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GENERAL DESCRIPTION

The INTELLEC® 8/MOD 80 system (imm8-84A) is
a low-cost computer system, designed to simplify the
development of microcomputer systems which employ
INTEL 8080 microprocessors.

The INTELLEC 8/MOD 80 system uses the 8080 as its
central processing unit. The 8080 has a basic cycle time of
2.0 microseconds. The system contains a control console
and provides read-write program memory as a substitute for
read-only memory. Thus the 8080 chip can be accessed via
the control console, and programs can be debugged before
being enabled in read-only memory. Turn around time from
initial system concept to finished product is shortened, and
systems development costs are thus reduced.

The INTELLEC 8/MOD 80 system has its own power
supply, cabinet, display and control panel, 8192 bytes (8K)
of Random Access Memory, a Programmable Read-Only
Memory Module with 4K capacity, a PROM Programmer
Module, and an Input/Output Module which contains four
8-bit input ports and four 8-bit output ports as well as
provision for serial communications interface.

The Bare Bones 80isan INTELLEC 8/MOD 80 system
without the power supply, display and control console, or
cabinet, and is designed for 4K of RAM memory, rack-
mounting.

Both the INTELLEC 8/MOD 80 system and the Bare
Bones 80 can be expanded up to 16K bytes of memory;in
addition, the 1/0 capability can be expanded to support six-
teen input ports and sixteen output ports, or four input
ports and twenty-eight output ports.

The standard software for the INTELLEC 8/MOD 80
system includes a resident System Monitor, a Text Editor,
and an Assembler. In addition to these INTELLEC 8/MOD
80 resident programs, there are three development programs
available, which are designed for operation on LARGE-
SCALE HOST COMPUTERS. These are a macro cross-
assembler, a microcomputer simulator (INTERP/80), and a
PL/M™-compiler. PL/M is a high-level language that can
shorten program development time significantly.

SPECIFICATIONS

The INTELLEC 8/MOD 80 system is made up of
separate modules, each of which performs a different task in
making up a complete system. These modules are:

1) The imm8-83 Central Processor Module, which op-
erates as the Central Processor for the INTELLEC
8/MOD 80 system. In this capacity, it performs the
following fuctions:

a) It controls the execution of program instruc-
tions, sending the appropriate control signals to
the other modules which make up the INTEL-
LEC 8/MOD 80 system. o

b) It performs all of the necessary arithmetic, logi-
cal, and data manipulation operations necessary
for program operation.

c) It controls overall system timing.

2) The imm6-28 Random Access Memory Module,
which provides 4,096 8-bit words of Read/Write
memory for system use. As many as four cards can
be used in a system, for a memory capacity of 16K.

3) The imm6-26 Programmable Read-only Memory
Module, which provides up to 4,096 words of Read-
only memory in increments of 256 words, and
which may be operated in parallel with the system
Random Access Memory. Again, more than one
card may be used, giving a total Read-only memory
capacity of 16K words. .

4) The imm8-61 Input/Output Module, which pro-
vides four eight-bit input ports and four eight-bit
output ports for system Input/Output operations.
Two of the input ports and two of the output ports
may be used with integral Teletype communica-
tions circuits to provide Teletype 1/0. Up to four
of these cards may be used in a system, giving a
total of sixteen input ports and sixteen output
ports.

5) The imm8-63 Output Module, which provides eight
latching output ports for system Output operations.



Up to three of these cards may be used in a sys- relating to setting-up and operating the INTELLEC 8/MOD
tem, giving a total capability of twenty-four output 80 system is contained in Chapter 10 of this manual, and in

ports.

the INTELLEC 8/MOD 80 Operator’s Manual.

6) The imm6-76 PROM Programmer Card, which gives

the INTELLEC® 8/MOD 80 system the capability THE SCOPE OF THIS MANUAL
of programming INTEL 8702A Programmable

Read-Only Memory chips.

7} The Front Panel Controller and Display Console,
which provides a means of controlling program exe-
cution, program debugging, and INTELLEC 8/

This manual provides an understanding of the design
concepts and capabilities of the INTELLEC 8/MOD 80
system as a whole and its individual modules, and in addition
provides detailed theory of operation and implementation
information for each module.

MOD 80 operation. It also provides displays of sys-

tem status and information.

8) The chassis and power supplies.

For a detailed description of INTELLEC 8/MOD 80
operating procedures, including software operation, see the
INTELLEC 8/MOD 80 Operator's Manual. For a detailed
examination of programming at an elementary level, suitable

A summary of the specifications for the INTELLEC for an engineer with no previous programming experience,
8/MOD 80 system is given in Table i-1. Specific information see the 8080 Assembly Language Programmer’s Manual.

INTELLEC 8/MOD 80 Specifications

SPECIFICATIONS

Word Length

8bits

Registers

Seven 8-bit general purpose registers, two of which are used to hold Memory
Addresses during Memory Reference operations, and one used as the
accumulator,

Instruction Set

Seventy-eight instructions, including Memory-index register, index-register-
memory, register-to-register, single register, immediate, and memory arithmetic
and logic instructions, as well as conditional and unconditional branch in-
structions, input/output, and machine instructions.

Arithmetic 8-bit parallel, binary, fixed point, two’s complement.

Memory 8192 8-bit words, Read/Write; 4096 8-bit words, Read-only. (Expandable to
16,384 words.)

Addressing Direct — up to 16K bytes. (up to 64K using external enclosures}

Cycle Time 2.0 microseconds

Environment

0° - 55° C.

Power Requirements

5V @ 12 A (max); 6 A (typ);

-9V @ 1.8 A (max); 0.5 A (typ);

-12V @ 0.03 A (max); 0.016 A (typ);

{More power may be required for expanded INTELLEC 8/MOD 80 systems.)

