Read Deleted Data ' Write Oelet8dO~ta

, Read a Track Seek'
Scaif Eqlial Recallbrate (Restore 'to

Pin
SyillbOl No. Type

~ 22 I
, ,

WRCLK 21 I.

Scsn High or Equal
Scan Low or Equal
Specify

.Connec·
N.~e and Function 60nTO

PLL Date Window: Gener~
atad by PLL; and used

','

to sample data from
FDD.

W Clock: Write data
rete to' FDD, FM = 500,

, kHz, MFM = 1 MHz, with
a pulse width of 250 A8
for both FM and MFM.

Must be enablad for all
operations, both Read
and Write.

, .'

Track 0)
Sense Interrupt Status
Sense Drive Status , '

For more Information see ,the Intel Application Notes
AP·116 and Ap·121.

FEATURES
Address mark detection circuitry Is internal to the FOC
which simplifies the phase locked loop and read elec·
tronlcs. The track stepping rate; head load time, and
head unload time may be programmed by the user. The
8272A offers many additional features such as multiple
sector transfers In both: read' and write mOdes with' a
single command, and full' I~M compatibility fn both
single (FM) and double density (MFM) modes.

8272A ENHANCEMENTS
'. \, I

On the 8272A, after detecting the Index Pulse, the
VCO Sync output stays low for a shorter period of
time. See Figure 4A.,
'On the 8272 there can be a problem reading data
. when ()ap 4A Is 00 and there Is no lAM. This occurs
on some older floppy formats. The 8272A cures this
problem by adjusting the'VCO Sync tlmlng\so that It
Is not low during the data field. See Figure 4B.

" n

..

Track q·p4AIIAM I G.p1 I ,ID I G.p2 I D •• ...
,lnd ... P ~
, 8272 veo Sync--:-" ' , ,
I 8272A vco Sync:'

. I

'580 ,.. In FM millie; 527 ,.. 'In MFM mode

A. Margin :on 'the h,dex Pulse

Track ~~P4A(OO) I ID I Gap2 I Da.

Index Pull. -'---T.'"""'

8272 I ,.-.
VCOSync , ,

8272A L-..-J , VCO~nc

B. Ability to Read Data When Gap 4A Contains 00

Figura 4. 8272A ,Enhancements over the 8272

6-555 AFN·D1259C

\

inter 8~ , ;:

8272A REGISTERS - CPU INTERFACE
The 8272A colitalns two registers Which may be ac­
cessed by the ,main, syst,mprocesspr; a Status R,glster
and !l'Data'Register. THe8-blt Main Statu's Register con-'
1alns the status Information of the. FDC, and may be
,accessed at any time. The 8-blt Data Regls~er (actua"y
,conslst~ of several, registers In a stack with only one
register presented to the data bus at a time), stores
data, commands, parameters, and FDD status Informa­
tion. Data bytes ar&read out of, or written Into, the Data
Register in'order to program or obtain the results after'
execution of a command. The Status Register may only
be read and Is used to facilitate the transfer of data
between the processor and 8272A.

'The relationship between the StatuS/Data registers and
the signals J!il5, WJ!i, and Ao Is shOWn In Table 2.

,

:

Table 2. Ao. 1m. WJI decoding for the selection
" Of StatutiData register functions. '

Ao RD VIR ' FUNCTION

0 0 1 Read Main Status Realster

0 1 0 Illegal (see note)

0 0 0 Illegal (see note)

1 0 0 Illegal (see note) ,

1 .. 0 1 'Aead from Data Register

1 1 0 \l\(rlte Into Data Register

Note: Dellgn m~t guaran~ that the 8272A
,II ~ subJected to !Ilegal Inputs.

The Main Status Reg'lster bl(s are defined in 'Table 3.

Table 3. Main Status Register bIt description.
lIT NUMBER NAME SYMBOL DElCRiPTION

Do FOOOBuey oO~ FOO number 0 Is In the Seek
mode.

01 FOOl Buay °lB FDO number 1 lain tho Seek
modo.

02 FDD2Buay ~B Fbi) number 2la,ln,the Seek
modo.

~ FDD3BulY OsB, • Fbi) numbat' 31a In the Seek
modo. '

04 FOC'Buay CB A read or wrh. oommond la In -.
Os No"Dl>lAmod. NDM Th~ FOC 'la' In the non-DMA'

mode. This bit Ie .. t only dur ..
log the _Ion phoN In
non·OMA mode, TranSItion to
"0" ltat. Indicates execution
phIH haa'endad,

De Data InputlOutp'ut '010 IndlC81 .. direction of d.t~ ~

::~':r,"Ii~~~~t:= '
tranlter I. from O.ta Regllter

, .. to the Procaaaor. If 010 = ''0'',
~h.n tran.fer 18 from the Proc>

. ~~rt~ Data Reg_,

Dr Request for Master ROM indlcat •• Data ReOlster la
noody to HOd or 1808,," data
to or from the ~lOr. ~Oti
bits 010 and RQM should ,be
uHd to petIonm the hana.

;,,' , 'aheklng 'funoflona Of ':Mdy"
" . and!'dlrectlOn:' to the proe>

" "
0I80f,

The 010 and ROM bits in the Status Register Indicate
when Data. il ready and in which direction data will be
:transferred on the Data Elu ••

Note: Therela a 1a,.8 or 24,A8 ROM flag delay when
using an 8 or 4, MHt clock respectively,

OUt Of 'DC 'AND INTO PIIIOCaIOIt

\ "T. -= OUT OF IIROCI8IOII AND INTO PDC I L
- I I

.~~ I FfHfl
• I .1.1 1.1.I.ttTIL

N01'II: iii -DAT •,...MADYTOUWIUYTDIINTOM'PIIOCDIOIl
IJ ..: MfA NOT IllUDY '1'0 II 'MInIM lITO IV PRacIDOIl
II - OAtA UflIIfIII NADY FOR...-r DATA IY1I TO II " ... --III - DATA NOT READY PO" NIXf DATA.m TO. READ IY -. ,

Figure 5. Status Register nmlng

The 8272A is capable of executing 15 different com­
mands. Each command Is' initiated by a multi·byte
transfer from the processor, and the result after execu·
tion of the command may also be a multl-byte:transfer
, back to the processor. Because of this multi·byte Inter··
change of Information betwe~n the 8272A and the proc­
essor, it is convenient to consider each command as
consisting of three phases: .

Command Phase: The FDC receives all information
required to perform a particular
ope~tlon from the prOcessor. '

Execution Phese: The FDC performs the operation it
was Il'!structed to do.

Result Phase: After completion of the operation~
status and other housekeeping in·
formation are made available to
the pr.opessor.

During Command or Result Pheses the Main Status
Register (described In Table 3) must be read' by th8,proo­
essor ~fore each byte of information Is written into or
readfrPl)'l the Data.f~egi.ter. 8,lts 06, ~nd Dr';n the~ain
S,tatus Regls,er must, be II'! a Q,andJ state, resp'ectively,
befOle each byte of th~ command word may be ~rltten
into the 8272A. Many of the commands r8qljiremultlple
bYt,s, and as a result the Main Status Reglster,must be
re~ p'~lor to eacl'! l;Iyte:,tra~sfer, tQ tl'!e 8272A. !)n tlK!
,onter hand, dl/rlng the Resl,llt,~p~, OS,aodD7 In the
Main status Register musU>oth. be 1'8 (06 '" ·1 and.
07 =' 1) before reading each 'byte from Jh.e Data
,Reglster.,NS)te, this reading !,f the Main Status Register'
.befor~ each byte ,tra!,sfer fo the 8~72A is . .r~uitedln
only the Command and Result Phases, and NOT during
tile Execution Phase. ",', , ,

',f' \,," , ,. ~

During the Exacutlon Phase, the Main Status Regillter
need not be reae!. If tbe 8272A is In the non-DMA Mode,
then the receipt of each data byte (if 8272A, Is reading I
data from FDD),lslndicated by an Interrupt signal on pin
18 (INT == 1). The gentpratlon of a Read slgn~I,(R.1? = 0)
wll! reset the Interrupl as well as output the Data onto

AFN·Ol268C

intJ 8272A

the Data Bus. For example, If the processor cannot
handle Interrupts fast enough (every 13 jlS for MFM
mode) then It may poll the Main Status Register and
then bit \)7 (RaM) functions Just like the Interrupt
signal. If ,a Write Command Is In process, then the WR
signal performs the reset to the Interrupt signal.

The 8272A always operates In a multi-sector transfer
mode. It continues to transfer data until the TC Input Is
active. In Non-DMA Mode, the system must supply the
TC Input.

If the 8272A Is In the DMA Mode, no Interrupts are gener­
ated during the Execution Phase. The 8272A generates
DRa's (DMA Requests) when each byte of data Is
available. The DMA Controller responds to this request
with bOth a DACR = 0 (DMA Acknowledge) and a AD = 0
(Rea~A!t<al). When the DMA Acknowledge signal goes
low (= 0) then the DMA Request Is reset (DRa = 0).
If a Write Command has been programmed then a WR
signal will appear Instead of RD. After the Execution
Phase has been completed (Terminal Count has
occurred) then an Interrupt will occur (lNT= 1). This
signifies the beginning of the Result Phase. When the
first byte of data Is read during the Result Phase, the In­
terrupt Is automatically reset (INT = 0).

It Is Important to note that during the Result Phase all
bytes shown In the Command Table must be read. The
Read Data Command, for example, has seven bytes of
data In the Result Phase. All seven bytes must be read
In order to successfully complete the Read Data Com­
mand. The 8272A will not accept a new command until
all seven bytes have been read. Other commands may
require fewer bytes to be read during the Result Phase.

The 8272A contains five Status Registers. The Main
Status Register mentioned above may be read by t~e
processor at any time. The other four Status Registers
(STO, ST1, ST2, and ST3) are only available during the"
Result Phase, and may be read only after successfully
completing a command. The particular command which
has been executed determines how many of the Status
Registers will be read.

The bytes of data which are sent to the 8272A to form
the Command Phase, and are read out of the 8272A In
the Result Phase, must occur In the order shown In the
Table-4. That Is, the Command Code must be sent first
and the other bytes sent In the prescribed sequence. No
foreshortening of the Command or Result Phases are
allowed. After the last byte of data In the Command -
Phase Is sent to the 8272A, the Execution Phase

Table 4. 8272A Command Set

I DATA lUI DATA.US

PHAIE RIW 10, De De D4 IIa lit D, Dol REMARKS PHASE RIW 0, De lis D4 IIa lit D, .Do REMARKS

READ DATA WRITE DATA

Command W MT MFM SK 0 0 1 1 0 Command Code. Command W MT MFM 0 0 0 1 0 1 Command Codes
W 0 0 0 0 0 H08 081 DSO W 0 0 0 0 0 H080SI DSO
W C Sector 10 Information W C Sector 10 information
W H prior to Command W H prior to Command
W R execution W R execution
W N W N
W EOT W EOT
W GPl W GPl
W OTl W OTl

Execution Data transfer Execution Data transfer
between the FOO' between the ma,"-
and main-system system and FOD

Result R STO StatuI Information Result R STO . Status Information
R STI after Command R STI after Command
R ST2 execution R ST2 execution
R C R C
R H Sector 10 Information R H sector 10 Information
R R after command R R after Command
R N execution R N execution

READ DElETED DATA WAITE DElETED DATA

COmmand W MT MFM SK 0 1 ,. 0 0 Command Codes Command W MT MFM 0 0 1 0 0 1 command Codes

W 0 0 0 0 0 H08 OSI DSO W 0 0 0 0 0 H08 081 DSO

W C Seetor 10 Information W C sector 10 information
W H prior to Command W H prior to Command
W R execution W R execution
W N W N

,W EOT W EOT
W GPl W GPl
W OTl W OTl

Execution Data transfer Execution . oata tranafer
between the FOO between the FDD
and main-system and main-system

Result R STO Status information Result R STO Status Information
R STI after Command R STI after Command
R ST2 execution R 8T2 execution

" R C R C
R H Sector to Information R H Sector 10 Information
R R after Command R R after Command
R N execution R N execution

Note: 1. Symbole usad In Ihle lable a .. deocribed allho ond of Ihle -. .. llon.
2. Ao= 1 for all operatlona.
3. X = Don't care, usually made to equal binary O. I

6-557 AFN·OI258C

intJ 8272A

Table 4. 8272A Command Set (Continued)

DATA BUS I DATA BUS

PHASE RIW D7 D6 Ds D4 D3 ~ Dl Do I REMARKS PHASE RIW I Dr D6 DS D4 D3 D2 PI Do I REMARKS

READ A TRACK SCAN LOW OR EQUAL

Command W 0 MFM SK 0 0 0 1 0 Command Codes Command W MT MFM SK 1 1 0 0 1 COmmand Codes

W 0 0 0 0 0 HOS OSI, OSp W 0 0 0 0 0 HDS OSI DSO

W C Sector 10' Information W C $ector 10 Information
W H Wier to Command W H prior Command
W R execution W A execution

·W N W N
W EDT W EDT
W G~L W GPL
W OTL W STP

Execution Data transfer Execution Data compared
between the FOD between the FOD
and main-system. and ,main-system
FOC reads all of
cylinders contents Aesult A STO Status information
from Index hole to R STI after Comm,and
EDT R ST2 execution

R C
Result R STO Status Ip1ormation ,R . H Sector 10 information

R STI after Command R R ______ , after Command
R ST2 execution R N execution
R C

SCAN HIGH OR EQUAL R H Sector 10 information
R ,A after Command Command W MT MFM SK 1 1 1 0 1 Command Codes
R N execution

W 0 0 0 0 0 HOS DSI ,050
READ ID W C Sector 10 Information

Command W 0 MFM 0 0 1 0 1 0 Commands W H prior Command

W 0 0
W R execution

0 0 0 HOS OSI 050 W N
W EDT

Execution The first correct 10 W GPL
information on the W STP
Cylinder Is stored In
Data Register Execution Data compared

between the FOD
Result R 8TO Status Information and mam·system

A ST 1 after Command
R 5T2 execution Result R STO Status mformation
A C R STI after Command

-R H $ector 10 information R 8T2 execution
A A during Execution R C
R N Phase R H sector 10 information

FORMAT A TRACK
R R _____ after Command
R N execution

Command W 0, MFM 0 0 1 1 0 1 Command Codes RECAUIRATE
W 0 0 0 0 0 HOS 051 OSO
W N Bytes/Sector

Command W 0 0 0 0 0 1 1 1 Command Codes

W SC Sectors/Cylinder W 0 0 0 0 0 0 051 OSO
W GPL _____ Gap 3 Execution Head retracted to
W 0 Filler Byte Track 0

Execution FOC formats an SENSE INTERRUPT STATUS
entire cylinder Command W 0 0 0 0 1 0 0 0 Command Codes

Result R STO Status Information Result R STO Status information at

R STI after Command R PCN the end of each seek

R ST2 execution operation about the

R C FOC

R H In this case, the 10
SPECIFY R R mformatlon has no

R N meaning Command W 0 0 0 0 0 0 1 1 Command Codes

SCAN EQUAL W _SRT __ .. _HUT _
W HLT • NO

Command W MT MFM SK 1 0 0 0 1 Command Codes

W 0 0 0 0 0 HOS OSl DSO SENSE DRIVE STATUS

W C Sector 10 information Command W 0 0 0 0 0 1 0 0 Command Codes
W H prior to Command W 0 0 0 0 0 HDS 051080
W

R ______
execution

Result R ST3 W N Status information

W EDT ab"Out FOO

W - GPL SEEK
W STP

Command W 0 0 0 0 1 1, 1 1 Command Codes
Execution Data compared W 0 0 0 0 0 HOS 051 OSO

between the FOD
W NCN and main-system

Result A 51;0 Status Information Execution Head IS pOSItioned

R STI after Command over proper Cylinder

R ST2 execution on ,Diskette

R C INVALID,
A H Sector 10 Information
R A after Command Command W ____ ·'nvalld Code,s ____ Invalid comm~-rlf
A N execution Codes (NoOp- FOC

goes Int? Standby
State)

Result R _____ STO ST 0=80
(16)

6-558 AFN-01259C

inter 8272A

Table S. Command Mneumonlc8
Il'llllIOL NAME DUCRIPTION

"0 AdcI LlneO "0 controll .. locIIon 01 Mlln statu.
RioIllor tAo-O) or Data Regll"" tAo-').

C Cylinder Number C ltando lor tho aurrent .. looted Cylinder
...... number 0 through 78 01 ... medium.

D OIIta D 1_ for tho data _om which II
going to bo wrltton Into a _.

0-,-00 OIIta SUI IIoblt Data aul wllorw " II tho moot
Ilgnll"ant bit, and 00 I the _t olgnll~
OInt bH.

O8O,OSI D~ .. SeIooI OS I_I lor a .. _ d~" numbor 0
orl.

DTL OIIta Length WIIon N II defined .. DO, DTL •• ndolor
the data length which u going to
IUd out or w~te Into the Seator.

EDT EndoIT EDT llando lor tho final Seator number 01
a Cylinder.

GPL Gop Length GPL ltando lor tho length 01 Gap 3
(lpaGlng _n Seato aludlng veo
Sync Field).

H HNClAddre .. H •• nds for heed number 0 or 1, ..
_iliad In ID fllld.

HOS HNdSelect HOS ._Ior a"'o_ hood number 0
or 1 (H-HOS In III oommoncI_).

HLT _LoodTlmo HLT Otandl for tho hood 10Id tlml In thl
FDD (2 to 254moln Zmllncrwmonta~

HUT _ Unload Time HUT .Iandolor thl hood unloed tlml_r
a .. ad or w~te op_lon occurred (18
to 240m. In 18mlln_ta~

MFM FM or MFM ModI II MF I. low, FM modo II .. looted and II
It 10 high, MFM modI 11"'_.

MT MuH~Track ' II MT I. high, a muHI·t_oporalion It! to
bo porlonnad (a ayllndor undor bOth HDO
and HDI will bo IUd or w~ttan~

N Number N llandolor tho numbor 01 data by tao
written In I sector.

automatically starts. In a similar fashion, when the last.
byte of data Is read out In the Result Phase, the com­
mand Is automatically ended and the 8272A Is ready for
a new command. A command may be aborted by simply
sending a Terminal Oount signal to pin 18
(TC = 1). This Is a convenient means of ensuring that the
processor may always get the 8272A's attention even If
the disk system hangs up In an abnormal manner.

POLLING FEATURE OF THE 8272A
After power·up RESET, the Drive Select Lines DSO and
DS1 will automatically go Into a polling mode. In be­
tween cOmmands (and between step pulses in the SEEK
command) the 8272A polls 11 four FDDs looking for a
change In the Ready line from any of the drives. If the
Ready line changes state (usually due to a door opening
or closing) then the-8272A will generate an Interrupt.
When Status Register ci (STO) Is read (after Sense Inter·
rupt Status Is Issued), Not Ready (NR) will' be indicated.
The polling of the Ready line by the 8272A occurs con·
tinuously between Instructions, thus notifying the

, processor which drives are on or off line. Approximate
scan timing Is shown In Tab,e 8. .

- Table 6. _ Scan TImIng
081 DSO APPROXIMATE SCAN TIMING
0 0 2200S ,
0 I 22CuS
I 0 zzo,.a
I I 4<4OuS

COMMAND D~SCRIPTIONS
During the Command Phase, the Main Status Register,
must be polled by the CPU before each byte Is written

6-559

Il'llllIOL NAME DUCII1PTION

NCN Now Cylinder Nulllbar NCN atandl for. new Cylinder number,
which 10 going to bo _ .. I ... ull

" 01 thl __ ration. DIll pooHlon 01 -.
ND Non-OMA Modo ND 0_ lor _aon In ... Non-OMA

Modo.

PeN ntCylindar PeN .landolor the Cylinder number at
Number tho oomplt!Uon 01 SENSE INTERRUPT

STATUS COmmIInd. Pooltlon 01 _ II
p .. oont limo.

R - R .lInda for the Sector number, which
will bo !WId or wriltOn.

RIW
_~Ia

RIW .landolor .llher RNd (II) or W~
(WI Ilgnai.

SC Seator SC 1",,1_ Iho numbor 01 _ .. per
Cylinder.

Sf(SkIp SK "_ lor Skip DoIoted Data Add
Mork.

SAT Step Rote Tlmo SRT otando for the SlIpping Rote Ior.tho
POD (1 to 18ml'n 1 mllncrements). The
81m. Stopping Rate Ippll .. to III drl,..
(F-I ms, E-2 mo,).

STO StatuI 0 ST 0-3 oland for ono 01 lour reglete ..
STI Statu. I whloh 010 .. tho ota\\nllnformatlon attar
ST2 Statu. 2 a oommend h .. boon ted. Thll
ST3 StatuI 3 In_lion Ie aval_ du~ng thl "oull

phaoo altar commend llon. Thaoo
reglela .. ahoulel not bo confuNd wHh lho
mIIn .tatu ... glotar (.. looted by "0 - 8).
ST 0-3 may bo !WId only altar. c_
.... boon _ulld and contain Informalton
ral 1 to lhat pmlouior command.

STP Du~no a Soln qporatlon. II STFa 1,Iho
data In contlguo .. _ora I. """,poNd

bylo by bylo wllh ""'" oont lrom tho
prooaooor (or DMA), and II STP_ Z, Ilion
aHamalo _tora ... IUd Ind oomporwd.

into the Data Register. The 010 (088) and RQM- (DB7)
bits In the Main Status Register must be In the "0" and
"1" states respectively, before each byte of the com­
mand-may be written Into the 8272A.' The beginning of
the execution phas8 for any of these commands will
cause 010 and RQM to switch to "1" and "0" states
respectively. '

READ DATA
A set of nine (9) byte words are required to place the
FDC into the Read Data Mode. After the Read Data com­
mand has been.lssued the FDC loads the head (If It is In
the, unloaded state), walts the specified head settling
time (defined In tlie Specify Command), and beginS'
reading 10 Address Marks and 10 fields. When the cur­
rent sector number'("R") stored In the 10 Register (lOR)
compares with the sector number read off the diskette,
then the FDC outputs data (from the data field) byte-by·
byte to the main system via the ,data bus.
After completion of the read operation from the' current
sector, the Sector Number Is Incremented bY one, and
the data from the next sector Is read and output on the
data bus. This continuous read function is called a
"Multl-8ector Read Operation." The Read Data Com­
mand must bij terminated by the receipt of a Terminal
Count signal. Upon receipt of this Signal, the FDC stops
outputting data to the processor, but will cOntinue to
read data trom the purrent sector, checl< CRC (Cyclic
Redundancy Co,unt) bytes, and then at the end of the
sector terminate the Read Data Command.

The amount of data which can be handled with a single
command to the FDC depends upon MT (multi-track),
MFM (MFM/FM), and N (Number of .Bytes/Sector). Table
7 on the next page shows the Transfer Capacity.

AFN'()I258C

inter· 8272A

1able'.,. Tranit.rCapacltY
II_III-T_ IIFIIII'Ii B",-.of' _ ... T C •,

FI{IIII __

lIT IIFII N , (""dNIaoI(N_mlliircil~) l~mD"~
• 0 0 00

0 1 01

1 0 00
I 1 01

,0 0 01
0 1 02

I 0 01
1 I 02

0 0 02
0 1 03

I 0 02
1 I 03

The "multi-track" function ,(M1) allows the FDC to read
data from both sides of the diskette. For a particular
cylinder, data will be trans,ferred starting at Sector 1, ,
Side 0 and completing at Sector L, Side 1 (Sector L = last
sector, on the side). Note, this function pertains to only
one cylinder (the same track) on each side of the
diskette.

When N = 0, then' DTL defines the data length which the
FDC must treat as a sector. If DTL i,s smaller than the ac-'
tual data length In a Sector, the data beyond DrL In the
Sector is not sent to the Data Bus. The FDC reads (inter­
nally) the complete Sector performing the CRC check,
and depending upon the manner of command termina­
tion, may perlorm a Multi-Sector Read Operation. When
N Is non-zero, then DTL has no meaning and should be
set to OFFH. '

At the completion of the Read Data Command, ~he head
Is not unloaded until after Head ,Unload Tlm~ Interyal
(specltied In ,the Specify Command) has elapsed. If the
processor Issues another command before the head
unloads then the head settling time may be saved be­
tween subsequent reads. This time out is particularly
valuable when a diskette Is copied from one drive to
another.

If the FDC detects the Index Hble twice without finding
the right sector, (Indicated in "R"), then the FDC sets
~he, /':I,D (NO Data) flag in Status Register 1 to a 1 (high),
and terlTlinates the Read Data Command. (Status
Register 0 also hall bits 7 and 6 set to 0 and 1 respective-
ly.) .. ,

Afteneading the 10 and >Data F;ields in each sector, ,the
FDC checks the,CRC'bytes. If a read error,is detected
(Inco~rect CRC in ID field), the FDC sets the DE (Data Er­
ror) flag in Status Register 1 to a 1 (high), and if a,CRC er­
ror occul'l! in the D~ta Field the F.DC also sets the DO
(pata J:rror ,In Data Field) flag in Status Register 2 to ~ ~
(hl,gh), and terminates the R~d,Data Command. (Sta,tus
Register 0 also has bits 7 and 6 set to O'and 1 respec;:­
lively.)

If, the FDC reads a Deleted Data. Address Markoff the
diskette, and the SK'bit (bit 05 In the ,first Command
Word) IS not set (SK" 0), then the FDC sets the CM (cron~
trol Mark) flag In Status Register 2 to a 1 (hIgh), and ter­
minates·the Read Data Command, after reading all the
data in the 'Sector. If SK = 1, the FDC skips the, sector
with the Deleted Data Address Mark and .reads the 'next
sector.

(128)(28),= 3,328 .. 2801S1d. 0
(2II8)(28)a 6,658 or,26 at Side 1

(128)(52)- 8,868
28 alSld.l , (2118)(52)= 13,312

(256)(15)= 3,840 1581 Side 0 ,
(512) (15)= 7,880 or 15 81 Sid. 1

(256) (30)- 7,880
15 at Sldtl

(512) (30)= 15,380

(512) (8) = 4,098 a.t,SldeO
(1024)(8) a 8,192 ora_I Slda 1

(512) (18)= 8,192
8 alSlde I

(1024)(18)= 18,384 /

,
During disk data' transfers between the FDC and the
processor, via the data bus, the FDC must be serviced
by the processor every 27 '/As In the FM Mode, and every
13/As in the MFM Mode, or the FDC sets the OR (Over
Run) flag in Status Register 1 to a 1 (high), and ter­
minates the Read Data Command.

If the processor terminates a read (or write) operation ir}
the FDC, then the 10 Information in the Result Phase is
dependent upon the state of the MT bit and EOT byte.
Table 5 shows the values for C, H, R, and N, when the
processor terminates the Command.

MT

0

I

Table 8. 10 Information When Processor
Terminates Command

FlnoiSectorT d to
ID l.tomaU .. at R_lt P_

EOT p- C H R N

IA sector 1 to 25 at Side 0
OF Sector I to 14 at Side 0 NC NC R+l NC
DB Sector 1 to 7 at Ski. 0

IA Sector 26 al Sid. 0
OF Sector 15 al Sid. 0 C+I NC R.01 NC
DB Seclor 8 at Side 0

IA Bector 1 to 25 at Sld. 1
OF Sector 1 to 14 at Side I NC NC R+l NC
08 Sector I to 7 at Side 1

IA sector 28 at Side 1
OF Sector 15 at Side 1 C+I NC R=OI NC
08 Sectot 8 al Sid. 1

lA Sector 1 10 25 at Side 0
OF Sector 1 to 14 at Side 0 NC NC R+l NC
08 Sector 1 to 7 at Side O'

lA Sector 26 at Side 0
OF Sector 15 al Side 0 NC LSB R-OI NC
08 S84?tor 8 at Side 0

IA sector 1 to 25 at Side 1
OF sector 1 to 14 at Side 1 NC NC R+l NC
08 Sector 1 to 7 at Side 1

IA sector 26 at Side 1
OF Sector 15 al Side' I C+I LSB R.Ol NC'
08 Sector 8 at Side 1 ,

Notes: 1 NC (No Change): The same 'value as the one at the beginning of command
execution.

2. LSB (Leaat Significant BII). Thel ... t Blgnlflcant bit of H II
complemented

WRITE DATA
A set of nine (9) bytes are required to set the FDC into
the Write Data mode. After the Write Data command has
been issued the FDC loads the head (if It is in the
unloaded state), waits the specified h",ad settling time
(defined in the Specify Command), and begins readlhg
ID:Flelds. When the current sector number ("R"), stored
in the 10 Register (lOR) compares wijh the sector

6-560 AFN·OI258C

inter 8272A

number read off the diskette, then the FDC takes data
from the "processor byte·by·byte via the data bus, and
outputs it to the FDD.
After writing data into the current sector, the Sector
Number stored in "R" is incremented by one, and the
next data field Is written Into. The FDC continues this
"Multi·Sector Write Operation" until the issuance of a
Terminal Count signal. If a Terminal Count signal is sent
to the FOC it continues writing into the current sector to
complete the data field. If the Terminal Count signal is
received while a data field Is being written tlien the reo
mainder of the data field is filled with 00 (zeros).
The FDC reads the 10 field of each sector and checks
the CRC bytes. If the FDC detects a read error (incorrect
CRC) in one of the 10 Fields, it sets the DE (Data Error)
flag of Status Register 1 to a 1 (high), andler,minates the
Write Data Command. (Status Register 0 also has bits 7
and 6 set to 0 and 1 respectively.)
The Write Command operates In much the same manner
as the Read Command. The following Items are the
same; refer to the R~d Data Command for details,:
• Transfer Capacity
• EN (End of Cylinder) FI~g
• NO (No Data) Flag
• Head Unload Time Interval
• 10 'Information when the processor terminates com·
, mand (sea Table 2)

• Definition of DTL when N = 0 and when N '" 0

in the Write Data mode, data transfers between the proc·
essor and FDC must occur every 31 ,..s In the FM mode,
and every 15 ,..s In tlle MFM mode. If the time Interval
between data transfers Is longer than this then ~he FDC
sets·the OR (Over Run) flag in Status Register 1 to a 1
(high), and terminates the Write Data Command.
For minl·floppies, multlpie track writes are usually not
permitted. This Is because of the turn-off time of the
erase head coils-the head switches tracks before the
erase head turns off. Therefore thll system 'should
typically walt 1.3 mS before attempting to step or
c!,!ange sides. ,"

WRITE DELETED DATA

This command is the same as the Write Data Command
except a Deleted Data Address Mark Is written at the
beginning of the Data Field instead of the normal Data
Address Mark. '

READ DELETED DATA

This ',<ommand is the same as the Read Data Command
except that when the FDC detects a Data Address Mark
at the beginning of a Data Field (and SK = 0 (low», it will
read, all the data In the sector and set th&'CM flag in
Status Register 2 to a1 (high), and then terminate the
command. If SK= 1, then the FDC skips the sector with
the Data Address Merk and reads the next sactor.

READ A TRACK

This command Is similar to READ DATA Command
except that the entire data field Is read continuously
from each of the sectors of a track. immediately after
encountering the INDEX HOLE, the FDC starts reading

6-561

all data fields on the track as continuous blocks of data.
If the,FDC finds an error In the 10 or DATA CRC check
bytes, it continues to read data from the track. The FDC
compares the 10 information read from each sector with
the value etored In the lOR, and sets the NO flag of
Status Register 1 to a 1 (high) If there Is no comparison.
Multi·track or skip operations are not allowed with this
command.
This command terminates when EOT number of sectors
have bean read. If the FDC does not find an 10 Address
Mark on the diskette after It encounters the INDEX
HOLE for the second time, then It sets the MA (missing
address mark) flag in Status Register 1 to a 1 (high), and
terminates the command. (Status Register 0 has bits 7
and 6 set to 0 and 1 respectively.) I

READID

The READ 10 Command Is usad to give the present posl·
tion of the recording head. The FDC stores the values
from the first 10 Field It Is able to read. If no proper 10
Address Mark Is found on the diskette, before the IN·
DEX HOLE is encountered for the second time then the
MA (Missing Address Mark) flag In Status Register 1 Is
set to a 1 (high), and if no data Is found then the NO (No
Data) flag is aiso set In Status Register 1 to a 1 (high)
and the command Is terminated.

FORMAT A TRACK

The Format.Command allows an entire track to be·for·
matted. After the INDEX HOLE Is detected, Data Is writ·
ten on the Diskette: Gaps, Aqdress Marks, 10 Fields and
Data Fields, all per the IBM System 34 (Double DenSity)
or System 3740 (Single Density) Format a~ recorded.
The particular format which will be written Is controlled
by the values programmed Into N (number of bytes/sec·
tor), SC (sectors/cylinder), GPL (Gap Length), and 0
(Data Pattern) which are supplied by the processor duro
Ing the Command Phase. The Data Field Is filled with
the Byte of data stored in D. The 10 Field for each sector
is supplied by the processor; that Is, four data requests
per sector are made by the FDC for C (Cylinder Number),
H (Head Number), R (Sector Number) and N (Number of
Bytes/Sector). This allows the diskette to be formatted
with nonsequential, sector numbers, if desired.

After formatting each sector, the processor must send
new values for C, H, R, and N to t,he 8272A for each sec­
tor on the track. The contents of the R Register Is in·
cremented QY one after each sector Is formatted, thus,
the R r-aglster contains a value of R + 1 when it Is read
during the Result Ph,se. This incrementing and format·
,ting continues for the whole track until the FDC en·
counters the INDEX HOLE for the second time, where·
upon It terminates the command.

If a FAULT signal Is received from the FDD at the end of
a write operation, then the FDC sets the EC flag of
Stafus Register 0 to a 1 (high), and terminates the com·
mand after setting bits 7 and 6 of Status Register 0 to 0
and 1 respectlveiy. Also the loss of a READY signal at
the beginning of a command execution phase causes
command termination.

Table 9 sho",,!s the relationship between N, SC, and GPL
for various sector sizes:

AFN·OI259C

inter 8272A

Table 9. Sector Size' Relationships. _
~. STANDARD FLOPPY 5'10' MINI FLOPPY'

FORMAT SECTOR SIZE N SC GPL1 GPL2 REMARkS SECTOR SIZE N SC GPL1 GPL2

FM Mode 128 byteS/Sector 00 lA 07 lB IBM Diskette 1 128 byteslSector 00 12 b7 09
256 01 OF OE 2A IBM Diskette 2 128 00 10 10 19
512 02 08 lB 3A 256 01 08 18 30

1024 03 04 47 8A 512 02 04 48 87
2048 04 02 C8 FF 1024 03 02 C8 FF
.4096 05 01 C8 FF 2048 04 01 C8 FF

MPM Mode 258 ·01 lA OE ,38 IBM Diskette 20 256 01 12 OA OC
512 02 OF 18 54 258 01 10 20 32

1024 03 06 35 74 IBM Diskette 20 512 02 08' 2A 50
2048 04 04 99 FF 1024 03 04 ' 80 FO
4096 05 02 C8 FF 2048 04 02 C8 FF
8192 08 01 C8 FF 4096 05 01 C8 FF

Note: 1. Suggested values of GPL In Read orWrtt. Commands to avoid apllee point· between data field and 10 field of contlguoul lectlonl.

2. Suggested value. of GPL In format command.

'SCAN COMMANDS

The SCAN Commands allow data which Is being read
from the diskette to be compared against data which Is
being supplied from the main system (Processor in
NON-DMA mode, and DMA Controller in DMA mode).
The FDC compares the data on a byte-by-byte basis, and
looks for a sector of data which meets the conditions of
DFOO = Dprocessor. DFOO< DProcessor. or DFOO ~ DProcessor·
Ones complement arithmetic Is used for comparison
(FF = largest number. 00 = smailest number). After a
whole sector of data Is compared. If the conditions are
not met, the sector number is Incremented (R + STP -
R), and the scan operation Is continued. The scan opera­
tion continues until one of the following conditions oc­
cur; the conditions for scan are met (equal. low, or high).
the last sector on the track Is reached (EOT). or the ter­
minal count signal Is receiVed.

If the condltlonsJor scan are met then the FDC sets the
SH (Scan Hit) flag of Status Register 2 to a 1 (high), and
terminates the Scan Command. If the conditions for
scan are not met between the starting sector (!IS
specified by 1'1) and the last sector on the cylinder (EOT),
then the FDC sets the SN (Scan Not Satisfied) flag of
Status Register 2 to a 1 (high), and termin!ltes th.e Scan
Command. The receipt of a TERMINAL COUNT signal
from. the Processor or DMA Controiler during the scan
operation will cause the FDC to complete the com­
parison of the particular byte which Is In process, and
then to terminate the command. Table 10 shows the
status of bits SH and SN under various conditions of
SCAN.

Table 1,0. Scan Status Codes

STATUS REGISTER 2
COMMAND

BIT2_SN BIU.SH
COMMENTS

Scan Equal 0 1 DFOD =; ~Proc888or
1, 0 DFDD + Dprocl8sor

0 1 DFDD ='Oprocessor
Scan Low or Eq~al 0 0 OFDD < Dproce'8or

1 0 DFOD i Dproc888or ,

0 1 0FOD = Dproces8or
Scan High or Equal 0 0 0FDO > DProcessor

1 0 0FDD ;t.. DProces8or

If the FDC encounters a Deleted Data Address Mark on
one of the sectors (and SK = 0), then It regards the sec­
tor as the last sector on the cylinder. sets CM (Control

Mark) flag of Status Register 2 to a 1 (high) and ter­
minates the command. If SK= 1. the FDC skips the sec­
tor with the Deleted Address Mark, and reads the next
sector. In the second case (SK= 1), the FDe sets the CM
(Control Mark) flag of Status Register 2 to a 1 (high) in
order to show that a Deleted Sector had been en­
countered.

When either the STP (contiguous sectofsSTP=01. or
alternate sectors STP = 02 sectors are read) or the MT
(Multi-Track) are programmed, It Is necessary to
remember that the last sector on the track must be read.
For example. If STP = 02, MT = 0, the sectors are
numbered sequentially 1 through 26, and we start the
Scan Command at sector 21; the following will happen.
Sectors 21, 23, and 25 will be read, then the next sector
(26) will be skipped and the Index Hole will be en­
countered before the EOT value of 26 can be read. This
will result In an abnormal termination of the command.
If the EOT had been set at 25 or the scanning started at
sector 20, then the Scan Command would be completed
in a normal manner.

Dyrhlg the Scan Command data Is supplied by either the
processor or DMA Controller for comparison against the
data read from the diskette. In order to avoid haVh'lg the
OR (Over Run) flag set in Status Register 1, It is nec­
essary to have the data availabl~ in less than 27 ,..s (FM
Mode) or 13 ,..s (MFM Mode). If an Overrun occurs the
FDC terminates the command.

SEEK

The read/write head within the FDD Is moved from
cylinder to cylinder under control of the Seek Command.
The FDC compares the PCN (Present Cylinder N\.!mber)
which is t~e current head position with the NCN (New
Cylinder Nu'mber), and performs the following operation
If there Is a difference:

PCN < NCN: Direction signal to FDD set to a 1,(high).
and·Step Pulses are issued. (Step In.)
PCN > NCN: Direction signal to FDD set to a 0 (low).
and Step Pulses are issued. (Step Out.)

The rate at which Step Pulses are Issued is controlle!l.by
SRT (Stepping Rate Time) in the SPECIFY Command.
After each Step P·ulse is Issued' NCN is compared
against PCN. and when NCN = PCN, then the SE(Seek
End) flag.ls set In Status Register 0 to a 1 (high). and the
command is terminated.

6-562 AFN·01259C

8272A

During the Command Phase of the Seek operation the
FDC Is In the FDC BUSY state, but during the Execution
Phase It Is In the NON BUSY state. While the FDC Is In
the NON BUSY state, another Seek Command may be
Issued, and In this manner parallel seek operations may
be done on up to 4 Drives at once.

If an FDD Is In a NOT READY state at the beginning of
the command execution phase or during the seek opera·
tlon, then the NR (NOT READy) flag Is set In Status
Register 0 to a 1 (high), and the command Is terminated.

Note that the 8272A Read and Write Commands do not
have Implied Seeks. Any R/W command should be
preceded by: 1) Seek Command; 2) Sense Interrupt
Status; and 3) Read 10.

RECALIBRATE

This command causes the read/write head within the
FDD to retract to the Track 0 pOSition. The FDC clears
the contents of the PCN counter, and checks the status
of the Track 0 signal from the FDD. As long as the Track
o signal Is low, the Direction signal remains 1 (high) and
Step Pulses are Issued. When the Track 0 signal goes
high, the SE (SEEK END) flag In Status Register 0 Is set
to a 1 (high) and the command Is terminated. If the Track
o Signal Is stili low after 77 Step Pulses have been
Issued, the FDC sets the SE (SEEK END) and EC (EQUIP·
MENT CHECK) flags of Status Register Oto both 1s
(highs), and terminates the command.

The ability to overlap RECALIBRATE Commands to
multiple FDDs, and the loss of the READY signal,. as
described. in the SEEK Command, also applies to the
RECAllBRATE Command.

SENSE INTERRUPT STATUS

An Interrupt signal Is generated by the FDC for one of
the following reasons:

1. Upon entering the Result Phase of:
a. Read Data Command
b. Read a Track Command
c. Read 10 Command
d. Read Deleted Data Command
e. Write Data Command
f. Format a Cylinder Command
g. Write Deleted Data Command
h. ,Scan Commands

2. Ready Line of FDD changes state
3. End of Seek or Recallbrate Command
4. During Execution Phase In the NON·DMA Mode

Interrupts caused by reasons 1 and 4 above occur during
, normal command operations and,. are easily discernible

by the processor. However, Interrupts caused by
reasons 2 and 3 above may be uniquely Identified wl~h
the aid of the Sense Interrupt Status Command. This
command when Issued resets the Interrupt signal and
via bits 5, 8, and 7 of Status Register 0 identifies the
cause of the Interrupt. '

Neither the Seek or Recallbrate Command haife a Result
Phase. Therefore, It Is mandatory to use the Sense Inter·
rupt Status command after these commands to effec·
tively terminate them and to provide verification of the
head position (PCN).

Tabl.11. S.ek, Interrupt Cod ••

SEEK END INTERRUPT CODE
BITS BITe BIT7 CAUSE

0 1 1 Ready Line changed
state, either polarity

1 0 0 Normal Termination
of Seek or Raeallbrate
Command

1 1 0 Abnormal Termination of
Seek or Reeallbrate
Command

SPECIFY
The Specify Command sets the Initial values for each of
the three Internal timers. The HUT (Head Unload Time)
defines the time from the end of the Execution Phase of
one of the ReadIWrlte Commands to the head unload
state. This timer Is programmable from 16 to 240 ms In
increments of 1~ ms (01 = 16 ms, 02= 32 ms OF =
240 ms). The SRT (Step Rate Time) defines the time in·
terval between adjacent step pulses. This timer Is pro­
grammable from 1 to 16 ms In increments of 1 ms (F = 1
ms, E = 2 ms, 0 = 3 ms, etc.). The HlT (Head load Time)
defines the time between when the Head load Signal
goes high and when the Read/Write operation starts.
This timer Is programmable from 2 to 254 ms in In·
crements of 2 ms (01 = 2 ms, 02 = 4 ms, 03 = 6 ms .•..
FE=254 ms).

The step rate should be programmed 1 mS longer than
the minimum time required by the drive.

The time Intervals mentioned above are a direct function
of the clock (ClK on pin 19). Times indicated above are
for an 8 MHz clock, If the clock was reduced to 4 MHz
(mini·floppy apPlication) then all 'time intervals ara in·
creased by a factor of 2.

The choice of DMA or NON·DMA operation Is made by
the NO (NON·DMA) bit. When this bit Is high (NO = 1) the
NON·DMA mode Is selected, and when NO = 0 the DMA
mode Is selected.

SENSE DRIVE STATUS

This command may be used by the processor whenever
It wishes to obtain the status of the FDDs. Status
Register 3 contains the Drive Status Information.
INVALID

If an invalid command is sent to the FDC (a command
not defined above), then the FDC will terminate the com­
mand. No interrupt Is generated by the 8272A during this
condition. Bit 6' and bit 7 (010 and RQM) in the Main
Status Register are both high ("1") indicating to the,
processor that the 8272A is in the Result Phase ",nd the
contents of Status Register 0 (STO) must be read. When
the processor reads Status Register 0 it will find an 80H
indicating an invalid command was received.

A Sense Interrupt Status Command must be sent after a
Seek or Recallbrate interrupt, otherwise the FDC will
consider the next command to be an Invalid Command.

I n some applications the user may wish to use this com·
mand as a No·Op command, to place the FDC in a stand·
by or no operation state.

AFN·OI258C

intJ 8272A

Table,2. Status Reglate,.

BIT BIT

NO. NAME SYMBOL
DEBCRIPTION

NO. NAME' SYMBOL
DEBCRIPTION

STATUS REGISTER 0 '
" IITATUS REGISTER 1 (CONT.)

07 Inlerrupl IC 07=0 and 08=0
Code Normal Termlnallon of Command,

01 Not NW During execullon of WRITE DATA,
Writable WRITE DELETED DATA or Formet A

(N1). Command was compleled and Cylinder Command, If Ihe FDC
properly execuled, detects a wrlle protect signal from

08 07=0 and 08= 1 ,Ibe FDD, then Ihls flag Is ael.

Abnormal Termlnallon of Com·
mand, (A 1). Execullon of Command
was started, but was not
successfully compleled,

07= 1 and De=O
Invalid Command Issue, (IC).
(i:ommand which was issued was
never slarted.

Do Missing MA If Ihe FDC cannol detect lhe 10
Address Address Mark after encounlerlng the
Mark Index hol.lwlce, lhen Ihls Ilag Is set.

If Ihe FDC cannol delecllhe Data
Address Mark or Delated Dala
Address Mark, Ihls nag, Is 1181, Also
allhe same lime, Ihe MD (Missing
Address Mark in Data FIeld) of

07",1 and Ds= 1 Stalus Reglsler 2 Is set.
Abnormal Termination because
during command execution Ihe STA1'II8 REGISTER 2
nsady signal from FDD changed
slale.

07 Noi used. This ,bll Is always 0 (Iow~

Os Seek End SE When Ihe FDC compleles Ihe
SEEK Command, Ihls flag Is aello 1
(high). '

08 Conlrol , CM Durtng executing Ihe READ ,DATA 6r
Mark SCAN Command, If Ihe FDC

encounlers a Seclor which conlalns
a Deleled Data Address Mark, Ihls

04 Equipmenl eC If a fault Signel Is received from Ihe flag Is set.

Check FDD, Dr If Ihe Track 0 Signal falls 10
occut after 77 Slep Pulaes (Recall·
brale Command) then Ihls flag Is set.

03 Nol Ready NR When Ihe FDD Is In Ihe nol·reedy
slale and a read or wrlle cqmmand Is

Os DalaErrorin DO If the FDC delecls a CRC error In
Dala Field Ihe data field Ihen Ihls flag Is set.

04 Wrong" WC This bills relaled wllh 111$ NO bll,
Cylinder and when Ihe conlsnls of C on the

medium Is dlfferenl from thai stored
issued, Ihls flag is set. If a read or
wrlle command is issued 10 Side 1

In the lOR, this flag Is set.

of a single sIded drive, then this flag
Is aet.

1;)3 Scan Equal SH During execution, the SCAN
Hit Command, If the conditio!, of

O2 Head ' HD This flag is uaed 10 Indlcale Ihe
Address state of the head IIllnterrupl.

01 Unit Selectl USI These flags are uaed to indicate a

"equal" Is satisfied, this flag Is aet.

O2 Scan Not SN During executing the SCAN
Satisfied Command, If the FDC cannot fond a

Sector on the cylinder which meets

Do Unit Select 0 usa Drive Unit Number allnterrupt the conditIon, then this flag is set.

STATUS REGISTER 1

07 End of EN When the FDC tries 'to access a

01 Bad Be This bit Is related with the NO bit,
Cylinder and when Ihe conlenl of C 00 Ihe

medium Is dlfferenl from Ihai stored
Cylinder Sector beyond the final Sector of a in the lOR and the content of C Is

Cylinder, this flag Is 88t. FF" then this flag Is set.
06 Nol used This bit Is always 0 (low). Do Missing MD When data Is read from the medIum,
05 Data Error DE When the FDC detects a CRe error

In either the 10 field or the data field,
thIS flag Is set.

Addres. If Ihe FDC cannot find a Data
Mark In Data Address Mark or Deleted Data
Field Address Mark, lhen this flag Is set.

04 Over Run OR If the FDC Is not serviced by the STATUS REGISTER 3,
main-systems during data transfers,
within a certain time Interval, this
flag Is set.

07 Fault FT this blt 18 used to Indicate the
status of the Fault signal from the
FDD.

03 Not uaed. This bit always 0 (low).
08 Write WP ThiS bit Is used to Indicate the

O2 No Data NO During execution of READ DATA, Protected status of the Write Protected .Ignal
WRITE DELETED QATA o~ SCAN from the FDO.
Command, If the'FCC cannot find
the Seclor specified In Ihe lOR
Raglsler, lh1s flag Is aet.

Os Reedy ROY This bit ;s used to Indicate the status
of the Ready signal from the FDD,

During executing Ihe READ 10 Com·
mand, If Ihe FDC cannol read the

04 Track 0 TO This bit is uaed to indicate the status
of the track a signal from the FDD,

10 field wllhout an, error, Ihen Ihis
flag Is set.

03 Two Side TS This bit Is used to Indicate the status
of the Two Side signel from Ihe FDO.

During Ihe execution of Ihe RE""o" A
Cylinder Command, If the starting

O2 Head HD , This bit Is used to indicate the status
Address of Side Select slgnallo'the FDD.

seclor cannot be found, Ihen this
flag Is set. .0,1 Unit Select 1 USI This bit Is used to l'1dlcate ihe status

of the Unit Select 1 '8lgnal to th, FOD.

, Do Unit Select 0 usa This bit is used to Indicate the status
of the Unit Select 0 signal tothe FOD.

6-564 AFN-01259C

inter 8272A

ABSOLUTE MAXIMUM RATINGS*
Operating Temperature O°C to + 70°C
Storage Temperature .•........... -40·C to +125·C
All Output Voltages ...•........... -0.5 to + 7 Volts
'All Input Voltages•........... -0.5 to + 7 Volts
Supply Voltage Vee ..•............ -0.5 to + 7 Volts

'Power Dissipation .. : .•.................•... 1 Watt

NOTICE: Stress above those listed under" Absolute Max­
imum Ratings" may cause permanent damage to the de­
vice. This is a stress rating only and functional operation of
the device at these or any other conditions above those
indicated in the operational sections of this specification
is not implied. Expo~ure to absolute maximum rating
conditions for extended p~riods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to + 70·C, Vee = + 5V ± 10%)

Limits Test
Symbol Parameter Min. Max. Unit Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee+ 0.5 V

VOL Output Low Voltage 0.45 V IOL=2.0 mA

VOH Output High Voltage 2.4 Vee V 10H = -400 /loA

Icc Vee Supply Current 120 mA

IlL
Input Load Current 10 /loA VIN = Vee
(All Input Pins) -10 /loA VIN=OV

ILOH High Level Output 10 /loA VOUT= Vee
Leakage Current

IOFL ' Output Float ±10 /loA O.45V "" VOUT "" Vee
Leakage Current

CAPACITANCE (TA = 25·C, Ie = 1 MHz, Vec = OV)

,
Limits Test

Symbol Parameter Min. Max. Unit Conditions

CIN("') Clock Input Capacitance 20 pF All Pins Except

CIN Input Capacitance 10 pF
Pin Under Test
Tied to AC

CliO Input/Output Capacitance 20 pF Ground

A.C. CHARACTERISTICS (TA =O·C to +70·C, Vce= +5.0V ± 100M
CLOCK TIMING

Symbol Parameter Min. Max. Unit Not ••
ICY, Clock Period 120 500 ns Note 5

ICH Clock High Period 40 ns' Note 4, 5

lAST Reset Width 14 tey

READ CYCLE

tAR. Select Setup t9 RD(0 ns
IAA Select Hold from AD! 0 ns
IAA RD Pulse Width 250 ns

lAD Data Delay from RDI 200 ns
IOF Output Float Delay 20 100 ns

6-565 AFN·OI259C

intJ 8272A

A.C. CHARACTERISTICS (Continued) (TA=O·C to +70·C, vcc= -+:5.0Y :1:10%)'

WRITE CYCLE

Symbol P!araIIIeIer Typ.1 Min. Max. Unit NoIH

tAW Select Setup to ~ 0 ns

twA Select Hold from ~ 0 ns

tWw WI!I' Pulse Width 250 ns

tow Data'Setup to WJii, 150 ns

two Data Hold from WAf 5 ns

INT Delay from 1m! Note 6

INT Delay from Wilt NoteS

tRQCY ORO Cycle Period 13 I'J5 NoteS

tAKRQ ~!toDRQI 200 ns

tRQR ORO! to lifi! 600 ns NoteS

tRQW DRat toWII! 250 ns NoteS

tRQRW DRat to Alit or WFft 12 ~s Note 6

FDDINTERFACE

tWCY WCK ~cle Time 20r4
I'J5 MFMzO Note 2

lor2 MFM=1

tWCH WCK High Time 250 60 350 ns

tcp Pre·Shlft Delay from WCK! 20 100 ns

tco WDA Delay f~om WCK! 20 100 ns

twoo Write Data Width tWCH-5P "s

tWE WE! to WCK! or WEI to WCKI Delay 20 100 ns

twwqv Window Cycle Time 2 ~s MFM=O
• _c 1 MFM=1

twRo Window Setup to ROOt 15 ns

tROW WindOW Hold from RDDI 15 ns

tROD ROD Active Time (HIGH) 40 ns

FDD SEEKIDIRECTIONISTEP

tus USo 1 Setup to RWISEEK! 12 ~s • Note S

tso USo 1 Hold after iiWlSEEKI 15 ~s NoteS

ISO RWISEEK Setup to LCTIDIR 7 ~s NoteS

tos RWISEEK Hold from LCTIDIR 30 ~s NoteS

tOST LCTIDIR Setup to FAlSTEPt 1 ~s NoteS

tSTo LCT/DIR Hold from FRiSTEPI 24 I'J5 Note 6

tSTU OS:! 1 Hold from FAlStepl 5 ~s NoteS

tSTP STEP Active Time (High) 5 I'J5 Note 6

ISC STEP Cycle Time 33 ~s Note 3, S

tFR FAULT RESET Active Time (High) 8 10 I'J5 Note 6

tlOX INDEX Pulse Width 10 tCY

ITC Terminal Count Width 1 troy

NOTES:
1. Typical valuea for TA _ 25'C and nominal supply voltage •

• 2. The former values are used for standard floppy' and the latter valuea are used for II)lnl.flopples.

9. tsc = 331'J5 min. Is for different driVe units. In the case of same unit, ISC can be ranged from 1 ms to IS ma with 8 MHz clock period, and 2 ms
to 32 ma with 4 MHz clock, ullder software conirol. .

4. From 2.0V to + 2.0V •
5. At 4 MHz, the clock duty cycle may range from IS% to 76%. USing an 8 'MHz clock the duty cycle can range from 32% to 52%. Duty cycle Is

defined aa: D.C. = 100 (tCH + tCY) with typical ria. and falltlmea of 5 na. .

8. The spaclfled values listed are for an 8 MHz clock period. Multiply tlmlngs by 2 when ualng a 4 MHz clock parlod.

6-566

inter ,

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

A.C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 0 45V FOR
A LOGIC "0 " TIMING MEASUREMENTS ARE MADE /IJ 2.OV FOR A LOGIC "I"
AND 0 IV FOR A LOGIC "0"

WAVEFORMS

PROCESSOR READ OPERATION

8272A

A.C. TESTING LOAD CIRCUIT

.... 1 __ ~TE_N'1lE_:_R_ ... ~~. ,.~
CL= 100pF
C,INCWDES JIG CAPACITANCE

DACK _ AO'Ci,=>t F
-"-R ----I--.. ---------------------,R-R=========~~~-. .j-I ----,RA '

~----IRD'----_+I

DATA - - - - - - - - - - - -

INT

6-567 AFN·Ol26IIC

inter 8272A

WAVEFORMS (Continued)

PROCESSOR WRITE OPERATION ''\-''

A,. CS. DACK

!+-___ lwW ____ ~

DATA

• NT

IWI----+l.~ ..

DMA OPERATION

DAD

!+-------IRQRW-------+!

WI!.r AD
!-----IRQW----!

!+-_--I.Q.---~

6-568 AFN·Ol259C

WAVEFORMS (Continued)

CLOCK TIMING

CLK

FDD WAITE OPERATION

WRITE ENABLE
(WE)

NORMAL

LATE

EARLY

INVALID

8272A

PRESHIFTO PRESHIFT 1

0 0

0 1

1 0

1 1

6-569' AFN·01258C

WAVEFORMS (Continued)

SEEK OPERATION

LeT!
DIRECTION

STEP

FlT RESET

FAULT RESET
FAIL UNSAFE RESET

8272A

STABLE

.....-ID8

1-----------',c-----------1

INDEX

I 6-570 AFN-OI259C

inter 8272A

WAVEFORMS (Continued)

FDD READ OPERATION

tROD

REAooA4A ,

~-------------------------

_
___ ~, 1--'. -IWRO-

READ DATA
WINDOW

1--------tWWCy--------~

• 1

TERMINAL COUNT RESET

RESET
TC

6-571 AFN·01259C

intJ
. 82062

WINCHESTER DISK CONTROLLER

• Controls ST506/ST412 Interface
WInchester Drives

• 5 MBIt/Sec Transfer Rate

• 128, 256, 512, and 1024 Byte Sector
Lengths

• Six High-Level Commands: Restore, Seek,
Read Sector, Write Sector, Scan ID, and
Write Format

~ Mult,ple Sector ll'ansfer Capability .

• Implied Seek With Read/Write Commands

• 7 Byte Sector Length Extension For
External Error Correction Code

• Single +5 Volt Power Supply

The 82062 Winchester Disk Controller (WDC) device interfaces microprocessor systems to Winchester Disks
that use the Seagate Technology ST506/ST412 interface. Examples include the Seagate ST506 and ST412,
Shugart SA604 and SA606, Tandon 600, al')d Computer Memories CM5206 and CM5412. The device translates

. parallel data from the microprocessor tq a 5 mbiVsec, MFM-encoded serial bit stream. It· provides all of the
drive control logic and, in addition, control signals which simplify the design of an external phase locked loop
and write precompensation circuitry. The 82062 is designed to interface to the host controller through an
external sector buffer.

TASK, STATUS. DATA
REGISTERS

DATA
080-7 BUS

BUFFER

WNI'E
CONIROI.

__
iiiiET

INTRO "EAD
Rii CONIROI.

AM IlEI'ECT
w;; MOM DECODE

Ci

BROY

Bes BUFFER
CONTROL

BOflO

iCii
DRIYE

INTERFACE
VCC----' CONTROL

Vss--+-

. Figure 1. 82062 Block Diagram

6-572

WRDATA

EARLY
LATE

"we WA
WRCLOCK Ci

RDDATA

ROGATE

DRUN

RDCLOCK

WRGATE DB<

'STEP

.,"
DRD.

WR FAULT

TRACK 000

INDEX

Be

Figure 2 •

Vee
RDCLOCK

RDGATE

RDDATA

BORO

BRD.

DRUN

AWe

8C

WAFAULT

INDEX

.. D.

STEP I

"'" WRCLOCK

WAGAr!

EAIii:Y
Wi
WRDATA

Pin Configuration

NOVEM.BER1983
Order Number: 210446-002

inter 82062

Table 1. Pin Description

Symbol Pin No. Type Name and Function

BCS 1 0 Buffer Chip Select: Output used to enable reading or writing of the external
sector buffer.

~

BCR 2 0 Buffer Counter Reset: Output that is strobed by the WDC prior to readlwrite
operation. This pin IS strobed whenever B'CS changes state. It can be
optionally used to reset the address counter of the buffer memory.

INTRa 3 0 Interrupt Request: Interrupt generated by the WDC upon command termina-
tion. It is reset when the status register is read.

RESET 5 I Reset: Initializes the controller and clears all status flags.

RD 6 1/0 Read:' As an Input.J~P controls the transfer of status information from the
WDC to the host. RD is an output when the WDC is reading data from the
sector buffer.

WR 7 1/0 Write: As an input, WR controls the transfer of command or task information
into the WDC register file. iNA is an output when theWDC is writing data to
the sector buffer.

CS 8 1 Chip Select: Enables RD or WR as inputs

Aa-A2 9-11 I Address: Used to select a register from the task register file

DBrDBa ,12-19 1/0 Data Bus: Bidlrecllonal 8-blt Data Bus

GND 20 I Ground

WR DATA 21 0 Write Data: Open drain output that shifts out MFM data at a rate determined
by the Write Clock Input

LATE 22 a Late: Open drain output used to derive a delay value for wnte precompensa-
tlon Valid when the WR GATE output is high.

EARLY 23 0 Early: Open drain output used to derive a delay value for write precompensa-
tlon Valid when the WR GATE output IS high

WR GATE 24 0 Write Gate: High when write data IS ~alld WR GATE goes low If the WF input IS
high. This output is used by the dnve to enable head wnte current

WR CLOCK 25 I Write Clock: Clock Input used to derive the write data rate Frequency ~ 5MHz
for the ST506 interface, 4.34MHz for the SA 1000 Interface.

DIR 26 0 Direction: High level on thiS output tells the drive to move the head inward
(increasing cylinder number) The signal ,IS determined by the WDC
commands.

STEP 27 0 Step: Provides 8.4 microsecond pulses to move the drive head to another
cylinder

DRDY 28 I Drive' Ready: If DRDY from the drive goes low, all commands Will be
deactivated

INDEX 29 I Index: Signal from the drive indicating the beginning of a track. It IS used by
the WDC dUring formatting, and for counting retnes

WR FAULT 30 I Write Fault: An error Input to the WDC which indicates a fault condition at. the
drive If WR FAULT from the drive goes low,' all commands Will be
deactivated.

TRACK 000 31 I Track Zero: Used by the Restore command to verify that the head IS at the
outermost cylinder.

SC 32 I Seek Complete: Signal from the drive indicating that reads or writes can be
made

RWC 33 0 Reduced Write Current: Signal' goes high for all cylinder numbers above the
value programmed to the Write Precomp Cylinder register It is used by the
precompensatlon logic and by the drive

DRUN 34 I 'Data Run: Looks for a string of zeros or ones In the read data, indicating the
beginning of an ID field If the zeros are detected, RD GATE IS brought high

BRDY 35 I Buffer Ready: Input used by the buffer memory to signal the controller that it
IS ready for reading (full) or writing (empty). BROY,ls checked dUring Read
and Write commands.

BDRa 36 0 Buffer Data Request: Optionally activated during Read or Wnte commands If
BRDY is high. Can be used as a DMA Request line.

RD DATA 37 I Read Data: Single ended input that accepts MFM data from the drive.

RDGATE 38 0 Read Gate: Output that IS high for data and ID fields.

RD CLOCK 39 . I Re.ad Clock: Clock input deriv,ed from the external data recovery circuits.

Vee 40 I D.C .. Power: +5V

6-573 210446-002

82062

FUNCTIONAL DESCRIPTION

The Intel 82062 Winchester Disk Controller (WDC)
integrates much of the logic needed to implement
Winchester Disk cohtroller subsystems. It provides
MFM-encoded data and all the control lines required
by hard disks using the Seagate Technology ST506
or Shugarf Associates SA1000 interface standard.
Currently, most 5'14 inch and many8 inch Winchester
Drives use this interface.

Due to the higher data rates required by these
drives-1 byte every 1:6 usec-the 82062 is designed
to interface with the host CPU or I/O controller
through an external buffer RAM. The 82062 WDC has
four pins that minimize the logic required to design a
buffer interface.

Figure 3 shows a block diagram of an 82062 subsys­
tem. The WDC is controlled by the host CPU through
six commands:

Restore
Seek
Read Sector
Write Sector
ScanlD
Write Format

These commands use information stored by six task
registers. Command execution starts immediately
after the command register is loaded-'-therefore
commands require only one byte from the CPU after
the WDC has been initialized.

The 82062 adds all the required track formatting to
the data field, including twq bytes of CRC. Optionally,
these two bytes can be replaced by seven bytes of
ECC information for external·error correction.

1-------------1 BORQ
1------------1'NTRQ

~==:::Qj!m~~!llI==~ 080-7 ~ AD,WR

t----~cs

INTERNAL ARCHITECTURE

The internal architecture of the 82062 WDC is shown
in more detail in Figure 4. The major functional
blocks are:

PLA Controller

The PLA interprets commands and provides all con­
trol functions. It is synchronized with WRCLOCK.

Magnitude Comparator

A 1 O-bit magnitude comparator is used forthe calcu­
lation of drive step, present and desired cylinder
position.

CRC Logic

Generates and checks the cyclic redundancy check
characters appended to the ID and data fiel9s. The
polynomial used is:

X 16 + X12 + x5 + 1.

MFM Encode/Decode

Encodes and decodes MFM data to be written/read
from the drive. The MFM encoder operates from WR
CLOCK. a clock having a frequency equivalentto the
bit rate. The MFM decoder operates from RD CLOCK,
a bit rate clock generated from the external data
separator. RD CLOCK and WR CLOCK need not be
synchronized.

EARi:Y, Rwe '""======:;-] tffil-
82082
woe

WRDATA

10 MHZ

DRIVE CONTROL

Figure 3. System Block Diagram .

6-574 210446-002

inter 82062

080·7

iii) ,
Wii j

•
AO·2

I ..
INTRQ

HOST
IFC

R'EsET
Cs

iiCR --,- ~-l--""'---1..j

PLA
CONTROLLER

BRDY ------...

BORQ

I iiCi

WRDATA

WR CLOCK

RDCLOCK

RDDATA

STEP

DIRC

mIi:Y
WE
DRDY

WR FAULT

TRACK 000
INDEX

se
Rwe
WRGATE

RO GATE
'--____ ~ DRUN

Figure 4. 82062 Detailed Block Diagram

AM Detect

The address mark detector checks the incoming data
stream for a unique missing clock pattern (Data =
A1 H, Clock = OAH) used in each lD and data field.

Host/Buffer Interface Control

The Host/Buffer IFC logic contains all of the neces­
sarycircuitryto communicate with the 8-bit bus from
the host processor.

Drive Interface Control

The Drive IFC logic controls and monitors all lines
from the drive, with the exception of read and write
data.

DRIV~ INTERFACE

The drive side of the 82062 WDC requires three sec­
tions of external logic. These are buffer/receivers,
data separator, and write precompensation. Figure 5
illustrates a drive side interface.

The buffer/receivers condition the control lines to
be driven down the cable to the drive. The control
lines are typically single-ended, resistor terminated
TTL levels. The data lines to and from the drive also
require buffering, but are differential RS-422 levels.
The interface speCification to the drive can be found
in the manufacturers' OEM manual. The WDC supp­
lies TTL compatible signals, and will interface to
most buffer/driver devices.

The data recovery circuits consist of a phase-lock
loop data separator and associated components.
The 82062 WDC interacts with the data separator
thru the DATA RUN (DRUN) and RD GATE signals.
A block diagram of a typical data separator circuit is
shown in Figure 6. Read data from the drive is pres­
ented to the RD DATA inputof the WDC, the refer­
ence multiplexor,and a retriggerable one-shot. The
RD GATE (Pin 38) output will be low when the WDC
is not inspecting data. The PLL at this time should'
remain locked to the reference clock.

6-575' 210446-002

82062
woe

82062

2X
DATA RAte

WRITE DATA

EARLY WRITE
LATE PRECOMP

WINCHESTER DRIVE 0

Rwe
WRITE DATA

READ DATA READ DATA

READ CLOCK PHASE
LOCK DRIVE SEL DRUN LOOP

READ GATE
STEP

TO NEXT
DRIVE DIRECTION

DATA
WR CLOCK RATE READY

osc
WRITE FAULT

sc
, TRACK 000

INDEX
INDEX

TKOOO
seEK COMPLETE

DRDY
Rwe

WFI FAULT
HEAD NUMBER

DIR
WRITE GATE

WR GATE

STEP

DATA BUS
I

Q DAISY CHAIN TO
NEXT DRIVE

ADDRESS (HOLDS DRIVE ANI) HEAD
SELECTS)

DATA LATCH

Figure 5. Drive Interface

RETR)GGERABLE
ONE-SHOT -----------.._~ DRUN

~----.. --------------------------------~~RDDATA

82062

.... ---.. -----1'"" RD CLOCK

~~~~---------~----------~RDGATE 

~---------------------------.._------------~WRCLOCK 

Figure 6. Data Recovery Circuit 

6-57.6 210446-002 



82062 

When any Read/Write' command is initiated and a 
search for address mark begins. the DRUN input is 
examined. The DRUN one-shot is set for slightly 
greater than one bit time. allowing it to retrigger 
constantly on a field of ones and zeros. An internal 
counter times out to see that DRUN is high for 16 
bits (2 byte times). RDGATE is set by the WDC. 
switching the data separator to lock onto the incom­
ing data stream. If DRUN falls priorto,12 bit times, 
RD GATE is lowered and. the process is repeated. 
RD GATE will remain active high until a non-zero. 
non-address mark byte is detected. It will then lower 
RD GATE for two byte times (to allow the PLL to 
lock back on to the referenc,e clock), and start the 
DRUN search again. If an address mark is detected. 
RD GATE will be held ,high and the command will 
continue searching for the proper 10 field. This 
sequence is shown in the flow chart in Figure 7. 

The write precompensation logic is controlled by 
theRsignals REDUCE WRITE CURRENT (RWC). 
EA LY and CA'i'E. The cylinder in which the RWC 
line becomes active is controlled by the REDUCE 
WRITE CURRENT register in the Task Register File. 
It can be used to turn on the precomp Circuitry on a 
predetermined cylinder. If the REDUCE WRITE 
CURRENT register contents are FFH. then RWC will 
always be low. 

The signals EARLY and tATE' are used to tell the 
precomp circuitry how much deJay is required on 
the WR DATA pulse about to be sent. The amount of 
delay is determined externally through a di9it~ 
delay line or equivalent Circuitry. Since the EARL 
signal occurs after the fact. WR DATA should be 
delayed byone interval when both EAFi'i:Yand LATE 
are low. two~als when CA'fE is high. and no 
delay when EARLY is high. An interval is. for exam­
~2-15 ns. for the ST506 interface. EARLY or 
LATE ~ctive Slightly ahead of the WR DATA 
pulse. EARLY and LATE will never be high at the 
sa":,e time. =egardle~.2!Jhe contents of the RWC 
regIster. EA LYand LATE will always be active. 

HOST PROCESSOR INTERFACE 

The primary interface between the host processor 
and the 82062 WDC is through an 8-bit bi-directional 
data bus. This bus is used to transmit/receive data to 
both the WDC and a sector buffer. The sector buffer 
is constructed with either FIFO memory. or static 
RAM and a counter. Since the WDC will use the data 
bus when accessing the sector buffer. a transceiver 
J1I1ust be used to isolate the host during this time. 
Figure 8 shows a typical connection to a sector 
buffer implemented with RAM memory. Whenever 
the WDC is not using the sector buffer. The BUFFER 
CHIP SELECT (BCS) is high (disabled). This allows 
th:e host to access the WDC's Task RegiSter File. and 

6-577 

RESET 
RD GATE 

Figure 7. PLL Control Sequence 

210446-002 



inter 821)62 

to set up parameters prior to issuing a command. It 
also allows the host to access the RAM buffer. A: 
decoder is used to generate a chip selectw~enAo_2. 
is '000', an unused address in.Jb.e WQ.g. A bin~ry 
counter is enabled whenever ,RD or WR go active 
and is incremented on the trailing edge of· the chip. 
select. This allows the host to access sequential 
bytes within the RAM. The decoder also generates 
another chip select when Ao-2 does not equal '000', . 
allowing access to the WOC's int~rnal registers 

. while keeping the RAM tri-stated. 

During a WRITE SECTOR command, the host pro­
cessor sets up data in the Task Register File and 
then issues the command. The 82062 WOC strobes 
the BUFFER COUNTER RESET (BCR) signal to 
zero the counter. It then generates a status to inform 
the host that it may load the buffer with the data to 
be written. When the counter reaches its maximum 
count, the BUFFER READY (BROY) signal is made 
active (by the "carry" out of the counter), informing 
the WOC that the buffer is full. (BROY is a rising 
edge triggered signal which wi!!..!2.!Wgnored if acti­
vated before the WOC issues BCR). BCS is then· 
made active, disconnecting the host through the 
transceivers, and the AD andWRlInes become out­
puts from the WOC to allow it to~ccess the buffer . 

iiii ..J 
I 

Wil 

DATA 
8 

. When the woe is done.using the buffer, it disables 
B'CS which again allows the host to access the local 
bus. Tbe READ SECTOR command oper;atesin a 
similar manner, except the buffer is loaded by the' 
WOC instead of the host processor. 

Another control signal caned BUFFER DATA 
REQUES, (BORQ, not used in Figure 8) is a OMA 
Signal that can inform a OMA controller when the 
82062 WOC is requesting data. For further explana­
tion, refer to the individual command descriptions 
and the A.C. Characteristics. In a READ SECTOR 
command, interrupts are generated at the termina­
tion of the command. An interrupt may be specified 
to occur either at the end of the command, or when 
BORQ is activated. The INTERRUPT line (INTRQ) 
is cleared either by reading the StATU~ register, or 
by writing a new command in the COMMAND 
register. 

iiii 

Wil 

DATA 

~&J, , BCii 

~+ 
r-

I 
I AD WA I 
I CK 

I 
I Q ADOR DATA I 
I I 

I 
I I 
I ,-T~ CS 

I HOST 
j 82062 CPlt I I SYSTEM --- ~---

.rG=l BeS 

BRDY 

Co 

ADDRESS 
3 ..... 

INTERRUPT INTRQ 

REseT : RESET 

...----. L.::1 . 8.0.' L ..... ST. DRive HEAD J. ... 
.J 

SELECT 
LATCH 

OJ 

Figure 8. CPU Buffer Interface 

6-578 210446-002 



82062 

TASK REGISTER FILE 

The Task Register File is a bank of registers used to 
hold parameter information pertaining to each 
command. These registers and their addresses are: 

A2A1 AO READ WRITE 
0 0 0 (Bus Tri-Stated) (Bus Tri-Stated) 
0 0 1 Error Flags Reduce Write Curren 
0 1 0 Sector Count Sector Count 
0 1 1 Sector Number Sector Number 
1 0 0 Cylinder Low Cylinder Low 
1 0 1 Cylinder High CyUnder High 
1 1 0 SOH SOH 
1 1 1 Status Register Command Register 

NOTE: Registers are not cleared by RESET. 

ERROR REGISTER 

This read-only register contains specific error sta­
tus after the completion of a command. The bits are 
defined as follows: 

7 6 5 4 321 0 

1 BBO 1 CRC 1- 1 10 

Bit 7 - Bad Block Detect 

This bit is set when an 10 field. has been encoun­
tered that contains a bad block mark. It is used for 
bad sector'mapping. 

Bit 6 - CRC Data Field 

This bit is set when a data field CRC error has 
ocurred or the Data Address Mark has not been 
found. The sector buffer may still be read but will 
contain errors. 

Bit 5 - Reserved Not used. 

Forced to zero. 

Bit 4 - 10 Not Found 

This bit is set when the desired cylinder, head, sec­
tor, or size parameter cannot be found after 8 revolu­
tions of the disk, or if an 10 field CRC error has 
occured. 

Bit 3 - Reserved Not used. 

Forced to zero. 

Bit 2 • Aborted Command 

This bit is set if a command was issued while OROY 
(Pin 28) or WR FAULT (Pin 30) is low. The Aborted 
Command bit will also be set if an undefined com­
mand is written into the COMMAND register, but an 
implied seek will be executed. 

Bit 1 • TRACK 000 

This bit is set only by the RESTORE command. It 
indicates that TRACK 000 (Pin 31) has not gone 
active after the issuance of 1024 stepping pulses. 

Bit 0 - Data Address Mark 

This bit is set during a READ SECTOR command if 
the Data Address Ma~k is not found after the proper 
Sector 10 is read. 

REDUCE WRITE CURRENT REGISTER 

This register is used 'to define the cylinder number 
where RWC (Pin'33) is asserted: 

7 6 5 4 3 2 1 o 

The value (0-255) loaded into this register is inter­
nally multiplied by 4 to specify the actual cylinder 
where RWC is asserted. Thus a value of 01 H will 
cause RWC to activate on cylinder 4,02H on 
cylinder 8, and so on. RWC switching points are 
then 0,4,8, ... 1020. RWC will be asserted when the 
present cylinder is greater than or equal to the 
cylinder indicated by this register. For example, the 
ST506 interface requires precomp on cylinder 128 
(80H) and above. Therefore, the REDUCE WRITE 
CURRENT register should be loaded with 32 (20H). 
A value of FFH will make RWC stay low, regardless 
of the actual cylinder number. 

6-579 210446-002 



82062: 

SECTOR COUNT REGISTER 

This register is used to define the number of sectors 
that need to be transfered to the buffer during a 
READ MULTIPLE SECTOR or WRITE MULTIPLE 
SECTOR command.: ' 

7 6 ,5' 4' 3 2. 1 o 

The value contained in the register is decremen.ted 
'after each sector is transferred to/from the sector 
buffer, A zero represents a 256 sector transfer, a onea 
o sector transfer, etc. This register is a "don't care" 
when single sector commands are specified. 

SECTOR NUMBER 

This register holds the '$ector number of the desired 
sector: 

7 6 5 4 3 2 1 o 

For a multiple sector command, it specifies the first 
sector to be transferred. It is decremented after each 
sector is transferred to/from the sector buffer.'The 
SECTOR NUMBER register may contain any value 
from 0 to 255. 

The SECTOR NUMBER register is also used to pro­
gram the Gap 1 and Gap 3 lengths to be used when 
formatting a disk. See the WRITE FORMAT com­
mand description for further explanation. 

7 6 543 2 1 

S~ZE f. DRIVE 

.. . , 

6 5 SECTOR SIZE 4 3 DRIVE # 
0 0 256 0 0 DSEL1 
0 1 512 0 1 DSEL2 
1 0 1024 1 0 DSEL3 
1 1 128 1 1 DSEL4 

CYLINDER NUMB,ER LOW REGISTER 

This register holds the lower ,byte of the desired 
cylinder number: ' 

7 6 5 4 3 2 1 0 

It is used in conjunction with the CYLINDER 
NUMBER HIGH register to specify a range of 0 to 
1023. 

CYLINDER NUMBER HIGH REGISTER 

This register holds the two most significant bits of the 
desired cylinder number; 

7 6 5 4 3 2 1 0 

x x x x xx (9) (8) I 
Internal to the 82062 WDC isanotherpairof registers 
that hold the actual position where the RlW heads are 
located. The CYLINDER NUMBER HIGH and LOW 
registers can be considered the cylinder destination 
for seeks and other commands. After these com­
mands are executed, the internal cylinder position 
registers' contents are equal to the cylinder high/low 
registers. If a drive number change is detected 011 a 
new command, the WDC automatically reads an ID 
field to update its internal cylinder position registers. 
This affects all commands except a RESTORE. 

SECTOR/DRIVE/HEAD REGISTER 

The SDH register contains the desired sector size, 
drive number, and head number parameters. The 
format is diagramed below. 

o 

.. ~ 

2 1 0 HEAD# . 
0 0 0 HSELO 
0 0 1 HSEL1 
0 1 0 . HSEL2 
0 1 1 HSEL3 
1 0 0 HSEL:.4' 
1 '0 1 HSEL5 ' 
1 l' 0 HSEL6 
1 1 1 HSEL7 

210446-002 



inter 82062 

Both head number and sector size are compared 
against the disks' 10 field. Head select and drive 
select 'lines 'are not available as outputs from the 
82062 WDC and must be generated externally. 
Figure 9 shows a possible logic implement,ation of 
these'select lines. 

WIi >------.. 

Bit 7 - Busy 

This bit is set whenever the 82062 WDC is accessing 
the disk. Commands should not be loaded into the 

OBO l 
08. A 
OB2 T 

OBO 
081 

AD >--=----E-..... 
A. >--I.~---J L==:::::IDB3C DB4 H OSEl' 

DSEL2 

82062 

A2 
l!I)-_"";' __ J DSEL3 

DSEL4 

Figure 9. Drive/Head Select Logic 

Bit 7, the extension bit (EXT), is used to extend the 
data field by seven bytes when using ECC codes. 
When EXT= 1, theCRC is not appended to the end of 
the data field, the data field becomes "sector size + 7" 
bytes long. The CRG is checked on the 10 field 
regardless of the state of EXT. Note that the sector 
size bits (SIZE) are written to the 10 field during a 
formatting command. The SOH byte written into the 
10 field is different than the SqH Register contents. 
The recorded SOH byte does not have the drive 
number (DRIVE) written but does have the BAD 
BLOCK mark written. The format is: 

7 6 5 4 3 2 1 o 

COMMAND register while Busy is set. Busy is set· 
when a command is written into the WDC and is 
cleared at the end of all commands except READ 
SECTOR. While executing a READ SECTOR com­
mand, Busy is cleared after the sector buffer has 
been filled. When the Busy bit is set, no other bits in 
either the STATUS or any other registers are valid. 

Bit 6 - Ready 

This bit normally reflects the state of the DRDY (Pin 
28) line. When an interrupt is g'enerated by an 
'aborted command' error condition, the Ready bit is 
latched for later examination by the host. After a 
STATUS register read, the Ready bit will resume 
reflecting the state of DRDY. 

Note that use of the extension bit requires the gap • Bit 5 - Write Fault 
lengths.to be modified as described in the WRITE 
FORMAT command description. 

STATUS REGISTER 

The status register is a read-only register which 
informs the host of certain events performed by tile 
82062 WDC as well as reporting status from the 
drive control lines .. The format is: ' 

765 4 3 2 1 0 

! BUSY! READY ! WF 1 SC 1 ORO ·1 CIP I ERROR I 

This bit reflects the state of the WR FAULT (Pin 30) 
line. Whenever WR FAULT goes high, an interrupt 
will be generated. The Write Fault bit is latched Uke 
the Ready bit (Bit 6). 

Bit 4 .. Seek Complete 

This ,bit reflects the state of the SC (Pin 32) line. 
Certain commands will pause until Seek Complete 
is set. The Seek Complete bit is latched like the 
Ready bit. 

6-581 210446-002 



82062 

Bit 3 - Data Request 

The Data request bit (ORO) reflects the'state of the 
BDRO (Pin 36) line. It is set when the sector buffer 
should be loaded with data or read by the host 
processor, depending upon the command. The 
DRO bit and the BDRO line remain high until BRDY 
·is sensed, indicating the operation is completed. 
BDRO can be used in DMA interfacing, while DRO . 
can be used for programmed 1/0 transfers. 

Bit 2 - Reserved 

Not Used. Forced to zero. 

Bit 1 - Command in Progres~ 

When this bit is set, a command is being executed 
and a new command should not be loaded until it is 
cleared. Although a commanq may be executing, 
the sector buffer is still available for access by the 
host processor. Only the STATUS register may ~e 
read. If other registers are read, the STATUS regis-
ter contents will be returned. t 

Bit 0 -Error 

This bit is set whenever any bits' in the ERROR 
register are set. It is the logical 'Or' of the bits in the 
error register and may be used by the host proces­
sor to quickly check for successful completion of a 
command. This bit is reset when a new command is 
written into the COMMAND register. 

COMMAND REGISTER 
I 

This write-only register is loaded with the qesired 
command: 

7 6 5 4 3 2 1 o 

I 
The command begins to execute immediately upon 
loading. This register should not be loaded while the 
Busy or Command in Progress bits are set in the 
STATUS register. The INTRa line (Pin 3), if set, will 
be cleared by a write to the COMMAND register. 

INSTRUCTION SET 
The 82062 WDC' instruction set contains, six 
commands. Prior to .!oading the command register, 
the host processor IT)ust first set up the .. Task 
Register File with the information needed for the 
command. Except for the COMMAND register, the 
registers may be loaded in any order. If a command 
is in progress, a subsequent write to the COMMAND 
register will be ignored until execution of the 
current cQmmand is completed as indicated by the 
command in progress bit in the STATUS register 

, being cleared 

COMMAND 7 6 5 4 3 2 1 0 

RESTORE 0 0 Q 1 R3 R2 R1 RO 
SEEK 0 1 1 1 R3 R2 R1 RO 
READ SECTOR 0 0 1 0 I M 0 T . WRITE SECTOR 0 0 1 1 0 M 0 T 
SCANID 0 1 0 0 0 0 0 0 
WRITE FORMAT 0 1 0 1 0\ 0 0 0 

Rw = Rate Field 

For 5 M"Iz WR CLO,CK: 

R3-C) = 0000 • =35 us 
0001 · 0.5 ms 
0010 · 1.0 ms 
0011 · 1.5 ms 
0100 · 2.0 ms 
0101 · 2.5 ms 
0110 · 3.0 ms 
0111 · 3.5 ms 
1000 · 4.0 ms . 
1001 · 4.5 ms 
1010 5.0 ms 
1011 · 5.5 ms 
1100 · 6.0 ms 
1101 · 6.5 ms 
1110 \ · 7.0 ms 
1111 7.5 ms 

T = Retry Enable 

T= 0 Enable Retries 
T = 1 Disable Retries 

M= Multiple Sector Flag 
, 

M= 0 lhInsfer 1 Sector 
M= 1 11'ansfer MulUple Sectors 

I = Interrupt Enable 

I 0 Interrupt at BDRQ time 
I = 1 Interrupt at end of command 

6-582 210446-002 



inter 82062 

RESTORE COMMAND 

The RESTORE command is usually used on a 
power-up comdition. The actual stepping rate used 
for the RESTORE is determined by the Seek Com­
plete time. A step pulse is issued and the 82062 
WDC waits for the Seek Complete (SC) line to go 
active before issuing the next pulse. If after 1,024 
stepping pulses the TRACK 000 line does not go 
active, the WDC will set the TRACK 000 bit in the 
ERROR register and terminate with an INTRQ. An 
Interrupt will also occur if WR FAULT goes active or 
DRDY goes inactive at any time during execution. 

The rate field specified (R3-O) is stored in an internal 
register for future use in commands with implied 
seeks. 

A flowchart of the RESTORE command is shown in 
Figure 10. 

SEEK COMMAND 

Since all commands feature an implied seek, the 
SEEK command can be used for overlap seek oper­
ations on multiple drives. The actual stepping rate 
used is taken from the. Rate Field of the command, 
and is stored in an internal register for future use. If 
DRDY goes inactive or WR FAULT goes active at 
any time during the seek, the command is termi­
nated and an INTRQ is generated. 

The direction and number of step pulses needed is 
calculated by comparing the contents of the 
CYL!NDER NUMBER LOW/HIGH register pair to 
the internal cylinder position register. After all steps 
have been issued, the internal cylinder position reg­
ister is updated and the command is terminated. 
The Seek Complete (SC) line is not checked at the 
beginning or end of the command. 

If an implied seek was performed, the 82062 will 
search until a rising edge of SC is received. 

A flowchart of the SEEK command is shown in Fig­
ure 11. 

READ SECTOR 

The READ SECTOR command is used to transfer 
one or more sectors of data from the disk to the 
sector buffer. Upon receipt of the READ SECTOR 
command, the 82062 WDC checks the CYLINDER 
NUMBER LOW/HIGH register pair against the 
internal cylinder position register to see if they are 
equal. If not, the direction and number of steps 
calculation is performed and a: seek takes place. If 
an implied seek was performed, the WDC will. 
search u·ntl1 a rising edge of SC is reqeived. The WR 
FAULT and DRDY lines are monitored throughout 
the command. 

RESETINTRQ 
ERRORS. 

SET BUSY. CIP 

AESETAWC 
SET DIRECTION 

OUT • 
STORE STEP-RATe 

ISSUE" 
STEP PULSE 

PULSE iICJI 
SETINTRQ 

RESET BUSY.CIP 

Figure 10. Restore Command Flow 

210446-002 



82062' 

When the Seek Complete (SC) line is high (with or 
without an implied seek having occured), the search 
for an 10 field begins. If T = 0 (retries enabled), the 
82062 WOC must fi nd an 10 with the correct cyli nder 
number, head, sector size and CRC within 8 revolu­
tions, or an automatic scan 10 wi!! be performed to 
obtain cylinder position information, and then a 
seek performed (if necessary). The search for the 
proper 10 will be retried for up to 8 revolutions. If the 
correct sector is still notfound, the appropriate error 
bits will be set and the command terminated. Data 
CRC errors will also be retried for~p to 8 revolutions 
(if M = 0). 

If T= 1 (retries disabled), the 10 search must find the 
correct sector within 2 revolutions or the approp­
riate error bits will be set and the command 
terminated. ' 

Both the READ SECTOR and WRITE SECTOR com­
mandsfeaturea "simulated completion" to ease program­
mingo ORO/BORO will be generated upon detecting' 
an error condition. This allows the same program 
flow for successful or unsuccessful completion of a ' 
command. 

When the data address mark is found, the WOC is 
ready to transfer data to the sector buffer. After the 
data has been transferred, the I bit is checked. If I = 0, 
INTRO is made active coincident with BORO, indicat­
ing that a transfer of data from the buffer to the host 
processor is required. If I = 1, INTRQ will occur at the 
end of the command, i.e. after the buffer is unloaded, 
by the host. 

An optional M bit may be set for multiple sector 
transfers. When M = 0, one sector is transferred and 
the SECTOR COUNT-register is ignored. When M = 
1, multiple sectors are transferred. After each sector 
is transferred the 82062 decrements the SECTOR 
COUNT register and increments the SECTOR NUM­
BER register. The next logical sector will be trans­
ferred regardless of any interleave. Sectors are num­
bered at format time by a byte inttie 10 field. 

Forthe 82062 to make' multiple sector transfers to the 
buffer, the BROY line must be toggled low to high for 
each se,ctor. Transfers will continue until the SEC­
TOR COUNT register equals zero, or the BROYline 
goes active. If th~SEPTOR COUNT register is non­
zero (indicating more sectors are to be transferred 
but the buffer is full), BORO will be made active and, 
the host must unload the buffer. After,thiS occurs, the 
buffer,will again be fre~ to accept the remaining sec­
tors from the WOC. ,ThiS scheme enables the user to 
transfer more sectors than the buffer memory has 
capacity for: ' 

In summary then, READ SECTOR operation is as 
follows! 

6-584 

" , 

F.lgure' 1:1. Seek Command Flow' 

210446-002 



82062 

When M = 0 (READ SECTOR) 

(1) Host Sets up parameters; issues 
READ SECTOR command. 

(2) 82062: Strobes Be'R; sets BCS = O. 
(3) 82062: Finds sector specified; transfers 

( 4) 
( 5) 
( 6) 
( 7) 
( 8) 

82062: 
82062: 
82062 
Host: 
82062: 

data to buffer. _ 
Strobes BCR; sets BCS = 1, 
Sets BORa = 1, ORa = 1. 
If I bit = 1 then go to'(9). 
Reads contents of sector buffer. 
Waits for BRDY, thEm sets 
INTRa = 1; END. 

(9) 82062: Sets INTRa = 1. 
(10) Host: Reads out contents of buffer; 

END. 

When M = 1 (READ MULTIPLE SECTOR) 

( 1) Host Sets up parameters; issues 
READ SECTOR command. 

( 2) 82062: Strobes BCR; sets BCS = O. 
( 3) 82062: Finds sector specified; transfers ' 

data to buffer. 
( 4) 82062: Decrements SECTOR COUNT 

register; increments SECTOR 

( 5) 82062: 
NUMBER begister. 
Strobes B' R; sets BCS = 1. 

( 6) 82062: Sets BORa = 1, ORa = 1. 
( 7) Host Reads out contents of buffer; 

END. 
( 8) Buffer: Indicates data has been trans-

ferred byactivating'BRDY. 
( 9) 82062: When BRDY = 1, if Sector Count 

= 0, then go to (11). 
(10) 82062: Go to (2). 
(11) 82062: Set INTRa = 1. 

A flowchart of the READ SECTOR command is 
shown in Figure 12. 

WRITE SECTOR 
I 

The WRITE SECTOR command is used to write one 
or more sectors of data to the disk from the sector 
buffer. Upon receipt of WRITE'SECTOR command, 
the 82062 WDC checks the CYLINDER-NUMBER 
LOW/HIGH register pair against the internal cylinder 
position register,to see if they are equal. If not, t~e 
direction and number of steps calculation is per­
formed and a seek takes place. The WR FAULT and 
DRDY lines are checked throughout the command. 

When the Seek Complete (SC) line'is found to be 
tru'e (with or without an implied seek having oc­
cured), the BORa signal is made active and the host 
proceeds to unload the buffer. When the 82062 

senses BRDY high, the 10 field with the specified 
cylinder number, head, and sector size is searched 
for. Once found, WR GATE is made active and the 
data is written to the disk. If retries are enabled (T = 
0), and if the 10 field cannot be found within 8 
revolutions, automatic scan 10 and seek commands 
are performed. The 10 Not Found error bit is set and 
the command is terminated if the correct 10 field is 
not found within 8 additional revolutions. If retries 
are disabled, (T = 1), and if the 10 field cannot be 
found within 2 revolutions, the 10 Not Found error 
bit is set and the command is terminated. 

During a WRITE MULTIPLE SECTOR command (M 
= 1), the SECTOR NUMBER register is decremented 
and the SECTOR COUNT register is incremented. If 
the BRDY line is low after the first sector is trans­
ferred from the buffer, the 82062 will transfer the 
next sector. If BRDY is high, the 82062 will set 
BORa and wait for the host processor to place more ' 
data in the buffer. In summary then, the WRITE 
SECTOR operation is as follows: 

When M = 0,1 (WRITE SECTOR) 

( 1) Host: Sets up parameters; issues 
WRITE SECTOR command. 

( 2) 82062: Strobes !reA; sets BORa = 1, 
DRO= 1. 

( 3) Host Loads sector buffer with data. 
( 4)' 82062: Waits for BRDY = 1. 
( 5) 82062: Finds specified 10 field; writes 

• sector to disk. 
( 6) 82062: If M = 0, then 'set 

INTRa = 1; END. 
( 7) 82062 Increment SECTOR NUMBER 

register; decrement SECTOR 
COUNT register. 

( 8) 82062 11 SECTOR = 0, then set INTRa 
= 1; END. 

( 9) 82062 If BRDY = 0, then go to (5). 
(10) 82062 Goto (2). 

A flowchart of the WRITE SECTOR command is 
shown in Figure 13. 

SCANID 

The SCAN 10 command is used to update the SEC­
TOR/DRIVE/HEAD, SECTOR NUMBER, and CYL- . 
INDER NUMBER LOW/HIGH registers. 

After -the command is loaded, the Seek Complete 
(SC) line is sampled until it is valid. The DRDY and 
WR FAULT lines are also monitored throughout 
execution of the command. When the first 10 field is 

," ' 

, 210446-002 



inter 

RESETINTRQ 
ERRORS 

SET BUSY, CIP 

82062 

PULSE BCR 
SET INTRQ, AC 

RESET BUSY, CJP 

'N T bit 01_ = llhen _ ..... It .. loin _, 21_. put .... 

SEARCH 
FOR 10 
FIELD 

NOTE' 

Figure 12A, Read Sector Command Flow 

a"586 210446-002 



NOTE' 

82082 

Figure 128, 'Read sector Command Flow 

:6-587 

~NO-0 

, 

210446-002 



·I'_dl .. blecl ..... _ed ..... 1. 
laken filla' 2 _. pur_. 

82062 £[Q)W~OO©~ OOOfF@OOIMl~'jjD@OO 

Figure 1a. WrIte Sector Cpmmaoci Flow 

6:-588 

." 

210446-002. 



inter 82062 

found, the 10 information is loaded into the SOH, 
SECTbR ",UMBER, and CYLINDER NUMBER regis­
ters. The internal cylinder pOSition register is also 
updated. If a'bad block is detected, the BAD BLOCK 
bit will also be set. The CRC is checked and if an error 
is found, the 82062 will retry up to 8 revolutions to find 
an error-free 10 field. There is no implied seek with 
this command and the sector buffer is not disturbed. 

A flowch'art of the SCAN 10 command is shown in 
Figure 14. 

WRITE FORMAT 

The WRITE FORMAT command is used to format 
one track using the Task Register File and the sector 
buffer. During execution of this command, the sector 
buffer is used for additional parameter information 
instead of sector data. Shown in Figure 15 is the 
contents of the sector buffer for a 32 sector track 
format with an interleave factor of two. Each sector 
requires a two byte sequence. The first byte desig­
nates whether a bad block mark is to be recorded in 
the sector's 10 field. An OOH is normal; an SOH indi­
cates a bad block mark for that sector. In the example 
of Figure 15, sector 04 will get a bad block mark 
recorded. 

The second byte indicates the logical sector number 
to be recorded. This allows sectorS'to be recorded 
with any interleave factor desired, The remaining 
memory in the sector buffer may be fiHed with any 
value; its only purpose is to generate a BROY to tell 
the 82062 to begin formatting the track. 

An implied seek is in effect on this command. As for 
other commands, if the drive number has been 
changed, an 10 field will be scanned for cylinder 
position information before the implied ,seek is per­
formed. If no 10 field can be read (because the track 
had been erased or because an incomplete format 
had been been used), an 10 Not FOt,lnd error will 
result and the WRITE FORMAT command will be 
aborted. This can be avoided by issuing a RESTORE 
command before formatting. 

The SECTOR COUNT register is used to hold the 
total number of sectors to be formatted (FFH = 255 
sectors), while the SECTOR NUMBER register holds 
the number of bytes minus three to be used for Gap 1 
and Gap 3; for instance, if the SECTOR COUNT' 
register value is 02H and the SECTOR NUMBER 
register value is OOH, then 2 sectors are written and 3 
bytes of 4EH are written for Gap 1 and Gap 3. The 
data fields are filled with FFH and the CRC is automat­
ically generated and .appended. The sector extension 
bit in the SOH register should not be set. After the last 
sector is written the track is filled with 4EH. 

&-589 

Figure 14. Scan 10 C~mmand Flow 

210446-002 



inter 82062 

FORMAT COMMAND 
SECTOR BUFFER CONJ"ENTS 

SECTOR LOCICAL 
BUFFER BAD SECTOR 

ADDRESS BLOCK? NUMBER 

00 00 00 
02 00 10 
04 00 01 
06 00 11 
08 00 02 
OA 00 12 . 
DC 00 03 
DE 00 13 
10 80 04 
12 00 14 
14 00 05 
16 00 15 
18' 00 06 
lA 00 16 
lC 00 07 
lE 00 17 
20 00 08 
22 00 18 
24 DO 09 
26 00 19 
28 00 OA 
2A 00 lA 
2C 00 DB 
2E 00 1B 
30 00 DC 
32 00, 1C 
34 00 00 
36 00 10 
38 00 DE 
3A 00 lE 
3C 00 OF 
3E 00 IF 
40 FF FF 

FO FF FF 

. Figure 15 

'DFI~LD 
A1 '" A1H with OAH clock 

IDENT " MSB of Cylinder Number 
FE '" 0·255 Cylinders 
FF = 256-511 Cylinders 
Fe" 512-767 Cylinders 
FD" 768-1023 Cylinders 

SDH BYTE" 81ts 1 1, 2 ~ Head Number 
811s3.4=O 
Bits 5, 6 '" Sector Size , 
Btl 7 " Bad Block Mark 

Sec 1/ = Logical Sector Number 

The Gap 3 value is determined by' the drive motor 
speed variation, data sector length, and the interleave 
factor, The interleave factor is only important when 
1:1 interleave is uSed. The formula for determining the 
minimum Gap 3 length value is: 

Gap 3 = (2 * M * S) + K + E 

M = motor speed variation (e.g., 0.03 
for±.3%) 

S = sector length in bytes 

K = 25 for interleave factor of 1 

K = 0 for any other interleave factor 

E = 7 if the sector is to be extended 

Like 1111 commands, a WR FAULT or drive not ready 
condition will terminate execution of the WRITE 
FORMAT command. Figure 16shows the format that 
the 82062 will write on the disk. 

A flowchart of the WRITE FORMAT command is 
shown in Figure 17. 

DATA FIELD ----::l 

USER DATA 

DATA FtELO 
Al " A1H with OAH clock 
Fa " Data Address Mark. Normal clock 

USER" Data Field 128 to 1024 Bytes. 
NOTES 
1 GAPl and 3 length de~rmtned by sector number register contents dUring 

formatting , 
2 If EXT pIt In SOH reg'lster IS set to 1 then an additIOnal 7 data bytes are Written, , 

no CAC bytes are written 

Figure 16. 'n'ack Format 

210446·002 



inter 

SET ABORTED 
COMMAND BIT 

WG_ 
PULSE BCR 
SETINTRQ 

RESET BUSY, C,IP 

82062 

YES 

Figure 17. Write FormatComman~ Flow 

·6:"591 210446-002 



82062· 

ELECTRICAL CHARACTERISTICS 
ABSOLUTE MAXIMUM RATINGS· 

.Ambient Temperature Under Bias ..• O°C to 70°C 
Storage Temperature .........• -65°C to +150°C 
Voltage on any pin with . 

respect to GND ...•............. -0.5V to + 7V 
Power Dissipation ....•.•..........•.... 1.5 Watt 

• NOTICE: Stresses above those listed under 
. "Absolute Maximum Ratings" may cause perma­

nent damage to the device. This.is a stress rating 
qnly anp fl.!nction~1 operation of thfJ deviceat these 
or any other conditions above those indicated in , 
the operational sections of this specification is 
not implied. Exposure to absolute maximum rating 
conditions for exten.ded periods may affect device 
reliability. 

D.C. CHARACTERISTICS,(TA =.O°C to 70°C; VCC = +5V ± 10%; GND = OV) 

SYMBOL PARAMETER MIN MAX UNIT . TEST CONDITIONS 

IlL Input Leakage Current 10 f.lA VIN = Vee 

IOFL Output Leakage Current 10 f.lA Your = Vee 

VIH Input High Voltage 2.0 V 

VIL Input Low Voltage 0.8 V 

VOH Output High Voltage 2.4 V IOH = 100uA 

. VOL Output Low Volta~e 0.45 V IOL = 1.6mA 
4.8mA P21,22,23 

Icc Supply Current , 250 rnA All Outputs Open 

CIN Input Capacitance 10 pF fc = 1 MHz 

ClIO '1/0 Capacitance 20 pF . Unmeasured pins returned 
to GND 

For Pins 25,34,37,39 

V1H Input High Voltage 4.6 V 

VIL Input Low Voltage 0.5 V 

TRS Rise Time 30 ns 10% to 90% points 

A.C. CHARACTERISTICS (TA = O°C to 70°C; Vce = +5V ± 10%; GND = OV) 

HOST READ TIMING 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 

1 Address Stable Before RDI ' 100 . ns 

2 Data Delay From RDI 375 ns 

3 RD Pulse Width 0.4 10 ns 

4 RD to Data Floating 20 200 ns 

5 Address. Hold Time after RD! 0 ns 

6 Read Recovery Time 300 ns 

7 CS Stable before RD 0 ns 

6-592 

--

210446-002 



inter \ , 82062 

HOST WRITE TIMING 

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS 
8 Address Stable Before wm 0 10 ps 

9 CS Stable Before WRI 0 10 ps 
10 Data Setup Time Before WRt 0.2 ps 
11 WR Pulse Width 0.2 10 " ps 
12 Data Hold Time After WAt 10 ns 

13 Address Hold Time After WRt 30 ns 

14 CsHoid Time AfterWR't 0 ns 

15 Write Recoverv Time 1.0 us 

I 

BUFFER READ TIMING (WRITE SECTOR COMMAND) 

SYMBOL PARAMETER MIN TVP MAX UNIT TEST CONDITIONS 

16 AD Float to RD valid 15 100 ns CL = 50pF 

17 RD Output Pulse Width 300 400 500 . ns See Note 3 

18 Data Setup to Rot 140 ns 

19 Data Hold from Rot 0 ns 

20 R'6' Repetition Rate 1.2 1.6 2.0 ps See Note 1 

21 AD Float from BeSt 100 ns CL = 50pF 

~~~--~------~,~ 
JID----"
(OUTPUT)

;xxx
..... ----@-----.I

6-593 210446-002

82062

BUFFER WRITE TIMING (READ SECTOR COMMAND)

SYMBOL PARAMETER'
,

MIN TYP MAX UNIT nST CONDITIONS

22 Wf!i Float to ViiR Valid 15 100 ' 'ns' CL = 50pF

23 WR Output Pulse Width 300 400 500 ns See Note:,3

24 Data Valid from WRI, , 110 ns

25 Data Hold from iNAt 60' ns

26 iit71=i Repetition Rate 1.2 1.6 2.0 JJs See Note 1

27 WR Float from BCSt 15 100 ns CL = 50pF

':~~=----------~' ~
(OUTPUT)

OBO-7 -------+<! -;>------+-< OAT~ VALID
'------'--'

, 1'----- @ -----,--I .. ~,

MISCELLANEOUS TIMING

SYMBOL PARAMETER

28

29

30

31

32

33

34

35

36

37

BDRQ Reset from BRDY .

BRDY Pulse Width

BcR Pulse Width

STEP Pulse Width

, I~DEX Pulse Width

REm Pulse Width

~tto~
REsE'i'i Jo WR, CSI

WR CLOCK Frequency

RD CLOCK Frequency

STEP~
INDEX~

MIN

40

800

1:4

8.3

5000

24

1.6

6.4

0.25

0.25

TVP MAX UNIT TEST CONDITIONS

200 'ns

ns See Note 4

1.6 1.8 JJS See Note 1

8.4 8.7 JJS See Note 1

ns

WRCLK See Note 2

3.2 6.4 JJS See Note 1

JJS See Note 1

5.0 5.25 MHz 50% Duty Cycle

5.0 5.25 MHz 50% Duty Cycle
See Note 5

:~
WRCLOCK{ I ;' ' .J
RDCLDCK{ ~ .(

:

210446-002

82062

READ DATA TIMING

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

38 RD CLOCK Pulse Width 95 2000 ns 50"10 Duty Cycle

39 RD DATA after RD CLOCKI 0 T38/2 ns

40 RD DATA before RD CLOCK! 20 T38/2 ns

41 RD DATA Pulse Width 40 T38 ns

42 DR UN PUlse Width 30 ns

t ®=:1
AD DATA J "''---- t\ _________ -Jr-

.. -~~
AD CLOCK -1=®~ j-----""''' -----/

DAUN

WRITE DATA TIMING /

SYMBOL PARAMETER MIN TYP MAX UNIT TEST CONDITIONS

43 WR CLOCK Pulse Width 95 2000 ns

44 Propogation Delay
WR Cl.,OCK to WR DATA 10 65 ns

45 WR CLOCK to EARLY/LATEI 10 65 ns

46 WR CLOCK to EARLY/LATE! 10 65 ns

WA DATA _-+-J

WA~LOCK

EAAU--------------------------~ r:=®
F--__ ---Jl

6-595 219446-002

inter

A.C. TESTING JN~UT, OUTPUT WAVEFORM
INPUT'OUTPUT

AC TESTING: INPUTS ARE DRIVEN AT 24V FOR A LOGIC .1,
AND 0.45V FOR A LOGIC O. TIMING MEASUREMENTS ARE
MADE AT 20V FOR A LOGIC .1, ANDO 8V FOR A LOGIC .0

NOTES:
1. Based on WR CLOCK = 5.0 MHz.
2, 24 WR CLOCK periods = 4.8 JiS at 5,0 MHz,
3. 2 WR qLOCK periods ± 100 ns.

'82062

:

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER 1 CL=50pF

TEST

-=
CL=50pF

CL INCLUDES JIG CAPACITANCE

4. BRDY must be 4 Jis or a spurious BDRQ pulse may exist for up to 4 JiS after the rising ,edge of BRDY.
5. WR CLOCK Frequency = RD CLOCK Frequency ± 15%.
6. 2 WR CLOCK periods ± 50 ns.

6-596 , 210446-002

MICROPROCESSOR PERIPHERALS
UPI™ USEFJ'S MANUAL

\

APRIL 1982

6-597

CHAPTER 1
INTRODUCTION

Accompanying the introduction of microprocessors
such as the BOBO, B085, B088, and B086 there has been
a rapid proliferation of intelligent peripheral de­
'vic~s; '1hese special purpose peripherals extend
C~U performance and flexibility in a number of im­
portant ways.

Table 1·1. Intelligent Peripheral Devlcea

8255,(GPIO) Programmable Peripheral
Interface

8251A (USART)

8253 (TIMER)

8257 (DMA)

8259

8211;.(SQFDC),
8272 (DDFDC)
8273 (SDLO)

8274 '

8275/8276 (CRT)

8279 (PKD)

8291A, 8292, 8293

Programmable
Communication Interface
Programmable Interval Timer

Programmable DMA Controller

Programmable Interrupt
Controller

", PrOir~mable Floppy l)~k', ' '~.:: '.
ControlleJ,'S , , _
Progr_able Synchronous
Data Link Controller
Programmable Multiprotocol­
Serial Communications
Controller
Programmable CRT
Controllers
Progr8lI\lDabie
KeyboardlDisplay Controller
Programmable GPIB System
Talker, Listener, Controller

Intelligent. devices like the 8272 floppy disk control­
ler and 8273 synchronous data link controller (see
Table 1-1) can preprocess serial data and perform
control tasks which off-load the main system proces­
sor. Higher overall system throughout is achieved
and'l\oftware complexity is greatly reduced. The in­
telligent peripheral chips simplify master processor
control tasks by performing many functions exter­
nally in peripheral hardware rather than internally
in main processor software.

Intelligent peripherals also provide system flexibil­
ity. They contain on-chip mode registers which are
programmed by the master processor during system
initialization. These control registers allow the pe­
ripheral to be confIgured into many different oper­
ation modes. The user-defined program for the,
peripheral is stored in main system memory and is
transferred to the peripheral's registers whenever a
mode change is required. Of course, this type of
fl6xibility requires software overhead in the master
systell!. which tends to limit the benefIt derived from
the peripheral chip.

In the past, intelligent peripherals were designed to
handle very specialized tasks. Separate chips were

designed for comtnuI:1ication disciplines, parallel
I/O, keyboard encoding, interval timing, CRT con­
trol, etc. Yet, in spite of the large number of devices
available and the increased \ flexibility built into
these chips, there is still a large number of micro­
computer peripheral control tasks which are not
satisfIed.

With the introduction of the, Universal Peripheral
Interface (UPI) microcomputer, ~ntel has taken the
intelligent peripheral concept a step further by
providing an'intelligent controller that is fully user
programmable. It is a complete single-chip micro­
computer which can connect directly to a master
processor data bus. It has the s~me advantages of in­
telligllnce and flexibility which previous peripheral
chips offered. In addition, the UPI is user-

" 'programmable: it has 1K bytes of ROM or EPROM
memory for program storage plus 64 bytes of RAM
memory for data storage or initialization from the
master processor. The UPI device allows a designer
to fully sPecify his control algorithm in the periph­
eral chip without relying on the master processor.
Devices like printer controllers and keyboard scan­
ners can be completely self-contained, relying on the
master processor only for data transfer.

The UPI family currently consists offive components:

• 8741A microcomputer with 1K EPROM
memory

• B041AH microcpmputer with 1K ROM mem-
ory

• B042 microcomputer with 2K ROM memory
• 8243 I/O expander device
• 8742 microcomputer with 2K EPROM

memory

The 8741A, 8041AH, 8742 and 8042 single chip
microcomputers are functionally equivalent except
for the type and amount of program memory avail­
able with each. These devices have the following
main features:

• 8-bit CPU
• 8-bit data bus interface registers
• 1K by 8 bit ROM or EPROl\,ll memory (2K for

8042/8742)
• 64 by 8 bit RAM memory (128 bytes for

8042/8742)
• Interval timer/eveJlt counter
• Two 8-bit TTL compatible I/O ports
• Resident clock oscillator
• 12 MHZ operation, 1.25 p.88C instruction cycle

for B041AH, 8742, B042

INTRODUCTION

HOST
PROCESSOR

OAT A CONTROL
BUS BUS

ADDRESS
BUS

KEYBOARD

UPI-41AH,42 ~
PRINTER

Figure 1-1. Interfacing Peripheral. To Microcomputer Systems

HMOS processing has been applied to the UPI fam­
ily to allow for additional penormance and memory
capability while reducing costs. The 8041AH, 8741A,
8042, 8742 are all pin and software compatible. This
allows growth in present designs to incorporate new
features and add additional performance. For new
designs, the additional memory and performance of
the 8042/8742 extends the UPI 'grow your own solu­
tion' concept to more complex motor control tasks,
SO-column printers and process control applications
as examples.

The 8243 device is an I/O multiplexer which allows
expansion of I/O to over 100 lines (if seven devices
are used). All three parts are fabricated with N­
channel MOS technology and require a single, 5V
supply for operation.

INTERFACE REGISTERS FOR MUL TI­
PROCESSOR CONFIGURATIONS.
In the normal configuration, the 8041AH/8741A,
8042/8742 interfaces to the system bus, just like any
intelligent peripheral device (see Figure 1-1). The
host processor and the 8041AH/8741A, 8042/8742
form a loosely coupled mUiti~processor system, that
is, communications between the two processors are
direct. Common resources are three addressabl~ reg­
isters located physically on the 8041AH/87UA,
8042/8742. These registers are the Data.Bus' Buffer
Input (DBBIN), Data Bus Buffer Output
(DBBOUT), and Status (STATUS) registers. The
host processor may read data from DBBOUT or
write commands and data into DBBIN. The status
of DB BOUT and DBBINplus user-d-efined status is
supplied in STATUS. Tile hbiit may read STATUS

6-599

at any time. An interrupt to the UPI processor is
automatically generated (if enabled) when DBBIN
is loaded.

Because the UPI contains a complete microcom­
puter with program memory, data mem,ory, and
CPU it can function as a "Universal" controller. A
designer can program the UPI to control printers,
tape transports, or multiple serial communication
channels. The UPI can also handle off-line arithme­
tic processing, or any nlflIlber of other low speed con­
trol tasks.·

8041AH. 8042
MASK

PROGRAMMED
ROM

8141A,8742
ELECTRICALLY

PROGRAMMABLE
LIGHT ERASABLE

EPROM

FI~ure 1-2': Pin ComPatible ROM/EPROM Versions

INTRODUCT.ION

POWERFUl- 8-BIT PROCESSOR

The UPI contains a powerful, 8-bit CPU with as fast
as 1.25 ~sec cycle time and two single-level inter­
rupts. Its instruction set includes, over 90 instruc­
tions for 'easy software development. ~ost
instructions are single byte and single cycle and
none are more than two bytes long. The instruction
set is optimized for bit manipulation and I/O oper­
ations. Special instructions are inCluded to allow bi­
nary or BCD arithmetic Operations, table lookup
routines, loop counters, and N -way branch routines.

SPECIAL INSTRUCTION SET ,
FEATURES

• For Loop Counters:
Decrement Register and Jump if no~
zero.

• For Bit Manipulation:

•

•

AND to A (immediate data or Register)
OR to A (immediate data or Register)
XOR to A (immediate data or Register)
AND to Output Ports (Accumulator)
OR to Output Ports (Accumulator),
Jump Conditionally on any bit in A

For BDC Arith~etic:
Decimal Adjust A
Swap 4-bit.Nibbles of A
Exchange lower nibbles. of A and Register .

' Rotate A left or right with or without
Carry ..

For Lookup Tables: •
Load A from Page of ROM (Address in A)
Load A from Current Page of ROM
(Address in A)

Features for'Peripheral Control
The UPI 8-bit interval timer/event counter can be
used to generate complex timing sequences for con­
trol application!! or it can count external events such
as switch closures and position encoder pulses. Soft­
ware timing loops can be simplified or eliminated by
the interval timer. If enabled, an interrupt to the
CPU will occur when the timer overflows.

The UPI I/O complement contains two TTL-com­
patible 8-bit bidirectionalI/O ports and two general­
purpose test inputs. Each of the 16 port lines can
. individually function as either input or output under.
softwale,control. Four of the port lines can also func­
tion as an interface for the 8243 I/O expander which
provides four additional4-bit ports that are directly,
addressable by UPI software. The 8243 expander al-

- lows low cost I/O expansion for large control applica­
tions while maintaining easy and efficient software
port addressing.

P~3,/,-__ ",

P20

8041AH/8741A,
8042/8742

8243

PROG ~-----I

12110 LINES'

161/0 LINES

Figure 1-4. 82431/0 Expander Interface

, PERIPHERAL
CONTROL

OFF-UNE ARIT~METIC
PROCESSING' "

"';

Fllliure1-3. Inte!1ac .. And Protocol .. 'ForMultlpr~"sor Syst.J11,8 "

6-600

INTRODUCTION

On-Chip Memory
The UPI's 64 (128) bytes of data memory include
dual working register banks and an 8-level program
counter stack. Switching between the reg~ster banks
allows fast response to interrupts. The stack is used
to store return addresses .and processor status upon
entering a subroutine.

The UPI program memory is available in· two types
to allow flexibility in moving from design to proto­
type to production with the same PC layout. The
8741A, 8742 device with EPROM memory is very
economical for initial system design and develop­
ment. Its program memory can be electrically pro­
grammed using the Intel Universal PROM
Programmer. When changes are needed, tlie entire
program can be erased using UV lamp and
reprogrammed in about 20 minutes. This means the
8741A/8742 can be used as a single chip
"breadboard" for very complex interface and control
problems. After the 8741A/8742 is programmed it
can be tested in the actual production level PC
board and the actual functional environment.
Changes required during system debugging can be
made in the 87 41A/87 42 program much more easily
than they could be made in 11 random logic design.
The system configuration and PC layout can remain
fixed during the development process and the turn
around time between changes can be reduced to a
minimum. .

At any point during the development cycle, the
8741A/8742 EPROM part can be replaced with the
low cost 8041AH, 8042 respectively with factory
mask programmed memory. The transition from
system development to mass production is made
smoothly because the 8741A and 8041AH, 8742 and
8042 parts are completely pin compatible. 8742s or

6-601

8042s can be used in an 8041AH/8741 socket. This
feature allows extensive testing with the EPROM
part, even into initial shipments to customers. Yet,
the transition to low-cost ROM is simplified to the
point of being merely a package substitution.

PREPROGRAMMED UPI'.
The 8292, 8294, and 8295 are 8041A's that are pro­
grammed by Intel and sold as standard peripherals.
The 8292 is a GPIB controller, part of a three chip
GPIB system. The 8294 is a Data Encryption Unit
that implements the National Bureau of Standards
data encryption algorithm. The 8295 is a dot matrix
printer controller designed especially for the LRC
7040 series dot matrix impact printers. These parts
illustrate the great flexibility offered by the UPI
family.

DEVELOPMENT SUPPORT
The UPI microcomputer is fully supported by Intel
with development tools like the UPP PROM pro­
grammer already mentioned. An ICE-41A in-circuit
emulator is also available to allow UPI software and
hardware to be developed easily and quickly. The
combination of device features and Intel develop­
ment support make the UPI an ideal component for
low-speed peripheral control applications.

UPI DEVELOPMENT SUPPORT

• 8048/8041AH/8042 Assembler
• Universal PROM Programmer UPP Series
• ICE-41A Module
• MULTI-ICE
• Insite User's Library
• Application Engineers
• Training Courses

CHAPTER 2
FUNCTIONAL DESCRIPTION

The UPI-41AH, 4/! microco~puter is ~'intelligent
peripheral controller designed to operate. in iAPX-
86, 88, MCS-85, MCS-80, MCS-51 and MCS-48 sys­
tems. The UPI'S architecture, illustrated in Figure
2-1, is based on a low cost, single-chip microcom".
puter with progr~m memory, data memory, CPU,
I/O, event timer and clock oscillator in a single 40-
pin package. Special interface registers are included
which enable the UPI to function as a peripheral to
an 8-bit master processor.

This chapter provides a basic description of the UPI
microcomputer and its system interface registers.
Unless otherwise noted the descriptions in this sec-

I CLOCK

1 1
8-BIT CPU

I
J

8-BIT
DATA BUS

INPUT REGISTER

l'

1

1024 X 1;1\'2048 X 8
PROGRAM
MEMORY

(ROM/EPROM)

j I
11
8-BIT

DATA BUS
OUTPUT REGISTER

II

SYSTEM
INTERFACE

tion apply to both the 8741A, 8742 (with UVeras­
able program memory) and the 8041AH, 8042 (with
factory mask programmed memory); These two de­
vices are so similar that they can be considered iden­
tical under most circumstances. All functions
described in this chapter apply to the 8041AH; 8042,
and 8741A, 8742. .

PIN DESCRIPTION
The 8041AH/8741A, 8042/8742 are packaged in 40-
pin Dual In-Line (DIP) packages. The pin configu­
ration for both devices is shown in Figure 2-2. Figure
2-3 illustrates the UPI Logic Symbol.

64 X 8,128 X 8
DATA MEMORY

J l
II
8·81T

STATUS
REGISTER

II

,

8-BIT
TIMER/ COUNTER

18
I/O LINES

'v

PERIPHERAL INTERFACE
AND

1/0 EXPANSION

Figure 2·1. UPI-41AH, 42 Single Chip Microcomputer

6-602

FUNCTIONAL DESCRIPTION

TEST 0 Vcc

XTAl1 TEST1

XTAL2 P27/0ACK

ReSeT P26 /0RQ
PROGRAM

55 P25 / iiiF PROM
+sv GND

Cs P24!OBF

EA P17

iii) P16
ponT #1

AO P15

jWR P,.
PORT #2

DATA
SYNC P'3 BUS BUFFER

INTERFACE
DO P12 { ,,~ Dl P11 COf'lTROL WRITE

D2
INTERFACE CONTROLI

PlO DATA

D3
CHIP SELECT

VDD

D. PRoo

D5 P23

06 P22

D7 P21

VS5 P20

Figure 2-2. Pin Configuration Figure 2-3. Logic Symbol

The following section summarizes the functions of
each UPI-41A pin. NOTE that several pins have two

or more functions which are described· in separate
paragraphs. .

Table 2-1. Pin Description

Symbol Pin No. Type Name and Function

DO-D7 12-19 I/O Data·Bus: Three-state, bidirectional DATA BUS BUFFER lines used to interface the
(BUS) UPI-41AH, 42 microcomputer to an 8-bit master system data bus.

PlO-P I7 27-34 I/O Port 1: 8-bit, PORT 1 quasi-bidirectional I/O lines.

P20-P27 21-24 I/O Port 2: 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower 4 bits (P20-P23) inter-
35-38 face directly to the 8243 I/O expander device and contain address and data information

during PORT 4-7 access. The upper 4 bits (P24-P27) can be programmed to provide
interrupt Request and DMA Handshake capability. Software control can configure P24
as Output Buffer Full (OBF) interrupt, P25 as Input Buffer Full (IBF) interrupt, P26
as DMA Request (DRQ), and P27 as DMA ACKnowledge (DACK).

WR 10 I Write: I/O write input which enables the master CPU to write data and command
words to the UPI-41A INPUT DATA BUS BUFFER.

.RD 8 I Read: I/O read input which enables the master CPU to read data and status words
from the OUTPUT DATA BUS BUFFER or status register.

CS 6 I Chip Select: Chip select input used to select one UPI-41AH, 42 microcomputer out of
several connected to a common data bus.

AO 9 I Command/Data Select: Address input used by the master processor to indicate
whether byte transfer is data (AO=O) or command (AO=I).

TEST 0, 1 I Test Inputs: Input pins which can be directly tested using conditional branch instruc-
TEST 1 39 tions.

Frequency Reference: TEST 1 (Tl) also functions as the el(ent timer input (under
software control). TEST 0 (TO) is used during PROM programming and verification in.
the 8741A, 8742.

FUNCTioNAL DESCAIPnON'

Table 2-1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

XTAL1, 2 I Inputs: Inputs for a crystal, LC or an external timing signal to determine the internal
,XTAL2 3 oscillator frequency.

SYNC 11 0 Output Clock: Output signal which occurs once per UPI-41A instruction cYLie. SYNC
can be used as a strobe for external circuitry; it is also used to synchronize single step
operation. '

EA 7 I External Access: External access input which allows emulation, testing and PROM/
ROM verification.

PROG 25 I/O ,Program: Multifunction pin used as the program pulse input during PROM program-
ming.

During I/O expander acc;:ess the PROG pin acts as an address/data strobe to the 8243.
RESET 4 I Reset: Input,used to reset status flip-flops and to set the program counter to zero.

I

RESET is also used during PROM programming and verification.
SS 5 I Single Step: Single step input used in conjunction with the SYNC output to step the

program through each instruction.

VCC. 40 Power: +5V main power supply pin.

VnD 26 Power: +5V during normal operation. +25V during programming operation, +21 V for
programming 8742. Low power standby pin in ROM version.

VSS 20 , Ground: Circuit ground potential.

The following sections provide a detailed functional
description of the UPI microcomputer. Figure 2-4 il-

lustrates the functional blocks within the UPI de­
vice.

......
I

""'"'ACE

CRYSTAL,

lie::

..
iii
Ci,
Ao

{
T"-"

XTAU

-

POWE. {= ==:-': SlMlY

VSS_GAOI.WD • .

... TA -
lEG 1Afl(1

STA'"
lIeGBANkO

1KX8.2Klf8
PROM AOM ' "

PROGRAM
MeMOA,'

Figure 2-4. UPI-41AH, 42TM Block Diagram

6-604

I/o P10--, '"

AESIDIi!NT
64xa"aaX8

.... -ACCESS .. -
-.........

'/0 """. '20-..,
PORte-, ... -_ACE

... sro

..... ,

...,.
• .->1

E

FUNCTIONAL DESCRIPTION

CPU SECTION
The CPU section of the UPI-41AH, 42 micro­
computer performs basic data manipulations and
controls data flow thtoughout the single chip com­
puter via the internal8-bit data bus. The CPU sec­
tion includes the following functional blocks shown
in Figure 2-4:

• Arithmetic Logic Unit (ALU)
• Instruction Decoder
• Accumulator
• Flags

Arithmetic Logic Units (ALU)
The ALU is capable of performing the following op­
erations:

• ADD with or without carry
• AND, OR, and EXCLUSIVE OR
• Increment, Decrement
• Bit complement
• Rotate left or right
• Swap
• BCD decimal adjust

In a typical operation data from the accumulator is
combined in the ALU with data from some other
source on the UPI-41AH, 42 internal bus (such as a
register or an I/O port). The result of an ALU oper­
ation can be transferred to the internal bus or back
to the accumulator.

If an operation such as an ADD or ROTATE re­
quires more than 8 bits, the CARRY flag is used as
an indicator. Likewise, during decimal adjust and
other BCD operations the AUXILIARY CARRY
flag can be set and acted upon. These flags are P8rt
of the Program Status Word (PSW).'

Instruction Decoder
During an instruction fetch, the operation code (op­
code) PQrtion of each program instruction is stored
and decOded by the instruction decoder. The de­
coder genera~s ou.tputs used along 'Yith various tim­
ing signals to control the functions performed in the
·ALU. Also, the instruction decoder controls the
source and destination of ALU data.

AcculRulator
The accumulator is the single most important regis­
ter in the processor. It is the primary source of data
to the.ALU and is often the destination for results as
well. Data to and from the I/O ports and memory
normally passes through the· accumulator. . .

PROGRAM MEMORY
The UPI-41AH, 42 microcomputer has 1024, ~048 8-
bit words of resident, read-only memory for program

storage. Each of these memory locations is directly
addressable by a 10-bit program counter. Depending
on the type of application and the number.of pro­
gram changes anticipated, two types of program
memory are available: .

• 8041AH, 8042 with mask programmed RO~
Memory .

• 8741A, 8742 wit~ electrically programmable
EPROM Memory

/
The 8041AH and 8741A, 8042 and 8742 are iuhction­
ally identical parts and are completely pin compati­
ble. The 8742 and 8042 can be used in 8041AH,
8741A sockets. The 8041AH, 8042 has ROM memory
which is mask programmed to user specification
during ·fabrication. The 8741A/8742 are electrically
programmed by the user using the Universal PROM
Programmer (UPP series) with a UPP-848 or UPP-
549 Personality Card. It can be erased using
ultraviolet light and reprogrammed at any time.

A program memory map is illustrated in Figure 2-5.
Memory is divided into 256 location 'pages" and
three locations are reserved. for special use:

{ .DO
PAGE?

17

7 ..
{ '7

PA~E •. ,.
. , ..

{
'536

PAGE. ,. eo

{ " PAOE4 ,.
79

••
{

'02
PAGE 3 7

3 ..
PAOEI { :

87

,.
PAGE1 { :

11

56 • 55

8

:!.
PAOlO 8

• • •
• ,
• 7

ADDRESS'

8 5 • • • , •

f 004'
8742

,8041AH,
8741A

~7-_
VECTORS

PROGRAM HEAE

LOCATION 3-1BF

=:r~:-roRS "
LOCATION 0 - RESET
VECTORS
_AU HERE

PROGftAM MEYORY MAP

Figure 2-5. PrOgram Memory Map
'I, ;

INlERRUPT VECTQRS
1) Location 0 ,

1).605'

, Following a'RESET input to the proce&sor,.tl,l.e
next instruction is. automatically fetcjled from
location O. .

FUNCnONAL'DE8eRIPTION

2) , , Location 3
, An interrupt generated by an !nlNt Buffer Full

, :·(IBF) condition (when the IBF'interrupt is en­
abled)'Causes the next instruction ,to be fetched
from location 3.

3) Location 7'
A timer overflow interrupt (when enabled) will
cause the next instruction to be fetched from lo­
cation 7.

Following a system RESET, program execution be­
gins at location O. Instructions in program memory
are normally executed'sequentially. Program control
can be transferred out of the main line of code by an
input buffer full (IBF) interrupt or a timer inter­
rupt, or when a jump or call instruction is encoun­
tered. An IBF interrupt (if enabled) will
'automatically transfer control to location 3 while a
timer intetrupt will transfer control to location 7.

All conditional JUMP instructions and the indirect
JUMP instructi~~ are limited in rang!! to the current
256-location page (that is, they alter PC bits.O-7
only). If a conditional JUMP or indirect JUMP be­
gins in location 255 of a page, it must reference a des­
tination on the following ·page.

Program memory can be used to' store constants as
'well as program instructions. The UPI-41AH, 42 in- ,
struction set contains an instruction (MOVP3) de­
signed specifically, for efficient transfer of look-up
table information from page 3 of memory.

DATA MEMORY'
The UPI-41AH, 42 universal peripheral interface
has 64, 128 8-bit words of random access data mem­
orY. This memory contains two working register
banks, an 8-level program counter stack and a
scratch pad memorY, as shown' in Figure 2.-6. The
'amount of scratch pad memory available is variable
depending on the number of addresses nested in the
stack and ,the n~ber of working registers being
used.

Addressing Data M~morY
The first e~ht locations in ~ are designated as
.working registers Ro-R7; These locations (or regis­
ters) ~an,be addressed directly by specifying a regis­
ter number in the instruction.' Since these locations
are easilya~dre~d! they ~~ generally used to store
frequently accessed intermediate results. Other lo­
cations in data memory are ad~ressed indi,rectly by
using Ro or Rl to specify the desired address. Since
all RAM locations (including the eight working reg"
isters) can be adaressedby 6:bits, the tw6 most sig­
nificant'bits'(6 and 7)ofthe addressing registers are
ignored. '

'27

8042
USER RAM

64X'S

84
83

USER RAM
32X8

32

I 3'
BANK 1

WORKING DIRECTLY
REGISTERS ADDRESSABLE

axs WHEN BANK 1
IS SELECTED

-------RV-------- ~ '/
24 -------Rtr--------
23

ADDRESSED
INDIRECTLY

8 LEVEL STACK THROUGH
DR R,CARD

USER RAM IRQ' DR R,')
16 xs

s

~ 7
BANKO

WORKING DlREcnv
REGISTERS ADDRESSABLE axa WHEN BANK 0

-------R1-------- IS SELECTED

-------RO-------- I
Flgur. 2·6. Data Memory Map

Working Registers
Dual banks of eight working registers are included in
the UPI-41AH, 42 data memory. Locations 0-7
make up register b~and locations 24-31 form
register bank 1. A RESE'r signal, automatically se- .
lects register bank O. When bank 0 is selecte'4"
references to Ro-R7 in UPI-41AH, 42 instructions
operate on locations 0-7 in data memory. A "select
register bank" instruction is used to select between
the banks during program execution. If the instruc­
tion SEL RBI (Select Register Bank 1) is ~xecuted,
then program references to Ro-R7 will operate' on
locations 24-31. As stated previously, registers'O and
1 in the active register bank are used as indirect ad­
dre,ss re~isters for all locations in data me~ory.

Register bank 1 is normally reserved for handling ill­
terrupt service routines, thereby preserving the con­
tents of the main program registers. The SEL RBI
instruction can be issued at the beginning of an in­
terrupt service, routine. Then, ~pon return to the
main: program, lan ,RETR (return & restore status)
instructioB will automatically restore the previously
selected bank. Dunng :interrupt processing, registers
in bank 0 can be accessed indirectly using Ro' and
R~ ,"

It register bank 1 is not used, re~sters 24-31, «&n still
serve as additional scratch pad memory.

FUNCTIONAL DESCRIPTION

Program Counter Stack
. RAM locations 8-23 are used as an 8-level program
counter stack. When program control is temporarily
passed from the main program to a subroutine or in­
terrupt service routine, the lO-bit program counter
and bits 4-7 of the program status word (PSW) are
stored in two stack locations. When control is 're­
turned to the main program via an RETR instruc­
tion, the program counter and PSW bits 4-7 are
restored. Returning via an RET instruction does not
restore the PSW bits, however. The program counter
stack is addressed by three stack pointer bits in the
PSW (bits 0-2). Operation of the program counter
stack and the program status word is explained in
detail in the following sections.

The stack allows up to eight levels of subroutin~
'nesting'; that is, a subroutine may call a second sub­
routine, which may call a third, etc., up to eight lev­
els. Unused stack locations can be used as scratch
pad memory. Each unused level of subroutine nest­
ing provides two additional RAM locations for gen-
eral use. I

The following sections provide a detailed descrip­
tion of the Program Counter Stack and the Program
Status Word.

PROGRAM COUNTER
The UPI-4lAH, 42 microco!Dputer has a 10-bit pro­
gram counter (PC) which can directly address any of
the 1024 locations in program memory. The program
counter always contains the address of the next in­
struction to be executed and is normally incre­
mented sequentially for each instruction to be
executed when each instruction fetches occurs.

When control is temporarily passed from the main
program to a subroutine or an interrupt routine,
however, the PC contents must be altered· to point to
the address of the desired routine. The stack is used

_ to save the current PC contents so that, at the end of
the routine, main program execution can continue.
The program counter is initialized to zero by a
RESET signal.

PROGRAM COUNTER STACK
The Program Counter Stack is composed of 16 loca­
tions in Data Memory as illustrated in Figure 2-7.
These RAM locations (8 through 23) aI'e used td
store the 10-bit program counter and 4 bits of the.
program status word.

An interrupt or CALL to a subroutine cause~ the
contents of the program counter to be stored in one
of the 8 register pairs of the program counter s,tack.

STACK
POINTER

11 1

110

10 1

100

01 1

010

00 1

000

MSS

PSW(407)

PC(4-7)

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I Pe(s·g)

I PC(<>3)

DATA
MEMORY

LOCATION

23

22

21

20

19

18

17

16

15

14

13

12

11

10

LSB

Figure 2-7. Program Counter Stack

A 3-bit Stack Pointer which is part of the Program
Status Word (PSW) determines the stack pair to be
used at a given time. The stack pointer is initialized·
by a RESET signal to OOH which corresponds to
RAM locations 8 and 9.

The first call or interrupt results in the program
counter and PSW contents being transferred to
RAM locations 8 and 9 in the format shown in Figure
2-7. The stack pointer is automatically incremented
by 1 to point to locations 10 and 11 in anticipation of
another CALL.

Nesting of subroutines within subroutines can con­
tinue up to 8 levels without overflowing the stack. If
overflow does occur the deepest address stored (lo­
cations 8 and 9) will be overwritten and lost since the
stack pointer overflows from 07H to OOH. Likewise,
the stack pointer will underflow from OOH to 07H.

The end ot a subroutine is signaled by a return in­
struction, either RET or RETR. Each instruction
will automatically decrement the Stack Pointer and
transfer the contents of the prdper RAM register
pair to the Program Counter.

PROGRAM STATUS WORD
The 8-bit program status word illustrated in Figure
2-8 is used to store general information about pro­
gram execution. In addition to the 3~bit Stack

S..e07

FUNCTlO~ PESCRIPTlQN

SAVED IN STACK STACK POINTER
I I

cv I AC I FO BS S. S, I So I
MSB LSB

Figure 2-8. Program Status Word

Pointer discussed previously, the PSW includes the
following flags:

• Cy - Carry
• AC - Auxiliary Carry
• FO - Flag 0
• BS - Registet Bank Select

The Program Status Word '(PSW) is actually a col­
lection of flip-flops lOcated throughout the machine
which are read or written as a whole. The PSW can
be loaded to or froni the accumulator by the MOV A,
PSW or MOV PSW,A instructions. The ability to
write directly to the PSW allows easy restoration of
machine status after a power-down ~uence.

The upper 4 bits of the PSW (bits 4, 5, 6, and 7) are
stored in the PC Stack With ~very subroutine CALL
or interrupt vector. Restoring the bits on a return is
optional. The bits are restored if an RETR instruc­
tion is executed, but not if an RET is executed.

PSW bit .definitions are as follows:
• Bits 0-2 Stack Pointer Bits So, S1, S2
• Bit 3 Not Used
• Bit 4 Working Register Bank

0= BankO
1 = Bank 1

• Bit 5 Flag 0 bit (FO)
This is a general purpose flag
which can be cleared or comple-

• Bit6

• Bit 7

mented an.d tested with condi~
tional jump instnictions. It may

, be useq, <Juring data transfer to "
an external processor. ' '

Auxiliary Carry (AC)
The flag status is determined by
an ADD instruction and is used
by the Decimal Adjustment in­
struction DAA.

Carry (CY) ,
The, flag indic~tes that a previous
operation resulted in o,verflow of
'the accumulator.

CONDITIONAL BRANCH LOGIC
Conditional Branch Logic in the UPI-41AH, 42 al­
lows the status of various processor flags, inputs, and
other hardware functions to directly affect program
execution. The status is sampled in state. 3 of the
first cycle. ,

Table 2-2 lists the internal conditions which are test­
able and indicates the condition which will cause a
jump. In all cases, the destination ¢dress must be
within the page of program memory (256 locations)'
in which the jump instruction occurs.

OSCILLATOR AND T!MING CIRCUITS
The 8041A's internal timing generation is controlled
by a self-contained oscillator and timing circuit. A
choice of ~stal, L-C or external clock can be used to
derive the basic QScillator frequency.

The resident timing circuit consists of an oscillator,
a state counter and a cycle counter as illustrated in
Figure 2-9. Figure 2-10 shows instruction cycle
timing.

Table 2-2. Conditional aranch instructions

Jump condlilo,n
Device Instruction Mnamonlc Jump If:

Accumulator JZ addr All bits zero
JNZ . addr Any bit not zero

Accumulator bit JBb addr Bit "b" "! 1
Carry flag JC addr I Carry flag = 1

JNC addr Carry flag .. 0
User flag JFO addr FO flag = 1

.' JFl addr Fl flag = 1
Timer flag JTF addr ' Timer flag .;. 1
Test Input 0 JTO addr TO = 1

JNTO ' ! addr TO=O
Test Input 1 JTl addr Tl = 1

JNTl addr ,Tl =0
Input Buffer flag JNmF addr ' , mFflag = P
Ou~put Buffer flag JOBF addr OBF flag .. 1

6-608

FUNCTIONAL DESCRIPTION

SYNC
I-""?-+- OUTPUT

(2.5 Jlaec)

INTERNAL TIMING

Figure 2·9. OecIllator Configuration

Oscillator
The on-board oscillator is a series resonant circuit
with a frequency range of 1 to i2 (8041AH~2/
8042/8742) MHz. Pins XTAL 1 andXTAL 2 are in~'
put and output (respectively) of a high gain ampli­
fier stage. A crystal or inductor and capacitor
connected between XTAL 1 and XTAL 2 provide
the feedback and proper phase shift for oscillation.
Recommended connections for crystal or L-e are
shown in Figure 2-11.

SYNC ______ ... I"l ... ______ _
2.5 IlHC CYCLE

I S. 51 S2 S3 I S4 I S. Sl

I INPUT DECOOE EXECUTION
INPUT

INST. INST.

OUTPUT ADDRESS ,INC. PC OU1PUT ADDRESS

I I I I I

Figure 2·10. instruction Cycle Timing

State Counter
The output of the oscillator is divided by 3 in the
state counter to generate a signal which defines the
state times of the machine.

Each instruction cycle consists of five states as illus­
trated in Figure 2-10 and Table 2-3. The overlap of
address and execution operations illustrated in Fig­
ure 2-10 allows fast instruction execution.

Table 2·3.' Instruction Timing Diagram
CYCLE 1 CYCLE 2

,
INSTRUCTION

SI 52 S3 S4 55 SI 52 S3 S4 55

IIA,Pp FIIICh - - mremonl - - _PorI' - - -InSIIUcIion Program Cotmr Tiner

OUTL Pp.A
' Felch - - mremonl 0UIpuI - - - - -InoIrucIIon Program Cotmr TImfr To PorI

ANI. Pp, DATA Felch - - mremonl _PorI Felch - ""'-' 0UIpuI -InsIruCIIon Program Cotmr TImfr _Dell Progrem Cotmr To PorI

OAL Pp, DATA FelCh mr_ - mr..- _PorI Felch - - 0uIpuI -InsIrucIIon Progrem Cotmr TImfr _Dell ProgramCOIIII8! To Pori

UOw'A,Pp Felch mr..- 0UIpuI IncremenI - - Read - - -InsIruCIIon ProgremCounier OpcodeIAddress TImfr P2 Lower

UOIIDpp,A Felch - 0UIpuI mr 0UIpuI Dell - - - - -InsIruCIIon ' Program Counlel OpcodeIAddress TImfr ToP2l.ow«

ANLD Pp,A Felch mr..- ',OUIpuI Incremenl 0UIpuI - - - - -InSIIUcIion Program Cotmr Opcode/Address TImfr Dell

OALD Pp.A Felch IncremenI 0UIpuI _I 0UIpuI - - - - -InsIruCIIon Progrem Cotmr OpcodeIAddress TImfr Dell

J(CondIIioneI) , Felch Increment Semple Incremonl - Felch - Update - -InsIrucIIon Program CounIer CondIIon TImfr _Dell Program COUIIIeI

MPVSTS: A FelCh mr..- - Incremenl Upd8Ie
InsInrcIIon ~Cotmr TImfr SIeIuIRegieIer

,INA,DBB Felch
_menI

- mromenl -InsIrucIIon Progrem CounIer Tiner

OUT DBB,A FelCh - - mr 0UIpuI
InsInrcIIon Program CounIer TImfr To PorI

STRT T Fetch mr_ S1ar1 - -STHT CHT InSIIUcIion ProgremCotmr Cotmr

STOP TCNT FelCh - - - Slop
Insliucllon' Program CounIer' Counlel

EN I Felch mromenl - Eneille -ilslrtrClion ProgremCOUllIel InIem!>I

DIS I Felch mr,omenl - Disable -InsIrucIIon ProgremCounler InIem!>I

EN lIMA Felch lnCI'ement' . - lIMA Enabled -InSIIUcIion Progrem Cotmr OlIO Cleared

EN fLAGS Felch IncremenI - DBF, iii' -InsIrucIIon Program COUIIIeI 0UIpuI Enabled

6-609

FUNOTI0NAL'DESCRIPTION

'" "

r 20 pF
2

XTAL 1

~
XTAL 1 ' '"

a041A,H J 8041AK
,

'3 8741A - ! L
8741A

8042 8042
8742 1 8742

, ± "~'25P~
xtAL.2 ~OpF

3 XTAL,2,

Figure 2-11. Recommended Crystal and L-C Connections

, Cycle Counter

The output of the state counter is divided by 5 in the
cycle counter to generate It signal which defines a
machine cycle. This signal is call SYNC and is avail­
able continously on the SYNC output pin. It can be
used to synchronize external circuitry or as a general
purpose clock output.Jt is also used for synchroniz­
ing single-step.

Frequency Reference
The external crystal provides high speed and accu­
rate timing generation. A crystal frequency of 5.9904
MHz is useful for generation of standard communi­
cation frequencies by the 8041AH/8741, 8042/8742.
However, if an accurate frequency reference and
maximum processor speed are not required, an in­
ductor and capacitor may be used in place afthe cry­
stal as shown in Figure 2cll.

A recommended ral)ge of inductance and capaci­
tance combinations is given below:

• L '" 130 ~H corresponds to 3 MHz
• L "" 45 ~H c~rresponds to 5 MHz

+5V

+5V

L-~<>-+--I XTAL 2

STANDARD TTL OR
OPEN COLLECTOR

Figure 2-12. Recommended Connection
For External Clock Signal

An' external clock signal can also be used as a fre­
quency reference to the 8741AH, 8741A, 8142 or
8042; however, the levels are not TTL compatible.
The signalIJlust be.in the 1-1~ MHz ,frequency range
and must be copne<;ted to pins XTAL 1 and XTAL,2
by bUf(e;J;'s with a suitable pull~~p resistor to gullran­
tee, that.a logic "1" is above 3.8 volts. Therecom­
mended connection i~ sho~1) in Figure 2-12:

INTERVAL TIMER/EVENT COUNTER .
The 8041AH, 8042 has a resident 8-bit timer/
counter which has several software selectable modes
of operation. As an interval timer, it can generate ac­
curate delays from 80 microseconds to 20.48 milli­
seconds without placing· undue burden on the,
processor. In the counter mode, external events such,
as switch closures ortacholIleter pulses can be
counted and used to direct program flow.

\ Timer Configuration
Figure 2-13 illustrates the basic timer/counter con­
figuration. An 8~bit register is used to count pulses
from either the internal clock and prescaler or from
an'exte,rnal source. The' counter is presettable and
readable with two MOV instructions which transfer
the c6ntents, of ,the accumulator to the,co"\1nter and
vice-versa (Le. MOV.T, A and MOV A, T). The'

_ counter is stopped by a RESET or STOP TCNT in­
struction and remains stopped until rest~ed either
as a timer (START T instruction) or as a counter
(START CNT instruction). Once started, the
counter will increme,llt to its maiimum ,count (FFH)
and overflow to zero con:tinuing its, count until
stopped by a STOPTCNT, instruction or RESET.

The increment from maximum count to zero (over­
flow) results in setting the Timer Flag '(TF) and gen­
erating .an interrupt request. The state of the
overflow flag .is testable. with the conditi6nal jump

6-610

FUNCTIONAL DESCRIPTION

EXTERNAL
INPUT n TEST 1

TIMER

--l I..- COUNTER

o
STOP

PRESCALER
(+ 32)

XTAL 1

a-8IT
COUNTER

XTAL2

OSCILLATOR

Figure 2·13. Timer Counter

instruction, JTF. The flag is reset by executing a
JTF or by a RESET signal.

The timer interrupt request is stored in a latch and
ORed with the input buffer full interrupt request.
The timer interrupt can be enabled or disabled inde­
pendent of the IBF interrupt by the EN TCNTI and
DIS TCTNI instructions. If enabled, the counter
overflow will cause a subroutine call to location 7
where the timer service routine is stored. If the timer
and Input Buffer Full interrupts occur simulta­
neously, the IBF source will be recognized and the
call will be to location 3. Since the timer interrupt is
latched, it will remain pending until the DBBIN reg­
ister has been serviced and will immediately be rec­
ognized upon return from the service routine. A
pending timer interrupt is reset by the initiation of a
timer interrupt service routine.

Event Counter Mode
The STRT CNT instruction connects the TEST 1
input pin to the counter input and enables the
counter. Note this instruction does not clear the
counter. The counter is incremented on high to low
transitions of the TEST 1 input. The TEST 1 input
must remain high for a minimum of one state in or­
der to be registered (250 ns at 12 MHz). The maxi­
mum count frequency is one count per three
instruction cycles (267 kHz at 12 MHz). There is no
minimum frequency limit. '

Timer Mode
The STRT T instruction connects the internal clock
to the c(;mnter input and enables the counter. The

6-611

input clock is derived from the SYNC signal of the
internal oscillator and the divide-by-32 prescaler.
The configuration is illustrated in Figure 2-13. Note
this instruction does not clear the timer register.
VariOl,ls delays and timing sequences between 40
ILsec and 10.24 msec can easily be generated with a
minimum of software timing loops (at 12 MHz).

Times longer than 10.24 msec can be accurately
measured by accumulating multiple overflows in a
register under sQftware control. For time resolution
less than 40 ILsec, an external clock can be applied to
the TEST 1 counter input (see Event Counter
Mode). T~e minimum time resolution with an exter­
nal clock is 3.75 ILsec (267 kHz at 12 MHz).

TEST 1 Event Counter Input
The TEST 1 pin is multifunctional. It is automati­
cally initialized as a test input by a RESET signal
and can be tested using UPI-41A conditional branch
instructions.

In the second mode of operation, illustrated in Fig­
ure 2-13, the TEST 1 pin is used as an input to the
internal 8-bit event counter. The Start Counter
(STRT CNT) instruction controls an internal switch
which connects TEST 1 through an edge detector to
the 8-bit internal counter. Note that this instruction
does not inhibit the testing of TEST 1 via condi­
tiona~ Jump instructions.

In the counter Illode the TEST 1 input is sampled
once per instruction cycle.' After a high level is de­
tected, the next occurence of a low level at TEST 1

FUNCTIONAL DESCRIPTIOM

will cause the counter to increment by one.

The event counter functions can be stopped by the
Stop Timer/Counter (STOP TCNT) instruction.
When this instruction is executed the TEST 1 pin
becomes a test input and functions as previously de­
scribed.

TESTINPUTS
There are two multifunction pins designated as Test
Inputs, TEST 0 and TEST 1. In the normal mode of
operation, status of each of these lines can be di­
rectly tested using the following cQnditional Jump
instructions:

• JTO Jump if TEST 0 = 1
• JNTO Jump if TEST 0 = 0
• JTl Jump if TEST 1 = 1 •
• JNTI Jump if TEST 1 = 0 .

The test inputs are TTL compatible. An ext~rnal
logic signal connected to one of the test inputs will
be sampled at the time the appropriate conditional
jump instruction is executed. The path of program
execution will be altered depending on the state of
the external signal when sampled.

INTERRUPTS
The 8041AH/8741A, 8042/8742 has the following in­
ternal'interrupts:

;WR

• Input Buffer Full (IBF) interrupt
• Timer Overflow interrupt·

The IBF interrupt forces a CALL to location 3 in
program memory; a timer-overflow interrupt forces
a CALL to location 7. The IBF interrupt is enabled
by the EN I instruction and disabled by the DIS I
instruction. The timer-overflow interrupt is enabled
and disabled by the EN TNCTI and DIS TCNTI
instructions, respectively.

Figure 2-14 illustrates the internal interrupt l~
An IBF interrupt request is generated whenever WR
and CS are both low, regardless of whether inter-.
rupts are enabled. The interrupt request is cleared
upon entering the IBF service routine only. That is,
the DIS I instruction does not clear a pending IBF
interrupt.

Interrupt Timing Latency'
When the IBF interrupt is enabled and an IBF inter­
rupt request occurs, an interrupt sequence is initi­
ated as soon as the currently executing instruction is
compieted. The following sequence occurs:

• A CALL to location 3 is forced.
• The program counter and bits 4-7 of the Pro­

gram Status Word are stored in the stack.
• The stack pointer is incremented.

Q

cs
IBF
INTERRUPT
REQUEST

IBF
INTERRUPT

RECOGNIZED

RESET

IBF
INTERRUPT
REQUEST

ENI -----Is Q

IBF
INTERRUPT
ENABLE

0151

REseT

IBF
INTERRUPT

ENABLE

TIMER =J"L=-==---ir\--___ -l
OVERFLOW

TIMER
INTERRUPT

RECOGNIZED

DIS TeNTI
EXECUTED

RESET

Q

TIMER
INTE-RRUPT

I:NABLE

TIMER
INTERRUPT
REQUEST

RETR EXECUTED

RESET

Figure 2~14. Interrupt Logic

6-612

Q INTERRUPT
IN PROGRESS

FUNCTIONAL DESCRIPTION

Location 3 in program memory should contain an
unconditional jump to the beginning of the IBF in­
terrupt service routine elsewhere in program mem­
ory. At the end of the service routine, an RETR
(Return and Restore Status) instruction is used to
return control to the main program. This instruction
will restore the program counter and PSW bits 4-7,
providing automatic restoration of the previously
active register bank as well. RETR also re-enables
interrupts.

A timer-overflow interrupt is enabled by the EN
TCNTI instruction and disabled by the DIS TCNTI
instruction. If enabled, this interrupt occurs when
the timer/counter register overflows. A CALL to lo­
cation 7 is forced and the interrupt routine proceeds
as described above.

The interrupt service latency is the sum of current
instruction time, interrupt recognition time, and the
internal call to the interrupt vector address. The
worst case latency time for servicing an interrupt is 7
clOck cycles. Best case latency is 4 clock cycles.

Interrupt Timing .
Interrupt inputs may be enabled or disabled under
program control using EN I, DIS I, EN TCNTI and
DIS 'rCNTI instructions. Also, a RESET, input will
disable interrupts. An interrupt request must be re­
moved before the RETR instruction is executed to
return from the service routine, otherwise the pro­
cessor will re-enter the service routine immediately.
Thus, the WR and CS inputs shO\lI9. not be held low
longer than the duration of the interrupt service
routine.

The interrupt sysiem is single level. Oo<;e an inter­
rupt is detected, all further interrupt requests are
latched but are not acted upon until execution of an
RETR instruction re-enables the interrupt input
10gic:This occurs at the beginning of the second cy­
cle ofthe RETR instruction. If an IBF interrupt,and
a timer-overflow interrupt occur simultaneously, the
IBF interrupt will be recognized first and the timer­
overflow interrupt will remain pending until the end
of the interrupt service'routine.

Ex~ernal Interrupts
An external interrupt cal). be created using the UPI-
41AlL 42 timer/counter in the event counter mode
The counter is first preset to ,FFH and the EN
TCNTI instruction is executed. A timer-overflow in
terrupt is generated by the first high to low transi·
tion of the TEST 1 input pin. Also, if an IBF
interrupt occurs during servicing of the
iimer/counter interrupt, it will remain pending until
the end of the service routine.

Host Interrupts And DMA
If needed"two external interrupts to the host system
can be created using the EN FLAGS instruction.
This instruction allocates two I/O lines on PORT 2
(P24 and P25)· P24 is the Output Buffer Full inter.
rupt request line to the host system; P25 is the Input
Buffer empty interrupt request line. These interrupt
outputs reflect the internal status of the OBF flag
and the IBF inverted flag. Note, these outputs may
be inhibited by writing a "0" to these pins. Reenab­
ling interrupts is done by writing a "I" to these port
pins. Interrupts are typically enabled after power on
since the I/O ports 'are set in a "1" condition. The EN
F~AG's effect is only cancelled by a device RESET.

DMA handshaking controls are available from two
pins on PORT 2 of the UPI-41A microcomputer.
These lines (P26 and P27) are enabled by the EN
DMA instruction. P26 becomes DMA request
(DRQ) and P27 becomes DMA acknowledge
(DACK). The UPI program initiates a DMA request
by writing ,a "I" toP26. The DMA controller trans­
fers the data into the DBBIN data register using
DACK which act,s as a, chip select. The EN DMA in­
struction ~an only be 'cancelled b~ a chip RESET.

RESET
The RESET input provides a means for 'internal
initialization of the processor.' An automatic
initialization pulse can be generated at power-on by
simply connecting a 1 !Lfd capacitor between the
RESET input and ground as shown in Figure 2-15. It
has an internal pull-up resistor to charge the capaci­
tor and a Schmitt-trigger circuit to generate a clean
trmsition. A2~stlige sychronizer has been added to
support'reliabie operation up to 12 MHz.

If automatic initialization is used, RESET should be
held low for at least 10 milliseconds to allow the
power supply to stabilize. If an external RESET sig­
nal is used, RESET may be held low for a minimum
of 8 instruction cycles. Figure 2-15 illustrates a con­
figuration using an external TTL gate to generate
the RESET input. This configuratiQn can be used to
derive the RESET signal from the 8224 clock gener­
ator in an 8080 system.

The RESET input performs the following functions:

• Disables Interr,upts
• Clears Program Counter to Zero
• Clears Stack P~inter: '
• Clears Status Register and Flags
• Clears Timer and Timer Flag
• Stops Timer
• Selects Register Bank ,0
• ':SMs PORTS 1 and. 2 to Input Mode

6-613

FUNCTIONAL DESCRIPTION

I,

EXTERNAL
RESET

SIGNAL
OPEN COLLECTOR

8041AH
8741A
8042
8742

Figure 2-15. External Reaet Configuration

DATA BUS BUFFER
Two 8-bit data bus ~iIffer reg~sters, DBBIN and
DBBOUT, setve as temporary buffEirs for commands
and data flowing between it and the mast~r proces­
sor. Externally, data is transmit,ted or received by
the Dim registers upon ~xecution of an INput or
OUTput instruction by the master processor. Four
control signals are used:

• AO Address input signifYIng control or
data '

• CS ~hip Select
• RD Read strobe
'. WR Write strobe

Transfer can i>e implemented with or,without UPI
program interference by enabling or disabling an in­
ternal UPI interrupt. Internally, data transfer be-

UPI-41AH,42

BUS CONTENTS DURING ~TATUS RE'AD

ST7 ST6 I STs 51-4 F1 I F/l r
07 06 05 D4 D3 02

,1BF

ri1

SYSTEM
INTERFACE

I QIIF

DO

tween the DBB and the UPI accumulator is under
software control and is completely asynchronous to
the external processor timing. This allows the UPI
software to handle peripheral control tasks indepen­
dent of the main processor while still maintaining. a
data interface with the master system.

Configuration
Figure 2-16 illustrates the internal configuration of
the DBB registers. Data is stored in two 8-bit buffer
registers, DBBIN and DBBOUT. DBBIN and
DBBOUT may be accesse~ the external processor
using the WR line and the RD line, respectively. The
data bus is a bidirectional, three-state bus which can
be connected directly to an 8-bit microprocessor sys­
tem. Four control lines (WR, RD, CS, Ao) are used
by the external proce!!sor to transfer data to and
from the DBBIN and DBBOUT registers.

Wi!
CONTROL' iii)

BUS cs
Ao

DATA BUS (e)

2,16. '~ta Bus Buffer Configuration

6-614

FUNCTIONAL DESCRIPTION

An, 8-bit register containing status flags is used to
indicate the status of the DBB registers. The eight
status flags are defined as follows:

• OBF Output Buffer Full This flag is auto­
matically set when the UPI-Microcomputer
loads the DBBOUT register and is cleared when
the master processor reads the data register.

• IBF Input Buffer Full This flag is set when
the ,master processor writes a character to the
DBBIN register andJs cleared when the UPI IN­
puts the data register contents to its accumula-
tOI:'. '

• FO This is a general purpose flag which can be
cleared or toggled under UPLsoftware control.
The flag is used to transfer UPI status'informa­
tion to the master processor.

• Fl CommandlD~ta This flag is'set to the con­
dition of the Ao input line when the master pro­
cessor writes a character to the1iata register. The
F1 flag can also be cleared or toggled under UPI­
Microcomputer program control.

• ST4 Thro1J,ghST7 These bits are user defined
status bits. They are defmed by the MOY' STS A
instruction. ' ,

All flags in the status register are automatically
cleared by a RESET input.

a·BIT
SYSTEM

BUS

~

~

-~

).

8

Do-D7

,-
PORT 1

•
'v

AO A1

I

AO CS

SYSTEM,INTERFACE
Figure 2-17 illustrates how an UPI-Microcomputer
can be connected to a standard 8OSO-type bus sysc
tem. Data lines DO-D7 form a three-state
bidirectio~al port which can be connected directly t~
the system data bus. The UPI bus interface has suf­
ficient drive capability (400 pA) for small systems,
however, a larger system may require buffers. ",

Four control signals are required to handle the data
and status information transfer:

• WR I/O WRITE signal used to transfer data
from the system bus to the UPI DBBIN
register and set the Fl flag in the status
register., '

• RD I/O READ signal used to transfer data
from the DBBOUT'register or status
register to the system data bus.

• CS CHIP, SELECT signal used to enable
one 8041A out of several connected to a
common bus.

• Ao Address input used to select either the
8-bit status register or DBBOUT regis­
ter during an I/O READ.

iOR lOw

Also; 'the signal is used to set the Fl flag
in the status register during an I/O
WRITE. '

AODRESS BUS "

CONTROL BUS c..

RESET </>2

DATA BUS ~

~.,

V
470

t
+5V

470
+5V

AD WR RESET XTAL 1 XTAt 2

8041A/8741A

PORT 2 TEST,1 TEST 0

l"' "

8

'v

I
PERIPHERAL INTERFACE

Figure 2·17. Inter1ace to 8080 System Bus

6-615

FUNC'li'KM'Al DESCWlPTION

The WR and RD signals are8ctiviiilow aDcfare stan­
d,ard MCS,~ periphefal contr~1 signals used to SYn'­

clvo~ize datil transferbetweliln ,the ,!lystem bqs lind
peripheral devices.

The CS and Ao,~i~als are !J,ecoded f~9~ the address
bvs,of the master syste~., In a system with.few I/O
'devices a linear addressing confIguration can be used.
where AO' and Al lines are connected directly to AO
and es inputs (see Figure '2.1;7).

Data Read
Table 2-'4 illustrates the relative'timing of a
DBBOUT Read. When es, Ao,"and RD are low, the
contents of the DBBOUT register is placed on the
three-state'Data lines DO~D1 and the OBF flag is
cleared.

The master processor uses es, 'A.o, WR, and RD to
control data transfer between the DBBOUT register
and the master system. The following operations are
'under master processo~ control:' '

, ,

, . ,Table 2-4. D~ta Tr.,..fer Control.

cs RD WR Ao
0 0 1 0 Read DBBOUT register
0 0 1 1 Read STATUS register
0 1 , 0 0 Write DBBIN.data register
0 1 0 1 Write DBBIN comm!lnd register
1 x x x DisableDBB

Status Read
Table 2-4 shows the logic sequence re<J!!!!ed for a
STATUS register read. When es and RD are low
with AO high, the contents of the 8-bitstatus register
appears 'on Data lines DO..,D7.' ,

Data Write
'Table 2-4 shows the sequence for writing informa­
tion to the DBBIN regis1ier. When es and WR are·
.low, the contents of the'~ystem data bus is latched
into DBBIN. Also, the IBF flag is set and an inter­
rupt is generated; if enaIi~ed.

Comm~d Write
During apy write (Table 2-4), the state of the AO in­
put is 1a,~cl1ed, into the ~blt!JS legister in th.~ F1
(command/data) flag location. This additional bit is
used to signal whether DBBIN'contents are como,
mand (AO = 1) or data (Ab = 0) 'information.

'INPUT /OUTPUT INTERFACE
The UPI-41A has 16 lines for input and output Curic-"
,tions. These'l/O lines are grouped as two 8"bit TTL
compatible ports: PORTS 1 and 2. 'Phepoit'lir'l~8>

t .N"

can individually function as either inputs otlmtputs
Under software conttoL In addition, the lowei" lines
of PORT 2 can be used to interface to an' 8243 I/O
expander device to inc~ase I/O capacity to 28- Qr
m!)re lines. The adeJitionallines' are grouped,as '4-bit
poiis: PORTS 4, 5, 6, ,and 7. . .. "

PORTS 1 and 2,
POltTS 1 and 2 are' each 8 bits wide and have the
sSme I/O characteristics. Data written to these ports
by an OUTL Pp,A'instruction is latched and re­
mains unchanged until it is rewritten. Input data is
sampled at the 'time the IN, A,Pp instruction is ex­
e()uted. Therefore, input data must be present ilt the
PORT until read by an iNput instruction: PORT 1
and 2 inputs are fully TTL compatible and outputs
wilf drive one standard TTL load. ' ,

Circuit Configuration
The PORT 1 and 2 lines b,ave a special 'output struc­
ture (shpwn in Figure 2-1~) that IilIC;>wS'each line to
serve as an input, an output, or both, even though
outputs are statically latched. "

Each iine has a permanent high impedance pull-up
(50KO) which is sufficient to provide source current
for a TTL high level, yet c~ be pulled low by a st,an­
dard TTL gate drive. Whenever a "1" is written to a
line, a low impedance pull-up (5K) is switched in
momentarily (500 ris) to provide a fast transition
from 0 to 1. When a "0" is written to the line, a low
impedance pull-down (300n) is active to provide
TTL current sinking capability. '

To use a particular PORT pin as an input, a logic "1"
must fir~t be written to that pin.

NOTE: A RESET intializes all PORT pins to the
high impedance logic "1" state.

An external TTL device connected to the pin has
sufficient current sinking capability to pull-down
the pin to the low state. An IN A,Pp instruction will

.. sample the status ,of PORT pin and will input the
proper logic level. With no external input connected,
the IN A,Pp instruction inpu~s the previous output
status.

This structure $llows input and output information
on the same pin and also allows any mix of input and
output lines on the same port. However, when inputs
and outputs are'mixed on one PORT, a PORT write
will cause the stro~ internal pull-ups to turn on at
all inputs. If a switch or other low impedance device
is connected to an input, 'aPORT write ("1" to' an
input) could caliise current limits on internal lines to

6-616

FUNCTIONAL DESCRIPTION

INTERNAL -

Figure 2-18.

be exceeded. Figure 2-19 illustrates the recom­
mended connection when inputs and outputs are
mixed on one PORT.

The bidirectional port structure in combination with
the UPI-41AH, 42 logical AND and OR instructions
provides an efficient means for handling single line
inputs and outputs within an 8-bit processor.

PORTS 4, 5, 6, and 7
By using an 8243 I/O expander, 16 additional I/O
lines can be connected to the UPI-41AH, 42 and di­
rectly addressed as 4-bit I/O ports using UPI.41AH,
42 instructions. This feature saves program space
and design time, and improves the bit handling ca·
pability of the UPI-41AH, 42. .

PORT 1,2 ~'--1' ..".
8041AH .
8741A .
8042 '
8742 ':'

INCORRECT UNLESS
ALL UIES ON 1ME
PORTARE_

The lower half of PORT 2 provides an interface to'
the 8243 as illustrated in Figure 2-20. The PROG pin
is used as a.strobe to clock address and data informa­
tion via the PORT 2 interface. The extra 16 I/O lines
are referred to in UPI software as PORTS 4, 5, 6, and
7. Each PORT can be directly addressed and can be
ANDed and ORed with an immediate data mask.
Data can be moved directly to the accumulator from
the expander PORTS (or vice-versa).

The 8243 I/O ports,. PORTS 4, 5, 6, and 7, p~vi4e
more drive capability than the UPI-41AH, 42
bidirectional ports. The 8243 output ·is capable of
driving about 5 standard TTL loads.

1K
PORT 1,21-JW_-o ---, 8041AH

8741,\ .= '':'
RECOIIIIEIIDED WHEN _ AND OUTPUTS

ME MIXED ON A PORT

Figure 2-19. .R~,PORT Input Connecti0n8

~7

FUNcnONAL DESCRIPTION

~,CHIP SELECT CONNeCTION IF MORE
":" ,THAN ONE EXPANDER IS USED

12 1/0 CS

P4- PORT 4 4 1/0

TEST 2 INPUTS
,

8041AH P5- PORT 5 4 >
8741A

1/0

8042 8243
8742

P6'-PORT6 4 1/0

P20-P23 4 OO~D3

P7- PORT 7 4 > 1/0
PROG PROO

\ / 81T80,1 BITS 2,3
PROG ,

oo} ~ READ 01 PORT 01 WRITE

-< X >
10 'ADDRESS 10 OR
11 11 AND

P20"P23

ADDRESS (4-8IT8) DATA (4-81T8)

Figure 2~20. 8243 Expander Interface

Multiple 8243's can be connected to the PORT 2 in­
terface. In normal operation, only one of the 8243's
would be active at the time an Input or Output com­
mand is executed. The upper half of PORT 2 is used
to provide chip select signals to the 8243's. Figure 2-
21 shows how four 8243's could be connected. Soft- '

8041AH

°tJ: "_--"-_/I DBa 8:~~A
8742

CO:~~OL <:3:=)1 CONTRO~ORT ,I(:::::i:::::>

ware is needed to select and set the proper PORT 2
pin before an INPUT or OUTPUT command to
PORTS 4-7 is executed. In general, the software
overhead required is very minor compared to the
added flexibility of having a large number of I/O
pins available.

p~~ __________ -+ ____________ ~ ____________ ~ __________ --J

FIgUre 2-21. ' Multiple 8243 Expansion

CHAPTER 3
INSTRUCTION SET

The UPI-41AH, 42 Instruction Set is opcode-com­
patible with the MCS-48 set except for the elimina­
tion of external program and data memory
instructions and the addition of the data bus buffer
instructions. It is very straightforward and efficient
in its use of program memory. All instructions are
either 1 or 2 bytes in length (over 70% are only 1
byte long) and over half of the instructions execute
in one machine cycle. The remainder require only
two cycles and include Branch, Immediate, and I/O
operations.

The UPI-41AH, 42 Instruction Set efficiently han­
dles the single-bit operations required in control ap­
plications. Special instructions allow port bits to be
set or cleared individually. Also, any accumulator bit
can be directly tested via conditional branch instruc­
tions. Additional instructions are included to
simplify loop counters, table look-up routines and
N-way branch routines.

The UPI-41AH, 42 Microcomputer handles
arithmetic operations in both binary and BCD for
efficient interface to peripherals such as keyboards
and displays.

The instruction set can be divided into the following
groups:

• Data Moves
• Accumulator Operations
.' Flags
• Register Operations
• Branch Instructions
• Control
• Timer Operations
• Subroutines
• Input/Output Instructions

Data Moves
(See Instruction Summary)
The 8-bit accumulator is the control point for all
data transfers within the UPI-41AH, 42. Data can be
transferred between the 8 registers of each yvorking
register bank and the accumulator directly (Le., with
a source or destination register specified by 3'bits in
the instruction). The remaining locations, i'n the
RAM array are addressed either by'Ro or Rl of the
active register bank. Transfers to and from RAM re­
quire one cycle.

chine status accordingly and provide a means of re­
storing status after an interrupt or of altering the
stack pointer if necessary.

Accumulator Operations
Immediate data, data memory, or the working regis­
ters can be added (with or without carry) to the ac­
cumulator. These sources can also be ANDed, ORed,
or exclusive ORed to the accumulator. Data may be
moved to or from the accumulator and working reg­
isters or data memory. The two values can also be
exchanged in a single operatiQn.

The lower 4 bits of the accumulator can ,be ex­
changed with the lower 4 bits of any of the internal
RAM locations. This operation, along with an in­
struction which swaps the upper and lower 4-bit
halves of the accumulator, provides easy handling of
BCD numbers and other 4-bit quantities. To facili­
tate BCD arithmetic a Decimal Adjust instruction is
also included. This instruction is used to correct the
result of the binary addition of two 2-digit BCD
numbers. Performing a decimal adju~t on ~he result
in the accumulator produces the desired BCD result.

The accumulator can be incremented, decremented,
cleared, or complemented and can be rotated left or
right 1 bit at a time with or without carry.

A .subtract operation can be easily implemented in
UPI-41AH, 42 software using three single-byte,
single-cycle instructions. A value can be subtracted
from the accumulator by using the following instruc-
tions: .

• Complement the accumulator
• Add the value to the accumulatpr
• Complement the accumulator

Flags.
There are four user accessible flags:

~. Carry
• Auxiliary Carry
• FO
.• Fl

The Carry flag indicates overfl~w ol the accumula­
tor, while the Auxiliary Carry flag indicates overflow
between BCD digits and is used during decimal ad­
just operations~ Both Carry and Auxiliary Carry are
part of the Program. Status Word (PSW) and are

Constants stored in Program Memory can be loaded stored in the stack during subroutine calls. The FO
directly into the accumulator or the ,eight working .and F~ flags are general-purpose flags which can be
registers. Data can also be transferred directly· be- <:leared or c<;>mplemented by UP!. instructions. FO is
tween the accum:l~lator and the. o.n-bo~rd timer/ accessible via the Program Status Word and is
counter, the Status Register (STS), or the Program ~tor~d in the stack with the Ca,rry.fl,ags. Fl reflects
Status Word {PSW). Transfers to the STS register the condition of the AD line, and caution must be
alter bits 4-7 only. Transfers to the PSW alter ma- used when setting or clearing it.

6-619

INSTRUCOON SET

Register Operations'
The working registers can be,accessed via the accu­
mulatGr as explained ~bove, or they can be loaded

, with immediate data constants from program mem­
ory. In addition, they can be incremented or
decremented directly, or they can be used as loop
counters as explained in the section on branch
instructions.

Additional Data Memory lOOatio~ can be accessed
with indirect instructions via Ro and Rl.

\ Branch Instructions
The UPI -41~, 42 Instruction Set includes 17 jump
instructioas. The unconditional jump instruction al­
lows ju~ps anywhere in the lK words of program
memory. All otlllllr jump instructions are limited to
the ~nt page (256 words) of program memory.

Conditional jump instructions' can test the following
inputs and machine flags: " '

• 'TEST 0 input pin
• TEST 1 input pin
• Input Buffer Full flag
• Output Buffer Full flag
• Timer flag
• Accumulator zero
• Accuinulator bit
• Carry flag'
• FO flag
• ;I"1 flag

The conditions tested by these instructions are the
instantaneous values at the time the conditional
jump instruction is executed. For instance, the jump
on accumulator zero instruction 'tests the accumula­
tor itself, not an intermediate flag.

•
The decrement register and jump if not zero (DJNZ)
instruction combines decrement and broch oper­
ations in a single instruction which is useful in im­
plementing a loop counter. This instruction can
designate any of the 8 working registers as a counter
and can effect a branch to any address within the
current page of executio~.

A special indirect jump instruction (JMPP @A)'al­
lows the 'program to be vectored to any one of several
different locations based on the contents of the accu­
mulator. The contents of the accumulator point to a
location in progriun' memory which 'contains the
jump address. As an exampli!, this instruction coUld
be used to vector 1X> 'anyone of several routines based
on an ASCII clWacter which has been loaded into
the accumulator. In this Yiay, ASCII inputs can be
used to initiate various routines. . . .

, , ~

Control
The UPI-41o'\H, 42 Instruction Set has six instruc­
tions,for control of the DMA, interrupts, and selec- '
tion of working register banlm.

TheUPI-41AH, 4!z, provides two i~struciions for
control of the external microcomputer system. IBF
and OBF flags can be'routed to PORT 2 allowmg in­
terrupts of the external processor. DMA
h8ndshaking 's~ can ~ be enabled uSing lines
fromPORT~.

The IBf interrupt can be enabled and disabled
using two instructions. Also, the interrupt is auto­
matically disabled following a RESET input or dur­
ing an interrupt service routine.

The working register bank switch instruptions 8.llow
the programmer to immediately substitute a second
8 register hank for the one in use. This effectively
provides either 16 working registers or the means for
quickly saving the contents of the first 8 registers in
response to an interrupt. The user has the option of
switching register .bapks when an interrupt occurs.
However, if the banks are switched" the original
bank will automatically be restored upop execution
of a return and restore status (RETRj instruction at
the end of the interrupt service routine.

Timer
The 8-bit on-board timer/counter can be loaded or .
read via the accumulator while the counter is
stopped or while counting.

The counter can be started as a timer with an inter­
nal clock source or as an event counter or,timer with
an external clock applied to the TEST 1 pin. The
instruction executed determines which clock source
is used. A single instruction stops the counter
whether it is operating with an internal or an exter­
nal clock source. In addition, two instllUctions allOw
the timer interrupt.tobe ,enabled or disabled.

Subroutines
, , ,

Subroutines are. entered by executing a call instruc­
tion. ,Calls can be made to any address in the lK
word program memory. Two separate return
instructions determine whether pr not ~tatus' (i.e.,
the upper 4 bits of the PSW) is restored upon return
from a subroutine. '

Input/OUtput Instructions
Two 8-bit data bu's blifferregisters (DBBIN and
DBBOuT) and an 8-bit status register (STS) enable
the UPI-4lA UDive~ peripheraI interface to com­
municate with ,the ~xtemaI microcomputer system.
'Data can be INputted from the DBBIN register to

INSTRUCTION SET

the accumulator. Data can be OUTputted from the
accumulator to the DBBOUT register.

The STS register con~ four user-definable bits
(ST 4-ST7) plus four reserved status bits (IBF, OBF,
FO, and Fl). The user-defmable bits are set from the
accumulator.

The UPI-41AH, 42 peripheral interface has two S­
bit static I/O ports which can be loaded to and from
the accumulator. Outputs are statically latched but
inputs to the ports are sampled at the time an IN
instruction is executed. In addition, immediate data
from program memory can be ANDed and ORed di­
rectly to PORTS 1 and 2 with the result remaining
on the port. This allows "masks" stored in program
memory to be used to set or reset individual bits on
the I/O ports. PORTS 1 and 2 are configured to al­
low input on a given pin by fll'Bt writing a "1" to the'
pin.

Four additional4-bit ports are available through the
82431/0 expander device. The 8243 interfaces to the
UPI-41AH, 42 peripheral interface via four PORT 2
lines which form an expander bus. The 8243 ports
have their own AND and OR instructions like the
on-board ports, as well as move instructions to trans­
fer data in or out. The expander AND or OR instruc­
tions, however, combine the contents of the
accumulator with th~ selected port rather than with
immediate data as is done with the on-board ports.

INSTRUCTION SET DESCRIPTION
The following section provides a detailed descrip­
tion of each UPI instruction and illustrates how the
instructions are used.

For further information about programming the
UPI, consult the 8048/8041A' Assembly Language
Manual. '

Table 3-1. Symbols end AbbrevIatIona UMcI

Symbol DeflnHlon

A Accumulator
C Carry

DBBIN Data Bus Buffer Input
DBBOUT Data Bus Buffer OutyDt

FO,FI FLAG 0, FLAG 1 (C flag)
I Interrupt
P Mnemonic for "in-page" operation

PC Program Counter
Pp Port designator (p ... 1,2, or 4-7)

PSW Program Status Word
\ Rr Register designator (r = 0-7)

SP· StackPoin~ , ,

STS Status register
T ':rimer

TF Timer Flag
TO,TI TEST 0, TEST 1

Immediate data prefix
@ Indirect address prefIX
«) Double parentheses show the effect of@,

thatis, @ROis shown as «RO».
() Contents of

Table 3-2. Instruction Set Summ.-y

Mnemonic Operation Description Byt .. eycl ..

Accumulator
ADD A,Rr Add register to A 1 I
ADD A,@Rr Add data memory to A I 1
ADD A,#data Add immediate to A 2 2
ADDC A,Rr Add register to A with carry 1 1
ADDC A,@Rr Add data memory to A with carry 1 1
ADDC A,#data Add immediate to A with carry 2 2
ANL A,Rr And register to A 1 1
ANL A,@Rr And data memory to A 1 1
ANL A,#data ' And immediate to A 2 2
ORL A,Rr Or register to A 1 1
ORL A,@Rr Or data memory to A 1 1
ORL A,#data Or immediate to A 2 2
XRL A,Rr Exclusive Or register to A 1 ,1
XRL A,@Rr Exclusive Or data memory to A 1 1
XRL A,#data Exclusive Or immediate to A 2 2
INC A IncrementA 1 1

, DEC A Decrement A 1 1
CLR A Clear A 1 1
CPL A Complement A 1 1
DA A Decimal Adjust A 1 1
SWAP A Swap nibbles of A 1 1
RL A Rotate A left

,
1 1

RLC A Rotate A left through carry
,

1 1
RR A Rotate A right , 1 1
RRC A Rotate A right through carry 1 1

·6-621

INSTRUCOON SET

Tabl. 3-2.'1netructIon Set Summary (Con't.) .

M~emonle OpfttIOn De8crlptlon Bytee Cyel ..

INPUT/OUTPUT
IN A,Pp Input port to A 1 2
OUTL Pp,A Output A to port 1 2
ANL ' Pp,#data And immediate to port 2 2
ORL Pp,#data Or immediate to port 2 2
IN A,DBB Input DBB to 'A, clear mF 1 1
OUT DBB,A Output A to DBB, Set OBF 1 1
MOV , STS,A A4-A7 to bits 4-7 ofstatus 1 1
MOVD A,Pp Input Expander port to A 1 2
MOVD Pp,A Output A to Expander port 1 2
ANLD Pp,A And A to Expander port 1 2
ORLD Pp,A Or A,to Expander port 1 2

. DATA MOVES

MOV A,Rr Move register to A ' 1 1
MOV A,@Rr Move data m,emory to A 1 1
MOV A,#data Move immediate to A 2 2
MOV Rr,A Move A to register - 1 1
MOV @Rr,A Move ~ to data memory 1 1
MOV Rr,#data Move immediate to register 2 2
MOV @Rr,#data Move immediate to data memory 2 2
MOV A,PSW MovePSWtoA 1 1
MOV PSW,A MoveAtoPSW 1 1
XCH A,Rr , , Exchange A and registers 1 1
XCH A,@Rr Exchange A and data memory 1 1
XCHD A,@Rr Exchange digit of A and register 1 1
MOVP A,@A Move to A from current page 1 2
MOVP3 A;@A Move to A from Page 3 1 2

TIMER/COUNTER
"

MOV A,T Read ,Timer/Counter 1 ' 1
MOV T,A LOad Timer/Counter 1 1
STRT T Start Timer 1 1
STRT CNT Start Counter 1 1
STOP TeNT Stop Timer/Counter 1 1
EN TeNT! Enable Timer/Counter Interrupt 1 1
DIS TeNTI Disable Timer/Counter Interrupt 1 1

CONTROL
EN DMA Enable DMA Handshake Lines 1 1
EN 'I Enable mF interrupt 1 1
DIS I Disable mF interrupt 1 1
EN FLAGS Enable Master Interrupts 1 1
SEL RBO Select register bank ()' , 1 1
SEL RBI Select register bank 1 - 1 1
NOP No Operation 1 1

REGISTERS
INC Rr Increment register 1 1
INC @Rr Increment data memory 1 1
DEC Rr Decrement register 1 1

SUBROUTINE
CALL addr Jump to subroutine 2 2'
RET Return 1 2

"
RETR Return and restore status ' , 1 2

FLAGS
CLRC Clear Carry 1 1
CPLC Complement Carry 1 1
CLRFO Clear Flag 0 1 I'
CPLFO Complement Flag 0 1 1
CLRFI Clear Fl Flag 1 1
CPLFI ' Complement Fl Flag 1 1 .

INSTRUCTION SET

Table 3·2. Instruction Set SUmmary (Con't.)

Mnemonic Operation Description Bytes Cycles

BRANCH

JMP addr Jump unconditional 2
JMPP @A Jump indirect 1
DJNZ Rr,addr Decrement register and jump on non-zero 2
JC addr Jump on Carry=1 2
JNC addr Jump on Carry-O 2
JZ addr Jump on A Zero 2
JNZ addr Jump on A not Zero 2
JTO addr Jump on TO=l 2
JNTO addr Jump on TO=O 2
JTl addr Jump on Tl=l 2
JNTl addr Jump on Tl=O 2
JFO addr Jump on FO Flag ... l 2
JFl addr Jump on Fl Flag"'l 2
JTF addr Jump on Timer Flag=l 2
JNIBF addr Jump on IBF Flag=O 21
JOBF addr Jump on OBF Flag=l 2
JBb addr Jump on Accum.ulator Bit 2

ALPHABETIC LISTING

ADD A,Rr Add Register Contents to Accumulator

Opcode: 1....1 0 ____ °..J.1_1_r2_r_1_r--'0 I
The contents of register 'r' are added to the accumulator. Carry is affected.
(A) - (A) + (Rr) r=0-7

Example: ADDREG: ADD A,RS ;ADD REG S CONTENTS
;TOACC

ADD A,@Rr Add Data Memory Contents to Accumulator

Opcode: 1....1 0 ___ 0~1 o_o_o_r--ll

2
2'
2
2
2
2
2
2

i 2
2
2
2
2
2
2
2
2

The contents of the standard data memory location addressed by register 'r' bits 0-5 are added to the
accumulator. Carry is affected.
(A) - (A) + «Rr» . r=0-1

Example: ADDM: MOV RO,#47 ;MOVE 47 DECIMAL TO REG °
ADDA,@RO ;ADD VALUE OF LOCATION

;47 TOACC

ADD A,#data Add Immediate Data to Accumulator

Opcode: 10 ° ~ 010 °

This is a 2-cycle instruction. The specified data is added to the. accumulator. Carry is affected.
(A) - (A) + data

Example: ADOID: ADD A,#ADDER ;ADD VALUE OF SYMBOL
;'ADDER' TO ACC

6-623

INSTR,",CTI()N SET

ADDC A,Ar Add c.ry end Regia. pontenta to Accumulator

Opcode: I 0 ,1 1 1 '1 1 r2 r1 ro I

The content of the carry bit Is added to accumulator location O. The contents of register 'r' are then added to
the accumulator. Carry Ia affected. '
W - W + (Rr) + (C) r=0-7

Example: ADDRGC: ADDC A,R4 ;ADDCAARY AND REG 4
;CONTENTS TO Ace

ADDC A,,,,, Add Carry and Data Memory Contents to AcCumulator

Opcode: 101111000 rl

The content of the carry bit is added to accumulator location O. Then the contents of the standard data
memory location addressed by register 'r' bits o-S are added to the accumulator. Carry is affected.

Example:
W,- W + «Ar» + (C) r=0-1
ADDMC: MOV R1,#4O ;MOV '40' DEC TO REG 1

ADDC A,@R1 ;ADD CARRY AND LOCATION 40
;CONTENTS TO Ace

ADDC A,#data Add Carry and Immediate Data to Accumulator

Opcode: 10 0 0 1 10 0 1 1 I. Id7 de dS d41 d3 d2 d1 dO I

This is a 2-cycle instruction. The ~ of the 'carry bit is a~ to accumulator location O. Then til8:
specified data Is added to the accumulator. Carry Is affected.
W - W + data + (C)

Example: ADDC A,#255 ;ADD CARRY AND '22S' DEC
;TOAce

ANL A,Ar Logical AND Accumulator WHh Reglater Mask

Opcode: I 0 1 0 1 11 r2 r1 rO I

Data In the accumulator Is logically ANDed with the mask contained in working register 'r'.
W - WAND (Rr) r=0-7' ,

Example: ANDREG: ANL A,R3 ;'AND' Ace CONTENTS WITH MASK
;MASK IN REG 3

A!"Il A.@Rr logical AND Accumulator WHh Memory Mask

Opcode:

Data in the aecumui8tor is logically ANDed with the mask contained in the data memory location referenced
by register 'r', bits O-S. '

Example:
..... W - (A) AND «Rr» r=,0-1

ANDDM: MOV RO,#OFFH ;MOVE 'FF' HEX TO REG 0
ANL A,#OAFH ;'AND' Ace CONTENTS WITH

;MA~K IN LOCATION 63

6-624

(

INSTRUC'nON ser

ThleI8 a 2-cycIe 1naIructIon. Data In the accumutator Is IogIcaIy AtCIed with an ImmadIately-epeclflad muk.
(A) - (A) AND data

Example: AI\IDI): AN.. A.#OAFH . ;'~D' ACC CONTENTS
:WITH MASK 10101111

AN.. A.#3+X/Y ;'AND' Ace CONTENTS
;~ VALlE OF EXP
;'3+X/Y'

ANL Pp,#cIata LogIcal AND Port 1-2 WIth immediate Maek,

ThI8 18 a 2-cycIe Instruction. Data on port 'p' is IogicaIy ANDed with an invnedIataly-apeclfled mask.
(Pp) - (Pp) AND data p= 1-2

\

Note: Bits 0-1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than
aaaembly language, the mapping is as follOws:

BIts p1 pO Port

o 0 X
o 1 1
102
1 1 X .

Example: ANDP2: ANt. P2,#OFOH ' ;'AND' PORT 2 CONTENTS
;WJTH MASK 'FO' HEX
;(CLEAR P20-23)

ANLD Pp,A LogIcal AND Port 4-7 With Accumulator Maek

Opcode: 11 0 0 1 11 1 P1 PO 1

This is a 2-cycle instruction. Data on port 'p' on the 8243 expander is logically ANDed with the digit mask
contained in accumulator bits 0-3.
(Pp) - (Pp) AND (AO-3) p=4-7

Note: The mapping of Port/'p' to opcode bits P1,PO is as follows:

o 0
o 1
1 6
1 1

Example: ANDP4: ANlD P4,A

Port
4
5
6
7

;'AND' PORT 4-CONTENTS
;WITH ACC BITS 0-3

6-625

INSTRU0110tUET

" r'

Opcode: 10 a9 as 1 10 1 0, 0,1- 'la7 as 86 84183 a2 a1 so 'I

, Th\8,. a 2-cyc1e~. The Program counter and PSW bite 4-7. are,aaved in the stack. The stack
pointer (psW bite 0-2) Is updated. Program controIla then PJ888d to the location apecIfted by 'addreaa'.

execution contInuea at the InstrUctIOn foIowIng the CALl upon return from the subroutine.
«SP» - (PC), (PSW4-7) , , '
(SP) - (SP) + 1
(PCS-g) - (addrs-g)
(PCo-7) - (addrO-7)

Example: Add tflrea groupe of two numbers. Put subtotals in locations 50,51 and total in location 52.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS ,

;REGO
BEGADD: MeV A,R1 ;MOVE CONTENTS OF REG 1

;TOAce '
ADD A,R2 ;ADD REG 2 TO Ace
CALL SUBTOT ;CALL SUBRQUTlNE 'SUBTOT'
ADD A,R3 ;ADD REG 3 TO Ace
ADD A,R4 ;ADD REG,4 TO Ace
CALL~BTOT ;CALL SUBROUTINE '$UBTOT'
ADD A,R5 ;ADD REG 5 TO Ace
ADD A,R6 ;ADD REG 6 TO ACe
CALL SUBTOT ;qALL SUBROUTINE 'SUBTOT'

SUBTOT: MOV @RO,A

INeRO
RET

;MOVE CONTENTS OF Ace TO
;LOCATION ADDRESSED BY
;REGO '
;INCREMENT REG 0 ,
;RETURN TO MAIN PROGRAM

CLR A Clear Accumuletol'

()pcocle: 100101011,11

The contents of the accumulator are cleared to zero.
(A)-OOH

CLR C Cia. carry BIt

Opcode: 1 1 1 I
I

During normal program execution, the carry bit can be set to one by th8 ADD, ADDC, ALC, CPLC, RAP, and
DM Instructions. ThIs Instruction resets the carry bit to zero.
(C)-O

CLR F1 Clear Flag 1

The F 1 flag Is cleared to zero.
(F1) - 0

INSTRUCTION SET

CLR FO aear Flag 0

Opcode: 1100010 0

Flag 0 Ie cleared to zero.
(Fo)-O

CPL A Complement Accumulator

Opcocle: I 0 0 1 I 0

The contents of the accumulator are complemented. This is strictly a one's complement. Each one is
changed to zero and vice-versa.
(A)- NOT (A)

Example: Assume accumulator contains 011010l0.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE·

;MENTED TO 10010101

CPL C Complement carry Bit

Opcocle: 11 0 0 I 0

The setting of the carry bit is complemented; one is changed to zero, and zero is changed to one.
(C)- NOT (C)

Example: Set C to one; current setting is unknown.
CT01: CLR C ;C IS CLEARED TO ZERO

CPL C ;C IS SET TO ONE

CPL FO Complement Flag 0

Opcode: 1100110 0

The setting of Flag 0 is complemented; one is changed to zero, and zero is changed to one.
FO- NOT (FO)

CPL F1 Complement Flag 1

Opcode: L...11_0 __ 1--l......1 0 __ 0_--,

The setting of the F 1 Flag is complemented; one is changed to zero, and zero is changed to one.
(F1) - NOT (F1)

6·627

It4STRUC'FfON SET

DA A DecImal Adjust Accumulator

Opcode: 1 0 1 0 1 1 0

The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits following the
binary addition of BCD numbers. The carry bit C is affected. If the contents of bits ()-3 are greater than nine,
or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4-7 exceed nine, or if Cis one, these bits are inCreased by
six. If an overflow occurs, C is set to one; otherwise, it is claared to zero.

Example: Assuma accumulator contains 9AH.
DA A ;Ace ADJUSTED TO 01H with C set

C AC Ace
o 0 9AH INITIAL CONTENTS

06H ADD SIX TO LOW DIGIT
o 0 A1H

60H ADD SIX TO HIGH DIGIT
o 01H RESULT

DEC A Decrement Accumulator

Opcode: 1 0 0' 0 0 1 °
The cOntents of the accumulator are decremented by one.
(A)-(A)-1

Example: Decrsment contents of data memory location f),3.
MOV RO,#3FH ;MOVE '3F' H~ TO REG °
MOV A,@RO ;MOVE CONTENTS OF LOCATION 63

;TOACC
DEC A ;DECREMENT Ace
MOV @RO,A ;MOVE CONTENTS OF Ace TO

;LOCATION 63

DEC Rr Decrement R~lster

Opcode: 11 100 1 1 r2 f1 rol

The contents of working register 'r' are decremented by one.
(Rr) - (Rr) - 1 r=0-7

Example: DECR1: DEC R1 ;DECREMENT ADDRESS REG 1

DIS I DIsable IBF Interrupt

OPCode:1 '-0_0_0_--<-1 0_1_0_--,

The input Buffer Full interrupt is disabled. The interrupt sequence is not initiated by WR and CS, however,
an IBF interrupt request is latched and remains pending until an EN I (enable IBF interrupt) instruction is
executed.

Note: The IBF flag is set and cleared independent of the IBF interrupt request so that handshaking protocol can
cOntinue normally.

6-628

INSTRUCTION SET

DIS TeNT! DIHbIe Timer lCounter Interrupt

Opcode: 1,-0_o __ 1-,-1 0 __ 0_1---,1

The timer I counter interrupt is disabled. Any pending timer interrupt request is cleared. The interrupt se­
quence is not inltisted by an overflow, but the timer flag is set and time accumulation continues.

DJNZ Rr, address Decrement Register and Test

Opcode: 1 1

This is a 2-cycle instruction. Register 'r' is decremented and tested for zero. If the register contains all zeros,
program control falls through to the next instruction. If the register contents are not zero, control jumps to the
specified address within the current psge.
(Rr) ... (Rr) - 1
If R ¢ 0, then;
(PCo-7) - addr

Note: A 1Q-bit address specification does not cause an error if the DJNZ instruction and the jump target are on the
same page. If the DJNZ instruction begins in location 255 of a page, it will jump to a target address on the
following page. Otherwise, it is limited to a jump within the current page.

Example: Increment values in data memory locations 50-54.
MOV RO,#50 ;MOVE '50' DEC TO ADDRESS

;REGO
MOV R3,#05 ;MOVE '5' DEC TO COUNTER

;REG3
INCRT: INC @RO ;INCREMENT CONTENTS OF

;LOCATION ADDRESSED BY
;REGO

INC RO ;INCREMENT ADDRESS IN REG °
DJNZ R3,INCRT ;DECREMENT REG ~--JUMP TO

;'INCRT' IF REG 3 NONZERO
NEXT -- ;'NEXT' ROUTINE EXECUTED

;IF R3 IS ZERO

EN DMA Enable DMA Handshake Lines

Opcode: LI _1 ___ OJ' 1_0 __ 0_---'

DMA handshaking is enabled using P26 as DMA request (ORO) and P27 as DMA acknowledge (DACK). The
DACK line forces CS and Ao low internally and clears ORO.

EN FLAGS Enable Master Interrupts

Opcode: 1L-1 ___ 1-L-1 0 __ 0_--'

The Output Buffer Full (OBF) and the Input Buffer Full OBF) flags OBF is inverted) are routed to P24 and P25.
For proper operation, a "1" should be written to P25 and P24 before the EN FLAGS instruction. A "0" written
to P24 or P25 disables the pin.'

6-629

INSTRUCTION seT

EN I Enable IBF Interrupt

Opcode: 10 ° 0010 °
The Input Buffer Full interrupt is enabled. A low signal on WR and CS initiates the interrupt sequence.

EN TCNTI Enable Timer/Counter Interrupt

Opcode: 1,-0_0 __ 0....L.I_o __ o_1--,1

The timer I counter interrupt is enabled. An overflow of this register initiates the interrupt sequence.

IN A,DBB Input Data Bus Buffer Contents to Accumulator

Opcode: 1...-1 0_0 __ 0 1_0_0 __ 0--,1

Data in the DBBIN register is transferred to the accumulator and the Input Buffer Full (IBF) flag is set to zero.
(A) - (DBB)
(IBF)- °

Example: INDBB: IN A,DBB ;INPUT DBBIN CONTENTS TO
;ACCUMULATOR

IN A,Pp Input Port 1-2 Data to Accumulator

Opcode: 1 ° ° ° ° 11 ° P1 PO 1

This is a 2-cycle instruction. Data present on port 'p' is transferred (read) to the accumulator.
(A) - (Pp) p= 1-2 (see ANL instruction)

Example: INP12: IN A,P1 ;INPUT PORT 1 CONTENTS
;TOACC

MOV R6,A ;MOVE ACC CONTENTS TO
;REG6

IN A,P2 ;INPUT PORT 2 CONTENTS
;TOACC

MOV R7,A ;MOVE ACC CONTENTS TO REG 7

INC A Increment AccumUlator

Opcode: 1 ° 0 ° 1 1 ° 1

The contents of the accumulator are incremented by one.
(A)-(A) + 1

Example: Increment contents of location 10 in data memory.
INCA: MOV RO,#10 ;MOV '10' DEC TO ADDRESS

;REGO
MOV A,@RO ;MOVE CONTENTS OF LOCATION

;10 TO ACC
INC A ;INCREMENT ACC
MOV @RO,A ;MOVE ACC CONTENTS TO

;LOCATION 10

6-630

INSTRUCTION SET

INC Rr Increment Register

Opcode: 1 ° ° ° 1 11 r2 r1 rO 1

The contents of working register 'r' are incremented by one.
(Rr) - (Ar) + 1 r=0-7

Example: INCRO: INC RO ;INCREMENT' ADDRESS REG °
INC ORr Increment Data Memory Location

Opcocle: 10 ° 0110 ° ° rl

The contents of the resident data memory location addre~ by registar 'r' bits 0-5 are incremented by

Example:

one.
«Rr» - «Ar» + 1
INcOM: MaV R1,#OFFH

INC @R1

r=0-1
;MaVE ONES TO REG 1
;INCREMENT LOCATION 63

J8b addr... Jump If Accumulator Bit Is Set

Opcode: Ib2 b1 bo 1 1 ° °
This is a 2-cycle instruction. Control passes to the spacified address if accumulator bit 'b' is set to one.
(PCQ-7) - addr if b=1
(PC) - (PC) + 2 if b=O

Example: JB41S1: JB4 NEXT ;JUMP Te 'NEXT' ROUTINE
;IF ACC. BIT 4= 1

JC addre.. Jump If Carry Is Set

Opcocle:1 L... 1 ____ 1,-LI_o ___ o--'l- la7 a6 a5 84l a3 a2 a1 SO 1

This is a 2-cycle instruction. Control passes to the spacified address if the carry bit is set to one.
(PCo-7) - addr if C=1
(PC) - (PC) + 2 if C=O

Example: JC1: JC OVERFLOW ;JUMP TO 'OVFLOW' ROUTINE
;IFC=1

JFO addr... Jump If Flag 0 I. Set

Opcocle: LI1_0 ___ 1--LI_o ___ o--,l- la7 86 85 a41 83 a2 a1 aol

This is 8 2-cycle instruction. Control passes to the spacified address if flag ° is set to one.
<PCo-7) - addr if FO=1

Example: -JFOIS1: JFO TOTAL ;JUMP TO 'TOTAL' ROUTINE
;IF FO=1

6-631

iNSTRUCTiON"SET

JF1~..... Jump It C/D Flag (F1) 18 Set '

Opcode: 10 1

This is a 2oOYc18 instruction. Control passes to the ~ed address if the C/D flag (F1) is sat to one.
(PCo-7)-addr ifF1=1'

Example: JF 11S1: JF1 FILBUF ;JUMP TO 'FiLBUF'
;ROUTINE IF F 1 = 1

MP addre88 Direct Jump Within 1K Block

,Opcode: ~10 a9 as ° 10, 1 ° ° 1·la7 a6 as 84183 a2 a1 801

This is a 200ycie instruction. Bits 0-9 of the program counter are replaced with the directly-specified
address. ' ,

(P«a-g) - addr 8-9
(PCo-7) - addr 0-7

Example: JMP sueTOT ;JUMP TO SUBROUTINE 'SUBTOT'
JMP $-6 ;JUMP TO INSTRUCTION SIX LOCATIONS

jBEFORE CuRReNT LOCATION ,
JMP 2FH ;JUMP TO ADDRESS '2F' HEX

JMPP OA Indirect Jump With'" Pege

Opcode: 110 1110 0111

This is a 200Ycle instruction. The contents of the program memory location pointed to by the accumulator are
substituted for the 'page' portion of the program counter (PC 0-7).
(PCo-7) - «A»

Example: Assume accumUlator contains OFH
JMPPAG: JMPP @A ;JMP TO ADDRESS STORED ,IN

• ;LOCATION 15 IN CURRENT PAGE

JNC address Jump If Carry I. Not Set

Opcode: LI1_' __ 1 _0-1.1_o_1 __ 0--,1 • 1 a7 a6 a5 114 [a3 a2 a 1 80 1

This Is a 200ycie instruction. Control passes to the specified address if the carry bit is not sat, that is, equals
zero.
(PCo-7) - addr ifC=O

Example: JCO: JNC NOVFLO ;JUMP TO 'NOVFLO' ROUTINE
;IFC=O ,

JNIBF address Jump It Input Buffer Full Flag Is Low

Opcode: 11 1 ° 1 1 ° 1 1 ° I· I a7 as a5 114183 a2 a1 80 I

Example:

This is a 2-cycle instruction. Control passes to the specified address if the Input Buffer Full flag is low
(IBF=O).
<PCo-7) - addr
LOC 3:JNIBF LOC 3

ifIBF=O
;JUMP TO SELF IF IBF=O
;OTHERWISE CONTINUE

6-632

INSTRUCTION SET

JNTO acldr... Jump If TEST 0 Ie Low

Opcode: I ° ° 1 ° I ° . 1

This ia a 2-<:y~ instruction. Control passes to the apecifiec\ addreaa, if the TEST 0 signal la low. Pin is
sampled during SYNC.
<PCo-7) - addr if TO=O

Example: JTOLOW: JNTO 60 ;JUMP TO LOCATION 60 DEC
;IF TO=O

JNT1 addr... Jump If TEST 1 Ie Low

Opcode: L...I 0 ___ 0_0...11_0 ___ 0--,1- la7 a6 aq a41 a3 a2 a1 ao I

.Thie is a 2-cyc1e instruction. Control passes ,to the specified addreaa if the TEST 1 signal is low. Pin ia
sampled during SYNC.
(PCo-7)-addr ifT1=0

Example: JT1LOW: JNT1 OBBH ;JUMP TO LOCATION 'SS' HEX
;IF T1=0

JNZ addreaa Jump If Accumulator la Not Zero

Opcode:

This ia a 2-cycle instruction. Control passes to the specified address if the accumulator contents are nonzero
at the time thia instruction is executed.
(PCo-7) - addr if A,pO

Example: JACCNO: JNZ OASH ;JUMP TO LOCATION 'AS' HEX
;IF ACC VALUE IS NONZERO

JOBF Addre.. Jump If Output Buffer Full Flag la Set

Opcode: 110 ° 01 0

Exa~ple:

This is a 2-cycle instruction. Control passes to the specified addreaa if the Output Buffer Full (OBF) flag is set
(= 1) at th8 time this inatruction ia executed.
<PCo-7) - addr if OBF=1
JOBFHI: JOSF OAAH ;JUMP TO LOCATION 'AA' HEX

;IFOBf=1

JTF addreaa Jump If TImer Flag Ie Set

Opcode: 10 ° ° 110

This is a 2-cyCIe instruction. Control passes to the specified address if the timer flag is set to one, that is, the
timer / counter register overflows to zero. The timer flag is cleared upon execution of this instruction. (This
overflow initiates an interrupt service sequence if the timer-overflow interrupt is enabled.)
(PCo-7)- addr ifTF=1

Example: JTF1: JTF TIMER ;JUMP TO 'TIMER' ROUTINE
;IF TF=1

6-633

INSTRUCTION SET

JTO addre.. Jump If TEST 0 I. High

Opcocle: L.....I o_o __ 1--,-1 0 ___ 0--,1 • I a7 a6 a5 a41 a3 a2 a 1 80 I

This is a 2'Cycle instruction. Control passes to the specified address if the TEST ° signal is high (= 1). Pin is
sampled during SYNC.
(PCo-7) - addr if TO=1

Example: JTOHI: JT053 ;JUMP TO LOCATION 53 DEC.
;IF TO=1

JT1 address Jump If. TEST 1 I. High

Opcode: 1L.....? ___ 0_1-1.I_o ___ o--'l. la7 a6 a5 a41 a3 a2 a1 80 I

This is a 2'Cycle instruction. Control passes to the specified address if the TEST 1 signal is high (= 1). Pin is
san:'lpled during SYNC.
(PCo-7) - 8ddr 1fT 1 = 1

Example: JT1HI: JT1 COUNT ;JUMPTO 'COUNT' ROUTINE
;IF T1=1

JZ addre.. Jump If Accumulator I. Zero

oPCode:1 L..... 1 ___ °_°-1.1_° ___ °--,1.1 87 a6 a5 841 a3 a2 a1 801

Example:

This is a 2'Cycle instruction. Control passes to the specified address if t~ accumulator contains all zeros at
the time this instruction is exec;:uted.
(PCo-7) - addr if A=O
JACCO: JZ OA3H ;JUMP TO LOCATION 'A3' HEX

;IF ACC VALUE IS ZERO

MOY A,#data Move Immediate Data to Accumulator

This is a2-cycle instruction. The 8-bit value specified by 'data' is loaded in the accumulator.
W-~ .

Example: MOV A,#OA3H ;MOV 'A3' HEX TO ACC

MOY A,PSW Move PSW Contents to Accumulator

Opcode: 1 1 __ 0_0--,-1 0 ___ 1--,1

Example:

The contents of the program statuS' word are moved to the accumulator.
(A)-(PSW)
Jump to 'RB1SET' routine if bank switch, PSW bit 4. is set.
BSCHK: MOV A.PSW ;MDV PSW CONTENTS TO ACC

JB4 RB1 SET ;JUMP TO 'RB1SET'IF ACe
;BIT 4=1

6-634

INSTRUCTION SET

MOY A, Rr Move Reglat., Contenta to Accumulator

()pcode: 11 ___ 1--L-11_r2_r_1 _rO--,1

Eight bits of data are moved from working'reglater 'r' into the accumulator.
(A) - (Rr) r=0-7

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3
;TOACC

MOY A,ORr Move Data Memory Contenta to Accumulator

()pcode: '-�1 ______ 1~I_o __ o_o __ r__'1

The contenta of the data memory location addressed by bits 0-5 of regiater 'r' are moved to the accumula­
tor. Register 'r' contents are unaffected.
(A) - «Rr» r=0-1

Example: Aaaume R1 contains 00110110.

MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM
;L6cATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Opcocle: 10 ____ 0 __ 0-'-1_0 __ 0 __ 1 _0--,1

The contenta of the timer I event-counter register are moved to the accumulator. The timer I event-counter is
not stopped.
(A) - (T)

Example: Jump to "EXIT" routine when timer reaches '64', that ia, when bit 6 ia set-assuming initialization to zero.
TlMCHK: MOV A,T ;MOVE TIMER CONTENTS TO

;ACC
JB6 EXIT ;JUMP TO 'EXIT' IF ACC BIT

;6=1

MOY PSW,A Move Accumulator Contents to PSW

Opcocle: 1'-1 ____ 0 __ 1 1_0 _____ 1.....11

The contents of the accumulator are moved il)to the program statua word. All condition bita and the stack
pointer are affected by thia move.
(PSW)-(A) ,

Example: Move up atack pointer by two memory locations, that ia, increment the pointer by one.
INCPTR: MaV A,PSW ;MOVE PSW CONTENTS TO ACC

INC A ;INCREMENT ACC BY ONE
MOV PSW,A . ;MOVE ACC CONTENTS TO PSW

6-635

, INSTRUC,[ION SET

MaY Rr,A Move Accumulator Contents to Register

Opcode: 1 1 . 0 1 0 11 r2 r1 rO I
The contents of the accumulator are moved to register 'r'.
CRr) - (A) r==0-7

Ex""",,: MRA MOV RO,A ;MOVE CONTENTS PF ACC TO
;REGO

MaY Rr,#d8ta Move immediate Data to Register

This a 2-cycle instruction. The 8-bit value specified by 'data', is mpved to register 'r'.
(Rr) - data r=0-7

Example: MIR4: MOV R4,#HEXTEN ;THE VALUE OF THE SYMBOL
. ;'HEXTEN' IS MOVED INTO

;REG4
MlR5: MOV R5;#PI*(R*R) ;THE VALUE OF THE

;EXPRESSION 'PI*(R*R)'
;IS MOVED INTO REG 5

MIR6: MOV R6,#OADH ;'AD' HEX IS MOVED INTO
;REG6 .

MOY @AriA Move Accumulator Contents to Data Memory

Opcocle: 110101000 rl

The'contents of the accumulator are moved to the data memory location whose address is specified by bits
0-5 of register 'r'. Register 'r' contents are unaffected,
«Rr» - (A) r=0-1

Exemple: Assume RO contains 11000111.
MDMA: MOV @R,A ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG)

MaY @Rr,#clats Move Immediate Data to Data Memory

Opcode: 11 0 1 1 10 0 0 r I·. Id7 d6 d5 d41 d3 d2 d1 dO I
This is a 2-cycle instruction. The 8-bit value specified by 'data' is moved to the standard data memory
location addressed by register 'r', bit 0-5. .
«Rr» - data r=0-1

Example: Move the hexadecimal value AC3F to locations 62-63.
MIDM: MOV RO,#62 ;MOVE '62' DEC TO ADDR REGO

MOV @RO,#OACH ;MOVE 'AC' HEX TO LOCATION 62
INC RO ;INCREMENT REG 0 TO '63'
MOV @RO,#3FH ;MOVE '3F' HEX TO LOCATION 63

6-636

INSTRUCTION SET

MOY STS,A Move Accumulator Contents to STS RegIster

Opcode: 11001100001

The contents of the accumulator are moved Into the status regiatar. Only bits 4-7 -are affected.
(STS4-7) - <A4-7)

Example: ' Set ST 4-8T7 to "1".

MSTS: MOV A,#OFOH
MOVSTS,A

;SET Ace
;MOVETO STS

MOY T,A Move Accumulator Contents to'Tlmer/Counter

Opcode: 10110100101

The contents of the accumulator are moved to the timer I event~unter regist!H'.
m-(A)

Example: Initialize and start event counter.

NTEC:CLRA
MOVT,A
STRTCNT

;CLEAR Ace TO ZEROS
;MOVE ZEROS TO EVENT COUNTER
;START COUNTER

MOYD A,Pp Move Port 4-7 Data to Accumulator

Opcode: I 0 0 0 '0 11 1 P1- PO 1

Thla is a 2-<:ycle Inatruction. Data on 8243 port 'p' ia moved (read) to accumulator bits 0-3. Accumulator bits
4-7 are zei'oed.
CAo-3> - PI) p=4-7
<A4-7)-0

Note: Bita 0-1 of the opcode are used to represent PORTS 4-7. " you are coding in binary rather than aaaembly
language, the mapping ia as foIIowa:

BIts P1 ~ Port
004

o 1

1 0

1 1

6

6

7

Example: INPPT6: MOVD A,P6 ;MOVE PORT 6 DATA TO Ace
;BITS 0-3, ZERO Ace BITS 4-7

MOYD Pp,A Move Accumulator Data to Port 4, 5, 8 and 7,

Opcode: 1 0 0 1 1 11 1 P1 PO 1

This la a 2-<:ycle instruction. Data in accumulator blta 0-3 is ~ (written) to 8243 port 'p'. Accumulator
bits 4-7 are unaffected. (See NOTE' abOve regarding port mapping.) ,

(Pp) - CAo-3> p=4-7
Example: Move data in accumulator to porta 4 and 6.

0UTP45: MOVD P4,A ;MOVE ACC BITS 0-3 TO PORT 4
SWAP A ;EXCHANGE ACC BITS 0-3 AND 4-7
MOVD P6,A ;MOVE Ace BITS 0-3 TO PORT 6

6-637

INSTRU<;TION SET

MOVP A.oA Move Current Page Date to Accumulator.

Opcode: 11010100111

This Is a 2-eycle Instruction. The contents of the program memory location addressed by the accumulator
are moved to the accurnulstor._ Only bits 0-7 of the program counter are a~, Hrnlting the program
niemory reference to the current page. The program counter Is restor~ following this operation. .
(A)- «A» .

Note: This Is a 1-byte, 2-eycle InatrucJlon. If It apP8&r8 in location 266. of a program memory page, @Aaddresses
a location In the following page.

Example: MOV128: MOV A,#128 ;MOVE '128' DEC TO Ace'
MOVP A,@A ;CONTENTS OF 129TH LOCATION

;IN CURRENT PAGE ARE MOVED TO
;Ace . ,

MOVP3 A,OA Move Page 3 Date to Accumulator

Opcode: '1-1 __ 1_0...1...1_0 _0 _1 _1...../1

This Is a 2-eycle instruction. The contents of the program memory location within pags 3, addressed by the
accumulator, are moved to the accumulator. The program counter Is restored following this operation.

, (A) - «A» within pags 3
Example: Look up ASCII eqUivalent of hexadecimal code In table contained at the beginning of pags 3. Nota that ASCII

characters are designated by a 7-bit code; the eighth bit is alwaYs reset. I

TABSCH: MOV A,#0B8H ;MOVE '88' HEX TO Ace (10111000) .
ANL A,#7FH ;LOGICAL AND Ace TO MASK BIT

;7 (00111000)
MOVP3, A,@A ;MOVE CONTENTS OF LOCATION

. ;'38' HEX IN PAGE 3 TO Ace
;(ASCII '8')

Access contents of location in page 3 labelled TAB 1. Assume currant program location Is not in page 3.
TABSCH: MOV A,#TAB1 ;ISOLATE BITS 0-7

;OFLABEL
;AODRESS VALUE

MOVP3 A,@A ;MOVE CONTENT OF PAGE 3
;LOCA irON LABELED 'TAB l' (
;TOAce

NOP The HOP Instruction

Opcode: 10000100001

No operation Is performed. Execution continues with the following instruction.

ORL A,Rr Logical OR Accumulator With Register Mask

Opcocle: I 0 1 0 0 11 r2 r1 ro I
Data in the accumulator is logically ORed.witt! the ",-sk contained in wprl<ing reg. 'r'.
(A) - (A) OR (Rr) . r=0-7 .

Example: ORREG: ORL A,R4 ;'OR' Ace CONTENTS WITH
;MASK 1111 REG 4 '

6-638

..

INSTRUCTION SET

ORL A,ORr Logical OR Accumulator With Memory Meek

()pcode: 101001000 rl

Data In the accumulator Is logically 0RecI with the maak contained in the data memory location referenced by
register 'r', bits 0-5.
(A) - (A) OR «Rr» r=0-1

Example: ORDM: MOVE RO,#3FH ;MOVE '3F' HEX TO REG 0
ORL A,@RO ;'OR' Ace CONTENTS WITH MASK

;IN LOCATION 63

ORL A,#cIata logical OR Accumulator With Immediate Mask

This is a 2-cycle instruction. Data in the accumulator is logically ORed with an immediately-specifIed mask.
(A) - (A) OR data

Example: ORID: ORL A,#'X' ;'OR' Ace CONTENTS WITH MASK
;01011000 (ASCH VALUE OF 'X')

ORL Pp,#cIata Logical OR Port 1-2 With Immediate Mask

This Is a 2-cycle instruction. Data on port 'p' is logically ORed with an immediately-specified mask.
(Pp) - (Pp) OR data p= 1-2 (see OUTl instruction)

Example: ORP1: ORL P1,#OFFH ;'OR' PORT 1 CONTENTS WITH
;MASK 'FF' HEX (SET PORT 1
'TO ALL ONES)

ORLD Pp,A Logical OR Port 4-7 With Accumulator Mask

Opcode: 11 '0 0 0 11 1 P1 pol

This is a 2-cycle instruction. Data on 8243 port 'p' is logically ORed with the digit mask contained in accumu­
lator bits 0-3,
(PP) (Pp) OR (Ao-3> p=4-7 (See MOVD instruction)

Example: ORP7: ORLD P7,A ;'OR' PORT 7 CONTENTS
;WITH Ace BITS 0-3

OUT DBB,A Output Accumulator Contents to Oats Bus Buffer

Opcode: 10000100101

Contents of the accumulator are transferred to the Data Bus Buffer Output register and the Output Buffer FuH
(OBF) flag is set to one. '
(DBB)-CA)
OBF-1

Example: OUTDBB: OUT DBB,A ;OUTPUT THE CONTENTS OF
;THE Ace TO DBBOUT

6-639

•

INSTRUCTION SET

OUTL Pp,A OUtput Accumulator Data to Port 1 and 2

Opcode: L..I 0_0 __ 1--l-11_0_p_1 _PO---li

This is a 2-cycle instruction. Data residing in the accumulator is transferred (written) to port 'p' and latched.
(Pp) - (A) P=1-2

Note: Bits 0-1, of the ,opcode are used to represent PORT 1 and PORT 2. If you are coding in binary rather than
assembly language, the mapping is as follows:

Example:

Bits p1
1f

OUTLP: MOV A,R7
OUlL P2,A
MOVA,R6
OUR P1,A

° 1
1

pO Port
1f X
1 1

° 2
1 X

;MOVE REG 7 CONTENTS TO Ace
;OUTPUT Ace CONTENTS TO PORT2
;MOVE REG 6 CONTENTS TO Ace
;OU~T Ace CONTENTS TO PORT 1

RET Return Without PSW Restore

Opcode: 110 ° 010 0

This is a 2-cycle instruction. The stack pointer (PSW bits 0-2) Is decremented. The program counter is then
restored from the stack. PSW bits 4-7 are not restored.
(SP) - (SP) - 1
(PC) - «SP»

RETR Return With PSW Restore

Opcode: 110 0110 °
This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits 4-7 of the
PSW are then restored from the stack. Note that RETR should be used to return from an interrupt, but should
not be used within the interrupt service routine as it signals the end of an interrupt routine.
(SP) - (SP) - 1
(PC) - «SP»
(PSW4-7) - «SP})

RL A Rotate Left Without Carry

Opcode: 1-11 __ 1_0--,-1 0 ___ --'

The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit ° position.
(An+ 1) - (An) n=0-6
(Ao) - (A7)

Example: Assume accumulator conteins 10110001.
RLNC: RL A ;NEW Ace CONTENTS ARE 01100011

6-640

INSTRucnON SET

RLC A RotAde Left Through c.ry

()pcQde: 11.1 1 1101111

The contents of the accumulator are rotated left one bit. Bit 7 replacee the carry bit; the carry bit Ia rotated
into the bit 0 poaItIon.
CAn+1) - <An> n-(}.8

.. (Ao)-(C)
(C)- (A7)

Example: As8ume accumulator contalna a '8Igned' number; isolate sign without changing Value.
AL TC: a.R C ;a.EAR CARRY TO ZERO

ALC A ;ROTATE ACe lEFT, SIGN
;B/T (7) IS PLACED IN CARRY

RR A ;ROTATE Ace RIGHT - VALUE
;(BITS 0-6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;ISZERO

RA A Rotate RIght Without c.ry

Opcode: 1011110111

The contents of the accumulator. are rotated right one I:!it. Bit 0 is rotated into the bit 7 position.
(An> - (An+ 1) n=0-6
(A7)-(Ao)

Example: Assume accumulator contains 10110001.
RRNC: RRA ;NEW Ace CONTENTS ARE 11011000

RAC A Rotate RIght Through Carry

0pc:0cIe: 10110101111

The contents of the accumuiator are rotated right one bit. Bit 0 replaces the carry bit; the carry bit is rotated
into the bit 7 position.
<An> - (An+1) n=0-6
(A7)- (C)
(C)-(Ao)

Exalnple: As8ume carry Ia not set and accumulator contains 10110001.
RATC: RRCA ;CARRY IS SET AND Ace

;CONTAINS 01011000

SEL RBO SeleCt Register Bank 0

Opcode: 11 100101011

PSW BIT 4 is set to zero. References to working reglaters 0-7 address data memory locations 0-7. This is
the recommended setting for normal program execution.
(8$)-0

6-641

INSTRUCnON SET

SEL RB1 Select Register Bank 1 , ,~

Opcode: 11 10110101

PSW bit 4i8 set to one. References to working registers ()-.,7'addreas data memory Jocations 24-31. Thiels
the recommended setting for Interrupt service routines, since locations 0-7 are IefHntact. The setting of
PSW bit 4 in effect at the time of an Interrupt Is restored by ttwRETR instruction when the, Interrupt service
routine is completed.
(BS)-1

Example: Assume an ISF interrupt has occllrred. control has passed to program memory location 3, and PSWblt 4
was zero before the interrupt.
LOC3: JMP INIT ;JUMPTO ,ROUTINE 'INIT'

INIT: MOV R7,A

SEL RB1
MOV R7,#OFAH

SEL RBO
MOVA,R7
RETR

STOP TCNT Stop Timer IEvent Counter

;MOV ACe CONTENTS TO
;LOCATION 7
;SELECT REG BANK 1
;MOVE 'FA' HEX Tq LOCATION 31,

;SELECT REG BANK 0
;RESTORE, ACC FROM LOCATION 7
;RETURN--RESTORE PC AND PSW

Opcode: 10110101011

This instruction is used to stop both time accumulation and event counting. ",'
Example: Disable interrupt, but jump to interrupt routine after eight overflows and stop timer. Count overflows in

reglst,r 7. '
START: DIS TCNTI ;DISABLE TIMER INTERRUPT

CLR A ;CLEAR ACC TO, ZERO
MOV T,A :MOV ZERO'TO TIMER
MOV R7,A :MOVE ZERO TO REG 7
STRT T ;START TIMER

MAIN: JTF COUNT ;JUMP TO ROUTINE 'COUNT'
;1f,)f,F=1 ANOCLEAR TIMER FLAG

JMP MAIN ;CLOSE LOOP
COUNT: INC R7 ;INCREMENT REG 7

MOV A,R7 ;MOVE REG 7 CONTENTS TO ACe
JB3 INT ;JUMP TO ROUTINE 'INT' IF ACC

;BIT 31S SET (REG 7=8) ,
JMP MAIN ;OTHERWISE RETURN TO ROUTINE

;MAIN

INT: STOP TCNT
JMP7H

;STOP TIMER
;JUMP TO LOCATION 7 (TIMER
;INTERRUPT ROUTINE)

6..642

INSTRUCTION SET

STRT CNT Start Event Counter

0pc0cIe: 1010010101

The lJ;ST 1 (T 1) pin is enabled as the event-counter input and the counter is started. The event-counter
register is Incremented with each high to low transition on the T 1 pin.

Example: Initialize and start event counter. Assume overflow Is desired with first T 1 input.
STARTC: EN TCNTI ;ENABLE COUNTER INTERRUPT .

STRT T Start Timer

MOV A,#OFFH ;MOVE 'FF' HEX (ONES) TO
;Ace

MOV T,A ;MOVE ONES TO COUNTER.
STAT CNT ;INPUT AND START

Opcode: 1,-0 __ 1 _0 _....L.1_0_1_0_1--,

Timer accumulation Is initiated In the timer register. The register is incremented every 32 instruction cycles.
The preecaler which counts the 32 cycles is cleared ~t the timer register is not.

Example: Initislize and start timer.
STARTT: EN TCNTI;ENABLE TIMER INTERRUPT

CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
STRT T ;START TIMER

SWAP A Swap Nibble. Within Accumulator.

Opcode: 10100101 11

Bits 0-3 of the accumulator are swapped with bits 4-7 of the accumulator.
(A4-7) - (Ao-a>

Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO,#50 ;MOVE '50' DEC TO REG 0 .

MOV R1,#51 ;MOVE '51' DEC TO REG 1
XCHD A,@RO ;EXCHANGE BIT 0-3 OF Ace

;AND LOCATION 50
SWAP A ;SWAP BITS 0-3 AND 4-7 OF ACC

XCHD A,@R1 ;EXCHANGE BITS 0-3 OF Ace AND
;LOCATION 51

MOV @RO,A ;MOVE CONTENTS OF Ace TO
;LOCATION 51

XCH A,Rr Exchange Accumulator-Register Contents

Opcode: I 0 0 '1 0 11 [2 r1 rO I
The COJ:Itents of the accumulator and the contents of working register 'r' are exchanged.
CA) - (Rr) r=0-7

Example: Move PSW contents to Reg 7 without losing accumulator contents.
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND Ace
MOV A,PSW ;MOVE PSW CONTENTS TO ACC .
XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND Ace AGAIN

6-643

I,NSTRUCTION SET

XCH A,@Rr Exchange Accumulator and Data Memory Contents

Opcode: 100101000 rl

The contents of the accumulator and the contents'of the data memory locatiOn addressed by bits 0-5 of
register 'r' are exchanged. Register 'r' contents are unaffected.
(A) - «Rr» r=0-1'

Example: Decrement contents of location 52.
DEC52: MOV RO,#52 ;MOVE '52' DEC TO ADDRESS

;REGO
XCH A,@RO ;EXCHANGE CONTENTS OF Ace

;AND LOCATION 52
DEC A ;DECREMENT ACC CONTENTS
XCH A,@RO ;EXCHANGE CONTENTS OF Ace

;AND LOCATION 52 AGAIN

XCHD A,@Rr Exchange Accumulator and Data Memory 4-blt Data

Opcode: ,-I 0_0 ___ 1...J.1_0_0_0_--,r I

Example:

This instruction exchanges bits 0-3 of the accumulator with bits 0-3 of the data memory location addressed
by bits 0-5 of register 'r'. Bits 4-7 of the accumulator, bits 4-7 of the data memory location, and the
contents of register 'r' are unaffected.
(AO-3) - «RrO-3» r=0-1
Assume program counter contents have been stacked in locations 22-23.
XCHNIB: MOV RO,#23 ;MOVE '23' DEC TO REG 0

CLR A ;CLEAR Ace TO ZEROS
XCHD A,@RO ;EXCHANGE BITS 0-3 OF Ace

;AND LOCATION 23 (BITS 8-11
;OF PC ARE ZEROED, ADDRESS
;REFERS TO PAGE 0)

XRL A,Rr Logical XOR Accumulator With Register Mask

opcode:l L _1 __ 0_1...J.1_1_r2_r_1 _r--,O I
Data in the accumulator is EXCI.,USIVE ORed with the mask contained in working register 'r'.
(A) - (A) XOR (Rr) r=0-7

Example: XORREG: XRL A,R5 ;'XOR' Ace CONTENTS WITH
JMASK IN REG 5

XRL A,@Rr Logical XOR Accumulator With Memory Mask

Opcode: 11

Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory location ad­
dressed by register 'r'; bits 0-5. '
(A) - (A) XOR «(Rr» r=0-1

Example: XORDM: MOV R1,#20H ;MOVE'20' HEX TO REG 1
XRL A;@R1 ;'XOR' ACC CONTENTS WITH MASK

;IN LOCATION 32

6-644

INSTRUCTION SET

XRL A,#data Logical XOR Accumu .. tor With immediate Mok

Opcode: 11 1 0 1 1 0 0 1 1 1 • 1 d7 de ds d41 d3 d2 d1 do 1

This is a 2-cycia instruction. Data in the accumulator is EXCLUSIVE ORad with an immediately-specified
mask.
(A) - (A) XOR data

Example: XORID: XOR A,#HEXTEN ;XOR CONTENTS OF ACC WITH
;MASK EQUAL VALUE OF SYMBOL

.;'HEXTEN'

6-645

. CHAPTER 4
SINGLE-STEP, PROGRAMMING,

AND POWER .. DOWN MODES

SINGLE-STEP
The UPI (amilyhas a single-step mode which allows
the user to manually step through his program one
instruction at a time. While stopped, the address of
the next instruction to be fetched is available on
PORT 1 and the lower 2 bits of PORT 2. The single­
step feature simplifies program debugging byallow­
ing the user to easily follow program execution.

+sv

10k

PRESET

MOMENTARY +sv D Q

PUSH TO STEP fj} +sv

10k

CLEAR

% 7474

Figure 4-1 illustrates a recommended circuit for sin­
gle-step operation, while Figure 4-2 shows the tim­
!!!grelationship between the SYNC output and the
SS input. During single-step operation, PORT 1 and
part of PORT 2 are used to output address informa­
tion. In order to retain the normal I/O functions of
PORTS 1 and 2, a separate latch can be used as
shown in Figure 4-3.

+sv

10k
HALT

r
PRESET

TOSS
+sv D Q INPUT

ON 8741A

CLOCK

CLEAR

FROM
8741A
SYNC

% 7414 OUTPUT

Figure 4-1. Single-Step Circuit

SYNC -.J

~
I :~

ss

SS BUrTON

P10·17 PORT DATA X :: Pca-7 >C
P20-P21 X :: PCB-9 >C

ACTIVE CYCLE STOP CYCle ACTIVE CYCLE

Figure 4-2. Single-Step TIming

6-646

SlNGLE-STEP,PAOGAAMMING, & POWEA;'OOWN MODES

SYNC

P10 P10 D10

P11
DATA IN

D11

P12 D12

8041AH
P13 D13 8042

87·&1A
87.2 P14 D1.

P15 D15

P18 D18

P17 D17

"-
" " "::"

:-,

+5v " +5V

SYNC

1011 ADDllE55
DISPLAY
(LED)

P17 D17

OC = OPEN COLLECTOR Tn.
LS = LOW POWER SCHOTTKLY TTL P171NPUT DATA

Figure 4-3. latching Port Data

Timing
The sequence of single-step operation is as follows:
1) The processor is requested to stop by applying a

low level on SS. The SS input should not be
brought low while SYNC is high. (The UPI
samples the SS pin in the middle of the SYNC
pulse).

2) T~e processor responds to the request by stop­
ping during the instruction fetch portion of the
next instruction. If a double cycle instruction is
in progress when the single-step command is re­
ceived; both cycles will be completed before
stopping.

3) The processor acknowledges it has entered the
stopped state by raising SYNC high. In this
state, which can be maintained indefinitely, the
10-bit address of the 'next instruction to be
fetched is ,present on PORT 1 and the lower 2
bits of PORT 2.

4) SS is then raised high to bring the processor out
of the stopped mode allowing it to fetch the
next instruction. The exit from stop is indicated
by the processor bringing SYNC low.

5) To stop the processor at the next instruction SS
must be brought low again before the next
SYNC pulse-the circuit in Figure 4-1 uses the
trailing edge of the previous pulse. If SS is left
high, the processor remains in the "RUN"
mode.

Figure 4-1 shows a schematic for implementing sin­
gle-step. A single D-type flip-flop with preset and
clear is used to generate SS. In the RUN mode SS is
held high by keeping the flip-flop preset (preset has
precedence over the clear input). To enter single­
step, preset is removed allowing SYNC to bring SS
low via the clear input. Note that SYNC must be
buffered since the SN7474 is equivalent to 3 TTL
loads.

The processor is now in the stopped state. The next
instruction is initiated by clockinL'~" into the flip­
flop. This "1" will not appear on SS unless SYNC is
high (i.e., clear must be removed from the flip-flop).
In response to SS going high, the processor begins an
instruction fetch which brings SYNC low. SS is then'
reset through the clear input and the processor again
enters the stopped state.

, 6-647

,INGLE-STEp,. PI(oGRAMNlI~G~:&POWER .. DOWN, MODES

PROGRAMMING, VERIFYING AND ERASING
EPROM (8741A, 8742 EPROM ONLY)
The internal Program Memory of the 8741A and
8742 may be erased and reprogrammed by the user
as explained in the following sections. See the data
sheet for more detail.

Programming
The programming procedure consists of the follow­
ing: activating the program mode, applying an
address, latching the address, applying data, and
applying a programming pulse. Each word is pro­
grammed completely before moving on to the next
and is followed by a verification step. Figure 4-4
illustrates the programming and verifying sequence.
The following is a list of the pins used for program­
ming and a description of their functions:

• XTAL I, Clock Input
XTAL2

• RESET Initialization and Address Latching

• TEST 0 Selection of Program or Verify
Mode

• EA

• DO-D7

RESET

Activation of Program/Verify
Modes

Address and Data Input
Data Output During Verify

+5V

• P20, P21 . Address Input

• VDD Programming Power Supply

• PROG' Program Pulse Input

NOTE: All set-up and hold times are 4 cycles.

Th~ detailed Programming sequence (for one byte)
is as follows:

I) Initial Conditions: Ycc =; VDD = 5V; Clock
Running; AO = OV, CS = 5V; EA = 5V; DO-D7
and PROG Floating.

2) RESET = oV, TEST 0 'i= OV (Select Program­
ming Mode).

3) EA'= 23V for 8741A
EA = 18V for 8742

4) Address applied to DO-D7 and PORTS 20-22.

5) RESET = 5V (Latch Address).

6) Data applied to Do-D7.

7) VDD = 25V for 8741A .
VDD = 21V for 8742 tProgramming Power).

BUS A~D PROG CAN BE DRIVEN ONLY DURING THIS TIME ·1
+5V

TEST 0

+23Y/+18V
EA

+5V ..
PO·P7 (ADDRESS 0-7 >-< . DATA) ~ OUT

P20'·21 (ADDRESS AO-Ag)

+25vl+21V

Voo
+5V

+5V +23VI+21V I L., PROG
+OV ,

. Figure 4-4. . Programming Sequence

6-648

SINGLE-STEP, PROGRAMMING, a POWER-DOWN MODES

8) PROG = OV followed by one 50 msec pulse of
23V for 8741A
PROG = OV followed by one 50 msec pulse of
18V for 8742.

9) VOO = 5V.

10) TEST 0 = 5V (Select Verify Mode).

11) Read data on 00-07 and verify EPROM cell
contents.

WARNING
An attempt to prOgram a mis-socketed 8741A
or 8742 will result in severe damage to the part.
An indication of a properly socketed part is the
appearance of the SYNC clock output. The
lack of this clock, may be used 'to disable the
programmer.

Verification
Verification is accomplished by latchj.ng in an ad­
dress as in the Programming Mode and then apply­
ing "1" to the TEST 0 input. The word stored at the
selected address then appears on the Do-D7 lines.
Note that verification can be applied to both ROM's
and EPROM's independently of the programming
procedure. See the data sheet.

The detailed Verifying sequence (for one byte) is as
follows:

1) Initial Conditions: VCC = VOO = 5V; Clock
Running; Ao = OV, CS = 5V; EA ~ 5V; 00-07
and PROG Floating.

2) RESET = OV, TEST 0 = 5V (Verify Mode).

3) EA = 23V for 8741A
EA = 18V for 8742

,4) . Address applied to 00-07 and PORTS 20-22.

5) RESET = 5V (Latch Address)

6) Read data on 00-07 and verify EPROM cell
contents.

Erasing
The program memory of the 8741A or 8742 may be
erased to zeros by exposing' its translucent lid to
shortwave ultraviolet light.

EPROM Light Sensitivity
The erasure characteristics of the 8741A or 8742
EPROM are such that erasure begins to occur when

,

exposed to light wit/l wavelengths shorter than ap­
proximately 4000 Angstroms. It should be noted
that sunlight and certain types of fluorescent lamps
have wavelengtlls in the 3<>00-4000 Angstrom range.
Oata shows that constant exposure to room level flu­
orescent lighting could erase the typiclil87 41A in ap­
proximately 3 years while it wO\1ld take
approximately 1 week to cause erasure when ex­
posed to direct sunlight. If the 8741A or 8742 is to be
exposed to these types of lighting conditions for ex­
tended periods or' time, opaque labels (available
from Intel) should be placed over the 8741A or 8742
window to prevent unintentional erasure.

The recommended erasure procedure for the 8741A
or 8742 is exposure to shortwave ultraviolet light
which has a wavelength of 2537 Angstroms. The in­
tegrated dose (i.e., UV intensity X exposure time)
for erasure should be a minimum of 15W -sec/cm2
pOwer rating. The erasure time with this dosage is
approximately 15 minutes using an ultraviolet lamp
with,a 12;OOO,I'W/cm2 power rating .. The 8741A or
8742 should be placed within 1 inch of the lamp
tubes during eras~re. Some lamps have a fllter on
their tubes which should be removed before erasure.

EXTERNAL ACCESS
The UPI family has an External Access mode (EA)
which puts the processor into a test mode. This
mode allows the user to disable the internal program
memory and execute from external memory. Exter-·
na1 Access mode is useful in testing because it allows'
the user to test the processor's functions directly.-It
is only useful for testing since this mode uses 00-07,
PORTS 10-17 and PORTS 20-22.

This mode is invoked by connecting the EA pin to
5V. The ll-bit current program counter contents
then come out on PORTS 10-17 and PORTS 20-22
after the SYNC output gOes high. (PORT 10 is the
least significant bit.). The desired instruction opcode
is placed on 00-07 before the start of state Sl. Our­
ing state SI, the opcode is sampled from 00-07 and
subsequently executed in place of the internal pro­
gram memory contents.

The program counter contents are multiplexed with
the I/O .port data: on PORTS 10-17 and PORTS 20-
22. The I/O port data may be demultiplexed using
an external latch on the rising edge of SYNC. The
program counter contents may be demultiplex.ed
similarly using the trailing edge of SYNC.

Reading and/or writing the Oata Bus Buffer regis­
ters is still allowed although only when 00-07 are
not being sampled for opcode data. In practice, since
this sampling time is not known externally, reads or

9-649

SINGLE-STEP, PROGRAMMING, & . POWER-DOWN MODES

writes on the system bus are done during SYNC high
time. Approximately 600ns are available for each
read or write cycle.

POWER DOWN MODE
(S041AH/S042 ROM ONLY)

Extra circuitry is included in the ROM version to al­
low low-power, standby operation. Power is removed
from all system elements except the internal data
RAM in the iow-power mode. Thus the contents of'
RAM can be maintained and the device draws only
10 to 15% of its normal power.

The V CC pin serves as the 5V power supply pin for
all of the ROM version's circuitry except the data
RAM array. The VDD pin supplies only the RAM
array. In normal operation, both V CC and VDD are
connected to the same 5V power supply.

To enter the Power-Down ~ode, the RESET signal
to the UPI is asserted. This ensures the memory will

. not be inadvertently altered by the UPI during
power-down. The V CC pin is then grounded while
VDD is maintained at 5V. Figure 4-5 illustrates a
recommended Power-Down sequence. The sequence
typically occurs as follows:

1) Imminent power supply failure is detected by
user defined circuitry. The signal must occur

POWER SUPPLY

early enough to guarantee the 8041AH or 8042
can save all necessary data before· V CC falls
outside normal operating t\>lerance.

2) A "Power Failure" signal is used to interrupt
the processor (via a timer overflow interrupt,
for instance) and call a Power Failure service
routine.

3) The Power Fltilure routine saves all important
data and machine status in the RAM array. The
routine may also initiate transfer of a backup
supply to the VOO pin and indicate to external
circuitry that the Power Failure routine is com­
plete.

4) A RESET signal is applied by external hard­
ware to guarantee data will not be altered as the
power supply falls out of limits. RESET must
be low until V CC reaches ground potential.

Recovery from the Power-Down mode «an occur as
any other power-on sequence. An external 1 I'fd ca­
pacitor on the RESET input will provide the neces­
sary initialization pulse.

:'\
:;'~~~~~~D 1 '"1----

/ 1 1

---""",' : 1
PO':i~ ~~:~r r I I NORMAL

'"I -----11-----1--------- :~;fU":Ng~
1 1 1 FOLLOWS
1 1 1 _____ +, ____ --;1, 1

ReSET i LJI 1 1 ________ _

I. II

PATA SAVE
ROUTINE
EXECUTeD

ACCESS TO
DATA RAM
INHIBITED

Figure 4-5, Power-Down Sequence

6-650

CHAPTER 5
SYSTEM OPERATION

BUS INTERFACE
The UPI-41AH, 42 Microoomputer functions as a
peripheral to a master processor by using the data
bus buffer registers to handle data transfers. The

,DBB confIgUration is illustrated in Figure 5·1. The
UPI-41AH, 42 Microcomputer's 8 three-state data
lines (D7-DO) connect directly to the master proces­
sor's data bus. Data transfer to the master is con­
trolled by 4 external inputs to the UPI:

• Ao Address Input signifying command
or data '

• CS Chip Select

• RD Read strobe

• WR Write strobe

Wii
CONTROL AD

BUS Ci Ao

Figure 5-1. 'Data Reg'" ~atlon

The master processor addresses the UPI:41AH, 42
Microcomputer as a standard peripheral device. Ta­
ble 5-1 shows the conditions for datil transfer: "

Table 5-1'. 'Data Transfer Controls

CI Ao·RD WR· ,
Condition

0 0 0 1 ae.dD~BOUT

0 1 " 0 1 Read STATUS
0 0 1 0 Write DBBIN data, set Fl = 0.'

, '0 1 1 0 Write DBBIN command se~,
Fl = 1

1 " Diliabl~DBB x x x'

aeadl",i the DBBOUT.R.gI.ter,
The sequence for reading the DBBOUT register is
'shown'in Figure 5-2. This operation causes the'8.:bit
contents of the DBBOUT register to be placed on

the system Data Bus. The OBF flag is cleared auto­
matically.

Reading STATUS '
The sequence for reading the UPI-41AH, 42
Microcomputer's 8 STATUS bits is shown in Figure
.5-3. This operation causes the 8-bit STATUS regis­
ter contents to be placed on the system Data Bus as
shown.

6:.e51

Write Data to DBBIN· ;'

The sequence for writing data to the DBBIN register
is shown in Figure 5-4. This operation causes the sys­
tem Data Bus contents to be transferred to the
DBBIN register and the mF flag is set. Also, the F1
flag is cleared (F1 = 0) and an interrupt request is
generated. When the IBF interrupt is ~nabled, a
jump to location 3 will occur. The interrupt request
is cleared upon entering the mF service routine or
by a system RESET input ..

cs'

DATA ----«\-,. __ ..Jr
Figure 5-2. DBBOUT Reed'

cs ~,,---_--,I

AoJ \"---
~ ------ -------~

\''-_...11

. ' DATA .. -----.""1(..... ___ ' .~.~
ails CONTENTS _ STATUS READ

.1 ST/IST6: 1 STS 1 ST4 1 Fl I. Fo 1 .BF 1 OBF 1
~ ~'.~'~ '00 ~ ~ 00

·FIgure 5-3. Statua Read,

SYSTEM OPERATION

, 'os

Wii --..... ,\,.' __ --.JI

DATA --<)--\,..... __ --J

,FIgwe 504. Writing Data to DB8IN

Writing, ¢ommands to D~BIN
The sequence for writing, commands to the DBBIN
register is shown in Figure 5-5. This seqlclence is
identical to a data write except that the Ao input is
latched in the Fl flag (Fl = 1). The IBF flag is set
and an interrupt request is generated, when the mas­
ter writes a command to DBB.

Operations of Data Bus Registers
The UPI-41AH, 42 Microcomputer controls the
~ransfer of DBB data to its accumulator by execut­
ing INput and OUTput instructions. An IN A,DBB
instruction causes the ,contents to be transferred to
the UPI accumulator and the mF flag is cleared.

The OUT DBB,A instruction causes the contents of
the accumulator to be transferred to the DBBOUT
register. The OBFtlag ~ set. ..

The UPI's data ,bus buffer interface is applicable to a
variety of microprocessors including the B086, 8088,
8085AH, B08O; and 8048. "

fA description of the interface to each of these pro~
,cessors follows. .

DESIGN EXAMPLES
8085AH Interface
Figure 5-6 i~h~strates>an 8085AH system using a
:UPI-41AH, 42. The 8085AH system uses a multi­
plexed address and data bus. During I/O the 8 upper
address lines <Aa-A15) contain the ,same I/O address
as the lower 8 address/data lines <AQ-A7); therefore
:I/O address'decoding is done ~ orily the upper 8
lines to eliminate latching of the address. An 8205
decoder provi.des address decoding for' PQtlt the
UPI-41AH, 42 and.the- 8237. Data is transferred

> I

Ao

Wii ~--~ ,-----"_'_..........,1
DATA

FIgwe 5-5. WrItIng CornmaIIda to DB8IN

using the two DMA handshaking lines of PORT 2.
The 8237 performs the actual bus transfer operation.
Using the UPI-41AH, 42's ()BF master interrupt,
the UPI-41A notifies the 8085AH upon transfer
completion using the RST 5.5 interrupt input. The
IBF master interrupt is not used in this example.

8* Interface
, Figure 5·7 illustrates a UPI-41AH, 42 interface to an
8088 minimum mode system; Two 8-bit latches are
used to demultiplex the address and data bus. The '
address bus is 2O-lines wide. for I/O only, the lower
16 alidress lines are used, providing an addressing
range of 64K. UPI address selection is accomplished
using an 8205 decoder. The Ao address line of ihe
bus is connected to the corresponding UPI input for
register selection. SiD,~ tJte UPI-~UA is polled by the
B088, neither DMA nor master interrupt caPabilities
of the, UPI-41AH, 42,4U'8 used in the fIgUJ'e.

8086 Interface
, \ ::'

The UPI-41AH, 42 can be. used on an 8086 maxi­
mum mode system 1IlI, sh~,i,n fIgUre 5.,8. The ad­
dress and data bus is demultiplex:~d using three 8282
latches pnwi~ing -separate address and data blJ!l&S.
The address bus is 20-lines wide and the data bus is
'16-lines wide. Multiplexed (;ontrollines are decoded
by the 8288. The UPI's CS input is provided by lin­
:ear selection. Note that the UPI-41AH, 42 is both
,I/O DJAPped and Dlemory mapped as a result of the
,linear addressing technique. An address decoder
may be used to liJpjt the tWI-41~, 42 to a specific '
I/O mapped address. Address line Al is connected to
the UPI's Ao input. This i~ures that the registers of
the UPI will haVe even' 'I/O 'addresses. Data'will be
transferred on Do-D7lines only. This aU9:w8 the.I/O
registers to, be accessed ~ing byte lDanipulatiQn
instructions.

&.662.

SYSTEM OPERATION . .

8085AH
,

IO/U E3 8205

ALE E2 00 I--

AS-A1S A AO-A2 01

""""
AOo-A07 '-r- -.sIOATA

- CONTROL -
r RST 55

L 8237 8041AH,87.'A
8042,87.2 I

CS .. CS PORT 1

~ '--- iii PORT 2 (8)

- ViIi

00-07
Oo-D7

TEST 0
DRO

TEST 1 , DA~~

Figure 5-6. 8085AH-UPI Syst~

--a.;;o-

ClJ(ADDRESS jSr "EADY

IlESET

I
8041AH ----- 8282 820S 8741A

ADo-AD1$ \r- --1 (') 804.

m I
co 8742

IO/U
PORT 1 (8)

ALE
I I

AO
PORT 2 (8)

DATA BUS IlO-D,

iiii ... iiii TEST 0

Wii Wii TEST 1

Figure 5-7. 8088-UPI Minimum Mode System

6-653

8284
,

CLK
8088
~ CONTROL READY 8288

RESET r---v

_·w 8282
ADDRESS (3)

DATA

no

~ 7
00-07 CS AO WR RD

8041AH
8741A
8042
8742

, PORT 2 PORT 1

T1J

~ l' ~.J
~8 Ita
V ~J.

TEST 1

Figure 5-8. 8Q86.UPI Maximum Mode Systems

.8080 Interface
Figure 5-9 illustrates the interface to an 8080A sys- '
tern. In this example, a crystal and capacitor are
used for UPI-41AH, 42 timing reference and power­
on RESET. If the 2-MHz 8080A 2-phase clock were
used instead of the crystal, the UPI-41AH, UPI-42
would run at only 16% full speed.

The Ao and es inputs are direct connections to the
8080 address bus. In larger systems, however, either
of these inputs may be decoded from the 16 address
lines.

The RD and WR inputs to the UPI can be either the
. lOR and lOW or the MEMR and MEMR signals de­
pending on the I/O mapping technique to be used.

The UPI can be addressed as an I/O device using IN­
put and OUTput instructions in 8080 s<1ftware.

I 8048 Interface
Figure 5-10 shows the UPI interface to an 8048 mas­
ter processor.

The 8048 RD and WR outputs are directly compati­
ble with the UPI. Figure 5-11 shows a distributed
processing system with up to seven UPl's connected
to a single 8048 master processor.

In this confIguration the 8048 uses PORT ° as a data
bJls. I/O: PORT 2- is used to select one of the seven
UPl's when data transfer occurs. The UPl's are pro­
grammed to handle isolated tasks and, since they op­
erate in parallel, system throughput is increased.

GENERAL HANDSHAKING PROTOCOL
1) Master reads STATUS register (RD, es, Ao =

(0, 0, 1» in polling or in response to either an
IBF or an OBF interrupt.

2) . If the UPI DBBIN register is empty (IBF flag =
0.hMaster writes a word to the DBBIN register
(WR, es, AO = (0,0, 1) or (0, ·0, 0». If AO = 1,
write command word, set Fl. If Ao ;:: 0, write
data word, F1 = 0.

SYSTEM OPERATION

DATA

8080A i 8041AH

i
.. 8741A TO

ADDR 16 ii 8042 PERIPHERAL

i
8742 ' DEVICES

iOw "
KiA

l-1 Jlfd/10V

Figure 5-9. 8080A-UPllnterface

Ro

WR
8048

PORT CONTROL 2

BUS DATA BUS 8

Ro

WnS041AH
8741A

CS 804.
8742

AO

DBB

\

~
~

- f4-TEST 0

i-TEST 1

TO
PERIPHERAL
DEVICES

Figure 5-10. 8048-UPllnterface

3) If the UPI DBBOUT register is full (OBF flag =
1), Master reads a word from the DBBOUT reg­
ister (RD, CS, AO = (0,0,0».

4) UPI recognizes IBF (via IBF interrupt or
JNIBF). Input data or command word is
processed, depending on F1j IBF is reset. Re­
peat step 1 above.

5) UPI-41AH, 42 recognizes OBF flag = 0 (via
JOBF). Next word is output to DBBOUT regis­
ter, OBF is set. Repeat step 1 above.

6-655

$YSTEM.OPERATIO,N

P2.
AD,ViR

8048

PORT 0 K=~~:::~

CONTROL
BUS

DATA BUS

Cs
Ro
ViR 8041AH

AO a:~~A
DBB 8742

#N

N ~ 7

Figure 5-11. Distributed Processor System

6-656

Chapter 6
APPLICATIONS

ABSTRACTS
The UPI-41A is designed to fill a wide variety of low
to medium speed peripheral interface applications
where flexibility and easy implementation are im­
pOrtant considerations. The following examples il­
lustrate BOme typical applications.

Keyboard Encoder
Figure 6-1 illustrates a keyboard encoder config­
uration using the UPI and the 8243 I/O expander
to scan a 128-key matrix. The encoder has switch
matrix scanning logic, N-key rollover logic, ROM
look-up table, FIFO character buffer, and additional
outputs for display functions, control keys or other
special functions.

. PORT 1 and PORTs 4-7 provide the interface to the.
keyboard. PORT 1 lines are set one at a time to se­
lect the various key matrix rows.

When a row is energized, all 16 columns (i.e., PORTs
4-7 inputs) are sampled to determine if any switch
in the row is closed. The scanning software is code
efficient because the UPI instruction set includes in­
dividual bit set/clear operations and expander
PORTs 4-7 can be directly addreBBed with single, 2-
byte instructions. Also, accumulator bits can be test­
ed in a single operation. Scan time for 128 keys is
about 10 ms. Each matrix point has a unique binary

, PORT.

PORTS
8243

EXPANDER
PORTe

PORT 7

•
PORT. .ROO

code which is used to addreBB ROM when a key clo­
sure is detected. Page 3 of ROM contains a look-up
table with useable codes (i.e., ASCII, EBCDIC, etc.)
which correspond to each key. When a valid key clo­
sure is detected the ROM code corresponding to that
key is Atored in a FIFO buffer in data memory for
transfer to the master proceBBor. To avoid stray
noise and switch bounce, a key closure must be de­
tected on two consecutive scans before it is consid­
ered valid and loaded into the FIFO buffer. The
FIFO buffer allows multiple keys to be proceBBed as
they are depressed without regard to when they are
released, a condition known as N-key rollover.

The basic features of this encoder are fairly standard
and require only about 500 bytes of memory. Since
the UPI is programmable and has additional mem­
ory capacity it can handle a number of other func­
tiOflB. For example, special keys can be programmed
to give an entry on closing as well as opening. Also,
I/O lines are available to control a 16-digit, 7-seg­
ment display. The UPI can also be programmed to
recognize special combinations of characters such as
commands, then transfer only the decoded informa­
tion to the master proceBBOr.

A complete keyboard application has been devel­
oped for the UPI-41A. A description is included in
this section. The code for the application is available
in the Intel Insite Library (program AB 147).

4

I • KEYBOARD
5 MATRIX

• " \!!

• BROWS

~ i '"
:;

~ II! 8 II!
I

I ' PORT 1
PORT.

8041A/8741A

INT£AFACE
TO 80BIT
MASTER

PROCESSOR

...

'L

OBB CONTRoL

t ~
DATA BUS .~

I
CONTROL BUS ..,

Figure 8-1. Keyboard Encoder Conflguratlon

6-657

APPLICATIONS

Matrix Printer Interface
The matrix printer interface illustrated in Figure 6-2
is a typical application for the UPI-41A. The actual
printer mechanism could be any of the numerous
dot-matrix types and similar conf"lgUrations can be
shown for drum, spherical bead, daisy wheel or chain
type printers.

The bus structure shown represents a generalized, 8-
bit system bus configuration. The UPI's three-state
interface port and asynchronous data buffer regis­
ters allow it to connect directly to this type of system
for efficient, two-way data transfer.

The UPl's two on-board I/O ports provide up to 16
input and output signals to control the printer
mechanism. The timer/event counter is used for
generating a timing sequence to control print head
position, line feed, carriage return, and other se­
quences. The on-board program memory .provides
character generation for 5 X 7, 7 X 9, or other dot
matrix formats. As an added feature a portion of the
64 X 8-bit data memory can be used as a FIFO buffer
so that the master processor can send a block of data
at.a high rate. The UPI can then output characters
from the buffer at a rate the printer can accept while
the master processor returns to other tasks.

INTERFACE
TO 8-BIT
MASTER

PROCeSSOR

\

't

FORM
PRINT LF. HOLD

MOTOR
DRIVERS

PORT 2

DBB

~

DATA BUS

CQNTROLBUS

The 8295 Printer Controller is an example of an
8041A preprogrammed as a dot matrix printer inter-
face. .

Tape Cassette Controller
Figure 6-3. illustrates a digital cassette interface
which can be implemented with the UPI-41A. Two
sections of the tape transport are controlled by the
UPI: digital data/command logic, and motor servo.
control. .

The motor servo requires a speed reference in the
form of a monostable pulse whose width is propor­
tional to the desired speed. The UPI monitors a
prerecorded clock from the tape and uses its on­
board interval timer to generate the required speed
reference pulses at each clock transition;

Recorded data from the tape is supplied serially by
the data/command logic. and is converted to 8-bit
words by the UPI, then transferred to the master
processor. At 10 ips tape speed the UPI can easily
handle the 8000 bps data rate. To record data, the
UPI uses the two input lines to the data/command
logic which control the flux direction in the record­
ing head. The UPI also monitors 4 status lines from
the tape transport including: end of tape, cassette

DOT MAtRIX PRINTER

SOLENOIDS

!
!

:0 >=
>=. .. iil

0 0

I ~ SOLENOID
~

Q
DRIVERS 1I1

~ 0
... .. ~

70R9

PQRT2 PORT l/PORT 2

8041A/8741A

CONTROL

4

\

j

Figure 6-2. Matrix Printer Controller

6-658

APPLICATIONS

DATA

EDT/BOT

10--01
I DATA ENCODE/DECODE I ~ MOTOR .~ AND COMMAND DRIVE

INTERFACE
TO 8·81T
MASTER

~

DATA
OUT

DATA
IN Cl..OCK

2

PORT 1

DBB

STATUS FWD REV SPEED
4

I I
,

POAT2

8041A/8741A

CONTROL

DATA BUS

PROCESSOR CONTROl BUS \

Figure 6-3. Tape Transport Controller

inserted, busy, and write permit. All control signals
can be handled by the UPl's two I/O ports.

Universal 1/0 Interface
Figure 6-4 shows an I/O interface design based on
the UPI. This configuration includes 12 parallel I/O
lines and a serial (RS232C) interface for full duplex
data transfer up to 1200 baud. This type of design .
can be used to interface a master processor to a
broad spectrum of peripheral devices as well as to a
serial communication channel. .

PARALLEL
I/O

,-L-, I

PORT 1 is used strictly for I/O in this example while
PORT 2 lines provide five functions:

• P23-P20 I/O lines (bidirectional)
• P24 Request to send (RTS)
• P25 Clear to Send (CTS)
• P26 Interrupt to master
• P27 Serial data out

The parallel I/O lines make use of the bidirectional
port structure of the UPI. Any line can function as
an input or output. All port lines are automatically
initialized to 1 by a system RESET pulse and remain

RS232C
SERIAL INTERFACE

I

ers RTS INTERRUPT ~A1

INTERFACE
TO 8-BIT
MASTER

PROCESSOR

\

\

I

'"
OUTPUT

TO AO
MASTER : J. ~

12 PRocrSOR
TRANSMIT RECEIVE , DATA DATA

.......,.... ,
I I TEST 0

PORT 1 AND 2 PORT 2

8041A/8741.

DBB CONTROl

1 J
DATA \

I I
CONTROL

Figure. 6-4. Universal 1/0 Interface

6-659

APPLICATIONS

latched. An external TTL signal connected to a port
line will override the UPI's 5OK-ohm internal pull­
up so that an INPUT instruction will c:orrect1y sam­
ple the TTL signal.

Four PORT 2 lines function as general I/O similar to
PORT 1. Also, the RTS signal is generated on PORT
2 under software control when the UPI b8s serial
data to send. The CTS signal is monitored via PORT
2 as an enable to the UPI to send serial data. A
PORT 2 line is also used as it software generated in­
terrupt to the master proce880r. The interrupt func­
tions as a service request when the UPI bas a byte of
data to transfer or when it is ready to receive. Alter- .
natively, the EN FLAGS instruction could be used
to create the OBF and IBF interrupts on P24 and .
P25.

The RS232C interface is implemented using the
TEST 0 pin as a receive input and a PORT 2 pin as a
transmit output. External packages (Ao, AI) are
used to provide RS232C drive requirtlments. The
serial receive software is interrupt driven and uses
the on-chip timer to perform time critical serial con­
trol. After a start bit is detected the interval timer

can'be preset to generate an interrupt at the proper
time·for sampling the serial bit stream. This elimi­
nates the need for software timing loops and allows
the proceBBOr to proceed to other tasks (i.e., parallel
I/O operations) between serial bit samples. Software
flags are used so the main program can determine
when the interrupt driven receive program has a
character assembled for it.

,
This type of conflgUl'atlon allows system designers
flexibility in designing custom I/O interfaces for spe­
cific serial and parallel I/O applications. For in­
stance, a second or third serial channel could be
substituted in p~ of the parallel I/O if required.
The UPI's data memory can buffer data and com­
mands for up to 4 low-speed channels (110 baud tele­
typewriter, etc.)

Application Not ..
The following application notes illustrate the var­
ious applications of the UPI family. Other related
publications including the 8048 Family Application.
Handbook are available through the Intel Literature
:pepartment.

6-e60

APPLICATIONS

INTRODUCTION TO THE UPI-41ATIII

Introduction

Since the introduction in 1974 of the second genera­
tion of microprocessors, such as the 8080, a wide
range of peripheral interface devices have appeared.
At fmt, these devices solved application problems of
a general nature; i.e., parallel interface (8255), seriai
interface (8251), timing (8253), interrupt control
(8259). However, as the speed and density of LSI
technology increased, more and more intelligence
was incorporated into the peripheral devices. This
allowed more specific application problems to be
solved, such flS floppy disk control (8271), CRT con­
trol (8275), and data link control (8273). The advan­
tage to the system designer of this increased
peripheral device intelligence is that many of the pe­
ripheral control tasks are now handled externally to
the main processor in the peripheral hardware
rather than internally in the main processor soft­
ware. This reduced main processor overhead results
in increased system throughput and reduced soft­
ware complexity.

In spite of the number of peripheral devices avail­
able, the pervasiveness of the microprocessor has
been such that there is still a l&rge number of periph- '
eral control applications not yet satisfied by dedi­
cated LSI. Complicating this problem is the fact that
new applications are emerging faster than the manu­
facturers can react in developing new, dedicated pe­
ripheral controllers. To address this ptoblem, a new
microcomputer-based Universal Peripheral Inter­
face (UPI-41A) device was developed.

, In essence, the UPI-41A acts as a slave processor to
the main system CPU. The UPI contains its own
processor;memory, and I/O, and is completely user
programmable; that is, the entire peripheral control
algorithm can be programmed locally in the UPI, in­
stead of taxing the master processor's main memory.
This distributed processing concept allows the UPI
to handle the real-time tasks such as encoding' key­
boar4s, controlling printers, or -multiplexing dis­
plays, while the main processor is handling non-real­
time dependent tasks such as buffer management or
arithmetic. The UPI relies on the master only for
initialization, elementary commands, and data
transfers. ThiS, technique results in an overall in­
crease in system efficiency since both processors­
the master CPU and the slave UPI-are working in
parallel.

This application note-presents three UPI-41A appli­
cations which are roughly divided into two groups:
applications whose complexity -and UPI code space

requirements allow them to either stand alone or be
incorporated as just one task ip a "multi-tasking"
UPI, and applications which are complete UPI ap­
plications in themselves. Applications in the fmt
group are a simple LED display and sensor matrix
controllers. A combination serial/parallel! I/O de­
vice is an application in the second group. Each ap­
plication illustrates different UPI configurations
and features. However, before the application de­
tails are p1eBented, a section on the UPI/master pro­
tocol requirements is included. These protocol
requirements are key to UPI software development.
For convenience, the UPI block diagl:am is repro­
duced in Figure 1 and the instruction set summary
in Table 1.

UPI-41 VB. UPI-41A
The UPI-41A is an enhanced verSion of the UPI-41.
It incorporates several architectural features not
found on the "non-A" device:

• Separate Data In and Data Out data bus buf­
fer registers

• User-definable STATUS register bits
• ~mable master interrupts for the OBF

andIBFtlags
• Programmable DMA interface to external

DMA controller.
I

The separate Data In (DBBIN) and Data Out
(DBBOUT) registers greatly simplify the master/
UPI protocol compated to the UPI-41. The master
need only check IBF before writing to DBBIN and
OBF befc;>re reading DBBOUT. No data bus buffer
lock-out is required.

The most significant nibble of the STATUS register,
undefmed in the UPI-41, is user-definable in UPI-
41A. It may be loaded dir8ctly from the most signifi·
cant nibble of the Accumulator (MOV STS,A).
These extra four STATUS bits are useful for trans­
ferring additional status information to the master.
This application note uses this feature extensively.

A new instruction, EN FLAGS, allows OiJF and IBF
to be reflected on PORT 2 BIT 4 and PORT 2 BIT 5

. respect~vely. nis feature enables interrupt-driven
data transfers when these pins are interrupt- sources
to the master.

By executing an EN DMA instruction PORT 2 BIT
6 becomes a DRQ (DMA Request) output and
PORT 2 BIT 7 becomes DACK (DMA Acknowl­
edge). Setting DRQ requests a DMA cycle to an ex­
ternal DMA controller. When the cy;ele is gran~
the pMA. controller returns DACK plus either RD
(Read) or WR (Write). DACK automatically forces

AFN-Ol538A

6-661

APPLICATIONS

·~r' 7681-_____

·~r 5121-_____

-'r :;: 1------.....

LOCATION 7 - TIMER
1-_____ .. ~-::':6'~~~:rH~TORS

PAGf!O

LOCATION 3 - ISF
I---:' ____ ~.-g'~~:~ ~~HTORS

Figure 1A. Program Memory Map

CS and Ao low internally and clears DRQ. This se­
lects the appro~te data buffer register (DBBOUT
for DACK and RD, DBBIN for DACK and WR) for
the DMA transfer. .

Like the "non-A", the UPI-41A is available in both
RQM (8041A) and EPROM (8741A) Program Mem­
ory versions. This application note deals exclusively
with the UPI-41A since the applications use the "A"s
enhanced features.

UPI/MASTER PROTOCOL
As in most' closely coupled multiprocessor systems,
the various processors communicate via a shared re­
source. This shared resource is typically specific lo­
cations in RAM or in registers through which status
and data are passed. In the case of a master proces­
sor and a UPI-41A, the shared resource is 3 separate,
master-addressable, registers internal to the UPI.
These registers are the status register (STATUS),
the Data Bus Buffer Input register (DBBIN), and
the Data Bus Output register (DBBOUT). [Data
Bus Buffer direction is relative to the UPI]. To illus­
trate this registllr interface, consider the 8085A/UPI
system in Figure 2.

6-662

.3,---------,

USER RAM
32 X 8

~~ 1----------4
BANK 1

WORKING
REGISTERS

axa

8 LEVEL STACK
OR

USER RAM
16X8

BANKO
WORKING

REGISTERS
axa

I
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SELECTED

~.
ADDRESSED
INDfFlECTLV

THROUGH
R1 OR RO

(RO' OR R1')

DIRECTLY
ADDRESSABLE
WHEN BANK 0
ISSELECrD

Figure 1B. Data Mamory Map

Looking into. the UPI from the 8085A, the 8085A
sees only the three registers mentioned above. If the
8085A wishes to issue a command to the UPI, it does
so by writing the command to the DBBIN register
according to the decoding of Table 2. Data for the
UPI is also passed via the DBBIN register. (The UPI
differentiates commands and data by examining the
Ao pin. Just how this is done is covered shortly.)
Data from the UPIfor the 8085A is passed in the
DBBOUT register. The 8085A may interrogate the
UPI's status by reading the UPl's STATUS register.
Four bits of the STATUS register act as flags and
are used to handshake data and commands into and
out of theUPI. The STATUS register format is
sho~ in Figure 3.

BIT 0 is OBF (Output Buffer Full). This flag indi­
cates to the master when the UPI has placed data in
theDBBOUT register. OBF is set when the UPI
writes to DBBOUT and is reset when the master
reads DBBOUT. The master finds meaningful data
in the ~BBOUT register only when OBF is set.

The Input Buffer Full (IBF) flag is BIT 1. TheUPI
uses this flag as an indicator that the master has
written to the DBBIN register. The master usesIBF

APPLICATIONS

MAS ... s,m .. l
~

INTERFACE Wii

iii
Ci ..

,,""
is

CRYSTAl.. {TAL' Le,"
CLOCK "".U

..
ST

{ _ _ ,
POWER VCC_+5SUPPLV Vss __ _

figure 1C. UPl-41A Block Diagram

to indicate when the UPI has accepted a particular
command or data byte. The master should examine
IBF before outputting anything to the UPI. IBF is
set when the master writes to DBBIN and is reset
when the UPI reads DBBIN. The master must wait
untilIBF=O before writing new data or coDunands
to DBBIN. Conversely, the UPI must ensure IBF=l
before reading DBBIN. '

The third STATUS register bit is FO (FLAG 0). This
is a general purpose flag that the UPI can set, reset,
and test. It is typically used to indicate a UPI error
or busy condition to the master.

FLAG 1 (Fl) is the final dedicated STATUS bit.
Like FO the UPI can set, reset, and test this flag.
However, in addition, Fl reflects the state of the Ao '
pin whenever the master writes to the DBBIN regis­
ter. The UPI uses this flag to delineate between mas­
ter command and data writes to DBBIN.

The remaining four STATUS register bits are user
defmable. Typical uses of these bits are as.status in-

~t'"""~t'""" r-
~ ~ i= 1 STATUS I ..

8085 ~~~~ i' lUI 1 DIIBIN I
t-- gr- ~ cs
t-- r- r lID

I I WR DB80UT

'-

Figure 2. Reg'" Interfece

dicators for individual tasks in a multitasking UPI
or as UPI generated interrupt status. These bits fmd
a wide variety of uses in the upcoming applications.

Looking into the 808SA from. the UPI, the UPI sees
the two DBB registers plus the IBF, OBF, and Fl
flags. The UPI can write from its accumulator to
DBBOUT or read DBBIN into the accumulator.
The UPI cannot read OBF, IBF, or Fl directly, but
these flags may be tested usmg conditional jump

~538A

APPLICATIONS

Table 1. Instruction Set Summary

MDemoDlc DescrlptioD Byte. Cycle. Mnemonic DescriptioD Bytes Cycles

'Accumulator Tim"r/CouDter

ADDA.R" Add register to A 1 1 MOVA,T Read Timer/Counter I I
ADDA,@R" Add date memory to A 1 1 MOVT,A Loed Timer/Counter 1 I
ADDA,#date Add immediate to A 2 2 STRTT Start Timer I I
ADDCA,Rr Add register to A with carry 1 1 STRTCNT Start CQunter I I
ADDCA@R" Add data memory to A with carry 1 1 STOPTCNT Stop Timer/Counter 1 1
ADDC A,#data Add immed. to A with carry 2 2 ENTCNTI Enable Timer/Counter Interrupt 1 I
ANLa,R" AND register to A 1 1 DISTCNTI Disable Timer/Counter Interrupt I I
ANLA,@R" AND data memory to A 1 1
ANLA,#data AND immediate to A 2 2

CODtrol

ORLA,R" OR register to A 1 1 ENDMA Enable DMA Handshake Lines I I
ORLA@Rr OR data memory to A 1 1 ENI Enable IBF Interrupt I I
ORLA,#data OR immediate to A 2 2 DIS I Disable IBF Interrupt 1 I
XRLA.R" E%clusive OR register to A 1 1 EN FLAGS Enable Master Interrupts I 1
XRLA.@R" Exclusive OR data memory to A 1 1 SELRBO Select register bank 0 1 I
XRLA,#data Exclusive OR immediate to A 2 2 SELRBI Select register bank I I I
INCA IncrementA 1 1 NOP No Operation I I
DEC A Decrement A 1 1
CLRA Clear'A 1 1 Reglstera

CPLA Complement A 1 1
DAA Decimal Adjust A 1 1
SWAP A Swap digits of A 1 1
RLA Rotate A left 1 I

INCR" Increment register I 1
INC@R" Increment data melllory I 1
DECR" Decrement register I I

RLCA Rotate A left through carry I I Subroutine
RRA Rotate A right I I
RRCA Rotate A right through carry I I

CALLaddr Jump to subroutine 2 2
RET Return I 2

IDput/Output RETR Return and restore status 1 2

IN A;P Input port to A I 2
OUTL~p.A Output A to port I 2
ANL Pp,#data AND immediate to port 2 2
ORLP~#data OR immediate to port 2 2
INA,D B Input DBB to A, clear IBF I I
OUTDBB,A Output A to DBB, set OBF I I
MOVSTS.A ~ -A7 to Bits 4-7 of Status I I
MOVDA,PX Input Expander port to A 1 2
MOVDPp• Output A to E%pander port I 2
ANLDPp.A AND A to E%pander port I 2
ORLDPp.A OR A to E%pander port I 2

Flags

CLRC Clear Carry I I
CPLC Complement Carry I I
CLRFO Clear FlegO 1 1
CPLFO Complement Flag 0 I 1
CLRFI Clear Fl Fleg I I
CPLFI Complement FI Fleg 1 I

BraDch

JMPADDR Jump unconditional 2 2
JMPP@k Jump indirect I 2

Data Moves DJNZ R,addr Decrement register and skip 2' 2

MOV A,R" Move register to A I I
MOVA.@R" Move data memory to A I I
MOVA,#data Move immediate to A 2 2
MOVR",A Move A to register I 1
MOV@R".A Move A to data memory I I
MOV R",#data Move immediate to register 2 2
MOV @R".#data Move immediate to data memory 2 2
MOVA,PSW MovePSWtoA I I

. MOVPSW.A MoveAtoPSW I I
XCHA,R" E%change A and register I I
XCHA,@R" Exchange A and data memory I I
XCHDA@R" Exchange digit of A and register I I
MOVPA.@A Move to A from current page I 2
MOVP3,A,@A Move to A from pege 3 I 2

JC addr Jump on Carry-I 2 2
JNC addr Jump.on Carry-O . 2 2
JZaddr Jump ob'A Zero 2 2
JNZaddr Jump on A not Zero 2 2
JTOaddr Jump onTO-I 2 2
JNTOaddr JumponTO~O 2 2
JTI addr JumponTI=1 2 2
JNTI addr Jump on TI=O :I 2
JFOaddr Jump on FO Flag-I 2 2
JFI addr Jump on FI Flag=l 2 2
JTF addr Jump on Timer Flag-l;Clear Flag 2 2
JNIBF addr Jump on IBF FIeg=O 2 2
JOBF addr Jump on OBF FIeg-1 2 2
JBbaddr Jump on Accumulator Bit 2 2

. Table 2. Reglater Decoding

cs AO 1m VIR

0 0 0 1

0 1 0 1

Q 0 1 0
0 1 1 0

1 X X X

REGISTER

READDBBOUT

READ STATUS

WRITE DBBIN (DATA)
WRITE DBBIN (COM-
MAND)

NO ACTION

6-664

... I OBF - DSSOUT FULL i
511411 211~1) .

ISF - [)BstN FULL
'--r-- FO - FLAG 0

'---'---- Fl - FLAG 1
'--------- USER DEFINED

STATUS REGISTER

Figure 3. Statue Reglater Format

AFN-Ol536A

APPLICATIONS

instructions. The UPI should make sure that OBF is
reset before writiDg new data into DBBOUT to en­
sure that the master baa read previous ,DBBOUT
data. IBF should also be tested before reading
DBBIN since DBBIN data is valid only when IBF is
set. As was mentioned earlier, the UPI uaea Fl to dif­
ferentiate between command and data contents in
DBBIN when IBF is set. The UPI may also write the
upper 4-bits of its accumulator to the upper 4-mts of
the STATUS register. These bits are thus user
definable.

The UPI can teat the flags at any time during its·in­
ternal program execution. It eaaentially "polla" the
STATUS regiater for changes. If faster response is
needed to master commands and data, the l)'Pl's in­
ternal interrupt structure can be used. If IBF inter­
rupts are enabled, a master write to DBBIN (either
command or data) sets IBF whjch generates an in­
ternal CALL to location 03H in program memory. At
this point, working register contents can be saved
using bank switching, the accumulator saved in a
spare working register, and the DBBIN register read
and serviced. The interrupt logic for the IBF inter­
rupt is shown in Figure 4. A few observations con­
cerning this logic are appropriate. Note that if the
master writes to DBBIN while the UP! is still servic­
ing the last IBF interrupt (a RETR instruction baa
not been executed), the IBF Interrupt Pending line

RESET
DISTCNTI

EXECIITED

nlER -ENABLE

Wii
cs

RESET
IBF INTEIIIM'T

CALL EXECU'TED

RESET
DIS I

EXECUTED

IBF INTERRUPT
ENABLE

is made high which cauaea a new 'CALL to 03H as
soon as the lint RETR is executed. No EN I (Enable
Interrupt) instruction is needed to rearm the inter­
rupt logic as is needed in an 8080 or 808SA system;
the RETR performs this function. Also note that ex­
ecutiDg a DIS I to disable further IBF interrupts
does not ~lear a pending interrupt. Only a CALL to
location 03H or RESET clears a pending IBF inter­
rupt.

Keeping in mind that the actual masterlUPl proto­
col is dependent on the application, probably the
best way to illustrate correct protocol is by example.
Let's consider using the UPI as a simple parallel I/O
device. (This is a trivial application but it embodies
all of the important protocol considerations.) Since
the UPf may be either interrupt or non-interrupt
driven internally, both cases are considered.

Let's take the easiest configuration lint; using the
UPI PORT 1 as an 8-bit o.utput port. From the UPI's
point-of-view, this is an input-only application since
all that is required is that the UPI input data from
the master. Once the master writes elata to the UPI,
the UPI reads the DBBIN register and transfers the
data to PORT 1. No testing for commands versus
data is needed since the UPI "knows" it only per­
forms one task-no commands are needed.

FORCE
INTERRUPT
CALL

Figure 4. UPJ.41A Interrupt Structure

APPLICATIONS

Non-interrupt driven UPI software ill shown in Fig­
ure 5A while Figure 5B shows interrupt based soft­
W8xe. For Figure 5A, the UPI simply waits until it

, sees IBF go high indicating the master has written a
data byte to DBBIN. The UPlthen reads DBBIN,
transfers it to PORT 1, and returns to waiting for the
next data. For the interrupt-driven UPI, Figure 5B,
once the EN I instruction is executed', the UPI sim­
ply waits for the IBF interrupt before handling the
data. The UPI could handle other tasks during this
waiting time. When the master writes the data to
DBBIN, an IBF interrupt is generated which per­
forms a CALL to location 03H. At this point the UPI
reads DBBIN (no testing of IBF is needed since an
IBF interrupt implies that IBF is set), transfers the
data to PORT 1, and executes an RETR which re­
turns program flow to the main program.

Software for the master 80SSA is included in Figure '
5C. The only requirement for the master to output
data to the UPI is that it check the UPI to be sure
the previous data had been taken before writing new
data. To accomplish this the master simply reads the
STAtUS register looking for IBF=O before writing
the next data.

; UPIINPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT
UPI POLLS IBF FOR DATA

RESET' JNIBF RESET
IN A.DBB
OUTL P1.A
JMP RESET

; WAIT ON IBF FOR INPUT
; INPUT THERE. SO READ IT
; TRANSFER DATA TO PORT 1
; GO WAIT FOR NEXT DATA

Figure 5A. Single Output Port Example-Polling

; UPIINPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT
DATA INPUT IS INTERRUPT·DRIVEN ON IBF

RESET: EN I
JMP RESEH1

IBFINT: IN A.DBB
OUTL P1.A
RETR

; ENABLE IBF INTERRUPTS
; LOOP WAITING FOR INPUT
; READ DATA FROM DBBIN
; TRANSFER DATA TO pORT 1
; RETURN WITH RESTORE

Figure 5B. Single Output Port 'Example-Interrupt

; 8085 SOFTWARE FOR UPIINPUT ·ONL Y EXAMPLE
DATA FOR OUTPUT IS PASSED IN REG. C

UPIOUT: IN
ANI
JNZ
MOV
OUT
RET

STATUS
IBF
UPIOUT
A.C
DBBIN

; READ UPI STATUS
; LOOK AT IBF
; WAIT FOR IBF =0
; GET DATA FROM C
; OUTPUT DATA TO DBBIN
; DONE. RETURN

Figure 5C. 8085A Code for Single Output Port Ex-
ample 1 .

Figure 6A illustrates the case where UPI PORT 2 is
used as an 8-bit input port. This COnfiguration is
termed UPI output-only as the master does not
write (input) to the UPI but simply reads either the
STATUS or the DBBOUT registers. In this example
only the OBFflag is used. OBF signals the master
that the UPI has placed new port data in DBBOUT.
The UPI loops testing OBF. When OBF is clear, the
master has read the previous data and' UPI then
reads its input port (PORT 2) and places this data in
DBBOUT. It then waits on OBF until the master
reads DBBOUT before reading the input port again.
When the master wishes to read the input port data,
Figure 6B, it simply checks for OBF being set in the
STATUS register before reading DBBOUT~ While
this technique illustrates proper protocol, it should
be noted that it is not meant to be a good method of
using the UPI as an input port since the master
would never get the newest status of the port.

: UPI OUTPUT ONLY EXAMPLE-PORT 2 USED AS INPUT PORT
PORT DATA IS AVAILABLE IN DBBOUT

RESET: JOBF RESET
IN A.P2
OUT DElB.A
JMP RESET

; LOOP IF OBF=1 (DATA NOT READ)
; DBBOUT CLEAR. READ PORT
; TRANSFER PORT DATA'TO DBBOUT

,; WAIT FOR MASTER TO READ DATA

Figure 6A. Single 'nput Port Example

.8085 SOFTWARE FOR UPI OUTPUT-ONLY EXAMPLE
INPUT DATA RETURNED IN'REG, A

UPIIN: IN STATUS
ANI OBF
JZ UPIIN
IN DBBOUT
RET

; READ UPI STATUS
; LOOK AT OBF
; WAIT UNTIL OBF= 1
; READ DBBOUT
; RETURN WITH DATA IN A

, Figure 6B. 8OS5A Single Input Port Code

The above examples can easily be combined. Figure
7 shows UPI software to use PORT 1 as an output
port simultaneously with PORT 2 as an input port.
The program starts with the UPI checking IBF to
see if the master has written data destined for the
output port into DBBIN. If IBF is set, the UPI reads
DBBIN and transfers the data to the output port
(PORT 1). If IBF is not set or once the data is trans­
ferred ,to the output port if it was, OBF is tested. If
OBF is reset (indicating the master has read
DBBOUT), the inp\lt port (PORT 2) is read and
transferred to DBBOUT. If OBF is set, the master
has yet to read DBBOUT so the program just loops
back to test IBF.

The master software is identical to the separate
input/output examples; the master must test IBF

AF~I536A

6-666

APPLICATIONS

; UPIINPUT I OUTPUT EXAMPLE-PORT 10UTPUT, PORT 2 INPUT

RESET: JNIBF OUT 1
IN A, DBB
OUlL P1, A

oun: JOBF RESET
IN A, P2
OUT DBB,A
JMP RESET

; IF IBF .. O, DO OUTPUT
; IF IBF-1, READ DBBIN
; TRANSFER DATA TO PORT 1
; IF OBF-1, GO TEST IBF
; IF OBF-O, READ PORT 2
; TRANSFER PORT DATA TO DBBOUT
; GO CHECK FOR INPUT

Figur. 7. Combination Output/Input Port Example

and OBF before writing output port data into
DBBIN or before reading input port from DBBOUT
respectively.

In all of the three examples above, the UPI treats
information from the master solely as data. There
has been no need to check ifDBBIN information is a
command rather than data since the applications do
not require commands. B~t what if both PORTs 1
and 2 were used as output ports? The UPI needs to
know into which port to put .the data. Let's use a
command to select which port.

Recall that both commands and data pass through
DBBIN. The state of the Ao pin at the time of the
write to DBBIN· is used to distinguish commands
from data. By convention, DBBIN writes with Ao=O
are for data, and those with Ao=1 are commands.
When DBBIN is written into" F1 (FLAG 1) is set to
the state of Ao. The UPI tests F1 to determine if the
information in the DB BIN register is data or
command.

For the case of two output ports, let's assume that
the master selects the desired port with a command
prior to writing the data. (We could just use F1 as a
port select but that would not illustrate the subtle
differences between commands and data). Let's de­
fine the port select commands such that BIT 1=1 if
the next data is for PORT 1 (Write PORT 1=0000
0010) and BIT 2=1 if the next data is for PORT 2
(Write PORT 2=0000 0100). (The number of the set
bit selects the port.) Any other bits are ignored .. This
assignment is completely arbitrary; we could use any
command structure, but this one has the advantage
of being simple.

Note that the'UPI must "remember" from·DBBIN
write to write which port has been selected. Let's use
FO (FLAG 0) for this purpose. If a Write PORT 1
command is received, FO is reset. If the command is
Write PORT 2, FO is set. When the UPI finds data in
DBBIN, FO is intel.Togated and the data is loaded
into the previously selected port. The UPI software
is shown in Figure SA.

: UPI DUAL OUTPUT PORT EXAMPLE-BOTH PORT 1 AND 2 OUTPUTS
COMMAND SELECTS DESIRED PORT
WRITE PORT 1-0000 0010 (02H)
WRITE PORT 2-0000 0100 (04H)

FLAG 0 USED TO REMEMBER WHICI'I PORT WAS SELECTED
. BY LAST COMMAND.

RESET: JNIBF RESET
IN A,DBB
JF1 CMD
JFO PORT2
OUTL P1,A
JMP RESET

PORT2: OUTL P2,A
JMP RESET

CMD: JB1 PT1
JB2 PT2
JMP RESET

PT1: CLR FO
JMP RESET

PT2: CLR FO
CPL FO
JMP RESET

; WAIT FOR MASTER INPUT
; READ INPUT
; IF F1-1, COMMAND INPUT
; INPUT IS DATA, TEST FO
; FO-O, SO OUTPUT TO PORT 1
; WAIT FOR NEXT INPUT
; FO"1, SO OUTPUT TO PORT 2
; WAIT FOR NEXT INPUT
; TEST COMMAND BITS (BIT 1)
; TEST BIT 2
; NEITHER BIT SET, WAIT FOR INPUT
; PORT 1 SELECTED, CLEAR FO
; WAIT FOR INPUT
; PORT 2 SELECTED, SET FO

; WAIT FOR INPUT

Figura SA. Dual Output Port Ex~mpl.

Initially, the UPI simply waits until IBF is set indi­
cating the master has written into DBBIN. Once
IBF is set, DBBIN is read and F1 is tested for a com­
mand. If F1 =1, the DBBIN byte is a command. As­
suming a' command, BIT 1 is tested to see if the
command selected PORT 1. If so, FO is cleared and
the program returns to wait for the data. If BIT 1 =0,
BIT 2 is tested. If BIT 2 is set, PORT 2 is selected so
FO is set. The program then loops back waiting for
the next master input. This input is the desired .port
data. If BIT 2 was not set, FO is not changed and no
action ill taken.

When IBF=1 is again detected, the input is again
tested for command or data. Since it is necessarily
data, DBBIN is read and FO is tested to determine
which port was previously selected. The data is then
output to that port, following which the program
waits for the next input. Note that since FO still se­
lects the previous port, the next input could be more
data for that port. The port selection command
could be thought ohs a port select flip-flop control;
once a selection is made, data may be repeatedly
written to that port until the other port is selected.
Master software, Figure SB, simply must check IBF
before writing either a command or data to DBBIN.
Otherwise, the master software is straightforward.

For the sake of completeness, UPI software for im­
plementing two input ports is given in Figure 9. This
case is simpler than the dual output case since the
UPI can assume that all writes to DBBIN are port
selection commands so no command/data testing is
required. Once the Port Read command is input, the
selected port is read and the port data is placed in /
DBBOUT. Note that in this case FO is used as a UPI

AFN.o1536A

6-667

APPLICATIONS

error indicator. If the master happened to issue an
invalid command (a coDlmand without either BIT 1
or 2 set), FO is set to notify the master that the UPI
did not know how to interpret the command. FO is
also set if the master commanded a port read before
it had read DBBOUT from the previous command.
The UPI simply tests OBF just prior to loading
DBBOUT and if OBF=I, FO is set to indicate the
error.

All of the above examples are, in themselves, rather
trivial applications of the UPI although they could
easily be incorporated as one of several tasks in a
UPI handling multiple small tasks. We have covered
them primarily to introduce the UPI concept and to
illustrate some master/UPI protocol. Before moving
on to more rea1iatic UPI applications, let~s discuss
two UPI features that do not directly relate to the'
master/UPI protocol but greatly enhance the UPfs
transfer capability.

In addition to the OBF and IBF bits in the STATUS
register, these flags can also be made available di­
rectly on two port pins. These port pins can then be
used as interrupt sources to the master. Byexecut­
iJ)g an EN FLAGS instruction, PORT 2 pin 4 re­
flects the condition of OBF and PORT 2 pin 5
reflects the inverted condition of IBF (IBF). These
dedicated outputs can then be enabled or disabled
via their respective port bit values; i.e., P24 reflects
OBF ~ l~ng as an instruction is executed which sets
P24 (i.e. ORL P2,#10H). The same action applies to
the IBF output except P25 is used. Thus P24 may
serve as a DATA AVAILABLE interrupt output.
Likewise for P25 as a READY-TO-ACCEPT-DATA
interrupt. This greatly simplifies interrupt-driven,
master-slave data transfers,

; IlO85 SOFTWARE FOR DUAL OUTPUT PORT EXAMPLE
lltS ROUTINE WRITES DATA IN REG, C TO PORT I
(SAME ROUTINE F9R ~ORT 2-JUST C~E COMMAND)

PORTI: IN
ANI
JNZ
MVI
OUT

PI' IN
ANI
JNZ
MaV
OUT
RET

S:rATUS ; READ'UPI STATUS
IEIF ; LOOKATlBF
PORTI ; WAIT UNTIL IBF*O
A,OOOOOOI08 ; LOAD'WRITE PORTI CMD
UPICMD ; OUTPUT TO UPI COMMAND PORT
STATUS ; READ UPI STATUS AGAIN
IBF ;"LOOK AT> IBF ,
PI' , WAIT UNTIL COMMAND ACCEP;TED
A, C ; GET DATA FROM C
DBBIN ; OUTPUT TO DBBIN

; DONE, Rf"JRN

figure 88. 8085A Dual OUtput Port Example Code

TheUPI also supports a DMA transfer interface. If
an EN DMA'instruction is executed, PORT 2 pin 6
becomes a DMA: Request (DRQ) output ana P27 be­
comeB' a high impedanee, DMA Acknowledge

; UP! DUAL INPUT PORT EXAMfi(E-SOTH PORT l' AND 2 INPUTS
COMMAND SELECTB WHICH PORT IB TO BE READ
FLAG 0 UBED AS ERROII'FLAG

RESET: JNlBF RESET
CLR FO
IN A,DBB
JBl PTI
JB2 PT2

ERROR:' CPa. FO
JMP RESET

PTl, IN A, PI
JOBF ERROR
OUT DBB,A
JMP RESET

, PT2: IN A. P2
JOBF ERROR
OUT DBB. A
JMP RESET

; WAIT FOR INPUT
, ; CLEAR ERROR FLAG

; READ INPUT (COMMAND)
; 'feST BIT 1 (PORT 1)
; TEST err 2 (PORT 2) ,
; ERROR-COMPLEMENT FO
; WAIT FOR INPUT
; READ PORT I
; TEST OBF BEFORE LOADING DBSOUT
; LOAD PORT 1 DATA INTO DBBOUT
; WAIT FOR INPUT
; READ PORT 2
; TEST OSF BEFORE LOADING DBSOUT
; LOAD PORT 2 DATA INTO DBSOUT
; WAIT FOR INPUT

Figure 9. Dual Input Port Example

(DJ\CK) input. Any instruction which would nor­
mally set P26 now sets Drul: DR~ cleared when
DACK is low and either RD or WR is low. When
DACK is low, CS and AO are forced low internally
which allows data bus transfers between OaBOUT
or DBBIN to occur, depending upon whether WR or
RD is true. Of course, the function requires the use
of an external DMA controller.

Now that we have discussed the aspects of the UPI
protocol and data transfer interfaces, let's move on
to the actua1 applications.

EXAMPLE APPLICAnONS
Each of the following three sections presents the
hardware and software details of a UPI application.
Each application utilizes one of the protocols men­
tioned in the last section. The rll'St example is a sim­
. pie 8-digit LlID display controller. This application
requires only that the UPI pe~orm input operations
from the DBBIN; DBBOUT is not qsed. The reverse
is true for the second application: a sensor matrix
controller. The final application involves both
DBBOUT ,and DBBIN operations: a combination
seria1/parallell/O device.

.' ,

The core master processor system with which these
applicati~nswere developed is ~e iSBC SO/30 single
board computer. nis board provides an especially
convenient UPI environment since it contains a
dedicated socket specifically interfaced for the UPI-
41A. The SO/30 uses the 8085A as the master proces­
sor. The I/O and peripheral complement on the
SO/30 include 12 vectored priority interrupts (8 on
lin 8259 Programmable Interrupt Controller and 4
on the 8085A itself), an 8253 Programmable Interval
Timer supplying three I6-bit programmable timers
(one is dedicated as a programmable baud rate gen­
erator), 'a high speed serial, channel provided by a
8251 Programmable USART, and 24 parallel I/O

APPLICATIONS

lines implemented with an 8255A Programmable
Parallel Interface. The memory complement con­
tains 16K bytes of RAM using 211716K bit Dynamic
RAMs and the 8202 Dynamic RAM Controller, and
up to 8K bytes of ROM/EPROM with sockets com­
patible with 2716, 2758, or 2332 devices. The SO/30's
RAM uses a dual port architecture. That is, the
memory can be considered a global system resource,
accessible from the on-board S085A as well as from
remote CPUs and other devices via the
MUL TIBUS. The SO/30 contains MUL TIBUS con­
trollogic which allows up to 16 SO/30s or other bus
masters to share the same system bus. (More de­
tailed information on the iSBC 80/30 and other
iSBC products may be found in the latest Intel
Systems Data Catalog.)

A block diagram of the iSBC SO/30 is shown in Fig­
urel0. Details of the UPI interface are shown in Fig­
ure 11. This interface decodes the UPI registers in
the following format:

Register

Read STATUS
Write DBBIN (command)

Read DBBOUT (data)
Write DBBIN (data)

Operations

INE5H
OUTE5H
INE4H

OUTE4H

8-Digit Multiplexed LED Display
The traditional method of interfacing an LED dis­
play with a microprocessor is to use a data latch
along with a BDC-to-7-segment decoder for each
digit of the display. Thus two ICs, seven current
limiting resistors, and about 45 connections are re­
quired for each digit. These requirements are, of
course, multiplied by the total number of digits de­
sired. The obvious disadvantages of this method are
high parts count and high power dissipation since
each digit is "ON" continuously. Instead, a scheme
of time multiplexing the display can be used to de­
crease both parts count and power dissipation.

Display multiplexing basically involves connecting
the same segment (a, b, c, d, e, f, or g) of each digit in
parallel and driving the common digit element (an~
ode or cathode) of each digit separately. This is
shown schematically in Figure 12". The'various digits
of the display are not all'on at once; rather, only one
digit at a time is energized. As each digit is ener­
gized, the appropriate segments for that digit are
turned on. Each digit is enabled in this way, in se­
quence, at a rate fast enough to ensure that each
digit appears to be "ON" continuously. This implies
that the display must be "refreshed" at periodic in­
tervals to keep the digits flicker-free. If the CPU had'
to handle this task, it would have to suspend normal

processing, go update the display, and then return to
its normal flow. This extra burden is ideally handled
by a UPI. The master CPU could simply give charac­
ters to the UPI and let the UPI do the actual seg­
ment decoding, display multiplexing, and
refreshing.

As an example of this technique, Figure 13 shows the
UPI controlling an 8-digit LED display. All digit
segments are connected in parallel and are driven
through segment drivers by the UPI PORT 1. The
lower 3 bits of PORT 2 are inputs to a 3-to-8 decoder
which selects an individual digit through a digit
driver. A fourth PORT 2 line is used as a decoder
enable input. The remaining PORT 2 lines plus the
TEST 0 and TEST 1 inputs are available for other
tasks.

Internally, the UPI uses the counter/timer in the in­
terval timer mode to define the interval between dis­
play refreshes. Once the timer is loaded with the
desired interval and started, the UPI is free to han­
dle other tasks. It is only when a timer overflow in­
terrupt occurs that the UPI handles the short
display multiplexing routine. The display multiplex­
ing can be considered a background task which is en­
tirely interrupt-driven. The amount of time spent
multiplexing is such that there is ample time to han­
dle a non-timer task in the UPI foreground. (We'll
discuss this timing shortly.)

When a timer interrupt occurs, the UPI turns off all
digits via the decoder enable. The next digit's seg­
ment contents are retrieved from the internal data
memory and output via PORT 1 to the segment
drivers. Finally, the next digit's location is placed on
PORT 2 (P20-P22) and the decoder enabled. This
displays the digit's segment information until the
next interrupt. The timer is then restarted for the
next interval. This process continues repeatedly for
each digit in sequence.

As. a prelude to discussing the UPI software, let's ex­
amine the internal data memory structure used in
this application, Figure 14. This application requires
only 14 of the 64 total data memory locations. The
top eight locations are dedicated to the Display
Map; one location for each digit. These locations
contain the segment and decimal point information
for each character. Just how characters are loaded
into this section of memory is covered shortly. Regis­
ter R7 of Register Bank 1 is used as the temporary
Accumulator store during the interrupt service
routines. Register Ra stores the digit number of the
next digit to be displayed. R2 is a temporary storage
register for characters during input routine. Ro is

6-669

APPLICATIONS

"S232C
COMPATIBLE

DEVICE

USER DESIGNATED
PEIIIPHERALS

42 PROGRAMMABLE
PARALLEL J/O LINES

POWEAFAIL
INTE

16K X 8
RAM
2117

MULTlBUSno

41NTE T
REQUEST UNES

8 INTERRUPT
REQUEST LINES

.INTE
REQUESTUt-ES

Figure ~O. ISBC 80/30 Block Diagram

the offset pointer pointing to the Display Map loca­
tion of the next digit. That makes 12 locations so far.
The remaining two locations are the two stack loca­
tions required to store the return address plus status
during the timer and input interrupt service
routines. The remaining unused locations, all of

. Register Bank 0, 14 bytes of stack, 4 in Register
Bank 1, and 24 general purpose RAM locations, are
all available for use by any foreground task.

The UPI software consi~t~ of only three sl).ort
routines. One, .INIT, is' used ,strictly duri~g
initialization. DISPLA is the mqltiplexing routine
called at ,a timer interrupt. INPUT is the character
input handler called at an IBF interrupt. The flow

6-670

charts for these routines are shown in Figures 14A
through 14C.

INIT initializes the UPI by simply turning off all,
segment and digit drivers, filling the Display Map
with blank characters, loadi~g and starting the
timer, and enabling both til!ler and IBF interrupts.
Although the flow. chart shows the program loopiIlg
at this point, it is here that the code for any fore­
ground task is inserted. The only restrictions on this
foreground task are that it not use I/O lines dedi­
cated to the display and that it not require dedicated
,use of the timer. It could share the timer' if precau­
tions are taken to ensure that the,display will still be ,
refreshed at the required interval. i '

APPLICATIONS

+sv

VDO P10 ;ow WR

iOA "D
P11

RESET "'SET
P1a

Aa AO 01 CO
PlO .. A1

POIIT 1
P1'

•• Aa
P1S .20S

M As E1

iiA'i E'
P1.

Ai As E. P17

10 PORT TO
TESTO

CONTROL, EO

" T1
DATA E. +SV TEST 1

32

55
8041A 0 EVENT CLOCK (8253)

8741A

~l~a.a
EA ~CHANNEL

•• 0 80851NTR

pa. D0-

08' D7

'"
P2'

P"
+SV +SV

PORT 2 pa •
• ao ...

P2S

5.5296 XTAL 1
pa. - P27

XTAL2
vss \

Figure 11. UPllnterface on iSBC 80/30

+5V

Figure 12. LED Multiplexing

AFN-01536A
6-671

+ 5V

PORT 2/

3

,.
c

~ ~
~ "' "'

8041A1
8741A

PORT 1

~PPUCATIONS

E3 00

01
E2

02

8205 03

E1 O'
.2 05 ., 06

AO 07

SEGMENT
DRIVERS

Figure 13. UPI Controlled a-Digit LED Display

63

31

2.
23

DISPLAY MAP
8x8

USER RAM
24 X 8

(NOT USED)

ACCUMULATOR STORE

NOT useD

NOT USED

NOT USED

DIGIT COUNTER

TEMPORARY STORE

NOT USED

DISPlAY MAP POINTER

STACK
16 x 8

UNUSED
8x8

R7

R6

R5

R' REGISTER

R3
BANk 1

R2

R1

RO

REGISTER
BANK 0

Figure 14. LED Display Controller Data Memory
Allocation

INIT

INITIALIZE
REGISTERS

TURN OFF ALL
DRIVERS

FILL DISPLAY MAP WITH
BLANK CHARACTERS

CLEAR DIGIT COUNTER

LOAD AND START
TIMER

ENABLE TIMER AND
ISF INTERRUPTS

WAIT LOOP OR
FOREGROUND TASK CODe

Figure. 14A. INIT Routine Flow

6-672

DIGIT
DRIVERS

AFN.o1536A

APPLICATIONS

IWnCHTOM1
IA .. -..._

MADAJID ... _

Figure 148. INPUT RoutIne Flow

The INPUT routine handles the character input. It
is called when an IBF interrupt occurs. After the
usual swapping· of register banks and saving of the
accumulator, DBBIN is read and stored in register
R2. DBBIN contains the Display Data Word. The
format for this word, Figure 15, has two fields: Digit
Select and Character Select. The Digit Select field
selects the digit number into which the character
from the Character Select field is placed. Notice that
the character set is not limited strictly to numerics,
some alphanumeric capability is provided. Once
DBBIN is read, the offset for the selected digit is
computed and· placed in the Display Map Pointer
Ro. Next the segment information for the selected
character is found through a look~up table starting
in page 3 of the program memory. This segment in­
formation is then stored at the location pointed at by
the Display Map Pointer. If the Character Select
field specified a decimal pOint, the segment corre­
sponding to the decimal point is ANDedinto the
present segment information for that digit. After the
accumulator is restored, execution is returned to the
main program.

The DISPLA routine simply implements the
multiplexing actions described earlier. It is called
whenever a timer interrupt occurs. After saving pre-

oiSPLA

SWITCH TO A81
SAVE ACCUMULATOR

TURH OFF AU DIGIT
DRIVERS

UPDATE DiSPLAY
MAP POINTER

GET SEGMENT INFO
FROM DISPLAY MAP

OUTPUT TO SEGMENT
DR1VERS

TURN ON DIGIT
ORtVER

LOAD AND START TIMER

RESTORE ACCUMUlATOR

RETURH

Figure 14C. DISPLA Routine Flow

interrupt status by switching register banks and
storing the Accumulator, all digit drivers are turned
off. The Display Map Pointer is then updated using
the Current Digit Register to point at that digit's
segment information in the Display Map. This infor­
mation is output to. PORT 1; the segment drivers.
The number of the current digit, R3" is then sent to
the digit select dkoder and the decoder is enabled.
This turns on the current digit. The digit counter is
incremented and tested to see if all eight digits have
been refreshed. If so, the digit counter is reset to
zero. If not, nothing is done. Finally, the timer is
10aded and restarted, the Accumulator is restored,
and the routine returns execution to the main pro­
gram. Thus DISPLA refreshes one digit each,time it
is CALLed by the timer interrupt. The digit remains
on until the next time DISPLA is executed.

The UPI software listing is included as Appendix
AI. Appendix A2 shows the 8085A test routine used

AfN.Ol536A

6-673

APPLICATIONS

DISPLAY OATA WORD

716151413121'101

-~
DIGIT SElECT

7 5 6 DIGIT

0 0 0 ,
0 0 , 2

,0 , 0 3
0 , , 4 , 0 0 5 , 0) 6 , , 0 7 , , , 8

1
CHARACTER SELECT

4 3 2 , 0 CHAR

0 0 0 0 0 L1

0 0 0 0 , I

0 0 0 , 0 i?

0 0 0 , , i
0 0 , 0 0 ,
0 0 , 0 , ,
0 0 , , 0 •
0 0 , , ,)

0 , 0 0 0 8

0 , 0, 0 , q

0 , 0 , 0 R

0 , 0 , , b

0 , , 0 0 [

0 , , 0 , d

0 , , , 0 E

0 , , , 1 F , 0 0 0 0 , 0 0 0 ,
" , 0 0 , 0 H , 0 0 , , I , 0 , 0 0 J , 0 , 0 , L , 0 , , 0 n , 0 , , ,
0 , , 0 0 0 p , , 0 0 , , , 0 , 0 t , , 0 , , LI , , , 0 0 " , , , 0 , , , , , 0 , , , , , , blank

Figure 15. LED Display Controller Display Data
Word Format '

to display the contents of a displa:y buffer on the dis­
play. The S085A software takes care of· the display
digit numbering. Since the application is input-only
for the UPI, the .only protocol required is that the
master must test IBF before writing a Display Data
Word int.o DBBIN. '

On the iSBC SO/30, the UPI frequency is at 5.5296
MHz. To obtain-a flicker-free display, the whole dis­
play must be refrl'shed at a rate of 50 Hz.or greater.

If we assume a 50 Hz refresh rate and an 8-digit dis­
play, this means the DISPLA routine must be
CALLed 50X8 or 400 times/sec. This transfers, using
the timer interva:l of 87 p,$ at 5.5296 MHz, to a timer
count of 227. (Reca:ll from the UPI-41A User's Man­
ual that the timer is an'"8-bit up-counter".) Hence
the TIME equate of 227D in the UPI listing. Obvi­
ously, different frequency sources or display lengths
would require that this equate be modified.

With the UPI ~niling at 5.5296 MHz, the instruc­
tion cycle time is 2.713 I's. The DISPLA routine re­
quires 2S instruction cycles, therefore, the routine
executes in 76 1'8. Since DISPLA is CALLed 400
times/sec, the tota:l time spent refreshing the display
during one second is then 30 ms or 3 % of the tota:l
UPf time. This leaves 97.0% for any foreground
tasks that could be added.

While the basic UPI software is useful' just as it
stands, there are several enhancements that could be
incorporated depending on the application. Auto-in­
crementing of the digit location could be added to
the input routine to alleviate the need for the master
to keep track of digit numbers. This could be (op­
tionally) either right-handed or left-handed entry a
la TI or HP ca:lculators. The character set could be
easily modified by simply changing the lookup table.
The display could be expanded to 16 digits a:t .the
expense of one additiona:l PORT 2 digit select line,
the replacement of the 3-to-S decoder with a 4-to-16
decoder, and 8 more Display Map locations.

Now let's mov~ on to a slightly more cfJmplex appli­
cation that is UPI output-only-a sensor matrix
controller. . .", "

Sensor Matrix Controller
Quite often a microprocessor systllm is ca:l~d UP.on
to read the status .of aJarge number of simple SPST
switches .or .sens.or,s. This is especially true in a pr.oc­
ess or industria:l control ,environment. Alarm sy.s­
tems are als.og.o.od el'amples .of systems,with a ~arge
senSfJr populati.on. Ift\le number of sensors is sma:ll,
it ,might be reas.o~ble ~Q dedicate a !1ingle input port
pin f.or each sensor. Ho~ever, as the number .of sen­
sqrs increase, thie technique bec.omes, very wasteful.
A. better arrangement.is to c.onfigure the sensors in a
matrix .organizati.on like that sh.own in Figure 16.
This arrangement .of 16 sensors requires only 4 input
and 4 output lines; half the number needed if dedi­
cated inputs were,ul\ed. The line saving bec.omes
even m.ore substantial as the number of sens.ors
increases."

AFN-O'538A

6-674

APPLICATIONS

In Figure 16, the basic operation of the matrix in­
volves scanning individual row select lines in se­
quence while reading the column return lines. The
state of any particular sensor can then be deter­
mined by decoding the row and column information.
The typical confIguration pulls up the column re­
turn lines and the selected row is held low. De­
selected rows are held high. Thus a return line re­
mains high for an open sensor on the selected row
and is pulled low for a closed sensor. Diode isolation
is used to prevent a phantom closure which would
occur when a sensor is closed on a selected row and
there are two or more closures on a deselected row.
Germanium diodes are used to provide greater noise
margin at the return line input.

ROW
SELECT

LINES

3+ V 2 +v '+v O+v

Figure 16. 4X4 Sensor Matrix

/I-

V" "V

FIFO NOT
EMPTY

oaF

DO-
07

Cs

AD
WR

AO

P2'

P2S

If the main processor was required to control such a
matrix it would periodically have to output at the
row port and then read the column return port. The
proceBBor would need to maintain in memory a map
of the previous state of the matrix. A comparison of
the new return information to the old information
would then be made to determine whether a sensor
change had occurred. Any changes would be pro­
cessed as needed. A row counter and matrix map
pointer also require maintenance each scan. Since in
most applications sensors change very slowly com­
pared to most processing actions, the processor
probably would scan the rows only periodically with
other tasks being proceBBed between scans.

Rather than require the processor to handle the
rather mundane tasks of scanning, comparing, and
decoding the matrix, why not use a dedicated pro­
ceBBor? The UPI is perfect.

Figure 17 shows a UPI cOnIlgUration for controlling
up to 128 sensors arranged in a 16X8 matrix. The 4-
to-16 line decoder is used as the row selector to save
port pins and provides the expansion to 128 sensors
over the maximum of 64 sensors if the port had been
used directly. It also helps increase the port drive ca­
pability. The column return lines go directly into
PORT 1. Features of this design include complete
matrix management. As the UPI scans the matrix it
compares its present status to the previous scan. If
any change is detected, the location of the change is
decoded and loaded, along with the sensor's present
state, into DBBOUT. This byte is called a Change
Word. The Master processor has only to read one
byte to determine the status and coordinate of a
changed sensor. If the master had not read a pre­
vious Change Word in DBBOUT (OBF=l) before a
new sensor change is detected, the new Change

PORT 1 a RETURN LINES

804,AI
8741A 74154

P23 r- 0

P22 r- c lS Rv 16 x 8

.~ \'
SENSOR

P2' I-- a MATRIX

P20 I-- A
G'

~ ~ SELECT LINES

Figure 17. 128 Sensor Matrix Controller
AFN-ol538A

6-675

APPLICATIONS

Word is loaded·into an internal FIFO. This FIFO
buffers up to 40 changes before it fills. The status of
the FIFO and OBF is made available to the mas.ter
either by polling the UPI STATUS register, Figure
18A, or as interrupt sources on port pins. P24 and
P25 respectively, Figure 17. The FIFO NOT EMP-.
TY pin ~d bit are true as long as there are changes
not yet read in the FIFO. As long as the FIFO is not

I empty, the UPI m~>nitors OBF and loads new
Change Words from the FIFO into DBBOUT. Thus,
the UPI provides complete FIFO management.

7 6 5 4 3 2 1 0

L -.J 1 ~ OSF - CHANGE WORD READY (P25)
IBF

F1

FO

FIFO NOT EMPTY (P24)

NOT~SEO

Figure 18A. Sensor Matrix Status Register Format

OBBOUT REGISTER:...... CHANGE WORD,

716151·13121,101
I . SENSOR COORDINATE TOI III =tl ~I I ~I

'----------- SENSOR STATE
o =CLOSED
1 =OPEN

Figure 188. Sensor Matrix Change Word Format

Internally, the matrix scanning software is pro­
grammed to run as a foregrourid task. This allows
the timer/counter to be used by any background task
although the hardware configuration leaves only 2
inputs (TEST 0 and TEST 1) plus 2 I/O port pins
available. Also, to add a background task, the FIFO
would have to be made smaller to accommodate the
needed register and data memory space. (It would be
possible however to turn the table here and make the
scanning software timer/counter interrupt-driven
where the timer times the scan interval.)

The data memory organization for this application is
shown in Figure 19. The upper 16 bytes form the
Matrix Map and store the sensor states from the
previous scan; one bit for each sensor. The Change
Word FIFO occupies the next 40 loc!ltions. (The top
and bottom addresses of this FIFO are treated as
equate variables in the program S9 that the FIFO
size may easily be changed to accommodate the reg­
ister needs of other tasks.) Register Ro serves as a
pointer into the matrix map area for comparil!lons

and updates of the sensor l!tatus.Rl is a general
FIFO pointer. The FIFO is implemented as a circu­
larbuffer with In and Out. pointer registers which
are stored in R4 and Rs respectively. These registers
are moved into FIFO pointer Rl for actual transfers
into or out of the FIFO. ij2 is the Row Select
Counter. It stores the number of the row being
scanned.

63

4B
.7

o

MATRIX MAP
16x 8

FIFO
40 x 8

COMPARE RES~ T

CHANGE WORD STORE

FIFOQUT

FIFO IN

COLUMN COUNTER

SCAN ROW SELECT

FIFO POINTER

MATRIX MAP POINTER

R7

R6

R5

R.
R3

R2

R1

RO

Figure 19. Sensor Matrix Data Memory Map

Register Ra is the Column Counter. This counter is
normally set to OOH; however, when a change is de­
tected somewhere in a particular row, it is used to
inspect each sensor status. bit individually for a
change. When a changed counter sensor bit is found,
the Row Select Counter and Column Counter are
combined to give the sensor's matrix coordinate.
This coordinate is temporarily stored in the Change
Word Store, register Rs. Register R7 is the Compare
Result. As each, row is scanned, the return informa­
tion is Exclusive-OR'd with the return information
from the previous scan of that row. The result of this
operation is .stored in R7. If R7 is zero, there have
been no changes on that row. A non-zero result indi­
cates at least one changed sensor.

The basic program operation is shown in the flow
chart of Figure 20. At RESET, the software ini­
tializes the working registers, the ports, and clears
the STATUS register. To get a starting point from
which to perform the sensor comparisons, the cur­
rent status of the matrix is read and stored in the
Matrix Map. At this point, the UPI begins looking
for changed sensors starting with the first row.

6-676

APPLICATIONS

I
INITIALIZATION

SCAN AND
COMPARE

CHANGE WORD
ENCODING

FIFOoBBOUT
MANAGEMENT

Figur. 20. Sensor MatrIx Control Flow Chart

. 6-677

Before delving further into the flow, let's pause to
describe the general format of the operation. The
UPI scans the matrix one row at a time. If no
changes are detected on a particular row, the UPI
simply moves to the nett row after checking the sta­
tus of DBBOUT and the FIFO. If a change is de­
tected, the UPI must check each bit (sensor) within
the row to determine the actual sensor location.
(More than one sensor on the scanned row could
have changed.) Rather thaD test aUs bits of the row
before checking the DBBOUT and FIFO status
again, the UPI performs the status check in between
each of the bit tests. This ensures the fastest re~
sponse to the master reading previous Change
Words from DBBOUT and the FIFO.

With this general overview in mind, let's go fll8t
thru the flow chart assuming we are scanning a row
where no changes have occurred. Starting at the
Scan-and-Compare section, the UPI first checks if
the entire matrix has been scanned. If it has, the var­
ious pointers are reset. If not, the address of the
next row is placed on PORTs 20 thru 23. This selects
the desired row. The state of the row is then' read
on PORT 1; the column return lines. This presellt
state is compared to the previous state by retriev­
ing the previous state from the matrix map imd
performing an Exclusive-OR with the present state~
Since we are assuming that no change has ~d,
the result is zero. No coordinate decodiDg is needed
and the flow branches to the FIFO-DBBOUT Man­
ageinent ~ion.

The FIFO-DBBOUT Management section simply
maintains the FIFO and loads DBBOUT whenever
Change Words are present in the FIFO and
DBBOUT is clear (OBF-O). The section first tests if
the FIFO is fulL (If we assume our "no-change" row
is the first row scanned, the FIFO obviously would
not be full.) If it·is, the UPI waits until OBF=O, at
which point the next Change Word is retrieved from
the FIFO and placed in DBBOUT. This "unfills" the
FIFO making room for more Change Words. At this
point, the Column Counter,'R3, is checked. For rows
with no changes, the Column Counter is always zero
so the test sUpply falls through. (We cover the case
for changes shortly.) Now the FIFO is tested for be­
ing empty. If it is, there is no sense in' any further
tests so the flow simply goes back up to scim the next
row. If the FIFO. is nOt empty. DBSOUT is tested
a,gain through OBF. If a Change Word is in
DBBOU~ wai~ing for the master to read it, nothing
can be done and the flQw ijkewlse branches up for
the next row. ,However, if the, PBBOUT is free and
remembering that the previouS test showed that the
FIFO was not empty, DBBOUT is loaded with the
next Change W Qrd and the last two conditional tests
repeat. '

APPLICATIONS

Now let's assume the next row contains several
changed sensors. Like before, the row is selected, the
return lines read, and the sensor status compared to
the previous scan. Sin<;~ changes have occUrred, the
Exclusive-pR result is now non-zero. Any I's in the
result reflect the position!! of the changed sensors.
This non-zero result is stored in the Compare Re.sult
register, R7. At this point, the Column Counter is
preset to S. To determ,ine the changed sensors' loca­
tions, the Compare Result register is shifted bit-by­
bit to the left while decrllmentin~ the Column
Counter. After each shift, BIT 7 of the result is test­
ed: If it is a one, a changed sensor has been found.
The Column Counter then reflected the sensor's ma­
trix column position while the Scan Row Select reg­
ister holds it row position. These registers are then
combined in Rs, the Change Word Store, to form the
sensor's matrix coordinate section ·of the Change
Word. The Sth bit of the Change Word Store is cod­
ed with the sensor's present state (Figure IS). This
byte forms the complete Change Word. It is loaded
into the next available FIFO position. If BIT 7 of the
Compare Result had been zero, that particular sen­
sor had not changed and the coordinate decoding is
not performed.

In between each shift, test, and coor<l.inate encode (if
necessary), the FIFO-DBBOUT Management is
performed. It is tlie Column Counter test withiiJ. this
section that routes the flow back up to the Change
Word Encoding section if the entire Compare Result
(row) has not been shifeed and tested.

The FIFO is implemented as a circular buffer with
IN and OUT pointeI'!! (&4 and R5 respectively). The
operations of the FIFO is best understood using an
example, Figure 21. This series of figures show how
the FIFO, DBBOUT, and OBF interact as changes
are detected and Change Words are read by the mas­
ter. The 'letters correspond to sequential Change
Words being loaded into the FIFO. Note that the fig­
ures show only a 4XS FIFO however, the principles
are the same in the 40XS FIFO.

Figure 2IA shows the condition where no Change
Words have been loaded into the FIFO or DBBOUT.
In Figure 2IB a change, "A", has been detected, de­
coded, and loaded into the FIFO at the loc/l.tion
equal to. the value of the FIFO-IN pointer. The
FIFO-OUT pointer is reset to the bottom of the
FIFO since it had reached the FIFO top. Now that a
Change Word is in the FIFO, OBF is checked to see
ifD8BOUT is empty. Because OBF=O, DBBOUT is
empty and the Change Word is loaded from the
FIFO location pointed at by the FIFO-OUT pointer.
This is shown in Figure 2IC. Loading DBBOUT
autol:naticallY sets OBF. OBF re~ains set until the.

master reads DBBOU'l'. Figures 21D and 2IE show
two more Change Wolds loaded into the FIFO. In
Figure 2IF the first Cl1imge Word is fmally read by
the master resetting OBF. This allows the next
Change Word to be loaded into DBBOUT. Note that
each time the FIFO is loaded, the FIFO-IN pointer
increments. Each time DBBOUT is read the FIFO­
OUT pointer increments unless there are no more
Change Words in the FIFO. Both pointers wrap­
around to the .bottom once they reach the FIFO top.
rhe remaining figures show more Change Words be­
ing loaded into the FIFO. When the entire FIFO fills
and DBBOUTcan not be loaded (OBF=I), scanning
stops until the master reads DBBOUT making room
for more Change Words.

As was mentioned earlier, two interrupt outputs to
the master are available: Change Word Ready (P25,
OBF) and FIFO NOT EMPTY (P24). The Change
Word Ready interrupt simply reflects OBF and is
handled automatically by the UPI since an EN
FLAGS instruction is executed during initialization.
The FIFO NOT EMPTY inteIfUPt is generated and
cleared as appropriate, each pass through the FIFO
management code.

No debouncing is provided although it could be
added. Rather, the scan time is left as an equate
variable so that it could be varied to account for both
debounce time and expected sensor change rates.
The minimum scan time for this application is
2msec when using a 6MHz dock. Since the matrix
controller is coded as a foreground task, scan time
simply uses a software delay loop.

The UPI software is included as Appendix B1. Ap­
pendix B2 is SOS5A test software which builds a
Change Word buffer starting at BUFSRT. This soft­
ware simply polls the STATUS register looking for
Change Word Ready to go true. DBBOUT is then
read and loaded into the buffer. Now let's move on to
an application which combines both the foreground
and background concepts.

Combination 1/0 Device
The final UPI application was designed especially to
add additional serial and parallel I/O ports to the
iSBC 80/30. This UPI simulates a full-duplex UART
(Universal Asynchronous Receiver/Transmitter)
combined with an 8-bit parallel I/O port. Features of
the DART include: software selectable baud rates
(110, 300, 600, or 1200 baud), double buffering for
both the transmitter and receiver, and receiver test­
ing for false start bit, framing, and overrun errors.
For parallel I/O, one S-bitport is programmable for
either input or output. The output port is statically
latched and the input port is sampled.

6-678

APPLICATIONS

A)

~1t.
F) i[. EJ c:J

~.: .
OBF OBF

X Q
DBBOUT FIFO DBBOUT FIFO

FIFO EMPTY (MASTER READS CHANGE A
DBBOUT) FINAUYREAD

B) G)

~~. EJ D
OBF H· OBF

Q OUT A c:=J
OBBOUT FIFO DBBOUT FIFO

CHANGE A DETECTED CHANGE B LOADED
INTODBBOUT

C) H)

1l. D [] OUT

OBF g. OBF

c=J OUT c=J
OBBOUT FIFO DBBOUT FIFO

CHANGE A LOADalIHTO DBBOUT. CHANGE 0 DETECTED
FIFO EMPTY

D)

~M .1} 0 IN 0 qUT C .

OBF '. OBF IN

c=J c=J E

DBBOUT FIFO OBBOUT FIFO
CHANGE B DETECTED CHANGE E DETECTED

E)

~~.
J)

~-tf.
IN

D D
OBF

c=J c=J
DBBOUT FIFO DBBOUT FIFO

CHANGE C DETECTED CHANGE E DETECTED. F1FO FULL.
SCANNING STOPPED UNTrt. B IS READ

Figure 21A-J. FIFO Operation Example

~1538A

6-679

.APPLICATIONS '

Figure 22 shows the interface of this combination
I/O device to the dedicated UPI socket on the iSBC
SO/30. The only external requirement is a 76.8 kHz
source which serves as the ba"d rate standard. The
internal baud rates are generated as multiples of this
external clock. This clock is obtained from one of the
8253 counters., Otherwise, an RS-232 driver and re­
ceiver already availa1:>le for UPI use in serial I/O ap­
plications. Sockets are also provided for termination
of the parallel port.

PARALLEL PORT

R,D

TICK SAMPLE

EXT CLOCK(76 a KHz)
FROM 8253

Figure 22. Combination 1/0 Device

, There are three commands for this application.
Their format is shown in Figure 23. The CON­
FIGURE command specifies the serial baud rate
and the parallel I/O direction. Normally this com­
mand is issued once during system initialization.
The I/O command causes a parallel I/O operation to
be performed. If the parallel port direction is out,
the UPI expects the data byte immediately following
an I/O command to be data for the output port. If
the port is in the input direction, an I/O command
causes the port to be read and the datil placed in
DBBOUT. The RESET ERROR command resets
the serial receiver error bits in the STATUS register.

COMMAND FORMAT

716151 4 13121,10 I
CONFIGURE COMMAND

A COP A-1200 BAUD SELECT
8- 600 BUAO SELECT
c- 300 BAUD SELECT
0- 110 BAUD SEI,.ECT
P-PARALLEL 1/0 DIRECTION

O-INPUT
1-QUTPUT

o I/O COMMAND

o RESET ERROR COMMAND

Figure 23. Combination 1/0 Command Format

The STATUS register format is shown in Figure 24.
Looking at each bit, BIT 0 (OBF) is the DATA
AVAILABLE flag. It is set whenever the UPI places
data into DBBOUT. Since the data may come from

either the receiver or the parallel input port, the FO
and Fl flags (BITs 2 and 3) code the source. Thus,
when the master fmds OBF set, it must decode FO
and Fl. to determine the source. .

, STATUS FORMAT

171615141312 I' 10J

~,I~, OBF-DATA AVAILABLE
BF-BUSY

FO

F'
NOT USED
Tx INTERRUPT
FRAMING ERROR
OVERRUN ERROR

FO F 1 OPERATION (SF = 1)

NO OPERATION
PARALLElliO DATA
SERIAL 1/0 DATA
COMMAND ERROR

Figure 24. STATUS Register Format

BIT 1 (IBF) functions as a busy bit. When IBF is set,
no writes to DBBIN are allowed. BIT 5 is the TxINT
(Transmitter Interrupt) bit. It is asserted whenever
the transmitter buffer register is empty. The master
uses this bit to determine when the transmitter is
ready to accept a data character.

BITS 6 and 7 are receiver error flags. The framing
error flag, BIT 6, is set whenever a character is re­
ceived with an invalid stop bit. BIT 7, overrun error,
is set if a character is received before the master has
read a previous character. Jf an overrun occurs, the
previous character is overwritten "and lost. Once an
error occurs, the error flag remains set until reset by
a RESET ERROR command. A set error flag does
not inhibit receiver operation however.

Figure 25 shows the port pin definition for this ap­
plication. PORT 1 is the parallel I/O port. The
UARTuses PORT 2 and the Test inputs. P20 is the
transmitter data out pin. It is set for a mark and re­
set for a space. P23 is a transmitter interrupt output.
This pin has the same timi~ as the TxINT bit in the
STATUS register. It is normally used in interrupt­
driven systems to interrupt the master processor
when the transmitter is ready to accept a new data
character.

6-680

The OBF flag is brought out on P24 as a master in­
terrupt when data is available in DBBOUT. P26 is a
diagnostic pin which pulses at four times the se­
lected baud rate. (More about this pin later.) The re­
ceiver data input uses the TEST 0 input. One of the
PORT 2 pins could have been used, however, the

AFNoO'538A

APPLICATIONS

PORT ... DEF1NIT1ON

~ !!I !!!!£!!!!
11-7 PARALLEL I/O

0 TxDalll
NOT USED
NOTUSEO
Tx IN1EIIRUPT

4 OBF IN1EIIRUPT

" NOT USED
6 NOT USEO (TICK SA-.E)

NOT USED

TO RxDATA

Tl EXTEIINAL CLOCK (76.8 _)

Figure 25. CombInation 1/0 Port DefInItIon

software can test the TEST 0 in one instruction
without fl1'llt reading a port.

The TEST 1 input is the baud rate external source.
The UART divides this input to determine the tim­
ing needed for the selected baud rate. The input is a
non-synchronous 76.8 kHz source.

Internally, when the CONFIGURE command is re­
ceived and the selected baud rate is determined, the
internal timer/counter is loaded with a baud rate
constant and started in the event counter mode.
Timer/counter interrupts are then enabled. The
baud rate constant is selected to provide a counter
interrupt at four times the desired baud rate. At
each interrupt, both the transmitter and receiver are
handled. Between interrupts, any new commands
and data are recognized and executed.

As a prelude to discussing the flow charts, Figure 26
shows the register defmition. Register Bank 0 serves
the UART receiver and parallel I/O while Register
Bank 1 handles the UART transmitter and com­
mands. Looking at RBOfirst, Ra is the receiver sta­
tus register, RxSTS. Reflected in the bits of this
register is the current receiver status in sequential
order. Figure 27 shows this bit defmition. BIT 0 is
the Rx flag. It is set whenever a possible start bit is
received. BIT 1 signifies that the start bit is good
and character construction should begin with the
next received bit. BIT 1 is the Good Start flag. BIT 2
is the Byte Finished flag. When all data bits of Ii
character are received, this flag is set. When all the
bits, data and stop bits are received, the assembled
character is loaded into the holding register <R4 in
Figure 27) BIT a, the Data Ready flag, is set. The
foreground routine which looks for commands and
data continuously, looks at this bit to determine
when the receiver lias received a character. BITS 4-
and 5 signify any error conditions for a particular
character. '

6-681

63
32

31

30
29

28

27
26

2"
24
23

o

USERIWI
(NOT USED)

AC TEMP. STORE

COMMAND STORE

Ta STATUS - TxSTS

Tx_

Tx SEIIWJZEII

Ta TICK COUNTER

BAUD RATE CONSTANT

NOT USED

STACK
(ONE LEVEL USEO)

STATUS STORE

Rx DESEIIWJZEII

Rx TICK COUNTER

RxHOLDING

Ax STATUS-AxSTS

NOTUSEO

NOTUSEO

NOT USED

R7

R8

AS

R4 REGISTER

A3
BAN< 1

R2

Rl

AO

A7

R6

RS

A4 REGISTER

R3
BANKO

R2

Rl

RO

Figure 26. Comblnetlon 1/0 Register Map

RlIISTS FORMAT

171615 14T3 121,10 I

I I, LL: Rx FLAG-POSSIBLE START BIT
START FLAG-GOOD START BIT
BYTE F1NISHEO FLAG
DATA READY FLAG
FRAMING EAROR
OVERRAUN ERROR
/ODIRECnON I

I /0 FLAG

Flgur. 27. ' RxSTS Register

The parallel I/O port software uses BITS 6 and. 7.
BIT 6 codes the I/O direction specified by the last
CONFIGURE command. BIT 7 is set whenever an
I/O command is received. The foreground routine
tests this bit to determine when an I/O operation has
been requested ~y the master.

As was mentioned, R4 is the receiver holding regis­
ter. Assembled' characters are held in this register
until the foreground routine fmds OBBOUT free, at
which time the data is transferred from R4 to
DBBOUT. R5 is the receiver tick counter. Recall
that counter interrupts occur at four times the baud
rate. Therefore, once a start bit is found, the receLver
only needs to look at the data every' four interrrupts
or tick counts. R5 holds the current tick count.

Rs is the receiver de-serializing register. Data char­
acters are assembled in this register. Rs is preset to
SOH when a good start bit is received. As each bit is ,

APPLICATIONS

sampleil every four timer ticks, they are rotated into
the leftmost bit of Rs. The software knows the char­
acter assembly is complete when the original preset
bit rotates into the carry.

An image of the upper 4 bits of the STATUS register
is stored in R7. These bits are the TxINT, Framing
and Overrun bits. This image is needed since the
UPI may load the upper 4 STATUS register bits
from its accumulator; however, it cannot read STA­
TUS directly.

In Register Bank 1 (Figure 26), Rl holds the baud
rate constant which is found from decoding the baud
rate select bits of the CONFIGURE command. The
counter is reloaded with this constant every timer
tick. Like the,receiver, the transmitter only needs to
update the transmitter output every four ticks. R2
holds the transmitter tick count. The value of R2 de­
termines which portion of the data is being trans­
mitted; start bit, data bits, or stop bit. The transmit
serializer is Ra. Ra holds the data character as each
character bit is transmitted.

R4 is the transmitter holding register. It provides
the double buffering for the transmitter. While
transmitting one character, it is possible to load the
next character into R4 via DBBIN. The TxINT bit
in STATUS and pin on PORT 2 reflect the "full­
ness" of R4. If the holding register is empty, the in­
terrupt bit and pin are set. They are reset when the
master writes a new data byte for the transmitter
into DBBIN. The transmitter status register
(TxSTS) is R5. Like RxSTS,TxSTS contains flag
bits which indicate the current state of the transmit­
ter. This flag bit format is shown in Figure 28.

TxSTS BIT 0 is the Tx flag. It is set whenever the
transmitter is transmitting a character. It is set from
the beginning of the start bit until the end of the
stop bit. BIT 1 is the Tx request flag. This bit is set
by the foreground routin~ when it transfers a new
character from DBBIN to the Tx holding register,
R4. The transmitter software uses this flag to tell if
new data is available. It is reset when the transmitter
transfers the character from the holding register to
the serializer.

