
tel INTEL CORP . 1974

INTRODUCTION v Interrupt Cycle 32
GENERAL DESCRIPTION v Hold Operations 32
SPECI FICA TlONS v Reset 33
THE SCOPE OF THIS MANUAL vi Programmed Display 33

UTILIZATION 33
CHAPTER 1 Installation 33
THE INTELLEC® S/MOD SO SYSTEM OVERVIEW 1 Pin List 34

FUNCTIONAL DESCRIPTION OF MODULES 1
FRONT PANEL CONSOLE OPERATIONS 2
MEMORY REFERENCE OPERATIONS 2

CHAPTER 3

Memory Read Operations 2
THE immS-61 INPUT/OUTPUT CARD 39

Memory Write Operations 2
THE immS-61 INPUT/OUTPUT CARD-

INPUT/OUTPUT OPERATIONS 2
GENERAL FUNCTIONAL DESCRIPTION 39

I nput Operations 3
The Functional Units 40

Output Operations 3
Module and Port Select Operations 40

Teletype Operations 3
Input Operation 40

INTERRUPT OPERATIONS 3
Output Operation 40

PROM PROGRAMMING OPERATIONS 3
Teletype Input Operation 40
Teletype Output Operation 41

CHAPTER 2
THE immS-61 INPUT/OUTPUT CARD-

THE immS-S3 CENTRAL PROCESSOR MODULE 5
THEORY OF OPERATION 41

THE FUNCTION OF A CPU 6
Module Selection 41

The Computer System 6
I nput Operations 41

The Architecture of a CPU 7
Output Operations 43

FUNCTIONAL ORGANIZATION OF THE
Teletype Communications 43

CENTRAL PROCESSOR MODULE 11
immS-61 INPUT/OUTPUT CARD-

SOSO EIGHT-BIT PARALLEL CENTRAL
UTILIZATION 44

PROCESSOR UNIT 14
User-Available Options 44

Architecture of the SOSO CPU 15
I nstatlation Data 45

The Processor Cycte 17
Teletype Modifications 45

I nterrupt Sequences 22
Hoi d Sequences 23 CHAPTER 4
Halt Sequences 24 THE immS-63 OUTPUT CARD 49
Start-up of the SOSO CPU 24 GENERAL FUNCTIONAL DESCRIPTION 49

PERIPHERAL LOGIC 25 DETAILED FUNCTIONAL THEORY 49
Timing Logic 25 Module Decoding 49
Instruction Fetch 26 Port Decoding 49
Memory Reference Operations 26 Output Operations 51
Memory Read and Memory Write 29 CARD UTI LlZATlON 51
I/O Operations 29 User Options 51

CHAPTER 5
THE imm6-28 RANDOM ACCESS MEMORY CARD 53

THE imm6-28 RANDOM ACCESS MEMORY
CARD -GENERAL FUNCTIONAL DESCRIPTION 53

The Four Functional Units
Memory Addressing Operations
Memory Write Operations
Memory Read Operations

THE Imm6-28 RANDOM ACCESS MEMORY
CARD-THEORY OF OPERATION

Physical Memory Implementation
Memory Address Decoding
Memory Read Operations
Memory Write Operations

THE imm6-28 RANDOM ACCESS MEMORY
CARD -UTI LlZATION

Memory Address Coding
I nstallation Data and Requirements

CHAPTER 6
THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD

THE imm6-26 PROGRAMMABLE READ­
ONLY MEMORY CARD -GENERAL
FUNCTIONAL DESCRIPTION

The Four Functional Units
Memory Read Operation

THE imm6-26 PROGRAMMABLE READ­
ONLY MEMORY CARD -THEORY
OF OPERATION

Physical Memory Implementation
Memory Address Decoding
Memory Read Operations
Random Access Enable

THE imm6-26 PROGRAMMABLE READ­
ONLY MEMORY CARD -UTI LlZATION

Memory Address Coding
PROM Installation, Removal,
Programming and Erasure
Installation Data and Requirements

CHAPTER 7

53
53
54
54

54
54
54
56
56

56
56
57

59

59
59
59

60
60
60
60
61

61
61

62
62

THE INTELLEC 8/MOD 80 CONTROL CONSOLE 65
THE INTElLEC 8/MOD 80 CONTROL
CONSOLE-FUNCTIONAL DESCRIPTION 65

Data Display Operations 65
Manual Memory Access Operations 66
Manual I/O Access 67
Interrupt Operations 67
Sense Op~rations 67
Search-Wait Operations 67
Processor Control Operations 68

THE INTELLEC 8/MOD 80 FRONT PANEL CEN-
TRAL CONSOLE-THEORY OF OPERATION 68

Data Display Operations
Manual Memory Access Operations
Manual I/O Access Operations

68
70
70

ii

I nterrupt Operations
Sense Operations

Search/Wait Operations
Processor Control Operations

CHAPTER 8
THE CHASSIS, MOTHER BOARD,
AND POWER SUPPLIES

CHAPTER 9
THE imm6-76 PROM PROGRAMMER MODULE

THE 8702A PROGRAMMABLE
READ ONLY MEMORY
FUNCTIONAL DESCRIPTION
OF THE MODULE

Interface To The INTELLEC 8/MOD 80
THEORY OF OPERATION OF THE MODULE

Data Distribution
Control and Timing
Power Supply

UTILIZATION
Installation
Power Requirements
Pin List

CHAPTER 10

70
70

71
71

75

77

77

78
78
80
80
81
81
83
83
83
83

THE INTELLEC 8/MOD 80 SYSTEM UTILIZATION 87
INTELLEC 8/MOD 80 INSTALLATION 87
SYSTEM I/O INTERFACING 87
INTELLEC 8/MOD 80 SYSTEM
OPERATING REQUIREMENTS 87
EXTERNAL DEVICE CONTROLLER
INTERFACING 91

APPENDIX A
INSTRUCTION SET SUMMARY

APPENDIX B
ELECTRICAL CHARACTERISTICS OF
LOGIC ELEMENTS USED IN THE
INTELLEC 8/MOD 80 SYSTEM

APPENDIX C
ASCII TABLE

APPENDIX D
BINARY-DECIMAL-HEXADECIMAL
CONVERSION TABLES

VII

XIX

XXXXI

XXXXIII

1-1 A Simplified INTELLEC® 8/MOD 80 3-9 TTY Modification 47
Block Diagram 3-10 Teletype Layout 46

2-1 Program Jump 8 4-1 Output Module Functional Block Diagram 49
2-2 CPU Module Functional Block 12 4-2 Output Module Schematic Diagram 50
2-3 8080 CPU Package Configuration 15 4-3 Output Module Timing 51
2-4 8080 CPU Functional Block Diagram 16
2-5 rP1' rP2 and SYNC Timing 17 5-1 RAM Module Functional Block Diagram 53
2-6 State Transition Diagram 20 5-2 RAM Memory Module Timing 54
2-7 Typical Fetch Machine Cycle 21 5-3 RAM Memory Module Schematic Diagram 55
2-8 Interrupt Timing 22
2-9 Hold Operation (Read Mode) 23 6-1 PROM Memory Module Functional
2-10 Hold Operation (Write Mode) 24 Block Diagram 59
2-11 Halt Timing 25 6-2 PROM Memory Module Timing 62
2-12 Oscillator-Counter Timing 26 6-3 PROM Memory Module Schematic Diagram 63
2-13 Timing Generator 27
2-14 PROM Memory Synchronization Timing 28 7-1 Front Panel Logic Schematic Diagram 72
2-15 RAM Memory Synchronization Timing 29 7-2 Front Panel Controller Schematic Diagram 73
2-16 imm8-83 Central Processor Module

Schematic Diagram 30 8-1 INTELLEC® 8/MOD 80 Module Assignments 75

3-1 I/O Functional Block Diagram 39 9-1 PROM Programmer Schematic Diagram 79
3-2 I/O Module Schematic Diagram 42 9-2 PROM Programmer Timing 80
3-3 I/O Module Timing 43 9-3 Power Supply Functional Block 81
3-4 Relay Circuit (Alternate) 44 9-4 Voltage Regulator Loop: Simplified
3-5 Distributor Trip Magnet 44 Schematic Equivalent 82
3-6 Mode Switch 45
3-7 Terminal Block 45 10-1 INTELLEC 8/MOD 80 Rear Panel 88
3-8 Current Source Resistor 46

iii

i-1 INTELLEC® 8/MOD 80 Specifications vi 4-1 imm8-63 Addressing Options 51

2-1 8080 Status Hit Definitions 19 9-1 Pl Pin List 84
2-2 State Definitions 22 9-2 Jl Pin List 85
2-3 CPU Module: D.C. Signal Characteristics 34 9-3 J2 Pin List 85
2-4 CPU Module Output Connector 35 9-4 J3 Pin List 85

3-1 Port Addresses Enabled by 10-1 I/O Port Assignmenw-Module I/O 0 89
I/O Module Jumpers 41 10-2 110 Module To Back Panel Interface Chart 91

iv

GENERAL DESCRIPTION

The INTELLEC® S/MOD SO system (imm8-84A) is
a low-cost computer system, designed to simplify the
development of microcomputer systems which employ
INTEL SOSO microprocessors.

The INTELLEC S/MOD SO system uses the SOSO as its
central processing unit. The SOSO has a basic cycle time of
2.0 microseconds. The system contains a control co~s~le
and provides read-write program memory as a substitute for
read-only memory. Thus the SOSO chip can be accessed via
the control console, and programs can be debugged before
being enabled in read-only memory. Turn around time from
initial system concept to finished product is shortened, and
systems development costs are thus reduced.

The I NTE LLEC 8/MOD 80 system has its own power
supply, cabinet, display and control panel, 8192 bytes (8K)
of Random Access Memory, a Programmable Read-Only
Memory Module with 4K capacity, a PROM Programmer
Module, and an Input/Output Module which contains four
S-bit input ports and four S-bit output ports as well as
provision for serial communications interface.

The Bare Bones SO is an I NTE LLEC S/MOD SO system
without the power supply, display and control console, or
cabinet, and is designed for 4K of RAM memory, rack·
mounting.

Both the INTELLEC S/MOD SO system and the Bare
Bones SO can be expanded up to 16K bytes of memory; in
addition, the I/O capability can be expanded to support six­
teen input ports and sixteen output ports, or four input
ports and twenty-eight output ports.

The standard software for the INTELLEC S/MOD SO
system includes a resident System Monitor, a Text Editor,
and an Assembler. In addition to these INTE LLEC S/MOD
SO resident programs, there are three development programs
available, which are designed for operation on LARGE·
SCALE HOST COMPUTERS. These are a macro cross·
assembler, a microcomputer simulator (lNTERP/80), and a
pL/MT.M·compiler: PL/M is a high-level language that can
"horten program development time significantly.

v

SPECIFICATIONS

The INTELLEC S/MOD SO system is made up of
separate modules, each of which performs a different task in
making up a complete system. These modules are:

1) The immS-S3 Central Processor Module, which op·
erCltes as the Central Processor for the I NTE LLEC
S/MOD SO system. In this capacity, it performs the
following fuctions:

a) It controls the execution of program instruc­
tions, sending the appropriate control signals to
the other modules which make up the INTEL­
LEC S/MODSO system.

b) It performs all of the necessary arithmetic, logi·
cal, and data manipulation operations necessary
for program operation.

c) It controls overall system timing.

2) The imm6-2S Random Access Memory Module,
which provides 4,096 S-bit words of Read/Write
memory for system use. As many as four cards can
be used in a system, for a memory capacity of 16K.

3) The imm6-26 Programmable Read-only Memory
Module, which provides up to 4,096 words of Read­
only memory in increments of 256 words, and
which may be operated in parallel with the system
Random Access Memory. Again, more than one
card may be used, giving a total Read-only memory

capacity of 16K words.

4) The immS-61 Input/Output Module, which pro- .
vides four eight-bit input ports and four eight-bit
output ports for system Input/Output operations.
Two of the input ports and two of the output ports
may be used with integral Teletype communica­
tions circuits to provide Teletype I/O. Up to four
of these cards may be used in a system, giving a
total of sixteen input ports and sixteen output
ports.

5) TheimmS-63 Output Module, which provides eight
latching output ports for system Output operations.

Up to three of these cards may be used in a sys­
tem, giving a total capability of twenty-four output
ports.

relating to setting-up and operating the INTELLEC 8/MOD
80 system is contained in Chapter 10 of this manual, and in
the I NTE LLEC 8/MOD 80 Operator's Manual.

6) The imm6-76 PROM Programmer Card, which gives
the INTE LLEC® 8/MOD 80 system the capability
of programming INTE L 8702A Programmable
Read-Only Memory chips.

THE SCOPE OF THIS MANUAL

This manual provides an understanding of the design
concepts and capabilities of the I NTE LLEC 8/MOD 80
system as a whole and its individual modules, and in addition
provides detailed theory of operation and implementation
information for each module_

7) The Front Panel Controller and Display Console,
wh ich provides a means of controlling program exe­
cution, program debugging, and INTELLEC 8/
MOD 80 operation. It also provides displays of sys­
tem status and information. For a detailed description of INTELLEC 8/MOD 80

operating procedures, including software operation, see the
INTELLEC 8/MOD 80 Operator's Manual. For a detailed
examination of programming at an elementary level, suitable
for an engineer with no previous programming experience,

see the 8080 Assembly Language Programmer's ManuaL

8) The chassis and power supplies.

A summary of the specifications for the I NTE LLEC
8/MOD 80 system is given in Table ;-1. Specific information

rNTELLEC 8/MOD 80 Specifications

SPECIFICATIONS

Word Length 8-bits

Registers Seven 8-bit general purpose registers, two of which are used to hold Memory
Addresses during Memory Reference operations, and one used as the
accumulator.

Instruction Set Seventy-eight instructions, including Memory-index register, index-register-
memory, register-to-register, single register, immediate, and memory arithmetic
and logic instructions, as well as conditional and unconditional branch in-
structions, input/output, and machine instructions.

Arithmetic 8-bit parallel, binary, fixed point, two's complement.

Memory 8192 8-bit words, ReadIWrite; 4096 8-bit words, Read-only. (Expandable to
16,384 words_l

Addressing Direct - up to 16K bytes. (up to 64K using external enclosures}

Cycle Time 2.0 microseconds

Environment 0° - 55° C.

Power Requirements 5V @ 12 A (max); 6 A (typ);
-9V @ 1.8 A (max); 0.5 A (typ);
-12V @0.03A (max); 0.016 A (typ);
(More power may be required tor expanded INTELLEC 8/MOD 80 systems.)

AC Requirement 60 Hz; 115 VAC, 200 Watts

Size INTELLEC 8/MOD 80: 7" x 17 1/8" x 1/4"
Bare Bones 8: 6 3/4" x 17" x 12" (suitable for standard R ETMA 7" x 19"
panel space).

Weight 30 lb.

Table i-1_

vi

The INTELLEC 8/MOD 80 microcomputer develop­
ment system consists of six independent functional

modules and a power supply, housed in a single chassis and

enclosure_ This section describes the interrelationship of the

INTELLEC 8/MOD 80 functional modules, and shows the
part played by each module during typical operations_

FRONT PANEL
r- -CONSOLE C'l - 0

Z
-I

;: :II
m 0
;: r-

'" Z 0 '" :;) -I :II e
ID m -< '" > :II » :II a: e 0
0 "'0 0

~~ +-- r=- :II
MEMORY m en :;; en

,....-t-- (RAM, PROM)

'" 0 z e en en « -I 0 :II
« e »
c C'l -I

-I »
0 0 z e

-I
"'0 e

f-- -I
'--

CPU -
-----t

r DATA INPUT
BUS

INPUT/OUTPUT OUTPUT
MODULE MODULE

I
PROM

PROGRAMMER
MODULE

Figure 1·1. A Simplified INTELLEC 8/MOD 80 Block
Diagram.

FUNCTIONAL DESCRIPTION OF MODULES

Figure 1-1 illustrates the six functional modules of the

INTELLEC 8/MOD 80 system, and shows interconnecting

busses. The six functional modules are:

1) A Central Processing Unit (CPU) which performs
arithmetic, logical and data manipulation operat­

ions.

2) Memory module, which can be Programmable

Read-Only (PROM), Random Access (RAM), or a

combination of the two. Though Figure 1-'
illustrates memory as a single module, it can be
physically implemented as one or more modules,
depending on the amount of memory included in a

system. The memory module provides data and

program storage; a standard system includes two 4K
RAM modules and one 4K PROM module.

3) Input/Output module. Physically there can be up to

four Input/Output modules in an INTELLEC
8/MOD 80 system. Each Input/Output. module
provides four individually addressable 8-bit output

ports. A serial communications facility, which the

INTELLEC 8/MOD 80 system uses for teletype

interface, is included in each module.

4) Output module. Physically there can be up to three

Output modules in an INTELLEC 8/MOD 80

system. Each Output module provides eight

individually addressable 8-bit output ports.

5) A Front Panel Display and Control Console. The

Console provides a means for manually monitoring

and controlling INTELLEC 8/MOD 80 operations.

6) PROM Programmer Module. This module provides a
timing and level shifting circuitry for programming

INTEL's 8702A PROMs.

The functional units of the INTELLEC 8/MOD 80

system are interconnected by the following busses:

Bus (a), the Memory Address bus, carries memory

addresses from the console or the CPU to the Memory,
Input/Output and Output Modules.

Bus (b) the Output Data bus, carries data from the
console or CPU to the Memory, Input/Output and Output
Modules.

Bus (c), the data from Memory bus, carries data
from memory tothe CPU.

Bus (d), the Data Input bus, carries data from input
ports to the CPU.

Bus (e), the Interrupt Instruction bus, allows the
console to transmit a program interrupt to the CPU.

Bus (f), the Control bus, is used to control instruction
execution. Since the console is connected to the control
bus, instruction execution can be controlled from the
console.

Since the console operates in parallel to the CPU, it
contains a considerable amount of parallel logic, including
its own data and address registers; thus there are certain
states in which the CPU remains in control and the console
temporarily suspends operations, and there are other states
in which the console completely takes over machine
operations.

Conceptually, the CPU module provides the INTEL·
LEC® 8/MOD 80 system with its "computer" capabilities.
This module performs arithmetic, logical and data mani·
pulation operations as directed by a stored program.

A stored program is a sequence of numbers (eight
binary digits per number) which encode a sequence of
individual CPU operations. (Frequently an instruction code
is written as two hexadecimal digits rather than eight binary
digits). The sequence of individual instructions that
constitute a program are stored in the Memory module. If
the memory module includes Random Access Memory
(RAM), it can also be used to store temporary data that
may be generated in the course of executing a program.

Almost all computer applications require information
to be transferred between the CPU module and external
devices. Such transfers take place via the Input/Output and
Output modules.