AC Requirement

60 Hz; 115 VAC, 200 Watts

Size INTELLEC 8/MOD 80: 77" x 17 1/8"" x 1/4""
Bare Bones 8: 6 3/4"" x 17" x 12" (suitable for standard RETMA 7'* x 19"
panel space).

Weight 30 Ib.

Table i-1.

vi



The INTELLEC 8/MOD 80 microcomputer develop-
ment system consists of six independent functional
modules and a power supply, housed in a single chassis and
enclosure. This section describes the interrelationship of the
INTELLEC 8/MOD 80 functional modules, and shows the
part played by each module during typical operations.

FRONT PANEL
CONSOLE
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MEMORY
(RAM, PROM)

DATA TO | MEMORY BUS

NOILONYLSNI
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CPU
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INPUT/OQUTPUT OUTPUT
MODULE - MODULE

PROM
PROGRAMMER
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Figure 1-1. A Simplified INTELLEC 8/MOD 80 Block
Diagram.

FUNCTIONAL DESCRIPTION OF MODULES

Figure 1-1 illustrates the six functional modules of the
INTELLEC 8/MOD 80 system, and shows interconnecting
busses. The six functional modules are:

1} A Central Processing Unit (CPU) which performs
arithmetic, logical and data manipulation operat-
ions.

2) Memory module, which can be Programmable
Read-Only (PROM), Random Access (RAM), or a
combination of the two. Though Figure 1-1
illustrates memory as a single module, it can be
physically implemented as one or more modules,
depending on the amount of memory included in a
system. The memory module provides data and
program storage; a standard system includes two 4K
RAM modules and one 4K PROM module.

3) Input/Output module. Physically there can be up to
four Input/Output modules in an INTELLEC
8/MOD 80 system. Each Input/Output. module
provides four individually addressable 8-bit output
ports. A serial communications facility, which the
INTELLEC 8/MOD 80 system uses for teletype
interface, is included in each module.

4) Output module. Physically there can be up to three
Output modules in an INTELLEC 8/MOD 80
system. Each Output module provides eight
individually addressable 8-bit output ports.

5) A Front Panel Display and Control Console. The
Console provides a means for manually monitoring
and controlling INTELLEC 8/MOD 80 operations.

6) PROM Programmer Module. This module provides a
timing and level shifting circuitry for programming
INTEL's 8702A PROM:s.

The functional units of the INTELLEC 8/MOD 80
system are interconnected by the following busses:

Bus (a), the Memory Address bus, carries memory



addresses from the console or the CPU to the Memory,
Input/Output and Output Modules.

Bus (b) the Output Data bus, carries data from the
console or CPU to the Memory, Input/Output and Output
Modules.

Bus (c), the data from Memory bus, carries data
from memory to the CPU.

Bus (d), the Data Input bus, carries data from input
ports to the CPU.

Bus (e), the Interrupt Instruction bus, allows the
console to transmit a program interrupt to the CPU.

Bus (f), the Control bus, is used to control instruction
execution. Since the console is connected to the control
bus, instruction execution can be controlled from the
console.

Since the console operates in parallel to the CPU, it
contains a considerable amount of parallel logic, including
its own data and address registers; thus there are certain
states in which the CPU remains in control and the console
temporarily suspends operations, and there are other states
in which the console completely takes over ‘machine
operations.

Conceptually, the CPU module provides the INTEL-
LEC® 8/MOD 80 system with its ““computer’’ capabilities.
This module performs arithmetic, logical and data mani-
pulation operations as directed by a stored program.

A stored program is a sequence of numbers (eight
binary digits per number) which encode a sequence of
individual CPU operations. (Frequently an instruction code
is written as two hexadecimal digits rather than eight binary
digits). The sequence of individual instructions that
constitute a program are stored in the Memory module. If
the memory module includes Random Access Memory
(RAM), it can also be used to store temporary data that
may be generated in the course of executing a program.

Almost all computer applications require information
to be transferred between the CPU module and external
devices. Such transfers take place via the Input/Output and
Output modules,

Communications between the INTELLEC 8/MOD 80
system and an operator occur via the Front Panel Console
and teletype.

FRONT PANEL CONSOLE OPERATIONS

Consider how console operations must be performed,
given the hardware organization illustrated in Figure 1-1.

Since the console has its own address and data
registers, and since there is a bi-directional bus link
(through the CPU) between the console and memory, data
can be read from memory to console, and written from
console to memory.

Although there is no direct path for data from input
ports to the console, performing an input access operation
from the console causes the input data to be sent through
the CPU and onto bus (c), where it is displayed on the
console.

There is no direct link between CPU registers and the
console. The system monitor has a register interrogation
capability.

MEMORY REFERENCE OPERATIONS

This section describes memory reference operations as
performed by the INTELLEC 8/MOD 80 system, and is
divided into two subsections. Memory input or read
operations, and memory output or write operations.

Memory Read Operations

A Memory Read operation is performed in order to
obtain data from a certain location in the system memory,
and to bring that data to the CPU. It is performed via the
following steps:

1) The CPU sends a Memory Address to the Memory
modules on the Memory Address bus.

2) The Memory modules send the data contained in
the selected memory location to the CPU on the
Memory Data Input bus.

The Front Panel can perform a manual Memory Read
operation by ‘taking over’ the Memory Data buses, and by
sending a manually entered Memory Address, rather than a
CPU-generated Address, to the memory modules.

Memory Write Operations

A Memory Write operation is performed in order to
send data from the CPU to a certain selected location in
memory. It is performed in the following steps:

1) The CPU sends a Memory Address to the memory
modules on the Memory Address bus.

2) The CPU sends the data which is to be stored in
memory to the memory modules on the Memory
Qutput Data bus.

3) The CPU sends a control signal to the memory
modules which causes the data to be written into
the selected memory location.

The Front Panel can perform a manual memory write
operation by taking over the Memory Address and Memory
Output Data busses, and by sending manually entered
Memory Address and Memory Data to the memory module.