TxSTS FORMAT

Figure 28. TxSTS Register

BIT 2 is the pipelined Tx data bit. The transmitter
uses a pipelining technique which sets up the next
output level in BIT 2 after .processing the current
timer tick. The output level is always changed at the
same point after a timer tick interrupt. This tech­
nique ensures that no bit timing distortion results
from different length processing paths through the
receiver and transmitter routines.

BIT a of TxSTS is the Start Bit flag. It is set by the
transmitter when the start bit space is set up in the
pipelined data bit. This allows the transmitter to
differentiate between the start bit and the data bits
on following timer ticks.

The flow charts for this application are shown in
Figures 29A-F. At reset, the INIT routine is exe­
cuted which initializes the registers and port pins.
After initialization, IBF and ,OBF are tested in
MNLOOP. These flags are tested continually in this
loop. If IBF is set, Fl is tested for command or data
and execution is transferred to the appropriate rou­
tine (CMD or DATA). If IBF=O, OBF is checked. If
OBF=O (DBBOUT is free), the Rx data ready and
I/O flags in RxSTS are tested. If Rx data ready is set,
the received data is retrieved from the Rx holding
register and transferred to DBBOUT. Any error
flags aSsociated with that data are also transferred to
STATUS. If the I/O flag is set and the I/O direction
is input, PORT 1 is read and the data transferred to
DBBOUT. In either case, FO and Fl are set to indi­
cate the data source.

If IBF is set by a command write to DBBIN, CMD
reads the command and decodes the desired oper­
ation. If an I/O operation is specified, the I/O flag is
set to indicate to the MNLOOP and DATA routines
that an I/O operation is to be performed. If the com­
mand is a CONFIGURE command, the constant for'
the selected baud rate is loaded into both Baud Rate
Constant register and the timer/counter. The timer/
counter is started in the event counter mode and
timer/counter interrupts are enabled. In addition,
the I/O port is initialized to alil's'ifthe I/O direction
bit specifies an input port; If the command is a RE­
SET ERROR command, the two error flags in STA­
TUSare cleared.

If the IBF flag is set by a data write, the DATA rou­
tine reads DBBIN and places the data in the appro­
priate, place, If the I/O flag is set, the data is for the
output port so the port is loaded. If the I/O flag is
reset, the data is for the UART transmitter. Data for
the transmitter resets the TxlNT bit and pin plus
sets the Tx request flag in TxSTS. The data is trans­
ferred to the Tx holding register, R4.

AFN.(I1536A

6-682

APPLlCATJONS

SET FRAMING
ERROR IN STATUS

OUTPUT'

Flg.,re 29A. INIT Flow Chert

.Once a CONFIGURE command is received and the
counter started, timer/counter interrupts start Oc­
curring at four times the selected baud rate. These
intemipts cause a vector to the TIMINT routine,
Figure 29D. A 76.8 kHz counter input ,provides a
13.02 p.S cOunter J;esolution. Since it requiteS several ,
UPI instruction cycles to reload the coUnter, the
counter is set to two counts less than the desired
baud rate and the counter is reloaded in TIMINT
synchronous with the second low-going transition
, after the interrupt. Once the counter is reloaded, an
output port (P26) is tOggled to,gHe an external indi-

6-683

cation of internal counter interval. This is a helpful
diagnostic feature. After the tick sample output, the
pipelined transmitter data hi TxSTS is output to'the
TxD pin. Although this occurs every timer: tick, the
pipelined data is changed only every fourth ,tick. ,

The receiver is now handled, Figure 29E; The Rx
flag in'IbSTS is examined to see if the receiver is
currently in the process of receiVing a character. If it
is not, the RxD input is tested for a space condition
which might indicate i1 possible start bit. If the input
is, a mark, no start bit is possible'and execution

AFN.()l53SA

APPLICATIONS

Flgur. 298. CMD Flow Chart

branches to the transmitter flow, XMIT. If the input
is a space, the Rx flag. is set before proCeeding with
XMIT.

If the Rx flag is found set when entering ReV, the
receiver is in, the proceaa of receiving a character. If
so, the start bit flag is then tested to determine if a
good start bit was received. The Rx tick counter is
initialized to 4 and the Rx deaeriaIizer is set to SOH.
A mark indicates a bad start bit; the Rx flag-is reset
to abort ~e reception.

If the aqut bjt flag is set, ,the. program is somewhere
in the middle of. the reeeive4 character. Since the
data should be sampled every fourth timer tick, the
tick counter is decremented and tested for zero. If
non-zero JlO eample ·is needed and execution contin"
uea with XMIT. If zero, the tick counter is reset to,
four. Now the byte finished flag is teste4 to deter­
mine if the data sample is a data or·stop bit. If reset,
the sample isa data bit. The sample.is done'and,the
new bit rotated into the Rx deseriaIizer. If·this rotate,

AFN41538A

APPLICATIONS

Flgur. 290, TIMINT Flow Chart

sets the carry, that data bit was the last so the byte
finished flag is set. If the carry is reset, the data bit is
not the last so execution simply continues with
XMIT.

Had the byte finished flag been set, this sample is for
the stop bit. The. RxD input is tested and if a space,
the framing error flag is set. Otherwise, it is reset.
Next, the Rx data ready flag is tested. If it is set, the
master has not read the previous character so the
overrun error flag is set. Then the Rx data ready flag
is set and the received data character is transferred
into the Rx holding register. The Rx, start bit, and
byte finished flags are reset to get ready for the next
character.

Execution of the transmitter routine, XMIT, follows
the receiver, Figure 29F. The transmitter starts by
checking the start bit flag in TxSTS. Recall that the
actual transmit data is output at the beginning of
the timer routine. The start bit flag indicates wheth­
er the current timer tick in~pt started the start
bit. If it is set, the pipelined data output earlier in
,the routine was the start of the start bit so the flag is
reset and the Tx tick counter is initialized. Nothing
else is done this timer tick so the routine ,returns to
the foreground.

6-685

If the start bit flag is' reset, the Tx tick counter is
incremented and tested. The test is performed mod­
ulo 4. If the counter mod 4 is not zero, it has not been
four ticks since the transmitter was handled last so
the routine simply returns. If the counter mod 4 is
zero, it is time to handle the transmitter and the Tx
flag is tested.

The Tx flag indicates whether the transmitter is ac­
tive. If, the transmitter is inactive, no character is
currently being transmitted so the Tx request flag is
tested to see if a new character is waiting in the Tx
buffer. If no character is waiting (Tx request
flag=O), the Tx interrupt pin and bit are set before
returning to the foreground. If there is a character
waiting, it is retrieved from the buffer and placed in
the Tx serializer. The Tx request flag is reset while
the Tx and start bit flagS are set. A space is placed in
the Tx pipelined data bit so a start bit will be output
on the next tick. Since the Tx buffer is now empty,
the Tx interrupt bit and pin are set to indicate the
availability of the buffer to the master. The routine
then returns, to the foreground.

If the tick counter mod 4 is zero and the Tx flag in­
dicates the transmitter is in the middle of a charac­
ter, the tick counter is checked to see what transmit­
ter operation is needed. If the counter is 28H (40D),
all data bits plus the stop bits are complete. The
character is therefore done and the Tx flag is reset. If
the counter is 24H (36D), the data bits are complete
and the next output should be a mark for the s~p bit
so a mark is loaded into the Tx pipelined data bit.

If neither of the above conditions are met for the
counter, the transmitter is some place in the data
field, so the next data bit is rotated out of the Tx
serializer into the pipelined data bit. The next tick
outputs this bit.

At this point the program execution is returned to
the foreground.

That completes the discussion of the combination
I/O device flow charts. The UPI software listing is
shown in Appendix Cl. Appendix C2 is example
S085A driver software.

Several observation,s concerning the drivers are. ap­
propriate. Notice that since the receiver and input
port of the UPI use the OBF flag and interrupt out­
put, the interrupt and flag are cleared when the mas­
ter reads DBBOUT. This is not true forthe
transmitter. There is always some time after a mas­
ter write of new transmitter data before, the trans­
mitter bit and pin are cleared .. Thus in an interrupt­
driven system, edge-sensitive interruptll should be

AFN-cl1536A

APPLICATIONS

Figure 29£. RCV Flow Chart

used. For polled-systems, the software must wait
after writing new data for IBF=O before re-examin­
ing the Tx interrupt flag in STATUS.

Notice that this application uses none of the user
data memory above Register Bank 1 and only 361
bytes of program memory. This leaves the door open
for many improvements. Improvements that come
to mind are increased buffering of the transmit or
received data, modem control pins, and parallel port
handshaking inputs.

This completes out discussion of specific UPI appli­
cations. Before concluding; let's look briefly at two
debug techniques used dUring the development of

6-686

these applications that you might find useful in your
own designs.

DEBUG TECHNIQUES
Since the UPI is essentially a single-chip microcom­
puter, the classical data, address, and control buses
are not available to the outside world during normal
operation. This fact normally makes debugging a
UPI design difficult; however, certain "tricks" can be
included in the UPI software to ease this task.

If a UPI is handling multiple tasks, it is usually
easier to code and debug each task individually. This
is fairly standard procedure. Since each task usually
utilizes only a subset of the total number of I/O pins,

AFN-01536A

APPLICATIONS

(XIIIT)

AETII)

AETII)

FlETA (AETft)

MARK TO PIPELINED
DATA FLAG (STOP)

(AETA)

SETTxlNT

(RETA)

Figure 29F. XMlT Flow Chart

coding only one task leaves some I/O pins free. Port
output instructiQlls can then be added in the task
code being debugged which toggle these unused pins
to determine which section of task code is being ex­
ecuted at any particular time. The task can also be
made to "wait" at various points by using an extra
pin as an input and adding code to loop until a par­
ticular input condition is met.

One example of using an extra pin as an output is
included in the combination serial/parallel device
code. During initial development the receiver was
not receiving characters correctly. Since this could
be caused by incorrect sampling, three lines of code
were added to toggle BIT 6'ofPORT 2 at each tick of
the sample clock. This code is at lines 184 and 185 of
the listing. Thus by looking at the location of the tick

6-687

sample pulse with respect to the received bit, the
UPI sampling interval can be observed. The tick
sample time was incorrect and the code was modi­
fied accordingly. Similar techniques could be ap­
plied at other locations in the program.

The EPROM version of the UPI (8741A) also con­
tains another feature to aid in debug: the capability
to single step thru a program. The user may step
thru the program instruction-by-instruction. The
address of the next instruction to be fetched is avail­
able on PORT 1 and the lower 2 bits of POR'!' 2. Fig­
ure 30 shows the timing used in the discussion below.
When the single step input, SS, is brought low, the
internal processor responds by stopping during the
fetch portion of the next instruction. This action is
acknowledged by the processor raising the SYNC

AFN-01536A

APPLIC~ TIONS

SY: ~,-_____ ~: ~_:,us_s!_. ~
PORTS __ --'X PORT DATA VALID X ADDRESS ~: x::=

I. E'x~c"'~ .1. STOPPED-+ACTlVe_
r'NSTAUCnON ,

figure 30. Single Step Timing

output. The addreas Clf thl! instruction to be fetched
is then placed on the port pins. This state may be
held indefinitely. To step to the next instruction, SS
is raised high, which causes SYNC to go low, which is
then used to return SS low. This allows the processor
to advance to the next instruction. If SS is left high,
the processor continues to ~xecute at normal s~
~til SS goes low. , .

To preserve port functionality, port data is valid
while SYNC is low. Figure 31 shows the external cir­
cuitry required to implement ~le step while pre­
serving port functionality. ,Sl is the RUN/STOP
switch. When in the RUN position, the 7474 is held
preset so SS is high and the UPI executes normally.
When switched to STOP, the preset is removed and

+5

+s 51

the next low-going transition of SYNC causes the
7474 to clear, lowering SS. While sync is low, the
port data is valid and the current instruction is ex­
ecuting. Low SYNC is also used to enable the tri­
state buffers when the ports are used as inputs.
When execution is complete, SYNC goes high. This
transition latches the valid port data in the
7 4LS37 4&. SYNb going high also signifies that the,
addreas of the next instruction will appear on the
port pins. This state can be held indefinitely with
the address data di~played on the L~s.

When the S2 is depressed, the 7474 is set which
causes SS to go high. This allows the processor to'
fetch and execute the instruction whose addreas was
displayed. SYNC going low during execution, clears

1-----188, P21

74~ .. 804,A/
874'"

..... --t--.-<~---i SYNC

• 1 OF 10PQRT
LINES

P10.-,.,....-~----t1D

" Figure 31. SIngle Step External Circuitry

6-688

10

AFN-Ol538A

APPLICATIONS

the 7 474 lowering SS. Thus the processor again stops
when execution is complete and the next fetch is
started.

All UPI functions continue to operate while siDgle
stepping (the processor is actually executing NOPe
internally while stopped). Both IBF and timer/
counter interrupts can be serviced. The only change
is that the interval timer is prescaled on single
stepped instructions and, of course, will not indicate
the correct intervals in real time. The total number
of instruction which would have been executed dur­
ing a given interval is the same however.

The siDgle step circuitry can be used to step through
a complete program; however, this might be a time­
consuming job if the program is long or if only a por­
tion is to be examined. The circuitry could easily be
modified to incorporate the output toggling tech­
nique to determine when to run and stop. If you
would like to step thru a particular section of code,

an extra port pin could replace switch Sl. Extra
instructions would then be added to lower the port
when entering the code section and raise the port
when exiting the section. The program would then
stop when that section of code is reached allowing it
to be stepped through. At the end of'the section, the
program would execute at normaispeed.

CONCLUSION
Well, that's it. Machine readable (floppy disk or pa­
per tape) source listings of UPI software for these
applications are available in Insits, the Intel library
of user-donated programs. Also available in Insite
are the source listings for some of Intel's pre-pro­
grammed UPI products.

For information about Insite, write to:

6.aa9

Insite
Intel Corp.
3065 Bowers Ave.
Santa Clara, Ca 95051

APPENDIX A

6-690 ~1538A

/

APPLICAnONS

Fl ASP'l48 F3 LED flRINT(Lf') NOOB.JECT

ISIS-II MCS-4B/uPl-41 MACRO ASSEMBLER. \/3. 0 PAOE

LOC DB" L.INE SOURCE STATEMENT

1 SMOD'lIA

;2 J .*.*************.********************** •• ******
3 * UPI-4IA B-DlglT LED DISPLAY CONTROLLER *
4 ***************** •• ***_.***:et***.*** •••• ******** ,
I> I

7 I
S I THIS PRODR USES THE UPI-4IA /IS A LED DISPLAY CONTRClLLER
9 I WHICH SCANS AND REFRESHES EigHT SEIIEN-SEOMENT LED DISPLAYS.

10 I THE CHllftACTERS liRE DEFINED IY INPUT FROM II MIISTER CPU IN THE
II I FDAM OF ONE EigHT BIT WORD PER DIIIIT-CHMACTER SELECTION.
12 I

13 I
14 I

l' J ***********************************.*.*.**.* .. ******* ... ************. II> I

17 I REIlISTER DEFINITIONS.
IS I REOISTER R81 RBO .
19
20 RO DISPLAY MAP POINTER NDT USED
21 I R I NOT -USED NOT USED
22 I R2 DATA WORD AND CHARACTER STORIIOE NOT USED
23 I R3 DIOIT COUNTER NOT USED
24 I R4 NOT USED NDT USED
2' I '" NDT USED NDT USED
21> RI> NOT USED NDT USED
27 R7 ACCUMULATOR STORME NDT USED

as J **.********* ••• ******** *******.** •• ******** *************.***
29 I

30 I PORT PIN DEFINITIONS
31 I PIN PORT I FUNCTlDN PORT 2 FUNCTION
32 J ------------- --------------

33 • PO-7 SEGMENT DRIllER CONTROL DigIT DRIVER CONTRCIL
:14 I
35 SE"ECT

6-691

LOC DB'"

AP,..uc~nONS,
,; ""

PAGE :2

LIIIE SOURCE STATEI1ENT

36 ; ******* ••••• ******** ... ********** .. ***** *****.*** ... **** **
37 ,DISPL.AY DATA WORD BIT DEFINITIDN:
3B BIT WUNCTION
39 •
40 0-4 CHARACTER SELECT
41 • 5-7 DII/IT SELECT
42 •
43 • CHARACTER SELECT:
44 D4 D3 D2 Dl DO CHARACTER
45 0 0 0 0 0 0
46. 0 0 0 0 1 1
47 0 0 0 1 0 2
48. 0 0 0 1 1 3·
49 J 0 0' ,1 0 '0 4
:10 ; 0' 0 1 0 1 5
51 J 0 0 1 1 0 6
:S2 I 0 0 1 1 1 7
:53; 0 1 0 0 0 8
:54 J 0 1 ' 0 0 1 9
:Sf) ; 0 1 0 1 0 A
i56 , 0 1 0 1 1 B
57 • 0 1 1 Or 0 C
58, 0 1 1 0 1 D
59, 0 1 1 1 0 E
60 , 0 1 1 1 1 F
61 , 1 0 '0 0 0
62 I 1 0 0 0 1 0
63 , 1 0 0 1 0 H
64 I 1 0 0 1 1 I
65 J 1 0 1 0 0 J
66 1 0 1 0 I L
67 1 0 1 1 0 N
6B 1 0 1 1 1 D
69; 1 1 0 0 0 P
70 J -I 1 0 0 I R
71 1 1 0 1 0 T
72 1 I 0 1 1 U
73 1 1 0 0 y
74 1 1 0 I
75 1 1 1 0 I
76 i 1 1 1 I "BLAMI-
77 ,
7B ,DIQIT SELECT'
79 , D7 D6 D5 DIOIT ER
80, 0 0 0 1
81 , 0 0 1 2
82. 0 1 0 3
B3 • 0 1 1 4
84. 1 0 0 :5
85, 1 0 1 6
86. 1 1 0 7
87, 1 1 ~ 8

88 J ***.********* •• ****.***.********************** •• *** *******
B9 .E,JECT

6'-692

APPLICATIONS

lele-II rtCS-48/UPI-41 MACRO ASSEMBLER. Y3.0 PME 3

LOC DB'"

FFFI

0000
0000 0409
0002 00
0003 0436
000' 00
0006 00
0007 041D

0009 D'
OOOA aAoa
OOOC B83a
OOOE 23FF
0010 AO
0011 la
0012 Fa
0013 B20E
0015 BBOO
0017 23FI
001" 62
OOIA "
OOIB 2'
OOIC 0'

LINE SOURCE STATEI1ENT

90 I * ** ** **
91 J EGUATES
92 • THE FDLLQWING CODE DESI_TES "TJI'E" AS A YARIABLE. THIS
"3 • AD.JUBTS THE APlllUNT OF CYCLES THE TlIIER COUNTS BEFORE
94 .'" TU.ER INTERRUPT OCCURS lIND REFRESHEB:THE. DISPL"'V. APPROlClMATELY
'" • ~ TlMES PER SECDNJ).
"6 Tll'E ECiU -oFH' • TlI'ER Y/llLUE 2._C
97 J *it •••••••••••••••• _ _ ••• _ *********.***.
98 • INTERRUPT BRANCHING
.,., • THIS PORTlON OF I1EI1OIIV IS DEDIC"'TED FOIl USE OF RESET /lIND

100 • INTERRUPT BRANCHING. WHEN THE INTERRUPTS ARE ENABLED THE
101 • CODE AT THE FOLLOWING DESIGNATED SPDTS ARE .EXECUTED WHEN A
102 • RESET DR A INTERRUPT OCCURS
103 ORQ 0 •
104 .JMP START • RESET
10' NaP •
106 . "'"" INPUT • IBF INTERRUPT
107 NaP ;
loa NIIP •
1~ ~ DI8PLA J Tlt1I!ft INTERRUPT
110 ; .*.*.*.*****.* ••• * •••• * •• ** ... ******.** ... **.*.*** *****.*.*******
111 • INITl/IILUATlON
112 • THE FOLLOWING CODE SlETS UP THE UPI-41 lIND DISPLAY HARDWARE
113 • INTO OPERATlON/llL FOII""T. THE DISPLAV IS TURNED OFF, THE DISPLAY
114 J MAP IS FILLED WITH "BLANK." CHARACTERS, THE TII£R ,SET AND THE
11' • INTERRUPTS ARE ENABLED
116 J

117 START' SEL RBI •
118 OftL. pa, _OSH J TURN DIOIT DR IVERS_ OFF
119 " i'IOV RO,.3BH ,DISPLAY MAP POINTER, BOTTatt OF DISPLAY HAP
120 BLK"'AP MOY A, .OFFH J FF."BLANK"
121 MOY eRO, A • BLANK TO DISPLAY MAP
122 INC RO ,INCREMENT DISPLAY MAP POINTER
123 MOY • A, RO • DISPLAV MAP POINTER TO ACCUMULATOR
124 "'B' BLKMAP • BLANK DISPLAV MAP TILL FILLED
12' MOY R3, .OOH • SET DIgIT COUNTER TO 0
126 MOY A, .rIME • TlME~ Y/llLUE
127 MOV T. A • LOAD TIMER
128 STRT T • START TIMER
129 EN TCNTI , ENABLE TIMER INTERRUPT
130 EN 1 ,ENABLE IBF INTERRUPT
131 ; **.*******************************
132 , USER PROQRAM
133 J A USERS PROGRAM WOULD INITIALIZE AT THIS POINT. THE FOLLOWING
134 • CODE IS UND CONCLUDED WITH
13' ,SYNC CHARACTERS (OMHI. A CHECKSUI'I BVTE IMMEDIATELV PRECEEDS THE
136 • FINAL SYNC WHEN READINQ, THE CONTROLLE***-_*** •• ************_._***_* ___ "'*.*
137 .E"'ECT

6-693

AfN.01536A

APPLICATIONS

IBIS-II MCS-48/UPJ-41 MeRD ASSEMBLER, V3 0 PAGE 4

LOC OB.J

00ID DlI
ODIE AF
001F BAoa
0021 1'1
0022 433B
0024 AB
002' 1'0
0026 3'
0027 Fa
0028 3A
0029 la
002A D307
002C '630
002E aBOO
0030 23Fl
0032 62
0033 "
0034 1'1'
003' '3

LINE SOURCE STATEI'IENT

138 J ********.** 139 • DISPLAY ROUTINE'
140 , THIS PORTION OF THIS pROIlAAI'! IS AN INTERRUPT ROUTINE WHICH IS
141 ,ACTED UPON WHEN THE TII1ER COUNT IS CDl'lPLETED. THE ROUTINE UPDATES
142 ,ONE DISPLAY DIGIT FRor! THE DISPLAY !'lAP PER INTERRUp:r SEQUENTIALLY,
143 ,THUS EIGHT TII'IER INTERRUPTS WILL HAVE REFRESHED TI'IE ENTIRE DISPLAY.
144 ,REGISTER BA~ 1 IS SELECTED AND THE ACCUl'lULATOR IS SAVED UPON
1411 ,ENTERING THE ROUTINE ONCE THE DISPLAY HAS BEEN REFRESHED THE TIllER
146 ,IS RESET AND THE ACCUIIULATDR AND PRE-INTERRUPT REgISTER BANK IS RESTDRED.
147 J
148 DISpLA BEL RBI ',REIlISTER __ 1
14' MOY R7, A ,BAVE ACCUI'IULATOR
150 ORL 1'2, .OSH ,fURN DIgIT' DRIVERB OFF
151 !'IOV A, R3 ,DIgIT COUNTER TO ACCUl'lULATOR
152 ORL A •• 3BH ,'OR" TO gET DISPLAY I1AP ADDRESS
153 I'IOV RO. A ,DISPLAY MAP POINTER
154 I'IOV A, eRO ,(lET CHARACTER FRDM DISPLAY I1AP
155 OUTL Pl. A ,OUTPUT CHARACTER TO SEIlMENT DRIVERS
156 !'IOV A. R3 ,DIIIIT COUNTER VALUE TO ACCUMULATOR
1:t7 DUTL P2. A J OUTPUT TO DIGIT DRIYI!RS
15B INC R3 • INCREMENT DIIIIT COUNTER
15' XRL A •• 07H ,CHECK IF AT LAST DIIlIT
160 .JNZ SETIHE ,RESET TlI'IER IN', NOT LAST DIIIIT
161 MOY R3dIOOH' ,RESET DigIT COUNTER
162 SETIME: I'IOV A •• TII1E 'TlI'IER VALUE
163 MOV T. A ,LOAD TlI'IER
164 STRT T ,START TlI'IER
16' !'IOV A. R7 ,RESTORE ACCUMULATDR
166 RETR , RETURN
167 J ************.*.*****.*.*.-.*' ... *.***********--****.***** ******.****
168 .E.lECT

:
!

6-694

APPLICATIONS

ISIS-II MCS-48/Uf'I-41 J'lACRO IIISSEI1BLER, V3.0 PAGE

LOC OB.J

0036 05
0037 AF
0038 22
0039 AA
003A 47
003B 77
003C 5307
003E 433B
0040 AB
0041 FA
0042 531F
0044 E3
0045 AA
0046 D37F
00419 Cb4E
004A FA
004B AO
004C 04:51
004E FA
004F :50
00:50 AO
0051 FF
0052 93

t..INE SOURCE STATEJ'IENT

169 i

170 ; **********************************.****.* ... *******.*********** •• *******
171 , INPUT CHARACTER AND DIgIT ROUTINE
172 , THIS PORTION OF THE PROQRA!'I IS AN INTERRUPT ROUTINE WHICH
173 , IS ACTED UPON WHEN THE IBF BIT IS SET. THE ROUTINE gETS THE
174 ,DISPLAY DATA WORD FROM THE DBB AND DEFINES BOTH THE DIgIT 'AND
175 ,THE CHARACTER TO BE DISPLAYED. THIS IS DONE BY MEANS OF A
176 J CHARACTER l.OOP-UP TABLE AND It DISPL.AY MAP FOR DIGIT AND CHARACTER
177 ,LOCATION. SPECIAL CONSIDERATION IS TAKEN FOR A DECII'IAL POINT WHICH 18
178 ,SIMPLY ADDED TO THE EXISTING CHARACTER IN THE DISPLAY f'tAP. REGISTER
179 ,BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAIlED UPON ENTERINQ
ISO ,THE ROUTINE. ONCE THE D"'TA WORD HAS BEEN FULLY DEFINED THE ACCU!'IULATOR
IBI ,AND THE PRE-INTERRUPT REGISTER BANK IS RESTORED.
182 J

183 INPUT: SEL
IB4 !'IOV
185
IB6
IB7
IBB
IB9
190
191
192
193
194
195
196
197
19B
199
200
201 DPOINT

IN
!'IOV
SWAP
RR
ANL
ORL
MOV
!'IOV
ANL
!'IOVP3
!'IOV
XRL
.JZ
!'IOV
!'IOV
.J!'IP
!'IOV

202 ANL
203 f10V
204 RETURN. !'IOV
205 RETR

RBI
R7.A
A,D88
R2.A
A
A
A.I07H
A.13BH
RO.A
A.R:!
A.4nFH
AdlA
R2.A
A.17FH
DPOINT
A.R2
eRO.A
RETURN
A. R2
A.eRO
80. A
A. R7

,REQISTER BANK 1
i SAVE ACCU!'IULATOR
I GET DATA
,SAVE DATA WORD
,DEFINE DIGIT LOCATION

,
I DIGIT LOCATION IN DIGIT POINTER
i SAIlED DATA WORD TO ACCU!'IULATOR
,DEFINE CHARACTER LOOK-UP-TABLE LOC.
I GET CHARACTER
J SAVE CHARACTER
• IS CHARACTER DECIMAL POINT ,
; SAVED CHARACTER' TO ACCUMULATOR
; CHARACTER TO DISPLAY MAP ,
,SAVED CHARACTER TO ACCUMULATOR
• "AND" WITH OLD CHARACTER
• BACK TO DISPLAY MAP
• RESTORE ACCUMULATOR

206 I **
207 _E.JECT

6-695

AFN-OI536A

APPLICATIONS

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V30 ' 'PAGE 6

LOC OB" LINE SOURCE STATEMENT

20B ; ***
209 L[J(M-UP TABLE'
210 THIS LOOK-UP TABLE ORIGINATES IN PAGE 3 01' THE UPI-41 PROGRAM
211 J MEMORY. I T IS USED TO DEFINE THE CORRECT LEVEL .0F EACH SEGMENT
212 I AND DECIMAL POINT FOR A SEL.ECTED CHARACTER FROM THE INPUT ROUTINE.
213 ,INVERSE LOGIC IS, USED BECAUSE 'OF THE, SPECIFIC DRIVER CIRCUITRY; THUS
214 • A I ON A GIVEN SEGMENT MEANS IT IS OFF AND A 0 MEANS IT IS ON
215 J

216 J *******SeGMENTS********
0300 217 ORG 300H .DP g F E ·0 C B A
0300 CO 21B CHO' , DB eeOH' .1' I 0 0 0 O' 0 0
0301 F9 219 CHI- DB OF'PH ,I I I I I 0 0 I
0302 A4 220 CH2. DB OA4H .1 0 I 0 0' I 0 0
0303 BO 221 CH3 DB oaOH .1 0 I I 0 0 0 0
0304 99 222 CH4 DB 99H .1 0 0 I I 0 0 I
0305 92 223 CH~' DB 92H i1, 0 0 I 0 0 I 0
0306 B2 224 CHo: DB B2H , I 0 0 0 0 0 I 0
0307 FB 223 CH7 DB OFBH ,I I I I I 0 0 0
030B SO 226 CHB: DB BOH .1 0 0 0 0 0 0 0
0309 9B 227 eH9- DB 9BH , 1 0 0 1 I 0 0 0
oaOA BS 228 CHA- DB BBH .1 0 0 0 I 0 0 0
030B 83 229 CHB DB B3H ,I 0 0 0 0 0 I I
030e C6 230 CHe DB OC6H ,I I 0 0 0 I, I 0
0300 AI 231 CHD ,DB OAlH I I 0 I 0 0 (\ '0 I
OSOE 86 232 CHE DB e6H ," 0 0 0 0 I I 0
030F 8E 233 CHF DB BEH ,I 0 0 0 I I I 0
0310 7F 234 CHDP DB 7FH' ,,0 I I I I I I I
0311 C2 235 CHG DB OC2H ,I I 0 0 0 0 I 0
0312 B9 236 CHH DB B9H .1 0 0 0 I 0 0
0313 FB 237 CHI DB OFBH

"
I I I I 0 I

0314 El 239 CH.J DB OE1H .1 I 0 0 0 0
031:' C7 239 CHL DB OC7H

"
0 0 0 I 1 I

0316 AS 240 CHN DB CASH .1 0 1 0 I 0 1 I
0317 A3 241 CHO DB OA3H .1 0 I 0 0 0 I I
0318 ae 242 CHP DB SCH

"
0 0 0 1 0 0

0319 AF 243 CHR. DB OAFH .1 0 I 0 I 1 1
031A S7 244 CHT DB B7H .1 0 0 0 0 I
031B CI 24~ CHU DB OCIH ... 1 0 0 0 0 0
031C 91 246 CHY DB 91H • 1 0 0 0 0 0
031D BF 247 CHDASH DB OBFH • 1 0 1 I
031E FD 24B CHAPOS DB OFDH .1 I I 0
031F FF 249 BLANK DB OFFH .1 1 I 1

250 ; **
251 END

USER SYMBOLS
BLANK 031F BLKMAP OOOE CHO 0300 CHI 0301 CH2 0302 CH3 0303 CH4 0304 CH5 0305
CH6 0306 CH7 0307 CHe 0308 CH9 0309 CHA 030A CHAPOS 031E CHB 03013 CHC 030C
CHD 080D CHDASH 0810 CHDP 0310 CHE 030E CHF 030F CHG 0311 CHH 0312 CHI 0313
CHJ 0314 CHL 031~ CHN 0316 CHO 0317 CHP 0318 CHR 0319 CHT 031A CHU 031E
CHY 031C DI$PLA 0010 DPOINT 004E INPUT 0036 RETURN 0051 SETINE 0030 START 0009 TIME FFF1

ASSEMBLY COMPLETE, NO ERRORS

AFN.o1536A

6-696

APPLICATIONS

FI "'S"4S F3 SENSOR NDOB.JECT PRINT! LP I

ISIS-II "CS-4S/UPI-41 "AeRO "'SSE"BLER. 113 0 PAGE

LOC DB'" LINE SDUftCIE STATEl'lENT

I etIOO4I ...
2
3
4
5

" 7
S .,

10
11
12

••
• UPI-41'" SENSOR ""'TRIX CONTROLLER •
••• *** ••

THIS PROQRM USE. THE UPI-41'" "'S ... SENSQR ·" ... TRIX CONTROLLER
I IT HAB "DNITOIIINQ CAP ... BlLITIES OF UP TO 128 BENBORS THE COORDIN ... TE
I AND SENSOR ST ... TUS OF E ... CH DETECTED C_ IS ... II ... IL LE TO THE MSTER
I HICRDPROCES_ IN ... SINeLE BYTE. ... 40XS FIFO ClUEUE "IS PROIiIDED FOR
I DAT ... IUFFERINQ 10TH HAIIOW""'E 011 POLLED INTERRUPT ~THODS CAN .IE USED
I TO NOTIFY THE H ... STER OF ... DETECTED SENSOR CHANeE .

13 J ••••• * ** •••••••••••••••••••••••••••••••••
14 I

15 I REQISTER DEFINITIONS.
I" I IIEQISTER
17 I

IS
19 I
20 I

21
22 j'

23 I

24
25

RO
RI
R2
R3
R4
R5
R6
R7

RIC!

" ... TR IX "AP POINTER
FIFO POINTER
SC"'N ROW SELECT
COLunN COUNTER
FIFO-IN
FIFO-DUT
CH_E WORD
C~Me:

RBI

NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT

USED
USED
USED
USED
USED
USED
USED
USED

~I • '.
27 J •••• **** ••• ** ••• ** ** ••• * ••••••• ** ••••••••••••••••• **
28 I

29 • PORT PIN DEFINITIONS'
30 I

31 J PIN
3l!
33 IPO-7
34 I

35
3ft I

37

PORT I, FUNCTION

COLUNN LINE INPUTS

PIN

PO-3
P4
P5
P"-7

PORT 2 FUNCTION

ROW SELECT OUTPUTS
FIFO NOT EI1PTY INTERRUPT
OIF INTERRUPT
NOT USED

38 J •••••••••••••••••••••••• ** ••••••••••••••••••••••••• ** ••••• * •• *
39
40 SE.JECT

6-697

APPLICATIONS

ISIS-II MCS-4S/UPI-41 MACRO ASSEMBLER. V3 0 PAGE 2

LOC OBJ

OOOF
0008
002F

LINE SOURCE STATEMENT

41 I **.****.**.******.*****
42
43 • CHANGE WORD BIT DEFINITION
44
4~ ,
46
47
48
49

BIT FUNCTION

SENSOR COORDINATE
SENSOR STATUS

!!to • ~*******.*.*********.*****************.**** •• **********************.*.*
~1 ,
52 • STATUS REGISTER BIT DEFINITION'
~3
~4

~~

56
~7

~8
~9
60,

BIT

DO
01-3
04
05-7

FUNCTION

OBF
IBF. FO. Fl (NOT USED)
FIFO !\lOT EMPTY
USED DEF I NED (NOT USED)

61 .*************************************.*.***********************.*******
62
63
1.4
6~
66
67
6B
69
70
71

E(lUATES

• THE FOLLOWING CODE DESIGNATES THREE VARIABLES. SCANTM. FIFOBA
• AND FIFOTA SCANTM ADJUSTS THE LENGTH OF A DELAY BETWEEN
• SCANNING SWITCH THIS SIMULATES DEBOUNCE FUNCTIONS FIFOBA
• IS THE BOTTOM ADDRESS OF THE FIFO FIFOTA IS THE TOP ADDRESS
• OF THE FIFO THIS MAKES IT POSSIBLE TO HAVE A FIFO :3 TO 40
• BYTES IN LENGTH

72 .**** ••• *.**.**.*.***************.****.*.****************.**** ••••••••
73
74
7~
76
77

SCANTM I EQU
FIFOBA E(lV
FIFOTA E(lU

79 $EJECT

OFH
OBH
2FH

• SCAN. TIME ADJUST
.FIFO BOTTOM ADDRESS
• FIFO TOP ADDRESS

6-698

AFN-Ol536A

APPLICATIONS

ISIS-II I'1CS-4B/UPI-41 MAeRO ASSEMBLER. V3 0 PAGE

LOC OB')

0000
0000 SB3F
0002 BAOF
0004 BCOB
0006 BD2F
OOOB B9FF
OOOA 2300
OOOC 90
0000 FA
OOOE 3A
OOOF 09
0010 AO
0011 FA
0012 Cbl6
0014 C6
001' CA
OOlb 0400
0016 BAIO
OOIA FA
0018 3A
OOIC F'

LINE SOURCE STATEMENT

79 • ** ** ** ••••••••••••••••••
BO
SI INITIALIZATION
S2
83 • THE PROGRAM STARTS AT THE FOLLOWINII CODE UPON RESET WITHIN

,B4 • THIS INITIALIZATION SECTION THE REIIISTERS THAT MAINTAIN THE MATRIX
S' • MAP. FIFD AND ROW SCANNING ARE SET UP PORT I IS SET HIGH FOR USE
B6 • AS AN INPUT PORT FOR THE COLUI1N STATUS BIT 4 OF STATUS REIlISTER IS
B7 • WRITTEN TO CONVEY A FIFO EJlPTY CONDITION THE INITIAL COLUMN BTATUS
BS ,OF ALL THE ROWS IN THE SENSOR MATRIX IS THEN READ INTO THE MATRIX
B9 ,MAP ONCE THE MATRIX MAP IS FILLED THE DBF INTERRUPT (PORT 2-4) IS
90.ENABLED
91' •
92 I ... *** ••••••••••••••••
93
94
95 INITMX
96
<17
9B
99

100,
101
102
103
104
10'
106
107
lOS
109
110
III
112
113
114
115

FILLMX

DBFINT

lib .EJECT

ORIl
MOV
MOV
MOV
MOV
ORL
MOV
I10V
MOV
OUTL
IN
MOV
MOV
JZ
DEC
DEC
.IMP
MOV
MOV
OUTL
EN

o
RO •• 3FH
R2 •• 0FH
R4 •• FIFOBA
R~, .FIFOTA
PI •• OFFH
A •• OOH
STS.A
A.R2
P2.A
A.PI
eRO. A
A.R2
OBFINT
RO
R2
FILLMX
RO! •• IOH
A.RO!
P2. A
FLAQS

,MATRIX MAP POINTER REQIBTER. TOP ADDRESS
,BCAN ROW SELECT REGIISTER. TOP ROW
• FIFO INPUT ADDRESS REGISTER. DOT1'OI1 OF FIFO
• FIFO OUTPUT 'ADDRESS REGISTER. TOP OF FIFO
• INITIALIZE PORT I HIGH FOR INPUTS
• INITIALI ZE STATUS REGISTER'. FIFO EMPTY
• WRITE TO STATUS REGISTER. BITS 4-7,
• SCAN ROW SELECT TO ACCUMULATOR
• OUTPUT SCAN ROW SELECT TO PORT O!
• INPUT COLUMN STATUS PORT I
• LOAD MATR IX MAP WITH COLUMN STATUS
• CHECK SCAN ROW SELECT REG I STER VALUE FOR 0
• IF 0 ENABLE OBF INTERRUPT
• DECREMENT TO NEXT MATR I X MAP ADDRESS
• DECREMENT TO SCAN NEXT ROW
• FILL NEXT MATRIX MAP 'ADDRESS
• BIT 4 HIGH IN ROW SCAN SELECT REGISTER
• ROW 'SCAN SELECT VALUE TO ACCUMULATOR
• INITIALIZE PORT 2. 81T 4 FOR "EN FLAGS"
• ENABLE OBF I NTERRUPT PORT 2. 8 IT 4

6"699

AFN.Ql536A

APPLICATIONS

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3 0 "",GE 4

LOC OBJ

0010 FA
001E ~30F
0020 C626
0022 CB
0023 CA
0024 042C
0026 SB3F
0026 FA
0029 430F
0028 AA
002C FA
0020 3A
002E SSOF
0030 EB30
0032 09
0033 20
0034 DO
0035 AF
0036 C669

LINE SOURCE STATEI'IIi:NT

117 • ***************.***********************.**************.***************
IlB
119
120

SCAN AND COI'IPARE

121 • THE FOLLOWING CODE IS THE SC",N ... ND COMpAIIE SECTION OF THE pROQRAI'I.
122 .• UPON ENTERING THIS SECTION ... CHECK IS M"'DE TO SEE IF THE ENTIRE !'lATRIX
123 • HAS BEEN SCANNED. IF SO THE RECnSTERS THAT !'IAINTAIN THE MATRIX MAP AND ROW
124 • SCANNINQ ARE RESET TO THE BECHNNING OF THE SENSOR MATRIX. IF THE ENTIRE
12' .M ... TRIX HASNT. BEEN SC"'NNED THE REGISTERS INCREMENT TO SCAN THE NEXT ROW.
126 • FRDI'! THIS POINT ON THE ROW SCAN BELECT REGISTER IS USED FOR TWO FUNCTIONS.
12? • BITS 0-3 FOR SCANNINGI ... ND BITS 4 AND , FDR THE EXTERNAL INTERRUPTS. THUSLY
128 LL USAGIE OF THE REGISTERS IS DONE BY LOGICALLY I'IASKING IT SO AS TO ONLY
129 • AFFECT THE FUNCTION DESIRED ONCE THE REGISTERS ARE RESET. ONE ROW OF THE
130 • SENSOR M"'TRIX IS SC"'NNED. ... DELAY IS EXECUTED TO ... D.JUST FOR SCAN TIME
131 • (DEBOUNCEI. A BYTE OF COLUMN STATUS IS THEN RE ... D INTO THE I'IATRIX 1'1"'1'
132 T THE TIME THE NEW COLUI'IN ST"'TUS IS CO""''''RED TO THE OLD. THE RESULT IS
133 • STORED IN THE CDI'!p ... RE REGISTER. THE pROGIR ... M IS THEN ROUTED ACCORDING TO
134 • WHETHER OR NOT ... CHANGIE WAS DETECTED.
13'
136
137

. ********* •• **
13B
139
140
141
142
143

AD,JREQ

144 R$ETRQ.
14"
146
147
148 5CANltX
149
150

.... R2
A, .OFH
RSETRGI
RO
R2
SC ... HM •
RO •• 3FH
A,R2
A •• OFH
R2
A.R2
1'2

• SC"'N ROW SELECT TO "'CCUMULATOR
• CHECK FOR 0 SC ... N V ... LUE ONLY.NOT INTERRUPT
,IF 0 RESET REGISTERS
,DECREMENT M ... TRIX P POINTER
• DECREMENT SCAN ROW SELECT
• SC ... N MATRIX
• RESET TRIX "AP POINTER REGIISTER. TOP ADDRESS
.SCAN ROW SELECT TO ACCUMULATOR
,RESET SCAN ROW SELECT. NO INTERRUPT CHANGE
.SCAN ROW SELECT REGIISTER
• SCAN ROW SELECT TO ACCUMULATOR
• OUTPUT SCAN ROW SELECT TO PORT 2
• SET OELAY FOR OUTPUT SCAN TIME
.OEL"'Y 1"1 DEL ... Y2.

152
153

MOV
",NL
JZ
DEC
DEC
.IMP
MOV
MOV
ORL
"OV
"OV
OUTL
"OV
DJNZ
IN
XCH'
XRL
MOV
JZ

R3 •• SC ... NTM
R3.DELAY2
A. PI
.... !tRO
A.@RO

• INPUT COLUMN ST ... TUS FROM PORT I TO ACCUMULATOR
.STORE NEW COLUMN STATUS S"'VE OLD IN ACCU .. UL ... TOR

1"4
155

1 " ..
1"7
15B .EJECT

R7.A
CHFFUL

• COMPARE OLD WITH NEW COLUMN STATUS
• SAVE CO .. PARE RESULT IN COMP ... RE REGISTER
• IF THE SA"E. CHECK IF FIFO 16 FULL

AFN-01536A

6-700

APPliCATIONS

ISIS-II t\CS-4S/UPI-41 "ACRO ASSE"BLER. V3 a PAgE

LaC OBJ

003S BBDB
003A CB
0038 1"0
003C 77
003D AO
003E 1"1"
0031" 77
0040 AI"
0041 F24~
0043 0469
004~ FA
0046 ~30F
004S E7
0049 E7
004A E7
004B 4B

004C AE
004D FO
004E ~3S0
OO~O 4E
OO~I AE

LINE SOURCE STATE"ENT

1 ~9 , •••• **.** ••• ** ••••• **** •••• ** .. ** ••••••••• ** •••• *** •••• * ** •••• **
160
161
162
163
164
16'
166
167
16S
169
170
171
172
173

CHANGE WORD ENCODINII

• THE;! POLLOWINII CODE IS THE C_E WORD ENCODING! SECTION. THIS
• SECTION ·IS ONLY EXECInED IF A CH_E WAS DETECTED THE COLUI'IN COUNTER
, IS sn AND DECREI1ENTED TO DESlgN"'TE E"'CH OF. THE S COLU"NS. THE COI'IPARE
• REgiSTER IS LOIMED ... T ONE BIT "'T ... TlI1E TO FIND THE EX ... CT LDCATIDtil OF
• THE CHANgEIS) WHEN ... · CHANQE IS FOUND IT IS ENCODED BY GlIVINg IT A
• COORDINATE FOR ITS LOCATION THIS IS DONE BY CO"BINING!·THE PRESENT VALUE
.IN THE ROW SC ... N SELECT REgiSTER AND THE COLUI'IN COUNTER. THE ... CTUAL STATUS
• OF THAT SENSOR IS EST ... BLISHED BY LOOKIIIIII ",T THE CORRESPONDINg· BYTE IN
• THE "ATRIX"",P THIS STATUS IS CO"BINED WITH THE COORDINATE TO ESTABLISH
• THE CHANgE WORD THE CHANIIE WORD IS THEN STORED IN THE CHANgE WORD REgiSTER

174 ,.** •••• *** •••••• ***.****** ••• *** ••••• *** * ••••••••••••
17~
176 P10V
177 RRLOOK DEC
17S "OV
179 RR
ISO "OY
lSI "OY
IS2 RR
IS3 I'IOY

R3 •• 0SH
R3
A,eRO
A
IIRO.A
A,R7
A

• SET COLUI'IN COUNTER REgiSTER TO S
• DECRE"ENT COLU"N COUNTER
,COLUt1N STATUS TO ACC.U"UL"'TOR
• ROTATE COLU"N. STATUS RIGlHT
• ROTATED COLU"N STATUS BACK TO "ATRIX "AP
• CO"PARE REGIISTER YALUE TO ACCUI1ULATOR
• ROTATE COMPARE VALUE RIGHT
• ROTATED CO"PARE YALUE TO CO"PARE REGISTER

IS4 JB7
R7d~

ENCODE
CHFFUL
A. R2

• TEST BIT 7 IF CHANGE DETECTED ENCODE CHANGE WORD
IS~ J"P
IS6 E;!NCODE;! I'IOV
IS7
ISS
IS9
190
191
192
193
194
19'
196
197
19S
199 .EJECT

... NL
'RL
RL
RL
ORL

"OV
"OY
ANL
ORL
I'IOV

A. _OFH
.A

A
A
A. R3

R6d"
A.IIRO
A. _SOH
A. Rb
R6. A

• IF NO CHANgE IS DETECTED CHECK FOR FIFO FULL
• SCAN ROW SELECT TO ACCU"ULATOR OOOOXXXX
• ROTATE ONLY SCAN VALUE
• ROTATE LEFT OOOXXXXO
• ROTATE LEFT OOXXXXOO
• ROTATE LEFT OXXXXOOO
• ESTABLISH "ATRIX.COORDINANT OXXXXXXX
• lOR) COLUI'IN COUNTER VALUE WITH 'ACCU"ULATOR
• SAVE CQORDIN"'NT IN CH"'NGE WORD REGISTER
• COLU"N STATUS FROI'I "ATRIX MAP TO ACCUMULATOR
.0 ALL BITS BUT BIT 7
I (OR) SENSOR STATUS WITH COORDINATE FOR COMPLETED CHANGE WORD
• SAVE CHANGE WORD XXXXXXXX

~1538A

6-701

APPLICATIONS

ISIS-II MCS-46/UPI-4I MACRO ASSEMBLER. V3 0 PAGE 6

LOC OBJ

0052 FC
0053 A9
00'4 FE
0055 AI
0056 23)0
0056 90
0059 8A20
00'8 FA
005C 4320'
005E AA
005F 232F
0061 DC
0062 Cb67
0064 IC
0065 0469
0067 BCOB
0069 FC
006A DO'
006B 9670
0060 B660
006F 232F
0071 DO
0072 C677
0074 10
0075 0479
0077 BDOB
0079 FO
007A A9
007B FI
007C 02
0070 Fa
007E 963A
0080 2308

LINE SOURCE STATEMENT

200 ; ***
201
202
203
204
205
206
207
20B
209
210
211
ot12
213
214

FIFO-DBBOUT MANAGEMENT

,THE FOLLOWING CODE IS' THE FIFO~D8BOUT MANAGEMENT SECTION OF tHE'
'PROQRAM THIS SECTION TAKES AN ENCODED CHANGE WORD AND LOADS IT INTO
• THE FIFO THE FIFO NOT EMPTY INTERRUPT' IS THEN SET AND THE FIFO-IN
l POINTER GETS UPDATED A FIFO FULL CONDITION IS THEN CHECKED FOR AND
• ROUTED ACCORDI'NIlLY IF BOTH THE FIFO AND OBF HAVE CHANGE WORDS THE
,PROGRAM LOCKS UP UNTIL THIS,HAS CHANGE~ IF THE FIFO ISNT FULL COLUMN
,COUNTER,.O. FIFO EMPTY AND OBF CONDITIONS ,ARE CHECKED THE FIFO-OUT
• POINTER IS' SET AND' DBBOUT IS LOADED IF THE FIFO ISNT EMPTV AND OBF ISNT
,SET. IF THIS ISNT THE SITUATION. PROGRAM FLOW IS ROUTED BACK TO THE
rTHE SCAN AND COMPARE SECTION TO SCAN THE NEXT ROW

21 5 i *********************** *********************~**.***************** **_*
216
217 LOADFF' Mev
21B Mev
219 MOV
220 MOV
221 STATNE' MOV
222 MOV
223 INTRHI: ORL
224 MOV
225. ORL
226 MOV
227 ADJF I N MOV
226
229
230
231
232
233
234
235
236
237
23B
239
240
241
242
243
244
245
246

RSFFIN
CHFFUL

CHOBFI
ADJFQT

RSFFOT
LOADDB

247' CHCNTR
248
249 CHFFEM
250
251 .EJECT

XRL
JZ
INC
JMP
MOV
MOV'
XRL
JNZ
JOBF
MOV
XRL
JZ
INC
JMP
MOV
MOV
MOV
MOV
OUT
MOV
JNZ
MOV

A. R4
RI. AI
A. R6
ItR!. A
A •• IOH
STS,A
P2.4I20H
A.R2
A •• 20H
R2. A
A •• FIFOTA
A. R4
RSFFIN
R4
CHFFUL
R4 •• FIFOBA
A. R4
A. R5,
CHCNTR
CHOBFI
A. ttFIFOTA
A. R:5
RSFFOT
R5
LOADDB
R5,ttFIFOBA
A, R:5
RI. A
A. (tRI
DBB. A
A. R3
RRLOOK
A. ttFIFOBA

,FIFO INPUT ADDRESS TO ACCUMULATOR
• FIFO POINTER USED FOR INPUT
• CHANGE WORD TO ACCUMULATOR
• LOAD FIFO AT FIFO INPUT ADDRESS
• BIT 4 FOR FIFO NOT EMPTY
I WRITE ,TO STATUS REGISTER. FIFO NOT EMPTY
.FIFO NOT EMPTV INTERRUPT PORT 2-5 HIGH
• ROW SCAN SELECT TO ACCUMULATOR
• SAVE INTERRUPT. NO CHANGE TO SCAN VALUE
,ROW SCAN SELECT REGISTER
• FIFO TOP ADDRESS TO ACCUMULATOR
• COMPARE WITH CURRENT FIFO INPUT ADDRESS
• IF THE S~ME RESET FIFO INPUT REGISTER
• NEXT FIFO INPUT ADDRESS
• CHECK FIFO FULL
• RESET FIFO INPUT REGISTER. BOTTOM OF FIFO
• FIFO INPUT ADDRESS TO ACCUMULATOR
,COMPARE INPUT WITH OUTPUT FIFO ADDRESS
• IF NOT SAME CHECK COLUMN COUNTER VALUE
• IF OBF IS I THEN CHECK ODF
, FIFO TOP ADDRESS TO ACCUMULATOR
• COMPARE TOP TO OUTPUT FIFO ADDRESS
• IF THE SAME RESET FIFO OUTPUT REGISTER
,NEXT FIFO OUTPUT ADDRESS
• LOAD DBBOUT
,RESET F I Fa OUTPUT ADDRESS TO BOTTOM
• OUTP,UT FIFO ADDRESS TO ACCUMULATOR
• FIFO POI NTER USED FOR OUTPUT
• CHANGE WORD TO ACCUMULATOR
,CHANGE WORD TO DBBOUT
• COLUMN COUNTER TO ACCUMULATOR
• IF NOT 0 FINISH CHANGE WORD ENCODING
J FIFO BOTTOM ADDRESS TO ACCUMULATOR

6-702

OF FIFO

AFN-Ol536A

APPLICATIONS

1515-1 J MCS-4B/UPI-41 MACRO ASSE.MBLER. V3 0

LOC OBJ LINE SOURCE STATEMENT

0082 DC
008::! Cb8C
0085 FC
008b 07
0087 00
00B8 Cb91
OOBA 049C
008C 232F
008E DO
OOBF 9b9C
00"1 2300
0093 90
0094 9ADF
0090 FA
0097 ~3DF
0099 AA
OIl"A 041D
009C BblD
009E 04bF

USER SYMBOLS
AD.JFEM OOBC
CHOBF2 009C
INTRLO 0094
SCANMX 002C

252 XRL
2~3 J~

2~4 MOV
2~5 DEC
2~b XRL
257 JZ
258 .!I'IP
2~9 ADJFEM MOV
2bO XRL
21.1 JNZ
262 STATMT MOV
21.3 MOV
'01604 INTRLO: ANL
2b~ MOV
21.1. ANL
2b7 MOV
2bB ..IMP
21.9 Cl-fOBF2' .JOBF'
270 .JMP
271
272 END

AD.JFIN OO~F AD.JFOT
DELAY2 0030 ENCODE
LOADDD 0079 LOADFF
SCANTM OOOF STATMT

ASSEMBLY COI'IPLETE, NO ERRORS

A, R4
AP.JFEM
A. R4
A
A, R~
STATMT
Cl-fOBF,~
A, ,FIFOTA
A, R5
Cl-fOBF2
A,.OOH
STS, A
PC •• ODFH
A,R2
A, .ODFH
R2,A
ADJREG
AP.JREG
AOJFOl

OObF ADJREG
004~ FIFOSA
00~2 OBFINT
0091 STATNE

0010
oooe
0018
0051.

'PAGE" 7

,COMPARE FIFO IN~UT .ADDRESS WITH FIFO BOTTOM.ADD
,IF THE SAME. ADJUST TO CHECK FOR FIFO EMPTY
,FIFO INPUT ADDRESS TO ACCUMULATOR
,DECREMENT FIFO INPUT ADDRESS IN ACCUMULATOR
,COMPARE INPUT TO OUTPUT FIFO ADDRESSES
,IF SAME, WRITE STATUS REGISTER FOR FIFO EMPTY
,CHECK OBF
,FIFO TOP ADDRESS TO ACCUMULATO~
,COMPARE TOP TO OUTPUT FIFO ADDRESS
• IF NOT SAME THEN FIFO IS NOT EMPTY. CHECK OBF
,CLEAR BIT 0 FOR FIFO EMPTY
,WRITE TO STATUS REGISTER
,FIFO EMPTY, INTERRUPT 'PORT 2-5 LOW
; SCAN ROW SELECT TO AC~UI'1ULATOR

,SAVE INTERRUPT, NO CHANGE TO SCAN VALUE
,SCAN ROW SELECT REGISTER
iADJUST REGISTERS
, IF OBF-I THEN AD.JUST REGISTERS
• ADJUST FIFO OUT ADDRESS TO LOAD D8BOVT

CHCNTR 0070 CHFFEM ooeo' CHFFut
FIFOTA 002F FILLMX 0000 INITMX
RRLOOK 003A RSETRQ 0021. R5FFIN

0010"1
0000
0067

CHOBFl
INTRHl
RSFFOT

AFN-01536A

OObD
0059
0077

APPUCATI(:)NS

PROGRAMMABLE KEYBOARD INTERFACE

• SlmuHaneous Keyboard and Display
Operations " ".

• Interface Signals for Contact and
capacitive Coupled Keyboards

• 128-Key Scanning Logic

• 10.7msec Matrix Scan Time for 128 Keys
and 6MHz Clock

• Eight Charflcter Keyboard FIFO

This application is a general purpose programmable
keyboard and display interface device designed for
use with 8-bit microprocessors like the MCS-SO and
MCS-8S. The keyboard portion can provide a
scanned interface to 128-key contact or capacitive­
coupled keyboards. The keys are fully debounced
with N -key rollover and programmable error genera­
tion on multiple new key closures. Keyboard entries
are stored in an 8-character FIFO with overrun sta-

RL Vee

x, CLR

x. B,

RESET B.

Ne B,

cs BO

GND KeL

AD MS

AO M5

WR M.

SYNC M,

DO M.

D, M,

D. Mo
0, Voo

D. Ne

D5 ERROR

Dt; IRQ

D7 HYS

GND BP

Figure 1. Pin Configuration

• N-Key Rollover with Programmable
Error Mode on Multiple New Closures

• Sixteen or Eight Character Seven­
Segment Display Interface

• Right or Left E,ntryDlspiay RAM

• Depress/Release Mode Programmable

• Interrupt Output on Key Entry

tus indication when more than 8 characters are en­
tered. Key entries set an interrupt request output to
the master CPU.

The display portion of the UPI-41A provides a
scanned display interface for LED, incandescent
and other popular display technologies. Both nu­
meric displays and simple indicators may be used.
The UPI-41A has a 16X4 display RAM which can be

DATA
BUS

INTERRUPT
REQUEST

AD
WR
cs
Ao

+5_
PWR --..
GND ____

INTERNAL
BUS

Figure 2. Block Diagram

SCAN
OUTPUTS

........
MS

MO

TO
DISPLAY,
DIGITS

APPLICATlqNS

loaded or interrogated by the CPU. Both right entry
calculator and left entry typewriter display formats
are possible. Both read an4 write of the display
RAM can be done with auto increment oithe display
RAM address.

PRINCIPLES OF OPERATION
The following is a description of the major elements
of the Programmable Keyboard/Display inteqace
device. Refer to the block diagram in Figure 1.

1/0 Control and Data Buffer.
ORDERING INFORMATION: The I/O control section uses the CS, Ao, RD, and

WR lines to control data flow to and from. the var·
ious internal registers and buffers (see Table 2). All
data flow to and from the 8278 is enabled by CS. The
8·bits of information being transferred by the CPU
is identified by Ao. A logic one means information is
command or status. ~c zero means the informa·
tion is data. RD and WR determine the direction of
data flow through the Data Bus Buffer (DBB). The

This part may be ordered 88 an 8041A with ROM
code number 8278. The source code is 'available
through Insite.

Throughout this application of the UPI·41A, it will
be referred to by its ROM code number, 8278. The
8278 is packaged in a 4O.pin DIP. The following is a
brief functional description of each pin.

Table 1. Pin Description

SIgnal Pin. No. Type Name and Function

DO·D7 12·19 110 Data Bus: Three-state, bi·directional data b~ lines used to transfer data and com-
mands between the CPU and the 8278.

WR 10 I Write: Write strobe which enables the master CPU to write data and commands be-
tween the CPU and the 8278.

RD 8 I Read: Read strobe which enables the master CPU to read data and status from the
.8278 intem81 registers.

CS 6 I Chip Select: Chip select input used to enable reading and writing to the 8278.

Ao 9. I ControllData: Address input used by the CPU to indicate control or datil. .

RESET 4 I . Reset: A low signal on this pin resets the 8278.

Xlo X2 2,3 I Freq. Reference Inputs: Inputs for crystal, L-C or external timing signal to deter-
mine internal oscillator frequency.

mQ 23 0 Interrupt Request: Interrupt Request OUtput to the master Cpu. In the keyboard
mode the mQ line goes low with each FIFO read and returns high if there is still infor-
mation in the FIFO or an ERROR has occurred.

Mo-Ms 27-33 0 Matrix Sean Lines: Matrix scan outputs. These outputs control a decoder which
scans the key matrix columns and the 16 display digits. Also, the Matrix scan outputs
~e used to multiplex the return lines from the key matrix.

RL 1 I Keyboard Return Line: Input from the multiplexer which indicates whether the key
currently being scanned is closed:

HYS 22 0 Hysteresis: Hysteresis output to the analog detector. (Capacitive keyboard COnIIgu-
ration). A ·0· means the key currently being scanned has already been recorded.

KCL 34 0 Key Clock: Key Clock output to the analog detector (capacitive keyboard configura-
tion) used to resst the detector before scanning a key.

SYNC 11 0 Output Clock: High frequency (400kHz) output signal used in the key scan to detect
a closed key (capacitive keyboard conIIguration).

Bo-B3 35-38 0 Display Outputs: Thess four lines contaiD binary coded decimal display information
synchronized to the keyboard column SC$ll. The outputs are for multiplexed digital
displays.

ERROR 24 0 Error Signal: This line is high whenever two new key closures are detected during a
single sean or when too many characte~ are entered into the keyboard FIFO. It is resst
by a system RESET pulss or by a ~1· input on the CLR pin or by the CLEAR ERROR
command.

CLR 39 I Clear Error:. Input used to cl~ an ERROR condition in the 8278.

BP 21 0 Tone .Enable: Tone enl!ble output. This line is high for lOms following a valid key
closure; it is set high and remains high during an ERROR condition.

VCC,VDD 40,26 I Powet: +5 volt power input: +5V ± 10%.

GND 20,7 I Ground: Signal ground.

6-705

APPLICATlONS.

DBB register is a bi-directional8-bit buffer register
which connects the internal 8278 bus buffer register
to the external, bus. When the chip is not selected
(CS = 1) the DBB is in the highimE!!an.£! state.
The DBB acts as an input when (RDJYR, CS) = (1,'
0,0) and an output when (iID,WR, OS) = (0, 1,0).

Table 2. 1/0 Control and Data Buffera

cs Ao WR RO, Condition

0 '0 1 0 Read DBBData

0 1 1 0 Read STATUS

0 0 0 1 Write Data to DBB
0 1 0 1 Write Command to DBB
1 X X X Disable 8278 Bus,

High Impedance

Scan Counter
The scan counte,r provides, the timing to scan the
keyboard and display. Th'e four MSB's (M3-M6)
scan the display digits and provide column filcan to
the keyboard via a 4 to 16 decod!lr. The three LSB's
(MO-M2) are used to multiplex; the row return lines
into the 8278.

Keyboard Debounce and, Control
The 8278 system configuration is shown in Figure 3,
The rows of the matrix are ,scanned anchhe outputs

are niuItiplexed' by the . 8278.' When a key closure is
detected, the debourice logic waits about 12msec to
check if the key remains clOsed. If it does, the ,ad­
dress ofthe key in the matrix is transferred into,a
FIFO buffer.

FIFO and FIFO Status ,', "
The 827,8 contains an 8X8 FIFO character buffer.
Each new entry is written into a successive FIFO,lo­
cation and each is then read out in the order of entry.
A FIFO status register keeps track of the number of
characters in the FIFO and whether it is full or emp­
ty. Too many reads or key entries will be recognized
as an error. The status can b!l read bya RD with CS
low and Ao high. The status logic also provides a
IRQ signal to the master processor whenever the
FIFO is not empty.

Display Address Registers and Display RAM
The Display Address registers hold the address of
thl1 word currently being written 8r read by the CPU
and the two 4-bit nibbles being displayed. The
read/write addresses are programmed by CPU com­
mand. They al~o Clll/. be set to auto increment after
each read or:'\vtite. The display RAM can be directly
read by the CPU after th8- correct mode and address
is set. Data entry to the display can be set to either
let'(or rIght entry.

TO TONE GENERATOR

ANALOG
DETECTOR

TO
8060, 8085 OR 8048

~ASTER
PROCESSOR

,

8

RLHYS~ BP

ERF,tOR KCL
(lLR "!2 ,

IRO M:i
8041A/
8741A

00-07'

WR SYNC
Ro "!6 AO
Cs
RESET ";0

83' • '. ~ -BO

a OR,~6,DlGIT DIsPLAY

I
ANALOG I MULTIPLEXER

:,'
' . --8----- '

"

~
4TO 16

1",1,~ DECODE

~ --- I I
I

CAPACITIVE
KEYBOARD

MATRIX

,
" " '~TSCAN

Figure 3. Syatem Conflguratlon"for Capacltlve-C:oupled KeYboard

APPLICATIONS

I,

TO
8080, 8085 OR 8048

, MASTER
PROCESSOR

r
8

9P RL

ERROR

CLR ~2

IRQ MO _·'AI
8741A

00,07

W-
RD

"!6
AO
CS
RESET M3

93··· •• 90

TO TONE GENERATOR'

I
J DIGITAL I

MULTIPLEXER

--8--

r--- ,

I
~

4 TO 16 I
DECOOE 16

i

I 1
'---

4TO 16
DECODE

I
I

I
CONTACT

r- 16 --I 16 DIGIT SCAN
KEYBOARD

MATRIX

8 OR 16 DIGIT DISPLAY

,

Figure 4. System Configuration for Contact Keyboard

COMMANDS
The 8278 operating mode is programmed by the
master CPU using the AO, WR and DO-D7 inputs as
shown below:

AO. os 3'--___ v_AL_�D __ --'X~_'N_VA_Ll_D_

\ /
INVALID X VALID X INVALID

The master CPU presents the proper command on
the DO-D7 data lines with Ao =1 and then sends a
WR pulse. The command is latched by the 8278 on
the rising edge of the WR and is decoded internally
to .set the proper ppera~ing mo.de. See the
8041A/8741A data sheet for timing details.

Command Summary
KEYBOARD/DISPLAY MODE SET

CODE 101010iNIEIIIDIK

Where the mode set bits are defined as follows:
K-the keyboard mode select bit

O-normal key entry mode
I-special function mode: Entry on key closure

and on key release
D-the display entry mode select bit

O-left display entry
I-right display entry

I-the interrupt request (IRQ) output enable bit.
O-enable IRQ output
I-disable IRQ output

E-the error mode select bit
O-error on multiple key depression

.. I-no error on multiple key depression
N-the number of display digits select

0-16 display digits
1-8 display digits

NOTE:
The default mode following a RESET input is all bits zero:

READ FIFO COMMAND

CODE I 0 I 1 I 0 10 I 0 I 0 I 0 I 0

READ DISPLAY COMMAND

CODE I 0 I ' I ' I AI I A31 A2 I A, I AO I
6-707

APPLICATIONS

Where AI indicates Auto Increment and A3-AO is
the address of the next display character to be read
out.

AI = 1 AUTO increment
AI = 0 no AUTO increment

WRITE DISPLAY COMMAND

CODE I 1 I 0 I 0 I AI I A31 A2 I Al I Ao I

Where AI indicates Auto Increment and Aa-Ao is
the address of the next display character to be
written.

CLEAR/BLANK COMMAND

CODE 11 1011 IUDIBDICDICFICEI

Where the comm~d bits are defined as follows:
CE = Clear ERROR
CF = Clear FIFO
CD = Clear Display to all High
BD = Blank Display to all High
UD = Unblank Display

The display is cleared and blanke4 following a
Reset.

Status Read
The status register in the 8278 can be read by the
master CPU using the Ao, RD, and DO-D7 inputs as
shown below:

AO,Cs ==x ,VALID

AD \'---_/

The 8278 places 8-bits of status information on the
Do-D7lines following (AO, CS, RD) = 1,0,0 inputs
from the master. '

Status Format

I s31 s21 81 I So I B' I KE IIBF IOBF I
07 06 05 04 03 02 01 Do

Where the status bits are defined as follows:
IBF = Input Buffer Full Flag
OBF = Output Buffer Full Flag
KE = Keyboard Error Flag (multiple depression) ,
B = BUSY Flag
S3-S0 = FIFO Status

STATUS DESCRIPTION

The S3-So status bits indicate the number of entries
(0 to 8) in the 8-level FIFO. A FIFO overrun will lock
status at 1111. The overrun ,condition will prevent
further key entries until cleared.

l\ multiple key closure error will set the KE flag and
prevent further key entries until cleared.

The IBF and OBF flags signify the status of the 8278
data buffer registers used to transfer information
(data, status or commands) to and from the master
CPU. '

The IBF flag is set when the master CPU writes
Data or Commands to the 8278. The IBF flag is
cleared by the 8278 during its response to the Data
or Command.

The OBF flag is set when the 8278 has output data
ready for the master CPU. This flag is cleared by a
master CPU 'Data READ.

The Busy flag in the status register is used as a
, LOCKOUT signal to the master processor during re­

sponse to any command or data write from the
master.

The master must test the Busy flag before each read
(during a sequence) to be sure that the 8278 is ready
with valid DATA.,

The ERROR and TONE outputs from the 8278 are
set high for either type of error. Both types of error
are cleared by the CLR input, by the CLEAR ER­
ROR command, or by a reset. The FIFO and Display
buffers are cleared independently of the Errors.

FIFO status is used to indicate the number of char­
acters in the FIFO and to indiate whether an error
has occurred. Overrun occurs when the entry of an­
other character into a full FIFO is attempted. Un­
derrun occurs when the CPU tries to read an empty
FIFO. The character read will be the last one en­
tered. FIFO status will remain at 0000 and the error
condition will not be set.

Data Read
The master CPU can read DATA from the 8278
fIFO or Display buffers by using the Ao, RD, and
DO-D7 inputs. " '

The master sends a RD pulSe with Ao = 0 andCS = 0
and the 8278 responds by outputting data on lines
!!!tD7. The data is strobed by the trailing edge of
RD. . '

6-708

APPLICATIONS

DATA READ SEQUENCE

Before reading data, the master CPU must send a
command to select FIFO or Display data. Following
the command, the master must read STATUS and
test the BUSY flag and the OBF flag to verify that
the 8278 baS respOnded to the previous command. A
typical DATA READ sequence is III follows:

BUSyJ l
OBF '---_----If

t
READ DlSP\.AY FIRST

OR FIFO COMMAND DATA BYTE
FROIlIiASTER READY

IIASTER NEXT
READS DATA BYTE READY

8278
PROCESSING
NEXT BYTE

After the first read following a Read Display or Read
FIFO command, succeBBive reads may occur as soon
as OBF rises.

Data Write
The master CPU em Write DATA to the 8278 Dis­
play buffers by using the Ao, WR and DO-D7 inputs
as follows:

AO,Cs 3 ___ VAI._ID ___ -'X INVAUD

\'--------11

The master CPU presents the Data on the DO-D7
lines with Ao=O and then sends a WR pu18e. The
data is latched by'the 8278 on the rising edge of WR.

DATA WRITE SEQUENCE

Before writing data to the 8278, the' master CPU
must first send a command to select the desired dis­
play entry mode and to specify the address of the
next data byte. Following th~ commands, the master
must read STATUS and test the BUSY flag (8) and
IBF flag to verify that the 8278 has responded, A
typical sequence is shown below.

BUSY J L
IIF

WRITE DISPlAY 8278 IIASTER 8278 8.78
COMMAND READY DATA WRITE READY READY

FOR FIRST BYTE
COIIIIIAND IIASTER WRITES
OR DATA NEXT BYTE

INTERFACE CONSIDERATIONS
Scanned Keyboard Mode
With N-key rollover each key depreBBion is treated
independently from all others. When a key is de­
pressed the debounce logic waits for a full scan of
128 keys and then checks to see if the key is still
down. H it is, the key is entered into the FIFO.

H two key closures occur during the same scan the
,ERROR output is set, the,KE flag is set in the Status
word, the TONE output is activated and IRQ is set,
and no further inputs are accepted. This condition is
cleared ~h signal on the CLEAR input or by a
system RESET input or by the CLEAR ERROR
command.

In the special function mode. both the key closure
and the key release cause an entry to the FIFO. The
release is entered with the MSB=1.

Any key entry triggers the TONE output for 10ms.

The HYS and KCL outputs e~ble the 8nalog multi­
plexer and detector to be synchronized for interface
to capacitive coupled keyboards.

Data Format
In the scanned keyboard mode, the code entered
into the FIFO corresponds to the position or address
of the switch in the keyboard. The MSB is relevant·
only for special function keys in which code "0" sig­
nifies closure and "1" signifies release. The next four
bits are the column count which indicates which col­
umn the key was found in. The last three bits are
from the row counter. .

BIT

Display'

7 e 5 432 o

1 FOR SPECIAL FUNCTION'
MODE AND KEY RELEASED
o FOR KEY DEPRESSED

Display data is IIntered into a 16X4 display register.
aJid may be en~ from the left, from the right or

,6-709

'APPUCATIONS

, "

COUNT
s
'I

110 'I
II, I 1 'I

I
X X X X
n n n n

t t

~lgur. 5, Keybqard Timing

, '8
SCAN CYCLE , I

IRQ

,:
BP

----------------~

~~----------------~------~I
t ' t

~D KEV,1 KEY 1
ENTERED READ BY MASTER

KEY 2 KEY 3
DEPRESSED DEPRESSED

Figure 6. Key Entry and Error Timing
.i. " /

DISPlAY
~

0 ,,' 5
,I, i I " I

lis I' I I ' , I I
;.. I' : I'
liS r

~" 'J

I

"

_s" r \ 7 \ 7 \ 7 '\ l' \ 1'\
"

Figure 7. Dl8p1ay Timing ,

6-71Q

APPLICATIONS

into specific locations in the display register. A new
data character is put out on Bo-Ba each time the
M6-Malines change (i.e., once every O.75ms with a 6
MHz crystal). Data is blanked during the time the
column select lines change by raising the display
outputs. Output data is positive true.

LEFT ENTRY
The left entry mode is the simplest display format in
that each display position in the display corresponds
to a byte (or nibble) in the Display RAM. ADDRESS
o in the RAM is the left-most display character and
ADDRESS 15 is the right-most display character.
Entering characters from position zero causes the
display to rill from the left. The 17th character is en­
tered back in the left-most position and filling again
proceeds from there.

RIGHT ENTRY
Right entry is the method used by most electronic
calculators. The rmt entry is placed in the right­
most display character. The next entry is also placed
in the right-most character after the display is
shifted left one character. The left-most character is
shifted off the end and is lost.

DISPLAY
2 14 16 0 RAM

1ST ENTRY 11
I ADDRESS

2 3 15 0

2ND ENTRY 11 I 2 t
3 4 0

SRDENTRY 11 1,2 I 3 I

0 13 14 16

181HENTRY 11 I 2 I 1141151181

2 14 16 0

171H ENTRY I 2 I 3 I 1161181171

2 3 16 0 1

18TH ENTRY I 3 I 4 I 118117118 I

Note that now the display posftion and 'register ad­
dress do not correspond. Consequently, entering a
character to an arbitrary position in the Auto Incre­
ment mode may have unex'pec.ted resUlts. Entry
starting at Display RAM ADDRESS 0 with sequen­
tial entry is recommended. A Clear Display com­
mand should be given before display data is entered
if the number of data characters is not equal to 16 (or
8) in $is mode.

AUTO INCREMENT

In the Left Entry mode, Auto Incrementing causes
the address where the CPU will next write to be in­
cremented by one and the character appears in the
next location. With non-Auto Incrementing the en­
try is both to the same RAM address and display po­
sition. Entry to an arbitrary address in the Left
Entry-Auto Increment mode has no undesirable
side effects and the result is predictable:

DISPLAY
0 -1 2 3 4 6 8 7 RAM

1ST ENTRY
11 I

I ADDRESS

0 2 3 4 6 8 7

2ND ENTRY 11 I 2 I

o 234 687

ENTER NEXT AT LOCATION 5 AUTO INCREMENT '

o 234 687

3RDENTRY 11 I 2 I I 3 I

o 234 5 8

41H ENTRY 1 _1 ...L1_2....11_L-...L........I1_3--,--1 _4 ...LI--I

In the Right Entry mode, Auto Incrementing and
non-Incrementing have the same effect as in the Left
Entry except that the address sequence is inter­
rupted.

1ST ENTRY

2ND ENTRY

COMMAND
10010101

'I 2 3 4 5 8 7

2 3 4 6 8 7 0

11

2 3 4 6 8 0

DISPLAY
0 RAM I AODRESS

I 2 I

ENTER NEXT AT LOCATION 5 AUTO INCREMENT

3 4 6 8 7 0 2

3RDENTRY
I 3 I 11 I 2 I

4 6 8 7 0 2 3

41HENTRY I 3 I 4 I 11 I 2 I

6-71'1

APPLICATIONS

Starting at an arbitrary location operates as shown
below. '

DISPLAY
O' 2 3 4 5 e 7 RAM

COMMAND
10010101 r---T"""II--r-I """--"1 Ir--T"""I-'--I ~I 1 ADDRESS

ENTER NEXT AT LOCATION 5 AUTO 'INCREMENT

2 3 4 5 e 0

1ST ENTRY I 1 I
3 4 5 e 0

2ND ENTRY I 1 I 2 I

8TH ENTRY I 4 l 5 I e I 7 I 8 I 1 I 2 I 3 I

9TH ENTRY I 5 I e I 7 I e I 9 I 2 I 3 I 4 I
Entry appears to be from the initial entry point.

" ;

@ INTEL CORPORATION, 1983

APPLICATION
NOTE

6-713

AP-161

September 1983

NOVEMBER 1983
ORDER NUMBER- 230795..(J01

COMPLEX PERIPHERAL
CONTROL WITH THE
UPI-42

, :

,'.
';;' ,I"~
',,\,

,i ~\\ ,.r\
I 1

',',' ',.: 7 I ",'~,
• ,,'''' I ~ ,J.

TABLE OF CONTENTS·

INTRODUCTION•..........•.•..
DOT MATRIX PRINTING••••..
THE PRINTER MECHANISM ..•••.....•.
HARDWARE INTERFACE ...•....•..•...
TECHNICAL BACKGROUND•......
SOFTWARE .•.......••...•.....•.•..•.

Introduction•.......•........•...
Functional Overview•.
Memory and Register Allocation .•.....
Description of Functional

Blocks and Flowcharts .. : ...••....
CONCLUSION' ~

APPENDICES
~ppendix A. Software Listing .•......
Appendix B. Printer Enhancements .•.
Appendix C. Printer Mechanism

Drive Circuit Schematics .•.......•

FIGURES

1. UPI-42 Pin Configuration•.....•
2. UPI-42 Block Diagram•.....•
3. UPI-41A,42 Functional

Block Diagram '•.•••
4. Character E In 5 x 7 Dot

Matrix Format •..•.............•....
5. Carriage Stepper Motor Assembly '"
6. Print Head Solenoid Assembly ...•.•.

" .l Hardware Interface Block Diagram .. .
8. Hardware Interface Schematic
~.' UPI-42 and 8243 I/O Port Map .•.•...

10. S~epper Motor Step
Se~uence Waveforms ..•.•.......•..

11. carD" Stepper Motor
Step Seq."ence " .

12. Paper F~· Stepper M,otor
Step Sequence

13. Carriage Stepper Motor
Drive Timing .. '••.......•...••

14. Carriage Stepper Motor
Predetermined Tlme:Constants

15. Paper Feed Stepper Motor
Predetermined Time Constants •.••.•

16. PTS Lags PT Timing .': .. ,,'~
11 PTS Leads PT Timing •.............
18. Components of PrInt Head ASsembly

Line Motion and Printing. • . . . • . . • • .. \
19. Data Memory Allocation Map .•....••
20. Register Bank 0

Register Assignment •......•••....•
'21. Register Bank 0 Sta.us '

Byte Flag Assignments

6-714 230795-001

inter AP-181.

22. Register Bank 1 .
Register Assignment .••..•••..•...•

23. Register Bank 1 Status .
Byte Flag Assignments ;

24. Program Memory Allocation Map
25. ASCII Character Code TEST

O.utput and .I'rh'lt', Example •..•.•..•..

26. ~~=rs'::8= ~~~~~ ;
FLOW CHARTS,

1. Main Program Body
2. Power-On/Reset Initialization .•.••••.
3. Home Print Head Assembly .•••.•...
4. Extemal Status Switch Check .•.•..•
5. Character Buffer Fill
6. Carriage Stepper Motor Drive

and Line Printing ~ .•...•. .' .•.•...•..
7. Carriage Stepper Motor ,

Acceleration Time Storage
8. Proce .. Characters for Printing•.
9. 'ThIn"'te Character-to-Dots ...••....

10. Decelerate Carriage
Stepper Motor '

11. Paper E:eed Stepper Motor Drive ., .•..

Addtional sources of information on Intel's UPI
devices;

"UPI User's Manual"
Includes the following Application Notes;

Programmable Keyboard Interface
Using the 8295 Dot Matrix Printer Controller
An 8741 Al8041 A Digital Cassette Controller

"8048 Family Applications Handbook"

"1983 Microprocessor and Peripheral Handbook"

"MCS-48 and UPI:41A/42 Assembly Language
Manual"

'\SpeCifications, for Impact., Dot Matrix Printer
Model-3210~·. Epson, Jan'8, 1981

6-715 230795-001

AP-161 ,

INTRODUCTION
The UPI-42 is the newest meritb~rof.Intel's Universal
Peripheral Interface (UPI) ;niqocom'puter family. It
represents a significant growth in UPI ca.pabilities"
resulting in a broader spectrilm of applications. The
Up,I-42 incorporates twice the EPROM/ ROM of the
UPI-41 A, 2048 vs 1024 bytes, tW,ice the RAM, .128 vs 64
bytes, and operates at a maximum speed twic~ that of
the UPI-4IA, i.e. 12 MHz vs 6 MHz. The ROM based
8042 and the EPROM based 8742 provide more highly
integrated solutions for complex stepping motor and
dot matrix printer applications. Those applications
previously requiring a microprocessor plus a UPI chip
can now be implemented entirely with the UPI-4;!.

The software features of the UPI-42, such as indirect
Data and Program Memory addressing, two inde­
pendent and selectable 8 byte register banks, and
directIysoftware testable I/O pins, greatly simplify the
external interface and software flow. The software and
hardware design of the UPI-42 allows a complex
peripheral to becontrolled·with a minimum of external
hardware. .

TEST 0 Vee

XTAL1 TEST 1

XTAL2

RESET P26 ORO

55

Cs P24' oaF

EA P"

Ro p,.
A. P15

WR p,.
SYNC P13

Go P'2

0, P"

02 p,.
03 Voo

D. PIIOG

Os P23

D6 P22

07 P2'

V55 P20

,Figure 1. UPI-42 Pin Configuration·

Many microcomputer systems need real time control of
peripheral devices such as a pTinter, keyboatd, complex
motor control or process control. These medium speed
but still time consuming tasks require a fair amount of
system software overhead. This processing burden can
be reduced by using a dedicated peripheral control
processor

Until recently, the dedicated control processor approach
was usually not cost effective due to the large number of .
components needed; CPU, RAM, ROM, I/O, \ and
Timer/ Counters. To help make the approach more cost
effective, in 1977 Intel introduced the UPI-4l family of
Universal Peripheral Interface controllers consisting ·of
an 8041 (ROM) device and an 8741 (EPROM) device.
These devices integrated the common microprocessor
system functions into One 40 pin package. The UPI-42
family, consisting of the 8042 and 8742, further extends
the UPl's cost effectiveness through more memory and
higher speed.

Another member of the UPI family is the Intel 8243
Input/Output Expander chip. This chip provides the
UPI-4lA and UPI-42 with up to 16 additional inde­
pendently programmable I/O lines, and interfaces
directly to the UPI-4IA/42. Up to seven 8243s can be
cascaded to provide over 100 I/O lines.

The UPI is a single chip microcomputer with a standard
microprocessor interface. The UPI's architecture, illus­
trated in Figure 3, features on-chip program memory,
ROM (804lA/8042) or EPROM (874lA/8742), data
memory (RAM), CPU, timer/counter, and I/O. Spe­
cial interface registers are provided which enable the
UPI to function as a peripheral to an 8-bit central
processor.

Using one of the UPI devices, the designer simply codes
his proprietary peripheral control algorithm into the
UPI device itself, rather than into the main system
software. The UPI device then performs the peripheral
control task while the host processor simply issues
commands and transfers data. With the proliferation of
microcomputer systems, the use of UPls or slave
J1licroprocessors to off load the main system micropro­
cessor has become quite common.

This Application Note describes how the UPI-42 can be
used to control dot matrix printing and the printer
mechanism, using stepper motors for carriage/print
head assembly and paper feed motion. Previous Intel
Application Notes AP-27, AP-54, and AP-91 describe
using intelligent processors and peripherals to control
single solenoid ~riven printer mechanisms with 80
character line buffering and bidirectional printing. This
Application Note expands on these previous themes
and extends the concept of complex device control by
incorporating full 80 character line buffering, bidirec­
tional printing, as well as drive and feedback control of
two four phase stepper motors.

The Application Note assumes that the reader is famil­
iar with the 8042/8742 and 8243 Data Sheets, and
UPI-4lA/42 Assembly Language. Although some back­
ground information is included, it also assumes a basic
understanding of stepper motors and dot matrix printer "
mechanisms. A complete software listing is included in
Appendix A.

6-716 230795-001

inter AP-161

"' "'.

.. "'. $l'STI!M l
'1.;<::X::::t---IC~=======~

.""", ..
Oii-

, cs

" K=====:::=::J

CRYSTAL

~~08: {""
XTAL2

{

'" --_ PROM PfIOIlIlAM SUPf'LY

POWER Vee --_ +5'iUPPU

'ss --_ GROUND

TIMER!
E ENT COUNTER

,.,,­
,."

Figure 2. UPI-42 Block Diagram

DOT MATRIX PRINTING
A dot matrix printer print head typically consistS of
seven to nine solenoids, each of which drives a stiff wire,
or hammer, to impact the paper through an inked rib­
bon. Characters are formed by firing the solenoids to
form a matrix of "dots" (impacts of the wires). Figure.4
shows how the character "E" is formed using a 5 x 7
matrix. The columns are labeled CI through C5, and
the rows RI throl,lgh R7. The print head moves left-to­
right across the paper, so that at time Tl the head is over
column Cl. The character is formed by activating the
proper solenoids as the print head sweeps across the
character position.

Dot matrix printers are a cost effective way of provid­
ing good quality hard copy output for microcomputer
systems. There is an ever increasillg demand for the
moderately priced printer to provide more functional­
ity with improved cost and performance. Using stepper
motors to control the paper .feed ,and carriage/ print
head assembly motion is one way of enabling the dot
matrix printer to provide more capal!ilities, such as
expanded or cOl),tracted characters, dot or line gra­
phics, variable line and character spacing, and subscript
or superscript ~rinting.

However, stepper motors require fairly complex contol
algorithms. Previous solutions involved the use pf a

main CPU, UPI, RAM, ROM, and I/O onboard the
peripheral The ,CPU ,:acted as ,supervisor and ·used
parallel .processing to achieve accU1'ate stl~pper motor
control via a" UPI, character buffering via' the I/O
device, RAM, 'and ROM. The CPU performed real­
time decoding of each character into a dofmatl:ix patt­
ern. This Application Note demonstrates that the
increased memory and performance of the U PI -42 facil­
itates integrating these control functions to reduce the
cost and component count.

TH~>PAINTERMECHANftnill '
The printer mechanism. used in this application is the
Epson Model 321Q. It consists of four basic sub­
assemblies; the chassis or frame, the pa per'feCd, mecha­
nism a.nd stepper motor, the carriage motion mecha­
nism and stepper motor, and the print head assembly.

The paper feed mech~nism is a tractor !f~ed' type. It
accomodates up to 8.S' inch wide paper (not including'
traelorJeed portion) .. There iSll@ 'piaten as~uch; the
paptiris moved W(!)Ugh tl\epaper guide bytW6sprock­
eted wheels fflourited on a' center sprocket:shaft. The
sprocket shaft is driven by a four phase stepper motor.
Th'e roiation 'of the stepper motor is transmitted to the
sprocket shaft through a series of four red uction gears.

6-717 230795-001

Rl

RZ

R3

R4

R5

R6

! ~ R1,

I CLOCK I :

1 t,
8-BITCPU

r
I

8-BIT
DATA BUS

II\IPUT REGISTER

1

i

1024 x 8, 2048 x 8
PROGRAM I

M~MORY
(ROM/EPROM)

II
II

8-BIT
DATA BUS

OUTPUT REGISTER

II

SYSTEM
INTERFACE

AP·fln

. 64x8,128x8
DATA MEMORY .
' It
II

8-BIT
STATUS

REGISTER

. II

-"i" ''J, (

" '"

8-BIT
, TIMER/COUNTER

I
I
18

I/O LINES

v
PERIPHERAL INTERFACE

AND
I/O EXPANSION

Flgunt 3. UPI·41A, ~2 Functlonl!ll BloCk Diagram

C1 C2 C3 '

DO
0 0

0 0
,0,0

\;' :i

C4' C5

D,D
, , ,

DO

DD
, ,~ .

D'D , "

', ..

The carriage motion mechanism consists of another
four phase stepper motor,'whioh controls the left-to­
right or right-to-Ieft print head assembly motion. The
print speed is 80 CPS maximum. Both the speed of the
stepper motor and the movement of the print head
a~sembly are independently controllable in either direc­
tion. The rotation of the stepper motor is converted to
the linear motion of the print head assembly'via a series
of reduction gears and a topthed drive belt. The drive
belt also controls a second set of reduction gears which
advances the print ribbon as the print head assembly
moves. '

Two optical sensors ' provide feedback information, on
the carriage assembly position and speed. The fir~t of
these optical sensors, called the 'HOME RESET' or
HR, is mounted near the left-most physical position'to
which the print head assembly can move. As the print
head assembly approaches the' left-most position, a
flange on the print' head assembly interferes with the
light source and sensor, causing the output of the sehsor
to shift, from a logic level one to zero. The right-most
printer position is monitored in software rather than by
another optical sensor: The right-most print position is
a function of the number of.characters printed and the
distance'required to ,print them. '

'19 .. 1'84. Character E In 5 x 7 Dot Matrix Form ••

The second optical sens9r, called the 'PRINT TIMING
SIGNAL" ,or PTS, provides feedback on carriage
stepper ' motor velocity and relative position within a

6~718 230795-001

PRINT HEAD ASSEMBLY
TOOTHED DRIVE BELT

REDUCTION GEARS

Figure 5. carriage Stepper ~tor ~mbly

given step of the motor. The feedback is generated by
the optical sensor as an "encoder disk" moves across it.
Figure 5 illustrates the carriage stepper motor, optical

, sensor, encoder disk and reduction gears, and dt:ive belt
assembly. The optical sensor outputs a pulse train with
the same period as the phase shift signal used to drive
the stepper, but slightly out of phase with it when the
motor is at a constant speed (see Software Functional
Block: Phase Shift Data for additional details). The
disk acts as a timing wheel, providing feedback to the
UPI software ofthe carriage speed, position, and opti­
mum position for energizing the print head solenoids.
The two optical sensors are monitored under software
and provide the critical feedback needed to control the
print head assembly and paper feed motion accurately.
The process of stepper motor drive and control via
feedback signals is called ,"closed loop" stepper mo~or
control, and is covered in more detail in the software
discussion. '

The print head assembly consists of nine solenoids and
nine wires or hammers. Figure 6 illustrates a print head
assembly. The available dot matrix measures 9 x'9. This
large matrix enables the J;lpson 3210 print mechanism to
Print a variety of character fonts, such as expanded or

, contracted characters, as well as line or block graphics
(see Appendix B, Printer Enhancements). It also facili­
tates printing lower case ASCn characters 'with "lower
case; descenders." That is to say, certain lower case
letters (e:g. y, p, etc.) will print below the bottom part of
all upper case letters.

DOT WIRE

I

MAGNETIC POLE

Figure 6. Print Head Solenoid Aeaembly

6-719 230795-001

...
~
:!l z
~
it
!< o ...

~ '? '5V
.... __ --O~

ON LINEISELECT

~ DATA STROBE
..J

UPI-42

WR

T.II

T1

STEPPER MOTOR
CONTROL

P40-43

CONTROL: P50-53
(CURRENT LIMITING)

HR OPTICAL SENSOR

PT3 OPTICAL SENSOR

PRINT
MECHANISM

DRIVE
CIRCUIT

~
tf
Iii

P24

P25

P27~ _____ ~PR~I~NT~H~EA~D~T~R~IG~G~E~R~ __________ ~

o
J: P10-17 ~----~-'--------,-----------------'

PRINT HEAD SOLENOID DATA

P26~----------------------~---.

Figure 7. Hardware.lnterface Block Diagram

HARDWARE DESCRIPTION
Figure 7 showsa block diagram of the UPI-42 and 8243
interface to the printer mechanism drive circuit. A
complete schematic is shown in Figure 8. The UPI-42
'provides all signals necessary to control character buf­
fering and handsJtakilfg, paperfeed and carriage motion
stepper motoniming, print head solenoid activation;
and monitoring 'of external status switches.

The Epson 3210 printer mechanism manual recom­
mends a specific interface circuit to provide proper
drive levels to the stepper motors windings and print
head soleneids. The hardware.'interface llsed for this

Application Note followed those recomendations
exactly (see Appendix C, Printer Mechanism Drive
Circuit Schematics). .

I/O Ports
The lower half of the UPI-42 Port 2, pins O~3, provides
an interface to the 8243 I/O expander. The PROG pin
of the UPI-42 is used as a strobe to clock address and
data information via the Port 2 interface. The extra 16
1/ a lines of the 8243 become PORT~ 4, 5, 6, and 7 to
the ·UPI software. Combined, the UPI-42. and 8243
provide a total of 28 inde.pendently programmable I/O
line. These lines are used as follows:

6~720 230795-001

inter

Port

1
2
2
2
4
5
5
'6
6
7

No of
lines

8
1
1
2
4
3

1
3
5

Bits

0-7
6
7
4.5
0-3
1-3
0
1
'0,2,3
0-3

AP-161

:,kb
" fElT ,

·if u.. .~1:~~.

. .,," .,,"
... n
'n ~

"".I'''~ ___ .J

,.,-------- .. _-
••. I'Ti>------

,"I'-'n;:------

11'-1>'1>-----'" CURA!NTLlMlTEA
LF 1M

.'rft'--------7-77--<::Jr''T.=.-t--- HAREII£1",CHfI)

'r ~ " " "
10")01 ... ~

p.

""'"THEA!)
HOOO

• CO< Ic..::w:
..... .[)o-~>----- 1#COl. CIII ,

r L-_________ ~~~

Figure 8. Hardware Interface Schematic

I/O

o
o
o
o
o
o
I
o

DeSCription

Character dot column data to print head solenoids
(same)
Print head solenoid trigger
Host system data transfer handshaking (ACK/BUSY)
Carriage & paper feed stepper motors
Stepper motor select and current limiting
Paper End sense
Print head trigger reset
(unused)
External status switches; (LF, FF, TEST,

ON/OFF Line)

Figure 9. UPI-42 and 8243 I/O Port Map

Note: The notation used in the balance of this Applica­
tion Note, when referring to a port number and a par­
ticular pin or bit, is Port 23 rather than Port 2 bit 3.

The two printer mechanism optical sensors, discussed
in the Printer Mechanism discription, are tied to the
two "Test Input" pins, TO and n, of the UPI-42
through a buffet circuit for noise supression. These
inputs are directly testable in software.

6-721 230795-001

AP-161

Host System Interface

The host system interfaces to the printer through a
parallel port to the UPI-42 Data Bus. Four handshak­
ing signals are used to control data transfer; Data
Strobe (STB!), Acknowledge (ACK), Busy(BUSY),
and Online or Select. The Data Strobe line of the host
parallel port is tied directly to the UPI-42 WRI pin.
This provides a low going pulse on the UPI-42 WRI pin
whenever a data byte is written to the UPI-42. The ACK
and BUSY handshake s'ignals are tied to two UPI-42
110 port lines for software control of data transfer. The
"On Line" handshake signal is tied to a single-pole
single-throw fixed position switch, which externally
enables or disables character transfer from the host
system. Characters transmitted to the UPI-42 by the
host are loaded into the UPI-42 Data Bus Buffer In
(DBBIN) register, and the Input Buffer Full (IBF) inter­
rupt and UPI-42 status flag are set (see Figure 9. UPI-42
and 8243 I 10 Ports).

Stepper Motor Interface
Port 4 (41-43) of the 8243, provides both carriage and
paper feed stepper motor phase shift signals to the
printer mechanism drive circuit. Each of the two
stepper motors is driven by 2 two phase excitation
signals (4 phases). Figure 10 shows the wave form for
each stepper motor. Each signal consists oftwo compo­
nents (Sig. I AlB & Sig. 2 C/D) 180 degrees out of
phase with the other. Each of these signal pairs (AI B &
eli) is 90 degrees out of phase with the other pair. For
each signal pair, one port line supplies both halves by
using an inverter.

Each of the resulting eight stepper motor drive signals is
interfaced to a discrete drive transistor through an
inverter. The emitter of the drive transistor is tied to the
open collector of the inverter to provide high current
sinking capability for the drive transistor. Each half of
the motor winding is tied to the collector of the drive
transistor (see Appendix C, Printer Mechanism Drive
Circuit Schematic).

Each stepper motor requires two current levels for
operation. These levels are' called "Rush" current and
.. Hold" current. Rush current refers to the high current
required to cause the rotor to rotate within its windings
as the polarity of the power applied to the windings is

'changing. Each chll;nge in the polarity of the power
applied to the motor windings is called a step or phase
shift. Hold current refers to the low level of current
required to stabilize and maintain the rotor. in a fixed
position when the the polarity applied to the windings is
not changing. Hold current is simply Rush current with
a current limiting transistor switched in. Switching
from Hold to Rush current "selects" or enables that
stepper motor to move with the next step signal output.
In the balance of this Application Note, the term
"select" will be used to refer to turning on Rush current,
and "deselect" will refer to switching to HoM currrent.

CARRIAGE STEPPER MOTOR DRIVE SIGNALS (FORWARD)

L
PAPER FEED STepPER MOTOR DRIVE SIGNALS

Figure 10. Stepper Motor Step Sequence
Waveforms

Three 8243 port lines are dedicated to the select! dese­
lect control of the two stepper motors. One line is for
the paper feed stepper motor, and two lines are for the
carriage motion stepper motor (80 and 132 column).
These lines are labeled SLF, 80Col, and 132Col, and are
8243 PORT 53, 52, and 51, respectively.

By varying the voltage applied to the stepper motor
biasing circuit and the current, it is possible to vary the
distance the motor moves the print head assembly with
each step. Enabling one of two different voltage biasing
levels, and changing the timing rate at which the motor
is stepped, facilitates either 80 or 132 character column
printing. Only 80 character column printing is imple­
mented in the software design. Appendix B, Printer
Enhancements, details the software algorithm for han-
dling 132 character printing. '

Print Head Interface

A total of eleven II 0 lines are used to control the print
head solenoids and solenoid firing (see Figure 9 above).
Nine are used for character dot data, one for the Print
Head Trigger, and one for Reset of the Print Head
Trigger circuit. Each of the nine character dot data lines
'is buffered by an open collector hex inverter.

6-722 230795-001

inter AP·18t

The Print Head Trigger output is tied to the Trigger
input of a 555 Monostable Multivibrator. The output
pulse generated by the 555 triggers the print head sole­
noids to fire. The 555 Output pulse width is independ­
ent of the input trigger waveform. The pulse width is
determined by an RC network across the 555 inputs and
the voltage level applied to the Control Voltage 555
input. The 555 Output is tied to the base of a PNP
transistor through an inverter, biased in a normally off
configuration. The PNP transistor supplies enough
drive to pull up the open collector inverter on each print
head solenoid line, Port 10-17 and 26. The 555 output
pulse momentarily enables the print head solenoid line
open collector inverter output, turning on the solenoid
drive transistor, and firing the print head hammer. The
555 Ouput pulse width is approximately 400 us. Further
details of the print head firing operation can be found in
the software description below.

Miscellaneous Interface Signals

The 8243 Port 5 pin 0 is tied to the Paper End Detector,
a ree4 switch located on the printer paper guide. This
sensor detects when the paper is nearly exhausted.

Three LED status lights complete the hardware inter­
face design. One status light is used for each of the
following: Power ON/OFF, On/Ofr Line, and Out of
Paper.

BACKGROUND

Before a detailed discussion of the software begins, a
few terms and software functions referenced through­
out the software need introduction.

A. What Is a Stepper Motor?

A stepper motor has the ability to rotate in either
direction as well. as start and stop at predetermined
angular positions. The stepper motor's shaft (rotor)
moves in precise angular increments for each input step.
The displacement is repeated for each input step com­
mand, accurately positioning the rotor for a given
number and sequence of steps.

The stepper '!l0tor controls position, velocity, and ,
direction. The accuracy of stepper motors i,s generally 5
percent of one step. The number of steps in each revolu­
tion of the shaft varies, depending on the intended
application.

,B. Open/Closed Loop Stepper Motor Drive and
Control

The carriage stepper motor is closed loop driven. The
paper feed stepper motor is open loop driven.

There are two major types of stepper motor control
known by the broad headings of open and closed loop.

Open loop is simply continuous pulses to drive the
motor at a predetermined rate based on the voltage,
current, and the timing of the step pulses applied.
Closed loop control is characterized by continuous
monitoring of the stepper motor, through feedback
signals, and adjusting the motor's operation based upon
the feedback received.

C. Stepper Motor Drive Pha .. ShIft
or Step Sequence

Each change in the polarity of the power applied to the
motor windings is called a step or phase shift. The
sequence of the steps or phase shifts, and the pattern of
polarity changes output to the stepper motor, determines
the directiOn of rotation.

Figure 10 shows the waveforms for each of the two
stepper motors. Figure II lists the step sequence for
carriage motor clockwise rotation, which moves the
print head assembly Left-to-Right. Figure II also lists
the step sequence for counterclockwise rotations; the
print head assembly moves, Right-to-Left. Figure 12
lists the step sequence for the paper feed stepper motor
clockwise drive. The phase sequence, for either stepper
motor, may begin at any point within the sequence list,
but must then continue in order.

SteP No. A-Step B-Step C-Step D-Step

1 On Off Off On

2 On Off On Off

3 Off On On Off

4 Off On Off On

Carriage stepper motor rotates clockwise
Print head assembly moves from left to ~ight

Step No. A-Step B-Step C-Step O-Step

1 On Off On Off

2 On Off Off On

,3 Off On Off On

4 Off On On Off

Carriage stepper motor rotates counter clockwise
Print head assembly \lloves from right to left

FIgure 11. Carriage Stepper Motor Step
Sequence

6-723: 230795-001

inter AP-161

Step No. A-Step B-Step C-Step D-Step

1 On Off On Off

2 On Off Off On

3 Off On Off On

4 Off On On Off

Figure 12. Paper Feed Stepper Motor Step
Sequence

C. Acceleration and Deceleration
of Stepper Motors

The carriage stepper motor starts from a fixed position,
accelerates to a constant speed, maintains constant
speed, and then decelerates to a fixed position. Printing
llJIlY occur from the time and position the print head
assembly reaches constant speed, until the time and
position the print head assembly begins to decelerate
from constant speed. Whether printing occurs during
any carriage stepper motor drive sequence is controlled
by software. Figure 18, below, illustrates these com­
ponents of print head assembly line motion.

Due to inertia, a finite time interval and angular dis-

HRSIGNAL

PT.

Tx Tx Tx TX

LCONSTANT SPEED

UNDERSHOOT 7

EQUATIONS:

PTe = PREDETERMINED TIME CONSTANT
PT.' T,- TN

T, •.. Te TIME:::. PTe + Tx
T, TIME = PTe
Ta. ';' T11 Time = PTe

placement is required to accelerate a stepper motor to
its full speed. Conversely, deceleration must begin some
time before the final angular position. The time interval
and angular displacement of the carriage stepper motor
translates into the distance the print head assembly
travels before it reaches a constant speed. The distance
traveled during acceleration is constant. The distance
the print head assembly travels during deceleration
must be the same as the distance traveled during accel­
eration in order to accurately align the £.haracter dot
columns from one line to the next.

E. Stepper Motor Predetermined
Time Constant

Whenever the stepper motor is stepped, or energized,
the angular velocity of the rotor is greater than the
constant speed which is ultimately required. This is
called "overshoot." The frictional load of the carriage
assembly (motor rotor, reduction gears, drive belt and
print head assembly, or paper feed sprocket shaft and
wheels) provides damping or frictional load. Damping
slows the motor to less than the required constant speed
and is called "undershoot" (see Figure 13, Carriage
Stepper Motor Drive Timing). A constant rate of speed
is achieved through the averaging of the overshoot and
undersffoot within each step.

.1

DOT COLUMN
PRINT

STEP
SIGNAL
OUTPUT

Figure 13. Carriage Stepper Motor Drive
Timing

6-724 230795-001

inter Ap·181

The Predetermined Time (PT) Constant is the time
required to average the overshoot and undershoot of
the particula~ stepper motor for a desired constant ra~e
of speed. The PT also is the time required to move the
print head assembly .a specific distance, acounting for
both overshoot. and undershoot of the stepper motor.

Changing the Predetermined Time Constant changes
the angular displacement of the stepper motor rotor,
this in turn changes the output. Figure 14 lists the Time
Constants for both standard and condensed character
printing. Figure IS lists the paper feed stepper motor
Time Constants used for various line spacing formats.
This Application Note implements standard character
p.rint and paper feed (6 lines per inch) Time Constants.
See Appendix B, Printer Enhancements, for details on
implementing non-standard Time Constants.

Character mode Predetermined time

Standard or Enlarged 2.08ms +10%
Character -4%

Condensed Character 4.16ms +10%
-4%

Figure 14. Carriage Stepper Motor
Predetermined Time Constants

Paper feed pitch

Paper feed tIme
150msl423mm
113msl318mm
100msl2.82mm

o 12mm(1/216") 11 pulse
4 23mm(1/6") 136 pulses
3.18mm(1/8") 127' pulses
2 82mm(1I9") 124 pulses

Approx 6.6 IInes/s (continuous feed)
Approx 88 Ilnes/s (contInuous feed)
Appro~. 10 IInes/s (continuous feed)

Figure 15. Paper Feed Stepper Motor
Predetermined nme Constants

D. Relationship Between PTS and PT

Figure 13 illustrates ho'Y PTS lags PT at the start of
acceleration, and .moves to lead PT as the motor
achieves constant speed. Figure 13 also illustrates the
relationship between HR, PTS, PT, acceleration, con­
stant speed, and printing. Figure 16 and 17 illustrate the
relationship between PTS and PT during acceleration
and at constant speed. ;

PTlIIG_ :t I!!iL~1 D PULO.
(PRE RMlNI!DTlME ~

IDL!NOID

~::: ,I IL-r--.
~=""I --:-1 --.-H;!
D ---.J II

Figure 16. PTS Lags PT Timing

PT8 SKJNAL -~ 11
(PRED~II:".INED TIME) - r'liaoLENolD DRIVE ~LSE (0 4ms MY)

SOLENOID
DRfYEPULSE I I

I
I

MOTOR A PHASE I

.PHASE I
I

.1 c

] I

D I ,

Figure 17. PTS Leads PT Tfmlng

PTS is the point of peek angular velocity within a step
of the motor. PTS is a function of the slot spacing on
the encoder disk, shown in Figure 5. The spacing is
determined by the mechanics of the printer m\chanism.

When the carriage stepper motor is acceillrated from a
fixed position, the effects of damping slows the angular
velocity of engergizing the stepper motor. This causes
PTS to occur after the PT, or PTS lags PT. When PTS
lags PT, the next step signal is output at PTS rather
than at PT. If the step signal is outputted at PTS, the
rotor could be midway through a rotation. Energizing
the motor at PT could cause it to bind or shift in the
wrong direction. When the carriage stepper m.Qtor is at
a constant rate of speed, PTS leads PT and the step
signal is:out'pl1l' at PT (see Figure 13).0. Stored Time
Constants.

230795-001

inter A~161

The time between each step, for a constant number of
steps, required for the motor to reach a constant speed,
is calculated and stored in Data Memory during accel­
eration. The values stored are used, in reverse order,
during deceleration as the Predetermined Time (PT)
Constants. This ensures that the acceleration and decel­
eration distance traveled by the print head assembly is
the same, and that it accurately aligns character dot
columns from one line to the next during printing. The
time values stored are called "Stored Time. Constants."
Steps Tl through T 11 in Figure 13, representthe Stored
Time Constants.

The equations for the Stored Time Constants are given
at the bottom of Figure 13, Carriage Stepper Motor
Drive Timing.

. '

Left-to-Right Printing:

Acceleration
Begins

Constant
Speed, Printing
Can Begin

..

H. Print Head Assembly "Home'~ Position

The "logical" Home position for the print head assem~
bly is the left~niost position at which printing begins
(for L-to-R motion) or ends (for R-to-L motion). The
"physical" Home position is the logical HOME posi-,
tion, plus the distance required by the carriage stepper
motor to fully accelerate the print head assembly to a
constantspeed. Printing can only occur when the print
head is moving at a constant speed. The printer mecha­
nism manual stipulates eleven step time periods are
required to ensure the the print head assembly is at a
constant speed. These eleven step time periods are the
Stored Time Constants described above. Fig:ure 18
illustrates the components of print head assembly line
motion and character printing .

Deceleration
Begins

I (direction of printing)

I Store Tiine Output I Constants Stored
Time Constants

I

Physical Home Space Available For Printing Right-most Physical
Left-most (HR) Print Right-most
Position. Position Position

Right-to-Left Printing:

Output
Stored
Constants

I

; I Sto,. Tlm~i
Constants

'4 I I (direction of/printing)
Constant
Speed, Printing
Can Begin I

Deceleration Acceleration
Begins Begins

Figure 1.8. Components of Prlllt Head
Assembly Line Motion and Printing

230795-001

inter AP-161

SOFTWARE
Introduction
The software description is presented in three sections.
First, a brief overview of the software to familiarize the
reader with the interdependencies and overall program
flow. Second, data and program memory allocation and
status registerflllg definitions. And third, each of the ten
software blocks is presented with its own flowchart.

Software Overview
The softwate·is written in Intel UPI-4IA/42 Assembly
Language. A block structure approach is used for ease
of development, maintance, and comprehension. The
software is divided into five principal parts.

I. Initialization
2. Character Buffering or Input
3. St~pper Motor Drive anI;! Control
4. Character Processing
5. Character Printing or Output

MAIN PROGRAM BODY

CARRIAGE $TEPPER MOTOR DRIVE a LINE PAINTING
tFl.OW<>OAAT ..,

The five principal parts are incorporated into ten soft­
ware blocks, listed below.

I. Power On/ Reset Initialization
2. Home Print Head Assembly
3. External Status Switch Check
4. Character Buffer Fill
5. Carriage Stepper Motor Drive and

Line Printing
6. Accelerate Stepper Motor Time Storage
7. Process Characters for Printing
8. Translate Character-to-Dots
9. Decelerate Carriage Stepper Motor
10. Paperfeed Stepper Motor Drive

Flow Chart No. I illustrates the overall software algo­
rithm. Below, is a description of the algorithm.

Flow Chart No.1. Main Program Body

6-72~ 230795-001

"n+_r .111'e' Ap·161

Upon power-on.or reset, a software' and hardware
initialization is performed. This stablizes and sets inac­
tive the printer hardware and electronics. The print
head assembly is then moved to establish its HOME
position. The default status registers are set for charac­
ter buffering, carriage, and paper feed stepper motor
drive. The External Stattis switches art; checked;
FORM FEED, LINEFEED, ON/OFF LINE, and
Character Print TEST. If the printer is ON LINE, the
software will loop on filling the Data Memory Charac­
ter Buffer.

Character or data input to the UPI-42 is interrupt
driven. Characters sent by the host system set the Input
Buffer Full (IBF) interrupt and the IBF Program Status
flag. Character ,input servicing (completed during the
paper feed and carriage stepper motor drive end Delay
subroutine) tests for various ASCII character codes,
loads characters into the Character Buffer (CB), and
repeats until one of several conditions sets the CB Full
status flag. Once the CB Full flag is set, further charac­
ter transmission by the host system is inhibited and
printing can begin.

The carriage stepper motor is initialized, and drive
begins for the direction indicated. The motor isacceler­
ated to constant speed, printable character codes are
translated to dot patterns and printed (if printing is
enabled), and the motor is decelerated to a stop. Two
timing loops guarantee both constant speed and protec­
tion (Failsafe Time) against stepper motor burn out due
to high current overload. The two optical sensors, des­
cribed in the Printer Mechanism section above, are
constantly monitored to maintain constant speed, and
trigger print head solenoid firing.

Once the line is printed and the carriage stepper motor
drive routine has been completed, a Linefeed is forced.
The paper feed stepper motor drive subroutine tests the
number of lines to move, and energizes the paper feed
stepper motor for the required distance. The lines per
page default is 66; if 66 lines have bel;n received, a
Formfeed to Top-of-Next-Page is performed. The Tol'-
Of-Page is set at Power On/ Reset. ' , ."

When the EOF code is received, the EOF status flag is
set. When the last line has been printed, the EOF check
will force the print head assembly to the HOME posi­
tion. The EOF flag is tested following each Paper Feed
stepper motor drive. The next entry to the External
Status Check subroutine begins a loop which waits for
input from either the external status switches or the
hoM~mm. '

The software character dot matrix used in this applica­
tion is 5 x 7 of the available 9 x 9 print head solenoid
matrix. Although lower case descenders and block/line
graphics characters are not implemented, Appendix B,
Printer Enhancements, discusses how and where these
enhancemerits could be added. The software Imple­
ments the full 95 ASCII printable charac.ters set.

Memory and Register Allocation

Data Memory Allocation (RAM)
The UPI-42 has 128 bytes of Data Memory. Sixteen
bytes are used by the two 8 byte r~gister banks(RBO and
RBI). Sixteen additional byteS' are used for the Pro­
gram Stack. The Stored Time Constants utilize IJ
bytes, while the stepper motor phase storage requires 4
bytes. Below is a detailed descFiption of Data and Pro­
gram Memory

Hex Address Description

2F-7FH

24H

23H

22H

21H

'OH

18-1FH

0-01H

80 Characte, Line Butler (80 Byt ..)

Stored Time Conalanb Bufler (11 Bytes)

Unused

Charlet" Print T".I ASCII Code
Slart Temporary Storage

Pseudo Regialfr' Paperf •• d Stepper
Motor Lall Ph lnd.rect Address

Pseudo Reg'lter Cii' ge Stepper
Motor ForwardfReverse L.at Phas.

Pseudo Reg'lter' 'Last Ph ••• of
Stepper Motor Not Being Dnven

Register Bank 1 Character ProceSSIng

8 Level Slack

Register Bank 0 Stepper Motor
Forward/Reverse Acceleralion/Drlve

Figure 19. Data Memory Allocation Map

Register Bank 0 is used for stepper motor drive functions.
Register Bank I is used for character processing. Each
register bank's register assignments is listed in Figure 20 •
and 22, respectively. Each register bank has one register
allocated as a Status Register. Figure 21 and 23 detail the
Status Register flag assignments. Note that bit 7 of each
Status Byte is used as a print head assembly motion
direction flag. This saves coding of the Select Register
Bank (SEL RBn) instruction at each point the flag is
checked.

Register

RO
R1
R2
R3
R4
RS
R6
R7

Register Bank 0

Program
Label

TmpROO
TStrRO
GStR20
PhzR30
CntR40
TConRO
LnCtRO
OpnR70

Description

RBO Temporary Register
Store Time Register
General Status Register
Stepper Motor Step Register
Count Register
Time Constant Register
Line Count Register
Available. Scratctl

Figure 20. Register Bank 0 Register Assignment

230795-001

inter AP-161

Bit Dellnltlon

Accel/Decelerate Drive
Ready"'/NotRdy"O

1 -Do Not PMI/O" Pront
1 Form Feed/O'Line Feed

.... _-- , FallSafe/OcConstant
Time Window

AccellOeceleratlon Irltttalizatlon,
, Done/O' Not Done

Stepper Motor at Speed and
PMt Head Not Left of Home

, Sync/O=Not Sync'd, Pront
Head Inltl811ze and Fire

Stepper Motor Direction
L-to-R-', R-to-LoO

Figure 21. Register Bank 0 Status Byte
Flag Assignments

Reglater Program Deacrlptloll'
Label

AO TmpAl0 ABO Temporary Aeglster
Al CAdrAl Character Data Memory

Address Aeglster
A2 ChStAl Character Processing

A3 CDtCAl
Status Byte Aeglster

Character Dot Count Aeglster
A4 CDotAl Character Dot Temporary

A5 CCntAl
Storage Aeglster

Character Count Temporary

A6
Register

StrCRl Store Character Aeglster
R7 OpnR71 'Available/Scratch

Figure 22. Register Bank 1 Register A .. lgnment

Bit Dellnltion

CB Registers 1=lnltlsloze
/0=00 Not lnobaloze,

I=CR/(LF)/O=Not CR/(LF)
Character Buffer

Full=1INot Full=O,
I=EOF/O=Not EOF
(uhused)

.... ______ Character Lookup Table Page

l=Pg, " O=Pg 2
Character Initialized.

1 = Done/O= Not Done
Carnage Stepper Motor Direction

L-to-R.t, R-to-LcO

Figure 23. Register Bank 1 Status Byte
Flag Assignments'

Program Memory Allocation (EPROM/ROM)
The UPI-42 has 2048 bytes of Program Memory
divided int~ eight pages, each 256 bytes. Figure 24

illustrates the Program Memory allocation map by
page.

Page

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

Hex Addre .. Description

1182-2Q47

1536-1791

1280-1535

1024-1279

768-1023

51-767

256-511

0-255

Character to Dot Pattern
Lookup Tibl.; Page 2:
ASCII 50H·7EH

Character to Dot Pallern
Lookup Table; Page 1:
ASCII,20H.4FH (sp·M)

Miscellaneous Subroutines:
InltAI/AIiOIf
Clear Data Memory
Home Print Head Assembly
Character Print Test
Initialize Carriage Stepper

Motor
Delay

Stepper Motor Deselect

Paper Feed Stepper
, Motor Drive

Stepper Motor Slep LookUp
Table(lndexed)

Character Processing and
Translaloon

Print Head Firing

Carroage Stepper Motor
Acceleration

Time Calculation and
Storagp

Stepper Motor Deceleraloon

Carroage Stepper Motor Drove

Inltlahzatlon - Jump-on-Reset
Main Program Body
External Slatus SWitch

Check
Character Buffer Fill

Figure 24. Program Memory Allocation Map

Software Functional Blocks
Below is a decription and flow chart for ea~h of the ten
software blocks iisted above.

1. Power-On/Reset Initialization

The"first operational part in Flow Chart No. I is the
Power-On or Reset Initialization. Flowchart No. 2
illustrates the Initialization sequence in detail.

6-729 230795-001

inter AP-161

(

I

START)

1"
DISABLE INTERRUPTS J

J

+

RESET PRINT HEAD TRIGGER
TURN OFF ALL PRINT HEAD SOLENOIDS

SET PRINT HEAD TRIGGER INACTIVE
SET HOST SVS",M HANDSHAKE ACTIVE

CLEAR RBO/RB1 STATUS REGISTERS

CLEAR DATA MEMORY (2OH·7FH) I

I INITIALIZE CARRIAGE AND PAPER FEED STEPPER MOTORS .1

+
L HOME PRINT HEAD ASSEMBLY

(FLOWCHART #4)

~
I ~ET DEFAULT REGISTERS AND FLAGS

1
I RETUIlN I

/
I

Flow Chart No.2. Power-On/Reset Initialization

Initialization first disables both interrupts. This is done
. as a precaution to prevent the system software from
hanging-up should an interrupt occur before the proper
registers and Data Memory values are initialized.

Initialization then deactivates the system electron­
ics. This is also a precauti0l) to protect the printer
mechanism and includes the print head solenoid (trigger
and data) lines and the stepper motor select lines. The
host system handshake signals are activated to inhibit
data transfer from the host until the printer is r~ady to
accept data.

Next, Data Memory is cleared from 20R to 7FH. This
includes; the SO byte Character Buffer, the 11 byte
Stored Time Constants buffer, and the 4 bytes used as
pseudo registers. The pseudo registers are Data Memory
locations used as if they were registers. They serve .as
storage loacations for step data used in accurately
reversing the direction of the carriage stepper motor,
and stablizing either of the stepper motors not being
driven.

The Data Memory locations OOH through I FH are not
cleared. These locations are Register Bank 0 (OOH-
07H), Program Stack (OSH-17H), and Register Bank I
(JSH-IFH) (see Figure 19). Clearing the Program Reg­
isters or Stack would cause the initialization subroutine
to become lost. The registers are used from the begin­
ning of the program. Care is tliken to initialize' the
registers and stack accurately prior to each program
subroutine as required.

Upon power-on, it is necessary to initialize the two
stepper motors, verify their operation, and locate the
print head assembly in the left-most 'HOME' position.
This sequence serves as a system checkout. If a failure
occurs, the motors are deselected and the external status
light is turned on. Each stepper motor is selected and
energized for a sequence of four steps. This serves to
align and stabilize each stepper motor's rotor position,
preventing the rotor from skipping or binding when-the
first drive sequence begins.

At the end of each stepper motor's initialization, the last
step data add res; is stored in one of the Data Memory
pseudo registers. The last step data address is recalled at·
the beginning of the next corresponding stepper motor
drive sequence, and used as the basis of the next step
sequence. This ensures that the stepper motor always
receives the exact next step data, in sequence, to garan­
tee smooth stepper motor motion. This also garantees
the motor never skips or jerks, which would misalign
the start, stop, and character dot column positions. A
stepper motor not being driven has its last phase data
output held constant to stabilize it. .

Following any stepper motor drive sequence of either
motor, a delay of 30-60 ms occurs by switching the
curr.ent to Hold Current, stabilizing the motor before it
is deselected.

2. Home Print Head Assembly

At the end of the carriage stepper motor four step
initialization, the output of the HR optical sensor is
tested. The level of the HR.sigrial indicates which drive
'sequence will be required to 'HOME' the print head
assembly. If the print head assembly is to the right of
HR, HR is high, the print head assembly need only be
moved to from . Right-to-Left until HR is low,. then
decelerated to locate the physical home position. If HR
is low, the print head assembly must be moved first
Left-to-Right until HR is high, then Right-to~Left to
locate both the logical and physical 'HOME' positions.
In each case, the software accelerates the carriage
stepper motor, generating the Stored Time Constants
then decelerates the stepper motor using the Stored
Time Constants (see Background section above). Flow
Chart No.3 details the HOME print head assembly
subroutine. Figures 13 and IS illustrate the components
of acceleration and print head assembly line motion.

6-730 230795-001

AP-161

C?
I lIT DO NOT PRINT STATUS 'LAO 1

+
< HR"

+"
/ CAAAI:l~~=:(~==';J~.TO-R1 7

+
I CARRa:t~:e~,::(~=~.T().Ll /

+
I CLIAR DO NOT PRINT FLAG

~
I "ETURN I

Flow Chart No.3. HOME Print Head Assembly

The carriage stepper motor drive subroutines used to
HOME the print head assembly and to print, are the
same. A status flag, called Do-Not-Print, determines
whether the Character Processing subroutine is called.
The flag is ,set by the subroutine which calls the Carriage
Stepper Motor Drive subroutine. Details of the car­
ri~ge and paper feed stepper motor drive and character
processing subroutines are covered separately below.

3. External Status Switch Check

Once the system is initialized and the print head is at the

HOM'E position, the software enters a loop which con­
tinually monitors the four external status switches, and
exits if anyone is active. Flow Chart No.4 details the
External Status Switch Check subroutine.

Flow Chart No.4. External Status Switch Check

If the LINEFEED or FORM FEED switch is set, the
Paper Feed subroutine is called. The Paper Feed sub­
routine is discussed in detail below. If the ONLINE
switch is set, the Character Buffer (CB) Fill subroutine
is called.

If the Character Print TEST switch is set, the Data
Memory Character Buffer(CB) is automatically loaded
with the ASCII code sequence, beginning at 20H (a
Space character), the first ASCII printable character
code. The software then proceeds as if the CB had been
filled by characters received from the host system. The
External Status Switch Check subroutine is exited and
character printing begins. When the line has finished
printing, a linefeed occurs (as shown in the main pro­
gram Flow Chart No.1) and the program returns to the
External Status Switch Check subroutine. If the TEST
switch remains active, .the ASCII character code is
incremented and program continues as before. This will
eventually print all 95 ASCII printable characters. An
example of the TEST printer output, the complete
ASCII character code printed, is shown in Figure 25.

CHARACTER BUfFER FIl.L
(FLOWCHART #5)

Flow Chart No.4. ExtelT!al Status Switch Check

6-731 230795-001

inter AP-161

4. Caracter Buffer Fill

The Character Buffer (CB) Fill subroutine is called
from three points within the main program; External
Status Switch subroutine, and the Delay subroutine
fo~lowing the. carriage and paper feed stepper motor
dnve subroutmes. Flowchart No.5 details the Charac­
ter Buffer Fill subroutine operation.

C?
<"" "'ult" U "". v RETURN

t
--v'" .?'

N+
I ENABLE INTERRUPTS I ,

< INPUT BUFFER FULL N RETURN I
~v

CHARACTER BUFFER "- INITIALIze CHARACTER
INITIALIZATION DONE /N BUFFER FILL

v

I DECREMENT CHARACTER I
BUFFER SIZE

* < END OF CHARACTER BUFFER v seT EXIT FLAGS I
" t

< CHARACTER BUFFER PAD v LOAD C8 WITH 20H l-
t"

ACKNOWLEDGE A READ CHARACTER ,
< ASCII PRINTABLE CHARACTER ~ V

< eFt OR LF ->l N

I L.OAD CHARACTER INTO I LOAD CB WiTH eFt
CHARACTER BUFFER SET C8 PAD FLAG

ENABLE INTERRUPTS
READ NEXT CHARACTER

ASSUME IT'S Lf & IGNORE

< EOF >v--t N
SET EOF " CB FUll FLAGS

CL.EAR CB PAD FLAG

J
RETURN

< FORMFEEO :>v-t N
seT FF " CB FULL FLAGS

CLEAR CB PAD FI.AG

t
RETURN

I LOAD CB WITH 20H I . I.

DECREMENT CB ADDRESS

+
CB FULL OR RETURN I

CBPAD /v

+ N

I ENABLE INTERRUPTS

RETURN

Flow Chart No.5. Character Buffer Fill

The approximate 80 ms total pre-deselect delay at the
end of each stepper motor drive sequeQ.ce, 40 ms c .. r­
,riage and 40 ms paper feed stepper motor pre-deselect
delay, is sufficient to load an entire 80 character line.
Half the CB is filled at the end of printing the current
line, and the second half is filled at the end of a paper
feed. There is no time lost in printing throughput due to
filling the character buffer. .

Character input is interrupt driven. When the IBF
interrupt is enabled, a transmitted character sets the
IBF interrupt and IBF Program Status flag. Three
instructions make up the IBF interrupt service routine ..
This short routine disables further interrupts, sets the
BUSY handshake line active, inhibiting further trans­
mission by the host, and returns. The subroutine can be
executed at virtually any point in the software flow
without effecting the printer mechanism operation.
Processing of the received character takes place during
one of the three program segments mentioned above.
The BUSY line remains active until the character is
processed by the CB Fill subroutine. '

The CB is 80 bytes from the top of Data Memory
(30H-7FH). It is a FIFO for forward, left-to-right print­
ing, and a LIFO for reverse, right-to-Ieft, printing.
Loading the CB'always begins at the top, 7FH. One
character may be loaded into the buffer each time the
CB Fill subroutine is called.

The CB is always filled with 80 bytes of data prior to
printing. If the total number of characters input up to a
Carriage Return (CR)/ Linefeed (LF), does not c.om­
pletely fill the CB, the CR code is loaded into the CB
and the balance of the CB is padded with 20H (Space
Character) until the CB is full. A Linefeed (LF) charac­
ter following a Carriage Return is ignored. A LF is
always forced at the end of a printed line. When the CB
is full, the CB FUll status byte flag is set and printing can
begin.

A LF character alone is treated as a CR/ LF at the end
of a full 80 character line. This is a special case of a
printed line and is handled during character processing
for printing (see No.7, Processing Characters for Print­
ing, below). A Formfeed (FF) character sets the FF
status byte flag. The flag is tested at each paper feed
stepper motor drive subroutine entry.

When the software is available to load the CB with a
character, entry to the CD Fill subroutine checks three
status flags; CB Full, CB Pad, and IBF flag. If the CB
Full flag is set, the program returns without entering the:
body of the CD Fill subroutine. The CB Pad flag will
cause another Space character to be loaded. If the IBF'
flag is not set, the program returns. If the IBF flag is set,
the character is read from the Data Bus Buffer registe'r,
tested for printable or nonprintable ASCII code, and, if
printable, loaded into the CB. If the character is a
non-printable ASCII code and not an acceptable
ASCII control code (CR, LF, FF, EOF), a 20H (Space
Character) is loaded into the CB.

Exiting the CB Full subroutine with the CB Full or CD

6-732 230795-001

inter Ap..181

lo, '''.''.;&'' ,t+, -. 121123456789 ,. -,1?@'RB([)EFGHI J~'LI"HOPQRSTUIJWXYZC'], _ .bcdef'.tI •• , kll'1
'" ' '' 10:', ,"t+, -. 1211234'50::789',' :''''I!'HBCC>EFGHI J"LMHOPQRSTUIJWXY2C ',]"_' abcdef.hd I< 1 PIn

'''.'':~l?,'' ,t+,-. '13123456789', ,='''I!'RBC['EFGHIJt~LMHOPQRSTU'''WX,(ZC']~_'.bcdef'.h.Jl-:ll'1no

,<

! ".".~&", ,:t+, -. 1211234'56,89',' = ",I!'HBCuEF':;HI Jt,LMHOPORSTUUWX ZC "]",_' abcdef shiJ I< 1 I'Ino,",
".""'-;l?,', ,t+, -. 1211..:345';789 , = "IP14B(roEFGHIJH_MIIOPQRSTU~'~J::~'ZC']r_ abcde:ftoh." kl1"1no,",'"
•• ·'.2 " ' .. , -. 01:' :04'56,89' ,,= "1P14B(,['EFGH I J~,LMNOP(lPS TU'.I~J:~',':::C'], _' !ibcdef,hd I<lr,no,","'r
":'.~" ,t+, --. 01.:':<4'56789 ,'= "Ii'HBCroEFGHI.lt'LMNOP(;IPSTU'.lWX'I'ZC]. _ abcde:f sh"; kll'lno,""'rs ,
::g', ':t,+, -. 1211234'5",789 ' < =" '<1P14BC['EFGHI J~'LMHOPOR'STU'JWX"";:::C'] '_ abcdef,h.; I'll'1no,","'r.st
,,' '. ':t+, -. 1)1234'5':';'8~':' < = ''''!'14Bcr:EFGHI.I~ LMIIOPQRSTUIIW:,:','ZC ,], _ .. bcd£f.h. J kl",no,""'rs' U
',. ,t +, -. "I 2 34'5t~;"R'" , • .'=' <'@14BC-r'EFGHI Jt LMIlOP(lP'STU' J~J;--:~'ZC], _' !ibcdoaf sh. J I' 1 ",nopclrst U"

, '1+, -. (H.:'34'5678':O ,,; "IPHBCr'EFGHI.l1 LMIIOProPO;TlIIIL,J:,:'I';:r l' _ ",bcdoaftoh. J I:l,mo," =in!" "",-''''
,t+ , -, (11:: 34'56 ;"8::< ' = "IP •• B(l'EFGHI .II, LMIlOP';lP:::,TUII~J; :'I':::r ,1' _' !ibcdoaf .. hL1l'lrlnop-lr-st U')I. ~
t .. , -. I)\~' 34'5678'::' , = .. , IPHBo:r'EI-':;HI .It LMIIOP(lP..,.TU"W:--:·,';:r 1 _ .. bcde:f .. h. J I I",r,ol:: =irs' U' ,",)('''
+, -. (II ~345';;'8'" . ". "'!'HBCI'EFC.HI .II L~INOPO:IPSTU"L'I~:'t';:r 1 _ ",bedoaf .. h. j 11oo,noFclr:.t IJ'.'''''''''Z
• -. I.) t . .' -:4~b;-:';:Q . ::r ',7 @H~:([IEF-GH 1 ,It LfolUOP(lPS TlIl'loJ~ :'I'~r J _ iI~cde. f :1h ~ .,~. 11'lnclF =frS't Lit II~I" ~z ::
--. 01:.: _:4-StE:T'8·:t I :.: " tilHB(['EFGHI .,n Lt-1t~IIF'rlF"-=, TlJ11l,J: : ::[J _ :!Ibcde.f E'h L j J 1 "Irtof::: =irst LIIII,.IK~::: {:
.. 012 ':':.~~I"':;I":=<'.:a I -::' ':I~HE::Cl'EFI~HI ,It Ll"lUOPClP-;.Tlllll·J~:·I'2[1 __ ;.bl=de.f =ith ~ , J lI'lt"toi= =ir:t ,-IIII,I":::tZ: : j
012 3·~-St. ;8:::' • ":- "l!'ttFtf rIEFGH] .It LMtJ(lpnp·-.TU'1loJ: :','::[] _ --Jbc.-:fe.t 19IhJ. 1 J 1I'II-tl:tF ~I~~t U' '1.IM::t: t':: '"

OJ .' 34'5 ... ~~":=::::' . :..; 1~'-,,81-l'EFGH (It L r'1t~npnp·; TIJII~.J: :','::[J . :=.bc:de f 3h L J I 1,'ino~qr::t U"IoI'K~% r f J ...
12J45";;~"':~:o;. . -= .~ I~H8C[IFF-I~HI It lJ'1t~(lPf'F":'.TUI'H: :','::[] _ ~l.cde.t ~h ... _, J l('ltlol= ::irst UII!.!"::t:=:: :) '" I

.. .'::45,:,;-0':-:::::. .. ':: ·:I'j.If"fa [IEF-GHI It LI"ItIOr'np';.TU11l·J: :','::[] _ ~bl=d-=.f 3h I 1 J 1"lnCIF =it-.::t LlllhlN::t: f: 1 .. , I"
345t;,·::::':;' , == ':I!'HE:(l·E FI~H 1 .It Lfolt ,np!."IF":' TU11l,J: :','.:"[J _ !lbcde.f =-h1 J la·tt"!l.'i= ::'1r st U' II"" ~': -:: l :)... I "tt
45t=,~"8q , = ':I~H.8'-r'fFI='HI Jt Lr'1t~(lF'np':,ll"lll'~~:'I:=-r' abcd.::f ::th ... 1 J LI'lnl')i= =it Sf 111'1.IH::r:::::: ... I ""'"

-:=it~-;--8'? ' -=- '7f"'HE:([,EF:l l HI It Lt-1t~flf'IIfr"=-rtllll'l::·,·.:Y] _ ::.bl=de.t ~"' _'lll·lnQ~~r::'tl_I"I.I .. ::tzf:::: , IlItt'-!
t.,;",8~, "I"HE:'-rIEFI~1Hl Itlf"1t~npnf.-";,TlII,ll'J::'I·.?[' 1 _ -=et:..c.;k.f-aehL 1J 1I,tni'F-:irEtlJ'1IoIMY::",,: :-~ ... I"#.t-.~

;·8~:' , - '~I?HF:I [IEFI-~H [It L Mt~CtF'(IP':; TlIIIH: :','.:"[,] _ .!ll:-.cde t ::d, J. 1 J l",noi= :; r st III 11,1 H ~:::" :: : :;... I "* * .. & '
::::;.. , '::' '~I"'HE:f"J:.FI;.~l H Lf"ltKIPrIF"=,TlJllloJ::','2['] R :::.l,cdef~tIL lJ ll'ltll-'F ::;r£tl_"II,I'4~:;:' :J, .. I .. tt ... -.:!'·, '
=- . ::. :'I?H81-r'Er-(~Hl It l.r1tKIF")F'"::,TIIlII.oJ::'I·~:l] R :tbcdE-_t :dIL_,J 1I'lt-,CIF=it-stU'II,IH::t:;::::J", I II ·.~·I ,

,'=- '-:'PHE-:([IFFCHI-'~ L t·1t~OPfIP·:;TllIll"::'I·:[] _ ~bcdet-~h~JJ tl'lt-'QF=ir~:::-tl_'III'IH::t:;:(::;' .. 11I :.!="·1 ,+
',' =- r,'I}'H8C['EFCIHJ.I~ L,·1t~OP(IP·-,TIJIII'J::'t'::'''[] . ::.f:,cdE:.f~h 1J 1I"t'CIi=::'1t-;tlll'I.I"~:I~:::)'" I "itf· .. :!'" ,+,+.

~- . r,'@HBI-[IE::F('Ht J. 1 t'n IfIP(If,. .. ::. TUlll,l: ':'I'~(J :tl:,.-::d-= f 3h", _, J I "Irtl')i= ::i r =-t I_II 11,1 M ':I:::" :: : :: .. , I " ~ " ,+ + ,
=-: ,; !PHS!." r 'EF:I~H r It LNt~nf"'nF":. TUllt·J: :','~[] __ .:.bcdtt t':;!h ... J ~ !s·tn'-:Ij:'- =i r!rt IJI 11.'11 :::a::: :: : j... I "#* •• :i' 'I 1* .. ,._

I~ f!aHBC ('EFG.H t '. L Munt 'I IF"; ru' Il·J~ :'1'.:'[1 _ ,bc'do::_ t ~h ... 1 J li'ln'-It: .:i t :5't 1.1' I, 1'1 yZ f : :; .. , I II#" •• :!, . I ,+ -t -.

'';''1.PHF:([IEFI~H t J. Lr'ltKlf 'I-IP'::, TI_II II,t: :'1':"[J _ lb • .:de. f ElhJ. J J 11'1t",il~ =i t-..:rt 1,,1' '!.I" !..~= :: : :; "' I "#.f·.2 " ,+ + , - •.
ti'HBC[IEF(3Hl J~Lt'1t~(If'(I~"':'TUIIIoJ::'I':::'[1 ~ .:abcd.;:t ~hL'~ 1 'ncli=4t".atulll,IH·:tZ:: j.II .I".", •• :!,', 1It:+,-. 0
H81~ r'EFGH r .It L "1tKIPI)F-":, 11 II I'.J: :','::r J _ ~bcde. fl;.h J. J ~ lI'lrlCtF ~t-:;:-t Lt' 'I., H':::a: r : J .. , I "#:t-.:;' 'I ' •. +. -. 01
Err rlEFGHI I. L NtKIF-'flP·:. I IJI IH: :','::["] ::ab.:de: f 3h.l. 1 ~,'ll'lrll:'~ =il- .It 1.11 II.IM ·:tz:: : ~i'" I "#*-.2 . I ,+ + . -. 01.2
C[IEFGHIJ. LNt~uPC!P.·:'>TIIIII·I::·,'':[] Stbcdtrt :th ... _,J]I'lnoi=::;rrtL'III,IM~:::::::;'" I "itt·;.:? 'I 1++,-. 1031.23
['E-F-GHt It tf'1t40P('IP-::,TU11I.oJ: :'r'':(~ 1 _ ;.b,':,'ie.f =:th", J ~] 1'~hQi= =tt-st '-IIII,IM ':1:::::)' ... I " • .f-.~ " It+, --A ~)1-==34
EFI1H I II Lt'1tIOP(lF'-::,Tll"~I: :'(=r] _ '",bed.:. t "h. _, 1 l"lnoF =I r!it to' '1,1. "'" '- i J .. : '''.:t .. ~'' ' .. + . -. 01234'5
FGHIJI L~1tIOF'(IF'·;TlI"L·J::·I':·[] __ "b,:d.:.t "h, ,11ooInoF=i,-"",,""I""-;:' i l· .. ,"*:t .. :?,)++ .-. 01234'56
GHI J"Lfo1t~tJpnpsrullw::'I'Z[J _ ::.bl=de.t ::;Ih ... ,~ 11·lt"'(li=-=it"=tulll.h~~='f: J ... III.",,·.:?', ,+.+.-. 01.2345157
HJ -'t.Lr-tU(lPI)PS,TUI·I"'J~:'I':T 1 __ 3Ibcde.f9 1~ 1a'lncIF=ir=tul't.IM~Z:..JJ"· I n ·.2.· 1 't+, ... 01234567"8
I J. Ll'lt-lOF'(lPSllllll.-J: :'I'~[J _ abcde.f =!I·"IJ. j ~'l,·tnoi= =ir::5't U'''M)4.~:::{: }, .. t .. -#:t-.:.?' I '.+, -. 01~34'56?S9
. ..It: Ll'lHCtpnf.'STUIIl.-I:~'1·2[] _ 9bcdli.f 3!lh ... _1 J 1 "lrIOf:-=it"3"t.ul ,'1 .. 1" ::to;;::::) ... I "#.t •• S, 'I. ,t .. , --. '01.2345678::­
I<LMIKIP(lPSTlIIIW;:'I';:r] _ ",bedoaf .. h.JI1",,,oF=lnFfu,,I,,.,.:;:(i.,,· '''*$.~!r', ' -. '01234'5'::7'89 ,
Lr"HOPQPSTUIIW~:'I'Z[. J. _ abcdef 3h L .. ' ~ 1 MrU?F ::irEt Utll.," ~z (:) II. I 11-#.-;.&' 1 +, -. e1234'56789·. 01;

MNOF'QRS 1 Ijllw;--:YZr J • _ .. beda f .. h. _, l' 1l'lYIOF =i r !i' U"I •• "':;: C i J 0, '".''.~l?''' ,+ + . -, 01234'56;"89', -: =

Figure 25. ASCII Character Code TEST
Output and Print Example

Pad flag set does not re-enable IBF interrupts or reset
the BUSY line, If neither ofthese flags is'Jet, exiting the
CB Fill subroutine setf! BUSY inactive and IBF inter­
rupts are enabled, Once the CB Full status byte flag is
set, IBF interrupts are disabled until the CB has been
entirely emptied, the line printed, or the system Reset,

5. carriage Stepper Motor Drive and Line Printing

The carriage stepper motor drive subr~uiili~ controi;

'both L-to-R and R-to-L print head assembly motion,
.Upon entering the subroutine, the HR signal level is
tested to determine the direction of print head assembly
:motion and the Direction status flag is set. The default
,control register values are loaded and balance of the
default status flags are set for step~rmotorcontrol and
character processing, The defa'ult control register values
include PT and' the step sequence look-up table start
address: for, the'direction imlicated. .

6-733 230795-001

inter AP~161

The direction flag is tested throughout the carriage
stepper motor drive and character processing subrou­
tines. This enables the same subroutines to control
activities for either direction, simplifying and shorting
the overall program. Flow Chart No.6 illustrates the
carriage stepper motor drive subroutine. '

9
• &HflHIGtt , SlTA.1tJ.4,1'LAO

+N
I SE'TL·TOofIFUG

t

I teTUl>NtJ;t STEP DATA TO OUTPUT I IJrIITJAUZIi!TtMlCONITAffTREGlST'M
IliUCTCAAflIAQIIST1iflNftMOrOll

r-----+

I
LOAD TtMER WlTHPT

I
M.UtCMPEfI=~&l1:.CAARIAGE

OUTPUT S1V OATA "'."
< CAMIAGE&'JPfIERMOTOfI

ATC0Nl'fANT8PeI!D . ' I
J'

ro< -... > lCM_~--1 -, .. , 1~*7)

I Ii'f,IOCES8 CHMAC1l!RS I I I'OfIPAIHTtM(I
(Fl.OWQtMT iii)

SETUP NEXT STEP DIII'A

+
< STEP stQUENCE DOfo«.

,
R£8TART8liQUI!NCE .

I
LOAD NOT $TlP DATA

r-l
1< "11MEOUT , ~TIMEfI WITH FAILSAfe I . """ SETI'AILSAfEsrATUSI'LAQ

· PTlDI!TECTEO -d ,

· ... """"" < FAlUlAFE TIME our

~ .
· READYTOPAINT . PT&Im'ECTEO " OE~I(~

I'
, .

PT&VUlIFlEO

~ < ~DDT ~ COLUMN COUftt: 0 ,
(IN.ANK~LUMN' N

I "",n ...
RIAO&aTtlR£ I I .. , .. M I TlMI!II\IAI,.UE

HEAD SOU!NOIO "'

I I .. ,"'"' J """"""'''''' COUIIIIHCOIJNT

I~OUT >
I'

'-;;< .ou< >
I' I OECEWI"'~F~~R"'OTQfI ,

I DEiLAY Dt:Si6LECT CARRIAGE STEPPER MOTOR I

~

'low Chart No. 6. ca;'rlag~ Ste;',
Moto, Drive/Line Printing

Next, the carriage and paper feed stepper motor step
data is-initialized. The last step data output to the paper
feed stepper motor is loaded into the Last Phl;lse pseudo
register. This data is masked with each step data output
to the carriage stepper motor. Masking the step data in
this manner guarantees the pa per feed motor signals do
not change as the carriage stepper motor is being
driven. .

Figure 26 illustrates the carriage stepper motor-step
sequence verses the actual step data output for clock­
wise rotation, Left-to-Right motion, and counterclock­
wise rotation, Right-to-Left print head assembly
motion. An eight step sequence is depicted in the figure .
Note that the sequence for Right-to-Left motion is the
reverse of the sequence for Left-to-Right motion. Note
also, that for the L-to-R sequence step 4 is the same as
step <1, step 5 the same as step I, etc., through step 7
matching step 3. The four step sequence simply repeats
itself until the motor is stopped via the Deceleration
subroutine.

L-to-R Phase/Step R-to-L BCD
Motion Data Motion

Sequence (3210) Sequence (32 1 0)

0 1001 7 0000
1 1010 6 0001
2 01 10 5 0010
3 0101 4 00 11

4 1001 3 0100
5 1010 2 0101
6 0110 1 0110
7 0101 0 0111

Figure 26. Carriage Stepper Motor
Phase/Step Data

When the carriage stepper motor is driven for a specific
direction of print head assembly motion, the step
sequence must be consistant for the motion to be
smooth and accurate. The same holds true for the tran­
sition from one direction of motion to the other. Since
the sequence for one direction is the opposite for the
other direction, incrementing the sequence for L-to-R
and decrementing for R-to-L provides the needed step
data flow. For example, referring to Figure 26, if the
print head assembly moved L,to-R and the last step
output was #1, the first step for R-to-L motion would be
#7. Thus, when the carriage stepper motor is initialized
for a clockwise (L-to-R) or counterclockwise (R-to-L)
rotation, the last step sequence number is incremented
or decremented to obtain the proper next step. In this
way, the smooth' motion of the stepper motors is
assured.

The step data' is referenced indirectly via the step
sequence number. The ste'p data is stored in a Program
Memory-look-up table whose addresses correspond to
the step sequence numbers. For example, as shown in

6 .. 734 230795-001

inter AP·161

Figure 26, at location 0 the step data "1001" is stored.
This me,thod is particularly well suited to the UPI-42
software. The UPI-42 features a number of instructions
which perform an indirect move or data handling op.er­
ation. One of these instructions, M OVP3 A,@A, unlike
the others, allows data to be moved from Page 3 of
Program Memory to any other page of Program
Memory. This instruction allows the step data to be
centrally located on Page 3 of Program Memory and
accessed by various subroutines.

Each time the carriage stepper motor step data is out­
put, the step data lookup table address is incremented
or decremented, depending upon the direction of rota­
tion, and tested for restart ofthe sequence. The address
is tested because the actual step data, Figure 26, is not a
linear sequence and thus is not an easily testable condi­
tion for restarting the sequence. The sequence number
is tested for rollQver of the sequence count from 03H to
04H and clockwise motor rotation via the Jump on
Accumulator Bit instruction (JBn), withOOH loaded to
restart the sequence. The same bit is tested when decre­
menting the sequence count for counterclockwise motor
rotation, R-to-L motion, because the count rolls over
from OOH to OFFH, with 03H loaded to restart the
sequence.

At this point the UPI-42 Timer/ Counter is loaded, the
step signal is output, and the timer started. The next
step data to be output h~s been determined and the
At-Speed flag is tested for entry to one of two subrou­
tines; Stepper Motor Acceleration Time Storage or
Character Processing.

The first entry to the Acceleration Time Storage sub­
routine initializes the subroutine and returns. All other
entries to one of the two subroutines perform the neces­
sary operations, detailed below (Blocks 6 and 7), and
returns. The program loops until the PT times out or the
PTS level change is detected. PTS is tied to TO of the
UPI-42. The level present on TO is directly tested via
conditional jump instrunctions. The software loops on
polling the timer Time Out Program Status flag and the
TO input level.

As described in the Backgroun'd section above (shown
in Figure 13), ifPT times out before PTS is detected, the
software waits for PTS before outputing the next step
signal. If PT times out before PTS, a second timer
count value is loaded 'into the UPI-42 timer. The timer
value is called "Failsafe."This is the maximum time the
stepper motor can be selected, with no rotor motion,
and not damage the motor. If PTS is not detected,
either the carriage stepper motor is not rotatIng or the
optical sensor is defective. In either case, program excu­
tion halts, the motor is deselected; and the external
status light is turned on to indicate a malfunction. A
system reset is required to recover from this condition.
The Failsafe time, is approximately 20 milliseConds,
including PT.

The Failsafe time. loop also serves as a means of track­
ing the elapsed fime between PT time out and PTS.

6-735

Entry to the Failsafe time loop sets the Failsafe/ Con­
stant Time Window status flag. This flag is tested by the
Acceleration Time Storage subroutine for branching to
the proper time storage calculation to be perform (see
Figure 13 and Block 6 below for further description).

During the Failsafe timer loop, if PT8. is detected and
verified as true, the Failsafe timer value .is read and
stored in the Time Storage register. This value is used
during the next Acceleration Time Storage subroutine
call to calculate the Stored Time Constant (see Block 6
below). If PTS is invalid, the flow returns to the timer
loop just exited, again waiting for PTS or Failsafe time
out.

During the PT time loop, if PTS i~ detected and veri­
fied, the Sync flag is tested for entry to the print head
solenoid firing subroutine. This flag is set by the first
entry to the Character Processing subroutine. The flag
synchronizes the solenoid firing with charact~r ~roces.s­
ing. Only if characters are processed for prmtmg Will
the' solenoids be enabled, via the Snyc flag, for firing.
This prevents the solenoids from being fired without
valid character dot data present.

As described in the Background section "Relationship
Between PTS and PT," PTS is the point of peek angular
velocity within a step of the motor. After PTS. is
detected the motor speed ramps down, compensatmg
for the overshoot ofthe rotor motion. PTS is the opti­
mUQl time for print head solenoid firing, as shown in
Figure 13. This is the most stable point of motor rota­
tion and, thus, the print 'head assembly motion. If PTS
is detected during PT, printing is enabled, the Sync flag
is set, and the solenoid trigger is fired.

The firing of the solenoid trigger, following PT~, is ,v~ry
time critical. The time between PTS and solenOid fmng
must be consistant for accurate dot column alignment
throughout the printed line. The software is designed to
meet this requirement by placing all character proces,s­
ing and motor control overhead before t~e solen?ld
firing subroutine is called, The actual ,mst:uctlO,n
sequence which fires the print head solenOid trigger IS

plus or minus one instruction for any call to the
subroutine.

Once the timer loop is complete, the software tests for
Exit conditiops. If the Exit conditions fail, the software
loops to \lutput the next step signal, starts the PT timer,
and continues to accelerate the carriage stepper motor,
or process, and print characters. If the Exit test is t.rue,
the carriage stepper motor is decelerated to a fixed
position; and the program returns to the main program
flow (see Flowchart I).

The exit conditions are different for the two directions
of print head assembly motion. For L-to-R printing, if a
Carriage Return (CR) character code is read from CB,
the carriage stepper motor drive terminates and the
motor is decelerated to a fixed position. There are two
conditions forterminating carriage stepper motor drive
upon detectipga CR during L-to-R motion; Ifles~ than
half a character line (40 characters) has been pnnted,

230795-001
r

, I',"

Ap..161 ",

the,print head assembly returns t,o the HOME position
to start the next printed line. Otherwise, the print head
assembly continues to the, right-most ,position for a full
80 character line, and then begins printing the next line
from R-to-L. R-to-L printing always returns the print
head assembly to the HOME position before the next
line is printC<i L-to-R. When HR is high, character
printing always 'stops and the carriage stepper motor
drive, subroutine exits to the dec~b:ration subroutine.

6. Accelerate Stepper Motor Time Storage

As described above, when the carriage stepper motor is
accelerated the step time required to guarantee the
motor is at a constant rate of speed translates to a
specific distance traveled by the print head assembly
(see Figure 18). In order to position the print head
assembly accurately for bi-directional printing, *e dis­
tance traveled during deceleration must be the same as
during acceleration. The Carriage Motor Acceleration
Time Storage subroutine calculates the 'step tim,es
needed to accelerate the carriage stepper motor, and
stores them in Data Memory for use as PT during
deceleration.

The first call of the Carriage Stepper Motor Accelera­
tion Time Storage subroutine initializes the required
registers and status flags. The time calCUlation begins
with the secol)d carriage stepper motor step signal out­
put. The program returns to the carriage stepper motor
!irive subroutine and loops on PT. Each subsequent call
of the Acceleration Time Storage subroutine tests the,
Failsafe/ Constant flag and branches accordingly (see
Flow'Chart 7). The Acceleration Time Storage subrou­
tine has two parts which correspond to PTS leading or
PTS lagging PT.

(START')

-r
ry< TIME STORAGE INITIALIZATION DONE ;>

t N

1 INITIALIZE TIME STORAGE REGISTERS I,
.1
-+

r;;< TIME STORAGE DONE ">
l'

I INITIALIZE CHARACTER PROCESSING J REGISTERS

,
< FAILSAFE TIME WINDOW ENTERED

~' P
, I 'CALCULATE! TIME TO STORE I. 1 STOREPT

(PT + TX) RESET FAILSAFE FLAG

I I
r

I DeCREMENT OATA MEMORV ADORESS
DECREMENT STEPS TO $OlRE COUNT I

~
RETURN I

Flow Chart No.7. carriage Stepper Motor
Acceleration Time Storage

,

J

If the FailSafe! Constant flag is set, PTS lagged PT. The
time from PT time oilt to PTS, Tx'(see Figure 13), must
he added 'to the PT and stored in Data Memory. As
described above, if PT lagged PT, the Failsafe time is
loaded and PTS is again polled during the tiine loop.
When PTS occurs within the Failsafe time, the timer is
stopped'and the timer value stored, The UPI42 timer is
an up timer, which means that the value stored is the
time remaining of the Failsafe time when PTS occured.
The elapsed time must be calculated by subtracting the
time remaining (the value stored) from the, Failsafe time
constant. This is done in software by using two's
complement arithmetic. ~f the Failsafe flag is not set
PTS led PT, and PT is the Stored Time Constant stored.

In4irect addressing of Data Memory is used to reference
the Stored Time Constant Data Memory location. The
Data Memory location address is decremented each
time the Acceleration Time Storage subroutine is exited
an4 a S~ored Time ~onstant has been generated.

The last Accele~ti~n TiIrieStorage subroutine ~xit sets
the At-Speed status flag and initializes the ,character
processing registers and flags. ' ,

3. Proce .. Charactel'll for Printing I

The Character Processing subroutine is entered only if
the Home Reset (HR) optical sensor signal is high and
printing is enabled. Otherwise, the software simply
returns to the Carriage Stepper Motor Drive subrou­
tine. There are two cases when printing is n,ot enabled;
during,the HOME subroutine operation, and when the
print head assembly returns to the HOME position
after printing less than half an 80 character line. If
printing is enabled, the Sync status flag is set.

All character processing operations use the second UP.J-
42 Data Memory Register'Bank, RBI. Register Bank 1
is independent of Data Memory Register Bank 0, used
for stepper motor control. The use of two independent, '
register banks greatly silI)plfies the software flow, and
helps' to ensure the accuracy of event sequences that
must be h.andled in parallel. Each register bank must be
initialized only once for any ,entry to either the Carril!-ge
StepPer Motor Drive or Character Processing subrou­
tilles. A single UPI42 Assembly Laqguage instruction
selects the I!-ppropriate register bank. Initializing the
character processing registers includes loading the max­
imum character count (SO), dot matri'x'size count (6),
and CS 'start address. The CB start address is print
direction dependant, as described in Block 4, above.

Character ,proce'ssing reads a character from the CB,
tests for control codes, translates the character to dots,
and conditionally exits, returning to the Carriage
Stepper ~oto~'Drive subrql,ii,ine. Fio:W ~hart 8 det~iIs,
the character processing subroutine.

230795.()()1

inter AP-161

RETURN

Flow Chart No.8. Process Characters for Printing

Each character requires si'X steps of the carriage stepper
motor to print; five for the 5 character dot columns and
I Jor ,the blank dot column between each character.
Reading a character from the CB and character-to-dot
pattern translation takes place during the last character
dot column, or blank column, time.

The first character line entry to the Character Process­
ing subroutine appears to the software as if a last char-

act~r dot column (blank column) had been entered. The
next character, in this case the first character in the line,
is translated and printing can begin. This method of
intiializing the Character Processing subroutine utilizes
the same software for both start-upanq normal charac­
ter flow. Once a character code has been translated to a
dot matrix pattern starting address in the look-up table,
aU subsequent en,tries to the Character Processing sub­
routine simply advance the dot column data address
and outputs the data.

The decision to translate the character to dots during
the blank column time was an arbitary one. As was the
choice of the blank column following rather than
preceding the actual character dot matrix printing.

4. Translate Character-to-Dots
Character-to-dot pattern translation involves convert­
ing the ASCII code into a look-up table address, where
the first of the five bytes of charcter dot column data is
stored. The address is then incremented for the next
column of dot pattern data until the full character has
been printed.

The doLpattern look-up table occupies two pages, or
approximately 512 bytes of Program Memory. A prin­
table ASCII character is tested for its dot pattern loca­
tion page and the offset address, from zero, on that
page. Both the page test and page offset calculations use
two's complement arithmetic, with a jump on carry or
not carry causing the appropriate branching. Once the
pattern page and address are determined the indirect
addressing and data move instructions are used to read
and output the data to the print head solenoids. Flow­
chart 9 details the Character-to-Dots Translation sub­
routine.

In the case ~f R-to-L printing, although the translation
operation is the same, the character is printed in
reverse. This requires that the character dot pattern
address be incremented by five, before printing begins,
so that the first dot column data output is the last dot
column data of the character. The dot pattern look-up
table address is then decremented rather that incre­
mented, as in L-to-R printing, for the balance of the
character. Translation still takes place during the last
character dot column, the blank column, and the blank
column follows the character matrix.

Only one control code, a Carriage Return (CR), is
encountered by the, character translation subroutine.
Linefeed (LF) characters are stripped off by the CB Fill
subroutine. If a CR code is detected the software :tests
for a mid~line exit condition; less than half the line
printed exits the stepper motor drive subroutine and
HOMEs the print head assembly before printing the
next line. If the test fails, more than half the line has
been printed, the CR is replaced by a 20H (Space char­
acter) and printing continues for the balance of the line;
the space characters padding the CB are printed.

6-737 230795-001

inter AP~161,

REPLACE CR WITH 20H

Flow Chart No.9. Translate Character-to-Dots

As mentioned above, the character dots are printed and
the print head trigger is fired when the PTS signal is
detected and verified and the carriage stepper motor is
At Speed.

When the character to print test fails the CB Buffer size
count equals zero, the Carriage Stepper Motor Drive
subroutine exit flags are set, and the flow passes to the
Deceleration and Delay subroutines and programs
returns to the main program flow.

9. Decelerate Carriage Stepper Motor

The transition from the Carriage Stepper Motor Drive
subroutine to the Deceleration subroutine outputs the
next step signal in sequence, and then initializes the
Decereration subroutine registers; Stored Time Con­
stants Data Memory buffer end address and size. The
Sfored Time Constant Buffer is a LIFO for deceleration
of the carriage stepper motor. The buffer,size is used as
the step count. When the step count decrements to zero,
the step signal output is terminated, and the last step
sequence number is stored in the carriage stepper motor
Next Step pseudo register. The last step sequence
number is recalled, during initialization of the next
carriage stepper motor drive, as the basis of the next
step data signal to be output. See Flow Chart 10.

<

<

L-;;<

INITIALIZE DECELERATION REGISTERS

OUTPUT NEXT STEP SIGNAL
LOAO .. START TIMER

DECREMENT STORED TIME CONSTANT
DATA MEMORV ADDRESS

SETUP NEXT STEP

STEP SE~UENCE DONE

I~
LOAO NEXT STEP

1-
~ PT TIME OUT

~ ,
DECELERATION DONE >

~ ,
STORE LAST STEP' ADDRESS

1
RETURN

RESTART SEQUENCE

I

Flow Chart No. 10. Decelerate'Carrlage
Stepper Motor

When the carriage stepper motor is decelerated, Fail­
safe protection and PTS monitoring are not necessary.
The Deceleration subroutine acts as its own failsafe
mechanism. Should the stepper motor hang-up, the
subroutine would exit and deselect the motor in suffi­
cient time to protect the motor from burnout. Since
neither, Failsafe nor print head solenoid firing take
place during deceleration, PTS is not needed. PT is
replaced by the Stored Time Constant values in Data
Memory. The Deceleration subroutine determines the,
next step signal to output, loads the Timer with the
Stored Time Constant, starts the UPI-42 Timer, and
loops until time out. The subroutine loops to outputthe
next step until all of the Stored Time Constants have
been used. The program returns to the, Carriage
Stepper Motor Drive subroutine and the motor is dese­
lected foliowing the Delay subroutine execution. The
Delay subroutine is called to stablize the stepper,motor
before it is deselected. During the DELAY subroutine,
the IBF interrupt is enabled and characters are pro­
cessed.A paper feed is forced following "the carriage
stepper motor being desele~ted.

10. Paper Feed Stepper Motor Drive,

The paper feed stepper motor subroutine Ojltputs a
predefined number of step sjgnitls to advance the paper,
in one li\leihcrements, for the required number oflines.
The number of step signals per line increment is a func­
tion of the defined number of lines per inch, given the
distance the paper moves in one step., Figure 16 lists
three step (or pulse) count and line spacing configJlra-

6-738 230795-001

inter AP·161

tions, as well as the distance the paper moves in one
step. Standard 6 lines per inch spacing has been imple­
mented in this Application Note (Appendix B details
how variable line spacing could be implemented).
Flowchart 11 illustrates the Paper Feed subroutine.

Flow Chart No. 11. Paper Feed Stepper Motor
Drive

The number of lines the paper is to be moved is called
the "Line Count." The Line Count defaults to one
unless the Formfeed flag is set, or the total number of
lines previously moved equals a full page. The default
total lines per page for this application is 66. When the
total number of lines moved equals 66, the paper is
moved to the top of the next page.' The Top-of-Page is
set at power-on or reset. '

If the Formfeed flag has been set in tjle Character Buffer
Fill subroutine, the software calculates the number of
lines needed for a top of. next page paper feed> The
resulting line count is loaded in the Line Count Regis­
ter. The Paper Feed subroutine loops on the line count
until done and then returns to the main program body.

Once the Paper Feed subroutine is complete, the soft­
ware loops to test the End of File (EOF) Flag (see
Flow Chart I). If EOF is set, the print head assembly is
moved to the HOME position, the program again
enters the External Status Switch Test subroutine, and
begins polling the external status switches. If EOF is not
set, the program directly calls the External Status
Switch Check subroutine; and the prClgram repeats for
the next line.

CONCLUSION
Although the full speed, 12 MHz, of the UPI-42 was
used, the actual speed required is approximately 8-9
MHz. 1400 bytes of the available 2K bytes of Program
Memory were used; 500 bytes for the 95 character
ASCII code dot pattern look-up table, 900 bytes for
operational software. This means that the UPI-42 has
excess processing power and memory space for imple­
menting the additional functions such as those listed
below and discussed in Appendix B. ,

Special Characters or Symbols
Lower Case Descenders
Ipline Control Codes
Oifferent Character Formats
Variable Line Spacing

The software developed for this Application Note was
not fully optimized and could be further packed by
combining functions. This would require creating
another status register, which could also serve to
implement some of the features listed above. Since the
full 16 byte stack is not used for subroutine nesting,
there are 6-8 bytes of Program Stack Data Memory that
could be used for this purpose. In several places, extra
code was added for clarity ofthe Application Note. For
example, each status byte flag is set with a separate
instruction, using a equate label, rather than setting
several flags simultaneously at the same point in the
code.

This Ap'plication Note has demonstrated that the UPI-
42 is easily capable of independently controlling a com­
plex peripheral device requiring real time event moni­
toring, ,The moderate size of the program required to
implement this application attests to the effectiveness of
the- UPI-42for peripheral control. _

6-739 230795-001

inter AP-161

APPENDIXA.
SOFTWARE LISTING

1 S~OD42 TITLE('UPI 42 APP NOTE'I;
~ $HACROFILE NOSYHBOLS NOQEN DEBUQ
3
4 $INCLUDE(:Fl:ANECD.OV1)

= 5 PG
6
7

= 8
9

= 10
= 11
= 12

13
14

= 15
16
17
18
19

= 20
~1
22
23

• 24
25

.. ~6

= 27
28
29 •
30
31
32
33

= 34;
35

= 36
37
38

= 39
40

= 41
4~
43
44 •

= 45
46

= 47;
48

= 49
50
51
52
53
54
55
56
57
58
59
60

= 61
62
63
64
65
66

= 67
68
69
70

* Complex Peripheral Control With the UPI-42

Intel Corporation
3065 Bowers Avenue
Santa Clara, Ca. 95051

Written By Christopher Scott

* * * * * * * * * * * * ~ * * * * * * * * * * * ~ * * * * * * * * * * * * *

PG

Notes and Comments
Three A ••• mbl~ Language fil.s comprise the full Application·
Note sdu?ce co~ ••

1. ANECD. OVI App Note E~uate •• Constants, Declarations. Overlav

2. 4~ANC.SRC UPI-4~ App Not. Code Source

3. CHRTBL.OVI

* * * * *4* *_* * * * *
Equates, Constants and System Definitions

*
Data & Program Memory Allocations
Program Memory
Page No. He. Addr

Page 7 179~-~047

Page 6 1536-1791

Page 5 1280-1535

Page 4 10~4-1279
Page 3 768-10~3

Page 2 512-767

'Page 256-511

Page 0 0-255

Description

Char to Dot pattern lookup table
Page~: ABCII 50H-7FH SN-~)

Char to Dot pattern iookup tabl.
Page 1: ASCII ~OH-4FH (sp-H)

Mise called routines:
InitAl/AllOH
Clear Data H.mor~
CR Hom"
Char Print Test - load Ascii char codes
Initialize CR Stpr Htr
nelaV' short/long/verv long
Stpr Htr d •• elect

Pap,erF •• d Stpr Htr Ini t end Drive
Stpr Htr Phase LookUp Table - Inde.ed
Charact.r Translation and proc •• sing
PrintH.ad firing
Stpr Htr Accel. Time calc. and memorization
Stpr Htr Deceleratian
SHDriv (FAccal/RAccen - For .. ard Ie Reverse

Stpr Htr acceleration Ie drive
Initiaization ~mp-on-R.s.t
Program Body - .11 calls
Character Input test and Char Buffer fill loop
Interrupt •• rvice rout in ••

6-740 230795-001

inter

oollO
001)9

007F
0080
002F
0051

oo2F
0008
OOOA
002F
0025
007F
0050

0020
0021
0022
0023

0000
0001
0002
0003
0004

0005
0006

0007

AP-161

= 71 pg

72 , ---= 73 Data "elDrg
74 , ---75
76
77,
78 ,
79,
80 ,
81 ,
82
83
84 ,
811 ,
86"
87
88
89
90,
91 ,
92
93 ,

TOP

48-127
37-47

36
35
34
33
32

24-31
8-23
0-7

BOTTOM

Hex

2F-7FH
25-2EH

24H
23H
22H
21H
20H

18-1FH
8-17H
0-07H

D iption

80 Ch t ... Lin. Buff ...
Stp .. Mt .. 011 ••• 1/0 ••• 1 ti~ •• ~.mo .. il.tion
Unu •• d ,
Ch ... p .. int t •• t ASCII .od •• t ... t tmp .to ...
LF SI'I I •• , PhI Ind , Add .. p.u.do ... g
CR 8M Fo .. w ... d/R.v la.t PhI p.u.do ... g
P.u.do R •• : La.t Pha •• of .tp .. ~t .. not

b.in. d .. iv.n
R •• S.t ... Bank 1: Cha .. a.t.,. Handlin.
8 L.val Stack
R •• S.t ... Bank 0: Stp .. Mt .. FIR A.c.I/D .. iv.

94 , ---911
96 CH8FSZ
97 HUCpl
98
99 FCBfSt

• 100 FClflS
• 101 RCBUS

ECiU
Eq,u

Eq,u
Eq,u
Eq,u

lIOH
OD9H

7fH
80H
2FH

,.ha .. buff il. 0-79 • 80
,Cpl(1/2 CbBfSI> .> cpl of 27H - OD9H

D •• b~ 1
In. by 1

• 102 ChBfIS
- 103

Eq,u 81

,.ta .. t of .ha .. buff ...
,init ci .t .. t-allow. It .. a
, init CB' .t .. t-.11o". It .. a
,Io.d .ha ... nt w/.ha .. bu', .. Ini t She

• 104 ENDBUF
• 105 ASBfSI
• 106 DBBfSI
• 107 SI'IBFST
- 108 SI1BEnd
• 109 DMTop

ECiU
ECiU
Eq,u
EIiU
Eq,u
Eq,u

2FH
OSH
OAH
2FH
25H
7FH

,END OF CHAR BUFFER,
,A ••• l ... at •• tp .. mt .. bu' .ount
,D ••• I ... at •• tp ... t .. buf .ount
,STPR MTR BUFFER START
,Stp" Mt .. Data M •• o .. y Add nd
,Data M •• o .. y Top

• 110 DMSi .. Eq,u 93 ,Data M.mo .. y Sil. (1 ••• t.o .o .. kin >
• 111
• 112 LutPh
• 113 CPSAd ..
- 114 LPSAd ..
• 115 PTA •• S
• 116
=117 pg

Eq,u'
ECIU
Eq,u
Eq,u

20H ,Ia.t phI p.u.do add ..
21H ,CR phI p.u.do
22M ,LF phI p.u.do
23H ,Ch ... p .. int T •• t .od',.ta .. t tmp .to ...

• 118 » * * * * * • * * * * * • * * * * * • * * * * * * * * * * * •• * * * * * * *
= 119 Register allocatiDn
• 120 , * * * * * * * * * * * * * • * • *
• 121

122 All Indi ... ct Data M.mo .. y Add in. vi. eRn In.t mu.t u.e
- 123
• 124
- 125 ,
• 126

only ... gi.t 0 • 1 of .ith ist ... bank. Anu oth ill

= 127
• 128
- 129
• 130

131
• 132
• 133
• 134

b. ".J •• t.d b'l the A ... mbl... .
La.t cha .. a.t ... in labl. indicat •• R.gi.t ... Bank ... f nc.d

Register Bank 0
J ---
T~pROO Eq,u RO ,'RBO T.mpo .. a .. y R.gist ...
TSt .. RO ECiU Rl ,Sto ... Tim. R.gSste .. RBO
QStR20 ECIU R2 ,Q.n ... al Status R.gist ... RBO
PhlR30 EIiU R3 ,Stp" Mt .. Ph ••• R •• i.t ... RBO
CntR40 Eq,u R4 ,Count R ••. Ph ••• count-St, .. Mt .. loop.

, A ••• I/Dec.1 Count
• 135 TConRP Eq,u R5

R6
,Tim •• on.tant RBO

• 136,LnCtRO Eq,u ; Line count
• 137
- 138 OpnR70 ECiU R7 ,'avail.b 1.
• 139
• 140 , R •• ist ... Bank 0 Data M.mo .. y Add
- 141 , --.----------------

6-741 230795-001

0000
0001
0002
0003
0004

0005
0006

0007

0000
0001
0002
0003
0004
0005
0006

0007

R 142
= 143
= 144
= 145

146
= 147
= 148
= 149
= 150
= 151
= 152
= 153

TmpAOO
TStrAO
QStRAd
PhzA20
CntRAO

TConAO
LnCtAO

OpnA70

PG

EIlU OOH
EGU 01H
EIlU Oi?H
EGU 03H
Equ 04H

Equ 05H
Equ 06H

EGU 07H

. ' ,

AP-161.

;TempOTBTV Register OM addres$
;Time Store Register DM addre.s
I RBO Cllar Statu,s Reg DM address
IStpr Mtr Phase Registor DM addre.s
; Count Reg', Phase count-6tpT' Mtl" loops
i Accel/Decel Count OM address
; Time. constant ,reg OM add,...ss
;Lin_ Count Register DM .ddress

; available

= 154
= 155
- 156

--
= 157 I

= 1:58
.. 159
- 160
.. 161

RBO Status Byte Bit Definition

Bit Definition

Stpr Mtr Direction: L-ta-R - 1. R-,ta-L = 0
= 162
= 163
.. 164
.. 165
- 166
.. 167

7
6
5
4

1 = Sink / 0 • Not Sinked, Print H •• d Init and Fire
Stpr Mtr at speed and CR not left of Home
Ace.I/O.cel Init, 1 = Done I 0 - Not Done

= 168
.. 169
.. 170
.. 171
.. 172
.. 173
.. 174
= 175
.. 176
.. 177
= 178
... 179

180
.. 181
= 182

183
• 184
= 185
= 186
.. 187
.. 188
.. 189

190
R 191
.. 192
.. 193
.. 194

= 195
= 196

= 197

3
2
1
o

1 • FailSafe I 0 - Constant, Time Window
1 - Form Feed (0 - Line Feed
1 = Do Nat Print / 0 - Print
FAccel/DAccel drive Readv = l/NotRdv = 0 (exit

drive & deeel ,.tpr mtr)

B,it Mask.: RBO
Stepper, Motor c~ntral bit masks function an QStRl0

LRPrnt EIlU
RLPT'nt Ellu
SnkSet Equ
ClrSnk Equ
AtSpdF Equ
NAtSpd Equ
ADIntD Equ
ADIntN EIlU

FsCTm EIlU
ClrFsC EIlU
FT'mFd Equ
LineFd EIlU
DoNatI' Equ
OkPrnt EIlU
Readv EIlU
NatRdv Equ

PG

80H
7FH
40H
OBFH
20H
ODFH
10H
OEFH

08H
OF7H
04H
OFBH
02H
OFDH
01H
OFEH

I Left .to Right Printing <CRL)
I Right to Left Printing' (ANL)
IReadv Print flag
Iclear Ready to Print Bit
.Stpr Mtr at constant speed
.Stpr Mtr Not at speed
IAcc.I/Decel Init Done
IAceel/D.eel Init Nat Dane

IFailSafe/Canstant Time
IClear FailSafe/Canst time flag
ido formf •• d
ida line f.ed
.set Do Nat Print Stat bit
I~eset - Ok to Print
IReadv drive Stpr Mtr
.Nat Readv exit Stpr Mtr drive

* Register allocation (cont)
- 198 I * • 199
= 200

= ~OI Regi~ter Bank 1 .. 202 --203 TmpRl0 EIlU RO .. 204 CAdrRI EGU Rl j chaT' data memory ad,dr regi.t.T'
= 205 ChStRI EQU R:o?,. iehar processing status bvte regist.,.
='206 CDtCR1 EGU R3 ; Char Dot count register
= 207 CDatRl Equ R4 ; Cha.,. dot ~mp, storage 1'eg i'ster .. 208 -cCntR1 Equ RS I Char count temp register .. 209 StrCR1 EGU R6 IS~aT'. Char Regilter
:' 210
= 211 OpnR71 EGU R7 ; Avail.-ble .. 212 .. 213 I Register Bank 1 Data Memory Address .. 214 --

6-742 230795-001

inter
0018

'0019
001A
001B
001C
001D
001E

001F

0080
007F
0040
OOBF
0020
OODF
0010
OOEF

0008
00F7
0004
OOFB
0002
OOFD
0001
OOFE

0004

0020
007F

UOF3
00F6
00F4
00E5
OOEO
00C8
OOOD
0020

0081
0082
007F
0042
00C4
0018

- 215 TmpAI0
- 216 ChARRl
- 217 ChStAd
- 218 CDtCAl
- 219 CDotAl
- 220 CCntAl
- 221 St,.CAl
= 222
- 223 OpnA71
• 224
-.225
= 226 PG

Equ
EQU
Equ
EQU
Equ
Equ
EQU

EQU

24
25
26
27
28

.29
30

31

AP-161

Jtlmpor.~v/scr.tch register
Jcha,. d.~. mlmorv .dd~ rlgist&r
,RBI Cha,. Status Reg add,.ess
,Cha" Dot count ,..giste,.
,Cha" dot temp sto,.a;e ,.egiste,.
JCh.~ count temp register
; Store Cha,. Rlg,i stl"

, Avdlable

- 227 , --
= 228 RBI Status Bgte Bit Definition
- 229 , --.. 230
- 231
• 232 I

- 233
• 234
- 235
- 236
• 237
• 238 ,
- 239
- 240
- 241
• 242

Bit

7
6
5
4

3
2
1
o

Definition .

-------~--------------~------------------Stp,. Mt,. Di,.ection: L-to-R" 1. R-to-L" 0
Cha,. Init. 1 - Don. I 0 • Not Done
Cha,. Lookup Tabl. Page: 1 - Pgl. 0 - Pg2
1 • Test / 0 • Normal cha,. print/input

1 .. EOF I 0 • Not EOF
Full - l/Not Full· O. Line in Cha,. Buf'.,.
1 .. CR/(LF) I 0 .. Not CR/(LF)
1 - Init I 0 - Do Not Init, CB registers doni

.. 243 Bit Masks: RBI
- 244 ; Charactl" printing bit masks function on ChStR1
• 24~ J --
.. 246 Ch,.p,.n ,Stp,. Mt,. Di,.ection: L-to-R" Equ 80H
a 247 Cl,.CP,. ,Stp,. Mt,. Di,.ection: R-to-L" 0 Equ 7FH
.. 248 ChlntD ,Set Cha,. init Don. Equ 040H

249 ClntND ,Reset Cha,. Init Not Done Equ OBFH
a 250 ChOnPl ,Page 1 cha,.. set rent,.y bit (ORL) Equ 20H
= 251 ChOnP2 ,Pag.2 ch.,.. ,. •• et rent,.y bit (ANL) Equ ODFH
.. 252 Tstp,.n ,Cha,. .p,.int test Equ 10H
.253 NrmPrn INormal char input Equ OEFH
= 254
.. 255 EOF
- 256 ClrEOF
.. 257 CRLF
• 258 Cl,.CR
.. 259 CBFLn
• 260 NCBFLn
.. 261 IntCBR
.. 262 ClICBR
.. 263
.. 264
= ,265 PG

Equ
j::qu
Equ
Equ
Equ
Equ
EIIU
Equ

08H
OF7H
04H
OFDH
02H
OFDH
01H
OFEH

,set EOF Flag
,c 1 .. ,. EOF flag
, CR/LF
,Clear CR/LF

- Not EOF

,Full Line in Cha,. Bu"."
,Not Full Line in Cha,. Bu"."
ilnit of CB registers ~one
,Init of CD ,.egist.,.. not done

.. 266 * = 267 E~uates (cont)
,. 268
- 269 *
• 270 ,
• 271
• 272 RLPShf
,. 273
= 274 Ascii'
• 275 A.cLst
,. 276
• 277 = 278
= 279
.= 280
,. 281
,. 282
= 283

CRCpl
LFCpl
FFCpl
EscCpl
AscCpl
FTCpl
CR

= 284 Space
285

,. 286
= 287

288
,. 289
,. 290

291
,. 292
,. 293
,. 294

LA,End
PA.End
AscStp
PgLnCt
PgLCpl
EOFCpl

Mise

EIIU 04H

Equ 20H
EIIU 7FH

EIIU OF3H
Equ OF6H
EIIU OF4H
EIIU OE5H
Equ OEOH
EIIU OC8H
Equ ODH
EIlU 20H

EIIU 81H
Equ 82H
Equ 7fH
EIIU 66
Equ OC4H
Equ lBH

Loop count values

6-743 .

,R-to-L p,.int lookup t.bl •• ddr shift

,he. nmbr of .i,.st Ascii Cha,.
ihex nmbr of last Ascii Char

; ASCII control code 2's compl.ment

iAscii code (hex)
iAscii code (hex)

JAscii End 2'. cpI - test line start
iAscii End 2'5 cpI - within line print
;Ascii mask, strip off MSD
,Page Line Count: D.'ault~ = 66
;Printed lines per page test
iEOF ascii code cpI

230795-001

inter
0006
OOOA
0004

0004
0024
001li
0018

0001
0042
0003

0080
0030
OOCC
0000
OOCC
OODA
0092
OOCO
0098

OODF
0020
OOEF
0010

OOOC
0003

0040
OOCO

0000
0003
0008

0001
0003
0002
0000

0004
OOOC
0008

,0000

.. 295 NDtCCt

.. 296 EDtCCt
= 297 PHCntl
= 29B
.. 299 ILFCnt
.. 300 LPI6p6
• 301 LPIBpB
= 302 LPI10
.. 303
.. 304 LineCt
.. 305 FmFdCt
• 306 Status
.. 307
.. 30B
= 309

= 310 PG

Equ
Equ
EOU

Equ
Equ
Equ
Equ

Equ
Equ
EOU

AP-161

06H
OilH
04H

04
36
27
24

01
66
03H

iNormal Dot Column Coun~
IExpanded Dot Column Co~nt
INUMB£R OF SM PHASES ON INIT

I Init LF step/phz count
;Lines Per Inch 6.6
,Line. P.r Inch B.B
ILine. Per Inch 10

; lin.feed count
;lin •• per formf •• d count
I SEE BELOW FOR, STATUS BYTE DEF.

TEST: SET FOR CR STPR MTR CONTROL

• 311 J * = 312 TIMER VALUES - UPI Tim.rICount.r is UP Counter
313 *

• 314 I 12 MHz Clk timings
.. 31~ I --
.. 316 DLYCL EOU 80H I DELAY COUNT Long
- 317 DLYCS EOU 30H I DELAY COUNT Short
= 31B DlyTim EOU 2~6-~2 I TIME DELAY con.tant ~2.OmS
.. 319 FailTm EOU 2~6-256 ,FaiIS.f. TIME" ~17.0mS
• 320 CrTmrl EOU 256~~2 ICR Stpr Mtr Ph ••• TIME ..
.. 321 CrTmr2 EOU 256-70 ICR Stpr Mtr Ph.s. TIME ..
.. 322 CrTmr3 EOU 256-110 ,CR Stpr Mtr Ph.s. TIME -

~2.0BmS

~2.40mS

~4. 16mS
.. 323 IntTm2 EOU 256-64 IInit Stpr Mtr Ph ••• TIME" ~2.40mS
.. 324 LFTMRI EOU 2~6-104 ILF Stpr Mtr Pha .. TIME ... ~4. 16mS
= 325
.. 326
.. 327
• 32B
.. 329
.. 330
= 331
• 332

NoUsy
Busy
Ack
ReSAck

.. 333 StrpLF
• 334 St"pCR
.. 335
.. 336
• 337 = 338 PTRGLO
= 339 PTRGHI
.. 340

1/0
Equ
Equ
E'l.u
Equ

po,.t bit mask.
ODFH·
20H
OEFH
10H

Misc bit M.sh

INot BusV
I Busy
lAck
,ReSet Ack

Equ 'OCH
Equ 03H

IStrip off .11 bits but LF Stpr Mt"
• Bt"ip off all bits but CR Stp,. Mt,.

p,.int
bit

EOU
EOU

H.ad fi,. •• on low going .dge of Trigg.r
.9 in dot column is m.5k.~ off, a1 ".:

40H IPH TRIQGER BIT - LOW
OCOH "PH TRIGGER BIT - HIGH

P2. bit 6

= 341 * * ~ *
• 342
·'343
• 344 = 345

I Stepp.,. Moto,. Ph ••• Stat. Equat ••

"*
Ph ••• Shift Ind.x Offset Off.et

IF CR .tp" mtr ph ••• data start addr = 346
= 347
.. 34B
= 349
.. 350

FStCRP
RStCRP
STLFF

Stepp'"
EOU
EOU
Equ

MotoT'
OOH
03H
OBH

IR CR stpr mtr ph.s. d.t •• t.,.t addr
IP~per f.ed .tpr mtr ph.s. d.ta st.,.t .ddr

= 3~1 j

= 352 CRMFPl
353 CRMFP2

= 354 CRMFP3
= 355 CRMFP4
.. 356
.. 357
= 35B
• 359
.. 360
.. 361
.. 362
• 363

I

LFMFPI
LFMFP2
LFMFP3
LFMFP4

= 364 j PG

CARRIAGE STEPPER MOTOR PHASE EOUATES
Fo"' ,.d (1' thl'u 4) Ik Revin' •• (4 thY"u f) :
EOU 01B ICR STPR MTR PHASE 1
EOU liB ICR STPR MTR PHAS£ 2
EOU lOB ICR STPR MTR PHASE 3
EOU OOB ICR STPR MTR PHASE 4

,LINE FEED STEPPER MOTOR PHAS£ EOUATES
FoY"",a,..d:
EOU 0100B
EOU 1100B
EOU 1000B
EOU OOOOB

6-744.

ILF STPR MTR PHASE 1
I LF STPR MTR PHAS£ 2
ILF STPR MTR PHAS£ 3
ILF STPR MTR PHAS£ 4

230795-001

inter AP-161

OOOS

OOOC

0006

OOOE

0000

0000 040B

0003
0003 142'
000' 93

0007
0007 1429
0009 C'
OOOA 83

OOOB 1~
OOOC 3'
OOOD B40F
OOOF B42F

0011 B44B
0013 9400

001' B422

0017 1400
0019 142C

• 368 * * * * * • * ~ * • * • • * * * * * • * • • * * * * * • * • • • = 366 STEPPER ~TOR SELECT & CONTROL [CURRENT LIMITINg]
·367
·368 ·369,

• • • * * * • * * • * * * * • • * * * * * * * * * * * * • * * *

• 370
• 371
• 372
·373 I
• :5'4 I

• 37'
·376 I
• 377
• 378
.379 I

·380

PORT BIT ASSIONMENT:

, , "
S S S -
L. C C
F R R

8 1
o 3

2

, , , ,
3 2 1 0

·381
• 382
.3S3

CODING:

·384 I
·38'
-386
·387 I

• 3SS I
-389
·390
• 391
• 392 SCRSO
·393
• 394 SCR132
·39'
.396 BLF
• 397
• 398 SIIOFF

3'i9
400
401 pg

SL.F
SCRSO
SCR132
SIIOFF

EGU

EGU

EGU

EGU

0110 06H
1 0 0 0 OAH
1 1 0 0 OCH
1110 OEH
W/SCRSO • SCR132 '0' CBOTH SEL.ECTED]

DEF AU!. TIS TO 80 COL..
CDO NOT KNOW WHETHER SCRao-'O' WIL.L.
SEL.ECT SO COL. ONLY] - REGUIRES TEST.

OSH • SELECT CR STPR "TR - SO COL.
I ",/L.F 8TPR ~ OFF"

OCH I SEL.ECT CR STPR "TR - 132 COL.
I ",/L.F STPR ~ OFF

06H ISEL.ECT L.F STPR KfR ON
I ",/CR STPR ~R OFF

OEH ISEL.ECT CR • L.F STPR ~R OFF

402. _._**.*-- * * * * * .' * * * * * *
403 MAIN PROGRAI! BODY
404 I * * * * * * * * * * * * * • * * * * * • * *
40'
406 j

407
408 I
409
410
411
412 START:
413
414 I
41'
416 IBFIY:
417
418 I
419
420 T"RIY:
421
422
423
424
4l2'
426 R ... T:
4127
428
429
430
431
432
433
434;-
43' I
436
437 Ho ... :,
438
439
440 ClInpt:
441
442

PDllter On I Reset PrDgram Entry

PROOR~ START

0-.,

.J~

INPUT
ORO
CaU
RETR
Tl~R
ORO
Call
SEL.
R.t

Dis
Dis
CaU
Call

Call
Call

Call

Call
CaU

OOH

RESET

BUFFER FULL. INTERRUPT CALL. ENTRY AND VECTOR
03H
IBFtS

OVERFL.OW INTERRUPT CAL.L. ENTRV AND VECTOR
07H
TI'IRIS'
RBO

INITIALI ZATION

I
TCnt!
InitAl
Cl,.,," .

InitCR
InitL.F

I •• t all .,.iti.al outputs ina.tiv.
•• l.a,. all data O,.V - 93H to 7FH
• do not .lea,. RBO. RBI 0,. St •• k
• CALL. CR S" POWER ON INIT
,CALL. L.F ~ POWER ON INIT

PlAIN PROGRAPI LOOP

, CRHo.e

Dafaa.
ESC8fF

6 .. 745

• Ca'l1 Ho ... CR ,.ouUn. -
• fix •• logical and phvstcal CR Ho ••
, •• t d.fault ,.egister valu ••
,Stat Swit.h I CB Input S.,.vic. T •• t

t •• t '0,.: CB fuli/fill. L.F. FF.
Cha,. p,.nt T •• t

..

..

230795-001

0018 3400
001D 940D
001F D5
0020 FA
0021 7215
0023 0419

0025 8A20
0027 15
0028 83

0029 15
002A 35
002B 83

002C D5
002D FA
002E 53EF
0030 AA
0031 C5

0032 OF
0033 123D
0035 3245
0037 5249
0039 725E
003B 042C

003D FA
003E 4304
0040 AA
0041 940D
0043 042C

0045 940D
0047 ~42C

0049 D5
004A FA
004B 4310
004D AA
004E B823
0050 FO
0051 0381
0053 9657

0055 8020
0057 FO
0058 AF
0059 10 .
005A 8439
005C C5
005D 83

443 Rep .. t: ·C.,ll
444 C.U
445 SEl
446 !'Iov
447 ..IB3
448 ..Imp
449
450 PQ

t.

8!'1Driv'
I-FDU'"
RBl .
A. 'Ch8tRl
Home
CBInpt

A,..181-

" C.ll Fo d Stp .. !'It .. · D .. i".
,C.ll lin.fJed stp .. !'It .. D1'iv.

,g.t> the Ch ... St'.tu. Regiah .. RBl
'Jump to CR BI'I Hom. if EDF bit •• t
,loop to Cha .. Buffe .. Input t.~t

451 * * * * * * * • *
452 Interrupt Service Routine
453
454
455

* * * * * * * * .'. * * * * * * * * * * * * * * * * * * *. * * * * * * *
456 Input Buffer Full Interrupt Service Routine
457 , --458
459 IBFIS:
460
461
462
463
464
465
466

467

Acknowledge Ch ... input .nd •• t Hold/BusV Activ.
ORL P2 •• Bu1V 'get & .et DBB ACK/BusV Bit.
Dis I ,di •• bl. IBF int.r .. upt.
R.t

Timer I Counter Interrupt Service RoUtine
468 --~---469 'ITF inte .. rupt vic. routine dis.ble •• 11 in~ .. du .. ing
470, .tp .. mt .. ph ••• ·.hi'ting
471 T!'IRIS. . Dis I ,diaab1e IBF inhr .. upts
472 Di. TCntI ,dic.bl. ITF int upt.
473 Ret
474
475 PQ
476 " * 477 Ext.rnal Status Switc~·ChfckIChar. guff.r Fill
47B * * * * * * * * * * * * * * , * * * * * * * * •• * * * * * * * * * * * *
479 ESCB'F: ,P ... p '0 .. no ... el ch., ... ct ... handling/input

SEl
!'Iov
ANl
!'Iov
SEl

Test
!'IovD
..IBO
..181
vB2
..IB3
..Imp

RBl
A.ChStRl
A •• N .. mP .. n
ChStRl. A
RBO

Exh .. n.l St.tus
A. P7
Fo .. mFd
linFd
Ch .. Tst
OnLine
ESCBfF

'get the .ch ct.r .t.t ... g bvt.
, •• t no .. m.l ch ct ... input
,sto ... the .t.t bvte

Port
'get the .t.t switch po .. t bit.

•• rvice F01'm' •• d
•• rvice Lin.f.ed
.... vic. Ch ct ... TEST

, vic. Ch.T" Buff ... Che.ck/Fill
, loop

480
481
482
483
484
485
486 ,
487
488
489
490
491
492
493 --~~-~--------------------------494 Fo .. mFd: !'Iov
495 ORl
496
497
498
499

Mov
Call
..Imp

500 linFd: C.ll
501 ..Imp

A.GStR20
A.4IF .. mFd
GStR20.A
lfD .. iv
ESCBfF

LfD1'1v
ESCBfF

'get the .t.tu. b~t.
••• t the 'D1'm' •• d .tat .l.g
, .to ... · t .. h •• tatu. b~te
'do a fD1'mhed

,do. line d1'lv.

502 , --503 ChrTst· BEL
504

.505
506
507
508
509
510
511

Mov
ORl
!'Iov
Mov
Mov
ADD
..INZ

512 Mov
513 AscCld: !'Iov
514 Mov
515 Inc
516 C.ll
517 8El
518 Ret

RBl
A.ChStRl
A •• T.tPrn
ChStRl. A
TmpRl0 •• PTA.cS
A.ITmpR·10
A, •• LA.End
AscCld

ITmpR 10 •• Asc 11
A.ITmpRl0
OpnR71. A
ITmpRl0
P .. nT.t
RBO

'get the ch eter st.t ... g b,te
••• t ch ct ... ,t.st flag
,.to" •. til •• t.t ·b~t.
'load the p.u.do A.cil. code ·tmp ".9 .dd ..
,g.t ~h. inc'd •• cil cod.
,t •• t fo .. code .nd
,i' not cod •• nd Jmp to lo.d
,if .ri~, t.rt .scu .t b.g.inl.ng
,.to~. the .scii,cod •• t ... t
,ge~ the •• cli cod •• g.in
.pl.c. in the emptv ... gi.t ...
,Inc st ... t ASCII ch ... in d.t. m.mo .. ~
,c.ll the DI'I lo.d p .. oc.du ...
' l.ct ".9 bank 0

519 , --

6.-746 230795-001

inter
005£ D5
005F 05
0060 FA
0061 3267
0063 146D
00650460
0067 C5
0068 83

006" D5
006A FA
0061 32EC
006D 527C

006F 05
0070 D6EC

0072 FA
0073 127C

0075 4301
0077 AA
0078 1"7F
007A ID50

007C EDl6
007E FA
007F 4302
0081 53FI
0083 53FE
0085 AA
0086 FA
0087 '2El

008" "AEF
0081'22
ooec 537F
008E A8
008F 8AI0

00"1 03EO
00"3 F6"7
00'J5 04"C
00'J7 "7
00"8 F8
OO'J" Al
OO"A 04E3

OO"C F8
0~D03F3
OO"F C6C3
OOAI F8
00A2 031B
00A4 "6AA
00A6 F8
OOA7 Al
00A8 041"
OOAA F8
OOAB 03F4
OOAD "hEl
OOAF C5
0010 FA
OOBI 4304
0013 AA
0014 D5
0015 FA
00B6 4304

0018 AA
OOB" FA

520 OnLin.:
521
522 ca'Ckl:
523
524 II.Ck:
525
526 caCkEx:
527
528
529 PG

BEL
EN
Kov
Jal
Call
.lap
BEL
Rlt

RII
,1
A.Ch8tRl
CICkEx
CaFi11
CaFCkl
RaO

AP·161

,a.l.ct cha~ bu",~ ~.giat.~a
,"nabl. intl~~upta
,g.t the Cha~ 8tat a~tl
,i' Ch~ au' haa full lin •• xit
,~.a. a cha~ into Cha~ lu".~
'loop to Cha~ lu' Ful t.at

530 , --531 Character Input
532 , --533,
534 ,
535 IaF8~v:'
536
537
538 CaF111:
53"
540
541
542

Input luf'"~ Full al~vicI ~outinl: t •• t 'o~ Cha~ bu".~ 'ull-Ixit
.lal load cha~ into cha~ bu""~

BEL Rli
Kov A.Ch8tRl
JB1 CaFuli
.112 CIPad

EN
JNIBF

I
CIF1Ex

'glt the RIO atat b~t.
.i. Do Not P~int lit S.t - EXIT
.t.at fo~ CI padding 'lag
, i. not pad Inabll cha~ input

t.ll thl hoat to •• nd cha~'s

543 , --544 ,
545
546

Ackno~l.dg. Cha~ input and •• t Hold/au.~ Activ.
Hov A.ChS~Rl ,g.t thl Rll Cha~ Stat I~tl
.110. SkpInt .t •• t 'o~ CB ha. b •• n Inltlalizld

547 , --548 • o. all Cha~ handling ~Igiatl~.
54"
'50
551
552

Init
ORL
Kov
Hov
Kov

A •• IntCaR •• et CI R.g .kip Initlallzation stat bit

553 caPad:
554 Skplnt: DJNZ "5 556

ChStRI.A •• av. the altl~.d atat b~tl
CAd~Rl •• FCB'St • load cha~ ~.g ~/cha~ bu'~ at~t
CCntRl •• Chl.Sz • load cha~ cnt ~eg ~/cha~ bu'~ size

CCntRI.LdCha~
A.ChStRl
A •• CaFLn
A •• Cl~C~

.DECREKENT IUFFER SIZE
'get thl status b~te
•• et Cha~ au"e~ Full Linl atat bit
.clea~ the CR/ILF) stat bit 557

558

""

Hov
ORL
ANL
ANL
Kov

A •• CnCIR
ChStRI. A
A.ChStRI
CBPadl

,~.a.t CB Init bit: init CB ~eg on ent~~
,ato~1 thl atatu. b~ta

560 LdCha~: Kov
561 Ja2

'glt thl atatua b~tl
.CI not full but CR/LF p~eviou.l~
, ~Iclivld ao pad CI

ANL P2 •• Ack ,output DIB Ack lo~
.In A.Dla .~aad thl Cha~
ANL A •• AscStp '.t~ip 0" KSB
Kov TmpRIO.A .tlmp .. va cha~
ORL P2 •• RISAck .output DBI ACK High

562
563
564
565
566
567
568 --~---------
56" tnt .o~ A8CII p~intable cha~act.~
570 ADD A •• ASCCpl ,t.at 'o~ Ca~~iag. R.tu~n
571 JC A.ciiC 'Jmp to .I~vice
572 .Imp Ch~Chk
573 AscHC: Cl~ C

A.TmpRI0
lICAd~RI.A
IBFS~E

,cl.a~ c.~~v 'I ••
'glt thl c~~ back 574 Hov

575 Hov 'load data m.mo~v ./Ch.~
576 .Imp
577
578
57" •
580 Ch~Chk:
581
582
583
584
585
586
587
5ee
58" Ch~Ckl:

'''0 '''I 5"2
5"3
5"4
5"5
5"6
5"7

'''II 5""

t •• t 'o~ CR/LF: if CR/LF St~ip off LF and .xit setting
Cha~ lu".~ Init Stat bit

Hov A. TmpRI0 .'glt thl cha~ back
ADD A •• CRCpl ,t •• t .o~ Ca~~i.g. Retu~n
JZ CRCh~ • i. CR go a.~vice it
Hov A/TmpRIO 1.lt thl cha~ back
ADD A •• EOFCpl .t.at 'o~ End O' File
JNZ Ch~Ckl ,i' not EOF Jap to CI Pad
Hov A.TmpRIO .i. EOF. plac. it in CB
Hov .CAd~Rl.A 'load data m.mo~v ~/CR Cha~
.Imp ExtS.t .E~it
Hov A.TmpRIO 'glt the atatus byte
ADD A •• FFCpl .t •• t ,'o~ Fo~mF •• d
JNZ CIPadl' ,if not FF Pad the CI
BEL RIO-
Kov A.OStR20
ORL A •• F~mFd
Kov OStR20.A
SEL RB1
Kov A.ChStRl
ORL A •• CRLF

'get the .tatu. byte
, •• t the 'o~m' •• d 'lag

~ ,.to~e the .t.~us b~t.

'get thl .tatu. byte
,s.t CRLF stat bit: pad balenc. 0' CB
, ~lth Space. unt.l 'ill

600 Hov ChStRl;1\
A.ChStRI

'.tD~' the atatu. b~t.
601 ExtSlt: Hov 'glt the statua byte

6-747 230795-001

inter
OODA 4302
OOBC 53FD
OOBE 53FE
OOCO AA
OOCI 04EC

00C3 FB
00C4 Al
OOC5 C5
OoC6 IE
00C7 FE
OOCB 03C4

OOCA E6DO
OOCC FA
OOCD 4304
OOCF AA
DODO D5
OODI 05
00D2 9ADF
00D4 DbD4
00D6 9AEF
OODB 22

00D9 FA
OODA 4304

OODe AA
OODD BA10
OODF 04E3

0DE1 8120

.00E3 C9
00E4 FA
00E5 32EC
00E7 52EC

00E905
OOEA 9ADF

OOEC B3

10100

0100 3622

0102 FA
0103 53BF
010' 53DF
0107 43BO
0109 4301
010B 53EF
0100 AA
010E D'
010F FA
0110 43BO
0112 AA
0113 C5

0114 BB21
0116 FO
0117 AB

653 ,

654
655

AP-161

DRL A • .cBFLn , •• t Ch.r Buff.+ Full Line st.t bit
ANL A •• ClrCr ,cle.r the CR/(LF) stat bit
ANL A •• CIICBR ,re •• t CB In1t bit: init CB reg on entry
Moy. ChStR1. A ... to ... the .tatu. b,te
Jmp CBF1Ex ,Exit

------------~-------------------------~----------------------~----------Store
Moy
Moy
SEL
INC
Moy
Add

JNC
Moy
ORL
Moy
SEL
En
ANL.
JNIBF
ANL
In

Moy
ORL

Moy
ORL
Jmp

PG

eR ,ch.", 'read
A.TmpRl0
IICAdrRl. A
RBO
LnCtRO
A.LnCtRO
A •• PgLCpl

NoFmFd
A.GStR20
A •• FrmFd
GStR20.A
RBI
I
P2.~otB·V
LFTe.t
P2.41Ack
A.DBB

A.ChStRl
A •• CRLF

ChStRI.A
P2 •• R.SAck
IBfSrE

in LF ch.r (.s.ume its .1 ... ·'. th) and ignor it
,g.t the ch.r hack
'load d.t 0 ... ' fIl/CR Char

line the lin. count
,g.t the line count
,t.st for p.ge f.ed In cnt·
, if LnCt -> PgLnCt set for.fe.d
'if not ~t .nd af page .kip
-, get the status bUte
'.et the form feed st.tus flag
's.v~ the st.tus b,te

fl.g

* * * * * * * * * * * * * * • * ••.• * * * * * * * * * * * * * * * * * * L-to-R/R-to-L Carriage Stepper Motor Drive
and Line Printing

ORG

R •• to".
Moy
Mov
Moy

100H

the ph ••• r.gister index .ddr •••••
T .. pIt00.4ICPSAdr 'get Ph. Stor.g. Addr psuedo reg
A.IITmpROO ,g.t stored CR la.t ph ••• inde. addr
PhzR3O. A 'place last LF pha •• index .ddr in Ph. . '.

6-748 230795~01

inter
0118 lB
0119 FB
011A 521E
011C 2440
011E BBOO
0120 2440

0122 FA
0123 53BF
0125 53DF
0127 537F
0129 4301
012B 53EF
012D AA
012E D5
012F FA
0130 537F
0132 AA
0133 C5

0134 B821
0136 FO
0137 AB

0138 CI
0139 FI
013A 523E
013C 2440
013E BI03

0140 1822
0142 FO
0143 E3
0144 1820
0146 AO

0147 BDBA

0149 2308
014B 3D

014C FD
014D 62
014E FI
014F E3

0150 B820
015240
0153 3C
0154 55

0155 740C

0157 FA
0158 F264

015A CI
015a FB
015C 5260
015E 2462
0160 1103
0162 246C

AP-161

6-749 230795-001

0164 IB
0165 FB
0166 526A
0168 246C
016A BBOO

016e 1682
016E 5672
0170 246C
-0172 00
0173 5677
0175 246C

0177 FA
0178 D27C
017A 247E
017C 74CA

017E 1698
0180 247E

0182 2300
0184 62
0185 55

0186 FA
0187 4308
0189 AA
018A 5690
018C 16AC
018E 248A
0190 00
0191 5695
0193 248A
0195 65
0196 42
0197 Al

0198 FA
0199 F2A7

0193 20AC
019D FA
019E 124C

01AO 4302
0lA2 53BF
0lA4 AA
OIAS 244C

0lA7 FA
0lA8 124C

OIAA 24AC

OIAe 5437

01AE FA
OlAF F2B3

AP-161

707
768
769

; fot'w.T'd:·
Set up
INC
MOV

770 Ac IF2:
771
772
773

.JB2

.JMP
MOV

fol" next phase
PhzR30
A.PhzR30
AFZroP
ANxtPh
PhzR30.8FStCRP

bit outp~t before entering ti~ing
,STEP PHASE DB ADDRESS
,CHECK THE PHASE COUNT REG

, ,CHK FOR COUNT B IT ROLLOVER
i.kip adr index t'eset
,ZERO CR SM PHASE REGISTER

loops

774 AFZroP:
775 A,NxtPh: 776 , _____________________________ w ____ ~ ___________________ ---------

777
778
779 TLOOP2:
780
781
782 tCHlu:
78:3
784

stage one time-r
wait for time

.JTF FAILSF'
VTI tCHKI
.JMP TLOOP2
NOP
.JTI
.JMP

tTruWI
TLOOP2

loop - T occurs befol"e Std timeout
out

,;;MP ON TIME OUT-t DOES NOT OCCUR 1ST
,IS T,HIGH-VMP TO tCHK
,LOOP FOR VTl OR VTF
j delalA' then double check T signal
,.JUMP T TEST TRUE-WAIT FOR VTF

785 tTruWI:
786
787

tnt for Print R,eady bit - was Print Head Fire Setup Done?
insert acceloration time/store time count done/notdone flag bit

788
789
790

Rd~Pr2:
PNRdy2:
SkpPHF:
tTruW2:

Mov A.GStR20 'get the status byte - prep for prnt
JB6 _RdyPr2 'if Re.dy Print bit set call PHFire
.Jmp SkpPHF , else skip Print Head Fire
Call PHFire iprint head solenoid fjre routine

VTF
.IMP

NXTPHZ
tTruW2'

,.JUMP TO SM ERROR
, LOOP TO TLOOP3

791
792
793
794
795
796
797

_ ... _________ :... _____________________ '-J.. ___________________________ _

798 "
799
800
801 FAILSF:
802
803

Step into failsafe/startup ti~.r .etup - T does not
occurs before Std Time timeout, load 'ail •• f. 8M protection
ti'me and wait for failsafe timeout or T. If T occurs

Mo~utPutA~~~::~i:medi.t~:~o:~t~Ii1~RV~~!a:omS
MOV ' T. A SM PROTECTION TIMEOUT
STRT T ,START TIMER

804 • ---
805
806
807
808
809 TLOOP3:
810
811
812 tCHK2:
813
814
815 StrTml:
816
817
818
819
820
821
822
823 NXTPHZ:
824
825

set the
Mov
ORL
Mov
JTl
JTF
JMP
NOP
.JTl
JMP
Stop

. Mov
MOV

Status bit
A.GStR20
A.8FSCTm
GStR20.A
tCHK2
DSLECT
TLOOP3

StrTml
TLOOP3
TCnt
A.T
@TStrRO.A

for Store time te.t
'get the .tatu. b~te
;s.t Fail.afe/constant time flag
,store the status byte
,IS THIGH
,IF TIME OUT QO SM ERROR
,LOOP UNTIL T HIQH OR T-OUT
,WAIT
I Jump out and stD~& elapsed time

JMP TO FAILSF LOOP
;stop the f.ilSa~. Timer
; 1'1Uld' the timer
,Store the time Te.d in indexed addT'
, - next entrv to A/D Memorize Time
; routine will add time constant to it

test for"orward I reverse phase start indirect index to load
Mov A.GStR20 ,store stat ~vte
.JB7 FDriv. 826

827
828 ,
829

Reverse test for Reverse Stpr Mtr Dl'ive procedul'e exit

8:30
831
832
833

'834
835
836 '
837

ALWAYS drive the CR to the left most HOME position
JNTO EOLn ,test if hom. po.itio·n Jmp stop
Mov' A. GStR20 ,get the status bVte
.JBO StrtT ,test R.adv stat bit:

, , if bit 0 =1 then Print More
ORL
ANL
Mov
Jmp

A.8DoNotP ,set the do not print flag
A.8ClrSnk ,clear Pri,nt Ready bit
GStR20.A ,save the status byte
StrtT' ,continue CR SM d~ive

, - only exit is HR
838 Forward
839 FDrive:
840 Mov

.JBO

test for Forward Stp,. Mtr Drive pToeedura exit

A.GStR20
StrtT

'get the statuI byte
,te.t Read~ stat bit: 841

842
843
844
845 DSLECT,'
846 EOLn:
847
848
849
850

.Jmp EOLn

Call DeelSM

test foT' forward
Mov A.Q~tR20
.JB7 FDrvFS

if bit 0 = 1 then Print
el.e Jmp to End Of Line

; Jump to start timeT' again

More
exit

,~all Sptr Mtr, Deceleration

Tavel'se ph.SF stal't indirect index to load'
,sto~e stat bvt.,
; Jmp to f d-rive flag set I

6~750 230795-001

0181 53FD

0113 53IF

0115 53DF
0117 ItA
0118 83

0200

0200920C

0202 892F
0204 ICOI
0206 FA
0207 4310
0209 AA
020A 4436

020C EC26

020E FA
020F 4320
0211 AA

0212 3226

0214 D5
0215 FA
0216 4340
0218 AA
0219 F21F

0218 192F
021D 4421

021F 19S0

0221 ID51
0223 1101
0225 C5

0226 722C

0228 FD
0229 Al
022A 4435

022C Fl
022D OXB
022F 6D

0230 Al

0231 FA
0232 53F7

AP·181

ANL A •• OkP .. nt I,. ••• ' p .. int 'l.g --01 p .. int , ani, if p .. inting R-to-L

, upd.t. the .t.tu. b,t.
FD .. vF8: ANL A •• Cl .. 8n' 'cl p .. int R •• d, bit

851
852
853
854
855
856
857
B58
B59
860

, •• t the Bt.tu. bit fo .. Sto ... u.,. t •• t
ANL A •• NAtSpd 'Ch ... · At p .. int Sp •• d IU'
"ov QStR20.A , •• v. the .t.tu. b,t.
RET

861 pg

B62 * * * * * * * * • • * * * * * * * * * * * • * * * * * * * * * * * * * 863 Stepper "otor Ateel. Ti.e Storeage
864 J * * * * * * • * * * * * * * * * * • * * * * * * * * * * * * * * • * *
865
866
867

ORQ

868 _T8: .J14
869

200H

DADInt
, Ent .. , h •• g.n St.t I,t.·in A
,i. AID 1nit don. - th.n Jmp

870,
B?l
B?2
8?3
8?4
B?5
B?6
B?7
8?B

1.t Ent .. , in1t1.1i ••• the AID Tim •• to 0 .. k1n i.t
"ov
"ov
"ov
DRL
"ov
.Jmp

TSt .. RO •• ~lfSt ,Lo.d the Stp .. "t .. luff ... St ... t Add ..
CntR40 •• ASI'S. ,Lo.d the luff ... Si.. I
A.QStR20 , •• t the .t.tu. b,t.
A •• ADIntD , •• t not 1.t Acc.l Ent .. , Fl.g
QStR20.A ,.to th •• t.tus b,t.
ADE.it , •• it - 1.t .nt .. , h.s not •• n t.d

• clo •• d t1m ... indo ..

the AID Sto ... count B~9 8t.p
880 DADlnt: D.JNZ
881

CntR40.8torCt ,dec Tim •• to star. count

"ov
ORL
"ov

A.QStR20
A •• AtSpdF
gStR20.A

'if not 0 .to ... the count
,.1 ••• t .nd-•• t don. fl ••
.g.t the .t.tu. b,t.
, •• t .t .p •• d/no mo .. e to sto .. a
,.to ... the .t~tu. bIt.

Init1ali •• Ch ... p .. int R •• i.t : if , .. inting an.bl.d
.JBl Sto .. Ct .if Do Not p .. int st.t bit •• t

" Skip the Ch gi.t ... in~t

Initi.liz •• 11 Ch ... R.g'.
T •• t fa .. L-to-R (fo d) 0 .. R-to-L (... v) p .. inting
SEL Rll
"ov A.ChStRl the .t.tus bVt.

n.g
8B2
B83
884
8S5
SS6
887 ,
SBB
SS9
S90
S91 ,
S92 ,
S93
894
S95
B96
S97
89S

DRL A.~HIntD
Mov ChStRl.A

, •• t
, •• t Ch.,. Init Dona fl •• - b,p ••• , •. v. the .t.tu. b,te

.J17 LdCIRl

S99 LdCIR: "ov
900 .J.,p
901
902 LdCIR1: "ov
903
904
905
906
907

LdCIR2: "ov
Mov
8EL

CAd,.Rl •• RCI'IS
LdCIR2

CAd,.Rl •• FCBfIS

CCntRl •• ChBnS
CDtCR1 •• 01
RIO

,t •• t Ch,. St.t I,t. R.tu,.n.d
if b1t 7 - 1 th.n p .. 1nt L-to-R

.lo.d ch.,. ,..g .. /ch.,. bu'" .t .. t R-to-L

,lo.d ch.,. /eh ... buf ... t .. t L-to-R

,lo.d ch ... cnt /ch ... bu'" si ••
, •• t the ch .. dot column cnt

90S , T.st fo.. t > Te 0.. t < Tc
:~~ Sto .. Ct: . .J13 F.UST ,t •• 't , '.U •• ~. tim itch

Tc - sto,.. Tim. Con.t.nt 1n u •• 911 ,
912
913
914
915
916 ,
917
9'lS
919 ,
920 ,

t <
Mov
"ov
.Jm,

A.TConRO ,g.t tim. con.t.nt cu ntl' in us.
ITSt,.RO.A ,".mo .. iz./Sto,.. the tim. - i~di ... ct .dd ..

921 ,

ADPR.t

t > Te - .to,.. Tim. Con.t.nt + F.iIS •••
t ••• Aeeal/Cn.t 8p.ed/Dec.I.W.vaFo .. mJ
.,u.tion 1.: T .. d - F.ilSaf. Ti.,. - T.

-> T .. d + C,pllF.pS.f. Tim.)
T. + Ten.t • T
Sto ... I" • .,o,.i •• T

Tim. EI.p •• d

- T.

F.ilST: "ov
Add
Add

922
923
924
925
926
927
928 ,
929
930
931
932

A.ITSt .. RO
A,.FTCpl
A.TConRO

,g.t the sto ... d tille
la's epl .dd
.Add: Tim •• to ... d +
• cu?,..n'lv in u ••
," • .,o .. i •• /Sto ... the Mov ITSt .. RO,A

R ••• t the St.tu. bit

Mov
ANL

A.gStRaO
A •• Cl .. FSC

tim.
'a .. Sto ... ·t1.,. t •• t

•• et the .t.tu. b,t.
...... t F.il •• f./const.nt ti.,. flag

•• wum •• ent,., via constant tim.

6-751 230795-001

II

..

inter
0234 AA
023' C9
0236 B3

0237 B92'
0239 ICOA
0231 FI
023C E3

023D 1820
023F 40
0240 3C
0241 Fl
0242 62
0243 55
0244 19

024' FA
0246 F252

0248 CI
0249 FI
024A 524E
024C 44!5A
024E IB03
0250 44'A

02'2 18
02'3 FB
02'4 '2'B
0256 44!5A
02'B BBOO

02'A F8
02'8 E3

02'C 8B20
02'E 40
02'F 1663
0261 44'F
0263 3C
0264 EC41

0266 8821
026B FI
0269 AO
026A 8478
026C 8490
026E B3

0300

AP·'l61

\
9313 Mov
934 ADPRott:,. Dec
93' ADExit: R.t
936

OBtR20. A,
TBt.-RO

'.100 •• the .tatu. byte
,stap the AID time data .100 •• add.

937 PG
938 J * .1'. * * *' * * * ... * * * * ... , * '* * ... * * * * * * * * * *
~ Carriage Stepper Motor Deceleration
940 ; * * * * * * * * * * ... * * * ... * * * * * * ... * * * * * * * *
941
942 D.clBM:
943 "
944
94'
946 '
947
948
949
950
9'1
9'2 Stl'tTD:
9'3
9'4

8.tUp tha D.c.l .. atian ,.egist.,..
Mav TStI'R,O •• 8M,BEnd ,L.aad the 8tp" 1'110. Buff.,. End Add,.
Ma~ CntR40 •• OSBfSz 'Load the Buffe,. Si.e
MOV A. PhzR30 ", g.t ph ••• indu .dd,. •••
MovP3 A.IA 'get ph •• e ,,.om indexed .dd ••••
patch togathe,. the CR la.t and LF next pha.e bits
Mav TmpROO •• L •• tPh 'load La.t Ph. p.u_da ,.ag to T.mp Reg
CRL A.ITmpROO 'patch togeth.,. CR exi.ting • new LF
MCYD P4.A ,OUTPUT BITS
May A.ITStrRO ,g.t tim_ '.am ind.xed data m.mo.y
MCY T.A 'load timer
STRT T ,START TIMER

, '~

955 Inc TSt,.RO ,stap the M.mo.ized time addr ind.x .eg
9'6 , te.t '0,. farwa.d ,..ve,. •• 'pha.e ota,.t indi •• ct index to load
9'7 JMov A.OStR20 lotore' .10.10 byte
9'8 .JB7 DclF2
9'9
960 , .eve.se:
961 Set up
962 Dec
963 MOV
964 .JB2
96' .IMP
966 DRZ.oP: MCY
967 .Imp'

'fo,.wa,.d:

for next ph •••
PhzR30
A.PhzR30
DRZ,.oP
DNxtPh
Ph',R30.'.RStCRP
DclR2

bit output be'o". entering timing
idecrement the ph ••• addT"
,Oet the ph. data addr
,CH,K FCR CCUNT BIT RCLLCVER'

,'ZERO CR SM PHASE REOISTER

loops

968
969,
970 ,
971 OclF2:
972

S.t up
Inc'
MCY

for nut
PhzR30
A. PhzR30
DZ,.oPh

phase bit output befar. ent.,.ing timing loop.
,increment the pha .. add,. ,

973
974
97'
976
977
978
979,

DZ,.oPh:
DNxtPh:
DclR2:

980
981
982 TLaopD:
983
984 NxtPDi2:
98'

'986
987 ,
988 ,
989 S.tRN:
990
991
992 DI'IE x it:
993
994
99'
996 PG

.JB2

.IMP
MCY

MCY
MovP3
p.tch
Mov
ORL
.JTF
.JMP
MOYD
D.JNZ

DNxtPh
Ph zR30 •• FStCRP

,Oet the phz data addr
',CHK FCR COUNT BIT RCLLOVER
,skip .d. index reoet
,ZERO CR SM PHASE REOISTER
,set up for nex't pha.e shift

A. PhzR30 ,g.t p'ha .. index .ddress '
A.IA ,g.t pha.e from indexed addr'aas

tog.th.r the CR la.t .nd LF next ph •• e bits
TmpROO •• L •• tPh 'load Last Ph. psueda ,.ag to Temp Reg
A.IT~pROO 'patch together CR exi.ting • new LF
NxtPD2 ,.IMP CN TIME OUT TC NEXT PH
TLoopD ,LCCP UNTIL TIME CUT
P4. A ' ' ,CUTPtlT BITS
CntR40.StrtTD ,Exit Te.t

Set ~t~r •• g. of next pha •• data in psueda add,., This insu,.a.
next ph ••• is •• ~u.nc. correct for stpr mtr drive direction
Mav TmpROO •• CPSAdr ,get Phz Store.ge ~ddr psuada reg
MCY A.PhzR30' ,g.t Ph. data
Mav ITmpROO.A '0100". CR N.xt pha •• index add,.
C.ll DlyLng
C.ll D.Sl8M
RET

997 J * * * * * * .'. * * * .. * * * * ... '.,. * * * * * * * * * * * * ... * * * * *
998 Stepper Motor P.~ase Sb ift DefinitionS'
999,

1000
1001
1002
1003
1004

'tOO,
1006
1007 ,
1008
1009 "
1010
1011

All p"ogra~ pracadura. call this data,

* * * * * * * * * * * * '* * * * * * * * * * * * * * * * *'* * * * * * * *
CRQ 300H

,
DEFINE PHASE ADDRESSES:
THE PHASE DATA IS ENCCDED TC THE ADDRESS CALLED DURINQ THE
STPR MTR ENEROIZE SEQUENCE CCRRESPCNDING TC THE NEXT PHASE
'C~ ~HE SEQUENCE REQUIRED,

CARRAOE MCTCR, ENCCDINO FORWARD - LEFT-ta-RIOHT"
REYERSE RIOHT-to-LEFT' '

6-752 230795-001 '

0300 01
0301 03
0302 02
0303 00

0308

0308 04
0309 OC
030A 08
030B 00

030C FA
030D B211

030F 4400

0311 266B
0313 326A
0315 D21B
0317 FA
031B 4340
031A AA
031B D5
031C FA
031D D23A

031F FI
0320 03F3
0322 C626
0324 6437
0326 FA
0327 F22B

0329 6432

1012 ,
1013 ,
1014
1015
1016
1017
10lB
1019
1020
1021
1022
1023
1024 ,
1025
1026
1027
102B
1029
1030
1031
1032
1033
1034

R.v.~.e direction ENCODING is the •• me b~t ••• cc •••• d in
r.v.~ •• direction

DB CRMFPI
DB CRMFP2
DB CRMFP3
DB CRMFP4

* * * * * * * * • *

PG

LF MOTOR PHASE ENCODE. DECODE: FORWARD (CLOCKWISE)
For~ard direction ENCODINQ:

ORQ 30BH

DB LFMFPl
DB LFMFP2
DB LFMFP3
DB LFMFP4

103~ * * * ~ * 1036 Accel/Decel I Character Handling Test
1037
103B ,
1039 I

1040

* TEST > Is CR Stpr Mtr A. Speed ??
Ve. - SetUp do Character Proc •• sing
No - Calculat. I Store the Acceleration Ph.se Shift Time (11)

1041 , ----r---------------------------~---~
1042
1043 ADPTst: Mov
1044 .JB5
1045
1046
1047

..Imp

A.QStR20
PHFSet

ADMmTS

'get the st.tus b~te
,test if Stpr Mtr At Speed

Jmp to Prnt Head Fire Setup
i.l •• Call Ace.I/Deeel Memory Time Store

1048 J * 1049 Process Characters for Printing
1050
1051 *
1052
1053
1054
1055
1056
1057
105B
1059
1060
1061
1062
1063 I

1064
1065
1066 PHFSet:
1067
106B
1069
1070
1071
1072 SinkSt:
1073
1074
1075
1076

1077 PG
107B

Character dot matrix ~ normal char
= Dot Column

b =- Blank Column

b d d d d d
(Ch.'r Mat,.i x)
o 0 0 0 b
000 1 d
o 0 I 0 d
o 0 lid
o 100 d
o 1 Old

..INTO Ret,."

.JBl NPRet

.JB6 SinkSt
May A.QStR20
ORL A.IISnkS.t
May QStR20.A
SEL RBI
May A.ChStRI
.JB6 PageCk

;if R-O not r.ad~ to print-exit
'if Do Not Print stat bit set - EXIT
iif blt p~eviousl~ set-skip setting it
'get the status bute
'set Prnt R.ad~ Sink bit
isave the status b~te

;get char status register addr
itest Char Init Done. 1 = Print Dot

o = Qet ChaT'

1079
lOBO

Call for Individual cha~acter processing: mid line test if CR/(LF)

lOBI QetChr:
10B2 test
IOB3 CRChCk, Mov
1084 ADD
10B5 .JZ
10B6
10B7
10BB
1089
1090

..Imp
CRLnCk: Moy

.JB7

..Imp

for CRI (LF,) if
A.@CAdrRl
A.IICRCpl
CrLnCk
Aniel
A.ChStRI
HlfLn

SpFi 11

it is the test position ~ the line
; get charecte-r
itest for Carriage Return

if CR go service it
'if not CR Insert Space Char
;get cha~ status register addr
,test Chr Stat B~te Returned

if bit 7 - 1 then Print L-to-R
; if R-to-L p~int skip exit upon CR detect

1091 , ---

6-753 230795-001

0328 FD
032C 03D9
032E F632

0330 648A

, 0332 97
0333 2320
0335 6438

0337 Fl
0338 7498

033A FA
0338 8241
033D F4EB
033F 6443
0341 D4FO

0343 EB61

0345 FA
0346 538F
0348 AA
0349 ED58
0348 53FD
034D 53FE
034F AA

0350 C5
0351 FA
0352 53FE
0354 AA
0355 D5
0356 6468

0358 FA
0359 F25E

035819
035C 6468
035E C9
035F 6468

0361 FA
0362 F267

0364 CC

0365 6468
0367 IC

HlfLn:

AP-161

if L-to-R printing
Mov A,CCntRI
ADD A •• HlfCpl

~xit the line if less'than 1/2 line printed
J load ch.~ cnt reg w/cher bufr lize
,add the 2'. cpl of 1/2 chr buf size

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

JC LnPad , if CB>1/2 full set CR/LF stat bit for p~d
, If CB<1/2 •• t buffer full stat bit

Jmp MdLnEx
SpFill.
LnPad: Clr

Mov
Jmp

C
A,ISpaee
Ch Isrt

; rni'd-line exit

Jclear c.rr~ 91ag
; insert a space char
;char inserted Jmp over get chaT

; --

1116

AsclCl: Mov A •• CAdrRI 'get character
ChIsrt: Call GCharl ,call the char lookup/trns table
; --, fetch
PageCk.

Mov
J85
Call
Jmp

FxJmp I: Call

PG

the char dot

A.ChStRI
F.Jmpl
ChrPg2
MtxTst
ChrPgl

column data
ipage test for balance of char
'get the status byte
if1x Jmp over page boundries
,Ascii char 50 - 7F He.
I Jump to Matrix Test
,Ascii char 20 - 4F He.

fall thru to print matrix
and CD count tests

1117 , --
1118
1119
1120 MtxTst:
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

·1135
1136
1137 ,
1138
1139
1140 NotLCh:
1141
1142
1143
1144 StpCh I'
1145
1146 StpCh2:
1147
1148
1149

test the Chi." dot column print matri x count and Char buffer count

DJNZ CDtCRI. PrntDt

Mov A.ChStRI
ANL A •• ClntND
Mov ChStRl.A
DJNZ CCntRI.NotLCh
ANL A •• NCBFln
ANL A •• CnCBR
Mov ChStRI. A

SEL RBO
Mov A.GStR20
ANL A •• NotRdy
Mov GStR20.A
SEL RBI
Jmp RetT'n

itest foT' dot color blank
jstatus b~te i~ A upon entr~ heT'.
'get the status byte
,.et Char Init NotDone stat Flag
,store the status byte
Idec char cnt-Jmp if Not Last Char
'if 0 reset stat bit Not CB Full Line
,reset CB Reg Init Flag - do Init
isave the status b~te

'get GIn Status register addr
ic1.ar the read~ bit
J sto,.'. the GeneT'sl Status B~te

, EXit

Test for L-to-R (forward) or R-to-L (reverse) printing
(see GChaT'l ASCII chaT' code translation procedure)

Mov
JB7

Inc
Jmp
Dec
Jmp

A. ChStRI
StpCh2

CAdrRI
Retrn
CAdrRI
Retrn

,A contains LR/RL bit properly set
igat char status T'egister addT'
,test Chr Stat 8yte Returned

if bit 7 = 1 then Print L-to-R
i Increment char data memQr~ addT'o

iDecrement char data memor~ addr,
fall thru to Get Char

1150 , --
1151
1152

Re-Entry Exit point faT' same char:
(befDT'. retuT'ning step the matrix)

1153 , -----------------~-------------------~------------------------------------
1154
1155 ,

Test faT' L-to-R (fDr~ard) OT' R-to-L (reveT'se) printing
(.~e GCharl ASCII char cod. translation procedure)

1156 , --
1157
1158 PrntDt:
1159 PrnDi r: Mov
1160 J87
1161
1162 StpCDI: Dec
1163
1164 Jmp
1165 StpCD2: INC
1166
1167
1168

1169 PG

A.ChStRI
StpCD2

CDotRI

Retrn
CDotRI

iget chaT' status byte
,test Chr Stat Byte Returned
, if bit 7 = 1 then Print L-to-R
.revers. step chaT' dot ,c~l ihdex

addr if R-to-L print
,skip over L-to-R print addr inc
; 'foT''waT'd step chaT' dot col in'dex
I' addr if L-to-R print
, E'XI'r

230795-001

inter

0368 C5
0369 83

036A 05
036B FA
036C F27C

03bE C5
036F FA
0370 53BF
0372 83

0373 027C

0375 4340
0377 AA
0378 B807
037A 6488
037C E888
037E FA
037F 53BF
0381 AA
0382 C5
0383 FA
0384 53FE
0386 AA
0387 83
0388 C5
0389 83

038A FA
0388 53FO
0380 53FE
038F AA
0390 C5
0391 FA
0392 4302
0394 53BF
0396 AA
0397 83

0398 AE

0399 03EO
0398 F69F
0390 64C9
039F 97
03AO FE

03AI 03BO
03A3 F6AE

03A5 FA
03A6 4320
03A8 AA
03A9 FE
03AA 03EO
03AC 64B8

AP-161

1170 , --1171 , Cha~acta~ P~Int SatUp Exit P~ocadu~as

1172 , --1173 , Clean Shnda~d Exit

1174 , --1175 Ret~n: SEL RBO
1176 Rat
1177
1178 , 00 Not
1179 NPRat: SEL
1180
1181
1182 ,
1183
1184

P~int exit:
RBI
A.ChStRI
SkpNPI

,EXIT - ~etu~n wI Rag lank 0 Reset

set Stpr Mt~ d~Ive ~outine count loop

'gat tha .tatus b~ta
,te.t p~int di~action

,get the .tatus b~te
1185

Rev.,. ••
BEL
Mov
ANL
Ret

RIO
A.QStR20
A •• Cl~Snk ,~a.at the print ~ead~ bit- skips PHFi~a call

1186
1187 ,
1188
1189
1190
1191
1192
1193
1194

Forw.rd
~B6 SkpNPI ,test fo~ fl~st PHFSet ent~~ ~eg Init
Initialize ~egiste~ va~iables upon fl~st ent~~

and of count clea~s cha~ to p~Int bit In status b~t.
ORL A •• ChlntD ,set Cha~ Reg Inlt Done stat bit
Mov ChStRl.A ,sav. the .tatus b~te
Mov TmpRI0 •• 07H .load CR stp~ mt~ count du~lng NoPrnt
~mp NPEx i t

1195 SkpNPI:
1196

D~NZ TmpRI0.NPExit
Mov A.ChStRI .gat tha status byte

1197 ANL A •• ClntND
1198 Mev ChStRl.A
1199 SEL RBO
1200 Mov A.QStR20
1201 ANL A •• NotRdy
1202 Mev QStR20.A

Jr ••• t - ch.r init not don_
i'.V. the statuI b~t.

.get Qen Status ~egl.te~ .dd~
;cl •• ,. the r •• d~ bit
.sto~a tha Qana~al Status I~te

1203 NSetEx:
1204 NPEx I t:
1205

Ret
SEL
Ret

RBO

1206
1207 Mld-LIna Exit

1208 , --
1209 EXIT - if CR and not >
1210 MdLnEx:
1211

Mov
ANL

A.ChStRI
A •• NCBFln

1/2 lina dona du~ing L-to-R p~int
.gat tha status byta
, if 0 ~esot stat bit Not CI Full Line
'~eset CI Reg Init Flag - do Init
il.V. the statuI b~t.

1212
1213
1214
1215
1216
1217
1218
1219
1220

1221
1222
1223 ,.
1224
1225 ,

PG

ANL
Mov
SEL
Mov
ORL
ANL
Mov
Ret

A •• CIICIR
ChStRI, A
RBO
A.QStR20
A •• DoNotP
A •• Cl~Snk
QStR20.A

'get the RBO status byte
,set the 00 Not Print Flag(fo~ RAccel)
.~o.at the p~int ~ •• dy bit-exit FAccol
i'.V. the statuI b~t.

Charact.,. Dot gener.tor Math
Look-up Table Page Vacto~lng
Print H.ad Firing

~226 , --
1227
1228 QCHAR1: MOV
1229

St~CRI. A ,STORE THE CHAR

1230
1231
1232

scr.en for
ADO
~C

1233 Jmp
1234 P~ntCh: Clr
1235

printable
A •• OEOH
PrntCh
CntlCh
C
A.St~CRI

'Jmp to cont~ol cha~ lookup tabl.
lei •• ,. c.,.,.~ flag
;get the char again

1236
le" •• n foT'

if cnry
ADO
~C

cha~ pago Cch.~ +(cpl 50 Hex + 1 • 10 Hex)]
cha~ on pa.e 2 01.0 page 1

A/.OBOH
Page2

Page Cha~.cter -- ASCII 20 Hex thru 4F Hex
Correct offset for lookup table page
{(char + EO Hox)*5 • Page 1 indox addr)

1237
1238 ,
1239
1.40
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

I --
Pagel: Mov A.ChStRI 'get the status byte

OrL A •• ChOnPI .s.t tho pago ~ont~y flag bit
Mov ChStRI.A .sto~e the status byte
Mov A.St~CRI ,got the cha~ aglan
ADO A •• OEOH •• et page I ~.lative 00 offset
~mp Multi5 'Jump to add~o •• math function

6-755 230795-001

03AE 97
03AF FA
0300 530F
0302 AA
0303 FE
0384 03BO
03B6 64B8

0388 AE
03B9 E7
03BA E7
03BB 6E
03BC AC

0380 FA
03BE F2C4

03CO FC
03Cl 0304

03C3 AC

03C4 FA
03C5 4340
03C7 AA
03CB 83

03C9 B3

03CA 05
03CB FO
03CC 9602

03CE OB06
0300 6408
0302 2340
0304 3A
0305 23CO
0307 3A
0308 C5
0309 B3

0400

0400 OC04
0402 BB22
0404 2308
0406 AO

0407 BEOI

0409 841B

1253
1254
1255
1256
1257
125B
1259
1260
1261'
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
12B8
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

1312
1313

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

AP-161

Page 2 Character -- ASCII 20 Hex thru 4F Hex
Co~~ect offset fD~ lookup table page two's complement
of ASCII chr code LookUp Table page bas. char of 50H plus
char * 5 {(char + BO Hex)*5 a Page 2 index addr),

Page2: Clr C
A,ChStRI
A,IIChOnP2
ChStR1.A
A,StrCRI
A.II0BOH
Multi5

Jclea~ carry flag
Jgst the status bVte

MUL TIS:

Mov
AnL
Mov
Mov
AOO
Jmp

Compute
Moy
RL
RL
AOO
MOV

character
StrCR1,A
A
A
A,StrCRI
CDotR1, A

page

'set the page rentry flag bit
; store ~h. statu_ bvte
jgst the char agian
,set page 2 relative 00 offset
ifal1 thru to address math function

offset dot pattern index address
Jstare the zero offset char
,MULTIPLY CHR BY 5 TO

FINO THE ADORESS
,ADD 1 TO COMPLETE 5X
,SAVE THE ADDRESS

Test for L-to-R (forward) or R-to-L (reverse I printing
(see Gehert ASCII char code translation procedure)

Moy
JB7

MOV
AOO

MOV

A,ChStRI
LRPrn

A,CDotRI
A,IIRLPShf

CDotR1, A.

'get char statu. byte
,test Chr Stat Byte Returned

if bit 7 = 1 then Print L-toR
jget the char index addr
,add char offset - start at .nd
j of chaf.# print it R-to-L
• SAVE THE ADDRESS

Set the status bvte for Character SetUp done
i --
LRPrn: Moy A,ChStRI .get the status byte

ORL A,IIChlntD • set 1st char c'ol test .. it - 0
Mov ChStR1,A isto~e the status byte'
Ret ireturn wlstatus byte in A

1 test for non printable cha~acters goes here
CntlCh: Ret

* * * * * * * * * * * * * * * * * * * ,* * * * * * * * * * * * * * * * * Print Head Fire

* * * * * * * * ~ *
Ent~y point for print head solenoid firing

- test for status byte for dot/blank column position
PHFire: SEL RBI

Moy A.COtCRI
JNZ Fire

SetCnt: Mov
Jmp

Fire: MOV
OUTL
MOV
OUTL

Retrnl: SEL
Ret

PG

CDtCRl,IINDtCCt
Retrn1
A,IIPTrgLo
P2,A
A,IIPTrgHi
P2,A
RBO

iset the ch~ dot column cnt
iif char cnt nat 0 - Fire Head Sol.
.if Chr Dot Cnt 0, res.t the

char dot column count
; skip PH Fire
'get the Prnt Head Trigger byte
,FIRE PRINT HEAD
.get the Prnt Head Trigger byte
.FIRE PRINT HEAD

iEXIT - ~eturn wI Reg Sank 0 Reset

* PaperFeed Stpr Mtr Drive
*

ORG 400H

Inlt psuedo regIster with LF inderect addr start - subs.~uent

InitLF:
exchanges of the psuedo register will yi~ld correct value,

MOV CntR40.IIILFCNT .INIT PHASE COUNT ~EG
Mav TmpR00J ttLPSAdr ; get Phz Inderect Addr psue,do· reg
MOV A,IIStL"'" • get LF star)ting addr
Mav @TmpROO, ,store LF phase index addr start

in psueda register
Mov LnCtRO,#LlneCt isat line count reg fo~ 1 In

; enables exit fol10"'ing LF S.M init
4mP LfDrv1 I Jump OV~T' ~~_ I'Pen"!'1 ~eed amd variable

lIne ~pacing tests & setups

LineFeed I FormFeed Drive

6-756 230795-001

0401 BCl1

040D FA
040E 5214
0410 BEOI
0412 8.41B
0414 FE
0415 37
0416 0301
0418 0342

041A AE

0411 IS21
041D FO
041E E3
041F IS20
0421 AO

0422 1822
0424 FO
0425 AI
0426 ID9S

0428 2306
042A 3D

0421 FI
042C E3

042D 1820
042F 40

0430 3C

0431 FD
0432 62
0433 55

0434 18
0435 FB
0436 523411
0438 843C
043A BB08

043C FB
043D E3

043E 8S20
0440 40

0441 1645
0443 S441

0445 3C
0446 EC31

0448 BCIB
044A EE31

044C FA
044D 53FB
044F AA

04508822

AP-161

1332 , ---1333
1334 ,
1335 ,
1336
1337

--------------------------------------~--------------------------------

1338
1339
'1340 I
1341 L'Driv;
1342
1343 LnCtLd;
1344
1345 FmFd;
1346 '
1347
1348
1349
1350
1351
1352
1353
1354 I
1355 LFDrvl;
1356
1357
135S
1359
1360 I
1361
1362
1363 '
1364
'1365
1366 I
1367
1368
1369

t.st 'or v.~iou. line/inch spacing would go h.~.
<and removal 0' con.tant .etup below)

I'IOV CntR40 •• LPI8pS linit cnt reg 'or .t.nd.rd line 'eed

LinlFeed1ForOlFeed Telt
!'Iov A.GStR20
J82 FmFd
!'Iov LnCtRO •• LineCt
Jmp L'Drvl
!'Iov A.LnCtRO
Cpl A
Add A •• Ol
Add A •• PgLnCt

!'Iov LnCtRO.A

Iget the .t.tUI byte
Ii' line'eed Jmp to cnt
'''et linl count reg 'or
IJmp to St.rt 0' Drive
Iglt the line count
12'. cpl Line Count

IAdd 2'. cpl 'or P.ging

load
1 line

PgLnC,t - LnCt - n Line. to movl
, PgLnCt+(cpl(LnCt) - n line. to OIove
I.et thl linl count 'or FF

'or .t.bliletion 0' unusld ~tpr mtr during CR .tpr mtr drivi.
.tor. the unu ... d .tpr mtr,current ph •• e bit.

Mov TmpROO •• CPBAdr Ig.t the CR phI stor •• ge .ddr
!'Iov A •• TmpROO Iget thl byut. "tored there
!'IovP3 A •• A Ig.t the phI d.t. byte
!'Iov TmpROO •• L •• tPh Il •• d L •• t PhI pau.do re, to T.mp R.g
!'Iov .rOlpROO.A I.tor. L ... t Ph •• e bit" - inderect
.xch .. ng,.I .. tor. the ph r"lIishr index ·.ddr
Mov ' TmpROO •• LPSAdr I,et PhI Indlrec:t Addr psu.do 1'1,
Mov, A •• TmpROO Iget LF l •• t ph ... e index .ddr,
!'Iov PhzR30.A Ipl.ce la .. t LF pha •• indlx .. ddr in PhI R.g
!'IDV TConRO •• LFTMRI "I Load tim. con .. t .. nt RI,

S.l.ct the Stpr !'Itr
MOV A •• SLF
I'IOVD P5.A

I GET CR S!'I SELECT BITS
ISELECT S!'I [SCRSO]

1310 J _______________ ~w ________________ ~------------------------------------~

1371 I Lin.FI.d I FormF.ed Driv. Loop
1372 I ---1373
1374
1375 I
1376
1377
1378
1379
1380
13S1 Strtl,F;
1382 STRLFT;
13S3
1384
1385 I
1386
13S7
138S
1389
1390 ZROPHL;
1391
1392 NXTPHL;
1393
1394 I
1395
1396
1397

!'IDV
!'IovP3
patch
!'Iov
ORL
shrt
!'IDVD'

!'IOV
!'IDV
STRT
setup
INC
!'IOV
JB2,'
J!'IP
MOV

A.PhIR30 ,g.t the phI 1'1, indirect .. ddr indlx
A.~ 'Ida indirlct ,et of phI bit.

toglthlr thl CR l ... t and, LF nlxt ph bit.
TmpROO •• L ... tPh Ilo.d Last PhI p.uedo rIg to Te .. p Reg
A •• TmpROO Ipetch togethe" CR existing. new LF

timer .nd step motor
P4.A I OUTPUT BITS

A.TConRO
T.A
T

the next ph
PhlR30
A.PhIR30
ZROPHL.
NXTPHL.
PhIR30 •• STLFF

;g.t t1me constant from reg
I load thl timer
I START TII'IER

to output
I.STEP 'PHASE DB ADDRESS
Iglt.the phe ... indlx addre.s
J t.st ph •••

!'IOV A.'PhIR30 I get the 'phI ""II indirect addr index
!'IovP3, A".A' "Ida i"dirlct glt of phI bits
petch'toglther thl CR'l .. st and LF next ph ... e bits
Mov TmpROO •• La.tPh Iload L ... t PhI psuRdo reg to Tlmp Reg
'ORL' A •• TmpROO .p .. tch togethlr CR exilting ~ new LF

1398 TLoopL;<, JTF
1399 J!'IP
1400

NXPHLF'
,T1..00PL.

'Jmp 'on time out to output nxt phI
Jloap until timer times out

1401 NXPHLF; !'IDVD ''Ii'4.A
'CntR40.StrLFT

Ist.p motor -,aUTPUT BITS <
"1402 DJNZ It •• t far end'o' ph ... e count'~o~ lin.

Iprep 'or next line 1403
1404
1405 I
1406
1407
140S
1409
1410
1411
1412

test for v.~iou. line/inch ,p .. cing would go here)
!'IOV CntR40 •• L.PISpS linit'cnt reg fo~ .t .. nd .. rd line '.ed
DJNZ LnCtRO.St"t~F Itest'for .nd 0' lin. count

. Mav
ANL
Mov

A,GStR20
A •• LineFd
GStR20.A

IGet the .t .. tus b~te
ira.at far line f •• d
.save the statu, byte

'1413 'I .to"e "the ph e reg ishr, index address... '
1414 • Set LineFeed Stpr !'Itr Next Ph ••• index addre ••
1415 SetLRN; !'Iov " TOIpROO •• LPSAdr Iget PhI Storagll Addr psuedo rig

6-757, ' 23079S'{)Ol

0452 FB
0453 ... 0
0454 B478
0456 B490

0458 83

0500

0500 D5
0501 F ...
0502 53F7
0504
0505 B823
0507 B020 '
0509 C5

050... F ...
050B 53FD
050D
050E 83

050F C5
0510 230F
0512 3E
0513 23FF
0:115 39
0516 23CO
0518 3 ...
0519 8 ... 03
0518 B ... OO
051D D5
051E B ... OO
1>520 C5
0521 83

0522 F ...
0523 4302
0525
0526 362 ...

052S 3402
052... 3422

052C B474
052E 83

052F B87F
0531 B95D
0533 8000

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

1428 PG

Mcw
Mov
Call'
Call

AP-161

.... Ph.R30

.TmpROO
Dl~Lng ,
D.S1SM

.get the ph.,e Index address
• store LF Next pha.e Ind •• addr

Check if Char Buffer >ontaln. full line (SO char or nChar • CR)
exit oth.r~j •• continue to read in char.cters

Mov GStR20 .get the .tat byte
~Bl BVPa.l .If DO Not Print Bit Set - EXIT
Call CBFck

Ret

1429 • * 1430 Minor Software Subroutines
1431
1432
1433
1434

*
ORG 500H

1435 J ----------------------~--1436 • Sv.tem initlall'ation subroutine.

1437 ---1438 Ddalt:

1439 • ---1440 • re.et/set EOF Itatu. flag bit. 0
1441 SEL RBI
1442 Mov ChStRI
1443 ... NL C 1 rEOF'
1444 Mov ChStRl
1445 Mov TmpRI0 •• PT cS
1446 Mov ,.TmpRI0., cii
1447 SEL RBO

.get the char .tatul byte

.clear the EOF flag bit

..tore the char statu. byte

.get the cii code tmp .tore addr
• load the tmp s·tor reg .. / •• cii .tart

1448 ---1449 reset/.et Ok~tO-Prlnt .tatus flag bit. 0
1450 M,ov GStR20 " getth •• tatus byte
1451 ... NL OkPrnt .reset print flag - Ok Print
1452 Mov GStR20.... ..ave ·the statu. byte
1453 RET
1454 Ini t"'l:
1455 "'llOH:
1456 ---1457 CLE ... R all output.
1458 SEL RBO
1459 MOV OFH
1460 MOVD P6
1461 MOV OFFH
1462 OUTL P1,A
1463 MOV A,.PTRGHI
1464 OUTL P2.A
1465 ORL P2 •• 03
1466 Mov GStR20 •• 00H
1467 SEL RBI
1468 Mov ChStRl •• 00H
1469 SEL RBO
1470 RET
1471
1472 r PG

• FORCE PORT HI - RI OF 555

• TURN ALL PRNT SOL'. OFF

.prlnt h.ad fir. tirgger Inactive

•• et comm hd.k to ACK hi/Busy hi
.clear the statu. registers

• RETURN TO INIT ROUTINE

1473 •
1474 •
1475 •
1476

* * * * * * *'* * * * * * * * * *.* * * * * * * * * * * * * * * * * * * Home Carriage I Print H.ad A •• emblv

* '. * * * * * * *
. 1477 CRHome:

1478
1479
1480
1481
1482
1483 RtoL:
1484
1485
1486
1487

Mov
ORL
Mov
~TO

Call
Call

Call
RU

A.GStR20
A •• OoNotP
GStR20.A
RtoL

FAcc_l
RAccel

DIVVLg

.get the .tatu. byte

.set the do not print flag
•• ava the .tatu. byte
,t.st for po.ltlon of PH •••• mbly

drive accordingly
• dr I ve CR' St"" Mtr
.find the logical left ho~. CR position
idel_, a lang time b.fo~. continuing

1488
1489
1490
1491·

* * * * * * * * * *"* * * * * * * *'*.* * * * * * * * * * * * * * * * * Clear Data Memorv

* * * * * * * *'* * * * * * * * * * *,* * * * * * * * * * * * * * * * *
1492
1493 1

1494 ClrDM:
1495
1496 ClrDM1:

At Po .. erUp or R.a.t. follo~tng CR • LF Stpr Mtr Init. this
procedure clears data memory above RBO. Stack and RBI.
MOV RO •• OMTop .QET BUFFER ST ... RT LOCATION [HEX]
MOV Rl •• 0MSIZE
MOV .RO •• OOH • ZERO ,MEMORY LOCATION

6-75a 230795-001

0535 C8
0536 E933
0538 83

0539 197F
053B ID50

053D FF
053E AI
053F C9
0540 IF
0541 0382
0543 9647
0545 BF20
0547 ED3D
0549 C5
054A 83

0541 IC04
054D 2308
054F 3D
0550 IDCO
0552 1100
0554 FI
0555 E3
0556 3C
0557 FD
055862
0559 55
055A IB
,0558 FB
055C 5260
OS5E A462
0560 BBOO

0562 FB
0563 E3
0564 1669
0566 A464
0568 3C
0569 EC57

0561 B821
056D FB
056E AO
056F B478
0571 B490
0573 83

0574 B87F
0576 A47E

0578 B880
057A A47E

1497
1498
1499
1500

1501
1502
1503

PG

DEC
DJNZ
RET

AP·161

RO
RI. <a .. 0111 'dec bu"e ... loop if not ze .. oCend]

,RETURN TO INIT ROUTINE

* * * * * * * * * * * * * * • * * * • * * * * * * • * * * * * • * * * * Cha .. acte .. p .. int TEST

1504 i * 1505
1506 p,.nTst:
1507, TEST
1508 "
Ul09
1510
1511 CTInt: Mov
1512 Mov
1513 ChTst:
1514
1515
1516
1517
1518
1519

Mov
Mov
DEC
INC
ADD
JNZ

1520 Mov
1521 Ch,.Tgo: DJNZ
~522 SEL.
1523 RET
1524

1525 PG

load the ch.,. buf'." with lucce •• ive inc .. ements 0'
the ascii code st ... t, te.t fa .. end 0' ascii
printable chars and re1nit the char stre •• loaded.

CAd .. RI •• FClfSt
CCntRI •• Chl'Sz

A.opn .. 71
ecAd .. RI. A
CAd .. RI
opn .. 71
A •• PAsEnd
Ch .. Tgo
OpnR71 •• Asc ii
CCntRl.ChTlt
RBO

'load cha eg w/ch ... bu'" .t .. t
,load cha .. cnt .. eg w/cha .. bu'" size
,Te.t cha .. buff ... fill with ASCII Cha ..
,get the a.cii cha ..
,lo.d d.t. memo .. ~ w/Ch ...
,Decrement d.t memorv location
,Incremlnt Ascii char number
,test fa cii code end
; if nat end Jmp over cod. restart

loop i. not z ... oCend]

,EL.SE RETURN TO INIT ROUTINE

Code

1526
1527 * CR Stp .. Mt .. Power On Initializ.tion and
1528 , * *
1529 ,
1530

* This .. outin. d .. iv •• the CR a .. L.F stpr mt .. fa .. fou .. ph •••
shifts fa .. initialization,

1531 INITCR:
1532 I10V

MOV
MOVO
MOV
MOV
MOV
MovP3
MOVO
MOV
MOV
STRT
INC
MOV
JB2
JMP
MOV

,POWER ON INIT STPR MTR
CntR40 •• PhCntl 'load pha •• cnt reg for INIT

1533 A •• SCR80 ,gET CR SM SEL.ECT I ITS
1534
1535
1536
1537
1538
1539
1540 STRTTR:
1541
1542
1543
1544
1545
1546
1547 Z .. oRg2:
1548 NxtPhR:

P5.A
TConRO •• IntTm2
PhzR30 •• FStCRP
A.PhzR30
A.IA
P4.A
A'. TConRO
T.A
T
PhzR30
A.PhzR30
Z .. oRg2
NxtPhR
PhzR30 •• FStCRP

1549 MOV A.PhzR30
1550 MovP3 A.eA
1551 TL.oopR: JTF NXPHRI
1552 JMP TL.oopR
1553 MOVO P4.A
1554 NXPHR1: DJNZ CntR40.STRTTR

,SEL.ECT SM tSCR80]
iLoad time constant RIg
; zero 8M ph.s. reg - for~.rd
'get pha.e index .. egiste .. byte
,load indexed ph •• e .hift byte
,OUTPUT BITS
,gET TIMER CONSTANT

,START TIMER
,stap phase index regi.te ..
,CHECK THE PHASE COUNT REG

1 zero SM phase reg - for~ard

'get ph ••• ind.x registe .. b~te
'load inde.ed ph ••• shift b~t.
,JMP ON TIME OUT TO NEXT PH
,L.OOP UNTIL. TIME OUT
,OUTPUT BITS

1555 , --
1556 sto .. e the la.t pha.e .. egilte .. ind.x .dd
1557 Mov TmpROO.ICPSAd.. ,g.t Phz Sto .. age Add .. psuedo .. eg
1558 Mov A.PhzR30 ,place l.st CR pha •• ind.x addr in
1559 Mov ITmpROO.A Ito"a CR l •• t pha •• index add ..
1560 Call Dl~L.n9
1561 Call OeS1SM
1562 RET
1563
1564
1565
1566
1567 ,
1568

PG

Time D.l.~ Sub .. outines'

1569', Va .. ~ L.ong
1570 Dl~VL.g: MOV TmpROO.17FH
1571 Jmp DIVST
1572
1573
1574
1575
1576

, L.ong
DlyL.ng: MOV

Jmp
TmpROO •• DlyCL.
01~ST

6-759

,L.OAD DEL.AY COUNT IN REg,

,L.OAD DEL.AY COUNT IN REG,

Phz R.g

230795-001

inter
057C B830

057E 23CC
0580 62
0581 55

0582, 16811

0584 D5
0585 FA
0586 928A

0588 1469
058A C5
058B A482
058D E880
058F 83

0590 230E
0592 3D
0593 83

0600

1577 ,
1578 DlySh~'
1579
1580
1581 DlyST:
1582 Nx tTLd
,1583
'1584
1585 DlyLop:
1586
1"587
1588
1599
1590
1591
1592
1593 SkpCI:
1594
1595 DlyTO:
1596
1597
1598

AP-161

Not So Long - Sho~t
MOV \ TmpROO, IIPlyCS

Sta~t Delay
MOV A,IIDlyTim
MOV T,A
STRT T

-ITF DlyTO

,LOAD DELAY COUNT IN REO.

,OET MAX TIMER DELAY
I LOAD TIMER
,START TIMER

, LOOP

Cha~ buffer fill du~ing time loop:
SEL
Mov
-IB4

Call
SEL
-IMP
D-INZ
RET

RBI
A"ChStRI
SkpCI

IBFSrv
RIIO
DlyLOP
TmpROO,.Nx tTLd

;get the 'character st.t reg bvte
test 901' normal <h.~ inpu.t
o~ skip i9 <h .. ~ prnt test

; service the char buff~r fill

idee delay count & test for 'exit

1599
1600

---~------

1601 DESLSM:
1602 SMEROR.
1603
1604
1605

Stepper Motor DeSelett Routine

MOV
MOVD
RET

,A,IISMOFF
"'5, A

,DESELECT LF/CR SM
,OET LF/CR SM DE-SELECT BITS
,DE-SELECT CR SM

1606 SINCLUDE(:Fl.CHRTBL.OV1)
=1607
=1608 ~ * ~ * * * * * * Character Dot Generator Look,-up Table Page 1 =1609
=1610 *
=1611
=1612

=1613 Character Table Page 1, contains
=1614
=lbl5 ,. 20H --) 4FH
=1616
=1617", "(sp) ! "IIS%II<' ()*+, -. 10123456789: ,<-)?G!ABCDEFOHI-IKLM "
=1618

=1619 ---
=1620
=1621
=1622
=lb23 ,

=1624
=1625

ORO 600H

Page 1 C~aracter Dot Pattern Fetch
«< actual a.sembled <har.,<ter table cod. not n.ted »)

=1626 , ---
=1627 SNoUst
=1676 SList

ListIng belo'w is foT' referene" onlVI actual code is not listed
at •. ssembly .time.

, ' , .
=1677 ,
=1678 ,
=1679
=1680
=1681
-1682
=1683
=1684
=1685
=1686
=1687
=1688
=1689 ,
=1690
=1691
=1692
=1693 ,
=1694 •
-1695
=1696 ,
-1697

---------------------------------~-----------------------------------

-1698 ,
-1699
=1700
-1701
-1702 ,
=1703 ,
-1704
-1705 ,

4s<20:
ast2!.
ast22:
a5<23'
a5<24:
'as<25'
as<;i6:
asc27:
a5<28:
a5<29:
asc2A:
asc2B:
.0<2C:
"s<2D:
ao<2E:
asc2F:
... <30:
•• <31 :
".<32:
"oc33:
a5<34:
", .. 35:
.5<36:
asc37:
asc3S:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
.DB
DB
DB

7FH, . 7FH,.
7FH, 7FH,
7FH, 7FH,
6BH, OOH.
5BH, 55H,
5CH, 6CH,
19H, 26H.
7FH. 7FH,
63H, SDH,
7FH. 7FH,
5DH, 6BH,
77H, 77H.
7FH, 3FH.
77H. 77H,
7FH. IFH,
5FH, 6FH,

.4IH, 2EH,
7FH, 3DH,
3DH, lEH,
SDH. 3EH,
67H, 6BH.
S8H, 3AH.

·43H. 35H.
7EH, OEH.
49H, 36H,

6-760

7FH • 7FH. 7FH • SPACE
20H, 7FH, 7FH ; !
78H, 7F,I:I, 78H

.6BH, 'OOH, 6BH ,II
OOH, 55H; 6DH , S
77H. lBH, lDH .%
26H, 59H. 2FH ,II<
7CH, 7FH. 7FH , '
3EH. 7FH, 7FH , (
3EH. 5DH. 63H ,)
OOH, 6BH, 5DH , *
41H, 77H, 77H ,+
4FH, 7FH, 7FH ..
77H. 77H. 77H ,-
IFH, 7FH. 7FH , .
77H, 7BH. 7DH ,I
36H. 3AH. 41H ;q
OOH, 3FH. 7FH , ,I
2EH·. 36H, 39H ,2
36H, 36H, 49H .3
6DH. OOH, 6FH ,4
3AH. 3AH. 46H) :I
36H •. 3bH. 4EH .6
76H. 7AH, 7CH) 7
36H. 36H, 49H .8

230795-001

inter

06FO FC
06Fl A3

06F2 4380
06F4 39
06F5 83

0700

AP·161

-1706, •• (39: DB 39H • 36H. 36H. 56H. 61H 19
-1707 • ... 3A: DB 7FH • 7FH. 6BH. 7FH. 7FH · : -1708 •• <3B: -DB 7FH • 3FH. 4BH. 7FH. 7FH i;
-1709 • se3C: DB 77H • 6BH. SDH. 3EH. 7FH 1<:
-1710 •• <3D: DB 6BH. 6BH. 6BH. 6BH. 6BH ..
-1711 as<3E: DB 7FH. 3EH. 5DH. 6BH. 77H .>
-1712 • • se3F: DB 79H. 7EH. 26H. 7AH. 7DH

• ? -1713 ... <40: DB 41H. 3EH. 22H. 36H. 71H .e
-1714 •• c41: DB 03H. 6DH. 6EH. 6DH • 03H .A
-171:5 • •• c42: DB OOH • 36H. 36H. 36H. 49H .B
-1716 • •• c43: DB 41H. 3EH. 3EH. 3EH. :5DH .C
-1717 •• c44: DB OOH. 3EH. 3EH. :5DH. 63H ID
-1718 • 8se45: DB OOH. 36H. 36H. 36H. 36H IE
-1719 • .oc46: DB OOH. 76H. 76H. 76H. 76H

• F -1720 ••• 47: DB 41H. 3EH. 3EH. 2EH. ODH .Q
-1721 ••• 48: DB OOH. 77H. 77H • 77H. OOH .H
-1722 ••• 49: DB 7FH. ,3EH. OOH • 3EH. 7FH

• I -1723 •• c4A: DB 5FH. 3FH. 3FH • 3FH. 40H .,J
-1724 • sc4B: DB OOH. 77H • 6BH. 5DH. 3EH .K
-1725 ••• 4C: DB OOH. 3FH. 3FH • 3FH. 3FH .1.
-1726 • ••• 4D: DB OOH. 7DH. 73H. 7DH. OOH .11
-1727 • ••• 4E: DB O •• H, OdfH. O.fH • Of7H. O •• H .t.et
-1728 • •• c4F: DB 55H. OdfH • OefH, Of7H. 55H J te.t
-1729 • ••• 4E: DB OOH. 7BH. 77H. 6FH. OOH .N
-1730 •• <4F: DB 41H. 3EH. 3EH. 3EH. 41H .D,
-1731 --1732 End P.g'. 1 Ch.~ •• t.~ Dot P.tt.~n Fetch
-1733
-1734 ---
=1735 Character Dot Pattern Fetch
-1736 • ---
-1737
-1738 Ch~Pgl: I1DV A.CDotRI

AdlA
Jget char index .dd~.s. offset"
;get column dot patern byte -1739 I1DVP

-1740
-1741
-1742 •
-1743
=1744
-174:5
=1746
-1747
=1748
-1749
-1750
-1751
-1752

=1753
=1754 •
-1755

=175b
=1757
-17:58
=1759
=1760
=1761
=1762
=1763
-1764
=1765
-1766

=17b7

this bit fix n.c.ssar~ to not underline each. character
this saves fixing each bit in the look up table

ORI.
Dutl.
RET

A.1I80H
PI. A

END Page 1

,cha~ bit fix
loutput the dot patte~n
;exit with byte in ace

Cha~acte~ Dot Patte~n Fetch

PAGE 2 -- Character Dot G~nerator Look-Up Table

Character Table Page 2, contains

50H' ---------------------------~--------------> 7EH

.. NOPORSTUVWXYZ(\] _(?)abcdefghiJklmnopq,rstuvwxvz<I)'" tl

ORG 700H

Page 2 Character Dot Pattern Fetch
-1768 I «< Actual assembled cha~acter table code not listed »>
-1769 ---
=1770 SNol.IST
-1818 Sl.ist,
-1819 •
-1820
-1821

Listing below 15 for reference only, actual code is not listed
at aS5embl~ time,

-1822 ---
=1823
=1824 ,
-1825
-1826
-1827
=1828
=1829 •
-1830 •
-1831
-1832 •

asc50 DB
asc51 DB
asc52 DB
a.c53 DB
asc54 DB
asc'55 DB
asc56 DB
ascS7 DB
ascS8 DB
asc59 DB

OOH. 76H,
41H. 3EH.
OOH. 76H.
59H. 36H.
7EH. 7EH.
40H. 3FH.
60H. 5FH.
OOH. 5FH.
lCH. 6BH.
7CH. 7BH.

6-761

76H. 76H. 79H IP
2EH. 5EH. 21H ,Q
66H. 56H. 39H .R
36H. 36H. 4DH IS
OOH. 7EH. 7EH

• T 3FH. 3FH. 40H IU
3FH. 5FH. 60H IV
67H. 5FH. OOH IW
77H. 6BH. lCH I X
07H. 7BH. 7CH I Y

230795-001

inter

07EB FC
07EC A3

07ED 4380
07EF 39
07FO 83

ASSEMBLY COMPLETE.

-1833 I
-1834
-1835 I
=183b
-1837 I
-1838
-IB39
-1840 I
=1841
-1842
-1843 I
=1844
=1845
=1846
=1847
-184B
=1849
-1850
=IB51
-1852
=1853 ,
-1854
-1855 I
=IB56
=1857
=lB58
=1859
=lS60
=18bl
=1862
=1863 I
=1864
-1865
-1866 i
-1867 I
-1861;1 ,
-1869
=1870
=1871 I

=1872
-IB73
-1874

AP-161

.sc5A: DB IEH. 2EH. 3bH. 3AH. 3CH I Z
a5e5B: DB OOH. 3EH. 3EH. 3EH. 7FH , [
... e5C: DB 7DH. 7BH. 77H. bFH. 5FH , \
.se5D: DB 7FH. 3EH. 3EH. ;iEH. OOH I]
.se5E: DB bFH. 77H. 7BH. 77H. bFH ,A
•• c5F: DB 3FH. 3FH. 3FH. 3FH. 3FH

1\ a .. bO: DB 7DH. 7BH. 77H. OFFH. OFFH
•• e61: DB ODFH. OABH. OABH. OABH. OB7H I.
... eb2: DB 080H. OB7H. OB7/'1. OB7H. OCFH I b
.... eb3: DB OC7H. OBBH. OBBH. OBBH. OBBH Ie
•• e64: DB OCFH. OB7H. OB7H. OB7H. OBOH I d
.. se65: DB OC7H. OABH. OABH. OABH. OB7H I.
•• ebb: DB OF7H. 081H. OFbH. OFEH. OFDH If
... e67: DB OF7H. OABH. OABH. OABH. OC3H I g.
... e68: DB 080H. OF7H. OFBH. OFBH. 087H I h
... eb9: DB OFFH. OBFH. 08BH. OBFH. OFFH , i
•• e6A: DB ODFH. OBFH. OBBH. OC2H. OFFH I J
•• ebB: DB OFFH. 080H. OEFH. OD7H. OBBH I k
asc6C: DB OFFH. OBEH. 080H. OBFH. OFFH I I
ase6D: DB 087H. OFBH. OE7H. OFBH. 087H 1m
ase6E: DB OB3H. OF7H. OFBH. OFBH. OB7H In
asc6F: DB OC7H. OBBH. OBBH. OBBH. OC7H , a
••. e70: DB 084H. OEBH. OEBH. OEBH. OF7H I P
•• e71: DB OF7H. OEBH. OEBH. OEBH'. OB4H ''I
a •• 72: DB OFFH. OB3H. OF7H. OFBH. OFBH '" ,".e73: DB OB7H. OABH. OABH. OABH. ODBH

" .. s.74~ DB OFBH. OCIH. OBBH. ODFH. OFFH It
••• 75: DB OC3H. OBFH. OBFH. OBFH. OC3H I U

•• e76: DB OE3H. ODFH. OBFH. ODFH. OE3H , v
.... 77: DB OC3H. OBFH'. OCFH. OBFH. OC3H I ..
•• e7B: DB OBBH. OC7H. OEFH. OC7H. OBBH I x
•• e79: DB OFFH. OB3H. OAFH. OAFH. OC3H , U
.... 7A: DB OBBH. 09BH. OABH. OB3H. OBBH I •
ASC7B: DB 07FH. 077H. 049H. 03EH. 03EH I (
ASC7C: DB OFFH. OFFH. 088H. OFFH. OFFH I I
ASC7D: DB 03EH. 03EH. 009H. 077H. 07FH I)
ASC7E: DB 067H. 07BH. 067H. 05FH. 067H ,~

--
Character Dot Pattern Fetch

--
-1875 Ch"Pg2: MOV . A. CDotRl

AdlA
'get eh .. " index add" ••• off.et
,g.t column dot p.te"n bute -IB76 MOVP

-IB77
-1878
=1879
=IBBO
-18Bl
=1882
=1883

1884
1885

this bit fix n.c.s •• r~ to not und.~lin. each ch.~.ct.r
this sav •• fi.ing .a.h bit in the look up table

ORL
OutL
RET

A.1I80H
Pl. A

,eh." bit fix
,output the dot patt."n
;Ixit with b~t. in ace

188b

1887 J *
1888 Program End
1889 *
1890
1891 END

NO ERRORS

6-762 230795-001

/

AP-181

APPENDIX B.'
SOFTWARE PRINTER
ENHANCEMENTS

This section describes several software enhancements
which could be implemented as additions to the soft­
ware developed for this Application Note. Space is
available for most of the items described. Approxi­
mately 5 bytes of Data Memory would be required to
implement most of the features. Two bytes would be'
used for status flags, and two bytes for temporary data
or count storage. It is possible to use less than five bytes,
but this would require the duplicate use of some flags,
or other Data Memory storage, which will significantly
complicate the software coding and debug tasks.

Special Characters or Symbols
Dot matrix printing lends itself well to the creation of
custom characters and symbols. There are two aspects
to implementing special characters. First, a character
look-up table, and second, additional software for dec
oding and processing the special characters or symbols.
Special characters might be scientific notation, mathe­
matical symbols, unique language characters, or block
and line graphics characters.

The character look-up table could be an additional
page of Program Memory dedicated to the special
characters, or replace part, or ali, of the existing look­
up tables. If an additional look-up ta~le is used, a third
page test would be needed at the beginning of the Char­
acter translation subroutine. There is fundamentally
no differ:ence between the processing of special charac­
ters and standard ASCII printable characters. If the
characters require the same 5 x 7 dot matrix, the bal­
ance of the software would remain the same. If, how­
ever, the special characters require a different matrix, or
the manipUlation of the matrix, the software becomes
more complex.

In general, the major software modification required to
implement special characters is the size of the dot
matrix printed or the dot matrix configuration used. In
the case of scientific characters, it would often be
necessary to shift the 5 x 7 matrix pattern within the
available 9 x 9 matrix. Block or line graphics characters,
on-the-other-hand, would require using the entire 9 x 9
print head matrix and printing during normally blank
dot columns. This would require suspending the blank
column blanking mechanism implemented in this Appli­
cation Note. This would be the most complex aspect of
implementing special ~haracters. It would possibly
change the number of required instructions, and thus
the timing between ,PTS detection .and print head
solenoid trigger firing. This could cause the dot columns
to be misaligned within a printed line and between lines.

In the case of a matrix change, two approaches are
possible: dynamically changing the matrix, in line, as

standard ASCII characters are being printed, or
isolating the special characters to a separate processing
flow where special characters are handled ,as a unique
and complete line of characters only. A discussion of in
line matrix changes for special characters is beyond the
scope of this Appendix. It is sufficient to say that the
changes would require the conditions setting the EO LN
flag, character count, and dot column count software be
modified during character processing and printing:

Lower Case Descenders
The general principle of implementing lower case des- •
cenders is to shift the 5 x 7 character dot matrix within
the available 9 x 9 print head solenoid matrix. Imple­
menting lower case descenders requires two software
modifications and the creation of status flag for the
purpose. First, the detection of characters needing des­
cenders and setting a dedicated status f).ag during the
character code to dot pattern translation subroutine.
Second, the character dot column pata output to the
print head solenoids must be shifted for each dot
column of the character. At the end of the character, the
flag would be reset. '

Inllne Control Codes
Inline control codes are two to three character sequen­
ces, which indicate special hardware conditions or
software flow control and branching. The first charac­
ter indicates that the control code sequence is beginning
and is typically an ASCII Escape character (ESC),
I BR. Termination of the inline code sequence would be
indicated by a default number of code sequence charac­
ters. This would decrease the buffer size available for
characters. Full SO' character line buffering would
require loading the Chilracter Buffer with a received
character as a character is removed from it and
processed. ,

The Inline Control Code test would be performed in
, two places: in the Character Buffer Fill subroutine and

in the Character Processing (trallslation) subroutine.
The test would be performed in the same manner that a
Carrnage Return (CR) character code test is imple­
mented. Examples are horizontal tabs and expanded or

• condensed character fonts. In the case of horizontal
tabs, 20R (Space Character) would have to be placed in
the Character Buffer for inline proc;essing during char­
acter processing and printing. Unless fixed position
tabs are used, a minimum of a nibble of Data Memory
would be required to maintain a "spaces-to-tab" count.
Fixed tab positions could be set via another inline
control code, by default of the printer software, or
through the use,of external hardware switch settings.
The control code method of setting the tab positions is
the most desireable, but the most complex to implement.

Different Character Formats
Figure BI illustrates three different character fonts;
standard, condensed, and enlarged or expanded char­
acters. As the the figure illustrates, condensed and

6-763 230795~01

inter AP-161

enlarged characters are variations in either the number
of dots and/ or the space used to print them. Thus, each
character is a variation of the stepper motor and/ or
print head· solenoid trigger timings. Figure B2 illus­
trates the "timings required to implement the additional
character printing. . .

• In addition to the three character fonts sbown, it is
possible to print each in bold face by printing each dot
twice per dot column position. This would require little
software modification, but would require a status flag.
Again, care must be used to ensure that the delay in

. retriggering the solenoids is precisely the same for each
type of event. Without this precise timing the dot
column alignment will not be accurate. The software
modifications needed to implement enlarged or con­
densed characters is essentially the same. The carriage
and print head solenoid firing software flow is the same,
but the timing for each changes. For condensed charac­
ters, the step Time Constant is doubled to approxi­
mately 4.08 ms, and the solenoids are fired four times
within each step time. The step rate actually becomes a
multiple' of the solenoid firing time, and a counter
incrementing once for each solenoid firing would be
needed. At the count offour, the carriage stepper motor
is stepped and the counter reset.

In the case of condensed characters, PTS does not play
the same roll as in standard or enlarged character print­
ing. PTS is not used to indicate the optimum print head
solenoid firing time. Solenoid firing is purely a time
function for condensed characters. PTS would only be
used for Failsafe protection.

Enlarged characters would require the solenoids be
fired twice per dot column data, in two sequel)tial dot
columns, at the same rate as standard characters. The
character dot column data and dot column count would
not be incremented at each output but at every other
.output. A flag could be used for this purpose.

When printing either condensed or enlarged characters,
the maximum character count would have to compen­
sate for the increased or decreased characters per line
count. When printing enlarged characters, the maxi-

mum characters per line would btl 40. The Character
Buffer could hold two complete lines of characters. But,
condensed characters presents a quite different situa­
tion. The available character per line increases to 132,
. well beyond the 80 character Character Buffer size. the
solution is to re-initialize the Character Buffer Size
Count register count during condensed character pro­
cessing. This will effectively inhibit the carriage stepper
motor drive EOLN detection.

Two status flags would be required; one for standard or
enlarged characters, and the second for condensed
characters. A third status flag would be required to
implement bold face printing. Activating one of the
alternate character fonts could be either through the use
of external status switches or through inline control
code sequences, as detailed above. Note, that if the
alternate character fonts are implemented in such a way
that format changing is to occur dynamically during
any single line being printed, the same. control code
problems described above also apply. In addition, the
effect on the timing and dot column alignment must
also be investigated.

Var~able Line Spacing
Variable line spacing is another feature which could be
implemented either through the use of external status
switches or inline control codes. The line spacing is a
function of the number of steps the stepper motor
rotates for a given line. Figure 15, Paper Feed Stepper
Motor Predetermined Time Constants, in the Back­
ground section above, lists the Time Constants required
for three different line spacings; 6, 8, and JO lines per
inch. At the beginning of the Paper Feed Stepper
Motor Drive subroutine, the default line step count is
loaded. The software required is a conditional load for
the line spacing, indicated by a status flag set in the
External Status Switch Check subroutine or the Char­
acter Buffer Fill subroutine. Implementing the three
different line spacings would require two additional
status flags.

6-764 230795"()()1

AP-161

APPENDIX C.
PRINTER MECHANISM
DRIVE CIRCUIT

PRINT PULSE 1
5OO± 201'1

PRINT PULSE 9 I

TRIGGER PULSE
2001's OR LESS

RESET PULSE

PARTS NO.

IC1-IC10

IC11

01-09

01-09

010

011

R1-R9

R10

R11

R12

R13

VR1

C1

C2

93

C4

C5

ZD1

ZD2

~~C':':l-___ ~Q,,1~--""'''''i4)-.......,smo1LENOID 1

SOLENOID 9

'--,-;::=t:::;"";';;';';"'"1:=:::;--,r-<? 5V±SOJo

C4

Recommended Solenoid Drive Circuit

TYPE MAKER
SN7406 TI

J1A555 Fairchild

DIODE S5277B Toshiba ..
TRANSISTOR 2SD986 NEC

TRANSISTOR 2SA1015 Toshiba

TRANSISTOR 2S0633 Toshiba

RESISTOR 1.2kO V.

RESISTOR 220 V.

RESISTOR 58002

RESISTOR 15kO V.
Carbon tiI=

RESISTOR 1.2kO v.
VARIABLE RESISTOR 20kO V.

CAPACITOR 1J1F 100V

CAPACITOR 0.01J1F

CAPACITOR 0.001J1F

CAPACITOR 10J1F 16V

CAPACITOR 0.1J1F tiI=

ZENOR DIODE HZ24 Hitachi

ZENOR DIODE HZ5C1 Hitachi

6':765 230795-001

AP-161

)'

Recommended Carriage Motor Drive Circuit

HOLD SIGNAL DRIVE 'SIGNAL
A

AS

R8
24V±10'10
INCASE OF Tc=4.18ms
(CONDENSED CHARACTER
PRINTING), V=14±20'10

~_ -(C).(B_LUE_)_ (GREEN) D (YELLOW)

I -; (WHITE) -- 1

L_~~~_~~J
PARTS NO. TYPE MAKER OTY

R1 Resistor 1kQ±10% 1A 1
R2-R5 ResistQr 220Cl±10% 1A 4

R6 Resistor, 10kQ±10% 1A 1

R7 Resistor 470Cl±10%3 1

R8
,

Resistor 130Cl±10% 7 1

R9 Resistor 330Cl±10% 3 1

01 Transistor 28C1815 Toshiba 1

02-0-05 Transistor 28D526-Y Toshiba 4

06' Transistor 288669 Matsushita 1
01-04 Diode 18954 NEC 4

6-766 230795-001

inter

Recommended Paper Feed Motor Drive Circuit

HOLD SIGNAL DRIVE SI~NAL
A D

SV:tS% ---t---+--..... --+-..,.....;.--+-..... --~I-....,

RB

PARTS NO.
R1

R2-R5

R6

R7

R8

R9

01

02-05

06

01-04

A (RED) (GREEN) D (YELLOW) ,-- --.
I
I
I
I

I
I
I
I
I

PULSE MOTOR I --

TYPE MAKER

Resistor 1kO±10% \4

Resistor- 2200±10% V4

Resistor 10kO±10% \4

Resistor 4700±10% 3

Resistor 1300±10% 7

Resistor 3300±10% 3

Transistor 25C1815 Toshiba

Transistor 250526-Y Toshiba

Transistor 258669 Matsushita

Diode 15954 NEC

6-767

QTY
1

4

1

1

1

1

1

4

1

4

230795-001

H.
H2

H3

H4

H5

H6

H 7

H8

H9

FP

5550

HEAD TRIGGE R

R~

CR A

CR B

C_ CR

CR D

80..,..

.4

32

FA

FB

FC~

FO

~: :::

Gp

,

,

+f 33K '

AP~161

9 x 33K

r- o' ~l r""""2!... ...
r-'

~. !-c;-,
r""""' -.2!.
r"'"

~ ~. .r": -!!!..
r"""'
r"""'

....2!. ~
~

r- 09 LDI:-l
6 TO

2W
GN°9 680

~.86V
L2~ lS 2057K

o 555
.5K 2 20K .00

T VTH

~r 00'" i 0.5
R Vs T 'OOOp .". ,

-5 t 10111 I

.2K
.H) -, r- 0'0

.d-£:i-< '2K~ 011

' 2K r"""" 0'2 ~I
~

•. 2K r- 0.3 --
2W

~J:;:U* 820

.1
2W 't~ ~ 820

~i 1.2Kr- 014 001/1

'2K~ 0.5 l!-cH I

'21< r""""' 0'6 ' .rl'DI-< I
I ~

r- 0.7 - -

r.;r¥ ~··I
2W
820

6-768

,

1

1

,

1205W

'205W~

H' (U)

H2

H3

H4

H5

H

H

H 8'

9(L) H

S OL

CRA

CRB

CRC

CRD

SCA

LFA

LFB

LfC

LFO

SLF

230795-001

APPLICATION
,NOTES

6-769

AP-90

May 1980

APPLICATIONS

INTRODUCTION

The microcomputer system designer requiring a
low-cost, non-volatile storage medium has a difficult
choice. His options have been either relatively
expensive, as with floppy discs and bubble memories,
or non-transportable, like battery backed-up RAMs.

• The full-sized digital cassette option was open but
many times it too was too expensive for the applica­
tion. Filling this void of low-cost storage is the
recently developed digital mini-cassette. These
mini-cassettes are similar to, but not compatible
with, dictation cassettes. The mini-cassette trans­
ports are inexpensive (well under $100 in quantity),
small (less than 25 cu. in.), low-power (one watt),
and their storage capacity is a respectable 200K
bytes of unformatted data on a 100-foot tape. These
characteristics make the mini-cassette perfect for
applications ranging from remote datalogging to
program storage for hobbyist systems.

The only problem associated with mini-cassette
drives is controlling them. While these drives are
relatively easy to interface to a microcomputer
system, via a parallel I/O port. they can quickly
overburden a CPU if other concurrent or critical
real-time I/O is required. The cleanest and probably

the least expensive solution in terms of development
cost is to use a dedicated single-chip controller.
However. a quick search through the literature
turns up no controllers compatible with these new
transports. What to do? Enter the UPI-41A family
of Universal Peripheral Interfaces.

The UPI-41A family is a group of two user­
programmable slave microcomputers plus a com­
panion I/O expander. The 8741A is the "flag-chip"
of the line. It is a complete microcomputer with
1024 bytes of E PRO M program memory, 64 bytes of
RAM data memory, 16 individually programmable
I/O lines, an 8-bit event counter and timer, and a
complete slave peripheral interface with two inter­
rupts and Direct Memory Access (DMA) control.
The 8041A is the masked ROM, pin compatible
version of the 8741A. Figure 2 shows a block
diagram common to both parts. The 8243 I/O port.
expander completes the family. Each 8243 provides
16 programmable I/O lines.

Using the UPI concept, the designer can develop a
custom peripheral control processor for his par­
ticular I/O problem. The designer simply develops
his peripheral control algorithm using the UPI -41A
assembly language and programs the EPROM of

Figure 1. Comparison of Mini-Cassette and Floppy Disk·· Transports and Media.

6~770 AFN-01342A

APPLICATIONS

SYSTEM BUS PERIPHERAL BUS

Figure 2. 8741A18041A Block Diagram

the 8741A. Voila!He has ll- single-chip dedicated
controller. Testing may be accomplished" using
either an ICE-41A or the Single-step mode of the
8741A. UPI-41Aperipheral, interfaces are being.
used to control printers, keyboards. displays, custom
ser.ial interfaces, and data encryption units. Of
course" the UPI famiJy is perfect for developing a
dep'icated controller for digital mini-cassette tran­
sports. To illustrate this ,application for the UPI
famJly let's consider the job of control'i.ing the
Braemar CM-600 Mini-Dek@.

THE CM-600 MINI-DEK*
,

The Braemar CM-600 is representative' of digital
mini-cassette transPorts. It is a single-head. single­
motor' transport which operates entirely fr.om a
single 5-volt power'supply. Its power requirements,
including the motor, 'are 200ma for read or write
and 700ma for rewind. Tapes speeds are 3 inches
per se,::ond (IRS) dU1'4ng read or wJ:ite. 5 I-PS fast
forward. and 15 IPS rewind'. With these speeds and'
a maximum recording density of 800 bits per inch
(BPI). the maximum data rate is 2400 bits per
second (BAUD). The data capacity using both sides
of a 100-foot tape is 200K bytes. On top of this',

6-771

the transport occupies only 22.5 cubic inches
(3"x3"x2.5").

All I/O for the CM-600 is TTL-compatible and can
be divided into three groups: motor control, data
control, and cassette status. The motor group con­
trols are GO/STOP, FAST/SLOW, and FORW ARD/
REVERSE. The data controls are READ/ WRITE,
DATA IN, and DATA OUT. The remaining
group of outputs give the transport's status: CLEAR
LEADER. CASSETTE PRESENCE, FILE PRO­
TECT, and SIDE SENSOR. These signals, shown
schematically in figure 3 and table 1, give the pin
definition of the CM-600 16-pin I/O connector.