Communications between the INTELLEC 8/MOD 80
system and an operator occur via the Front Panel Console
and teletype.

FRONT PANEL CONSOLE OPERATIONS

Consider how console operations must be performed,
given the hardware organization illustrated in Figure '·1.

Since the console has its own address and data
registers, and since there is a bi·directional bus link
(through the CPU) between the console and memory; data
can be read from memory to console, and written from
console to memory.

2

Although there is no direct path for data from input
ports to the console, performing an input access operation
from the console causes the input datil to be sent through
the CPU anp onto bus (c), where it is displayed on the
console.

There is no direct link between CPU registers and the
console. The system monitor has a register interrogation
capability.

MEMORY REFERENCE OPERATIONS

This section describes memory reference operations as
performed by the INTELLEC 8/MOD 80 system, and is
divided into two subsections. Memory input or read
operations, and memory output or write operations.

Memory Read Operations

A Memory Read operation is performed in order to
obtain data from a certain Jocation in the system memory,
and to bring that data to the CPU. It is performed via the
following steps:

1) The CPU sends a Memory Address to the Memory
modules on the Memory Address bus.

2) The Memory modules send the data contained in
the selected memory location to the CPU on the
Memory Data Input bus.

The Front Panel can perform a manual Memory Read
operation by 'taking over' the Memory Data buses, and by
sending a manually entered Memory Address, rather than a
CPU·generated Address, to the memory modules.

Memory Write Operations

A Memory Write operation is performed in order to
send data from the CPU to a certain selected location in
memory. It is performed in the following steps:

1) The CPU sends a Memory Address to the memory
modules on the Memory Address bus.

2) The CPU sends the data which is to be stored in
memory to the memory modules on the Memory
Output Data bus.

3) The CPU sends a control srgnal to the memory
modules which causes the data to be written into
the selected memory location.

The Front Panel can perform a .manual memory write
operation by taking over the Memory Address and Memory
Output Data busses, and by sending manually entered
Memory Address and Memory Data to the memory module.

INPUT/OUTPUT OPERATIONS

This section describes Input and Output operations as
performed by the INTELLEC 8/MOD 80 system, and is
divided into three subsections.

Input Operations

An Input operation is performed in order to obtain
data from some external device and to bring it into the
CPU, where it can be processed. It is performed via the
following steps:

1) The CPU sends an I/O Address, which specifies
which device is to be used for the Input operation,
to the Input/Output modules on the Memory
Address bus.

2) The Input/Output module responds by sending the
data which is present on the selected Input port
back to the CPU on the Data I nput bus.

An Input operation can also be performed manually
by giving the Front Panel control over the Memory Address
bus. It then sends a manually entered I/O Address and an
I/O read command to the Input/Output modL!le.

Output Operations

An Output operation is performed in order to send
data from the CPU to an external device. It is performed via
the following steps:

1) The CPU sends an I/O address, which specifies the
device to be used for the Output operation, to the
Input/Output and Output modules on the Memory
Address bus. At the same time, the CPU sends the
data which is to be output to the Input/Output
modules on the Output Data bus.

2) The CPU sends an I/O write command to the
modules.

3) The Input/Output module latches the data and
sends the data which the CPU has supplied to the
selected output device.

An Output operation may also be manually executed
by giving control of the Memory Address/Data Output bus
to the Front Panel. The Front Panel sends a manually
entered I/O Address and manually entered data to the
Input/ Output and Output modules.

Teletype Operations

Teletype operations are performed in exactly the same
fashion as normal, non-teletype Input and Output
operations, with the exception that the external device used
in the case of Teletype operations is an integral Teletype
communications circuit (UART) in the Input/Output
module. Teletype data enters the Input/Output module via
input ports 0 and 1; data being sent to the Teletype
proceeds through output ports 0 and 1 on the I/O module.
Chapter 3 explains how to install the Teletype ASR33.

3

INTERRUPT OPERATIONS

An Interrupt operation is performed when an external
device which requires servicing sends an Interrupt signal to
the CPU. This causes the CPU to interrupt its normal
operating sequence, perform the operations required by the
external device, and then return to the point at which it
was interrupted and resume normal operations. An
Interrupt operation is performed in the following steps:

1) The external device sends an Interrupt signal to the
CPU. The CPU stops its normal operation and
acknowledges the interrupt request.

2) The external device sends an Interrupt Instruction
to the CPU.

3) The CPU executes the Interrupt Instruction exactly
as if it were a normal instruction.

Usually, the Interrupt Instruction will be a RESTART
instruction. A RESTART instruction causes the CPU to
branch to a certain location in memory, where an interrupt
service routine can be stored.

An Interrupt operation can be performed manually
from the Control Console. In order to accomplish this, the
Interrupt Instruction is manually entered into the Front
Panel. When an Interrupt switch is depressed, the Front
Panel will generate an Interrupt signal, and will send the
manually entered Interrupt Instruction to the CPU.

In the basic system, only the Control Console initiates
interrupts. The ability to interrupt may be extended,
however, to the user's peripheral devices, in order to
simplify system programming and to increase system
throughput. Some modifications to the system, however,
are necessary.

PROM PROGRAMMING OPERATIONS

The INTELLEC 8/MOD 80 has been designed to offer
an easy means of programming INTEL 8702A Program­
mable Read-Only memory chips. This is done with the
use of the PROM Programming module, and is accomplished
by performing three successive Output operations:

1) Send the address within the PROM which is to be
programmed

2) Send the data which is to be written into the
selected address

3) Send a control word which is used by the PROM
Programmer module to initiate programming

The PROM Programmer is used as the external device
for each of these Output operations. When it receives the
control word, it causes the data specified to be written into
the PROM address selected.

4

The immS-33 Central Processor Module is designed
specifically to serve as the central processing unit (CPU) of
the INTELLEC® S/MOD SO Microcomputer Development
System. Its general purpose architecture permits the CPU
module to perform similar functions in any eight-bit
computer system. Thus the immS-33, like the other
INTELLEC® modules, can be furnished independently on
an OEM basis. All inputs and outputs are TTL-compatible,
to simplify the external interface.

The basic capabilities of the module are obtained
through the use of Intel's SOSO microprocessor. This
processor contains an eight-bit accumulator, six eight-bit
index registers, and an eight-bit parallel arithmetic and logic
unit (ALU). Sixteen latched address lines enable the 8080
to address 65,536 bytes of external memory. As many as
256 eight-bit input ports and 256 eight-bit output ports
may also be addressed .directly. A sixteen-bit program
counter and a sixteen-bit stack pointer permit flexible
handling of subroutines. Logic for the processing of holds
and interrupts is built into the CPU.

The 8080's internal control logic recognizes and
executes 78 different instructions. These are encoded
numerically, in a binary format consisting of one, two, or
three eight-bit bytes. I nstruction categories include:

(a) register-register transfers

(b) register-memory transfers

(c) arithmetic operations, including add and sub-
tract, with and without carry or borrow

(d) Boolean logic operations, including AND, OR,
XOR

(e) decimal arithmetic

(f) input/output (I/O)

(g) stack control

(h) interrupt control

(i) register operate

(j) branch control

5

Five internal status flags enable conditional jumps,
calls and returns, based on carry (overflow-underflow), sign,
zero, parity, and auxiliary carry.

The Central Processor Module contains a crystal­
controlled oscillator and clock generator. These provide a
stable timing reference for all circuitry on the board. The
use of a 2 M Hz clock permits a basic machine cycle of two
microseconds, for those instructions that do not reference
memory during their execution.

Memory interface and control logic are included on
the board. The imm8-83 contains a fully buffered
sixteen-line address bus, which communicates with the
memory's decoding logic. An eight-line data input bus and a
buffered eight-line output bus provide for the actual data
transfers. Logic on the board monitors the status signals
from the 8080 CPU, and generates a R EAD/WR ITE (R/W)
command for the control of external memory.

I/O interface and control are also built into the
Central Processor Module. I/O peripherals share eight of the
module's sixteen address lines with memory, permitting the
processor to identify one of 256 input or 256 output
devices during execution of an I/O instruction. A separate
eight-line input bus provides communication with the input
peripherals, while output devices share the module's
eight-line data output bus with memory. Control signals
generated on the module are available at the edge connector
pins, to identify and synchronize input and output
operations.

A latched eight-bit output port is included on the
imm8-83. It is program addressable (FF I6), and is intended
primarily for convenience in console de-bugging.

The imm8-S3 is equipped with an asynchronous
INTERRUPT REQUEST line and with an eight-bit
interrupt port, enabling it to process external interrupts. A
peripheral device may request service by placing an
appropriate binary code on the interrupt port's lines and
simultaneously activating the INTERRUPT REQUEST line.
By doing so, the interrupting device causes the processor to

execute the instruction whose code appears at the port.
Any of the single byte instructions in the processor',s
repertoire may be used during an interrupt. The restart
(RST) instruction, a one-byte call, is particularly useful for
interruptive processing. A restart causes the processor to
jump to one of eight dedicated memory locations, where
service routines maybe stored. Return to the interrupted
program is accomplished by an ordinary subroutine return
(R ET), or by one of the conditional return instructions.

The Central Processor Module is also equipped with a
HOLD REQUEST line, which enables external devices to
conduct direct memory access (DMA) transfers. During an
acknowledged HOLD REQUEST, the processor suspends its
normal activity. The module's address bus and control lines
(R/W, I/O IN, and I/O OUT) are disabled, relinquishing
control to the active peripheral. The memory input data
bus is multiplexed on to the output data bus to facilitate

write or output operations. This allows the external device
to command the busses and to effect memory transfers
directly.

A RESET input permits restarting the program from
memory location zero. Any INTERRUPT or HOLD in
progress will automatically be terminated by the RESET.
The program counter is returned to "zero". The
accumulator, status flags, and index registers are not
cleared. The H Land 0 E registers may be exchanged.

As a stand-alone CPU, the immS-S3 is almost entirely
self contained. It requires only DC power, at levels of:

+12±.5%VDC @0.06Amperes

+5±5%VDC @" 1.5 Amperes

-9±5%VDC @ 0.1 Amperes

All circuitry is mounted on a 6.1S" x 8.00" printed
circuit board, and signal and power connections enter the
module through a dual 50-pin double-sided PC edge
connector (0.125" centers). No special installation will be
necessary.

The immS-S3 may also be used as a plug-in substitute
for the imm8-S2, to update existing INTELLEC® S/MOD
SO systems. Installation of the Central Processor Module is
straightforward, and the CPU module itself requires no
changes. Minor modifications are necessary, however, in the
case of other modules.

Although the immS-S3's edge connector pins
correspond nominally to those of the immS-S2, it has not
been possible to maintain a strict and complete logical
overlap in the address and control lines. The immS-60 I/O
Module, the immS-62 Output Module, and the Front Panel
Controller will therefore have to be modified slightly.

Intel provides a kit so simplify the conversion of ex­
isting INTELLEC S systems. This contains the immS-S3
module, an immS-61 module, a new front panel controller,
and all MOD SO software. It reduces the conversion to a
simple plug-in swap. Those who elect to modify the
modules they presently have will find the instructions for

6

doing so in the sections of this book that pertain to those
modules.

The following subsections furnish a complete descrip­
tion of the immS-S3 Central Processor Module. The first
describes a generalized processing system, at a fairly elemen­
tary level, to provide background information for those who
are relatively unfamiliar with processors and with the
language used to describe them. Users who feel competent
to discuss processors at an advanced level should skip this
introductory section. The second section describes the
functional organization of the processor module. Detailed
information on the SOSO CPU is given in the third section.
In the fourth section we show how the peripheral logic
supports the functions that the SOSO performs. Finally, in
the fifth section, we give reference information which will
be of value to those planning to use the module outside the
INTELLEC S/MOD SO system.

THE FUNCTION OF A CPU

This section is intended for those who are unfamiliar
with basic computer concepts. It provides background
information and definitions which may be useful in later
sections of this chapter. Those already familiar with
computers may skip this material, at their option. It is
organized to permit quick reference.

The Computer System

The INTELLEC® S is a modular computer system.
This means that the processing functions, the memory
functions, and the input/output functions are built into
separate plug-in cards which are then combined to form a
system. Because the functions of each of the modules are
fairly well-defined, individual plug-ins enjoy a certain degree
of independence. They are advertised as having stand-alone
capability, meaning that they are generally capable of
performing their functions in any system similar to the
INTELLEC® S. The modular organization of this reference
manual intentionally reflects the modularity of the system
it describes.

You must keep in mind, however, that modularity
confers a very limited degree of independence. None of
these modules can. do anything useful outside a system. As
a result, the discussion of any individual mod ule must refer
continually to the activities of other modules in the same
system. It is therefore very important to know something
about the functions that each component in a system must
perform, before discussing the processor module in detail.

A digital computer consists of:

(a)

(b)

(c)

A central processsing unit (CPU)

A memory

Input and output provisions (I/O)

This applies, in essence, to all such computers. It
applies to the INTELLEC 8.

Memory and I/O are relatively simple functions and
are fairly easy to rationalize. The memory serves primarily
as a place to store instructions the coded pieces of data that
direct the activities of the CPU. A group of logically related
instructions stored in memory is referred to as a program.
The CPU extracts these instructions singly, in a logically
determinate sequence, and uses them to initiate processing
actions. If the program structure is coherent and logical,
processing produces intelligible and useful results.

Processing is a complex activity, and one which
requires a lot of explanation. For now, we shall have to be
content with an intuitive understanding of what is meant
by the term. Assume for the moment that the machine
somehow manipulates data arithmetically to produce the
desired result. We shall describe the process later, in detail.

Program instructions are a form of input. The
computer can generate an output entirely on the basis of
instructions and data stored in its memory by the
programmer. In most cases, however, it is desirable to have
input provisions which augment the program as a source of
data. This is not difficult to understand. One of the most
useful. features of the computer is its speed, its abil ity to
react quickly to changes in its data environment or to
process large volumes of data. I n one case, the machine
must have access to information much more rapidly than a
human operator can supply it. In the other, it requires
access to a data bank which can easily exceed its memory
capacity. Both problems can be solved partially by
providing the machine with one or more input ports. The
machine can address these ports and read the data
contained there, in a manner very similar to that used to
read from its memory. The addition of input ports enables
the computer to receive information from external
machinery, at high rates of speed and in large volumes.

Central processing units operate so rapidly that their
responses often seem instanteneous to human operators,
but processing usually requires several stages. Many
individual instructions can intervene between the input of
data and the output of results. Consider the simple addition
of two numbers presented to two different input ports. The
machine must read the number at one port first. It stores
the value obtained in a temporary location, while it reads
the number at the second port. Then the number in
temporary storage is added to the first, to obtain the
desired result. More complex functions than this can
generate many stages of intermediate results, all requiring
temporary storage at some time during the execution of the
program. Thus a secondary function of the memory
becomes apparent, the storage of intermediate data. In the
course of a processing task, the CPU may store data
temporarily in some memory location from which it can
later be retrieved. The processor will generally write into a
portion of the memory not occupied by program
instructions, although the machine can "program itself"

7

under certain exceptional circumstances. Reading and
writing in memory are accomplished by means of program
instructions known as memory referencing instructions, so
called because they specify or imply a memory address as
an integral part of the instruction. Memory referencing
operations will be explained more fully when we describe
the CPU itself.

One or more output ports permit the computer to
communicate the results of its processing to the outside
world. The output may go to a display, for use by human
operators, or it may go directly to other machines whose
responses are controlled by the processor. The output ports
are necessary in either event, if the processor is to perform
any useful function. Output ports are addressable, in much
the same manner as inputs. The input and output ports
together permit the processor to interact with the outside
world.

The central processor unifies the system. It controls
the functions performed by the other components. The
CPU must be able to fetch instructions from memory and
execute them, and it must be able to reference memory and
I/O ports as necessary in the execution of instructions. It
must also be able to recognize and respond to external
control signals, including INTERRUPT, HOLD, and WAIT
requests. These apparently straightforward requirements
imply a certain complexity in the way that the CPU
operates. Some of the features that enable a processor to
perform these functions are described below.

The Architecture of a CPU

TIMING

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the operations
required, fetches the next instruction, performs the
operations required, fetches the next instruction, and son
on. An orderly sequence of events like this requires timing,
and the CPU therefore contains a clock oscillator which
furnishes the refernce for all processor actions. The
combined fetch and execution of a single instruction is
referred to as an instruction cycle. The portion of a cycle
identified with a clearly defined activity is called a state.
And the interval between pulses of the timing oscillator is
referred to as the clock period. As a general rule, one or
more clock periods are necessary to the completion of a
state, and there are several states in an instruction cycle.

PROGRAM COUNTER

The instructions that make up a program are stored in
the system's memory. The central processor examines the
contents of the memory, in order to determine what action
is appropriate. This means that the processor must know
which location contains the next instruction.

Each of the locations in memory is numbered, to
distinguish it from all other locations in memory. The

number which identifies a memory location is called its
address

The processor maintains a counter which contains the
a~dress of the next program instruction. This register is
called the program counter. The processor updates the
program counter by adding "1" ~o the counter each time it
fetches an instruction, so that the program counter is
always current.

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower addresses
contain the first instructions to be executed and the higher
addresses contain later instructions. The only time the
programmer may violate this sequential rule is when the last
instruction in one block of memroy is a jump instruction to
another block of memory.

A jump instruction cOhtains implicitly the address of
the instruction which is supposed to follow it. Since that is
the case, the next instruction may be stored in any memory
location, as long as the programmed jump specifies the
correct address. During the execution of a jump. instruction,
the processor replaces the contents of its program counter
with the address embodied in the jump. Thus, the logical
continuity of the program is maintained.

Program jumps are a convenience for programmers,
and the description of their use can become complicated.
However, a basic use of the jump can be illustrated here:
that where the programmer must interleave program steps
with data upon which the processor is directed to operate:

ADDRESS MEMORY

M OPERATE ON M+3

M+l OPERATE ON M+4

M+2 JUMP TO M+5

M+3 DATA FOR M

M+4 DATA FOR M+l

M+5 DO SOMETHING ELSE

Figure 2-1. Program Jump.

r\
1\
~

II

]
PROGRAM

I NSTR UCTI ONS

}
PROGRAM

DATA

PROGRAM
INSTRUCTIONS

If the jump at location M + 2 were omitted, the
processor would continue to operate on the assumption
thqt the pi"ogram structure was sequential. It would attempt
to fetch and execute the data in location M + 3 and M + 4
as though those locations contained instructions. The
program would most probably produce results quite
contrary to those that the programmer expected.

THE STACK

A special kind of program jump occurs when the
stored program "calls" a subroutine. In this kind of jump,
the processor is logically required to "remember" the
contents of the program counter at the time that the jump

8

occurs. This enables the processor later to resume execution
of the main program, when it is finished with the last
instruction of the subroutine.