INPUT/OUTPUT OPERATIONS

This section describes Input and Output operations as
performed by the INTELLEC 8/MOD 80 system, and is
divided into three subsections.



Input Operations

An Input operation is performed in order to obtain
data from some external device and to bring it into the
CPU, where it can be processed. It is performed via the
following steps:

1) The CPU sends an 1/O Address, which specifies
which device is to be used for the Input operation,
to the Input/Output modules on the Memory
Address bus.

2) The Input/Output module responds by sending the
data which is present on the selected Input port
back to the CPU on the Data Input bus.

An Input operation can also be performed manually
by giving the Front Panel control over the Memory Address
bus. It then sends a manually entered 1/O Address and an
1/0 read command to the Input/Output module.

Output Operations

An Output operation is performed in order to send
data from the CPU to an external device. It is performed via
the following steps:

1) The CPU sends an I/0 address, which specifies the
device to be used for the Output operation, to the
Input/Output and Output modules on the Memory
Address bus. At the same time, the CPU sends the
data which is to be output to the Input/OQutput
modules on the Output Data bus.

2) The CPU sends an 1/O write command to the
modules.

3) The Input/Output module latches the data and
sends the data which the CPU has supplied to the
selected output device.

An Output operation may also be manually executed
by giving control of the Memory Address/Data Output bus
to the Front Panel. The Front Panel sends a manually
entered 1/O Address and manually entered data to the
Input/ Output and Output modules.

Teletype Operations

Teletype operations are performed in exactly the same
fashion as normal, non-teletype Input and Output
operations, with the exception that the external device used
in the case of Teletype operations is an integral Teletype
communications circuit (UART) in the Input/Output
module. Teletype data enters the Input/Output module via
input ports 0 and 1; data being sent to the Teletype
proceeds through output ports 0 and 1 on the 1/O module.
Chapter 3 explains how to install the Teletype ASR33.

INTERRUPT OPERATIONS

An Interrupt operation is performed when an external
device which requires servicing sends an Interrupt signal to
the CPU. This causes the CPU to interrupt its normal
operating sequence, perform the operations required by the
external device, and then return to the point at which it
was interrupted and resume normal operations. An
Interrupt operation is performed in the following steps:

1) The external device sends an Interrupt signal to the
CPU. The CPU stops its normal operation and
acknowledges the interrupt request.

2) The external device sends an Interrupt Instruction
to the CPU.

3) The CPU executes the Interrupt Instruction exactly
as if it were a normal instruction.

Usually, the Interrupt Instruction will be a RESTART
instruction. A RESTART instruction causes the CPU to
branch to a certain location in memory, where an interrupt
service routine can be stored.

An Interrupt operation can be performed manually
from the Control Console. In order to accomplish this, the
Interrupt Instruction is manually entered into the Front
Panel. When an Interrupt switch is depressed, the Front
Panel will generate an Interrupt signal, and will send the
manually entered Interrupt Instruction to the CPU.

In the basic system, only the Control Console initiates
interrupts. The ability to interrupt may be extended,
however, to the user’s peripheral devices, in order to
simplify system programming and to increase system
throughput. Some modifications to the system, however,
are  necessary.

PROM PROGRAMMING OPERATIONS

The INTELLEC 8/MOD 80 has been designed to offer
an easy means of programming INTEL 8702A Program-
mable Read-Only memory chips. This is done with the
use of the PROM Programming module, and is accomplished
by performing three successive Output operations:

1) Send the address within the PROM which is to be
programmed

2)Send the data which is to be written into the
selected address

3) Send a control word which is used by the PROM
Programmer module to initiate programming

The PROM Programmer is used as the external device
for each of these Output operations. When it receives the
control word, it causes the data specified to be written into
the PROM address selected.






S «*\6 IR

0@‘\ G?‘ \:\0

The imm8-33 Central Processor Module is designed
specifically to serve as the central processing unit (CPU) of
the INTELLEC® 8/MOD 80 Microcomputer Development
System. Its general purpose architecture permits the CPU
module to perform similar functions in any eight-bit
computer system. Thus the imm8-33, like the other
INTELLEC® modules, can be furnished independently on
an OEM basis. All inputs and outputs are TTL-compatible,
to simplify the external interface.

The basic capabilities of the module are obtained
through the use of Intel’s 8080 microprocessor. This
processor contains an eight-bit accumulator, six eight-bit
index registers, and an eight-bit parallel arithmetic and logic
unit (ALU). Sixteen latched address lines enable the 8080
to address 65,5636 bytes of external memory. As many as
256 eight-bit input ports and 256 eight-bit output ports
may also be addressed directly. A sixteen-bit program
counter and a sixteen-bit stack pointer permit flexible
handling of subroutines. Logic for the processing of holds
and interrupts is built into the CPU.

The 8080’s internal control logic recognizes and
executes 78 different instructions. These are encoded
numerically, in a binary format consisting of one, two, or
three eight-bit bytes. Instruction categories include:

(a) register-register transfers
(b) register-memory transfers

(c) arithmetic operations, including add and sub-
tract, with and without carry or borrow

(d) Boolean logic operations, including AND, OR,
XOR

(e)  decimal arithmetic
(f)  input/output (1/0)
(g) stack control

(h) interrupt control
(i)  register operate

(i) branch control

Five internal status flags enable conditional jumps,
calls and returns, based on carry (overflow-underflow), sign,
zero, parity, and auxiliary carry.

The Central Processor Module contains a crystal-
controlled oscillator and clock generator. These provide a
stable timing reference for all circuitry on the board. The
use of a 2 MHz clock permits a basic machine cycle of two
microseconds, for those instructions that do not reference
memory during their execution.