RECORDING FORMAT

The' CM-600 does not provide either encoding or
decoding ·of the recorded data; -that task is left for
the peripheral interface. A, multitude of encoding
techniques from which the user .may choose are
available. In this single-chip dedicated controller
application, a "self-clocking" phase encoding scheme
similar to·that used in floppy discs was chosen. This
scheme specifies that a logic "0" is a bit cell with no
transitioo; a cell with a transition is a logic "1.~'

AFN-OI342A

APPLICATIONS

Table 1. CM-800· I/O Pin Definition

Pin 110 Function
1 - Index pin-not used
2 - Signal ground
3 0 Cassette side (O-side B, I-side A)
4 I Data input (O-space, I-mark)
5 0 Cassette presence (O-cassette,l-no

cassette)
6 I Read/Write (O-read,l-write)
7 0 File protect (O-tab present, I-tab

removed)
8 - +5v motor power
9 - Power ground

10 - Chassis ground
11 I Direction (O-forward, I-rewind)
12 I Speed (O-fast, I-slow)
13 0 Data output (O-space, I-mark)
14 0 Clear leader (O-clear leader, I-off

clear leader)
15 I Motion (O-go, I-stop)
16 - +5v logic power

INPUTS BLOCK DIAGRAM

+5V MOTOR POWER
+5V LOGIC POWER-----+-
TAPE DIRECTION (I WD/REW) BRAEMAR
TAPE MOTION (STOP/GO)----. CM~600'M
TAPE SPEED (FAST/SLOW)--.. DIGITAL

~~~~CI1:~~O/WRITE-----+ MINI CASSETTE 

POWER GROUND====:! TRANSPORT 
SIGNAL GROUND 
CHASSISGROUND-L-___ ..J 

OUTPUTS 

CASSETTE SIDE 
FILE PROTECT 
CASSETTE PRESENCE 
CLEAR LEADER 
DATA QUTPUT 

Figure 3. Braemar CM-600· Block Diagram 

Figure 4 illustrates the encoding of the character 
3AH assuming the previous data ended with the 
data line high. (The least significant bit is sent 

. first.) Notice that there is always a "ciocking" 
transition at the beginning of each cell. Decoding is 
simply a matter of triggering on this "clocking" 
transition, waiting 3/4 of a bit cell time, and 
determining whether a mid-cell transition has 
occurred. Cells with nomid.:cell transitions aredata 
O's; cells with transitions are data l's. This encoding 
technique has all the benefits of Manchester encod­
ing with the added advantage thatthe enco,ded data 
may be "decoded by eyeball:" long cells are always 
O's, short cells are· always l's, 

Besides the encoding scheme, the data format is also 
up to the user. This controller uses,a variable byte 
length, checksum protected block format. Every 
block starts and ends with a SYNC character 

Figure 4. Modified Phase Encoding of 
Character 3A Hex 

(AAH), and the character immediately preceeding 
the last SYNC is the checksum. The checksum is 
capable of catching2 bit errors. The number of data 
characters within a block is limited to 64K bytes. 
Blocks are separated by an Inter-Record Gap (IRG). 
The IRG is of such a length that the transport can 
stop and start within an IRG, as illustrated in the 
data block timing, figure 5. Braemar specifies a 
maximum start or stop time of 150ms for the 
transport, thus the controller uses 450ms for the 
IRG. This gives plenty of margin for controlling the 
transport and also for detecting IRGs while skipping 
blocks. 

THE UPI-41A™CONTROLLER 
The goal of the UPI software design for this applica­
tion was to make the UPI-41Amicrocomputer into 
an intelligent cassette control processor. The host 
processor (8086, 8088, 8085A, etc.) Simply issues a 
high-level command such as READ-a-block or 
WRITE-a-block. The 8741A ac~epts the command, 
performs the requested operation, and returns to 
the host system a result code telling the outcome of 
the operation, ego Good-Completion. Sync Error, 
etc. Table 2 shows the command and result code 
repertoire. The 8741A' completely manages all the 
data transfers for reading and writing. 

As an example, consider the WRITE-a-block com­
mand. When this command is issued, the Upt-41A 
expects a I6-bit number from the host telling how 
many data bytes to write (up to 64K bytes per 
block). Once this number is supplied in the form of 
two bytes, the host is free to perform6ther tasks;. a 
bit in the UPI'sSTATUS register,or an interrupt 

. output will notify the host when a data transfer is 
required. The 8741A. then checks the transport's 
status to be sure that .acassette is present and not 
file protected, If either is false. a result code is. 

6-772 AFN-Ql342A 



APPLICATIONS 

"'14~---BlOCKWRITEOPERATION---"""""l·1 

I SYNC I DATA ~{ 
i-45OMS--'1 

I CHECKSUM I SYNC I I SYNC I DATA 

'START TRANSPORT 

i-45OMS-1 

'-STOP TRANSPORT 

Figure 5. IRG/Block Timing Diagram (not to scale) 

Table 2. Controller Command/Result Code Set 

Command Result 
Read (OlH) Good-Completion (OOH) 

Buffer Overrun Error (41H) 
Bad Synchl Error (42H) 
Bad Synch2 Error (43H) 
Checksum Error (44H) 
Command Error (45H) 
End of Tape Error (46H) 

Rewind (04H) Good-Completion (OOH) 
Skip (03H) Good-Completion (OOH) 

End of Tape Error (47H) 
Beginning of Tape Error (48H) 

Write (02H) Good-Completion (OOH) 
Buffer Underrun Error (81H) 
Command Error (82H) 
End of Tape Error (83H) 

returned to the host; otherwise the transport is 
started. After the peripheral controller checks to 
make sure that the tape is off the clear leader and 
past the. hole in the tape, it writes a 450ms IRG, a 
SYNC character, the block of data, the checksum,. 
and the final SYNC character. (The tape has a clear 
leader at both ends and a small hole 6 inches from 
the end of each leader.) The data transfers from the 
host to the UPI-41A slave microcomputer are doubl,e 
buffered. The controller requests only the desired 
number of data bytes by keeping track of the count 
internally. 

If nothing unusual happened, such as finding clear 
leader while writing. it returns a Good-Completion 
result code to the host. If clear leader was encoun­
tered, the transport is stopped immediately and an 
End-of-Tape result code is returned to the host. 
Another possible error would be ifthe host is late in 
supplying data. If this occurs, the controller writes 

6-773 

an IRG, stops the drive, and returns the appropriate 
Data-Underrun result code. 

The READ-a-block command also provides error 
checking. Once this comma~d is issued by the host, 
the controller checks for. cassette presence. If 
present, it starts the transport. The data output 
from the transport is then examined and decoded 
continuously. If the first character is not a SYNC. 
that's lln error and the controller returns a Bad­
First-SYNC result code (42H) after advancing to 
-the next IRG. If the SYNC is good. the succeeding 
characters are read into an on-chip 30 character 
circular buffer. This continues until an IRG is 
encountered. When this occurs. the transport is 
stopped. The controller then tests that the last 
character. If it is a SYNC. the controller then 
compares the accumulated internal checksum to 
the block's checksum. the second to the last character 
of the block. If they match. a Good-Completion 
result code (OOH) is returned to the host. If either 
test is bad. the appropriate error result code is 
returned. The READ command also checks for the 
End-of-Tape (EOT) clear leader and returns the 
appropriate error result code if it is found before the 
read operation is complete. 

The 30 character circular buffer allows the host up 
to 30 character times of response time before the 
host must collect the data. All data transfers take 
place thru the UPI-41A Data BUjl Buffer Output 
register (DBBOUT). The controller continually 
monitors the status of this register and moves 
characters from the circular buffer to the register 
whenever it is empty. ' 

The SKIP-n-blocks command allows the host to skip 
the transport forward or backward up to 127 
blocks. Once the command is issued, the controller 
expects one d'ata byte specifying the number of 

AfN.01342A 



APPLICAtiONS 

blOCks to skip. The most significant bit of this byte 
selects the direction of the skip (O=forward, 
l=reverse). SKIP is a dual-speed operation in the 
forward direction. If the number of blocks to skip is 
greater than 8, the controller uses fast-forward (5 
IPS) until it is within 8 blocks of the desired 
location. Once within 8 blocks, the controller 
switches to the normal read speed (3 IPS) to allow 
accurate placement of th!) tape. The reverse skip 
uses only the rewind speed (15 IPS). Like the READ 
and WRITE commands, SKIP also checks for EOT 
and beginning-of-tape (BOT) depending upon the 
tape's direction. An error result code is returned if 
either is encountered before the number of blocks 
skipped is complete. 

The REWIND command simply rewinds the tape to 
the BOT clear leader. The ABORT command allows 
the termination of any operation in progress, except 
a REWIND. All commands, including ABORT, 
always leave the tape positioned on an IRG. 

THE HARDWARE INTERFACE 

There's hardly any hardware design effort required 
for the controller and transport interface in figure 
6. Since the CM-600 is TTL compatible, it connects 

8741A 
8041A 

~ 
JlD TEST1 
WI! 
AO P,. 

PH 

00-07 p" 
P13 
P14 

oaF p" 
P24 P16 

fBI' P25 

RESET 

directly to the I/O ports of the UPI controller. If the 
two are separated (i.e. on different PC cards), it is 
recommended that TTL buffers be provided.) The 
only external circuitry needed is an LED driver for 
the DRIVE ACTIVE status indicator. 

The 8741A-to-host interface is equally straightfor­
ward. It has a standard asynchronous peripheral 
interface: 8 data lines. (Do:D7), read (RD), write 
(WR), register select (AO), and chip select (CS). 
Thus it connects directly to an 8086, 8088, 8085A, 
8080, or 8048 bus structure. Two interrupt outputs 
are provided for data transfer requests if the 
particular system is interrupt-driven. DMA transfer 
capability is also available. The clock input can be 
driven from a crystal directly or with the system 
clock (6MHz max). The UPI-41A clock may be 
asynchronous with respect to other clocks within 
the system. 

This application was developed on an Intel iSBC 
80/30 single board computer. The iSBC 80/30 is 
controlled by an 8085A microprocessor, contains 
16K bytes' of dual-ported dynamic RAM and up to 
8K bytes of either EPROM or ROM. Its I/O comple­
ment consists of an 8255A Programmable Parallel 
Interface, an 8251A Programmable Communica-

CM·SOO 

MOTOR POWER 
LOGIC POWER 

DATA OUT 

DIRECTION 
MOTION 
SPEED 
READIWRITE 
CLEAR LEADER 
FILE PROTECT 
PRESENCE 

DATA IN 
POWER GND 
$IGNAlGND 
CHASSf5GND 

Figure 6. Controller/Transport System Schematic 

6-774 AFN.(J1342A 



APPLICATIONS 

tions Interface, an .8253 Progr,ammable Interval 
Timer, and an 8259A Programmable Interrupt 
Controller. The iSBC 80/30 is especially convenient 
for UPI development since it contains an uncom­
mitted socket dedicated to either an 8041A or 
8741A, complete with buffering for its I/O ports. 
The iSBC 80/30 to 8741A interface is reflected in 
figure 8. (Optionally, an iSBC 569 Digital Controller 
board could be used. The iSBC 569 board contains 
three uncommitted UPI sockets with an interface 
similar to that in figure 8.) 

Looking at the host-to-controller interface, the host 
sees the 8741A as three registers in the host's I/O 
address space: the data register, the command 
register, and the status register. The decoding of 
these registers is shown in figure 7. All data and 
commands for the controller are written into the 
Data Bus BuJ\fer Input register (DBBIN). The state 
of the register select input, AO, determines whether . 
a command or data is written. (Writes with AO set 
to 1 are commands by convention.) All data and 
results from the controller are read by the host from 
the Data Bus Buffer Output register (DBBOUT). 

CS AD WR AD Register 

0 0 I o OBBOUT 
0 0 I I STATUS 
0 I 0 o OBBIN (DATA) 
0 I 0 I DBBIN (COMMAND) 
I X X X NONE 

Figure 7. 8741>V8041A Interface Register 
Decoding 

STATUS 

OBF-OUTPUT BUfFER FULL 
ISF-INPUT BUFFER FULL 
FO-FLAG 0 

l1~g~~~F1_FLAG 1 DRIVE ACTIVE 
FILE PROTECT 
CASSETTE PRESENCE 
BUSY 

The Status register contains flags which give the 
host the status of various operations within the con­
troller. Its format' is given in figure 8. The Input 
Buffer Full (IBF) and Output Buffer Full (OBF) 
flags show the Status of the DBBIN and DBBOUT 
registers respectively. IBF indicates when the 
DBBIN register contains data written by the host. 
The host may write to DBBIN only when IBF is O. 
Likewise, the host may read DBBOUT only when 
OBF is set to a 1. These bits are handled automa­
tically by the UPI-41A internal hardware. FLAG 0 
(F 0) and FLAG 1 (F 1) are general purpose flags 
used internally by the controller which have no 
meaning externally. ' 

The remaining four bits are user-definable. For this 
application they are DRIVE ACTIVE, FILE PRO­
TECT, CASSETTE PRESENCE, and BUSY flags. 
The FILE PROTECT and CASSETTE PRESENCE 
flags reflect the state of the corresponding I/O lines 
from the transport. DRIVE ACTIVE is set whenever 
the transport motor is on and the controller is 
performing an operation. The BUSY flag indicates 
whether the contents of the DBBOUT register is 
data or a result code. The BUSY flag is set whenever 
a command is issued by the host and accepted by the 
controller. As long as BUSY is set, any character 
found in DBBOUT is a result code. Thus whenever 
the host finds OBF set, it should test the BUSY flag 
to determine whether the character is data or a 
result code. 

Notice the OBF and IBF are available as interrupt 
outputs to the host processor, figure 6. These outputs 
are 'self-clearing, that is, OBF is set automatically 
upon the controller loading DBBOUT and cleared 
automatically by the host reading DBBOUT. Like­
wise IBF is cleared to a 0 by the host writing into 
DBBIN: set toa 1 when the controller reads DBBIN 
into the accumulator. 

The flow charts of figure 9 show the flow of sample 
host software assuming a polling software interface 
between the host and the controller. The WRITE 
command requires two additional count bytes which 
form the I6-bit byte count. These extra bytes are 
"handshaked" into the controller using the IBF flag 
in the STATUS register. Once these bytes are 
written, the host writes data in response to IBF 
being cleared. This continues until the host finds 
OBF set indicating that the operation is complete 
and reads the result code from DBBOUT. No 
testing of BUSY is needed since only the result code 
appears in the DBBOUT register. 

The READ command does require that BUSY be 
Figure 8. Status Register Bit Definition tested. Once the READ command is written into the 

6-775 AFN.()l342A 



APPLICATIONS 

controller, the host must test BUSY whenever OBF 
is set to determine whether the contents of DBBOUT 
is data from the tape or the result code. 

THE CONTROLLER SOFTWARE. 

The UPI-41A software to control the cassette can be 
divided up into various commands such as WRITE, 
READ and ABORT. In a previous version of this appli­
cation note (May 1980), software was described that 

implemented these commands. This code however did 
not adequately compensate for speed variations of the 
motor during record and playback nor for data distor­
tion caused by ,the magnetic media. Since then, new 
code has been written to include these effects. This 
revised software is now available through the INTEL 
User's Library, INSITE. For more information on this 
software or INSITE, contact your local INTEL Sales 
Office. 

6-776 AFN.ol342A 



8041~8641~8741A 
UNIVERSAL PERIPHERAL INTERFACE 

8·BIT MICROCOMPUTER 
• 8·Blt CPU plus ROM, RAM, I/O, Timer 

and Clock In a Single Package 

• One 8·Blt Status and Two Data Regis· 
ters for Asynchronous Slave·to·Master 
Interface 

• DMA, Interrupt, or Polled Operation 
Supported 

• 1024 x 8 ROM/EP~OM, 64 x 8 RAM, 
8·Bit Timer/Counter, 18 Programmable 
I/O Pins 

• Fully Compatible with All 
Microprocessor Families 

Ii Interchangeable ROM and EPROM 
Versions 

.3.6 MHz 8141A·8 Available 

• Expandable I/O 

• RAM Power. Down Capability 

• Over 90 Instructions: 10% Single Byte 

• Available in EXPRESS 
-Standard Temperature Range 
-Extended Temperature Range 

The Intel'" 8041A18741A is a general purpose, programmable interface device designed for use with a variety of 8-bit 
microprocessor systems. It contains a low cost microcomputer with program memory, data memory, 8·bit CPU, I/O 
ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to enable the UPI device to 
function as a peripheral controller in MCS-48™, MCS-80™, MCS-85™, MCS-86™, and other 8·bit systems. 

The UPI.41A TM has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the 
program memory is available as ROM In the 8041 A version or as UV-erasable EPROM in the 8741A version. The 8741A 
and the 8041 A are fully pin compatible for easy transition from prototype to prOduction level deSigns. The 864M is a 
one-time programmable (at the factory) 8741A which can be ordered as the first 25 pieces of a new 8041A order. The 
substitution of 8641A's for 8041A'$ allows for very fast turnaround for initial code verification and evaluation results. 

The device has two 8-bit, TTL compatible I/O ports and two test inputs.llndividual port lines can function as either in· 
puts or outputs under software control. I/O can be expanded with the 8243 device which is directly compatible and has 
16 I/O lines. An 8-bit programmable timer/counter Is included in the UPI device for generating timing sequences or 
counting external inputs. Additional UPI features include: single 5V supply, low power standby mode (in the 8041A), 
single-s~ep mode for debug (in the 8741A), and dual working register banks. ' 

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSI inter· 
face devices. It is designed to be an efficient controller as well as an arithmetic processor. Applications include key­
board scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral 
devices to microprocessor systems. 

PIN CONFIGURATION 

Vee 

V .. -...... __ :J" 

BLOCK DIAGRAM 

... MfEll 
InnM l

:;'~,=*--k=::::===:::: 

.... ,,~ .. -.. -,,­.. -
, ... ..... --

{ '~-_I'IIOIIPIIDGtIMI .. "",Y 
__ '" __ +SIUI'PL'f 

'.--0_' 

I ~ .. "._ ~ INTERFACE 

.. -I 
'" 

Intel Corporation Assumes No Responaibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses Bfa Implied. 
@INTElCORPORATION, 1982 6-'177 I MARCH 1982 



intJ 8041 AJ8641 AJ8741 A 
" , . 

", Table 1. -Pin Description 

Signal " Description Signal Description 

00-07 Three-state. bidirectional D.ATA BUS BUF-
(BUS) FER lines used to interface the UPI-41 A to an 

, 8-bit master system data bus. 

XTAL1 •. Inputs for a, .. crystal; L,C 9r a':l external timing, 
XTAL2 sillnal ~o, llet\'lr(l1ine the ,internal oscillator 

frequency.' " , ' 

P10-P17 8"bit. PORT 1 quasi-bidirectional I/O lines. SYNC Output signal wllich occur" once per ~UPI-

P20-P27 8-bit. PORT' 2 quasi-bidirectional VO lines. 
The lower 4 bits (P20-P23) interface directly 
to the 8243 I/O expander device and contain 

41 A instruction cycle. SYNC can be used as a, 
strobe for external circuitry; it is also used to 
synchronize sirigle step operation. 

address and data information during PORT EA External access input which allows emula-
4-7 access. The upper 4 bits (P24-P27) can tion. testing and PROM/ROM verification. 
be programmed to provide Interrupt Request 
and DMA Handshake capability. Software 
control can configure P24 as OBF (Output 
Buffer'Full). P25 as iBF (Input Buffer FU~ 
as ORO (DMA Request). and P27 as , 

PROG Multifunction pin used as the program pllise 
input during PROM programming. 

During I/O expander access the PROG pin 
acts as an address/data strobe to thl' 824,3. 

(DMA ACKnowledge): 

WR I/O write inp,ut which enables the master CPU 
RESET Inp'ut used to reset IStatus flip-flops and to set 

the program counter to zero. 
to write data and command words to the UPI-
41A INPUT DATA BUS BUFFER. 

RESET is also used during PROM program-
ming and verification. 

iID I/O read Input which enables the master CPU RESETshouid beheld lowforaminimumof8 
to read data-and status words from the OUT-
PUT DATA BUS BUFFER or status register. 

CS Chip select input used to select one UPI-41 A 
,out of several connected to a common data 
bus. 

i'nstruction cycles after power-up. 

SS Single stl'lP input used in the 8741 A in con-, 
junction with the SYNC output to step the 
program through each instruction. 

Ao Address input used by the master processor 
to indicate whether byte transfer is data or 
command. During a write operation flag F1 is 
set to the status of the Ao input. 

Vee +SV main power supply \lin. 

Voo +5V during normal operation. +25V during 
programming operation. Low power standby 
pin In ROM version. 

TEST O. Input pins which can be directly tested using VSS Clrpult ground potential. ' 
TEST 1 conditional, branch instructions. 

T 1 also functions as the event timer input 
(under software control). To is used during 
PROM programming and verification in the 
8741A. 

" 

6-778 , AFN-OOl88B 



8041 AJ8641AJ8741 A 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8741A EPROM 

Programming Verification 

In brief, the programming process consists of: activating 
the program mode, applying an' address, latching the 
address, applying data, and applying a programming pulse. 
Each word is programmed completely before moving on to 
the next and is followed by a verification step. The follow· 
ing is a list of the pins used for programming and a descrip· 
tion of their functions: 

Pin Function 

XTAL 1 Clbck Input (1 to 6MHz) 

Reset Initialization and Address Latching 

Test 0 Selection of Program or Verify Mode 

EA Activation of Program/Verify Modes 

BUS Address and Data Input 
Data Output During Verify 

P20-1 Address Input 

VDD Programming Power Supply 

PROG Program Pulse Input 

WARNING: 

An attempt to program a mlssocketed 8741 A will result In severe 
damage 10 the part. An indication of a property socketed pan is t~e 
appearance of the SYNC clock output. The lack of thIS clock may 
be used to disable the programmer. 

The Program/Verify sequence is: 

1. AO= OV. CS = 5V. EA = 5V, RESET = OV, TESTa = 5V, 
Voo = 5V , clock applied or Internal oscillator operating, 
BUS and PROG floatln9. 

2. Insert 8741A In programming socket 

3. TEST 0 = Ov (select program mo~el 

4. EA = 23V (activate program model 

5. Address appl ied to BUS and P20-1 

6. RESET = 5v (latch addressl 

7. Data appl ied to BUS 

S. V DD ~ 25v (programm ing power) 

9. PROG = Ov followed by one 50ms pulse to 23V 

10. V DD =5v 

11. TEST a = 5v (verify model 

12. Read and verify data on SUS 

13. TEST a = Ov 

14. RESET = Ov and repeat from step 5 

15. Programmer should be at conditions of step 1 when 
8741A IS removed ,from socket. 

8741A Erasure Characteristics 

The erasure characteristics of the 8741A are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Ang· 
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps have wavelengths in, the 
3000-4000A range. Data show that constant exposure to 
room level fluorescent lighting could erase the typical 
8741A in approximately 3 years while it would take ap­
proximately one week to cause erasure when exposed 
to direct sunlight. If the 8741A is to be exposed to these 
types of lighting conditions for extended periods of 
time, opaque labels are available from Intel which 
should be placed over the 8741A window to prevent 
unintentional erasure. 

6-779 

The recommended erasure procedure for the 8741 A is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 A. The integrated dose (i.e., UV inten­
sity x exposure time) for erasure should be a minimum 
of 15 w·seclcm2. The erasure time with this dosage is 
approximately 15 to 20 minutes using an ultraviolet 
lamp with a 12,000 ,..Wlcm2 power rating. The 8741A 
should be placed within one inch of the lamp tubes dur­
ing erasure. Some lamps have a filter on their tubes 
which should be removed before erasure. 

AFN-00188B 



inter 8041~8841~8741A 

UPI·41ATII FEATURES AND 
ENHANCEMENTS 

1. Two Data Bus Buffers, one for Input and one for out· 
-put. This allows a much cleaner Master!Slave pro-
tocol. \ 

INPUT <=If DATA 
BUS 

BUFFER 
(8) 

Do-Dr ' L.-..--..-I 

OUTPUT 
DATA 
BUS 

BUFFER 
(8) 

2. 8 Bits of Status 

INTERNAL 
DATA BUS 

ST • .,ST 7 are user definable status bits. These bits are 
defined by the "MOV STS, A" single byte, single 
cycle instruction. Bits 4-7 of the accumulator are 
moved to bits 4-7 of the status register. Bits 0-3 of 
the status register are not affected. 

MOV STS. A Op Cod.: 90H 

3. RD and WR are edge triggered. IBF, OBF, Fl and INT 
change internally after the trailing,edge of AD or WR. 

FLAGS AFFECTED 

lID or WR 

4. P24 and P25 are port pins or Buffer Flag pins which 
can be used to interrupt a master proces~or. These 
pins default to port pins On Reset. 

If the "EN FLAGS" Instruction has been executed, 
P24 becomes the OBF (Output Buffer Full) pin. A "1" 
written to P24 enables the OBF pin (the pin outputs 
the OBF Status Bit). A "0" written to P24 disables the 
OBF pin (the pin remains low). This pin can be used 
to indicate that valid data is available from the UPI· 
41A (in Output Data Bus Buffer). 

6-780 

If "EN FLAGS" has been executed, P2!I becomes the 
i'B'f!' (Input Buffer Full) pin. A "1" written to P25 
ena~les the i'B'f!' pin (the pin outputs the Inverse of the 
IBF Status Bit). A "0" written to P25 disables the IIi'F 
pin (the pin remalnslow).lThls:pin can 'be used to 
indDcate that the UPI-41A Is ready for data. 

• 

08F PNTERRUPT REQUEST) 

ill' (INTERRUPT REQUES1l, 

DATA BUS BUFFER INTERRUPT CAPABILITY 

EN FLAGS Op Codo: OFIM 

01 

5. P26 and P27 are port pins or DMA handshake pins for 
use with a DMA controller. These pins default to port 
pins on Reset. 

If the "EN DMA" instruction has been executed, P26 
becomes the DRQ (DMA ReQuest) pin. A "1" written 
to P26 causes a DMA request (DRQ is activated). DRQ 
Is deactivated by DACK . RD, DACK :WR, or execution 
of the "EN DMA" Instruction. 

If "EN DMA" has been executed, P27 becomes the 
DACK (DMA ACKnowledge) pin. This pin acts as a 
chip select Input for the Data Bus Buffer registers 
during DMA transfers. 

DROI!!!: DROn 
8041A1 8257 
8741A 

DACKr!!!: DACK 

DMA HANDSHAKE CAPABIUTY 

EN DMA Op CoM: OES" 

_1888 



8041 AJ8641 AJ8741 A 

APPLICATIONS 

DATA 

8OI5A 

ADDR -TO 

CONTROL 
-T1 

Figure 1. 808SA-8041A Interface 

8243 
EXPANDER 

DATA BUS 

CONTROL BUS 

8041A18741A 

KEYBOARD 
MATRIX 

Figure 3. 8041A-8243 Keyboad Scanner 

D .... 

~ 
0 

8048 
m .. 

6-781 

RD AD ~ 
WR Wli 8041A1 ~ a 

PORT CONTROL 2 
CS 87.1A 

I-To Ao 

BUS DATA BUS 8 DBB -T1 

Figure 2. 8048-8041A Int.rface 

DATA BUS 

CONTROL BUS 

Figure 4. 8041A Matrix Printer Interface 

AFN-00188B 



8041 Al8641 Al8741 A 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. - 65'·Cto + 150·C 
Voltage on Any Pin With Respect 

to Ground .......................... 0.5V to + 7V 
Power Dissipation ..... , ................... 1.5 Waft 

D.C. AND OPERATING, CHARACTERISTICS 
TA=O°C to 70°C, VSS=OV, VCC=Voo=+5V ±10%' 

Symbol Parameter 

'COMMENT: Stresses above those listed under "Absolute Maximum 
Ratings" may causs permanent damage to the devloe:This Is a stress 
rating only and functional operation of the device at these or any other 
pondltlons above, those Indicated i~ ,the operational sections of this 
specification Is not Implied. Exposure to absolute maximum rating con· 

,dltion. for extended periods may affect device reliability, 

Min. Max. Unit Test Conditions 

VIL Input Low Voltage (Except XTAL 1, XTAL2, RESET) -0.5 0.8 V 

VILt Input Low Voltage (XTAL1, XTAL2, RESET) 

VIH Input High Voltage (Except XTAL 1, XTAL2, RESEn 

VIH1 Input High Voltage (XTAL1, XTAL2, RESET) 

VOL Output Low Voltage (00-07) 

VOlt Output Low Voltage (Pl0PH' P20P27, Sync) 

VOL2 Output Low Voltage (Prog) 

VOH Output High Voltage (00-07) 

VOH1 Output High Voltage (All Other Outputs) 

IlL Input Leakage Current (To, T1, RD, WR, CS, Ao, EA) 

loz Output Leakage Current (00-07, High Z State) , 

III Low Input Load Current (Pl0PH, P20P27) 

ILil Low Input Load Current (RESET, SS) 

IDD Voo Supply Current 

Ice+ 100 Total Supply Current 

A.C. CHARACTERISTICS 
TA=O°C to 70°C, VSS=OV, VCC=Voo=+5V ±10%' 
DBB ijEAD 

Symbol Parameter 

tAR CS, Ao Setup to RDI 

tRA CS, Ao Hold After JIDf 

tRR RD Pulse Width 

tAO ' CS, Ao to Data Out Delay 

t RO RDI to Data Out Delay 

tOF Frn f to Data Float Delay 

tCY Cycle Time (Except 8741A·8) 

tCY Cycle Time (8741A·8) 

DBB WRITE 

Symbol Parameter 

tAW CS, Ao Setup to WRI 

tWA CS, Ao Hold AfterWFif 

, tww WFi Pulse Width 

tow Data Setup to WAf 

two Data Hold AfterWAf 

6-782 

-0.5 0.6 V 

2.2 Vce 

3.8 Vce V 

0.45 V IOL=2.0 mA 
0.45 V 10L= 1.6 mA 

0.45 V 10L= 1.0 mA 

2.4 V 10H = - ,400 p.A 

2.4 V IOH= -50p.A 
± 10 I'A Vss s VIN s Vee 
± 10 I'A Vss+ 0.45 s VIN s Vee 
0.5 rnA VIL = 0.8V 

0.2 mA VIL =0.8V 

15 mA Typical = 5 mA 

125 mA Typical = 60 mA 

Min. Max. Unit Test Conditions 

0 ns 

0 ns 

250 ns 

225 ns, CL=150pF 

225 ns CL=150pF 

100 ns 

2.5 15 I'S 6.0 MHz XTAL 
4.17 15 I's 3.6 MHz XTAL 

Min. Max. Unit Test Conditions 
0; ns 

0 ns 

250 ns 

150 ns 

0 ns 

AFN-OOI88B 



inter 8041 AJ8841 AJ8741 A 

A.C. TIMING SPECIFICATION FOR PROGRAMMING 
TA=O·Ctb 7'O·C. VCC=+5V :1:10%· 

Symbol Parameter Min. Ma •• Unit Telt Cl)ndltlonl 

tAW Address Setup Time to RESET 1 4tcy 

tWA Address Hold Time After RESET 1 4tcy 

tow Data 1ft Setup Time to PROG 1 4tcy 

two Data in Hold Time After PROG I 4tcy 

tpH RESET Hold Time to Verify' 4tcy 

tvoow Voo Setup Time to PROG I . 4icy 

tv DOH Voo Hold Time After PROG I 0 
tpw Program PU'lse Width 50 60 mS 

tTW Test 0 Setup Time for Program Mode 4tcy 

twT Test 0 Hold Time After Program Mode 4tcy 

too Test 0 to Dala Out Delay 4tcy 

tww RE"SET Pulse Width to Latch Address 4tcy 

tr. If . Voo and PROG Rise and Fall Times 05 20 "s 
ICY CPU Operation Cycle Time 5.0 "s 
tRE RESET SetuR Jlme Before EA I. 4tcy 

NOI.: If TEST 0 Is high. too can be triggered by REsET I . 
• For Extended Temperature EXPRESS; use M8741A electrical parametars. 

D.C. SPECIFICATION FOR PROGRAMMING 
TA = 25·C :!:: 5·C, Vcc = 5V :!:: 5%, Voo = 25V :!:: tv 

Symbol Parameter Min. Max. Unit Te.t Condition. 

VOOH Voo Program Voltage High Leve~ 24.0 260 V 

VOOl Voo Voltage Low Level 4.75 5.25 V , 
VPH PROG Program Voltage High Level 21.5 24.5 V 

VPl PROG VOltage Low Level 0.2 V , 

VEAH EA Program or Verify Voltage High Level 21.5 24.5 V 

VEAL EA Voltage Low Level 5.25 V 

100 Voo High Voltage Supply Current 30.0 rnA 

IpROG PROG High Voltage Supply Current 16.0 mA 

lEA EA High Voltage Supply Current 1.0 mA 
. , 

'" 

A.C. CHARACTERISTICS-PORT 2 
TA=O·C to 70·C,: Vcc= +5V :!:: 10%" .. 

Symbol Parameter Min. MM. Unit TestCondltlonl 

tcp Port Control Setup Before Falling 
Edge of PROG 110 ' ns 

tpc Port Control Hold After Falling 
Edge of PI'IOG· 100 ns 

tpR PROG to Time P2 Input Must Be Valid 810 ns 

tpF Input Data Hold Time 0 150 n~ 

top Output Data Setup Time 250 ns 

tpo Output Data Hold Time 65 ns 

tpp PROG Pulse Width 12Dq ns .. 

6-783 AfN.OO1888 



inter 8041A18~:1~8741A 

A C CHARACTERISTICS-DMA 
Symbol Parameter 

tAce ' P!,\CK to WR or RD 

tCAC A!l or ~ to r5AOR 

tACO DACK to Data Valid 

tCRa RD or WR to ORO Cleared 

CRYSTAL OSCILLATOR MODE 

".""~;;:~ r-r:1 m" 
SOCKET, STRAy) I 

I 

L_____ 3 XTAL2 

15-25 pF 
(INCLUDES SOCKET, I 

STRAY) -:;-

CRYSTAL SERIES RESISTANCE SHOULD B~ 
<752 AT 6 MHz; <180Q AT 3.-6 MHz. 

LC OSCILLATOR MODE 

l ..Q.. NOMINAL I 
45",H 20pF 5.2 MHz 

120",H 20pF 3,2 MHz 

Jc 
"':" TC 

~L 
2 

3 

, '," 
Min. Max. Unit Test Conditions 

0 ns 

0 ns 

22~ ns CL =,150 pF 

200 ns 

DRIVING FROM EXTERNAL SOURCE 

XTAL1 

XTAL2 

+5V 

4700 

»--t------''''1XTAL1 

+5V 

470Q 

'---+-----=-iXTAL2 

BOTH XTAL1 AND XTAL2 SHOULD BE DRIVEN 
RESISTORS TO Vee ARE NEEDED TO ENSURE VIH = 3.8V 
IF TTL CIRCUITRY IS USED, 

t '" 2nJLC' 

C'= C+3Cpp 
2 

Cpp ~ 5 -10 pF PIN,TO,PIN 
CAPACITANCE 

E,ACH C SHOU~D BE APPROXIMATELY 20 pF, INCLUDING STRAY CAPACITANCE, 

TYPICAL 8041/8741 A CURRENT A;C TESTING LOAD,CIRCUIT 
80 rnA 

60mA 

DEVICE 
40mA 

20 rnA 

UNDER 

n,CL:150PF TEST 

,1 
-= 

'TEMP (I'e) 

6-784 AFN-00188B 



/ 

intJ 8041AJ8841AJ8741A 

WAVEFORMS 
READ OPERATION-DATA BUS BUFFER REGISTER. 

BOR Aa 

~-------

1----'00----1 

-'00-1 ~OF ----1"0-

?:UTT~~~~-----------C< - DATAVALlD)'>-----------

WRITE OPERATION-DATA BUS BUFFER REGISTER. 

ISYSTEM'S 
ADDRESS BUS) 

fREAD CONTROLI 

~ _ ADDRESS BUS) eJOR A_ =>1 _______ ----'1r~ __ -:--ISVSTE ... S 

-'AW-J"-------r-fw_W-~4--'WA~ __ 
L- _ IWRITECONTROLI 

-'ow-- -fwo 
DATA aus DATA , ~ _OATAVAlID_'" DATA 

flNPUTI _____ MA_V_C_H_AN_G_' ___ .:J/' 1c!\~ _____ MA_V_C.;.HA....;NG.;.,;.... ___ _ 

PORT 2 TIMING 

SYNC 

EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

-PAoe 

PORT 20~3 DATA 

PCAT 20_3 DATA 

6-785 



inter 8041 AJ8641AJ8741 A 

WAVEFORMS FOR PROGRAMMING 

COMBINATION PROGRAMNERIFY MODE (EPROM'S ONLY} 

'23Y / .A 5V _____ J 

1---------- PROGRAM ~---------t-~- VERIFY '_'+I'~--_ PROGRAM ---­

,-------" 
TESTO 

OBo-OB, ==>---
LAST 

ADDRESS 

DATA TO BE 
PROGRAMMED VALID -< NEXT AODR C -- VAllO 

NEXT 
ADDRESS 

_ ': . ",'.~_~W_T _____________________ _ 

+23------- --_=fY-UDW two 
PROG 

:~----------- , ___ J r- ..... --------'"'\ ... ______ _ 

VERIFY MODE (ROM/EPROM} 

'ww 

RESET V 

J--'" 
tWA 

DBO-DB7 =>--- ADDRESS DATA OUT --(0-7) VALID VALID 

P20-P , ADDRESS (8-9) VALID 

NOTES: 
1. PROG MUST FLOAT IF EA IS LOW (I •••• *23V), OR IF ro_5V FOR THE 8741A. FOR THE 

8041A PROG MUST ALWAYS FLOAT. 
2. XTAL 1 AND XTAL 2 DRIVEN BY 3.8 MHz CLOCK WILL GIVE 4.17 's.c ICY. THIS IS ACCEPT· 

ABLE FOR 8741A·8 PARTS AS WELL AS STANDARD PARTS. 
3. AO MUST BE HELD LOW (I ••••• OV) DURING PROGRAMIVERIFY MODES. 

The 8741A EPROM can be programmed by either of two 
Intel products: 

1. PROMPT-48 Microcomputer Design Aid, or 
2. Universal PROM Programmer (UPP series) peripheral 

of the Intellec'" Development System with a UPP-848 
Personality Card. 

6-786 

II 

~ 
NEXT NEXT DATA 

ADDRESS OUT VALID -------

NEXT ADDRESS VALID \ 

AFN.ool88B 



8041 AJ8841 AJ8741 A 

WAVEFORMS-DMA 
i!ACK 

AD 

'AI:~CAC--WII 

,.=---:CAC--tAce 
DATA IUS --------VALID VALID - -

I---'ACD-DRO 

-tcJ- -,cJ-
INPUT AND OUTPUT WAVEFORMS FOR A.C. TESTS 

2.4 ----""\X2.2 ....... TEST POINTS ...... 2.2V 
0.45 ____ oJ_ _ 0.8- . --...0.8"",, ____ _ Cl=l50pF 

Table 2. UPI™ Instruction Set 

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles 

Accumulator , XRL A,@Rr Exclusive OR data 1 1 
ADD A,Rr Add register to A 1 1 memory to A 
ADD A,@Rr Add data memory to A 1 1 XRL A,#data Exclusive OR imme- 2 2 
ADD A,#data Add immediate to A 2 2 diate to A 
AD DC A,Rr Add register to A with 1 1 INCA Increment A 1 1 

carry DEC A Decrement A 1 1 
AD DC A,@Rr Add data memory to A 1 1 CLR A Clear A 1 1 

with carry CPLA Complement A 1 1 
ADDCA, Add immed. to A with 2 2 DAA Decimal Adjust A 1 1 
#data carry SWAP A Swap nibbles of A 1 1 
ANL A,Rr AND register to A 1 1 RL A Rotate A left 1 1 
ANL A,@Rr AND data memory to A 1 1 RCL A Rotate A left through 1 1 
ANL A,#data AND immediate to A 2 2 carry 
ORL A,Rr OR register to A 1 1 RRA Rotate A right 1 1 
ORL A,@Rr OR data memory to A 1 1 RRCA Rotate A right through 1 1 
ORL A,#data OR immediate to A 2 2 
XRL A,Rr Exclusive OR register 1 1 

carry 

to A 

6-787 AFN-OOl88B 



8041AJ8641AJ8741 A 

Table 2., UPI™ Instruction Set (Cont'd.) 

Mnemonic Description Bytes ICycles Mnemonic Description Bytes Cycles 

Input/Output Control 
In A,Pp Input port to A 1 2 ENDMA Enable DMA Hand- 1 1 
OUTL Pp,A Output A to port 1 2 shake Lines 
ANL Pp,#data AND immediate to port 2 2 EN I Enable IBF Interrupt 1 1 
ORL Pp,#data OR immediate to port 2 2 DIS I Disable IBF Interrupt 1 1 
In A,DBB Input DBB to A, 1 1 EN FLAGS Enable Master 1 1 

clear IBF Interrupts 
OUTDBB,A Output A to DBB, 1 1 SEL RBO Select register 1 1 

set OBF bank 0 
MOV STS,A A4-A7 to Bits 4-7 1 1 SEL RB1 Select register 1 1 . of Status bank 1 
MOVD A,Pp Input Expander port 1 2 NOP No Operation 1 1 

to A 
MOVD Pp,A Output A to Expander 1 2 

port 
ANLD Pp,A AND A to Expander 1 2 
ORLD Pp,A OR A to Expander 1 2 

port 

Registers 
INCRr Increment register 1 1 
INC@Rr Increment data 1 1 

memory 
DEC Rr Decrement register 1 1 

Data Moves 
MOVA,Rr Move register to A 1 1 
MOVA,@Rr Move data memory 1 1 

, to A 
MOVA,#data Move'immediate to A 2 2 

Subroutine 
CALLaddr Jump to subroutine 2 2 
RET Return 1 2 , 
!;IETR Return and restore 1 2 

status 

MOV Rr,A Move A to register 1 1 
MOV@Rr,A Move A to data 1 1 

Flags 
CLRC Clear Carry 1 1 

memory 
MOV Rr,#data Move immediate to 2 2 

register 
MOV@Rr, Move immediate to 2 2 
#data data memory 
MOVA,PSW Move PSW to A l' 1 

CPLC Complement Carry 1 1 
CLR FO Clear Flag 0 1 1 
CPL FO Complement Flag 0 1 1 
CLR F1 Clear F1 Flag 1 '1 
CPL F1 Complement F1 Flag 1 1 

MOV PSW.A Move A to PSW 1 1 Branch 
XCH A,Rr Exchange A and 1 1 

register 
XCH A,@Rr Exchange A and data 1 1 

memory 
XCHD A,@Rr Exchange digit of A 1 1 

and register 
MOVPA,@A Move to A from 1 ·2 

JMP addr Jump unconditional 2 2 
JMPP@A Jump indirect 1 2 
DJNZ Rr,addr Decrement register 2 2 

and jump 
JC addr Jump on Carry=1 2 2 
JNC addr Jump on Carry=O 2 2 
JZ addr Jump on A Zero 2 2 

current page 
MOVP3, A,@A Move to A from 1 2 

page 3 

Timer/Counter 
MOVA,T Read Timer/Counter 1 1 
MOV T,A Load Timer/Counter 1 1 
STRT T Start Timer 1 1 
STRT CNT Start Counter 1 1 
STOP TCNT Stop Timer/Counter 1 1 
EN TCNTI Enable Timer/Counter 1 1 
DIS TCNTI Disable Timerl 1 1 

Counter Interrupt 

JNZ addr Jump on A not Zero 2 2 
JTO addr Jump on TO=1 2 2 
JNTO addr Jump on TO=O. 2 2 
JT1 addr Jump on T1=1 2 2 
JNT1 addr Jump on T1=0 2 2 
JFO addr Jump on FO Flag=1 2 2 
JF1 addr Jump on F1 Flag",,1 2 2 
JTF addr Jump on Timer 2 2 

Flag=1, Clear Flag 
JN1BF addr Jump on IBF Flag=O 2 2 
JOBF addr Jump on OBF Flag.=1 2 2 
JBb addr Jump on Accumulator 2 2 

Bit 

,6-788 



inter 
8042/8742 

UNIVERSAL PERIPHERAL INTERFACE 
8·BIT MICROCOM'PUTER 

• 8042/8742: 12 MHz 
• Pin, Software and Architecturally 

Compatible with 8041A18741A 
• 8·Blt CPU plus ROM, RAM, 1/0, Timer 

and Clock In. a Single Package 
• 2048 x 8 ROMIEPROM, 128 x 8 RAM, 

8·Blt TlmerlCounter, 18 Programmable 
110 Pins 

• One 8·Blt Status and Two Data 
Registers for Asynchronous 
Slave·to·Master Interface 

• DMA, Interrupt, or Polled Operation 
Supported 

• Fully Compatible with all Intel and 
Most Other Microprocessor 
Families 

• Interchangeable ROM and EPROM 
Versions 

• Expandable 110 

• RAM Power· Down Capability 

• Over 90 Instructions: 70% Single Byte 

• Available in EXPRESS 
-Standard Temperature Range 

The Intel 804218742 is a general-purpose Universal Peripheral Interface that allows the designer to grow his own 
customized solution for peripheral device control. It contains a low·cost microcomputer with 2K of program memory, 
128 bytes of data memory, 8·blt CPU, 110 ports, 8-bit timer/couJlter, and clock generator in a single 40-pin package. 
Interface registers are included to enable the UPI device to function as a peripheral controller in the MCS-48™, 
MCS·51™, MCS-80™, MCS-85™, iAPX-88, iAPX-86 and other 8-, 1S·bit systems. 

The 804218742 is software, pin, and architecturally compatible wit-h the 8041 A, 8741 A. The 804218742 doubles the on-chip 
mernory space to allow for additional features and performance to be incorporated in upgraded8041 N8741 A designs. For 
new designs, the additional memory and performance of the 8042/8742 extends the UPI concept to more complex motor 
control tasks, 80-column printe~s and process control applications as examples. 

To allow full user flexibility, the program memory is available as ROM in the 8042 version or as UV·erasable EPROM in 
the 8742 verSion. The 8742 and the 8042 are fully pin compatible for easy transition from prototype to production level 
designs. 

{

'1 __ HlOQMIIIIU",L~ 

_1I"'ce __ +f~l' 
•• __ OIlOUND 

Figure 1. Block Diagram 

PfIIl'HIIIIIL 
IHlEllf'ACE 

Figure 2. Pin Configuration 

Intel Corporation Assumes No Responslbtlty for the Use at Any Circuitry Other Than Circuitry Embod/ed In an Intel Product No Otther Circuit Patent Licenses .,. ImPlied,' 

©INTEL CO~PORATION, 1983 - FEBRUARY 1883 
6-789 ORDER NUMBER: 210393-001 



804218742 

Pin Pin 
Symbol No. 'TYpe Name and FuncUon Symbol No. Type Name and Function 

TESTO. 1 I Test inputs: Input plfls which can be SYNC 11 0 Output 'Clock: Output signal which 
TEST 1 39 directly tested using conditional occurs once per UPI-42 Instru,ction 

branch instructions. cycle. SYNC can be used as ~ strobe 
for external circuitry; it Is also used to 

Frequency Reference: TEST 1 (T 1) ,synchronize single step operation. 
alSO functiona as the 'event timer in-
put (under software control). TEST 0 
(To) Is used during PROM program-
ming and verification in the 8742. 

00-07 12-19 I/O Data Bua:, Thr\l&state. bidirectional 
(BUS) DATA BUS BUt=FER lines used to In· 

terlace the UPI-42 microcomputer to 
an 8-blt ,master system, data bus. 

XTAL 1. 2 I Inputs: Inputs for a crystal. LC or an 
XTAL2 3 external timing signal to determine 

the internal' oscillator frequency. 

RESET 4 I Reset: Input used to reset status flip-
flops and to set the program counter 
to zero. 

P1o-P17 27-34 I/O Pori 1: 8-bit. PORT 1 quasi-bidirec-
tional I/O lines. 

P2O-P27 21-24 I/O Pori 2: 8-bit. PORT 2 quasl-bidirec-
35-38 tional I/O lines. The lower 4 bits (P20-

P23) interface directly to the 8243,j/0 
expander device and contain' address 

RESET is also used during PROM pro-
gramming and verification. 

and data information during PORT 4-7 
access. The upper 4 /:;Iits (P2.-P27) ,can 
be programmed to provide interrupt 

SS 5 I Single Step: Single step input used 
in conjunction with the SYNC out· 

Request and DMA Handshake capa-
bility, Software control can configure 

put to step the program through P2• as Output Buffer Full (OBF) inter-
each instruction. (8742 only) rupt •. P2• as Input Buffer Full (IBF) 

CS 6 I Chip SlIIect: Chip select input used to 
select one UPI microcomputer out of 
several connected to a common data 

interrupt. P26 as DMA Request 
(ORO). and P27 as DMA ACKnowledge 
(DACK). 

bus. PROG 25 I/O Program: Multifunction pin used as 

EA 7 I External Acces.: External access 
input which allows emulation. testing 

the program pulse input during 
PROM programming. 

and PROM/ROM verification. This 
pin should be tied low if unused. 

RD 8 I Read: I/O fead inpllt which enables 
the master CPU to read data and 

During I/O expander access the PROG 
pin acts as an address/data strobe to 
the 8243. This pin should be tied high 
if unused. 

status words from the OUTPUT DATA 
BUS BUFFER or status register. Vcc 40 Power: +5V main power supply pin. 

Ao 9 I Command/Data Select: Address Input 
used by the master processor to in· 
dicate whether byte transfer is data 
(Ao=O. F1 is reset) or command 

Voo 26 Power: + 5V during normal opera· 
tion. + 21V during programming 
operation. Low power standby pin in 
ROM version. 

(Ao= 1. F1 is· set). Vss 20 Ground: Circuit ground potential. 

WR 10 I Write: 110 write Input which enables 
the master CPU to write data and 
command' words to the UPI INPUT 
DATA BUS BUFFER. 

6-790 AFfoI.Ol832A 

. ' 



inter 804218742 

UPI·42 FEATURES 

1. Two Data Bus Buffers, one for input and one for out· 
put This allows a much cleaner Master/Slave pro· 
tocol. 

INTERNAL 
DATA BUS 

INPUT dF DATA 
BUS 

BUFFER 
(8) 

00-07 1..---. dJ 
OUTPUT 

DATA 
BUS 

BUFFER 
(8) 

2. 8 Bits of Status 

I~I~I~I~ ~ ~ ~ ~I 
~ ~ ~ ~ ~ ~ ~ ~ 

ST 4-ST 7 are user definable status bits. These bits are 
defined by the "MOV STS, A" single byte, single 
cycle instruction. Bits 4-7 of the accumulator are 
moved to bits 4-7 of the status register. Bits 0-3 of 
the status register are not affected. 

MOV STS, A Op Code 90H 

I ' I 0 I ,0 1-, 
DO 

3. RD and WR are edge triggered. IBF, OBF, F, and INT 
change internally after the trailing edge of RD or WR. 

AD orWR 

During the time that the host CPU is reading the 
status register, the 804218742 is prevented from up· 
dating this regillter or is 'locked out.' 

4. P24 and P25 are port pins or Buffer Flag pins which 
can be used to interrupt a master processor. These 
pins default to port pins on Reset. 

If the "EN FLAGS" instruction has been executed, 
P24 becomes the OBF (Output Buffer Full) pin. A "1" 
written to P24 enables the OBF pin (the pin outputs 
the OBF Status Bit). A'''O'' written to P24 disables the 
OBF pin (the pin remains low). This- pin.can be used 
to indicate that valid data is available from the UPI-
41 A (in Output Data Bus Buffer). 

!!...:EN FLAGS" has been executed, P25 becomes the 
ISF (Input Buffer Full) pin. A "1" written to P25 
enables the IBF pin (the pin outputs the inverse of the 
IBF Status Bit). A "0" written to P25 disables the iBF 

6-791 

pin (the pin remains low). This pin can be used to 
Indicate that the UPI-42 Is ready for data. 

OBF (INTERRUPT REOUEsn 

I"Bf (INTERRUPT REQUEST) 

DATA BUS BUFFER INTERRUPT CAPABILITY 

EN FLAGS Op Cod.: OFSH 

I ' I ' I ' I '. I 0 I ' I 0 I ' I 

5. P26 and P27 are port pins or DMA handshake pins for 
use with a DMA controller. These pins default to port 
pins on Reset. 

If the "EN DMA" instruction has been executed, P26 
becomes the ORO (DMA ReOuest) pin. A "1" written 
to P26 causes a DMA request (ORO is activated). ORO 
is deactivated by DACK· RD, DACK 'WR, or execution 
of the "EN OM A" instruction. 

If "EN DMA" has been executed, P27 becomes the 
DACK (DMA ACKnowledge) pin. This pin acts as a 
chip select input for the Data Bus Buffer registers 
during DMA transfers. 

8041AHi 
8741A 

ORO P~6 1------, DROn 

DACK P21 IO----Q DACK 

DMA HANDSHAKE CAPABILITY 

EN DMA Op Code: OE5H 

8257 

I 1 I 0 I 0 I ' I 0 Ii] 
DO 

6. The RESET Input en the 804218742.lncludes a2-stage 
synchronize~ to support reliable reset operation for 
12 MHz operation. 

7. When .EA is enabled on the 8042/8742, the program 
counter is placed on Port 1 and the lower three bits of. 
Port 2 (MSB= P22, LSB= P,al. On the 8042/8742 this 
information is multiplexed with PORT DATA (see port 
timing diagrams at end of this data sheet}. 

AFN'()1832A 



8042/8742 

APPLICATIONS , 

ADDR~~~;llj 
CONTROLI-__ --,n'1 

8 I \=!=>- TO 
PERIPHERAL 
DEVICES 

-TO 

--T1 

Rlll-"---------- Rll 

8048H WRI---------IWR 8042 

~==~~~~====(>ICS87U PORT l- CONTROL AO 

BUS K::==:::::::;D1:!Ai!TA~BU!ilSc:==3)81 Daa 

TO 
PEAIPHERAL 
DEVICES 

Figure 3. 8088-8042/8742 Interface Figure 4. 8048H·804218742 Interface 

P4 ~~ 

8243 P5~~ KEYBOARD 
EXPANDER 

P.~~ 
MATRIX 

P7 ,~ 8 ROWS 

.ij 1 ~l il ~l ~IH 
PORT 2 PRQG .-- PORT 1 

PQRT2 

8042 
B742 

DBB CONTROL 

B M 
DATA BUS 

J l 
CONTROL BUS 

Figure 5. 804218742·8243 Keyboard Scanner 

PROGRAMMING, VERIFYING, AND 
ERASING THE 8742 EPROM 
Programming Verification 

: 

In bri~f, the programming pro$'ess consists of: activating 
the program mode, applying an address, latching the 
address, applying data, and applying a programming pulse. 
Each word IS programmed completely before moving on to 
the next and IS followed by a venfication step. The follow· 
Ing IS a list of the PinS used for programming and a descrip· 
tion of their functions: 

Pin 

XTAL 1 

Reset 

Test 0 

EA 

BUS 

P20-12 

Voo 

PROG 

Function 

Clock Input 
Initialization and Address Latching 

Selectlpn of Program or Verify Mode 

Activation of ProgramlVerify Modes 

Address and Data Input 
Data Output Durin.g Verify 

Ad.dress Input 

Programming Power Supply 

Program Pulse Input 

z 
z ,. ~ ~ 0: 

iii ~ ~ 
~ .. lil 0- 0 
Z .. w .. 
"' g 

~J 
.. 

C - CONTROL BUS 

Figure 6. 804218742 80·Column Matrix Printer Interface 

WARNING 

An attempt to program a missocketed 8742 will result In severe da~age 

to the part. An indication of a properly socketed part is the appearance 

of the SYNC clock output. The lack of this clock may be used to disable 
the programmer. 

The ProgramlVerify sequence is: 

6-792 

1. Ao = OV,. CS = SV.EA = SV. RESET = OV. TESTO = SV, 
Voo = Sv, clock applied or internal oscillator operating. BUS 
floating. PROG = SV. 

2. Insert 8742 in programming socket 

3. TEST 0 = Ov (select program model 

4. EA= 18V (active program mode)" 

5. Address applied to BUS andP20-22 

6. REsET = 5v (latch addressl 

7, Data applied to BUS" 

8. Voo = 21V (programming power)"' 

9. PROG = Vee followed by one SO ms pulse to 18V" 

10. VOO = 5v .. 

11. TEST 0 = 5v (verify model 

AFN-D1832A 



804218742 

12. Read and verify data on BUS 

13. TEST 0 nOv 

14. RESET = Ov and repeat from step 5 

15. Programmer should be at conditions of step 1 when 
8742 i8 removed from socket 

'When verifying ROM, EA= l2V. 
"Not uled in verifying ROM procedure. 

8742 Erasura Characteristics 
The erasure characteristics of the 8742 are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Ang· 
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps have wavelengths in the 
30oo-4oooA range. Data show that constant exposure to 
room level fluorescent lighting cOl:lld erase the typical 
8742 In approximately 3 years while it would take ap-

6-793 

proximately one week to cause erasure when exposed 
to direct sunlight. If the 8742 is to be exposed to these 
types of lighting conditions for extended periods of 
time, opaque labels are available from Intel which 
should be placed over the 8742 window to prevent unin­
tentional erasure. 

The recommended erasure procedure for the 8742 is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 A. The integrated dose (i.e., UV Inten­
sity x exposure time) for erasure should be a minimum 
of 15 w-sec/cm 2. The erasure time with this dosage is 
approximately 15 to 20 minutes using an ultraviolet 
lamp with a 12,000 /lW/cm2 ,power rating. The 8742 
should be placed within one inch of the lamp tubes dur­
ing erasure. Some lamps have a filter on their tubes 
which should be removed before erasure. 

AFN-Ol832A 



! 

804218742 

ABSOLUTE MAXIMUM RATINGS* 

\ 
Ambient Temperature Under Bias ... ' ...... O·C to 70'C 
Storage Temperature ............. - 6S'C to + 1S0'C 
Voltage on Any Pin With Respect 

to Ground ................... . .. -O.SV to + 7V 
Power Dissipation ......................... 1.S Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage tQ the 
devide. This is a stress rating only and funCtional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maxImum 
rating conditions for extended periods may affect devIce 
reliability. 

D.C. CHARACTERISTICS (TA = 00 to +700 e: Vee = VDD = +SV ± 10%) 

804218742. 

Symbol Parameter Mln_ Max. Units Notes 

VIL Input Low Voltage (Except XTAL 1. XTAL2. RESET) -0.5 0.8 V. 

VILl Input Low,Voltage (XTALl. XTAL2. RESET) -0.5 0.6 V 

VIH Input High Voltage (Except XTAL 1. XTAL2. RESET) 2.0 VCC V 

VIH1 Input High Voltage (XTAL 1. RESET) 3.5 VCC V 
/ 

VIH2 Input High Voltage (XTAL2) 2.2 VCC V 

VOL Output Low Voltage (00-07) 0.45 V 10L = 2.0mA 

Vall Output Low Voltage (P1OP17. P20P27. Sync) 0.45 V 10L = 16 mA 

VOL2 Output Low Voltage (PROG) 0.45 V 10L = 1.0 mA 

VOH Output High Voltage (00-07) 2.4 V 10H = -400iJ.A 

VOH1 Output High Voltage (All Other Outputs) 2.4 10H = - 50 iJ.A 

IlL Input Leakage Current (TO. T1. RD. WR. CS. AO. EA) ± 10 iJ.A VSS <:;; VIN <:;; VCC 

10FL Output Leakage Current (00-07, High Z State) ± 10 iJ.A 
. VSS + 0.45 

<:;; VOUT<:;; VCC 

III Low Input Load Current (P1OP17. 'P20P27) 03 mA VIL = oav 
ILl1 Low Input Load Current (RESE~ SS) 0.2 mA VIL = oav 
100 VOO Supply Current 20 mA Typical = 5 mA 

ICC+ 100 Total Supply Current 135 mA TYPical = 60 mA 

IIH Input Leakage Current (P1O-P17. P20-P27) 100 iJ.A VIN = VCC 

CIN Input Capacitance 10 pF 

Cia 1/0 Capacitance 20 pF 

D.C. CHARACTERISTICS-PROGRAMMING'(TA=2S'C ±S'C, Vcc=SV ±S%, Voo=21V ±0.5V 

Symbol Parameter Min. Max. Units Test CO.ndltlons 

VOOH Voo Program Voltage High Level 20.5 21.S V 

VOOL VOO Voltage Low Level 4.75 . 5.25 V 

VPH PRO.G Program Voltage High Level 17.5 18.5 V 

VPL PROG Voltage Low Level Vee-O.S Vee V 

VEAH EA Program or Verify Voltage High Level 17.5 18.5 V 

VEAL EA Voltage Low Level 5.25 V 

100 VOO High Voltage Supply Current 30.0 mA 

IpROG PROG High Voltage. Supply Current . 1.0 mA 

lEA EA High Voltage Supply Current 1.0 mA 

6-794 AFN-Ol832A 



804218742 

A.C. CHARACTERISTICS (TA=O·Oto +70·0, VSS=Ov, VCC=VOO=+5V± 10%) 

DBBREAD 

8042 

Symbol Parameter Min. Max. Min. 

tAR OS, Ao Setup to RD~ 0 0 

tRA OS, Ao Hold After ROt 0 0 

tRR RD Pulse Width 160 160 

tA.O OS, Ao to Data Out Delay 130 

tRO RD~ to Data Out Delay 130 

tOF Rot to Data Float Delay 85 

DBBWRITE 

Symbol Parameter Min. Max. Min. 

tAW OS, Ao Setup to WR~ 0 0 

tWA OS, Ao Hold After WRf 0 0 

tww WR Pulse Width 160 160 

tow Data Setup to WRt 130 130 

two Data Hold After WRt 0 0 

CLOCK 

8042 

Symbol Parameter Min. Max. Min. 

tcv Cycle Time 125 9.20 1.25 

tcvc Clock Period 833 613 83.3 

tpWH Clock High Time 33 38 

tpWL Clock Low Time 33 38 

tR Clock Rise Ti(lle 10 

JF Clock Fall Tim!! 10 

NOTE: 
1. tcv = 15/f(XTAL) 

6-795 

8742 

Max. Units 

ns 

ns 

ns 

130 ns 

130 ns 

85 ns 

Max. Units 

ns 

ns 

ns 

ns 

ns 

8742 

Max. Units 

9.20 I's['] 

613 ns 

ns 

ns 

10 ns 

10 ns 

AFN.(]1832A 



804218742 

A.C. CHARACTERISTICS (TA=2S·C±S·c. vcc=sv±S%. Voo=21V ±O.SV) 
PROGRAMMING 

Symbol Parameter Min. Max. 

tAW Address Setup Time to RESET! 4tCY 

tWA Address Hold Time After RESETt 4tCV 

tow Data in Setup Time to PROGt 4tCY 

two Data in Hold Time After PROG~ 4tCY 

!PH RESET Hold Time to Verify 4tCY 

tvoow Voo Setup Time to PROGt 0 1.0 

tvOOH Voo Hold Time After PROGt 0 1.0 

tpw Program Pulse Width 50 60 

tTW Test 0 Setup Time for Program Mode 4tCY 

tWT Test 0 Hold Time After Program Mode 4tCY 

too Test 0 to Data Out Delay 4tCY 

tww RESET Pulse Width to Latch Address 4tCY 

tr • tf Voo and PROG Rise and Fall Times 0.5 100 

tCY CPU Operation Cycle Time 4.0 

tRE RESET Setup Time Before EAt 4tCY 

NOTE: 
If TEST 0 is high, too can be triggered by RESETt. 

A.C. CHARACTERISTICS DMA 

8042 

Symbol Parameter Min. Max. 

tACC DACK 10 WR or RD 0 

ICAC RD or WR to DACK 0 

tACO DACK to Data Valid 130 

tCAQ RD or WR to ORO Cleared 110 

NOTE: 
1. CL = 150 pF. 

A.C. CHARACTERISTICS PORT 2 (TA=O'Cto +70·C. Vcc= +SV ±10%) 

Symbol Parameter f(tCY) 

tcp Port Control Setup Before Falling Edge of PROG 1/15 tCy-28 

tpc Port Control Hold After Falling Edge of PROG 1/10 tCY 

tpR PROG to Time P2 Input Must Be Valid 48/15 tCy-16 

tpF Input Data Hold Time 

top, Output Data Setup Time 2/10 TCY 

tpo .Output Data Hold Time 1/10 tCY-SO 

tpp PROG Pulse Width 6/10 tCY 

NOTES: 
1. CL=80pF. 
2. CL=20 pF. 
3. ICY = 1.25 /LS. 

6-796 

Unit Test Conditions 

mS 

mS 

mS 

/LS 

/loS 

8742 

Min. Max. Units 

0 ns 

0 ns 

130 ns 

130 nJl1 

8042/8742 [31 

Min. Max. Units 

55 ns[l] 

125 ns[2] 

650 ns[l] 

0 150 ns[2] 

250 ns[l] 

45 ns[2] 

750 ns 

AFN-01832A 



8042/8742 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

24 -v:: > TEST POINTS < 2.V­
.~~ ~~ 

DEVICE 
UNDER 

~CL=I50PF TEST 

DRIVING FROM EXTERNAL SOURCE-TWO OPTIONS 

>6 MHz 

XTALI 

XTAL2 

LC OSCILLATOR MODE 

-'- ~ ~~ 
1.;;0 2',)lC' 45.,H 20pF 52 MHz 

120"H 20 pF 32 MHz 

ric ~, 
XTAl1 

C'= ~+ 3Cpp , 

-=- fC 
XTAl2 

Cpp ;:: 5 - 10 pF PIN TO PIN 
CAPAC IT ANCE 

EACH C SHOULD BE APPROXIMATEl Y 20 pF INCLUOING STRAY CAPACITANCE 

6-797 

+5V 

470Q 

»--+---~-=1 XTAL 1 

470Q 

'----'--"-1 XTAL' 

RISE AND FALL TIMES SHOULD NOT EXCEEO 
I. NS. RESISTORS TO VCC ARE NEEDED TO 

ENSURE V,H = 3.5V IF TTL CIRCUITRY IS USED. 

CRYSTAL OSCILLATOR MODE 

~C' I I :.~3-I: XTAU 

I ~HZ 

C2 ::----r--::= T 
= I 

f--'---'---;:i XTAL2 

C3 

g~ -m~~~::::t! ~TSfA~) ~ 8pF 
C3 -. 2o-3OpF INCLUDING STRAY 

CRYSTAL SERIES RESISTANCE SHOULD BE LES6 THAN 
30Cl AT 12 MHz; LESS THAN 7S0 AT 6 MHZ; LESS THAM 
1800 AT 3.1 MHz. 



804218742 

WAVEFORMS 

READ OPERATION-DATA BUS BUFFER REGISTER 

tl OR AO :=) K 
-1011.1'1-

'" 

~ 
-'11011.-

\ .0 

-"0- --'0' 
_--1011.[1--_ 

WRITE OPERATION-DATA BUS BUFFER REGISTER 

!SVST£M'S 
AD()RESS BUSI 

IRUO CONTROLI 

c,O •• , --------------1 '--________ AOD.ESSBUSI ~ =>1 r (SVSTEM'~ 

w. 
. ;-... -) t ~ ~_'WA~ 

'i ,.....------------~fWRITE CONTROLI 

-'DW--+ - fWD 
DATA aus DATA \.f -OATAVAlID_1\! DATA 

IINPUTl.....; ____ M._y_C_H._NG_' ___ .Jf\ ~'-___ ........ M.,;.;V....;C>i;,;,.,;.;N;;;:G';.... ___ _ 

CLOCK TIMING 

2.4V 

XTAL2 1.6V 

.45V ---------'-f'-t-"+_ 

• ~YC 

6-798 AFt«Jl1132A 



WAVEFORMS (Continued) 

COMBINATION PROGRAM/VERIFY MODE (EPROM'S ONLY) 

EA .. 
/------;---- PROG~AM ----------1--- VERIFV ------II •. ----PROGRAM ---­

trw_ 

TESTO 

tww ______ 

tAW +---1-+ twA 

DSO-DS, ==:>---
LAST 

ADDRESS 

DATATOSE 
PROGRAMMED VALID 

,..------.. 

-< NEXT ADDR C -- VALID 

NEXT 
ADDRESS 

.: ~--------- --.~Jjk-~-~------------"----------------~------------------------
VERIFY MOQE (ROM/EPROM) 

18V 

EA 5V--./ 

\~_---J/ 
ADDRESS 

10-7) VALID - - -<,-__ A_D_N~_~_:S_s_-.JX'l._~_E_;T_'VD_AA_L~_~-,)- - - - - ~ - • 

~ ____ J)(,-_____ A_D_DR_ES_S_(~_l~_VA_L_ID ____ -J)('-__ ~ ___ N_EX_T_A_D_D_RE_SS_V_AL_ID _______ __ 

NOTES: 
1. PROG MUST FLOAT IF EA IS LOW OR IFTESTO=5V FOR THE 8742, FOR THE 8042 ~ROG MUST ALWAYS FLOAT. 
2. Au MUST BE HELD LOW (I •••• OV) DURING PROGMMIVERIFY MODES, 
3. TEST 0 MUST BE HELD HIGH. 

The 8742 EPROM can be programmed by the following. 
Intel product!!: 

1. Universal PROM Programmer (UPP 103) peripheral 
of the Intellec<l!> Development System with a UPP-549 
Personality Card. 

2. IUp·200/iUP·20l PROM' Programmer with the iUP· 
F87/44 Personality Module. 



80421874~ 

WAVEFORMS (Continued) 

DMA 

DATA BUS 

ORO 

PORT 2 

EXPANQER 
PORT 

SYNC 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PAOG 

-

.. 

'-----' 

tAce - -tcAe -
_IACC~CAC-

,I~ ,..------,. 
jK VALID VALID 

-IAco~1 -

JJ-
I 

- feR -

PORT 20~3 DATA 

peRT 20.3 DA TA 

PORT TIMING DUR,ING EA 

.sYNC 

P1Cl-17 

P20-22 

I \ I 
X X PORT PC PORT 

DATA DATA 

ON THE ~ISING EDGE OF,SYNC AND EA IS ENABLED,. PORT. DAyA IS VALID AND CAN I3E. 
STROI3ED ON THE TRAILING EDGE OF SYNC THE PROGRAM COUNTER CONTENTS ARE 
AVAILABLE 

6-800 

X 
\ 

PC 

AFN-Ol832A 



intel' 804218742 

Table 2. UPI™ InstructIon Set 

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles 

ACCUMULATOR DATA MOVES 

ADD A, Rr Add register to A 1 1 MOVA, Rr Move register to A 1 1 
ADD A, @Rr Add data memory 1 1 MOVA,@Rr Move data memory 1 1 

to A to A 
ADD A, #data Add immediate to A 2 2 MOV A, #data Move immediate 2 2 
ADDC A, Rr Add reg ister to A 1 1 TOA 

with carry MOV Rr, A Move A to register 1 1 
ADDCA,@Rr Add data memory 1 1 MOV@Rr,A Move A to data 1 1 

to A with carry memory 
ADDC A, #data Add immediate 2 2 MOV Rr, #data Move immediate to 2 2 

to A with carry register 
ANL A, Rr AND register to A 1 1 MOV@Rr, Move immediate to 2 2 
ANL A, @Rr AND data memory 1 1 #data data memory 

to A MOVA, PSW Move PSWto A 1 1 
ANL A, #data AND immediate to A 2 2 MOV PSW, A Move A to PSW 1 1 
ORLA, Rr OR register to A 1 1 XCH A, Rr Exchange A and 1 1 
ORLA,@Rr OR data memory 1 1 register 

to A XCHA,@Rr' Exchange A and 1 1 
ORL A, #data OR immediate to A 2 2 data memory 
XRL A, Rr Exclusive OR regis- 1 1 XCHD A, @Rr Exchange digit of A 1 1 

ter to A and register 
XRLA, @Rr Exclusive OR data 1 1 MOVPA,@A Move to A from 1 2 

memory to A_ current page 
XRL A, #data Exclusive OR imme- 2 2 MOVP3, A, @A Move to A from 1 2 

diate to A page 3 
INCA Increment A 1 1 
DECA Decrement A 1 1 

ITIMER/COUNTER 

CLR A Clear A 1 1 
CPLA Complement A 1 1 
DAA Decimal Adjust A 1 1 
SWAP A Swap nibbles of A 1 1 
RLA Rotate A left i 1 

MOVA, T Read Timer/Counter 1 1 
MOVT,A Load Timer/Counter 1 1 
STRTT Start Timer 1 1 
STRTCNT start Counter 1 1 
STOP TCNT Stop Timer/Counter 1 1 

RLCA Rotate A left through 1 1 
carry 

RRA Rotate A right 1 1 
RRCA Rotate A right 1 1 

EN TCNTI Enable Timer/ 1 1 
Counter Interrupt 

DIS TCNTI Disable Timer/ 1 1 
Counter Interrupt 

through carry CONTROL 
INPUT/OUTPUT ENDMA Enable DMA Hand- 1 1 
IN A, Pp Input port toA 1 2 
OUTL Pp, A Output A to port 1 2 
ANL Pp, #data AND immediate to 2 2 

port 
ORL Pp, #data OR immediate to 2 2 

port 
INA,DBB Input DBB to A, 1 1 

clear IBF 

shake Lines 
ENI Enable IBF Interrupt 1 1 
DIS I Disable IBF Inter- 1 1 

rupt 
EN FLAGS Enable Master 1 1 

Interrupts 
SEL RBO Select register 1 1 

bank 0 
OUTDBB, A Output A to DBB, 1 1 

set OBF 
SEL RB1 Select register 1 1 

bank 1 ' 
MOV STS, A A4-A7 to Bits 4-7 of 1 1 NOP No Operation 1 1 

Status REGISTERS 
MOVDA, Pp Input Expander 1 2 

port to A 
MOVD Pp, A Output A to 1 2 

Expander port 
ANLD Pp, A AND A to Expander 1 2 

INC Rr Increment register 1 1 
INC@Rr I ncrement data 1 1 

memory 
DEC Rr Decrement register 1 1 

port SUBROUTINE 
ORLD Pp, A OR A to Expander 1 2 

port 
CALL addr Jump to subroutine 2 2 
RET Return 1 2 
RETR Return and restore 1 2 

status 

6-801 AFN-01832A 



intel' 804218742' 

Table 2. UPI™ Instruction Set (Continued) 

Mnemonic Description Bytes Cycles 

FLAGS 

CLRC Clear Carry 1 , 1 
CPL C Complement Carry 1 1 
CLR FO Clear Flag 0 1 1 
CPL FO Complement Flag 0 1 1 
CLR F1 Clear F1 Flag 1 1 
CPL F1 Complement F1 Flag 1 1 

BRANCH 

JMP addr Jump unconditional 2 2 
JMPP@A Jump indirect 1 2 
DJNZ,Rr, addr Decrement register 2 2 

and jump 
JC addr Jump on Carry= 1 2 2 
JNC addr Jump on Carry=O 2 2 
JZ addr Jump on A Zero 2 2 
JNZ addr Jump on A not Zero 2 2 
JTO addr Jump on TO=1 2 2 
JNTO addr Jump on TO=O 2 2 
JT1 addr Jump on T1 =1 2 2 
JNT1 addr Jump on T1=0 2 2 
JFO addr Jump on FO Flag=l 2 2 
JF1 addr Jump on Fl Flag=l 2 2 
JTF addr Jump on Timer Flag 2 2 

= 1 , Clear Flag 
JNIBF addr Jump on IBF Flag 2 2 

=0 
JOBF addr Jump on OBF Flag 2 2 

=1 
JBb addr Jump on Accumula- 2 2 

tor Bit 

6-802 AFN·Ol832A 



8243 
MCS-48® INPUT/OUTPUT EXPANDER 

• Low Cost 
• Simple Interface to MCS-48@ 

Microcomputers 
• Four 4-81t I/O Ports 
• AND and OR Directly to Ports 

• 24-Pln DIP 
• Single 5V Supply 
• High Output Drive 
• Direct Extension of Resident 8048 I/O 

Ports 

The Intel® 8243 is an input/output expander designed specifically to provide a low cost means of I/O 
expansion for the MCS-48® family of single chip microcomputers. Fabricated in 5 volts NMOS, the 8243 
combines low cost: single supply voltage and high drive current capability. 

The 8243 consists of four 4-bit bidirectional static I/O ports and one 4-bit port which serves as an interfaceto 
the MCS-48 microcomputers. The 4-bit interface requires that only 4 I/O lines of the 8048 be .used for I/O 
expansion, and also allows multiple 8243's to be added to the same bus. 

The I/O ports of the 8243 serve as a direct extension of the resident I/O facilities of the MCS-48 microcomputers 
and are accessed by their own MOV, ANL, and ORL ins.tructions. 

Figure 1. 8243 
Block Diagram 

PORT 4 

PORT 5 

PORT 6 

PORT 7 . 

P50 Vee 

P40 PSI 
1'41 P52 

F42 P53 

F43 PeO 

cs P61 

PROG P62 

P23 Pe3 

P22 P73 

P21 P72 

P20 P71 

GND P70 

Figure 2. 8243 
Pin Configuration 

Intel CorporatIOn Assumes No Responslbllty for the Use of Any Circuitry Other Than Circuitry Embodied In an Inlet Product No Other CirCUIt Patent Licenses are Implied 

INTEL CORPORATION. ,980 6-803' AFN-00214A.Q, 



I 

8243 

Table 1. Pin Description 

Symbol Pin No. . Function 

PROG 7 Clock Input. A high to low transi-
tion on PROG signifies that ad-
dress and control are available on 
P20-P23, and a low to high transi-
tion signifies that data is available 
on P20-P23. 

CS 6 Chip Select Input. A high on CS 
inhibits any change of output or 
internal status. 

P20-P23 11-8 Four (4) bit bi-directional port con-
tains the~ddress and control bits 
on a high to low transition of 
PROG. During a low to high tran-
sition contains the data for a sel-
ected output port if a write opera-
tion, or the data from a selected 
port before the low to high transi-
tion if a read operation. 

GND 12 o volt supply. 

P40-P43 2-5 Four (4) bit bl-directionall/O ports. 
P50-P53 1, 23-21 May be programm,ed to be input 
P60-P63 20-17 (during read), low impedance 
P70-P73 13-16 latched output (after write), or a tri-

state (after read). Datl\ on pins 
P2o-P23 may be directly written, 
ANDed or ORed with previous 
data, 

VCC 24 +5 volt supply. 

FUNCTIONAL DESCRIPTION 
~eneral Operation 
The 8243 contains four 4-bit 1/0 ports which serve 
as an extension of the on-chip I/O and are ad­
dressed as ports 4-7. The following operations may 
be performed on these ports: 

• Transfer Accumulator to Port. 
• Transfer Port to Accumulator. 
• AND Accumulator to Port. 
• OR Accumulator to Port. 

All communication between the 8048 and the 8243 
occurs over Port 2 (P20-P23) with timing provided 
by an output pulse on the PROG pin of the proces­
sor. Each transfer consists of two 4-bit nibbles: 

The first containing the "op code" and port address 
and the second containing the actual 4-bits of data. 
A high to low traflsition of the PROG line indicates 
that address is present while a low to high transition 
indicates the presence of data. Additional 8243's 
may be added to the 4-bit bus and chip selected 
using additional output lines from the 8048/87481 
8035. 

Power On InHlalization 
Initial application of power to the device forces 
i!1Put/output ports 4, 5, 6, and 7 to the tri-state and 
port 2 to the input mode. The PROG pin may be 
either high or low when power is applied, The first 
high to low transition of PROG causes device to 
exit power on mode. The power on sequence is 
initiated if vee drops below lV. . 

Address Instruction 
P21 P20 Code P23 P22 Code 

0 0 Port 4 0 0 Read, 
0 1 Port 5 0 1 Write 

0 Port 6 1 0 ORlD 
1 Port 7 l' 1 ANlD 

Write Modes 
The device has three write modes. MOVD Pi, A dir­
ectly writes new data into the selected port and old 
data is lost. ORlD Pi, A takes new data, OR's it with 
the old data and then writes it to the port. ANlD Pi, A 
takes new data, AND's it with the old data and then 
writes it to the port. Operation code and port ad­
dress are latched from the input port 2 on the high 
to low transition of the PROG pin. On the low to high 
transition of PROG data on port 2 is transferred to 
the logic block of the specified output port. . 

After the logic manipulation is performed, the data 
is latched and outputed. The old data remains 
latched until new valid outputs are entered. 

Read Mode 
The'<ievice has one read mode. The operation code 
and port addres~ are latched from the input port 2 on 
the high to low transition of the PROG pin. As soon 
as the read operation and port add ress are decoded, 
the appropriate outputs are tri~stated, and the input 
buffers switched on. The read operation is termina­
ted by a low to high transition of the PROG pin. The . 
port (4, 5, 6 or 1) that was selected is switched to the 
tri~stated mode while port 2 is returned to the input 
mode. 

Normally, a port will be in an output (write mode) or 
input (read mode). If modes are changed during 
operation, the first read following a write should 
be ignored; all following reads are valid. This is to 
allow the external driver on the port to settle after 
the first read instruction removes the low imped­
ance drive from the 8243 output. A read of any port 
will leave that port in Ii high impedance stat(l. 

. 6-804 



inter 8243 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ........ o·e to 70·C 
Storage Temperature ............... -65·C to +150·C 
Voltage on Any Pin 

With Respect to Ground .............. -0.5 V to +7V 
Power Dissipation ............................ 1 Watt 

'NOTICE: Stresses above those listed undeF "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional op'era­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. ' 

D.C. CHARACTERISTICS TA = o·c to 70·C, VCC = 5V 10% 

Test 
Symbol Parameter Min Typ Max Units Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 VCC+0.5 V 

VOL1 Output Low Voltage Ports 4-7 0.45 V IOL = 4.5 mA' 

VOL2 Output Low Voltage Port 7 1 V IOL = 20 mA 

VOH1 Output High Voltage Ports 4-7 2.4 V IOH = 240l'A 

11L1 Input"Leakage PQrts 4-7 -10 20 I'A Vin = VCC to OV 

IIL2 Input Leakage Port 2, CS, PROG -10 10 I'A Vin = VCC·to OV 

VOL3 Output Low Voltage Port 2 45 V IOL = 0.6 mA 

ICC Vec Supply Current 10 20 mA 

VOH2 Output Voltage Port 2 2.4 IOH = 100l'A 

IOL Sum of all IOL from 16 Outputs 72 mA 4.5 mA Each Pin 

'See followmg graph for addillonal smk current capability 

A.C. CHARACTERISTICS TA = o·c to 70·C, VCC = 5V 10% 

Symbol Parameter Min Max Units Test Conditions 

tA Code Valid Before PROG 100 ns 80 pF Load 

tB Code Valid After PROG 60 ns 20 pF Load 

tc Data Valid Before PROG 200 ns 80 pF Load 

to Data Valid After PROG 20 ns 20 pF Load 

tH Floating After PROG 0 150 ns 20 pF Load 

tK PROG Negative Pulse Width 700 ns 

tcs CS Valid BeforelAfter PROG 50 ns 

tpo Ports 4-7 Valid After PROG 700 ns 100 pF Load 

tLP1 Ports 4-7 Valid Beforel After PROG 100 ns 

tACC Port 2 Valid After PROG 650 ns 80 pF Load 

2.4 ---'X 0
2
"'8
0 > TEST POINTS 

0.45---...... 

6:805 AFN-Q0214A-03 



WAVEFORMS 

PROG 

PORT 2 

PORT 2 

/ 

'es 

8243 

~ _______________ 'K ______________ ~ 

FLOAT 

PREVIOUS OUTPUT VALID 

INPUT VALID 

6-806 

IpO 

les 

FLOAT 

OUTPUT 
VALID 

AFN-II0214A-tl4 



inter 8243 

125 

100 

C 
! 
:; 
~ 
<.! 75 .. z .. 
II: 
II: GUARANTEED WORST CASE :> 
U CURRENT SINKING CAPABILItiES 

" OF ANY 1/0 PORT PIN vs. TOTAL z 
iii 50 SINK CURRENT OF ALL PINS ... 
I! 
0 .. 

25 

I 9 10 11 '2 '3 
MAXIMUM SINK CURRENT ON ANY PIN@ .45V 

MAXIMUM IOL WORST CASE PIN (mA) 

Figure 3 

Sink Capability 

The 8243 can sink 5 mA@ .45Von each of its 161/0 
lines simultaneously. If, however, all lines are not 
sinking simultaneously or all lines are not fully 
loaded, the drive capability of any individual line 
increases as is shown by the accompanying curve. 

For example, if only 5 of the 16 lines are to sink 
curr~nt at one time, the curve shows that each of 
those 5 lines is capable of sinking 9 mA @ .45V (if 
any lines are to sink 9 mA the total 10l must not 
exceed 45 mA or five 9 mA loads). 

Example: How many pins can drive 5 TTL loads (1.6 mAl 
assuming remaining pins are unloaded? 

10l = 5 x 1.6 mA = 8 mA 
,10l = 60 mA from curve 
# pins = 60 mA + 8 mAlpin = 7.5 = 7 

In this case, 7 lines can sink 8 mA for a total of 
56mA. This leaves 4 mA sink current capability 
whit;h can be divided in any way among the 
remaining 8 1/0 lines of the 8243. 

Example: This example shows how the use of the 20 mA 
sink capability of Port 7 affects the sinking 
capability of the other 1/0 lines. 

An 8243 will drive the following loads simul­
taneously. 

2 loads-20 mA @ 1V (port 7 only) 
8 loads-4 mA @ .45V 
6 loads-3.2 mA@ .45V 
Is this within the specified limits? 

,10l = (2 x 20) + (8 x 4) + (6 x 3.2) = 91.2 mA. 
From the curve: for 10l = 4 mA, ,10l = 93 mA. 
since 91.2 mA < 93 mA the loads are within 
specified limits. 

Although the 20 mA @ IV loads are used in 
calculating ,10l, it is the largest current re­
quired @ .45V which determines the maxim'um 
allowable ,IOL. 

NOTE: A 10 to 50K 0 pullup resistor to +5V should be added to 8243 outputs When driVing to 5V CMOS directly. 

6-807 AFN-Q0214A-05 



PORT 1 
8048 

PORr2 

8243 

fl 
~1I0 CS 

P4 4 )110 
PROG PROG 

~TEST P5 4 I/O 

8048 3 INPUTS 8243 v 

"-
P6 4 )110 

P20·P23 4 DATA IN 
P2 

P7 4 )110 

Figure 4. Expander Interface 

BITS 3,2 

P20-e23 --('-_-.JX'-___ ..J)~--
~!1 ~:~~E 
11 I AND 

. ADDRESS f4-BITSI OATA fiBITS) 

Figure 5. Output Expander Timing 

BITS 1,0 

00, 
01 PORT 
10 ADORfSS 
11 J 

PROG~--------------~----------------~----------------~--~----~------~ 

Figure 6. Using Multiple 8243's 

6-808 

';: 

AFN-Q0214A-06 



8295 
DOT MATRIX PRINTER CONTROLLER 

• Interfaces Dot Matrix Printers to 
MCSo48T11, MCs-&oI86T11, MCSoaeTIi 

Systems 

• 40 Character Buffer On Chip 

• Serial or Parallel Communication with 
Host 

• DMA Transfer CapabilitY 

• Programmable Character Density (10 or 
12 Chararctersllnch) 

• Programmable Print Intensity 

• Single or Double Width Printing 

• Programmable Multiple Line Feeds 

• 3 Tabulations 

• 2 General Purpose Outputs 

The Intel- 8295 Dot Matrix Printer Controller provides an Interface for microprocessors to the LRC 7040 Serl~s dot 
matrix Impact printers. It may also be used as an Interface to other similar printers. 

The chip may be used In a serial or parallel communication mode with the host processor. In parallel mode, data 
transfers ara based on pOlling, Interrupts, or DMA. Furthermore, It provides Internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character generator accommodating 64 ASCII characters. 

INTERNAL 
aus 

Figure 1. Block Diagram 

TW 

STa 

MOT 
mr 
HOME 

PFEED 

G" 
G .. 

6·809 

Figure 2. Pin Configuration 



·inter 8295 

Table 1. Pin Description 

Pin " , Pin 
Symbol No. ~pe Neme and Function sYmbol No. ~pa Name and Function 

"'FEED 1 I Pepar Feed: Paper feed InRut 
switch. 

XTALI 2 I Cryatel: Inputs for a crystal to set In-

HOME 39 I Homa: Home input switch, used by 

\ 
the 8295 to detect that the print head 
Is in the home position. 

XTAL2 3 ternal oscillator frequency. For 
proper operation USe 6 MHz crystal. 

DACK/SIN 38 I DMA Acknowladga/Serlallnput: In 
the p,rallel mode used as D~A ac-

RESET 4 I Re.at: Reset input, active low: After 
reset the 8295 will be set for 12 char· 

knoWledgment; II) the serial mode, 
used as Input for data. 

acters/lnch singlll width printing, 
solenoid strobe at 320 msec. 

DRQ/CTS 37 0 DMA Raque8tlClaar to Sand: In the 
parallel mode used as DMA request 

NC 5 No Connection: No connection or Ol,ltput pin to Indlcete to the 8257 that 

tied high. 

CS 6 I Chip Select: Chip select input used 
to enable the RD and WR inputs ex-
cept during DMA. 

GND 7 Ground: This pin must be tied to 
ground. 

a DMA transfer Is requested; in the 
serial mode 'lsed as clear-to-send 
signal. 

IRQ/~ 36 0 Intarrupt Raque.tlSerlal Mode: In 
parallel mode it is an interrupt re-
quest Input to'the master CPU; in 
Sjlrial mode it should .be strapped to 

RD 8 I Read: Read input which enabl., the Vss· 
master CPU to read data and status. 
In the serial mode this pin must be 
tied to Vcc. 

Vcc 9 Power: +5 volt power input: +5V ± 
10%. 

WR 10 I WrHe: Write input which enables the 
master CPU to write data and com-
mands to the 8295. In the serial mode 
this pin must be tied to Vss. 

MOT 35 0 Motor~ Main motor drive, active low. 

STB 34 0 Solenoid Strobe: Solenoid'strobe 
output. Used to determine duration of 
solenoids activation. 

S; 33 0 Solenoid: Solenoid drive outputs; 
'Sa 32 active low. 
S, 31 
50 30 
So 29 

SYNC 11 0 Sync: 2.5 /LS clock output. Can be ~, 28 
used as a strobe for external circuitry. 'S1 27 

Do /12 VO Data Bus: Three-state bidirectional Voo 26 Power: +5V power input (+5V ± 
D, 13 data bus buffer lines used to interface 10%). Low power standby pin. , 
D2 14 the 8295 to the host processor in the 
D3 15 parallel mode. In the serial mode 
D. 16 Do-D2 sets up the baud rate. 
D. 17 

Vcc 25 Power: Tied high. 

GPI 24 0 Genarsl Purpose: General purpose 
GP2 23 0 output pins. 

D6 18 
D7 19 

fOF 22 I Top of Form: Top ofform input, used 
to sense top of form signal for type T 

~ND 20 Ground: This pin must be tied to printer. 
ground. PFM 21 0 Paper Faed Motor Drive: Paper 

Vcc 40 Power: +5 volt power input: +5 ± feed motor drive, active low. 
10%. 

6-819 AFN-00231C • 



8295 

FUNCTIONAL DESCRIPTION 

The 8295 Interfaces microcomputers to the LRC 7040 
Series dot matrix impact printers, and to other similar 
printers. It provides internal buffering of up to 40 char­
acters. Printing begins automatically when the buffer Is 
full or when a carriage return charscter is received. It 
provides a modified 7x7 matrix character generator. The 
character set Includes 64 ASCII characters. 

COMMAND SUMMARY 
Hex Code 

00 

01 

02 

03 

04 

05 

08 

07 

08 

Description 

Set G1;'1. This command brings the GP1 pin 
to a logic high state. After power on It Is 
automatically set high. 

Set GP2. Same as the above but for GP2. 

Clear GP1. Sets GP1 pin to logic low state, 
Inverse of command 00. , 

Clear GP2. Same as above but for GP2. In­
verse command 01. 

Software Reset. This is a pacify command. 
This command Is not effective Immediately 
after commands requiring a parameter, as 
the Reset command will be Interpreted as a 
parameter. 

Print 10 characters/in. density. 

Print 12 characters/In. density. 

Print double width characters. This com­
mand prints characters at twice the normal 
width, that is, at either 17 or 20 characters 
per line. 

Enable DMA mode; must be followed by 
two bytes specifying the number of data 
characters to be fetched. Least significant 
byte accepted first. 

PROGRAMMABLE PRINTING OPTIONS 
CHARACTER DENSITY 

The character density Is programmable at 10 or 12 char­
acters/inch (32 or 40 characterslline). The 8295 is auto­
matically set to 12 characters/Inch at power-up. Invoking 
the Print Double-Width command halves the character 
density (5 or 6 characters/Inch). The 10 charlln or 12 
charlln command must be re-issued to cancel the 
Double-Width mode. Different character density modes 
may not be mixed within a single line of p~lnting. 

PRINT INTENSITY 

The IntenSity of the printed characters Is determined by 
the amount of time during which the solenoid Is on. This 
on-time Is.programmable via the Set Strobe-Width com­
mand. A byte following this command sets the solenoid 
on-time according to Table 2. Note that only the three 
least significant bits of this byte are Important. 

Communication between the 8295 and the host proc­
essor can 'be implemented in either a serial or parallel 
mode. The parallel mode allows for character transfers 
Into the buffer via DMA cycles. The serial mode features 
selectable data rates from 110 to 4800 baud. 

The 8295 also offers two general purpose output pins 
which can be set or cleared by the host processor. They 
can be used with various printers to implement such 
functions as ribbon color selection, enabling form 
release solenOid, and reverse document feed. 

Hex Code Description 

09 Tab character. 

OA LI ne feed. 

OB 

oc 

00 

OE 

OF 

10 

11 

12 

Multiple Line Feed; must be followed by i 
byte specifying the number of line feeds. 

Top of Form. Enables the line feed output 
until the Top of Form input is activated. 

Carriage Return. Signifies end of a line and 
enables the printer to start printing. 

Set Tab #1, followed by tab pOSition byte. 

Set Tab #2, followed by tab position byte. 
Should be greater than Tab #1. 

Set Tab #3, followed by tab position byte. 
Should be greater than Tab #2. 

Print Head Home on Right. On some ) 
printers the print head home position is on 
the right. This command would enable nor­
malleft to right printing with such printers. 

Set Strobe Width; must be followed by 
strobe width selection byte. This command 
adjusts the duration of the strobe activa­
tion. 

Table 2. Solenoid On-Time 

D7-D3 D2 D1 DO SolenpldOn 
(mlcro.ec) 

x 0 0 0 200 
x 0 0 1 240 
x 0 1 0 280 
x 0 1 1 320 
x 1 0 0 ,360 
x 1 0 1 400 
x 1 1 0 440 
x 1 1 1 480 

TABULATIONS 

Up to three tabulation pOSitions may be specified with 
the 8295. The column pOSitiOn of each tabulation is 
selected by issuing the Set Tab commands, each fol-

6-811 AfN.OO231C 



intJ 8295 

lowed by'a byte 'speclfying the column. The tab posl. 
tlons will then remain valid until new Set Tab commands 
are Issued. 

Sen~Ii'ng a tab character (09H) will automatically fill the 
character buffer with blanks up to the next tab position. 
The character sent immediately after the tab character 
will thus be stored and printed at that position. • 

CPU TO 8295 INTERFACE 
Communication between the CPU and the 8295 may 
take place In either a serial or parallel mode. However, 
the selection of modes is Inherent in tlie system hard· 
ware; it is not software programmable. Thus, the two 
modes cannot be mixed in a 'single 8295 application. 

PARALLEL INTERFACE 

Two internal registers on the 8295 are addressable by 
the CPU: on"e for input, one for output. The following 
table describes how these registers are accessed. 

1 
o 

o o 
o 

Register 

Input Data Register 
Output Status Register 

Input Data Register-Data written to this register is 
interpreted in one of two ways, depending on how the 
data is coded. 

1. A command to be executed (OXH or lXH). 
2. A character to be stored in the character buffer for 

printing (2XH, aXH, 4XH, or 5XH). See the character 
set, Table 2. 

Output Status Reglster-8295 status Is available in this 
register at ali times. 

STATUS BIT: 

FUNcnON: I ~ 4 
PA DE IIF 

PA-Parameter Required; PA = 1 Indicates that a com· 
mand requiring a parameter has been received. A tter the 
necessary parameters have been received by the 8295, 
the PA flag is cleared. 

DE-DMA Enabled; DE = 1 whenever the 8295 is in DMA 
mode. Upon completion of the required DMA transfers, 
the DE flag ,i!1 cleared. 

·IBF-Input Buffer Full; IBF = 1 whenever data is written 
to the Input Data Register. No data should be written to 

, the 8295 when rSF= 1. 

A flow chart describing communication with the 8295 is 
shown in Figure 3. ' 

The interrupt request output (IRQ, Pin 36) is available on 
the 8295 for interrupt driven systems. This output is 
asserted true whenever the 8295 is ready to receive data. 

To Improve bus efficiency and CPU overhead, data may 
be transferred from main memory to the 8295 via DMA 
cycles. Sending the Enable DMA command (08HUlCti· . 
vates the DMA Ghannel of the 8295. This command must 
be followed by two bytes specifying the length of the 
data string to be transferred (least signlficaht byte first). 
The 8295 wlH'then assert the required DMA requests to 

the 8257 DMA controller without further CPU interven· 
tion. Figure 4 shows a block diagram of the 8295 in DMA 
mode. 

DONE 

Figure 3. Host to 8295 Protocol Flowchart 

8257 
DMA 

('---.... \1 CONTROLLER 

l!lf-----I 
"'f------! 

If-----I 

IlACKx 
DRQx 

"PFEED 1--------1 
HOME 1--------1 

Figure 4. ParaJlel System Interface 

Data:transferred in ,he DMA mode may be either com· 
mands or characters or a mixture of both. The procedure 
Is as follows: 

1. Set up the 8257 DMA controller channel by sending a 
starting address ,and a block length. 

2. Set up the 8295 by issuing the "Enable DMA" com· 
mand (08H) followed by two bytes specifying the 
block length (least significant byte first). 

The DMA enabled flag (DE)' will be true until the' 
assigned dafa transfer is completed. Upon completion 
of the transfer, the flag is cleared and the' interrupt re­
quest (IRQ) signal is asserted. The 8295 then returns to 
the non·DMA mode of operation. 

AfN.OO231C 



8295 

SERIAL INTERFACE 

. The 8295 may be hardware pr,ogrammed to operate In 
a serial· mode of communication. By connecting the 
IRQ/SER pin (pin 36) to logic zero, the serial mode Is 
enabled Immediately upon power-up. The serial Baud 
rate Is also hardware programmable; by strapping pins 
14, 13, and 12 according to Table 3, the rate Is selected. 
CS, RD, andViiR must be strapped as shown in Figure 5. 

Table 3. Serial Baud Aate 

Pin 14 Pin 13 Pin 12 Baud Rate 

0 0 0 110 
0 0 1 150 
0 1 0 300 
0 1 1 600 
1 0 0 1200 
1 0 1 2400 
1 1 0 4800 
1 1 1 4800 

The serial data format is shown in Figure 5. The CPU 
should wait for a clear to send signal (CTS) from the 
8295 before sending data. 

SERIA~ 
INPUT 

STOP 
BIT 

Figure 5. Serial Interface to UAAT (8251A) 

8295 TO PRINTER INTERFACE 
The strobe output signal of the 8295 determines the 
duration of the solenoid outputs, which hold the data to 
the printer. These solenoid outputs cannot drive the 
printer solenoids directly. They should be buffered 
through solenoid driverS as shown in Figure 6. Recom­
mended solenoid and motor driver circuits may be found 

STB 

Sf 

ii 

iii 

§4 
8285 

53 

52 

51 

MOi' 

PFii 

+II 

TO 
SO~ENOID 
DRIVERS 

} 
TO MOTOR 
DRIVERS 

Figure 6: 8295 To Printer So.lenold Interface 

OSCILLATOR AND TIMING CIRCUITS 
The 8295's Internal timing generation Is controlled by/a 
self-contained oscillator and timing circuit. A 6 MHz 
crystal Is used to derive the basic oscillator frequency. 
The ri!sident timing circuit consists of an OSCillator, a 
state counter and a cycle counter as Illustrated In Figure 
7. The recommended crystal connection is shown in 
Figure 8. 

SYNC 
OUTPUT 
(2.5jAsec) 

Figure 7. Oscillator Configuration 

r XTA~l 

1-8 MHz f!1tiI . 8285 

13 XTAL2 

20 PFi 

in the printer manufacturer's interface guide. Figure 8_ Aecommended Crystal Connection 

6-813 AFN-00231C 



., intJ 8295 
", 

, . 

8295 CH,ARACTER SET 
Hex Code Prinl Char. , Hex Code PrinlChar. 

20 space 30 0 
21 ! 31 1 
22 ,n 32 2 
23 # 33 3 
24 $, 34 4 
25 % 35 5 
26 & .. 36 6 
27 37 7 
28 38 8 
29 39 9 
2A ,3A 
28 +. 38 
2C 3C < 
20 3~' . 
2E ·3E > 
2F 3F ? 

ABSOLUTE MAXIMUM RATINGS* 

,AmbIent Tempe;~ture Under 8ias ......... 0 'C to 70'C 
Storage Temperature ................ - 65' to + 160'C 
Voltage on Any Pin With 

Respect to Ground ...... .' .......... ,-0.5V,to +7V-
Power Dissipation ......................... 1.5 Watt 

Hex Code Prinl C~ar. ' ~ex'Code PrlnlChar. , ' 
40 ,~ " @ 50 P, 
41 A 51 Q' 

,42 8 52 R 
43 , C ·53, S 
44 0 54 T 
45 E 55 U 
46 F 56 V 
47 G 57 W 
48 H 58 X 
49 I 59 y 
5A J 5A Z 
48 K 58 [ 
4C L 5C \ 
40 M 50 ) 
4E N 5E t 
4F 0 5F' 

'NOTICE: Stresses abcive those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operatlon.,1 sections of this specifi­
cation is not Implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

, D.C'. AND OPERATING CHARACTERISTICS (TA = O'C to 70'C, Vee = Voo = +5V ± 10%, Vss = OV) 

Symbol , Parameler 
Limite 

Unit Teel Condilions 
MIn. Typ. Max. 

VIL Input Low Voltage (All 
Except X" X2. RESET) 

-0.5 0.8 V 

VIL1 Inpm Low Voltage (X" X2. 
AESET) , 

'':'0.5 0.6 V 

VIH Input High VOIWge ~I 2.2 Vee V 
Except X" X2. ES 

VIH1 ~PUH:i9h Voltage (X1. X2. 3.S Vcc V 
ES 

VOL Output Low Voltage (DO-07) 0.45 V IOL=2.0mA 

VOL1 Output Low Voltage (All ,0.45 V IOL=1.6mA 
Other Outputs) 

VOH Output High Voltage (00-07) 2.4 V IOH= -400jjA 

VOH1 Qutput High Voltage (All 2.4 V IOH= -50jjA 
, Other Outpuis) 

IlL Input Leakage Current 
(RD. WR. CS. ~ 

:1:10 jjA Vss'" VIN'" Vee 

,) 10FL Output Leakage Current :1:10 jjA Vss+0.45" VOUT" Vce 
(00-07. High Z State) 

100 Voo Supply Current 5 15 mA 

,100+ Icc Total Supply Current - 60 125 mA' 

lu Low Input Load Current 0.5 , mA VIL=O.S~ 
(Pins 24,27 -38) . 

ILI1 Low Input Load Current 0.2 mA VIL=O.QV 
(~: , 

IIH Input High Leakagll Current 100 p.A VIN = Vcc 
(Pins 22, 38) 

" 

.cIN ' I"p~t Capacitance ' , 10 " pF 
CliO I/O Capacitance 20 DF 

, 6-St4 AFI'l-00231C 



inter 8295 

A.C. CHARACTERISTICS (TA = o·c to 70·C, VCC = Voo = +5V ± 10%, Vss = OV) 

DBB READ 
Symbol Parameter Min. MIX. Unit T .. t Conditione 

tAR OS, Ao Setup to AD ~ 0 ns 

tRA OS, Ao Hold After RO t 0 ns 

tRR Fro Pulse Width 250 ns 

tAD CS, Ao to Data Out Delay 225 ns CL= 150 pF 

tRo RD ~ to Data Out Delay 225 ns CL= 150 pF 

toF RD t to Data Float Delay 100 ns 

tCY Cycle Time 2.5 15 . ,,5 

DBB WRITE 
Symbol . Parameter Min. MIX. Unit Test Conditions 

tAW ~, Ao Setup to WF! ~ 0 ns 

tWA es, Ao Hold After WR t 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR t 150 ns 

two Data Hold to WR t 0 ns 

DMA AND INTERRUPT TIMING 
Symbol Parameter Min. MIX. Unit Test Conditions 

tAcc DACK Setup to Control 0 ns 

tCAC ~ Hold After Control 0 ns 

tCRQ WR to ORO Cleared 200 ns 

tACO DACK to Data Valid 225 ns CL = 150 pF 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT/OUTPUT 

u=x x= 2.0 2.0 > TEST POINTS < 
O.B 0 .• 

0.45 

DEVICE 
UNDER 

~C'=150PF TEST 

6-815 AF~1C 



inter 8295 

WAVEFORMS 

READ OPERATION-OUTPUT BUFFER REGISTER 

ei OR Ao '\ kf (SYSTEM'S 

----/:T1.----:'--------""":"---{~.'------------- ADDRESS BUS) 

~1··11----"'R----.j -I .... 
----~~~~ ~~------~ 

R5 " (READ CONTROL) 

DATA BUS ______ II, ___ ._I:--__ I_R·_C M'''':-?~-----------(OUTPUT) -<.i==:::::j)-

WRITE OPERATION-INPUT BUFFER REGISTER 

CSOR" ____ .J\/L ______________ ~ L ___ -:. _________ (SYSTEM'S ... fir- _ ADDRESS BUS) 

r: .. W 

DATA BUS 
(INPUT) 

DATA 
MAY CHANGE 

I---,----iww ----I 

--------------~ 

DMA AND INTERRUPT TIMING 

--lAce .... 

\ 

DRQ 

'eRa ~ 

DATA 
MAY CHANGE 

.. 

I 
1cAc--

, 
lAc. 

\ O:~: ~ VALID X 
----------~--------------------~.~.---------

6-816 

(WRITE CONTROL) 

AFN-D0231C 



inter 8295 

WAVEFORMS (Continued) 

PRINTER INTERFACE TIMING 

MOTOR DRIVE \ J . 
HOME 

I{ 

SOLENOID DATA ) K 
~ -SDs - MH. -

'--;~>:LJ 
i-- p ... -

. SOLENOID STROBE 

Sym~ol Parameter Typical 

Poti Print delay from 1.8ms 
home inactive 

Sos . Solenoid data 25,..s 
setup time before 
strobe active 

SHS Solenoid data >1 ms 
hold ,after strobe -
inactive, 

MHA " Motor hold time 3.2ms 
. after home active 

PSP . " PFEED setup time 58ms 
after PFM active 

PHP PFM hold time 9.75 ms 
after PFEED active 

6-817 AFN-00231C 



ICE™ -42 
8042 IN-CIRCUIT EMULATOR 

• Precise, full-speed, real-time emulation • Full symbolic debugging 
Load, drive, timing characteristics 
Full-speed program RAM 
Parallel ports 
Data Bus 

• User-specified breakpoints 

• Execution trace 
User-specified qualifier registers 
Conditional trigger 
Symbolic groupings and display 
Instruction and frame modes 

• Emulation timer 

• Single-line assembly and disassembly 
for program instruction changes 

• , Macro commands and conditional 
block constructs for automated 
debugging sessions . 

• HELP facility: ICETM-42 command 
syntax reference at the console 

• User.confidence test of ICETM-42 
hardware 

The ICETM_42 module resides in the Intellec Microcomputer Development System ami interfaces to 
any user-designed 8042 or 8041 A system through a cable terminating in an 8042 emulator micropro­
cessor, and a pin-compatible plug. The emulator processor, together with 2K bytes of user program 
RAM located in the ICE-42 buffer box, replaces the 8042 device in the user system while maintaining 
the 8042 electrical and timing characteristics. Powerfullntellec debugging functions are thus extended 
into the user system. Using the ICE-42 module, the designer can emUlate the system's 8042 chip in 
real-time or single-step mode. Breakpoints allow the user to stop emulation on user-specified 
conditions, and a trace qualifier feature allows the conditional collection of 1000 frames of trace data. 
Using the single-line 8042 assembler the user may alter program memory using the 8042 assembler 
mnemonics and symbolic references, without leaving the emulator environment. Frequently used com­
mand sequences can be combined )nto compound commands and identified as macros with user­
defined names. 

©INTEL CORPORATION, 1983 6-818 
MAY 1983 

Order Number: 210818-001 



infel~ ICETM_42 IN-CIRCUIT EMULATOR 

FUNCTIONAL DESCRIPTION 

Integrated Hardware and Software 
Development 

The ICE-42 emulator allows hardware and soft­
ware development to proceed interactively. This 
approach is more effective than the traditi.onal 
method of independent hardware and software 
development followed by system integration. 
With the ICE-42 module, prototype hardware 
can be added to the system as it is designed. 
Software and hardware integration occurs while 
the product is being developed. 

The ICE-42 emulator assists four stages of 
development: 

SOFTWARE DEBUGGING 

This emulator operates without being connected 
to the user's system before any of the user's 
'hardware is available. In this stage ICE-42 de­
bugging capabilities can be used in conjunction 
with the Intellec text editor and 8042 macro­
assembler to facilitate program development. 

HARDWARE DEVELOPMENT 

The ICE-42 module's precise emulation charac­
teristics and full-speed program RAM make it a 
valuable ~ool for debugging hardware. 

SYSTEM INTEGRATION 

Integration of software and hardware begins 
when any functional element of the user system 
hardware is connected to the 8042 socket. As 
each section of the user's hardware is 
completed, it is added to the prototype. Thus, 
each section of the hardware and software is 
"system" tested. in real-time operation as it be­
comes available. 

SYSTEM TEST . 

When the user's prototype is complete, it is 
tested with the final version of the user system 
software. The ICE,42 module is then used for 
real-time emulation of the 8042 chip to debug 
the system as a completed unit. 

The' final' product verification test may be per­
formed using the 8742 EPROM version of the 

8042 microcomputer. Thus, the ICE-42 module 
provides the ability to debug a prototype or pro­
duction system at any stage in its development 
without introducing extraneous hardware or soft­
ware test tools. 

Symbolic Debugging 

T,he ICE-42 emulator permits the user to define 
and to use symbolic, rather than absolute, refer­
ences to program and data memory addresses. 
Thus, there is no need to recall or look up the ad­
dresses of key locations in the program, or to 
become involved with machine code. 

When a symbol is used for memory reference in 
an ICE-42 emulator command, the emulator sup­
plies the corresponding location as stored in the 
ICE-42 emulator symbol table. This table can be 
loaded with the symbol table produced by the as­
sembler during application program assembly. 
The user obtains the symbol table during soft­
ware preparation simply by using the "DEBUG" 
switch in the 8042 macroassembler. Further­
more, the user interactively modifies the emula­
tor symbol table by adding new symbols or 
changing or deleting old ones. This feature pro­
vides gre'at flexibility in debugging and minimizes 
the need to work with hexadecimal values. 

Through symbolic references in combination 
with other features of the emulator, the user can 
easily: 

• Interpret the results of emulation activity col­
lected during trace. 

• Disassemble program memory to 
mnemonics, or assemble mnemonic instruc­
tions to executable code. 

• Reference labels or addresses defined in a 
user program. 

Automated Debugging and Testing 

MACRO COMMAND 

A macro is a set of commands given a name. A 
group of commands executed frequently can be 
defined as a macro. The user executes the 
group of comma'nds by typing a colon followed 
by the macro name. Up to ten parameters may 
be passed to 1he macro. 

Macro commands can ·be defined at the begin­
ning of a debug session and then used through­
out the whole session. One or more macro defini" 
tions can be saved on diskette for later use. The 
Intellec text editor may be used to edit the macro 
file. The macro definitions are easy to include in 
any later emulation session. 

6-819 AFN-OOl4BB 



inter ICE™ -42IN·CIRCUIT EMULATOR' 

" 

The power of the development system can 'be 
applied to manufacturing testing as well' as 
development by writing test sequences as' 
macros. The macros are stored on diskettes fof 
use during system test. 

COMPOUND COMMAND 

Compound commands provide conditional exe­
cution of commands (IF command) !lnd execu­
tion of commands repeatedly until certain condi­
tions are met (COUNT, REPEAT commands).' 

Compound commands may be nested any 
number of times, and may be used in macro 
commands. 

Example: 

"DEFINE .1=0 
"COUNT l00H 

:IF .I AND 1 THEN 
. .*CBYTE.I =.1 

. .*END 
,*.1-.1 + 1 
.·END 

; Define symbol.! to 0 
; Repeat the following 
commands 100H times. 

; Check if .I is odd 
; Fill the memory at 

location.! to value .I 

; Increment .1 by 1. 
; Command executes 
upon carriage-return 
after END 

(The Asterisks are system prompts; the dots 
indicate the nesting levei of compound 
commands.) 

Operating Modes 

The ICE-42 software is an Intellec RAM-based 
program that provides easy-to-use commands 
for initiating emulation, defining ,breakpoints, 
controlling trace data collection, and displaying 
and controlling system parameters. ICE-42 com­
mands are configured with a broad range of 
modifiers that provide maximum flexibility in de­
scribing the operation to be performed. 

EMULATION 

The ICE-42 module can emulate the operation of 
prototype 8042 system, at real-time speed (up tv 
12M Hz) or in single steps. Emulation commands 
to the ICE-42 module control the process of set­
ting up, running, and halting an emulation of the 
user's 8042-basedsystem. Breakpoints and tra­
cepoints enable the ICE-42 emulator to halt emu­
lation and provide a detailed trace of execution 
in any part of the user's program. A summary of 
the emulation commands is shown in Tabte 1. ' 

T~ble 1 Major Emulation Commands 

Command Description 

GO Begins real-time 
" emulation and optionally 

specifies break 
conditions. 

BRO, BR1, BR Sets or, displays either or 
\ both Breakpoint Registers 

used for stopping 
real-time emulation. 

STEP Performs single-step 
emulation. 

QRO,QRl Specifies match 
conditions for qualified 
trace. 

TR Specifies or displays 
trace-data collection 
conditions and optionally 
sets Qualifier Register 
(QR~! QR1). . 

Synchronization Sets and displays status 
Line Commands of synchronization line 

outputs or latched inputs. 
Used to allow real-time 
emulation or trace to start 
and stop synchronously 
with external events, 

Breakpoints 

The ICE-42 hardware includes two breakpOint 
registers that allow halting of emulation when 
speCified conditions are met. The emulator con­
tinuously compares the, values stored in the 
breakpoint registers with the status of specified 
address, opcode, operand, or port values, and 
halts emulation when this comparison is 
satisfied. When an instruction initiates a break, 
that instruction is executed completely before 
the break takes place. The ICE-42 emulator then 
regains control of the console and enters the in­
terrogation mode. With 'the breakpoint featore, 
the user can request an emulation break when 
the program: 

• Executes an instruction at a specific address 
Or within a range of addresses. 

6-820 AFN-OOl48B 



inter ICE™.42IN.CIRCUIT EMULATOR 

• Executes a particular opcode. 

• Receives a specific signal on a port pin. 

• Fetches a particular operand from the user 
program memory. 

• Fetches an operand from a specific address 
in program memory. ' 

Trace and Tracepolnts 

Tracing is used with real-time and single-step 
emulation to record diagnostic information in the 
trace buffer as a program is executed. Theinfor" 
mation collected includes opcodes executed, 
port values, and memory addresses. The ICE-42 
emulator collects 1000 frames of trace data. 

If desired this information can be displayed as 
assembler instruction mnemonics for analysis 
during interrogation or single-step mode. The 
trace-collection facility may be set to run condi-

tionally or unconditionally. Two unique trace 
qualifier registers, specified in the same way as 
breakpoint registers, govern conditional trace 
activity. The qualifiers can be used to condition 
trace data collection to take place as follows: 

• Under all conditions (forever). ' 

• Only while the trace qualifier is satisfied. 

• For the frames or instructions preceding the 
time when a trace qualifier is first satisfied 
(pre-trigger trace). 

• For the frames or instructions after a trace 
qualifier is first satisfied (post-triggered 
trace). 

Table 2 shows an example of trace display. 

INTERROGATION AND UTILITY 

Interrogation and utility commands give conve­
nient access to detailed information about the 

Table 2 Trace Display (Instruction Mode) 

FRAME LOC OBJ INSTRUCTION Pl, P2 TO n ])BYIN YOUT YSTS TOVF 

DODD: 100H 2355 MOV A, # 55H FFH FFH 0 0 bbH ])FH 02H 0 
00011: 102H 3'1 OUTL Pl,A FFH FFH 0 0 bbH ])FH 02H 0 
00011: 103H 3A OUTL P2,A 55H FFH 0 0 bbH ])FH 02H 0 
0012: 10llH 22 IN A,])BB 55H 55H 0 0 bbH 02H 0 
0014: 105H 37 CPL A 55H 55H 0 0 ])FH 02H 0 
DOlI.: 10bH 02 OUT ])BB,A 55H 55H 0 0 bbH DOH 0 
00111: 107H BA03 MOV R2,#03H 55H 55H 0 0 bbH '1'1H DOH 0 
0022: 10'11:1 BIIIIO MOV RO,#.TApLEO 55H 55H 0 0 bbH '1'1H OlH '0 
00210: 10BH B'IbO MOV Rl,#.TABLEl 55H 55H 0 0 bbH '1'1H OlH 0 
.LOOP 
0030: 10])H FO MOV A,@RO 55H 55H 0 0 

, 
'1'1H OlH 0 

00:32: 10EH Al MOV @Rl,A 55H .!iSH 0 0 bbH OlH 0 
00311: 10FH 111 INt RO 55ft 55H 0 0 

, 
'1'1H OlH 0 

00310: UOH 1'1 INC Rl 55H 55H 0 '0 bbH OlH 0 
00311: lllH EAO]) ])JNZ R2, .LOOP 55H 55H 0 0 bbH '1'1H OlH 0 
.LOOP 
00"2: 10])H FO MOV A,@RO 55H 55H 0 0 '1'1H OlH 0 
DOli": 10EH Al MOV @Rl,A 55H 55H 0 0 bbH OlH 0 
001110: 10FH 111 INC RO 55H 55H 0 0 '1'1H OlH 0 
00"11: llOH 1'1 INC Rl 55H 55H 0 0 bbH OlH 0 
0050: lllH EAO]) ])JNZ R2,.LOOP 55H 55H 0 0 bbH '1'1H OlH 0 
.LOOP 
DDS": 10])H FO MOV A,@RO 55H 55H EI 0 '1'1H OlH 0 
00510: 10EH Al MOV @Rl,A 55H 55H 0 0 , bbH OlH 0 
00511: 10FH 111 INC RO 55H 55H 0 0 '1'1H OlH 0 
00100: llOH 1'1 INC Rl 55H '55H 0 0 bbH OlH 0 
00102: lllH EAO]) ])JNZ R2,.LOOP 55H 55H 0 0 bbH '1'1H OlH 0 
001010: ll3H DO NOP 5SH 55H 0 0 '1'1H OlH 0 

6-821 AFN-OOl48B 



intel"· 

user program and the state of the 8042 that is 
useful in debugging hardware and software .. 
Changes can be made in memory and .in . the 
8042 registers, flags, and port values.Com­
mands are also provided for various utility 9'pera­
tions such as loading and 'saving program files, 
defining symbols, displaying trace data, controll­
ing system synchronization and returning control 
to ISIS-II. A summary of the basic interrogation 
and utility commands is shown in Table 3. Two 
add'itic;>nal time-saving emulator features are dis­
cussed below. 

Single-Line Assembler/Disassembler 

The single-line assembler/disassembler (ASM 
and DASM commands) pe~mits the designer to 
examine and alter program memory using as­
sembly language mnemor;lics, without leaving 
the emulator environment 01' requiring time­
consuming program reassembly. When assem­
bling new mnemonic instructions into program 
memory,previously defined symbolic references 
(from the original program assembly, or subse­
quently defined during the emulation session) 

Table 3 Major Interrogation and Utility Commands 

Command Description 

HELP Displays help messages for ICE-42 emulator command-entry assistance .. 

LOAD Loads user object program (8042 code) into user-program memory, and 
user symbols into ICE-42 emulator symbol table. 

SAVE Saves ICE-42 emulator symbol table and/or user object program in ISIS-II 
hexadecimal file. 

LIST Copies all emulator console input and output to ISIS-II file. 

EXIT Terminates ICE-42 emulator operation. 

DEFINE Defines ICE-42 emulator symbol or macro. 
, 

REMOVE Removes ICE-42 emulator symbol or macro. 

ASM . Assembles mnemonic instructions into user-program memory. 

DASM Disassembles and displays user-program memory contents. 

Change/Display Change or display value of symbolic reference in ICE-42 emulator symbol 
Commands table, contents of key-word references (including registers, I/O ports, and 

status flags), ~r memory references. 

EVALUATE" Evaluates expression and displays resulting value. 
, 

MACRO Displays ICE-42 macro or macros. 

INTERRUPT Displays contents for. the Data Bus and timer interrupt registers. 

SECONDS Displays contents of em\l'ation timer, in microseconds. 

Trace Commands Position trace buffer pOinter and select format for trace display. 
" 

PRINT Displays trace data pOinted to by trace buffer pOinter. 

MODE Sets or displays the emulati,on mode, 8041 A or 8042. 

6-822 AFN-001488 



ICETM_42 IN-CIRCUIT EMULATOR 

Table 4 HELP Command 

*HELP 
Help is available for the following items. Type HELP followed by the item name· 
The hl11p items cannot be abbreviated. (For more information, type HELP HELP or 
HELP INFO.) 
Emulation! 
GO Gft SYO 
Bft BftOBftlo 
STEP 

Change I 
<CHANGE> 
<DISPLAY> 
ftEGISTEft 

SECONDS 
DEFINE 

Macro: 
DEl'"iNE 
DISABLE 
INCLUDE 

Trace Collection: 
Tft Qft QftO Qftlo SYlo 

Trace Display: 
TftACE MOVE PftINT 
OLDEST NEWEST 

Misc: 
BASE 
DISABLE 
ENABLE 
EftftOft 
EVALUATE 

Displayl 
ftEMOVE 
SYr,lB.OL 
ftESET 

HELP 
Definel ftemove: INFO 
CBYTE <LIGHTS> 
DBYTE DASM LIST 

W ft I1':E 
STACK 

Comp.ound 
. DI~ Commands: 

ENABLE COU.tlT. 
PUT IF 

ASM LOAD 

SY 

MODE 
SAVE 
SUFFIX 
SYMBOLIC 

<MACftO.DISPLAY> ftEPEAT 
<MACftOUNVOCATION> 

* 
* 
*HELP IF 

<address> 
<CPU.keyword> 
<expr> 
<ICE4C! #keyword> 
< identifier> 
<instruction> 
< masked#cons tant > 
<match.cond> 
< numer i c .cons tant > 
<partition> 
<string> 

< s tr i ng .constant > 
<symbolic.ref> 
<mode> 
< trace.reference > 
< unl im i ted.match$cond > 
<user.symbols> 

IF - Thl;! conditional command allows conditional execution of one or more commands 
based on the values of boolean conditions. 

IF<expr> 'THEN <cr> <true.list>::='<command> <cr> @ 

<true.list> <false$list>;;='<command> <cr> @ 

'OftIF <expr> <cr> <command>:: =An ICE-4C! command. 
<true$1ist> @ 

'ELSE; <cr> 
<false$list> 
END 

The <expr>s are evaluated in order as lob-bit unsigned integers. If one is 
reached whose value has low-order bit lo (TftUE), all commands in the <true$1ist> 
following that <expr> are then executed and all commands in the other <true.­
list>s and in the <false.list> are skipped. If all <expr>s have value with low­
order bit 0 (FALSE), then all commands in all <true$1ist>s are skipped and, if 
ELSE is present, all commands in the <false.list> are executed. 

* 
* 
* 
* 
*EXIT 

(EX: IF .LOOP=5 THEN 
STEP 
ELSE 
GO 
END) 

6-823 AFN-00148B 



IC'E™ .. 42IN .. CIRcurr EMULATOR 

may be used in the instruction operand field. 
The emulator supplies the absolute address or 
data values as stoted in the emulator symbol 
table. These features eliminate user time spent 
translating to and from machine code and 
searching for absolute addresses, with a corre­
sponding reduction in transcription errors. 

HELP 

The HELP file allows display of ICE-42 command 
syntax information at the Intellec console. By 
typing "HELP", a listing of all items for which 
help messages are available is displayed. 
Typing "HELP <Item>" then displays relevant 
information about the item requested, including 
typical usage examples. Table 4 shows some 
sample HELP messages. 

EMULATION ACCURACY 

The speed and interface demands of a high­
p~rformance single-chip microcomputer require 
extremely accurate emulation, including full­
speed, real-time operation with the full function 
of the microcomputer. The ICE-42 module 
achieves accurate emulation with an 8042 
emulator chip, a special configuration of the 
8042 microcomputer family, as its emulation 
processor. 

Each of the 40 pins on the user plug is connected 
directly to the corresponding 8042 pin on the 
emulator chip. Thus the user system sees the 
emulator as an'8042 microcomputer at the 8042 
socket. The resulting characteristics provide ex­
tremely accurate emulation of the 8042 including 
speed, timing characteristics, load and drive 
values, and crystal operation. However, the 
emulator may draw more power from the user 
system than a standard 8042 family device. 

SPECIFICATIONS 

ICETM-42 Operating Requirements 

Intellec Microcomputer Development System 
(64K RAM required) 

System console 

Intellec' Diskette Operating System (single or 
double'density) ISIS-II (Version 3.4 or later). 

Equipment Supplied 

• Printed circuit boards (2) 

Additional emulator processor pins provide sig­
nals such as internal address, data, clock, and 
control lines to the emulator buffer box. These 
signals let static RAM in the buffer box substitute 
for on-chip program ROM or EPROM. The emula­
tor chip also gives the IC~ module "back-door" 
access to internal chip operation, allowing the 
emulator to break and trace execution without in­
'terfering with the values on the user-system 
pins. 

Figure 1 A Typical 8042 Development 
Configuration. The host system is 
an Intellec Model 225, plus 1 
megabyte dual double-density 
flexible disk storage. The ICE-42 
module is connected to a user r,ro­
totype system. 

• Emulation buffer box, 'Intellec interface 
cables, and user-interface cable with 8042 
emulation processor 

• Crystal power accessory 

• Operating inst~uctions manuals 

• Diskette-based ICE-42 software (single and 
double density) 

Emulation Clock 

User's system clock (up to 12MHz) or ICE-42 
crystal power accessory (12 MHz) 

6-824 AFN·OO148B 



inter ICETM_42 IN-CIRCUIT EMULATOR 

Environmental Characteristics 

Operating Temperature - 0° to 40°C 

Operating Humidity - Up to 95% relative humidi­
ty without condensation. 

Physical Characteristics 

Printed Circuit Boards 
Width: 12.00 in. (30.48 cm) 
Height: 6.75 in. (17.15 cm) 
Depth: 0.50 in. (1.27 em) 

Buffer Box 
Width: 8.00 in. (20.32 cm) 
length: 12.00 in. (30.48 em) 
Depth: 1.75 in. (4.44 cm) 
Weight: 4.0 lb. (1.81 kg) 

ORDERING INFORMATION 

Part Number Description 

ICE-42 , 8042 Microcontroller In-Circuit 
Emulator, cable assembly and in-, " 
teractive diskette softw~re, 

Electrical Characteristics 

DC Power Requirements 
(from Intellec® system) 

Vee ;= +5V, ± 5% 
Icc = 1 i3.2A max; 11.0A typical 
Voo = +12V, ±5% 
100 = 0.1 A max; 0.05A typical 
VBB = -10V, ±5% 
IBB ~ 0.05A max; 0.01 A typical 

User plug characteristics at 8042 socket -
Same as 8Q42 or 8742 except that the user 
system sees an added load of 25 pF capaCitance 
and 50ILA leakage from the ICE-42 emulator 
user plug at ports 1, 2, TO, and T1. 

". 

AFN-OOl48B 

6-825 



MCS~-48 
DISKETTE-BASED SOFTWARE 

SUPPORT PACKAGE 

• Extends Intellec microcomputer 
development system to support MCS-48 
development 

• MCS-48 assembler provides conditional 
assembly and macro capability 

• Takes advantage of powerfullSIS·n file 
handling and storage capabilities 

• Provides assembler output in standard 
Intel hex format 

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate machine 
operation codes, and provides both cO'nditional and macroassembler programming. Output may' be 10'aded 
either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM 
programming. The MCS-48 assembler operates under the ISIS-II operating system on Intel Development 
systems. 

©INTEL CORPORATION, 1983 MAY 1983 

6-826 



inter MCS@·48 

FUNCTIONAL DESCRIPTION 

The MCS-48 assembler translates symbolic 8048 
assembly language instructions into the appropriate 
machine operation codes. The ability to refer to program 
addresses with symbolic names eliminates the errors of 
hand translation and makes it easier to modify programs 
when adding or deleting instructions. Conditional 
assembly permits the programmer to specify which por­
tions of the master source document should be Includ­
ed or deleted In variations on a basic system design, 
such as the code required to handle optional external 
devices. Macro capability allows the programmer use of 
a single label to define a routine. The MCS-48 assembler 
will assemble the code required by the reserved routine 
whenever the macro label is inserted in the text. Output 
from the assembler is in standard fntel hex format. It 
may be either loaded directly to an In-circuit emulator 
(lCe-49) module for integrated hardware/software 
debugging, or loaded into the iUP Universal PROM 
Programmer for 874~ PROM prog~amming. A 
sample assembly listing is shown in Table 1. 

SPECIFICATIONS 

Operating Environment 
(All) Intel, Microcomputer Development Systems 

(Series II, Series III/Intel equivalent) 
Intel P13rsonaL Development System 

I 

Ordering Informatio~ 

Part Number Description 

MDS-D4B MCS-48 Disk Based Assembler 
Requires Software License 

'r 

Table 1. Sample MC5-48 Dlskett.Based 

ISIS 1180lIl MACROASSEM!LEA VI 0 

LOC OBJ· 

"''' ..,. 
0032 

"'" 
0100 BII1E 
0102 BI28 
Olel' em 
0108 97 
0107 FO 
0108 71 
0108 !l1 
010A Al 
0108 18 
010C 1\1 
0100 EM1 

USER SYMBOLS 

SEQ 

PAGEL 

SOURCE STATEMENT 

,DECIMAL ADDITION ROUTINE ADO ICO NUMIER 
AT LOCATION BETA TO ICD NUM8£A AT ALPHA WITH 
,RESULT IN 'ALPHA' LENOTHQIi NUMHR tS COUNT, DIGIT 

.. PAIAS (ASSUME BOTH BETAANO ALPHA ARE SAME LENGTH 
!I AND HAVE EVEN NUMBER OF DIGITS 01'1 MSO IS 0 IF 
6 ODD) 
1 INIT 

• . " 
" " " 

MACAO 
MOV 
MO' 

""" ENCM 

13 ALPHA EOU 
U BETA EOU 
15 COUNT .fOU 
16 OfIG 
11 lNIT 
18+ MOV 
19+LI MOV 
20. 

" 22 LP 

" .. 
" .. 
" .. 

MO' 
CLA 
Mev 
AOot:: 
0' 
MO' 
INC 
INC 
OJNZ 
ENO 

AUGND,ADDNO.CNT 
AD .AUQND 
At .ADDNO 
R2 .ONT 

30 

" , 
""" ALPHA BETA COUNT 
AD .ALPHA 
Rl.BeTA 
R2.coUNT 
C 
A @RO 
A .,Rl . 
.'" A 

"' " An' 

ALPHA OOOIE BETA 0028 COuNT 0lI06 LP 0107 
LI 0102 

ASSEMBLY COMPLETE NO ERRORS 

ISIS II ASSEMBLER SYMBOL CROSS REFERENCE VI 0 

SYMBOL CRQS& REFERENCE 

ALPHA'3t 17 
8ETA 14' 17 
COU~T 1!t11 11 
INIT 11 17 
Ll 191 
LP 22t 28 

Documentation Package 
Titles of:U~r Guides 

Operating Instructions 
Reference ~anuals 

SUPPORT: 
Hotline Telephone SUPP9rt, Software Performance 
Reports (SPR), Software Updates, Technical 
Reports, Monthly Newsletters are available. 

6-827 AfN-00618C 



inter iUP·2001 iUP·201 
UNIVERSAL PROM PROGRAMMERS 

MAJOR IUP·200/iUP·201 FEATURES: ADDITIONAL IUP·201, FEATURES: 

• Serial interface to aIIINTELLEC® • 
Development Systems 

• Powerful PROM Programming Software 
utility (IPPS) 

•. Support for all ,Intel PROM families 
through multiple device Personality 
Modules 

• iUP system self·tests plus device integrity 
checks 

• 24-character alpha·numerlc display 

• Full hexadecimal plus 11·functlon 
keypads ' 

• Off·line editing and, device duplication 

• 16K bytes RAM expandable to 32K bytes 

The iUP-200 and iUP-201 Universal Prom Programmers provide programming and verification of. data in all the 
Intel programmable ROMs (PROMs). They can also be used for programming the PROM memory portions of 
Intel's single-chip microcomputer and peripheral devices. When used with any INTELLEC Development System, 
the iUP-200 and il.!P-201 provide on-line, programming and verification with the aid of the Intel PJ:!OM 
Programming Software utility (iPPS). In addition, the iUP-201 supports off-line, stand-alone, program editing and 
PROM duplication. The iUP·200 is completely expandable to the iUP-20t 

The follOWing are trademarks of Intel Corporation and may,be used only to descnbe Intel products Intel, Intellee. MeS and ICE, and the combmatlon of MCS or ICE and a numer­
Ical sufflx_ Intel Corporation assumes no responsibility for the use of any CircUitry other than CirCUitry embodied In an Intel product. No other CirCUit patent licenses are Implied 

, ,INTEL CORPORATION 1981 
AFN-02138A 6-828 

December 1981 
210319 



iU P·200/iU P·201 

FUNCTIONAL DESCRIPTION 

On·Line System 

Hardware Components-The basic iUP-200 and iUP-
201 consist of a free-standing unit that, when inter­
faced directly to any Intel Development System 
equipped with at least 64K bytes of user memory, 
provides "on-line" PROM programming and verifica­
tion of Intel programmable devices. In addition, the 
units can read the contents of the ROM versions of 
these devices. Communication with the host is ac­
complished through a standard RS232C serial data 
link. A serial converter is needed when using the 
MD5-SOO as a host system. These converters are 
available from other manufacturers. Each unit con­
tains an 8085 CPU, selectable power supply, 2.3K 
bytes of static RAM, 8K bytes of pre-programmed 
EPROM, a programmable timer, and circuitry for 
interfacing to a Personality Module, keyboard, 
display, and host system. The pre-programmed 
EPROM contains the firmware needed for all iUP edit 
and control functions. 

The interface between the iUP and the target PROM 
is accomplished using a family or single-device 
Personality Module. No additional sockets or 
adaptors are necessary. These Personality Modules 
are iUP front panel inserted units containing all the 
hardware and firmware necessary for programming 
either a family of Intel PROMs or a single Intel device. 
Figure 1 diagrams the on-line system data flow. 

The iUP-201 will also accept Intel hexadecimal pro­
grams developed on a non-Intel Development Sys­
tem. Only a few keystrokes are required to download 
the program into ,iUP RAM for editing and loading 
into a PROM. 

Software Components-The Intel PROM Program­
ming Software utility (iPPS) is included with both the 
iUP-200 and iUP-201. Created to run on aflY INTELLEC 
Development System, iPPS provides user control of 
all reading, programming, and verification functions 
through an easy to use language driven interface. All 
iPPS commands, as well as program address and 
data information, are entered through. the develop­
ment system ASCII keyboard and displayed on the 
system CRT. These plain Engli.sh commands allow 
the user to read and write data to 9r frpm any of three 
logical devices: the target PROM, theANTELLEC sys­
tem memory, or a disk file system. Additional com­
mjinds control iPPS program execution, display in­
formation and status, allow rearrangement of data 
from any of the three logical devices, and provide 
user assistance information in the form of a HELP 
command. Figure 2 summarizes these commands. 

Loading programs into a PROM from INTELLEC 
system memory or directly from a disk. file is 
accomplished under iPPS control. Access to the 
disk allows the user to create and manipulate data 
in a virtual buffer with an address range up to 16M. 
This large block of data can be formatted into dif­
ferent PROM word sizes for program storage into 
several different PROM tYPes. In addition, a pro­
gram from any of the three logical devices can be 
"interleaved" with a second program and entered 
into a specific target PROM or PROMs. 

iPPS supports data manipulation in any Intel format: 
8080 hexadecimal ASCII, 8080 absolute object, 8086 
hexadecimal ASCII, 8086 absolute object, and 286 
absolute object. Addresses and data can be dis­
played in one of several number bases including 
binary, octal, decimal, and hexadecimal. The user 
can easily change defaulted data formats as well as 
number bases. 

iPPS requires that version 3.4 or later of Intel's ISIS-II 
Operating System be resident in INTELLEC Develop­
ment System memory at the time of execution. The 
software is designed to run under control of ISIS 
"Submit Files" thereby freeing the user from repeti-· 
tious command entry. 

System Expansion-The iUP-200 can be easily ex­
panded, by the user, for off-line operation. The Key­
board/Expansion Kit (iUP-PAK) is available from Intel 
or your local Intel Distributor. 

HOST DEVELOPMENT SYSTEM 

AS-232INTEAFACE 

""------, 
-..I 1 
_~ ~:A:1 : 

'- ______ ..J 

Figure 1. On· Line System Data Flow 

6-829 AFN·02138A 



inter iUP·2OOI.IUP·201 

Program Control Group-Controls the program execution of IPPS. 
EXIT Exits iPPS and returns control to ISIS·II 
< ESC> Terminates current command 
REPEAT Repeats full execution of previous command 

. ALTER Allows edit and re-execution of previous command 

Utility Group-Displays user Infonnatlon, status, and sets default values. 
DISPLAY . Displays PROM, Buffer, or File data on the console 
PRINT Prints PROM,Buffer or File data on a printer 
HELP Selectively displays user assistance information 
MAP Displays Buffer structure and status 
BLANKCHECK Checks for unprogrammed PROM 
OVERLAY Checks if non·blank PROM can be, programmed 
TYPE . Selects PROM type 
INIT Initializes the default number base and file type 
WORKFILES Specifies drive device for temporary work files 

Buffer Group-Edits, modifies, and verifies data in the Buffer. 
SUBSTiTUTE Examines and modifies Buffer data 
LOADDATA Loads a section of the buffer with a constant 
VERIFY Verifies data in PROM with Buffer data 

Formatting Group-Permits rearrangement of data from PROM, Buffer, or File. 
FORMAT Interactively formats the Buffer, PROM, or File data 

and places the result in a workfile 

Copy Group-Provides for variations of the general purpose COPY command. 
COPY (File to PROM) Programs PROM with data in a file on disk 
COPY (PROM to File) Saves PROM data in file on disk 
COPY (Buffer to PROM) Programs PROM device from Buffer 
COpy (PROM to Buffer) Loads Buffer with data in PROM 
COpy (Buffer to File) Saves Buffer in file on disk 
COPY (File to Buffer) Loads Buffer from file on disk 
COPY (File to URAM) Loads file data into iUP URAM (iUP·201 only) 
COpy (URAM to File) Save iUP URAM data in a file (iUP·201 only) 
COpy (Buffer to URAM) Loads Buffer into iUP URAM (iUP·201 only) 
COpy (URAM to Buffer.) Loads iUP URAM data into the Buffer(iUP·201 only) 

Figure 2. iPPS Command Summary· 

. IUP·200 On-Line System Configuration 

AFN-02138A 



inter iUP·20OJiUP·201 

Off· Line System 

While capable of performing all the on-line functions, 
the iUP-201 allows program editing, PROM duplica­
tion, and program verification independent of the 
host system_ In addition to the hardware components 
included as part 'of the iUP-200, the iUP-201 contains 
a 24-character alphanumeric display, full HEX ancf11-
function keypads, and 16K bytes of user RAM (URAM) 
expandable to 32K bytes. This expansion provides 
memory needed to store data for PROMs exceeding 
16K bytes (128K bits) in size. Figure 3 illustrates the 
iUP-201 keyboard and display. 

The two logical devices accessible during off-line 
operation are the PROM device and iUP-201 RAM. 

. Typical operation would entail copying the data from 
a PROM (or ROM) into iUP RAM, modifying this data 
in RAM, and programming the modified data back 
into a PROM device. The address range of the needed 
RAM is automatically determined by the iUP when 
PROM type selection is made. 

rup RER]Y aaoa 5 5 
I ADOfIfSS I 

B E F 

A B 

OJ 
6 7 

"iL LjD 

o POWER 

Figure 4 summarizes the off-line commands. Figure 3_iUP·201 Keyboard and Display 

Selects either the on·line or the off line operation. When on-line, all other function keys are 
disabled. 
Selects the PROM type when a Personality Module capable of programming multiple devices is 
used. The selected device is indicated by an adjacent LED on the installed module. 

Verifies the contents of the installed PROM device with that of the iUP RAM. The iUP display in­
dicates address and the 2's complement of any expected vs. actual mismatch. 

Performs a device Biank Check and then programs the target PROM with data from iUP RAM. If 
Blank Check fails, pressing PROG again will perform a stuck bit check to further verify PROM I 
Program compatibility. 

Loads the iUP RAM with the data from the PROM device installed in the Personality Module. 

Terminates the current off-line function, clears a user entry, or restores the display after an error 
condition. 

Pressing the ENTER key transfers information from the iUP display (addresses or data) into 
URAM. 

Pressing the s'hift key and ADDRIO key selects the address field for keypad entry. 

Pressing the shift key and DATAl1 key selects the data field for keypad editing and entry. 

Pressing the shift key and FILU2 key selects the fill function, which allows a contiguous section 
of RAM locations to be loaded with a constant. 

Pressing the shift key and LOAD/3 initiates a download of Intel hexadecimal data from any de­
velopment system with an R5-232C port. 

Figure 4. Off· Line Command Summary 

6-831 AFN·02138A 



iUP·2001iOP·201 

SYSTEM DIAGNOSTICS 

Both tlie iUP-200 and iUP-201 include self-contained 
system diagnostics that provide verification of sys­
tem operation and aid the user in fault isolation. 
Diagnostics are performed on the power supply, CPU, 
internal firmware ROM y internal RAM, timer, and on 
the iUP-201 keyboard and URAM. In addition, tests 
are made on any -Personality Module installed in the 
programmer the first time the module is accessed. 
They include tests on the power select circuitry and 
the 2K of module firmware. Easy to read status mes­
sages are provided on the development system dis­
play in the on-line mode and the iUP-201 display in 
the off-line mode. 

PERSONALITY MODULES 

The iUP-200 a'pd iUP-201 interface with a selected 
PROM (or ROM) through an associated Personality 
Module. These modules contain all of the hardware 
and firmware needed to read and program a family of 
Intel devices. Each module is a single molded unit, 
front panel inserted on either programmer. No addi­
tional adapters or sockets are needed, Figure 5 lists 
the available modules. 

iUP-F271128 ·E2IEPROM Personality Module capable 
of reading and programming the 2716, 
2732, 2732A, 2764, 27128, 2815, and 2816. 

iUP-F87/51 . MICROCONTROLLER Personality Mod· 
ule capable of reading and programming 
the 8748, 8748H, 8048, 8749, 8049, 8750, 
8050,8751, and 8051. 

iUP·F87/44· PERIPHERAL Personality Module capa· 
ble of reading and programming the 
8741A,8041A,8742,8042,8744,8044,and 
8755A. 

iUP·F36132· BIPOLAR Personality Module capable 
of reading and programming the 3628, 
3632, 3632A, 3636, 3636B, and 3624. 

Figure 5. iUP Pel'$onality Modules 

Interfa~s 

Each personality module, an example is shown in 
Figure 6, interfaces with the programmer through a 
41·pin connector. Module firmware is uploaded into 
i.uP RAM and executed by the onboard 8085A pro­
cessor. This firmware contains routines needed to 
Read arid Program a number of PROMs. In addition, 
the personality module sends specific information 
regarding the selected PROM to the iUP to aid in per· 
forming PROM device integrity checks. 

Operational status is indicated through individual 
LEOs on each module. A column of device selection 
LEOs indicate which PROM device type the user has 
selected. After device selection, an LED below each 
sqcket (on modules containing more than one socket) 
indicates the socket to be used. A red indicator light 
(Hot Socket) wa~ns the user when power is being 
supplied to the selected device. . 

6-832 

Figure 6. iUp·F271128 

Device Integrity Checks 

In addition to the iUP system self·tests, each Person· 
ality Module contains diagnostics in firmware that 
perform selected PROM tests and indicate status: 
These tests are performed in both the on-line and off· 
line modes. A PROM installation test is performed to 
insure the device is installed In the module correctly 
and the ZIF socket is closed. A PROM Blank Check is 

AFN·02138A 



IUp·2OOIiUp·201 

performed to determine whether a· device is in its 
erased state. The iUP automatically determines 
whether this erased state is all· zeros or all ones. A 
stuck bit check Is performed when a PROM is found 
to be not blank. This test determines which bits are 
pre-programmed, compares those bits against the 
program to be loaded, and allows programming to 
continue if they match. As with the system self-tests, 

No 

No 

easy to read status messages are provided. All of the 
PROM device integrity checks, with the exception of 
the installation test which occurs automatically any 
time an operation is selected, can be invoked by the 
user. 

Figure 7 illustrates a typical on-line and off-line pro­
gramming sequence. 

Figure 7. iUP' Programming Sequence 
6 

6-833 AFN-02138A 



inter / IUP·2OOI.IUp·201 

iUP·2OOI201 SPECIFICATIONS 

Control Processor 

Intel 8085A Microprocessor 
6.144 MHz Clock Rate 

Memory 

R",VI-2.3K bytes Static 
ROM-SK bytes EPROM 

Interfaces 

Keyboard-16 character Hexadecimal and 11· 
function keypad (iUP·201 only) 

Display-24 Character Alphanumeric (iUP·201 
only) 

Software 

Monitor-System Controller in pre·programmed 
EPROM 

iPPS-lntel PROM Programming Software utility 
on supplied diskel'te 

Physical Characteristics 

Depth-15 inches (38.1 cm) 
Width-15 inches (38.1 cm) 
Height-6 inches (15.2 cm) 
Weight-15Ibs. (6.S kg) 

Electrical Characteristics 

Selectable 100,120,200, or 240 Vac ± 10%; 
50·60 Hz 

Maximum power consumption-SO watts 

ORDERING INFORMATION 

Part Number Description 

iUP-200 Intel On-Line Universal 
Programmer 

iUP-201 Intel On-Line/Off-Llne Universal 
Programmer 

iUP-F27/128 E2EPROM Personality Module 
iUP-F87/51 MICROCONTROLLER 

Personality Module 
iUP-F87/44 PERIPHERAL Personality 

Module 
iUP-F36/32 BIPOLAR Personality Module 

Environmental Characterislics 

Operating Temperature-10°C to 40°C 
Operating Humidity-O% to 95% Relative 

Humidity , 

Reference Material 

IUP·200/201 Universal Programmer User's Guide 
iUP·200/201 Pocket Reference Card 

PERSONALITY MODULE SPECIFICATIONS 

Memory 

EPROM - 2K bytes 

Physical Characteristics 

Width - 5.5 inches (14.0 cm) 
Height - 1.6 inches (4.1 cm) 
Depth - 7.0 inches (17.S cm) 
Weight - 1 lb. (.45 kg) 

Electrical Characteristics 

Maximum power consumption (module)-5 watts 
Maximum power consumption (device)-2.5 watts 
Maximum power consumption (total from iUP)-

7.5 watts 

Environmental Characteristics 

Operating Temperature-10°C to 40°C 
Operating Humidity-O% to 95% relative humidity 

Reference Material 

Selected Personality Module User's Guide 

6-834 AFN·Q2138A 



Data Conununications 7 

Peripherals 
Section 



\ 



inter 
INTEL DATA COMMUNICATIONS 

FAMILY OVERVIEW 

Data Communications has become an increasingly 
important factor in computer system design with the 
evolution of distributed processing and remote, net­
worked peripherals. Intel's data communications pro­
duct line provides a range of components to satisfy the 
broad spectrum of speed, protocol support and protocol 
flexibility needs (Figure I). . 

GLOBAL DATA COMMUNICATIONS:· 
ASVCHRONOUSAND SYNCHRONOUS PRomoCOLS 

Dedicated data communications controllers 

For low-to-medium speed (up to 19.2 Kbps), the 8251A 
USART (U niversal Synchronous Asynchronous Receiver/ 
Transmitter) is the industry standard for asynchronous 
communications. It can be ,used in such applications as 
personal computers, workstations, word processors, CRT 
terminals point-of-sale terminals, banking terminals, 
printers, communications processors, data concentra­
tors, industrial control networks, etc. 

The 8256 MUART (Multi-function Universal Asynchro­
nous Receiver/Transmitter) IS an highly competent 
asynchronous communications controller. It considera­
bly minimizes the number of LSI required in a system 
with an asynchronous interface. The 8256 integrates the 

SPEED 

10Mbps 

1 Mbps e 
64 Kpbs 8' 

19.2 Kbps 8 

four more common peripheral functions of a micropro­
cessor based system as well as a full-duplex, double buf­
fered serial asynchronous receiver/ transmitter with an 
on-chip baud rate generator. 

The 8273 is a dedicated high level peripheral controller 
for SDLCj HDLC protocol support. It provides an high 
level of Data Link Control support for IBM-SNA or 
CCITT X.25 compatible microcomputer systems. This 
·device minimizes CPU overhead by supporting a com­
prehensive frame level operation. The 8273 is compatible 
with every telephone network-based communication sys­
tem due to its speed (up to 64 Kbps) and flexible modem 
interface. 

Multlprotocol controllers 

Multi-protpcol controllers bridge the gap between byte 
oriented and bit oriented protocols (HDLCj SDLC). 
They provide an easy migration path for the user through 
a single software reconfiguration. Design of high-level 
protocols like X.25 are considerably simplified when they 
are coupled with the power of high performance proces­
sors such as the iAPX 86/88/186, or 188. They are also 
used to implement custom high-level protocols on top of 
standard bit-synchronous protocols. 

The dual-channel 8274 MPSC (Multi-Protocol Serial 

ASYNC SOLC/HOLC MULTI PROTOCOLS; 
ASYNC, BYTE SYNC, 

BIT SYNC • 

CSMAICO PROTOCOL 
SUPPORT 

FIGURE 1: A Spectrum of Data Communications Solutions 

7-1 



Controller) provide a solution for Asy~chronous, Byte 
Synchronous (IBM Bisync) imd Bit 'Synchronous 
(HDLe; SDLC) protocols support. It' is optimized' for 
high-speed applications requiring the flexibility of the 
protocol support and the integration of multiple com­
munications channels. 

The 82530 SCC (Serial Communications Controller) is 
another dual channel multiprotocol controller. It cOn­
tains new functions including on-chip baud rate genera­
tors, digital phase locked loops, various data encoding/­
decoding schemes and extensive diagnostic capabilities. 
All these added features reduce the need for external logic 
and greatly improve the reliallility and maintainability of 
the system. 

Distributed Intelligence Systems 

The 8044/8744 is a microcontroller with an on chip serial 
communication processor. It simplifies control of remote 
subsystems (subsystems that are physically separated 
from the host CPU and communicate over a serial link). 

The 8044 and 8051CPUs are identical. The serial com­
munication is handled by an additional processor calIed 
the SerialInterface U nit(SIU). The SIU operates concur­
rently with the CPU and offers a high level of,intelligence 
and performance for HDLe;SDLC based communica­
tions. The SIU can' handle 2.4 Mbps in Half-Duplex 
mode. 

In addition to controlIing commllnications with the host 
CPU, the 8044 provides significant peripheral control. 
Examplesinclude .Iocal keyboard, CRT and printer con­
trol as welI as design of network for Distributed IntelIi­
gence Systems (Medical instrumentation, CATV, PABX, 
etc .... ) 

Detailed 8044/8744 information is contained in the Intel 
MicrocontrolIer Handbook. 

Instrumentation 

The 8291 A, 8292, and 8293 family of components provide 
complete, high-performance support for IEEE-488 
(GPIBj standard interface. GPIB is used in instrumenta­
. tion applications. 

7-2 

The 8291 A 'implements the Talker/ Listener functions of 
the GPIB. 

The 8292 provides the controller functions. Operating in 
tandem with the 8291 A, it complements its interface func­
tions to provi<\e a full-capability GPIB interface. 

The 8293 is a low-power, high-current, HMOS 8-line 
transceiver. It provides the electrical interface to the 
GPIB. 

Local Area Networks 

Intel has developed the first complete VLSI solution for 
Local Area Networks (LAN s) and Ethernet in particular: 
the 82586 Local Area Network Coporcessor and the 
82501 ESI (Ethernet Serial Interface). 

Four on chip DMA channels alIow the 82586 to operate 
as a bus master. The 82586 manages the entire process of 
transmitting and receiving frames, thereby relieving the 
host processor of the tasks of managing the com­
munication interface to the network. 

An extensive set of diagnostic capabilities, implemented. 
in silicon, simplifies the design of more reliable local 
networks and facilitates their maintenance. In order to 
take full advantage of the LAN concept and CSMA/ CD 
access method, the 82586 architecture is software config­
urable. This alIows the 82586 to be "customized" for 
other applications including serial backplanes (serial 

'peripheral interconnection), low cost short distance 
LANs, broadband networks and medium speed (1-2 
Mbps) LANs. 

The 82501 is designed to work directly wit\!. the 82586 in 
Ethernet applications. The major functions of the ESI are 
to generate the JO MHz transmit clock for the 82586, to 
perform Manchester encoding/ decoding of transmitted/­
received frames, and to provide the electrical interface to 
the Ethernet transceiver cable 

The Intel Data Communications product family provides 
a wide range of solutions for the needs of data communi­
cations systems. 



APPLICATION AP-16 
NOTE ' 

© I "tel Corporation. 1976 
PRICE $1.00 7-3 



APPLICATIONS 

INTRODUCTION 
The Intel 8251 is a Universal Synchronous/Asyn­
chronous Receiver/Transmitter (USART) which is 
capable of operating with a wide variety of serial 
communication formats. Since many· peripheral 
devices are available with serial interfaces, the 8251 
can be used to interface a microcomputer to a 
broad spectrum of peripherals, as well as to a serial 
cemmunications channel. The 8251 is part of the 
MCS-80™ Micreprocesser Family, and as such it is 
capable of interfacing to the 8080 system with a 
minimum of external hardware. 

This application note describes the 8251 as a com­
ponent and then explains its use in sample applica­
tiens via several examples. A specific use of the 
8251 to facilitate communicatien between two 
MCS-80 systems is discussed in detail from both 
the hardware and software viewpoints. The first 
two sections of this applicatien note describe the 
8251 first from a functional standpoint and then 
on a detailed level. The function of each input and 
output pin is fully defined. The next section de­
scribes the various eperating modes and how they 
can be seiected, and finally, a sample design is dis­
cussed using the 8251 as a data link between the 
MCS-80 systems. 

COMMUNICATION FORMATS 

Serial communications, either en a data link or 
with a local peripheral, eccurs in one of two basic 
formats;. asynchronous or synchronous. These for­
mats are ,similar in that they both require framing 
information to be added to. the data to enable 
proper detectio~, ef the' cnaracter at the receiving 
end. The major difference between the two for­
mats is that the asynchronous 0 format requires 
framing information to be added to each character, 
while the synchronous fOfI11at adds framing infor­
mation to blocb of data, er messages. Since the 
synchronous format is mo.re efficient than the 
asynchronous format but requires mere complex 
decoding, it is typically found on high-speed data 
links, while the asynchrenous fermat is used on 
lower speed lines. 

The asynchronous format starts with the basic data 
bits to. be transmitted and adds a "START" bit to 
the front of them and one or more "STOP" bits 
behind them as they are transmitted. The START 
bit is a logical -zero, or SPACE, and is d\!fined as 
the pesitive vohage level by RS-232-C. The. STOP 
bit is a logical one, or MARK, and is defined as the. 
negative voltage level by RS-232-C. In current loop 
applications .current flow normally indicates a 
MARK and lack of current a SPACE. The START 
bit tells the receiver to start assembling a character 
and allows the receiver to synchronize.itself with 
the transmitter. Since this synchrenization only 

7-4 

has to last fer the duration of the character (the 
next character will contain a new START bit), this 
method works quite well assuming a properly 
designed receiver. One or mere STOP bits are 
added to the end of the character to ensure that 
the START bit of the next character will cause a 
transition on the communicatien line and to give 
the receiver time to "catch up" with the transmit­
ter if its basic clock happens to be running slightly 
slower than that of the transmitter. If, on the other 
hand, the receiver clock happens to be running 
slightly faster than tne transmitter clock, the re­
ceiver will perceive 0 gaps between characters but 
will still cerrectly doecode the data. Because of this 
tolerance to minor frequency deviations, it is not 
necessary that the transmitter and receiver clocks 
be locked to the identical frequency for successful 
asynchronous communication. 

The synchroneus format, instead of adding bits to 
each character, groups characters into records and 
adds framing characters to the record. The framing 
characters are generally known as SYN characters 
and are used by the receiver to determine where 
the character boundaries are in a string of bits. 
Since synchronization must be held over a fairly 
lon'g stream of data, bit synchronization is nor­
mally either extracted from the communication 
channel by the modem or supplied from an ex­
ternal source. 

An example of the synchronous and asynchronous 
formats is shown in Figure 1. The synchronous 
format shown is fairly typical in that it requires 
two SYN characters at the start of the message. 
The asynchronous format, also typical, requires a 
START bit preceding each character and a single 
STOP bit fellowing it. In both cases, two 8-bit 
characters are to be transmitted. In the asynchro­
nous mode 1 O*n bits are used to transmit n charac­
ters and in the synchronous mode 8N + 16 bits are 
used. For the example shown the asynchronous 
mode is actually more efficient, using 20 bits 
versus 32. To transmit a thousand characters in the 
asynchronous mode, however, takes 10,000 bits 
versus 8,016 for the synchroneus format mode. 
For long messages the synchronous format be­
comes much more efficient than the asynchronous 
format; the crossover point for the examples 
shown in Figure 1 is eight characters, for which 
both formats require 80 bits. 

o In, additien to the differences in format between 
synchronous and asynchronous cemmunication, 
there are differences with regards to the type of 
modems that can be used. Asynchronous modems 

. typically employ FSK (Frequency Shift Keying) 
techniques which Simply generate one audio tene 
for a MARK and another for a SPACE. The receiv­
ing modem detects these tones on the telephone 

AFN-ooeooA 



APPLICATIOMS 

DATA 

I I I I I I I I I 

DATA , \ DATA 

START all STOP BIT 

AlvNCHRONOUS 

SYN 
CIIAR#2 

SYN 
CIIAR#' 

Ie 
START BIT 

Figure 1. Transmission Forlllllu 

line, converts them to logical signals, and pre~nts 
them to the receiving terminal. Since the modem 
itself is not concerned with the transmission speed, 
it can handle baud rates from zero to its maximum 
speed. Synchronous modems, in contrast to asyn­
chronous modems, supply timing information to 
the terminal and require data to be presented to 
them in synchronism with this timing information. 
Synchronous modems, because of this extra clock­
ing, are only capable Qf operating at certain preset 
baud rates. The receiving modem, which has·~ 
oscillator running at the same frequency as the 
transmitting modem, phase locks its clock to that 
of the transmitter and interprets changes of phase 
as data. 
In some cases it is desirable to operate in a hybrid 
mode which involves transmitting data with the 
asynchronous format using a synchronous m04em. 
This occurs. when an inCrease in operating speed is 
required without a change in the basic protocol of 
the system. This hybrid technique is known as 
isosynchronous and involves the generation of the 
start and stop bits associated with the asyn~hro­
nous format, while still using the modem clock for 
bit synchronizatiop. . 

The 8251 USART has been deSigned to meet a 
broad spectrum of requirements in the synchro­
nous, asynchronous, and isosynchronouS modes. In 
the synchronous mode the 8251 operates with 5, 
6, 7, or 8-bit characters. Eve)l Or odd parity can be 
optionally appended and checked. Synchronization 
can be achieved either externally via added hard­
ware or internally via SYN character detection. 
SYN detection can' be· based on one or two 'charac­
ters which mayor may not be the same. The single 
or double SYN ,characters are inserted into the 
data stream automatically if the software fails to 
supply data in time. The automatic generatjon of 
SYN characters is required to prevent the loss of 
synchronization.' In the asynchronous mode the 
8251 operates with the same data and parity struc­
tures as it does in the synchronous triode. In addi­
tion to appending a START bit to this data, the 

7-5 

825 I appends 1, I~, or 2 STOP bits. Proper fram­
ing is checked by the receiver and a status flag set 
if an error occurs. In the asynchronous mode the 
USART can be programmed to accept clock rates 
of 16 or 64 times the required baud rate. Isosyn­
chronous operation is a special case of asynchro­
nous with the multiplier rate programmed as one 
instead of 16 or 64. Note that XI operation is only 
valid if the clocks of the receiver and transmitter 
are synchronized. 
The 8251 USART can transmit the three formats 
in half or full duplex mode and is double-buffered 
internally (i.e., the software has a complete charac­
ter time to respond to a service request). Although 
the 8251 supporj:s basic' data set control signals 
(e.g., DTR and RTS), it does not fully support the 
signaling described in EIA-RS-232-C. Examples of 
unsupported signals are Carrier petect (CF), Ring 
Indicator (CE), and the secondary channel signals. 
In some cases an additional. port will be required to 
implement these siin,als. The 8251 also does not 
interface to the voltage levels reqUired by EIA­
RS-232-C; drivers and receivers must be added to 
accomplish this interface. 

BLOCK DIAGRAM 
A blo<;k diagram of the 8251 is shown in Figure 2. 
As can be seen in the ngure, the 8251 consists of 
nve major sections which communicate with each 
other on an internal data bus. The five sections are 
the receiver, transmitter, modem control, read/ 
write control, and I/O Buffer. In order to facilitate 
discussion, the' I/O Buffer has been shown broken 
down into' its three' major subsections: the status 
buffer, the transmit data/command buffer, and the 
receive data buffer. ' 

Receiver 
The receiver accepts serial data on the RxD pin and . 
converts it'to parallel data according to the appro­
priate format. When the 8251 is in the asynchro­
nous mode and, it is ready to accept a character 



RESET_ 

CLK_ 

EXTERNAL DATA BUS 

1--_ TxD 

1--- RxRDY 

1---- SYNDET 

1----fbC 

RECEIVER '-__ RxD 
'-_~-L __ ~IS:~~I __ ~r, 

Figure 2",8251 Block'Diagram 

(Le., it is not in the process of receiving a charac­
ter), it looks for a low level on the RxD line, Whe,n 
it sees the low level, it assumes that it isa START 
bit and' enables an' intern'al counter,' At a courtt 
equivalent to one-half of a bit time, ,the Rxb line is 
sampled again, If the' line is still low, a valid 
START bit has probably been received and the 
8251 proceeds to assemble the chiracter~ If the 

"' RxD line is high when it is sampled, then either a 
noise pulse' has occurred on the lirie or thtl receiver 
has become enabled in the middle 'of the transmis­
sion of a character. In either case the receiver 

, aborts its operation and prepares itself to accept a 
new character. After the successful reception of a 
START bit the 8251 clocks in the data, parity, and 
STOP 'bits, and 'then transfers the data on 'the 
internal data bus to the receive data register: When 
operating with less' than' 8 bits, the characters are 
right-justified. The RxRDY signal isasseited to 
indicate that a character is availa1:>le. ' 

In the synchronous mode, t'he receiver, s~mply 
clocks in the specified number of data;,pits and 
transfers" them to the, receiver buffe,r register, 
setting RxRDY. Since the receiver blin"ly groups 
data bits into characters, there must be a means of 
synchronizing the receiver to the transmitter so 
that the proper character boundaries are main­
tained in, the serial data strellm. This synchroniza­
tion is achieved in the HUNT'mode,. ' , " , 

In thtl HUNT mode the 8451 shifts in "ata on ;the 

7-6 

Rxi> line one bit at a time. After each bit is re­
ceived, the receiver register is compared to a regis­
ter holding the SYN character (program loaded). 
If the two registers are not equal, the 8251 shifts in 
another bit and repeats the comparison: When the 
registers compare as equal, 'the 8,251 ends, the 
HUNT mode and raises the SYNDET line to indi­
cate that it has achieved synchronization. If the 
USART has been programmed to operate with two 
SYN 'characters the process is as described above, 
except that two contiguous characters from tlie 
line must compare to,the two stored SYN charac­
ters before synchronization is declared. Parity is 
not checked. If the USART has been programmed 
to, ;llccept external synchronization, the SYNDET 
pin is,llsed as an input to synchronize the receiver. 
The timing necessary to do this is discussed in the 
SIGNALS section of this note. The USART enters 
the HUNT mode when it is initialized into the 
synchronous mode or when it is commanded to do 
so by the command instruction. Before the receiver 
is operated, it must be enabled by the RxE bit (D2) 
of the command instructionsAf this bit is not set 
the receiver will not assert the RxRDY bit. 

Transmitter ' 

The transmjtter accepts parallel ;data fro~ the 
processol, !ldds the appropriate framing ill forma­
tiol)., serializes it, lIlld ~ran,~mits it 0)1 the TxD pin. 
In the asynchronous mode the traIJsmitteralways 

AFN.ooeooA 



APPLICATIONS 

adds a START bit; depending on how the unit is 
programmed, it also adds an optional even or odd 
parity bit, and either I, 1 *. or 2 STOP bits. In the 
synchronous mode no extra bits (other than parity, 
if enable) are generated by the transmitter unless 
the computer failt to send a character to the 
USART. If the USART is ready to'transmit a char­
acter and a new character has not been supplied by 
the computer, the USART will transmit a SYN 
character. This is necessary since synchronous 
communications, unlike asynchronous communica­
tions, does not allow gaps between characters. If' 
the USART is operating in the dual SYN mode, 
both SYN characters will be transmitted before the 
message, can be resumed. The USART will not 
generate SYN characters until the software has sup­
plied at Ijlast one character; i.e., the USART will 
,fill 'holes' in the transmission but will not initiate 
transmission itself. The SYN characters which are 
to be transmitted by the USART are specified by 
the software during the initialization procedure. In 
either the synchronous or asynch'ronous modes, 
transmission is inhibited until TxEnable and the 
C'i'S input are asserted. 
An additional feature of the transmitter is the abil­
ity to transmit a BREAK. A BREAK is a period of 
continuous SPACE on the communication line and 
is used in full duplex communication to interrupt 
the transmitting terminal. The 8251 USART will 
transmit a BREAK condition as long as bit 3 
(SBRK) of the command register is set. 

Modem Control 
The modem control section provides for the gener­
ation of RTS and the reception of rn. In addi­
tion, a general purpose output and a general pur­
pose input are provided. The output is labeled 
DTR and the input is' labeled DSR. DTR can be 
asserted by setting bit 2 of the command instruc­
tion; DSR can be sensed as bit 7 of the status 
register. Although the USART itself attaches no 
special significance to these signals, DTR (Data 
Terminal Ready) is normally assigned to the 
modem, indicating that the terminal is ready to 
communicate and DSR (Data Set Ready) is a signal 
from the modem indicating that it is ready for 
communications. 

I/O Control 
The Read/Write Control Logic decodes control 

,signals on the' 8080 control bus into signals which 
gate data on 'and off the USART's internal bus and 
controls the external I/O bus (DBo-DB7). The 
truth table for these operations is as follows: 

If neith~r READ or WRITE is a zero, then the 
USART will not perform an I/O function. READ 

7-7 

CE c/o READ WRITE Function 

0 0 0 1 CPU Reads Data from 
USART 

0 1 0 1 CPU Reads Status from 
USART 

0 0 1 0 CPU Writes Data to 
USART 

0 1 1 0 CPU Writes Command to 
USART 

1 X X X USART Bus Floating 
(NO-OP) 

and WRITE being a zero at the same time is an 
illegal state with undefined results. The Read/ 
Write Control Logic contains s~ltTEnization cir­
cuits so that the READ and I pulses can 
occur at any time with respect to the clock inputs 
to the USART. 
The I/O buffer contains the STATUS buffer, the 
RECEIVE DATA buffer and the XMIT DATA/ 
CMD buffer as shown in Figure 2. Note that al­
though there are two registers which store data for 
transfer to the CPU (STATUS and RECEIVE 
DATA), there is only one register which stores data 
being transferred to the USART. The sharing of 
the input register for both transmit data and com­
mands makes it important to ensure that the 
USART does not have data stored in this register 
before sending a command to the device. The 
TxRDY signal can be monitored to accomplish 
this. Neither data nor commands should be trans­
ferred to the USART if TxRDY is low. Failure to 
perform this check can result in erroneous data 
being transmitted. 

INTERFACE SIGNALS 
The interface signals of the 8251 USART can be 
broken down into two groups - a CPU-related 
group and a device-related group. The CPU-related 
signals have been designed to optimize the attach­
ment of the 8251 to a MCS-80™ system. The 
device-related signals' are intended 'to interface a 
modem or like device. Since many peripherals 
(TTY, CRT, etc.) can be obtained with a modem­
like interface, the USART has a broad range of 
applications which do not include a modem. Note 
that although the USART provides a logical,inter­
face to an EIA-RS-232 device, it does not provide 
EIA compatible drive, and this must be added via 
circuitry external to the 8251. As an example of a 
peripheral interface application and to aid in 
understanding the signal descriptions which 'follow, 
Figure 3 shows a system configured to interface 
with a TTY or CRT. 



APPLICATIONS 

~~~~~~~~-. 
.---------------------~

~ .. I
~

~ ~
:> ~~ "',

•

!

;~

~_;;T__;;i'_;:;i__;;i'__---'~ ~I

~~ ,-;; ~~L~
""-KII--'--'-L-<¥~~ _:;_1'"' III

~

7-8

CPU-Related Signals
Vee (26) I
GND(4) , I

CLK(20)

RESET (21)

DB7-DBo I/O
(8,7,6,5,2,1,
28,27)

CS(lI) I

cti5 (12)

1m (13) I

APPLICATIONS

+5 Volt Supply

+5 Volt Common
The CLK input generates in­
ternal device timing. No ex­
ternal inputs or outputs are
referenced to CLK, but the
frequency of CLK must be
greater than 30 times the
Receiver or Transmitter
clock inputs for synchronous
mode or 4.5 times the clock
inputs for an asynchronous
mode. An additional con­
straint is imposed by the
electrical specifications (ref.
Appendix B) which require
the period of CLK be be­
tween 0.42 Ilsec and 1.35
Ilsec. The CLK input can
generally be connected to the
Phase 2 (TTL) output of the
8224 clock generator.
A high on this input per­
forms a master reset on the
8251. The device returns to
the idle mode and will re­
main there until reinitialized
with the appropriate control
words.
The DB signals form a three­
state bus which can be con­
nected to the CPU data bus.
Control, status, and data are
transferred on this bus. Note
that the CPU always remains
in control of the bus and all
transfers are initiated by it.
Chip Select. A low on this
input enables communica­
tion between the USART
and the CPU. Chip Select
should go low when the
USART is being addressed by
the CPU. '

Control/Data. 'During a read
operation this pin selects
either status or data to be in­
put to the CPU (high=status,
low=data). During a write
operation this pin causes the
USART to interpret the data
on the bus as a command if it
is high or as data if it is low.
A low on this input causes'
the USART to' gate either

WR (10)

TxRDY (IS)

TxE (18)

RxRDY(14)

7-9

I

0,

o

o

status or data onto the data
bus.
A low on this input causes
the USART to accept data
on the data bus as either a
command or as a data char:­
acter.
Transmitter Ready. This out­
put signals the CPU that' the
USART is ready to accept a .
data character or command.
It can be used as an interrupt
to the system or, for polleo
operation, the CPU can
check TxRDY using the
status read operation. Note,
however, that while the
TxRDY status bit will be as­
serted whenever the XMIT
DATA/CMD buffer is empty,
the TxRDY output will be
asserted only if the buffer is
empty and the USART is en­
abled to transmit (Le., CTS is
low and TxEN is high).
TxRDY will be reset when
the USART receives a charac-'
ter from the program.
Transmitter Empty. A high
output on this line indicates
that the parallel to serial
converter, in the transmitter
is empty. In 'the synchronous
mode, if the CPU has failed
to load a new character in
time, TxE will go high mo­
mentarily as SYN characters
are loaded into the trans­
mitter to fill the gap in trans­
mission.
Transmitter Ready. This out­
put goes high to indicate that
the 8251 has received a char­
acter on its serial input and is
ready, to. transfer it to the
CPU. Although the receiver
runs continuously, RxRDY
will only be asserted if the
RxE (Receive Enable) bit in
the command register has
been set. RxRDY can be COIl­

nected to the interrupt stru~­
ture or, for polled operation,
the CPU can check the condi­
tion of RxRDY using a status
read operation. RxRDY will
,be reset when the character is
read by the CPU.

APPLICATIONS

SYNDET (16) I/O Synch Detect. This line is used
in the,synchronous mode only.
It can be either an input or
output, depending on whether
the initialization program sets
the USART for external or in­
ternal synchronization. SYN­
DET is reset to a zero by RE­
SET. When in the internal
synchronization mode, the
USART uses SYNDET as an
output to indicate that the
device has detected the re­
quired SYN character(s}. A
high output indicates syn­
chronization has been achiev­
ed. If the USART is pro­
grammed to operate with
double SYN characters, SYN­
DET will go high in the mid­
dle of the last bit of the
second SYN character. SYN­
DET will be reset by a status
read operation. When in the
external synchronization mode
a positive-going input on the
SYNDET line will cause the
8251 to start assembling
characters on the next falling
edge of RxC. The high input
should be maintained at least
for one RxC cycle following
this edge.

Device-Related Signals
DTR (24) . 0 Data Terminal Ready. This is a

DSR (22)

RTS (23)

general purpose output signal
which can be set low by pro­
gramming a ' I' in command
instruction bit I. This signal
allows additional device con­
trol.
Data Set Ready. This is a gen­
eraJpurpose input signal. The
status of this signal can be
tested by the CPU through a
status read. This pin can be
used to test device status and
is read as bjt 7 of the status
register.

o Request to Send. This is a gen-
eral purpose output signal
equivalent to DTR. RTS is
normally used to request that
the modem prepare itself to
transmit (i.e., establish car­
rier). RTS can be asserted

7-10

CTS (17)

RxC (25)

RxD (3)

TxC (9)

TxD (19)

(brought low) by setting bit 5
in the command instruction.
Clear to Send. A low on this
input enables the USART to
transmit data. CTS is normally
generated by the modem in re­
sponse to a RTS.

Receiver Clock. This clock
controls the data rate of char­
acters to be received by the
USART. In the synchronous
mode RxC is equivalent to the
baud rate, and is supplied by
the modem. In asynchronous
mode RxC is 1, 16, or 64
times the baud rate. The clock
division is preselected by the
mode control instruction.
Data is sampled by tl1e USART
on the rising edge of RxC.

Receiver Data. Characters are
received serially on this pin
and assembled into parallel
characters. RxD is .high . true
(Le., High = MARK or ONE).

Transmitter Clock. This clock
controls the rate at which
characters are transmitted by
the USART. The relationship

- between clock rate and baud
rate is the same as for RxC.
Data is shifted out of the
USART on the falling edge of
TxC.

o Transmit Data. Parallel charac­
ters sent by the CPU are trans­
mitted serially by the USART
on this line. TxD is high true
(Le., High = MARK or ONE).

MODE SELECTION

The 8251 USART is capable of operating in a num­
ber of modes (e.g., synchronous or asynchronous).
In order to keep the hardware as flexible as possi­
ble (both at the chip and end product level), these
operating modes are selected via a series of control
outputs to the USART. These mode control out­
puts must occur between the time the USART is
reset and the time it is utilized for data transfer.
Since the USART needs this information to struc­
ture its internal logic it is essential to complete the
initialization before any attempts are made at data
transfer (including reading status).

A flow.chart of the initialization process appears in
Figure 4. The first operation which must occur
following a reset is the loading of the mode control

APPLICATIONS

SYSTEM RESET
INITIALIZATION

Figure 4. Initialization Flowchart

register. The mode control register is loaded by the
first control output (<;/D=l, lID=l, WR=O, C:S=(}f
following a reset. The format of the mode control
instruction is shown in Figure 5. The instruction
can be considered as four 2-bit fields. The first
2-bit field (DI 00) determines whether the USART
is to operate in the synchronous (00) or asynchro­
nous mode. In the asynchronous mode this field
also controls the clock scaling factor. As. an exam­
ple, if 01 and 00 are both ones, the RxC and TxC
will be divided by 64 to establish the baud rate.
The second field, 03-D2, determines the number
of data bits in the character and the third, 05-D4,
controls parity generation. Note that the parity bit
(if enabled) is added to the data bits and is not
considered as part of them when setting up the
character length. As an example, standard ASCII
transmission, which is seven data bits plus even
parity, would be specified as:

XXIIIOXX

7-11

-~--L ~ ... ,-00 "SVN MODE
• 01-ASYNXl

10-ASVNX16
11.ASYNX64

CHARACTER LENGTH

00 -S8ITS
01·6BITS
10 ... 7811S
11 -8 BITS

PARITY CONTROL

X 0 .. NO PARITY
01 ... 000 PARITY
1 1 ... EVEN PARITY

FRAMING CONTROL

SVN
NO - ASVN (0, 00'*00) 00 "NOTVALID

? 01·1STOPBIT
1 D .1~ STOP BITS
11 "2STOPBITS

VES
(0100"'01 SVNCONTROL

x 0 INTERNAL SVN
X, EXTERNAL SYN
o X DOUBLE SVN CHAR
, X SINGLE SVN CHAR

\ Figure 5. Mode Instruction Format

The last field, 07-D6, has two meanings, depend­
ing on whether operation is to be in the synchro­
nous or asynchronous mode. For the asynchronous
mode (i.e., OJ Do '* 00), it controls the. number of
STOP bits to be transmitted with the character.
Since the receiver will always operate with only
one STOP"bit, 07 and 06 only control the trans­
mitter. In the .synchronous mode (OJ Do = 00),
this field controls the synchronizing process. Note
that the choice of single or double SYN characters
is independent of the choice of internal or external
synchronization. This is because even though the
receiver may operate with external synchronization
logic, the transmitter must still know whether to
send one or two SYN characters should the CPU
fail to supply a character in time.

Following the loading of the mode instruction the
appropriate SYN character (or characters) must be
loaded if synchronous mode has been specified.
The SYN character(s) are loaded by the same con­
trol output instruction used to load the mode in­
struction. The USART determines from the. mode
instruction whether no, one, or two SYN charac­
ters are required and uses the control output to
load SYN characters until the required number are
loaded.

At completion of the load of SYN characters (or
after the mode instruction in the asynchronous
mode), a command character is issued to the
USART. The command instruction controls the
operation of the USART within the basic frame­
work established by the mode instruction. The
format of the command instruction is shown in

APPLICATIONS

Figure 6. Note that if, as an eXllll1ple, the USART
is waiting for a SYN character load and instead is
issued an internal reset command, it will accept thll
command as a SYN character instead of resetting.
This situation, which should only occur if two
independent programs control the USART, can be
avoided by outputting three all zero characters as
commands before issuing the internal reset com­
mand. The USART indicates its state in a status
regist,er which can be read under program control.
The format of the status register read is shown in
Figure 7.

TRANSMIT ENABLE
'-ENABLE
O-DISABLE

DATA TERMINAL
READY

"HIGH"WILL FORCE
DTR OUTPUT TO ZERO

SEND BREAK

L.------I CHf!:g~~:STXD "LOW"
0 ... NORMAL OPERATION

ERROR RESET
L.-------J 1" RESET ALL ERROR

FLAGS (PE. DE, FE)

REQUEST TO SEND
L. ________ ·I ~~~,;~f~~~~o

INTERNAL FlESET
"HIGH" RETURNS 8261
TO MODE INSTRUCTION
FORMAT

When operating the receiver it is important to real­
ize that RxE (bit 2 of the command instruction)
only inhibits the assertion of RxRDY; it does not
inhibit the actual reception of characters. Because
the receiver is constantly running, it is possible for
it to contain extraneous data when it is enabled.
To avoid problems this data should be read from
the USART and discarded. The read should be
done immediately following the setting of Receive
Enable in the asynchronous mode, and following
the setting of ,Enter Hunt in the synchronous
mode. It is not necessary to wait for RxRDY be­
fore executing the dummy read. ENTER HUNT MODE '------------_1 1" ENABLE SEARCH FOR

D.

I OSR I SYNDE; I FE

I j

SYN CHARACTERS

Figure 6. Command Instruction For~t

0,

I DE PE I TxE I RxRDV I TxRDV I
I j j j

j
PARITY ERROR

THE PE FLAT IS SET WHEN
A PARITY ERROR IS DE·
TECTED. IT IS RESET BY
THE EA BIT OF THE COM·
MAND INSTRUCTION. PE
DOES NOT INHIBIT OPERA
ATION OF THE 8251.