A subroutine is a program within a program. Usually it
is a general-purpose set of instructions that must be
executed repeatedly in the course of a main program.
Routines ehich calculate the square, the sine, or the
logarithm of a program variable are good examples of the
functions often written as subroutines. Other examples
might be programs designed for inputting or outputting
data to a particular peripheral device.

To understand the value of subroutines, consider the
case where it is necessary to output five characters to a line
printer, in the course of a 200 step segment of the main
program. Suppose that the program which outputs the
character is the same, regardless of the actual idetity of the
character; in other words that it is possible to write a
generalized program which can output any character that
the main program supplies. And assume further that 20
steps are required for such an operation. We then have two
possible ways of coding this problem.

Ohe possibility is to write the 20 output steps into the
main program, each time we desire to output a character.
The total length of the program will be 200 plus 5x20, or
300 steps in all. The other possibility is to write the 20 step
output program as a subroutine, and cause the main
program to jump to the address of the subroutine (call the
subroutine) whenever it is necessary to output a character.
In this case, the 20 step program need be stored only once.
The total number of instructions in memory will be
200+20, or 220.

Observe that the subroutine in this example will still
be executed five times. The processor will still have to
perform 300 operations, regardless of how we choose to
code this problem. The subroutine structure, however, is
preferred. For one thing, it conserves the programmer's
time, since he need only code the output routine once. For
another, it conserves memory space, for the actual output
instructions occupy only 20 memory locations, rather than
100. These are significant advantages.

The processor has a special way of handling
subroutines, in order to ensure an orderly return to the
main program. When the processor receives a call
instruction, it increments the program counter and stores
the counter's contents in a reserved memory area known as
the stack. The stack thus saves the address of the
instruction to be executed after the subroutine is
completed. Then the processor stores the address specified
in the call in its program counter. The next instruction
fetched will therefore be the first step of the subroutine;

The last instruction in any subroutine is a return. Such
an instruction need specify no address. When the processor
fetches a return instruction, it simply replaces the current
contents of the program counter with the address on the
top of the stack. This causes the processor to resume

execution of the calling program at the point immediately
following the original call.

Subroutine~ are often nested; that is, one subroutine
will sometimes call a second subroutine. The second may
call a third, and so on. This is perfectly acceptable, as long
as the processor has enough capacity to store the necessary
return addresses, and the logical provision for doing so. In
other words, the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has space for
storing three return addresses, then three levels of
subroutines may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addresses built
into the processor itself. Other processors use a reserved
area of memory as the stack and simply maintain a pointer
register which contains the address of the most recent stack
entry. The integral stack is usually more efficient, since
fewer steps are involved in the execution of a call or a
return. The external stack, on the other hand, allows
virturally unlimited subroutine nesting. It also permits
saving the contents of the other CPU registers, and so
provides for greater flexibility in the handling of
subroutines.

INSTRUCTION REGISTER AND DECODER

Every computer has a word length that is charac­
teristic of that machine. In most eight-bit systems, it is
most efficient to deal with eight-bit binary fields, and the
memory associated with such a processor is therefore
organized to store eight bits in each addressable memory
location. Data and instructions are stored in memory as
eight-bit binary numbers, or as numbers that are integral
multiples of eight bits: 16 bits, 24 bits, and so on.

This characteristic eight bit field is sometimes referred
to as a byte.

Each operation that the processor can perform is
identified by a unique binary number known as an
instruction code. An eight-bit word used as an instruction
code can distinguish among 256 alternative actions, more
than adequate for most processors.

The processor fetches an instruction in two distinct
operations. In the first, it transmits the address in its
program counter to the memory. In the second, the
memory returns the addressed byte to the processor. The
CPU stores this instruction byte in a register known as the
instruction register, and uses it to direct activities during
the remainder of the instruction cycle:

The mechanism by which the processor translates an
instruction code into specific processing actions requires
more elaboration than we can here afford. The concept,
however, will be intuitively clear to any experienced logic
de~igner. The eight bits stored in the instruction register can
be decoded and used to activate selectively one of a number
of output lines, in this case up to 256 lines. Each line
represents a set of activities associated with execution of a

9

particular instruction code. The enabled line can be
combined coincidentally with selected timing pulses, to
develop electrically sequential signals that can then be used
to initiate specifc actions. This translation of code into
action is performed by the instruction decoder and by the
associated control circuitry.

MULTIPLE WORD INSTRUCTIONS

As we have just seen, an eight-bit field is more than
sufficient, in most cases, to specify a particular processing
action. There are times, however, when execution of the
instruction code requires more information than eight bits
can convey.

One example of this is when the instruction references
'a memory location. The basic eight-bit instruction code
identifies the operation to be performed, but cannot
specify the object address as well. In a case like this, a two
or three word instruction must be used. Successive
instruction bytes are stored in sequentially adjacent
memory locations, and the processor performs two or three
fetches in succession to obtain the full instruction. The first
byte retrieved from memory is placed in the processor's
instruction register, and subsequent bytes are placed in
temporary storage, as appropriate. When the entire
instruction has been fetched, the processor can proceed to
the execution phase.

MEMORY SYNCHRONIZATION

As previously stated, the activities of the processor are
referred to a master clock oscillator. The clock period
determines the timing of all processing activity.

The speed of the processing cycle, however, is limited
by the memory's access time. Once the processor has sent a
fetch address to 'memory, it cannot proceed until the
memory has had time to respond. Many memories are
capable of responding much faster than the processing cycle
requires. A few, however, cannot supply the addressed byte
within the minmum time established by the processor's
clock.

Therefore, many processors contain asynchtonization
provision, which permits the memory to request a wait
phase. When the memory receives a fetch address, it places
a low level on the processor's READY line, causing the CPU
to idle temporarily. After the memory has had time to
respond, it frees the processor's READY line, and the
instruction cycle proceeds.

ARITHMETIC LOGIC UNIT

All processors contain an arithmetic/logic unit, which
is often referred to simply as the ALU. By way of analogy,
the ALU may be thought of as a sophisticated adding
machine with its keys commanded automatically by the
control signals developed in the instruction decoder. This is
essentially how the first store-program digital computer was
conceived.

The ALU naturally bears little resemblance to a
desk-top adder. The major difference is that the ALU
calculates by creating an electrical analogy, rather than by
mechanical analogy. Another important difference is that
the ALU uses binary techniques, rather than decimal
methods, for representing and manipulating numbers. In
principle, however, it is convenient to think of the ALU as
an electronically controlled calculator.

The fundamental operational unit in the ALU is the
accumulator. This is the basic register in which binary
quantities are represented symbolically. Different machines
use slightly different approaches, but in general the
accumulator is both a source and a destination register. A
typical instruction will direct the ALU to add the contents
of some other register to the contents of the accumulator,
and to store the result in the accumulator itself.

The ALU must contain an adder, which is capable of
combining the contents of two registers in accordance with
the logic of binary arithmetic. The provision permits the
processor to perform arithmetic manipulations on the data
it obtains from memory and from its other inputs.

The· adder is a minimum provision, but a compre­
hensive one as well. Using only the basic adder, a capable
programmer can write routines wh ich will subtract,
multiply and divide, giving the machine complete
arithmetic capabilities. In practice, however, most ALUs
provide other built-in functions, includ ing hardware
subtraction, Boolean logic operations, and shift capabilities.

The ALU contains flag bits which indicate certain
conditions that arise in the course of arithmetic
manipulations. F lags typically include carry, zero, sign, and
parity. It is possible to program jumps which are
conditionally dependent on the status of one or more of
thse flags. Thus, for example, the program may be designed
to jump to a special routine, if the carry bit is set following
an addition instruction. The example is appropriate, since
the. presence of a carry generally indicates an overflow in
the accumulator, and sometimes calls for special processing
actions.

We have touched here very briefly on some of the
features of an ALU, in an attempt to explain their
provisions. However, most of. the ALU's operations are
really outside the province of the logic designer. He never
sees their results directly. It is the programmer who is
chiefly concerned with the capabilities of the ALU, since
they affect directly his ability to construct programs that
produce the. desired results. Readers who require a more
detailed explanation of the arithmetic logic unit are
referred to a good programming text, such as the
8080 Assembly Language Programmer's Manual.

INTERRUPTS

Interrupt provisions are included on many central
processors, as a method of improving the processor's
efficiency. To understand the mechanism of an interrupt,
consider the hypothetical situation where two separate

to

processors are working simultaneously on two separate
jobs. One processor is working steadily at a low priority
job. The other is working at infrequent intervals on a high
priority assignment. The processor assigned to the high
priority task is chronically underemployed, and we may
readily improve the efficiency of this configuration, as
follows.

We use a single processor, but one which is equipped
to sense an external request for service; in other words, to
recognize and interrupt. We set this processor to work on
tbe low priority job, with the provision that it jump to a
routine designed to service the high priority channel
whenever it receives an interrupt. The processor resumes
the low priority task when it is finished handling the
interrupt. Note that this is, in principle, quite similar to a
subroutine call, except that the jump is initiated externally
rather than by the program.

This is quite acceptable, if the low priority task does
not consume 100% of the processor's time; that is, if the
processor is not required to run at top speed continuously
in order to meet the requirements of that job. In most cases
this is not a problem, since real-time systems are generally
designed with a considerable safety margin in mind. The
average load on a properly designed system is well below its
peak capacity, to allow for statistically infrequent bursts of
activity, and to allow for some inevitable down time.

The interrupt feature in this simple example permits
us to increase processing efficieny up to 100%. More
complex interrupt structures are possible, in which several
interrupting devices share the same processor but have
different priority levels. I nterruptive processing is an
important feature, that enables us to maximize the
utilization of a processor's inherent capacity.

HOLD

Another important feature that improves the through­
put of a processor is the hold. The hold provision enables
direct memory access operation (DMA).

In ordinary input and output operations, the processor
itself supervises the entire transfer. Information to be
placed in memory is transferred from the input to the
processor, and the from the processor to the designated
memory location. In similar fashion, information that goes
from memory to output goes by way of the processor.

Some peripheral devices, hoever, are capable of
transferring information to and from memory much faster
than the processor itself can accomplish the transfer. Ifany
appreciable quantity of data must be transferred to or from
such a device, then system throughput can be increased
substantially by having the device accomplish the transfer
directly. The processor must temporatily suspend its
operation during such a transfer, to prevent conflicts that
would arise if processor and peripheral attempted to access
memory simultaneously. It is for this reason that a hold
provision is included on some processors. By placing a hold
request, the peripheral with data to transfer can cause the

processor to pause until the DMA is complete. A theoretical
improvement in I/O efficiency of up to 100% may be
gained by the judicious use of DMA.

FUNCTIONAL ORGANIZATION OF THE
CENTRAL PROCESSOR MODULE

The Intel SOSO Eight-Bit Parallel 'Central Processor
Unit is the major functional element on the immS-S3
Central Processor Module. All the other logic on the
module supports the functions which the 80S0 CPU
performs. This leads to a natural and convenient
distinction, between the "processor" and its "peripheral
logic."

There are a number of reasons for relegating certain
functions to support logic, rather than incorporating them
into the processor chip itself. The buffering of address and
data lines, for example, is a high power function, and high
power functions are fundamentally incompatible with small
package sizes. large, hot-running components not only
increase the size of the package, they increase its
susceptibility to failure. The SOSO is basically a miniature
divice, and for this reason, the buffering functions are
referred to external circuitry.

Much the same argument applies to multiplexing
functions. These too would logically necessitate enlarge­
ment of the package, to enable the device to dissipate the
additional power. Moreover, functions of this kind imply an
expanded number of input and output pins, and this also is
inconsistent with small package size. External logic is
therefore required for multiplexing.

Still other functions are not amenable to integration.
The clock reference oscillator is a prime example. It is not
yet possible to fabricate a stable frequency reference using
monolithic techniques, so that the clock function too must
be provided by peripheral logic.

And finally, some functions are too specialized to be
included on the chip directly. One example is the
programmed display port (output port FF I6) which is built
into the immS-S3.

Another would be signal functions such as I/o OUT
on the immS-S3, which are dictated by the particular
application rather than by the processing function. Signals
of this kind are derived by logical conditioning of the
SOSO's basic outputs. Though the number of functions is
often modest, incorporating them into a general-purpose
device such as the SOSO would tend to limit the range of
applications which the CPU could serve. Such functions are
therefore omitted from the chip and are left to the
discretion of individual designers to provide.

A number of considerations thus prevent us from
realizing a true "computer on a chip," even though the vast
majority of the complex functions performed by a classical
"computer" are in fact incorporated into the SOSO.
Memory, input/output, and control functions such as those
described above are omitted for practical reasons; in spite

11

of the fact that their inclusion is technically feasible. The
omission works to the advantage of the systems designer,
who is thereby freed to specify the speed and capacity of
his memory, the number of input and output ports in his
system, and the number and nature of control functions to
be performed by his central processor unit.

The consequence is, however, that the central
processor function is essentially a modular activity, rather
than a true chip function; that the bulk of central
processing activity can be delegated to an all-purpose chip,
but that peripheral logic will almost always be required to
round out the chip's capabilities. This is the case in the
INTEllEC S/MOD SO system.

The immS-S3 therefore consists of the SOSO CPU and
the logic that supports the functions of the processor.

In addition to the S080 CPU, the module contains the
following functional blocks:

(a) timing generator

(b) address buffer

(c) data buffer

(d) input multiplexer

(e) status latches

(f) command logic

(g) wa~t logic

(h) hold logic

(i) interrupt logic

(j) reset generator

(k) output port

The functional relationship between these blocks is
shown in Figure 2-2.

The SOSO CPU exercises complete control over the
rest of the logic on the module, according to the
instructions it receives from memory.

The timing generator consists of a clock oscillator, a
counter section, level shifting circuitry, and gating logic.
The crystal-controlled oscillator delivers a symmetircal 32
MHz signal to the input of the counter section, which in
turn uses this input to derive two non-overlapping 2 MHz
clock phases, designated <Pi and <P2. These are applied to
the level shifter and used to drive the SOSO CPU. logic
circuitry within the CPU generates a SYNC pulse eilch time
the processor begins a sub-cycle. From the <PI, <P2, and
SYNC outputs, the gating logic develops ClKA, ClKB, and
SYNCA signals. Signals produced in the timing section then

. govern all the other activities of the Central Processor
Module.

The address buffer receives its low power input from
the SOSO's sixteen-line address bus. A sixteen-line high
power output is forwarded to the memory and to the I/O
peripherals. Note that latching and timing are controlled
internally by the CPU, and that the buffer's output merely
follows the processor's address lines. Data on the address

bus specifies the destination of data concurrently on the
module's main data bus. Either a memory location or an I/O
peripheral may be specified. The address buffer also
receives a HOLD ACK signal from the hold logic section,
whenever the module acknowledges an outside HOLD
REQUEST. During the time that a hold is in prograss, the
address buffer's output is disabled. Disabling the buffer's
output enables the requested peripheral to command the
address bus directly during the DMA transfers.

The function of the data buffer is similar to that of the
address buffer. This section receives an eight-line low power
input from the SOSO's main data bus, and forwards a high
power eight-line output to memory and to the output
peripherals. All data transferred out of the processor goes
by way of th is output bus.

Note however, that somewhat different provisions are
made for disabling the data buffer during hold operations.

HLT INT REO

WAIT REO

PROM MOD ENBL

RAM MOD ENBL

--

------r
--

r-- OSC

RESET r--I'>,
LOGIC - TIMING f---+ 1'>:1

GEN. r-- CLKA

r-- CLKB

INT ACK r-- SYNCA

INl 1 1ALT ACK

1'>,

INTERRUPT r---+ 1'>:1
LOGIC

ll:'~" ____ SYNC

:----+ INTE

1
INT "fur'" :,~ ~ HOLD

r------. WR

WAIT HLDA
r------. OBI N

WAIT
LOGIC t

8

+
~' ~

-
HOLD
LOGIC

Refer to Figure 2-2. Unlike the address buffer, the data
buffer receives an explicit enabling signal (DB OUT) frolJl
the hold logic section. As shown in the diagram, the
peripheral requesting a hold can override the hold logic by
commanding the DB OUT line directly. This becomes
necessary in those cases where the requesting peripheral has
to communicate with memory via the immS-S3's main data
bus. The data buffer must be enabled during the time that
data is being transferred from memory to the requesting
device, but disabled during the time that data is being
transferred from the requested device to memory. Control
of DB OUT is accorded the peripheral requesting a hold, to
provide for bilateral data transfers.

The input multiplexer is a three·way switch which
selects and forwards one of three eight-line input channels
to the processor. Input signals from the processor, the
status latches, and the command logic enable the
multiplexer to select data from memory, data from the

ADDRESS
BUFFER '6-

GATE I fl
I/OOUT~

OUTPUT r PORT
FFW

HOLD

CltA

ACK

--
_ osc

9,
¢:! ------

'6-

~ r----

8-

CLKA

ClKB

SYNCA

WAIT

DBIN

HOlO ACK

ADDRESS TO MEMORY
AND I/O PERIPHERAL

TO CONSOLE
DISPLAY

DATA TO MEMORY
AND I/O PERIPHERAL

l F ETCH CYCLE

liNT ACK r L..OBOUT
DB OUT ~ STATUS ~ c=-- LATCHES t-"--)HAi:l'ACi<

MEMORY IN
DATA

f/OIN
DATA

INTERRUPT
INSTRUCTION

I N JAM ENABLE

~ -=--
s-=;-
-=--
s-=;--=--

INPUT
MULTI- 8_
PLEXER

f---+ i5BiN

r r DBIN

Figure 2-2. CPU Module Functional Block_

-
8_

HOLD ACK

12

DATA a=;: Q.

BUFFER ~
GATE

WR_

HOLD ACK

~

I-
0
~ :::l

0 ;;:

COMMAND
lOGIC

--'+

r---+
r-----

(MEM READ CYCLE

STACK

WRITE

I/O IN

I/O OUT

MEM WRITE CYCLE

input peripherals, or data from the interrupt bus for input
to the processor.

The 8080's instruction cycle is composed of one or
more machine cycles. The number and kind of macnine
cycles in a given instruction cycle depends upon the
instruction that the processor happens to have fetched from
memory. There are nine possible kinds of machine cycles:

(a) FETCH

(b) MEMORY READ

(c) MEMORY WR ITE

(d) STACK READ

(e) STACK WRITE

(f) INPUT

(g) OUTPUT

(h) INTERRUPT

(i) HALT

A description of machine cycles is deferred until
Section 3.3, where we discuss the 8080 CPU. Without
getting tpo involved in a description of the processor's
activities, however, we may observe that each machine
cycle calls for a slightly different response on the part of
the peripheral logic. To aid in developing the proper control

functions, the CPU outputs status information at the
beginning of every machine cycle. Status latches are
provided to capture this data, for use by the command
logic.