Memory interface and control logic are included on
the board. The imm8-83 contains a fully buffered
sixteen-line address bus, which communicates with the
memory’s decoding logic. An eight-line data input bus and a
buffered eight-line output bus provide for the actual data
transfers. Logic on the board monitors the status signals
from the 8080 CPU, and generates a READ/WRITE (R/W)
command for the control of external memory.

1/0 interface and control are also built into the
Central Processor Module. |/O peripherals share eight of the
module’s sixteen address lines with memory, permitting the
processor to identify one of 256 input or 256 output
devices during execution of an 1/O instruction. A separate
eight-line input bus provides communication with the input
peripherals, while output devices share the module’s
eight-line data output bus with memory. Control signals
generated on the module are available at the edge connector
pins, to identify and synchronize input and output
operations.

A latched eight-bit output port is included on the
imm8-83. It is program addressable (FF,¢), and is intended
primarily for convenience in console de-bugging.

The imm8-83 is equipped with an asynchronous
INTERRUPT REQUEST line and with an eight-bit
interrupt port, enabling it to process external interrupts. A
peripheral device may request service by placing an
appropriate binary code on the interrupt port’s lines and
simultaneously activating the INTERRUPT REQUEST line.
By doing so, the interrupting device causes the processor to




execute the instruction whose code appears at the port.
Any of the single byte instructions in the processor's
repertoire may be used during an interrupt. The restart
(RST) instruction, a one-byte call, is particularly useful for
interruptive processing. A restart causes the processor to
jump to one of eight dedicated memory locations, where
service routines may be stored. Return to the interrupted
program is accomplished by an ordinary subroutine return
(RET), or by one of the conditional return instructions.

The Central Processor Module is also equipped with a
HOLD REQUEST line, which enables external devices to
conduct direct memory access (DMA) transfers. During an
acknowledged HOLD REQUEST, the processor suspends its
normal activity. The module’s address bus and control lines
(R/W, T/0 IN, and T/O OUT) are disabled, relinquishing
control to the active peripheral. The memory input data
bus is multiplexed on to the output data bus to facilitate
write or output operations. This allows the external device
to command the busses and to effect memory transfers
directly.

A RESET input permits restarting the program from
memory location zero. Any INTERRUPT or HOLD in
progress will automatically be terminated by the RESET.
The program counter is returned to ‘“‘zero”. The
accumulator, status flags, and index registers are not
cleared. The HL and DE registers may be exchanged.

As a stand-alone CPU, the imm8-83 is almost entirely
self contained. It requires only DC power, at levels of:

+12+5%VDC @ 0.06 Amperes
+5+5%VDC @ 1.5 Amperes
-91+5%VDC @ 0.1 Amperes

All circuitry is mounted on a 6.18" x 8.00" printed
circuit board, and signal and power connections enter the
module through a dual 50-pin double-sided PC edge
connector (0.125"" centers). No special installation will be
necessary.

The imm8-83 may also be used as a plug-in substitute
for the imm8-82, to update existing INTELLEC® 8/MOD
80 systems. Installation of the Central Processor Module is
straightforward, and the CPU module itself requires no
changes. Minor modifications are necessary, however, in the
case of other modules.

Although the imm8-83's edge connector pins
correspond nominally to those of the imm8-82, it has not
been possible to maintain a strict and complete logical
overlap in the address and control lines. The imm8-60 1/0
Module, the imm8-62 Output Module, and the Front Panel
Controller will therefore have to be modified slightly.

Intel provides a kit so simplify the conversion of ex-
isting INTELLEC 8 systems. This contains the imm8-83
module, an imm8-61 module, a new front panel controller,
and all MOD 80 software. It reduces the conversion to a
simple plug-in swap. Those who elect to modify the
modules they presently have will find the instructions for

doing so in the sections of this book that pertain to those
modules.

The following subsections furnish a complete descrip-
tion of the imm8-83 Central Processor Module. The first
describes a generalized processing system, at a fairly elemen-
tary level, to provide background information for those who
are relatively unfamiliar with processors and with the
language used to describe them. Users who feel competent
to discuss processors at an advanced level should skip this
introductory section. The second section describes the
functional organization of the processor module. Detailed
information on the 8080 CPU is given in the third section.
In the fourth section we show how the peripheral logic
supports the functions that the 8080 performs. Finally, in
the fifth section, we give reference information which will
be of value to those planning to use the module outside the
INTELLEC 8/MOD 80 system.

THE FUNCTION OF A CPU

This section is intended for those who are unfamiliar
with basic computer concepts. It provides background
information and definitions which may be useful in later
sections of this chapter. Those already familiar with
computers may skip this material, at their option. It is
organized to permit quick reference.

The Computer System

The INTELLEC® 8 is a modular computer system.
This means that the processing functions, the memory
functions, and the input/output functions are built into
separate plug-in cards which are then combined to form a
system. Because the functions of each of the modules are
fairly well-defined, individual plug-ins enjoy a certain degree
of independence. They are advertised as having stand-alone
capability, meaning that they are generally capable of
performing their functions in any system similar to the
INTELLEC® 8. The modular organization of this reference
manual intentionally reflects the modularity of the system
it describes.

You must keep in mind, however, that modularity
confers a very limited degree of independence. None of
these modules can do anything useful outside a system. As
a result, the discussion of any individual module must refer
continually to the activities of other modules in the same
system. It is therefore very important to know something
about the functions that each component in a'system must
perform, before discussing the processor module in detail.

A digital computer consists of:

(a) A central processsing unit (CPU)
(b) A memory
(c) Input and output provisions (1/0)



This applies, in essence, to all such computers. It
applies to the INTELLEC 8.

Memory and 1/O are relatively simple functions and
are fairly easy to rationalize. The memory serves primarily
as a place to store instructions the coded pieces of data that
direct the activities of the CPU. A group of logically related
instructions stored in memory is referred to as a program.
The CPU extracts these instructions singly, in a logically
determinate sequence, and uses them to initiate processing
actions. If the program structure is coherent and logical,
processing produces intelligible and useful results.