OV,ERRUN ERROR
THE OE FLAG IS SET WHEN
THE CPU DOES NOT READ A

~~~~~~~E;E~~E~EA~~~L. - ABLE. IT IS RESET BY THE 
ER BIT OF THE COMMAND 
INSTRUCTION OE DOES 
NOT INHIBIT OPERATION OF 
THE 8251, HOWEVER, THE 
PREVIOUSLY OVERRUN 
CHARACTER IS LOST' 

FRAMING ERROR (:'SYNC 
ONLY) 
THE FE FLAG 1$ SET WHEN 
A VALID STOP BIT IS NOT 
DEtECTED AT THE END OF 
EVERY CHARACTER. IT IS 
,RESET BY THE EA BIT OF 
THE COMMAND INSTRUC-
'nON. FE DOES NOT INHIBIT 
THE OPERATION OF THE 8251. 

'Figure 7. Status Register Format 

SAME DEFINITIONS 
AS I/O PINS EXCEPT 
THAT TxRDY IS NOT 
CONDITIONED BY 
TxENOR eTI' 

AFN.ooeooA 



APPLICATIONS 

PROCESSOR DATA UNK 
The ability to change the operating mode of the 
USART by software makes the 8251 an ideal 
device to use to implement a serial communication 
link. A terminal initially configured with a simple 
asynchronous protocol can be upgraded to a syn­
chronous protocol such as IBM Binary Synchro­
nous Communication by a software only upgrade. 
In order to demonstrate the use of the 8251 
USART, the remainder of this document will 
describe the implementation of an interrupt-driven, 
full duplex communication link on the Intel 
MDSTM system. With minor modifications, the 
program developed could be used on the Intel 
SBC-80110™ OEM card, thus implementing a data 
link between the two systems. Such a facility can 
be used to down-load programs, run diagnostics, 
and maintain common data bases in multiprocessor 
systems. . 

The factors which must be considered in the design 
of such a link include the desired transmission rate 
and format, the error checking requirements, the 
desirability of full duplex operation, and the phys­
ical implementation of the link. The basic require­
ment of the system described here is that it allow 
an Intel SBC-80/10 OEM card to be loaded from 
an MDS development system, either locally or on 
the switc4ed telephone network. An additional 
constraint is that the modem used on the switched 
network be readily available and inexpensive. 
These requirements led to the choice of a modem 
such as the Bell 103A to implement the link. These 
modems, which support full duplex communica­
tion at up to 300 baud, are readily available from a 
number of sources at reasonable cost. These 
modems are also available in acoustically coupled 
versions which do not require permanent installa­
tion on the telephone network. Interface to the 
103A modem is accomplished with nine wires: 
Protective Ground, Signal Ground, Transmitted 
Data, Received Data, Clear to Send, Data Set 
Ready, Data Terminal Ready, Carrier Detector, 
and Ringing Indicator. 

The utilization of the interface signals to the 
modem is as follows: 
Protective Protective Ground is used to bond 
Ground the chassis ground of the modem to 

that of the terminal. 

Signal 
Ground 

Transmitted 
Data 

Signal. Ground provides a common 
ground reference between the mo­
dem and the terminal. -

Transmitted Data is used to transfer 
serial data from the terminal to the . 
modem. 

7-13 

Received 
Data 

Clear to 
Send 

Data Set 
Ready 

Data 
Terminal 
Ready 
Carrier 
Detector 

Ringing 
Indicator 

Received Data is used to transfer 
serial data from the modem to the 
terminal. 
Oear to Send indicates that the 
modem has established a connec­
tion with a remote modem and is 
ready to transmit data. 
Data Set Ready indicates that the 
modem is connected to the tele­
phone line and is in the data mode. 
Data Terminal Ready is a signal 
from the terminal which permits 
the modem to enter the data mode. 
Carrier Detector is identical to 
Oear to Send in the 103 modem 
and will not be used in this inter­
face. 
Ringffig Indicator indicates that the 
modem is receiving a ringing signal 
from the telephone -system. This 
signal will not be used in the inter­
face, since it is possible for the 
terminal to assert Data Terminal 
Ready whenever it is ready for the 
modem to "answer the telephone". 
The modem uses Data Set Ready to 
indicate that it has answered the 
call. 

A block diagram showing the connections between 
the MDS and the SBC-80/10 through the modems 
is shown in Figure 8. Figure 9-shows the portion of 
the MDS monitor board devoted to the USARTs 
and Figure 10 shows the equiv~ent section of the 
SBC-sO/IO board. Note that several signals on the 
MDS to not have the proper EIA deimed voltage 
levels, . and for this reason the adapter shown in 
Figure 11 was added to the MDS. The 390 pF 
capacitor was added to the 1488 driver to bring the 
rise time within EIA imposed limits of 30 voltsl 
It8ec. In Figure 7 the signal labels within the MDS 
and SBC-80/10 blocks correspond to the labels on 
the schematics, the signal labels within the modem . 
blocks correspond to EIA conventions, and the 
signal labels on the wires between the bl9Cks are 
abbreviations for the English language names of the 
signals. 

As an example of how the USART clocks can be 
generated, circuits· A27, Al6, and A15 of Figure 9 
form a divider of the OSC signal. The OSC Signal 
hils -Ii frequency of 18.432 MHz and is generated by 
the 8224 which generates system timing for the 
8080A. The 18.432 MHz signal results in a state 
time of 488 ns versus the normal 500 ns for the 
8080A. (This does not violate 8080A specifica­
tions.) The 18.432 MHz signal can be divided by 



APPLICATIONS 

--------l 
, I 

CRT USART RTSI 

CRTTxDATA 
" 

CRTRxDATA/ 

CRTDTR/ 

: CRT DSRI 

CRTSIGGND 

I 
_____ ~ __ ...J 

r------,--
I ' 

CB' CT8 REQTOSEND 

RECEIVE DATA 

TRANSMITTED DATA 

DATASET ROY 

DATA TERM'L ROY 

OND 

'CRr INTERFACE 

I , SBC •• L _______ _ 

Figure 8. System Block Diagram 

Figure 9. EIA Adapter 

30 and then 64 to give a 9600 baud communica­
tion standard. The 9600 baud signal can be further 
divided to give 4800, 2400, 1200, 600, and 300 
baud signals. The 1200 baud signal can be divided 
by 11 to give a 109.1 baud signal which is within 
1% of the 110 baud standard signal rate. Note that 
because of constraints on the CLK iriput 9600 
baud operation is not possible in th<:; X64 mode. 
The divide by 64 can be accompiished by dividing 
by 4 with a counter and then 16 within the 
USART. 
In order to keep the system as general purpose as 
possible, it was decided to transmit 8-bit data char­
acters with an appended odd parity bit. Having a 
full 8-bit byte available for data enables the trans­
mission of codes such as ASCII (which is ,7-level 
with an additional parity bit) to be transmitted' 
and received transparently in the system. Also, of 
course, it allows 8-bit bytes from the 8080A mem­
ory to be transferred in pne transmission character. 
If error checking beyond the parity check is re­
quired, it could be added to the data record to be 
transmitted in the form of redundant check charac­
ters. 

7-14 

Before the software design of the system could be 
undertaken, it was necessary to decide whether 
service requests from the USART would be han­
dled on a polled. or i,nterrupt driven mode. Polled 
operation normally results in more compact code 
but it requires that whatever programs are running 
concurrently with a transmission or reception must 
periodically either check the status of the USART 
or call a routine tliat does. Since it was not possible 
to determine what program might be running dur­
ing a receive or transmit operation, it was decided 
to operate in an interrupt driven mode. 
The' program which operates the 8251 must be 
instructed as to what data it should. transmit or 
receive from some other program resident in the 
8080 system. To facilitate the discussion of the 
operation of the software, the following definitions 
will be made: ' 

USRUN is the program which controls the 
operation of the 8251. 

, USER is a program which utilizes USRUN in 
order to effect a data transmission. 

USER passes commands and parameters' to 
USRUN by means of the control block shown in 
Figure 12. The first byte of the block contains the 
command' which USER wants USRUN to execute. 
Valid contents of this byte are "C" which causes 
USRUN to initialize itself and the 8251, "R" 
which causes the execution of the data input (or 
READ) operation, and "W" which causes a data 
output (WRITE) operation. The second byte of the 
control. block is used by USRUN to inform USER 
of the status of the requested operation. The third 
and fourth bytes specify the' starting address of a 
buffer set up by USER which contains the data for 
a transmit operation or which will be used by 
USRUN to store received data. The fifth and sixth 
bytes are concatenated to form a positive binary 



... 
ct. 

I 

i"tSOO '4$QO 

~A~O'fi!/ =::;:========::::i:i~.. ~::NI ~ 

II T F'P"" = r (P2--OO ~c.aJ 

OZI.L{f; 
A".. .. 

M. 

~o~c 

J3 .s "' 
~I~G.NO ~ * 

I I -It!'l 

•• v 

III 

ZNno~ 

"" 

,. 
"TTY Too; 

I 
TT'( K)( ~ <::2.41( L.M1489 , •• v ~ I TTCE! c.~ .. - - -:- I • &~>. o=NE=/mR',,""~=-- ~ AI> r'-,.'""'I,,,, "'" as ~ .- 179~. 1<IL""" '''''~'' 11m.. 

TO""'"ITTEO O>TA ~ : I> I "-¢ '7 .. \} 5 I~ - 0]-

R,eu< 

TKCLI<!DIirAlUU'LRtl'I':"" 4 1 I ~~ s l' 
REG m "''''' \.. I I I ~ - ':,';,':'. :~ ~ 

's I • ~, • 
""0 m::t L_-" 0&" 

~ ~'JI R4 d ;; .,. ."., 00 CONTO",-~ r. &1 ~W ~ ~60 ~ TTY RO CQNTI!oL- RET 

~"- . ~ 
~ IO.., 
I ~e'TT>.) : ~ty~ 

Figure 10. SBe 80/10 Serial I/O 

~ 

" " r-
n 
~ 
(5 
z 
rn 



,... 
0) 

I 

~~ 
~':l :rgoK~.~:-

-3& 

~ n'ltltot~·.JI, ,,, 'PT"'NPIWT/~ 
... v ~~ ~= ~ .. ..y,;; .. , ... , 

~1)"''' '.::.. g~::~~~~ l..PT"CK/'tnJ+--"-"'+--"t' 
I I ; ::: "~:'I 'ceT ~ ~ .. OM ~ ~ It.5.T ~"T'OUTJ "-+-_.,..,.-__ ~ 
-, ~ ~ ~" i i"ZklI LPTCTL/ -,.---.., .... 

~=. , c,:< CRT... ceT''''/ TZl:u .". --l-~--...:~~.-----ilt!J i~S~J ~, ~ Sf'. , , 

CRT e';;lf' e.r +12" __ .5r~ CRT CLEAR TZD.!. DA"TI 
to !IoW •• T yt;C --47,lL --M"TO!END 

~ 3 ~:~ '-;;~~TI "W""7 ... 

~~C"T'">I I 1111111111111111 III~-
"S"Z..Ila ~~DI'IT4 

TZkI. P1" CTL/ 
~D"'''S 

~ C~t..IT/_ 
3Z&l "STCRTOUT I 111I11I11I11I111~·"9.""'''iO:l, ;Mi>~. 

1Zli't/AT2,. 

.3ZRL 1)ATS 

~ 'It,; ~TTV TXt)A.TA. 

~" TTV TIC OAT'A JUlT 
'w 

1ZG.a TTY f1!W/ 

o,_v~ L.PTI!IUS'r' -,. 

Lpn~TV:: ~~, ::; 

~LP"bATJ~ 

~'. " ~ :12 TTl( t:.1)1It CTL. 

tl7 "'c.&4 I i"Zfll CMNDsnt.e ~-• I, TTYI:I:C. ~PeoMWIt.Tb"''''' ""--US 
C.TL.It£~ P'IlO"",, "'nlt .... -crL ~A.I 

:==~;;;;=;'~'~' • ' 
:!(\.6 u, :1 .---:;-~.. IIIII:! fI I wI: =~".- 11J4J1~--- -= __ '.""~, 

IIJ:tTI 

,-PT CTL.f' 

L""CTLI/ 

TTfIKi'l>'e/ 
PTP FOk 

PTP ADV 

l....J 
t 

PTIt DR.V'ltTI 

I..PT CATSTII.e,' 

PeOM WIlT tll'rt.Tl'LS/ 

"'eoMCTL"~ 

PIt.O,", ADIt1"l..oal 

DATe,lZf! ~ 'Of'..T_, 
~~;:t31 ~ 

Sv=lItST"li: 

SYS eSTI iZM. 
II.IT'I'IoI..'1LE/ 

~ecM1tD!'TPfI{fI 

1"Zta ......... ST".. ~ ~"'''''CKT' 
"" ""I """'.., ..... WI>' ,I. '. ~ 1"Z>ll ....... ,,"""""" " ,f'HI ............. ~ .... 

11.. TTY OUT IUT/!Z:rdl 

TZ:a! "51" TTV IN'" ... =:t?:1 I * _. tRy 
TZIu ~'!oT TTy.,OUTI -

Figure 11. MDS Monitor Module 

~ 

" " ,.. -(') 
~ 
(5 
Z 
tn 



APPLICATIONS 

number which specifies how many bytes of data 
USER wants transferred. The seventh and eighth 
bytes are concatenated and used by USRUN to 
count the number of bytes that have been trans­
ferred. When the required number of characters 
have been transferred, or if USRUN terminates a 
READ or WRITE due to an abnormal condition, 
then USRUN calls a subroutine at an address de­
fined by the ninth and tenth bytes of the com­
mand block. This subroutine, which is provided by 
USER, must determine the state of the process and 
then take appropriate action. 

Since USRUN must be capable of operation in a 
full duplex mode (i.e., be able to receive and trans­
mit simultaneously), it keeps the address of two 
control blocks; one for a READ operation and one 
for a WRITE. The address of the controlling com­
mand block is kept in RAM locations labeled 
RCBA for the READ operation and TCBA for the 
WRITE operation. If RCBA (Receive Control 
Block Address) or TCBA (Transmit Control Block 
Address) is zero, it indicates that the correspon,ding 
operation is in an idle status. 

Flowcharts of USRUN appear in Figure 13 and the 
listings' appear in Figure 14. The first section of the 
flowcharts (Figures 13.1 and 13.2) consists of two 
subroutines which are used as convenient tools for, 
operating on the control blocks. These routines are 
labeled LOADA and CLEAN. LOADA is entered 
with the address of a control block in registers H 
and L. Upon return registers D and E have been set 
equal to the address in the buffer which is the 
target of the next data transfer (i.e., D,E = BAD+ 
CCT); and CCT (transferred byte count) has then 
been incremented. In addition, the B register is set 
to zero if the number of bytes that have been 
transferred is equal to the number requested (i.e., ' 
CCT = RCT). CLEAN, the second routine, is also 
entered with the address of a command block in 
the :tI and L registers. In addition, the Accumulator 
holds the status which will be placed in the 
STATUS byte of the command block. On exit the 
STATUS byte has been updated and the address of 
the completion routine has been placed in H and L. 

Upon interrupt, control of the MCS-80 system is 
transferred to VECTOR (Figure 13.3). Vector is a 
program which saves the state of the system, gets 
the status of the USART and jumps to the RISR 
(Receive Interrupt Service Routine) or the TISR 
(Transmit Interrupt Service Routine), depending 
on which of the two ready flags is active. If neither 
ready flag is active, VECTOR restores the status of 

• the run,ning program, enables interrupts, and re­
turns. (Interrupts are automatically disabled by the 
hardware upon an interrupt.) This exit from VEC­
TOR, which is labeled VOUT, is used from other 

7-17 

COMMAND 

STATUS 

BAD LOl' 

8ADHIGH 

RCTLOW 

RCTHIGH 

CCTLOW 

CCTHIGH 

eRA LOW 

CRAHIGH 

) THESE TWO BYTES FORM 
THE BUFFER ADDRESS 

) 
THESE TWO BYTES INDICATE 
THE NUMBER OF BYTES TO 
BE TRANSFERRED 

! THESE TWO BYTES INDtCATE 
THE NUMBER OF BYTES THAT 
HAVE BEEN TRANSFERRED 
THESE TWO BVTES FORM 
THE ADDRESS OF A SUB­
ROUTINE TO BE CAllED 

. WHEN THE OPERATION 
IS TERr.1I'NATED 

Figure 12. Control Block 

'Figure 13.1. LOADA Subroutine 

Figure 13.2. CLEAN Subroutine 



APPLICATIONS 

• NT 

Figure 13.3. Interrupt Entry 

Figure 13.4 .. Transmitfnterrupt Service ReIItin. 

7-18 

portions of US RUN if return from the interrupt 
mode is required . 
tn addition to handling normal data transfers, 
TISR (Figure 13.4) checks a location in memory 
named TCMD in order to dete1ll,line if the receive 
program wishes to send a command to 'the USART. 
Since the transmit data and command must share a 
buffer within the USART, any command output 
must occur when TxRDY is asserted. If TCMD is 
zero, TISR proceeds with the data transfer. If 
TCMD is non-zero, TISR calls TUTE (Transmit 
Utility, Figure 13.5) which, depending on the value 

Figura 13.5. Trans",it Utility Routine 

AFN-006OOA 



APPLICATIONS 

in TCMD, turns off the receiver, turns on the re­
ceiver, or clears error conditions. Note that the 
error flags (parity, framing, and overrun) are al­
ways cleared by the software when the receiver is 
first enabled. 

The flowchart of the RISR is shown in Figure 
13.6. Note that in addition to terminating when­
ever the required number of characters have been 
received, the RISR also terminates if one of the 
error flags becomes set or if the received character 
matches a character found in a table pointed to by 
the label ET AB. This table, which starts at ET AB 
and continues until an all "ones" entry is found, 
can be used by USER to define special characters, 
such as EOT (End Of Transmission), which will ter- . 
minate a READ operation. The remainder of Fig­
ure 13 (13.7) shows the decoding of the commands 
to USRUN. The listings also include a test USER 
which exercises USRUN. This program sets up a 
256-byte transmit buffer and transfers it to a simi­
lar input buffer by means of a local loop. When 
both the READ and WRITE operations are com­
plete, the test USER checks to )insure that the two 
buffers are identical. If the bufters differ, the MDS 
monitor is called; if the data is correct, the test is 
repeated. 

CONCLUSION 
The 8251 USART has been described both as a 
device and as a component in a system. Since not 
only modems but also many peripheral devices 
have a serial interface, the 8251 is an extremely 
useful component in a microcomputer system. A 
particular advantage of the device is thafit is capa­
ble of operating in various modes without requir­
ing hardware modifications to the system of which 
it is a part. As with any complex subsystem, how­
ever, the 8251 USART must be carefully applied 
so that it can be utilized to full advantage in the 
overall system. It is hoped that this application' 
note will aid in the designer in the application of 
the 8251 USART. As a further aid to the applica­
tion of the 8251, the appendix of this document 
includes a list of design hints based on past experi­
ence with the 8251. 

Figure 13.6. Receive Interrupt Service Routine 

7-19 



APPLICATIONS 

NO 

Figure 13.7. URUN Command Decode 

7-20 AFN-ooeooA 



APPLICATIONS 

Figure 14. Program Listing 

•••••• , 

SYSTEM ORIGIN STATEMENT 
j 
j ••••• 

4000 ORG 4000H 

•••••• , 

DATA STORAGE FOR TEST USER 
j 
•••••• , 

4000 BUFIN: DS 100H jINPUT BUFFER 
4100 BUFOUT: DS 100H jOUTPUT BUFFER 
4200 5200 RBLOCK: DB 'R' ,OOH jftECEIVE CONTROL BLOCK 
4202 0040 RBAD: DW BUFIN 
4204 FFOO RRCT: DW OFFH 
4206 0000 RCCT: DW OOH 
4208 1742 RCRA: DW RCR 
420A 5700 TBLOCK: DB 'w' ,OOH jTRANSMIT CONTROL BLOCK 
420C 0041 TBAD: DW BUFOUT 
420E FFOO TRCT: DW OFFH 
4210 0000 TCCT: DW OOH 
4212 2742 TCRA: DW TCR 
4214 4300 GBLOCK: DB 'c' ,OOH 
4216 00 FLAG: DB OOH 

;***** 

COMPLETION ROUTINES 
j 
.••• ** , 

4217 AF RCR: XRA A jCLEAR A 
4218 323B42 STA RCBA jTURN OFF RECEIVE 
421B 323C42 STA RCBA+1 
421E 3A1642 LDA FLAG jGET FLAG 
4221 E60F ANI OFH jCLEAR UPPER FOUR BITS 
4223 321642 STA FLAG jRESTORE FLAG 
4226 C9 RET 
4227 AF TCR: XRA A ;CLEAR A 
4'228 323942 STA TCBA jTURN OFF TRANSMIT 
422B 323A42 STA TCBA+1 
422E 3A1642 LDA FLAG jGET FLAG 
4231 E6FO ANI OFOH jCLEAR LOWER FOUR BITS 
4233 321642 STA FLAG jRESTORE FLAG 
4236 C9 RET jTHEN RETURN 

7-21 



00F5 
00F5 
00F4 
00F4 
0000 
DOFF 
0001 

4237 
4238 
4239 
423B 

·423D 

00 
00 
0000 
0000 
FF 

.***** . 
; 
;***** 

USTAT 
USCMD 
USDAI 
USDAO 
GSTAT 
BSTAT 
CEND 

;***** 

; 
.***** . 
LCMD 
TCMD 
TCBA 
ReBA 
MTAB 

APPLICATIONS 

SYSTEM EQUATES 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

OF5H 
OF5H 
OF4H 
OF4H 
DOH 
OFFH 
01H 

;USART STATUS ADDRESS 
;USART CMD ADDRESS 
;USART DATA INPUT ADDRESS 
;USART DATA OUTPUT ADDRESS 
;GOOD STATUS 
;BAD STATUS 

SYSTEM DATA TABLE 

DB OOH ;CURRENT OPERATING COMMAND 
DB DOH ;IF NON ZERO A COMMAND TO BE 
DW OOH ;ADDRESS OF XMIT CBLOCK 
DW OOH ;ADDRESS OF RECEIVE CBLOCK 
DB OFFH ;END CHARACTER TABLE 

7-22 

SENT 

AFN-ooeooA 



j •• **. 

j 
j**.*. 

423E 23 LOADA: 
423F 23 
lj240 5E 
4241 23 
4242 56 
4243 23 
4244 23 
4245 23 
4246 4E 
4247 23 
4248 46 
4249 EB 
424A 09 
424B EB 
424C 03 
424D 70 
424E 2B 
424F 71 
4250 OB 
4251 2B 
4252 7E 
4253 go 
4254 47 
4255 CO 
4256 2B 
4257 7E 
4258 91 
4259 47 
425A C9 

APPLICATIONS 

LOAD ADDRESS ROUTINE 
LOADA IS ENTERED WITH THE ADDRESS OF A CONTROL 
BLOCK ~N H,L. ON EXIT D,E CONTAINS THE ADDRESS 
WHICH IS THE TARGET OF THE NEXT DATA TRANSFER (BAD+CCNT) 
AND B HAS BEEN SET TO ZERO IF THE REQUESTED NUMBER OF 
TRANSFERS HAS BEEN ACCOMPLISHED. CCNT IS INCREMENTED 
AFTER THE TARGET ADDRESS HAS BEEN CALCULATED. 

INX H jD,E GETS BUFF~R ADDRESS 
INX H 
MOV E,M 
INX H 
MOV D,M jDONE 
INX H jB,C GETS COMPLETED COUNT (CCNT) 
INX H 
INX H 
MOV C,M 
INX H 
MOV B,M jDONE 
XCHG jD,E GETS BAD+CCNT 
DAD B 
XCHG jDONE 
INX B jCCNT GETS INCREMENTED 
MOV M,B 
DCX H 
MOV M,C jDONE 
DCX B JDOES OLD CCNT=RCNT? 
DCX H 
MOV A,M 
SUB B 
MOV B,A 
RNZ JNO-RETURN WITH B NOT ZERO 
DCX H 
MOV A,M 
SUB C 
MOV B,A 
RET jRETURN WITH B=O IF RCNT=CCNT 

7-23 



425B 5D 
425C 54 
425D 23 
425E 77 
425F 010700 
4262 09 
4263 7E 
4264 23 
4265 66 
4266 6F 
4267 C9 

4268 F5 
4269 C5 
426A D5 
426B E5 
426C DBF5 

. 426E DBFA 
4270 OF 
4271 OF 
4272 DA8842 
4275 07 
4276 07 
4277 DAD442 
427A 3EFC 
427C D3F3 
427E El 
427F D1 
4280 C 1 
4281 3E20 
4283 D3FD 
4286 FB 
4287 C9 

.***** , 

; 
;***** 

CLEAN: 

.**.*. , 

, 
;***** 

VECTOR: 

VOUT: 

APPLICATIONS 

CLEAN-UP ROUTINE. 
CLEAN IS ENTERED WITH THE ADDRESS OF A CONTROL 
BLOCK IN H,L AND A NEW STATUS TO BE 
ENTERED INTO IT IN A. ON EXIT THE ADDRESS OF THE 
CONTROL JLOCK IS IN D,E; THE STATUS OF THE BLOCK 
HAS BEEN UPDATED; AND THE ADDRESS OF THE COMPLETION 
ROUTlNE IS IN H,L. 

HOV E,L jSAVE THE ADRESS OF THE COMMAND BLOCK 
MOV D,H 
INX H jPOINT AT STATUS 
MOV M,A jSET STATUS EQUAL TO A 
LXI B,7 iSET INDEX TO SEVEN 
DAD B ;POINT AT COMPLETION ADDRESS 
MOV A,M jGET LOWER ADDRESS 
INX H jPOINT AT UPPER ADDRESS 
MOV H,M jH GETS HIGH ADDRESS BYTE 
MOV L,A jL GETS LOW ADDRESS BYTE 
RET 

INTERUPT VECTOR ROUTINE 
VECTOR SAVES THE STATUS OF THE RUNNING PROGRAM 
THEN READS THE STATUS OF THE USART TO DETERMINE 
IF A RECEIVE OR TRANSMIT INTERUPT OCCURRED. 
VECTOR THEN CALLS THE APPROPRIATE SERVICE ROUTINE. 
IF NEITHER INTERUPTS OCCURRED THEN VECTOR RESTORES 
THE STATUS OF THE RUNNING PROGAM. THE SERVICE 
ROUTINES USE THE EXIT CODE"LABLED VOUT, TO EFFECT 
THEIR EXIT FROM INTERUPT MODE. 

PUSH PSW jPUSH STATUS INTO THE STACK 
PUSH B 
PUSH D 
PUSH H 
IN USTAT jGET USART ADDRESS 
IN OFAH jMDS-GET MONITOR CARD INT. STAtUS 
RRC JROTATE TWO PLACES 
RRC JSO THAT CARRY=RXRDY 
JC RISR ;IF RXRDY GO TO SERVICE ROUTINE 
RLC jIF NOT ROTATE BACK 
RLC jLEAVING TXRDY IN CARRY 
JC TISR jIF TXRDY THEN GO TO SERVICE ROUTINE 
MVI A,OFCH jMDS-CLEAR OTHER LEVEL THREE INTERUPTS 
OUT OF3H ;MDS 
POP H jELSE EXIT FROM INTERUPT MODE 

,POP D 
POP B 
MVI A,20H jMDS-RESTORE CURRENT LEVEL 
OUT OFDH jMDS 
EI jENABLE INTERUPTS 
RET 

7-24 



APPLICATIONS 

•••••• , 

RECEIVE INTERUPT SERVICE ROUTINEj 
RISR PROCESSES A RECEIVE INTERUPT 
AT THE END OF RECEIVE THE USER SUPPLIED 
COMPLETION ROUTINE IS CALLED AND THEN AN 
EXIT IS TAKEN THROUGH VOUT OF THE 

j VECTOR 
•••••• , 

4288 2A3B42 RISR: LHLD RCBA 
428B 3E82 MVI A,82H jMDS-CLEAR RECEIVE INTERUPT 
428D D3F3 OUT OF3H jMDS 
428F 2C, INR L 
4290 2D DCR L 
4291 C29942 JNZ RISRB 
4294 24 INR H 
4295 25 DCR H 
4296 CA7E42 JZ- VOUT 
4299 CD3E42 RISRB: CALL LOADA jREADY-SET UP ADDRESS 
429C DBF4 IN USDAI jGET INPUT DATA 
429E 12 STAX D jAND PUT IN THE BUFFER 
429F 4F MOV C,A jSAVE INPUT DATA IN C 
42AO DBF5 IN USTAT jGET STATUS AGAIN 
42A2 E638 ANI 38H jMASK FOR ERROR FIELD 
42A4 C2B942 JNZ RISRE JNOT ZERO-TAKE ERROR EXIT 
42A7 04 INR B jB WAS 00 IF DONE 
42A8 05 DCR B 
42A9 C2BE42 JNZ EXCHAR JNOT DONE-EXIT 
42AC 3EOO MVI A,GSTAT jA GETS GOOD STATUS 
42AE 217E42 RISRA: LXI H,VOUT jGET RETURN ADDRESS 
42B1 E5 PUSH H jAND PUSH IT INTO THE STACK 
42B2 2A3B42 LHLD RCBA jPOIN~ H,L AT THE CMD BLOCK 
42B5 CD5B42 CALL CLEAN jCALL CLEANUP ROUTINE 
42B8 E9 PCHL jEFFECTIVELY CALLS COMPLETION ROUTINE 

jRETURN IS TO VOU~ BECAUSE OF PUSH H 
42B9 3EFF RISRE: MVI A,BSTAT jA GETS BAD STATUS 
42BB C3AE42 JMP RISRA jOTHERWISE EXIT IS NORMAL 
42BE 213D42 EXCHAR: LXI H,MTAB _ JTEST CHARACTER AGAINST EXIT TABLE 
42C1 7E EXA: MOV A,M 
42C2 FEFF CPI OFFH jEND OF TABLE 
42C4 CA7E42 JZ VOUT 
42C7 B9 CMP C 
42C8 CACF42 JZ PEND jMATCH-TERMINATE READ 
42CB 23 INX H 
42CC C3C142 JMP EXA 
42CF 3E01 PEND: MVI A,CEND 
42D1 C3AE42 JMP RISRA 

7-25 AFN-00600A 



APPLICATIONS 

.****11 , 

TRANSMIT INTERUPT SERVICE ROUTINE 
TISR PROCCESSES TRANSMITTER INTERUPTS 
WHEN THE END OF A TRANSMISSION IS 
DETECTED THE USER SUPPLIED COMPLETION 
ROUTINE IS CALLED AND THEN AN EXIT IS 
TAKEN THROUGH VOUT OF VECTOR 

j 
j****11 

42D4 3A3842 TISR: LDA TCMD jGET POTENTIAL COMMAND 
42D7 B7 ORA A jDESIGNATE ON IT 
42D8 C40443 CNZ TUTE JDO UTILITY COMMAND 
42DB 3E81 MVI A,081H jMDS-CLEAR XMIT INTERUPTS 
42DD D3F3 OUT OF3H jMDS 
42DF 2A3942 LHLD TCBA 
42E2 2C INR L jMAKE SURE HAVE VALID CONTROL BLOCK 
42E3 2D DCR L 
42E4 C2EC42 JNZ TISRA jGOOD 
42E7 24 INR. H 
42E8 25 Dq H 
42E9 CA7E42 JZ VOUT JNON VALID BLOCK (H,L=O) 
42EC CD3E42 TISRA: CALL LOADA jSET UP ADDRESS 
42EF lA LDAX D jGET DATA FROM BUFFER 
42FO D3F4 OUT USDAO jAND OUTPUT IT 
42F2 04 INR B jB WAS 00 IF DONE 
42F3 05 DCR B 
42F4 C27E42 JNZ VOUT JNOT DONE-EXIT FROM SERVICE ROUTINE 
42F7 217E42 LXI H,VOUT jSET UP RETURN ADDRESS 
42FA E5 PUSH H jAND PUSH IT INTO THE STACK. 
42FB 3EOO MVI A,GSTAT jA GETS GOOD STATUS 
42FD 2A3942 LHLD TCBA jPOINT H,LAT COMMAND BLOCK 
4300 CD5B42 CALL CLEAN jCALL CLEANUP ROUTINE 
4303 E9 PCHL jCALL COMPLETION ROUTINE 

jRETURN WILL BE TO VOUT 
4304 FEO 1 TUTE: CPI 01 jRECEIVER OFF 
4306 CA2443 JZ TUTEl 
4309 FE02 CPI 02 jRECEIVER ON 
430B CA1443 JZ TUTE2 
430E FE03 CPI 03 jCLEAR ERRORS 
4310 CA1C43 JZ TUTE3 
4313 C9 RET 
4314 3A3742 TUTE2: LDA LCMD 
4317 F604 ORI 04 
4319 323742 STA LCMD 
431C 3A3742 TUTE3: LDA LCMD 
431F F610 ORI 10H 
4321 D3F5 TUTE4: OUT USCMD 
4323 C9 RET 
4324 3A3742 TUTEl : LDA LCMD 
4327 E6FB ANI OFBH 
4329 323742 STA LCMD 
432C C32143 JMP TUTE4 

7-26 



432F 1A 
4330 FE43 
4332 CA4043 
4335 FE52 
4337 CA5D43 
433A FE57 
433C CA9D43 
433 F cg 
4340 F3 
4341 AF 
4342 D3F5 
4344 D3F5 
4346 D3F5 
4348 3E40 
434A D3F5 
434C 3E5E 

434E D3F5 
4350 AF 
4351 213942 
4354 77 
4355 23 
4356 77 
4357 23 
4358 77 
4359 23 
435A 77 
4356 F6 
435C C9 

435D 213642 
4360 7E 
4361 67 
4362 C26B43 
4365 23 
4366 7E 
4367 67 
4368 CA7743 
4366 3EFE 
436D 217643 
4370 E5 
4311 EB 
4372 CD5B42 
4375 E9 
4376 C9 

4317 EB 
4318 223B42 
437B 3A3742 
437E F616 
4380 323142 
4383 OF 

.***** , 

APPLICATIONS 

USART COMMAND BLOCK INTERPRETER 
USRUN IS CALLED BY USER WITH THE ADDRESS 
OF THE COMMAND BLOCK IN H,L. USRUN EXAMINES 
THE BLOCK AND INTIALIZES THE REQUESTED OPERATION 

j 

j***** 

USRUN: LDAX 
CPI 
JZ 
CPI 
JZ 
9PI 
JZ 
RET 

UCLEAR: DI 
XRA 
OUT 
OUT 
OUT 
MVI 
OUT 
MVI 

UREAD: 

UROUT: 

URDB: 

URDA: 

OUT 
XRA 
LXI 
MOV 
INX 
MOV 
INX 
MOV 
INX 
MOV 
EI 
RET 

LXI 
MOV 
ORA 
JNZ 
INX 
MOV 
ORA 
JZ 
MVI 
LXI 
PUSH 
XCHG 
CALL 
PCHL 
RET 

XCHG 
SHLD 
LDA 
ORI 
STA 
RRC 

D 
'c' 
UCLEAR 
'R' 
UREAD 
'w' 
UWRITE 

A 
USCMD 
USCMD 
USCMD 
A,40H 
USCMD 
A,05EH 

USCMD 
A 
H, TCBA 
M,A 
H 
M,A 
H 
M,A 
H 
M,A 

H,RCBA 
A.M 
A 
UROUT 
H 
A, M • 
A 
URDA 

-A,OFEH 
H', URDB 
H 

CLEAN 

RCBA 
LCMD 
16H 
L'CMD 

JGET THE CMD FROM THE BLOCK 
JIS IT A CLEAR COMMAND? 
jYES GO TO CLEAR ROUTINE 
JIS IT A READ COMMAND? 
jYES-GO TO READ ROUTINE 
JIS IT A WRITE COMMAND? 
JGO TO WRITE ROUTINE 
JNOT A GOOD COMM~ND-RETURN 
jDISABLE INTERUPTS 
jCLEAR A 
jOUTPUT THREE TIMES TO ENSURE 
jTHAT THE USART IS IN A KNOWN STATE 

jCODE TO RESET USART 
jOUTPUT ON CMU CHANNEL 
JCE IMPLIES ASYN MODE (X16) 

8 DATA BITS 
ODD PARITY 
1 STOP BIT 

jOUTPUT ON CMD CHANNEL 
jCLEAR A, SET ZERO 
;CLEAR TCBA AND RCBA 

jENABLE INTERUPTS 
jAND RETURN TO USER 

jCHECK READ IDLE 

;READ IS IDLE-PROCEDE 
jALREADY RUNNING-ERROR STATUS 
jSET UP RETURN ADDRESS 
jPUSH IT INTO STACK 
jH GETS COMMAND BLOCK ADDRESS 
jCALL CLEANUP ROUTINE 
jEFFECTIVELY CALLS END ROUTINE .. 
jRETURN TO USER 

;H GETS COMMAND BLOCK ADDRESS 
jRCBA GETS COMMAND BLOCK ADDRESS 
JGET LAST COMMAND 
jSET RXE AND DTR AND RESET ERRORS 
jAND RETURN TO MEMORY 
jSET CARRY EQUAL TO TXE 

7-27 AFN-006OOA 



APPLICATIONS 

4384 D28C43 JNC URDC 
4387 3E02 MVI A,2 
4389 323842 STA TCMD 
438C 07 URDC: RLC 
438D D3F5 OUT USCMD jOUTPUT CMD 
438F DBF4 IN USDAI jCLEAR USART OF LEFT OVER CHARACTERS 
4391 DBF4 IN USDAI 
4393 3E82 MVI A,82H jMDS-CLEAR RECEIVE INTERUPT 
4395 D3F3 OUT OF3H jMDS 
4397 3EF6 MVI A,OF6H jMDS-ENABLE LEVEL THREE 
4399 D3FC OUT OFCH jMDS 
439B FB EI jENABLE INTERUPTS 
439C C9 RET jRETURN TO USER 

439D 213942 UViRITE: LXI ' H,TCBA jCIlECK WRITE IDLE 
43AO 7E MOV A,M 
43A1 B7 ORA A 
43A2 C26B43 JNZ UROUT jBUSY-EXIT 
43A5 23 INX H 
43A6 7E MOV A,M 
43A7 C26B43 JNZ UROUT jBUSY-EXIT 
43AA EB XCHG jOK-H GETS COMMAND BLOCK ADDRESS 
43AB 223942 SHLD TCBA jTCBA GETS COMMAND'BLOCK ADDRESS 
43AE 3A3742 LDA LCMD JGET LAST COMMAND 
43B1 F623 ORI 023H jSET RTS,DTR, AND TXEN 
43B3 323742 STA LCMD 
43B6 D3F5 OUT USCMD 
43B8 3EF6 MVI A,OF6H MDS-ENABLE LEVEL THREE INTERUPTS 
43BA D3FC OUT OFCH MDS 
43BC FB EI ENABLE SYSTEM INTERUPTS 
43BD C9 RET ~ND RETURN 

7-28 



APPLICATIONS 

***** 

USER IS A TEST PROGRAM WHICH EXERCISES USRUN 

***** 

43BE 3EC3 USER: MVI A,OC3H ;MDS-SET INTERUPT VECTOR 
43CO 321800 STA 018H 
43C3 216842 LXI H,VECTOR 
43C6 221900 SHLD 019H 
43C9 3E43 MVI A, 'c' ;SET ~ENERAL BLOCK TO A 'c' 
43CB 111442 LXI D,GBLOCK 
43CE 12 STAX D 
43CF CD2F43 CALL USRUN 
43D2 210040 LXI H,BUFIN ;CLEAR INPUT BUFFER 
43D5 AF XRA A 
43D6 77 MOV M,A 
43D7 2C INR L 
43D8 C2D643 JNZ $-2 
43DB 210041 LXI H,BUFOUT ;INITIALIZE OUTPUT BUFFER 
43DE 75 MOV M,L 
43DF 2C INR L 
43EO C2DE43 JNZ $-2 
43E3 65 MOV H,L ;REINTIALIZE CONTROL BLOCKS 
43E4 2E52 MVI L, 'R' 
43E6 220042 SHLD RBLOCK 
43E9 2E57 MVI L, 'w' 
43EB 220A42 SHLD TBLOCK 
43EE 6C MOV L,H 
43EF 220642 SHLD RCCT 
43F2 221042 SHLD TCCT 
.43F5 110042 LXI D,RBLOCK ;START READ 
43FB CD2F43 CALL USRUN 
43FB 110A42 LXI D,TBLOCK ;START WRITE 
43FE CD2F43 CALL USRUN 
4401 3EFF MVI A,OFFH ;LOOP WAITING COMPLIITION 
4403 321642 STA FLAG ; FLAG WILL BE SET BY COMPLETION ROUTINES 
4406 3A"1642 LDA FLAG 
4409 B7 ORA • A 
440A c20644 JNZ $-4 
440D 210040 LXI H,BUFIN ;TEST INPUT BUFFER=OUTPUT BUFFER 
4410 7E COMLP: MOV A,M 
4411 24 INR H 
4412 BE CMP M 
4413 C21E44 JNZ COMER 
4416 25 DCR H 
4417 2C INR L 
4418 C21044 JNZ COMLP 
441B C3BE43 JMP USER ;GOOD COMPARE-REPEAT TEST 
441E C7 COMER: RST 0 ;ERROR-RETURN TO MONITOR 

0000 END 

7-29 AFN-006OOA 



APPLICATIONS 

BSTAT DOFF BUFIN 4000 BUFOU 4100 CEND 0001 
CLEAN 4"25B COMER 441E COMLP 4410 EXA 42Cl 
EXCHA 42BE FLAG 4216 GBLOC 4214 GSTAT 0000 
LCMD 4237 LOADA 423E MTAB 423D PEND 42CF 
READ 4202 RBLOC 4200 RCBA . 423B RCC T 4206 
RCR 4217 RCRA 4208 ,RISR 4288 RISRA 42AE 
RISRB 4299 RISRE 42B9 RRCT 42'04 TBAD 420C 
TELOC 420A TCBA 4239 TCCT 4210 TCMD 4238 
TCR 4227 TCRA 4212 T'ISR 42D4 TISRA 42EC 
TRCT 420E TUTE 4304 TUTEl 4324 TUTE2 4314 
TUTE3 431C TUTE4 4321 UCLEA 4340 URDA 4377 
URDB 4376 URDC 438C UREAD 435D UROUT 436B 
USCMD 00F5 USDAI 00F4 USDAO 00F4 USER lJ3BE 
U SRUN 432F USTAT 00F5 UWRIT 439D VECTO 4268 
VOUT 427E 

7-30 AFN.()()6()OA 



APPLICATIONS 

APPENDIX A 

8251 DESIGN HINTS 

1. Output of a command to the USART destroys 
the integrity of a transmission in progress if 
timed incorrectly. 

Sending a command into the USART will over­
write any character which is stored in the buffer 
waiting for, transfer to the paraUel-to-serial con­
verter in the device. This can be avoided by 
waiting for, TxRDY tQ be asserted before send­
ing a command if transmission is taking place. 
Due to the internal structure of the USART, it is 
also possible to disturb the transmission if a 
command is sent while a SYN character is being 
generated by the device. (The USART generates 
a SYN if the software fails to respond to 
TxRDY.) If this occurrence is possible in a sys­
tem, commands should be transferred only when 
a positive-going edge is detected on the TxRDY 
line. ' 

2. RxE only acts as a mask to RxRDY; it does not 
control the operation of the receiver. 

When the receiver is enabled, it is possible for it 
'to already contain one or hyo characters. These ' 
characters should be read and discarded when 
the RxE bit is first set. Because of these extrane­

.ous characters the p~bper sequence for gaining 
synchronization is as follows: 

I. Disable interrupts 
2. Issue a command to enter hunt mode, clear 

errors, and enable the receiver (EH,ER,RxE= 
I) . 

3. Read USART data (it is not necessary to 
check status) 

4. Enable interrupts 
The first RxRDY that occurs after the above 
sequence will indicate that the SYN character or 

7-31 

characters have been detected and the next char­
acter has been assembled and is ready to be read. 

3. Loss of crs or dropping TxEnable will immedi­
ately clamp the serial output line. 

TxEnable and RTS should remain asserted until 
the transmission is .complete. Note that this im­
plies that not only has the USART completed 
the transfer of an bits of the last character, but 
also thaHhey have cleared the modem. A delay 
of I msec (onowing a proper occurrence of 
TxEmpty is usuany sufficient (see item 4). An 
additional problem can occur in the synchro­
nous mode because the loss of TxEnable clamps 
the data in at a SPACE instead of the normal 
MARK. This problem, which do'es not occur in 
the asynchronous mode, can be corrected by an 
external gate combining RTS and the serial out­
put data. 

4, Extraneous transitions can occur on TxEmpty 
while data (including USART generated SYNs) 
is transferred to the parallel-to-serial convrrter. 

This situation can be avoided by eh~uring that 
TxEmpty occurs during several consecutive 
status reads before assuming that the transmitter 
is truly in the empty state. 

S. A BREAK (Le., lonll space) detected by the 
receiver results in a string of characters which 
have framing errors. 

, If reception is to be continued after a BREAK, 
care must be taken to ensure that valid data is 
being received; special care must be taken with 
the last Character perceived during a BREAK, 
since its value, including any framing error asso­
ciated with it, is indetermInate. 

AFN-00600A 



· . 
8251 PROGRAMMABLE COMMUNICATION INTERFACE 

7-32 



© Intel Corporation, 1978 

APPLICATION 
NOTE 

7-33 

/ 

AP·36 

. March 1978 



APPLICATIONS 

INTRODIJCTION 

The Intel 8273 is a Oata Communications Protocol Con· 
troller designed for use in systems utilizing either SOLC 
or HOLC (Synchronous or High-Level Oata Link Control) 
protocols. In addition to the usual features such as full 
duplex operation, automatic Frame Check Sequence 
generation and checking, automatic zero bit insertion 
and deletion, and TIL compatibility found on other 
single component SOLC controllers; the 8273 features a 
frame level command structure, a digital phase locked 
loop, SOLC loop operation, and diagnostics. 

The frame level command structure Is made possible by 
the 8273's unique internal dual processor architecture. 
A high-speed bit processor handles the serial data 
manipulations and character recognition. A byte pro­
cessor implements the frame level commands. These 
dual processors allow the 8273 to control the necessary 
byte-by-byte operation of the data channel with a 
minimum of CPU (Central Processing Unit) intervention. 
For the user this means the CPU has time to take on 
additional tasks. The digital phase locked loop (OPLL) , 
provides a means of clock recovery from the received 
data stream on-chip. This feature, along with the frame 
level commands, makes SOLC loop operation extremely 
simple and Ilexible. Oiagnostics in the form of both data 
and clock loopback are available to simplify board 
debug and link testing. The 8273 is a dedicated function 
peripheral in the MCS-80/85 Microcomputer family and 
as such, it interfaces to the 8080/8085 system with a 
minimum of external hardware. 

This application note explains the 8273 as a component 
,and shows, its use in a generalized loop configuration 
and a typical 8085 system. The 8085 systefj1 was used to 
verify the SOLC operation of the 8273 on an actual IBM 
SOLC data communications link. 

The first section of this application note presents an 
overview of the SOLC/HOLC protocols. It is fairly tutorial 
in 'nature and may be skipped by the more knowledge­
able reader. The second section describes the 8273 from 
a functional standpoint with explanation of the block 
diagram. The software aspects of the 8273, including 
command examples, are discussed in the third section. 
The fourth and fifth sections discuss a loop SOLC con­
figuration and the 8085 system respectively. 

SDLC/HDLC OVERVIEW 

SOLC is a protocol for managing the flow of information 
on a data communications link. In other words, SOLC 
can be thought of as an envelope - addressed, 
stamped, and containing an s.a.s.e. - in which informa­
tion is transferred from location to location on a data 
communications link. (Please note that while SOLC is 
discussed specifically, all comments also apply to 
HOLC except where noted.) The link may be either point­
to'point or multi-point, with the point-to-point configura· 
tion being either switched or nonswitched. The informa· 
tion flow may use either full or half duplex exchanges. 
With this many configurations supported, it i,s difficult 
to find a synchronous data communications application 
where SOLC would not be appropriate. 

7-34 

Aside from supporting a large number of configurations, 
SOlC offers the potential of a 2 x increase In through­
put over the presently most prevalent protocol: Bi·Sync. 
This performance increase is primarllyduetotwocharac­
teristics of SOLC: full duplex operation and the implied 
acknowledgement of transferred information. The per· 
formance Increase due to full duplex operation is fairly 
obvious since, in SOLC, both stations can communicate 
simultaneously. Bi·Sync supports only half·duplex (two­
w,ay alternate) communication~ The Increase from im­
plied acknowledgement arises from the fact that a sta­
tion using SOLC may acknowledge previously received 
intormation while transmitting different information. Up 
to 7 messages may be outstanding before an acknowl· 
edgement is required. These messages may be acknowl­
edged as a block rather than singly. In Bi-Sync, acknowl­
edgements are unique messages that may not be 
Included "Wlith messages containing information and 
each information message requires a separate acknowl· 
edgement. Thus the line efficiency of SOLC is superior 
to Bi-Sync. On a higher level, the potential of a 2x 
increase in performance means lower cost per unit of 
information transferred. Notice that the increase is not 
due to higher data link speeds (SOLC Is actually speed 
independent), but simply through better line utilization. 

Getting down to the more salient characteristics of 
SOLC; the basic unit of information on an SOLC link is 
that of the frame. The frame format is shown in Figure 1. 
Five fields comprise each frame: flag, address, control, 
information, and frame check sequence. The flag fields 
(F) form the boundary of the frame and all other fields 
are positionally related to one of the two flags. All 
frames start with an opening flag and end with a clOSing 
flag. Flags are used for frame synchronization. They 
also may serve as time·fill characters between frames. 
(There are no intraframe time·fill characters in SOLC as 
there are in Bi·Sync.) The opening flag serves as a refer· 
ence point for the address (A) and control (C) fields. The 
frame check sequence (FCS) is referenced from the 
clOSing flag. All flags have the binary configuration 
01111110 (7EH). 

SOLC is a bit-oriented protocol, that is, the receiving 
station must be able to recognize a flag (or any other 
special character) at any time, not just on an 8-bit ' 
boundary. This, of course, implies that a frame may be 
N-bits in length. (The vast majority of applications tend 
to use frames which are multiples of 8 bits long, 
however.) 

FRAME 
CHECK 

OPENING ADORESS CONTROL INFORMATION SEQUENCE CLOSING 
FLAG FIELD (AJ FIELD (e) FIELD (I) (FCSI FLAG 

Figure 1. SDLe Frame Format 

AFK-00611A 



APPLICATIONS 

The fact that the flag has a unique binary pattern would 
seem to limit the contents of the frame since a flag pat­
tern might inadvertently occur within the frame. This 
would cause the receiver to think the closing flag was 
received, invalidating the frame. SOLe handles this 
situation through a technique called zero bit insertion. 
This techniques specifies that within a frame a binary 0 
be insprted by the transmitter after any succession of 
five contiguous binary 1s. Thus, no pattern of 01111110 
is ever transmitted by chance. On the receiving end, 
after the opening flag is detected, the receiver removes 
any 0 following 5 consecutive 1s. The inserted and 
deleted Os are not counted for error determination. 

Before discussing the address field, an explanation of 
the roles of an SOLC station is in order. SOLe specifies 
two types of stations: primary and secondary. The 
primary is the control station for the data link and thus 
has responsibility of the overall network. There is only 
one predetermined primary station, all other stations on 
the link assume the secondary station role. In general, a 
secondary station speaks only when spoken to. In other 
words, the primary polls the secondaries for responses. 
In order to specify a specific secondary, each secondary 
is assigned a unique 8-bit address. It is this address that 
Is used in the frame's address field. 

When the prim~ry transmits a frame to a specific sec­
ondary, the address field contains the secondary's ad· 
dress. When responding, the secondary uses its own 
address in the address field. The primary is never iden· 
tified. This ensures that the primary knows which of 
many secondaries is responding Since the primary may 
have many messages outstanding at various secondary 
stations. In addition to the specific secondary address, 
an address common to all secondaries may be used for 
various purposes. (An all 1 s address field is usually used 
for this "All Parties" address.) Even though the primary 
may use this common address, the secondaries are ex· 
pected to respond with their unique address. The 
address field is always the first 8 bits following the 
opening flag. 

The 8 bits following the address field form the control 
field. The control field embodies the link-level control of 
SOLe. A detailed explanation of the· commands and 
responses contained in this field is beyond the scope of 
this application note. Su1/ice it to say that it is in the 
control field that the implied acknowledgement is car­
ried out through the use of frame sequence numbers. 
None of the currently available SOLe single chip con­
trollers utilize the control field. They simply pass it to 
the processor for analysis. Readers wishing a more 
detailed explanation of the control field, or of SOLe in 
general, should consult the IBM documents referenced 
on the front page overleaf. 

In some types of frames, an information field follows 
the control field. Frames used strictly for link manage­
ment mayor may not contain one. When an information 
field is used, it is unrestricted in both content and 
length. This code transparency is made possible 
because of the zero bit insertion mentioned earlier and 
the bit-oriented nature of SOLC. Even main memory core 
dumps may be transmitted because of this capability. 
This feature is unique to bit·oriented protocols. Like the 

7-35 

control field, the information field is not interpreted by 
the SOLC device; it is merely transferred to and from 
memory to be operated on and interpreted by thE.' 
processor. 

The final field is the frame check sequence (FCS). The 
FCS is the 16 bits immediatelY'preceding the closing 
flag. This 16·bit field is used for error detection through 
a Cyclic Redundancy Checkword (CRC). The 16-blt 
transmitted CRC is the complement of the remainder 
obtained when the A, C, and I fields are "divided" by a 
generating polynomial. The receiver accumulates ,the A, 
C, and I fields and also the FCS into Its internal CRC 
register. At the closing flag, this register contains one 
particular number for an error-free reception. If this 
number is not obtained, the frame was received in error 
and should be discarded. Discarding the frame causes 
the station to not update its frame sequence numbering. 
This results in a retransmission after the station sends 
an acknowledgement from previous f,rames. [Unlike all 
other fields, the FCS is transmitted MSB (Most Signifi­
cant Bit) first. The A, C, and I fields are transmitted LSB 
(Least Significant Bit) first.) The details of how the FCS 
is generated and checked is beyond the scope of this 
application note and since all single component SOLC 
controllers handle this function automatically, it is 
usually sufficient to know only that an error has or has 
not occurred. The IBM documents confain more detailed 
information for those readers desiring it. 

The clOSing flag terminates the frame. When the closing 
flag is received, the receiver knows that the preceding 
16 bits constitute the FCS and that any bits between the 
control field and the FCS constitute the information 
field. 

SOLC does not support an interframe time-fill character 
such'as the SYN character in Bi-Sync. If an unusual con­
dition occurs while transmitting, such as data is not 
available in time from memory or CTS (Clear-to-Send) is 
lost from the modem, the transmitter aborts the frame 
by sending an Abort character to notify the receiver to 
invalidate. the frame. The Abort character consists of 
eight contiguous 1s sent without zero bit insertion. In­
traframe time-fill consists of either flags, Abort charac­
ters, or any combination of the two. 

While the Abort character protects the receiver from 
transmitted errors, errors introduced by the transmis­
sion medium are discovered at the receiver through the 
FCS check and a check for invalid frames. Invalid 
frames are those which are not bounded by flags or are 
too short, that is, less than 32 bits between flags_ All in­
valid frames are ignored by the receiver. 

Although SOLC is a synchronous protocol, it provides 
an optional feature that allows its use on basically asyn­
chronous data links - NRZI (Non-Return-to-Zero­
Inverted) coding, NRZI coding specifies that the signal 
condition does not change for transmitting a binary 1, 
while a binary 0 causes a change of state. Figure 2 illus­
trates NRZI coding compared to the normal NRZ. NRZI 
coding guarantees that an active line will have a transi­
tion at least every 5-bit times; long strings of zeroes 
cause a transition every bit time, while long strings of 1s 
are broken up by zero bit insertion. Since asynchronous 

AFN.()0611A 



APPLICATIONS 

operation requires that the receiver sampling clock be 
derived from the received data, NRZI encoding plus zero 
bit insertion make the design of clock recovery circuitry 
easier. 

All of the previous discussion has applied to SOLC on 
either point-to-point or multi-point data networks, SOLC 
(but not HOLC) also includes specification for a loop 
configuration. Figure 3 compares these three configura­
tions. IBM uses this loop configuration in its 3650 Retail 
Store System. It consists of a single loop controller sta­
tion with one or more down-loop secondary stations. 
Communications on a loop rely on the secondary sta­
tions repeating a received message down loop with a 
delay of one bit time. The reason for the one bit delay 
will be evident shortly. 

DATA 1 o 0 0 

BIT SAMPLE l 1 1 I· 1 1 1 lIt 
"I 

NRZ 

NRZI 

,Figure 2. NRZI v. NRZ Encoding 

POINT·TO·POINT 

MULTI·POINT 

Loop operation defines a new special character: the 
EOP (End-of-PolI) character which conSists of a 0 fol­
lowed by 7 contiguous, non·zero bit inserted, ones. After 
the loop controller transmits a message, It Idles the line 
(sends all 1 s). The final zero of the closing flag plus the 
first 7 1 s of the idle form an EOP character. While 
repeating, the secondaries monitor their incoming line 
for an EOP character. When an EOP is detected, the 
secondary checks to see if it has a message to transmit. 
If it does, it changes the seventh 1 to a 0 (the one bit 
delay allows time for this) and repeats the modified EOP 
(now alias flag). After this flag is transmitted, the sec­
ondary terminates its repeater function and inserts its 
message (with multiple preceding flags if necessary). 
After the closing flag, the secondary resumes its one bit 
delay repeater function. Notice that the final zero of the 
secondary's closing flag plus the repeated 1 s from the 
controller form an EOP for the next down-loop sec­
ondary, allowing it to insert a message if it desires. 

One might wonder if the secondary missed any mes­
sages from the controller while it was inserting its own 
message. It does not. Loop operation is basically half­
duplex. The controller waits until it receives an EOP 
before it transmits its next message. The controller's 
reception of the EOP signifies that the original message 
has propagated around the loop followed by any mes­
sages inserted by the secondaries. Notice that second­
aries cannot communicate with one another directly, all 
secondary-to-secondary communication takes place by 
way of the controller. 

LOOP 

Figure 3 Network Configuration. 

7-36 AFN-00611A 



APPLICATIONS 

Loop protocol does not utilize the normal Abort charac· 
ter. Instead, an abort is accomplished by simply trans· 
mitting a flag character. Down loop, the receiver sees 
the abort as a frame which is either too short (if the 
abort occurred early in the frame) or one with an FCS 
error. Either results in a discarded frame. For more 
detailli on loop operation, please refer to the IBM 
documents referenced earlier. 

Another protocol very similar to SOLC which the 8273 
supports is HOLC (High· Level Data Link Control). There 
are only three basic differences between the two: HOLC 
offers extended address and control fields, and the 
HLOC Abort character Is 7 contiguous 1s as opposed to 
SOLC's 8 contiguous 1s. • 

Extended addressing, beyond the 256 unique addresses 
possible with SOLC, is provided by using the address 
field's least significant bit as the extended address 
modifier. The receiver examines this bit to determine if 
the octet should be interpreted as the final address 
octet. As long as the bit is 0, the octet that contains it is 
considered an extended address. The first time the bit is 
a 1, the receiver interprets that octet as the final address 
octet. Thus the address field may be extended to any 
number of octets. Extended addressing is illustrated in 
Figure 4a. 

A similar technique is used to extend the control field 
although the extension is limited to only one extra con· 
trol octet. Figure 4b illustrates control field extension. 

Those readers not yet asleep may have noticed the simi· 
larity between the SDLC loop EOP character (a 0 follow· 
ed by 7 1s) and the HOLC Abort (7 1s). This possible in· 
compatibility is neatly handled by the HOLC protocol 
not specifying a loop configuration. 

This completes our brief discussion of the SOLC/HOLe 
protocols. Now let us turn to the 8273 in particular and 
discuss its hardware aspects through an explanation of 
the block diagram and generalized system schematics. 

FIRST BIT TRANSMITTED (LSB FIRst) 

A HDLe ADDRESS FIELD eXTENSION 

Flgure4a 

/ EXTENSION BIT (1 MAX) 

F~G I A I t C11 C2 )11 112 I Fes,) FCS21 FLAG 

B HOLe CONTROL FIELD EXTENSION 

Figure4b 

7-37 

BASIC 8273 OPERATION 

It will be helpful for the following discussions to have 
some idea of the basic operation of the 8273. Each 
operation, whether it is a frame transmission, reception 
or port read, etc., is comprised of three phases: the 
Command, Execution, and Result phases. Figure 5 
shows the sequence of these phases. As an illustration 
of this sequence, let us look at the transmit operation. 

Figure 5. 8273 Operational Pha ••• 

When the CPU decides it is time to transmit a frame, the 
Command phase is entered by the CPU issuing a Trans· 
mit Frame command to the 8273. It is not sufficient to 
just instruct the 82"3 to transmit. The frame level com· 
mand structure sometimes requires more information 
such as frame length and address and control field con· 
tent. Once this additional information is supplied, the 
Command phase is complete and the Execution phase 
is entered. It is during the Execution phase that the 
actual operation, in this case a frame transmission, 
takes place. The 8273 transmits the opening flag, A and 
C fields, the specified number of I field bytes, inserts 
the FCS; and closes with the closing flag. Once the clos· 
ing flag is transmitted, the 8273 leaves the Execution 
phase and begins the Result phase. During the Result 
phase the 8273 notifies the CPU of the outcome of the 
command by supplying interrupt results. In this case, 
the results would be either that the frame is complete or 
that some error condition causes the transmission to be 
aborted. Once the CPU reads all of the results (there is 
only one for the Transmit Frame command), the Result 
phase and consequently the operation, is complete. 
Now that we have a general feeling forthe operation of 
the 8273, let us discuss the 8273 in detail. 

HARDWARE ASPECTS OF THE 8273 

The 8273 block diagram is shown in Figure 6. 'It consists 
of two major interfaces: the CPU module interface and 
the modem interface. Let's discuss each interface 
separately. 

AF~11A 



APPLICATIONS 

REGISTERS 

TxUR CO~MA"D 

RxUR 

TEST MODE 

DBO_7 

TxDRO----I 

TiDACK:-, ---01 
RxDRO----! 

RxDACK ---.oj 

Rii---·CJI 
WA_ 
CS---.oj 

Ao----I 
A1-----I 

PARAMETER 

STATUS 

RESULT 

RESET ____ oJ 

OCLK-------' 
TxlNT _____ --' 

RxlNT _-____ ---' 

CPU MODULE INTERFACE 

INTERNAL 
DATA BUS 

~---------F~GDETE~ 

~---'----Cii 

,.-------CTii 
,.-----RTS 

DATA 
TIMING 
LOGIC 

p..----TxC 

1-----TxD 

P.----RxC 

1-----RxD 

'-------iim 
'-------- 32XCLK 

MODEM INTERFACE 

Fig .... 8. 8273 Block Diagram 

CPU Interface 

The CPU Interface consists of four major blocks: Con­
trol/ReadlWrlte logic (C/RlW), internal registers, data 
transfer logic, and data bus buffers. 

The CPU module utilizes the C/RIW logic to issue com­
mands to the 8273. Once the 8273 receives a command 
and executes it, It returns the results (good/bad comple­
tion) of the command by way of the C/RIW logic, The 
C/RlW logic Is supported by seven registers which are 
address~ via the Ao, A" RD, and iiiiRslgnals, I,n addi· 
tlon to CS. The Ao and A, signals are generally derived 
from the two low order bits of the CPU module address 
bus while Fro and iiiiR are the normal 110 Read and Write 
signals found on the system control bus. Figure 7 
shows the address of each register using the C/RIW 
logic. The function of each register Is defined as 
follows: ' 

ADDRESS INPUTS CONTROL INPUfS 

A1 Ao CS.RD CS.WR 

0 0 STATUS COMMAND 
0 1 RESULT PARAMETER 
1 0 Txl/R TEST MOPE 
1 1 RxllR -

FIgure 7. 8273 Register Selection 

7-38 

Command - 8273 operations are initiated by writing 
the appropriate command byte Into this register. 

Parameter - Many commands require more informa­
tion than found In the command Itself, This addi­
tional information Is provided by way of the param­
eter register. 

Immediate Result (Result) - The completion infor-
, mation (results) for commands which execute im­

mediately are provided in this register. 

Transmit Interrupt Result (TxIlR) - Results of 
transmit operations are passed to the CPU In this 
register. 

Receiver Interrupt Result (RxIlR) - Receive opera­
tion results are passed to the CPU via this register. 

Status - The general status of the 8273 is provided 
in this register. The Status register supplies the 
handshaking necessary during various phases of the 
8273 operation. 

Test Mode - This register provides a software reset 
function for the 8273. 

The commands, parameters, and bit definition of these 
registers are discussed in the following software sec­
tion. Notice that there are not specific transmit or 
receive data registers. This feature is explained in the 
data transfer, logic discussion. 

AfN.CXi8'1A 



APPLICATIONS 

The final elements of the ClR/W logic are the Interrupt 
lines (RxINT and TxlNn. These lines notify the CPU 
module that either the transmitter or the receiver reo 
quires service; I.e., results should be read from the 
appropriate Interrupt result register or a data transfer is 
required. The Interrupt request remains active until all 
the associated interrupt results have been read or the 
data transfer is performed. Though using the Interrupt 
lines relieves the CPU module of the task of polling the 
8273 to check if service is needed, the state of each 
Interrupt line Is reflected by a bit In the Status register 
and non-Interrupt driven operation Is possible by exam­
ing the contents of these bits periodically. 

The 8273 supports two independent data Interfaces 
through the data transfer logic; receive data and trans­
mit data. These interfaces are programmable for either 
DMA or non· OM A data transfers. While the choice of the 
configuration is up to the system designer, it is based 
on the Intended maximum data rate of the communica· 
tions channel. Figure 8 Illustrates the transfer rate of 
data bytes that are acqulred'by the 8273 based on link 
data rate. Full-duplex data rates above 9600 baud usu­
ally require DMA. Slower speeds mayor may not require 
DMA depending on the task load and interrupt response 
time of the processor. 

Figure 9 shows the 8273 In a typical DMA environment. 
Notice that a separate DMA controller, in this case the 
Intel 8257, is required. The DMA controller supplies the 
timing and addresses for the data transfers while the 
8273 manages the requesting of transfers and the actual 
counting of the data block lengths. In this case, 
elements of the data transfer Interface are: 

TxDRQ: Transmit DMA Request - Asserted by the 
8273, this line requests a DMA transfer from memory 
to the 8273 for transmit. 

TxDACK: Transmit DMA Acknowledge - Returned 
by the 8257 in response to TxDRQ, this line notifies 
the 8273 that a r.equest has been granted, and pro· 
vides access to the transmitter data register. 

RxDRQ:. Receiver OMA Request - Asserted by the 
8273, it requests a DMA transfer from the 8273 to 
memory for a receive operation. 

TxDACK: Receiver DMA Acknowledge - Returned by 
the 8257, it notifies the 8273 that a receive DMA cycle 
has been granted, and provides access to the 
receiver data register. 

RD: Read - Supplied by the 8257 to indicate data Is 
to be read from the 8273 and placed in memory. 

WR: Write - Supplied by the 8257 to indicate data is 
to be written to the 8273 from memory. 

To request a DMA transfer the 8273 raises the appropri· 
ate DMA request line; let us assume it iii a transmitter 
request (TxDRQ). Once the 8257 obtains control of the 
system bus by way of its HOLD and HLDA (hold 
acknowledge) lines, it notifies the 8273 that TxDRQ has 
been granted by returning TxDACK and WR. The 
TxDACK and WR signals transfer data to the 8273 for a 
transmit, independent of the 8273 chip select pin (CS). A 
similar sequence of events occurs for receiver requests. 
This "hard select" of data into the transmitter or out of 

7-39 

the receiver alleviates the need for the normal transmit 
and receive data registers addressed by a combination 
of address lines, CS, and WR or RD. Competitive 
devices that do not have this "hard select" feature re­
quire the use of an external multiplexer to supply the 
correct Inputs for register selection during DMA. (Do not 
forget that the SDLC controller sees both the addresses 
and control signals supplied by the DMA controller duro 
ing DMA cycles.) Let us look at typical frame transmit 
and frame receive sequences to better see how the 8273 
truly manages the DMA data transfer. 

Before a frame can be transmitted, the DMA controller is 
supplied, by the CPU, the starting address for the 
desired Information field. The 8273 is then commanded 
to transmit a frame. (Just how this is done is covered 
later during our software discusllion.) After the com· 
mand. but before transmission begins, the 8273 needs a 
little more Information (parameters). Four parameters 
are required for the transmit frame command: the ad­
dress field byte, the control field byte, and two bytes 
which are the least significant and most significant 
bytes of the information field byte length. Once all four 
parameters are loaded, the 8273 makes RTS (Request·to· 
Send)'active and waits for CTS (Clear-to-Send) to go ac· 
tive. Once CTS Is active, the 8273 starts the frame trans· 
mission. While the 8273 is transmitting the opening flag, 
address field, and control field; it starts making trans· 
mitter DMA requests. These requests continue at char· 
acter (byte) boundaries until the pre·loaded number ot 
bytes of information field /lave been transmitted. At this 
pOint the requests stop, the FCS and closing flag are 
transmitted, and the TxlNT line is raised, Signaling the 
CPU that· the frame transmission is complete. Notice 
that after the initial command and parameter loading, 
absolutely no CPU intervention was required (since 
DMA is used for data transfers) until the entire frame 
was transmitted. Now let's look at a frame reception. 

BOms 

8m, 

sec/byle 

801'$ 

'00 

BAUD RATE (bps) 

Figure 8. Byte Transler Rate .. Baud Rale . 

r·OONTROL 
'BUS 

DRQ1 

8257 OACK1 
OMA 

CONTROLLER ORCO 

~OATA.US 
Figure 9. DMA. Interrupt·Drlven System 

AFN-00611A 



APPLICATIONS 

The receiver operation is very similar. Like the initial 
transrnlt sequence, the DMA controller Is loaded with a 
starting address for a receiver data buffer and the 8273 
is commanded to receive. Unlike the transmitter, there 
are two different receive commands: General Receive, 
where all received frames are transferred to memory, 
and Selective Receive, where onlY'frames having an ad­
dress field matching one of two preprogrammed 8273 
address fields are transferred to memory. Let's assume 
fpr now that we want to general receive. After the 
receive command, two parameters are required before 
the receiver becomes. active: the least significant and 
most significant bytes of the receiver buffer length. 
Once these bytes are loaded, the receiver is active and 
Ihe CPU may return to other tasks. The next frame 
appearing at the receiver input is transferred to memory 
using receiver DMA requests. When the closing flag is 
received, the 8273 checks the FCS and raises its RxlNT 
line. The CPU can then read the results which indicate if 
the frame was error-free or not. (If the received frame 
had been longer than the pre-loaded buffer length, the 
CPU wOljld have been notified of that occurrence earlier 
with a receiver error interrupt. The command description 
section contains a complete list of error conditions.) 
Like the transmit example, after the initial command, 
the CPU is free for other tasks until a frame Is com· 
pletely received. These examples have illustrated the 
8273's management of both the receiver and transmitter 
DMA channels. 

It is possible to use the DMA data transfer interface in a 
non·DMA interrupt-driven environment. In this case, 4 in­
terrupt levels are used: one each for TxlNT and RxINT, 
and one each for TxDRO and RxDRO. This configuration 
is shown in Figure 10. This configuration offers the 
advantages that no DMA controller is required and data 
requests are still separated from result (completion) reo 
quests. The disadvantages of the configuration are that 
4 interrupt levels are required and that the CPU must ac· 
tually supply the data transfers. This, of course, reduces 
the maximum data rate compared to the configuration 
based strictly on DMA. This system could use an Intel 
8259 8-level Priority Interrupt Controller to supply a vec­
tored CALL (subroutine) address based on requests on 
its inputs. The 8273 transmitter and receiver make data 
requests by raising the respective ORO line. The CPU is 
interrupted by the 8259 and vectored to a data transfer 
routine. This routine either writes (for transmit) or reads 
(for receive) the 8273 using the respective TxDACK or 
RxDACK line. As In the case above, the DACK lines 
serve as "hard" chip selects Into and out of the 8273. 
(Tx{)ACK + iiVJ!t writes data Into the 8273 for transmit. 
RxDACK + RD reads data from the 8273 for receive.) 
The CPU Is notified of operation completion and results 
by way of TxlNT and RxlNT lines. Using the 8273, and­
the 8259, In this way, provides a very effective, yet sim­
ple, Interrupt-driven Interface. 

Figure 11 illustrates a system very similar to that 
described above. This system.utilizes the 8273 in a non­
DMA data transfer mode as opposed to the two DMA ap· 
proaches shown in Figures 9 and 10. In the non-DMA 
case, data transfer requests are made on the TxlNT and 
RxlNT lines. The ORO lines are riot used. Data 'transfer 
requests are separated from result requests by a bit in 

7-40 

the Status register. Thus, In response to an interrupt, 
the CPU reads the Status register and branches to either 
a result or a data transfer routine based on the status of 
one bit. As before, data transfers are made via using the 
DACK lines as chip selects to the transmitter and 
receiver data registers. 

0213 rCOHTAOL 
BUS 

WR 

07-00 

~ ~~T'BUS 
Figure 10. Interrupt·aased DMA System 

r-lOR 
BUS 

RD 

8273 
lOW 

WR 

07-00 

~ ~DATA.US 
Figure 11. Non·DMA Interrupt·Drlven System 

Figure 12 illustrates the simplest system of all. This 
system utilizes polling for all data transfers and results. 
Since the Interrupt pins are reflected in bits. in the 
Status register, the software can read the Status 
register periodically looking for one of these to be set. If 
it finds an INT bit set, the appropriate Result Available 
bit is examined to determine if the "Interrupt" Is a data 
transfer or completion result. If a data transfer Is called 
for, the DACK line Is used to enter or read the data from 
the 8273. If the Interrupt Is a completion result, the-ap­
propriate result register Is read to determine the goodl 
bad completion of the operation. 

The actual selection of either DMA or non-DMA modes 
is controlled by a command Issued during Initialization. 
This command is covered In detail during the software 
discussion. 

AFN.00611A 



APPLICATIONS 

The final block of the CPU module Interface Is the Data 
Bus Buffer. This block supplies the trl-state, bidirec­
tional data bus Interface to allow communication to and 
from the 8273. 

Modem Interface 

As the name implies, the modem interface is the modem 
side of the 8273. It consists of two major blocks: the 
modem control block and the serial data timing block. 

The modem control block provides both dedicated and 
user·defined modem control functions. All signals sup­
ported by this interface are active low so that EIA 
inverting drivers (MC1488) and inverting receivers 
(MC1489) may be used to interface to standard modems. 

Port A is a modem control input port. Its representation 
on the data bus is shown in Figure 13. Bits Do and D1 
have dedicated functions. Do reflects the logical state of 
the CTS (Clear-to-Send) pin. [If CTS is active (low), Do is a 
1.] This signal is used to condition the start of a trans· 
mission. The' 8273 waits until CTS is active before it 
starts transmitting a frame. While transmitting, if CTS 
goes inactive, the frame is aborted and the CPU is inter· 
rupted. When the CPU reads the interrupt result, a CTS 
failure is indicated. 

D1 reflects the logical state of the CD (Carrier Detect) 
pin. CD is used to condition the start of a frame recep­
tion. CD must be active in time for 'a frame's address 
field. If CD is lost (goes inactive) while receiving a frame, 
an interrupt is generated with a CD failure result. CD 
may go inactive between frames. 

Bits D2 thru D4 reflect the logical state of the PA2 thru 
PA4 pins respectively. These inputs are user defined. 
The 8273 does not interrogate or manipulate these bits. 
Bits D5, D6,and D7 are not used and each is read as a 1 
for a Read Port A command. 

Port B is a modem control output port. Its data bus 
representation is shown in Figure 14. As in Port A, the 
bit values represent the logical condition of the pins. Do 
and D5 are dedicated function outputs. Do represents 
the FITS (Request-to·Send) pin. FITS is normally used to 
notify the modem that the 8273 wishes to transmit. This 
function is handled automatically by the 8273. If FiTS is 
inactive (pin is high) when the 8273 is commanded to 
transmit, the 8273 makes it active and then waits for 
CTS before transmitting the frame. One byte time after 
the end of the frame, the 8273 returns RTS to its inactive 
state. However, if RfS was active when a transmit com· 
mand is issued, the 8273 leaves it active when the frame 
is complete. 

Bit D5 reflects the state of the Flag Detect pin. This pin 
is activated whenever an active receiver sees a flag 
character. This function is useful to activate a timer for 
line activity timeout purposes. 

Bits D1 thru D4 provide four user-defined outputs. Pins 
PB1 thru PB4 reflect the logical state of these bits. The 
8273 does not interrogate or manipulate these bits. 06 
and D7 are not used. In addition to being able to output 
to Port B, Port B may be read using a Read Port B com· 
mand. All Modem control output pins are forced high on 

7-41 

reset. (All commands mentioned In this section are 
covered In detail later.). 

The final block to be covered is the serial data timing 
block. This block contains two sections: the serial data 
logic and the digital phase locked loop (OPLL). 

Elements of the serial data logic section are the data 
pins, TxD (transmit data output) and RxD (receive data 
input), and·the respective data clocks, TxC and RxC. The 
transmit and receive data is synchronized by the TxC 
and RiC clocks. Figure 15 shows the timing for these 
signals. The leading edge (negative tranSition) of TxC 
generates new transmit data and the trailing edge 
(positive transition) of RxC is used to capture the 
receive data.' 

It is possible to reconfigure this section under program 
control to perform diagnostiC functions; both data and 
clock loopback are available. In data loopback mode, the 
TxD pin is internally routed to the RxO pin. This allows 
simple board checkout since the CPU can send an SOLC 
message to itself. (Note that transmitted data will still 
appear on the TxO pin.) 

Ne Ne Ne He 

8273 

WA 

D7~OO 

'OA 

,ow 

_CONTROL 

BUS 

~ ~DA'ABUS 
Figure 12. Polled System 

Figure 13. Port A (Input) BII D.llnltlon 

I I · I IIII LI_I -~--m I "E::::'.::,:::·ou,pu,. 
. FLAG DETECT 

Figure 14. Port B (Output) Bit Dellnltlon 

AFN.()()611A 



APPLICATIONS 

When data loopback is utilized, the receiver may be 
presented incorrect sample timing (RxC) by the external 
circuitry. 'Clock loopback overcomes this problem by 
allowing the internal routing of 'i'Xe and Axe. Thus the 
same clock used to Iran,sm!t the data is used to receive 
it. Examination of Figure 15 shows that this method en­
sures bit synchronism. The final element of the serial 
data logic is the Digital Phase locked loop. 

The DPll provides a means of clock recovery from the 
received data stream. This feature allows the 8273 to in­
terface without external synchronizing logic to low cost 
asynchronous modems (modems which do not supply 
clocks). It also makes the problem of clock timing In 
loop configurations trivial. 

To use the DPll, a clock at 32 times the required baud 
rate must be supplied to the 32 x ClK pin. This clock 
provides the interval that the DPll samples the received 
'data. The DPll uses the 32 x clock and the received 
data to generate a pulse at the DPll outPl,lt pin. This 
DPll pl,llse is positioned at the nominal center of the 
received data bit cell. Thl,ls the DPll Ol,ltPl,lt may be 
wired to RxC and/or TxC to sl,lpply the data timing. The 
exact pOf?ition of the pl,llse is varied depending on the 
line noise and bit distortion of the received data. The ad­
justment of the DPll position is determined according 
to the rules outlined in Figure 16. 

Adjustments to the sample phase of DPLt with respect 
to the received data is made in discrete increments. 
Referring to Figure 16,/following the occurrence of 
DPll pullje A, the DPll counts 32 x ClK pulses and ex­
amines the received data for a data edge. Should no 
edge be detected in 32 pulses, the DPll positions the 
next DPll pulse (8) at 32 clock pulses from pulse A. 
Since no new phase information is contained in the data 
stream, the sample phase is assumed to be at nominal 
1 x baud rate. Now assume a data edge occurs after 

DJ5[[ pulse 8. The distance from 8 to the next pulse C Is 
influenced according to which quadrant (AI' 81, 82, or 
A2) the data edge falls in. (Each quadrant represents 8 
32 x ClK times.) For example, if the edge is detected In 
quadrant AI, It is apparent that pulse 8 was too close to 
the data edge and the time to the next pulse must be 
shortened. The adjustment for quadrant Al Is specified 
as - 2. Thus, the next DPll pulse, pulse C, is posi­
tioned 32 - 2 or 30 32 x ClK pulses following i5J5[[ 
pulse 8. This adjustment moves pulse C closer to the 
nominal bit center of the next received data cell. A data 
edge occurring in quadrant 82 would have caused the 
adjustment to be small, namely 32 + 1 or 33 32 x ClK 
pulses. Using this technique, the i5'PiI pulse converges 
to the norninal bit center within 12 'data transitions, 
worse case - 4-bit times adjusting through quadrant A1 
or A2 and 8-bil-times adjusting through 81 or 82' 

J 

Figura 15. TransmlllRecelve Timing 

, BIT TIME 

RxD 

NO TRANSITION 

mctK .u-... 
A 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

1------32 CLOCKS -----1 1--~--30 ~LOCKS -~-=:::--I 
8 

I 
I 

I 
I 

I • 33 CLOCKS _-+-__ -..,-_. 
, I 
, I 

:---+--32 ~LOCKS--t-----.1 r:::-AL , ' u~'.vm'~' 
I I I 
, I I I 

QUADRANT' AI I 8, I 82 A2 I 
ADJUSTMENT' -2 I -, I +1 +2 I 

Flgure\16. DPLL Phase Adjustments 

7-42 AFN-00611A 



APPLICATIONS 

When the receive data stream goes Idle after 15 ones, 
DPll pulses ~re generated at 32 pulse Intervals of the 
32x ClK. This feature allows the DPll pulses to be 
used as both transmitter and receiver clocks. 

In order to guarantee sufficient transitions of the re­
ceived data to enable the i515lI. to lock, NAZI encoding 
of the data is recommended. This ensures that, within a 
frame, data transitions occur at least every five bit times 
- the longest sequence of 1s which may be transmitted 
with zero bit insertion. It is also recommended that 
frames following a line idle be transmitted with pre­
frame sync cha~acters which provide a minimum of 12 
transitions. This ensures that the !)IS([ Is generating 
iSPIT pulses at the nominal bit centers in time for the 
opening flag. (Two OOH characters meet this require­
ment by supplying 16 transitions with NRZI encoding. 
The 8273 contains a mode which supplies such a pre­
frame sync.) 

Figure 17 illustrates 8273 clock configurations using 
either synchronous or asynchronous modems. Notice 
how the DPll output is used for both ~ and RXC in 
the asynchronous case. This feature eliminates the 
need for external clock generation logic where low cost) 
asynchronous modems are used and also allows direct 
connection of 8273s for the ultimate In low cost data 
links. The configuration for loop applications is dis­
cussed in a following section. 

This completes our discussion of the hardware aspects 
of the 8273. Its software aspects are now discussed. 

SOFTWARE ASPECTS OF THE 8273 

The software aspects of the 8273 Involve the communi­
cation of bO,th commands from the CPU to the 8273 and 
the return of results of those co~mands from the 8273 

TXc 

TxD 

8273 RxC 

-= Ne 

to the CPU. Due to the Internal processor architecture of . 
the 8273, this CPU-8273 communication is basically a 
form of Interprocessor communication. Such communi­
cation usually requires a form of protocol of its own. 
This protocol is implemented through use of handshak­
ing suppl1ed In the 8273 Status register. The bit defini­
tion of this register is shown in Figure 18. 

, .' 
CBSY: Command Busy - CBSY indicates when the 
8273 is in the command phase. CBSY is set when the 
CPU writes a command into the Command register, 
'starting the Command phase. It is reset when the last 
parameter Is deposited In the Parameter register and 
accepted by the 8273, completing the Command 
phase. 

CBF: Command Buffer Full - When set, this bit in­
dicates that a byte is present in the Command 
register. This bit is normally not used. 

CPBF: Command Parameter Buffer Full- This bit in­
dicates that the Parameter register contains a 
parameter. It is set when the CPU deposits a 
parameter in the Parameter register. It Is reset when 
the 8273 accepts the parameter. 

CRBF: Command Result Buffer Full - This bit is set 
when the 8273 places a result from an immediate 
type command in the Result register. It is reset when 
the CPU reads the result from the Result register. 

RxINT: Receiver Interrupt - The state of the RxlNT 
pin is reflected by this bit. RxlNT is set by the 8273 
whenever the receiver needs servicing. RxlNT is reset 
when the CPU reads the results or performs the data 
transfer. 

TxINT: Transmitter Interrupt - This bit is identical to 
RxlNT except action is initiated based on transmitter 
interrupt sources. 

SYNC 
MODEM 

SYNCHRONOUS MODEM INTERFACE 

32X 
CLOCK 

ASYNCHRONOUS MODEM INTERFACE 

Figure 17. Serial Data Tim/rig _C-"nfiuuratl.?", 

7-43 AFN-00611A 



APPLICATIONS 

RxIRA: Receiver Interrupt Result Available - RxlRA 
Is set when the 8273 places an interrupt result byte 
into the Rxl/R register. RxlRA is reset when the CPU 
reads t~e RxllR register; 

TxIRA: Transmitter Interrupt Result Available -
TxlRA is the corresponding Result Available bit for 
the transmitter. It is set when the 8273 places an In· 
terrupt result byte in the Txl/Rregisfer and' reset 
when the CPU reads the register. ' 

The significance of each of these bits will be evident 
shortly. Since the software requirements of each 
8273 phase are essentially independent, each phase 
is covered separately. '. 

TdRA ...... TxlNT RESULT AVAILABLE 

RxlRA - RdNT AESUL T AVAILABLE 

L-':==== TxlNT - Tx INTERRUpt 
RxlNT - Rll INTERRUPT 

'-------CR&F ~ COMMAND RESULT 
- BUFI=ER FULL 

'--------CPBF - ~~~F~tNF~rtRAMETER 

L~=========CBF - COMMAND'8UFFER FULL 
eBSY - COMMAND BUSY 

• Figure 18. StatuI Realste, Format 

Command Phase Software 

Recalling the Command phase description il1 an earlier 
section, the CPU starts the Command phase by writing a 
command byte into the 8273 Command.register. If fur­
ther information about th.e command is required by the 
8273, the CPU writes this information into the Parameter 
register. Figure 19 is a flowchart of the Command 
phase. Notice that the CBSY and CPBF bits of the 
Status register are used to handshake the command 
and parameter bytes. Also note that the, chart shows 
that a command may not be issued if the Status register 
indicates the 8273 is busy (CBSY = 1). If a command is 
issued while CBSY = 1, the original command Is over· 
written and lost. (Remember that CBSY signifies the 
command phase is in progress and not the actual execu­
tion of the command.) The flowchart also Includes a 
Parameter buffer full check. The CPU must wait until 
CPBF = 0 before writing a parameter to the Parameter 
register. If a parameter Is issued while CPBF= 1, the 
previous parameter Is overwritten and lost. An example 
of command output assembly language software Is pro­
vided in,Figure 20a. This software assumes that a com· 
mand buffer exists in memory. The buffer is pOinted at 
by the HL register. Figure 20b shows the command buf. 
fer structure. 

The 8273 is a full duplex device, i.e., both the transmitter 
and receiver may be executing commands or passing in­
terrupt results at any given time. (Separate Rx and Tx in­
terrupt pins and result registers are provided for this 
reason.) However, there is only one Command register. 
Thus, the Command register must be. used for only one 
command sequence 'at a time and the transmitter and 
receiver may never' be simultaneously in a' command 

phase: A detailed description of the commands and 
their parameters is presented'in a following 'section. 

;FUNCTION: COMMAND DISPATCHER 
; INPUTS: HL - COMMAND aUF F ER ADDRESS 
; OUTPUTS: NONE 
JCALLS: NONE 
; DESTROYS : _A,~,H,L,F/F· S 
,DESCRIPTION: CMDOUT ISSUES THE COMMAND + PARAMETERS 
; IN THE COMMAND BUFFER POINTED AT BY HL , 
CKOOUT; LXI 

MOV 
INX 

eKDI: IN 
RLC 
JC 
MOV 
OUT 

CMo2: MOV 
ANA 
RZ 
INX 
OCR 

CMD3: IN 
ANI 
JNZ 
MOV 
OUT 
JM~ 

H,CMDBUFIPOINT HL AT BUFFER 
B,M ; 1ST ENTRY IS PAR. COUNT 
H ; POINT AT COMMAND BYTE 
STAT73 ;READ 8273 STATUS 
;ROTATE CBSY INTO CARRY 
eMDI ;WAIT UNTIL CBSY-" 
A,M :MOVE COMMAND BYTE TO A 
COMM73 : PUT COMMAND IN COMMAND REG 
A, B ; GET PARAMETER COUNT 
A iTEST IF ZERO 
; IF " THEN DONE 
H ;NOT DONE, so POINT AT NEXT PAR 
B ; DEC PARAMETER COUNT 
STAT? 3 ;READ 8-273 STATUS 
CPBF ;'l'EST CPSF BIT 
CMD3 ;WAIT UNTIL CPBE IS " 
A,M ;GET PARAMETER FROM SUFFER 
PARM73 ;OUTPUT PAR TO PARAMETER BEG 
CMD2 ;CHECK IF MORE PARAMETERS 

Figure 2OA. Com .... nd P ..... Sollwera 

AFN.()Q611A 



APPLICATIONS 

+4 PARAMETER 3 

+3 PARAMETER 2 

+2 PARAMETER 1 

+1 COMMAND 

CMDBUF: PARAMETER COUNT -HL 

Execution Phase Software 

During the'ExeCution phase, the operation specified by 
the Command phase Is performed. If the system utilizes 
DMA for data transfers, there Is no CPU Involvement 
during this phase, so no software Is required. If non· 
DMA data transfers are used, either interrupts or polling 
is used to signal a data transfer request. 

For interrupt·driven transfers the 8273 raises the appro· 
priate INT pin. When responding to the interrupt, the 
CPU must determine whether it is a data transfer re­
quest or an Interrupt signaling that an operation is com· 
plete and results are available. The CPU determines the 
cause by reading the Status register and interrogating 
the associated IRA (Interrupt Result Available) bit (Tx· 
IRA forTxlNTand RxlRA for RxINT).lf the IRA= 0 the in· 
terrupt is a data transfer request. If the IRA:' 1, an 
operation is complete and the associated Interrupt 
Result register must be read to determine the comple· 
tion status (good/bad/etc.). A software interrupt handler 
implementing the above sequence is presented as part 
of the Result phase software. 

When polling is used to determine when data transfers 
are required, the polling routine reads the 'Status 
register looking for one of the INT bits to be set. When a 
set INT bit is found, the corresponding IRA bit is ex· 
amined. Like in the interrupt·driven case, if the IRA = 0, a 
data transfer is required. If IRA = 1, an operation is com­
plete and the Interrupt Result register needs to be read. 
Again, example polling software is presented in the next 
section. 

Result Phase Software 

During the Result phase the 8273 notifies the CPU of the 
outcome of a command. The Result pha,se is initiated by 
either a successful completion of an operation or an er­
ror detected during execution. Some cpmmands such 
as reading or writing the I/O ports provide irtimediate 
results, that is, there is essentially no delay from the 
issuing of the command and when the result is avail­
able. Other commands such as frame transmit, take 
time to complete so their result is not available im· 
mediately. Separate result registers are provided to 
distinguish these twO types of commands and to avoid 
interrupt handling for simple results. 

Immediate results are provided in the Result register. 
Validity of information in this register is indicated to the 
CPU by way of the CRBF bit in the Status register. When 
the CPU completes the Command phase of an im· 
mediate command, it polls the Status register waiting 
until CRBF = 1. When this occurs, the CPU may read the 

Result register to obtain the immediate result. The 
Result register provides only the results from immedi­
ate commands. 

Example software for handling immediate results Is 
shown in Figure 21. The routine returns with the result 
in the accumulator. The CPU then uses the result as is 
appropriate. 

All non·immediate commands deal with either the trans­
mitter or receiver. Results from these commands are 
provided in the Txl/R (Transmit Interrupt Result) and 
Rxl/R (Receive Interrupt Result) registers respectively. 
Results in these registers are conveyed to the CPU by 
the TxlRA and RxlRA bits of the Status register. Results 
of non-immediate commands consist"f one byte result 
interrupt code indicating the condition for the Interrupt 
and, if required, one or more bytes supplying additional 
information. The interrupt codes and the meaning of the 
additional results are covered following the detailed 
command description. 

Non-immediate results are passed to the CPU in 
,response to either interrupts or polling of the Status 
register. Figure 22 illustrates an interrupt-driven result 
handler. (Please note that all of the software presented 
in this application note is not optimized for either speed 
or code efficiency. They are provided atl a guide and to 
illustrate concepts.) This handler provides for interrupt­
driven data transfers as was promised in the last sec­
tion. Users employing DMA-based transfers do not need 
t.he lines where the IRA bit is tested for zero. (These 
hnes are denoted by an asterisk in the comments col­
umn.) Note that the INT bit is used to determine when all 
results have been read. All results must be read. Other­
wise, the INT bit (and pin) will remain high and further in­
terrupts may be missed. These routines place the 
results in a result buffer pOinted at by RCRBUF and 
TxRBUF. 

7-45 

A typical result handler for systems utilizing polling is 
shown in Figure 23. Data transfers are also handled by 
this routine. This routine utilizes the routines of Figure 
22 to handlE! the results. 

At this point, the reader should have a good conceptual 
feel about how the 8273 operates. It is now time for the 
particulars of each command to be discussed. 

FUNCTION: IMDRLT 
INPUTS: NONE 
OU'l'PUTS: RESULT REGISTER IN A 
CALLS: .{\,lONE 
DES'l'ROYS: A, F IF I 5 
Of:;5CI<.IpTION: IMDRLT IS CALLED AF'l'£R A CMDOUT FOR AN 
IMMl:.£lIATE COMMA~D TO READ THE. RESULT RBGISTER 

MDRL'l': IN 
ANI 
JZ 
IN 
kCT 

STAT71 
CkeF 
IMDRLT 
RESL 7 '1 
;RE.'l'URN 

iRbAD 8271 STATUS 
_TEST IF RESULT REG Rt.AOY 
;WAIT IF CRBF=0 
1 RE-AD RESllLT REGISTER 

Figure 21. Immediate Ruult Handle, 

AfN.OO811A 



APPLICATIONS 

: ~~=~~~ ~C:~F: i~~::UPT DRIVEN RESULT/DATA HANDLER 

J CALLS I NOltE , . 
,OUTPUTS' Rcasur, RCVPNT 
" DESTROYS. NOTHING 
,DESCRIPTION. RXI IS ENTERED AT A RECEIVER INTERRUPT. 
,THE INTERRUPT IS TESTED FOR DATA TRANSFER (IRA-B) 
,OR RESULT lIRA-I). FDR DATA TRANSFER, TU DATA IS 
i PLACED IN A BUFFER AT RCVPNT. RESULTS ARE PLACED IN 
,A. BUFFER AT ReRBur, 
,A PLAG(RXFLAG) IS SST Ir THB INTBRRUPT WAS A RESULT. 

./ (DATA TRANSFER INSTRUCTIONS ARE DENOTBD BY (0) AND 
,MAYBE EJ;oIMINATED BY USERS USING OMA .. 

iXI: 

RXIlz 

RXI2. 

RXI4. 

RXIl. 

PUSH 
PQ~H 
PUSH 

'IN 
ANI 
JZ 
LHLD 
IN 
ANI 
JZ 
IN 
ANI 
JZ 
IN 
MOV 
INX 
SBLD 
JMP 
SHLD 
IN 
MOV 
INX 
JMP 
MVI 

'STA 
POP 
POP 
POP, 
EI 
RET 

B 
PSW 
B 
STAT71 
RXIRA 
RXI2 
ReRBUF 
STAT71 
RXINT 
RX!4 
STAT71 
RXIRA 
RXIl 
RXIR71 
M,A 
H 
RCRSUF 
RXIl 
RCVPNT 
ReVDAT 
M,A 
'H 
RXIl 
A,llH 
RXFLAG 
B 
PSW 
H 
;E"ABLE 
,DONE 

,SAVE HL 
,SAVE PSW 
;SAVE B , (0) RBAb 8271 STATUS ., (0) TEST IRA BIT , (*) IF S, DATA TRANSF'ER NE.EDED 
,GBT RESULT SUFFER POfNTER 
,READ 8271 STATUS AGAIN 
,TEST tNT BIT 
; IF ", TI::lEoN DONE 
,READ 8271 S1'ATUS AGAIN 
;TEST IRA AGAIN 
; LOOP UNTIL Rf.SULT IS HEADY 
; .READY, READ 'RxI/a 
;STORE RESULT 1111 BUFFER 
,SUMP RESULT POINTER' 
;RESTORE BUFFER POINTER 
;GO sACK TO SEE IF MORE , (*) GET DATA BUFFER POINTER , (0) RE.AD DATA VIA RXDACK , (0) STORE DATA I~ BUFFER , (0) BUMP DATA POINTER 
;, (*) DON£ 
,SET RX FLAG TO SHOW COMPLETION 
;COMPLETION 
;RESTORE Be 
,RESTORE PS. 
;RESTORE HL 
INTERRUPTS 

,F~NCTION' TXI - INTERRUPT DRIVEN RESULT/DATA HANDLER 
; INPUTS: 'l'XRBUF, TXPNT, TXFLAG 
;OUTPU1'S: TXRBUF, '1'XPNT r TXFLAG 
,CALLS: NONE 
; DESTROY~: NOTHING 
;Dl.SCRIPTION: TXI IS ENTERED AT A TRANSMITTER INTERRUPT. 
; 'I'HE INTERRUPT IS T£STED BY WAY OF THE IRA BIT TO SEE 
: IF A DATA TRANSFER OR RESULT COMPLETION HAS OCCURED. 
;FOR DATA TRANSFERS (IRA-e), THE DATA IS OBTAINED FROM 
,A BUFFbR LOCATION POINTED AT BY TXPNT. FOR COMPLETION, 
;,(IRA,.!), THE RESULTS ARE READ MID PLACED AT'A RESULT 
,BUFFE.R POINTED AT BY TKRBUF, AND THE TXFLAG IS SET 
,TO INDICATE TO THE MAl" ~ROGRAM THAT A OPERATION IS 
,COMPLETE. TX OPERATIONS HAVE ONLY ONE RESOLT. 
,DATA TRANSFER INSTRUCTIONS ARE DENOTED BY (0). THESE 
;hAY,~£ REHOV£D BY uSf,RS USING DNA. 

~xi.: PUSH H ',SAVE HL 
PUSH PSW, ; SAVE PSW 
IN' STATH, (0) READ 8273 STATUS 
ANI TXIRA; (*) TEST 'l'XIRA BIT 
JZ TXI2 ; (*) IF I, DATA TRANSFER 
IN TKIR7l .1, THEN READ TXIR 
LHLD TXRBUF ,GET RESULT BUFFER POINTER 
MOV M"A ,STORE RESULT IN BUFFER 
INK H ,BUMP RESULT· POINTER 
SHLD TXRBUF, RESTORE RESULT POINTER 
MVI A,UH ,SET TXFLAG TO SHOW COMPLETION 
STA TXFLAG ,SET FLAG 

'I'XI l: POP PSW , RESTORE PSW 
POP H ,RESTORE HL 
£.1 ,ENABLE INTERRUPTS 
RET JDONE 

TXI 2: LULD TXPNT 
MOV ArM 
OUT TXDATA 
INK H 
SHLD 1'XPNT 
J"P TXll 

(0) 
(0) 
(0) 
(0) 
(0) 

, (*) 

GET DATA POINTER 
GET DATA FROM BUFFER 
OUTPUT TO 8273 VIA TXDACk 
BUMP DATA POINTER 
RESTORE POINTER 
RETURN AFTER RESTORE 

Figura 22. Intllrrupl·DrI .. n Reault Handlera 
.. "'_ Non-DMA Datil Trana"'" 

,FUNCTION: POLOP 
,INPUTS. NONE 
iOUT~UTS. C-. (NO STATUS)., -I '(RX COMPLETION), 
, -2 (TX COMPLETION), -1 (BOTH) 
,CALLS. TXI, RXl 
,DESTROYS: B,C 
,DESCRIPTION. POLOP IS CALLED TO POLL THE 8273 FOR 
,DATA TRANSFERS AND COMPLETION RESULTS. THE 
,ROUTINES TXI AND RXI ARB USED FOR THE ACTUAL 
,TRANSFE)<S AND BUFFER HORl<. ROLOP RETURNS 
;T~E STATPS OF THEIR ACTION. • 

POLOi'. PUSH PSW ;SAVE PSW 
MVI c,aSH ,CLEAR C 

POLOPlr IN STAT71 ,READ '8273 STATUS 
ANI INT ,ARE TXINT OR RKINT SET? 
JZ PEXIT ,NO, EXIT 
IN STAT7l I ,READ 8271 STATUS 
ANI RXINT ,TEST RX INT 
JNZ RXIC ; YES, GO SERVICE RX 
CALL TXI ,MUST BE TX, GO SE~VICE IT 
tDA TXPLAG ' ,GET TX FLAG 
CPI 01H ,WAS IT A COMPLETION? (81) 
JNZ PEXIT ,NO, SO JUST EX,IT 

,INR C ,YES, UPDATE C 
INR C 
J/IP POLOPI JTRY AGAIN 

; 
RXIC. CALL RXI ,GO SERVICE RX 

LDA RXFLAG ,GET RX FLAG 
CPI erH ,WAS IT A COMPLETION? (01) 
JNZ PEXIT ,NO, SO JUST SKIT 
INR C ;Y'ES, UPDA'I$ C 
JMP POLOPI ;TRY' AGAIN , 

PEXIT: PO'P psw ; R£STORE. PSW 
R"T ,RETUR" WITS COMPo STATUS IN C 

. !lgUra 23. Pollino Reault H~ridier 1 

8273 COMMAND DESCRIPTION 

In this section, each command Is discussed In detail. In 
order to shorten the notation, please refer to the com· 
mand key In Table 1. The 8273 utilizes five different 
command tYPes: Initialization/Configuration, Receive, 
Transmit, Reset, and Modem Control. . 

7-46 

Initialization/Configuration Commands 
I '.' , 

The Initialization/Configuration commands manipulate 
registers internal to the 8273 that defl~e the various 
operating modes. These commands either set or reset 
specified bits In the registers depending on the type of 
command. One parameter is required. Set commands 
perform a logical OR operation.of.the parameter (mask) 
and the internal register. This mask contains 1s where 
register bits are to be set. A 0 In the mask causes no 
char19.e in_!tl~ _ corr:..espondlng rEl~ste~ bit. Reset com· 
mands perfor~ a logiCal ANQ operation of the param­
eter (mask) and the internal register, I.e., the mask is 0 to 
reset a register bit and a 1 to cause no change. Before 
presenting the commands, the register bit definitions 
are discussed. 

Bo, B1 
RQJ R1 
1.0, L1 
A1,A2 -

RIC 
TIC' 
A 
C 

TABLE 1. COMMAND SUIlfMARY KEY 

LSB AND MSB OF RECEIVE BUFFER LENGTH' 
LSB AND MSB OF RECEIVED FRAME LENGTH 
LSB AND MSB ,OF TRANSMIT FRAME LENGTH 
MATCH ADDRESSES FOR SELECTIVE RECEIVE 
RECEIVER INTERRUPT RESULT CODE 
TRANSMITTER 'INTERRUPT RESULT CODE 
ADDRESS FtELD OF RECEIVED F'RAME 
CONTROL F'IELD OF RECEIVED FRAME 

AfN.00811A 



APPLICATIONS 

Operating Mode Register (Figura 24) 

07-06: Not Used - These bits must not be manipu­
lated by any command; I.e_, 07-06 must be 0 for 
the Set command and 1 for the Reset command_ 

Do: 

HDLC Abort - When this bit Is set, the 8273 will 
Interrupt when 7 1s (HOLC Abort) are received 
by an active receiver. When reset, an SOLC 
Abort (8 1 s) will cause an Interrupt. 

EOP Interrupt - Reception of an EOP character 
(0 followed by 7 1s) will cause the 8273 to Inter­
rupt the CPU when this bit Is set. Loop con­
troller stations use this mode as a signal that a 
polling frame has completed the loop. No EOP 
interrupt is generated when this bit is reset. 

Early Tx Interrupt - This bit specifies when the 
transmitter should generate an end of frame in­
terrupt. If this bit Is set, an Interrupt is gener­
ated when the last data character has been 
passed to the 8273. If the user software issues 
another transmit command within two byte 
times, the final flag interrupt does not occur and 
the new frame is transmitted with only one flag 
of separation. If this restriction is not met, more 
than one flag will separate the frames and a 
frame complete interrupt Is generated after the 
closing flag. If the bit is reset, only the frame 
compl'ete interrupt occurs. This bit, when set, 
allows a single flag to separate consecutive 
frames. 

Buffered Address and Control - When set, the 
address and control fields of received frames 
are buffered in the 8273 and passed to the CPU 
as results after a received frame interrupt (they 
are not transferred to memory with the informa­
tion field). On transmit, the A and C fields are 
passed to the 8273 as parameters. This mode 
simplifies buffer management. When this bit is 
reset, the A and C fields are passed to and from 
memory as the first two data transfers. 

Pre/rame Sync - When set, the 8273 prefaces 
. each transmitted frame with two characters 
before the opening flag. These two characters 
provide 16 transitions to allow synchronization 
of the opposing receiver. To guaiantee 16 fran­
sitions, the two characters are 55H-55H for non­
NflZI mode (see Serial 110. Register description) 
or OOH-OOH for NAZI mode. When redel, no 
pref~ame characters are transmitted. 

Flag Stream - When set, the transmitter will 
start sending flag characters as soon as it is 
idle; i.e., immediately if idle when the command 
Is issued or after a transmission if the transmit­
ter is active when this bit is set. When reset, the 
transmitter starts sending. Idle characters on 
the next character boundary if idle already, or at 
the end of a transmission if active. 

7-47 

FLAT STAEA .. MODE 

PREFRAME SYNC MODE 
'-----BUFFERED MODE 

LJ=~====EARLY T.INT!RRUPT ENAILE EOP INTERRUPT ENABLE 
HDi.C AIORT ENAILE 

'----------N01 ust:o- DO NOT CHANGE 

Serial I/O Mode Register (Figure 25) 

07-03: Not Used - These bits must be 0 for the Set 
command and 1 for the Reset command. 

02: Data Loopback- When set, transmitted data 
(TxO) Is internally routed to the receive data Cir­
cuitry. When reset, TxO and RxO are Indepen­
dent. 

0 1: Clock Loopback - When set, TxC is internally 
routed to AXe. When reset, the clocks are inde­
pendent. 

Do: NRZI (Non-Return to Zero Inverted) - When set, 
the 8273 assumes the received data is NRZI en­
coded, and NRZI encodes the transmitted data. 
When reset, the received and transmitted data 
are treated as a normal positive logic bit stream. 

Data Transfer Mode Register (Figure 26) 

07-01: Not Used - These bits must be 0 for the Set 
command and 1 for the Reset command. 

Do: Interrupt Data Transfer - When set, the 8273 
will interrupt the CPU when data transfers are 
required (the corresponding IRA Status register 
bit will be 0 to signify a data transfer interrupt 
rather than a Result phase interrupt). When 
reset, 8273 data transfers are performed through 
OMA requests on the ORO pins without inter­
rupting the CPU. 

CLOCK LOOPIIACK 

0'" LOO"Ao. 

~~N~MOOE 
NOT USEO - DO NOT CHAN.E 

!Igure 25. Serial 1/0 Mode Reglater 

~ I.TERRUPT DATA TRANS."ERS 
-NOT USED - DO NOT CHANGE 

Figure 28. Data Tranaler Mode Reglatar 

AFN-00611A 



" APPLICATIONS 

One Bit Delay Register (Figure 27) 

07: One Bit Delay - When set, the 8273 retransmits 
the received data stream one bit delayed. This 
mode is entered and exited at a recellled char· 
acter boundary. When reset, the transmitted and 
received data are independent. This mode is 
utilized for loop operation and is discussed in a 
later section. 

Os-Do: Not Used - These bits must be 0 for the Set 
command and 1 for the Reset command. 

D7 De Os 04 D3 D2 D1 Do 

IW¥~¥I 
l~~=~~-=~~~= NOT USED - DO NOT CHANGE 

. ONE BIT DELAY ENABLE 

Figure 27. One BI' Delay Mode Regll'e, 

Figure 28 shows the Set and Reset commands associ­
ated with the above registers. The mask which sets or 
resets the desired bits Is treated as a single parameter. 
These commands do not interrupt nor provide results 
during the Result phase. After reset, the 8273 defaults to 
all of these bits reset. 

REGISTER COMMAND HEX PARAMETER CODE 

ONE BIT DELAY MODE 
SET A4 SET MIISK 

RESET 64 RESET MASK 

DATA TRANSFER MODE 
SET' 97 SEt MASK 

RESET 57 RESET MASK 

OPERATING MODE 
SET 91 SET MASK 

RESET 51 RESET MASK 

SERIAL 1/0 MODE 
SET AO SET MASK 

RESET 60 RESET MASK 

• fig .... 28. InI'lellHtloIlIConflguratlan Command Summary 

Receive Commands 

The 8273 supports three receive commands plus a 
receiver disable function. 

General Receive 

When commanded to General Receive, the 8273 passes 
ali frames either to memory (DMA mode) or to the CPU 
(non-OM A mode) regardless of the contents of the 
frame's address field. This command is used for primary 
and loop controller stations. Two parameters are re­
quired: Bo and B,. These parameters are the LSB and 
MSB of the receiver buffer size. Giving the 8273 this 
extra information alleviates the CPU of the burden of 
checking for buffer overflow. The 8273 will interrupt the 
CPU if the received frame attempts to overfill the 
allotted buffer space. 

Selective Receive 

In Selective Receive, two aC\ditional parameters besides 
Bo and B, are, required: A, and A2' These parameters are 
two address match byles. When commanded to Selec­
tive Receive, the 8273 passes to memorY or the CPU 
only those frames having an address field matching 
either A, or A2. This command is usually used for sec­
ondary stations with A, being the secondary address 
and A2 is the "All Parties" address. If only one match 
byte is needed, A, and A2 should be equal_ As in General 
Receive, the 8273 counts the incoming data bytes and 
interrupts the CPU If Bo, B, is exceeded. 

Selective Loop Receive 

Thi~ command is very similar in operation to Selective 
Receive except that One Bit Delay mode must be set and 
that the loop is captured by placing transmitter In Flag 
Stream mode automatically after an EOP character Is 
detected following a selectively received frame. The 
details of using the 8273· in loop configurations is 
discussed in a later section so please hold questions 
until then. 

The handling of Interrupt results is common among the 
three commands. When a frame is received without 
error, I.e., the FCS is correct and eo (Carrier Detect) was 
active throughout the frame or no attempt was made to 
overfill the buffer; the 8273 interrupts the CPU following 
the closing fiag to pass the completion results. These 
results, in order, are the receiver Interrupt result code 
(RIC), and the byte length of the information field of the 
received frame (Ro, R,). If Buffered mode is selected, the 
address and control fields are passed as two additional 
results. If Buffered mode Is not selected, the address 
and control fields are passed as the first two data 
transfers and Ro, R, refiect the information field length 
plus two. 

Receive Disable 

The receiver may also be disabled using the Receive 
Disable command. This command terminates any 
receive operation immediately. No parameters are re­
quired and no results are returned. 

The details for the Receive command are shown in 
Figure 29. The interrupt result code key is shown in 
Figure 30. Some explanation of these result codes is 
appropriate. 

The interrupt result code is the first byte passed to the 
CPU in the RxllR register during the Result phase. Bits 
0 4-00 define the cause of the receiver interrupt. Since 
each result code has specific implications, they are 
discussed separately below. 

COMMAND HEX PARAM· RESULTS' 
CODE ETERS RxllR 

GENERAL RECEIVE CO Bo.81 RIC. RO. R1. A. C 
SELECTIVE RECEIVE C1 BO. 81. A1. A2 RIC. Ro. R1. A. C 
SELECTIVE LOOP RECEIVE C2 BO. 81. A1. A2 RIC. Ro. R1. A. C 
DISABLE RECEIVER C5 NONE NONE 

• A AND C ARE PASSED AS RESULTS ONLY IN BUFFER~D MODE. 

Fl,gure 29. Receive, Command Summary 

7-48 ' AFN-ODB11A 



APPLICATIONS 

RIC RxSTATUS 

..!!z::!!2. RECEIVER INTERRUPT RESULT CODE ~ 
" 00000 AI MArcH OR GENERAL RECEIVE ACTIVE 
" 00001 AI MATCH ACTIVE 

000 00011 CRe ERROR ACTIVE 
000 00100 ABORT DETECTED ACTIVE 
000 00101 IDLE DETECTED DISABLED 
000 00110 EOP DETECTED DISABLED 
000 00111 FRAME < 32 BITS ACTIVE 
000 01000 DMAOVERRUN DISABLED 
000 01001 MEMORY BUFFER OVERFLOW DISABLED 
000 01010 CARRIER DETECT FAILURE DISABLED 
000 01011 RECEIVER INTERRUPT OVERRUN DISABLED 

"II7-D& PARTIAL BYTE RECEIVED 

111 ALL 8 IlTS OF LAST BYTE 
000 Do 
100 Di-Do 
010 D:!-Do 
110 1/3-Do 
001 D4D-o 
101 De-Do 
011 De-Do 

........ 311. ..... 1Mr ........ lleeull~ 

The first two result codes result from the error-free 
reception of a frame. If the frame Is received correctly 
after a General Receive command, the fln~t result Is 
returned. If either Selective Receive command was used 
(normal or loop), a match with A, generates the first 
result code and a match with A2 generates the second. 
In either case, the receiver remains active after the Inter­
rupt; however-;-the internal-b-':"ffer SlzeCounters are not 
reset. That Is, if the receive command Indicated 100 
bytes were allocat'ed to the receive buffer (Bo, B,) and an 
SO-byte frame was received correctly, the maximum next 
~rame size that could be received without recomman­
ding the receiver (resetting Bo and B,) Is 20 bytes. Thus, 
It is com'mon practice to recommand the receiver after 
each frame reception. DMA and/or memo!), pOinters are 
usually updated at this time. (Note that users who do 
not wish to take advantage of the 8273's buffer manage­
ment features may simply use Bo, B, = OFFH for each 
receive command. Then frames of 65K bytes may be 
received without buffer overflow errors.) 

The third result code Is a CRC error. This Indicates that 
a frame was received in the correct format (flags, etc.); 
however, the received FCS did not check with the Inter­
nally generated FCS. The frame should be discarded_ 
The receiver remains active. (Do not forget that even 
thou'gh an, error condition has been detected, all frame 
Ihformatlon up until that error has either been ,trans­
ferred to memory or passEld to the CPU. This inf!>rma­
tion should be Invalidated. Thill applies to all receiver 
error conditions.) Note that the FCS, either transmitted or 
received, is 'never available to the CPU. ' 

The Abort Detect result occurs whenever the receiver 
sees either anSDLC (81s) or an HDLC (71s), depending 
on the Operating Mode register. However, the interven­
Ing Abort character between a closing flag and an Idle 
does not generate an interrupt. If an' Abort character 
(seen by an active receiver within a frame) is not, pre­
ceded bY a flag and Is followed by an Idle, an interrupt 
will be generated for the Abort, followed by an Idle Inter 

rupt one character time later. The Idle Detect result oc­
curs whenever 15.consecutlve 18 are received. After the 
Abort Detect interrupt, the receiver remains active. After 
the Idle Detect Interrupt, the receiver Is disabled and 
must be recommanded before further frames may bf. 
received. 

If the EOP Interrupt bit Is set In the Operating Mode 
register, the EOP Detect result Is returned whenever an 
EOP character Is received. The receiver Is disabled, so 
the Idle following the EOP does not generate an Idll' 
I')etect Interrupt. ' 

The mlriimum number of bits In a valid frame betwetln 
the flags Is 32. Fewer than 32 bits Indicates an error. If 
Buffered mode Is selected, such frames are Ignored, i.e., 
no data transfers or Interrupts are generated. In non­
Buffered 'mode, a < 32-blt frame generates an Interrupt 
with the < 32-blt Frame result since data transfers may 
already. have disturbed the 8257 or Interrupt handler. The 
receiver remains active . 

The DMA Overrun result.results from the DMA controller 
being too slow in extracting data from the 8273, I.e., the 
~ signal Is not returned before the next received 
byte Is ready for transfer. The receiver Is disabled if this 
error condition occurs. , 

The Memory Buffer Overflow result occurs when the 
number of received bytes exceeds the receiver buffer 
length supplied by the Bo and B, parameters In the 
receive command. The receiver Is disabled. 

The Carrier Detect Failure result occurs when the CD 
pin goes high (inactive) during reception of a frame. The ' 
cr> pin Is used to qualify reception and must be active 
by the time the address field starts to be received. If ~ 
Is lost during the frame, a CI5 Failure Interrupt is 
generated and the receiver is disabled. No Interrupt is 
generated If CD goes inactive between frames. 

If a condition occurs requiring an interrupt be generated 
before the CPU has finished reading the previous inter­
rupt results, the second interrupt is generated after the 
current Result phase'is complete (the RxlNT pin and 
status bit go low then high). However, the interrupt 
result for this second interrupt will be a Receive Inter­
rupt Overrun. The actual cause of the second Interrupt Is 
lost. One case where this may occur Is at the'end of a 
received frame where the line goes Idle. The 8273 
generates a received frame Interrupt after the Closing 
flag and then 15-blt times later, generates an Idle Detect 
interrupt. If the l!1terrupt service routine is slow in 
reading the first Interrupt's results, the Internal Rxl/R 
register stili contains result information when the Idle 
Detect Interrupt occurs. Rather than wiping out the 

, prev,lous results, the 8273 adds a Receive Interrupt Over­
run result as an extra result. If the system's Interrupt 
structure Is such that the second,lntElrrupt is not 
acknowledged (interrupts are stili, disabled from the first 
Interrupt), the Receive Interrupt Overrun result Is read as 
an extra result, after those from the first Interrupt. If the 
second interrupt Is serviced, the Receive Interrupt Over­
run Is returned as a single result. (Not~, th~t the INT pins 
supply the necessary transitions to support a Program-

. 7-49 AfN.OO811A 



APPLICATIONS 

mabie Interrupt Controller such as the Intel 8259. Each 
interrupt generates a positive-going edge on the appro­
priate INT pin and the high level is held until the Inter­
rupt is completely serviced.) In general, it Is possible to 
have interrupts occurring at one character time inter­
vals. Thus the interrupt handling software must have at 
least that much response and service time. 

The occurrence of Receive Interrupt Overruns Is an In­
dication of marginal software design; the system's Inter­
rupt response and servicing time is not sufficient for the 
data rates being attempted. It is advisable to configure 
the interrupt handling software to simply read the inter­
rupt results, place them Into a buffer, and clear the Inter­
rupt as quickly as possible. The software can then ex­
amine the buffer for new results at its leisure, and taKe 
appropriate action. This can easily be accomplished by 
using a result buffer flag that indicates when new 
results are available. The Interrupt handler sets the flag 
and the main program resets it once the results are 
retrieved. 

Both SDLC and HDLC allow frames which are of arbi­
trary length (>32 bits). The 8273 handles this N-bit 
reception through the high order bits (D7-D51 of the 

. result code. These bits code the number of valid re­
ceived bits In the last received information field byte. 
This coding is shown In Figure 30. The high order bits of 
the received partial btye are indeterminate. [The ad­
dress, control, and information fields are transmitted 
least significant bit (Ao) first. The FCS is complemented 
and transmitted mos,t Significant bit first.] 

TransmIt Commands 

The 8273 transmitter is supported by three Transmit 
commands and three corresponding Abort commands. 

TransmIt Frame 

The Transmit Frame command simply transmits a 
frame. Four parameters are required when Buffered 
mode Is selected and two when It is not. In either case, 
the first two parameters are the least and the most' 
significant bytes of the desired frame length (Lo, L,). In 
Buffered mode, Lo and L, equal the length in bytes of 
the desired Information field, while in the non-Buffered 
mode, Lo and L, must be specified as the infqrmation 
field length plus two. (Lo and L, specify the number of 
data transfers to be performed.) In Buffered mode, the 
address and control fields are presented to the transmit­
ter as the third and fourth parameters respectively. In 
non-Buffered mode, the A and C fields must be passed 
as the first two data transfers. 

When the Transmit Frame command is· Issued, the 8273 
makes RTS (Request-to-Send) active (pin low) If it was 
not already. It then YIIalts until CTS (Clear-to-Send) goes 
active (pin low) before starting the frame. If the Prefraple 
Sync bit in the Operting Mode register is set, the trans­
mitter prefaces two characters (16 transitions) before 
the opening flag, If the Flag Stream bit is set in the 
Operating Mode register, the frame (including Preframe 
Sync if selected) is started on a flag boundary. Other­
wise the fram.e starts on a character boundary. 

7-50 

At the end of the frame, the transmitter interrupts the 
CPU (the interrupt results are discussed shortly) and 
returns to either Idle or Flag Stream, depending on the 
Flag Stream bit of the Operating Mode register. If RTS 
was active before the transmit command, the 8273 does 
not change It. If it was inactive, the 8273 will deactivate 
it within one charactE!r time. 

Loop TransmIt 

Loop Transmit Is similar to Frame Transmit (the param­
eter definition Is the same). But since it deals with loop 
configurations, One Bit Delay mode must be selected. 

If the transmitter is not In Flag Stream mode when this 
command is issued, the transmitter walts until after a 
received EOP character has been converted to a flag 
(this is done automatically) before transmitting. (The 
one 'bit delay is, of course, suspended during transmit.) 
If the transmitter is already in Flag Stream mode as a 
result of a selectively received frame during a Selective 
Loop Receive command, transmission will begin at the 
next flag boundary for Buffered mode or at the third flag 
boundary for non-Buffered mode. This discrepancy is to 
allow time for enough data transfers to occur to fill up 
the internal transmit buffer. At the end of a Loop Trans­
mit, the One Bit Delay mode is re-entered and the flag 
stream mode is, reset. More detailed loop operation Is 
covered later. 

Transmit Transparant 

The Transmit Transparent command enables the 8273 to 
transmit a block of raw data. This data Is without SDLC 
protocol, i.e., no zero bit Insertion, flags, or FCS. Thus j( 

is possible to construct and transmit a Bi-Sync message 
for front-end processor switching or to construct and 
transmit an SDLC message with incorrect FCS for diag­
nostic purposes. Only the Lo and L, parameters are used 
since there are not fie ids in this mode. (the 8273 does 
not support a, Receive Transparent command.) 

Abort Commands 

Each of the above transmit commands has an associ­
ated Abort command. The Abort Frame Transmit com­
mand causes the transmitter to send eight contiguous 
ones (no zero bit insertion) immediately and then revert 
to either idle or flag streaming baSed on the Flag Stream 
bit. (The 8 1 s as an Abort character Is compatible with 
both SDLC and HDLC.) 

For'Loop Transmit, the Abort Loop Transmit 'command 
causes the transmitter to send one flag and then revert 
to one bit delay. Loop protocol depends upon FCS 
errors to detect aborted frames. 
The Abort Transmit Transparent simply causes the 
transmitter to revert to either idles or flags as a function 
of the Flag Stream mode speCified. 

The Abort commands require no parameters, however, 
they do generate an interrupt and return a result When 
complete. 

A summary of the Transmit commands is shown in 
Figure 31. Figure 32 shows the various transmit inter­
rupt result codes. As in the receiver operation, the 
transmitter generates interrupts, based on either good 

AF~llA 



APPLICATIONS 

completion of an operation or an error condition to start 
the Result phan. 

The Early Transmit Interrupt result occurs after the Idst 
data transfer to the 8273 If the Early Transmit Interrupt 
bit Is set In the Operating Mode register. If the 8273 Is 
commanded to transmit again within two character 
times, a single flag will separate the frames. (Buffered 
mode must be used for a Single flag to separate the 
frames. If non·Buffered mode Is selected, three flags 
will separate the frames.) If this time constraint Is not 
met, another Interrupt Is generated and multiple flags or 
Idles will separate the frames. The second Interrupt Is 
the normal Frame Transmit Complete Interrupt. The 
Frame Transmit Complete result occurs at the closing 
flag to signify a good completion. 

The OMA Underru'n result Is analogous to the OMA Over­
run result In the receive,. Since SDLC does not support 
Intraframe time fill, if the OMA controller or CPU does 
not supply the dllta In time, the frame must be aborted. 
The action taken by the transmitter on this error Is auto­
matic. It aborts the frame just 'as If an Abort command 
had been Issued. 

C.lear-to-Send Error result Is generated If CTS goes Inac· 
tlve during a frame transmission. The frame Is aborted 
as above. I 

The Abort Complete result Is self-explanatory. 'Please 
note however that no Abort Complete Interrupt Is 
generated when an automatic abort occurs. The next 
command type consists of only one command. 

COMMAND HEX PARAMETERS' RESULTS 
CODE TxUR 

TRANSMIT FRAME C8 ~.Ll.A.C TIC 
ABORT CC NONE TIC 
LOOP TRANSMIT CA ~.Ll.A.C TIC 
ABORT CE NONE TIC 
TRANSMIT TRANSPARENT co ~.Ll TIC 
ABORT CD NONE TIC 

'A AND C ARE PASSED AS PARAMETERS IN BUFFERED. MODE ONLY. 

Figure 31. Transmitter Commend SUmmery 

TIC TxSTATUS 
Dr-Do TRANSMITTER INTERRUPT RESULT CODE AFTER INT 

000 01100 EARLY Tx INTERRUPT ACTIVE 
000 01101 FRAME Tx COMPLETE IDLE OR FLAGS 
000 01110 DMA UNDERRUN ABORT 
000 01111 CLEAR TO SEND ERROR ABORT 

.000 10000 ABORT COMPLETE IDLE OR FLAGS 

Figure 32. Trensmllter InterTupt .... ult Codes 

Reset Command 

The Reset command provides a software reset function 
for the 8273. It Is a special case and does not utilize the 
normal command Interface. The reset facility is provided 
In the Test Mode register. The 8273 Is reset by simply 
'outputting a 01H followed by a OOH to the Test Mode 
register. Writing the 01 followed by the 00 mlmlcks the 
action required by the hardware reset. Since the 8273 re­
quires time to process the reset internally, at lflast 10 
cycles of the r2lCLK clock must occur between the 

7-51 

writing of the 01 and the 00. The action taken Is the 
same as If a hardware reset Is performed, namely: 

1. The modem control outputs are forced high 
Inactive). 

2. The 8273 Status register Is cleared. 

3. Any commands In progress cease. 

4. The 8273 enters an Idle state until the next com-
mand Is Issued. 

Modem Control Commends 

The modem control ports were discussed earlier In the 
Hardware section. The commands used to manipulate 
these ports are shown In Figure 33. The Read Port A and 
Read Port B commands are Immediate. The bit defini­
tion for the returned byte Is shown In Figures 13 and 14. 
Do not forget that the returned value represents the 
logical condition of the pin, I.e., pin active (low) = bit 
set. 

PORT COMMAND HEX PARAMETER REG 
CODE RESULT 

A INPUT READ 22 NONE PORT VALUE 
READ 23 NONE PORTYALUE 

BOUTPUT SET A2 SET MASK NONE 
RESET 83 RESET MASK NONE 

Figure 33. Modem Control Commend SUm_ry 

The Set and Reset Port B commands are similar to the 
Initialization commands In that they use a mask param­
eter which defines the bits to be changed. Set Port B 
utilizes a logical OR mask and Reset Port B uses a 
logical ANO mask. Setting a bit makes the pin active 
(low). Resetting the bit deactiVates the pin (high). 

To help clarify the numerous timing relationships that 
occur and their consequences, Figures 34 and 35 are 
provided as an illustration of several typical sequences. 
It Is suggested that the reader go over these diagrams 
and re-read the appropriate part of the previous sections 
If necessary. 

HLDC CONSIDERATIONS 

The 8273 supports HOLC as well as SOLC. Let's discuss 
how the 8273 handles the three basic HOLC/SOLC dif­

. ferences: extended addressing, extended control, arid 
the 7 1 s Abort charjlcter. 

Recalling Figure 4A, HOLC supports an address field of 
indefinite length. The actual amount of extension used 
Is determined by ,he least significant bit of the charac­
ters immediately following the opening flag. If the LSB 
is 0, more address field bytes follow. If the LSB is 1, this 
byte Is the final address field byte. Software must be 
used to determine this extension. 

If non-Buffered mode Is used, the A, C, and I fields are In _ 
memory. The software must examine the initial charac­
ters to find the el(tent of the address field. If Buffered 
mode Is used, the characters corresponding to the 
SOLC A and C fields are transferred to the CPU as Inter­
rupt results. Buffered mode assumes the two characters 
following the opening flag are to be transferred as inter­
rupt results regardless of content or meaning, (The 8273 

AfN.OO811A 



APPLICATIONS 

does not know whether it is being used in an SOLe or an 
HOLC environment.) In SOLC, these characters are 
necessarily the A and C field bytes, however in HOLC, 
their meaning may change depending on the amount of 
extension used. The software must recognize this and 
examine the transferred results as possible address 
field extensions. , 

Frames may still be selectively received as Is needed for 
secondary stations. Th,e Selective Receive command is 
still used. This command qualifies a frame reception on 
the first byte following the opening flag 'matching either 
of the A1 or A2 match byte parameters. WhUe this does 
not allow qualification over the complete range of H OLC 
addresses, it does perform ,a qualification on the first 
address byte. The remaining address field bytes, if any, 
are then examined via software to completely qualify 
the frame. 

Once the extent of the address field is found, the follow­
ing bytes form the control field. The same LSB test used 
for the address field is applied to these bytes to deter­
mine the control field extension, up to two bytes maxi­
mum. The remaining frame bytes in memory represent 
the iilformatlon field. 

The Abort character difference is handled in tHe 
Operating Mode register. If the HOLC Abort Enable bit is 
set, the reception of seven contiguous ones by an active 
receiver will generate an Abort Detect Interrupt rather 
than eight ones. (Note that both the HOLC Abort Enable 
bit and t~e EOP Interrupt bit must not be set simultane­
ously.) 

Now let's move on to the SOLC loop configuration 
discussion. 

CARRIER DETECT ~ 

RxD 

LOOP CONFIGURATION 

Aside from use in the normal data link applications, the 
8273 is extremely attractive in lOOp configuration due to 
the special frame-level loop commands and the Digital 
Phase Locked Loop. Toward this end, this section 
details the hardware and software considerations when 
using the 8273 In a loop application. 

The loop configuration offers a simple, low-cost solu­
tion for systems with multiple stations within a small 
physical location, I.e., retail stores and banks. There are 
two primary reasons to consider a loop configuration. 
The interconnect cost is lower for a loop over a multi­
point configuration since only one twisted pair or fiber 
optic cable is used. (The loop configuration does not 
support the passing of distinct clock signals from sta­
tion to station.) In addition, loop statiOns do not need 
the intelligence of a multi-point station since the loop 
protocal is simpler. The most difficult aspects of loop 
station design are clock recovery and implementation of 
one bit delay (both are handled neatly by the 8273). 

Figure 36 illustrates a typical loop configuration with 
one controller and two down-loop secondaries. Each 
station must derive its own data timing from the 
received data stream. Recalling our earlier discussion of 
the OPLL notice that TxC and RxC clocks are provided 
by the DPtt output. The only clock required in the 
secondaries is a simple, non-synchronized clock at 32 
times fhe desire'd baud rate. The controller requires bofh 
32x and 1 x clocks. (The 1 x is usually implemented by 
dividing the 32 x clock with a 5-bit divider. However, 
there is no synchronism requirement between these 
clocks so any convenient implementation may be used.) 

\'---

Rx COMMAND tIl t 
A C I, 

OR ~~~:~N~~~~~~i~""'''''''------------~'--I -7,--.:..----------
NON·BUFFERED 1 FRAME 1 POSSIBLE 

.MO~E COMPLETE IDLE INT 
IN~~::~~~~-------'-:'----------------------

A: ERROR, FREE FRAME RECEPTION 

CARRIER DETECT ~ \\\\\\\\\\\\ 

Rx COMMAND ! CD 

CD FAILURE IN~~~:~~~~_-,--__ ~ __ ..!...::F::AI:::LU::.::R:::E....:......:_.:-..:-...:......:.I-"...:......:.-,--_..:... ____ _ 

B. CARRIER DETECT FAILURE DURING FRAME RECEPTION 

Figure 34. $ample Recel .. ~ Timing Dlagrems 

AfN.00811A 



Tx COMMAND I 
TxD 

RTS~ 
cTS------' 

APPLl9ATIONS 

L 
L 

IA Ic 1'11'2 
OR~~~:~~~~~~=~~------------,---i---i-----------------------------------------------------

NON·BUFFERED 1 

IN~~::~~~~--------------M-O-D-E----------------------_-------------------F-R-A-M-E_C_O_M_P_L __ ETE 

A. ERROR·FREE FRAME TRANSMiSSION 

1ST FRAME 

TxCOMMAND I 
TxD 

RTS~ 

2ND FRAME 
I I I I I 
I I I I I 

OR~~~:~N~~~~~:;;-~~-------------~I-II----------------------------------I-'-1 ____ 1_'2 ________ ___ 

tEARLY Tx 
IN~~::~----------------------------~-----------------------------------------

B. DIAGRAM SHOWING Tx COMMAND QUEiNG AND EARLY Tx INTERRUPT 
(SINGLE FLAG BETWEEN FRAMES) BUFFERED MODE IS ASSUMED. 

TxCOMMAND I 

CTS----......J I '--------
OR~~~:~N;~~~~----------~t-A----~t-C----~t-'l-----t-12----~I-'3----------________________ __ 

1 CTS 

IN~~::~~~~--------------------------------~--------O=R~A~~R~yR~O~R~--------------
C. CTS FAILURE (OR OTHER ERROR) DURING TRANSMISSION ERROR 

INTERRUPT 

. Figure 35. Sample !~n8mIH.r TIming Diagrams 

7-53 AfN.OO811A 



APPLICATioNS 

hLOOP 
OSCILI,ATOR 

OR 
DIVIDER 

RoD ToC ToD 

1273 1273 
LOOP ToD I---If--f--I RxD LOOP 

TERIlINAL T~RIIINAL 

Figure 31. SDLC Loop AppIICIIUon 

A quick review of loop protocol Is appropriate. All com­
munication on the loop Is controlled by the loop con­
troller. When the controller wishes to allow the sec­
ondaries to transmit, It sends a polling frame (the con­
trol field contains a poll code) followed by an EOP (End­
of-Poll) character. The secondaries use the EOP 
character to capture the loop and Insert a rasponse 
frame as will be discussed shortly. 

The secondaries normally operate In the rapeater mode, 
retransmitting received data with one bit time of delay. 
All received frames ara repeated. The secondary uses 
the one bit time of delay to capture the loop. 

When the loop Is Idle (no frames), the' controller trans­
mits continuous flag characters. This keeps transitions 
on the loop for the sake of down-loop phase locked 
loops. When the controller has a non-polling frame to 
transmit, It simply transmits the frame and continues to 
send flags. The non-polling frame Is then repeated 
around the loop and the controller receives It to signify a 
complete traversal of the loop. At the particular sec;ond­
ary addressed by the frame, the data Is transferred to 

• memory while being repeated. Other secondaries simply 
repeat It. 

If the controller wants to poil the secondaries, It 
transmits a polling frame followed by all1s (no zero bit 
insertion). The final zero of the closing frame plus the 
first seven 1s form an EOP. While repeating, the secon­
daries monitor their incoming line fqr an EOP. Whe,n IiIn 
EOP Is received, the secondary checks if It has any 
response for the controller. If not, It simply continues 
repeating. If the secondary has a response, It changes 
the seventh EOP one Into a zero (the one bit time of 
delay allows time for this) and repeats it, f~rmlng a fiag 
for the down-loop stations. After this flag Is transmitted, 

7-54 

the secondary terminates Its rapeater function and In­
serts Its response frame (with multiple preceding flags 
If necessary). After the closing flag of the response, the 
secondary re-enters Its repeater function, repeating the 
up-loop controller 1 s. Notice that the final zero of the 
response's closing fiag,plus the repeated 1s from the 
controller form a new, EOP\ for the next down-loop 
secondary. This new EOP allows the next secondary to 
insert a response If It desires. This gives each secon-
dary'a chance to respond. ' 

Back at the controller, after the polling frame has been 
transmitted and the continuous 1s started, the con­
troller walt's until It receives an EOP. Receiving an EOP 
signifies to the controller that the original frame has 
propagated around the loop followed by any responses 
Inserted by ~he ~condarles. At this point, the controller 
may either send flags to Idle the loop or transmit the 
next frame. Let's assume that the, loop Is Implemented 
completely with the 8273s and describe the command 
flows for a typical controller and secondary. 

The loop controJler Is Inltlallz8d with commands which 
specify that the NAZI, Preframe Sync, Flag Stream, and 
EOP Interrupt modes are set. Thus, the controller en­
codes and decodes all data using NRZI format. Preframe 
Sync mode specifies that all transmitted frames be 
prefaced with 16 line transitions. This ensures that the 
minimum of 12 transitions needed by the DPLLs to lock 
after an all 1 s line have occurred by the time the second­
ary sees a frame's opening flag. Setting the Flag Stream 
mode starts the transmitter sending fiags which Idles 
the loop. AM the EOP Interrupt mode specifies that the 
controller processor will be Inter~upted whenever the 
active receiver sees an EOP, Indicating the completion 
of a poll cycle. 

When the controller wishes to transmit a non-polling 
frame, It simply executes a Frame Transmit command. 
Since the Flag Stream mode Is set, no EOP Is formed 
after the closing flag. When a polling frame Is to be 
transmitted, a General Receive command Is executed 
first. This enables the receiver aM allows reception of 
all Incoming frames; namely, the original polling frame 
plus any ,response frames Inserted by the secondaries. 
After the General Receive command, the frame is trans­
mitted with a Frame Transmit command. When the 
frame Is complete, a transmitter interrupt Is generated. 
The loop controller processor uses this Interrupt to 
reset Flag Stream mode. This causes the transmitter to 
start sending all1s. An EOP Is formed by the last flag 
and the first 7 1s. This completes the loop controller 
transmit sequence. 

At any time following the start of the polling frame 
transmission the loop controller receiver will start 
receiving frames. (The exact time difference depends, of 
course, on the number of down-loop secondaries due to 
each Inserting one bit time of delay.) The first received 
frame Is simply the original polling frame. However, any 
additional frames are those Inserted by the secondaries. 
The loop controller processor knows all frames have 
been received when it sees an EOP Interrupt. This inter­
rupt Is generated by the 8273 since the EOP Interrupt 
mo~e was set during initialization. At this pOint, the 
transmitter may be commandeq either to enter Flag 

~l1A 



APPLICATIONS 

Strea~ mode, Idling the loop, or to transmit the next 
frame. A flowchart of the above sequence is shown In 
Figure 37. 

The secondaries are initialized with the NRZI and. One 
Bit Delay modes' set. This puts the 8273 into the repeater ' 
mode with the transmitter repeating the received data 
with one-tiit time of delay. Since a loop station cannot 
transmit until it sees and EOP character, any transmit 
command is queued until an EOP is received. Thus 
whenever the secondary wishes to transmit a response, 
a Loop Transmit command is issued. The 8273 then 
walts until it receives an EOP. At this pOint, the receiver 
changes the EOP into a flag, repeats It, resets One Bit 
Delay mode stopping the repeater function, and sets the 
transmitter into Flag Stream mode. This captures the 
loop. The transmitter now Inserts its message. At the 
closing flag, Flag Stream mode is reset, and One Bit 
Delay mode is set, returning the 8273 to repeater func· 
tion and forming an EOP for the next down·loop station. 
These actions happen automatically after a Loop 
Transmit command is issued. 

RECEIVER 
INTERRUPT -
READ'RxIR 

o DENOTES COMMAND' 

c:::) DENOTES INTERRUPT CODE 

Figure 37. Loop Controller Flowchart 

7·55 

When the secondary wants its receiver enabled, a Selec­
tive Loop Receive command is issued. The receiver t.hen 
looks for a frame having a match In the Address field. 
Once such a frame Is received, repeated, and trans· 
ferred to memory, the secondary's processor Is Inter­
rupted with the appropriate Match interrupt result and 
the 8273 continues with the repeater function until an 
EOP is received, at which point the loop is cap~ured as 
above. The processor should use the interrupt to deter­
mine If It has a message for the controller. If It does, It 
simply issues a Loop Transmit command and things 
progress as above. If the processor has no message, the 
software must reset the Flag St~eam mode bit In the 
Operating Mode register. This will inhibit the 8273 from 
capturing the loop at the EOP. (The matCh frame and the 
EOP may be separated In time by several frames de· 
pending on how many up-loop stations 100~erted mes­
sages of their own.) If the timing Is such that the 
receiver has already captured the loop when the Flag 
Stream mode bit is reset, the mode is exited on a flag 
boundary and the frame just appears to have extra clos· 
ing flags before the EOP. Notice that the 8273 handles 
the queuing of the transmit commands and the setting 
and resetting of the mode bits automatically. Figure 38 
illustrates the major points of the secondary command 
sequence. 

INITIALlZE'­
SET NAZI. ONE 
BIT DELAY MODES 

o DENOTES COMMANDS 

~ DENOTES INTERRUPT CODes 

figure 38. Loop Sacondary Flowchart. 

AFN-OIl611A 



APPliCAtiONS 

When an off·line secondary wishes to come· on-line, 'It 
must'do so In a manner which does not disturb data'on 
the loop. Figure '39 shows a typical hardware Interface. 
The line 1$led Port could be one of the 8273 Port Bout· 
pufsand Is"assumed to be high (1) Initially: Thus up-loop 
data Is simply passed down·loop with no delay; how· 
ever, the receiver may stili monitor data on the loop. To 
come on·llne, the secondary Is Initialized with only the 
EOP Interrupt mode liet. The up-loop data Is then monl· 
tored until an EOP occurs. At this point, the secondary's 
CPU is Interrupted with an EOP Interrupt. This signals 
the CPU to set One Bit Delay mode In the 8273 and then 
to set Port low (active). These actions switch the sec· 
ondary's one bit delay into the loop. Since after the EOP 
only 1s are traveralng the loop, no loop disturbance oc­
curs. The secondary now walts for the next" EOP, cap­
tures the loop, and inserts a "new on-line" message. 
This signals the controller that a new secondary exists 
and must be acknowledged. After the seCondary re­
ceives its acknowledgement, the normal command flow 
Is used. I 

It is hopefully evident 'from the above, ,discussion that, 
the 8273 oJfers a very simple and easy to Implement 
solution for designing. loop stations whether they are 
controllers or down-loop secondaries. 

F1gU18 38. Loop In'-'-

APPLICATION EXAMPLE 

This section describes the hardware and software of the 
827318085 system used to verify the 8273 Implementa­
tion of SDLC on an actual IBM SDLC Link. This IBM link 
was gratefully VOlunteered by Raytheon Data Systems in 
Norwood, Mass. and I wish to thank them for their 
generous cooperation. The IBM system consisted of a 
370 Mainframe, a 3705 Communications Processor, and 
a 3271 Terminal Controller. A Comlink II Modem sup­
plied the modem interface and all communications took 
place at 4800 baud. In addition to observing correct 
responses, a Spectron 0601 B Datascope was used to 
verify the data exchanges. A block diagram of ttle 
s\,stem Is shown In Figure 40. The actual verification 
was accomplished by the 8273 system receiving and 
responding to polls ,from the 3705. This method was 
'-Ised on both point-ta-point and multi-pOint configura­
tions. No attempt was made to Implement. any higher 
protocol software over that of the poll and poll re­
sponses Since such software would not affect the veri­
fication of the 8273 implementation. As testimony to the 
ease of use of the 8273, the system worked on the first 
try. ' 

7-56 

I 

FlOUr. 40. Raytheon Slock DlllJllllm. 

An SDK-85 '(System Design Kit) was used as the core 
6085 sys,tem. This system provides up to 4K bytes of 
ROM/EPROM,. 512 bytes of RAM, 76 I/O pins, plus two 
timers as provided in two 8755 Combination EPROM/I/O 
devices and two 8155 Combination RAM/I/OlTlmer 
devices. In add.ltlon, 5 interrupt Inputs are supplied on 
the 8085. The address, data, and control buses are buf­
fered by the 8212 and 8216 latches and bidirectional bus 
drivers. Although it was not used In this application, an 
8279 Display Driver/Keyboard Encoder Is included to In­
terface the on-board display and keyboard. A block 
diagram of the SDK-85 Is shown In Figure 41. The 8273, 
and associated circuitry was constructed on the ample 
wire-wrap area provided for the user. 

The example 827318085 system is interrupt-driven and 
uses DMA for all data transfers supervised by an 8257 
DMA Controller. A 2400 baud asynchronous line, Imple­
mented with an 8251A USART, provides communication 
between the software and the user. 8253 Programmable 
Interval Timer is used to supply the baud rate clocks for 
the 8251A and 8273. (The 8273 baud rate clocks were 
used only during initial system debug. In actual opera­
tion, the modem supplied these clocks via the RS-232 in­
terface.) Two 2142 1Kx4 RAMs provided 512 bytes of 
transmitter and 512 bytes of receiver buffer memory. 
(Command and result buffers, plus miscellaneous 
variables are stored in the 8155S,) The RS-232 interface 
utilized MC1488 and MC1489 RS-232 drivers and 
receivers. The schematic of the system is shown in 
Figure 42. 

One detail to note is the DMA and interrupt structure of 
the transmit and receive channels. In both cases, the 
receiver is always given the higher priority (8257 DMA 
channel 0 has priority over the remaining channels and 
the 8085 RST 7.5 Interrupt Input has priority over the 
RST 6.5 Input.) Although the choice is arbitrary, this 
technique minimizes the chance that received data 
could be lost due to other processor or DMA com-
mitments. ' 

Also note that only one 8205 Decoder Is used for both 
the peripherals' and the inemorys' Chip Selects. This 
was done to eliminate separate memory and I/O 
decoders sincl! it was known beforehand that neither 
address space would be completely filled. 

The 4 MHz cry!ltal and 8224 Clock Generator were us8d 
only to verify that the 8273 operates correctly at that 
maximum spec. speed. In a normal system, the 3.072 
MHz clock from the 8085 w,ould be sufficient. (This fact' 
was verified du~lng Initial checkout.) 

AfN.OO811A 



APPLICATIONS 

L __ .J 

. ~~~ 
r---, 

INTERRUPT 
!NPUTS 

r~:-') 

1118 
L __ .J 

.. 
.. 

101M 

SDKes 

'"' 

~::JJ f.=-
r---' 

ADDAit~C==~=:=t:=--'=::::t==~~=:==t====~=:t=====~~~===t==Y. 1212 I ' L __ ..J 

r---, 
CONTROLC===:=+====t====:==~=====t==========\==~ 3~1211 ~CONTROL BUS 1 L __ .J 8US 

I I I I 
r - - -, OPTIONAL A PLACE HAS BEEN PROVIOED ON TIfE PC BOARD fOR THE DEViC& aul' THE L ___ J Il£VICEIS NOT INCLUDED 

L Figure 41. SDK.a5 FunctlonaTBIOCkDlaU1MIl 

, 
" .... , 
" " 

. 
, 

" iOR . 
" " " MEMW 

'" " " " " .. 
'" .. 

Figure 42. 82731SDK-IIS System 

7-57 AFN-00611A 



AP·PLlCATIONS 

The software consists of the normal monitor program 
supplied with the SDK-85 and a program to input com­
mands to the 8273 and to display results. The SDK-85 
monitor allows the user to read and write on-board RAM, 
start execution at any memory location, to single-step 
through a program, and to examine any of the 8085's in­
ternal registers. The monitor drives either the on-board 
keyboard/LED display or a serial TTY interface. This 
monitor was modified slightly in order to use the 8251A 
with a 2400 baud CRT as opposed to the 110 baud nor­
mally used. The 8273 program Implements monitor-like 
user interface. 8273 commands are entered by a two­
character code followed by any parameters required by 
that command. When 8273 Interrupts occur, the source 
of the interrupt Is displayed along with any results 
associated with It. To gain a flavor of how the user/pro­
gram Interface operates, a sample output is shown in 
Figure 43. The 8273 program prompt character is a "- " 
and user Inputs are underlined. 

The "SO 05" implements the Set Operating Mode com­
mand with a parameter of 05H. This sets the Buffer and 
Flag Stream modes. "SS 01" sets the 8273 in NAZI mode 
using the 'Set Serial 110 Mode command. The next com­
mand specifies General Receiver with a receiver buffer 
size of 0100H bytes (Bo = 00, Bl = 01). The "TF" com­
mand causes the 8273 to transmit a frame containing an 
address field of C2H and control field of 11H. The infor­
mation field Is 001122. The "TF" command has a speCial 
format. The Lo and Ll parameters are computed from the 
number of information field bytes entered. 

After the TF command is entered, the 8273 transmits the 
frame (assuming that the modem protocol is observed). 
After the closing flag, the 8273 interrupts the 8085. The 
8085 reads the interrupt results and places them in a 
buffer. The software examines this buffer for new 
results and if new results exist, the source of the inter­
rupt is dispiayed along with the results. 

In this example, the ODH result indica.tes a Frame Com­
plete interrupt. There is only one resuit for a transmitter 
interrupt, the interrupt's trailing zero results were in­
cluded to simplify programming. 

The next event is a frame reception. The interrupt 
results are displayed in the order read from the 8273. 
The EOH indicates a General Receive interrupt with the 
last byte of the information field received on an 8-bit 
boundary. The 03 00 (Ro, R1) results show that there are 
,3H bytes of information field received. The remaining 

,·two resuits indicate that the received frame had a C2H 
address field and a 34H control field. The 3 bytes of in­
formation field are displayed on the next line. 

8273 MONITOR Vl.2 

i!Ui 
- H..J!l. 
- .!!!L!!2..IU 
- TFC211OQl122 

TxlNT - 00 00 00 00 00 

RxlNT - EO 03 00 C2 34 
FF EE 00 

Figure 43. Sample 8273 Monitor ItO 

7-58 

Figures 44 through 51 show the flowcharts used for the 
8273 program development. The actual program listing 
Is included as Appendix A. Figure 44 Is the main status 
poll loop. After all devices are initialized and a prompt 
character displayed, a loop is entered at LOOPIT. This 
loop checks for a change of status in the result buffer or 
if a keyboard character has been received by the 8251 or 
if a poll frame has been received. If any of these condi­
tions are met, the program branches to the appropriate 
routine. Otherwise, the ioop.ls traversed again. 
The result buffer is implemented as a 255-byte circular 
buffer with two pointers: CNADR and LDADR. CNADR is 
the console pOinter. It pOints to the next result to be 
displayed LDADR is the load pOinter. It points to the 
next empty position in the buffer into which the inter­
rupt handler places the next result. The same buffer is 
used for both transmitter and receiver results. LOOPIT 
examines these pOinters to detect when CNADR is not 
equal to LDADR indicating that the buffer contains 
results which have not been displayed. When this oc­
curs, the program branches to the DISPL Y routine, 

DISPL Y determines the source of the undlsplayed 
results by testing the first result. This first result is 
necessarily the interrupt result code. If this result is 
OCH or greater, the result is from a transmitter interrupt. 
Otherwise It is from a receiver source. The source of the 
result code Is then displayed on the console aiong with 
the next four results from the buffer. If the source was a 
transmitter interrupt, the routine m.erely repoints the 
pOinter CNADR and returns to LOOPIT. For a receiver 
source, the receiver data buffer is dispiayed in addition 
to the receiver interrupt results before returning to 
LOOPIT. 

START 

CMDREC 

LOOPIT 

'--___ ..oN 

Figure 44. Main StatUI Poll Loop 

AfN.OO611A 



APPLICATIONS 

DISPLAY 
RxlNT 
MESSAGE 

ReAD AND DISPLAY 
REMAINING 
RESULTS 

Rx Tx 

DISPLAY 
TxlNT 
MESSAGE 

READ AND DISPLAY 
REMAINING 
RESULTS 

Figure 45. DISPLY Subrou~ti_n.;.e ______ _ 

Figure 46. GETCMD Subroutl~e. 

7-59 

Figure 47. TF Subroutlno 

Figure 46. TxPOL Subroutine 

PARAMETER #2 

PARAMETER #1 

COMMAND 

B ~I -# OF PARAMETERS I 

Figure 49. COMM Subroutine with Command Bull.r For"",t 

AFN.00611A 



APPLICATIONS 

EXIT TO 
MONITOR 

Figure SO. Txl (Transmitter Interrupt) Routine 

If the result buffer pOinters indicate an empty buffer, the 
8251 A is polled for a keyboard character. If the 8251 has 
a character, GETCMD is called. There the character is 
read and checked if legal. Illegal characters simply 
cause a reprompt. Legal characters indicate the start of 
a command input. Most commands are organized as two 
characters signifying the command action; Le., GR -
General Receive. The software recognizes the two char· 
acter command code and takes the appropriate action. 
For non·Transmit type commands, the hex equivalent of 
the command is placed in the C register and the numbeJ 
of parameters associated with that command is placed 
in the B register. The program then branches to the 
COMM routine. 

The COMM routine builds the command buffer by 
reading the required number of parameters from the 
keyboard and placing them at the buffer pOinted at by 
CMDBUF. The routine at COMM2 then issues this com· 
mand buffer to the 8273. 

If a Transmit type command i.s specified, the command 
buffer is set up similarly to the the COMM routine; 
however, since the information field data is entered 
from the keyboard, an' intermediate routine, TF, is 
called. TF loads the transmit data buffer pOinted at by 
TxBUF. It coulltS the number of data bytes entered and 
loads this number into the command buffer as Lo, 
Ll . The command is then issued to the 8273 by jumping 
to CMDOUT. 

One command does not directly result in a command be· 
ing issued to the 8273. This command, Z, operates a 
software flip· flop which selects whether the software 
wiU respond automatically to received polling frames. If 

the PolI·Response mode is selected, the prompt 
character is changed to a '+'. If a frame is received 
which contains a prearranged poll control field, the 
memory location POLIN is rt;lade nonzero by the receiver 
interrupt handler. LOOPITexamines this location and if 
it is nonzero, causes a branch to the TxPOL routine. The 
TxPOL routine clears POLIN, sets a pointer to a special 
command buffer at CMDBUF1, and issues the command 
by way of the COMM2 entry in'the COMM routine. The 

'special command buffer' contains the appropriate 
response frame for the poll frame received. These ac· 
tions only occur when the Z command has changed the 
prompt to a '+'. If the prompt is normal' -', polling 
frames are displayed as normal frames and no response 
is transmitted. The PolI·Response mode was used duro 
ing the IBM tests. 

7-60 

READ RESULTS AND 
PLACE IN RESULT 
BUFFER 

~EXITTO 
~-~MONITOR 

Figure 51., Rxl (Recevler tnterrupt) Routine 

AFN-006llA 



APPLICATIONS 

The final two software routines are the transmitter and 
receiver Interrupt handlers. The transmit Interrupt 
handler, Txl, simply saves the registers on the stack and 
checks if loading the result buffer will fill It. If the result 
buffer will overfill, the program is exited and control Is 
passed to the SDK-85 monitor. If not, the results are 
read from the Txl/R register and placed In the result buf­
fer at LDADR. The DMA pointers are then reset, the 
registers restored, and Interrupts enabled. Execution 
then returns to the pre-Interrupt location. 

The receiver Interrupt handler, Rxl, Is only slightly more 
complex. As In Txl, the registers are saved and the 
possibility of overfilling the result buffer Is examined. If 
the result buffer Is not full, the results are read from 
RxllR and placed In the buffer. At this point the prompt 
character Is examined to see if the Poll-Response mode 
Is selected. If so, the control field is compared with two 
possible polling control fields. If there Is a match, the 

special command buffer is loaded and the poll Indicator, 
POLIN, is made nonzero. If no match occurred, no action 
Is taken. Finally, the receiver DMA buffer pointers are 
reset, the processor status restored, and Interrupts are 
enabled. The RET Instruction returns execution to the 
pre-Interrupt location. 

This completes the discussion of the 827318085 system 
design. 

CON~LUSION 

This application note has covered the 8273 In some 
detail. The simple and low cost loop configuration was 
explored. And an 8273/8085 system was presented as a 
sample design Illustrating the DMAllnterrupt-driven In­
terface. It is hoped that the major features of the 8273, 

, namely the frame-level command structure and the 
Digital Phase Locked Loop, have been shown to be a 
valuable asset In an SOLe system design. 

AFN-00611A 



APPLICATIONS 

APPENDIX A 

7-62 AFN-00611A 



APPLICATIONS 

APPENDIX A 

ASII88 : F1: RAVT73. SRC 

ISI5-II 8889,8885 I1ACRO ASSEI'EILER, X18S IIODULE PAGE 1 

LOC (lIJ SEQ SOURCE STAmENT 

1 $NOPAGING IlOO85 1I0C0ND 
2 TRUE EQU' 80H 
J; 
4 TRUE1 EOO 80H 
5. 
6 DEM EQU 09H 
7. 
8; 
9 ; 

; ee FOF RAYTHEON 
· FF FOP. SELF-TEST 
; 00 FOR NORMAL RESPONSE 
; FF FOR LOOP RESPONSE 
· 90 FOF NO Doo 
· FF FOP. DE~1O 

19 • GENERAL 82;'1 MONITOR WITH RflYTHEOIl POLL MODE ADDED 
11; 
17 ; 
18 ; 
19 ,COttIAND 51JPPOFTED' ARE' RS - RESET SERIAL 1/0 I100E 
20 ; 55 - SET SERIAL It'O MODE 
21 • PO - RESET OPERATI NGI100E 
22 ; , 50 - SET OPERATING MODE 
21 ; PO - PECEIYER r'ISABLE 
24 , !lP - GENERAL RECEIVE 
25 , SF - SELECTIVE RECEIVE 
26 , TF - TRANSMIT FRAI1E 
27 , AF - ABORT FilM 
28 ; SP - SET PORT B 
29 ; RP - RESET POPT B 
J0 ; ~ - RESET 8NE B IT DELAY (PAR = 7F) 

:>1 , 58 - SET ONE BIT DELAY (PAP = 89', 
12 " SL - SELECTIVE LOOP RECEIVE 
n ; TL - TRANSMIT LOOP 
74 ; Z - CHANGE MODES FLIP/FLOP 
38 ; 
.9 .: -too<*"""*~*********""""**"*_'i<*****_"'''''''*''''''***_* ___ *_** 
40, 
41 ; NOTE, 'SET' COI'1Mf1lOS IMPLEMENT LOGICAL OR' FlH:TIONS 
42 , 'RESET' COMMANDS IMPLEMENT LOGI CAL 'AND' FUNCTIONS 
4] • 

44 • ~'I"''''''*"'**'''''*~;'''*'''*'''''''''*''*'''**-******-''''''***''''''**''''''''''''**--*****-
45.: 
46 "BUFFERED MODE t1UST BE SELECTED WHEN SELECTIVE ~ECEII/E IS USE&. 
4;' ; , 

48 . COlt1AND- FORMAT IS "COHI'IAND ',2 LTRS,,' "PAR.Ii' ,'PAR. 12' ETC, 
49.: 
'5.a ; THE TRANSt1IT FP.fII'IE CIltR{I FORMAT IS: 'TF' 'A' 'C' 'BUFFER CONTENTS'. 
51 ; NO LENGTH COUNT 15 NEEDED, BlfFER CONTENTS IS ENDED WITH A CR, 
52 ; 

51 ; .*'I<.".*"''',,*-***''******~'''--'''''''*-*****-*******---*** 
54; 
55 ,POLLEro MOOE WHEN POLLE[' MODE IS SELECm (DENOTED BY A "+' PROMPT), IF 

7-63 



0099 
0090 
8891 
0091 
8Il92 
'9893 
8892 
8820 
8884 
8808 
0001 
8802 

0!39B 
889C 
889[\ 
009E 
088C 
0036 
0086 
2017 
2018 

etlAS 
00A!3 
0\iAl 
OOA2 
80ft3 
B0AS 
8200 
8880 
0962 
4iFF 
e06J 
il061 
81FF 

56; 
57 ; 
62 ; 

64; 
65 ; 8273 EQUATES 
66 ; 
67 STAm EOO 
68 cOM/'In EQU 
69 PARMn EQU 
70 RESL73 EOO 
71 TXIR73 EQU 
72 RXIR73 EQU 
73 TEST73 EOO 
74 CPBF EOO 
75 TXINT EOO 
76 RXINT EQI) 
77 TXIRA EQU 
78 R'l.iRA EQU 
79 ; 
80 ; 8253 EQUATES 
81 ; 
82, MODES: EQU 
S3 CNT053 EQlJ 
84 CNT153 EQU 
85 CNT253 EQU 
86 COBP. ~QU 
87 MOCNT0 EQU 
88 MDCNT2 EQU 
89 LKBRl EQIJ 
ge LKBi<2 EQlJ 
91; 

APPLICATIONS 

A SNRM-P OR RR(8)-P IS RECEII/ED, A RESPONSE FRAtIE OF NSA-F 
OR 1<.R(8H IS TAANS/'IITTED. OTHER CIlIt1ANDS OPERATE NORl1AU.Y. 

90H 
90H 
91H 
91H 
92H 
93H 
92H 
2ElH 
04H 
0SH 
81H 
02H 

9BH 
9CH 
9DH 
9EH 
e0eCH' 
36H 
!3B6H 
2017H 
201BH 

; STATUS REGISTER 
; COt1/'lAND REGISTER 
; PARAMETER REGISTER 
; RESULT REGISTER 
; TX rNTERRUPT RESULT REGISTER 
; Ril INTERRUPT RESULT REGISTER 
; TEST MODE REGISTER 
; PARAMmR BUFFER FULL BIT 
.' Til INTERRUPT BIT IN STATUS REGISTER 
.' RX INTERRUPT aIT IN STATUS REGISTER 
,f'-: I NT RESULT MAILABLE BIT 
; RX INT RESULT AVAILABLE BIT 

,8253 MODE WORD REG! STER 
; COUNTER 9 REGISTER 
; COUNTER 1 REGISTER 
; COUNTER 2 REGI?TER 
; CONSOLE BAUD RATE (2400 j 
; MODE FOR COUNTER il 
; MODE FOR COliNTER 2 
.' 8273 BAUD RFlTE LS8 ADR 
,827J BfIllC' I<.ATE 1'158 ADR 

92 ; BAUD RATE TABLE. BAUD RATE LKBRl LKBR2 
93 ; 
94; 
95 ; 
96 .; 
97 ; 
98 ; 
99 ; 

100 , 
101, 
1e2 ,8257 EflllATE5 
103 ; 
1';;4 MotiS7 EQU \iASH 
11)5 CHeADR EQU \iA0H 
106 CH0Te EOO eAlH 
107 CHlADR EOi.! \iA2H 
108 CHHC EOU iffGH 
109 5TAT57 EOIJ BASH 
WI Rt:BUF Eili 8200H 
111 r:~BljF EQU 8000H 
112 DRDMA EQU 62H 
in RXTC EG!lI 41FFH 
114 ENNlil EQt! 63H 
115 NDMA mu 61H 
116 TilTC EOli B1FFH 
117 .. 

********* ***** ***** 
9690 
4800 
2400 
1200 

600 
JOO 

2E 09 
5C 00 
B9 00 
72 01 
E5 02 
C9 05 

; 13257 MODE PORT 
j CH0 (lW ADR REGISTER 
i CH0 TER!'lINAL COUNT REGISTER 
; CH1 (TXi ADR REGISTER 
.. CHi TER!'lINAL COUNT REGISTER 
; STfiTUS REGISTER 
.; RX BUFFER STFlRT ADDRESS 
; Tii BUFFER START ADDRESS 
; DiSABLE Rl\ DI'IA CHANNEL TX STILL ON 
i TERMINAL COUNT AND MODE FOR RX CHANNEL 
.' ENABLE BOTH TX AND Rii CHANNELS-OO. WR.. TX STOP 
, D I SABLE TX DMA CHANNEL Ri\ STILL ON 
; TERMINAL COUNT AND MODE FOR iX CHANNEL 

7-64 ~l1A 



9989 
9989 
!IIl88 
IIIl88 
IlIlCE 
1!Il27 
IlIlIl2 

1l61F 
1l5F8 
1l75E 
Il5BB 
95EB 
Il6C7 

28C1l 
9tlIl3 
9988 
2eIl0 
2821l 
Il00D 
9tlIlA 
2004 
20CE 
2018 
2813 
2898 
8993 
8811 
oon 
8811 
2015 
2016 
2827 

APPLICATIONS 

118 ; 8251A EQUATES 
119 ; 
121l CNTL51 EQU 89H ; CONTROL IIORI) REGISTER 
121 STAT51 EQU 89H ; STAM REGISTER 
122 0051 EQU 88H ; TX DATR REGISTER 
123 10051 EQU 8SH ; RX DATR REGISTER 
124 1'l\E51 EQlI _ IlCEH ; !lODE 16>:, 2 STOP, I«) PARITY 
125 0051 EQU 27H ; COMIIfINI), ENABI.E TX&RX 
126 ROY EQU 82H ; RXRDY BIT 
127 ; 
128 ; IIlNITOI! SUBROUTINE EQUATES 
129 ; 
131l GETCH EQU Il61FH i GET CHR FROPI KEYBffiRD, ASCI I IN CH 
131 ECHO EQU 95FSH i ECHO CHR TO DISPLAY 
132 YALDG EQU 875EH ; CHECK IF YALID DIGIT, CARRY SET IF YALID 
133 CNYSN EQU 85B8H i CONYERTS ASCII TO HEX 
134 CRI.F EQU Il5EBH ; DISPLAY CR, HENCE LF TOO 
135 NPIOUT EQU 96C7H ; WMRT BYTE TO 2 ASCII CHR AND DISPLAY 
136 ; 
137 ; IUSC EQUATES 
138 ; 
139 STKSRT EQIJ 29C0H ; STACK START 
148 CNTLC EQIJ 83H ; CNTL-C EQUIVALENT 
141 IOlTOl! EQIJ 8IlIl8H ; I1ONITOR 
142 C/1DBlIF EQU 2il90II i START OF COMl'IfINI) BlIFFER 
143 Cl'IDBFl EQIJ 20291i ; POLL MODE SPECIAL TX COlttflNl) BlIFFER 
144 CR EQIJ OOH ; ASCII CR 
145 LF EQU 0AIi ; ASCII LF 
146P.ST75 EQU 21lD4H ; PST7. 5 JUMP ADDRESS 
147 RST~ EQU 21lCEH ; RST6. 5 JUMP ADDRESS 
148 LOOM 

~ 2019H .: RESlIL T BUFFER LOAD POINTER STORAGE 
149 CNADR 2813H ; RESULT BUFFER CONSOLE POINTER STORAGE 
158 RESBlf EQU 2899H i RESlIL T BlIFFER START - 255 BYTES 
151 SNRMP EQIJ 9JH ,SNRI'I-P CONTROL CODE 
152 RR0P EQIJ 1lH ; RR(Il:'-P CONTROL CODE 
153 NSft!: EQU nH ; NSA-F CONTROL cortE 
154 RR8F EQU l1H ; RR\9)-F CONTIWL CODE 
155 PRMPT EQIJ 2815H ; PRPlPT STORAGE 
15f POLIN EOO 2816H • POLL IIODE SELECTION INDICATOR 

.. 157 DEMODE EOO 2827H ; DEMO "ODE IND ICATOR 
161 ; 

162 .****************************_* __ ****_*********_******* 
163 ; 
164 : RAI'I STORAGE DEFINITIONS: 
165 : LOC DEF 
166 ; 
167 : 
168 ; 
16~ , 
179, 
171, 
172 ; 
173 ; 
177 j 

179 , 
188 j 

181 i 

2000-291lF 
2018-2911 
2813-2814 
2015 
2816 
2817 
2818 
2819 
2820-'2026 
2888-28FF 

COI1I'IAND BUFFER 
RESlILT BUFFER LOAD POINTER 
RESlIL T BUFFER CONSOLE POINTER 
PROMPT CHARACTER STORAGE 
POLL IIODE INDICATOR 
BAlJI) RATE lSB FtP. SELF-TEST 
BAlID RATE I'I5B FOR SELF-TEST 
SPARE 
RESPONSE COI'IIIAND BlIFFER FOR POLL MODE 
RESlIL T BUFFER 

7-65 ~11A 



APPLICATIONS 

183 ; 
184 : PROGRAM START 
185 , 
186 ; INITIALIZE 8~53, 8257, 8251A, AND RESET 8273. 
187 ,ALSO SET NOR/'IAL MODE, ANI) PRINT SHlNON MESSAGE 
188 ; 

0800 199 ORG 808H 
198 

0899 31C920 191 START: LXI sp, STKSRT ; INITIALIZE SP 
9803 3E36 192 MVI A, !'IOCHT0 ,8253 MOOE SET 
0895 0398 193 OUT /'IODE53 ,8253 MODE PORT 
0897 JA172S 194 LOA LKBRl .: GET S273 BAllO RATE L58 
080A D39C 195 OUT CNTes] ; USING COUNTER 9 AS fJAUI) RATE GEN 
esac 3A1820 196 LOA LKBR2 ; GET 8273 BUfI) RATE M5B 
a80F D39C 197 OUT CNTB53 iCOUNTER 0 
0811 CDiA8S 198 CAlL RXDMA ; lNITIAl~ZE 8257 RX OMA CHANNEL 
0814 CD358B 199 CAlL TXDMA j INITIALIZE 6257 Tl( DMA CHffINEI. 
9817 :lE01 200 MVI A,8iH ; OUTPUT. 1 FOLLOWED BY A 9 
0819 0392 2131 OUT TESTn .' TO TEST I10DE REGISTER 
081B 3Eee 2132 MYl A,08H ; TO RESET THE 8273 
0810 D392 203 OUT TESm 
0SlF :;E20 204 Mill AJ J_J ; NORI1AL MODE f'RmIT CHR 
0821 321520 205 SiA PRMPT .: PUT IN STORAGE 
13824 3E09 296 Mill A,90H ; Tl( POLL RESPONSE IN1) lCATOR 
9826 321620 287 STA POLIN ; 0 MEANS NO SPECIAl TX 
9829 322729 208 STA DEMODE . ; CLEAR DEI'IO MOOE 
882C 21AJOC 212 LXI H .• SIGNON ; SI GNON MESSAGE AOR 
9B2F CD920C 21] CALL TYMSG ; DISPLAY SIGNON 

214, 
215 ; I'IONlTOR USES .JUMPS IN RAM TOOlRECT INTERRUPTS 
216 : 

13832 210420 217 LXI H..R5T75 ; RST7. :5 JUMP LOCATION USED BY MONITOR 
0835 e1000C 218 LAI B,RXI ; IllDRESS OF RX INT ROUTINE 
08:>8 360 219 MVI M .. !lC3H ; LOAD 'JMP I OPCooE 
083A 23 229 INX H ; INC POINTER 
083B 71 221 /'10\1 M,C ; LOAD RXI L58 
083C 21 222 INX H ; INC POINTER 
9BlD 7O 223 MOV I'I .. B ; LOAD RXI "58 
083E 21CE20 224 LXI H .. R5T65 ; RST6. 5 JUI'IP LOCATION USED BY MONITOR 
0841 01CEOC 225 LXI B, TXl ; ADDRESS OF TX INT ROUTINE 
0S44 36('3 226 HVI M,0GH ; LOAD 'JMP" OPCODE 
0846 23 227 INX H ; INC PO INTER 
0847 71 228 f'IOV M,e ; LOAD r":I L58 
0848 23 229 INX H ; INC POINTER 
9849 713 238 /'101/ /'I,B ; LOAD TXI I1SB 
004A JE1S 231 MvI A,1SH ; GET SET TO RESET INTERRUPTS 
084C 38 232 SIt; ; RESET INTERRUPTS 
0840 FB 2J3 EI ; ENABLE INTERRUPTS 

2:>4, 
235 I INITIAlIZE BUFFER POINTER 
236 . 
2j7 i 

B84E 219028 218 L"· H.. RESBUF ; SET RESULT BUFFER POINTERS 
0851221:>20 239 SiD CNADR ; RESULT CONSOLE POINTER 
8854 221020 240 SHLD LOADR ; RESULT LOAD POINTER 

241, 
242 ; MAIN PROGRAI'l LOOP - CHECKS FOR CHANGE IN RESULT POiNTERS, USART STATUS, 
243; OR POLL STATUS 

7-66 AfN,()0811A 



APPLICATIONS 

244 , 
9857 CDEB85 245 CI'I>REC: CALL CRLF ,DISPLAY CR 
885A 3A1520 246 LOA mIPT ,GET CURRENT PRCIIPT CHI! 
985D 4F 247 I!OY C,A ; MOVE TO C 
985E CDFS85 248 CALL ECHO ,: D ISPLfIY IT 
08612A1329 249 LOOP IT : LHLD CNfI)R ; GET CONSOLE POINTER 
08647D 259 HOY A.L ,5AYE POINTER LSB 
11865 2111829 251 LHL.D LDADR ,lET LOll) POINTER 
8868 8l'l 252 ClIP L ;SfIIE L58? 
0869 C2190A 253 JNZ DISPY ,NO, RESlL TS NEED DISPLAYING 
886C DB89 259 IN STATS1 ,YES. c/£CK KEYBOARD 
986E E682 2b0 ANI lID',' ; CHR RECEIVED? 
0878 C27D08 261 JNZ GETOO ; I1UST BE CHR SO GO GET IT 
8873 3A1629 262 LDA POLIN : GET POLL I100E STATUS 
es7~ A7 263 ANA A ;IS IT Il? ' 
8877 C24C1l9 264 JHZ TXPOL i NO, nEN POLL OCCURRED 
0B7A C36110 265 JI1P LOOPIT i YES, TRY AGAIN 

266 i 

267 i 
268 ,COItfIN[l RECOGNIZER ROUTINE 
269, 
278 : 

107D CD1F86 271 GETOO, CALL GETCH ,GET CHR 
88S9 CDF8Il5 272 CALL ECHO ;ECHO IT 
1l88! 79 2t3 HOIf A.C ,SETUP FOR C!I1PARE 
0084 FE52 274 cpr ,'R' iR? 

8886 CAAFOO 275 JZ RDWN i GET !'lORE 
8889 FE53 276 CPI '5" i S1 
ease CAD7Il8 277 JZ SDIIN ,GET !'lORE 
08SE FE.!7 278 CPI 'G" iG? 

1l891l CAms 279 ]Z GD/oIN ; GET !'lORE 
0893 FE54 280 CPI 'T' ; T? 
Il895 CAIlE0!I 281 JZ TDWN ,lET I'IORE 
Il89S FE41 2S2 CPI 'A' iA? 
889A CA2289 28Z JZ FW4 i GET 11OF.E 
889D FE5A 284 CPI 'z' iZ? 
1l89F CA1109 285 12 Ct100E ; YES, GO CHANGE MODE 
!!8A2 FE03 299 CPI CNTLC ,; CNTL-l" 
Il8f!4 CAIlSOO 291 rz MONTOR ,EXIT TO MONITOR 
1ilS1I7 !!ElF ' 292 ILLEG MYI C, ",,, ,: PRINT ? 
1l8A9 roF8Il5 293 CALL ECHO ;DISPLAY IT 
BSAC C357IlS 294 JMP CI1DP.EC ,LooP FOR CMlAND 

295 
!!8fIF CD1FB6 2% RDWN, CALL IETCH i lET NEXT CIf1 
Il882 CDF8Il5 297 CALL ECHO ,ECHO IT 
!!SB5 79 298. I!OY A,C ,SETUP FOR CilMPARE 
1l8B6 FE4F 299 CPI '0' ,O? 
8B88 CA5D09 ::;ee JZ ROC/Il) i RO COI1I1ANI) 
Il8B8 FE')::: J81 CPI '5' is? 
esero CA6799 3!!2 JZ RSC1'ID iRS COMMAND 
esc!! FE44 393' CPI 'D' iD? 
08(2 CA71B!1 394 J2 RDCII) ; lID COMI'IAND 
Bses FE'50 385 CPI 'P' ,P? . 
08C7 CADSIl3 J96 J2 P.POO : RP COIV1AND 
il13CA FES" 307 cpr 'R' ,R? 
98CC CflOO08 388 ], STAPT ,5TART OYER 
98CF FE4~ 309 CPI 's,' :S? 
88rt1 CA7809 310 JZ RBC11D ; RB COIt1ANV 

7-67 AfN.GllA 



APPLlCATJONS 

0804 'C3A798 311 JMP ILLEG i ILLEGfL TRY AGAIN 
312 

0807 CDIF06 313 SDWN: CALL GETCH i GET NEXT CHR 
080A CDF80S 314 CALL ECHO i ECHO IT, 
98OC- 78 31S I'IOV A~B ; SETUP FOR COI'IPARE 
08DE FE4F 316 CPI '0' ;O? 
9BE0 CAA609 317 JZ 50(./11) ,; SO COItIfIN[) 

98E3 FE53 318 CPI '5' ;S? 
08ES CAB089 319 J2 SSOO i S5 COI'IIIANI) 
0BE8 FE52 320 CPI 'R' iR? 
0BEA CABAe9 321 JZ 5RC./1I) ; 5R COItIfIN[) 

0BEDFE'50 322 CPI 'P' ;P? 
98EF CAE209 323 J2 SPCMD ;SPCOHI1AND 
98F2 FE42 324 CPI 'B' ;B? 
tlBF4 CA8509 325 JZ SBCMD ;5BCOIt1AND 
0BF7 FE4( 326 CPI 'L' ;L? 
98F9 CASFB9 '327 JZ SLCM{J ;5L COMMAND 
98FC C3A798 328 JIiP ILLEG ; ILtEGAL TRY AGAIN 

129 
tlBFF WIF06 ]30 GOWN. CALL GETCH ; GET NEXT CHR 
0902 CDF895 1;;1 CALL ECHO ;ECHO IT 
9905 78 1>2 MOV A,B .; SETUP FOR COMPARE 
0906 FE52 Z33 CPI 'R' ; R? 
090S (.RC499 334 JZ ORCMI) ;OR COMMAND 
090B CA70S' 335 JMP ILLEG ; ILLEGAL.. TRY AGAIN 

336 
09BE CDIFB6 337 TDWN. CALL . GETCH .; GET NEXT' CHR 
0911 C[)FS05 338 CALL ECHO ; ECHO IT 
0'?14 78 ~39 ~10V A,B ; SETUP FOR COMPARE 
0915 FE46 340 CPI F- ;F? 
B917 CAEce'? 341 J2 TFCMI) iTFCOMf1AN{) 
09111 FE4C 34~ C.PI 'L" .• L? 
09iC CA9909 34:; JZ 'fLCMD ; TL C.OI1l1llND 
091F GAieS 344 J~1P ILLEG , ILLEGAL TRY i'lGAIN 

345 
0922 C[liF06 :;46 Af<WN. CALL GETGH ,GET NEXT CHR 
0925 CDF8es 347 CALL ECHO .; ECHO IT 
13928 78 348 MOV A,B .; SETUP FOR COMPARE 
0929 FE46 ']49 CPI "F' iF? 
09213 CACEf.l9 sse JZ AFCMr, : AF COMMAND 
092E CiA70e 3'51 JMP ILLEG . ; ILLEGAL. TRY AGAiN . 

352 .' 
s5} . P.ESET POLL MODE RESPONSE - CHANGE PROMPT CHi': AS IN[) ICATOR 
354; 

;39~1 F1 355 CMOf,E r,r ; !!ISflBLE INTERRUPTS 
0912 3A1520 356 LDA PRMPT ; GET CURRENT PROMPT 
0935 FE2[' 357 CPI i NORMAL MODE? 
0937 C243e9 358 0 mz S~l . NO, CHANGE IT 
893ft 3E2B 359 11VI A, 'f' .: NEW PROMPT . 
093C 121520 3613 STA PRMPT .; SiORE NEW PROMPT 
B9~F FB 365 Ei ,ENABLE INTERRUPTS 
0940 CS70e 366 JMP CI'lfIREC . RETURN TO LOOP 
0941 3E2D 367 SW. MVI A .• '-' ; NEWPROl'1PT CHR 
@945 32152i1 368 STA PR~lPT ,STORE IT 
.\l948 FB ~69 EI ; ENABLE INTERRUPTS 
13949 C35708 37t3 mp CMOREC ,RETURN TO LOOP 

371 . 
"3.72 • 

7-68 AF~11A 



APPLICATIONS 

:m .: TRANS/1IT ANSWER TO POlL SETUP 
1'i4.: 

994C lEOO 382 TXPOl: PlYI A,OOH .: CLEAR POlL INDICATOR 
894E 121629 184 STA m.IN .: It{)ICATOR AOR 
9951 216198 3S5 LXI It LOOPIT ; SETUP STACK FOR COIt!AND ruTPUT 
Il954 E5 l86 PUSH H .: PUT RETURN TO ClIDREC ON STACK 
9955 9684 387 "VI B,04H ; GET • OF PARAMETERS READY 
0957212020 388 LXI It Cl'lDBF1 ; POINT TO SPEC IAL BUFFER 
Il95A ClFFllA 389 JI1P COI1I12 .: JutIP TO COIf1AN{l OUTPUTER 

390 .: 
191 .' 
192 .: 
191 .: comAN!) I~LEMENTING ROUTINES 
394 ; 
395 ; 
196 .: RO - RESET OPERATING ~ 
197.: 

895D 0601 398 ROCPll): PlYI B,91H .: iI OF PARAMETERS 
095F 0E51 199 Iff I C,51H .'C~~ 
0%1 CDE50A 400 CALL COI1I1 ; GET PARAI'IETERS At{) ISSUE C~ 
0964 CJ5798 491 ~ CMDREC ; GET NEXT CMIAND 

402.: 
403 .: RS - RESET SERIAL I/O MODE COMMAND 
484 ; 

0%7 0601 405 RSCPII): ",,'I S,01H .: # OF PARAMETERS 
09698E60 4!!6 PlYI C,60H .:~ 

096B CDE5IlA 407 CALL COI1I1 ; GET PARAMETERS AND ISSUE COMMAND 
0%E C35708 498 J~ CPll)REC .: GET NEXT COMMAND 

409 .' 
410 .' RD - RECEIVER DISABLE C~~ 
411.: 

0971 0600 412 RDCPII): Iff I B,00H ; II OF PARAMETERS 
0973 BECS 4B PlYI C.' OC'5H , COMMAND 
0975 CDE51lA 414 CALL COMM ,ISSUE COMMANI) 
0978 C15708 415 ~ CPII)REC .: GET NEXT COI'W1AND 

416.: 
41i' ,RB - RESET ONE SIT DELAY COMtIRND 
418 , 

09i'S 0601 419 RSCMD: Iff! -B,91H .: I OF PARAIltETERS 
097D 8E64 420 Mill C,64H , COt1I'IAND 
097F CDE5IlA 421 CALL COMM ; GET PARAMETER AND ISSUE COMt1ANI) 

B982 C35798 422 . 1m' CI'IfoPEC : GET NEXT COMMAND 
423 ; 
424 ; 58 - SET ONE BIT DELAY COI1I1ANt< 
425.: 

0985 0691 426 SSCPlD: PlV! B,01H ; I OF P~ETER5 
0987 8EA4 427 ~1Y! C,0A4H .:COMMAND 
0!l89 CDE5IlA 428 CALL COMM : GET PARAi'lETER AND ISSUE COItIANI) 

mc C35708 429 .IMP OOREC ; GET NEXT CortlAND 
430 .: 
431,5L - SELECTIVE LOOP RECEIVE COMMAND 
412 .: 

09BF 0604 433 SLCPID:' I'IVI B,04H .:. OF PARAMETERES 
0991 8EC2 434 I'll/I C,0C2H .: COI'II'IAND 
0993 CDE50A 435 CALL COMM i GET PARAI'IETERS AND ISSUE CO/tIAND 
09% C35708 436 JMP CMDREe ; GET NEXT COMMAND 

437 , 
438 ; TL - TRANSMIT LOOP C~1I'1AND 

7-69 AFN-00611A 



, -

~P~LICATIONS 

439 i 

em 219829 +18 TLoo: LXI H,00Blf i SET COItIfN) BUFFER POINTER 
899C 9682 441 "VI B,8211 i L!JAD PARAIIETER COlNTER . 
899E 36CA 442 !WI ",IICAH ;LOfI> COfIIffIN) INTO BlfFER 
99A8 218228 443 LXI H, CIIDBI.f+2 i POINT AT ADR AN> CNTL. POSITIONS 
119A3 ClF689 444 JKP TFC/fD1 ; FINISH OFF COIIlIAND IN TF RWTlt£ 

. 445, 
446 i so - SET OPERATING IIlDE mIIM) 
-447 ; 

Il9FI6 9691 448 SOCI1O: !WI B,81H i' OF PfRAI'IETERS 
89A8 8E91 449 /'IVI C,91H i COIII'fAN) 

89AA CDE58A 458 CALL COlI'! ; GET ~ fH) -ISSUE COItfAN) 

IJ9Al) C:;S788 451 JIIP CItDREC i GET NEXT COIIfH) 

452 i 

453 i SS - SET SERIAL 110 COPttIANI) 

454 i 

8988 8681 455 SSCIID: l'1li1 a,81H ;. oF PARAI1ETERS 
89B2 8EfI0 456 111/1 C,8A8H ; COI'IIIfINI) 

0984 CDE58A 457 CALL COI1I1 ; GET PfI1AI'IETER AN> ISSUE COItIfIN) 

0987 C35788 458 JI1P CllDREC ,.GET NEXT COI1IIAN) 

459 ; 
~ ,SR - SElECTIVE RECEIVE COII'IfH) 

461 ; 
89BA 8684 462 SRCI1D: l'1li1 a,84H ;. OF PfIRAIETERS 
09BC 8EC1 46l MIll C,8C1H ;COI'IIIfINI) 
89BE CDE58A 464 au COI!I1 ,GET PARfII'IE~5 fIN) ISSUE COltIH) 
09C1 Cl5788 465 JI1P CI1DREC ; GET NEXT COItfAN) 

466 ; 
467 ; GR - GENERAL RECEIVE COI1HAI{l 
468 ; 

89C4 !l682 469 GRCI1O: 11111 a,8211 ; t() PARAI1ETERS 
09C68EC8 478 "'.'1 C,9C8H ;COPIIIfH) 

99C8 CDE58A 471 CALL COlt! ; ISSUE COHIIfH) 
89CB C35788 472 JI1P Ct1DREC 

, 
; GET NEXT COIt1AND 

473 i 

474 ; AF - ABORT FRAME COt1/1AND 
475 ; 

89CE 8608 476 AFOO: 11111 a, II8H j NO PARAMETERS 
0909 ECC 477 I'IYI C,8CCH ;CtM1I) 

8902 CDE50A 478 -CALL CO"'" ; ISSUE COIII'IfN) . 
8905 Cl5788 479 JI1P CHDREC ; GET NEXT COItfINI) 

480 i 

481 ,RP - RESET PORT CMIfINI) 

482 : 
89088681 483 11PC11O- I'll/I a,81H " .OF PARAI'ETERS 
89Oil0m 484 11111 C,63/i ; CortlAND 
89DC CDE50A 485 CALL COlt! ; GET PARAI1ETER AND ISSUE COItftNI) 

89DF Cl5788 . 486 JI1P CI1DREC ; GET NEXT COI1I1AND 
487 ; 
488 ,5P - SET PORT cotII'IANI) 
489 , 

89£28681 499 5PC/1I)- 11111 a,81H ; I OF PARAI1rnRS 
89£4 0EA:? 491 1'1111 C,9AlH ; COI1I'IAND 
89£6 C(\E50A 492 . CALL COi'Ii'I ; GET PARAI'IETER AND ISSUE COItIANI) 

99£9 Cl5788 493 JIIP Ct1DREC I ;GET HEX COI1i'IfIND 
494 ; 
495 , TF - TRANSI1IT FRAIIE COItIAN) 
496 , 

7-70. AfN.Ooel1A 



APPLICATIONS 

89fC 210020 497 TFCIID: LXI H, C/'ID8I.F i SET COI1IIAN) BlimR POINTER 
09EF 0682 498 I'IVI B,02H i LOAD PARAI£TER COUNTER 
89Fl 36C8 499 I'IYI 1'I,0C8H i LOAf) COI'II'IAND INTO BUFFER 
99F3 218220 500 LXI H, CIIDBUF +2 i POINT AT ADR AND CNTL POSITIONS 
99F6 78 581 TFCI'ID1: PlOY A,B j TEST PARAI'ETER COUNT 
0!lF7 A7 582 ANA A ;IS IT 9? 
99F8CAtJ7eA 59l JZ TBUFL i YES, LOAD TX DATA BUFFER 
99FB CDAD0A 594 CALL PARIN ; GET PARAI'IETER 
89FE DAA798 505 JC ILLEG ; ILLEGAL CHR RETURNED 
0A91 2l 506 INX H i INC CIJI'II1AII) BUFFER POINTER 
9A02 95 597 OCR B i DEC PARAI'IETER COUNTER 
0A93 77 598 MOV I'I,A i LOAf) PARAI1ETER INTO COftIANI) BUFFER 
0A94 ClF699 599 .JI'IP TFC/'ID1 i GET NEXT PARAI'IETER 

518 
8A!l7 219088 511 TBUFL: LXI H, TXBUF i LOAD TX DATA BUFFER POINTER 
9A!lA !l10909 '512 LXI B,9090H i CLEAR BC - BYTE COUNTER 
9A!lD C5 513 TBUFL1: PUSH B i SAllE BYTE COUNTER 
!lA!lE CDAD0A 514 CALL PARIN ; GET DATA, ALIAS PARAl'lETER 
eA11 DA1B0A 515 JC ENOCH!<. .' MAYBE END IF ILLEGAL 
0A14 77 516 MOil 1'1., A .' LOAf) DATA BYTE. INTO BUFFER 
!!A1S 23 51;' INX H j INC BUFFER POINTER 
eA16 C1 518 POP B .' ~ORE BIITE COUNTER 
eA1? 1.33 519 INX B ; INC BYTE COUNTER 
8A18 C3000A S29 JMP TBUFL1 j GET NEXT DATA 
!!AlB FE0D 521 ENOCH!<.: CPI CR .' RETURNED ILLEGAL CHR CR' 
eA1D CA240A 522 JZ iBUFFL .' lIES, THEN r,.; BUFFER FULL 
!!A2!l Cl 523 POP B ,RESTORE B TO SAllE STACK 
0A21 GA7es 524 Ji'IP ILLEG .' ILLEGAl. CHR 
!lA24 C1 5.<"5 TBliFFL. POP B ; RESTORE BYTE COUNTER 
0A25 210120 526 m H, CMDBUF+1 .' POINT INTO COMl1ANO BUFFER 
0A2871 527 MOI/ 1'1, C .' STORE BYTE COUNT LSB 
0A29 2Z 528 !Nil H .' INC POINTER 
tlA2A 70 529 1'101/ 1'1, B .; STORE BYTE COUNT M5B 
'3A2B 0604 530 MIiI B,04H .' LOAD PARAMETER COUNT INTO B 
!lA2D 2E60A 531 L:<I H, TFRET .' GET RETURN AOR FOR THIS ROUTINE 
9A30 ('5 532 PUSH B ; PUSH ONCE 
811:1 E3 533 XTHL .' PUT RETURN ON STACK 
!lA32 C5 534 PUSH B .' PUSH IT SO CMDOUT CAN USE IT 
!lAn ClFB0A 535 JMP CMOOUT .' ISSUE COMMAND 
!lA36 C35798 . 536 TFRET: JMP CMOREC .' GET NEXT COMMAND 

r:"~'" , 
... I~( • 

538, 
539 ; ROUT! NE TO DISPLAY RESULT IN RESUlT BUFFER WHEN LOAD AND CONSOLE 
540 .' PO INTERS ARE DIFFERENT. 
'541. 
542.' 

0A39 160'5 54} [IISPY Mill D .• 05H ,D I S RESULT COUNTER 
0A3B 2AB29 544 LHLD CNADR .' GET CONSOLE POINTER 
0A3E E5 545 PUSH H .' SAllE IT 
0A3F 7E 546 MOV A,M .' GET RESUlT Ie 
~413 E61F 547 ANI 1FH .' LIMIT TO RESUlT CODE 
0A42 FEaC 548 CPI eCH .; TEST IF RX OR TX SOURCE 
0A44 DA620A 54!l JC RXSORC .' CARRY, THEN RX SOURCE 
0A47 21C30C 550 TXSORC LXI H, TXiMSG ,IX INT MESSAGE 
0fl4A CD920C 551 CALL TI'MSG .' DISPLAY IT 
!lA4D E1 552 DJSP'r"2. POP H .' RESTORE CONSOLE POINTER 
0A4E 7E 55} DiSP.,,1 MOil A,M ; GET RESULT 
0A4F CDC7B6 554 CALL NtlOIJT .' CONVERT AND DISPLAY 

7-71 AFN-00811A 



APPLICATIONS 

9A52 1lE28 555 IIVI . C,' , iSP 011 
8fI54 CDFII85 556 CfU ECII) ; DISPlAY IT 
8fl57 2C 557 INR L i 1M: BtFFER POINTER 
8fI58 15 558 OCR D . ; DEe RESIJ.. T CWfTER 
8A59 C24E8fI ,,559 ~ DI5PV1 i f«IT DONE 
8fI5C 221128 568 SILl) CNAI)R i lJlOATE ctW5(l£ POINTER 
8fI5F C35788 561 JPF Cll)REC ;RETtRN TO.LtXP 

562 i 

563 ;' 
~ iRECEIYER SOtm - DISPLAY RESlJ..TS All) RECEVIE BtFFER COOENTS 
,565 i 

566 i 

9A62 21880C 567 RXSORC: LXI H,RXIIISG ; RX INT IIESSIIGE fllR 
9fI65 CD928C 568 CALL TYIISG i DISPLAY I'IESSIIGE 
IIA6S E1 569 POP H ; RESTORE CONSClE POINTER 
8A697E 

, 
578 Rl<S1: !lOY R.." ; RETRIEVE RESU.. T FRU1 BtFFER 

IIA6R COC786 571 CALl. NIOJT ; CCINERT All) DISPlAY IT 
8A6I) IlE28 572 IIYI c.' , iASCII SP 
9A6F CDFS95 573 CflL EOO iDISPLAY IT 
9A72 2C ',574 INR L i INC lXf5OI.E POINTER 
9A73 15 575 OCR D ; DEC RESULT CWfTER 
0074 7A 576 /lOY A.D i GET SET TO TEST COUNTER 
9R75 FE84 577 CPI 84H ; IS THE RESIJ.. T R8? 
1lR77 CRR28R 578 JZ RePT ; YES, GO SRYE IT 
IiIR?A FE8l 579 CPI 83H ; IS THE RESULT R1' 
1ilR7C CRR78R 588 JZ RiPT ; YES, GO SAVE IT 
8R7F A7 581 RXS2: RNA A ; TEST RESlL T ctX.M'ER 
8R88 C2698R 582 JN4 Rl<S1 i NOT DONE YET, GET NEXT RESU..T 
8R83 221328 583 SILl) CNRDR ; DtH, SO UPDATE CONSOLE POINTER 
8R86 CDEBe5 584 CALL CRLF ;DISPLRY CR 
8R89 218882 585 LXI H,RXBlf ; POINT AT RX BUFFER 
8R8C C1 S86 POP B ; RETRIEVE RECEIVED COlm 
8fI8ro 78 587 Rl<S3: IIOY R..B ; IS COUHT 9? 
8R8E B1 588 ORA C 
8RSF CAS788 589 JZ CIflREC ; YES, GO BACK TO LtXP 
9A92 7E 598 I10Y A," ; NO. GET 011 
8R93 C5 S91 PUSH B iSRYE BC " 
8A94 CDC786 592 CALL NlWT i CONVERT AND DISPLAY CHR 
8R97 IlE28 593 IIYI C .. ' '" ;RSCII SP 
8R99 CDFII85 594 CALL EOO· ; DISPLAY IT TO SEPARATE DATA 
!3R9C C1 595 POP B ;RESTORE BC 
0A9D 8B S96 OCX B ;DEe COUHT 
IiIR9E 23 ' 597 IN:< H i INC POINTER 
i'IR9F C38D8R 598 JNP RXS3 i GET NEXT 011 

599 
!!RA2 4E 688 RePT: !'lOY Cd' i GET R8 FOR RESULT BUFFER 
8AAl CS 681 PUSH B iSAVE IT 
8RR4 C37F8R 682 JMP RXS2 iRETURN 

683 
8RR7 C1 684 R1PT: POP B iGET R8 
8RR8 46 68S !lOY B'" ; GET R1 FOR RESULT BtFFER 
9AA9 C5 686 PUSH B ;SAVE IT \ 
eAfIft C37F9A ' 607 JPF RXS2 

608 i 

609 ; 
:618 ; 
611 ; PRRRIIETER INPUT - PARRllETER RETURt£I) IN E REGISTER 
612 ; 

7-72 AfN.OO81iA 



APPLICATIONS 

613 .: 
IlAAD C5 614 PARIN: PUSH B '.: SAVE Be 
8AAE 1601 615 MYI D,81H .: SET CHR COUNTER 
IlAB8 CD1F96 616 CALL GETCH .: GET C!fit 
BAS3 CDFB05 617 CALL ECHO .:ECHO IT 
8AB679 618 !'lOY A,C .: PUT CHR IN A 
9AB7 FE20 619 CPI iSP? 
9AB9 C2E90A 620 JNZ PARINi .: NO, ILLEGAL TRY AGAIN 
BABe CD1F96 621 PAR INJ: CALL GETCH .: GET CHR OF...PARAI'IETER 
9ABF CDF895 622 CALL ECHO .:ECHO IT 
9AC2 CD5E97 62J CALL YALOO .: IS IT A VALID CHR? 
9AC5 D2E90A 624 JNC PARINi ,; NO, TRY AGAIN 
0AC8 CDBB05 625 CALL CNYBN .: CONYERT IT TO HEX 
9ACB 4F 626 HOY C,A .: SAVE IT IN C 
9ACC 7A 627 I10V A,D .: GET CHR COUNTER 
0ACD A7 628 ANA A ;IS IT 9? 
0ACE CADC0A 629 JZ PARIN2 ; YES, DONE WITH THIS PARAMETER 
9AD115 639 DCF D • [lEC CHR COUNTER 
0AD2 AF 611 XRA A .:CLEAR CARRY 
0AD3 79 632 HOY ftC .: REr.o~'ER 1ST CHR 
0AD4 17 633 RAL " ROTATE LEFT 4 PLACES 
9AD5 17 634 RAL 
0AD6 17 635 RAL 
9AD7 17 636 RAL 
0AD8 5F 637 MOY E,A .: SAYE IT IN E 
0AD9 C3BC0A 638 JI1P PARIN3 .: GET NE)<:T CHR 
9ADC 79 639 PARIN2: MOY A,C ,; 2ND CHR IN A 
0ADD B3 648 ORA E .: COi'IBINE BOTH CHRS 
9ADE C1 641 POP B ; RESTORE Be 
0ADF C9 642 RET ,; RETURN TO CALLING PROGRAM 
9AE079 643 PARIN1: HOV A,.C .: PUT ILLEGAL CHR IN A 
9AE1 37 644 STC ; SET CARRY AS I LLEGAL STATUS 
9AE2 C1 645 POP B ; RESTORE Be 
0AD C9 646 RET .: RETURN TO CALLING PROGRAtI 

647 , 
648 ; 
649 ; JlII1P HERE IF BUFFER FULL 
650 i 

0AE4 CF 651 BUFFUL: DB 0CFH ,EXIT TO MONITOR 
652; 
653 ; 
654 i COMI1AND DISPATCHER 
655 .: 
656 .: 

0AE5 210020 .657 r.oi'I/1' LXI H,. CI1DBUf .: SET POINTER 
0AE8 C5 656 PUSH B ;SAVE Be 
0AE9 71 ,659 I10V /'I,C . ,LOAD COMMAND INTO BUFFER 
0AEA 78 660 COI1I11: MOY A,B ; CHECK PARAMETER COUNTER 
0AEB A7 661 ANA A i IS IT 07 
0AEC CAFB9A 662 JZ CMOOUT i YES, GO ISSUE COMI'IAND 
0AEF CDAD0A 663 CALL PARIN ,; GET PARMTER 
0AF2 DAA708 664 JC ILLEG ,ILLEGAL CHR RETURNED 
0AF5 23 665 INX H ; I NC BUFFER POINTER 
9AF6 95 666 DCR B · DEC PARAMETER COUNTER 
0AF7 77 667 MOV M,.N · PARAMETER TO BUFFER 
W8 C3EA0A 668 JMP COMM1 ; GET NEXT PARAMETER . 
0AFB 210028 669 CI'IOOJT, LXI H,. CI1DBUF i REPO INT PO INTER 
0AFE C1 678 POP B ,; RESTORE PARAMETER COUNT ' 

7-73 AFN.()()611A 



APPLICATIONS 

tlAFF DB90 671 COMM2: IN STAm ; READ 8271 STATUS 
080107 672 RLC ; ROTATE CBSl' INTO CARRY 
0802 DAFF0A m JC CM12 ; WAIT FOR OK 
0805 7E 674 MOY A,M ; 01(, MOVE COItIfINI) INTO A 
0B06 0390 675 OUT COMM73 ; OUTPUT COItIfINI) 
0808 78 676 PARi: MOIl A,B ; GET PARAllETER COUNT 
0809 A7 677 ANA A ; IS IT II? 
0B0A C8 678 RZ • ; YES, DONE, RETURN 
0B0B 23 679 INX H ; INC COItJANI) BUFFER POINTa! 
0B0C 135 680 OCR B ; DEC PARAI'IETER COUNT 
0B00 DB90 681 PAR2: IN STAm i READ STATUS 
0B0F E629 682 ANI CPBF ; IS CPBF BIT SET? 
0811 C2eD9B 683 JNZ PAR2 ; WAlT TIL ITS 9 
0814 7E 684 MOil fl,M ; OK, GET PARAMETER FROM BlfFER 
0815 D:m 685 OUT PARM73 ; OUTPUT PARAMETER 
0817 C3880B 686 JMP PARi .; GET NEXT PARAMETER 

687; 
688; 
689 ; INITIAL IZE AND ENABLE RX DMA CHANNEL 
690 ; 
691 ; 

0B1A 3E62 692 RXDMA: MIll A, DRDMA ; DISABLE RX DMA CHANNEL 
0B1C D3A8 693 OUT MODES? .; 8257 MODE PORT 
0B1E 010982 694 LXI B, RXBUF i RX BUFFER START ADDRESS 
9B21 79 695 MOil A,C .; RX BUFFER LSB 
9822 D3A0 696 OUT CH0ADR .' CHe ADR PORT 
0824 78 697 ri011 fl,B .; RX BIiFER MSB 
0825 D3A0 698 OUT CH9ADR ; CH0 ADR PORT 
0B27 01FF41 699 UI B, RliTe ,RX CH TEERMlNAL COUNT 
0B2A 79 700 MOil A, C ; RX TERMINAL COUNT LSB 
0B2S D3Al 701 OUT CH0Te ;CHe TC PORT 
0B2D 78 792 MOil .A,B ; RX TmlINFL COUNT MSB 
0B2E D3Al 703 OUT CHeTC ; CHe TC PORT 
eS3:0 3E63 704 MVI A,ENDMA .; ENABLE £lIlA WORD 
0B32 D3A8 705 OUT MODES? ; 825? MODE PORT 
0B34 C9 706 RET .;RETURN 

707 ; 
708 ; 
709 ; INITIALIZE AND ENABLE IX DMA CHANNEL 
710 ; 
711; 

0B35 3E61 712 TXDMA: Mill A, DTftl1A ; DISABLE TX DMA CHANNEL 
0B37 D3A8 713 OUT MODES? ; 8257 tomE PORT 
!lEG9 010080 ?14 LXI B, TXBUF ; TX BUFFER START ADDRESS 
083C 79 715 MOIJ A)C , TX BUFFER LSB 
aB3t' D:>A2 716 OUT CHiADR ; CH1 ADR PORT 
08?F 78 717 ' MOIJ A,B i TX BUFFER HSB 
0840 D3A2 718 OUT CH1ADR i CH1 ADR PORT 
aB42 01FF81 719 TXDHA1: LXI B, mc ; TX CH TERMINAL COUNT 
084'5 79 720 MOIl A,C .; TX TERMINAL COUNT LSB 
0846 FsA3 721 OUT CH1lc ; CHi TC PORT 
tlB48 78 722 MOY A .. B ; TX TERMINAL COUNT MSB 
03849 v5il::; 723 OUT CHiTC ; CHi TC PORT 
BB4B 3m 724 MYI A, ENDMA ; ENABLE DMA WORD 
BB4D D?.AS 725 OUT MODES? ; 8257 MODE PORT 
!3B4F C9 726 RET .,RETLIRN 

727 • 
728 ; 

7-74 AFN.(J0811A 



. APPLICATIONS 

729 ; II£RRtPT PROCESSING SECTION 
739 i 

ecee 731 ~ IICII9II 
732 i 

mi 

734 i RECEfYER INTERRIPT - RST 7. 5 (LOC lCH) 
735 i 

BCIl8 E5 736 RXI: PUSH H iSAVE HL 
9C91 F5 737 PUSH PSW i,SAVE PSW 
9C82 C5 73S PUSH B iSAYE BC 
9C8305 739 PUSH D iSAYE DE 
9C84 3E62 748 PlYI A, DRDIII i DISABLE RX DI1A 
IIC86 D3A8 741 OUT IIlDE57 i 8257 /'KIDE PORT 
8C88 3E18 742 PlYI R,18H i RESET R5T7. 5 FIF 
IIC8R 38 743 SIll 
9C8B 1604 744 PlYI D,84H i D IS RESULT COUNTER 
9C8D 2A1028 745 LHLD LDRDR i GET LORD POINTER 
BC10 E5 746 PUSH H iSAYE IT 
8C11 E5 747 PUSH H ; SAVE IT RGfIIN 
9C12 4'5 748 !lOY ' B,L iSRYE LSB 
BCD 2R1328 749 LHLD CIf!DR ; GET CONSOLE POINTER 
8C1684 758 RXI1: INR B i BIIIP LeA) POINTER LSB 
8Cl; 78 751 PlOY A,B .' GET SET TO TE$T 
9C1S BD 752 C/'F L ; LORD=CONSOLE? 
9C19 CRE40R ' 753 JZ BUFF\I.. i YES, BUFFER FULL 
8C1C 15 754 OCR D i DEC CtUlTER 
8C1D C2168C 755 JNZ RXI1 i NOT DONE, TRY AGAIN 
8C28 1685 756 PlYI D.85H i RESET COUNTER 
tq2a 757 POP H ; RESTORE LeA) POINTER 
8C23 DB90 75B RliI2: IN STAm i READ STATUS . 
8C25 E60B 759 ANI RXINT ; TEST RX INT BIT 
8C27Cf1398C 768 JZ RXB i DONE, 00 FINISH tP 
BC2A DB98 761 IN STAm i READ STATUS AGAIN 
8C2C E602 762 ANI . RXIRA i IS RESULT READY? 
8C2E CA238C 76J JZ . RXI2 i NO, TEST RGfIIN 
8C3l D893 764 IN RXIR73 ,YES, READ RESULT 
8C3J 77 765 IIOY M,A ; STORE IN BUFFER 
0C34 2C 766 INR L ; INC BUFFER POINTER 
8C3'5 15 767 OCR D ; DEC COUNTER 
0C36 C3238C 768 .JI'P RXI2 i GET mlRE RESULTS 
8Cl9 7ft 769 RXB: I10V A,D i GET SET TO TEST 
8C3A A7 i7!l ANA A ; ALL RESULTS? 
8C3B CA458C 771 JZ RXI4 ; YES, SO FINISH UP 
OC3E 3680 772 PlYI IU8H ; NO, LOfI) 8 UL DONE 
0':'40 2C m INR L ; BUI'IP POINTER 
8C4115 774 OCR D i DEC COUNTER 
9C42 C3398C 775 JMP RXIJ iGO fGlIN 
8C45221828 776 RXI4: SHLD. LDADR ; UP,I)ATE LOAD POINTER 
0C48 3A1528. m LDA PRI'IPT ; GET I10DE III) ICATOR 
8C48 FE2D 77B CPI '-' i NORIIAl !'lODE? 
9C4D CAB58C m JZ RXI6 ; YES, CLEAN UP BEFORE RETURN f 

788 ; 
781 i POLL I'1OOE SO CHECK CONTROL BYTE 
782 ; IF coNTRoL IS A POLL, SET UP SPECIIL TX COI'1IIfN) BUFFER 
78~ i AND RETURN WITH POLL III)ICATOR NOT 8 
784 ; e 

0C50 E1 • 785 POP H ; GET PREVIOUS LOAD ADR POINTER 
8C51 7E 786 IIOY A,II ,GET IC BYTE FRO/'! BtfFER 

7-75 . AfN.OD811A 



APPLICATIONS 

9CS2 E61E 787 ANI lEH i LOOK ATGOOO. FRflI1E BITS 
0C54 C2898C 788 JNZ RXI5 i IF NOT 8, INTERRUPT WASN'T FROI'I A GOOD FRflI1E 
9CS7 2C 789 INR L i B\'PASS. R8 AND R1 IN BUFFER 
OC58 2C 798 INR L 
OC592C 791 INR L 
0C5A 56 792 I'IO't' [),II i GET ADR BYTE AND SAVE IT IN [) 
0C5B 2C 79J INR L 
OCSC 7E 794 t10Y A,II i GET CNTL BYTE FROI'I BUFFER 
OC5[) FE93 795 CPI SNR~1P j WAS IT SNRIt-P? 
OCSF CA6C9C 796 JZ . n i YES, GO SET RESPONSE 
OC62 FEll 797 CPI RReF' ; WAS n· RR(8l-P? 
OC64 C2890C 798 JHZ RXI5 i YES, GO SET RESPONSE, OTHERWISE RETURN 
OC67 1E11 799 ItYI E..RR8F ; RRHI)-P SO SET RESPONSE TO RR(8)-F 
OC69 Cl6EOC BOO JItP TXRET ; GO FINISH LOADING SPECIAL BUFFER 
0C6C 1E73 881 n: 1'1\11 E,NSAF .' SNRIt-P SO SET RESPONSE TO NSA-F 
OC6E 212029 802 TXRET: LXI H,Clt[)8F1 ; SPECIAL BUFFER ADR 
OC71 36GB i306 HVI • It !lCSH ; LOAD TX FRAItE COllMAN[) 
OC73 23 808 INX H ; INC POINTER 
OC743600 809 HilI H,89H iL9=9 
OC76 23 819 INX H ; INC POTHTER 
8en l600 811 ItYl H,89H ;L1=8 
OC79 23 812 INX H ; INC POINTER 
OC7A 72 813 . HOY I'I,[) . ; LOAD RCIJD ADR BYTE 
OC7B 23 814 INX H ; INC POINTER 
OC7C 73 815 MOil I'LE ; LOAD RESPONSE CNTL BYTE 
OC71) JE81 816 MVI A,81H ; SET POLL INDICATOR NOT 0 
OC7F 321620 B17 STA POPN ; LOAD POLL INDICATOR 
OC82 C3890C 818 JItP RXI5 !RETlIRN 

819 
OC85 E1 828 RXI6: POP H ; CLEAN UP STACK IF NORMAL MODE 
OCB6 CJ890C 821 JItP RXI5 !RffilRN 

822 
OC.B9 CD1Ae8 823.RXI5: • CALL RXDMA • RESET DMA CHANNEL 
OC.BC D-l 824 POP 0 .' RESTORE REGISTERS 
OC80 C1 825 POP B 
OC8E F1 826 POP PSW 
OC8F E1 827 POP H 

. OC98 FE 828 EI • ENABLE I NTERRlIPTS 
OC91 C9 829 RET • RETURN 

830 • 
831 ; 
832. MESSAGE TYPER - ASSUMES HESSAGE STARTS AT HL 
833 ; 
834 ; 

OC92 C5 . 835 TYI'ISG: PUSH [; ;SflVE Be 
OC93 7E 836 TYI'ISG2: HOV A, M ; GET fISC II CfIR 
OC94 23 837 INX H ; INC POINTER 
OC95 FEFF 83B CPI BFFH ; STOP? 
OC97 CAA10C 839 J2 T'r'I'ISG1 ; YES, GET SET FOR EXIT 
0C9A 4F B40 1'1011 C,A ; SET UP FOR [) ISPLAY 
OC9B CDFB05 . 841 CALL ECHO ; DISPLAY CHR 
OC9E C3930C 842 JItP WI'ISG2 j GET NEXT CfIR 
OCA1 C1 843 TYMSG1: POP B ,RESTORE BC 
OCA2 C9 844 RET .• RETUP.N 

845 j 

B46 ; 
847. ,SIGNON I'IESSAGE 
848 ; 

7-76 AFN.Q0611A 



APPLICATIONS 

9CR] 90 849 SIGIOI: .DB CR, '8273 I'IONITOR Yi 1', CIt IlFFH 
IlCA4 J8323733 
9CA8 294D4F4E 
9CAC 49544FS2 
9CB0 202Il56J1 
9C84 2E31 
9CB6 90 
0CB7 FF 

858 .: 
851.: 
852 .: 
853 .: RECEIVER INTERRUPT PlESSflGES 
854 .: 
855 ; 

9CB8 91) 856 RXII'ISG: DB CR, 'RX INT - ',0FFH 
9CB9 525821149 
9C13I) 4E54292D 
9CC1 20 
0ce2 FF 

857 ; 
858 .' TRANSIIITTER INTERRUPT PlESSAGES 
859.: 

OCC391) 860 TX1115G: OB CR., 'TX INT - ',0FFH 
OCC4 54582049 
OCC8 4E54202D 
0Cce 20 
0CC~ FF 

861; 
S62 .: 
863 ; TRAN5I'lITTER INTERRUPT ROUTINE 
864 ; 

9CCE E5 S65 TXI: PUSH H ; SfIYE Hl 
0CCF F5 866 PUSH PSW • .:SAYE P5W 
0C00 C5· 867 PUSH B iSAYE Be 
0CD1 05 86S PUSH 0 ; SAVE .DE 
9C023E61 869 MYI A,OTDl1A ; DISABLE TX DI1A 
0CD4 D3A8 870 OliT i'lIDE57 ; 8257 I'IOOE PORT 
9CD61604 871 MYI 0,04H .: SET COUNTER 
0COS 2A1020 872 lHlD . LDADR ; GET lOAD POINTER 
0CDB E5 873 PliSH H i SAVE IT 
0COC 45 874 !'lOy B,l i SfIYE LSB IN B 
9COO 2A1320 875 lHlD CNAOR : GET CONSOLE POINTER 
0CEfJ 04 876 TXI1: IN!! B ; INC POINTER 
0CE1 78 877 !'lOY A,B ; GET SET TO TEST 
OCE2131) 878 CMP L : lOfll)=CONSOLE? 
0CE3 CRE4l!A 879 JZ BUFFUl ; YES, BUFFER FULL 
0CE6 15 880 OCR D i NO, TEST NEXT LOCATION 
0CE7 C2E00C 8S1 JNZ TX11 ; TRY AGAIN 
0CEA E1 8S2 POP H ; RESTORE LOAD POINT~ 
9CEB DB92 883 IN TXIR73 i REAl) RE.."l1L T . 
0CED 77 8S4 11011 I'I,A ; STORE IN BUFFER 
0CEE 2C 885 IN!! L ; IN!! POINTER 
0CEF 3600 S86 I1YI M,00t! ; EXTRA RESUlT SPOTS 0 
0CF1 2C 887 INR l 
OCF23600 8BS MY! M,OOt! 
9CF4 2C 889 IN!! l 
9CF5 3600 890 tiVI M,OOH 
9CF7 2C 891 IN!! L 

7-n AfN.OO611A 



APPLICATIO"S 

IlCF8 3688 892 ""'I II.IIIIH 
IICFA 2C 893 IN! L 
9CFB 221029 894 SHLI) I.DADR i tFofITE LOAD POINTER 
IlCFE CD35IIB 899 CFU TXDI1A i RESET' DI'III CHfINIEI.. 
8DII1 D1 9811 POP 0 ;RESTORE DE 
Il002 C1 9111 POP B iRESTORE Be 

, 0DIIJF1 982 POP PSII i RESTORE PSW 
11D114E1 - 9IIJ POP H iRESTDR£ HL 
0DII5 FB 984 EI i EtRIl.E INTERRUPTS 
9DII6 C9 905 RET ; !£TURN 

9Il6 ; 
9117; 
952 ; 
95J ; 
954 END 

PUBLIC SYI'IBOlS 

ElITERNAL 5VItlOI.S 

USER S'r'I'IBOlS 
Af)WN A 8922 AFOO A 99C£ BUFFLl A 1lfE4 'CHIIfI)R A Il8A8 CHeTC A IIIIA1 CH1fI>R A 99fI2 CHiTC A IIIIfIJ 
CII>51 A 8927 Cl'lDBF1 A 2l12li 00Blf' A 2l1li8 CIIOOUT A IIAFB OOREC A 0857 CIIOOE A 89J1 ctR>R A 2II1J 
CNT853 A !III9C 00153 A II1I9I) CNT25J A IIII9E . CNTL51 A IlII89 CNTLC A II89J CNYBN A' II5BB , COBR A IlIlIIC 
COl!! . A 8AE5 COI'II11 A lIfER C!III12 A 9AFF Cl»II7J A Il99II CPBF A 8929 CR A IIIlIID CRL.F A II5EB 
DEI1 A 9I11III DEIIOOE 8 21127 .OISPY A 8AJ9 OISPY1 A 9A4E OISPY2 A IIA40 DRDIfA A l1li62 OmtA A l1li61 
ECHO A 85F8 ENDCHK A WB ENDIIA A ~ GOWN A 88FF GETCH A 861F GETCIID A 1l87D GRell) A 09C4 
ILLEG A 88ft7 LOADR iI 211111 LF A II0IIA ,LKBR1 A21117 LKBR2 A 21118 LOOPIT A 8861 II>CHTII A IIIIJ6 
~2 A IIIIB6 !tOES1 A IIIICE' I'IOOE5J A IIII9B 1IODE57 A 89A8 I'KlNTOR A ,eaes ItWT A 116C7 N5AF A 11117J 
PARi A IIBII8 PAR2 A eBeD PARIN A IIAAf) PAR1N1 A HII PARIN2 A 9ff)C PARINJ A IlABC PARI'I7J A l1li91 
POLIN A 21116 PRltPT A 21115 RePT A 9AA2 RiPT A lIRA? RBOO A 11978 RJ)Cft) A 11971 RDIoIi A II8AF 
IIDY A I11III2 RESBUF A 28l1li RESl.7J A l1li91 ROCfI) A II95D RPCPID A II9D8 RRIIF A IlII11 RRIIP A l1li11 
RSC/1D A 0967 RST65 A 20CE RST75 A 2IID4 RXBUF ,A 82l1li RXD51 A 0Il88 RXDI1A A Il81A RXI A IICIIII 
RXI1 A 1IC16 RXI2 A 1IC23 RXB A 1IC39 RXI4 A 1IC45 RXIS A 1IC89 RXI6 A IIC85 RXIIISG A IICBB 
RXINT A 0098 RXIR7J A l1li93 RXIRA A I11III2 RXS1 A IIA69 RXS2 A 1Ifl7F RXS3 A 8A8D RXSORC A IIA62 
RXTC A41FF SBCI'fI) A 11985 SOWN A 118D7 SIGMON A IICAJ 51.00 A II98F 5IRIP A l1li93 50()1) A 99f16 
SPCI'JI) A 99E2 SRCI'ID A II9BA ' SSCI'1D A liB STflRT A 118l1li STATS1 A IlII89 STAT57 A IIIIA8 STArn A Il99II 
STKSRT A 29C1I SW A 11943 T1 A IIC6C TBlfFL A 9A24 TBUFL A 1lA97 TBlFl1 A 9AIID TDIIl A 99IIE 
TEST7J A 91192 TFCI'I): A I19EC TFCllD1 'A 119F6 TFRET A 9A36 TLCIID A em TRlE A IIIIIIII TRl£1 A IIIIIIII 
TXBUF A 89l1li 0051 A 11988 TXDIIA A 9835 TXDI'IA1 A 9842 TXI A IICCE TXI1 A 8cEII TXIIISG A IICCJ 
TXINT A I11III4 TXIR7J A l1li92 . TXIRA A I11III1 TXPOL A II94C TXRET A IIC6E TXSa!C A 9fl47 mc A 81FF 
T\'I1SG A 1IC92 TYIISG1 A 9CA1, TYItSG2 A 9C93 YAI.OO A 975E 

ASSEIIBL Y COMPLETE, NO ERRORS 

" \t "" 7-78 AfN.OO811A 



intJ 

© INTEL CORPORATION. 1981 

APPLICATION 
NOTE 

7-79 

AP-134 

October 1981 ' 

Order number: 210311-001 



AP-134 

INTRODUCTION 

The 8274 Multiprotocol 'serial ~ontroller (MPSC) is a 
sophisticated dual-channel communications controller 
that interfaces microprOcessor systems to high-speed 
serial data links (at speeds to 880K bits per second) 
using synchronous or asynchronous protocols. The 
8274 interfaces easily to most common microproces­
sors (e.g., 8048, 8051, 8085, 8086, and 8088), to DMA 
controllers such as the 8237 and 8257, and to the 8089 
110 processor. Both MPSC communication channels 
are completely independent and can operate in a full­
duplex communication mode (simultaneous data trans­
mission and reception). 

Communication Funct!ons 

The 8274 performs many" communications-oriented 
functions, including: ' 

-Converting data bytes from "Illllicroprocessor system 
into a serial bit stream for tratismission over the data 
link to a receiving system. . 

-Receiving serial bit streams and ,reconverting the 
data into parallel data bytes that can easily be pro­
cessed by the microprocessor system. 

-Performing error checking during data trati~ers. Er­
ror checking functions include computingl 
transmitting error codes (such as.parj.ty:bitl! or CRC 
bytes) and using these code~ to check thj:,v~dity of ., 
received data. . ,'.' 

-Operating independently of the system processo("ina 
manner designed to reduce the system overhead in- , 
volved in data transfers. " 

System Interface 

The MPSC system interface is extrem:ely flexible, 
supporting the following data transfer ~odes: " 
1. Polled Mode. The system processor periodically 

reads (polls) an 8274' status register to determine 
when a character has been received, when a chw- ' 
ter is needed for transmission, and when transmis­
sion errors are detected. 

2. Interrupt Mode. The MPSC interrupts the system 
, processor when a character has been received, wh,,;} 

a character is needed for transmission, and when 
transmission errors.are detected. . 

3. DMA Mode. The MPSC automatically requests data 
transfers from system memory for both transmit and 
receive functions by means. of two DMA request 
signals per serial channel. These DMA request sig­
nals may,be directly interfaced to an 8237 or 8257 
DMA controller or to an 8089 1/0 processor. 

:; ~ ~, , 

4. WAIT Mode. The MPSC'ready signal is used to 
synchronize processor data transfers by forcing the 
processor to enter wait states until the 8274 is ready 
for another data byte. This feature enables the 8274 
to interface directly to an 8086 or 8088 processor by 
means of string 1/0 instructions for very high-speed 
data links. 

Scope 

This application note describes the use of the 8274 in 
asynchronous communication modes. Asynchronous 
communication is typically used to transfer data 
to/from video display terminals, modems, printers, and 
other low-to-medium-speed peripheral devices. Use of 
the 8274 in both interrupt-driven and polled system 
environments is described. Use of the DMA and WAIT 
modes ,are not described since these modes are 
employed mainly in synchronous communication sys­
tems where extremely high data rates are common. 
Programming examples are written in PL/M-86 
(Appendix B and Appendix C). PL/M-86 is executed by 
the iAPX-86 and iAPX-88 processor families. In addi­
tion, PL/M-86 is very similar to PL/M-80 (executed by 
the MCS-80 and MCS-85 processor families). In addi­
tion, Appendix D describes a simple application exam­
ple using an SDK-86 in an iAPX-86/88 environment. 

SERIAL-ASYNCHRONOUS DATA LINKS 

A serial asynchronous interface is a method of data 
transmission in which the receiving and transmitting 
I/ystems need not be synchronized. Instead of transmit­
ting clocking information with the data, locally 
generated clocks (16, 32 or 64 times as fast as the data 
transmissioq rate) are used by the transmitting and 
receiving systems. When a character of information is 
sent by the transmitting system, the character data is 
framed (preceded, and followed) by special START and 
STOP. bits. This framing information permits the receiv­
ing system' to temporaruy synchronize with the data 
tI'l\nsmission. (Refer to Figure 1 during the following 
d~~c'.lssion of asynchronous ~ata transmission.) 

TIME--+-
I I I I I I I I I I " I ,I, I • I I I I 

--1_ 0 1~ 1 0 0 1 0 1 0 1--,-
DA:A~:I~~~lE '>~~T ~ iPARITYS:PDA:A~:I~::LE 

PARITY CHARACTER (UPPER CASE &53H) 

o 1 0 1 0 0 1 t 

Figure 1. Transmission'of a 7·BltASCIl Character 
with Even Parity 

7-80 



Ap·134 

Normally the data link is in an idle or marking state, 
continuously transmitting a "mark" (binary 1). When a 
character is to be sent, the character data bits are imme­
diately preceded by a "space" (binary 0 START bit). 
The mark-to-space transition informs,.the receiving sys­
tem that a character of information will immediately 
follow the start bit. Figure I illustrates the transmission 
of a 7-bit ASCII character (upper case S) with even 
parity. Note that the character is transmitted immedi­
ately following the start bit. Data bits within the charac­
ter are transmitted from least-significant to 
most-significant. The parity bit is transmitted immedi­
ately following the character data bits and the STOP 
framing bit (binary 1) signifies the end of the character. 

Asynchronous interfaces are often use'd with human 
interface devices such as CRT/keyboard units where 
the time between data transmissions is extremely 
variable. 

Characters 

In asynchronous mode, characters may vary in length 
from five to eight bits. The character length depends on 
the coding method used. For example, five-bit charac­
ters are used when transmitting Baudot Code, seven-bit 
characters are required for ASCII data, ,and eight-bit 
characters are needed for EBCDIC and binary data, To 
transmit messages composed of multiple characters, 
each c~aracter is framed and transmitted separately 
(Figure 2). 

This framing method ensures that the receiving system 
can easily synchronize with the start and stop bits of 
each character, preventing receiver synchronization er­
rors. In addition, this synchronization method 'makes 
both transmitting and receiving systems insensitive to 
possible time delays between character transmissions. 

; ; 
:; e c 
t; '" 
~ 
CHARACTER ., 

; 

~ 
I 

VARIABLE DELAY BETWEEN 
CHARACTERS 

~!:: 
;om Ii Ii .. ~ 

~ § 0'" 

Iii~ '" 

Ii .. 
~. 

I ,. 1------1 
CHARACTER CHARACTER CHARACTER ., • 3 •• 

; Ii 
:; 

~ ~ .----. 
CHARACTER 

OS 

Figure 2. Multiple Character Transmission 

Framing 

Character framing is accomplished by the START and 
STOP bits described previously. When the START bit 
transition (mark-to-space) is detected, the -receiving 
system assumes that a character of data will follow. In 
order to test this assumption (and isolate noise pulses 
on the data link), the receiving system waits one-half bit 
time and samples the data link again. If the link has 
returned to the marking state, noise is assumed, and the 
receiver waits for another START bit transition. 

When a valid START bit is detected, the receiver 
samples the data link for each bit of the following char­
acter. Character data bits and the parity bit (if required) 
are sampled at their nominal centers until all required 
characters are received. Immediately following the 
data bits, the receiver samples the data link for the 
STOP bit, indicating the end of the character. Most 
systems permit specification of 1, 1 h, or 2 stop bits. 

Timing 

The transmitter and receiver in an asynchronous data 
link arrangement are clocked independently. Normally, 
each clock is generated locally and the clocks are not 
synchronized. In fact, each clock'may be a slightly 
different frequency. (In practice, the frequency differ­
ence should not exceed a few percent. If the transmitter 
and receiver clock rates vary substantially, errors will 
occur because data bits may be incorrectly identified as 
START or STOP framing bits.) These clocks are de­
signed to operate at 16, 32, or 64. times the com~unica­
tions data rate. These clock speeds allow the receiving . 
device to correctly sample the incoming bit stream. 

Serial-interface data rates are measured in bitsi second. 
The term "baud" is used to specify the' number oftimes 
per second that the transmitted signalleye! can change 
states. In general, the baud is not equal to the bit rate. 
Orily when the transmi,tted signal has two states 
(electrical levels) is the baud rate equal to the bit rate. 
Most point-to-pointserial data links use RS-232:C, RS-
422, or RS-423 electrical interfaces. These specifica­
tions call for two electrical signal levels (the baud is 
equal to the bit rate). Modem interfaces, however, may 
often have differing bit and baud r:ates. .' 

While there are generally no limitations on the data 
transmission rates used in an asynchronous data link, a 
limited set of rates .has been standardized to promote 
equipment interconnection .. These rates vary from 75, 
bits per second to 38,400 bits per second. Table 1 il­
lustrates typical asynchronous data rates and the asso­
'dated clock frequencies required for the transmitter 
and receiver circuits. 

AFN-<)2076B 



Table 1. Communication Data Rates and . 
Associated Transmitter/Receiver . 
CloCk Rate. 

Data Rate (liits/second) Clock Rate (kHz) 

X16 X32 X64 

75 1.2 2.4 4.8 
150 2.4 4.8 9.6 
300 4.8 9.6 19.2 
600 9.6 19.2 38.4 

1200 19.2 38.4 76.8 
2400 38.4 76.8 153.6 
4800 76.8 153.6 307.2 
9600 153.6 307.2 614.2 

19200 307.2 614.4 -
38400 614.4 - -

Parity' 

In order to detect transmission errors, a parity bit may 
be added to the character data as it is transferred over 
the data link. The parity bit is set or cleared to make the 
total number of "one" bits in the character even (even 
parity) or odd (odd parity). For example, the letter "A" 
is represented by the seven-bit ASCII code' 1000001 
(41H). The transmitted data code (with parity),for this 
character contains eight bits; 01000001 (41H) for even 
parity and 11000001 (OCIH) for odd parity. Note that a 
single bit error changes the parity of the received char­
acter and is therefore easily detected.. The 8274 sup­
port~' both odd and even parity checking as well as a 
parity disable mode to support binary data 'transfers. 

Communication Modes 

Serial data transmission between two devices can oc­
cur in one ofthree modes. In the simplex transmission 
mode, a data link can transmit data in one direction 
only. In the half-duplex mode, the data link can transmit 
data ih both directions, but not sllnultaneously. In the 
full-duplex mode (the most common), the data link ~an 
transmit data in both directions simultaneously. The 
8274 directly supports the full-duplex mode and will 
interface to simplex and half-dupiex conimunication 
data links with appropriate, software' controls. 

BREAK Condition 

Asynchronous data links often include a special'se­
quence known as a break condition. A break condition 
is initiated when the transmitting device forces the data 
link to a spacing state (binary 0) for ari extended lenSili 
of time (typically 150 milliseconds).' Many terminals 
contain keys to initiate a break sequence. Under 

software ~on~ol, the 8274 can initiate a break se'luence 
when trans~ittin'g data and, detect a break sequen!!e 
when receiving da~. , 

MPSC SYSTEM INTERFACE 

Hardware Environment, 

The 8274 MPSC interfaces to the system processor over 
an 8-bit data bus. Each serial I/O channel responds to 
two I/O or memory addresses as shown in Table 2. In 
addition, the MPSC supports vectored and daisy­
chained interrupts. 

The 8274 may be configured for memory-mapped or 
I/O-mapped operlltion. 

Table 2. 8274 Addressing 

cs A, AI Read Operation Write Operation 

0 0 01 Ch A Data Read Ch A Data Wnte 
0 1 o ~ Ch A Status Read Ch A Command/Parlmeter 
0 0 1 I Ch B Data Read Ch B Data Write 
0 1 1 . Ch B Status Read Ch. B Command/Parameter 
1 X X High Impedance High Impedance 

The 8274-processor hardware interface can be con­
figured in a flexible manner, depending on the operating 
mode selected-polled, interrupt-driven, DMA, or 
WAIT. Figure 3 illustrates typical MPSC configurations 
for use with an 8088 microprocessor in the polled and 
interrupt-driven modes. 

All serial-to-parallel conversion, parallel-ta-serial con­
version, . and parity checking required during 
asynchronous serial I/O operation is automatically per­
formed by.the MPSC. 

Operational Interface 

Command, parameter, and status information is stored 
in 22 registers withjn-the MPSC;: (8 writable registers 
and 3 readable registers for each channel). These regis­
ters are all accessed by means of'the command/status 
ports for. each channel. An jntefnaI. pointer r~gister 
selects ,which of the command or status re~sters will be 
written or read during a command/status access of an 
MPSC channel. Figure 4 diagrams the command/ status 
register. architecture for each ~~rial channel. In the 
following discussion, the writable registers will be 
referred to as WRO through WR7 and the readable regis­
ters will be referred to as RRO through RR2. 

7-82 



AP-134 

a) Polled Configuration 

~. ADDRESS BUS ~ ... -" 
I I 

~DATA BUS 1l 
im 
WR 

Vee . ..... 
DBO-7 

~ I-- INTA ~ 
"- 8205, 

~ Ao 

~ 

~ 
A, MPSC 

,. CS 

RD 

WR 

b) Dalsy-chalned IJlterrupt Configuration 

Vee 

INT~{ 
INTA 

CPU ~ 6 }, 
INT INTA INT INTA INT INTA 

~ 
IPI IPO IPI IPO IPI IPO 

MPSC MPSC MPSC 
HIGHEST PRIORITY LOWEST PRIORITY 

, 

Figure 3_ 8274 Hardware Interface for Polled and Interrupt-driven Environments 

The least-significant three bits of WRO are automati­
cally loaded into the pointer register every time WRO is 
written. After reset, WRO is set tei zero so that the first 
write to a command register causes the data to be 
loaded into WRO (thereby setting the pointer register). 
After WRO is written, the following read or write acces­
ses the register selected by the pointer. The pointer is 
reset after the read or write 'operation is completed. In 
this manner, reading or writing an arbitrary MPSC 
channel register requires two 110 accesses. The first 
access is always a write command. This write command 
is used to set the pointer register. The second access is 
either a read or a write command; the pointer regis~r 
(previously set) will 'ensure that the correct internal 
register is read or written. After this second access, the 
pointer register is automatically reset. Note that writ-

I ing WRO and reading RRO does not require presetting of 
'/ the pointer register.' " 

7-83 

During initialization and normal MPSC operation, 
various registers are read and/ or written by the system 
processor. These actions are discussed in detail in the 
following paragraphs. Note that WR6 and WR7 are not 
used in the asynchronous communication modes. 

RESET 

When the 8274 RESET line is activated, both MPSC 
channels enter the idle state. The serial output lines are 
forced to the marking state (high) and the modem inter­
face signals (iTS, DTR) are forced high. In addition, 
the pointer register is set to zero. . 



AP-134. 

COMMAND/STATUS 
POINTER 

: r 
D2 D1 DO 

~I' W : : : I 0 R 0 

'"' : I I 
; 

R R 0 

0 ~I W R 1 1 R R 

0 ~I W R 2 I I R R 2 I 
Msa .. sa 

0 . 1 ~I w R 

Read Regllte'" 

0 0 ·1 W R 4 

0 ~I W R 

0 ~I W R 6 

~I W ,R 7 

,MSa Lsa 

Write Regllte .. 

Figure 4. Command/Status Register Architecture (Each Serial Channel) 

External/Status Latches 

The MPSC continuously monitors the state of four ex­
ternal/status conditions: 

I 

1. CTS-clear-to-st(nd input pin. ' . " 

2. CD-carrier-detect input pin. 

3: SYNDET~sync~detect input pin. This pifl may be 
used as ageneral-purpo,se input in t~e, asynchron~us 
communication mode. ' , 

4. BREAK..,...a break condition (series of space bits on 
the receiver input pin). 

A change of state in 'any of these monitored conditions 
will cause the associated status bitin RRO '(Appendi-xA) 
to be latched (and optionally cause an interrupt). 

Error 'Reporting 

Three error.cqnditi~qs may be encountered dwing data; 
reception in the asynchronous mode: 



AP-134 

1. Parity. If parity bits are computed and transmitted 
with each character and the MPSC is set to ·check 
parity (bit 0 in WR4 is set), a parity error will occur 
whenever the number of "1" bits within the charac­
ter (including the parity bit) does not match the 
odd/even setting of the parity check flag (bit 1 in 
WR4). 

2. Fiaming. A friUning errol' will occur if a stop bit is 
not detected immediately following the parity bit (if 
parity checking is enabled) 'or'immediately following 
the most-significant data bit (if parity checking is not 
enabled). 

3. Overrun. If an input character has been assembled 
but the receiver buffers are full (becaus.e the. previ­
ously received characters have not been read by the 
system processor), an overrun error will occur. 
When an overrun error occurs, the input character 
that has just been received will overwrite the iIIline­
diately preceding character. 

Transmltter/R,cel~er Initialization 

In order to operat~ in the asynch~onous mode,.each 
MPSC channel must be initialized with the following 
information: 

1. Clock Rate. This parameter'is specified by bits 6 and 
7 ofWR4. The clock rate may be set to 16, 32, or 64 
time,s the data-link bit rate. (See Appendix A for WR4 
detajls.) 

2. Number of Stop Bits. This parameter is specified by 
bits 2 and 3 of WR4. The llumher of stop. hits may be 
setto 1, 1~, or2. (See Appendix A forWR4 details.) 

3. Parity Selection. Parity may be set for odd, even, or 
no parity by bits 0 and 1 of WR4.· (See Appendix A 
for WR4 details.) . 

4. Receiver Character Length. This parameter sets the 
length of received characters to 5, 6, 7, or 8.bits. This 
parameter is specified by bits 6 and 7 ofWR3. (See 
Appendix A for WR3 details.)' . 

5. Receiver Enable. The serial-channel recei~er opera­
tion may be enabled or disabled by setting or clear­
ing bit 0 of WR3. (See Appendix A for WR3 details.) 

6. Transmitter Character Length. This parameter Sets 
the length of transmitted characters to 5, 6, 7, or 8 
bits. This parameter is specified by bits 5 and 6 of 
WR5. (See Appendix A for WRS details.) Characters 
of less than 5 bits in length"may be transmitted by 
setting the transmitted length to five bits (set bits 5 
and 6 of WR5 to 1). 

The MPSC then determines the actual number of 
bits to be transmitted from the character data byte. 
The bits to be transmitted must be right justified in 
the data byte. the next' three bits must be' set to 0 and 

all remaining bits must be set to 1. The following 
table illustrates the data formats for transmission of 
1 to 5 bits of data: 

Number of 
Blti Transmitted < 

D7 D6 D5 ,04 D3 D2 D1 DO (Character Length) 
0 0 0 c. 1 

1 0 0 0 c c 2 

0 0 0 c c c 3 
, 1 0 0 0 c C c c. 4 

·0 0 0 .C C C C C ,. S , 
7. 'Transmitter Enable. The serial channel' transmitter 

operation may be enabled or disabled by setting or 
clearing bit 3 of WRS. (See Appendix A for WRS 
details.) 

For data transmissions via a modem or RS-232-C inter­
face, the following information must also be specified: 

1. Request-to-Send/Data-Terminal-Ready. Must be 
set to indicate status of data· terminal equipment. 
Request-to-send is controlled by bit 1 of WR5 and 
data terminal ready is controlled.by bit 7. (See Ap­
pendix A for WRS details.) 

2. Auto Enable. May be set to allow the MPSC to 
automatically enable the channel transmitter when 
·the clear-to-send signal is active and· to automati- . 
cally enable the receiver when the carrier-detect 
signal is active. Auto Enable is controlled by bit 5 of 
·WR3. (See Appendix A for WR3 details.) 

During initialization, it is desirable to guaflllltee that the 
extern\ll/ status latches reflect the latest interface infor­
matiqn. Since up to two state changes are internally 
stored by the MPSC, at least two Res~t External/Status _ 
I~terrupt cOimnanlis rilUst be issued. This procedure is 
most easily accomplished by simply issuing this reset 
command whenever the pointer register is set during 
initialization. 

An MPSC initialiZation procedure (MPSC$RX$INIT) 
for asynchrc;mOlis communication is listed ill Appendix' 
B. figure. 5 illustrates typical MPSC initialization 
parameters for use with this procedure. 

HIS 

call MPSC$RX$INIT(41, 1,1,0,1, 3,1,1, 3,1,1,0,1); 

initializes the 8274 at address 41 as follows: 

X16 clock rate 
1 stop bit 
. Odd parity . 
fl.bit characters (Tx and Rx) 

Enable tra~sinitt<ir'an~ receiver 
Auto enable set 
OTR and RTS set 
Break transmission disabled 

r 
F.lgure 5 •. Sample 8274 Initialization Procedure 

-for Polled Operation 

AFN-02078B 



AP-134 

Polled Operation 

In tlie polled mode, the processor must monitor the 
MPSC status by testing the appropriate bits in the read 
register. Data available, status, and error conditions are 
represen\ed in RRO and RRI for channels A andB. An 
example of MPSC-polled transmitter/receiver routines 
are given in Appendix B. The following routines are 
detailed: 

1. MPSC$POLL$RCV$CHARACTER-This proce­
dure receives a character from the serial data lin,k, 
The routine waits until the character-available flag in 
RRO has been set; When this flag indicates that a 
character is available, RRI is checked for errors 
(overrun, parity, or framing). Ifan error is detected, 
the character in the MPSC receive buffer must be 
read and discarded and the error routine 
(RECEIVE$ERROR) is called. If no receive errors 
have been detected, the character is input from the 
8274 data port and returned to the calling program. 

MPSC$POLL$RCV$CHARACTER requires 
three parameters-the address of the 8274 channel 
data port (data$port); the address of the 8274 chan­
nel command port (cmd$port), and the address of a 
byte variable in which to store the received charac­
ter (character$ptr). 

2. MPSC$POLL$TRAN$CHARACTER-This pro­
cedure tr,ansmits a character to the serial data link. 
The, routine waits until the transmitter-buffer-empty 
flag has been set in RRO before writing the character 
to the 8274. ' 

MPSC$POLL$TRAN$CHARACTER requires 
three parameters-the address of the 8274 channel 
data port (data$port), the address ofthe 8274 chan­
nel command port (cmd$port), and the character of 
data that is to be transmitted (character). 

3. RECEIVE$ERROR-This procedure processes 
receiver errors. First, an Error Reset command is 
written to the affected channel. All additional error 
processing is dependent on the specific application. 
For example, the receiving device may immediately 
request retransmission of the character or wait until 
a message has been completed. 

RECEIVE$ERROR requires two parameters­
the address of the affected 8274 command port 
(cmd$port) and the error status (status) from 8274 
register RR 1. 

Interrupt-driven Oper1!tion 

In an interrupt-driven environment, all receiver 
operations are reported to the system processor by 
means of interrupts. Once a chancter has been 
received and assembled, the MPSC interrupts the sys­
tem processor. The s'ystem';'processor must then read 

the character from the MPSC data buffer and clear the 
current interrupt. During transmission, the system 'pro­
cessor starts serial I/O by writing the first character of a 
message to the MPSC. The MPSC interrupts the system 
processor whenevef the next character is required,(i;e., 
when the transmitter buffer is empty) and the processor 
responds by writing the next character of the message 
to the MPSC dl,ttl,t port for the appropriate channel. 

By using interruPt~driven 110, the MPSC proceeds in-' 
depende,ntly of the system processor, signalljngthe 
processor only when characters are required for trans­
mission, when characters are received from the data 
link, or when errors occur. In this manner, the system 
processor may continue execution of other tasks while 
serial I/O is performed concurrently. 

Interrupt Configurations 

The 8274 is designed to interface to 8085- and 8086-type 
processors in much the same manner. as the 8259A is 
designed. When operating in the 8085 mode, the 8274 
causes a "call" to a prespecified, interrupt-service 
routine location. In the 8086 mode, the 8274 presents 
the processor with a one-byte interrupt-type number. 
This interrupt-type number is used to "vector" through 
the 8086 interrupt service table. In, either case, the 
interrupt service address or interrupt-type number is 
specified during MPSC initialization. 

To shorten interrupt latency, the 8274 can be program­
med to modify the pre specified interrupt vector so that 
no software overhead is required 'to determine the 
cause of an interrupt. When this "status affects vector" 
mode is enabled, the following eight interrupts are dif­
ferentiated automatically by the 8274 hardware: 

1. Channel B Transmitter Buffer Empty. 

2. Channel B External/Status Transition. 

3. Channel B Characte~·Available. 
4. Channel B Rec,eive Error. 

5. Channel /l. Transmitter Buffer Empty. 

6. Channel A External/Status Transition. 

7. Channel A Character Available. 

8. Channel A 'Receive Error. 

Interrupt Sources/Priorities 

Tbe 8274 has three interrupt sources fo[·each channel: 

7-86 

I. Receiver (RxA, RxB). An interrupt is initiated when 
a character is available in the receiver buffer or when 
a receiver error (parity, framing, or overrun) is 
detected. 

AFN-02076B 



AP·134 

2. Transmitter (TxA, TxB). An interrupt is initiated 
when the transmitter buffer is empty and the 8274 is 
ready to accept another character for transmission. 

3. External/Status (ExTA, ExTB). An interrupt is in­
itiated when one of the external/status conditions 
(CD, CTS, SYNDET, BREAK) changes state. 

The 8274 supports two interrupt priority orderings 
(selectable during MPSC initialization) as detailed in 
Appendix' A, WR2, CH-A. 

Interrupt Initialization 

In addition to the initialization parameters required for 
polled operation, the following parameters must be sup­
plied to the 8274 to specify interrupt operation: 

I. -Transmit Interrupt Enable. Transmitter-buffer­
empty interrupts are separately enabled by bit 1 of 
WRl. (See Appendix A for WRI details.) 

2: Receive Interrupt Enable. Receiver interrupts are 
separately enabled in one of three modes: a) inter­
rup~ on first received character only and on receive 
errors (used for message-oriented transmission sys­
tems), b) interrupt on all r.eceived characters and on 
receive errors, but do not interrupt on parity errors, 
and c) interrupt on all received characters and .on 
receive errors (including parity errors). The ability 
to separately disable parity interrupts can be ex­
tremely useful when transmitting messages. Since 
the parity error bit in RRI is latched, it will not be 
reset until an error reset operation is performed. 
Therefore, the parity error bit will be set if any parity 
errors were detectesl in a multicharacter message. If 
this mode is used, the serial 110 software must poll 
the parity error bit at the completion of a message 
and issue an error reset if appropriate. The receiver 
interrupt mode is controlled by bits 3 and 4 of WRl. 
(See Appendix A for WRI details.) 

3. External/Status Interrupts. External/Status inter­
,rupts can be separately enabled by bit 0 'Of WRI. 
(See Appendix A for WRI details.) 

4. Interrupt Vect'Or. An eight-bit interrupt-service . 
routine location (8085) or interrupt type (8086) is 
specified through WR2 of channel B. (See App~ndix 
A for WR2 details). Table 3 lists interrupt vector 
addresses generated by the 8274 in the "status af­
fects vector" mode. 

'5. "Status Affects Vector'; Mode. The 8274 will auto­
matically modify the interrupt vector if bit 3 ofWRI 
is set. (See Appendix A for WRl details.) 

6. ~ysteJTI Configuration. Specifies the 8274 data trans­
fer mode. Three ,configuration modes are available: 
a) interrupt-driven operation for both channels, b) 

7-87 

DMA operation for both channels, and c) DMA 
operation for channel A, interrupt-driven operation 
for channel B. The system configuration -is specified 
by means of bits 0 and 1 of WR2 (channel A). (See 
Appendix A for WR2 details.) 

7. Interrupt Priorities. The 8274 permits software 
specification of receive/transmit priorities by means 
of bit' 2 of WR2 (channel A). (See Appe~dix A of 
WR2 details.) 

I 

8. Interrupt Mode. Specifies whether the MPSC 1s to 
operate in a non-vectored mode (for use with an 
external interrupt control).er), in an 8086-vectored 
mode, or iIi an 8085-vector!'ld mode. This parameter 
is specified through bits 3 and 4 of WR2 (channel A). 
(See Appendix A for WR2 details.) 

, (. 

Table 3. MPSC-generated Interrupt Vectors In 
"Status Affects Vector" Mode 

Original Vector 
'specified during 

V7 VI V5 V4V3 V2V1 VO V7VIV5V4V3V2V1 YO , In1Ua11za1l""1 

8068 ,6065 Interrupt 
Interrupt Type Intertupt Location 'Condition 

V7 V6 VS V4 V3 o 0 0 V7V6VS 000 VI VO Channel B ll'ansmltter 
Buffer Empty 

V7 V6 VS V4 V3 o 0 I V7.V6V' 0 0 I VI VO Channel B External/Status 
Change 

V7 V6 VS V4 V3 0 I 0 V7V6VS a 1 a VI VO Channel B Retelver 
Character Available 

V7 V6 VS V4 V3 0 I I V7 V6 VS 0 t I VI VO Channel B Receive Error 

V7 V6 V5 V4 V3 I o 0 V7V6VS I o 0 VI VO Channel A Thansmllter 
Buffer Empty 

V7 V6 VS V4 V'l I 0 I V7 V6 VS I o I VI VO Channel A E"ternal/Slalu~ 
C~anae , 

V7( V6 VS V4 V3 I I 0 V7V6VS I I 0 VI VO Channel A Receiver 
Character Available 

V7 V6 VS V4 V3 I I I V7 V6 VS I I I VI VO Channel A RecClve Error 

An MPSC 'Interrupt initialization procedure 
(MPSC$INT$INIT) is listed in Appendix C. 

Interrupt Service Routines 

Appendix C lists four interrupt service procedures, a 
buffer transmission procedure, and a buffer reception 
procedure that'illustrate the use of the 8274 in interrupt­
driven environments. Use of these procedures assumes 
that the 8086/8088 interrupt vector is set'to 20H and 
that channel B is used with the "status affects vector" 
mode enabled. 

1. TRANSMIT$BUFFER-This procedU're begins 
serial transmission of a data buffer. Twp parameters 
are required-a pointer to the buffer (buf$ptr) and 
the length of the buffer (buf$length). The procedure 
first sets the global buffer pointer, buffer length, ,and 

AFN'()2078B 



Ap.;134 

initial index for the transmitter-interrupt service 
routine and fuitiates transmission by writing the first 
'character of the buffer to the 8274. The procedure 
then entets, a. w&if loop until the 110 completion 
status is set by the transmit-interrupt service routine 
(MPSC$TRANSMIT$CHARACI'ER$INT). 

2. RECEIVE$BUFFER-This pto~dure inputs a line 
(terminated ~y a line feed) from a' seri~ I/O port. 
Two parameters are required-a pointer to the input 
buff~,r (buf$ptr) and a pointer to the buffer length 
variable (buf$length$ptr). The buffer len8th will be 
s'et' by this procedure whetl the' complete line has 
been input: The procedure first sets th~ iPobal buffer 
Pointer and initial index for the receiver interrupt 
service routine. RECEIVE$BUFFER then enters a 
wait loop until the I/O c~mpletion status is set by the 
receive interrupt routine (MPSC$RECEIVE$­
CHARACTER$I~). 

3. MPSC$RECEIVE$CHARACTER$INT -This 
procedure is eKecuted when the MPSC Tx-buffer­
empty interrupt is acknowledged. If the current 
transmit buffer index is less than'the buffer length, 
the next character in the buffer is written to the 
MPSC data port and the buf(er pointer is updated. 
Otherwise, the' transmission' complete status is 
posted. 

,4. MPSC$RECEIVE$CHARACTER$INT - This 
procedure is executed when a character has been 
assembled by the MPSC and the MPSC has issued a 
character-available interrupt. If no input buffer has 
been set up by RECEIVE$BUFFER, the character 
is ignored. If a buffer has been set up, but it is full, a 
receive overrun error is posted. Otherwise, the 
received character is read from the MPSC data port 
and the buffer index 'is updated. Fin,ally, if the 
received character is a line feed, the reception com­
plete status is posted. 

i 

5. RECEIVE$ERROR$INT-This procedure is ex­
ecuted when a receive error is detected. First, the 
error conditions are read from RRI and the charac­
tercurrently in the MPSC receive butTer is read ,and, 
discarded. Next, an Error Reset command is written 

, to the affected channel. All additional error proces­
sion is application dependent; , 

6. EXTERNAL$STATUS$CHANGE$INT -This 
'procedure is executed when an eXternal'status con: 
dition change is 'detected. The status conditions are 
read from RRO and a Resel External/Status Inter­
rupt command is issued: Further errot processing is 

, application ·dependent. ' , ' 

DATA LINK INTERFACE 

Serial Data 'Interface 

Each serial 110 channel within the 8274 MPSC inter­
faces to two data link lines-one line for transmitting 
data and one for receiving data. During transmission, 
charllfters are converted from parallel data format (as 
supplied by the system processor or DMA device) into 
a sCfrial bit stream '(with START and STOP bits) and 
clocked out on the TxD pin. During reception, a serial 
bit stream is input on the RxD pin. framing bits are 
stripped out of the data stream, and the resulting char­
acter is converted to parallel data format and passed to 
the system processor or DMA device. . 

Data Clock.lng 

As discussed previously, the frequency of data trans­
mission/reCeption on the data link is controlled by the 
MPSC clock in conjunction with the programmed clock 
divider '(in register WR4). The 8274 is designed to permit 
all four serial interface lines (TxD and IuD for each 
channel) to operate at different data rates. Four clock 
input pins (TxC and RxC for each channel) are available 
for this function. Note that the clock rate divider speci­
fied in WR4.is used for both RxC and TxC on the 
appropriate channel; clock rate dividers for each chan­
nel are independent. 

Modem Control 

The following four modem interface signals may be 
connected to the 8274: 

I. Data Terminal Ready (DTR). This interface signal 
(output by the 8274) is software controlled through 
bit 7 of ,WR5. \Yhen active, DTR indicates that the 
data terminal/computer equipment is aCtive and 
ready to interact with the' data communications 
channel. In addition, this signal prepares the modem 
for connection to the communication channel and 
maintains con!1ectiohs previously established (e.g., 
tnanual call origination).' , 

2. RequestTo Send (RTS). This ipt~rface signal (output 
by the 8274) is software controlled through bit 1 of 
WR5. When active, RTS indicates that the data ter­
minal/computer equipment is ready to tran'smit 
data. ' 

3. Clear To Send (CTS). This interface sigllal (inputt~ 
the 8274) is supplied by the modem in response to an' 
active RTS signal. CI'S indicates that the data termi­
nal/computer equipment is permitted to transmit 



AP-134 

data. The state of CTS is available to the program­
mer as bit 5 of RRO. In addition, if the auto enable 
control is set (bit 5 ofWR3), the 8274 will not'trans­
mit data bytes until RTS has been activated. If CTS 
becomes inactive during transmission of a character, 
the current character transmission is completed 
before the transmitter is disabled. 

4. Carrier Detect (CD). This interface signal (input to 
the 8274) is supplied by the modem to indicate that a 
data carrier signal has been detected and that a valid 
data signal is present on the RxD line. The state of 
CD is available to the programmer as bit 3 ofRRO. In 

,7-89 

addition, if the auto enable control is set (bit 5 of 
WR3), the 8274 will not enable the serial receiver 
until CD has ,been activated. If the CD signal be­
comes inactive during reception of a character, the 
receiver is disabled, and the partially received char­
acter is lost. 

In addition to the above modem interface signals, the 
8274 SYNDET input pin for channel A may ~e used as a 
general-purpose input in the asynchronous communi­
cation mode. The status of this signal is available to the 
programmer as bit 4 of status register RRO. 

AfN.02076B 



AP·134 

~PPENDI~A 
COMMAND/STATUS DETAILS FOR ASYNCHRONOUS 

~ COMMUNICATION 

Write Register 0 (WRO): 

r 0 '0 

COMMAND/STATUS POINTER 

REGISTER POINTER 

NULL CODE 

NOT USED IN ASYNCHRONOUS MODES 

RESET EXT/STATUS INTERRUPTS 

CHANNEL RESET 

ENABLE INTERRUPT ON NEXT Rx 
CHARACTER 

RESET TxlNT PENDING 

ERROR RESET 

END OF INTERRUPT 

NOT USED IN ASYNCHRONOUS MODES 

D2,Dl,DO Command/Status Register Pointer bits 
determine which write-register the next 
byte is to be written into, or which read­
register the next byte is to be read from. 
After reset, the first byte written into 
either channel goes into WRO. Following 
a read or write to any register (except 
WRO) the pointer will point to WRO. 

D5,D4,D3 Command bits determine which ofllie ba­
sic seven commands a,re to be performed. 

Command 0 Null-has no effect. 

Command 1 Not used in asynchronous modes. 

Command 2 Reset External/Status Interrupts­
resets the latched status bits of RRO and 
reenables them, allowing interrupts to oc­
cur again. 

Command 3 Channel Reset-resets the Latched 
Status bits of RRO, the interr~pt 
prioritization logic and all control regis­
ters for the channel. Four extra system 
clock cycles should be allowed for MPSC 
reset time before any additional com­
mands or controls are written 'into the 
channel. 

Command 4 Enable Interrupt on Next Receive 
Character-if the Interrupt-on-First­
Receive Character mode is selected, this 
command reactivates that mode after 
each complete message is received to pre­
pare the MPSC for the next message. 

Command 5 Reset Transmitter Interrupt Pending-if 
The Transmit Interrupt mode is selected, 
the MPSC automatically interrupts data 
when the transmit buffer becomes empty. 
When there are no more characters to be 
sent, issuing this command prevents fur­
ther transmitter interrupts until the next 
character has been completely sent. 

Command 6 Error Reset....,..error latches, Parity and 
Overrun errors in RRl are reset. 

Command 7 End oflnterrupt-resets the interrupt-in­
service latch ofthe highest-priority inter­
nal device under service. 

DO 

Dl 

D2 

'7-90 

External! Status Interrupt Enable­
allows interrupt to occur as the result of 
transitions on the CD, CTS or SYNDET 
inputs. Also allows interrupts as the 
result of a Break/ Abort detection and ter­
mination, or at the beginning of CRC, or 
sync character transmission when the 
Transmit Underrun/EOM latch becomes 
set. 

Transmitter Interrupt/DMA Enable 
-allows the MPSC to interrupt or re­
quest a DMA transfer when the trans­
mitter buffer becomes empty. 

Status Affects Vector-(WRl, D2 active 
in channel B only.) If this bit is not set, 

AFN-Q2076B 



Ap·134 

Write Register 1 (WR1): 

Msa Lsa 

1071010510.:031021011001 

-

. 

D4,D3 

00 

01 

10 

I I 

D5 

'----.,--J I EXT INTERRUPT 
ENABLE 

TxlNTERRUPTI 
OMA ENABLE . 

1 - VARIABLE 
STATUS AFFECTS VECTOR 
V~CTOR (CH a ONL VI 0--' FIXED 
(NULL COOE CH AI VECTOR 

,.-----.-..-... 
0 0 RxlNT/DMA DISABLE 

0 1 RxtNT ON FIRST CHAR OR SPECIAL 
CONDITION 

1 0 tNT ON ALL Rx CHAR (PARITY AFFECTS 
• VECTOR) OR SPECIAL CONDITION 

1 1 tNT ON ALL Rx CHAR (PARITY DOES 
NOT AFFECT VECTOR) OR SPECIAL 
CONDITION 

1 .0 WAIT ON Rx, 0 -= WAtT ON Tx 

MUST BE ZERO 

WAIT ENABLE 1 ENABLE,O - DISABLE 

then the fixed vector, programmed in 
WR2, is returned from an interrupt ac­
knowledge sequence. If the bit is set, then 
the vector returned from an interrupt ac­
knowledge is variable as shown in the 
Interrupt Vector Table. 

Receive Interrupt Mode. 

Receive Interrupts/DMA Disabled. 

Receive Interrupt on First Character 
Only or Special Condition. 

Interrupt on All Receive Characters of 
Special Condition (Parity Error is a Spe­
cial Receive .Condition). -

Interrupt on All Receive Characters or 
Special Condition (Parity Error is not a 
Special Receive Condition). 

Wait on Receive/Transmit-when the 
following conditions are met, the RDY pin 
is activated, otherwise it is held in the 

7-91 

D6 

D7 

Msa 

High-Z state. (Conditions: Interrupt En­
abled Mode, Wait Enabled, CS =0, 
AO=OII, and A j =0). The RDY pin is 
pulled low when the transmitter buffer is 
full or the receiver buffer is empty and it 
is driven High when the transmitter buf­
fer is empty or, the receiver buffer is full. 
The RDYA and RDYs may be wired or 
connected since only one signal is active 
at anyone time while the other is in the 
High Z state . 

Must be Zero. 

Wait Enable-enables the wait function. 

Write Register 2 (WR2): Channel A 

1M: °1~IM:roT~I~:~l 
'----.,--J ~ 

0 0 BOTH INTERRUPT 

0 1 A OMA, B tNT 

1 0 80TH DMA 

1 1 ILLEGAL 

1 = PRIORITY RxA>RxS>TxA> 
TxS >eXTA' > EXTS" 

0= PRIORITY RxA >TKA >RxB > 
~ TxS >EXTA" >EXTB' 

0 0 8085 MODE 1 

0 1 8085 MODE 2 

1 0 8066188 MODE 

1 1 ILLEGAL 

1;:: VECTORED INTERRUPT 

0= NON VECTORED INTERRUPT 

MUST BE ZERO 

1 PIN 10::::: SYNDET 8 

o PIN 10 = Rr~8 

*EXTERN'AL STATUS INTERRU'PT-

DI,DO 

00 

ONLY IF EXT INTERRUPT ENA!:JLE (WR1. DO) IS seT 

System Configuration-These specify 
the data transfer from MPSC channels to 
the CPU, either interrupt or DMA based. 

Channel A and Channel B both use 
interrupts. 

AFN<l2076B 



AP-134 

01 

10 

11 

D2 

o 

Channel A uses DMA, Channel Busses 
interrupt. 

. Channel A and Channel B both use DMA. 
I 

Illegal Code. 

Priority-this l?it specifies the relative 
priorit.ies of the internal MPSC inter­
rupt/DMA sources. 

(Highest) RxA, TxA, RxA, RxB, 
TxBExTA, ExTB (Lowest). 

(Highest) RxA, RxB, TxA, TxB, ExTA, 
ExTB (Lowest). 

D5,D4,D3 Interrupt Code-specifies the behavior 
of the MPSC when it receives an interrupt 
acknowledge sequence from the CPU. 
(See Interrupt Vector Mode Table). 

o X X Non-vectored interrupts-intended for 
use with an external interrupt controller 
such as the 8259A. 

100 

1 0 1 

8085 Vector Mode I-intended for use as 
the primary MPSC in a daisy-chained 
priority structure. 

8085 Vector Mode 2-intended for use as 
any secondary MPSC in a daisy-chained 
priority structure. ' 

1 1 0 8086/88 Vector Mode-intended for use 
as either a· primary or secondary in a 
daisy-chained priority structure. 

D6 Must be Zero. 

D7 

o 

Pin 10 = SYNDETB' 

Write Register 2 (WR2): Channel B 

MSB lSB 

I~:w:~:":~:~: ~:~I 

L. 
Vector 

D7-DO Interrupt vector"':""this register contains 
the value of the interrupt vector placed on 
the data bUll during acknowledge 
sequences. 

Write Register 3 (WR3): 

DO 

D5 

D7,D6 

00 

o 1 

1 0 

1 1 

.7-92 

Rx ENABLE 

1-____ NOT USED IN 
ASYNC~RONOUS 
MODES 

........ --------AUTO ENABLES 

Rx 5 BITS/CHAR 

'Rx 7 BITS/CHAR 

Ax 6 BITS/Ct-fAR 

Rx 8 BITS/CHAR 

Receiver Enable-A one enables the 
receiver to begin. This bit should be set 
only after the receiver has been 
initialized. 

Auto Enables-A one written to this bit 
causes CD to be an automatic enable sig­
nal for the receiver and CTC to be an 
automatic enable signal for the transmit­
ter. A zero written to this bit limits the 
effect of CD and CTS signals to set­
tiQg/resetting their corresponding bits in 
the status register (RRO). 

Receiver Character length. 

Receive 5 Data bits/character. 

Receive 7 Data bits/character. 

Receive 6 Data bits/character. 

Receive 8 Data bits/character. 

AFN·Ol!076B 



AP-134 

Write Register 4 (WR4): 

DO 

01 

03,02 

00 

01 

o 0 XI CLOCK 

o I XleCLOCK 

o x32 CLOCK 

I I X\I4CLOCK 

I = ENABLE PARITY 
o = DISABLE PARITY 

I = EVEN PARITY 
o = ODD PARITY 

o 0 ENABLE SYNC ",ODES 

o 1 1 STOP alT 

I , 0 1.5 STOP BITS 

I I 2 STOP BITS 

NOT USED IN ASYNCHRONOUS MODES 

Parity-a one in this bit causes 'a parity 
bit to be added to the programmed num­
ber of data bits per character for both the 
transmitted and received character. If the 
MPSC is programmed to receive 8 bits 
per character, the parity bit is not trans­
ferred to the microprocessor. With other 
r~ceiver character lengths, the parity bit 
is tra,nsferred to the microprocessor. 

Even/Odd Parity-if parity is enabled, a 
one in this bit causes the MPSC to trans­
mit and expect even p'arity, and zero 
cau,ses it to send and expect odd parity. 

Stop Bits. 

Selects synchronous modes. 

Async mode, 1 stop bit/character. 

10 Async,mode, 11-2 stop bits/character. 

1 1 

07,06 

Async mode, 2 stop bits/character. 

Clock ,mode....,.selects the clock/ data rate 
multiplier for both the receiver and, the 
transmitter. If the Ix mode is selected, bit 
synchronization must !>e done elC:ternally. 

00 Clock rate = Data rate x 1. 

01 Clock rate = Data rate x 16. 

10 Clock rate = Data rate x 32. 

1 1 Clock rate = Data rate x 64. 

Write Register S (WRS): 

MSB LSB 

I 07 1 DB I 051 D4 I D3 I 02 I 01 I DO I 

- 0 

0 

I 

I 

01 ' 

03 

D4 

06,D5 

\ 

~~ T USED IN 
YNCHRONOUS MODES 

,--AT S 

NO TUSED IN 
ASYNCHRONOUS MOOES 

'IX ENABLE 

5E NO BREAK 

-
0 TX 5 BITS OR LESS/CHAR 

I TX 7 BITS/CHAR 

0 TX 6 BITs/CHAR 

I TX 8 BITS/CHAR 

DT R 

Request to Send-a one in this bit forces 
the RTS pin active (low) and zero in this 
bit .forces the RTS pin inactive (high). 

Transmitter Enable-a zero in this bit 
forces a marking state on the transmitter 
output. If this bit is set to zero during data 
or sync character transmission, the mark­
ing state is entered after the' character has 
been sent. If this bit is set to zero during 
transmission of a CRC character, sync or 
flag bits are substituted for the remainder 
of the CRC bits. 

Send Break-a one in this bit forces the 
transmit data low. A zero in this bit allows 
norma. transmitter operation. 

Transmit Character length. 

00 Transmit'S or less bits/character. 

01 Transmit 7 bits/character. 

10 . Transmit 6 bItS! character. 

AFN-02076B 



AP·134 

I I Transmit 8 bits/character. 

Bits to be sent must be right justified, least-significant 
bit fir~t, e.g.: ' 

D7 D6 D5 D4 D3 D2 Dl DO 
o 0 B5 B4 B3 B2 BI BO 

Read Register 0 (RRO): 

I 07 I 06 I 05 I 04 I 03 I 02 I 01 I ~°l 

DO 

Di 

D2 

D3 

L~' .". 
CHAR AVAILABLE 

PENDING, (CHA ONl Yl 

-'" 
c 

s 

C 

N 
A 

8 

Receive Character Available-this bit is 
set when the receive FIFO contains data 
and is reset when the FIFO is empty. 

Interrupt Pending-This Interrupt­
Pending bit is reset when an EOl com­
mand is issued and there is no other 
interrupt request pending at that time. In 
vector mode, this bit is set at the falling 
edge of the second INTA in an INTA 
cycle for an internal interrupt request. In 
non-vector mode, this bit is set at the 
falling edge of RD input after pointer 2 is 
specified. This bit is. always zero in 

.Channel B. 

Transmit Buffer Empty-This bit is set 
whenever the transmit buffer is empty 
except when CRC characters are being 
sent in a synchronous mode. This bit is 
reset when the transmit buffer is loaded. 
This bit is set after an MPSC reset. 

Carrier Detect-This bit contains the 
state of the CD pin at the time of the last 
change of any of the External/ Status bits 
(CD, CTS, Sync/Hunt, Break/Abort, or 
Tx Underrun/EOM). Any change of state 
of the CD pin causes the CD bit to be 
latched and causes an External/ Status in­
terrupt: This bit indicates current state of 
the CD pin immediately following a Reset 
External/ Status' Interrupt .command. 

D4 

D5 

D7 

SYNDET-In asynchronous modes, the 
operation of this bit is similar to the CD 
status bit, except that it shows the state of 
the SYNDET input. Any High-to-Low 
trabsition on the SYNDET pin sets this 
bit, and causes an External/Status inter­
rupt (if enabled). The Reset Exter­
nal/Status Interrupt command is issued 
to clear the interrupt. A Low-to-High 
transition clears this bit and sets the Ex­
ternal/Status interrupt. When the Exter­
nal/ Status interrupt is set by the change 
in state of any other input or condition, 
this bit shows the inverted state of the 
SYNDET pin at time of the change. This 
bit must be read immediately following a 
Reset External/ Status Interrupt com­
mand to read the current state of the 
SYNDET input. 

Clear to Send-this bit contains the in­
verted state of the CTS pin at the time of 
the last change of any of the Exter­
nal/Status bits (CD, CTS, Sync/Hunt, 
Break/ Abort, or Tx Underrun/EOM). 
Any change of state of the CTS pin causes 
the CTS bit to be latched and causes an 
External/Status interrupt. This bit indi­
cates the inverse of the current state of 
the CTS pin immediately following a 
Reset External! Stahls Interrupt 
command. 

Break-in the Asynchronous Receive 
mode, this bit is set when a Break se­
quence (null character plus framing error) 
is detected in the data stream. The Exter­
nal/Status interrupt; if enabled, is set 
when break is detected. The interrupt ser­
vice routine must issue the Reset Exter­
nal/Status Interrupt command (WRO, 
Command 2) to the break detection logic 
so the Break sequence termination can be 
recognized. 

The Break bit is reset when the termination of the Break 
sequence is detected in the incoming data stream. The 
termination of the Break sequence also causes the Ex­
ternal/Status interrupt to be set. The' Reset Exter­
nal/Status Interrupt command must be issued to enable 
the break detection logic to look for the next Break 
sequence. A single, extraneous null character is present 
in the receiver after the termination ofa break; it should 
be read and discarded. 

7-94 AFN-020768 



AP·134 

Read Register 1 (RR1) 

Msa L.SI 

1.'1 D61 D'I"I 03 : D2 : 0' 100 1 

DO 

D4 

D5 

, CALLS. 
NOTU 

NT 

SED IN ASYNCHRONOUS MODES 

PARITY ERROR 

Ax OVERRUN ERROR 

CAe/FRAMING ERROFf 

END OF FRAME (SDLe/HDLe MODE) 

All sent-this bit is set when all charac­
ters have been sent, in asynchronous 
modes. It is reset when characters are in 
the transmitter, in asynchronous modes. 
In synchronous modes, this bit is always 
set. 

Parity Error-ifparity is enabled, this bit 
is set for received characters whose 
parity does not match the programmed 
sense (Even/Odd). This bit is latched. 
Once an error occurs, it remains set until 
the Errot Reset command is written. 

Receive Overrun Error-this bit indi­
cates that the receive FIFO has been 
overloaded by the receiver. The last char­
acter in the FIFO is overwritten and fiag-

D6 

ged with this error. Once the overwritten 
character, is read, this, error condition is 
latched uritil reset by the Error Reset 
command. If the MPSC is in the "status 
affects vector" mode, the overrun causes 
a special Receive Error Vector. 

Framing Error~in async modes, a one in 
this bit indicates a receive framing error. 
It can be reset by issuing an Error Reset 
command. 

Read Register 2 (RR2): 

RR2 

D7-DO 

7-95 

Channel B 

Interrupt vector-contains the interrupt 
vector programmed into WR2. If the 
"status affects vector" mode is selected, 
it contains the modified vector. (See 
WR2.) RR2 contains the modified vector 
for the highest priority interrupt pending. 
If no interrupts are pending, the variable 
bits in the vector are set to one. 

AFN-02076B 



AIM 34 

APPENDIX B 
MPSC-POLLED TRANSMIT/RECEIVE CHARACTER ROUTINES 

MPSC$RX$INIT: procedure 

declare cmd$port 
clockS rate 
stop$bits 
parity$type 
parity$enable 
rx$char$length 
rx$enable 
auto$enable 
tx$char$length 
tx$enable 
dtr 
brk 
rts 

output(cmd$port):30H! 

(cmd$port, 
clock$rate,stop$bits,parity$type,parity$enable, 
rx$char$length,rx$enable,auto$enable, 
tx$char $leng th, tx$enable, dtr, brk, rts) , 

byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 

/* channel r~set *1 

output(cmd$port):14H, /* point to WR4 */ 
/* set clock rate, stop bits, and parity information */ 
output(cmd$port)=shl(clock$rate,6) or shl(stop$bits,2) or shl(parity$type,l) 

or parity$enable; 

output(cmd$port)=13H, /* point to WR3 */ 
/* set up receiver parameters */ ' 
output(cmd$port)=shl(rx$char$length,6) or rx$enable ot shl(auto$enable,5): 

output(cmd$port)=15H, /* point to WR5 */ 
/* set up transmitter parameters */ 
output(cmd$port)=shl(tx$char$length,5) or shl(tx$enable,3) or shl(dtr,7) 

or shl(brk,4) or shl(rts,l); 

end MPSC$RX$INIT; 

('-96 AF~76B 



AP-134 

MPSC$POLL$RCV$CHARACTER: procedure(data$port,cmd$port,character$ptr) byte; 

declare data$port 
cmd$port 
character$ptr 
character 
status 

declare char$avail 
rcv$error 

byte, 
byte, 
pointer, 
based character$ptr 
byte; 

literally '1', 
li ter ally '70H'; 

/* wait for input character ready */ 

byte, 

while (input(cmd$portl and char$avail) <> 0 do; end; 

/* check for errors in received character */ 
output(cmd$port) =1; /* point to RRl */ 
if (status:=input(cmd$portl and rcv$error) 

then do, 
character=input(data$portl; 
call RECEIVE$ERROR(cmd$port,statusl, 
return 0; 

/* read character to clear MPSC */ 
/* clear receiver errors */ 
/* error return - no character avail */ 

end; 
else do; 

character=input(d'ata$portl, 
return OFFH, /* good return - character avail */ 
end; 

end MPSC$POLL$RCV$CHARACTER, 

MPSC$POLL$TRAN$CHARACTER: procedure(data$port,cmd$port,character), 

declare data$port 
cmd$port 
character 

byte, 
byte, 
byte, 

declare tx$buffer$empty literally '4', 

/* wait for transmitter buffer empty */ 
wh'ile not (input(cmd$port) and tx$buffer$emptyl do, end, 

/* output character */ 
output(data$portl=character, 

end MPSC$POLL$TRAN$CHARACTER: 

RECEIVE$ERROR: procedure (cmd$port,statusl : 

declare cmd$port 
status 

byte, 
byte,' 

output(cmd$portl=30H, /* error reset */ 

/* *** other application dependent 
error processing should be placed here *** */ 

end RECEIVE$ERROR, 

AFN-02076B 



AP-134 

TRANSMIT$BUFFER: procedure(buf$ptr,buf$length) 

declare 
buf$ptr _ 
buf$length 

poin ter , 
byte, 

/* set up transmit buffer pointer and buffer length in global variables for 
interrupt service */ 

tx$buffer$ptr=buf$ptr, 
transmit$length=buf$length, 

transmit$status=not$complete, 
output(data$port)=transmit$buffer(O) , 
transmit$index=l, 

/* setup status for not complete */ 
/* transmit first character */ 
/* first character transmitted */ 

/* wait until transmission complete or error detected */ 
while transmit$status = not$complete ~o, end, 
if transmit$'status <> complete 

then return false, 
else return true; 

end TRANSMIT$BUFFER, 

RECElVE$BUFFER: procedure (buf$ptr,buf$length$ptr); 

declare 
buf$ptr 
buf$length$ptr 
buf$length 

pointer, 
pointer, 
based buf$length$ptr byte, 

/* set up receive buffer pointer in global variable for interrupt service */ 
rX$buffer$ptr=buf$ptr, 
receive$index=O, 

receive$status=not$complete, /* set status to not complete */ 
/* wait until buffer received */ 
while receive$status= not$complete do, end; 
buf$length=receive$length, 
if receive$status = complete 

then return true; 
else return false, 

end RECElVE$BUFFER, 

7-98 AFN-Q2076B 



AP-134 

MPSC$RECEIVE$CHARACTER$INT: procedure interrupt 22H: 

/* ig;ore input if no open buffer */' 
if receive$status <> not$complete then return: 

/* check for receive buffer overrun */ 
if receive$index = 128 

then receive$status=overrun: 
else do: 

/* read character from MPSC and place in buffer - note that the 
parity of the character must be masked off during this step if 
the character is less than 8 bits (e.g., ASCII) */ 

receive$buffer(receive$index) ,character=input(data$port) and 7FE: 
receive$index=receive$index+l: /* update receive buffer index */ 

/* check for line feed to end line */ 
if character = line$feed 

then do: receive$length=receive$index: receive$status=complete: ~nd: 
end:, 

end MPSC$RECEIVE$CHARACTER$INT: 

MPSC$TRANSMIT$CHARACTER$INT: procedure interrupt 20H: 

/* check for more characters to transfer */ 
if transmit$index < transmit$length 

then do: 
/* write next character from buffer to MPSC */ 
ou tpu t (da ta$port) =transmi t$buffe.r (transmi t$ index) : 
transmit$index=transmit$index+l: /* update transmit buffer index */ 

end: 
else transmit$status=complete: 

end MPSC$TRANSMIT$CHARACTER$INT: 

RECElVE$ERROR$INT: procedure interrupt 23H: 

declare 
temp byte: /* temporary character storage */ 

output(cmd$port)=l: 
receive$status=input(cmd$port) : 
temp=input(data$port) : 
output(cmd$port)=error$reset: 

/* point to RRl */ 

/* discard character */ 
/* send error reset */ 

/* *** other application dependent 
error processing should be placed here *** */ 

end RECElVE$ERROR$INT: 

EXTERNAL$STATUS$CHANGE$INT: procedure interrupt 2lH: 

transmit$status=input(cmd$port) 
output (cmd$port) =reset$ext$status: 

• /* *** other application dependent 

/* input status change information */ 

error processing should be placed here *** */ 

end EXTERNAL$STATUS$CHANGE$INT: 

7-99 AFN-02076B 



APPENDIXC 
INTERRUPT-DRIVEN TRANSMIT/RECEIVE SOFTWARE 

declare 
/* global variables for buffer manipulation */ 

rx$buffer$ptr 
receive$buffer based 
receive$statu:, 
receive$index 
receive$length 

tx$buffer$ptr 
transmit$buffer based 
transmit$status 
transmit$index 
transmit$length 

cmd$port 
data$port 
a$cmd$port 
b$cmd$port 
line$feed 
not$complete 
complete 
overrun 

channel$reset 
error$reset 
reset$ext$s ta t.us 

pointer, /* pointer to receive buffer */ 
rx$buffer$ptr(128) 

byte initial (OJ , 
byte, 

byte, 
/* indiciates receive buffer status */ 
/* curren~ index into receive"buffer */ 
1* length of final receive buffer */ byte, 

pointer, 1* pointer to transmit buffer *1 
tx$buffer$ptr (12B» 
byte initial{O), 
byte-, 

byte, 

byte, 

literally '43H', 
literally '41H', 
literally '42H', 
literally '43H', 
literally 'OAH', 
literally '0' 
literally 'OFF-H'; '. 
literally '1', 

literally 'ISH', 
literally '30H'~ 
literally 'lOH'; 

7-100 

1* indicates transmit-buffer status */ 
/* current index into transmit buffer *1 
1* length of buffer to be trans~itted *1 

AFN·02076B 



MPSC$INT$INIT: procedure (clock$ra·t,e, s.\:bp$bits, par i tY$type, par i ty$enable, 
rx$char$length,rX$enable,autD$enable, 
tx$char$length,tx$enable,dtr,brk,rts, 
ext$en,tx$en,rx$en,stat$affects$vector, 
config,priority,vector$int$mode,int$vector) ; 

declare 
clock$rate byte, /* 2-bit code for clock rate divisor 
stop$bits byte, /* 2-bit code for number of stop bits 
parity$type byte, /* l-bit parity type */ 
pa.r i ty$enable bY,te, /* I-bit parity enable */ 
rx$char$,length byte, /* 2-bit receive character length */ 
rx$enable byte, /* l-bit receiver enable */ 
auto$enable byte, '/* l-bit auto enable fli?g */ 
tx$char$length byte, /* 2-bit transmit character length */ 
tx$enable byte, /* l-bit transmitter enable */ 
dtr byte, /* l-bit status of DTR pin */ 
brk byte, /* l-bit data link break enable */ 
rts byte, /* l-bit status of RTS pin */ 
ext$en byte, /* l-bit external/status enable */ 
tx$en byte, /* I-bit Tx interrupt enable */ 
rx$en byte, /* 2-bit Rx interrupt enable/mode */ 

*/ 
*/ 

stat$aff$vector byte, /* l.,.bit status affects vector flag */ 
config byte, /* 2-bit system config - int/DMA */ 
priority byte, /* l-bit priority flag */ 
vector$int$mode byte, /* 3-bit interrupt mode code */ 
int$vector byte; /* a-bit interrupt type code */ 

output(b$cmd$port)=channel$reset; /* channel reset */ 

output(b$cmd$port)=l4H; /* point to WR4 */ 
/* set clock rate, stop bits, and parity information */ 
output(b$cmd$port)=shl(clock$rate,6) or shl(stop$bits,2) or shl(parity$type,l) 

or parity$enable; 

output(b$cmd$pott)=l3H; /* point to WR3 */ 
/* set up receiver parameters */ 
output(b$cmd$port)=shl(rx$char$length,6) or rx$enable or shl(auto$enable,5); 

outp~t(b$cmd$port)=l5H; /* point to WR5 */ 
/* set up transmitter parameters */ 
output (b$cmd$port) =shl(tx$char$lenqth, 5) or shl (tx$enable,3) or, shl(dtr, 7) 

or shl(brk,4) or.shl(rts,l); 

output (b$cmd$port) =l2H; 
/* set up inter~upt vector */ 
output(b$cmd$port)=int$vector) 

/* point to WR2 */ 

output(a$cmd$port)=12H; /* point to WR2, channel A */ 
/* set up interrupt modes */ 
output{a$cmd$port)=shl(vector$int$mode,3) or shl(priority,2) or config;. 

output{b$cmd$port)=lIH; /* point to WRl */ 
/* set up interrupt"enables */ 
output(b$cmd$port~=shl(rx$en,3) or shl(stat$aff$vector,2) or shl(tx$en,l) 

or ext$en; 

end MPSC$INT$INIT; 

7-101 AFN-Q2076B 



AP.13,~t 

APPENDIXD 
APPLICATION EXAMPLEUSINGSDK-86 

This application example shows the 8274 in a simple 
iAPX-86/88 system. The 8274 controls two separate 
asynchronous channels using its internal interrupt con­
troller to request all data transfers. The 8274 driver 
software is described w.hich transmits and receives data 
buffers provided by the CPU. Also, status registers are 
maintained in system memory to allow the CPU to 
monitor progress of the buffers and error conditions. 

THE HARDWARE .INTERFACE 

Nothing could be easier than the hardware design of an 
interrupt-driven 8274 system. Simply connect the data 
bus lines, a few bus control lines , supply a timing clock 
for baud rate and, voila, it's done! For this example, the 
ubiquitous SDK-86 is used as the host CPU system. The 
8274 interface is constructed on the wire-wrap area 
provided. While discussing the hardware interface, 
please refer to Diagram 1. 

Placing the 8274 on the lower 8 bits of the 8086 data bus 
allows byte-wide data transfers at even I/O,addresses. 
For simplicity, the 8274's CS/ input is generated by 
combining the M-IO/ select line with address lineA7 via 
a 7432. This places the 8274 address range in multiple 
spots within the 8086 I/O address space. (While fine for 
this example, a more complete address decoding is 
recommended for actual prototype systems.) The 
8086's Al and A2 address lines are connected to the AO 
and Al 8274 register select inputs respectively. Al­
though other port assignments are possible because of 
the overlapping address spaces, the following I/O port 
assignments are used in this example: 

Port Function 
Data channel A 

Command/status A 
Data channel B 

Command/status B 

I/O Address 
OOOolf 

0002H 

0004H 

0006H 

To connect the 8274's interrupt controller into the sys­
tem an inverter and pull-up resistor are needed to con­
vert the 8274's active-low, interrupt-request output, 
IRQ, into the correct polarity for the. 8086's INTR 
interrupt input. The 8274 recognizes interrupt­
acknowledge bus cycles by connecting the INTA 
(INTerrupt Acknowledge) lines of the 8274 and 8086 
together. 

The 8274 ReaD and WRite lines directly connect to the 
respective 8086 lines. The RESET line requires an in­
verter. The system clock for the 8274 is provided by the 
PCLK (peripheral clock) output. of the 8284A clock 
generator. 

On the 8274's serial side, traditional 1488 and 1489 
RS-232 drivers and receivers are used for the serial 
interface. The onboard baud rate generator supp1ies the 
channel baud rate timing. I~ this example, both sides of 
both channels operate at the same baud rate although 
'this certainly is not'a requirement. (On the SDK-86, the 
baud rate selection is hard-wired thrujumpers. A more 
flexible approach would be to incorporate an 8253 Pro­
grammable Interval Timer to allow software-

. configurable baud rate selection.) 

That's all there is to it. This hardware interface is 
completely general-purpose and supports all of the 8274 
features except the DMA data transfer mode which 
requires an external DMA controller. Now let's look at 
the software interface. 

SOFTWARE INTERFACE 

In this example, it is assumed that the 8086 has better 
things to do rather than continuously run a serial chan­
nel. Presenting the software as a group of callable pro­
cedures lets the designer include them in the main body 
of another program. The interrupt-driven data transfers 
give the effect that the serial channels are handled in the 
background while the main program is executing in the 
foreground. There are five basic procedures: a serial 
channel initialization routine and buffer handling 
routines for the transmit and receive data buffers of 
each channel. Appendix D-l shows the entire software 
listing. Listing line numbers are referenced as each 
major routing is discussed. 

The channel initialization routine (INITIAL 8274), 
starting with line #203, simply sets each channel into a 
particular operating mode by loading the command reg­
isters of the 8274. In normal operation, once these 
registers are loaded, they are rarely changed. (Although 
this example assumes a simple asynchronous operating 
mode, the concept is easily extended for the byte- and 
bit-synchronous' modes.) 

7-102 AFN·02076B 



AP-134 

(FOR DETAILED DESCRIPTION ON SDK-86, REFER TO SDK-86 MCS-86 SYSTEM DESIGN KIT 
ASSEMBLY MANUAL) 

SOK·88 5V 
EXPANSION 

BUS 
40 751488 

'8 28 iNT 
TxDA 

INTR 

AD .. 22 AD RlSA 

Wi! '8 21 Wi! RxDA 

im'A 5. 27 
INTA 

CHANNEL 
A 

36 CLK 
elSA 

pelK 

RST •• RESET CDA 

D7 
,. 12 

DB7 DTRA 

D6 
,. ,. 

DB. 751489 

DS 
12 ,. 

DB5 
8274 

TxOS 

D. 
1.' 15, 

DB. ,. RTSB 
D. DB. 

D2 
17 

DB2 RxDB 
CHANNEL 

Dl 
18 

DBl 
B 

CTSB 

DO 
,. 

DB. 

'COB 
MilO cs 

A7 D'i'RB 

Al 
25 

A. fiCA 

A2 2" Al RiCA 

TxCB 

Rxes 
WI OND 

28 2. 

A2' 
PIN 9 

Figure 0-1. 8274/SDK-86 Hardware Interface 

7-103 

CONTROL 
LINES 

CONNECTOR 

ADDRESS 
BUS EXPANSION 

CONNECTOR 

AFN-02076B 



AP-1~~ 

The channel operating modes are contained in two 
tables starting with line #163. As the 8274 has only one 
command register per channel, the remaining seven 
registers are loaded indirectly through the WRO (Write 
Register 0) register. The first byte of each table entry is 
the register pointer value which is loaded into WRO and 
the second byte is the value for that particular register. 

The indi~ated modes set the 8274 for a~yncllfonous 
operation with data characters 8 bits long, no parity, 
and 2 stop bits. An X 16 baud rate clock is assumed. Also 
selected is the "interrupt on all RX character" mode 
with a variable ittterrupt vector compatible witll the 
8086/8088. The. transmitters are enabled and all model' 
control lines are put in. their active state. 

In .tddition to initializing the 8274. this routine also sets 
up the appropriate interrupt vectors. The 8086 assumes 
the first lK bytes of memory contain up to 256 separate 
interrupt vectors. On the SDK-86 the initial2K bytes of 
memory is RAM and therefore must be initialized with 
the appropriate vectors. (In a prototype system, this 
initial memory is probably ROM, thus the vector set-up 
is not needed.) The 8274 supplies up to eight different 
interrupt vectors. These vectors are developed from 
internal conditions such as data requests, status 
changes, or error conditions for each channel. The in­
itialization routine arbitrarily assumes that the initial 
8274 vector corresponds to 8086 vector location 80H 
(memory location 200H). This choice is arbitrary since 
the 8274 initial vector location is programmable. 

Finally, the initialization routine sets up the status and 
flag in RAM. The meaning and use of these locations are 
discussed later. 

Following the initialization routine are those for the 
transmit commands (starting with line #268). These 
commands assume that the host CPU has initialized the 
publically declared variables for the transmit buffer 
pointer, TX_POINTER_CHx, and the buffer length, 
TX_LENGTH_CHx. The transmit command routines 
simply clear the transmitter empty flag, TX EMPTY 
CHx, and load the first character of the buffer into the 
transmitter. It is necessary to load the first character in 
this manner since transmitter interrupts are generated 
only when the 8274's transmit data buffer becomes 
empty. It is the act of becoming empty which generates 
the interrupt not simply the buffer being empty, thus the 
transmitter needs one character to start. 

The host CPU can monitor the transmitter empty flag, 
TX_EMPTY _CHx, in order to determine when trans­
mission ofthe buffer is complete. Obviously, the CPU 
should only call the command routine after first check­
ing that the empty flag is set. 

7-104 

After returning to the main program, all transmitter 
data transfers are handled via. the transmitter-interrupt 
service routines starting at lines #360 and #443. These 
routines start by issuing an End-Of-Interrupt command 
to the 8274. (This command resets the internal­
interrupt controller logic of the 8274 for this particular 
vector and opens the logic for other internal interrupt 
requests. The routines next check the length count. If 
the buffer is completely transmitted, the transmitter 
empty flag; T)<-EMPTY _CHx, is set and a command is 
issued to the 8274 to reset its interrupt line. Assuming 
that the buffer is not completely transmitted, the next 
character is output to the transmitter. In either case, an 
interrupt return is executed to return to the main CPU 
program. 

The receiver commands start at line #314. Like the 
transmit commands, it is assumed that the CPU has 
initialized the receive-buffer-pointer public variable, 
RX_POINTER_CHx. This variable points to the first 
location in an empty receive buffer. The command 
routines clear. the . receiver ready flag, RX_READY­
_CHx, and then set the receiver enable bit in the 8274 
WR3 register. With the receiver now enabled, any 
received characters are ·placed in the receive buffer 
using interrupt-driven data transfers. 

The received data service routines, starting at lines 
#402 and #485, siinply place the received character in 
the buffer after first issuing the EOI command. The 
character is then compared to an ASCII CR. An ASCII 
CR causes the routine to set the receiver ready flag, 
RX_READY _CHx, and to disable the receiver. The 
CPU can interrogate this flag to determine when the 
buffer contains a new line of data. The receive buffer 
pointer, RX_POINTER_CHx, points to the last 
received character and the receive counter, RX­
_COUNTElLCHx, contains the length. 

That completes our discussion ofthe command routines 
and their associated interrupt service routines. Al­
though not used by the commands, two additional ser­
vice routines are included for completeness. These 
routines handle the error and status-change interrupt 
vectors. 

The error service routines, starting at lines #427 and 
#510, are· vectored to if a special receive condition is 
detected by the 8274. These special receive conditions 
include parity, receiver overrun, and framing errors. 
When this vector is generated, the error condition is 
indicated in RRI (Read .Register I). The error service 
routine issues an EOI command, reads RRI and places, 
it in the ERROlLMSG_CHx variable, and then issues 

AFN-02076B 



intJ AP-134 

a reset error command to the 8274. The CPU can moni­
tor the error message location to detect error condi­
tions. The designer, of COUTl!e, can supply his own error 
service TOutine. 

read RRO, place its contents in the STATUS_MSG­
_CHx variable and then issue a reset external status 
command. Read Register 0 contains the state of the 
modem inputs at the point of the last change. 

Similarily, the status-change TOutines (starting linel\ 
#386 and #469) are initiated by a change in the modem­
control status lines CTS/, CDI, or SYNDET/. (Note 
that WR2 bit 0 controls whether the 8274 generates 
interrupts based upon changes in these lines. Our WR2 
parameter is such that the 8274 is progrl;Ullmed to ignore 
changes for these inputs.) The service'TOutines simply 

Well, thafs it. This application example has presented 
useful, albeit very simple, routines showing how the 
8274 might be used to transmit and receive butTers using 
an asynchronous serial format. Extensions for byte- or 
bit-synchronous formats would require no hardware 
cha.n,es due to the highly programmable nature of the 
8274's serial formats. 

8274 APPLICATION BRIEF PROGRAM 

ISIS-II It:S-86 IR:RO AS5EIIlI.ER Y2. 1 R5SEIIlI. Y a: IQlllE ASYIQ 
0lJECT IQlllE PUaD IN :Fl:ASYI«:B.1RI 
fISSEIIllfR INYOkED ~. A5II86. Fl. ASYIQ. SRC 

LOC IRI LII£ SW/CE 

1 ; ......... 111111' ..... ,1111111111111111111111111111111111111111" 

2 i* * 
3 i* 8274 RPPLlCATIQI BRIEF PR!MRIII * 4 i* * 
5 i* * 
6 i* * 
7 ,* TI£ 8274 15 INITIIU2EO FIR SIIfILE RSYIDI!(HJJS SERlfI. • 
8 i * FOMIT fit) YECTm I~-oRI~ DATR lJ/.fWSFERS. * 
9 i' TI£ INITIRLIZRTIQI ROOTII£ II.SO LOfI>S TI£ 88$6'5 INTERRIPT • 

18 i * 'lECTIR TfIlI.E FR(JI 11£ COOE SEGI£NT INTO Lilol RAIl QI TI£ • 
11 i* SDK-86. TIE TRfffSIIITTER fit) RECEIVER ARE LEFT ENfRED. * 
12 it * 
13 i * FII! TRfffSIIIT, TI£ CPU PASSES IN IIEIO!Y TI£ POINTER a: A ' • 
14 i * BlFFER TO TRfffSIIIT AN) TI£ BYTE l.OOTH a: TI£ BlFFER. * 15 i * 11£ DATR TRANSFER PROCEED USIIIl INTERRlPT-oRI'IEN TRIIISFERS. • 
16 i' R STRTUS BIT IN IIEIO!Y IS SET IoI£H IF IU'FERS IS EIf'TY. ,. 
17 i* > • 
18 i * FIR RECEIVE, TI£ CPU PASSES TI£ POINTER a: A BUFFER TO FILL • 
19 i * TI£ BlFFER IS FIlJ.EI) IMTIL A 'CR..at!' CIBACTER IS RECEI'tS, * 28 i * A STRTUS BIT IS SET fit) TI£ CPU lIlY REfI) TI£ RX POINTER TO • 
21 i' DETERIIII£ TI£ LOCATIQI a: TI£ LAST CII1RIUER. • 
22 i* * 23 i * RLL ROOTII£S 1ft RSSIIED TO EXIST IN TI£ SIItE COOE SElJENT. * 24 i * CRLL'S TO TI£ SERVICE ROOTI~ fIlE ASSI.JEI) TO BE .StQT. II! * ,25 i * INTRfISEliIENT (IH.Y TI£ RE'1'WI fIlIlRESS IP IS· QI TI£ STACK). 
26 ,t 

27 i* * 
28 i* • 29 i* , 
38 i 1111111111111, •• 111111111111111111111" .... "11111 .... 1111111111 

7-105 AFf'l-()2076B 



AP-134 , 

11:5-86, IR:RO fISSEIELER fISVI«:8 't " 

LOCIilJ WE SW!CE 

31 
,32 NII£ fISVI«:8 ; HOOll£ NII£ . 
n 
34 ; PIIllIC DEClARATIIIIS FIR COItIN) ROOTII£S 
:l5 

.', ' 
36 PtaIC INITIFL8274 ; INITIflIZATtIW ROOTINE 
17 PIIllIC l'X:.CtJIVN)..CIiI' , TX BlFFER COItIN) CIRI£L B 

·38 PlaIC TlLCOItIN)_CIfI ; TX BlfFER 'mtIfIII) CtRI£L A ' 
19 PIIllIC RlLCOItIN)_CII! ; RlC BlfFER COItIN) CHfH£I. B 
48 PlaIC RlLCOItIN)_CIfI ; RlC BlFFER CCIIIN> CIRf£L A 
41 
42 ; PIIllIC DEClARATIONS FIJI STATUS VARIABLES 
41 
44 PIIllIC RlLREfI)Y _CIIl "RlC REfI)Y FLRG CIfl 
45 PIIllIC RllREfI)Y ..CIfI ,RlC REfI)Y FL"; CIfI 
46 PIIllIC TX_£II'T'U:te , TX EIf'TY FL"; CHB 
47 PIIllIC TX..EIf>TV _CIfI ; TX Elf>TY FLRG CHA 
48 PIIllIC RlLCWIT ..cHB ,RlC Blf~ ClUiTER CIII 
49 PIIllIC RlLCWIT -CHfI ; RX BlfFER ClUiTER CIfI 

,59 PIIllIC ERROIJ1SG..CIIl ,ERROl Ft,.; CHB 
51 PIIllIC ERRIILIISG-CIfI ; ERRtl! FL"; CIfI 
52 PIIllIC STATUSJ!SG..CIfl ; STATUS FLRG CHB 
53 PIIllIC STATUSJlSG..CIfI ; STATUS FL"; CIfI 
54 
55 ; PIIllIC DECUlRATIIIIS FOR VARIABLES PASSED TO ,T/£ TRftNSIIIT 
56 ,IN) RECEIVE 00tRI)S. 

57 
58 PIIllIC TlLPOINTER-CHl ; TX BlFFER POINTER FOR CHB 
59 PIIllIC TlLLENGTlLCHB ; TX LENGTH OF BlfFER FOR CIIl 
68 PI8.IC Tll.POINTER_CHA , TX BlFFER POINTER FOR CHA 
61 PIIll'IC TX-LOOTlLCIfl , TX LOOTH OF BlFFER FOR CIfI 
62 PIIllIC Rll.POINTE\lCKl ,RlC BUFFER POINTER FIll CHB 
61 PIIllIC RX..PqINTER_CHA ,RlC BlfFER POINTER FOR CIfI 
64 
65 ,110 PORT ASSIIHENTS 
66 
67 ; CIRf£L A PORT ASSIGNl£NTS 
68 

II8Il8 69 DflTA_PORLCIfI EQU 8 ,DfITA ilO PORT 
8882 79 COItIN)..PORT ..CIfI EW 2 ,(!WIRNI) POIIT 
8882 71 STATUS..PORLCIfI EQU COItIN).PORLCIfI ,STATUS PORT 

72 
n ,CHAIf£L B foRT ASSI!H£NTS ' 
74 

9994 75 DflTA..PORT _CHB EQU 4 ; DflTA 110 PORT 
8896 76 mtIfIII)..PORLCHB EQU 6 ,cat1AND PORT 
1!996 n STATIJSJ'(I?T:.tHB Eilu COltlAIiLPORLCHB ,STATUS PORT 

78 
79 ,"15(. SYSTEIt EQUATES 

,:,. 

99 
999f) 81 CII-CHR EQU OOH , ASC Il CF CIflRAC TER COPE 
9299 82 INT_TABLE.BASE EQU 299H ,INT VECTIlII BASE flOI1[SS 
9599 83 COOE_START EQlI 599H ,STAAT LOCATION FOR (OOE 

84 
85+1 SEJECT 
86 
87 ,~ ASSSIGMNTS FOR DflTA SEGI£NT 
88 
89 DATA SEGI1ENT 
99 

7-106 "FN~076B 



AP-134 

1tS-86 IflCRO RSSEIIllER ASYI«:8 

LOC (8J LItE SW!CE 

!Ii ; YECTlf! INTERRlfT TFIBlE - flSstI£ INlTlfI.. 8274 INTERRlf'T 
92 ,YECrn! IS NlJf!ER ae (f28IlH), F~ EfDi YECTOR, THE TAIlI..£ 
93 ; ClllTAINS START LOCRTltw fH) COOE SEMNT J!EGISTER YPUf, 
94 ,TIE TIIIlE IS LIlOO) FRa1 PROI1 
95 

8288 96 ~ INT_ TABlE..IIfISE 
97 

8288 8I11III 98 TlLYECTOR..CII! ON 9 ,TX INTEI1I1IJ'T YECTIII FOR CII! 
9282 8I11III 99 TlLCUIII ON 8 

198 
8284 8I11III 1111 STS_YEtl'lLCIi ON 8 ,STATUS INTERRUPT YECT~ F~ CII! 
11296 8I11III 182 STS_CS..ell! ON 8 

183 
8288 1!888 184 I!X-YECT~ ON 8 ,RX INTERRlf'T YE~ FOR CII! 
828A'!B811 185 

186 
RlLCS_CIII ON 8 

, 

82IlC 8I11III 197 ERR..YECTOR..cIII ON 8 ,ERRtl! INTERI!IJ>T YECTIll Fill CH8 
828E 8I11III 1ae ERR..c5..CIII ON 8 

189 
82188I11III 119 TlLYECTIR..CIIl ON 8 ,TX INTERRlf'T VECT{J! Fill elf! 
8212 8I11III 111 TlLCS..CIf! ON 9 

112 
82148I11III 113 STS_YECTOR..CIfI. ON 8 ,STATUS INTERRlf'T YECTIll Fill CHR 
11216 8I11III 114 STS-CUIII ON 8 

115 
8218 8I11III 116 RX..YECTIR..CHR ON 8 ; RX lNTERRlf'T YECTlf! FIll CHA 
821A 1!888 117 RX..CS..CHR ON 8 

119 
821C 8I11III. 119 ERR_YECTlR..CHR ON 8 ,ERRtl! INTERRlf'T YECTlf! Fill CIIl 
&21E 8I11III 1211 ERR..CS..afI ON 8 

121 
122 ; "ISC RAN LOCRTIIWS FOR CIfN£L STATUS fH) POINTERS 
123 
124 ,CIWf£l. B POINTERS IN) STATUS 
125 

822Il 8I11III 126 TlU'OINTER..CIfl ON 8 ; TX BlFfER POINTER Fill CIII 
11222 8I11III 127 TX...l.ENlTH..C ON 8 ; TX BlFfER l.EIIlTlI FOR CIII 
&224 8I11III 128 RlU'OINTER..CIfl ON 8 ;Rl( BlFfER POINm! Fill CIII 
e226 8I11III 129 RX..CIUIT _CIII ON 8 ,RX L.OOTH CIUITER FOR CIII, 
822Il ae 138 Tl<-EIf'TY ..ell! 08 8 ,TX 1)(1£ FlAG 
8229 ae 131 1!X..R£mY..eII! 08 8 ,~ fI.Rl (1 IF CR-DI! RECElYED. ELSE 8) 
822fI ae 132 STATUS..IISG..CIII 08 8 ,STATUS C!fIIGE'!IESSRlE 
822Il ae 133 ERROI..MSG.CIII 08 8 ; ERROl STATUS LOCRTI!II (8 IF NO ERRIl!) 

134 
135 ; CIWf£l. A POINTERS fH) STATUS 
136 

822C 8I11III 137 TlU'OINTER..CIIl ON e ) TX BlFfER POINTER Fill CIIl 
822E 8I11III 138 TlU.ENGTILCHR ON 8 ,TX BtfFER LEfImI FOR CIIl 
8238 8I11III 139 RlU'OINTER..CIfI ON 8 ;RX BlFfER POINTER FOR CIIl 
1!232 8I11III 148 RX..CIUIT ..CIII ON 8 ,RX L.OOTH CIUITER FOR CHR 
8234 ae 141 Tl<-EIf'TY ..CIII 08 8 ,TX D!IIE FlAG 
8235 ae 142 I!X..R£mY _CIIl 08 8 ; ~ FlAG (1 IF CR..CII! RECEIVED, ELSE 9) 
8236 ae 143 STATUS..IISG..CIIl 08 8 ; STATUS CHIME I£SSfllE 
8Wae 144 ERRaUISILCHR 08 II ,ERROR STATUS LOCRTI!II (9 IF ND ERRIl!) 

145 . 
146 DATA ENDS 
147 
148 +1 $EJECT 

7-107 AFN-02076B 



MCS-86 IR:RO ASSEI1BlER ASYt«:8 

LOC ooJ 

8SIl0 91 
058116 

05e2 92 
0583 88 

8594 83 
05e5 ce 

05e6 84 
0587 4C 

9588 85 
11589 EA 

858A 88 
9588 88 

Il58C 81 
9500 12 

8S9E 92 
859F 38 

8518 83 
8511 C8 

8512 84 
8513 4C 

8514 85 
8515 EA 

8516 98 
8517 88 

LINE 

149 
159 
151 
152 
153 
154 
155 
156 
157 
158 
159 
168 
161 
162 
163 

164 
165 

166 
167 

168 
169 

178 
171 

172 
173 

174 
175 
176 
177 
178 

179 
188 

181 
182 

183 
184 

185 
186 

187 
188 

189 

AP~134 

SOURCE 

~ SEGI'IEIIT 
ASSM CS.ABC,DS DATA,5S.DATA 
~ CODE-START 

I ***,"*************************~****************ic************~* 

PARAltETERS FOR .CHANNEL INITIALIZATION * 
* 

; *****************************************************..fI*******:t** 
, CHfH£L B PflRM:TERS 

, WRl - INTERRIPT ON filL RX C/fR, YflIIIABLE INT VECTOR, TX INT ENABLE 
CMDSTRB DB ," L 16H 

, IIR2 - INTERRIPT VECTOR 
DB 2, <INLTABLEJlASE/4! 

ilolR3 - RX 8 BitSIC~, RX DISABLE 
DB 3,8C0H 

, WR4 - X16 CLOCI<, 2 STOP BITS. NO PAflITY 
DB 4,4CH 

; WR5 - OTR ACTIVE, TX 8 BITSICH<. TX ENABLE, RTS ACTIVE 
DB 5,9EAH 

; WR6 AND WR7 PlOT REQUIRED FOR AS'INC 
DB 8,8 

,CHflIf£lA PARfII1ETERS 

i WR.1 - INTERRUPT ON ALL ~X CHR, IX INT ENABLE 
OOSTRA DB L 12H 

i WR2 - VECTORED INTERRIPT FOR 8886 
DB 2,;l8H 

i WR3 - RX a SITS/GIR, RX r,ISABLE 
DB 3,8C8H . 

, WR4 - X16 ClOC.l(, 2 STOP BITS, NO PARITY 
DB 4.4CH 

i WR5 - DTR ACTIVE, IX 8 BITSICHR, IX ENABLE, RT5 ACTIVE 
DB 5,9EAH 

,WR6 AND WR7 NOT REQUIRED FOR A5YNC 
DB 8,8 

198 +1 'EJECT 

7-108 AFN-D2076B 



AP-134 

It:S-86 IR:RO RSSEIIILER ASYN:B 

LOC (BJ LII£ SlUICE 

191 
192 ,STlI!T (F COlIN> ROOTII£S 
193 
194 

,-__ u* ____ * 
1!15 ,. • 
196 ,. INlTIfUZRTlal COlIN> F!R TIE 8274 - TIE 8274 • 
197 ,. IS SETlP fUmlllll TIl'TIE PARfl£TERS STt1!ED IN 
198 ,. PRIll fIlOYE STRRTIIil AT CII5TRB F(R CIM£l B IN) • 199 ,. CI!iTRA F!R CIM£l A. • 288 ,. • 2111 , ..... IIIIIIIIIIJlIIIIIIIIII****III ............ IIIIIIIIII ........ 
292 

1!518 283 INITIfL8274 
284 ,CIJ'Y IHTERRIJ'T YECTIR IP IN) CS YfI.t£S FRIll PRIll TO RIll 

1!518 C7868882Il886 285 lIlY llLYECT!R..CIII, OFFSET XlfTIHB ,TX DATR YECllR CIII 
II51E 8CIIE82II2 2116 lIlY TX..CS...CI& CS 
9522 C78684e23586 2rl lIlY STS_ YECT!R.Cfm. OFFSET STAIHB ,STATUS YECT!R CIII 
8528 8C8EIl682 288 lIlY STS..C5..CI& CS 
852C C78688824986 289 . lIlY RlLYECT(IUIIl, OFFSET RCYIHB ; RX DATR YECT!R CHB 
8532 BCeEI1A82 218 lIlY RlLCS_CIII, CS 
8536 C7868C827786 211 lIlY ERR_ YECT!R..CNB, OFFSET ERRIHB ; ERR(R YECT!R CIII 
853c BCeEI1A82 212 lIlY RlLCS_CNB, CS 
8548 C7Il61111l211C86 213 lIlY llLYECTIR.£IIt (FFSET XlfTINrt , TX DATR YECT!R CIfI 
8546 &C8E12e2 214 lIlY TX..CS..CIfI, CS 
IlS4fI C7Il614828986 215 lIlY STS_YECT!R..CIfI, IlFFSET STAlHA ,STATUS YECT!R CIfI 
8558 BCIlE1682 216 lIlY STS_CS..att CS 
8554 C1Il618II2CIl86 217 lIlY RlL YECT!R..CIfI, IlFFSET RCYIHA ; RX DATR YECT!R CIfI 
855fI BCIlE1II82 218 lIlY RX..CS..att CS 
855E C7Il61C&2FB86 219 lIlY ERR.. YECT!R..CIfI, IlFFSET ERRIHA • ERR(R YEC1lR CIfI 
8564 8CIlE1E82 228 lIlY ERR..CS..att CS 

221 
222 ,CIJ'Y SETlP TABLE PARfI'IElERS INTO 8274 
223 

8568 BFIIII85 224 lIlY 01, OFFSET ctrISTRB ,INITIALIZE CIII 
8568 fIAII688 225 lIlY ox, -ctlfRt)..PIRT-till 
856E E82E88 226 CALL SETlP ; CIJ'Y CIII PARfl£TERS 
9571 BFIIC85 227 lIlY 01, OFFSET CII>STRA ,INITIALIZE CIfI 
9574 BAB288 228 lIlY ox, COIIN>..PIRT-tIII 
9577 E82598 229 CALL SETlP ; CIJ'Y CIfI PARfI'IElERS 

238 
231 ; INITIALIZE STATUS BYTES IN) FUWlS 
232 

957A B8II8II8 233 lIlY 11)(,8 
85'ID A22BII2 234 lIlY ERRIlU\SG..CNB, AL ; ClEfR ERR(R FUll CIII 
85l1li A2l7II2 235 lIlY ERRIlU\SG..CIfI AL ,ClEfR ERR(R FUll OIl 
8583 fI22fIl!2 216 lIlY STATUSJISG-Il& AL ,ClEfR STATUS FUll CHB 
Il586 fI2l682 237 lIlY STfITUS..IISG.. AL ; ClEfR STATUS FUll OIl 
Il589 fI326II2 238 lIlY 1Ill.CWfl'-tIII, AX ,ClEfR RX CWITER CHB 
II58C fI33282 219 lIlY IIll.CWfl' _CIfI, AX ; ClEfR RX crufTER OIl 
85BF B881 248 lIlY ILl 
8591 A22982 241 lIlY RX..REfI)Y _CNB, AL ; SET fIX DII£ FLBi CHB 
8594 A23582 242 lIlY RX..REfI)Y _CIfI, AL ,SET RX DII£ FUll OIl 
ft1.f7 A22882 243 lIlY TlLEII'TY -till, AL ; SET TX DII£ FUll till 
859A A23482 244 lIlY TlLEII'TY.£IIt AL ; SET TX DII£ FUll OIl 
859f) FB 245 STI ; ENfIlE IHTERRlJ'TS 
859E C3 246 RET ; RETIRH - DII£ 1I1TH SETIJ' 

247 
859F 8A85 24$ SETlP: lIlY AL, [Oil ; PARfI£TER ClJ'Y111l ROOTII£ 
85A1 3C88 249 CIt' > IL8 
85Al7484 25B JE DII£ 

7-109 AfI\HI2078B 



Ap·134 

LOC OBJ LINE SOURCE 

95ft5 EE 251 OUT DX, "'- ,OUTPUT PARAItETER 
95fI6 47 252 It«: DI ,POINT AT NEXT PARAI1ETER 
85A7EBF6 253 JIf' SElU' ;60 LOA) IT 
85A9 C3 254 DOI£: RET ,DOI£ - SO RETml 

255 
256 f1 $EJECT 
257 
258 ;--**--***---**-*--****-*** 
259 ,* 
268 ,. IX CHfN£I. B COI1I1fII{> ROUTINE - ROUTINE IS CALLED TO 
261 ,* TRflNS/tlT A BlfFER. Tf£ BlfFER STARTING AOORESS, 
262 ,* TXJ>OINTER_CIIl, ANI) Tf£ BlfFER LENGTH, TX-LEI«lTH_CHB, 
263 ,. ItlIST BE INITIALIZED BY THE CALLING PROORAI1. * 264 " BOTH ITEI1S ARE WORD IlARIABLES. • 
26.5 ,. 

* 266 ; **************************************************************** 
267 

85AA 268 TX_CMfflD_CIIl. 
85M 58 269 PUSH AX ; SRYE REGISTERS 
95AB 57 278 PUSH DI 
85AC 52 271 PUSH OX 
85AD C686288289 272 IllY TX_EII'TUHB, 9 ,CLEAR EI1f'TY FLAG 
9582 BA9480 '273 t10Y DX, DATAYORT_CIIl ; SETIA' PORT PO INTER 
9585 883£2992 274 t10Y 01, TX..POINTE~_CIIl ,GET TX BUFFER POINTER CHB 
95B9 8A95 275 t10Y ",-, [DIl ; GET FIRST CHARACTER TO TX 
9588 EE 276 ruT DX, AL ,OUTPUT IT TO 8274 TO GET IT STARTED 
958C SA 277 POP OX 
9500 51' 278 POP DI 
958E 58 279 POP AX 
958F C3 2S9 RET ,RE1U<N 

281 
282 ; **************************************************************** 
283 ,. 
284 ;' IX CIflIf£L A C!l1II1II) ROUTINE - ROUTINE IS CALLED TO 
285 ;* TRflNS/tIT A BlfFER. THE BlfFER STARTING flD!lRESS, 
286 ,* TXJ>OINTERJ:lifl. ANI) THE BlfFER LENGTH, TX_LEI«lTHJJiFl. 
287 ,* I1UST BE INlTI"'-IZED BY THE CALLING PROGRfIIl 
288 ,* BOTH ITEMS ARE WORO IlARIABLES. 
289 " * 
299 ,***._*-*-****----*******-*-*.**-* 
291 

85Ca 292 IX_comfH)_CHA: 
85Ca 59 293 PUSH AX i SAYE REGISTERS 
95C1 57 294 PUSH 01 
95C2 52 295 PUSH OX 
85C3 C686349200 296 t10Y TX..EMPTY _CHA, 9 ,ClERR EI'1PTY FLAG 
85Ca BAII8!l9 297 IllY Ox, DATAYORLCHA ,SElU' PORT POINTER 
85Ca 883E2C92 298 t10Y 01, TXJ>OINTER-CHA ..; Gff TX BlfFER POINTER CHA 
95CF 8A95 '299 I10V AL [Of) ,GET FIRST CHARACTER TO TX 
95D1 EE 399 OUT DX, "'- ,OUTPUT IT TO 8274 TO GET IT STARTED 
9502 SA 381 POP DX 
9503 51' 392 POP DI 
95D4 58 393 POP AX 
95D5 C3 394 RET ,RETURN 

395 
396 

I **************************************************************** 
397 

" • 
399 " RX CM1fH) FOR C/fNoEL B - THE CALLING ROUTINE t1UST * 
399 ," INITIALIZE RX_POINTER_CHl TO POINT AT THE RECEllIE • 
318 ,. BUFFER BEFORE CALLING THIS ROUTINE. * 

H10 AFN-020768 



AP·134 

I'ICS-86 PR:RO ASSEIllI.ER ASI'NCB 

LOC OBJ 

85D6 
85D6 58 
851)7 52 
851)8 C606298289 
0500 C706269211989 
m BA06!l9 
1l5E6 8993 
1l5E8 EE 
1l5E~ B8Cl 
Il5EB EE 
Il5EC 51! 
05EJ) 58 
85EE C3 

05EF 
05EF 58 
85F852 
85Fl C686358289 
85F6 C78632828988 
85FC BA8288 
95FF 8803 
8681 EE 
8682 B8Cl 
8684 EE 
9695 51! 
8696 58 
8687 C3 

8688 52 
868~ 57 
868A 58 
8689 E88291 
06eE FF862892 
8612 FF8E2282 
8616 748E 
8618 BA8498 
8618 8B3E2892 
861F 8A85 
8621 EE 

LINE 

311 
312 
313 
314 
315 
316 
317 
318 
319 
328 
321 
322 
323 
324 
325 
326 
327 
328 
329 
338 
331 
m 
m 
334 
335 
336 
337 
338 
339 
348 
341 
342 
343 
344 
345 
346 
347 
348 
349 

J *.**.*lMc*********** ......... ************** .. ******************** 
RlLCCMM>-CIII. 

PUSH 
PUSH 
lIlY 
I10Y 
lIlY 
lIlY 
OOT 
lIlY 
OUT 
PCP 
PCP 
RET 

AX 
DX 

,SAVE REGISTERS 

~VJIl, e; CLEAR RX REff)Y FLAG 
RlLCOtNLCIIl. 0 ,CLEIR RX COUNTER 
DX, COIt1fWJ_~LCte ,POINT AT COftIANI) PORT 
fl., 3 ,SET UP FOR WR3 
DX, AL 
AL OC1H 
OX· AL 
OX 
AX 

,WR3 - 8 8ITSlCfI1, ENABLE I1X 

, RETlRN 

; ****************************************************** .. .,******* 
RX rotfII(l FOR CIRHL A - THE CALlING ROUTINE MUST 
INITIAlIZE RX..POINTER_CHA TO POINT AT THE RECEIVE 
BUFFER BEFORE aUING THIS ROUTINE 

* 
-* 
• 
* 

, ***************************************************************. 
RlLCOI1I1I1I1>-Clfi : 

PIJSH AX ,SAYE REGISTEIIS 
PUSH OX 
lIlY RlLREADUHfI, 9, CLEAR RX READY FLAG 
lIlY RX_COUNT _CIfl, 8, CLEAR RX COUNTER 
MOV Ox, crMffJ_PORT _CHR . POINT AT COI1PIANO PORT 
lIlY fl., 3 ,SET UP FOR 1oiR3 
OUT DX, AI.. 
lIlY fL OC1H ,1.13 - 8 BIT5.II:ffi, ENA8LE RX 
OUT DX, AL 
PCP OX 
PCP AX 
RET , RET/JRN 

358 +1 $EJECT 
351 
352 
353 
354 
355 
356 
357 
358 
359 
368 
361 
362 
363 
364 
365 
366 
367 
368 
369 
378 

,j ********"****************************************************** 
i* * 

START OF INTERRlIPT SERVICE ROUTINES 
;* 
i ******************************************.********************* 
,CIftf£l B TRANSIIIT DATA SERVICE ROUTINE 

XllTlte: PUSH 
PUSH 
PUSH 
CALL 
INC 
DEC 
JE 
lIlY 
lIlY 
lIlY 
OUT 

DX 
01 
AX 

,SIIYE REGISTERS 

EOI 'SEND EOI COIt1ANI) TO 8274 
TlLPOINTEILCIIl ,POINT TO NEXT CHARACTER 
TlUENGTILCIIl ,DEC LENGTH CO/JNTER 
XIB ; TEST IF DONE 
Ox, DIITfL~T _CJIl ,NOT DONE - GET NEXT CHARACTER 
01, TlLP01NTER_CIIl 
fl., [oil, PUT CHARACTER IN AL 
OX, AL ,OUTPUT IT TO 8274. 

7-111 AFN-()2()16B 



AP-134 

ItS-86 IIOCRO IISSEIIllER fISYI«:B 

LOC m.J Ut£ 5(Jm 

8622 58 371 PO' fIX ,RESTORE REGISTERS 
862l5F m PO' 01 
8624 51! ill PO' OX 
8625 CF 374 IRET ; RETmI TO F!REGRIXN) 
11626 BIIII6'88 375 XIS: ..w Ox, tnlfHU'(J!T..CHB ,fl.L CIiIIIlCTERS Ifl'fE BEEN SEND 
Il629 B828 376 IIOY fL28H ; RESET ~ITTER INTERRtPT PE/t)INl 
862B EE 377 ruT Ox, fl. 
862C C686288281 :m IIOY TX..£II'TV_CIIl, 1, D!H: - SO SET TX EltPTV Am CHB 
8631 58 379 PO' fIX ,RESTORE REGISTERS 
8632 51' 388 PO' 01 
8633 51! 381 PO' DX 
8634 CF 382 IRET ; RETmI TO FOREGRtlJIt) 

383 
384 ,CIRf£L B STRTUS CIIHlE SERVICE RruTIt£ 
385 

8635 52 386 STRINB: PUSH OX ,SAVE REGISTERS 
86J6 57 387 PUSH 01 
863758 388 PUSH fIX 
Iil638 E8D589 389 Cfl.L EOI ,SEND EOI COI9fAIf) TO 8274 
Iil638 BIIII6'88 3!le IIOY DX, COllfNU'(J!T..CItl 
863£ EC 391 IN RL OX ,READ RR8 
86JF A22fI82 m IIOY STRTUS..J!S(LCHB, fl. ; PUT RR8 IN STATUS IESSRGE 
8642 B818 393 IIOY fl., 1ai ; SE/I) RESET STATUS INT COIIIftI) TO 8274 
8644 EE 394 ruT Dx.fl. 
8645 58 395 PO' AX ,RESTORE REGISTERS 
8646 51' 396 POP III 
864751! 397 PO' DX 
tl64S CF 398 lRET 

m 
488 ,CIRf£L B RECElYEO DATA SERVICE RWTlt£ 
481 

864952 402 RCYINB. PUSH ()X ,SAVE REGISTERS 
864A 57 4IlJ PUSH DI 
tl64S 58 484 PUSH fIX 
864C EBC188 485 CIl.L EOI • SEND EOI COItIRND TO 8274 
I!64F 883£2482 486 ItOY 01, R)LPOINTER_CHB ; GET RX CHB BlFFER POINTER 
965l IlAt!488 497 IIOY DX. DATILPORLCHB 
8656 EC 48B IN RL f)X ; READ CHARACTER 
8657 8885 489 f10II rDl1 AL ; STORE IN BlFFEI1 
9659 FF862482 419 INC RX_POINTER_CHB ,BIJI1P TI£ BUFFER POlNTE~ 
965& FF862682 411 INC RX..COtRfLCHB • BtW THE C(l1NTEl1 
8661 3CllI) 412 CI1P fl., CR_~ ,TEST IF lAST CHRIIACTER TO BE RECElYEO? 
8663 758E 4B JNE RIB 
8665 C686298291 414 IIOY RX..RERDY .CIIl, 1 ; YES, SET READY FLAG 
866A BA8698 415 IIOY Ox, COIt1fIND.PORLCHB ,POINT AT COI1tfANI) PORT 
866D 8893 416 IIOY fl., 7 · POINT AT Wfl3 
866F EE 417 OOT OX, AL 
&'78 B8C9 418 ..w fl.. 9Cai ,OISRBLE RX . 
9672 EE 419 OOT !lX. fl. 
8671 58 428 RIB. POP AX · E!THEII WAY, RESTORE REGISTERS 
8674 51' 421 POP DI 
9675 5A 422 POP I)X 

9676 CF 423 lRET ,RETUIIN TO FOREGPOUND 
424 
425 . CHANNEL B ERROII SEIIVKE ~IJUTINE 
426 ~ 

9677 52 427 ERRIHB PUSH PX ,SAVE REGISTERS 
86;'8 59 428 PUSH AX 
8679 E~~ 429 CALL EO! ,SEN£> EO! COMHfiNl) TO B274 

~ 
430 I10V f)x, C\lI9f\N[).PORUHB . 

. /-' 

7-112 AFN.020768 



AP-134 

.,;s-86 Ift:RO ASSEI'IIllER A5YNJl 

LOC reJ LItE SQ.RC£ 

867F BiJ81 431 IllY fL, 1 ; POINT AT RR1 
8681 EE 432 (J.JT I)X,fL 
8682 EC 433 til !LOX ; RBI) RR1 
8683 A22II82 434 IllY ~,fL ; SAYE IT IN ERRa! FLffi 
9686 B83Il 435 IllY !L 3llH ; SEll) RESET ~ COItIfIlI) TO 8274 
9688 EE 436 (J.JT Ox, fL 
8689 58 437 p(f AX ,RESTlI!E REGISTERS 
068fI 5A 438 p(f I)X 
968B CF 439 lRET ; RETlRN TO FlI!EGRWID 

448 
441 ,C/ftf£\. A TRANSltIT DATA SERVICE ROUTII£ 
442 

868C 52 443 XlfTINR. PUSH OX ,SAVE REGISTERS 
9680 57 444 PUSH 01 
968E 58 445 PUSH AX 
868F E87E80 446 CfLL EOI ; SEND EOI COItIAtf) TO 8274 
9692 FF962C82 447 It«: TX.POINTER.CHA ,POINT TO NEXT CHARACTER 
9696 FF9E2E92 448 DEC TX.J.ENGTH..CHA ,DEC LOOTH CWNTER 
96911 74eE 449 JE XIA ,TEST IF DONE 
969C BAeeIl8 458 IllY OX, DATA.PORLCHA ,NOT 001£ - 6fT NEXT CHARACTER 
969F 883E2C82 451 IllY I) I, TX.POINTER..CHA 
96A3 8A95 452 ~y AL,[DIJ ; PUT CHARACTER IN fL 
96A5 EE 453 OUT Ox, fL ; OUTPUT IT TO 8274 
86A6 58 454 p(f AX ; RESTORE REGISTERS 
96A7 5F 455 POP DI 
96A8 5A 456 POP I)X 
96A9 CF 457 JRET · RETURN TO FlI!EGROIJND 
96AA BA9280 458 XIA IllY DX, cot1ItfN).PORLCHA ,ALL CHARACTERS HAVE BEEN SEN!) 
86AD B928 459 IllY AL 28H ,RESET TRANSMITTER IIITERRUPT PENI!ING 
96AF EE 469 OUT Ox.. AL 
86B9 C69634l1201 461 HOI! TX_EMPTY _CIf!, 1 ,DONE - SO SET TX EMPTY FLAG CHB 
06B5 58 462 POP AX ; RESTlI!E REGISTERS 
06B6 SF 463 POP DI 
9687 SA 464 POP OX 
06B8 CF 465 IRET ,RETURN TO FOREGROIJNI! 

466 
467 ,CHANNEL A STAnJS CHAmE SEIIVICE ROUTINE 
468 

068952 469 STAlNA PUSH OX ,SAllE REGISTERS 
96BA 57 470 PUSH DI 
968B 58 471 PUSH AX 
068C E85100_ 472 CALL EOI · SENO EOI ('OttIflND TO 8274 
068F 8A0280 473 MaV DX, COMlI-ID_PORUHA 
06C2 EC 474 IN AL DX ,READ RRB 
e6C3 A23682 475 IllY STATUS_MSG_CHA, AL . PUT ~R0 IN STAWS t1ESSAGE 
96C6 8018 476 I10V AL, 1SH · SEND RESET STATUS lIlT COMlI-ID TO 82i" 
06C8 EE 4f7 OUT DX, AL 
e6C958 478 POP AX · RESTORE REGISTERS 
86CA SF 479 POP DI 
96CB SA 4B0 POP DX 
9o'..cC CF 481 lRET 

482 
483 . CHANNEL A RECEIIlED DATA SE~YI(E ROUTINE 
484 

06CD 52 485 ~('JlNA PUSH vii · SAVE PEGISTEP5 
06CE 5i' 486 PUSH vi 
06CF ~.e 48i' PUSH AX 
06£>0 E8?f)9a 488 CALL EOI · SEN[> EOI (OMMAN!' TO 8274 
06D 3 883E3802 489 MeV DJ, PLPOIIITER_CHA • GET PX CHA BUFFEP POIIITER 
06Di' BA0099 499 MeV DX. DATA_PO~'U HA 

7-113 AFN-020766 



AP-134 

11C5-B6 I1ACRO ASSEIIBLER AS'r'NCB 

LOC OBJ LINE SOURCE 

IlbDA EC 49-1 IN fl., OX ; READ CHARACTER 
060B 88e5 492 I'IOV [On fl. ,STORE IN BUFFER 
8600 FF963892 493 INC RX..POINTER..CIfI ; EIlW TIE BUFFER POINTER 
86Ei FF963282 494 INC RX_COUNUHA ; Bl.!'IP TI£ COUNTER 
96E5 3C8I) 495 CHI' flL, CR_~ ; TEST IF LAST CHARACTER TO BE RECEIYED? 
86£7 75eE 496 mE RIA 
86E9 C686358281 497 ItlV RX..REAO'UIIA, 1 ; YES, SET READY FLAG 
96EE BA82ee 498 ItlV DX, COItIIfN)..PORLCHA ; POINT AT COIt\AI() PORT 
86F1 8803 499 I10V fl., 3 ; POINT AT WR3 
B6F3 EE 588 OUT ox, fl. 
86F4 B8C8 581 I10V fl., 0C8H ; OISfIBLE RX 
86F6 EE 582 OUT DX, AI.. 
B6F7 58 583 RIA. POP AX ,EITHER NAY, RESTORE REGISTERS 
86F8 5F 5e4 POP 01 
86F9 SA 5e5 POP DX 
86FA CF 586 IRET ,RETURN TO FOREGIlOUI«> 

587 
588 ; CIftINEL A ERro< SERVICE ROUTINE 
5e9 

86FB 52 518 ERRINA: PUSH ox ,SAllE REGISTERS 
86FC 58 511 PUSH AX 
86FD E81880 512 CALL EOI ; SEND EOI COItIfH) TO 8274 
8789 BfI82ge 513 ItlV ox, COItfKl..PORLCIfI 
0783 ee81 514 IllY fl., 1 ; POINT AT RR1 
8785 EE 515 OUT OX, fI. 
8786 EC 516 IN /L DX ,READ RR1 
8m A23782 517 I10V ERRftUISILCIfI, fI. ; SAllE IT IN ERROR FLAG 
878R 8830 518 lIllY fl., 3IlH ; SEND RESET ERro< COIt\AI() TO 8274 
978C EE 519 OUT ox, fl. 
9700 58 529 POP AX ,RESTORE REGISTERS 
079E SA 521' POP ox 
878F CF 522 lRET ,RETlRN TO FOREilROlN) 

523 
524 ,EIIHf"-INTERRlfT RruTiNE - SENDS EOI mtfIII) TO 8274. 
525 ; THIS CIJltlflll) I'lJST fl.IoIAYS TO ISSU:D ON CIfH£L A. 
526 

9719 58 527 EOI: PUSH AX ,SAllE REGISTERS 
0711 52 S28 PUSH OX 
0712 BA8200 529 ItlV ox, CO/'II'IAND..PORLCHA ; ALIoIAYS FOR C1fU£L A !" 
0715 8038 538 I'IlV fl., 3IlH 
'9717 EE 531 OUT DX, fl. 
8718 SA 532 POP ox 
8719 58 533 POP AX 
ellA C3 534 RET 

535 
536 ,END OF CODE ROUTINE 
537 
53B ABC ENDS 
539 END 

ASSEIIBL Y COIflETE, NO ERRORS FIJ.H) 

7-114 AFN'()2076B 



intJ AP-134 

REFERENCES 

1. 8274 Multiprotocol Serial Controller (MPSC) Data 
Sheet, Intel Corporation, California, 1980. 

2. Basics of Data Communication, Electronics Book 
Series, McGraw-Hill, New York, 1976. 

3. Telecommunications and the Computer, J. Martin, 
Prentice-Hall, New Jersey, 1976. 

4. Technical Aspects of Data Communications, J. 
McNamara, DEC Press, Massachusetts, 1977. 

5. Miscellaneous Data Communications Standards 
-EIA RS-232-C, EIA RS-422, EIA RS-423, EIA 
Standard Sales, Washington, D.C. 

7-115 AFN·02076B 



@ INTEL CORPORATION, 1982 

APPLICATION 
NOTE, 

7-116 

, ' 

AP-145 

June 1982 

ORDER NUMBER: 210403-001 



AP·145 

INTRODUCTION: 

The INTEL 8274 is a Multi-Protocol Serial Controller, 
capable of handling both asynchronous and synchronous 
communication protocols. Its programmable features al­
low it to be configured in various operating modes, provid­
ing optimization to given data communication 
application. 

This application note describes the features of the MPSC 
in Synchronous Communication applications only. It is 
strongly recommended that the reader read the 8274 Oata 
Sheet and Application Note AP134 "Asynchronous Com­
munication with the 8274 Multi-Protocol Serial Control-, 
ler" before reading this Application Note. This 
Application note assumes that the reader is familiar with 
the basic structure of the MPSC, in terms of pin descrip-

OPENING ADDRESS· CONTROL·· 
FLAG FIELD(A) FlELD(C) 
BYTE 

tion, Read/Write registers and asynchronous communi­
cation with the 8274. Appendix A contains the software 
listings of the Application Example and Appendix B 
shows the MPSC Read/Write Registers for quick 
reference. 

The first section of this application note presents an over­
view of the various sysnchronous protocols. The second 
section discusses the block diagram description of the 
MPSC. This is followed by the description of MPSC inter­
rupt structure and mode of operation in the third and 
fourth sections. The fifth section describes a hardware/ 
software example, using the INTEL single board comput­
er iSBC88/45 as the hardware vehicle. The sixth section 
consists of some specialized applications of the MPSC. Fi­
nally, in section seven, some useful programming hints are 
summarized. 

DATA FRAME CLOSING 
FIELD CHECK FLAG 

' SEQUENCE BYTE 

Figure 1. HDLC/SDLC Frame Format 

• Extendable to 2 or More Bytes 
•• Extendable to 2 Bytes 

SYNCHRONOUS PROTOCOL OVERVIEW 
This section presents an overview of various synchronous 
protocols. The cOntents of this section are fairly tutorial 
and may be skipped by the more knowledgeable reader. 

Bit Oriented Protocols OVerview 

Bit oriented protocols have been defmed to manage the 
flow of information on data communication links. One of 
the most widely known 'protocol is the one defined by the 
International Standards Organization: HOLC (High 
Level Oata Link Control). The American Standard Ass0-
ciations' protocol, ADCCP is similar to HOLC. CCITT 
Recommendation X.25 layer 2 is also an acceptable ver­
sion of HOLC. Finally, IBM's SOLC (Synchoronous 
Data Link Control) is also a subset of the HOLC. 

In this section, we will concentrate most of our discussion 
on HOLC. Figure I shows a basic HOLC frame format. 

A frame consists of five basic fields: Flag, Address, Con­
trol, Oata and Error Oetection. A frame is bounded by 
flags - opening and closing flags. An address field is 8 bits 
wide, extendable to 2 or more bytes. The control field is 
also 8 bits wide, extendable to two ~ytes. The data field or 
information field may be any number of bits. The data 

. field may or may not be on an 8 bit boundary. A powerful 
error detection code called Frame Check Sequence con­
tains the calculated CRC (Cycle Redundancy Code) for 
a!l the bits between the flags. 

ZERO BIT INSERTION 

The flag has a unique binary bit pattern: 7E HEX. To 
eliminate the possibility of the data field containing a 7E 
HEX pattern, 'a bit stuffmg technique called Zero Bit in­
sertion is used. This technique specifies that during trans­
mission, a binary 0 be inserted by the transmitter after any 
succession of five contiguous binary 1 'so This will ensure 
that no pattern of 0 1 I 1 I 1 lOis ever transmitted be­
tween flags. On the receiving side, after receiving the flag, 
the receiver hardware automatically deletes any 0 follow­
ing fIVe consecutive 1 's.The 8274 performs zero bit inser­
tion and deletion automatically in the SOLC/HOLC 
mode. The zero-bit stutTmg ensures periodic transitions in 
the data stream. These transitions are necessary for a 
phase lock circuit, which may be used at the receiver end 
to generate a receive clock which is in phase to the re­
ceived data. The inserted and deleted O's are not included 
in the CRC checking. The address field is used to address 
a given secondary station. The control field contains the 
link-level control information which includes implied ac­
knowledgement, supervisory commands and' responses, 
etc. A more detailed discussion of higher level protocol 
functions is beyond the scope of this application note. In­
terested readers may refer to the references at the end of 
'this application note. 

7-117 

The data field may be of any length and content in 
HOLC. Note that SOLC specifies that data field be a 
multiple of bytes only. In data communications, it is gen-



Ap-145 

erally desirable to tra\lsmit data which may be of any con­
tent. This requires that data field should· not contain 
characters which are defined to assist the transmission 
protocol (like opening flag 7EH in HOLC/SOLC com­
munications). This property is referred to as "data trans­
parency". In HOLC/SOLC, this code transparency is 
made possible by Zero Bit Insertion discussed earlier and 
the bit orientated nature of the protocol. 

The last field is the FCS (Frame Check Sequence). The 
FCS uses the error detecting techniques called Cyclic Re­
dundancy Check. In SOLC/HOLC, the CCITT-CRC 
must be used. 

NON·RETURN TO ZERO INVERTED (NRZI) 

NRZI is a method of clock and data encoding that is well 
suited to the HOLC protocol. It allows HOLC protocols to 
be· used with low cost asynchronous modems. NRZI cod­
ing is done at the transmitter to enable clock recovery 
from the data at the receiver terminal by using standard 
digital phase locked loop techniques. NRZI coding speci­
fies that the signal condition does not change for transmit­
ting ai, while a ° causes a change of state. NRZi coding 
ensures that an active data line will have transition at least 
every 5-bit times (recall Zero Bit Insertion), while contig­
uous O's will cause a change of state. Thus, ZBI and NRZI 
encoding makes it possible for a phase lock circuit at the 
receiver end to derive a receive clock (from received data) 
which is synchronized to the received data and at the same 
time ensure data transparency. 

Byte Synchronous Communication 

As the name implies, Byte Synchronous Communication 
is a synchronous communication protocol which means 
that the transmitting station is synchronized to the receiv­
ing station through the recognition of a special sync char­
acter or characters. Two examples of Byte Synchronous 
protocol are the IBM Bisync and Monosync. Bisync has 
two starting sync characters per message while monosync 
has only one sync character. For the sake of abrevity, we 

will only discuss Bisync here. All the discussiQn is valiMOI; 
Monosync also. Any exceptions will be noted. Figure 2 
shows a typical Bisync message format. 

The Bisync protocQl is defined for half duplex communi­
cation between two or more stations over point to point or 
multipoint communication lines. , Special characters con­
trollink access, transmission of data and termination of 
transmission operations for the system. A'detailed discus­
sion of these special control characters !SYN, ENQ, 
STX, ITB, ETa, ETX, OLE, SOH, ACKO, ACKI, 
WACK, NAK and EaT, etc) is beyond the scope of this 
Application Note. Readers interested in more detailed 
discussion are directed to the references listed at the end of 
this Application Note. I 

As shown in Figure 2, each message is preceded by two 
sync characters. Since the sync characters are defined at 
the beginning of the message only, the transmitter must 
insert fill characters (sync) in order to maintain synchro­
nization with the receiver when no data is being 
transmitted. 

TRANSPARENT TRANSMISSION . 

Bisync protocol requires special control characters to 
maintain the communication link over the line. If the data 
is EBCOIC encoded, then transparency is ensured by the 
fact that the data field will not contain any of the bisync 
control characters. However, if datatloes not conform to 
standard character encoding techniques, transparency in 
bisync is achieved by inserting a special character OLE 
(Oata Link Escape) before and after a string of characters 
which are to be transmitted transparently. This en~ures 
that any data charaters which match any of the special 
characters are not confused for special characters. An ex­
ample of a transparent block is shown in Figure 3. 

In a transparent mode, it is required thact theCRC(BCC) 
is not performed on special characters. Later on, we will 
show how the 8274 can be used to achieve transparent 
transmission in Bisync mode. 

HEADER STXTEXT ETXOR ETB 

Figure 2. Bisync Message Format 

TRANSPARENT TRANSMISSION 

Enter transparent mode return to normal mode 

Figure 3. Bisync Transparent Format 

7-118 . AFN-02213A 



inter AP-145 

BLOCK DIAGRAM CPU Interface 

This section discusses the block diagram view of the 8274. 
The CPU interface and serial interface is discussed sepa­
rately. This will be followed by a hardware example in the 
fifth section, which will s.\1ow how to interface the 8274 
with the Intel CPU 8088. The 8274 block diagram is 
shown in Figure 4. 

The CPU interface to the system interface logic block uti­
lizes the AO, AI, CS, RD and WR inputs to communicate 
with the internal registers of the 8274. Figure 5 shows the 
address of the internal registers. The DMA interface is 
achieved by utilizing DMA request lines for each channel: 

cs A1 AO 

0 0 0 
0 1 0 

° 0 I 
0 I I 

1 x X 

TxDRQA> TxDRQB' RxDRQA> RxDRQB' Note that 

DBo-7' 

CLK 
RESET 

RDYB/TxDRQA 

RDYA/RxDRQA 

IPO/TxDRQa 

IP1/RxDRQB 

INT 

INTA 

AO 

Al 

I ! 1 

SYSTEM 
INTERFACE 
CONTROL 

LOGIC 

• f I 
SYSTEM INTERFACE 

r----------, 
CHANNEL A 

___ -'--" I CH~~~ A 

REGISTERS 

!l 1/'-....L---1 CHANNEL A 
ID READ 
i! REGISTERS 

i!i 

CHANNEL A 
TRANSMITTER 

CHANNEL A 
CONTROL 

LOGIC 

... ~~======~ CHANNELA I F'I RECEIVER 

CHANNELB 

NETWORK INTERFACE ' 

TxDB 

TxCB 

DCDB 

CTSB 

TxDA 

TxCA 

DCDA 

eTSA 
RTSA 

SYNDETA 

DTRA 

{ SYNDETB 
RTSB 

ImtB 

RxCB 

RxDB 

Figure 4. 8274 Block Diagram 

Read Op~ration Write Operation 

CHA DATA READ CHA DATA WRITE 
CHA STATUS REGISTER CHA COMMAND/PARAMETER 

(RRO,RRl) (WRO--WR7) 

CHB DATA READ CHB DATA WRITE 
CHB STATUS REGISTER CHB COMMAND/PARAMETER 

(RRO,RRl,RR2) (WRO--WR7) 

HIGHZ HIGHZ 

Figure 5. Bus Interface 

7-119 AFN.02213A 



intJ AP-145 

TxDRQB and RxDRQB becomes IPO and IPI respective­
ly in non-DMA mode. IPI is the Interrupt Priority Input 
and IPO is the Interrrupt Priority Output. These two pins 
can be used for connecting mUltiple MPSCs in a daisy 
chain. If the Wait Mode is programmed, then TxRDQA 

and RxDRQA pins become RDY Band RDY A pins. These 
pins can be wire-or'ed and are usually hooked up _to the 
CPU RDY line to synchronize the CPU for block trans­
fers. The INT pin is activated whenever the MPSC re­
quires CPU attention. The INTA may be used to utilize 
the powerful vectored mode feature of the 8274. Detailed 
discussion on these subjects will be done later in this Ap­
plication Note. The Reset pin may be used for hardware 
reset while the clock is required to click the internal logic 
on the MPSC. 

Serial Interface 

On the serial side, there are,two completely independent 
channels: Channel A and Channel B. Each channel con­
sists of a transmitter block, receiver block and a set of 
read/write registers which are used to initialize the de­
vice. In addition, a control logic block provides the modem 
interface pins. Channel B serial interface logic is a mirror 
image of Channel A serial interface logic, except for one 
exception: there is only one pin for RTSB and SYNDET B' 

At a given time, this pin is either R1;SB or SYND~TB' 
This mode is programmable through one of the internal 
registers on the MPSC: 

, Transmit And Receive Data Path 
Figure 6 shows a block diagram for transmit and receive 
data path. Without describing each block on the diagram, 
a brief discussion of the block diagram will be presented 
here. 

TRANSMIT DATA PATH 

The transmit data is transferred to the twenty-bit serial 
shift register. The twenty-bits are needed to store two 
bytes of sync characters in bisync mode. The last three bits 
of the shift register are used to indicate to the internal con­
trollogic that the current data byte has been shifted out of 
the shift register. The transmit data in the transmit shift 
register is shifted out through a two bit delay onto the 
TxData line. This two bit delay is used to synchronize the 
internal shift clock with the external transmit clock. The 
data in the shift register is also presented to zero bit inser­
tion logic which inserts a zero after sensing five contiguous 
ones in the data stream. In pa~allel to all this activity, the 
CRC-generator is computing CRC on the transmitted 
data and appends the frame with CRC bytes at the end of 
the data transmission. 

CPU I/O 

TxDA 

TxCA 

1 Figure 6. Transmit and Receive Data Path 

7-120 AFN-02213A 



inter AP-145 

RECEIVE DATA PATH 

The received data is passed through a one-bit delay before 
it is presented for flag/sync comparison. In bisync mode, 
after the synchronization is achieved, the incoming data 
bypasses the sync register and enters directly into the 
three bit buffer on its way to receive shift register. In 
SDLe mode, the incoming data always passes through the 
sync register where data pattern is continously monitored 
for contiguous ones for zero deletion logic. The data then 
enters the three bit buffer and the receive shift register. 
From the receive shift register, the data is transferred to 
the three byte deep FIFO. The data is transferred to the 

FIRST DATA CHARACTER 

FIRST NON·SYNC 
CHARACTER (SYNC MODES) 

VALID ADDRESS 
BYTE (SDLC) 

PARITY ERROR 

RX OVER-RUN ERROR 

FRAMING ERROR 

END OF FRAME 
(SOLCONLY) 

DCD TRANSITION 

CTS TRANSITION 

SYNC TRANSITION 

TX UNDER-RUN/EOM 

BREAK/ABORT DETECT 

TX BUFFER EMPTY 

INTERRUPT 
ON FIRST RECEIVE 

CHARACTER 

INTERRUPT ON 
ALL RECEIVE 
CHARACTERS 

SPECIAL 
RECEIVE 

CONDITION 
INTERRUPT 

top of the FIFO at the chip clock rate (not the receiver 
clock). It takes three chip clock/periods to transfer data 
from the serial shift register to the top of the FIFO. The 
three bit deep Receive Error FIFO shifts any error condi­
tion which may have occured during a frame reception. 
While all this is happening, the eRe checker is checking 
the eRe on the incoming data. The computed eRe is 
checked with the eRe bytes attached to the incoming 
frame and an error .generated under a no-check condition. 
Note that the bisync data is presented to the eRe checker 
with an 8-bit delay. This is necessary to achieve transpar­
ency in bisync mode as will be shown later in this Applica­
tion Note. 

EXTERNAL 
STATUS 

INTERRUPT 

TRANSMIT 
INTERRUPT 

MPSC 
INTERRUPTS 

Figure 7. MP$C Interrupt Structure 

7-121 AFN·02213A 



inter AP-14S 

MULTI-PROTOCOL SERIAL CONTROLLER 
(MPSC) INTERRUPT STRUCTURE 

The MPSC offers a very powerful interrupt structure, 
which helps in responding to an interrupt condition very 
quickly. There are multiple sources of interrupts within 
the MPSC. However, the MPSC resolves the priority be­
tween various interrupting sources and interrupts the 
CPU for service through the interrupt line. This section 
presents a comprehensive discussion on all the 8274 inter­
rupts and the priority resolution between these interrupts. 

All the sources of interrupts on the 8274 can be grouped 
into three distinct catagories. (See Figure 7) 

I. Receive Interrupts 
2. Transmit Interrupts 
3. External/Status Interrupts. 

An internal interrupt priority structure sets the priority 
between the interrupts. There are two programmable op­
tions available on the MPSC. The priority is set by 
WR2A, 02. (Figure 8) 

PRIORITY 

~R2A:02 Highest . Lowest 

0 RxA TxA RxB TxB EXTA EXTB 

I RxA TxA RxB TxB EXTA EXTB 

Figure 8. Interrupt Priority 

Receive Interrupt 

All receive interrupts may be catagorized into two distinct 
groups: Receive Interrupt on Receive Character and Spe­
cial Receive Condition Interrupts. 

RECEIVE INTERRUPT ON RECEIVE CHARACTER 

A receive interrupt is generated when a character is re­
ceived by the MPSC. However, as will be discussed later, 
this is a programmable feature on the MPSC . A Rx char­
acter available interrupt is generated by the MPSC after 
the receive character has been assembled by the MPSC. It 
may be noted that in OMA transfer mode too, a receive 
interrupt on the first receive character should be pro­
grammed. In SOLC mode, if address search mode has 
been programmed, this interrupt will be generated only 
after a valid address match has occured. In bisync mode, 
this interrupt is generated on receipt of a character after 
at least two valid sync characters. In inonosync mode, a 
character followed by at least a single valid sync character 
will generate this interrupt. An interrupt on first receive 
character signifies the beginning of a valid frame. An end 
of the frame is characterized by an "End of Frame" Inter­
rupt (RRI: 07).* This bit (RRl:07) is set in 
SOLC/HOLC mode only and signifies that a valid ending 

flag (7EH) hlis been received. This bit· gets reset· either by 
an "Error Reset" command (WRO: 050403 = 110) or 
upon reception of the first character of the next frame. In 
multiframe reception, on receiving the interrupt at the 
"End of Frame" the CPU may issue an Error Resllt com­
mand which will reset the interrupt. In OMA mode, the 
interrupt on first receive character is accompanied by a 
RxORQ (Receiver OMA request) on the appropriate 
channel. At the end of the frame, an End of Frame inter­
rupt is generated. The CPU may use this interrupt to jump 
into a routine which may redefine the receive buffer for 
the next incoming frame. 

*RRI:07 is bit 07 in Read Register 1. 

SPECIAL RECEIVE CONDITION INTERRUPTS 

So far, we have assumed that the reception is error free. , 
But this is not a 'typical' case in most real life applications. 
Any error condition during a frame reception generates 
yet another interrupt - special receive condition inter­
rupt. There are four different error conditions which can 
generate this interrupt. 

(i) Parity error 
(ii) Receive Overrun error 
(iii) Framing error 
(iv) End of Frame 

(i) Parity error: Parity error is encountered in asynchro­
nous (start-stop bits) and in bisync/monosync protocols. 
Both odd or even parity can be programmed. A parity er­
ror in a received byte will generate a special receive condi­
tion interrupt and sets bit 4 in RRI. 

(ii) Receive Overrun error: If the CPU or the DMA con­
troller (in OMA mode) fails to read a received character 
within three byte times after the received character inter­
rupt (or OMA request) was generated, the receiver buffer 
will overflow and this wi:ll generate a special receive condi­
tion interrupt and sets bit 5 in RRI. 

(iii) Framing error: In asynchronous mode, a framing er­
ror will generate a special receive interrupt and set bit 06 
in RRI. This bit is not latched and is updated on the next 
received character. 

(iv) End of frame: This interrupt is enj:ountered in 
SOLC/HOLC mode only. When the MPSC receives the 
closing flag, it generates the special receive condition in­
terrupt and sets bit 07 in RRI. 

All the special receive condition interrupts may be reset by 
issuing an Error Reset Command. 

7-122 

CRC Error: In SOLC/HOLC and synchronous modes, a 
CRC error is indicated by bit 06 in RRI. When used to 
check CRC error, this bit is' normally set until a correct 
CRC match is obtained which resets this bit. After receiv­
ing a frame, the CPU must read this bit (RRI :0.6) to de­
termine if a valid CRC check had occured. It may be 
noted that a CRC error does not generate an interrupt. 

AFNo02213A 



inter AP-145 

It may be also be pointed out that in SDLC/HDLC mode, 
receive DMA requests are disabled by a special receive 
condition and can only be re-enabled by issuing an Error 
Reset Command. 

Transmit Interrupt 

A transmit buffer empty generates a transmit interrupt. 
This has been discussed earlier under "Transmit in Inter­
rupt Mode" and it would be sufficient to note here that a 
transmit buffer empty interrupt is generated only when 
the transmit bJlffer gets empty - assuming it had a data 
character loaded into it earlier. This is why on starting a 
frame transmission, the first data character is loaded by 
the CPU without a transmit empty interrupt (or DMA re­
quest in DMA mode). After this character is loaded into 
the serial shift register, the buffer becomes empty, and an 
interrupt (or DMA request) is generated. This interrupt is 
reset by a "Reset Tx Interrupt/DMA Pending" command 
(WRO: D5 D4 D3 = 101). 

External/Status Interrupt 

Continuing our discussion on transmit interrupt, if the 
transmit buffer is empty and the transmit serial shift reg­
ister also becomes empty (due to the data character shift­
ed out of the MPSC), a transmit under-run interrupt will 
be generated. This interrupt may be reset by "Reset/Ex­
ternal Status Interrupt" command (WRO: D5 D4 D3 = 

101). 

The External Status Interrupt can be caused by five dif­
ferent conditions: 
(i) DCD Transition 
(ii) CTS Transition 
(iii) Sync/Hunt Transition 
(iv) Tx under-run/EOM condition 
(v) Break/ Abort Detection. 

DCD,CTS TRANSITION 

Any transition on these inputs on the serial interface will 
generate an External/Status interrupt and set the corre­
sponding bits in status register RRO. This interrupt will 
also be generated in DMA as well as in Wait Mode. In or­
der to find out the state of the CTS or DCD pins before the 
transition had occurred, RRO must be read before issuing 
a Reset External/Status Command through WRO. A read 
of RRO after the Reset External/Status Command will 
give the condition of CTS or DCD pins after the transition 
had occurred. Note that bit D5 in RRO gives the comple­
ment of the state of CTS pin while D3 in RRO reflects the 
actual state of the DCD pin. 

SYNC HUNT TRANSITION 

Any transition on the SYNDET input generates an inter­
rupt. However, sync input has different functions in dif­
ferent modes and we shall discuss them individually. 

SDLC Mode 

In SDLC mode, the SYNDET pin is an output. Status 
register RRl, D4 contains the state of the SYNDET pin. 
The Enter Hunt Mode initially sets this bit in RO. An 
opening flag in a received SDLC frame resets this bit and 
generates an external status interrupt. Every time the re­
ceiver is enabled or the Enter Hunt Code Command is is­
sued, an external statl.\s interrupt will be generated on 
receiving a valid flag followed by a valid address/data 
character. This interrupt may be reset by the "Reset Ex­
ternal Status Interrupt" command. 

External SYNC Mode 

The MPSC can be programmed into External Sync Mode 
by setting WR4, D5 D4 = 11. The SYNDET pin is an in­
put in this case and must be held high until an external 
character synchronization is established. However, the 
External Sync mode is enabled by the Enter Hunt Mode 
control bit (WR3: D4). A high at the SYNDET pin holds 
the sync/Hunt bit (RRO,D4) in the reset state. When ex­
ternal synchronization is established, SYNDET must be 
driven low on second rising edge of RxC after the rising 
edge of RxC on which the last bit of sync character was 
received. This high to low transition sets the Sync/Hunt 
bit and generates an external status interrupt, which must 
be reset by the Reset External/Status command. If the 
SYNDET input goes high again, another External Status 
Interrupt is generated, which may be cleared by Reset Ex­
ternal Status command. 

Mono-Sync/Bisync Mode 

SYNDET pin acts as an output in this case. The Enter 
Hunt Mode sets the Sync/Hunt bit in RO. Sync/Hunt bit 
is reset when the MPSC achieves character sysnchroniza­
tion. This high to low transition will generate an external 
status interrupt. The SYNDET pin goes active every time 
a sync pattern is detected in the data stream. Once again, 
the external status interrupt may be reset by the Reset Ex­
ternal Status command. 

Tx UNDER-RUN/END OF MESSAGE (EOM) 

The transmitter logic includes a transmit buffer and a 
transmit serial shift register. The CPU loads the character 
into the transmit buffer which is transferred into the 
transmit shift register to be shifted out of the MPSC. If 
the transmit buffer gets empty, a transmit buffer empty 
interrupt is generated (as discussed earlier). However, if 
the transmit buffer gets empty and the serial shift register 
gets empty, a transmit under-run condition will be cre­
ated. This generates an External Status Interrupt and the 
interrupt can be cleared by the Res.et External Status 
command. The status register RRO, D6 bit is set when the 
transmitter under-runs. This bit plays an important role in 
controlling a transmit operation, as will be discussed later 
in this application note. 

7-123 AFN-02213A 



AP-145 

BREAK! ABORT DETECTION, 

In asynchronous mode, bit 07 in RRO is set when a break 
condition is detected on the receive data line. This also 
generates an External/Status interrupt which may be re­
set by issuing a Reset External/Status Interrupt com­
mand to the MPSC. Bit 07 in RRO is reset when the break 
condition is terminated on the receive data line and this 
causes another External/Status interrupt to be generated. 
Again, a Reset External/Status Interrupt command will 
reset this interrupt and will enable the break detection log­
ic to look for the next break sequence. 

In SOLC Receive Mode, an Abort sequence (seven or 
more I's) detection on the receive data line will generate 
an External/Status interrupt and set RRO,07. A Reset 
External/Status command will clear this interrupt. How­
ever, a termination of the Abort sequence will generate 
another interrupt and set RRO, 07 again. Once again, it 
may be cleared by issuing Reset External/Status 
Command. ' 

This concludes our discussion on External Status 
Interrupts. 

Interrupt Priority Resolution 
The internal.interrupt priority between various interrupt 
sources is resolved by an internal prority logic circuit, a€­
cording to the priority set in WR2A. We will now discuss 

INTERNAL 'N0 
ACCEPTED 

EXTERNAL 

INT \'--______ --I~ 
\ 

IPI 1 \ 

INTA 

INTERNAL 
INTA I 

the interrupt timings during the priority resolution. Fig­
ures 9 and 10 show the timing diagrams for veCtored and 
non-vectored modes. 

VECTORED MODE 

We shall assume that the MPSC accepted an internalre­
quest for an interrupt by activating the internal INT sig­
nal. This leads to generating an external interrupt signal 
on the INT pin. The CPU responds with an interrupt ac­
knowledge (INTA) sequence. The leading edge of the first 
INT A pulse sets an internal interrupt acknowledge signal 
(we will call it Internal INTA). Internal INTA is reset by 
the high going edge of the third INTA pulse. The MPSC 
will not accept any internal requests for an interrupt dur­
ing the period when Internal INTA is active (high). The 
MPSC resolves the priority d\lring various existing inter­
nal interrupt requests during the Interrupt Request Prior­
ity Resolve Time, which is defined as the time between the 
leading edge of the first INT A and the leading edge of the 
second INTA from the CPU. Once the internal priorities 
have been resolved, an internal Interrupt-in-service Latch 
is set. The external INT is also deactivated when the In­
terrupt-in-Service Latch is set. 

The lower priority interrupt requests are not accepted in­
ternally until an EO! (WRO: 05 04 03 = III) command 
is issued by the CPU. The EO! command enables the low­
er priority interrupts. However, a higher priority interrupt 

-:
=::-_________ N_O_IN_TE_\...J

N
: r.L{INTERRUPTS ACCEPTED 

INT·IN·SERVICE ..y 
(INTERNAL LATCH) 

EOI COMMAND 

------------~~--------------------------~ 

Figure'9. 8274 in 8085 Vectored Mode Priority Resolution Time 

7-124 AFN·02213A 



AP-145 

INTERNAL INT 
ACCEPTED, 

EXTERNAL INT ---...., 

POINTER 2 
SPECIFIED 

\ 

INT-IN-SERVICE. ____________ ..... 

(INTERNAL LATCH) 

\ 
\ 
\ 

E~COMMAND---------------------~T--~ 

Figure 10. 8274 NC)n Vectored Mode Priority Resolve Time 

request will still be accepted (except during the period 
when internal INTA is active) even though the Internal­
in-Service Latch is set. This higher priority request will 
generate another external INT and will have to be han­
dled by the CPU according to how the CPU is set up. If the 
CPU is set up to respond to this interrupt, a new INT A 
cycle will be repeated as discussed earlier. It may also be 
noted that a transmitter buffer empty and receive charac­
ter available interrupts are cleared by loading a character 
into the MPSC and by reading the' character received by 
the MPSC respectively_ 

NON-VECTORED MODE 

Figure 10 shows the timing of interrupt sequence in non­
vectored mode. The explanation for non-vectored ill simi­
lar to the vector mode, except for the following exceptions. 

- No internal priority requests are accepted during the 
time when pointer 2 for Channel B is specified. 

- The interrupt request priority resolution time is ·the 
time between the leading edge of pointer 2 and leading 
edge of RQ active. It may be pointed out that in non-vec­
tored mode, it is assumed that the status affects vector 
mode is used.to expedite interrupt response. 

On getting an interrupt in non-vectored mode, the CPU 

must read status register RR2 to find out the cause of the 
interrupt_ In order to do sO, first a pointer to status register 
RR2 is specified and then the status read from RR2. It 
may be noted here that after specifying the pointer, the 
CPU must read status register RR2 otherwise, no new in­
terrupt requests will be accepted internally. 

7-125 

Just like the vectored mode, no lower internal priority re­
quests are accepted until an EOI command is issued by the 
CPU. A higher priority request can still i~terrupt the 
CPU (except during the priority request inhibit time)_ It is 
important to note here that if the CPU does not perform a 
read operation after specifying the pointer 2 for Channel 
B, the interrupt request accepted before the pointer 2 was 
activated will remain valid and no other request (high or 
low priority) will be accepted internally. In order to com­
plete a correct priority resolution, it is advised that a read 
operation be done after specifying the pointer 2B. 

IPI and IPO 

So far, we have ignored the IPI and IPO signals shown in 
Figures 9 and 10. We may recall that IPI is the Interrupt­
Priority-Input to the MPSC. In conjunction with the lPO 
(Interrupt Priority Output), it is used to daisy chain multi­
ple MPSC's. MPSC daisy chaining will be discussed in 
detail later in this application note_ 

AFN-02213A 



AP-145 

EOI Command 

The EOI command as explained earlier, enables the lower 
priority interrupts by resetting the internal In-Service­
Latch, which consequently resets the IPO output to a low 
state. See Figures 9 and 10 for details. Note that before 
issuing any EOI co~mand, the internal interrupting 
source must be satisfied otherwise, same source will inter­
rupt again. The Internal Interrupt i~ the signal which gets 
reset when the internal interrupting source is satisfied (see 
Figure 9). 

This concludes our discussion on the MPSC Interrupt 
Structure. 

MULTI-PROTOCOL SERIAL CONTROLLER 
(MPSC) MODES OF OPERATION 

The MPSC provides two fully independent channels that 
may be configured in various modes of operations. Each 
channel can be configured into full duplex mode and may 
operate in a mode or protocol different from the other 
channel. This feature will be very efficient in an applica­
tion which requires two data link channels operating in 
different protocols and possibly at different data rates. 
This section presents a detailed discussion on all the 8274 
modes and shows how to configure it into these modes. 

Interrupt Driven Mode 

In the interrupt mode, all the transmitter and receiver op­
erations are reported to the processor through interrupts. 
Interrupts are generated by the. MPSC whenever it re­
quires service. In the following discusson, we will discuss 
how to transmit and receive in interrupt driven mode. 

TRANSMIT IN INTERRUPT MODE 

The MPSC can be configured into interrupt mode by ap­
propriately setting the bits in WR2 A (Write Register 2, 
Channel A). Figure 11 shows the modes of operation. 

WR2A 

D1 DO MODE 

0 0 CH A and CH B in Int,errupt Mode 
0 I CH A in DMA and CH B in Interrupt 

Mode 
1 0 CH A and CH B in DMA Mode 
1 1 Illegal 

Figure 11. MPSC Mode Selection for Channel A 
and Channel B. 

We will limit our discussion to SDLC transmit and receive 
only. However, exceptions for pther synchronous protocols 
will be pointed out. To initiate a frame transmission, the 

first data character must be loaded from the CPU; in all 
cases. (DMA Mode too, as you wiil notice later in this ap­
plication note). Note that in SDLC mode, this first data 
character may be the address of the station addressed by 
the MPSC. The transmit buffer consists of a transmit 
buffer and a serial shift register. When the character is 
transferred from the buffer into the serial shift register, an 
interrupt due to transmit buffer empty is generated. The 
CPU has one byte time to service this interrupt and load 
another character into the transmitter buffer. The MPSC 
will generate an intei'rupt due to transmit buffer under­
run condition if the CPU does not service the Transmit 
Buffer Empty Interrupt within one byte time. 

This process will continue until the CPU is out of any more 
. data characters to be sent. At this point, the CPU does not 

respond to the interrupt with a character but simply issues a 
Reset Tx INT /DMA pending command (WRO: D5 D4 D3 
== 10 I). The MPSC will ultimately under-run, which sim­
ply means that both the transmit buffer and transmit shift 
registers are empty. At this point, flag character (7EH) or 
CRC byte is loaded into the transmit shift register. This sets 
the transmit under-run bit in RRO and generates "Transmit 
Under-runjEOM" interrupt (RRO:D6= 1). 

You will recall that an SDLC frame has two CRC bytes 
after the data field. 8274 generates the CRC on all the 
data that is loaded from the CPU. During initialization, 
'there is a choice of selecting a CRC-16 or CCITT-CRC 
(WR5: D2). In SDLCjHDLC operation, CCITT-CRC 
must be selected. We will now see how the CRC gets in­
serted at the end of the data field. Here we have a choice of 
having the CRC attached to the data field or sending the 
frame without the CRC bytes. During transmission, a 
"Reset Tx Under-runjEOM Latch" cQmmand (WRO: 
D7 D6 '7' 11) will ensure that at the end of the frame when 
the transmitter underruns, CRC bytes will be automati­
cally inserted at the end of the data field. If the "Reset Tx 
Un.der-run/EOM Latch" command was not issued during 
the transmission of data characters, no CRC would be in­
serted and the MP,SC will transmit flags (7EH) instead. 

However, in case of CRC transmission, the CRC trans­
mission sets the Tx Under-run/EOM bit and generates a 
Transmitter Under-run/EOM Interrupt as discussed ear­
lier. This will have to be reset il) the next frame to ensure 
CRC insertion in the next frame. It ,is recommended that 
Tx Under-run/EOM latch be reset very early in the trans­
mission mode, preferably after loading the first character. 
It may be noted here that Tx Under-runjEOM latch can­
not be reset if there is no data in the transmit buffer. This 
means that atleast one character has to be loaded into the 
MPSC before a "Reset Transmit Under-run/EOM 
Latch" command will be accepted by the MPSC. 

When the transmitter is under-run, an interrupt is gener­
ated. This interrupt is .generated at the beginning of the 
CRC transmission, thus giving the user enough time 
(minimum 22 transmit clock cycles) to issue an Abort 

7-126 
AFN·02213A 



inter AP-145 

command .(WRO: D5 D4 D3 = 0 0 1) in case if the trans­
mitted data had an error. The Abort Command will en­
sure that the MPSC transmits at least eight l's but less 
than fourteen 1 's before the line reverts to continuous 
flags. The receiver will scratch this frame because of bad 
CRC. 

However, assuming the transmission was good (no Abort 
Command issued), after the CRC bytes have been trans­
mitted; closing flag (7EH) is loaded into the transmit 
buffer. When the flag (7EH) byte is transferred to the ser­
ial shift register, a transmit buffer empty interrupt is gen­
erated. If another frame has to be transmitted, a new data 
character has to be loaded into the transmit buffer and the 
complete transmit sequence repeated. If no more ftames 
are to be transmitted, a "Reset Transmit INT /DMA 
Pending" command (WRO: D5 D4 D3 = 101) will reset 
the transmit buffer empty interrrupt. 

For character oriented protocols (Bisync, Monosync), the 
same discussion is valid, except that during transmit un­
der-run condition and transmit under-run/EOM bit in set 
state, instead of flags, filler sync characters are transmit-
ted. , " 

CRC Generation: 

The'transmit CRC enable bit (WR5: DO) must be set be­
fore loading any data into the MPSC. The CRC generator 
must be reset to all 1 's at the beginning of each frame be­
fore CRC computation has begun. The CRC computation 
starts on the first data character loaded from the CPU and 
contillues until the last data character. The CRC generat­
ed is inverted before it is sent on the Tx Data line. 

Transmit Termination: 

A successful transmission can be terminated by issuing a 
"Reset Transmit Interrupt/DMA Pending" command, as 
discussed earlier. However, the transmitter may be dis­
abled any time during the transmission and the results will 
be as shown in Figure 12. 

RECEIVE IN INTERRUPT MODE 

The receiver has to be initialized into the appropriate re­
ceive mode (see sample program later in this application 
note). The receiver must be, programmed into Hunt Mode 
(WR3: D4) before it is enabled (WR3: DO). The receiver 
will remain in the Hunt Mode until a flag (or sync charac­
ter) is received. While in the SDLC/Bisync/Monosync 
mode, the receiver does not enter the Hunt Mode unless 
the Hunt bit (WR3, D4) is set again or the receiver is en-
abled again. " 

SDLC Address byte is stored in WR6. A global address 
(FFH) has been hardwired on the MPSC. In address 
search mode (WR3: D2 = 1), any frame with address 
matching with the address in WR6 will be received by the 
MPSC. Frames with global address (FFH) will also be re­
ceived, irrespective of the condition of address search 

Transmitter Disabled during Result 

1. Data Transmission Tx Data will send idle 
characters· which will 
be zero inserted. 

2. eRe Transmission 16 bit transmission, 
corresponding to 16 
bits of eRe will be 
completed. However, 
flag bits will be 
substituted in the 
eRe field. 

3. Immediately after issuing Abort will still be 
ABORT command. transmitted - output 

will be in the mark 
state. 

Figure 12. Transmitter Disabled During 
Transmission 

-Idle characters are defined as a string of 15 or more con­
tiguous ones. 

mode bit (WR3: D2). In general receive mode ( WR3: 
D2=0), all frames will be received. 

Since the MPSC only recognizes single byte address fiel9, 
extended address recognition will have to be done by the 
CPU on the data passed on by the MPSC. If the first ad­
dress byte is checked by.the MPSC, and the CPU deter­
mines that the second address byte does not have the 
correct address field, it must set the Hunt Mode (WR3: 
D2 = 1) and the MPSC will start searching for a new ad­
dress byte preceded by a flag. 

Programmable Interrupts: The receiver may be pro­
grammed into anyone of the four modes. See Figure 13 
for details. 

WR1,CHA 

D4 D3 Rx Interrupt Mode 

0 0 Rx INT/DMA disable 
0 1 Rx INT on first character 
1 0 INT on all Rx characters 

(Parity affects vector) 
1 1 INT on all Rx characters 

(Parity does not affect vector) 

Figure 13. Receiver Interrupt Modes 

All receiver interrupts can be disabled by WRl: D4 D3 = 
o o. Receiver interrupt on first character is normally used 
to start a DMA transfer or a block transfer sequence using 
WAIT to synchronize the data transfer to received or 
transmitted data. 

External Status Interrupts: 

Any change in DCD input or Abort detection in the re­
ceived data, will generate' an interrupt if External Status 
Interrupt was enabled (WRl: DO). 

7-127 AFN-02213A 



inter AP-145 

Special Receive Con<!itions: 

The receiver buffer is quadruply buffered. If the CPU 
fails to respond to "receive character" available interrupt 
within a period of three byte times (received bytes), the re­
ceiver buffer will overflow and generate an interrupt. Fi­
nally, at the end of the received frame, an interrupt will be 
generated when a valid ending flag has been detected. 

Receive Character dmgth: 

The receive character length (6,7 or 8 bits/character) 
may be changed dJlring reception. However, to ensure that 
the change is effective on the next received character, this 
must be done fast enough such that the bits specified for 
the next character have not been assembled. 

CRC Checking: 

The opening flag in the frame resets the receive CRC gen­
erator and any field between the opening and closing flag 
is checked for the CRC. In case of a CRC error, the 
CRC/Framing Error bit in status register 1 is set (RRI: 
D6= 1). Receiver CRC may be disabled/enabled by 
WR3,D3. The CRC bytes on the received frame are 
passed on to the CPU just like data, and may be discarded 
by the CPU. 

Receive Terminator: 

An end of frame is indicated by End of Frame interrupt. 
The CPU may issue an "Error Reset" command to r'<Set 
this interrupt. 

DMA (Direct Memory Access) Mode 

The 8274 can be interfaced directly to the Intel DMA 
Controllers 8237 A, 8257 A and Intel I/O Processor 8089. 
The 8274 can be programmed into DMA mode by setting 
appropriate bits in WR2A. See Figure 11 for details. 

TRANSMIT IN DMA MODE: 

After initializing the 8274 into the DMA mode, the first 
character must be loaded from the CPU to start the DMA 
cycle. When the first data character (may be the address 
byte in SDLC) is tranferred from the transmit'buffer to 
the transmit serial shift register, the transmit buffer gets 
empty and a transmit DMA request (TxDRQ) is generat­
ed for the channel. Just like the interrupt mode, to ensure 
that the CRC bytes are included in the frame, the trans­
mit under-run/EOM latch must be reset. This should 
preferably be done after loading the first character from 
the CPU. The DMA will progress without any CPU inter­
vention. When the DMA controller reaches the terminal 
count, it will not respond to the DMA request, thus letting 
the MPSC under-run. This will ensure CRC transmission. 
Howeve~, the under-run condition will generate a~inter­
rupt due to the Tx under-run/EOM bit getting set" (RRO: 
D6). The CPU should 'issue a "Reset TxInt/DRQ pend-

ing" command to reset TxDRQ and issue a "Reset Exter­
nal Status" command to reset Tx Under-run/EOM 
interrupt. Following iheCRC transmission, flag (7EH) 
will be loaded into the transmit buffer. This will also gen­

, erate the TxDRQ since the transmit buffer is empty fol-
lowing the transmission of the CRC bytes. The CPU may 
issue a "Reset TxINT /DRQ pending" command to reset 
the TxDRQ. "Reset TxINT /DRQ pending" command 
must be issued before setting up the transmit DMA chan­
nel on the DMA Controller, otherwise the MPSC will 
start the DMA transfer immediately after the DMA 
channel is set up. 

RECEIVE IN DMA MODE 

The receiver must be programmed in RxINT on first re­
ceive character mode (WRl: D4 D3 = 0 1). Upon receiv­
ing the first character, which may be the address byte in 
SDLC, the MPSC generates ,an interrupt and also gener­
ates a Rx DMA Request (Rx DRQ) for the appropriate 
channel. The CPU has three byte times to service this in­
terrupt (enable the DMA controller, etc.) before the re­
ceiver buffer will overflow. It is advisable to initialize the 
DMA controller before receiving the first character. In 
case of high bit rates, the. CPU will have to service the in­
terrupt very fast in order to avoid receiver over-run. 

Once the DMA is enabled, the received data is transfered 
to the memory under DMA control. Any received error 
conditions or external status change condition will gener­
ate an interrupt as in the interrupt driven mode. The End 
of Frame is indicated by the End of Frame interrupt which 
is generated on reception of the closing flag of the SDLC 
frame. This End of Frame condition also disables the Re­
ceive DMA request. The End of Frame interrupt may be 
reset by issuing an "Error Reset" command to the MPSC. 
The "Error Reset" command also re-enables the Receive 
DMA request. It may be noted that the End of Frame con­
dition sets bits D7 in RRI. This bit gets reset by "Error 
Reset" command. However, End of Frame bit (RRI :D7) 
can also be reset by the flag of the next incoming frame. 
For proper operation, Error Reset Command should be is­
sued "after" the End of Frame Bit (RRl:D7) is set. In a 
more general case, "Error Reset" command should be is­
sued after End of Frame, Receive over-run or Receive par­
ity bit are set in RR I. ' 

7-128 

Wait Mode 

The wait mode is normally used for block transfer by syn­
chronizing the data transfer through the Ready output 
from the MPSC, which may be connected to the Ready in­
put of the CPU. The mode can be programmed by WR 1, 
D7 D5 and may be programmed separately and indepen­
dently on CH A and CH B. The Wait Mode will be opera-
tive ifthe following conditions are satisfied. . 

AFN.()2213A 



inter AP-145 

(i) Interrupts are enabled. 
(ii) Wait Mode is enabled (WRl: 07) 
(iii) CS = 0, AI = 0 

The ROY output becomes active when the transmitter 
buffer is full or receiver buffer is empty. This w,ay the 
ROY output from the MPSC can be used to extend the 
CPU read and write cycle by inserting WAIT states. 
ROY A or ROY B are in high impedance state when the 
corresponding channel is not selected. This makes it possi­
ble to connect ROY A and ROY B outputs in wired OR 
configuration. Caution must be exercised here in using the 
ROY outputs of the MPSC or else the CPU may hang.up 
for indefinite period. For example, let us assume that 
transmitter buffer is full and ROY A is active, forcing the 
CPU into a wait state. If the CTS goes inactive during this 
period, the ROY A will remain active for indefinite period 
and CPU will continue to insert wait states. 

Vectored/Non-Vectored Mode 
The MPSC is capable of providing an interrupt vector in 
response to the interrup~ acknowledge sequence from the 
CPU. WR2, CH B contains this vector and the vector can 
be read in status register RR2. WR2, CH A (bit 05) can 
program the MPSC in vectored or non-vectored mode. 
See Figure ~ 4 for details. 

In both cases, WR2 may still have the vector sto~ed in it. 
However, in vectored mode, the MPSC will put the vector 
on the data bus in response the INTA (Interrupt Ac­
knowledge) sequence as shown in Figure 15. In non-vec-

WR2A 

WR2A,D5 Interrupt Mode 

0 Non-vectored Interrupt 
I Vectored Interrupt 

Figure 14. Vectored Interrupts 

tored mode, the MPSC will not respond to the INT A 
sequence. However, the CPU can read the vector by poll­
ing Status Register RR2. WR2A, 04 and 03 can be pro­
grammed to respond to 8085 or 8086 INTA sequence. It 
may be noted here that IPI (Interrupt Priority In) pin on 
the MPSC must be active for the vector to appear on the 
data bus. ' 

Status Affect Vector 

The vector stored in WR2B can be modified by the source 
of the interrupt. This can be done by setting the Status Af­
fect Vector bit (WRI: 02). This powerful feature of the 
MPSC provides fast interrupt response time, by eliminat­
ing the need of writing a routine to read the status of the 
MPSC. Three bits of the vector are modified, in eight dif­
ferent ways as shown on Figure 16. Bits V4,V3,V2 are 
modified in 8085 based system and bits V2, VI, VO are 
modified in 8086/88 based system. 

In non-vectored mode, the status affect vector mode can 
still be used and the vector read by the CPU. Status Regis­
ter RR2B (Read Register 2 in Channel B) will contain 
this modified vector. 

D5 D4 D3 IPI MODE 1STINTA 2NDINTA 3RDINTA 
0 X X X NON-VECTORED HIGH-Z HI-Z HI-Z 
I 0 0 0 8085-1 11001101 V7V6V5V4V3V2VI VO 00000000 
I 0 0 I 8085-1 11001101 HI-Z HI-Z 
I 0 I 0 8085-2 HI-Z V7 V6 V5 V4 V3 V2 VI VO 00000000 
I 0 I I 8085-2 HI-Z HI-Z HI-Z 
I I 0 0 8086 HI-Z V7V6V5V4V3V2Vl VO -
I 1 0 I 8086 HI-Z HI-Z " -

, Figure 15. MPSC Vectored Interrupts 

(8085) V4 V3 V2 Channel Interrupt Source 
(8086) V2 V1 VO 

0 0 0 B Tx BUFFER EMPTY 
0 0 I EXT/STAT CHANGE 
0 I 0 RX CHAR·AVAILABLE 
0 I ,I SPECIAL Rx CONDITION 

1 0 0 A Tx BUFFER EMPTY 
I 0 I EXT/STAT CHANGE 

- I I 0 'RX CHAR AVAILABLE 
1 I I SPECIAL Rx CONDITION 

Rx Special Condition: Parity Error, Framing Error, Rx Over-run Error, 
EOF(SDLC) 

EXT/STAT Change: Change in Modem Control Pin Status: CTS, 
DCD, SYNC, EOM, Break/Abort Detection 

Figure 16. Status Affect VeCtor Mode 

7-129 AFN-II2213A 



AP-145 

8273,8274 
SERIAL 

I/O 

CHANNI!LC 

DUAL PORT ACCESS 
CONTROL 

825SA 
PARALLEL 

I/O 

LED'S 

) 

8254-2 
PIT 

COUNTERS 

825eA' 
INTERRUPT 
CONTROL 

MULTIBUS 
ADDRESS BITS 

ADR14/-17/ 

Figure 17. Functional Block Diagram -ISBC- 88/45 

APPLICATION EXAMPLE 

This section describes the hardware and software of an 
8274/8088 system. The hardware vehicle used is the IN­
TEL Single Board Computer iSBC 88/45 - Advanced 
Communication Controller. The software which exercises 
the 8274 is written in PLM 86.This example will demon­
strate how 8274 can be configured into the SOLe;:: mode 
and transfer data through OMA control. The hardware 
example will help the reader configure his hardware and 
the software examples will help in developing an applica­
tion software. Most software examples closely approxi­
mates a real data link controller software in the SOLC v 

communication and may be used with very little 
modification. 

iSBce88/45 
A brief description of the iSBC 88/45 board wilt be pre- , 

, sented here. For more detailed information on the board ' 

and the schematics, refer to Hardware Manual for the 
iSBC 88/45, Advanced Communication Controller. iSBC 
88/45 is an intelligent slave/multimaster communication 
board based on the 8088 processor, the 8274 and the 8273 
SOLC/HOLC controller. Figure 17 shows the functional 
block diagram of the board. The iSBC 88/45 has the fol­
lowing features. 

• 8 MHz processor 
, ':l6KbytesofstaticRAM 

(12K dual port) 
• Multimaster /Intelligent Slave Multibus Interface 
• Nine Interrupt Levels 8259A 
• Two serial channels through 8274 
• One Serial cha~nel through 8273 
• S/W programmable baud rate generator 
• Interfaces: RS 232, RS422/449, CCITT V.24 
• 8237A OMA controller 
• Baud Rate to 800k Baud 

7-130 AFN-02213A 



inter AP-145 

INITIA~IZE_e274:PROCEDURE PUB~ICI 

1************************************************************************1 
1* *1 
1* INITIA~IZE THE B274 FOR SDL~ MODE *1 
1* *1 
1* 1. RESET CHANNEL *1 
1* 2. EXTERNAL INTE~RUPTS ENABLED *1 
1* 3. NO WAIT *1 
1* 4. PIN 10 .. RTS *1 
1* ,. NON-VECTORED INTERRVPT-80Bb MODE */ 
1* b. CHANNEL A DMA. CH B INT *1 
1* 7. TX AND RX .. 8 BITS/CHAR *1 
1* 9. ADDRESS SEARCH MODE *1 
1* 10, CD AND CTS AUTO ENABLE *1 
1* 11. Xl CLOCK *1 
1* 12. NO PARITY *1 
1* 13.SDLC/HDLC MODE *1 
1* 14.RTS AND DTR *1 
1* 1'. CCITT - CRC *1 
1* lb. TRANSMITTER AND RECEIVER ENABLED *1 
1* 17.7EH .. FLAQ *1 
1* *1 
1************************************************************************1 

DECLARE C BYTE, 

1* TABLE TO INITIA~IZE THE B274 CHANNEL A AND B *1 
1* FORMAT IS: WRITE REQISTER. REQISTER DATA *1 
1* INITIA~IZE CHANNEL A ONLY *1 

DECLARE TABLE_74~(*1 BYTE DATA 
(OOH.1BH. 

OOH. BOH. 
02H.11H. 
04H.20H. 
07H.07EH. 
01H.OBH. 
O'H.OEBH. 

ObH.5'H. 
03H.OD9H. 

OFFHI, 

1* CHANNE~ RESET *1 
1* RESET TX CRC *1 
/* PIN 10-RTSB. A DMA. B INT *1 
1* SDLC/HDLC MODE. NO PARITY *1 
/* SDLC FLAQ */ 
/* RX DMA ENABLE */ 
/* DTR. RTS. S TX BITS. TX ENABLE.*I 
/* SDLC CRC. TX CRC ENABLE */ 
/* DEFAULT ADDRESS *1 
/* B RX BITS. AUTO ENABLES. HUNT MODE. *1 
/* RX CRC ENABLE */ 
1* END OF INITIALIZATION TABLE */ 

DEC~ARE TABLE_74~(*1 
(02H.00H. 
01H.1CH. 
OFFHII 

BYTE DATA 
/* INTERRUPT VECTOR */ 
/* STATUS AFFECTS VECTOR */ 
/* END *1 

1* INITIALIZE THE B274 *1 

C-O, 
DO WHI~E TABLE_74.B(CI <>'OFFH, 

ENDI 

c=o; 

OUTPUT (COMMAND.B_74 I - TABLE_74~(CII 
C=C+l, 
OUTPUT'(COMMAND.B_74I - TABLE_74~(CI' 
C=C+l,' ' 

DO WHILE TABLE_74~(C)' <> OFFH, 
OUTPUT(COMMAND~_74) .. TABLE_74~(CII 
C-C+l1 

END, 
RETURN, 

OUTPUT(COMMAND_A_74) .. TABLE_74~(C)1 
C-C+l1 

END INlTIA~IZE_82741 

Figure 18. Typical MPSC SOLe Initialization Sequenca 

7-131 AF~13A 



AP·145 

For this application, the CPU is run at 8 MHz. The board" 
is configured to operate the 8274 in SDLC operation with 
the data transfer in DMA mode using the 8237 A. 8274 is 
configured first in non-vectored mode in which case the 
INTEL Priority Interrupt Controller 8259A is used to re­
solve priority b.etweeen various interrupting sources on the 
board and subsequently interrupt the CPU. However, the 
vectored mode of the 8274 is also verified by disabling the 
8259A and reading the vectors from the 8274. Software 
examples for each case will be shown later. 
· . 
The application example is interrupt driven and uses 
DMA for all data transfers under 8237A control. The 
·8254 provides the transmit and receive clocks for the 
8274. The 8274 was run at 40,0,K baud with a local.loop­
back Uumper wire) on Channel A data.The board was 
also run at 80,0,K baud by modifying the software as wlll be 
discussed later in the Special Applications section. One 
detail to note is that the Rx Channel DMA request line 
from the 8274 has higher priority than the Tx Channel 
DMA request line. The 8274 master clock was 4.0. MHz. 
The on-board RAM is used to define transmit and receive 
data buffers. In this application, the data is read from 
memory location 80,0,H through 810,H and transferred to 
memory location 90,0,H to 910,H through the 8274 Serial 
Link. The operation is full duplex. 8274 modem control 
pins, CTS and CD have been tied low (active). 

Software 

The software consists of a monitor program and a pro­
gram to exercise the 8274 in ~he SDLC mode. Appendix A 
contains the entire program listing. For the sake of clarity, 
each source module has been rewritten in a simple lan­
guage and will be discussed here individually. Note that 
some labels in the actual listings in the Appendix will not 
match with the labels here. Also the Hsting in the f\.ppen­
dix sets up some flags to communicate with the monitor. 
Some of these flags are not explained in detail for the rea­
son that they are not pertinent to this discussion. The mon­
itor takes the command from a keyboard and executes this 
program, logging any error condition which might occur. 

8274 Initialization 

The MPSC is initialized in the SDLC mode for Channel 
A. Channel B is disabled. See Figure 18 for the initializa­
tion routine. Note that WR4 is initialized before setting 

· up the transmitter and receive parameters. However, it 
may also be pointed out that other than WR4, all the other 
n,gisters may be programmed in any order. Also SDLC­
CRC has been programmed for correct operation. An in­
correct CRC selection will result in incorrect operation. 

· Also note· that receive interrupt on first receive character 
has been programmed although Channel A is in the DMA 
mode. . . 

Interrupt Routines 

The 8274 interrupt routines will be discussed here. On an 
8274 interrupt, program branches off to the "Main Inter-

. rupt Routine". In main interrupt routine, status register 
RR2 is read. RR2 contains the modified vector. The cause 
of the interrupt is determined by reading the modified bits 
of the vector. Note that the 8274 has been programmed in 
the non-vectored mode and status affects vector bit has 
been set. Depending on the value of the modified bits, the 
appropriate interrupt routine is called. See Figure 19 for 
the flow diagram and Figure 20. for the source code. Note 
that an End of Interrupt Command is issued after servic­
ing the interrupt. This is necessary to enable the lower pri­
ority interrupts. 

Figure 21 shows all the interrupt routines called by the 
Main Interrupt Routine. "Ignore. Interrupt" as the name 
implies, ignores any interrupts and sets the FAIL flag. 
This is done because this program is for Channel A only 
and we are ignoring any Channel B interrupts. The impor­
tant thing to note is the Channel A Receiver Character 
available routine. This routine is called. after receiving the 
first character in the SDLC frame. Since the transfer 
mode is DMA, we have a maximum of three character 
times to service this interrupt by enabling the DMA 
controller. 

7-132 

IF V2V1V0 ~ 0, CALL IGNORE - INTERRUPT 
IF V2V1V0 ~ 1, CALL IGNORE - INTERRUPT 
IF V2V1V0 ~ 2, CALL CHB Rx CHAR 
IF V2V1V0 ~ a, CALL IGNORE - INTERRUPT 
IF V2V1V0 ~ 4, CALL IGNORE - INTERRUPT 
IF V2V1V0 ~ 5, CALL CHA - EXTERNAL CHANGE 

INTERRUPT 
IF V2V1V0 ~ 6, CALL CHA Rx CHAR 
IF V2V1V0 ~ 7, CALL CHA Rx SPECIAL 

Figure 19. Interrupt Response Flow Diagram 

AFN.()2213A 



intJ 

1**************************1 
1* MAIN INTERRUPT ROUTINE *1 
1**************************1 

AP-145 

OUTPUT (COMMAND_B_74 I .. 2. 1* SET POINTER TO 2*1 
TEMP .. INPUT (STATUS_B_74 I AND 07H. 

1* FOR THIS APPLICATION CH B INTERRUPTS 
DO CASE TEMP. 

1* READ INTERRUPT VECTOR *1 
1* CHECK FOR CHA INT ONLY*I 
ARE IONORED*I 

CALL IONORE_INT. 1* V2VIVO .. 000*1 
CALL IONORE_INT. 1* V2VIVO ., 001*1 
CALL CHB_RX_CHAR' 1* V2VIVO 010*1 
CALL IONORE_INT. 1* V2VIVO ., 011*1 
CALL I I ONORE_I NT. 1* V2VIVO .. 100*1 
CALL CHA_EXTERNAL_CHANOE, 1* V2VIVO = 101*1 
CALL CHA_RX_CHAR' 1* V2VIVO ., 110*1 
CALL CHA_RX_SPECIAL, 1* V2VIVO ., 111*1 

END, 
OUTPUT (COMMAND_A_74 I =38H. 
RETURN, 

1* END OF INTERRUPT FOR 8274 *1 

END INTERRUPT_8274, 

Figure 20. Typical Main Interrupt Routine 

1******************************************************1 
1* CHANNEL A EXTERNAL/STATUS CHANOE INTERRUPT HANDLER *1 
1******************************************************1 
CHA_EXTERNAL_CHANOE: PROCEDURE, 

TEMP" INPUT(STATUS_A_741, 1* STATUS REO 1*1 
IF (TEMP AND END_OF_TX_MESSAOEI = END_OF_TX_MESSAOE THEN 

TXDONE_S=DONE, 
ELSE DO. 

TXDONE_S=DONE, 
RESULTS_S=FAILI 

END. 
OUTPUT (COMMAND_A_74I = 10H, 
RETURN, 

1* RESET EXT/STATUS INTERRUPTS *1 

END CHA_EXTERNAL_CHANOE' 
1**********************************************************1 
1* CHANNEL A SPECIAL RECEIVE CONDITIONS INTERRUPT HANDLER *1 
1**********************************************************1 
CHA_RX_SPECIAL: PROCEDURE, 

RETURN, 

OUTPUT (COMMAND_A_74 I ., 1, 
TEMP" INPUT(STATUS_A_741, 
IF (TEMP AND END_OF_FRAMEI ., END_OFJFRAME THEN 

DO, 
IF(TEMP AND 040Hl = 040H THEN 

RESULTS S = FAIL, 1* CRC ERROR *1 
RXDONE_S ;;; DONE, 
OUTPUT (COMMAND_A_74 I .. 30H, I*ERROR RESET*I 

END, 
ELSE DO, 

IF (TEMP AND 20Hl = 20H THEN DO, 
RESULTS_S ., FAIL, 1* RX OVERRUN ERROR*I 
RXDONE_S ., DONE. 
OUTPUT (COMMAND_A_74 I = 30H. I*ERROR RESET*I 
END, 

END, 

END CHA_RX_SPECIAL, 

1.*****************************************1 
1* CHANNEL A RECEIVE CHARACTER AVAILABLE *1 
/*****************************************1 
CHA_RX_CHAR: PROCEDURE, 
OUTPUT (SINOLE_MASKI .. CHO_SEL, 
RETURN, 
END CHA_RX_CHAR' 

I*ENABLE RX DMA CHANNEL*I 

Figure 21. 8274 Typical Interrupt Handling Routines 

7-133 AFN.0221aA 



inter AP-145 

It may be recalled that the receiver buffer is three bytes 
deep in addition to the receiver shift register. At very high 
data rates, it may not be possible to have enough time to 
read RR2, enable the DMA controller without overrun­
ning the receiver. In a case like this, the DMA controller 
may be left enabled before receiving the Receive Charac­
ter Interrupt. Remember, the Rx DMA request and inter­
rupt for the receive character appears at the same time. If 
the DMA controller is enabled, it would service the DMA 
request by reading the received character. This will make 
the 8274 interrupt line go inactive. However, the 8259A 
has latched the interrupt and a regular interrupt acknowl­
edge sequence still occurs after the DMA controller has 
completed the transfer and given up the bus. The 8259A 
will return Level 7 interrupt since the 8274 interrupt has 
gone away. The user software must take this into account, 
otherwise the CPU will hang up. 

The procedure shown for the Special Receive:Condition 
Interrupt checks if the interrupt is due to the End of 
Frame. If this is not TRUE, the FAIL flag is set and the 

program aborted. For a real life system, this must be fol­
lowed up by errot'recovery proCedures which obviously are 
beyond the scope ofthis Application Note. 

The transmission is terminated when the End of Message 
(RRO, D6) interrupt is generated. This interrupt is ser­
viced in the Channel A External/Status Change interrupt 
procedure. For any other change in external status condi­
tions, the program is aborted and a FAIL flag set. 

Main Program 
Finally, we wiil briefly discuss the main program. Figure 
22 shows the source program. It may be noted that the 
Transmit Under-run latch is reset after loading the first 
character into the 8274. This is done to ensure CRC trans­
mission at the end of the frame. Also, the first character is 
loaded from the CPU to start DMA transfer of subse­
quent data. This concludes our discussion on hardware 
and software example. Appendix A. also includes the soft­
ware written to exercise the 8274 in the vectored mode by 
disabling.the 8259A. 

CHA_SDLC_TEST' PROCEDURE BYTE PUBLIC. 

CALL 
CALL 
ENABLEI 

ENABLE_INTERRUPTS_S. 
INIT_8274_SDLC_S. 

OUTPUT (COMMAND_A_74) • 28H. 
OUTPUT(COMMAND-P_74) = 28H. 
CALL INIT_8237_S. 
OUTPUT (DATA_A_74) .OOH •. 

1* RESET TX INT/DMA *1 
1* BEFORE INITIALIZING 8237*1. 

I*LOAD FIRST CHARACTER FROM *1 
I*CPU *1 

1* TO ENSURE CRC TRANSMISSION. RESET TX UNDERRUN, LATCH *1 
OUTPUT(COMMAND_A_74) • OCOH. 
RXDONE_S.TXDONE_S=NOT_DONE. 
RESUL TS_S-PASS. 
DO WHILE TXDONE_S-NOT_DONE. 
END. 

1* CLEAR ALL FLAGS 
1* FLAG SET FOR MONITOR 
1* DO UNTIL TERMINAL COUNT 

DO WHILE(INPUT(STATUS-A_74) AND 04H) <> 04H. 
1* WAIT FOR CRC TO GET TRANSMITTED *1 
1* TEST FOR TX BUFFFER EMPTY TO VERIFY THIS*I 
END. 
DO WHILE RXDONE_S=NOT_DONE. 1* DO UNTIL TERMINAL COUNT *1 
END. 
CALL STOP 8237 S. 

END CHA_SDLC_TESTI 

Figure 22. Typical 8274 Transmit/Receive Set-Up in SOLe Mode 

7-134 AFN-02213A 



inter AP-145 

Vee 

CPU 
INT~o(}-~--------r---------------~--------------__ 

INTA p---------~---t_----------_--__t----------------

8085 CPU 

IAPX·88/86 
CPU 

8085 INTERRUPT 
MODE 1 

8088/86 
INTERRUPT MODE 

8088/86 
INTERRUPT MODE 

<OTHERS> 

8085 INTERRUPT 
MODE 3 

1088/86 
INTERRUPT MODE 

Figure 23. 8274 Daisy Chain Vectored Mode 

SPECIAL APPLICATIONS 

In this section, some special application issues will be dis­
cussed. This will be useful to a user who may be using Ii 
mode which is possible with the 8274 but not explicitly ex­
plained in the data sheet. 

MPSC Daisy Chain Operation 
Multiple MPSt can be connected in a daisy-chain config­
uration (see Figure 23). This feature may be useful in an 
application where multiple communication channels may 
be required and because of high data rates, converttional 
interrupt controller is not used,to avoid long interrupt re­
sponse times. To configure the MPSCs for the daisy chain 
operation, the interrupt priority input pins (IPI) and inter­
rupt priority output pins (IPO) of the MPSC should be 
connected as shown. The highest priority device has its IPI 
pin connected to ground. Each MPSC'is programmed in a 
vectored mode with status affects vector bit set. In the 
8085 basic systems, only one MPSC should be pro­
grammed in the 8085 Mode 1. This is the MPSC which 
will put the call vector (CD Hex) on the data bus in re­
sponse to the first INTA pulse (See Figure 15). It may be 
pointed out that the MPSC in 8085 Mode 1 will provide 

System Pribrity Resolution Time 
Configuration Min (ns) 

8086-1 400 
8086-2 500 
8086 800 
8088 800 
8085-2 1200 
8085A 1920 

Note: Zero wait states have been assumed. 

the call 'vector irrespective of the state of IPI pin. Once a 
higher priority MPSC generates an interrupt, its IPO pin 
goes inactive thus preventing lower priority MPSCs from 
interrupting the CPU. Preferably the highest priority 
MPSC should be programmed in 8085 Mode 1. It may be 
recalled that the Priority Resolve Time on a given MPSC 
extends from th falling edge of the first INT A pulse to the 
falling edge of the second INT A pulse. During this period, 
no new internal interrupt requests are accepted. The 
maximum number of the MPSCs that can be connected in 
a daisy chain is limited by the Priority Resolution Time. 
Figure 24 shows a maximum number of MPSCs that can 
be connected in various CPU systems. It may be pointed 
out that IP() to IPI delay time specification is lOOns. 

B.isync Transparent Communication 

Bisync applications generally require that data transpar­
ency be established during communication. This requires 
that the special control characters may not be included in 
the CRC accumulation. Refer to the Synchronous Proto­
c~1 Overview section- for a more detailed discussion on 
data transparency. The 8274 can be used for transparent 
communication in Bisync communications. This is made 

Number of 8274s Daisy Chained 
(Max) 

'4 
5 
8 
8 

12 
19 

Figure 24. 8274 Daisy Chain Operation 

7-135 AFN.Q2213A 



! 

inter AP-145 

possible by the capability of the MPSC to selectively turn­
on/turnoff the CRC accumulation 'while transmitting or 
receiving. In bisync transparent transmit mode, the spe­
cial characters (OLE, OLE SYN etc) are excluded from 
CRC calculation. This can be easily accomplished by 
turning off the transmit CRC calculation (WR5: 05=0) 
before loading the special character into the transmit 
buffer. If the next character is to be included in the CRC 
accumulation, then the CRC can be enabled (WR5: 
05 = I). See Figure 25 for a typical flow diagram. 

Figure 25. Transmit in Bisync transparent Mode 

During reception, it is possible to exclude received charac­
ter from CRC calculation by turning off the Receive CRC 
after reading the special character. This is made possible 
by the fact that the received data is presented to receive 
CRC checker 8 bit times after the character has been re­
ceived. During this 8 bit times, the CPU must read the 
character and decide if it wants it to be included in the 
CRC calculation. Figure 26 shows the typrcal flow dia­
gram to achieve this. 

h should be noted that the CRC generator must be en­
abled during CRC reception. Also, after reading the CRt: 
bytes, two more characters (SYNC) must be read before 
checking for CRC check result in RRI. 

Auto Enable Mode 

In some data communication applications, it may be re­
quired to enable the transmitter or the receiver when the 
CTS or the OCO lines respectively, are activated by the 
modems. This may be done very easily by programming 
the 8274 into the Auto Enable Mode.The auto enable 
mode is set by writing a 'I' to WR3,05. The function of 
this mode is to enable the transmitter automatically when 
CTS goes active. The receiver is enabled when OCO goes 
active. An in-active state of CTS or OCO pin wili disable 
the transmitter or the receiver respectively. However, the 
Transmit Enable bit (WR5:03) and Receive Enable bit 

7-136 

Figure 26. Receive in Bisync Transparent Mode 

(WR3:01) must be set in order to use the auto enable 
mode. In non-auto mode, the transmitter or receiver is en­
abled if the corresponding bits are set in WR5 and WR3, 
irrespective of the state CTS or OCO pins. It may be re­
called that any transition on CTS or OCO pin will gener­
ate External/Status Interrupt with the corresponding bits 
set in RRI. This interrupt can be cleared by issuing a Re­
set External/Status interrupt command as discussed ear­
lier. 

Note that in auto enable mode, the character to be trans­
mitted must be loaded into the transmit buffer after the 
CTS becomes active,. not before. Any character loaded 
into the transmIt buffer before the CTS became active will 
not be transmitted. 

High Speed DMA Operation 

In the section titled Application Example, the MPSC has 
been programmed to operate in OMA mode and receiver 
is programmed to generate an interrupt on the first receive 
character. You may recall that the receive FIFO is three 
bytes deep. On receiving the interrupt on the first receive 
character, the CPU must enable the OMA controller 
within three received byte times to avoid receiver over-run 
condition. In the application example, at 400K baud, the 
CPU had approximately 60 JlS to enable the OMA con­
troller to avoid receiver buffer overflow. However, at high­
er baud rates, tbe CPU may not have enough time to 
enable the OMA controller in time. For example, at 1M 
baud, the CPU should enable the OMA controller within 
approximately 24 JlS to avoid receiver buffer overrun. In 
most applications, this is not sufficient time. To solve this 
problem, the OMA controller should be left enabled be­
fore getting the interrupt on the first receive character 
(which is accompanied by the Rx OMA request for the 
appropriate channel). This will allow the OMA controller 
to start OMA transfer as soon as the Rx OMA request be­
comes active without giving the CPU enough time to re-

AFN-02213A 



inter AP-145 

, spond to the interrupt on the first receive character. The 
CPU will respond to the interrupt after the OMA transfer 
has been completed and will find the 8259A (See Applica­
tion Example) responding with interrupt level 7, the low­
est priority level. Note that the 8274 interrupt request was 
satisfied by the OMA controller, hence the interrupt on 
the first receive character was cleared and the 8259A had 
no pending interrupt. Because of no pending interrupt, the 
8259 A returned interrupt level 7 in response to the INT A 
sequence from the CPU. The user software should take 
care of this interrupt. 

PROGRAMMING HINTS 
This section will describe some useful programming hints 
which may be useful in program development. 

Asynchronous Operation 

At the end of transmission, the CPU must issue "Reset 
Transmit Interrupt/OMA Pending" command in WRO to 
reset the last transmit empty request which was not satis­
fied. Failing to do so will result in the MPSC locking up in 
a transmit empty state forever. 

Non-Vectored Mode 

In non-vectored mode, the Interrupt Acknowledge pin 
(INTA) on the MPSC must be tied high through a pull-up 
resistor. Failing to do so will result in unpredictable re­
sponse from the 8274. 

HOLC/SOLC Mode 

When receiving data in SOLC mode, the CRC bytes must 
be read by the CPU (or OMA controller) just like any oth­
er data field. Failing to do so will result in receiver buffer 
overflow. Also, the End of Frame Interrupt indicates that 
the entire frame has been received. At this point, the CRC 
result (RRI:06) and residue code (RRI:03, 02, 01) 
may be checked. 

Status Register RR2 

RR2 contains the vector which gets modified to indicate 
the source of interrupt (See the section titled MPSC 
Modes of Operation). Howe\ler, the state of the vector 
does not change if no new interrupts are generated. The 
contents of RR2 are only changed when a new interrupt is 
generated. In order to get the correct information, RR2 
must be read only after an interrupt is generated, other­
wise it will indicate the previous state. 

Initialization Sequence 

The MPSC initialization routine must issue a channel Re­
set Command at the beginning. WR4 should be defined 
before other registers. At the end of the initialization se­
quence, Reset External/Status and Error Reset com­
mands should be issued to clear any spurious interrupts 
which may have been caused at power up. 

Transmit Under-run/EOM Latch 

In SOLC/HOLC, bisync and monosync mode, the trans­
mit underrun/EOM must be reset to enable the CRC 
check bytes to be appended to the transmit frame or trans­
mit message. The transmit under-run/EOM latch can be 
reset only after the first character is loaded into the trans­
mit buffer. When the transmitter under-runs at the end of 
the frame, CRC check bytes are appended to the fra­
me/message. The transmit under-run/EOM latch can be 
reset at any time during the transmission after the first 
character. However, it should be reset before the transmit­
ter !lnder-runs otherwise, both bytes of the CRC may not 
be appended to the frame/message. In the receive mode in 
bisync operation, the CPU must read the CRC bytes and 
two more SYNC characters before checking for valid 
CRC result in RRI. 

7-137 

Sync Character Load Inhibit 

In.bisync/monosync mode only, it is possible to prevent 
loading sync characters into the receive buffers by setting 
the sync character load inhibit bit (WR3:01 = I). Cau­
tion must be exercised in using this option. It may be possi­
ble to get a CRC character in the received message which 
may match the sync character and not get transferred to 
the receive buffer. However, sync character load inhibit 
should be enabled during all pre-frame sync characters so 
the software routine does not have to read them from the 
MPSC. 

In SOLC/HOLC mode, sync character load inhibit bit 
must be reset to zero for proper operation. 

EOI Command 

EOI Command can only be issued through channel A irre­
spective of which channel had generated the interrupt. 

Priority in OMA Mode 

There is no priority in OMA mode between the following 
four signals: TxORQ(CHA), RxORQ(CHA), 
TxORQ(CHB), RxORQ(CHB): The priority between 
these four signals must be resolved by the OMA control­
ler. At any given time, all four OMA channels from the 
8274 are capable of going active. 

AFN.(J2213A 



AP-145 

APPENDIX A 
APPLICATION EXAMPLE: SOFTWARE LISTINGS 

7-138 
AFN-02213A . 



AP-145 

PL/M-B6, COMPILER tBBC ee/4~ B274 CHANNEL A BDLC TEST 

SERIES-III PL/M-86 V2.0 COMPILATION,OF MODULE INIT~274_S 
OI~ECT MODULE PLACED IN :Fl:SINI74.0B~ 
COMPILER INVOKED BY: PLMB6.B6 :Fl:SINI74.PLM TITLE(tSBC SB/4~ S274 CHANNEL 
A SDLC TEST) COMPACT NOINTVECTOR ROM 

3 

,····**·*****·**······**·***····***····· •.. ***** •• 1 1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

INITIALIZE THE B274 FOR SDLC MODE 

1. RESET CHANNEL. 
2. EXTERNAL INTERRUPTS ENABLED 
3. NO'WAIT 
4. PIN 10 - RTS 
5. NON-VECTORED INTERRUPT-BOB6 MODE 
6. CHANNEL ADM, CH B INT 
7. tx AND RX • B BITSICHAR 
9. ADDREee SEARCH MODE 
10. CD AND CTS AUTO ENABLE 
tl. Xl CLOCK 
12. NO PARITY 
13.IDLC/HDLC MODE 
14.RTS AND DTR 
U. CCITT - CRC ' , 
16. TRANSMITTER AND RECEIVER ENABLED 
17.7EH • 'FLAO 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 

'***···*····*********·.·********·.******** ••• *.***1 

INIT_S274J1: DO, 

.INCLUDE (:Fl:PORTS.PLM) 
, 

'···*··.******* •• ****** ••••• **** ••• ***********1 
1* *1 
1* IIBC ee/4~ PORT ASSIGNMENTS *1 
1* *1 
1**********************************************1 

DECLARE LIT LITERALLY 'LITERALLY', 

1* B237A-5 PORTS *1 

DECLARE CHOJIDDR LIT 
CHO_COUNT LIT 
CHIJ1DDR LIT 
CHI_COUNT LIT 
CHlU .. DDR LIT 
CHi_CDUNT LIT 
CH3..ADDR . LIT 
CH3_COUNT LIT 
STATUS_37 LIT 
COMMAND_37 LIT 
REGUEST~EO_37 LIT 
SINOLEjMASK LIT 
MODE~EO_37 LIT 

'080H', 
'081H', 
'OB2H', 
'083H', 
'084H', 
'OB5H', 
'OS6H', 
'o8m', 
'OBBH', 
'088H', 
'OS9H', 
'OSAH', 
'OSBH', 

PL/M-86 COMPILER tSIC B8/45 8274 CHANNEL A SOLC TEST 

CLR....BYTEJ'TR_37 LIT 'OSCH', 
TE .... ~EO_37 LIT 'OSDH', 
MASTER_CLEAR_37 LIT 'OBDH', 
ALLjMASK_37 LIT 'OSFH', 

1* 8254-2 PORTS *1 
4 DECLARE CTR_OO LIT '090H', 

CTR_Ol LIT '091H', 
CTR_02 LIT '092H', 

7-139 

, 



AP-145 

CONTROL.O_54 L.IT '093H', 
STATUSO_54 L.IT '093H', 
CTR_l0 LIT '098H', 
CTR_ll L.IT '099H', 
CTR12 L.IT '09AH', 
CONTROL.l_54 LIT '09BH', 
STATUS1_54 L.IT '09BH'; 

1* B255 PORTS *1 

5 DECLARE PORTA_55 LIT 'OAOH', 
PORTB_55 L.IT 'OAtH', 
PORTC_55 L.IT 'OA2H', 
CONTROL._55 LIT' 'OA3H'; 

1* B274 PORTS */' 

6 DECLARE DATA_A_74 LIT 'ODOH', 
DATA_B_74 LIT 'OO1H', 
STATUSJI_74 LIT 'OD2H', 
COMMAND_A_74 LIT 'OD2H', 
STATUS_B_74 LIT 'OD3H', 
COMMAND_B_74 LIT 'OD3H', 

1* B259A PORTS *1 

7 DECLARE STATUS_POLL_59 LIT 'OEOH', 
ICW1_59 LIT 'OEOH', 
OCW2_59 LIT 'OEOH', 
OCW3_59 LIT 'OEOH', 
OCWl 59 LIT 'OE1H', 
ICW2:59 LIT 'OE1H', 
ICW3_59 LlT 'OE1H', 
ICW4_59 LIT 'OE1H', 

1* B274 REGISTER BIT ABSIGNMENTS *1 
1* READ REGISTER o *1 

B DECLARE RX_AVAIL LIT '01H', 
INT]ENDING LIT '02H', 
TX_EMPTY LIT '04H', 
CARR IER_DETECT LIT 'OSH', 
SYNC HUNT LIT '10H', 
CLEAR_TO_SEND LIT '20H', 

PL/M-86 COMPILER iSBC 8B/45 8274 CHANNEL A SDLC TEST 

END_OF _TX_MESSAGE LIT '40H', 
BREAK_ABORT LIT 'BOH'; 

1* READ REGISTER 1 *1 

9 DECLARE ALL_SENT LIT '01H', 
PARITY_ERROR LIT '10H', 
RX_OVERRUN LIT '20H', 
CRC ERROR LIT '40H', 
END:OF _FRAME LIT 'BOH'; 

1* ,READ REGI,STER 2 *1 

10 DECLARE TX_B_EMPTY LIT 'OOH', 
EXT_B_CHANGE LIT '01H', 
RX_B_AVAIL LIT '02H', 
RX_B_SPEC IAL LIT '03H', 
TX_A_EMPTY LIT '04H', 
EXT~A3HANGE ,LIT '05H', 
RX_A_AVAI\.. LIT '06H', 
RX_A_SPEC IAL LIT '07H" 

7-140 AFN-02213A 



intJ 

11 

12 
13 
14 
15 
16 
17 
18 

19 

20 

1 
2 
2 
2 
3 
3 
2 

2 

AP-145 

1* 8237 BIT ASSIGNMENTS *1 

DECLARE CHO_SEL LIT 
CH1_SEL LIT 
CH2_SEL LIT 
CH3_SEL LIT 
WRITE_XFER LIT 
READ_XFER LIT 
DEMANDJ10DE LIT 
SINGLE_MODE LIT 
BLOCK_MODE LIT 
SET_MASK LIT 

DELAY_S: PROCEDURE P~BLIC, 
DECLARE D WORD, 
D-O, 
DO WHILE D<800H, 
D-D+l. 
END. 
END DELAY _S, 

'OOH', 
'OIH', 
'OiiZH', 
'03H', 
'04H', 
'OSH', 
'OOH', 
'40H', 
'BOH', 
'04H', 

PROCEDURE PUBLIC, 

DECLARE C BYTE, 

$E.JECT 

PL/M-86 COMPILER lSBC 88/45 8274 CHANNEL A SDLC TEST 

21 2 

22 2 

23 2 
24 2 
25 2 

26 2 
27 2 
28 3 
29 3 
30 3 
31 3 
32 3 

1* TABLE TO INITIALIZE THE 8274 CHANNEL A AND B *1 

1* FORMAT IS: WRITE REGISTER. REGISTER DATA *1 
1* INITIALIZE CHANNEL ONLY *1 

BYTE DATA 
1* CHANNEL RESET *1 
1* RESET TX CRC *1 
1* PIN 10-RTSB. A DMA. B INT *1 
1* SDLC/HDLC MODE. NO PARITY *1 
1* SDLC FLAG *1 
1* RX DMA ENABLE *1 

DECLARE TABLE_74_A(~' 
(00H.18H. 
OOH.80H. 
02H.llH. 
04H.2OH. 
07H.07EH. 
0IH.OBH. 
05H.OEBH. 
OhH. ~5H. 
03H.OD9H. 

1* DTR. RTS. 8 TX BITS. TX ENABLE. TX CRC ENABLE *1 
1* DEFAULT ADDRESS *1 

OFFHI, 

DECLARE TABLE_74_B(*1 
(02H.OOH. 
0IH.1CH. 
OFFHI, 

1* 8 RX BITS. AUTO ENABLES. HUNT MODE. *1 
1* RX CRC ENABLE *1 
1* END OF INITIALIZATION TABLE *1 

BYTE DATA 
1* INTERRUPT YECTOR .1 
1* STATUS AFFECTS YECTDR *1 
1* END *1 

1* INITIALIZE THE 8254 *1 

OUTPUT (CONTROLO_54 1-36H, 
OUTPU~(CTR~OOI • LOW(201, 
OUTPUT (CTR_OO I • HIGH(201, 

1* INITIALIZE THE 8274 *1 

C-O, 

1* BAUD RATE • 400K BAUD.I 
1* BAUD RATE • 400K:BAUD*1 

DO WHILE TABLE]4_B(CI <> OFFH. 

END. 

OUTPUT (COMMAND_B_74 I • TABLE_74_B(CI' 
C-C+l, 
OUTPUT (COMMAND_B_74) ."TABLE_74_B(C)' 
C=C:+-l, 

7-141 AFN-02213/\ 



... inter 

33 2 . 
34 2 
3' 3 
36' 3 
37 3 
3B 3 
39 3 
40 2 

41 2 
42 2 
43 1 

CaOI 
DO WHILE TABLE_74~(C) <> OFFHI 

OUTPUT(COI1MAND_A_74) a TABLE":'74~(C)1 
CaC+ll 

ENDi 

OUTPUT<CDl'll'lAND_A_74) • TABLE_14:.J\(C)1 
CaC+ll 

CALL DELAV_SI 

RETURNI 
END INIT_B274_SDLC_SI 
END INIT_B274_SI 

PL/M-B6 COMPILER iSBC 88/4' 8274 CHANNEL A SDLC TEST 

MODULE INFORMATION: 

CODE AREA SIZE c OOABH 16BD 
CONSTANT AREA SIZE - OOOOH OD 
VARIABLE AREA SIZE - 0003H 3D 
MAXIMUM STACK SIZE - 0006H 6D 
213 LINES READ 
o PROQRAM WARNINQS 
o PROQRAM ERRORS 

END OF PL/M-86 COMPILATION 

PL/M-B6 COMPILER iSBC 8B/45 8274 CHANNEL A SDLC TEST 

SERIES-III PL/M-86 V2.0 COMPILATION OF MODULE INIT_B237_CHA 
OB.!ECT MODULE PLACED IN : ~1:, SINI37. OB.! 
COMPILER INVOKED BY: PLM86.86 :Fl':SINI37.PLM TITLE(iSBC S8/4' 8274 CH~NNEL A SDLC 
TEST)' COMPACT NOINTVECTOR ROM 

\ . ,.**.*** •••••••• ** •••• ** •••••• *** •••• **** •• *** •• *** ••• *******************1 

12 

13 2 
14 2 
15 2 
16 2 
17 2 
18 2 
19 2 
20 2 
21 2 
22 2 
23 2 
24 2 
2' 2 
26 2 

~ U 
1* 8237 ~NITIAL.IZATJCIN ROUTINE FOR OM TRANSFER *1 
1* *1 
1************************************************************************1 
INIT_B237_CHA: DOl 

.NOLIST 

INIT_B237_S: PROCEDURE PUBLICI 

OUTPUT (MASTER_CLEAR_37)-QI 
OUTPUT (COMMAND_37) • 20MI 1* EXTENDED WRITE *1 
OUTPuT(ALLJMASK_37) - OFHI 1* MASK ALL REGUESTS *1 
OUTPUTUIODE_REQ_37) - (SINQLEJ'lODE OR WRITE_XFER OR CHO_SEL)I 
OUTPUT (I'IODE..REQ_37) - (SINQLEJ'IODE OR READ_XFER OR CH1_SEL)I 
OUTPUT (CLR_BVTE-PTR_37) - 01 
OUTPUT(CHO_ADDR) • 001 1* RECEIVE BUFF AT 900H *1 
OUTPUT<CHO_ADDR) - 09HI 
OUTPUT (CHO_COUNT) - OHI 
OUTPUT(CHO_COUNT) - 011 
OUTPUT(CH1_ADDR) -- 001 1* TRANSMIT BUFF AT BOOH *1 
OUTPUT(CH1_ADDR) - oeHI 
OUTPUT (CH1_COUNT) • 010HI 
OUTPUT(CH1_COUNT) - OOHI 

7-142 AFN-02213A 



inter AP-145 

1* ENABLE TRANSFER *1 
27 2 OUTPUT(SINOLE~I • CHI_SELl 1* ENABLE TX 
as 2 RETURNI 

29 2 END INIT_B237_S1 

1* TURN OFF TI£ 8237 CHANNELS 0 AND I *1 

30 I STOP _B237..8: PROCEDURE PUBLICI 
31 2 OUTPUTCBINOLEJ'lASKI • CHI_SEL OR SET -"ASKI 
32 2 OUTPUTCSINGLEJ'lASK) • CHO_BEL OR SET.J'IASKI 
33 2 RETURNI 
34 2 END STOP_B237_S1 
35 1 END INIT _B237 _CHAI 

I10DVLE INFORMATION: 

CODE AREA SIZE • 004CH 76D 
CONSTANT AREA SIZE • OOOOH OD 
YARIABLE AREA SIZE • OOOOH OD 

PL/M-86 COMPILER iBBC 8S/45 B274 CHANNEL A SDLC TEST 

MAXIMUM BTACK SIZE • 0OO2H 2D 
163 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-B6 COMPILATION 

PLiM-S6 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TEST 

SERIES-Ill PL/M-B6 V2 0 COMPILATION OF MODULE INTR_B274_B 
OBJECT t10DULE PLACED IN . Fl: SINTR OB') 

Df1A *1 

COMPILER INVOKED BY PLM8686 .Fl SINTR.PLM TITLECiSBC 88/45 S274 CHANNEL 
A SD~~ TEST) COMPACT NOINTVECTOR ROM 

12 
13 
14 
15 
16 
17 

18 

19 
20 
21 

2 
2 
2 

1********.*********************************1 
1* *1 
1* 8274 INTERRUPT ROUTINE *1 
1* *1 
1******************************************1 

INTR_8274_S' DO. 
SNOLIST 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 
DECLARE 

TEMP BYTE. 
(RESULTS_S.TXDONE_S.RXDONE SI 
INT _VEC POINTER AT (1401, 
INT_YEC_STORE POINTER. 

BYTE EXTERNAL. 

MASK_59 BYTE, 
DONE 
NOT_DONE 
PASS 
FAIL 

LIT 
LIT 
LIT 
LIT 

1****************************1 
1* IGNORE INTERRUPT HANDLER *1 
1****************************1 

IGNORE_I NT: PROCEDURE, 

RESUL T6_6 = FAILI 
RETURN, 
END IGNORE_INTI 

7-143 

'OFFH'. 
'OOH'I, 
'OFFH'. 
'~OH'. 

/ 

AFN-02213A 



22 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

2 
2 
2 
2 
3 
3 
3 
2 
2 
2 

1******************************************************t 
/* CHANNEL A' EXTERNAL/STATUS CHANGE I'NTERRUPT HANDLER *1 
1******************************************************1 

TEMP = INPUT< STATUS A 74); 
IF (TEMP AND END OF-TX MESSAGE) 

TXDONE S=DONE; - -
ELSE DO; -

TXDONE S=DONE, 
RESUL TS_S=FAIL; 

END; 

1* STATUS REG 1*1 
END_OF_TX_MESSAGE THEN 

OUTPUT(COMMAND_A_74) = 10H; /* RESET EXTISTATUS INTERRUPTS *1 
RETURN, 
END CHA_EXTERNAL_CHANGE; 

$EJECT 

PL/M-86 COMPILER lSBC 88/45 8274 CHANNEL A SDLC TEST 

33 

34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
46 
47 
48 
49 
50 
51 
52 

53 
54 
55 
56 

2 
2 
2 
2 
3 
3 
3 
3 
3 
2 
3 
4 
4 
4 
4 
3 
2 
2 

1 
2 
2 
2 

1**********************************************************1 
/. CHANNEL A SPECIAL RECEIVE CONDITIONS INTERRUPT HANDLER *1 
1**********************************************************1 

OUTPUT (COMMAND_A_74) = 1; 
TEMP = INPUT(STATUS_A_74); 
IF (TEMP AND ENO_OF-FRAME) = END_OF_FRAME THEN 

DO; 
IF(TEMP AND 040H) = 040H THEN 

RESULTS_S = FAIL; 1* CRC ERROR *1 

RETURN; 

RXDONE S = DONE; 
OUTPUT(COMMAND_A_74) 

END; 
ELSE DO; 

IF (TEMP AND 20H) 
RESULTS_S = FAIL; 
RXDONE_S = DONE, 
OUTPUT(COMMAND_A_74) 
END; 

END; 

END CHA_RX_SPECIAL, 

30H; I*ERROR RESET*I 

20H THEN DO;' 
1* RX OVERRUN ERROR*I 

30H, I*ERROR RESET*I 

1*****************************************1 
1* CHANNEL A RECEIVE CHARACTER AVAILABLE *1 
1*****************************************1 

CHA_RX_CHAR: PROCEDURE; 
OUTPUT(SINGLE_MASK) CHO_SEL, 
RETURN; 
END CHA_RX3HAR; 

$EJECT 

I*ENABLE RX DMA CHANNEL*I 

PL/M-86 COMPILER iSBC 88/45 8274 Cl-'ANNEL A SDLC TEST 

57 

58 

59 

60 

2 

2 

2 

/* ENABLE 8274 INTERRUPTS - SET UP THE 8259A *1 

E'NABLE_INTERRUPTS_S: PROCEDURE PUBLIC. 

DECLARE CHA_INT_ON LIT 'OF~H'; 

DISABLE" 

CALL SET$INTERRUPT(39,INT_39); 

7-144 
AFN-02213A 



61 
62 
63 

64 

65 
66 

67 

68 

69 

70 
71 

72 
73 

74 

75 

76 
77 
78 

2 
2 
2 

2 

2 
2 

2 

:2 

:2 
:2 

2 
2 

2 

2 
2 
:2 

AP-145 

INT_VEC_STORE = INT_VEC, 
INT_VEC = INTERRUPT'PTR(INT_8274_S), 
MASK_59 - INPUT(OCW1_59), 

OUTPUT(OCW1_59) = MASK_59 AND CHA_INT_ON, 

RETURN, 
END ENABLE_INTERRUPTS_S, 

1* DISABLE 8274 INTERRUPTS - SET UP THE 8259A *1 

DISABLE_INTERRUPTS_S PROCEDURE PUBLIC, 

DISABLE, 

OUTPUT(OCWI 59) 
ENABLE, -

RETURN, 
END DISABLE_INTERRUPTS_S, 

1* CHANNEL B RECEIVE CHARACTER AVAILABLE *1 

CHB_RX_CHAR PROCEDURE, 

TEMP=INPUT(DATA_B_74), 

OUTPUT (COMMAND_B_74 l 
RETURN, 
END CHB_RX_CHAR, 

'EJECT 

38H. 

PL/M-86 COMPILER lSBC 88/45 8274 CHANNEL A SDLC TEST 

79 

80 2 
81 2 

82 2 
83 3 
84 3 
85 3 
86 3 
87 3 
88 3 
89 3 
90 3 
91 3 
92 2 
93 2 
94 2 
95 2 
96 2 

1**************************1 
1* MAIN INTERRUPT ROUTINE *1 
1**************************1 

INT_80274_S: PROCEDURE INTERRUPT 35 PUBLIC. 

OUTPUT (COMMAND_B_74 l = 2, 1* SET POINTER TO 2*1 
TEMP = INPUT (STATUS_B_74l ANO 07H, 1* READ INTERRUPT VECTOR *1 

1* CHECK FbR CHA INT ONLY*I 
1* FOR THIS APPLICATION CH B INTERRUPTS ARE IGNORED*I 
DO CASE TEMP, 

CALL IGNORE_INT. 1* V2VIVO = 000*1 
CALL IGNORE_INT. 1* V2VIVO = 001*1 
CALL CHB.-RX_CHAR, 1* V2VIVO 010*1 
CALL IGNORE_INT. 1* V2VIVO = 011*1 
CALL IGNORE_INT. 1* V2VIVO 100*1 
CALL CHA~XTERNAL_CHANGE. 1* V2VIYO = 101*1 
CALL CHA_RX_CHAR' 1* V2VIVO = 110*1 
CALL CHA_RX_SPECIAL. 1* V2VIVO = 111*1 

END, , 
OUTPUT (COMMAND_A_74 l =38H, 1* END OF INTERRUPT FOR 8274 *1' 
OUTPUT< OCW2_59 l = 63H. 1* 8259 EOI *1 
OUTPUT(OCW1_59l = INPUT(OCW1_59l AND OF7H. 
RETURN. 
END INT _8274_S, 

1* DEFAULT INTERRUPT ROUTINE - '8259A INTERRUPT 7 *1 
1* REGUIRED ONLY WHEN DMA CONTROLLER IS ENABLED *1 
1* BEFORE RECEIVING FIRST CHARACTER WHICH IS *1 
1* AT HIGH BAUD RATES LIKE 800K BAUD READ APP *1 
1* NOTE SECTION 6 FOR DETAILS *1 

7-145 
AFN.02213A 



I 

intJ 

97 
98 
99 

100 
101 

102 

1 
2 
2 
2 
2 

AP-145 

INT_39: PROCEDURE INTERRUPT 39. 
OUTPUT<OCW2_59I • 20H. 1* NON-SPEC'IFIC EOI *1 
OUTPUT(OCW1_591 = INPUT<OCW1_591' AND OF7H. 
RESULTS_S = FAIL. 

END INT_39. 

END INTR_8274_S. 

t10DULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
t1AXIMUM STACK SIZE = 
295 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-86 COMPILATION 

01BFH 
OOOOH 
0006H 
0022H 

447D 
OD 
6D 

34D 

PL/M-86 COMP~LER iSlC 88/45 8274 CHANNEL A SDLC TEST 

SERIES-Ill PL/M-86 Y2.0 COMPILATION OF MODULE STEST 
OB~ECT MODULE PLACED IN :Fl:STEST.OB~ , 
COMPILER INYOKED B~: PLM86.86 :Fl:STEST.PLM TITLE(lSBC 88/45 8274 CHANNEL A SDLC TEST) 
COMPACT NOINTYECTOR ROM 

2 1 
3 2 

4 1 
5 2 

6 1 
7 2 

B 1 
9 2 

10 1 
11 2 

12 1 
13 2 

14 1 
15 2 

16 1 
17 2 

1.********************************··.***.*****.******* ••• ****************1 
1* *1 
1* iSBC 545 PORT A (8274) SOLC TEST *1 
1* *1 
1************************************************···*********************1 

STEST: DO. 

DELAY_S: PROCEDURE EXTERNAL. 
END DELAY_S. 

ENABLE_INTERRUPTS_S: PROCEDURE EXTERNAL, 
END ENABLE_INTERRUPTS_S, 

DISABLE_INTERRUPTS_S: PROCEDURE EXTERNAL, 
END DISABLE_INTERRUPTS_S, 

INXT_8274_SDLC_S: PROCEDURE EXTERNAL, 
END INIT_8274_SDLC_S. 

INIT _8237.-8: PR,OCEDURE EXTERNAL, 
END INIT_8237_S. 

STOP _8237 _S: P'ROCEDURE EXTERNAL. 
END STqp _8237 _S. 

YERIFY_TRANSF~R_S: PROCEDURE EXTERNAL. 
END VERIFY_TRANSFER_S. 

INT 8274_S: PROCEDURE INTERRUPT 35 EXTERNAL, 
END-INT_8274_S. ' 
SNOLIST 
SE~ECT 

PL/M-86 COMPILER iSBC.88/45 8274 CHANNEL A SDLC TEST 

28 
29 

DECLARE (RESULTS_S"TXDONE_S, RXDONE_SI BYTE 
DECLARE DONE LIT 'OFFH'. 

NOT_DONE LIT 'OOH'. 
PASS LIT 'OFFH'. 
FAIL LIT 'OOH'. 

7-146 

PUBLIC. 

AFN.()2213A 



intJ AP-145 

$E.JECT 

PL/M-86 COMPILER i8BC 88/4' 8274 CHANNEL A SDLC TEST 

30 

31 2 
32 2 
33 2 
34 2 
3' 2 
36 2 
37 2 

38 2 
39 :I 
40 2 

41 2 
42 3 

43 2 

44 3 
4' 2 
46 3 

47 2 

48 2 

49 :I 

'0 2 

51 2 
'2 1 

CHA_SDLC_TEST: PROCEDURE BYTE PUBLIC. 

CALL 
CALL 

ENABLE_INTERRUPTS_S, 
INIT_B274_SDLC_S' 

ENABLE. 
OUTPUTCCOMMAND~_74) - OISH, 
OUTPUTCCOMMAND_I_74) - :lBH, 
CALL INIT_B237_S, 

1* RE8ET TX INT/DMA *1 
1* BEFORE INITIALIZINg 8237*1 

OUTPUT C DATA_A_74) - ,~, 1* LOAD FIRST CHARACTER FROM CPU*I 

1* TO ENSURE CRC TRANSMIS8ION RESET TX UNDERRUN LATCH*I 
OUTPUTCCOMMAND~_74) - OCOH, . 
RXDONE_S, TXDONE_S-NOT-PONE, 1* CLEAR ALL FLAgS.*1 
RESULTS_S-PASS, 1* FLAg SET FOR MONITOR*I 

DO WHILE TXDONE_S-NOT-P0NE; 
END, 

1* DO UNTIL TERMINAL COUNT*I 

DO WHILECINPUTCSTATUS~_74) AND 04H) '<> 04H, 
1* WAIT FO~ CRC TO QET TRANSMITTED *1 
1* TEST FOR TX BUFFFER EMPTY TO VERIFY THIS*I 
END, 
DO WHILE RXDONE_S-NOT-P0NE, 1* DO UNTIL TERMINAL COUNT*I 
END, 

CALL STOP_8237_S, 

CALL DISABLE_INTERRUPTS_S. 

CALL VERIFY_TRANSFER_S, 

RETURN RESULTS_S, 

END CHA_SDLC_TEST, 
END STEST. 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE • 
VARIABLE AREA SIZE = 
MAXIMUM STACK SIZE • 
198 LINES READ 
o PROgRAM WARNINQS 
o PROgRAM ERRORS 

0063H 
OOOOH 
0OO3H 
0004H 

END OF PL/M-B6 COMPILATION 

99D 
OD 
3D 
4D 

PL/M-86 COMPILER iSIC B8/4' 8274 CHANNEL A SDLC TEST 

SERIE8-III PL/M-86 VOl. 0 COMPILATION OF MODULE VECTOR~ODE 
OB~ECT MODULE PLACED IN :Fl:VECTOR.OB~ 
COMPILER INVOKED BY: PLM86.B6 : F1:VECTOR. PLH TITLEC1SIC 88/4' B274 CHANNEL A SDLC TEST) 

1***** ••• **** •• *****.******* •• *******.****· •• ·.··**********.********, 
1* *1 
1* 8274 INTERRUPT HANDLINg ROUTINE FOR *1 
1* 8274 VECTOR MODE *1. 
1* STATUS AFFECTS VECTOR *1 
1* *1 
1.*.*.********* ••• *.* •• " ••• ** ••••• **********.·.·*******************1 

7-147 AfN-G2213A 



12 
13 
14 

15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

1 
2 
2 
2 

1 
2 
2 
2 
2 
3 

AP-145 

/* THIS IS AN EXAMPLE OF HOW 8274 CAN BE USED IN VECTORED MODE. *1 
1* THE iSBC88/45 BOARD WAS REWIRED TO DISABLE THE PIT 8259A AND *1 
/* ENABLE THE 8274 TO PLACE ITS VECTOR ON THE DATABUS IN RESPONSE *1 
/* TO THE INTA SE~UENCE FROM THE 8088. OTHER MODIFICATIONS INCLUDED *1 
/* CHANGES TO 8274 INITIALIZATION PROGRAM (SINI74) TO PROGRAM 8274 *1 
/* INTO VECTORED MODE (WRITE REGISTER 2A D5-1). */ 

VECTORjMODE: DO, 
.NOLIST 

DECLARE TEMP BYTE, 
DECLARE (RESULTS_S.TXDONE.RXDONE) BYTE EXTERNAL, 
DECLARE DONE LITERALLY 'OFFH', 

NOT_DONE LITERALLY 'OOH'. 
PASS LITERALLY 'OFFH'. 
FAIL LITERALLY 'OOH', 

1***********************************************************************1 
1* TRANSMIT INTERRUPT CHANNEL A INTERRUPT WILL NOT BE SEEN IN THE *1 
/* DMA OPERATION. *1 
1****************************************************************~******I 

TX_INTERRUPT_CHA:PROCEDURE INTERRUPT 84, 
OUTPUT(COMMAND_A_74) = 00101000B, /*RESET TXINT PENDING*/ 
OUTPUT(COMMAND A 74) • 00111000B, /*EOI*I 
END TX_INTERRUPT:CHA, 

1***********************************************************************1 
1* EXTERNAL/STATUS INTERRUPT PROCEDURE: CHECKS FOR END OF MESSAGE */ 
/* ONLY. IF THIS IS NOT TRUE THEN THE FAIL FLAG IS SET. HOWEVER, *1 
/* A USER PROGRAM SHOULD CHECK FOR OTHER EXT/STATUS CONDITIONS */ 
/* ALSO IN RRI AND THEN TAKE APPROPRIATE ACTION BASED ON THE */ 
/* APPLICATION.· */ 
1***********************************************************************1 

EXT _STAT _CHANGE_CHA: PROCEDURE INTERRUPT 85, 
TEMP = INPUT (STATUS_A_74), 
IF (TEMP AND END OF TX MESSAGE) = END_OF_TX_MESSAGE THEN 

TXDONE = DONE~ - -
ELSE DO, 

TXDONE = DONE, 

PL/M-86 COMPILER iSBC 88/45 8274 CHANNEL A SDLC TEST 

25 
26 

27 
28 
29 
30 

31 
32 
33 
34 

3 
3 

2 
2 
2 
2 

1 
2 
2 
2 

FAIL, 

OUTPUT (COMMAND_A_74) = 00010000B, 
OUTPUT (COMMAND_A_74) = 00111000B, 
RETURN, 

END EXT_STAT _CHANGE_CHA" 

I*RESET EXT STAT INT*/ 
I*EOI*/ 

1***********************************************************************1 
1* RECEIVER CHARACTER AVAILABLE INTERRUPT WILL APPEAR ONLY ON FIRST*I 
1* RECEIVE CHARACTER. SINCE DMA CONTROLLER HAS Be:EN ENABLED BEFORE *1 
1* THE FIRST CHARACTER IS RECEIVED. THE RECEIVER REOUEST IS *1 
1* SERVICED BY THE DMA CONTROLLER. */ 
I******************************.***~************************************1 

RX_CHAR_AVAILABLE_CHA:PROCEDURE INTERRUPT R6i 
OUTPUT (COMMAND_A_74) = 00111000B, /*EOI*/ 

RETURN, 
END RX_CHAR_AVAILABLE_CHA' 
$EJECT 

7-148 AFN-02213A 



inter AP-145 

PL/M-86 COMPILER iSBC 88/45 B274 CHANNEL A SDLC TEST 

35 

36 2 
37 2 
3B 2 
39 2 
40 2 
41 3 
42 3 
43 3 
44 2 
45 2 
46 2 
47 2 

4B 1 
, 49 2 

50 2 
51 2 
52 2 
53 2 
54 2 
55 2 

56 

1***********************************************************************1 
1* SPECIAL RECEIVE CONDITION INTERRUPT SERVICE ROUTINE CHECKS FOR *1 
1* END OF FRAME BIT ONLY. SEE SPECIAL SERVICE ROUTINE FOR NON- *1 
1* VECTORED MODE FOR'CRC CHECK AND OVERRUN ERROR CHECK. *1 
1***********************************************************************1 

SPECIAL_RX_CONDITION_CHA:PROCEDURE INTERRUPT B7. 

OUTPUT(COMMAND~_741 - I. I*POINTER 1*1 
TEMP - INPUT(STATUS~_741. 
IF (TEMP AND END_OF_FRAMEI = END_OF_FRAME THEN 

RXDONE • DONE. 
ELSE DO. 

RXDONE DONE. 
RESULTS_S = FAIL. 

END. 
OUTPUT (COMMAND_A_74 I • 00110000B. I*ERROR RESET*I 
OUTPUT (COMMAND_A_74 I • 00111000Bl I*EOI*I 

RETURN. 
END SPEC IAL_RX_CONDITI DN_CHAI 

ENABLE_INTERRUPTS: PROCEDURE PUBLIC. 
DISABLE. 
CALL SETS I NTERRUPT (B4. TX_INTERRUPT_CHAI. 
CALL SETSINTERRUPT(B5.EXT_STAT_CHANGE_CHAI. 
CALL SETSINTERRUPT(B6.RX_CHAR_AVAILABLE_CHAII 
CALL SETSINTERRUPT(B7.SPECIALJRX_CDNDITIDN_CHAI. 
RETURN. 
END ENABLE_INTERRUPTS. 

END VECTOR_MODEl 
1***************************************************************************1 
1***************************************************************************1 

MODULE INFORMATION: 

CODE AREA SIZE • 012EH 
CONSTANT AREA SIZE = OOOOH 
VARIABLE AREA SIZE - 0001H 
MAXIMUM STACK SIZE • 001EH 
226 LINES READ 
o PROQRAM WARNINGS 
o PROGRAM ERRORS 

END OF PL/M-B6 COMPILATION 

302D 
OD 
ID 

30D 

7-149 AFN.()2213A 



AP·145 

APPENDIXB 
MPSC READ/WRITE REGISTER DESCRIPTIONS 

7-150 AFN-02213A 



AP-145 

WRITE REGISTER 0 (WRO): 

MSI um 

'D7ID8II",,,,·t~:c!~"A~~ 
REGISTER POINTER 

o 0 0 NULL CODE 
o 0 1 SEND ABORT (IDLe) 
o 1 0 REseT EXT S1ATUSINTERRUPTS 
o 1 1 CHANNEL REBET 
1 0 0 ENABLE INTERRUPT ON NEXT RX CHARACTER 
1 0 1 REBET TXIfiIT OMA PENDING 
1 1 0 'ERROR ResET 
1 1 1 END OF INTERRUPT 

o 0 NULLCODE 
o 1 RESET RX CRC CHECKER 
1 0 RESET TX CRD GENERATOR 
1 1 RESET TX UNDERRUN EOM LATCH 

WRITE REGISTER 1 (WR1): 

~I ~I 

ID7ID8ID5ID1D~D~D1D~ I I ~I=:~RUPT 
L OMAENABLE 

STATUS AFFECTS VECTOR ~ ~~~~-:J~CTOR 
0...- (CHIONL V) 

, (NULL CODE fH A) 

o 0 RxiNT IOMA DISABLE 
o 1 RxlNT ON FIRST CHAR OR SPECIAL CONDmON 
1 0 IN)' ON ALL Rx CHAR (PARITY AFFECTS VECTOR) OR 

SPECIAL CONDmON 
1 INT ON ALL Rx CHAR (PARITY DOES NOT AFFECT 

VECTOR) OR SPECIAL CONDITION 

~ 1 WAIT ON Ax. 0 WAIT ON Tx 

-- MUST IE ZERO 

'-- WAIT ENABLE. 1 ENABLE. 0 DISABLE 

7-151 AfN.02213A 



inter AP-145 

WRITE REGISTER 2 (WR2): CHANNEL A 

MSB LSB 

ID710ID5ID4ID3ID2JD1JD~ 

1 ADMABINT 
o 80THDMA 
1 ILLEGAL I ~~o 0 80TH INTERRUPT 

L.- 1 PRIORITY RxA>RxB> TxA> TxB>EXTA'>EXTB' 
o PRIORITY RxA>TxA>RxB>TxB>EXTA'>EXTB' 

o 0 8085 MODE 1 
o 1 8085 MODE 2 
1 0 8086/88 MODE 
1 1 ILLEGAL 

~ 1 VECTORED iNTERRUPT 
o NON VECTORED INTERRUPT 

'-- MUST BE ZERO 

L.- J ~:= 19 ~~l:'r6 
• EXTERNAL STATUS INTERRUPT ONLY IF EXT 

INTERRUPT ENJ\8LE (WR1:00) IS SET 

WRITE REGISTER 2 (WR2): CHANNEL B 

MSB LSB 

I"I~I~I~I~I~I~IWI 

_ 'NTERRUPT 
VECTOR 

7-152 

WRITE REGISTER 3 (WR3): 

Rx ENABLE 

SYNC CHAR LOAD INHIBIT 

ADDR SRCH MODE (SDLC) 

Rx CRC ENABLE 

ENTER HUNT MODE 

AUTO ENABLES 

o 0 Rx5 BITS/CHAR 

o Rx7 BITS/CHAR 

o Rx6 BITS/CHAR 

1 Rx8 BITS/CHAR 

AFN-02213A 



inter 

WRITE REGISTER 4 (WR4): 

o 
o 
1 
1 

o 
o 
1 
1 

1 ENABLE PARITY 
o OISABLE PARITY 

EVEN PARITY 
000 PARITY 

o 0 ENABLE SYNC MOOES 
o 1 1 STOP BIT 
1 0 1.5 STOP BITS 
1 1 2 STOP BITS 

o 8 BIT SYNC CHAR 
1 18 BIT SYNC CHAR 
o SOLC/HOLC(01111110)FLAG 
1 1 EXTERNAL SYNC MOOE 

o X1 CLOCK 
1 X16 CLOCK 
o X32 CLOCK 
1 X64 CLOCK 

WRITE REGISTER 6 (WR6): 

MSB LSB 

1071061051041031021011001 

" L LEAST SI:NIFICANT 
SYNC BYTE (AOORESS 
IN SOLC/HOLC MOOE) 

WRITE REGISTER 7 (WR7): 

MSB LSB 

107108105104103102101103 

" L MQlHJII~IFIC~NT 
SYNC BYTE (MUST 
BE 01111110 IN 
SOLe/HOLC MOOE) 

AP-145 

o 0 
o 1 
1 0 
1 1 

OTR 

7-153 

Tx CRC ENABLE 

RTS 

'----- ~8i8~S8E;6 
'------ Tx ENABLE 

'------- SENO BREAK 

Tx5 BITS OR LESS/CHAR 
Tx7 BITS/CHAR 
Tx8 BITS/CHAR 
Tx8 BITS/CHAR 

AFN·Q2213A 



inter AP-145 

READ REGISTER 0 (RRO): 

MSB LSB 

I D71D1DstD1D1D~ DlDoJ L Rx CHAR AVAILABLE 

INT PENDING (CHA ONLY) 

Tx BUFFER EMPTY 

CARRIER DETECT 

SYNC/HUNT 

= } EXTERNAL 
TxUNDERRUN/EOM ~fATUS 

INTERRUPT MODE 
BREAK/ABORT 

\ ' 

READ REGISTER' (RR'): 
(SPECIAL RECEIVE CONDITION MODE) 

MSB LSB 

LD7IDSIDSID4ID3ID2ID'IDOI :c LALLSENT 

I FIELD BYTE 
PREVIOUS BYTE 

o 0 0 2 o 0 , 0 
o , 0 0 
o , , 0 
, 0 0 0 
, 0 , 0 
, , 0 0 , , , , 

'-- PARITY ERROR 

'-- Rx OVERRUN ERROR 

'-- CRC/FRAMING ERROR 

END OF FRAME (SDLC HDLC MODE) 

I FIELD BYTE 
2ND PREVIOUS BYTE 

~} RESIDUE DATA 
3 BITS CHAR 
7 MODE 

5 
8 

READ REGISTER 2 (RR2): 

MSB LSB 

I V71 val VslwIV3-IV2-IVl'IVO-1 
, ; 

T -VARIABLES IN 
INTERRUPT STATUS AFFECTS 
VECTOR VECTOR MODE 

7-154 AFN-02213A 



8251 A 
PROGRAMMABLE COMMUNICATION INTERFACE 

• Synchronous and Asynchronous 
Operation 

• Synchronous 5-8 Bit Characters; 
Internal or External Character 
Synchronization; Automatic Sync 
Insertion 

• Asynchronous 5-8 Bit Characters; 
Clock Rate-1, 16 or 64 Times Baud 
Rate; Break Character Generation; 
1, 11f2, or 2 Stop Bits; False Start Bit 
Detection; Automatic Break Detect 
and Handling 

• Synchronous Baud Rate-DC to 
64K Baud 

• Asynchronous Baud Rate-DC to 
19.2K Baud 

• Full-Duplex, Double-Buffered 
Transmitter and Receiver 

• Error Detection-Parity, Overrun and 
Framing 

• Compatible with an Extended Range 
of Intel Microprocessors 

• 28-Pin DIP Package 
• All Inputs and Outputs are TTL 

Compatible 
• Available in EXPRESS 

-Standard Temperature Range 
-Extended Temperature Range 

The Intel® 8251A is the enhanced version of the industry standard. Intel 8251 Universal Synchronous/ 
Asynchronous Receiver/Transmitter (USART). designed fordata communications with Intel's microprocessor 
families such as MCS-48. 80. 85. and iAPX-86. 88. The 8251 A is used as a peripheral device and is programmed 
by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM 
Ubi-sync"). The USARTaccepts data characters from the CPU in parallel format and then converts them into a 
continuous serial data stream for transmission. Simultaneously. it can receive serial data streams and convert 
them into parallel data characters for the CPU. The USARTwill signal the CPU whenever it can accept a new 
character for transmission or whenever it has received a character for the CPU. The CPU can read the 
complete status of the USARTat any time. These include data transmission errors and control signals such as 
SYNDET. TxEMPTY. The chip is fabricated using N-channel silicon gate technology. 

TxO °7,00 

0, 0, 

0 3 DO 

RxD Vee 
TxADY 

GND Rxe 
TxE 

0, OTR 

0 5 RTS 

0 6 OSR 

0, RESET 

he elK 

WR TxD 

os hEMPTY 

RxD c/o eTS 

SYNDET/BD 

R:.RDY TI(RDY 

RxROY 

fW; 

Figure 1. Block Diagram Figure 2. Pin Configuration 

OINTEI. CORPORATION, 1983 AFN-Q15730 

7-155 



intJ 8251A 

FEATURES AND I:NHANCEMENTS 

The 8251A is an advanced design of the industrY 
standard USART, tbe Intel$ 8251. The 8251A 
operates with an 'extended range of, Intel 
microprocessors lind maintains compatibili~y with 
the 8251. Familiarization time is minimal because of 
compatibility and involves only knowing the addi­
tional features and enhancements, and reviewing 
the AC and DC specifiqations of the 8251A. 

The 8251A incorporates all the key features of the 
8251 and has ~he following additional featur~s and 
enhancements: 

• 8251A has double-buffered data paths ~ith sepa­
rate I/O registers for control, status, Data In, and 
Data Out, which considerably simplifies control 
programming and minimizes CPU overhead. 

• In asynchronous operations, the Receiver detects 
and handles "break" automatically, relieving the 
CPU of 'this task. ' 

• A refined Rx initialization prevents th,e Receiver 
fr~m starting when in "break" state, preventing 
unwanted interrupts from a disconnected USART. 

• At the conclusion of a transmission, TxD line will 
always return to the marking state unless SBRK is 
programmed. 

• Tx Enable logic enhancement p.revents a Tx Dis­
able command from halting transmission until all 
data previously written has been transmitted. The 
logic also prevents the transmitter from turning 
off in the middle of a word. 

• When External Sync Detect is programmed, Inter­
nal Sync Detect is disabled, and an External Sync 
Detect status is provided via a flip-flop which 
clears itself upon a status read. 

• Possibility of false sync detect is minimized by 
ensuring that if double character sync is program-

· med, the characters be contiguously detected and 
,also by clearing the Rx register to all ones 
whenever Enter Hunt command is issued in Sync 
mode. 

• As long as the 8251A is not selected, the RD and 
WR do not affect the internal operation of the 
device. 

• The 8251A Status can be read at any time but the 
status update will be inhibited during status read. 

• The 8251A is free from extraneous glitches and 
has enhanced AC and DC characteristics, provid­
ing higher speed and better operating margins. 

• Synchronous Baud rate from DC to 64K. 

7-156 

FUNCTIONAL DESCR~PTION' 

General 

The 8251A. is a .lJn!versal SynchronouslAsynQhro­
nous Receiver/Transmitter desig,ned for a wide 
range of Intel microcomputers sucll as 8048, 8080, 
8085, 8086 and 8088. Like other I/O devices in a 
microcomputer system~ its functional configuration 
is programmed by the system's software for maxi­
mum flexibility. ~he 8251A can support most serial 
data teChniques in ulje, including IBM "bi-sync." 

In a communication environment an interface 
device must convert parallel format system data into 
serial format for transmission and convert incoming 
serial format data into parallel system data for recep­
tion. The interface device must also delete or insert 
bits or characters that are functionally unique to the 
comm.unication technique. In essence, the interface 
should appear "transparent" to the CPU, a simple 
input or output of byte-oriented system data. 

Data Bus Buffer 

This 3-state, bidirectional, 8-bit buffer is used to in­
terface the 8251A to the system Data Bus. Data is 
transmitted or received by the buffer upon execution 
of INput or OUTput instructions of the CPU. Control 
words, Command words and Status information are 
also transferred through the Data Bus Buffer. The 
Command Status, Data-In and Data-Out registers 
are separate, 8-bit registers communicating with the 
system bus through the Data Bus Buffer. 

This functional block accepts inputs from the system 
Control bus and generates control signals for overall 
device operation. It contains the Control Word Reg­
ister and Command Word Register that store the 
variou,s control formats for the device functional 
definition. 

RESET (~eset) 

A "high" on this input forces the 8251A into an "Idle" 
mode. The device will remain at "Idle" until a new set 
of control words is written into the 8251A to program 
its functional definition. Minimum RESET pulse 
width is 6 tCY (clock must be running). 

A command reset operation also puts the device into 
the "Idle" state. 

AfN.01573D 



8251A 

ClK (Clock) 

The ClK input is used to generate internal device 
timing and is normally connected to the Phase 2 
(TTL) output of the Clock Generator. No external 
inputs or outputs are referenced to ClK but the 
frequency of ClK must be greater than 30 times the 
Receiver or Transmitter data bit rates. 

WR (Write) 

A "Iow"on this input informs the 8251A that the CPU 
is writing data or control words to the 8251A. 

RD (Read) 

A "low" on this input informs the 8251A that the CPU 
is reading data or status information from the 8251 A. 

/ 
INTERNAL 
DATA BUS 

Figure 3. 8251A Block Diagram Showing Data 
Bus Buffer and Read/Wrlte Logic 
Functions 

c/o RD WR cs 
0 0 1 0 8251A DATA = DATA 8US 
0 0 0 DATA 8US .. 8251A DATA 

0 0" STATUS .. DATA BUS 
1 0 0 DATA BUS-CONTROL 
X 1 0 DATA"BUS= 3-STATE 
X X X DATA BUS- 3-STATE 

7-157." 

C/O (Control/Data) 

This input, in conjunction with the WR and RD in­
puts, informs the 8251A that the word on the Data 
Bus is either a data character, control word or status 
information. 

1 = CONTROUSTATUS; 0 = DATA. 

CS (Chip Select) 

A "low" on this input selects the 8251A. No reading or 
writing will occur unless the device is selected. 
When CS is high, the Data Bus is in the float state and 
RD and WR have no effect on the chip. 

Modem Control 

The 8251A has a set of control inputs and outputs 
that can be used to simplify the interface to almost 
any modem. The mo~em control signals are general 
purpose in nature and can be used for functions 
other than modem control, if necessary. 

DSR (Data Set Ready) 

The DSR input signal is a general-purpose, 1-bit in­
verting input port. Its condition can be tested by the 
CPU using a Status Read operation. The OOR input 
is normally used to test modem conditions such as 
Data Set Ready. . 

DTR (Data Terminal Ready) 

The DTR output signal is a general-purpose, 1-bit 
inverting output port. It can be set "low" by pro­
gramming the appropriate bit in the Command In­
struction word. The DTR output signal is normally 
used for modem control such as Data Terminal 
Ready. 

RTS (Request to Send) 

The FITS output signal is a general-purpose, 1-bit 
inverting output port. It can be set" "low" by pro­
gramminQ the appropriate bit in the Command In­
struction word. The RTS output signal is normally 
used for modem control such as Request to Send. 

CTS (Clear to Send) 

A "low" on this input enables the 8251A to transmit 
serial data if the Tx Enable bit in the Command byte 
is set to a "one." If either a Tx Enable off or CTS off 
condition occurs while the Tx is' in operation, the Tx 
will transmit all the data in the USART, written prior 
to Tx Disable command before shutting down. 

AFN-01573D 

'. 



inter 8251A 

Transmitter B~ffer 

The Transmitter Buffer accepts parallel data from the 
Data Bus Buffer, converts it to a serial bit stream, 
inserts the appropriate'characters or'bits (based on 
the communication t,echnique) and outputs a cOm­
posite serial stream of data on the TxD output pin 011 
the falling edge of fiC. The transmitter will begin 
transmission upon being enabled if rn = O. The 
TxD line will be held in the marking state immedi­
ately upon a master Reset or when Tx Enable or C'fS 
is off or the transmitter is ,mpty. 

Transmitter Control 

The Transmitter Control manages all activities asso­
ciated with the transmission of serial data. It accepts 
and issues signals both externally and internally to 
accomplish this function. 

TxRDY (Transmitter Ready) 

This output signals the CPU that the transmitter is 
ready tc? accept a data character. The TxRDY output 
pin can be used as an interrupt to the system, since it 
is masked by TxEnable; or, for Polled operation, the 
CPU can check TxRDY using a Status Read opera­
tion. TxRDY is automatically reset by the leading 
edge of WR when a data character is loaded from 
the CPU. 

Note that when using the Polled operation, the 
TxRDY status bit is not masked by TxEnable, but will 
only indicate the Empty/Full Status of the Tx Data 
Input Register. 

TxE (Transmitter Empty) 

When the 8251 A has no characters to send. the 
TXEMPTYoutputwili go "high." It resets upon receiv­
ing a character from CPU if the transmitter is en­
abled. TxEMPTY remains high when the transmitter 
is disabled. TxEMPTY can be used to indicate the 
end of a transmission mode, so that the CPU "knoWs" 
when to "turn the line around" In the half-duplex 
operational mode. ',' ' 

In the Synchronous, mode, a "high" on this ootput 
indicates that a character has not been loaded and 
the SYNC character or characters are about to be or 
are being transmitted automatioally as "fillers." 
TxEMPTY does not go low when the SYNC charac­
ters are being shifted ,out. 

7-158 

Figure 4. 8251A Block Diagram Showing Modem 
and Transmitter Buffer and Control 
Functions 

Tie (Transmitter Clock) 

The Transmitter Clock controls the rate at which the 
character is to be transmitted. In the Synchronous 
transmission mode, the Baud Rate (1x) is equal to 
the TxC frequency, In Asynchronous transmission 
mode, the baud rate is a,fraction of the actual TxC 
frequency. A portion of the modEl instruction selects 
this factor; it can be 1, 1/16 or 1/64 the TxC. 

For Example: 

If Baud Rate equals 110 Baud, ' 
TxC equals 110 Hz' in the 1'x mode. 
TxC equals 1.72 kHz in the 16x mode. 

, TxC equals 7.04 kHz in the 64x mode. 

The falling edge o(f'XC'shifts the serial data out of 
the 8251A. ' ',' , 

Receiver Buffer 

T~e Re~eiver accepts serial data, converts this serial 
input to parallel format, checks for bits or characters 
that are unique to the communication technique 
and sends an "assembled" character to'the CPU. 
Serial data is, input..!2BxD pin, and is clQcked in on 
the rising edge of RxC. ' 

Af'N.01573D 



inter 8251 A 

, Receiver Control 

This functional block manages all receiver-related 
activities which consists of the following features. 

The RxD initialization circuit prevents, the 8251A 
from. mistaking an unused input line for ~n active 
low (iata line in the "break condition." Before 
starting to receive serial characters on the RxD 
line, a valid "1" must first be detected after a chip 
master Reset. Once this ,has been determined, a 
search for a valid low (Start bit) is enabled. This 
feature is only active in the asynchronous mode, 
and is only done once for each master Reset. , 

The False Start bit detection ,circuit prevents false 
starts due to a transient noise spike by first detect­
ing the falling edge and then strobing the nominal 
center of the Start bit (RxD = lOW). 

Parity error detection sets the' correspon~ing 
status bit. 

The F~aming Error status bit is set if the Stop bit is 
absent !It the end of the data byte (asynchronous 
mode). 

RxRDY (Receiver Ready) 

This output indicates that the 8251A contains a char­
acter that is ready to be input to the CPU. RxRDY can 
be connected to the interrupt structurE! of the CPU 
or, for polled operation, the CPU can check the con­
dition of RxRDY using a Status Read operation. 

RxEnable, when off, holds RxRDY in the Reset Con~ 
dition. For Asynchronous mode, to set RxRDY, the 
Receiver must be enabled to sense a Start Bit and a 
complete character must be assembled and trans­
ferred to the Data Output Register. For Synchronous 
'mode, to set RxRDY, the Receiver must be enabled 
and a character must finish assembly and be trans­
ferred to the Data Output Register. 

Failure to read the received character from the Rx 
Data Output Register prior to the ass,mbly of the 
next 'RxData character will set overrun condition 
error and the'previous character will be written over 
and lost. If the Rx Data is being read by the CPU 
when the internal transfer is occurring, overrun er­
ror will be set and the old character will be lost. 

7-159 

RiC (Receiver Clock) 

The Receiver Clock controls the rate at which the 
character is to be received. In Synchronous Mode, 
the Baud Rate (1 x) is equal to the actual frequency of 
RiC. In Asynchronous Mode, the Baud Rate is a 
fraction of the actual ~ frequency. A portion of 

. the mode instruction selects this factor: 1, 1/16 or 
1/64 the 'Axe. ' 
For example: 

Baud Rate equals 300 Baud, if 
Rie equals 300 Hz in the 1 x mode; 
FrxC equals 4800 Hz in the 16x mode; 
AXe equals 19.2 kHz in the 64x mode., 

Baud Rate equals 2400 Baud, if 
AXe equals 2400 Hz in the 1x mode; 
RxC equals 38.4 kHz in the 16x mode; 
~ equals 153.6 kHz in the 64x mode. 

Data is sampled into the 8251A on the rising edge of 
Axe. 

NOTE: In most communications systems, the 8251A 
will be handling both the transmission and reception 
operations of a single link. Consequently, the 
Receive and Transmit Baud Rates will be the same. 
Both TxC and RxC will require identical frequencies 
for this operation and can be tied togeth~r and con­
nected to a single frequency source (Baud Rate 
Generator) to simplify the interface. 

Figure 5. 8251A Block Diagram Showing 
Receiver Buffer and Control Functions 

AfN.01573D 



inter 8251, A 

SYNDET (SYNC Detect! 
BRKDET Break Detect) 

This pin is used in Synchronous Mode for SYN­
DET and may be used as either input or output, 
programmable through the Control Word. It is reset 
to output mode low upon RESET. When used as an 
output (internal Sync mode), the SYNDET pin will go 
"high" to indicate that the 8251A has located the 
SYNC character in the Receive mode. If the 8251A is 
programmed to use double Sync characters (bi­
sync), then SYNDETwill go "high" in the middle of 
the last bit of the second Sync character. SYNDET is' 
automatically reset upon a Status Read Qperation. 

When used as an input (external SYNC detect mode), 
a positive going signal will cause the 8251A to start 
assembling data characters on the rising edge of the 
next RxC. Once in SY,NC, the "high" input signal can 
be removed. When External SYNC Detect is pro­
grammed, Internal SYNC Detect is disabled. 

BREAK (Async Mode Only) 

This output will go high whenever the receiver 
remains low through two consecutive stop bit se­
quences (including the start bits, data bits, and 
parity bits). Break Detect may also be read as- a 
Status bit. It is reset only upon a master chip Reset or 
Rx Data returning to a "one" state. I 

'L 

~ 

ADDRESS BUS 

A. 

CONTROL BUS, 

I/O R 'i7i5"W RESET °2 
(TTL) 

DATA BUS 

8 

c/o os °1-0 0 RI) WR RESET ClK 

8251A 

Figure 6. 8251A Interface to 8080 Standard 
System Bus 

\ 

J 

7-160 

DETAILED OPERATION DESCRIPTION 

General 

The complete functional definition of the 8251A is 
programmed by the system's software. A set of con­
trol words must be sent out by the CPU to initialize 
'the 8251A to support the desired communications 
format. These control words will program the: BAUD 
RATE, CHARACTER LENGTH, NUMBER OF STOP 
BITS, SYNCHRONOUS or ASYNCHRONOUS OPER­
ATION, EVEN/ODD/OFF PARITY, etc. In the 
Synchronous Mode, options are also provided to 
select either internal or external character 
synchronization. 

Once programmed, the 8251A is ready to perform its 
communication functions; The TxRDY output is 
raised "high" to signal the CPU that the 8251A is 
ready to receive a data character from the CPU. This 
output (TxRDY) is reset automatically when the CPU 
writes a character into the 8251 A. On the other hand, 

, the 8251A receives serial data from the MODEM or 
I/O device. Upon receiving an entire character, the 
RxRDYoutput is raised "high" to signal the CPU th/it 
the 8251A has a complete character ready for the 
CPU to fetch. RxRDY is reset automatically upon the 
CPU data read operation. 

The 8251A cannot begin transmission until the Tx 
Enable (Transmitter Enable) bit is set in the Com­
mand Instruction and it has received a ClearTo Send 
(CTS) input. The TxD output will be held in the mark­
ing state upon Reset. 

ciD" 1 

ciD = 1 

cio", 1 

C/D= 1 

CID '" 0 

ciD., 0 

ciD: 1 

MODE INSTRUCTION 

SYNC CHARACTER 1 

SYNC CHARACTER 2 

COMMAND INSTRUCTION 

DATA 

COMMAND'INSTRUCTION 

DATA 

COMMAND INSTRUCTION 

'} SYNC MODE 
ONLY· 

·TH£" SECOND SYNC ClfARACTER IS SKIPPED IF MODE INSTRucnON HAS PAGo 
GRAMMEO THE U51A TO SINGLE CHARACTER SYNC MODE. BOTH SYNC 
CHARACTERS ARE SkIPPED IFMOOE INSTRUCTION HAS PROGIJAMMED THE 
8251A TO ASVNC MODE.' 

Figure 7_ lYpical Data, Block 

AFN-01573D 



8251A 

Programming the 8251A 

Prior to starting data transmission or reception, the 
8251A must be loaded with a set of control words 
generated by the CPU. These contr'ol signals define 
the complete functional definition of the 8251 A and 
must immediately follow a Reset operation (internal 
or external). 

The control words are split into two formats: 

1. Mode Instruction 
2. Command Instruction 

Mode Instruction 

This instruction defines the general operational 
characteristics of the 8251 A. It must follow a Reset 
operation (internal or external). Once the Mode In­
struction has been written into the 8251A by the 
CPU, SYNC characters or Command Instructions 
may be written. 

Command Instruction 

This instruction defines a word that is used to control 
the actual operation of the 8251A. 

Both the Mode and Command Instructions must 
conform to a specified sequence for proper device 
operation (see Figure 7). The Mode Instruction must 
be written immediately following a Reset 
operation, prior to using the 8251 A for data 
communication. 

All control words written into 'the 8251A after the 
Mode Instruction will load the Command Instruc­
tion. Command Instructions can be written into the 
8251 A at any time in the data block during the opera­
tion of the 8251A. To return to the Mode Instruction 
format, the master ReSet bit in the Command In­
struction word can be set to initiate an internal Reset 
operation which automatically places the 8251A 
back into the Mode Instruction format. Command 
Instructions must follow the Mode Instructions or 
Sync characters. 

Mode Instructi'on Definition 

The 8251 A can ,be used for either AsynchronQus or 
Synchronous data communication. To understand 
how the Modelnstructibn defines the functional 
operation of the 8251 A, the designer can best v.iew 
the device as two separate components" one 
Asynchronous and the other Synchronous. sharing 

7-161 

the same package. The format definition can be 
changed only after a master chip ReSet. For explana­
tion purposes the two formats will be isolated. 

NOTE: When parity is, enabled it is not considered 
as one Qf the data bits for the purpose of program­
mi[1g the 'l\(ord,length.;r,l')e actual parity bit received 
on the Rx Data line cannot be read on the Data Bus. 
In the case of a programmed character length of less 
than 8 bits, the least 'significant Data Bus bits will 
hold the dat~; unused bits are "don't care" when 
writing data to the 8251 A, and will be "zeros" when 
reading the data from the 8251A. 

Asynchronous Mode (Transmission) 

Whenever a data character is sent by,the CPU the 
8251A automatically adds a Start bit (lOW level) fol­
lowed by the data bits (least significant bit first), and 
the programmed number of Stop bits to each char­
acter. Also, an even or odd Parity bit is inserted prior ' 
to the Stop bit(s), as defined by the Mode Instruc­
tion. The' character is then transmitted as a serial 
data stream on the TxD output. The serial data is 
shifted out on the falling edge ofTxC at a rate equal 
to 1, 1/16, or 1/64 that of the "'iXC. as defined by the 
Mode Instruction. BREAK characters can be contin­
uously sent to the TxD if commanded to do so. 

When no data characters have been loaded into the 
8251 A theTxD output reamins "high" (marking) un­
less a Break (continuously low) has been 
programmed. 

o 0 0 0 , , , . 0' 0 0 0 3 , , 0 

I ',1 " 1 EP I PEN I L,I L, I B,I B, I 

~ 
BAUD RATE FACTOR 

0 1 I 0 I 1 I 
0 o I 1 I 1 I 

SYNC '1X) I (16X) I (64X) I MODE 

CHARACTER LENGTH 

o I 1 I 0 I 1 I 
o I 0 I 1 I 1 I 

BI~S I B:;'S BI~S 1 BI~S--I 
PARITY ENABLE 
1" ENARLE 0= DISABLE 

EVEN PARITY GENERATION/CHE 
1 = EVEN 0=000 

NUMBER OF STOP BITS 

o I 1 1. 0 I 1 I 
0 o I 1 I 1 I 

I,NVAL,DI BiT I B1~s I BI~' I 

Figure 8. Mode Instruction Format, 
Asynchronous Mode ' 

CK 

AFN.()1573D 



intJ 8251A 

Asynchronous Mode (Receive)' 

The RxD line is normally high. A falling edge on this 
line triggers the beginning of a START bit. The 
validity of this START bit is checked by again strob­
ing this bit at its nominal center (16X or64X mode 
only). If a low is detected again, it is a valid START bit, 
and the bit couhter will start counting. The bit coun-· 
tar thus locates the center of the data bits, the parity 
bit (if it exists) and the stop bits. If parity error oc­
curs, the parity error flag is set. Data and parity bits 
are sampled on the RxD pin with the rising edge of 
RxC. If a low level is detected as the STOP bit, the 
Framing Error flag will be set. The STOP bit signals 
the end of a character. Note that the receiver re­
quires only one stop bit, regardless of the number of 
stop bits programmed. This c!:Jaracter is then loaded 
into the parallel I/O buffer of the 8251 A. The RxRDY 
pin is raised to signal the CPLf that a character is 
ready to be fetched. If a previous character has not 
been fetched by the CPU. the present character 
replaces it in the I/O buffer, and the OVERRUN Error 
flag is raised (thus.the previous character is lost). All 
of the error. flags Ican be reset by an Error Reset 
Instruction. The occurrence of any of these errors 
will not affect the operation of the 8251A. 

GENERATED 
000'---- Ox 'BY8251A 

DOES NOT APPeAR 

RECEIVER INPUT DO 01---;-0)( ON THE DATA BUS 

t t t t 
RxD 1L.._8T.;;.:';;..~T:-. ..IG __ DA_TooiA ")-'T_8:... . ..J-'-:;';:...-J 

TRANSMISSION FORMAT 

PROGRAMMED 
CHARACTER 

LENGTH 

CPU BYTE {5·S BITS/CHARI 

DATA CHARACTER I ~ '--__ -II ..... ___ :...-J 

ASSEMBLED SERIAL DATA OUTPUT (TxOI 

STt;i 
BrTS L 

ST6;i 
afrs L 

~_~_D_AT_A~CHI-A"_A_CT_ER_~ ____ ,--ST~",~ 
RECEIVE FORMAT 

SERIAL DATA INPUT mxo) 

BITS 
DATA CHARACTER STOO· 

L-~ ____ --I~ __ ~ __ ~~ 

CPU BYTE (5-8 BITS/CHAR)· 

DATA C~A~ACTER 
"NOTE IF CHARACTER LENGTH IS DEFINED AS 5, 6 OR 7 

BITS THE UNUSED BITS ARE SET TO "ZERO" 

Figure 9. Asynchronous Mode 

7-162 

Synchronous Mode (Transmission) 

The TICD output is continuously high until the CPU 
sends its first ch.aracter to the 8251Awhich usually is 
a SYNC character. When the CiS line goes low, the 
first character is serially transmitted out. All charac­
ters are shifted out on the falling edge ofTxC. Data is 
shifted out at the same rate as the TxC. 

Once transmission has started, the data stream at 
the TxD output must continue at the TxC rate. If the 
CPU does not provide the 8251A with a data charac­
ter before the 8251A T~ansmitter Buffers become 
empty, the SYNC characters (or character if in single 
SYNC character mode) will be automatically in­
serted in the TxD data stream. In this case, the 
TxEMPTY pin is raised high to signal that the 8251A 
is empty and SYNC Characters are being sent out. 
TxEMPry does not go low when the SYNC is being 
shifted out (see figure below). The TxEMPTY pin is 
internally reset by a data character being written 
into the 8251A. 

AUTOMATICAllY INSERTED BY USART 

I \ 
TxD I DATA I DATA I SYNC' I SYNC 2 I DATA 1-- - --

/ 
\'\\\\\\\ FALLS UPON CPU WRITING A 

TxEMPTY ___ ~ \.. /CHARACTER TO THE USART 

"" NOMINAL gENTER OF LAST BIT 

Synchronous Mode (Receive) 

In this mode, character synchronization can be inter­
nally or externally achieved. If the SYNC mode has 
been programmed, ENTER HUNT command should 
be included in the first command instruction word 
written. Data. on the RxO pin is then sampled .on 
the rising edge of RxC. The content of the Rx buffer 
is compared at every bit boundary with the first 
SYNC character un.til a match occurs. If the 8251A 
has been programmed for two SYNC characters, the 
subsequent received character is also compared; 
when both SYNC characters have been detected,' 
the USARTends the HUNT mode and is in character 
synchronization. The SYNDET pin is then set high, 
and is reset autqmatically by a STATUS READ. If 
parity is programmed, SYNDETwili not be set until 
the middle of the parity bit instead of the middle of 
the last data bit. 

In the external SYNC mode, synchronization is 
achieved by applying a high level on the SYNDET 
pin, thus forcing the 8251A out of the HUNT mode. 
The high level can be removed after one RxC cycle. 
An ENTER HUNT command has no effect in the 
asynchronous mode of operation. 

AFN-01573D 



inter 8251A 

Parity error and overrun error are both checked in 
the same way as in the Asynchronous Rx mode. 
Parity is Checked when not in Hunt, regardless of 
whether the Receiver is enabled or not. 

0, 0, 0, 0, 0, 0, 0, D. 

IlseslEsol E' '.ENI L,I L, , 0 , 0 I 

I I 
CHARACTER LENGTH 

0 , 0 1 

0 0 1 1 

5 • 1 • BITS BITS BITS BITS 

PARITY ENABLE 
11" ENABLE) 
(0" DISABLE) 

EVEN PARITY GENERATION/CHECK 
1 .. eVEN 
O~ODD 

EXTERNAL SYNC DETECT 
1 .. SYNDET IS AN INPUT 
o = SV",",OET IS AN OUTPUT 

SINGLE CHARACTER SYNC 
1 • SINGLE SYNC CHARACTER 
o = DOUBLE SYNC CHARACTER 

NOTE' IN eXTERNAL SYNC MODE. PROGRAMMING DOUBLE CHARACTER 
SYNC WILL AFFECT ONLY THE Tx. 

Figure 10. Mode Instruction Format, 
Synchronous Mode 

The CPU can command the receiver to enter the 
HUNT mode if synchronization is lost. This will also 
set all the used character bits in the buffer to a 
"one," thus preventing a possible false SYNDET 
caused by data that happens to be in the Rx Buffer at 
ENTER HUNT time. Note that the SYNDET F/F is 
reset at. each Status Read, regardless of whether 
internal or external SYNC has been· p·rogrammed. 
This does not cause the 8251 A to return to the HUNT 
mode. When in SYNC mode, but not in HUNT,.Sync 
Detection is still functional, but only occurs at the 
"known" word boundaries. Thus, if one Status Read 
indicates SYNDET and a second Status Read also 
indicates SYNDET, then the programmed SYNDET 
characters have been received since the previous 
Status Read. (If double character sync h!$ been 
programmed, then bath sync characters have been 
contiguously received to gate a SYNDETJndication.j 
When external SYNDET mode is selected, internal 
Sync Detect is disabled, and the SYf',IDET F/F may be 
set at any bit boundary. 

7-163 

RECEIVE FORMAT 

SYNC 
CHAR 1 

CPU BYTES 16·8 BllS/CHARI 

OATA C~~RACTERS 
ASSEMBLED SERIAL DATA OUTPUT IT"OI 

DATA CHAR"'~AC-T-ER-S---' 

SERIAL DATA INPUT IRxO) 

SYNC I 
CHAR 2 OATACH~R: ... CT_ER_S_......J 

CPU BYTES 15-8 BITS/CHAR) 

DATA CHARACTERS ;' 

Figure 11. Data Format, Synchronous Mode 

COMMAND INSTRUCTION DEFINITION 

Once the functional definition of the 8251 A has been 
programmed by the Mode Instruction and the sync 
characters are loaded (if in Sync Mode) then the 
device is ready to be used for data communication. 
The Command Instruction controls the actual opera­
tion of. the selected format. Functions such as: 
Enable Transmit/Receive, Error Reset and Modem 
Controls are provid~d by tl')e Command Instruction. 

Once the Mode Instruction has been written into the 
8251A and Sync characters inserted, if necessary, 
then all further "control writes" (C/O = 1) wiU load a 
Command Instruction. A Reset Operation (internal 
or external) will return the 8251A to the Mode In­
struction format. 

Note: Internal Reset on Power-up 

When power is first applied, the 8251A may come up 
in the Mode, Sync character or Command format. To 
guara.ntee that the device is in the Command In­
struction format ·before the Reset command is is­
sued, it is safest to execute the worst-case 
initialization sequence (sync mode with two sync, 
characters). Loading three OOHs consecutively into 
the device with C/O = 1 configures sync operation 
and writes two dummy OOH sync ch!i1racters. An.ln­
ternal Reset command (40H) may then be issued to 
return the device to the "Idle" state. 

AfN.01573D 



8251A 

0, 0, 0, 0, 0, 0, 0, 0, 

II EH I'A I RTS I ER ISBRK) AxE I OTR IT.IIENI 
\ 

"Lr TRANSMIT ENABLE I 1 ~ enable 

,," " 0 = disable 

LI DATA TERM'NAL I READY 
'high" will force OTR 
output to lero 

J RECEIVE ENABLE 

I 1 enable I 0 dlsd~hle 

_I SEND BREAK 

I CHARACTER 

I ~ : ~~rC:IT:~r~~~: 

.1 ERROR RESET I l ' ~ reset error lIags 
PE,OE FE 

I REQUEST TO SE~ 

I l. "high" will force RTS 
output to lero 

'I INfERNAL RESET I "high' returns 8251 A to I Mode Instruction Format 

,,' " 

I ENTER HUNT ~oD" I I 1 = enable search for Sync 
Characters ' 

, 
(HAS NO eFFeCT 
IN AS~NC MODE) 

Note: ~rror Reset must be performed whenev~r RxEnable 
and Enter Hunt are programmed. 

Figl,lre 12. Command .nstruction Format 

STATUS READ DEFINITION 

In data communication systems it is often necessary 
tb examine the "status" of the active device to ascer­
tain if errors have occ!Jrred or other coriditions that 
require the proces~or's attention. The 825"1A has 
facilities that allow the programmer to "read" the 
status of the device at any time during the func­
tional operation. (Status llpdate is inhibited during 
status read.) 

A I!,..ormal ~'read'! ~ommand is issued by the CPt.! with 
C/O = 1 to accol)1plish this function,,' 

Some of the bUs in th'e Status Read Format have 
identical mea·nings to external output pins· so that 
the 8251A can be used "in a' completely polled or 
interrupt~driven envi"ronment. TxROY" is an 
ex~ption. 

Note that status "update can have a maximum delay 
of 28 clock periods from the actual event affecting 
the status. 

7-164 ' 

0, D, 0, D. D, D, 0, D, 

I DSR I SYNDETI I BRKOET FE I OE I PE I T'EMPTyl R,RDY I T,RDY 

I 1 I ~ 

SAME DEFINITIONS AS "0 PINS 

PARITY ERROR 
The PE flag II set when a parity 
error IS detected It IS reset by 
the ER bit of the Command 
Instruction PE does not Inhlbn 
operation of the &251A 

OVERRUN ERROR 
The DE flag IS set when the CPU 
does not read a character before 
the oelCt one becomes available 

C- It IS reset by the ER blt-of the 
Command Instruction oe does 
not IOhlblt oper~tton of the 8251 A 
however. the previously oytlrrun 
character IS lost 

FRAMING ERROR (Async only) 
The FE flag IS set when a valid 
Stop bit IS not detected at the 
end of every charact.r It IS reset 
by the ER bit of the Command 
Instruction FE does not mhlbl1 
the operation of the 8251A 

DATA SET READV Indicates 
that the eSR 'S8t 8 lero level 

Note 1 TxRDY status bit has different meanings from the 
TxRDY output pm· The former IS not conditioned 
by Ern and TxEN. the latter IS conditioned by both 
Ern and TxEN ' 

I.e TxADV status bit = DB Buffer Empty 

TxRDY Pin out - DB Buffer Empty ·leTS 01· 
ITxEN-ll 

Figure 13. Status Read Format 

APPLICATIONS OF THE 8251A 

Figure 14. Asynchronous Serial Interface to CRT 
Terminal, DC-960'o B~ud 

AFN-015730 



inter 8251A 

SYNDETi----oj 

SYNCHRONOUS 
TERMINAL 

OR PERIPHERAL 
DEVICE 

Figure 15. Synchronous Interface to Terminal or 
Peripheral Device 

ADDRESS BUS 

1 
11 

CONTROL BUS i 

1 
\ DATA BUS 

~JB~ 
RxD r--
TxD ~ I--

PHONE 
DSR 1'- ASVNC LINE 
DfR I'-- MODEM INTER· 

FACE 
8251A CTS ~ t--

FiTS I'--

t RiC R BAUD 
fie 

RATE 
GENERATOR TELEPHONE 

LINE 

Figure 16. Asynchronous Interface to Telephone 
Lines 

7-165. 

ADDRESS BUS -'! 
1 

1 1 

CONTROL BUS _\ 
I 

DATA BUS ~ 

~~~~~ 
RxD I--

8251A
TxD f---- 1- PHONE
IIxll I- LINE

I-
TxC I- INTER-

fACE
SYNDET I----- SYNC t--

MODEM

CTS P-
RTS p--o
DSR P- t i5TlI t>----

TELEPHONE
LINE

Figure 17. Synchronous Interface to Telephone
Unes

intJ 8251A

ABSOLUTE MAXIMUM RATINGS"

Ambient Temperature Under Bias O"C to 70·C
Storage Temperature r ••••••••••••••• -65·C to +150~C
Voltage On Any Pin

With RespectTo Ground -0.5V to + 7V
Power DisSipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum RatIngs" may cause permanent damage to the
device. This Is a stress rating only and functional operation
of the device at these or any other COnditions above those
Indicated In the operational sections of this specification
Is not Implied. Exposure to absolute maximum rating con·
ditions for extended periods may affect device reliability.

,D.C. CHARACTERISTICS (TA = O·C to 70·C, Vee = 5.0V ± 5%, GND = OV)'

Symbol, Parameter Min. Max. Unit

VIL Input Low Volta.ge -0.5 0.8, V

VIH Input High Voltage 2.0 Vee V

VOL Output Low Voltage 0.45 V

VOH Output High Voltage 2.4 V

IOFL Output Float Leakage ±10 ,...A

IlL Input Leakage ±10 ,...A

Icc Power Supply Current 100 mA

CAPACITANCE (TA = 25·C, Vee = GND = OV)

Symbol Parameter Min. Max. Unit

CIN Input Capacitance 10 pF

Glib 1/0 Capacitance 20 pF

A.C. CHARACTERISTICS (TA = o·c to 70·C, Vee = 5.0V ±100/0, GND = OV) ,
Bus Parameters (Note 1)
READ CYCLE

Symbol Parameter Min. Max. Unit

tAR Address Stable Before READ (CS, C/D) 0 ns

tRA Address Hold Time for READ (CS, C/D) 0 ns

tRR READ Pulse Width 250 ns

tRO Data Delay from READ 200 ns

tOF READ to Data Floating 10 100 ns

WRITE CYCLE

Symbol Parameter Min. Max. Unit

tAW Address Stable Before WRITE , 0 ns

tWA Address Hold Time for WRITE 0 ns

tww WRITE Pulse Width 250 ns

tow Data Set·Up Time for WRITE 150 ns

two Data Hold Time for WRITE 20 ns

tRY Recovery Time Between WRITES 6 tey

, 7·166

Test ,Conditions

IOL = 2.2mA

IOL = -400,...A

voiJT = Vee TO 0.45V

VIN = Vee TO 0.45V

All Outputs = High

Test Conditions

fc = 1MHz

Unmeasured pins returned
to GND

Test Conditions

Note 2

Note 2

3, CL = 150pF

Test Condtions

.

Note 4

AFN-01573D

8251A

A.C: CHARACTERISTICS (Continued)

OTHER TIMINGS

Symbol Parameter

tCY' Clock Period

tp Clock High Pulse Width

t.U Clock Low Pulse Width

tR, tF Clock Rise and Fall Time

tOTx TxD Delay from Falling Edge of TxC

fTx Transmitter Input Clock Frequency
lx Bau(l Rate
16x Baud Rate
64x Baud Rate

tTPW Transmitter Input C,lock Pulse Width
1 x Baud Rate ,
l6x and 64x Baud Rate

tTPO Transmitter Input Cldck Pulse Delay
lx Baud Rate
16x and 64x Baud Rate

fRx Receiver Input Clock Frequency
lx Baud Rate
16x Baud Rate
64x Baud Rate

tRPw Receiver Input Clock Pulse Width
lx Baud Rate
16x and 64x Baud Rate

tRPO Receiver Input Clock Pulse Delay
1 x Baud Rate·
l6x and 64x Baud Rate

tTxROY TxRDY Pin Delay from Center of Last Bit

tTxROY CLEAR TxRDY ~ from Leading Edge of WR

tRxROY RxRDY Pin Delay from Center of Last Bit

tRxROY CLEAR RxRDY ~ from Leading Edge of RD

tiS Internal SYNDET Delay from Rising
Edge of RxC

tES External SYNDETSet-Up Time After
Rising Edge of RxC

tTxEMPTY TxEMPTY Delay from Center of Last Bit

twc Control Delay from Ris1!:!.2. Edge of
WRITE (TxEn, DTR, RTS)

tCR Control to READ Set-Up Time (DSR, CTS)

'NOTE:

Min.

320

120

90

DC
DC
DC

12
1

15
3

DC
DC
DC

12
1

15
3

18

20

8

20

1. For Extended Temperature EXPRESS, use M8251 A electrical parameters.

7-167

Max. Unit Test Conditions

1350 ns Notes 5, 6

tCy-90 ns

ns

20 ns

1 ",s

64 kHz
310 kHz
615 kHz

tCY
tCY

tCY
tCY

64 kHz
310 kHz
615 kHz

tCY
tCY

tCY
tCY

8 tCY Note 7

400 ns Note 7

26 tCY Note 7

400 ns Note 7

26 tCY Note 7

tCY Note 7

tCY Note 7

tCY Note 7

tCY Note 7

AFN.()1573D

8251 A

A.C. CHARACTERISTICS (Continued)
NOTES:
1. AC timings measured VOH = 2.0 VOl = 2.0, VOL = 0.8, and with load circuit of Figure 1.
2. Chip Select (CS) and COmmand/Data (C/O) are considered as Addreases.
3. Assumes that Address is valid before RD~.
4. This recovery time is for. Mode Initialization only. Write Data is allowed only when TxROY = 1. Recovery Time between

Writes for Asynchronous Mode Is 8 tCY and for Synchronous Mode is 16 tCY. .
5. The TxC and RxC frequencies have the following limitations with respect to ClK: For 1 x Baud Rate, fTx or fRx ..; 1/(30

tCY):
For 16x and 64x Baud Rate, fTx or fRx ..;1/(4.5 tCY).

6. Reset Pulse Width = 6 tCY minimum; System Clock must be running during Reset.
7. Status update can have a maximum delay of 28 clock periods from the event affecting the status.

"

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE (PF)

+20

+10 /
/ !

>
S
w
0

/ "'-SPEC.