The status latch section receives an eight-line. data
input from the module's data buffer and a CLKA strobing
pulse from the timing generator. These inputs enable the
latches to record the eight status information bits that are
published on the processor's main data bus at the beginning
of every machine cycle. Status information helps
coordinate the activities of peripheral logic, so that its
responses are appropriately keyed to the internal activities
of the processor.

The command logic obtains it principal inputs from
the status latches and from the 8080 CPU. Other inputs to
this section are the HOLD ACK from the hold logic section
and the IN JAM ENBL from t.he INTELLEC 8's Front
Panel Controller. Using these, the command logic generates
a WRITE command for the control of external memory, as
well as I/O IN and I/O OUT signals for the control of I/O
peripherals. I/O CYCLE and MEM WRITE CYCLE outputs
are available to the INTELLEC 8's console status display.
These, together with the FETCH CYCLE and the
MEMORY READ CYCLE outputs from the status latches,
enable the console logic to identify the machine cycle in
progress.

Wait logic montors the WAIT REQUEST line from the
system memory. If the memory is slow to respond to the
processor's redd or write commands, the wait logic causes
the processor to idle unitl the memory can complete the
transaction. A WAIT signal is available to external circuitry

13

during the time that the processor is idling, and serves to
acknowledge the WAIT REQUEST. A WAIT REQUEST
may be of indefinite length, but the generated WAIT
interval is always an integral multiple of the processor's

clock period.

Neither the imm6-28 RAM Memory Module nor the
imm6-26 PROM Memory Module used with the INTELLEC
8/MOD 80 can respond fast enough to avoid placing the
8080 CPU in a WAIT state. The RAM Memory Module and
the PROM Memory Module have typical access times of
700 nanoseconds and 1200 nanoseconds respectively. The
RAM module therefore requires at least one full wait
interval during every memory reference. The PROM module
requires two. Circuitry in the wait logic section uses the
CPU module's 1/>1 and SYNC timing signals, in conjunction
with external RAM MOD ENBL and PROM MOD ENBL
signal, to generate an automatic WAIT REQUEST of the
desired duration whenever one of these modules is selected.
The imm8-83 is designed to respond to a PROM MOD
ENB L with an override of the delay introduced for the
imm6-28 and 6-26 boards. PROM MOD ENBL may
therefore be used to enable memories capable of responding
to the 8080 without delay:

The hold logic receives a HOLD REQUEST signal from
one or more peripheral devices. It also receives 1/>, and 1/>2
timing signals from the module's timing generator. When a
HOLD REQUEST coincides with the rising edge of the 1/>,
clock pulse, the hold logic forwards a HOLD to the CPU
itself. Logic within the 8080 determines when the
re-clocked hold request will be acknowledge, to ensure that
any processing functions in progress are not disrupted. The
processor will acknoWledge the HOLD within five clock

periods (2.5 microseconds), by sending a H LDA signal to
the hold logic section. After a brief delay provided by 1/>2,
the hold logic responds by:

(a) floating the module's address bus

(b) floating the 8080's data bus

(c) floating the WRITE output line to memory

(d) floating the T70iN output line

(e) floating the I/O OUT output line

This action prevents the processor from exerting any
influence on memory, via the data busses or by means of
control signals. The peripheral originating the HOLD

REQUEST is therefore free to command the memory, until

such time as the HO LD R EQU EST is retracted.

The interrupt logic monitors the INTERRUPT
-=R-=E-=Q-=-U:-::E=-=S=T and the HALT INTERRUPT REQUEST lines

from external devices. This section also receives INT ACK
and HALT ACK signals from the status latch section. The
interrupt logic uses these inputs to develop an interrupt
signal which is forwarded to the processor's INTERRUPT
input. Requests originating at the INTERRUPT REQUEST
and the HALT INTERRUPT REQUEST inputs have much
the same effect. The only significant difference between the
two inputs is that the processor responds to a HA L T

INTERRUPT REQUEST only when it is stopped. Under
those circumstances, an interrupt is required to restart the
machine.

The 8080 CPU provides an interrupt enabling signal
(lNTE} to the interrupt logic, indicating when the
processor's INTER RUPT input has been disabled by the
program in progress. Instructions in the CPU's repertoire
permit the explicit enabling and disabling of this input.
From the INTE signal, the interrupt logic develops an INT
DISABLE signal which flags the processor's status to
peripheral devices. No interrupt requests are recognized
unless the program· expressly enables the processor's
INTERRUPT line. A processor which has been stopped
inadvertently while the INTERRUPT input is disabled must
be reset or brought up from a cold start, in order to restore
it to operation.

The processor module responds to an interrupt by
altering the sequence of events that occurs at the end of the
last instruction cycle. The processor enters an alternative
INTERRUPT machine cycle, rather than the normal
FETCH machine cycle. As it customarily does, the
processor sends out address and status information at the
beginning of the_ machine cycle, but the program counter is
not incremented. An I NT A status bit identifies the machine
cycle as an INTERRUPT.

These are the only unusual events as far as the
processor itself is concerned. I n all other respects, the
INTERRUPT Machine-cycle resembles an ordinary instruc­
tion fetch. Peripheral logic, however, senses the entry into
the interrupt mode. The input multiplexer responds by
selecting the interrupt instruction port instead of the
processor's memory data in port. Thus any eight-bit data
word presented to the interrupt port gets interpreted as an
instruction by the processor.

Any single-byte instruction may be inserted. There
are several possibilities. A halt (HL T) instruction may be
used to stop the processor upon completion of some task.
an external reset will be necessary for restarting the CPU.
Or an output instruction may be used to output the
accumt,lIator's contents during a critical phase of the
programming. Control and debugging are therefore two
possible useds of the interrupt feature.

But by far the most convenient instruction for use
with interrupts is the restart (RST). the RST is one byte
call instruction especially intended for use with interruptive
processing. Its binary instruction field contains three
variable digits that permit the programmer to specify a
jump to one of eight memory locations. The decimal
addresses of these dedicated locations are: 0, 8, 16, 24, 32,
40, 48, and 56. One of these locations can be used to store
the first instruction of a program designed to service the
interrupting device. Or it can store the first byte of an
ordianry three byte call (CALL), to another location where
such a program begins.

An important use of the RST instruction is the
start-up of the processor, following the execution of a halt

instruction. The machine may be re-started by means of an
interruptive jump to memory location 1>10 (or to some
other desired location).

Note that in the INTELLEC 8/MOD 80 system the
operator's console is the only device for which interrupt
capability is provided. Minor modifications, however, could
extend the privilege to other peripheral devices.

Reset logic permits an external device to initialize the
processor. Logic in this section also senses a power-up
sequence, and forces a RESET automatically under those
conditions. External application of a 1.5 microsecond pulse
(minimum) or the interruption of power to the module
restores the processor's program counter to zero. No other
circuitry on or around the chip is affected, except for the
interrupt request latch which is reset.

The built-in output port receives an eight-line I/O
address from the module's sixteen-line address bus
(AI s-As). It also receives an I/O OUT signal from the
command logic. These commands cause the latches in the
output port to register the contents of the module's data
out bus, whenever the decoding logic senses a coincidence
of I/O OUT and the hexadecimal address FF I6 . In the
INTELLEC 8/MOD 80 system, the port's output lines
communicate with indicators on the console panel. This
enables the operator· to examine the contents of the
processor's accumulator, during test and de-bugging
operations.

8080 EIGHT-BIT PARALLEL CENTRAL PRO­
CESSOR UNIT

A brief description of Intel's 8080 CPU is essential to
a thorough understanding of the imm8-83 Central Processor
Module.

The 8080 is a monolithic LSI central processor,
designed for applications that use an eight-bit binary
instruction/data format. It is fabircated using N-channel
silicon gate technology and is furnished in a 40-pin dual
in-line ceramic package; The use of advanced fabrication
and layout techniques has produced an exceptionally fast
microprocessor. The basic machine cycle of the 8080 is two
microseconds, for instructions that do not reference
memory during their execution. This compares with a
twenty microsecond cycle in the ear tier 8008 CPU.

Package geometry and pin configurations are shown
in Figure 2-3. All pins, except the clock inputs, are at TTL
levels.

A list of the 8080's capabilities reads much like a
description of the imm8-83 Central Processor Module itself.
In a very real sense, it is the chip processor that determines
the character of the module. The 8080 CPU has a repertoire
of 78 basic instructions, with provisions for arithmetic and
logical operations, register-register and register-memory
transfers, subroutine handliny, I/O transactions, and
decimal arithmetic. Four internal status flags enable the

user to program conditional branches based on carry, sign,
zero, and parity.

Using its sixteen latched address lines, the 8080 can
access 65,536 (64K) memory locations directly. As many as
256 input devices and up to 256 output devices may be
addressed during I/O operations, using either the upper or
the lower eight address lines (Ao-A? and As-A, 5 are
redundant for the purpose of I/O instructions). The 8080's
inherent addressing capability can be extended further by
the use of bank switching, where one of the output ports is
used to select among several available blocks of memory.

R-ESET

HOLD

INT

SYNC
+5V

3

4

7

INTEL
10 8080
11

12

13
14

15

16

17

18

19

20

40 A"
39 A14

38 A'3

37

36

35
34 As

33 a A7

32 As

31 As
30

29 A3

28 +12V

27 A2

26 A,

25

24

23 READY

22 0,
21 HLDA

Figure 2-3. 8080 CPU Package Configuration.

The 8080 contains 6 eight-bit index registers
(scratchpad). Two of these, the H and the L registers, are
designed to double as an address pointer during the
execution of memory referencing instructions. A sixteen-bit
program counter enables the CPU to address instructions
stored in any portion of memory, and a sixteen-bit stack
pointer permits the unlimited nesting of subroutines (or
multiple-level interrupts). Built-in logic for the processing
of holds and interrupts, and a synchronization provision
for slow memories, round out the CPU's capabilities.

Architecture of the 8080 CPU

The 8080 CPU consists of the following functional
units:

• Register array and address logic

• Arithmetic and logic unit (ALU)

• I nstruction register and control section

• Bidirectional, tri-state data bus buffer

Figure 2-4 illustrates the functional blocks within the

8080 CPU.

15

REGISTERS

The register section consists of a static RAM array
organized into six 16-bit registers:

• Program counter (PC)

• Stack pointer (SP)

• Six S-bit general purpose index registers arranged
in pairs, referred to as B,C; D,E; and H,L

• A temporary register pair called W,Z

The program counter maintains the memory address
of the current program instruction and is incremented
automatically during every instruction fetch. The stack
pointer maintains the address of the next available stack
location in memory. The stack pointer can be initialized
(with a LXI SP instruction) to use any portion of read-write
memory as a stack. The stack pointer is decremented when
data is "pushed" onto the stack and incremented when data
is "popped" off the stack (i.e., the stack grows
"downward").

The six general purpose registers can be used either as
single registers (S-bit) or as register pairs (16-bit). The
temporary register pair, W,Z, are not program addressable
and are only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array via the register-select
multiplexer. Sixteen-bit transfers can proceed between the
register array and the address latch or the incrementer
/decrementer circuit. The address latch receives data from
any of the three register pairs and drives the 16 address
output buffers (Ao-A1s), as well as the incrementer/

decrementer circuit. The incrementer/decrementer is a
purely combinatorial circuit that receives data from the
address latch and sends it to the register array. The 16-bit
data can be incremented or decremented or simply
transferred without any operation being performed.

ARITHMETIC AND LOGIC UNIT (ALU)

The ALU contains the following registers:

• An 8-bit accumulator {ACC and a carry/link
flip-flop (CY)

• An 8-bit temporary accumulator (ACT) and a
temporary carry flip-flop (ACT)

• A 5-bit flag register: zero, carry, sign, parity and
aux il iary carry

• An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per­
formed in the ALU. The ALU is fed by the temporary
register (TMP) and the temporary accumulator (ACT) and
carry flip-flop. The result of the operation can be
transferred to the internal bus or to the accumulator; the
ALU also feeds the flag register.

The temporary register (TMP) receives information
from the internal. bus and can send all or portions of it to
the ALU, the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU
and the internal bus and can transfer data to the temporary
accumulator (ACT) and the internal bus. The contents of
the accumulator (ACC) and the auxiliary carry flip-flop can
be tested for decimal correction during the execution of the
DAA instruction (see Appendix A).

INSTRUCTION REGISTER AND CONTROL

During an instruction fetch, the first byte of an
instruction (containing the op code) is transferred from the
internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of the
decoder, combined with various timing signals, provides the
control signals for the memory, ALU and data buffer
blocks. In addition, the outputs from the instruction

decoder and external control signals feed the timing and
state control section which generates the state and cycle
timing signals.

DATA BUS BUFFERS

This 8-bit bidirectional tri·state buffer is used to
isolate the CPU's internal bus from the external data bus
(Do through D7). In the output mode, the internal bus
content is loaded into an 8-bit latch that, in turn, drives the
data bus output buffers. The output buffers are switched
off during input or non-transfer operations.

In the input mode, data from the external data bus
is transferred to the internal bus. The internal bus is
precharged at the beginning .of each internal state, except
for the transfer state (T3-described later in this chapter).

91 1>2 READY INT RESET 'HOLD

t ~ ~ ~ ~ ~ 1 1
READ/WRITE

INTE HLDA DBIN SYNC WR WAIT AND

r Cp Cp Cp Cp Cp MULTIPLEXER

TEMPORARY REGISTER
TIMING AND

CONTROL ZIS) W(S)
f--

u. REGISTER w
..J

DECIMAL w'
L(S! H(S!

ARITHMETIC
III

a:
w

E(8! D(S)
III

,---+ ACCUMULATOR(S!
(3

C(S) B(S! w
a:

STACK POINTER(1S)

PROGRAM COUNTER(tS!

INSTRUCTION READ/WRITE -
DECODE

AND CONTROL
ACCUMULATOR

LATCH(S!

INCREMENTER
DECREMENTER(1S!

-
ALU(S!

INSTRUCTION - --- REGISTER (S!

ADDRESS LATCH(lSI -.r--
I/O BUS(S)

FLAG(S!
TEMPORARY 110 BUFFER

ADDRESS DRIVER(16) , REGISTER(S! AND LATCH(S!

I
c~ CD

A 15-0

Figure 2-4. 8080 CPU Functional Block Diagram.

16

The Processor Cycle

The 8080 is driven by a two-phase clock oscillator, at
a maximum frequency of 2_08 MHz_ All processing
activities are referred to the period of this clock_ The two
non-overlapping clock phases, labeled ¢l and ¢2, are
furnished by external circuitry_ The ¢l clock divides the
processing cycle into states. A state is the smallest unit of
processing activity (480 ns. when the processor is operating
at maximum speed) and is defined as the interval between
two successive positive-going transitions of the ¢1 clock.
Timing logic within the 8080 uses the clock inputs to
produce a SYNC pulse, which identifies the first state of
every machine cylcle. The SYNC pulse is triggered by the
low to high transition of ¢2, as shown in Figure 2-5.

FIRST STATE OF
'EVERY MACHINE

r--CYCLEi

I ,

SYNC +-__J/

-NOTE.

\1-___ _

SYNC does not occur In the second and third machine cycles of a DAD In­
struction Since these machine cycles are only used for an Internal register-pair

add.

Figure 2-5. ¢1' ¢2 and Sync Timing.

An instruction cycle consists of two functional parts,
the fetch and the execution. Each of these functional parts,
in turn, consists of a number of machine cycles. During the
fetch, a selected instruction (one, two or three bytes) is
extracted from memory and deposited in the CPU's
instruction register. During the execution part, the
instruction is decoded and translated into specific
processing activities. The fetch routine requires one
machine cycle for each byte to be fetched. The duration of
the executive portion of the instruction cycle depends upon
the kind of instruction that has been fetched. Some
instructions' do not require any machine cycles other than
those necessary to fetch the instruction; other instructions,
however, require additional machine cycles to write or read
data to/from memory or I/O devices. The DAD instruction
is an exception in that it requires ·two additional machine
cycles to complete an internal register-pair add.

Every instruction cycle contains one, two, three,
four, or five machine cycles. Each machine cycle, in turn,
consists of three, four, or five states. A state is defined as a
constant interval, equal in length to the period of the clock
oscillator which drives the CPU (a phase). That is, a state is
so defined in all but three cases. Exceptions to the rule are
the WAIT state, the hold (H LDA) state, and the halt
(HL TA) state, described later in this chapter. A moment's
consideration will show that this is reasonable, since the
WAIT, the HLDA, and the HLTA states depend upon

17

external events and are by their nature of indeterminate
length. Observe. however, that even these exceptional states
must be synchronized with the pulses of the driving clock.
Thus the durations of all states, including these, are integral
multiples of the clock phase.

~

To summarize them, each clock phase marks a state;
three to five states constitute a machine cycle; and one to
five machine cycles comprise an instruction cycle. A full
instruction cycle requires anywhere from four to eighteen
phases for its completion (2.0 microseconds to 9.0
microseconds), depending on the kind of instruction
involved.

MACHINE CYCLE IDENTIFICATION

With the exception of the DAD instruction there is
just one consideration that determines how many machine
cycles are required in any given instruction cycle: the
number of times that the processor must reference a memory
address, or an addressable peripheral device, in order to
fetch and execute the instruction. Like many processors,
the 8080 is so constructed that it can transmit only one
address per machine cycle. Thus, if the fetching and
execution of an instruction requires two memory
references, then the instruction cycle associated with that
instruction consists of two machine cycles. If five such
references are called for, then the instruction cycle contains
five machine cycles.

Every instruction cycle has at least one reference to
memory, during which the instruction is fetched. A cycle
must always have a fetch, even if the execution of the
instruction requires no further references to memory. The
first machine cycle in every instruction cycle is therefore a
F ETCH. Beyond that, there are no fast rules. It depends on
the kind of instruction.

Consider some examples. The add-register (ADD r)
instruction is an instruction that requires only a single
machine cycle (FETCH) for its completion. In this one-byte
instruction, the contents of one of the CPU's six index
registers is added to the pre-existing contents of the
accumulator. Since all the information necessary to execute
the command is contained in the eight bits of the
instruction code, only one memory reference is necessary:
that actually used to fetch the instruction. Three states are
used to extract the instruction from memory, and one
additional state is used to accomplish the desired addition.
The entire instruction cycle thus requires only one machine
cycle that consists of four states or four phases of the
external clock (2 microseconds).

Suppose now, however, that we wish to add the
contents of a specific memory location to the pre-existing
contents of the accumulator (ADD M): Althoug this is quite
similar in principle to· the example just cited, several
additional steps will be necessary. An extra machine cycle
will be needed, in order to address the desired memory
location.