Processing is a complex activity, and one which
requires a lot of explanation. For now, we shall have to be
content with an intuitive understanding of what is meant
by the term. Assume for the moment that the machine
somehow manipulates data arithmetically to produce the
desired result. We shall describe the process later, in detail.

Program instructions are a form of input. The
computer can generate an output entirely on the basis of
instructions and data stored in its memory by the
programmer. In most cases, however, it is desirable to have
input provisions which augment the program as a source of
data. This is not difficult to understand. One of the most
useful features of the computer is its speed, its ability to
react quickly to changes in its data environment or to
process large volumes of data. In one case, the machine
must have access to information much more rapidly than a
human operator can supply it. In the other, it requires
access to a data bank which can easily exceed its memory
capacity. Both problems can be solved partially by
providing the machine with one or more input ports. The
machine can address these ports and read the data
contained there, in a manner very similar to that used to
read from its memory. The addition of input ports enables
the computer to receive information from external
machinery, at high rates of speed and in large volumes.

Central processing units operate so rapidly that their
responses often seem instanteneous to human operators,
but processing usually requires several stages. Many
individual instructions can intervene between the input of
data and the output of results. Consider the simple addition
of two numbers presented to two different input ports. The
machine must read the number at one port first. It stores
the value obtained in a temporary location, while it reads
the number at the second port. Then the number in
. temporary storage is added to the first, to obtain the
desired result. More complex functions than this can
generate many stages of intermediate results, all requiring
temporary storage at some time during the execution of the
program. Thus a secondary function of the memory
becomes apparent, the storage of intermediate data. In the
course of a processing task, the CPU may store data
temporarily in some memory location from which it can
later be retrieved. The processor will generally write into a
portion of the memory not occupied by program
instructions, although the machine can “‘program itself”’

under certain exceptional circumstances. Reading and
writing in memory are accomplished by means of program
instructions known as memory referencing instructions, so
called because they specify or imply a memory address as
an integral part of the instruction. Memory referencing
operations will be explained more fully when we describe
the CPU itself.

One or more output ports permit the computer to
communicate the results of its processing to the outside
world. The output may go to a display, for use by human
operators, or it may go directly to other machines whose
responses are controlled by the processor. The output ports
are necessary in either event, if the processor is to perform
any useful function. Output ports are addressable, in much
the same manner as inputs. The input and output ports
together permit the processor to interact with the outside
world.

The central processor unifies the system. It controls
the functions performed by the other components. The
CPU must be able to fetch instructions from memory and
execute them, and it must be able to reference memory and
1/0 ports as necessary in the execution of instructions. It
must also be able to recognize and respond to external
control signals, including INTERRUPT, HOLD, and WAIT
requests. These apparently straightforward requirements
imply a certain complexity in the way that the CPU
operates. Some of the features that enable a processor to
perform these functions are described below.

The Architecture of a CPU

TIMING

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, performs the
operations required, fetches the next instruction, and son
on. Anorderly sequence of events like this requires timing,
and the CPU therefore contains a clock oscillator which
furnishes the refernce for all processor actions. The
combined fetch and execution of a single instruction is
referred to as an instruction cycle. The portion of a cycle
identified with a clearly defined activity is called a state.
And the interval between pulses of the timing oscillator is
referred to as the clock period. As a general rule, one or
more clock periods are necessary to the completion of a
state, and there are several states in an instruction cycle.

PROGRAM COUNTER

The instructions that make up a program are stored in
the system’s memory. The central processor examines the
contents of the memory, in order to determine what action
is appropriate. This means that the processor must know
which location contains the next instruction.

Each of the locations in memory is numbered, to
distinguish it from all other locations in memory. The



number which identifies a memory location is called its
address

The processor maintains a counter which contains the
address of the next program instruction. This register is
called the program counter. The processor updates the
program counter by adding “1” to the counter each time it
fetches an instruction, so that the program counter is
always current. ‘

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the
programmer may violate this sequential rule is when the last
instruction in one block of memroy is a jump instruction to
another block of memory.

A jump instruction contains implicitly the address of
the instruction which is supposed to follow it. Since that is
the case, the next instruction may be stored in any memory
location, as long as the programmed jump specifies the
correct address. During the execution of a jump instruction,
the processor replaces the contents of its program counter
with the address embodied in the jump. Thus, the logical
continuity of the program is maintained.

Program jumps are a convenience for programmers,
and the description of their use can become complicated.
However, a basic use of the jump can be illustrated here:
that where the programmer must interleave program steps
with data upon which the processor is directed to operate:

ADDRESS MEMORY

M OPERATE ON M+3

M+1 OPERATE ON M+4 PROGRAM
INSTRUCTIONS

M+2 JUMP TO M+5

w3 DATA FOR M PROGRAM

M+4 DATA FOR M+1 DATA
PROGRAM

M+5 DO SOMETHING ELSE INTROCTONS

Figure 2-1. Program Jump.

If the jump at location M + 2 were omitted, the
processor would continue to operate on the assumption
that the program structure was sequential. It would attempt
to fetch and execute the data in location M + 3and M + 4
as though those locations contained instructions. The
program would most probably produce results quite
contrary to those that the programmer expected.

THE STACK

A special kind of program jump occurs when the
stored program ‘““calls” a subroutine. In this kind of jump,
the processor is logically required to ‘‘remember’ the
contents of the program counter at the time that the jump

occurs. This enables the processor later to resume execution
of the main program, when it is finished with the last
instruction of the subroutine.

A subroutine is a program within a program. Usually it
is a general-purpose set of instructions that must be
executed repeatedly in the course of a main program.
Routines ehich calculate the square, the sine, or the
logarithm of a program variable are good examples of the
functions often written as subroutines. Other examples
might be programs designed for inputting or outputting
data to a particular peripheral device.