/

I-

~
::>
0 .,

-10

/
-20

-100 0, +50 +100

.1 CAPACITANCE (.F)

A.C. TESTING INPUT, OUTPUT WAVEFORM,

INPUT/OUTPUT

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC ,'AND 0 45V FOR
A LOGIC 0" TIMING MEASUREMENTS ARE MADE AT 2 OV FOR II LOGIC "
AND 0 8V FOR A LOGIC 0"

A.C. TESTING LOAD CIRCUIT

o --:--~
~

7-168 A_5730

intJ
WAVEFORMS

SYSTEM CLOCK INPUT

CLOCK ¢l

TRANSMITTER CLOCK AND DATA

'T)i(!!1x MODE)

~(1exMODEl

Tx DATA

RECEIVER CLOCK AND DATA

IRx BAUD COUNTER STARTS HEREl

Rx DATA

Rxe (lx MODE~

Rxe (16 MODE)

INT SAMPLING
PULSE

WRITE DATA CYCLE (CPU ~ USART)

TxRDY

Wi

DATA IN (0 B)

CIO

Clr

READ DATA CYCLE (CPU ~ USART)

I

DON'T CARE

R,RDY ____ ~/

8251A

'l.
I ~ tTKROY CLEAR

'Ww,1

1--+~:j'WD
DON'T CARE

DATA STABLE

~ ~
F ~

~ ----------{
I}-----"I

DATA OUT (0 B I ____ D!!!A!.!T~A!;FL~O~A!.T __ ~H~~~~~D~~~~

em -------~~4_-----4_~~--

7-169 AFN-01573D

8251A

WAVEFORMS (Continued)

WRITE CONTROL OR OUTPUT PORT CYCLE (CPU ~ USART)
m,rn =--x INOTE =11

t'wc::.! l ww _1
Wi 1---1 1- 'ow - ::I'WO'

. DATA IN {OBI

I~ 'AW I--i 'WA
CID It "' 1-- 'AW HtWA
os 'I, 1

READ CONTROL OR INPUT PORT (CPU - USART)

DSR,CTS

1- tc"-==J ~ 'RR-1
/NOTE::-2)

Ad ~ ~ I-'RO - 'OF
OAT' A OUT

(o.B)

-I'AR ~ - 'RAr--
CID JI ~

os
~'AR-
,X

-'RAk=--

NOTE..,.1 Twc INCLUDES THE RESPONSE TIMING OF A CONTROL BYTE.
NOTE :2 TCR INCLUDES THE EFFECT OF eTS ON THE TxENBL CIRCUITRY,

I

TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

•

tTKEMPTV

TIC EMPTY ------,....----------t---:----i

TxDATA -------~tcODoaJl~tLOCoaoaJOJJ)l]XT~OOoa1Xxi~-----~J)Jl~_~-
DATA CHAR 1 DATA CHAR 2 DATA CHAR 3 'Oo.-NM'IIt.tHD

I- DATA CHAR 4 =: ~ 0:,.. I!;
~;§ t; E)(AMPLE FORMAT" 7 BIT CHARACTER WITH PARITY & 2 STOP BITS

7-170 AFN-015730

inter 8251A

WAVEFORMS (Continued)

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)

'''~',:~:;::~ ------~----r-t_I-___,--

" ---;!''''''

w, _~=======~--:--=--=-:-=--=--_---hlttll~v+-__ f--I ,---+-_+--____ '-i+-_--"'!.-
I~ ~

~~~~.p."~,,~,,~"t---1-~~~l-~~~~---'----------,,-,,-lt,,,-,,-,--------

U"'''hn i; 

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE) 

m~~-----------r--------~'~ 

r. READY ------I---~~ ,-
ISTATUSSITI r'--' t~ 

TxREAOY ~,---~ In 
lPINI_ r\......Jl-

,.­
T'---~ '---

1,.-

W'i~:KMAIllO 

~ A ~ 
~~'i~T: ~H~~~t: ~~r;.~T: ~~~:Tt W'~::~AND '7,w;;;~:;!;.,:,,,,:Cft-----+--------

w. ;T~'~,!~I':~--f--DA-'-A -t'sr "',\~~~~~~~~f-I'"\HIA"I':~,\-+--DA-'+A ,,--1-M-A'5·'~~~'NGJtji~,·tl'::,~*----+--'------
MARKING STAlE \8-1 l c~: I CHAR 2 CHAR 1 SYNC CHAR 2 CHAR 4 "" s:~ l s::;~ I M~~i' 

EXAMPLE FORMAT· ft81T CHARACTER WITH PARITY 2 SYNC CHARACTERS 

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE) 

SYNDET 
IPININOH 1 

'15 __ -
~~OTE3.....J 

tES_ r-
t--

''---- ' ''----

OVERRUN 
ERROR ISB) ~ ,--

" 

RxCLOCK 

LOST 

\ 

Jr~'"' J~ 
r --

-- --r-< 
RdSTATUS r-~::i: Rd:,T::~S \... 

RdDATA Rd DATA 
CHAR 1 CHAR J CHAR 1 

--V 

b t -1->--- nlJ 
-DATA \.. 

Ir-
DONT SYNC SYNC DATA DATA DATA 
CARE CHAR I CHAR 2 CHAR 1 CHAR 2 CHARl CHAR 1 SYNC CHAR 2 DON T CA'U CHAR 1 CHAR 2 no 
[1 •• • • ~ U 1 ? J • .: U 1 • ) • c.' ll' c.' 13' u,., • c., ll. c_' I,. • ~ • x ~ •• x.'" • cO, 1)' c 

TfTlllTTTTITT }!-llJASsr;;UsT TTTTT 

JlJ1fU1J . 
L EXIT HUNT MODE 

SET SYNC DET 

r-roTE 1 INTERNAL SYNC 2 SYNC CHARACTERS S81TS WITH PARITV 
Non 2 [XHRNAL SYNC 5 BITS WITH PARITV 

7-171 

J1J 
EXIT HUNT MODE I 

SET SYN Del ISTATUS Bm 

'H"~ ru- 8EGINS 

AFN-01573D 



• 
• 
• 
• 
• 
• 

8273, ,8273-4 
PROGRAMMABLE HDLC/SDLC PROTOCOL 

CONTROLLER 
CCITT X.25 Compatible • Programmable NRZI Encode/Decode 

HDLC/SDLC Compatible • Two User Programmable Modem 
Full Duplex, Half Duplex, or Loop Control Ports 
SDLC Operation • Digital Phase Locked Loop Clock 
Up to 64K Baud Synchronous Recovery 
Thmsfers (56K Baud with 8273-4) 

• Minimum CPU Overhead 
Automatic FCS (CRC) Generation and 
Checking • FUllY Compatible with, 804$/808Q/80851 

Up to 9.6K Baud with On· Board Phase 
8088/8086/80188/80186 CPUs 

Locked Loop • Single +5V Supply 
The Intel@ 8273 Programmable HOLC/SOLC Protocol Controller is a dedicated device designed to support the 1501 
CCITTs HOLC and IBM's SOLC communication line protocols. It is fully compatible with Intel's new hiQh performance 
microcomputer systems such as the MCS1 88/186'·. A frame level command set is achieved by a unique microprogrammed 
dual processor chip architecture. The processing capability supported by the 8273 relieves the sYl>tem CPU of the low 
level real·time tasks normally associated with-controllers. 

Fi:A'G'1iEf Vee 

Tx tNT ~ 
elK PB3 

080- 7 
RESET PII2 

T.D 
TxDACK ;;a; 

r;c TxORQ m 
RxDACK PA, 

RxORO PA, 

AD PA2 
DPLL w- CD 
32X elK Rx INT rn 
RTs DBO T,O 

PB,-4 OBI TiC 

ffi DB2 RiC 

£ci DBl R,D 

PA2_ 4 
DB' 32iC[j( 

DBS Cs 
DPlL 

DB7 A, 

GND An 
R,D 

R;c 

F'l.AGDET 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product No Other CirCUit Patent Licenses a..,e Implied 

© INTEL CORPORATION, 1982 \ NOVEMBER 1983 
7-172 ORDER NUMB.R 211)479-002 



intJ 8273, 8273·4. 

A BRIEF OESCRIPnON OF HOLC/SOLC 
PROTOCOLS 

General 

The High Level Data Link Control (HOLCl is a standard 
communication link protocol established by International 
Standards Organization (ISOl. HOLC is the 'discipline 
used to implement ISO X.25 packet switching systems. 

The Synchronous Data Link Control (sOLCl is an IBM 
communication link protocol used to implement the 
System Network Architecture (SNAl. Both the protocols 
are bit oriented, code independent, and ideal for full 
duplex communication. Some common applications 
include terminal to terminal, terminal to CPU, CPU to 
CPU, satellite communication, packet switching and other 
high speed data links. In systems which require expensive 
cabling and interconnect hardware, any of the two 
protocols could be used to simplify interfacing (by going 
seriall, thereby reducing interconnect hardware costs. 
Since both the protocols are speed independent, reducing 
interconnect hardware could become an important 
application. 

Network 
Il'tboth tf'Ie HOLC and SOLC line protocols, according to a 
pre-assigned hierarchy, a PRIMARY (Controll STATION 
controls the overall network (data linkl and issues 
commands to the SECONDARY (Slavel STATIONS. The 
latter comply with instructions and respond by sending 
appropriate RESPONSES. Whenever a transmitting 
station must end transmission prematurely it sends an 
ABORT character. Upon detecting an abort character, a 
receiving station ignores the transmission block called a 
FRAME. Time fill between frames can be accomplished by 
transmitting either continuous frame preambles called 
FLAGS or an abort character. A time fill within a frame is 
not permitted. Whenever a station receives a string of 
more that fifteen consecutive ones, the station goes into 
an IDLE state. 

Frames 
A single communication element is called a FRAME which 
can be used for both Link ContrQI and data transfer 
purposes. The elements of a frame are the beginning eight 
bit FLAG (Fl consisting of one zero, six onjilS, and a zero, 
an eight bit ADDRESS FIELD (Al, an eight bit CONTROL 
FIELD (cl, a variable (N-bitlINFORMATION FIELD (Il, a 
sixteen bit FRAME CHECK SEQUENCE (FCSl, and an 
eight bit end FLAG (Fl, having the same bit pattern as the 
beginning flag. In HOLC the Address (Al and Control (Cl 
bytes are extendable. The HOLC and the SOLC use three 

types of frames; an Information Frame is used to transfer 
data, a Supervisory Frame is used for control purposes, 
and a Non-sequenced Frame is used for initialization and 
control of the secondary stations. 

Frame Characteristics 
An important 'characteristic of 'a frame is that its con­
tents are made code transparent by use of a zero bit 
insertion and deletion technique. Thus, the user can adopt 
any format or code suitable for his system - it may even 
be a computer word length or II "memory dump". The 
frame is bit oriented that is, bits, not characters in each 
field, have specific meanings. The Frame Check 
Sequence (FCS) is an error detection scheme similar to 
the Cyclic Redundancy Checkword (CRCl widely used in 
magnetic disk storage devices. The Command and 
Response information frames contain sequence numbers 
in the control fields identifying the sent and received 
frames. The sequence numbers are used in Error 
Recovery Procedures (ERP) and as implicit acknowledge­
ment of frame communication, enhancing the true fUII­
duplex nature of the HOLC/SOLC protocols. 

In contrast, BISYNC is basically half-duplex (two way 
'alternate) because of necessity to transmit immediate 
acknowledgement frames. HOLC/SOLC therefore saves 
propagation delay times and have a potential of twice the 
throughput rate of BISYNC. 

It is possible to use HOLC or SOLC over half duplex lines 
but there is a corresponding loss in throughput because 
both are primarily designed, for full-duplex communi­
cation. As in any synchronous system, the bit rate is 
determined by the clock bits supplied by the modem, 
protocols themselves are speed independent. 

A byproduct of the use of zero-bit insertion-deletion 
technique is the non-return-to-zero invert (NRZI) data 
transmission/reception compatibility. The latter allows 
HOLC/SOLC protocols to be used with asynchronous 
data communication hardware .in which the clocks are 
derived from the NRZI encoded data. 

References 
IBM Synchronous DatB Lmk. Control General Information, IBM. GA27~ 

3093-1. 
Standard Network Access Protocol Specification, OATAPAC, Trans­

Canada Telephone System CCG111 
Recommendation X.25. ISOICCITT March 2. 1976. 
IBM 3650 Retail Store System Loop Interface OEM Information, IBM. GA 

27-3098-0 
GUidebook to Data Communications, Training Manual, Hewlett-Packard 

5955-1715 
IBM Introduction to Teleprocessing, IBM, GC 20-.8095-02 
System Network Architecture, Techmcal OverView, IBM. GA 27-3102 
System Network Architecture Format and Protoco', IBM GA 27-3112 

OPENING 
FLAG (FI 

ADDRESS 
FIELD (A) 

CONTROL 
FIELD (C) 

INFORMATION 
FIELD (I) . 

FRAME CHECK 
SEOUENCE (FCS) 

CLOSING 
FLAG (F) 

01111110 BBITS SBITS 
VARIABLE lENGTH 

16 BITS 01111110 (ONLY IN I FRAMES) 

Figure 3. Frame Format 

7-173 AFN-00743C 



inter 

Pin 
Symbol No. Type 

Vcc 40 

GND 20 

RESET 4 I 

CS 24 I 

DB7-DBo 19- I/O 
12 

WR 10 I 

RD 9 I 

TxlNT 2 0 

RxlNT 11 0 

TxDRQ 6 0 

RxRDQ 8 0 

TxOACK 5 I 

RxDACK 7 I 

,-

A,-An 22- I 
21 

TxD 29 0 

TxC 28 I 

RxD 26 I . 
RxC 27 I 

8273, 8273-4 

Table 1. Pin Description 

Name and Function 

Power Supply: +5V Supply. 

Ground: Ground. 

Reaet: A high signal on this pin will 
force the 8273 to an idlit state. The 
8273 will remain idle until a command 
is issued by the CPU. Th'e modem 
interface output signals are forced 
high. Reset must be true for a 
minimum of 10 TCY. 

Chip Select: The RD and WR inputs 
are enabled by the chip select input. 

Data Bus: The Data Bus lines are bi-
directional three-state lines which in-
terface with the system Data Bus. 

Write Input: The Write signal is used 
to control the transfer of either a 
command or data from CPU to the 
8273. 

Read Input: The Read signal is used 
to control the transfer of either a data 
byte or a status word from the 8273 
to the CPU. 

Transmitter Interrupt: The Trans-
mitter interrupt signal indicates that 
the transmitter logic requires service. 

Receiver Interrupt: The Receiver 
interrupt signal indicates that the Re-
ceiver logic requires service. 

Transmitter Data Request: Re-
quests a transfer of data between 
memory and the 8273 for a transmit 
operation. 

Receiver DMA Request: Requests a 
transfer of data between the 8273 and 
memory for a receive operation. 

Transmitter DMA Acknowledge: 
The Transmitter DMA acknowledge 
signal notifies the 8273 that the 
TxDMA cycle has been granted. 

Receiver DMA Acknowledge: The 
Receiver DMA acknowledge sigl)al 
notifies the 8273 that the RxDMA 
cycle has been granted. 

Address: These two lines are CPU 
Interface Register Select lines. 

Transmitter Data: This line trans-
mits the serial data to the communi-
cation channel. 

Transmitter Clock: The transmitter 
clocl< is used to synchronize the 
transmit data. 

Receiver Data: This line receives 
serial data from the communication 
channel. 

Receiver Clock: The Receiver Clo,ck 
is used to synchronize the receive 
data, 

Pin 
Symbol No. Type Name and Function 

32X ClK 25 I 32)( Clock: The 32X clock is used to 
provide clock recovery when an 
asynchronous modem is used. In 
loop configuration the loop station 
can run without an accurate 1X clock 
by using the 32X ClK in conjunction 
with the DPll output. (This pin must 
be grounded when not used.) 

DPll 23 0 Digital Phase Locked Loop: Digital 
Phase locked loop output can be 
tied to RxC and/or TxC when 1X clock 
is not available. DPLL is used with 
32X ClK. 

FLAGDET 1 0 Flag Detect: Flag Detect signals that 
a flag (01111110) has been received 
by an active receiver. 

RTS 35 0 Request to Send: Request to Send 
Signals that the 8273 is ready t~ trans-
mit data. 

CTS 30 I Clear to Send: Clear to Send Signals 
that the modem is ready to accept 
data from the 8273, 

CD 31 I Carrier Detect: Carrier Detect sig-
nals that the line transmission has 
started and the 8273 may begin to 
sample data on RxD line, 

PA'-4 ,32- I General purpose Input ports: The 
34 logic levels on, these lines can be 

Read by the CPU through the Data 
Bus Buffer. 

PB'-4 36- 0 General Pl!rpose output ports: The 
39 CPU can 'write these output lines 

through Data Bus Buffer. 

ClK 3 I Clock: A ,square wave TTL clock. 

FUNCTIONAL DESCRIPTION 
General 
The Intel@ 8273 HOlC/SOLC controller is a microcom­
puter peripheral device which supports the International 
Standards Organization (ISO) High Level Oata Link 
Control (HOLC). and IBM Synchronous Data Link Control 
(SOLC) communications protocols. This controller 
minimizes CPU software by supporting a comprehensive 
frame-level inst~uction set and by hardware implemen­
tation of the low level tasks associated with frame 
assembly/disassembly and data integrity. The 8273 can be 
used in either synchronous or asynchronous applications. 

In asynchronous applications the data can be program­
med to be encoded/decoded in NRZI code. The clock is 
derived from the NRZI data using a digital phase locked 
loop. The 'data transparency is achieved by using a zero­
bit insertion/deletion technique. The frames are automati­
cally,checked for errors during reception by verifying the 
Frame Check Sequence (FCS); the FCS is automatically 
generated and appended before the final flag in transmit. 

7-174 AFN-00743C 



8273, 8273·4 

The 8273 recognizes and can generate flags (01111110' 
Abort, Idle, and GA (EOP) characters. 

The 8273 can assume either a primary (control) or a 
secondary (slave) role. It can therefore be readily 
implemented in an SOLe loop configuration as typified by 
the laM 3650 Retail Store System by programming the 
8273 into a one-bit delay mode. In such a configuration, a 
two wire pair can be effectively used for data transfer 

. between controllers and loop stations. The digital phase 
locked loop output pin can be used by the loop station 
without the presence of an accurate Tx clock. 

CPU Interface 
The CPU interface is optimized for the MCS-80/85'· bus 
with an 8257 DMA controller. However, the interface is 
flexible, and allows either DMA or non-DMA data 
transfers, interrupt or non-interrupt driven. It further 
allows . maximum line utilization by providing early 
interrupt mechanism for buffered (only the information 
field can be transferred to memory) Tx command over­
lapping. It also provides separate Rx and Tx interrupt 
output channels for efficient operation. The 8273 keeps 
the interrupt request active until all the associateq 
interrupt results have been read. 
The CPU utilizes the CPU interface to specify commands 
and transfer data. It consists of seven registers addressed 
via CS, A1, Ao, RD and WR signals and two independent 
data registers for receive data and transmit data. A1, Ao are 
generally derived from two low order bits of the address 
bus. If an 8080 based CPU is utilized, the AD and WR 
signals may be driven by the 8228 1I0R and I/OW. The 
table shows the seven register select decoding: 

REGISTERS 

INTERNAL DATA BUS -

CPU INTERFACE MODEM INTERFACE 

Figure 4. 8273 Block Diagram Showing CPU 
Interface Functions 

A1 Ao Ti6ACR iIiilim 
0 0 1 1 
0 0 1 1 
0 1 1 1 
0 1 1 1 
1 0 1 1 
1 0 1 1 
1 1 1 1 
1 1 1 1 
X X 0 1 
X X 1 0 

Register Description 
Command 

eI Iili ~ Register 

0 1 0 Command 
0 0 1 Status 
0 1 0 Parameter 
0 0 1 Result 
0 1 0 Reset 
0 0 l' TxlNT Result 
0 1 0 -
0 0 1 RxlNT Result 
1 1 0 Transmit Data 
1 0 1 Receive Data 

Operations are initiated by writing an appropriate • 
command in the Command Register. 

Parameter 

Parameters of commands that require additional informa­
tion are written to this register. 

Result 

Contains an immediate result describing an outcome of an 
executed command. 

Transmit Interrupt Result 

Contains the outcome of 8273 transmit operation 
(good/bad completion!. 

Receive Interrupt Result 

Contains the outcome of 8273 receive operation (good/ 
bad completion), followed by additional results which de­
tail the reason for interrupt. 

Status 

The status register reflects the state of the 8273 CPU 
Interface. 

DMA Data Transfers 

The 8273 'CPU interface supports two independent data 
interfaces: receive data and transmit data. At high data 
transmission speeds the data transfer rate of the 8273 is 
great enough to justify the use of direct memory a.ccess 
(DMA) for the data transfers. When the 8273 IS configured 
in DMA mode, the elements of the DMA Interfaces are: 

TxDRQ: Transmit DMA Request 

Requests a transfer of data between memory and the 
8273 for a transmit operation 

TxDACK: Transmit DMA Acknowledge 

The TxDACK signal notifies the 8273 that a transmit DMA 
cycle has been granted. It is also used with \'VR to transfer 
data to the 8273 in non-DMA mode. Note: RD must not be 
asserted while TxDACK is active. 

RxDRQ: Receive DMA Request 

Requests a transfer of data between the 8273 and mem­
ory for a receive operation. 

7-175 AFN-l10743C 



inter 8273, 8273-4, 

RxDACK: Receive DMA Acknowledge 

The RxDACK signal notifies the 8273 that a receive DMA 
cycle has been granted. It is also used with RD'to read 
data fro,m the 827a l!!..n2!:!::PMA mode. Note: WR must not 
be asserted while RxDACK is active. 

RD, WR: R~d, Write 

The AD and WR signals are used to specify the direction of 
the data transfer. 

DMA transfers require the use of a DMA controller such as 
the Intel 8257. The function of the DMA controller is to 
provide sequential addresses and timing for the transfer, 
at a starting address determined by the CPU. Counting of 
data block le('gths is performed by the 8273. 

To request a DMA transfer the 8273 raises the appropriate. 
DMA REQUEST. DMA ACKNOWLEDGE and READ en­
ab,!es DMA data onto the bus (independently of CHIP 
SELECT). DMA ACKNOWLEDGE and WRITE transfers 
DMA data to the 8273 (independent of CHIP .SELECT). 

It is also possible to configure the 8273 in the non-DMA 
data transfer mode. In this mode the CPU module must 
pass data to the 8273 in response to non-DMA data re­
quests indicated by the status word. 

Modem Interface 

The 8273 Modem interface provides both dedicated and 
user defined modem control functions. All the control 
signals are active low so that EIA RS-232C inverting 
drivers (MC 1488) and inverting receivers (MC 1489) may 
be used to interface to standard modems. For asynchro­
nous operation, this Interface supports programmable 
NRZI data encode/decode, a digital phase locked loop 
for efficient clock extraction from NRZI data, an~ 
modem control ports with automatic C'fS, CD monitor­
ing and RTS generation. This interface also allows the 
8273 to operate in PRE-FRAME SYNC mode in which the 
8273 prefixes 16 transitions to a frame to synchronize 
idle lines before transmission of the first flag. 

It should be noted that all tfie 8273 port operations deal 
with logical values, for instance, bit DO of Port A will be a 
one when CTS (Pin 30) is a physical zero (logical one). 

Port A - Input Port 

During operation, the 8273 interrogates input pins CTS 
(Clear to Send) and CD (Carrier Detect). CTS is used to 
condition the start of a transmission. If during transmis­
sion eTS is lost the 8273 generates an interrupt. During 
reception, if CD is lost, the 8273 generates an interrupt. 

~ ~ ~ ,~ ~ ~ ~ ~ 

11 1 11 I I 
~---..l I ,I CTS - C,=,!~R TO SEND 

CD - CARRIER DETECT 

U~E~~EF~~_E~ ~;~T-P~~~---- --

The user defined input bIts correspond. to the 8273 PA., 
PA. and PA,. pins. The 8273 does not interrogate or ma­
nipulate these bits. 

REGISTERS 

080-7 

CPU INTERFACE 

TxD 

iXc 

Pa,-. 
ill 

ilA2_4 

...---.._- R,D 

R;c 

MODEM INTERFACE 

Figure 5. 8273 Block Diagram ShowIng Control 
LogIc Functions 

Port B - Output Port 

During normal operation, if the CPU sets RTS active, the 
8273 will not change this pin; however, iflhe CPU sets Ri'S 
inactive, the 8273 will activate it before each transmission 
and deactivate it one byte time after transmission. While 
the receiver is active the flag detect pin is pulsed each time 
a flag sequence is detected in the receive data stream. 
Following an 8273 reset, all pins of Port Bare setto a high, 
inactive level. 

I ATS - REQUEST TO SEND 

USER DEFINED OUTPUT PB.t, P83. pBz. PB, 

I FLAG DETECT 

The user defined output bits correspond to the state of 
PB4-PB, pins. The 8273 does not interrogate or manipu­
late these bits. 

7-176 



intJ " 8273, 8273·4. 

Serial Data Logic 

The Serial data is synchronized by the user transmit (TxC) 
and receive (RxC) clocks. The leading edge of TxC 
generates new transmit data and the trailing edge of RXC 
is used to capture receive data. The NRZI encoding/ 
decoding of the receive and transmit data is program­
mable. 

The diagnostic features included in the Serial Data logic 
are programmable loop back of data and selectable clock 
for"the receiver. I n the loop-back mode. the data presented 
to the TxO pin is internally routed to the receive data input 

TxC 

\ I \ 
TxD X X 

RxC \ ) \ 

RxD X I X 

circuitry in place of the Rxp pin. thus allowing a CPU to 
send a message to itself to verify operation of the 8273. 

In the selectable clock diagnostic feature. when the data is 
looped back. the receiver may be presented incorrect 
sample timing by the external circuitry. The user may 
select to substitute the TxC pin for the RxC input on-chip 
so that the clock used to generate the loop back data is 
used to sample it. Since TxO is generated off the leading 
edge of TxC and RxO is sampled on the trailing edge. the 
selected clock allows bit synchronism. 

/ \ r-

X 

) \ ) 
I X I 

Figure 6. Transmit/Receive Timing 

Asynchronous Mode Interface 

Although the 8273 is fully compatible with the HOLC/ 
SOLC communication line protocols. which are primarily 
designed for synchronous communication. the 8273 can 
also be used In asynchronous applications by using this 
interface. The interface employs a digital phase locked 
loop (oPLLl for clock recovery from a receive data stream 
and programmable NRZI encoding and decoding of data. 
The use of NRZI coding with SOLC transmission 

7-177 

guarantees that within a frame. data transitions will occur 
at least every five bit times -the longest sequence of ones 
which may be transmitted without zero-bit insertion. The 
OPLL should be used only when NRZI coding is used 
since the NRZI coding will transmit zero sequence as line 
transitions. The digital phase locked loop also facilitates 
full-duplex and half-duplex asynchronous implemen­
tation with. or without modems. 

AFN-Q0743C 



inter 8273,8273-4 

Digital Phale Locked Loop 

In asynchronous applications, the clock is derived from 
the ~eceiver data stream by the use of the digital phase 
locked loop (DPLL), The DPLL requires a clock Inputat32 
times the required baud rate. The receive data (RxD) is 
sampled with this 32X eLK and'the 8273 DPLL supplies a 
sample pulse nominally centered on the RxD bit cells. The 
DPLL has a built-in "stiffness" which reduces sensitivity to 
line noise and bit distortion. This is accomplished by 
making phase error' adjustments In discrete increments. 
Since the nominal pulse is made to occur at 32 counts of 
the 32X CLK, these counts are subtracted or added to the 
nominal, depending upon which quadrant ofthefour error 
qoadrants the data edge occurs In. For example if an RxD 
edge Is detected in quadrant A 1, it is apparent that the 
DPLL sample "A" was placed too close to the trailing edge 
of the data cell; sample "B" will then be placed at T = 
(T nominal - 2 counts), = 30 counts of the 32X'C[j( to move 
the sample pulse "B" toward the nominal center of the next 
bit cell. A data edge occuring In quadrant B1 would cause 
a smaller adjustment of phase with T = 31 counts of the 
32X CLK. Using this technique the DPLL pulse will 
converge to nominal bit center within 12 data bit times, 
worst case, with constant inco!l1ing RxD edges. 

A method of attaining bit synchronism following a line idle 
is,to use PRE-FRAME SYNC mode of transmission, 

RXD_--IX~ ___ ---JX~ ___ ~X~ __ 
DPLL 
SAMPLES 

Ij 
~~ I: " ·1· • .j. " ·1· ~ :1 

ADJUSTMENT -2 -1 +1 +2 

Figure 7. DPLL Sample Timing 

7-178 

, " '.. '~, ,\ , 

AFN-00743C 



8273, 8273·4 

Synchronous Modem - Duplex or Half Duplex Operation 

AxC RxC 

8273 AxD V' , RxD 
8273 

TxC MODEM MODEM fXc' 
TxD ~ ./ TxD 

32xCLK llI'IT 32xCLK iiPiI 

f l 1 l 
GND N.C. GND N.C. 

Asynchronous Modems - Duplex or Half Duplex Operation 

8273 
MODEM MODEM 

t----+----... AxD 

32iCiJ( DPLL 

.' Asynchronous - No Modems - Duplex or Half Duplex 

8273 8273 

7-179 AFN.()()743C 



8273; 8273~4 

SOLe Loop 

The OPLL simplifies the SOLe loop station implementa­
tion. In this application, each secondary station on a loop 
data link is a 'repeater s~t in one-~it delay mode. The 

. signals sent out on the loop by the loop controller (primary 
station) are reiayed from station to station then, back to 
the controller. Any secondary station finding its address in 
the A field captures the frame for action at that station, All 
received frames are relayed to the next station on the loop, 

Loop stations are required to derive bit timing from the 
incoming NRZI data stream. The OPLL generates sample 
Rx clock timing for reception and uses the same clock to 
implement Tx ciock timing. 

8273 
LOOP 

CONTROLLER 

,...------ITxD RxDt-----., 

RxD Rxe TxC TxD 

8273 8273 
LOOP LOOP 

TERMINAL TERMINAL 
TxD~-~-------~~--~RxD 

FigUN 8. SOLe Loop Application 

7-180 AF~43C 



intJ 8273, 8273·4 

PRINCIPLES OF OPERATION 

The 8273 is an intelligent peripheral controller which 
relieves the CPU of many of the rote tasks associated with 
constructing and receiving frames. It is fully compatible 
with the MCS-80/85'" system bus. As a peripheral device, 
it accepts commands from a CPU, executes these 
commands and provides an Interrupt and Result back to 
the CPU at the end of the execution. The communication 
with the CPU is done by activation of CS, RD, WR pins, 
while the A1, Ao select the appropr~ate registers on the 
chip as described in the Hardware Description Section. 

The 8273 operation is composed of the following 
sequence of events: 

CPU WRITES COMMAND AND PARAMETERS INTO THE 
8273 COMMAND AND PARAMETER REGISTERS. 

T'HE 8273 IS ON ITS OWN TO CARRY OUT THE COMMAND. 

THE 8273 SIGNALS THE CPU THAT THE EXECUTION 
HAS fIN.lSHED. THE CPU MUST PERFORM A READ 
OPERATI,ON OF ONE OR MORE OF THE REGISTERS. 

The Command Phase 

During the command phase, the software writes a com­
mand to the command register. The command bytes pro­
vide a general description of the type of operation re­
quested. Many commands require more detailed infor­
mation about the command. In such a case up to four 
parameters are written into the parameter register. The 
flowchart of the command phase indicates that a com­
mand may not be issued if the Status Register indicates 
that the device is busy. Simi\arly if a parameter is issued 
when the Parameter Buffer shows full, incorrect operation 
will occur. 

The 8273 is a duplex device and both transmitter and 
receiver may each be executing a command or passing 
results at any given time. For this reason separate 
interrupt pins are provided. However, the command regis­
ter must be used for one command sequence at a time. 

Status Register 

The status register contains the status of the 8273 activity. 
The description is as follows. 

0, 0. I\; D. 0, 0, 0, "0 
@SYTCBf I e"SF leRsF I R.INT I TxINT I R.IRA I T.IRA I 

Bit 7 CBSY (Command Busy) 

Indicates in-progress command, set for CPU poll when 
Command Register is full, reset upon command phase 
completion. It is improper to write a command when CBSY 
is set; it results in' incorrect operation. 

7-181 

YES 

NO 

END OF COMMAND PHASE 

YES 

FJgure 9. Command Phase Flowchart 

Bit 6 CBF (Command Buffer Full) 

Indicates that the command register is full, it is reset when 
the 8273 accepts the command byte but does not imply 
that execution has begun. 

Bit 5 CPBF (C!)mmand Parameter Buffer Full) 

CPBF is set when the parameter buffer is full, and is reset 
by the 8273 when it accepts the parameter. The CPU may 
poll CPBF to determine when additional parameters may 
be written. 

Bit 4 CRBF (Command Result Buffer Full) 

fndicate.s that an executed command immediate result is 
present in the Result Register. It is set by 8273 and reset 
when CPU reads the result. 

AFN-Q0743C 



inter 8273, 8273-4 

• Bit 3 RxlNT (Receiver Interrupt) 

RxlNT Indicates that the receiver requires CPU attention. 
It is identical to RxlNT (pin 11) and Isset by the 8273 either ' 
upon good/bad completion of a specified command or by 
Non-DMA data transfer. It is reset only after the CPU has 
read the result byte or has received a data byte from the 
8273 in a Non-DMA data transfer. 

Bit 2 TxlNT (Transmitter Interrupt) 

The TxlNT indicates that the transmitter requires CPU 
attention. It ,is identical to TxlNT (pin 2). It is set by 8273 
either upon good/bad completion of a specified command 
or by Non-DMA data transfer. It is reset only after the CPU 
has read the result byte or has transferred transmit data 
byte to the 8273 in a Non-DMA transfer. 

Bit 1 RxlRA (Receiver Interrupt Result Avelleble) 

The RxlRA Is set by the 8273 when an interrupt result 
byte is placed in the RxlNT register. It is reset after the 
CPU has read the RxlNT register. 

Bit 0 TxlRA (Transmitter Int~rruPt Result Available) 

The TxlRA is set by the 8273 when an Interrupt result 
byte Is placed in the TxlNT register. It is reset when the 
CPU has read the TxlNT register. 

Th. Execution Pha •• 

Upon accepting the lallt,parameter, the 8273 er;lters Into 
the Execution Phase. The ex!!cution phase may consist 
of a DMA or other activity, and mayor may not require 
CPU Intervention. The CPU Intervention is eliminated In 
this phase if. the system utilizes DMA for the data trans· 
fers, otherwise, for non-DMA data transfers, the CPU is 
Interrupted by the 8273 via TxlNT and AxlNT pins, for 
each data byte request. 

Tha R •• ult Pha •• 

During the result phase, th' 8273 notifies the CPU of the 
execution outcome of a command. This phase is initiated 
by: 

1. The successful completion of an operation 
2. An error detected during an oP!lration. 

To facilitate quick network software decisions, two types 
of execution results are provided: , 

1. An Immediate Result 
2. A Non-Immediate Result 

Dr lit DS D4 Da liz D, Do _ .... Interrupt RUIIII Code Rx SU"', Allor INT 

All 8 bits recelvedY{ . 
00 recalved • 

o 0,-00 received 0 0 

DrOo recolved _ 0 

~-Oo received '0 

D4-00 received, 0 

05-00 received 0 
De-Oo received 0 

A1 match or general reoelve 
0 A2 match 
0 CRe error 

0 0 0 0 Abert detected 

0 Idle detect 

EOP detected 

Frame lesa than 32 bits 

DMA overrun detected 

o Memory buffer overflow 

o '0 carrier de.act failure 
• Partial Byte Received Receive Interrupt overrun 

Figure 10. Rx Interrupt Re.ult Byte Format 

o 

06 Os 

o 

02 0, DO 

D4 D3 02 01 Do 

a Early transmlt,lnterrupt 

Frame tnnsmrt complete 

OMA underrun 
Clear to Send leTS) error 

Abort complete 

Figure 11. 'IX Interrupt Result Byte Format 

7-182 

Active 

Active 

Activo 
Activo 

Disobled 

Dloobled 

Active 

DI •• bled 

Dloabled 

Dloabled 

Dllobled 

AFN-00743C 



intJ 8273, 8273-4 

Immediate result is provided by the 8273 for commands 
such as Read Port A and Read Port B which have 
information (CTS, CO, RTS, etc.) that the network 
software needs to make quick operational decisions. 

A command which cannot provide an immediate result will 
generate an interrupt to signal the beginning of the Result 
phase. The immediate results are provided in the Result 
Register; all non-immediate results are available upon 
device interrupt, through Tx I nterrupt Result Register 
Txl/R or Rx Interrupt Result Register Rxl/R. The result 
may consist of a one-byte interrupt code indicating the 

r----

DATA REOUEST 
NON·DMA MODE 

USE DACK + AD OR 
WR TO READ OR 

WRITE DATA 

( END) 

N~~g~A I 
I 

READ STATUS 
REGISTER 

NO 

condition for the interrupt and, if required, one or more 
bytes which detail the condition. 

Tx and Rx Intarrupt Result Registers 

The Result Registers have a result code, the three high 
order bits 07-05 of which are set to zero for all but the 
receive command. This command result contains a count 
that indicates the numberof bits received in the last byte. If 
a partial byte is received, the high order bits of the last data 
byte are indeterminate. 

All results indicated in the command summary must be 
read during the result phase. 

I DMA 
I MODE 

I 
I 
I 
I 
I 
I 

READ STATUS 
REGISTER 

Figure 12. Result Phase Flowchart-Interrupt Results 

7-183 AFN.oo743C 



IMMEDIATE RESULTS 

8273, 8273·4 

AFTER COMMAND PHASE COMPLETION (READ PORT A. PORT B) ---..... 

READ RESULT 
REGISTER 

FIgure 13. (Rx Interrupt Service) 

7-184 



8273, 8273-4 

DETAILED COMMAND DESCRIPTION Initialization Set/Reset Commands 

General 
The 8273 HOLC/SOLC controller supports a comprehen­
sive set of high level commands which allows the 8273 to 
be readily used In full-duplex, half-duplex, synchronous, 
asynchronous and SOLC loop configuration, with or 
without modems. These frame-level commands minimize 
CPU and software overhead. The 8273 has address and 
control byte buffers which allow the receive and transmit 
commands to be used in buffered or non-buffered modes. 

In buffered transmit mode, the 8273 transmits a flag 
automatically, reads the Address and Control buffer 
registers and transmits the fields, then via OMA, it fetches 
the information field. The 8273, having transmitted the 
information field, automatically appends the Frame Check 
Sequence (FCS) and the end flag. Correspondingly, in 
buffered read mode, the Address and Control fields are 
stored in their respective buffer registers and only 
Information Field is transferred to memory. 

In non-buffered transmit mode, the 8273 transmits the 
beginnin.g flag automatically, then fetches and transmits 
the Address, Control and Information fields from the 
memory, appends the FCS character and an end flag. In 
the non-buffered receive mc1de the entire contents of a 
frame are sent to memory with the exception of the flags 
and FCS. 

HDLC Implemenatlon 

HOLC Address and Control field are extendable. The 
extension is selected by setting the low order bit of the 
field to be extended to a one, a zero in the low order bit 
indicates the last byte of the respective field. 

Since Address/Control field extension is normally done 
with software to maximize extension flexibility, the 8273 
does not create or operate upon contents of the extended 
HOLe Address/Control fields. Extended fields are 
transparently passed by the 8273 to user as either 
interrupt results or data tr~nsfer requests. Software must 
assemble the fields for transmission and interrogate them 
upon reception. 

However, the user can take advantage of the powerful 
8273 commands to minimize CPU/Software overhead and 
simplify buffer management in handling extended fields. 
For instance buffered mode can be used to separate the 
first two bytes, then interrogate the others from buffer. 
Buffered 'mode' is perfect for a two byte address field. 

The 8273 when programmed, recognizes protocol 
characters unique to HOLC such as Abort, which is a 
string of seven or more ones ,(01111111l. Since Abort 
character is the same as the GA (EOP) character used in 
SOLC Loop applicati'ons, Loop Transmit and Receive 
commands are not recommended to be used in HOL:C. 
HOLC does not support Loop mode. 

7-185 

These commands are used to manipulate data within the 
8273 registers. The Set commands have a single param­
eter which is a mask that corresponds to the bits to be set. 
(They perform a logical-OR of the specified register with 
the mask provided as a parameter!. The Register 
commands have a single parameter which is a mask that 
has a zero in the bit positions that are to be reset. (They 
perform a logical-AND of the specified register with the 
mask), 

Set One~BIt Delay (CMD Code A4) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

:::'1 : I : I :' I : I : I : I : I : I : I : I 
When one bit delay is set, 8273 retransmits the receivea 
data stream one bit delayed, This mode is entered at a 
receiver character boundary, and should only be used by 
Loop Stations, 

Re .. t One-Bit Delay (CMD Code 64) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

::::1: I ~ J: I: I : I ~ I : I: I : I'~ I 
The 8273 stops the one bit delayed retransmission mode, 

Set Data Transfer Mode (CMD Code 97) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

::: I : I : I : I : I : I : I : I : I : I' I 
When the data transfer mode is set, the 8273 will interrupt 
when data bytes are required for transmission or are 
available from a receive. If a transmit interrupt occurs and 
the status indicates that there is no Transmit Result 
(TxIRA = 0), the interrupt is a transmit data request. If a 
receive interrupt occurs and the status indicates that there 
is no receive result (RxIRA = 0), the interrupt is a receive 
data request. ' , 

Re .. t Data Transfer Mode (CMD Code 57) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

::: I : I ~ I : I : I : t : I : I : I : I : " 
If the Data Transfer Mode is reset, the 8273 data transfers ' 
are performed through the OMA requests without interrupt· 
ing the CPU. 



inter 8273.827~ 

Set Operating Mode (CMO Code 91) 

I I, . FLAG STREAM MODE 

1 IIC PREFRAME SYNC MODE 

1 .. BUFFERED MODE 

1 = EARLY INTERRUPT MODE 

1 = EOP INTERRUPT MODE 

1::c HDLCMODE 

Reset Operating Mode (CMO Code 51) 

CMD: 

PAR 

Any mode switches set in eMO code 91 can be reset using 
this command by 'placing zeros i.n the appropriate 
positions. 

(OS) HOLC Mode 
In HOLe mode, a bit sequence of seven ones (01111111) is 
interpreted as an abort character, Otherwise, eight ones 
(011111111) signal an abort. 

(04) EOP Interrupt Mode 

In EOP interrupt mode, an interrupt is generated , 
whenever an EOP character (01111111) is detected by an 
active receiver, This mode is useful forthe implementation 
of an SOLe loop controller in detecting the end of a 
message stream after a loop poll. 

(03) Transmitter Early Interrupt Mode (Tx) 

The early interrupt mode is specified to indicate when the 
8273 should generate an end of frame interrupt. When set, 
an early interrupt is generated when the last data 
character has been passed to the 8273. If the user software 
responds with another transmit command before the final 
flag is sent, the final flag interrupt will not be generated 
and a new frame will immediately begin when the current 
frame is complete. This permits frames to be separated by 
a single flag. If no additional Tx commands are provided, a 
final interrupt will follow. 

Note: In buffered mode, if a supervisory frame (no Infor­
mation) Transmit command is sent in response to an early 
Transmit Interrupt, the 8273 will repeatedly transmit the 
same supervisory frame with one flag in between, until a 
non-supervisory transmit is issued. 

Early transmitter interrupt can be used in buffered mode 
by waiting for a transmit complete interrupt instead of 
early Transmit Interrupt before issuing a transmit frame 
command for a supervisory frame. See Figure 14. 

7-186 

OTHER 

TRANSMIT COMPLETION 
IODH) INTERRUPT 

NO 

OTHER PROCESSING 

Figure 14. 

If this bit is zero, the interrupt will be generated only after 
the final flag has been transmitted. 

(02) Buffered Mode 

If the buffered mode bit is set to a one, the first'two bytes 
(normally the address (A) and control (e) fields) of a frame 
are buffered by the 8273.11 this bit is a zero the address and 
control fields are passed to and from memory. 

(01) Preframe Sync Mode, 

If this bit is set to a one the 8273 will transmit two charac­
ters before the first flag of a frame. 
To guarantee sixteen line transitions, the 8273 ~ends two 
bytes of data (OO)H if NRZI is set or data (55)H if NRZI is not 
set. 

(DO) Flag Stream Mode 

If this ,bit is set to II one, the following table outlines the 
operation of the transmitter. 

TRANSMITTER STATE ACTION 

Idle Send Flags immedIately. 

Transmit or Transmit} Send F lags after the 

Transparent Active transmission complete 

Loop Transmit Active Ignore command. 

1 Bit Delay Active Ignore command. 

AFN,00743C 



inter 8273, 8273·4 

If this bit is reset to zero the following table outlines the 
operation of the transmitter .. 

TRANSMITTER STATE ACTION 

IDLE Send Idles on next character 
boundary. 

Transmit or Transmit· } Send Idles after the transmission 
Transparent Active is complete. 

Loop Transmit Active Ignore command. 

1 Bit Delay Active Ignore commend. 

Set Serial 1/0 Mode (CMD Code AO) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

:::' I 0 1 0 I' 1 0 I' 1 0 I 0 1 0 1 0 1 0 1 

\, := NRZl MODE 

, '= TxC-Rxe 

1 = lOOP BACK TxO _ RxD 

Reset Serial 1/0 Mode (CMD Code 60) 
This command allows bits set in CMO code AO to be reset 
by placing zeros in the appropriate positions. 

(02) Loop Back 

If this bit is set to a one, the transmit data is internally routed 
to the receive data circuitry. 

(01) TxC:+- RxC 

If this bit is set to a one, the transmit clock is internally 
routed to the receive clock circuitry. It is normally used 
with the loop back bit (02). 

(~O) NRZI Mode 

If this bit is set to a one, NRZI encoding and decoding of 
transmit and receive data is provided. If this bit is a zero, the 
transmit and receive data is treated as a normal positive logic 
bit stream. 

NRZI el)coding specifies that a zero causes a change in the 
polarity of the transmitted signal and a one causes no polarity 
change. NRZI is used in all asynchronous o!,erati'ons. 
Referto IBM document GA27-3093 for details. 

Reset Device Command 

An 8273 reset command is executed by outputing a (01)H 
followed by (OO)H to the reset register (TMR). See 8273 
AC timing characteristics for Reset pulse specifica· 
tions. 

7-187 

The reset command emulates the action of the reset pin. 
1. The modem control signals are forced high (inactive 

level). 
2. The 8273 status register flags are cleared. 
3. Any commands in progress are terminated immedi­

ately. 

4. The 8273 enters an idle state until the next command is 
issued. 

5. The Serial I/O and Operating Mode registers are set 
to zero and OMA data register transfer mode is 
selected. 

6. The device assumes a non-loop SOLC terminal role. 

Receive Commands 

The 8273 supports three receive commands: General 
Receive, Selective Receive, and Splective Loop Receive. 

General Receive (CMO Code CO) 

General receive is a receive mode in which frames are 
received regardless of the contents of the address field. 

CMD: 0 0 '\'\0\0\0\0\01 0 
PAR- 0 , LEAST SIGNIFICANT BYTE OF THE 

RECEIVE BUFFER LENGTH (BO) 

PAR 0 , MOST SIGNIFICANT BYTE OF RECEIVE 
BUFFER LENGTH (Bl) 

NOTES: 
1. If buffered mode IS specified. the RO; R1 receive frame len'gth 

iresult) is the number of data bytes received. 
2. If non-buffered mode IS specified, the RO, R 1 receive frame 

length (result) IS the number of data bytes rec~ived plus two 
(the count Includes the address and control bytes). 

3. The frame check sequence (FCS) IS not transferred to 
memory. 

4. Frames with less than 32 bits between flags are Ignored (no 
interrupt generated) If the buffered mode IS specified 

5. In the non-buffered mode an Interrupt IS generated when a 
less than 32 bit frame is received, since data transfer requests' 
have occurred. 

6. The 8273 receiver IS always disabled when an Idle IS received 
after a valid frame. The CPU module must Issue a receive 
command to re-enable the receiver. 

7. The mtervemng ABORT character between a final flag and an 
IDLE does not generate an mterrupt. 

8. If an ABORT Character is not preceded by a flag and IS fol­
lowed by an IDLE, an interrupt will be generated for the ABORT 
followed by an IDLE interrupt one character time later. The 
reception of an ABORT will disable the receiver. 

Selective Receive (CMD Code C1) 

CMO ° ° '\'\0\0\0\0\0.\' 

° 
, LEAST SIGNIFICANT BYTE OF THE 

RECEIVE BUFFER LENGTH (BO) 
PAR 

PAR ° 
, MOST SIGNIFICANT BVTE OF RECEIVE 

BUFFER LENGTH (81) 

, ° 
, RECEIVE FRAME ADDRESS MATCH 

FIELD ONE (A1) 
PAR 

PAR ° 
, RECEIVE FRAME ADDRESS MATCH 

FIELD TWO (AZ) 

AFN.(J()743C 



inter 8273, 8273·4. 

Selective receive is a'receive mode in which frames are 
ignored unless the address fie.ld matChes anyone of two 
address fields given to the 8273 as parameters. 

When selective receive is used in HDLC the 8273 looks at 
the first character, if extended, software must then decide 
if the message is for this unit. 

Selective Loop Receive (CMD Code C2) 

CMO 

PAR 

PAR 

PAR 

PAR 

° ° 
° ° 

° 
, 

° 
, 

° 
, 

'1'1°1°1°1°1'1° 
LEAST SIGNIFICANT BYTE OF THE 
RECEIVE BUFFER LENGTH ~BO) 

MOST SIGNIFICANT BYTe OF RECEIVE 
BUFFER LENGTH (81) 

RECEIVE FRAME ADDRESS MATCH, 
FIELD ONE (All 

RECEIVE FRAME ADDRESS MATCH 
FIELD TWO (A21 

Selective loop receive operates like selective receive ex­
cept that the transmitter IS placed in flag stream mode 
automatically after detecting an EOP (01111111) following 
a valid received frame. The one bit delay mode is also 
reset at the end of a selective loop receive. 

Receive Disable (CMD Code C5) 

Terminates an active receive command Immediately. 

Al Ao 07 D6 05 04 03 02 01 Do 

CMO I ° I ° I ' I 'I 0 I ° I ° I ' , ° , 
PAR NONE 

Transmit Commands 

The 8273 supports three transmit commands: Transmit 
Frame, Loop Transmit, Transmit Transparent. 

Transmit Frame (CMD Code C8) 

CMD 

PAR 

PAR 

PAR 

PAR 

° 
° 
° 
° 
° 

° , 
, 
1 , 

'1'10101'101010 
LEAST SIGNIFICANT BYTe OF 
FRAME LENGTH (LO) 

MOST SIGNIFICANT BYTE OF 
FRAME LENGTH (l1) 

ADDRESS FIELD OF TI;tANSMIT FRAME IA) 

CONTROL FIELD OF TRANSMIT F.RAME (e) 

. Transmits one frame including: initial flag, frame check 
sequence, and the final flag. 

If the buffered mode is specified, the LO, L1, frame length 
provided as a parameter is the length of the information 
field and the address and control fields must be input. 

In unbuffered mode the frame length provi<!ed must be the 
length of the information field plus two and the address 
and control fie.lds must be the first two bytes of data. Thus 
only the frame length bytes are required as parameters. 

7-188 

Loop Transmi~ (CMD Code CAl 

CMO ° ° '1'101011\01'10 
0 1 LEAST SIGNIFICANT BYTE OF 

FRAME LENGTH (LO) 
PAR 

, 0 , MQST SIG~IFICANT BYTE OF 
FRAME LENGTH (l11 

PAR 

PAR 

PAR 

, 0 1 ADDRESS FIELD OF TRANSMIT FRAME (A) 

0 1 CONTROL FIELD OF TRANSMIT FRAME (C) 

Transmits one frame in the same manner as the transmit 
frame command except: 

1. If the flag stream mode is not active transmission will 
begin after a received EOP has been converted to a 
flag. 

2. If the flag stream mode is active transmission will 
begin at the next flag boundary for buffered mode or at 
the third flag boundary for non-buffered mode. 

3, At the end of a loop transmit the one-bit delay mode is 
entered and the flag stream mode is reset. 

Transmit Transparent (CMD Coded C9) 

CMO , 0 0 1 I 1 I 0 I 0 I 1 I 0 I 0 I 1 

, 0 1 LEAST SIGNIFICANT BYTE OF 
FRAME LENGTH ILO) PAR 

0 1 MOST SIGNIFICANT BYTE OF 
FRAME LENGTH (L1) 

PAR 

The 8273 will transmit a block of raw data without 
protocol, i.e., no zero bit insertion, flags, or frame check 
sequences. 

Abort Transmit Commands 

An ,abort command is supported for each type of transmit 
command. The abort commands are ignored if a transmit 
command is not in progress. 

Abort T1'ansmit Frame (CMD Code CC) 

A1 Ao 07 0 6 Ds 04 03 02 01 Do 

CMO.' 0 , 0' ' , 1 , 0 , 0 l' , ' I 0 '0 
PAR, NONE 

After an abort character (eight contiguous ones) is trans­
mitted, the transmitter reverts to sending flags or idles as a 
function of the flag stream mode specified. 

Abort Loop Transmit (CMD Code CE) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

CMo'l 0 I 0' ' , 1 , 0 I 0 I' I ' , 1 , 0 
PAR NONE 

After a flag is transmitted the transmitter reverts to one bit 
delay mode. 

Abort Transmit Transparent (CMD Code CD) 

Al Ao, 07 06 05 04 03' 02 0, 00 

CMO" 0 , 0' 1 , 1 I 0 , 0 I 1 I 1 I 0 I 1 

PAR: NONE 

The transmitter reverts to sending flags or idles as a tunc: 
tion of the flag stream mode specified. 

AFN-00743C 



inter 8273. 8273-4 

Modem Control Commands 
The modem control commands are used to manipulate the 
modem control ports. ' , 

When read Port A or Port B commands are executed the 
result of the command is returned in the result register. 
The Bit Set Port B command requires a parameter that is a 
mask that corresponds to the bits to be set. The Bit Reset 
Port B command requires a mask that has a zero in the bit 
positions that are to be reset. 

Reid Port A (CMO Code 22) 
A, Act 0., 0, Os 04 03 02 0, Do 

CMD: I 0 I 0 I 0 I 0 I ' I 0 I 0 I 0 I ' I 0 

PAR: NONE 

Reed Port B (CMO Code 23) 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

CMDlolololol'lolo 01,1,1 

PAR NONE 
I 

Set Port B Bltl (CMO Code A3) 

This command allows user defined Port B pins to be set. 

~ ~ ~ ~ ~,~ ~ ~ ~'~ 

CMD'lolo 
PAR: 0 1 1:1:1'1 0 10 10 1'1'1 

I RTS'- REQUEST TO SEND 

USER DEFINED 

FLAG DETECT 

8273 Command Summary 

Command 
Parameler Command Description (HEX) 

Set One Bit Delay A4 Set Mask 

Reset One Bit Delay 64 Reset Mask 

Set Data Transfer Mode 97 Set Mask 

Reset Data Transfer Mode 57' Reset Mask 

Set Operating Mode 91 Set Mask 

Reset Operating Mode , 51 Reset Mask 

Set Serial I/O Mode I AO Set Mask 

Reset Serial 1/0 Mode 60 Reset Mask 

General Receive CO BO,B1 

(os) Flag Detect 

This bit can be used to set the flag detect pin. However, it 
will be reset when the next flag is detected. 

(04-01) User Defined Outputs 

These bits correspond to the state of the PB4-PB1 output 
pins, 

(00) Request to Send 

This is a dedicated 8273 modem control signal, and 
reflects the same logical state of RTS pin. 

Ruel Port B Bits (CMO Code 83) 

This command allows Port B user defined bits to be reset. 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

: I : I' I 0 I 0 I 0 I' I' I 
I RTS - REOUEST TO SEND 

USER DEFINED 

FLAG DETECT 

This command allows Port B (04-0,) user defined bits to 
be reset. These bits correspond to Output Port pins (PB4-
PB,). 

Result , Completion 
Relultl Port Interrupt 

,None - No 

None - No 

None - No 

None - No 

None - No 

None - No 

None - No 

None - No 

RIC,RO,R1,(A.C)(~ RXI/R Ves 

Selective Receive C1 BO,B1,A1,A2 RIC,RO,R1,(A,C~~ RXI/R Ves 

Selective Loop Receive C2 BO,B1,A1,A2 RIC,Rg,R1,(A,C~ RXI/R Ves 

Receive Disable C5 None None - No 

Transmit Frame C8 LO,L 1,(A,C~') TIC TXI/R Ves 

Loop Transmit CA LO,L 1.(A,C~') TIC TXI/R Ves 

Transmit Transparent C9 LO,L1 TIC TXI/R Ves 

Abort Transmit Frame CC None TIC TXI/R Ves 

Abort Loop Transmit CE None TIC TXI/R Ves 

Abort Transmit Transparent CD None TIC TXI/R Ves 

Read Port A 22 None Port Value Result No 

Read Port B 23 None Port Value Result No 

Set Port B Bit A3 Set Mask None - No 

Reset Port B Bit 63 Reset Mask None - No 

NOTES: 
1. Issued only when in buffered mode. 7-189 AF~43C 

2, Read as results only In buffered mode. 



8273.82734 

8273 Command Summary Key 

BO - Least significant byte of the receive buffer 
length. 

B1 - Most significant byte of the receive buffer 
length. 

LO - Least significant byte of the Tx frame length. 
L 1 - Most significant byte of the Tx frame length. 
A1 - Receive frame address match field one. 
A2 - Receive frame address match field two. 
A - Address field of received frame. If non-buffered 

mpde IS specified, this result is not provided. 
C - Control field of received frame. If non-buffered 

mode is specified this result is not provided. 
RXI/R - Receive interrupt result register. 
TXI/R - Transmit interrupt result register. 
RO - Least significant byte of the length of the frame 

received. 
R1 - Most significant byte of the length of the frame 

received. 
RIC - Receiver interrupt result code. 
TIC - Transmitter interrupt result code. 

COMMAND 

DATA IN 

I GENERAL t RECEIVE 
CRo. Rli 

DMA REQUESTS t t t 
DATA~~ERRUPTS _____________________________________ !-A ____ ~~C----~~ll-----------------------

L.-.,----J 
NON·BUFFERED MODE FRAME 

CPUINTERRUPTS ______________________________________________ ~ ___ CO_M_P_L_E_T_E __ ~ __________ ~ __ 

Figure 15. Typical Frame Reception 

NOTE: 
In order to ensure proper operation to the maximum baud rate. Receive commands or Read/Write Port commands should be written 
only when either the transmitter or the receiver is inactive. In full duplex systems, it is recommended that these commands be issued 
after servicing a transmitter interrupt but before a new transmit command is issued. 

7-190 AFN.()I)743C 



inter 
LASTMRAMETER 
Of Tx COMMAND 

1 

RT8 _---1/_-11 

CT8 -------' 

8273, 8273-4 

D~ ______ ~~~----.tl.~t~~~t~~---------------------
BUFFER MODE 

INT 
-----------------------------------------=~~R~~=-------------------~F~INtA~L----

TxlNT TxlNT 

Figure 16a. ~plcal Frame Transmission, Buffered Mode 

LAST PARAMETER 

I 1---8 BYTES---\ 

I. 

RTS __ .. 1....../1 

CTS -------' 
D~ ___ ~~==~=-~IA-~tC-~tl~.~II~.~tl~.~----------____ 

NON-BUFFER MODE 

INT 
--------------------------------------------~~~R~~~~--------------------~'=FI~NA~L----

TXINT TxlNT 

Figure 16b. ~plcal Frame Transmission, Non-Buffered Mode 

l MEMORIES I ' 
} 

') SYSTEM BUS ~ 
4 ~DBO-7 4 

Au,A, 
MEMR °Bo-7 
lOW RO 
MEMW WR lOR • cs cs TXINT 
HRQ RXINT 

~ 
.. HACK 

" 
RXC 

TxDRQ RXO 
8257 TXC OMA TxOACK , TXO CONTROLLER 

8273 MODEM 
RxDRQ 

: 
RxDACK A MODEM CONTROLS y 

.... 

Figure 17. 8273 System Diagram 

7-191 AFN-00743C 



WAVEFORMS 

COMMAND PHASE 

CBSY / 
---I 

8273, 8273·4 

I 
I I 
1--13-+1 

_CP_B_F ________________________ ~l ~~ ______ ~J' 

LAST 
\ PARAMETER I 

I I 
I-T4--1 

: ~'-----
I+--T5--.1 

I \ n,---

Table 2. Command Phase Timing (Full Duplex) 

Buffered Non-Buffered 
Symbol Timing Parameter Unit 

Min. Max. Min. Max. 

T1 Between command & first parameter 13 756 13 857 tcy 

T2 Between consecutive parameters 10 604 10 705 tcy 

T3 Command Parameter Buffer full bit 10 604 10 705 tcy 
Reset after Parameter loaded 

T4 Command busy bit reset after last 128 702 128 803 tcy 
parameter 

T5 CPBF bit reset after last parameter 10 604 10 705 tcy 

\ 

7-192 AFN-00743C 



8~73,8273-4 

WAVEFORMS (Continued) 

RECEIVER INTERRUPT 

RD __ , LAsr 
INTERRRUPT RESUL'l 

RxlRA 

RxINT / 

---' 

Table 3. Receiver Interrupt Re.ult Timing 
; 

Symbol Timing Parameter (clock cycle.) 
Buffered 

Min. Max. 

T1 RxlRA bit set after RIC read 18 29 

T2 RxlNT goes away after last Int. Result 
read· 

16 27 

7-193 

\'--:----
I I 

~T2~ 

:\ '----

Non-Buffered 
Unit 

Min •. Max. 

18 29 tcy 

16 27 tcy 

AFN-00743C 



intJ . 8273,8273-:4 

WAVEFORMS (Continued) '( 

TRANSMIT INTERRUPT 

RD o STATUS r--------, INTERRUPT ,....------

\ / \::J 
TIIRA 

I 

TIINT / 
-~ 

Table 4. Transmit interrupt Result 

Buffered Non-Buffered 
Unit Symbol Timing (Clock Cycle) 

Min. ' I Max. Min. I Max. 

T1 TxlNT inactive after Int. Results read 13 I 353 13 I 454 tcy 

7-194 AFN.oo743C 



8273, 8273-4 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ........ O· C to 70· C 
Storage Temperature ........... : ... -65·Cto+150·C 
Voltage on Any Pin With 
Respectto Ground ..................... -0.5V to +7V 

Power Dissipation .......................... , 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those Indicated In the operational sections of this specifi­
cation is not implied. Exposure to' absolute maximum 
rating conditions for extended periods may affect device 
reliability. . 

D.C. CHARACTERISTICS (8273, 11273-4) (TA = O"C to 70"C, Vcc = +5.0V ± 5%) 

SymbOl Parameter Min. Max. Unit 

Vil Input Low Voltage -0.5 0.8 V 

VIH Input High Voltag~ 2.0 Vcc+ 0.5 V 

VOL Output low Voltage 0.45 V 

VOH Output High Voltage 2.4 V 

III Input load Current :t10 "A 

ioFL Output leakage Current :t10 "A 

Icc Vee Supply Current 180 mA 

CAPACITANCE (8273, 827$04) (T A = 25·C, Vcc = GND = OV) 

Symbol Parameter Min. Typ. Max. 

CIN Input Capacitance 10 

ClIO 1/0 Capacitance 20 

A.C. CHARACTERISTICS (TA=O'C to 70·C, Vee= +5.0V:t5%) 

CLoCK TIMING (8273) 

Symbol' Parameter Min. Typ. Max. 

tCY Clock 250 1000 

tCl Clock low 120 

tCH Clock High 120 

CLOCK TIMING (8273-4) 

Symbol Parameter Min. Typ. Max. 

tCY Clock 286 1000 

tCl Clock low 135 

tCH Clock High 135 

7-195 

Te,t Condition, 

IOl = 2.0 mA for Data Bus Pins 
IOl= 1.0mA for Output Port Pins 
IOl= 1.6mA for All Other Pins 

10H= -200"A for Data Bus Pins 
10H= "':100"A for All Other Pins 

VIN=VCC·toOV I 

VOUT = Vee to .45~ 

Unit Test Conditions 

pF te= 1MHz 

pF Unmeasured Pins 
Returned to GND 

Unit Te,t Conditions 

ns 
64K Baud Max 

ns Operating Rate 
ns i 

Unit Tes' Conditions 

ns 
56K Baud Max 

ns Operating ,Rate 
ns 

AFN-00743C 



·8273,.821$-4 

A.C: CHARACTERISTICS ' (8273, 8273-4) (T A = O· C to 70· C. V CC = +5.0V ± '5%) 
REA~ CYC;LE 

Symbol ' Parame,ter . , Min. Max. Unit 

, tAC Sel,ect SetltP to Rl) 0 ns 
. teA ' Select Hold fromRD 0 ns 

tRR RD Pulse Width 250 ns 

tAD Data Delay from Address 300 ns 

tRO Data Delay from Rl) 200 ns 

tOF Output Float Delay 20 100 ns . , 

toc DACK Setup to RD 25 ns 

tco DACK Hold from RD 25 ns 

tKO Data Delay from DACK 300 ns 

WRITE CYCLE 

Symbol Parameter Min. Max. Unit 

tAC Select Setup to WR 0 ns 

tCA Select Hold from WR 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR 150 ns 

two Data Hold from WR ,0 ns 

toc DACK Setup to WR/ 25 ns 

tco DACK Hold from WR 25 ns 

DMA 

SY(l1bol Parameter Min. Max. Unit 

tco 
,Request Hold from WR or RD 

200 ns (for Non·Burst Mode) 

OTHER TIMING 

Symbol Parameter Min. Max. Unit 

tRSlW Reset Pulse Width 10 tCY 

tr Input Signal Rise Time 20 ns' 

t, Input Signal Fall Time 20 ns 

tRSTS Reset to First IOWR 2 tCY 

tCY32 32XCIock Cycle Time 13.02' tCY 
, 

ns 

tCL32 32X Clock Low Time 4' tCY ns 

tCH32 32X Clock High Time 4' tCY ns 

tOPLL DPLL Output Low 1 . tCY- 50 ns 

tOCL Data Clock Low 1 . tCY- 50 ns 

tOCH Data Clock HiQh 2' tCY ns 

toCY Data Clock 62.~ . tCY ns 

tTo Transmit Data Delay 200 ns 

tos ',Data Setup Time 200 ns 

tOH Data Hold Time 100 ns 

tFLO FLAG DET Output Low 8· tcy±50 ns 

NOTES: 

Test Conditions 

Note 2 
Note 2 

Note 2 

CL= 150pF, ~ote 2 

CL = 20 PI" for Minimum; 
150pF for Maximum 

Test Conditions 

Test Conditions 

Test Conditions 

Note 3 

1. All timing measurements are made at the reference voltages unless otherwise specified: Input "1" at 2.0V. "0" at 0.8V; 
Output "1" at 2.QV. "0" at 0.8V. 

2. tAD. tRO. tACo and tCA are not concurrent specs. 
3. if receive commands or Re"d/Wnte Port commands are Issued while both the transmitter and receiver are active. this specification 

will be 81.5TCY min. 

7-196 AFN·OQ743C 



inter 8273, 8273-4 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

M=X x= 2.0 2.0 > TEST POINTS < . 
0.8 0.8 

0.45 , 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 BV FOR A LOGIC 0 

WAVEFORMS 

lREAD 

DACK ---.J 
'oe 

Ao. A,. CS 

No 
I---tAC~ 

DATA BUS .- - ~--------
tAD 

"D 

WRITE 

DACK =:x:::::= 
I 

X· 
--~tAC 

~ 
DATA BUS )( 

L 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~Cl~150PF TEST 

CL = 150pF 
CL INCWDES JIG CAPACITANCE 

X 
CD 

X 
'RR I--tCA-I 

J 
tRO 

~ 
I :--tOF~ 

):--------

'0-
J( 

tww r-tCA-l 

X 
tow :-.---- two----l 

7-197 AFN-00743C 



inter 8273, 8273-4 

WAVEFORMS (Continued) ( (. 

DMA 

r'CQ~ 
\~----r-----------------------------______ I 

~OR~ XL ______________________________ _ 

ORO ___ .J/ 

CHtPCLOCK 
t ~ =l 
LtCL=rLtCHJ~---J/ 

32XCLOCK 

TRANSMIT , 

-j \ 
+----tDCL .! ~-tDCH ------. 

tOCY . 
TxO ~ 

--tTD-

RECEIVE 

\1+---. ~,-~lt-,~--~~ ~I--------IDCV --if 
RXO------.t=J [~J--

7-198 AF~43C 



inter 8273,8273-4 

WAVEFORMS (Continued) 

DPLLOUTPUT 

FLAG DETECT OUTPUT 

7-199 AFN.()()743C 



8274 
MULti-PROTOCOL SERIAL 

CONTROLLER (MPSC) 

• Asynchronous, Byte Synchronous and 
Bit Synchronous Operation 

• Two Independent Full Duplex 
Transmitters and Receivers 

• Fully Compatible with 8048, 8051, 8085, 
8088, 8c)s6, 80188 and 80186 CPU's; 8257 
and 8237 DMA Controllers; and 8089 I/O 
Proc. 

• 4 Independent DMA Channels 

• Baud Rate: DC to 880K Baud 

• Asynchronous: 
-5-8 Bit Character; Odd, Even, or No 

Parity; 1, 1.5 or 2 Stop Bits 
-Error Detection: Framing, Overrun, 

and Parity 

• Byte Synchronous: 
- Character Synchronization, Int. or Ext. 
- One or Two Sync Characters 
- Automatic CRC Generation and 

Checking (CRC-16) 
-IBM Bisync Compatible 

• Bit Synchronous: 
- SDLC/HDLC Flag Generation and 

Recognition 
- 8 Bit Address Recognition 
- Automatic Zero Bit Insertion and 

'Deletion 
- Automatic CRC Generation and 

Checking (CCITT-16) 
- CCITT X.25 Compatible 

• Available in EXPRESS 
-Standard Temperature Range 

The Intele 8274 Multi-Protocol Series Controller (M PSC) is designed to interface High Speed Communications 
Lines using Asynchronous, IBM Bisync, and SOLC/HOLC protocol to Intel microcomputer systems. It can be 
interfaced with Intel's MC5-48, -85, -51; iAPX-86, -88, -186 and -188 familieS, the 8237 OMA Controller, or the 8089 
110 Processor-in polled, interrupt driven, or OMA driven modes of operation. ' 

The MPSC is a 40 pin device fabricated using Intel's High Performance HMOS Technology. 

D80_7 

CLJ<o------, 
III!RT--_-, 

00----4 

"---" 
.,----L_-' 

RD>----....I 
WII ____ --' 

~A 
CflI, 

"n, 
!I'IiiDEf, 

0111, 

DTRa 
RiC. 

L.-__ -'--__ ~- ..... 

NETWORK INTERFACE 

Figure 1. Block Dlag~am 

RxDB 9 

Rfta/BYNtiET 8 

RDYefbDAQA 11 

Fig~re 2. Pin Configuration 

Inlel CorporatIon Assumes No ResponSibility for the USB of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other C,rcuit Patent LICeOHS are Implied 

©INTEL CORPORATION, 1981 
7-200 



8274 

Table 1. Pin Description 

Pin Pin 
Symbol No. ~pe Name and Function Symbol No. ~pe Name and Function 

ClK 1 I Clock: System clock, TTL compat- RDY.I 11 a Ready (Channel Bl/li'ansmitter DMA 
ible. TxDRQ. Request (Channel AI: In mode 0 this 

~ 2 I Reset: A Ic;>w signal on this pin will 
force the MPSC to an idle state TxD. 
and TxD. are forced high. The 
modem interface output signals are 
forced high. The MPSC will remam 
idle until the control registers are 
initialized. Reset must be true for one 

pin is RDY. and is used to syn-
chronize data transfers between the 
processor and the MPSC (Channel 
B). In modes 1 and 2 this pin IS 
TxDRQ. and is used by the Chapnel 
A transmitter to request a DMA 
transfer 

complete ClK cycle. DB7 12 1/0 Data Bus: The Data Bus lines are bi-

~ 3 I Carrier Detect (Channel AI: This 
interface signal is supplied by the 
modem to indicate that a data carrier 

directional three state lines which 
interface with the system's Data Bus. 

DB6 13 
signal has been detected and that a DBS 14 
valid data signal is present on the DB4 15 
RxDA line If the auto enable control 
is' set the 8274 will not enable the 
serial receiver until <TI5. has been 

DB3 16 
DB2 17 

activated. DB1 18 

RxC. 4 I Receive Clock (Channel B I: The DBO 19 
serial data are shifted into the Re- GND 20 Ground. 
ceive Data input (RxD.) on the rising 
edge of the Receive Clock 

CD. 5 I Carrier Detect (Channel B I: Th is 
interface signal is supplied by the 
modem to indicate that a data carrier 
signal has been detected and that a 
valid data signal is present on the 

Vee 40 Power: +5V Supply 

CTs. 39 I Clear to Send (Channel AI: This 
interface signal is supplied by the 
Modem ~sponse to an active FiTs 
signal CTS indicates that the data 
terminal/computer equipment IS per-
mitted to transmit data In addition, if 

RxD. Ime If the auto enable control the auto enable control is set, the 
is set the 8274 Will not enable the 
serial receiver until CD. has been 

8274 will not transmit data bytes until 
CTS has been activated 

activated. 

ETh. 6 I Clear to Send (Channel BI: This 
interface signal is supplied by the 
modem in response to an active Ri'S 
signal. Ci'S indicates that the data 
terminal/computerequipment is per-
mitted totransmitdata In addition, if 
the auto enable control is set, the 
8274 will not transmit data bytes until 
Ci'S has been activated 

RTS. 38 a Request To Send (Channel A): gen-
eral purpose output commonly used 
to signal that Channel A IS ready to 
send data 

TxDA 37 a Transmit Data (Channel AI: This pm 
transmits senal data to the communi-
cations channel (Channel A) 

TxC. 36 I Transmit Clock (Channel AI: The 
senal data are shifted out from the 

TxC. 7 I li'ansmit Clock (Channel BI: The 
serial data are shifted out from the 

Transmit Data output (TxD.) on the 
falling edge of the Transmit Clock 

Transmit Data output (TxDe) on the RxC. 35 I Receive Clock (Channel AI: The 
falling edge of the Transmit Clock serial data are shifted into the Re-

TxDe 8 a li'ansmlt Data (Channel BI: This pin 
transmits serial data to the communi-

ceive Data Input (RxD.j on the nsing 
edge of the Receive Clock. 

cations channel (Channel B) RxD. 34 I Receive Data (Channel AI: T~ls pin 

RxDe 9 I Receive Data (Channel BI: This pin 
receives serial data from the com-

receives senal data from the com-
mUnications channel (Channel A) 

munications channel (Channel B) SYNDETA 33 I/O ,synchronous Detection (Channel A): 

~ 10 1/0 Synchronous Detection (Channel BI: 
IRTS. Thispm IS used in byte synchronous 

mode as either an internal sync 
detect (output) or as a means to 
force' external synchronization (in-
put) In SDlC mode, this pin IS an 
output indicating Flag detection In 
asynchronous mode it is a general 

This pin is used in byte synchronous 
mode as either an Internal sync 
detect (output) or as a means to 
force external synchronization (in-
put) In SDlC mode, thiS pin IS an 
output indicating flag detection In 
asynchronous mode it is a general 
purpose Input (Channel A) 

purpose input (Channel B) RDY.I 32 a Ready: In mode 0 this pin is RDYA 
RxDRQA and is used to synchronize data' 

Request to Send (Channel BI: Gen-
eral purpose output, gene~ally used 
to signal that Channel B is ready to 
send data 

transfers between the processor 
and the MPSC (Channel A). In 
modes 1 and 2 this pin is RxDRQA 
and is used by the channel A receiver 
to request a DMA transfer 

SYrii'5E"f. or RTS. selection is done DTR. 31 a Data Terminal Ready (Channel A): 
by WR2, D7 (Channel A) General.purpose output 

AFN-01701B 

7-201 



intJ 8274 

Table 1. Pin Description 

Pin 
Symbol No. "TYpe Name and Function 

iP5i 30 0 Interrupt Priority Out/Transmitter 
TxDRQ. DMA Request (Channel 8): In modes 

a and 1, this pin is Interrupt Priority 
Out. It is used to establish a: hardware 
interrupt priorit~ scheme with iPl. It 
is low only if iPl is low and the 
controlling processor is not servicing 
an interruptfrom this MPSC. In mode 
2 it is TxDRQ. and is used to request 
a DMA cycle for a transmit operation 
(Channel 8) 

WI! 29 I/O Interrupt Priority In!Recelver DMA 
RxDRQ. Reques~(Channel 8): In ,modes 0 

and 1, IPl,ls Interrupt PrlOrity In A 
low on IPI means that no higher 
priority device is being serviced by 
the controlling processor's interrupt 
service routine. In mode 2 this pin is 
RxDROo and is used to request a 
DMA cycle for a receive operation 
(Channel 8). In Interrupt mode, this 
pin must be tied low. 

iNi 28 0 Interrupt: The interrupt signal indi-
cates thatthe highest prioriI\' internal 
interrupt requires service (open col-
lector) Priority can be resolved via 
an external Interrupt controHer or a 
daisy-chain scheme. 

RESET 

When the 8274 RESET line is activated, both MPSC 
channels enter the idle state. The serial output lines are 
forced to the marking state (high) and the modem 
interface signals (Fi'rn, OTR) are forced high. In addi­
tion, the pointers registers arlil set to zero. 

GENERAL DESCRIPTION 

The Intel 8274 Multi-Protocol Serial Controller is a 
microcomputer peripheral device which supports 
Asynchronous, Byte Synchronous (Monosync, IBM 
Bisync), and Bit Synchronous (ISO's HOLC, IBM's 
SOLC) protocols. This controller'S flexible architecture 
allows easy implementation of many variations of these 
three protocols with low software and hardware 
overhead. 

The Multi-Protocol Serial controller (MPSC) imple­
ments two independent serial receiver/transmitter 
channels. 

The MPSC supports several microprocessor interface 
options: Polled, Wait, Interrupt driven and OMAdriven. 
The MPSC is designed to support INTEL'S MCS-85 
and iAPX 86, 88, 186, 188 families. 

7-202 

Pin 
Symbol No. "TYpe Name and Function 

.~ 27 I Interrupt Acknowledge: This Inter-
rupt Ackowledge signal allows the 
highest priority interrupting device 
to generate an interrupt vector. This 
pin must be pulled high (inactive) in 
non-vector mode. 

DiRs 26 0 Data Terminal Ready (Channel 8): 
This is a general purpose output 

A, 25 I Addras" This line selects Channel A 
or 8 during data or command trans-
fers. A low selects Channel A. 

A, 24 I Address: This line selects between 
data or command information trans-
fer A low means data. 

~ 23 I Chip Select: This signal selects the 
MSPC and enables reading from or 
writing into its registers 

RD 22 I Read: Rea', controls a data byte or 
status byte transfer from the MPSC 
to the CPU. 

WR 21 I Write: Write controls transfer of data 
or commands to the MPSC. 

FUNCTIONAL DESCRIPTION 

Additional information on Asynchronous and Syn­
chronous Communications with the 8274 is available 
respectively in thEil Applications Notes AP 134 and AP 
145. 

Command, parameter, and status information is stored 
in 21 registers within the MPSC (8 writable registers for 
each channel, 2 readable registers for Channel A and 3 
readable registEilrs for Channel B). 

In the following discussion, the writable registers will 
be referred to as WRO through WR7 and the readable 
registers will be referred to as RRO'through RR2. 

This section of the data sheet describes how the 
Asynchronous and Synchronous protocols are imple­
mented in the MPSC. It describes general considera­
tions, transmit operation, and receive operation for 
Asynchronous, Byte Synchronous, and Bit Synchro­
nous protocols. 

AFN-01701B 



intJ 8274 

ASYNCHRONOUS OPERATIONS 

TRANSMITTER/RECEIVER INITIALIZATION 

(See Oetailed Command Oescription Section for com­
plete information) 

In order to operate in asynchronous mode, each MPSC 
channel must be initialized with the following infor­
matio'l: 

1. TransmiVReceive Clock Rate. This parameter is 
specified by bits 6 and 7 of WR4. The clock rate may 
besetto 1, 16, 32, or64 times the data-link bit rate. If 
the X1 clock mode is selected, the bit synchroniza-
tion must be accomplished externally. \ 

2. Number of Stop Bits. This parameter is specified by 
bits 2and 30fWR4. The number of stop bits may be 
set to 1, 1 1/2, or 2. 

3. Parity Selection. Parity may be set for odd, even, or 
no parity by bits 0 and 1 of WR4. 

4. Receiver Character Length. This parameter sets the 
length of received characters to S, 6, 7, or 8 bits. This 
parameter is specified by bits 6 and 7 of WR3. 

S. Receiver Enable. The serial-channel receiver opera­
tion may be enabled or disabled by setting or 
clearing bit 0 of WR3. 

6. Transmitter Character Length. This parameter sets 
the length of transmitted characters to S, 6, 7, or 8 
bits. This parameter is specified by bits Sand 6 of 
WRS. Characters of less thanS bits in length may be 
iransmitted by setting the transmitted length to five 

. bits (set bits Sand 6 of WRS to 0). 

The MPSC then determines the actual number of 
bits to be transmitted from the character data byte. 
The bits to be transmitted must be right justified in 
the data byte, the next three bits must be set to 0 and 
all remaining bits must be set to 1. The following 
table illustrates the data formats for transmission of 
1 to S bits of data: 

Number of 
Bits Transmitted 

07 06 OS 04 03 02 01 00 (Character Length) 
1 1 1 1 0 0 0 c 1 
1 1 1 0 0 a c c 2 
1 1 0 0 0 c c c 3 
1 0 0 0 c c c c 4 
0 0 0 c c c c c S 

7-203 

7. Transmitter Enable. The serial channel transmitter 
operation may be enabled or disabled by setting or 
clearing bit 3 of WRS 

8. Interrupt Mode. 

For data transmission via a modem or RS-232-C 
interface, the folloWing information must also be 
specified: 

1. The Request To Send (RTS) (WRS; 01) and Oata 
Terminal Ready (OTR) (WRS; 07) bits must be set 
along with the Transmit Enable bit (WRS; 03). 

2. Auto Enable may be set to allow the MPSC to 
automatically enable the channel transmitter when 
the clear-ta-send signal is active and to automatically 
enable the receiver when the carrier-detect signal is 
active. However, the Transmit Enable bit (WR3; 03) 
and Receive Enable bit (WR3; 01) must be set in 
order to use the Auto Enable mode. Auto Enable is 
controlled by bit S of WR3. 

When loading Initialization parameters into the MPSC, 
WR4 information must be written before the WR1, WR3, 
WRS parameters commands. 

Ouring initialization, it is desirable to guarantee that the 
external/status latches reflect the latest interface 
information. Since up to two state changes are 
internally stored by the MPSC, at least two Reset 
External/Status Interrupt.commands must be issued. 
This procedure is most easily accomplished by simply 
issuing this reset command whenever the pOinter 
register is set during initialization. 

An MPSC initialization procedure (MPSC$RX$INIT) 
for asynchronous communication is listed in Intel 
Application Note AP 134. 

TRANSMIT 

The transmitfunction begins when the Transmit Enable 
bit (WRS; 03) is set. The MPSC automatically adds the 
start bit, the programmed parity bit (odd, even or no 
parity) and the programmed number of stop bits (1, 1.S 
or 2 bits) to the data character being transmitted. 1.S 
stop bits option must be used with X16, X32 or X64 
clock options only. 

AFN-01701B 



inter. 8274> 

The serial data are shifted out from the Transmit Data 
(IXO) output on the falling edge of tlJe Transmit Clock 
(TxC) input at a rate programmable to 1, 1/16th, 1/32nd, 
or 1/64th ff the clock rate supplied to the TxC input. 

The TxO o~tPut is held high when the transmitter has 
no data to send, unless, under program control, the 
Send Break (WRS; 04) commandis issued to hold the 
TxO low. . . 

If the External/Status Interrupt bit (WR1; ~O) is set, the 
status of CIT, rn and SYNDET are monitored and, if 
any changes occur for a period oftime greater than the 
minimum specified pulse width, an interrupt is gener­
ated. CTS is usually monitored using this interrupt 
feature. (e.g. Auto Enable option). 

The Transmit Buffer Empty bit (RRO; 02) is set by the 
MPSC when the data byte from the buffer is loaded ir 
the transmit shift register. Data should be written to the 
MPSC onfy when the Tx buffer becomes empty te. 
prevent overwriting. 

Receive 

The receive function begins when the Receive Enable 
(WR3; ~O) bit is set. If the Auto Enable (WR3: 05) 
option is selected, then Carrier Detect (a:5) must also 
be low. A val id start bit is detected if a low persists for at 
least 112 bit time on the Receive Data (RxO) input. 

The data is sampled at mid-bit time, on the rising edge 
of RxC, until the entire character is assembled. The 
receiver inserts 1 's when a character is less than 8 bits. 
If parity (WR4·; ~O) is enabled and the character is less 
than 8 bits the parity bit is not stripped from the 
character. 

Error Reporting 

The receiver also stores error status for each of thEi 3 
data characters in the data buffer. Three error condi­
tions may be encountered during data reception in tl:le 
asynchronous mode: 

1. Parity. If parity bits are computed and transmitted 
with each character and the MPSC is set to check 
parity (bit 0 in WR4 is set), a parity error will occur 
whenever the number of "1" bits Within the character 
(including the parity bit) does not match the 
odd/even setting of the parity check flag (bit 1 in 
WR4). When a parity error is detected, the parity 
error flag (RR1; 04) is set and remains set until it is 
reset by the Error Reset command (WRO; OS, 04, 
03). 

7-204 

2. Framing. A framing error will occur·if a stop!;>i! is not 
detected immediately following the parity bit (if 
parity checking is enabled) or immediately following 
the most-sig nificant data bit (if parity checki ng is not 
enabled). When a Framing Error is detected, the 
Fram·ing Error bit (RR1; 06) is set. The detection of a 
Framing Error adds an additional 1/2 bit time to the 
character time so the Framing E~ror is not interpreted 
as a new start bit. 

3. Overrun. If the CPU fails to read a data character 
while morethan three characters have been received, 
the Receive Overrun bit (RR1; 05) is set. When this 
occurs, the fourth character assembled replaces the 
third character in the receive buffers. Only the 
overwritten character is flagged with the Receive 
Overrun bit. The Receive Overrun bit (RR1, 05) is 
reset by the Error Reset command (WRO; OS, 04, 03). 

External/Status Latches 

The MPSC continuously monitors the state of five 
externallstatus conditions: \ 

\ 

1. CTS - clear-to-send input pin. 

2. CD - carrier-detect input pin. 

3. SYNOET - synC-detect input pin. This pin may be 
used as a general-purpose input in the asynchronous 
communication mode. 

. ' 
4. BREAK - a break condition (series of space bits on 

the receiver input pin). 

5. T,x UNOERRUN/EOM - Transmitter Underrun/End 
of Message. 

A change of state in any ofthese monitored conditions 
will cause the associated status bit in RRO to be latched 
(and optionally cause an interrupt). 

If the External/Status Interrupt bit (WR1; ~O) is enabled, 
Break Detect (RRO; 07) and Carrier Detect (RRO; 03) 
will cause an interrupt. Reset External/Status interrupts 
(WRO; OS, 04, 03) will clear Break Detect and Carrier 
Detect bits if they are set. 

AFN·01701C 



8274 

Asynchronous Mode Register Setup 

07 06 05 
00 Rx 5 b/char 

WR3 01 Rx 7 b/char AUTO 
10 Rx 6 blchar ENABLE 
11 Rx B b/char 

00 X1 Clock 

WR4 01 X16 Clock 0 
10 X32 Clock 
11 X64 Clock 

00 Tx:55 b/char 
,WR5 DTR 01 Tx 7 b/char 

10 Tx 6 b/char 
1,1 Tx B b/char 

SYNCHRONOUS OPERATION­
MONOSYNC, BISYNC 

General 

04 

0 

0 

SEND 
BREAK 

The MPSC must be initialized with the following pa­
rameters: odd or even parity (WR4; 01,00), X1 clock 
mode (WR4; 07, 06), 8- or 16-bit sync character 
(WfII4; OS, 04), CRC polynomial (WRS; 02), Trans­
mitter Enable (WRS; 03), interrupt modes (WR1, 
WR2), transmit character length (WRS; 06, 05) and 
receive character length (WR3; 07,'06). WR4 pa~ 
rameters must be written before WR1, WR3, WRS, 
WR6 and WR7. 

The data is transl1)itted on the falling edge of the 
Transmit Clock, (TxC) and is received on the rising 
edge of Receive Clock (RxC). The X1 clock is used 
for both transm it and receive operations for all three 
sync modes: Mono, Bi and External. 

03 02 01 00 

0 0 0 Rx 
ENABLE 

EVENI 
01 1 STOP BIT ODD PARITY 
10 1 V2 STOP BITS PARITY ENABLE 
11 2 STOP BITS 

Tx 0 RTS 0 
ENABLE 

Transmit Set-Up-Monosync, Bisync 

Transmit data is held high after channel reset, or if 
the transmitter is not enabled. A break may .be pro­
grammed to generate a spacing line that begins as 
soon as the Send-Break (WRS; 04) bit is set. With the 
transmitter fully initialized and enabled, the default 
condition is continuous transmission of the 8- or 
16-bit sync character. ' 

Using interrupts for data transfer requires that the 
Transmit InterrupVOMA Enable bit (WR1; 01) be set. 
An interrupt is generated each time the transmit buf­
fer becbmes empty. The interrupt can be satisfied 

Synchronous Mode Register Setup-MonosYJlc, Bisync 

07 06 05 04 03 02 01 00 
00 Rx 5 b/char ENTER SYNC 

WR3 01 Rx 7 b/char AUTO 
\. 

HUNT Rx CRe 0 CHAR Rx 
10 Rx 6 b/char ENABLE MODE ENABLE LOAD ENABLE 
11 Rx B b/char INHIBIT 

00 B bit Sync EVENI 
WR4 0 0 01 16, bit Sync 0 0 ODD PARITY 

11 Ext Sync PARITY ENABLE 

00 Tx:55 b/char 1 
WR5 DTR 01 Tx 7 b/char SEND Tx (SELECTS RTS Tx CRC 

10 Tx 6 b/char BREAK eNABLE CRC-16) ENABLE 
11 Tx'B b/char 

7-205 AFN-01701C 



intJ 8274 

either by writing another character into the transmit­
ter or by resetting the Transmitter Interrupt/OMA 
Pending latch with a Reset Transmitter Interrupt/ 
OMA Pending Command (WRO; OS, 04, 03). If noth- ' 
ing more is written into the transmitter, there can be 
no further Transmit Buffer Empty interrupt, but this 
situation does cause a Tr?lnsmit Underrun condition 
(RRO; 06). 

Data Transfers using the ROY signal are for software 
controlled data transfers such as block moves. ROY 
tells the CPU that the MPSC is not ready to accept! 
provide data and that the CPU must extend the 
output/input cycle. OMA data transfers, use the 
TxORQ AlB signals which indicate that the transmit 
buffer is empty, and that the MPSC is ready to accept 
the next data character. If the data character is not 
loaded into the MPSC by the time the transmit shift 
register is empty, the MPSC enters the Transmit 
Underrun condition. 

The MPSC has two fJrogrammable options for solv­
ing the transmit underrun condition: it can insert 
sync characters, or it can send the CRC characters 
generated so far, followed by sync characters. Fol­
lowing a 'chip or channel reset, the Transmit 
Un~errun/EOM status bit (RRO; 06) Is In a set condi­
tion allowing the insertion of sync characters when 
there is no data to send. The CRC is not calculated 
on these automatically inserted sync characters. 
When the CPU detects the end of'message, a Reset 
Transmit Underrun/EOM command can be issued. 
This allows CRe to be sent when the transmi'tter has 
no data to send. 

In the case of sync insertion, an interrupt is gener­
ated only after the first ,automatically inserted sync 
character has been lOaded in the Transmit Sh'iftRegis­
ter. The status register indicates the Transmit Underrunl 
EOM bit and the-Transmit Buffer Empty bit are set. 

In the case of CRC insertion, the Transmit 
Underrun/EOM bit is set and the Transmit Buffer 
Empty bit is reset whileCRC is being sent. When 
CRC has been completely sent, the Transmit Buffer 
Empty status bit is set and an interrupt is generated 
to indicate to the CPU that another message can 
begin (this interrupt occurs because CRC has been 
sent and sync has been loaded into the Tx Shift Reg­
ister). If no more messaQes are to be $ent, the pro­
gram can terminate transmission by resetting RTS, 
and disabling the transmitter (WRS; 03). 

Bisync CRC Generation. Setting the Transmit CRe; 
enable bit (WRS; ~O) inoicates CRC accumulation 
when the program sends the first data character to 

, , 
'" 

the MPSC. Although the MPSC automatically 
transmits up to two synd characters (16 bit sync), it is 
wise to send a few more sync characters ahead of 
the message (before enabling Transmit CRC) to 
ensure sY,nchronization at the receiving end. 

The Transm it CRC Enable bit can be changed on the 
fly any time in the message to include or exclude a 
particular data character from CRC accumulation. 
The Transmit CRC Enable bit should be in the de- ' 
sired state when the data character is loaded into 
the transmit shift register. To ensure this bit in the 
proper state, the Transmit CRC Enable bit must be 
issued before sending the data character to the 
MPSC. 

Transmit Transparent Mode. Transparent mode 
(Bisync protocol) operation is made possible by the 
ability to change Transm it CRC Enable on the fly and 
by the additional capability of inserting 16 bit sync 
characters. Exclusion of OLE characters from CRC 
calculation can be achieved by disabling CRC calcu­
lation immediately preceding the OLE character 
transfer to the MPSC. ' 

In the transmit mode, the transmitter always sends 
the pr,ogrammed n umber of sync bits (8 or 16) (WR4; 
OS, 04). When in the Monosync mode, the transmit­
ter sends from WR6 and the receiver compares 
against WR7. One of two CRC polynomials, CRC 16 
or SOLe, m?lY be used with synchronous mqdes. In 
the transmit initialization process, the CRC 
generator is initialized by setting the Reset Transmit 
CRC Generato~ command (WRO; 07,06). 

The External/Status interrupt (WR1; ~O) mode can 
be used to monitor the status of the CTS input as 
well as the Ti'ansmit Underrun/EOM latch. Option­
ally, the Auto Enable (WR3; 05) feature can be used 
to enable the trapsmitter when CTS is active. The 
first data transfer to the MPSC can begin when the 
External/Status interrupt occurs (CTS (RRO; 05) 
status bit set) following the Transmit Enable com­
mand (WRS; 03). 

Receive 

After a channel reset, the receiver is in the Hunt 
phase, during which the MPSC looks f9r character 
synchronization. The Hunt begins only when the re­
ceiver is enabled and data transfer begins only when 
character synchronization has been achieved. If 
character synchronization is lost, the hunt phase 
can be re-entered by writing the Enter Hunt Phase 
(WR3; 04) bit. The l/-ssernbly of received data con­
tinues until the MPSC is reset or until the receiver is 

7-206 AFN-0170,C 



8274 

disabled (by command or by rn! while in the Auto 
Enables mode) or until the CPU sets the Enter Hunt 
Phase bit. Under program control, all th-e leading 
sync characters of the message can be inhibited 
from loaqing the receive buffers by setting the Sync 
Character Load Inhibit (WR3; 01) bit. After character 
synchronization is achieved the assembled charac­
ters are transferred to the receive data FIFO. After 
receiving the first data character, the Sync Character 
Load Inhibit bit should be reset to zero so that all 
characters are received, including the sync charac­
ters. This is important because the received CRC 
may look like a sync character and not get received. 

Data may be transfl!rred with or without interrupts. 
Transferring data without interrupts is used for a 
purely polled operation or for off-line conditions. 
There are three interrupt modes available for data 
transfer: Interrupt on First Character Only, Interrupt 
on Every Character, and Special Receive Conditions 
Interrupt. 

Interrupt on First Character Only mode is normally 
used to start a polling loop, a block transfer se­
quence using ROY to synchronize the CPU to the in­
coming data rate, or a OMA transfer using the RxORQ 
signal. The MPSC interrupts on the first character 
and th,ereafter only interrupts after a Special Re­
ceive Condition is detected. This mode can be 
reinitialized using the Enable Interrupt On Next'Re­
ceive Character (WRO; 05, 04, 03) command which 
allows the next character received to generate an 
interrupt. Parity Errors do not cause interrupts, but 
End of Frame (SOLC operation) and Receive Over­
run do cause interrupts in this mode. If the external 
status interrupts (WR1; ~O) are enabled an interrupt 
may be generated any time the rn5 changes state. 

Inter/upt On Every Character mode generates an 
interrupt whenever a character enters the receive 

buffer. Errors and Special Receive Conditions gen­
erate a special vector if the Status Affects Vector 
(WR1 8; 02) is selected. Also the Parity Error may be 
programmed (WR1; 04, 03) not to generate the spe­
cial vector while in the Interrupt On Every Character 
mode. 

The Special Receive Condition interrupt can only 
occur while in the Receive Interrupt On First Charac­
ter'Only or the Interrupt On Every Receive Character 
modes. The Special Receive Condition interrupt is 
caused by the Receive Overrun (RR1; 05) error con­
dition. The error status reflects an error in the cur­
rent word in the receive buffer, in addition to any 
parity or Overrun errors since the last Error Reset 
(WRO; 05, 04, 03). The Receive Overrun and Parity, 
error status bits are latched and can only be reset by 
the Error Reset (WRO; 05, 04, 03) command. 

The CRC check result may be obtained by checking 
for CRC bit (RR1; 06). This bit gives the valid CRC 
result 16 bit times after the second CRC byte has 
been read from the MPSC. After reading the second 
CRe byte, the user software must read two more 
characters (may be sync characters) before check­
ing for CRC result in RR1. Also for proper CRC com­
putation by the receiver, the user software must reset 
the Receive CRC Checker (WRO; 07, 06) after receiv­
ing the first valid data character. The receive CRC 
Enable bit (WR3; 03) may also be enabled at this 
tima . 

SYNCHRONOUS OPERATION-SOLC 

General 

Like the other synchronous operations the SOLC 
mode must be initialized with the following parame­
ters: SOLC mode (WR4; 05, 04), SOLC polynomial 
(WR5; 02), Request to Send, Data Terminal Ready, 

Synchronous Mode Register Setup-SOLC/HOLC 

07 06 05 04 03 02 01 DO 
00 Rx 5b/char ENTER Rx ADDRESS Rx 

WR3 01 Rx 7b/char AUTO HUNT CRC SEARCH 0 ENABLE 
10 Rx 6b/char ENABLES MODE ENABLE MODE 
11 Rx 8b/char 

0 0 1 0 0 0 - 0 0 
WR4 (SELECTS SOLCI 

HOLC MODE) 

I 00 Tx .. 5b/char 0 
WR5 OTR 

01 Tx 7b/char 
SEND Tx (SELECTS RTS Tx 

10 Tx 6b/char 
BREAK ENABLE SOLCI CRC 

11 Tx 8b/char 
HOLC ENABLE 
CRC) 

7-207 AFN·01701C 



8274, 

) 

COMMAND/STATUS 
POINTER 

"" : J I R R 0 

D2 D1 DO 

o 0 O----t ~I w : R : 0 : : I 
o 0 ·1 W R 

1 1 R R 

~ I o 0--_-1 W ,R 2 1 I R R I 
MSS LSS 

Read Registers 

~I W R o 

-I W R 

~I W R 

~I 0----. W R 6 

-I W R 

MSS LSS 

Write Registers 

Figure 3. Command/Status Register Architecture,(each serial channel) 

Command, parameter, and status information is stored 
in 21 registers within the MPSC (8 wrItable registers for 
each channel, 2 readable registers for Channel A and 3 
readable registers for Channel B), They are all acce­
ssed via the command ports. 

An internal pointer register selects which of the 
command or status registers will be read or written 
during a command/status access of an MPSC 
channeL 

7-208 

After reset, the contents of the pointer registers are 
zero. The first write to a' command register causes 
the data to be loaded into Write Register 0 (WRO) .. 
The three least significant bits of WRO are loaded 
into t.he Command/Status Pointer. The next read or 
write operation accesses the read or write register 
seiected by the pointer. The pointer is reset after the 
read or write operation is completed. 

AFN·01701C 



intJ 8274. 

transmit character length (WR5; OS, 05), interrupt 
modes (WR1; WR2), Transmit Enable (WR5; 03), 
Receive Enable (WR3; ~O), Auto Enable (WR3; 05) 
and External/Status Interrupt (WR1; 00).WR4 
parameters must be written before WR1, WR3, 
WR5, WRS and WR7. 

The Interrupt modes for SOLC operation are similar 
to those discussed previously in the synchronous 
operations section. 

Transmit 

After a channel reset, the MPSC begins sending 
SOLC flags. 

Following the flags in an SOLC operation the a-bit 
address field, control field and information field may 
be sent to the MPSC by the microprocessor. The 
MPSC tranllmits the Frame Check Sequence using 
the Transmit Underrun feature. The MPSC automat­
ically inserts a zero after every sequence of 5 con­
secutive 1 's except when transmitting Flags or 
Aborts. . 

SOLC-like protocols do not have provision for 'fill 
characters within a message. The MPSC therefore 
automatically terminates an SOLC frame when the \ 
transmit data buffer and output shift register have 
no more bits to send. It does this by sending the two, 
bytes of CRC and then one or more flags. This allows 
very high-speed transmissions under OMA or CPU 
control without requiring the CPU to respond 
quickly 'to the end-of-message situation. 

After a reset, the Transmit Underrun/EOM status bit 
is in the set state and prevents the insertion of CRC 
characters during the time there is no data to send. 
Flag characters are sent. The MPSC begins to send 
the frame when data is written into the transmit buf­
fer. Between the time the first data byte is written, 

/ and the end of the message, the Reset Transmit 
Underrun/EOM (WRO; 07, OS) command must be 
issued. The Transmit Underrun/EOM status bit (RRO; 
06) is in the reset state at the end of the message 
which auto~atically sends the CRC characters. 

The MPSC may be programmed to issue a send 
Abort command (WRO; OS, 04, 03). ThiS command 
causes' at least eight 1 's butless than fourteen 1's to 
be sent before the line reverts to continuous flags. 

Receive 

After initialization, the MPSC enters the Hunt phase, 
and remains in the Hunt phase until the first Flag is 
received. The MPSC never ag~in enters the Hunt 
phase unless the microprocessor writes the Enter 
Hunt command. The MPSC. will also detect flags 
separated by a single zero. For example, the bit pat­
tern 011111101111110 will be detected as two flags. 

The MPSC can be programmed to receive all frames 
or it can be programmed to the Address Search 
Mode. In the Address Search Mode, only frames with 
addresses that match the value in WRS or the global 
address (OFFH) are received by the MPSC. Extended 
address recognition must be done by the micropro­
cessor software. 

The control and information fields are received as 
data. 

SOLC/HOLC CRC calculation does not have an 8-bit 
delay, since all characters are included in the calcu­
lation, unlike Byte Synchronous Protocols. 

Reception of an abort sequence (7 or more 1 's) will 
cause the Break/Abort bit (RRO; 07)to be set and will 
cause an External/Status interrupt, if enabled. After 
the Reset External/Status Interrupts Command has 
been issued, a second interrupt will occur atthe end 
of the abort sequence. 

MPSC 

Detailed Command/Status Description 

GENERAL 
The MPSC supports an extremely flexible set of se" 
rial and system interface modes. 

The system interface to the CPU consists of a ports 
or buffers: 

cs A, A. Read Operation Write Operation 

0 0 0 Ch A Data Read Ch A Data Write 
0 1 0 Ch A Status Read Ch A Command/Parameter 
0 0 1 Ch B Data Read Ch B Data Write 
0 1 1 Ch B Statu's R'ead Ch 8 Command/Parameter 
1 X X High Impedance High Impedance 

Data buffers are addressed by A1 = 0, and Command 
po'rts are addressed by Al = 1. 

7-209, , AFN·01701 C 



8274: 

COMMAND/STATUS DESCRIPTION 
The following command and status bytes are used 
during i'nitialization and execution phases of opera­
tion. All Command/Status operations on the two 
channels are identical, and independent, except 
where noted. 

Detailed Register Oescription 

Write Register 0 (WRO): 

(0 

roo 1 

WRO 

NULL CODE 

COMMANDISTATUS POINTER 

REGISTER POINTER 

NULL CODe 
SEND ABORT (SDLC) 

RESET EXTISTATUS INTERRUPTS 

CHANNEL RESET 
ENABLE INTERRUPT ON NEXT Rx 
CHARACTER 

RESET TxlNT/DMA PENDING 

ERROR RESET 

END OF INTERRUPT 

RESEr Ax CRe CHECKER 

RESET Tx CRC GENERATOR 

RESET Tx UNDERRUN/EOM LATCH 

02,01, DO-Command/Status Register Pointer bits 
determine which write-register the next byte is to be 
written into, or which read-register the next byte is to 
be read from. After reset, the first byte written into 
either channel goes into WRO. Following a read or 
write to any register (except WRO) the pointer will 
point to WRO. 

05,04, D3-"-Command bits deter'mine which of the 
basic seven commands are to be performed, 

Command 0 

Command 1 

COl\lmand 2 

Command 3 

Command 4 

Command 5 

. Command 6 

Command 7 

07,06 

00 

01 

7-2·10 

Null-has no effect. 

Send Abort-causes the genera­
tion of eight to thirteen 1's when 
in the SDLC mode. 

Reset External/Status Interrupts­
resets the latched status bits of 
RRO and re-enables them, allowing 
interrupts to occur again. 

Channel Reset-resets the Latch­
ed Status bits of RRO, the 
interrupt prioritization logic and 
all control registers for the 
channel. Four extra system 
clock cycles should be allowed 
for MPSC reset time before any 
additional commands or controls 
are written into the channel. 

Enable Interrupt on Next Receive 
Character-if the Interrupt on 
First Receive Character mode is < 

selected, this command reacti­
vates that mode after each com­
plete message is received to 
prepare the MPSC for the next 
message. 

Reset Transmitter Interrupt/DMA 
Pending-if The Transmit 
Interrupt/OMA Enable mode is 
selected, the MPSCautomatically 
interrupts or requests OMA data 
transfer when the transm it buffer 
becomes empty, When there are no 
more characters to be sent, 
issuing this command prevents 
further transmitter interrupts or 
DMA requests until the next 
character has been completely 
sent. 

Error Reset-error latches, Pari­
ty and Overrun errors in RR1 are 
reset. 

End of Interrupt-resets the 
interrupt-in-service latch of the 
highest-priority internal device 
under service. 

CRC Reset Code 

Null-has no effect. 

. Reset Receive CRC Checker­
resets the CRC checker to D's. If in 
SOLC mode the CRC checker is 
initialized to all 1's. 

AFN-01701C 



intJ 8274 

10 

11 

Reset Transmit CRC Generator 
-resets the CRC generator to 
O's. If in SOLC mode the CRC 
generator's initialized to all 1 'so 

Reset Tx Underrun/End of Message 
Latch. 

Write Register 1 (WR1): 

MSB LSB 

I D71 D6 I Dsl D4 : D31 D21 D1 I DO I 

WR1 

DO 

'--...,--J I EXT INTERRUPT 

ENABLE 

TxINTERRUPT/ 

DMAENABLE 

1'" VARIABLE 
STATUSAFFECTS VECTOR 
VECTOR (CH B ONLY) 0 FIXED 
(NULLCODECH AI VECTOR 

,....----.... 
0 0 RxlNT/OMA DISABLE 

0 1 RxiNT ON FIRST CHAR OR SPECIAL 
CONOITldN 

1 0 INT ON ALL Rx CHAR (PARITY AfFECTS 
VECTOR) OR SPECIAL CONDITION 

1 1 INT ON ALL Rx CHAR (PARITY DOES 
NOT AFFECT VECTOR) OR SPECIAL 
CONDITION 

1 == WAIT ON Rx, 0 '" WAIT ON Tx 

MU$T BE ZERO 

WAIT ENABLE 1 == ENABLE, 0 == DISABLE 

External/Status Interrupt Enable 
-allows interru!'>t to occur as the 
result of transitions on the CO, 
CTS or SYNOET inputs. Also 
allows interrupts as the result of a 
Break/Abort detection and termi­
nation, or at the beginning ofCRC, 
or sync character transmission 
when the Transmit Underrun/EOM 
latch becomes set. 

7-211 

01 

02 

04,03 

o 0 

o 

05 

06 

07 

o 

Transmitter Interrupt/OMA Enable 
-allows the MPSC to interrupt or 
request a OMA transfer when the 
transmitter buffer becomes empty. 

Status Affects vector-(WR1, 02 
active in channel B only.) If this 
bit is not set, then the fixed vector, 
programmed in WR2, is returned 
from an interrupt acknowledge 
sequence. If the bit is set then the 
vector returned from an interrupt 

. acknowledge is variable as shown 
in the Interrupt Vector Table. 

Receive Interrupt Mode 

Receive Interrupts/OMA Disabled 

"Receive Interrupt on First Charac­
ter Only or Special Condition 

Intern.lpt on All Receive Charac­
ters or Special Condition (Parity 
Error is a Special Receive Condi­
tion) 

Interrupt on All Receive Charac­
ters or Special Condition (Parity 
Error is not a Special Receive 
Condition). 

Wait on ReceivelTransmit-when 
the following conditions are met 
the ROY pin is activated, otherwise 
it is held in the High-Z state. 
(Conditions: Interrupt Enabled 
Mode, Wait Enabled, CS = 0, 
AO = 0/1, and A1 = 0). The ROY 
pin is pulled low when the trans­
mitter buffer is full or the receiver 
buffer is empty and it is driven 
I-'Iigh when the transmitter buffer is 
empty or the receiver buffer is full. 
The ROYA .and ROYe may be 
wired OR connected since ,only 
one signal is active at anyone time 
while the other is in the High Z 
state. 

Must be Zero 

Wait Enable-enables the wait 
function. 

AFN·01701C 



inter 

WR2 

01, DO 

o 0 

o 1 

02 

o 

C!1annelA 

System Configuration-These 
specify the data transfer from 
MPSC channels to the CPU, either. 
interrupt or OMA based. 

Channel A and Channel B both use 
interrupts 

Channel A uses OMA, Channel B 
uses interrupt 

Channel A and Channel B both 
use OMA. 

lIIe'lal Code 

Priority-this bit specifies the 
relative priorities of the internal 
MPSC interruptlOMA sources. 

(Highest) RxA, TxA, RxB, TxB 
ExTA, ExTB (Lowest) 

(Highest) RxA, RxB, TxA, TxB, 
ExTA, ExTB (Lowest) 

8~7~. ""'J' 

, 05,04,03 In.terrupt Code-specifies the 
behavior of the MPSC when it re­
ceives an interrupt acknowledge 
sequence from the CPU. (See Inter­
rupt Vector Mode Table). 

0' X X Non-vectored interrupts-in­
tended' for use with-external OMA 
CONTROLLER. The Data Bus re­
mains in a high impedence state 
during INTA sequences. 

1 0 0 8085 Vector Mode 1-intended for 
use as the primary MPSC in a daisy 

,chained priority structure. (See 
System Interface secti,on) 

o 1 8085 Vector Mode 2-intended for 
use as any secondary MPSC in a 
daisy chained priority structure. 
(See System Interface section) 

o 8086/88 Vector Mode-intended 
for use as eitlier a 'primary or 
secondary in a daisy chained 
priority structure. (See System 
Interface 'section)' 

Must be zero. 

Write Register 2 (WR2): Channel A 

06 

07 zero Pin 10 = RTSB I 

one Pin 10 = SYNOETB 

MSB LSB 

I 07 : De I 05 I 04 : 03 I 02 1 01 : DO I 
'----..----' '----..----' 

0 0 BOTH INTERRUPT 

0 1 A DMA. B INT 

1 0 BOTHoMA 

1 1 ILLEGAL 

I 

1 PRIORITY AxA RxB TxA TxB EXTA' EXTB' 

0 PRIORITY RxA TxA RxB TxB eXTA* EXTS" 

~ 

0 0 8085 MODE 1 

0 1 8085 MODE 2 

1 0 8086/88 MODE 
r 

1 1 ILLEGAL 

1 VECl'oREO INTERRUPT 

0' NON VECTORED INTERRUPT 

MUSTSE ZERO 

i'Y'N'iiEf B 
I 

1 PIN 10 

o PIN 10 ATS e 

'EXTERNAL STATUS INTERRUPT· 
ONLY IF EXT INTERRUPT ENABLE (WR1; DO)IS SET 

7-212 AfN.01701C 



intJ 8274 

The following table describes the MPSC's response to aninterrupt acknowledge sequence: 

D5 D4 D3 IPI ft'IODE INTA Data Bus 

07 DO 
0 X X X Non-vectored Any INTA High Impedance, 

1 0 0 0 85 Mode 1 1st INTA 1 1 0 0 1 1 0 1 

2nd INTA V7 V6 V5 V4' V3' V2' V1 VO 

3rd INTA 0 0 0 0 0 0 0 0 

1 0 0 1 85 Mode 1 1st INTA 1 1 0 0 1 1 0 1 

2nd INTA High Impedance 

3rd INTA High Impedance 

1 1 0 0 86 Mode 1st INTA High Impedance 
2nd INTA V7 V6 V5 V4 V3 V2' V1'VO' 

1st INTA High Impedance 

1 0 1 0 85 Mode 2 2nd INTA V7 V6 V5 V~' V3' V2' V1 VO 
3rd INTA 0 0 0 0 0 0 0 0 

1 0 1 1 85 Mode 2 1st INTA High Impedance 

2ndiNTA High Impedance 

3rd INTA High Impedance 

1 1 O' 1 86 Mode 
'1st INTA High Impedance 
2nd INTA High Impedance 

'These bits are vanable /I the "status affects vector" mode has been programmed, (WR1 B, D2). 

Interrupt/DMA Mode, Pin Functions, and Priority 

Int/DMA 
Ch.A WR2 Mode Pin Functions Priority 

RDYAI RDYel IPII IPOI 
RxDRQA TxDRQA RxDRQe TxDRQe 

D2 D1 Do CH,A CH.B Pin 32 Pin 11 Pin 29 Pi~.30 Highest Lowest 

0 0 0 INT INT RxA, TxA. RxB. TxB. EXTA> EXTe 
ROYA ROYe iPi IPO 

1 0 0 INT INT RxA. RxB. TxA. TxB, EXTA> EXTe 

0 0 1 OMA RxA. TxA (OMA) 
1--- --- - '---------------

INT RxA 1, RxB. TxB. EXTA, EXTe(INT) 
RxOROA TxOROA iPi IPO 

1 0 1 OMA RxA, TxA (OMA) - - - - -- ~A\RxB,TxB, EX~ EXTe(INT)- -INT 

0 1 0 OMA OMA RxA TxA. RxB, TxB (OMA) 
RxA \ RxB 1, ·EXT A> EXT e (INT) 

RxOROA TxOROA RxOROe TxOROe RxA, RxB, lxA. TxB. (OMA) 
1 1 0 OMA OMA RxA 1, RxB ,EXT A> EXT e (INT) 

1Special Receive C':!ndition 

7-213 
AfM.01701C 



intJ 

I 
8085 Modes V4 

8086/88 Mode V2 

Note 1: Special '0 
Receive Condition= 0 
Parity Error, 0 
Rx Overrun Error. 0 
Framing Error, 
End of Frame (SOLC) 

1 
1 
1 
1 

Write Register 2 (WR2): Channel B 

Write Register 3 (WR3): 

• MSB 

8274 

Interrupt Vector Mode Table 

V3 

V1 

0 
0 
1 
1 

0 
0 
1 
1 

V2 

Vo 
0 
1 
0 

. 1 

0 
1 
0 
1 

"" 

Channel Condition 

B Tx Buffer Empty 
ExtlStatus Change 
Rx Char. Available 
Special Rx Condition 

(Note 1) 

A Tx Buffer Empty 
Ext/Status Change. 
Rx Char. Available 
Special Rx Condition 

(Note 1) 

WR2 CHANNEL B 

07-00 Interrupt vector-This register contains 
the value of the interrupt vector placed 
on the data bus during interrupt ac­
knowledge sequences. 

Rx ENABLE 

SYNC CHAR LOAD INHIBIT 

L-___ AOOR SRCH MODE (SOLC) 

'-------Rx CRC ENABLE 

'--------ENTER HUNT MODE 

L---------AUTO ENABLES 

Rx 5 BITS/CHAR 

Ax 7 BITS/CHAR 

Rx 6 BITS/CHAR 

Rx 8 BITS/CHAR 

7-214 AFN-01701C 



intJ 8274 

WR3 
DO 

01 

02 

03 

04 

Receiver Enable-A one enables the reo 
ceiver to begin. This bit should be set only 
after the receiver has been initialized. 

Sync Character Load Inhibit-A one pre­
vents the receiver from loading sync 
characters into the receive buffers. In 
SOLC. this bit must be zero. 

Address Search Mode-If the SOLC mode 
has 'been selected. the MPSC will re­
ceive all frames unless this bit is a 1. If this 
bit is a 1. the MPSC will receive only frames 
with address bytes that match the global 
address (OFFH) or the value loaded into 
WR6. This bit must be zero in non-SOLC 
modes. 

Receive CRC Enable-A one in this bit 
enables (or re-enables) CRC calculation. 
CRC calculation starts with the last charac­
ter placed in the Receiver FIFO. A zero in 
this bit disables. but does not reset. the 
Receiver CRC generator. 

Enter Hunt Phase--After initialization. the 
MPSC automatically enters the Hunt mode. 
If synchronization is lost. the Hunt phase 
can be re-entered by writing a one to this 
bit. ' 

05 Auto Enable-A one written to this bit causes 
CD to be automatic enable signal for the 
receiver and CTS to be an automatic enable 
signal for the transmitter. A zero written to 
this bit limits the effect of ao and CTS signals 
to setting/resetting their corresponding bits 
in the status register (RRO). 

07. 06 Receive Character length 

o 0 Receive 5 Data bits/character 

o Receive 7 Data bits/character 

o Receive 6 Data bits/character 

Write Register 4 (WR4): 

WR4 
DO 

, 01 

1 • ENA'LE PARITY 
o • DISA'LE PARITY 

1 :: EVEN PARITY 

o • ODD PARITY 

o 0 ENA'LE SYNC MODES 

o 1 1 STOP ,IT 

1 0 1.5 STOP lilTS 

1 1 2 STOP lilTS 

o 0 "IT SYNC CHAR 

o 1 11111T SYNC CHAR 

1 0 SDLClHDLCMODEI0111,1110IF~G 

1 1 EXTERNAL SYNC MODE 

o 0 X1 CLOCK 

o 1 X18CLOCK 

1 0 X32CLOCK 

1 1 X84CLOCK 

Parity-a one in this bit causes a parity 
bit to be added to the programmed number 
of data bits per character for both the 
transmitted and received ,character. If the 
MPSC is programmed ,to receive 8 bits per 
character, the parity bit is not transferred 
to the microprocessor. With other receiver 
character lengths. the parity bit is trans­
ferred to the microprocessor. 

Even/Odd Parity-if parity is enabled. a 
one in this bit causes the MPSC to transmit 
and expect even parity, and a zero causes 
it to send and expect odd parity. 

Receive 8 Data bits/character 03. 02 Stop bits/sync mode 

7-215 AFNo01701C 



inter 8274. 

o 0 

o 

o 
1 

Selects synchronous modes. 

Async mode, 1 stop bit/character 

Async mode, 1-V2 stop 'bits/character 
Async mode, 2 stop bits/character 

OS, 04 Sync mode select 

o 0 8 bit sync character 

o 16 bit sync character 

o SOLC mode (Flag sync) 

External sync mode 

07, 06 Clock mode-selects the clock/data rate 
multiplier for both the receiver and the 
transmitter. 1x mode must be selected for 
synchronous modes. If the 1 x mode is 
selected, bit synchronization must be done 
externally. 

o 0 Clock rate = Data rate x 

o Clock rate = Data rate x 16 

o Clock rate = Data rate x 32 

Clock rate = Data rate x 64 

Write Register 5 (WRS): 

RTS 

,--__ SDLClCRC·16 (CRC MODE) 

'-----Tlc ENABLE 

'--_____ SENiiBiteAK 

o Tlc 5 BITS OR LESs/CHAR 

Tx 7 BITS/CHAR 

Tx 6 BITS/CHAR 

Tlc 8 BITS/CHAR 

L..-__________ DTR 

7-216 

WRS 
DO 

01 

02 

03 

04 

Transmit CRC Enable-a one in this bit 
enables the transmitter CRC generator. 
The CRC calculation I is done when a 
character is moved from the transmit 
buffer into the shift register. A zero in this 
bit disables CRC calculations. If this bit is 
not set when a transmitter underrun 
occurs, the CRG will not be sent. 

Re~t t.o Send-a one in this bit forces 
the RTS pin active (low) and zero in this bit 
forces the RfS pin inactive (high). 

CRC Select-a one in this bit selects the 
CRC -16 polynomial (X16 + X15 + X2 + 1) 
and a zero fn this bit selects the CCITT-CRC 
polynomial (X16 + X12 + X5 + 1). In SOLC 
mode, CCITT-CRC must be selected. 

.Transmitter Enable-a zero in this bit 
forces a marking. state on the transm itter 
output. If this bit is set to zero during data 
or sync character transmission, the mark­
ing state is entered after the character has 
been sent. If this bit is set to zero during 
transmission of a CRC character, sync or 
flag bits are substituted for the remainder 
of the CRC bits. 

Send Break-a one in this bit forces ~he 
transmit data low. A zero in this bit allows 
normal transmitter operation. 

06, 05 Transmit Character length 

o 0 Transmit 1 - 5 bits/character 

o Transmit 7 bits/character 

o Transmit 6 bits/character 

Transmit·8 bits/character 

Bits to be sent must be right justified least significant 
bit first, eg: 

07 06 05 04 03 D2 D1 DO 

o 0 B5 B4 B3 B2 .B1 BO 

AFN'()1701C 



inlef 8274 

Five or less mode allows transmission of one to five bits per 
character. The microprocessor must format the data in 
the following way: 

07 06 05 04 03 02 01 DO 

0 0 0 BO Sends one data bit 

0 0 0 ,B1 BO Sends two data bits 

0 0 0 B2 B1 BO Sends three data bits 

0 0 0 B3 B2 B1 BO Sends four data bits 

0 0 0 B4 B3 B2 B1 BO Sends five data bits 

07 Data Terminal Ready-when set, this bit 
forces the OTR pin active (low). When 
reset, this bit forces the OTR pin inactive 

Write Register 6 (WR6): 

MSB 

WR6 

(high). 

Least significant 

Sync byte (Address 
In SOLe/HOLe Mode) 

LSB 

07-00 Sync/Address-this register contains the 
transmit sync character in Monosync 
mode, the low order 8 sync bits in Bisync 
mode, or the Address byte in SOLC mode. 

7-217 

Write Register 7 (WR7): 

WR7 

MSB LSB 

I~:~:~:~:oo:oo:~:ool 

1M.5t Significant 

Sync byte (must 
be 01111110 In 
SOLe/HOLe Mode) 

07-00 Sync/Flag-this register contains the re­
ceive sync charaCter in Monosync mode, 
the high order 8 sync bits in Bisync mode, 
or the Flag character (01111110) in SOLC 
mode. WR7 is not used in External Sync 
mode. 

AFN-01701C 



8274 · 

Read Register 0 (RRO): 

MS. LS. 

I~I~I~I~I~I~I~I~I 

I 

/ 

RRO 
DO Receive Character Available-this bit is 

set when the receive FIFO contains data 
and is reset when the FIFO is empty. 

01 Interrupt Pending*-This Interrupt-Pend­
ing bit is reset when an EOI command is 
issued and there is no other" interrupt re­
quest pending at that time. 

02 Transmit Buffer Empty-This bit is set 
whenever the transmit buffer is empty 
except when CRC characters are being 
sent in a synchronous mode. This bit is 
reset when the transmit buffer is loaded. 
This bit is set after an MPSC reset. 

03 Carrier Detect-This bit contains the state 
of the CO pin at the time of the last change 
of any of the External/Status bits (CD. 
CTS. Sync/Hunt. Break/Abort. or Tx 
Underrun/EOM). Any change of state of the 
CD pin 'causes the CD bit to be latched and 
causes an External/Status interrupt. This bit 
indicates current state of the CD pin im­
mediately following a Reset External/Status 
Interrupt command. 

*In vector mode this bit is set at the falling edge of 
the second i'iii'fA in an INTA cycle for an internal 
interrupt request. In non-vector mode. this bit is 
set at the falling edge of AD input after pointer 2 
is specified. This bit is. always zero in Channel B. 

, Ax CHAR AVAILABLE 

Int PENDING (CHA ONLY) 

TIC BUFI!ER EMPTY 

CARRIER DETECT 

SYNC/HUNT 

CTS EXTERNAL STATUS 
INTERRUPT MODE 

TIC UNDERRUNlEOM 

BREAK/ABORT 

04 

7-218 

Sync/Hunt-In asynchronous modes, the 
operation of this bft is similar to the CD 
status bit, except that Sync/Hunt shows the 
state of the SYNDET ....!!!.e.!!.L.Any High-to­
Low transition on the SYNDET pin sets this 
bit, and causes 'an External/Status inter­
rupt (if enabled). The Reset External/Status 
Interrupt command is issued to clear the 
interrupt. A Low-to-High transition clears 
this bit and sets the External/Status inter­
rupt. When the External/Status interrupt is 
set by the change In state of any other input 
or condition. this bit shows the inverted 
state of the SYNDET pin at time of the 
change. This bit must be read immediately 
following a Reset External/Status Interrupt 
command to read the current state of the 
SYNDET input. 

I~the External Sync mode, the Sync/Hunt 
bit operates in a fashion similar to the 
Asynchronous mode, except the Enter 
Hunt Mode control bit enables the external 
sync detection logic. When the External 
Sync Mode and Enter Hunt Mode bits are 
set (for example, when the receiver is 
enabled follo..,ing a reset). the SYNDET 
input must be held High by the external 
logic until external character synchroniza­
tion is achieved. A High at the SYNDET 
input holds the Sync/Hunt status in the 
reset condition. 

AfN.Ol701C 



intJ 8274 

When external synchronization is 
achieved, SYNOET must be driven Low on 
the second rising edge of RxC after the 
rising edge of RxC on which the last bit of 
the sync character was received. In other 
words, after the sync pattern is detected, 
the external logic must wait for two full 
Rec~ive Clock cycles to activate the SYN­
OET inp~t. Once SYNOET is forced Low, it 
is good practice to keep it Low until the 
CPU informs the external sync logic that 
synchronization has been lost or a new 
message is about to start. The High-to-Low 
transition of the SYNOET output sets the 
Sync/Hunt bit, which sets the External/ 
Status interrupt. The CPU must clear the 
interrupt by issuing the Reset External/ 
Status Interrupt Command. 

When the SYNOET input goes High again, 
another External/Status interrupt is gener­
ated that must also be cleared. The Enter 
Hunt Mode control bit isset whenever 
character synchronization is lost or the end 
of message is detected. In this case, the 
MPSC again looks for a High-to-Low transi­
tion on the SYNOET input and the opera­
tion repeats as explained previously. This 
implies the CPU should also inform the ex­
ternallogic that character synchronization 
has been lost and that the MPSC is waiting 
for SYNOET to become active. 

In the Monosync and Bisync Receive 
modes, the Sync/Hunt status bit is initially 
set to 1 by the Enter Hunt Mode bit. The 
Sync/Hunt bit is reset when the MPSC es­
tablishes character synchronization. The 
High-to-Low transition of the Sync/Hunt bit 
causes an External/Status interrupt that 
must be cleared by the CPU issuing the 
Reset External/Status Interupt command. 
This enables the MPSC to detect the next 
transition of other External/Status bits. 

When the CPU detects the end of message 
or that character synchronization is lost, it 
sets the Enter Hunt Mode control bit, which 
sets the Sync/Hunt bit to 1. The Low-to­
High transition of the Sync/Hunt bit sets the 
External/Status Interrupt, which must also 
be cleared by the Reset External/Status 
Interrupt Command. Note that the SYNOET 
pin acts as an output in this mode, and 
goes low every time a sync pattern is de­
tected in the data stream. 

05 

06 

.. D7 

In the SOLC mode, the Sync/Hunt bit is 
initially set by the Enter Hunt mode bit, or 
when the receiver is disabled. In any case, it 
is reset to D when the opening flag of the 
first frame is detected by the MPSC. The 
External/Status interrupt is also generated, 
and should be handled as discussed 
previously. 

Unlike the Monosyn~ and Bisync modes, 
once the Sync/Hunt bit is reset in the SOLC 
mode, it does not need to be set when the 
end of message is detected. The MPSC au­
tomatically maintains synchronization. 
The only way the Sync/Hunt bit can be set 
again is by the Enter Hunt Mode bit, or by 
disabling the receiver. 

Clear to Send-this bit contains the in­
verted state ofthe CTS pin at the time of the 
last change of any of the External/Status 
bits (CD, CTS, Sync/Hunt, Break/Abort, or 
Tx Underrun/EOM). Any change of state o.f 
the CTS pin causes the CTS bit to be 
latched and causes an External/Status 
interru·pt. This bit indicates the inverse of 
the current state of the CTS pin im­
mediately following a Reset External/ 
Status Interrupt command. 

Transmitter Underrun/End of Message­
this bit is in aset condition following a reset 
(internal or external). The only command 
that can reset this bit is the Reset Transm it 
Underrun/EOM Latch command (WRD, 06 
and D7). When the Transmit Underrun con­
dition occurs, this bit is set, which causes 
the External/Status Interrupt which must 
be reset by issuing a Reset External/Status 
command (WRD; command 2). 

Break/Abort-in the Asynchronous Re­
ceive mode, this bit is set when a Break 
sequence (null character plus framing 
error) is detected in the data stream. The 
External/Status interrupt, if enabled, is set 
when break is detected. The interrupt ser­
vice routine must issue the Reset 
External/Status Interrupt command (WRD, 
Command 2) to the break detection logic 
SO the Break sequence termination can be 
recognized. 

AFN-01701C 



8274 

SOLC Residue Code Table (I Field Bits in 2 Previous Bytes) , 

8 bits/char 7 bits/char 6 bits/char .5 bits/char 

RR1 Previous 2nd Prevo Previous 2nd Prevo Previous 2nd Prevo Previous 2nd Prevo 
03,02,01 Byte Byte Byte Byte Byte Byte Byte Byte 

1 0 

0 1 

1 1 

0 0 

1 0 

0 1 

1 1 

0 0 

0 0 3 0 

0 0 4 0 

0 0 5 0 

1 0 6 0 

1 0 7 0 

1 0 8 0 

1 1 8 -

0 2 8 1 

The Break/Abort bit is reset when the ter­
m ination of the Break sequence is detected 
in the incoming data stream. The termina­
tion of the Break sequence also causes the 
External/Status interrupt to be set. The 
Reset External/Status Interrupt command 
must be issued to enable the break detec­
tion logic to look for the next Break se­
quence. A single extraneous null character 
is present in the receiver after the termina­
tion of a break; it should be read and 
discarded. 

In the SOLC Receive mode, this status bit is 
set by the detection of an Abort sequence 
(seven or more 1 's). The External/Status 
interrupt is handled the same way as in the 
case of a Break. The Break/Abort bit is not 
used in the Synchronous Receive mode. 

2 

3 

4 

5 

6 

-

-
7 

0 1 0 5 

0 2 0 1 

0 3 0 2 

0 4 0 3 

0 5 -
- - -

- - -
0 6 0 4 

00 All sent-this bit is set when all charac­
ters have been sent, in asynchronous 
modes. It is reset when characters are in 
the transmitter, in asynchronous modes. 
In synchronous modes, this bit is always 
set. 

03, 02, 01 Residue Codes-bit synchronous pro­
tocols allow I-fields that are not an inte­
gral number of characters. Since trans­
fers from the MPSC to the CPU are char­
acter. oriented, the residue codes 
provide the capability of receiving 
leftover bits. Residue bits are right jus­
tified in the last two data bytes received. 

04 Parity Error-If parity is enabled, this bit 
is set for received characters whose par­
ity does not .match the. programmed 
sense (Even/Odd). This bit is latched. 
Once an error occurs, it remains set until 
the Error Reset command is written. 

7-220 AFN-01701C 



8274\ 

Read Reglater 1 (RR1): (Special Receive Condition Mode) 

05 

06 

MSB LSB 

I 07 1 01 I OIl D4 I 03 : 02 : 01 I DO I 
, 

I LALLSE 

I 
NT 

I FIELD , \ PREVIDU 

I 000 

o 0 1 

o 1 0 

o 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Receive Overrun Error-this bit indi­
cates that the receive FI FO has been 

'overloaded by the receiver. The last 
character in the FIFO is overwritten 'and 
flagged with this error. Once the over­
written character is read, this error con­
dition is latched until reset by the Error 
Reset command. If the MPSCis in the 
status affects vector mode, the overrun 
causes a special Receive Condition 
Vector. 

CRC/Framing Error-In async modes, a 
one in this bit indicates a receive fram-

2 

0 

0 

0 

0 

0 

0 

1 

BITS 
S8VTE 

PARITY ERROR 

RESIDUE DATA 
8 BITS/CHAR. MODE 

Rx OVER~UN ERROR 

CRC/FRAMING ERROR 

END OF FRAME (SDLClHDLC MODE) 

07 

ing error. In synchronous modes, a one 
in this bit indicates that the' calculated 
CRC value does not match the last two 
bytes received. It can be reset by issuing 
an Error Reset command. 

End of Frame-this bit is valid only in 
SOLC mode. A one indicates that a valid 
ending flag has been received. This bit is 
reset either by an Error Reset command 
or upon reception of the first character 
of the next frame. 

7-221 AFN-01701C 



inter·' 8274 

Read Register 2 (RR2): 

Msa LSB 

* variable In 
,,:lni:".="~UP~1 ____ StatuI Affecta 

Vector Vector Mode (WR1 j 02) 

RR2 Channel B 
07-00 Interrupt vector-contains the interrupt 

vec~or programmed into WR2. If the status 
affects vector mode is selected (WR1; D2), it 
contains the modified vector (See WR2). RR2 
contains the modified vector for the highest 
priority interrupt pending. If no interrupts are 
pendi ng, the variable bits in the vector are set 
to one. 

SYSTEM INTERFACE 

·General 
The MPSC to Microprocessor System interface can 
be configured in many flexible ways. The basiq inter­
face types are polled, wait, interrupt driven, or direct 
memory access driven. 

Polled operation is accomplished by repetitively 
reading the status of the MPSC, and making deci­
sions based on that status. The MPSC can be polled 
at any time. 

Wait operation allows slightly faster data throughput 
forthe MPSC by manipulating the Ready inputtothe 
microprocessor. Block Read or Write Operations to 
the MPSC are started at will by the microprocessor 
and the MPSC del;lctivates its ROY signal if it is not 
yet ready to transmitthe new byte, or if reception of 
.new byte is not completed. 

Interrupt driven operation is accomplished via an 
internal or external interrupt controller. When the 
MPSC requ ires service, it sends an interrupt request 
signal to the microprocessor, which responds with 
an interrupt acknowledge signal. When the internal 
or external interrupt controller receives the ac­
knowledge, it vectors the microprocessor to a ser­
vide routine, in which the transaction occurs. 

DMA operation is accomplished viii an external DMA 
controller. When the MPSC needs a data transfer, it 
request a DMA cycle from the DMA controller. The 
DMA controller then takes control of the bus and 
simultaneously does a read from the MPSC and a 
write'to memory or vice-'ilersa. 

The following section describes the many config­
urations of these basiC types of system interface 
techniques for botn serial channels. 

POLLED OPERATION: 

In the polled mode, the CPU must monitor the de­
sired conditions within the MPSC by reading the ap­
propriate bits in the read registers. All data available, 
status, and error conditions are represented by the 
appropriate bits in read registers 0 and 1 for chan­
nels A and B. 

There are two ways in which the software task of 
monitoring the status of the MPSC has been re­
duced. One is the "DRing" of all conditions into the 
Interrupt Pending bit. (RRO; D1 channel A only). This 
bit is set when the MPSC requires service, allowing 
the CPU to monitor one bit instead of four status reg­
isters. The other is available when the "status­
affects-vector" mode is selected. By reading RR2 
Channel B, the CPU can read a vector who's value 
will indicate that one or more of group of conditions 
has occurred, narrowing the field of possible condi­
tions. See WR2 and RR2 in the Detailed Command 
Description section. 

Software.Flow, Polled Operation 

REC,EIVE TRANSMIT 

ARO, DO IS reset automatICally when the data IS' read 

AAO. 02 IS reset automatically when the data IS written 

7-222 AFN'()1701C 



inter 8274 

Hardware Configuration, Polled Operation 

l ADDRESS BUS .... & 

A DATA BUS II 
iii! 
WII 

...--

UVCC 

~ C-

DBG-7 'iNii 
8205 

p""':=:= Ao 

'--

WAIT OPERATION: 
Wait Operation is intended to facilitate data trans­
mission or reception using block move operations. If 
a block of data is to be transmitted, for example, the 
CPU can execute a String I/O instruction to the 
MPSC. After writing the first byte, the CPU will at­
tempt to write a second byte immediately as is the 
case of block move. The MPSC forces the ROY 
signal low which inserts wait states in the CPU's 
write cycle until the transmit buffer is ready to ac­
cept a new byte. At that time, the ROY signal is high 
allowing the CPU to finish the write cycle. The CPU 
then attempts the third write and the process is 
repeated. 

Similar operation can be programmed for the re­
ceiver. During initialization, wait on transmit (WR1; 
05 = 0) or wait on receive (WR1; 05 = 1) can be 
selected.The wait operation can be enabled/ 
disabled by setting/resetting the Wait Enable Bit 
(WR1; 07). 

CAUTION: ANY CONDITION THAT CAN CAUSE THE 
TRANSMITTER TO STOP (EG, CTS GOES INAC­
TIVE) OR THE RECEIVER TO STOP (EG, RX DATA 
STOPS) WILL CAUSE THE MPSC TO HANG THE 
CPU UP IN WAIT STATES UNTIL RESET. EXTREME 
CARE SHOULD BE TAKEN WHEN USING THIS FEA­
TURE. 

INTERRUPT DRIVEN OPERATION: 
The MPSC can be programmed into several inter­
rupt modes: Non-Vectored, 8085 vectored, and 
8088/86 vectored. In both vectored modes, multiple 
MPSC's can be daisy-chained. 

In the vectored mode, the MPSC responds to an 
interrupt acknowledge sequence by placing a call 

7-223 

A, MPSC 
CS 
RD 

WR 

instruction (8085 mode) and interrupt vector (8085 
and 8088/86 mode) on the data bus. 

The MPSC can be programmed to cause an interrupt 
due to up to 14 conditions in each channel. The 
status of these interrupt conditions is contained in 
Read Registers 0 and 1. These 14 conditions are all 
directed to cause 3 different types of internal inter­
rupt request for each channel: receive/interrupts, 
transmit interrupts and external/status interrupts (if 
enabled). 

This results in up to 6 internal interrupt request 
signals .. The priority of those signals can be pro­
grammed to one of two fixed modes: 

Highest Priority Lowest Priority 

RxA RxB TxA TxB ExTA ExTB 
RxA TxA RxB TxB ExTA ExTB 

The interrupt priority resolution Works dif(erently for 
vectored and non-vectored modes. 

PRIORITY RESOLUTION: VECTORED MODE 
Any .Interrupt condition can be accepted internally 
to the MPSC at any time, unless the MPSC's internal 
INTA signal is active, unless a higher priority inter­
rupt is currently accepted, or if i15i' is inactive (high). 
The MPSC's iriternallNTA is set on the leading (fail­
ing) edge of the first External INTA pulse and reset 
on the trailing (rising) edge of the second External 
INTA pulse. After an interrupt is accepted internally, 
an External INT request is generated and the jj5Q 
goes inactive. iPO and iPi are used for daisy­
chaining MPSC's together. 

AFN'()1701C 



8274 

Interrupt Condition Grouping 

INTERNAL 
INTERRUPT 
ACCEPTED 

iNfERRiJPT 
(EXTERNAL) 

iNfA 
(EXTERNAL) 

INTA 
(INTERNAL) 

CONDITION MODE 

RECEIVE CHARACTER ------------1!>1 R~~~~::g~~:C~~~S 
PARITY ERROR===",...--.rsP'Ec:iAiC"l 
RECEIVE OVERRUN ERROR --+ 
FRAMING ERROR • 
END OF FRAME (SDLC ONLY)_u.<IL5.DIllu:..\ .. 

FIRST NON.SYNC CHARACTER (SYNC MODESI • INTERRUPT ON FIRST 
VALID ADDRESS BYTE (SDLC ONLY) • R, CHARACTER 

INTERNAL INTERRUPT 
REQUEST 

FIRST DATA CHARACTEA.~~i]~~~~~~=~[~~~~~::J 

CDTRANSITION~~~3·~1 ~I CTS TRANSITION • EXTERNAU 
SYNC TRANSITIDN STATUS 

~~~~~/~':.'6UR~~~~ECT : INTERRUPT 

TRANSMIT BUFFER EMPTY

LOWER PRIORITY INTERRUPTS NOT ACCEPTED

HIGHER

___ +-;-----NO ~~m~~bTS-----..... "'-,:,.~~:~~~S--
ACCEPTED

The MPSC's internallNTA is set on the leading (fail­
ing) edge of the first externallNTA pulse, and reset
on the trailing (rising) edge of the second external
INTA pulse. After an interrupt is accepted internally,

an externallNT request is generatedand,jpQ goes
inactive (high). IPO lind)pI are used for daisy­
chaining MPSC's tqgether.

7-224 AF1oH)1701C

intJ

In-Service Timing

INTERNAL INTERRUPT ~
ACCEPTED

8274

~~~~~~U:~ ~~ __________________________________ J~ 
iNTi 

(EXTERNAL) 

)NTA 
(INTERNAL) 

IN-SERVICE 
(INTERNAL) 

E~ch of the six interrupt sources has an associated 
In-Service latch. After 'priority has been ,resolved, the 

7.225 

highest priori'ty In-Service ,1atc,", is set. After the In­
Service latch is set, the iNT pin goes inactive (high). 

AFN-01TD1C 



, 

inter 

EOI Command Timing 

8274 

SERVICE 
ROUTINE - ~--------------------------~~ ~----~ 

INTERNAL INTERRUPT / 
ACCEPTED J 

INTERRUPT \. / 
(EXTERNAL) _ \'-___________ -' 

IIITX 
(EXTERNAL) 

INTA / (INTERNAL) 

---------..J ' 

IN-SERVICE / 
(INTERNAL) 

-----' 

E()I COMMAND 
(INTERNAL) 

Lower priority interrupts are not accepted internally 
while the In-Service latch is set. However, higher 
priority interrupts are accepted internally and a new 
external INT request is generated. If the CPU re­
sponds with a new INTA sequence, the MPSC will re­
spond as before, suspending the lower priority 
interrupt. 

After the interrupt is serviced, the End-of-Interrupt 
(EOI) cqmmand should be written to the MpSC. This 
command will cause an internal pulse that is usedto 
reset the In-Service Latch which allows service for 
lower priority interrupts in the daisy-chain to re­
sume, provided a new INTA sequence does not start 
for a higher priority interrupt (higher than the high­
est under service). If there is no interrupt pending in­
ternally, the IPO follows IPI. 

7-226 AFN·01701C 



8274 

Non-Vectored Interrupt Timing 

IHTERNALINTI!RRUPT 
ACCEPTED 

jjij 

INTERRUPT 
(EXTERNAL) 

iiii 
(EXTERNAL) 

INTERNAL POINTER 
SETTOREQ2 

'''SERVICE 
CINTERNAL) 

EO. COMMAND 
(INTERNAL) 

PRIORITY RESOLUTION: 
NON-VECTORED MODE 

In non-vectored mode, the MPSC does not respond 
to interrupt acknowledge sequences. The INTA input 
(pin 27) must be pulled high for proper operation. 
The MPSC should be programmed to the Status­
Affects-Vector mode, and the CPU should read RR2 
(Ch. B) in its service routine to determine which inter­
rupt requires service. 

7-227 

In this case, the internal pOinter being set to RR2 
provides the same function as the internal INTA 
signal in the vectored mode. It inhibits acceptance 
of any additional internal interrupts and its leading 
edge starts the interrupt priority resolution circuit. 
The interrupt priority resolution is ended by the lead­
ing edge of the read signal used by the CPU to 
retrieve the modified vector. The leading edge of 
read sets the In-Service latch and forces the external 
INT output inactive (high). The internal pointer is 
reset to zero after the trailing edge of the read pulse. 

AFN-01701C 



8274 

Vee 

~~t 
INTA 

CPU ); 
iiI'i' rNTA , 

~ 
lJIl l1'l! 

MPSC 
HIGHEST PRIORITY 

Note that if RR2 is specified but not read, no internal 
interrupts, regardless of priority, are accepted. 

DAISY CHAINING MPSC: 
In the vectored interrupt mode, multiple MPSC's can 
be daisy-chained on the same INT, INTA signals. 
These signals, in conjunction with the Wi and IPO 
allow a daisy - chain - like interrupt resolution 
scheme. This scheme can be configured for either 
80S5 or SOS6/88 based system. . 

In either mode, the same hardware configuration is 
called for. The INT request lines are wire-OR'ed to­
gether at the input of a TTL inverter which drives the 
INT pin of the CPU. The INTA signal from the CPU 
drives all of the daisy-chained MPSC's. 

The MPSC drives IPO (Interrupt Priority Output) in~ 
active (high) if iPi (Interrupt Priority Input) is inactive 
(high), or if the MPSC has an interrupt pending. 

The IPO of the highest priority MPSC is connected to 
the IPI ofthe next highest priority MPSC, and so on. 

WI 

J J 
n iiI'i'A 1RT Tim: 

iPli lJIl iP6 

MPSC MPSC 
LOWEST PRIORITY 

If IPI is active (low), the MPSC knows that all higher 
priority MPSC's have no interrupts pending. The IPI 
pin of the highest priority MPSC is strapped active 
(low) to ensure that it always has priority over the 
rest. 

MPSC's Daisy-chained on an 80SS/S6 CPU should be 
programmed to the SOS8/S6 Interrupt mode (WR2; 
04, 03 (Ch. A). MPSC's Daisy-chained on an SOS5 
CPU sholild be programmed to SOS5 interrupt mode 
1 if it is the highest priority MPSC. In this mode, the 
highest priority MPSC issues the CALL instruction 
during the first INTA cycle, and the interrupting 
MPSC provides the interrupt vector during the fol­
lowing INTA cycles. Lower priority MPSC's should 
be programmed to SOS5 interrupt mode 2. 

MPSC's used alone in 80S5systems should be pro­
grammed to SOS5 mode 1 interrupt operation. 

7-228 AFN-01701C 



inter 8274 

DMA Acknowledge Circuit 

DMATiming 

DACKo -----, 

~,---, 
~,~-~~-~ 

~3-~~~-~ 

Ao-----~ 

A1---;::-----; 
cs 

t--.-''-------A o 
1-;::;,----,,---- A, 

I-'-'--;;>cl>---- CS' 

DRQ,~ \'-------
A"A"CS---""'X'--_____ -'-___ >C 

iiD, Wii ------... \ ... ______ ....J/ 

DMA OPERATION 
Each MPSC can be programmed to utilize up to four 
DMA channels: Transmit Channel A, Receive Chan­
nel A, Transmit Channel B, Receive Chal1nel B. Each 
DMA Channel has an associated DMA Request line, 
Acknowledgement of a DMA cycle is done via nor­
mal data read or write cycles. This is accomplished 
by encoding the DACK signals to generate Ao, A" 
and CS signals, and multiplexing them with the 
normal Ao. A,. and CS signals. 

permutations of interrupt. wait. and DMA modes for 
channels A and B. Bits D" Do of WR2 Ch. A deter­
mine these permutations. 

Permutation 
WR2 <;h. A 

0, Do Channel A 

Walt 
00 Interrupt 

Polled 
o 1 DMA 

Polled 
PERMUTATIONS 1 0 DMA 

-Polled Chanllels A and B can be used with different system 
interface modes. In all cases it is impossible to poll 
the MPSC. The following table shows the possible D1, DO = 1. 1 is illegal. 

ChannelB 

Wait 
Interrupt 

Polled 
Interrupt 

Polled 

DMA 
Polled 

7-229 AFN-01701C 



inter 8274 

DE ~ .... 
A18-A18 01 00 '11-A11 

ALE ST8 
"-- ~ 

~ 
A8-.415 

"'I-A15 

~VCC r--- I 1274 

.... jjjj K~ r-- 01 DO ,- , H 828" A~=Ot~ .--
I ~B'''O'~ f- Bra 

READY :~ ~O,~ 8212 Wi! 
A, O,~ 
8 4 OE' T- I 00,-00, I ~ - eLK 

..... 8282 ITI 

'- RESET I .... OE 01,D1 1 

ADO-AD7 DO-0 7 
08, 

HOLD HLOA 

~ 
DB. 

ADSTI 
I 

0.-0 1237 A.-A - DROI) RxDR 0, - am. I--

@1 HLOA "'000 
CLR 0 

ORO, 
,..-- 7"LS74 HRO am, -

eLK AEN DRQ 2 AIDA 

1m! am, MULTIPLEXER 
~ flOW 

iif " 1bo.r- T~DR 

READY --------1 
eLK I ... 

RESET 
A. 

, ....... I I 
A, 

r 
-yo I .. 

-t>-~ : V 

eB 

I i-.. I 

01' ..... It--I:::''------J 
(FROMI20S) V 

0, 

0, 

lIIi 

~ 

7-230 



PROGRAMMING HINTS 

This section will describe some useful programming 
hints which may be useful in program development. 

Asynchronous Operation 

At the end of transmission. the CPU must issue "Reset 
Transmit InterrupVOMA Pending"command in WROto 
reset the last transmit empty request which was not 
satisfied. Failing to do so will result in the MPSC 
locking up in a transmit emptY. state forever. 

Non-Vectored Mode 

In non"vectored mode. the Interrupt Acknowledge pin 
(INTA) on the MP$C must be tied high through a 
pull-up resistor. Failing to do so will result in unpre­
:dictable response from the 8274. 

HOLC/SOLC Mode 

When receiving data in SOLC mode. the CRC bytes 
. must be read by the CPU (or OMA controller) just like 

any other data field. Failing to do so will result in 
receiver buffer overflow. Also. the End of Frame Inter­
rupt indicates that the entire frame has been received. 
At this pOint. the CRC result (RR1:06) and residue code 
(RR1;03. 02. 01) may be checked. 

Status Register RR2 

RR2 contains the vector which gets modified to indicate 
the source of interrupt (See the section titled MPSC 
Modes of Operation). However. the state of the. vector 
does not change if no new interrupts are generated. 
The contents of RR2 are only changed when a new 
interrupt is generated. In order to get the correct 
information. RR2 must be read only after an interrupt is 
generated. otherwise it will indicate the previous state. 

Initialization Sequence 

The MPSC initialization routine must issue a channel 
Reset Command at the beginning. WR4 should be 
defined before other registers. At the end of the 
initialization sequence. Reset External/Status and Error 
Reset commands should be issued to clear any 
spurious interrupts which may have been caused at " 
power up. 

li'ansmlt Under-run/EOM Latch 

In SOLC/HOLC. bisync and monosync mode. the 
transmit under-run/EOM must be reset to enable the 
CRC check bytes to be appended to the transmit frame 
or transmit message. The transmit under-run/EOM . 
latch can be reset only after the first character is loaded 
into the transmit buffer. When the transmitter under­
runs at the end of the frame. CRC check bytes are 
appended to the frame/message. The transmit under­
run/EOM latch can be reset at any time during the 
transmission after the first character. However. it should 
be reset before the transmitter under-runs otherwise. 
both bytes of the CRe may not be appended to the 
frame/message. In the receive mode in bisync opera­
tion. the CPU must read the CRC bytes and two more 
SYNC characters before checking for valid CRC result 
in RR1. 

Sync Character Load Inhibit 

In bisync/monosync mode only. it is possible to prevent 
lo~ding sync characters into the receive buffers by 
setting the sync character load inhibit bit (WR3;01=1). 
Caution must be exercised in using this option. It may 
be possible to get a CRC character in the received 
message which may match the sync character and not 
get transferred to the receive buffer. However. sync 
character load inhibit should be enabled during all 
pre-frame sync characters so the software routine does 
not have to read them from the MPSC. 

In SOLC/HOLC mode. sync character load inhibitpit 
must be reset to zero for proper operation. 

EOI Command 

EOI command can only be issued through channel A 
irrespective of which channel had generated the 
interrupt. 

Priority in OMA Mode 

There is no priority in OMA mode between the fol­
lowing four signals: TxORQ(CHA). ·RxORQ(CHA). 
TxORQ(CHB). RxORQ(CHB). The priority between 
these four signals must be resolved by the OMA 
controller. At any given time. all four OMA channels 
from the 8274 are capable of going active. 

7-231 AFN-01io1C 



8274 

ABSOLUTE MAXIMUM RATING.S* 

Ambient Temperature 
ynder.Bias ............... , ........ O°C to +70°C 
Storage Temperature 
(Ceramic Package) ............. -65°C to +150°C 
(Plastic Package) .............. -40°C to +125°C 
Voltage On Any Pin With 
Respect to Ground .............. -O.5V to +7.0V 

'NOTlCE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sedtions of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (T. = O"C to 70"C; Vee = +5V ±10%) 

Symbol Para metter Min. Max. Units Test Conditions 

V,L Input Low Voltage -0.5 +0.8 V 

V,H Input HlghVoltage +2.0 Vee +0.5 V 

VOL Output Low Voltage +0.45 V IOL = 2.0mA 

VOH Output High Voltage +2.4 V IOH = -200pA 

I,L Input Leakage Current ±10 pA V,N = Vee to OV 

IOL Output Leakage Current ±10 pA VOUT=VeetoOV 

lee Vee Supply Current 180 mA 

CAPACITANCE (T. = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Max. Units Test Conditions 

C'N Input Capacitance 10 pF fc = 1 MHz; 

COUT Output Capacitance 15 pF Unmeasured 

CliO Input/Output Capacitance 20 pF pins returned 

, toGND 

7-232 . AFN-01701C 



8274 

A.C. CHARACTERISTICS. (T. = O°C to 70°C; Vcc = +5V ±10%) 

Symbol Parameter Min. Max. Units Test Conditions 

tCY CLK Period 250 4000 ns 

tCL ClK low Time 105 2000 ns 

tCH ClK High Time 105 2000 ns 

t r ClK Rise Time 0 30 ns 

tf ClK Fall Time 0 30 ns 

tAR AO, AI Setup to RD) 0 ns 

tAD AO, Alto Data Output Dlay 200 ns CL~150 pi 

tRA AO. AI Hold After RD! 0 ns 

tRO RD) to Data Output Delay 200 ns CL~150 pi 

tRR AD Pulse Width 250 ns 

tOF Output Float Delay 120 ns 

tAW CS, AO, AI Setup to WR) 0 ns 

tWA CS, AO, AI Hold after WR! 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR! 150 ns 

tWD Data Hold Alter WR! 0 ns 

tpi iPi Setup to INTA) 0 ns 

tiP IPI Hold after INTA! 10 ns 

til INTA Pulse Width 250 ns 

tplPO IPI) to IPO Delay 100 ns 

tiD INTA) to Data Output Deay 200 ns 

tca AD or WR to ORO) 150 ns 

tRY Recovery Time Between Controls 300 ns 
, 

tcw CS, AO, Alto ROY A or ROY B Delay 140 ns 

t oCY Data Clock Cycle 4.5 tcy \ 

tDn Data Clock low Time 180 ns 

tDCH Data Clock High Time 180 ; ns 

. 
tTD TxC to TxD Delay 300 ns 

tDS RxD Setup to RxC! 0 ns 

tDH RxD Hold after RxC! 140 ns 

t'TD TxC to INT Delay 4 6 tcy 

tlRD RxC to INT Delay 7 10 tcy 

t pi CTS, CD, SYNDET low Time 200 ns 

tpH CTS, CD, SYNDET High Time 200 ns 

tlPD ExternallNT Irom CTS, CD, SYNDET 500 ns 

7-233 AFN-01701C 



intJ 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

> TEST POINTS < 
0,8 08 

24=>\ 2,0 2'OIC 
045 -------------------

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND 0 8V FOA A LOGIC 0 

WAVEFORMS 

CLOCK CYCLE 

READ CYCLE 

CS, AO. A1 

DBo-DB7 

8274', 

A.C. TESTING LOAD CIRCUIT 

DeVICE 

'1Cl~.'50PF 
UNDER 

TEST 

CL "",l50pF 
Cl INCWOES JIG CAPACITANCE 

\ 

HIGH IMPEDANce 
1----------1'0 ----------;~I 

7-234 AFN-01701C 



inter 8274 

WAVEFORMS (Continued) 

WRITE CYCLE V 

. ../ I= ... ~_._ v .•• d< 

INTA CYCLE 

DMA CYCLE 

ORa / 

---J 

eB.AO,A1 

RDORliR 

NOTES: 
1."iNTA signal acts as RD IIlgnal. 
2.lPi Signal acts as CS signal. 7-235 

AFN'()1701C 



inter 8274 

WAVEFORMS (Continued) 

READ/WRITE CYCLE (SOFTWARE POLLED MODE) 

a,AO,41 

iiDORWR 

t--------I"--:-,-------t 

"'-------
) 

TRANSMIT DATA CYCLE i-------tOCy------i 

Ic----- I.o----~-.j 

OTHER T!,:!~ ":.-----"lp"-,----0----,'"----<~ ........ ---
1 '''D--IQ~ __ _ 

7-236 AFN·01701C 



82530/82530-6 
SERIAL COMMUNICATIONS CONTROLLER (SCC) 

• Two independent full duplex serial 
channels 

• On chip crystal oscillator, Baud-Rate 
Generator and Digital Phase Locked Loop 
for each channel 

• Programmable for NRZ, NRZI or FM data 
encoding/decoding 

• Diagnostic localloopback and automatic 
echo for fault detection and isolation 

• System Clock Rates: 
-4 Mhz for 82530 
-6 Mhz for 82530-6 

• Max Bit Rate (4 Mhz) 

..... Externally clocked: 1 Mbps 

- Self clocked: 
250 Kbps FM coding 
125 Kbps NRZI coding 

• Interfaces easily with any INTEL CPU, 
DMA or I/O processor 

• Asynchronous Modes 
- 5-8 bit character; odd, even or no 

parity; 1, 1.5 or 2 stop bits 
- Independent transmit and receive 

clocks. 1 X, 16X, 32X or 64X 
programmaple sampling rate 

- Error Detection: Framing, Overrun and 
Parity , 

- Break detection and generation 

• Bit synchronous Modes 
- SDLC/HDLC flag generation and 

recognition 
- Automatic zero bit insertion and 

deletion 
- Automatic CRC generation and 

detection (CRC 16 or CCITT) 
- Abort generation and detection 
- I-field residue handling 
- SDLC loop mode operation 
- CCITT X.25 compatible 

• Byte synchronous Modes 
- Internal or external character 

synchronization (1 or 2 characters) 
- Automatic CRC generation and 

checking (CRC 16 or CCITT) 
- IBM Bisync compatible 

7-237. 
NOVEMBER 1983 

ORDER NUMBER: 2~0834-001 



82530/82530-6 

D10·7 
DATA 
IUS 

BUFFERS 

CHANNEL A 

lEO 

,., 

Ai5Y,vQti" 
RDl'alREOa 
tmiAlJiEO ... 
m .... Am. 

elK 

OPERATION 
CONTROL 

SYSTEM INTERFACE 

,;~~ 
GENERATOR 

TRANSMITTERI 
RECEIVER 

READ 
REGISTERS 

CONTROL 
LOGIC 

WRITE 
REGISTERS 

CHANNELl 

SERIAL COMMUNICATION 
INTERFACE 

Figure 1. 82530 Internal Block Diagram 

The INTEL 82530 Serial Communications Controller 
(SCC) is a dual-channel, multi-protocol data 
communications peripheral. It is aesigned to interface 
high speed communications lines using Asynchronous. 
Byte synchronous and Bit synchronous protocols 
to INTEL's microprocessQrs based systems. It can 
be interfaced with Intel's MCS51, iAPX86/88/186 
and 188 in polled, interrupt driven or DMA driven 
modes of operation. 

The SCC is a 40 pin device manufactured using 
INTEL's high-performance HMOS II technology. 

7-238 

D81 

083 

08. 

087 

jjj'f 

lEO 

lEI 

iNfA 

Vee 

FWYA~A 

SYNC. 

RTxC. 

RXOA 

fRiC", 

... 0. 

DTRAfREQ" 

fITS ... 

CTSA 

ell. 

elK 

Figure 2. 

TXD.., 

AaDA 

1ITiC, 

TIiiC, 

SYNC" 

11ft, 
Ci'i, 
Co, 

D80 

082 

08. 

08' 

Rl) 

\VA 

AlB 

cs 
o/E 

ONO 

ROYBIREQe 

SYNCs 

ATxCe 

RxDs 

fRiCa 

TxDe 

me/REOs 

RTSe 

CTSB 

CDB 

Pin configuration 

230834-001 



inter 82530/82530-6 

The following section describes the pin functions 
of the SCC. Figure 2 details the pin assignments 

'nIble 1. Pin Description 

Symbol Pin No. ~pe , Name and Function 

DBa 40 1/0 Data Bus: The Data Bus lines are bi-directional three-state lines which 
DB, 1 I/O interface with the system's Data Bus. These lines carry data and 
DB2 39 1/0 commands to and from the SCC. 
DB3 2 I/O 
DB4 38 I/O 
DBs 3 I/O 
DBe 37 I/O 
DB7 4 I/O 

INT 5 0 Interrupt Request: The interrupt signal is activated when the SCC 
requests an interrupt. It is an open drain output. 

lEO 6 0 Interrupt Enable Out: lEO is High only if lEI is High and the CPU is not 
servicing an SCC interrupt or the SCC is not requesting an interrupt 
(Interrupt Acknowledge cycle only). lEO is connected to the next lower 
priority device's lEI input and thus inhibits interrupts from lower priority 
devices. 

lEI 7 I Interrupt Enable In: lEI is used with lEO to form an interrupt daisy chain 
when there is more than one interrupt-driven device. A High lEI indi-
cates that no other higher priority device has an interrupt under service 
or is requesting an interrupt. 

INTA 8 I Interrupt Acknowledge: This signal ind icates an active I nterrupt Acknowl-
edge c~le. During this cycle, the SCC interrupt daisy chain settles. 
When D becomes active, the SCC places an interrupt vector on the 
data bus (if 'IEI is High)'. INTA is latched by the rising edge of ClK. 

Vee 9 Power: +5V Power supply 

RD?/REQA 10 0 Ready/Request (output, open-drain when programmed for a Ready 
RD e1Rme 30 0 function, driven High or low when programmed for a Requestfunction). 

These dual-purpose outputs may be programmed as Request lines fora 
DMA controller or as Ready lines to synchronize thelCPU to the SCC 
data rate. The reset state is Ready. ' 

SYNCA 11 I/O Synchronization: These pins can act either as inputs. outputs or part of 
SYNCe 29 1/0 the crystal oscillator circuit. In the Asynchronous Receive mode (crystal 

oscillator option not selected). these pins are inputs similar to ~ and 
CD. In this mode, transitions on these lines affect the state of the 
Synchronous/Hunt status bits in Read Register 0 (Fig ure 9) but have no 
other function. . 
In External Synchronization mode with the crystal oscillator not 
selected, these lines also act as inputs. In this mode, SYNC must be 
driven lbw.two receive clock cycles after the last bit in the synchronous 
character is received. Character assembly begins on the r~ingcdge of 
the receive clock immediately preceding the activation of YN. . 

In the Internal Synchronization mode (Monosync and Bisync) with the 
crystal oscillator not selected, these pins act as outputs and are active 
only during the part of the receive clock cycle in which synchrono\Js 
characters are recognized. The synchronous condition is not latched, so 
these ,outputs are active each time a synchronization' pattern is . recognized (regardless of characters boundaries). In SOlC mode, these 
pins act as outputs and are valid on receipt of a flag . 

. 
7-239 230834-001 



82530/82530·6 

Table 1. PIn Description (Cont.) 

Symbol PIn No. ,~pe Name and Function 

RTxCA 12 I Recelve/nansmlt clocks: These pins can be prRfrCmmed in several 
RTxCB 28 I different modes of operation. In each channel, x may supply the 

receive clock, the transmit clock, the clock for the baud rate generator, 
or the clock for the Digital Phase lbcked LOop. These pins can be 
programmed for use with the respective SYNC pins as a crystal 
oscillator. The receive clock may be 1, 16,32, or 64 times the data rate in 
Asynchronous modes. 

RxDA 13 I Receive Data: These lines receive serial data at standard TTL levels. 
RxDB 27 I 

TRxCA 14 I/O Transmit/Receive clocks: These pins can be programmed in several 
~B 26 I/O different modes of operation. TRXC may supply the receive clock'or the 

transmit clock in the input mode or supply the output of the Digital 
Phase locked loop, the crystal oscillator, the baud rate generator, orthe 
transmit clock in the output mode. 

TxDA 15 0 Transmit Data: These output signals transmit serial data at standard TTL 
TxDA 25 0 levels 

DTRAREQA 16 0 Data Terminal Ready/Request: These outputs follow the state pro-
DTRBREQB 24 0 grammed into the DTR bit. They can also be used as general purpose 

outputs or as Request lines for a DMA controller. 

RTSA 17 0 Request To Send: When the Request to Send (RTS) bit in Write Register 5 
RTSB 23 0 is set (figure 10), the RTS signal goes low. When the RTS bit is reset in 

the Asynchrqnous mode ano Auto Enable is on, the signal goes High 
after the transmitter is empty. In ~hronous mode or in Asynchronous 
mode with Auto Enable off, the RTS pin strictly follows the state of the 
RTS bit. Both pin.s can be used as general-purpose outputs. 

CTSA' 18 I Clear To Send: If·these pins are programmed as Auto Enables, a lowon 
CTSB 22 I the inputs enables the respective transmitters. If not programmed as 

Auto Enables, they may be used as general-purpose inputs. Both inputs 
are Schmitt-trigger buffered to accommodate slow rise-time inputs. 
The SCC detects pulses on these inputs and can interrupt the CPU on 
both logic level transitions: 

CDA 19 I Carrier Detect: These pins function as receiver enables if they: are 
CDB 21 I programmed for Auto Enables; otherwise they may be used as general-

purpose input pins. Both pins are Schmitt-trigger buffered to accom-
modate slow rise time signals. The SCC detects pulses on these pins and 
can interrupt the' CPU on both logic level transitions. 

ClK 20 I Clock: This is the system SCC clock usee to synchronize internal 
signals. ClK is a TTL level signal. 

GND 31 Ground 

D/C 32 I Data/Command Select: This signal defines the type of information 
transferred to or from the SCC A High means data IS transferred: a low 
Indicates a command 

es 33 1 Chip Select:This signal selects, th.e sec for a read or write operation. 

A/B 34 I Channel AIChannel B Select: This signal selects the channel in which 
the read or write operation occurs 

WR 35 I Write: When the see l."._selecte.Qlhls signal indicates a write operation. 
The ·colncldence of RD and WR IS interpreted as a reset. 

RD 36 I Read: This signal indicates a read operation and when the SCC is 
selected, enables the.SCC's bus dnvers. During the Interrupt Acknowl-

\ edge cycle, this signal gates the interrupt vector onto the bus if the SCC 
IS the highest priOrity device requesting an interrupt. 

7-240 230834-001 



inter 82530/82530-6 

GENERAL DESCRIPTION 

The INTEL 82530 Serial Communications Con­
troller (SCC) is a dual-channel, multi-protocol data 
communications peripheral. The SCC functions as 
a serial-to-parallel, parallel-to-serial converter/con­
troller. The SCC can be software-configured to 
satisfy a wide range of serial communications appli­
cations. The device contains new, sophisticated 
internal functions including on-chip baud rate gen­
erators, digital phase locked loops, various data 
encoding and decoding schemes, and crystal oscil­
lators that dramatically reduce the need for external 
logic. 

In addition, diagnostic capabilities - automatic echo 
and local loopback - allow the user to detect and 
isolate a failure in the networK. They greatly improve 
the reliability and maintainability of the system. 

The SCC handles Asynchronous formats, Synch­
ronous byte-oriented protocols such as I BM Bisync, 
and Synchronous bit-oriented protocols such as 
HDLC and IBM SDLC. This versatile device sup­
ports virtually any serial data transfer application 
(Terminal, Personal Computer, Peripherals, Indus­
trial Controller, Telecommunication system, etc.): 

The 82530 can generate and check CRC codes in 
any Synchronous mode and can be programmed to 
check data integrity in various modes. The SCC also 
has facilities for modem controls in both channels. 
In applications where these controls are not needed, 
the modem controls can be used for general­
purpose I/O. 

The INTEL 82530 is designed to support INTEL's 
MCS51, iAPX86/88 and iAPX186/188 families. 

ARCHITECTURE 

The 82530 internal structure includes two full­
duplex channels, two baud rate generators, internal­
control and interrupt logic, and a bus interface to a 
non-multiplexed CPU bus. Associated with each 
channel are a number of read and write registers for 
mode control and status information, as well as 
logic necessary to interface to modems or other 
external devices. 

The logic for both channels. provides formats, syn­
chronization, and validation for data transferred to 
and from the channel interface. The modem control 
inputs are monitored by the control logic under 
program control. All of the modem control signals 
are general-purpose in nature and can optionally be 
used for functions other than modem control. 

The register set for each channel includes ten con­
trol (write) registers, two synchronous character 
(write) registers, and four status (read) registers. In 
addition, each baud rate generator has two (read/w­
rite) registers for holding the time constant that 
determines the baud rate. Finally, associated with 
the interrupt logic isa write registerforthe interrupt 
vector accessible through either channel, a write­
only Master Interrupt Control register and three 
read registers: one containing the vector with status 
information (Channel,B only), one containing the 
vector without status (A only), and one containing 
the Interrupt Pending bit~,(A on!y). 

The registers for each channel are designated as 
follows: 

WRO-WR15 - Write Registers 0 through 15. 
RRO-RR3, RR10, RR12, RR13, RR15 - Read Registers 

o through 3, 10, 12,.13, 15 

Table 21ists the functions assigned to each read or 
write register. The SCC contains only one WR2 
and WR9, but they can be accessed by either 
channel. All ,other registers are paired (one for 
each channel). 

DATA PATH 

The transmit and receive data path illustrated in 
Figure 3 is identical for both channels. The receiver 
has thrre 8-bit buffer registers in a FIFO arrange­
ment, in addition to the 8-bit receive shift register. 
This scheme creates additional time for the CPU to 
service an interrupt at the beginning of a block of 
high-speed data. Incoming data is routed through 
one of severai' paths (data or CRC) depending on 
the selected mode (the character length in asynch­
ronous modes also determines the data path). 

The transmitter has an 8-bit transmit data buffer 
reg,ister loaded from the internal data bus and a 
20-bit transmit shift register that can be loaded 
either from the synC-Character registers or from the 
transmit data register. Depending on the opera­
tional mode, outgoing data is routed through one of 
four main paths before it is transmitted from the 
Transmit Data output (TxD). 

7-241 230834-001 



82530/82530-6 

Table 2. Read and Write Register Functions 

READ REGISTER FUNCTIONS 

RRO Transmit/Receive buffer status and 
External status 

RR1 Special Receive Condition status 

RR2 Modified interrupt vector 
(Channel B only) 

Unmodified interrupt 
(Channel A only) 

RR3 Interrupt Pending bits 
(Channel A only) 

RR8 Receive buffer 

RR10 Miscellaneous status 

RR12 Lower byte of baud rate generator time 
constant 

RR13 Upper byte of baud rate generator time' 
constant 

RR15 External/Status interrupt information 

WRITE REGISTER FUNCTIONS 

WRO CRC initialize, initialization commands for 
the various modes, shift right/shift left 
command 

WR1 Transmit/Receive interrupt and data 
transfer mode definition 

WR2 Interrupt vector (accessed through either 
channel) 

WR3 Receive parameters and control 

WR4 Transmit/Receive miscellaneous parame-
ters and modes 

WR5 Transmit parameters and controls 

WR6 Sync characters or SOLC address field 

WR7 Sync character or SOLC flag 

WR8 Transmit buffer 

WR9 Master interrupt control and reset 
(accessed through either channel) 

WR10 Miscellaneous transmitter/receiver control 
bits 

WR11 Clock mode control 

WR12 Lower Byte of baud rate generator time 
constant 

WR13 Upper byte of baud rate generator time 
constant 

WR14 Miscellaneous control bits 

WR15 External/Status interrupt control 

7-242 230834-001 



8A GENERATOR 
INPUT 

l 
!i 1" 

N W .,.. 
Ii Co> 

iii' 
l 
!f 

DPLL ---..1. ____ ..... 

! 

CPU "a 

8R GENERATOR OUTPUT ~ 
DPLLOUTPUT 

TfiiC 

ii!iiC 

i'iNC 
(OSCILLATOR I 

CLOCK 
MUX 

_J _____ u __ l 

RECEIVE CLOCK 

TRANSMIT CLOCK 

DPllCLOCK 

8A GENERATOR CLOCK 

TRANSMIT 
CLOCK 

l 

GIl 
II) 
(1'1 
Co) 

~ 
GIl 
II) 
(1'1 
Co) 
0 • 



82530/82530;':6 

FUNCTIONAL DESCRIPTION 
The functional capabilities of the SCC can be des­
cribed from two different points of view: as a data 
communications device, it transmits and receives 
data in a wide variety of data communications pro­
tocols; as a microprocessor peripheral, it interacts 
with the CPU and provides vectored interrupts and 
handshaking signals. . 

DATA COMMUNICATIONS 
CAPABILITIES 
The SCC provides two independent full-duplex 
channels programmable for use in any'common 
asynchronous or synchronous data-comm unications 
protocol. Figure 4 and the following description 
briefly detail these protocols. 

Asynchronous Modes 
TransmiSSIon and reception can be accomplished 
independently on each channel with five to eight 
bits per character, plus optional even or odd parity. 
The transmitter can supply one, one-and-a-half or 
two stop bits per character and can provide a break 
output at any time. The receiver break-detection 
logic interrupts the CPU both at the start and at the 

MARKING LINE 

SYNC DATA : ; 
MONOSYNC 

SYNC DATA :: 
SIGNAL 

BISYNC , 
I DATA : ;. 

EXTERNAL SYNC 

FLAG ADDRESS I INFO;~ATION 
SDLC/HDLC/X.25 

end of a received break. Reception.is protected from 
spikes by a transient spike-rejection mechanism 
that checks the signal one-half a bit ti me after a Low 
level is detected on the receive data input (RxDA or 
RxDB).lfthe Low does not persist (as in the case of a 
transient), the character assembly process does not 
start. 

Framing errors and overrun errors are detected and 
buffered together with the partial character on 
which they occur. Vectored interrupts allow fast ser­
vicing or error conditions using dedicated routines. 
Furthermore, a built-in checking process avoids the 
interpretation of framing error as a new start bit: a 
framing error results in the addition of one-half a bit 
time to the point at which the search for the next 
start bit begins. 

The SCC does not require symmetric transmit and 
receive clock signals - a feature allowing use of the 
wide var.iety of clock sources. The transmitter and 
receiver can handle data at a rate of 1, 1116; 1/32, or 
1/64 of the clock rate supplied to the receive and 
transmit clock inputs. In asynchronous modes, the 
SYNC pin may be programmed as an input used for 
functions such as monitoring a ring indicator. 

MARKING LINE 

DATA CRC1 CRC2 

DATA CRC1 CRC2 

DATA CRC1 CRC2 

CRC1 CRC2 FLAG 

Figu~ 4. see Protocols 

7-244 230834-001 



inter 82530/82530-6 

Synchronous Modes 
The SCC supports both byte-oriented and bit­
oriented synchronous communication. Synchronous­
byte-oriented protocols can be handled in several 
modes allowing character synchronization with a 
6-bit or 8-bit synchronous character (Monosync), 
any 12-bit synchronous pattern (Bisync), or with an 
external synchronous signal. Leading synchronous 
characters can be removed without interrupting the 
cpu. 

Five- or 7-bit synchronous characters are detected 
with 8- or 16-bit patterns in the SCC by overlapping 
the larger pattern acfoss multiple incoming syn­
chronous characters as shown in Figure 5. 

CRC checking for Synchronous byte-oriented 
mode is delayed by one character time so that the 
CPU may disable CRC checking on specific charac­
ters. this permits the implementation of protocols 
such as IBM Bisync. 

Both CRC-16 (X16 + X15 + X2 + 1) and CCITT (X16 + X 12 
+ X5 + 1) error checking polynomials are supported. 
Either polynomial may be selected in all synchro­
nous modes. Users may preset the CRC generator 
and checker to all 15 or all Os. The SCC also pro­
vides a feature that automatically transmits CRC 
data when no other data Is available for transmis­
sion. 
This allows ·for high-speed transmissions under 
OMA control, with no need for CPU intervention at 
the end of a message. When there is no data or CRC 
to send in synchronous modes, the transmitter 
inserts 6-, 8-, or 16-bit synchronous characters, 
regardless of the programmed character length. 

, . 
The SCC supports synchronous bit-oriented pro­
tocols, such as SOLC and HOLC, by performing 
automatic flag sending, zero Insertion, and CRC 
generation. A special command" can be used to 
abort a frame in transmission. At the end of a mes­
sage, the SCC automatically transmits the CRC 
and trailing flag when the transmitter underruns. 
The transmitter may also be programmed to send an 
idle line consisting of continuous flag characters or 
a steady marking condition. 

SBITS 

:SYNC SYN~ SYNC DATA 

----------- ----------16 

If a transmit underrun occurs in the middle of a 
message, IiIn external status interrupt warns the 
CPU of this status change so that an abort may be 
issued. The SCC may also be programmed to send 
an abort itself in case of an underrun, relieving the 
CPU of this task. One to eight bits per character can 
be sent allowing reception of a message with no 
prior information about the character structure in 
the information field of a frame. 

The receiver automatically acquires synchroniza­
tion on the leading flag of a frame in SOLC or!:!Q.bQ 
and provides a synchroniZation signal on the SYNC 
pin (an interrupt can also be programmed). The 
receiver can be programmed to search for frames 
addressed by a single byte (or four bits within a 
byte) of a user-selected address or to a global 
broadcast address. In this mode, frames not match­
ing either the user-selected or broadcast address 
are ignored. The number of address bytes can be 
extended under software control. For receiving 
data, an interrupt on the first received character, or 
an interrupt on every character, or on special condi­
tion only (end-of-frame) can be selected. The 
receiver automatically deletes all Os inserted by the 
transmitter during character assembly. CRC is also 
calculated and is automatically checked to validate 
frame transmission. At the end of transmission, the 
status of a received frame is available in the status 
registers. In SOLC mode, the SCC must be pro­
grammed to use the SOLC CRC polynomial, but the 
generator and checker may be be preset to all 1 s or 
al,1 Os. The CRC is inverted before transmission and 
the receiver checks against the bit pattern 
0001110100001111. 

NRZ, NRZ I or FM coding may be used in any 1 X 
mode. The parity options available in asynchronous 
modes are available in synchronous modes. 

The SCC can be conveniently used under OMA 
control to provide high-speed reception or trans­
mission. In reception,for example, the SCC can 
interrupt the CPU when the first character of a mes­
sage is received. The CPU then enables the OMA to 
transfer the message to memory. The SCC then 
issues an end-of-frame interrupt and the CPU can ' 

OATA DATA DI'TA 

Figure 5. Detecting 5- or 7- Bit Synchronous Characters 

7-245 230834-001 



82530/82530-6 

check the status of the received message. Th us, the 
CPU is freed for other service while the message is 
being received. The CPU may also enable the OMA 
first and have the SCC interrupt only on end-of­
frame. This procedure allows all data to be trans­
ferred via OMA. 

SOLe LOOf) MODE 

The SCC supports SOLC Loop mode in addition to 
normal SOLC. In an SOLC Loop, there is a primary 
controller station that manages the message traffic 
flow and any number of secondary. stations. In 
SOLC Loop mode, the SCC performs the functions 
of a secondary station while an SCC operating in 
regularSOLCmode can act asa controller (Figure 6). 

Figure 6. An SOLe Loop 

A secondary station in an SOLC Loop is always 
listening to the messages being sent around the 
loop, and in fact must pass these messages to the 
rest of the loop by retransmitting them with a one­
bit-time delay. The secondary station can place its 
own message on the loop only at specific times. The 
controller signals that secondary stations may 
transmit messages by sending a special character, 
called an EOP (End of Poll), around the loop. The 
EOP character is the bit pattern 11111110. Because 
of zero insertion during messages, this bit pattern is 
unique and easily recognized. 

When a secondary station has a message to trans­
mit and recognizes an EOP on the line, it changes 
the last binary one of the EOP to a zero before 
transmission. This has the effect of turning the EOP 
into a flag sequence. The secondary station now 
places its message on the loop and terminates the 
message with., an EOP. Any secondary stations 

7-246 

further down the loop with messages to transmit 
can then append their mellsages to the message of 
the first secondary station by the same process. Any 
secondary stations without messages to send merely 
echo the incoming messages and are prohibited 
from placing messages on the loop (except upon 
recognizing an EOP). 

SOLC Loop mOde is a programmable option in the 
SCC. NRZ, NRZI, and FM coding may all be used in 
SOLC Loop mode. 

BAUD RATE GENERATOR 
Each channel in the sec contains a programmable 
Baud rate generator. Each generator consists of two 
S-bit time constant registers that form a 16-bit time 
constant, a 16-bit down counter, and a flip-flop on 
the output prod ucing a square wave. On startup, the 
flip-flop on the output is set in a High state, the value 
in the time constant register is loaded into the coun­
ter, and the counter starts counting down. The out­
put of the baud rate generator toggles upon reach­
ing zero, the value in the time constant register is 
loaded into the counter, and the process is repeated. 
The time constant may be changed at any time, but 
the new value does not take effect until the next load 
of the counter. 

The output of the baud rate generator may be used 
as either the transmit clock, the receive clock, or 
both. It can also drive the digital phase-locked loop 
(see next section). 

If the receive clock or transmit clock is not pro­
grammed to come from the i'RXC pin, the output of 
the, baud rate generator may be echoed out via the 
TRxC pin. 

The following formula relates the time constant to 
the baud rate. (The baud rate is in bits/second and 
the BR clock period is in seconds.) 

1 
baud rate - . . . 

2 (time constant + 2) x (BR clock penod) 

230834-001 



82530/82530-6 

Time Constant Values 
for Standard Baud Rates at BR Clock,= 3.9936MHz 

Rate Time Constant 
(Baud) (decimal notation) Error 

19200 102 -
9600 206 -
7200 275 0.12% 
4800 414 -
3600 553 0.06% 
2400 830 -
2000 996 0.04% 
1800 1107 0.03% 
1200 1662 -
600 3326 -
300 ,6654 -
150 13310 -
134.5 14844 0.0007% 
110 18151 0.0015% 
75 26622 -
50 39934 -

DIGITAL PHASE LOCKED LOOP 
The SCC contains a digital phase locked-loop 
(OPLL) to recover clock information from a data­
stream with NRZI or FM encoding. The OPLL is 
driven by a clock that is nominally 32 (NRZI) or 16 
(FM) times the data rate. The OPLL uses this clock, 
along with the datastream, to construct a clock for 
the data. This clock may then be used as the SCC 
receive clock, the transmit clock, or both. 

For NRZI coding, the OPLL counts the 32X clock to 
create nominal bit ti'mes. As the 32X clock is 
counted, the OPLL is searching the incoming data­
stream for edges (either 1/0 or 0/1). Whenever an 
edge is detected, the OPLL makes a count adjust­
ment (during the next counting cycle), producing a 
terminal count closer to the center of the bit cell. 

For FM encoding, the OPLLstili Counts from 1 to 31, 
but with ,a cycle corresponding to two bit times. 
When the OPLL is locked, the clock edges in the 
datastream should occur between counts 15 and 16 
and between counts 31 and O. The OPLL looks for 
edges only during a time centered on the 15/16 
counting transition. ' 

The 32X clock for the OPLL can be programmed to 
come from either the RTxC input orthe output of the 
baud rate generator. The OPLL output may bTRrc 
grammed to be echoed out of the SCC via the x 
pin (if this pin is not being used as an input). 

DATA ENCODING 
The SCC may be programmed to encode and 
decode the serial data in four different ways (Figure 
7). In NRZ encoding, a 1 is represented by a High 
level and a 0 is represented by a Low level. In NRZI 

encoding. as 1 is represented by no change in level 
and a 0 is represented by a change in level. In FM1 
(more properly, bi-phase mark) a transition occurs 
at the beginning of every bit cell. A 1 is represented 
by an additional transition at the center of the bit cell 
and a 0 is repr-esented by 110 additional transition at 
the center of the bit cell. In FMo (bi-phase space), a 
transition occurs at the beginning of every bit cell. A 
o is represented by an additional transition at the 
center of the bit cell, and a 1 is represented by no 
additional transition at the center of the bit cell. In 
addition to these four methods, the SCC can be 
used to decode Manchester (bi-phase level) data by 
using the OPLL in the FM mode and programming 
the receiver for NRZ data. Manchester encoding 
always produces a transition at the center of the bit 
cell. If the transition is 0/1 the bit is a O. If the transi­
tion is 1/0 the bit is a 1. 

AUTO ECHO AND LOCAL LOOPBACK 
The SCC is capable of automatically echoi ng every­
thing it receives. This feature is useful mainly in 
asynchronous modes, but works in synchronous 
and SOLC modes as well. In Auto Echo mode TxO 
is RxO. Auto Echo mode can be used with NRZI or 
FM encoding with no additional delay, because the 
datastream is not decoded before retransmission. In 
Auto Echo mode, the eTS input is ignored as a 
transmitter enable (although transitions on this 
input can still cause interrupts if programmed to do 
so). In this mode, the transmitter is actually bypassed 
and the programmer is res~Esbbie for disabling 
transmitter interrupts and A 7REaUEST on 
transmit. 

The SCC is also capable of local loopback. In this 
mode, TxO is RxO just as in Auto Echo mode. How­
ever, in Local Loopback mode, the internal transmit 
data is tied to the internal receive data and RxO is 

( ignored (except to be echoed out via TxO).' eTS 
and CD inputs ,are also ignored as transmit and 
receive enables. However, transitions on these inputs 
can still cause interrupts. Local Loopback works in 
asynchronous, synchronous and SOLC modes with 
NRZ, NRZI or FM coding of the data stream. 

SERIAL BIT RATE 
To run the 82530 (4Mhz) at 1 Mbps the receive a,nd 
transmit clocks must be externally generated and 
synchronized to thTRsysjem clock. If the serial 
clocks (RTxC and xC and the system clock 
(CLK) are asynchronous, the maximum bit rate is 
880 Kbps. For self-clocked operation, i.e using the 
on chip OPLL, the maximum bit rate is 125 Kbps if 
NRZI coding is used and 250 Kbps if FM coding is 
used. • 

7-247 230834-001 



DATAl 

:....---+----i 
NRZ I 

'1 

NRZI i----.;,-----; 

FM1 
(BIPHASE MARK) 

FMo 
(BIPHASE SPACE) ~ __ ~ 

82530/82530-6 

o I BIT CELL LEVEL: 

t---~ HIGH = 1 

I 
LOW=O 

o 

!-----i NO CHANGE = 1 I CHANGE = 0 

BIT CENTER TRANSITION: 

TRANSITION = 1 
!----~I NO TRANSITION = 0 

NO TRANSITION = 1 

TRANSITION = 0 

I HIGH _LOW = 1 I LOW _HIGH = 0 

Figure 7. Data Encoding Methods 

Mode 

Serial clocks 
generated 
externally 

Self-clocked 
operation 

NAZI 

FM 

System 
clock 

4Mhz 

6 Mhz 

, 4 Mhz 

6 Mhz 

4 Mhz 
6 Mhz 

4 Mhz 
6Mhz 

System' clock! Serial bit rate Conditions 
Serial clock 

4 1 Mbps Serial clocks synchronized with 
system clock. Refer to parameter #3 
and #10 in general timings. 

4 1.5 Mbps Serial cloCks synchronized with 
. system clock. Refer to parameter #3 and 

#10 in general timings. 
4.5 880 Kbps Serial clocks and system 

clock asynchronous. 
4.5 1.3 Mbps Serial clocks and system 

clock asynchronous 

32 125 Kbps 
32 187 Kbps 

16 250 Kbps 
16 375 kbps 

7-248 230834"()Ol 



inter 82530/82530·6 

1/0 INTERFACE CAPABILITIES 
The S,CC offers the choice of Polling, Interrupt (vec­
tored or nonvectored) and Block Transfer moces to 
transfer data, status, and control information to and 
from the CPU. The Block Transfer mode can be 
implemented under CPU or DMA control. 

POLLING 
All interrupts are disabled. Three status registe,rs in 
the SCC are automatically updated whenever any 
function is performed. Forexample, end-of-frame in 
SDL~ mode sets a bit in one of these status registers. 
The Idea' behind p,olling is for the CPU to periodi­
cally read a statu~ register until the register contents 
indicate the need for data to be transferred. Only 
one register needs to be read; depending on its 
contents, the CPU either writes data reads data or 
continues. Two bits in the register indicate the n~ed 
for data transfer. An alternative is a poll of the Inter­
rupt Pending register to determine the source of an 
interrupt. The status for both channels resides in 
one register. 

INTERRUPTS 
"Yhen a SCC responds to an Interrupt Acknowledge 
signal (TlilTAj from the CPU, an interrupt vector may 
be placed on the data bus. This vector is written in 
WR2 and may be read in RR2A or RR2B (Figures 9 
and 10). ' 

To speed interrupt response time, the SCC can mod­
ify three bits in this vector to indicate status. If the 
vector is read in Channel A, status is never included' 
if it i,s read in Channel B, status is always included: 

+5V 

sec 
HIGHEST PRIORITY 

Each of the six sources of interrupts in the SCC 
(Transmit, Receive and ExternaliStatus interrupts in 
both channels) has three bits associated with the 
interrupt source: Interrupt Pending (IP), Interrupt 
Under Service (IUS), and Interrupt Enable (IE). 
Operation ofthe IE bit is straightforward. If the IE bit' 
is set for a given interrupt source, then that source 
can request interrupts. The exception is when the 
MIE (Master Interrupt Enable) bit in WR9 is reset 
and no interrupts may be requested. The IE bits are 
write-only. 

The other two bits are related to'the interrupt prior­
ity chain (F!gure 8). As a peripheral, the SCC may 
request an mterrupt only when no higher-pr.Jority 
device is requesting one, e.g., when lEI is High. If the 
deviceJ!!. question requests an ihterrup,t, it pulls 
down INT. The CPU then responds with iNTA, and 
the interrupting device places the vector on the data 
bus. 

In the SCC, the IP bit signals a need for interrupt 
servicing. When an IP bit is 1 and the lEI input is 
~igh, the INT output is pulled Low, requesting an 
mterrupt. In the SCC, if the IE bit is not set by 
enabling interrupts, then the IP for that source can 
never be set. The IP bits are readable in RR3A. 

The IUS bi,ts signal that an int,errupt request is being 
'serviced. If, an IUS is set, all interrupt sources of 
lower priority in the ,sCC and external to the SCC 
are prevented from requesting interrupts. The inter­
nal interrupt sources are inhibited by the state of the 
internal daisy chain, while lower priority devices are 
inhibited by the lEO output of the sec being pulled 

scc SCC 
LOWEST PRIORITY 

DBO-DB7 

INT 

~ '---~--~-------4--~--------------~------------------~ 
+5V 

FIgure 8. Daisy Chaining SCC's 

7-249 23083~' 



82530/825~O-6 

Low and propagated to subsequent peripherals. An 
~US bit is set during an Interrupt Acknowledge cycle 
~f there are no higher-priority devices requesting 
Interrupts. . .' 

There are three types of interrupts: Transmit, Receive 
~nd External/Status interrupts. Each interrupt type 
IS enabled under program control with Channel A 
having higher priority than Channel B, and with 
Receiver, Transmit and External/Status interrupts, 
prioritized in that order within each channel. When 
the Transmit interrupt is enabled, the CPU is inter­
rup~ed wh~n the transmit buffer becomes empty. 
(This Implies that the transmitter must have had a 
data character written into it so that it can become 
empty.) When enabled, the receiver can interrupt 
the CPU in one of three ways: . 

• Interrupt on First Receive Character or Special 
Receive condition. . 

• Interrupt on/all Receive Characters or Special 
Receive condition. 

• Interrupt on Special Receive condition only. 

Interrupt on First Character or Special Condition 
and Interrupt on Special Condition Only are typi­
cally used with the Block Transfer mode. A Special 
Receive Condition is one of the following: receiver 
overrun, framing error in Asynchronous mode, End­
of-Frame In SDLC mode and, optionally, a parity 
error. The Special Receive Condition interrupt is 
different from an ordinary receive character avail­
able interrupt only in the status placed in the vector 
during the Interrupt-Acknowledge cycle. In Inter­
rupt on First Receive Character, an interrupt can 
occur from Special Receive conditions any time 
after the first receive character interrupt. 

The main function of the External/Status interrupt is 
§o mCni~or the signal transitions of the CTs, Co, and 

YN pinS; however, an External/Status interrupt is 
also caused by a Transmit Underrun condition, or a 
zero count in the baud rate generator, or by the 
detection of a Break (asynchronous mode), Abort 
(SDLC mode) or EOP (SDLC Loop mode) sequence 
in the data stream. The interrupt caused by the Abort 
or EOP has a special feature allowing the sec to 
interrupt when the Abort or EOP sequence is 
detected or terminated. This feature facilitates the 
proper termination of the current message, correct 
initialization of the next message, and the accurate 
timing of the Abort condition in external logic in 
SDLC mode. In SDLe Loop mode this feature 
allows secondary stations to recognize the wishes 
of the primary station to regain control of the loop 
during a poll sequence. 

CPU/DMABLOCKTRANSFER 
TheSCC provides a Block Transfer mode to ac­
commodate CPU block transfer functions and DMA 
controllers. The Bl.ock Transfer mode uses the 
READY/REQUEST output in conjunction withfhe 
READY/REQUEST bits in WR1. The READY/RE­
O"O'EST output can be defined under software con­
trol as a REAI:5? line in the CPU Block Transfer 
mode (WR1; D6=0) orasa request line in the DMA 
Block Transfer mode (WR1; D6=1). To a DMA con~ 
troller, the SCC REQUEST output indicates .that 
the SCC is ready to transfer data to or from 
memory. To the CPU, the READY line indicates that 
the SC~ is not ready to transfer data, thereby 
requesting that the CPU extend the I/O cycle. The 
DTR/REQUEST line allows full-duplex operation 
under DMA control. 

PROGRAMMING 
Each channel has fifteen Write registers that are 
individually programmed from the system bus to 
configure the functional personality of each chan­
nel. Each channel also has eight Read registers from 
which ime system can r.ead Status, Baud rate, or 
Interrupt information. . 

Only the four data registers (Read, Write for channels 
A and B) are directly selected by a High on the D/G 
inl2ut and the appropriate levels on the RD, WR and 
Alt3 pins. All other registers are addressed indirectly 
by the content of Write Register 0 in conjunction 
with a Low ~the D/G inp.!:.!,t and the appropriate 
levels on the RD, WR and AlB pins. If bit 4 in WWO is 
1 and bits 5 and 6 are 0 then bits 0, 1,2 address the 
higher registers 8 through 15. If bits 4, 5, 6 contain a 
different code, bits 0, 1,2 address the lower registers 
o through 7 as shown on Table 3. 

Writing to or reading from any register except RRO, 
WRO and the Data Registers thus involves two 
operations: 

First write the appropriate code into WRO,then fol­
low this bya write or read operation on the register 
thus specified. BitsOthrough 4 in WWOareautomat­
ically cleared after this operation, so that WWO then 
points to WRO or RRO again. ' 

Channel AlChannel B selection is made by the AlB 
input (High = A, Low = B) 

The system program first issues a series of com­
mands to initialize the basic mode of operation. This 
is followed by other commands to qualify condi-

- , 

230834-001 



inter 82530/82530-6 

TABLE 3. REGISTER ADDRESSING 

I 

DIC "Point High" D2 D1 
Code In WRO InWRO 

High Either Way X 
Low Not True 0 
Low Not True 0 
Low Not True 0 
Low Not True 0 
Low Not True 1 
Low Not True 1 
Low Not True 1 
Low Not True 1 
Low True 0 
Low True 0 
Low True 0 
Low True 0 
Low True 1 
Low True 1 
Low True 1 
Low True 1 

tions within the selected mode. For example, the 
asynchronous mode, character length, clock rate, 
number of stop bits, even or odd parity might be set 
first. 'Then the interrupt mode would be set, and 
finally, re~eiver or transmitter enable. 

READ REGISTERS 
The SCC contains eight read registers (actually 
nine, counting the receive 'buffer (RR8) in each 
channel). Four of these may be read to obtain status 
information (RRO, RR1, RR10, and RR15). Two regis­
ters (RR12 and RR13) may be read to earn the baud 
rate generator time constant. RR2 contains either 
the unmodified interrupt vector (Channel A) or the 
vector modified by status information (Channel B). 
RR3 contains the Interrupt Pending (IP) bits (Chan­
nel A). Figure 9 shows the formats for each read 
register. 

X 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

Do Write Read 
Reg'lster Register 

X Data Data 
0 0 0 
1 1 1 
0 2 2 
1 3 3 
0 4 (0) 
1 5 (1 ) 
0 6 (2) 
1 7 (3) 
0 Data Data 
1 9 -
0 10 10 
1 11 (15) 
0 12 12 
1 13 13 
0 14 (10) 
1 15 15 

The status bits of RRO.and RR1 are carefully grouped 
to simplify status monitoring: e.g. when the inter­
rupt vector indicates a Special Receive Condition 
interrupt, all the appropriate error bits can be read 
from a Single register (RR1). 

WRITE REGISTERS 
The SCC contains 15 write registers (16 counting 
WR8, the transmit buffer) in each,. channel. These 
write registers are programmed separately to con­
figure the functional "personality" of the channels. 
In addition, there are two registers (WR2 and WR9) 
shared by the two channels that may be accessed 
through either of them. WR2 contains the interrupt 
vector for both channels, while WR9 contains the 
interrupt control bits. Figure 10 shows the format of 
each write register. 

7-251 230834-001 I 



82530182530-6, 

Rx CHARACTER AVAILABLE 

ZERO COUNT 
'-____ TIl BUFFER EMPTY 

L-__ ..... __ CO 

'-_______ ~NCJHUNT 

~---------bs 
.... ------------ TIl UNDERRUNJEOM 

.... ------------- BREAK/ABORT 

.... ----~I_~n_ 
'-------- ~ \ 

"MODIFIED IN B CHANNEL 

ON LOOP 

.... -------- LOOP SENDING 

.... ------------ TWO CLOCKS M_NG' 

.... -------------- ONE CLOCK MISSIHG 

:~: I 
.... ----TClO l 

.... ------ TC11 UPPER BYTE OF 

TC12 \ TIME CONSTANT L-_________ TC13 ) 

.... -------....,.---- TC14 1-_____________ TC15 

ALL SENT 

RESIDUE CODE 2 
1-____ RESIDUE CODE 1 

L.. ______ RESIDUE COOEO 

'--------- PilAITV ERROR L... __________ Ax OVERRUN ERROR 

1-______ .... _____ CACIFRAMING ERROR 

L.. _____________ END OF FRAME (SDLC) 

CHANNEL B EXT/STAT II>" 

CHANNEL B TIIIP" 

.... ----CHANNELB R,IP' 

'-------'CHANNEL A EXT/STAT II'" 

L...--------CHANNEL A TIIP' 

L..----------c:HANNEL A "xlp· 

'-ALWAYs 0 IN 8 CHANNEL 

~~ ) 
TC.~ 

L-__ .. -.:_-_ -_ -_ -_ -_ -_ -_ -_ -_ ~'j 

TC, 

LOWER BYTE OF 
TIME CONSTANT 

ZERO COUNT IE 

L...--..... ---CDIE 

'--------- SYNC/HUNT IE 

'----------CTSIE L... ___________ TIl UNDERRUNJEOM IE 
1-_____________ BREAK/ABORT IE 

Figure 9. Read Register Bit FuncUons 

I," 

7-252 230834-001 



inter 82530/82530-6 

WRITE REGISTER 0 

I 0, 081 05 D. 

0 0 

0 0 

0 1 

0 1 

1 0 

1 0 , 1 

1 1 

o rO NULL CODE 

031 02 0, 001 

0 

1 

0 

1 

0 

1 

0 

1 

0 0 0 

0 0 , 
0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 , 
NULLCDDE 

POINT HIGH AEGIS 

FRElIT EX'118TATUS 

SEND ABORT 

00< 

1o, 

20' 

3", 

40' 

5o, 

60, 

70' 

AEGISnA 

ENABLE INT ON NE XT Ax CHARACTER 

NG AEBET Til INT PENDI 

EARORAESET 

RESET HIGHEST IUS 

Or,-
-;-'0 

RESET Ax eRe CHECKER 

RESET Tx CRe GENERATOR -;-r,-
REseT Tx UNOEARUN/EOM LATCH 

-"'--

WRITE REGISTER 1 

EXT. INT ENABLE 

Tx INT ENABLE 

'-----PARITY IS SPECIAL CONDITION 

o Ax INT DISABLE 

1 AxlNT ON FIRST CHARACTER OR SPECIAL CONDITION 

OINT ON ALL Rx CHARACTERS OR SPECIAL CONDITION 

1 Ax INT ON SPECIAL CONDITION ONLY 

'------"EADYlDMAREQUESTONRECEIYElTRANSMIT 

L-.------_tlEADyIDMA REQUEST FUNCTION 
L-_____ -'-__ READy/DMA REQUEST ENABLE 

~ I 
L-__ .-_ y,! 

L-. ______ ., 

~ \ ~------------~ L.,-------------- ., 

SYNC7 SYNC. 
SYNC1 SYNc" 
SYNC7 SYNC. 
SYNC3 SYNC, 
ADR, ADR, 
AOA, ADA, 

INTERRUPT VECTOR 

S"(NCs \SYNC4 
SYNC, SYNC. 
SYNCs SYNC. 
SYNC, SYNc" 
ADRs ADR4 
ADAs ADA< 

SYNC3 
SYNC3 
SYNC3 

1 
AOR3 

1 

RJt ENABLE 

SYNC CHARACTER LOAD INHIBIT 
L-. ____ ADDRESS SEARCH MODE (SOLe) 

L-. _____ Ax CRC ENABLE 

L-. _______ ENTER HUNT MODE 
L-. _________ AUTO ENAILES 

o Rx S 8'TSICHARACTEA 

1 Ax7 BITS/CHARACTER 

o Ax' BITs/CHARACTER 

1 Ax 8 BITSfCHARACTI!A 

PARITY ENABLE 

PAAITY EVEN/ODD 

SYNC MODES ENABLE 

1 STOP BIT/CHARACTER 

11ft STOP BITS/CHARACTER 

2 STOP BIT$'CHARACTEA 

TxCRCENABI-E 

RTS 
'--___ II5LC/CRC-1. 

'------- T. ENABLE 
L-________ SEND BREAK 

Tx 5 BITS (OR LESS)/CHARACTER 

Tx 7 BITS/CHARACTER 

Tx 6 BITS/CHARACTER 

Tx 8 BITS/CHARACTER 

'-_____________ DTR 

SYNC, SYNC1 SYNCo MONOSYNC 8 BITS 
SYNc.. SYNC1 SYNCo MONOSYNC 8 BITS 
SYNC2 SYNC1 SYNc" BISYNC 18 BITS 

1 1 1 BISYNC 12 BITS 
ADR, ADR1 ADRo SOLC 

1 1 1 SDLC (ADDIIESS 0) 

Figure 10. Write ~eglster Bit Functions 

7-253 230834-001 



inter 82530/82530-6 

$VNCr 
SYNCs 
SYNCs 
SY~Cl' 

V,S 

NV 

'----OLC 

'------M'E 

SYNCs 
SYNC) 
SVNC13 
SYNC, , 

SYNC4 
SYNC2 

.sVNC,2 
SYNC, , 

'--------STATUSHIGH/~ 

CHANNEL RESET 8 

FORCE HARDWARE RESET 

lOOP MODE 

'-___ ABORTJFL;AO' ON uNDERRUN 

~----- MARK/FLAG,IDLE 

'-------- GO ACTIVE ON ROLL 

NRZ 

NRll 

FMl (TRANSMISSION I) 

FMO (TRANSMISSION 0) 

'--------_____ ORC PRESET 1115 

o fiiiC OUT = Xl AL OUTPUT 

1 'i'iiiC OUT: TRANSMIT CLOCK 

SYNC3 
SYNC, 
SYNC" 
SYNC1 , 

SYNC2 
SYNCo 
SYNC,o 
SYNC, , 

SYNC, , 
SYNC, 
SYNCs , 

SYNCo , 
SYNC, 
SYNC .. • 

MONOSYNC a BITS 
MONOSYNC 8 BITS 
S(SVNC 1& BITS 
BISYNC 12 BITS 
SOle 

TC, 
TC, I ' 

'---- TC, 

'------ Tel LOWER BYTE OF 

TC, \ TIME CONSTANT 

'--------- TC, 

'----------- TC, 
'-------------TC, 

:~: \ 
'---- TC,O 

'------ Te" UPPER BYTE OF 

L-________ TCu TC;2 \ T. tME CONSTANT 

L-__________ TCH 

~------------ TCn 

BR GENERATOR ENABLE 

BR GENERATOR SOURCE 

rn REQUEST FUNCTION 
'-____ AUTO ECHO 

'--------- LOCAL LOOP8ACK 

o 0 0 NULL COMMAND 

o 0 ENTER SEARCH MODE 

o 'fliic OUT: 8A GENERATOR OUTPUT 

1 lJiie OUT; DPLL OUTPUT 

o 1 RESET MtSSING CLOCK 

o 1 DISABLE DPLL 

~0I1 

TRANSMIT CLOCK -~ PIN 

TRANSMIT CLOCK -~ PIN 

o TR~NS"'IT CLOCK: 8A GtNEAATOR OUTPUT, 

1 TRANSMIT CLOCK = OPlL OUTPUT 

L-~ ___________ ~xu~~x~ 

t 0 SET SOURCE: SR GENERATOR 

1 0 , SET SOURCE: JW'i'l! 
SET FM MODE 

SET NRZI MODE 

ZERO COUNT IE 

'---_a 
'-_____ COIE 

'-________ SYNC/HUNT IE 

L-..... ________ CT$" 

'-_____________ TI UNDERRUNlEOM IE 

'-------------- BREAK/ABOATIE 

Figure 10. Write Register Bit FUnctions (Cont.) 

7-254 230834-001 



inter 82530/82530-6 

82530 TIMING 
The SC~enerates internal control signals from 
i}ffi and 'RU that are related to ClK. Since ClK has 
no phase relationship with WR and~, the circuitry 
generating these internal control signals must pro­
vide time for metastable conditions to disappear. 
This gives rise to a recovery time related to ClK. The 
recovery time applies only between bus transac­
tions involving the SCC. The recovery time required 
for..E!...oper QE..eraton is specified from the rising edge 
of WR or 'RU in the first transaction involving the 
SCC to the falling edge of WR or'Rl5 in the second 
transaction involving the SCC. This time must be at 
least 6 ClK cycles plus 200ns. 

Read Cycle Timing 
I Figure 11 illus.!!'ates Read cycle timing. Addresses 
on AlB and O/C and the status on I NTA must remain 
stable throughoutthe cycle. If C'S falls after rID falls 
or if Jt rises before R!) rises, the effective Rn is 
shortened. 

AlB. DIG X 
INTAJ 

C; \ 
AD \ 

DBO-DB7 ( 

Write Cycle Timing 
Figure 12 illustrates Write cycle timing. Addresses 
on AlB' and Om-and the status on iN'fA must remain 
stable throughout th~cle. If~ falls after WR falls 
or if it rises before WR rises, the effective WJ!!i is 
shortened. 

Interrupt Acknowledge Cycle Timing 
Figure 13 illustrates Interr~Acknowledge cycle 
timing. Between the time INTA goes low and the 
falling edge of1!ID, the internal and externallEI/IEO 
daisy chains settle. If there is an interrupt pending in 
the SCC and I EI is High when 1m falls, the Acknow­
ledge cycle is intended for the SCC. In this case, the 
SCC may be programmed to respond to AD low by 
placing its interrupt vector on 0 0-07 and it then sets 
the appropriate Interrupt-Under-Service internally. 

ADDRESS VALID X 

\ 

/ 

/ 

X DATA VALID ) 

Figure 11. Read Cycle Timing 

7-25$ 230834-001 



82530/82530-6 

Alii. Die ' X ADDRESS VALID X 
iNfA.-J \ 

c. \ / 
\iii \ / 

DBO-DB7 ( DATA VALID > " 

Figure 12. Write Cycle Timing 

MA\ 
IS / 

RD II 
\ / 

DBO-DB7 II ( X VECTOR > 

Figure 13. Interrupt Acknowledge Cycle Timing 

7-256 230834-001 



inter 82530/82530-6 

ABSOLUTE MAXIMUM RATINGS· . 

Case Temperature 
Under Bias ........................ O°C to + 70°C 
Storage Temperature 
(Ceramic Package) ............. -65°C to + 150°C 
(Plastic Package) .............. - 40°C to + 125°C 
Voltage On Any Pin With 
Respect to Ground ............... - O.5V to +7 .OV 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may·cause permanent damage t9 the 
device. This is a stress. rating only and functional opera­
tion of the device at these or any other conditigns above 
those indicated in the operatiqnal sections of this specifi­
cation is ncit implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTics (:T'c=O° C to 70° C; Vcc=+5V±5%) 

Symbol. Parameter Min. Max. Units Test Conditions 

VIL Input Low Volta9,e -03 +0.8 V 

VIH Input High Voltage +2.0 Vee +0.3 V 

VOL Output Low Voltage +0.40 V IOL = 20mA 

VOH Output High Voltage +2.4 V .'OH = -250p.A 

IlL Input Leakage Current ±10 p.A OA to 2AV 

IOL Output Leakage Current :t 1O p.A 04 to 2 4V 

lee Vee Supply Current 250 mA 

CAPACITANCE (Tc=25°; Vcc=GNO=OV) 

Symbol Parameter Min. Max. Units Test Conditions 

CIN Input Capacitance 10 
, 

pF fc = 1 MHz, 

COUT Output Capacitance 15 pF Unmeasured 

CliO Input/Output Capacitance· 20 pF pms returned 

toGND 

7-257 230834-001 



inter 82530/82530-6 .• 

A.C CHARACTERISTICS (Tc=O°C to 70°C; Vcc=+SV±S%\ 

READ AND WRITE TIMING -
82530 (4MHz) 

Number Symbol . Parameter ( 

1 tCl ClK low Time 

2 tCH elK High Time 

3 tf ClK Fall Time 

4 tr ClK Rise Time 

5 tCY ClK Cycle Time 

6 tAW Address to WRj Setup Time 

7 tWA Address to WRt Hold Time 

8 tAR Address to m5T Setup Time 

9 tRA Address to Fmi Hold Time 

10 tiC i'JiiW. to ClKI Setup Time 

11 tlW Tm'A to WRT Setup Time (Note"1) 

12 tWI' II'ITA to wm Hold Time· 

13 tlR IlilTA to Fmj Setup Time (Note 1) 

14 tRI fiiiiTA10 m1t Hold Time 

15 tCI INTA to mt Hold Time 

16 tClW ~ low to \7mj Setup Time 

17 tWCS ~ to WR"t Hold Time 

18 tCHW ~ High to 'WRj Setup Time 

19 tClR ~ low to Rl)j Setup Time (Note 1) 

20 tRCS C"S to RDt Hold Time (Note 1) 

21 tCHR CS High to J!fI5j Setup Time (Note 1) 

22 tRR RO low Time (Note 1) 

23 tRDA Fm'j to Data Active Delay 

24 tRDI ROt to Data Not Valid Delay 

25 tRDV RDj to Data Valid Delay 

26 tDF Rot to Output Float Delay (Note 2) 

NOTES: 
1. Parameter does not apply to Interrupt Acknowledge transactions. 
2. Float delay is defined as the time required for a + O.5V change 

in the output with a maximum D.C load and minimum A.C lOad. 

'Timings are preliminary and subject to change. 

7-258 

Min Max 

105 2000 

105 2000 

20 

20 

250 4000 

80 

0 

80 

0 

0 

200 

0 

200 

0 

100 

0 

0 

100 

0 

0 

100 

390 

0 

0 

250 

70 

/ ,! 

82530-6 (6 MHz) 

MIn Max Units 

70 1000- ns 
70 1000 ns 

10 ns 

15 ns 

165 2000 ns 

80 ns 

0 ns 

80 ns 

0 ns 

0 ns 

200 ns 

0 ns 

200 ns 

0 ns 

100 ns 

0 ns 

0 ns 

70 ns 

0 ns 

0 ns 

70 ns 

250 ns 

0 ns 

0 nl! 

180 ns 

45 ns 

230834-001 



inter 82530/82530-6 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT OUTPUT 

24 
2.0 2.0 > TEST POINTS < 
08 08 

045---J 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC , AND 045V 
FOR A LOGIC "0 ,. TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A 
LOGIC " AND 0 ev FOR A LOGIC 0 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

TEST 

CL=150pF 

± CL=150pF 

CL INCLUDES JIG CAPACITANCE 

OPEN DRAIN TEST LOAD 

+5V 

2.2K 

7-259 230834-001 



inter 82530/82530-6 

~~~--: 1=-= ::'-~. _0 
o s 0-

eLK

-- x.
:-.J 1---(1)----0- 1--0-~ ---:"I® -

AlB, DIe

INTA -

DBD-DB7
Read

DBD-DB7
WRITE

READY/REQ
READY

READY/REQ
REQUEST

6'i'Ri'REQ
REQUEST

V ®
~

~ @-
f--

r--®-

@-

I-@-fi](

0,.--. r-:-@ - @,..:--
L.J

@- I--@-

~®~ ~
® b-®-

-¥o '--l ® '-I
@ I-" -@ 1--0-

®
JLr-" ~

@

X J(
@-I- -® :--- H-®

®
\~

1
-:-@ - .-®-- j

® , J
@-

\. ,

®

Figure 14. Read and Write Timing

7-260 230834-001

82530/82530-6

INTERRUPT ACKNOWLEDGE TIMING, RESET TIMING, CYCLE TIMING

Number Symbol Parameter

27 tAD Address Required Valid to Read Data

Valid Delay

28 TWW W'RLowTime

29 tOW Data to \Wrl Setup Time

30 tWD Data to WA! Hold Time

31 tWRV WRlto Ready Valtd Delay (Note 4)

32 tRRV Ri5'1 to Ready Valid Delay (Note 4)

33 tWRI. \VAl to READY/REO Not Valid .Delay

34 tRRI ADI to J!fEAI5V/REQ' Not Valid Delay

35 tDWR WR! to DTR/REQ Not Valid Delay

36 tDRD RD! to DTR/REa Not Valid Delay

37 tCIV CLKI to INT Valid Delay (Note 4)

38 tllD INTA to JfDI (Acknowledge) Delay
(Note 5)

39 til lID (Acknowledge) Low Time

40 tlDV mJl (Acknowledge) to Read Data
Valid Delay

41 tEl IEfta Ani (Acknowledge) Setup Time

42 tiE lEI to m5!,(Acknowledge) Hold Time
\

43 tEIEO lEI to lEO Delay Time

44 tCEO CLK! to lEO Delay

45 tRIl ADI to iNT Inactive Delay (Note 4)

46 tRW RD! to WRI Delay for No Reset

47 tWR WRf to RDI Delay for No' Reset

48 tRES WR and RD COincident Low
for Reset

49 tREC Valid Access Recovery Time
(Note 3)

NOTES:
3, Param'eter applies only between transactions involving the see,
4, Open-drain output, measured with open-drain test load,

82530 (4MHz)

Min Max

590

390

0

0

240

240

240

240

5tCY
+300

5tCY
+ 300

500

285

190

120

0

120

250

500

30

30

250

6tCY
+ 200

82530-6 (6 MHz)

Min· Max Units

420 ns

250 ns

0 ns

0 ns

200 ns

200 ns

200 ns

200 ns

5tCY ns
+ 250

5tCY ns
+ 250

500 ns

ns

250 ns

180 ns

100 ns

0 ns

100 ns

250 ns

500 ns

15 ns

30 ns

250 ns

6tCY ns
+ 130

5, Parameter is system dependent. For any see in the daisy chain, tllO,must be greater than the sum of teEO forthe highest
priority device in the daisy chain, tEl for the see and tEIEO for each device separating them in the daisy Chain,

'Timings are preliminary and subject to change,

7-261 230834-001

inter 82530/82530-6 .,'

eLK
1tii'A ______ "'

@) i----@--.j
~-------------~~----~----~

DBD-DB7 _--------------_+-------~_++_.,;£'

lEI,

lEO

I----@--~.j
I~~I ______________________________________ ~~Jfr:-------

Figure 15. Interrupt Acknowledge Timing

Figure 16: Reset Timing

/ 11 \ CS

} @1 \ RDORWR \ i'

Figure 17. Cycle Timing

2308~-oOl

82530182530-6

GENERAL TIMING

'I
82530 4MHz) 82530-6 (6 MHz)

Number Symbol Parameter Min Max Min Max Units

1 tCRV ClKI to READY/REGI Valid Delay TBD TBD ns

2 tCRI ClKI to Aeady Inactive Delay 350 350 ns

3 tRCC RxC! to ClK! Setup Time (Notes 1.4) 50 50 ns

4 tARC RxD to RxC(Setup Time (X1 Mode)'
(Note 1) 0 0 ns

5 tACA AxD to AxC! Hold Time (X1 Mode)
(Note ,1) 150 150 ns

6 tOAC RxD to RxCI Setup Time (X1 Mode)
(Notes 1,5) 0 0 ns

7 tACO RxD to RxCI Hold Time (X1 Mode)
(Notes 1,5) 150 150 ns

8 tSRC SYNC to AxC! Setup Time (Note 1) -200 -200 ns

9 tRCS SYNC to RxC! Hold Time (Note 1) 3tCY 3tCY ns
+ 200 + 200

10 tTCC TxCI to ClK! Setup Time (Notes 2.4) 0 0 ns

11 tTCT TxCI to TxD Delay (X1 Mode)
(Note 2) 300 300 ns

12 tTCD TxC! to TxD Delay (X1 Mode)
(Notes 2,5) 300 300 ns

13 tTDT TxD to TRxC Delay (Send Clock
Echo) ns

14 tOCH RTxC High Time 180 180 ns

15 tOCl RTxC low Time 180 180 ns

16 tOCY RTXC Cycle Time 400 400 ns

17 tClCL Crystal Oscillator Period
(Note 3) 250 1000 250 1000 ns

18 tRCH TRxC High Time 180 80 ns

19 tRCl TAxC low Time 180 180 ns

20 tRCY TRxC Cycle Time 400 400 ns

21 tCC CD or CTS Pulse Width 200 200 ns

22 tSS SYNC Pulse Width 200 200 ns

NOTES:
1. AXe is RTxC or TRxC, whichever is supplYing the receive clock.
2. 'iX'C is TRxC or RTxC, whichever is supplying the transmit clock.
3. Both RTxC and SYNC have 30pF capacitors to ground connected to them.
4. Paramete.!.!.eplies only if the data rate is one-fourth the system clock (ClK) rate. In all other cases, no phase relationship

between RxC and ClK or TxC and ClK is required.
5. Parameter applies only to FM encoding/decoding.

'Timings are preliminary and subject to change.

7-263 230834-001

CLK

READY/REO
REOUEST

READY/REO

READY

Ri'iC, i'Rxi:
RECEIVE

RxD

SYNC
EXTERNAL

TRxC, iii'iC
TRANSMIT

TxD

'f'RxC
OUTPUT

SYNC
iNPiJ'I'

82530/82530-6

~~--~---t==@~
~' --~~------

----------'~~~-@-,3-----------~~~--~
~---

Figure 18. General Timing

7-264 230834-001

82530/82530-6

SYSTEM TIMING

Number Symbol Parameter
1 tRRV Axe t to READY/REO Valid Delay

(Note 2)

2 tRW I RxC t to Ready Inactive Delay
(Notes 1,2)

3 tRSC AXe t to SYNC Valid Delay (Note 2)

4 fRIV AXe t to jji;j'j' Valid Delay (Notes 1,2)

5 tTRV TxC I to REA5WRE'Q Valid Delay
(Note 3)

6 tTWI TxC I to Ready Inactive Delay
(Notes 1.3)

7 tTDV TxC I to i5i'R/RE'Q Valid Delay
(Note 3)

8 tTIV TxC I to INT Valid Delay (Notes 1,3)

9 tSIV SYNC Transition to INT Valid Delay
(Note 1)

10 tCTI CD or C'i'S Transition to INT
Valid Delay

NOTES'
1 QE!n-d!!!!!2utput. measured wIth open-drain test load
2 fu!Q IS !lIxQ or TRXC. whichever IS suppling the receIve clock
3 TxC IS TRxC or RTxC. whIchever IS supplying the transmIt clock

"TImings are preliminary and subject to change

~~ --------------_r----___

R!~--------------_r--~--J
CD

~--------------_r--~
"""'"

........ ---------------+--------. '"

7-265

8~0(4MHz} 82530-6 (6 MHz)

Min Max Min Max Units

TBD TBD TBD TBD tCY

TBD TBD TBD TBD tCY

4 7 4 7 tCY

TBD TBD TBD TBD tCY
,

TBD TBD TBD TBD tCY

TBD TBD TBD TBD tCY

TBD TBD TBD TBD tCY

TBD TBD TBD TBD tCY

TBD TBD TBD TBD tCY

2 6 2 6 tCY

230834-<)01

ARTICLE
REPRINT

Reprinted -wIth permission from ElectrOniCS August 25,1981 A McGraw HIli PublicatIon All rights reserved

7-266

. AR~186·

November 1981

Order Number ~ 210262..Q01

~ocalnebNcrk
architecture proposed
for work stations

General-purpose standard compatible with Ethernet will serve
many applications at a wide range of perfqrmance levels

by Robert Ryan, George Marshall, Robert Beach,
and Steve Kerman, Intel Corp" Sants Clsrs. Csllf.

o Computer-based communicating work stations and
microprocessor development systems, which promise to
usher in an era of electronic offices and workplaces, will
need to be attached to local networks through a standar­
dized architecture in order to be cost-effective. In
response to the lack of'such a standard, Intel has come
up with a local network architecture that is currently
geared to work stations and development systems based
on Intel microprocessors. Called iLNA, the proposed
network takes advantage of the work already done in
association with Digital Equipment Corp. and Xerox
Corp. by using the EthC(rnet local network design as the
'basis for its own data-carrying scheme. .

What has been proposed is a six-layer architecture
combining software and hardware that will expedite all
local network functions. Its goal is simply efficient,
flexible communication between users and application
programs, application programs and resources, and any
other combination of users, programs, and resources
within the local network.

The concept of a layered architecture is not new.
Indeed, IBM'S well-known Systems Network Architec­
ture is layered, as is the forthcoming International Stan­
dards Oganization and American National Institute
Reference Model of Open Systems Interconnection.
,What is new is the fact that a network architecture has
been. specifically designed for Intel- and Ethernet-based
equipment (see "Specifying the network," p. 122). If
eventually accepted as an industry standard, the propos­
al will become the basis for future network architectures,
and manufacturers of equipment that hooks up to local
networks will want their equipment to be compatible.

In developing a local network architecture, the pri­
mary goal has to be achieving cost-competitiveness with
any general-purpose network design, while at the same
time equaling the efficiency and performance of a net­
work designed for a specific application. Likewise, the
network has to facilitate communication through com­
monly used interfaces but not be bound by anyone
topology or internal communication mechanism. In addi­
tion, it has to function independently of any particular
computer's operating system or hardware.

The network also has to act as an error-free message-

delivery medium between communication processes
(programs resident in equipment attached to the net­
work) and permit an operator or program to monitor,
maintain, and modify network operations. While per­
forming all these chores, the network must also be able
to serve low-cost, low-performance equipment and incor­
porate future technology. In addition, the failure of any
device at a work station should have minimal effect on
the operation of other work stations.

To perform all these tasks, the Intel network architec­
ture defines a set of interfaces, algorithms, and protocols
by which application programs on various kinds of Intel
microprocessor-based work stations can communicate. It
also establishes a process-to-process communication
m~chanism whereby a process (any application, func­
tion, or peripheral using the network) is defined as the
active element in a communicating node and the ulti­
mate source or destination for data. Thus, for example,
terminals, files, and input/output devices can communi­
cate with one another through the use of processes.
Messages are sent and received by the designated pro­
cesses th.rough what is termed a communications socket,
which is a hierarchical address composed of three unique
identifiers-one each for the local network, the host, and
the port to a process.

Each node in the network, which may consist of one or
more pieces of equipment, has a unique host identifier
that distinguishes it from all other nodes installed any­
where, to ensure eventual communications between
equipment on various local networks. Within each node,
each process is given a local address, or port identifier.
The binding of ports to processes is the responsibility of
the node, and the ports remain unique within each node.
Certain ports, however, may be assigned numbers in
accordance with a globally consistent scheme.

Each installed local network will be given a unique
identifier, its network identifier, that identifies it in
multiple-network applications. In a single-network appli­
cation, the network identifier is not used, but its assign­
ment assures that an orderly progression to an internet­
working environment is possible.

In designing its architecture, Intel examined applica­
tions needs of its users and chose a suitable set of

7-267
Electronici/ August 25, 1981

interconnect functions to serve them. These functions
were then defined in a series of layers that permit the
network to achieve high performance across a wide
applications base. The architecture is divided into six
layers (Fig. I). The ones of interesLhereare the physi­
cal-link, data-link. transport. session. and network-man­
agement layers. The network layer is used when one
local network must be connectedJo another.

The lowest-level means of sending data from one node
to another, the physical-link layer, is responsible for
delivering the smallest unit of data (the bit) the network
handles. This layer is the one directly concerned with the
transmission medium. signal type, data rate, and
mechanical interconnect specifications of the network. It
can be implemented using two modems, two telephone
sets, and a telephone line or using coaxial cable, a
baseband line driver, receiver chips, and a universal
synchronous-asynchronous receiver-transmitter (Usart).

Moving from node. to node

While the physical link moves data bits from one node
to another, it cannot guarantee successful transmission.
Electrical noise in the environment causes errors,
although some transmission media are less susceptible
than others. For example, the error rates generally run
between 1 bit-error per 10,000 bits and 1 bit-error per
100,000 bits for transmissions over a modem-telephone
network, but can be less than I bit in 10 million for local
coaxial-cable-based networks.

Error rates can be kept quite low at the physical link
level if the network designer is willing to properly locate
and shield the network cabling from rf interference by
other electrical utilities in, say, a building. However, the
higher-level layers are a better place to reduce errors
because they can exploit such multiple-bit schemes as
redundancy codes and automatic repeat requests that are
not available at the physical link level.

In the Ethernet physical link, data is transmitted on a
50-ohm coaxial cable that is up to 500 meters long per
segment. The Manchester-encoded, baseband signal car­
ri~s data at a rate of 10 megabits per second. At the start
of a transmission. a 64-bit preamble is used to stabilize
and synchronize the communication channel circuitry.

, After reception, the preamble is removed and only the
Ethernet header and data are passed on.

Packet-delivery service

The data-link layer makes possible a node-to-node
packet delivery service. As such, it is the first step
toward a process.!o-process packet deliv!lry system. The
data link supplies some of the services missing from the
physical link. Among others, it is responsible for fram­
ing, or the determination of where a message begins and
ends; addressing, or the determination of Which station
should receive a message; error detection, or the determi­
nation of bit errors in the packet; and link, management,
which controls the access of multiple transmitters and
receivers to the physical link.
. A data link may deliver all the packets error-free by

using various error-correcting protocols. Or it may pro­
vide, as the Ethernet data-link architecture does, a best­
effort delivery. service in which not all packets are deliv-

Electronics/ August 25. 1981

ered, but all those that are, arrive unmodified. With
error-free packet !ielivery all packets are delivered (no
lost packets), all paekets are delivered just once (no
duplicate packets), and all packets are received in the
order sent (no nonsequential packets). However, when
error-free packet delivery is required, data-link error
control is necessary to perform packet sequencing and
retransmission. In addition, besides having the higher­
level error-coding alternatives previously noted, data­
link error control also is expensive and, given the physi­
cal-link error rates, not cost-effective.

Data-link error control might provide a reliable node-

1. La,.rs. In the Intel local-network architecture. there are six levels
of hardware. and software. with the network layer omitted in strictly

local (non-store-and-forward) configurations. The physical link and
data link contain hardware; the others only software.

USER INTERFACE

FULL LOCAL NETWORK
ARCHITECTURE

7-268

S~eclfylng the network
The Digital Equipment-Intel-Xerox specification for the
Ethernet network is the first portion of Intel's forthcoming
local network architecture. and the first hardware pro­
duced for this architecture will be the Ethernet intelligent
controller. The two-board set. which plugs into an Intel
Multibus chassis. supplies many of the functions of the
physical- and data-link layers of the network architecture.

The data-link functions performed are framing (including
packet-boundary delineation and address recognition).
link management (including transmission scheduling and
retries in case of a collision between packets). and error
detection. The physical-link functions performed are pre­
amble generation and removal and bit encoding and
decoding. The set also handles a number of system­
oriented functions. such as interfacing with the system
parallel bus. communicating with the central processing
unit. handling data movement to and from the buffers. and

to-node delivery service, but it does not ensure a reliable
end-process-to-end-process delivery service. That is par­
ticularly true in any internetworking environment where
two or more local networks are connected and there are
multiple gateways (the physical and software connec­
tions) acting as packet forwarders. The risk of packet
nondelivery then is moderate to high. In addition, end­
to-end delivery retransmission (error control) would still
have to be performed at the transport layer, making
error control at the data-link layer redundant.

Collilion inlurlnce
The data-link software supports a large address

space- up to a 48-bit destination identifier and a 48-bit
source identifier - to permit flexibility in managing
internetwork gateways. In operation, data-link users
must supply both transmit requests and standby receive­
buffers to the network. The transmit requests contain the
address of the destination nodes and the data to be sent.
The data iink combines both into a packet that is trans­
mitted when the line becomes idle.

Should multiple nodes transmit concurrently, they aU
abort their transmissions, generate a jam signal that
reinforces the initial collision signal, wait a random
interval before retransmission to avoid repeated colli­
sions, and then try again. The average retransmission
interval increases as a function of channel load in order
to achieve channel stability under overload conditions.

On the receiving side, the intended packets are recog­
nized by the data link, which performs a 32-bit cyclic
redundancy check. If the packet is good, it is placed in
an empty receive buffer. A packet that has collided is
recognized as such and dropped.

As noted earlier, the data link supports framing,
addressing, error detection, and link management. hi the
IAtel Ethernet approach to framing, a carrier-sense func-.
tion determines the end of a packet. When the carrier is
lost, the packet is finished. The two-bit beginning-of­
packet indicator at the end of the preamble actuates
carrier sensing.

The address scheme permits a received packet to be
accepted by any number of nodes. The data link recog-

interfacing with the transmitter-receiver units.
The board hardware consists of an Intel 8086

5-megahertz microprocessor with local random-access­
and read-only memory. direct-memory-access channels
for sending. and receiving data at the required 10 megabits
per second. bit-serial send-and-receive logic. packet
address-recognition logic. error detection logic. and inter­
val timers. One board contains the microprocessor. mem­
ory. timers and DMA control; the other contains the serial
send-and-receive and error-detection logic.

The boards implement part of the data-link layer and
also contain seven major software functions. These
include the executive (or scheduler). the rest of the data­
link software. transport control. session control. network
management. the bootstrap. and diagnostics. Typically
these software functions are implemented with programs
that occupy small amounts of memory space.

nizes single-host, broadcast, and multicast addresses.
The first bit within the destination address distinguishes
between single-host and multicast delivery, and the next
47 bits determine the multicast group identifier. Broad­
cast addressing is simply a special case of multicast in .
which the next 47 bits are aU logical Is.

The link management function controls line access
when two or more nodes attemp~ to transmit data simul­
taneously . through an arbitration policy called carrier­
sense multiple access with collision detection. With this
system, when a packet is to be sent, the link management
facility determines if another carrieris present. If this is
so, or if the interpacket gap time has not expired, the
waiting packet is not released onto the line. When the
data packet is finally transmitted, the link management
function monitors the line to determine whether a colli­
sion has occurred. If a collision is detected, the random
waiting period for retransmitting the packet is chosen by
executing what is known as a truncated binary expo­
nential back-off algorithm.

Reliable tranlport

The transport layer software (there is no hardware in
this layer) makes possible location-independent, reliable
packet transmission. Users of this layer can establish,
maintain, and terminate virtual circuits, which represent
full-duplex data paths between sockets.

A virtual circuit is defined by its basic properties.
First, it permits mUltiple virtual connections to exist
between processes. Second, it can be dynamically man­
aged by the communicating processes. Third, it can
accommodate message lengths that are independent of
transport communication. Finally, it transmits data in a
full-duplex error-controlled and flow-controlled format.

While the data-link layer makes a best-effort attempt
to move individual packets from one physiCal node to
another, the transport layer is reSponsible for reliably
moving a user's variable-length message, such as a file
transfer, ftom one process to another, even though the
underlying packet delivery service will occasionally drop
packets, duplicat~ packets, or deliver them out of order.
A secondary responsiblity of the transport layer is to

Electronics I August 25. 1981

7-269

2. EJCtMelone. The six-layer local network
architecture can be extended to include
remote network configurations by s!mply
adding the network layer and the new data
links. These new configurations can be co­
located or geographically dispersed.

prevent fast transmitters from swamping slow receivers.
It also must ensure that the network's communication
subsystem resources (primarily media bandwidth, com­
munications processor usage, and communications buff­
er memory) not be wasted in frequently retransmitting
packets when there is a speed mismatch. Both are
accomplished by a flow control function that throttles
fast transmitters when the rCFeiver cannot keep pace.

The transport software serves several other functions
as well. Since the transport layer should insulate user
software from the limiting characteristics of the underly­
ing physical network, it performs fragmentation and
reassembly services that let the user software send arbi­
trarily long messages over the network. To accomplish
this, the transmitting transport software breaks messages
into packet-sized chunks and the receiving software then
reassembles them.

Acknowledge and over

In order to provide its services, the transport software
carefully manages the user's service requests and the
packets exchanged on the data link. For example, the
transport software associates a unique sequence number
with every packet it sends. Likewise, the receiving trans­
port software sends back acknowledgment packets, indi­
cating with the sequence number which packets have
been correctly received and accepted. Packets not
acknowledged within a specified time are automati<;ally
retransmitted by the sender.

The transPort software controls the data flow by
exchanging information on the amount o..f receive-buffer
memory that each claims to have available. The amount
of buffer memory available is called a window, and a
receiver that has indicated it has a large amount of
receive buffer space is said to have its window wide <1pen.

Openwindow

If the transmitter has several data packets, they will
be delivered much faster if the receiver has sufficient
buffer space and has opened its window than if the
window is' small and requires an exchange of window
information after each packet is sent. To expedite the

Electronics/ August 25. 1981

information exchange, the transport software uses a
combined error- and flow-control algorithm that permits
both functions to work at the same time. For process­
to-process addressing, the transport software adheres to
the standard network-address structure, which consists
of the network, host, and port identifiers.

The session control software layer identifies and
locates process names within the network. In order to
communicate, a process using the transport layer in one
node must know the socket of other processes. Since, it is
unlikely that the naming convention for processes under
a given computer's operating system conforms with that
used in another, the session layer resolves this problem
through a location-independent scheme known as a bind­
ing function, which provides users with standard-format,
location-independent names for remote processes they
must access.

Tie. that bind

The binding function is composed of two operations­
mapping and updating. Mapping is the function that, on
demand from the user software, translates between pro­
cess names and sockets. Updating distributes the map­
ping information throughout the network so that it is
available when needed at each node.

The session software also supplies network status
information to the. application software. In turn, the
transport software gives the session layer status informa­
tion on its best estimate of the quality of the underlying
network layers. However, the decision to abort a connec­
tion is left to the'user for all but the most extreme cases,
such as evidence of total equipment failure.

Network management

The netw9rk-management software layer provides the
'user with all those functions not required for normal
operation. In addition, it includes diagnostic utilities for
accessing the network components when any portion of
the network fails. It also 'has maintenance tools that
gauge the performance of various network components
so users can plan for changing network demand.

Network management functions fall into one of three

7-270

APPLICATION LAYER

TRANSPORT LAYER AND DATA

DATA LINK LAYER
AND DATA

APPLICATION
LAYER DATA

APPLICATION
LAYER DATA

categories: operation, maintenance, or planning. The
operation category includes all functions that are per­
formed on a day-to-day basis as part of normal network
operation. A major goal of the Intel network architec­
ture has been eliminating the full-time network operator,
and thus only the network bootstrap and the manual
operations needed to add a new node to the network are
included in the management layer.

The network bootstrap is the, operational function used
by a booting node to load its operating system from
another network node. The bootstrap sequence begins
when the booting node transmits a multicast packet
addressed to any node that has a copy of the operating
system and is willing to send it. If such a node exists on
the local Ethernet data link, it will respond.

Should more than one node reply, the booting node
will accept the first reply and ignore all others. If no
reply is received, as would happen if either the request or
reply is lost in the network because of line noise, the
booting node will retransmit the request. If a reply still is
not received after several retries, the bootstrap attempt
will be aborted.

Preventive maintenance

The maintenance category detects failures in the net­
work, even though it may be uncertain of exactly what
the problem may be. Problem detection proceeds
through three mechanisms. The first is a set of error
counters made possible by the management layer; the
second is an error-reporting and -logging mechanism;
and the third is user observation.

The first problem detection mechanisms, the error
counters, are maintained by the individual layers and
record occurrences of recoverable errors. The presence of
errors does not necessarily indicate a failure in that the
layers are designed to operate normally in the face of a
large number of errors. An excessive number of errors,
however, may indicate that a problem is developing.

Since this set of counters is maintained at each node in
the network, and since the nodes can be spread over a
large area, the network management layer includes a
remote examination function for interrogating nodes

3. HncI.r •. If two processes on two different local network nodes
want to communicate, the session layer software establishes a virtual
circuit between them. The transport- and data-link layers add head­
ers for identification. addressing, and control.

without interfering with network operations. The net­
work management layer in a node desiring information
from a remote node first sends a request to the network
management layer in the remote node. The management
layer in that remote node then performs the desired
function and transmits a response to the requesting node.

'Iolating errorl

The error-counting mechanism is supplemented by an'
error-reporting mechanism that logs problems detected
by the communication system to an error-logging file.
Once a problem has been detected, it is isolated to some
serviceable component through two mechanisms. First,
the same error counters are used to isolate the error.
Second, the management layer generates test traffic,
including a loopback function within each layer, and
observes the behavior of the system.

Generally, correcting the problem involves repairing
or replacing hardware. Some problems, however, can be
corrected simply by reinitializing a system component.
In that case, the management layer can stop and rein i­
tialize each layer.

In its planning function, the management layer sup­
plies the network administrator with statistical informa­
tion about the use of the network to help in planning
network growth.

By way of example

To illustrate the operation of the software and hard­
ware layers with a practical example, consider a case in
which there are two processes, A and B, that reside on
two different nodes (Fig 2). Application process A's
request to communicate with process B on some remote
node requires the cooperation of the communication
layers of each node.

The source node's session layer first determines that
process B resides at socket n, thus pinpointing process B
to a specific port residing in a specific node on a specific
network through the port identifier. By means of the
transport interface, the session layer then attempts to
create a virtual circuit between the source port and the
destination port. Assuming there are no conflicts on the
network, the virtual circuit is established after the two,
transport-layer sites exchange connection information.

The two processes can now send or receive over the
virtual circuit so that data can be delivered in order,
unmodified, and with<lut duplication. The transport lay­
er adds a transport header that includes the virtual
circuit identifier and a sequence number to each piece of
data it handles. It then passes the data, transport header,
and application data to the Ethernet data link.

The data link adds its header (Fig. 3), consisting of
the address (destination and source identifiers), framing,
and error-detection bits, and it then attempts to transmit
the packet. Once the data-link has established the carrier
signal, the physical link is reponsible for the transmission
of the bits over the serial link. 0

Electronics/ August 25, 1981

7-271
PRINTED IN USA/T-2081/10K/1181/BL DG

inter

"Reprinted from ELECTRONICS, October 6,1982.
Copyright©McGraw Hill Inc. 1982
All rig·hts reserved.

ARTICLE
REPRINT

7-272

AR-237

October 1982

/

ORDER NUMBER: 210788-1101

inter AR-237

System-level functions
enhance controller Ie
by Robert Beach and Robert Galin
Intel Cotp., Ssnta CIa Calif.
and Alex Kornhauser, Moshe Stark, and Dono Van-Mlerop
Intsl_ Ltd., HsHa, _

Beyond any single new feature, it is the integration of
major system-level communications functions onto a sin­
gle chip that makes the 82586 local area network com­
munications controller a true next-generation communi­
cations controller for high-speed local nets. Such func­
tions as on-chip control of direct memory access, buffer­
memory management, programmable network parame­
ters, and diagnostics will allow designers to quickly
implement cost~effective and reliable Ethernet and local
nets using similar other carrier-sense, multiple-access
protocols with collision detection (CSMAlCO).

Combined with the 82501 Ethernet serial interface
chip and readily available transceivers, users will have a
complete implementation of the Ethernet physical and
data links. Although other Ethernet controller integrated
circuits will also handle the fundamental implementation
of these two International Standards Organization lay­
ers, the 82586 goes beyond them to offer programmable
network-management capabilities that permit users to
optimize the controller's operation
for a variety of local networks and to SERIAL
gage the net's health. INTERFACE

In fact, Intel's goal in designing
the 8'2586 is to serve, npt only the
Ethernet user, but any net that uses
some form of CSMAICO. Therefore,
many of the IC'S facilities are pro­
grammable for nets with different
maximum lengths and data-transfer
rates from those found in Ethernet
(seep. 90). .

A major role for the controller IC
is to act as an intelligent interface
with the host central processing unit,
reducing its workload and saving
memory space. The chip may be
viewed as a parallel processor (on
the right in Fig. 1), fetching and
executing commands from the host
at the same time it is receiving data
through its serial-interface circuitry
and storing it in buffer memory.

1. Peek in.ide. Intel's H-MOS data-link­
control chip has both parallel and sarial
Interfaces and four-channel direct-memory
access. It c:8n operate in a multiplicity of
local networks becausa its key parameters
are programmable.

(B BITSI

Communications between the host's CPU and the
82586 is by means of a shared memory. The only hard­
ware intercon\lections are the interrupt line the control­
ler uses to get the cpu's attention and the channel­
attention line the CPU uses to get the 82586's attention.

Part of the shared memory is reserved as a bidirection­
al mailbox. One section of the mailbox holds instructions
from the CPU to the controller, such as start, abort,
suspend, and resume, plus pointers to a list of commands
for execution by the parallel processor and to the
received-frame area. The second section holds informa­
tion the 82586 is sending to the CPU, such as status data
(idle, active, no receive resources available, and so on)
interrupt bits (command completed, frame received, for
example), and accumulative tallies (such as cyclic­
rCdundancy-check errors).

As well as a mailbox, the shared memory holds the list
of cam.mands prepared by t~e CPU that serve as the
program for the 82586. The linked-list approach makes
it possible to form a circular linked list used for repeated
execution or a linear queue of commands.

The final section of the shared memory is the
received-frame area. All the host CPU need do is identify
the area by preparing two linked lists: one of frame
descriptors and one of buffers with their descriptors.

Each frame descriptor has a forward pointer. The first
descriptor is referenced by the mailbox and the last one
is marked with all end-of-frame bit. The buffer descrip­
tors are essentially the same for both the receive and the

PARALLEL PROCESSOR

7-273 AfIM)1513A

/

inter AR·237

2. P.rtn The bipolar. 82501 Ethernet
serial Interface chip provides Manchester
encoding and decoding. noise filtering.
transceiver drive Signals. and collision detec­
tion as It works with the data-link control
chip and the natwork transceiver.

transmit processes; however, the
receive descriptors include a field
that specifies the size of the empty
buffer and an end-of-list bit.

The 82586 fills the buffers upon
reception of frames and reformats
the free-buffer list. Receive-buffer
chaining improves memory use sig­
nificantly. Without it, the host must
allocate blocks of memory under the
assumption that each frame will be
the maximum size (1,518 bytes for
Ethernet). Successive transmission
may fill the buffers, even though the
actual frames are far less than the
maximum in size, and the controller
may receive a burst of several frames
but have no room. Usually, the
tradeoff in buffer chaining is the
processing overhead and the time for
buffer switching. The 82586, how­
ever, performs the buffer chaining
without CPU intervention.

= w
::j'
o = ... z
o
u

'" z
::;

~
~

l
Made in the high-performance MOS (H-MOS) process,

the controller chip has over 56,000 devices and fits in a
48-pin dual in-line package. Besides the parallel proces­
sor, it has another major functional block, the serial
interface (left in Fig. 1).

Internal architecture
On the parallel-processor side, the; bus-interface unit

generates bus-control signals to transfer data, com­
mands, and status ,between shared memory and the
82586. The data-interface unit is a switch routing the
data from the system bus to the transmit first-in, first­
out buffer or the internal parallel bus and from the
receive FIFO buffer to the internal parallel bus or to the'
system bus.

The direct-memory-access logic is'an address genera­
tor that performs DMA transfers between the 82586 and
the shared memory. Commands are fetched from memo­
ry by the command unit, which also writes status infor­
mation to the memory. The command unit has full
control over the DMA unit, loads the starting pointers
and byte counts, and then triggers the D~A start.

The receive unit pe~forms tasks for the receive memo­
ry operation similar to those that the command unit
performs for the eommand operation. Both units fetch
microinstructions from a shared read-only memory.

The transmit buffer regulates the traffic flowing from
the parallel processor through the data-interface unit to
the byte transmitter. After executing the commands

ETHERNET
, CABLE

INTERFACE

20MH,

coming from the transmit buffer, the' byte transmitter
sends status information back ti1rough the receive buffer.

The bit transmitter serializes and encodes data, gener­
ates the frame-check sequen~, and transmits the'data.
It also controls the modem-like handshake. The bit
receiver handles preamble stripping, address matching,
error-flag generation, received-frame delineation, and
frame-check sequence testing. It deserializes the infor­
mation and delivers it in bytes to the byte receiver, which
compares the destination address with the various possi­
ble address types. Then, if the address matches, it trans­
fers the received data to the receiver buffer.

The controller interface is not complete without the
82501 Ethernet serial interface (ESI) chip. The 82501 is
implemented in bipolar technology and is designed to
handle the serial transmission and reception of 10-
megabit-per-second packets to and from the transceiver.

The 82501 (Fig. 2) provides clock generation for itself
and the 82586 controller, retiming and Manchester
encoding of the transmitted data stream, driving of the
transmit signal line to the transceiver, and noise filtering
of the receive and collision inputs. What's more, it
handles timing reCl/very and Mancbester decoding of the
received data stream and supplies receive-data, receive­
clock, carrier-presence, and collision-presence signals.

Because of its four on-chip DMA channels, the, 82586
can receive back-to-back b~rsts of frames, provided the
minimum interframe spacing of 9.6 microseconds (for
the 10-Mb/s Ethe~net) is met. In addition, the pipelining

7-274 AFN-01513A

intJ AR-237

iAPX 188
MICROPROCESSOR

r------,
I 8289 I
I BUS ARBITER I
I (OPTIONAL) I
L. _oJ

ETHERNET
TRANSCEIVER

TO
ETHERNET
CONTROL
CABLE

ARBITRATION ADDRESS DATA COMMAND ADDRESS ADDRESS

3. Comp ,."m. A typical Ethernet local-network controller Includes the Intel controller and encoder-decoder chips. a microprocessor. a
transceiver. and auxiliary logic to connect the system to !he work-st~tlon bus.

of the operation of the Ethernet interface and the host
interface, plus the concurrent processing units, contrib­
ute to its performance.

The controller can operate with high-performance sys­
tem buses, yet it is highly tolerant of system-bus limita­
tions. The minimum data-transfer rate required to sus­
tain a bit rate of 10 Mb/s is 1.25 megabytes/so The
82586 is optimized for an 8-megahertz bus whose trans­
fer rate is 4 megabytes/s, leaving considerable band­
width for overhead and CPU processing.

Software dlagnOtlia

Data-communications networks can be very complex
because of their distributed and asynchronous nature, so
it is hard to pinpoint a failure. The 82586 was designed
with recognition of this problem and includes a set of
features for improving reliability and testability.

All of these functions are performed under software
control. They do not require any diagnostic hardware or
any modifications. The chip offers such services as the
monitoring ·of transmitted and, received frames, support
for statistics gathering and diagnostics of the entire
network, diagnostic support for its node, and a means of
testing its own operation ..

In addition to the status information sent to the CPU
after each transmission or reception, the chip also tallies
the number of frames with CRC errors and alignment
errors, as well as the number of frames lost due to DMA
overrun or lack of empty receive buffers.

The 82586 also has mechanisms to collect statistics
about the behavior of the entire network, as well as a
means to locate problems in it. For example, the status
of every transmitted frame provides network activity
indicators, such as transmissions deferred because the
channel was busy, the number of collisions experienced
before the frame was transmitted, or no frame transmit-

ted because of an excessive number of collisions.
The controller chip can be configured into a promiscu­

ous mode, which means it captures all frames regardless
of addreSs. Such a mode is, for example, useful in
implementing a monitoring station.

Each 82586 is also capable of determining whether
there is a short or open circuit anywhere in the network
(using time-domain reftectometry). The chip can even
determine the distance of a short or open circuit from the
controller, an important aid in finding the fault. '

To support testing of both the software and hardware
of the work station, the 82586 can be configured to an
internal-loopback mode in which it is disconnected from
the network and any frame transmitted is immediately
re-received. This routine will indicate problems in the
chip or the station.

What's more, an externalloopback configuration per­
mits users to test all the external logic between the
82586 and the link itself. This chip also checks the
correct operation of the carrier-sense and collision-detect
signals from the transceiver for every frame transmitted.

In order to check the operation of the chip itself, there
is a dump command that causes the chip to write its
internal registers to memory. For parts of the chip that
cannot be checked from the outside, such as the random­
number generator, a diagnose command triggers a self­
test procedure that' exercises any inaccessible counters.

An Ethernet node can be designed using the 82586 in
conjunction with Intel's 16-bit iAPX 186 microproces­
sors (Fig. 3). The two chips have identical bus timing
and control requirements. Thus they may share the same
address latches, data latches, and bus controller.

Moreover, as an option, a bus arbiter can be used to
enable designers to build a multisystem node. In this
application, the 82586's syste!11 clock is driven by the
iAPX .186's internally generated system-clock output.

7-275

82501 ETHERNET SERIAL INTERFACE

• Compatible with the IEEE 802.3
specification

• 1 D-Mbs Operation

• Fleplaces 8 to 12 MSI Components ,

• Manchester Encoding/Decoding and
R~ceive Clock Recovery

• 1Q.MHz Transmit Clock Generator

• Drlvlng/Recelvil'!g IEEE 802.3
Ti'ansceiver Cable

• Fail-Safe Watchdog TImer Circuit to,
Prevent Continuous Transmissions

• Diagnostics (~opbacli: for Fault
Detection and Isolation

• Directly Interfaces to the 82586
LAN Coprocessor

The 82501 Ethernet Serial Interface (ESI) chip is designed to work directly with the 82586 LAN Coprocessor in IEEE
802.3/Ethernet and non-Ethernet 1Q-MBps local-area network applications. The major functions of the 82501 are to
generate the 10 MHz transmit clock for the 82586, perfQrm Manchester encoding/decoding of the transmitted/
received frames, and provide the electrical interface to the Ethernet transceiver cable. Diagnostic loopback control
enables the 82501 to route the signal to be transmitted from the 82586 through its Manchester encoding and
decoding circuitry and back to the 82586:The combined loopback capabilities of the 82586 and 82501 result in
efficient fault detection and isolation by providing sequential testing of the communications interface. An
on-chip fail-safe watchdog timer circuit prevents the station frolT] locking up in a continuous transmit mode.

......
IN

Vee GND TRANSCEIVEA CABLE
TERFACE

I I
INTERFACE

-- CLaN

COLLISION- XCVRCABLE I
f \

PRESI!NCE INTEAFACE& I I
I I

GENERATION NOISE Fn.reR \ ;'
,- CLBN

I
CARRIER.PRESENCE GENERATION

RXD

I " -, ,
MANCHESTER H XCVRCABLE I I
DECODER AND ' INTERFACE AND I I I

CLOCK NOISEFIIJ'ER I
RECOVERY

\,-/

RCV

C1 VCC
C2 TRMT

LPBK/WDTD TRMT
RCV TXD
RCV TXC
CRS fEN
CDT X1

t= .:' I -2COUNtER
CLOCK

~ .. C GENERATION

iiXC X2
RXD CLSN
GND

RYSTAL

,-
f TXD TRMT

I '\ MANCHESTER r---- TRANSCEIVEA

\ ENCODER CABLE DRIVER I
I
f

-- TRMT

i"ATCHDOQ TIMER I
1

~/WDTD

Flg~re 1. 82501 Functional BI~kDlagram Figure 2. Pin Configuration

Intel C~porahon A,surnes No Responslbllty for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Circuit Patent Llcen.e. aM Implied.

©INTEL CPRPORATION. 1982 . 7-276 DR_ NUM.::-:=

PIn
Symbol No. Type

m 16 0

TEFl 15 I

TXD 17 I

IU(C 8 0

CRS 6 0

RXD 9 0

COT 7 0

82501

Table 1. Pin Description

Name and Function

Tranamlt Clock: A 10-MHz clock
output with 5 nsec rise and fall
times and MOS driving levels. This
clock Is provided to the 82586 for
serial transmission.

Transmit Enable: An active low,
TTL-level signal synchronous to m that enables data tr:.nsmlssion
to the transceiver cable. TEFl can be
driven by'ln'S from the 82586.

Transmit Data: A TTL-level input
signal that is directly connected to
the serial data ouput, TXD, of the
82586.

Receive Clock: An MOS-Ievel clock
output with 5 nsec rise and fall
times and 50% duty cycle. This out-
put is conne~ted to the 82586
receive clock input m. There is a
maximum 1.2 ,",sec discontinuity et
the beginning of a frame reception
when the phase-locked loop
switches from the on-chip oscillator
to the incoming data. During idle
(no incoming frames) the clock fre-
quency will be half that of the 20
MHz crystal frequency. I

Carrier Sen .. : A TTL-level; active
low output to notify the 82586 that
there is activity on the coaxial cable.
This signal is' asserted when valid
data or a collision signal from the
transceiver is present. It is deas-
serted at the end of a frame
synchronous with ~, or when the
end of the collision-presence signal
(CLSN and ~l is detected,
whichever occurs later. Once deas-
serted, CRS will not be reasserted
again for a period of 5 ,",sec mini-
mum, 7 ,",sec maxirnum, regardless
of any activity on the receive or
collision-presence pairs.

Receive Data: An MOS-Ievel output
tied directly to the RXD input of the
82586 controller and sampled by
the 82586 at the negative edge of
Axe. The bit stream received from
the transceiver cable is Manchester
decoded prior to being transferred
to the controller. This output
remains high during idle.

Collision Detect: A TTL, active low
signal which drives the mIT input of
the 82586 controller. It is asserted as
long' as there is acti~ity on the
collision-presence pair (CLSN and
~l.

Pin
Symbol No. Type Neme and Function

LPBKI 3 I Loopbeck: A TTL-level control sig-
WDTO nal to enable the loopback mode. In

this mode, serial data on the TXD
input is routed through the 82501
intetnal circuits and back to the
RXD output without driving the
TRMT/mM'f output pair to the
transceiver cable. When IJ5BR is as-
serted, the collision circuit will also
be turned on at the end of each
transmission to simulate the colli-
sion test. Theon-chip watchdog timer
can be disabled by applying a 12V
level through a 4k ohm resistor to
this pin.

TRMT 19 0 Transmit Pair: An output driver pair
which generates the differential sig-

'mFA'f 18 0 nal for the transmit pair ofthe Ether-
net transceiver c~ble. Following the
last transition, which is always posi-
t,ve at TRMT, the differential voltage
is slowly reduced to zero volts. The
output stream is Manchester
encoded.

RCV 4 I Receive Pair: A differentially driven
input pair which is tied to the

RCV 5 I receive pair of the Ethernet trans-
ceiver cable. The first transition on
RCV will be negative-going to indi-
cate the beginning of a frame. The
last transition should be positive-
going, indicating the end of a frame.
The'received bIt stream is assumed
to be Manchester encoded.

CLSN 12 I Collision Pair: A differentially
driven input pa," tied to the

CLSN 11 I colliSion-presence pair of the Ether-
. net transceiver cable. The collislon-
presence signal is a 10 MHz ± 15%
square wave. The first transition at·
CLSN is negative-going to indicate

, the beginning of the signal; the last
transition is positive'going to indi-
cate the end of the signal.

C1 1 I PLL Capacitor: Phase-locked-loop
capacitor inputs.

C2 2 I

Xl 14 I Clock Crystal: 20-MHz crystal
inputs.

X2 13 I

Vee 20 Power: 5 ± 10% volts.

GND 10 Ground:' Reference.

FUNCTIONAL DESCRIPTION

Clock Generation
A 20 MHz crystal-controlled oscillator is provided as
the basic clock source. This 20 MHz signal is then

7-277 AFN-00864A

intJ 82501

divided by 2 to generate a 10 MHz ± .01% clock as
required in the IEEE 802.3 specification. The oscilla­
tor requires an external parallel resonant fundamen­
tal mode, 20 MHz crystal.

Manchester Encoder and
Transceiver Cable Driver

The 20 MHz clock is used to Manchester encode
data on the TXD input line. The clock is also divided
by 2 to produce the 10 MHz clock required by the
82586 for synchronizing its R'i'S and TXD signals.
See Figure 3. (Note thatthe 82586 RTS is tied to the
82501 TEN input as shown in Figure 4.)

Data encoding 'and transmission begins v,;ith TEN
going low. Since the first bit is a '1', the first transition
on the transmit output TRMT is always negative.
Transmission ends with the TEN going high. The last
transition is always positive at TRMT and may occur
at the center of the bit cell (last bit = 1) or at the
boundary of the bit cell (last bit = 0). A one-bit delay
is introduced by the 82501 between its TXD input and
TRMT/TRMT output as shown in Figure 3. Following
the last transition, the output TRMT is slowly brought
to its high state so that zero differential voltage exists
between TRMT and 'TRMT. The undershoot for return
to idle is less than 100 m\l. nils will eliminate DC
currents In the primary of the transceiver's coupling
transformer. See Figure 4.

An internal watchdog timer is started at the begin­
ning of the frame. The duration of the watchdog
timer is 25 msec ± 15%. If the transmission ter­
minates (by deasserting the rEN) before the timer
expirell, the timer is reset (and ready for the next
transmission). If the timer expires before the trans­
mission ends, the frame is aborted. This is accom­
plished by disabling the' output driver for the
TRMT/TRMT pair and deasserting CRS. RXD and
RXe are not affected. The watchdog timer is rellet
only when the TEN is deasserted.

The cable driver is a differential gate requiring exter­
nal resistors or a current sink \If 20 mA (on both
terminals). In addition, high-voltage protection of+16
volts maximum and short circuitto ground is provided.

Receive Section

CABLE INTERFACE AND NOISE FILTER
The'82501 input circuits can be driven directly from
the Ethernet transceiver cable receive pair. In this
case the cable is terminated with a pair of 39-ohm '
resistors in series for proper impedance matching.
The 82501 has internal resistors that establish the
common mode voltage. See Figure 4.

. The input circuits can also be driven with Eel volt­
age levels. In either case, the input common mode
voltage must be in the range of Vcc-1.O to Vcc-2.5
volts to allow for a wide driver supply variation at the
transceiver. The if'\put terminals have a 15-volt maxi­
mum protection and additional clamping of low­
energy, high-voltage noise signals.

A noise filter is provided at the ReV/ReV input pair
to prevent spurious Signals from improperly trigger- .
ing th" receiver circuitry. The noise filter has the
following characteristics:

A negative pulse which is narrower than 15' ns or is
less than -150 mV in amplitude is rejected during
idle.

At the beginning of a reception, the filter is activated
by the first negative pulse which is more negative
than -300 mV and is wider than 30 ns.

As soon as the first valid negative pulse is recognized
by the noise filter, the data threshold is lowered to 160
mV. The CAs signal is asserted to inform the 82586
controller of the beginning of a transmission, and the
RXC will be held low for 1.4 ~sec maximum while the
internal phase-locked-loop is acquiring lock.

The filter is deactivated if no negative transition oc­
curs within 200 ns from the last positive transition.

Immediately after the end of a reception, the filter
blocks all the signals for 5 p.sec minimum, 7 p.sec
maximum. This dead time is required to block-off
spurious transitions which may occur on the coaxial
cable at the end of a transmission but are not filtered
out by the transceiver. '

7-278

MANCHESTER DECODER AND
CLOCK RECOVERY
The filtered data enters the clock recovery and
decoder circuits. An analog phase-locked-loop
,(Pll) technique is used to ,extract the received clock
from the data, beginning from the third negative
transition of the incoming data. The Pll will acquire
lock within the first 12 bit times, as seen from the
ReV/ReV inputs. During that perio<;l of time, the RXe
is held low. Bit cell timing distortion which can be
tolerated in the incoming signal is ± 15 nsec for the
preamble and ± 18 nsec for data. This distortion must
have less than ± 5 ns bias distortion. The voltage­
controlled oscillator (VCO) of the Pll corrects its
frequency to match the incoming signal transitions.

AFN-00884A

intJ 82501

Its VCO cycle time stays within 5% of the RXD bit cell
time.regardless of the time distortion allowed at the
RCV/RCV input. The RCV/Fm'J input is decoded
from Manchester to NRZ and transferred
synchronously with the receive clock to the 82586
controller.

At the end of a frame, the receive clock is used to
detect the absence of RCV/ReV' transitions and
report it to the 82586 by deasserting CRS while RXD
is held high.

Collision-Presence Section

The CLSN/CLSN input signal is a 10 MHz ±15%
square wave generated by the transceiver whenever
two or more data frames are superimpo,sed on the
coaxial cable. The maximum asymmetry in the
CLSN/CLSN signal is 60/40% for low-to-high or high­
to-low levels. This signal is filtered for noise rejection
in the same manner as RCV/RCV. The noise filter
rejects Signals which are less negative than -150 mV
and narrower than 15 ns during idle. It turns on at the
first negative pulse which is more negative than - 250
mVand wider than 30 ns. After the initial turn-on, the
filter remains active indicating that a valid collision
signal is present, as long as the negative
CLSN/CLSN signal pulses are more negative than
- 250 mV. The filter returns to the "off" state if the
signal becomes less negative than -150 mV, or if no
negative transition occurs within 160 ns from the last
positive transition. Immediately after turn-off, the'
collision filter is ready to I;>e reactivated.

The common mode voltage and external termination
are identical to the RCV/ReV input. (See Figure 4.)
The CLSN/CLSN input also has a 15-volt maximum
protection and additional clamping against low­
energy, high-voltage noise signals.

A valid collision-presence signal will assert the 82501
COT output which can be directly tied to the ~
input of the 82586 controller.

During the time that valid colliSion-presence tran­
sitions are present on the CLSN/CLSN input, invalid
data transitions will be present on the receive data
pair due to the superposition of signals from two or
more stations transmitting simultaneously. It is pos­
sible for RCV/RCV to lose transitions for a few bit
times due to perfect cancellation of the signals. In
any case, the invalid data will not cause any discon­
tinuity of RXC.

When a valid collision-presence signal is present the
CRS signal is asserted (along with COT). However, if
this collision-presence signal arrives within 6.0 ± 1.0
IJ.S from the time CRS was deasserted, only COT is
generated.

Internal Loopback

When asserted, LPBK causes the 82501 to route
serial data from its TXD input, through its transmit
logic (retiming and Manchester encoding), returning
it through the receive logic (Manchester decoding
and receive clock generation) to RXD output. The
internal routing prevents the data from passing
through the output drivers and onto the transmit
output pair, TRMT/TRMT. When in loopback mode,
all of the transmit and receive circuits, including the
noise filter, are tested except for the transceiver
cable output driver and input receivers. Also, at the
end of each frame transmitted in loopback mode, the
82501 generates a 1-lJ.sec COT signal within 1 IJ.sec
after the end of the frame. Thus, the collision circuits,
including the noise filter, are also tested in loop back
mode.

The watchdog timer remains enabled in loopback
mode, terminating test frames that exceed its time-out·
period. The watchdog can be inhibited by placing the
LPBK to a resistor connected to 12V ± 3V. The loop back
feature can still be used to testthe integrity of the 82501
by using the circuit shown in Figure 5.

In the normal mode (LP8K not asserted), the 82501
operates as a full duplex device, being able to trans­
mit and receive simultaneously. This is similar to the
externalloopback mode of the 82586. Combining the
internal and external loopback modes of the 82586
and the internal loopback and normal modes of the
82501, incremental testing of an 82586/82501-based
interface can be performed under program control
for systematic f~ult detection and fault isolation.

Interface Example

The 82501 is designed to work directly with the 82586
controller in Ethernet as well as non-Ethernet 10
Mbps LAN applications. The control and data signals
oonnect directly between the two devices without
the need for additional external logic. The complete
82586/82501/Ethernet Transceiver cable interface' is
shown in FIGURE 4. The 82501 provides the driver
and receivers needed to directly connect to the
transceiver cable, requiring only terminating re.sis­
tors on each input signal pair.

7-279 AFN-OOB64A

82501

20 MHz INTERNAL CLOCK

TO CPU
BUS

Figure 3. Start of Transmission and Manchester Encoding

TXC
26 16

RTS
26 15

27 17
TXD

CTS
29 C1

82586 GND 2 CONTROLLER

iiXC
23 8

CRS
31 6

25 9
RXD

CDT
30

LOOPSACK
INPUT FROM PROCESSOR

NOTE:

C1 = 0.022 "F ± 10%
C2 = C3 = 30-35pF

5V OV

20 10

TXC Vee GND
TRMT

TEN

TXD TRMT

C1
62501
ESI

C2

RXC,

CRS CLSN

RXD

CLSN

12

7en
11

eTHERNET TRANSCEIVER
CABLE ,.--_._-...... ,

Figure 4. 82586/82501/Transcelver Cable Interface

7-280 AFN-00864A

intJ 82501

ELECTRICAL CHARACTERISTICS

Please Note: The following specifications are prelimi­
nary values and are subject to ch~nge without notice.
Contact your local Intel Sales Office for the latest speci­
fications.

D.C. CHARACTERISTICS (T A = 0-70· C, V cc = 5V ± 10"10)

Symbol Parameter Min.
VIL Input Low Voltage (TIL) -0.5

VIH Input High Voltage (TIL) 2.0

VI OF Input Differential Voltage ±300

Max. Units Conditions
+0.8 V

Vee + 0.5 V

'±15OO mV RCVandCLSN
VCM Input Common Mode Voltage Vcc -2.5 Vcc- 1.O V RCVand CLSN

VOL Output Low Voltage TIL or MOS

VOCM Common Mode Output

VOH Output High Voltage
TIL
MOS

VOOF Differential Output Swing

ILl Input Leakage Current (TIL)

CIN Input Capacitance

C~UT Output Capacitance

Icc
IF Input Forward Current (TIL)

A.C. CHARACTERISTICS

A.C. Measurement Conditions

I) TA = O· to 70°C, Vee = 5V ± 10%

II) The AC measurements are done at the following
voltage levels for the various kinds of inputs and
outputs

a) TTL inputs and oututs: 0.8V and 2.0V
The input voltage swing is 0.4 to 2.4Vat least
with 3-10 ns rise and fall times.

b) MOS outputs: The rise and fall times are mea­
sured between 0.6Vand 3.6V points. The high
time is measured between 3.6V points and the
low time is measured between 0.6V points.

1.0

2.4
3.9
.6

7-281

0.45 V 10L = 4mA
4.5 V RL = 78 Ohms Differential

Termination and 1200
pulldown

V 10H =-1.0mA
V 10H =-400/loA

1.1 V RL = 78 Ohms Differential
Termination and 1200
pulldown (TRMT)

±200 /loA 0< VIN < Vcc VL = Vcc
10 pF f = 1 MHz ,

20 pF f = 1 MHz

200 mA

-500 /loA VF= .45V

c) Differential inputs and outputs:
The 50% points of the total swing are used for
delay measurements. The rise and fall times of
outputs are measured at the 20 to 80% points.
The differential voltage swing at the inputs is
at least ± 300mV with rise and fall times of
3-15 ns measured at ±.2 volts. Once the
squelch 'threshold has been exceeded the
inputs will detect less than ±160 mV signals.

III) The AC loads for the various kind of outputs are
as follows:

a) TTL and,MOS: A 15-pF Capacitor to GND

b) Differential: A 10-pF Capacitor from each ter­
minal to GND and a termination load resis.­
tor of 78 ohms in parallel with a 27 micro­
henries inductor between the two terminals.

AFN-Q0864A

82501

TRANSMIT TIMING

Symbol Parameter

t1 TXC Cycle Time

t2 TXC Fall Time

t3 TXC Rise Time

'" TXC Low Time

ts TXC High Time

16 Transmit Enable/Disable to TXC Low

t7 TXD Stable to TXC Low

Is Bit Cell Center to Bit Cell Center of Transmit Pair Data

t9 Transmit Pair Data Fall Time[1J

t10 Transmit Pair Data Rise Time [1J

t11 Bit Cell Center to Bit Cell Boundary of Transmit Pair Data

t12 TRMT starts approaching its high level from Last Positive Transition of
Transmit Pair Data during idle.

TRANSMIT TIMING

~~----+-~.r-----------+------JI

TXD

o

IBML
TRMT (LAST BIT ~ 1)

Note:
1. Measured per 802.3 Para 6.5.1.1

"

'8
+

TRMT,TJlMT(LASTBIT~l) ~

[+ 1

7-282

\ LAST BIT!

1/0

+

Min. Max. Unit

99.99 100.01 ns

5 ns

5 ns

40 ns

40 ns

50 ns

50 ns

99.5 100.5 ns

1.0 5.0 ns

1.0 5.0 ns
(

49.5 50.5 ns

200 8000 ns

AFN-lJ0864A

82501

RECEIVE TIMING

Symbol Parameter Min. Max. Unit

t13 Receive Pair Signal Pulse Width (at -.30V differential signal) of First
Negative Pulse for a) Signal Rejection by Noise Filter, 30 15 ns
b) Noise Filter Turn-on in order to Begin Reception ns

t14 Duration which the RXC is held at low state 1400 ns

t15 Receive Pair Signal Rise/Fall Time at ±.2 volt 20 ns

t16[1] Receive Pair Bit Cell Center from crossover timing distortion:
In preamble
In data ±20 ns ,

±20 ns
t17[1]

Receive Pair Bit Cell Boundary allowing for timing distortion:
In preamble

±20 In data ns
±20 ns

t18 Receive Idle Time Before the Next Reception can~Begin (as measured from 8 !LS
the deassertion of CRS)

t19 Receive Pair 'Signal Return to Zero Level from Last valid Positive Transition 0.20 !LS

t20 CRS Assertion delay from the First received valid Negative Transition of 100 ns
Receive Pair Signal

SyMbol Parameter Min. Max. Unit

t21 CRS Deassertion delay from the Last valid positive transition received 300[2] ns
(when no Collision-Presence signal exists on the transceiver cable)

t24 RXC Jitter ±5.0 ns

t25 RXC Rise/Fall time ns

t26 RXC High/Low time 40 ns

t27 Receive Data Stable before the Negative Edge of RXC 30 ns

t28 Receive Data Held valid past the Negative Edge of RXC 30 ns

t29 Carrier Sense deasserted before the Negative Edge of RXC 10 30 ns

t30 Receive data Rise/Fall time 10 ns

t31 From .the time CRS is deasserted until the time it can be asserted again 5 7 !LS

NOTES: ..
1. ± 5 ns' of bias distortion-the remainder is random distortion.
2. CRS is deasserted synchronously with the RXC:This condition is not specified in the IEEE 802.3 specification.

12V
82501

LPBK '~WDTD Function
LPBK/WOTO 1 X LPBK mode

0 0 Norma~mode

0 '1 Normal mode with
WOTO

watchdog timer disabled

• = Open Collector

Figure 5. Watchdog Timer Disable

7-283 AFN-00864A

inter 82501

RECEIVE TIMING: START OF FRAME

I I I I 0 I 0 I l I
:g-Bge? :J(,,,~

1------. 1, •. -----..... 1

RXD

'THIS CLOCK PULSE MAY NO,. BE A VALID CLOCK PULSE

, RECEIVE TIMING: END OF FRAME

I 0 I 0 I
+ - + - +

:g~(LASTBIT = 0) :;:>QOQ<-----?;~~ ---1
I I I' J-t:9 ___ 118

:g~ (LAST BIT = 1)" =x::=:::x : ~ I },--
~"9~
r'21~

~-----~~~~--~-----
--------~--~/~I---- '~-----. I- '31----.~1

~ r-"9

o / - --"
RXD

'NOTE: CRS CAN BE TRIGGERED ON AGAIN BY THE COLLISION·PRESENCE SIGNAL.

7-224 AFN-00864A

intJ 82501

COLLISION TIMING

Symbol Parameter

l32 CLSN/CLSN Signal Pulse Width (at -.30V differential signal) of first
Negative Pulse for Noise Filter TlIrn-on

l33 CLSN/CLSN Cycle Time

t34 CLSN/CLSN Rise/Fall Time at ±.2 volts

t35 CLSN/~ Transition Time

l36 ~ Assertion from the First Valid Negative Edge of Collision Pair Signal

t37 ~ Deassertion from the Last Positive Edge of CLSN/~ Signal

tae CRS Deassertion from the Last Positive Edge of CLSN/CLSN signal (If no
post-collision signal remains on the receive pair.)

t39 ~ stable before the negative edge of RXC at deassertation

COLLISION TIMING

~----<

~--)c----------\\\'0

I
NOTE 1

RXC

NOTES:
1. CAS WILL BE DEASSERTED FOR A PERIOD UP TO 7 !,SEC MAXIMUM

WHEN RCV/m;i7 OR CLSN/CLSN TERMINATES, WHICHEVER OCCURS
LATER.

2 CRS WILL REMAIN ASSERTED AFTER THE CLSN/CLSN SIGNAL
TERMINATES IF RCV/RCV SIGNALS CONTINUE.

LOOPBACK TIMING

Symbol Parameter

l.4o LPBK asserted before the first attempted transmission

1.41 Simulated collision test delay from the end of each attempted transmisssion

1.42 Simulated collision test duration

1.43 LPBK deasserted after the last attempted transmission

NOTE:
In Loopback mode, AXC, 'RXD and CRS function in the same manner as a normal Receive.

7-285

Min. Max. Unit

30 ns

86 118 ns

15 ns

35 70 ns

75 ns

200 ns

350 ns

10 60 ns

Min. Max. Unit

500 ns

.5 1.5 P.S

.5 1.0 p.s

5 p'S

AFN-00864A

82501

LOOPBACK TIMING

1 "'" I "0" I "'" 1 "0" I "0" I "'" 1

.~ TXD

141 -!----142 --J
CDT--~~I ~

\~ __________ ~&~,---------JI
1 "'" ·1 "0" 1 "'" 1 1 "'"

RXD ------------..:.--~~I----..:...--

NOTE:
1. DURING LOOPBACK. THE 82501 RECEIVE CIRCUITRY USES 12 BIT TIMES

WHILE THE PLL LOCKS ON THE DATA AS A RESULT, THE FIRST 12 BITS
ARE LOST.

TESTABILITY

NOTES:
1. All AC parameters become valid after the PLL has sta­

bilized: 1001's after the application of power.
2. TXC can be synchronized to tester clock by applying reset

signal (12V) to the TEN pin.

7-286 AFN-00864A

82586
LOCAL AREA NETWORK COPROCESSOR

• Fully Implements the IEEE 802.31Ethemet
Data Link specifications without CPU
overhead.

• Bus Interface optimized to IAPX 186 and
188 microprocessors.

• On-chlp DMA channels provide automatic
memory management.

• Independent parallel bus and serial line
clocks.

........ -

figure 1. 82586 Functional Block Diagram

• Network diagnostics:
Frame CRC errors
Frame alignment errors
location of cable opens/shorts
Collision tallies

• Self test diagnostiCS
Loop back
Register Dump
Backoff timer check

• Efficient use of memory via buffer
chaln,lng.

• User conflgurable to realize broadband,
short topology and 1 Mbps networks •

7-287

...
• 11181

A ..
A"
A ..

ADlI

Vee
A ..
A22(1ilii
A23(iiII)
iiiii!
HOLD
HLDA
11 (OTill)
iii iIIIR)
READY CAL~

.NT
ARDYlIRDY
Vee
CA

AD? AESl!T
ADa MN/iD
AIlS eLI(
A.. Iliii
A.. eDT
A.. C'II
AD1 m
ADO TXD
lie 1'lm
Vss '1.:..:._..:;r AX"

NOTE THE SYMItOLS IN PARENTHESES
CORRESPOND TO MINIMUM MODE-

Figure 2. 82586 Pinout November 1983

Order Number: 21078,3..003

inter 82586

The 82586 is an intelligent, high performance Local
Area Network coprocessor, implementing the
CSMAlCD link access method. (Carrier Sense Mul­
tiple Access with Collision Detection).

The 82586 performs.a large range of link manage­
ment and channel interface functions including:
CSMAlCD link access, framing, preamble genera­
tion and stripping, source address generation, des­
tination address checking, CRC generation and
checking. Any data rate up to 10 Mb/s can be used:

The 82586 features a powerful host system inter­
face. It automatically manages memory structures
with command chaining and bidirectional data
chaining. An on-chip DMA controller manages 4

. channels transparently to the user. Buffers contain­
ing errored or collided frames can be automatically
recovered. The 82586 can be configured for 8-bit or
16-bit data path, with maximum burst transfer rate of
2 or 4 Mbyte/sec, respectively. Memory address
space is 16 Mbyte maximum.

• The 82586 provides two independent 16 byte FIFO's,
one for receiving and one for transmitting. The
threshold for block transfer to/from melnory is

programmable, enabling the user to optiJTIize bus
overhead for a given worst case bus latency.

The 82586 provides a rich set of diagnostic and
network management fUnction!! including: internal
and externalloopbacks, exception condition tallies,
channel activity indicators, optimal capture of all
frames regardless of destination address, optional
capture of errored or collided frames, and time
domain reflectometry for locating fault points in the
cable.

The 82586 can be used in conjunction with either
baseband or broadband networks. The controller
can be configured for maximum network efficiency
(minimum contention overhead) for any length
network operating at any data rate within the
82586's range. The controller supports address field
lengths of 1, 2, 3, 4, 5, or6 bytes.ltcan be configured
foreitherthe IEEE802.3/ Ethernet or HDLC method
of frame delineation. Both 16-bit and 32-bit CRC are
supported.

The 82586 is packaged in a 48 pin DIP and fabrj­
cated in Intel's reliable HMOS II 5 volt technology.

Table 1. 82586 Pin Description

Symbol Pin No. ~pe Name and Function
VCC,VCC 48,36 System Power: +5 volt power supply.
VSS,VSS 12,24 System Ground.
RESET 34 I RESET is an active HIGH internally synchronized signal, causing the

82586 to terminate present activity immediately. The signal must be
HIGH for at least four clock cycles. The 82586 will execute RESET within
ten system clock cycles starting from RESET. HIGH. When RESET
returns LOW, the 82586 waits for the first CA to begin the initialization
sequence.

TxD 27 0 Transmitted Serial Data output signal. This signal is HIGH when not
transmitting.

TxC 26 I Transmit Data Clock. This signal provides timing information to the
internal serial logic, depending upon the mode of data transfer. For NRZ
mode of operation, data is transferred to the TxD pin on the HIGH to
LOW clock transition.

RxD 25 I Received Data input signal.
RxC 23 I Received Data Clock. This signal provides timing information to the

internal shifting logic depending upon the mode of data transfer. For
NRZ data, the state of the .RxD pin is sampled on the HIGH to LOW clock

, transition.
Ri'S 28 0 Request To Send signal. When LOW, notifies an external interface that

the 82586 has data to 1ransmit. It is forced HIGH after a Reset and while
the Transmit Serial Unit is not sending data.

7-288 210783-003

82586

Table 1. 82586 Pin Description (Cont'd.)

Symbol Pin No. ~pe Name and Function
rn 29 I Active LOW Clear To Send ,input enables the 82586 transmitt~o

actually si'lnd data. It is normally used as an interface handshake to RTS.
This Sig~Oing inactive stops transmission. It is internally synchro-
nized. If TS goes inactive, meeting the setup time to TxC negative edge,
transmission is stopped and RTS goes inactive within, at most, two
TxC cycles.

CAs 31 I Active LOW Carrier Sense input used to notify the 82586 that there is
traffic on the serial link. It is used only if the 82586 is configured for
external Carrier Sense. When so configured, external circuitry is

,
required for detecting serial link traffic. It is internally synchronized. To

' be accepted, the signal must stay active for at least two serial clock
cycles.

C'i5T 30 I Active LOW Collision Detect input is used to notify the 82586 that a
collision has occurred. It is used only if the 82586 is confi'gured for
external Collision Detect. External circuitry is required for detecting the
collisiqn. It is internally synchronized. To be accepted, the signal must
stay active for at least two serial clock cycles. During transmission, the
82586 is able to recognize a collision one bit time after preamble
transmisSion has begun.

INT 38 0 Active HIGH Interrupt request signal.

CLK 32 I The system clock input from the 80186 or another symmetric clock
generator,

MN/MX 33 I When HIGH, MN/MX selects RD, WR, ALE, DEN, DT/R (Minimum
Mode). When LOW, MN/MXselectsA22,A23, READY, 80,81 (Maximum
Mode). Note: This pin should be static during 82586 operation.

ADO-AD15 6-11, liD These lines form the time multiplexed memory address (t1) and
13-22 data (t2, t3, tW, t4) bus. When operating with an 8-bit bus, the high byte

will output the address during the entire cycle. ADO-AD15 are floated
after a RESET or when the bus is not acquired.

A16-A18, 1,3-5, \ 0 Used maximum mode only. These lines constitute 7 out of 8 most
A20-A23 45-47 significant address bits for memory operation. They switch during t1

and stay valid during the entire memory cycle, The lines are floated after
RESET or when the bus is not acquired.

A19/S6 2 0 During t1 it forms line 19 of the memory address. During t2 through t4 it
is used as a status indicating that this isa Master peripheral cycle, and is

i HIGH, Its timing is identical to that of ADO - AD15during write operation.

HOLD. 43 0 HOLD is an active HIGH signal used by the 82586 to request local bus
mastership atthe end of the current CPU bus transfer cycle, or at the end
of the currer'lt DMA burst transfer cycle. In normal operation, HOLD
goes inactive before HLDA. The 82586 can be forced off the bus by
HLDA 'going inactive, In this case, HOLD goes inactive, at most, three
bus cycles after HLDAgoes inactive.

HLDA 42 I HLDA is an active HIGH Hold Acknowledge signal indicating that the
CPU has received the HOLD request and that bus control has been
relinquished to.the 82586. It is internally synchronized. After HOLD is
detected as LOW, the,processordrives HLDA LOW. Note, CONNECTING
VCC TOHLDA IS NOT ALLOWED because it will cause a deadlock.
Users wanting to give permanent bus access to the 82586 should
connect HLDA with HOLQ. If HLDA goes inactive before HOLD, th!,!
82586 will release the ,bus (by HOLD going inactive), within three bus
cycles at .most.

7-289 210783-003

8258~

Table 1. 82586 Pin Descrtption (Confd.)

Symbol Pin No. Type Name and Function

CA 35 I The CA pin is a Channel Attention input used by the CPU to initiate the
82586 execution of memory resident Command Blocks. The CA signal is .
synchronized internally. The signal must be HIGH for at least one system
clo~k period. It.is latched internally on HIGH to LOW edge and then
detected by the 82586.

BHE 44 0 The Bus High Enable signai (§HE) is used to enable data onto the most
significant half of the data bus. Its timing is id.entical to that of A 16-A23.
With a 16-bit bus it is LOW and with an 8-bit bus it is HIGH. Note: after
RESET, the 82586 is configured to 8-bit bus.

READY 39 . I . This active HIGH signal is the acknowledgement from the addressed
memory that the transfer cycle can be completed. While LOW, it causes
wait states to be inserted. This signal must be externally synchronized
with the system clock. The Ready s~RgY.ternal to the 82586 is a logical
OR between READY .and SRDY;~ .

SRDY/AADv 37 I This active HIGH signal performs the same function as READY. If it is
programmed at AR~~ure time to SRDY. it is identical to READY. If it is
programmed to , the positive edge of the Ready signal is internally
synchronized. Note, the negative edge must still~setup and hold
time specifications, when in ARI5V mode. The ARDY signal must be
active for at least one system clock HIGH period for proper strObing. The
Ready signal internal to the 82586 is a logical OR between READY (in
Maximum Mode only) and SRDY/ARi5'Y. Note that following RESET, this
pin assumes ARDY mode:

50,81 40,41 0 Maximum mode only. These status pins define the type of DMA transfer
<!!!rin~ the current memory cycle. They are encoded as follows:
S1 0
0 o Not Used
0 1 Read Memory
1 o Write Memory
1 . 1 Passive

Status is active from the middle of t4 to the end of t2. They return to the
passive state during t3 or during tW when READY or ARDY is HIGH.
These signals can be used by the 8288 Bus Controller to generate all
memory control and timing signals. Any change from the passive state
signals the 8288 to start the nextt1 to t4 bus cycle. These pins are pulled
HIGH and floated after a system RESET and when the bus is not
acquired.

RD 46 0 Used in minimum mode only. The !:!!l!d strobe indicates that the 82586 is
performing a memory read cycle. RD is active LOW during t2, t3 and tW
of any read cycle. This signal is pulled HIGH and floated after a RESET
and when the bus is not acquired.

"tim 45 0 Used in minimum mode only; The write strobe indicates that the 82586 is ,.
performing a write memorycycle.WR"is active LOW duri.ng t2, t3 and tW
of any write cycle. It is pulled HIGH and floats after RESET and when the
bus is not acquired.

ALE 39 0 Used in minimum mode only. Address Latch Enable is provided by the
82586 to latch the address into the 8282/8283 address latch. It is a HIGH
pulse, during t1 ('clock low') of any bus cycle. Note that ALE is never
floated.

DEN 40 0 Used in minimum mode only. Data ENable is provided as output enable
forthe 8286/8287 transceivers in a stand-alone (no 8288) system. 'Drnis
active LOW during each memory access. For a read cycle, it is active
from the middle of t2 until the beginning of t4. For a write cycle, it is
active from the beginning of t2 Until the middle of t4. It is pulled HIGH
and floats after a system RESET or when the bus is not acquired.

7-290 210783-003

inter 82586

Table 1. 82586 Pin DescrlpUon (Cont'd.)

Symbol Pin No. 'TYpe Name and FuncUon

DT/R' 41 0 Used in minimum mode only. DTiR is used in non-8288 systems using an
8286/8287 data bus transceiver. It controls the direction of data flow
through the Transceiver. Logically, DT/R is equivalent to 51. It becomes
valid in the t4 preceding a bus cycle and remains valid until the final t4 of
the cycle. This signal is pulled HIGH and floated after a RESET or when
the bus is not acquired.

82586/HOST CPU INTERACTION

Communication between the 82586 and the host is
carried out via shared memory. The 82586's direct
access to memory capability allows autonomous
transfer of data blocks (buffers, frames) and relieves
the CPU of byte transfer overhead. The 82586 is
optimized for operating with the iAPX 186, but due
to the small number of hardware signals between
the 82586 and the CPU, the 82586 can operate easily
with other processors. In discussing 82586/Host
interaction, the logical interface and the hardware
bus interface are referred to separately.

The 82586 consists of two independent units:
Command Unit (CU) and Receive Unit (RU). The
CU executes commands from shared memory. The
RU handles all activities related to frame ~eception.
The CU and RU enable the 82586 to engage in the
two activities simultaneously: the CU may be fetch­
ing and executing commands out of memory, and
the RU may be storing received frames in memory.
CPU intervention fs only required after the CU exe­
cutes a sequence of commands or the RU stores II
sequence of frames.

The only h~rdware signals that connect the CPU
and the 82586, are the INTERRUPT and CHANNEL
ATTENTION, see Figure 3. Interrupt is used by the
82586 to draw the CPU's attention to a change in the
SCB. The Channel Attention is used by the CPU to
draw the 82586's attention.

82586 SYSTEM MEMORY STRUCTURE

The Shared Memory structure is composed of four
parts: Initialization Root, System Control Block
(SCB), Command Ust, and Receive Frame Area
(RFA), see Figure 4.

The Initialization Root is at a predetermined loca­
tion in the memory space, (OFFFFF6H), known to
both the host the CPU and the 82586. The root is
accessed at initialization and points .to the System
Control Block.

The System Control Block (SCB) serves as a bidi­
rectional mailbox between the host the CPU, CU
and RU. It is the central element through which the
CPU and the 82586 exchange control and status .

CHANNEL ATTENTION
CA cpu

INTERRUPT 82586
INTR

...::;;:::... -2;~

SHARED MEMORY

I INITIALIZATION 1 ROOT

l

r., I SYSTEM CONTROL I Vt SLOCK (SCS):

V
"MAILBOX· N"

! !
RECEIVE COMMAND
FRAME LIST
AREA

,

Figure 3. 82586/Host CPU Interaction

7-291 210783-003

82586

information. The SCB is composed -of two parts.
First, instructions from the CPU to the 82586. These
include: control of the CU and RU (START, ABORT,
SUSPEND, RESUME), a pointer to the. list of com­
mands for the CU" a pointer'to the rece,ive frame
area, and a set of interrupt acknowledge bits.
Second, information from the 82586 to the CPU that
includes: state ofthe CU andHU (e.g. IDLE, ACTIVE
READY, SUSPENDED, NO RECEIVE RESOURCES),
interrupt bits (command completed, frame received,
Cll gone not ready, RU gone not ready), and statis­
tics. See Figure 4.

INITIALIZATION ROOT

STATISTICS

The Command List serves as a program for the CU.
Individual commands are placed in memory units
called a Command Block, orCB. CB's contain
command specific parameters and command spe­
cific statuses. Specifically, these high level com­
mands are called Action Commands (e.g. Ttansmit,
Configure).

A specific command, Transmit, causes transmission
of a frame by the 82586. The Transmit command
block includes Destination Address, Type Field, and
a pointer to a list of linked bpffers that holds the
frame to be constructed from several buffers scat­
tered in memory. The Command Unit performs,

(N)I

RECEIVE FRAME AREA

••• I FRAME I
---'---"'. DESCRIPTOR

t

Figure 4.82586 Sha~d Memory Structure

7-292 210783-003

inter 82586

without the CPU intervention, the DMA of each
buffer and the prefetching of references to new
buffers in parallel. The CPU is notified only after
successful transmission or retransmission.

The Receive Frame Area is a list of Free Frame
Descriptors (Descriptors not yet used) and a list of
buffers prepared by the user. It Is conceptually dis­
tinctfrom the Command List. Frames arrive without
being solicited by the 82586. The 82586 must be
prepared to receive them even if it is engaged in
other activities-and to store them in the Free Frame -
Area. The Receive Unit fills the buffers upon frame
reception and reformats the Free Buffer List into
received frame structures. The frame structure is
virtually identical to the format of the frame to be
transmitted. Thefirstframe descriptor is referenced
by SCB, and the reclaimed and returned to the Free
Buffer List, unless the chip is configured to Save
Bad Frames.

Receive buffer chaining (i.e. storing incoming
frames in a linked list of buffers) improves memory
utilization significantly. Without-buffer chaining, the
user must allocate consecutive blocks of the maxi­
mum frame size (1518 bytes in Ethernet) for each
frame. Taking into account that a typical frame size
may be about 100 bytes, this practice is very ineffi­
cient. With buffer chaining, the user can allocate
small buffers and the 82586 uses only as many as
needed.

In the past, the drawback of buffer chaining was the
CPU procesSing overhead and the time involved in
the buffer switching (especially at 10 Mb/s). The
82586 overcomes this drawback by performing
buffer management on its own (completely trans­
parent to the user).

The 82586 has a 22:-bit memory address range in
minimum mode and 24-bit memory address range
in maximum mode. All memory structures, the Sys­
tem Control Block, Command List, Receive Des­
criptor List, and all buffer descriptors must reside
within one 64K-byte memory segment. The Data
Buffers can be located anywhere in the memory
space.

TRANSMITTING FRAMES

The 82586 executes high level or action commands
from the Command List in external memory. Action
commands are fetched arid executed in parallel with
the host CPU's operation, thereby significantly
improving system performance. The general action
commands format is shown in Figure 5.

CONTROL
COM~8TATUS

FIELDS
COMMAfI)

LINK FIELD
• '--- cc::I,.D (POINTER TO NEXT COMMAND)

FIll_EYER FIELD
(COMMAND-lPEClFlC

MllAMIETEIIS)

Figure 5. AcUon Command Format

Message transmission is accomplished by using the'
Transmit command. A single Transmit command
contains, as part of the com'11and-specific parame­
ters, the destination address and type field for the
transmitted frame along with a pointer to a buffer
area in memory containing the data portion of the
frame. (See Figure·15.) The data field;s contained in
a memory data structure consisting of a Buffer Des­
criptor (BD) and Data Buffer (or a !inked list of
buffer descriptors and buffers) as shown in Figure 6.
The BD,contains a Link Field which points to the
next BD on the list and a 24-bit address pointing to
the Data Buffer itself. The length of the Data Buffer
is specified by the Actual Count field of the BD.

TRANSMIT (ID)

ACTUAL COUNT

LINK FIELD U- NEXTI
UFFER DEBCRIPTOR

DliADDRESS • r--:--- DATA
(24 BITS) IUFFER(DI)

Figure 6. Data Buffer Descriptor and Data Buffer
Structure

7-293 210783-003

/'

82586

Using the BD's and Data Buffers, multiple Data
Buffers can be 'chained' together. Thus, a frame
with a long Data Field can be 'transmitted using
multiple (shorter) Data Buffers chained together.
This chaining technique allows the, system designer
to develop efficient buffer management policies.

When transmitting a frame as shown below in Fig­
ure 7:

Figure 7. Frame Format

The 82586 automatically generates the preamble
(alternating 1's and D's) and start frame delimiter,
fetches the destination address and type field from
the Transmit command, inserts its unique address
as the source address, fetches the data field from
buffers pointed to by the Transmit command, and
computes and appends the CRC at the end of the
frame.

The 82586 can be configured to generate either the
Ethernet or HDLC start and end frame delimiters. In
the Ethernet mode, the start frame delimiter is two

SYSTEM , CONTROL -I--
BLOCK

I

r - - f- - - - - -
RECEIVE
FRAME

DESCRIPTOR (RFD)

•

,

"" BUFFER
DESCRIPTOR (BD) .

DATA "
BUFFER (DB)

consecutive 1 bits and the end frame delimiter indi­
cated, by the lack of a signal after transmitting the
last bit of the frame-check sequence field. When in
the HDLC mode, the 82586 will generatethe01111110
'flag' for the start and end frame delimiters and per­
form the standard 'bit stuffing/stripping.' In addition,
the 82586 will optionally pad frames that are shorter
than the specified minimum frame length by
appending the appropriate number of flags to the
end of the frame.

In the event of a collision (or collisions), the 82586
manages the entire jam, random wait and retry pro­
cess, reinitializing DMA pointers without CPU inter­
vention. Multiple frames can be sent by linking the
appropriate numberof Transmitcommands together.
This is particularly useful when transmitting a mes­
'sage that is larger than the maximum frame size
(1518 bytes for Ethernet).

RECEIVING FRAMES

In order to minimize CPU overhead, the 82586 is
designed to receive frames without CPU supervi­
sion. The host CPU first sets aside an adequate
amount of receive buffer !!pace and then enables the

- - - -

RFD .r-.

~REE BUFFER LIS T.(FBL)

BD .r-•• .:.. BD

, .
1 1

DB DB

RECEIVER I'RAME AREA' (RFA) --------
Figure 8. Receive Frame Area Diagram

7-294· , ·210783-003

inter 82586

82586's Receive Unit. Once enabled, the RU
'watches' for any of its frames which it automatically
stores in the Receive Frame Area (RFA). The RFA
consists of a Receive Descriptor List (RDl) and a list
of free buffers called the Free Buffer List (FBl) as
shown in Figure 8. The individual Receive Frame
Descriptors that make up the RDl are used by the
82586 to store the destination and source address,
type field and status of each frame that is received.
(Figure 9.)

RECEIVE FRAME STATUS

LINK FIELD . r- FR!':~1:~g~:~R

BUF.FER DESCRIPTOR . r-- BUFFER DESCRIPTOR
LINK FIELD

DESTINATION ADDRESS

SOURCE ADDRESS

TYPE FIELD

Figure 9. Receive Frame Descriptor

The 82586, once enabled, checks each passing
frame for an address match. The 82586 will recog­
nize its own unique address, one or more multicast
addresses or the broadcast address. If a match
occurs, it stores the destination and source address
and type field in the next available RFD. It then
begins filling the next free Data Buffer on the FBl
(which is pointed to by the current RFD) with the
data portion of the incoming .frame. As one DB is
filled, the 82586 automatically fetches the next DB
on the FBl until the entire frame is received. This
buffer chaining technique is particularly memory·
efficient because it allows the system designer to set
aside buffers that fit a frame size that may be much
shorter than the maximum allowable frame.

Once the entire frame is received without error, the
82586 performs the following housekeeping tasks:

. • Updates the Actual Count field of the last Buffer
Descriptor used to hold the frame just received
with the number of bytes stored in its associat~d
Data Buffer.

• Fetches the address of the next free Receive
Frame Descriptor.

• Writes the address of the next free Buffer Descrip­
tor into the next free Receive Frame Descriptor.

• Posts a 'Frame Received' interrupt status bit in the
sCB.

• Interrupts the Cpu.

In the event of a frame error, such as a CRC error, the
82586 automatically reinitializes its DMA pOinters
and reclaims any data buffers containing the bad
frame. As long as Receive Frame Descriptors and
data buffers are available, the 82586 will continue to
receive frames without further CPU help.

82586 NETWORK MANAGEMENT
AND DIAGNOSTIC FUNCTIONS

The behavior of data communication networks is
typically very complex due to their distributed and
asynchronous nature. It is particularly difficult to
pin-point a failure when it occurs. The 82586 was
designed in anticipation of these problems and
incll:ldes a set of features for improving reliability
and testability.

The 82586 reports on the following events after each
frame transmitted:

• , Transmission successful.

• Transmission unsuccessful; lost Carrier Sense.

• Transmission unsuccessful; lost Clear-to-send.

• Transmission unsuccessful; DMA underrun
because the system bus did not keep up with the
transmission.

• Transmission unsuccessful; number of collisions
exceeded the maximum allowed.

The 82586 checks each incoming frame and reports
on the following errors, (if configured to 'Save Bad
Frame'):

• CRC error: incorrect CRC in a well aligned frame.

• Alignment error: incorrect CRC in a misaligned
frame.

• Frame too short: the frame is shorter than the
configured value for minimum frame length.

• Overrun: the frame was not completely placed in
memory because the system bus did not keep up
with incoming data.

• Out of buffers: no memory resources to store the
frame, so part of the frame was discarded.

NETWORK PLANNING AND
MAINTENANCE

To p'erform proper planning, operation, and mainte­
nance of a communication network, the network
management entity must accumulate information
on network behavior. The 82586 provides a rich set
of network-wide diagnostics that can serve as the
basis for a network'management entity.

7-295 210783-003

82586

Network Activity information is provided in the'sta­
tus of each frame transmitted. The activity indica­
tors are:

• Number of collisions: number of collisions the
82586 experienced in attempting to transmit this
frame.

• Deferred transmission: indicates if the 82586 had
to defer to traffic on the link during the ~irst
transmission attempt.

Statistics registers are updated after each received
frame that passes the address filtering .. and is longer
than the Minimum Frame Length, configuration
parameter.

• CRC errors: number of frames that experienced a
CRC error and were properly aligned.

• Alignment errors: number of frames that expe­
rienced a CRC error and were misaligned.

• No-resources: number of correct frames lost due
to lack of memory resources.

• Overrun errors: number of frame sequences lost
due to DMA overrun.

The 82586 can be configured to Promiscuous
Mode. In this mode it captures all frames trans­
mitted on the Network without checking the Des­
tination Address.This is useful in implementing a
monitoring station to capture all frames for
analysis.

The 82586 is capable of determining if there is a
short or open circuit anywhere in the Network
using the built in Time Domain' Reflecto1Tleter
(TOR) mechanism.

STATION DIAGNOSTICS

The chip can be configured to External Loopback,
The transmitter to receiver interconnection can be
placed anywhere between the 82586 and the link to
locate faults, for example: the 82586 output pins, the
Serial Interface Unit, the Transceiver cable, or in the
Transceiver.

The 82586 has a mechanism recognizing' the trans­
ceiver 'heart beat' signal for verifying the correct
operation of the Transceiver's collision detection
circuitry.

82586 SELF TESTING

The 82586 can be configured to Internal Loopback.
It disconnects itself from the Serial Interface Unit,
and any frame transmitted is received immediately.
The 82586 connects the Transmit Data to the Receive
Data signal and the Transmit Clock to the Receive
Clock.

The Dump Command causes the cnip to, write over
100 bytes of ,its internal registers to memory,

The Diagnose command .checks the exponential
Backoff random number generator internal to the
82586.

CONTROLLING THE 82586

The CPU controls operation of the 82586's Com­
mand Unit (CU) and ReC?eive Unit (RU) of th~ 82586
via the System Control Block.

THE COMMAND UNIT (CU)

The Command Unit is the logical unit that executes
Action Commands from a list of commands very
similar to a CPU program. A Command Block (CB)
is associated with each Action Command.

The CU can be modeled as a logical machine that
takes, at any given time, one of the following states:

• IDLE - CU is not executing a command and is not
associated with a CB on the list. This is the initial
state.

• SUSPENDED - CU is not executing a command
but (different from IDLE) is associated with a CB
on the list.

• ACTIVE - CU is currently executing an Action
Command, and points to its CB.

The CPU may affectthe CU operation in two ways:
issuing a CU control Command or setting bits in the
COMMAND word of the Action Command.

THE RECEIVE UNIT (RU)

The Receive Unit is the logical unit that receives
frames and stores them in memory.

The RU is modeled as a logical machine that takes,
at any given time, one of the following states:

• IDLE - RU has no memory resources and is dis­
carding incoming frames. This is the initial RU
state.

• NO-RESOURCES - RU has no memory resour­
ces and is discarding incoming frames. This state
differs from tne IDLE state in that RU accumu­
lates statistics on the number of frames it had to
discard.

• SUSPENDED - RU has free memory resources to
store incoming frames but discards them anyway.

• READY - RU has free memory resources and
stores incoming frames.

The CPU may affect RU operation in three ways:
issuing an RU Control Command, setting bits in
Frame Descriptor, FD, COMMAND word of the
frame currently being received, or setting EL bit of
Buffer Descriptor, BD, of the buffer currently bein"
filled.

210783-003 '

inter 82586

15 ODD BYTE

STAT 0 CUS 0

~
R

ACK CUC E
S

CBLOFFSET

RFAOFFSET

CRCERRS

ALNERRS

RSCERRS

OVRNERRS

EVEN BYTE 0
I

o I 0 RUS 0 0

RUC I\\\\\\\\~

SCB
(STATUS)

SCB+2
(COMMAND)

SCB+4

SCB+6

SCB+8

SCB+ 10

SCB+ 12

SCB+ 14

Figure 10. System Control Block (SCB) Format

SYSTEM CONTROL BLOCK (SCB)

The System ContrOl Block is the communication
mail-box between the 82586 and the host CPU. The
SCB format is shown in Figure 10.

The host CPU for issuing Control Commands to the
82586 via the SCB. These commands may appear at
any time during routine operation, as determined by
the host CPU. After the required Control Command
is setup, the CPU sends a CA signal to the 82586.

SCB is also used by the 82586 to return status
information to the host CPU. After inserting the
required status bits into SCB, the 82586 issues an
Interrupt to the CPU.

The format is as follows:

STATUS word: Indicates the status of the 82586.
This' word is modified only by the 82586. Defined
bits are:

CX (Bit 15) - A command in the CBl
having its 'I' (interrupt)
bit set has been
executed.

FR (Bit 14) - A frame has been
received.

CNR (Bit 13) - The Command Unit left
the Active state.

RNR (Bit 12) - The Receive Unit left
the Ready state.

CUS (Bits 8-10) - (3 bits) this field con-
tains the status of the
Command Unit.
Valid values are:

'-
0 -Idle
1 - Suspended
2 - Active
3-7 - Not used

RUS (Bits 4-6) - (3 bits) this field
contains the status of
the Receive Unit. Valid
values are:

0 -Idle
1 - Suspended
2 - No Resources
3 - Not used
4 - Ready
5-7 - Not used

COMMAND word: Specifies the action to be per­
formed as a result of the CA. This word is set by the
CPU and cleared by the 82586. Defined bits are:

ACK-CX (Bit 15) [- Acknowledges the
command executed
event.

7-297 210783-003

ACK-FR (Bit 14) - Acknowledges the
frame received event.

ACK-CNR (Bit 13)
J

- Acknowledges that th,e
Command U'1it became
not ready.

ACK-RNR (Bit 12) - Acknowledges that the
Receive Unit became
not ready.

cue (Bits 8-10) - (3 bits) this field con-
tains the command to
the Command' Unit.
Valid values are:

. 0 - NOP (doesn't affect
current state of the unit).

1 - Start execution of the
first command on the
CBL. If a command is
in execution, then com-
plete it before starting
the new CBL. The
beginnng of the CBL is
in CBL OFFSET.

2 - Resume the, operation
of the command unit by
executing the next
command. This opera-
tion assumes that the
command unit has been
previously suspended.,

3 - Suspend execution of
commands on CBL after
current command is
complete.

4 - Abort execution of
commands immediately.

5-7 - Reserved, illegal for use.

RUC (Bits 4-6), - (3 bits) This field con-
tains the command to
the receive unit. Valid
values are:

.
0 - NO~(does not alter

current sta~e of unit).

1 - Start reception of
frames. If a frame is
being received, then
complete reception
before starting. The
beginnng of the RFA is
contained in the RFA

82586

OFFSET.

2 - Resume frame receiving
(only when in sus-
pended state.)

3 - Suspend frame receiv-
ing. If a frame is being
received, then complete
its reception before
suspending.

4 ' - Abort receiver operation
immediately.

5-7 - Reserved, ille.gal for use.

RESET (Bit 7) - Reset chip (logically the
same as hardware
RESET).

CBL-OFFSET:
gives the 16-bit offset address of the first ~ommand
(Action Command) in the coml)1and list to be
executed following CU-START. Thus, the 82586
reads this word only if the CUC field contained a
CU-START Control Command.

RFA-OFFSET:
Points to the first Receive Frame Descriptor in the
Receive Frame Area

CRCERRS:
CRC Errors - contains the number of properly
aligned frames received with a CRC error.

ALNERRS:
Alignment Errors - contains the number of mis­
aligned frames received with a CRC error.

RSCERRS:
Resource Errors - records the number of correct in­
coming frames discarded due to lack of memory re­
sources (buffer space or received frame descriptors).

OVRNERRS:
Overrun Errors - counts the number of received
frame sequences lost because the memory bus was
not available in time to transfer them.

ACTION COMMANDS

The 82586 executes a 'program' that is made up of
action commands in the Command List. As shown
in Figure 5, each command contains the comm~nd
field, status and control fields, link to the next act!~n
command in the CL, and any c0"1mand-speclflc
parameters. This command format is called the
Command Block.

7-298 210783-003

inter 82586

15 ODDBYT~

C B CK

EVEN BYTE 0

o
(STATUS)

EL S CMD=O 2
~ __ L-~~~~~~~~~~~~~~~~~~~~~~~ __ -L __ ~~(COMMAND)

UNKOFFSET 4

Figure 11. The NOP Command Block

The 82586 has a repertoire of 8 commands:

NOP
Setup Individual Address
Configure
Setup Multicast Address
Transmit
TOR
Diagnose
Dump

NOP

This command results in no action by the 82586.
except as performed in normal command proc­
essing. It is present to aid in Command List
manipulation.

NOP command includes the following fields:

STATUS word (written by 82586):

C (Bit 15) _. Command completed
B (Bit 14l - Busy executing

command
OK (Bit 13) - Error free completion

1$ ODD BYTE

C B OK A I ZEAOS

• EL S I

COMMAND word:

EL (Bit 15) - End of command list
S (Bit 14) - Suspend after

completion
I (Bit 13) - Interrupt after

completion
CMD (Bits 0-2) - NOP" 0

LINK OFFSET: Address of next Command Block

IA-8ETUP

, This command loads the 82586 with the Individual
Address. This address is used by the 82586 for
recognition of Destination Address during recep­
tion and insertion of Source Address during
transmission.

The lA-SETUP command includes the following
fields:

EVEN BYTE 0

I CMD=1

o
STATUS) (

2
(COMMAND)

LINK, OFFSET 4

2ND BYTE
I,

1ST BYTE E I
I

6

--- I
INDIVIDUAL ADD!!ESS 8

-- - I ---I
I 1 o

NTH BYTE I

Figure 12. The IA~SETUP Command Block

7-299 210783-003,

inter .82586

STATUS word (written by 82586):

C (Bit 15) - Command completed
B (Bit 14) - Busy executing

command
OK (Bit 13) - Error free completion
A (Bit 12) - Command al;>orted

COMMAND word:

EL (Bit 15) - End of command list
S (Bit 14) - Suspend after

completion
I (Bit 13) - Interrupt after

completion
CMD (Bits 0-2) - lA-SETUP" 1

LINK OFFSET: Address of next Command Block

INDIVIDUAL ADDRESS: Individual Address
parameter

The least significant bit of the Individual Address
parameter must be zero for IEEE 802.3/Ethernet
However, no enforcement of 0 is provided by the
82586. Thus, an Individual Address with least
significant bit 1, is possible.

CONFIGURE

The CONFIGURE command is used to update the
82586 operating parameters.

15 ODD BYTE

C B OK A

EL S I

The CONFIGURE command includes the folfowing
fields:

STATUS word (written by 82586):

C (Bit 1-5) . - Command completed
B (Bit 14) - Busy executing

command
OK (Bit 13) - Error free completion
A (Bit 12) - Command aborted

COMMAND word:

EL (Bit 15) - End of command list
S (Bit 14) - Suspend after

completion
I (Bit 13) - Interrupt after

completion
CMD (Bits 0-2) - Configure" 2

LINK OFFSET: Address of next Command Block

Byte 6-7:

BYTE CN' (Bits 0-3) - Byte Count, Number of
bytes including this one,
holding the parameters
to be configured. A
number smaller than 4
is interpreted as 4. A
number greater than 12
is interpreted as 12.

EVEN BYTE 0

ZEROS 00

I
.
CMD-2
I ~

02

LINK OFFSET 04

I
.

FIFO LIM BYTE CNT 06

EXT INT
"REAM SAV

.
LP LP AC ADDRLEN SRD~I

BCK BCK LEN LOC BF ARDY
08

BOf,
,

I I INTERFRAME SPACING
MET ACR LIN PRIO OA

I

RETRYNUM SLTTM(H) SLOT TIME (L) OC
I

COT CDTF CRS CRSF PAQ BT I CRC INCRCITONOI ~~~ I BC lPRM SRC SRC STF 16 INS CRS iiBiZ DIS
I

OE

MIN FRM LEN· 10
,<

Figure 13. The CONFIGURE COmmand Block

7-·300 210783-003

82586

Byte 8-9:

SRDWARD~(Bit 6)
o

SAV-BF (Bit 7)
o

AT-LOC (Bit 11)

- SRDY/A"Ri5Y pin
operates as ARDY
(internal
synchr2!l!!!tion).

- SRDY/ARDY pin
operates as SRDY
(external
synchronization).

- Received bad frames are
not saved in memory.

- Received bad frames are
saved in memory. ,

o - Address and Type

PREAM- (Bits
LEN 12-13)

INT-LPBCK(Bit 14)

EXT-LPBC'\(Bit 15)

Byte 10-11:

Fields separated from
data and associated
with Transmit Com­
mand Block or Receive
Frame Descriptor. For
transmitted Frame,
Source Address is
inserted by the 82586.

- Address and Type Fields
are part of the Transmit!
Receive data buffers,
including Source
Addr.ess (which is not
inserted by the 82586).

- Preamble Length
including Beginning of
Frame indicator:
00- 2 bytes
01 - 4 bytes
10- 8 bytes
11 - 16 bytes

- Internal Loopback

- External Loopback.
NOTE: Bits 14 and 15
configured to 1, cause
Internal Loopback.

I LIN-PRlol (Bits 0-2)1- Li\'lear Priority

ACR (Bits 4-6)

BOF-MEl (Bit 7)

INTER- 1Bits8-15)
FRAME
SPACING

.
Byte 12-13:

SLOT- (Bits 0-7)
TIME (L)

SLT-TM (H)(Bits 8-10)

RETRY- (Bits
NUM 12-15)

Byte 14-15·

PRM (Bit 0)

BC-DIS (Bit 1)
MANCHI (Bit 2)
NRZ

0
1

TONO-CRS(Bit 3)

0

1

NCRC-IN ~ (Bit 4)

CRC-16 (Bit 5)
0

,
1

BT-STF (Bit 6)
0

1

PAD (Bit 7)
0

7-301

- Accelerated Contention
Resolution (Exponential
Priority)

- Exponential Backoff
Method
o - IEEE 802.3/Ethernet
1 - Alternate method

- Number indicating the
Interframe Spacing in
TxC period units

- Slot Time number, low
byte

- Slot Time number, high
bits

- Maximum number of
transmission retries on
collisions

- Promiscuous Mode

- Broadcast Disable
- Manchester or NRZ

encoding/decoding
- NRZ
- Manchester

- Transmit on No Carrier
Sense

- Cease transmission if
am goes inactive dur-
ing frame transmission

- Continue transmission
even if no Carrier Sense

- No CRC Insertion

- CRCType:
- 32 bit Autodin II CRC

polynomial
- 16 bit CCITT CRC

polynomial

Bitstuffing:
- End of Carrier mode

(Ethernet)
- HDLC like Bitstuffing

mode

- Padding
- No Padding

210783-003

82586

1 - Perform padding by
transmitting flags for
remainder of Slot Time

CRSF (Bits 8-9) - Carrier Sense Filter in
bit times

CRS-SRC (Bit 11) Carrier Sense Source
0 - External
1 - Internal

CDTF (Bits - Col!.ision Detect Filter in
12-14) bit times

CDT-SRC (Bit 15) - Collision Detect Source
0 - External
1 - Internal

Byte 16:

MIN-FRM- (Bits 0-7) - Minimum number of
LEN. bytes in a frame

CONFIGURATION DEFAULTS

The default values of the configuration parameters
are compatible with the IEEE 802.3/Ethernet Stan­
dards. RESET configures the 82586 according to
the defaults shown in Table 2.

Table 2. 82586 Default Values.

Preamble Length
Addre~s Length
Broadcast Disable
CRC-16/CRC-32
No CRC Insertion
Bitstuffing/EOC
Padding
Min-Frame-Lengtti
Interframe Spacing
Slot Tirne
Number of Retries'
Linear Priority
Accelerated Contention Resolution
Exponential Backoff Method
Manchester/NRZ
InternalCRS
CRS Filter
Internal CDT
COT Filter
Transmit On No CRS
FIFO THRESHOLD
SRDY/ARDY
Save Bad Frame
Address/Type Location
INT Loopback
EXT Loopback
Promiscuous Mode

MC-SETUP

= •

2
6
o
o
o
o
o

64
96

512
15
o
o
o
o
o
o
o
o
o
8
o
o
o
o
o
o

This command sets up the 82586 with a set of
Multicast Addresses. Subsequently, incoming
frames with Destination Addresses from this set are
accepted.

15 ODD BYTE EVEN BYTE 0

o
C B OK (STATUS)

EL s

2ND BYTE

. NTH BYTE

LINK OFFSET

I

MC~D

ADDITIONAL MC-ID'S '

MC-CNT

Figure 14. The MC-SETUP Command Block

7-302

1ST BYTE

2
(COMMAND)

6

MCLIST

210783-{)03

82586

The MC-SETUP command includes the following
fields:

STATUS word (written by 82586):

C. (Bit 15) - Command completed
B (Bit 14) - Busy executing

command
OK (Bit 13) - Error free completion
A (Bit 12) - Command aborted

COMMAND word:

EL (Bit 15) - End of command list
S (Bit 14) - Suspend after

completion
I (Bit 13) - Interrupt after

completion
CMD (Bits 0-2) - MC-SETUP = 3

LINK OFFSET: Address of next Command Block

MC-CNT: A 14-bit field indicating the number of
byt~s in the MC-LlST field. MC-CNT is truncated to
the nearest multiple of Address Length (in bytes).
Issuing a MC-SETUP command with MC-CNT=O
disables reception of any incoming frame with a
Multicast Address.

MC-LlST: A list of Multicast Addresses to be
accepted by the 82586. Note that the most significant
byte of an address is followed immediately by the
least significant byte of the next address. Note also

. that the least significant bit of each Multicast
Address in the set must be a one.

The Transmit-Byte-Machine maintains a 64-bit
HASH table used for checking Multicast Addresses
during reception.

15 ODD BYTE

An incoming frame is accepted if it hasa Destination
Address whose least significant bit is a one, and
after hashing points to a bit in the HASH table
whose value is one. The hash function is selecting
bits 2 to 7 of the CRC register. RESET causes the
HASH table to become all zeros.

After the Transmit-Byte-Machine reads a MC­
SETUP command from TX-FIFO, it clears the HASH
table and reads the bytes in groups whose length is
determined by the ADDRESS length. Each group is
hashed l!sing CRC logic and the bit in the HASH
table to which bits 2-7 of the CRC register pOint is set
to one. A group that is not complete has no effect on
the HASH table. Transmit-Byte-Machine notifies
CU after completion.

TRANSMIT ,
The TRANSMIT command causes transmission
(and if necessary retransmission) of a frame.

TRANSMIT CB includes the following fields:

STATUS word (written by 82586):

C (Bit 15) - Command completed
B (Bit 14) - Busy executing

command
OK (Bit 13) - Error free completion
A (Bit 12) - Command aborted
S10 (Bit 10) - No Carrier SeQse signal

during transmission
(between beginning of
Destination Address
and end of Frame
Check Sequence).

S9 (Bit 9) - Transmission
unsuccessful (stopped)
due to loss of Clear-to-
Send signal.

EVEN BYTE 0

A I 0 I S10 I S9 I S8 I 57 I S6 I S5 I 0 I , ..-
C B OK MAXCOLL . 0

(STATUS)
EL S I CMD=4

2
(COMMAND)

LINK OFFSET
4

, NEXT BD OFFSET
6 \

2ND BYTE I 1ST BYTE E8 I
DESTINATION ADDRESS A

I
NTH BYTE I

C

TYPE FIELD
.E

Figure 15. The Transmit Command Block

7-303 210783-003

inter
S8 (Bit 8)

S7 (Bit 7)

56 (Bit 6)

S5 (Bit 5)

MAX- (Bits 3-0)
COll

COMMAND word:

El (Bit 15)
S (Bit 14)

I (Bit 13)

CMD (Bits 0-2)

82586

~ Transmission
unsuccessful (stopped,
due to DMA underrun,

, (Le. data not supplied'
from the system for
transmiSSion).

- Transmission had to
Defer to traffic on the
link.

- Heart Beat, indicates
that during Interframe
Spaoing period after thE
previous transmission, ~
pulse was detected on
the Collision Detect pin

- Transmission attempt
stopped due to number
of collisions exceeding
the maximum number
of retries.

- Number of Collisions
experienced by this
frame. 85 = 1 and MAX-
COll = 0 indicates that
there wer:e 16 collisions.

- End of command list
- Suspend after

completion
- Interrupt after

completion
- TRANSMIT = 4 •

DESTINATION ADDRESS: Destination Address of
the frame.

TYPE FIELD: Type Field of the frame.

STATUS word:

EOF - Indicates that this is the
Buffer De~riptor of the
last buffer of this
frame's Informati(;I1'~ ,
Field.

ACT- (Bits 0-13) - Actual number of data
COUNT bytes in buffer (can be

even or odd).

NEXT BD OFFSET: points to next Buffer Descriptor
in list. If EOF is set, this field is meaningless.

BUFFER ADDRESS: 24-bit absolute address of
buffer.

.'. '

TIME DOMAIN REFLECTOMETER - TOR

This command performs a Time Domain Reflect­
ometer test on the serial link. By performing the
command, the user is able to identify shorts or opens
and their location. Along with transmission of ~II
Ones: the 82586 triggers an internal timer. The timer
measures the time elapsed from transmission start
until 'echo' is obtained. 'Echo' is indicated by
Collision Detect going active or Carrier Sense
signal drop.

TOR comlTland includes the following fields:

STATUS word (written by 82586):

LINK OFFSET: Address of next Command Block
C. (Bit 15) - Command completed

TBD OFFSET: Address of list of buffers holding the
Information field. TBD-OFFSET =,OFFFFH indicates
'that there is no Information field.

ACrCOUNT

NEXT BD OFFSET

B

OK

(Bit 14) - Busy executing
'~ command
(Bit 13) - Error free completion

EVEN BYTE 0

~ __ --;2

BUFFER ADDRESS

Figure 16. The lhInamlt Buffer Descriptor

7-304 210783~03

inter 82586

15 ODD BYTE EVEN BYTE 0

C B OK

LINK OFFSET

r--r--r--r--r77r--------------------------------~4
LNK
OK TIME
~~---L __ ~~~£L ____________________________________ ~6

Figure 17. The TOR Command Block

COMMAND word: ET-SRT (Bit 12) - -S-hort on the link
identified (valid only in

EL (Bit 15) - End of command list the case of a
S (Bit 14) - Suspend after Transceiver that returns

completion Carrier Sense during
I (Bit 13) - Interrupt after transmission).

completion TIME (Bits 0-10) - Specifying the distance
CMO (Bits 0-2) - TOR - 5 to a problem on the·link

(if one exists) in
transmit clock cycles.

LINK OFFSET: Address of next Command Block

RESULT word:

LNK-OK I (Bit 15)

XCVR-PRB(Bit 14)

ET-OPN (Bit 13)

15

- No link problem
identified

- Transceiver Cable
Problem identified (valid
only in the case of .a
Transceiver that does
not return Carrier Sense
during transmission).

_. Open on the link
identified (valid only in
the case of a
Transceiver that returns
Carrier Sense during
transmission).

DUMP

This command causes the contents of over a
hundred bytes of internal registers to be placed in
memory. It is supplied as a self diagnostic tool, as
well as to supply registers of interest to the user.

OUMPcommand includes the following fields:

STATUS word (written by 82586):

C (Bit 15) - Command completed
B (Bit 14) - Busy executing

command
OK (Bit 13) - Error free completion

o

C B OK o
~--~~--_4~~~~~~~~~~~~~~~~~~~~--_r--,_~(STATUS)

EL S CMD=6 2

~--L-~--~~~~~~~~~~~~~~~~~~~~~---L--~~(COMMAND)

LINK OFFSET

~------------__ ---44
BUFFER OFFSET

~----------------------------.-~---.-------------'

Figure 18. The DUMP Command Block

/-305 2·,0783-003

82586

COMMAND word:
I

EL (Bit 15) - End of command list
S (Bit 14) - Suspend after

completion
I (Bit 13) - Interrupt after

completion
CMD (Bits 0-2) - DUMP = 6

LINK OFFSET: Address of next Command Block

BUFFER OFFSET: This word specifies the offset
portion of the memory address which points to the
top of the buffer allocated for the dumped registers
contents. The length of the buffer is 170 bytes.

DUMP AREA FORMAT

Figure 18 shows the format of the DUMP area. The
fields are as follows:

Bytes OOH to OAH: These bytes correspond to the
82586 CONFIGURE command field (except bit 6 of
the first word).

Bytes OCH to 11H: The Individual Address Register
content. IARO is the Individual Address least sig­
nificant byte.

Bytes 121:1 to 13H: Status word of last command
block (only bits 0-13):

Bytes 14H to 17H: Content of the Transmit CRC
generator . .TXCRCRO is the least significant byte.
The contents are dependent on the activity before
the DUMP command:

After RESET - 'All Ones.'

After successful transmission - 'A.l1 Zeros.'

After MC-SETUP command - Generated CRC
value of the last MC address,'on MC-LlST.

After unsuccessful transmission, depends on
where it stopped.

NOTE

For 16-bit CRC only TXCRCRO. and
TXCRCR1 are valid.

Bytes 18H to 1BH: Contents of Receive CRC
Checker. RXCRCRO is the least significant byte.
The contents are dependent on the activity per­
formed before the DUMP command:

7-306

After RESET - 'All Ones.'

After good frame reception -

1.' For CRC-CCITT - OD1 FOH.

2. For CRC-Autodin-I/ - 7C40DD7BH.

After Bad Frame reception - corresponds to the
received information.

After reception attempt, I.e. unsuccessful check
for address match, corresponds to the CRC
performed on the frame address.

10
NOTE

Any frame on the serial link modifies this
register contents.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AI~ XIXI FIFO liM 0 .,~ 0 0 0 0 0 0

~'1!1\ PREAM L~t ADOR LEN SAV II%\' 1 1 1 1 1 1 ." LEN OP

INTER FRAME SPACING E90F ACR 1 liN PRIO NET

RETRY NUM 1 SlT TM [H] SLOT TIME ILl

~~~l COTF CRS CRSF PAD :~F IC1~C MI~:C I WA~O i gl~ PRM SRC 

1 11 1 1 1 1 1 1 MIN PAC lEN 

IAR1 IARO 

IAR3 IAR2 

lARS IAR4 

". 0 " 010 LST LST URN TX HRT MAX 0 COll NUM OK CRS CTS DEF BT COL 

TXCRCR 1 TXCRCR 0 

TXCRCR 3 TXCRCR 2 

RXCRCR 1 RXCRCR 0 

RXCRCR 3 RXCRCR2 

TEMPR 1 TEMPR 0 

TEMPR 3 TEMPR 2 

TEMPRS TEMPR4 

1 0 " 1 CRC ALN 0 OVAN 
HRT NO 1 1 1 1 1 1 OK 'RR 'RR PKT EOP 

HASHR 1 HASHR 0 

HASHR 3 HASHR2 

HASHRS HASHR4 

HASHR 7 HASHR 6 

~KK ,~, ET ET 
lJ'. )1C.. A X IX IX X X X ,X- iX A 0 .... SRT 

1 1 1 1 1 IX X r)(' X )1C.. .)1C.. IX )1C.. ~ 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 O. 0 

0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 O· 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IX IX IX' IX IX lX IX IX X X IX X' IX' IX lX lX 
0 0 0 0 0 0 0 0 0 0 0 0 0 AOR lEN 

Ell>< NXT RB SIZE 

Figure 19. The DUMP Area 

00 

02 

04 

06 

08 

OA 

OC 

OE 

10 

12 

14 

16 

18 

lA 

lC 

IE 

20 

22 

2' 

26 

28 

2A 

2C 

2E· 

30 

32 

34 

36 

38 

3A 

3C 

3E 

40 

. 210783-003 



inter 
1514131211109876543210 

'\.'\.'\.'\.'\.'\.'\.'\.'\.'\.'\.'\1 NXTRB ADRH 

NXTRBADR L 

ELIX) CUR RB SIZE 

LA RBDADR 

NXTR8DADR 

CURRBDADR 

CUR RB EBC 

NXT PO ADR 

CUR PO ADR 

PRY RBD ADR 

""'IX) ,. NXTTB CNT 

BUFADR 

NXTTB AD L 

LATBD ADR 

NXT TBD ADR 

EL S I I.. .. \. \. '\. \. \. \. \. '\. '\. '\. '\. '\. '\. '\. '\.1 gg~: ~~~ 
NXTCBADR 

CURCBADR 

xxxxlxXIXXXXXXxxxx 
SCBADR 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IX :X" x IX X X X X X X X 
X x .x IX IX ~ X .x X X X X 
>< FIFO LIM 0 X 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X X X X X X X IX I:X" X X X X IX X 

X 0 0 0 X SAY .~ 

L~ 0 0 0 
~ 

0 0 0 0 SP .. ." .oe "' 
0,X 0 

~ 

X O~ "M ~, 

" 0 ." '" .. '" 0 0 0 M' ~, " 
CX PR CHR RNR 0 >< 1 0 RU RU 

~ 
RU 0 0 0 0 IDL RDY sus 

X X X X X X X X X IX X X X X X X 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

.x X X X X X I)< .x 

.x .x X X X I)< X 

.x .x X X X X .x 
x: X )( X X IX X X 
0 0 0 0 0 0 0 0 BUFADR PTR H 

BUF ADR PTR L 

RCVDMABC 

BR+BUF ADR_H 

0 0 0 0 0 0 0 0 RCVDMAADRH 

RCVDMAADRL 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0' 0 Ci 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 Q 
..., .RD, , 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

82586 

42 

24 

46 

48 

4A 

4C 

4E 

50 

52 

54 

56 

58 

5A 

5C 

5E 

60 

62 

64 

66 

68 

6A 

lic 

6E 

70 

72 

74 

76 

78 

7A 

7C 

7E 

80 

82 

84 

86 

88 

8A 

8C 

8E 

90 

92 

94 

96 

98 

9A 

9C 

9E 

AO 

A2 

A4 

A6 

A8 

Figure 1$. DUMP Area (con't) 

Byte.1CH to 21H: Temporary Registers. 

Bytes 22H to 23H: Receive Status Register. Bits 
6,7,8,10,11 and 13 assume the same meaning as 
corresponding bits in the Receive Frame Descriptor 
Status field. 

Bytes 24H to 2BH: HASH TABLE. 

Bytes 2CH to 2DH: Status bits of the last time TDR 
command that was performed. 

NXT-RB-SIZE: Let N be the last buffer of the last 
received frame, then NXT-RB-sIZE is the number of 
bytes of available in the N+1 buffer. EL - The EL bit of 
the Receive Buffer Descriptor. 

NXT-RB-ADR: Let N be the last Receive Buffer used, 
then NXT-RB-ADR is the BUFFER-ADDRESS field 
in the N+1 Receive-Buffer Descriptor, Le. the pointer 
to the N+1 Receive Buffer. 

CUR-RB-SIZE: The, number of bytes in the last 
buffer of the last received frame. EL - The EL bit of 
the last buffer in the last received frame. 

LA-RBD-ADR: Look Ahead Buffer'Descriptor, Le . 
the pointer to N+2 Receive Buffer Descriptor. 

NXT-RBD-ADR: Next Receive Buffer Descriptor 
Address. Similar to LA-RBD-ADR but points to N+'1 
Receive Bu'ffer Descriptor. 

CUR-RBD-ADR: Current Receive Buffer Descriptor 
Address. Similar to LA-RBD-ADR, but points to Nth 
Receive Buffer Descriptor. 

CUR-RB-EBC: Current Receive Buffer Empty Byte 
Count. Let N be the currently used Receive Buffer. 
Then CUR-RB-EBC indicates the Empty part of the 
buffer, Le. the ACT-COUNT of buffer N is given by 
the difference between its SIZE and the CUR­
RB-EBC. 

NXT-FD-ADR: Next Frame Descriptor Address. 
Define N as the last Receive Frame Descriptor with 
bits C=1 and B=O, then NXT-FD-ADR is the address 
of N+2 Receive Frame Descriptor (with B=C=O) and 
is equal to the LINK-ADDRESS field in N+1 Receive 
Frame Descriptor. 

CUR-FD-ADR: Current Frame Descriptor Address. 
Similar to next NXT-FD-ADR but refers to N+1 
,Rece'ive Frame Descriptqr (with B=1, C=O). 

Byte. 54H to 55H: Temporary register. 

7-307 210783-003 



82586 

NXT-TB-CNT: Next Transmit Buffer Count. Let N be 
the last transmitted buffer of the TRANSMIT com­
mand executed recently, the NXT-TB-CNT is the 
ACT-CQUNT field in the Nth Transmit Buffer 
Descriptor. EOF - Corresponds to the EOF bit of the 
Nth Transmit Buffer" Descriptor. EOF=1 indicates 
that the last buffer accessed by the 82586 during 
Transmit was the last Transmit Buffer in the data 
buffer chain associated with the Transmit Command. 

BUF-ADR: Buffer Address. The BUF-PTR field in 
the DUMP-STATUS Command Block. 

NXT-TB-AD-L: Next Transmit Buffer Address Low. 
Let N be the last Transmit Buffer in the transmit 
buffer chain of the TRANSMIT Command performed 
recently, then NXT-TB-AD-L are the two least sig­
nificant bytes of the Nth buffer address. 

LA-TBD-ADR: Look Ahead Transmit Buffer Descrip­
tor Address. Let N be the last Transmit Buffer in the 
transmit buffer chain of the TRANSMIT Command 
pe'rformed recently, then LA-TBD-ADR is the NEXT­
BD-ADDRESS field of the Nth Buffer Descriptor. 

NXT-TBD-ADR: .Next Transmit Buffer, Descriptor 
Address. Similar in function to LA-TBD-ADR but 
related to Transmit Buffer Descriptor N-l Actually, it 
is the address of Transmit Buffer Descriptor N. 

Bytes 60H,61H: This isa copyof the 2nd word in the 
DUMP-STATUS command presently executing. 

NXT-CB-ADR: Next Command Block Address. The 
LINK-ADDRESS field in the DUMP Command Block 
presently executing. Points to the next command. 

CUR-CB-ADR: Current Command Block Address. 
The address of the DUMP Command Blockcurrently 
executing. 

SCB-ADR: Offset of tile System Control Block 
(SCB). 

Bytes 7EH, 7FH: 

'RU-SUS-RQ (Bit 4) - Receive Unit Suspend 
Request. 

Bytes 80H,81H: 

CU-SUS-RQ (Bit 4) - Command Unit Suspend 
Request ' 

END-OF-CBL (Bit 5) - End of Command Block 
List. If '1' indicates that DUMP-STATUS is the 
last command in the command chain. 

ABRT-IN-PROG (Bit 6) - Command Unit Abort/ 
Request. 

RU-SUS-FD (Bit 12)- Receive Unit Suspend 
Frame Descriptor Bit. Assume N is the Receive 

Frame Desc~iptor used recently, then RU-SUS­
,FD is equivalent to the S bit of N+1 Receive 
Frame Descriptor. 

Bytes 82H, 83H: 

RU-SUS (Bit 4) - Receive Unit in SUSPENDED 
state. I 

RU-NRSRC (Bit 5) - Receive Unit in NO 
RESOURCES state. 

RU-RDY (Bit 6) - Receive Unit in READY state. 

RU-IOL (Bit 7) - Receive Unit in IDLE state. 

RNR (Bit 12) - RNR Interrupt In Service bit. 

CNR (Bit 13) - CNR Interrupt In Service bit. 

FR (Bit 14) - FR Interrupt In Service bit. 

CX (Bit 15) - CX Interrupt In Service bit. 

Bytes 90H to 93H: 

BUF-ADR-PTR - Buffer pointer is the absolute 
address of the bytes following the DUMP 
Command block. 

Bytes 94H to 95H: 

RCV-DMA-BC - Receive DMA Byte Count. This 
field contains number of bytes to be transferred 
during the n~xt Receive DMA operation. The 
value depends on AT-LOCation configuration 
bit. 

1. If AT-LOCation = 0 then RCV-OMA-BC = 
(2 times ADDR-LEN plus 2) if the next 
Receive Frame Descriptor has already 
been fetched. 

2. If AT-LOCation = 1 then it contains the size 
of the next Receive Buffer. 

BR+BUF-PTR+96H - Sum of Base Address plus 
BUF-PTR field and 96H. 

RCV-DMA-ADR - Receive DMA absolute Ad­
dress. This is the next RCV-DMA start address. 
The value depen9s on AT-LOCation configura­
tion bit. 

l If AT-LOCation = 0, then RCV-DMA-ADR 
is the Destination Address field located in 
the next Receive Frame Descriptor. 

2. If AT-LOCation = 1, then Rcv-bMA-ADR 
is the next Receive Data Buffer Address. 

7-308 210783-{)03 



82586 

15 o 

C B OK 

EL S CMD=7 2 
~_'~ __ -L __ ~~~~~~~~~~~~~~~~~~~~L-~L-~L-~(COMMAND) 

LINK OFFSET L-____________ ~ __________________________________ __J4 

Figure 20. The DIAGNOSE Command Block 

The following nomenclature has been used in the 
DUMP table: 

o - The 82586 writes zero in this location. 

x 

III 

- The 82586 writes one. in this location. 

- The 82586 writes zero or one in this 
location. 

- The 82586 copies this location from 
the corresponding position in the 
memory structure. 

DIAGNOSE 

The DIAGNOSE Command triggers an internal selt, 
test procedure of backoff related registers and 
counters. 

The DIAGNOSE command includes the following: 

STATUS word (wriHen by 82586): 

C (bit 15) - Command completed 
B (bit 14) - Busy executing 

command 
OK (bit 13) - Error free 

completion 
FAIL (bit 11) - Indicates thet the self 

test proced~'e failed 

COMMAND word: 

EL (bit 15) - End of command list 
S (bit 14) - Suspend after 

completion 
I (bit 13) - Interrupt after 

completion 
CMD (bits 0-2) - DIAGNOSE = 7 

LINK OFFSET: Address of next Command Block 

RECEIVE FRAME AREA (RFA) 

The Receive Frame Area, RFA, is prepared by the 
host CPU. data is olaced into the RFA hv the 82586 
as frames are received. RFA consists of a list of 
Receive Frame Descriptors (FD), each of which is 
associated with a frame. RFA-OFFSET field of SCB 
points to the first FD of the chain; the last FD is 
identified by the End-of-Ust flag (ELl. See Figure 21. 

FRAME DESCRIPTOR (FO) FORMAT 

The FD includes the following fields: 

STATUS word (set by the 82586): 

C (bit 15) - Completed storing 
frame. 

B (bit 14) - FD was consumed by 
RU. 

OK (bit 13) - Frame received 
successfully. If this bit is 
set, then all others will 
be reset; if it is reset, 
then the other bits will 
indicate the nature of 
the error. 

S11 (bit 11) - Received frame 
experienced CRC error. 

S10 (bit 10) - Received frl;lme 
experienced an 
alignment error. 

S9 (bit 9) - RU ran out of resources 
during reception of this 
frame. 

S8 (bit 8) - RCV-DMA overrun. 
S7 (bit 7) - Received frame had 

fewer bits than 
configured Minimum 
Frame Length. 

S6 (bit 6) - No EOF flag detected 
(only when configured 
to Bitstuffing). 

COMMAND word: 

EL (bit 15) - Last FD in the list. 
S (bit 14) - RU should be 

suspended after 
receiving this frame. 

7-309 210783'()OO 



inter 82586 

LINK OFFSET: Address of next FD in list. 

RBD-OFFSET (initially prepared by the CPU and 
\ later may be updated by 82586): Address of the first 

ABO that represents the Information Field. ABD­
OFFSET = OFFFFH means there is no Information 
Field. 

DESTINATION ADDRESS (written by 82586): Con­
tains Destination Address of received frame. The 
length in bytes. it· is determined by the Address 
Length configuration parameter. 

C 

L SCB 

r-:--
~FAPOINTEF f-

STATISTICS 

TO 
OMMAND 
BLOCK· 

LIST 

I. RECEIVE FRAME AREA 
RFD1 

I 
'-----:+ STATUS 

J 
STATOS r- STATUS Ir 

I - , -RECEIVE 
FRAME -l -DESCRIPTORS 

VALID 
PARAMETERS EMPTY 

L RBD1, RBD2 L RBD3 

o I ACT: r 1 ACT~jS o ACT-cnt 

RECEIVE -BUFFER 
DESCRIPTORS 

I 

r--"--- -'-- ,..-'---

RECEIVE VALID VALID 
BUFFERS DATA DATA 

"--- - '---
BUFFER 1 BUFFER 2 BUFFER 3 

1- RECEIVE FRAME LIST -1 •• ___ _ 
I I 

Figure .21. The Receive Frame Area 

7-310 

-~ 

EMPTY 

RBD4 

r 0 ACT-cnl r ~ 

r--'--

----BUFFER 4 

FREE FRAME LIST 

. 
STATUS r -
EMPTY 

RBDS 

o I ACT-cnt ~ . -

r--'--

-----BUFFERS 

210783-003 



inter 82586 

EVEN BYTE 0 

C B 

EL S 

, LINK OFFSET 
4 

RBD-OFFSET 
6 

2ND BYTE 1ST BYTE 

DESTINATION ADDRESS 
10 

NTH BYTE 
12 

2ND BYTE 1ST BYTE 
14 

SOURCE ADDRESS 
18 

NTH BYTE 18 

1ST BYTE 
2ND BYTE TYPE FIELD 20 

Figure 22. The Frame DeSCriptor (FD) Format 

SOURCE ADDRESS (written by 82586): Contains 
Source Address of received frame. Its length is the 
same as DESTINATION ADDRESS 

TYPE FIELD (written by 82586): Contai ns the 2 byte 
Type Field of received frame. 

RECEIVE BUFFER 
DESCRIPTOR FORMAT 

The Receive Buffer Descriptor (RBD) holds informa­
tion abouta buffer; size and location, and the means 
for forming a chain of RBDs, (forward pOinter and 
end-of-frame indication). 

The Buffer Descriptor contains the following fields: 

STATUS word (written by the 82586): 

EOF (bit 15) - Last buffer in received 
frame. 

F (bit 14) - ACT COUNT field is 
valid. 

ACT 
COUNT (bits 0-1~) - Number of bytes in the 

buffer that are actually 
occupied. 

BUFFER ADDRESS: 24-bit absolute address of 
buffer. 

ELISIZE-

EL (bit 15) - Last BD in list. 
SIZE. (bits 0-13) - number of bytes the 

buffer is capable of 
holding. 

ELECTRICAL AND TIMING 
CHARACTERISTICS 

PLEASE NOTE: 

The following specifications are preliminary 
values and are subject to change without 
notice. Contact your local Intel Sales Office 
for the latest specifications. 

SYSTEM INTERFACE 
A.C. TIMING' CHARACTERISTICS 

TA=0-70° C, Vcc=5V±10% 

NEXT RBD OFFSET: Address of next BD in list of Figure 24 and Figure 25 define how the measure-
BD's. ments should be done: 

7-311 210783-003 



82586 

15 

EOF ACT COUNT o 
~ __ ~ __ ~ __ ~ __ ~ __ ~ __ -L __ ~ __ ~ __ ~ __ ~~~L-~L-__ L-__ L-__ L--1(STATUSI 

NEXT BD OFFSET 

~--------~----------------------------------~ 
2. 

T& 

BUFFER ADDRESS 

A23 

SIZE 

Figure 23. The Receive Buffer Descriptor (RBO) Format 

INPUT AND OUTPUT WAVEFORMS FOR AC TESTS 

2.4-V1:5 --·-TEST POINTS --1.5 V-­
D.45~ . 7"...--
AC TESTING INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC 1 AND 
0.45 FOR A LOGIC O. TRIMMING MEASUREMENTS ARE MADE 
AT 1.5V FOR BOTH A LOGIC 1 AND 0 

Figure 24. TTL Input/Output Voltage Levels For Timing Measurements 

T4 

T1 

MOS I/O MEASUREMENTS ARE TAKEN AT 
Q1 AND 09 OF THE VOLTAGE SWING 

4 

6 

8 

T7 

HIGH LEVEL MAY 
VARY WITH VCC 

Figure 25. System Clock MOS Input Voltage Levels for Timing Measurements 

7-312 210783-003 



82586 

D.C. CHARACTERISTICS 

TA = 0-70°C, Vee = 5V ± 10% CLK, TxD, TxC, RxD, Axe have MOS levels (see VMll, VMIH, VMOl' VMOH)' All other 
Signals have TTL levels (see Vll, VIH:' VOL, VOI;i)' 

Symbol Parameter Min. Max. Units Test Conditions 

Vil Input Low Voltage (TTL) -0.5 +0.8 V 

VIH Input high Voltage (TTL) 2.0 Vee+0.5 V 

VOL Output Low Voltage (TTL) 0.45 V IOl=2.5rnA 

VOH Output High Voltage (TTL) .2.4 V IOH=-400uA 

VMil Input Low Voltage (MOS) -0.5 0.6 V 

VMIH Input High Voltage (MOS) 3.9 Vee+0.5 V 

VMOl Output Low Voltage (MOS) 0.45 V IOl=2.5rnA 

VMOH Output High Voltage Vee-0.5 V IOH=-400uA 

III Input Leakage Current ±10 uA o:;:,V'N-:;VCC 

ILO Output Leakage Current ±10 uA 0.45-:;Vour-:;Vcc 

CIN Capacitance of Input Buffer 10 pF FC=1MHz 

COUT Capacitance of Output Buffer 20 pF FC=1 MHz 

lee Power Supply 450 rnA TA = 0 deg. C 

Figure 26. INT Output Timing Figure 27. CA Input Timing 

elK 

T18 _ 

_ _ T47f" RD. WR. DEN. DT/R. ------------_+,. __ _ 
w.Si 

RESET 

Figure 28. RESET Timing 

7-313 210783-003 



inter 

L~ C 
80186 

82285 

ARDY 
82586 
INPUT 

P 

SREADY 
OR 

READY 

OR 
OUTPUT 
ClK 

82586 INPUT S 

READY SIGNAL 

T2 
'/ 

- ~ 
V 

82586 

T3 

"" V 

r;;- k 
- Tn 

/ - f- T12 
T13 -

VALID 

- T14 -
Figure 29. ARDY and SRDY Timings Relative to ClK 

HOLDA 
BHE ADO-AI2~ 
A16-A~3 SO.£! 

" '--

DT/R RD WR 
CPU MASTER 1~~~82~58~6~-M~A~ST~E!RPr:=~----­

T30 

Figure 30. HOlD/HlDA Timing Relative to ClK 

7-314 210763-003 



inter 82586 

T1 T2 T3 T4 

T1 .!!. r--.- ~ 1 ~ ggL v-- >--1\ ~ 
~ 

veL T4 T4 
§1)~ 

T33 
1 / 

1-+\T34 
!!! T29_ ~ 

A16·A18 A20·A23 

I I r--
19/56 A19 S6 

T32- ~ '--
A 

1;1- ,- --
LE 

, 
A -- -

T3S- 1+ T38 i"'-T36 

~ T9 T8 
~ I;--

·AD15 AO·A15 lie DATA IN 
i'--T29 .... I-l I T44 

'AD I T39 -{ 1-T43 T41- I-

ADO 

t:::::f T40 T42 - T22 DT/R , 
I I 

DEN .....:.. T23 '- .o-T24 I 

1/ 

Figure 31. Read Cycle Timing 

7":315 210783-003 



82586 

T1 
T6 - I- - f-17 ;-L 

~ 1- Ijf--j\ ~ 
~ - 'r-----" -vel T4 

'U'I 

T33 
/ - T34 .m. 

IJRE A16-A18 A20-A23 

A19/58 A19 

- -T31 

Y -ALE 
T35- r- - -T36 

~ .... _T31 

ADO-AD15 AO-A15 DATA OUT 

T29- l- I -r39 
-T30 

WA T45 

- T23 
~ T2!..j 

~ 

Flgure,32. Write Cycle Timing 

INPUT TIMING REQUIREMENTS (8MHz)* 

Symbol Parameter 

T1 ClK cycle period 

T2 ClK low time at 1.5V 
T3 ClK low time at O.BV 
T4 ClK high time at 1.5V 
T5 ClK high time at 3.8V 
TB ClK rise time 

T7 ClK fall time 

T8 Data in setup time 

T9 Data in hold time 

T10 Async ROY active setup time 

T11 Async ROY inactive setup time 

T12 Async ROY hold time 

T13 Synchronous ready/active setup 

T14 Synchronous ready hold time 

T15 HlOA setup time 

T1El HlOA hold time 

T17 Reset setup time 

T18 Reset hold time 

T19 CA pulse width 

T20 CA setup time 
T21 CA hold time 

7-316 

T4 

T29-

56 

T32- ~ 

T32 _ 
~ 

~ -
T24- i-- T24 

Min. Max. 

125 2000 
53 1000 

42.5 1000 
53 

42.5 
15 
15 

20 
10 
20 
35 ' 

15 
35 
0 
20 
10 
20 
10 

1 T1 
20 15 
10 

~ 
)(~ 

~ 

~ 

,- - -
I ---

Comments 

Note 1 
Note 2 

Note 3 
Note 3 
Note 3 

Note 3 
Note 3 
Note 3 
Note 3 

Note 3 
Note 3 

210783-003 



inter 82586 

OUTPUT TIMINGS (8 MHz)~ 

Symbol Parameter Min. Max. Comments 

T22 DT/A valid delay 0 60 
T23 WA. DEN active delay 0 70 

T24 WA. DEN inactive delay 0 65 

T25 Int. active delay 0 85 Note 4 

T26 Int. inactive delay 0 85 Note. 4 

T27 Hold active delay 0 85 Note 4 

T28 Hold inactive delay 0 85 Note 4 

T29 Address valid delay 0 60 

T30 Address float delay 0 50 

T31 Data valid delay 0 60 

T32 Data hold Time 0 

T33 Status active delay 0 60 
T34 Status inactive delay 0 70 

T35 ALE active delay 0 45 Note 5 

T36 ALE inactive delay 0 45 Note 5 

T37 ALE width T2-10 Note 5 

T38 Address valid to ALE low T2-30 

T39 Address hold to ALE inactive T7-10 

T40 AD active delay 0 95 

T41 rID inactive delay 0 70. 

T42 RDwidth 2T1-50 

T43 Address float to AD active 0 

T44 Ri5 inactive to Address active T1-40 

T45 WRwidth 2T1-40 

T46 Data hold after WR T2-25 

T47 Control inactive after reset 0, 60 Note 6 

• All units are in ns. 
"CL on all outputs is 2G-200 pF unless otherwise specified. SERIAL INTERFACE 

A.C. TIMING CHARACTERISTICS 
NOTE LIST: 

1 
2 
3 
4 
5 
6 

1.0Vto 3.5V 
3.5Vto 1.0V 
to guarantee recognition at next clock 
CL= 50pF 
CL= 100 pF 
Affects: 
MIN MODE: RD, iNA, DT/R. DEN 
MAX MODE: SO, S1 . , 

CLOCK SPECIFICATION 

7-317 

Applies for TxC. AxC 
f min = 100KHz 10 MHz ±100 ppm 
f max = 10 MHz ±1oo ppm 
for Manchester. symmetry is needed: 

T51. ;-52 = ~ ±5% 

210783'{)03 



8258.6 

A.C. CHARACTERISTICS 

TRANSMIT AND RECEIVE TIMING PARAMETER SPECIFICATION' .. 

Symbol Parameter Min. Max. Comments I 

TRANSMIT CLOCK PARAMETERS 

T48 fXc Cycle 100 1000 Notes 1, 2 

T48 TxC Cycle 100 Notes 1, 3 

T49 TxC Rise Time 5 Note 1 

T50 TxC Fall Time 5 Note 1 

T51 TxC High Time 44 1000 Note 1 

T52 TxC Low Time 40 Notes 1, 4 

TRANSMIT DATA PARAMETERS 

T53 TxD Rise Time 10 Notes 1, 5 

T54 TxD Fall Time 10 Notes 1, 5 

T55 TxD Transition - Transition 35 Notes 1,2,5 

T56 TxC Low to TxD Valid 40 Notes 1,3,5 

T57 'fxC Low.to TxD Transition 40 Notes 1, 2, 5 

T58 TxC High to TxD Transition 40 Notes 1, 2, 5 

T59 TxC Low to TxD High at the Transmission end 40 Notes 1, 5 

REQUEST TO SEND/CLEAR TO SEND PARAMETERS 

T60 TxC Low to RTS Low. Time to Activate RTS 45 Note 6 

T61 CTS Valid to TxC Low. CTS Set-Up Time 45 Note 6 

T62 TxC Low to CTS Inyalid. CTS Hold Time 20 Notes 6,7 

T63 TxC.Low to RTS High. time to deactivate FITS 45 Note 6 

RECEIVE CLOCK PARAMETERS 

T64 RxC Clock Cycle 100 Notes 1, 3 

T65 RxC Rise Time 5 Note 1 

T66 RxC Fall Time 5 Note 1 

T67 RxC High Time 40 1000 Note 1. 

T68 RxC Low Time 44 Note 1 

RECEIVE DATA PARAMETERS 

T69 RxD Setup Time " 30 Note 1 

T70 RxD Hold Time' 30 Note.1 

T71 RxD Rise Time 10 Note 1 

T72 RxD Fall Time 10 Note 1 

• All units are in ns. 

7-318 210783-003 



inter. 82586 

TRANSMIT AND RECEIVE TIMING PARAMETER SPECIFICATION* (cont'd.) 

(symbol Parameter Min. 

CARRIER SENSE/COLLISION,DETECT PARAMETERS 

T73 COT Valid to TxC Low Ext. Collision 
Qetect Setup Time 

T74 TXCLow to CDT Inactive. CDT Hold Time 

T75 Ci5T Low to Jamming Start 

T76 CRS Valid to 'i"XC Low Ext. Carrier Sense Setup time 

T77 TxC Low to CRS Inactive.CRS Hold Time 

T78 m Low to Jamming Start 

T79 Jamming Period 

T80 CRS Inactive Setup Time to R'i<O High. 
End of Receive Pkt. 

T81 CRS Inactive Hold Time to RxC High. 
End of Receive Pkt. 

INTERFRAME SPACING PARAMETERS 

I T82 I Inter Frame Delay 

* All units are in ns. 

NOTES: 

1 MOS levels. 
2 Manchester only. 
3 NRZonly. 
4 'Manchester requires 50% Duty Cycle. 
5 1 TTL Load + 50 pF. 
6 fTTL Load + 100 pF. 
7 Abnormal End of Transmission. CTs Expires Before RTS. 
8 Programmable value: 

T75 = NCDF x T48 + (12.5 to 23.5) x T48 if collision occurs after preamble. 
NCDF - The Collision Detection Filter Configuration Value. 

9 - Programmable value: ' 
T78 = NCSF x T48 + (12.5 to 23.5) x T48. 
NCSF - The Carrier Sense Filter Configuration value. 
TBD is a function of Internal/External Carrier Sense Bit. 

10 T79 = 32 x T48. 
11 Programmable value: 

T88 = NIFS x T48. 
NIFS - the IFS Configuration Value. 
If NIFS is less than 31, tllen NIFS is enforced to 32. 

*12 - To guarantee recognition on the next clock. 

7-319 

30 

20 

30 

20 

60 

10 

Mex. Comments I 

Note 12 

Note 12 

Note 8 

Note 12 

Note 12 

Note 9 

Note 10 

Note 11 

210783-003 , 



82586 

A.C. TIMING CHARACTERISTICS 

3.9V , 
3.6V -"' --..... 
~ 

O.9V 0.6V ___ _ 

INPUT AND OUTPUT WAVEFORMS, FOR AC TESTS 

2.4=X:1.5 ---TEST POINTS --1.5 x== 
0.45 

AC TESTING INPUTS ARE DRIVEN AT 2AV FOR A LOGIC 1 AND 
0.45 FOR A LOGIC O. TRIMMING MEASUREMENtS ARE MADE 
AT 1.5V FOR BOTH A LOGIC 1 AND 0 

Figure 33. TTL InpuVOutput Voltage Levels for Timing Measurements 

T48 

T49 T65 

,--­.-- --, 
,.L ---~ 

T51 
T67 

HIGH LEVEL 
MAY VARY 
WITHVCC 

T50 T66 

MOS I/O MEASUREMENTS ARE TAKEN AT 
0.1 AND 0.9 OF THE VOLTAGE SWING 

Figure 34. Serial Clock Input Voltage Levels for Timing Measurements 

~-+--+----H---_--:::i~--7- -\\....----
~-----~~+_~--------~r-----------~~ 

CRS'-------+-~_t------rt---------~~ 

~=it=x=x=t--~" 
~~x=4i~ 

TxD- -­
{NRZI 

TxD __ _ 
{MANCHESTERl 

T57 T59 T53 T54 

Figure 35. Transmit and Control and Data Timing 

7-320 210783-C03 



m----+-------

CTI;-----+_ - - --- - -
T73 

CDT------'-' r­
~-----

~,----'"'" '------

82586 

-h74 T76 

_ J-r--T7-7 ---.;, t-

(~~) >e==-.r--- \ / =~ 
T55 

TXD '5bOc=:J~~.r---~ =~~ 
(MANCHESTER) 

Figure 35. Transmit and Control and Data Timing (cont.) 

f-----T64-------i 

1---T68 -"--~ 

RoD' 

Figure 36. RxD Timing Relative to RxC 

~ ___________ ~_r-~----J 
T80, 

Figure 37. eRS Timing Relative toRxC 

7-321 210783:003 



@INTELCORPORATION, 1980 

APPLICATION 
NOTE 

7-322 

AP-66 

January 1980 



APpLlCATIONS 

IN)'RODUCTION 

The Intel@ 8292 is a preprogrammed UPI™-4IA that 
implements the Controller function of the IEEE Std 
488-1978 (GPIB, HP-IB, IEC Bus, etc.). In order to 
function the 8292 must be used with the 8291 
Talker/Listener and suitable interface and trans­
ceiver logic such as a pair of Intel 8293s. In this 
configuration the system has the potential to be a 
complete GPIB Controller when driven by the 
appropriate software. It has the following capa­
bilities: System Controller, send IFC and Take. 
Charge, send REN, Respond to SRQ, send Interface 
messages, Receive Control, Pass Control, Parallel 
Poll and Take Control Synchronously. 

This application note will explain the 8292 only in 
the system context of an 8292, 8291, two 8293s and 
the driver software. If the reader wishes to learn 
more about the UPI-4IA aspects of the 8292, Intel's 
Application Note AP-41 describes the hardware 
features and programming characteristics of the 
device. Additional information on the 8291 may be 
obtained in the data sheet. The 8293 is detailed in its 
data sheet. Both chips will be covered here in the 
details that relate to the GPIB controller. 

The next section of this application note presents an 
overview of the GPIB in a tutorial, but compre­
hensive nature. The knowledgable reader may wish 
to skip this section; however, certain basic semantic 
concepts introduced there will be used throughout 
this note. 

Additional sections cover the view of the 8292 from 
the CPU's data bus, the' interaction of the 3 chip 
types (8291, 8292, 8293), the 8292's software 
protocol and the system level hardware/software 
protocol. A brief description of interrupts and 
DMA will be followed by an application example. 
Appendix A contains the source code for the system 
driver software. 

GPIB/IEEE 488 OVERVIEW 

DESIGN OBJECTIVES 

What is the IEEE 488 (GPIB)? 

The experience of designing systems for a variety of 
applications in the early 1970's caused Hewlett­
Packard to define a standard intercommunication 
mechanism which would allow them to easily assemble 
instrumentation systems of varying degrees of com­
plexity. 1n a typical situation each instrument de­
signer designed his / her own interface from scratch. 
Each one was inconsistent in ~erms of electrical 
levels, pin-outs on a connector, and types of con­
nectors. Every time they built a system they had to 
invent. new cables and new documentation just to 
specify the cabling and interconnection procedures. 

7-323 

Based on this experience, Hewlett-Packard began to 
define a new interconnection scheme. They went 
further than that, however, for they wanted to 
specify the typical communication protocol for 
systems of instruments. So in 1972, Hewlett­
Packard came out with the first version of the bus 
which since has been modified and standardized by a 
committee of several manufacturers, coordinated 
through the IEEE, to perfect what is now known as 
the IEEE 488 Interface Bus (also known as the HP­
IB, the GPIB and the IEC bus). While this bus 
specification may not be perfect, it is a good 
compromise of the various desires and goals of 
instrumentation and computer peripheral manu­
facturers to produce a common interconnection 
mechanism. It fits most instrumentation systems in 
use today and also fits very well the microcomputer 
I/O bus requirements. The basic design objectives 
for the GPIB were to: 

1. Specify a system that is easy to use, but has all of 
the terminology and the definitions related to 
that system precisely spelled out so that every­
one uses the same language when discussing the 
GPIB. 

2. Define all of the mechanical, electrical, and func­
tional interface requirements of a ~ystem, yet not 
define any of the device aspects (they are left up 
to the instrument designer). 

3. Permit a wide range of capabilities of instruments 
and computer peripherals to use a system simul­
taneously and not degrade each other's per­
formance. ' 

4. Allow different manufacturers' equipment to be 
connected together and work together on the 
same bus. 

5. Defme a system that is good for limited dis­
tance interconnections. 

6. Define a system with minimum restrictions on 
performance of the devices. 

7. Define a bus that allows asynchronous communi­
cation with a wide range of data rates. 

8. Defme a low cost system that does not require 
extensive and elaborate interface logic for the 
.low cost instruments, yet provides higher capa­
bility for the higher cost instruments if desired. 

9. Allow systems to exist that do not need a central 
controller; that is, communication 'directly from 

. one instrument to another is possible. 

Although the GPIB was originally designed for 
instrumentation systems, it became obvious that 
most of these systems would be controlled by a 
calculator or computer. With this in mind several 
modifications were made to the original proposal 
before its final adoption as an international stan­
dard. Figure 1 lists the salient characteristics of the 



APPLICATIONS 

GPIB as both an instrumentation bus and as' a 
computer I/O bus. 

Data Rate , 
1 IV! bytes/s, max 
250k DyteS/S, tvP 

Multiple Devices 
15 d~vices,max (electrical limit) 
8 devices, tvP (interrupi: flexibility) 

Bus Length 
20'm', max 
2 m/device, typ 

Byte Oriented 
a·bitcommands 
a·bit data 

Block Multiplexed 
Optimum strategy on GPIB due to 

setup overhead for commands 

I nterrupt Driven 
Serial poll (slower devices) 
Parallel poll (faster devices) 

Direct Memory Access 
One DMA facility at controller 

serves all devices on bus 

Asynchronous 
One talker } . 
Multiple listeners, 3-wlrehandshake 

I/O to I/O Transfers 
Talker and listeners need not 

include microcomputer/controller 

Figure 1. Major Characteristics of 
~PIB as Microcompllter 110, Bus 

The bus can be best unders100d by examining each 
of these characteristics fI:om the viewpoint of a 
general microcomputer I/O bus. 

Data Rate - Most microcomputer systems utilize 
peripherals of differing operational rates, such as 
floppy discs at 31k or 62k bytes/s (single or double 
density), ,tape' cassettes at 5k to 10k bytes / s, and 
cartridge tapes at40k to 80k bytes / s. In general, the 
only devices that nee~ high speed I/O are 0.5"(1.3-
cm) magnetic tapes and hard discs, operational at 
30k to 781k ,bytes/s, respj::ctively, Certainly, the 
250k-bytes / s datarate that can be easily achieved by 
the IEEE 488 bus is sufficient for microcomputers 
and their peripherals,' and is more than needed for 
typical analog instruments that take only a few read­
ings per second. The IM-bytefs maximum data rate 
is not easily achieved on the GPIB and requires 
speciaf attention to considerations beyond the scope 
of this note. Although not required, data buffering 

,in each device will improve the overall bus per-

formance and allow utilization of m'ore of the bus 
bandwidth. 

Multiple Devices - Many microcomputer syStems 
used as computers (not as components) service from 
three to seven peripherals. With the GPIB, up to 8 
devices can be handled easily by 1 controller; with 
some slowdown in interrupt handling, up to 15 
devices can work together. The limit of 8 is imposed 
by the number of unique parallel poll responses 
available; the limit of 15,1s set by the electrical drive 

,characteristics of the bus. Logically, the IEEE 488 
Standard is capable of accommodating more device 
addresses (31 primary, each potentially with 31 
secondaries). 

7-324 

Bus Length - Physically, the majority of micro­
computer systems fit easily on a desk top or in a 
standard 19" (48-cm) rack, eliminating the need for 
extra long cables. The GPIB is designed typically to 
have 2 m of length per device, which accommodates 
most systems. A line printer might require greater 
cable lengths, but this can be handled at the lower 
speeds involved by using extra dummy termina­
tions. 

Byte Oriented - The 8-bit byte is almost universal 
in I/O applications; even 16-bit anq 32-bit com­
puters use byte transfers for most peripherals. The 8-
bit byte matcl).es the ASCII code for characters and 
is an integral submultiple of most c~mputer word 
sizes. The GPIB has an 8-bit wide data path that may 
be used to transfer ASCII or binary data, as well as 
the necessary status and control bytes. 

Block Multiplexed - Many peripherals are block 
oriented or are used in a block mode. Bytes are 
transferred in a fixed or variable length group; then 
then; is a wait before another group is sent to that 
device, e.g., one sector ,of a floppy disc, one line on a 
printer or tape punch, etc. The GPIB is, by nature, a 
block multiplexed bus due to the overhead involved 
in addressing various devices to talk and listen. This 
overhead is less bothersome if it only occurs once for 
a large number of data bytes (once per block). This 
mode of operation matches the needs of micro­
computers and most of their peripherals. Because of 
block mUltiplexing, the bus works best with buffered 
memory devices. 

Interrupt Driven - Many types ofinterrupt systems 
exist, ranging from complex, fast, vectored/priority 
networks to simple polling schemes. The main 
tradeoff is usually cost versus speed of response. The 
GPIB has two interrupt protocols to help span the 
range df applications. The first is a single service 
request (SRQ) line that' may be asserted by all 
interrupting devices. The controller ,then polls all , 
devices to find out which wants service. The polling 
mechanism is well defined and' can be easily 

AFN-0138OA 



APPLICATIONS 

automated. For higher performance, the parallel 
poll capability in the IEEE 488 allows up to eight 
devices to be polled at once - each device is 
assigned to .one bit of the data bus. This mechanism 
provides fast recognition of an interrupting device. 
A drawback is the frequent need for the controller to 
explicitly conduct a parallel poll, since there is no 

, equivalent of the SRQ line for this mode. 

Direct Memory Access (DMA)- In many applica­
tions, no imediate processing of I/O data on a byte­
by-byte basis is needed or wanted. In fact, 
programmed transfers slow down the data transfer' 
rate unnecessarily in these cases, and higher speed 
can be obtained using DMA. With the G,PIB, one 
DMA facility at the controller serves all devices. 
There is no need to incorporate complex logic in 
each device. 

Asynchronous Transfers - An asynchronous bus is 
desirable so that each device can transfer at its own 
rate. However, there is still a strong motivation to 
buffer the data at each device when used in large 
systems in order to speed up the aggregate data rate 
on the bus by allowing each device to transfer at top 
speed. The GPIB is asynchronous and uses a special 

III"~ DEVICE A 

ABLE TO == TALk, LISTEN. 
AND 

CONTROL 

(e g. computer) -

DEVICE B 

ABLE TO t== TAlK AND 
LISTEN 

(e g. digital 
muttimeter) 

DEVICE C 

ONLY ABLE 1= YO LISTEN 

(e 9. signal 
generator) 

( 

DEVICE 0 

ONLY ABLE t== TO TALK 

leg counter) 

"'f 
DATA BUS 

DAYA BYTE 
TRANSFER 
CONTROL 

GENERAl. 
INTERFACE 

MANAGEMENT 

--==} 0101 

" 
DATA 
NPUT/OUTPUT) 

L--- OA.\!' (DATA VALID) 
NAFD {NO 
NDAC (NO 

T READY FOR DATA) 
T DATA ACCEPTED) 

IFe (INTER 
ATN (ATTE 

FACE CLEAR) 
NTlON) 

SRQ (SERV ICE REQUEST) 
aTE ENABLE) 
OR-IDENTIFY) 

REN (REM 
EOI (END-

Figure 2. Interface Capabilities and Bus Structure 

7-325 

3-wire handshake that allows data transfers from 
one talker to many listeners. 

I/O To I/O Transfers - In practice, I/O to 110 
transfers are seldom done due to the need for 
processing data and changing formats or due to 
mismatched data rates. However, the GPIB can 
support this mode of operation where the micro­
computer is neither the talker nor one of the 
listeners. 

GPIB SIGNAL LINES 

Data Bus 

The lines DlOl through DlO8 are used to transfer 
addresses, control information and data. The 
formats for addresses and control bytes are defined 
by the IEEE 488 standard (see Appendix C). Data 
formats are undefined and may be ASCII (with or 
without parity) or binary. 0101' is the Least Sig­
nificant Bit (note that this will correspond to bit 0 
on most computers). 

Management Bus· 

A TN - Attention This signal is asserted by the 
Controller to indicate that it is placing an address or 
control byte on the Data Bus. A TN is de-asserted to 
allow the assigned Talker to place status or data on 
the Data Bus. The Controller regains control by re­
asserting A TN; this is normlj.lly done synchronously 
with the handshake to avoid confusion between 
control and data bytes. 

EOI- End or Identify This signal has two uses as 
its name implies. A talker may assert EOI simul­
taneously with the last byte of data to indicate end of 
data. The Controller may assert EOI along with 
A TN to initiate a Parallel Poll. Although many 
devices do not use Parallel Poll, all devices should 
use EOI to end transfers (many currently available 
ones do not). 

SRQ - Service Request This line is. like an 
interrupt: it may be asserted by any device to request 
the Controller to take ,some action. The Controller 
must determine which device is asserting SRQ by 
conducting a Serial Poll at its earliest convenience. 
The device deasserts SRQ when polled. 

[Fe - Interface Clear This signal is asserted only 
by the System Controller in order to initialize all 
device interfaces to a known state. After deasserting 
IFC, the System Controller is the active controller of 
the system. 

REN - Remote Enable This signal is asserted 
only by the System Controller. Its assertion does not 
place devices into Remote Control mode; REN only 
enables a device to go remote when addressed to 
listen. When in Remote, a device should ignore its 
front panel controls. 

AF1W138OA 



APPLICATIONS 

Transfer Bus 

NRFD - Not Ready For Data This handshake 
line is asserted by a listener to indicate it is not yet 
ready for the next data or control byte. Note that the 
Controller will not see NRFD deasserted (Le., ready 
for data) until all devices have deasserted NRFD. 

N DA C - Not Data Accepted. This handshake 
line is asserted by a Listener to indicate it has not yet 
accepted the data or control byte on the DIO lines. 
Note that the Controller will not see NDAC 
deasserted (i.e., data accepted) until all devices have 
deasserted NDAC. 

DA V - Data Valid This handshake line is 
asserted by the Talker to indicate that a data or 
control byte has been placed on the DIO lines and 
has had the minimum specified settling time. 

010 -f ... ___ ---I~---( ... ____ ...I~-

H­
DAV 

L-

H-,-, n 
NRFO L _--I ,""'. ______ .J L. ___ _ 

H - "-'~ __ ' .., 
NDAC L _ I L. I L 

Figure 3. GPIB Handshake Sequence 

GPIB INTERFACE FUNCTIONS 

There are ten (l0) interface functions specified by 
the IEEE 488 standard. Not all devices will have all 
functions and some may only have partial subsets. 
The ten functions are summarized below with the 
relevant section number from the IEEE document 
given at the beginning of each paragraph. For 
further information please see the IEEE standard. 

1. SH - Source Handshake (section 2.3) This 
function provides a device with the ability to 
properly transfer data from a Talker to one or 
more Listeners using the three handshake lines. 

2. AH - Acceptor Handshake (section 2.4) This 
function provides a device with the ability to 
properly receive data from the Talker using the 
three handshake lines. The AH function may 
also delay the beginning (NRFD) or end 
(NDAC) of any transfer. 

3. T - Talker (section 2.5) This function allows a 
device to send status and data bytes when ad­
dressed to talk. An address consists of one 
(Primary) or two (Primary and Secondary) 

bytes. The latter is called an extended Talker. 
4. L - Listener (section 2.6) This function allows 

a device to receive data when addressed to listen. 
There can be extended Listeners (analogous to 
extended Talkers above). 

5. SR - Service Request (section 2.7) This func­
tion allows a device to request service (inter­
rupt) the Controller. The SRQ line maybe 
asserted asynchronously. 

6. RL ~ Remote Local (section 2.8) This function 
allows a device to be operated in two modes: 
Remote via the GPIB or Local via the manual 
froht panel controls. 

7. PP - Parallel Poll (section 2.9) This function 
allows a device to present one bit of status to the 
Controller-in-charge. The device need not be 
addressed to talk and no handshake is required. 

I 

8. DC - Device Clear (section 2.10) This function 
allows a device to be cleared (initialized) by the 
Controller. Note that there is a difference 
between DC (device clear) and the IFC line 
(interface clear). 

9. DT - Device Trigger (section 2.11) This func­
tion allows a device to have its basic operation 
started either individually or as part of a group. 
This capability is often used to synchronize 
several instruments. 

10. C - Controller (section 2.12) This function 
allows a device to send addresses" as well as 
universal and addressed commands to other 
devices. There may be more than one controller 
on a system, but only one may be the controller­
in-charge at anyone time. 

At power-on time the controller that is handwired to 
be the System Controller becomes the active 
controller-in-charge. The System Controller has 
several unique capabilities including the ability to 
send Interface Clear (IFC -- clears all device 
interfaces and returns control to the System 
Controller) and to send Remote Enable (REN­
allows devices to respond to bus data once they are 
addressed to listen). The System Controller may 
optionally Pass Control to another controller, if the 
system software has the capability to do so. 

7-326 

GPIBCONNECTOR 

The GPIB connector is a standard 24-pin industrial 
connector such as Cinch or Amphenol series 57 
Micro-Ribbon. The IEEE standard specifies this 
connector, as well as the signal connections and the 
mounting hardware. 

The cable has 16 signal lines and 8 ground lines. The 
maximum length is 20 meters with no more than two 
meters per device. 

AF~13BOA 



APPLICATIONS 

i 
SHIELD 

ATN 
SRQ 

GNO IFC 

~ 
NOAC 

NRFD 

o'Av 
REN EOI 

0108 0104 
0107 0103 
0106 0102 
0105 0101 

Figure 4. GPIB Connector 

GPIB SIGNAL LEVELS 

The GPIB signals are all TTL compatible, low true 
signals. A signal is asserted (true) when its electrical 
volotage is less than 0.5 volts and is deasserted (false) 
when it is greater than 2.4 volts. Be careful not to 
become confused with the two handshake signals, 
NRFD and NDAC which are also low true (i.e. 
> 0.5 volts implies the device is Not Ready For 
Data). 

The Intel 8293 G PIB transceiver chips ensure that all 
relevant bus driver I receiver specifications are met. 
Detailed bus electrical specifications may be found 
in Section 3 of the IEEE Std 488-1978. The Standar~ 
is the ultimate reference for all GPIB questions. 

GPIB MESSAGE PROTOCOLS 

The GPIB is a very flexible communications 
medium and as such has many possible variations of 
protocols. To bring some order to the situation, this 
section will discuss a protocol similar to the one used 
by Ziatech's ZT80 GPIB controller for Intel's 
MUL TIBUS™ computers. The ZT80 is a complete 
high-level interface processor that executes a set of 
high level instructions that map directly into GPIB 
actions. The sequences of commands, addresses and 
data for these instructions provide a good exaIIlple 
of how to use the GPIB (additional information is 
available in the ZT80 Instruction Manual). The 
'null' at the end of each instruction is for cosmetic 
use to remove previous informatIon from the DIO 
lines. 

7-327 

DA T A - Transfer a block of data from device A to 
devices B, C ... 
I. Device A Primary (Talk) Address 

Device A Secondary Address (if any) 
2. Universal Unlisten 
3. Device B Primary (Listen) Address 

Device B Secondary Address (if any) 
Device C Primary (Listen) Address 
etc. 

4. First Data Byte 
Second Data Byte 

Last Data Byte (EO!) 
5. Null 

TRIGR - Trigger devices A, B, ... to take action 
I. U n,iversal U nlisten 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Group Execute Trigger 
4. Null 

PSCTL - Pass control to device A 
I. Device A Primary (Talk) Address 

Device A Secondary Address (if any) 
2. Take Control 
3. Null 

CLEAR - Clear all devices 
I. Device Clear 
2. Null 

REMAL - Remote Enable 
I. Assert REN continuously 

GOREM - Put devices A, B, ... into Remote 
I. Assert REN continuously 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Null 

GQLOC - Put devices A, B,. ;. into Local 
I. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

2. Go To Local 
3. Null 

LOCA~L - Reset all devices to Local 
I. Stop asserting REN 

AFN-01380A 



APPLICATIONS 

LLKA L ~ Prevent all devices from returning to 
Local 
I. Local Lock Out 
2. Null 

SPOLL - Conduct a serial poll of devices A, B, ... 
I. Serial Poll Enable 
2. Universal Unlisten 
3. ZT 80 Primary (Listen) Address 

ZT 80 Secondary Address 
4. Device Primary (Talk) Address 

Device Secondary Address (if any) 
,5. Status byte from device 
(). Go to Step 4 until all devices on list have been polled 
7. Serial Poll Disable 
8. Null 

PPUAL - Unconfigure and disable Parallel Poll 
response from all devices 
I. Parallel Poll Unconfigure 
2. Null 

ENAPP - Enable Parallel Poll response in devices 
A, B, ... 
I. Universal Unlisten 
2. Device Primary (Listen) Address 

Device Secondary Address (if any) 
3. Parallel Poll Configure 
4. Parallel PolI.Enable ~ 
5. Go to Step 2 until all devices on list have been 

.configured. 
6. Null 

DISPP - Disable Parallel Poll response from de­
vices A, B, ... 
I. Universal Unlisten 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Disable Parallel Poll 
4. Null 

This Ap Note will detail how to implement a useful 
subset of these controller instructions. 

HARDWARE ASPECTS OF THE SYSTEM 

8291 GPIB TALKER/LISTENER 

The 8291 is a custom designed chip that implements 
many of the non-controller GPIB functions. It pro­
vides hooks so the user's software can implement 
additional features to complete the set. This chip is 
discussed in detail in its data sheet. The major fea­
tures are summarized here: 

-Designed to interface microprocessors to the GPIB 
-Complete Source and Acceptor Handshake 
-Complete Talker and Listener Functions with ex-

tended addressing 

7-328 

-Service Request, Parallel Poll, Device Clear, De-
vice Trigger, Remote / Local functions 

-Programmable data transfer rate 
- Maskable interrupts 
-On-chip primary and secondary addressrecogni-

tion 
-1-8 MHz clock range 
-16 registers (8 read, 8 write) for CPU interface 
-DMA handshake provision 
- Trigger output pin 
'-On-chip EOS (End of Sequence) recognition 

The pinouts and block diagram are shown in Fig. 5. 
One of eight read registers is for data transfer to the 
CPU; the other seven allow the microprocessor to 
monitor the GPIB states and various bus and device 
conditions. One of the eight write registers is for data 
transfer from the CPU; the other seven control 
various features of the 8291. 

The 8291 interface functions will be software 
configured in this application example to the 
following subsets for use with the 8292 as a 
controller that does not pass control. The 8291 is 
used only to provide the handshake logic and to send 
and receive data bytes. It is not acting as a normal 
device in this mode, as it never sees A TN asserted. 

SHI Source Handshake 
AH I Acceptor. Handshake 
T3 Basic Talk-only 
L I Basic Listen-only 
SRO No Service Requests 
RLO No Remote/Local 
PPO No Parallel Poll response 
DCO No Device Clear 
DTO No Device Trigger 

If control is passed to another controller, the 8291 
must be reconfigured to· act as a talker/listener with 
the following subsets: 

SHI Source Handshake 
AHI Acceptor Handshake 
T5 Basic Talker and Serial Poll 
L3 Basic Listener 
SRI Service Requests 
RL I Remote / Local with Lockout 
PP2 Preconfigured Parallel Poll 
DC I Device Clear 
DTI ' Device Trigger 
CO Not a Controller 

Most applications do not pass control and the con­
troller is always' the system controller (see 8292 
commands below). 

8292 GPIB CONTROLLER 

The 8292 is a preprogrammed Intel® 8041A that 
provides the additional functions necessary. to 

AfN.0138OA 



APPLICATIONS 

PIN CONFIGURATION 

Eoi 18291 
I 

TRIG 6Av' I 
DREQ 0i0i I 

i5i02 
01 

02 

05 

06 

07 

Vss 

BLOCK DIAGRAM 

GPIB DATA 

INTERFACE 
FUNCTIONS 1/'-___ ..,...",--"' 

SH aPls CONTROL 

I 
T/RCONTROL 

TO NON-INVERTING 
BUS TRANSCEIVERS 

Flgur,e 5. 8291 Pin Configuration and Block Diagram 

implement a GPIB controller when used with an 
8291 Talker/Listener. The 8041A is documented in 
both a user's manual and in AP-41. The following 
description will serve only as an outline to guide the 
later discussion. 

The 8292 acts as an intelligent slave processor to the 
main system CPU. It contains a processor, memory, 
I/O and is programmed to perform a variety of tasks 
associated with GPIB controller operation. The on­
chip RAM is used to store information about the 
state of the Controller function, as well as a variety 
of local variables, the stack and certain user status 
information. The timer/counter may be optionally 
used for several time-out functions or for counting 
data bytes transferred. The I/O ports provide the 
GPIB control signals, as well as the ancillary lines 
necessary to make the 8291, 2, 3 work together. 

The 8292 is closely coupled to the main CPU 
through three on-chip registers that may be 
independently accessed by both the master and the 
8292 (UPI-41 A). Figure 6 shows this Register 
Interface. Also refer to Figure 12. 

The status register is used to pass Interrupt Status 
information to the master CPU (AO = 1 on a read). 

The DBBOUT register is used to pass one of five 
other status words to the master based on the.last 
command written into DBBIN. DBBO{)T is accessed 
when AO = 0 .on a Read. The five sta~us words are 
Error Flag, Controller Status, GP.IB Status, Event 
Counter Status or Time Out Status. 

DBBIN receives either commands (AO = I on a 
Write) or command related data (AO = (} on a write) 
from the m;lster. These command related data are 

7-329 

Interrupt Mask, Error· Mask, Event Counter or 
Time Out. 

CPU 

CS AD RO WR REGISTER 

0 0 0 1 READ OBaOUT 
0 1 0 1 READ STATUS 
0 0 1 0 WRITE CBBIN (DATA) 
0 1 1 0 WRITE DBBIN (COMMAND) 
1 x X X NO ACTION 

Figure 6. UPI-41A Registers 

8293 GPIB TRANSCEIVERS 

The 8293 is a multi-use HMOS chip that implements 
the IEEE 488 bus transceivers and contains the 
additional logic required to make the 8291 and 8292 
work together. The two. option strapping pins are 
used to internally configure the chip to perform the 
specialized gating required for use with 8291 as a 
device or with 8291/92 as a controller. 

In this application example the two configurations 
used are shown in Fig. 7a and 7b. The drivers are set 
to open collector or three state mode as required and 
the special logiC is' enabled as required in the two 
modes. 

AFN-Q1380A 



Figure 78. 8293 Mode 2 

., 
.-----~~------~ 

Figure 7b. 8~3 Mode 3 

A,PPL1CATIONS ' 

8291/2/3 CHIP SET 

Figure 8 shows the four chips, interconnec~ed with 
the special logic explicitly shown. 

The 8291 acts only as the mechanism' to put 
commands and ,addresses on the bus while the 8292 
is asserting A TN. Tl).e 8291 is tricked into believing 
that the A TN line is not asserted by the A TN2 
output of the ATN transceiver lilnd is placed in Talk­
only mode by the CPU. The 8291 then acts as though 
it is sending data, when in reality it is sending 
addresses and/ or commands. When the 8292 
deasserts A TN, the CPU software must place the 
8291 in Talk-only, Listen-only or Idle based on the 
implicit knowledge of how the controller is going to 
participate in the data transfer. In other words, the 
8291 does not respond directly to addresses or 
commands that it sends on the bus on behalf of the 
Controller. The user software, through the use of 
Listen-only or Talk-only, makes the 8291 behave as 

, though it were ad,dressed. .. 

7-330 

Although it is not a common occurrence, the GPIB 
specification allows the Controller to set up a, data 
transfer. between two devices and not directly 
participate in the exchange. The controller must 
know when to go' active again and regain control. 
The chip set accomplishes this through use of the 
"Continuous Acceptor Handshake cycling mode" 
and the ability to detect EO! or EOS at the end of the 
transfer. See XFER in the Software Driver Outline 
below. 

If the 8292 is not the .System Controller as 
determined by the signal on its SYC pin, then it must 
be able to respond to an IFC within 100 usec. This is 
accomplished by the cross-coupled NORs in Fig. 7a 
which deassert the 8293's internal version' of crc 
(Not Controller-in-Charge). This condition is latched 
until the 8292's firmware has received the IFCL 
(interface' clear received latch) signal 'by testing the 
IFCL input. The firmware then sets its signals to re­
flect the inactive condition and clears the 8293's latch. 

In order for the 8292 to conduct a Parallel Poll the 
8291 must be able to capture the PP response on the 
DIO lines. The only way to d<? this is to fool the 8291 
by putting it into Listen-only mode and generating a 
DA V condition. However, the bus spec does not 
allow a DA V during Parallel Poll, so the back-to­
back 3-state buffers (see· Fig. 7b) in the 8293 isolate 
the bus and allow the 8292 to generate it local DA V 
for this purpose. Note that the 8291 cannot assert a 
Parallel Poll response.' When the, 8292 is not the 
controller-in-charge the 8291 may respond to PPs 
and, the 8293 guarantees, that the DIO drivers are in 
"open collector" mode through the ()R gate (fig. 
7b). , 

AfN.Ol38OA 



mv 

TtJl1 

mm:I 

1miI 

!m 

T/R2 

8281 

~ 

NRFD 

~ 

XTfl 

iiiQ -

. 
l)D 

tFC 
IYC 

OR 

iiiQ 

8292 ;lTRI 

mm 

;lTfm 

COUNT 

IJ!& 
CLTH 

~ 

APPLICATIONS 

A'i'NO 

1m: 
DXV 

T/R1 

6m'I 

Im5'! 

6RB 

~ 

DIm 

~ 

mm 

~ 

!m 

XTIiI 

I'<mAe 

JIRFD 
T/R1 

JFe 
IYC 
JmiI 

Slm 

~ 

XTIiI 
mlJ 

AINl:i 
!m 

T/Ji2 

1m: 
CLTH 

CIC 

MODE 3 

~. 

+5 

D OPTA 

OPTB 

v* DA :R-
V I -!>-xc-- DI 

Rr-

-

V 

\ 

i 

; 

DI 

R DI r-
~ r- DI 

03* 

H r- DI 05* 

H ~ DI 06* 

H !- DI 

~ 
'-- DI 08* 

MODE 2 

-~ 
-~ 

OPTA 

OPTB 
NDAC* 

~ NRFD* SIR TIC 

IFC* 

~ REN* ItA TIC 

, fi: IRQ* 

ATN* .IRT~ 

~R- EOI* 

::J..Y> -
'81R TIC 

~ .. 
~ 

Figure 8. Talker/Lhltener/Cqntroller 

7-331 AFN.()138OA 



A9Pl1CATIONS 

, ZT7488/18 GPIB CONTROLLER' 

Ziatech's GPIB Controller, the ZT7488/ 18 will be 
used as the controller hardware in this Application 
Note. The controller consistS of an 8291, 8292, an 8 
bit input port and TTL logic equivalent to that 
shown in Figure 8. Figure 9 shows the card's block 
diagram. The ZT7488/ 18 plugs into the STD bus, a 
56 pin 8 bit microprocessor, oriented bus. An 8085 
CPU card is also available on the STD bus and will 
be used to execute the driver software. 

, 6FH to facilitate polling operation. This is required 
for the TCI, as it cannot be read internally in ~he 
8292. The other three 8292 lines (SPI, IBF, OBF) 
and the 8291 's INT line are also connected to 
minimize the number of 1/ () reads necessary to poll 
the devices. 

The 8291 uses I/O Ports 60H to 67H and the 8292 
uses I/O P.orts 68H and 69H:Thefive interrupt lines 
are connected to a three-state buffer at I/O Port 

NDAC is connected to COUNT on the 8292 to allow 
byte counting on data transfers. The 'example driver 
software will not use this feature, as the software is 
simpler and faster if an internal 8085 register is used 
for counting in software. 

ADDRESS ..... 
CI.OCK" 

AD" 

S"RESeT" ~---i._-.J!------'-t-+H 

IOElCP* 

IORQ-

ADDREIS .. .., 
ADDRES • ...... 

°IHDICATlI ACT!YE LOW LOGIC 

Figure 9. ZT7488/18 GPIB Controller 

READ REGISTERS PORT # WRITE REGISTERS 

I DI7 I DI. I pl. I DI. I DI3 I DI' I DI1 I DIO "H I DO' I DD. t DDS I DO. I D03 I DO' I DO' I DOD I 
OATA IN DATA OUT 

I CPT I APT I GET I END I DEC I ERR I eo 1., I, 61H I CPT I APT I GET I END I DEC I ERR I 80 I 81 
INTERRUPT fTATUS 1 INTERRUPT MASK 1 

INTERRUPT STATUS 2 INTERRUPT MASK 2 

I S8 I .A'I"I.o 1.5 I~' 1.3 I S2 I.; I 63H I.s I,~ I S. I s. I 54 I S3 I S2 I 51 

SERIAL POLL STATUS SERIAL POLL MODE 

ADDRESS STATUS ADDRESS MODE 

I cml CPTOI Cp.,1 CPJ.I CPT31 CPT' I CPT, I CPTO I 85H I CN .. I CNT' I CNTOI COM.I COM31 COM,I COM,I COMol 
COMMAND PASS THROUGH AUX MODE 

I X I,QTO I DLO I AD53 A04"IAO~ol AD,.0IAD'·3 ... I ARS I DT I DL I AD51 AD. I AD31 AD'I AD' I 
ADDRESS 0 ADDRESS 0/1 

I x I Dn I DLI I AD511 AI)4.,I AD3-' I AD211 AD,·,I 87H I EC' I EC. I EC. I EC. I EC3 I EC' I EC' I ECO 
ADDRESS 1 EOS 

, Figure 10: 8291 Regllters 

7-332 AJ'N.4138OA 



APPLICATIONS 

r--.1 ~ ~~ ____ ~unm==~ ________________________________________________ -, 

At.. mil 
RD ~a~~----~----~------------~------~-----------' 

rt: ::~o. -
WR~~ o.~~ __ -=mw~ ____ +-~ __________ ~ ____________________ -+-, 

.~ 
IO/I!,---' T. REsET'-----l---+t++++--------,....-+-+---i 

I~A:~====$!~~======:$:$~~=~~======~~----------------_L_L_!----_, I~.:: 
D7-DO_ • 

l RIT RD WR b]IJ ~~ RST RD WR J ~H~ 18FI 
......... D7.1)O INTi-----I I 825f.5" ':t' 
'~~AO ~ ~ 

DRDO ~ DREO SROllt~~~~~~~~~~~;SRO D7-DO'r-

R~ 
2142 

~ 

DACKO I>----< DACK ~~~ ~~N 

HOLD­
HLDA-

CLK-

8257-5 I-;- 11211 ;g~ 
-HRO 
THLDA 
"1:. RDY 

CLK 

ATN 
f--- RS2 DAY 

I 
~ EOI 
f=:: ~=~ ,,+­

~~~ I-'r-HI-+f-Hf-t-I-H., z .. ~ r CLK~ tq - I 
I

8212
COU~

~ CIC
2142 EOl2 DAY
~ ATNI

ATNO r---< IFCL -r- CLTH AO .- SYC CS
(I)'

I

GPla
...
CC

M5-M~ __ ~

Figure 11. DMAllnterrupt GPIB Controller Block Diagram

The application example will not use, DMA or
interrupts; however, the Figure II block diagram
includes these features for completeness.