The actual sequence is as follows. First the processor

extracts from memory the one-byte instruction word
addressed by its program counter. This takes three states.
The eight-bit instruction word obtained during the FETCH
machine cycle is deposited in the CPU's instruction register
and used to direct activities during the remainder of the
instruction cycle. Next, the processor sends out as an
address the contents of its Hand L registers. The eight-bit
data word returned during this MEMORY READ machine
cycle is placed in a temporary register inside the 8080 CPU.
By now three more clock periods (states) have elapsed. In
the seventh and final state, the contents of the temporary
register are added to those of the accumulator. Two machine
cycles, consisting of seven states in all, complete" ADD M"
instruction cycle.

At the opposite extreme is the save Hand L registers
(SH LD) instruction, which requires five machine cycles.
During a "SH LD" instruction cycle, the contents of the
processor's Hand L index registers are deposited in two
sequentially adjacent memory locations; the destination is
indicated by two address bytes which are stored in the two
memory locations immediately following the operation
code byte. The following events occur:

1) A F ETCH machine cycle, consisting of four states.
During the first three states of this machine cycle,
the processor fetches the instruction indicated by
its program counter. In the fourth state, the
contents of the Hand L registers are transferred to
temporary registers within the chip, Wand Z,
respectively. Data previously held in the Hand L
registers is thus saved, thereby cleari ng Hand L to
receive incoming data.

2) A MEMORY READ machine cycle, consisting of
three states. During this machine cycle, the byte
indicated by the program counter is extracted
from memory and placed in the processor's L
register.

3) Another MEMORY READ machine cycle, con­
sisting of three states, in which the byte indicated
by the processor's program counter is deposited in
the H register.

4) A MEMORY WR ITE machine cycle, of four states,
During the first three states, the contents of the Z
register are transferred to the memory location
pointed to by the present contents of the Hand L
registers. The state following the transfer is used to
increment the Hand L pointers, so that they
indicate the next memory location to receive data.

5) A MEMORY WRITE machine cycle, of three
states, in which the contents of the W register are
transferred to the new memory location pointed
to by the Hand L registers.

18

The "SHLD" instruction cycle contains five machine
cycles and takes 17 states to execute (8.5 microseconds).

Most instructions fall somewhere between the
extremes typified by the "ADD r" and the XHTL instruc­
tion which requires 18 states (9.0 microseconds). The input
(INP) and the output (OUT), for example, require three
machine cycles: a FETCH, to obtain the instruction; a

MEMORY READ, to obtain the address of the object pe­
ripheral; and an INPUT or an OUTPUT machine cycle, to
complete the transfer.

There are nine types of machine cycles that may
occur within an instruction cycle; though no one
instruction cycle will consist of more than five machine

cycles:

(a) FETCH

(b) MEMORY READ

(c) MEMORY WRITE

(dl STACK READ

(e) STACK WRITE

(f) INPUT

(g) OUTPUT

(h) INTERRUPT

(i) HALT

The machine cycles that actually do occur in a
particular instruction cycle depend upon the kind of
instruction, with the overriding stipulation that the first
machine cycle in any instruction cycle is always a FETCH.

The processor identifies the machine cycle in
progress, by transmitting an eight-bit status signal during
the first state of every machine cycle. Updated status
information is published on the 8080's data lines (Do-D7 L
during the SYNC interval. This data may be saved in
latches, decoded, and used to develop control signals for
external circuitry. Table 2-1 shows how the positive-true
status information is distributed on the processor's data
bus.

Status signals are provided principally for the control
of external circuitry. Simplicity of interface, rather than
machine identification, dictates the logical definition of
individual status bits. You will therefore observe that
certain processor machine cycles are uniquely identified by
a single status bit, but that others are not. The M 1 status bit
(D s), for example, unambiguously identifies a FETCH
machine cycle. A STACK READ, on the other hand, is
indicated by the coincidence of STACK and MEMR signals.
Machine cycle identification data can also be valuable in the
test and de-bugging phases of system development.

8080 Status Bit Definitions

DATA BUS
SYMBOLS BIT DEFINITION

HLTA 03 Acknowledge signal for HALT instruction.

INTA* DO Acknowledge signal for INTERRUPT request. Signal should be used to
gate a restart instruction onto the data bus when DBI N is active.

INP* D6 Indicates that the address bus contains the address of an input device
and the input data should be placed on the data bus when DBIN is active.

OUT D4 Indicates that the address bus contains the address of an output device
and the data bus will contain the output data when WR is active.

MEMR* D7 Designates that the data bus will be used for memory read data.

M, D5 Provides a signal to indicate that the CPU is in the fetch cycle for the
first byte of an instruction.

STACK D2 Indicates that the address bus holds the pushdown stack address from the
Stack Pointer.

WO D, Indicates that the operation in the current machine cycle will be a
WRITE memory or OUTPUT function (WO = 0). Otherwise, a READ
memory or INPUT operation will be executed.

*These three status bits can be used to control the flow of data onto the 8080 data bus.

Table 2-1.

STATE TRANSITION SEQUENCE

Every machine cycle within an instruction cycle
consists of three to five active states (referred to as Tl, T2,
T3, T4, T5 or TW).. The actual number of states depends
upon the instruction being executed, and on the particular
machine cycle within the greater instruction cycle. The
state transition diagram in Figure 2·6 shows how the 8080
proceeds from state to state in the course of a machine
cycle. The diagram also shows how the READY, HOLD,
and INTERRUPT lines are sampled during the machine
cycle, and how the conditions on these lines may modify
the basic transition sequence. I n the present discussion, we
are concerned only with the basic sequence and with the
READY function. HOLD and INTERRUPT functions will
be discussed later.

The 8080 CPU does not indicate its internal state
directly, by broadcasting a "state control" output during
each state; instead, the 8080 supplies direct control ouputs
(lNTE, HLDA, DBIN, WR and WAIT) for use by external
circuitry.

Recall that the 8080 passes through at least three
states in every machine cycle, with each state defined by
successive low·to-high transitions of the cf>1 clock. Figu'e
2-7 shows the timing relationships in a typical FETCH
machine cycle. Events that occur in each state are referred
to transitions of the cf>1 and cf>2 clock pulses.

The SYNC signal identifies the first state (Tl) in
every machine cycle. As shown in Figure 2·7, the SYNC
signal is related to the leading edge of the ¢h clock. There is

19

a delay between the low-to·high transition of cf>2 and the
positive-going edge of· the SYNC pulse. There also is a
corresponding delay between the next cfh pulse and the
falling edge of the SYNC signal. Status information is
displayed on Do . D7 during this same interval. Switching
of the status signals is likewise controlled by cfh.

The rising edge of cfh during the Tl also loads the
processor's address lines (Ao-A15). These lines become
fully charged and remain charged until the first cfh pulse
after state T3. This gives the processor ample time to read
the data returned from memory.

Once the processor has sent an address to memory,
there is an opportunity for the memory to request a WAIT.
This it does by pulling the processor's READY line low
during state T2. As long as the READY line remains low,
the processor will idle, giving the memory time to respond
to the addressed data request. Refer to Figure 2-7.

The processor responds to a wait request by entering
an alternative state (TW) at the end of T2, rather than
proceeding directly to the T3 state. Entry into the T w state
is heralded by a WAIT. signal from the processor,
acknowledging the memory's request. A low-to·high
transition on the WAIT line is triggered by the rising edge

of the ct>l clock.

A wait period may be of indefinite duration. The

processor remains in the waiting condition until its READY
line again goes high. The cycle may then proceed, beginning
with the rising edge of the next ct>l clock. A WAIT interval
will therefore consist of an integral number of T w states
and will always be a multiple of the clock period.

RESET

READY· HLTA

READY

SET HOLD F/F

I
I
I
I
I
I HOLD
I MODE

I
I
I
I

L-___ +{)<1-----...1+- ______ J

RESET HOLD FIF

NO

RESET HOLD F/F

NO

SET INT F/F

Figure 2-6. CPU State Transition Diagram.

20

HOLD

INT·INTE

SET HOLD F/F

HOLD

RESET HOLD F/F

RESET HLTA

(1)INTE F/F IS RESET IF INT F/F IS SET.
(2)1 NT F/F IS RESET IF INTE F/F IS RESET.

The events that take place during the T3 state are
determined by the kind of machine cycle in progress. In a
F ETCH machine cycle, the processor interprets the data on
its main bus as an instruction. During a MEMORY READ
or a STACK READ, signals on the same bus are interpreted
as a data word. The processor itslef outputs data on this bus
during a MEMORY WR ITE machine cycle. And during I/O
operations, the processor may either transmit or receive
data, depending on whether an INPUT or an OUTPUT is
involved.

During the input of data to the processor, the 8080
generates a DBIN signal which may be used externally to
enable the transfer. Machine cycles in which DBIN is
available include: FETCH, MEMORY INPUT, READ,
STACK READ, AND INTERRUPT. DBIN is initiated by
the rising edge of ¢2 during state T2 and terminated by the
corresponding edge of ¢2 during T3. Any T w states
intervening between T2 and T3 will therefore prolong
DBIN by one or more clock periods.

The 8080 CPU generates a WR output for the
synchronization of external transfers, during those machine
cycles in which the processor outputs data. These include
MEMORY WRITE, STACK WRITE, and OUTPUT. The
negative-going leading edge of WR is referred to the rising
edge of the first ¢, clock pulse following T2. WR remains
low until re-triggered by the leading edge of ¢, during state
Tl of the next machine cycle. Note that any T w states

T, T; TW'

<P, _n '\ (\

intervening between T2 and T3 of the OUTPUT machine
cycle will necessarily prolong WR, in much the same way
that DBIN is affected during input operations.

All machine cycles of at least three states: Tl, T2,
and T3 as just described. If the processor has to wait for a
response from the peripheral with which it is communi­
cating, then the machine cycle may also contain one or more
T w states. During the three basic states, data is transferred
to or from the processor.

After the T3 state, however, it vecomes difficult to
generalize. T4 and T5 states are available, if the execution
of a particular instruction requires them. But not all
machine cycles make use of these states. It depends upon
the kind of instruction being executed, and on the
particular machine cycle within the instruction cycle. The
processor will terminate any machine cycle as soon as its
processing activities are completed, rather than proceeding
mechanically through the T4 and T5 states every time.
Thus the 8080 may exit a machine cycle following the T3,
the T4, or the T5 state and proceed directly to the Tl state
of the next machine cycle.

Table 2-2 lists the general activities associated with
each state.

T3 T4 ' ~.

n n n
----1L ~m JmiA 1L ----1L ----1L

--- ----------
\

f V) -DATA
SYNC I \ STABLE

READY I

WAIT I \

DBIN r \

STATUS
INFDRMATION DATA ·OP1TlONAL STATES

Figure 2-7. Typical Fetch Machine Cycle.

21

State Definitions

STATE ASSOCIATED ACTIVITIES

T1 A memory address or I/O device number is placed on the Address Bus (A1S _0); status infor-
mation is placed on Data Bus (07 _0),

T2 The CPU samples the READY and HOLD inputs and checks for halt instruction.

TW (optional) Processor enters wait state if READY is low or if HALT instruction has been executed.

T3 An instruction byte (FETCH cycle), data byte (MEMORY READ, STACK READ or INPUT
cycle). or interrupt instruction (INTERRUPT cycle) is input to the CPU from the Data Bus;
or a data byte (MEMORY WRITE, STACK WRITE or OUTPUT cycle) is output onto the
data bus.

T4 States T4 and T5 are available if the execution of a particular instruction requires them;
T5 if not, the CPU may skip one or both of them. T4 and T5 are only used for internal processor
(optional) operations.

Table 2-2.

Interrupt Sequences

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an
interrupt simply by pulling the processor's interrupt (INT)
line high.

request, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable line (INTEl is high, acts in coincidence with the ¢2
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is first completed.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. Internal logic re-clocks the external

SYNC

DBIN

WR

RETURN M1
IINTERNAL)

INTE

INT

INT F/F
(INTERNALI

INHIBIT STORE
(PC+1 J INTERNAL

STATUS
INFORMA TlON

T3

j'"\

-WI\-
PC·1

I

-

-f----I

Figure 2-8. INTERRUPT Timing

T1

h

Wt-
,
,

1\

\

M1

T2 T3

Ifr\- Y'--
W n. jJ\

PC

00 C ----
RST

IINTAJ

\

I

\

I INTA - f--
Ml
wo

22

M2 M3

T4 T5 T1 T2 T3 T1 T2 T3

VL-VL-VL-VL-rL-VL-VL-Y'--
W\ W\ Wt (.J\ l--f\ (.J\ (.J\ jJ\

-- -
\ --I SP·1 A SP·2

-- --- --I X pC H X X pCL

J n r h
\

IL- L-
,--

IX STACr ~X STAe,

The I NTERR UPT machine cycle which follows the
arrival of an enabled interrupt request resembles an
ordinary FETCH machine cycle in most respects. The MI
status bit is published as usual during the SYNC interval. it
is accompanied, however, by an INTA status bit (Do) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU's address lines
during T1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be.
In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter may be saved in the
stack. This in turn permits an orderly return to the
interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable
from an ordinary FETCH machine cycle. The processor
itself takes no further special action. It is the responsibility
of the peripheral logic to see that an eight-bit interrupt
instruction is "jammed" onto the processor's data bus at
T3. In a typical system, this means that the data in bus
from memory must be temporarily disconnected from the
processor's main data bus, so that the interrupting device
can command the main bus without interference.

The processor will treat the code placed on the main
bus at T3 just like any other fetched instruction. Thus, any
of the processor instructions may be inserted during an
interrupt. If the code is the first byte of a multiple word
instruction, however, a special problem is encountered. The
processor will perform succeeding MEMORY READ
machine cycles, fully expecting that the proper information
will be on its bus at the proper time. But the program
counter will advance after the first byte. Because the
program counter advances a return to the interrupted,

Mn

T, T2 Tw T3

--'OR---.

-" ~ " ~

_J\. J\. -1 '\. J\.
I "'-

T\

instruction is not possible. For th is reason, one-byte
instructions are preferable in most systems for use with
interru pts.

The 8080's instruction set provides a special one-byte
call which facilitates the processing of interrupts (the
ordinary program call takes thee bytes). This is the restart
instruction (RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting
device to direct a jump to one of eight fixed memory
locations. The decimal addresses of these dedicated
locations are: 0, 8, 16, 24, 32, 40, 48, and 56. Any of these
addresses may be used to store the first instruction(s) of a
routine designed to service the requirements of an
interrupting device.

Hold Sequences

The 8080 CPU contains provIsions which enable
direct memory access (DMA) operations. By applying a
HOLD to the appropriate control pin on the processor, an
external device can cause the CPU to suspend its normal
operations and relinquish control of the address and data
buses. The processor responds to a request of this kind by
floating its address and data outputs, so that these exhibit a
high impedance to other devices sharing the buses. At the
same time, the processor acknowledges the HO LD by
placing a high on its HLDA output pin. During an
acknowledged HOLD, the address and data buses are under
control of the peripheral which originated the request,
enabling it to conduct memory transfers without processor
intervention.

Unlike the interrupt, the HOLD input must be
synchronized with the driving clock. A HOLD signal should
coincide with the <PI clock pulse, and external re-clocking

M n + 1

ITo'· IT5'· T T, T2

" T\ r n
J\. J\. J'\. V\. ~
----- ----- --- ---

I
I FLOATING

---,

HOLD
REOUEST

HOLD

READY

HOLD F/F
INTERNAL

, HLDA

I '--

_-1 111

I

J

("HOLD SIGNAL MUST BE SYNCHRONIZED
BY THE RISING EDGE OF 0,

Figure 2·9. Hold Operation (Read Mode).

.~- ------ ------- -- --- --_.J1 I
I

~

\
·TO AND TS OPE RATION CAN BE
DONE INTERNALLY,

23

logic must therefore be provided. In a typical system, an
asynchronous HOLD REQUEST will be registered by the
rising edge of the ¢l clock impulse, and the' resulting
synchronized output will drive the CPU's HOLD line. A
coincidence of the READY, the HOLD, and the ¢2 clock
sets the internal hold latch. Setting the latch enables the
subsequent rising edge of the ¢l clock pulse to trigger the
H LDA output.

Acknowledgement of the HOLD REQUEST precedes
slightly the actual floating C?f the processor's address and
data lines. The processor acknowledges a HO LD at the
beginning of T3, if a read or an input machine cycle is in
progress (see Figure 2-9). Otherwise, acknowledgement is
deferred until the beginning of T4 (see Figure 2-10). In
both cases, however, the HLDA goes high within a brief
delay of the rising edge of the selected ¢l clock pulse.
Address and data lines are floated with in a brief delay after
the rising edge of the next ¢2 clock pulse.

To all outward appearances, the preocessor has
suspended its operations once the address and data busses
are floated. Internally, however, certain functions may
continue. If a HOLD REQUEST is acknowledged at T3,
and if the processor is in the middle of a machine cycle
which requires four or more states to complete, the CPU
proceeds through T4 and T5 before coming to a rest. Not
until the end of the machine cycle is reached will processing
activities be completely stalled. I nternal processing is thus
permitted to overlap the external DMA transfer, improving
both the efficiency and the speed of the entire system.

The processor exits the holding state through a
sequence similar to that by which it entered. A HOLD
REQUEST is terminated asynchronously, when the
external device has completed its data transfer. Re-clocking

Mn

T3 T. T,

_f\ h f\ h

T2

logic registers this change at the beginning of the next state
(rising edge of cfJl)' The internal hold latch is reset by the
subsequent leading edge of the ¢2 clock pulse, and the
HLDA output returns to a low level following the leading
edge of the next ¢l. Normal processing resumes with the
machine cycle in progress, or with T1 of the next machine
cycle, depending on whether the HOLD REQUEST is brief
or extended.

Halt Sequences

When a halt instruction (H L T) is executed, the CPU
enters the halt state (TWH) after state T2 of the next
machine cycle, as shown in Figure 2-11. Thine are only
three ways in which the 8080 can exit the halt state:

• A high on the RESET line will always reset the
8080 to state T1; RESET also clears the program
counter and sets the instruction register to zero.

• A HOLD input will cause the 8080 to enter the
hold state, as previously described. When the
HOLD line goes low, the 8080 re-enters the halt
state on the rising edge of the next ¢l clock pulse.

• An interrupt (i.e., INT goes high while INTE is
enabled) will cause the 8080 to exit the halt state
and enter state T1 on the rising edge of the next
¢l clock pulse. NOTE: The interrupt enable
(lNTE) flag must be set when the halt state is
entered; otherwise, the 8080 will only be able to
exit via a RESET signal.

Start-Up of the 8080 CPU

When power is applied initially to the 8080, the
processor begins working immediately. The contents of its

M n + 1 Mn+2

T3 T,

f\ h h f\

_J"L ~ J"L ~ J"L ~~ Jt..

HOLD
REQUEST

HOLD

READY

HOLD F/F
INTERNAL

HLDA

- -------_____ J

--1
I

Figure 2-10_ Hold Operation (Write Mode).