To understand the value of subroutines, consider the
case where it is necessary to output five characters to a line
printer, in the course of a 200 step segment of the main
program. Suppose that the program which outputs the
character is the same, regardless of the actual idetity of the
character; in other words that it is possible to write a
generalized program which can output any character that
the main program supplies. And assume further that 20
steps are required for such an operation. We then have two
possible ways of coding this problem.

One possibility is to write the 20 output steps into the
main program, each time we desire to output a character.
The total length of the program will be 200 plus 5x20, or
300 steps in all. The other possibility is to write the 20 step
output program as a subroutine, and cause the main
program to jump to the address of the subroutine (call the
subroutine) whenever it is necessary to output a character.
In this case, the 20 step program need be stored only once.
The total number of instructions in memory will be
200+20, or 220.

Observe that the subroutine in this example will still
be executed five times. The processor will still have to
perform 300 operations, regardless of how we choose to
code this problem. The subroutine structure, however, is
preferred. For one thing, it conserves the programmer’s
time, since he need only code the output routine once. For
another, it conserves memory space, for the actual output
instructions occupy only 20 memory locations, rather than
100. These are significant advantages.

The processor has a special way of handling
subroutines, in order to ensure an orderly return to the
main program. When the processor receives a call
instruction, it increments the program counter and stores
the counter’s contents in a reserved memory area known as
the stack. The stack thus saves the address of the
instruction to be executed after the subroutine is
completed. Then the processor stores the address specified
in the call in its program counter. The next instruction
fetched will therefore be the first step of the subroutine:

The last instruction in any subroutine is a return. Such
an instruction need specify no address. When the processor
fetches a return instruction, it simply replaces the current
contents of the program counter with the address on the
top of the stack. This causes the processor to resume



execution of the calling program at the point immediately
following the original call.

Subroutines are often nested; that is, one subroutine
will sometimes call a second subroutine. The second may
call a third, and so on. This is perfectly acceptable, as long
as the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has space for
storing three return addresses, then three levels of
subroutines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addresses built
into the processor itself. Other processors use a reserved
area of memory as the stack and simply maintain a pointer
register which contains the address of the most recent stack
entry. The integral stack is usually more efficient, since
fewer steps are involved in the execution of a call or a
return. The external stack, on the other hand, allows
virturally unlimited subroutine nesting. It also permits
saving the contents of the other CPU registers, and so
provides for greater flexibility in the handling of
subroutines.

INSTRUCTION REGISTER AND DECODER

Every computer has a word length that is charac-
teristic of that machine. In most eight-bit systems, it is
most efficient to deal with eight-bit binary fields, and the
memory associated with such a processor is therefore
organized to store eight bits in each addressable memory
location. Data and instructions are stored in memory as
eight-bit binary numbers, or as numbers that are integral
multiples of eight bits: 16 bits, 24 bits, and so on.

This characteristic eight bit field is sometimes referred
to as a byte.

Each operation that the processor can perform is
identified by a unique binary number known as an
instruction code. An eight-bit word used as an instruction
code can distinguish among 256 alternative actions, more
than adequate for most processors.

The processor fetches an instruction in two distinct
operations. In the first, it transmits the address in its
program counter to the memory. In the second, the
memory returns the addressed byte to the processor. The
CPU stores this instruction byte in aregister known as the
instruction register, and uses it to direct activities during
the remainder of the instruction cycle.

The mechanism by which the processor translates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, will be intuitively clear to any experienced logic
designer. The eight bits stored in the instruction register can
be decoded and used to activate selectively one of a number
of output lines, in this case up to 256 lines. Each line
represents a set of activities associated with execution of a

particular instruction code. The enabled line can be
combined coincidentally with selected timing pulses, to
develop electrically sequential signals that can then be used
to initiate specifc actions. This translation of code into
action is performed by the instruction decoder and by the
associated control circuitry.

MULTIPLE WORD INSTRUCTIONS

As we have just seen, an eight-bit field is more than
sufficient, in most cases, to specify a particular processing
action. There are times, however, when execution of the
instruction code requires more information than eight bits
can convey.

One example of this is when the instruction references
a memory location. The basic eight-bit instruction code
identifies the operation to be performed, but cannot
specify the object address as well. In a case like this, a two
or three word instruction must be used. Successive
instruction bytes are stored in sequentially adjacent
memory locations, and the processor performs two or three
fetches in succession to obtain the full instruction. The first
byte retrieved from memory is placed in the processor’s
instruction register, and subsequent bytes are placed in
temporary storage, as appropriate. When the entire
instruction has been fetched, the processor can proceed to
the execution phase.

MEMORY SYNCHRONIZATION

As previously stated, the activities of the processor are
referred to a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory’s access time. Once the processor has sent a
fetch address to memory, it cannot proceed until the
memory has had time to respond. Many memories are
capable of responding much faster than the processing cycle
requires. A few, however, cannot supply the addressed byte
within the minmum time established by the processor’s
clock.

Therefore, many processors contain a synchronization
provision, which permits the memory to request a wait
phase. When the memory receives a fetch address, it places
a low level on the processor's READY line, causing the CPU
to idle temporarily. After the memory has had time to
respond, it frees the processor’'s READY line, and the
instruction cycle proceeds.

ARITHMETIC LOGIC UNIT

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU. By way of analogy,
the ALU may be thought of as a sophisticated adding
machine with its keys commanded automatically by the
control signals developed in the instruction decoder. This is
essentially how the first store-program digital computer was
conceived.



The ALU naturally bears little. resemblance to a
desk-top adder. The major difference is that the ALU
calculates by ereating an electrical analogy, rather than by
mechanical analogy. Another important difference is that
the ALU uses binary techniques, rather than decimal
methods, for representing and manipulating numbers. In
principle, however, it is convenient to think of the ALU as
an electronically controlled calculator.