The 8257-5 DMA chip can be used to transfer data
between the RAM and the 8291 Talker/Listener. ,
This mode allows a faster data rate on the GPIB
and typically will depend on the 8291's EOS or EO!
detection to terminate the transfer. The 8259-5
interrupt controller is used to vector the five possible
interrupts for rapid software handling of the vario~s
conditions. .

8292 COMMAND DESCRIPTION
This section discusses each command in detail and
relates them to a particular GPIB activity. Recall
that although the 8041A has only two read registers
and one write register, through the magic of on-chip
firmware the 8292 appears to have six read'registers
and five write registers. These are listed in Figure 12.
Please see the 8292 data sheet for detailed definitions

7-333

of each register. Note the two letter mnemonics to be
used in later discussions. The CPU must. not write
into the 8292 while IBF (Input Buffer Full) is a one,
as information will be lost.

DiRECT COMMANDS

Both the Interrupt. Mask (1M) and the Error Mask
(EM) register may be directly written with the LSB
of the address bus (AO) a "0". The firmware uses the
MSB of the data written to differentiate between 1M
and EM.

Load Interrupt Mask

This _command loads the Interrupt ~ask with .
D7-DO. Note that D7 must be a "I" and that
interrupts are enabled by a corresponding "I" bit in
this register. IFC interrupt cannot be masked off;
however, when the 8292 is, the. System Controller,
sending an ABORT command will not cause an IFC
interrupt.

APPLICATIONS

READ FROM 8292 PORT # WRITE TO 8292

INTERRUPT STATUS COMMAND FIELD

I SYC I ERR I SRQI EV
I

X IIFCR I IBF OBF I' 69H
I

OP
I

C
I

C
I

C
I

C
I

07 Do
ERROR FLAG' INTERRUPT MASK

X
I

X I USER I X
I

X I TOUT31 TOUT21TOUT,I 6SH SPI TCI I SYC I OBFI I 1m 0 I SRO I
I

07 DO
CONTROLLER STATUS' ERROR MASK

I CSBSI GA X
I

X I SYCSI IFC REN SRO 6SH 0
I

0 IlJSERI 0
I

0 I TOUT41TOUT31TOUT,I

GPIB (BUS, STATUS' EVENT COUNTER'

REN I OAV I EOI I X I SYC I IFC I ANTI I SRO I 6SH 0
I

0
I

0 I 0
I

0 I 0
I

0 I 0
I

EVENT CqUNTER STATUS' TIMEOUT'

0 I 0 ! 0 I 0 I 0 I 0 I 0 0 I 6SH 0 I 0 I 0 I D
I

D I '0
I

D
1

0
I

TIME OUT STATUS'

I DI 0 0 0 D D 0 0 6SH 'Note' These registers are accessed by a speCial utPity command,

Figure 12, 8292 Registers

Load Error Mask

This command loads the Error Mask with D7 - DO,
Note that D7 must be a zero and that interrupts are
enabled by a corresponding" I" bit in this register.

UTILITY COMMANDS

These commands are used to read or write the 8292
registers that are not directly accessible. All utility
commands are written with AO = I, D7 = D6 = D5 = I,
D4 = O. D3-DO specify the patticularcommand. For
writing into registers the general sequence is:

I. wait for IBF = 0 in Interrupt Status R!!gister
2. write the appropriate command to the 8292,
3. write the desired register v~lue to the 8292 with

AO = 1 with no other writes intervening,
4. wait for indication 'of completion from 8292

(lBF = 0).

For reading a register the general sequence is:

I. wait for IBF' ~ 0 in Interrupt Status Register
2. write the appropriate command to the 8292
3. wait for a TCI (Task Complete Interrupt)
4. Read the value of the accessed register from the

8292 with AO = O.

WEVC - Write to Event,Counter
(Command = OE2H)

The byte written following this command will be
loaded into the event counter register and event
counter status for byte counting. The internal

7-334

counter is incremented on a high to low transition of
the COUNT (Tl) input. In this application example
NDAC is connected to count. The counter is an 8 bit
register and therefore can count up to 256 bytes
(writing 0 to the EC implies a count of 256). Iflonger
blocks are desired, the main CPU must handle the
interrupts every 256 counts and carefully observe the
timing constraints.

Because the counter has a frequency range from 0 to
133 kHz when using a 6 MHz crystal, this feature
may not be usable with all devices on the GPIB. The
8291 can easily transfer data at rates up to 250 kHz
and even faster with some tuning of the system.
There is also a 500 ns minimum high time
r~quirement for COUNT Which can potentially be
violated by the 8291 in continuous acceptor
handshake mode (Le., TNDDVI + TDVND2-C =
350 + 350= 700 max). When cable delays are taken
into consideration, this problem will probably never
occur.

When the 8292 has completed the command, IBF
will become a "0" and will cause an interrupt if
masked on.

WTOUT -:- ,Write to Time Out Register
(Command = OEIH),

Tile byte written following this command will be
used to determine the number of increments used for
the time out functions. Because the register is 8 bits,
the max'imumtime olit is 256 time increments. This

AFNO()138OA

APPLICATIONS

is probably enough for most instruments on the
GPIB but is not enough for a manually stepped
operation using a GPIB logic analyzer like Ziatech's
ZT488. Also, the 488 Standard does not set a lower
limit on how long a device may take to do each
action. Therefore, any use of a time out must be able
to be overridden (this is a good general design rule
for service and debugging considerations).

The time out function is implemented in the 8292'8
firmware and will not be an accurate time. The
counter counts backwards to zero from its initial
value. The function 1l)IlY be enabled/disabled by a
bit in the Error mask register. When the command is
complete IBF will be set to a "0" and will cause an
interrupt if masked on.

REVC - Read Event Counter Status
(Command = OE3H)

This command transfers the content of the Event
Counter to the DBBOUT register. The firmware
then sets TCI = I and will cause an interrupt if
masked on. The CPU may then read the value from
the 8292 with AO = O.

RINM - Read Interrupt Mask Register
(Command = OE5H)

This command transfers the content ofthe Interrupt
Mask register to the DBBOUT register. The
firmware sets TCI = 1 and will cause an interrupt if
masked on. The CPU may then read the value.

RERM - Read Error Mask Register
(Command = OEAH)

This command transfers the content of the Error
Mask register to ,the DBBOUT register. The
firmware sets TCI = 1 and will cause an interrupt if
masked on. The CPU may then read the value.

RCST - Read Controller Status Register
(Command = OE6H)

This command transfers the content of the Con­
troller Status register to the DBBOUT registllr. Th~
firmware sets Tel = 1 and will cause an interrupt if
masked on. Tb.e CPU may then read the value.

RTOUT - Read Time Out Status Register
(Command = OE9H)

This command transfers the content of the Time Out
Status register to the DBBOUT register. The
firmware sets TCI = 1 and will cause an interrupt if
masked on. "Qte CPU may then read the value.

If this register is read while a time-out function is in
process, the value will be the time remaining before
time-out occurs. If it is read after a time-out, it will
~e zero. If it is read when no time-out is in process, it
will be the last value reached when the previous
timing occurred.

7-335

RBST - Read Bus Status Register
(Command = OE7H)

This command causes the firmware to read the
GPIB management lines, DA V and the SYC pin and
place a copy in DBBOUT. TCI is set to "I" and will
cause an interrupt if masked on. The CPU may read
the value.

RERF - Read Error Flag Register
,(Command = OE4H)

This command transfers the content of the Error
Flag register to the DBBOUT register. The firmware
sets TCI = 1 and will cause an interrupt if masked on.
The CPU may then read the value.

This register is also placed in DB BOUT by an lACK
command if ERR remains set. TCI is set to "I" in
this case also.

lACK - Interrupt Acknowledge
(Command = Al A2 A3 A4 1 A5 1 1)

This command is used to acknowledge any combina­
tions of the five' SPI interrupts (AI-A5): SYC,
ERR, SRQ, EV, and IFCR. Each bit AI-A5 is an
individual acnowledgement to the corresponding bit
in the Interrupt Status Register. The command
clears SPI but it will be set again if all of the pending
interrupts were not acknowledged.

If A2 (ERR) is "I", the Error Flag register is placed
inDBBOUT and TCI is set. The CPU may then read
the Error Flag without issuing an RERF command.

OPERATION COMMANDS

The following diagram (Fig. 13) is an attempt to
show the interrelationships among the various 8292
Operation Commands. It is not meant to replace the
complete controller state diagram in the IEEE
Standard.

RST - Reset (Command:: {)F2H)

This command has the same effect as an external
reset applied to the chip's pin #4. The 8292's actions
are: ,

1. All outputs go to their electrical high state. This
means that SPl, TCl, OBFI,' IBFI, CLTH will be
TRUE and 'all other GPIB signals will be FALSE.

2. The 8292's firmware will cause the above men­
tioned five signals to go FALSE after approxi­
mately 17.5 usec. (at 6 MHz).

3. These register~ wjll be cleare~: Interrupt Status,
Interrupt Mask, Error Mask, Time Out, Event
Counter, E,rror Flag. '

4. If the 8292, is the, System Controller (SYC i~
TRUE), then lFC will be sent,TRUEforapproxi­
mately 100 usec and the Controller function will
end up in charge of the bus. If the 8292 is not the

AFN-Ol38OA

APPLICATIONS

,-----------,
(RST + ABORT) • SYC I SPCNI I

I I
RST. fie IDLE

I
STANDBY I

I
I
I

POLl. I

~ _ ~.!!!:.L~N-CH~G!.- _ J
r - - -,- - - - - - - - - --,

II RST. --~OC REMOTE II
ABORT.SYC-~

I I
L ____ ..!Y!!!,~O.!!!R~~ ____ --1

Figure 13. 8292 Command Flowchart

System Controller then it will end up in an Idle
state.

5. TCI will not be set.

RSTI.:..... Reset Interrupts (Command = OF3)

This command clears all pending interrupts and
error flags. The 8292 will stop waiting for actions to
occur (e.g., waiting for ATN to go FALSE in a
TCNTR command or waiting for the proper
handshake state in a TCSY command). TCI will not
be set. .
ABORT - Abort all operations and Clear Interface
(Command = OF9H)

If the 8292 is not the System Controller this
command acts like a NOP and flags a USER
ERROR in the Error Flag Register. No TCI will
occur.

If the 8292 is the System Controller then IFC is set
. TRUE for approximately 100 j.Lsec and the 8292

becomes the Controller-in-Charge and asserts A TN.
TCI will be set, only if the 8292 was NOT the CIC.

STCNI - Start Counter Interrupts
(Command = OFEH)

Enables the EV Counter Interrupt. TCI will not be '
set Note that the counter must be enabled by a GSEC
command.

SPCNI - Stop Counter Interrupts
(Command = OFOH)

The 8292 will not generate an EV interrupt when the
counter reaches O. Note that the counter will
continue counting. TCI will not be set.

SREM - Set, Interface to Remote Control
(Command = OF8H)

If the 8292 is the System Controller, it will set REN

7-336

and ;rCI TRUK Otherwise it only sets the User
Error Flag.

SLOC - Set Interface to Local Mode
(Command = OF7H)

If the 8292 is the System Controller, it will set REN
FALSE and TCI TRUE. Otherwise, it only sets the
User Error Flag.

EXPP - Execute Parallel Poll
(Command = OF5H)

If not Controller-in-Charge, the 8292 will treat this
as a NOP and does not set TCI. If it is the Control-'
ler-in-Charge then it sets IDY (EOI & ATN) TRUE
and generates a local DA V pulse (that never reaches
the GPIB because of gates in the 8293). If the 8291 is
configured as a listener, it will capture the Parallel
Poll Response byte in its data register. TCI is not
generated, the CPU must detect the BI (Byte In)
from the 8291. The 8292 will be ready to accept
another command before the BI occurs; therefore
the 8291's BI serves as a task complete indication.

GTSB - Go To Standby (Command = OF6H)

If the 8292 is not the Controller-in-Charge, it will
treat this command as a NOP and does not set TCI
TRUE. Otherwise, it goes to Controller Standby
State (CSBS), sets ATN FALSE and TCI TRUE.
This command is used as part of the Send, Receive,
Transfer and Serial Poll System commands (see
next section) to allow the addressed talker to send
datal status .

If the data transfer does not start within the specified
Time-Out, the 8292 sets TO UT2 TRUE in the Error
Flag Register and sets SPI (if enabled). The
controller continues waiting for a new command.
The CPU must decide to wait longer or to regain
control and take corrective action.

GSEC - Go to Standby and Enable Counting
(Command = OF4H)

This command does the same things as GTSB but
also initializes the event counter to the value pre­
viously stored in the Event Counter Register (default
value is 256) and enables the counter. One may wire
the count input to NDAC to count bytes. When the
counter reaches zero, it sets EV (and SPI if enabled)
in Interrupt Status and will set EV every 256 bytes
thereafter. Note that there' is a potential loss of
count information if the CPU does not respond to
the EV/SPIbefore another 256 bytes have been
transferred.' TCI will be set at the end of the
command. "

TCSY - Take Control Synchronously
(Command = OFDH)

If the 8292 is not in Standby, it treats this command
as a NOP and does not set TCI. Otherwise, it waits

APPLICATIONS

for the proper handshake state and sets A TN
TRUE. The 8292 will set TOUT3 if the handshake
never assumes the correct state and will remain in
this command until the handshake is proper or a
RSTI command is issued. If the 8292 successfully
takes control, it sets TCI TRUE.

This is the normal way to regain control at the end of
a Send, Receive, Transfer or Serial Poll System
Command. If TCSY is not successful, then the
controller must try TCAS (see warning below).

TCAS - Take Control Asynchronously
(Command = OFCH)

If the 8292 is not in Standby, it treats this command
as a NOP and does not set TCI. Otherwise, it
arbitrarily sets ATN TRUE and TCI TRUE. Note
that this action may cause devices on the bus to lose
a data byte or cause them to interpret a data byte as a
command byte. Both Actions can result in anoma­
lous behavior. TCAS should be used only in
emergencies. If TCAS fails, then the System
Controller will have to issue an ABORT to clean
things up.

GIDL - Go to Idle (Command = OflH)

If the 8292 is not the Controller in Charge and
Active, then it treats this command as a NOP and
does not set TCI. Otherwise, it se.ts ATN FALSE,
becqmes Not Controller in Charge, and sets TCI
TRUE. This command is used as part of the Pass
Control System Command.

TCNTR - Take (Receive) Control
(Command = OFAH)

If the 8292 is not Idle,-then it treats this command as
a NOP and does not set TCI. Otherwise, it waits for
the current Controller-in-Charge to set A TN
FALSE. If this does not occur within the specified
Time Out, the 8292 sets TOUTl in the Error Flag
Register and sets SPI (if enabled). it will not proceed
until A TN goes false or it receives an RSTI
command. Note that the Controller in Charge must
previously have sent this controller (via the 8291's
command -'pass through register) a Pass Control
message. When A TN goes FALSE, the 8292 sets
CIC, ATN and TCI TRUE and becomes Active.

SOFTW ARE DRIVER OUTLINE
The set of system commands discussed below is
shown in Figure 14. These commands are imple­
mented in software routines executed by the main
CPU.

The following section assumes that the Controller is
the System Controller and will not Pass Control.
This is a valid assumption. for 99+% of all
controllers. It also assumes that no DMA or
Interrupts will be used. SYC (System Control Input) ,

7-337

should not be changed after Power-on in any system
- it adds unnecessary complexity io the CPU's
software.

In order to use polling with the 8292 one must enable
TCI but not connect the pin to the CPU's interrupt
pin. TCI must be readable by some means. In this
application example it is connected to bit I port 6fH
on the ZT7488/ 18. In addition, the other three 8292
interrupt lines and the 8291 interrupt are also on that
port (SPI-Bit 2, ilWi'-Bit 4; OBFI-Bit 3, 8291 INT­
Bit 0).

These drivers assume that only primary addresses
will be used on the GPIB. To use secondary
addresses, one must modify the test for valid
talk/listen addresses (range macro) to include
secondaries.

INIT INITIALIZATION

Talker/Listener

SEND SEND DATA
RECV RECEIVE DATA
XFER TRANSFER DATA

Controller

TRIG
DCLR
SPOL
PPEN
PPDS
PPUN
PPOL
PCTL
RCTL
SRQD

System Controller

REME
LOCL
IFCL

GROUP EXECUTE TRIGGER
DEVICE CLEAR
SERIAL POLL
PARALLEL POLL ENABLE
PARALLEL POLL DISABLE
PARALLI:L ,POLL UNCONFIGURE
PARALLEL POLL
PASS CONTROL
RECEIVE CONTROL
SERVICE REQUESTED

REMOTE ENABLE
LOCAL
ABORT/INTERFACE CLEAR

Figure 14. Software Driver Routines

INITIALIZATION

8292 - Comes up in Controller Active State when
SYC is TRUE. The only initialization needed is to
enable the TCI, interrupt mas\<:. This is done by
writing OAOH to Port 68H.

8291 - Disable both the major and minor addresses
because the 8291 will never see lhe 8292's com­
mands/addresses (refer to earlier hardware discus­
sion). This is done by writing 60H and OEOR to
Port 66H.

AFN-G138OA

APPLICATIONS

Set Address Mode to Talk-only by writing 80H to
Port MH.

Set internal counter to 3 M~z to match the clock
input coming from the 8085 by writing 23H to Port
65H. High speed mode for the handshakes will not
be used here even though the hardware uses tliree­
state drivers.

INIT:
Enable-8292

Enable TCI
Enable-829I

Disable major address
Disable minor address
ton
Clock frequency
All interrupts off
Immediate execute pon

TALKER/LISTENER ROUTINES

Send Data

No interrupts will be enabled now. Each routine will
enable the ones it needs for ease of polling operation.
THe INT bit may be read through Port 6FH. Clear
both interrupt mask registers.

Release the chip~ initialization state by writing 0 to
Port 65H.

;Set up Int. pins for Port 6FH
;Task complete must be on

;In controller usage, the 8291
;Is set to talk only and/ or listen only
;Talk only. is our rest state
;3 MHz in this ap note example

;Releases 8291 from init. state

SENp<listener list pointer> <count> <~OS> <data buffer pointer>

This system command sends data from the CPU to always sends Universal Uhli~ten. If it is desired to
one or more devices. The data is usually a string of send data to the listeners previously addressed, one
ASCII characters, but may be binary or other forms could add a check for a null list and not send UNL.
as well. The data is device-specific. Count must be 255 or less due to l1-n 8 bit register.
My Talk Address (MT A) must be output to satisfy This .routine also ~lways uses an. EOS chara~tj:r to
the GPIB requirement of only one talker at a time te~~Inate the strIng output; thiS coul~ eaSily be
(any other talker will stop when MTAgoes out). The ehmInate~ and rely 0!1 the cou.nt. Items. In brackets
MT A is not needed as far as the 8291 is concerned _ () are. optional a!1d wIll not be Included In the actual
it will be put into taik-only mode (ton). code In AppendiX A.

This routine assumes a non-null listener list in that it

SEND:
Output-to-829l MT A, UNL
Put EOS into 8291
While 20H :S listener :S 3EH

output-to-8291 listener
Increment listen Ust pointer .

Output-to-8292 GTSB
Enable-8291

Output EOI on EOS sent
If count < > 0 then

While not (end or count = 0)
(could check tout 2 hc;re)

Output-to-8291 data
Increment data buffer pointer
Decrement count

Output-to-8292 TCSY
(If tout3 then take control async)
Enable 8291

No output EOI on EOS sent
Return

7-338

;We will talk,lnobody listen
;End of string compare character
;GPIB listen addresses are
;"space" thru " >" ASCII
;Address all listeners
;8292 stops asserting A TN, go to standby

;Send EOI along with EOS character

;Wait for EOS or end of count
;Optionally check for stuck bus-tout 2
;Output all data, one byte at a'time
;8085 CREG will count for us

;8292 asserts A TN, take control sync.
;If unable to take control sync.
;Restore 8291 to standard condition

AfN.0138OA •

APPLICATIONS

CONTROLLER
• 8291,8292

LSTN
"I" CTLR

'" "
DEVICE

" ' • -('>: • '.~ , ;~ .

~ TALK
'; :',: ,; "Q"

DEVICE
"-

'" ~ .: ~' ,.. Ef::l TALK
,', ,"2" , "R"

DEVICE

LSTN TALK
"." "K"

DEVICE
"-

" ,',

ffi ... TALK

"""

Figure 15. Flowchart For Receive Ending CondlUonl Figure 16. SEND to "1", ''2'', ">"; "ABeD"; EOS = "0"

Receive Data

RECV<talker> <count> <EOS> <data buffer pointer>

This system command is used to input data from a,
device. The data is typically a string of ASCII
characters.

This routine is the dual of SEND. It assumes a new
talker will be specified, a count of less than 257, and
an ,EOS character to terminate the input. EOI
received will also terminate the input. Figure 15
shows the flow chart for the RECV ending
conditions. My Listen Address (MLA) is sent to
keep the GPIB transactions totally regular to

7-339

facilitate analysis by a GPIB logic analyzer like the
Ziatech ZT488. Otherwise, the bus would appear to
have no listener even though the 8291 will be
listening.

Note that although the count may go to zero before
the transmi~sion ends, the talker will probably'be
left in a strange state and may have to be cleared by
the controller. The count ending of RECV is
therefore used as an error condition in most
situations. .

I
AFN-l)l38OA

ffi "I"

APPLfCATIO'N~

RECV: (
Put EOS.into 8291
If 40H :5 ta~ker :5 5EH then

Output-to-8291 talker '
Increment talker pointer
Output-to-8291 UNL, MLA
Enable-829I

Holdoff on end
End on EOS received
lon, reset ton
Immediate execute pon

Output-to-8292 GTSB
While not (end or count = 0 (or tout2»

Input-from-8291 data
Increment data buffer pointer
Decrement count

(If count = 0 then error)
Output-to-8292 TCSY
(If Tout3 then take control async.)
Enable-829I

No holdoff on end
No end on EOS received
ton, reset Ion
Finish handshake
Immediate execute pon

Return error-indicator

CONTROLLER
8291,8292

TALK
eTlR "A"

~

, OEVICE

" "
lSTN

,> "1"

OEVICE
~.:

TALK
"Q"

,', ,"',:,,:- :"'., , <
LSTN ~ "2" "R"

OEVICE

LSTN TALK
"." "K"

DEVICE

LSTN TALK
">" "A"

Figure 17. RECV from "R"; EOS = ODH,

;End of string compare character
;GPIB talk addresses are
;"@" thru "~' ASCII
;Do this for consistency's sake
;Everyone except us stop listening

;Stop when EOS character is
;Detected by 829i
;Listen only (no talk)

;8292 stops asserting A TN, go to standby
;wait for EOS or EOI or end of count
;optionally check for stuck,bus-tout2
;input data, one byte at a time

;Use 8085 C register as counter
;Count should not occur before end
;8292 asserts A TN take control
;If unable to take control sync.
;Put 8291 back as needed for
;Controller activity and
;Clear hold off due to end

;Complete hold off due to end, if any
;Needed to reset)on .

COIITROLLER
Us1,82S2

LSTN TALK
"I" • CTLR "'A"

DEVICe

" . " . ~ y;'" .
~ V

.. DEVICE

·'f' " f ...) :'~' -:.' A.,

LsTNTI v
:'2". >

TALK
"0"

TALK
"R"

Figure 18. XFER from "" ~ to "1", ''2?, ''+''; EOS = ODH

M40
AfN.013IIIA

APPLICATIONS

Transfer Data

XFER<Talker> <Listener list> <EOS>

This system command is used to transfer data from a
talker to one or more listeners where the controller
does' not participate in the transfer of the ASCII
data. This is accomplished through the use of the
8291's continuous acceptor handshake mode while
in listen-only.

XFER:
Output-to-8291: Talker, UNL
While 20H :5 listen :5 3EH

Output-to-829I : Listener
Increment listen list pointer

Enable-829I
lon, no ton
Continuous AH mode
End on EOS received
Immediate execute PON

Put EOS into 8291
Output-to-8292: GTSB

Upon end (or tout2) then
Take control synchronously

Enable-8291
Finish handshake
Not continuous AH mode
Not END on EOS received
ton ,
Immediate execute pon

Return

CONTROLLER

Group Execute Trigger

TRIG < Listener list>

This system command causes a 'group execute
trigger (GET) to be sent to all devices on the listener

TRIG:
Output-to-8291 UNL
While 20H :5 listener :5 3EH

Output-to-8291 Listener
Increment listen list. pointer

Output-to-8291 GET
Return .

7-341

This routine assumes a device list that has the ASCII
talker address as the first byte and the string (one or
more) of ASCII listener addresses following. The
EOS character or an EOI will cause the controller to
take control synchronously and thereby terminate
the transfer,

;Send talk address and unlisten

;Send listen address

;Controller is pseudo listener
;Handshake but don't capture data
;Capture EOS as well as EOI
;Initialize the 8291 .
;Set up EOS character
;Go to standby
;8292 waits for EOS or EOI and then

;Regains control
;Go to Ready for Data

list. The intended use is to synchronize a number of.
instruments.

.;Everybody stop listening
;Check for valid listen address
;Address each listener
;Terminate on any non-valid character
;Issue group execute trigger

APPLICATIONS

, CONTROLLER

8291,8292

L~0N ~ TALK
"A"

LSTN
"2"

LSTN
">"

Figure 19. TRIG "1", "+"

Device Clear

DCLR < Listener list>

DEVICE

TALK
"A"

DEVICE

TALK
"/I"

This system command causes a device clear (SDC)
to be sent to all devices on the listener list. Note
that this is not intended to clear the GPIB interface

Serial Poll

DCLR:
Output-to-8291 UNL
While 20H :S Listener :S 3EH

Output-to-829l listener
Increment listen list pointer

Output-to-8291 SDC
Return

SPOL < Talker list> < status buffer pointer>

This system command sequentially addresses the
designated devices' and ,receives one byte of status
from each. The bytes are stored in the buffer in the

7-342

CONTROLLER
8291,8292

LSTN lEi TALK
"I" "An

DEVICE
" , :.'P @ " TALK

"0"

DEVICE r..

! L~:,N ,I TALK
"A"

DEVICE

LSTN TALK
"+" "K"

DEVICE

)
LSTN TALK
">" "II"

Figure 20. DCLR "1", "2"

of the device, but should clear the device-specific
logic.

;Everybody stop listening
;Check for valid listen address
;Address each listener
;Terminate on !lny non-valid character
;Selective device clear

same order as the devices appear on the talker list.
MLA is output for completeness.

APPLICATIONS

SPOL:
Output-to-8291 UNL, MLA, SPE

While 40H Stalker S SEH
Output~to-8291 talker
Increment talker list pointer
Enable-8291

lon, reset ton
Immediate execute' pon

Output-to-8292 GTSB
Wait for data in (BI)
Output-to-8292 TCSY
Input-from-8291 data
Increment! buffer pointer
Enable 8291

;Unlisten, we listen, serial poll enable
;Only one byte of serial poll
;Status wanted from each talker
;Check for valid transfer
;Address each device to talk
;One at a' time

;Listen only to get status
;This resets ton
;Go to standby
;Serial poll status byte into 8291
;Take control synchronously
;Actually get data from 8291

;Resets Ion
ton, reset Ion
Immediate execute pon

Output-to-8291 SPD
Return

;Send serial poll disable after all devices polled

CONTROLLER

829'_
TALK

"A"

DEVICE

LaTN T
, " "0"

LSTH
"2"

LSTN
"."

LSTN
">"

DEVICE

DEVICE

Figure 21. SPOL "Q", "R", uK"," A"

Parallel Pol,l Enable

PPEN <Listener list> <Configuratio'n Buffer ,pointer>

LSTH
"r

CONTROLLER

121'_

~ TAUC
"A"

"
:
"

t- DEVICE

v LSTN 'TALK "," "0"

DEVICE

.. ffi TAUC
''2" "R") .'

t-
DEVICE

LSTH TALK
"+" "K"

:

DEVICE
t-

v LST" TALK
">" "" ..

FI9llre 22. PPEN ''2"; IPoP = 01118

This system command configures one or more list. The configuration byte has the format
de¥ices to respond to Parallel Poll, assuming they XXXXIP3P2Pl as defmed by the IEEE Std. P3P2PI
implement subset PPI. The configuration informa- indicates the bit # to be used for a response and I
tion is stored in a buffer with ilne byte per device' indicates the assertion value. ~ee Sec. 2.9.3,3 of the
in the same order as devices appear 'on the listener Std, for more details.

Af~'38OA

APPlJCATIONS

PPEN:
Output-to-8291 UNL
While 20H $ Listener $ 3EH

Output-to-8291 listener
Output-to-8291 fPC, (PPE or data)
Increment listener list pointer
Increment buffer pointer

Return

Parallel Poll Disable

P P DS < listener list>

This system command disables one or more devices
from responding to a Parallel Poll by issuing a

PPDS:
Output-to-8291 UNL
While 20H $ Listener $ 3EH

Output-to-8291 listener
Increment listener list pointer

Output-to-8291 PPC, PPD
Return

CONTROLLER
8291.8292

DEVICE

TALK
"0"

DEVICE

LSTN TALK
"2" "RIO

TALK
"K"

TALK

"""
FIgure 23. PPDS "1", "+", ">"

;Univenal unlisten
;Check for valid listener
;Stop old listener, address new
;SendparalleJ poll info

";Point to next listener
;One configuration byte per listener

Parallel Poll Disable (PPD). It does not decon­
figure the devices.

;Universal Un listen
;Check for valid listener
;Address listener

;Disable PP on all listeners

CONTROLLER
8291.8292

LSTN TALK
u," "A"

V: '.'
8
~ ~
'1" ; .. 'e'" '. -;'9
\ v LSTN

< "1"

y:
~

~. , . '..-=-,., '. " ..,. .. :.;
~~ v LSTN

"2"

~

>- ~

,; .' ; (;,." ',''lI ... LSTN
"+"

V LSTN
">"

FIgure 24. PPUN

7-344

DEVICE

TALK
"0"

DEVICE

TALK
"R"

DEVICE

TALK
"K"

DEVICE

TALK

.. "'''

AF~I38OA

APPLICATIONS

Parallel Poll Unconfigure

PPUN

This system command deconfigures the Parallel Poll
response of all devices by issuing a Parallel Poll
Unconfigure message.

PPUN:
Outpui-to-8291 PPU
Return

Conduct a Parallel Poll

PPOL

This system command causes the controller to con­
duct a Parallel Poll on the GPIB for approximately
12.5 usec (at 6 MHz). Note that a parallel poll does
not use the handshake; therefore, to ensure that the
device knows whether or not its positive response

PPOL:
Enable-829I

Ion
, Immediate execute pon

Output-to-8292 EXPP
Upon BI

Input-from-8291 data
Enable-829I

ton
Immediate execute pon

Return Data (status byte)

Pass Control

PCTL <talker>

This system command allows the controller to
relinquish active contlpl of the GPIB to another
controller. Normally some software protocol should
already have informed the controller to expect this,
and under what conditions to return controL The

PCTL:
If 40H ::; talker ::; 5EH then

if talker < > MT A then
output-to-8291 talker, TCT
Emible·829I

not ton, not Ion
Immediate execute pon
My device address, mode I
Undefined command pass through
(Parallel Poll Configuration)

Output-to-8292 GIDL
Return

;Unconfigure all parallel poll

was observed by the controller, the CPU should
explicitly acknowledge each device by a device­
dependent data string. Otherwise, the response bit
will still be set when the next Parallel Poll occurs.
This command returns one byte of status.

;Listen only
;This resets ton
;Execute parallel poll
;When byte is input
;Read it

;Talk only
;This resets Ion

8291 must be set up to become a normal device
and the CPU must handle all commands passed
through, otherwise control cannot be returned (see
Receive Control below). The controller will go idle.

;Cannot pass control to myself
;Take control message to talker
;Set up 8291 as normal device

;Reset ton and Ion
;Put device number in Register 6
;Required to receive control .
;Optional use of PP
;Put controller in idle

7-345 AFN'()138OA

APPLICATIONS

CONTROLLER
8291.8292

"'" CTL "A" ~~
6 i:

Receive Control

RCTL

Dro,

\

0102

0,103

Figure 25. PPOL

DEVICE

LSTN TALK
"I" "Q"

DEVICE

LSTN TALK
"2" "R"

DEVICE

LSTH TALK
"+" "K"

DEVICE

LSTN TALK
">" "f,."

This system command is used to get control back
from the current controller-in-charge if it has passed
control to this inactive controller. . Most GPIB
systems do not use more than one controller and
therefore would not need this routine.

To make passing and receiving control a· man­
ageable event, the system designer should specify a

RCTL:
Upon CPT

If (command=TCT) then
If TA then

Enable-829I
Disable major device number
ton
Mask off interrupts
Immediate execute pon

CONTROLLER
82~1,8292

LSTN '"
..

TALK ,CT~R,

"'" ... ~~,.'t," "A"

DEVICE

,:;'
LSTN TALK

, ~ "'" "Q"

(...

DEVICE

::..~

f LSTN TALK

,~
"2" "R"

DEVICE

LITN TALK
"+" "K"

DEVICE

LSTN TALK

LSTN ">" "1\"

"#"
eTLA

Figure 26. PCTL "C"

protocol whereby the controller-in-charge sends a
data message to the soon-to-be-active controller.
This message should give the current state of the
system, why control is being passed, what to do,
and when to pass control back. Most of these issues
are beyond the scope of this Ap Note.

;Wait for command pass through bit in 8291
;If command is take control and
;We are talker addressed

;Controller will use ton and Ion
;Talk only mode

7-346 AF~1311011

APPLICATIONS

LSTN
"I"

LSTN
"#"

Output-to-8292 TCNTR
Enable-829I

Valid command
Return valid

Else
Enable-829I

Invalid command
Else

Enable-829I
Invalid command

Return invalid

CONTROLLER

8291.8292

eTlR ff
,~

t'<

LSTN
"1"

~
\' LSTN

"2"

=) .
lSTN
"+"

"

~
'J v \ LSTN

rn ,

~CTLR: TALK

" ' "C"
. "

CONTROLLER

Figure 27. RCTL

DI'VICE

DEVICE

DEVICE

DEVICE

Service Request

SRQD

TALK
"0"

TALK
"R"

TALK
UK"

TALK
"A"

This system command is used to detect the occur­
rence of a Service Request on the GPIB. One or
more devices may assert SRQ simultaneously, and

7-347

;Take (receive) control

;Release handshake

;Not talker addr. so TCT not for us

;Not TCT, so we don't care

SYSTEM
CONTROLLER

8291.8292

lSTN ~ TALK
"I" "A"

ill
0:

DEVICE

l8TN TALK

"'" "0"

DI'VICE

LSTN TALK
"2" UR"

DI'VICE

LSTN TALK
"+" "K"

DEVICE

LSTN TALK
">" "" ..

Figure 28. REME

the CPU would normally conduct a Serial Poll
after calling this routine to determine which devices
are SRQing.

AFN-0138OA

APPtlCATIONS

SRQD:
If SRQ then

Output-to-8292 IACK.SRQ
Return SRQ

Else return no SRQ

SYSTEM CONTROLLER

Remote Enable

REME

This system command asserts the Remote Enable
line (REN) on the GPIB. The devices will not go

Local

LOCL

REME:
Output-to-8292 SREM
Return

This system command deasserts the REN line on the
GPIB. The devices will go local immediately.

LSTH

LOCL:
Output-to-8292 SLOC
Return

SYSTEM
CONTROLLER

8291,8292

,~

LC:.~J

I~

TALK
"A"

Figure 29. LOCL

DEVICE

LSTN TALK
"1" "a"

DEVICE ,
LSTN TALK

"2" "A"

DEVICE

LSTH TALK
"K"

DEVICE

LSTH TALK
,,>" """

;Test 92 status bit
;Acknowledge it

remote until they are later addressed to listen by
some other system command.

;8292 asserts remote enable line

;8292 stops asserting remote enable

SYSTEM
CONTROLLER

LSTH Iii TALK
"I" NAt.

U
!!o

DEVICE

LSTH TALK
"1" "Q"

DEVICE

LSTH TALK
"2" "R"

DEVICE
,

LSTN
"+"

DEVICE

LSTH TALK
">" "/I."

Figure 30. IFCL

7-348 AfN.0138OA -

APPLICATIONS

Interface Clear/Abort

IFCL

This system command asserts the GPIB's Interface
Cle~r (IFC) line for at least 100 microseconds.
This causes all interface logic in all devices to go to
a known state. Note that the device itself mayor

IFCL:
Output-to-8292 ABORT
Return

INTERRUPTS AND
DMA CONSIDERATIONS

The previous sections have discussed in detail how
to use the 8291, 8292, 8293 chip set as a GPIB
controller with the software operating in a polling
mode and using programmed transfer of the data.
This is the simplest mode of use, but it ties up the
microprocessor for the duration of a GPIB transac­
tion. If system design constraints do not allow this,
then either Interrupts and/ or DMA may be used to
free up processor cycles.

The 8291 and 8292 provide sufficient interrupts that
one may return to do other work ~hile waiting for
such things as 8292 Task Completion, 8291 Next
Byte In, 8291 Last Byte Out, 8292 Service Request

may not be reset, too. Most instruments do totally
reset upon IFC. Some devices may require a DCLR
as well as an IFCL to be completely reset. The
(system) controller becomes Controller-in-Charge.

;8292 asserts Interface Clear
;For 100 microseconds

In, etc. The only difficulty lies in integrating these
various interrupt sources and their matching
routines into the overall syst~m's interrupt structure.
This is highly situation-specific and is beyond the
scope of this Ap Npte.

The strategy to. follow is to replace each of the WAlT
routines (see Appendix A) with a return to the main
code and provide for the corresponding interrupt to
bring the control back to the next section of GPIB
code. For example WAITO (Wait for Byte Out of
8291) would be replaced by having the BO interrupt
enabled and storing the (return) address of the next
instruction in a known place. This co-routine
structure will then be activated by a BO interrupt.
Fig. 31 ·shows an example of the flow of control.

MAIN CODE

USER:

INTERRUPT CODE GPIB SUBROUTINE

SEND:

ACTIVATE
SEND • (WAIT 0)

= '~INT: ___________

-~ GNaO?· .

(WAIT 0)
_ ____INT:- _=
~ GPIBBO?- ===

-... (WAITot = ~INT:== __
~ GPIBBO?---------------~
• (WAIT T)

= ~INT:GPIB.BO~ = • . GPIB TCI? -

=
ETC.

Figure 31. OPIB Interrupt & Co-Routine Flow of Control

7-349. AfN.0138OA

'APPLICATI'ONS

DMA is also usef).!l in relieving the processor if the
average length of a data buffer is long enough to
overcome the extra time used to set up a D MA chip.
This decision will also bea function of the data rate
of the instrument. The best strategy is to use the
DMA to handle only the data buffer transfers on
SEND and RECV and to do all the addressing and
control just as shown in the driver descriptions.

tude. It will then tell the counter to measure the
frequency and Request Service (SRQ) when com­
plete. The program will then read in the data. The
assembled source code will be found at the end of
Appendix A.

Another major reason for using a DMA chip is to
increase the data rate and therefore increase the
overall transaction rate. In this case the limiting
factor becomes the time used to do the addressing
and control of the G PIB using software like that in
Appendix A. The data transmission time becomes

, insignificant at DMA speeds unless extremely long
buffers are used.

Refer to Figure 11 for a typical D MA and interrupt
based design using the 8291, 8292, 8293. A system
like this can achieve a 250K byte 'transfer rate while
under DMA control. '

APPLICATION EXAMPLE
This section will present the code required to operate
a typical GPIB instrument set up as shown in Fig.
32. The HP5328A universal counter' and the
HP3325 function ,generator are typic~l of many
GPIB devices; however, there are a wide 'variety of
software protocols to be found on the GPIB. The
Ziatech ZT488 GPIB analyzer is used to single step
the bus to facilitate debugging the system. It also
serves as a training/familiarization aid fpr new­
comers to the bus.

LSTN
"I"

ZT7488/18
CONTROLLER

CTLR
TALK
"A"

HP 5328A
COUNTER

LSTN TALK
."" "Q"

HP 3325A
FUNCTION

GENERATOR

LSTN TALK
''2" "R"

ZT488
GPIB ANALYZER

This example will set up the function generator to
output a specific waveform, frequency and ampli- Figure 32. GPIB Example Configuration

SEND
LSTN: "2", COUNT: 15, EOS: ODH, DATA: "FUlFR37KHAM2VO (CRr'
;SETS UP FUNCTION GEN. TO 37 KHZ SINE, 2 VOLTS PP
;COUNT EQUAL TO # CHAR IN BUFFER
;EOS CHARACTER IS (CR) = ODH ::; CARRIAGE RETURN

SEND
LSTN: "1", COUNT: 6, EOS: "T"DATA: "RR4G7T'
;SETS UP COUNTER FOR P:INITIALIZE,F4: RREQ CflAN A

G7:0.I ' HZ RESOLUTION, T:TRIGGER AND SRQ
;COUNT IS EQUAL TO # CHAR

WAIT FOR SRQ

SPOL TALK: "Q", DATA: STATUS 1
;CLEARS THE SRO-IN THIS EXAMPLE ONLY FREQ CTR ASSERTS SRQ

RECV TALK: "Q", COUNT: 17, EOS: OAH,
DATA: "+ 37000.0E+O" (CR) (LF)
;GETS 17 BYTES OF DATA FROM COUNTER
;COUNT IS EXACT BUFFE'R LENGTH
;DATA SHOWN IS TYPICAL HP5328A READING THAT WOULD BE RECEIVED

7-350 AFN-Ol38OA

APPLICATION.S

CONCLUSION
This Application Note has shown a structured way
to view the IEEE 488 bus.and has given typical code
sequences to make the InteI82~1, 8292, and 8293's
behave as a controller o£the GPIB. There are other
ways to use the chip set, but whatever solution is
chosen, it must be integrated into the overall system
software. \ .

The ultimate reference for GPIB questions is the
IEEE Std 488, -1978 which is available from IEEE,
345 East 47th St., New York, NY, 10017. The ulti­
mate reference for the 8292 is the source listing for it
(remember it's.a pre-programmed UPI-4IA) which
is available from INSITE, Intel Corp., 3065 Bowers
Ave., Santa Clara, CA 95051.

APPENDIX A

ISIS-II 80aO/8085 MACKO ASSEMBLER, V3.0
GPIB CONTROLLER SUBROUTINES

LOC OBJ

1000

o IiJ/i 0

01il63
011611

0061
0061
oorn
oOln
00111
0080

0062

01il64
""811
1104-0
110CO
0001

01164
111120
0111'12
01'l1'Jl

01165
1'11123

LINE SOURCE STATEMEN'r

1 $TITLE('GPIB CONTROLLER SUBROUTINES')
2
3 GPIB CONTROLLER SUBROUTINES
4
5
6
7 ;
8
9

lI!J
11/
12
13
14
15
16 ;
17 PRT91
18
19 ;
211 DIN
21 DOUT
22

,
INTI
INTM1
BO'"
BI'"
ENDMK
CPT

23
24
25
26
27
28
29
30
31 ;
32 INT2
33

;
ADRMD
TON
LON
TLON
MODEl

;
ADRST
EOIST
TA
LA

34
35
36
37
38
39
41'1
41
42
.43
44
45
46
47 ;
48 AUXMD
49 CLKRT

for Intel 8291, 8292 on ZT 7488/18
Bert Forbes, ziatech Corporation
2410 Broad Street
San Luis Obispo, CA, USA 93461

General Defi·nitions & Equates
8291 Control Values

ORG 1001lJH ; For ZT7488/1B w/B085

EQU 60H ;B291 Base Port'

Reg to Data in & Data out
EQU PRT91+0 ;91 Data in reg
EQU PRT91+9 ;91 Data out req

Req
EQU
EQU
EQU
EQU
EQU
EQU

, 1 Interrupt 1 Constants
PRT91+1 ;INT Reg 1
PRT91+1 ;INT "'ask Reg. 1
02 ;91 BO INTRP Mask
01 ;91 BI INTRP Mask
l0H ;91 END INTRP Mask
BgH ;91 command pass thru

Reg .2 Interrupt 2
EQU PRT9l+2

Add~ess Mode Constants

int hit

Reg 14
EOU
EQU
EQU
EQU
EQU

PRT91+4 ; 91 adilress mode reg ister t)

Reg '4
EQU
EQU
EQU
EQU

Reg .5
EQU
EQU

BOH ;91 talk only mode & not listen only
41'1H /91 listen only & not ton
·9CIlH ;91 talk & listen only
91 ;mode 1 addressing for device

(ReadY
·PRT91+4 ; reg i4
21!H

Addre·ss Status Reqister

2
1 ; 11 stener active

(Write) Auxil1ary Mode Register
PRT91+5 ;91 auxilIary mode reqister •
23H ;91 3 Mhz clock input

7-351 --

0003
0006
\l1l81l
11001
01102
1111103
1I1l04
1l1l1l8
01111F
011117
110AII
00!!!

11065

0066
90611
110E0

0067

0068

11068
1101'.0

11068
0301
01i"12
11094
1I1l68
0068

11069

0069
110111
II I!J 92
91121l

11068
11068
11068
0068
01168

00FIl
IIIIF!
IlI!JF2
09F3
III!JF4
IIIIF5
00F6
IIBn
00F8
IHIF9
00FA
00FC
0liJFD
o liFE

FNHSK
SDEOI
AXRA
HOHSK
HOEND
CAHCY
EDEOS
EOIS
VSCMD
NVCMD
AXRB
CPTEN

50
51
52
53
54
55
56
57
58
59
611
~l
~2
63 ;
'i4 CPTRG
65
66
67
68
69
70
71;

,
ADRIH
D'rDLl
DTDL2

72 EOSR
73
74
75
76
77
78 ;
79 PRT92
80 ;
81 INTMR
82 INTM
83 ;
84 ERRM
85 TOUT 1
86 TOUT2
87 TOUT3
88 EVREG
89 TOREG
911 ,
91 CMD92
92 ,
93
94
95
96
97
98
99

Hl0
Hll
1112
1113
104
105

INTST
EVBIT
IBFBT
SRQBT
,
ERFLG
CLRST
BUSST
EVCST
TOST

106 ;
Hl7 SPCNI
108 GIDL
1119 RSET
119 RSTI
III GSEC
112 EXPP
113 GTSB
114 SLOC
115 SREM
116 ABORT
117 TCN'rR
118 TCASY
119 TCSY
1211 STCNI
121
122

EQU
EQU
EQU
EQU

. EQU
EQU
EQU
EQU·
EQU
EQU
EOU
EQU

Reg .5
EQU

Reg 'I'i
EQU
EQU
EQU

Reg t7
EQU

8292

EQU

EQU
EQU

EQU
EQU
EQU
EOU
EQU
EQU

EQU

EQU
EOU
E:QU
EQU

EQU
EQU
EQU
EQU
EQU

8292

EOU
EOU
EOU
EOU
EOU
EQU
EOU
EOU
EQU
EQU
EQU
EQU
EQU
EQU

APPLICATIONS

113 ;91 fininsh handshake command
IiJI'i ;91 send EOI with next byte
83H ;91 aux. reg A pattern

1. ; 91 hold off hannshake on all bytes
2 ;91 hold off handshake on end
3 ;91 continuous AH cycling
4 ;91 end .on EOS received
8 ; 91 output EOI on EOS sent

IIFH ;91 valid command pass through
117H ;91 invalid command pass through
0AI!JH ;Aux. reg. B pattern
0lH ;command pass thru enable

(Read)
PRT91+S

Address 11/1 reg. constants
PRT91+1i
60H ;Disable major talker & listener
IIEIlH ;Disable minor talker & listener

EOS Character Register
PRT91+7

CONTROL VALUES

PRT91+8 ;8292 Base Port. (CS7)

PRT92+1!J ;92 INTRP Mask R~g
0AI!JH ;TCI

PRT92+1!J
I!Jl
02
1!J4
PRT92 +1'1
PRT92+0

;92 Error Mask Reg
;92 Time Out for Pass Control
; 92 Time Out. fo r Standby
;92 Time Out for Take Control Sync
;92 Event Counter Pseurlo Reg
;92 Time Out Pseudo Reg

PRT92+1 ;92 Command Register

PRT92+1
10H
112
211H

;92 Interrupt Status Reg
;Event Counter Bit
;Input Buffer Full Bit
;Seq bit

PRT92+0 ;92 Error Flag Pseurlo Reg
PRT92+11 ;92 Controller Status Pseudo Reg
PRT92+0 ;92 GPIB (Bus) Status Pseudo Reg
PRT92+0 ;92 Event Counter Status Pseudo Reg
PRT92+1!J ;92 Time Out &tatus Pseudo Reg

OPERATION COMMANDS

I!JFfilH
I!JFIH
IIF2H
IIF3H
IIF4H
filFSH
IIF6H'
IIF7H
0F8H.
IIF9H
0FAH
0:FCH
0FDH
IIFEH

;Stop Counter Interrupts
;Go to idle
;Reset
;Reset Interrupts
;Goto standby, enable counting
;Execute parallel poll
;Goto standby
;Set local mode
;Set interface to remote
;Abort all operation, clear interface
;Take control (Receive control)
;Take control asyncronously
;Take control syncronously
;Start counter interrupts

7-352 AFN-Ol38OA

IHIE 1
1l1lli!2
II1lE3
1l0E4
IlllE5
IlllE6
II11E7
IlllE9
Il0EA
III III liB

006F
0002
1l1"'4
IHI1l8
1l011l
1l01iJ1

01101
0041
1l1l21
1l1l3F
31108
00114
1l1l18
0019
11005
0070
0060
0015
0009

123
124
125
126
127
128
129
1311
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
161
lfiS
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

;
WOUT
WEVC
REVC
RERF
RINM
RCST
RBST
RTOUT
RERM
lACK

;
PRTF
TCIF
SPIF
OBFF
IBFF
BOF

,
MDA
MTA
MLA
UNL
GET
SDC
SPE
SPD
PPC
PPD
PPE
PPU
'rCT

,
SETF

;
WAITO

WAITL:

,
WAITI

WAITL:

~AITX
WAITL:

APPLICATIONS

8292 UTILITY COMMANDS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0ElH
IilE2H
0E3H
I!JE4H
IlESH
IilE6H
IlE7H
IlE9H
IIlEAH
IIlBH

;Wr!te to timeout reg
;Write to event counter
;Read event counter status
;Read error flag reg
;Read 'interrupt mask reg
;Read controller status reg
;Read GPIB Bus status reg
;Read timeout status reg
;Read error mask reg
;Interrupt Acknowledge

PORT F BIT ASSIGNMENTS

EQU PRT91+IlFH ;ZT748R port 6F for interrupts
EQU III 28 ;Task complete interrupt
EQU 1l4H ;Special interrupt
EQU 088 ;92 Output (to CPU) Buffer full
EQU 11lH ,;92 Input (from CPU) Buffer empty
EQU 01H ;91 Int line (BO in this case)

GPIB ~ESSAG~S (COMMANDS)

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

1
MDA+408
MDA+20H
3FH
08
048
18H
198
05
708
60H
158
139

;My device address is 1
;My talk address is 1 ("A")
;My listen address is 1 ("!")
;Universa1 unlisten
;Group Execute Trigqer
;Device Clear'
)Serial poll enable
;Serial poll 'disable
;Parallel poll configure
;Paral1el poll disable
;Paral1el poll disable
;Parallel poll unconfigured
;Take,contro1 (pass control)

MACRO DEFINI'rIONS

MACRO
ORA
END~

I~ACRO

LOCAL
IN
ANI
JZ
ENDM

MACRO
LOCAL
IN
MOV
ANI
JZ
EN,DM

MACRO
LOCAL
IN
ANI
JNZ
ENDM

. ;Sets flags on A reqister
A

WAITL
I I'lT 1
BOM
WAITL

WAITL
INTI
B,A
BIM
WAITL

WAITL
PRTF
TCIF
WAITL

7-353

;Wait for last 91 byte to be done

;Get Inti status
;Check for byte out
;If not, try again
;until it is

;Wait for 91 byte to be input

;Get II'lTl status
;Save status in B
;Check for byte in
;If no~, just try again
;unt;il it is
;Wait for 92's TCI to go false

AFN.Q138OA

l001i1 3EAI'I
1002 0368
1004 3E611
l01i16 0366
111 iii 8 lEU
l"IiIA 0361)
lllllC 3E80
lIIIlE 0364
HUll 3E23
11112 03155

11114 AF
lll15 0361
11117 0362
lll19 0355
101B C9

196 WAITT
197
198 WAITL:
199
21'11l
2111
2"2
2113 RANGE
2114
2115
2116
2117
2118
2119
218
211
212
213
214
215 ;
216 CLRA
217
218
219
221l
221
222
223
224 ,
225
226
227
228
229
231l
231
232 ;
233
234
235

"'ACRO
LOCAL
IN
ANI
.lZ
ENDM

MACRO

MOV
CPI
.lM
CPI
.lP
ENDM

MACRO
XRA
ENDM

APPL~CATIONS

WAITL
PRTF
TCIF
WAITL

,Get task complete int,etc.
;Mask it
;Wait for task to be complete

LOWER,UPPER,LABEL
!

A,M
LOWER
LABEL
UPPER+l
LABEL

A

;Checks for value in range
;branches to label if not
;in range. Falls through if
flower <= ((M) (L)) <= upper.
;Get next byte. '

;A XOR A -Il

All of the following routines have these common
assumptions about the state of the 8291 & 8292 upon entry
to the routine a.nd will exit the routine in an identical state.

8291:

8292:

BO is or has been set,
All interrupts are masked off
TON mode, not LA
No holdoffs in effect or enabled
No holdoffs waiting for finish command

ATN asserted (active controller)
not'e: Rc'rL is an exception--- i·t expects
to not be active controller
Any previous task is complete & 92 is
ready to receive next command.

8"85: Pointer registers (DE,HL) end one 236
237
238
239
241l

; beyond last legal entry , •• _._._._---_._ ••• _._ •• _._------.-._ •. -_.-.-_ ••• _--.-**
241 INITIALIZATioN ROUTINE
242 ,
243 ; INPu'rs:
244 ; ou'rpUTS:
245 ;CALLS:
246 ; DESTROYS,:
247 ;

None
None
None
A,F

248 INIT:
249
250
251
252
253
254
255
25<;
257
258
259+
261l
261
262
263

MVI
ou'r
MVI
OUT
MVI
ou'r
.. VI
ou'r
MVI
ou'r
CLRA
XRA
ou'r
ou'r
OUT
RET

A,INTM
INT\'IR
A,DTDLl
ADRlll
A,DTDL2
ADRlll
A,TON
ADRMD
A,CLKRT
AUX"ID

A
IN,Tl
INT2
AUX"'D

IEnable TCI
,Output to 92's intr. mask reg
;Disable major talker/listener

,Disable minor talker/listener

;T~lk only mode

;3 MHZ for delay timer

;A XOR A =fiI

;Disable ali 91 mask bits
;Immediate,execute PON

264
265
266

*****.****************.******************************

267
268
269

SEND ROU'UNE

7-354

10lC 3E4l
10lE DJli0

1020 0861
1922 E602
1024 CA211l0
1027 3E3F
1029 0360
1"128 78
102C 0357

Hl2E 7E
102F FE20
1031 FA4710
1034 FE3F
1036 F24711l

1039 01361
10313 E6C!J2
1030 CA39Ul
1040 7E
1041 0360
1043 23
1~44 C32EHl

11147 DBlil
1049 E602
10413 CA4710

H!4E 3EF6
1050 0369
U52 3E88
1'154 0365

H15'i DB6F
1058 E602
IIl5A C25'il!l

1050 DB6F
105~' E602
U6l CA5Dll!

lI'J64 79

1065 B7
lI'J65 CA8810
HI69 1/\
lIiJ5A D3lie
106C 138

270
271
272
273
274
275
276
277
278
279
280
281 ;
282 SEND:
283
284
285+??00U:
286+
287+
288
289
290
291
292
293 -SE>lOl:
294+
295+
296+
297+
298+
299+
300+
301+
302+
303+
304
305+??0\102:
306+
307+
308
309
310
311
312
313 SEND2:
314+??IHH!3 :
315+
316+
317
318
319
320
321
322
323
324+??0004 :
325+
326+
327
328+??0005:
329+
330+
331
332 ;
333 ;
334
335
336+
337
338 SEND3:
339
340
341
342

AFJPLlCATIONS

INPU'fS:

OUTPUTS:
CALLS:

HL listener list pointer
DE data buffer pointer
C count-- C!J will ca~e no ~ata to be sent
bEDS character-- software detected
none
none

DESTROYS: A, C, DE, HL, F

MVI
OU'f
WAITO

IN
ANI
JZ
MVI
OU'f
MOV
ou'r

RANGE

MOV
CPI
JM
CPI
JP
'~AITO

IN
ANI
JZ
MOV
ou'r
INX
J"IP

WAITO
IN

ANI
JZ

MVI
OUT
MVI
OUT
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ

A,MTA
OOUT

INTI
BOM
n00(oll
A,UNL
OOUT
A,B
EOSR

; Send M'fA to turn 0 ff any
;previous talker

;Get IntI status
;Check for byte out
;If not, try again
;Sen~ universal unlisten
Ito stop previous listeners
;Get EOS character
;Output it to 8291
;while listener •••••

20H,3EH,SEND2 ;Check next listen address
;Checks for value in ranqe
;branches to label if not

A,M
20H.
SEND2
3EH+l
SEND2

INTI
BOM
7100112
A,M
DOU'f
H
SENDI

INTI
BOM
1711003

lin range. Falls through if
; lower <= ((H) (L)) <= upper.
;Get next byte.

;Wait for previous listener sent
;Get IntI status
;Check for byte out
;If not, try again

;Get this listener
;Output to GPIB
;Incre~ent listener list pointer
;Loop till non-valid listener
;Enable 91 en~inq conditions

;Wait for Istn addr accepted
;Get IntI status
;Check for byte out
;If not, try again
;WAITO required for early versions
;of 8292 to avoid GTSB before DAC

A,GTSB ;Goto stan~by
CMD92 ;
A, AXRA+EOIS
AUXMD

;Sen~ EOI with EOS character

PRTF
TCIF
??1I~(l4

PRTF
TCIF
niHlll5

;Wait for TCI to go false

;Wait for TCI on Giss
;Get task complete int,etc.
;Mask it
;wait for task to be complete

delete next 3 instructions to make count of 0=25fi

MOV
SETF
ORA.
JZ
LDAX
OUT
C"1P

A,C

A
SENDI;
D
DOU'f
B

;Get count
; Set flaqs

;If count=0, send no data
;Get data byte
;Output to GPIB
;Test EOS ••• this is faster
;arid ~ses less code than usinq
;9l's END or EOI bits

7-355 ~138OA

11'11;0 CA7F10

U70 DB61
11172 E6tl2
U74 CA7010
1Il77 13
1Il78 00
1079 C26911l
107C C388l0
U7F 13
11l8" 00

1081 0861
U83 E602
1085 CA8111'1

1088 3E~'D
U8A 031;9
1Il8C 3E81'1
108B D365

1,1l91l DB6F
1092 EI;02
1094 C29~10

11197 DB6F
1099 E602
Hl9B CA971fil
109E C9

11l9F 78
10M' 0367

101'.2 7E
, 101'.3 FE41l

10A5 FA3911
IM8 F E5F
10M F239il

IliAD 03611
l0AF 23

lllB0 DB!;l
HJB2 E'i02
1"B4 CABIlH!
l0B7 3E3F
l0B9 031;0

10B8 DB!;l
l08D E6"2 \
IIlBF CABBlIl

343
344 SEND4:
345+110IHl6:
34/;+
3-4 7+ ,~

348
349
351l
351
352 SEND5:
353
354

JZ
WAlTa

IN
ANI
JZ
INX
OCR
JNZ
JMP
INX
DCR
WAlTa

355+11110417: IN
356+
357+
35H

ANI
JZ

359 SEND';: MVI
36" ou'r
361 MVI
31';2 OUT
3!;3 WAITX
3';4+??0008: IN

'3<;5+ 1'.1111
31;<;+ JNZ
31;7 'WAIT'r
3'68+??0009: IN
369+ ANI
370+' JZ

'371 RET

SENDS

INTI
'so.,
??091'l1i
D
C
SEND3
SEND6
D
C

INTI
SaM
??11"'07

A,TCSY
CMD92

, A,AXRA
AUXMD

PRTF
TCIF·
110tl1'l8

PRTF
TCIF
110009

;If char ~ EOS , go finish

;Get IntI status
;C~eck for byte out,
;If n~t, try again
;Increment buffer pointer
;Decrement count
;If count (> 0, go send
;Else go finiSh
; fa r consi stency
;

';'fhis ensures' that the stahliard entry
;Get Int! status
;Check for byte out
;If not, try a1ain
;assumptions for the next subroutine
;Take control syncronously

;Reset send EOI on EOS

;Wait for TCI false,

;Wait for
;Get task
;Mask it
;Wait for

TCI
complete int,etc.

task to ~e complete

are met

372 ;**************.** •• ***.***** ••• **.***.~.**.******~*** **.*************
373
374
375
376 ,

RECEIVE ROU'rINE

377 ;INPU'f:
378
379
380 ;
381 ;OU'rpUT:
382 ;CALLS:
383 I DESTROYS:
384 ;
385 ; RETURNS:
38<;
387
388
389'
390 RECV:
391
392
393+
394+
395+
39<;+
397+
398+
399+
4"0+'
4"1+
4"2+
403
404
405
4116
407+??0fH0:
4118+
4r.l9+ .
4U
411
412
'413+110011:
414+
415+

MOV
OU'f
RANGE

MOV
CPI
JM
CPI
JP

ou'r
INX
WAITO

IN
1'.1111
lZ
MVI
ou'r
WAITO

IN
ANI
JZ

HL talker pointer
,DE data buffer pointer
C count (ma'x' bllffer size) 0 implies 251;
B EOS ch<lracter

.Fills buffer'pointed at by DE
None

',A, BC, DE, HL, F

1'.=0 normal termination--EOS det~cted
1'.=41'1 Error--- count overrun
1'.(41'1 or A)5EH Error--- bad talk address

A;B ;Get EOS character
EOSR ;Output it to ~l
40H,5EH,RECV6 '

A,M
41'1H
'RECV6
5EH+!' ,
RECV(,

DOUT
H

INTI
BOM
??1'I0l0
A,UNL
DOUT

INTI
'80M
??01111

;Checks for value, in range
;bran~hes to label if not
lin range. Falls through if
; lower (= ((H) (L)) (= upper.
;Get n'ext byte.

;valid if 40H<= talk <=5EH
;Output talker to GPIB
;Incr pointer for consistency

;Get IntI status
;Check for byte out
IIf not, try again
;Stop other listeners

;Get Intl status
;Check for byte out
;If not, try again

7-356

111C2 3E21
111C4 03'5fIJ
HlC6 3E86
HlC8 0365

HlCA OB61
111CC E6112
lIIC E CACAlIl
1801 3E411
11103 0364

11105 AF
11106 0365
11108 3EF6
1110A 03<;9

1110C OB6F
1110E E6112
ll1EII C20Cl11

lIiIJE3 PB6F
IllES E61l2
111EA OB'51
lIlEC 47
111ED E611l
111EF C21l511
lIIF2 78
111F3 E61l1
11lF5 CAEA11l
lIlf08 OB611
111FA 12
111FB 13
!fIFC 110
111FO C2EA111
111l1l 116411
11112 C31711

11115 78
11116 E6111
11118 C211111
11I1B OB61
11110 C311611
11111 OB611
1112 12
1113 13
1114 110
1115 1161111

1117 3EFO
1119 0369

111B DB6F
1110 E61l2
111F C21B11

1122 08aF
1124 E61l2
1126 CA2211

1129 3E811
1128 0355
1120 3E811
112F D364
1131 3EII3
1133 0365

1135 AF
1136 0365
1138 78
1139 C9

416
417
418
419
4211
421+11111'112:
422+
423+
424
425
426
427+
428
429
4311
431
432+??III113 :
433+
434+
435
436+??1I1'114:
437+
439 RECV1:
4411
441
442
443
444
445
446
447
448
449
4511
451
452
453
454
455
456
457
458

,
RECV2:
RECV3:

459 RECV4:
4611
461
462
463
464 ,
465 RECV5:
466
467
468+??1I1115:
469+
4711+
471
472+??1I1116:
473+
474+

""VI
OUT
MVI
OUT
WAITO

IN
ANI
3Z
MVI
OUT
CLRA
XRA
OUT
MVI
OUT
WAITX
IN
ANI
3NZ
WAITT
IN
ANI
IJ'l
MOV
ANI
3NZ
MOV
ANI
3Z
IN
STAX
INX
OCR
3NZ
MVI
3MP

MOV
ANI
3HZ
IN
3MP
IN
STAX
INX
OCR
MVI

MVI
OUT
WAITX
IN
ANI
3NZ
WAITT
IN
ANI
3Z

APPLICATIONS

A,MLA
OOUT

,For completeness

A, AXRA+HOENO+EOEOS ,En~ when
AUXMO ,EOS or EOI , Holdoff

INTI
BOM
11111112
A,LON
AORMD

A
AUXMO
A,GTSB
CM092

PRTF
TCIF
??IIIH3

PRTF
TCIF
INTI
B,A
ENDMK
RECV2
A,B
BIM
RECVl
DIN
I)

o
C
RECVI
B,4I1H
RECV5

A,B'
BIM
RECV4
INTI
RECV3
DIN
D
o
C
B,1l

A,TCSY
CM092

PRTF
TCIF
??II!IJl5

PRTF
TCIF
??1I1I16

,Get Int! status
,Check for byte out
,If not, try again
,Listen only

,Immediate XEQ PON
,A XOR A =11

,Goto standby

,Wait for TeI=0

,Wait for TeI=l
,Get task complete int,etc.
,Mask it
,Ge\ 91 Int sta.tus (END 'lor BI)
,Save it in B for Bl check later
,Check for EOS or EOI
, Ye's end--- go wa i t for Bl
,NO, retrieve status,
,check for Bl
,NO, go wait for either END or BI
,YES, BI--- get data
,Store it in buffer
,Increment buffer pointer
,Decrement counter
,If count < > II go back' wait
,Else set error indicator
,And go take control

,Retreive status
,Check for BI
,If Bl then qo input data
,Else wait for last BI
,In loop
,Get data byte
,Store it in buffer
,Incr data pointer
,Decrement count, but ignore it
,Set normal completion indicators

,Take control synchronously

,Wait for Tel:1l (7 tcy)

,Wait for
,Get task
,Mask it
,Wait for

TeI=l
complete int,etc.

task to be complete
475
476
477
478
479
481l

, ,

481
482
483
484
485
486
487+
488
489

,if timeout 3 is to be checked, the above WAITT should
,be o~itted , the appropriate code to look for TCI or
,TOU'r3 inser·ted here.

A,AXRA
AUXMD
A,TON
ADRMD
l'\,FNHSK
AUXMO

A
AUXMD
A,B

,Pattern to clear 91 END conditions ,
,This bit pattern already in "A"
,Output TON
,Finish handshake

,A,XOR A "Il
,I~mediate execute PON-Reset LON
,Get completion character

4911 RECV6:

MVI
ou'r
""VI
OUT
MVI
OUT
CLRA
XRA
ou'r
MOV
RET

11311. 7E
11 JB FE40
1130 FABBll
114111 FE5F
1142 F28Bll
1145 0351l
1147 23

1148 OB61
11411. E61il2
114C CA4811
114F 3E3F
1151 0360

1153 7E
1154 FE20
1156 FA6Cll
1159 FE·3F
115B F26Cll

115E 0861
1160 E602
1162 CA5Ell
1165 78
1166 0361l
1168 23
1169 C353U

116C OB61
1168 8602
1170 CA6C11
1173 3887
1175 0365
1177 3840
1179 0364

1176 AF
117C 0365
1178 78
117F 0367
1181 38F6
1183 0369

APPLICATIONS

491 ;
492 ;******~***.******~**.**.************************** •• *********
493 XFER ROUTINE
494
495 ;

'496 ; INPU'rS:
497
498
499
5111l
Sill
5112
5'13
51il4
51'15
5116
51il7

;
;OU'rpUTS:
;CALLS:
;OESTROYS:
; RETURNS:

;
;NOTE: ,

5118 ,
5119
51'1
511 XFER:
512+
513+
514+
515+
516+
517+
518+
519+
5211+
521+
522
523
524
525+??1I1il17:
526+
527+
528
529
531!l XF8Rl:
531+
532+
533+'
534+
535+

RANGE

MOV
CPI
JM
CPI
JP
OUT
INX
WAITO

IN
ANI
JZ
'IVI
OUT
RANGE

536+ MOV
537+ CPI
538+ JM
539+ CPI
540+ JP
541 WAITO
542+??01118: IN
543+ ANI
544+ JZ
545 !\IOV
546 ou'r
547 INX
5'48 JMP
549 XFER2: WAITO
550+??01119: IN
551+ ' ANI
552+ J? '
553 MVI
554 OUT
555 MVI
556 OUT
557 CLRA
558+ XRA
559 OUT
561!1 !\IOV
551 ou'r
562 ,MVI
563 OUT

HL ~evi~e'list pointer
B 80S character
None
None
A, HL, F
A=I!J normal, A < > I!I barl talker

XFER will not work if the talker
uses EOI to terminate the transfer.
Intel will be making hardware
morlifications to the 8291 that will
correct this problem. Until that time,
only 80S may be used without possible
loss of the last rlata byte t,ransfered.
4I11H,5EH,XFER4 ;Check for valid talker

A,M
40H
XFER4
5BHH,
XFER4

;Checks for value in range
;branches to label if not
lin ranqe. Falls through if
; lower <" ((H) (L)) <- upper.
;Get next byte.

DOUT ;Send it to GPIB
H ;Incr pointer

INTI
BOM
??1II1'I17
A,UNL
OOUT

;Get IntI status
;Check for byte 'out
;If not, try again
;Universa1 unlisten

211H,3EH,XFER2 ;Check for valid listener

11.,101
211H
XFER2
3BH+l
XF8R2

INTI
BOM
??1!J1ll8
11.,,101
DOUT
H
XFERI

;Checks, for value in range
;branches to label if not
;in range. ,Falls through if
;lower <" ((H) (L)) <'" upper.
;Get next byte.

;Get IntI status
;Check for byte out
,If not, try again
;Get 1 iS,tener

;Incr pointer
;Loop until non-valid listener

INTI ;Get IntI status
BOM ;Check for byte out
??0019 ;If not, try again
A, AXRA+CAHCY+EOE,OS ; Invi sible 'handshake
AUXIIIO ;Continuous AH mode
A, LON ;Listen only
AOR"IO

'A
AUXIIIO
A,B ,

'1:0SR
,'A,GTSB
CM092

;11. XOR A =Ii!
; Immed. XEQ PO"!
;Get EOS
;Output it to 91
;Go to standby

7~358

1185 DB6F
1187 E602
1189 C28511

118C DB6F
118E E602
1190 CA8Cll
1193 DB61
1195 Efi10
1197 CA9311
119.0. 3e:FD
119C D369

119E DB5F
11.0.0 E602
11 ... 2 C29E11

11 ... 5 OB6F
11.0. 7 E602
11 ... 9 C 511
11 ... C 3E80
11AE D365
11B0 3E03
llB2 D365
11B4 3E80
11B6 D364

IlB8 AF
llB9 D355
llBB C9

UBC 3E3F
UBE D3'i1l

llC0 7E
lICl ~'E20
llC3 FAD911
11C6 FE3F
11C8 F20911

11ce OB61
llCO e602
11CF C ... CB11
1102 7.;
1103 03613
1105 23
11D6 C 3C~11

1109 OBOl
110B E~02

UOO CAD911
llE;0 3EflJ8
11E2 03<;0

11E4 OB61
UEn Eh02

564
565+170020:
566+
567+
568
559+110021 :
570+
571+
572 XFER3:
573
574
575
576
577
578+??1l022:
579+
581H
581
582+171l023:
583+
584+
585
586
587
588
589
590
591

" 592+
593
594 XFn4:
595

W ... ITX
IN
... NI
J'NZ
W ... ITT
IN
... NI
JZ
IN
... NI
JZ
MVI
OU'f
WAITX
IN
ANI
JNZ
WAITT
IN
... NI
JZ
."IVI
OU'f
MVI
OU'f
.,VI
OU'f
CLRA
XR ...
OUT
RET

APPLIOATIONS

PRTF
TCIF
110020

PRTF
TCIF
110021
INTI
ENDMK
XFER3
A.TCSY
CM092

PRTF
TCIF
??0n2

PRTF
TCIF
170323
....... XRA
AUX."ID
.... FNHSK
AUX!'IO
"',TON
ADRMD

A
AUX'IO

,Wait for TCS
,Get task complete int.etc.
;Mask it
;Wait for task to be complete
,Get END status hit
,Mask it

,Take control syncronously

;Wa i t fo r
,Get task
,Mask it
,Wait for
,Not cont

Tel
complete int.etc.

task to'be complete
AM or END on EOS

,Finish handshake

,Tal,k only

;Normal return .0.=0
,A)(OR A =0
,Immediate XEQ PON

596 ;***
597
598
599
6~0

TRIGGER ~OUTINE

,
,INPU'fS:
,0UTPu'rs:
fC ... LLS:
,DESTROYS:

6U
602
603
1)04
605
1;06
1507 ,
608 TRIG:
609
610 TRIGl:
<;11+
612+
1)13+
614+
615+
6l1i+
617'1-
618+
619"\"
621'H'
621
622+??0024:
'i23+
624+
625
1;26
627
<;28
629 TRIG2:
630+171l025:
631+
632+,
633
1534
635
636+??0026:
637+

MVI
OU'f
R ... NGE

MOV
CPI
JM
CPI
JP
WAITO

IN
"'1'11
JZ
"'9V
OU'f
INX
JMP
WAlTO

IN
ANI
JZ
,WI
OUT
\'iAI'rO

HL listener list pointer
None
None
A. HL. F

A.UNL ,
OOUT ,Send universal unllsten
20H,3EH.TRIG2 ,Check for valid listen

A.M
2~H

TRIG2
3EH+l
TRIG2

IN'r!
BOM
110024
A.M
DO,UT
H
TRIGI

IN'll
BOM
170025
A,GET
OOUT

INTI
BOM

;Checks for value in range
,branches to label if not
,in range. Falls through if
,lower <= ((H) (L)) <= upper.
,Get next byte.

,Wait for UNL to finish
;Get IntI status
,Check for byte out
,If not, try a1ain
,Get, 1 istener
~Send Listener to GPIB
,Incr. pointer
;Loop until non-valid char
,Wait for last listen to finish
iGet, IntI st'3tus
,Check for byte out
,If,not. try a1ain
,Selvl group ex.ecute tr i'l'ler
,to 'all addressed listeners

,Get IntI status
,Check for byte out

1-359 AFN-0138OA

llE8 CAE4ll
llEB C9

llEC 3E3F
llEE 03611

llFil 7E
llFI FE211
llF3 FAII9l2
UF6 FE3F
llF8 F211912

UFB OB61
UFO E6112
llFF CAFBll
12112 7E
12113 03611
12115 23
12116 C3FIIll

12119 OB61
1211B E602
12110 CAII912
12111 3EII4
1212 0360

1214 OB61
1216 E602
1218 CAI412
121B C9

121C 3E3F
l21E 03611

12211 OB61
1222 E6112
1224 CA21112
1227 3E21
1229 03611

122B OB61
1220 E6112
122F CA2B12
1232 3E18
1234 03611

1236 OB61

638+
639
640 ;

.JZ
RET

APPLICATIONS

110026 IIf not, try again

·641 ;*.** •• *.*******~****.*** •• * •• *******.**.**
642 ;
643 ,DEVICE CLEAR ROUTINE
64'4
645 ,
646 ;
647 ,INPUTS:
648 ;OUTPUT:
649 ;CALLS:

.6511 ; DESTROYS:
651 ,
652 OCLRI'
653
654 OCLRl:
655+
656+
657+
658+
659+
6611+
661+
662+
663+
664+
665
666+1101127:
667+
668+
669
6711
671
672
673 OCLR2:
674+110028:
675+
676+
677
678
679
6811+??1I029:
681+
682+
683
684 ;

MVI
OUT
RANGE

MOV
CPI
.JM
CPI
.JP
WAITO

IN
ANI
JZ
MOV
OUT
INK
.JMP
WAITO

IN
ANI
.JZ
MVI
OUT
WAITO

IN
ANI
JZ
RET

HL listener pointer
None
None
A, HL,. F

A,UNL
OOUT
211H,3EH,DCLR2

A,M
208
DCLR2
3EH+!
DCLR2

INTI
BOM
11111127
A,M
OOUT
H
OCLRI

INTI
BOM
??01128
A,SOC
OOUT

INTI
BOM
??1I029

;Checks for value in range
;branches to label if not
lin range. Falls through if
; lower <= ((HI (LI I <= upper.
;Get next byte.

;Get IntI status
;Check for byte out
;If not, try again

;Send listener to GPIB

;Get IntI status
;Check for byte out
IIf not, try again
;Send device clear
;To all addressed listeners

;Get IntI status
;Check for byte out
;If not, try again

685 ;***
686
687 SERIAL POLL ROUTINE
688 •
689 IINPUTS:
690 •
691 ;OUTPUTS:
692 ,CALLS:
693 ; DESTROYS:
694 ;
695 SPOL:
696
697
698+??IIII311:
699+
71111+
701
7112
7113
7114+??II031 :
705+
7116+
707
708
709
710+??0032 :

MVI
OUT
WAITO

A:tr
.JZ
MVI
OUT
WAITO

IN
ANI
JZ
MVI
OUT
WAITO

IN

HL talker list pointer
DE status buffer pointer
Fills buffer pointed to by DE
None
A, BC, DE, HL, F

A,UNL ;Universal unlisten
DOUT

INTI IGet IntI status
BOM ;Check for byte out
??1I0311 ,If not, try again
A,MLA IMy listen address
OOUT

INTI ;Get IntI status
BOM ,Check for byte out
110031 IIf not, try again
A,SPE ISerial poll enable
DOUT ITo be formal about it

INTI IGet IntI status

7-360 ~138OA

1238 E632
123A CA3~12

1230 7E
123E FE40
1240 FA9412
1243 FE5F
1245 F29412
1248 7E
1249 D36~
124B 23
124C 3E40
124E D364

1250 OB61
1252 E602
1254 CA5012

1257 AF
1258 0365
125." 3EF6
125C 0369

125E DB6F
1260 E602
1262 C25E12

1265 OB6F
12~7 E602
1269 CM512

126C OB61
126E 47
126F E601
1271 CAOC12
1274 3EFD
1276 D359

1278 OB6F
127A E602
127C C27812

127F OB6F
1281 E602
1283 CA7F12
1286 DB60
1288 12
1289 13
128A 3EB0.
128C 03~4

128E AF
128F 0365

1291 C33012

1294 3El9
1296 0360

1298 OB61
129A E602
129C CA9812

129F AF
12Ml 0365
12A2 C9

711+
712+
713 SPOL1:
714+
715+
716+
717+
718+
719+
72"'+
721+
722+
723+
724
725
726
727
728
729
73"'+??0~33:
731+
732+
733
734+
735
736
737
738
739+??0034:
740+
741+
742
74H??0CB5:
744+
745+
746
74 7+??0036:
748+
749+
750+
751
752
753
754+??0~37:
755+
756+
757
758+??0038:
759+
76C1J+
761
762
763
764
765
761;
767+
768
7~9
770
771 ,
772 SPOL2:
773
774
775+??2039:
776+
777+
778
779+
780
781

ANI
JZ
RANGE

MOV
CPI
JfIf
CPI
JP
MOV
OU'f
INX
"'VI
OUT
WAITO

IN
ANI
JZ
CLRA
XRA
OU'f
"'VI
OUT
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ
WAITI
IN
MOV
ANI
JZ
MVI
OU'f
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ
IN
STAX
INX
MVI
OUT
CLRA
XRA
OU'f

JMP

MVI
OUT
'wAITO

IN
ANI
JZ
CLRA
XRA
OUT
RET

APPLICATIONS

BOM ;Check for byte oJt
??0032 ;If not, try again.
40H,5EH,SPOL2 ;Check for valid talker

A,M
411H
SPOL2
5EH+l
SPOL2
A,M
DOU'f
H
A,LO'll
ADRMO

INT!
BOM
7111"'33

A
AUXMD
A,GTSB
CM092

PRTF
TCIF
71C1lC1l34

PRTF
TCIF
710035.

IN'rl
B,A
BIM
??0~36
A,TCSY
CMD92

PRTF
TCIF
??"'037

PRTF
TCIF
71IHB8
DIN
o
D
A,TON
ADRMD

A
AUXMD

SPaLl

A,SPO
DOU'r

IN'rl
BaM
710039

A
AUXMO

;Checks for value in range
;branches to 1a~e1 if not
lin range. Falls through if
;lower <= ((Hl (Ll l <= upper.
;Get next byte.

;Get talker
;Send to GPI.B
;Incr t~lker list
;Listen only

pointer

;Wait for talk a~dress
;Get IntI status
;Check for byte out
;If not, try again
;Pattern for immediate
;A XOR A ='"
;Goto standby

;Wait for TCl false

;Wait for TCI

to complete

XEQ paN

;Get task complete int,etc.
;Mask it
;Wait for task to be complete
;Waitfor status byte input
;Get INTI status
;Save status in B
;Check for byte in
;If not, just try again
;Take control sync

;Wait for TCI false

;Wait for TCI
;Get task complete int,etc.
;Mask it
;Wait for task to be complete
;Get serial poll status byte
;Store it in buffer
;Incr pointer
;Talk only for controller

;A XOR A =1')

;Immeditate XEQ PON
; CLR LA
;Go on to next device

;Seria1 poll disable

on list

;We know BO was set (WAITO above)

;Get IntI status
;Check for byte out
;If not, trY again

;A' XOR A =1'1
;Immediate XEQ PON to clear LA

782
783
784

****** ••• *.**.*** ••••• ** ••••• ***.***** ••••••••••• *.**

7-361 AFN-ol380A

12A3 3E3F
12A5 036('1

12A7 7E
12M FE2('1
12M FA0812
12AD FE3F
12AF F2D812

12B2 OB61
1284 £602
12B6 CAB212
12B9 7E
12BA 0359

12BC DB61
12BE £602
12CIl CA8C12
12C3 3E:"S
12CS 036"

12C7 OB61
12C9 E6"'2
12CB CAC712
12CE: 1A
12CF F661l
1201 0361!l
1203 23
1204 13
12DS C3A712

1208 DB61
12DA E:6~2
12DC CADB12
12DF C9

12EI!l 3E3F
12E2 0360

12E4 7E
12E5 FE21il
12E7 FAFD12
12EA FE3F
12EC F2FD12

12EF DB61
12F1 E602
12F3 CAEF12

APPLICATIONS

785 PARALLEL POLL E:NABLE ROUTINE
786, ,
787 I INPUTS:,

;
;OUTPUTS:
;CALLS:

788
789
790
791
792
793 ;

; DESTROYS:

794 PPEN:
795
796 PPEN1:
797+
798+
799+
890+
801+
8912+
803+
81!l4+
80S+
8116+
8117
&08+??II04('1:
809+
810+
811
812
813
814+??IIP141:
815+
816+
817
818
819
82IH??Pl042.
821+
822+
823
824
825
826
827
828
829 PPE:N2:
830+(11'1043:
831+
832+
833
834 ;

MVI
OUT
RANGE

MOV
CPI
J"I '
CPI
JP
WAITO

IN
Alii I
JZ
MOV
OUT
'/IAITO

IN
Alii I
JZ
MVI
OU'f
,WAITO

IN
Alii I
JZ
LDAX
ORI
OU'f
INX
INX
JMP
\~AITO

IN
ANI
JZ
RET

HL listener list
'DE configuration
None

pointer
byte pointer

None
A, DE:, HL, F

A,UIIIL
DOU'r

;Universal un1isten

20H,3EH,PPEN2 ;Check for valid listener

A,M
20H
PPE:N2
3EH+l
PPEN2

INTI
BOM
??('IPl4A
A,M
DOUT

IN'rl
80M
??"9141
A,PPC
DOUT

INTI
80t'1
??!ll9l42
o
PPE:
DOUT
H
o
PPE:N1

INTI
BOM
??1!343

;Checks for value in range
;branches to label if not
lin range. Falls through if
;lower <= ((H) (L)) <= upper.
;Get next byte.

;Valid wa i t 91 data
;Get IntI status
;Check for byte out
;If not, try again
;Get listener

;Get IntI status
;Check for byte ~ut

out reg

;16 not, try again
;Para1le1 poll configure

,Get IntI status
;Check for byte out
;If not, try again
,Get matching configuration byte
;Merge with parallel poll enable

;Incr pointers

;Loop until invalid listener char

;Get Inti status
;Check for byte out
;If not, try again

835 ;PARALLEL POL,L DISABLE ROU'fIIIIE
836 ;
837 ;INPUTS:
838 ;OUTPUTS:
839 ,CALLS:
840 ;DE:STROYS:
841 •
842 PPDS:
843
844 PPOS1:
84S+
841;+
847+
848+
849+
8SA+
8S1+
852+
aS3+
854+
855
856+110044 :
857+
8S8+

,'WI
OU'f
RANGE

MOV
CPI
JM
CPI
3P
WAITO

IN
ANI'
JZ

HL listener list pointer
None
None
A, HL, F

A,UIIIL
DOUT

;Universal unlisten

20H,3EH,PPDS2 ;Check for valid listener

A,M
20H
PPDS2
3EH+l
PPDS2

IN'rl
BOM
??0A44

;Checks for value in range
;branches to label if not
lin range. Falls through if
;lower <= ((H)(L)) <= upper.
;Get next byte.

;Get IntI status
;Check for byte out
;If not, try again

12F6 7E
12F7 D360
12F9 23
12FA C3E412

12FD D861
12~'F E'51l2
1301 CAFD12
1304 3E05
130<; D360

1308 DB61
13M E602
130C CA0813
130F 3E70
1311 D360

1313 DB61
1315 E602
1317 CA1313
131A C9

131B 3E15
DID D360

131F DB61
1321 E602
1323 CAIF13
1326 C9

1327 3E40
1329 D364

1328 AF
132C D365
P2E 3EF5
1330 D369

1332 D861
1334 47
1335 g6"1
1337 CA3213
133A 3EB"
133C D364

133E AF
133F D355
1341 D8'i0
1343 C9

859
8~0
81;1
862
8li3 PPDS2:
81;4+??01l45:
865+
861i+
81;7
8G8
869
870+??0046:
871+
872+
873
874
875
876+??0047 :
877+
878+
879
880

"lOV
OUT
INX
JMP
WAlTa

IN
ANI
.JZ
'~VI

OUT
WAlTa

IN
ANI
JZ
MVI
OUT
WAITO

IN
ANI
JZ
RET

APPLICATIONS

A,M
OOUT
H
PPDSI

IN'rl
BaM
?10045
A,PPC
DOUT

INTI
BOI~

??01l46
A;PPD
OOUT

INTI
BaM
??0047

;Get listener

;Incr pointer
;Loop until invalid listener

;Get IntI status
;Check for byte out
;IE not, try again
;Parallel poll configure

;Get IntI status
;Check Eor byte out
;If not, try again
;Paral1el poll disable

;Get IntI status
;Check for byte out
;If not, try again

881 PARALLEL POLL UNCONFIGURE ALL ,ROU'rINE
882
883
884
885
886
887
888

,
; INPu'rs:
;OUTPUTS:
;CALLS:
;DESTHOYS:

889 PPUN:
890

MVI
ou'r

891 WAITO
892+??1l048: IN
893+ ANI

JZ
RET

894+
895
89e; ,

None
None
None
A, F

A,PPU
OOUT

INTI
BaM
??0048

;Parallel poll unconfigure

;Get Intl status
;Check for byte out
;If not, try again

897 ;**
898 ,
899 ;CONDUCT A PARALLEL POLL
900
901 ,
902 ;INPUTS:
903 ;OUTPUTS:
904 ;CALLS:
905 ;DESTROYS:
906 ;RETURNS:
907 ,
908 PPOL:
909
910
911+
912
913
914
915
916+??0049:
917+
918+
919+
920
921
922
923+
924
925
926
927 ,

MVI
oU'r
CLRA
XRA
OUT
"lVI
ou'r
WAI'rI
IN
MOV
ANI
JZ
I~VI

OUT
CLRA
XRA
ou'r
IN,
RET

None
None
None
A, S, 10'
A= parallel poll status byte

A,LON­
Al)RMD

A
AUXMD
A,EXPP
CMD92

INTl
8,A
BIM
??0049
A,TON
ADRMD

A
AUXMD
DIN

;Listen only

;Immediate XEO paN
;A XOR A =0
;Reset TO'"
;Execute parallel poll

;Wait for completion= BI on 91
;Get INTI status
;Save status in B
;Check Eor byte in
;IE not, ;ust try again
;Talk only

;Immediate XEQ
;A XOR A =0
;Reset LOlli
;Get PP byte

PON

928 ;**
929 ; PASS CON'rROL Rou'rINE '
930
931
932

,
;INPUTS:
;OUTPu'rs:

HL pointer to talker
None

7-363 AFN-{)138OA

1344 7E
1345 FE40
1347 FA8A13
134,11 FE5F
134C F28A13
134F FE41
1351 CA8Al3
1354 031';0

1356 OB61
1358 E6e 2
135A CA5613
1350 3E09
135F 03':;"

1361 OB61
1363 E602
131;5 CMU3
1368 3E01

.136,11 0364

13r,C AF
1360 0365
136F 3E01
1371 0366
1373 3EA1
1375 031;5

1377 3EFl
1379 0369

137B DB6F
1370 E602
137F C27B13

1382 DB6F
1384 E602
1385 CA8213
1389 23
138,11 C9

138B DB51
1380 E680
138F CACF13
1392 OB65
1394 FE09

APPLICATIONS

933 ;CALLS:
934 ; DESTROYS:

None
A, HL, F'

935 PCTL: RANGE 40H,5EH,PCTL1 ;Is it a valid talker?
;Checks for value in range
;branches to label if not

936+
937+
938+
939+
941H
941+
942+
943+
944+
945+
946
947
948
949
950+??0050:
951+
952+
953
954
955
956+??0051 :
957+
958+
959
960
961
9<;2+
903
%4
965
96<)

MOV
CPI
J,>\
CPI
JP
CPI
JZ
OUT
WAlTa

IN
ANI
JZ
I>1VI
ou'r
WAITO

IN
ANI
JZ
MVI
OUT
CLRA

A,M
4flH
PCTL1
5EH+I
PCTL1
MTA
PCTL1
DOUT

INT1
BOM
??005~
A,TCT
DOUT

IN'fl
BOM
??0~51
A,MODE1
ADRMD

lin range. Falls through if
; lower <= ((H) (L)) <= upper.
;Get n·ext byte.

;Is it my talker address
;Yes, just return .
;Send on GPIB

;Get IntI status
;Check for byte out
;IE not, try again
;Take control messaqe

;Get IntI status
;Check for byte out
;If not, try again
;Not talk only or listen only
;Enab1e 91 address mode 1

XRA A ;,11 XOR A =0
OUT AUX.,O ;Immediate XEQ PON
·~VI A,MDA ;My device address
OUT ADR~1 ;enabled to talk and listen
MVI A,AXRB+CPTE"I ;Command pass tbru enable
OUT AUXMD 967

968
9119
970

;*******optional PP configuration goes here********

971
972+??0052 :
973+
974+
975
976+??0053:
977+
978+
979
980 PCTL1:
981
982 ;

MVI A,GIDL ;92 go idle command
ou'r CMD92
WAITX
IN
ANI
JNZ
WAITT
IN
ANI
JZ
INX
RET

PRTF
TCIF
??01il52

PRTF
TCIF
??0053
H

;Wait for
;Get task
;Mask it
;Wait for

TCI
complete int,etc.

task to be complete

983 ;***
984 ;
985 ;RECEIVE CONTROL ROUTINE
986 ,

None
None
None
A, F

987 ; INPUTS:
988 ;OUTPUTS:
989 ;CALLS:
990 ;DP-STROYS:
991 ;RETlJRNS:
992 ,
993 ;NOTE:
994
995
990

0= invalid (not take control to us or CPT bit not on)
< > 0 = valid take contro1-- 92 will now be in control
THIS CODE MUST BE TIG9TLY INTEGRATED INTO ANY USE~
SOFTWARE THA'r FUNCTIONS \-.JITH THE 8291 AS A DIWICE.
NORMALLY SOI'1E ADVA"ICE WARNING OF IMPENDI"IG PASS
CO"lTROL SHOULD BE GIVE"I TO US BY rHE CONTROLLER

997
998
999

1000 ,
1001 RCTL:
1002
1003
1004
1005

IN
ANI
JZ
IN
CPI

t.ITH OTHER USEFUL INFO. THIS PRO'rOCOL IS SITUATION
SPECIFIC AND WILL NOT BE COVERED HERE.

IN'rl
CPT
RC 'rL 2
CP'rRG
TCT

;Get INTI reg (i.e. CPT etc.)
;Is command pass thru on ?
;No, invalid-- go return
;Get command
;Is it take control?

7-364 AFN-0138OA

1396 C2C ... 13
1399 OBI;4
139B E602
139D C ... C ... 13
13 ... 0 3E60
13.0.2 D356
13M 3E8~
13 ... 6 0354

13M AF
13.0.9 031;1
13 ... B 03'i2
13 ... 0 0365
13 ... F 3EFA
13Bl'D3';9
13B3 3E0F
13B5 03<;5

13B7 OB<;F
13B9 E61l2
l3dB C2B7l3

13dE DB6F
l3e0 EI;~2
l3C2 CABEl3
13C5 3E09
13C7 C3CF13
13CA 3E0F
13CC 0365

13CE AF
13CF C9

1303 DB59
1302 E620
1304 CAE213
1307 ~'50B
13D9 D369
130B OB69
130D E602
13DF CAOB13
13E2 C9

13E3 3EF8
13E5 0369

13E7 DBhF
13E9 E<;02
13EB C2E7l3

13EE DB6F
13F0 g<;02
13F2 CAEg13

1006
1007
lI!08
1009
HlU
lin 1
1012
11'113
1014
1015+
1016
1017
UI18
1019
1020
11321
1022

JNZ
IN
ANI
JZ
MVI
ou'r
MVI
ou'r
CLRA
XRA
OUT
OUT
OUT
MVI
ou'r
MVI
OUT

APPLICATIONS

RCTLI
ADR'lT
TA
RCTLI
A.OTOLI
AORIn
A.TON
AORMD

A
INTI
INT2
AUXMO

;No. go return invalid
;Get address status
;Is T ... on ?
;No -- go return invalid
;Oisable talker listener

;Ta1k only

;A XOR A =0
;Mask.off INT bits

A.TCN'rR ;T.ake (receive) control 92 command
CM092
A.VSCMO ;Va1id command pattern for 91
AUXI'10

1023 ; •••••••• optional TOUT1 check could be put here ••••••••
1024
1025+71111154 :
1026+
1027+
Hl28
1029+710055:
1030+
1031+
1032
1033
lI!34 RCTL1:
1035
1035
1037+
1038 RCTL2:
Hl39 •

'.-JAITX
IN
ANI
JNZ
'IIAITT
IN
... NI
JZ
MVI
J'lP
MVI
ou'r
CLRA
XRA
RET

PRTF
TCIF
??0054

PRTF
TCIF
??0~55

A.TCT
RC'rL2
.... VSOolD
AUXMD

...

;Wait for TCI
;Get task complete int.etc.
;Mask it
;Wait for task to be complete
;Valid return pattern
;Only one return per routine
;Acknow1edqe CPT

;Error return pattern
,; ... XOR ... =0

104~ ~********************************.******.*********
1041
1042 SRO ROUT I"'!: . 1(l43
1044
1045
1046
1047
1048
1049

; INPU'rS:
;OU'rpUTS:
;CALLS:
;RE'rURNS:

1"50
1051 SRQD:
1052
1053
1054
Hl55
1056 SRQDl:
11157
1058
1059 SRQD2:
Hl51'J •

IN
ANI
JZ
ORI
ou'r
IN .
ANI
JZ
RET

None
None
None
.0.= 0 no
.0.<> 0

INTST
SRQBT
SRQD2
lACK
CMD92
INTST
IBFBT
SRQOl

SRQ
SRQ occured

;Get 92's INTRQ status
;Mask off SRQ
;Not set--- go return
;Set--- must clear it with

;Get IBF
;Mask it
;Wait if not set

1061 ~*.***************.****************.**.******

1"~2 •
1063 ;REMOTE ENABLE ROUTINE
1064 ;
11'155 ; INPUTS:
1066 ; ou'rpUTS:
11157 ;CALLS:
1068 ;DESTROYS:
1069 ;
1070 REME:
1071
HI 72
1Il73+??1l~5<):

1074+
1Il75+
1071;
1077+??0057:
1078+

None
None
NONE
.... F

.... SREM
CMD92

PRTF
TCIF
??005<;

PRTF
TCIF

;92 asserts remote enable
;Wait for TCI = 0

TCI
complete int.etc.

I ... CK

1079+ -

MVI
OUT
\'iAI'rX
IN
ANI
JNZ
WAITT
IN
ANI
JZ ??(l057

;Wa i t fo r
;Get task
;Mask it
;Wait for task to be complete

7-365 AF~l38OA

131'5 C9

131'6 3EF7
131'8 0369

13FA D86F
13Fe E602
131'E C2I'A13

1401 D86F
1403 E602
1405 CA0114
1408 C9

1409 3EF9
1UIIl D3119

140D DBfiF
1401' E'i1/J2
1411 C20D14

1414 DB6F
1416 E602
1418 CA1414

141B C9

1080
U81 ;

RET

APPLICATIONS

lAR2 ;******************.*.*********************
lIl83 ,
U84 ; LOCAL ROUTI'IIE
1085 ,
Hl86 ;
1I'l87 ;INPU'l'S:
U88 ,OUTPUTS:
1089 ;CALLS:
1Pl9I'J ; DESTROYS:
1091 ;
11'192 LOCL:
1093
1094
1Pl9S+??1l0 58:
1096+
1I'l~7+
1098
1I!99+??tH'159 :
1101'1+
ll1ll+
1102
1103 ;

.,VI
OUT
WAITX
IN
ANI
JNZ
WAIT'r
IN
ANI
JZ
RE'r

None
None
None
A, I'

A,SLOC
CMD92

PRTF
TCIF
??"I'I5R

PRTF
TCIF
??I"1J59

;92 stops asserting remote enable
;Wait for TCI =IiJ

;Wait for
;Get task
;Mask it
;Wait for

TCI
complete int,etc.

task to be complete

1194 ;***
1105 ;
lUI; ; I"ITERFACE CLEAR / ABORT ROU'rINE
1Hl7
11"S
1109
1111'1
1111
1112
1113

;
; INPu'rs:
;ou'rpUTS:
;CALLS:
;DESTROYS:

1114 ,
1115 IFCL:
1116

MVI
OUT

1117 WAITX

A,ABORT
C..,D92

1118+??"~60: IN PRTF
1119+ ANI TCIF
1120+ JNZ ??006~

None
None
None
A, l'

;Send IFC
;Wait for TCI =A

1121 WAITT ;"a it fo r TCI
1122+??0061: IN PRTF ;Get task complete int,etc.
1123+ AliI TCIF ;Mask it
1124+ JZ ??~0"1 ;Wait for tas~ to be complete
1125 ; Delete bott) WAI'rX & WAITT if thi s rout ine
1126 lis to be called while the 9292 is
11'7 ;Contro11er-in-Charqe. If not C.I.C. then
l12S';TCI is set, else nothing is $et (IFC is sent)
1129 land the WAIT'S will hanq forever
113e RET
1132

7-366 AF~t38OA

01132
0031
0051
000D
0001'.
00fo'F
0040

141C 46553146
1421l 5233374B
1424 48414032
1428 564F
1421'. 0D
000F
142B 50463447
142F 3754
0006
1431 31
1432 FF
1433 32
1434 FF
1435 51
143<; FF

1437 Ilfi0D
1439 0E0F
143B ll1C14
143E 213314
1441 CD1C10

1444 0'i54
1446 0E06
1448 112a14
144B 213114
144E CD1C10

1451 CDD0l3
1454 CA5114

1457 11003C
1451'. 213514
145D CD1C12
1460 IB
1461 11'.
1462 E640
1464 (;1'.7714

1467 0601'.
1469 0E11
146B 213514
146E 11013C
1471 CD9F10
1474 C27714

1477 00

3C00
3C00
0011

1133
1134
1135
1136

'1137

APPLICATIONS

;APPLICATION EXAMPL8 CODE FOR 8~85
;
FGDNL
~'CDNL

FCDNT
CR
LF
LEND
SRQM
;

EQU
EQU
EQU
EQU
EQU
EQU
EQU

'2 '
'I'
'Q'
(lDt!
0AH
0FFH
40H

;Func gen device num "2" ASCII,lstn
;Freq ctr device num "I" ASCII,lstn
;Freq ctr talk address
;ASCI! carriage return
;ASCII line feed
;Llst end for Talk/Listen lists
;Blt indicating device sent SRO

1138
1139
1140
1141
1142
1143 FGDATA: DB 'FUIFR37KHAM2VO',CR ;Data to set up func. gen

1144 LIr-ll EQU ;Buffer length
1145 FCDATA: DB

15
'PF4G7T' ;Data to set up freq ctr

I; ;Buffer length 1146 LIM2
1147 LL1:

EQU
DB FCDNL, LEND ;Listen list for freq ctr

1148 LL2: DB FGDNL,L8ND ;Listen list for func. gen

1149 TL1: DB FCDNT,LE:ND ;Talk list for freq ctr

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
111;1
1162
1163
111';4
111i5
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
117R
1179
1180
1181
1182
1183
1184
1185
1181;
1187
1188
1189
1190
1191
1192
1193
1194
1195
1195
1197

;SETUP FUNCTION
MVI

,

MVI
LXI
LXI
CALL

GENERATOR
B,CR ;E:OS
C,LI.,1 ;Count
D,FGDATA
H,LL2 ;Listen
SEND

;Data pointer
list pointer

;SETUP FREO COUNTER

.,VI
MVI
LXI
LX!
CALL

B,'T' ;EOS
C, LI.,2 ;Count
D,FCDATA
H,LL1 ;Listen
SEND

;Data pointer
list pointer

;WAIT FOR SHQ FROM FREO CTR
,
LOOP:

,

CALL
JZ

SRQD
LOOP

;Has SHQ occurred ?
;No, wait for it

;SERIAL POLL TO CLEAR SRQ

LXI
LXI
CALL
DCX
LDAX
ANI
JZ

D,SPBYTE:
H,TLI
SPOL
D
D
SRQM
ERROR

;Buffer pointer
;Ta1k list pointer

;Backup buffer pointer to ctr byte
;Get status byte
;Did ctr assert SRQ ?
;Ctr should have said yes

;RECEIVE READING FROM COUNTER

;

MVI
.,VI
LXI
LXI
CALL
JNZ

B,LF ;EOS
C,LI.,3 ;Count
H,TL1 ;Ta1k list pointer
D,FCDATI ;Data in buffer pointer
RECV
ERROR

;******* rest of user processing goes here *****

;
ERROR:
;
ORG
SPBYTE:
LI.,3

NOP
ETC.
3C~0f1
OS
EOU

1
17

;User dependant error handling

;Location for serial poll byte
;r-lax freq counter input

7-367 AFN-Ol38OA

APPLICATIONS

3CflJl 1198 FCOATI : OS LIM3 ;Freq ctr input buffer
1199 EIliO

PUBLIC SYMBOLS

EXTERNAL SYI~BOLS

US EH SW180LS
ABOHT A 00F9 ADHOI A 09~< ADIl"1.D A 00~4 ADRST A 0~'4 AUX'1D A 00'0; .l\XRA. A 0060 AXRB A 00AO
8IM A 0001 HOF A 0001 BOM A 0~02 BUSST A QJ~~FI: CAHCY A 0031 CLKRT A 0023 CLRA + 0007
CLHS'F A 0068 CMD92 A 0369 CPT A A0RA CPT~N A Ao.I~l CPTRG A 011Jhlj CR A ~~(1) OCL A 0914
OCLR A !lEC DCLR1 A llF0 DCLR2 A 1209 DI~ A 0"11~ DOUT A 0O'. DTO!:l A 00'0 DTOL2 A 00e0
Eoeos A 0004 END"1K A 0010 EOIS A 0038 EOIST A 002" EOSq A 00')7 ERFLG A ~0t;8 ,eRR'~ A 0068
ERROR A 1477 EVBIT A 0010 EVCST A 0068 EVREG A 0068 EXPP A' 00FS FCDATA A 1428 FCDATI A 3C01
,'CDNL A 0031 FCDN'F A 0051 FGDATA A 1d1C FG~NL A 0032 FNHSK A 0001 GET A 0008 GIDL A 00F1
GS~C A 00F4 G1'SB A 00F6 HOEND A 0002 HO~S~ A 0001 lACK A 0 •• B IBFBT A 00"2 IBFF A 0010
IFCL A 1409 INIT A 1000 INTI A 00<1 INT2 A 00'2 INTM A 00A0 1'ITMl A 0.'H INTMR A 0068
IN'FST A 0069 LA A 0001 LEND A 00FF LF A 000A LIM 1 A 000F Llt"t2 A 000' LIM3 A 0011
LL1 A 1431 LL2 A, 1433 LOCL A 13F' LON A A~4A LOOP A 14'1 MDA A A~~l MLA A AA21
~ODE1 A 03~1 MTA A 0~41 ~VC~D A 0007 OBFF A A~~8 PCTL A 1344 PCTL1 ,A 138A PPC A 00AS
PPD A 0070 PPDS A 12E0 PPDSl A 12E4 PPDS2 A 12FD PPE A 0~'A PPE~ A 12A3 PPEN1 A 12A7
PPEN2 A 12D8 PPOL A 1327 PPU A A01S PPUN A 131B PRT91 A 00~0 PR'fn A 00~~ PRTF A 006F
RANGE + 0005 RaST A 00E7 ReST A 0"EI}' RCTL A 139B RC1'Ll A llCA RCTL2 A 13CF RECV A 109F
RECVl A 10EA REcn A 11A5 RECV3 .~ 11O' RECV4 A 111A HECVS A 1117 RECV" A 1139 REME A 13E3
RER,' A 00E4 RERM. A 03EA REVC A 00E3 RIN:"I A 00ES RSET A 00F2 RSTI A 00F3 RTOU'F A 00E9
SDEOI A 0006 SEND A lAIC SEND1 A 102E SEND2 A 1047 SEND3 A 10'9 SEND4 A 1070 SENDS A 107F
SEN06 A 1088 SE'FF + 0000 SLOC A B0F7 SPBY'FE A 3C00 SPCNI A BAF0 SPD A 0019 spe A 0018
SPIF A 0004 SPOL A 121C SPOL1 A 123D SPOL2 A l?94 SREM A 0AF8 S~OBT A 00?0 SROD A 1300
SRQD1 A 13DB SRQD2 A 13£2 SROM A 0040 STCNI A 0AFE TA A 0002 TCASY A 00FC 'feIF A 00A2
'FCNTR A 00FA TCSY A 00FD 'FCT A 0009 'FLl A 1435 TL01\l A "ACA 'ro~ A A"qA TQREG A 00l'iS
TOST A 0068 TOU'Fl A 0001 TOUT2 A 00~2 TOUT3 A 0AA4 'fRIG A !lBC TRIG1 A 11C0 ,!,RIG2 A 1109
UNL A AB3F VSCMD A BeeF WAITI + 00A2 WAITO + AA01 WAITT + 0004 WAITX + 0AA3 '.EVC A A0E2
WOU'f A 00E1 XFER A 113A XFERl A 1153 XFER2 A 116C XFER 1 A 1193 XFER4 A 11BB

ASSEI~BLY CQI4PLETE, NO ERRORS

7-368 AfN.0138OA

APPLICATIONS

APPENDIXB

TEST CASES FOR THE SOFTWARE DRIVERS

The following test cases were used to exercise the
software routines and to check their action. To
provide another device/controller on the GPIB a
ZT488. GPIB Analyzer was used. This analyzer

acted as a talker, listener or another controller as
needed to execute the tests. The sequence of out­
puts are shown with each test. All numbers are
hexadecimal.

SEND TEST CASES

B =44
C = 30

DE = 3E80
HL = 3E70

3E70: 20 30 3E 3F
3E80: 11 44

GPIB output: 41 ATN
3FATN
20ATN
30ATN
3EATN
11
44EOI

Ending B =44
Ending C = 2E
Ending DE = 3E82
Ending HL = 3E73

RECEIVE TEST CASES

B =44. 44
C = 30 30

DE = 3E80 3E80
HL = 3E70 3E70

3E70: 40 50
GPIB output: 40ATN 50ATN

3F ATN 3F ATN
21 ATN 21 ATN

ZT488 Data 1 1
In 2 2

3 3
4 4
44 5,EOI

Ending A =0 0
Ending B =0 0
Endi~g C = 2B 2B
Ending DE = 3E85 3E85
Ending HL = 3E71 3E71

SERIAL POLL TEST CASES

C = 30
DE = 3E80
HL = 3E70

3E70: 40
50
5E
5F

44
2
3E80
3E70

41ATN
3FATN
20ATN
30ATN
3EATN
11
44 EOI

44
0
3E82
3E73

44 44
30 30
3E80 3E80
3E70 3E70
5E 5F
5EATN
3FATN
21 ATN
1
2
3
44,EOI

0 5F
0 44
2C 30
3E84 3E80
3E7l 3E70

C = 30
DE = 3E80
HL = 3E70

3E70: 5F
GPIB output: 3F ATN

21 ATN
18ATN

7-369

44
0
3E80
3E70

41ATN
3FATN
20ATN
30ATN
3EATN

44
0
3E80
3E73

44 44 44
4 4 0=256
3E80 3E80 3E80
3E70 3E70 3E70
40 40 40
40ATN 40ATN 40ATN
3FATN 3FATN 3F ATN
21 ATN 21 ATN 21 ATN
1 11 1
2 22 2
3 33 3
4 44 44

40 0 0
40 0 0
0 0 FC
3E84 3E84 3E84
3E71 3E7l 3E71

AFN-Ol38OA

APPLICATIONS

GPIB output: 3F ATN
output: ,21 ATN
output: 18 ATN
output: 40 ATN
input*: '00
output: 50 ATN

19ATN
EndingC = 30
Ending DE = 3E80
Ending HL = 3E70

input*: ' 41
output: SE A TN
input*: 7F
output: 19 A TN

*NOTE: leave ZT488 in single step mode even on input
Ending C = 30
Ending DE = 3E83
Ending HL = 3E73

Ending 3E80: 00 41 7F

PASS CONTROL TEST CASES

HL = 3E70 3E70 3E70
3E70: 40 41(MTA) SF

GPIB output: ,40 ATN
09ATN
-ATN

Ending HL = 3E71 3E70 3E70
Ending A = 02 41(MTA) SF

RECEIVE CONTROL TEST CASES

GPIB input 10 ATN ' 40ATN
A'i"N 09ATN

Run Receive Control
GPIB Input Am
Ending A = 0 0

PARALLEL POLL ENABLE TEST CASES

DE = 3E80
HL = 3E70 ,

3E70: 20 30 3E 3F
3E80: 01 02 03

GPIB output: 3F ATN
20ATN
OSATN
61 ATN
30ATN
OSATN
62ATN
3EATN
OSATN
63ATN

Ending DE = 3E83
Ending HL = 3E73

3E80
3E70
3F

3FATN

3E80
3E70

PARALLEL' POLL DISABLE TEST CASES

HL = 3E70 3E70
3E70: 20 30 3E 3F 3F

7-370

41 ATN
09ATN

ATN
09

GPIB output: 3F A TN
20ATN
30ATN
3EATN
05ATN
70ATN

Ending HL = 3E73

APPLICATIONS

3FATN
05ATN
70ATN

3E70

PARALLEL POLL UNCONFIGURE TEST CASE

GPI~ output: 15 ATN

PARALLEL POLL TEST CASES

Set DID # 1 2 3 4 5 6 7 8 None
EndingA 1 248 10 20 40 80 0

SRQ TEST

Set SRQ momentarily Reset SRQ
Ending A = 02 00

TRIGGER TEST

HL = 3E70
DE = 3E80
BC = 4430

3E70: 20 30 3E 3F
GPIB output: 3F A TN

20ATN
30ATN
3EATN
08ATN

Ending HL = 3E73
DE = 3E80
BC = 4430

DEVICE CLEAR TEST

HL = 3E70
DE = 3E80
BC = 4430

3E70: 20 30 3E 3F
GPIB output: 3F ATN

20ATN
30ATN
3EATN
14ATN

Ending HL = 3E73 .
DE = 3E80
RC =4430

7-371 AFN.(J138OA

··APPLICATIONS

XFER TEST

B = 44
HL = 3E70

3E70: 40 20 30 3E 3F
GPIB output: 40ATN

3FATN
20ATN
30ATN
3EATN

GPIB input: 0
11
2
3
44

Ending A = 0
B = 44

HL = 3E74

APPLICATION EXAMPLE
GPIB OUTPUT/INPUT

GPIB output: 41 ATN
3FATN
32ATN
46
55
31
46
52
33
37
4B
48
41
4D
32
56
4F
OD EOI
41 ATN
3F ATN
31 ATN
50
46
34
47
37
54EOI

GPIB input: SRQ
GPIB output: 3FATN

21 ATN
18 ATN
51 ATN

GPIB input: 40 S1fQ
GPIB output: 19ATN

51 ATN

7-37.2 ~138OA.

3F ATN
21 ATN

GPIB input: 20
2B
20
20
20
33
37
30
30
30
2E
30
45
2B
30
OD
OA

GPIB output: XX ATN

Mnemonic

ACG addressed command group

ATN attention

DAB data byte

DAC data accepted

DAV data valid

DCL device clear

EN I:> end

EOS. end. of string

GET group execute trigger

GTL go to local

lOY identify

lFC interface clear

LAG listen address group

LLO local lock out

MLA my listen address

MTA my talk address

MSA my secondary address

APPLICATIONS

APPENDIX C

REMOTE MESSAGE CODING

Bu. Sl~nal LII1"(') and
CodlllJ,:: That AhM'rU, the

C Truf.' Valu(' 01 th,' Mpssage
T I D D NN
y a ,I I DIWA E S I R
p () 0 AFA T OR F E

Message Name e H 7 (j 5 4 3 2 J VDC N I Q C N

M At: Y o 0 0 X X X X XXX J X X X X

U lIC X X X X X X X X XXX 1 X X X X

(Notes 1.9) M DD ODD D D DOD XXX '» X X X X
t\ 7 (j 5 4 3 2 1

U HS X X X X X X X X XX0 X X X X X

U HS X X X X X X X X lXX X X X X X

M UC y o 0 1 0 1 It 0 XXX 1 X X X X

U ST X X X X X X X X XXX II 1 X X X

(Notes 2. 9) M DD E E E E E E E E XXX II X ~ X X
8 7 6 5 4 3 2 1

M AC y 0 0 It 1 It It It XXX 1 X X X X

M AC y 0 It o 0 0 It XXX 1 X X X X

U UC XXXXXXXX XXX X 1 X X X

U UC X X X X XXX X XXX X X X 1 X

M AD y 0 XXX X X XXX 1 X X X X

M UC y o 0 1 o 0 .0 1 XXX X X X X

(Note 3) M AD Y 0 L L L L LXXX 1 X X X X
5 4 3 2 1

:Note 4) M AD Y 0 T T T T T XXX 1 X X X X
5 4 3 2 1

(Note 5) M SE y S S S S S XXX 1 X X X X
5 4 3 2 1

7-373

APPLICATIONS

Mnemonic

NUL null byte

OSA other secondary address

OTA other talk address

PCG primary command group

PPC parallel poll configure

PPE parallel poll enable

PPD parallel poll disable

PPRI parallel poll response 1

PPR2 parallel poll response 2

PPR3 parallel poll response 3

PPR4

PPR5

PPR6

PPR7

PPR8

PPU

REN

RFD

RQS

SCG

SDC

SPD

SPE

SRQ

STB

TCT

TAG

UCG

parallel poll response 4

parallel poll response 5

parallel poll response 61
parallel poll response 7

parallel poll response 8

parallel poll unconfigure

remote enable

ready for data

request service

secondary command group

selected device clear

serial poll disa ble

serial poll enable

service request

status byte

take control

talk address group

universal command group

UNL unlisten

UNT untalk

Message Name

(Note 6)

(Note 7)

(Note 10)

(Note 10)

(Note 9)

(Notes 8, 9)

(Note 11)

T
y
p
e

Bus Signal Line(s) and
Codmg That Asserts the

C True Value of the Message
I D D NN
a I I DRD A E SIR

o 0 AFA TOR F E
8 7 6 5 4 3 2 1 VDC N I Q C N

M DD 0 0 0 0 0 0 0 0 xxx X X X X X

M SE (OSA = SCG " MSA)

M AD (OTA = TAG" MTA)
M - (PCG = ACG V UCG V LAG V TAG)

M AC Y 0 0 0 0 0 I XXX 1 X X X X

M SEY 0SPPP XXXIXXXX
321

M SEY DDDD XXXIXXXX
4 3 2 1

U

U

U.
U

U

U

U

V

M

U

U

U

M

M
M
M

U

M

M
M

M

STXXXXXXXI

STXXXXXX1X

STXXXXXIXX

STXXXX1XXX

STXXXIXXXX

STXXIXXXXX

STX XXXXXX

ST 1 X X X X X X X

UC Y 0 0 1 0 1 0 I
UC X X X X X X X X

HS X X X X X X X X

ST X XXXXXX

SEYIIXXXXX

AC Y 0 0 0 0 I 0 0
UC Y 0 0 0 0 1
UC Y 0 0 1 I 0 0 0
ST XXXXXXXX

STSXSSSSSS
8 654 3 2 I

AC Y 0 0 0 I 0 0 1
AD Y 1 0 X X X X X

UC Y 0 0 X X X X

M AD Y 0
M AD Y o

XXX 1

XXX 1

XXX

XXX

XXX 1

XXX 1

XXX

X X X

XXX

X X X

X X X

X X X

X X X

X X X

XXX 1 X X X

XXX 1 X X X X

XXX X X X X 1

X0X X X X X X

XXX fI X X X X

XXX X X X X

XXX XXXX

XXX X X X X

XXX X X X X

XXX X X 1 X X

XXX 0 X X X X

XXX X X X X

XXX I X X X X

XXX X X X X

XXX

XXX

X X X X

X X X X

The 1/0 coding on ATN when sent concurrent with multiline messages has been added to this revision for interpre­
tive convenience.

NOTES:
(I) DI-D8 specify the device dependent data bits.
(2) EI-E8 speCIfy the device dependent code used to

indicate the EOS message.
(3) LI-L5 specify the device dependent bits of the

device's listen address.
(4) TI-T5 specify the device dependent bits of the

device's tal k address.
(5) SI-S5 specify the device dependent bits of the de­

vice's secondary address.
(6) S specifies the sense of the PPR,

8 Hesponse
II
1

P1-P3 specify the PPR message to be sent when a paral­
lel poll is executed.

7-374

P3 P2 PI PPR Message
8 PPRI

PPR8
(7) DI-D4 specify don't-care bits that shall not be

decoded by the receiving device. It.is recommended
that all zeroes be sent.
. (8) SI-86, 88 specify the device dependent status.
(0107 is used for the RQS message.)

(9) The source of the message on the ATN line is
always the C function, whereas the messages on the
DID and EO! lines are enabled by the T function

(10) The source of the messages on the ATN and EO!
lines is always the C' function, whereas the SOurce of
the mt'ssages on the DIO lines is always the PP func­
tion.

(11) This code is provided for system use, see 6.3.

AFN-0138OA

inter '

cI> INTEL CORPORATION, 1983

APPLICATION
NOTE

7-375

AP-166

October 1983

ORDER NUMBER: 2~32-o01

"
AP-166

INTRODUCTION

This application note explains the Intel~ 829lA GPIB
(General Purpose Interface Bus) Talker/ Listener as a
component, and shows its use in GPIB interface design
tasks.

DEVICE A
ABLE TO ~

TALK, LISTEN,
AND

CONTROL

(e.g. calculator)

DEVICE B
ABLE TO --.:.....-

TALK AND
LISTEN

(e.g. digital
multimeter)

The first section of this note presents an overview of IEEE
488 (GPIB). The second section introduces the Intel~
GPIB component family. A detailed explanation of the
8291 A follows. Finally, some application examples using
the component family are presented.

f
(- DATA BUS

DATA BYTE

(10- t--
TRANSFER
CONTROL

DEVICEC
ONlY ABLE
TO LISTEN

(e.g. signal
generator)

DEVICED
ONLY ABLE

TO TALK

(e.g. counter)

-'-

(... -- -...
, V

-

GENERAL
INTERFACE

MANAGEMENT

} DIO 1 ... 8 Data Input/Output

DAV

NRFD

NDAC

IFC

ATN

SRC

REN

EOI

Data Available

Ready lor Data

Data Accepted

Nol

Not

Inte rlace Clear

nHon Aile

Servl ce Request

ote Enable

or Identify

R'\m

End

Figure 1. Interface Capa'1l11tles and Bus Structure

7-376 230832-001

AP-166

OVERVIEW OF IEEE 488/GPIB

The GPIB is a parallel interface bus with an asynch­
ronous interlocking data exchange handshake mecha­
nism. It is designed to provide a common communication
interface among devices over a maximium distance of 20
meters at a maximum speed of I Mbps. Up to 15 devices
may be connected together. The asynchronous interlock­
ing handshake dispenses with a common synchronization
clock, and allows intercommunication among devices
capable of running at different speeds. During any
transaction, the data transfer occurs at the speed of the
slowest device involved.

The GPIB finds use in a diversity of applications
requiring communication among digital devices over
short distances. Common examples are: programmable
instrumentation systems, computer to peripherals, etc.

The interface is completely defined in the IEEE
Std.-488-1978.

A typical implementation consists of logical devices
which talk (talker), listen (listeners), and control GPIB
activity (controllers).

Interface Functions

The interface between any device and the bus may have a
combination of several different capabilities (called
'functions,). Among a total of ten functions defined, the
Talker, Listener, Source Handshake, Acceptor Hand­
shake and Controller are the more common examples.
The Talker function allows a device to transmit data. The
Listener function allows reception. The Source and
Acceptor Handshakes, synchronized with the Talker and
Listener functions respectively, exchange the handshake
signals that coordinate data transfer. The Controller
function allows a device to activate the interface functions
of the various devices through commands. Other interface
functions are: Service request, 'Remote local, Parallel
poll, Device clear and Device trigger. Each interface may
not contain all these functions. Further, most of these
functions may be implemented to various levels (called
'subsets,) of capability. Thus, the overall capability of an
interface may be tailored to the needs of the communicat­
ing device.

Electrical Signal Lines

As shown in Figure I, the G PIB is composed of eight data
lines (D08-DOI), five interface management lines
(lFC, ATN, SRQ, REN, EOI), and three transfer control
lines (DAV, NRFD, NDAC).

The eight data lines are used to transfer data and
commands from one device to another with the help of
the management and, control lines. Each of the five
interface management lines has a specific function.

ATN (attention) is used.by the Controller to indicate that
it (the controller) has access to the GPIB and that its
output on the data lines is to be interpreted as a
command. ATN is also used by the controller along with
EOI to indicate a parallel poll.

SRQ (service request) is used by a device to request
service from the controller.

REN (remote enable) is used by the controller to specify
the command source of a device. A device can be issued
commands either locally through its front panel or by the
controller.

EOI (end or identify) may be used by the controller as
well as a talker. A controller uses EOI along with ATN to
demand a parallel poll. Used by a talker, EOI indicates
the last byte of a data block.

IFC, (interface clear) forces a complete GPIB interface to
the idle state. This could be considered the GPIB's
"interface reset." GPIB architecture allows for more than
one controller to be connected to the bus simultaneously.
Only one of these controllers may be in command at any
given time. This device is known as the controller-in­
charge. Control can be passed from one controller to
another. Only one among all the controllers present on a
bus can be the system controller. The system controller is
the only device allowed to drive IFC.

lhlnsfer Control Lines

The transfer control lines conduct the asynchronous
interlocking three-wire handshake.

DAV (data valid) is driven by a talker and indicates that
valid data is on the bus.

NRFD (not ready for data) is driven by the listeners and
indicates that not all listeners are ready for more data.

, NDAC (not data accepted) is used by the listeners to
indicate that not all listeners have read the GPIB data
lines yet.

The asynchronous 3-wire hand~hake flowchart is shown
in Figure 2. This is a concept fundamental to the
asynchronous nature of the GPIB and is reviewed in the
following paragraphs.

Assume that a talker is ready to start a data'transfer. At
the beginning of the handshake, NRFD is false indicating
that the listener(s) is ready for data. NDAC is true
indicating that the listener(s) has not accepted the data,

. since no data has been sent yet. The talker places data on
the data lines, waits for the required settling time, and
then indicates valid data by driving DAV true. All active
listeners drive NRFD true indicating that they are not

7-377 230832-001

inter AP-166

SOURCE

NRFD SIGNAL LINES GOES HIGH YES
r---...l-----, ONLY WHEN ALL ACCEPTORS ARE READY

DATA IS VALID AND MAY

NOW BE ACCEPTED

DATA IS NOT TO BE CONSIDERED

VALID AFTER THIS TIME

NO

FLOWDIAQRAM OUTLINES SEQUENCE OF EVENTS DURING TRANSFER
, OF DATA BYTE. MOR.E THAN ONE LISTENER AT A TIME CAN ACCEPT
DATA BECAUSE OF LOGICAL CONNECTION OF NRFD AND NDAC
LINES. "

Figure 2. Handshake Flowchart

7-378 230832-001

inter
ready for more data. They then read the data and drive
NDAC false to indicate acceptance. The talker responds
by deasserting DAY and readies itself to transfer the next
byte. The listeners respond to DAY false by driving
NDAC true. The talker can now drive the data lines with
a new data byte and wait for NRFD to be false to startthe
next handshake cycle.

Bus Commands

When ATN and DAY are true data patterns which have
been placed by the controller on the GPIB, they are
interpreted as commands by the other devices on the
interface. The GPIB standard contains a repertory of
commands'such as MTA (My Talk Address), MSA (My
Secondary Address), SPE (Serial Poll Enable), etc. All
other patterns in conjunction with ATN and DAY are
classified as undefined commands and their meaning is
user-dependent.

Addressing Techniques

To allow the controller to issue commands selectively to
specific devices, three types of addressing exist on the
GPIB: talk only/listen only (ton/Ion), primary, and
secondary.

Ton/Ion is a method where the ability of the GPIB
interface to talk or listen is determined. by the device and
not by the GPIB controller. With this method, fixed roles
can be easily designated in simple. systems where reassign­
ment is not necessary. This is appropriate and convenient
for certain applications. For example, a logic analyzer
might be interfaced via the GPIB to a line printer in order
to document some type of failure. In this case, the line
printer simply listens to the logic analyzer, which is a
talker.

The controller addresses devices through three com­
mands, MTA (my talk address),MLA (my listen address),
and MSA (my secondary address). The device address is
imbedded in the command bit pattern. The device whose
address matches the imbedded pattern is enabled. Some
devices may have the same logical talk and listen
addresses. This is allowable since the talker and listener
are separate functions. However, two of the same func­
tions cannot have the same address.

In primary addressing, a device is enabled to talk (listen)
by receiving the MTA (MLA) message.

Secondary addressing extends the address field from 5 to
10 bits by allowing an additional byte. This <ldditional
byte is passed via the MSA messa~e. Secondaryaddress­
ing can also be used to logically divide devices into
various subgroups. The MSA message applies only to the ~
device(s) whose primary address immediately preceed it.

INTEL'S® GPIB COMPONENTS

The logic designer implementing a GPIB interface has, in
the past, been faced with a difficult and complex discrete
logic design. Advances in LSI technology have produced
sophisticated microprocessor and peripheral devices
which combine to red uce this once complex interface task
to a system consisting of a small set of integrated circuits
and some software drivers. A microprocessor hardware/
software solution and a high-level language source code
provide an additional benefit in end-product mainte­
nance. Product changes ~re a simple matter of revising
the product software. Field changes are as easy as
exchanging EPROMS.

Intel® has provided an LSI solution to GPIB interfacing
with a talkerflistener device (829IA), a controller device
(8292), and a transceiver (8293). An interface with all
capabilities except for the controller function can be built
with an 829lA and a pair of 8293's. The addition of the
8292 produces a complete interface. Since most devices in
a GPIB system will not have the controller function
capability, this modular approach provides the least cost
to the majority of interface designs.

Overview of the 8291 A
GPIB Talker/Listener

The Intel® 8291A GPIB Talker/Listener operates over a
clock range of I to 8 MHz and is compatible'with the
M CS-85, iAPX-86, and 8051 families of microprocessors.

A detailed description of the 829lA is given in the data
sheet.

The 8291A implements the following functions: Source
Handshake (SH), Acceptor Handshake (AH), Talker
Extended (TE), Service Request (SRQ), Listener Ex­
tended (LE)., Remote/Local (RL), Parallel Poll (PP2),
Device Clear (DC), and Device Trigger (DTj.

Current states of the 8291A can' be determined by
examining the device's status read registers. In addition,
the 8291A s;ontains 8 write registers. These registers are
shown in Figure 3. The three register select pins RS3-
RSO are used to select the desired register.

The data - in register moves data from the GPIB to the
microprocessor or to memory when the 8291A is
addressed to listen. When the 8291 A is addressed to talk,
it uses the data - out register to move data onto the G PIB.
The serial poll mode and status registers are used to
request service and program the serial poll status byte.

A detailed description of each of the registers, along with
state diagrams can be found in the 829lA data sheet.

7-379 230632-001

READ REG.ISTERS REGISTER SELECT
CODE

RS2 RSl RSO

WRITE REGISTERS

I 017 1 016 1 015 1 014 1 013 1 012 1 011 1 010 I 0 0 0 1 007\ 006 1 005 1 004 1 003 1 002 1 001 1 000 I

DATA IN DATA OUT

o

INTERRUPT STATUS 1 INTERRUPT ENABLE 1

o o I 0 I 0 IDMAOIDMAII SPC 1 LLOC IREMC 1 ADSCI

INTERRUPT ENABLE 2

! S8 1 SROS 1 S6 1 S5 I S41 S3 I S2 I Sl 1 0 1 I S81 RSV 1 S6 1 S5 1 S4 I S3 I S2 I Sl 1

SERIAL POLL STATUS 2 SERIAL POLL MODE

o o 1 TO I LO I 0 I 0 1 0 I 0 IADMl IADMO\

ADDRESS STATUS ADDRESS MODE

o

COMMAND PASS THROUGH

ADDRESS 011

ADDRESS 1 EOS

Figure 3. 8291A REGISTERS

7..:380 230832-001

inter AP-166

Address Mode

The address mode and status registers are used to
program the addressing modes and track addressing
states. The auxiliary mode register is used to select a
variety of functions. The command pass through register
is used for undefined commands and extended addresses.
The address 0/1 register is used to program the addresses
to which the 8291A will respond. The address 0 and

1. MODE: - Talker has single address ofOlH
- Listener has single address of 02H

CPU WRITES TO: PATTERN

Address Mode Register 00000001
Address 0/1 Register 00100001
Address 0/1 Register 1100 0010

2. MODE: - Talker has single address of 01 H
- Listener has single address of 02H

CPU WRITES TO: PATTERN

Address Mode Register 00000001
Address 0/1 Register 0100 0010
Address 0/1 Register 1010 0001

address I registers allow reading of these programmed
addresses plus trading of the interrupt bit. The EOS
register is used to program the end of sequence character.

Detailed descriptions of the addressing modes available
with the 8291A are described in the 8291A data sheet.
Examples of how to program these modes are shown
below.

COMMENT

Select Mode I Addressing
Major is Talking. Address = 01 H
Minor is Listener. Address = 02H

COMMENT

Select Mode I Addressing
Major is Listener. Address = 02H
Minor is Talking. Address = OIH

Note that in both of the above examples, the listener will respond to a MLA message with five least significant bits equal
to 02H and the talker to a 01 H.

,3. MODE: - Talker and listener both share a single address of 03H.

CPU WRITES TO: PATTERN COMMENT

Address Mode Register 00000001 Selects Mode I Addressing
Address 0/1 Register 00000011 Talker and Listener Address = 03
Address 0/1 Register 1110 0000 Minor Address is disabled

4. MODE: - Talker and listener have a primary address of 04H and a secondary address of 05H

CPU WRITES TO: PATTERN COMMENT

Address Mode Register 0000 0010 Selects Mode 2 Addressing
Address 0/1 Register 0000 0100 Primary Address = 04H
Address 0/1 Register 1000 0101 Minor Add'ress is disabled

5. MODE: - Talker has a primary address of 06H. Listener has a primary address of 07H

CPU WRITES TO: PATTERN COMMENT

Address Mode Register 0000 0011 Select Mode 3
Address 0/ t Register 00100110 Talker Address = 06
Address 0 /1 Regis~er 1100 0111 Listener Primary = 07

The CPU will verify the ~condary addresses which could be the same or different.

7-381 230832-001

inter AP·166

APPLICATION OF THE 8291A

This phase of the application note will examine program­
ming of the 8291A, corresponding bus commands and
responses, CPU interruption, etc. for a variety of GPIB
activities. This should provide the reader with a clear
understanding of the role the 8291 A performs in a GPIB
system. The talker function, listener function, remote
message handling, and remote / local operations including
local lockout, are discussed.

Talker Functions

TALK-ONLY (ton). In talk only mode the 8291A will not
respond to t!J.e MTA message from a controller. Gener­
ally, ton is used in an environment which does not have a
controller., Ton is also employed in an interface that
includes the controller function.

When the 8291A is used with the 8292, the sequence of
events for initialization are as follows:

I) The Il)terrupt/Enable registers are programmed.
2) Ton is selected.
3) Settling time is selected.
4) EOS character is loaded.
5) "Pon" local message is sent.
6) CPU waits for Byte Out (BO) and sends a byte to

the data out register.

Addressed Talker (Via MTA Message)

The GPIB controller" will direct the 8291A to talk by
sending a My Talk Address (MTA) message containing
the 8291A's talk address. The sequence of events is as

, follows:

I) The interrupt enable and serial poll mode registers
are programmed.

2) Mode I is selected.
3) Settling time is selected.
4) Talker and listener addresses are programmed.
5) Power on (pon) local message is sent.
6) CPU waits for an interrupt. When the controller has

sent the MTA message for the 8291A an interrupt
will be generated if enabled and the ADSC bit will
be set.

7) CPU reads the Address Status register to determine
if the 8291A has been addressed to talk (TA = I).

8) CPU waits for an interrupt from either BO or
ADSC.

9) When BO is set, the CPU writes the data byte to the
data out register.

10) CPU continues to poll the status registers.
II) When unaddressed ADSC, will be set and TA reset.

LISTENER FUNCTIONS

LISTEN-ONLY (Ion). In listen-only mode the 8291A will

not respond to the My Listen Addres's (MLA) message
from the controller. The sequence of events is as follows:

I) The Interrupt Enable registers are programmed.
, 2) Lon is selected.
3) EOS characted is programmed.
4) "Pon" local message is sent. '
5) CPU' waits for BI and reads the byte from the

data-in register.

Note that enabling both ton and Ion can create an internal
loopback as long as another listener exists.

Addres$8d listening
(Via the MLA Message)

The GPIB controller will direct the 8291A to listen by
sending a MLA message containing the 8291A's listen
address. The sequence of events is as follows:

I) The Interrupt Enable registers are programmed.
2) The serial poll mode register is loaded as desired.
3) Talker and listener addresses are loaded.
4) "Pon" local message is sent
5) The CPU waits for an interrupt. When the controller

has sent the MLA message for the 8291A, the
ADSC bit will be set.

6) The CPU reads the Address Status Register to
determine if the 829lA has been addressed to listen
(LA = I).

7) CPU waits for an interrupt for BI or ADSC.
8) When BI is set, the CPU reads the data byte from

the data-in i'egister.
9) The CPU continues to poll the status registers.
10) When unaddressed, ADSC will be set and LA reset.

Remote/Local and Lockout

Remote and local refer to the source of control of a device
connected to the GPIB. Remote refers to control from
the G PIB controller-in-charge. Local refers to control
from the device's own system. Reference should be made
to the RL state diagram in the 8291A data sheet.

Upon "pon"the 8291A is in the local state. In this state the
REM bit in Interrupt Status 1 Register is reset. When the
GPIB controller takes control of the bus it will drive the
REN (remote enable) line true. This will cause the REM
bit and REMC (remote/local change) bit to be set. The
distinction between remote and local modes is necessary
in that some types of devices will have local controls
which have functions which are also controlled by remote
messages.

'In the local state the device is allowed to store, but not
respond to, remote messages which control functions
which are also controlled by local messages., A device

7-382 230832-001 '

inter AP-166

which has been addressed to listen will exit the local state
and go the the remote state if the REN message is true and
the local rtl (return to local) message is false. The state of
the "rtl" local message is ignored and the device is
"Iocked"into the local state ifthe LLO remote message is
true. In the Remote state the device is not allowed to
respond to local message which control function that are
also controlled by remote messages. A device wil exit the
remote state and enter the local state when REN goes
false. It will also enter the local state if the GTL (go to
local) remote message is true ·and the device has been
addressed to listen. It will also enter the local state if the
rtl message is true and the LLO message is false or ACDS
is inactive.

A device will exit the remote state and enter R WLS
(remote with lockout state) if the LLO (local lockout)
message is true and ACDS is active. In this mode, those
local message which control functions which are also
controlled by remote messages are ignored. In other
words, the "rtl ": message is ignored. A device will exit
RWLS and to to the local state if REN goes false. The
device will exit RWLS and go to LWLS if the GTL
message is true and the device is addressed to listen.

Polling

The IEEE-488 standard specifies two methods for a slave
device to let the controller know that it needs service.

These two methods are called Serial and Parallel Poll.
The controller performs one of these two polling methods
after a slave device requests service. As implied in the
name, a Serial Poll is when the controller sequentially
asks each device if it requested service. In a Parallel Poll
the controller asks all of the devices on the GPIB if they
requested service, and they reply in parallel.

Serial Poll

When the controller performs a Serial Poll, each slave
device sends back to the controller a Serial Poll Status
Byte. One of the bits in the Serial Poll Status Byte
indicates whether this device requested service or not.
The remaining 7 bits are user defined, and they are used
to indicate what type of service is required. The IEEE-488
spec only defines the service request bit, however HP has
defined a few more bits in the Serial Poll Status Byte.
This can be seen in figure 4.

If: SERVICE REQUESTED

0: SERVICE NOT REQUESTED

8 7 I 6 1 • • • • •

~-- DEVICE DEPENDENT STATUS BITS --.J
TYPICAL HP U~ 1:

r ·10:
SERVICE REQUESTED

SERVICE NOT REQUESTED

8 7 6 5 4 • • • 1

y l DEVICE DEFINED
1: OPERATION COMPLETE

0: BUSY

NOT USED

11: ERROR
1---------i

·1 0: NORMAL

Figure 4. The Serial Poll Status Byte

7-383 230832-001

Ap·166

When a slave device needs service it drives the ,SRQ line
on the GPIB bus true (low). For the 8291A this is done by
setting bit 7 in the Serial Poll Status Byte. The CPU in the
controller may be interrupted by SRQ or it may poll a
register to determine the state of SRQ. Using the 8292
one could either poll the interrupt status register for the
SRQ interrupt status bit, or enable SRQ to interrupt the
CPU. After the controller recognizes a service request, it
goes into the serial poll routine,.

The first thing the controller does in the serial poll routine
is assert ATN. When ATN is asserted true the controller
takes control of the GPIB, and all slave devices on the
bus must listen. All bytes sent over the bus while ATN is
true are commands. After the controller takes control, it
sends out a Universal Unlisten (UNL), which tells all
previously addressed listeners to stop listening. The con­
troller then sends out a byte called SPE (Serial Poll
Enable). This command notifies all of the slaves on the
bus that the controller has put the GPIB in the Serial Poll
Mode State (SPMS). Now the controller addresses the
first'slave device to TALK and puts itself in the listen
mode. When the controller reSets 'ATN the device
addressed to talk transmits to the controller its Serial
Poll Status Byte. If the device just polled was the one
requesting service, the SRQ line on the GPIB goes false,
and bit 7 in the serial poll status byte of the 8291 A is reset.
If more than pne device is requesting service, SRQ
remains low until all of the devices requesting service
have been polled, since SRQ is wire-ored. To continue the
Serial Poll, the controller asserts ATN, addresses the next
device to talk then reads the Serial Poll Status Byte.
When the controller is finished polling it asserts ATN,
sends the universal untalk command (UNT), then sends
the Serial Poll Disable command (SPD). The flow of the
serial poll can be seen from the' example in figure 5.

O. DEVICE A REQUESTS SERVICE (SRQ)
1. ASSERTATN
2. UNIVERSAL UNLISTEN (UNL)
3. SERIAL POLL ENABLE (SPE)
4. DEVICE A TALK ADDRESS (MTA)
5. RELEASE AfN
6. DEVICE A STATUS BYTE (STB) (RQS SET)
7. ASSERT ATN '
8. DEVICE B TALK ADDRESS (MTA)
9. RELE,ASE ATN
9. DEVICE B STATUS BYTE (STB) (RQ~ CLEAR)
1. ASSERT ATN '
2. DEVICE C TALK ADDRESS (MTA)
3. RELEASE ATN '
4. DEVICE C STATUS BYTE (STB) (RQS CLEAR)
S. ASSERT ATN
6. UNIVESAL UNTALK,.(UNT)
7. SERIAL POLL DISAbLE (SPD)
8. GO PROCESS SERVICE REQUEST

FIgure 5. Serial Polling

The following section describes the events, which happen
in a serial poll when 8291A and 8~92 are the controller,
and another 8291A is the slave device. While going
through this section the reader should refer to the register
diagr!1ms for tht; 8291A and 8292. -

A. DEVICE A REQUESTS SERVICE
(SRQ BECOMES TRUE)

The slave devices rsv bit in the 8291A's serial poll mode
register is set.

B. CONTROLLER RECOGNIZES SRQ
AND ASSERTS ATN '

Thf 8292's SPI pin 33 interrupts the CPU. The CPl,1
reads the 8292's Interrupt status register and finds the
SRQ bit set. The CPU tells the 8292 to 'Take Control
Synchronously' by writing a OFDH to the 8292's com­
mand register.

C. THE CONTROLLER SENDS OUT THE
FOLLOWING COMMANDS: UNIVERSAL
UNLISTEN (UNL), SERIAL POLL ENABLE
(SPE), MY T;\LK ADDRESS (MTA).

(MTA is a command which tells one of the devices on the
bus to talk.) ,

The CPU in the controller waits for a BO (byte out)
interrupt in the 8291A's interrupt status I register before
it writes to the Data Out register a 3FH (UNL), 18H
(SPE), OIOXXXXX (MTA). The x represents the pro­
grammable address of a device on the GPIB. When the
8291 A iri the slave device receives its talk address, the
ADSC bit in the Interrupt Status register 2 is set, and in
the Address Status Register TA and TPAS bits are set.

D. CONTROLLER RECONFIGVRES ITSELF
TO LISTEN AND RESETS ATN ,

The CPU in the controller puts the 8291A in the listen
only mode by writing ll40H to the Address Mode register
of the 8291A, and then a OOH to the Aux Mode register.
The second write is an 'Immediate Execute pon' which

\ must be used when switching addressing modes such as
talk only to listen only. To reset ATN the CPU tells the
8292 to 'Go To Standby: by writing a OF6H to the com­
mand regi~ter. The moment ATN is reset, the 8291A in
the slave device sets SPAS in Interrupt Status 2 register,
and transmits the serial poll status byte. SRQS in the
Serial Poll Status byte of the 8291 A slave device is reset,
and the SRQ line on the GPIB bus becomes false.

E. THE CONTROLLER READS THE SERIAL
POLL STATUS BYTE, SETS ATN,
THEN RECONFIGURES ITSELF TO TALK

The CPU in the controller waits for the Byte In bit (BI) in
the 8291 A's Interrupt Status I register. When this bi~is set
the CPU reads the Data In register to receive the Serial
Poll Status Byte. Since bit 7 is set, tbis was the device
which requested service. The CPU in the controller tells

, the 8292 to 'Take Control Synchronously' which asserts
ATN. The moment ATN is asserted true the 8291A in the
slave device resets SPAS, and sets the Serial Poll Com-

230832-001

AP-166

plete (SPC) bit in the Interrupt Status 2 register. The
controller reconfigures itself to talk by setting the TO bit
in the Address Mode register and then writing a OOH to
the Aux Mode register.

F. THE CONTROLLER SENDS THE
COMMANDS UNIVERSAL UNTALK (UNT),
AND SERIAL POLL DISABLE (SPD) THEN
RESETS THE SRQ BIT IN THE 8292
INTERRUPT STATUS REGISTER

The CPU in the controller waits for the BO Interrupt
status bit to be set in the Interrupt Status I register of the
8291A before it writes SFH (UNT) and 19H (SPD) to the
Data Out register. The CPU then writes a 2BH to .the
8292's command register to reset the SRQ status bit in the
Interrupt Status register. When the 8291 A in the slave
device receives the UNT command the ADSC bit in the
Interrupt Status 2 register is set, and the TA and TPAS
bits in the Address Status register will be reset. At this
point the controller can service the slave device's request.

Note that in the software listing of AP-66 (USING THE
8292 GPIB CONTROLLER) there is a bug in the serial
poll routines. In the 'SRQ ROUTINE' when the CPU
finds that the SRQ bit in the interrupt status register is
set, it immediately writes the interrupt Acknowledge
command to the 8292 to reset this bit. However the SRQ
GPIB line will still be driven true until the slave device
driving SRQ has been polled. Therefore, the SRQ status
bit in the 8292 will become set and latched again, and as a
result the SRQ status bit in the 8292 will still be set after
the serial poll. The proper time to reset the SRQ bit in the
8292 is after SRQ on the GPIB becomes false.

Parallel Poll

The 8291 A supports an additional method for obtaining
status from devices known as parallel poll (PPOL). This
method limits the controller to a maximum of 8 devices at
a time since each device will prod uce a single bit response
on the GPIB data lines. As shown in the state diagrams,
there are three basic parallel poll sates: PPIS (parallel poll
idle state), PPSS (parallel poll standby state), and PPAS
(parallel poll active state).

In PPIS, the device's parallel poll function is in the idle
state and will not respond to a parallel poll. PPSS is the
standby state, a state in which the device will respond to a
parallel poll from the controller. The response is inititated
by the controller driving both ATN and EOI true
simultaneously.

The 829lA state diagram shows a transition from PPIS
to PPSS with the "Ipe" message. This is a PP2 implemen­
tation for a parallel poll. This "Ipe" (local poll enable)
local message is achieved by writing 0 II USP 3P 2P, to the
Aux Mode Register with U=O. The S bit is the sense bit. If
the "ist" (individual status) local message value'matches
the sense bit, then the 8291 A will give a true response to a

parallel poll. Bits P r P, identify which data line is used for
a response.

For example, assume the programmer decides that the
system containing the 829lA shall participate in parallel
poll. The programmer, upon system initialization would
write to the Aux Mode Register and reset the U bit and
setthe S bit pillS identify a data line (PrP, bits). At "pon,"
the 8291A would not resond true to a parallel poll unless
the parallel poll flag is set (via Aux Mode Register
command).

When a status condition in the user system occurs and the
programmer decides that this condition warrants a true
response, then programmers software should set the
parallel poll flag. Since the S bit value matches the "ist"
(set) condition a true response will be given to all parallel
polls.

An additional method of parallel polling readi~g exists
known as a PPI implementation. In this case the
controller sends a PPE (parallel poll enable) message.
PPE contains a bit pattern similar to the bit pattern used
to program the "Ipe" local message. The 8291A will
receive this as an undefined command and use it to
generate an "Ipe" message. Thus the controller is specify­
ing the sense bits and data lines for a response. A PpD
(parallel poll disable) message exists which clears the bits
SP3P2P, and sets the U bit. This also will be received by
the 8291A and used to generate an "Ipe" false local
message.

The actual sequence of events is as follows. The controller
sends a PPC (parallel poll configure) message. This is an
undefined command which is received in the CPT register
and the. handshake is held off. The local CPU reads this
bit pattern, decodes it, and sends a VSCMD message, to
the Aux Mode Register. The controller then sends a ppe
message which is also recieved as a undefined command
in the CPT register. The local CPU reads this, decodes it
clears the MSB, and writes this to ~he Aux Mode Register
generating the "lpe" message.

The controller then sends ATN and EOI true and the
829iA drives the appropriate <lata line ifthe "ist"(paralle1
poll flag) is true. The contioller will ~hen send a ~PD
(parallel poll disable) message (agam, an undef~ned
command). The CPU reads this from the CPT register
and uses it to write a new "Ipe" message (this "Ipe"
message will be false). The controller then sends a PPJ]
(parallel poll unconfigure) message. Since, this is also an
undefined command, it goes into the CPT register. When
the local CPU decodes this, the CPU should clear the
"ist" (parallel poll flag).

APPLICATION EXAMPLES

In the course of developing this application note, two
complete and identical GPIB systems were built. The

, ,

7-:385 230832-001

inter AP-168'

schematics and block diagrams are contained in Appen­
dix 1. These systems feature an 8088 CPU, 8237'DMA
controller,serial I/O (8251A and 8253),RAM, EPROM,
and a complete GPIB talker/listener contrdller. 'Jumper
switches were provided to select between a controller
function and a talker/listener function. This system
design is based on the design oflntel's SDK-86 protot>'!'­
ing kit 'and thus shares the same I/O and memory
addresses. This system uses the same downlo~d software
to transfer object files from Intel development systems.

1\vo Software Drivers

Two software drivers were developed to demonstrate a
ton/Ion e,nviromnent. These two programs (BOARD I
and BOARD 2) are contained in Appendix 2.

In this example, one of the systems (BOARD I) initially is
programmed in talk-only mode and synchronization is
achieved by waiting for the 'listening board to become
active. This is sensed by the lack of a GPIB error since a
condition of no active listener produces an ERR status
condition. Board 1 upon detecting the presence of an
active listener transmitts a block of 100 bytes from a'
PROM memory across the bus. The second system
(BOARD 2) receives this data and stores it in a buffer,
EOI is sent true by the talker (BOARD I) with the last
byte of data. Upon detection of Eo!, BOARD 2 switches
to the talk only mode while BOARD 1 upon terminal
count switches to the listen only mode. BOARD 2 then
detects'the presence of an active listener and transmitts
the contents of its buffer back to BOARD 1 which stores
this data in the buffer. EOI again is sent with the last byte
and BOARD 2 switches back to liste~-only. BOARD 1
upon detecting EOI then compares the contents of its
buffer with the contents of its PROM to ensure that no
data transmission errors occured. The process then
repeats itself.

8291A with HP 9835A

An example of the 8291 A used in conjunction with a bus
controller is also included in this application note. In this
example, the 8291 A system used in previo'us experiments
was connected via the GPIB to a Hewlett-Packard 9835A
desktop computer. This computer contains, in additioh
to a GPIB interface, a black and white CRT, keyboard,
tape drive for high quality data cassettes, an<\ a calculator
type printer: The software for the HP 9835A is shown in
Appendix 3. The 'user should refer to the operation man­
uals for the HP 9835A for information on the features
and programming methods for the HP 9835A.

In this example, the 8292 was removed from its socket
and the OPTA and OPTB pins of the 'two 8293, trans­
ceiver reconfigured to modes 0 and 1. Optionally, the
mode pins could have been left wired for modes 21\nd 3
and the 8292 left in its socket with its SYC pin wired to
grolJnd. This would have produced the same effect.

The first action performed is sending IFC. Generally, this
is done when a controller first comes'on line. This pulse is
at least 100 us in duration as specified by the IEEE-488
~tandard.

The software checks to see if active listene~ are on, line.
For dem.onstratiori purposes, the, HP 9835A will flag the
operator to indicate that listeners are on line.

The HP 9835A then configures and performs a Parallel
poll (PPOL). The parallel poll indicates 1 bit'of statl,JS of
each device in a group of up to 8 devices. Such informa­
tion cOl,Jld be used by an application program' to deter­
mine whether optioilal devices are part of a sYstem con­
figuration. Such optional devices might include mass
storage devices, printers, etc. where the application soft­
ware for the controller might need to format data to
match each type of device. Once the PPOL sequence is
finished, the HP ?835A offers the user the opportunity to
execute user commands from the keyboa~d. At this time
the HP 9835A sits in a loop waiting for an SRQ condi­
tion. When the operator !pts a key on the keyboard, the
HP 9835A processor is interrupted and vectors to a
service routine where the key is read and the appropriate
routine is executed. The HP 9835A will then return to the
loop checking for SRQ tr~e. For this application, the
valid keys are G,D,R,H,and X. Pressing the "G" key
causes the GET command to be sent across the bus. A
message to this effect is printed in the CRT and the HP
9835A returns. The "D" key causes the SDC message to
be ~ent with the 8291 A being the addressed device. Again,
an appropriate message is output on th HP 9835A CRT.
The "R" key causes the GTL message to be sent. The CRT
displays "REMOTE MESSAGE SENT." The "H" key
causes a menu to be displayed on the HP 9835A CRT
screen. This menu lists the allowed commands and their
functions. NO GPIB commands are sent. The "X" key
allows the operator to send one line of data across the
bus. The line of data is terminated by a carriage \'Cturn
Ilnd line feed produced. by pressing the "CONTINUE"
key on the HP 9835A.

The characters are stored in the sequence entered into a
bJlffer whose maximum size is 80 characters. Pressing the
"CONTINUE" key terminates stori~ characters in the
array and all characters including the carriage return and
line feed are sent. EOI is then sent true with a false byte of
OOH. This false byte is ,due to the 1975 standard which
allows asyncronous sendi/lg and reception of EOI. (The
8291 A supports t~e later 1978 standard which eliminates
this false byte).

After any key command is serviced control returns to the
loop which ,checks for SRQ I\ctive. Shquld SRQ be
active, then the keyboard ,interrupt is ,disabled and a
me~sage printed to i~dicate that SRQ has b~en .t:eceived
true. '

The controller .t~en petforms a parallel poll.

This is an example of how parallel poll may be used to

23083~-OO1

AP-166

quickly check which group of devices contains a device
sending SRQ. The eight devices in a group would, of
course, have software drivers which allow a true response
to a PPOL if that device is currently driving SRQ true.
This would be a valuable method of isolation of the SRQ
source in a system with a large number of devices. In this
application program, only the response from the 8291A
is of concern and only the 8291 A's response is considered.
It does, however, demonstrate the technique employed. If
a true response from the 8291A is detecte~, then a mes­
sage to this effect is printed on the HP .9835A CRT
screen. From this process, the controller has identified the
device requesting service and will use a serial poll(SPOL)
to determine the reason for the service request. This
method of using PPOL is not specifically defined by the
IEEE-488 standard but is a use of the resources provided.

The controller software then prints a message to indicate
that it is about to perform a serial poll. This serial poll will
return to the controller the current status of the 8291A
and clear the service request. The status byte received is
then printed on the CRT screen of the HP 9835A. One of
the 8291A status bits indicates that the 8291A system has
a field (on line or less) of data to transfer to the HP
9835A. If this bit is set, then the HP 9835A addresses the
8291A system to talk. The data is sent by the 8291A
system is then printed on the CRT screen of the HP
9835A. The HP 9835 then enables the keyboard interrupts
and goes into its SRQ checking loop.

Appendix 4 contains the software for the 8291A system
which is connected to the HP 9835A via the GPIB. This
software throws away the first byte of data it receives
since this transfer was used by the HP 9835A to test when
the 8291A system came on line.

Next, both status registers are read and stored in the two
variable STAT I and STAT 2. It is necessary to store the
status since reading the status registers clears the status
bits.

Initially, six status bits are evaluated (END, GET, CPT,
DEC, REM C, ADSC). Some of these conditions require
that additional status bits be evaluated.

if END is true, .. then the 8291A system has received a
block from the HP 9835A and the contents of a buffer is
printed on the CRT screen. Next, the CPT bit is checked.
PPC and PPE are the only valid undefined commands in
this example.

Next, the GET bit is examined and if true, the CRT
screen connected to the serial channel on the 8291 A
system prints a message to indicate that the trigger com­
mand has been received. A similar process occurs with
the DEC and REMC status bits.

Address Status Change (ADSC) is checked to see if the
8291A has been addressed or unaddressed by the con­
troller. If ADSC is false, then the software checks the
keyboard at the CRT terminal. If ADSC is se\, then the
TA and LA bits are read and evaluated to determine
whether the 8291 A has been addressed to talk or listen.
The DMA controller is set to start transfers at the start of
the character buffer and the type of transfer is determined
by whether the 8291A is in TADS or LADS. We only
need to set up the D MA controller since the transfers will
be transparent to the system processor. The keyboard
from the CRT terminal is then checked. If a key as been
hit, then this character is stored in the character buffer
and the buffer printer set to the next character location.
This process repeats until the received character is a line
feed. The line feed is echoed to the CRT, the serial poll
status byte updated and the SRQ line driven true. This
allows the 8291A system to store up to one line of charac­
ters before requesting a transfer to the controller. Recall
that upon receiving an SRQ, the controller will perform a
serial poll and subsequently address the 8291A to talk.
The 8291 A system then goes back to reading the status
register thus repeating the process.

CONCLUSION

This application note has shown a basic method to view
the IEEE 488 bus, when used in conjunction with Intel's®
8291 A.

The main reference for GPIB questions is the IEEE
Standard 488 - 1978. Reference 8291 A's data sheet for
detailed information on it.

Additional Intel® GPIB products include iSBX-488,
which is a multimode board consisting of the 8291A,
8292, and 8293.

REFERENCES

8291A Data Sheet
8292 Data Sheet
8293 Data Sheet
Application Note #66 "Using the 8292 GPIB Controller"
PLM-86 User Manual
HP 9835A User's Manual
IEEE-488-1978 Standard

7-387 230832-001

inter AP-166

APPENDIX 1
SYSTEM BLOCK DIAGRAM
WITH 8088

7-388 230832-001

AP-166

APPENDIX 2
SOFTWARE DRIVERS FOR BLOCK DATA TRANSFER

PLlM-86 Cot1PILER BOARD 1

ISIS-II PLlt1-86 ',11. 1 COMPILAT10N OF MODULE BOARD I
OBJECT MODULE PLACED W Fl BRDt DBw'
COMP ILER INVOKED BY. PLMEl6. Fl' BRD1. SRC SYMBOLS MEDIUM

2 1
:3 2

4 ..:
5 :3
6 2
7 2

1* . BOARD 1 TPT PROGRAt1 *1
1* THIS BOARD TAL"S TO THE OTHER BOARD BY *1
/* TRANSFERRING A BLOC\<. OF DATA VIA THE 8237 ""I
1* COUPLED IJI1H THE. 8291A THE 8291A IS PROGRAM- *1
III- MED TO SEND EOI 14HEN RECOGNIZING THE LAST *1
1* DATA ByTE'S BIT PATTERN WHILE DATA IS BEING *1
1* TRANSFERRED. THE PROCESSOR PERFORMS I/O READS *1
1* OF THE 8237 CC'Jtn REGIS1ERS TO SIMULATE. BUS *1
1* ACTIVITy, AND TO DE.l~RMINE WHEN TO TURN THE *1
I" LINE AROUND. AFTER THE 8237 HAS REACHED 11-1
1* rERMINAL COUNT. THE 8291A IS PROGRAMMED TO *1
1* THE LtSTENER STATE AND WAITS FOR THE SLOCK *1
1* TO BE TRANSMITTED ~ACK FROM THE SECOND BOARD. *1
1* THIS Ii"'TA IS PLACED IN A SECOND BIJFFER AND *1
1* ITS CONTENTS cor1PARED WITH THE ORIGINAL DATA *1
1* TO CHECK FOR INTERFACE INTEGRITY. *1

BOARD1:

DO.
1* PROCEDURES *1

CO: PROCEDURE (XXX)
DECLARE XXX BYTE.
SER$STAT LITERALLY 'OFFF2H'.
SER$DATA LITERALLY 'OFFFOH'.
TXRDi LITERALLY 'OlH'.
DO IJHILE (INPUT (SER$STATl AND TXRDY) <:>
END;
OUTPUT (SER$DATA) = XXX;

END CO;

, • SETUP BUFFERS *1

T?<RDY;

8
9

DECLARE BUFF2 (100) BYTE; 1* RAM STORAGE AREA *1
DECLARE BUFFI (100) BYTE DATA

(1.2,3.4.5.6.7.8.9.10H.
llH, 12H. 13H, 14H. 15H, 16H. 17H. ISH. 19H. 20H.
21H. 22H, 23H. 24H. 25H. 26H. 27H. 2SH. 29H. 30H.
81H. 32H, 33H. 34H. 35H. 36H. 37H; 3SH. 39H. 40H.
41H. 42H. 43H. 44H. 45H., 46H. 47H. 4SH. 49H. 50H.
51H. 52H. 53H. 54H, 55H. 56H. 57H. 5SH. 59H. 60H.
61H. 62H. 63H. 64H. 65H. 66H. 67H. 6SH. 69H. 70H.
71H, 72H. 73H. 74H. 75H. 76H. 77H. 7SH. 79H. SOH.
81H. 82H. 83H. 84H. 85H. 86H. 87H, 8SH. S9H. 90H.

7-389 230a32-OO1

AP-166

PL/M-B6 COMPILER BOARD1

10

11 '1

12
13

14

15

16

91H, 92H, 93H, 94H, 95H, 96H, 97H, 98H, 99H, ODH);
DECLARE BUFF3(17) BYTE DATA
CDDH, OAH, 'COt1PARE ERROR', OL:H, 0AH); 1* ROM STORAGE AREA *1

1* 8237 PDRT ADDRESSES *1

DECLARE

CLEAR$FF
STARTOLO
STARTOHI
O$COUNT$LO
D$COUNT$HI'
SET$t10DE
CMD$37
SET$t1ASK

LITERALLY 'OFFDDH', 1* MASTER CLEAR *1
L I TERALL y 'OFFDOH ' ,

LITERALLY 'OFFDOH',
LITERALLY 'OFFD1H',
LITERALLY 'OFFDIH',
LITERALLY 'OFFDBH',
LITERALLY 'OFFD8H',
LITERALLY 'OFFDFH',

/* 8237 COMMAND - DATA BYTES */
DECLARE DMAADRTALK POINTER;
DECLARE DMA$ADR'LSTN POINTER.

RD$TRANSFER
WR$TRANSFER
NORM$TIME

L I TERALL Y '4BH'.
LITERALLY '44H'.
LITERALLY '20H'.

TC$L01
T($H 11
TC,!;L02
TC

LITERALLY 'OFFH',
LITERALLY 'OOH',
LITERALLY '99D', /1> 100 XFERS *1

I

DE.CLARE

LITERALLY '01H',
BYTE;

DMAWRDTALM (2' WORD
DMAWROLSTN(2) WORD

AT
AT

(I@DMAADRTALK).
(@DMAADRLSTN) ;

i* 8291A PORT ADDRESSES *1

DECLARE

PORT$OUT L1TERALLY 'OFFCOH' , 1* DATA OUT*I
PORT$IN LITERALLY 'OFFCOH'
STATUS$l. LITERALLY 'OFFC1H', I*INTR STAT 2*1
STATUS$2 LITERALLY 'OFFC2H' • 1* INTR STAT 2 *1
ADDR$STATUS LITERALLY 'OFFC4H' ,
COMMAND$t10D LITERALLY 'OFFC5H' , I~CMD PASS THRU *1
ADDR$O LITERALLY 'OFFC6H' ,
EOS$REG LITERALLY 'OFFC7H' , 1* EOS REGISTER *1

7-390 230832-001

inter AP-166

I. 8291A COMMAND - DATA BYTES *1

PL/M-B6 COMPILER BOARDl

17 DECL.ARE,

END$EOI LITERALLY
ONE LITERALLV
paN LITERALLV
RESET LITERALLV
CLEAR L TTERALL V
DMA$REG.L LITERALLY
L1t1AREQ T L I TERALL V
MOD1$TO LITERALLV
MOD1$LO LITERALLV
EOS L ITER ALL V
PRESCALER LITERALLY
HIGH$SPEED LITERALLY
O~A'y LITERALLY
XYZ BYTE,
MATCH I~ORD.
BO LITERALLY
B I L [rr.:RALL 'y
ERR LITERALLY

1* CODE BEGINS *1

'BSH'.
'lOH'.
'OOH'.

'02H'.
'OOH'.
'lOH',
'20H',
'BOH',
'40H'.

'OOH'.
'23Hi,

'OA4H'.
'OFFFFH' •

'02H'.
'OlH' J

'04H',

lS START91,

19
20
21
22
23
24

25

26 1
27 1
2B '1

29
30
31
32
33

OUTPUT (STATUS$2) =CLEAR. '* SHUT-OFF OMA REO BITS TO *1
1* PREVENT EXTRA OMA REOS*I

I*FROM S291A */

1* MANIPlJ ... ATE OMA pOORESS VARIABLES *1

OMA$AOR $ r AL K = (@BUFF1) ;
DMAAORLSTN =(@BUFF2).
DMAWROTALK(l)=SHL (DMAWRDTALK(l). 4);
Ot1AWRDTALK(0)=DMASI4RDSTALK (0) + OMASWRDSTALK (1)1

OMASI~RO$LSTN (1) =SHL (DMASWRO$LSTN (1), 4) I
Dt1AWRDLSTN(O)=DMASWRDSLSTN (0) +DMA$WRDSLSTN' (1)1

[NrT371
1* IIHT 8237 FOR TALKER FUNCTIONS *1

OUTPUT (CLEAR$FF)
OUTPUT (CMO$37)
OUTPUT (SET$ti0DE)
OUTPUT (SET$MASK)
OUTPUT (START$O.LO)
OMA$14RO$TALK (0)
bUTPUT (STARTOHI)
OUTPUT \O$COUNT~LO)

OUTPUT (O$COUNT$HI)
1* INIT 82qlA FOR TALKER

=CLEARI/* TOGGLE MASTER CLEAR *1
=NORM$TIMEI
=RO$TRANSFER;
=CLEARI

=OMAWRDTALK (OIl
=SHR (DriAWADTALK (0). BII

=DMAWRDTALK (OIl
=TC$L021
=TC$HI2;

FUNCTIONS *1

PL/M-86 COMPILER BOARDS,

. 7-391 230832-001

34
35
36
37
38
39

40 1
41 2
42 1

43 1
44 2
45 3
46 2
47 2

48

49

50 2

51

52 1
53 2
54 1
55 1
56 1
57 1
58 1

OUTPUT
59
60

61
62
63

64
65 2
66

67

68

AP-166

OUTPUT (EOS$REG) =EOS,
OUTPUT (COt1MANDSMOD) =END$EOI, 1* EOI ON EOS SENT
OUTPUT (ADDR$STATUS) =MODl STO, 1* TALK ONLY *1
OUTPUT (COt1MAt~D$MOD) =PRESCALER,
OUTPUT (C Ot1MAND$t10D) =HIGH$SPEED,
OUTPUT (COMMANO$MOD) =PON,

DO ~~HILE (INPUT (STATUS$l) AND BO) =0,
ENOl 1* WAIT FOR BO INTR *1
OUTPUT (PORTSOUT> = OAAH,

DO ~~HILE (INPUT (STATUS$1) AND ERR) = ERR,
DO WHILE (INPUT (STATUS$l) AND BO) = ~;

END, 1* WAIT FOR BO INTR *1
OUTPUT (PORT$OUT) =OAAH,

END,

OUTPUT (:, TATUSS2) =D~lA$REGI$T, .'... ENABLE Dt1A REGS *1

DO WHILE (It~PUT (Ct1D$:J7) AND TC) <>
1* WAIT FOR TC = ° *1

END;

INIT37L,

TC,

OUTPUT (STATUS$2) =CLEAR, 1* DISABLE DMA REGS *1

1* INIT 8237 FOR L1STENER FUNCTIONS *1

OUTPUT (CLEAR$FF) O=CLEAR; I;> TOGGLE MASTER RESET *1
OUTPUT (Ct1D$37) =NORM$TIME,
OUTPUT (SET$MODEl =WR$TRANSFER,
OUTPUT (SET$MASK) '=CLEAR;
O'JTPUT (Si ARTSOSLO I =DMASWRDSLSl N (0);
DMASWRDSLSTN (0) =SHR (DMASWRD1>LSTN (0), 8);

(START $OSHI) =DMASWROSLSTN (0);

OUTPUT W,*COUNHiLO) =TC$L01,
OUTPUT (O$COUNTSHI) =TCSHll;

1* INIT 82qlA FOR LISTENER FUNCTIONS *1

OUTPUT
OUTPUT
OUTPUT

(COMMAND$MOD)
(AODRSSTATUS)
(COMMAND$t10D)

=RESET,
=t10Dl$LO; /* LISTEN ONLY *1
=PON,

DO WHILE (INPUT (STATUS$1) .. AND B1) =0,
END; 1* I~AIT FOR BI INTR .,./
XYZ INPUT (PORT$IN);

*1

OUTPUT (STATUS$2) =DMA$REQ$L, 1* ENABLE DMA REGS *1

DO WHILE (INPUT (STATUS$l) AND DNE)<::'-
1* WAIT FOR EDT RECEIVED *1

7-392

DNE;

230832"()01

AP-166

PL/M-86 COMPILER BCJARL'

70 CMPBLI'.S

'* rC"1PARE THE nlo BIJFFERS CONTENTS *1

t1ATCH=CMPB (@BUFFL @BUFF2, 100»)

71 IF t1ATCH OKAY THEN GOTO START91)

:i' SE~m ERROR MESSAGE IN BUFFER 3 *1

DO 1=0 TO 16) 73
74
75

I
2
2

CALL CO (BUFF 3 (1) »)
END.

76 GOTO START91,

77

MODULE INFORMATION-

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
243 LINES READ
o PROGRAM ERROR (8)

END OF PLtr1-86 COMPILATION

=OlDBH
.. 0075H
=0070H
=0006H

7-393

4750
1170
1120

6D

230832-001

inter AP-166'

PL/M-86 Cot1P ILER BOARD2

IS1S-1 I PL1r1-86 VI. 1 COf1P ILATION OF MODULE BOARD2
OBJECT t10DULE PLACED IN : F 1: BRD2, OB')
COMPILER INVOKED BY: PLM86 :F1: BRD2, SRC

2

3

4

I~ BOARD 2 TPT PROGRAM *1
1* *1
1* THIS BOARD LISTENS TO THE OTHER BOARD (1) *1
1* AND Dt1A'S DATA INTO A BUFFER, ,,,HILE WAITING *1
1* FOR THE Et,m ltHERRUPT BIT TO BECOt1E ACTIVE *1
;<> UPON END ACTIVE. THE DATA IN THE BUFFER IS *1
1* SENT ~ACK TO THE FIRST BOARD VIA THE GPID *1
1* ,~HEN THE BLOCK IS FINISHED THE 8291A IS *1
1* PROGRAt1MED BACK INTO THE LISTENER MODE *1

BOARD2

DO.
1* 8237 PORT ADDRESSES *1

DECLARE

CLEAR$FF
STARTOLo
STARTOHI
O$COUNT$LO
O$COUNT$HI
SET$MODE
Cf10$37
SEHMASK

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
l. ITER ALl. Y

'OFFDDH'.
'OFFDOH' ,
'OFFDOH' ,
'OFFD1H' ,
'OFFDIH' ,
'OFFDBH' ,
'OFFD8H' •
'OFFDFH' ,

,I*MASTER CLEAR *1

1* 8237 CUMMAND - DATA BYTES *1

DECLARE,

RD$TRANSFER LITERALLY '48H',
WR$TRANSFER LITERALLY '44H',
ADDR$lA LITERALl.Y 'DOH',
ADDR$!B LITERALLY 'OIH',
NORI'1$TIME LITERALLY '20H' ~
TC$UH LITERALLY 'OFFH' ,
TC$HI! LITERALL.Y 'OOH',
TC$L02 LITERALLY '99D',
TC$HI2 LITERALLY 'OOH',
TC l.lTERALLY '01H' ,

I~ 8291A PORT ADDRESSES *1

DECLARE

PORT$OUT
PORHIt.!
STATUS$!
STA1US$2
ADDR$STATUS
Cot1t1AND$t10D

LITERALl.Y
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

7-394

'OFFCOH' ,
'OFFCOH',I* DATA IN *1
'OFFCIH'. 1* INTR STAT 1 *1
'OFFC2H', 1* INTR STAT 2 *1
'OFFC4H', 1* ADDR STAT *1
'OFFC5H', 1* Ct1D PASS THRU 'I<I

230832-001

inter AP-166

PL/M-86 Cot1PILER BOAr-!D2

5

6

7

8
9
10
11
12
13
14

15
16
17
18
19 2
20
21

22

IOFFC6H / • ADDR$O
EOS$REG

LITERALLY
LITERALLY 'OFFC7H / • 1* EOS REGISTER *1

1* 8291A COMMAND - DATA BYTES *1

DECLARE.

Et.D$EO I LI TERALL Y 'BBH' •
ONE LITERALLY '10H'.
FON LITERALLY 'OOH'·
RESEI LITERALLY '02H','
CLEAR LITERALLY 'OOH',
Dt1AREQL L ITER ALL Y , 1 OH' ,
DMAREQT LITERALLY '20H'.
MOD1$TO LITERALLY 'BOH',
MOD 1$LO LI TER ALL Y • 40 ' •
EOS LI1ERALLY 'ODH'.
PRESCALER LITERALLY '23H',
HIGH$SPEED LITERALLY 'A4H',
XYZ BYTE.
130 LITERALLY '02H'.
131 LITERALLY'OtH'.
ERR LI TERALL Y '04H' ,

START91;

OUTPUT (STATUS$2) =CLEAR' 1* END INITILIZATION STATE *1

1* ItHT 8237 FOR LISTENER FUNCTION *1

INIT37U

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPLUT

(CLEAR$FF) =CLEAR; 1* TOGGLE MASTER RESET *1
(CMD$37) =NORM$TIME,
(SET$t10DE) =WR$TRANSFER. 1* BLOCK XFER MODE *1
(SET$MASK) =CLEAR.
(STARTOLO) =AOOR$lA;
(STARTOHI) =AODR$lB;
(O$COUNT$LO) =TC$L01;
(Q$COUNT$HIl =TC$HI1;

/... IN IT 8291 A FOR LI STENER FUNC T IONS * 1

OUTPUT (COMt1AND$MOO) =RESET;
OUTPUT (ADDR$STATUS) =M001$LO,
OUTPUT, (COMMAND$MOD) =PON;
DO I~HILE (INPUT (STATUS$1) AND 81) =0;
END; 1* WAIT FOR 131 INTR *1
XYZ= INPUT (PORT$IN);
OUTPUT (STATUS$2) =OMA$REQ$L;

1* I~AIT UNT IL EOI RCVD AND END ItHR-8IT SET *1

DO I~HILE (INPUT (STATUS$l) At.O ONE) <:> ONE;

7-395 230832-001

AP-166

PUM--8t> COMPILER BOARD2

23

24

25
26
~!7

28
29
30
31
32

33
34
35
36
']7

38

39 1
40 2
41

42 1
43 2
44 3
45 2
40

,.,
~

47

48 1
49 2

50

51 END ..

END;

INIT37Ti
1* I~IT 8237 FOR TALKER FUNCTION *1

OUTPUT (STATUS$2) =CLEAR; 1* CLEAR 8291A DRQ *1
OUTPUT (CLEAR$FF) "'CLEAR;
OUTPUT (CMD$37) =NORM$TIt1E;
OUTPUT (SET$MODE) "'RD$TRANSFER, 1* BLOCK XFER MODE
OUTPUT (SET$MASK) =CLEAR;
OUTPUT (STAR1-OLO) =ADDR$1A;
OUTPUT (STARTOHI) =ADDR$lB;
OUTPUT (O$COUNT$LO) =TC$L02;
OUTPUT (O$COUNT$HI) =TC$HI2;

1* INIT 8291A FOR TALKER FUNCTION *1

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

(EOS$REG) "'EOS; ,
(COMMANO$MOD)
(ADDR$STATUS)
\ C OMMAt~D$MOD)
(COMt1AND$t10D)
(COMMAND$MOD)

=END$EOI;I* EOI ON EOS SENT
=t10Dl$TO .. 1* TALK ONLY *1
=PRESCALER ..
"'HIGH$SPEED;
=PON ..

DO WHILE (INPUT (STATUS$1) AND BO) =0;
END; 1* ~~AIT FOR BO INTR *1
OUTPUT (PORT$OUT) =OAAH,

DO ~,HILE (INPUT (STATUS$!) AND ERR) =ERR;
DO ~~HILE (INPUT (STATUS$1) AND BO) =0;
END; 1* ~.AIT FOR BO INTR *1
OUTPUT (PORT$OUT) =OAAH ..

END;

OUTPUl (8TATUS$2) =DMA$REG$T;
1* WAIT FOR TC=O *1

DO ~~HTLE

END;

GOTO START91;

(INPUT (Ct1D$37) AND TC) <> TC;

MODULE INr=ORMATION

CODE ARE:A SHE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
152 LI NES READ
o PROGRAM ERROR (S)

=0122H
=OOOOH
=0001H
"'OOOOH

2900
00
10
00

7-396

,~ I.

*1

*1

230832-001

inter AP-166

APPENDIX 3
SOFTWARE FOR HP 9835A

10 ~:Et'i ::;Er'iIi IN
TE~:FACE CLEAF.:
20 ABORTIO 7
30 F.:Et1 FOF.:CE E
RROF.:S IJt-nIL LIST
ENERS ACTIVE
40 Freer-r-: OUT
PUT 704 lISING "#
,K";"B'"
50 Chks1,st: ST
ATlIS 7~S1,o_1,l,Sta
1,2, St-a1,3, St,0.1,4
60 Err=S~at2 A
tHI 1
7(1 IF Er-r-=1 TH
EN GOTO Fr-':-Eor-r'
80 PF.: HH CH~:$ (
12) , .. L I STEt-~EF.:S A
RE ON LINE ..
'3(1 REt,! COt-~F I GU
RE PF'OLL
100 PPOLL COt-F- =
GURE 704;" (1 (1 (HE :
~:"0 ..
1 1(1

I r-eSF:'c't"1::-e Dr,

b 1 t 4
12~3 PRIt-n CHE",,;.
12),"PARALLEL PO
LL COt~F I GURErl"
1 :;:{1 F.: E t'! E N A E: L E
KE\'BOAF.:II I t'iTEF.:F.:U
PT
14(1 PR an .. COt'1t'1
AND = ? (HIT

---H'-' FOR LIST)"
115(1 Ke-ien: ON K
ED GOSUE: 610
160 STATlIS 7;S1,
at 1, St-o..1,2, Stat;::,

7-397

S t. 0_ t. 4
17(1 Sr-':::t=I: I t-~At-m (
("- 1 t9'--~ t 0_ t ' 0::.1
1 :::(1 IF Sr-q=(1 TH
EN G [I T CI k Eo:' .;. n

200 PF.: Hn CHF.:~ (
12).~ USF.:G~ F.:EC:EI1·.·'E
D"
21~3 PRINT "SEND
I NG PAF.:ALLEL POL
L RESPONSE MESSA
GE"
220 RE~l E::-~ECUT I
NG PARALLEL POLL
230 Ppo11bY1,e=P
POLL(7)
24(1 PRINT "PARA
LLEL POLL E\'TE =

.. ; p p If1 1 b -i t. Eo .
25(1 FtF.~ I t.iT II ___ _

----------------"

2E,e Ppcll 1 b-it e=B
I N A t·HI '(p pol 1 ~:n-' 1, Eo ,

270 IF PF='O 1 1 b-:d.
e=(1 THEH GOTD ;:'::'
2'31
2:::0 PR Hn .. SR ,-.
NOT FF.:Ot'l 82'31"
2::: 1 P F.: an ." C (1 ~-1 r'~
AND =? (HIT
"H'- FOF.: LIST)"

,290 GOTO Ke~"-en
30(1 P8291: PF.: H~
T " SF.:O IS FF.:ON N
(:C: E:2'~1 ••• THE
ENTERPF.: lSE"
;:: 10 PF.: Hn .. PEF.:F

230832-001

inter
OF.:t'l HH; SEF: I AL PO
LL TO GET' STATI.:.IS

"
:32f1 STATU::; 7f14;

.St.Cl,t,
330 PRINT CHR$(
12)., "St-o.t-us = ";
S t. (I, t.

52~:1 IF D}::fer'\~3
THE t·~ I:; C1 T Cr F.~ (~. !.) tOO,

530 GOTO Ke';o'en
531 ·Rcvr·: F~Et'l R
EADY TO Re··.'· CHAF.:
S FROM GPIB
54(1 DHl G$ [80J
550 ENTER 704 U
SING "/;,T";G$
560 PF.: I NT CHR$ (
12) , G$
570 PfU t~T "COMN
At·m = r; (HIT

"H" FDF~ LIST)"
58(1 GOTO Keyen
590 REM INTERRlI
PT SERVICE ROUTI
NES
6~3(1 F.: E t'l GET KEY
BOAFD DATR
610 ~,lh(l.t.ke';o': DI
t'l K$ [8(1]
f20 K$=KE:D$
6:;:(1 IF K$="G" T
HEN GOTD G.:.t.
64(1 IF K$="D" ~

HEt·~ GOTO Dec.
E.5(1 IF K$="R" ;
HEt·4 GOTO F.: e r'l
E,Et~~1 IF ~:::$=UHII -
HEHGOTO Help
67(1 IF K$=":~::" T
HEN Gala Xrtl i t
E.8~3 Get.: TR I ::<:;E

AP-166

7-398

F.: 7(14
.690 PF.:INT CHF.:$(
12) , "GF.:OUP E::-::ECU
TE TF.: I GGEF SEt·n"
7f1(1 PF.: I NT
710 PF.: lNT "COt'1t'l
At·m = 0:;' (HIT
"H'" FOP LIST)"
72(1 F.:ETUFt'i
73(1 Ilec.: F~ESET
704
740 PRINT CHR$(
12) , "SELECT I VE II
EV I CE CLEAF SEt·n
"
750 F'F.: I t·~T".~· ..
7E.(1 PF.: an "COt'H"
At~D = r:J (HIT
"H'" FCfF.: LI~:;T', II

770 EETUfd'i
780 Rer'!: LOCAL
704
790 PRINT CHF$(
12),"REMOTE MESS
AGE SENT"
800 PRINT·" II

810 PRINT "CO~l~l
AND = r;. (HIT

"H'" FOR LIST)"
82(1 RETURN
830 Help: PRINT

CHF.:$1:12)
840 PRINT" @@@
@ OPERATOR ALLO~,J
ABLE COt'lMAt'HlS @(~
@@ "
850

ke')"
860

PRINT" hit.
r·es.ult.··

PRINT " G
Send GET r(1

es,$o.se."
870 F'F.: I NT" It

230832-001

inter
880 PRINT" P

-.. S e r. d ~: E t'1.· " L
OC l")e::.so.ge"
89(1 PF.: I NT" >::

Xfill ts. key!::
(I o. r' d ; n r.' u t t (I ::: :2
91 "
9(1(1 PRIt~T" H

Pr·ints. thi
s· table"
910 PRINT" "
920 PRINT" •••
gel Ilheo.d, TF.:Y IT

I "

9:30 RETUF.:N

AP-166

7-399

940 :x:I"'!i t: II Hl A
$[80J
950 PR It~T CHF.:$ (
12:1, "Erlter' dO.tll
t CI s.er .. ::1 o.nd hit
CONTINUE"
9':,0 .INPUT A$
970 OUTF'UT 704;
AS
971 EOI 1;0
9:::0 PRINT "COt1t'l
AtHI = ? (HIT

"H'" FOR LIST)"
9'30 RETUF.:t·.j .
1000 EtHI

230832-001

inter
APPENDIX 4

SOFTWARE FOR HP 8088/HP 9835A VIA GPIB

PL/M-86 COMPILER HPIB

ISIS-II PL/M-86 V!. 1 COMPILATION OF MODULE HPIB
OB~ECT MODULE PLACED IN :F1:HPIB.OBJ
COMPILER INVOKED BY: PLMS6 :F1:HPIB.SRC LARGE

1

2

HPIB:
1*

PARAMETER DECLARATIONS
*1

DOl

DECLARE

ADDR$HI LITERALLY '01H',
ADDR$LO LITERALLY 'OOH',
ADSC LITERALLY '01H',
BI LITERALLY '01H',
BO LITERALLY '02H',
CHAR$COUNT BYTE,
CHAR BYTE,
CHARS(SO) BYTE,
CLEAR LITERALLY '90H',
CPT LITERALLY 'SOH',
CRLF LITERALLY 'OAH',
DEC LITERALLY 'OSH',
DMAADRLSTN POINTER.
DMAADRTALK POINTER,
DMAWRDLSTN(2) WORD AT (eDMAADRLSTN),
DMA$WRDSTALK(2) WORD AT (iDMAADRTALK),
DMAREOL LITERALLY 'tOH',
DMAREOT LITERALLY '20H',
DNE LITERALLY 'lOH',
END$EOI LITERALLY 'SSH',
EOS LITERALLY 'O.DH"
ERR LITERALLY '04H',
GET LITERALLY '20H',
I BYTE,
LISTEN LITERALLY '04H',
MLA LITERALLY '04H',
MODE$1 LITERALLY '01H',
NO$DMA LITERALLY 'OOH',
NO$RSV LITERALLY 'OOH',
NORM$TIME LITERALLY '20H',
PON LITERALLY 'OOH',
PPC LITERALLY '05H',
PPE$MASK LITERALLY '60H',
PPOLL$CNFG$FLAG LITERALLY 'OiH',
PPOLLENBYTE BYTE,
PRI$BUF(SO) BYTE AT (@CHARS),
RD$XFER LITERALLY '4SH',
RESET LITERALLY '02H',
REMC LITERALLY '02H',
RSV LITERALLY '40H',
RXRDY LITERALLY '02H',

.400 230B32-001

inter AP-166

PL/M-B6 COMPILER HPIB

3

4
:5
6
7
B

1
1
1
1
1

1

SRGS LITERALLY '40H',
STAT 1 BYTE,
STAT2 BYTE,
TALK LITERALLY '02H' ,
TA.OR.LA BYTE,
TRG LITERALLY '41H' ,
TC LITERALLY '01H',
TC.HI LITERALLY 'OOH' ,
TC.LO LITERALLY 'OFFH',
TXRDY LITERALLY '01H' ,
UDC BYTE,
WRSXFER LITERALLY '44H',
XYZ BYTE;

1*

PORT DE<;LARATIONS

*1 .
DECLARE

ADDRSO LITERALLY 'OFFC6H' ,
ADDRSSTATUS LITERALLY 'OFFC4H' ,
CLEARSFF LITERALLY 'OFFDDH',
CMDS37 LITERALLY 'OFFDBH' ,
COMMANDSMOD LITERALLY 'OFFC5H',
COUNTSHI LITERALLY 'OFFD1H',
COUNT.LO LITERALLY 'OFFD1H',
CPTSREG LITERALLY 'OFFC5H',
EOS.REG LITERALLY 'OFFC7H' ,
PORTtIN LITERALLY 'OFFCOH' ,
PORTSOUT LITERALLY 'OFFCOH' ,
SERSDATA LITERALLY 'OFFFOH' ,
SER$STAT LITERALLY 'OFFF2H',
SET.MASK LITERALLY 'OFFDFH' ,
SETSMODE LITERALLY 'OFFDBH' ,
SPOLLSSTAT LITERALLY 'OFFC3H' ,
STARTSHI LITERALLY 'OFFDOH',
STAR TSLO LITERALLY 'OFFDOH',
STATUSS1 LITERALLY 'OFFC1H' ,
STATUS.2 LITERALLY 'OFFC2H';

1* crt mellllagell li lit *1

DECLARE GET.MSG(l1) BYTE DATA (ODH,OAH, 'TRIGGER',OAH.ODH);
DECLARE DEC.MSG(16) BYTE DATA (ODH,OAH. 'DEVICE CLEAR',OAH,ODH);
DECLARE REMCSMSG(lO) BYTE DATA (ODH,OAH, 'REMOTE',ODH,OAH);
DECLARE CPTSMSG(22) BYTE DATA (ODH,OAH,"UNDEF CMD RECEIVED',OAH,ODH);
DECLARE HUHSMSG(l1) BYTE DATA (ODH,OAH, 'HUH ???',ODH.OAH);

1* called procedures *1

REGSER: PROCEDURE;

7-401 230832-001

I

inter AP-166

PL/M-86 COMPILER HPIB

10

11
12

13

14

15
16

17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46

47
48
49

50

2

2
3

2

2

• 1
2

2
3
2
2
1
2
3
3
2

1

2
2
3
3
3
3
3
3
3
3
3
4
5
4
4
3
3
2

2

2
2
2

OUTPUT (SPOLL.STAT)-TRO;

DO WHILE (INPUT (SPOLL.STAT) AND SROS)-SROS;
END;

OUTPUT (SPOLLSSTAT)=NOSRSV;

END REOSER;

CO: PROCEDURE(XXX);
DECLARE

XXX BYTEI

DO WHILE (INPUT (SERSSTAT) AND TXRDY)<>TXRDYI
END;
OUTPUT (SERSDATA)=XXX;

END CO;
HUH: PROCEDURE;

DO 1=0 TO 10;
CALL CO (HUH.MSS(I»;

END;
END HUH;

CI: PROCEDURE;

IF (INPUT (SER$STAT) AND RXRDY)=RXRDY THEN
DO;

STORE$CHAR:

1=0;
CHAR$COUNT-Ol

CHAR-(INPUT (SER$DATA) AND 7FH);
CHAR$COUNT-CHAR$COUNT~ll
CALL CO C CHAR);
CHARS C 1) -CHAR;
1=1+1 ;
IF CHAR <> CRLF THEN

DO;
DO WHILE (INPUT .CSER.STAT) AND RXRDY) <>RXRDY;
END;

END;
END CI;

SOTO STORE$CHAR;
END;

CALL REOSER;

TALK$EXEC: PROCEDURE;

OUTPUT CSTATUS$2)=CLEARI

1*
manipulate address'bits for DMA controller'
*1

DMAADRTALK=C@CHARS);
DMASWRD$TALK(1)=SHLCDMA$WRD$TALKC1).4l1
DMA$WRD.TALKCOl-DMA$WRD$TALKCO)+DMA$WRD$TALK(l);

OUTPUT (CLEAR$FF)=CLEAR;

7-402 230832-001

inter

PL/M-86 COMPILER HPIS

51 2
52 .2
53 :2
54 2
55 :2
56 2
57 2
58 2

59 2
60 :2

61 2
62 3
63 2

64 2
65 3
66_ 4
67 3
68 3
69 2

70 :2

71 1

72 :2
73 :2
74 2
75 :2
76 :2
77 2
78 :2
79 :2
eo 2
81 :2
82 :2
83 :2
84 :2
85 :2

86 2

87 1

BB :2

89 :2
90 3
91 3
92 3
93 :2

,,94 ·2

OUTPUT (CMD37)-NORM.TIME.
OUTPUT (SET.MODE)-RD.XFER,
OUTPUT (SET.MASK)-CLEAR,
OUTPUT (START.LO)-DMA.WRD.TALK(O).
DMA.WRD.TALK(0)·SHR(DMA.~RD$TALKCO),8)1
OUTPUT (START.HI)-DMA.WRD.TALK(O)I
OUTPUT·(COUNT.LO)-CHAR.COUNTI
OUTPUT (COUNT$HI)-Ol

OUTPUT (EOS$REQ)-EOS,
OUTPUT (COMMAND$MOD)-END.EOII

DO WHILE (INPUT (STATUS.1) AND SO)-O,
ENDI
OUTPUT (PORT.OUT)-OAAHI

DO WHILE (INPUT (STATUS.1) AND ERR)-ERRI
DO WHILE (INPUT (STATUS.1) AND SO)-Ol
END;
OUTPUT (PORT.OUT)-OAAH.

ENDI
OUTPUT (STATUS.2)-DMA.REG.T;

END TALK.EXEC.

LISTEN.EXEC: PROCEDURE,

PRINTER:

OUTPUT (STATUS.2)-CLEAR.
OUTPUT (CLEAR.FF)-CLEAR.
OUTPUT (CMD.37)-NORM.TIME;
OUTPUT (SET.MODE)-WR.XFER.
OUTPUT (SET.MASK)-CLEAR.
DMA.ADRSLSTN-(etHARS);
DMA.WRD$LSTN(1)-SHL(DMA$WRD.LSTN(1),4).
DMA.WRD.LSTN(0)sDMA.WRD.LSTN(0)+DMA.WRD$LSTNC1);
OUTPUT (START.LO)-DMA.WRD$(STN(O).
DMA.WRDSLSTN(0)-SHR(DMA.WRD.LSTNCO),8);
OUTPUT (START$HI)-DMA.WRD.LSTN(O).
OUTPUT (COUNT.LO)-TC.LO.
OUTPUT (COUNT.HI)-TC.HI,
OUTPUT (STATUS.:2)-DMA.REG.L;

END LISTEN.EXECI·

PROCEDUREI

DO WHILE PRI$SUF(I) <>CRLFI
CALL CD (PRI.SUF<I»I
1-1+11

END.
CALL CD (PRI.SUF(I»;

END PRINTER.

7-403 230832-001

-/

inter AP·166

P~/M-B6 COMPI~ER HPIB

95 ADSC.EXEC: PROCEDURE;

96 2 TA.OR.~A"INPUT . (ADDR.STATUS),

97 2 IF (TA.OR.~A AND TA~K).TA~K THEN
9B 2 CA~I:. TALK.EXEC,
99 2 IF (TA.OR.LA AND LISTEN)-LISTEN THEN

100 2 CAL~ LISTEN.EXEC,

101 2 END ADSC.EXEC,

102 1 gETSEXEC: PROCEDURE,
103 2 DO 1"'0 TO 10,
104 3 CAL~ CO (gET.MSg(I»,
105 3 END,
106' 2 END gETSEXEC,

107 1 DEC.EXEC: PROCEDURE;
lOB 2 DO 1-0 TO 15i
109 3 CA~~ CO (DEC.MSg(I»,
110 3 END,
111 2 END DEC.EXEC;

112 1 REMC.EXEC: PROCEDURE,
113 2 DO 1-0 TO 9,
114 3 CAL~ CO (REMC.MSg (I),) ,
115 3 END I
116 2 END REI'IC.EXECI

117 PPOLL.CON: PROCEDURE I

11B 2 OUTPUT (COMMAND.I'IOD)-PPOLL.CNFg.FLAg;
}'" '

119 2 END PPOLL.CONI

120 PPOLL.EN: PROCEDUREI

121 2 PPOLL.ENSBVTE-(UDC AND 6FH);
122 2 OUTPUT (COI'II'IAND.MOD)-PPOLLSEN.BVTEI

123 2 END PPOLL.ENI

124 1 CPT.EXEC: PROCEDURE I
125 2 DO 1-0 TO 21;
126 3 CALL CO (CPTSMSg (I » i
127 3 ENDI

12B 2 UPC-INPUT (CPT.REg);
129 2 UDC- CUDC AND 7FH);
130 2 IF (UDC AND PPC)-PPC THEN
131 2 CALL PPOLL.CON~

132 2 IF (UDC AND PPE.MASK)-PPE.MASK THEN
133 2 CA~L PPO~L.EN,

7,.404 230832.:001

inter AP·166

PL/M-86 COMPILER HPIB

134 2

135

136
137
138
139
140

141

1

1
l'
1
1
1

1

142 2

143
144

145

146

1

147 1
148 1
149 1
150 1
151 2
152 2
153 2
154 1
155 1
156 2
157 :2
158 2
159 1
160 1
161 2
162 2
163 2
164 1
165 1
166 2
167 2
168 2
169 1

END, CPUEXEC;
1*
BEOIN CODE
*1

INIT:

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

(CLEAR.FF) -CLEAR;
(COMMAND.MOD) -RESETI
(ADDRSSTATUS) -MODES 1 I
(ADDR.O) -MLAI
(STATUS.2) -NO.DMA;
(COMMAND.MOD) -PONI

LISTENERS:

CMD:

1* response to listeners check *1

DO WHILE (INPUT (STATUS.l) AND 81)-01
ENDI

XVZ-INPUT (PORT.IN)I
XVZ-INPUT (STATUS.2)I

RDSTAT:
1* read statutO registers and 'interpret c:om.and *1

STATI-INPUT (STATUS.l)1
STAT2-INPUT (STATUS.2)I

IF (STATI AND DNE)-DNE THEN
CALL PRINTER;

IF (STATI AND CPT)-CPT THEN
DO;
CALL CPTSEXEC;
STAT2-(STAT2 AND OFEH);

, END;
IF (STATI AND OET)-QET THEN

DO;
CALL OETSEXEC;
STAT:2-(STAT2 AND OFEH);
ENDI

IF (STATI AND DEC)-DEC THEN
DOl
CALL DEC.EXEC;
STAT2-(STAT2 AND OFEH);
ENDI

IF (STAT2 AND REMC)-REMC THEN
DOl ,
CALL REMC.EXEC;
STAT2-(STAT2 AND OFEH)/
ENDl

IF (STAT2 AND ADSC)-ADSC THEN

7-.405 230832-001

inter AP·166

PL/M-86 COMPILER HPIB

DOl 170 1
171 2
172 2
173 2

CAL.L ADSC$EXEC,
STAT2-(STAT2 AND OFEH),
ENDI

174 1

17~ 1

176 1 ENDI

CALL CII

OOTO CMDI

MODULE INFORMATION:

CODE AREA SIZE - 047~H
CONSTANT AREA SIZE - OOOOH
VARIABLE AREA SIZE - 0061H.
MAXIMUM STACK SIZE - OOOAH
349 LINES READ
o PROORAM ERROR(S)

-'liND OF PL/I1-86 COMPILATION

7-406

1141D
OD

97D
100

\

230832-001

AR-208

SPECIAL REPORT ON DESIGNING WITH ADVANCED SYSTEM IC.

LSI TRANSCEIVER CHIPS
COMPLETE GPIB
INTERFACE
A GPIB interface meeting IEEE 488 standards can be built with
only three or four chips!

by Pradip Madan and
Jim Frederick

The decision to support the IEEE 488 standard with
integrated circuits was based on the potential
popularity of the interface standard and its applica­

tions potential. Although a serial interface supports
many system throughput requirements, a parallel inter­
face over short distances .can provide much higher data
transfer rates, yet remain economical despite the extra
interconnection copper required.

The IEEE 488 standard is for a parallel interface
designed to operate over a limited distance. Its general
purpose nature makes the general purpose interface
bus (OPIB) attractive for a variety of systems, and also
allows manufacturers to design their equipment inter­
faces to a common standard. As a result, users can mix
equipment from different manufacturers without hav­
ing to adapt the interfaces for compatibility. To date
the OPIB has been incorporated in computer peripherals,
such as printers, but the most applications have been in
programmable instrumentation systems. Other OPIB
applications include camera control in computer con­
trolled studios, electronic surveillance, peripheral con­
trol, modular add-ons to photocopiers, and so forth.

Pradip Madan is the product manager for
microprocessor peripheral components at Intel Corp,
2625 Walsh Ave, Santa Clara, CA 95051, where he
has been employed for 2 years. He has a BSEE, an MS
in computer §cience, and an MBA in finance.

Integration benefit •
Shortly after the IEEE
committee had put the
final touches on its stan­
dard specifications,
engineers b~gan building
OPIB interface sub­
systems. Because the
standard had just been
defined, there were no
large scale integration
(LSI) chips available.
Therefore, the first OPIB
implementations were
board level designs
replete with small scale
integration (SSI) and
medium scale integration
(MSI) logic chips. A typical effort included four or five
rows of ten chips each.

With the advent. of integrated circuit OPIB chips, chip
counts dropped dramatically, reliability improved, and
space requirements shrank. Consequently, the price
range of systems for which OPIB had become practical
began to decrease. A fully functional OPIB subsystem
can now be constructed with less than one-tenth the
number of chips formerly required. In fact, the complete

Jim Frederick is a microcomputer design engineer of
Intel Corp. Since joining the company in 1974, he has
been involved in several different projects. Mr
Frederick has studied at the College of San Mateo,
and the University of Santa Clara.

MARCH 1982 7-407 COMPUTER DESIGN

talker/listener/controller mode logic resides in four LSI
chips: one Intel 8291A talker/listener, one 8292
controller, and two 8293 transceivers. All these LSI,
including the transceiver; are implemented in 'metal
oxide semiconductor (MOS) technology.

Unlike the controller or talker/listener functions
which could be integrated routinely in N-channel MOS
(NMOS) technology, the transceiver posed special
problems in MO~ integration.

The chip's size includes a 7-mil ground
line and two ground pads in order to
handle the 432-mA current.

The standard calls for the transceiver circuitry to be
able to drive each of the 16 bus lines with a nominal
48 mA of current. In addition, it specifies a minimum
required input hysteresis and places a limit on propaga­
tion delays. Driving relatively high currents quickly was
not a familiar province of MOS technology. Certainly
the gard~n variety NMOS lacked the necessary speed­
power product to handle the task.

However, progress in NMOS technology has produced
the high speed, densely integrated high performance
MOS (HMOS) technology which has the necessary
characteristics to meet the current drive and propa­
gation speed requisites.

Designing the 8293 transceiver
Although the 48-mA drive required by the 16 GPIB lines
had only been implemented with bipolar technology
before, HMOS technology-with its reduced gate
lengths, smaller size, and lower parasitic capaci­
tance-looked like it could h~dle the job. Architec­
turally, the 8293 contains nine transceiver circuits which
can be configured for data or interface management line
transceivers. Nine' open collector or 3-state line drivers
that could sink 48 mA, in addition to twelve Schmitt­
type line receivers, were used to implement the nine
transceivers. Fig 1 is a schematic representation of one
of these 3-state drivers.

Additional lOgic was added for decoding the trans­
mit/receive mode control of each of the transceivers.
The 8293 was conceived as operating in four distinct
modes: talker/listener control transceiver, talker /lis­
tener/controller control.transceiver, talker/listener data
transceiver, and'l6r talker/listener/controller data
transceiver. Thus, a 2-pln select scheme allows a user to
select the desired operating mode.

Cholsing appropriate active devices
All of the 8293's functional elements required only four
different types of active field effect transistors (FETs).
Low threshold enhancement type devices show good
high output voltage characteristics, and were used as
output pullup devices in push-pull 3-state drivers.
Enhancement type FETs were also used for fast
switching and low leakage: depletion type devices were
used for resistive pullup in buffering. Depletion type
FETs also played an important role in meeting the
hysteresis specifications of the IEEE 488 standard.
Finally, higher threshold depletion type devices were
used to prevent the bus lines from being disturbed on
power-up and power-down.

A conventional MOS transistor capable ()f supplying
48 rnA at 0.5 V would have been physically too large.
HMOS technology, however, permits such a device to be
fabricated in an area Of less than ISO mil2 (97 mm2).
Furthermore, the low speed/power prOdl\ct of HMOS
allowed a multi-stage design so that, like transistor-tran-

, sistor logic (TTL) circuitry, natural hysteresis could be
built into the receivers.

IEEE 488 interface standard

ii iii i 1 if
DEVICE A
ABLE TO

===f-"-< TALK, LISTEN. DATA
AND

CONTROL

DEVICE B
ABLE TO =

TALK AND
DATA BYTE LISTEN
TRANSFER

C
CONTROL

DEVICE C = ONLY ABLE
TO LISTEN GENERAl

INTERFACE

C
MANAGEMENT

DEVICE 0 =r-ONLY ABLE
TO TALK

~IDlo 1 ,8

DAV
NRfD
NDAC

IFC
ATN
SRQ
REN
EOI

The IEEE 488 interface standard' specifies an a-bit
parallel. bidirectional data bus ""ith eight additional
lines for data-byte transfer control and general inter­
face management. The three data-byte transfer lines
are data valid (OAvt. not ready for data (NRFOt. and not
data accepted (NOACt. States of these three lines
determine when data on the a-bit data bus are valid.
ready to be received. and received. respectively.
General interface mangement lines are interface clear
(IFC). attention (ATNt. service request (sRat. remote
enable (RENt. and end or identify (EOIt. These lines are
used to clear the bus and establish control. initiate
polling. pass control from a controller to another con­
troller or the front panel. 'and indicate the end of a
transfer sequence:·

7-408

Spacial layout techniqulS'
The transceiver was implemented using new layout tech­
niques aimed at reducing the series resistance in the
polysilicon gate structures of the large transistors, and
routing ac signal paths over metal interc.onnects in order
to reduce capacitance and series resistance. Chip size,
188 x 156 mils (5 x 4 mm), includes a 7-mil (O.2-mm)
ground line and two ground pads in order to handle the
432-mA current generated when all drivers are on.
Power consumption is 300 m W, typically, with driver or
receiver speeds of 20 ns under light loads and speeds of
85 ns under the maximum load of 4500 pF.

Signaling, a naw trand?
Until the advent of the 8293, complex MOS chips relied
on bipolar drivers to handle the heavy bus loading
found in complex systems. The 8293 could point the way
to future microprocessors and controllers that include
their own MOS drivers. Such a scheme would signifi­
cantly reduce the time lost by going through external
buffers. It would also provide all *e other benefits of
system integration.

The 8293 is essentially a non inverting buffer chip
capable of driving high currents. The 8291A talkerllis­
tener chip and 8292 GPIB controller chip are designed to
interface with the BOBO, B08S, iAPX 86, iAPX 88, and
8048/BOSI microprocessors and single-chip microcompu­
ters. However, the 8291A and 8292 cannot electrically
drive a standard IEEE 488 bus by themselves. Thus, the
8293 was designed to interface between the GPIB and a
single 8291A or a combination of the 8291A and 8292. (See
I:ig 2.)

The chip is divided into nine distinct transceivers.
Each one's characteristics, such as 3-state or open­
collector outputs, and transmit or receive modes of
operation, are determined by internal logic control. (See
Fig 3.) Thus, in mode 0 talker/listener control config­
uration the attention (ATN) transceiver is forced into an
input-only mode with respect to the bus's ATN line. The
end or identffy (EOI) transceiver, on the other hand, is
either a transmitter or receiver depending on the state of
the transmit/receive (T/Rl) line. Its interface to the GPiB
is 3-state because of the fixed 5 V logic on the WI,
transceiver's output control. In mode I, the talker /lis­
tener' data configuration, the 8293 is a true transceiver
with its operations mode controlled by the state of the
T IRI line and its output characteristics (3-state or open­
collector) determined by the states of the ATN and EOI
lines. (See Fig 3.)

CO~~~~~ O--------!E--tE--lE-iC

-l~ -l~ ~~ ~~
W.TYPE fl.TYPE O-TYPE L·TYPE

DATA
OUTPUT

FIg 1 3 .. tate driver sehematie. Nine snch open coUector
drivers are used in the interface.

TO
PROCESSOR

BUS

TO
PROCES~R

BUS

TO
PROCESSOR

BUS

(a)

19

(b)

FIg 1 1239 Is d~ed for use in talker /listener
implementation .a). or for talkerlllstener/controUer
interface (b).

GPIB

GPIB

GPIB

- -,

MODE 0

GiOl f-----l

TlRIOI f------'

GI02 1---------1

TlRI02 f------'

we f-----l

RfN 1-------1

iifN f-----l

SRQ f-----l

Wi f--'---l

TlR2 1-------'
NRFO 1-------1

NoAC 1----+-1

TlRI

TIC I
o

SIR I
o

3-STATE

~~~~ ~g~~~~OR 
RECEIVE FROM GPIB 

3-STATE ONLY 

3-STATE ONLY 

INPUT ONLY 

INPUT ONLY 

INPUT ONLY 

OPEN-COllECroR 
OUT~UT ONLY 

3-STATE ONLY 

-.I=5V 

{. = 0 V . IEEE 488 BUS NONINVERTING DRIVER/RECEIVER 

(a) 

OPTA 

OPTS 

GIOI' 

GIOZ' 

IFC' 

REN' 

ATN' 

SRQ' 

EOJ· 

NRFo' 

NoAC' 

MODE I 

01031----------1-----1 

0104 \------I--l 

0105 \------I--l 

0106 \-----,-------I--l 

0107 1----'------1-----1 

0108 \-~----I--l 

iifN 
Wi 

(b) 

OPTA 

OPTB 

Fig 3 Internal logic controls for each transceiver will be either fixed or subject to control via 
external logic. In mode 0, chip is set up for control, thus some transceivers are fixed in transmit or 
receive mode only. In mode 1, chip is configured as true transceiver-all nine trllnsceivers clln 
transmit or receive depending on state of TIRI pin. In (a) is talkerlilstener control configuration, 
and in (b), talkerl1lstener data configuration. 

The talker/listener/controller control configuration, 
mode 2, is a full transceiver mode but the operation 
mode of the transceivers is determined by more complex 
combinational logic. (See Fig 4.) The fourth mode 
(mode 3), which is the talker/listener/coJ;ltroller data 
configuration, is again a true transceiver whose lJ;lode of 
operation is controlled by the state of the Tlil line. In 

this mode, some additional interval combinational logic 
is enabled to permit the 8293 to support the 8292 in taking 
bus control synchronously. 

... complete talker llistener Icon troller 
mode logic resides in four LSI chips. 

The 8293's overall mode (mode 0, I, 2, or 3) is deter­
mined by the state on the option pin~ 26 and 27. For ex­
ample, if both pins are tied low (0 V), the chip is in 
mode O. If both are high (5 V) it is in mode 3. The par­
ticular state of these pins will determine the 
characteristics of the other 26 pins. (See the Table, "8293 
Mode Selection pin Mapping.") 

Talker/listener only 
If the IEEE 488 is to be implemented in a system that is 
able to talk and listen (eg, a digital multimeter), only 
talk (eg, a counter), or only listen (eg, a signal generator), 

7-410 



MODE 2 MODE 3 

OPTA ATNO OPTA 

OPTB ifC[ OPIB 

NOAC NDAC" ilAV 

Tiih 
NRFO NRm" 

0101 
T!RI 

iFC IfC'l< 
0102 

SYC 

REN REN' 
0103 

SRQ SRQ' 0104 

ATNI ATN* 0105 ATN 

EOI2 EOI' 0106 

ATNO 

[OJ 0107 

T!R2 

0108 

[OJ 
ifC[ ATN 
ClTH 

Cit: 
(b) 

(a) 

Fig 4 Mode 2 is control configuration. Operating nodes of individual transceivers are controlled by 
external signals and internal combinational logic. Chip in mode 3 acts Uke true transceiver, as in 
mode 1, except some extra functions have been included in order to support controller function. In 
(a~, talkerllistener/controller configuration is f!>r control, and in (b), for da~a. 

then the entire interface can be built with a single 
8291A and a pair of 8293s. (See Fig 5.) In this configura" 
tion, one 8293 handles the eight data lines DIOI to DI08 
and the other handles the data-byte transfer handshake 
lines and general interface management lines. Both 
transceivers are connected to the 8291A's ATN, and EOi, 
and T IRI lines. 

Talkar/li,taRar/coRtrollar 
For an IEEE 488 controlJer (like the HP 85 or Tektronix 
4051), the system must be able to take control of the bus, 
or delegate it to another' controlJer. Such an interface 
scheme can be implemented using an 8291A, an 8292, and 

tiona! control functions have been added. The attention 
in (ATNI) lines arid attention out (ATNO) lines permit the 
8292 to monitor the GPIB'S ATN line and take control of 
the bus. In conjunction with the ATN line, the E0I2line is 
used by the 8292 to initiate a polling sequence. 

The chip is divided into nine, distinct 
transceivers and each one's 
characteristics are determined by 
internal logic. 

a pair 6f 8293s. (See Fig 6.) The arrangement is similar to Lastly, the system controller line (SYC) enables the 
that of a talker/listener interface; One 8293 handles the control function. If it is low, the 8292 is prevented from 
DIOI through DI08 bus data lines and the other handles acting as a comrolJer. If.it is switched high, the 8292 can 
the data byte transfer handshake and general interface act as a controller. In essence, the SYC controls the 
management lines. The difference is that pins 26 and 27 direction of the interface clear (IFC) and remote enable 
have I:!een selected for modes 2 and 3 and several .addi- (REN) signals. 

7-411 



TO 
MICROPROCESSOR 

INTERFACE 

GPIB TRIGGER OUTPUT 

-!l 
~ 
-.!! 
-.!l 
~ 

.JL 

...!! 
-1! 
,2 

-1. 
-1! 
.Jl 
-1. 
--! 
2 
-2 
....J. 

8291A 
00 

01 

02 

03 

04 

05 

06 

07 

CS 
Rii 
\Vii 
INT 

CLOCK 

RESET 

OREQ 

OACK 

TRIG 

'GPIB TRANSCEIVER 

0101 

0102 

0103 

0104 

0105 

0106 

0107 

0108 

5iiV 
TliiI 

ATN 
fiii 

TlR2 

NOAC 

NRFD 

SRQ 
imi 
ifc 

25 
0101 

8293 

23 
0102 

10 
0103 

9 
0104 

8 0105 
28 7 iilii6 
29 6 0107 
30 5 

0108 
31 24 5iiV 
32 ' I 

TlRI 
33 4 ATN 
34 3 fiii 
35 MODE I 
36 

I 

26 
8293 

39 3 fiii 
2 4 AfN 
38 I 

TlRI 
37 2 

TlR2 
27 I 10 

NOAC 
25 9 

NRFD 
24 8 

SRQ 
6 imi 
5 ifc 

MODE 0 

Fig 5 Talker /listener o,nly implementation can be built using just tbree cbips-single 8l9IA and a 
pair of 1293S. First (upper) transceivercbip is used for bidirectional data now on DIOlto DIOII data 
lines. Lower 8293 bandies some of data byte transfer control lines and general interface management 
lines. 

8293 MODE SELECTION PIN MAPPING 

• IEEE IMPLEMENTATION NAME 

PIN NAME PIN NO McioE 0 MODE I MODE 2 MODE 3 TlR2 

OPTA 27 0 I 0 I 
OPTB 26 0 0 I I Wi 

DATAl 5 ifC 0108 ifC 0108 i.i'N 
BUSI 12 Ife· 0108' IFC' OIOS' 
DATA2 S m IiIO'I m IiIO'I DATAl 
BUS2 13 REN· 0107'" , , ~6~; 0107' 
DATA3 7 NC iilii6 DIOS OATA2 
BUS3 IS EOI' DIOS' EOI* OIOS' 
DATM S SilQ 0105 SRQ 0105 
BUS. IS 0105' Dl05' 

DATA3 I 
8293 

0101' 

0102' 

0103' 

0104' 

Dl05' 

0106' 

0107' 

0108' 

DAV' 

OPTA 

OPTB 

EOI' 

ATN* 

NOAC' 

NRFO' 

SRQ' 

REN' 

IFC' 

OPTA 

OPTB 

DATAS 9 mro iii7i4 mro iii7i4 DATM TRANSCEII'ER 
BUSS II NRFD' 0104' NRFO' 0104* 
DATA6 10 NliAC iii03 Nm iii03 
BUSS 18 NDAC' 0103' NDAC' Dl03' 
DATAl 11 TlRIOI' NC ATNI , ,ATNO 
DATA8 23 TlRI02 Iii02 ATIW Iii02 
BUSI 19 ATN' DID2' ATN~ 0102" 
DATA9 24 GWi iiA\1 ~' DXV 
BUS8 21 GIOI' DAV' CLTH DAV· 
DATAIO 25 GID2 0101 iffi Diiii 
BUS9 22 GI02' 0101' SYC 0101' 
TlRI I TlRI TlRI TlRI TlRI 
Tlft2 2 TlR2 NC TlR2 iffi 
Wi 3 ~ Wi Wi Wi 
ATN 4 AIN ATN i.i'N ATN 

*These pms are the IEEE 488 bus Jionmvedmg drlverf.recelwers. They IOclude aU tile bus termmatlOns 
reqUired, by the standard. and connect dlrect!y to the GPIS connector 

7-412 

DATA5 

DATAS 

DATAl 

BUSI 

BUS2 

GND 

rR-
r!L 
elL 
flZ-. 
r!£-
elL 
r!1-
r!L 
~ 
r1!-
r1L 

,.!.L 
Ji.. 

,l!-
flZ-. 
,l!-
elL 
r£-
r1L-
elL 

TO 
IEEE 488 
BUS 

Vee 

GND 

TO 
IEEE 488 
BUS 

GNO 

GNO 

Vee 

'OPTA 

OPTB 

DATAIO 

ilATA9 

DATAS 

BUS9 

BUS8 

GND 

BUSI 

BUS6 

BUSS 

BUS4 

BUS3 ' 



TO 
MICROPROCESSOR 

GPIB 
TRIGGER 
OUTPUT 

TO{ MICROPROCESSOR 

OSCILLATOR 
OUTPUT 

TO MICROPROCESSOR 
~ 

f-# DO 
~ 01 
c# 02 
~ 03 

16 04 17 
18 

05 
06 

19 07 
21 RSO 
22 

RSI 
23 
9 

RS2 
Rii 

10 Wii 4 
RESET 

6 OREQ 
7 

OACK 
8 CS 3 

11 
CLOCK 
INT 

5 TRIG 

-400 
o.-..J.l- 01 

'-------# 02 
~03 

16 04 
17 05 
18 06 
19 07 
9 AD 

1~ @ 

--{) 
WR 

: ~SET 
32 ~~I 
33 SPI 
35 OBFf 
36 iBfi 
1: SYNC 

Vee~ 
~Xl 

~ 3'X2 

15TOI 5 PFj: r 

0101 28 
0102 29 

0103 30 

0104 
31 

0105 
32 
33 

0106 
0107 

34 
8291A 

0108 35 

Tiiil 1 
IiAV 36 

EQj 39 

AfN 26 

SiiQ 27 
24 m 

NOAC 38 

NRfD 37 
2 

T/R2 
REN ~ 

IiAV lL 

SilQ 21 

REN 38 

8292 m 23 

ATNO 
29 

39 
COUNT 

EOI2 
34 

ATNI 22 

ifCi 1 

~ 
31 

ClTH 27 

SYC 
24 

25 DlOI 
23 0102 
10 0103 
9 0104 
8 Dl05 
7 0106 
6 0107 
5 0108 
1 TiRI 

24 MY 
3EQj 

4AfN 

~ ATNO 
,! ifc[ 

r-l T/RI 
4 

AfN 
10 NOAC 

9 NFRO 

2 T/R2 
8 SRQ 

6 REN 
5 m 

J 23 ATNO 
3EOi 

7 E0I2 

11 ATNI 

25 ifc[ 
24 CiC 
21 

CLTH 
22 

SYC 

Ue ON SYSTEM 
CONTROLLER 

0101· 

Dl02' 

0103' 
Dl04' 

0105' 
0106' 

8293 
0107' 

Dl08' 

OAV' 

OPTA 
OPTB 

MOOE 3 

NOAC 

NRfD 

SRQ' 
REN* 

8293 IFC' 
ATN· 

EOI' 

·OPTA 

OPTB 
MOOE 2 

r#-
rli-
~ 
rU-
eli-
eli-
rll-
rR 

~ 

~ 
t1§-

.!L 

.!L-

lL 
lL 
lL 
!L 
lL 

&-
pL 

TO 
IEEE 488 
BUS 

Vee 

Vee 

ITO 
IEEE 488 
BUS 

GNO 

Vee 

.t0FF. SWITCH 'GPIB TRANSCEIVER 

Fig 6 FuDy fUDctioDai talker /lIsteDer I cODtroUer iDterface eaD be built witb oDly four LSI cbips; tbe 
miA, am, and a pair of 8293S. Like simpler talkerllistener oDly case, one 8193 bandIes data 
transceiver functioDs wbUe otber bandies data byte traDsfer cODtrol aDd geDeral iDterface • 
managemeDt. Tbere are additioDai cODtrol IiDes eDabled wbicb support tbe cODtroller (8191) activity. 

Summary . . the vicinity of 10 W. The power dissipation of the 4-chip 
Before the advent of integrated solutions for IEEE 488 approach is a mere 1.5 W. The size of the PC board is 
implementation, it usually took forty to fifty SSI and considerably smaller, too, and that lowers the manufac­
MSI chips to build this interface. A large portion of turing costs and improves reliability. 
those were eliminated by controllers and interface chips 
like the 8291A and 8292. Now, with the last part of the 
interface available in LSI, a fully functional interface 
can be built using only four LSI chips. The cost of the 
original design was typically $400 to $500. A set of the 
three chips, the 8291A, and two 8293s (for a 
talker/listener function) allows a IS-fold reduction in 

Please rate the value of this article to you by circling 
the appropriate number in the "Editorial·Score Box" 
on the Inquiry. Card. 

cost. The power dissipation of a 4O-chip interface was in High 704 Average 705 Low 706 

7-413 



©INTEl CORPORATION, 1980 

ARTICLE 
REPRINT 

Reprinted with permission of Computer Design Magazine, 7-414 
October 1979 issue. 

AR·113 

January 1980 



LSI CHIPS EASE STANDARD 488 
BUS INTERFACING 

Time and cost disadvantages of interfacing to the IEEE Std 488 
bus are overcome with a dedicated LSI chip set that incorporates 
most of its functional and electrical specifications 

Ronald M. Williams Intel Corporation, Santa Clara, California 

Historically, interface techniques proliferated as 
designers evolved customized links among instruments, 
controllers, and processors for realtime test measure· 
ments or data communications, resulting in excessive 
and expensive codes, formats, signal levels, and timing 
factors. Obviously, interface standardization was manda· 
tory to save design costs for engineers, development 
costs for manufacturers, and system integration costs 
for users. Thus, IEEE Standard 488·1978 (a revision of 
ANSI/IEEE Std 488.1975) offers a universal instrumenta· 
tion system approach to automatic operating measure· 
ment configurations that provides compatibility, versa· 
tility, and flexibility. This system approach establishes 

7-415 

a suitable standard bus for interfacing programmable. 
devices from different manufacturers. Outstanding ad· 
vantages of the standard bus include byte serial, bit 
parallel digital data handling, synchronized communi· 
cation among devices at varying data rates, and hard· 
ware interchangeability and interconnection in daisy· 
chained fashion. However, some restrictive disadvantages 
that have hindered implementation are highly com· 
plex logic protocol" time consuming design analysis, 
and lack of low cost components to perform the intri· 
cate logic control functions. To overcome these draw· 
backs, a large scale integrated (LSI) chip set has been 
designed with built·in IEEE Std 488 logic controls. Thus, 



interfacing has been significantly simplified for proper­
ly connecting processor buses and programming system 
protocols_ 

Interface Overview 

The IEEE Standard 488-1978 bus interface inoludes 
'electrical, mechanical, and functional specifications * 
for interconnecting both programmable and nonpro­
grammable electronic measuring apparatus with other 
apparatus and accessories necessary to assemble in­
strumentation systems. The functional specifications 
occupy about 80% of the document and involve a 
proportional amount of system 'design time to ,imple-

'This article deals with the functional aspects (interface signals 
that exist on the physical bus) of IEEE Std 488-1978, and is not 
intended as a complete dissertation on the major elements of the 
standard. For detailed definitions of the mechanical (physical 
cable connections), electrical (timing, voltages, and currents)" 
and operational (application software routines) technicalities, 
interested readers should consult the IEEE Standard Digital 
Inter/ace lor Prosrammable Instrumentation, IEEE Std 488-1978, 
Institute of Electrical and Electronics Engineers, IDe, New York, 
NY 10017, Nov 30, 1978--Ed. 

ment. Bus functions encompass 16 active signal lines, 
10 interface functions, the protocol by which inter­

'face functions send and receive messages, and logical 
and timiJIg relationships between signal states,. 

Functional requirements of the standard can be in­
corporated in either hardware, software, or a com­
bination of both. Some designers have chosen the hard­
ware approach to 'incorporate all the interface func­

'tions, using ,about 200 medium scale integrated (M~I) 
and small scale integrated (881) packages. This tech­
nique costs about $1000 for a complete interface 
board. As a result, many cost sensitive implementa­
tions of the bus interface use only a subset of its 
functions custom tailored to the requirements of the 
devices involved, thereby reducing 'package count and 
expense by curtailing the interchangeability advantages. 

Other designers have selected the software approach 
to implement the bus interface. One disadvantage of 
this approach' is that programming is an expensive and 
extended project; another is that a subroutine has to 
be executed with each transferred byte. This overhead 
not only burdens the microprocessor within a device, 
but also reduces the overall speed of the bus. This 
approach costs about $200 for the interfacing functions. 

<l1P-' DATA BUS LINES 

HANDSHAkE 
LINES FOR 

Fig 1 IEEE Std '188 active signal lines 
for multiple devices. Peripheral devices 
of different characteristics can be easily 
connected to standard bus interface.' 
Controller (or processor), such as mini­
computer, enables and disables talkers 
and listeners and manages overall bus 
activity. Bubble memory functions- as 
both talker and listener. As listener, 
printer receives characters to 'be printed. 
As talker, counter transmits measure­
ments to both controller and listeners 

l1 ••••••• ~~~.~~i .. -~~s~w r CONTROL 

J 

DATA INPUT/OUTPUT) 
0101-8 

VALID) 
READY FOR OATA) 
DATA ACCEPTEO)' 

7-416 



Combinational hardware/software approaches, al. 
thpugh faster than direct software implementations, 
still require enormous design time and cost about $1000 
for a typical interface board. 

With a recent alternative approach, however, the 
bus interface is easier and less expensive to incorporate 
in instrument designs. LSI circuit chips now include as 
built·in capabilities most of the functional and some 
of the electrical portions of the Standard's specifica. 
tions, significantly reducing design time and costing 
about $50 for bus interfacing. Additionally, Intel's 
8291/8292 General Purpose Interface Bus (CPIB) 
peripheral chip set also incorporates capabilities for 
bus monitoring, data rate manipulation, and address· 
ing to further simplify bus interface designs. 

Bus Signal Definitions 

The IEEE Std 488 signals are defined as negative true, 
where the high state (0 = false, ~2.0 V) and the 
low state (1 = true, :::;0.8 V) are based on standard 
transistor·transistor logic (TTL) levels. Of the 16 active 
signal lines, 8 are data lines, 5 are interface manage· 

ment lines, and 3 are handshake lines (Fig 1). Data 
input/output lines (DIol-mo8) carry ASCIi-coded infor­
mation, as well as device addresses, universal com­
mands, or program instructions. Interface management 
lines help to supervise the data lines. The primary 
management line--Attention (ATN)-determines how 
data lines are processed. When ATN is true, data lines 
are 'interpreted as addresses or universal commands 
by all bus connected devices_ When ATN is false, 
only those devices addressed can use the data lines;. 
in this case, data transmitted are ty'pically device­
dependent. With another management line, Interface 
aear (IFC), the bus controller returns the system to 
a known quiescent state. The Service Requesi (SRQ) 
line can he used by any device on the interface bus 
when it has data to send (talker) or needs to receive 
data (listener). The Remote Enable (KEN) line de­
termines whether the system is under front panel or 
program control. The End Or Identify (EOI) line can 
be used as a delimiter by a talker (sending) device 
to indicate an end of message, or by the controller 
as a polling line. 

Handshake lines control the timing relationship of 
the interface bus (Fig 2). The Data Valid (DAV) line 

{ 
TAU<ER LETS DAV GO HIGH TO ACKNOWLEDGE !I""-------lr--- THAT DATA HAVE SEEN ACCEPTED; TALKER CAN NOW CHANGE DATA. 

Fig 2 Th ree-wi re han,dshaking 
between single talker and several 
listeners. Before transfer begins, 
listener indicates It is ready by 
asserting -Ready For Data (RFD) 
messaga to true. Talker then 
drives all eight data input/output 
lines. Following settling time 
specified by standard, talker as­
serts Data Valid (DAV) message 
to true. While data are being 
read, 'RFD message is asserted to 
false since device Is unable to 
receive additional data. As each 
listener comp letes its read, it 
indicates acceptance by assert-

. { TALKER SEES THAT ALL LlSTNERS HAV.E 

• .----1--- ~=~E~~~~~V~L~~G~~TLC~~STO 
DAV ----lr----;! r-- TELL LlSlENERS THAT THE NEw DATA ARE VALID 

ITALKERI ~'-"""----i!-joI~-=_ ~-' = ... -:::._ ;j-t----~ r \ -: 
NDACill i ~ 

ILiSTENERS) ~,---i----'I--"""--f FIRST LISTENER TO ACKNOWLEDGE DIW HIGH 
_ _ PULLS NDAC LOW 

L-.-:-) ---i-I ---ilf----- ~~ ~~~::~D~~ALLY ACCEPTED DATA 

DATA VALID 

NRFD 
I LISTENERS) 

: ~' : . ----+1-., f!--+-I-+ 
I _ I { FIRST LIStENER 10 ACKNOWLEDGE DAV LOW 

.1 I I AND ACCEPT .DATA PULLS NRFD LOW 

: I { LAST LISTENER HAS ftlALLY SEEN DAV HIGH 
I I AND RELEASES NRFD 

I '-\I { WHEN IT SEES D/IW LOW AND HAS ACCEPTED 

l.......J 1..---- =L~~~::L:~ESN~A~W AND 

• \'-________ { WHEN IT SEes D/IW HIGH. EACH LISTENER PULLS 
NDAC LOW AND SIMULTANEOUSLY RELEASES NRFD 

7-417 

. ing Data Accepted (OAC) mes­

. sage to true; DAC Is not sensed 
true by talker until all listeners 
have completed read. After each 
device Indicates acceptance, it 
Indicates readiness for data by 
asserting RFD to true. New cycle 
begins when all devices have 
asserted RFD to true 



TRll 

TR12 

CLOCK 

RESET 

TRIG 

DMA REO 

l!MlrlIt:I!" 

MICROPROCESSOR 
DATA LINES 

--­r---

!:S 

lID 
WIf 
INT 

DO 

Dl 

D2 

03 

D4 

05 

D6 

D7 

Vss 

----
READ REGISTERS 

Vee 

mi 
RllAe 
Niffij 

liAV 
liIlii 
1!ll5'1 
liIlii 
liIlii GPIB LINES 

lm!4 
1m!3 
ISm 
llf!!1 

SliD 
Am 
REN 

IFC 

RSI! 

RSl } ADDRESS INPUTS 
FROM MICROPROCESSOR 

RSO 

--- ----r- -..., 
I 

L ____________________ ~ 

TO 
NONINVERTING 
BUS TRANSCEIVERS 

Fig 3 GPIB talkerllistener chip: 8291 chIp" connects 8-blt microprocessor to nonlnverting bus trans­
ceivers, which, in turn, connect to IEEE Std 488 bus. Microprocessor manipulates data bytes after 
receipt or before transmission, and monitors taikerllistener status. Single chip handles all IEEE Std 488 
interface functions, except controller functions 

7-418 



A-CAPABILITY DEFINED BY '88-1978 STANDARD 
8 -CAPABILITY DEFINED BY DESIGNER 
I -INTERFACE BUS SIGNAC LINES • 
2 -REMOTE INTERFACE MESSI\GES TO AND FROM INTERFACE FUNCTIONS 
3 - DEVICE DEPENDENT MESSAGES 10 AND FROM DEVICE FUNCTIONS 
4 - STATE LINKAGES BETWEEN INTERFACE FUNCTIONS 
S - LOCAL MESSAGES BETWEEN DEVICE FUNCTIONS AND INTERFACE FUNCTIONS 

(MESSAGES TO INTERFACE FUNCTIONS ARE DEFINED; MESSAGES FROM INTERFACE 
FUNCTIONS EXIST ACCORDING TO DESIGNER 

6 -REMOTE INTERFACE MESSAGES SENT BY DEVICE FUNCTIONS' WITHIN CONTROLLER (B292) 

Fig 4 Bus Interface functions. Messages received from Interface bus can cause state transitions, Just 
as state transitions can cause messages to be sent on bus (1 and 2). Device dependent data are trans­
ferred automatically to microprocessor, without affecting state transitions (3). State changes in one func­
tion can cause state changes in another function, resulting in message to be sent (4). Microprocessor 
can also send local messages to Interface functions (5) or remote messages to interface (6) 

7-419 



is used by a talker device to indicate that data are 
ready to transmit. The Not Ready For Data (NRFD) and 
Not Data Accepted (NDAC) lines are used by a listener 
to indicate readiness to receive data and receipt of 
data, respectively. As a result, a talker knows when 
all listeners on the bus have received an 8·bit byte 
of information. Thus, the transmission rate of the bus 
is only as fast as the slowest listener. 

Messages conveyed by all 16 lines are true or false, 
depending on the states of 10 interface functions. The 
standard defines each of these interface functions with 
state diagrams. A function's state can be changed by 
a controller, another device on the bus, or a state 
change. in another function within a device. Of the 
10 interface functions, four provide basic communica­
tion capabilities: Source Handshake (SH), Talker (T), 
Acceptor Handshake (AH), and Listener (L). These 
functions affect the three handshake lines (DAV, NRFD, 
and NDAC), eight data lines (DI01-DIo8), and EO! man­
agement line. The Device Clear (DC) and Device Trigger 
(DT) interface functions are used to initialize, and to 
trigger a device, respectively. The Parallel Poll (pp) 
function acts with the EO! line to send a single bit 
of status information. The Service Request (SRQ) func­
tion controls the SRQ' management line. The Remote 
Local (RL) interface uses the REN management line in 
conjunction with front panel control. The Controller 
(C) function, which is active in only one device on 
the bus at a time, determines which device talks or 
listens. 

To date, these 10 interface functions and their intri­
cate interrelationship and timing factors have required 
difficult and time consuming efforts when designing 
the interface bus into a digital system. 

Talker/Listener Chip Capabilities 

The 8291 GPIB talker/listener chip, a 40-pin LSI device 
(Fig 3), performs the inversion necessary to connect 
an 8-bit microprocessor bus to the negative true IEEE 
Std 488 bus. In addition, this chip implements most 
of the Standard's required functions. The niicroprocessor 
sets the talker/listener chip to an initial state, manipu­
lates bytes before or after transmission, performs inter-' 
rupt service routines, causes state changes, monitors 
other state changes, and enables and disables chip 
capabilities. 

Without microprocessor involvement, the talker/ 
listener chip implements all interface functions, ex­
cept controller performance, such as handling data 
transfers, handshake protocols, listener/talker address 
procedures, device clearing and triggering, service 
requests, and parallel and serial polling schemes 
(Fig 4). 

Within the chip architecture are eight read (output) 
and eight write (input) registers. One input register 
holds the data that are to be moved from the bus 
to the microprocessor when a device is listening. An 
output register holds the data byte that is to be 

transferred to the bus when a device is ready to 
talk. The other seven write and seven read registers 
control various chip functions_ 

Interrupt status registers 1 and 2 stdre 12 different 
interrupt flags. For example, one bit in the Interrupt 
Status 2 register reflects changes in a device's ad­
dressed state. The microprocessor can poll both regis­
ters to determine which flag caused the interrupt, and 
ca\! then branch to the appropriate service routine. 
Two corresponding interrupt mask registers allow de­
signers to mask any interrupt. A serial poll status 
register holds device status information, and a serial 
poll mode register is available so that the micro· 
processor can verify this status. An address mode 
register contains a device's addressing mode, as de· 
termined by the microprocessor. An address status 
register monitors the address status (ie, active talker 
or active listener) of a device. 

Two address' registers store the assigned device ad­
dresses. An End.Of-Sequence (EOS) register contains 
a designer specified end of string code for delimiting . 
data blo,ck 'transfers by flagging the last byte with 
EOI. A command pass-through register feeds non-GPIB 
commands to the microprocessor. An auxiliary mode 
register holds ')ocal messages to control reset, power 
on, etc. 

Among the chip's capabilities are a programmable 
data transfer rate from 62k to 525k bytes/s, three 
addressing modes, and an EOS message recognition. 
With a programmable data transfer rate, the designer 
coritrols the handshake rate of the interface to match 
,the data' ,transf",. rate to. the devices on the bus. 

The three addressing modes permit flexibility in 
designating talkers/listeners. The dual primary address 
mode, for example, allows both a talker and a listener 
address to he assigned to a device. With the primary/ 
secondary address mode, multiple devices of the same 
type can have the same primary address, but a different 
secondary address. In the third addressing mode, de­
vices can have both dual primary and dual secondary 
addresses. 

Data block transfers are made easier with the EOs' 
register. This register holds the character that signals 
an' end·of-block transfer. When a data byte loaded 
into the data-out' register matches the byte in the EO/! 
register, the talker/listener chip asserts the EO! line, 
signaling an end of transfer. 

Controller Chip Capabilities 

The 8292 controller chip (Fig 5) implements the con­
troller function of the Standard. In conj unction with 
the 8291, the controller forms a complete standard 
interface, 'including the capability of handling the 
transfer control protocol. This ability gives the designer 
an option to accommodate multiple controllers on a 
single bus. 

Additionally, the 8292 performs all the tasks neces­
sary in a complete controller design. It responds to 

7-420 



MICROPROCESSOR 
SYSTEM 

INTERFACE 

WA-----_+< 

All -----_+< 
CS-----_+< 
A,-----_ 

RESET -----_+< 

x, ______ .. 

x, ______ .. 

---

GND 

AD 

Ao 
VIA 

SYNC 

0., 

0, 

0, 

0, 

D. 

0, 

0, 

1>, 

Vss 

------------, 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

_---------J ---
Vee 

COUNT 

REN 

DAV 
IiI'l 
pBFI 

mI 
SPI 

TCI 

C1l: 
NC 

Aml) 

NC 

~LTH 

Yee 
NC 

SYC 

ii'C 
AfN1 

SAd 

liEN 
DAY 
iiF! 
OBFI 
SYC 
iFe 

eo; 
SPI 
TCI 

CiC 
ATNO 

CLTH 

IFCR 

COUNT 

FIll S GPI8 contl'Olltf chip. 8182 chip worka In conjunction with 8It1 to ptI'fonn GPlB oontI'OIler Inlelface 
funotlona. It Implementa local control commancla fnlm ml~ accordInG to IEEE Std ... protocol. 
Additionally. It p_ .uch Inputa ftom bue .. SRQ and EOI. FurtMmlore, It can Hnd the full repertoire 
of GPIB oontI'OI maauvaa. IncludlllQ REN. lI'O, ATN. and EOI 

7-421 



NOTES' 
1 CONNECT TO NDAC FOR 

BYTE COUNT OR TO EOI 
FOR BLOCK COUNT 

2 GATE ENSURES OPEN 
COLLECTOR OPERATION 
DURING PARAL.lEL PULL. 

~ THE TRANSCEIVER AND 
GATING FUNCTIONS WILL. 
BE INCORPORATED IN A 
FUTUR~ CHIP FROM INTEL. 

GPIB 

~~~~----~~~+----r----~~----t-------;aIlIiNDAC 

~~~------f;~~----------------~t------i~IIIINRFD 

~illIlIlIlI"~~IIIIIIIIIIIIII"~~IIII"~III1DIO 

Fig 6 System configuration' using chip set. I'n conjunction with 8291, 8292 performs complete controller function. 
Together with shared bus transceivers, chip set forms',a cpmplete reee Std 488 Interface. In addition, DMA inter­
face may be implemented through 8291 with 8237 DMA controller' '1 

7-422 



service requests (SRQS), configures other devi<:es on the 
bus for remote control by sending Remote Enable 
(HEN), and sends Interface Clear (IFC), allowing for 
control .seizure to reinitialize the bus. More important. 
ly, the <lontroller chip can take control of the bus 
synchronously with the handshake, preventing the de· 
struction of any data transmission in progress. 

Internally, the controller chip has 10 dedicated 
registers for programming and for monitoring status. 
Through the use of the Interrupt Status and Interrupt 
Mask registers, the designer can configure the con­
troller to interrupt the microprocessor on selected 
events. An Event Counter and a corresponding status 
register are available to monitor and control either 
byte counts or block counts. A Time-Out register may 
be set by the designer to program a time-out error 
function; a corresponding status register contains the 
current value' in the time-out counter. In conj unction 
with these registers, error control can be programmed 
with the Error Flags and Error Mask registers. Finally, 
Controller and GPIB Status registers are available. Each 
of these registers is read or programmed through a 
dedicated command bu1ler. 

Chip Set Applb:ation 

The talker /listener and controller chips connect 1:0 the 
standard interface bus through noninverting bus trans­
~ivers (Fig 6). 'These transceivers provide the 48-mA 
bus drive capability needed to meet the electrical por­
tion of the IEEE Std 488 specification-not directly pos­
sible with existing metal oxide semiconductor (MOS) 

parts. The talker /listener chip can interface directly 
to microprocessor memory through a direct memory 
access (DMA) contrqller, such as an 8237. 

The microprocessor drives the talker/listener, with a 
short stored program (see Table), containing initialization 
conditions, such as data transfer rate, address mode, 
and other designer requirements. Microprocessor data 
handling is limited to taking bytes off the bus after 
they arrive or putting bytes of data on the bus. Inter­
rupt service routines are necessary for each unmasked 
interrupt. Although 12 interrupts are available, not all 
have to be used. AU other standard bus functions are 
handled by the 829l. 

To send a byte of data, the microprocessor writes 
the, byte into the talker/listener data-out register. The 
chip then transmits the data byte over the bus lines 
in conjunction with the handshake lines. Next, the 
NHFD line is checked to see if it is ready for data. 
If a ready for data message is detected, the talker / 
listener sends a DAV signal until it receives a data ac­
cepted message from the .interface's NDAC line. The 
8291 also generates a BYte Out (BO) interrupt, setting 
the BO flag in the interrupt status register. When its 
interrupt pin is activated, the microprocessor reads th~ 
interrupt status register and responds to the interrupt 
with ian appropriate service routine. 

The 8292 handles all hardware aspects of the con­
troller function: SRQ input, ATN, IFC, EOI, and HEN 

outputs. Meanwhile, the designer defined aspects of a 

given GPIB system are handled by processor software. 
For example, the processor is ~ponsible for knowing 

, whi.ch device on the bus corresponds to which device 
address. The processor then uses the 8291 to transmit 
coded Controller commands as the 8292 asserts ATN. 

Summary 

Bus interface designs that previously required 150 or 
200 MSI/SSI chips may now be implemented with a 
GPIB peripheral chip seL For designers, this hardware 
set means less design time and cost, resulting in in­
creased reliability and versatility in IEEE Std 488 bus 
interfaces custom programmed for dedicated applica­
tions. 

Bibliography 

S. C. Baunach, "Design~ Advantages and Ljmitations in Connect. 
ing Computational and Readout Equipment to the GPm/' 
Western Electronic Show and Convention, Sept 1976 

A. Kaminker and A. Menachem, "LSI Facilitates GPm Implementa­
tion," IEEE Proceedings on Microcomputer Based Instrumen­
tation, June 1978 

D. C. Loughry and M. S. Allen. "IEEE Standard 488 and Micro· 
processor Synergism," Proceedings oj the IEEE, Feb 1978 

Ronald M. W/II;ams is a product man­
ager for peripheral control/ers in Inters 
Microcomputer Components Division. 
In addition to GPIB devices, he has 
been involved in introductions of dy­
namic RAM and CRT control/ers. He 
holds a BS degree from Trinity College, 
an MS degree from Renssa/aer Poly­
technic Institute, and an MBA' degraa 
from the Univarsity of Chicago. 

7-423 



,DATA ENCRyptiON 
TUTORIAL 

The proliferation ,Qfei~tronic data processing (EDP) 
applications that involve the storage and 'the ,distribution 
of potentially sensitive iDformation have demonstrated 
the' need for mechanisms to insure data privacy and 
security. As society becomes increasingly dependent on 
computers and data communications networks, this need 
becomes even more acute. 

Cryptography 

The most efficient technique of providing data security is 
cryptography: the transformation of data via a secret 
code into a form which is useless to anyone but autho-
rized recipients. ' 

A cryptographic algorithm can be presented as a sequence 
of mathematical transformations. Each transformation 
has it's unique inverse operation that changes the 
encrypted data back into the original plain text. In con­
ventional cryptosystems, a set of specific parameters 
called a key is'supplied along with the plain text/cipher 
text as an input to the enciphering/ deciphering algo­
rithm. The key is specified by the user. The transforma­
tion of the plain text and the cipher text depends on the 
key as well as the enciphering and deciphering algo­
rithms. In fact the algorithms themselves can be made 
public, because the security of the system depends 
entirely on the secrecy of the key. 

The initial interest in encryption for commercial applica­
tions came from financial institutions, most notably 
banks that are heavily 'involved in Electronic Fund 
Transfer (EFT). The American banking system alone, 
moves more than $400 billion between computers every 
day. The rapid rise of personal computers, workstations 
and the use of electronic mail and information retrieval 
services have spread the need for insuring d,ata privacy 
and security to many other applications. 

The DES 

In response to the gro,wing commercial need, the National 
Bureau of Standards has adopted in 1977 a standard 
algorithm know as the Data Encryption Standard (DES). 
The DES, originally developed by IBM, is 4esigned for 
use with sensitive but unclassified information. The 

National Bureau of Standards requires that the DES be 
implemented in system hardware. The standllrdization 
insures that ce.-tified hardware from different suppliers 
are c9mpatible. 

The DES specifies a method for encrypting 64 bit blocks 
of clear data into corresponding 64 bit blocks of cipher 
text using a 56 bit key user specified. The 56 bit'key (64 bit 
with parity) gives the user a total of 256 (seventy quadril­
lion) possible keys. Because the DES algorithm key is so 
long, a state of the art computer would take years to 
explore all possible permutations required to break the 
code. The most critical factor in protecting the data is 
guaranteeing the secrecy of the key. 

Intel Data Encryption Product Line 

Intel offers two peripherals supporting the DES algo­
rithm: the 8294A Data Encryption 'UIiit (DEU) and the 
82538 Data Ciphering Processor (DCP). 

The 8294A -a preprogrammed 8042- can encrypt and 
decrypt data at a rate up to 400 Byte/Sec. The 8294A is 
very well suited for data file protection, off line data 
encryption prior to transmission and phone line 
applications. 

The 82538 is a much faster device: 1.5 Mbyte/ Sec. This 
encryption rate is needed in satellite communications 
systems, data storage onto hard disks, high performance 
data communications networks like Ethernet. This rate is 
high enough to accomodate on the fly encryption in most 
of the communications systems and eliminate the need 
for buffers and interfacing circuitry. High encryption and 
decryption speed is not the only feature of this device, The 
82538 supports bi-directional, half-duplex operations at 
its top speed. It contains three separate write only regis­
ters for encryption, decryption and master keys improv­
ing system's security and throughput. The D(:P can also 
be configured in any of the three encryption/ decryption 
modes recommended by the NBS (ECB, CBC or CFB). 

The Intel Data Encryption product line solves the ~eed 
for a broad range of applications: Security features can 
now be economically designed in data entry terminal as 
well as in satellite communications ~ystems. 

7-424 . 



inter 
8291 A 

GPIB TALKER/LISTENER 

• Designed to Interface 
Microprocessors (e.g., 8048/49, 8051, 
8080/85, 8086188) to an IEEE Standard 
488 Digital Interface Bus . 

• Programmable Data Transfer Rate 
• Complete Source and Acceptor 

Handshake 
• Complete Talker and Listener 

Functions with Extended Addressing 

• Service Request, Parallel Poll, Device 
Clear, Device Trigger, Remote/Local 
Functions 

• Selectable Interrupts 

• On-Chip Primary and Secondary 
Address Recognition 

• Automatic Handling of Addressing and 
Handshake Protocol 

• Provision for Software Implementation 
of Additional Features 

• 1-8 MHz Clock Range 
• 16 Registers (8 Read,8 Write), 2 for 

Data Transfer, the Rest for Interface 
Function Control, Status, etc. 

• Directly Interfaces to External 
Non-Inverting Transceivers for 
Connection to the GPIB 

• Provides Three Addressing Modes, 
Allowing the Chip to be Addressed 
Either as a Major or a Minor Talker/ 
Listener with Primary or Seconda~ 
Addressing 

• DMA Handshake Provision Allows for 
Bus Transfers without CPU 
Intervention 

• Trigger Output Pin 
• On-Chip EOS (End of Sequence) 

Message Recognition Faclllt~tes 
Handling of Multi-Byte Transfers 

The 8291 A is an enhanced version of the 8291 GPIB Talker/Listener designed to interface microprocessors to 
an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface functions 
except for the controller. The cpntroller function can be added with the 8292 GPIB Controller, and the 8293 
GPIB Transceiver performs the electrical interface for Talker/Listener and Talker/Listener/Controller 
configurations. 

I 8291 A 

I 
I 
I 

8291A I 
GPIBDATA 

I 
~~~C~~~ I 

Figure 1. Block Diagram

GPIB CONTROL

I
I
I

T/RCONTROL

7-425

TO NON·INVERTING
BUS TRANSCEIVERS

. Figure 2. Pin Configuration

inter 8291 A

8291A FEATURES AND IMPROVEMENTS

The 8291A is an improved design of'th~ 829fGPlB
Talker/Listener. Most of the functions are identical tt
the 8291, and the pin cQnti~uration is unc~~mg~d.

The 8291 A oft;ers the fqllowing impr,ovements to tre
8291:.' , ,

1. EOI is active with the data as.a riilith data bit
rather than as a control, bit. This is·tocomply
with some,additions to the 19751EEE~8 Stan­
dard incorporated in the 1978 Standard:

2. The BO il'lterrupt is not asserted until 'RFD is
true. If the 'Controller asserts Ai'N
synchronously, the data, is 'guaranteed to be
transmitted. If the Controller asserts ATN
asynchronously, the SH (Source Ha~dst),ake)
will return to SIDS (Source Id,le State),and the
output, data' will be cleared. The, if ATN is
released while the,8291A is addressed to talk, a
new BO interru pt will be gene~~ted, This change
fixes 8291 problems which caused data to be
lost or repeated and a problem with the' RQS bit
(somet!~s cannot be ~s,serted whi,le talking~.

3. llOC and REMC int~rrup'tS'are setting flipflops
rather than toggling flipflops in the interrupt
backup register. This ensures that the CPU
knows that these state changes have Occurred.
'the actual state can be determined by,checking
the llO and REM status bits in the upper nibble
of the Interrupt Status' 2, RegistE!r.

4. DREQ is cleared by DACK (RD + WR). DREQ on
the 8291 was cleared only by DACK which is not
compatible with the 8089 I/O Processor.

5. The INT bit in Interrupt Status 2 Register and bit 7
of Address 0 Register are duplicates. When soft­
ware polling is used to check interrupts, polliNT in
Address 0 Register, instead of Interrupt Status 2
Register. Then, asynchronous status reads and
interrupts will not lose interrupts.

A lockout mechanism prevents all interrupt status
bits to be set in both interrupt status registers. A
back-up stores any bits, and latches onto the Inter­
rupt Status Regist~rs after the register with the bits
set is read.

• NOTE:
When an Interrupt status Register is read, all the interrupt
status bits,shollid be checked before disregarding the byte
read. A recommended way to handle this 8291A on END
interruptis in, the flow clJart below.

6. The 8291A's Send EOI Auxiliary Command
works on any byte including the first byte of a
message. The 8291 die;! not assert §)i. after this
command for a one byte message nor on two
consecutive bytes.

7. To avoid confusion between holdoff on DAVver­
sus RFD if a device is 'readdressedfrom a talker
to a listener role or vice-versa during a holdoff,
the "Holdoff on Source Handshake" has been
eliminated. Only "Holdotf on AcceRtor Hand­
shake" is available.

8. The rsv local message is cleared automatically
upon exit from SPAS if (APRS.STRS.SPAS)'oc­
curred. The automatic resetting of the bit after
the serial poll is complete simplifies'lhe service
request software.

9. The SPASC interrupt on the 8291 has been
replaced by the SPC (Serial Poll Complete) in­
terrupt on the 8291A. SPC interrupt is seton exit
from SPAS if APRS.STRS.SPAS occurred, indi­
cating that the controller has read the bus status
byte after the 8291A. requested service. The
SPASC interrupt was ambiguous because a
contro.iler couid enter SPAS and exit SPAS gen-

. erating two SPASC i,nterrupts without reading
the serial poll status byte. The SPC interrupt also
simplifies the CPU's software by eliminating the
interrupt When the serial poll is half. way done.

10. The rtl Auxiliary Com mand in the 8291. has been
replaced by Set and Clear rtl Commands in the
8291A. Using the new commands, the CPU has
the, flexibility to extend the length of local mode
or leave it as a short pulse as in the 8291.

11. A holdoff RFD o,n GET, SOC, and Del feature
has been added to prevent additional bus ac­
tivity while the CPU is responding to any of
these, commands. The feature is enabled by a
new bit (B.) in the Auxiliary Register B.

,7-426

intJ 8291 A

12. On the 8291, BO could cease to oceur upon IFe
going false if IFe occurred asynchronously. On
the 8291A, BO continues to occur after IFe has
gone false even if it arrived asynchronously.

This can be used to set a flag in the user's
software which will permit special routines to be
executed for each device. It could be included
as part of a normal initialization procedure as
the first step after a chip reset.

13. User's software can distinguish between the
8291 and the 8291A as follows:
a) pon (OOH to register 5)
b) RESET (02H to register 5)
c) Read Interrupt Status 1 Register. If BO inter­

rupt is set, the device is the 8291. If BO is clear,
it is the 8291 A.

Table 1. Pin Description

Symbol
Pin

Type Name and Function
No.

0 0-07 12-19 I/O Data Bus Port: To be con-
nected to microprocessor
data bus.

RSo-RS2 21-23 I Register Select: Inputs, to
be connected to three non-
multiplexed microproces-
sor address bus lines.
Select which of the 8 inter-
nal read (write) registers
will be read from (written
into) with the execution .of
RO(WR.)

CS 8 I Chip Select: When low,
enables readi'ng from or
writing into the register se-
lected by RSo-RS2•

RO 9 I Read Strobe: When low
with C'S or OACR low, se-
lected register contents
are read.

WR 10 I Write Strobe: When low
with CS or OACK low, data
is written into the selected
register.

INT (INT) 11 0 Interrupt Request: To the
microprocessor, set high
for request and cleared . when the appropriate reg-
ister is accessed by the
CPU. May be software con-
figured to be active low.

OREQ 6 0 DMA Request: Normally
low, set high to indicate
byte output or byte input in
OMA mode; reset by OACK.

Symbol

OACK

TRIG

CLOCK

RESET

010,-010,

OAV

NAFO

NOAC

ATN

IFC

7-427

Pin
,

No.
Type Name and Function

7 I DMA Acknowlttdge: When
low, resets OREQ and
selects data in/data out
register for OMA data
transfer J!!ctual transfer
done by RO/WR pulse).

Must be high if OMA is not
used.

5 0 Trigger Output: Normally
low; generates a triggering
pulse with 1 ",sec min.
width in response to the
GET bus command or Trig-
ger auxiliary command.

3 I External Clock: Input,
used only for T, delay
generator. May be any
speed in 1-8 MHz range.

4 I Reset Input: When high,
forces the device into an
"idle" (initialization) mode.
The device will remain at
"idle" until released by the
microprocessor, with the
"Immediate Execute pon"
local message.

28-35 I/O 8-Bit GPIB Data Port: Used
for bidirectional data byte
transfer between 8291 A
and GPIB vili non-inverting
external line transceivers.

36 I/O' Data Valid: GPIB hand-
(shake control line. Indi-

cates the availability and
valid!!L0f information~
the 010,-010, and EOI
lines.

37 I/O Not Ready for Data: GPIB
handshake control line. In-
dicates the condition of
readiness of device(s) con-
nected to the bus to accept
data.

38 I/O Not Data Accepted: GPIB
handshake control line. In-
dicates the condition of ac-
ceptance of data by the
device(s) connected to the
bus.·

26 I Attention: GPIB command
line. Specifies how data on
010 lines are to be inter-
preted .

24 I Interface Clear: GPIB
command line. Places the
interface functions in a
known quiescent state.

AFN·OO229B

8291 A

Ta,ble 1. Pin Description (Continued)

Symbol
Pin

lJpe ,Name and Function'
No.

SRQ 27 0 Service Request: GPIB
command line. Indicates
the need for attention and
requests an interruption of
the current sequence of
events on the GPIB.

REN 25 I Remote Enable: GPIB
command line. Selects' (in
conjunction with other
messages) remote or local
control of the device.

EOI 39 I/O End or Identify: GPIB com-
mand line. Indicates the
end of a multiple byte
transfer. sequen~r, in
conjunction with ATN, ad-
dresses the device during a
polling sequence.

T/R1 1 O' External Transceivers
Control Line: Set high to
indicate output datal
sign~n the 010,-010.
and DAV line!! and input
Sign~S on the NRFD and
NDA lines (active source
handshake). Set low to in-
dicate .!!1B.ut!!!taisignals
on the 010,-010. and DAV
lines and output signals on
the NRFD and NDAC lines
(active ~ceptor hand-
shake).

T/R2 2 0 External Transceivers
Control Line: Set to jndi-
cate output signals on the
Em line. Set low to indicate
expected input signal on
the EOi line during parallel
poll.

Vee 40 P.S. Positive Power Supply:
(5V ±10%).

GND 20 P.S. Circuit Ground Potential.
NOTE:
All signals on the 8291A pins are specified with positive logic.
However, IEEE 488 speCifies negative logic on its 16 signal lines.
Thus, the data is inverted once from Do-D7 to DiOo-rno. and
non-inverting bus transceivers should be used, .

THE GENERAL·PURPOSE INTERFACE
BUS (GPIB)

The General Purpose Interface Bus (GPIB) is
defined in the IEEE'Standard 488-1978 "Digital In,
terface for Programmable Instrumentation."
Although a knowledge of this standard is assumed,
Figure 4 provides the bus structure for quick refer-

ence: Also, Tables 2 and 3 reference the interface
"State mnemonics and the interface messages
respectively. Modified state diagrams for the 8291 A
are presented in Appendix A.

Ceneral Description

The 8291A is a microprocessor-controlled device
designed to interface microprocessors, e.g.,
8048/49,8051,8080/85, 808El/88 to the GPIB. It im­
plements all of the interface functions defined in the
IEEE-488 Standard except for the controller func­
tion. If an implementation of the Standard's Control-

7-428

Figure 3. 8291A System Diagram

ler is desired, it can be connected with an Intel<l!l8292
to form a complete interface.

The 82,91A handles communication between a mi­
croprocessor-controlled device and the GPIB. Its
capabilities include data transfer, handshake
protocol, talkerllistener addressing procedures,
device clearing and triggering, service request, and
both serial and parallel polling. In most procedures,
it does not disturb the microprocessor unless a byte
has arrived (input buffer full) 9r has to be sent out
(output buffer empty).

The 8291A architecture includes 16 registers. Eight
-of these registers may be written into by the micro­
processor. The other eight registers may be read by
the microprocessor. One /each of these read and

AFN-002291l

intJ 8291 A

write registers is for direct data transfers. The rest of
the write registers control the various features ofthe
chip, while the rest of the read registers provide the
microprocessor with a monitor of GPIB states, vari­
ous bus conditions, and device conditions.

GPIB AddreSSing

Each device connected to the GPIB must have at
least one address whereby the controller device in
charge of the bus can configure it to talk, listen, or
send status. An 8291 A implementation of the GPIB
offers the user three alternative addreSSing modes
for which the device can be initialized foreach appli­
cation. The first of these modes allows for the device
to have two separate primary addresses. The second
mode allows the user to implement a single
talkerllistener with a two byte address (primary ad­
dress + secondary address). The third mode again
allows for two distinct addresses but in this instance,
they can each have a ten-bit address (5 iow-order
bits of each of two bytes). However, this mode re­
quires that the secondary addresses be passed to
the microprocessor for verification. These three
addressing schemes are described in more detail in
the discussion of the Address Registers.

DEVICE A

ABLE TO
TALK LISTEN,

AND
CONTROL

(IIe,lallatorl

DEVICE B

ABLE TO
TALK AND

L.ISTEN

(e,g floppy
disk)

DEVICE C -

ONLY ABLE
TO LISTEN

(egllgnal
\IIIl'IIIr.torl

DEVICE 0

ONLY ABLE
TO TALK

leg counted

,

11111 III f
1== DATA BUS

1==
DATA BYTE
TRANSFER
CONTROL

F=
GENERAL

INTERfACE

,(MANAGEMENT

1==

~}0101 8

DAV
NRFD
NOAe

lFe
ATN
SRO
RE • .
EOI

. Figure 4. Interface Capabilities and Bus Structure

Table 2. IEEE 488 Interface State Mnemonics
~-----.----------~~~~~~~'

Mnemonic Stale Represented

ACDS Accept Data State
ACRS Acceptor Ready State
AIDS Acceptor Idle State
ANA'S Acceptor Not Ready State
"APRS Affirmative Poll Response State
AWNS Acceptor Walt for New Cycle State * ------------------------, I CACS Controller Active State I i CADS Cont~oller Addressed State I

I CAWS Controller Active Wait State I
I CIOS Controller Idle State I
I CPPS Controller Parallel Poll State I
I CPWS Controller Parallel Poll Walt State :
I CSBS Controller Standby State I
: CSNS Controller Service Not Requested State I
I CSRS Controller Service Requested State I
I CSWS Controller Synchronous Walt State I
L ~T~~ _ ..9~t~o~':.r':.a~s~r ~t!t~ ______ J

DCAS Device Clear Active State
, DCIS Device Clear Idle State
DT AS Device Tngger Active State
OTIS Device Tngger Idle State

LACS
LADS
LIDS
LOCS
LPAS
LPIS
LWLS

NPRS

Listener Acllve State
Listener Addressed State
listener Idle State
Local State
Listener Primary Addressed State
Listener Primary Idle State
Local With j.ockout State

Negative Poll Response State

"The Controller function IS Implemented on the Intelill 8292.

7-429

JMnemonlc

PACS
PPAS
PPIS
PPSS
PUCS'

REMS
RWLS

SACS
SDYS
SGNS
SIAS
SIDS
SIIS
SINS
SIWS
SNAS
SPAS
SPIS
SPMS
SRAS
SRIS
SRNS
SROS
STRS,
SWNS

TACS
TAOS
TlDS
TPIS

Slale Represented

Parallel Poll Addressed to Configure State
Parallel Poll Active State
'Parallel Poll Idle State
Parallel Poll Standby State
Parallel Poll Unaddressed to Configure State

Remote State
Remote With Lockout State

System Control Active State
Source Delay State
Source Generate State
System Control Interface Clear Active State
Source Idle State
SysterT) Control Interface Clear Idle State
System Control Interface Clear Not Active State
Source Idle Walt State
System Control Not Active State
Sen ai, ~oll Active State
Senal Poll Idle State
Serial Poll Mode State
System' Control Remote Enable Active State
System Control Remote Enable Idle State
System Control Remote Enable ~ot Active State
,SeNlce'Request State
Source Transfer State
Sour,ce Wpit for New Cycle State

Talker Active State
Talker Addressed State
Talker Idle State
Talker Pnmary Idle State •

inter,

'NOTE:

8291A

Table 3. IEEE 488 Interface Message Reference List

Mnemonic Me.sage Int!trface Functlon(s) ,

LOCAL MESSAGES RECEIVED (By Interface Functions)

'gts go to standby C
1st individual status ' PP I

Ion listen only L, LE
Ipe local poll enable PP
nba new byte available SH

pon
rdy

'rpp
'rsc
rsv

rtl
'sic
'sre
'tca
'tcs
ton

power on
ready
request parallel poll
request system control
request service

return to local
send inter1ace clear
send remote enable
take control asynchronously
take control synchronously
talk only

REMOTE MESSAGES RECEIVED

ATN Attention
DAB' Data Byte
DAC Data Accepted
DAV Data Valid
DCL Device Clear

END End
GET Group Execute Trigger
GTL Go to Local
lOY Identify,
I,FC Interlace Clear

LLO Local Lockout
MLA My Listen Address
MSA My Secondary Address
MTA My Talk,Address
OSA Other Secondary' Address

OTA Other Talk Address
PCG Primary Com!Tland Group'

'PPC, Parallel Poll Configure
'[PPD] Paraliel Poll Disable
'[PPE] Parallel Poll Enable

'PPRN• Parallel Poll Response N
'P-PU Parallfll Poll Uljconfigure
REN Remote Enable
RFD Ready for Data
RaS Request Service

[SOC], Select Device Clear
SPD Serial Poll Disable

, SPE Serial, Poll Enable
'SaR Service Request
STB Statlls Byte

'TCTor[TCn Take Control
UNL Unlisten

SH.AH,T,TE,L,LE,SR,RL,PP,C
AH '
C
C
SR

RL
C
C
C
AH,C
T, TE

,SH,AH,T,TE,L,LE,PP,C
(Via L, LE)
SH
AH
DC

(via L, LE)
DT
RL
L,LE,PP
T,TE,L,LE,C

RL
L,LE,RL,T,TE
TE,LE,RL
T,TE,L,LE
TE

T,TE
TE,LE,PP
PP
PP
PP

(via C)
PP
RL
SH
(via L, LE)

DC
T,TE
T,TE
(via C)
(via'L, LE)

C
L, LE

1, These messages are handled onl~ by Intel's 8292,
2. Undefined commands whiCh may be passed to the microprocessor,

7-430

,291 A

_ Table 3. (Cont'd)
IEEE 488 Interface Message Reference List

I

NOTE:

Mnemonic Message

REMOTE MESSAGES SENT

ATN
DAB
DAC
DAV
DCl

ENO
GET
GTl
lOY
IFC

llO
MlA or [MlA]
MSA or [MSA]
MTAor [MTA]
OSA

OTA
PCG
PPC
[PPD]
[PPE]

PPRN
PPU
REN
RFD
ROS

[SOC]
SPD
SPE
SRO
STB

TCT
UNl

Attention
Data Byte
Data Accepted
Data Valid
Device Clear

End
Group Execute Trigger
Go to local
Identify
Interface Clear

local lockout
My Listen Address
My Secondary Address .
My Talk Address
Other Secondary Address

Other Talk Address
Primary Command Group
Parallel Poll Configure
Parallel Poll Disable
Parallel Poll Enable

Parallel Poll Response N
Parallel Poll Unconfigure
Remote Enable
Ready for Data
Request Service

Selected Device Clear
Serial Poll Disable
Serial Poll Enable
Service Request
Status Byte

Take Control
Un listen

3. All Controller messages must be sent via Intel's 8292.

31nterface Functlon(s)

C
(via T, TE)
AH
SH
(via C)

(via T)
(via C)
(via C)
C
C
.(viaC)
(via C)
(via C)
(via C)
(via C)

(via Cj
(via C)
(via C)·

(via C)
(via C)

PP
(via C)
C
AH
T, TE

(via C)
(via C)
(via C)
SR
(via T, TE)

(via C)
(via C)

8291 A Registers Data Registers

A bit-by-bit map of the 16 registers on the 8291A is
presented in Figure 5. A more detailed explanation
of each of these registers and their functions fol­
lows. 'The access of these registers by the
microprocessor is accomplished by using the es,
RD, WR, and RSo-RS2 pins.

Register CS RD WR RSo-RS2

All Read Registers ° ° 1 eee
All Write Registers ° ° eee
High Impedance d d ddd

7"431

I DI7 I DI61 015 1 DI41 DI31 DI21 DI1 I DIO I

DATA-IN REGISTER (OR)

ID0710Q6IDO:slo04Io03ID02ID0110?01

DATA-OUT REGISTER (OW)

The Oata-In Register is used to move data from the
GPIB to the microprocessor or to memory when the
8291A is addressed to listen. Incoming information
is separately latched by this register, and its con-
tents are not destroyed by a: write to the data-out

AFN-00229B

8291 A

register. The RFD (Ready for Data) message is held
false until the byte is removed from the data in regis- .
ter, ·either by the microprocessor or by DMA. The
8291A then completes the handshake automatically.
In RFD holdoff mode (see Auxiliary Register A), the
handshake is not finished until a command is sent
telling the 8291A to release the holdoff. In this way,
the same byte may be read seveal times, or an over
anxious talker may be held off until all available data
has been processed.

When the 8291A is addressed to talk, it uses the
data-out register to move data onto the GPIB. After
the BO interrupt is received and a byte is written to
this register, the 8291A initiates and completes the
handshake while sendin,g the byte out over the bus.
In the BO interrupt disable mode, the user should
wait until BO is active before writing to the register.
(In the DMA mode, this will happen automatically.) A
read of the Data-In Register does not destroy the
information in the Data-Out Register.

Interrupt Registers

I CPTIAPT IGETIENOI DEC I ERR I BO I BI]

INTERRUPT STATUS 1 (1R)

liNT ISPASILLO]REM I SPC I LLOclREMCIADSC I
INTERRUPT STATUS 2 (2R)

ICPTIAPT I GET I END I DEC I ERR I BO I BI 1\
INTERRUPT ENABLE 1 (1W)

I 0 I 0 I DMAO IDMAllsPC I LLOCIREMCIADSC I
INTERRUPT ENABLE 2 (2W)

ADDRESS 0 REGISTER

Figure 5. 8291A Registers

READ REGISTERS REGISTER SELECT
CODE

WRITE REGISTERS

RS2 RS1 RSO

I 017 I 016 DIS I 014 013 I 012 011 I 010 I 0 o

DATA IN

I CPT I APT I GET I END I DEC I ERR I BO I BI I 0

INTERRUPT STATUS 1

liNT I 5PA5 I LLO I REM I spc ILLOC I REMCI A05CI 0

INTERRUPT STATUS 2

I 58 I 5R05 I 56 I 55 I 54 I 53 I 52 j 51 I 0

SERIAL POLL STATUS

j ton I Ion I EOI I LPA5 I TPA5 ILA I TA I MJMNI

ADDRESS STATUS

j CPT7!' CPTsl CPT51'CPT4j CPT3jCPT2 I CPTlI CPTO I 1

COMMAND PASS THROUGH

liNT I OTO j OLO j A05.01 A04.01 A03.0j A02'Oj A01.0J 1

ADDRESS a

I x I OTl lOLl ! ~D5.11 A04-11 AD3-11 AD2.1! A~1-11
. ADDRESS 1

7-432

o I 007 I 006 I DOS I 004 I 003 I 002 I 001 j 000

DATA OUT

I CPT I APT j Gel j END j DEC , ERR 'BO 'BI

INTERRUPT ENABLE 1

o I 0 '0 I OMAOIOMAI' SPC IllOC I REMC[ADSCJ .

INTERRUPT ENABLE 2

1 I 58 I rsv j 56 I 55 '54 '53 I 52 j 51

SERIAL POLL MODE

o [To JLO j 0 I 0 I 0 I 0 j AOM1' AOMOI

ADDRESS MODE

1 'CNT2!'CNTi! CNTOj COM4j COM3j COM2j COM11 COMO I

AUX MODE

0 I AR5 I OT I OL I ADS I A04 I A03 I A02 j AOl

ADDRESS all

1 I ~C7 I EC6 I EC5 I EC4 I EC3 I EC2 I ECl I ECo

EOS

AFN-00229B

8291A

The 8291A can be configured to generate an inter­
rupt to the microprocessor upon the occurrence of
any of 12 conditions or events on the GPIB. Upon
receipt of an interrupt, the microprocessor must
read the Interrupt Status Registers to determine
which event has occurred, and then execute the
appropriate service routine (if necessary). Each of
the 12 interrupt status bits has a matching enable bit
in the interrupt enable registers. These enable bits
are used to select the events that will cause the INT
pin to be asserted. Writing a logic "1" into any of
these bits enables the corresponding interrupt
status b'its to generate an interrupt. Bits in the Inter­
rupt Status Registers are set regardless of the states
of the enable bits. The Interrupt Status Registers are
then cleared upon being read or when a local pon
(power-on) message is executed. If an event occurs
while one of the Interrupt Status Registers is being
read, . the event is held until after its register is
cleared and then placed in the register.

The mnemonics for each of the bits in these regis­
ters and a brief description of their respective func­
tions appears in Table 4. This tables also indicates
how each of the interrupt bits is set.

NOTE: The INT bit in the Address 0 Register is a duplicate of the
INT bit in the Ihterrupt Status 2 Register. It is only a status
bit. It does not generate interrupts and thus does not have
a corresponding enable bit. .

The BO and BI interrupts enable the user to perform
data transfer cycles. BO indicates that a data byte
should be written to the Data Out Register. It is set by
TACS . (SWNSI+ SGNS) . RFD. It is reset when the
data byte is written, ATN is asserted, or the 8291A
exits TACS. Data shou Id never be written to the Data
Out Register before BO is set. Similarly,BI is set
when an input byte is accepted into the 8291A and
reset when the microprocessor reads the Data In
Register. BO and BI are also reset by pon (power-on
local message) and by a read of the Interrupt

Table 4. Interrupt Bits

Indicates Undefined Commands ~ An undefined command has been received.

Set by (TPAS + LPAS)oSCGoACDSoMODE 3 APT A secondary address must be passed through
to the microprocessor for recognition. -

Set by DTAS GET A group execute trigger has occurred.
--,--

Set by (EOS + EOI)oLACS END An EOS or EOI message has been reCeived. -
Set by DCAS DEC Device Clear Active State has occurred.

Set by TACS·nba.DAC.RFD ERR Interface error has occurred; no listeners
are active.

TACS.(SWNS + SGNS) BO A byte should be output.

Set by LACS.ACDS BI A byte has been input.
-

--
Shows status of the INT pin INT

The device has been enabled for a serial poll SPAS
These are status only. They Will D,Q! generate

The device is in local lock out state. ~ - interrupts, nor do they have corresponding
(LWLS+RWLS) mask bits. r-

The device is in a remote state. REM
(REMS+RWLS) -

-
SPAS --->SPAS if APRS:STRS:SPAS was true SPC Serial Poll Complete interrupt.

LLCNO LLO' LLOC Local lock out change Interrupt.

RemotQ.ocal REMC Remote/Local change intemtPt.

AddresseUnaddressed ADSC Address status change interr'upt.'

".OTE;: 'In ton (talk·only) and Ion (listen-only) motles, no ADSC interrupt is generated.

7-433 AFN-00229B

8291 A

Status 1 Register. However, if it is so desired, data
transfer cycles may be performed without reading
the Interr.upt Status 1 Register if all interrupts except

, for BO or BI are disabled;' BO and BI will auto­
matically reset after each byte is transferred.

If the 8291A is used in the interrupt mode, the
INT and DREO pins can be dedicated to data input
arid output interrupts respectively by enabling BI
and DMAO, provided that no other interrupts are
enabled. This eliminates the need to read the inter­
rupt status registers if a byte is received or
transmitted.

The ERR bit is set to indicate the bus error condition
when the 8291 A is an active tal ker and tries to send a
byte to the GPIB, but there are no active listeners
(e.g., all devices on the GPIB are in AIDS). The logi­
cal equivalent of (nba . TACS . DAC . RFD) will set
this bit.

The DEC bit is set whenever DCAS has occurred.
The user must define a known state to which all
device functions will return in DtAS. Typically this
state will be a power-on state. However, the state of
the device functions at DCAS is at the designer's
discretion. It should be noted that DCAS has no

, effect on the interface functions which are returned
to a known state by the IFC (interface clear) message
or the pon local message. ,

The END interrupt bit may be used by the micropro- .
cessor to detect that a multi-byte transfer has been
completed. The bit will be set when the 8291A is an
active listener (LACS) and either EOS (provided the
End on EOS Received feature is enabled in the Auxil­
iary Register A) or EOI is received. EOS will generate
an interrupt when the byte in the Data In Register
matches the byte in the EOS register. Otherwise the
interrupt will be generated when a true input is
detected on EOL

The GET interr~pt bit,is used by the microprocessqr
to detect that DTAS has occurred. It is set.by the
8291A when the GET message is received while it is
addressed to listen. The TRIG output pin of the
8291A fires when the GET message is received!
Thus, the basic operation of device trigger may be
started without microprocessor software inte'rven­
tion.

The APT interrupt bit indicates to the processor that
a secondary address is available in the CPT register
for validation. This interrupt will only occur if
Mode 3 addressing is in etrect. (Refer to the section
on addressing.) In Mode 2, secondary addresses will
be recognized automatically· on the 8291 A. They will
be ignored in Mode 1.

The CPT interrupt bit flags the occurrence of an
undefined' command and of all secondary com­
mands following an undefined command. The Com­
mand Pass Through feature is enabled by the BO bit
of Auxiliary Register B.Any message not decoded by
the 8291A (not included in the state diagrams/ in
Appendix B) becomes an undefined command. Note
that any addressed command is automatically ig­
noree;! when the 8291 A is not addressed.

Undefined commands are read by the CPU from the
Comm\lnd Pass Through register of the 8291A. This
register reflects the logic levels present on the data
lines at the time it is read. If the CPT feature is
enabled, the 8291A will hold off the handshal<e until
this register is read.

An especially useful feature ofthe 8291 A is its ability
to generate interrupts from statEttransitions in the
interface functions. In particular, the lower 3 bits of
the Interrupt Status 2 Register, if enabled by the
corresponding enable bits, will cause an interrupt
upon changes in the following states as defined in
the IEEE 488 Standard.

Bit 0 ADSC change in LIDS or TIDS or MJMN
Bit 1 REMC change in LOCS or REMS
Bit 2 LLOC change in LWLS or RWLS

The upper 4 bits of the Interrupt Status 2 Register are
available to the processor as status bits. Thus, if one
of the bits 1 and 2 generates an interrupt indicating a
state' change has taken place, the corresponding
status bit (bits 4 and 5) may be read to determine
whanhe new state is. Tq determine the nature of a
change in addressed status (bit 0) the Address Status
Register is available to be read. The SPC interrupt
(bit 3 in Interrupt Status 2) is set upon exit from SPAS
if APBS:STRS:SPAS occurred which indicates that
the GPIB controller has read the bus serial poll status
byte after the 8291A requested .service (asserted
SRO). The SPC interrupt occurs once after the con­
troller reads the status byte if service was requested.

7-434 AFN-00229B

/

8291A

The controller may read the. status byte later, and the
byte will contain the last status the 8291A's CPU
wrote to the Serial Poll Mode Register, but the SRQS
bit will not be set and no interrupt will be generated.
Finally, bit 7 monitors the state of the 8291A INT pin.
Logically, it is an OR of all enabled interrupt status
bits. One should note that bits 4-7 of the Interrupt
Status 2 Register do not generate interrupts, but are
available only to be read as status bits by the proces­
sor. Bit 7 in Interrupt Status 2 is duplicated in Ad­
dress 0 Register, and the latter should be used when
polling for interrupts to avoid losing one of the inter­
rupts in Interrupt Status 2 Register.

Bits 4 and S (DMAI, DMAO) of the Interrupt Mask 2
Register are available to enable d.irect data transfers
between memory and the GPIB; DMAI (DMA in)
enables the DREQ (DMA request) pin of the 8291 A to
be asserted upon the occurrence of BI. Similarly,
DMAO (DMA out) enables the DREQ pin to be as­
serted upon the occurrence of BO. One might note
that the DREQ pin may be used as a second interrupt
output pin, monitoring BI and/or BO and enabled by
DMAI and DMAO. One should note that the DREQ
pin is not affected by a read of the Interrupt Status 1
Register. It is reset whenever a byte is written to the
Data Out Register or read from the Data In Register.

The Serial Poll Mode Register determines the status
byte that the 8291A sends out on the GPIB data lines
when it receives the SPE- (Serial Poll Enable)
message. Bit 6 of this register is reserved for the rsv
(request service) local message. Setting this bit to 1
causes the 8291A to assert its SRO line, indicating its
need for attention from the controller-in-charge of
the GPIB. The other bits of this register are available
for sending status information over the GPIB.
Sometime after the microprocessor initiates a re­
quest for service by setting bit 6, the controller of the
GPIB sends the SPE message and then addresses
the 8291A to talk. At this point, one byte of status is
returned by the 8291A via the Serial Poll Mode Reg­
ister. After the status byte is read by the controller,
rsv is automatically cleared by the 8291 A and an SPC
interrupt is generated. The CPU may request service
again by writing another byte to the Serial Poll Mode
Register with the rsv bit set. If the controller per­
forms a serial poll when the rsv bit is clear, the last
status byte written will be read, but the SRQ line will
not be driven by the 8291A and the SRQS bit will be
clear in the status byte.

The Serial Poll Status Register is available for read- .
ing the status byte in the Serial Poll Mode Register.
The processor may check the status of a request for
service by polling bit 6 of this register, which corre­
sponds to SRQS (Service Request State): When a
Serial Poll is conducted and the controller-in­
charge reads the status byte, the SRQS bit is
cleared. The SRQ line and the rsv bit are tied
together.

To ensure that an interrupt status bit will not be
cleared without being read, and will not remain un­
cleared after being read, the 8291A implements a
special interrupt handling procedure. When an
enabled interrupt bit is set in either of the Interrupt
Status Registers, the input of the registers are
blopked until the set bit is read and reset by the
microprocessor. Thus, potential problems arise
when. interrupt status changes while the register is
being blocked. However, the 8291A stores all new
interrupts in a temporary register and transfers them
to the appropriate Interrupt Status Register after the
interrupt has been reset. This transfer takes place
only if the corresponding bits were read as zeroes.

Address Registers

Serial Poll Registers

IS8lSRQslS6lssls4ls3ls2ls1/

SERIAL POLL STATUS (3R)

S8 I rsv I S6 I SS I S4 I S3 I S2 I S1 I
SERIAL POLL MODE (3W)

7-435

I ton lion I EOII LPASI TPAS I LA _ TA I MJMN I
ADDRESS STATUS (4R)

liNT I DTOI DLOIADS-0IAD4-0IAD3-0IAD2-0IAD1-0 I
. ADDRESS O. (6R)

I X I DT11 DL1IAD~-1IAD4.1IAD3-1IAD2-11 AD1-1 I
\ ADDRESS 1 (7R) .

I TO I LO I 0. I 0 I 0 I 0 I ADM11ADMO I
ADDRESS MODE (4W)

I ARS I DT I DL I ADS I ADi I AD3 I AD2 I AD1 I
ADDRESS 0/1 (6W)

AFN'()()229B

8291A

The Address Mode Register is used to select one of
the fiv~ modes of addressing available on the 8291 A.
It determines the way in which the 8291A uses the
information in the Address 0 and Address 1
Registers.

-In Mode 1, the contents of the Address 0 Register
constitute the "Major" talker/listener address while
the Address 1 Register represents the "Minor"
talker/listener address. In applications where only
one address is needed, the major talker/listener is
used, and the minor talker/listener should be dis­
abled. Loading an address via the Address 0/1 Regis­
ter into Address Registers 0 and 1 enables the major
and minor talker/listener functions respectively.

-In Mode 2 the 8291A recognizes two sequential
address bytes: a primary followed by a secondary.
Both address bytes must be received in order to
enable the device to talk or listen.' In this manner,
Mode 2 addressing implements the extended talker
and listener functions as defined in IEEE-488.

To use Mode 2 addressing the primary address must
be loaded into the Address 0 Register, and the Sec­
ondary Address is placed in the Address 1 Register,
With both primary and secondary addresses resid­
ing on chip, the 8291A can handle all addressing
sequences without processor intervention,

-In Mode 3, the 8291A handles addressing just as it .
does in Mode 1, except that each Major or Minor
primary address must be followed by a secondary
address, All secondary addresses must be verified
by the microprocessor when Mode 3 is used. When
the 8291 A is in TPAS or LPAS (talker/listener primary
addressed state), and it does not recognize the byte
on the 010 lines, an APT interrupfis generated (see
section on Interrupt Registers) and the byte is avail­
able in the CPT (Command Pass-Through) Register.
As part of its interrupt service routine, the micropro­
cessor must read the CPT Register and write one of
the following responses to the Auxiliary Mode
Register:

1, 07H implies a non-valid secondary address

2, OFH implies a valid seconclary address

Setting the TO bit generates the local ton (talk­
only) message and sats the 8291A to a talk-,anly
mode, This mode allows the device to operate as a
talker in an interface system without a controller.

Setting the LO bit generates the local Ion (listen­
only) rnessage and sets the 8291A to a listen-only
mode. This mode allows the device to operate as a
listener in an interface system without a controlier,
The above bits may also be used by a controller-in­
charge to set itself up for remote command or data
communication,

The mode of addressing implemented by the 8291A
may be selected by writing one ofthe following bytes
to the Address Mode Register,

Register Contents Mode

10000000 Enable talk only mode (ton)
01000000 Enable listen only mode (Ion)
11000000 The 8291 may talk to itself
00000001 Mode 1, (Primary-Primary)
00000010 Mode 2 (Primary-Secondary)
00000011 Mode 3 (Primary/APT-Primary/APT)

The Address Status Register contains information
used by the microprocessor to handle its own
addressing, This information includes status bits
that monitor the address state of each talker/
listener, "tori" and "Ion" flags which indicate the
talk and listen only states, and an EOI bit which,
when set, signifies that the END message came with
the last data byte. LPAS and TPAS indicate that the
listener or talker primary address has been received,
The microprocessor can use these bits when the
secondary address is passed through to determine
whether the 8291A is addressed to talk or listen, The
LA (listerier addressed) bit will be set when the
8291A is in LACS (Listener Active State) or in LADS
(Listener Addressed State), Similarly, the TA (Talker
Addressed bit) will be set to indicate TACS or TAOS,
but also to indicate SPAS (Serial Poll Active State),
The MJMN I.)it is used to determine whether the
information in the other bits applies to the Major or
Minor talker/listener, It is set to "1" when the Minor
talker/listener is addressed, It should be noted that
only one talker/listener may be active at anyone
time, Thus, the MJMN bit will indicate whiCh, if
either, of the talker/listeners is addressed or active.

The Address 0/1 Register is used for specifying the
device's addresses according to the format selected
in the Address Mode Register. Five bit addresses
may be loaded into the Address 0 and Address 1
Registers by writing into the Address 0/1 Register,
The ARS bit is used to select which of these registers
the other seven bits will be loaded into, The OT and
OL bits may be used to disable the talker or listener
function at the address signified by the other five

7-436 A~229B

intJ 8291 A

bits. When Mode 1 addressing is used and only one
primary address is desired, both the talk~r and tile
listener should be disabled at the Minor address.

As an example of how the Address 0/1 Register
might be used, consider an example where two pri­
mary add~esses are needed in the device. The Major
primary address will be selectable only as a talker
and the Minor primary address will be selectable
only as a listener. This configuration of the 8291A is
formed by the following sequence of writes by the
microprocessor.

Operltlon cs ii5 WR Dltl RSI-RSo

1. Select addressing Mode 1 0 1 0 00000001 100

2. Load major address Into 0 1 0 oo1AAAAA 110
Addreps 0 Register with
listener function disabled.

3. Load minor address into 0 1 0 110BBBBB 110
Address 1 Register with
talker function disabled.

At this point, the addresses AAAAA and BBBBB are
stored in the Address-O and Address 1 Registers re­
spectively, and are available to be read by the micro­
processor. Thus, it is not necessary to store any
address information elsewhere. Also, with the in­
formation stored in the Address 0 and Address 1
Registers, processor intervention is not required to
recognize. addressing by the controller. Only in
Mode 3, where secondary addresses are passed
through, must the processor intervene in the
addressing sequence,

The Address 0 Register contai ns a copy of bit 7 of the
Interrupt Status 2 Register (I NT), This is to be used
when polling for inte'rrupts. Software should poll
register. S checking for INT (bit 7) to be set. When INT
is set, the Interrupt Status Register should be read to
determine which interrupt was received.

Command' Pass Through Register

ICPT7jCPTSlcPT5ICPT4\ CPT31 CPT2\CPT1\ CPTO I

COMMAND PASS THROUGH (5R)

The Command Pass Through Register is used to
transfer undefined 8-bit remote message codes
from the GPIB to the microprocessor. When the CPT .
feature is enabled (bit BO in Auxiliary Register B),
any message not decoded by the 8291 A becomes an
undefined command. When Mode 3 addreSSing is
used secondary addresses are also:passed through

the CPT Register. In either case, the 8291 A will hold­
off the handshake until the microprocessor reads
this register and issues the VSCMD auxiliary
command.

The CPT and APT interrupts flag the availablility of
undefined commands and secondary addresses in
the CPT Register. The details of these interrupts are
explained in the section on Interrupt Registers.

An added feature ofthe8291A is its ability to handle
undefined secondary commands following unde­
fined primaries. Thus, the number of available
commands for future IEEE-488 definition is in­
creased; one undefined primary command followed
by a sequence of as many as 32 secondary com­
mands can be processed. The IEEE-488 Standard
doe$ not permit users to define their own com­
mands, but upgrades of the standard are thus pro­
vided for.

The recommended use of the 8291A's undefined
command capabilities is for a controller-configured
Parallel Poll. The PPC message is an undefined pri­
mary command typically followed by PPE, an unde­
fined secondary command. For details on this proce­
dure, refer to the section on Parallel Poll Protocol.

Auxiliary Mode Register

§NT2\CNT1IcNTOlc0M4JC0M3lcOM2ICOM1IcOMOI·

AUX MODE (5W)

CNT0-2:CONTROL BITS
COM04:COMMAND BITS

The Auxiliary Mode Register contains a three-bit
control field and a five-bit command ·field. It is used
for sev!i!ral purposes on the 8291A:

1. To load "hidden" auxiliary registers on the
8291A.

2. To issue commands from the microprocepor to
the 8291A.

3. To preset an internal counter used to generate
T1, delay in the Source Handshake function, as
defined' in IEEE-488.

Table 5 summarizes how these tasks are performed
with the Auxiliary Mode Register. Note that the th ree
control bits determine how the five command bits
are interpreted.

7-437 AFN-Q0229B

8291 A

Table 5

CODE' '
CONTROL COMMAND COMMAND

BITS BITS
000 OCCCC Execute auxiliary command

CCCC
001 ODDDO PreseUnternal counter to

match external c,lock
frequency of DODD MHz
(DODD binary representation
of 1 to 8 MHz)

100 00000 Write 00000 into auxiliary
register A

101 DDDDO Write 00000 into auxiliary
register B

011 USP3P2P1 Enable/disable, parallel poll
either in re,sponse ,to remQtl!
mes.sages (PPC f~lIowed by

"
PPE or PPD) Qr as a local

, I pe message. (Enable If U = 0
disable if U= 1:)

AU~ILlARY COMMANDS

AUl<iliarY commands are executed by the 8291A
whenever OOOOCCCC is written into the Auxiliary
Mode Register, where CCCC is the 4-bit command
code.

OOOO-immediate E~ecute pon: This c:;omrnand
resets the 8291A to a power up state (local pon
message as defined in IEEE-4,88).
The following conditions constitute the power up
state:
1. All talkers and listeners are disabled.
2. No interrupt status bits are set.
The 8291A is designed to power up in certain stales
as specified in the IEEE-488 state diagrams,' Thus,
thEI following states are in' effect in the power up .
state: SIDS, AIDS, TIDS, LIDS, NPRS, LOCS, and
PPIS.
The "0000" pon is an immediate execUte comr:n~nd
(a pon pulse). It is also used to release the "initialize"
state generated by either an external reset pulse or
the "0010" Chip Reset command.

oo1O-Chip Reset (Initialize): 'J:hfs cQmmand has the
same effect as a pulse applied to the R'eset' pin.
(Refer to the section on Reset Procedure.)

,0011-Finish Handshake: This command finishes a
handshake that was stopped because of a holdoff
on RFD. (Refer to Auxiliary Register A.)

0100-1l'igger: A "Group Exe<:ute 1l'lgger" is forced
by this command; It has the same effect as' a GET
command issued ,by the controller-in-charge of the
GPIB, but does not cause a GET interrupt.

0101, '1101-C~ear/~et rtl: These commar;lds~orre­
spond to the local rtl message as defined by t~e
IEEE-488. The 8291.AwiIJ go into local mode ,when a
Set rtl Auxiliary Command is received if local
lockout is not in effect. The 8291A will exit. local
mode' atter receiving a Clear rtl Auxiliary Command
If the 8291A is address~d to listen.

0110-Send EOI: The EOIline of the 8291A may be
asserted with this command. The command causes
EOI to go tn"e with the next byte tr~nsmitted. The
EOI line is then cleared upon completion of the
handshake for that byte.

0111, 1111-Non ValidNalid Secondary Address or
Command (VSCMD): This corr/mand informs t,he
8291A that the secondary address: received by the
microprocessor was valid or invalid (0111 = invalid,
1111 = valid). If Mode 3 addressing is used, the
processor ·must field each extended address and
respond to i.t, or the'GPIB will hang up. Note that the
COM3 bit Is the invalid/Valid flag.

The valid (1111) command is also used to tell the
8291A to continue from the command-pass­
through-state, or from RFD holdoff on GET, SOC
or DCL."

1000-pon: This command puts the 8291A into the
pon (power on) state and holds it there. It i,~ similar to
a Chip Reset except none of the Auxiliary Mode
Registers a~e cleared. In this ~tate, the 8291A does
not partiCipate in any bus acti~lty. An Immediate
Execute pon releases the 82!il1~,from the pon state
and permits the device tQparticipate in t~e bus
activity again'. ' , ,

0001, 1001-Parallel Poll Flag Oocal"ist" message):
This command sets (1001) or clears (0001) the paral­
lel poll flag. A '.'1" is sen~ over thl!! ~ssigned ,elata line
(PRR = Pa'rallel Poll Response tru,e} only if the paral­
lel poll flag matq~es the sense bit from the Ipe local
message (or'indi rectly from thE! pPE message). For a·
more complete description of the Parallel Poll
features arid procedureS refer to the section on Par­
allel Poll Protocol.

INTERNAL, COUNTER "

Th'8' iliternal counter determines the delay time al­
lowed for the settlng'of data on the· 010 Iines.'This
delay time iSidefined as'T, in IE;EE-488 and apj:)ears
in ~he Source HandShake s~ate diagram between the

7-438 AFN.()0229B

inter 8291 A

SDYS and STRS. As such, DAV is asserted T, after
the DIO lines are driven. Consequently, T, is a major
factor in determining the data transfer rate of the
8291A over the GPIB (T, ,= TWRDV2-TWRD1,5).

When open-collector transceivers are used for con­
nection to the GPIB, T, is defined by IEEE-488 to be
2p.sec. By writing 001 ODDDD into the Auxiliary Mode
Register, the counter is preset to match a fc MHz
clock input, where DDDD is the binary representa­
tion of NF [1 ",NF",8, NF=(DDDDh}. When NF = fc, a
21'sec T, delay will be generated before each DAV
asserted.

T1(~) = 2fNF + laVNC , 1 ",NF",8
c '

laVNC is a synchronization error, greater than zero
and smaller than the larger of T clock high and T
clock low. (For a 50% duty cycle clock, laVNC is less
than half the clock cycle).

If it is necessary that T, be different from 21'sec, NF
may be set to a value other than fc. In this manner,
data transfer rates may be programmed for a given
system. In small systems, for example, where trans­
fer rates exceeding GPIB specifications are re­
quired, one may set NF<fc and decrease T,.

When tri-state transceivers are used, II;EE-488 al­
lows a higher transfer rate (lower T,). Use of the
8291A with such transceivers is enabled by setting
B. in Auxiliary Register B. In this case, setting NF=fc
causes a T, delay of 2j.1.Sec to be generated for the
first byte transmitted - all subsequent bytes will
have a delay of 500 nsec.

T,,(High Speed) I'sec = :: + tSVNC

Thus, the shortest T, is achieved by setting NF=1
using an 8 MHz clock with a 50% duty cycle clock
(tsvNc<63 ,;sec):

1
T1(HS) = 2x8 + 0.063 = 125 nsec max.

AUXILIARY REGISTER A

Auxiliary Register A is a "hidden" 5-bit register
which is used to enable some of the 8291 A featurl}s.
Whenever a 100 MAoA,Ao byte is written into the

Auxiliary Register, it is loaded with the data
A.A3A.A,AD• Setting the respective bits to "1"
enables the following features.

Ar- RFD Holdoff on all Data: If the 8291 A is listen­
ing, RFD will not be sent true until the "finish hand­
shake" auxiliary command is issued by the
microprocessor. The holdoff will be in effect for each
data byte. '

A,-RFD Holdoff on End: This feature enables the
holdoff on EOI or EOS (if enabled). However, no
holdoff will be in effect on any other data bytes'.

7-439

A.-End on EOS Received: Whenever the byte in the
Data In Register matches the byte in the EOS Regis­
ter, the END interrupt bit will be set in the Interrupt
Status 1 Register.

As-Output EOI on EOS Sent,: Any occurrence of
data in the Data Out Register matching the EOS
Register causes the EOI line to be sent true along
with the data.

A.-EOS Binary Compare: Setting this bit causes
the EOS Register to function as a full 8-bit word.
When it is not set, the EOS Register is a 7-bit word
(for ASCII characters). . \ ,

If Ao=A,=1, a special "continuous Acceptor Hand­
shake cycling" mode is enabled. This mode should
be used only in a controller system configuration,
where both the 8291A and the 8292 are used. It
provides a continuous cycling through the Acceptor
Handshake state diagram, requiring no local mes­
sages from the microprocessor; the rdy local mes­
sage is automatically generated when in ANRS. As
such, the 8291A Acceptor Handshake serves' as the
controller Acceptor Handshake. Thu$, the controller
cycles through the Acceptor Handshake without de­
laying the data transfer in progress. When the tcs
local message is executed, the 8291A should be
taken out of the "continuous AH cycling" mode, the
GPIB will hang up in ANRS, and a BI interrupt will be
generated to 'indicate that control may be taken, A
simpler procedure may be used when a "tes on end
of block" is executed,; the 8291A may stay in "con­
tinuous AH cycling". Upon the end of a block (EO I or
EOS received), a holdoff is generated, the GPIB
hangs up iFf ANRS, and 'control may be taken.

AFN-00229B

8291A

AUXILIARY REGISTER B

Auxiliary Register 8 is a "hidden" 4-bit register
which is used to enable some of the features of the
8291A. Whenever a 101 8.838 28,80 is written into
the Auxiliary Mode Register, it is loaded with the
data 8.838 28,80 , Setting the respective bits to "1"
enables the following features:

Bo-Enable Undefined Command Pass Through:
This feature allows any commands not recognized
by the 8291A to be handled in software. If enabled,
this feature will cause the 8291 A to holdoff the hand­
shake when an undefined command is received. The
microprocessor must then read the command from
the Command Pass Through Register and send the
VSCMD auxiliary command. Until the VSCMD com­
mand is sent, the handshake holdoff will be in effect.

B,-Send EOI in SPAS: This bit enables EOI to be
sent with the status byte; EOI is sent true in Serial
Poll Active State. Otherwise, EOI is sent false in
SPAS. .

B~Enable High Speed Data Transfer: This feature
may be enabled when tri-state external trlmsceivers
are used. The data transfer rate .. is limited by T, delay
time generated in the Source Handshake function,
which is defined according to the type of transceiv­
ers used. When the "High Speed" feature is enabled,
T, = 2 microseconds is generated for the first byte
tr{lnsmitted after each true to false transition of ATN.
For all subsequent bytes, T, = 500 nanoseconds.
Refer to the Internal Counter section for an explana­
tion of T, duration as a function of 8 2 and of clock
frequency.

B3-Enable Active low Interrupt: Setting this bit
causes the polarity of the INT pin to be reversed,
providing an output signal compatible with Intel's
MCS-48® Family. Interrupt registers are not affected
by this bit.

B."':'Enable RFO Holdoff on G·ETorDEC: Setting this
bit causes RFO to be held false until the "VSCMO"
auxiliary command is written after GET, SOC, and
OCl commands. This allows the device to hold off
the bus until it has completed a clear or trigger
similar to an unrecognized command. •

PARALLEL POLL PROTOCOL

Writing a 011USP3P2P, into the Auxiliary Mode Reg­
isterwill enable (U=O) ordisable (U=l)the8291A for
a parallel.poll. When U =0, this command is the "Ipe"
(local poll enable) local message as defined in
IEEE-488. The "S" bit is the sense in which the
8291 A is enabled; only if the Parallel Poll Flag ("ist"
local message) matches this bit will the Parallel Poll
Response, PPRN, be sent true (Response= S + ist).
The bits P3P2P, speCify which of the eight data lines
PPRN will be sent over. Thus, once the 8291A has
been configured for Parallel Poll, whenever it senses
both EOI and ATN true, it will automatically compare
its PP flag with the sense bit and send PPRN true or
false according to the comparison.

If a PP2* implementation is desired, the "Ipe" and
"ist" local messages are all that are needed. Typi­
cally, the user will cohfigure the 8291A for Parallel
Poll immediately after initialization. During normal
operation the microprocessor will set or clear the
Parallel Poll Flag (ist) according to the device's need
for service. Consequently the 8291 A will be set up to
give the proper response to lOY (EOI • ATN) without
directly involving the microprocessor.

If a PP1* implementation is desired, the undefined
command featUres of the 8291A must be used. In
PP1, the 8291A is indirectly configured for Parallel
Poll by the active controller on the GPI8. The se­
quence at the 8291A being enabled or disabled re­
motely is as follows:

1. The PPC message is receivEld and is loaded into
the Command Pass Through Register as an un­
defined command. A CPT Interrupt is sent to the
microprocessor; the handshake is automatically
held off.

2. The microprocessor reads the CPT Register and
sends VSCMD to the 8291A, releasing the
handshake.

3. Having received an undefined primary com­
mand, the8291A is set upto receive an undefined
secondary command (the PPE or PPO message).
This message is also receiVed into the CPT Regis­
ter, the handshake is held off, and the CPT inter­
rupt is generated.

NOTE: 'As defifled In IEEE Standard 488.

7-440 AFN.()()2298

intJ 8291 A

4. The microprocessor reads the PPE or PPD mes­
sage and writes the command into the Auxiliary
Mode Register (bit 7 should be cleared first). Fi­
nally, the microprocessor sends VSCMD and the
handshake is released.

End of Sequence (EOS) Register

I EC71EC61EC51 EC4IEcal EC21 EC11 ECO I
EOS REGISTER

The EOS Register and its features offer an alterna­
tive to the "Send EOI" auxiliary command. A seven
or eight bit byte (ASCII or binary) may be placed in
the register to flag the end of a block or read. The
type of EOS byte to be used is selected in Auxiliary
Register bit A..

If the 8291A is a listener, and, the "End on EOS
Received" is enabled with bit A., then an END inter­
rupt is generated in the Interrupt Status 1 Register
whenever the byte in the Data-In Register matches
the byte in the EOS Register.

If the 8291A is a talker, and the "Output EOI on EOS
Sent" is enabled with bit ~, then the EOIline is se"nt
true with the next byte whenever the contents of the
Data Out Register match th,e EOS register.

Reset Procedure

The 8291A is reset to an initialization state either by a
pulse applied to its Reset pin, or by a reset auxiliary
command (02H written into the Auxiliary Command
Register). The following conditions are caused by a
reset pulse (or local reset command):

1. A "pon" local message as ,defined by IEEE-488 is
held true until the initialization state is released.

2. The Interrupt Status Registers are cleared (not
Interrupt 'Enable Registers). '

3. Auxiliary Registers A and B are cleared.
4. The Serial Poll Mode Register is cleared.
5. The Parallel Poll Flag is cleared.
6. The EOI bit' in the Address Status Register is

cleared.
7. NF in the Internal Counter is set to 8 MHz. This

setting causes the longest possible T, delay to be
generated in the Source Handshake (16 ,""sec for
1 MHz clock).

8. The rdy local message is sent.

The Initialization state ls released by an "Im­
mediate execute pon" command (OOH written into
the Auxiliary Command Register).

The suggested initialization sequence is:

1. Apply a reset pulse or send the reset auxiliary
command.

2. Set the desired intial conditions by writing into
the Interrupt Enable, Serial Poll Mode, Address
Mode, Address 0/1, and EOS Registers. Auxiliary
Registers A and B, and the internal counter
should also be ihitialized.

3. Send the "immediate execute pon" auxiliary
command to release the initialization state.

4. If a PP2 Parallel Poll implementation is to be used
the "Ipe" local message may be sent, enabling
the 8291A for a Parallel Poll Response on an
assigned line. (Refer to the section on Parallel
Poll Protocol.)

Using DMA

The 8291A may be connected to the IntelS 8237 or
8257 DMA Controllers or the 8089 1/0 Processor for
DMA operation. The 8237 will be used to refer to any
DMA controller. The DREO pin of the 8291A requests
a DMA byte transfer from the 8237. It is set by BO or
BI flip flops, enabled by the DMAO and DMAI bits in
the Interrupt Enable 2 Register. (After reading, the
INT1 register BO and BI interrupts will be cleared but
not BOand BI in DR EO equation.) ,

The DACK pin is driven by the 8237 in response to
the DMA request. When DACK is true (active low) it
sets CS= RSO= RS1 = RS2=0 such that the RD and
WR signals sent by the 8237 refer to the Data In and
Data Out Registers. Also, the DMA request line is
reset by DACK (RD + WR).

DMA input sequence:

1. A data byte is accepted from the GPIB by the
8291A ..

2. A BI interrupt is generated and DR EO is set.
3. DACK and RD are driven by the 8237, the contents

of the Data In Register' are transferred to the
system bus, and DREO is reset.

4. The 8291A sends RFD true on the GPIB and pro­
ceeds wit~ the Acceptor Handshake protocol.

DMA output sequence:

1. A BO interrupt is generated (indicating that a byte
should be output) and DREO Is asserted.

7-441

·nt r 111ae-' 8291 A

2. DACK and WR are driven by the 8237, a byte is
transferred from the MCS bus into the Data Out
Register, and DREQ is reset.

3. The 8291A sends DAV true on the GPIB and pro-
ceeds with the, Source Handshake protocol.

It should,be noted that each time the device is ad­
dressed (MTA + MLA + ton + Ion), the Address
Status Register should be read, and the 8237 should
be initialized accordingly. (Refer to the 8237 or 8257
Data Sheets.)

APPLICATION BRIEF

System Configuration

MICROPROCESSOR BUS CONNECTION
The 8291A is 8048/49, 8051, 8080/85, and 8086/88

TO
MICROPROCESSOR

INTERFACE

GPIB TRIGGER OUTPUT

~

-E.
..2!
~

-.!!
..E.
-.!!
...!!
2!.

-#
.E.
......!
......!
....!.!!
.2!
-2
2
-!
--1..
2

8291A

~ DO ~

01 lii02 ~
02 0103

30

03 0104
31

04 0105
32

05 0106
33

06 0107
34

07 0108
35

RSO DAV
36

RSl T/i.i1
1

RS2 ATN
26

cs EOI
39

Rii T/R2
2

WR NOAC
38

INT NRFO
37

CLOCK SRO
27

RESET lIEN 25

OREO IFC
24

OA€K

TRIG

" = GPIB BUS TRANSCEIVER

compatible. The three address pins (RSo, RS" RS2)

should be connected to the non-multiplexed ad­
dress bus (for example: As, Ag , A,o). In case of 8080,
any address lines may be used. If the three lowest
address bits are used (Ao, A" A2), then they must be
demultiplexed first. .

EXTERNAL TRANSCEIVERS CONNECTION
The'8293 GPIB Transceiver interfaces the 8291A di­
rectly to the IEEE-488 bus. The 8291A and two 8293's
can be configured as a talker/listener (see Figure 6)
or with the 8292 as a talker/listener/controller (see
Figure 7). Absolutely no active or passive external
components are required to comply with the com­
plete IEEE-488 electrical specification.

25
0101

23
0102

10
0103

9 DT04
8

0105
7

0106
6

0107
5

0108
24

OAV
1

T/Rl

~ ATN

~ EOI

3
EOI

~ ATN
1

Tlih
2 TlR2

l 10
NOAC

9
NRFO

8 SiiQ
6

REN
5 iFc"

8293

0101"

0102"

0103"

0104"

0105"

0106"

0107"

0108"

OAV"

OPTA

OPTB

MODEl

8293
EOI"

ATN"

NOAC"

NRFO"

SRO"

REN"

IFC"

OPTA

OPTB

MOOED

~
19
r--
~
r!!-
16

r;-;-
r-
~ r;,-,
r-

TO
IEEE·488
BUS

~Vc c
NO ~G

~
r-!!-

r!!-
r!!-
r!!-
t-1L
E...
E..G

~G

TO
IEEE·488
BUS

NO

NO

Figure 6. 8291A and 8293 System Configuration

7-442 AFN.00229B

TO
MICROPROCESSOR

GPI
TRIGGE
OUTPU

B
R
T

TO MICRO,PROCESSOR

~
~
~

~
16

17
18

19

21

22

23

9

10

4

6

7

8

3

11

5

..!1.

~
~
~ 16

17

18

19

9

B

10

DO

01

02

03

04

05

06

07

RSO 8291A

RS1

RS2

RD
WR

RESET

DREQ

DACK
-
CS

CLOCK

INT

TRIG

DO

01

02

03

D'
05

06

07

AD 8292

RD
WR

--{> 4
RESET1t

TO
MICROPROCESSOR

OSClllATO
OUTPU

1
R
T

6

32

33

35

36

11

Vee --.-!.