X

,<::;,- ------ ---=r-
t FLOATING

X
'/
I -------r----y-

1\ I

\

'-

I

I \

WRITE DATA

24

program counter, stack pointer, and the other working
registers are naturally subject tc? random factors and cannot
be specified. For this reason, it will be desirable in many
situations to begin the power-up sequence with an
automatic forced RESET.

An external RESET signal of 1.5 microseconds'
duration (minimum) restores the processor's internal
program counter and instruction regester to zero. Program
execution thus begins with memory location zero,
following a RESET. Note, however, that the RESET has no
effect on status flags, or on any of the processor's working
registers (accumulator, indices, or stack pointer). The
contents of these registers remain indeterminate, until
initialized explicitly by the program.

Peripheral Logic

I n this section, we describe the peripheral logic on the
imm8-83 Central Processor Module, the logic which
supports the activities of the 8080 CPU. We begin by
explaining the timing logic, since all the operations of the
module are ultimately referred to signals generated in that
section. Then we give descriptive examples of module
operations, showing how the peripheral logic extends the
basic capabilities of the 8080 processor.

Timing Logic

The timing logic consists of a crystal-controlled clock
oscillator, a counter, level shifting provisions, and
miscellaneous counting and gating circuits. These are shown
on the module schematic, Figure 2-16.

The clock oscillator furnishes a 32 MHz signal to the
input of the counting section, which uses it to develop the
¢1 and ¢2 clock signals used to generate the remaining
timing outputs. The clock oscillator consists of components

M,

T, T2 T3

-" (\ (\ f\

T.

shown in the upper central portion of the modUle
schematic.

A 32 MHz quartz crystal, operating in the
series-resonant mode, is the basic frequency reference. The
crystal acts as a bandpass filter at the desired frequency. It
thus permits a portion of the signal developed across the
capacative divider in the transistor's collector circuit to
reach the emitter, in proper phase to sustain oscillation.
The output from the oscillator stage is coupled to a second
stage, biased to operated as an overdriven amplifier, and the
shaped output of the second is used to drive the
synchronous counter chain.

Four 74S114 high-speed J-K flip-flops constitute the
clock counter. This is a synchronous configuration, with
the steering function obtained through the use of external
coincidence gates. A slight variation on conventional
practice produces a fourth stage output which is
"displaced" with respect to the outputs of the first three
stages, by one full period of the driving clock. In all other
respects, however, the counter resembles the familiar
modul0-16 synchronous counters in common usage.
Idealized output waveforms are shown in Figure 2-12.

The 2 MHz output of the fourth counting stage
becomes the ¢2 clock signal. Coincidence in the outputs of
the third and fourth stages generates the ¢, clock. As
Figure 2-12 shows, this produces two non-overlapping clock
signals, with characteristic pulse widths of 125 and 250
nanoseconds and separation intervals of approximately 32
and 94 nanoseconds.

The ¢, and ¢2 clock phases are applied to the inputs
of an MH0026 level shifter and used to drive the 8080's
clock inputs. Timing logic on the processor produces a
SYNC output, derived from ¢2. Then SYNC and clock
signals are fed to the gating logic.

M2

T, T2 TWH TWH

{\ h f\ h

-~ ~ ~ ~ ~ ~ ~ ~

SYNC

D81N

WAIT

STATUS
fNFORMATION

Figure 2-11. Halt Timing_

I PC

I

I

\

I \

f/MEMR
M,

wo

25

-- ------- -------
I

--- --- ------- -------

I \

X MEMR
HlTA

wo

In the gating section the SYNC and the <PI clock are
combined in a 74HOO NAND-gate section. The coincidence
of these two signals produces the CLKA output. CLKA is

used as a strobe on the module, to register the status
information sent out at the beginning of each processor

machine cycle. After passing through cascaded buffer
sections, the SYNC signal becomes CLKB. CLKB is

available at the PC edge connector, for use by the

INTELLEC 8's Front Panel Controller. A 7493 binary

counter in the gating logic derives a one-eighth submultiple

of the <PI clock pulse, and this too is made available to logic
on the INTELLEC 8's Front Panel Controller. This pulse,

known as the SYNCA, is used to synchronize service

requests originating at the Console and Display Panel.
Figure 2-13 shows the timing of these signals.

I nstruction Fetch

Refer to the schematic for the Central Processor

Module, Figure 2·16. An instruction fetch machine cycle
(FETCH) is the first part of every instruction cycle. The
events that take place during an instruction fetch are as
follows.

During the Tl state, the processor transmits the

contents of its internal program counter to memory, via the
8080's sixteen address lines. Assuming that no holds are in

progress, the address data passes through the sixteen

enabled tri-state buffers of the address buffer section and is
presented to external memory. Data placed on the address

bus remains stable until the T4 processing state.

Status information is also broadcast during the Tl
interval, on the processor's eight data lines. Again assuming

the absence of a hold, data on this bus passes through the
eight parallel tri-state buffers of the data buffer section and
is forwarded to the status latches. Eight Intel. 3404 Hex

32 MHz
CLOCK

CNTR "A"

CNTR "8"

CNTR "C"

CNTR "0"

Inverting Latch sections are used to register the status
information. The strobing input to these latches is the

CLKA signal from the timing section. Status information

reflecting the machine cycle in progress is thus recorded at
the beginning of every processor machine cycle. During a

FETCH machine cycle, the following status bits are
produced: M I , MEMR, and RI/WO.

Status information is cleared from the processor's

data bus during the T2 state, in preparation for the data to

be returned form memory. Such data must be present and
stable at least 20 nanoseconds prior to the end of the T2
state. Neither the PROM Memory Module nor the RAM

Memory Module used with the INTELLEC 8/MOD 80 is
capable of respondi ng that fast, and the automatic wait
logic comes into play accordingly.

Refer to the module schematic, Figure 2·16. The

logic used to generate the appropriate wait request consists

of two 7474 latch sections and two 7400 NAND-gate

sections, shown on sheet 2.

Consider first the case where the PROM module is
selected. The PROM MOD ENABLE line (pin #97) will be

high, and the RAM MOD ENABLE line (pin #93) will be

low. At the beginning of a machine cycle, the SYNC pulse

from the timing generator is gated through the 8-9·10
section of the quad NAND-gate A18 to reset both of the
7474 latch sections. The Q outputs of both sections will

thus be high, following the rising edge of the Tl-<P2 clock

pulse. The high at A 1-8 is applied to A27-2, as shown on
sheet 1, re-clocked by <PI, in a 7474 latch section (A5), and
applied as a low to the CPU's READY pin. This indicates a

wait request to the 8080, and the CPU responds by entering

the T W state instead of proceeding directly to the T3 state.

Referring back to sheet 2, observe that the'D input of

the upper latch section is connected through a pull-up to

r-- 94 ns --1---_ 125 ns ---1---r- 31 ns

1------- 250n'-------1

Figure 2-12. Oscillator-Counter Timing.

26

v CC. An inverted <P2 clock is directed to the clock input of
this latch, which is set accordingly by the trailing edge of

<P2' Detailed timing is shown in Figure 2-14.

The resulting low at AI-6 is forwarded to A 18-1,
which applies a high to the 0 input of the lower latch
section. With its 0 input now high, the latch is set by the
trailing edge of the next ¢2 pulse. The latch's Q output goes
low, is re-clocked by <PI as shown on sheet 1, and is
presented as a READY indication to the processor, with the
result that the WAIT state is terminated with the next <PI
clock pulse. By referring to the timing diagram in Figure
2-14, we can see that two clock periods have elapsed
between the processor's exit from T2 and its entry into T3.
This additional one microsecond interval gives the PROM
Memory Module sufficient time to respond to the address
from the Central Processor Module, and the machine cycle
may proceed.

Consider next the sequence of events that takes place
when the RAM module is selected. I n this case, both the
RAM MOD ENABLE and the PROM MOD ENABLE lines
shown in Figure 2-16 will be high. The SYNC pulse will
again reset the two 7474 latch sections shown on sheet 2.
And again, the Q output of the lower latch will be
re-clocked by <PI and forwarded to the processor as a low
signal level, indicating a wait request. Timing of this
sequence is shown in Figure 2-15.

I n the present case, however, the high on the RAM
MOD ENABLE line causes the A18:1-2-3 NAND-gate
section to forward a high to the 0 input of the lower 7474
latch section. The trailing edge of the <P2 pulse occurring
during T2 will set this latch, and the wait request to the

T1 T2 T3 T4

.p, CLOCK

.p2 CLOCK

SYNC
-----'

T5

processor will be terminated by the next <PI clock pulse.
With reference to the timing diagram, we can see that the
res'ulting WAIT interval is only half that generated when the

PROM module was selected. The RAM module is inherently

faster than the PROM module, and the 0.5 microsecond
waiting period enables it to respond to the imm8-83's ad­
dressed request.

The Central Processor Module also contains synchro­
nization provisions for other kinds of memory. Two
possibilities are envisioned: those where the memory's
access time is even greater than that specified for the PROM
Memory Module. Where the imm8-83 is used in conjunction
with other memories, selection logic will clamp the PROM
MOD ENABLE line low. With this condition prevailing, the
A18:8-9-10 NAND-gate section will be inhibited, and the
SYNC pulse from the timing logic will be unable to reset
the two 7474 wait latches as previously described. A 1-8 will
be high continuously, and no wait request will reach the
processor by that route. In this case, it is the responsibility
of the selected memory module or controller to generate a
WAIT REQUEST as necessary.

Memories with access times under 500 nanoseconds
need no synchronization but those whose access times

exceed this figure will require it. A wait is initiated from
outside the CPU module by clamping the WAIT REQUEST
line low. Figure 2-16 (sheet 1) shows the wait logic. WAIT
REQUEST enter the module at pin #21. They are inverted,
gated through the 1-2-3 section of A-27, and applied to the
o input (pin #2) of A5. A5 is the same 7474 latch section
used to re-clock internally generated wait requests. It
receives a <PI pulse at its clock input and produces a

T1 T2 T3 T4

CLKA ______ ~rlL ____ _+----------------------JrlL-------------------~-----
CLKS

SYNCA ~----------------~I

Figure 2-13. Timing Generat'oi'

27

synchronized wait request at its output. The low which is
applied to the processor's READY input causes the
processor to idle, until such time as the WAIT REQUEST is
removed. Note that the re-clocking mechanism requires that
a request be terminated by the beginning of the T W phase,
in order to guarantee an exit from the T W state at the
beginning of the next clock phase.

When synchronization has been achieved, the FETCH
machine cycle proceeds. It becomes the responsibility of
the multiplexing logic to select the memory's reply and
forward it to the processor. The I NP and the I NTA status
bits from the status latch section, and the DB I N from the
8080 COU, enable the multiplexing logic to perform this
function.

Refer to Figure 2-16. The multiplexing logic is shown
at the left of sheet 1, and consists of two pairs of cascaded
8-to-4 line multiplexers type 74S257 and 74S157. These
are labelled A22, A23, A30 and A31 on the schematic.
Inputs to A3()' and A31 consist of the eight-line data in bus
from memory, and the eight-line data in bus from the input
peripherals. The multiplexer discriminates between these
two eight-line inputs on the basis of a control signal
furnished to pin #1 of both units. A high level here causes
the multiplexers to select data from memory, while a low
causes them to select data from the other input devices.

The selected eight-line output of the first multi­
plexing stage is forwarded to inputs on a similar second
stage. The other eight-line input to the second stage comes
from the module's interrupt instruction port. Like the first
stage, the second selects one of the two inputs, on the basis

SYNC

READY

WAIT

RAM MOO EN
At-12

A 17-3

Figure 2·14. PROM Memory Synchronization Timing.

28

of the signal at the pin #1 inputs of the two multiplexers. A
high selects the output of the first multiplexing stage, while
a low selects the interrupt instruction port.

The output of the second multiplexing stage is
connected directly to the processor's eight-line data bus
(00 -07). Observe, however, that the second stage of the
multiplexer requires an explicit enabling input. In the
absence of a low on pin #15 of the two units, the outputs
of the multiplexers are in a floating, high-impedance state.
The ability to entirely disable all inputs to the main bus
enables the bus to be used for bilateral exchanges of data.
During output, the input bus is disabled, to prevent the
conflicts that could arise if the processor and one or more
input devices were competing simultaneously for the use of
the bus.

To understand the input gating mechanism during a
FETCH machine cycle, refer to Figure 2-16 (sheet 2). The
first stage of the input multiplexer is controlled by the INP
status latch. During machine cycles in which memory is
referenced, the output of this latch is high. And assuming
that no IN JAM ENABLE is present (this external function
occurs only during the artificial input mode, "sense"), high
is therefore produced at the output of A32-8. This high
causes the first stages of the multiplexer to select and
forward data from memory to the input of the second
multiplexer stage.

The second stage of the multiplexer is controlled by
the I NTA status latch, shown on sheet 1 of the module
schematic. This status bit is low only during an
INTERRUPT sub-cycle. During a FETCH, the INTA latch
forwards a high to the control input of the second

multiplexer stage, causing it to select and forward the data
from the first stage to the processor.

When the processor is ready to receive data, it
generates a DBIN output signal. The rising edge of this
signal coincides with the rising edge of the T2-¢2 clock, and
DBIN remains active untiJ reset by the leading edge of the
T3-¢2 clock. This signal is applied to a 7402 NOR-gate of
t:,e multiplexer. Thus the previously addressed instruction
is finally gated through from memory, and stored in the
processor's instruction register.

Some instructions will cause the processor to enter
F ETCH-T4 and FETCH-T5 states. But the activity of the
peripheral logic is completed with the return of the
instruction from memory. Where T4 and T5 states are used,
they are reserved solely for internal processor functions.

The fetched instruction may be executed immedi­
ately, completing both the FETCH machine cycle and the
instruction cycle. Or it may cause the processor to execute
one or more additional memory references. These are
described in the next section.

Memory Reference Operations
(Memory Read and Memory Write)

Every operation that the CPU performs is preceded
by a FETCH machine cycle such as that just described. In
the case of certain instructions, it may be necessary to
reference memory one or more additional times in order to
completely execute the command.

I nstructions that reference memory in the course of
their execution do so in a manner very similar to that used
to fetch instructions. One major difference is that the
address of the referenced location may be furnished by the
processor's internal Hand L pointer registers, rather than
by the program counter. But during MEMORY READ and

SYNC

READY

WAIT

A'73 __ ~

Figure 2-15. RAM Memory Synchronization Timing.

29

MEMORY WRITE machine cycles, the addressing, multi­
plexing and gating functions are handled in much the same
way as they are for an instruction fetch.

As far as the peripheral logic is concerned, there is
one important difference. The processor generates a DBIN
signal during those machine cycles in which it intends to
input data from memory. During those machine cylces in
wh ich the processor outputs data to memory, it generates a
WR output signal to cue the transfer.

A MEMORY READ machine cycle is accompanied by
a DBIN signal. The peripheral logic thus handles it in
exactly the same way as a FETCH. A MEMORY WRITE
machine cycle is slightly different. The absence of DBIN
inhibits the input multiplexer, and logic on the imm8-83
conditions the processor's WR output, to produce a WR ITE
command for the control of memory.

Refer to sheet 2 of the module schematic. As shown,
the processor's WR output is coupled through an inverter
section to pin #4 of A2. Here it is ANDed with the negative
output of the OUT status latch, to produce a signal which is
low only during the WR portion of a MEMORY WRITE
machine cycle. This output is buffered in a tri-state section,
to become the WR ITE output to memory.

In the course of a MEMORY WRITE machine cycle,
address and status information are transmitted just as they
are in a MEMORY READ. During the T2 state, however,
the processor places the contents of its accumulator on the
main data bus where it is forwarded to the memory's data
inputs. The WRITE output synchronizes the transfer,
completing the write machine cycle.

1/0 Operations

All input and output operations require three
machine cycles: a FETCH to obtain the instruction, a

8 7 6 5 4 3 2

o o

"'I:J ...
0

ii ...
0 ... c
~

c
CI. c
iii'
~ :r
3
DI
C'.
n
C
iii·

11:1 ...
DI
3 B

~
CD
CD
:-

rn" . ~. rn
!:

A

8 7 6 5 4 3 2

"TI 8 7 6 5 4 3 2
cC'
c ..
(I)

~
sn

0 0
3
3
<lO
00
w
(1
(I)
:I
r+ ..
9!.
"Q ..

"" 0
()
(I)
III
III
0 '" ... C #'IIt!(UIt_Ef) DI!iP,,,,,, C
s: (twnUT ,.,. .,~ ..)

0 ;;;
Co
c
iii
en
()

w ::T
(I) - 3
III .. r+
(;'

T@ 0
iii' _i

CCI ...
III

B 3 B

en
::T
(I) iii (I)
r+ "'" ~-.. ~ _F:- c:, ~""

~ _. ~
];.: I~~~ ..

-~ r"" letl"" '; : roc .. v;;-.iif I'K r~; - -
'''\:l [:at"' r'!et ~,~

'A A

8 7 6 5 4 3 2

MEMORY READ to obtain the eight-bit address of the
peripheral device involved, and an INPUT or an OUTPUT
to execute the transfer. FETCH and MEMORY READ have
already been described. Execution is described below.

The first byte that the processor fetches from
memory indicates the kind of transfer to be conduced. The
second byte, store immediately following the first, contains
the eight-bit address of the object peripheral. Thus, one of
256 input devices or 256 output devices may be designated
in such a transfer. Having fetched these two bytes from
memory, the processor proceeds as follows.

The third machine cycle is designated an INPUT or an
OUTPUT, depending upon the instruction byte originally
fetched. An INPUT machine cycle is identified by an INP
status bit, published during T1 as usual. An OUTPUT
machine cycle, on the other hand, will be identfied by an
OUT status bit. In both cases, the address of the designated
peripheral is also sent out during T1. Address data on lines
Ao-A7 is repeated on lines As -A15 •

In an input operation, status information is cleared
from the main data bus during the T2 state. Address data
remains stable, however, throughout the remainder of the
machine cycle. The output of the INP status latch is
buffered in a tri-state section and made available the
module's edge connector (I/O IN), to enable the transfer
externally. Details are shown on the module schematic,
Figure 2-16 (sheet 2).

Observe also that the I/O IN signal is applied to
A32·13. The resulting high at the gate's output is inverted
subsequently and routed to the control input of the input
multiplexer's first stage. You will recall that a low at this
point causes the multiplexer to select lind forward data on
the peripheral input bus to the second stage multiplexer.
The second stage, enabled by a DBIN signal from the
processor, in turn forwards the input data to the processor's
main bus. There it is picked up and stored in the 8080's
accumulator register.