The fundamental operational unit in the ALU is the
accumulator. This is the basic register in which binary
quantities are represented symbolically. Different machines
use slightly different approaches, but in general the
accumulator is both a source and a destination register. A
typical instruction will direct the ALU to add the contents
of some other register to the contents of the accumulator,
and to store the result in the accumulator itself.

The ALU must contain an adder, which is capable of
combining the contents of two registers in accordance with
the logic of binary arithmetic. The provision permits the
processor to perform arithmetic manipulations on the data
it obtains from memory and from its other inputs.

The adder is a minimum provision, but a compre-
hensive one as well. Using only the basic adder, a capable
programmer can write routines which will subtract,
multiply and divide, giving the machine complete
arithmetic capabilities. In practice, however, most ALUs
provide other built-in functions, including hardware
subtraction, Boolean logic operations, and shift capabilities.

The ALU contains flag bits which indicate certain
conditions that arise in the course of arithmetic
manipulations. Flags typically include carry, zero, sign, and
parity. It is possible to program jumps which are
conditionally dependent on the status of one or more of
thse flags. Thus, for example, the program may be designed
to jump to a special routine, if the carry bit is set following
an addition instruction. The example is appropriate, since
the presence of a carry generally indicates an overflow in
the accumulator, and sometimes calls for special processing
actions.

We have touched here very briefly on some of the
features of an ALU, in an attempt to explain their
provisions. However, most of the ALU’s operations are
really outside the province of the logic designer. He never
sees their results directly. It is the programmer who is
chiefly concerned with the capabilities of the ALU, since
they affect directly his ability to construct programs that
produce the. desired results. Readers who require a more
detailed explanation of the arithmetic logic unit are
referred to a good programming text, such as the
8080 Assembly Language Programmer’s Manual.

INTERRUPTS

Interrupt provisions are included on many central
processors, as a method of improving the processor’s
efficiency. To understand the mechanism of an interrupt,
consider the hypothetical situation where two separate
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processors are working simultaneously on two separate
jobs. One processor is working steadily at a low priority
job. The other is working at infrequent intervals on a high
priority assignment. The processor assigned to the high
priority task is chronically underemployed, and we may
readily improve the efficiency of this configuration, as
follows. ,

We use a single processor, but one which is equipped
to sense an external request for service; in other words, to
recognize and interrupt. We set this processor to work on
the low priority job, with the provision that it jump to a
routine designed to service the high priority channel
whenever it receives an interrupt. The processor resumes
the low priority task when it is finished handling the
interrupt. Note that this is, in principle, quite similar to a
subroutine call, except that the jump is initiated externally
rather than by the program.

This is quite acceptable, if the low priority task does
not consume 100% of the processor’s time; that is, if the
processor is not required to run at top speed continuously
in order to meet the requirements of that job. In most cases
this is not a problem, since real-time systems are generally
designed with a considerable safety margin in mind. The
average load on a properly designed system is well below its
peak capacity, to allow for statistically infrequent bursts of
activity, and to allow for some inevitable down time.

The interrupt feature in this simple example permits
us to increase processing efficieny up to 100%. More
complex interrupt structures are possible, in which several
interrupting devices share the same processor but have
different priority levels. Interruptive processing is an
important feature, that enables us to maximize the
utilization of a processor’s inherent capacity.

HOLD

Another important feature that improves the through-
put of a processor is the hold. The hold provision enables
direct memory access operation (DMA).

In ordinary input and output operations, the processor
itself supervises the entire transfer. Information to be
placed in memory is transferred from the input to the
processor, and the from the processor to the designated
memory location. In similar fashion, information that goes
from memory to output goes by way of the processor.

Some peripheral devices, hoever, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer. If any
appreciable quantity of data must be transferred to or from
such a device, then system throughput can be increased
substantially by having the device accomplish the transfer
directly. The processor must temporatily suspend its
operation during such a transfer, to prevent conflicts that
would arise if processor and peripheral attempted to access
memory simultaneously. It is for this reason that a hold
provision is included on some processors. By placing a hold
request, the peripheral with data to transfer can cause the



processor to pause until the DMA is complete. A theoretical
improvement in /O efficiency of up to 100% may be
gained by the judicious use of DMA.

FUNCTIONAL ORGANIZATION OF THE
CENTRAL PROCESSOR MODULE

The Intel 8080 Eight-Bit Parallel 'Central Processor
Unit is the major functional element on the imm8-83
Central Processor Module. All the other logic on the
module supports the functions which the 8080 CPU
performs. This leads to a natural and convenient
distinction, between the ‘‘processor” and its “peripheral
logic.”

There are a number of reasons for relegating certain
functions to support logic, rather than incorporating them
into the processor chip itself. The buffering of address and
data lines, for example, is a high power function, and high
power functions are fundamentally incompatible with small
package sizes. Large, hot-running components not only
increase the size of the package, they increase its
susceptibility to failure. The 8080 is basically a miniature
divice, and for this reason, the buffering functions are
referred to external circuitry.

Much the same argument applies to multiplexing
functions. These too would logically necessitate enlarge-
ment of the package, to enable the device to dissipate the
additional power. Moreover, functions of this kind imply an
expanded number of input and output pins, and this also is
inconsistent with small package size. External logic is
therefore required for multiplexing.

Still other functions are not amenable to integration.
The clock reference oscillator is a prime example. It is not
yet possible to fabricate a stable frequency reference using
monolithic techniques, so that the clock function too must
be provided by peripheral logic.

And finally, some functions are too specialized to be
included on the chip directly. One example is the
programmed display port (output port FF, ¢) which is built
into the imm8-83.