~
$1

Cs
TCI

SPI

OBFI

IBFt

SYNC

SS

x,t

x,t

15.25 PFJ ~ EA

• = GPIB BUS TRANSCEIVER
t =SEE 8041 A DATA SHEeT FOR ALTERNATE

CRYSTAL CONFIGURATIONS
tt = CAN CONNECT TO SYSTEM RESET SWITCH,

SEE 8041A DATA SHEET

8291 A

0101
28 25

0101

0102
29 23

0102

0103
30 10 Di03

0104
31 9

0104

0105
32 8

0105

0106
33 7 Di06

0107
34 6

0107

DlOs 35 5
0108

TiR1 1 1
TlR1

b~v
36 2' DAV

EOI
39 3

EOI

ATN
26 4

ATN

SRQ
27

IFC
24

NDAC
38

NRFD
37

T/R2
2 ---.!.!. ATNO

REN ~ I- ~ IFCl

DAV ~ r-'- riRl
4

ATN
10

NDAC
9

NFRD
2

T/R2

SRQ
21 8

SRO

REN
38 6

R~N

IFC
23 5

IFC

ATNO
29 23

ATNO

COUNT
39 3

EOI

EOl2 3' 7
EOl2

ATNt
22 11

ATNI

IFCL
1 25 iFCL

CIC
31 24

CIC

ClTH
27 21

CLTH

SYC
2. 22

SYC

LJ ON SYSTEM
CONTROllER

SWITCH

Figure 7. 8291 A, 8292, and 8293 System Configuration

7-443

0101"

0102"

0103"

0104"

0105"

0106"

0107"
8293

0108" .
DAV"

OPTA

OPTS
MODE3

NDAG

NRFD

SRO"

REN"
8293 IFC"

ATN"

EOI·

,

OPTA

OPTB

MODE2

~
f-1!..
~
~
~
~
~
f1L

~

TO
IEEE·488
BUS

~Ve
~Ve

~ CLI

jtj r£-
r'1-
~

TO
EEE 488

BUS

~Vs
~Ve

AF~229B

inter 8291A

Start-Up Procedures

The following section describes the steps needed to
initialize a typical 8291A system implementing a
talker/listener interface and an 8291N8292 system
implementing a talker/listener/controller interface.

TALKER/LISTENER SYSTEM
Assume a general system conf,iguration with the
following features: (i) Polled system interface; (ii)
Mode 1 addressing; (iii) same address for talker and
listener; (iv) ASCII carriage return as the end-of­
sequence (EOS) character; (v) EOI sent true with the
last byte; and, (vi) 8 MHz clock.

Initialization. Initialization is accomplished with
the following steps:

1. Pulse the RESET input or write 02H to the Auxil­
iary Mode Register.

2. Write OOH to the Interrupt Enable Registers 1 and
2. This disables interrupt and DMA.

3. Write 01 H to the Address Mode Register to select
Mode 1 addressing.

4. Write 28H to the Auxiliary Mode Register. This,
loads 8H to the Auxiliary Register A matching the
8 MHz clock input to the internal T1 delay counter
to generate the delay meeting the IEEE spec.

5. Write the talker/listener address to the Address
0/1 register. The three most significant bits are
zero.

6. Write an ASCII carriage return (ODH) to the EOS
register.

7. Write 88H to the Auxiliary Mode Register to allow
EOI to be sent true when the EOS character is
sent.

8. Write OOH to the Auxiliary Mode Register. This
writes the "Immediate Execute pon" message
and takes the 8291A from the initialization state
into the idle state.,The 8291Awill remain idle until
the controller initiates some activity by driving
ATN true.

Communication. The local CPU now polls the
8291A to determine which controller command has
been received.

The controller addresses the 8291A by driving A"i'N.
placing MLA (My Listen Address) on the bus and
driving DAV.lf the lowerfive bits of the MLA message
match the address programmed into the Add ress 0/1
register, the 8291A is addressed to listen. It would ,be
addressed to talk if the controller sent the MTA mes­
sage instead of MLA.

TheADSC bit in the Interrupt Status 2 Register indi­
cates that the 8291A has been addressed or
unaddressed. The TA and LA bits in the Address
Status Register indicate whether the 8291A is talker
(TA=1), listener (LA=1), both (TA=LA=1) or unad­
dressed (TA=LA=O).

If the 8291A is addressed to listen, the local CPU can
read the Data-In Register whenever the BI (Byte In)
interrupt occurs in the Interrupt Status 1 Register. If
the END bit in the same register is also set, either EOI

'or a data byte matching the pattern in the EOS regis­
ter has been received.

In the talker mode. the CPU writes data into the
Byte-Out Register on BO (Byte Out) true.

TALKER/LISTENER/CONTROLLER SYSTEM
Combined with the Intel 8292, the 8291A executes a
complete IEEE-488-1978 controller function, The
8291A talks and listens via the data and handshake
Ii nes, (iiiR'J!'Ij , N15AC and OAV). The 8292 controls four
of the five bus management lines (IFC. SRQ,ATN and
R'EN). ro, the fifth line, is shared. The 8291A drives
and receives ro when 8jf is used as an end-of­
block indicator. The 8292 drives Ern along with AiN
during a parallel poll command.

Once again, assume a general system configuration
with the following features: (i) Polled system inter­
face; (ii) 8292 as the system controller and
controller-in-charge; (iii)ASCIi carriage return (ODH)

I as the EOS identifier; (iv) EOI sent with the last
character; and, (v) an external buffer (8282) used to
monitor the TCI line.

Initialization. In order to send a command across
the GPIB, the 8292 has to drive A"i'N, and the 8291 A
has to drive the data lines. Both devices therefore
need initialization.

To initialize the 8292:

1. Pulse the RESET input. The 8292 will initiallydrive
all outputs high. TCI. SPI. OBFI, IBFI and CLTH
will then go low. The Interrupt Status, Interrupt
Mask, Error Flag, Error Mask and Timeout regis­
ters will be cleared. The interrupt counter will be
disabled and loaded with 255. The 8292 will then
monitor the status oLthe SYC pin. If h.igh. the
8292 will pulse IFC true for at le,ast 100J-ts in com­
pliance with the IEEE-488-1978 standard. It will
then take control by asserting ATN.

To initialize the 8291A, the following is necessary:

1. Write OOH to Interrupt Enable registers :1 and 2.
This,disables interrupt and DMA.

-:7-444 AFN-00229B

8291A

2. With the 8292 as the controller-in-charge, it is
impossible to address the 8292 via the GPIB.
Therefore, the ton or Ion modes of the 8291 A must
be used. To send comands, set the 8291A in the
ton mode by writing 80H to. the Address Mode
Register.

3. Write 26H to the Auxiliary Mode Register to match
the T1 data settling time to the 6 MHz clock input.

4. Write an ASCII carriage return (ODH) to the EOS
Register.

5. Write 84H to the Auxiliary Mode Register in order
to enable "Output EOI on EOS sent" and thus
send EOI with the last character.

6. Write OOH-Immediate Execute pon-to theAux­
iliary Mode Register to put the 8291A in the idle
state.

Communication. Since the 8291A is in the ton
mode, a BO interrupt is generated as soon as the
immediate Execute pon command is written. The
CPU writes the command into the Data Out Register,
and repeats it on BO becoming true for as many
commands as necessary. ATN remains continuously

true unless theGTSB (Go To Standby) command is
sent to the 8292.

ATIiI has to be false in order to send data rather than
commands from the controller. To do this, the follow­
ing steps are needed:

1. Enable the TCI interrupt if not already enabled.

2. Wait for IBF (Input Buffer Full) in the 8292 Inter­
ru pt Status Reg ister to be reset.

3. Write the GTSB (F6H) command to the 8292 Com­
mand Field Register.

4. Read the 8282 and wait for TCI to be true.

5. Write the ton (80H) and pon (OOH) command to
the 8291A Address Mode Registe(and Auxiliary
Mode Registers respectively.

6. Wait for the BO interrupt to be set in the 8291A.

7. Write the data to the 8291 A Data-Out Register.

Identically, the user could command ~he controller
to listen rather than talk. To do that, write Ion (40H)
instead of ton into the Address Mode Register. Then
wait for BI rather than BO to go true. Read the data
Register.

7-445 AFN·OO2298

intJ" 8291A

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias O"C to 70°C
Storage Temperature -6SoC to + 1S0°C
Voltage' on Any Pin
With Respect to Ground -O.SV to +7V
Power Dissipation 0.6S Watts

'NOTlCE: Stresses above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the device.
This Is a stress rating only and functional operation of the
device at these or any other condItions above those indicated
in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditIons for extended
periods may affect device reliability.

D.C. CHARACTERISTICS [Vee = SV ±10%, TA = O°C to 700e (Commercial)]

Symbol Parameter Mln_ Max. Unit Test Conditions

VIL Input Low Voltage -O.S 0.8 V

VIH Input High Voltage 2 Vee+O.S V

VOL Output Low Voltage 0.4S V IOL=2rl:lA (4mA for TR1 pinl

VOH Output High Voltage 2.4 V IOH = -400!,A (-1S0!'A for SRO pinl

VOH-INT Interrupt Output High Voltage 2.4 V IOH=-400!,A

3.S V IOH=-SO!,A --
IlL Input Leakage 10 !,A VIN=OV to Vee

IIOFL Output Leakage Current ±10 !,A VOUT=O.4SV, VCC

Icc Vee Supply Current 120 mA TA=O°C

A.C. CHARACTERISTICS [Vee = sv ±10%, TA = O"C to 70"C (Commercial)]

Symbol Parameter Min. Max. Unit Test Conditions

tAR Address Stable Before READ 0 nsec

tRA Address Hold After READ 0 nsec

tRR READ Width 140 nsec

tAD Address Stable to Data Valid 2S0 nsee

tRO READ to Data Valid 100 nsee

tROF Data Float After READ 0 60 nsee

tAW Address Stable Before WRITE 0 nsee

tWA Addres,s Hold After WRITE 0

tww WRITE Width 170 nsee

tow Data Set Up Time to the Trailing
Edge of WRITE 130 nsee

two Data Hold Time AfterWRTTl: 0 nsee

tOKOR4 RQl, or WRl, to DREOl, 130 nsee

tOKOA6 RDj, to Valid Data 200 nsee DACKj, to ROj, 0 ,,;;t ";;SOnsee
(00-07)

7-446 AFN.()()229B

inter 8291 A

WAVEFORMS

READ

WRITE

DMA

~/RS, =:>!
I' 'RR

'AD .
READ:

!--'AR- ~'RD--

DATA BUS
IDATA OUT)

CS/RS,

DATA BUS
IDATA INI

=:)

./

"'"

~
i--'AW-+

DATA MAY CHANGE

• OREQ __ ---.II"

DACK----------------~

~

'ww

~

K
I-,·RA

V

- :'-'RDF

VALID DATA /'

-
l(

. -twA-!

-tow-

Ii

-- 'WD~

VALID DATA K DATA MAY CHANGE

RoorWR -------------------______ "',
- rt-'-_______ _

7-447

8291 A

A.C. TIMING MEASUREMENT POINTS AND LOAD CONDlnONS

INPUT/OUTPUT

u~u "X= Q.8 > TEST POINTS < Q.8 .

0.45

A.C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 045V FOR
~~8g';v"~~JI,t1~~E.~UREMENTS ARE MADe AT 2.oy FOR A LOGIC "1"

GPIB TIMINGS'

Symbol Parameter

TEOT132 EOi~ toTR1t

TEOD16 Em~ to DiriVaiid

TEOT12 EOittoTRH

TATND4 Ai'N~ to NDAC~
TATT14 ATN~toTRH

\

TATI24 Ai'N~ to TR2~
TDVND3-C DAV~to~t
TNDDV1 NDACt to DAVt

TNRDR1 NRFDt to DREQt

TDVDR3 DAV~ to DREQt

TDVND2-C DAVtto~~
TDVNR1-C DAiit to Fmmt

TRDNR3 Rlnto NRFDt

TWRD15 WRf to DiriVaiid

TWRE05 WRt to EmVaiid

Max.

135

155

155

155

155

155

650

350

400·

600
350

350

500

280

350

TWRDV2 WRttoDAV~ 830 + tSYNC

NOTES:
1. All GPIB timings are at the pins of the 8291A.

Units

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

Test Conditione

PPSS, ATN=O.45V

PPSS, ATN=0.45V

PPSS, ATN=O.45V

TACS, AIDS

TACS, AIDS ,

TACS, AIDS
\

AH,CACS

SH,STRS

SH

AH, LACS, ATN=2.4V

AH, LACS

AH, LACS, rdy=ll"ue

AH,LACS

SH, TACS, RS=O.4V

SH,TACS

High Speed ll"ansfers Enabled,
NF = fc, tsVNC = 1/2-fc

2. The lest number in the symbol for any GPIB timing parameter is chosen according to the transition directions of the reference
signals. The following table describes the numbering scheme.

fto t 1

fto ~ 2

~to t '3

ho ! 4
ttoVALID 5
J,toVALID 6

7-448

inter 8291 A

APPENDIX A

MODIFIED STATE DIAGRAMS

Figure A-1 presents the interface function state
diagrams. It is derived from IEEE Std. state dIa­
grams: with the following changes:

A. The 8291A supports the complete set of IEEE-488
interface functions except for the controller. These
include: SH1, AH1, T5, TE5, L3, LE3, SR1, RL 1, PP1,
DC1, DT1, and CO.

B. Addressing modes included in T,L state
diagrams.

Note that in Mode 3, MSA, OSA are generated only
after secondary address validity check by the micro­
processor (APT interrupt).

C. In these modified state diagrams, the IEEE-488-
1978 convention of negative (low true) logic is
followed. This should not be confused with the Intel
pin- and signal-naming convention based on posi­
tive logic. Thus, while the state diagrams below car­
ry low true logic, the signals described elsew~ere in
this data sheet are consistent with Intel notation and
are based on positive logic.

pon

ATN + F1
(WITHIN.,)

F'-TACS+SPAS

Convention
Level Logic IEEE-488 Intel

0 T DAV DAV
1 F DAV DAV
0 T NDAC NDAC
1 F NDAC NDAC
0 T NRFD NRFD
1 F NRFD NRFD

Consider the condition when the Not-Ready-For­
Data Signal (pin 37) is active. Intel indicates this
active low signal with the symbol NRFD (VOUT",VOL for
AH; VIN",VIL for SH). The IEEE-488-1978 Standard, in
its state diagrams, indicates the active state of this
Signal (True condition) with NRFD.

D. All remote multiline messages decoded are con­
ditioned by ACDS. The multiplication by ACDS is not
drawn to simplify the diagrams.

E. The symbol

indicates:

1. When event X occurs, the function returns to
state S.

2. X overrides any other transition condition in
the function.

Statement 2 simplifies the~diagram, avoiding the
explicit use of X to condition all transitions from S to
other states.

r----'
I I
I SH I
I I L ____ J

DAV

F{gure, A-1. ,828:1 A, State Dlagfama (Continued next page)

7-449 AfN.OO229B

pon ___ ~

F2 = ATN + LACS + LADS

F3::: ATN + rdy

T3'=T3·CPT·m

pon---~

pon---~

pon ----I

IFe
(WITHIN 141

F4= OTA+ (OSA' TPAS+ MSA • LPAS)'

MODE 1 + MLA. MODE 1

8291A

r-----,
I I
I AH I
I I
L ____ J

*THIS TRANSITION WILL NEVER
OCCUR UNDER NORMAL OPERATION.

tTOELAY ISABOUT300NS
FOR DEBOUNCING DAV.

}-----o. END IF (EDI + EOB) RECEIVED

EOI IF DAB ~ EOB

RQS IN STB

r-----.
I I
I TE I
I I
L ____ J

STB AND ROS AVAILABLE
TOSH

r--~--'

I I
I SRQ I
I I
L ____ J

Ras IN STB

Figure A-1. 8291A State DIagrams (ContInued next 'page)

7-450 AFN-()()229B

8291 A

r-----,
I I
1 LEI
I I
L.. ____ J r----l

1 1
1 R L 1
1 I' pon ___ -.(L... ____ J

pon---'"

IFe (WITHIN t4!

pon----.(F5'" (MlA· MODE 1 + LPAS· MSA • MODE 1)

r----,
I I
I PP2 I
I I
L ____ J

pon---.-t

*tDY '" ATN: EOI

r----'
1 1
1 DT 1

r----'
1 1
1 DC 1
1 1 1 1 L ____ J L ____ ...J

F6 = OCL + SOC· LADS

Figure A-1. '8291A State Diagrams

7-451 AFN-002298

8291 A

APPENDIX B

Table B-1. IEEE 488 Time Value.

Time Yalue
Identifier' Function (Applies to) Description Value

T1 SH Settling Time for Multiline Messages .. 2/ls'

t2 LC,iC,SH,AH,T,L Response to A TN :S 200ns

T3 AH Interface Message Accept Time" >0'

t4 , T,TE,L,LE,C,CE Response to IFC or REN False < 100/lS

ts PP Respons~ to ATN+EOI :S 200ns

T6 C Parallel Poll Execution Time , ." 2/ls

T7 C Controller Delay to Allow Current Talker ." 500 ns
to see A TN Message

Ta C Length of IFC or REN False > 100,,5

T9 C Delay for EOls ." 1.5/ls·

NOTES:
'Time values specified by a lower case t indicate the maximum time allowed to make a state transition. Time values specified by an
upper case T indicate the minimum time that a function must remain in a state before exiting.

'If three-state drivers are used on'the 010, OAV, and EOllines, T, may be:
1. '" 1100 ns. .
2. Or '" 700 ns if it is known that within the controller ATN is driven by a three-state driver.
3. Or." 500ns for all subsequent bytes following the first sent after each false transition of ATN (the first byte must be sent in accord·

ance with (1) or (2).
4. Or." 350ns for all subsequent bytes following the first sent after each false transition of ATN under conditions specified in Section

5.2.3 and warning note. See IEEE Standard 488.
'Time required for interface functions to accept, not necessarily respond to interface messages.
'Implementation dependent.
'Delay required for EOI, NOAC, and NRFO signal lines to indicate valid states.

'''' 600 ns for three-state drivers.

8291 A

APPENDIXC
THE THREE-WIRE HANDSHAKE

TWRDl5

r=4
I VALID I NOT VALID I VALID

t-n ... f4-;;;J
I+-TNDDV1_~TDVNR1- I+-TWRDV2

I"-

!'""-TRDNR3_

.. ,Il
TDVND3 9

f- -\
DREQ(SH)

I~NRD}

_TDVDR3

DREQ(AH)

..,f-

'"'Ir" -~

Figure C-1. 3-Wlre Handshake TIming at 8291A

7-453 AFN-00229B

inter
8~2 .

GPIB . CONTROLLER

• Complete IEEE Standard 488 Controller
Function

• Interface Clear (IFC) Sending Capability
Allows Seizure of Bus Control and/or
Initialization of the Bus

• Responds to Service Requests (SRQ)

• Sends Remote Enable (REN), Allowing
Instruments to Switch to Remote
Control

• Complete Implementation of Transfer
Confrol Protocol

• Synchronous Control Seizure Prevents·
the Destruction of Any Data
Transmission in Progress

• Connects with the 8291 to Form a
C6mplete IEEE Standard 488 Interface
Talker/Listener/Controller

The 8292 GPIB Controller is a microprocessor·controlled chip designed to function with the 8291 GPIB Talker/Listener
to implement the full IEEE Standard 488 controller function, including transfer control protocol. The 8292 is a pre·
programmed Intel@ 8041A.

riR1

GENERAL PURPOSE INTERFACE BUS

8292
GPIB

CONTROLLER

Figure 1. 8291, 8292 Block Diagram

7-454

IFCL Vcc

X1 COUNT

X2 REN

RESET DAV

VCC IBFI

Cs OBFI

GND EOI

Jil.i SPI

AO TCI

WR CIC

SYNC NC

Do ATNO

D1 Ne

02 CLTH

03 Vec

b4 NC

DS SYC

De IFC

D7 iifN)

VSS SRQ

Figure 2. Pin Configuration

inter 8292

Table 1. Pin Description

Pin Pin
Symbol No. ~pe Name and Function Symbol No. ~pe Name and function

IFCL 1 I IFe Received (Latched): The 8292 Vee 5,26,40 P.S. Voltage: +5V supply input ±10%.
monitors the IFC Line (when not
system controller) through this pin.

COUNT 39 I EV'!ntCount: When enabled by,the
proper command the internal

X1,X2 2 ... 3 I C..,...llnputs: Inputs for a crystal,
/ LC or an external timing signal to

counter will count external events
through this pin.' High to low trensi-

determine the internal oscillator tion will increment the internal
frequency. counter by one. The pin Is sampled

RESET 4 I Relet: Used to initialize the chip to
a known statl! during power on.

es 6 I Chip Select Input: Used to select
the 8292 from other devices on the

once per three Internal instruction
cycles (7.5",sec sample period
when using 5 MHz XTAL). It can be
used for byte counting when con-
nected to NDAC, or for block count-

common data bus. ing when connected to the EOI.
RD 8 I Read Enable: Allows the master REN 38 0 Remote Enable: The Remote En-

CPU to read from the 8292. able bus signal selects remote or

Ao
\

9 I Addre .. Une: Used to select ba-
tween the data bus and the status

local control of the device on the
bus. A GPIB pus management line,

register during read operations and as defined by IEEE Std. 488-1978.
to distinguish between data and
commands written into the 8292
during write operations.

DAV 37 I/O Data Valid: Used during parallei
poll to force the 8291 to accept the
parallel poll status bits. It is also

WR 10 I Write Enable: Allows the master used during the tcs procedure.
CPU to write to the 8292. IBFI 36 0 Input Buffer Not Full: Used to

SYNC 11 0 Sync: 8041A inslruction cycle syn· interrupt the central processor
chronizalion signal; It Is an output
clock with a frequency of XTAL ~

while the input buffer of the 8292 is
empty. This feature is enabled and

15. disabled by the interrupt mask

Do-Dr 12·19 I/O Data: 8 bidirectional lines used for
communication between the cen-

register.

OBFI 35 0 Output Buffer Full: Used as an
tral processor and the 1I292's data
bus buffers and status register.

Vss 7,20 P.S. Ground: Circuit ground potential.

interrupt to the central processor
while the output buffer of the 8292 is
full. The feature can be enabled and
disabled by the Interrupt mask

SRO 21 I Service, Reque8t: One of the IEEE register.
control lines. Sampled by the 8292
when it is controlier in charge. If
true, SPI interrupt to the master will
be generated.

A'i'Ni 22 I Attention In: Used by the 8292 to

E012 34 1/0 End Or Identify: One of the GPIB
management lines, as defined by
IEEE Std. 488-1978. Used with ATN
as Identify Message during parallel
poll.

monitor the GPIB ATN control line. It
is used during the transfer control
procedure.

IFC 23 I/O interface Clear: One of the GPIB'
management lines, as defined by
IEEE Std. 488-1978, places all de-
vices in a known quiescent state.

SPI 33 0 Special Interrupt: Used as an inter-
rupt on events not initiated by the
central processor.

TCI 32 0 Taek Comptete Interrupt: 'Interrupt
,

to the control processor used to in-
dicate that the task requested was
completed by the 8292 and the In-

SYC 24 I S,8tem Conroller: Monitors 'the formation requested is ready in the
system controller switch. data bus buffer.

CLTH 27 0 Clear Latch: Used to claar the IFCR CIC 31. 0 Controller In Charge: Controls the
latch after bemg recognized by the SIR input of the SRO bus trans-
8292. Usually'low (except after ceiver. It can also be used to indi-
hardware R~, it will be pulsed cate that the 8292 is in charge of the
high when IFCR Is recognized by GPIB bus.
the 8292.

ATNO 29 0 Attention Out: Controls 'the ATN
control line of the bus through ex-
ternal logic for tcs and tca proce-
dures. (ATN is a GPIB control line, as
defined by IEEE Std. 488-1978.)

7-455 AFN-00741 0

·8292

FUNCTIONAL DESCRIPTION
The 8292 is an Intel 8041A which has been programmed
as a GPIB Controller interface element. It "is used with
the 8291 GPIB Talker/Listener and two 8293 GPIB 'Trans­
ceivers to form a complete IEEE-488 Bus Interface for a
microprocessor. Ttle electrical interface is performed by
the transceivers, data transfer is done by the talker/
listener, and control of the bus is done by the 8292.
Figure 3 is a typical controller interface using Intel's
GPIB peripherals.

GPIB

TO
PROCESSOR

BUS

TO
PROCESSOR

BUS

GPIB

Figure 3. Talker/Listener/Controller Configuration

The internal RAM in the 8041A is used as a speCial
purpose register bank for the 8292. Most of these
registers (except for the interrupt flag) can be accessed
through commands to the 8292. Table 2 identifies the
registers used by the 8292 and how they are accessed.

Interrllpt Status Register

I svc I ERR ISRQ I EV x IFCR IBF OBF

The 8292 can be configured to interrupt the microproc­
essor on one of several conditiOns. Upon receipt of the
Interrupt the microprocessor must read the 8292
interrupt status register to determine which event
caused the interrupt, and then the appropriate subrou­
tine can be performed. The interrupt status register is
read with Ao high. With the exception of OBF and IBF,
these Interrupts are enabled or disabled by the SPI
interrupt mask. OBF and IBF have their own bits in the
interrupt mask (OeFI and IBFI).

OBF Output Buffer FUll. A byte is waiting to be read by
the microprocessor. This flag is cleared when the
output data bus buffer is read.

IBF

IFCR

EV

Input Buffer Full. The byte previously written by
the microprocessor has not been read yet by the
8292. If another byte is written to the 8292 before
this flag clears, data will be lost. IBF is cleared
when the 8292 reads the data byte.
Interface Clear Received. The GPIB system
controller has set IFC. The 8292 has become idle
and is no longer in charge of the bus. The flag is
cleared when the lACK command is Issued.
Event Counter Interrupt. The requested number
of blocks or data bytes has been transferred. The
EV interrupt flag is cleared by the lACK
command.

SRQ Service Request. Notifies the 8292 that a service
request (SRO) message has been received. It is
cleared by the lACK command.

ERR Error occurred. The type of error can be deter­
mined by reading the error status register. This
interrupt flag is cleared by the lACK command.

SYC System Controller Switch Change. Notifies the
processor that the state of the system controller
switch has changed. The actual state is con­
tained irvthe GPIB Status Register. This flag is
cleared by the lACK command.

Table 2_ 8292 Registers

READ FROM 8282 WRITE TO 8282

INTERRUPT STATUS AO INTERRUPT MASK Ao
svc ERR I SRO

I
EV

I
X IIFCR I IBF OBF I

I
1 SPI TCI SVC [OBFI IIBFI I I SRO I 01

07 DO 07 00
ERROR FLAG ERROR MASK

I X I x I USER I X
I

x I TOUT 3 \;rOUT 21 TOUT 1 I o·
I

0 I 0 I USER I 0
1

0 1 TOUT31 TOUT2ITOUT, I
CONTROLLER STATUS COMMAND FIELD

I CSBS I CA I x x I SVCS I IFC REN SRO I o·
I

1
1

1
1

1 I OP I C
I

C I C I C

GPIB (8US) STATUS EVENT COUNTER

I REN OAV EOI X I SVC I IFC I ANTI SRO I o· I 0 I 0 I 0
1 .. 0 I 0 I 0 I 0 I 0 o·

EVENT COUNTER STATUS TIME OUT

1
0

I
0 I 0

I
0

I
0

1
0

I
0 0

I
o·

·1
0 0 0 0

I
0 I ,0 I 0 0 o·

TIM E OUT STATUS

I 0 I 0 I 0 I 0 I 0 I 0 I 0 0 I o· Note: These registers are accessed by a special utility command;
see page 6.

7-456 AfN-007410

inter 8292

Interrupt Maek Register

I 1 BPI 1 TCI 1 BYC 1 OBFI IBFI o 1 BAQ

The Interrupt Mask Register is used to enable features
and to mask the SPI and TCI interrupts. The flags in the
Interrupt Status Register will be active even when
masked out. The Interrupt Mask Register is written
when Ao Is low and reset by the RINM command. When
the register Is rl18d, 01 a"d 07 are undefined. An Inter·
tupt is enabled by setting the corresponding register bit.

SRQ Enable interrupts, on SRQ rec,eived.

iiFi Enable interrupts on input buffer empty.

OBFI Enable Interrupts on output buffer full.

SYC' Enable interrupts on a change in the system
controller switch.

TCI Enable Interrupts on the task completed.

SPI Enable interrupts on special events.

NOTE: The 'event counter is enabled by the GSEC
command, the error Interrupt Is enabled by the error
mask register, and IFC cannot be masked (It will always
cause an interrupt).

Controller Status Register

ICSBSI CA 1 x I X IsvcsllFC REN SRQ

The Controller Status Register is used to determine the
status of the controller function. This register Is
accessed by the RCST command.

SRQ Service Request line active (CSRS).

REN Sending Remote Enable.

IFC Sending or receiving interface clear.

SYCS System Controller Switch Status (SACS).

CA Controller Active (CACS + CAWS + CSWS).

CSBS Controller Stand·by State (CSBS, CAl = (0,0) -
Controller Idle

BPIB Bus Status Register

I REN 1 DAV 1 EOI 1 x 1 SYC IFC ATNI SRQ

'ThiS register contains GPIB bus status information. It
can be used by the microprocessor to monitor and
manage the bus. The GPIB Bus Register can be rl18d
using the RBST command.

Each of these status bits reflect the current status of
the corresponding pin on the 8292.

SRQ Service Request

ATNI Attention In

IFC Interface Clear

SYC System Controller Switch

EOI End or Identify

DAV Data Valid

REN Remote Enable

Event Counter Register

The Event Counter Register contains the initial value for
the event counter. The counter can count pulses on pin
'39 of the 8292 (COUNT): It can be connected to EOI or
NDAC to count blocks or bytes respectively during
standby state. A count of zero equals 256. This register
cannot be read, and Is written using the WEVC
command.

E,.nt Counter Status Register

This register contains the current value in the event
counter. The event counter counts back from the initial
value stored in the Event Counter Register to zero and
then generates an Event Counter Interrupt. This register
cannot be written and can be read using a REVC
command.

Time Out Register

The Time Out Register is used to store the time used for
the time out error function. See the individual timeouts
(TOUT1, 2, 3) to determine the units of this counter. This
Time Out Register cannot be read, and it is written ,with
the WTOUT command.

Time Out Status Register

This register contains the current value in the time out
counter. The time out counter decrements from the .
original value stored in the Time Out Register. When
zero is reached, the appropriate error interrupt is gen·
erated. If the register is read while none of the time out
functions are active, the register will contain the 'last
value re,ached the last time a function was active. The
Time Out Status Register cannot be written, and it is
read with the RTOUT command.

Error Flag Register

1 x 1 X 1 USER 1 x, I' X ITOUT3 I TOUT2 1 TOUT,

~ ~

Four errors are flagged by the 8292 with a bit in the Err!)r
Flag Register. Each of these errorS can be masked by
the Error Mask Register. The Error Flag Register cannot
be written, and it is read by the lACK command when the
error flag in the Interrupt Status Register is set.

TOUT1 Time Out Error 1 bccurs when the current con·
troller has not stopped sending ATN after
receiving the TCT message for the time period
specified by the Time Out Register., Each count
in the 11me Out Register is at least 18,00 tCY'
After flagging the error"the 8292 will remain in a
loop trying to take control until the current
controller stops sending ATN or a new com·
mand is written by the microprocessor. If a neVi
command is written, the 8292 will return to the
loop after executing It.

7-457 AFN-0074'D

8292

TOUT2 Time Out Error 2 occurs When the transmission
between the addressed talker and listener has
not started for the time period specified by the
Time Out Register. E.ach count in the Time Out
Register is at least 45 tCY' This feature is only
enabled when the controller is in the CSBS
state.

TOUT3 Time Out Error 3 occurs when the handshake
signals are stuck and the 8292 Is not succeed·
ing in taking control synchronously for the time
period specified by the Time Out Register. Each
count in the Time Out Register is at least 1800
tCY' The 8292 will continue chec!5ing ATNI until
it becomes true or a new command is received.
After performing the new command, the 8292
will return to the ATNI checking loop. .

USER User error occurs when request to assert IFC or
REN was received and the 8292 was not the
system controller.

Error Mask Register

DO

The Error Mask Register is used to mask the interrupt
from a particular type of error. Each type of error inter·
rupt is enabled by setting the corresponding bit in the
Error Mask Register. This register can be read with the
RERM command and written with Ao low.

Command' Register

op c c c

DO.

Commands are performed by the 8292 whenever a byte
is written with Ao high. There are two categories of
commands distinguished by the OP bit (bit 4). The first
category is the operation command (OP= 1). These
commands initiate some action on the interface bus.
The second category is the utility commands (OP=O).
These commands are used to aid the communication
between the processor and the 8292.

OPERATION COMMANDS
Operation commands initiate some action on the GPIB
interface bus: It is using these commands that the
control functions such as polling, taking and passing
control, arid system controiler· functions are performed.

FO - SPCNI - Stop Counter Interrupts

This command disables the internal counter interrupt so
that the 8292 will sto'p interrupting the master on event
counter underflows. However, the counter will continue
counting and its contents can stili be used.

F1 - GmL - Go To Idle

This command is used d\Jring the transfer of control

procedure while transferring control to another, con;
troller. The 8292 will respond to this command only If it
is in the active state. ATNO will go high, and CIC will be
high so that this 8292 will no longer be driving the ATN
line ,on the GPIB interface bus. TCI will be set upon
completion.' .

F2 - RST - Reset

This command has the same . effect as asserting the
external reset on the 8292. For details, Jefer to the reset
procedure described later.

F3 - RSTI - Reset Interrupts

This command resets any pending Interrupts and clears
the error flags. The 8292 will not return to any loop it was

, in (such as from the time out interrupts).

F4 - GSEC - Go To Standby, Enable Counting

The function causes ATNO to go high and the counter.
will be enabled. If the 8292 was not the active controller,
this command will exit immediately. If the 8292 Is the
active controller,the counter will be loaded with the
value stored in the Event Counter Register, and the
internal interrupt will be enabled so that when the
counter reaches zero, the SPI interrupt will be gener·
ated. SPI will be generated every 256 counts thereafter
until the controller exits the standby state or the SPCNI
command is written. An initial count of 256 (zero in the
Event Counter Register) will be used if the WEVC
command is not executed. If the data transmission does
not start, a TOUT2 error will be generated.

F5 - EXPP - Execute Parallel Poll

This command initiates a parallel poll by asserting EOI
when ATN is already active. TCI will beset at the end of the
command. The 8291 should be previously configured as a
listener. Upon detection of DAV true, the 8291 enters
ACDS and latches the parallel poll response (PPR) byte
into its data in register. The master will be interrupted by
the 8291 BI interrupt when the PPR byte is available. No
interrupts except the IBFI will be generated by the 8292.
The 8292 will respond to this command only when it is the
active controller.

F6 - GTSB - Go To Standby

If the 8292 is the active controller, ATNO will go high
then TCI will be generated. If the data transmission does
not start, a TOUT2 error will be generated.

F7 - SLOC - Set Local Mode

If the 8292 is the system controller, then REN will be assert­
ed false and TCI will ,be set true. If if is not the system
controller, the User Error bi,t will be set in the Error Flag
Register.

F8 - SREM - Set Interface To Remote Control

This command will set REN true and TCI true if this 8292 is
the system controller, If not, the User Error bit wi II be set in
the Error Flag Register.

7-458 AFN·OO741D

inter 8292

Fe - ABORT - Abort All Operation, Clear Interface

This command will cause IFC to be asserted true for at
least 100 "sec If this 8292 Is the system controller. If It Is
In CIDS, It will take control over the bus (see the TCNTR
command).

FA - TCNTR - Take Control

The transfer of control procedure Is coordinated by the
master with the 8291 and 8292. When the master
receives a TCT message from the 8291, It should Isslle
the TCNTR command to the 8292. The following events
occur to take control:

1. The 8292 checks to see If It Is In CIDS, and If not, It
exits.

2. Then ATNI Is checked until It becomes high. If the
current controller does not release ATN for the time
specified by the Time Out Register, then a TOUT1
error is generated. The 8292 will return to this loop
after an error or any command except the RST and
RSTI commands.

3. After the current controller releases ATN, the 8292
will assert ATNO and CiC low.

4. Finally, the TCI interrupt is generated to inform the
master that it Is in control of the bus.

FC - TCASY - Take Control Alynchronoully

TCAS transfers the 8292 from CSBS to CACS Indepen­
dent of the handshake lines. If a bus hang up Is detected
(by an error flag), this command will force the 8292 to
take controi (ass.ting ATN) even if the AH function is
not in ANRS (Acclptor Not Ready State). This command
should be used very carefully since It may cause the
loss of a data byte. Normally, control should be taken
synchronously. Atter checking the controller function
for being in the CSBS (else It will exit immediately),
~ will go low, and a TCI interrupt will be generated.

FD - TCSY - Take Control Synchronoully

-There are two different procedures usad to transfer the
8292 from CSBS to CACS depending on the state of the
8291 In the system. If the 8291 is in "continuous AH
cycling" mode (Aux. Reg. AO = A 1 = 1), then the
following procedure should be followed:

1. The master microprocessor stops the continuous AH
cycling mode in the 8291;

2. The master reads the 8291 Interrupt Status 1
Register;

3. If the END bit is set, the master sends the TCSV'
command to the 8292;

4. If the END bit was not set, the muter reads the 8291
Data In Register and then waits for another BI
Interrupt from the 8291. When It occurs, the master
sends the 8292 the TCSY command.

If the 8291 Is not In AH cycling mode, then the master
lust waits for a BI interrupt and then sends the TCSY
command. After the TCSY command has been issued,
the 8292 checks for CSBS. If CSBS, then it -exits the
routine. Otherwise, it then checks the DAV bit in the
GPIB status. When DAV becomes false, the 8292 will

7-459

walt for at least 1.5I'8ec. (T10) and then ATNO will go
low. If DAV does notllo low, a TOUT3 error will be
generated. If the 8292 successfully takes control, it sets
TCI true.

FE - STCNI - Start Counter Interrupti

This command enables the internal counter interrupt.
The counter Is enabled by the GSEC co",!mand.

UTILITY COMMANDS -
All these commands are either Read or Write to registers
in the 8292. Note that writing to the Error Mask Register
and the Interrupt Mask Register are done directly.

E1 - WTOUT - Write To Time Out Regllter

The byte written to the data bus buffer (with Ao= 0)
following this command will determine the time used
for the time out function. Since this function Is imple­
mented in software, this will not be an accurate time
measurement. This feature is enable or disable by the
Error Mask Register. No Interrupts except for the IBFI
will be 'lenerated upon completion.

E2 - WEVC - Write To Event Counter

The byte written to the data bus buffer (with Ao=O)
following this command will be loaded into the Event
Counter Register and the Event Counter Status for byte
counting or EOI counting. Only IBFl will indicate
completion of this command.

E3 - REVC - Read Event Counter StatUI

This command transfers the contents of the Event
Counter Into the data bus buffer. A TCI is generated
when the data is available in the data bus buffer.

E4 - RERF - Read Error Flag Regllter

This command transfers the contents of the Error Flag
Register into the data bus buffer. A TCI Is generated
when the data is available.

E5 - RINM - Read Interrupt Malk Reglater

This command transfers the contents of the Interrupt
Mask Register into the data bus buffer. This register is
available to the processor so that it does not need to
store this information elsewhere. A TCI Is generated
when the data Is available In the data bus buffer.

E8 - RCST - Read Controller StatUI Regllter

This command transfers the contents of the Controller
Status Register Into the data bus buffer and a TCI inter­
rupt Is generated. '

E7 - RBST - Reed GPIB BUI StatUI Regllter

This command transfers the contents of the GPIB Bus
Status Register into the data bus buffer, and a TCI
interrupt is generated when the data is available. '

AFN-00741D

inter 8292

E8 RTOUT - Read Time Out Status Regllter

This COlTlm~nd transfers the contents of the Tlm'e Out
Status Register Into the data bus buffer, and a TCI
Interrupt Is generated when the data Is available.

EA - RERM - Rud Error Malk Register

This command transfers the contents of the Error Mask
Register to the data bus buffer so that the processor
does not need to store this Information elsewhere. A TCI
Interrupt Is generated when the data is available.

Interrupt Acknowledge

.SYC 'I ERR SAO EV IFCR I 1

Each named bit In an Interrupt Acknowledge (lACK)
corresponds to a flag in the Interrupt Status Register.
When the 8292 receives this command, it will clear the
SPI and the corresponding bits In the Interrupt Status
Register. If not all the bits were cleared, then the SPI will
be set true again. If the error flag is not acknowledged
by the lACK command, then the Ij:rror Flag Register will
be transferred to the data bus buffer, and a TCI will be
generated.

NOTE: XXXX1X11 Is an undefined operation or utility
command, so no conflict exists between' the lACK
operation and utility commands.

. SYSTEM OPERATION
8292 To Master Processor Interface

Communication between the' 8292 and the Master
Processor can be either Interrupt based communication
or based upon polling the interrupt status register in
predetermined intervals.

Interrupt Based Communication

Four different interrupts are available from the 8292:

OBFI Output Buffer Full Interrupt
IBFI Input Bll1fer Not Full Interrupt
TCI Task Completed Interrupt
SPI Special Interrupt

Each of the Interrupts Is enabled or dl.sabled 'by a bit in
the Interrupt mask register. Since OBFI and iBFi are
directly connected to the OBF and IBF flags, the master
can write a new command to the. Input data bus buffer
as soon as the previc;>us command has been read.

The TCI Interrupt Is useful when the master is:sendlng
commands to the 8292. The pending TCI will be cleared
with each new command written to the 8292. eommands
sent to the 8292 can be divided into two major'groups:

1. Commands that require response back'from the 8292
to the master, e.g., reading register.

2. Commands that Initiate some action or enable
features but do not require response back from the
8292, e.g., enable data b4s buffer Il)terrupts.

With' tlieflrst group, the TCI Interrupt will be used to
,ndicat,e that the required respol)se Is ready In the data
bus 'buffer and the master may continue and read it.
With the second group. the Interrupt will be used to
Indicate completion of the required taSk, so that the
master may send new commands.

The SPI should be used when immediate information or
special events Is required (s" the Interrupt Status
Register).

"Polling Status" Baaed Communication

When interrupt based communication is not desired, aH
Interrupts can be masked by the interrupt mask regIster.
The communication with the 8292 is based upon
sequential poll of the interrupt status register. By
testing the OBF and IBF flags, the data bus buffer
status is determined while special events are deter·
mined by testing the other bits.

Receiving IFe

The IFC pulse defined by the IEEE-488 standard is at
least 100 ,..sec. In this time, all operation on the bus
should be aborted. Most important, the current control·
ler (the one that is in charge at that time) should stop
sending ATN or EOI. Thus, IFC must externally gate CIC

'(controller in charg~) and ATNO to ensure that this
occurs.

Reset and Power Up Procedura

After the 8292 has been reset either by the external reset
pin, the device bei(1g .powered on, ot a RST command,
the following sequential events will take. place:

1. All outputs to the GPIB interface will go high (S'Im',
ATm, TI=c, SYC, CL TH, ATm5, CIC, TCI, SPI, EOi,
OBFI, mFT, DAV, l1EV). .

2. The four interrupt outputs (TCI, 8PI, OBFI, IBFI) and
CLTH output will go low.

3. The following registers will be cleared:
Interrupt Status
Interrupt Mask
Error Flag
Error Mask
Time Out
Event Counter (= 256), Counter is disabled.

4. If the 8292 is the system controller, an ABORT
command will be executed, the 8292 will become the
controller In charge, and it will ent~r the CACS state.

If it is not the system controller, it will remain in
cms.

System Configuration

The 8291 and 8292 must be interfaced to an IEEE-488
bus meeting a variety of specifications Including drive
capability and loading characteristics. To interface the
8291 and th~ 8292 without the 8293's, several external
gates are .req",ired, ~sing a configuration similar to that
used in Figure 5.

7-460 AFN-00141 0

intJ

PROCESSOR BUS

INTERRUPT Viii Ii6 RST CLK ADD DATA

'--

r---

":7

I--
I--
I--
I--
r-
I-

r-
I-

I·f-

I--
I--

! Rio

I-----<~I RS,

/----o .. IRS,

1----0 .. 1 CLOCK

1----1'"1 RESET

I-----<'"Iiiii
t----IWR

/----iINT

Ci

j.
L:==~DATA

1.j------I .. IAo

.r-----ICi

iiii

8292

CLTH

L--+--------IIVWRWR SPI
~--------I~RESET ~--~

NOTES:
1. CONNECT TO NDAC FOR

BYTE COUNT OR TO EOI
FOR 8LOCK COUNT.

SYC

.-----1 X,

6
T

t
.----tEA
~

NOTE 1

...

rU -

2. GATE ENSURES OPEN
COLLECTOR OPERATION
DURING PARALLEL POLL.

T'--_-lii
T, ;CO:U=N:..:.T ____ ---'

T.I!!:IF~C!:.L--------J UK
'--_

SYSTEM. ON
CONTROLLER -....,. ",,---'

SWITCH OFFi

Figure 4. 8291 and 8292 System Configuration

7-461

f4.7K

GPI8
TRANSCEIVERS

31 EOI

3b ATN

30 NDAC

3d NIIFD

1\
')1 45 IDiO

.~

f9TDAV

ATN

1d EOI

,. IFC

tw;
,. SRQ

AfN.OO741D

TO
MICROPROCESSOR

GPI
TRIGGE
OUTPU

TO
MICROPROCESSOR

B
R
T

I
OSCILLATO

OUTPU
R
T

TO MICROPROCESSOR

.1!

..!!
~
~ 18

17

18

19

21

22

23

9

lD

4

6

7

8

3

11

5

Jl.
-1!
~
~

16

17

18

19

9

8

10

" 4
..... 8

32

33

35

36

11

Vee --.!.

~ ¥,

DO

Dl

D2

D3

D4

D5

D6

D7

RSO

RSI

RS2

RD
WR

RESET

DREO

DACK

CS
CLOCK

INT

TRIG

DO

Dl

D2

D3

D4

D5

D6

D7

AO

RD
WR
ReSEr"
CS
TCI

SPI

OBFI

IBFI

SYNC

SS
x,,
x,,

15,25 pF ± r EA

'= GPIB BUS TRANSCEIVER
,= SEE 8041A DATASHEET FOR ALTERNATE

CRYSTAL CONFIGURATIONS
"=CAN CONNECT TO SYSTEM RESET SWITCH,

SEE 8041 A DATA SHEET

8291

8292

8292

,Di01 28 25 Di01 DI01'

DI02
29 23

DI02 DI02'

Di03 30 10
DI03 DI03'

Di04 31 9 Di04 DI04'

DiOs 32 8
DI05 DI05'

DI06
33 7

DI06 DI06'

DI07
34 6

DI07 DI07'

DiOa 35 5
DI08

6293
DI08'

TlRI
1 1

T/RI

DAY
36 24

DAY DAY'

EOI
39 3

EOI

ill 26 4
ATN

SRO
27

IFC
24

NDAC
36

NiiFD 37

TlR2
2 ~ ~TNO OPTA

REN ~ r- IFCL OPTB
MODE 3'

,

DAV .E. t---!' TiR1
4

ATN
10

NDAC NDAC
9 Jmili NRFD
2

TlR2

SRO
21 8

SRO SRO'

liEN 38 6
REN REN'

IFC
23 5 8293 , IFC IFC'

lIi'NO 29 23
ATNO ATN'

COUNT
39 3

EOI EOI'

EOl2
34 7

EOl2

ATNI
22 11

ATNI

iffi 1 25
IFCL

CIC
31 24

CIC

CLTH
27 21

CLTH OPTA

SYC
24 22

SYC OPTB

Ue
MODE 2

ON SYSTEM
CONTROLLER

.i0FF SWITCH

Figure 5, ,8291, 8292, and 8293 System Configuration

7-462

~
.!!.
.!!.
.lL
.1!..
.!i.
E-

.!!..

1!...

E-y
l!.v

.lL

.1!..

TO
IEEE'488
BUS

cc
ec

~I
E-I

TO
EEE·488

BUS
.!!..
.1!..
.!i.

E...vs
l!.ve

AFN·OO741D

inter 8282

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias ...•..... O·C to 70·C
Storage Temperature -65·C to +150·C
Voltage on Any Pin With Respect

to Ground•....... 0.5V to + 7V
Power Dissipation 1.5 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation Is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O"C to 70"C, Vss = OV: 8292, Vee = :l:5V :1:10%)

Symbol Paramater Min. Max.

VIL' Input Low Voltage (All Except X" X2, ~ -0.5 0.8

VIU Input Low Voltage (X" X2t mET) -0.5 0.6

VIHl Input High Voltage (All Except X" X2, ~ 2.2 Vee

VIH2 Input High Vol,tage (Xl, X2, mET) 3.8 ,Vee

VOL1 ' Output Low Voltage (00-07) 0.45

VOU Output Low VOltage (All Other Outputs) 0.45

VOH' Output High Voltage (00-07) 2.4

VOH2 Output High Voltage (All Other'Outputs) 2.4

IlL Input Leakage Current (COUNT, TFCl, RD, WR, CS, Aol :1:10

loz Output Leakage Current (00-07, High Z State) :t:10

ILll Low Input Load Current (Pins 21-24, 27-3S) 0.5

ILI2 Low Input Load Current (RESEn 0.2

lee Total Supply Current 125

IIH Input High Leakage Current (Pins 21-24, 27-38) 100

CIN Input Capacitance .10

CI/O I/O Capacitance 20

/ A.C. CHARACTERISTICS (TA = O"C to 70"C, Vss = OV: 8292, Vee = +5V :1:10%)

DBBREAD

Symbol ' Parimeter Min. Max:

tAR CS, Ao Setup to ROt 0

tRA CS, AD Hold After Rot 0

tRR RD Pulse Width 250

tAD CS, AD to Data Ouf Delay 225

tRO RO~ to Data Out Delay '225

tOF ROt to Data Float Delay 100

tey Cycle Time 2.5 15

DBBWRITE

Symbol Parameter Min. Max.

tAW CS, AD Setup to WR~ 0

tWA CS, AD Hold After WRt 0

tww WR Pulse' Width , 250

tow Data Setup to WRt 150

.two Data Hold After WR~ 0

7-463

Unit Teat Conditions

V

V

V

V

V IOL=2.0 mA

V IOL=1.6mA

V 10H= -400,.A

V 10H= -50,.A

,.A Vss CO;; VIN CO;; Vee

,.A Vss+ 0.45< "IN CO;; Vee
mA VIL=0.8V

mA VIL=0.8V

mA Typical = 65 mA

/LA ~N = Vee

pF

pF

Unit Tes' Co"dltlons

ns

ns

ns

ns CL= 150 pF

ns CL= 150 pF

ns

,.s'

Unit Test Conditions

ns

ns

ns

ns

ns

AFN-00741D

inter
e-lion

TCP! CCIdtt N8h TIme imt &PI
E1' WTOUT 53 Z4

'E2 WEVC 53 Z4
E3 REVC 71 24 51

E4 RERF 87 '24 47

E5 RINM 69 Z4 49

E8 RCST 97 24 77
E7 RBST 92 24 72
E8
19 RTooT 69 Z4 49
EA REAM 89 24 49
FO SPeNI 53 Z4
F1 GIOL 88 24 70
F2 RST 94 24 152

F,2 RST 214 24 192 152
F3 RSTI 81 24
F4 GSEC 125 24 107

F5 EXPP 75 24

Fe GTSB 118 24 100

F7 SLOC 73 24 55

Fe SREM 91 24 73
F9 ABORT 155 24 133
FA TCNTR 108 24 88
FC TCAS 92 24 87

FO TCSY 115 24 91

FE STCNI 59 24
PIN RESET 29 17 17

X lACK 118 173
t88

Notel:
1, All times are multlpl •• of tov lrom the 8041A commend Interrupt,
2, TCI claara .Iter 7 tov on all commands.

8282

, ,

:ue ~ In' AIR mi 1iAV C-.nII

Count ~After 39

181 , 181

Not System Controller

.179 1174 1101 System Controller

198
~ 155
t59 187

191

Me
184

1120 1115 142
171 ••
155
~

Sterta Count After 43
Not~tem Controller

If Interrupt Pending

3. t Indlcat .. a level tranlltlon lrom low to high. I Indlcat .. a high to low transition.

A.C. TE~TING INPUT, OUTPUT WAVEFO~M

INPUT/OUTPUT

u)C ~2'0 > TESTPOINTB< 2.0

0.8 0.8
0.45 ,

A C TESTING INPUTS ARE DRIVEN AT 2,4V FOR A lOGIC I AND 0 45V FOR
A lOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV fOR A lOGIC I
AND 0 BV FOR A lOGIC 0

A.C. TESTING LOAD CIRC~IT

,

DEVICE
UNDER 11" TEST

~lINClUDES JIG CAPACITANCE

,

7-464 AfN.OO741D

inter 8292

CLOCK DRIVER CIRCUITS

CRYSTAL OSCILLATOR MODE

< 15 pF
(INCLUDES XTAL,
SOCKET, STRAY)

r-----
I
I
I

.J...
"'T"

I
I
I L ____ _

15-25pF
(INCLUDES SOCKET, I

STRAY) ':'

DRIVING FROM EXTERNAL SOURCE
+5V

XTAL1
4702

1>--+----....::..tXTAL1

+ 5V

47D2

'----+---'-1 XTAL2

CRYSTAL SERIES RESISTANCE SHOULD BE
<75Q AT 6 MHz; <18OQ AT 3.8 MHz

BOTH XTAL 1 AND XTAL2 SHOULD BE DRIVEN
RESISTORS TO Vee ARE NEEDEO TO ENSURE V,H = 3,BV
IF TTL GlRCUITRY IS USED

LC OSCILLATOR MODE
..b... .£.
45 .. H 20pF

120 .. H 20pF ~::~td' 2
XTAL1

rIC L
':' C

3 XTAL2

C,_£+3Cpp
- 2

Cpp ~ 5 - 10 pF PIN TO PIN
CAPACITANCE

EACH C SHOULD BE APPROXIMATELY 20 pF. INCLUDING STRAY CAPACITANCE

WAVEFORMS

READ OPERATION-DATA BUS BUFFER REGISTER

Cs OR Ao
(SYSTEM'S

ADDRESS BUS)

iiii
(READ CONTROL)

1 ____ .00 ____ 1 I----.ov-----I

_"D~~ _'DF_~
~~1~~~~------------------~,r-------D-A-TA-V-A-L-,D------~.---------------------

~------------------~

WRITE OPERATION - DATA BUS BUFFER REGISTER

(SYSTEM'S --A CSORAo~E r
~.- ': -Ul t ... ~~~~~~~_-_~~~~~~~~.-.. 1..-----------------------

(WRITE CONTROL) 'i- _
twD -'ow-I--;=-

OATA BUS DATA \j DATA VALlO V OATA
(INPUT) ____ ..;,.' ,;;;M,;,,;AY,;,.C,;;;H,;;A;;.N;;;G,;;E _____ -'I'l.,... ____________ ~{\'-------.;;M,;;;A;,,;.Y.;C,;,,;HA;,,;.N;;,;G;;;E;,,-.--____ __

7-465 AFN-D07410

inter 8~2

APPENDIX mabie Instrumentati~n, I,EEE Std. 488-1978. This doclI'

The following tables and state diagrams were taken
from the IEEE Standard Digital Interface for, Program,

ment Is the official standard for the GPIB tills and can be
'purchased from IEEE, 345 East 47th St., New York, NY
10017.

Messages

pon = power on
rsc = request system control
rpp = request parallel poll
gts = go to standby
tca = take control asynchronously
tcs = take control synchronously
sic = send Interface clear
sre = send remote enable

IFC = interface clear
ATN = attention
TCT = take control

• T'0 > 1.614et
, THE MICROPROCESSOR MUST WAIT FOR THE 80

INTERRUPT BEFORE WRITINQ THE arsB OR GSEC
COMMAHDa TO ENSURE THAT ,IITIII A 111ft)
IS TRUE,

C MNEMONICS

CIDS
CADS
CTRS
CACS
CPWS
CPPS

CSBS
CSHS
CAWS
CSWS
CSRS
CSNS
SNAS
SACS
SRIS
SRNS
SRAS
SIIS
SINS
SIAS

~
CAID@

~
(§!BID

C!N2ID

Interface States

= controller idle state
= controller addressed state
= controller transfer state
= controller active state
= controller parallel poll walt state
= controller parall,,1 poll state

= controller standby state
= controller standby hold state
= controller active walt state
= controller synchronous wait state
= controller service requested state
= controller service not requested state
= system control not active state
= system control active state
= system control remote enable Idle IItate
= system control remote enable not active state
= system control remote enable active state
= system control interface clear Idle state
= system control interface clear not active state
= system control Interface clear active state

= accept data state (AH function)

= acceptor not ready state (AH funptlon)

= source delay state (SH function)

= source transfer state (SH function)

= talker addressed ,state (T function)

SRQ

~Q
O~

Figure A.1. C State Diagram

7-466

...

AFN-007410

inter

Mnemonic

ACG
ATN
DAB

DAC
DAV
DCl
END
EOS

GET
GTL
lOY
IFC
LAG
LLO
MLA

MTA

MSA

NUL
OSA
OTA
PCG
PPC
PPE

PPD

PPR1
PPR2
PPR3
PPR4
PPR5
PPR6
PPR7
PPR8
PPU
flEN
RFD
ROS
SCG
SOC
SPD
SPE
SRO
STB

TCT
TAG
UCG
UNL
UNT

8292

REMOTE MESSAGE CODING

Message Name

Addressed Command Group
Attention
Data Byte

Data Accepted
pata Valid
Device Clear
End
End of String

Group Execute Trigger
Go to Local
Identify
Interface Clear
Listen Address Group
Local lock Out
My Listen Address

My Talk Address

My Secondary Address

Null Byte
Other Secondary Address
Other Talk Address
Primary Command Group
Parallel Poll Configure
Parallel Poll Enable

Parallel Poll Disable

Parallel Poll Response 1
Parallel Poll Response 2
Parallel Poll Response 3
Parallel Poll Response 4
Parallel Poll Response 5
Parallel Poll Response 6
Parallel Poll Response 7
Parallel Poll Response 8
Parallel Poll Unconfigure
Remote Enable
Ready for Data
Request Service
Secondary Command Group
Selected Device Clear
Serial Poll Disable
Serial Poll Enable
Service Request
Status Byte

Take Control
Talk Address Group
Universal Command Group
Unlisten '
Untalk

(Notes 1, 9)

(Notes 2, 9)

(Note 3)

(Note 4)

(Note 5)

(Note 6)

(Note 7)

(Note 10)

(Note 9)

(Notes 8, 9)

(Note 11)

c'
T L
Y A
P S
E S

M AC
U UC
M DO

U HS
U HS
M UC
U ST
M DO

M AC
M AC
U UC
U UC
M AD
M UC
M AD

M AD

M SE

M DO
M SE
M AD
M
M AC
M SE

M SE

U ST
U ST
U ST
U ST
U ST
U ST
U ST
U ST
M UC
U UC
U HS
U ST
M SE
M AC
M UC
M UC
U ST
M. ST

M AC'
M AD
M UC
M AD
M AD

'Bus Signal llne(s) and Coding That
Assertl! the True Value of the Message

DONN
I lORD
o 0 AFA
8 7 8 5 4 3 2 1 VOC

Y 0 0 0 X X X X XXX
X X X X X X X X XXX
ODD 0 D D D D XXX
8765432 1
X X X X X X X X XXO
XXXXXXXX 1XX
Y 0 0 1 0 1 0 0 XXX
X X X X X X X X XXX
E E E E E E E E XXX
8 7 6 5 4 3 2 1
Y 0 0 0 1 0 0 0 XXX
Y 0 0 0 0 0 0 1 XXX
X X X X X X X X XXX
X X X X X X X X XXX
Y 0 1 X X X X X XXX
Y 0 0 1 0 0 0 1 XXX
Y 0 1 L L L L LXXX

5 4 3 2 1
Y 0 T T T T T XXX

Y
5 4 3 2 1
S S S S S XXX
54321

A E SIR
TOR F E
N I Q C N

x X X X
1 X X X X
o X X X X

X X X X X
X X X X X
1 X X X X
o 1 X X X
o X X X X

X X X X
1 X'X X X
X 1 X X X
X X X 1 X
1 X X X X
1 X X X X
1 X X X X

x X X X

X X X X

o 0 0 0 0 0 0 0 XXX X X X X X
(OSA = SCG A MSA)
(OTA = TAG AMTA)

(PCG = ACG v UCG v LAG v TAG)
Y 0 0 0 0 1 0 1 XXX 1 X X X X
Y 1 lOS P P P XXX 1 X X X X

321
Y 1 1 DOD D XXX

432 1
X X X X X X X 1 XXX
X X X X X X 1 X XXX
X X X X X 1 X X XXX
X X X X 1 X X X XXX
X X X 1 X X X X XXX
X X 1 X X X X X XXX
X 1 X X X X X X XXX
1 X X X X X X X XXX
Y 0 0 1 0 1 0 1 XXX
X X X X X X X X XXX
X X X X X X X X XOX
X 1 X X X X X X XXX
Y 1 1 X X X X X XXX
Y 0 0 0 0 1 0 0 XXX
Y 0 0 1 1 0 0 1 XXX
Y 0 0 1 1 0 0 0 XXX
X X X X X X X X XXX
S X S S S S S S XXX
8 654 3 2 1
Y 0 0 0 1 0 0 1 XXX
Y lOX X X X X XXX
Y 0 0 1 X X X X XXX
Y 0 1 1 1 1 1 1 XXX
Y 1 0 1 1 1 1 1 XXX

X X X X

X X X
X X X
X X X
X X X
X X X
X X X
X X X

1 X X X
1 X X X X
X XX X 1
X X X X X
o X X X X
1 X X X X
1 X X X X
1 X X X X
1 X X X X
X X 1 X X
o X X X X

X X X X
X X X X
X X X X
X X X X
X X X X

The 1/0 coding 'on ATN when sent concurrent with multiline messages has been added to this revision for interpre·
tive convenience.

7-467 AFN-00741 0

8292

NOTE8:

1. 01-08 specify the device dependent data bits.
2, E1-E8 specify the device dependent code used to indicate the E08 message.
3. L 1-L5 specify the device dependent bits of the device's listen address.
4. T1-T5 specify the device dependent bits of the device's talk address.
5. 81-85 specify the device dependent bits of the device's secondary address.
6: 8 spec.ifies the sense of the PPR.

/

Response = 8 EEl ist

P1-P3 specify the PPR message to be sent when a parallel poll is executed.

P3 P2 P1 PPR Message
o 0 0 PPR1

PPR8

7. 01-04 specify don't-care bits that shall not be decoded by the receiving device. It is recommended that all zeroes
be sent.

8. 81-86, 88 specify the device dependent status. (0107 is used for the RQ8 message.)
9. The source of the message on the ATN line is always the C function, whereas the messages on the 010 and EOI

lines are enabled by the T function.' '.
10. The source of the messages on the ATN and EOI lines is always the C function, whereas the source of the

messages on the 010 lines is always the PP function,
11. This code is provided for system use, see 6.3.

7-468 AFN-00741D

intJ
8293

GPIB TRANSCEIVER

• Nln. Open-coll.ctor or Th stat.
Lin. Drlv.,.

• 48 mA Sink Current Capability on
Each Lin. Drlv.r

• Nln. Schmitt-type Lin. R.c.lv.,.

• High Capacitance Load Drlv.
Capability

• Singi' 5V Pow.r Supply

• 28-Pli'I Packag.

• Low Pow.r HMOS D.slgn

• On-chip D.cod.r for Mod.
Configuration

• Pow.r Up/PoW.r Down Protection to
Prev.nt Disrupting the IEEE Bus

• Conn.cts with the 8291A and 8292 to
Form an IEEE Standard 488 Int.rfac.
Talk.r/L1st.n.r/Controll.r with no
Additional Compon.nts

• Only Two 8293's R.qulred per GPIB
Int.rface

• On-Chip IEEE-488 Bus T.rmlnatlons

The Intel8 8293 GPIB Transceiver is a high-current, non-inverting buffer chip designed to interface the 8291A GPIB
Talker/Listener, or the 8291A/8292 GPIBTalker/Listener/Controller combination, to the IEEE Standard 488-1978Instrumen­
tation Interface Bus. Each GPIB Interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used
as a general-purposa bus driver.

r--
I DMA DREQ
I CONTROLLER I
I (OPTIONAL) I L _____ I

T/Ill

I2IIIA
GPl8

TALICER/
LI8TENIR

GENERAL PURPOSE INTERFACE BUS

II2fI2
Gpta

CONTROLLER

Figure 1. 8291A, 8292, 8293 Block Diagram

7-489

Tllll
TIR2

!Oi 3

mi
DATAl

DATA2

DATAl 7

ausa
GND

BUSI BUSS

BUS2

Figure 2. Pin' ConflgUraUon

i~ 8293
t,

Table 1. Pin Description

~I Pin No. 1ftIe Name and function SYmbol PIn No. ~ Na_ and Function

BUS1- 12,13, VO GPIB U.s, GPIB SIde: These arl! ' EOI 3 VO End Or Identify: This pin indicates
BUS9 15-19, the IEEE-488. bus Int!lrface,

21,22 driver/receivers" or 'Tl\..comp"tlbJ" .
Inputs on the 8291A/8292 side,

I
the end of a multiple byte transfer or,
In conjunction with ATN, addresses
the device during a polling se-

depending on the mode used. Their quence. It connects to the 8291 A and
use 18 programmed by the two mode
~Iect pins, OPTA and OPTB.

Is switched between transmit and
receive by T!R2. This pin is TTL com-
patible.

OATA1- 5-11, I/O, GPIB Un .. " a!!1A,192SIdIl: T~eset
DATA10 23-25 ' , are th'e pins to be connects<! to ,the

8291 A and'8292 to Interface with the
GPIB. Their use Is programmed by
the two mode select pl)'ls, O,P,TA'Bnd
OPTB. All these pins 'are TTL compa-
tible.: ' "

ATN 4 0' AtteIlllOn~;rhis pin is, used ,by the
8291A to monitor the GPIBATN cdn-
trolline. It specifies how data on ihe
010 Jines is to, be interpreted. T~is
output is TTL 'compatible. '

OPTA 27 I Mode Ser.a: These two pins are to

Tlftl 1 I lI'anamlt Racelva 1: This pin C9n-
trols'the direction for NDAC, NRFD,

1 DAV, and DI01-DlqB. Input III ,TTL

OPTB 28 I control the function of the 8293. A
tl1.lth ,table o~ how they program the ,
various modes is in Table 2.

compatible. Vee 28, P.S. YqItqe: Positive power, supply (OV

TIft! 2 I "",!,.m.1t R.cel~" 2: This pin con-
troIS 'the direction for EO!. Input Is

± 10%).

GND 14,20 P.S. Ground: Circuit ground.
TTL compatible.

Table 2. 8293 Mode Sele~lon Pin Mapping

. ' IEEE Implementation Name
, ,

Pin Name ,PJnHo. Mode 0 Model MOde 2 Mode 3

OPTA 27 0 1 0 1
OPTB 26 0 0 1 1

OATA1 5 TFC ID(j8 iF<:: ID08
BUS1 12 IFe" 0108" IFC" 0108"
OATA2 6 REIii mo7 REN 0107
BUS2 , 13 REN" 0107" REN" 0107"
OATA3 7 NC DiOW EOi2 0106
BUS3 15 EOI" 0106" EOI" , 0106"
OATA4 8 SRQ DRm" SJm. '.

ID05
BUS4 16 SRQ" 0105" SRQ" 0105"
OATA5 9 IiiRFD jjj(54 lirRFli [004
BUS5 17 NRFO" 0104" NRFO" 0104"
OATA6 10 ~ '15lO3 "FmAC" 'Oi03
BUS6 18 NOAC" 0103" NOAC" 0103"
OATA7 11 TiFi'101 NC I AffiIT A"i'IiiO
OATA8 23 T/RI02 0102' A'Tfm DT02
BUS7 19 ATN" 0102" ATN" 0102"
OATA9 24 GIO'l: f5Aii ~ OAV
BUSS 21 G101" OAV"

.
CLTH OAV"

OATA10 25 cmn 0101 iFC[Di01
BUS9 22, G102" 0101" SYC 0101"

T/R1' 1 T/R1 TlR1 TlA1 T/R1
T/R2 2 T/A2 NC T/Rz W"CI.
EOI 3 EOf EOI ~ EOI
ATN 4 Am Am Am AfN

• Note: These pins are,!be IEE!;"'- bus npn·ln~lng driver/receivers. Tiley Include aU the bus,tsrmlnatlOll& 18ql'lred by ~h~, !I",n~"~',.a~d ."ay ba
connected directly to the GPIB bus conntctor.

7-470

8293

GENERAL DESCRIPTION
The 8293 is a bidirectional transceiver. It was designed to
interface the Intel 8291A GPIB Talker/Listener and the
Intel~ 8292 GPIB Controller to the IEEE Stai"ldard 488-1978
Instrumentation Bus (also referred to as the GPIB). The
Intel GPIB Transceiver meets or exceeds all of the elec­
trical specifications defined in the IEEE Standard 488-
1978, Section 3.3-3.5, including the bus termination
specifications.

The 8293 can be hardware programmed to one of four
modes' of operation. These modes allow the 8293 to be
configured to support both a Talker/Listener/Controller
environment and a Talker/Listener environment. In addi­
tion, the 8293 can be used as a general-purpose, three­
state (push-pull) or open-collector bus transceiver with
nine receiver/drivers. Two modes each are used to support
a Talker/Listener (see Figure 3) anda Talker/listener/Con­
troller environment (see Figure 4). Mode 1 is used in
general-purpose environments.

8291A

TO
PROCESSOR

BUS L... __ -'

Figure 3, Talker/Listener Configuration

TO
PROCESSOR

BUS

GPIB

Figure 4, Talker/Listener/Controller Configuration

7-471

>

MODEO

'Z1
OPTA

28
OPTB

GTO;" 24
THREE

STATE ONLY GIO,'
21

TIAIO,
11

THREE

0 102
2S STATEDNLY GI02'

23 22
TIAIO,

iFc INPUT ONLY
IFC'

12

REN
INPUT ONLY

REN'
13

ATN
INPUT ONLY

ATN'
19

OPEN COL

Siiii OUTPUT ONLY
SRQ'

18

THREE
£oj STATE ONLY

EOI'
15

TI1I2

NiiFii 9
NRFD'

17

NDAC NDAC'
18

Tlill

TIC 1=THREE STATE --I =+5V 0= OPEN COLLECTOR

SIR 1 = SEND TO GPIB ~ =OV
0= RECEIVE FROM GPIB

'= IEEE·488 BUS NON·INVERTII'IG DRIVERIRECEIVER

Figure 5, Talker/Listener Control Configuration

Table 3, Mode 0 Pin Description

Pin
Symbol No, Type Neme and Function

T/Rl 1 I TrenlmH Raeelve 1 Direction control
for NOAC and NRFO.lfT/Rl is high, then
NOAC' and NRFO' are receiving. Input is
TTL compatible.

iiil5AC 10 I/O Not Date Accepted: Processor GPIB
bus handshake control line; used to In-
dicate the condition of acceptance of
data by device(s). It is TTL compatible.

NOAC' 18 I/O Not Deta Ac;cepted~ IEEE GPIB bljs
handshake control line. When an input,
it is a TTL compatible Schmitl-triggj!r.
When an output, it is anlopen-collector
driver with 48 mA sinking capability.

NRFO 9 1/0 Not Ready For Data: Processor GPIB
handshake control line; used to indicate
the condition of readiness of device(s)
to accept data. This pin is TTL compati-
ble.

AFN.()0825C

inter 8293

Table 3. Mode 0 Pin Description (Continued)

Pin Pin
Symbol No, lYpe Neme end Funcllqn Symbol No, lYpe Neme and Function

NRFO- 17 VO Not Reedy For D~te: IEEE GPIB bus
handshake control line, When an Input,

IFC- 12 L I"terfeee Cleer: IEEE GPIB bus control
line. This input is a TTL compatible

It is a TTL compatible Schmitt-trigger. Schmitt-trigger.
When an output, it is an open-collector
driver with a 48 mA current sinking
capability.

T/R2 2 I '1l'enamlt ReeelVe 2: Direction control
.for EOI. If T/R2 is high, EOI- is sending.
Input is TTL compatible.

T/i!iIOl 11 I transmit Receive General 10: Oirac-
T/RI02' 23 I tion control for the two spare trans-

ceivers. These pins are TTL compatible.

G101' 24 VO General 10: This is the TTL side of the
Gi02 25 I/O two spare transceivers. These pins are

TTL compatible.
EQI 3 VO End Or Identify: Processor GPIB bus

control line; is used by a talker to indi-
cate the end of a multiple byte ·transfer.
This pin is TTL compatible.

G101- 21 I/o' Generel 10: These are spare three-
GI02- 22 I/O state (push-pull) drivers/Schmitt-trigger

receivers. The drivers can sink 48 mAo

EOI- 15 I/O End Or Identify: IEEE GPIB bus control
line; Is used by a talker to indicate the
end of a multiple byte transfer. This pin Is MODEl

a three-state (push-pull) driver capable
: of sinking 48 mA and a TTL compatible OPTA

receiver with hysteresis.

SRO 8 I Service Request: Processor GPIB bus
OPTB

control line; used by a device to indicate IDIii
24

the need for service and to request an
interruption of the current sequence of
events on the GPIB. It IS a TTL compati-
ble input.

TIAI

lii01 2S 22 0101'

SRO- 16 0 Service Request: IEEE GPIB bus con-
trol line; it is an open collector driver
capable of sinking 48 mAo

1i'io, 23 I.
0102'

REN 6 0 Remote Enable: Processor GPIB bus
control line; used by a controller(in con- IDll3 10 18

0103'

junction with other messages) to select
between two alternate sources of device
programming dllta (remote or local con- I!m4

17 0104-

trol). This output is TTL compatible.

REN- 13 I Remote Enable: IEEE GPIB bus control
line. This input is a TTL compatible

fiiOs
18

0105'

Schmitt-trigger.

ATN 4 0 AHl!lntlon: Processor GPIB bus control fiiOs
15

0108'

line; used by the 8291 to determineho\y
data on the 010 signal lines are to be
interpreted. This is a TTL compatible liiQ, 13 0107'

output.

ATW 19 I Attention: IEEE GPIB bus control line;
this input is a TTL compatible Schmitt- mlJo

12 0108'

trigger.

IFC 5 0 Interface Clear: Processor GPIB bus EOi

control line; used by a controller to
place the interface system into a known
quiescent state. It is a TTL compatible
output. Figure 6, Talker/LIstener Data Configuration

AFN·0082SC.

inter

Table 4. Mode 1 Pin Description

Pin
Symbol No. Type Name and Function

T/Rl 1 I Tran.mlt Receive 1: Controls the di·
rection for DAY and the 010 lines. If
T/FI1 is high, then all these lines are
sending information to the IEEE GPIB
lines. This Input is TTL compatible.

EOI 3 I End Of Sequance And Attantlon:
ATN 4 I Processor GPIB control lines. These

two control signals are ANOed to·
gether to determine whether all the
transceivers in the 8293 are three·
state (push·pull) or open-collector.
When both signals are low (true),
then the controller is performing a
parallel poll and the transceivers are
all open-collector. These inputs are
TTL compatible.

DAY 24 I/O Data Valid: Processor GPIB bus
handshake control line; used to indi-
cate the condition (availability and
validity) of information on the 010
lines. It is TTL compatible.

DAY" 21 I/O Data valid: IEEE GPIB bus hand-
shake control line. When an input, it
is a TTL compatible Schmitt-trigger.
When DAY" is an output, itcansink48
mA.

0101- 25,23, I/O Data Input/Output: Processor GPIB
i5i08 10, 9, bus data lines; used to carry message

8, 7, and data bytes in a bit-parallel byte-
6, 5 serial form controlled by the ·three

handshake signals. These lines are
TTL compatible.

0101"- 22,19, 1/0 Data Input/Output: IEEE GPIB bus
0108" 18,17, data lines. They are TTL compatible

16,15, Schmitt-triggers when used for in-
13,12 put and can si~48 mA when used for

output. See ATN and EOI descrip-
tion for output mode.

8293

7-473

MOOE2

RIII'II

T/RI

I1'll

SYC

mi

SliQ

1iTRI
l\TFI

!OIl
mm

Em

T/1I2

NOTE: FUNCTION OF ATN TRANSCEIVER

SIR = LOW
1iTRI=ATW
l'm=ATN'
ATN'=INPUT
A'I'iiIl5=INPUT

SIR = HIGH
1iTRI = JrnIlj
l'm=HIGH
ATN'=AfI'IO
AfI'IO = INPUT

27 OPTA
28 OPTB

18
NOAC'

17 NRFO'

12 IFC·

13 REN'

18 SRO'

19 ATN'

15 EOI'

Figure 7. Talker/Listener/Controller Control
Configuration

AFN·00825C

Pin
Symbol No. "i'Ype
T/Rl 1 I

NOAC 10 I/O

NOAC' 18 I/O

mI"rn 9 I/O

NRFO' 17 I/O

SYC1 22 I

REN 6 I/O

REN' 13 I/O

IFC 5 I/O

IFC' 12 I/O

CIC 24 I

8293

Table 5. Mode 2 Pin Description
--

Pin
Name and Function Symbol No. Type Name and Function

'Tfansmlt Receive 1: Direction control
for NOACand NRFO.lfT/Rl is high, then

CLTH1 21 I Clear Latch: Used to clear the I,FC Re-
ceived latch after it has been recognized

NOAC and NRFO are receiving. Input is by the 8292. Normally low (except after a
TTL compatible. hardware reset). It will be pulsed high

Not Data' Accepted: Processor GPIB
bus handshake control line; used to in-

when IFC Received is recognized by the
8292. This input is TTL compatible.

dicate the condition of acceptance of IFCL 25 0 IFC Received Latch: The 8292 moni-
data by device(s). This pin is TTL com- tors the IFC line when it is not the active
patible. control/er through this pin.

Not Data Accepted: IEEE GPIB bus SRO 8 I/O Service Requ~st: Processor GPIB con-
handshake control line. It is a TTL com- trolline; indicates the need for attention
patible Schmitt-trigger when used for and requests the active controller
input and an open-co lIector driven with a to interrupt the current sequence of
48 rnA current sink capability when used events on the GPIB bus. This pin is TTL
for output. compatible.

Nol Ready For Data: Processor GPIB SRO' 16 I/O Service Request: IEEE GPIB bus con-
bus handshake control line; used to in- trolline. When used as an input, this pin
dicate the condition of readiness of de- is a TTL compatible Schmitt-trigger.
vice(s) to accept data. This pin is TTL When used as an output, it is an open-
compatible. collector driver with a 48 rnA current

Not Ready For Data: IEEE GPIB bus sinking capability.

handshake control line. It is a TTL com- T/R2 2 I 'TfansmM Receive 2: Controls the di-
patible Schmitt-trigger when used for rection for EOI. This input is TTL com-
input and an open-collector driver with a patible.
48 mA current sink capability when used
for output.

ATNO 23 I Attention Out: Processor GPIB bus
control line; used by the 8292 for ATN

System Controller: Used to monitor the control of the IEEE bus during "'take
system controller switch and control the control synchronously" operations. A
direction for IFC and REN. This pin is a Iowan this input causes ATN to be as-
TTL compatible input. serted if CIC indicates that this 8292 is in

Remote Enable: Processor GPIB con- charge. ATNO is a TTL compatible input.

trol line; used by the active control/er ATNI 11 0 Attention In: Processor GPIB bus con-
(in conjunction with other messages) trolline; used by the 8292 to monitor the
to select between two alternate sources ATN line. This output is TTL compatible.
of device programming data (remote or
local control). This pin is TTL com-
patible.

ATN 4 0 Attention: Processor GPIB bus control
line; used by the 8292 to monitorthe ATN
line. This output is TTL compatible.

Remote Enable; lESE GPIB bus control
line. When used al;an input, thisisa TTL
compatible Schmitt-trigger. When an
output, it is a three-state driver with a 48
rnA current sinking capability.

ATN' 19 I/O Attention: IEEE GPIB bus control line;
used by a controller to specify how data
on the 010 signal lines are to be inter-. preted and which devices must respond
to data. When used as an output, this pin

Interface Clear: Processor GPIB bus is a three-state driver capable of sinking
control line; used by the active con- 48 rnA current. As an input, it is a TTL
troller to place the interface system into compatible Schmitt-trigger.
a known quiescent state. This pin is TTL
compatible.

EOl2 7 I/O End Or Identify 2: Processor GPIB bus
control line; used in conjunction with

Interface Clear: IEEE GPIB control ATN by the active controller (the 8292) to
line. This is a TTL compatible Schmitt- execute a polling sequence. This pin is
trigger when used for input and a three- TTL compatible.
state driver capable of sinking 48 rnA
current when used for output.

EOI 3 I/O End Or Identify: Processor GPIB bus
control line; used by a talker to indicate

Controller In Charge: Used to control the end of a multiple byte transfer se-
the direction of the SRO and to indicate quence. This pin is TTL compatible.
that the 8292 is in charge of the bus. CIC
is a TTL compatible input.

NOTES:

• 7-474

1. VIL3 is guaranteed at 1.1 Von these inputs to accommodate the
high current-sourcing capability of these pins during a low
Input in Mode 2 .

AFN·00825C

inter
Table S. Mode 2 Pin Description (Continued)

Pin
Symbol No. ~ Name and function

EOI' 15 1/0 End Or Identify: IEEE GPIB bus control
line; used by a talker to Indicate the end
of a multiple byte transfer sequence or,
by a controller in conjunction with A TN,
to execute a polling sequence. When an
output, this pin cen sink 48 mA currant.
When an input, It is a TTL compatible
Schmitt-trigger.

mm OPTA

m:t OPTa

DAY Z1
OAV'

TIII1

iiiO; 211 21 D101·

010, 13 I' 0102'

010.
10 l' 0103'

010,
17

0104'

iiiOs • 11
0105'

010.
7 15

0108'

010,
13

010"

010.
12

0108'

Figure 8. Talker/Listener/Controller Data
Conflguratlo~,

8293

7-475

Table 6. Mode 3 Pin Description

Pin
Symbol No. ~e Name and Function

TiR1 1 I Transmit Receive 1: Controls the di-
rection for OAV and the 010 lines. If
T/R1 is high, then all these lines are
sending information to the IEEE GPIB
lines. This input is TTL compatible.

Eoi 3 I End Of Sequence and Attention:
A'i'N 4 I Processor GPIB control lines. These

two control lines are ANOed together
to determine whether all the trans-
ceivers In the 8293 are push-pull or
open-collector. When both signals
are low (true), then the controller IS

performing a parallel poll and the
transceivers are all open-collector.
These inp,uts are TTL compatible.

A'i"fm 11 I Attention Out: Processor GPIB con-
trol line; used by the 8292 during
"take control synchronously" opera-
tions. This pin is TTL compatible.

IFCL 2 I Interfec!I Clear Latched: Used to
make OAV received after the system
controller asserts IFC. This input IS

TTL compatible

OAV 24 1/0 Data Valid: Processor GPIB hand-
shake control line; used to indicate
the condition (availability and
validity) of information on the 010
signals. This pin is TTL compatible.

OAV* 21 I/O Data Valid: IEEE GPIB handshake
control line. When an input, this pin is
a TTL compatible Schmitt-trigger.
When OAV' is an output, it can Sink 48
mAo

0101- 25,23, 1/0 Data Input/Output: Processor GPIB
OIOB 10, 9, bus data lines; used to carry message

8, 7, and data bytes in a bit-parallel byte-
6, 5 serial from controlled by the three

handshake Signals. These lines are
TTL compatible.

0101' 22,19. 1/0 Data Input/Outpu\: IEEE GPIB bus
0108' 18.17. data lines. They are TTL compatible

16.15. Schmitt-triggers when used for Input
13,12 and can sink 48 mA when used for

output.

AFN-00825C

inter

. ..2!
-.!!
....!i
.J.!
.~

....!!.
~
....!!

.2!
TO

MICROPROCESSOR
INTERFACE

GPIB TRIGGER OUTPU

..B.
2!
2
2
.J!
...!!
-2.
~

-..!
-1.

T.2

8~3

25
0101

2~ iii02
10 i!i03
9 iii04
8

0105
IZI1A

r2L 7
DO i!ml 0106

Di02 r1!- 6
0107 01

0103
30 5

0108 02

iii04 31 . 24 DAY 03

Di05 32 1
TIRl 04

05 6i06 33 ~ ATN

06 Di07 34 ~ EO!
07 0108

35

RSO DAY
36

RSl T/lil
1

RS2 ATN
28

cs EOI
39 3 EO!

iffi TiR2
2 L.....--.!. ATN

WR NiiAC 38 1
TlRl

INT NRFi5 37 2 T/R2

CLOCK iRQ 27 10 NiiAC
RESET l!!N 25 9

NRFO

OREa IFC
24 8

SRa

OACK
6 REN

TRIG
I

5
IFC

" = GPIB BUS TRANSCEIVER

Figure 9. 8291A and 8293 System Configuration

7-476

8293

010l"

0102"

0103"

0104"

0105"

0106"

0107"

0106"

DAY"

OPTA

OPTB

MODEl

8293
EOI"

ATN"

NOAC"

NRFO"

SRa"

REN"

IFC"

OPTA

OPTB

MOOED

E..
2!....
2!..
2!-
~
~
~
E-
~

a
~

r!!..
r!!..

r!!-
r!!-
l!..
...!!.
E....
..E..
.!!...

TO
IEEE·488
BUS

Vee

GNO

TO
IEEE·488
BUS

GND

GND

AFN·00825C

inter

TO
MICROPROCESSOR

18 GP
TRIGGE
OUTPU

R
T

TO MICROPROCESSOR

~
~
,.!!
~

18

17

18

19

21

22

23

9

10

4

6

7

8

3

11

5

...!!
~

---1!
~

16

17

16

19

9

8

10

DO

01

02

03

04

05

08

07

RSO 1I2t1.

RS1

RS2

Ro

WR
RESET

oREo

om
Cs
CLOCK

INT

TRIG

DO

01

02

03

04

05

06

07

AD 8292

Rii
WR

-I> - 4
RESETtt

TO
MICROPROCESSOR

1
R OSCILLATO

OUTPU T

6

32

33

35

36

11

VCC~

~
.Ef!.1

15-25 PFJ ~
" = GPIB BUS TRANSCEIVER

Cs
TCI

SPI

OBFI

IBFI

SYNC

SS

x,t

x,t

EA

t = SEE 8041A DATA SHEET FOR ALTERNATE
CRYSTAL CONFIGURATIONS

tt = CAN CONNECT TO SYSTEM RESET SWITCH,
SEE 8041 A DATA SHEET

8293

iii01 28 25 iii01
0102

29 23 iii02
0103

30 10
0103

0104
31 9 lli04

DiOs 32 8 DiOs
DiOs 33 7 DiOs
iii07 34 6

0107

DiOs 35 5
0108

TiR1
1 1

TIR1

oAV
38 24 iiAv

EOI
39 3

EOI

AfN 26 4
ATN

SRo
27

IFC
24

NDAC 38 --
NRFD

37

TlR2
2 -2! AffiO

REN ~ ~ iFC[

oAV r£- r!- TlR1
4 AfN

10
NoAC

9 Jil'iiii
2

TIR2

SAo 21 8 SAo
REN

36 6
REN

IFC
23 5 iFc

lffiIlj 29 23
ATNO

COUNT
39 3 Eoi

EOl2
34 7

EOI2

ATNI
22 11 AfNj

1
IFCL

25
IFCL

CIC
31 24

CIC

CLTH
27 21

ClTH

SYC
24 22

SYC

LJ ON SYSTEM
CONTROLLER

SWITCH

Figure 10" 8291A, 8292, and 8293 System Configuration

7-477

0101"

0102"

0103"

0104"

0105"

0108"

0107"
8293

0108"

oAV"

OPTA

OPT8
MODE 3

NoAC

NRFo

SRo"

REN"
8293 IFC"

ATN"

EOI"

OPTA

OPTB

MODE 2

~
r-!!-
r-!!-
r!L
~
~
r!!-
~

~

~V
f3!-v

r!!.-
r!L

r!!-
~
r!L
~
~

TO
IEEE-488
BUS

cc
cc

TO
IEEE-488
BUS

E-v
2!-v

ss
cc

AFN-00825C

intJ 8293

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias'• o·c to 70·C
Storage Temperature •...••....... - 65·C to + 150·C
Voltage on any Pin with

Respectto Ground - 1.0V to + 7V
Power Dissipation•............ 1 Watt

'NOTICE:
1. Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the
device at these or anJo{ other conditions above those indi­
cated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device reliability.
2. All devices are guaranteed to operate within the
min/mum and maximum parameter limits specified below.
Typical parameters however are not tested and are not
guaranteed. Established statistically, they indicate the

, performance level expected in a typical device at room
temperature (TA = 25°C) and Vee = 511.

D.C. CHARACTERISTICS (TA = o·c to 70·C, vee = 5.0V :±:10%, GND = OV)

Symbol Parameter
Limits

Units Test Conditions
Min. Typ. Max.

VIL1 Input Low Voltage (GPIB Bus Pins) 0.8 V

VIL2 Input Low Voltage (Option Pins) -0.1 0.1 V ,

VIL3
1 Input Low Voltage (All Others) 0.8 V

VIH1 Input High Voltage (GPIB Bus Pins) 2.0 Vee V

VIH2 Input High Voltage (Option Pins) 4.5 Vee V

VIH3 Input High voltage (All Others) 2.0 Vee V

VIH4 Receiver I nput Hysteresis 400 mV

VOL1 Output Low Voltage (GPIB Bus Pins) 0.5 V IOL = 48 mA

VOL2 Output Low Voltage (All Others) 0.5 V IOL = 16 mA

VOH1 Output High Voltage (GPIB Bus Pins) 2.4 V IOH = -5.2 mA

VOH2 Output High Voltage (All Others) 2.4 V IOH = -800 pA

. High to Low 0.8
VIT Receiver Input Threshold Low to High 2.0 V

ILe Input Load Curre.nt (GPIB Pins) See Bus Load Line Diagram Vee = 5.0V :±: 5%

IlL Input Leakage Current (All Others) 10 /LA 0.45 ,;;VIN ,;;Vee

IpO Bus Power Qown Leakage Current 40 /LA 0.45V ,;; VB US ,;; 2.7V

Ice Power Supply Current 110 175 mA

NOTES:
1. VIL3 = 1.1V max on pins 21 and 22 in Mode 2 for the 8293-10.

CAPACITANCE

Symbol Parameter Min. lYP· Max. Units Test Conditions

CI01 1/0 Capacitance (GPIB Side) 50 80 pF VIN =Vee

CI02 1/0 Capacitance (System Side) 35 50 pF VIN =Vee

CITR Input Capacitance (T/R1, T/R2) 7 10 pF VIN ;"Vee

7-478

inter 8293

A.C. CHARACTERISTICS (TA = O"Cto 70"C, vee = 5.0V ±10%, GND = OV)

Symbol Parameter Max.

tp1 Transmitter Propagation Delay (All Lines) 30

tp2 Receiver Propagation Delay (EOI, ATN and Handshake Lines) 50

tP3 Receiver Propagation Delay (All Other Lines)

tpHZ1 Transmitter Disable Delay (High to 3-State)

tpZH1 Transmitter Enable Delay (3-state to High)

tpU1 Transmitter Disable Delay (Low to 3-State)

tpZL1 Transmitter Enable Delay (3-State to Low)

tpHZ2 Receiver Disable Delay (High to 3-State)

tpZH2 Receiver Enable Delay (3-State to High)

tpU2 Receiver Disable Delay (Low to 3-State)

tpZL2 Receiver Enable Delay (3-State to Low)

tMS Mode Switch Delay

TYPICAL OUTPUT LOADING CIRCUITS

TO SCOPE
(OUTPUT) +2 IV

4J'.'
"'- lOO.' '

.,..
Ct. INCWDES JIG AND PROlE CAPACITANCE

Data Input to Bus Output (Driver)

, Cl INCWDES JIG AND PROBE CAPACITANCE

60
40

40

40

40

40

40

40

40

10

TO SCOPE
(OUTPUT) +5OY'

24011

DATA

~9 :"111!'OUIV.

"'-r"" ~
Ct. INCWDES JIG ANO PROSE CAPACITANCE

Bus Input to Data Output (Receiver)

TOSCON
(OUTPUT) SOY

~"'I!'
DATA (tfou2,1pZL2)

fltPH",Ip'",'

.... 1'... SKI!

~ ':"

c.. INCWDES JIG AND PROB! CAPACITANCE

Unite

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ILs

Send/Re~h'l! Input to Bus Output (Driver) ,Sand/!IeceIVe h1put to Data Output (Receiver)

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT u=x)C 2.0 2.0, > TEST POINTS < '
0.8 . 0.8

0.45

~

A C TESnNG INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC 1 AND 0 45V FOR
A lOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1
AND 08V FOR A lOGIC 0'

'1479 AfN-00825C

WAVEFORMS

INPUT

OUTPUT
(TRANSMITTER i!ROP. DELAY)

FIGURE 11 LOAD

OUTPUT
(RECEIVER PROP. DELAY!

FIGURE 11 LOAD

OUTPUT
(TRANSMITTER ENABLE DELAY

WITH INPUT HIGH!
FIGURE 12 LOAD

OUTPUT
(TRANSMITTER ENABLE DELAY

WITH INPUT LOWI
FIGURE 12 LOAD

OUTPUT
(RECEIVER ENABLE DELAY

WITH INPUT HIGH!
FIGURE 13 LOAD

OUTPUT
(RECEIVER ENABLE DELAY

WITH INPUT LOW)
FIGURE 13 LOAD

8293

3.0V:,.. ______________

OV----J

VOH

VOL

OV

5V

tRISE = "'ALL" 5 na
DUTYCYCLE = 10%

1.5V

Vz -1.0V

Vz -1.13V

VOH

VOL

'OELAYS ARE REFERENCED AGAINST PERCENTAGE OF FINAL OUTPUT WHEREVER 3-STATE OUTPUTS ARE INVOLVED BECAUSE THE RISE AND FALL TIMES OEPEND
ON THE EXTERNAL PULL·UPAND PULL·DOWN LOADS,

BUS LOAD LINE

8.0

4.0

2.0

'l ...
-2.0 z ...

a: -4.0 a:
::>
<.>
II)

-8.0
::>

-8.0 III

j -10

-12

-14

Vau .. BUS VOLTAGE (VOLTS!

7-480

TYPICAL RECEIVER HYSTERESIS
CHARACTERISTICS

0.& 1.0 1.5

V.INPUT VOLTAGE (VOLTS!

2.0

AFN.Q0825C

intJ
8294A

DATA·ENCRYPTION UNIT

• Certified by National Bureau of
Standards

• 400 Byte/Sec Data Conversion Rate

• 64·Bit Data Encryption Using 56·Bit
Key

• DMA Interface

• 3 Interrupt Outputs to Aid in Loading
and Unloading Data

• 7·Bit User Output Port

• Single 5V ± 10% Power Supply

• Fully Compatible with IAPX-86,88,
MCS-85T11 , MCS-80TII , MCS-51 TM, and
MCS-48™ Processors

• Implements Federal Information
Processing Data Encryption Standard

• Encrypt and Decrypt Modes Available

The Intel15 8294A Data Encryption Unit (OEU) is a micrpprocessor peripheral device designed to encrypt and decrypt 64·bit
blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard. The OEU
operates on 64·bit text words using a 56·bit user·specified key to produce 64-bit cipher words. The operation is reversible:
If the cipher word is operated upon, the original text word is produced. The algorithm itself is permanently contained in the
8294A; however, the 56·bit key is user·defined and may be changed at any time.

The 56-bit key and 64·bit message data are transferred to and from the 8294A in 8·bit bytes by way.of the system data bus. A
OMA interface and three interrupt outputs are available to minimize software overhead associated with data transfer. Also,
~y using the OMA interface two or more DEUs may be operated illl parallel to achieve effective system conversion rates
which are virtually any multiple of 400 bytes/second. The 8294A also has a 7·bit TTL compatible output port for
user·specified functions.

Because the 8294A implements the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer
applications as well as other electronic banking and data handling applications where data must be encrypted.

NC VCC

DATA Xl NC
aUS OACK

RESET 4 ORO
Vee SRO

CS OAV
GNO NC

RJj P6

SRQ P5

DAV WA P4

ceMP SYNC P3

POP6 . DO P2

REsET 01 Pl
SYNC 02 PO

03 VOO
x, 04 Vec
x, 05 CCMP

+5V--
06 NC

POWER-_ INTERNAL 07 NC
GND-_ 8US GNO NC

Figure 1. Block Diagram Figure 2. Pin Configuration

Intel Corporation A .. umea No Reaponaibilty for the UM of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit Patent llcenae. are Implied.
OINTEL CORPORATION. 1983 7-481 SEPT 1983

ORDER NUMBER: 210415-003

inter 8294A

Table 1. Pin Description.

Pin Pin
Symbol No. Type Name and Function Symbol No. Type Name,and Function

NC 1 No Connection. NC 39 No Connection.

Xl 2 I Crystal: Inputs for crystal, L-C or exter- OACK 38 I DMA Acknowledge: Input sIgnal from
X2 3 nal timing Signal to determine internal the 8257 OMA Controller acknowledg-

oscillator frequency, ing that the requested OMA cycle has

RESET 4 I Reaet: A low signal to this pin resets the been granted.

8294A, ORO 37 0 DMA Request: Output sIgnal to the

Vee 5 Power: Tied high. 8257 OMA Controller requesting a OMA

CS 6 I Chip Select: A low signal to this pin
enables reading and writing to the 8294A.

GNO 7 Ground: This pin must be tied to
ground.

cycle.

SRO 36 0 Service Request: Interrupt to the CPU
indicating that the 8294A is awaiting
data or commands at the input buffer.
SRO=l implies IBF=O.

RO 8 I Read: An actIve low read strobe at this
pin enables the CPU to read data and
status from the internal OEU registers.

OAV 35 0 Output Available: Interrupt to the CPU
indicating that the 8294A has data or
status available in its output buffer.

AD 9 I Address: Address input used by the OAV=l implies OBF=l.
CPU to select OEU registers during read
and write operations.

WR 10 I Write: An active low write strobe at this
pin enables the CPU to send data and
commands to the OEU.

NC 34 No Connection.

P6 33' 0 Output POr:!: User output port Irnes
P5 32 Output lines available to the user via a
P4 31 CPU command which can assert sel-
P3 30 ected port lines. These lines have (10-

SYNC 11 0 Sync: High frequency (Clock ~ 15) out- P2 29 thing to do with the encryption functIon.
put. Can be used as a strobe for'external P1 28 At power-on, each line is in a 1 state.
circuitry. PO 27

Do 12 1/0 Data Bus: Three-state, bi-dlrectional Voo 26 Power: +5V power input. (+5V ±10%)
0, 13 data bus lines used to transfer data be- Low power standby pin
D, 14 tween the CPU and the 8294A.
03 15
D. 16
0, 17

Vee 25 Power: Tied high.

CCMP 24 0 Conversion Complete: Interrupt to the
CPU indIcating that the encryptlonl

D. 18 decryption of an 8-byte block is com-
0 7 19 plete,

GNO 20 Ground: This pin must be tied to NC 23 No Connection.
ground. NC 22 No Connection.

Vce 40 Power: +5 volt power input: +5V ± NC 21 No Connection.
10%.

7-482 AFN-0023OD

8294A

FUNCTIONAL DESCRIPTION
OPERATION

The data conversion sequence is as follows:

1. A Set Mode command is given, enabling the desired
interrupt outputs.

2. An Enter New Key command is issued, followed by 8
data inputs which are retained by the DEU for encryp­
tion/decryption. Each byte must have odd parity.

3. An Encrypt Data or Decrypt Data command sets the
DEU in the desired mode.

After this, data conversions are made by writing 8 data
bytes and then reading back 8 converted data bytes. Any
of the above commands may be issued between data
conversions to change the basic operation of the DEU;
e.g., a Decrypt Data command could be issued to
change the DEU from enc;rypt mode to decrypt mode
without changing either the key or the interrupt outputs
enabled.

INTERNAL DEU REGISTERS

Four internal registers are addressable by the master
processor: 2 for input, and 2 for output. The following
table describes how these registers are accessed.

RD WR CS Ao Register

1 0 0 0 Data input buffer

o 1 0 0 Data output buffer
1 0 0 Command input buffer
o 1 0 1 Status output buffer

X X X Don't care

The functions of each of these registers are described
below.

Data Input Buffer - Data written to this register is inter·
preted in one of three ways, depending on the preceding
command sequence. .

1. Part of a key.
2. Data to be encrypted or decrypted.
3. A DMA block count.

Data Output Butler - Data fead from this register is the
output of the encryption/decryption operation.

Command Input Buffer - Commands to the DEU are
written into this register. (See command summary
below.) .

Status Output Buffer - DEU status is available in this
register at all times. It is used by the processor for poll·
driven command and data transfer operations.

STATUS BIT:

FUNCTION: x X KPE CF DEC IBF

OBF Output Buffer Full; OBF = 1 indicates that output
from the encryption/decryption function is
available in the Data Output Buffer. It is reset
when the data is read.

IBF Input Buffer Full; A write to the Data Input Buffer
or to the Command Input Buffer sets IBF = 1 The
DEU resets this flag when it has accepted the
input byte. Nothing should be wntten when
IBF= 1.

DEC Decrypt; indicates whether the DEU IS in an en·
crypt or a decrypt mode. DEC = 1 implies the
decrypt mode. DEC = 0 implies the encrypt
mode.

After 8294A has accepted a 'Decrypt Data' or
'Encrypt Data' command, 11 cycles are required to
update the DEC bit.

CF Completion Flag; This flag may be used to indio
cate any or all of three events in the data transfer
protocol.

1. It may be used in lieu of a counter in the
processor routine to flag the end of an 8·
byte transfer.

2. It must be used to indicate the validity of
the KPE flag.

3. It may be used in lieu of the CCMP interrupt
to indicate the completion of a DMA oper­
ation.

KPE Key Parity Error.; After a new key has been
entered, the DEU uses this flag in conjunction
with the CF flag to indicate correct or incorrect
parity.

COMMAND SUMMARY

1 - Enter New Key
~~~~~~~~ 

OP CODE 1 0 11 1 0 1 0 1 0 1 0 1 0 1 01 
MSB LSB 

This command is followed by 8 data byte inputs which 
are retained in the key buffer (RAM) to be used in 
encrypting and decrypting data. These data bytes must 
have odd parity represented by the LSB. 

2 - Encrypt Data 

OP CODE' ~I 0"T"1 0~1~1"T"1 ~1 l~o"T"l-o 1~0"T"1 ~o 1 
MSB LSB 

This command puts the 8294A inta th~ encrypt mode. 

3 - Decrypt Data 

OP CODE ~, 0""1 0-'1-1 '-1 0-',-0 ''"0''''1 0-',-'01 
MSB LSB 

This command puts the 8294A into the decrypt mode. 

4 - Set Mode .. 
OP CODE 10 1 0 1 0 1 0 1 AlB 1 C 1 OJ 

MSB LSB 

where: 

7-483 

A is the OAV (Output Available) interrupt enable 
B is the SRQ (Service Request) interrupt enable 
C is the DMA (Direct Memory Access) transfer enable 
D is the CCMP (Conversion Complete) interrupt enable 

AFN.<J0230D 



8294A 

This command determines which Interrupt outputs will 
be enabled. A "1" in bits A, B, or 0 will enable the OAV, 
SRO, or CCMP interrupts respectively. A "1" in bit C will 
allow DMA transfers. When bit C is set the OAV and 
SRO interrupts should also be enabled (bits A,B = 1). 
Following the command in which bit C, the DMA bit, is 
set, the 8294 will expect one data byte to specify the 
number of 8·byte blocks to be converted using DMA. 

5 - Write to Output Port 

OP CODE '1,-'I-p-6 'I p-5'I-P4'I-p-3 'I p-2'I-p,'I-po'l 
MSB LSB 

This command causes the 7 least significant bits of the 
command byte to be latched as output data on the 8294 
output port. The initial output data is 1111111. Use of 
thiS port is independent of the encryption/decryption 
function. 

PROCESSOR/DEU INTERFACE PROTOCOL 
ENTERING A NEW KEY 

The timing sequence for entering a new key is shown in 
Figure 3. A flowchart showing the CPU software to 
accommodate thiS sequence is given in Figure 4. 

CF =oJ L 
KPE ______ 'N_V_AL_'D _____ ~ 

A,.n"'"l...J-Lr---LS------..JL 

CHECKU KPE 

After the Enter New Key command is issued, 8 data bytes 
representing the new key are written to the data ,input 
buffer (most significant byte first). After the eighth byte is 
entered into the DEU, CF goes true (CF=1). The CF bit 
goes false again when KPE is valid. The CPU can then 
check the KPE flag. If KPE=1, a parity error has been 
detected and the DEU has not accepted the key. Each byte 
is checked for odd parity, where the parity bit I.s the LSB of 
each byte. 

Since CF=1 only for a short period of time after the last 
byte is accepted, the CPU which polis the CF flag might 
miss detecting CF = 1 momentarily. Thus, a counter should 
be used, as in Figure 4, to flag the end ofthe new key entry. 
Then CF is used to indicate a valid KPE flag. 

OATA REGISTER 1 BYTE OF KEY 

1-1+1 

YES 

~---lJ WR KEY KEY KEY 

NEW DATA DATA DATA 0 
KEY V 
COMMAND 

Figure 3. Entering a New Key Figure 4. Flowchart for Entering a New Key 

7-484 AFN-00230D 



intJ 8294A 

ENCRYPTING OR DECRYPTING DATA 

Figure 5 shows the timing sequence for encrypting or 
decrypting data. The CPU writes a data bytes to the 
DEU's data input buffer for encryption/decryption. CF 
then goes true (CF = 1) to indicate that the DEU has 
accepted the a·byte block. Thus, the CPU ma~ test for 
IBF = 0. and CF = 1 to terminate the input mode, or it 
may use a software counter. When the encryption/. 
decryption is complete, the CCMP and OAV interrupts 
are asserted and the OBF flag is set true (OBF = 1). OAV 
and OBF are set false again after each o(the converted 
data bytes is read back by the CPU. The CCMP interrupt 
is set false, and remains false, after the first read. After 
a bytes have been read back by the CPU, CF goes false 
(CF = 0.). Thus, the CPU may test for CF = 0. to terminate 
the read mode. Also, the CCMP interrupt may be used to 
initiate a service routine which performs the next series 
of a data reads and a data writes. 

ceMPI 
IF ENAILED) n 

.AQ"UL n IF ENABLED) _ , 

'B' 5LJl_--Il 
O_V nIl_rr IF ENABLED) 

OIF nIl rr 
CF] I I 
iiD LnJ-Lf 
w.llLJ-LJ 

~ 

• DATA WRITES 20 ma - MAXIMUM ,DATA READS 

Figure 5. Encrypting/Decrypting Data 

Figure 6 offers two flowcharts outlining the alternative 
means of implementing the data conversion protocol. 
Either the CF flag or a software counter may be used to 
end the read and write modes. 

SRQ= 1 implies IBF=o., OAV= 1 implies OBF= 1. This 
allows interrupt routines to do data transfers without 
checking status first. However, the OAV service routine 
must detect and flag the end of a data conversion. 

7-485 

USING SOFTWARE COUNTER 

USING CF FLAG 

8 
NO 

Figure 6.0ata Conversion Flowcharts 

AFN·OO2300 



USING DMA 

The timing sequence for data conversions using DMA is 
shown in Figure 7. This sequence can be better 
understood when considered in conjunction with the 
hardware DMA interface in Figure 8. Note that the use of 
the DMA feature requires 3 external AND gates and 2 
DMA channels (one for input, one for output). Since the 
DEU has only one DMA reques1 pin, the SRO and OAV 
outputs are used in conjunction with two of the AND 
gates to create separate DMA request outputs for the 2 
DMA channels. The third AND gate combines the two 
active·low DACK inputs. 

ceMP ---, r 
(IPENA8LEO,_-,-I ______ ~ _______ ___l 

CF =rlL-____ ----l1 
SRC LnJlj--l 

(II' ENABLED) L _______ _ 

CAV II II 
(IFENABLEOI __________ I L_-.J ~ 

DRQ~-UL __ JL 
OAe" --U-ULf---U­

lJn---u-
ViR 1f1fU-C-u 

SET OMA --,..,.--' 
DMA BLOCK 8 OMA READS -----8 DMA WAITES 

MOOE COUNT(n) ---__ ------

Figure 7. DMA Sequence 

8257 

iNT----~<'< 
RD _________ ~~ 

WR-----------~I~· I 

Figure 8. DMA ,nterface 

7486. 

To initiate a DMA transfer, the CPU ml,Jst first initialize 
the two DMA channels' as shown in the flowchart in' 
Figure 9. It must then iSSue a Set Mode command to the 
OE;U enabling the OAV, SRO, and DMA outputs. The 
CCMP interrupt may be enabled or disabled, depending 
on whet~er that 6utp'ut is desired. Following the Set' 
Mode command, there must be a data byte giving the 
number of 8·byte blocks of data (n<256) to be converted. 
The DEUthen generates the required number Of DMA 
requests tQ the 2 DMA channels with no further CPU 
intervention. When the" requested number of blocks 
has been converted, the'DEU Will set GF and assert the 
CCMP interrupt (if enabled). CCMP then goes false 
again with the next. write tothe DEU (command or data). 
Upon completion of the conversion, the DMA mode is 
disabled and the DEU returns to 'the encrypt/decrypt 
mode. 'The enabled interrupt outputs, however, will 
remain enabled until another Set Mode command is 
issued. 

USING DMA 

INITIALIZE DMA READ CHANNEL POINTER 

INITIALIZE OMA WRITE CHANNEL POINTER 

DATA REGISTER - NUMBER OF BLOCKS TO BE CODED 

~ 
~ e 

Figure 9. DMA Flowchart 

SINGLE BYTE COMMANDS 

Figure 10 sho.ws the timing and protocol for. single byte 
commands. Note that any of the commands is effective 
asa pacify command in that they may be entered at any 
time, except during a DMA conversion. The DEU is thus 
set to a known state. However, if a command is issued 
out of sequence, an additional protocol is required 
(Fi.gure 11). The CPU must wait until the command is 
~ccepted (I SF = 0). A data read must then be issued to 
clear anything the pr~ceding command 'sequence may 
have lert in the Data Output Buffer. 

AFN-002300 



8294A 

CPU/DEU INTERFACES 

Figures 12 through 15 illustrate four interface configura­
lions used In the CPUIDEU data transfers In all cases 
SAQ Will be true (If enabled) and IBF Will be false when 
the DEU IS ready to accept data or commands 

SRO U (IF ENABLED) 

IBF n 
WR U 
CS U 
AO n 

~ 
~ ISF =o? 

J YES 

I COMMAND REGISTER -COMMAND 

I 
I 

8 
Figure 10. Single Byte Commands 

PACIFY 

COMMANO REGISTER - OOH 

ce.~ 
,~ 

READ DATA REGISTER 

8 
Figure 11. Pacify Protocol 

7-487 

{D~~G INTERFACE TO 8086. 8088, : - 8294A 

~~~E:~:O~O:sg= Rii ---- OEU 

~---'
, AD

Figure 12. Polling Interface

MASTER
PROCESSOR
INTERFACE

im--------------

DO'~
D,,~-V

Rii ----
8294A

WR ---- DEU

cs----o

Figure 13. Single Interrupt Interface

\

INT1
iNT2

MASTER DO~ +-PROCESSOR-
0, 8 SRQ

INTERFACE Rii-C

WR-(8294A
DEU

cs-(
Ao OAV~

Figure 14. Dual Interrupt Interface

AFN.Q0230D

intJ 8294A

8257

iNT-----~o(!:

RD----------~~
ijffi----------~~--~

OMARa IS FOR MEMORY TO DEU DATA TRANSFER
OMARl IS FOR OEU TO MEMORY DATA TRANSFER
USE OF CCMP IS OPTIONAL

Figure 15. DMA Inte~ace

OSCILLATOR AND TIMING CIRCUITS
The 8294A's internal timing generation is controlled by a
self-contained oscillator and timing circuit. A choice of
crystal, L-C or external clock can be used to derive the

, basic oscillator frequency.

The resident timing circuit consists of an oscillator, a state
counter and a cycle counter as illustrated in Figure 16.

'------v-------
INTERNAL TIMING

SYNC
OUTPUT
(1,25-15 "sec)

Figure 16. Oscillator Configuration

7-488

OSCILLATOR MODE

C1 r(I ~12 I MHz
.1.

T ' C2I'T'

r S
I

C1=5pF
cz = CRYSTAL + STRAY < 15 pF
C3 = 20-3OpF

2
XTAL1

3 XTAL2

CRYSTAL SERIES RESISTANCE SHOULD
BE LESS THAN 150 AT 8 MHz; LESS
THAN 1800 AT 3.8 MHz; LESS THAN
30n AT 12 MHz.

LC OSCILLATOR MODE

1
1------

2~VLC'

C +3Cp.
C'------

2

dmc L 2XTAL1

- 3
XTAL2

Cp. = 5·10 pF
PIN-TO-PIN
CAPACITANCE

_L__ , _C_ NOMINAL

20pF
20pF
20pF

11.SMHz
5.2 MHz
3.2 MHz

EACH C SHOULD BE APPROXIMATELY 20 pF
INCWDING STRAY CAPACITANCE

Figure 17. 'Recommended Crystal

AFN-0023OD

intJ 8294A

DRIVING FROM EXTERNAL SOURCE-TWO OPTIONS

1UAL1

~.~
+Sv

470n 1..----=-1 XTAL 1

470}
LQl>--_I~ ~_=-i3 XTAL2

FOR THE 8294A XTAL2 MUST BE HIGH
35-85% OF THE PERIOD

RilE AND FALL TIMES MUST
NOT EXCEED 10 nl

RESISTOR TO Vee IS NEEDED
TO ENSUAE VIH = 3.0v IF Tn
CIRCUITRY IS USED

Figure 18. Recommended Connection for Extemal Clock Signal

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O'C to 70'e

Storage Temperature - 65'e to + 150'e

Voltage on Any Pin With
Respect to' Ground. -0.5V to + 7V

Power DIssipation •........................ '. . 1.5 Watt

'NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this speoifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. AND OPERATING CHARACTERISTICS (TA = O'C to 70°C, Vee = +5V :!: 10%, Vss = oY)

Umlts
Symbol Parameter Min. Typ. Max. Unit 1ftt Conditions

VIL Input Low Voltage (All -0.5 0.8 V
Except X1• X2. RESET)

VIL1 Input Low Voltage (X1• X2. -0.5 0.6 V
RESET

VIH Input High Voltage (All 2.2 Vee V·
Except X1• X2. RESET)

VIH1 Input High Voltage (X1• X2• 3.0 Vee V
RESET)

VIH2 Input High Voltage (X2) 2.2 Vee V

VOL Output Low Voltage (D(),,07) 0.45 V IOL = 2.0mA

VOLl Output Low Voltage (All 0.45 V IOL = 1.6 mA
Other Outputs)

VOH Output High Voltage (0(),,07) 2.4 V IOH = -400 p.A

VOH1 Output High voltage (All 2.4 V IOH= -50p.A
Other Outputs)

IlL Input Leakage Current ± 10 p.A Vss:;;;; VIN:;;;; Vee
(RD. WR. es. Ao)

IOFL Output Leakage Current ± 10 p.A Vss + 0.45:;;;; VOUT:;;;; Vee
(00-07• High Z State)

100 Voo Supply Current 5 20 mA

100 + Icc Total Supply Current 60 135 mA

III Low Input Load Current 0.3 mA VIL = 0.8V
(Pins 24. 27-38)

ILI1 Low Input Load Current 0.2 mA' VIL = 0.8V
(RESET)

IIH Input High Leakage Current 100 p.A VIN = Vee
(Pins 24. 27-38)

CIN Input Capacitance 10 pF

CliO I/O Capacitance 20 pF

7-489 AFN.00:!30D

inter 8284A

A.C. ·CHARACTERISTICS (TA = O'C to 70'C, Vce = Voo ,= +5V ±1 0°/9, Vss = OV)

DBB READ

Symbol Parameter Min. ' Max. Unit Test Conditions

tAR CS, Ao Setup to R15 • 0 ns

tRA CS, Ao Hold After 1m t 0 ns

tRR 1m Pulse Width 160 ns

tAD CS, Ao to Data Out Delay 130 ns Ct. - 100 pF

tRO 1m • to Data Out Delay 130 ns Ct. = 100 pF

tOF 1m t to Data Float Delay 85 ns

tCY Cycle Time 1.25 15 ,..s 1-12 MHz Crystal

DBB WRITE

Symbol Parameter Min. Max. Unit Test Conditions

tAW CS, Ao Setup to iiiiR • 0 ns

tWA CS, Ao Hold After WR t 0 ns

tww WR Pulse Width 160 ns

tow Data Setup to WR t 130 ns

two Data Hold to WR t 0 ns

DMA AND INTERRUPT TIMING

Symbol Parameter Min. Max. Unit Test Conditions

tAcc ~ Setup to Control 0 ns

tCAC l5AeR Hold After Control 0 ns

tACO DACK to Data Valid 130 ns CL =100 pF

tCRQ Control L.E. to DRO T.E. 100 ns

tCI Control T.E. to Interrupt T.E. 400 ns

CLOCK
8042 8742

Symbol Parameter Min. Max. Min. Max. Units

tCY Cycle Time 1.25 9.20 1.25 9.20 ~S[11

tCYC Clock Period 83.3 613 83.3 613 ns

tPWH Clock High Time 33 38 ns

tPWL Clock Low Time 33 38 ns

tR Clock Rise Time 10 10 ns

tF Clock Fall Time 10 10 ns

NOTES:
1 ICY = 1S/f(XTAL)

A.C. TESTING INPUT, OUTPUT WAVEFORM

7-490

inter 8294A

WAVEFORMS

READ OPERATION-OUTPUT BUFFER AEGISTER

CSDR Ao JJ
-1.0 -1 . 100 -IIIA_

K (SYSTEM'S
ADDRESS BUS)

'\ Y '- (R EAD CONTROL)

-tRD -tDF

tAD '. ~~~~P~------------<t-~,,,~4~-...... -----------
WRITE OPERATION-INPUT BUFFER REGISTER

S DR Ao 1 f< (SYSTEM'S ___ --' \-______________ ADDRESS BUS)

<-'"1 r~- d~_,...---twA~ __
'\t (WR(TE CONTROL)

-low --IWD

DATA BUS DATA 'V -DATA VALID-V DATA
(INPUT) ____ ...:M:::;A:.:,Y..::C:..:HA:::N:::G::E ___JI'. ~'-____;M::::A::..:Y..:C:::H=AN:::G::E=--____ _

DMA AND INTERRUPT TIMING

.
"'\ -tAcc-

"
-- tCAe

DACK

" " /
/

RoorWR

,
ORO

---tcRD--+

tACD

DATA BUS

I
\1/ VALID
/1\.

OAV",SRQ

_TCI-

7-491 AFN-00230D

inter

CLOCK TIMING

---t---'PWL

2.4V- --

XTAL2 1.8V _ _ _

.45V __ _

~-----'CYC-----~

7-492

, Video Display

Peripherals
Section

8

intJ

CI Intel Corporation, 1979

APPLICATION
NOTE

8-1

AP-62

November 1979

APPLICATIONS

1. INTRODUCTION
"-

The purpose of this application note is to provide the
reader with the design concepts and factual tools
needed to integrate Intel peripherals and microproc­
essors into a low cost raster scan CRT terminal. A
previously published application note, AP-32, pre­
sented one possible solution to the CRT design
question. This application note expands upon the
theme established in, AP-32 and demonstrates how
to design a functional CRT terminal while keeping
the parts count to a minimum.

For convenience, ·this application note is divided
into seven general sections:

1. Introduction
2. CRT Basics
3. 8275 Description
4. Design Background
5. Circuit Description
6. Software Description
7. Appendix

There is no question that microprocessors and LSI
peripherals have had a significant role in the evolu­
tion of CRT terminals. Microprocessors have
allowed design engineers to incorporate an abun­
dance of sophisticated features into terminals that
were previously mere slaves to a larger processor. To
complement- microprocessors, LSI peripherals have
reduced component count in many support areas. A
typical LSI peripheral easily replaces between 30-

. and 70 SSI and MSI packages, and offers features
and flexibility that are usually not available in most
hardware designs. In addition to replac~ng a whole
circuit board of random logic, LSI circuits also
reduce the cost and incr~ase the reliability of design.
Fewer interconnects increases mechanical reliability
and fewer parts decreases, the power. consumption
and hence, the overall reliability of the, des~gn. The
reduction of components also yields a circuit that is
easier to debug during the actual' manufacturing
phase of a product.

Until the era of advanced LSI circuitrY; 'a typical
CRT terminal consisted of 80 to 200 or more SSI
and MSI packages. The first microprocessors and
peripherals dropped this component count to be­
tween 30 and, 50 packages. This application ,note
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan oisplay gets its name from the fact
that the image displayed on the CRT IS built up by
generating a series of lines (raster) across the face of '
the CRT. Usually, the beam starts in the upper left
hand corner of the display and simultaneously
moves left to right and top to bottom to put a series

.~~---------­

- ~~.-----==­~,--

----~~;::=::-=:-===-===----

-
" ,

~~
,~

--RETRACE LINES
--- DISPLAYED LINES

Figure 2-1. Raeler Scan

of zig-zag lines on the screen (Fig. 2.1). Two simul­
taneously operating independent circuits control the
vertical and horizontal movement of the beam.

As the electron beam moves across the faqe of the
CRT, a third circuit controls the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to be as
bright or as dark as the user desires. This allows any
desired pattern to be displayed.

'When the beam reaches the end of a line, it is
brought back to the beginning of the next line at a
rate that is much faster than was used to generate
the line. This action is referred to as "retraCe".
During the retrace period the electron beam is
usually shut off so that it doesn't appear on the
screen.

As the electron beam is moving across the scr~en
horizontally, it is also moving downward. Because
of thiS, each successive line starts slightly below the
previous line. When the beam finally reaches the
bottom right hand corner of the screen, it retraces
vertically back to the top left hand corner. The time
it takes for the beam to move from the top of the

, screen to the bottom and back again to the top is
, 'usually referred to as a ''frame". In the United

States, commercial television broadcast use 15,750
Hz as ,the horizontal sweep frequency (63.5 micro­
seconds per horizontal line) and 60 Hz as the vertical
sweep frequency or "frame" (16.67 milliseconds per
vertical frame).

Although, the 60 Hz vertical frame and the 15,750 Hz
horizontal line are t:\le'standards used by commercial
broadcasts, they are by no me,ans the only frequency
at which CRT's can operate. In fact, many CRT
displays use a horizontal scan that is around 18 KHz
to 22 KHz and some even exceed 30 KHz. :As the

AfN.()1304A ,

APPLICATIONS

horizontal frequency increases, the number of hori­
zontallines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu­
tion is needed on high density graphic displays and
on special text editing terminals that display many
lines of text on the CRT.

Although many CRT's operate at non-standard
,horizontal frequencies, very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since, in the United States,
the power line frequency happens to be 60 Hz, there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz.

By dividing the 63.5 microsecond horizo,ntal line
rate into the 16.67 millisecond vertical rate, it is
found that there are 262.5 horizontal: lines per
vertical frame. At first, the half line may seem a bit
odd, but actually it allows the resolution on the CRT
to be effectively doubled. This is done by inserting a
second set of horizontal lines between the first set
(interlacing). hi an interlaced system the line sets are
not generated simultaneously. In a 60 Hz system,
first all of the even-numbered lines are scanned: 0,2,
4, ... 524. Then all the odd-numbered lines: 1,3,5, ...
525. Each set of lines usually contains different data
(Fig. 2.2).

--...... _--..: --.- ' _------------- -, -------- --
-* ---.... -------- --- ----
-, ---....... --- ------.....

--- EVEN FIELD
--ODDFIELD

-

RETRACE LINES
NOT SHOWN

Figure 2-2. Interlaced Scan

Although interlacing provides greater resolution, it
also has some·distinct disadvantages. First of all, the
circuitry needed to generate the extra half horizontal
line per frame is quite complex when compared to a
noninterlaced design, which requires an integer
number of horizontal lines per frame. Next, the
overall vertical refresh rate is half that of a noninter­
laced display, As a result, flicker may result when the
CRT ~es high speed ,phosphors. To keep things as
simple as possible, this design uses the noninterlaced
approach,

The first thing any CRT controller must do is
generate pulses that defme the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro­
priate numbers. On most raster scan CRT's the
horizontal frequency is very forgiving and can vary
by around 500 Hz 'or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequency between 15250 Hz and 16250 Hz, or in
other words, there can be 256 to 270 horizontal lines
per vertical frame. But, as mentioned earlier, the
vertical frequency should be 60 Hz to insure stability.

The characters that are viewed on the screen are
formed by a series of dots that are shifted out of the
controller while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the doi clock and character clock.
The character clock is equal to the dot clock divided
by the number of.do~s used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOT CLOCK (Hz) = (N + R) * D * L * F
where N is the number of displayed characters per
row,
R is the number ~f retrace character time
iftcrements,
D is the number of dots per character,
L is the number of horizontal lines per frame and
F is the frame rate in Hz.

In this design N = 80, R = 20, D = 7, L = 270, and
F = 60 Hz. If the numbers are plugged in, the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the. left and right hand sides of the CRT. In this
particular design R = 20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer wants to place
between characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find
that D = 7.

AFN.o1304A

APPLICATIONS

Figure 2-3. 5 X 7 Dot,Matrlx

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V
where, H is the number of horizontal lines per
character,
Z is the number of character lines per frame and
V is the number of horizontal lines during vertical

retrace. In this design, a 5 X 7 dot matrix is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the
equation, L is found to be equal to 270 lines per
frame.

The designer should be cautioned that these numbers

IRQ

AD

AO

os

BLOCK DIAGRAM

CHARACTER
COUNTER CCLK

ceO-6

LCo.3

LAo·,
HATe
VRTe
HlGT
RW
LTEN
VSP
GPA0-1

LPEN

are interrelated and that to guarantee proper opera­
tion on a standard raster scan CRT, L should be
between 256 and 270. If L does not lie within these
bounds the horizontal circuits of the CRT may not
be able to lock onto the driving signal and the image
will roll horizontally. The chosen L of 270 yields a'
horizontal frequency of 16,200 KHz on a 60 Hz
ftame and this number is within the, 500 Hz tolerance
mentioned earlier.

The V number is chosen to match the CRT in much
the same manner as the R number mentioned earlier.
When the' electron beam reaches the bottom right
corner of the screen it must retrace vertically to the
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync times at 61.5 microseconds yi~ld a total of
1234.5 microseconds, which is enough time to allow
the beam to return to the top of the screen.

The choices of Hand Z largely relate to system
design preference. As H increases, the character size
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

PIN CONFIGURATION

LC, Vce

LC2 LAO

LC, LA,

LCo LTEN

ORa RW

= VSP

HRTe GPA1

VRTe GPAO

FlO HLGT

IVA IRQ

LPEN ' CCLK

DBo cea

DB, ces

DB2 CC,

DBa CC,

DB, CC2

DBs ce,

DB. CCo

DB7 Co
GND AD

Figure 3-1. 8275 Block Diagram/Pin Configuration

AFN-{l,304A

APPLICATIONS

3. 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275, having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters from display memory to the 8275's
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6. External dot timing logic is then
used to transfer the parallel outpUt data from the
character generator ROM serially to the video input
of the CRT. The character rows are displayed on the
CRT one line at a time. Line count outputs LCO-LC3
are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in Figure 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the IRQ output line. The
8275 interrupt output will normally be connected to
the interrupt input of the system cen~ral processor.

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine typically
re-initializes DMA controller parameters for the
next display refresh cycle, polls the system keyboard
controller, and/ or executes other appropriate func­
tions. A block diagram of a CRT system implemented
with the 8275 CRT Controller is provided in Fi~re
3.3. Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the begin­
ning of display operation. The 8275 has two types of
programming registers, the Command Registers

. (CREG) and the Parameter Registers (PREG). It
also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence offrom 0
to 4 parameters, depending on the command. The
8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
provides a number of user programmable display
format parameters. Display formats having from 1
to 80 characters per row, I to 64 rows per screen, and
1 to 16 horizontal lines per row are available.

In addition to transferring characters from memory

1 st 2nd 3rd 4th 5th 6th 7th
Charactar Character Character Character Character Character Character -------------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

Firat Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Charactar Character Character Character Character Character ---------------------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

o.oooo.oo •• ooo~o.ooooooooooooo.ooo.oo.ooo.oo.ooo.o
Second Line of a Character Row

2nd 3rd 4th 5th 6th 7th
Cheracter Charactar Charactar Character Character Character Character ------------------------------00 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

o.oooo.oo •• ooo.oO.oooooooooooOO.oOO.OO.ODO.OO.qOO.o
0.0000.00.0000.00.0000000000000.000.00.000.00.000.0

Third Lina of a Character Row

1 st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Charactar Character Character ------------------..--..;...----00 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

O.OOOo.no •• OOO.OO.OOOOOOOOOOOOO.OOO.OO.OOO.OO.OOO.O
a.OOOO~O~.OO.OO.OOOOOOOOOOOOO.OOO.OO.OOO.OO.OOO.O
O.OOOO.Oo.onoo~o •••• OOOOOOOOOO •••• OOO.OOO.OO.O.O.O
0.0000.00.00.0.00.0000000000000.0.0000.000.00.0.0.0
o.ooou.Oo.ooo •• oo.oooooooooooop.oo.ooo.ooo.oo.o.o.o
OO ••• ~OO.OPOO.Oo ••••• ooooooooO.OOO.OOo ••• oooo.o.oo

Sevanth Lina of • Character Row

FIgure 3-2. 8275 Row Display

AFN.(J1304A

APPLICATIONS

LCQ-3
HOLD D~O

80SSA TRANSFER CHARACTER
MICRO- DECODE CCQ-a ~

GENERATOR HIGH
PROCESSOR HACK LOGIC ~ 8275 ROM SPEED

DOT
CRT V TIMING . . CONTROLLER LOGIC

CCLK AND
INTERFACE

VIDEO CONTROLS

~~
\

;7 7
SYSTEM BUS

"" i"> '" ::.. "1 ". .., ,.

7 7 -<! 7

825~-5 8261 PROGRAMI 8255A·5
COUNTERI USART DISPLAY KEYBOARD

TIMER MEMORY CONTROLLER

LRJ
~

COMMUNICATIONS KEYBOARD
CHANNEL

Figure 3-3. CRT System Block Diagram

to the CRT screen, the 8275 features cursor position
control. The cursor position may be programmed,
via X and Y cursor position registers, to any
character position on the display. The user may
select from four cursor formats. Blinking or non­
blinking underline and reverse video block cursors
are available.

3.2 CRT TIMING

The 8275 provides two timing outputs, HRTC and
VRTC, which are utilized in synchronizing CRT
horizontal and vertical oscillato'rs to the 8275
refresh cycle. In addition, whenever HRTC or VRTC
is active, a third timing output, VSP (Video Sup­
press) is true, providing a blinking signal to the dot
timing logic. The dot timing logic will normally
inhibit the video output to the CRT during the time
when video suppress signal is true. An additional
timing output, LTEN (Light Enable) is used to
provide the ability to force the video output high
regardless of the state of VSP. This feature is used

'by the 8275 to place a cursor on the screen and to
control attribute functions. Attributes will be
considered in the next section.

COMMAND

RESET

START
DISPLAY

STOP
DISPLAY'

READ
LIGHT
PEN

LOAD
CURSOR

ENABLE
INTERRUPT

DISABLE:
INTERRUPT

PRESET
COUNTERS

NO. OF
PARAMETER

BYTES

4

0

0

2

2

0

0

0

VIDEO SIGNAL

HORIZONTAL SYNC

TO CRT
VERTICAL SYNC

INTENSITY

I STATUS I

NOTES

Display format pa-'
rameters required

DMA operation pa-
rameters included
in command

Cursor X,Y posi-
tion parameters re-
quired

Clears all internal
counters

The HLGT (Highlight) output allows an attribute
function to increase the CRT beam intensity to a
level greater than normal. The fifth timing signal,
RVV (Reverse Video) will, when enabled, cause the
system video output to be inverted.

Figure 3-4. 8275's Instruction Set

AFN-ol304A

• APPLICATIONS

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE OUTPUTS
CODE "CCCC" LA, LAo VSP

~bove Underline 0 0 1

0000 Underline 1 0 0
selow Underline 0 1 0
Above lJnderllhe 0 0 1

0001 Underline 1 1 0
~elow Underline 0 1 0
Above Underline 0 1 0

0010 Underline I 0 0
Below Underline 0 0 1
Above Underline 0 I 0

0011 Underline I 1 0
Below Underline 0 0 1
Above Underline 0 0 1

0100 Underline 0 0 0
Below Underline 0 1 0
Above Underline 0 1 0

0101 Underline 1 1 0
Below Underline 0 1 0
Above Underline 0 1 0

0110 Underline 1 0 0
Below Underline 0 1 0
Above Underline ,0 1 0

0111 Underline 0 0 0
Below Underline 0 0 1
Above Underline 0 0 1

1000 Underline 0 0 0
Below Underline 0 0 1
Above Underline 0 1 0

1001 . Underline 0 1 0
Below Underline 0 1 0
Above Underline 0 1 0

1010 Underline 0 '0 0
Below Underline 0 1 0
Above Underline 0 0 0

1011 Underline 0 0 0
Below Underl ine 0 0 0
A/lOve Underl ine 0 0 1

1100 Underline 0 0 1
Below Underline 0 0 1
Above Underl ine

1101 Underline Undefined.
Below Underline I
Allove Underline

und~fined 1110 Underline
Below Underline ·1
Above Underline . I

1111 Underline Undrned
Below Underline

'Character Attribute Code 1011 is not recommended for
normal operation. Since none of ~ attribute outputs are
active, ,\he character Generator" will not be disabled, and
~n indeterminate character will be genera~ed.

LTEN
SVMBOL DESCRIPTION

0
0 ,- Top Left Corner
0
0
0 -, Top Right Corner
0 .
0 L 0 Bottom Left Corner
0
0
~ 0 Bottom' Right Corner

0 I

0
1 ~

Top, Intersect
0
0

-1 0 Right Intersect
0
0

~ 0 Left Intersect
0

~ 1 --1- Bottom Intersect
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

--- Horizontal Line

I . Vertical Line

+ Crossed l,ines

Not Recommended'

Special Codes

Illegal

Illegal

Illegal

Character Attribute Codes 1101, 1110, and 1111 are illegal. '

Blinking is active when B = 1.

Highlight is,acti,ve when H = 1.

Figure 3-6. Character Attributes

APPLICATIONS

ABCDE FGHIJKLM
NOPORSTUV

1 2 3 4 5 67 8 ~

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

ABC D E F G H I J K L M
NOPORSTUV

1 234 5 6 789

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIB\JTE)

Figure 3-6. Flelet Attribute Examples

3.3 SPECIAL FUNCTIONS

VIS'UAL ATTRIBUTES-Visual attributes are
special codes which, when retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist, character attributes
and field attributes.

Character Attribute Codes: Character attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is
accomplished by selectively activating the Line
Attribute outputs (LAO-LA I), the Video Suppres­
sionoutput (VSP), and the Light Enable output
(L TEN). The dot timing logic uses these signals to
generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the

'Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highlight output (HGLT). Character attributes
were designed to produce the graphic symbols
shown in Figure 3.5.

Field Attribute Codes: The field attributes are
control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ­
ing, the character which precedes the next field
attribute code, or up to the end of the frame.

There are six field attributes:

I. Blink ;- Characters following the code are
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32.

2. Highlight - Characters following the code are
caused to be highlighted by activating the
Highlight output (HGLT).·

3. Reverse Video - Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV).

4. Underline - Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5. General Purpose - There ar,etwo additional
8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may be used to select colors or
perform other desired control functions.

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3.6. If the 8275 is programmed in the visible field
attribute mode, all "'field atkibutes will occupy a
position on the screen. They will appear as blanks
caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character. If the 8275 is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per display row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it and places the next character in the
proper FIFO. When a field atttibute is placed in the'
Duffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also activated.

AFN-<l1304A

APPLI'CATIONS

LIGHT PEN DETECTION - A light pen consists
fundamentally of a switch and'light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster
sweep coincides with the light sensor position on the
display, the light pen output is input and the row and
character position coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor.

SPECIAL COPES - Four special cOdes may be
used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in displllLY memory.

1. End Of Row Code - Activates VSP. VSP
remains active until the end of the line is
reached. While VSP is active, the screen is
blanked. .

2. En,d Of Row-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the row when it is written into the row buffer.
It affects the display in the same way as the End
of Row Code.

·3. End Of Screen Code - Activates,YSP. VSP
remains active until the end of the frame is
reached.

4. End Of Screen-Strp DMA Code - 'Causes the
DMA Control Logic to stop DMA for the rest
of the frame when it is written into the row
buffer. It affects the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL­
The 827S can be programmed to request single-byte
DMA transfers of DMA burst transfers of 2,4, or 8
characters per burst. The interv8.l between bursts
is also programmable. This allows the user to tailor
the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND

4.1 DESIGN PHILOSOPHY

Since the cost/of any CRT syst~m is. somewhat
proportipnal t~:parts count, arriving at a,.mi~imum
p~rt count splution without sacrificing performance
has been the motivating force thrpughout'this design
effort. To successfully design a CRT terminal and
keep the· parts count to a minimum, a fc;w things
became immediately apparent.

'1. An 8085 should be used.
2 .. Address and data buffering should be eliminated.
3. Multi-port memory should be eliminated.
4. DMA should be eliminated. '.

:p~cision I is:' obvious, the 808S's on-board clock
generator, .bus c\>ntroller and vectored interrupts
greatly redu~e the overall part count consider~bly.

Decision 2 is fairly obvious; if a circuit can be
designed so that loading on the data and address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption
of the design. Both decisions 3 and 4 require a basic
understanding of current CRT design concepts.

In any CR.T design, extreme time conflicts are created
because all essential elements require access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the same time. the CRT controller needs to
access the memory to keep the raster scan display
refreshed. To resolve this conflict two common
techniques are employed, page buffering and line
buffering.

In the page buffering approach the entii-e screen
memory is isolated from the rest of the system. This
isolation is usually accomplished with three-state
buffers or two line to one line multiplexers. Of
course, whenever a character needs to be manipu­
lated the "CPU must gain access to the buffered
memory and, again, possible contention between the
CPU and the CRT controller results. This contention
is usually -resolved in one of two ways, (I) the CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times.

Approach I is the easiest to implement from a hard­
ware point of view, but if the CPU always has
priority the display may temporarily blink or
"flicker" while the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is
not able to retrieve a character, so the display must
be blanked 'during this time. Aesethically, this
"flickering" is not desirable, so..approach 2 is often
used.
The second approach eliminates the display flicker­
ing encountered in the previously mentioned tech­
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select lines and this line is
used to control the CPU's ready line. So, if the CPU
wants to use·the buffered memory, its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU's' overall
through put. .

Both page buffered approaches require a significant
amoun,t of additional hardware and for the most
part are not well suited for a minimum parts count
type of terminal. This guides us to the line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces '8 few ·new .problems that must be
solved.

AfN.01304A

·APPLICATIONS

VIDEO OUT

MOEIlUl'l'l!RINQ
TECHNIQUE

1--_'11010 OUT

UN! IUfFlRlNO
TECHNIQUE

Figure 4·1. Line Buffering Technique

a.OCK CYClES SEO sa~ STAlElalT

18 1 MIl P;U .SIl'v'l: A RtO FlJtU$
10 2 MIl H is,crt'E H At:D L
18 3 I'USII 0 ,SIW(" fIf(l E
10 4 LX! H,~_ ,ZEI:(> H roll L
18 5 (lfI!> SP ,,'LiT sr. '): PQUHER IN H fIfl') L
4 6 - ,HJT SlAI.f. II' t) H!lI E

-16 7 LfLI) ruff(> .GET FOWTER
6 8 SPHL ,PUT C!.Yi£N) LIIc uno SP
7 9 nvl 11_ ,SET rlf;.;J~ F~ ~ll'l

4 III ~lH ,IU 5I-ECIIL TRilIl5F£R 8lT
480 11 p(Ip ,DD 40 I'CPS

4 12 RRt ,S£! lI' n
4 13 Sift ,GO BflU(10 IUJR IlOO£

18 14 LXI .. - ,WOHL
18 15 fIAI) SP ,fl~ SlflCI(
4 16 XOO ,1'\lT "A::!(IN H "lD L
6 17 SP"rlL .rESltJI..: Slf£j,
18 18 LXI .·IJIST ,M EOTlOM DIm.flY W H,P..!> L
4 1!1 lICIIG , SJ.:i1P R:G:ST(P~
4 29 lIlY ~,o ,f1JT HIGH !f:C<f' W R
4 21 OIP H ,SEE IF SRi. AS II

7116 22)Hz <PTK ,IF NOT L£AI~
4 2l II(J'I lIE ,PUT LIXlI)l;l)ERIIIR
4 24 CItP L ,SEE Ir 5111£ AS L

7110 25 JIIZ I(f'lK ,IF NOT LtfIIIE
1~ 26 LXI IL TPOIS ,LOHI) H·flIII) L WIlli TOP !f SCREDI H£/ru' I. 27 <PlY. SHLO CtJ<fID ,Fur 1!RCr. CUWlT I'IOORESS
7 2S IIVI 111811 ; Gt1 t:ASK El't'iE
4 2' 5/" ,scr IIIl£PI'I.i'T_

18 14l p(Ip 0 ,GOiOflr(.lE
18 11 p(Ip H ,G!:T H r.tl) L
18 12 p(Ip PSII ,GET n AI.1) FLfflS
4 33 EI • Elm.!: INTEF1trTS

18 l4 RrT ,GO SACK

TOTRL CUICY. C'1Clli • 656 (1m! CfISE>

WIlli R (; 144 ItIZ CRVSTRL TOTAL T11£ TO FILL

m. UfER ON ,8275 '* fSO •. 325 • 21125 ftlCRQSEW[)S

Figure 4-2. Routine To Load 8275's Row Buffe,.

In the line buffeved approach both the CPU and the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data, normal processing activity is halted and the
CRT controller accesses memory and displays the
data. Just how the CRT controller needs to acquire
the display data greatly affects the performance of
the overall system. Whether the CRT controller
needs to gain access to the main memory to acquire a
single character or a complete line. of data depends
on the presence or absence of a separate line or row
buffer.

If no row buffer is present the CRT controller must
go to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of .the tiine. So much processor
inactivity greatly affects the overall system perform­
ance. In fact terminals that use 'this approach are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

If a separate row buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only about 20% to
35% of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniques.

The 8275 CRT controller is ideal for implementing
the row buffer approach because the row buffer is
contained on the device, itself .. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row buffers al)ow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer approach enhances CPU performance even
further.

8-10

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer· has
only been alluded to. In reality, a DMA technique is
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac­
ing them with a special interrupt-driven transfer,

The only real concern with using the 8275 in an
interrupt-driven. transfer -mode is speed. Eighty
characters mUst .be loaded into the 8275 every 617
microseconds and the processor must also have time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed, This technique involves ~etting a special

AFJ+01304A

APPLICATIONS

transfer bit and executing a string of POP instruc­
~ions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085's SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit must do two things: (1) turn
processor reads into ~ plus WR. for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does not write into the 8275.
Conventional logic could have been used to imple­
ment this special function, but in this design a small
bipolar programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware ..

lid
r.

TRANSFER
BIT

D-

)

Ci!

Ao

A,

1.2

1.3

1.4

BIPOLAR
PROM

8271 lid

827Swr

8275Cs

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a
I5AO{ when no DMA controller exist in the
system. But the reader should be aware that all Intel
nXt:¥{ral devices that have DMA lines actually use

as a chip select for the data. So, when you
want to write a command or read status you assert
<::S and WR or RU, but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn't "know~ if a D MA control­
ler is in the circuit or not. In passing, it ,should be
mentioned that DACK and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This POP 'technique actually compares quite
,favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to execute,
for a net transfer rate of one byte every five clock
cycles. The DMA controller takes four clock cycles
to transfer one byte but, some time is, lost in
synchronization. So the difference between the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro­
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA.

8-11

5. CIRCUIT DESCRIPTION

5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commerciallow-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware. '

S.2 SYSTEM TARGET SPECIFICA nONS

The design specifications for the CRT terminal were
as follows:

Display Format
• 80 characters per display row
• 25 display rows
Character Format
• 5 X 7 dot matrix character contained within a

7 X 10 matrix
• First and seventh columns blanked
• Ninth line cursor position
• Blinking underline cursor

Special Characters Recognized

• Control characters
• Line feed
• Carriage Return
• Backspace
• Form feed
Escape Sequences Recognized

• ESC, A, Cursor up
• ESC, B, Cursor down
• ESC, C, Cursor right
• ESC, D, Cursor left
• ESC, E, Clear screen
• ESC, H, Home cursor
•. ESC, J, Erase to the end of th~ screen
• ESC, K, Erase the current line

Characters Displayed
• 96 ASCII alphanumeric characters
• Special control characters

~1304A

APPLICATIONS

CHARACTER
GENERATOR RO,!,

SYSTEM BUS

CRT TERMINAL
SERIAL INPUT LINE

Figure 5-1. CRT Terminal Block Diagram
/

Characters Transmitted
• 96 ASCII alphanumeric characters
• ASCII control characters

Program Memory

• 2K bytes of 2716 EPROM

Display / Buffer/ Stack Memory
• 2K bytes 2114 static memory (4 packages)

Data Rate
.; 9600 BAUD using 3MHz 8085

CRT Monitor
• Ball Bros TV-12, 12MHz B.W.

Keyboard
• Any standard un-encoded ASCII keyboard

Screen Refresh Rate

• 60 Hz

5.3 HARDWARE DISCRIPTION

.A block diagram of the CRT terminal is shown in
Figure 5.1. Th.e diagram shows only the essential
system features. A detailed schematic of the CRT is
contained in the Appendix. The terminal was
constructed on a simple 6" by 6" wire wrap board.
Because of the minimum bus loading no buffering of
any kind was needed (see Figure 5.2).

The "heart" of the CRT terminal is the 8085
microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, assembles the characters to' be trans-

&12

Worst case bus loading:

Data Bus: 8275
8255A-5
8253-5
8253-5
8251A

2x 2114
2716
8212

20pf
20pf
20pf
20pf
20pf
10pf
12pf
12pf

114pf max

Only As ; A15 are important since Ao - A7 are
latched by the 8212 .

Address Bus: 4x 2114 20pf
2716 6pf

26pf max

This loading assures that all components will be
compatible with a 3MHz 8085 and that no wait
states will be required

Figure 5-2. Bus Loading

mitted, decodes the incoming characters and deter­
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A standard list of LSI peripheral devices surround
the 8085. The 825lA is used as the serial communi­
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a' set of

AFN'()l304A.

APPLICATIONS

switches, and the 8253 is used as a baud rate
generator and as a "horizontal pulse extender" for
the 8275.

The 8275 is used as the CRT controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contajned in.one 2716 EPROM
and the data and screen memory use four 2114-type
RAMs.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all ofthe addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also tnrns READs into
i'5ACK's and WIt's for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20, not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four 2114's could have been r'

replaced by two 8185's and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally, since both the 8185 and the
2716 have address latches no 8212 would be needed,
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERATION

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
the 8251A to see if a character has been sent to the
terminal. When a character has been received, the
8085 decodes the character and takes appropriate
action. While the 8085 is executing the above "fore­
ground" programs, it is being interrupted once every
617 microseconds by the 8~75. This "background"
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was
used to rapidly move the contents of the display
RAM into the 8275's row buffers. The characters are
then synchronously transferred t6 the character code
outputs CCO-CC6, connected to the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LCO-LC2 from the 8275 are applied
tp the character generator address Ilnes.,AO-A2. The
8275 displays character rows one'line at a time. The
line count outputs are used to determine which line
of the character selected by A3-A8 will be displayed.
Following the transfer of the first line to the dot
timing logic, the line count is incremented and the .
second line of the character row is selected. This

8-13

process continues until the last line of the row is
transferred to the dot timing logic.

The dot timing logic latches the output of the
character generator RoM into a parallel in, serial
out synchronous shift register. This shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

CHARCl.OCK

r~ --~-- ----- -~

LCO-lC2 t:::t~=::j AO -A2
LtNE COUNt

I

8275 I
I

2708
CHARACTER
GENERATOR

ROM

CCo-CC51=~~=::j A3 -A8
I
I ___________ J

VIDeo

HORIZ DR

VERT DR

Figure 5-3 Character Generator/Dot Timing Logic
Block Diagram

Table 5-1

PARAMETER RANGE

VertiGal Blanking Time 900 J.Lsec nominal

(VRTC)

Vertical Drive Pulsewidth 300 J.Lsec ~ PW ~ 1.4 ms

Horizontal Blanking Time 11 J.Lsec nO\11inal
(HRTC)

Horizontal Drive Pulsewidth 25 J.Lsec ~ PW ~ 30 J.Lsec

Horizontal Repetition Rate 15,750 ±500 pps

5.5 SYSTEM TIMING

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV-12 monitor are shown in Table
5.1. The data from Table 5.1, the 8275 specifications,
and the system target specifications are all that is
needed to calculate the system's timing.

~7DOTS_l

LINE1_ •••••••••••••••••••••
eooooo •• ooooo •• ooooo.
.00000 •• 00000 •• 00000.

eooooo •• ooooo •• ooooo.
___ .00000 •• 00000 •• 00000 •

• 00000 •• 00000 •• 00000.
.00000 •• 00000 •• 00000.

UNDERLINE • 0 a 0 0 0 •• 0 0 0 0 0 •• 0 0 0 " 0 •
POSITION __ • 0 0 0 0 0 •• 0 0 0 0 0 •• 0 0 COO.

LINE 10 _" ••••••••••••••••••••• --.-.. --.-.. --.-..
CHARACTER 1 CHARACTER 2 CHARACTER 3

Figure 5-4. Row Format

AFN-01304A

APPLICATIONS

First, let's select and "match'~ a few numbers. From
our target specificatiOns, we see that each character
is displayed on a 7 X I 0 field, and is formed by a 5 X
7 dot matrix (Figure 5.4). The 8275 allows the
vertical retrace time to be only an integer multiple of

CHARACTER

COUNTER
STATE

DOT

1'!1i9:9n;:-:----- 617.0 ~-----I

~

CLOCK 44.9n.

the horizontal character line: This means that the
total number of horizontal lines in a frame equals 10
times the number of character lines plus the vertical
retrace time, which is programmed to be either 1, 2,
3, or 4 character lines. Twenty-five display lines

OA I I
74S163 1

CH::~~ OCl: I· I
CLOCK L-i-. I ----:1

1
11

OD

CHARACTER rl : 15:r.d1lfAX

r-----ill 1

....;----,-,--J-+--I ----+'

. II I
CLOCKeJ7~ 1TilL.-_____ .;..;" __ -'

;- Ii

827'
CHARACTER

OUTPUT
(CCO·CC6)

SHI"
REGISTER
OUTPUT

(74166) I
11.34 MHz '

7404 .001 7404 ~T~~
:>o-+-~_--i

3300 3300

LCO-LC2
CCO-CC6

DOT
CLOCK

I

FIRST CHARACTER

L--_~ I I L..-I ---;....:!I'

SECOND CHARACTER

FIRST CHARACTER VIDEO OUT

VSP
(8275)

LTEN
(6275)

HRTC
(6275)

VRTC
(8275)

.1

THIRD CHARACTER

SECOND CHARACTER VIOEO OUT

+V

VIDEO OUT ...---.....,

HORI­
ZONTAL
DRIVE

VERTICAL
DRIVE

CAT
MONITOR

Figure 5-5. Dot Timing Logic

&14 AFNoOt304A

APPLICATIONS

require 250 horizontal lines. So, if we wish to have
a horizontal frequency in the neighborhood of
15,750 Hz we must choose either one or two
character lines for vertical retrace. To allow for a
little more margin at the top and bottom of the
screen, two character lines were chosen for vertical
retrace. This choice yields a net 250 + 20 = 270
horizontal lines per frame. So, assuming a 60 Hz
frame:

60 Hz * 270 = 16,200 Hz (horizontal frequency)

This value falls within our target specification of
15,750 Hz with a 500 Hz variation and also assures
timing compatibility with the Ball monitor since, 20
horizontal sync times yield a vertical retract time of:

61.7 microseconds X 20 horizontal sync times =
1.2345 milliseconds

This number meets the nominal VRTC and vertical
drive pulse width time for the Ball monitor. A
horizontal frequency of 16,200 Hz implies a
1/ 16,200 = 61. 73 microsecond period.

It is now· known that the terminal is using 250
horizontal lines to display data and 20 horizontal
lines to allow for vertical retrace and that the
horizontal frequency is 16,200 Hz. The next thing
that needs to be determined is how much time must

be allowed for horizontal retrace. Unfortunately,
this number depends almost entirely on the monitor
used. Usually, this number lies somewhere between
15 and 30 percent of the total horizontal line time,
which in this case is 1/16,200 Hz or 61.73
microseconds. Since in most designs a fixed number
of characters can be displayed on a horizontal line, it
is often useful to express retrace as a given number
of character times. In this design, 80 characters can
be displayed on a horizontal line and it was
empirically found that allowing 20 horizontal
character times for retrace gave the best results. So,
in reality, there are 100 character times in every
given horizontal line, 80 are used to display
characters and 20 are used to allow for retrace. It
should be noted that if too many character times are
used for retrace, less time will be left to display the
characters and the display will not "fill out" the
scteen. Conversely, if not enough character times
are allowed for retrace, the display may "run off' the
screen.

One hundred character times per complete horizontal
line means that each character requires

61.73 microseconds /100 character times = 617.3
nanoseconds.

If we mUltiply the 20, horizontal retrace times by the

CHARACTER
CLOCK

1 1 " 1 ""," 1 "'," 1······1 ":';'

HRTC
(8275)

CHAR CODE
(8275)

LINE COUNT
(82751

~:
I

SHIFT--t-+-t-t--t-+-t-+-+---t-t-+-±-+-1-'--j-\
REGISTER
LOAOING

VIDEO
OUTPUT

Figure 5-6. CRT System TIming

8-15 AFN-{)I304A

APPLICATIONS

617.3 nanoseconds needed for each character, we frod

617.3 nanoseconds * 20 retrace times = 12.345
microseconds

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one.-shot mode and was used to extend the horizontal
drive pulsewidth. .

Now that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.
Since each character is formed by placing 7 dots
along the horizontal. .

DOT CLOCK PERIOD = 617.3 ns
(CijARACTER CLK PERIOD)/ 7 DOTS
DOT CLOCK PERIOD:;: 88.183 nanoseconds
DOT CLOCK FREQUENCY = I/PERIOD =
1l.34 MHz

Figures 5.5 and 5.6 illustrate the basic dot timing
and the CRT system timing, respectively.

6. SYSTEM SOFTWARE

6.1 SOFTWARE OVERVIEW

As mentioned earlier the software is structured on a
"foreground-background" basis. Two interrupt­
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDA T is used to move data from the. memory
into the 8275's row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USAR T or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USAR T and
action will be taken on any data read out of the
USART.· .

When data has been entered in the terminal the
software first determines if the character received
was an ~scape, line feed, form feed, carriage return,
back space, or simply a printaole character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn't no operation is
performed.

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure
6.2 is a flow chart of the basic software operations;
the program is listed in Appendix 6.8.

EXIT

EXIT

. Figure 6-1. Frame and Popdat Interrupt RoutInes

8-16 AFN-Ol304A

APPLICATIONS

LINE

Figure 6-2. Basic Terminal Software

6.2 SY;STEM MEMORY ORGANIZATION

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFH are
used as system stack and temporary system storage.
2K bytes of PROM located at O(JOOH through
07FFH contain the systems program.

6.3 MEMORY POINTERS AND SCROLLING

To calculate the location of a character on the
screen, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of tne display must be
known, since scrolling on the 8275 is accomplished
simply by changing the pointer that Ipads the 8275's
row buffers from memory. ~o, if it is desired to
scroll the display up or down all that must be
changeri js one 16-bit memory poil\ter. T:his pointer
is entered into the system by the variable TOP AD
(TOP Address) and always defines the top line ofthe
display. Figure 6.4 details screen operation dUring
scrolling.

1 st Column 2nd Column .••••••••• 80th Column

ROW 1 oBOOH 0801 H 084FH
ROW2 0850H 0851H 089FH
ROW 3 08AOH 08A 1 H 08EFH
ROW 4 08FOH 08F1H ... : 093FH
ROW 5 0940H 0941H 098FH '
ROW 6 0990H 0991H 090FH
ROW 7 09EOH 09E1 H OA2FH
ROW 8 OA30H OA31 H OA7FH
ROW 9 OA80H OA81H ., OACFH
ROW 10 OADOH OAD1H .' OB1FH
ROW11 OB20H OB21 H ;, OB6FH
ROW 12 OB70H OB71 H ., OBBFH
ROW 13 OBCOH OBC1 H OCOFH
ROW 14 OC10H OC11 H , OC5FH
ROW 15 OC60H OC61 H OCAFH
ROW 16 OCBOH OCB1 H OCFFH
ROW 17 ODOOH OD01 H OD4FH
ROW 18 OD50H OD51 H OD9FH
ROW 19 ODAOH ODA1H ., ODEFH
ROW 20 ODFOH ODF1 H OE3FH
ROW 21 OE40H OE41 H : OE8FH
ROW 22 OE90H OE91 H . , . ~ OEDFH
ROW 23 OEEOH OEE1 H OF2FH
ROW 24 OF30H OF31 H OF7FH '
ROW 25 OF80H OF81 H OFCFH

Figure 6-3. Screen Display After Initialization

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate al;
absolute memory addr.ess. The subroutine CALCU

, is used whenever a location in the screen memory
m\lst be altered.

8-17

6.4 SOFTWARE TIMING

One important question that must be asked about
the terminal software is, "How fast does it run". This
is important because if the terminal is running at
9600 baud, it must be able to handle each received
character in 1.04 milliseconds. Figure 6.5 is 'a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
"worst case" execution times. 'Fhis means that a:Il
routines assume they must do the maximum amount
of data manipulation. For instance, the PUT-routine
assumes that, the character is being placed in the last
column and that a line feed must follow the placing
of the character on the screen.,

How fast do the routin~s need to execute in ord'et: t,o"
assure operation at ,9600 baud,? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt requests
in every character time (1042 microseconds) at 9600

AF~'304A

APPLICATIONS

ROW 1 0800H 0801 H 084FH ROW2 0850H 08S1H 089FH
AOW2 0850H 0851 H .•........... 089FH ROW 3 08AOH 08A 1 H 08EFH
ROW 3 08AOH 08A1H 08EFH ROW 4 08FOH 08F1.H 093FH
ROW 4 08FOH 08F1H 093FH ROWS 0940H 0941H 098FH

,ROWS 0940H 0941H , 098FH ROW6 0990H 0991H 090FH
'ROWS 0990H 0991 H•...... 090FH ROW 7 09EOH 09E1 H '; OA2FH I
ROW 7 09EOH 09E1 H OA2FH ROW 8 OA30H OA31 H : OA7FH i
ROW 8 OA30H OA31H OA7FH ROW9 OA80H OA81 H OACFH:
ROW9 OA80H OA81 H OACFH ROW 10 OAoOH OA01 H OB1 FH
ROW 10 OAoOH OA01 H " OB1 FH ROW 11 OB20H OB21 H OB6FH
ROW 11 OB20H OB21 H OBSFH ROW 12 OB70H OB71 H ; OBBFH
ROW 12 OB70H OB71 H OBBFH ROW 13 OBCOH OBC1H OCOFH
ROW 13 OBCOH OBC1 H OCOFH ROW 14 OC10H OC11 H OCSFH
ROW 14 OC10H OC11 H OCSFH ROW 15 oe60H OC61H OCAFH
ROW 15 0C60H OCS1 H OCAFH ROW16 oeBOH OCB1 H OCFFH
ROW1S OCBOH OCB1 H OCFFH .ROW 1'7 OoOOH 0001H'. 004FH
ROW 17 OOOOH 0OO1H 004FH ROW 18 OoSOH 0051 H 009FH
ROW 18 OoSOH 0051 H 009FH ROW 19 OoAOH OoA 1 H OoEFH
ROW 19 OoAOH OoA 1 H OoEFH ROW 20 OoFOH 00F1 H OE3FH
ROW 20 OoFOH 00F1H : OE3FH ROW 21 eE~OH OE41 H : OE8FH
ROW 21 OE40H OE41H OE8FH ROW 22 OE90H OE91 H OEoFH
ROW 22 OE90H OE91 H OEoFH ROW 23 OEEOH OEE1 H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 OF30H OF31 H 0F7FH
ROW 24 OF30H OF31H. , 0F7FH ROW 25 OF80H OF81 H OFCFH
ROW 25 OF80H OF81 H•....... OFCFH ROW 1 0800H 0801 H 084FH

After Initialization After 1 Scroll

ROW 3 08AOH 08A 1 H 08EFH ROW4 08FOH OSF1 H 093FH
ROW 4 08FOH 08F1 H , 093FH ROWS 0940H 0941H 098FH
ROWS 0940H 0941H 098FH ROW6 0990H 0991H 090FH
ROWS 0990H 0991H 090FH
ROW 7 09EOH 09E1H ' ... OA2FH

ROW 7 09EOH 09E1 H OA,2FH
ROW 8 OA30H OA31 H OA7FH

ROW 8 OA30H OA31 H OA7FH ROW 9 OABOH OAB1 H OACFH
ROW 9 OA80H OA81 H OACFH ROW 10 OAoOH OA01 H OB1 FH
ROW 10 OAOOH OA01H OB1FH ROW 11 OB20H OB21 H OB6FH
ROW 11 OB20H OB21 H '. OBSFH
ROW 12 OB70H OB71 H , OBBFH

ROW12 OB70H OB7,1H ,., OBBFH
ROW 13 OBCOH QBC1 H OCOFH

ROW 13 OBCOH OBC1 H OCOFH ROW 14 OC10H OC11 H OCSFH
ROW 14 OC10H OC11 H OCSFH ROW 15 Oe60H. OC61 H OCAFH
ROW 15 OCSOH OCS1 H OCAFH ROW 16 OCBOH OCBi H OCFFH
ROW1€) OCBOH OCB1H OCFFH ROW 17 OOOOH 0001 H 004FH
ROW 17 OOOOH 0001 H 004FH ROW 1B 0050H, 0051 H ; ... 009FH
ROW 18 OoSOH 0051 H 009FH ROW 19 OOAOH .OOA1H OOEFH
ROW 19 OoAOH 00A1H 1 OoEFH ROW 20 OOFOH QOF1 H OE3FH
ROW 20 OoFOH 00F1 H ' OE3FH
ROW 21 OE40H OE41 H OE8FH

ROW 21 OE40H OE41 H OEBFH
ROW 22 OE90H OE91 H OEDFH

ROW 22 OE90H OE91H OEoFH ROW 23 OEEOH 'OEE1H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 OF30H. OF31 H 0F7FH
ROW 24 OF30H OF31H 0F7FH
ROW 25 OF80H OF81 H OFCFH

ROW 25 OFBOH 0,FB1 H ., ~ OFCFH
ROW 1 OBOOH OB01 H 084FH

ROW 1 0800H 0801 H 084FH
ROW 2 0850H 08S1H 089FH

ROW 2 OB50H OB51 H : OB9FH
RO'W3 OB~H OBA 1 H OBEFH

After 2 Scrolls After 3 Scrolls

Figure 6-4. Screen Memory PUring SC,rolllng

ApPLICATIONS

baud. Each POPDAT interrupt executes in 211
microseconds maximum. This means that each
routine must execute in:

1042 - 2 • 211 = 620 microseconds

By adding up the times for any loop, it is clear that
all routines meet this speed requirement, with the
exception of ESC J. This means that if the terminal
is operating at 9600 baud, at least one character time
must be inserted after an ESC J sequence.

(START)

I
INITIALIZE

211.25~

P011
53~1

I
CHREC
43~

r r r r r t r r 1
esc A esc B elc C esc D esc E esc H esc J esc K LF
78.7~ 324~ 10r~ 119~ 316~. 105~. 862~1 310",1 306~.

Figure 6-5. Timing Flowchart

r r
CR OUT

42",1 '456

AfN.01304A

001
4 ;--

00 6 -Z a -8212 111Ia

004
10

- IC5
IC2 ODs 15

Kcs

'8
ODe 17 2718

ClR 007
19

oOa ZI 7~ A A A Al Ie, A A DIDo 01 Oz 03 04 05 06 o-,CE A7'
MO 1 Z 3 4 5 6 F 18 23 22 1 :to 9 1 011 13 1415161 irr 11 O~ 22

8
STa

1
017

2D

o~ 18

015 18

014
9

o13t-L-

13 oSz

OIZP-- •

DlJ
30 ADo lZ ALE

6.1:iA~~ '1 ADI h3

TO ~ '2 ADf 14

~
A03

15

! eLK 37 eLK OUT A04
16

ADs 17
I

ICC~
7474

~
8085

AD6 16

A0719
36 RESET Aa 21

*5MF IC1 A9 22

+5 AID
23

LIN~ All 24
LOCAL 5

SIO AI2 25

-= A13 25

~~:~~--.! RESET OUT A14
27

ORO 8275.-.! RST65 A15 28

lR08275.....J! R8T 55 RO
32

80S1

~~
,

~.
7404

IC4 7400
7400

7400
lC4

-~
ADDRESS
DECODE

A4 Ie CS Al

PROM '2

A3
Ce 2716 47.

628123 DO . e§ ~114 HIGH .7 •
• 01

47' IC3 CS 2114 LOW 02

lis 8275 WR

• 04 8275 iiACK
05 l;;-06 , 8275 Cii
07 T 8275 iiii

.~
47.

3h8 PROM ,
47.

+5
J

+5
4.7K 471C '

Appendix 7.1
CRT TERMINAL -SCHEMATJCS

~1304A

IC6 IC7

CS
2114

-C CS
2114

A7 AS A5 A4 Aa A2 Al Au A8 Ag IOIlOziOalO4WE A,I\; As ~ A:t A2 AIAg
171 2 3 'I' , 5 16 1

I
1

, I

--1.!

47" ----1l!

~ 47"

H +5 22

23

~

514 13 121 0 171 2 3
4 1'16 l'

11
1

~

,

ICl
7404

6 , , , 4 3 2 1

00 0, ~1l:t04050 I) III 21

AO [91 CS

A, lSI 8253

IC20
GATE 0 fU.------PG 2 IC 14

GATE 2 OUT 0 r---PG 2 IC 11

iiii

Viii

CLKO _PG2ICl0

OUT 2 17

elK 2

+'8
TO IC 10

8085 elK ~ 2

APPLICATIONS

IC8 IC9

4J CS 2114 Lc CS 2114

'010,'02'0 IO,WE A, I\; AS A, A3 A AI '0 I\; Ag 101102'Da I °4 WE A,I\; AS A, A3 A2AI AO AS A910110210a'O,WE
1815 14 1312 II 0 111 2 3 4 , 16 5 "

1514 13 12 1 0 1712 a , I' 1'1'
1 I 1

1

'-----

.-

,

(4
7404

2 7 28 1 2 5 6 1 8

~J DO 0,02 DaD4 05 06 07

..--l1 c/o CS

~RO 8251 A
10 WR IC19

TXD ~ SERIAL OUT

TO RESET OUT~ RESET RXD .!.-- SERIAL IN
8085

9

U

8-21

ill
ill

t
TO CLK OUT

ON 8085

1615 14 13 12, 0

--

Ao SHEET 1

A1 SHEET 1

DO SHEET 1

01 SHEET 1

02 SHEET 1

0 3 SHEET 1

4 SHEET 1 o
o
o
o
R
'if"

5 SHEET 1

6 SHEET 1

7 SHEET 1

o SHEET 1

R SHEET 1

VCC

~O

:::~
~~
~C

~()

~(,
-:.::- BAUD RATE SENSE

SWITCHES AND
LINE-LOCAL

SWITCH

APPLICATIONS

27 28 29 30 31 32 33 34

07 06 05 04 03 02 °1 °0
Viii 36 .

iiii 5

CS 6

14 PCo AO
9

15 PCI Al
8

16 PC2 IC17 35

17 PC3 8255A-5 PBo IB

13 PC4 PBI 19

12 PC5 P82 20

11 PC6 PB3 21

10 PC7 P84
22

P85
23

vcc--1! PB6
24

P87
25

~ PAO PAl PA2 PA3 PA4 PA5 PA6 PA7

4~ 3. 2. I. 40+ 39. 3+ 37.

, Slo Sll Sl2 Sl3 Sl4 Sl5 Sl6 Sl7

KEYBOARD
RETURN LINES

Appendix 7.1
CRT TERMINAL SCHEMATICS

"

T0051C3

KEYBOARD
SCAN LINES

TO RESET OUT 80B5

RlO

Rli

Rl2

Rl3

Rl4

Rl5

Rl6

Rl7

10K"

Vcc

AFN-{)l304A

APPLICATIONS

11.34 MHz
XTAl 10pF

DI I +5

3300 330n

(4)

7404 7404 -=-
.9

DOTOSC

7410

DOT CLOCK

IC 10 7474

10
II ClK PRESET

_IZ

19 18 17 16 15 14 13 IZ IC15 7 IC 16

ZI 07 06 Os 04 03 oz 01 DO Z9 2Z Ag 00 9 14 H
ClK

AO ' CC6

CCs Z8 Z3Aa 01 10 IZ G
IS

lOAD

TO IC3 07 Ro CC4 Z7 I A7 02 II II

CC3 26 Z A6 03 13 10

TO IC3 03 WR CCz ZS 3 AS 2716 04 14 74166

CCI Z4 4 A4 Os IS TOCClK
8275

TO IC3 06 ZZ CS CCo Z3 S A3 06 16 3 B
8275
IC 13 lZ Z 6 AZ 07 17 Z A TO ClK 0

8253 PG l'
TO IC3 04 6 oACK LI 3 7 AI

S ORO
lO 4 8 AO

TO ICI RST 6.S OH-
13

31 IRO
HRTC 7 TO GATE 0

TO ICI RST 5.S
VRTC 8

8253 PG 1 +5

TO IlIO PIN S 30 CClK .
lTEN 37 1K

VSP 35
VERTICAL DRIVE

IC13 +5

1K

VIDEO OUT

+5

7410

74175 7404
1K

OUTO IC14 HORIZONTAL
8253PG 1 CRT TERMINAL (5) (6) DRIVE

IC 11

APPLICATIONS

Appendix 7.2
KEYBOARD INTERFACE

The keyboard used in this design was a simple
unencoded ASCII keyboard. In order to keep the
cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel I/O device. '

When the system is initialized the contents of the
eight keyboard. RAM locations are set to zero., Once
every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non­
~ero value of one of the keyboard RAM locations is
found to be the same as the corresponding current
switch matrix, a valid key push is registered and

SPACE BAR

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
millisecond~ is, provided.

Figure 7.2A shows the actual physical layout ofthe
keyboard and Figure 7.2B shows how the individual
keys were encoded. On Figure 7.2B the sca,n lines are
the numbers on the bottom of each key position and
the return lines' are the numbers at the top of each
key position. The shift, control, and caps lock key
were brought in through separate lines of port C of
the 8255. Figure 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together if two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in Figure 7.4. '

Figure 7-2A.' Keyboard Layout

" '

TOP, NUMBER = RETURN LINE

BOTTOM"NUMBER = SCAN LINE.

Figure 7-2B. Keyboard Encoding

8-24. ~1304A

BIT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

NOTE

APPLICATIONS

Appendix 7.3
ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL
CHARACTERS

000 001

@

NUL OLE

A ~DCI
SOH

B
STX OC2

C
ETX OC3

0
EOT OC4

E
ENO NAK

F
ACK SYN

,d: ::
,ETB

:/: i i':,:,:~~: ,:
. : "

CAN

I
HT EM

:;;:;;;:\~¥.:tt\ SUB

p

Q

R

S

T

u

v

W

x

Y

z

K "ii:~~{,,:,:J VT

L /
FF ~S

:::::,: :
': : GS

N A
SO RS

0
Sl us -

010

SP

!

"

$

%

&

(

)

*

+

/

DI$PLA Y ABLE
CHARACTER

01 100 101 '11 0

<I> @ P

I A 0 A

2 B R B

3 C S C

4 0 T D

5 E U E

6 F V F

7 G W G

8 H X H

9 I Y I

J Z J

K [K

< L \ L

- M 1 M

> N i\ N

? 0 - 0

111 010 011

P

0

R

S

T

U

V

W

X

Y

Z

ESCAPE'
SEQUENCE

100
101

i A

~ B - C - 0

CLR E

HOME H

EOS I

EL J

Shaded blocks ~ functions term mal will react to Others can be generated but are Ignored up on rec€.ltpt

8-25

110 111

AFN-lJl304A

APPLICAnONS'

SCAN LINES

0 1 2 3 4 5 6 7
+5

10K

0

10K

10K

2
rB 10K 'z
:::i'

3 'Z a:
::;) 10K
Iii
a: 4

10K

~
10K

6
10K

7

Figure 7-3. Keyboard Matrix

Appendix 7.4
PROM DECODING

As stated earlier, all of the logic necessary to convert
the 8275,into a non-DMA type of device was
performed by a single small bipolar prom. Besides
turning certain processor READS into DACKS and
WRITES for the 8275, this 32 by,8 prom decoded
addresses for the system ram, rom, as well as for the
8255 parallel 110 port.

Any bipolar prom that has a by eight configuration
could function in this application. This particular
device was chosen simply because it is the only "by
eight" prom available in a 16 pin package. The
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in FigUre 7.6. Note
lhat when a fetch cycle (M 1) is not being performed,
the state of the SOD line is the only thitig that
determines if memory reads will be written into the
8275's row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

Also note' that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

SCAN LINES

10k
--------~---L------r_~------~~w

RETURN LINES

10k
--------~---L------r_~------~~5V

Figure 7-4. Isolating Scan Lines With Diodes

APPLICATIONS

(Ad' Wr) . Ala Appendix 7.5
CHARACTER GENERATOR

ENABLE
As previously mentioned, the character generator

DO CE271.
used in this terminal is a 2716 or 2758 EPROM. A
lK by 8 device is sufficient since a 128 character 5 by

SOD At D, CE 2114 7 dot matrix only requires 8K of memory. Any
(8015) OIOOH.()BFFH

"standard" or custom character generator could
A'0 At ~ Ci 2114 have been used.
(8015) OCOOH'()FFFH

The three low-order line count outputs (LCO-LC2)
A11 ~ '0, Wi from the 8275 are connected to the three low-order
(8085) 1271 address lines of the character generator and the

A'2 ~ D4 DACK
seven character generator outputs (CCO-CC6) are

(8015) 8275 connected to A3-A9 of the character generator. The
output from the character generator is loaded into a

M, ~ DS Ci shift register and the serial output from the shift
(8015) 8255 register is the video output of the terminal.

M, =SO'S, DB Ci Now, let's assume that the letter "E" is to be
8~75 displayed. The ASCU code for "E" is 45H. So, 45H

Vec Vee is presented to address lines A2-A9 ofthe character Dr iiii
GND GND 8275 generator. The scan ·lines will now count each line

from zero to seven to "form" the character as shown

Figure 7-5. Bipolar Prom (825123) Connection
in Fig. 7.7. This same procedure is used to form all
128 possible characters.

It should be obvious that "custom" character fonts

'- I~ I~ I~ l~ a:
could be made just by changing the bit patterns in

;: :I: the character generator PROM. For reference,
'" 0 "0 '" '" ~ ~ ~ ~ :! '" Appendix 7.6 contains a' flEX dump of the i 0

... ... ;:: :c :c :c '" '" C\i (\j IJ) ., ., ., ., ., ",.

character generator used in this terminal.
A4 A3 A2 A1 AO 07 06 05 04 03 02 01 00

0 O· 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1 0 45H = 01000101
0 0 1 0 0 1 1 1 1 1 1 0 1

Address to Prom = 01000101 SL2 SL 1 SLO 0 0 1 0 1 1 1 1 1 1 1 0 1
0 0 1 1 0 1 1 1 1 1 0 1 1 = 228H - 22FH
0 0 1 1 1 1 1 1 1 1 0 1 1
0 1 0 0 0 1 0 1 1 0 1 1 1 Depending on state of Scan
0 1 0 0 1 1 0 1 1 0 1 1 1 lines.
0 1 0 1 0 0 0 1 1 1 1 1 1
0 1 0 1 1 0 0 1 1 1 1 1 1
0 1 1 0 0 1 1 0 1 1 1 1 1 Character generator output
0 1 1 0 1 1 1 0 1 1 1 1 1
0 1 1 1 0 1 1 0 1 1 1 1 1

Rom Address Rom Hex Output Bit Output' 0 1 1 1 1 1 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1 1 '1 1 1 0 228H 3E 01234567

1 0 0 0 1 1 l' 1 0 0 1 1 0 229H 02
1 0 0 1 0 1 1 1 1 1 1 1 0 22AH 02 1 0 0 1 1 1 1 1 0 0 1 1 0
1 0 1 0 0 1 1 1 1 1 1 0 1 22BH OE
1 0 1 0 1 1 1 1 0 0 1 0 1 22CH 02
1 0 1 1 0 1 1 1 1 1 0 1 1 22DH 02 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 0 0 0 1 0 1 1 0 1 1 1 22EH 3E
1 1 0 0 1 1 0 1 1 0 1 1 1 22Ft-! 00
1 1 0 1 0 0 0 1 1 1 1 1 1
1 1 0 1 1 0 0 1 1 1 1 1 1

Bits 0, 6 and 7 are not used. 1 1 1 0 0 1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1 * note bit output is backward from conventipn. 1 1 1 1 1 1 1 0 1 1 1 1 1

Figure 7·6. Truth Table Bipolar Prom Figure 7-7. Character Generation

8-27 AfN.01304A

APPLICAtiONS

Appendix 7.6
'HEX DUMP OF CHARACT.ER GENERATOR

:1000000001000000000000000000000000000000E~
:r000103~00000000000000000000000000000000E0
: 1000200000000000000000000000000000000000D0
: 1000303000000000000000000000000000000000C0
:100040000000000000000000000000000000000080
: 1000500000000003000000000000000000003000A0
:100060000300000000000000000000000000000090
:100070000000000000000000000000000000000080
:100080030030000000000000000000000000000070
: 10009000000000000000082A1C081C2A080000008C
: 1003A0000000000000000000000000000000000050
:100080030000300000000000000000003000300040
: 1000C0000000330000000000030000000000000030
: 1000D0000000000000000000000000000000000020
: 1000E0000000000000000000000000000000000010
:1000~0000000000000000000000000000000000000
: 1001000300000000000000000808080808000800BF
: 10011000141414000000000014143E143E141400C3
:10011000083C0A1C281E08000~2610080432300~r,D
i10013000040A0A042A122C0~080808000030~00023
:100140000804020202040800081020202010080~01
: 100150000B2A1C081C2A08003038083E080800009D
:1001n00300000000000808040000003C000000003~
:100170000000000000001800002010080402000029

;i~gi~~~gig~~~~rc~~~~1~~~~~~g~~r~~&~~ig~g§~
: 100lA000101814123E10100038021E2020221C00C7
:1001B0003804021E22221C003E2010~80404040001
: 1001C0001C22221C22221C001C22223C20100EIIJ079
: 1001D00000000800030830000000080300080904F3
:1001E00~1008040204081~000003E033E00030059
: 1001f000040810211J100804001C222010080S'300821
: 100200001C222A3A1A023C00081422223E22220012
: 100210001E24241C24241EIIJ01C22020202221C0074
: 10-322000182424242 42t11E033 E02020E:02023E1IJ04C
:100230003E02020E:1IJ20202003C02023A22223C00~E
: 100240002222223E222222001C08080808081C0044
:103250a0702020202~21C0022120A0h0A122200EE
:1002~000020202~202023EIIJ0223h2A2A2222220032
: 10027000222~2A32222222001C22222222221C0-392
: 100280031E22221E020202001C2222222A122C00FE
:100290001E22221E0A1222003C02021C211J201E00E~
: 1002A0003E080808080808002222222222221C00F8
: 1002B0002222222222140900222222222A3S2200fiE
:1002C0~022221408142222032222221408080900E4
: 1002DIIJ003E20100804023E001C04040404041C011J18
: 1002E00000020408102000003820202020203800C0
:1002~000081C2A0808080800000000000000007E12
:1~030000099011000000000000003C203C223C004E
: 1003100002021A2fi22221E0000003804840438003B
:1003200020202C3222223C00000038248C84B8005B
: 100330003824040E040404000000BC22223C203CAB
: 1003400002021A262222220008000808080890004B
:100350002000202020A42418020222120A1~2200C3
: 10036000880808080828900000003G2A2A2222007F
: 1003700000001A2n2222220000001824242418003B
: 1003800000001E 22221 E0202000-31C22223C20200D
: 1003900000001A260202020000003R0418201C0087

. : 1003A00008081C0808089000fM00222222324C0095
: 1003B0000000222222140800000022222A3E1400fB
: 1003C000020022140814220000032222223C2038dF
: 1003D00000003E1008043E0018888903888919002F
: 1003E00008080 80808080 8080C90912190910D0051
:1003F00000008C2B80010000000000000000000095

8-28
\

AFN-ol304A

APPLICATIONS

Appendix 7;7
COMPOSITE VIDEO

In this design, it' was assumed that the monitor
required a separate horizontal drive, vertical drive,
and video input. However, many monitors require a
composite video signal. The schematic shown in
Figure 7.8 illustrates how to generate a composite
video signal from the output of the 8275.

HRTC

UK

7

The dual one-shots are used to provide a small delay
and the proper horizqntal and vertical pulse to the
composite video momtor. The delay introduced in
the vertical and horizontal timing is used to "center"
the display. VRI and VR2 control the amount of
delay. IC3 is used to mix the vertical and horizontal
retrace and Q I along with the R I, R2, and R3 mix
the video and the retrace signal and provide the

VIDEO }------IM--'

1500

proper DC levels. '
Figure 7-8. Composite Video

Appendix 7.8
SOFTWARE LISTINGS

ISIS-II 811180/811185 MACRO ASSfMBlER, X111J8

LOC CBJ

1811111
18111
18112
18113
Atll1
AllIIII
6111111
611111
61111112
611113
1111111
1111111
14111
11811111
!W80

1m
00511J
IIFE0

110011 F3
1111111 3lEIIIIF
1111114 21111108
110111 22E3111F
III11I11A 22E80F
1111110 38110
0011F 32E1!W
11012 32E2IIF
11111115 32EB!W
1111118 32E7111F
1111118 32EA8F

SEQ SOURCE S'l'ATIi'J4ENl'

~3 $/IIIOIl85 ~tt215 SOF'lWARE ALL I/O IS I41MRY MAPPED
4 ; SYSTEM R()oI 11I01111H TO 07FFH

i~~~~ r.:=u ~ !~~U, , 7~ ,8275 READ~"11H TO 11FFH '
8 ;8255 READ IT! 1811111H TO 1FFF

,8253 ENAB 0 BY Al4
9 1251 ENABLED BY A15 111 PORTA 1811I11H ·8255 PORT A ~ESS

11 PORTS 1801H ;8255 PORT B ADDRESS
12 POR~ . 1811J2H ;8255 PORT C ADDRESS
13 CNWD55 1811J3H ;8255 CONl'ROL PORT ADmESS
14 USTF 1lAlJ11I1H ·8251 FlAG)
15 ISm "'"I11"H ;8251 Do\TA
16 CNTII 6r/JI1II1IH ·8253 COlNl'ER II
11 CNT1 601111H ;8253 COUN'l'ER 1
18 Q/T2 6r/J11I2H ;8253 COUN'l'ER 2
19 CNTM 60113H ,8253 MODE wam
211 CRTS 11111111H ;8275 CONrROL ADDRESS
21 CRTM 11111110H ,8275 MODE ADDRESS
22 INT75 14111H ;8215 INTERRUPT CLEAR
23 TPDIS 0880H ;TOP OF DIS~Y RAM

~~ ~S' =~= ;~B~I!!~\rs~LAY
26 CIRBOl' 18H ,B0M'Q4 Y ClRseR
27 LNGTH 11I0511JH • LENGTH Of! eN: UNE
28 STPTR IIFEIIH ;LOCATION OF STACK pOINTER

~~ : START PROOIWI '
n ;ALL ~IA8LES ARE INITIAUZED BI!!FCRE ANYTHING ELSE

33 bI ;DISABlE INTERRUPTS
34 LXI SP&'TPTR ;lA'D STACK pOINTER
35 LXI !!..~IS ;LOAD H&L wtTH TOP OF DISPLAY
36 SHLD ·N......, ;SET TOP = TOP OF DISPLAY
37 SHLD ClJW) ;STeaI!! THE CURRENT ADDRESS
3398 IMSTA t.,.@ l1IsyH ;ZEROA'

CUI(;ZERO CURseR Y pOINTER
4111 STA CURSX- ,ZERO CURseR X pOI!Il'ER
41 STA l<BCIR ;ZERO KBD CHAAAC'l'BR
42' STA -USCHR ;ZERO USART CHAR BUFFER
43 STAKEYI:WN ;ZERO KEY ~

VRTC

COMPOSITE
VIDEO
OUT

AFN-01304A

/

APPUCATIO'NS

:=~f ~L~ 13 STA ~K ;ZERO ~K
STA ;ZERO APE '

0024 C39800 19 JMP LPl<BD ,JIMP AND SET EVERltTHING UP

48 :THIS JUMP VBC'l'OO IS UlCATED AT THERS't :5.5 LOCATION'
49 ;OP ,'ftIE 8085. IT IS USED TO READ 'ftIE 8275 STATUS AND
SfiJ ; READ THE KEltBQ\RD. THIS ROIIrINE IS EXECU'1'ED ONCE EVERY
51 ; 16.6~7 MILLISEX:CHS. " " ,
52 ;

002C 53 QlG 002CH
002C C36701 ~4 JMP ' FRAME

5~ ;.I·HIS ROlrrINE IS UlCATED AT THE RST 6.5 UlCAW oF, 'ftIE '
57 ; 8fiJ85 AND IS USED TO LClIW 'ftIE Il\TA TO BE DIS ml INTO
58 ;THE 8275. THIS ROIIrINE IS EXECI11'ED ONCEEVF.RY 617 MICRCS!X:CHS.

0n4
59 bRc 60 34H

;~VE A AND FlAGS' 0034 P5 61 P<PMT: PUSH PSW
0035 E5 62 PUSH H -~VE HAND L
fJn6 D5 63 PUSH D ,SAVE D AND E =SR ~§0000 64 LXI ~f>fJ000H ;ZERO H AND L

65 Il\D ; PUT S'n\CK POIN'l'ER IN H AND L
0nS EB 66 XC83 ;PUT S'D\CK IN D AND E
00~ 2AEB0P ~~ LHLD CURAD ;GET POINTER
00 1"9 SPHL ;PUT CURREN'l' LINE INTO SP
00411l 3EX:0 69 t4VI A,1iJC0H ;SET MASK FOIt SIM
0042 30 70 SIM

71 REP!' CLNfIfl2)

~~ pop
ENIl'4

0043 E1 74+ pop H
0043 EI ~~t POP H

'011l4 E POP H
0046 E1 77+ POP H
011147 E1 78+ POP H
""48 E1 79+ POP H
0049 E1 811l+ POP H
0"4A El 81+ POP \ H
004s El 82+ POP H
S04C El 83+ POP H

1Il4D E1 84+ POP H
011l4E E1 85+ POP H
00411' El 86+ Pop H
00SfiJ E1 87+ POP H
11051 E1 88+ Pop H
011152 E1 89+ Pop H
00~ E1 90+ Pop H
011l E1 91+ Pop H
0055 E1 92+ POP H
0056 E1 93+ Pop H
""~ E1 94+ POP H
00 E1 95+ Pop H
0059 E1 96+ POP H
00SA El 97+ POP H
0058 El 98+ Pop H
09SC El 99+ POP. H
011lSD E1 190+ POP H
911lSE E1 101+ POP H
"rJSF El 1112+ POP H
91160 E1 193+ POP H
"961 E1 1"4+ POP H
"962 E1 1"5+ POP H
9963 E1 1"6+ POP 'H
""64 E1 1"7+ POP H
""65 E1 1"8+ POP 'H
""66 E1 1"9+ 'Pop H'
"1Il67 El 119+ 1IOP 'H
""68 E1 111+ POP H
""69 E1 112+ PoP H
""6A El 113+ pop H ""68 IiJF 114 RRC ;SET UP A
0"Ge 3'" 115 ,SII'I ;GO, SACK TO ~ MODi:
""6D 210""" 116 LXI ~f>"1'I99H ;ZERO HL
11'17" 39 117 MoD • ADD S'D\CK,
0"71 EB 118 ~ hVrS'D\CK IN H AND L
0"72 11'9 1 9 SPtiL ;RIlSTtRE S'D\CK
1'1"73 21001'111' 12" ~lt;, H,LAST ;PUT BOM'QIt DISPIAY IN H AND L
1'1"76 ES 121 -SWAP RroISTERS
""77 7A 122 MfN, 'A 0. ;PUT HIGH ORDER IN A
"1'178 SC 123 CMP H' , ;SEE IF ~'AS H

=:~ 9a2849"
124' JNZ KPTK -IF ~LEAVE
125 ' MCN A,E ~ PUT OODER IN A "S7Ii SD 126 CMP L ;SEE IF ~E AS L

o 7E C2840" 127 JNZ' KP1'K ;111' NOT LEAVE
1'I11l81 211'1""8 128 'LXI' '~f.R~IS ;LOAD H AND L WITH 'l'OP OF SCREEN "'EMCRY

; 0"84 22E81'1F 129 KPTK: SlIID ;M ~ C,tRREN'r ADmE!)S " ..
0"87 3E18 131'1 t4VI A,ll:!H
0"89 31'1 131 SIM ;OUTPUT MASK

,~ AfN.Ol304A

00aA m
008B E1
00ac F1
0080 FB
008E C9

008F 3E18
0091 3IIJ
011J92 C1

=I~ ~l
011J95 F1
0096 FB
0097 C9

0098 32EFIIJF
011J9B32F011JF
011J9E 32F10F

III ~~U
0M7 3620
0M9 23
011JAA 7C
0MB B8
0MC C2A700
0MF 70
00S089
00B1 C2A7"0

0084 3E88
00S6 320318

"1IJB9 211UA0
008C 368"
00SE 36""
011lC0 3648
011lC2 80
011lC3 36EA
011lC5 361f5

011lC7 3E32
"1IlC9 320360
011lCC 3E32
811JCE 320068
0aDl 3E00
"003 328060
00D6 CDOC00
0009 C3F9"0

80DC 3A0218
811JDF E60F
08E1 32EC0F
80E4 07
00E5 21C505
00E8 1600
80EA SF
0088 19
00EC 110360
00EF 3EB6
08F1 12
00F2 18

Sl~ i~
::~~ ~~
00F7 12
00F8 C9

.'

APPLICATIONS

H~ rg; R !ggR=~
134 pop psw, iGET A AND FlAGS
135 EI ,TURN ON INTERRUPl'S
136 RET ,GO BJlCK
137 •
138 ;THIS ,IS 'ftIE EXIT ROUTINE FCR THE FRAME INTERRUPl'

U3 8YPASS: im A,18H ·SET MASK
141 SIM ;~PUT THE MASK
U~ ~ 8 ;gEDB~~
144 pop' g ,GET H AND L
145 pop psw ,GET A AND FLAG3
146 EI ,ENABLE INTERRUPl'S
147 RET ,GO BACK
148 ,
149 ,THIS CLEARS 'ftIE AREA CR RAM 'nIAT IS \SED
150 , fOR KEYBCP.RD JEBOUNCE.

l~~ LPl<8D: irrA SIInI ,ZERO SHIFT CCNl'ROL
153 som RETLIN ,ZERO RETURN LINE
154 STA SCNLIN ,ZERO SCAN LINE

l~ ~THIS ROl1rINE CLEARS 'ftIE ENl'IRE SCREEN BY PUTTING
157 ,SPACE CODES (21tH) IN EVERY LOCATION ON THE SCREEN.
158 Lx
159 I H,'D'DIS ,PU'f TOP OIl' SCREEN IN KL
16" LXI B lAST ·PU'f BOr'l'CM IN BC
161 LOOP!!': MVI M:20H ;PUT SPACE IN ..
162 INX H ,INCREMEN'f POINTER
163 MCN A, H :GET H
164 C".p B ;SEE IF SAME AS B
165 JNZ LOOP!!' ,IF NOr LOOP AGAIt.I
166 MeN A L :GET L .
167 CMP C' ;SEE IF SAME AS C
168 JNZ 'LOOP!!' ,IF Nar LOOP AGAIN

l~a ,; 8255 INITIALIZATION

B~ im ~.8!l!
173 som ~uo5

lj~ ;8251 INItIALIZATION
176 Lx· I
177 II \STI!'
178 MVI M:8"H
179 MVI M,00K
18B MVI M,40K
181 NOP ,
182 MVI M,0EAH
183 !4VI M,0SK
184 ,

·MOVE 8255 CONrROL W<RD INTO A
; PU'f CONTROL WCRD INTO 8255

,GET 8251 FlAG ADIRESS
,Dl.J'1MY'STORE TO 8251
·RESET 8251
;RESET 8251
·WAIT ,
~LOAD 8251 MODE WCRD iLOAD 8251 CCMWI) wam

lR~ ,8253 INITIALIZATION

187 im ~~' ,CONl'ROL WCRD FCR 8253
188 STA \;Nll'l ,Pl1f CCNl'ROL W<RO INTO 8253
189 MVI ~l~H ·LSB 8253
190 som ~N'l"" ; PUT IT IN 8235
191 MVI A,01tH ,MSB 8253
119932 som Ctn'0 ,Pl1f IT IN 8253

CALL S'lBAllD ·GO 00 BAUD RATE
194 J"lP IN75 ;GO 00 8275,

l~ !THIS ROtJi.INE REAI:S TIlE BAUD RATE 'SWITCHES 1!'R()It RlRT C
197 ;0Il' THE 8255 AND LOOKS UP THE NlMBERS NEEDED TO LOAD
198 ,THE 8253 TO PRMIE THE PROPER BAUD RATE.
1211J990 .,....a : 1_ """"'"

, .. unuu L.U\ "-'<"'" ·READ BAUD RATE SWITCHES
201 ANI IIJFH ;S'lRIP OFF 4 MSB I S
202 ' som BAUD ·SAVE rr
203 RLC ;MOVE BITS OY'ER ONE PLACE
204 LXI H,BDLK ,GET BAUDAATE toOK UP NLE
205 MVI D,00K ,ZERO 0
206 ' /fIN E,A ,Pl1f A IN E
207 DIW D :GET CRFSET
208 LXI D,CNl'M ;POINT DE TO 8253
209 MVI AD,1IJB6H ;GET CCNl'ROL wam
210 S'lU ·STORE IN 8253
211 DCX D iPOINT AT 12 COlHl'ER
212 /fIN A M ·GET LS8 BAUD RATE '
213 S'lU 0' ;Pl1f IT IN 8253
214 INK H ,POINT AT Msa BAUD RATE
215 MeN, A,M ,GET MSB BAUD RATE
216 S'lU 0 ,PU'1"IT IN 8253
217 RET ,GO BACK
'218 ,

AF~l304A ,

09F9 210110
00FC 3500
00rE 28
00FF 364F
0101 3558
0103 3689
0105 3600
0107 23
0108 CllB803
0108 36E0
0100 3623

010F JE18
0111 30
0112 FB

0113 20
0114 E680
0116 C22101
0119 3MlA0
011C E602
011E C2SC01
0121 :P.EMF
0124 E680
0126 C23101
0129 3E00
0128 32EOOF

n~~~
0134 4F
01353Am0F
0138 B9
0139 CAl301
013C 32ED0F
013F 32E70F
0142 20
0143 E689
0145 CMB91
0148 C34E02
914B 3M1M
014£ E601
0150 CMB01
0153 JAE70F
0156 320M0
9159 C30F01
01SC 3MM0
01SF Fl57F
0161 32E70F
0164 C34E02

0167 F5
0168 E5
0169 05
01GA C5
016B JA0114

016E 2AE30F
0171 22E80F'

0174 JA0218
0177 E60F
0179 47
017A JAe::0F
0170 B8
017E C4DC00

0181 :P.EA0F
0184 E540
0185 C2C201
0189 CD8F01
018C C38F00

APPLICATIONS

219 ;82.75 INITIALIZATION
220 •
221 IN75: lxI H CRTS
222 MVI M:00H ;RFSET AND S'roP DISPLAY
223 DCX H " 'HL=10110H
224 MVI M,4FH !SCREEN PARAMETER BYTE 1
225 MVIMVI M,58H;SCREEN PARAMETER ByrE 2
226 M,89H ;SCREEN PAIW1ETER BYTE 3
227 MVI M,9DDH ;SCREEN PAIW1ETER 'BYTE 4
228 INX H ;HL=10111H '
229 CALL LDCLR 'LOAD THE CUR9(l'I
2311 MVI M,IIEIIH ;PRESET COONTERS
231 MVI M,23H ;STAAT DISPLAY

~~~ . ~THIS ROl1rINE READS BorH THE KEY801\RO AND THE USART 
234 ; AND TAKES PROPER ACTION DEPENDING ON HeM THE LINE-LOCAL 
235 ;SWITCH IS SET 
236 • 
237 SETUP: MVI A,18H 
238 SIM 
239 EI 

~U : READ THE \sAAT 

~2~ RXRDY: ~IM 
244 ANI 
245 JNZ 
246 LIl/\ 
247 ANI 
248 JNZ 
249 KEYINP: LIl/\ 
250 ANI 
251 JNZ 
252 MVI 
253 STA 
254 JMP 
255 KEllS: LIlI\ 
256 MOV 
257 LIl/\ 
258 CMP 
259 JZ 

~~! ~t~ 
262 RIM 
263 ANI 
264 JZ 
265 JMP 
266 TRANS: LIl/\ 
267 ANI 
268 JZ 
259 LIl/\ 
270 STA 
271 JMP 
272 OK7: LIlI\ 
273 ANI 
274 STA 
275 JMP 

80H 
KE'lINP 
\S'lV 
02H 
OK7 
KE':lI::WN ' 
80H 
KEYS 
AL00H 
Kt;'iOK 
RXllOY 
KE'iOK 

~HR 
C 
RXRDY 
KE'iOK 
USCHR 

80H· 
'lRANS 
CHRe:: 
\STIi' 
01H 
TRANS 
USCHR 
lSTD 
SETUP 
USTD 
07FH 
USCHR 
CHRe:: 

;SET MASK 
"LOAD MASK 
; ENABLE INTERRUPTS 

'GET LINE LOCAL 
; IS IT ON 00 OFF? 
;LEAVE IF IT IS ON 
;READ 8251 FLAG> 
'LooK AT RXRDY 
;IF HAVE CHARACTER 00 TO WooK 
;GET KE'lBOI\RO CHARACTER 
;IS IT THERE 
;IF KEY IS PUSHED LEAVE 
;ZERO ,A ' 
;CLEAR KE'iOK 
'LOOP AGAIN 
; WAS KEY 0Cl'lN 
·SAVE A IN C 
!GET KE'lBOI\RO CHARACTER 
; IS IT THE SAME AS KE'iOK 
;IF SAME LOOP AGAIII/ 
; IF Nor SAVE IT 
'SAW: IT 
;GET LINE LOCAL 
;WHICH WAY 
'LEAVE IF LINE 
ITIME.TO DO SCl'IE WCRK 
'GET USART FLAG> 
I REAlYi TO TRANSMIT? 
;LOOP IF Nor REAlYi 
;GET CHARACTER 
;pu'r IN USART 
• LEAVE 
';READ USART 
'S'mIP MSB 
; pu'r IT IN MF>tooy 
; LEAVE 

276 ; 
277 ;THIS ROUTINE CHECKS THE BAUD RATE SWITCHES, RESE'ffi THE 
278 ;SCREEN POINTERS AND READS AND LOOKS UP THE KE'lBOI\RO. 

~~~ FRAME: • f.usH PSW ;SAVE A AND FLAG> 
281 PUSH H ;SAVE H AND L
282 PUSH D ;SAVE D AND E
283 PUSH B 'SAVE B AND C
284 LIl/\ INT75 ; READ 8275 TO CLEAR INTERRUPT
285
286
287
288
289
290
291
2!n
293
294
295
296
297
298
299
300
301
302
3113
304
305
306

~SET UP THE POIN'mRS

LaLD TOPAD
SHLD ClRAD

~SET UP BAUD RATE

LM roRTC
ANI 0FH

~ ~Afto
CMP B
em STBAUD

: READ KEYSO\RO

LM
ANI
JNZ
CALL
JMP

KE~
40H
K'lOOWN
RIl<B
BYPASS

;LOAD TOP IN, H AND L
; STORE TOP IN CURRENT AOCRESS

; READ BAUD RATE SWITCHES
;S'mIP OFF 4 MSB'S
;SAVE IN B'
;GET BAUD RATE
;SEE IF SAME AS B
; IF Nor SAME DO SCl'IETHING

;SEE IF A KEY IS DOWN
;SET THE FLAGS
;IF KEY IS OOWN JUMP AROUND
;GO READ THE KE'lBOI\RO
; LEAVE

AFN'()1304A

APPLICATIONS

S18F 21EFSF 3fJ7 RDK8: LXI ~~OO ,POINT HL AT KE~RD lW4 S192 JAS218 3S8 Lo\ 1GET CQ\lI'ROL AND SHIFT S195 77 3S9 MOV MA ,SAVE IN ~Y S196 3EFE 31S I'M ~FEH ,SET UP A SID 1~ss18 ~11 LOOPK: STA TA !~PUI ~ B MOV ~TB Sl9C JASH8 3H Lll\ ;READ KE~RD S19F 2F 314 CMA ,INVERT A SlAS B7 315 ORA A • SET TIlE FLACE falA1 C2AFS1 316 JNZ SIWKEY ; LEAVE , IF KEY IS OOIIN SlA4 78 317 /IfJV A,B ,GET SCAN LINE BlICK SlA5 S7 318 RLC ,ROl'ATE IT OVER OOE SlM 0\98S1 ~19 JC LOOPK ,IX) IT AGAIN SlA9 3ESS 2S MVI ~ ,ZERO A .
SlAB 32EASF 321 STA ,SAVE KEY Inm SlAE C9 322 RET ; LEAVE SlAI!' 23 323' SAVKEY: INK II ,POINT AT RE'ruRN LINE SIBS 2F 324 ~ ,PUT A B1CK
falBl 77 325 MOV M,A ;SAVE RE'ruRN LINE IN II1~Y
SlB2 23 326 INX H ;POINT H AT SCAN LINE SlB3 7S 327 /IfJV M,B ,SAVE SCAN LINE IN MD4my
SlB4 3E4S 328 !<WI At 4SH 'SET A nB6 32EASF 329 STA K YI:WN ;SAVE KEY Inm SlB9 C9 33S RET ,LEAVE SlBA 3ESS 331 KYCHNG: MVI ~~ ,ZERO S SlBC 32EAIIF 332 STA ,RESET KEY ~ SlBF C38FSS 333 JMP BYPASS ; LEAVE SlC2 21FIIIF 334 KYDa4N: LXI H,9:NLIN ;GET SCAN LINE SICS 7E 335 MOV ~ 'PU'r SCA~ LINE IN A SlC6 3211S18 336 STA TA ;oorPUT SCAN LINE TO PORT A SlC9 28 337 DCX H ;POINT AT RETURN LINE SICA 3AS118 338 Lo\ PORTB ;GET RETURN LINES nco B6 339 ORA M ; ARE TI:IEY 'rIlE SA'IE? nCE 2F 340 CMA 'INVERT A II1CF B7 341 ORA A ;SET FLAQ> SlD0 CABM1 342 JZ KYCHlI(; ;IF DIFFERENT KEY HAS CHANGED 0103 JAEA0F 343 Lo\ KEYI:WN 'GET KEY ~ 0106 E601 344 ANI 01H ;HAS 'nus BEEN IX)NE BUmE? 0108 ~28F00 345 JNZ BYPASS 'LEAVE! IF IT ~ 01IlB A0118 346 Lll\ PORTS ;GET RE'ruRN LINE SlOE 06FF 347 MVI B,0FFH ;GET 'READY TO ZERO B nE004 348 UP: INR B 'ZERO B nEll!IF 349 RRC ;ROfA'lE A nE2 ll\E001 350 JC UP '00 IT AGAIN 01E5 23 351 INK II ;pOINT H AT SCAN LINES SlE6 7E 352 MOV AM ;GET SCAN LINES 01E7 0EFF 353 I'M C:0FFH 'G ET READY TO LOOP 01E9 r.lC 354 UPl: INR C ,START .C COON'rING 01EA 0F ~~ RRC ;ROl'A'lE A 01EB o\E901 JC UP1 ;JUMP '1'0 LOOP nEE 78 357 -MeV A,B ;GET RETURN LINES 01EF 07 358 RLC !~~~~~E 01F0 07 359 RLC
01Fl 07 360 RLC ;MOVE OVER THREE TIMES 01F2 B1 361 ORA C ;OR SCAN AND RETURN LINES 01F3 47 362 MOV ro~TC 'SAVE A IN B 01F4 JA0218 363 Lo\ ;GET SHIFT COO'l'ROL 01F7 E640 364 ANI 40H ; IS CONl'ROL SET 01F9 4F 365 MOV C~ ;SAVE A IN C nFA JAU0F 366 Lll\ S 00 ;GET SHIFT CQ\lI'ROL 01FO 57 367 MOV ~~ft '. ;SAVE A IN 0 01FE E64S 368 ANI ;S'lRIP CONTROL 020S B1 369 ORA C ;SET BIT 0201 CAJE02 370 JZ CN'l'JlolN ;IF SET LEAVE 0204 JA0218 371 Lll\ PORTe ; READ IT AGAIN, 0207 E620 372 ANI 20H ;S'lRIP SHIFT 02S9 4F 373 140'1. C,A 'SAVE A S2BA 7A 374 MOV A~O ;GET SHIFT COO'l'ROL 0208 E620 375 ANI 2 H ;S'lRIP CONl'ROL 0200 B1 376 ORA C • ARE. THEY 'rIlE SAME? 020E CM702 377 JZ . SHrwN : If' SET LEAVE 0211 58 378 SCR: MOV E,B ;pu'r TARGET IN E
S~U ~rS~05 j~a I'M o 0011 -ZERO 0

LXI II:KYLKUP ;GET LOOKUP TABLE 0217 19 381 ll\D 0 ;GET OFFSET 0218 7E 382 MOV A,M ;GET CHARACTER
0219 47 383 MOv SA ; pu'r CHARACTER IN B 021A JA0218 384 Lll\ roRTC ;GET PORTe . 0210 E610' 385 ANI 1011 ;S'lRIP' BIT . -021F CA2E02 386 JZ. CAPLOC ;CAPS LOCK 0222 78 387 MOV ~ -GET A BPCK' 0223 32EB0F 388 S'l'KEY: STA ; SAVE CHARACTER 0226 3Eel fga MVI ~~ 'SET A 0228 32EA0F STA ;SAVE KEY ~ 0228 C38F00 ,391 JMP BYPASS ; LEAVE 392 ; , . - ".

393 ; IF·TIIE CAP LOCK BUI'TON IS PUSHED THIS ROl1l'INE SEES IF
394 ;TIIE CHARACTER IS B~EN 61H AND 7AH AND IF IT IS THIS

8-33 AfN-01304A

flJ22£ 78
flJ22F FE6fIJ
flJ231 D\23f1J2
flJ234 FE7B
flJ236 0223f1J2
flJ239 D62fIJ
8238 C32382

823E 3ES8
8240 B0
0241 E6BF
0243 47
flJ244 C31102 .
0247 3E40
824958
flJ24A 47
0248 C31182

024E 3AEErIJF
flJ251FESfIJ­
flJ253 CA7BflJ2
flJ256 3AE70F

Ili~3
flJ26fIJ CIICAII3
flJ263 FEfIJD
0265 CAADflJ3
flJ268FU8
flJ26A CME03
flJ26D PE1B
flJ26F CAAS03
flJ272 B7
flJ273 C6EfIJ
0275 D\77rlJ4
0278 C3r1JFrIJl

flJ278 3EflJ8
0270 32EErIJF
11280 3AE78F
8283 FE42
0285 CAAEflJ2
0288FE45
112BA CIICFII2
11280 FE4A
8281' CAD5112
8292 FE4B
82m CA27113 o 7 FE41
II 900383 o FEO
029E CA4503
02Al FE44
02A3 CME83
02A6FE48
flJ2A8 CA9703
02A8 C3r1JF"l

"2AE lAE10F
0281 FE18
82B3 CA0F"l
0286 3C
"2B7 32E1rIJF
02BA CIB883
82BO CD\5114
82C" 7E
"2C1FEF0
02C3 C2r1JF01
"2C6 22£5111'
02C9 COl5114
82CC C38F"1

APPLICATIONS
395 . ,ROUl'INE .ASSll'IES THAT THE C~ ISL<JIfER CASE'AsCII
396 . ,AND St8TRl\CTS 20H, WHICH C~TS THE CIl\RAC'l'ER TO
397 ,UPPER CASE ·ASCI I
398 ,,'.
399 CAPLOC: MOV '~LB ;GET A' BlICK .
400 . CPI • bWH ,Hall BIG IS m
4"1 JC STKEY ;LEAVE IF IT'S roo SMALL
4"2 CPI 7BH ;IS IT TOO BIG
41!J3 JNC STK$Y ,LEAVE IF TOO BIG
4114 SUI 20H ;ADJUST A
4f1J5 JMP STKEY ,STORE THE KEY
486 .
4f1J7 ;THE ROOrINES SHOOII AND ~ SET BIT 6 AND 7 RESPBCTIVLY
4118 ,IN THE Mr.. . _ .

:ra~: 1m A,80H ,SET BIT 7 IN A
411' ORA B ,OR WITH CHARACTER
412 ANI I18FH ,MAKE SURE SHIFT IS NOT SET
413 MOIT!tc.A ,PlI'r IT BN:K IN B
414 JMP::;I.:R ;GO BN:K
415 SHDm: MVI ., A,40H ,SET BIT 6 IN A
416 ORA B ,OR WITH CHARACTER
417 MOlT,' !!LAR ,PlI'r IT BN:K IN B
418 JMP::;I.: ,GO BN::K
419 ,
420 ,THIS ROUTINE CHECKS Fm ESCAPE CIfARACTERS, LF, CR,
421 ,FF, AND BlICK SPlICE

:~~ CHRfX:: iDA ESCP \ ,ESCAPE SET?
424 CPI 88H ,SEE IF rr IS
425 JZ ESSQ ,LEAVE IF IT IS

2~~ ~.~ !~gEC~
428 JZ LNFO ;C,) TO LINE-PEED
429 CPI flJCH ,F(Bot FEED .
430 JZ FMFD ;00' TO F(Bot FEED
431 CPI fIJDH ,CR.
432 JZ .a:;RT. ;00 A 'CR'
433 CPI 118H - ,BlICK SPACE
434 JZ. LEFT ,OO"A BlICK SPACE
435 CPI 18H ; ESCAPE
436 JZ' ESKAP ;00 AN ESCAPE
437 ORA A ;CLEAR CARRY
438 ADI IIEIIR ;SEE IF CHARACTER IS PRINTABLE
439 JC ClIlPUT • IF PRINTABLE, 00 IT '
440 JMP SETUP ;GO BACK AND READ lSART AGAIN
441· .
44423 ;THIS ROIIrINE RESE'lS THE .E&:APE LOCATION AIt) lECODES
4 ;THE CIfARACTERS F(LL<JIfING AN ESCAPE. THE Ca.1ANDS ARE
444 ,CCMPATABLE WITH INTELS CREDIT TEXT EDITOR
445 •. .
446 ESSQ: 1M &!0H ·ZERO A
447 STA ~P ;RESET ESCP
448 . \ LD\ lSClIR ,GET CHARN::TER
449 CPI· 42H ,OOfIN' .
4511 • JZ IX7;fN ,MOVE CURSOR IXMN
451 CPI 45H ,CLEAR &:REENCIMACTER

:~ ~~I ~ !g~ ~T~REEN
454 JZ CIRST ;GO CLEAR THE RfST OF THE SCREEN
455 CPI 4B1f . ·CLEAR LINE C~
456 JZ. CIRLIN jGo CLEAR A LINE
457 CPI 418 ,CIRSOR UP CHARACTER
458 JZ UPCUR ,MOVE CURSOR UP
459 CPI 43M-, . ·CURSCR RI='" CHARACTER
460 JZ RIGHT ;MOVE CURsOO~TO THE RIGHT
461 CPI 44H- ;CURS<R LEFT CIl\RAC'l'ER .'
462 JZ LEFT' ;MOVE CURS<R TO THE LEFT
463 CPI 48H . ; HO'lE CURS<R' CHARACTER
464 JZ IDlE' ,HO'lE THE CURS<R :
465 JMP SETUP : ,~VE '

2~ ;THIS oourINE -MOVES. THE CURSOR -IXJ.oIN oNE C~ LINE

:~ 00fIN: Lm' CURSY ·PUT CURSOR Y IN -" .
4 70 CPl C\JU3ar ; SEe: IF CN BO'1'l'O'1 OF SCREEN
'471 JZ SETUP· ,LEAVE IF ON' BO'M'O'4
472 INR A ,INCREMENl' Y CURSOR .
473 STA CURSY ,SAVE NEW CI:IRSOR

:~~ ~. ~LIJ" !ILMO~TEC~m3S
476 MOII.A M • . ;G FIRST LOCATION OF THE LIlliE
477 CPr 0J'0H . ,S IF CLEAR &:REEN CHARACTER
478 3HZ SETUP • 'IE IF IT" IS Nor
479 SHLD LOC80' :SAVE BEGINNING OF THE LINE
480 CALL CLLINE ;CLEAR THE LIlliE
:B~ J>4P SETUP ;l.EAVE • .'

\

. I

82CF C1E483
8202 C311JFSl

8205 CD\584
8208 COCD84
8208 81284F
8D JAE211JF
82E1 B8
82E2 CA!X:82
82E5 3C
82E6 23
82E7 71
82E8 B8
821::9 C2E582
82EC 81088F
82EF 23
82F8 78
82F1 BC
82F2 C2FOO2
82F5 79
82F6 BD
82F7 C2FOO2
82FA 218888
82FD JAE18F
8388 FE18
8382 CMF81
8385 3C
8386 47
8387 1158"8
83eA 36F8
838C 78
8380 FEl8
8311JF CAIIlFSl
8312 3C
8313 19

In! ~
8316 FEeF
8318 C2eA83
831B 7D
831C FEOO
831E C2eA83
8321 218888
"3~4 C3eA83

8327 COP.584
832A 22E58F
8320 CDI584
8338 C3aF81

8333 3AE18F
8336 FEe8

I~~~:
833F 0)3883
8342 C3"F81

:u~ ~AE28F
83411. C~83
8140 3AEII1JF 8 58 FE18
8 52 CA5983
8355 3C
8356 32E18F
8359 3£88
8358 32E28F
835E C088"3
8361 C3"FSl
8364 3C
8365 32E28F
8368 CDBS83
8368 C311JF81

APPLICATIONS

483 ,THIS RoorINE CLEARS THE ~REEN.
484 -
485 CLEAR: l:Au. ClSCR ,00 ClEAR THE SCREEN
486 JMP SETUP ,00 BACK

~i ~THIS ROlIrINE CIEARS ALL LINmBENEATH '1'IIE UlCATION
489 , C6 THE CtJRSOR.
498 •
491 CrRSi': l:Au. AJ)XCAIJ:.U ·CALCULATE ACMES
492 CALL ;AOO X POSITION
493 LXI !!,jFSX28H ,P1Jl' SPACE AND LAST X IN B lIND C
494 LOP. \';1..1(-GET X CtR5m
495 CMP 8 :SEE IF AT END OF LINE
496 JZ OVRI ;LEAVE IF X IS AT END ot,LINE
497 LLP: INR A ,MOVE A OVER ONE X POSluON
498 INX H , INCREMENT MEMCRY POINTER
499 WJV M,C ,PUT A SPACE IN MEM<RY
5"8 CMP B ,SEE IF A .. 4FH
SflJ1 JNZ LLP -IF NOT LOOP AGAIN
582 OVR1: LXI BH'LAST ;PIJ'r LAST LINE IN Be
583 INK ,POINT HL TO LAST LINE
584 I40V A,8 ,GET 8 '
~65 CMP ll... ... L ,SAMJi: AS H?
:;m JNZ -..-. , LEAVE IF r«n'

~~ ~ , t,C ~ft:CAS L?
5"9 JNZ CON:L : LEAVE IF Nor
511'1 LXI &m~IS ;GET TOP OF DISPLAY

~H COICL: ~ c~or !trIf ~tRg Barra-t
513 JZ SETUP ;LEAVE IF IT IS
514 INR A ,MOVE rr DOWN ONE LINE
515 WJV B,A ,SAVE CtR5m IN B FOR LATER
516 LXI D, LNGl'H ,PUT LENGTH OF ONE LINE IN D
517 CLOOP: MVI M,8F0H ,P1Jl' BCR IN MI!MCRY,
518 MOV A,B ,GET CURSOR Y
519 CPI CURSor -ARE WE CN THE aoM'Qlt
528 JZ SETUP ;LEAVE IF WE ARE
521 INR A -MOVE CURSOR DOWN ONE
522 OP.D 0 ;GET NEX'r LINE

~~i ~ ~~~H !~lIN A
525 CPI I/e" jCOMPARE TO HIGH LAST
526 JNZ CLOOP ,LEAVE IF IT IS NOT
527 WJV &!:!._ ' ,PUT L IN A

g~~ 3rz ~~p , :~~F~;urs ~
538 LXI H,~IS ;PUT TOP DISPLAY IN H AND L
531 J;O\P CJ..WP , LOOP AGAIN
532, ,
533 , ,THIS ROt1rINE CLEARS THE LINE THE CURSOR IS ON.

g~~ CrRLIN: b.u. CALCU ,CALCULATE ADDlES '
536 SHLO LOe88 ,S'OORE H AM> L TO ClEAR LINE
537 CALL CLUNE ,CLEAR THE LINE
538 JMP SETUP , ,00 aACK

~~ ~THIS RourINE MOVES THE CURSOR UP ONE LINE.
541 -
542 UPCtR: LoA CURSY
543 CPI 80H
544 JZ SETUP
545 OCR A
545476 STA CtRSY

CALL LOCtR
548 JMP SETUP

,GET Y CURSCR
-IS IT ZERO i IF IT IS LEAVE
-MOW CURSOR UP
:SAVE ~ CURSOR ;LQAD THE CURSOR
,LEAVE

549 .,
558 ;THIS ROt1rINE MOVES THE CURSOR ONE UlCATION TO '1'IIE RIGttl' 551 I _ ' ,

~~~ RIGHT: ~ ~SX ~~~TI~ X~~ WAY OVER? 
554 JNZ Nl'OVER ,IF Nor JUMP AROUND 
555 LOP. CURSY -GET Y CURSCR 
556 CPI ClItSOl' ;SEE IF ON BarroM 
557 JZ 0018 , IF WE ARE JUMP 
558 INR A ,INCRDoIENT Y CURSOR 
559 STA CURBY ,SAVE rr 
568 GD18: MVI A,j"H ,ZERO A ' 
561 STA CI..I(SX ;ZERO X CURSCR 
562 CALL LOCtR ,LOAD THE CURSOR 
563 .'"""~ JI4P SETUP -LEAVE ' 
5t;4 !,,,,,y,,,,,: INR A ;rNCRDoIEN'r X CURSOR 
565 STA CURSX -SAVE rr 
566 CALL WCtR j t.Qr\D THE CURSOR 
567 JMP SETUP ,LEAVE , 

g~ ~THIS ROtlrINE MOVES THE CUR:;oR LEFl' ONE CHARACm;t POSITION 

AfN.01304A 



APPLICATIONS 

579 
~ -GET X CURSCR 036E 3AE29F 571 LEFT: CURSX' 

9371 FE99 572 CPI 90H JIS IT ALL THE WAY OVER 
9373 C28D03 573 JNZ HOVER ; IF Nor JUMP AROUND 
9376 F 574 L~ CURS'{ -G ET CURSOR Y 
9379 575 CPl 90M ;IS IT ZERO? 
037B 1 576 JZ- SE'NP -IF IT IS JUMP 
937E 3D 577 OCR A ;MOVE CURSOR Y UP 
937F 32E19F 578 STA , CURSY -SAVE IT 
0382 3E4F 579 MVI Ar1[H ;GET LAST X LOCATION 
9384 32E20F 580 STA C SX -SAVE IT 
9387 CD3803 581 CALL LOCUR ; LOr\D THE CURSOR 
938A C30F01 582 JMP SE'NP 
0380 3D 583 HOVER: OCR A ; ADJUST X CURS~ 
938E 32E20F 584 STA CURSX ;SAVE CURSOR X 
9391 CD3893 585 CALL LOCUR ; LOAD THE CURSOR 
0394 C30F01 586 JMP SE'NP ; LEAVE 

587 ~THIS ROllrINE IDlES THE CURSOR. 588 
589 ~VI 0397 3E99 59r11 H<JotE: AC:rIIH ;ZERO A 

rII'399 "32 E29F 591 STA C SX ;ZERO X CURSCR 
939C 32E1r11F 592 STA CURSY ;ZERO Y CURSOR 
039F CDB8r113 593 CALL LOCUR ; LOr\D THE CURSOR 
r113A2 C39F91 594 JMP SE'NP ; LEAVE 

595 ~THIS RO~rINE SETS THE ESCAPE BIT 596 
597 

~ 93A5 3E8r11 598 ESI<AP: ~~H ;LCl.'D A WITH ESCAPE BIT 
93A7 32EE0F 599 STA -SET ESCAPE LOCATION 
93M C3rllF91 GOrII JMP SE'NP ;GO BACK AND READ USART 

601 
iTHrS ROUrINE DOES A CR 602 

6r113 
~ 03AD 3Efilrll 6r114 CGRT: ~uRrx ;Z!;:RO A 

fil~ 32E2rIIF 695 STA ; ZERO ' CURSOR X 
fil 2 CD38r113 6r116 CALL LOCUR ;LOAD CURSOR INrO S275 
03B5 C3r11F91 607 JMP SETUP ;POLL USART AGAIN 

6filS 
~THIS RO~INE WAIE THE CURSOR 609 

61r11 
~VI fil3B8 3ES9 611 LOCUR: ~R~H ;PU'r 80H INTO A 

03BA 32fil11fil 612 ' STA ; LOAD CURSOR INfO S275 
r113BD 3AE29F 613 [Jll>, CURSX ;GET CURSOR X 
03Cfil 329fil1fil 614 STA CR'lM ; pu'r IT IN 8275 
03C3 3AE1filF 615 L~ CURS'{ ;GET CURSOR Y 
03C6 32r1101fil 616 STA CR'lM ;pu'r IT IN 8275 
03C9 C9 617 RET 

61S ~THIS RO~rINE DOES A ~M FEED 619 
62fil 

bALL 03CA ClE403 621 FMFD: CLSCR ;CALL CLEAR OCREEN 
03CD 2 98 622 LXI ~'l'PDIS ;pu'r TOP DISPLAY IN tiL 
93Dfil 2 0F 623 SHLD 89 ; PUT IT IN !.OC8r11 
r113D3 C 4 624 CALL CLUNE ;CLEAR TOP LINE 
fil3D6 625 MVI A~rIIH ;ZERO A 
9308 F 626 STA C SX ;ZERO CURSOR X 
fil3DB 3 F 627 STA CURS'{ .;ZERO CURSOR Y 
fil3DE COB r113 628 CALL LOCUR ; LOAD THE CURSOR 
fil3E 1 C3rllFfill 629 JMP SE'NP ; BACK TO USART 

63fil 
hHIS RoorINE CLEARS THE SCREEN BY WRITING END OF RCl>I ' 631 

632 ;CHARACTERS INTO 'raE FIRST WCATION OF ALL LINES GI 
633 ;THE SCREEN. 
634 

~ A',filF9H 03E4 3EFfil 635 CLSCR: ;PU'r EOO CHARJ\CTER IN A 
93E6 r11618 636 MVI B,CURSOr ; LOAD B WITH MAX Y 
93E8 04 637 INR B ;00 TO MAX PLua ONE 
fil3E9 21fil9r11S 63S LXI H,'1PDIS ; LOAD H AND L ITH TOP OF RAM 
r113EC l1Sfil00 639 LXI D,UlIGTH ;MOVE 5r11H = SfilD INTO 0 AND E 
fil3EF 77 649 WAOX: MOV ~,A ;MOVE EOR IN'fO MEMCNY 
r113Ffil 19 641 DAD ;CHAN3E POINTER BY SrIID 
r113F1 fil5 642 OCR B ;COlJ'fl' THE WOPS 
fil3F2 C2EFfil3 643 JNZ LOADX ;CON'rINUE IF Nor ZERO 
93F5 C9 644 RET ;GO BACK 

645 i THIS RO~rINE DOES A LINE FEED 646 
647 

~ALL fil3F6 CDFC93 648 LNFD: LNFD1 ;CALL ROUTINE 
fil3F9 C39Ffili 649 JMP SETUP ;POLL FLAGS 

65r11 
;LINE FEED 651 

652 Lor.. fil3FC 3AElfilF 653 LNFDl: CURSY ;GEt Y LOCATION OF CURSOR 
r113FF FE18 654 CPI CURSor ;SEE IF AT BCJM'OM OF SCREEN 
fil4fill CA5394 655 JZ ONBor ;IF WE ARE LEAVE 
fil4fil4 3C 656 INR A ; INCREMENT' A 
94fil5 32E1filF 657 STA CURSY ;SAVE r£W CURSOR 

8-36 AFN.(Jl304A 



8488 CIY\S84 
8408 22ES8F 
848E CD1S84 
8411 c00883 
8414 C9 

8415 F3 
841,6 2AES8F 
0419 115080 
841C 19 
041D EB 
841E 210080 
8421 39 
0422 EB 
0423 F9 
0424 212820 

0427 ES 
0428 ES 
0429 ES 
842A ES 
042B ES 
842C ES 
842D ES 
842E ES 
842F ES 
8430 ES 
0431 ES 
0432 ES 
0433 ES 
0434 ES 
0435 ES 
0436 ES 
0437 ES 
0438 ES 
0439 ES 
043A ES 
0438 ES 
043C ES 
043D ES 
043E ES 
043F ES 
0440 ES 
0441 ES 
0442 ES 
0443 ES 
0444 ES 

-0445 E5 
0446 ES 
0447 ES 
0448 ES 
0449 ES 
044A E5 
0448 ES 
044C ES 
044D ES 
044E ES 
044F ffi 
0450 F9 
0451 FB 
0452 C9 

0453 2AE30F 
0456 22ES0F 
0459 115800 
045C 19 
0450 01D00F 
04,13 7('. 
0461, 88 
0462 C26D04 
0465 7D 
0466 B9 
0467 C26D04 
046A 210008 
046D 22E30F 

658 
659 
660 
661 

~~~ 
664
665
666
667
668 CLUNE:
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684+
685+

. 686+
687+
688+
689+

. 69tH
691+
692+
693+
694+
695+
696+
697+ .
698+
699+
730+
701+
702+
703+
704+
705+
706+
707+ .
708+
709+
7Hl+
711+
712+
713+
714+
715+
716+
717+
718+
719+
720+
721+
722+
723+
724
725
726
727
728
729
730
731
732 ONSOT:
733
734
735
736
737
738
739
740
741
742
743
744 ARND:

APPLICATIONS

CALL· CALCU ;CALCUlATE AD~ESS
SHLD LOe80 ;SAVE TO CLEAR LINE
CALL CLLINE ;CLEAR THE LINE
CALL LOClR ;LOAD THE CURSOR
RET ;LEAVE

hHIS RoofINE CLEARS THE LINE WHOSE FIRST ~ESS
; IS IN LOe80. PUSH INSTRUCTIONS ARE tSED TO RAPIDLY
;CLEAR THE LINE -

hI -~-8~ ;NO l~rERRUPTS HERE
LHLD ~ ~ -GET LOe80
LXI 0, UlGTH iGET <FFSET
DAD D -ADD OFFSET
XCOO :PUT START IN DE
LXI HS&.0000H ;ZERO HL
Il\D l' ;GET STICK
XCOO ;pu'r STACK IN DE
SPHL ;PUT START IN SP
LXI H,20208 ;PUT SPACES IN HL

; NCl'l 00 40 PUSH INSTRUCTIONS TO CLEAR THE LINE

~EPT (LNGT!!/2)
PUSH H
END!
PUSH H
PUSH' H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH - H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH· H
PUSH H
PUSH H
PUSH H
PUSH, H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH H
PUSH 'H
PUSH H
PUSH H
XCOO -PU'r STACK IN HL
SPHL :PUT IT SACK IN SP
EI ; ENABLE INTERRUPTS
RET ;GO BACK

hF CURSOR IS ON THE SOrT()'J\ OF THE SCREEN 'rRIS ROurINE
; IS tSED TO IMPLEMENT THE LINE FEED

biLD TOPAD ;GET TOP ~ESS
SHLD LOe80 ;SAVE IT IN'LOe80
LXI D,LNG'rH ;LINE LENGrR
DAD D ;ADD HL + DE .
LXI B, IAST ;GET BOl'1'O-t LINE
I'IOV AS' H ;GET 'H
CMP ;SAME AS B
JNZ ARND ;[,EAVE IF NOT SAME
~ A L -GET L
CMP C' ;SAME AS C
JNZ ARND ·\:.EAVE IF NOT SAME ,
LXI HT6!fgIS :LOADHL WITH -rap OF DISPLAY
SHW r-nu ;SAVE P€W TOP ADI:RESS

~7 AFN-01304A

1147" C015"4
11473 CIB803
11476 C9

9477 C0\5114
047A 7E
947B FEF9
11470 22E50F
94811 CC1S1!J4

·9483 2AE59F
9486 COCDI!J4
9489 JAE711F
948C 77
11480 3AE21lF
94911 3C
11491 FESI!J
11493 C29C94
9496 CDFCl!J3
9499 C3ADIl3
949C' 32E29F
949F CIB893
Il4A2 C31lFil1

94A5 2lDSl!J4
114M JAE19F
1l4AB 117
1l4AC 1161111
114AE 4F
Il4AF 119
11460 7E
11461 4F
9462 23
11463 7E
9464 47
11465 211lllF8
11468 119
9469 E8
1l48A 2AE31lF
0460 19
1146E EB
946F 2139FIl
94C2 19
114C3 mCSll4
94C6 E8
04C7 C9 ,
94C8 2139F8
94CB 19
04CC C9

94CO JAE21!JF
11409 1161111
11402 4F
11403 119
94D4 C9

"405 """8 """l 94075""8
9"02
"409 AIl1il8
"0113
04DB Fl!JIl8

"""4 9400 49119
"1il05
94DF 911"9

APPLICATIONS

745 CALL
746 CALL
747 RE:!'

CLUNE
LOClR

,CLEAR LINEi
; LOAD THE CURsm

~:~ !THIS ROt1rINE PUTS A CHARACTER ~ THE SCREEN AND
75" ~ INCREMrNTS THE X ClRS<R roSITION. A LINE FEED IS
751 ;INSERTEO IF THEINalID4Q/TEO ClRsalEQJAIS 810 752 •.. ', .' . ,
753 CHRPUT: 6ALL CALCU ;CALCULATE SCREEN POOITION
754 MeN ~L.M9H iGET FIRST CIIMl\CTER
755 CPI u~ iIS IT A CLEAR LINg
756 SHLO LOC8" iSAVE LINE TO CLEAR
757 CZ CLUNE iCLEAR LINE
758 LHLO LOCSil ·GET LINE
759 CALL ADX ;AOO ClRsal X
769 LIl\ lI'C'iR ,GET CHARACTER
761 MOV MC/~SX" ;Pl1r IT ON SCREEN
762 LIl\ UK ·GET CURsal X
763 INR A ;IICRQ>IENT CURSOR X
764 CPI LNG'rH ;HAS IT OONE TOO FAR?
765 JNZ OK1 ; IF NOT 0000
766 CALL LNFOl ; 00 A UNE FEED
767 JMP CGRT ;00 A CR
768 OK1: STA ClRSX ;SAVE ClRSOR
769 CALL LOCUR ;LOAD THE CURSOR
77" JMP SETUP ; LEAVE
771 • ,
772 ; THIS ROt1rINE TAKES THE TOP ADrRESS AND THE Y CURsal
773 • LOCATION AND CALCULATES THE ADOO&SS OF THE UNE
774 ;THAT THE CURSOR IS ON. THE RESULT IS RETURNED IN H "
775 , ;AND L AND ALL REGISTERS ARE USED.

H~ CALCU: LxI H,i-IN'rAB ;GET LINE TABLE INTO H AND L
778 Lm CUKSY ;G ET CURSOR INTO A .
779 RLC ;SE:!' UP A FOR tool<UP TABLE
789 MVI B,99H • ZERO. B,
781 MOV C A ; pu'r CURSOR INTO A
782 DAD B' ;ADO LINE TABLE TO Y CURSOR
783 MCN A,M ;pu'r LC1fJ. LINE TABLE IN'rO A
784 MCN C,A ;PUT LC1fJ UNE TABLE IN'fO C
785 INX H 'CHANGE MetCRY roIN'fER
786 MeN A,M ;PUT HIGfI LINE TABLE mro A
787 ,MQV B,A ;PUT HIGH LINE '~LE IN'rO B
788 LXI H,IlF8""H ;'lWCG CO'IPLEMENT SCREEN LOCATION
789 0\0 6 ;SUBTRACT OFFSE:!'
7911 XCHG 'SAVE HL IN IE
791 LHW TOPAD ~GET TOP ADrR&ss IN H AND L
792 DAD D ;GET OISPLl'CED ADrR&ss
793 XCHG 'SAVE IT IN D
794 LXI H,IlFIl3IlH ;'lWCG CCMPLEMENT SCREEN LOCATION
795 mD 0 ;SEE IF WE ARE OFF THE SCREEN
796 JC FIX ; IF WE ARE FIX IT
797 XC!K; iGET DISPLACED ADrR&ss BACK
798 RE:!' ;GO BJICK .
799 FIX: LXI H,IIF83IlH ;SCREEN BCXJ.IIIltY
81111 DAD 0 ;ADJUST SCREEN
8111 RE:!' ;GO BACK

g~~ hHIS ROtrrINE ADOS '!'HE X ClRSOR LOCATION TO 'fHE ADDRESS
8114 ; THAT IS IN THE H AND L RmISTERS AND RETURI'l:) THE RESULT
8115 iIN HAND L
806 •
807 ADX: fD. CURSX ;GET C.URSOR
81lS MVI B,90H ;ZERO ~
8119 MOV CB,A ·pu'rcURSOR X'IN C
8111 DAD ;ADD ClJlSOR X TO H AND L
811 RE:!' . ; LEAVE

gg ; THIS TABLE CONTAINS THE OFFSE:!' AOIltESSES FCR EACH
814 ;OF THE. 25 DISPLAYED LINES.

gi~ LINTAB:' LXNNlM SE:!' 9
817 REPI' (ClR8OT+1) "
818 OW TPOIS+(LNGTH*LINN~)
819 LINNLM SET (LINNtJ'ot+l)
829 ENIM,' ,
821+ ow· TPDIS+(LNGTH*LINNtJ'ot)
822+ LINNUM SE:!'(LINNlM+1)
823+ OW' TroIS+(LNGTH*LINNlM)
824+ LINNUM SET (LINNlM+l \ .
825+ OW' TPDIS+(LNGTH*LINNlM)
826+ LINNUM SET {LINNlM+1) .
827+ OW :rp()IS+ (LNGTH*LINNUM.)
828+ LINN'lM SE'f (f..INNUM+1 \

, 829+ OW . TPDIS+(LNGTH*LINNlM)
839+ LINNUM. SE:!' (LINNlM+11
831+ OW TPDlS+(LNGTfittLINNUM)

AFN'()1304A

APPLICATIONS
IJfIlfll6 832+ . LINNll'1 SET ILINNlM+tJ, 1J4E1 EfIlIJ9 833+ rkl TPD S+ ~wr:;r LINNIJ'ot) fIlfllfll7 834+ LINNIJ'I SET ILl lM+1~ fIl4E3 3f1lfIJA 835+ rkl TPD S+~LNGl'H LINNlM) fIlfllfll8 8~6+ LINNIJ'I SET ILl ~ 1J4E5 8f1lfIJA 8 7+ rkl TPD S~ LINNtM)
fIlfllfll~ R~3t fi.,INNI.M S¥'&ol~+ ~Jmh1LINNlM) fIl4E OOfIJA

Uf!. LINNIJ'I SET lLI lM+h1 2f1llrlB rkl Tl'D St4.UIGT LINNll'4).
842+ LINNlI'1 SET IL \J'I+ tJ, fIl 7f1lfIJB 843+ rkl Tl'D ~UIGT LINNlM) fIlfllfIJC 844+ LINNlM SET I ~ fIl4ED CfIlfIJB 845+ rkl . TPD S+ J; LINNtJII)

fIlfllfllD 846+ LINNI1M SET ILl lJo1+tJ, fIl4EF If1lfIJC 847+ rkl TPD S+ ~UIGT LINNll'4) fIlfllllJE 848+ LINNlM SET ILl lM+tJ, fIl4F1 6flJfIJC 849+ rkl . TPD S~UIGT LINNtJII) IJfIllJF 85f1l+ LINNlJIt SET lL ~ fIl4F3 BlJfIJC 851+ rkl TPD S+ = LINNlM) IJU, 852+ LINNlM SET ILl +1 ~ fIl4F5 IJfIlfllD 853+ rkl Tl'D S+(LNGTH LINNlM)
0f1l11 854+ LINNlM SET ILINNIJ'I+tJ, 1IJ4F7 50f1lD 855+ rkl TPD S+(UIGT LINNlMl
fIlfll12 856+ LINNUM SET ILINNlM+tJ, fIl4F9 AfIlIIJD 857+ rkl TPD S+ (UIGT LINNlM)
IJfIl13 858+ LI-NNUM SET I LINNlM+ tJ, 1J4FB FlJIIJD 859+ rkl TPD S+~UIGT LINNU'4)
IU~ 4f1lIJE Hg!t LINNU4 SET lLI lM+h1 \J.'o1

~ Tl'D S+~UIGT LINN) IJfIl15 862+ LINNlI'1 SET ILl lJo1+tJ, 1J4FF 91JIJE 863+ ~ . TPD St4.UIGT LINNlM)
fIlIJ16 864+ LINNlM SET IL lM+tJ, 1J501 ElJfIlE 865+ ~ TR> SiJNUIGT LINNll'J) IJfIl17 866+ LINNtJII SET IL ll'I+tJ, 1J503 30.IJF 8f+ rkl TPD S+ ~UIGT LINNIM) fIlIJ18 88+ LINNlM SET ILl lM+tJ, 1J505 SlJIJF 869+ ~ Tl'D S+ JUIGT LINNU'4)
fIl'19 871J+ LlNNlM SET (LI NIM+1) .

871
!KEY8Q\RO LOOI<lJP TABLE . . 872

873 iTHIS TABLE CCNl'AINS ALL THE ASCII CHARACTERS
874 ·THI\T ARE TRANSMITTED BY THE TERl'IINAL .
875 ;THE CHARACTERS ARE <R:;ANIZED SO 'l'HI\T BITS IJ 1 AND 2
876 IARE THE SCAN UNES, BITS 3{;4 AND 5 ARE THE RETURN LINES 877 ;BIT 6 IS SHIFT AND BIT 7 I CONTROL
878 be B507 38 879 KYLKUP: 38H,39H ;8 AND 9 1J508 39

1J5IrJ931J 881J DB 3,,",2DH ;fIl AND -1J5fIJA 2D
1J5IrJB §g
IJ 5fIJC

881 DB 3DH,SCH ;= AND \
1J5fIJD 08 882 DB fIl8H,lJfIlH ;BS AND BREAK 1J5IJE IJIJ
1J5IJF 75 883 DB 75H,69H ;L(loIER CASE U AND I fIl511J 69

I~H ~ 884 DB 6FH,7I1JH ; L(loIER CASE 0 AND P
1J513 SB 885 DB SBH,SCH ;[AND\ 1J514 SC
fIl515 fIJA 886 DB fIJAH,7FH ;LF AND DELETE 1J516 7F
1J517 6A 887 08 GAH,6BH ;L(lOIER CASE J lIND K fIl518 6B
1J519 6C 888 DB GeH,38H ; L(loIER CASE LAND; fIl5lA 3B
fIl51B 27 889 DB 27H,9,," ;' AND NOTHING 1J51C BIJ
fIl51D IIJD 89f1l DB fIlOH,37H ;CR AND 7 fIl51E 37
fIl51F 6D 891 DB 6OH,2CH ; L(loIER CASE M AND CO'I'tA fIl52f1l 2C

. 892 fIl521 2E DB 2EH,2FH ;PERIOD A.IIID StASH fIl522 2F
1J523 IJfIJ 893 DB fIl,,",II11H ;BLANK AND NOTHING fIl524 IIf1l

I~~~ ==
894 DB II,,",fIlfllH ;NarHING AND NOTHING

11527 filII 895 DB 0,,",61H ;NarRING lIND LOIlER CASE A fIl528 61
fIl5297A 896 DB 7AH,78H ; L(loIER CASE Z AND X fIl52A 78
fIl52B 63 897 DB 63R,76H ; L(loIER CASE C AND V fIl52C 76
fIl52D 62 898 ~ 62H,6ER ; L(loIER CASE B AND N 1152E 6E

AfN<ll304A

APPLICATIONS

9S2F 79 899 DB 79H',90H ;LO.iER CASE Y AND NOTHING 9539 99
9531 99 999 DB 9AH,20ij ;NOTHING AND SPACE 9532 29
9533 64 901 DB 64H,,61;1I ; LCMER CAsE D AND F 9534 66
0535 67 992 DB 67H,68H ; LO.iER CASE G AND H 9536 68
053799 993 DB 99H,11H, ';TAB AND LO.iER. CASE Q 0538 71

; L<MER CASE WANDS S5ra ~~ 994 DB 77H,73H
9~ 8 65 905 DB 65H,72H ;LCJolERCASE E AND R 953C 72

;LCJolER cAsE T AND NOTHING 953074 996 DB 74H,99H
9~3E 99

; EScAPE AND r 9 3F 18 997 DB 18H,31H
S549 31

541 32 998 DB 32H,3.~a ; 2AND3
0542 j~ 0543 909 DB 34H,35H ;4AND5 9544 35

; 6 AND OOTHil.iG 0545 36 919 DB 36H,99H
954690
9547 2A 9ll DB 2AH,28H ;* AND)' 9548 28

; (AND-954929 912 DB 29H,5FH
054A SF
0548 28 913 DB 28H,00" ; + AND OOTHING 954C 90
954008 914 DB 98H,9111H ;8S, A.~D 8REAI<
954E 00
054F 55
9550 49

915 08 55H,49H ;U AND I
0551 4F 916 DB 4FH,5011 ;0 AND P 0552 59

; 1 AND NO CIfARACTER I 0553 50 917 DB 5oo,90H
9554 99
9555 r/JA 918 DB 0AH,7FH ;LF AND DELETE
S~~~ lK 919 DB 4AH,48H ;J AND K 9558 48
05594C 929 DB 4CH,3AH ;L AND : 05SA 3A
9558 22
055C 99

921 DB 22H,99H ;. AND NO CIfARACTER
9550 00 922 DB 0oo,26H ;CR AND & 055E 26
055F 40
9560 3C

923 DB 4DH,3CH ;M AND <
9561 3£ 924 DB 3EH,3FH ;> AND ? 0562 3F
9563 00 925 DB 00H,99H ;BlANK AND NOTHING 9564 99
0565 90 926 DB 09H,99H ;NOTHING AND NOTHING 9566 09

99H,41H 0567 99 927 DB ;NOTHING AND A 0568 41
9569 SA 928 DB SAH,58H ;Z AND X 056A 58
056B 43 929 DB 43H,56H ;C AND V 050C 56
9560 42
956E 4E

939 DB 42H,4EH ;B AND N
956F 59. 931 DB 59H,99H ; 'l AND NOTHING 9570 00
9571 90 932 DB 09H,20H ;NO CIfARACTER AND SPACE 9572 29
9573 44 933 DB 44H,46H ;0 AND F
9574 46
9575 47 934 DB 47H,48H ~ :G AND H 0576 48
0577 09 935 DB 09H,51H ;TAB AND Q 9578 51
0579 57 936 DB" 57H,53H ;W AND S 957A 53
957B 45 937 DB 45H,52H ;E ANDR 957C 52
9570 54 938 DB 54H,09H ;T AND NO CONNECTION 957£ 09
957F 18 939 DB 1BII,21H ;ESCAPE AND' I 9589 21
9581 40 949 DB 40Hr 23H :@ AND • 9582 23
9583 24 941 " DB 24H,25H :$ AND , 0584 25
0585 5E 942 DB SEH,99H ; A AND NO COONECTION

AFN.()1304A

APPLICATIONS"

0586 0B
943

; THIS IS WHERE TIE CONTROL CfIARACTERS ARE LOOKED UP 944
945 be ,NOTHING 0587 00 946 0eH,098

0ra8 00
947 DB 00H,0eH ,NOl'HING SW SS

058B 011l 948 DB 011lH,00H ,NarHING 058C IIlIil
1Il58D 00
0SSE 1Il0

949 DB 00H,098 ,NOTHING

IIl58F 15 950 DB 15H,09H ,CONTROL U AND I 0590 09
0591 IIlF 951 DB 0FH,10H ;CONTROL 0 AND P 0592 10

,CONTROL [AND \ 1Il593 0B 952 DB esH,ecH
0594 IIlC

fJAH,7FH ,LF AND DELETE 0595 fJA 953 DB
1Il596 7F
1Il597 0A 954 DB fJAH,0BH ,CONTROL J AND K
0533 0B

IIlCH,00H ;CONTROL L AND NOTHING 059 ec 955 DB
0~9A 00
o 9B 00 956 DB 0eH,0eH ;NOTHING ' 059C 00
0590 00 957 DB 0DH,0eH ;CR AND NOTHING 059E 00
059F 00 958 DB 0DH,00H ;CONTROL root AND CCXo!MA 05.\1Il 00
05.\1 00 959 DB 00H,l'JeH ;NOl'HING 05.\2 00
05A300 960 DB 00H,1'J0H ;NOTHING 05.\4 00

0eH,I'JI'JH : ;NOTHING AND NOTHING 05.\5 00 961 DB
05.\6 01'1
05.\7 lA 962 DB lAH,18H ;CONTROL Z AND){
1'15.\8 18
05.\9,03 963 DB 03H,16H ;CONl'ROL C AND V 0!W. 16
05AB 02 964 DB 02H,0EH ;CONTROL B AND N 0SAC 0E
0SAD 19 965 DB 19H,01'JH ;CONl'ROL Y AND NarHING 05.\E 00
0SAP 1'10 966 DB 00H,2eH ;MarHING AND SPACE 0580 20
05B1 04 967 DB 04H,06H ;CONTROL 0 AND F 1'1582 06
05B3 07 968 DB 07H,1'J8H ;CONTROL G AND H
0ra4 08
o B5 00 969 DB 0eH,llH ;NarHING AND CON'mOL Q 0586 11
0587 17 970 DB ,17H,13H ,CONTROL WANDS 0588 13
0589 06 971 DB 06H,12H ;CONTROL E AND R 058A 12
I'J58B 14 972 DB 14H,l'JeH ;CONl'ROL W AND NOTHING I'J58C 1'10
05BO IB 973 DB 1BH,lDH ;ESCAPE AND HOME (CREDIT) 058E 10
058F IE 974 DB lEH,lCH ;CtRSCR UP AND JnolN (CREDIT) 05C0 Ie

'05Cl 14 975 DB 14H,lFH ;CtRSCR RIGHT AND LEFT (CReDIT) 05C2 IF
05C3 00 976 DB 00H,00H ;NarHING 05C4 00

977
; LOOK UP TABLE Fm 8253 BAuo RATE GENERA'lm 978

979 be 05C500 980 BDLK: 00H,05H,69H,03H ;75 AND.110 BAUD
:~~ ~~
05C8 03
0SC980 981 DB 80H,02H,40H,01H ;150 AND 300 BAUD 05CA 02
05Ca 40
0sec 01
05CD A0 982 DB fJA0H,0eH ;600 BAUD 05CE 00
0SCF 50
0500 00

983 DB 50H,00H ;1200 BAUD
0501 28 984 DB 28H,00H ,2400 BAUD 0502 00
0503 14 985 DB 14H,00H ;4800 BAUD 0504 00
05D50A 986 DB fJAH,00H ;91)00 BAUD 0506 00

8-41 AFN-01304A

APPLICATIONS·

rIlFEl
rIlrllrill
rIl0r1l1
rIl002

"""2 rIlrll"l
rIlrll"2
""rill
rIl""l
rIl"0l
"0"1
rIl00l
rIl00l
"rIl0l
"rIl"l

PUBLIC Sl!MBOtS

EXTERNAL SYMBOtS

USERSYMBOtS
ADX A "4CD
CAPLOC A "22E
CLRLIN A rIl327
CNlM A 60r1l3
CURSX A rIlFE2
FMFD A rIl3CA
~ArIlFEA
KYLKUP A 05"7
LNFD A rIl3F6
LPI<BD A rIlrll98
POPIl\T A rIl034
RXRDY A rIl1l3
S'1BAUD A rIl0DC
UPI A rIl1E9

ra~ ;DATA AREA
989 bRG
§~ CtRS'!': a; fFE1H
992 CtRSX: a; 1
993 TOPAD: a; 2
994 Lae8r1l: a; 2
995 USCIR: a; 1
996 CURAD: a; 2
997 KE'ill'IN: OS 11
998 KSCllh a;
999 BAUD: a; 1

1r1l00 KE'iOK: a; 1
1r1lrlll ESCP: a; 1
1"02 SIC>N: a; 1
1r1lrll3 RETUN: a; 1
l01!J4 SCNUN: a; 1
1"05 END

ARND A 1!J460
CGRT A"3AD
CLRST A 1!J2D5

~5 ~ ~~~1
FRAME A "167
KEYINP A "121
lAST A "FOI!J.
LNF01 A QJ3FC
NOVER A 1!J38D
PORTA A 1800
SAVKEY A 01AF ..
STKEY A 0223
UPCUR A "333

BAUD A "FEe
CHREe A 024E
CLSCR A "3E4
CONCL A 02FO
£XloIN A "2AE
G018 A 0359
KEIDK A 0FEO
LOCUR A "3B8
LNG'l'H A QJ"50
NTOIfER A "364
POR'1B A l8QJ1
SCNLIN A "FF1
STPTR A "FE"
USCHR A 0FE7

ASS&o\BLY COMPLE'1'E, NO ERRORS

BOLl< A 0SC5
clIRPUr A "477
CNTril A 6r1JrIlril

~ ~ ~~~~
HQIIE A rIl397
KEYS A rIl131
LEiT A QJ36E
LOADX A QJ3EF
OK1 A 049C
PooTC A 1802
SCR . A QJ211
TOPAD A rIlFE3
USTD A ArlJrIlril

BTDIS A rIlF80
CLEAR A rIl2CF
CNT1 A 6001

~mp ~ ~il~
IN75 A rIlrllF9
KPTK A rIlrll84
LINNlJ'I A "rIl19
LOC83 A rIlFE5
OK7 A QJlSC
RDKB A rIl18F
SETUP A 0UF
TPDIS A rIl8r1lrll
USTF A Mlrll1

BYPASS A rIli38F
CLLINE A rIl415
CNT2 A '5r1lrll2
ClRAD A QJFE8
ESSQ A "27B
INT75 A 1401
KYCIOO A rIl18A
LIN'rAB A 0405
LOOPF A. QJrlJA7 ONSor A rIl453
RETLIN A "FFril
SR::ON A 0FEF
TRANS A QJ14B

AFN-Ol304A

ARTICLE
REPRINT

AR-178

September 1983

Reprinted with permiuion from Electronic Design', Vol.29, No.9; copyright Hayden Publishing Co., Inc., 1981

ORDER NUMBER: 210507.001

Fewer parts make a microprocessor-based CRT controller cost-effective,
and interrupt-driven software cuts overhead on the system's CPu.

Low-cost CRT control
does mo.re with less . ' ,

The multitude of components and the CPU over­
head long associated with cathode-ray-tube con­
trollers are rapidly becoming conspicuous b~' their
absence. In particular, an intelligent terminal based
on Intel's iAPX 88/10 (80881 microprocessor and 8276
small-system CRT controller eliminates all but 22

. of the ~early 40 chips required by other CRT 'con­
trollers (even those with microprocessors and inte­
grated peripherals). It also cuts overhead on the
processor to less than 25%, so that the 88/10 is free
to implement such intelligent terminal functions as
local data processing. '

tions. Threp manual switches on the PC board select
the baud rate, and one of the 8253's three independent
programmablp interval timers generates the 8251A's
baud-rate clock under software control.

The three PC -board s\\'itehes an' monitored by the
iAPX 88/10 to determine the desired baud rate .
When the CPU detects a change in the switch
positions, the 8253 is loaded with the appropriate
count for the new baud rate.

An 8255A provides three 8-bit parallel I/O ports.
Two I/O ports ('on tribute ke~'board scanning, and the

sync

The iAPX 88/10 implementation supplies charac­
ters directly to the 8276 by means of interrupt-driven
software, eliminating the need for a direct-m(>mor~'­
access (DMA) controller. The design interfaces
directly with standard CRT monitors, contact­
closure keyboards, and RS-232C serial-comnlunica­
tion links (asynchronous or bisynchronous), to pro­
vide a complete stand-alone operator ·interface.

Video To'

vertoc}a

Although the primary design goal-implementing
a low-cost CRT terminal-has excluded some useful
CRT features, these are easily made available
through additional external hardware. For exampl'e.
composite video is added with two TTL packages, ~
transistor, and some resistors and capacitors. Anoth­
er simple option involves the two general-purpose
attribute output's on the 8276 and lets users select
anyone of four colors on a color. monitor.

Basic system configuration and architecture

Central to the 22-chip CRT controller design is an
iAPX 88/10 8-bit microprocessor operating at 5 MHz
and supported by two 8185 l-kbit x 8 static RAMs
and a 2716 control software PROM (Fig. 1). An 8251A
programmable communication interface provides
synchronous or asynchronous serial communica-

Thomas ROSII, Applications Mgr. Peripheral Components
Intel Corp.
3065 Bowers Ave., Sant!! Clara, CA 95051

HOrizontal.
_sync

(from 8253)

1. Intelligent terminals: b\liltwith Intel's iAPX 88/10 (8088)
microprocessor and new 8'276 small-system CRT controller,
take this basic configuration to reduce parts count and
minimize overhead on the system CPU.

Electronic Design. April 30, 1981

CRT

Low-cost CRT

third port senses option-switch settings and tne
vertical-retrace signal ftom the 8276 (for CRT syn­
chronization upon reset).

'The CRT dot and character timing is generated
by an 8284A clock generator. Another 8253 timer
provides the appropriate horizontal-retrace timing
for the CRT monitor. In its programmable one~shot
mode. this timer generates a 32-l's horizontal-retrace
pulse for the CRT monitor (Ball Brothers TV-12)., A
simple user-initiated change in the software will
modify this delay time to suit different CRT
monitors. The third and last timer in the 8253 is
available for any user-defined need.

A 2716 EPROM on the controller board serves as
a user-programmable character generator. A shift
register transforms the data from the character
EPROM into a serial-bit stream to il~uminate dots
on the CRT screen. The 2716 character generator
helps to create special symbols and characters for
word processing, industrial-control applications, or
foreign-language displays,

The controller hardware is divided into processor
and support, serial and parallel 110, and CRT -(!ontrol
sections. The processor and ,support section ronsists
of an iAPX 88/10 microprocessor, which is supported
by two 8185 1-kbit X 8 static-RAM devices, and
another 2716 EPROM (containing 2 kbytes of'control
firmware). The iAPX 88/10 uses a 15-MHzcrystal
(with an 8284A) 'to operate at a 5-MHz clock rate.
The 8185 memories attach directly to the iAPX 88/10
multiplexed bus. An 8282 latches eight address Unes
(Ao-A1) from the multiplexed bus for 2716-prograrri
memory access (Fig. 2).

The serial and parallel 110 section of the terminal
includes the 8255A programmable peripheral in­
terface, and the CRT section'contains the 8276 CRT
controller and support circuits. Ali of the co~t~oller's
I/O operations are memory mapped (see tablel. '

How the ,controller board communicates

The CRT-controller board communicates. to com­
puter systems and other CRT units through a serial
interface. Both RS-232C and TTIrcompatible in­
terfaces are available at the J1 connector. The unit's
standard software supports eight data-transmission
rates: 9600. 4800, 2400, 1200. 600, 300, 150, and 110
baud. These rates are switch-selectable on the PC
board. Since the baud-rate clock is generated by an
8253, baud rates may be easily modified in software.

Keyboard scanning is supported through the A and
B ports of a 8255A programmable perlphetal in­
terface. Therefore, low-cost unencoded keyboards
can be used. The eight scan lines (port B) and eight
return line!> (port A) support a 64-contact c1osure­
key matrix. The three switches attached to port C
permit baud-rate selection. Four general-purpose

Electronic D •• lgn • April 30. 1981

Memory map of contrOller I/O opefatIons
, Addreaa" Selected , ,': eom

00000 - 00003 RAM Interlupt v.ector ".~
00004 • 00029 RAM Stack, local vlrilbla' "
00030 • 007FF RAM ~Iay II""" 01000 • 01001 8276iJ comm~.

01900 6276 8276 row buff., ",
12000 • 12001 8251 A Serial ch8nnel " >', "
14000 • 14003 8253 " Bauck ... timer
18000 • 18003 8255A Keyboard, .Itc""f~
FF800 • FFFFF 2715 Program storage :f,

:;,;,,~

2., The processor and support section of the intelligent
terminal's hardware contains two 8185 RAMs attached '
directly to the ,APX 88/1 0 multiplexed bus, An 828211,tches
eight ilddress lin'es (Ao·A,) from the multiplexeo bus for 2716. ,
program memory access.

CPU
control

090-1'

,3.,~Here are the major lunctl~nal blocks 01 th~ 8276
prpgraf\lrYIable CRT controller. ThiSl!evlce'permlts software

, ~pecllicatlon of rYlost CRT ·screen format charactlnl'tlc,
(cursor position, characters/row, rowslframe).

inputs on port C permit the software to sense
depression of the ~aps-loCk ke~. the control key. and
the shift key. as well as the position of the line/local
switch. The ~st input on port C senses the status
of the vertical retrace (VRTC) output of the 8276. so
that, the controller can synchronize with the CRT
display on power up Qr ~fter a hardware reset.

All keybOard I/O connects to the te~minal board
by means' of a 40-pin header on its edge. All seven
option-switch inputs are also brought to the connec­
tor. so that option switches may be installed on the
key.board if desired.

Soft~are, specifies the screen format

The CRT display is controlled by the 8276 program­
mable CRT controller (Fig. 3). With this,device, most
CRT screen-format characteristics-such as the
cursor position, the number of characters per row,
and the numher of rows per frame~can he specified
through softwarp. Th(' 8276 handle~ all display tim­
ing including retrace time delays.

In" the current design, 2000 characters are dis­
played on 'the CRT screen (25 rows of 80 characters).
Each character is formed as a5 x 7-dot matrix within
a)arger 7 x 10 matrix (Fig. 4). Other screen formats
(e.g .• 16 rows of 64 characters) can be easily im­
plemented with a few software changes and no
hardware changes.

The 8276 contains two 80-character row buffers
(see "Row l3uffers Reduce System Overhead"). While
one buffer displays the current character line on the
screen, the 8276 fills the other row buffer from

Line
number

o 0 0 o 0 o 0
o 0 0 • 0 o 0
o 0 • o • o '0

o • 0 o 0 • 0
0 • 0 [J [J • 0
,0 • • • • • 0 0 • 0 o 0

• '0
0 • 000

• 0 o [J 0 o 0 o 0
0 [J 0 0 [J 0 0

11088

AD

memory. This data transfer begins when the 8276
issues a data request (by means of the ,BRDY pin).
causing an interrupt to the CPU. In response to this
interrupt. the CPU activates the RAM's cs and RD
inputs. while simultaneously activating the 8276 BS
and WR inputs (Fig. 5). Through this technique. a
single bus cycle suffices to transfer each -byte from
the RAM into the CRT row buffer. After the row
buffer is filled, the CPU ex.its the in'terrupt-service
routine.

But the 8276 can do more than simply paint
characters on a CRT screen. Its end-of-row-stop
buffer-loading code allows the control software to
blank individual displa~' lines. Also, the end-of~the­
screen-stop buffer-loading code initiates an erase to
the end of the screen.

The 8276 supports software selection of visible­
field "attributes" that can blink. underline. or high­
light (intensify) characters on the screen and can
reverse the video-character fi~lds (black letters on
a white background). Two general-purpose attribute
outputs are provided to control the user-defined
display capabilities.

Hardware provides three support functions .

The 8276 is supported by three hardware func­
tions: a dot/character-clock oscillator. an EPROM
character generator. and a character-shift register
(Fig. 6). The dot/character-clock oscillator consists
of an 8284A operating at 11.34 MHz and providing
an 88.2-ns dot clock. A 74LS163 divi(,('s this clock
by 7 to generate a 1.62-MHz (617-ns) character clock.

WA CS AD

8276 8185

4. The dot',matrlx character font used
In the low-cost CRT controller creaies
85 X 7 chllracter In a 7 X 10 matrix,
(example shown hi an upper-case A).
Top and bottom lines are blanked for
character separation. and the '
remalnlngllne Is r.servecnor
cur,or/underllne display;

5. Row-buffer loading for tha 8276 begins when a single 8088 string Instruction
moves'data bytes from the 8185 RAM to the 8276 row buffer. The 8088 CPU "thinks"
It Is loading the AXreglstl!r. "

EI.ct~onlc D.olgn • April 30. 1981

Low-cost CRT

The 8276 is programmed to display one raster line
every 61.7 /ts-a complete character line every 617
ItS (ten raster lines). The 8276 is also programmed
to refresh the screen every 16.7 ms (60 Hz).

Each character row consists of ten raster lines.
Seven lines display the 5 X 7-character matrix, two
lines are blanked for row spacing, and one line
displays the cursor and underline.

The 8276 uses the line count (LOo-LC3) outputs to
indicate the current raster line during the displa~'
of each character. These outputs, combined with the
character-code outputs (CCo-CCs), are sent to ,the
2716, which generates the dot pattern for displa~·.
This dot pattern is loaded into the shift register and
is serially clocked for display by the 11.34-MHz dot
clock.

During the vertical-retrace interval, the row buf­
fer for the first line of the next frame is loaded by
the iAPX 88/10. When the frame starts, the 8276
outputs the first character on its CCo-CCs pins; the
LC outputs are all zero. Exactly 617 ns later, the next
character code is emitted by the 8276. This process
continues every 617 ns \ijltil all 80 characters have
been output. Then the 8276 generates a horizontal­
retrace pulse, which is converted to the appropriate
pulse width for the CRT monitor by the 8253.

At the end of the first raster line,' the 8276
increments the LC outputs. The next nine raster lines

are similar to the first-the 8276 outputs the same
80 character codes on the CCo-CCs pins for each of
the raster lines, and the LC outputs are incremented
after each raster line.

While the ten raster lines are being displayed, the
8276 is also filling the next row buffer. After the
tenth raster line is completed, the 8276 resets the
LC count and outputs character codes'for the second
row on the CCo-CCs pins. As this row is displayed,
the first row buffer is filled with information for
the third row. The 8276 alternates row buffers until
all 25 rows are displayed. At this time, the vertical­
retrace signal is activated, and the scanning process
is repeated for the next frame.

During display, the 8276 automatically activates
the video-suppress pin (VSP) andlor light-enable
outputs (LTE~', as appropriate. to control rl'trace
hlanking, genl'rate the cursor, or underline charac­
ters.

Software is split between two priorities

The software for the CRT controller is divided into
high and low-priority sections. The high-priority
"foreground" software is activated each time the
8276 requests (through the iAPX 88/10 NMI inter­
rupt) that an 80-character row buffer be filled. The
8276 row buffer is filled by performing 80 sequential
memory reads. As each read is performed, the

~_~oHortzonJal
I--_L-/ out

·f-+===-..,--...... --<lVertlcalout

6. CRT controBogic supports the 8276. Three hardware functions are Involved: a dot/character clock OSCillator,
an EPROM character generator, and a character-shllt register.

Electronic Dellgn • April 30. 1981

847

Low-cost CRT

Row bUffers reduce system overhead
If no row buffer is present, the CRT controller must

go to main memory to fetch every character, during
every dot scan line. Thus, the central processing unit is
forced to reiinquish the system bus 90 to 95% of the
time. That CPU inactivity (overhead) greatly de­
grades total system performance and efficiency, CRT
terminals using this approach are typically limited to
between 1200 and 2400 baud on their serial-com­
munications channels.

However, with the 8276's row-buffered architec­
ture, the' CRT controller need only access the main
memory once for each displayed character 'row. This
approach reduces system bus overhead for CRT re­
freshing to 25% (maximum). The CPU is then free to
perform other local-processing functions, for instance,
processing data at 9600 baud on a serial-communica­
tions channel.

PUSHF save registers
PUSH SI used by
PUSH CX subroutine

MOV SI,CURAD point to current line
ADD SI,OFFSET
CLD auto increment
MOv CX,40

REP LODS WDPTR move 40 words
CMP SI, LAST check for end of screen
JNZ KTPK jump if not at end
MOv SI,TOPDIS end-set to top

KTPK MOv CURAD,SI

POP CX restore
POP SI
POPF

7. A screen-refresh routine illustrates how the IAPX ,88/10
load-string (LODs) Instruction fills an 8276 row buffer. The
15 lines take 167 pS ,and are run every ten CRT lines
(every 617 ~s).

XOR
MOV
MOV
CMP
JL
CMP
JG
XLAT

AX,AX
BX, ESCTBL
AL,USCHR
AL,4,IH
SETUP
Al,48H
SETUP

JMP (AX)

clear AX
load table, poi nter
,read character
check for 41 H
not valid
check for 48H
not valid
translate to routine
address

8. This routine checks the keyboard character to see If It Is
a valid escape-sequence command (41 H through 48H); Ifthe
character Is valid, a translate table jumps to a service routine.
With the powerfullAPX 88/1 0 translate Instruction, tHe service
routine takes just 7 ~s.

Electronic Oe.lgn • April 30. 1981

hardware'automatically sends a write (over buffer­
select and write pins) to the 8276.

The simultaneous memory-read lind 8276-write
commands transfer characters from the 8185 RAM
to the 8276 in a single memory cycle-without a
direct-memory-access (DMA) controller. The 80
reads are under the control of the CPU load string
(LODS) instruction, which handles 40 word loads with
iAPX 88/10 code (Fig. 7). The complete refresh
sequence for one line requires approximately 167/lB.
As a result, processor overhe~d for refresh opera­
tions is approximately 27%.

Foreground software also involves keyboard scan­
ning that is performed only at the end of each display
frame (after 25 rows or 16.7 ms). If a key depression
is noted during one of these scans, the information
is stored for further background processing. An
iAPX 88/10 routine checks the character to de­
termine whether it is a valid escape-character com­
mand (Fig. 8). In this procedure, the iAPX 88/10's
translate instruction (XLA t) takes care of table
lookup.

Th.e low-priority software section handles "back­
ground" processing. It monitors the 8251A serial I/O
port and provides processing for characters entered
via the keyboard or with the serial interface. Back­
ground software executes continuously except when
interrupted for the higher-priority foreground proc­
essing.

Cumbersome scrolling technique avoided

A refresh-buffer memory stores all 2000 charac­
ters that can be displayed on the CRT screen. The
foreground software transfers one row (of 80 charac­
ters) at a time to the 8276. Two pointers are employed
during normal operation. Under the control of fore­
ground processing software, the current-row pointer
contains the address of the next row to be displayed.
This pointer must always be correcl', so that a row
can be transferred to the 8276 when requested. The
buffer pointer contains the address of the next CRT
buffer location to be written into (from either the
keyboard or the serial port). Controlled by the
background software, the buffer pointer indicates
the cursor's actual location.

The simplest refresh-buffer organization as­
sociates the first memory address with the upper left
position on the CRT,screen. All other characters are
stored sequentially (Fig. 9).' But this method makes
CRT screen scrolling difficult. Scrolling requires that
each display line be moved up one row. The top line
of the CRT is lost, the bottom line is blanked, and
the cursor is placed at the beginning of the bottom

, line.
With this fixed sequential organization, all charac­

ters in the refresh buffer must be moved forward

Low-costCRT

---,
lin N_ - ASCII

30H A 41 First character, 'Irst row

31H 73

32H space 20

80H I 49 First character, second row

81H C 43

7FFH space 20 last screen characler

II. TIIII memory/screen-character reletlonshlp exists when all
characters are stored sequentially, making scrolling difficult.

7AOH
30H

---, - ASCII lin No ...

30H 61 First character, 25th row

31H 6E

32H 64

80H I 48 First character, 'lfst row

81H C 43

7FFH space 20 Last character first row

10. If .. quentlat memory orientation Is retained but
character. do not have to be moved In memory, scrolling can
be much more efficient. Here, scrolling II accomplished
limply by chenglng the dllplay-start pointer. The
memory/,cn,en-character relatlon,hlp II shown after a scroll
of one line from the posHlon,lIIultreted In Fig. 9.

I

llectfonic 0.. April 30. 1981

by 80 characters (memory locations) to scroll the
screen. (Each line moves up one row on the CRT and
the last 80 characters in the buffer are blanked.)
Moving 1920 characters each ti~e the screen scrolls
a single linC' is ver~' slow and cumbersome.

The low-cost CRT controller avoids this problem
with a slight modification of the fixed-sequential
scrolling technique. Here, sequential memory orien­
tation is retained while the need to move characters
in memory is eliminated.'This 'approach requires an
additional display-start pointer that points to the
memory location of the first chara~ter to be dis­
played.

At system initialization. the display.start pointer
is set t.o 30H, the huffE'r-start address. During each
vertical-retrace intcnal, the current-tow pointer is
initialized from the display-start pointer. Scrolling

. is performed hy mercl~' changing the display-start
pointer.

For a 'sinf,(le row scroll, the display~start pointer
moves ahead 80 charactcrH to location 80H, and the
first SO characters in the huffer an' hlanked. During
the next vertical retrace, the foreground software
sets the current-row pointer to the display-start
location (SOH), and begins transferring characters to
the S276 from this address.

The character in mcmor~'-Iocation 80H (previousl~'
the first character in the second row) now occupies
the first displa~' position on the CRT screen (first
character of the first row). When the foreground
software reachE's the end of the display buffer, the
next row is read from the bE'ginning of the buffer
(location 30H). Thus, the first SO chara('ters in the
buffer appear on the last displa~' row (Fig. 10).

Each subsequent ~croll moves the display start
pointer forward by 80 characters. Buffer olJerations
automatically "roll over" to the physical beginning
of the buffer after passing the last buffer location.

Since the row-by-row character display is con­
trolled by iAPX 88/10 software, other display tech­
niques may be used. In particular, a linked list'struc­
ture is extremely adaptable to word-processing and
text-editing functions. This method allows each row
within a file to be changed independently of other
rows.

Because the rows are linked or "chained together"
by pointers, rows may be easily inserted or deleted
by simply changing pointers. To display a CRT
frame, the processor. simply follows the pointer chain
from one row to the next.O

How useful?
Immediate deSign application
Within the next year
NQt applicable

Circle

547
548
549

8275
PROGRAMMABLE CRT CONTROLLER

.. Programmable Screen and Character
Format

• 6 Independent Visual Field Attributes

• 11 Visual Character Attributes
(Graphic Capability)

• Cursor Control (4 Types)

• Light Pen Detection and Registers

• MC5-S1®, MCS·8S®, IAPX 86, and
IAPX 88 Compatible

• Dual Row Buffers

• Programmable DMA Burst Mode

• Single + SV Supply

The Intel@ 8275 Programmable CRT Controller is a singie chip device to interface CRT raster scan displays
with Intel@ microcomputer systems. It is manufactured on Intel's advanced NMOS process. Its primary
function is to refresh the display by buffering the information from main memory and keeping track of the
display position of the screen. The flexibility designed in the 8275 will allow simple interface to almost any
raster scan CRT display with a minimum of external hardware and software overhead.

eelK

LC3 VCC
LC2 'LAO

LCl LAl

0"0-7 CCO_6 LCo LTEN

DRQ RVV

DACK VSP

HRTC GPAl

VRTC GPAO

iID HLGT

ORQ LCO_3
WR IRQ

OACK LPEN CCLK

IRQ DBo CCs

DBl CCs

jjjj
DB2 CC4

LA0-1
DB3 CC3

WI! DB4 CC2 HATe

AO
VATC' DBs CCl HlGT
RVV DB6 CCo LTEN
VSP DB7 cs

~ GPAO_l
GND

LPEN

Figure 1. Block Diagram Figure 2. Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product No Other CirCUit Patent Licenses are Implied.
©INTEL CORPORATION, 1982 a.so APRIL 1982

ORDER NUMBER: 21,IM84-G01

intJ 8275

Table 1. PIn DescrIptIons

PIn PIn
S,,,,bol No. 1Jpe Nama and Function S,mbol No. 1Jpe Name and Function

L~ 1 0 'Line Count: Output from the line count- Vcc 40 +5V Powar Supply.
LC2 2 er which is used to address the charac-
L9, 3 ter generator for the line po8itio~ qn the
LCo 4 screen.

DRQ 5 0 DMA Requa.t: Output signal to the
8257 DMA controller requesting a DMA

, LAo 39 0 Une Attribute Code.: These attribute
'LA, 38 cddes have to be decoded externally by

the dot/timing logic to generate the
horizontal and vertical line combina-
tions lor the graphic displays specified

oycle. by the character attribute codes.

DACK 6 I DMA Acknowledge: Input signal from LTEN 37 0 Llfiht Enable: Output signal used to
the 6257 DMA controller /lckno\iYledging enable the video signal to the CRT. This
that the requested DMA cycle he been output is active at the programmed
granted. underline cursor position, and at posi-

HRTC 7 0 Horizontal Ratrace: Output signal tions specified by attribute codes.

which is active during the programmed RW 36 0 Reve,.. Video: Output signal used to
horlzontel, retrece ,interllal: During this indicate the CRT circuitry to reverse the
period the VSP output is high and the video signal. This output is active at the
LTEN'output Is low. cursor position If a reverse video block

VRTC 6 0 Vertical Ratrace: Output signal which
is active during the, programmed
vertical retrace interval. During this

cursor is programmed or at the posi-
tions -specified by the field attribute
codes.

period the VSP output is high and tile VSP 35, 0 Video Suppre.slon: Output signal
LTEN output is low. used to blank the video signal to the

RD 9 I Read Input: A control signal to read
registers.

WR 10 I Write Input: A control signal to write
commands into the control registers or
write date into the row buffers during a
DMAcycle.

LPEN 11 I Ught Pen: Input signal from the CRT
system signifying that a light pen signal
has been detected.

CRT. This output is active:
-during the horizontsl and vertical re-

trace intervals.
-at the top and bottom lines of rows If

underline is programmed to be num-
ber 6 or greater.

-when an end of row or end of screen
code is detected.

-when a DMA underrun occurs.

DBo 12 I/O BI-Dlrectlonal Three-State Date Bu.
DB, 13 Une.: The outputs are enabled during
DB, 14 a read of the C or P ports.
D~ 15
DB4 16
DB. 17
DB. 18
DB7 19

-at regular intervals (1/16 frame Ire-
quenllY ,for cursor, 1/32 frame fre-
quency for character 'and field attri-
butes)-to create blinking displays as
specified by cursor, character attri-
bute,'or field attribute programming.

GPA, 34 0 Oenerel Purpo.e Attribute Code.:
GPAo 33 Outputs which are enabled by the gen-

Ground 20 Oround.
eral purpose/field attribute codes.

HLGT 32 0 Highlight: Output signal used to inten-
sify the display at particular positions on
the screen as specified by the character
attribute codes or field attribute codes.

IRQ 31 0 Interrupt Reque.t.

CCLK 30 I Character Clock (froll! dllt/tlmlng logic).

CC. 29 0 Character Code.: Output from the
CCs 28 row buffers used for character selection
CC4 27 in t~e character generator.
CC3 26
CC2 25 "

CC, 24
CCo 23

CS 22 I Chip Select: The read and write are en-
abled by CS.

Ao 21 I Port Addrea.: A high input on Ao
selects the "c" port or command regis-
ters and a low input selects the "P"
port or parameter registers.

AFN-002248

8275 """ * " ,

FUNCTIONAL DESCRIPTION

Data Bus Buffer
This 3-state, bidirectional, 8.bit buffer is. used to interface
the 8275 to the system Data 8us.

This functional block accepts inputs from the System Con­
trol Bus ,and generates control signals for overall device
ope,ration. It contains the Command. Parameter. and Status
Registers that store the various control formats for the
device functional,definition.

AO OPERATION REGISTER

0 Read PREG

0 Write PREG

1 Read SREG

1 Writs CREG

0 1 0 0 Write 82?5 Parameter
0 0 1 0 Read 8275 Parameter
1 1 0 0 Write 8275 Command,
1 0 1 0 Read 8275 Status
X, 1 1 0 Three-State
X X X 1 Three-state

RD (Read)
A "low" on this input informs the 8275 that the CPU is
reading data or status information from the 8275.

WR (Write)
A "low" 0\1 this input informs the 8275 ~hat the CpU is
writing data or control words to the 8275.

CS (Chip Select)
A "low" on this input selects the 8275. No reading or writ­
ing will oc;cur unless the deviCe iuelected. When CS is high,
the Data Bus in the float state and RD and WR will have no
effect on the chip.

DRQ (I)MA Reque.t)
A "high" on this output informs the DMA Controller that
the 8275 desires a DMA transfer.

DACK (DMA Acknowledge)
A "low" on this input informs the 8275 that a DMA cycle
is in progress.

IRQ (Interrupt Request)
A "high" on this output informs the ,CPU that the 8275
desires interrupt service. '

AfN.OO224B

8275

FUNCTIONAL DESCRIPTION

Character Counter
The Cl)aracter Counter is a programmable counter that is
used to determine the number of characters to be displayed
per row and the length of the horizontal retrace interval. It
is driven by the CCLK (Character Clock) input, which
should be a derivative of the external dot clock.

Line Counter
The Line Counter is a programmable counter that is used to
determine the number of, horizontal lines (Sweeps) per
character row. Its outputs are used to address the external
character generator ROM.

Row Counter

The Row Counter is a programmable counter that is used to
determine the number of character rows to be displayed per
frame and length of the vertical retrace interval.

Light Pen Registers

The Light Pen Registers are two registers that store the con·
tents of the character counter and the row counter when·
,ever there is a rising edge on the LPEN (Light Pe,n) input.

Nota: Software correction is required.

Raster Timing and Video Controls
(

The Raster Timing circuitry controls the timing of the
HRTC (Horizontal Retrace) and VRTC (Vertical Retrace)
outputs. The Video Control circuitry controls the genera·
tion of LA0-1 (Line Attribute), HGLT (Highlight), RVV
(Reverse Video). LTEN (Light Enable), VSP (Video Sup·
press), and GPAO_1 (General Purpose Attribute) outputs.

Row Buffers
The Row Buffers are two 80 cl,aracter buffers. They are
fi lied from the microcomput~r system memory with the
character codes to be displayed. While one row buffer is
displaying a row of characters, the other is being filled with
the next row of characters.

080_7

ORO ___ _

DACK

IRa

eelK

ceo...

LCO_3

LAO-l

• HRTe
VRTe
HLGT
RVV
LTEN
vsp

L,-----...,Jr-' GPAo_l

LPEN

Figure 3. 8275 Block Diagram Showing Counter
and Register Functions

FIFOs

There are two 16 character FIFOs in the 8275. They are
used to provide extra row buffer length in the Transparent
Attribute Mode (see Detailed Operation section).

Buffer Input/Output Controllers

The Buffer I nput/Output Controllers decode the characters
being placed in the row buffers. If the character is a charac·
ter attribute, field attribute or special code, these con·
trollers control the appropriate action. (Examples: An
"End of Screen-Stop DMA" special code wi II cause the
Buffer Input Controller to stop further DMA requests, A
"Highlight" field attribute will cause the Buffer Output
Controller to activate the HGLT output.)

AFN-002248

8275

I

SystEM OPERATION
J

The 8275 is programmable.,to Ii large number of different
display formats. It prov,ides raster timing, display row buf­
fering, visual attribute decoding, cursor timing, and light
pen detecti on.

It is designed to intetface with the 8257 DMA Controller,
and standard character generator ROMs for dot matrix
decoding. bot level timing must be provided by external
circuitry.

MEMORJES "

U
1< SYSTEM BUS -(

OBO_7
, I'imifR AO

lOW PBO~7
MEMW WR
lOR AD
CS CS
HRO IRO
HACK

ORO LCO-3
8257

,
VIOEd SIGNAL

OMA
OACK

CHARACTER

CONTROLLER GENERATOR

8275 CC0-6
. HORIZONTAL SYNC

CRT DOT

CONTROLLER TIMING VERTICAL SYNC
CCLK AND

INTERFACE
IIllTENSITY

VIDEO CONTROLS

Figure 4. 8275 Sy~te",sBlock, Diagram Showing Systems Operation

AFN.oo224B

intJ 8275

General Systems Operational Description The number of lines per character row, the underline posi­
tiorr, and blanking of t'op and bottom lines are program­
mable. (See Programming Section.) The 8275 provides a "window" into the microcomputer

system memory.

Display characters are retrieved from memory and dis­
played on a row by row basis. The 8275 has two row buf­
fers. While one row buffer is being used for display, the
other is being filled with the next row of characters to be
displayed. The number of display characters per row and
the number of character rows per frame are software pro­
grammable, providing easy interface to most CRT displays.
(See Programming Section.)

The 8275 provides special Control Codes which can be used
to minimize DMA or software overhead. It also provides
Visual Attribute Codes to cause special action or symbols
on the screen without the use of the character generator
(see Visual Attributes Section).

The 8275 also controls raster timing. This is done by gen­
erating Horizontal Retrace (HRTC) and Vertical Retrace
(VRTC) signals. The timing of these signals is program­
mable.

The 8275 requests DMA to fill the row buffer that is not
being used for display. DMA burst length and spacing is
programmable. (See Programming Section.)

The 8275 can generate a cursor. Cursor location and format
are programmable. (See Programming Section.)

The 8275 displaY6 character rows one line at a time.

The 8275 has a light pen input and registers. The light pen
input is used to load the registers. Light pen registers can be
read on command. (See Programll1ing Section.)

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character
.--"-..~.--"-...--"-...--"-..

00 ••• .000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

First Line of a Character Row

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character

.--"-...--"-...--"-...--"-...--"-...--"-...--"-..
00. ••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0.

'0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0 '

Second line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character

.--"-...--"-...--"-..--~----
00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0
~DODO.OD •• DOO.OO.ODOOOOOOOOOOD.OOO.OO.DDO.OO.OOO.D
080000.00.0000.00.0000000000000.000.00.000.00.000.0

Third Line of a Character Row

1st 2nd 3,d 4th 5th 6th 7th
Character Character Character Character Character Character Character --..---"---------

00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0
0.0000.00 •• 000.0080000000000000.000.00.000.00.000.0
0.000080080.00.0080000000000000.000.00.000.00.000.0
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
0.0000.00.00.0800.0000000000000.0.0000.000.00.0.0.0
080000800.000 •• 00.0000000000000.00.000.000.00.0.0.0
00 •••• 000.0000.00 ••••• 000000000.00.0000 ••• 0000.0.00

Seventh Line of a Character Row

Figure 5. Display of a Character Row
\

"

AFN4lO224B

8275·

Display Row Buffering
Before the start of a frame, the 8275 requests "DMA and
one row buffer is filled with charactElrs.

CCLK

CCO_6

ORO lCO_3

DACK

IRa

AD

Wli LAO_l

HRTC

AO
VRle
HLGT
RVV
LTEN

cs ------..J vsp
GPAO_l

LPEN

Figure 6. First Row Buffer Filled
\

When the first horizontal sweep is started, character codes
are output to the character generator from the row buffer
just filled. Simultaneously, DMA begins filling the other
row buffer with the next row of characters.

DRO ____ ~

DACK

IRa

CClK

lCO_3

lAO_l

HRTe
VRle
HLGT
RVV
LTEN
vsp

Lr------,.r"""' GPAO_l

LPEN

Figure 7. Second Buffer Filled, First Row
Displayed

After all the lines of the character row are scanned, the
roles of the two row buffers are reversed and the same
procedure is followed for the next row.

ORO

DACK

IRa

AD

Wli

cs

Figure 8. First Buffer Filled with Third Row,
Second Row Displayed

This is repeated until all of the character rows are dis"
played ..

AFN-00224B

intJ 8275

Display Format

Screen Format

The 8275 can be programmed to generate from 1 to 80
characters per row, and from 1 to 64 rows per frame.

123456789 80
2
3
4
5
6
7
8
9

64

Figure 9. Screen Format

The 8275 can also be programmed to blank alternate rows.
In this mode, the first row is displayed, the second blanked,
the third displayed, etc. DMA is not requested for the
blanked rows.

123456789. 80

2

3

4

5

64

Figure 10. Blank Alternate Rows Mode

Row Format

The 8275 is designed to hold the line count stable while
outputting the appropriate' character codes during each
horizontal sweep. The line count is incremented during
horizontal retrace and the whole row of character codes are
output again during the next sweep. This is continued until
the whole character row is displayed.

The number of lines (horizontal sweeps) per character row
is programmable from 1 to 16.

The output of the line counter can be programmed to be in
one of two modes.

In mode 0, the output of the line counter is the same as the
Iinen(Jmber.

In mode 1, the line counter is offset by one from the line
number,

Note: In mode 1, while the first line (lin\e number 0) is being dis­
played, the last count IS, output by the line counter (see
examples).

&57

Line Line
Line Counter Counter

Number Mode a Model

a 0 0 0 0 0 0 0 0 0 0000 1 1 1 1
1 0 0 0 0 • 0 0 0 0 0001 0000
2 0 0 0 • 0 • 0 0 0 0010 0001
3 0 o • 0 0 0 • 0 0 00 11 0010
4 0 • 0 0 0 0 0 • 0 0100 00 11
5 0 • 0 0 0 0 0 • 0 a 10 1 0100
6 0 • • • • • • • 0 0110 a 1 a 1
7 0 • 0 0 0 0 0 • 0 01 1 1 a 11 a
8 0 • 0 0 0 0 0 • 0 1000 0111
9 0 • 0 0 0 0 0 • 0 100 1 1000

10 0 0 0 0 0 0 0 0 0 1010 1 a 01
11 0 0 0 0 0 0 0 0 0 101 1 1010
12 0 0 0 0 0 0 0 0 0 1100 1011
13 0 0 0 0 0 0 0 0 0 110' , 100
14 0 0 0 0 0 0 0 0 0 11 10 1 10 1
15 0 0 0 0 0 0 0 0 0 1111 1 1 1 a

Figure 11. Example of a 16-Line Format'

Line Line
Line Counter Counter

Number Mode a Mode!

a 0 0 0 0 0 0 0 0000 100 1
1 0 0 0 • 0 0 0 0001 0000
2 0 0 • 0 • 0 0 0010 0001
3 0 • 0 0 0 • 0 00 11 0010
4 0 • 0 0 0 • 0 0100 00' ,
5 0 • • • • • 0 0' a 1 a 10 a
6 0 • 0 0 0 • 0 a 110 a 1 a 1
7 0 • 0 0 0 • 0 01 1 1 01 1 a
8 0 0 0 0 0 0 0 1000 01 1 1
9 0 0 0 0 0 0 0 100 1 1000

Figure 12. Example of a 10-Line Format

Mode 0 is useful for character generators that leave address
zero blank and start at address 1. Mode 1 is useful for char­
acter generators which start at address zero.

AFN-00224B

8275

Underline placement is also programma.ble (from line num­
ber 0 to 15). This is independent of the line counter mode.

It the line number of the underline is. greater than 7 (line
number MSB = 1), then the top and bottom lines will be
bl.anked.

Line Line
Line Counter Counter

Number Mode 0 Mode 1

, 0 0 0 0 0 0 0 0 0 0 0000 1 0 1 1
0 0 0 o • 0 0 0 0 0001 0000

2 0 0 o • o • 0 o 0 0010 0001
3 0 o • 0 0 0 • 0 0 0011 0010
4 o • 0 0 0 0 o • 0 0100 0011,
5 0 • o 0 0 o 0 • 0 01 01 0100
6 0 • • • • • • • 0 01 1 0 0101
7 0 • 0 0 0 0 o • 0 01 1 1 01 10
8 0 • o 0 0 0 0 • 0 1000 01 1 1
9 0 • 000 0 D • 0 1001 1000

10 • • • • • • • • • 1010 1 0 01
11 0 0 0 0 0 0 0 0 0 101 1 1010

Top and Bottom
Lines are Blanked

Figure 13. Underline In Line Number 10

If the line number of the underline is less than or equal to 7
(line number MSB = 0), then the top and bottom lines will
not be blanked.

Line Line
Line Counter Counter

Number Modo 0 Mode 1

0 0 0 0 • 0 0 0 0000 01 1 1
1 0 0 • 0 • 0 0 0001 0000
2 0 • 0 0 0 • 0 0010 0001
3 0 • 0 0 0 • 0 0011 0010
4 0 • • • • • 0 0100 0011
5 0 • 0 0 0 • 0 0101 0100
6 0 • 0 0 0 • 0 0110 0101
7 • • • • • • • 01 1 1 0110

Top and Bottom
Lines are not' Blal)ked < •

. Figure 14, Underline in Line Number 7

If the line number of the underline is greater than the maxi­
mum number of lines, the,underline will not appear.

Blanking is accomplished by the VSP (Video Suppression)
signal. Underline is accomplished by the L TEN (Light
Enable) signal.

Dot Format

Dot width and character width are dependent upon the
external timing and control circuitry.

Dot level timing circuitry should be designed to accept the
parallel output of the character generator and shift it out
serially at the rate required by the CRT display.

VIDEO

Figure 15. Typical Dot Level Block Diagram

Dot width is a function of dot clock frequency.

Character width is a function of the character generator
width.

Horizontal character spacing is a function of the shift
register length.
Note: Video control and timing signals must be synchronized with

the video signal due to the character generator access delay.

AFN-00224B

8275

Raster Timing
The character counter is driven by the character clock input
(CCLK). It counts out the characters b8ing displayed
(programmable from 1 to 80). It then causes the line
counter to increment, and it "Starts counting out the hori­
zontal retrace interval (programmable from 2 to 32). This
is constantly repeated.

CCLKL
HRTe

\----11
PROGRAMMABLE 1 TO 80 CClKS

lCO_3 PRESENT LINE COUNT __ ~~ ________ -J

Figure 16. Line Timing

NEXT
LINE COUNT

The line counter is driven by the character counter. It is
used to generate the line address outputs (LCO_3) for the
character generator. After it counts all of the lines in a
character row (programmable from 1 to 16), it increments
the row counter, and starts over again. (See Character For­
mat Section for detailed description of Line Counter
functions.)

The row counter is an internal counter driven by the line
counter. It controls the functions of the row buffers and
counts the number of character rows displayed.

ONE CHARACTER ROW .
J •

H"TC ---U-UU-U--

LC"'~~
INTERNAL . PRESENT ROW NEXT "OW
ROW COUNTER . . . ,

PROGRAMMXBLE 1 TO 18
LlNECDUNTS

Figure 17. Row Timing

After the row counter counts all of the rows in a frame
(programmable from 1 to 64)' it starts counting out the
vertical retrace interval (programmable from 1 to 4).

ONE FRAME .
ROW'~6~:~:~ ~Y:XX:I/XXx-

FIRST LAST fiRST LAST
DiSPLAY DISPLAY RETRACE RETRACE

ROW ROW ROW ROW

VRTC ~r----F,-
. * j • •

PROGRAMPt'lABLE PROGRAMMABLE
1 TO 64 ROW COUNTS 1 TO 4 ROW COUNTS

Figure 18. Frame Timing

The Video Suppression Output (VSP) is active during
horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these outputs
with the viqeo signal to the CRT Display.

AFN-lI0224B

8275

DMATlmlng'

The 8275 can be programmed to requesfburst DMA trans·
fers of 1 to 8 characters. The interval between bursts is also'
programmable (from 0 to 55ctiaracter clock periods ±1).
lhis allows the user to tailor his DMA overhead to fit his
system needs.

The first DMA request of the frame occurs one row time,
before the end of, vertical retrace. DMA requests continue
as programmed, until ,~he row \Juffer is filled. If the row
buffer is filled in the middle of a burst, the 8275 terminates
the burst and resets the burst counter. No more DMA'
requests will oceur until the beginning of the next row,
At that time, DMA requests are activated as programmed
until the other buffer is filled.

The first DMA request for a row will start at the first char·
acter clock of the,preceding row. 'If the burst mode is used,
the first DMA request may occur a number of character
clocks later. This number is equal to the programmed burst
space.

If, for any reason, there is a DMA underrun, a flag in the
status word will be set.

INTER~~~
COUNTER X ,LAST RETRACE ROW ~ fIRST DISPLAY ROW

\

t,~/\J"\/\
~~ ~ g
I~ !~~
~~ n
~

ON'
AOWBUfFER

FIUEO

Figure 19. DMA Timing

The DMA controller is typically initialized for the next
frame at the end of the current frame.

Interrupt Timing

The '8275 can be programmed to generate an interrupt
request at the end of each' frame. This can be used to
reinitialize the DMA controller. If the 8275 interrupt
enable flag is set, an interrupt request will occur at the
beginning of the last display row.

JNTERNAL~
ROW

COUNTER

VRTe ~I-__ ~_-'

IRQ

Figure 20. Beginning of Interrupt Request

I RO l.I(ili go inactive after the status register is read.

Figure 21. End of Interrupt Request

A reset command will also cause I RO to go inactive, but
this is not reco,mmended during normal service.

Another method of reinitializing the DMA controller is to
have the DMA controller itself interrupt on terminal count.
With this method, the 8275 interrupt enable flag should not
be set.

Note:, Upon power·up. the 8275 Interrupt Enable Flag may be set.
As a result, the user's cold start routIne should write a reset
command to the 8275 before system Interrupts are enabled.

AFN.Q02248

8275

VISUAL ATTRIBUTES AND SPECIAL
CODES

The characters processed by the 8275 are 8-bit quantities.
The character code outputs provide the character generator
with 7 ,bits of address. The Most Significant Bit is the extra
bit and it is used to determine if it is a normal display
character (MSB = 01. or if it is a Visual Attribute or Special
Code (MSB = 1).

There are two types of Visual Attribute Codes. They are
Charact,r Attributes and Field Attributes.

"

:~~z RIGHT

~ ;-- -00

CHAR GENe r--U
ENABLE

0,

~ 0,

CHARACTER ~ ~
GENERATOR

;;',~ 03 ...:.-.t.J
0, -
~

0,

8215 ~
0, - >----L.J V YERT

Challlcte, Attrlbuta Code.
Character attribute codes are codes that can be used to gen·
erate graphics symbols without the use of a character
generator. Tilis is accomplished by selectively activating the
Line Attribute outputs (LAo-1), the Video Suppression
output (VSP), and the Light Enable output. The dot level
timing circuitry can use these signals to generate the proper

, svmbols.

Character attributes can be programmed to blink or be
highlighted individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is equal
to the screen refresh frequency divided by 32. Highlighting
is accomplished by activating the Highlight output (HG,L T).

Challlcte, Attribute.

MSB LSB
11CCCCBH

I I L HIGHLIGHT
BLINK

L _____ CHARACTER ATTRIBUTE CODE

001 CLOCK

- >--::
">-:::.

.....)-

>- SHIFT

::::: REGISTER

J---
J-----:::.

')---
OUT

q UNE ~

~~ 1£ }"HOR'Z LEFT HALF I ~ LA, _r--- -.... '
;=L)"-VIDEO

LAO ~

I ~ PIPELINE

VSP - ,
-I SYNCHRO· L TEN

LTEN r-- -I NIZATION
HGLT I-- HIGHLIGHT

L--

Figure 22. Typical Character Attribute Logic

AFN·00224B,

intJ 8215

Table 2. Character AHrlbutes
Character attributes were designed to produce th'e following graphics:

0000

0001

, 0010

0011

, 0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

'Character Attribute Code 1011 is not recommended for
"normal operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indeterminate 'character will be generated.

DESCRIPTION

Top Left Corner

Top Right Corner

Bottom Left Corner ~

Bottom Right Corner

Top Intersect

Right Intersect

Left Intersect

Bottom Intersect

Horizontal Line

Vertical Line

Crossed Li nes

Not Recommended'

Special Codes

Illegal'

Illegal

Illegal

Character Attribute Codes 1101, 1110, and 1111 are iilegal.

Blinking is active when B = 1.

Highlight is active when H = 1.

AFN-00224B

inter 8275

Special Code.

Four special codes are available to help reduce memory,
software, or DMA overhead.

Special Control Character

MSB LSB
1 1 1 1 0 0 S S

~SPECIAL CONTROL CODE

S S FUNCTION ..
0 0 End of Row
0 1 End of Row-Slop DMA

0 . End of Screen
End of Screen·Stop DMA

The End of Row Code (00) activates VSP and holds it to
the end of the line.

The End of Row·Stop DMA Code (01) causes the DMA
Control Logic to stop DMA for the rest of the row when it
is written into the Row Buffer. It affects the display in the
S8JT1e way as the End of Row Code (00).

The End of Screen Code (10) activates VSP and holds it to
the end of the frame.

The End of Screen·Stop DMA Code (11) causes the DMA
Control Logic to stop DMA for the rest of the frame when
it is written into the Row Buffer. It affects the display in
the same way as the End of Screen Code (10).

If the Stop DMA feature is not used, all characters after an
End of Row character are ignored, except for the End of
Screen character, which operates normally. All characters
after an End of Screen character are ignored.

Note: If a Stop DMA character is not the last character in a burst or
row, DMA is not stopped until after the next character is
read. In this Situation, a dummy"character must be placed in
memory after the Stop DMA character.

Field Attribute.

The field attributes are control .codes which affect the
visual characteristics for a field of characters, starting at the

character follOWing the code up to, and including, the
character which precedes the next field attribute code, or
up tei the end of the frame. The field attributes ,are reset
during the vertical retrace interval.

There are six ,field attributes:

1. Blink - Characters following the code are caused
to blink by activating the Video Suppressio'n out·
put (VSP). The bl ink frequency is equal to the
screen refresh frequency divided by 32.

2. Highlight - Characters following the code are
caused to be highlighted by activating the High­
light output (HGL T) .

3. Reverse Video - Characters following the code are
caused to appear with reverse video by activating
the Reverse Video output (RVV).

4. Underline - Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5,6. General Purpose - There are two additional 8275
outputs which act as general purpose, independ·
ently p.~o~rammable field attributes. GPA0-1 are
active high OlJtputs.

Field Attribute Code

MSB LSB
10URGGBH

II T IL-- HIGHLIGHT
L·---BLINK

L. _____ GENERAL PURPOSE
L.. -----__ REVERSE VIDEO

'---------UNDERLINE

H = 1 FOR HIGHLIGHTING
B = 1 FOR BLINKiNG
R = 1 FOR REVERSE VIDEO
U = 1 FOR UNDERLINE

GG = GPA1, GP.AO

*More than one attribute can be enabled at the same time.
If the blinking and reverse video attributes are enabled
simultaneously, only the reversed characters will blink.

A~22'B

8215

The 8275 .C$n be programmed to.provid!! visible or invisible
field attribute characters.

If the 8275 is programmed in the visible field attribute
mode, all field attributes will occupy a position on the
screen. They will appear as blanks caused by activation of
the Video Suppression output (VSP). The chosen visual
attributes are activated after thi.s blanked character.

ABC 0 E F G H I J K L M
N 0 P 0 R S T.U V

1 2 3 4 5 6 7 8 9

Figure 23. Example of the Visible Field Attribute
Mode (Underline Attribute)

If the 8275 is programmed in the invisible field attribute
mode, the 8275 FIFO is activated.

CCLK

CC0-6

LCO_3

LAo-,
HRTC
VATe
HlGT
RVV
LTEN
VSf'

"r-----.,..~ GPAo-1

LPEN

Figure 24. Block Diagram Showing FIFO
Activation

Each row buffer has a corresponding FIFO. T!1ese FIFOs
are 16. characters by 7 bits in size.

When a field attribute is placed in the row buffer during
DMA, the buffer input controller re.cognizes it and places
the next character in the proper FIFO.

When a field attribute is placed in the Buffer Output Con·
troller during display, it causes the controlier to immedi·
ately put a character from the FIFO on the Character Code
outputs (CCo-e). The chosen Visual Attributes are also
activated.

Since the FOtFO is 16 characters long, no more than 16 field
attribute characters may be used per Une in this mode.
If more are used, a bit in the status word is set and the first
characters in the FIFO are written over and lost.

Note: Since the FIFO is 7 bits wide, the MSB of any characters put
in it are stripped off. Therefore, a Visual Attribute or Special
Code must not immediately follow a field attribute code. If
this situation does occur, the Visual Attribute or Special
Code will be treated·as a normal display character.

ABCDEFGHI J KLM
NOPORSTUV

1 234 5 6 7 8 9

Figure 25. Example of the Invisible Field Attribute
Mode (Underline Attribute)

Field and Character Attribute Interaction
Character Attribute SymbolS are affected by the Reverse
Video (RVV) and General Purpose (GPAO_l) field attri· .
butes. They are ,not affected by Underline, Blink or High·
light field attributes; however, these characteristics can be
programmed individually for Character Attribute Symbols.

' .. 8~ AFN-00224B

8275

Cursor Timing
The cursor location is determined by a cursor row register
and a character position register which are loaded by com·
mand to the controller. The cursor can be programmed to
appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non-blinking underline
4. a non·bl inking reverse video block

The cursor blinking frequency iS,aqual to the screen refresh
frequency divided by 16.

If a non·blinking reverse video cursor appears in a non·
blinking reverse video field, the cursor will appear as a
normal video block.

If a non·blinking underline cursor appears in a non·blinking
underline field, the cursor will not be visible.

Light Pen Detection
A iight pen consists of a micro switch and a tiny light
sensor. When the light pen is pressed against the CRT screen,
the micro switch enables the light sensor. When the raster
sweep reaches the light sensor, it triggers the light pen
output.

If the output of the light pen is presented to the 8275
LPEN input, the row and character position coordinates are
stored in a pair of registers. These registers can be read on
command. A bit in the status word is set, indicating that
the light pen signal was detected. The LPEN input must be
a 0 to 1 transition for proper operation.

Note: Due to internal and external delays, the character position
coordinate will be off 'by at 'least three character positions.
This has to be corrected in software.

Device Programming

The 8275 has two programming registerS, the Command
Register (CREG) and the Par;lmeter Register (PREG). It
also has a Status Register .(SREG). The Command Register
can only be written into and the Status Registers can only
be read from. They are addressed as follows:

AO OPERATION REGISTER

0 Read PREG

0 Write PREG

1 Raad, SREG

1 Write CREG

The 8275 expects to receive a command and a sequence
of 0 to 4 parameters, depending on the command. If the
proper number of parameter bytes are not received before
another command is given, a status flag is set, indicating an
improper command.

INSTRUCTION SET

The 8275 instruction set consists of 8 commands.

COMMAND NO. OF PARAMETER BYTES

Reset
Start Display
Stop Display
Read Light Pen
Load Cursor

Enable Interrupt
Disable Interrupt

4
o
o
2
2
o
o

Preset Counters 0

In addition, the status of the 8275 (SREG) can be read by
the CPU at any time.

1\FN-00224B

-inter 8276'

1. Reset Command:
DATA BUS

OPERATIDII\ Ao Dl!St;RIPTION MSB LSB

Command Write 1 Rtiset Command 0 0 "0 0 0' 0 0 0

Write
", Se<een Co",p S H H H H H H H 0 Byte l

Write " 0 Sc n ComP V V R R R R R R Byte2 "
Parameters

I Scree.Comp Write 0
Byte 3

U U U U L L L L

Write 0, Screen ComP M F C C Z z z z
-- - -- __ By.t~4 ._ . . -~--- -

Action - After the reset command is written, OMA re­
quests stop, 8275 interrupts are disabled, and the VSP
output is used to blank the screen. HRTC and VRTC con­
tinue to run. HRTC and VRTC timing are random on
power-up.

As parameters are written, the screen composition is
defined.

Parameter - S Spaced Rows
S FUNCTIONS

o NormalR~

Spaced Rows

Parameter - HHHHHHH

H H H H H H

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

0 0 1 1
0 0 0 0

1 1 1 1 1

Horizontal Characters/Row
NO. OF CHARACTERS

H 'PERROW

0 1
2

0 3

.1 80
0 Undefined

1 Undefined

Parameter - W
v v

Vertical Retrace Row Count
NO. OF ROW COUNTS PER VRTC

o 0
o

o

Parameter - RRRRRR
R R R RI R

0 0 0 0 0
0 0 0 0 0
0 0 0 0

1 1 1 1 1

R

0
1
0

1

2
3
4

Vertical Rows/Frame
NO. OF ROWS/FRAME

2
3

64

Parameter - UUUU Underline Placement
LINE NUMBER OF

U U U ,U UNQERLINE

00 0 0 ',1

a 0 0 1 ' 2
0 0 0 3

1 1 16

. ,
Parameter - LLLL Number of Lines per Character Row

L L L .. NO~ OF LINES/ROW' '

0 0 0 0 1
0 0, 0 2
0 0 0 3

1 1 16

o

~rameter- F
F

Field Attribute Mode
,FI!,LD ATTRIBUTE MODE

o Transparent
Non-Transparent

Parameter - CC Cursor Format
C C CURSOR FORMAT

o 0 Blinking revarse video block
o 1

o
Blinking underline

Nonblinking levari. video block
Nonblinking un~erling

Parameter - ZZZZ Horizontal Retrace Count
NO. OF CHARACTER

Z Z ·z Z COUNTS PER HRTC

0 0 0 0 2
0 o 0 4
0 0 1 0 6

1 1 32

Not.: uuuu MSB determines blanking of top and tlottom linas
,11 = blanked, 0 = not blankedl.

, 8-66

'intJ 8275

2. Start Display Command:

IOPERATION
DATA BUS

AO DESCRIPTION MSB LIB

Command I Write 1 StartOlSplay o 0 1 S S S B B

No parameters

SSS BURST SPACE CODE

NO. OF CHARACTER CLOCKS
S S S BETWEEN DMA REQUESTS

0 0 0 0
0 0 7
0 -I 0 15
0 1 1 23

0 0 31

0 1 39
'1 0 47

55

BB BURST COUNT CODE

NO. OF DMA CYCLES PER
B B BURST

0 0 1
0 1 2

0 4
8

Action - 8275 interrupts are enabled, DMA requests begin,
video is enabled, Interrupt Enable and Video Enable status
fl ags are set.

3. Stop Display Command:

IOPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command.1 Write 1 Stop Display 0 1 o 0 0 0 o 0

No parameters .
Action - Disables video, interrupts remain enabled, HRTC
and VRTC continue to run, Video Enable status flag is
reset, and the "Start Display" command must be given to
re·enable the display.

4. Read Light Pen Command
DATA BUS

OPERATION AO DESCRIPTION MSB LSB

Command Wnte f Read Light Pen 0 1 1 0 0 0 0 0

Parameters Read 0 Char. Number , (Char. POSition In Row)
Read 0 Row Number IRow Number)

Action - The 8275 is conditioned to supply the contents
of the light pen position registers in the next two read
cycles of the parameter register. Status flags are not af·
fected.

Not.: Software c:~rrectlon of light pen position is required.

5. Load Cursor Position:
DATABUI

OPERATION AO DESCRIPTION MSB LSB

Command Write 1 Load Cursor 1 0 0 0 0 0 0 0

Parameters
Write 0 Char Number (Char. POSition In Row)

Write 0 Row Number (Row Numbed

Action - The 8275 is conditioned to place the next two
parameter bytes into the cursor position registers. Status
fhigs not affected.

6. ,Enable Interrupt Command:

10PERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 Enable Interrupt 1 0 1 000 o 0

No parameters

Action - The interrupt enable status flag is set and inter·
rupts are enabled.

7. Disable Interrupt Command:

I OPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Command I Write 1 Disable Interrupt 1 1 o 0 0 0 o 0

No parameters

Action - Interrupts are disabled and the interrupt enable
status flag is reset.

8. Preset Counters Command:

lOPERATION
DATA BUS

AO DESCRIPTION MSB LSB

Commandl Write 1 Preset Counters 1 1 1 000 o 0

No parameters

Action - The internal timing counters are preset, corre­
sponding to a screen display position at the top left corner.
Two character clocks are required for this operation. The
counters will remain in this state until any other command
is given.

This command is useful for system debug and synchronita­
tion of clustered CRT displays on a single cpu. After this
command, two additional clock cycles are required before
the first character of the first row is put out.

~7

inter 8275

StatUI Flql
DATA IUS

MSa LSB

Command o IE IR LP Ie VE DU FO

IE - (lnte~ruPt Enabl~) Set or reset by command. It
enables verticai retrace interrupt. It is auto·
maticelly set by a "Start 'Display" command
and reset with the "Reset" command.

I R (Interrupt Request) This flag is set at the begin­
ning of display of the last row of the frame if
the interrupt enable flag is set. It is reset after
a status read operation.

LP - This flag is set whel'\ the light pen input (LPEN)
is activated and the light pen registe'rs have been
loaded. This flag is automatically reset after a'
status read. '

"

'·8-68

IC

:' , ,

(Improper 'Command), ThiS' flag' i~ Set when a
command parameter string is too long or too
short. The flag is automatically reset after a
status read.

VE - (Video Enable) This flag indicates that video
operation' of the CRT is enabled. This flag is
set on, a "Start Display" command, and reset
on a "Stop Display" or "Reset" command.

DU - (DMA, Underrun)' This flag is set whenever a
data underrun occurs during DMA transfers.
Upon detection of DU, the DMA operation is •
stopped and the screen is blanked until after
the vertical retrace interval. This flag is reset
after a status read.

FO - (FIFO Overrun) This flag is set whenever the
FIFO is overrun. It is reset on a status read.

inter 8~75

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias o°c to 70°C
~torage Temperature -65°C to +150°C
Voltage On Any Pin

With Respect to Ground•....• -0.5V to +7V
Power Dissipation•................ 1 Watt

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device: This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated'in the operational sections of this speclfl-

, cation Is not implied.

D.C. CHARACTERISTICS (TA = O"C to 70"C. Vee = 5V ±5%).

Symbol Parameter Min. Max. Units Tell Condition.

VIL Input Low Voltage '-0.5 0.8 V

VIH Input High Voltage 2.0 Vce+0•5V V

VOL Outpui: Low Voltage 0.45 V 10L = 2.2 mA

VOH Output High Voltage 2.4 V 10H = -400 /lA

IlL Input Load Current ±10 /lA VIN = Vee to OV

10FL OutPut Float Leakage ±10 /lA VOUT = Vee to O.45V

lee Vee Supply Current 160 mA

CAPACITANCE (TA = 25°C. Vee = GND = OV)

Symbol Parameter Min. , Max. Unite Te.t Condition.

CIN Input Capacitance 10 pF fc= 1 MHz

CI/O 110. Capacitance 20 pF Unmeasured pins r,~turned to VSS.

A.C. CHARACTERISTICS (TA ~ O"C to 70"C. Vee = 5.0V ±5%. GND = OV),

Bus Parameters
READ CYCLE

Symbol Para,meter Min. Max. Unit. Te.t Conditions
tAR Address Stable Before READ 0 ns

tRA Address Hold Time for READ 0 ns

tRR READ Pulse Width 250 ns

tRO Data Delay from READ 200 ns CL -150pF

tOF READ to Data Floating 100 ns Cl- 150 pF

WRITE CYCLE

Symbol I Parameter Min. Max. Un"s Test Conditions

tAW Address Stable B'efore WR ITE 0 ns

tWA Address Hold Time for WR ITE 0 ns

tww WR ITE Pulse Width 250 ns

tow Data Setup Time for WR ITE 150 . ns .
two Data Hold Time for WR ITE ' 0 ns

8215

WAVEFORMS

TYPICAL DOT LEVEL TIMING

EXT DOT elK

CClK·lL-______ ...1

CCO_6 FIRST CHARACtER CODE SECOND CHARACTER CODE

~ ~OM ACCESS-

CHARACTER --------"""'1,.-------------"\ r----------
GENERATOR

OUTPUT ________ -'

ATTRIBUTES
& CONTROLS

VIDEO
(FROM SHIFT

REGISTER)

ATTRIBUTES
& CONTROLS

(FROM
SYNCHRONIZER)

FIRST CHARACTER

FIRST CHARACTER

ATTRIBUTES a. CONTROLS FOR FIRST CHAR,

SECOND CHARACTER

SECOND CHARACTER

ATTRIBUTES Be CONTROLS
FOR 2ND CHAR

"CCLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8275

LINE TIMING

CClKV\-f"J~
J

CCo_a

HATe

i'"C
LCO_J -+_--_PR_E_SE_N_T_"_'N_E_C_O_UN_T ___ -I \-_____________ --'~ NEXT LINE COUNT

VIDEO
CONTROLS

AND ATTRIBUTES·

~~----~\~\-------\r

r--f\--/\~----\')\--'j ___ A
"LAO_l. VSP, l TEN, HGLT, RVV, GPAO_l

8-70 AFN-00224B

8275

WAVEFORMS (Continued)

ROW TIMING

ceLK

HATe

LCO_3

ImERNAL--------'j~------------------~~--------~1_-----
ROW

COUNTER --------I1'-----------------....:.--l ~--------...J

FRAME TIMING

CCL"

INTERNAL
ROW

COUNTER

VRTe

INTERRUPT TIMING

..
CI

lID

IRQ
ti

8-71

~
~

8275

WAVEFORMS (Continued)

DMATIMING

ORO --f

LPEN_~iJ-----

WRITE TIMING . READ TIMING

INVALID

INVALID

CLOCK TIMING

CCLK

'K.

l

8-12 AFN-00224C

inter
A.C. CHARACTERISTICS (Continued)

CLOCK TIMING

82711

8275

8275-2

Symbol Parameter Min. Ma •• Min. Ma •• Units

tClK Clock Period 480

tKH Clock High 240

tKl Clock Low 160

tKR Clock Rise' 5

tKF Clock Fall 5

OTHER TIMING

Symbol Parameter

tcc Character Code Output Delay

tHR Horizontal Retrace Output Delay

ILc Line Count Output Delay

tAT Control/Attribute Output Delay

tvR Vertical Retrace Output Delay

tRI IRQ! from RDl

two DRQl from WRr

tRO DRQ! from WR! .
tlR DACKj, to WR!

tRl WRl to DACKl

tpR LPEN Rise

tpH LPEN Hold

.
A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

"=X x= 2.0 '2.0

045~8 > TEST POINTS < .8 •

A C TESTING INPIJTS'ARE DRIVEN AT 2 4V FOR A LOGIC "1" AND 0 4SV
FOR A LOGIC "0 "TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A
LOGIC" 1" AND 0 8V FOR A LOGIC "0 "

320 ns

120 ns

120 ' ns

30 5 30 ns

30 5 30 ns

8275 8275-2

Min. Max. Min. Max. Units

150 1,50 ns

200 150 ns

400 250 ns

275 250 ns

275 250 ns

250 250 ns

250 250 ns

200 200 ns

0 0 ns

0 0 ns

50 50 ns

100 100 ns

A.C. TESTING LOAD CIRCUIT

,

DEVICE

• UNDER

~C: TEST ,

\

Co. INCWDES JIG CAPACITANCE

8-73

Test
Conditions

Test
Conditions

Cl = 50 pF

CL = 50 pF

Cl = 50 pF

Cl = 50 pF

~ = 50 pF

CL = 50 pF

~ = 50 pF

CL = 50 pF

/

"

8276
SMALL SYSTEM CRT CONTROLLER

• Programmable Scree.n and Character
Format

• 6 Independent Visual Field Attributes

• Cursor Control (4 :rypes)

• MCS-51®, MCS-85®, iAPX 86, and
iAPX 88 Compatible

• Dual Row Buffers

• Single +5V Supply

• 40-Pln Package

• 3 MHz Clock with 8276-2

The Intel 8276 Small System CRT Controller is a single chip device intended to interface CRT raster scan
displays with Intel microcomputers in minimum device-count systems. Its ptimary function is to refresh the
display by buffering character information from main memory and keeping track of the display position of the
screen. The flexibility designed 1nto the 8276 will allow Simple interface tq almost any raster scan CRT display.
It can be used with the 8051 Single Chip Microcomputer for a minimum IC count design. .

CCLI(
Vee

LC. NC

LC, .NC

LTEN

RVV

DIIo-7 CCO- 6 VSP

GPA,

Q';Ao

BRDY
RD HLGT

LCo-,

lIS
INT

NC

DIIo CCo·
DB, CCs

RD DB.

WR HRTC DB3 CC3 VRTC

C/f' RASTER TIMING HLGT DB. CC.
AND RVV

VIDEO CONTROL LTEN DBs CC,
VSP
GPAo-l Des CCo

ca ~. Ci
GND 2' CiP

Figure 1. Block Diagram Figure 2. Pin Configuration

8-74

8276

'Table 1. Pin Descriptions

PIn
Symbol ,No. Type , N~me and FunCtIon

PIn
Nam_itdFunction I Symbol No. Type'

LC3 ,1 0 Une count. Output from the line count· Vee 40 +5V flOWer aupply.
LC2 2 er which ill used to acjdress the charac-
LC, 3 ter generator for the line positions on
LCo 4 the screen.

NC 39 No connection.

NC 38 No connection.

LTEN 37 0 Light enable. Output signal used to

BRDY 5 0 Buffer ready, Output signal indicating enable the video signal to the CRT. This
that a Row Buffer Is ready for loading of output, Is active at the programmed
character data. underline cursor position, and at posi-

tions specified by attribute codes.

as 6 I Buffer .. Iect. Input signal enabling
WR for character data into the Row

RW 38 0 Reve,.. video. Output signal used to
activate the CRT circuitry to reverse the

Buffers. video signal. This output is active at the
cursor position if a reverse video block

HRTC 7 0' Horizontal retrace. Output signal
which is active during the programmed
horizontal retrace interval. During this
period the VSP output is high and the
LTEN output is low.

cursor is programmed or at the posi-
tions specified by the fielll attribute
codes.

VSP 35 0 Video auppresslon. Output signal
IIsed to blank the video signal to the
CRT. This output is active:

VRTC ,8 0 Vertical retrace. Output'signal which
. is active dllring the programmed verti-
cal retrl!'ce interval, During this period
the VSP output is high and the LTEN
oui'put is low.

- during the horizontal and vertical re-
trace intervals .

- at the top and bottom lines of rows if
underline is programmed to be num-
ber 8 or greater.

- when an lind of row or end of ~reen

RD 9 I Read Input. A control signal to read
registers. ,

code is detected.
- when a Row Buffer under run occurs.

- at regular intervals (1/16 frame fre-
quency, for cursor, 1132. (rame. fre-

WR 10 I Write Input. A control signal to write quency for a.ttributesl~to create
commands into the control registers or
write data onto ,the row buffers.

blinking displays as specified by
cursoror.field attribute programming.

NC 11 No connection, GPA, 34 0 General purpose attribute codes.-
GPAo 33 Outputs which are enabled by the gen-

DBo 12 I/O Bidirectional data bile. Three-state eral purpose field attribute codes.
DB, 13 lines. The outputs are enabled during a
DB2 14 read of the C or P ports.
DB3 15
DB4 16
DBs 17
DB6 18

HLGT 32 0 Hlgbllght. Output signal used to inten-
sify the display at particular positions
on the screen as specified by the field
attribute codes.

INT 31 0 Interrupt output. .
DB7 19 CCLK 30 I Character clock (from 'dot/timing

logic).'

Ground 20' Ground.
I

COs 29 0 Character code •• O~tput from the
CCs 28 row buffers used for character selec-
CC4 27 tion in the character genllrator.
CC3 26
CC2 25
CC, 24
CCo 23

cs 22 I Chip select. Enables AD of status or
WR of command or parameters.

{

CI P 21 I Port addre ... A high input on this pin
selects the "c" port or command regis-
tersand a low Inputselecte the "P" port

I
or parameter ~Isters.

8~75 . AFN·OO22"!'

8276

FUNCTIONAL DESCRiPtiON

Data Bus Buffer,

This 3-state. bidirectional. 8-bit.buffer is used to
interface the 8276 to the system Data Bus.

This functional block accepts inputs from the Sys~
tem Control Bus and generates control signals for
overall device operation. It contains the Command.
Parameter. and Status Registers that store the vari­
ous control formats for the device functional
definition.

C/P OPERATION REGISTER

0 Read RESERVED

0 Write PARAMETER

1 Read STATUS

1 Write COMMAND

RD (READ)
A "low:,' on this input informs the 8276 that the CPU
is reading status information from the 8276.

WR (WRITE)
A "low" on this input informs the 8276 that the CPU
is writing data or control words to the 8276.

CS (CHIP SELECT)
A "low" on this input selects the 8276.for RD or WR
of Commands. Status. and Parameters.

BRDY (BUFFER READY)
A "high" on this output indicates. that the 8276 is
ready to receive character data.

BS (BUFFER SELECT)
A "low" on this input enables WR of character data
to the 8276. row buffers.

INT (INTERRUPT)
A "high" on this output informs the CPU that the

. 8276 needs interrupt service.

C/P RD WR CS as
0 0 1 0 1 Reserved
0 1 0 0 1 Write 8276 Parameter
1 0 1 o ' 1 Read 8276 Status
1 1 0 0 1 Write 8276 Command
X 1 0 l' 0 Write 8276 Row Buffer
X 1 1 X X. High Impedance

.X X X 1 1 High Impedance

Character C.ounter

The Character Counter is a programmi:lble counter
that is used to. determine the number of characters
to be displayed per row and the length of the hori­
zontal retrace interval. It is driven by the CCLK
(Character Clock) input. which should be derived
from the external dot clock. '

Line Counter

The Line Counter is a programmable counter that is
used to determine the number of horizontal lines
(Raster Scans) per character row. Its outputs are

. used to address the external character generator.

Row Counter

The Row Counter is a programmable counter that is
used to determine the number of.character rows to
be displayed per frame.and length of the vertical re­
trace interval.

Raster Timing and Video Controls

The Raster Timing cirCUitry controls the timing of
. the HRTC (Horizontal Retrace) and VRTC (Vertical
Retrace) outputs. The Video Control circuitry con­
trols the generation of HGL T (Highlight). RVV (Re­
verse Video). LTEN (Light Enable). VSP (Video Sup­
press). and GPAO-l (General Purpose Attribute)
outputs.

8-76

Row Buffers

The Row Buffers are two 80-character buffers. They
are filled from the microcomputer system memory
with the character codes to be displayed. While one
row buffer is displaying a row of characters. the
other is being filled with the next row of characters.

Buffer Input/Output Controllers

The Buffer Input/Output Controllers decode the
characters being placed in the row buffers. If the
character is a field attribute or special code. they
control the appropriate action. (Example: A "High­
light" field attribute will cause the Buffer Output
Controller to activate the HGL T output.)

AFN-0022AB

inter 8276

SYSTEM OPERATION

The 8276 is programmable to a large number of dif­
ferent displllY formats .. It provides raster timing, dis­
play row buffering, visual attribute decoding and
'cursor timing. .

It is designed to interface with standard character
generators for dot mat~ix decoding. Dot level timing
must be provided by external Circuitry. .

General Systems Operational Description

Display characters are retrieved from memory and
displayed on a row-by-row basis. The 8276 has two
row buffers. While one row buffer is being used for
display, the other is being filled with the next row of
characters to be displayed. The number of display
characters per row and the number of character
rows perframe are software programmable, provid­
ing easy interface to most CRT displays. (See Pro­

'gramming Section.)

INT BROY
8088

MICRO-
PROCESSOR os

I
8276
CRT cs CONTROLLER

I DE&'~R I
'" " ~t 1t

LCo :3

ceo 6

SYSTEM BUS

..., ::.. .., "..

... " ... ,..

8253-5
8251A COUNTER!

TIMER USART

t
SERIA}

COM~~~~~-r0NS

The 8276 uses BRDY to request 'character data to fill
the row buffer that is not being used for display.

The 8276 d,isplays character rows one scan line at a
time. The number of scan lines per character row,
the underline position, and blanking of top and bot­
tom. lines are programmable. (See Programming
Section.)

The 8276 p.rovides special Control Codes which can
be used to minimize overhead. It also provides Vis­
ual Attribute Codes to cause special action on the
screen without the use of the character generator.
(See Visual Attributes Section.)

The 8276 also controls raster timing. This is done by
generating Horizontal Retrace (HRTC) and Vertical
Retrace (VRTC) signals. The timing of these signals
is also programmable.

The 8276 can generate a cursor. Cursor location and
format are programmable. (See Programming
Section.)

VIDEO SIGNAL

CHARACTf:.R
GENERATOR HIGH

(ROM OR SPEED
HORIZONTAL SYNC

RAM) DOT
TIMING TO CRT
LOGIC VERTICAL SYNC . AND

CClK INTERFACE

INTENSITY

VIDEO CONTROLS

"'" ".. .., i'-

'" ... -<! ~

PROGRAMI 8255A·5
DISPLAY KEYBOARD
MEMORY CONTROllER

f:t 7l ..