In an output transfer, status information is again
cleared from the processor's main data bus during the T2
state. It is replaced, however, with the eight-bit data word
stored in the processor's accumulator. Just as in the case of
input, the address lines remain stable throughout the
machine cycle. Inputs to the processor's main data bus are
inhibited by the absence of DBIN, and the CPU generates a
WR output signal to implement the data transfer.

Referring again to sheet 2 of Figure 2-16, observe
that WR is inverted and appl ied to A 18-4. There it is AN Oed
with the inverted output of the OUT status latch, producing
an 1[0 OUT signal which synchronizes the external transfer.
Output data from the processor thus passes to its addressed
destination, completing the output cycle.

Interrupt Cycle

From the point of view of the 8080 CPU, the
interrupt cycle is simply a modified FETCH machine cycle.

32

Externally, the operation of the CPU appears much the
same. The sequence is as follows:

~====~~~==~~ An incoming INTERRUPT REQUEST enters the
Central Processor Module asynchronously at pin #42, as
shown in Figure 2-16 (sheet 1). It is gated through the
11-12-13 section of a 7400 NAND-gate (A2), and applied to
the clock input of a 7474 latch section (A4). Here the
request is stored, until the processor can properly acknow­
ledge it. The high at the latch's Q output is forwarded
directly to the 8080's INTERRUPT input.

After completing the machine cycle in progress, the
processor acknowledges the interrupt. This it does by
entering an alternative INTERRUPT machine cycle, rather
than proceeding directly to the next instruction fetch. As
we explained, the processor transmits an address during the
INTERRUPT-T1 state, but the internal program counter is
not incremented. As a result, the logic sequence of the
interrupted program is maintained. When the interrupt has
been processed, the main program may therefore be
resumed with no loss of continuity.

The processor publishes an INTA status bit during
T1, identifying the machine cycle in progress as an
INTERRUPT machine cycle. This bit is saved in the INTA
status latch, and presented at the module's edge connector,
as an external acknowledgement of the INTER RUPT
REQUEST. At approximately the same time, the 8080 CPU
disables its INTERRUPT input. This is an internal processor
function, but the resulting low at the processor's INTE
output is buffered and made available at the edge
connector, to indicate that the INTERRUPT facility has
been disabled.

The output of the INTA status latch is forwarded to
the control pin of the input multiplexer's second stage,
causing the multiplexer to select and forward data at the
interrupt instruction port to the processor's main data bus.
Thus the processor interprets data at the interrupt port as
an instruction, and executes it accordingly. The Central
Processor Module returns to its normal mode of operation
as soon as the INTERRUPT cycle is completed.

Note that the I NT A status bit is used with in the
module to reset the interrupt request latch, removing the
request from the processor as soon as it has been
acknowledged. By terminating the request promptly, the
module's interrupt logic ensures that a spurious second
INTERRUPT cycle is not generated inadvertently.

Hold Operations

The peripheral device requesting a hold applies a
HOLD REQUEST at pin #51 of the Central Processor
Module. The request is forwarded directly to the 0 input of
a 7474 latch section where it is re-clocked and transmitted
to the HOLD input of the processor. As explained, the
8080 CPU responds to such a request during the next T3
(or T4) state, by floating its address and data busses and by
transmitting a HLDA signal which acknowledges the HOLD
REQUEST.

If you refer back to Figures 2-9 and 2-10, however,

you will observe that there is a brief delay between the
rising edge of the H LDA signal and the actua I floating of
the busses. This makes it advisable to re-clock the H LDA,
before using it to acknowledge the request externally. To
achieve this purpose, H LDA is applied to the D input of a
7474 latch section (A5) and re-clocked by the ¢2 timing
pulse. The output of the latch, which now coincides with
the processor's internal activity, is buffered and made
available at pin #2 at the HOLD ACK signal.

Refer now to the module schematic, Figure 2-16
(sheet 11. Note that the re-clocked output of the hold ack­
nowledge flip-flop is also used by circuitry on the module
to perform the following functions:

a) float the address bus

b) float the data output bus

c) float the I7O'iN control line

d) float the I/O OUT control line

e) float the WRITE control line

f) enable the second stage of the input multiplexer

g) float the DBOUT control line

These functions may be verified by tracing out the
distribution of the HOLD ACK signal, from its origin at
A5-9 to the various points shown on the schematic diagram
(Figure 2-16, sheet 1 and sheet 2). They assure the request­
ing peripheral complete control of the memory's busses and
control lines, until such time as the external HOLD
REQUEST is removed.

Note that the input multiplexer has to be enabled
explicitly by the HOLD ACK signal. This is necessary,
since the memory's data output lines have no other way of
communicating with the input of the requesting peripheral.
Note too, that the module's data output lines are inhibited
by their common enabling line through the 8-9 section of
A25. A25 is placed in a high impedence state with passive
pull up allowing the requesting peripheral to override the

hold logic when receiving data. from memory. By com­
manding the module's DB OUT line directly, the DMA
device can establish continuity between, its input lines and
the output lines from memory.

Whenever two or more peripherals in the same system
have DMA capability ,there is always a chance of conflect.
One device may request a hold while the other is already in
the process of conducting a transfer. Finding the HOLD
ACKNOWLEDGE line enabled, the requesting device is
liable to proceed with its intention to transfer data. It will
come into direct conflict with the first device.

To prevent this possibility, the processor module
maintains a BUS BUSY status line. Pin #53 of the module
is returned internally to the +5 Volt supply, through a 1 K
pull-up resistor. It becomes the logical responsibility of a
device controller to monitor this line before requesting a
hold. If the line is high, the operation may proceed. If not,

33

it must wait. Any controller requesting a hold must clamp
the BUS BUSY line, in order to protect its prior right of
access. (Must also have a daisy chain between peripherals to
establish tie breaking priorities).

Reset

The reset logic is shown on sheet 1 of the module
schematic, Figure 2-16.

An external RESET is applied to pin #52 of the
Central Processor Module. It passes through the NOR-gate
A32: 1-2-3 and is forwarded to the CPU's RESET input.
The processor's internal program counter and instruction
register are zeroed, as explained on page 24.

However, there is also provision in the reset logic for
the generation of an automatic RESET whenever the
module is brought up from a power-down condition.
Capacitor C24 charges to the level of V CC through a 22K
resistance, R23. Under normal operating conditions, the
capacitor is fully charged. Whenever power to the module is
interrupted, however, the capacitor discharges rapidly
through the diode CR2. Thus, when power ultimately
returns, the charge on the capacitor must be restored
exponentially through R23. During this time, a low is
applied to pin 2 of A32, and the output of the gate
generates a RESET of the CPU. I n this way, proper
initialization of the processor is assured.

Programmed Display

Logic for the programmed display port is shown on
sheet 2 of the Central Processor Module schematic, Figure
2-16.

As shown, a type 7430 NAND-gate is used to indicate
coincidence whenever the address F F 16 is presented on the
module's address bus. The output of the address gate is
combined with the I/O OUT signal in a second gate (A27),
inverted, and used to drive the common strobe inputs of
the 3404 inverting latches shown in the upper right portion

of the drawing. The coincidence of the address FF 16 and
the I/O OUT signals accordingly causes these latches to

record the data on the module's data out bus. Programs
may write data into this port, for display on the
INTELLEC 8's Console.

UTI LlZATION

This section provides information on utilization of
the imm8-83, for using the module outside the INTELLEC
8/MOD 80 system.

Installation

In installing the Central Processor Module, the user
must take account of:

a) environmental extremes

b) mounting

c) electrical connections

d) power requirements

e) signal requirements

ENVI RONMENT

Temperature extremes can cause instability, or result
in permanent damage to the circuits on the module.
Ambient temperature must therefore be maintained within
the limits of 0° to 70° Centigrade. Exercise caution in
locating the module, giving particular attention to radiant
and conducive sources of heat. Remember that the module
itself, when installed, will contribute some heat to the
environment. Maintain an adequate clearance, to permit the
convective dissipation of heat from the elements on the
card.

Relative humidity is not critical to the module's
operation.

MOUNTIN~

Avoid locating the module near vibrating machinery.
Exposure to prolonged or violent vibration may cause
fatigue or impact failure of connections on the board,
resulting in abnormally high noise levies or outright failure
of the assembly.

Dimensions of the module are 6.18 x 8.00 inches. Be
sure to allow enough additional clearance to ensure
adequate cooling.

The module is designed to plug directly into a
standard 1 OO-pin, doub~e-sided PC edge connector. The
connector will serve as a mounting, as well as an electrical
junction, if the environment is not too severe. Card guide
slots are desirable, for the additional protection they
afford. Should vibration be a problem, however, or should

the assembly be used in a portable equipment application,
an additional retaining bracket will have to be provided.
When mounting the board, remember that it is desirable to
orient the assembly vertically wherever possible. This
optimizes convective cooling of the components on the
module.

ELECTRICAL CONNECTIONS

The basic power and control connections to the CPU
Module are made through a standard 100-pin, double-sided
PC edge connector (0.125" contact centers). CDC #VPB
01 C50EOOA 1 is one suitable type. Pin allocations on the
connector are given in Table 2-4.

POWER REQUIREMENTS

The Central Processor Module requires DC power, at
the following levels:

Supply Volts Tolerance Typ Load Max Load

+12 VDC ±5% 0.04 Amps 0.06 Amps
+5VDC ±5% 1.00 Amps 1.50 Amps
-9VDC ±5% 0.10 Amps 0.15 Amps

Refer to the pin list for power connections.

SIGNAL REQUIREMENTS

All data and control functions on the module are at
TTL levels. Electrical characteristics of the inputs and
outputs are given in Table 2-3 for the various types of IC
devices.

Signal discriptions and connector pin allocations are
given in Table 2-4.

Pin List

The following section describes connector pin
allocations on the Central Processor Module. The pins and
their designated signal f!.Jnctions are listed in Table 2-4.

CPU Module: D.C. Signal Characteristics

Device Type

Parameter 74Sxx Unit

74xx 74Hxx 8093 8095

IOH High-level output current 0.400 0.500 5.2 5.2 JJA
IOl Low-level output current 16 20 16 32 mA

IIH High-level input current 0.040 0.050 0.040 0.040 JJA
IlL Low-level input current 1.6 2.0 1.6 1.6 mA

Table 2-3

34

CPU Module Output Connector

Pin# Name Signal Function Pin # Name Signal Function

CLKA T2 Synchronization 38 DB6 Output Data Bit 6

2 DB OUT Output Data Enabling 39 T41 Programmed Display Bit 1

3 GND Supply Common 40 T40 Programmed Display Bit 0

4 GND Supply Common 41 T42 Programmed Display Bit 2

5 INT ACK I nterrupt Cycle Status 42 INTERRUPT I nitiate External Interrupt

6 STACK Stack Reference Cycle REO

Status 43 -9VDC Vss Source Power

7 SYNCA 01 Modulo -8: F/P Logic 44 -9 VDC Vss Source Power

8 T47 Programmed Display Bit 7 45 T43 Programmed Display Bit 3

9 INT REO Interrupt Requested 46 HOLD ACK Acknowledge Hold Request
LATCH 47 -12 VDC

10 01 (Tl)* 01 Processor Clock Out (T1) 48 -12 VDC
11 MAD0 Address Bit 0 49 +12 VDC Voo Source Power
12 MADl Address Bit 1

50 +12 VDC Voo Source Power
13 MAD2 Address Bit 2

51 HOLD ,REO Initiate External Hold
14 MAD3 Address Bit 3

52 RESET Initiate External Reset
15 MAD4 Address Bit 4

53 BUS BUSY DMA In Progress Signal
16 MAD5 Address Bit 5

54 I/O OUT I/O Output Strobe
17 MAD6 Address Bit 6

55 OSC 32 MHz Oscillator Output
18 MAD7 Address Bit 7

56 HLT INT REO Processor Restart I nterru pt
19 MAD8 Address Bit 8

57 IN JAM Disable I/O IN Strobe
20 MAD9 Address Bit 9 ENABLE

21 WAIT Ready Flag from Memory 58 MEM WRITE Memory Write Cycle
REOUEST CYCLE Status

22 DB IN Input Data Enabling 59 MAD13 Address Bit 13

23 MDI0 Memory Input Data Bit 0 60 MAD12 Address Bit 12

24 DB0 Output Data Bit 0 61 WAIT Wait Request Acknowledge

25 MDll Memory Input Data Bit 1 62 HLT ACK Halt Cycle Status

26 DBl Output Data Bit 1 63 CLKB (T3)* Processor Cycle SYNC

27 MDI3 Memory Input Data Bit 3 64 I/O CYCLE 1/0 Cycle Status

28 DB3 Output Data Bit 3 65 MAD15 Address Bit 15

29 MDI2 Memory Input Data Bit 2 66 MAD14 Address Bit 14

30 DB2 Output Data Bit 2 67 MEM READ Memory Read Cycle

31 MDI5 Memory Input Data Bit 5 CYCLE . Status

32 DB5 Output Data Bit 5 68 FETCH CYCLE I nstruction Fetch Cycle

33 MDI4 Memory Input Data Bit 4
Status

34 DB4 Output Data Bit 4
69 110 Interrupt Instruction Bit 0

35 MDI7 Memory I nput Data Bit 7
70 IN0 Peripheral I nput Bit"

36 DB7 Output Data Bit 7
71 111 Interrupt Instruction Bit 1

37 MDI6 Memory Input Data Bit 6
72 INl Peripheral Input Bit 1

Table 2-4 *imm8-82 function

35

CPU Module Output Connector

Pin # Name Signal Function Pin# Name Signal Function

73 113 Interrupt Instruction Bit 3 88 ClKB (T3A)* Processor Sub-Cycle SYNC

74 INT DISABLE Interrupt Disabled Flag 89 02 02 Processor Clock Out

75 INTCYClE I nterrupt Cycle Status 90 T44 Programmed Display Bit 4

76 IN3 Peripheral Input Bit 3 91 T45 Programmed Display Bit 5

77 112 Interrupt Instruction Bit 2 92 T46 Programmed Display Bit 6

78 IN2 Peripheral Input Bit 2 93 RAM MOD RAM Memory SYNC Select

79 IN5 Peripheral Input Bit 5 ENABLE

80 114 I nterrupt Instruction Bit 4 94 MAD11 Address Bit 11

81 IN6 Peripheral Input 6 95 WRITE Memory Write Strobe

82 I/O IN I/O I nput Strobe 96 MAD10 Address Bit 10

83 115 I nterrupt Instruction Bit 5 97 PROM MOD PROM Memory SYNC
ENABLE Select

84 IN4 Peripheral I nput Bit 4
98 01 01 Processor Clock Out

85 116 Interrupt Instruction Bit 6
99 +5VDC V cc Sou rce Power

86 IN7 Peripheral Input Bit 7
100 +5VDC V cc Sou rce Power

87 117 I nterrupt Instruction Bit 7

Table 2-4 (cont'd.) *imm8-82 function

36

37

38

The imm8-61 Input/Output Card has been designed
to provide the user with an input/output facility containing
four individually addressable input ports, two of which pro­
vide built-in Teletype interfacing and control and four
individually addressable output ports, again with two of the
ports providing Teletype interfacing. The need for separate
external Teletype controllers is thereby eliminated, as is the
need to design input and output facilities.

The imm8-61 Card has been designed to allow four
cards to be used in an INTELLEC 8/MOD 80 system, with
each card having a unique address by which it is referenced.
The imm8-61 Card includes all logic necessary to support a
multi-card implementation. Though each imm8-61 module
has only four input ports and four output ports, the com­
bination of two sets of jumpers and four useable card posi­
tions allows implementation of ports 0-63 (out of a pos­
sible 256) with four imm8-61 modules.

Although the imm8-61 Card has been designed to
support the Intel imm8-83 Central Processor Card, it may
be used in any application which can use its easily imple­
mented input/output sub-system, its integral Teletype com­
munications facilities, its great flexibility, and its low cost.

This section describes the operation and implementa­
tion of the imm8-61 Input/Output Card at three levels; first,

. the operation of the imm8-61 is described on a basic func­
tional level; second, theory of operation is provided; third,
necessary information to effectively use the imm8-61 Card
is given. This last section covers such areas as user-available
options, signal and installation requirements, etc.

THE immS-61 INPUT/OUTPUT CARD -
GENERAL FUNCTIONAL DESCRIPTION

This section describes the operations of the imm8-61
I nput/Output Card in general functional terms, and is di­
vided into six subsections. The first subsection describes
the five functional units which enable all of the operations
performed by the card. The second subsection describes
the Module Select and Port Select operations, as these two

39

operations are common to all other operations performed
by the card. The third subsection describes a typical input
operation, showing the interrelationship of the functional
blocks in that operation. The fourth subsection describes an
output operation in similar terms, while the fifth and sixth
subsections describe, respectively, Teletype input and Tele­
type output operations.

To TTY
~

TTY DATA IN TELETYPE TTY DATA OUT
r----; COMMUNICATIONS 1------.

.-----. INPUT OUTPUT ----,

INPUT

INPUT DATA
(8 BITS)

PORT
SELECT

MODULE
ENABLE

PORT
SELECT

SELECTIVE SIGNAL
ROUTING BY

MOTHER BOARD

OUTPUT

OUTPUT DATA
(8 BITS)

"INVERTER CIRCUITS

MEMORY ADDRESS
DATA FROM

CENTRAL PROCESSOR
(16 BITS)

Figure 3-1.1/0 Functional Block Diagram.

-0
'" co C ",co-l

-."
1 -l C

"'-l
2 m."
3 l> 0

<"lJJ

~Cil

The Functional Units

In order to describe its operation, the imm8-61 Card
can be divided into five functional units:

1) The Module Decode Block, wh ich determi nes which
card is to be utilized for an operation when more
than one card has been installed in a system.

2) The Port Decode Block, which determines which
of the 64 possible input and output ports is to be
used for an operation.

3) The Input Block, which contains the four input
ports and their associated logic.

4) The Output Block, which contains the four output
ports and their associated logic.

5) The Teletype Control Block, which receives data
from, and transmits data to the Teletype, and
which performs the necessary conversion of the
data (serial to parallel in the case of Teletype
Input, and parallel to serial in the case of Teletype
output).

Each operation performed by the imm8-61 Card uses
one or more of these units in its execution.

A block diagram of the imm8-61 Input/Output Card,
showing the five functional units and their interrelation­
ships, is given in Figure 3-1, and should be referred to when
reading the rest of this section.