Another would be signal functions such as /0 OUT
on the imm8-83, which are dictated by the particular
application rather than by the processing function. Signals
of this kind are derived by logical conditioning of the
8080’s basic outputs. Though the number of functions is
often modest, incorporating them into a general-purpose
device such as the 8080 would tend to limit the range of
applications which the CPU could serve. Such functions are
therefore omitted from the chip and are left to the
discretion of individual designers to provide.

A number of considerations thus prevent us from
realizing a true ““computer on a chip,”’ even though the vast
majority of the complex functions performed by a classical
“computer’’ are in fact incorporated into the 8080.
Memory, input/output, and control functions such as those
described above are omitted for practical reasons; in spite
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of the fact that their inclusion is technically feasible. The
omission works to the advantage of the systems designer,
who is thereby freed to specify the speed and capacity of
his memory, the number of input and output ports in his
system, and the number and nature of control functions to
be performed by his central processor unit.

The consequence is, however, that the central
processor function is essentially a modular activity, rather
than a true chip function; that the bulk of central
processing activity can be delegated to an all-purpose chip,
but that peripheral logic will almost always be required to
round out the chip’s capabilities. This is the case in the
INTELLEC 8/MOD 80 system.

The imm8-83 therefore consists of the 8080 CPU and

the logic that supports the functions of the processor.
In addition to the 8080 CPU, the module contains the
following functional blocks:

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i) interrupt logic

timing generator
address buffer
data buffer

input multiplexer
status latches
command logic
wait logic

hold logic

(i)  reset generator
(k)

The functional relationship between these blocks is
shown in Figure 2-2.

output port

The 8080 CPU exercises complete control over the
rest of the logic on the module, according to the
instructions it receives from memory.

The timing generator consists of a clock oscillator, a
counter section, level shifting circuitry, and gating logic.
The crystal-controlled oscillator delivers a symmetircal 32
MHz signal to the input of the counter section, which in
turn uses this input to derive two non-overlapping 2 MHz
clock phases, designated ¢q and ¢,. These are applied to
the level shifter and used to drive the 8080 CPU. Logic
circuitry within the CPU generates a SYNC pulse each time
the processor begins a sub-cycle. From the ¢,, ¢5, and
SYNC outputs, the gating logic develops CLKA, CLKB, and
SYNCA signals. Signals produced in the timing section then

“govern all the other activities of the Central Processor

Module.

The address buffer receives its low power input from
the 8080’s sixteen-line address bus. A sixteen-line high
power output is forwarded to the memory and to the 1/0O
peripherals. Note that latching and timing are controlled
internally by the CPU, and that the buffer’s output merely
follows the processor’s address lines. Data on the address



bus specifies the destination of data concurrently on the
module’s main data bus. Either a memory location oran 1/O
peripheral may be specified. The address buffer also
receives a HOLD ACK signal from the hold logic section,
whenever the module acknowledges an outside HOLD
REQUEST. During the time that a hold is in prograss, the
address buffer's output is disabled. Disabling the buffer’s
output enables the requested peripheral to command the
address bus directly during the DMA transfers.

The function of the data buffer is similar to that of the
address buffer. This section receives an eight-line low power
input from the 8080's main data bus, and forwards a high
power eight-line output to memory and to the output
peripherals. All data transferred out of the processor goes
by way of this output bus.

Note however, that somewhat different provisions are
made for disabling the data buffer during hold operations.

Refer to Figure 2-2. Unlike the address buffer, the data
buffer receives an explicit enabling signal (DB OUT) from
the hold logic section. As shown in the diagram, the
peripheral requesting a hold can override the hold logic by
commanding the DB OUT line directly. This becomes
necessary in those cases where the requesting peripheral has
to communicate with memory via the imm8-83’s main data
bus. The data buffer must be enabled during the time that
data is being transferred from memory to the requesting
device, but disabled during the time that data is being
transferred from the requested device to memory. Control
of DB OUT is accorded the peripheral requesting a hold, to
provide for bilateral data transfers. :

The input multiplexer is a three-way switch which
selects and forwards one of three eight-line input channels
to the processor. Input signals from the processor, the
status latches, and the command logic enable the
multiplexer to select data from memory, data from the
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Figure 2-2. CPU Module Functional Block.
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input peripherals, or data from the interrupt bus for input
to the processor.

The 8080's instruction cycle is composed of one or
more machine cycles. The number and kind of macnine
cycles in a given instruction cycle depends upon the
instruction that the processor happens to have fetched from
memory. There are nine possible kinds of machine cycles:

(a FETCH
(b) MEMORY READ
() MEMORY WRITE
(d) STACK READ

(e) STACK WRITE

() INPUT

(g) OUTPUT

(h) INTERRUPT

()  HALT

A description of machine cycles is deferred until
Section 3.3, where we discuss the 8080 CPU. Without
getting tpo involved in a description of the processor’s
activities, however, we may observe that each machine
cycle calls for a slightly different response on the part of
the peripheral logic. To aid in developing the proper control
functions, the CPU outputs status information at the
beginning of every machine cycle. Status latches are
provided to capture this data, for use by the command
logic.

The status latch section receives an eight-line data
input from the module’s data buffer and a CLKA strobing
pulse from the timing generator. These inputs enable the
latches to record the eight status information bits that are
published on the processor’s main data bus at the beginning
of every machine cycle. Status information helps
coordinate the activities of peripheral logic, so that its
responses are appropriately keyed to the internal activities
of the processor.

The command logic obtains it principal inputs from
the status latches and from the 8080 CPU. Other inputs to
this section are the HOLD ACK from the hold logic section
and the IN JAM ENBL from the INTELLEC 8's Front
Panel Controller. Using these, the command logic generates
a WRITE command for the control of external memory, as
well as 1/0 IN and 1/O OUT signals for the control of 1/O
peripherals. 1/O CYCLE and MEM WRITE CYCLE outputs
are available to the INTELLEC 8's console status display.
These, together with the FETCH CYCLE and the
MEMORY READ CYCLE ou