KEYBOARD I ST,ATUS I

Figure 3. CRT System Block Diagram

8-77 AFN-OD224B

8278

,111 2nd, ' 3nI 4th 5th 6th 7th
Character Charlct.r Charact.r Charac. Cheracter CII.r~ct.r Charactar

---~~---~--­, ocill ••• oob.oooo.oo ••••• ooDoooooo •••• o~oo.li.poo.o~o.o
, ' Firll Lin. of I Charact';' Row ' ' , ,

1st, 2nd 3rd 4th 5th 6th 7th
Charlctar Character Character Character Character Charactar Chataetar -----------------00_.000.0000.00 ••••• 000000000 •••• 0000 ••• 0,00.000.0
o.OOOO~OHOOO.OO.ooooooooooooo.ooo.oo.ooo.oo.ooo'.o

second LIne of a Charecter Row

,~ ~ 3rd ~ ~' ~ ~
Character, Cha,a~ Character Character Character Charaetar Charaetar ----------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 a.oOOO.OOHOOO.OO.ooooooooooooo.ooo.oo.ooo.oo.ooo.o

0.0000.00.0000.00.0000000000000.000.00.000.00.000.0

Third Line of a Character Row

'111 2nd " 3rd 4th 5th 6th '7th
Chlra~tar Cllaractar Character Character Character Character Charaetar ------------------­OO •• HOOO.oooo.oo ••••• ooooooooo •••• oooo ••• ooo.ooo.o'

0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0
o.[Jooo~o.o.oo.oo.ooooooooooooo.ooo.oo.ooo.oo.ooo.o
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
O.OOoo.ao.OO.O.oo.ooooooooooooo.o.oooo.OOO.OO.O.O.O
~~~~gg:ggg~·E;g:~~~~ggggggggg:gg:ggg~~~~~gg~~~~~g 

Savonth Line of a Character Row 

Figure 4. Display Of A Character Row 

Display Row Bufferlnq 

Before the start of a ftame. the 8276 uses,BRDY and 
BS to fill one row buffer with characters. 

When the first horizontal sweep is started. character 
codes are output to the character generator from the 
row buffer just filled. Simultaneously. the other row 
buffer is filled with the next row of characters. 

After all the lines of the character row are scanned. 
the buffers are swapped and the same procedure ,is 
followed for the next, row. 

This process is repeated until all of the cnaracter 
rows are displayed. 

Row Buffering allows the CPU access to the display 
memory at all times except during Buffer Loading 
(about 25%). This compares favorably to alternative 
approaches which restrict CPU access to the display 
memory to occur only during horizontal and vertical 
tetrace intervals (80% of, the bus time is used to re-
fresh the di~play.)' ,'.. , Figure 5. First Row Buffer Filled 

8-78 

CCo_ 

AFN·OO2248 



inter 8278 

Figure 6. Second Row Buffer Filled, First Row 
Displayed 

Figure 7. First Row Buffer Filled 'With Third Row, 
Second Row Displayed 

Display Format 

SCREEN FORMAT 
The 8276'can be programmed to generate from 1 'to 

, 80 characte~ per row, and1from 1 to 64 rows per 
frame. " 

123456789 .............. 80 
2 
3 
4 
5 
6 
7 
,8 
9 

64 

figure 8. Screen Format 

The 8276 can also be programmed to blank alternate 
rows. In this mode, the first row is displayed, the 
second blanked, the third displayed, etc. Display 
data is not requested for the blanked rows. 

123456789, .............. 80 

2 

3 

4 / 
5 

64 

figure 9. Blank Altemate Rows Mode 

ROW FORMAT 
The 8276 is designed to hold the line count stable 
while outputting the appropriate character codes 
during each horizontal sweep. The' line count is in­
cremented during horizontal retrace and'the whole 
row of character codes are output again during the 
next sweep. This is continued until the entire char­
acter row is displayed. 

The number of lines (horizontal sweeps) per cha~a~ 
ter row is programmable from 1 to 16. 

, The, output of the line courter can be programmed 
to be in one of two modes. 

8-79 

In mode 0, the output ofthe line counteris the same 
as the line number. 



inter 8276' 

In mode 1, the line counter is,offset by one from the 
line number. 

Note: In mode 1, while the first line (line number 0) is being dis­
played, the last count is output by the line counter (see 
examples). 

Line Line 
line Counter Counter 

Number Mode a, Model 

0 0 0 0 0 0 0 0 0 0 0000 1111 
1 0 0 0 0 • 0 0 0 0 0001 0000 
2 0 0 0 • 0 • 0 0 0 0010 0001 
3 0 0 • 0 0 0 • 0 0 00 11 0010 
4 0 • 0 0 0 0 0 • 0 0100 0011 
5 0 • 0 0 0 0 0 • 0 0101 0100 
6 0 • • • • • • • 0 01 10 0101 
7 0 • 0 0 0 0 0 • 0 0111 01 10 
8 0 • 0 0 0 0 0 • 0 1000 0111 
9 0 • 0 0 0 0 0 • 0 100 1 1000 

10 0 0 0 0 0 0 0 0 0 1010 1001 
11 0 0 0 0 0 0 0 0 0 1011 1010 
12 0 0 0 0 0 0 0 0 0 1100 1011 
13 0 0 0 0 0 0 0 0 0 1101 1100 
14 0 0 0 0 0 0 0 0 0 1 1 10 1101 
15 0 0 0 0 0 0 0 0 0 1111 1110 , 

Figure 10. Example of a 16-Llne Format 

Line Line 
Line Counter Counter 

Number Mode a Model 

a 0 0 0 0 0 0 0 0000 100 1 
1 (] 0 0 • 0 0 0 0001 0000 
2 0 0 • 0 • 0 0 0010 0001 
3 0 • 0 0 0'. 0 a all 0010 
4 0 • 0 0 0 • 0 0100 0011 
5 0 • • • • • 0 a 10 1 a 1 a a 
6 0 • 0 0 0 • 0 01 1 0 0101 
7 0 • 0 0 0 • 0 0111 a 110 
8 0 0 0 0 0 0 0 1000 0111 
9 0 0 0 0 0 0 0 10'0 1 1000 

Figure 11. Example of a 10-Line Format 

MGde O'is useful for character generators that leave 
address zem blank and start at address 1. Mode 1 is 
useful for character generators which start at 
address zero. 

Underline placement is als6 programmable (from 
line number'O to. 15). "T:his is independent of the line 
counter mode. ' 

If the line number of the underline is greater than 7 
(line number MSB = 1), then the top and bottom 
lines will be blal')ked. 

Line 
Number 

0 0 

0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 • 
11 0 

0 0 0 o 0 0 

0 0 0 • 0 0 

0 0 • 0 • 0 

0 • 0 0 0 • 
• 0 0 0 0 0 

• 0 0 0 0 0 

• • • • • • 
• 0 0 0 0 0 

• 0 0 0 0 0 

• 0 0 0 0 0 

• • • • • • 
0 0 0 0 0 0 

Top and Bottom 
LInes are Blanked 

Line line 
Counter Counter 
lI(IodeO Model 

0 0 0000 1011 
0 0 0001 0000 
0 0 0010 0001 
0 0 0011 00 1 • 

• 0 0100 00 11 

• 0 0101 0100 

• 0 0110 a 10 1 

• 0 0111 a 11 a 

• 0 1000 all 1 

• 0 100 1 1000 

• • 1010 10 01 
0 0 1011 1010 

Figure 12. Underline in Line Number 10 

If the line number of the underline is less than or 
equal to 7 (line number MSB = 0), then the top and 
bottom lines will not be blanked. 

8-80 

Line Line 
line Counter Counter 

Number Mode 0 ,Mode 1 

a 0 0 0 • 0 0 0 0000 al11 
1 ,0 0 • 0 • 0 0 00 a 1 0000 
2 0 • 0 0 0 • 0 0010 0001 
3 0 • 0 0 0 • 0 a all a 010 
4 0 • • • • • 0 0100 a all 
5 0 • 0 0 0 • 0 a 10 1 a 10 a 
6 0 • 0 0 0 • 0 01 10 a 10 1 
7 • • • • • • • 01 1 1 0110 

Top and Bottom 
Lines are not Blanked 

Figure 13. Underline:in Line Number 7 

If the linenumber of the underline is greater than the 
maximum number of lines, the underline will not ap­
pear. 

Blanking is· accomplished by the VSP (Video Sup­
pression) signal. Ur:lderline is accomplished by the 
L TEN (Light Enable) signal. 

AFN·OO2248 



intJ 8276 

DOT FORMAT 
Dot width and character width are dependent upon 
the external timing and control circuitry. 

Dot level timing circuitry should be designed to ac­
cept the parallel output of the character generator 
and shift it out serially at the rate required by the CRT 
displ~. 

8276 

VIDEO 

Fllilure 14. Typical Dot Level Block Diagram 

Dot width is a function of dot clock frequency. 

Character width is a function of the character 
generator width. " 

Horizontal character spacing is a function of the 
shift register length. • 

'Note: Video control and timing signals must be synchronized 
with the video' signal due to the character generator ac­
cess delay. 

Raster Timing 

The character counter is driven by the character 
clock input (CCLK). It counts out the characters 
being displayed (programmab'le from 1 to SO).ltthen 
causes the line counter to increment, and it starts 
counting out the horizontal retrace interval (pro­
grammable from 2 to 32). This process is constantly 
repeated. ' 

CCLK~" 
I1RTC 

\----11 

LC6-3 __________ J \.=:.:.::::.:.:... 

Figure 15. Line Timing 

Theline counter is driven by the character counter. It 
is used to, generate the line address outputs (LCO- 3) 

for the character generator. After it counts all of the 
lines in a ch"aracter row (programmable from 1 to 
16), it incremen·ts the row counter, and starts over 
again. (See Character Format Section for detailed 
description of Line Counter functions.) 

The row counter is an internal counter driven by the 
line counter. It controls the functions of the row buf­
fers and counts the number of character rows 
displayed. 

ONE CHARACTER ROW . . , 

HRTC~U-U-

LCO"3~b 
INTERNAL . 
ROW COUNTER PRESENT ROW NEXT ROW 

• PROGRAMMABLE 1 TO 16 
LINE COUNTS 

Figure 16. Row Timing 

After the row counter counts all of the rows in a 
frame (programmable from 1 to 64). it starts qount­
ing out the vertical retrace interval (programmable 
from 1 to 4). 

ONE FRAME . 

VRTCL.,~~ 
• ... I 

T • 
PROGRAMMABLE PROGRAMMABl.E 

1 TO 64 ROW COUNTS 1 TO 4 ROW COUNTS 

Figure 17. Frame Timing 

, "j 
The Video Suppression Output (VSP) is active dur-
ing horizontal and vertical retrace intervals. 

Dot level timing circuitry must synchronize these 
outputs with {hoe video signal to the CRT Display. 

S-S1 AFN-00224B 



i~ 8276 

Interrupt Timing 

The 8276 can be programmed to generate an inter­
rupt request.at the end of each frame, If the 8276 
interrupt enable flag is set, an inter,rupt request will 
occur at the beginning of the last display row, 

INTERNAl.~ ROW 
COUNIER 

INT 

Figure 18. Beginning of Interrupt 

INT will'go inactive after the status register is read. 

Figure 19. End of Interrupt 

A reset command will also cause INT to go inactive, 
but this is not recommended during normal service. 

Note: Upon power-up, the 8276 Interrupt Enable Flag may be set. 
Asa result, the user's cold start routine should write a reset' 
command to the 8276 before system interrup,s are 
enabled. . 

VISUAL ATTRIBUTES 
AND SPECIAL CODES 

The characters processed by the 8276 are 8-bit 
quantities. The character code outputs provide the 
character generator with 7 bits of address. The Most 
Significant Bit is the extra bit and it is used to deter­
mine if it is a normal display eharacter (MSB = 0), or 

, if it is a Field Attribute or Specilil Code (MSB = 1). 

Special Codes 

Four special codes are availa~le tQ help reduce bus 
usage. 

SPECIAL CONTROL CHARACTER 

MSB LSB 
1 1 1 1 DOS S 

~ SPECIAL CONTROL CODE 

S S FUNCTION 

o 0 End of Row 
o 1 

o 
End of Row-Stop Buffer Loading 
End of Screen 
End of Screen-Stop Buffer Loadln,g 

The End of Row Code (00) activates VSP and holds it 
to the end of the line. 

The End of Row-Stop Buffer Loading (BRDY) Code 
(01) causes the Buffer Loading Control Logic to stop 
buffer loading for the rest of the row upon being 
written into the Row Buffer. It affects the display in 
the satTle way as the End of Row Code (00). 

The End of Screen Code (10) activates VSP and 
holds it to the end of the frame. 

The End of Screen-Stop Buffer Loading (BRDY) 
Code (11) causes the Row Buffer Control Logic to 
stop buffer loading for the rest of the frame upon 
being written. It affects the display in the same way 
as the End of Screen Code (10). 

If the Stop Buffer Loading feature is not used, all 
characters after an End of Row character are ig­
nored, except for the End of Screen character, 
which operates normally. All characters after an End 
of Screen character are ignored. I' 

Note: If a Stop Buffer Loading is not the last character in a row. 
Buffer Loading is not stopped until after the next character 
isread. In this Situation, II dummy character must be 
placed in memory after the Stop Buffer Loading character. 

Field Attributes 

The field attributes are control codes which affect 
the visual characteristics for a field of characters, 
starting at the characterfoliowing the co~e up to, 
and including; the character which precedes the 
next field attribute code, or up to the end of the 
frame. The field attributes are reset during the verti7 
cal retrace interval. " ' 

AFN·OO224B 



8276 

The 8276 can be programmed to provide visible field 
attribute characters; all field attribute codes will oc­
cupy a position on the screen. These codes will ap­
pear as blanks caused by activation of the Video 
Suppression output (VSP). The chosen visual attri­
butes are activated after this blanked charactEjr. 

There are six field attributes: 

1. Blink-Characters following the code are 
caused to blink by activati'ng the Video Sup­
pression output (VSP). The blink frequency is 
equal to the screen refresh frequency divided 
by 32. ; 

2. Highlight-Characters following the code are 
caused to be highlighted by activating the High­
light output (HGL T). 

3. Reverse Video-Characters following the code 
are caused to appear with reverse video by ac­
tivating the Reverse Video output (RVV). 

4. Underline-Characters following the code are 
caused to be underlined by activating the Light 
Enable output (L TEN). 

5,6. General Purpose-There are two additional 
8276 outputs which act as general purpose, in- , 
dependently programmable field attributes. 
GPAo-1 are active high outputs. 

ABC 0 E F G H I J K L M 
NOPQRSTUV 

1 234 5 6 7 8. 9 

Figure 20. Example of a Visible Field Attribute 
. (Underline Attribute) 

FIELD ATTRIBUTE CODE 

MSB 

1 0 
LSB 

U

1 

R
1
, I.: BLI_H~I ::::::::::::::::::::: =~~~~IGHT 

L-______ GENERAL PURPOSE 

REVERSE VIDEO 
'-------,-,---- UNDERLINE 

8-83 

H = 1 FOR HIGHLIGHTING 
B = 1 FOR BLINKING 
R = 1 FOR REVERSE VIDEO 
U = 1 FOR UNDERLINE 

GG = GPA10 GPAo 

Note: More than one attribute can be enabled at the same time. 
If the blinking and reverse video attributes are enabled 
simultaneously. only the reversed characters will blink. 

Cursor Timing 

The cursor location is determined by a cursor row 
register and a character position register which are 
loaded by command to the controller. The cursor 
can be programmed to appear on the display as: 

1. a blinking underline 
2. a blinking reverse video block 
3. a non-blinking underline 
4. a non-blinking reverse video block 

The cursor blinking frequency is equal to the screen 
refresh frequency divided by 16. 

If a non-blinking reverse video cursor appears in a 
non-blinking reverse video field, the cursor will ap­
pear ~s a normal I4ideo qlock. 

If a non-blinking underline cursor appears in a non­
blinking underline field, the cursor will not be 
visible. 

Device Programming 

The 8276 has two programming registers, the Com­
mand Register and the Parameter Register. It also 
has a Status Register. The Command Register can 
only be written into and the Status Register can only 
be read from. They are addressed as follows: 

c(Fi OPERATION REGISTER 

0 Read Reserved 

0 
, 

Write Parameter 

1 Read Status 

1 Write Command 

The 8276 expects to receive a command and a sequ­
ence of 0 to 4 parameters, depending on the com­
mand. If the proper number of parameter bytes are 
not rece.ived before another command is given, a 
status flag is set, indicating an improper command. 

AFN-00224B 



Instruction Set 

The 8276 instruction set consists qf 7 commands. 

COMMAND 

,Reset 
Start Display 
Stop Display 
'Load Cursor 
Enable Interrupt 
Disable Interrupt 
·Preset Counters 

NO. OF PARAMETER BYTES 

4 
o 
o 
2 
o 
o 
o 

In addition, the status of the 8276 can be read by the 
CPU at any time. 

1. RESET COMMAND 
DAT~BUS 

OPERATION C/P DESCRIPTION MaB LSB 

Command Wnte " Reset Command 00000000 

Write 0 Screen Comp SHHHHHHH 
Byte 1 

Write 0 Screen Comp VVR'RARRR Byte 2 
Parameters 

Screen Camp Write 0 Byte 3 
UUUULLLL 

Write 0 Screen Comp M1CCZZlZ 
Byte 4 

Action-After the reset command is written, BADY 
goes inactive, 8276 interrupts aile disabled, and the 
VSP output is used to blank the screen. HATC and 
VATC continue to run. HATC and VATC timing are 
random on power-up 

As parameters are written, the screen composition is 
defined. 

Parameter-S Spaced Rows 

S FUNCTIONS 

0' Normal Rows 

Spaced Rows 

Parameter"'-HHHHHHH 
Horizontal Characters/Row 

HHHHHHH 

o 0 0 0 0 0 0 
o 0 0 0 0 0 11 
0000010 

001111 
o 1 000 0 

1 1 1 1 1 1 

NO. OF CHARAC1'ERS 
PER ROW 

, 1 
2 
3 

80 
Undefined 

Undefined 

8-84 

Parameter-VV ,Vertlcl!Il Retrace,Row Count 

VV NO.OFROWCOUNT'S~ERVRTC 

o 0 1 
o 1 2 
1 0 3 
1 1 4 

Parameter-RRRRRR Vertical Rows/Frame 

R R R R R R NO. OF ROWS/FRAME 

o 0 0 000 
o 0 0 001 
o 000 1 0 

~ 1 1 1 

1 
2 
3 

64 

Parameter-UUUU Underline Placement 

LINE NUMBER OJ: 
U 'u 0 U UNDERLINE 

o 0 0 0 
000 1 
001 0 

1 1 

1 
2 
3 

16 

Parameter-LLLL Number of Lines 
per Character Row 

L L L L NO. OF LINES/ROW 

o 0 0 0 1 
00012 
~ 0 1 0 3 

1 1 16 

Pa,rameter-M Line Counter Mode 

M LlN.E COUNTER MODE 

o Mode 0 (Non-Offset) 
1 Mode 1 (Offset by 1 Count) 

Parameter-CC Cursor Format 

C C 

o 0 

CURSOR FORMAT 

Blinking reverse video block 
Blinking un'derline o 1 

1 0 
1 1 

Non-blinking reverse video block 
Non-blinking underline 

AFN-00224B 



inter 8276 

Parameter-ZZZZ Horizontal Retrace Count 

z z z z 
NO. OF CHARACTER 
COUNTS PER HRTC 

o 0 00 
000 1 
001 0 

1 1 

2 
4 
6 

32 

Note: uuuu MSB deterjllines blanking of top and bottom lines 
(1 = blanked, 0 = not blanked). 

2. START DISPLAY COMMAND 

DATAaus 
Msa LSa 

00100000 

Actlon-8276 interrupts are enabled, BRDY goes 
active, video is enabled, Interrupt Enable and Video 
Enable status flags are set. . 

3. ,STOP DISPLAY COMMAND 
DATA BUS 

Msa LIB 

01000000 

Action-Disables video, interrupts remain enabled, 
HRTC and VRTC continue to run, Video Enable 
status flag is reset, and the "Start Display" com­
mand must be given to reenable the display. 

4. LOAD CURSOR POSITION 
OAT"BUS 

OPERATION ClP DESCRIPTION Msa LSB 
Command Wnte 1 Load Cursor 1 0 o 0 0 0 0 0 

Parameters Wrrte 0 Char. Number (Char. POSitIon In Row) 
Wrrte 0 Row Number (Row Number) 

Action-The 8276 is conditioned to place the next 
two parameter bytes into the cursor position regis­
ters. Status flag not affected. , 

5. ENABLE INTERRUPT COMMAND 

Action-The interrupt enable flag is set and inter­
rupts are enabled. 

8~ 

6. DISABL.E INTERRUPT COMMAND 

Action-Interrupts are disabled and the interrupt 
enable status flag is reset. 

7. PRESET COUNTERS COMMAND 

DATA BUS 
MSB LSB 

11100000 

Action-The internal timing counters are preset, 
corresponding to a screen display position at the top 
'left corner. Two character clocks are required for 
this operation. The counters will remain in this state 
until any other command is given. 

This command is useful for system debug and syn­
chronization of clustered CRT displays on a single 
CPU. After this command, two additional clock cycles 
are required before the first character of the first row is 
put out. 

Status Flags 

DATA BUS 
MSS LSB 

Command o IE IR X Ie VE BU X 

IE - (Interrupt Enable) Set or reset by command. 
It enabl~s vertical retrace interrupt. It is auto­
matically set by a "Start Display" command 
and reset with the "Reset" command. 

IR - (Interrupt Request) This flag is set at the be­
ginning of display of the last row of the frame 
if the interrupt enable flag is set. It is reset 
after a stat\ls read operation. 

IC - (Improper Command) This flag is set when a 
command parameter string is too long or too 
short. The flag is automafically reset after a 
status read. 

VE - (Video Enable) This flag indicates that video 
operation of the CRT is enabled. This flag is 
set on a "Start Display" command, and reset 
6n ~/'Stop Display" or "Reset" command. 

BU - (Buffer Underrun) This flag is set whenever a 
Row Buffer is not filled with character data in 
time for a buffer swap required by the display. 
Upon activation of this bit, buffer loading 
ceases, al)d the screen is blanked until after 
the v~rtical retrace interval. 

AFN-00224B 



inter 8276 

ABSOLUTE MAXIMUM RATINGS· ' 

Ambient Temperature Undt;!r Bias .... GOC to 70°C 
Storage Temperature ....... : .. -65°C to +150°C 
Voltage On Any Pin ' 

With Respect to Ground ........ -O.5V to +7V 
Power Dissipation ........ , ......•....... 1 Watt 

'" ' 

'NOTICE: Stresses above those Ii,sted under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device, This 
is a stress rating only and functional operation of the device at 
these or any other conditions above those indicated in the opera­
tional sections of this specification is not implied. 

D.C. CHARACTERISTICS (TA = O'C to 70'C; Vee = 5V ±50/0) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

VIL Input Low Voltage -,0.5 0.8 V 

VI'H Input High Voltage 2.0 Vee + 0.5V V 

VOL Output Low Voltage 0.45 V IOL = 2.2 mA 

VOH Output High Voltage 2.4 V IOH = -400/LA 

IlL Input Load Current ±10 /LA VIN '7 Vee to OV 
" " 

IOFL Output Float Leakage ±10 /LA VOUT = Vccto 0.45V 

lee Vee Supply Current 160 mA 

CAPACITANCE (TA ~ 25'C; Vee = GND = OV) 

SYMBOL PARAMETER MIN., MAX. UNITS TEST CONDITIONS 

elN Input Capacitance 10 pF fe = 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins returned to Vss. 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~c, TEtI'r 

':' 

CL INCLUDES JIG CAPACITANCE 
I 

8-86 AFN·OO224B 



inter 8276 

A.C. CHARACTERISTICS (TA = O°C to 70°C; VCC = 5.0V ±5%; GND = OV) 

Bus Parameters 

READ CYCLE 

Symbol Parameter Min. Max. Units 

tAR Address Stable Before READ 0 ns 

tRA Address Hold Time for READ '0 ns 

tRR READ Pulse Width 250 ns 

Test Conditions 

tRO Data Delay from READ 200 ns Cl = 150pF 

tOF READ to Data Floating 100 ns 

WRITE CYCLE 

Symbol Parameter Min. Max. Units Test Conditions 

tAW Address Stable Before WRITE 0 ns 

tWA Address Hold Time for WRITE 0 ns 

tww WRITE Pulse Width 250 ns 

tow Data Setup Time for WRITE 150 ns 

two Data Hold Time for WRITE 0 ns 

CLOCK TIMING 

8276 
, 

8276-2 

Symbol Parameter Min. Max. Min. Max. Units Test 
Conditions 

tClK Clock Period 480 320 ns 

tKH Clock High 240 120 ns 

tKl Clock Low 160 120 ns 

tKR Clock Rise 5 30 5 30 ns 

tKF Clock Fall 5 30 5 30 ns 

OTHER TIMING 
8276 8276-2 

Symbol Parameter Min. Max. Min. Max. Units Test 
Conditions 

tcc CharacterCode Output Delay 150 150 ns CL = 50 pF 

tHR Horizontal Retrace Output Delay 200 150 ns Cl = 50 pF 

tlC Line Count Output Delay 400 250 ns ~ = 50pF 

tAT Control! Attri bute Output Delay 275 250 ns Cl = 50 pF 

tVR Vertical Retrace Output Delay 275 , 250 ns ~ =50pF 

tRI INn from ROi 250 250 ns ~ = 50pF 

two BRDYi from WRj 250 250 ns ~ = 50 pF 

tRO BRDYl from WRl . 200 200 ns Cl = 50 pF 

tlR BSl toWRt 0 0 ns 

tRl WRj toBSj 0 O· ns 

8-87 } AFN-G0224B 



inter 821& 

WAVEFORMS 
Typical Dot Level Timing 

UneTlmlng 

EXT DOTCLK 

CCLK·l 

~---.......... L 
CCo-. FIRST CHARACTER CODe SECOND CHARACTER CODE' 

~ROMACCESS 
CHARACTER ---------.. ,.---''------'-----""'" ,.----------
GENERATOR FIRST CHARACTER SECOND CHARACTER OUTPUT _______ -' '-___________ --J '-________ _ 

ATTRIBUTES 
8. CONTROLS 

VIDEO 
(FROM SHIFT 

REGISTER) 

ATTRIButes 
3. CONTROLS 

(FROM 
• SYNCHRONIZERI 

CCo_& 

HRTe 

FIRST CHARACTER 

ATTRIBUTES&! CONTROLS FOR FIRST CHAR 

'CCLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8278. 

SECOND CHARACTER 

ATlRIBUTES" CONTROLS 
fOR 2ND CHAR 

LCO_3 -t ____ P_RE_S_EN_T_L_'N_'_C_O_U_NT ___ -', r-----------------.~ NExt LINE COUNt 

VIDEO 
CONTROLS 

AND A":TAIBUTES· 

VSP, LTEN, HGLT, RVV. GPAo-1 

8-88 

I"'" 

AFN-00224B 



8276 

Row Timing 

CCLK 

HRTe 

LCO_3 

.NTERNAL ----.\J-------------\\-----....... ~---
ROW 

COUNTER _,-_-J 1-------------\ \-_____ J 

Frame Timing 

Interr~pt Timing 

CClK 

CCLK 

INTERNAL 
ROW 

COUNTER 

VRTe 

\ 

cc LAST RETRACE X FIRST RETRACE 
0-6 ___ C_"A_R_A_C_TE_R __ -!, ,-_..;C_"_AR..;A..;C_TE_R __ 

LCo_3 FIRST LINE COUNT 

'\\.:....._--
HRTe 

INTERNAL --------l--------
COUN~: ------L-l-ST-O-'S-lP-LA-f-R-O-W-~II~R~~~~~~~ 

~AST 
, RETRACE 

ROW 

~pJ \ 

os""", / 
AD 

1"1 ~ 

INT 

8-89· AFN·00224B 



inter 8276 

nmlng for Buffer. Loading 

-j.KQt_ 
IIIIPY J 

II 

Write Timing 

INVALID 

liii0-7 INVALID 

-----' 

Clock Timing 

CCLl 

'K' 

Read Timing 

Input and Output Waveforms for A.C. Tests 

U""J2.0 2.0~ .....> T""POINTS <0.. 

FOR A.C TESTING. INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC "1" 
AND 0 45V FOR A LOGIC "0 " TIMING MEASUREMENTS FOR INPUT 
AND OUTPUT SIGNALS ARE MADE AT 2.0V FOR A LOGIC "1" AND 
o 8V FOR A LOGIC "0 " 

AFN.Q0224B 



ARTICLE 
REPRINT 

AR-255 

By managing tasks like graphics generation and CRT refreshing, a 
dedicated VLSI display controller simplifies the design of intelligent 
graphics work stations. . 

Dedic~.ted VLSI chip lightens 
graphics display design load 

The role of graphics is becoming increasingly im­
'portant for unscrambling the communications traf­
fic between people and computers. Thanks to micro­
processors and dedicated control ICs, designing 
high-reliability graphics work stations is now eas­
'ier and less expensive than in the days of small­
scale integration and expensive discrete-circuit 
CRT technology. Microprocessors simplify work­
station design by transferring some graphics con­
trol tasks from hardware to software. However, a 
dedicated VLSI controller such as the 82720-with 
an on-board graphics processor-can push another 
step forward toward fast and economical design of 
high-quality intelligent graphics systems. 

A typical ~pplication for the controller is a • 
graphics work station aimed at high-end business 
and low-end engineering systems. Since such a 
station usually fits on the top of a desk, all of the 
electronics must be contained within a single 

Gary DePalma, Field Applications Engineer 
Mark Olson, Product Marketing Engineer 
Roger Jollis, Design Engineer 
Intel Corp. 
2625 Walsh Ave., Santa Clara, Calif. 95051 

printed-circuit board. This type of system requires 
a resolution of about 512 by 512 pixels and is 
frequently called on to display three-dimensional 
objects in various perspectives. To minimize the 
distortion of rotating objects, horizontal and verti­
cal pixels should be equally spaced. 

A' typical display (500 vertices) must be drawn on 
the screen in less than 1 second to provide satis­
factory interaction with the operator. The display 
may consist of lines, arcs, filled areas, and colors­
seven colors are acceptable (see "A Look into 
Graphics Fundamentals"). 

Seri!!1 link interfaces station 

An intelligent work station usually interfaces 
with a mainframe host via a serial communications 
link, a keyboard, and a serial link with an optional 
graphics tablet. This type of graphics input/output 
subsystem is -diagrammed in Fig. 1. Two 51/4-in. 
floppy disks can satisfy the mass-storage needs of 
the system. Disk formatting must be compatible 
with the requirements of an IBM personal comput­
er. Moreover, general-purpose software written for 

from ELECTRONIC DESIGN- January 20, 1983 



, \, < 

Computer Graphics: Graphics display controller 
" "" 'I \ ~ ~,' ' 1-; 

this computer must~lso be ~ble to'run 'on the work­
station, 

,Two of the most basic functions of a graphics 
system are generating and refreshing images on 
the CRT screen. Information pertaining to the 
images is stored in the bit-map memory, where 
monochrome pixels are represented by single bits 
and color pixels by groups of bits. Ljljes and arcs 
defined in ,nQrmalized screencoordinates must be 
converted into images of the'physical object. 

In a bit-mapped raster 'graphics system,' lines 
, . ,"" . 

'descl'ibedby a transformed display list ate reduced 
to a series of dnts and placed in the image I1lemory. 
The selection of the dots that will be activated is 
achieved through a scanning conversion algorithm, 
which must create lines that appear very smooth; 
start and end as expected, and look symmetrical no 
matter in which direction they are drawn. The 
algorithm is repeated thousands of times to draw a 
single picture and thus must operate as quickly as 

, possible. At the sam~ time, the image iri memory 
must be repainted on the- screen 30 times/s for , 

1. A graphics 110 subsystem for an intelligent work ~jation consists of input peripherals 
(a keyboard andJablet), a serial communications link, and,mass storage (floppy disks). 
Intelligence is pro)llded,by the mlcroproces8or'aildthe peripheral and memory controllers 
(a). The three bllisic -tasks Performed-I/O, transformation processing. and CRT control-all 
require data ,in t~e form of display lists stored in Ii d,!ta base (b). 

8-92 



interlaced frames and 60 times/s for noninterlaced 
frames. Simple tasks, they nevertheless demand a 
high memory bandwidth. 

Unlike other system control tasks, gen,erating 
graphics figures requires both bit-manipulation 
and mathematics capabilities. Integer addition and 
multiplication operations calculate the coordinates 
of points on a line or a circle. But since pixels 
generally are neither complete words nor bytes, 
logical operations must be performed on the bits 
within the word that contains the selected pixel. 

The irtner loop of a so-called Bresenham line­
drawing algorithm requires two or three addition 
operations, two comparisons or tests, and the mask­
ing of tile correct value into the word for each pixel. 
Algorithms for drawing circles or filling areas are 
even more complex. In the inner loop of a filling 
algorithm, for example, the old word must be read 
from the bit map to determine whether some, all, 
or none of the pixels are within the area to be filled. 
If they are, the 'algorithm tests whether the pixels 
must be modified and then returns the word to the 

2. The 82720 graphics display controller separat .. the t.ska of graphics generation and CRT 
refruhing from other .ystem tasks. That parmlts much greater aystem bandWidth, leading to 
graphics work .. tatlons that not only draw sharp pictures, but a180 offer color. 

3. ,Three m,niory plline •• re implamentect in the II:!~ between the bit map ,and the gra""ICII' di .... ay , ' 
controller. Three primary colOra-red, green, and blue-are provided, with tha cOiltroiler'. upper add,... bits 
rupon.ible for .eJectlng the memory plane. during reed/Todlry/wrlle cyclee,. '" ' 

8-93 



computer Graphics: Graphics display controller 

bit map. Because such algorithms are heavily exer­
cised, they must execute at extremely high speeds 
to avoid an adverse impact on the system's overall 
efficiency. 

Memory bandwidth is the most precious com­
modity in a graphics system. In this application, 
screen refreshing requires that 750,000 bits be read 
60 times/s, equating to a bandwidth of almost 6 
Mbytes/s. The picture refreshing, therefore, has 
the highest.-priority access to memory because any 
missed readings show up as noise in the picture, a 
situation th,at sometimes occurs with simple sys­
tems possessing a single-microprocessor, single­
memory scheme. 

In the latter type of design, one processor handles 
all functions except refreshing, which is imple-

8-94 

men ted by a discrete counter arrangement or a 
simple CRT controller chip. Nevertheless, the re- , 
fresh memory bandwidth always slows down the 
microprocessor. That loss of speed can be elimi­
nated simply by separating the processor's memory 
system from the bit map, a process that effectively 
doubles system memory bandwidth. 

The 82720 graphics display controller can provide 
the means of separating graphics generation and 
CRT refreshing from the other tasks and also 
perform the two tasks quickly and concurrently 
with the others. Residing between the micro­
processor and the bit-map memory and video logic, 
the controller refreshes the CRT ljke other CRT 
controllers, converts high-level commands into im­
ages by placing the proper data into the correct bit 



map, and interfaces easily ana simply with propri­
etary microprocessors. 

The 82720 accepts high-level commands (such as 
DRAW LINE, DRAW ARC, and FILL RECTANGLE) and 
executes them at much faster speeds than general­
purpose microprocessors, primarily because it is a 
dedicated graphics hardware processor. Burst 
drawing rates as high as 1 pixel every 800 ns can be 
achieved. Screen refreshing is handled directly by 
the controller. The displayed portion of the bit-map 
memory can be configured to allow the display to be 
scrolled through memory in any direction. The hor­
izontal and sync periods both are fully pro­
grammable, as is the position of the sync pulse in 
the blanking interval. Furthermore, the controller 
can be programmed to refresh low-cost dynamic 

RAMs. In the design 'being considered, the 82720 
offloads the microprocessor from low-level graphics 
tasks, as shown,in Fig. 2. 

For the bit-map interface, the memory is imple­
mented as three planes, each 16 kwords by 16 bits, 
with each plane driving red, green, or blue (Fig. 3). 
The upper address bits-A16 and A17-select the 
memory planes during read/modify/write cycles 
but are ignored during screen refreshing cycles. 

The graphics display controller generates the 
Row Address Strobe (RAS) signal for the dynamic 
RAMs, but the remaining timing signals must be 
supplied by external devices. These signals are 
produced by a state-machine timing generator con­
sisting of a 4-bit counter and two flip-flops. The 
state machine synchronizes itself with RAS after 

8~,95 



/ 

Computer Graphics: Graphics display controller 

the 8272Q has been initialized. Figure 4 shows thll 
com(?lete'schematic for eachpla~e, of'the bit-map 
interface. ' , .. 

The remainder of the hardware design interfaces 
the graphics ·display processor, the processor 
memory, and the other peripherals with the 80186 
microprocessor. The task is simplified by the pro­
cessor's on-bo&",d chip-selection logic and wait-

." state generatol7s~ Furthermore, because of the pro­
cessor's highly integrated architecture, the size of 
the overall hardware is quite small. 

Joining proceslOr and controller 

Copnecting the graphics display controller'to the 
microprocessor is a simple task, as the processor's 
Data, Read, and Write 'signals are completely com­
patible with those of the 82720. However, because 
the controller has no chip-selection input, the Read 
or Write signals must be qualified through external 
hardware. ' 

A number of chip-selection lines on the micro-

processor can be programmed to place peripherals , 
either in memory or ln the processor's I/O space. 
Two gates are added to qualify the Read an4 Write 
sigrials. The DMA channel on the 80186 uses a 
second chip-select input as the Acknowledge signal, 
anq data buffers are used to prevent bus contention 
at the end of a processor read cYl;le (Fig. 5). 

WithQut buffers, the display controller must re­
move its data from the multiplexed address and 
data lines before the processor puts out the 'next 
addres~ .. At an 8-MHz clock ",ate, the processor 
requires that peripherals and memory vacate the 
bus in less, tha/1 85 ns; however, the stand.ard speed 
of the controller is 100 ns. A faster version, the 
82720-1, can be used, but it requires faster memory 
chips. A more cost-effective solution is simply add­
ing buffers, if board space permits. 

Serial communications to both the host and the 
optional tablet are handled by a multipro~ocol 
serial controller (the 8274), which takes care of the 
host's synchronous and the tablet's asynchronous 

..: '!'he bll-mep'lnemory·lntert_ conlalnllhn..·llCldreel plenaa(one of which II lhown h_) 10 complele 
the grilphiCI IYltam .. The RA,8 Ililnal for Ihe RAMIII'II.n.~eled by Ihe·llrephlcldl.P"y controller. 



Computer Graphics: Graphics display controller 

80186 ' 
mlcroproceasor 

82720 
grophlcll dleplay 

,contrQlIar 

5. The interlace between the 82720 and the system 
microprocessor is simple to implement because all 01 the 
processor's signals are compatible with the controller. It is 
necessary, however, to use external gates to qualify the RD 
or wFi signals. 

requirements. Interfacing is accomplished simply 
by connecting the buffered data bus, the latched 
lower-address lines, the Read !lnd Write signals, 
and the chip-select. A final link brings the micro­
processor's counter-timer, output into the multi­
protocol seril!-l c;ontroller as a baud-rate clock. No 
buffering of the TTL,supportcircuitry, is necessary. 

Univers.1 chip inlert.ces keyboerd 

A universal peripheral interface chip (the UPI-
42) serves as the keyboard interface and is pro­
grammed to scan the keyboard and interrupt the 
processor only on detection of a valid debounced 
keystroke. Mass-storage subsystems are managed 
by the 8272A floppy-disk controller. An external 
phase-locked' loop circuit generates all of the timing 
signals reequired to connect !I 51/4-in. drive to the 
system. On the microprocessor side, a DMA channel 
provides the link to the floppy-disk controller. Thus 

6. A c0!1'plete graphics control system is center,d around an 80188 microprocessor and the 82720 controller. 
Local storage is provided by 32 kbytea 01 EPROM and 16 kbytes 01 RAM. The system comprises 85 chips and 
is housed on a single 12-by-12-in. printed-circuit board. 

8-97 



the processor has a high-speed disk interface, 
which loads it lightly. .. . 

To 'complete the graphics system illustrated in 
Fig. 6, 32 kbytes of EPROM and 16 kbytes of RAM 
support the microprocessor's program and display 
lists. The two EPROMs (27128s)'come in 28-pin 
packages, thereby saving board space~ . 

Hooking up the RAM chips is almost as straight­
forward. Since the microprocessor is. a fuBy byte­
addressable device,it can write bytes as well as 
words to the RAM. The chip-select input for the low 
(even) address RAM must be qualified with address 
Ao at a logic zero, and the high (odd) address RAM 
must be qualified by the processor's Byte High 
Enable signal (BHE). The RAMs, designated 2186, 
have built-in controllers. . 

Since dynamic RAMs latch addresses on the 
leading edge of the chip-select signal, they must be 
qualified with the processor's Address Latch' En­
able signal to ensure that selection is made only 
after the address is valid. Then, a RAM latches the 
data to be written on the leading edge of the write 
pulse. The mjcroprocessor's.write signal must be 
delayed· by one-half of a clock cycle to guarantee 
that data is valid at the correct time; 

A t this point, the design meets all of its per­
formance goals. The system draws lines and circles 

T-1408/5K/0383IHP RM 

at about 120,000 bits/so That is approximately 
82,000 . pixels for a display consisting of even 
amounts. of the three primary colors, as well as 
three secondary colors, (and white. The 500 vectors 
of 25 pixels each can be drawn in about 0.15 s, six 
times faster than the 1-s requirement. The worst 
~ase-drawing all lines in white-can be accom­
plished in about onecthird of a second. These spec­
ifications are satisfied when the graphics display 
controller is running from a 2,5-Ml:Iz clock. Draw­
ing is performed only during retracing and the 
82720 is programmed to use three memory cycles of 
each horizontal retrace for memory refreshing. 

All of the components fit on a board measuring 
12 by 12 in., so that the desktop size requirements 
are satisfied. The electronic components occupy 
about 100 in.2 of the low-cost, double-sided printed­
circuit board. 0 

Bibliography: 
Bresenham, J.E., "Algorithm for Computer Control of a Digital 

Plotter," IBM System Journal, 1965,4(1) pp. 25-30. 

8-98 



ARTICLE 
REPRINT 

·AR~298 

Graphics Chip Makes 
Low-Cost, High Resolution 
Color Displays Possible' 
by Mark Olson and Brad May 

The making of displays that are 
both high-resolution and low-cost is 
the key to producing equipment for 
both the automated office and the 
engineering workstation. Through 
the introduction of 16-bit IJoPs such 
as Intel's iAPX 8088, 80186 and 
80286, the processing power' has 
been made available to perform 
very sophisticated functions for the 
user while making the human inter­
face very simple. 

That processing power can be 
unnecessarily drained, however, if 
the IJoP is Burdened with the entire 
task of graphics display. Such a 
burden can fill up a significant part 
of the processor's 110 bandwidth, 
slow down the refresh rate of the 
display, and decrease the computa­
tional power of'the CPU. 

Intelligent 
peripheral rcs 

offload processing 
tasks from the CPU. 

The logical way to avoid such 
limitations is to dedicate a special­
ized processor to the handling of 
display function. It should be capa­
ble of accepting high-level com­
mands to minimize the burden on 
the CPu,·, as well as optimizing 
the execution of such commands 
thro).lgh. raster operations imple-

mented in hardware at the device 
level. 

Such a chip is Intel's 82720 
Graphics Display Controller (GDC). 
It has features that give systems a 
fast drawing speed while reducing 
graphics display costs by 60% or 
more. It achieves these. results by 
taking over the drawing and refresh 
functions from the CPU, by allow­
ing the use of dynamic RAM's in­
stead of static RAM's, and by re­
ducing the overall parts count 
needed to create a complete graph­
ics system. 

The implementation of the draw­
ing task is a major feature of the 
GDC. Other graphics chips per­
form only the 'display refresh func­
tion, leaving the more complicated 
drawing function entirely to the 
CPU. Since the CPU is doing every 
pixel of the drawing function on 
these systems, they also require fas-

ter bit map RAM than with the 
GDC. The GDC, on the other 
hand, is capable of handling the 
drawing function itself, drawing 
such objects as characters, slanted 
characters, points, lines, arcs, rec­
tangles, and slanted rectangles 
based only upon lengths, slopes, 
and arc centers supplied by the 
CPU. The GDC's processing, 
moreover, takes place concurrently 
with the processing of the, CPU. 

2048 X 2048 Resolution 
With its 4 Megapixel addressability, 
one GDC can handle a mono­
chrome display with resolution as 
high as 2048 x 2048, and multiple 
GDC's can be linked to provide 
even higher resolution, such as col­
or displays at 2048 x 2048. The 
chances are, however, that the 
GDC's full power will not be used 
in most applications. The typical 

Operating System 

D From Independent 
Softwar~ V~ndor 

Mark Olson and Brad' May are 0 .From Intel 

Product Marketing Engineers for 
Peripheral Components Operation, Figure 1: General graphics commands are translated mto the VDI mterface level 
Intel Corp., Santa Clara, CA 95051. and then into driver device commands. 
Reprinted from DIGITAL DESIGN © April 1983, Morgan-Grampian Publishing Company, Boston, MA 02215 

8-99 Digital Design _ April 1983 



.;' 
82120 BIT MAP INTERFACE " 

I GREEN ""lEMORY 

ADO· in j~ I '4 INTO 7 
MUX I' 7, 

' I aWE MEMORY 

I RED MEMORY BLUE 

"" AD'S 2 " 74L~157 AD-A6 'r-LJ -82720 , I · ,~ 'j GREEN ... 
DO·D'6 o---v -

f 
, 

LS - VIDEO RED .. 
ALE 

32 RAS OUT ,4..-.u -, 
2XCLK CAS 

TIMING 
DOT CLOCK 

1<:)10 LOGIC ~SHIFT BANK , 
- WRITE' SELECT 
DBIN 

l DBIN f 
- YO 

~ LS 
~Y' 

SYNC 
,39 '"' Y2 H V ~ (5 Y3 I BLANK 

--- "" 
BLANK - ~ 

SYNC 

SYNC 
LS "" 32 ,-

Figure 2: The memory is broken up into three planes. with each plane feeding one of the primary color guns of the CRT: 

product considered high resolution 
for office automation applications 
is a 512 x 512 pixel monochrome 
or color display. 

These latter restrictions are not 
imposed by the GDC. but rather 
have more to do with' the cost of 
display monitors. the' amount of 
RAM memory needed to support 
such displays. and the adequacy of 
such displays for most applications. 
It is possible to build "super graph­
ics" boards with a GDC. such as 
the lK by lK pixel by 8 color plane 
graphics display designed by Phoe­
nix Computer Gra~hics (Lafayette, 
LA). Such a display is capable of 
rendering 256 different colors on a 
high resolution screen. 

Even higher performance can be 
achieved through the use of multi­
ple GDC's to support multiple dis­
play windows, increased drawing 
speed, or increased bits per pixel. 
For multiple display windows, each 
GDC can be used to control one 
window of the display. For in-

O,I911al Desl9n - April 1983 

creased drawing speed, multiple 
GDC's can be operated in parallel. 
For increased bits/pixel, each GDC 
can contribute a portion of the, 
number of bits necessary for a 
pixel. 

Although the GDC is intended 
primarily for raster-scan graphics, it 
can also be used as a' character dis­
play controller. It is capable of sup­
porting up to four screens of data 
containing 25 rows by 80 columns, 
or one screen containing up to 100 
rows by 256 characters. 

Office Automation Display 
, High performance applications can 
stretch the usage of the GDC froQl 
low-end to high-end engineering 
displays, but research has shown 
that for office automation proq­
ucts, a 512 x 512 pixel display is 
quite acceptable, and that color is 
often a requirement. These require­
ments mes~ with a :major factor ,in 
display-the co~t of the CRT. In 

. 
OEM quantities, for example, one 
could expect to find a 512 x 512 
monochrome display for under 
$100, a 256 x 256 color display 
(TV quality) for about $150, a 512 
x 512 color CRT in the $300 range, 
and a lK x lK color display in the 
$800-$1000 category. 

To give an example of the type of 
display that can be built for new of­
fice products using the 'GDC, con­
sider a 512 x 512 pixel by3 color 
plane combination CPU and graph­
ics display on a single q" by ,12': 
boarq. Such a display is capable of 
ge~erating 8 colors. " ' 

The list of parts (Table'Z) comes 
to about $175 for 85 Ie's taking up' 
104 square inches of boa~d space. 
Even, t\:lat parts count could be re­
du~ed by replacing the 48 16K 
DRAMs with 12 64K DRAMs-if 
a 4K x 16 bit DRAM were avail­
able. A v~ry importa~ note about 
the Pllrts list is thjlt the design is 
implemented with inexpensive ~118 
dynamic RAMs. The design does 



not require the faster, more expen­
sive, and less dense static RAMs. 

The parts .count is low enough so 
that the processor and graphics 
controller can be placed together in 
a single 12" by 12" board. This is 
important because small overall 
size and footpad are selling points 
for desktop workstations. System 
speed is also enhanced when the 
graphics controller and CPU are on 
the same board, because their com­
munication need not take up bus, 
inter-board bandwidth or experi­
ence any additional delays. 

PipeliI,1ing 'ftansformations 
More important than putting the 
graphics display on the same board 

as the CPU is the level of commu­
nication between the CPU and 
graphics controller. If the burden of 
transformation processing is left 
entirely to the CPU while the 
graphics chip is used only as a CRT 
controller, then the CPU must com­
,municate one bit per pixel to up­

i date a display. With the GDC, the 
CPU input takes higher level forms 
such as the slope and length of a 
line, the length and center point of 
an arc, or the key coordinates of a 
rectangle. Since the average line on 
a screen is about 25 pixels, that 
means that 25 times fewer CPU bus 
cycles are required to draw a 
graphical object with the GDC. 
These CPU cycles (an average of 
50 ,....S each to calculate the graphi­
cal object and communicate it to 

the GDC), are the determining fac­
tor in drawing rate. 

Viewed from a larger perspec­
tive, there are four tasks that must 
be performed by a CPU-graphics 
chip combination: 

(1.) The CPU must calculate the 
higher-level graphics operations. 
This is done by the CPU and it in­
volves the processing of macro-op­
erations such as the CORE, GKS, 
PMIG or other graphics protocols. 
These general graphics commands 
are translated into an intermediate 
level, the VDI interface level (Fig­
ure 1) and then into device driver 
commands by software in the CPU. 

(2.) Then, these lower-level 
graphical objects such as the key 
parameters for lines, arcs, charac­
ters, and rect~ngles, must be trans-

VLSI Takes Aim At Text ProcessiIig 
The concept of co-processing is not a new one. Intended 
as a way of offloading computationally intensive tasks from 
a host CPU, 'it has been around at Intel since the introduc­
tion of the 8087 numerics processor and the 8089 110 ma­
chine, A more recently ,developed product, the 82720 
Graphics Display Contrcller is designed to bolster system 
performance' by offloading graphics control chores from 
the CPU. The chip accepts high level commands from the 
CPU and, using its own drawing processor, accesses the 
required positions in' the bit-map and handles the process­
ing and display control functions, 

Building on the success of these parts come two new 
co-processors designed to partition system intelligence 
even further. The 82586 is a communications co­
processor designed .to bridge the characteristics of CPU 
and network data rates. Its FIFO buffer and DMA facilities 
make it possible for a CPU to operate at the full Ethernet 
10 Mbits/s ,transfer rate even in the face of continuous 
bursts of network data traffic. . 

Intel's most recent introduction is the 82730 text co-pro­
cessor. Printers'and other hard copy peripherals have sup­
ported additional text processing features such as propor­
tional spacing and Simultaneous superscript and subscript 
for some time. Implementing these features on the display 
screen has traditionally been a costly procedure. Thus, it is 
typically not done and screen displays often are not identi-

, cal to their hard-copy printouts. Aimed to solve this design­
ers headache, the 82730 has its own DMA capability and 
communicates asynchronously with the CPU via shared 
memory messages: It supports the generation of high 
quality text displays through features like proportional 
spacing, simultaneous superscript/subscript, dynamically 
reloadable fonts and user programmable field and charac­
ter attributes. In .addition, when coupled with the 82720 
Graphics Display Controller (Figure 1 ) the 82730 provides 
flexibl,e, mixing of text and graphics simu ltaneously on the 
same display. 

.,--Wilson 

8-101 

,--------, 
I 8C~~6 I 
I Coprocessor I 
L _______ ~ 

,--------
I 
I 
I 
I '---.-_---j 

I 

82730 
Text 

Coprocessor 
L _______ _ 

'-_______ ---J 

Data 
Communications 
Block 

DIsplay 
, Processmg 
Block 

Data 
Processing 
Block 

Figure J: Offloading system tasks is simplified by new V LSI 
devices. 

'Digital Desig" _ April 1983 



DRAWING SPEED ' 

-so .,.sec -50.,.sec 

80186 
Sel up Draw 1 Sel up Draw 2 , "Sel up Draw 3 Sel up draw '4 , 
< ..................................................... ) ( ...................................................................................................... ___ .......... )c ...................................................... ) ( ................. __ .... - .............. - ......... ) 

, 
GDC (2.5MHz) 
Calculate 
Nax1 bit 

GDC 
RIMIW 

other 
CPU 

(25 pixels) 

-50 fLsec 
Sel up draw 1 

(100 pixels) 

Drawl Drawl Drawl Draw2 
c ............... >( .................. > c .... _____ .... )c ................. ) 

BI12 Bil3 BI125 Bill 

•••••• ~ •••••• 4O fLseC·············:················, 

Drl Drl Drt Drl 
cOo .......... __ .)c ........... _ .... > 

Bill BI12 BI124 Bi125 

.············40 fLsec········ .. ·····················, 

Calculate R/MIW Bill Calc 
< .. ---.......... --_ ........ -............ ,. ...... > (--_ ...... _ ............. --> ( ....... -................... _-) ( ... ---_ .. _---_..:_---> , 

Bill 

Draw2 
(------.... ) 

Bil2 

Dr2 012 
cOo ....... __ .... ) 

Bill Blll00 

-so fLsec 
R/M/W Sel up draw 2 

BII25 

.·······.,·······.··375-500 fLsec···············································, 

Table 1: The 80186 and the GDC work together to accomplish the t;lrawmg /un(:tioll, 

formed into changes in the actual 
bits. This function is performed in 
h~rdware in the GDC concurrently 
with any level one processing done 
by the CPU. Other graphics con­
trollers leave this 'task to the CPU 
to execute in software. The con­
trast is that, in such systems, the 
CPU must resolve the graphical ob­
ject down to every point on a line, 
while with the GDC it need only 
designate the endpoints. 

(3.) With the actual bits for the 
bit map calculated, they must be 
placed in the bit map memory. This 
involves a read-modify-write oper­
ation that requires three' CPU cy­
cles using other methods. With the 
GDC these operations are not the 
responsibility of the' CPU. The 
GDC pipelines its execution so that 
it is calculating the next' bit to 
change while it is executing the 
read-modify-write cycles. 

(4.) Finally, the bit map memory 
must be dumped into the CRT. 'This 
is the refresh function performed 
by other graphics chips as well as 
the GOC. 

The summation is' that other sys­
tems require the CPU to process 
steps one to three serially, leaving 
only step four for the graphics con­
troller. Systems with the GOC re­
quire the'CPUto process onry step 
one, with the ,GOC ,conc~rr~ntly 

Digital Design ,. April 1983 .. 

, 

processing steps two through four. 
The GDC has another advantage in 
that during the transformation pro­
cess in' step three; the GDC ex­
eCl1tes t~e algorithms in liardwilre 
while a CPU must exec;ute th~ ~l­
gorithms in software. The algo­
rithms are exactly the same in both 
cases, They are the Bresenam algo. 
rithms from IBM, in which the next 
pixel to be drawn becomes a binary 
decision. between two pixels. 

The execution of these algo­
rithms is a crucial drawing time fac­
tor, because they are invoked many 
times for each updated screen. 
,Consider that, in the inner loop of 
Bresenam's "line drawing algo­
rithm," there are two or threl! addi-, 
tions, two comparisons or tests, 
and the maskin~ of the proper val­
ue into the word for each pixel. 
The algorithms for drawing circles 
or filling areas are even more com" ' 
plex. In the inner loop of a fill algo'­
rithm, the old word inust be read' 
from the bit map, then tested'to see 
if all, some, or, none of tbe pilfel~. 
are within the area to be filled. 

, Next, it tests whether some or,all of 
the pixels must- be modified. Final­
ly, the word must be returned to'the 
bit map. 

These, algorithms are heavily' 
used and the 'speed with~hicli they 
can be executed has a 'direct effect 

8-102 

upon the overall' system efficiency. 
If they must be executed by a fLP, 
the instruction fetching process 
slows down the calculations' to a 
drawing rate of 15-20 fLS per pixel. 
With a hardware implementation 'of 
these algorithms in' the' GDC, the 
,calculations' can be speeded up to· 
achi<;ve a di-awing rate of 16(JO ns 
(2.5 M,Hz version) or 800 ns (5 
MHz version) per pixel. 

Methods Of Refresh 
In the fourth step-, the dumping of 
bit map memory intCJ the CRT, 
there are some differences between 
graphiCs controller chips. Motoro­
hi's MC6845 CRT controller, for ex-' 
ample, uses., a split,-cYcliF refresh 
method in which each refresh .cycle, 

. is alt!!rnated with a drawing cycle 
in, which the fLP updates, the bit 

, . map. This gives the MC6845 'a 50% ,I 

. draw,ing ,bandwidth. ' 
, Witli the GDC there are two, 

drawing modl!s. The first is a "draw: 
anytiim;" mode whi'ch ·replaces. 
CRT n:fresh cycJe~ with drawi~g 
cycll;s. T~is is the fastes~ mode", but 
it dOe~ result, in on-screen disr!JP­
tions. The second 'mode, which 
does not disrupt the on-screen dis-

" play, ,draws only during the vertical. 
and· horizontal retracing' periods. 

. This gives the GDC about:a 25% 



(" dphl( S ( IIII' 

1 80186 
"" 

1 74LS04 1 20 MHz 910ck 
1 62720 1 74LS73 2' 27128 
2 74LS157 9 74LS244 2 2186 
1 74LS139 8 74LS166 1 8274 
1 74LS161 3 74LS32 1 8042 , 74LS11 2 8286 3 Connectors 
1 74LSOO 1 ' 8 MHz Crys1~1 1 12 x 12 2 Layer PC 

SUMMARY: 

4 VLSI Controllers 

4 VLSI Memory 

4816K DRAMs 

2s MSIISSI 

,TOTAL: 85 IC'S ....... 104 Sq, Inches 

Parts Cost ....... About $175 

80186 
82720 
8274 
8042 

27128 
2186 

2118 

Processor 
Graphics 
Serial Link 
Keyboard 

EPROM 
IRAM 

DRAM 

Buffers/Glue 

Table 2: Parts list for 512 x512 x 4 Color DIsplay, 

16 MHz To Dot Clock 

-"~D~ (25MHz) 

, X. • X, 2XCCLK 
WR WR 

RD r RD 
CS1 

A1' -v r-1 AO 

1 I I 
80186 Data 82720 

ADO·7 Buffer DBO-7 
[DEN 

J I DT/Ri 
r 

PCS1 1 DACK 

DRao DREa 
, 

• Asynchronous Processors 
• DMA Access to Brt Map 
• 4 Buffers, 1 Glue IC 

Figure 3: The two chIp selects are OR'd together to qualify the RIW slgna/s. 

drawing bandwidth, At first glance 
that gives the ODC a disadvantage 
in drawing rate, but the fact is, 
with its pipelining and hardware 
execution of transformations, the 
ODC makes much more efficient 
use of its bandwidth. The critical 
timing factor is the amount of CPU 
participation in the drawing pro­
cess, not the refresh bandwidth of 
the graphics controller, Another 
tradeoff is that, with its split-cycle 
architecture, the MC6845 requires 
RAM memory that is twice as fast 
a~ that reQuired by the ODC in the 

same application. 

Inexpensive RAM Is Fast 
Enough 
Applying this perspective, one can 
begin to build the display with parts 
listed in Table 2, First one notes 
that 'a square display, as indicated 
by the 512 x 512 pixel initial specifi­
cation, is not pleasing to the eye. It 

'is much more appealing to have an 
aspect ratio of about 4:3, in which 
the number of pixels horizontally is 
4/3 the number verticallJli If the res­
olution is such that the tot~1 rum-

8-100 

ber ,9f pixels is not a power of two, 
it will be necessary to round up to 
the next power of two and waste 
the extra bits. ' 

The pixel arrang~ment Which 
best meets this requirement is one 
with, a 432 x 576 pixel format. It 
also meets the requirement that the 
number of pixels horizontally be an 
even number of 16-bit words. With 
three color bits per piJlel (red, 
blue, and green), the total display 
memory is then about 500 x 500 x 3, 
oi- 750k bits. ' , 

It makes the most sense to break 
the memo,ry up into three planes, 
with each plane feeding one of the 
primary color guns of the CRT 
(Figure 2), This leads to a memory 
arrangement of 16K x 16 x J, 
using 16K' dynamic RAMs with a 
lK x 16 architecture. When draw­
ing graphics figures, the memory 
can be treated as one large plane, 
split into the three primary colors. 
Drawing in low-order memory 
could represent red, middle-order 
could be used foi green, and high-
order for blue, , 

One advantage of' this 3D mem­
ory is that drawing with' a primary 
color requires setting only one bit 
per pixel. Drawing with a secon­
dary color such as cyan, yellow, or 
magenta would take two ODC cy­
cles,' and creating, white frq~ all 
three colors would take three ODC 
cycles. If this were an issue', addi­
tional hardware could be used to 
draw more than one plane at a 

1 time. As the results will show, how­
ever, the drawing speed require­
ments can be exceeded without any' 
added hardware. 

Calculate The Drawing Rate 
To see if the proposed design is 
practical, one should first calculate 
the drawing rate to see what' the 

, \lser interface will be like. Then 
one should check the refresh rate' 
to make sure the design is uninter­
rupted and without flicker. 

The proof of the assumption that 
CPU participation ·is the dominat- ' 
ing factor lies in the 50 IJ.S average : 
time that it takes the CPU to calcu- ' 
late a graphical object and commu­
nicate its key' parameters' to the' 
ODC. Assume that. the 'graphical 
object is an average line containing 



25 pb~els, and that there are about 
500 vectors on the average screen 
display. 

The GDC's normal' clock rate is 
2.5 MHz, giving it a 400 ns period 
(the maximum clock rate is 5 MHz, 
with a 200 ns period.) It takes four 
GDCcycles to execl,lte a read­
modify-~rite on a bit (because, two 
read cycles are required), so that 
the GDC's normal drawing rate is 
one pixel per 1600 ns. To draw the 
25 pixels 'involved in the average 
line, then, would take 25 x 1600 ns, 
or 40 I!,s. Since this operation is 
done concurrently with CPU pro­
cessing, the GDC will be waiting 
for the ':Iext, graphical object by the 
time the CPU is ready. 

If the screen were filled with 
nothing but 25-pixel vectors, then 
the drawing rllte would be deter­
mined by the 50 I!,S average CPU 
calculation and transfer cycle, aver­
aging about 2 I!,S per pixel. If all 
the vectors were white (worst 
case), then it would take 1.5 secs of 
drawing time to update the white 
screen. Since, in the tindisturbed­
screen mode" drawing is only done 

, DRQD 

pcso 
OR01 

TMR OUT 01 

WR 
RD I--r-

11 ALE 

r-

during the 25% ofthe time that the' 
. screen is undergoing I;!orizontal or 
'vertical blanking, ,this would mean 
6 secs between updates, 

In reality, however, the screen 
will not be filled with vectors. It 
will have an average of 500 vectors, 

'and the color distribution could be 
presumed to be evenly distributed 
as one-third primary colors" one­
third secondary colors, and one­
third white. The 500 vectors will re­
quire the drawing' of 12.5K pixels 
in monochrome, or 25K pixels with 
di~tributed colors, At a drawing 
rate of 2 I!,S per pixel, this takes 50 
ms to draw, Drawing only during 
blanking, the screen would be up­
dated in 200 ms. 

Under these conditions, it would 
not help to use the maximum clock 
rate GDC (5 MHz), but if in some' 
applications the average vector 
length is 100 pixels, then the CPU 
calculation-and-bus cycle (50 I!,s) 
would remain the same and the 
GDC's drawing cycle (1600 ns x 
100 = 160 foLS) would become a 
limiting factor. Using the 5 MHz 
GDC would cut that drawing time 

ADR ADDRESS BUS 
LATCH ,-- PCS3 

,.--- PCS2 ~ 

r-- ARDY 

80186, 

e P r--
AD 

BUS' DATA 
DATA BUS -

DEN I-- BUFFER r- LCS 

I 
1'-- r-

r- VCS DTR~,,--;-

J£l 'EdJM ~M 
RXC 

8279 
TXC 

'27128 - 27128 2186 r- 2186 KEY-
BOARD 

IQl LOW - HIGH - LOW r- HIGH CON, 

8K 8 - 8K 8. - 8K 8 ~ 8K 8 }rLER 

CE TCE WE TcsT READY} CS READY CS 

, - 'TO 
MONITOR 

KEYBOARD 

'. 

qown to 800 lls/pixel, or 80 foLs/vec­
tor. The 500 vector average screen, 
would then contain lOOK pixels 
with distributed colors' and could 
be drawn in 80 ms. Multiplying by 
four b~cause the drawing is done 
during blanking (25% of the time), 
that is 320 ms. That is a screen u~­
date in less than one-third second 
for a "busy" screen. 

Calculate The Refresh Rate 
These calculations are of little im­
portance if the display flickers due 
to lack of refresh. This exercise is 
actually a demonstration of how 
the basic GDC clock rate was de­
rived. Assume a non-interlaced dis­
play that must be refreshed 60 
times per second. That gives a 
screen refresh rate of 16.67 ms, but 
on a typical CRT some 4.27 ms Of 
that is blanked, leaving 12.4 ms of 
active display time. The dot sweep 
period is the 12.4 ms divided by the 
number of pixels (432 x 576 = 
248.8K), or 49.8 ns. The inverse 
gives a 20.07 MHz dot clock. 

Since the GDC dumps 16 bits 
from the bit map memory into the 

DAEQ 

DACK 

-
"!f< 
RD 

( MONITOR 

I 82720 
GDC l VIDEO J REFRESH 

LOGIC 

080-7 MEMORY BUS 
r- . 
'-

8274 ROVB TXORQA 
SERIAL 

U 10 

ri 
CS BiT MAP MEMORY 

16K· 16 
3 PLANES 

DMA 
SERIAL PORT 

TO HOST 

TO " 
OPTIONAL 

TABLET , 
Fi ure 4: Com Ie'led g p ra hies s stem uses the 8()J86 and 82720 GDe y g p 

Digital DeSign - April 1983 8-104 



'\. DINO-DIN15 0, 0, 0. 0" 

I 

~. 

.' 
I 

D,N 
2118 

A.-A. .. A,·A. .. 
VIDEO 

2118 'r::: liAs ~ liAs 2118 

2118 - SoUTPUT 

I--
CAS .. CAs I--

t-- IN 15 

WRiTE 

~ WE - 2X 

DOUT r-- 74166 

IN, 

IN, 

IN, 

BsEL ,CLOCK 

::J 32 .. SINPU'r 
DBIN t J 2X74LS244 

Sl ~ 
••• 

DOT ClK 

• • • , 
I 0, 0, 0, 0" 

SH 1FT LOAD 900173 

Figure 5: Since the 186 is a fully byte addressable machine. it i,1 possible to write bytes as well as words into the RAMs; 

16-bit shift register' during each 
read, and since the shift register 
then feeds these bits out serially to 
the CRT, it makes sense that the 
GDC's read period should be 16 
times the dot sweep period. That 
gives a GDC read period of about 
800 ns. With each GDC read taking 
two cycles, the' basic GDC clock 
period is then,4oo ps, or 2.5 MHz. 
This gives a rock-solid display, and 
one would only want to go to the 5 
MHz GDC to improve drawing 
rate. 

For those who want to examine 
the blanking intervals to see if the 
ClU is indeed '<'typical," the blank­
ing can be further broken dbwn. 
The vertical blanking interval is 
1.25 ms, leaving 15.42 ms to scan 
the 432 lines on the active' portion 
ofthe display. Dividing 15.42 ms by 
432 lines gives a 35.7 f.LS period per 
line, or a horizontal sweep rate of 
28 KHz. Time is also needed for 
horizontal retrace, in this case, 7 
f.Ls of horizontal blanking per line. 
This lea~es 28.7 f.Ls to scan the 576 

pixels on each line, resulting in the 
dot sweep period of 49.8 ns. Using 
a 20 MHz CRT helps keep the costs 
down, but the GDC can use CRT 
displays as fast as 80 MHz when 
higher resolution is required. 

Mixed Mode 
While it is possible to generate 
8 x 8 characters and slanted charac­
ters in the graphics mode. the GDC 
also offCfrs a mixed mode memory 
organization to display both charac­
ters and graphics drawn from sepa­
rate windows in the display mem­
ory. The advantage of this mode is 
that it allows characters to be ma­
nipulated as 8-bit entities instead of 
the 64 bits that each would require 
in graphics mode. Of necessity, the 
graphics window dis'J>lay memory is 
reduced in this mode (64K 16-bit 
words instead of 256K)" ,but even 
the reduced maximum graphics 
memory is still Ii megapixel and 
quite sufficient for both office auto­
mation and engineering display 
purposes. 

8-105 

In the character window; the 
GDC operates as it does in the 
pure character mode, with the ex­
ception that the line counter must 
be implemented externally. In addi­
tion to the two windows used for 
graphics and characters in the 
mixed ,mode, two other windows 
can be supported. These can be 
designated as either character or 
graphics windows by a selection' on 
the A17 line. 

Panning, Zooming, Light Pen 
As special features, the ~DC al­
lows both panning and zooming in 
either graphics, character, or mixed 
modes. < The zoom i~ accomplished 
by effectively increasing the size of 
the dots on the screen. Vertically, 
this is done by repeating the same 
display line. The number of repeat 
thiles is determined by the display 
zoom parameter. Horizontally, 
zoom is accomplished by extending 
eacti display word cycle and dis­
playing fewer words per line" ac­
cording to the zoom factor. 

." . 
Digital Design _ April 1983 



,'/, . ' 

82720 
GRAPHICS DISPLAY CONTROLLER 

• Displays Low-to-High Resolution 
Images I 

• Draws Characters, Points, Lines, Arcs, 
and Rectangles ' 

'. Supports Monochrome, Gray Scale, or 
Color Displays 

• Zooms, Pans and Windows Through a 
4 Mpixel Display Memory 

FUNCTIONAL DESCRIPTION 

'Introduction 

• Extremely Flexible Programmable 
Screen Display, Blanking, and Sync 
Formats 

• Compatible with Intel's Microprocessor 
Families 

• High-Level Commands Off Load Host 
Processor from Bit Map Loading and 
Screen Refresh Tasks 

• Supports Graphics, Character, and 
Mixed Display Modes 

The 82720 Graphics Oisplay Controller (GOG) is an intelligent microprocessor peripheral designed to drive high­
performance raster-scan computer graphics and character CRT displays, Positioned between the video display 
memory and Intel microprocessor bus, the GOC performs the tasks needed to generate the raster display and 
manage the display memory. Processor software overhead is minimized by the GOC's sophisticated instruction 
set, graphics figure drawing, ancj OMA transfer capabilities. The display memory directly supported by the GOC 
can be configured in any number of formats and sizes up to 256K , 16-bit words. The display can be zoomed and 
partitioned screen areas can be independently scrolled and panned. With its light pen input and multiple controller 
capability, the GOC is ideal for most computer graphics applications. Systems implemented with the GOC can 
be designed to be compatible with standards such as VOl, NAPLPS, GKS, Core, or custom implementations. 

.. 
iiD 

co~~k V/ElT SYNC (~~~}=====~r{~~~}:3 HSVNC 

... <>--<---<-.,.---

COMMAND 

PRO£.~"SO~ 
CONTROL ROM 

1Ux1. 

PARAMETER 
RAM 

+5'1 0-;-­
GND 0---

, 2xwct.K <>---- , 

Figure 1. Block Diagram 

. ' 

, ..,0-13 

Ao.ola12 

"E. 

2xWCLK ' .... cc 
DBIN A-17 

HSYNC 3 

"IEXT SYNC AI).1S 

BLANK AI).14 

iiAS(ALE) . AD·13 

DRa , AI).12 

DACK • lffi 9 
A()., 

AD~ 

A()'7 

i. A,D-6 

27 AO·S 

" AI>4 

" Ao., 

" AD·2 

D ... 

De·7 

Figure 2. Pin Configuration 

Intel Corporation Assumed No Responsibility for the Use of Any Clrcurtry Other Th'an CircUitry Embodied in an Intel Product No pther CircUit Patent licenses are ,Implied Information 
contamed h~rem supersedes previously pubfished speCifications on these devices from Intel ' , 

©INTEL CORPORATION 1983 &-106 ORDER NUMBER: ;:~5~~~: 



82720 

Table 1. Pin Description 

Symbol Pin No. Type Name and Description 

2XWCLK 1 I Clock Input 

DBIN 2 0 Display Bus Input: Read strobe output used to read display memory data into the GDC. 

HSYNC 3 0 Horizontal Sync: Output used to initiate the horizontal retrace of the CRT display. 

VlEXT 4 I/O Vertical Sync: Output used to initiate the vertical retrace of the CRT display. In slave 
SYNC mode, this pin is an input used to synchronize the GDC with the master raster timing 

device. 

BLANK 5 0 Blank: Output used to suppress the video signal. 

RAS (ALE) 6 0 Row Address Strobe (Address Latch Enable): Output used to start the control timing 
chain when used with dynamic RAMs. When used with static RAMs, this signal is used 
to demultiplex. the display 'address/data bus. 

DRO 7 0 DMA Request: Output used to request a DMA transfer from a DMA controller (8237) or 
I/O processor (8089). 

mR 8 I DMA Acknowledge: Input used to acknowledge a DMA transfer from a DMA controller 
or I/O processor. 

RD 9 I Read: Input used to strobe GDC .Data into the microprocessor. 
y;:m 10 I Write: Input used to strobe microprocessor data into the GDC. 

M) 11 I Register Address: 'Input used to select between commands and data read or written. 
.. 

DBO 12 I/O Bidirectional Microprocessor Data Bus Line: Input enabled by WR. Output enabled 
by RD. 

DB1 13 
DB2 14 
DB3 15 
DB4 16 
DB5 17 
DB6 18 
DB7 19 

GND 20 Ground. 

Vee 40 :f 5V Power Supply 

Al? 39 0 Graphics Mode: Display Address Bit 17 Output 
Character Mode: Cursor and Line Counter Bit 4 Output 
Mixed Mode: Cursor and Image Mode Flag 

A16, 38 0 Graphics Mode: Display Address Bit 16 Output 
Character Mode: Line Counter Bit 3 Output 
Mixed Mode: Attribute Blink and Line Counter Reset 

AD15 37 I/O Graphics Mode: Display Address/Data Bits 13-15 

AD14 36 Character Mode:' Line Counter Bits 0-2 Output 
AD13 35 Mixed Mode: Display Address/Data Bits 13-15 

AD12 34 I/O Display Address/Data Bits 0-12 
ADll 33 
AD10 32 
ADg 31 
ADa 30 
AD? 29 
AD6 28 
AD5 27 
AD4 26 
AD3 25 
AD2 24 
ADl 23 '. 
ADo 22 

LPEN 21 I Light Pen Detect Input 

8-107 210655-002 



82720 

FUNCTIONAL DESCRIPTION (Continued) 

Microprocessor Bus Interface 

Control of the GDC by the system microprocessor is 
achieved through an 8-bit bidirectional interface. 
The status register is readable at anytime. Access to 
the FIFO buffer is coordinated through flags in the 
status register. 

Command Processor 

The contents of the FIFO are interpreted 'by the com­
mand processor. The command bytes are decoded, and 
the succeeding parameters are, distributed to their 
proper destinations within the GDC. The bus interface 
has priority over the command processor when both 
access the FIFO simultaneously. 

DMA Control 

The DMA Control circuitry in the GDC coordinates data 
transfers when using an external DMA controller. The 
DMA Request and Acknowledge handshake lines inter­
face with an 8257 or 8237 DMA controller or 8089 110 
processor, so that display data can be moved between 
the microprocessor memory and the display memory. 

Parameter RAM 

The 16-byte RAM stores parameters that are used 
repetitively during the display and drawing processes. 
In character mode, the RAM holds the partitioned dis­
play area parameters. In graphics mode, the RAM also 
holds the drawing pattern and graphics character. 

Video Sync Generator 

Based on the clock input, the sync logic generates 
the raster timing signals for almost any interlaced, 
non-interlaced, or "repeat field" interlaced video for­
mat. The generator is programmed during the idle 
period following a reset. In video sync slave' mode, it 
coordinates timing between the GDC and another 
video source. 

Memory Timing Generator ' 

The memory timing circuitry provides two memory 
cycle types: a two-clock period refresh cycle and the 
read-modify-write (RMW) cycle which takes four 
clock periods. The memory control signals needed to 
drive the display memory devices are easily 
generated from the GDC's RAS(AlE) and DBIN 
outputs. 

Zoom and Pan Controller 

Based on the programmable zoom display factor and 
the display area parameters in the parameter RAM, 
the zoom and pan controlle'r determines when to 
advance to the next memory address for display 
refresh and when to go on to the next display area. A 
horizontal zoom is produced by slowing down the 
display refresh rate while maintaining the video sync 
rates. Vertical zoom is accomplished by repeatedly 
accessing each line a number o,f times equal to the 
horizontal repeat. Once the line count for a display 

. area is eXhausted, the controller accesses the start­
ing address and line count of the next display area 
from the parameter RAM. The system microproces­
sor, by modifying a display area starting address, 
allows par.ming in any direction, independent of the 
other display areas. 

Drawing Processor 

The drawing processor contains the logic necessary 
to calculate the addresses and positions of the pixels 
of the various graphics figures. Given a starting point 
and the appropriate drawing parameters, the draw­
ing processor needs no further assistance to com­
plete the figure drawing. 

Display Memory Co~troller 

The display memory controller's tasks are numerous. 
Its primary purpose is to multiplex the address and 
data information in and out of the display memory. It 
also contains the 16-bit logic units used to modify the 
display memory contents during RMW cycles, the 
character mode line counter, and the refresh counter 
for dynamic RAMs. The memory controller appor­
tions the video field time between the various types 
of cycles. 

Light Pen Debouncer 

Only if two rising edges on the light pen-input occur 
at the same point during successive video fields are 
the pulses accepted as a valid light pen detection. A 
status bit indicates to the system microprocessor 
that the light pen register contains a valid address. 

System Operation 

The GDC is designed to work with Intel microproces-
'sors to implement high-performance computer 
graphics systems. System efficiency is maximized 
through partitioning and a pipelined architecture. At 
the lowest level, the GDC generates the basic video 

8-108 210655-002 



inter 82720 

raster timing, including sync and blanking signals. 
Partitioned areas on the screen and zooming are 
also accomplished at this level. At the next level, 
video display memory is modified during the figure 
drawing ope'rations and data moves. Third, display 
memory address are calculated pixel by pixel as 
drawing progresses. Outside the GDC at the next 
level, preliminary calculations are done to prepare 
drawing parameters. At the fifth level, the picture 
must be represented as a tist of graphics figures 
drawable' by the GDC. Fina"y, this representation 
must be manipulated, stored and communicated. 
The GDC takes care of the high-speed and repetitive 
tasks required to implement graphics systems. 

GENERAL OVERVIEW 

In order to minimize system bus loading, the 82720 uses 
a private video memory for storage of the video image. 
Up to 512K bytes of video memory can be directly sup­
ported. For example, this is sufficient capacity to store 
a 2048' x 2048 pixel x 1 bit image. Images can be 
generated on the screen by: " 

-Drawing Commands 
-Program-Controlled Transfers 
-DMA Transfers from System Memory 

The 82720 can be configured to support a wide vari­
ety of graphics applications. It can support: 

"":Hlgh Dot Rates 
-Color Planes 
-Hor.izontal Split Screen 
-Character-oriented Displays 
-Multiplexed Graphic and Character Display 

GRAPHIC DISPLAY CONFIGURATIONS 
The 82720 provides the flexibility to handle a wide 
variety of graphic applications. This flexibility results 
from having its own private video memory for storage 
of the graphics image. The organization of this 
memory determines the performance, the number of 
bUs/pixel and the size of the display. Several different 
video memory organizations are examined in the fol­
lowing paragraphs. 

In the simplest 82720 system, the memory can store up· 
to a 2048 x 2048 x 1 bit image. It can display a 1024 
x 1024 x 1 bit section of the image at a maximum dot 
rate of 44 MHz, or 88 MHz in wide mode. In this con­
figuration, only 1 bit/pixel is used. 

By partitioning the memory into multiple banks, color, 
gray scale and higher bandwidth displays can be sup­
ported. By adding various amounts of'external logic, 

many cost/performance tradeoffs for both display and 
drawing are realizable. 

The video memory can be partitioned into 4 banks, 
each 1024 x 1024 bits. By selecting a" 4 memory 
banks during display, 4 bits/pixel can be provided by 
a single 82720. Each bank of video memory con­
tributes 1 bit to each pixel. This configuration can 
support color monitors, again with a maximum dot shift 
rate of 44 or 88 MHz. 

Higher performance may be achieved by using multi­
ple 82720s. Mu,ltiple 82720s can be used to support 
mutliple display windows, increased drawing speed, 
or increased bits per pixel. For display windows, 
each 82720 controls one window of the display. For 
increased drawing speed, multipl.e 82720s are 
operated in para"el. For'increased bits/pixel, each 
82720 contributes a portion of the number of bits 
necessary for a pixel. 

CHARACTER DISPLAY CONFIGURATION 
Although the 82720 is intended primarily for raster­
scan graphics, it can be used as a character display 
controller. The 82720 can support up to 8K by 13 bits 
of private video memory in this configuration (1 char­
acter = 13 bits). This is sufficient memory to store 4 
screens of data containing 25rows by 80 characters. 
The 82720 can display up to 256 characters per row. 
Smooth vertical scrolling of each of 4 independent 
display partitions is also supported. 

MIXED DISPLAY CONFIGURATION 
The GDC can support a mixed display system for 
both graphic and character information. This capa­
bility allows the display screen to be partitioned be­
tween graphic and character data. It is possible to 
switch between one graphic display window and one 
character display window with raster line resolution. 
A maximum of 256K bytes of video memory is sup­
ported in this mode: half is for graphic data, half is for 
character data. In graphic mode, a OlJe megapixel 
image can be stored and displayed. In character mode, 
64K, 16-bit characters can be stored. 

DETAILED OPERATIONAL DESCRIPTIO.N 

The, GDC can be used in one 01 three basic modes 
-Graphics Mode, Character Mode and Mixed Mode. 
This section of the data sheet describes the following 
for each mode: . . 

1. Memory organization 
2. Display timing 
3. Special Display functions 
4. Drawing and'writing 

8-109 210655-002 



inter 82720 

Graphics Mode Memory Organization 

The Display Memory is organized into 16-bit words 
(32-bit words in wide mode). Since the display memory 
can be larger than the CRT display itself, two width 
parameters must be specified: display memory width 
and display width. The Display width (in words) is 
selected by a parameter of the Reset command. The 
Display memory width (in words) is selected by a para­
meter of the Pitch command. The height of the Display 
memory can be larger than the display itself. The height 
of the Display is selected by a parameter of the Reset 
command. The GDC can directly address up to 4Mbits 
(O.SMbytes) of display RAM in graphics mode. 

Graphics Mode Display Timing 

All raster blanking and display timings of the GDC arl:1 
a function of the input clock frequency. Sixteen or 
32 bits of data are read from the RAM and loaded into 
a shift register in each two clock period display cycle. 
The Address and Data busses of the GDC are mUlti­
plexed. In the fir'st part of the cycle, the address of the 
word to be read is latched into an external demultiplexer. 
In the second part of the cycle the data is read from 
the RAM and loaded into the shift register. Since all 16 
(32) bits of data are to be displayed, the dot clock is 
8 x (16 x) the GDC clock or 16 x (32 x) the Read cycle 
rate. 

Parameters of the Reset or Sync command determine 
the horizontal and vertical front porch, sync pulse, and 
back porch timings. Horizontal parameters are specified 
as multiples of the display cycle time, and vertical para­
meters as a multiple of the line time. 

Another Reset command parameter selects interlaced 
or non-interlaced mode. A bit in the parameter RAM can 
define Wide Display Mode. In this mode, while data is 
being sent to the screen, the display address counter 
is incremented by two rather than one. This allows the 
display memory to be configured to deliver 32 bits from 
each display read ·cycle. 

The V Sync command specifies whether the V Sync 
. Pin is an input or an output. If the V Sync Pin is an 

output, the GDC generates the raster timing for the 
display and other CRT controllers can be synchro­
nized to it. If the V Sync pin is an input, the GDC can 
be synchronized to any external verticalSync signal. 

Graphics Mode Special Display ~unctlons:. 

WINDOWING 
The GDG's Graphics Mode Display car.! be divided 
into two windows on the screen, upper and lower. 
The windows are defined by parameters written into 
the GDC's parameter RAM. Each window is specified 
by a starting address and a window length in lines. If 
the second window is not used, the first window 
parameters should be specified to be the same as the 
active display length. 

ZOOMING 
A parameter of the GDC's zoom command allows 
zooming by effectively increasing the size 6f the dots 
on the screen. This is accomplished vertically by 
repeating the same display line. The number of times 
it is repeated is determined by the display zoom fac­
tor parameter. Horizontally, zoom is accomplished by 
extending each display word cycle and displaying 
fewer words per line, according to the zoom factor. It 
is the responsibility of the microprocessor control­
ling the GDC to provide the shift register clock cir­
cuitry with the zoom factor required to slow down the 
shift registers to the appropriate speed. The fre­
quency of the 2XWCLK should not be changed. The 
zoom factor must be set to a known state upon 
initialization. 

8-110 

PANNING 
Panning is accomplished by changing the starting 
address of the display window. In this way, panning is 
possible in any direction, vertically on a lin~ by line 
basis and horizontally on a word by word basis. 

Graphics Mode Drawing and Writing 

The GDC can draw solid or patterned lines, arcs, Circles, 
rectangles, slanted rectangles, characters, slanted char­
acters, filled rectangles. Direct access to the bit map 
is also provided via the DMA Commands and the Read 
or Write data commands. 

MEMORY MODIFICATION 
All drawing and writing functions take place at the 
location in the display RAM specified by the cursor. 
The cursor is not displayed in Graphics Mode. The 
cursor location is modified by the execution of dra.w­
ing, reading or writing commands. The cursor will 
move to the bit following the last bit accessed. 

210655-002 



82720 

Each bit is draw,n by executing a Read-Modify-Write 
cycle on the display RAM. These RlMfW cycles normally 
require four 2XWCLK cycles to execute. If the display 
zoom factor is greater than two, each R/MIW ciCle will 
be extended to the width of a display cycle. Write Data 
(WDAT), Read Data (RDAT), DMA write (DMAW) and 
DMA read (DMAR) commands can be used to exam· 
Ine or modify one to 16 bits in each word during each 
RlM/W cycle. All other graphics drawing commands 
modify one bit per RlM/W cycle. 

An internal 16·bit Mask register determines which bit(s) 
in th~ accessed word are to be modified. A one in the 
Mask register allows the corresponding bit in the display 
RAM to be modified by the R/MfW .cycle .. A zero in the 
Mask register prevents the GDC from modifying the cor­
responding bit in the display RAM. 

The mask must be set by the Mask Command prior to 
issuing the WDAT or DMAW command. The Mask reg­
ister is automatically set by the CURS command and 
manipulated by the graphics commands. 

The display RAM bits can be modified in one of four 
ways, They can be set to 1, reset to 0, complemented 
or replaced by a pattern. 

When replace by a pattern mode is selected, lines, 
arcs and rectangles will be drawn using the 16-bit 
pattern in parameter RAM bytes 8 and 9. 

In set, reset, or complement mode, parameter RAM 
bytes 8 and 9 act as another level of masking for line 
arc and rectangle drawing. As each 16-bit segment' 
of the line or arc is drawn, it is checked against the 
pattern in the parameter RAM. If the pattern RAM bit 
is a one, the display RAM bit will be set, reset, or 
complemented per the proper modes. If the pattern 
RAM bit is a zero, the display RAM bit won't be 
modified. 

When replace .by pattern mode is seleccted, the 
graphics character and fill commands will cause the 
8 x 8 pattern in parameter RAM bytes 8 to' 15 to be 
written directly into the display RAM in the appropri­
ate locations. 

In set, reset, or complement mode, the 8 x 8 patte~n in 
parameter RAM bytes 8 to 15 act as a mask pattern 

, for graphics character or fill commands. If the appro­
priate parameter RAM bit is set, the display RAM bit 
will be modified. If the parameter RAM bit is zero, the 
display RAM bit will not be modified. These modes 
are selected by issuing a WDAT command without 
parameters before issuing graphics commands. The 
pattern in the parameter RAM has 'no effect on WIilAT, 
RDAT, DMA\N. or DMAR operations. 

READING AND DRAWING COMMANDS 
,After the modification mode has been set and tile 
parameter RAM has been loaded, the final drawing 
parameters are loaded via the figure specify (FIGS) 
command. The first parameter specifies the dlrec· 
tion in which drawing will occur and the figure type to 
be drawn. Thill parameter Is followed by one to five 
more parameters depending on the type of character 
to be drawn. 

The direction parameter specifies one of eight oc­
tants in which the drawing or reading will occur. The 
effect of drawing direction on the various figure 
types is shown in Figure 9. 

RDAT, WDAT, DMAR, and DMAW Operations move 
through the Display memory as shown in the '.'DMA" 
Column. 

The other parameters required to set up figure reading 
or drawing are shown in Figure 3. 

DRMINGTYPE DC D D2 Dt' DM 

INITIAL YAWE' 0 • -1 -1 

LINE 1"11 21"DI-I"1I 2(I"DI-I"II) 21401 

ARC"" -.1 '-1 2(.-1) -1 rsln 81 

RECTANGLE A-1 B-1 -1 A-1 

AREA FILL B-1 A A 

GRAPHIC B~1 A A 
CHARACTER'" 

WRITE DATA W-1 

DMM D-1 C-1 

DMAR D-1 C-Z' (C-2)/2t 

READ DATA W 

'INITIAL YAWES FOR THE VARIOUS PARAMETERS ARE LOADED 
WHEN THE FIGS COMMAND BYTE IS PROCESSEI). " 

"CIRCLES ARE DRJIINN WITH 8 ARCS, EACH OF WHICH SPAN 45°, 
SO THAT SIN. = 1/./2 AND SIN 8 = 0. 

• .... GRAPHIC CHARACTERS ARE A SPECIAL CASE OF BlT-MAP 
AREA FILLING IN WHICH B AND A ,,8. IF A = 8 THERE IS NO 
NEED TO LOAD D AND,D2. 

WHERE: 
-1 = ALL ONES VAWE. 

ALL NUMBERS ARE SHOWN IN BASE 10 FOR CONVENIENCE. THE GDC 
ACCEPTS BASE 2 NUMBERS (2. COMPLEMENT NOTATION WHERE 
APPROPRIATE). 

- = NO PARAMETER BYTES SE/(I" TO GDC FOR THIS PARAMETER.­
al = THE LARGER OF AX OR Ay. 

aD = THE SMALL:ER OF AX OR ay. 
r = RADIUS OF CURVATURE, IN PIXELS., ' 
• = ANGLE FROM MAJOR AXIS TO END OF THE ARC. • ,,45° • 
• = ANGLE FROM MAJOR AXIS TO START OF THE ARC. • ,,45°. 
I = ROUND UP TO THE NEXT HIGHER INTEGER. 
I = ROUND DOWN TO THE NEXT LOWER INTEGER. 
A = NUMBER OF PIXELS IN THE INITIALLY SPECIFIED DIRECTION. 
B = NUMBER OF PIXELS IN TflE DlRECT10N AT RIGHT ANGLES TO 

THE INITI"LLY SPECIFIED DIReCTION. 
W = NUMBER OF WOI'IDS TO BE ACCESSED. 
C. NUMBER OF IIYTES TO BE TRANSFERRED IN THE INITIALLY 
. SPECIFIED DIRECTION. (TWO BYTES PER WORD IF WORD 

TRANSFER 'MODE IS SELEC;TED.) 
D = NUMBER OF WORDS TO BE ACCESSED IN THE DIRECTION AT 

RIGHT ANGLES TO THE IIITIALLY SPECIFIED DIRECTION. 
DC.'DRAWING COUNT PARAMETER WHICH IS ONE LESS THAN 

THE NUMBeR OF RMW CYCLES TO BE EXECUTED. 
OM = DOTS MASKED FROM DRAWING DURINII ARC _NO. 

t = NEEDED ONLY FOR WORD READS. 

Figure 3, Drawing' Parameter Details 

8-111 . 210855-002 



82720 

After the parameters have been set; line, arc, circle, rec­
tangle or slanted rectangl.e drawing operations are 
.initiated by the Figure Draw (FIGD) command. 
Gharacter, slanted character, area fill and slanted area 
fill drawing operations are initiated by the Graphic;s 
Character Draw (GCHRD) command. DMA transfers are 
initiated by the DMA Read or Write (DMAR or DMAW) 
commands. Data Read Operations are initiated by the 
Read Data (RDAT) Command. Data Write Operations 
are initiated by writing a parameter after the WDAT 
command. 

The area fill operation steps and repeats the 8 x 8 
graphics character pattern draw operation to fill a 
rectangular area. If the size of the rectangle is not an 
jntegral number of 8 x 8 pixels, the GDC will auto­
matically truncate the pattern at Jhe edges furthest 
from the starting point. 

The Graphics Character Drawing capability can be 
modified by the Graphics Character Write Zoom Fac­
tor (GCHR) parameter of the zoom command. The 
zoom write factor may be set from 1 to 16 (by using 

~ from 0 to 15 in the parameter). Each dot will be 
repeated in memory horizontally and vertically 
(adjusted for drawing direction) the number of times 
specified by the zoom factor. 

The WDAT command can Qe used to rapidly fill large 
areas in memory with the same value. The mask. is set 
to all 1's, and the least significant bit of the WDAT 
parameter replaces all bits of each word written. 

Character Mode Memory Organization 

In character mode, the Display memory is organized 
into up to. 8K characters of up to 13 bits each. Wide 
.mode is also available for characters of up to 26 bits. 

" '. The display memory can"be Jarger than the display 
itself. The display width (in characters) is a parameter 
of the reset command. The display memory width (in 
characters) is a parameter of the, Pitch Command. 
The height of the display (in lines) is a parameter of 
the Reset Command. The display memory height is 
determined by diliiding the number of display 
memory words by the pitch. 

In character mode, the display works almost, exactly as 
it does in graphics mode. The differences lie in the fact 
that data read from the display RAM is used to drive 
a character generator as well' ~s attribute logic if 
desired. In Character mode, address bits 13-16 become 
line counter outputs used to select the proper line of 
the character generator, and the address 17 output 
becomes the cursor and line counter MSB.output. 

Character Mode Display Timing 

In cha~cter mode, the display timing works as it does 
in graphics mode. In addition, the Address 17 output 
becomes. cursor output. The characteristics of the cur­
sor are defined by parameters of the. cursor arid 
Character Characteristics (CCHAR) command. One bit 
allows the cursor output to be enabled or disabled. The 
height of the cursor is programmable by selecting the 
top and bottom line between which the cursor will 
appear. The blink. rate is also programmable. The 
parameter selects the number of frame times that the 
cursor will be inactive and active, resulting in a 50% 
duty cyCle cursor blinking at 2 x the period specified 
by the paramet~r. 

The cursor output pin also provides the line counter bit 
4 signal, which is valid 10 clocks after the trailing edge 
of HSyi\lC. 

Character Mode Special Display Functions 

WINDOWING 
The GDC's Character Mode display can be par­
titioned into one to four windows on the screen. The 
windows are defined by parameters written into the 
GDC's Parameter RAM. Each window is specified by 
a starting address and a window length in lines. 

If windowing is not required, the first window length 
should be specified to be the same as the active 
display length. 

ZOOMING AND PANNING 
'In character mode, zooming and pan handling com­
mands function the same way as in Graphics Mode. 

Character Mode Drawing and Writing 

The GOC can read or write characters of up to 13 
bits into or out of the Display RAM., 

All reading and writing functions take place at the 
display RAM location specified by the cursor. The cur­
sor location can be read by issuing the CURD com­
mand. The cursor can be moved anywhere within the 
display memory by the CURS command. The cursor 
location is also modified by the execution of character 
read or write commands. 

8-112 

Each character is written or' read via a 
Read/Modify/Write cycle. The mask register contents 
determine which bit(s) in the character are modified. 
The mask register can be' used to change character . 
codes without modifying attribute bits or vice-versa. The 
Replace with pattern, Set, Reset and Complement 

210655-002 



intJ 82720 

modes work exactly as they do in graphics mode, with' 
the exception that the parameter RAM Pattern is not 

'used. The pattern used is a parameter of the WOAT 
command. 

The Figure Specify (FIGS) command must be set to 
Character Display mode, as well as specify the direc­
tion the cursor will be moved by read or write d~ta 
commands. . 

In character mode, the FIGO and GCHRO commands 
are not used. 

Mixed Mode Memory Organization 

In mixed mode, the display memory is organized into, 
two banks of up to 64K words of 16 bits each (32 bits 
in wide mode). 

The display height and width are, programmable by'the 
same Reset or Sync command parameters as in the 
graphics and character modes. The display memory 
width (in words)'is a parameter of,the Pitch Command 
and the height of the display memory is determined by' 
dividing the number of display memory words by the 
pitch. 

An image mode Signal is used to switch the external 
Circuitry between graphics and character modes in 
two display windows. 

In a graphics window, the GOC works as it does in 
pure graphics'mode, but on a smaller total memory 
space (64K words vs Q12K words). 

In a character window, the GOC works as it does in 
pure character mode, but the, line counter must be 
implemented externally. The counter is cli:>cked by 
the h,or,iZ~)ntal sync pulse and reset by a Signal sup­
plied by the GOC. 

In mixed ~ode, the GOC p~ovides both a cursor and 
an attribute blln,k timing signal. 

Mixed Mo~e Display Timing 

In mixed mode, each word 'in a graphic area is accessed 
twice iii succession. TheAW paramete~ of the Reset 
or Sync command should, be set to twice its normal 
value, ~nd the video shift reglste~ load'signal must be 
's~ppressed during the extra accel1S cycle. 
, ,t , 
In addition, A16 becomes a Multiplexed Attribute and 
Clear Une Counter signal and A17 becomes a multi­
plexed c~r and image mode signal. A16 provid~s an 

active high line counter reset signal which is valid 
10 clockS after the tr'liling edge of HSYNC. During the 
active display line time, A16 provides blink timing fOr 
external attribute circuitry. This signal blinks at 112 the 
blink rate of the cursor with a 75% on, 25% off duty 
cycle. A17 provides a signal which selects b~en 
graphics or character display, which is also valid 
10 clocks after the trailing edge of HSYNC. During the 
active display time, A17 provides the cursor signal. The 
cursor timing and characteristics are defined in exactly 
the same way as in pure character mode. 

, Mixed Mode Special Displ,y F~nctions 

WINDOWING 
The GOC supports two'display windows: in mixed mode. 
They can independently be programmed into either 
graphics dr character mode determined by the state of 
two bits in the parameter RAM. The window location 
in display memory and size are alSo determined by 
parameters in the parameter RAM. 

ZOOMING AND PANNING 
In mixed mode, zooming and panning commands 
function the same as in graphics and character 
,mode. 

8-113 

Mixed Mode Drawing and Writing 

In mixed mode, the GOC can write or draw in exactly 
the same ways as in both graphics and character 
modes. In addition, the FIGS command has a para­
meter GO' (Graphics Drawing Flag) which sets the 
image mode signal to select the proper RAM bank. 

DEVICE PROGRAMMING 

The GOC occupies two addresses on the system micro­
processor bus through which the GOC's status regiSter, 
and FIFO are accessed. Commands and parameters 
are written into the GOC FIFO and are differentiated by 
address bit NJ. The status register or the FIFO can be 
read as selected by the' address line. 

AO READ WRrrE 

STATUS REGISTER PARAMETER INTO FIFO 

fJ ,I I I I I I I I 1 1 I I I I I ; I 1 
FIFO READ ,COMMAND INTO FIFO 

1 I I 1'1 I I I I I II I I I I I I I 
, , 

Figure 4. GDC Mlcroproc:essor BU8j~tertace 
Registers 



82720 

Commands to the GOC take the form of a command 
byte followed by a series of parameter bytes as 
needed for specifying the details of the command. 
The command processor' decodes the commands" 
unpacks the parameters, loads them into the appro­
priate registers wit bin the GOC and initiates the re-
quired oiJerations. ' 

The cQmmands available in the GOC can be organ­
ized into five categories as described in figure 5. 

VIDEO CONTROL'COMMANDS 
1. RESET: RESETS THE GOC TO ITS IDLE STATE. 
a. SYNc: SPECIFIES THE VIDEO DISPLAY FORMAT. 
3. VSYNC: SELECTS MASTER OR SLAVE VIDEO 

SYNCHRONIZATION MODE 
4. CCHAR: SPECIFIES THE CURSOR AND CHARACTER ROW 

HEIGHTS. 
DISPLAY CONTROL COMMANDS 

1. START: ENDS IDLE MODE AND UN BLANKS THE DISPLAY. 
2. BCTRL: CONTROLS THE BLANKING AND UNBLANKING OF 

, 3. ZOOM: ~~~Jl~~:~~OOM FACTORS FOR THE DISPLAY AND 
GRAPHICS CHARACTERS WRITING. • 

4. CURS: SETS THE POSITION OF THE CURSOR IN DISPLAY 
MEMORY, 

5. PRAM: DEFINES STARTING ADDRESSES AND LENGTHS OF . 
THE DISPLAY AREAS AND SPECIFIES THE EIGHT 
BYTES FOR THE GRAPHICS CHARACTER. 

8. prrCH: SPECIFIES THE WIDTH OF THE X DIMENSION OF 
DISPLAY MEMORY. 

DRAWING CONTROL COMMANDS 
1. WDAT: WRITES DATA WORDS OR BYTES INTO DISPLAY 

MEMORY. 
2. MASK: SETS THE MASK REGISTER CONTENTS. 
3. FIGS: SPECIFIES THE PARAMETERS FOR THE DRAWING 

PROCESSOR. 
4. FIGD: DRAWS THE FIGURE AS SPECIFIED ABOVE. 
5. GCHRD: DRAWS THE GRAPHICS CHARACTER INTO DISPLAY 

ME~~~~frA R~:~D~O~~:~~~DS'OR BYTES FROM DISPLAY 
Mr;MORy. 

2. CURD: READS THE CURSOR POSITION. 
3. LPRD: READS THE LIGHT PEN ADDRESS. 

DMA CONTROL COMMANDS 
1. DMAR: REQUESTS A DMA READ TRANSFER. 
2. DMAW: REQUESTS A DMA WRITE TRANSFER. 

Figure 5: GDC Command Summary 

'17 

, "j Ti, r ~5i-
L_~-~~======vr;RTlCALSYNC AC7IVE 

HORIZONTAL BLANK AC7IVE 
'------------LlGKr I1ENDETEC7 

Figure 6. Status Register (SR) 

Status Register Flags 

SR-7: Ught Pen Detect: When this bit is set to 1, the 
light pen address (LAO) register contains a de­
glitched value that the system microprocessor may 
read. This flag is reset after the 3-byte LAD is moved 
into the FIFO in response to the light pen read 
command. 

SR-6: Horizontal BI.anklng Active: A 1 value for 
this flag signifies that horizontal retrace blanking is 
currently underway. 

, SR-5: Vertical Sync: Vertical retrace sync occurs 
while this flag is a 1. The vertical sync flag coor­
dinates display format modifying commands to the 
blanked interval surrounding vertical sync. This 
eliminates display disturbances. 

6-114 

SR-4: DMA Execute: This bit is a 1 during OMA data 
transfers. . 

SR-3: Drawing In Progress: While the GOC is draw­
ing a graphics figure, this status bit is a 1. 

SR-2: FIFO Empty: This bit and the FIFO Full flag 
coordinate system microprocessor accesses with 
the GOC FIFO. When it is 1, the Empty flag ensures 
that all the commands and parameters previously 
sent to the GOC have been processed. 

SR-1: FIFO Full: A 1 at this flag indicates a full FIFO 
in the GOC. A 0 ensures that there is room for at least 
one byte. This flag needs to be checked before each 
write into the GOC. 

SR-O: Data Ready: When this flag is a 1, it indicates 
that a byte is available to be read by the system 
microprocessor. This bit must be tested before each 
read operation. It drops to a 0 while the data is trans­
ferred from the FIFO into the microprocessor inter-
face data reg ister. . 

FIFO Operation "& Command Protocol 

The first-in, first-out bufte,r (FIFO) in the GOC 
handles the command dialogue with the system mi­
croprocessor. Thisflpw of information uses a half­
duplex technique, 'in which the single 16-location 
FIFO is used for both directions of data movement, 
one direction at a time. The FIFO'sdirectlon is con­
trolled by the system microprocessor through the GOC's 
command set. The microprocessor coordinates these 
transfers by checking the appropriate status register 
bits. 

The' command protocol used by the GOC requires 
the differentiation of the first byte of a command 
sequence from the succeeding bytes. This first byte 
contains the operation code and the remaining bytes 
carry parameters. Writing into the GOC causes the 
FIFO to store a flag value alongside the data byte to 
signify whether the byte was written rnto the com­
mand or the parameter address. The command pro~ 
cessor in the GDC tests this bit as it interprets the 
entries in the FIFO. .. ' 

210655-002 



82720 

The receipt of a command byte by the command 
processor marks the end of any previous operation. 
The number of parameter bytes supplied with a com­
mand is cut short by the receipt of the next command 
byte. A read operation from the GDC to the'micropro­
cessor can be terminated at anytime by the next 
command. 

The FIFO changes direction under' the control of the 
system microprocessor. Commands written into the 
GDC always put the FIFO into write mode if it wasn't 
in it already. If it was in read mode, any read dat'a in 
the FIFO at the time of the turnaround is lost. Com-. 
mands which req uire a GDC response, such as RDAT, 
CURD and LPRD, put the FIFO into read mode after 
the command is interpreted by the GDC's command 
processor. Any commands and parameters behind 
the read-evoking command are discarded when the 
FIFO direction is reversed. 

Read-Modify-Write Cycle 

Data transfers between the GDC and the display 
memory are accomplished using a read-modify-write 
(RMW) memory cycle. The four dock period timing of 
the RMW cycle is used to: 1) output the address, 2) 
read data from the memory, 3) modify the data, and 4) 
write the modified data back into the initially se­
lected memory address. This type of memory cycle is 
used for all interactions with display memory includ­
ing DMA transfers, except for the two clock period 
display and RAM refresh cycles. 

The operations performed during the modify portion 
of the RMW cycle merit additional explanation. The 
circuitry in the GDC uses three main elements: the 
Pattern register, the Mask register, and the 16-bit 
Logic unit. The Pattern register holds the data pat­
tern to be moved into memor'y. It is roaded by the 
WDATcommand or, during drawing, from the param­
eter RAM. The Mask register contents determine 
which bits of the read data will be modified. Based on 
the contents of these registers, the Logic unit per­
forms the selected operations of REPLACE, COM­
PLEMENT, SET, or CLEAR on the data read from 
display memory. 

The Pattern register contents are ANDed with the 
Mask register contents to enable the actual modifica­
tion of the memory read data, on a bit-by-bit basis. 
For graphics drawing, one bit at a time from the 
Pattern register is combined with the Mask. When 
ANDed with the bit set to a 1 in the Mask register, the 
proper single pixel is modified by the Logic Unit. For 
the next pixel in the figure, the next bit in the Pattern 
register is selected and the Mask register bit is 

moved to identify the pixel's location within the word. 
The Execution word address pointer register, EAD, is 
also adjusted as required to address the word con­
taining the next pixel. 

In character mode, all of the bits in the Pattern regis­
ter are used in parallel to form the respective bits of 
the modify data word. Since the bits of the character 
code word are used in parallel, unlike the one-bit-at­
a-time graphics drawing process, this facility allows 
any or all of the bits in a memory word to be modified 
in one RMW memory cycle. The Mask register must 
be loaded with 1 s in the positions where modification 
is to be permitted. 

The Mask register can be loaded in either of two 
ways. In graphics mode, the CURS command con­
tains a four-bit dAD field to specify the dot address. 
The command processor converts this parameter 
into the one-of-16 format used in the Mask register 
for figure drawing. A full 16 bits can be loaded into 
the Mask register using the MASK command. In addi­
tion to the character mode use mentioned above, the 
16-bit MASK load is convenient in graphics mode 
when all of the pixels of a word are to be set to the 
same value. 

6-115 

The Logic unit combines the d'ata read from display 
memory, the Pattern register, and the Mask register 
to generate the data to be written back into display 
memory. Anyone of four operations can be selected: 
REPLACE, COMPL£MENT, CLEAR or SET. In each 
case, if the respective Mask bit is 0, that particular bit 
of the read data is returned to memory unmodified. If 
the Mask bit is 1, the modification is enabled. With 
the REPLACE operation, the modify data simply 
takes the place of the read data for modification 
enabled bits. For the other three operations, a 0 in 
the modify data allows the read data bit to be re­
turned to memory. A 1 value causes the specified 
operation to be performed in the bit positions with 
set Mask bits. 

Figure Drawing 

The GDC draws graphics figures at the rate of one 
pixel per read-modify-write (RMW) display memory 
cycle.' These cycles take four clock periods to com­
plete. At a clock frequency of 5 MHz, this is equal to 
800 ns. During the RMW cycle the GDC simulta­
neously calculates the address and position of the 
next pixel to be drawn. 

The graphics figure drawing process depends on the 
display memory addressing structure. Groups of 16 
horizontally adjacent pixels form the 16-bit words 

210655-002 



inter 82720 

which are handled by the GDC. Display memory is 
organized as a linearly addressed space of these 
words. Addressing of individual pixels is handled by 
the GDC's internal RMW logic. 

During the drawing process, the GDC finds the next 
pixel of the figure "'!hich is one of the eight nearest 
neighbors of the last pixel drawn. The GDC assigns 
each of these eight directions a number from 0 to'7, 
starting with straight down and proceeding 
counterclockwise. 

Figure 7. Drawing Directions 

Figure drawing requires the proper manipulation of 
the,address and the pixel bit position according to 
the drawing direction to determine the next pixel of 
the figure. To move to the word above or below the 
current one, it is necessary to subtract or add the 
number of words per line in display memory, This 
parameter is called the pitch. To move to ~he word to 
either side, the Execute word address cursor, EAD, 
must be incremented or decremented as the dot ad· 
dress pointer bit reaches the LSB or the MSB of t~e 
Mask register. To move to a pixel within the same 
word, it is necessary to rotate the dot address pointer 
register to the right or left. 

Figure 8 summarizes these operations for each 
direction. 

, Whole word drawing is useful for filling areas in 
memory with a Single value., By setting the Mask 
register to all1s with the MASK command, both the 
LSB and MSB of the dAD will always be 1, so that the 
EAD value will be incremented or decremented for 
each cycle regardless of direction. One RMW cycle will 
be able to affect all 16 bits (;)f the word for any drawing 
type. One bit in the Pattern register is used per RMW 
cycle to write ail the bits of the word to the same value. 
The next Pattern bit is-used,for, the word, etc. 

8-116 

DIR ADDRESS OPERATION(S) 

o EAD = EAD + P' 

EAD=EAD+P 
If dAD.MSB .. 1 then EAD = EAD + 1 
dAD = LR(dAD) 

2 If dAD.MSB " 1 then EAD = EAD + 1 
dAD .. LR(dAD) 

3 EAD" EAD -P 
If dAD.MSB .. 1 then EAD = EAD + 1 
dAD = LR(dAD) 

4 EAD .. EAD-P 

5 EAD=EAIJ-P 
If dAD.LSB = '1 1hen EAD .. EAD - 1 
dAD .. RR(dAD) 

6 _ If d!lD.LSB = 1 then !!AD .. EAD - 1 
dAD " RR(dAD) " ' 

7 EAD ,,'EAD + P 
If dAD.LSB .. 1 then EAD " EAD - 1 
dAD = RR(dAD) 

WHERE 
P = PITCH, LR .. LEFT ROTATE, RR = RIGHT ROTATE 

CAD .. CURSOR ADDRESS 
dAD = DOT ADDRESS 
LSB = LEAST SIGNIFICANT BIT 
MSB .. MOST SIGNIFICANT BIT 

Flglire 8. Address Calculation Details 

,,' 

210656.()()2 

• 



inter 82720 

For the various figures, the effect of the initial direction 
upon the resulting drawing is shown in figure 9. 

Note that during line drawing, the angle of the line 
may be anywhere within the shaded octant defined 
by the DIR value. Arc drawing starts in the direction 
initially specified by the DIR value and veers into an 

Dir Line Arc Character 

000 .~ ~---;- • ~~ 
~ 

001 .. ~ ~ ' , , , 
I' 
f!f .. ... 

I I' 

010 I " , , 
~ . 

~ ~ 011 r' . --:~'--

100 v~ -'~~~~) • 
A- .' 

~ 1,01 ' I 
" I 

~ 

110 r r: I , 
.. I 

.. I 
~ 

111 A -: .. ~] ~ -

arc as drawing proceeds. An arc may be up to 45 
degrees in length. DMA transfers are done on word 
boundaries only, and follow the arrows indicated in 
the table to find successive word addresses. The 
slanted paths for DMA transfers indicate the GDC 
changing both the x and Y components of the word 
address when moving to the next word. It does not 
follow a 45 degree diagonal path by pixels. 

Slant Char Rectangle DMA , 0 i'N 
~ <> ~ 
/ 0 ~ 

1 
~ <> ~ , 0 m 
~ 0 ~ 
.; 0 ~-- -

<> -# 
Figure 9. Effect of the Direction Parameter 

8-117 210655·002 



82720 

Drawing Parameters 

In preparation for graphics figure drawing, the GDC's 
,Drawing Processor needs the figure type, direction 
and drawing parameters, the starting pixel address, 
and the pattern from the microprocessor. Once these 
are in place within the' GDC, the Figure Draw com­
mand, FIGD, initiates the drawing operation. From 
that pOint on, the system microprocessor is not in­
volved in the drawing process. The GDC Drawing 
Processor coordinates the RMW circuitry and ad­
dress registers to draw the specified figure pixel by 
pixel. 

The algorithms used by the processor for figure 
drawing are designed to optimize its drawing speed. 
To this end, the specific details about the figure to be 
drawn are reduced by the'mic::roprocessor to a form 
conducive to high-speed address calculations within 
the GDC. In this way the repetitive, pixel-by-pixel 
calculations can be done quickly, thereby minimizing 
the overall figure drawing time. Figur,e 3 summarizes 
the parameters. 

Graphics Character Drawing 

Graphics characters can be drawn into display 
memory pixel-by-pixel. The up to 8-by-8 character is 
loaded into the GDC's parameter RAM by the system 
microprocessor. Consequently, there are no 
limitations on the character set used. By varying the' 
drawing parameters and drawing direction, 
numerous drawing options ~re available. In area fill 
applications; a 'character can be written into display 

, 

8-118 

memory as many times as desired without ,eloadlng 
tbe parameter, RAM: 

Once the parameter RAM has been loaded with up to 
eight 'graphics character bytes by the ,approp~iate 
PRAM command, the GCHRD command can be used 
to draw the bytes into display memory starting at the 
cursor. The zoom magni,fication factor for writing, 
set by the zoom command, controls the size of the 
character written into the display memory in Integer 
multiples of 1 through 16. The bit values in the PRAM 
are repeated horizontally and vertically the number 
of times specified by the ;zoom factor. 

The movement of these PRAM bytes to the display 
memory is controlled by the parameters of the FIGS 
,command. Based on the specified height and width 
of the area to be drawn, the parameter RAM is 
sca'nned to fill the required area.' 

For an 8-by-8 graphics character" the first pixel drawn 
uses the LSB of RA-15, the second pixel uses bit 1 of 
RA-15, ,and so on" until the MSB of RA-15 is re,ached. 
The GDC jumps to the corresponding bit in RA-,14 to 
co~tinue the drawing. The progression then advances 
toward the LSB of RA-14. This snakih'g sequence is con­
tinued for the other 6 PRAM bytes. This progression 
matches the seq~ence of display rnemory addresses 
calculated by the drawing processor as shown in 
figure 9. If the area is mmower than 8 pixels wide, the 
snaking will advance to the next PRAM byte before the 
MSBis reached. If the area is less than 8 lines high, 
fewer bytes in the parameter RAM will be scanned. If 
the area is larger than 8 by 8, the GDC will repeat the 
contents of the parameter RAM in two dimensions. 

210655-002 



inter 82720 

Parameter RAM Contents 

The parameters stored in the parameter RAM, 
PRAM, are available for the GDC to refer to 
repeatedly during figure drawing and raster­
scanning. In each mode of operation the values in the 
PRAM are interpreted by the GDC in a predeter­
mined fashion. The host microprocessor must load 
the appropriate parameters into the proper PRAM 
locations. PRAM loading command allows the host 
to write into any location of the PRAM and transfer as 
many bytes as desired. In this way any stored param­
eter byte or bytes may be changed without influenc­
ing the other bytes. 

The PRAM stores two types of information. For 
specifying the details of the display area partitions, 
blocks of four bytes are used. The four parameters 
stored in each block include the starting address in 
display memory of each display area, and its length. 

8-119 

In addition, there are two mode bits for each area 
which specify whether the area is a bit-mapped 
graphics area or a coded character area, and 
whether a normal or wide display cycle is to be used 
for that area. 

The other use for the PRAM contents is to supply the 
pattern for figure drawing when in a bit-mapped 
graphics area or mode. In these situations, PRAM 
bytes 8 through 16 are reserved for this patterning 
information. For line, arc, and rectangle drawing 
(linear figures) locations 8 and 9 are loaded into the 
Pattern register to allow the GDC to draw dotted, 
dashed, etc. lines. For area filling and graphics bit­
mapped character drawing locations 8 through 15 
are referenced for the pattern or character to be 
drawn. 

Details of the bit assignments are shown on .the fol­
lowing pages for the various modes of operation. 

~ 210655-002 



"nt_I" lu~··· 82720 

RAo0

1

'S: _, ___ S_AI_Dl' ___ ~ 
. ,.1 DISPLAY PARTITION AREA 1 STARTING 

SADl H ADDRESS WITH LOW AND HIGH 

L......I._ ...... ....I ...... ...I._.l.I_..II_...I........ ~~:~::fS~~CE FIELDS (WORD 

RAo4 

6 

RA-8 

10 

11 

RA-12 

13 

14 

15 

LENGTH OF DISPLAY PARTITION 1 
(LINE COUNT) WITH LOW AND HIGH 
SI,GNIFICANCE FIELDS. 

THE IMAGE BIT AFFECTS THE· 
OPERATION OF THE DISPLAY ADDRESS 
COUNTER IN CHARACTER MODE. IF 

'-------------- ~E~~Ac?:E~J~~ ~~~ON~\FTER 
EACH READ CYCLE. IF THE IMAGE 

:V J~~~TF~~~~iEI~.f~~ENT 
READ CYCLES. 

A WIDE DISPLAY CYCLE WIDTH 
OF TWO WORDS PER MEMORY CYCLE 
IS SELECTED FOR THIS DISPLAY 

'--------------- ~~~~I~pI'l~ :J1~~~~6~:TliR IS 

SAD2, 

a 

o 

THEN INCREMENTED BY 2 FOR EACH 
DISPLAY SCAN CYCLE. OTHER MEMORY 
CYCLE TYPES ARE NOT INFLUENCED. 

DISPLAY PARTITION 2 STARTING 
-- ADDRESS AND LENGTH 

DISPLAY PARTITION 3 STARTING 
ADDRESS AND LENGTH 

DISPLAY PARTITION 4 STARTING 
ADDRESS AND LENGTH 

Figure 10. Parameter RAM Contents-Character Mode 

• 

8-120 210655-002 



82720 

5 

RA-10 ClCHR 6 

11 GCHR5 

12 GCHR4 

13 GCHR3 

14 GCHR2 

15 

DISPLAY PARTITION AREA 1 
STARTING ADDRESS WITH LO\'I! 
MIDDLE, AND HIGH SIGNIFICANCE 
FIELDS (WORD ADDRESS~ 

LENGTH OF DISPLAY PARTITION 
AREA 1 WITH LOW AND HIGH 
SIGNIFICANCE FIELDS (LINE CDUNT) 

IN MIXED MODE, A 1 INDICATES AN 
IMAGE OR GRAPHICS AREA, AND A 0 
INDICATES A CHARACTER AREA. IN 
GRAPHICS MODE THIS BIT MUST BE O. 

WIDE DISPLAY CYCLE MODE BIT 

DISPLAY PARTITION AREA 2 
STARTING ADDRESS AND LENGTH WITH 
IMAGE IDENTIFY BIT AS IN AREA 1. 

} 

PATTERN OF 16 BITS USED FOR 
FIGURE DRAWING TO PERFORM 
DOTTED, DASHED, ~TC. LINES 

GRAPHICS'CHARACTER BYTES 
TO BE MOVED INTO DISPLAY 
MEMORY WITH GRAPHICS 
CHARACTER DRAWING 

Figure 11. Parameter RAM Contents-Graphics and Mixed Graphics and Character Modes 

8-121 210655-002 



inter 82720 ~OOl!o..orMInOO£m 

RESET: 0 1 0 o 1 0' o 1 o 1 o 10 WDAT: 0 0 
1 1 TYPE 1 0 1 MOD 

I 

SYNC: 0 0 0 0 1 I DE MASK: 0 0 0 0 0 
I 

, \/SYNC: 0 1 1 0 1 1M 
FIGS: 0 0 0 0 

CCHAR: 0 0 0 0 FIGD: 0 1 0 0 0 

START: 0 1 '0 0 GCHRD: 0 0 0 0 
I I' 

iCTRL: 0 0 0 0 o 1 DE RDAT: 0 1 1 TYPE 1"0 1 MOD 

1 I I 

ZOOM: 0 
I 

0 0 0 CURD: 0 1 0 
o . 0 

CURS: o 1 
1 0 0 0 LPRD: 0 1 0 0 0 

PRAM: o I SA DMAR: 0 1 1 TYPE 1'1 I MOD 
I I I 

PITCH: 0 0 0 DMAW: 0 1 1 TYPE 111 MOD 

Figure 12. Command Bytes su~marY 

VIDEO CONTROL COMMANDS 

'RESET: 10 0 0 0 00001 
, ! , , ! ! ! 

BLANK THE DISPLAY, ENTER IDLE MODE, 
AND INITIALIZE WITHIN THE GDC: 
~FIFO 
~COMMAND PROCESSOR 
~INTERNAL COUNTERS 

Figure 13. Reset Command 

RESET COMMAND 
This command can be executed at any time and does 
not modify any of the parameters already loaded into 
the GDC. 

If followed by parameter bytes, this command also 
sets the sync gen~rator parameters as described 
below. Idle mOde is exited with the STARTcommand. 

8-122 

I 

"-



82720 

P1 o OjCjFjljDjGjS 
___ MODE CONTROL BITS. 

SEE FIGURE 15. 

P2 AW ___ ACTIVE DISPLAY WORDS PER LINE -2. MUST . 
BE EVEN NUMBER WITH BIT 0 = O. 

P3 VS l j HS 

\ '" 
HORIZONTAL SYNC WIDTH -1 
VERTICAL SYNC WIDTH, LOW BITS 

P4 I HFP I '1" I-- VERTICAL SYNC WIDTH, HIGH BITS 
! ! ! I I 

1\ HORIZONTAL FRONT PORCH WIDTH -1. 

P5 0 oj HBP ~ HORIZONTAL BACK PORCH WIDTH -1. 

P6 0 oj VFP ~ VERTICAL FRONT PORCH WIDTH 

P7 ALL ~ ACTive DISPLAY LINES PER VIDEO FIELD, 
LOW BITS 

P8 I VBP I AL I-- ACTIVE DISPLAY LINES PER VIDEO FIELD, 
I I 

~ 
I I I" HIGH BITS 

VERTICAL B4CK PORCH WIDTH 

Figure 14. Optional Reset Parameters 

In graphics mode, a word is a group of 16 pixels. In 
character mode, a word is one character code and its 
attributes, if any. 

The number of active words per line must be an even 
number from 2 to 256. 

An all-zero parameter value selects a count equal to 
2n where n = number of bits in the parameter field for 
vertical parameters. 

All horizontal widths are counted in display words. 
All vertical intervals are counted in lines. . 

Sync Parameter Constraints 

HORIZONTAL FRONT PORCH CONSTRAINTS 
1. In general: 

HFP ~2 words 
2. If DMA is used, or the display zoom factor is greater 

than one in interlaced display mode: 
HFP ~3 words 

3. If the GDC is used in slave mode: 
HFP ~4 words 

4. If the light pen input is used: 
HFP ~6 words ' 

HO.RIZONTAL Sync CONSTRAINTS 
1. If dynamic RAM refresh is used: 

HS ~2 words 
2: If interlaced display mode is used: 

HS ~5 words 

HORIZONTAL BACK PORCH CONSTRAINTS 
1. In general: 

HBP ~3 words 
2. If interlaced display mode is used, or the IMAGE or 

WIDE mode bits change within one video field: 
HBP;:::: 5 words 

MODE CONTROL BITS (FIGURE 15) 

Repeat Field Framing: 2 Field Sequence with V2 
line offset between other­
wise identical fields. 

Interlaced Framing: 2 Field Sequence with V2 
line offset. Each field dis­
plays alternate lines. 

Noninterlaced Framing: 1 field brings all of the in­
formation to the screen. 

Total scanned lines in interlace mode is odd. The 
sum of VFP + VS + VBP + AL should equal one less 
than the desired odd number of lines. . . 

Dynamic RAM refresh is important when high display 
zoom factors or DMA are used in such a way that not 
all of. the rows in the RAMs are regularly accessed 
during display raster generation and for otherwise 
inactive display memory. 

Acqess to display memory can be limited to retrace 
blah king intervals only, so that no disruptions of the 
image are seen on the screen. . 

8-123 210655·002 



82720 

CG DISPLAY MODE 

0 0 MIXED GRAPHICS & CHARACTER 

0 1 GRAPHICS MODE 

1 0 CHARACTER MODE 

1 1 INVALID 

IS VIDEO fRAMING 

0 0 NONINTERLACED 

0 1 INVALID 

1 0 INTERLACED REPEAT FIELD 
FOR CHARACTER DISPLAYS 

1 1 INTERLACED 

-.-~- -- -----~~-----.--- .. 

D DYNAMIC RAM REFRESH CYCLES ENABLE 

0 NO REFRESH-STATIC RAM 

1 REFRESH-DYNAMIC RAM 

F DRAWING TIME WINDOW 

0 DRAWING DURING ACTIVE DISPLAY TIME 
AND RETRACE BLANKING 

1 DRAWING ONLY DURING RETRACE BLANKING 

Figure 15. Mode Control Bits 

SYNC: 10 1 0 I 0 1 0 1'1'1' tDL 
THE DISP.LA Y IS ENABLEO BY 
A " AND BLANKED BY A O. 

P1 
~~~~~~~L1 

MODE CONTROL BITS.
SEE FIGURE 15.

ACTIVE DISPLAY WORDS PER LINE -2. MUST
BE EVEN NUMBER WITH BIT 0 = o.

P3
'-'"T'-.............. ..J,..;... L.....I

'-'-J....J...-'--'-_~L...H...JI--- VERTICAL SYNC WIDTH, HIGH BITS

'------- HORIZONTAL FRONT PORCH WIDTH -1.

HORIZONTAL BACK PORCH WIDTH -1.

VERTICAL FRONT PORCH WIDTH

'-J....J....J.....J...-'--'--'-...J- ~g~~"O':SPLAY LINES PER VIDEO FIELD,

'-'-J....J--'-.Jt_A_~L...H...Jr--- ~~T~Virf~SPLA Y LINE,S PER VIDEO FIELD,

VERTICAL BACK PORCH WIDTH

Figure 16. Sync Command

8-124

inter 82720

SYNC Format Specify Command

This command loads parameters Into the sync
generator. The various parameter fields and bits are
identical to those at the RESETcqmmand. The GOC
is not reset nor does it enter idle mode.

Vertical Sync Mode Command

When using two or more GOCs' to contribute to one
image, one GOC is defined as the master sync
generator, and the others operate as its slaves. The
VSYNC pins of all GOCs are connected together.

Slave Mode Operation

A few considerations should be observed when
synchronizing two or more GOCs to generate over­
layed video via the VSYNC INPUT/OUTPUT pin. As
mentioned above, the Horizontal Front Porch (HFP)

must be 4 or more display cycles wide. This is equiva­
lent to eight or more clock cycles. This gives the slave
GOCs time to initialize their internal video sync
generators to the proper point in the video field to
match the incoming vertical sync pulse (VSYNC).
This resetting of the generator occurs just after the
end of the incoming VSYNC pul$e, during the HFP
interval. Enough time during HFP is required to allow
the slave GDC to complete the operation before the
start of the HSYNC interval.

Once the GOCs are initialized and set up as Master
and Slaves, they must be given time to synchronize. It
is a good idea to watch the VSYNC status bit of the
Master GDC and wait until after one or more VSYNC
pulses have been generated before the display pro­
cess is started. The START command will begin the
active display of data and will end the video
synchronization process, so be sure there has been
at least one VSYNC pulse generated for the Slaves to •
synchronize to.

VSYNc:lo" 0" 'I~
, , , I I! O-ACCEPT EXTERNAL VERTICAL

,~~iiiiWEA~~~~ VERTiCAL
SYNC-MASTER MODE

Figure 17. Vertical Sync Mode Command

CCHAR: 10 1 0 0 , 0 1 , I
• ! , , , , , , •

LR , , r-- LINES PER CHARACTER ROW-,

DISPLAY CURSOR IF ,

P2 I BRL Iscl o/0f I- =SOR TOP LINE NUMBER IN THE

... ~t::::;;:l"-;==_=-;.-=-;-= -= -=, --;--_ -_ ~=~:~~~.f=R BLINK RATE. LOWER Brrs

P3 I 9Bo;r ~Rui r-- BLINK RATE, UPPER Brrs

iL _______ ~~:~BOTTOM LINE NUMBER IN

Figure 18. Cursor & Character Characteristics Command

8-125 210655-002

inter 82720

Cursor and Character Characteristics
Command

In graphics mode, LR should be set to O. For interlaced
displays in graphics mode, SR should be set to 3. The
blink rate parameter controls both the cursor and attrib­
ute blin.k rates. The·cursor blink-on-time = blink-olf-time
= 2 x. SR (video frames). The attribute blink rate is
always 1/2 the curspr rate but with a 3/4 on-1/4 off duty
cycle.

DISPLAY CONTROL COMMANDS

.Zoom Factors Specify Command

Zoom magnification factors of 1 through 16 are avail­
able using codes 0 through 15, respectively.

Cursor Position Specify Command

In character mode, the third parameter byte is not
needed. The cursor is displayed for the word time in
which the display scan address (DAD) equals the
cursor address. In graphics mode, the cursor word
address specifies the word containing the starting
pixel of the drawing; the dot address value speoifies
the pixel within that word.

START DISPLAY & END IDLE MODE

START: I 0 1 1 0 1 ° 1 1 I
. ! ! I ! ! ! , .

DISPLAY BLANKING CONTROL

BCTRl: I 0 ! 0 I 0 ! 0 ! 1 ! 1 ! 0 loel

Parameter RAM Load Command

From the 'starting address, SA, any number of bytes
may be loaded into the parameter RAM at increment­
ing addresses, up to location 15. The sequence of
parameter bytes is terminated by the next command
byte entered into the FIFO. The parameter RAM
stores 16 bytes of information in predefined loca­
tions which differ for graphics and character modes.
See the parameter RAM discussion for bit
assignments.

Pitch Specification Command

This value is used during drawing by the drawing
processor to find the word directly above or below
the current word, and during display to find the start
of the next line.

The Pitch parameter (width of display memory) is set
by two different commands. In addition to the PITCH
command, the RESET (or SYNC) command also sets
the pitch value. The "active words per line" param­
eter, which specifies the width of the raster-scan dis­
play, also sets the Pitch of the display memory. In
situations in which these two values are equal there
is no need to execute a PITCH command.

L- ~~~ ~~S:~~YBI~A~~~~L:~
AD.

ZOOM FACTORS SPECIFY

ZOOM: I 0, 1 ! 0 I 0 ! 0 ! 1 , 1 t 0 I
I 0 SP I GCHR I-- ZOOM FACTOR FOR GRAPHICS

P1 I * ' , I ' CHARACTER WRITING MINUS 1

L_ ------- DISPLAY ZOOM FACTOR MINUS 1

CURSOR POSITION SPECIFY

CURS: 10,1 'DID' 1,0,0111

P1 EAD I-- EXECUTE WORD ADDRESS, LOW BYTE

~::;' '~':::::::::.
P2 EAD I-- EXECUTE WORD ADDRESS, MIDDLE BYTE

:=::::~' =' ~.
dAtD, I ° , ° I E~D1 .. - (GRAPHICS MODE ONLY)

~ WORD ADDRESS, TOP BITS
DOT ADDRESS WITHIN THE WORD

P3

Figure 19. Display Control Commands

8-126 210655·002

inter 82720

SA

it...---STARTING ADDRESS IN
PARAMETER RAM

P, 1 1-, TO'8 BYTES TO BE LOADED ====:::==~. INTO THE PARAMETER RAM
I'" STARTING AT THE RAM ADDRESS

Pn I SPECIFIED BY SA

Figure 20. Param,terRAM Load Command

PITCH: I 0 , 1 , 0 , 0 ! 0 ! 1 ! 1 ! 1 I
P11 I I I r I I I !.-NUMBER OF WORD ADDRESSES

IN DISPLAY MEMORY IN THE
HORIZONTAL DIRECTION

Figure 21. Pitch Specification Command

WRITE DATA INTO DISPLAY MEMORY

WDAT: I 0 0 , I TYPE I 0 I M?D I
t'--___ RMW MEMORY CYCLE LOGICA~

OPERATION:

o 0 _ REPLACE WITH PATTERN
o , _ COMPLEMENT
, 0 - RESET TO ZERO
, , _SET TO'

1.-_____ .,--_ DATA TRANSFER TYPE

o 0 =::=====WORD, LOW THEN HIGH BYTE , O. LOW BYTE OF THE WORD
, ,.. HIGH BYTE OF THE WORD
o , • INVALID

P1 1 WORDL OR BYTE 11-0.0---- WORD LOW DATA BYTE OR
&..--'_ 1 _1 1 1 ""---' SINGLE BYTE DATA VALUE

P2 &..I--' _WO_I&..R_DH .. ,I_~I----- ~~DDl~~~~R ONLY:

Figure 22. Write Data Command

DRAWING CONTROL COMMANDS

Write Data Command
In graphics bit-map situations, only the LSB of the
WDAT parameter bytes is used as the pattern in the
RMWoperations. Therefore it is possibleto have only
an all ones or all zeros pattern. In coded character
applications all the bits of the WDAT parameters are
used to establish the drawing p~ttern.

Upon receiving a set of parameters (two bytes for a
word transfer, one for a byte transfer), Cine'RMW
cycle into Video Memory is done at the address
pointed to by the cursor EAD. The EAD pointer is
advanced to the next word, according to the previ­
ously specified direction. More parameters can then
be accepted.

For byte writes, the unspecified byte is treated as all
zeros during the RMW memory cycle.

The WDAT command operates differently from the
other commands which initiate RMW cycle activity. It
requires parameters to set up the Pattern register
while the other commands use the stored values in
the parameter RAM. Like all of these commands, the

8-127 210655-002

inter 82720

MASK: I O! 1 ! 0 ! 0 ! 1 ! O! 1 ! 0 I
P11 IfL !-LOW,SIGNIFICANCE BYTE

:::::::=~===~

WDAT command must be preceded by a FIGS com­
mand and its parameters. Only the first three para­
meters need be, given follOwing the FIGS opcode, to set
up the type of drawing, the DIR direction, and the DC
value. :rhe DC pa~ameter + 1 will be the number of
RMW cycles done by the GDC with the first set of WDAT
parameters. ,Additional sets of WDAT parameters will
see a DC value of 0 which will cause only one RMW
cycle to be executed.

P21 11" I-HIGH SIGNIFICANCE BYTE

Figure 23. Mask Register Load Command

, FIGS: 1 0 1 1 0 0 1 1 0
10 I I I I I I

P1ISLI R I A loci L I DIR 1-D~ING DIREcnON BASE
I I I ! ! I I FIGURE TYPE SELECT BITS:

LINE (VECTOR)
GRAPHICS CHARACTER
ARC/CIRCLE
RECTANGLE
SLANTED GRAPHICS CHARACTER

:10~~ ; ~L~"; ;
L DC DRAWING PARAMETER

GRAPHICS DRAWING 'FLAG FOR USE IN
MIXED'GRAPHICS AND CHARACTER MODE

:10;01 ; :L ~M ; ;
P,-D DAAWlNG PARAMETER , '

=10 ;01 ; :L~M:
p,-D2 DRAWING PARAMETER

.
;

:10';01 ; D;lLD1M: ;
p,-D1 DRAWING PARAMETER

::10; 0 i ; D~LD~M; ; ~ DM DRAWING P,ARAMETER

VALID FIGURE TYPE SELECT COMBINATIONS

.Il.. .B. A & J.. ~

0 0 0 0 0 CHARACTER DISPLAY MODE
DRAWING, INDIVIDUAL DOT
DRAWING, DMA, WOAl, AND
RDAT ';

I" 0 0 0 1 SlRAIGHT LINE DRAWING r-Mj 0 0 0 1 0 GRAPHICS CHARACTER
COMIlINATIONS "
ASSURE •

~~:'~~=I~:~~~~~ CORRECT DRAWING '
OPERATION

PATTERN

0 0 1 0 0 ARC AND CIRCLE DRAWING

0 1 0 0 0 RECTANGLE DRAWING

1 0 0 1 0 SLANTED GRAPHICS
CHARACTER DRAWING AND
SLANTED AREA FILLING

"

Figure 24. Figure·Drawing Parameters Specify Command

. 8-128 210655-002

inter 82720

FIGD: 10 ! 1 I 1 ! 0 I 1 ! 1 ,0 1 0 I

Figure 25. Figure Draw Start Command

GCHRD: I 0 I 1 ! 1 (0 I 1 ! 0 , 0 , 0 I

Figure 26. Graphics Character Draw
and Area Filling Start Command

Mask Register Load Command

This command sets the value of the 16-bit Mask reg­
ister of the figure drawing processor. The Mask regis­
ter controls which bits can be modified in the display
memory during a read-modify-write cycle.

The Mask register is loaded both by the MASK com­
mand and the third parameter byte of the CURS
command. The MASK command accepts two param­
eter bytes to load a 16-bit value into the MASK
register. All 16 bits can be individually one or zero,
under program control. The CURS command on the
other hand, puts a "1 of 16" pattern into the Mask
register based on the value of the Dot Address value,
dAD. If normal single-pixel-at-a-time graphics figure
drawing is desired, there is no need to do a MASK com­
mand at all since the CURS command will set up
the proper pattern to address the proper pixels as
drawing progresses. For coded character DMA, and
screen setting and clearing operations using the
WDAT command, the MASK command should be
used after the CURS command if its third parameter
byte has been output. The Mask register should be set
to all ones for any "word·at-a-time" operation.

Figure Draw Start Command

On execution of this instruction, the GDC loads the
parameters from the parameter RAM into the draw­
ing processor and starts the drawing process at the

I
pixel pointed to by the cursor, EAD, and the dot
address, dAD.

Graphics Char. Draw and Area Fill Start
Command

Based on parameters loaded with the FIGS com­
mand, this command initiates the drawing of the
graphics character or area filling pattern stored in
Parameter RAM. Drawing begins at the address in
display memory pointed to by the EAD and dAD
values.

DATA READ COMMANDS

Read Data Command

Using the DIR and DC parameters of the FIGS com­
mand to establish direction and transfer count,
multiple RMW cycles can be executed without
specification of the cursor address after the initial
load (DC = number of words or bytes).

As this instruction begins to execute, the FIFO buffer
direction is reversed so that the data read from dis­
play memory can pass to the microprocessor. Any
commands or parameters in the FIFO at this time will
be lost. A command byte sent to the GDC will imme­
diately reverse the buffer direction back to write
mode, and all RDAT information not yet read from the
FIFO will be lost. MOD should be set to 00.

Cursor Address Read Command

The Execute Address, EAD, points to the display
memory word containing the pixel to be addressed.

The Dot Address, dAD, witl'fin the word is represented
as a 1-01-16 code.

Light Pen Address Read Command

The light pen address, LAD, corresponds to the dis­
play word address, DAD, at which the light pen input
Signal is detected and deglitched.

RDAT:ll ,0,1 I TYpE I 0 I M9D I
L DATA TRANSFER TYPE

o __ WORD, LOW THEN HIGH BYTE
o __ LOW BYTE OF THE WORD ONLY
1 __ HIGH BYTE OF THE WORD ONLY
l-INVALID

Figure 27. Read Data from Display Memory Command

8-129 210655-002

x = Undefined

EXECUTE ADDRESS (fAD), LOW BYTE

EXECUTE ADDRESS (EAD), MIDDLE BYTE

EXECUTE ADDRESS (EAD), HIGH BITS <

l'- DOT ADDRESS (dAD). lOW BYTE

J4- DOT ADDRESS (dAD), HIGH BYTE

82720

LPRD, 11 I 1 I • I • , • I • , • ,01
THE FOLLOWING BYTES ARE RETURNED BY THE GDe:

JA7, ! LA,DL! ,Aol...- LIGHT PEN ADDRESS, LOW BYTe

~IA:':,:~ ::::::' :LA~,D:M:, ~::,:A8~J.-- LIGHT PEN ADDRE~. MIDOLE BYTE

I X I X I X I X I X I X I LAPH 1....-- LIGHT PEN ADDRESS, HIGH BITS

x = Undefmed

Figure 28. Cursor Address Read Command Figure 29. light Pen Address Read Command

DMA READ REOUEST

DMAR, I' 0 , I TYPE!' ! MOD I

-Lf+----- DATA TRANSFER TYPE:

o 0 ... 0----- WORD, LOW THEN HIGH BYTE

0 0----- LOW BYTE OF THE WORD

, ... 0----- HIGH BYTE OF THE WORD

0' , ... 0------ INVALID

DMA WRITE REOUEST

DMAW:IO 0 '!TYPE!'! MODI

~ RMW MEMORY LOGICAL OPERATION:

D 0_ REPLACE WITH PATTERN

o ,_ COMPLEMENT

'I 0_ RESET TO ZERO

I-SET TO ONE

1------ DATA TRANSFER TYPE: --
0 ... 1------ WORD, LOW THEN HIGH BYTE

0 0----- LOW BYTE OF THE WORD

, ... 1------- HIGH BYTE OF THE WORD

o , o-----INVALID

Figure 30. DMA Control Commands

8-130 210655-002

inter 82720

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias (fC to 7(fC
Storage Temperature -65"C to 15(fC
Voltage on any Pin with Respect

to Ground -0.5V to +7V
Power Dissipation 1.5 Watt

DC CHARACTERISTICS
TA = (fC to 7(f C; Vee = 5V ± 10%; GND =OV

Symbol Parameter
Min.

Vil Input Low Voltage -0.5

VIH Input High Voltage 2.0

VOL Output Low Voltage

VOH Output High Voltage 2.4

IOZ Output Leakage Current

III Input Leakage Current

Vel Clock Input Low Voltage -0.5

VeH Clock Input High Voltage 3.5

lee Vee Supply Current

CAPACITANCE
TA = 25°C; Vee = GND = OV

Symbol Parameter
Min.

CIN Input Capacitance

CIO 1/0 Capacitance

COUT Output Capacitance

Co Clock Input Capacitance

·COMMENT: Exposing the device to stresses above
those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be
operated under conditions outside the limits described in
the operational sections of this specification. Exposure to
absolute maximum rating conditions for extended peri­
ods may affect device reliability.

Limits
Unit Conditions

Max.

O.S V

Vee + 0.5 V

0.45 V IOl = 2.2 mA

V IOH = -400/LA

±10 /LA, Vss+0.45,;;VI .;;
Vee

±10 /LA VSS ,;;VI .;;Vee

0.6 V

VCC + 0.5 V

270 mA Typical = 150 mA

Limits
Unit Conditions

Max.

10 pF

20 pF tc = 1 MHz

20 pF V = 0

20 pF

210655-002

inter 82720

A.C. CHARACTERISTICS erA = OOC to + 70°C, Vss = OV, Vee = + 5V ± to%)

DATA BUS READ CYCLE

82720 82720-1
Symbol Parameter

Min. Max. Min. Max.

TAR Ao setup to RD I 0 0

TRA Ao hold after RD 1 0 0

TAA RD Pulse Width, TAO+20 TAO+20

TAD RD I to Data Out Delay 120 80

TOF RD I to Data Float Delay 0 120 0 100

TRV RD Recovery Time 4 TCY 4 TCY

DATA BUS WRITE CYCLE

82720 82720·1
Symbol Parameter

\

Min. Max. Min. Max.

TAW Ao Setup to WR I 0 0

TWA Ao Hold after WR I 0 0

Tww WR Pulse Width 120 100

Tow Data Setup to w.R 1 100 80

Two Data Hold after WR I '0 0

TRV WR Recovery Time 4 TCY 4 TCY

DISPLAY MEMORY TIMING

82720 82720·1
Symbol Parameter

Min. Max. Min. Max.

TCA Address/Data Delay from 2XWCLK I 30 160 30 130·

TAC Address/Data Hold Time 30 160 30 130

Toc Data Setup to 2XWCLKI 0 0

Teo Data Hold Time, T'E+20 T'E+20

T'E 2XWCLKI to DBIN 30 120 30 90

TCAH 2XWCLKI to ALEI 30 125 30 100

TCAL 2XWCLKI to ALE I 30 100 30 80

TAL ALE Low Time TCy+30 TCy+30

TAH ALE High Time TCH -20 TCH-20

TcO Video Sighal Delay from 2XWCLK I 150 120

8-132

82720·2
Test

Units
Conditions

Min. Max.

0 ns

0 ns

TAO+20 ns

70 ns CL=50pF

J 90 ns

4 TCY ns

82720·2
Test

Units
Conditions

Min. Max.

0 ns

10 ns

90 ns

70 ns

10 ns

4 TCY ns

82720·2
Test

Units
Conditions

Min. Ma6t.
30 110 ns CL=50pF

30 110 ns CL=50pF

0 lis

T'E+20 ns

30 80 ns CL=50pF

30, 90 ns CL=50pF

30 70 ns CL=50pF

TCy+30 ns

TCH-20 ns

100 ns

210655-002

inter 82720

A.C. CHARACTERISTICS (Continued)

OTHER TIMING

82720 82720·1 82720·2
Test Symbol Parameter Units

Conditions
Min. Max. Min. Max. Min. Max.

Tpc LPEN or VSYNC Input Setup to 2XWCLKI 30 20 15 ns

Tpp LPEN or VSYNC Input Pulse Width Tev TCY 'TCY ns

CLOCK TIMING

82720 82720·1 82720·2
Test Symbol Parameter Units

Conditions
Min. Max. Min. Max. Min. Max.

TCY Clock Period 250 2000 200 2000 180 2000 ns

TCH Clock High Time 105 80 70 ns

TCl Clock Low Time 105 80 70 ns

TR Rise Time 20 20 20 ns

TF Fall Time 20 20 20 ns

DMA TIMING

82720 82720·1 82720·2
Test Symbol Parameter Units

Conditions
Min. Max. Min. Max. Min. Max.

TACC D~CK Setup to RD I or WR I 0 0 0 ns

TCAC DACK Hold from RD I or WR I 0 0 0 ns

TRR1 RD Pulse Width TRD1 +20 TRD1 +20 TRD1 +20 ns

TRD1 RD I to Data Out Delay 15 TCY 15 TCY 15 TCY ns CL=50pF

+120 +80 +70

TKO 2XWCLK 1 to DREO Delay 150 120 100 ns CL=50pF

TRQAK DREO Setup to DACK I 0 0 0 ns

TAKRO DACKI to DREOI Delay TCY+ 150 TCy+120 TCy+100 ns CL=50pF

TAKH DACK High Time TCY TCY TCY ns

TAK1 DACK Cycle Time, Word Mode 4 TCY 4 TCY 4Tev ns

TAK2 DACK Cycle Time, Byte Mode S TCY 5 TCY 5 TCY ns

8-133 210655-002

82720

A.C. TEST CONDITIONS

Input Pulse Levels (except 2XWCLK) ... 0.45Vto 2.4V
Input Pulse Levels (2XWCLK) ... ; ... 0.3V to 3.9V
Timing Measurement Reference Levels (except 2XWCLK) .. 0.8V to 2.0V
Timing Measurement Reference Levels (2XWCLK) .. . 0.fN to 3.5V

WAVEFORMS

DATA BUS TIMING
READ CYCLE

.'=>tr----------"]------
TAR11. TRR .' ~TRA

)

"\ V \

...-TRo--'" I-ToF -

DATA BUS
• (OUTPUT) DATAVAUD_

"'<
TRV

WRITE CYCLE

----IJ-
DATA BUS DATA DATA

(INPUT) __:M:::;/II::.If.::;CH:.:::A~N:=G=-E __ -J ~ ______ ..,. '-___;;;;M;.;;Ay'-'C;.;.;H""AN;.;.;G;;:E;...... __ _

8-134 210655-002

WAVEFORMS (Continued)

DISPLAY MEMORY TIMING
READ/MODiFY/WRITE CYCLE

81

2xWCLK

ADCl-15 --!---(I

82

82720

S3 S4

VALID

8-135 210655-002

inter

WAVEFORMS (Continued)

DISPLAY MEMORY TIMING (Continued)
READ CYCLE

2xWCLK

ADo-AD" ---!---<I

A16.A17

ALE

82720

51 S2

H5YNC __ ~
TCO

~l%~ ----------------

OTHER TIMING

CLOCK TIMING

L.Co-3
~~IMAGE ----------------
lIT,BLAfOOC[C

2xWCLK

LPEN

WYNC----------~

2xWCLK

8-136 210655-002

WAVEFORMS (Continued)

DMATIMING
READ

IXweLK

DREQ

TKQ~

____ J r-T.~K

82720

L fo>------T,K.Q-----~------~-

------------+_-.L I-----T •• ,----+I _--4-----1--

D~7-------------+_--------~

1+--------T'K1, T ... ---------t

WRITE

2xWCLK

DREQ

TKQl-

_____ J ~T.QAK

8-137

.)

WAVEFORMS (Continued)

DISPLAY AND RMW CYCLES (1X ZOOM)

2xWCLK:

DBIN:

ADO'HI

A1S, 17:

82720·

RMW
Cycle

DJepiayor AMW
Cycle

~~:~: ----~~r_------------~~r_------------------------------~_V-----­
WEXT SYNC:

8-138 210655-002

intJ

WAVEFORMS (Continued)

DISPLAY AND RMW CYCLES (2X ZOOM)

2xWCLK:

i5iiiii:

Zoomed Dlsplav
Cycle

82720

Zoomed Display
Cycle

RMW
Cycle

Display or RMW
Cycle

51

ADO-15: -~:2:o':li"::!"!:A'!l:"="D'---------~~o::'i"':!":!"~"~"::::'~--------t-<@o::!O"1::":!A~":::"':!:'>_-C!'!!1""::!,:!!o'~"J.-<:!:o'~"'::!':!!"$"~oo::!!"!:::":!"~":!!"!!l'f-

A16,17: ::~::::::::::::::::::::::::~)C::::::::::::::::::::::::t>c:::::::::::::::::::::::=+)C:::::::

Blank:

ZOOMED DISPLAY OPERATION WITH RMW CYCLE (3X ZOOM)

2xWCLK:

DBIN: -+-----_____________________________ +-________ ~

Display or RMW
Cycle

51

ADO·1S: -t-<!o!:!"E,'::::,,~,,~,,:E .. >_-----------------------+_@o~o"1::":!A~"!:::".~.>_-C~:§~-<~!!!!!:!!)----------Ko§!o~"o:::,~,,~'''::: .. :>_

A16,17:~:x::::::::::::::::::::::::::::::::::::::4:c:::::::::::::::::::::::::::::::::::::=+x::::::::

Blank: ~~--------------------------------.(..r--------------------------------t'C::::=

" 210655-002

8-139

inter 82720

WAVEFORMS (Continued)

VIDEO SYNC SIGNALS TIMING

I' 1H 'I
2xWCLD: .J"\.I"\./"\.r\ ____ ./\./'V\../V'-. __ J\..I'\f ___ J\../\.. __ f\.

HBLANK: J ----'---__ J
HSYNC:

AOO-15:

LCO-4:

ADO-1S:

Row:

Row.

VBLANK:

VSYNC:

__________________ _J!
\~--------------------

...A....._.r.----I'---_.....A.-_.A.....-_"-::::x:::::::::x: :::: :x:=::::x:
:::::x ! \
f-~:=J- __ :: ______ =~:_-_-_-_-_~=~=:~:_-_-_~~==~~_-_-~ -----_~ -- J
~ __ ~ __)()()(JC ___________________________ :X:XXX:: __ :XX:
~ ----u---- ---v-- ------------------------- ---v----:x: --'.'-- ___ ~ ___ ~ _______ , __________________ _J_ __ _

~ r
I---~ I __________________ 1
I ____________________________ _

=*==±=x:::::::x=::x-----:::: == :::x::
1
f '---__ ________ oJ! --------

-r--------~-----------------------------------J! : '-
.. 1.---------------1V (Fleld)-----------------i

INTERLACED VIDEO TIMING

HBLANK'

VBLANK:

VSYNC:
(Interlace)

VSYNC:
(No Interlace)

.1L __ -1L.JL __ .JLn... __ .1LR. __ ..JL __ JL __ .JLJL __ JLJL_
I I I 1 I I I I "L __ ~---I------,----'_ __ ~---,--I----.-I -1---
I I I I I I I I

: I I 1 II I L... I 1 1
I I 1

I O~d Field -I·
I

8-140

Even Fleld---I--_

I

210655-002

82720

WAVEFORMS (Continued)

VIDEO HORIZONTAL SYNC GENERATOR PARAMETERS

1~'---------------------lHI--------------------~
I
I
I

HBLANK:~ ~ __________________________ --,r
I I

I : HSYNC: __ ...;I~_....I!lL. _____ -+-__________________ ...iIL...-
I I I
I I I
I I I

-1 =-t ~HBP~ __ AW"""-------I'I

VIDEO VERTICAL SYNC GENERATOR PARAMETERS

~ __________________ 1V __________________ ~

I
VBLANK: __ ---; ___ .., I

II I L
I I I
I I I
I I I

VSVNC:--1I'-___ -'-_____________:.._--Irl I

I I I I I
I I I I I
I ~ _ ~I I

I--VBP-+I·----------AL--------~--I i i VBP-1
---ivs~

CURSOR-IMAGE BIT FLAG

-I !-TCY
2xWCLK JlJUU1

HBLANKO-----!c; f-'~"=1J=
HSY::----16""r; "ft. ~

Image

8-141 210655..()()2

inter 82720

VIDEO FIELD TIMING -4: _____ -iH;,;S.,.,YN"'C.."O""U.P""u;.-. ____ ~
BLANK Output

tal Horizon
SYNC
Pulu -

nta'
Porch

Horizo
Back
Blank 'ng

DRAWING INTERVALS

,

~

~

DMA REQUEST INTERVALS

0

0

0

Vertical SYNC Lines "i- · ---
Vertical Back Porch Blanked Linea !

Horlnzontal
Front Porch-
Blanking

Active
Display
Lines

Vertical Front Porch Blanked Lines

\rS

!=;=:==:=::::=====t-

8-142

VSYNC Output

~ Drawing Interval

~ Additional Drawing Interval When
~ in Flash Mode

III Dynamic RAM Refresh If Enabled, Otherwise III AddHional Drawing Interval

~ DMA Request Interval

~ Additional DMA Request InterVai,
~ When In Flash Mode

210655-002

IcDtSlgo
'COMPONENTS SPEdAL '. :.'.;. ,. \. : ..

• Capacitors • Precision reSIstors • $1:11 119 ma.erlalS '
• Selecting electrolytlcs • Power MOSi=ET. ~r 8WltChers

'".,

AR:"'305.

), .. ' . . .'.

The first chip dedic.ated to . .text. manipulation, the 82730 operates
as a coprocessor to .a host CPU anq exec(jtE?s many high-level
commands .that reduce th~ software ne~deq for processing text.

Tex:I"'~o;proce880r brlng~
. qualily 'toCRT displays

The quality qf text in other chip, the 82720
raster-scanning CRT graphics display con-
displays has' always' troller, the device can
been a tradeoff a,gainst display high;~resolution
the complexity, perfor- ~raphi~s and. text lltthe
mance,and cost of the sam~ tup,e:

;a$sociated video sys- Housed in a 68-pin
,tern. By allocating package;.the82730 text

maiw. of the complex coprocessor coml;lines a
·.,display functions to' direct memory access

. firmware; a <ledicated channel and il processor.
t~*t coprocessorthip, bus interface that per-
the first of its kind, re- mit. it to fetch its own

. pla.¢es printed-circuit instructions and data
boards that contain fro'm the:host system's
'more than 100 'lCs .. memory, independent
'~~ilejncrea,sfng sys-:' of .and in.parallel with
tein.performanceby re- .the host. CPU .

. lieving many of the.' The' two processors
host: p~ocessor' S text communicate through

. ,.if!anipul'ation tasks. messages'-commands,
"!fhe ,chip thus makes parameters, and status
:;'; Pcissible the. hjgh qual-';w 0 r d s - w h i c hal' e
.hY il-pd. high perror- . placed in a communica-
mal'lcil sought, without "tiohbl~ck inside a
t.\leineed td'com.pro-.. ' ...•.. ' ,shared memory. The \
'riU$~ because 'of high'desjgnhost iSSUlilil iiomma~ds'bYPreparinginessages, stw-

; .'-t'cBstof text-Pfocessinghardwate, . . iilgWfl~ in'JI1~'cpmmunicatjon blOCk, and directing
.. ;~.Though its .. speed makes the. 82730 text .. .:ch-~e c6p~cessor's,attentiont~ them by activati~g a

. ,',tiro'<8ssor bepeficial .. onitll OW,n. j~s utilitycan'J>e; . ICha;HJiJelAttentibnsigna:l,whichis implemented in
, ' ..• ,'e!\~~J1~ed. considetllbly Iwh~n:·.wot:ki.ng. with ,,~'he'. ' .hardw~r.!l.lrlreturn, the coprocessor setsa'fiag in

. 8~i'3lvideo .in~!!rfacecontroUer.4~ogefher theyprlF- .' I the shat~ltni~mory that notifies the hoshvhen it
'*ia~. pl;oportib'fi~l.$ea~ing', siin~1t~~eo.us sub~~dpt hasexec'uteJ:l.:the'comman<L.. ' • I II "

and SUP!lfSCrfpt dIsplays, dual cU'rsoTs,"dynamr~ally . :The29 high;levelcommands.built 'into the 82730
">,ret~l\da,ble ch.aracter fO,nts; and uS'er+progra~mllble" bre:;fk .dO\\;J'lJl'lto two grOups: . channel colhmands,

f~~d~)\Ild ~h~racter att:ibutes.},JY adding still a.n- which wod~lJ.t the systenrlevel to start a_ndsto~ the
,display ~I'ld to'c()rtlmunicate status and similar

. i~fo~m!ition;and' da:fa~~tteaffi, cQmilll1.114s,: ~hich
.a~e,incor~orateddi~ectlY ipt9lhe' displlly~data
,.string~FP'goyernth<~ DMA;,proeess and'contt(lf ro~

, ",'. ;:'~II8~. Bill_rail!, . ~Qd\Jct. ~arketi"g en:grne6r
"/:Al'Idr~"1' .voj~,.~r~lec* Man~erc, ' .

'Intel Corp, . ..:. ',;. "
.3065 Bowers Ave:,:Santi.~lara, C(!i~,95051";

'. . ,

, . ,,<,,:>':,: '

~e~rinted ;0;" ELE~TRONIC 'OESJC)No. i<:~~,H'; 1983,
\ ~,'l' . , , , ' '.,

. 90pyrig'hl';9!!3' ~¥~en.p~biit~i~9¢O :Inc ..
. . . mtDl!RNiI_il: 21_

Text coprocessor

characteristics, character attributes, and so on.
The 82730 resides on a local system bus with the

host microprocessor, such as the 80186 CPU, and
therefore provides the' same address, data, and
control signals as the main processor. By handling
several of the tasks typically done by the host
processor-like DMA control and display
formatting-it leaves the host free for other tasks.

For example, when the coprocessor is configured
to share the CPU bus, a portion of the host micro­
processor bus bandwidth" must be devoted to' the
DMA process that refreshes the CRT. However, the
82730's high-speed intelligent DMA controller
(operating at a maximum data rate of 4 Mbytes/s)
helps minimize the time spent executing the re­
fresh operation, while simultaneously handling the
formatting of the display data. A different ap­
proach involves a dual-ported memory architec­
ture, which places the memory between the CPU
and the coprocessor. That completely frees the
processor bus Qf the refresh activity, allowing the
host more time to execute other tasks. It has become
a more cost-effective method, as some dynamic
memory controllers now contain dual-ported arbi­
tration logic on chip.

Inside the chip

The basic architecture of the coprocessor is di­
vided into two main parts: a memory interface and
a display generator section (Fig. 1). The memory
interface lets the coprocessor and the system pro-

, Mlcrocontroller
uriit

cessor communicate via the shared memory. The
display generator, in turn, responds to the data
provided by the memory interface and carries out
the display operations.

The memory interface actually comprises two
smaller subsectio~s, a bus -interface unit and a
microcontrollet url.it. The bus interface provides an
intelligent connection from the 82730 to the host
processor bus and also buffers the data transfer
requests from the microcontroller. Upon initial­
ization, the bus interface can be programmed for 8-
or 16-bit data and 16- or 32-bit addresses. Further­
more, the host interface can be configured for 8- or
16-bit-wide data buses, making the coprocessor
compatible with 8- or 16-bit host processors, like
the 8088/80188 and the 8086/80186. Running at 8
MHz maximum in 16-bit systems, the 82730 handles
the maximum DMA rate of 4 Mbytes/s.

The microcontroller unit stores the micro­
instructions for the 82730's high-level operations.
The microcontroller's internal processor manages
the memory transfers, interprets the commands
embedded in the data stream, and executes those
commands by sending data to the appropriate con­
trol registers or display data buffers. To optimize
the transfer of data between the system and the
CRT interface, the coprocessor uses three clocks­
one for the host interface, the other two for video
data. The memory interface section runs from the
bus clock, the CRT interface operates from a refer­
ence and a character clock.

1. Di~idedinto two main sections-a memory interface unit and adlspl.y g.iI.r.tor:....th.
82730 lext coprocessor can operate at optimum speed since each section can function
ind.pend.ntly at a different clock speed, .

iH45

Although the coprocessor packs a consjderable
amount of processing power on a singl!! NMOS chip,
it cannot handle the high video dot rate needed to
deliver high character counts to the CRT display.
For that, it needs the 82731 video interface control­
ler"which gains its high speed and drive capability
from bipolar technology. In addition, the combina­
tion of the 82730 and 82731 succeeds in reducing the
video interface to just a few latches ,and 'a software
character generator residing in RAM or ROM
(Fig. 2).

Inside the 82731 are the reference- and character­
clock generators, a video shift register, and all
attribute logic (Fig. 3). Housed in a 40-pin package,
the circuit offers TTL-compatible inputs and out­
puts except far the video output, which is ECL­
compatible and provides a dot-shift clock rate of 50
MHz ma,ximum on characters up to 16 dots wide.
The circuit proportionally spaces characters by
accepting the width sent from the character gener­
ator and sending an appropriate ,character-clock
output whose period determines the variable width
of the character to be displayed.

The video interface controller can employ an
inexpensive, low-frequency crystal and internally
multiply that frequency to generate the high­
frequency dot clock. It also ,supports control func­
tions such as screen reverse ~ideo, synchronized
character field, and tabbing operations. The dot
clock drives the internal video shift register, the
character clock controls the unloading of data from

the row buffers in the 82730;and the reference clock
establishes the raster and screen formats.' The
reference clock also supplies the basic timing for
the horizontal sync, blanking, border, and active
display time. The corresponding vertical
attributes-;-except border-are driven by the hori­
zontal line time. All seven of these screen parame.:'
ters are programmable by the system designer with
the 82730.,

S,stem interfaces are aimple

As a coprocessor, the 82730 has the same bus­
control signals as an 80186 host processor and thus
can share the system-bus controllers, drivers, and
latches. The host processor and the 82730 arbitrate
for control of the local bus through the Hold and
Hold Acknowledge lines (HLD/HLDA). The Chan­
nel Attention (CA) and System Interrupt (~INT)
contr,ol lines complete the wired interface. With
this configuration, the 82730 has access to all the
memory that the 80186 CPU has available.

Anytime the CPU wants to send a message to the
82730, it writes the command and busy flag into the
82730 command block and then pulses the co­
processor's CA input to inform it that a message is
waiting. The 82730 then raises the HOLD output
and waits for access to the bus. When the C~U
relinquishes the bus, it raises the HLDA input of
the 82730. '
, Once the 82730 becomes active, it transmits the
command block address that was stored in its

2. II. typical .,...m 'built eround the 82730 end the 82731 video Interface controller requires .,." few
additional IC, to mete with. holt ~r like the 80188. Onl, the ",tam but drlYere, lOme latchel, end
e cllerecter Pll,l"'etor _ needed.

,8-146

Text coprocessor

registers during initialization. That address, in
conjunction with the appropriate memory control
signals-including read or write strobes, lower or
upper address latch enables, upper address output,
or data enable output-will either read the com­
mand block or write to it. All these signals are
coordinated by the bus clock.

Whenever the 82730 must send status informa­
tion to the host CPU, it gains control of the bus and
places the data into the status location in the
command block. The bus is then released and the
coprocessor notifies the CPU through the SINT
signal. When the coprocessor is using a dual-ported
memory to communicate with the 82730, the HOLD
and HLDA signals are not employed. Instead, the
82730 accesses the dual-ported memory directly
rather than acquiring the bus from the CPU.

When the dillplay process is activated, the co­
processor uses its built-in DMA capability to fetch
display data from the memory. The data consists of
character data mixed with data-stream commands;
embedded data-stream commands provide the flex­
ibility to manipulate data on the fly.

SoH font. loaded

The 82730 also permits soft fonts to be auto­
matically loaded into RAM-based character gener­
ators. Addresses and data stored in the system
memory are then loaded into the row buffers of the
coprocessor. During blanked rows (generally during
the vertical retrace), address irtformation is loaded
into a latch and data is written to the character
generator.

The 82730's dual row buffers help reduce the
bandwidth and access time requirements for the
system memory. The data stored in one buffer is
being t1sed to display a row on the screen while the
second buffer is being loaded, by the micro­
controller, with the next display row from the
system memory. Up to 200 characters can be stored
and di~played by each row buffer. Furthermore,
since the display generator section operates asyn­
chronously with the microcontroller unit, each can
operate at optimal speed. Processing is syn­
chronized by internal flags and shared internal
storage, and .data that will be displayed is ex­
changed through the row buffers.

The coprocessor's display generator handles the
data that defines the timing and the operation of
the CRT interface. That qata, which is stored in the
display characteristics registers of the chip, con­
trols every aspect of the display-from the screen's
format to the blink rates of the characters and
cursors. All the parameters that define the initial
display characteristics can be set by one
command-MODEST - thus reducing the time, and

3. The 82731 video interlllce controller is manufactured with
bipolar technology, enabling it to handle video dot rates of
50 MHz and higher, which are needed by high-character­
eount displays. The controller serializes the parallel
character outputs from the. coprocessor and adds the
desired attributes to each character.

effort required to establish a screen format.
Beneath the simplicity of the hardware shown in

Fig. 2 are the high-level instructions-channel
commands-and the data-stream (!ommands. When
combined ~ith a table-driven linked-list data struc­
ture, they ease software development.

Central to the software is the command block,
through which all channel commands are trans­
ferred between the coprocessor and the host. This
block is located within the shared memory, and its
exact position is set during the 82730's initialization
routine (Fig. 3a). Once established, ,it contains all
the information needed to start the display-data
fetch; to communicate status, interrupt, and cursor
position information; and to give the location of the
mode block, which contains all the parameters for
setting up the display. The START DISPLAY channel
command begins the sequence (Fig. 3b). ,

Since the display data is set up within linked
lists, the'coprocessor can rapidly change any of the
lists without shifting huge amounts of data. The,
display fetch lltarts with the value of the list-switch
bit which selects one of two list-base pointers in the
command block. The pointer points to its string
pointer list; the pointers in that list direct the
on-chip DMA to the data strings containing the
!1esired display data R1.1d data-stream commands.
The programmer can modify one pointer list while

8-147

displaying from the other, and can also switch
screens merely by changing the list-switch bit, thus
eliminating time-critical data manipulations,

Two data-stream commands-End of String
(EOS) and End of Row (EOR)-are key to the linked
list and DMA activities, Strings are a logical con­
cept: th,ey contain blocks of contiguous data stored
anywhere in memory. In contrast, rows are a phys­
ical concept and represent a block of characters
that make up a physical row on the screen. Many
strings can exist in a display row, or many rows in
a string. (Only the extra DMA overhead of fetching
the new string pointer sets a practical limit on the
number of strings in each row.)

The actions of the two commands are indepen­
dent. 'End of String tells the 82730 to get the next
string pointer from the list, and from there, the
next data string. End of Row suspends the DMA .
until the row buffers are swapped at the end of the
current row. The DMA then takes over, into the
new row buffer.

String manipulation fosters high speed

Strings are commonly the next level of text
organization above single characters. With the
82730, a string can be as small 'as a character or it
can be a word, row, sentence, paragraph, or a page
of characters. These high-level entities can be
moved merely by manipulating a small string
pointer table (Fig. 5). The heart of the algorithm
for word wraparound, a common feature in text
processors, can easily be accommodated by a single
command such as the String Compare command of
the 80186. Word wraparound is then achieved by
scanning the data (not moving it) and manipulating
a few pointers. Earlier system designs would have
required a multiple-instruction software loop that
scanned and moved every individual character.

An extension of the linked list allows pro­
grammers to set up several independent data win­
dows on the CRT screen in a virtual screen mode.
That feature is especially helpful if a user wants
both a menu window and one or more work-space
windows. Such a scheme saves a lot of time for the
end user-eliminating the back-and-forth move­
ment between menus and working text. To set this
up, several data structures, each with its own
command block, can be accessed in a table-driven
sequence to put data in a given window on the
screen (Fig. 6).
, The string list and data strings are the same for
regular or virtual modes; only the structure of their'
command blocks differs. Thus, each virtual window
can be an independent software entity in the sys­
tem, and the 82730 can present these independent
data bases simultaneously. '

4. Both the h08t CPU and the coprocessor go through an
initialization aequence when the computer system. is reset
(a). The coprocessor then looks for a S.TART DISPLAY
command 80 that it can load the variou8 data 8tring8 from
the system memory into the di8play, generator section,
attach attribute., and display the data on the CRT (b).

8-148

Text coprocessor

Multiple 82730s can also be used in a single
system. Up to four devices can be clustered in a
single system, with one serving as a system master
and the others as slaves. The data for this cluster
can be interleaved, permitting the cluster to work
from one data base to get more characters per
screen or more bits per character. Also, in the slave
mode, the 82730's video outputs can be synchronized
to an external video signal, giving the system such
cap;:tbilities as mixed text and graphics, broadcast
subtitling (text overlay), and overlays for video
recording.

Attributes enhance display quality

The designers of the 82730 have given it the
ability to highlight various areas of an on-screen
document through the use of character and field
attributes. In the 16-bit data word, for example,
only the most significant bit is committed; it serves
as the command or data designator. If set to 1, the
word is a data-stream command, with the remain­
ing 15 bits becoming one of the predefined in­
structions. However, if the MSB is 0, the other bits
are at the discretion of the designer, who may
choose which and how many are needed for charac-

ter codes, attributes, or user-defined functions.
The 82730's six predefined attributes-reverse

video, invisible, blinking character, two underlines,
and a special graphics character-can be pro­
grammed to respond to any of the 15 bits, or they
can be completely disabled. In addition, they can be
set character by character or through a field­
attribute mask. All can be attached to any charac.:
ter. The blinking cparacter can be programmed for
a wide range of duty cycles and blink rates. The two
underlines can be independently positioned any­
where in the row height, and the position can be
changed from row to row. Thus the underline can
be doubled or serve as a strike-through line, a
fraction line, or an overbar. One of the underlines
can also be programmed to blink at the same rate
as a blinking character.

The graphics character is relatively important,
since it permits character information to be dis­
played to the full height of the row. It causes the
chip's line-counter output to count from zero at the
top of the display row continuously through to the
bottom of the row. When used with special charac­
ters, this' attribute allows business forms and

• graphs to be easily constructed.

5. If a character or word must be In88rted near the beginning of a screen of text, only the
list pointers must be changed to add the item. In older 'ystam., all the character. fOlloWing
the inaertion or deletion were shifted In the memory to revise the display.

8-149

Text coprocessor

Another capability of th~ 82730 is subscript and
superscript characters, done by manipulating the
line-counter outputs. The SUB SUP N data-stream
command declares which and how many pairs of
characters' will bll displayed simultaneously as sub-
scripts and supers~ripts. .

Proportionally spaced displays could cause some
subscript and superscript characters to have differ­
ent widths and thus disrupt the. vertical alignment
of a character pair. A special output of the 827~0
called Width Defeat prevents that misalignment by
causing the 82731 video interface controller to en­
force a predefined width-programmed upon sys­
tem initialization-during the display of subscript
and superscript characters.

The proportional spacing is performed by the
reference and the character clock. Used to shift out
the character and attribute data, the character
clock operates during the display field. Its fre­
quency can vary character by character, up to a rate
of 10 MHz, to set the width of the character
currently being displayed. The video interface con­
troller takes the character ·width information that
has been supplied by the character generator and

8. The virtual window capability of the 82730 leta the UHr
arrange independent areaa in the s,atem memciry thld can
be displayed simultaneously on the CRT monitor.

pr~duces a variable width character clock that
supports the proportional spacing. This approach
also greatly reduces system complexity and cost
compared with previous designs. I

Scree,,' and row formate are flexible

The reference clock signal in a system that con­
tains the 82730 and 82731 chips is a constant­
frequency clock that forms the time base to gener­
ate the horizontal scan lines and vertical frame
periods. One scan line can last for 256 reference
clock periods, and one frame can contain up to 2~48
scan lines. Within these periods, the respective
synchronization pulses and the border and charac­
ter fields can be set anywhere within that range.
All these timing relationships, including the scan
and frame periods, can be changed on a frame-by­
frame basis to suit changing applic/ltions.

The screen format is flexible all the way down to
the row level: For instance, the height of a row (up
to 32 scan lines) and the vertical position of the
characters within that row can be changed from
row to row by' a single data-stream command called
FULROWDESCRPT. In addition, the command lets
the programmer set the starting and ending scan
lines within the row for the normal, subscript, and
superscript character fields and the two cursors.

The same data-stream command that defines the
row characteristics can also be used to blank the
row, display it as reverse video, double its height
(for up to 64 scan lines per row), or eliminate the
proportional spacing.

Graphics, too, can be handled by the 82730, al­
though fiex,ibility and resolution are not as high as
with the 82720 graphics display processor. Business
applications typically need graphics that are no
more complex' than two- or three-dimensional
charts or business forms. These formats can be
stored as special characters in a standard font set
for the character generator. Even more complex
graphics can be handled through the use of mosaic
graphic cells, which can be stored in RAM to perf!1it
alterations. Of course, as in most systems usmg
floppy-disk systems for main storage, the desired
fonts or graphics forms can be saved on the disks
and downloaded as needed for the display.

There are many applications that also require a
simple graphic display along with text-signature
.verification on bank~ng terminals and general­
I?urpose credit verification, for example.o

8-150

intJ ARTICLE
REPRINT

"Reprinted by permission of PC World from Volume 1, Issue 5, published at 555 De Haro Street, San FrancIsco,
CA 94107." .-

"SubscriptIOn rates $24/yr PC World CirculatIOn Department. PO Box 6700, Bergenfield, NJ 07621

8-151

AR-296

Sepiember 1983

Order Number 230810-001

Something exciting is going on. But like most significant
events, it is not happening quickly. Spurred on by
developments in integrated circuit technology, a new
generation a/personal computers is taking shape, and the
IBM PC and its clones are at the/ore/rant.

As IBM PC users, it's sometimes hard to remember that
the inanimate metal boxes in front of us are susceptible to
evolution. But occasionally·a product is introduced that
forces. the complete redesign of our personal computer~.

Integrated circuits (I Cs), the devices that bring il!telligence
to our machines, have reached a new level of technological
achievement, and now the computers that use them must
advance as well. Strange as it seems, these small silicon
chips are setting the guidelines for the next generation of
personal computers.

THE CHIP MAKERS

Now that personal computers have caught on, the semi­
conductor manufacturers who make ICs are eyeing the
swelling m,arket for personal computer ICs.

Dozens of newly developed semiconductor chips are being
aimed at the personal computer market. These chips range
from hard disk controllers that speed access time to linear
predictive coding processors for speech recognition. With
these new ICs driving personal computer design, we11
'soon see machines we once only reasoned would exist:
diskless computers running a wide array of software
loaded over telephone lines; computers that display text
exactly as it will be printed, with justified margins,
superscripts and subscripts, and bold and italiC typefaces
on screen; and systems with greater, more accessible
graphics.

As computer design is simplified by these advanced ICs,
product differentiation will become greater. This portends
the death of those PC clones capable only of basic
spreadsheet and word processing operations. Instead, to
survive in the increasingly cost-competitive, standardized
personal computer market, small-system manufacturers
will tailor their products for niche markets.

BIG BLUE

Intel Corporation, located 'in Northern California's re­
nowned Silicon Valley, is one of the largest and most
innovative chip manufacturers in the industry. IBM has
been committed to Intel products for years; the PC is built
around Intel's 8088 microprocessor and, as recently as late
1982, IBM invested $225 million in a minority share of
Intel stock. A commitment this size is a good indicator of
IBM's faith in Intel products. IBM's ,good faith and
multimillion-dollar investment is guaranteed by Intel's
long-standing promise that software writte':'! for the 8088
'will run on all its future processors.

By taking a close look at the Intel ICs, we can gain valuable
insight into the capabilities of the IBM PCs that will be
built around them. The design philosophy of Intel's IC
family differs radically from that of competitors Motorola,

National Semiconductor, and Zilog. Diverse chip dt(signs
mean that the system designs of the IBM PC and its
competitors, such as Apple's Lisa (based on the Motorola
6800 microprocessor), will also be radically different.

THE MICROPROCESSORS

Of the many Intel chips being produced, some will have a
greater impact on the computer industry than others. In
the vanguard will be the new microprocessors.

Design of the PC was shaped by IBM's surprising selection
of the 8088. This choice caught 1110st industry observers off
guard since IBM, also the world's largest semiconductor
manufacturer, had traditionally used its own designs for
computer logic. Once Big Blue settled on the 8088, Intel's
design philosophy was firmly implanted in the PC-from
the 8088's segmented memory scheme to its l6-bit registers
and 8-bit bus.

Like the 8088, each of the four microprocessors Intel is
. now readying for production could dramatically influence

the design and performance of tomorrow's PCs.

The 80186. The recipe for putting an entire central
processing unit (CPU) board on one chip is easy. Take an;
8086 (the 16-bit bus big brother of the 8088), speed it up,
and then add most ofthe support chips essential to making
the 8086 run in a personal computer. Reduce the size with
the help of computer-aided design until all the chips fit
onto one sliver of silicon, and voila, you have the 80186
(186), an entire motherboard on a chip.

While firming up plans for full-scale production of the 186,
Intel is currently providing samples of the chip to computer
manufacturers, including MAD Computer and Durango
Systems. The rewards for using this newest chip are many:
manufacturing costs are cut since a single IC is less
expensive to buy than a boardful of them; physical CPU
size is reduced, opening the way to shrink overall computer
size or to put mare power in the same box; and develop­
ment time is cut for computer designers, which means
considerable savings for system makers.

The 80188. If the 186 is too rich for your ta~te, the 80188
(188) may be more suitable. As with the 186; the 188 's core
CPU and support chips are melded on a single IC; like the
8088, however, the 188 has an 8-bit interface to the outside
world (the 186 has a 16-bit interface). The 188 decreases
costs by allowing computer manufacturers to use less
expensive 8-bit peripherals. Although the 186 has received
more publicity so far, the 188, aimed squarely at the
massive 8-bit computer market, is expected to be used in
greater numbers, at least in the short term. '

The 80286. Powerful multiuser systems will benefit the
most from the 80286 (286), possibly the most powerful
microprocesor commercially available to date. Squeezing
150,000 transistors on a chip, the 286's designers have
integrated a pair of HMOS-III (Intel's own proprietary
process technology) 8086s and numerous other very large
scale integration (VLSI) components. The resultant chip is
two to three times faster than the Motorola 68000 even
though both chips can address about the same amQunt of

8-152

memory. The 286 has very high speed (1.5 million instruc­
tions per second, five to six times faster than the 8086),
about 16 megabytes worth of addressable physical memory,
the ability to address a virtual memory of I gigabyte per
task (equal to the capacity of 100 IBM XT Winchester
drives), and the ability. to provide several layers of
muiltiuser security on chip.

The 80386. Not yet built, the 80386 (386) is promised for
1984, but the release date may slide to 1985. If the 286 is
vastly more powerful than the. 8088 or 8086, then the 386 's
potential is staggering. Complementary metallic oxide
semiconductor(CMOS) process technology, which lowers
power consumption, is being used to build this 32-bit chip.
Intel, Motorola, and National Semiconductor are already
jockeying for position in what will be an intense compe­
tition for the 32-bit market. Motorola is claiming that its
68020 will be the first widely available 32-bit micro­
processor when it is introduced later this year, although
NCR has already scooped the industry with its 32-bit chip.
Hewlett-Packard, not to be outdone, has put 450,000
transistors on a single proprietary 32-bit microprocessor,
which is used in the $20,000 to $30,000 HP 9000 work
station.

How will these processors impact the personal computers
that use them? The most obvious effect will be faster
performance. Even the budget model 188 boasts two to
five times the instruction and execution speed of the 8088
in today's PC. A 286 is about twice again as fast as the 188,
and next year's data-gobbling 386 will have more speed
than anyone can immediately.use.

r ---- - - -
I
I

8088
Or

CLOCK 8086

I
I INTEARUPT STATUS

8384A I
CLOCK

I DRIVER
ROY

I INTERRUPT STATUS

I
CLOCK 80150

ACKNOWLEDGE

L..-

Since the 188 is ideal for low-priced portable computers, it
ceates the ironic probability that a PC-compatible portable
may soon by available that will run the IBM PC's full line
of software and run it faster than the full-sized PC.

SOFTWARE ON SILICON
One chip ready to plug into the next generation of personal
computers is the 80150 (ISO) CPt M software-in-silicon
operating system. A complete CPt M-86 operating system
is stored in ROM on this chip, along with drivers for input
and output devices.

Use of alSO CPt M chip will eliminate the traditional
booting up procedure ofloading an operating system disk
and reading its contents into operating RAM. Instead, the
user will simply turn on the computer and press a CPt M-
86 button. Again and more importantly, this chip lowers
overall computer production costs since a disk drive and
attendant control circuits are replaced by a solitary chip.

Another chip, similar to the ISO, has Intel's proprietary
RMX C!perating system in silicon. This little-known RMX
chip is also suitable for present and future IBM PCs.

Many people question the wisdom of putting software in
silicon. "Software should be soft," says Bill Gates, chair­
man of the board at Microsoft. He points out that
operating systems are constantly updated; for instance,
Microsoft will soon offer a revised version of MS-DOS
that supports networking. Such updates can't readily be
added to.a hardware production line and certainly won't
help the ROM chips already in users' computers.

--

PROGRAM OATA
MEMORY MEMORY

INT.EARUp,T

REQUESTS

I
I~ _ .J

8AUDRATE DELAY SYSTEM iAPX 86/50. 88/50
TIMER TIMER TIMER

BLOCK DIAGRAM OF INTEL'S 80150 CP/M O!ll A CHIP WITH THE 8088 OR 8086 MICROPROCESSOR

8-153

V'.

Still, Ii1telargd~ 'tliat its choice of CPt M makes the' ISO,
practical. "We picked' CP/M ,because it is a mature
operating system," Says Intol's prodllct'marketng engineer
for software on silicon, Carl Buck. "We'd have more
difficulty with a less developed product." The many
versions of MS-DOS helped eliminate that operating
system from considOratlon! Yet aecording'to Digital
Research President John Rowley, Intel left some room on
th~ ISO chip ttl add to CPI,M in: the futu~.

, ' ,
Also, use oithe 150 CP/M chip doesn't preclude the use of
other operating systems.' PC-DOS could still be loaded
into a system and run, making use of the ISO's input/ output
drivers.

PORTABLES

Having software on silicon opens the way for very
powerful diskless portable computers. The minimum
configuration for a 188-based unit with .the ISO CPlM
operating systerp could include one or two BASIC
applications programs in 'ROM, providing spreadsheet
and word processing power in a unit the size of a: keyboard
with a small' flip-up screen. Intel Product Marketing
Engineer Tony Zingale suggests we may soon see truly
uSlJble portables selling for around $500.

More ambitious and expensive portables could accept
applications software over telephone lines, loading them
into a variety of media: ~everal memory technologies will
compete for r,oom in portable computers, including mag­
netic bubble memories, already being used in the Grid and
Teleram computers. Commercially available bubbles have
4 megabit capacity, while 10- to 16-megabit bubbles are
projected for the near future. Japan's NEC reported a
major breakthrough that within 5 years will allow bubbles
to store I gigabit of data. Of course, 8 of those bits are
needed to store I byte of data. '

Vying with bubbles in some applications and comple­
menting them in others are electronically programmable
read-only memories, or EPROMs. Like'ROM, EPROMs
are nonvolatile chips. Unlike ROM, EPROMs can be
reprogrammed. Intel now offers 2S6K EPROMs, ilnd it is
anticipated that other companies will offer 256K EPROMs
before the year's end.

GRAPHICS

The space created on tlte motherboard by the 186 and
friends will enable computer designers to add more
graphics capability to their systems., Like the ISO there are
co-processor chips ready for ~he task.

A pair of Intel Ies, the 82720 (720)1 graphics display
controller and the' 82730 (730) text co-processor, are
touted as providing vastly enhanced arid simplified dis-

, plaY$. With the 730, text can be displayed on the computer
screen as it will be-printed out. Italics can be mixed with
st~i~t ,text, and sup!l~scrip~\IIn,d subscripts ar1;l shown
without the annoying and often misleading arrows
common in today's software.

j,

Editing tan be speeded up by the 730's support for split
sereens, multiple windows;dual cursors, smooth scrolling,
and table-driven linked lists. 'Displays of up to 200
characters per row and 128 lines per 'screen '. ~an be
supported, and unique character ,sets, such as Arabic or
Japanese, can be built.

Even more capability can be added thoiIgh the 720, an IC
that works with or without the 730. Introduced in

- September 1982, the 720, a joint effort between Intel and
NEC, is said to be integral to graphics plans for NEC's

, 8086-based Advanced Personal Com'puter.

One application in which the 720 and 730 will shine is
opening windows on-screen. Most computer users are
familiar with the ability of Apple's Lisa to link spread­
sheets, graphics, and word processing through multiple
displays, or windows, on one SCreen. Lisa uses memory­
hungry software and dedicated hardwa,re. Apple's initial
release uses I full megabyte of RAM, and Lisa will soon be
offered with 4M of internal memory in addition to a
mandatory SM hard disk.

For comparison, the IBM PC, limited by the range of the
8088, can address 1 M tops. VisiCorp's Visi/ ON promises
Lisa-like' graphics and program-linking capabilities for the
IBM PC, with lower memory demands and no dedicated
hardware other than a mouSe, Although Visa/ ON sup­
posedly runs faster with an 8087 math co-processor,
VisiCorp will not comment on wlrether its software will
make use of the 720 or the 730.

BIT-MAPPED GRAPHICS

Both Lisa and Visa/ ON use bit-mapping, a process that
the 720 and the 730 are said to simplify. In plain words, to
create an image on-screen, the electron gun that illumi­
nates the screen must be positioned and then turned on
and off. Data to do this is stored in RAM as a bit-map
memory corresponding to positions of pixels lit on the,
screen. For one-level monochrome displays, I memory bit
describes each pixel; for color and levels of grey, several
bits must be used to describe each pixel.

Creating images is a lengthy chain of simple operations. In
a system that uses the 8088 alone, the microprocessor is
heavily burdened and the software runs slowly. Using
complementary chips to take up part of the processing
chore will speed up the process considerably. This is where
the 720 and the 730 come in By doing tasks such as looking
up and manipUlating a library of commonly used figures,
quickly accessing the bit-map memory, and rewriting the
bit map, both chips speed text and graphics operations.

FLAT VS. SEGMENTED MEMORY ,
Use of the 720 and the 730 demonstrates Intel's design
philosophy and how this philosophy impacts the IBM PC.
Computers such al,Lisa that are based on the Motorola
68000 have a fiat lfiemory, while computers based on the
8088 or 8086 use segmented memory. According to Intel,

8-154

segmented memory (see "How the PC thinks," PC World.
Vol. I, No. I) works better for text and graphics manipu­
lation than its flat counterpart. Ordinarily in processing
any string of characters, changing a single letter in a string
of text means repositioning every character in a document.
But since segmentation uses pointers io locate data in
memory, only the pointers locating the beginning and the
end of a passage of text have to be changed. Similarly,
pointers in memory can be used to position bit-map data
corresponding to mUltiple windows on-screen, eliminating
the need to recalculate and manipulate the entire bit map.
Segmented vs. flat memory has become somewhat of a
religious issue in the semiconductor industry.

Intel and Motorola also differ on how much burden to put
on the CPU. Motorola's 68000 is faster than the 8088 and
the 8086 and can address more memory than either of
those chips or the 188 or the 186. But the 186 and the 286
are substantially faster than the 68000. Also, the 286's
ability to address 16M opens the way to using large
memory segments, strengthening Intel's case for seg­
mented, memory.

In many 68000-based high-end systems the computer
designers have decided to use a co-processor, either bit
slice, or in one case, an 8086, to do graphics. Many people
are skeptical of Intel's graphics approach, but Intel
maintains that its approach will allow computer designers
greater flexibility. In an ultimate system, mUltiple 720s and
730s could be combined to handle interactive windows
under, the direction of a 286 processor, while more
complex imagery (beyond the practical ability of bit­
mapping) could be managed by an 80287 math co­
processor, the next generation cousin of the 8087. The
creation of three-dimensional graphics tha t can be rotated
on screen foradvancedcomputer-aided design and manufacturing
systems,'for instance, is ,best handled by Vector Graphics
rather than bit-mapping.

8-155

SOFTWARE DEMANDS

Yet there is more to computer design than hardware.
Software must be written to take advantage of the new
IC's promise. In the case of the 286, no operating system
yet exists that can take full advantage of its operating
capabilities. Plug-ins currently on the market that add the
286 to the IBM PC provide little more than a faster 8086.
Only riew operating software will use the new chips to their
fullest potential.

One SOlution on the horizon is a 286 version of XENIX
due to be introduced mid-1983. XENIX, a multiuser
operating system with a visual shell similar to MS-DOS, is
a takeoff on Bell Labs' UNIX operating system. A
licensing agreement ~mong Intel, Bell Labs, and Microsoft,
the author of XENIX and MS-DOS, is reported being
negotiated. Negotiations between Intel and Digital Re­
search to provide a CPI M variant for the 286 have been
underway for some time but have reportedly stagnated.

For lower-end systems Microsoft is said to be upgrading
MS-DOS to accommodate networking. This advance
comes at the right time, as the 188 and 186 open liP sockets
that could be used for local area network chips such as the
programmable Ethernet chip from 'Intel.

As long as software and hardware keep growing rapidly
together, PC users will be offered a continuing stream of
improved computers and ever more capable plug-in
boards. The variety seems endless and next year's crop
exciting. '

intJ

PROCESSING'

\

ARTICLE
REPRINT

VLSI Coprocessor

AR-297

Delivers High Quality Displays
Many microprocessor-based systems
today use VLSI technology in pro­
cessing and memory components.
However, designers of subsystems
have, up until now, not been able to
incorporate this technology into
their products because of the lack of
available ICs. When, in 1981, NEC
introduced the 7220 graphics display
controller, users found that they
could bolster system performance
by off-loading graphics control
chores from the system CPU. Sec­
ond-sourced by Intel as the 82720,
the chip uses its own drawing
processor to access the required
positions in' the bitmap and han­
dles ·both processing and display
functions. !

Now, Intel is poised to introduce
a text coprocessor, the 82730, which
is specifically tailored to execute
data manipulation and display tasks.
Lucio Lanza of Intel explains, "In
an intelligent terminal or worksta­
tion, the CPU spends a lot of its
time manipulating both graphics
and text. We have identified these
areas in terms of CPU use and we
have distributed these blocks so that
the CPU is not overburdened."

Coprocessors fall into two cate-

Andrew Wilson

gories based on their architecture
and operation. One type expands
the microprocessor's own architec­
ture by adding .additional hardware
and instructions. This type of tight­
ly coupled coprocessor can be
thought of as a transparent expan­
sion of the microprocessor's archi­
tecture and works in sychronization
with the CPU. Intel's first such co­
processor, the 8087, was designed

Bus controls ADO·AD15

I

for numerics processing and in­
creased the microprocessor's math
performance as much as 100 times.

The second type of coprocessor
independently fetches its own data
and sends instructions in parallel to
the microprocessor. It therefore al­
lows the microprocessor to process
the tasks it handles best and dele­
gate to the coprocessor the task it is
best equipped to handle. In this cate-

Char
data

Video
controls

Memory Interface Unit--1 ----+- Display generator

Technical Editor FIGURE 1: Block diagram of the 82730.

Reprinted from ELECTRONIC IMAGING © April 1983, Morgan.Grampian Publishing.Company, Boston, MA 02215
50 8-156 ElectroniC Imaging 0 April 1983

gory are 110 channel coprocessors
and others that deal with communi­
cations and text processing tasks.

"The 82720 is not yet at this lev­
el," Lanza said, "since it does not
have the capability of going to mem­
ory and extracting its own instruc­
tion and executing it-it needs
something to spoon feed it."

Coprocessors of the second cate­
gory do not monitor the CPU in­
struction stream. Instead, they are
linked to the CPU via messages pre­
pared and stored in shared memory.
The CPU will prepare data and high
level directives and then place them
in memory. Upon completion of this
control block, the CPU will alert the
coprocessor by signaling it through a
common channel attention line.
From that point on, the coprocessor
works on its own, fetching required
data and instructions and then ex­
ecuting those instructions.

Jt is not synchronized with the
CPU but works asynchronously and
independently. When the coproces­
sor completes its task, it informs the
CPU by signaling on the CPU's in­
terrupt line.

The rationaJe for designing a co­
processor with one or the other ar­
chitectures depends on the applica­
tion requirement. Tightly coupling
the coprocessor with the CPU gives
the advantage of a short coprocessor
preparation time but has the draw­
back of consuming the CPU's bus
bandwidth. \

In the case of numeric process­
ing, the speed of executing the float­
ing point algorithm is of paramount
importance. Reducing the prepara­
tion time of the coprocessor task is
the key because of the number of
microseconds it takes to execute the
task. Rapid algorithmic execution
requires tight coupling. In the appli­
cation of the lIO related coprocessor,
the task execution time is much
longer and the requirement for bus
time can be much higher. And, for
I/O operations the preparation time
is not critical. A shared memory

52

FIGURE 2: Building block approach.

coupling is preferred for those types
of applications because it provides
greater flexibility in the design of
the bus structure.

Text coprocessing
"In the design of the 82730," said
Lanza, "we have tried to eliminate
all the known differences between
what is. visible on the screen and
what is obtained' on the printed
page. In word processing systems to­
day, even the length of a row on the
CRT is sometimes not the same as
the length seen in print. Clearly,
when you are editing text this. be­
comes a major problem."

The 82730 supports the genera­
tion of text displays through features
which include proportional spacing,
simultaneous superscript/subscript,
dynamically reloadable fonts and
user programmable field and charac­
ter attributes. Editing c.apabilities
are further enhanced by features
such as split screen, virtual win­
dows, smooth scrolling and table­
driven linked lists.

Figure 1 shows a block diagram
of the 82730. The chip is divided
into two main sections-the mem­
ory interface unit and the display
generator. The memory interface
unit provides' the communication
between the 82730 and the system
processor, while the display gener­
ator acts on the display data and ear­
ries out the display operation.

Comll1unication between the
82730 and the CPU takes place
through messages placed in commu­
nication blocks in shared memory.
The processor issues channel com-

8-157

mands by preparing these message
blocks and directing the 82730's at­
tention to them by activating a hard­
ware channel attention signal (CA).
The memory interface unit fetches
and executes these commands.
When the display process is activat­
ed, the 82730 repeatedly fetches dis­
play data and embedded datastream
commands from memory utilizing
its built-in DMA capability, ex­
ecutes any datastream commands as
encountered on the fly,. and loads the
row buffers with the display data.
After executing these commands,
the 82730 clears a busy flag in mem­
ory, to inform the host CPU that it
is ready for the next command .

. The memory interface unit is di­
vided into two sections-the bus'
unit and the microcontroller unit.
The bus interface unit provides the
electrical interface to the system
bus and the timing signals required
for the microcontroller unit oper­
ations, making these operation~
transparent to the microcontroller
unit. The 82730 can be programmed
during initialization to provide 8 or
16 bit data, and 16 or 32 bit
addressing.

The microcontroller unit contains
the microinstruction store and the
associated circuitry required for the
execution of all channel and data­
stream commands. It uses the bus
interface unit in carrying out its
memory access tasks such as loading
the row buffers with display data.

The interaction· between the mi­
crocontroller unit and 'the display
generator takes place through Shared
internal storage. The microcon-

ElectroniC ImagIng 0 April 1 983

"The device provides the ability
to independently maximize the

performance of the CPU."

troller unit fetches data from mem­
ory and writes it in the internal stor­
age, while the display generator
reads from the internal storage and
carries out the display operation.
The microcontroller unit and display
generator operate asynchronously
with respect to each other. Synchro­
nization is accomplished through
communication via internal flags
and display timing signals generated
by the display generator. The inter­
nal shared storage consists of row
buffers which store the display data
and internal registers which store
display parameters. There are two
row buffers each capable of storing
up to 200 characters. The data in
one row buffer is used by the dis­
play generator to display one com­
plete character row on the screen,
while the microcontoller unit is
loading the second row buffer with
display data fetched from memory.
At the end of the row being dis­
played, the buffers are swapped and
the microcontroller ,unit and display
generator resume their tasks.

The display characteristics regis­
ters contain all the information used
to 'control every aspect of display
characteristics from screen size to
blink rates. A major. portion of this
register set is the three content
addressable memory (CAM) arrays
that allow flexible timing control for
row and screen characteristics. The
user has the power to set the param­
eters for the entire screen by invok­
ing a single high-level command.

By separating the video interface
clocks from the bus interface clock,
the 82730 provides the designer with
the ability to independently maxi­
miz~ the. performance of the CPU
and video sections of the system.

The video interface consists of
two independent clocks: the Refer­
ence Clock (RCLK) and the Charac~
ter Clock (CCLK). While the
RCLK controls the raster timing
and defines the screen layout, the
CCLK independently shifts charac­
ter and attribute information out of

the 82730, which allows proportion­
al spacing to be achieved.

Combining t~xt and graphics
A major requirement in the design
of engineering workstations is the si­
multaneous display of both text and
graphics. In terms of graphics re­
quirements, the designer of such
systems' needs a drawing processor
for fast geometric primitives, a math
processor for' fast transformations
and a general purpose processor for
access to the graphics database.

For text, string processing is
needed for manipulation of text prim­
itives and database processing is
needed for access to the document
files: The solution to this problem
can be solved by using both the 720
graphics coprocessor and the 730
text coprocessor (Figure 2).

Both coprocessors work with In­
tel's new 82586 communications co­
processor. This works in conjunc­
tion with a CPU and the appropriate
software to provide local area net­
work (LAN) control capabilities.
Message data to be placed on the
network by a microprocessor-based
work station is stored in shared
memory in transmit blocks. Pointers
(starting address information) to
these blocks are stored along with
processing instructions in other
shared memory blocks, Status infor­
mation and overall directives are
stored in system control blocks
which serve as the mailbox between
the CPU and the 82586.

When alerted by a ch,mnel atten­
tion signal, the 82586 will perform a
host of tasks involved in accessing
data to be transmitted from its loca­
tion in memory, framing the mes­
sage packets containing the data and
seeing to the transmission on the
network medium. In a.ddition, the
112586 receives and buffers incoming
dina which it then stores in shared
memory for the CPU to collect: It is
the CPU's job to allocate the blocks
of memory for the LAN coprocessor
to store the receIved packer-data. IiiI

8-158 ElectronIC Imaging 0 AprIl 1 9as

intJ
82730

TEXT COPROCESSOR
• High Quality Display for Text

Applications
• Provides Proportional Spa~ing,

Alphamosalc Graphics, Simultaneous
Superscript/Subscript and Soft Font
Support

• High Performance Text Manipulation
provided by 4 Mbytes/sec DMA and
on-chlp Dual Row Buffers (up to
200 characters each)

• Programmable Bus Interface Handles
8 or 16 Bit Data and 16 or 32 Bit
Addressing; iAPX 8618811861188
Compatible

• On·Chip Processing Unit Simplifies
Software Design by Executing High
Level Commands and Supporting
Linked List Data Structures

• Extremely Flexible; Programmable
Features Include Screen and Row For·
mats, Two Cursors, Character and
Field Attributes and.Smooth Scrolling

• Simultaneous Display of Independent
Data B,ases Through Programmable
Virtual Screen Mode

• High Resolution Display; Up to 200
Characters per Rowand 2048 Scan
Lines per Frame

• Separate Bus and Video Clocks Allow
Optimization of Overall System
Performance

• Provides Ii Complete LSI Solution for
Display Control when Used in Conjunc·
tion with the 82731 Video Interface
Controller

The 82730 Text Coprocessor is a high performance VLSI ~olution for raster scan text oriented displays. The
82730 works as a coprocessor and has processing capabiljties specifically tailored to execute data
manipulation and display tasks. It provides the designer the ability to functionally partition his system
thereby offloading the system CPU and achieving maximum performance through concurren't processing.
The 82730 supports the generation of high quality text displays through features'like proportional spacing,
simultaneous superscript/subscript, ~ynamically reloadable fonts and user programmable field and char­
acter attributes. An intelligent system interface and efficient software capabilities makes 82730 based
systems easy to design. In addition, when coupled with the 82720 Graphics Display Controller, the 82730
provides flexible mixing of high quality text and graphics simultaneously on the same display.

BUS CONTROLS

SINT

AD.D-AD15

MICROCONTROLLER
UNIT DISPLAY

1_-+_ •• 1 CHARACTERISTICS
REGISTERS

MEMORY INTERFACE UNIT _1_ DISPLAY GENERATOR

Figure 1. 82730 Block Diagram

DISPLAY
GENERATOR

CONTROL

CHAR
DATA

VIDEO
CONTROLS

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry O1her Than CircUItry Embodied in an Intel Product, No Other Circuit
Patent Licenses are Implied,
©INTELCORPORATION,1983

8-159
NOVEMBER 1983

OROER NUMBER: 2100924-002

"n+_I® III-e . 82730

CA "
SO
51

READY
SINT
IRST

RESET
BCLK

Vss
ALE

RD
WR

HLDA
HOLD

DEN
AEN

UALE

PIN NO.1 MARK

Figure 2. 82730 Pinout Diagram

Table 1~ 82730 Pin Description

BOTTOM

CRVV
BLANK
CHOLD
LPEN
RRVV
VSYNC
CSYNC
CCLK
VSS
RCLK
SYNCJN
HSYNC
LC4
LC3
LC2
LC1

.. LCO

The 82730 is packaged in a 68 pin JEDEC Type A ceramic package.

Symbol Pin Number Type Name and Function

AD15-ADO 1-8 1/0 Address Data Bus; these lines output the time
10-17 multiplexed address (TU, T1 states) and data (T2, T3,

T4 and TW) bus. The bus is active HIGH and floats to
3·state OFF when the 82730 is not driving the bus (I.e.
HOLD is not active or when HOLD is active but not
acknowledged, or when RESET is active).

BCLK 59 I Bus clock; provides the basic timing for the Memory
Interface Unit.

RD 62 0 Read strobe; indicates that the 82730 is performing a
~ memory read cycle on the bus. RD is active low forT2,

T3 and TW of any read cycle and is guaranteed to reo
main high in T2 until the address is removed froin the
bus. RD is active low and floats to 3·state OFF when
82730 is not driving the bus. RD will return high before
entering the float state and will not glitch low when
entering or leaving float.

8-160 210921-002

, ,

82730

Tabla 1. 82730 Pin Datcrlptlon (Continued)

Sy.mbol Pin Number lYpa Nama and Function

WR ·63 0 Write strobe; indicates that the data on the bus is to ,
be written in a memory device. WR is active for T2, T3
and TW of any write cycle. It is active LOW and floats
when 82730 is not driving the bus. WR will return high ,
before entering the float state and will not glitch low
when entering or leaving float.

ALE 61 0 Lower Address Latch Enable; provided by the 82730
to latch the address into an external address latch
such as 8282/8283 (active HIGH). Addresses a~e
guaranteed to be valid on the trailing edge of ALE.

UALE 68 0 Upper Address Latch Enable; it is similar to ALE
except that it occurs in upper address output cycle
(TU).

AEN 67 0 Address Enable; AEN is active LOW during the entire
period when 82730 is driving the bus. It can be used to
unfloat the outputs of the Upper and Lower Address
latches.

DEN 66' 0 Data enable; provided as a data bus transceiver out·
put enable for transceivers like the 8286/8287. 15m is
active LOW during each bus cycle and floats when
82730 is n'ot driving the bus. DEN will not glitch when

. entering or leaving the float state.

SO, S1 53,54 0 Status pins; encoded to provide bus·transaction
information:

I

51 SO Bus Cycle initiated

0 0 - - - (Reserved)
0 1 Memory Read

1 0 Memory Write

1 1 Passive (No bus cycle)

These'pins are directly compatible with iAPX 86,186
status outputs 51 and SO. The status pins are floated
when 82730 is not driving the bus. They will not glitch
when entering or leaving the 3·state condition.

READY 55 I READY; signal to inform the 82730 that the data
transfer can be completed. Immedi~tely after RESET,
READY is asynchronous (internally synchronized)
but can be programmed during initialization to bus

, synchronous.

8-161 210921'()02

"nt_Ie 'III-e-

Symbol

HOLD

HLDA

CA

SINT

IRST

RESET

CCLK

RCLK

DATO-DAT14

I

Pin NWmber

65

64

52 ,

56

' 57

58

27

25

36-42
~4-51 ,

,

"

8273()

Table 1. 82730 Pin i)eacrtptfon(Contlnued)

TYpe Name and ,Function
' , b

' ,; ,.,j (
HOLD; indicates that the 82730 'wants bus access.
HOLD stays a:ctlve HIGH during the entire period

, , when 82730 is driving the bus.

I Hold, Acknowledge; Indicates to 82730 that it is
granted the bus access as requested. HLDA may be
asyn«::hronous to 82730 clock. If HLDA goes inac.uve
(LOW) in the middle of an 82730 bus cycle, the 8~730
will cOmplete the current bus cycle first, then it will
drop HOLD and float address and bus control
outputs.

I Channel Attention; used to notify 82730 that a com·

"
mand in the command block is waiting to be proc-,

,essed. CA is latched on Its falling edge.

0 Status Interrupt; used to inform the processor that an
unmasked interrupt has been generated in the 82730
status register.

,

I Interrupt Reset; SINT is cleared by activating the
IRST pin.

I Reset; causes 82730 to immediately t'ermlnate its
present activity and enter a dormant state. The signal
must be active HIGH for at least 4 BCLK cycles and is
internally synchronized to the bus clock.

I Character dlock; input used to clock row buffer data,
attribute, cursor and line count out of 82730. When
more than one 82730 is connected in cluster mode,
CCLK is, used to synchronize ,output from both
master and slave chips. A character data word will be

" output at every rising edge of CCLK.

I Reference clock; input used to generate timings for
the screen layout and to define screen columns for
data formatting. All raster output signals are
specifi~d relative to the rising edge of RCLK.

0 Video data bus output; the least significant 15 bits of
,the character data words are passed through the
827:30 row buffer and made available on the pins

, OATO-DAT14. The user has the flexibility to partition
the data word into character and attribute bits per his
requirements. 1'he bits that are assigned for inter-
nally generated attributes may also be available at
pin DATO-D~T14. New character data will be shifted
to·these output pins at every rising edge of the CCLK.
Together with LCO-LC4, they may be used to add,ress
the character generator or as attribute controls.

8..;162 210921-002

82730

Table 1. 82730 Pin Description (Continued)

Symbol Pin Number Type Name and Function

WDEF 35 0 Width Defeat; is used to indicate when the character
is allowed to be a variable width or must be of fixed
width. WDEF is LOW if the character being output is
normal, but is HIGH if it is a superscript/subscript
character or visible attribute (TAB or GPA). Option-'
ally, WDEF can be held high by user command.

LCO-LC4 18-22 0 Line count outputs; used ,to address the character
g~nerator for the line positions in a row. The line
number output is a function of the display mode and
character attributes programmed by the user.

CSYNC 28 0 CCLK synchronization output; used to synchronize
external character clock generator to reference clock
timing. This output is active (high) outside the display
field.

CHOLD 32 0 CCLKlnhibit output; used by external logic to inhibit
CCLK generation. This output is active (low) during
the tab and end-of-row fl,lnction.

SYNCIN 24 I , Synchronization input; used to synchronize the ver-
tical timing counters to an externally generated

I
VSYNC signal. Used by slave mode 82730 to syn-
chronize to a master mode 82730 and by the master
82730 to lock the frame to an external source such as
the power li('le frequency.

HSYNC 23 o (MASTER) Horizontal Sync; in master mode, it is used to gener-
I (SLAVE) ate the CRT monitor's horizontal sync signal. It is

active HIGH during the programmed horizontal sync
interval. In interlace slave mode it is used in conjunc-
tion with SYNCINto indicate the start of the even
field for timing counter reset. At RESET, ~in is set as
an output in the LOW state .

. VSYNC 29 0 Vertical Sync; active HIGH during the programmed
vertical sync interval[and used to generate the CRT
monitor's vertical sync Signal.

BLANK 33 0 Blanking output; used to suppress the video signal to
the CRT. BLANK is clocked by CCLK.

CRVV 34 0 Character Reverse Video (CCLK output); used to ex-
ternally invert video data output. CRVV is clocked by
CCLK.

RRVV 30 0 Reference Reverse Video (RCLK output); to exter-
nally invert video in the field and border area if so pro-
grammed by user. It is LOW outside the border area,
RRVV is clocked by RCLK.

8-163 210921-002

•

82730

Table 1. 82730 Pin Description (Continued)

Symbol Pin Number . Type Name and Function

LPEN 31 I Light Pen Input; used to latch the position of a light
pen. At the rising edge of this inpu~, the column posi-
tion and the row position of the 82730 will be loaded
into the LPENROW and LPENCOL locations in the
Command block.

Vce 9,43 Power; + 5 volts nominal potential.

Vss 26,60 Power; ground potential.

FUNCTIONAL DESCRIPTION

Figure' 1 shows a basic block diagram of the
82730 Text Coprocessor. The chip is divided into
two main sections, the Memory Interface Unit and
the Display Generator. The Memory Interface
Unit controls. fetching of the.data and commands
and handles interrupts and status. The Display
Generator takes the data fetched by the Memory
Interface Unit and presents iHo the Video Interface
logic which in turn drives the CRT monitor.

MemorY Interface Unit

The Memory Interface Unit is divided into two
sections: the Bus Interface Unit and the Micro­
controller Unit. The Bus Interface Unit does the
actual interfacing to the memorybus.lt fetches or
writes data under the control of the Microcon­
troller Unit. The Microcontroller Unit is a micro­
programmed controller which is designed to effi­
ciently fetch data from memory (up to 4
Mbytes/sec), and decode and execute various
control and data handling commands. The Bus
Interface Unit may be configured for 8 or 16 bit
bus operation. With 8 bit bus selection, the user
may specify either 8 or 16 bit character data. It
also handles address manipulation automatically
after being loaded from the Microcontrolier Unit.

Display Generator

The Display Generator takes the data fetched
from memory plus the modes programmed into it
at initialization and produces alk the video timing
and the data transfers to support/the CRT monitor
at the character level. The 82730 works with an
external character generator and the 82731 Video
Interface Controller,. The data is passed to the
Display Generator from the Memory Interface
Unit through the dual row buffers (Similar in

operation to the one in the 8275 CRT controller).
The row buff~rs allow the userto use cheaper and
slower main memory for display needs, provide
on-chip attribute ana display function gener­
ation, and avoid the conflict of access to the dis­
play memory (that would otherwise take place)
by using an ordinary DMA access mechanism.

SYSTEM BUS INTERFACE

The Memory Interface Unit provides communi­
cation with system processor as well as memory
interactions. Communication between the pro­
cessor and the 82730 is performed via messages
placed in communication blocks in shared
memory. The processor can issue commands by
preparing message blocks and directing the
82730's attention to them by asserting a hardware
channel attention. The 82730 can cause inter­
rupts on certain conditions, if enabled by tile pro­
ce,ssor by activating its System Interrupt output,
with status and error reporting taking place
through the communication block in memory.

BUS INTERFACE UNIT:
The 82730 Bus Interface Unit provides an 8086
compatible bus interface which consists of:

a 16/32 bit multiplexed Address/Data Bus:
ADo - AD15

A complete set of local bus control.§l.gnals
comp~le with 8086 min mode:RD, WR,
ALE, DEN and READY
Two stat!Js signals SO and S1. compatibl.e
with 8086 max mode so that a bus c,on­
troller (8288) can be shared for Multibus®
access.
Local bus arbitration through HOLD! HLDA
Two .Ylmer Address Latch controls: UALE
and AEN

8-164 210921-002

inter 82730

The BUS INTERFACE UNIT (BIU) utilizes the same
Bus structure as the 80186 or basically the same
bus structure as the 8086 in both Min. and Max.
mode, (with the-exception of RQ/GT) and it per­
forms a bus cycle only on demand (e.g., to fetch a
command from the command block, or fetch a
character from display data memory). The same
set of T-states (T1, T2, T3, T4and TW) of 8086 are

. used to handle the time multiplexed address/data
bus. However, adaptations are made to handle 32
bit addresses as explained in the following sec­
tions where specific details of the BIU opeJation
are described. Those details not mentioned can
be assu med to be the same as those of the 80186.

ADDRESS BUS .

The 82730 can be programmed during initial­
ization to operate on either 16 bit or 32 bit (includ­
ing any length between 17 and 32) physical
addresses. Note that the 82730 does not use
memory segmentation. The programmer must
calculate physical addresses from segment and
offset values to manipulate data structures.

To support 32 bit physical addresses with a 16 bit
physical bus, multiplexing is again used. An
upper address output cycle, TU, is in~erted bet­
ween T4 and T1 to output the upper 16 bits of
address. The upper address latch enable, UALE,
is used to latch the upper addresses during TU.
Figure 3 shows the configuration of a 32 bit
address bus.

TU occurs only when the 32 bit mode is specified
and the upper address register of BIU is reloaded
by MCU. This may result from: .

i) Initialization

ii) Manipulation of display data or command
pointers, for example, when a new string
pOinter is loaded during the execution of
the END OF STRING command.

iii) DMA address incrementing across a 64K
byte segment boundary.

iv) Regaining the bus after losing it to a higher
priority master.

Timing of UALE is identical tothatof ALE. AENis
equivalent to the active period of 82730 driving
the bus.

If 16 bit address mode is programmed, TU will
never occur in any bus cycle since the MIU treats
all display pointers as 16 bit quantities and load­
ing of internal upper address register is bypassed

during addre~lculation. UALE always stays
inactive, but AEN still goes active to indicate the
82730 has control of the bus.

DATA BUS

The 82730 is capable of operating on either an 8
bit or a 16 bit Data bus, as programmed during
initialization on the SYSBUS byte,

When an 8 bit data bus is specified, the address
present on AD15 to AD8 Address/Data lines is
maintained for the complete bus cycle. There­
fore, compatibility with 80188, 8088, 8089 and
8085 multiplexed address peripherals is main­
tained. Since the internal processing of the 82730
generally operates on 16 bit data quantities, two
Bus fetch cycles are performed for each 16 bit
data item. The first cycle fetches the low order
byte, the second cycle the high order byte. These
2 fetch cycles are always executed back to back.
If HLDA drops during the first cycle, the 82730 will
not respond until the second cycle is completed.
An 8 bit data mode can be selected in an 8 bit bus
system that requires only 8 bit character data be
fetched.

In 16 bit bus system, the 82730 requires all 16 bit
quantities to start on even address boundary.
Word transfer to or from odd boundary is not
allowed since this type of transfer not only dou­
bles the use of bus bandwidth but also can be
easily avoided in application software. All that is
required is to make sure all address pointers be
an even number (AO=O).

ClK CE

UAlE

AEN

. Figure 3. Address Extension up to 32 Bits

8-165 210921-<)02

82730

BUS CONTROLS

The 82730 BIU provides both the 8086 MIN. Mode
(Local Bus Control) and MAX. mode bus control
signals simultaneously in any bus cycle. By
providing a complete set of Local Bus control
signals, the component count of the Local pro­
cessing module is minimized.

Because only two types of Bus operations,
Memory Read and Memory Write, are executed in
the 82730 BIU, the 8086's 52 status signal is
omitted from the Max. mode controls. S2 could be
setto "1" during any 82730 Bus cyCle. AEN can
be used to produce S2 since·it stays active
whenever 82730 is driving the bus. The status
signals become valid at the middle of the cycle
before Tl which could be either T4 or TU.

BHE is not provided on the 82730 because, the
82730 only writes words to even address boun­
daries and bytes to the upper byte position. For
these writes BHE isalways high. A PUIIAE~sistor
or a three-state buffer controlled by . can
provide this signal.

DT/R is also not provided on the 82730 because
its function can be replaced with ST. latched by
ALE.

After RESET is applied, READY is set to be an
asynchronous input. An on-board synchronization
circuit provides reliable operation for any type of
system. During initialization, READY may be
programmed to be bus synchronous. For those
systems that can meet the set-up time specifi­
cations, this mode provides more efficie,nt bus
utilization:

LOCAL BUS ARBITRATION

The 82,730 BIU is designed to function as a bus
master in a multimaster Local bus environment
using the HOLD/HLDA protocol for Bus arbi­
tration.

In the Self Contained Arbitration scheme, one
processor and one 82730 sQare access to the
local bus. The 82730 raises its HOLD request
whenever it needs bus access. After HLDA is
granted from the processor, the 82730 will not
start driving the bus until2 clock cycles later. This
latency allows sufficient time for the 8086 or
80186 processor to get off the bus. When 82730
completes its bus accesses, it will first float its
output drivers before dropping the hold request.

In a Local bus configuration with three or more
bus masters, a higher priority DMA Peripheral

device can preempt the HLDA from a 82730 whiqh
is the current bus master. The 82730 will complete
its current bus cycle, then fl9at its output drivers
and drop the HOLD request. However, the 82730
may raise the HOLD request again 2 clock cycles
later if it still needs the bus to complete the
interrupted burst DMA activities.

DMA BURST AND SPACE

Some system configurations using the 82730
. would be adversely affected by the long burst
data transfers which the Memory Interface Unit
(MIU) may occasionally desire, Since the 82730
will normally be configured as one of the higher
priority bus masters, burst lengths must be limited
for these systems. For this reason, the length of a
burst transfer and the number of memory cycles
between burst transfers are both programmable
via the mode registers:

8-166

15 14 8 7 6 0
MPTR-':"BRSTLEN BRSTSPAC

BRSTLEN- Burst Length.Determines the num­
ber of contiguous word-fetch cycles which may
be requested. Programmable from 1 to 127.
Note that in an 8 bit bus, 16 bit data system, the
burst counter only increments once for the 2 bus
cycles required to complete a word fetch. (Note:
burst length = 0 is not defined and should not be
programmed with a non-zero burst space)

BRSTSPAC - Burst Space. Determines a mini­
mum number of bus clocks to occur between
burst accesses. Programmable from 0-511 in
increments of four. Zero space selects an infinite
burst length.

A DMA burst could be terminated before the
programmed burst length is reached in the
following circumstances:

i) The MIU does not need any more bus
accesses, for example, when the row
buffer is filled.

ii) A datastream command is encountered
and the MIU must execute the command
first before it resumes data accessing,

iii) The bus is taken away by a higher priority
device in multi-master bus configuration,

In these cases, the burst counter iscleared.The
BIU must complete a full burst before it waits
through the SPACE cycles. DMA Burst/Space
will be set to zero space until the completion of
the first MODESET command_

210921-002

inter 8273~

INITIALIZATION OF BIU
Upon activation of the RESET input, the 82730
BIU will stop all operations in progress and
deactivate all outputs. It will stay ih this quiescent
state until memory acceSs is requested by the
MCU after MCU receives its fl rst channel attention
after RESET. The following table shows the state
of all MIU. outputs during and after reset.

'DIble 2. 82730 Bus During and After R~t

Signals Condition
AD15-0 Three-state

IRD, tvA, DEN Driven to '1' then three-state
So,51 Driven to '1' then three-state

ALE,UALE Low
AEN High

HOLD Low
SINT 'Low

82730 COMPATIBILITY IS~UES ,
82730 Bus Clock Compatibility

The 82730 uses the 50% duty cycle outpuf of the
iAPX-186 at 8 MHz or that generated by a clock
generator such as the 82285. A different duty
cycle clock may be used at lower frequencies, so
the 82730 is also useable with the iAPX-86, 88
family. '

82730 Bus Interface Compatibility

The bus interface compatibility between the 82730
and another bus master has four main issues:
data bus width, add ressabi lity, control bus struc­
ture and local bus mastership arbitration.

'Data Bus

Data Bus width compatibility with all 85/86 family
processors (8085, 8086, 8088, 80188, 80186, and
80286) is, being supported by the 8/16 data bit
programmability already discussed. This allows
interfaCing to the above processors either directly
or through a Multibus-like interface.

Address Bus

The 82730 uses real 32-bit addresses. The user's
software must calculate real addresses; this gen­
eral addressing scheme allows the 82730 to be
used with any microprocessor.

Control Bus
The 82730 implements both 8086 minimum and
maximum mode bus control structures. This was

, done to maximize compatibility with the 80186
which has the same structure. This a!lows the
82730 to be run locally (minimum mod$) with a
8085,8086,8088,80188, or 80186. The 80186/188
and 82730, can run together at 8MHz because of
clock duty cycle considerations. The 82730 can
only communicate to.an 80286 via a system bus
(such as MULTI BUS), bus interface, or dual-port
RAM.

8-167

INITIALIZATION SEQUENCE

The first CA (Channel Attention) after Reset
causes an Initialization Sequence to be executed.
The system processor must set up the appro­
priate initialization information in memory and set
the BUSY flag in the I ntermediate Block to a non­
zero value prior to issuing this CA.

Initially, 32.!.bit addressing and 8-bit data bus
width, are assumed until the corresponding in­
formation is fetched during the initialization. First
the SYSBUS byte is fetched from memory location
FFFF FFF6. (When the add ress bus is less than 32
bits wide, the higher order bits are unused.) The
format for SYSBUS byte is shown in Figure 4 and
is the same as that used for 8089. The data bus
width is specified by the least significant bit w,
with w=Q indicating an 8-bit bus and w=1
signifying a 16-bit bus.

A 32-bit real address pointer is then fetched from
memory locations FFFF FFFC through FFFF FFFF,
with lower bytes of the pointer residing in lower
addresses. This pointer is used as an Interms­
diat~ Block Pointer (IBP).

The Intermediate Block Pointer (IBP) is incre­
mented by two and is used to locate the Command
Block Pointer (CBP). Four bytes are fetched
irrespective of whether a 16-bit or 32-bit address­
ing option is used. The System Configuration
byte (SCB) is then fetched from location (IBP+6).

The least significant bit, (U of the SCB) specifies
16 'or 32-bit addressing option, with U=O indi­
cating 16 bit addressing and U=1 specifying 32-bit
addressing. The SCB also contains information
about cluster operation. Since up to four 82730's
can be connected in a cluster with their respective
data interleaved in memory, cluster information is
needed for the data access task. The SCB speci­
fies Cluster Number (CL NO), which is the
number of 82730's connected in a cluster and
Cluster Position (CL POS) which is the position

210921-002

inter 82730

of this particular 82730 within the cluster. CL NO =
O,1,20r3indicatesaclustercontaining 1,2,30r4
82730's respectively. Similarly, CL POS= 0, 1, 20r
3 indicate~ 1st, 2nd, 3rd or 4th position respect­
ively. Each 82730 adds an offset equal to 2 *
CLPOS to the SPTR fetched from memory and
increments the pOinter by 2 * (CL NO + 1). The

7
0 0 0 0 o

programming of CL NO and CL POS is indepen­
dent. No checking is done for CL POS greater
than CL NO on the 82730. Note that at least one
82730, in a cluster (even if it is a cluster of one),
must be assigned as cluster position zero (CL
POS = 0) for Virtual Disr;>lay mode to work properly.

o
o o W

~--~
SYSBUS Byte

W

0
1

7 6 5
SRDY DTW16 MIS

Data Bus Width

8-Bit
16-Bit

4 3 2
CL POS CL NO

o
U SCB Byte

~ ______ L-______ ~ ______ ~ __ ~~ ____ ~ __________ ~ __ ~

SRDY READY MODE DTW16 Display Data Mode

o Asynch ronovs 0 8-bit data
1 Synchronous 1 16-bit data

"
Position in

MIS Mode CLPOS Cluster

o Slave 00 1st
1 Master 01 2nd

10 3rd
11 4th

No. of 82730's
CL NO. In Cluster U AD DR BUS WIDTH

00 1 0 16-bit
01 2 1 32-bit
10 3
11 4

. Figure 4.SYSBUS and SCB Encoding

8-168 210921-002

82730

The SCB also contains an MIS bit '!hich specifies
a master or slave mode. The MIS bit is stored
int!rnally for use by the Display Generator .LPG).
MIS = 1 indicates a master mode and MIS = 0
specifies a slave mode. The format for the System
Configuration Byte (SCB) is shown in Figure 4.
Following these actions, the BUSY flag in the
Intermediate Block at address IBP is cleared
and a normal Channel Attention sequence is
then! executed.
The last two bits in the SCB are DTW16 and
SRDY. DTW16 specifies whether the display data
in 8 bit bus mode (W=O) is 8 or 16 bit. If a 16 bit
system is specified (W=1) then DTW16 is ignored
and forced internally to a "one". SRDY specifies
whether the clock synchronization circuit for the
READY pin is internal (SRDY=O) or external
(SRDY=1).

The Initialization Control Blocks in memory are
illustrated in Fig. Sa. How these fit into the control
structure of the 82730 is sho"'Yn in Figure 5b.

INTERMEDIATE

BLOCK POINTER

15

Channel AUenllon Sequence
When the processor activates CA, an internal
latch in 82730 is set on the falling edge of CA
input and this latch is sampled by the MCU. The
first CA activation after reset causes the 82730 to
execute an initialization sequence. Any subse­
quent activation will cause the MCU to start pro­
cessing,the command block by fetching a channel
command.
If a display is in progress, the MCU will sample CA
at each end of frame, otherwise it will sample CA
every cycle until it is found active. When CA is
found active, the MCU will fetch the command
byte from "COMMAND"location in the command
block, execute the command and clear the BUSY
flag upon completion. The internal CA latch is
also cleared by the MCU. An invalid command
code has the effect of NOP and the BUSY flag is
cleared. It will also cause the Reserved Channel
Command (RCC) status bit to be set.

I 8 7

IBP UPPER

IBPLOWER

o
FFFF FFFE

FFFF FFFC .

,(RESERVED) SYSBUS FFFF FFF6

INTERMEDIATE

BLOCK

COMMAND
BLOCK

(RESERVED) SCB

CBP UPPER

CBP LOWER

(RESERVED) BUSY

COMMAND BUSY

LOW SYSTEM MEMORY

Figure 5a. Initialization Control Blocks

8-169

1BP +6

1BP+ 4

1BP+ 2

1BP

·CBP

21092HI02

0>
.!.,
o

'" ~
~

INITIALIZATION BLOCK

ADDRESs I
FFFF6:

1-----
I SYSTEM BUS WIDTH

.

.
ILOCK POINTER LOW INTERMEDIATE B

INTERMEDIATE B LOCK POINTER HIGH

rt
INTERMEorATE BLOCK

CONFIGU IRATION BYTE

OCK POINTER LOW

OCK POINTER HIGH

COMMAND BLOCI

COMMAND BLOC

(1

,----'\ VMMANU DL\AOI\

r •• 8 7 6 5 • . • 0

COMMAND BUSY

LIST SWITCH AUTO LINE FEED

MAX DMA COUNT

LIST BASE 0 LOWER

LIST BASE 0 UPPER ~
LIST BASE. LOWER

LIST BASE' UPPER

COMMAND BLOCK POINTER'LOWER

COMMAND BLOCK POINTER HIGHER

STATUS

INTERRUPT GENERATION CODE

INTERRUPT MASK

LIGHT PEN ROW LIGHT PEN COLUMN

CURSOR' ROW CURSOR 1 COLUMN

CURSOR 2 ROW CURSOR 2 COLUMN

MODE POINTER LOWER

MODE POINTER UPPER

STATUS ROW POINTER LOWER

STATUS ROW POINTER UPPER

TO MODE BLOCK

Figure 5b. Control Structure of the 82730

STRING POINTER
LIST

DISPlAY
DATA Sl'RINGS

DAU

END OF ROW

DATA

DATA

ENDOFROW

~

l

~
~

inter 82730

82730 CHANNEL COMMANDS

~ble 3. Channel Commands

COMMAND OPCODE

1 START DISPLAY 0000 0001 01 H

2 START VIRTUAL DISPLAY 0000 0010 02 H

3 STOP DISPLAY'

4 MODE SET

5 LOAD CBP

6 LOADINTMASK

7 LPEN ENABLE

8 READ STATUS

9 LD CUR POS

0 SELF TEST

1 TEST ROW BUFFER

2 NOP

3 (RESERVED)

The system processor issues chaMel commands
to 82730 via the Command Block. The processor
first checks if the BUSY flag in the command
block has been cleared. It should wait for the
BUSY flag to be cleared before proceeding with
the issuing of a command. When the BUSY flag is
cleared, the processor places a commanq byte in
the "COMMAND" location in command block,
sets the BUSY flag to a non-zero value and asserts
Channel Attention (CA), by activating the CA
input to 82730. A,Channel Attention should not be
issued, if the BUSY flag has not been cleared.

START DISPLAY

0000 0001 CMD Byte

LlSTSWITCH, Auto Linefeed, Max DMA CQunt
and Cursor Position values are fetched from the
Command Block and stored internally after this
command is received. The BUSY flag is cleared
and the normal, display process is activated.

The MCU fetches strings of data from the memory,
using the parameters LISTSWITCH, LBASEO and
LBASE1. The data fetched is interpreted as data-

0000 0011 03 H

0000 0100 04H

0000 0101 05 H

0000 0110 06H

0000 0111 07 H

0000 1000 08 H

'0000 1001 09H

0000 1010 OA H

,0000 1011 OB H

0000 0000 OOH

From: 0000 1100 OC H
To: 1111 1111 FF H

stream commands or character dafa to be dis­
played by the Display Generator. The MCU loads
the data into one of the two Row Buffers in the
CRT controller, while the Display Generator
displays the data from the other buffer, the buffers
being swapped at the end oftherow. Any data­
stream commands encountered during data fetch
are immediately executed.

The display process is continued until it is deacti­
vated by a STOP DISPLAY command or a Reset.
Other channel commands can be issued while a
display is in progress and they will be executed
when CA is found active at one of the periodic
samplings at each end of frame.

The DIP (Display in Progress) status bit is set and
the VDIP (Virtual Display in Progress) is cleared
upon receiving a START DISPLAY command.
Both bits are reset upon receiving a STOP DIS­
PLAY command or a Beset.

It is necessary to load in proper mode information
through a MODESET command before activating
the display. Following Reset, START DISPLAY
command will not b~ executed, i.e., will result in a
NqP until' a MODESET command has been
issued.

8-171 210921-()02

82730

START VIRTUAL DISPLAY

0000 0010 CMD Byte

LlST,SWITCH, Auto Linefeed, Max DMA Count
and Cursor Positions are fetched from the
Command Block and stored internally upon re­
ceiving this command. The BUSY flag is cleared
and the Virtual Screen display process is activated.

Th~ operation of Virtual Screen display process is
similar to that of a regular display process, except
for following a different data access mechanism.
The parameters LlSTSWITCH, LBASEO and
LBASE1 in the colmmand block repres.ent AC­
CESS SWITCH, ACCESS BASEO and ACCESS
BASE1 respectively, in· virtual screen display.

The VDIP (Virtual Display in Progress) status,bit
IS set and the DIP status bit is cleared upon
receiving a START VIRTUAL DISP command:
Both DIP and VDIP are reset upon receiving a
STOP DISPLAY command or a Reset.

START VIRTUAL DISPLAY command will not
activate a display and results in a NOP until a
MODESET command is issued after a Reset.

STOP DISPLAY

0000 0011 CMDByte

The display process is deactivated upon receiving
this command. The DIP and VDIP,status bit are
reset and the BUSY flag is cleared.

This command blanks the display. HSYNC and
VSYNC are not affected.

MODE,SET

0000 0100 CMD Byte

The Mode Pointer contained in command block
location (CBP + 30) is used to access the Mode
Block and the modes are fetched sequentially
and loaded into the corresponding internal regis­
ters in 82730. LlSTSWlTCH, Auto Linefeed, Max
DMA Count and Cursor Positions are fetched
from the Command Block and stored internally
upon completion and the BUSY flag is cleared.

The organization of mode words in the mode
block and the parameters supplied by them are
shown below (See Figure 10). Some of these
parameters which are critical to the operation of a

text coprocessor are required to remain un­
changed over most of normal operation. No
provision is made to prevent MODESET from
changing these parameters and it is left to the
designer to insure that they are not changed.

The modes provide horizontal and vertical mode
display parameters, interlace information, DMA
burst and spacin'g specifications, cursor charact­
eristics as well as attribute enables and bit­
selects. Typically, this would be the fi rst com mand
issued after initialization. The Mode Block pro­
vides all the parameters needed for a complete
initialization of the 82730 for display. Thus a
single Modeset command can fully initialize the
chip. Note that until the first Modeset command is
sent, certain functions such as VSYNC and
HSYNC are not enabled.
It is necessary to set up proper mode information,
before activating a display, Therefore, a display
activating commands should not be issued unless.
proper mode information has been loaded through
a MODESET command. START DISPLAY and
START VIRTUAL DISPLAY commands will result
in a NOP if a MODESET command has not been
issued sinc~ the most recent Reset.

LOAD CBP

0000 0101 CMD Byte

The address pointer"NEW CBP" contained in the
command block is fetched and stored in the CBP
register in the text coprocessor, replacing the old
CBP. This effectively moves the command block
in the memory. The Command byte from the new
Command Block is fetched and, the specified
channel command is executed. The BUSY flag in
the new Command Block is cleared upon com­
pletion. '

LOAD INTMASK

0000 0110 CMD Byte

The interrupt mask confained in location "I NT
MASK" in the command block is fetched and
stored internally in the CRT controller. When a
particular mask bit is set, the interrupt is disabled
for a status bit in the corresponding bit position.
An interrupt is generated by the text coprocessor
by activating the SINT pin, if a status bit is 1 and
the corresponding bit in the interrupt mask is 0,
The BUSY flag is cleared upon completion.

8-172 21092H)02

inter 82730

Interrupts can be enabled for the following status bits.

7 6 5 4 3 2 a BIT
ROC RCC FOE EOF DBOR LPU OUR STATUS WORD

ROC: Reserved Datastream Command Encountered
RCC: Reserved Channel Command Executed
FOE: Frame Data Error (Fetching characters past physical End of Frame)
EOF: End of "ri" frames (Logical end of nth frame)

DBOR: Data Buffer Overrun (Row Buffer filled completely without
encountering END OF ROW command)

LPU: Light Pen Update
OUR: Data Underrun (Buffer swa:p initiated before finishing Row Buf

loading)

READ STATUS LD CUR POS

0000 1000 CMD Byte

The internal status register is written to"STATUS"
location in the command block. The status
register is then cleared, however DIP and VDIP
status bits are not cleared. LlSTSWITCH, Auto
Linefeed, Max DMA Count and Cursor Posi­
tions are fetched from the Command Block and
stored in~ernally. The BUSY flag is then cleared.

STATUS WORD

0000 1001 CMD Byte

The display row and column positions of cursors
1 & 2 as set in locations "CUR1 ROW," CUR1
COL," "CUR2 ROW" and "CUR2 COL" in the
command block are loaded into internal regis.
ters in the CRT controller. Also LlSTSWITCH
Auto Linefeed and Max DMA Count are loaded
from the Command Block and the BUSY flag is

15-9 8 7 6 5 432 1 0
I - VDIP DIP ROC RCC FOE EOF DBOR LPU OUR

LPEN ENABLE

0000 0111 CMD Byte

The Light Pen detection process is enabled to
search for a rising edge on the LPEN pin. The
BUSY flag is then cleared.

If the display process is active and a rising edge
is detected on the LPEN input, the corre­
sponding row and column position on the
screen is stored internally. At the next end of
frame, the LPEN position is written to locations
"LPENROW" and "LPENCOL" in the command
block and the LPU (Light Pen Update) status bit
is set.

It the display process is not active, this com­
mand has no immediate effect. However, the
LPEN detection process remains enabled and
will take effect if a display is activated subse­
quently.

cleared. This command is used to change the
cursors only. Note that the cursor pOSitions are
also updated with the execution of other channel
commands.

The cursor characteristics for display are defi ned
by the mode. During the display process, a
cursor will be displayed accordingly at the
position specified above.

8-173

NOP

0000 0000 CMD'Byte

LlSTSWITCH, Auto Linefeed, Max DMA Count,
and Cursor Positions are fetched from the com­
mand block and stored internally as in all other
channel commands. The Busy flag is then cleared ..

210921-002

827~0

82730 DATASTREAM COMMANDS

Datastream Commands

Datastream Commands.are commands embed­
ded in the data fetched from memory by the
data access task. These commands are differ­
entiated from character data by the command
bit. The most significant bit (MSB) of each data
word is designated as the command bit. If the
command bit is "1", the lower 15 bits of the data
word are interpreted as a datastream command,
while if the command bit is "0" the lower 15 bits
(or 7 bits if DTW16=0) are interpreted as char­
acter data.
Datastream Command Operation

During the data access task, the Micro Controller
Unit (MCU) examines the command bit of each
data word fetched. If the. command bit is 1, it
executes the datastream command specified in
the data word. Otherwise, it stores the lower 15

Datastream Command List

bits of the data word in the Row Buffer as
character data. This process is repeated for
each data word fetched.

Datastream commands can be used for changing
Row Characteristics on a row by row basis, for
carrying out editing functions and for format­
ting data into rows and frames. These com­
mands are executed by the MCU immediately
after they are encountered. As a convenience'
for the user, the set of all possible command
codes starting with "11" in the two most signif­
icant bits has been designated as NOP com­
mands. The user can use these command codes
for any desired purpose. All other command
codes which are not presently defined, are
reserved for future expansion and should not be
used by the user. The currently undefined
codes cause the RDC (Reserved Datastream
Command),status bitto be set and also generate
an interrupt, if enabled. Reserved command
codes should not.be used.

Table 4. 82730 Datastream Commands

COMMAND CODE
COMMAND QP CODE

OP CODE PARAMETERS

1 ENDROW 1000 0000 XXXX XXXX 80
2 EOF 1000 0001 XXXX XXX X 81
3 END OF STRING & END OF ROW 1000 0010 XXXX XXX X 82
4 FULROWDESCRPT 1000 0011 - "n" 83
5 SL SCROLL STRT 1000 0100 XXX SCR LINE 84
6 SL SCROLL END' 1000 0101 XXX END LINE 85 .
7 TAB TO n 1000 0110 "n" 86
8 LD MAX DMA COUNT 1000 0111 COUNT 87
9 ENDSTRG 1000 1000 XXX X XXX X 88

10 SKIP n 1000 1001 "h" 89'
11 REPEAT n 1000 1010 un" 8A
12 SUB SUP n 1000 1011· "n",j 8B
13 RPT SUB SUP n 1000 1100 "n" 8C
14 SET GEN PUR ATTRIB 1000 1101 , GPA OP 8D
15 SET FIELD ATTRIB 1000 1110 XXXX XXXX 8E
16 INIT NEXT PROCESS 1000 1111 XXXX XXXX 8F

(Command process command)
17 (R.ESERVED) 10XX XXXX XXXX XXXX 9O-BF
18 NOP llXX XXXX XXXX XXXX CO-FF

8-174 210921-002

inter 82730

"The preceding commands' are 'recognized as
valid datastream commands. The corresponding
command codes are also indicated. It should be
noted that the most significant bit of the command
bit is always 1, in order for the word to be
interpreted as command.

The "Inlt Next Process" command can be issued
only through a command 'process In Virtual
Screen Display. It is included in this list because
its operation is analogous to a datastream com­
mand in a virtual screen access environment.
Also, in virtual screen display certain datastream
commands are interpreted differently, depending
upon whether they are encountered in a process
datastream or as command process commands.
When a commandis ignored (becomes a NO-OP)
in a virtual display, any parameters that are asso­
ciated .with it are also ignored. The command
process command operation is discussed separ­
ately: The operation of all other datastream com-
mands is described below. '

ENDROW
15 14 8 7 o
1 000 0000 xxxx xxxx

This command signifies that no more charac­
ters will be lo,aded in the Row Buffer for this row
and an End of Row indicator is stored according­
ly. When the row currently being loaded is
displayed, the Display Generator (DG) will blank
the screen from the end of row character position
until the,physical end of row. '

The Micro Controller Unit (MCU) stops fetching
data and waits for DG to swap the Row Buffers ..
The data access task is resumed following the
buffer swap. If a physical end of frame is reached
while the MCU is waiting for a buffer swap the
MCU ceases to wait and executes an EOF (End of
Frame) command.

In virtual display, this command is interpreted as a
VEOR (Virtual End of Row) if encountered in a
virtual process datastream.

VEOR

addition, in auto linefeed mode (ALF = 1) other
parameters characterizing the process state are
also saved In the header. The "Process Addr"
register is loaded with the address of the header
of the next process fetched from the Access table.
The "Access Tab Addr" register is post-incremented
by two If a 16-blt addressing option is used and by
four if 32-bit addressing is used. The data access'
task is then resumed for the next process.

EOF
15 14 8 7 o

000 0001 xxxx xxxx
This command (End of Frame) signifies that no
more characters will be loaded in the Row Buffers
for this frame. The Micro Controller Unit (MCU)
stops fetching data words and waits for the
physical end of frame. If a virtual display is in
progress, this commandis'lnterpreted as VEOS
(Virtual End of Frame), if encountered in a virtual
process datastream.

The Display Generator (DG) swaps the row
buffers at the end of the current display row and
starts displaying the row containing the EOF
command. When the character preceding the
EOF command is displayed, the DG blanks the
screen until the physical end of frame. The MCU
fetches the Status Row data then waits until its
display is completed. It then performs the actions
described below. '

If LPEN has been enabled and a rising edge on
the LPEN input has been detected, the LPENROW
and LPENCOL positions in the command block
are updated and the LPU status bit is set. If a
Channel Attention has occurred, i.e., if CA has
been activated, the command byte is fetched
from command block and the specified channel
command is executed. If the command issued is a
"Stop Display" command, the MCU will terminate
the display. process and wait for the next channel
attention. Otherwise, the MCUresumes the data
access task by reinitializing pointers for the new
frame and continues to fill the Row Buffers.

VEOF
EOF command in a virtual process datastream is
interpreted as VEOF (Virtual End of Frame). It
provides for reinitialization of LPTR using LIST ~
SWI1CH, LBASEO and LBASE1 for each process,
analogous to the automatic reinitlalization of

ENDROW command in a virtual process data­
stream is interpreted as VEOR (Virtual End of
Row) and it terminates a virtual row. The current
LPTR is stored in the process header addressed
by the ,"Process Addr" register. The, Max Count
register is also stored in the Max DMA Count,
location in the process header. Similarly. the Field
Attribute Mask is also stored in the header. In : LPTR at each end of frame in a Normal Display.

8-175 210921-002

LPTR for the current process is reinitialized using
LlSTSWITCH, LBASEO and lBASE1 contained
in the process header. The End of Display (EOD)
bit in the header is set to 1. The current process is
terminated as in a VEOR and the next process in
Access Table is accessed.

EOl

15 14 8 7 o
000 0010 XXXX XXXX

The EOl (End of Line) command has a combined
effect of NXTROWand NXTSTRG commands. All
the actions performed in a END OF ROW com­
mand are carried out. In addition a END OF
STRING command is executed before resuming
the data' access task. Thus, following the end of
row, the data access is continued with the next
data string. In virtual process datastream, this
command has the combined effect of VEOR and
END OF STRING.

$2730

FUlROWDESCRPT

15 14 8 7 o
000 0011 n

The next un" words fetched from memory are
loaded into the Row Characteristics holding
registers. un" is specified by the lower order byte
of the command word and should be between 0
and 7.
The patameters loaded by this command will be
used to define the tow characteristics at the time
the row currently being loaded is displayed. The
data words defining these characteristcs which
follow the FUlROWDESCRPT command must
be ordered and organized in memory in a specific
format. The format for FUlROWDESCRPT para­
meters is shown below in Figure 6 starting with
"Lines Per Row" as the first parameter loaded.
This command will be ignored if encountered in a
virtual process datastream. The MSB of all the
parameters must be zero for proper operation in
virtual display.

Upper Byte lower Byte
765 4' 3 2 1 0

Li nas per row
Normal Start/Stop
Superscript Start/Stop
Subscrip~ Start/Stop
Cursor 1 Start/Stop
Cursor 2 Start/Stop
Underli.ne Line Selects

15 14 13 1211 10 9 8
RVV BlK DBl W
ROW ROW HGT DEF

NRMSTRT
SUPSTRT
SUBSTRT

CUR1 STRT
CUR2STRT

Ul2 LINE SEl

RVV ROW, when this bit is set the CRVV pin will be inverted for the next full row.
BlK ROW, when this bit is set the row will be blanked (BLANK high).

lPR
NRMSTOP
SUPSTOP
SUBSTOP

CUR1STOP
CUR2STOP

Ul1 LINE SEl

DBlHGT, when the double height bit is set, all character are displayed with twice the scan lines per row.
WDEF,when the width defeat bit is set, the WOEF pin is activated for the entire row.

The followi"ng can be programl)1ed from 0 to 31 yielding a range of 1 to 32 lines.
lPR specifies number of lines per row.
NRMSTRT, SUPSTRT, SUBSTRT specify line numbers in a display row which mark the stp.rt of

normal, superscript and subscript characters respectively.
NRMSTOp, SUPSTOp, SUBSTOP specify line numbers in a row where normal, super script and

subscripCchatac'ters end respectively.
CUR1 STRT, CUR2 'STRT specify the starting line numbers in a row for cursor 1 and cursor 2

respectively.
ULlNE1 SEl, ULlNE2 SEl specify the line numbers in a row where underline 2 will appear

respectively.

All FUlROWDESCRPT parameters affect the row in which they are programmed and stay in effect
until changed by another FUlROWD~SCRPT command.

Flgu~e 6. Formal for FULROWDESCRPT

8-176 210921-002

inter 82730

SL SCROLL STRT

15 14 8 7 5 4 0

000 0100 xxx SCR LINE

The Slow Scan register in 82C3 is loaded with the
scroll line specified by the five least significant
bits of the command word. When the row cur­
rently being loaded is displayed, the line count for
that row will start with the value specified by the
Slow Scan register. A "Margin" (MGN) parameter,
loaded by MODESET, specifies the number of
blank lines plus one to be added at the top of the
slow scroll field on the screen. This ensures the
availability of sufficient DMA time for fetching the
next row, when only a small number of scan lines
are displayed in the top row of slow scroll window.
This command is used for starting a slow scroll.
(Note: MGN = 0 results in no margin buffer lines)

This command will be ignored if encountered in a
virtual process datastream or if a SL SCROLL
END command is encountered later on the same
row.

SL SCROLL END

15 14 8 7 5 4 0
000 0101 xxx END LINE

The scroll location in row characteristics holding
registers is loaded with the number of lines
specified by the five least significant bits of the
command word. This number specifies the num­
ber of lines to be displayed when the row currently
being loaded is displayed. This is used instead of
the regular LPR (Lines Per Row) characteristics,
for this particular row. This command is used in
the last row of a slow scroll for terminating a slow
scroll. The Margin (MGN) parameter, loaded by
MODESET, is used in the same way as in slow
scroll start e~cept that the specified number of
blank lines are inserted at the bottom of the slow
scroll in this case. This command will be ignored
if encountered in a virtual process datastream or
if followed by a SL SCROLL STRT on the same
row.

TASTOn

15 14 8 7 o
000 0110

The lower byte of the command word specifies
the- column (RCLK count) after SYNCSTRT at
which a Tab should occur. At.display time, after
the character preceding the Tab command is

displayed, the screen is blanked, until the RCLK
count specified by the command ("n'.') is reached.
After reaching the specified count, display is
resumed by displaying the character following
the TAB command.

If the RCLK count specified by the Tab command
has already occurred before beginning the
blanking for Tab, the display will be blanked until

• the end of the row.

This command is ignored, if encountered in a
virtual display process datastream. '

LD MAX DMA COUNT

15 14 8 7 o
000 0111 MAX COUNT

The Max Count register in 82730 is loaded with
the Max DMA Count specified by the lower byte
of the command word. The DMA Counter is also
reinitialized with the Max Count value in the
Command ~Iock after all channel commands.

MAX DMA Count is programmable in the range of
1 to 256 (MAX COUNT value 0 equals 256). How­
ever, counts greater than the row buffer capacity
will cause row buffer overruns if the data strings
depend on MAX DMA to terminate the fetching.

\
The DMA·counter is decremented for each data
word as the Row Buffer is being loaded. Data­
stream commands and words supplying para­
meters for datastream commands as in FULROW­
DESCRPT, are not counted. SuperscripVSubscript
characters are counted in pairs, i.e., a pair of
characters causes only' one count.

In virtual screen display, every time a new process
is accessed, the DMA counter is initialized with
the Max DMA Count contained in the process
header. This value is also stored in a Max Counter
register.

At virtual end of row (VEOR) the Max .count
register is written to the process header. The "LD
Max DMA Count" command is ignored if encoun­
tered in a virtual process datastream.

ENDSTRG

15 14' 8 7 o
000 1000 XXXX XXX~ ,

The 'gpTR register in the 82730 is loaded with a
new String Pointer (SPTR) value fetched from the
memory location indexed by the List Pointer
(LPTR), which is stored in the LPTR register. The

8-177 210921-002

82730

LPTR register is incremented by two if a 16-bit
addressing option is used 'and by four if 32-bit
addressing is used. When more than one 82730 is
connected in a cluster, .each of them adds an
offset, deten'nined by its position in the cluster, to
the pointer fetched from memory, before storing
it in its SPTR register.

This command directs the data access to the next
data string in the list of strings indexed by LPTR.
The operation of this command is identical for a ,.'
Virtual or Normal Display. In virtual display, tlie
next data string within the current display pro­
cess is accessed.

SKIPn

15 14 8 7 o
1 000 1001 n

The next "n" data words fetched from memory are
ignored. "n" is s'pecified by the lower byte of the
command word and is programmable from 0 to
255. If n equal to 0 is specified, no words are
skipped. Any datastream commands encounter­
ed in the data fetch are not counted towards these
n words~ Also parameters following the data­
stream command as in FUL~OWDESCRPT are
not counted. All embedded datastream com­
mands are executed. If the data words skipped
include any superscript-subscript characters,
they are skipped in pairs and a pair of characters
is counted as only one count in "n". If another skip
command is encountered its value of "n" is added
to the pr~sent skip count and skipping continues.

If an EOF (End of Frame) datastream command is
encountered, SKIP n is terminated. A ENDROW
command causes termination of a SKIP n com -
mand in non-auto linefeed mode (ALF=O) in'
either normal or virtual dispaly mode. If ALF=1
the ENDROW is ignored, and not counted.

REPEAT n

15 14 8 7 o
000 1010' n

The next data word (byte, if DTW16=0) fetched
,from memory is stored in the Row Buffer "n"
times, where un" is specified by the lower byte of
the command word. Un" is programmable from 0
to 255. If n equal to 0 is specified no repetitions
will occur, and the word following the Repeat n
command will Qe ignored. This character will
eventually be displayed n times. The DMA counter
is also made to count n times. In non-auto

linefeed mode (ALF = 0), reacl'ling Max DMA
Count before the n repetitions are completed will
result in a termination of the Repeat n command.
This command will also be terminated if the Row

, Buffer gets filled completely before the n repe­
titions are completed.

It should be noted that the data word immediately
following the Repeat n command is treated as
character data, irrespective of the value of its
command bit.

SUP/SUB n

15 14 8 7 o
000 1011 n

The next un" pairs of data words (bytes, if DTW16
= 0) fetched from memory are treated as super­
scripts or subscript characters. un" is specified by
the lower byte 9f the command word .. These n
pairs are assumed to be. ordered with the super­
script preceding the subscript.

No datastream commands are permitted in the 2n
words following this command/All ofthese words
are interpreted as superscript-subscript pairs.
The DMA counter is made to count only once for
each pair of characters. In non-auto linefeed
mode (ALF=O), reaching the Max DMA Count will
result in a termination of this command. If n equal
to zero is specified, no action will result.

RPT SUB/SUP n
15 14 8 7 o

000 1100 ·n

The operation of this command is similar to that
of the "Repeat n" command except that the pair of
characters follpwing the "RPT SUB/SUP n" com­
mand is repeated n times. "n" is specified by the
lower byte of the command word and is pro­
grammable from 0 to 255. If n equal to zero is
specified, no repetitions will occur, and the two
data words following the "RPT Sub/Sup n" com­
mand will be ignored. The two data words (bytes,
if DTW16=0) immediately following the command
word are interpreted as a superscript-subscript
pair and are repeated. The DMA counter is made
to count only once for each repetition of the pair.
In . non-auto linefeed mode (ALF=p>, reaching
Max DMA Count prjor to completion of n repeti­
tions wil.1 cause a termination of this,command.

210921-002

inter 82730

SET GEN PUR ATTRIB

15 14 8 7 o
000 1101 GPAOPERAND

This command provides control over the output
pins assigned to General Purpose Attributes,
GPA1 through GPA4.

7 6 5
GPA GPA4 GPA4 GPA3
OPERAND DATA EN DATA

Datastream Command Conventions

The reaching of Max DMA Count, encountering
of terminating commands such as ENDROW,
EOF, etc. and occurrences of these while exe- ,
cuting a "skip n" command give rise to various
possible combinations of events. The behaviour
of 82730 underthese circumstances is described
below:

4 321 0
GPA3 GPA2 GPA2 GPA1 GPA1

EN DATA EN DATA EN

ENCODING GPAx GPAtt
DATA

0
1
0
1

In Virtual Display, every time a display process is
accessed, the state of the General Purpose Attr­
ibutes is loaded from the header. The GPA in the
Process Header is also updated each time a SET
GPA command is executed. Thus the GPA state in
the header is updated to reflect any changes
caused by the "Set Gen Pur Attrib" command.

The encoding of the operand, specifying GPA
operation, is shown below.

SET FIELD ATTRIB

15 14 8 7 o
1 000 1110 XXXX XXXX

o FIELD ATTRIBUTE MASK

The word following this command is fetched.
This word is used as a Field Attribute Mask in
storing all subsequ~nt display data words in
row buffer. The bits in the data words fetched
from memory corresponding to the bit-positions
containing a "1" in Field Attribute Mask are all
set to 1 before storing the data word in row
buffer. The Field Attribute Mask is used on all
display data words fetched from memory. The
mask register will contain all O's upon reset and
is cleared at the beginning of each frame.

NOP

15 14 8 7 o
1XX XXXX XXXX XXXX

No action is taken. The data access task is
resumed by fetching the next data word.

EN
0
0
1
1

FUNCTION
ROW BUFFER DATA
ROW BUFFER DATA
GPA DATA = 0
GPA DATA = 1

i) When Max DMA Count is reached, it has
·the effect of a VEOR command if a Virtual
Display is in progress or a ENDROW com­
mand if a Normal Display is in progress. It
also causes an automatic end of string
Le., the effect of a NXTSTRG command in
non-auto linefeed mode (ALF = 0).

ii) In non-auto linefeed mode, "Repeat n",
"Sub/Sup n" and Rpt Sub/Sup n" com­
mands are terminated upon reaching a
max DMA count, even if "n" is not reached.

iii) "Skip n" command is terminated if EOF
command is encountered. It is also ter­
minated upon encountering a ENDROW
command in non-auto linefeed mode
(ALF = 0).

iv) "Repeat n" "Sub/Sup n" ahd "RPT Sub/
Sup n" commands can be nested wfthin a
"Skip n" command. If superscript-subscript
characters are skipped, each pair'of char­
acters counts as one skipped character. If
the above commands are encountered
during a "skip n" and if the specified
count (n) in these commands is not
reached by the end of execution of the
"skip n" command, the execution of the
nested command is continued beyond
the termination of "skip n" command until
the remaining portion of the count speci­
fied in the nested command is completed.

8-179 210921-002

inter 82730

VIRTUAL SCREEN,MODE
Command Process Com.mands
In Virtual Screen Display, 82730 accesses dis­
play processes and command processes through
the Access table., The command processes
enable the 1/0 Driver process to'direct 82730 to
execute certain data stream commands by in­
serting an appropriate \command process
address in the Access table. This capabnity en­
ables the preservation of uniformity and con­
sistency of operation between normal and virtual
environments, by assigning different inter­
pretations to the command accordi'ng to the
access environment. It is especially useful for
termination and initialization commands. The
operation of command process commands is
analogous to that of data stream commands
except for a different access environment.

Command Process Command list

The commands allowed in command processes
can be divided in.to two subsets. The first subset
consists of commands that can be issued only'
through a command process, while the second

one consists of normal datastream commandS
that can also be issued through a command
process. The command code for a datastream
command issued through a command process
is the same as that for the normal datastream
command embedded in the data. However,
certain datastream commands are interp~eted
dlffere!1tly when they are issued through a com­
mand process as oppolled to embedding in the
datastream of a virtual display process. The
most significant bit (MSB) of the command
word must be a "1". In the datastream, this bit
distinguishes a command word from character
data. In the process environment, this bit distin­
guishes a command process from a display
process. The commands permitted in command
processes are listed below. No othercommands
will be'recognized if encountered in a command
process and will result in a NOP. All undefined
command codes apart from those designated

'as NOP are reserved and should not be used.
Encountering an illegal command code causes
the ROC (Reserved Datastream Command)
status bit to be set and will generate an interrupt,
if enabled.

Table 5. Command Process Command list

INTERPRETATION COMMAND CODE
COMMAND IN VIRTUAL OPCODE

PROCESS OPCODE PARAMETERS
DATASTREAM

Command Proceas Only Command:
1 INIT NEXT PROCESS NOP 1000 1111 XXXX XXXX 8F

Command Process or Datastream Commands:
2 ENDROW . VEOR 1000 1000 XXXX XXXX 80
3 EOF VEOR 1000 0061 'xxxx XXXX 81

'4 EOl VEOR + NXTSTRG 1000 0010 XXXX ,XXXX 82
5 FUlROWDESCRPT NOP 1000 6011 Un" . 83
6 SL SCROLL STRT NOP 1000 0100 XXX' "SCR LINE" 84
7 SL SCROLL EN 0 NOP 1000 0101 XXX "END LINE" 85
8 TAB TO n f'toIOP 1000 0110 un" 86
9 LD MAX DMA COUNT NOP' 1000 0111 "COUNT" 87

, 10 (RESERVEP) RESERVED 10XX XXXX XXXX XXXX 90-SF
11 NOP NOP 11XX XXXX XXXX XXXX CO-FF

./

, 8-180 210921-002

inter 82730

.INIT NEXT PROCESS not directly loaded from the LPTR location in the
process header. Instead, LISTSWITCH in the
process header is examined and LPTR is initial­
ized with the value LBASE 0 orLBASE 1 depend­
ing upon wheth~r LISTSWITCH is 0 or 1 respec­
tively. Both LBASEO and LBASE1 are contained
in the header.

15 14 8 7 o
000 1111 XXXX XXXX

This command can be used onlY,in a command
process to initiate a virtual display "'Io!indow",

Upon receiving this command, the command
process is terminated and the next process in
Access Table is accessed by fetching the new
process address, However, the LPTR register is

The process header format is shown in Figure 7.
Also the End of Display Bit (EOD) in the header is
reset.

15 14 13

0 ----
LS: LlSTSWITCH ----
ALF: AUTO LINE ----

FEED

,-

1 ----
1

SAVE RPT
AREA SIS SIS RPT

1
1

:rhe data access task for a virtual display is then
resumed, with this value of LPTR.

8 7 6 0 LOCATION
EOD ---- PROCESS ADDR

LS ALF PROCADDR +2

MAX DMA COUNT PROC ADDR +4
LBASEO LOWER PROCADDR +6

LBASEO UPPER PROCADDR + 8

LBASE 1 LOWER PROC AD DR + 10

LBASE1 UPPER PROC ADDR + 12
GPA PROC ADDR + 14

FIELD ATTRIBUTE MASK PROC,ADDR + 16

LPTR 'LOWER PROC ADDR + 18

LPTR UPPER PROC ADDR + 20
SPTR LOWER PROC ADDR + 22
SPTR UPPER , PROC ADDR + 24

-- REPT COUNT PROC AD DR + 26
REPT CHAR PROC ADDR + 28

REPT CHAR 2 PROC ADDR + 30

15 14 8 7 o
PROCESS ADDR COMMAND

C/O

Figure 7. Process Header for Display and Command Process

8-181 210921-002

\

82730

ENDROW

15 14 8 7 o
000 0000 XXXX XXXX

The actions performed by a, ENDROW data­
stream command in a Normal Display are
·carri~d out. The next process in Access Table is
accessed and the data access 'task is 'resumed,
after the next Row Buffer swap

EOF

15 14 8 7 o
000 0001 XXXX XXXX

The actions performed by an EOF (End of
Frame) data stream command in a Normal
Display are carried out.

EOL

15 14 8 7 o·
1 000 0010 XXXX XXXX

This command is identical to ENDROW com­
mand in Virtual Display in Command Process
environment. ENDSTRG, which is strictly a data
operation within a display process is meaning­
less in the comma~d process environment. .

FULROWDESCRPT

1514 8 7 o
000 0011 "n"

The actions performed by the FULROWDES­
CRPT datastrea'm command are carried out.
The data access task is resumed by accessing
the next process, in the Access Table.

SL SCROLL STRT

15 14 8 7 5 4 0
. 1 000 0100 xxx "SCR LINE"

The ~ame actions as the SL SCROLL'STRT
datastream command. ,The data access is
resumed with the next process in Access Table.

SL SCROLL END

15 14 8 7 5 4 0
000 0101 xxx "END LINE"

The actions performed by a sL SCROLL END
datastream command, in a ""ormal display, are
carried out. The data access task is resumed
with the next process in Access Table.

TAB TO It

15 14 8 7 o
000 0110. "n"

The effect of this command process command
is identical to that of the TAB TO n datastream
command. The TAB can be'used to establish the
left edge of a virtual display "window".

LD MAX DMA COUNT

15 14 8 7 o
1 000 0111 MAX COUNT

The Max Count register on 82730 is loaded with
the value specified by the lower byte of the
command word. The DMA counter is also initial­
ized with this Max Count Value.

The next process in the Access Table is accessed.
However, the Max DMA Count value in the'
process header is not used for initializing the
DMA counter. Instead, the DMA counter as
initialized by the LD Max DMA Count command
is used for this process. The virtual display data
access task is then resumed normally. When the
process is terminated, the new Max Count valulil
is written to the process header. Thus the Max
Count value in the header is updated as a result
of this command.

NOP

15 14 8 7 o.
1XX XXXX XXXX XXXX

No action is taken. Data access task is resumed
by fetching the next process address from
Access Table. '

ERROR AND STAT,US HANDLING

Error Conditions

Since the MCU and DG function asynchronou's­
Iy with respect to each other, different relative
timings in MCU and DG operatioFl are possible,
some of which result in error conditions. The
lack of appropriate termination commands for
'tow or frame data in the datastream also gives
rise to certain error conditions. These types of
situations occurring in display process oper­
ation are described below.

,. ,

In normal operation, DG initiates a buffer swap
at the physical end of a display row. If the MCU
has not finished loading its row buffer by that
time, a "Data Underrun" occurs. This results in

8-182 210921-002

inter 82730

blanking of the screen until physical endofframe
by DG and execution·of an EOF (End of Frame)
command by MCU. Data underrun also occurs
when the first row of the frame has not finished
loading by the start of the character field. The
entire frame wilJ be blanked in this case.

If a physical end of frame is reached prior to
encountering an EOF datastream command, a
"Frame Data Error" occurs, which results in the
execution of an EOF command by MCU. (Note
that this does not disrupt the visible display
action, and may not constitute an errorforcertain
data structures. The error indication is included
as a flag where knowledge of this condition is
desired.) Similarly, when the MCU fills up a row
buffer completely, wit.hout encountering a END­
ROW command, the "Data Buffer Overrun" flag is
set.

All of the above conditions result in the setting of
an appropriate status bit and generation of an
interrupt ,f the corresponding interrupt has been
enabled.

15 9 8 7 6 5
(RESERVED) VDIP DIP ROC RCC

Status and Interrupt Handling
A status word is maintained in an internal register
by 82730 and it is written to the "STATUS"
location in command block when the "Read
Status" channel command is executed. The pro­
cessor can thus read status' information by issuing
this command. the processor can also enable
interrupts for certain status bits by specifying an
interrupt mask which is loaded in 82730 as a
result of a "Load Int Mask" channel command.
This establishes a communication mechanism
between, 82730 and the processor for error and
status reporting.

Status Word
Tile format for the status word is shown below.
The function of each ofthe status bits is described
below.

The status bits get set under the conditions
described above. I nterrupts can be enabled for all
status bits except 01 P and VOl P bits. The interrupt
status bits are cleared at the beginning of each
new display field. DIP and VDIP bits are cleared
only after receiving a "STOP DISPLAY" command
or a Reset.

All status bits are cleared by.a Reset.

VDIP:
DIP:
RCC:
ROC:
FOE:

Virtual Display In Progress
Display In Progress
Reserved Channel Command
Reserved Datastream Command
Frame Data Error

OUR: Data Under Run

This status bit is set by Display Generator if the
Microcontroller Unit (MOU) has not finished

, loading its Row Buffer when the DG initiates a
buffer swap at the physical end of.a display row.
This conditi.on is defined as data underrun and
causes the MCU to execute an EOF command
and the DG to blank the screen until the
phy~ical end of frame.

LPU: Light Pen Update

This status bit is set by the MCU after updating
the LPENROW and LPENCOL locations in com­
mand block. The detection of LPEN input is
enabled by the LPEN ENABLE channel com-

4
FOE

EOF:
DBOR:
LPU:
OUR:

321
EOF DBOR LPU

End of Frame
End 'of Row
Light Pen Update
Data Under Run

o
OUR

mand. The detection of a rising edge on the
LPEN input causes the current row and column
position to be stored internally. The MCU
updates the LPEN ROWand ,LPEN CQL loca­
tions in command block at the next end of frame
and sets the LPU status bit. Further updates of
these command block locations are inhibited
until another LPEN ENABLE command is issued.

DBDR: Data Buffer Over Run

This status bit is set when the MCU tries to fill a
row buffer beyond its capacity. The MCU will
stop fetching characters after this pOint and the
display is blanked following the completion of
the row currently being displayed.

. 8-183 210921-002

inter ·82130

EOF: End of Frame

This bit is set by the DGat the physical end:bf
the nth frame, where 'n' is specified by the
MODESET parameter FRAME INTERAt'JPT

,COUNT. This provides the means for timing
frame related events such as'slow scrolls.

FOE: Frarpe Data Error

This status bit is set by the DG at the physical
·end ·of frame jf no EOS datastream command .
has been encountered until· then .. T.his also
results in the execution of the EOS command
by the MCU.

RCC: Reserved Channel Command

This bit is set by the MCU upon encountering
an illegal datastream or command process com­
mand. This can be used to trap software errors
during program development. '

ROC, Reserved Datastream Cdmmand

Tilis bit is set by the MCU upon encountering
an illegal datastream or command process com­
mand. This can be used to trap software errors
during program development.

DIP: Display In Progress

This bit is set by the MCU immediately after
receiving a "Start Display" channel command.
It remains set as long as the display process is
active and is reset upon receiving a "Start
Virtual Display" or "Stop Display" command or
a Reset. Interrupts cannot be enabled for this
status bit.

,
VDIP: Virtual Display In Progress

This bit is set by the MCU immediately after
receiving a "Start Virtual Display" channel com­
mand and is reset upon receiving a "Start
Display" or "Stop Displa·y" command or a Reset.
This bit remains active as long as' the virtual
display process is actiVe. Interrupts cannot be
enabled for this status bit. .

Interruj)t. Processing.
The system processor can enable interrupts on
any of the st8:tus bits, with the exception of 01 P
and VDIP bits, by specifying an interrupt mask.
A "1" in a bit position in the interrupt mask
disables (masks out) interrupts on the status bit
located in the corresponding bit position in the
status word. The ,format for Interrupt Mask is
showl1 below. The Int Mask can be loaded into
82730 from the INTMASK location in command
block by a "Load Inf'Mask" channel command.
If the Interrupt is enal;lled for it particular status
bit by programming a "0" in the corresponding
bit position in INTMASK and if the status bit
gets set during the course of the display, an
interrupt will be generated by 82730 at the nel<t
end of frame. At the end of frame, the 82730 will
first perform the tasks of updating LPEN posi­
tion (if required) and servicing the Channel
Attention (if CA was activated). Then the status
word iri'the internal register will be written to
the rNT GENERATION CODE location in the
Command Block and the SINT output will be
activated. The SINT pin is not deactivated until
an interrupt reset signal is received at the IRST
pin.
82730 continues to perform its normal display
task after activating the SI NT pin. If noointerrupt
reset is rec'eived until the next end .offrame then
any new interrupts that might have been gen­
erated at that end of frame will be lost. There­
fore, it is essential for the system processor to
issue an interrupt reset within a frame time after
an interrupt is generated.
When the display is not activated,. the only
interrupt that c~n occlJr is the Reserved Channel
Command interrupt. Upon receiving an invalid
chann.el command, 82730 will write the status
.word to INT Generation Code location in .the
Command Block and activate SINT output, if
that interrupt is enabled.
The processor can use the interrupt capability
to get status information from 82730. A possible
interrupt service routine for the system pro-

, cessor is shown in flow chart form in Figure 9.

\

'8-184 210921-002

inter 82730

15 7 6 5 4 3 2 0.
RDC RCC FDE EOF DBOR LPU DUR

(RESERVED) INT INT INT INT INT INT INT
MASK MASK MASK MASK MASK MASK MASK

INT MASK = 0. Enables the corresponding interrupt.
INT MASK = 1 Masks or disables the corresponding interrupt.

Figure 8. Interrupt Mask

.

INTERRUPT

READ STATUS FROM
"INT GENERATION CODE"
LOCATION IN CMD BLOCK

PERFORM APPROPRIATE
SERVICE TASKS

ISSUE INT RESET (IRST) SIGNAL
TO 82730

END

Figure 9. Interrupt Service Routine For System Processor

8-185 21092Hl02

82730 VIDEO INTERFACE

The Mode Pointerin the Command Block points to a par!!meter block containing the Mode information
required for the dh?play. The'Qrganization of the mode words in the Mode BI,Q(;k is shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LOCATION

DMA - BURST LENGTH -I BURST SPACE MPTR

LIN!; LENGTH HSYNCSTP MPTR=2

HORIZONTAL HFLDSTRT HFLDSTP MPTR =4
MODES

HBRI5STRT HBRDSTP MPTR =6

- - - - - - - - - - - SCROLL MARGIN MPTR =B

- - - - RW BLK,I DB~ I w - - - LPR
CHAR ROW ROW ROW HGT DEF MPTR = 10

CHARACTERISTICS
- - - NRMSTRT - - - NRMSTP MPTR = 12

, - - - SUPSTRT - - - SUPSTP MPTR = 14
"

(FULROWDESCRPT) - - - SU~STRT - - - SIJBSTP MPTR=16

- - - CUR1STRT - - - CUR1STP MPTR = 18

- - - CUR2STRT - - - CUR2STP MPTR= 20

- - - U2 LINE SEL - - - U1 LINE SEL MPTR= 22

- .
FIELD ATTRIBUTE MASK MPTR = 24

- - - - - FRAME LENGTH MPTR= 26

VERTICAL - - - - - VSYNCSTP MPTR = 26

MODES - - - - - VFLDSTRT MPTR =30

- - - - - VFLDSTP MPTR= 32

(RESERVED) MPTR= 34

(RESERVED) MPTR=36
BLINK
CONTROL - DUTYCYC CURSOR BLINK - - - - FRAME INT COUNT MPTR=36

• - DUTYCYC CHAR BLINK ILE 1 RFE 1- B BUE CR2 CR1 CR2 CR1 MPTR =40
, POL CD CD BE BE

REVERSE VIDEO BLINKING CHAR - - - - CR2 CR1 CR2 CR1 MPTR=42
ATTRIBUTE BIT RVV RVV OE OE
SELECTS

ABS LINE COUNT, INVISIBLE CHAR UNDERLINE 2 UNDERLINE 1 MPTR=44

Figure 10. Mode Block Organization

8-186 210921-002

inter 82730

CAM ARRAYS

Three Content Addressable Memory arrays are
used for generating timing parameters to control
the video display: the HORIZ MODE CAM, the
VERT MODE CAM andthe CHAR ROW CAM.
The user has the flexibility to define his own
timing parameters by loading them into the CAM
arrays via the MIU, All of these parameters can be
modified at the end of every frame. All the
parameters in the CHAR ROW CAM, except
MARGIN, are changeable on a row by row basis.
Each of the three CAM arrays is described
separately below:

Timing Sources

RCLK and CCLK inputs are provided by the
external video logic to the 82730. The RCLK is
used to increment the HORIZ COL CNTR and
hence generates all horizontal timing parameters.
CCLK is used to clock the character and attribute
data output from the 82730 to the external display
dot logic.' Data changes on the positive going
edge of RCLK or CCLK.

Initialization

Upon activation of the RESET input, the 82730
display generator will stop all operations in pro­
gress and deactivate all outputs. It will stay in this
quiscent state until the MIU executes the MODE­
SET command. The following table shows the
states of all the Display Generator outputs during
and after·RESET.

Pin Name Condition
DATO-14 Low
WDEF Low
LC0-4 High

BLANK Low
CSYNC High
CHOLD High
HSYNC Low
VSYNC Low
CRVV Low
RRW Low

After reset of the 82730, 'the CAM arrays are in
undetermined states. The CAM arrays are set
upon the execution by the MI U of the MODESET
command. The HORIZ and VERT MODE CAM
contents are especially critical since they are
used to generate timing control Signals to the
external video logic. Without the generation of
the timing signals, no display process can take
place. Hence, START DISPLAY command cannot
be executed before the first MODESET command
after the device reset. The START DISPLAY
command will be ignored if it precedes the
MODESET command.

The row buffers also contain unknown infor­
mation after power up and reset. In executing the
START DISPLAY command, the MIU would first
load the two row buffers with the first two rows of
character data to be displayed. Upon completion .
of loading of botH buffers, it will signal the DG to .
begin the display process. In this way, only valid
character data will be output to the external video
logic.

Timing Parameters

The timing parameters read from the MODESET
Block and stored in the VERT MODE CAM and
HORIZ MODE CAM are used to control the video
display and they can be best illustrated in the
Map of Timing Parameters shown below. All of
these timings have to be defined after power up
and reset and can be changed on a frame by
frame basis during display.

. 8-187 21092HlO2

82.730

I
(HSVNCSTRT)

BORDER
HBRDSTRf

1-_"_0"_0£_" r-r--4 (J'/r-r-'r'-t' :------=::=------:---~
_J' [,,/ -'-

i
~

~
~

~

HFlI;)STP

IORDER
HBADSTP

L-.....;..._---'" _______________LLINELEN

Figure 11. Timing Parameters

Row Timing Parameters

The row timing .parameters are stored in HORIZ
MODE CAM and are programmable from ci to 255
RCLK times. These parameters are:

(a) HSYNCSTRT - Horizontal Sync Start. The
RCLK count on· each scan line where
HSYNC pin is activated. This parameter is
not programmable. The RCLK period that
follOWS the rising HSYNC edge is defined
as column zero. It is used as the reference
for all other horizontal timing parameters.

(b) HSYNCSTP - Horizontal Sync Stop. The
RCLK count on each scan line where the
HSYNC pin is deactivated. The falling edge
of HSYNC occurs at the leading edge of the
programmed RCLK period.

(c) LINELEN - Line Length. This parameter
defines the total number of RCLK's in each
scan line including display time,' border
and horizontal retrace time. There are
LlNELEN + 1 RCLK periods per horizontal
line scan.

(d) HBDRSTRT - Horizontal border start. The
RCLK count on a scan line where the
border begins. Th.e border begins at the
leading edge of the programmed RCLK
period.

(e) HBDRSTP - Horizontal Border Stop. The
RCLK count on a scan line where the'
border ends. The border terminates at thEi
leading edge of the. programmed RCLK
period.' .

(f) HFLDSTRT - Horizontal Field Start. The
RCLK count on a scan line where the
character display field begins. If the row
buffer is ready to be displayed, the CSYN
pin will be deactivated at this pOint. This
field begins at the leading edge of the
programmed RCLK period.

(g) HFLDSTP - Horizontal Field Stop. The
RCLK count on a line where the character
display field stops. When this timing
poi ntis reached, CSYN will be activated.
This field ends at the leading edge of the
programmed RCLK period.

There is also one pseudo parameter, SYNCDL Y.
It is fixed at one half LlNELEN and is used as ,
the start and end timing for V$YNC in od'd
frames in interlaced displays. VSYNC starts at
HSYNCSTRT in even frames for interlaced
displays and all frames for non-interlaced
displays.

8-188 21092Hl02

82730

There are certain restrictions in the programming
of HFLDSTRT and HFLDSTP and those restric­
tions are best illustrated below. There has to be at
least 4 RCLKS in between HFLDSTRT and
HFLDSTP of the same scan line and 15 RCLKS In
betWeen HFLDSTPof one line and HFLDSiRT of

m 4 ~ 15

the next. The minimum delay of 15 RCLKS is for,
the charging ofthe pipeline from the row buffer to
the character data output DATO-DAT14 as we" as
the setting of the correct'value for the scan line
output LCo-LC4. '

~
~ Iii

9 a
~ ~ RCLKS ... RCLKS

IL IL
:J: MIN :J: MIN :J: :J:

--
I-

rl -I-
-I~

-I 1

.I
LINE 1 ' LINE 2

Figure 12. Horizontal Timing Restrictions

Frame Timing Parameters

Frame timing parameters are stored in the VERT
MODE CAM and are programmable from 0-2047
scan lines. These parameters are:

(a) VSYNCSTRT - Vertical Sync Start. The line
count where the VSYNC is activated. This
occurs at the end of a field automatically.
This parameter is not programmable. The
rising edge of VSYNC occurs with the
rising edge of HSYNC for a" non-interlace
fields and for odd fields in the interlace
mode.

(b)

(c)

VSYNCSTP - Vertical Sync Stop. The line
count at which the VSYNC pin is normally
deactivated. VSYNC changes at the rising
edge of HSYNC normally. However it occurs
at SYNCDLY at the beginning of odd fields
of an interlaced display.

FRAMELEN - Frame Length. This para­
meter defines the total number of scan
lines per frame. It is used to reset the
FRAME LINE CNTR. In an interlaced dis­
play, FRAMELEN must be an even number.
If an odd number is programmed, one
additional line will' occur automatically.

(d)

(e)

There will be FRAfiIIELEN + 1 scan lines per
frame. (Note that interlace mode contains
two fields per frame).

VFLDSTRT - Vertical Field Start. Programs
the scan line cO'rlnt where th'e charaCte,r
display field begins.

VFLDSTP - Vertical Field Stop. Programs
the scan line count where the, regular
character display field ends. VFLDSTP
times the beginning ofthe Status Raw. The
channel attention sequences, interrupt
handling, row 'buffer swap and intial­
ization for the next frame are started after
the display of the Status Row is completed.
See· below.

• (Character Field Boundrydefinition:Thestarting
or ending event is defined to occur at HFLDSTP
on the soan line following the programmed value.
Th'us the visible character field effectively begins
two scan lines below the programmed start value
and ends 6ne scan line below the programmed
stop value.)

8-189 210921'{)()2

82730'

Status Row
The Vertical FrameTiming Parameters h~ve no
border controls, unli~e the Horizontal Row Timing
Parameters. The top and bottom borders can be
replaced with regular display rows that are video­
reversed and contain no data. The top border is
easily timed from VFLDSTRT. The bottom border
is more difficult without ,help from the Vertical
Timing generators. If there were no help, the user
would have to keep track of the number of scan
lines used in each row to know when to stop
regular display and create the bottom border.
This would also preclude his ending his regular
display with an EOF command before the border.
The 82730 provides this help with the Status Row
feature. The display of the Status row is timed
from VFLDSTP and allows the user to display a
row in a fixed position at the bottom of the screen
that is independent of the regular data and any
display errors (display ended by an EOF com­
mand or the DURN, DBOR, or FDE errors).
(There is one dependency on the reg ular display
data: the row format. The last FULROWDESCRPT
(FRD) set in the regular data will be used on the
Status Row unless a new command is issued for
the row. It is recommended that the user include
a new FRD command in the Status Row data to
eliminate this dependency).
Status Row display starts SCROLL MARGIN plus
one scan line after VFLDSTP. This margin is
provided to insure enough DMA time if the
reg l,J lar display runs up to VFLDSTP, TM user can
create a bottom border or any end-of-display row
that he chooses. A display status or system status
line, or special programmable key function de­
finition line can be implemented with this feature.

CHARAC:rER ATTRIBUTES
The 15 bits of the character word can be parti­
tioned into character address and attribute bits.
Some common attributes may be individually
defined and enabled or disabled by fields in the
attribute parameter registers. Each attribute has
two means of being enabled. The enable bits
defined below are set during the MODESET
channel command and are used as a global
enable. The user does, not have to enable the
provided attributes. He may free more data bits
for his own use this way. The second,enable bit is
contained in each character loaded to, the row
buffer to enable the attribute on a characteJ by
character basis. They are individually described
in detail in the following sections.

Reverse Video

When a character with the reverse, video attribute
is displayed, the CRVV pin will pe invtll,rted during
the time the character is being displayed. The
reverse video affects the entire height of the row
for that character space. For superscript/subscript
pairs, the reverse video effect is controlled by
sl,Jperscript until SUBSTRT when the subscript
attribute bit takes control. The parameter for this
attribute is:

RVBS - Reverse Video Bit Select. This
parameter selects one of the 15 bits of a
character data word. Values 0 through 14
select the corresponding bit. Value 15
disables the Reverse Video attribute.

Blinking Character

. When a character with the blinking character
attribute is displayed, the BLANK pin will be
activated and deactivated during the character
display time according to programmable rate and
duty cycle. The parameters for this attribute are:

(a) BCBS - Blinking Character Bit Select. Selects
one of the 15 bits of a character data word
as the blinking character attribute control.
As with Revetse Video above, the value of
the select determines the controlling bit or
disables the attribute.

(b) CHAR BLNK FREQ; Selects one of the 32
blinking frequellcies available for the
blinking character and blinking underline.
The character blink rate is calculated as
below:

(c)

Frame Refresh Rate
Blink Rate = 4 x CHAR BLNK FREQ

CHAR DUTY CYCLE - A 2-bit register to
select 4 duty cycles available for blinking
character and blinking underline. The
seleption logic is defined to be as follows:

00==100% always on
11= 75% on
10== 50% on
01= 25% on

Underline #1 '
When a characteJ with underline is displayed, the
BLANK Pin will be activated and the CRVV pin will
be inverted during the time the scan line specified

8-190 21092Hl02

inter 827S0

by the underline sele~t register is displayed. The
parameters used to define underline #1 are:

(a) ULS1 - Underline Line Select 1. It deter­
mines which scan line of a character row
will be used for the underline #1. This
parameter is modifiable on a row by row
basis by the FULROWDESCRPT command.

(b) ULBS1 - Underline Bit Select 1. This para­
meter can only be changed by MODESET.
It selects one of the 15 bits of a character
data word as the underline #1 attribute
control. Again, a value of 15 in the select
field disables this attribute.

Underline #2 (Blinking)
Underline #2 can be made to blink. When its
blinking feature is deactivated, its visual effect is
exactly the same as underline #1. When it is
enabled to blink, its blink rate and blinking duty
cycle are the same as those defined for blinking
character. The parameters used to define this
.attribute are:

(a) UL2SEL - Underline Line Select 2. This
parameter determines which scan line of a
character will be the 2nd underline. It is
changeable on a row by row basis by t.he
FULROWDESCRPT command.

The next two parameters can only be modified by ,
the MODESET Command. .

(b) ULBS2 - Underline Bit Select 2. Selects one
of the 15 bits of a character data word or
GPA1 as the second underline attribute
control. A bit select value of 15 disables the
second underline. '

(c) BUE- Blinking Underline Enable. Activation
of this bit will cause the second underline
attribute to start blinking.

Invisible
A character with this attribute will occupy its
character position on the screen but will not be
displayed (I.e. BLANK will be active). This attribute
does not affect the Reverse Video attribute if they
are programmed together. Th,e parameter that is
used to implement this ~ttributes:.

I BS - Invisible Bit Select. Selects one oftha
15 bits of a character data word as the
invisible attribute control. Value 15 disables
the invisible attribute.

Absolute Un~ Cntr Attribute
This character attribute allows the display of
special graphic clJaracters, or may be used to
upshift normal characters to impl,ement displays
with overlapping superscript and subscript fields.
When a character with this character attribute
enabled is being displayed, its LCO-LC4 pins will ,
reflect the output from the CHAR ROW LNE,
CNTR which counts the absolute line count of a
row. The activation of this attribute overrides the
line count mode of both normal and subscripV
superscript characters. The parameter used to
select the attribute is:

ABS LINE BITSEL. This four bit register selects
one of the 15 bits of a character data word as the
absolute line counter output attribute control.
Select value 15 disaples the ABS Line attribute.

Cursor Generation
The cursor characteristic parameters are change­
able on a frame by frame basis by MODESET.

(a) CUR FREQ - Cursor frequency. Selects the
blinking frequency for both cursors. The
selection logic is similar to CHAR BLNK

(b)

(c)

(d)

(e)

(f)

FRE9
i

CUR DUTY CYCLE - Cursor duty cycle.
selects the blinking duty cycle for both
cursors .. Its selection, logic is similar to
CHAR DUTY CYCLE.

CR1 RVV - Cursor 1 Reverse Video Enable
selects a reverse video type cursor as
opposed to a solid (blanking) cursor.

CR1 BE ~ Cursor 1 Blink Enable changes
the cursor 1 b,ock or underline to a blinking
block or underline. Enabling this bit also
causes DAT 14 pin to "blink" as well. if the
CR10E bit is set. '

CR10E - Cursor 1 Output Enable recon­
figures the DAT 14 pin to indicate when
cursor 1 is active: CR20E enabled directs
the cursor 2 signal to DAT 13 pin in a similar
fashion. ' . . ,

CR1CD - Cursor 1 Light Pen Curso~ Detect'
directs the CCLK cursor #1 position to be
translated to its nearest equivalent RCLK
position through the LPEN facility. '

An identical set of parameters' (c) through (1) is·
available for the generation Qf CURSOR 2.,The
two cursors share the same FREQ and DUTY
CYCLE parameters.

8-191 210921-002

82730

ABSOLUTE MAxiMUM RATINGS· ,f
AmbientTemperature under-Bias O·C to 7O·C

, StoragEiTelTlperature -65°Cto + 150·C

Voltage on Any Pin with
RespecttoGrbund .' ..••.•.•.• -1.0Vto + 7V

Power Dissipation 3 Watts

*NOTlCE: Stresses above' those listed under
"Absolute 'Maximum Ratings" may cause perma­
nent damage to the ,device. This is a stress rating
only and functional operation of the,'device at
these or any other conditions above those indio
cated in the operational sections of this speclflca­
tlqn 'is not implied. Exposure to absolute maxi­
mum rating conditions for extended periods may
affect device reliability. ,

D.C. CHARACT.ERISTICS TA = O·C to 70·C, Vcc = 5V ± 10%

Symbol ' Parameter Min. Max. Units Test Conditions

Vil Input Low Voltage -0,5 +0.8 Volts'

VIH Input High Voltage 2.0 Vee +0.5 Volts,

VOL Output Low Voltage 0.45 Volts IOl=2 mA(1)

VOH '. Output High Voltage 2.4 Volts IOH = - 400 p.A

Icc PoWer Supply Current 400 mA @TA=O·C

III Input L!!lakage CurrE;tnt 10 p.A VIN =O",Vec

ILO Output Leakage Current 10 p.A VOUT =0.45 - Vee

VBll Bus Clock Input Low Voltage -0.5 0.8 Volts

VBHI Bus Clock Input High Voltage 2.0 Vcc+ 1.O Volts

VCLl
,
Character Clock Input Low Voltage -0.5 0.8 Volts

VCHI Character Clock Input High Voltage 2.0 Vee +0.5 Volts I

VRll Reference Clock Input Low Voltage -0:5 0.8 ' Volts

VRHf Reference Clock Input High Voltage 2.0 Vee +0.5 Volts

NOTE:
1. 10l = 2.6 ~A on the 51. and SO pins.

A.C. CKARACTERISTICS

82730 Bus Interface Input Timing Requirements
TA = O'C to' 70·C, Vcc;'" 5V ± 10%. All timings in nanoseconds.

Symbol Parameter Min. Max. Units Test ,Conditions

TCLCL BCLK Cycle Period 125 2000 . ns

TCLCH BCLK Low Time 52 . ns
,

TCHCL .,BCLK High Time 52 ns

TCH1CH2, BCLK Rise Time . , 30 ns 0.45V-2.4V

TCL1CL2 BCLK Fall Time 30' ns ' 2.4V -0.45V

TDVCL Data in Set-Up Time 20 ns

8-192 210921-002

827130

\

A.C. CHARACTERISTICS (Continued)

"2730 Bus Interface Input Timing Requirements (Continued)
, TA = O·C to 70·C, Vcc = 5V ± 10%. All timings in nanoseconds.

SYI1lboI Parameter Min. Max. Units Test Conditions

TClDX Data on Hold Time 10 ns

TARYHCH Async. READY Active Set·Up Time 35 ns

TSRYHCl Sync. READY Active Set·Up Time +20 ns

TRYlCl READY Inactive Set·Up Time 10 ns

TClRYX READY Hold Time 20 ns

TCTVCl HlDA, RESET Set·Up Time 35 ns

TClCTX HlDA, RESET Hold Time 10 ns

TCAVCAX CA Pulse Width TClCl ns

82730 Bus Interface Output Timing Response
TA = O·C to 70·C, Vcc = 5V ± 10% . All timings in nanoseconds. CL = 200 pF except on ALE where CL = 100 pF

Symbol Parameter Min. Max. Units Test Conditions

TClAV Address Valid Delay 0 70 ns

TClAX Address Hold Time 0 ns

TAVAl Address Valid to AlE/UAlE Inactive TClCH-30 ns

TllAX Address Hold to ALE Inactive TCHCl-10 ns

TClAZ Address. Float Delay TClAX 45 ns

TAZRl Address Float to RD Active 0 ns

TlHll AlE/UAlE Width TClCH -10 ns

TCllH AlE/UAlE Active Delay 0 45 ns

TCHll AlE/UAlE Inaetive Delay 0 45 ns

TCVCTV Control Active Delay (DEN,WR,AEN) 0 70 ns

TCVCTX Control Inactive Delay~DEN,WR,AEN) 0 80 ns

TClDOV Data Out Valid Delay 0 55, ns

TClDOX Data Out Hold Time 0 ns

TDWHDOX Data Out Hold Time After WR TClCL-60 ns

TClHV Hold Output Delay 0 85 ns

TRlRH RDWidth 2TClCl-50 ns

TClRl FID Active Delay 0 95 ns

TClRH RD Inactive Delay 0 70 ns

TRHAV R15 Inactive to Next Address Active TCLCl-40 ns

8-193 210921-002

" .. _1$ III-e- .

A.C. CHARACTERISTICS (Continued) I

82730.

82730 Bus Interface Output Timing Response (Continued)
TA = O·C to 70·'0, Vcc = 5V ± 10%. All timings in nanoseconds.'CL = 200 pF except on ALE where CL = 100 pF ..

Sy,nbol . 'Para~eter Min. Max. Units Test Conditions

TCLSIN SINT Valid Delay 0 70 ns

TRIHSIL RINT Active to SINT Inactive 250 ns

TCHSV Status Active Delay 0 75 ns

TCLSH Status Inactive Delay 0 7d ns

TWLWH WRWidth 2TCLCL-40 ns

TFLHL Bus Float to HOLD Inactive 0 ns

82730 Display Generator Input Timing Requirements
TA = O·C to 70·C, Vee = 5V ± 10%.'AII timings in nanoseconds. CL = 100 pF except where noted.

Symbol Parameter Min. MaJ. Units' Test Conditions

TRCHRCH RCLK Cycle Period 100 2500 ns,

TRCHRCL RCLK High Time 40 ns

TRCLRCH- FlCLK Low Time 40 ns

TRRCK RCLK Rise Time 30 ns 0.45V-2.4V

TFRCK RCLK Fall Time 30 ns 2.4V-0.45V

TCCHCCH CCLK Cycl~ Period 100 None ns

TCCHCCl CCLK High Time 30 liS

TCCLCCH CCLK Low Time "- 40 ns

TRCCK CCLK Rise Time 30 ns 0.45V-2.4V

TFCCK CCLK Fall Time. 30 ns 2.4V-0.45V

TSYVCR SYNCIN Set-Up Time to RCLK in Slave Mode 30 ns

82730 Display Generator Output Timing Response
TA = O·C to 70·C, Vcc = 5V ± 10%. All timings in nanoseconds.

Symbol Parameter Min. Max. Units Test Conditions

TCCHDV Data, Line Count and Attribute and Output Valid 70 ns CL=100pF ,
Delay from the Delay from the Rising Edge of CCLK

TRCHCV Delay of Outputs CSYNC, VSYNC, HSYNC or RRVV 70 ns CL =100pF
from the Rising Edge of RCLK

TCCHCL CCLK Rising to CHOLD Low 75 ns CL=50 pF

TRClCH RCLK Falling to CHOLDHigh 60 ns CL=50 pF

8-194 210921-002

82730

WAVEFORMS

BUS TIMING T~~TU T;"""" T~LF-T3 T~U--T1
DIAGRAM BCLK -'r- ""'r- ..,

--J ~ ~. I\--J
. -- j4 TCHCTV .

T
I
I
I

c
~ a:
I

I
I

1

T
I
I

w
C a:
3t
I
I

1

mil --...,~

---+-----+-"""1 TCHSi
-- I-TCLSH _ I- TCHSV

~,~ .. ~ I -f

UALE

-- j4 TCHL~
I

r---\ r- TLHLL­,r ..J

TLHLL- . ~ i-TCLAZ
TCLLH- I-

ALE TCLLH -- I-- .,r-~
TCLAV- - -~AVAL . TCLDX-

AD1S-ADO -l A31-A16 -it- A1S-Ao ~. -- t DATA IN

TCLAV- I- I-I+TAZRL !-TDVCL-

-\-

~r- -, .l
___ +-___ +-_+_+--+r++"".11 TCVCTV -- I- TFLRH

IIDl Co- -\ -, I
TCLRL-- ,- .l

-- J=_ TCLA~ - r- TCLD?V - I-TCVCTX

AD1S-ADO I A31-A16 I A1S-Ao I DATA OUT

TCLAV-l I- -I --TCVC~ -
TCVCTV_ - -TCLARYX I--TWHDX-

TARYHCH I- TCVCTX-- I-

~1s-AO

_TcLDOX

.~,~c{ _______ t.. ~ - -TCVCTX

+ .,

- -TCLRYX

TRYLCL --I. I-

-Fh
------------~I ~-------

TSRYHC9 ... 1- TCLRYX

SYNC

8-195 210921-002

CD
.!..
<0
CD

~

~
~
'"

WAVEFORMS (Continued)

HOLD, RESET, SINT AND CA TIMING

BCLK

HOLD

HDLA

ADDRESS DATA

I CONTROL I , ~~J (l-

i RESET
t TCLSIN --I I-TCLCTX

SINT -£ ~

--------- . -1 ____ ~ ___ T=RI=H=SI=L==~ ffi~ ~

CA _~~CAVC~~_-__ ___

l
< @

~
~

WAVEFORMS (Continued)

DISPLAY GENERATOR INTERFACE TIMING ~

RCLK

CSYNC
RRVV

HSYNC
(VSYNC)

0)

nCCHh

I 1"""'-_-
CD

.!.
hrCCLrtnK1HTFn

I\:)
<0

r-\ r-\
.....

-..J (0)

CCLK C)

OATO-OAT14
LCO-LC4

BLANK
CRVV
WOEF

CHOLD

WAVEFORMS (Continued)

SYNCIN TIMING

RCLK / \ !
fY>C' SYNCIN

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT OUTPUT

::. :=x;:: > "" ~'"" < ::>e
A C TESTING INPUTS ARE DRIVEN AT 2 4V FOA A lOGIC 1 AND 0 4'>V FOR
A lOGIC 0 TIMING MEASUREMENTS ARE MADE AT 20V FDA A LQGJC 1
AND 0 8V FDA A lOGIC 0

82730

\ / \ /

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER 'lee TEST

-=-

C l INCLUDES JIG CAPACITANCE

8-198 210921-002

inter
82731

VIDEO INTERFACE CONTROLLER
• Parallel to Serial Data Conversion • On· Chip Character Attribute Processing

• On·Chlp Clock Generator • Control Functions to Provide Screen

• High Video Dot Rates Reverse Video, Video Clock,
SO MHz-S2731-2 Synchronization and Tab Function
50 MHz--S 2,731 • Single 5V Power Supply

• Character up to 16 Dots Wide • 40 Pin DIP

• Proportional Character Spacing • All Inputs and Outputs TTL Compatible
Except Video Output which is ECl

The 82731 is a general purpose video interface which generates a serial video signal output from parallel
character and attribute information coming from the character generator and the 82730 Text Coprocessor.
With a character generator and minimal hardware, the 82731 will comprise a complete video interface
system for the 82730 Text Coprocessor and the CRT monitor.

CBLANK---+-i

CRVV---+!

ow---+-i

HOOT---+!

RRVV---+I

00-015

00-07

WG-W3 __ --,1/

PROG---+I

CSYN---+i

WOEF---"-+i

CHOLO---'--+i

ATTRIBUTE
REGISTER

16-BIT
SHIFT

REGISTER

CCLKJ
RCLK

REGISTER &
GENERATOR

DOT
CLOCK

ATTRIBUTE
PROCESSING

OSCILLATOR
PLL

Figure 1. 82731 Block Diagram .

.. vee

.. GNO

VIDEO

RCLK

CCLK

X1

X2

VT

T1

T2

07 Vee

06 08

05 09

04 010

03 011

02 012

01 013

DO 014

PROG 015

VIDEO T2

RCLK T1

CCLK VT

HOOT X2

CBLANK X1

WOEF OCLK

CRVV RRVV

OW CSYN

WO ~

W1 W3

GNO W2

Figure 2. 82731 Pin
Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Emb<>died in an Intel Product. N<> Other Circuit
Patent Licenses are Implied. • NOVEMBER 1983
©INTEL CORPORATION, 1983. Order Number: 210925-003

8-199

inter 82731

TIIble 1. 82731 Pin Description

Symbol Pin Number "lYpe Name and Function

00-015 8-1,39-32 '1 Character data parallel inputs.

PROG 9 I Program contro; input; used to program default width
values of CCLK and RCLK; these are latched into the
82731 via 00-07 at the rising edge of CCLK (PROG is
active high).

VIDEO 10 0 Video output; provides the dot infor.mation olocked by
the internal dot clock -

RCLK 11 0 Reference Clock output; used to generate timings for
the screen columns for data formatting and video sig-
nals. The period of RCLK is programmable from 8 to
21 times the period of the internal dot clock.

CCLK 12 .0 Character clock output; used to clock character and
• attribute information out of the CRT controller. The

period of CCLK is programmable from 3 to 18 times
the period of the internal dot clock.

HOOT 13 I Half dot shift input; the video sigmil at the);~eo.out-
put will be delayed by half dot clock for character
rounding (active high).

CBLANK 14 I Character blank attribute Input; the video output is
bl;anked (active high).

WOEF 15 I Width defeat attribute input; the CCLK period is set to
a preprogrammed default value (active high).

. CRVV 16 I Character reverse video attribute input; inverts the
character data from 00-015 (active high).

OW 17 I Double width attribute input; the internal dot clock
frequency and the CCLK frequency are divided by
two (active high); The RCLK frequency rem~ins
unchanged.

WO-W3 18,19,21,22 I Clock width inputs; they are used for programming
the CCLK clock width on a'character by character
basis.

CHO'LD 23 I CCLK Inhibit input; thiS signal inhibits CCLK
generation and is used for TAB function (active low).

CSYN 24 I CCLK synchronization Input; CCLK will be
synchronized to RCLK and the video output sigl)al is
defined by RRVV (active high).

RRVV 25 I 'Field reverse video input; the video signal at the video
output will be inverted (active high). .

OCLK 26 0 Dot clock output; ECL-Ievel signal; must be can-
neoted to a 3.3k resistor to ground if used.

Xl-X2 27. 28 I Inputs for fundamental mode crystal; its frequency
must be 1/8 of the required dot clock frequency.

VT 29 0 Tuning voltage for PLL-VCO; this output is used to
tune the LC-circuit and thus control the oscillator fre-
quency of the internal dot clock.

Tl-T2 30, Sl
,

LC-circuit inputs for PLL-VCO. T1 can be used to I
provide the 82731 with an external TTL-level. clock at

" twice the dot clock frequency.

VCC 40 - . +5V power supply

6NO 20 - Ground (OV) .

210925-003

inter 82131

FUNCTIONAL DESCRIPTION

The Video Interface Controller, 82731, In a typical
CRT system shown in Figure 3, interfaces the Text
Coprocessor to the CRT video terminal. It receives
the parallel data along with the attribute and con­
trol information from the Text Coprocessor, proc­
esses It into a serial video signal which can be fed
to a video CRT terminal. It also generates the basic
dot clock (OCLK), character clock (CCLK) and the
reference clock (RCLK) signals required by the
Text Coprocessor.
CRT terminals requiring very high resolution, ex­
tremely stable and absolutely flicker-free picture
place special demands on the dot rate generator. In
such applications dot rates up to 80 MHz are neces­
sary. This allows 12.5 ns per dot (pixel) for con­
verting data, attripute and control information into
serial form for the video terminal.
The functionality of the 82731 is largely deter­
mined by the complexity and the demands of the
CRT controller it supports. Figure 1 shows the
block diagram of the Video Interface Controller.
The dot clock is generated by voltage controlled
LC circuit connected at T1 and T2. Another clock
is generated which is crystal controlled an61 has
frequency 1/8 of the dot clock. This is used to
stabilize the dot clock using an on-chip phase
locked loop (PLL). This two-oscillator concept
enables the use of low cost, fundamental mode
crystals even for generating frequencies up to 80
MHz.

82730
TEXT .

DATA

PIPELINE
REGISTER

HSYNC

VSYNC

The 16 bit shift register receives parallel inputs
from pins 00-015. This allows a maximum char­
acter width of 16 dots. The minimum width is 3
dots. The character width is programmable
through pins WO-W3 for proportional character
spacing. This also determines the character clock
(CCLK) frequency. Prc:>gramming of the default
character width and the reference clock (RCLK)
is done through inputs 00-07 and PROG. Signal
WOEF can be used to switch between the default
character width and the one specified dynamlc­
ally through the lines WO-W3. When using variable
character width, for example, in generating tables
on the screen, it is essential that every entry in a
column starts at the same dot distance (and not
the character distance) from the. start of line. The
82731 supports this requirem~roviding a
tab function using CSYN and CHUrn signals to
synchronize with the reference clock ,<RCLK).

It is possible to shift any scan line of any character
by half a dot using the HOOT Signal. This feature,
known as character rounding, further enhances
the quality of high resolution character displays.
Other features, like character blinking, reverse
video etc., which improve the readability of text on
screen are directly supported by the 82731 using
signals CRVV and RRVV from the Text Coproc­
essor, processing them and affecting the final
video signal to show the characters with the de:
sired attributes.

82731

VIDEO

Xl

~

X2

I'P
SYSTEM·

BUS

COPROCESSOR 1-----.,------,/ L... __ ·r---'"
ATTRIBUTE AND

CONTROL SIGNALS

CClK

RCLK

Figure 3. CRT System Block Diagram

'8-201

Tl
~J-I

I I
T2 I

l--i~ I VT

-J+Nv- I L ___ ..J

210925.{J03

82731

Clock Generation

The most fundamental clock required to run the
CRT display is the dot clock which provides the
reference forthe dot data to be shifted serially to the
CRT. In addition, it is the basis for the character
clock. (CCLK) .. and the reference clock (RCLK)
required by the 82730.

Dot Clock

The dot clock is derived from an on-chip oscillator
which runs at twice the normal dot clock (DCLK)
frequency. A voltage-controlled LC citcuit is con­
nected to the T1, T~ pins, to create a voltage­
controlled oscillator (VCO). The 82731 compares
the phase' of this oscillator with another on-chip
oscillator controlled by a crystal attached tothe X1, '
X2 pins. This oscillator runs at 1/8 the normal DCLK
frequency to allow using inexpensive low-frequency
crystals. Tne on-chip PLL circuit produces an error
voltage via the VT pin which locks the VCO to the
16th harmonic of the crystal frequency (see Figure
4a).

Xl
CRYSTAL

X2
CIRCUIT

Tl VOLTAGE
82731 CONTROLLED

T2 LC-CIRCUIT

t
lIT FILTER

DCLK
..L .

a) Internal Clock Generation.

Alternatively the 82731 can be supplied with an
external TTL-level clock at twice the normal DCLK
frequenc;y via the T1 pin, as shown in Figure4b.

When the Double Width (OW) input is active, the
DCLK frequency is divided to 1/2 its normal value.
This affects the DCLK, CCLK, and VIDEO outputs,
but not RCLK.

Designing the Oscillator Circuit .

The whole external oscillator circuit consist$ of
three parts:
-the crystal circuit,
-the voltage controlled LC-circuit, and
-the loop filter for the PLL

Figure 5a shows the general crystal circuit. The
crystal must be a fundamental mode series resonant
type with a resonant frequency of 1/8 of the desired
dot clock frequency. The capacitor Cx is necessary
if a fine adjustment of the dot clock rate must be

Xl
VCC

X2

T2 ~N.C.
ECLK CLOCK

Tl GENERATOR

VT -?N.C.

DCLK

N.C ; No Connect
82731

b) External Clock Generation

Figure 4. Clock Generation

8-202 210925-003

X1
C1

1----....... --11

~ .. TmL.,
.X2~~It--".I"
a) Crystal Circuit

Ck Rs
Tl

lkO

Cd

T2

c) YCO circuit

VT

"_1111'::~1 +5V

e) Eumple layout for printed circuit

Cx(pFl FOCLK(MHzl

64.053

64.016

15

33

(nominal crystal frequency 8 MHz)

b) Exampte of ,.e Influence of Cit
on the dot clock frequency

R = 12kO
C = 33nF
Cl = l00pF

d) PLL - loop filter

2000

1000

'., SOD

400
300

200

100

50
40,
30

20

20' 40 60100
10 20 30' 50

f) Llf-dlagram

R

DlOO£ aa!GoG
CD 12pF
VT ...

Cp=SpF
Cp=10pF
Cp=:l5pF

200 _IR . MHz
100 -IDCLK MHz

figure S. De81gnlng the Oscillator Circuit

8-203 210925-003

made. Figure 5b shows an example how the dot
clock frequency can vary with different values of Cx.
The capacitdrs Cl and C2 may be necessary to
suppress overtone oscillations if the crystal fre­
.quency is below 6 MHz. The exact values depend on
the crystal used and must be determined empiri­
cally. The recommended ranges are 0 to 10 pF for Cl
,and 0 to 100 pF for C2.

The voltage controlled LC-circuitis shown in Figure
5c. The effective resonant circuit consists of the
inductance L, the capacitance Cd of the varactor
diode and the parasitic capacitance Cpo Its resonant
frequency is

1
fA = =-~::::;;;::;=::;::::;:'

2rrVL· (Cd + Cp)

where fA must be 2 x fOCLK. The value of Cp
depends on many factors (e.g. layout, single/multi­
layer board ...), thus it changes from application
to application. However a value of 5 to 15 pF seems
to be a good approximation.

The value of DC (varactor diode) should be deter­
mined at a control voltage of 2.5 V to get the lock­
in-range as wide as possible. The variation of VT
ranges from 1 V to VCC~l which results in a min­
imum frequency shift of about 6-8% in relation to
the cent.er frequency at 2.5 V. '

The value of the inductance L must be determined
in such a way that the resulting center frequency
lies as near as possible to the needed frequency
fA = 2 x fDCLK to guarantee a stable dot clock
under all operation conditions. Figure 5f shows a
diagram that will help to find the needed induc­
tance L. It is based on the use of a varactor diode
(Siemens BB 505G) that has a capacitance of 12 pF
at a control voltage of 2,5 V. The use of other diodes
will of course lead to other diagrams~

At dot clock frequencies high,er than 50 MHz the
needed inductance becomes lower than 100 ~H. In
these cases it is better to integrate the inductance
into the board layout. Figure 5e shows a possible
layout for the external osci lIator ci rcuit and approx­
imate (measur~d) values of the inductance of the
printed coil (trace w.idth and trace spacing 20
mils). .

The loop fi Iter converts the current pu Ises atthe VT
pin into the control voltage VT for the VCO.it is an
essential part of the PLL and affectsthelock-in-,

range andstabi I ity of the PlL. A second 'order filter
that wa!3 found to work well .under all operation
conditions and over the full frequency range is
shown in Figure 5d.

Reference Clock (RCLK)

RCLK is the reference clock output used to gener­
ate video timing and to define screen columns for
data formatting and tabulor locations. In addition, it·
is used to clock the field attribute Signals into the
82731. The period of RCLK is programmable from 6
to 21 times the period of the dot clock, i.e. the RCLK
hightime is 3 dot clock periods and the RCLK low­
time is programmable from 3 to 18 dot clock peri­
ods. It is programmed via 04-07 at the rising edge of
CCL;K, when PROG is active (see Table 1 and Figure
6). ,.

The RCLK clock width should be programmed onl'y
once after a system reset.

Table 1. Programming RCLK

RCLK Period
07 06 05 04 PROG (dot clocks)

0 0 0 0 1 16
0 0 0 1 1 17
0 0 1 0 1 18
0 0 1 1 1 19
0 1 0 0 1 20
0 1 0 1 1 21
0 1 1 0 1 6
0, 1 1 1 1 7
1 0 0 0 1 8
1 0 0 1 1 9
1 0 1 0 1 10
1 0 1 1 1 11
1 1 0 0 1 12
1 1 0 1 1 13
1 1 1 0 1 14
1 1 1 1 1 15

Character Clock (CCLK)

CCLK is the fundamental character clock output
used to cLOck character and attribute information
from the 87730.

It is a rising edge triggered ~Iock and inside, the
active character field its period is programmable
from 3 to 18. times the period of the dot clock, i.e. the

8-204 210925-003

inter 82731

CCLK hightime is 2 dot clock periods and the CCLK
low time is programmable from 1 to 16 dot clock
periods.

When CSYN is active (normally outside the active
character field) CCLK is forced to match RCLK. In
this case the CCLK high time is 3 dot clock periods
instead of 2.

In orderto support proportional spacing, the period
of CCLK can be reprogrammed at the beginning of
each CCLK cycle (i.e. at the beginning of each
character) if PROG is inactive.

Programming the character width is done via the
clock width inputs WO-W3 accordi ng to Table 2. The
WO-W3 input data is clocked into the 82731 at the
rising edge of CCLK and defines the width of the
currently displayed character (see Figure 7).

If the width defeat attribute (WOEF) is active, the
period of CCLK will be set to the programmed
default value ignoring the clock width inputs WO­
W3. This value is programmable from 3 to 18 times
the period of the dot clock via the 00-03 inputs,
when the PROG input is active (see Figure 6).

The default CCLK width should be programmed
only once after a system reset.

The CCLK clock period will be doubled if the double
width attribute (OW) is asserted at the rising edge of
CCLK.

NOTE
If width of CCLK is programmed to 17 or 18,
zeros are shifted out from the internal shift
register after the 16 data bits and displayed
according to the attribute signals.

Clock Initialization Sequence (PROG)

After power on the width of RCLK is a random value
between 6 and 21 and the width of CCLK is a ran­
dom value between 3 and 18.

)',

The 82731 should be initialized in the following way:
• Activate the CSYN signal. CCLK is forced to

match RCLK, which has a minimum clock width
of 6 dot clock periods.

• Apply the clock width informations to 00-03
and 04-07 according to tables.

• Activate the PROG signal. The default width of
CCLK and the width of RCLK are programmed
at the next rising edge ofCCLK (see Figure 6).

• Remove the PROG signal.

CSYN can be removed at the beginning of the next
active data field.

Table 2. Programming CCLK

PROG = 1 03 02 01 DO
CCLK Period

PROG = 0 W3 W2 W1 WO (dot clocks)

0 0 0 0 16
0 0 0 1 17
0 0 1 0 18
0 0 1 1 3
0 1 0 0 4
O' 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 ' 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

Note:
PROG = 1: Programming the CCLK default clock width

during the initialization phase via 00-03 at the
rising edge of CCLK.

PROG = 0: Programming the clock width of the current
CCLK cycle via WO-W3 at the riSing edge of
CCLK.

Character Data Signals

The character data signals are normally provided by
the character ROM and clocked into the 82731 at the
rising edge of CCLK.

The character data signals consist of:
• the .character data lines (00-015),
• the character width information (WO-W3), and
• the half dot shift signal (HOOT).

Dot Data (00-015)

The dot data signals will be clocked into the 82731
via the 00-015 inputs at the rising edge of CCLK.
The actual character width is defined by the WO-W3
inputs or the default width information previously
programmed. The dot data will be displayed depen~
dent on the control signals and on the correspond.
ing attribute information. The data bits are serially
shifted out at the video output starting with 00.

8-205 210925-003

.. ,." _r
" ~ ~~ , 82731 [¥)OO[g!!"OI1!AlBIt:!I~[fSW

-,

DCLK

PROG

CSYN --_ ... ,

CCLK

RCLK

DCLK

"-
W3

W2

W1

WO

CCLK

WIDTH,=

~, ' ,

',"

AFTER POWER ON:
UNDEFINED RCLK AND CCLK

CLOCK WIDTH

, r·

SYNCHRONIZE RCLK
ANDCCLK

Figure 6. Clock Initialization

6

(,

PROGRAM CCLK DEFAULT
WIDTH 11)0.03) AND RCLK

W DTH (D4-D7)

7'

, ' 'Figure 7. Action ,of ClOck Width Inputs WO-W3 on CCLK

8-206 210925-{)03

inter 82731

If CCLK width is greater than 16, zeros are shifted
out for the rest of the dot clocks and displayed
according to the attribute signals.

Character Width (Wo-W3)

The Wo-W3 inputs are clocked into the 82731 at the
rising edge of CCLK and determine the width of the
currently displayed character.

Half Dot Shift (HOOT)

The half dot shift signal is clocked into the 82731 at
the rising edge of CCLK. When the half dot shift
signal is active (high), the output of the video data
will be delayed by half a dottime. The first dot ofthe
character dot line is transmitted for one and a half
dot clock period while the last dot of this character
dot line is displayed for half a dot clock period. The
remaining charact~r dots are transmitted for one
dot clock period and thus are shifted by half a dot.

The HOOT signal is not a character attribute signal,
because it can change from scan line to scan line of
a character. Thus it is reasonable to generate it f'rom
the character ROM, together with the dot data and
the width information.

DCLK

CCLK---.....

VIDEO

(1)

WIDTH OF CHARACTER IS 5 DCLK PERIODS
CHARACTER DATA D4-DO • ODH
(1) 1-112 DCLK
(2) 1I2DCLK

Character Attribute Signals

These signals are clocked into the 82731 at the ris­
Ing edge of CCLK. Thus they are valid for the next
character only.

The character attribute signals consist of:

• character blanking CBLANK,
• character reverse video CR\N,
• double width OW, and
• width defeat WOEF.

Outside the active character field (which is defined
by the CSYN signal) all character attribute signals
are ignored.

Character Blanking (CBLANK)

If CBLANK is active (high), the blank attribute will
produce the effect of blanking the display of the
character. When the CBLANK attribute is active, the
corresponding dot data information 00-015 will be
as if all zeros were forced at the inputs. The video
output can be inverted to all ones by simultaneously
activating the CRVV attribute. Independent of these
character oriented operations the video output sig-

, nal is also affected by the RRVV field .attribute Signal.

(2) (1) (2)

Figure 8. Function of HOOT on VIDEO,

8-207 210925-003

,
82731

Character Reverse Video (CRVV)

CRVV is an active h'igh signal. In the character field,
the CRVV attribute will produce the effect of revers­
ing the polarity of the display during the transmis­
sion of t~e current character. CRVV is also effective
together with the CBLANK attribute (see CBLANK
description) and tl'1e RRVV signal. Outside the char­
acter field, the CRVV attribute is ignored. !

Although the CBLANK signal is normally a charac­
ter attribute, it may change from dot line to dot line
of a character. Thus one or more underlines or cur­
sors can be generated by the CRT controller activat­
ing CBLANK and CRVV.

Double Width (OW)

The dot clock frequency and the CCLK freque~cy
will be t"!alved when the double width attribute is
active (high), producing characters that are twice as
wide. The period of RCLK is not changed (see Fig-
ure 9). ,

, .
Width Defeat (WDEF),

The WDEF attribute signal is clocked into the
SAB 82131 at the rising edge of CCLK. When the
width defeat attribute is active (high), the width of
CCLK will be set to a default width value pre­
viously programmed (see figure 10).

Field Attribute Signals

The field attribute signals are clocked into the 82731
'with the rising edge of RCLK. Thus th~ attributes are
valid for a specific part of the screen independent of
how many characters are displayed within this part.

DCLK

DW --t------~---I

CCLK
(1) Character Is dIIpleyael normal width
(2) Character 18 dlsplayael double width

The ~2731 supports tw.o ,field attributes:

• field reverse video.RRVV, and
• clock synchronization CSYN.

Row Reverse Video (RRVV)

RRVV control signal is clocked into the 82731 at the
rising edge of RCLK. It immediately affects the dis­
play by the polarity of the video eoutput in both the
character field and the border of the display. It is an
active high signal.

Clock Synchronization (CSYN)

CSYN is a field attribute Signal, because it defines
the active character field in addition to its function of
synchronizing CCLK and RCLK.

CSYN must be inactive (low) during the display of
characters. I\t the first rising edge of RCLK jifter
~SYN is.de~ctivated (low), char~cterdata i!! latched
Into the 82731, beginning the display of the active
character field (see Figure 11). At the next riSing
edge of RC~K after CSYN is, activated (Le. at the
end of the character field), the video output is
forced to zero or, if the RRVV control signal is
active, to a high level. The currently transrriitte~
character will be truncated at tijis location. At the'
same time, CCLK will be forced to match RCLK
starting with the next rising edge of RCLK (see
Figure 11). While CSYN is active all charact!3r
attribute and data signals are ignored and only
the field reverse video signal (RRVV) affects the
video output.

Before the deactivation of CSYN, the data and
attribute pipeline has to be filled by the CRT con­
troller with the information of the first character.

Figure'9: Function of OW on, DCLK and CCLK

8-208 210925-003

82731

DCLK

WDEF----+

CCLK

W2

W1

WO

AT (CCLKI), WDEF ~ 0
AND <W3:WO>

DEFINES THE CCLK
WIDTHAS3

AT (CCLKI), WDEF = 1
DEFINES CCLK WIDTH

AS THE DEFAULT VALUE (5)
IGNORING <W3:WO>

AT (CCLKI)<W3:WO>
DEFINES WIDTH OF CCLK

when WDEF = 0

The defaulf width of CCLK was previously defined as 5

Figure 10. Function of WDEF

Tabulator Function

The 82731 supports tabulator functions by provid­
ing the CHOLD (character clock inhibit) input.

CCLK Inhibit (CHOLD)

When the CHOLD signal is activated (low) it inhibits
CCLK and thus freezes the information pipeline
between CRT-controller and 8~tiI the next
tabulator location is reached. CHOLD Has to be
activated simultaneously with the display of the
TAB-character. If the TAB-character doesn't consist
of all zeros, it must be blanked by activating
CBLANK.

The'width of the TAB-character can be determined
by WO-W3 or by activatil"!g WDEF.

. The CHOLb signal is provided by the 82730 and it is
assumed to be triggered with the rising edge of
CCLK lFiqure 12). With the same edQe of CCLK, the

TAB-character will be latched into the 82731. Thus
the TAB-character will be displayed completely and
the CCLK will be inhibited until reaching the speci­
fied tabulator location, which is defined by CHOLD
inactive (high) at the rising edge of RCLK.

In the timing diagrams it is assumed that CHOLD is
deactivated by the falling edge of RCLK. Figure 12

shows the normal case where the display of the
TAB-character is finfshed before deactivation of
CHOLD. The gap between the TAB- and the follow­
ing character is normally blll:nked. In this sche~e
the TAB-character will be handled by the 82731 lik~
each other character (attributes operate normally).

In case of CROL5 active width less than the TAB­
character width the TAB-character will be also dis­
played completely. However, we have to distinguish
three different cases:
1) TAB-character IS terminated before reaching

TAB-location. The next character will be dis­
played as described before. In the gap the video
output is normally blanked.

2) TAB-character is finished exactly at the TAB­
location. The next character will be displayed
immediately without delay.

3) TAB-character is not terminated when
reaching the TAB-location (see Figure 13). The
following character -will be displayed subse­
quently after the display of the TAB-character
(i.e. the start of the following character is not at
the TAB-location).

If the CHi5LD signal is not deactivated the video
output will be continuously blanked. In the gap
between the end of the TAB-character and th~ TAB­
location all character attribute signals will have no
effect on the video output signal. If the RRVV control
s:Jnal is active the video output signal is inverted.

8-209 210925-003

00
~ o

~

~
'" 6
o

'"

:!!
-10

C
CiI ...
:-'

~
~

2-
0"
~

2-
o
~ z

CSYN

RCLK

CCLK

W3 ««««0

-W2 «<?<f?<.

W1

WO ftC «<Cft . I

BEGINNING OF CHARACTER FIELD END OF CHARACTER FIELD
CCLK IS FORCED TO
MATCH RCLK
(LAST CHARACTER MAY BE
TRUNCATED)

..

(

~
~

'@
aID
IiiiiI
IF

~
~
~
aID
~

i~ 82731

DCLK

CiiO[[j

RCLK

CCLK

(1)

CBLANK

(4)

WDEF

TAB REQUEST END OF TAB CHARACTER

(1) TAB character Is displayed completely - video output Is blanked
(2) VIdeo output Is blanked
(3) Next character
(4) Default width: 7, TAB character width defined by WDEF

(2) (3)

TAB LOCATION
START OF NEXT CHARACTER

Figure 12. Function of CHOLD (Normal Case)

DCLK

CHOLD"----+--,

RCLK ----fi---_i'

CCLK

CBLANK

WDEF

TAB REQUEST

(1) (2)

START OF NEXT CHARACTER
END OF TAB CHARACTER

TAB LOCATION

NOTE:
.(1) TAB character Is displayed completely - video output Is blanked
(2) Next character Is displayed (not on TAB location)

'(4) Default width = 11.

Figure 13. Function of CHOLD with CHOLD Width Less than Character Width (Case 3)

8-211 210925-003

~2731

Video Output

The video output provides an ECl.:-oriented signal
(see Figure 14) and is matched to drive a SO Ohm
coax cable (see Figure 1S). In case of external

attribute processing the external logic can be ECL­
or STTL-compatible.

vee --.....-------,

t------t--.J VIDEO

Figure 14. Video Output Stage'

.
eOAxeABLE vee

o-JsoneOAX VIDEOAMPL.
VIDEO ' T) .

vee

VIDEO soneoAX VIDEOAMPl.

son son

IF IF IF

Figure 15. A Video Output Load

8-212 210925-003

inter 82731

ECLLOGIC VCC VCC

VIDEO

REFERENCE

VOLTAGE (3V)

STTLLOGIC VCC VCC VCC

VIDEO

VREF

Figure 15.8 Proposed Converter for Video Output to TTL Level Output

VCC VCC vee

2N2389A 270n 75n

33011 27011 1K

Figure 16:. TTL-Level-Output 'Rtst Load

8-213 210925-003

82731' ~OO(gIl.OIMlO~imr

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias ,. 0·Cto70·C

Storage Temperature -65·Cto + 125·C
All Output and Supply

Voltages - 0.5V to + 6V

All Input Voltages ,.. - 0.6V to + 5.5V

Power Dissipation :.,.. 1.75 We\tt

,

• NOTICE: Stresses above those listed under
"Absolute Maximum Ratings" may cause perma·
nent damage to the device. This is a stress rating
only and functional operation of the devicfJ at these,
or any other conditions above those indicated in '
the operational sections of this specification is·
not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device.
reliability. .

D.C. CHARACTERISTICS (Vee = 5V ± 10%, TA = O·C to 70·C)

Sym~ol Parameter MIn. Max. Units Test Conditions
...

Ve Input Clamp Voltage -1 V le= -SmA

IF Forward Input Current -0.7 mA VF =0.5V

IR Reverse Input Current 50 pA VR=Vee

: VOL Output Low Voltage '\
CCLK 0.5 V IOL=8 mA
RCLK 0.5 V IOL=4 mA
VIDEO Vec- 1.2V Vee- 0.6V - IOL=O .

VOH Output High Voltage
CCLK,RCLK 2.4 V IOH = - 400 p.A

'VIDEO Vec'-0.2V "Vee " - IOH=O

VIL Input Low Voltage 0.8 V

VIH Input High Voltage 2.0 V

Icc Power Supply Current 300 mA

Zo Output Impedance VIDEO 40 70 n

CIN Input Capacitance 15 pF fe=1 MHz

210925-003

8-21.4

82731

A.C. CHARACTERISTICS

T A = 0 to 70° C; V cc = 5V ± 10%. All timings measured at 1.5V unless otherwise noted.

Limit Values

82731 82731-2
Test

Symbol Parameter Min. Max. Min. Max. Unit Conditions

TDHDH DCLK cycle period 20 125 12.5 125 ns -
TCHCH CCLK cycle period 3 18 3 18 TDHDH

TCLCH CCLK low time TDHDH 16 T DHDH TDHDH 16 T DHDH
-10 -10 ns

TCHCL CCLK high time 2 T DHDH - 2 T DHDH -
-5 -5 Fig. 17

TRHRH RCLK cycle period 6 21 6 21 TDHDH

TRLRH RCLK low time 3 TDHDH 18 T DHDH 3 TDHDH 18 T DHDH
-10 -10

TRHRL RCLK high time 3 TDHDH 3 TDHDH
-5 -5

TDRCH Data and attribute 25 20
input set up time

TCHDX Data and attribute 0 0
input hold time

THLTE ' CHc5i15 active before - - ns
end of T AS-character

THLHH CHOLD pulse width 25 20 -
THHRH CHc5iJ) inactive set up

before rising edge of
RCLK

THLRH CHOLD inactive hold 0 0
time after rising edge of
RCLK

TCHVV Video output valid after 6 f./ideo output
rising edge of CCLK measured at

VCC - O.4V

TOLOH TTL-output rise time
10

10 Fig. 17

TOHOL TTL-output fall time - - ns

TVLVH Video output rise time 5 3 Fig. 18

TVHVL Video output fall time

8-215 210925-003

RCLKlCCLK

RCLK: RL = 7000

CCLK: RL = 3500

VCC

Figure 17. TTL-level-Output Test Load

2A~2.0> TEST <~x= o.s o.a POINTS 2.

82731

Figure 19. TTl-Level-O~tput load Circuit

TDHDH

TCHDX

VIDEO

Flg~re 18. ECl-level-Output Test

Figure 20. ECl-Level-Output load Circuit

Figure 21. Basic Timing

8-216 .210925-003

inter 82731

CCLK

RCLK -+-I....J

CHOLD-+-.... oo:E.\.

t4-------t--THLHH---------+l

END OF TAB CHARACTER
BEGINNING OF TAB CHARACTER

Figure 22. Timing on CHOLD

CC

LC

8275

CCLK~---~----OC

8276 RW 1-------------+_------+01
uENI-------------+-.-----~
vspl------~---__,

HRCT~~---------~~--~
VRCTI----------~+_---L--'

Figure 23. Example lnterface to 8275

8-217

BEGINNING OF NEXT
CHARACTER

210925-003

Packaging 9

inter PACKAGING INFORMATION All dimensions In Inches and (millimeters)

NOTES:
All packages drawings not to scale

All packages seating plane defined by 0415 to .0430 PCB holes.

3 Type P packages only Package length does not Include end flash burr Burr is .005 nominal. can be 010 max at one end
4 All package drawings ~nd view dimenSions are to outside of leads.

PLASTIC DUAL IN-LINE PACKAGE TYPE P
1lt-LEAD PLASTIC DUAL IN·LlNE
PACKAGE TYPE P

1I1·LEAD PLASTIC DUAL IN·LINE
PACKAGE TYPE P

20·LEAD PLASTIC DUAL IN·LlNE
PACKAGE TYPE P

24-LEAD PLASTIC DUAL IN·LINE
PACKAGE TYPE P

9-1

inter
PLASTIC DUAL IN-LINE PACKAGE TYPE P
28-LEAD PLASTIC DUAL IN-LINE
PACKAGE TYPE P

4O-LEAD PLASTIC DUAL IN-LINE
PACKAGE TYPE P

48-LEAD PLASTIC DUAL IN-LINE
PACKAGE TYPE P

" ... 111)1'1-1

,n(II751 ...

o

CERAMIC DUAL IN·L1NE PACKAGE TYPE D
l6-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

790(200661

t== ::'~:"'---P-'N~''''
1

SEATING
PLANE

12513'1761
M'N

21015080)
MAX

310 (7 874)

2651i7ifJ

........ """"" ,--*- (8.128)

700 REF. 11---,:", 050 f1.270) t ~ :1
(17780) .~." • ' (UIIO)

"t-/il:i:n::n:n: ~~~~~J:='==r 1lI5'''191) , =! ',.0.1~ffl:~;"3 -.,- I 1,1&

',0127941
090'2286,

9-2

032 TVP
(08131

LO.'SMIN' OjOlYP.' ~
10 3811 (1).1~t. ... • .. , REF

-11-02010. ... ' ;~i··i...:'~. ~ >

01. '0408, '. l1,o.)80)
NOTE.

PACKAGING INFORMATION All dimensions in inches and (millimeters)

CERAMIC DUAL IN·LINE PACKAGE TYPE D
18-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

20-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

22-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

24-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

SEATING
PLANE

.210(5080)
MAX

125(3175)
MIN.

SEATING

210(50801
MAX

PL~NE

125(3.175)
MIN.

r--- 920 (23.000)

1_ _ _ _ 880 (22 352) ~
I

310 (7 874)

265 (6.73',

.."..,""""' ~ (8.128)

1-.070..s.xr:8) t;;!;-1
T~~Wic~=:JI '''(~) 1 =1 I _ 140(3.556) ~

Oloryp _ ! '1t

032 TYP
(Oa13)

(0254) I " REF.

LM~.j
(10.160)
NOTE 4

990(25146) ~ r--- 950(24.130)

1__ __ PIN 1

i'="-'="~-----""""'"""""""'il

.31011.8741

.286 16.731' - ,~
I-'07OJi.x778)

032 TYP
(OS13)

r= 1096(27813) ~
1 060 (26 924)

PIN 1

1.285 (32.6391 ~
r-,.235 (31.3691

1_ _ _ _ PIN1
l=-'=~=- - --"";';:"'1-1

~~I;~g:~1
~ ~~~j.lL' (15,748)

.090~288) C ::: -J
(15.240) ,

---;---'T ,175(4,445) 1 :: II
~ .140(3,556) ._..""

lO2OMIN .010 TVP' : W

II ' (.508) (0.2541 I 700 -, REF

-- 020 (0 5081 ~ MAX --.\
,032 TV. 016 (04061 (17 780)

(0813) NOTE 4

9-3

28-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

40-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

40-LEAD HERMETIC DUAL IN-LINE
PACKAGE TYPE D

-PACKAGING INFORMATION All dimensions Ininch$s and"(mililmeters)

200 (5 (8)

MAX

. S~A!!~_G r-
PLANE .-

I
-----~_ 1 485 (37719) --------1

1 435 (36449) I
PIN 11 --1

600 (15.2401
515 (13:081) ,

__ 1
~~~t-il ," (15.748) 

1 300 REF ~.08~i2"59)· .620 
(33 020) MAX r ~ 1 

L F'l f'" F\.J.-.l_.---1 .140 (3 556) _. . 'I 
125 (3 175) i -: 

------ .175(,4.445) lJ :: ~ 
t 020 MIN ' 010 TYP " :v fa-

_, : ____ 060 TYP II' (0.508) . (0254) I 700 ........ I REF 
MIN 

110 (2794) 
090 (2286) 

(1 524) r' "*" __ 1; __ ~ (0 508) i_ (1~~~O) ----I 
~~28~;r 016 (0 406) NOTE 4 

2080 (52832) 
r--2030 (51562)~ 

1- _ _ _ _ _ ~~I 

515/13.081) 

I ·085Mt '59) (15748) 
E-o:~:~~ ~:t:L 

--- ~, 620 

.225(5.715) ._1900REF -I , .. ' ~ [--'600, J 
MAX. (49.548) I , (0.254)' (15.240) 

_C-=-.::L jTl:::~:: ~L 

.125 (3175) 

MIN 110 (2 794) I 
090 (2 286) -l 

010 TVP , • 10' 
t.02O MIN . (0254) -....: REF 

(508) " , 

-II- 020 (0.508) L 700 J 
032 TYP 016 (0 406) . MAX 

(0813) (17 780) 
NOTE 4 

CERAMIC DUAL IN·LlNE PACKAGE TYPE C 

40-LEAD HERMETIC DUAL IN-LINE 
PACKAGE TYPE C 

SEATING 

PLANE 

110 (2 794) 

0901228£) 

9-4 



inter PACKAGING INFORMATION All dimensions in inches and (millimeters) 

CERAMIC DUAL IN·LlNE PACKAGE TYPE C 
48·LEAD PLASTIC DUAL IN·LlNE 
PACKAGE TYPE C 

125 MIN 
(5175) 

CERAMIC PIN GRID ARRAY PACKAGE TYPE CG 

B8·LEAD CERAMIC PIN GRID ARRAY 
PACKAGE TYPE CG 

9-5 

I (16891) I 
~'6!~ ..... 

o· 
-;00 



, 1 