Module and Port Select Operations

The first operation performed by the imm8-61 Card
is always a Module and Port Select operation. A Module and
Port Select operation is performed via the following steps:

1) The Central Processor (Intel imm8-83 or equiva­
lent) sends an I/O Address to the Module Select
and Port Select Blocks. This I/O Address contains
the information necessary to specify which card
is to be used for an operation (in a multi-card sys­
tem), what type of operation is to be performed
(Input or Output), and which port is to be used for
that operation. Both the complemented and non­
complemented levels on the high-order address lines
are returned to the mother-board, in turn, selec­
tively returns either the complemented or non­
complemented level for each of the high-order ad­
dress bits (depending on the card position) to the
module decoder(s), on lines DS 10,11, 14 and 15.
Thus the position of a module determines which
sixteen addresses (of a possible 64) it will respond
to. Jumpers on the I/O module's Port Decode Block
(jumping address lines 12 and 13) in turn, deter­
mine which four of these sixteen addresses are
recognized.

2) The selected card is identified by the card's Module
Select Block, which generates an enable signal
which is transmitted to the rest of the card logic.

40

3) The Port Decode B lock, on the selected card, deter­
mines which of the actual eight ports is being aQ­

dressed by the I/O Address (0-63). It then sends
enabling signals to either the I nput or the Output
block, depending on whether an Input or Output
port was addressed.

This sequence of operations takes place before every
I/O operation.

Input Operation

An input operation is performed in order to obtain
data from an external source and to present it to the Cen­
tral Processor. The imm8-61 Input/Output performs an in­
put operation in the following steps:

1) The data from the external device is brought into
the Input block.

2) When the proper enabling signals are generated by
the Module Decode and Port Decode blocks, the
data which has been input from the external device
to the Input block is sent outto the Central Proces­
sor on the I nput Data bus.

Output Operation

An output operation is performed in order to receive
data which is sent out from the Central Processor and to
hold it for use by an external device. The imm8-61 Card
executes an output operation in the following steps:

1) The Central Processor sends the I/O Address (0-63)
to the imm8-61 Card, and a Module and Port Select
operation is performed.

2) The Central Processor sends the data wh ich is to be
output to the Output block.

3) The data is placed into the selected output port,
under control of enabling signals generated during
the Module and Port Select operations.

4) The data is held in the selected output port for use
by the external device associated with that port.

Note t~at data is held in an output port until another
output operation is performed using the same output port.

Teletype Input Operation

A Teletype I nput operation is performed in order to
accept information from an ASR-33 Teletype or Teletype­
compatible device, and to send that data to the Central
Processor. It is performed in the following steps:

1) Data from the Teletype is sent to the Teletype
Control block.

2) The Teletype Control block converts the data to a
form useable by the I nput block, and sends the data
and status signals to the I nput block or input ports
o and 1.

3) When the proper enabling signals are sent to the
I nput block by a Module and Port Select operation

the Teletype data is sent out to the Central Pro­
cessor on the Input Data bus_

Note that a Teletype Input operation differs from a
non-Teletype Input operation only in that the Teletype
Control block acts as a buffer between the Teletype and the
I nput block.

Teletype Output Operation

A Teletype Output operation is performed in order to
send information from the Central Processor to the ASR-33
Teletype or Teletype-compatible device, and is performed
in the following steps:

1) The Central Processor sends an I/O Address spec­
ifying output port 0 to the imm8-61 Card, and a
Module and Port Select operation is performed as
described in Module and Port Select Operations.

2) Teletype output data is sent by the Central Proces­
sor to the Output block via the Output Data bus.

3) The Teletype data is placed into output port 0
under control of the enabling signals generated by
the Module and Port Decode blocks during the
Module and Port Select operation.

4) The data in output port 0 is sent to the Teletype
Control block, which converts it into a form useable
by the Teletype.

5) The Teletype Control block sends the converted
data to the Teletype.

Note that an output operation to the Teletype is equi­
valent to a normal non-Teletype Output operation in which
the Teletype Control block is used as the external device.

imm8-61 INPUT/OUTPUT CARD -
THEORY OF OPERATION

This section describes, in detail, the theory of opera­
tion of the imm8-61 I nput/Output Card. The circuit-level
implementation of the features described will be given.

Module Selection

If more than one imm8-61 Card is present in a sys­
tem, provisions must be made for an operation to select one
card. This capability is provided by the Module Decoding
Circuits.

Module address information is brought to imm8-61
Card edge pins; the module address is complemented by a
series of inverting latches and the complemented address is
present at additional imm8-61 Card edge pins. The user
selects an address for each imm8-61 Card, and implements
the address by selecting a set of Address and Complemented
Address signals; selected signals are externally jumpered to
the Module Selection circuits, which combine the incoming
signals through a NAND gate (A 16) to provide the enabling
signal which is sent to other circuitry on the card.

41

The high-order six address lines are input through
an inverting latch. Both the complemented and non­
complemented forms of the address bits are returned to the
motherboard. The motherboard, in turn, selectively returns
either the complemented or non-complemented form of bits
10, 11,14 and 15 (on lines DS 10, 11, 14 and 15), depend­
i ng on the card position. DS 10, 11, 14 and 15 are input to
the enabling NAND gate (A16). Address lines 12 and 13 are
also input to gate A16, however, these lines are routed
through jumpers 20 and 23, respectively, on the I/O module.
The jumpers enable either the complemented or non­
complemented form of these address lines to gate A16.
These jumpers determine which four of the sixteen ports,
assigned to this card position, will actually be recognized
by the Module Decoding Circuits (see Table 3-1).

If the high-order six address bits specify one of the
four port addresses recognized by the I/O module, gate A 16
generates the module select enabling signal.

Port Addresses Enabled by I/O Module Jumpers

Card
Jumpers

Position 20-21 20-22 20-21 20-22
23-24 23-24 23-25 23-25

0 0-3 16-19 32-35 48-51

1 4-7 20-23 36-39 52-55

2 8-11 24-27 40-43 56-59

3 12-15 28-31 44-47 60-63

Table 3-1.

I nput Operations

Input operations on the imm8-61 Input/Output Card
are handled with the Input Circuits. These are shown on the
left in the I/O Module Schematic, Figure 3-2.

The first step in an input operation is the transmission
of an I/O Address to the imm8-61 Card from the Central
Processor. This I/O Address contains Module and Port Selec­
tion information which is necessary to determine which port
is to be used for a particular operation.

The Module Selection information is processed by the
Module Select Circuits, and causes the Module Enable signal
to be produced. This signal is led to the Input Decoder chip,
where it is used as an enabling signal.

When it is enabled by the Module Enable signal, and
the I/O IN signal sent by the Central Processor, the Input
Decoder uses the Port Selection information contained in
the I/O Address to produce one of four Port Enable signals.
The Port Selection information comes onto the imm8-61
Card on lines MAD8 and MAD9.

The Port Enable signals are led to the four Input Port
Multiplexers, and are used to gate one set of input signals
through the Input Port Multiplexers onto the Input Data
Bus, where the data is available for use by the Central Pro­
cessor. Timing is shown in Figure 3-3.

8 7 6 5 4 3 2

o

c

B B

A A

8 7 6 5 4 3 2

Output Operations

Output operations on the imm8-61 Input/Output Card
are handled by the Output Circuits, shown on the right in
Figure 3-2.

An Output operation begins with the transmission of
an I/O Address to the imm8-61 Card from the Central Pro­
cessor. This I/O Address contains Module and Port Selection
information which is used to determine which output port
is to be used for a particular operation.

The Module Selection information is processed by the
Module Select Circuits and cause the Module Enable signal
to be produced. This signal is led to the Outout Decoder
chip.

The Central Processor then sends the data which are
to be output to the imm8-61 Card on lines DBO-DB7. Along
with the output data is sent the I/O Ol!T signal, which is led
to the Output Decoder and is used as a second enabl ing
signal.

When the Output Decoder is enabled by the two
enabling signals Module Enable, and I/O OUT, it uses the
Port Selection information contained in the I/O Address to
produce one of four Port Enable signals. The Port Selection
comes into the imm8-61 Card on lines MAD8 and MAD9.

The Port Enable signals are used to gate the output
data sent by the Central Processor into the proper Output
Port Latches. The data is held in the Output Port Latches
until another output operation is executed using that output
port. Timing is shown in Figure 3-3.

Teletype Communications

Teletype communications can be handled directly by
the imm8-61 Input/Output Card, rather than requiring a
separate Teletype communications interface and controller.

Tl T2 T3 T4

1/>, CLOCK

¢> CLOCK

SYNC

CLKA n
ADDRESS

1/0 IN

IN0-7 X X
1/0 OUT

OUTPUT PORT X

Figure 3-3. I/O Module Timing

T5

43

This function is performed by the Teletype Communica­
tions Circuits, shown in the upper central section of Figure
3-2.

Teletype Communications on the imm8-61 Card are
handled through Input Ports 0 and 1 and Output Ports 0
and 1. I nput Port 0 handles Teletype data which are to be
input to the Central Processor; Input Port 1 handles Tele­
type status information. Output Port 0 holds the data which
are output from the Central Processor to the Teletype, and
Output Port 1 holds the control data used to control Tele­
type communications. All Teletype input and output opera­
tions, with the exception that the on-card Teletype Com­
munications Circuits are used as the input and output device
for Teletype operations.

The heart of the Teletype Communications Circuits
of the imm8-61 Card is the Universal Asynchronous Trans­
mitter/Receiver chip, or UART. This device receives the serial
data word which is sent by the Teletype, and converts it to
the eight-bit parallel data format used by the imm8-61 Card.
It also translates the eight-bit data output by the imm8-61
Card. It also translates the eight-bit data output by the
imm8-61 Card into the serial data word which is used by the
Teletype.

The UART requires a clock with a frequency of six­
teen times the baud (bits per second) rate at which it is to
transmit. This clock is provided on the imm8-61 Card by a
crystal clock generator which provides a 4.9562 MHz signal.
This signal is used to clock a series of two synchronous
counters, each of which provides a "divide-by-sixteen" func­
tion, thus producing a 19.36 kHz signal. This signal can be
used directly, providing 1200 and 2400 baud transmission
rates suitable for Teletype-compatible high-speed terminals,
or it may be used to clock another synchronous counter.
This third counter is set up to provide a "divide-by-eleven"

Tl T2 T3 T4

n

l INPUT

1
OUTPUT

capability, and will provide a 1.76 kHz signal which, when
used as the UART clock, will provide a 110 baud trans­
mission rate, the standard rate for ASR-33 Teletype com·
munications.

A Teletype input operation begins with the trans·
mission by the Teletype of a data word. This Teletype data
is brought onto the imm8·60 Card by way of edge pins as
signal TTY XMITR. Since the Teletype information is en·
coded as variations in current flow, while the UART oper·
ates with changes in voltage , the Teletype signal must be
converted to a form acceptable to the UART. This is done
with transistor 02 and its associated circuitry . The signal
from transistor 02 is led to the UART Receive Data Input,
and the UART converts it into the parallel data used by the
imm8·61 and then sends the converted data word to Input
Port O. It also sends status information to Input Port 1. This
status information includes Parity Error (PE), Overflow
Error (OE), Framing Error (FE), and Data Available (DA) .
The Central Processor can then execute a normal input
operation as described on page 40 in order to obtain
the Teletype data.

A Teletype output operation is executed simply by
sending the data which are to be output to the Teletype to
Output Port 0 via an output operation. The data which are
to be sent to the Teletype are latched into Output Port 0
Latch, and sent to the UART. The same enabling signal
which was used to latch the data into the Output Port Latch
is used to enable transmission by the UART. NOTE : Before
a transmission is attempted , Input Port 1 must be inter·
rogated to determine TTY status. The Parallel data will be
translated to the serial data' format required by the Tele­
type, and will then be sent to 03 and 04, where the neces­
sary conversion from voltage to current codi ng takes place.
The converted signal is then sent to the Teletype as TTY
RCVR.

Figure 3-4. Relay Circuit (Alternate)

44

A special feature has been implemented on the
imm8-61 Card in order to simplify Teletype paper tape
reader operations. Provisions have been made to enable
strobing of the paper tape reader one character at a time .
This operation is performed when the Central Processor
outputs a 1 in the high -order bit of Output Port 1. This
signal sets a latch made up of two NAND gates, which in
turn produce a signal which is sent to the Teletype paper
tape reader as TTY R 0 R CT L. When a character is read by
the Teletype paper tape reader and transmitted to the
imm8-61 Card, the signal generated by that transmission,
TTY XMITR, resets the latch, causing the TTY RDR CTL
signal to fall.

The Teletype Communications Circuits may be reset
by a system reset signal. This is done by bringing the signal
RESET onto the card, inverting it through an inverting
latch, and applying it to the Master Clear input of the
UART . This will initialize the UART, and prepare it for
further operations.

immS-61 INPUT/OUTPUT CARD­
UTI L IZATION

This section describes the options available to the
user of the imm8-61 Input/Output Card , and also gives the
information necessary to the user for proper installation and
operation of the card . There is a wide range of user-available
options on the imm8-61 Card, including the choice of usable
addresses, the choice of whether or not to use the Teletype
Communications Circuits, and the choice of a 110, 1200 or
2400 baud rate for data transmissions.

User-Available Options

By changing a module's card position or by changing
jumper connections on an I/O module, the user can choose

Figure 3-5. Distributor Trip Magnet

the port addresses that a particular I/O module will recog­
nize. Recall that each I/O module has four input ports and
four output ports. For anyone combination of card posi­
tion and jumper connections, the module will respond to
four addresses (one for each input or output port). but by
changing the combinations, the module can be dedicated
to respond to any address between 0 and 63. Table 3-1 lists
all of the usable combinations.

This option allows a user to develop and debug pro­
grams that access up to 64 different input and output device
addresses, on an INTELLEC 8/MOD 80 system even though
the system actually includes only 16 input and 16 output
ports. The option allows lower hardware costs without
impeding development.

If it is desired, the imm8-61 Input/Output Card's
internal Teletype Communications Circuits may be disabled
by removing the UART chip. If this is done, pull-up resis­
tors (resistor pack RP1) must be added to the input data
lines on Input Ports 0 and 1. The UART may also be dis­
abled by tying its output enable lines ROE and FOE to
+5v.

Teletype input and output can be accomplished with­
out the use of the UART; that is, on a serial program­
controlled basis, by positioning jumpers as follows:

Output: 10-12 instead of 10-11
Input: 7-8 instead of 8-9

When the Input/Output Module is used for the Tele­
type operations, the user must ensure that no device other
than the Teletype is connected to I nput Ports 0 and 1 or
Output Ports 0 and 1.

The different baud rates can be chosen by position­
ing jumpers as follows:

Figure 3-6. Mode Switch

45

110 baud : connect jumpers 18-19;
jumper connections 16-18 and 17-18
should be open.

1200 baud: connect jumpers 16-18;
jumper connections 18-19 and 17-18
should be open.

2400 baud : connect jumpers 17-18;
jumper connections 18-19 and 16-18
should be open.

The imm8-61 Card has been designed to optionally
interface with the Intel imm6-76 PROM Programmer Card .
This card uses Input Port 2 for a PROM Data Out Port, and
Output Ports 1, 2 and 3 as PROM Control In, PROM
Address IN, and PROM Data IN, respectively. It is neces­
sary to ensure, if this option is used, that no other device
will attempt to use these ports while PROM programming
operations are in progress.

Installation Data
o 0

Operating Temperature: 0 to +70 C

DC Power Requirements : +5v ± 5%, .820A Max
-9v± 5%, .030A Max

Connector : Dual 50-pin, 0.125 in. centers

Teletype Modifications

The ASR -33 Teletype must receive the following
internal modifications and external connections.

Internal Modifications

1) The current source resistor value must be changed
to 1450 ohms. This is accomplished by moving a
single wire (see Figure 3-8).

Figure 3-7. Terminal Block

2) A full duplex hook·up must be created internally.
This is accomplished by moving two wires on a
terminal strip (see Figures 3·7 and 3·9).

3) The receiver current level must be changed from
60mA to 20mA. This is accomplished by moving a
single wire (see Figure 3·7 and 3·9).

4) A relay circuit must be introduced into the paper
tape reader drive circuit. The circuit consists of a
relay, a resistor, a diode, a thyractor and a suitable
mounting fixture. Th is change requires the assem·
bly of a small "vector" board with the relay circuit
on it. It may be mounted in the Teletype by using
two tapped holes in the base plate (see Figure 3-4).
The relay circuit may then be added without altera·
tion of the existing circuit (see Figures 3·5, 3·6,
and 3·7). That is, wire "A" (Figure 3·9). to be
connected to the brown wire in Figure 3·5, may be

Figure 3·8. Current Source Resistor

46

spl iced into the brown wire near its connector plug.

The "line" and "local" wires must then be con·

nected to the mode switch. (See Figures 3·6 and

3·9).

EXTERNAL CONNECTIONS

1) A two·wire receive loop must be created. This is

accomplished by the connection of two wires be·

tween the Teletype and the SYSTEM in accordance

with Figure 3 ·9.

2) A two·wire send loop similar to the receive loop

must be created. (See Figure 3·9).

3) A two·wire tape reader loop connecting the reader

control relay to the SYSTEM must be created. (See

Figure 3·9).

TOP VIEW

MODE I
SWITCH I

I MOUNT

rn i
KEY BOARD TAPE

REEO READER

RELAY

CAPACITOR ®! PRINTER UNIT

I TAPE

I PUNCH
CURRENT OISTRIBUTOR
SOURCE I TRIP MAGNET

RESISTOR I ASSEMBLY

I [;] POWER I 8 SUPPLY I
I
I

TERMINAL
STRIP

I

TELETYPE MODEL 33TC

Figure 3·10. Teletype Layout

NOTES: UNLESS OTHERWISE SPECIFIED

II:::::> CUSTOMER EXTERNAL CONNECTIONS

[!:::> IT~~:T~:J~~NR~~t~~~D L~ci'~I~I~A';-~~~~TS
1M IS INTERNAL MOOIFICATION
EC IS EXTERNAL CONNECTION

BLU

TERMINAL BLOCK 151411
SEE FIG. 3-7 8 CURRENT SOURCE RESISTOR

SEE FIG. 3-41

VIO 20 mA

FULL DUPLEX
I/O

MOOULE
(J1)

REAR PANEL
CINCH·JONES

(J431
~-"":~:::r_-_T_-_-~~ __ 60_m~ _____ L/""""O"-~~

@------0-------- WHT/BRN :j:~;;~:j:::j~~~!I~~~~B~L~Kl/G:RlN~ ____ "S,E,E,F,'G,',3,_,7 __ • ~ RECEIVE RED/GRN
f,1\...----.f2\-- _____ '" WHT/YEL
~ ""\V""" WHT/BLK Q WHT/BLU FULL OUPLEX

~ ~~~~=f __ -r __ ~B~R~N~/Y~E~L~~ ____ ~,

0--- ---0- ------ --I--I"t=~~=-=-r-=-=GRN--------
SEND RED HALF DUPLEX

@------0------ - -1-a-;:::~r"':':~=~~t-=-i-=-=:~/~E~- ---SEEFiG.""3-=7

~-----+------+------~ ~ L-~~~~~====~B;.L~K~-----------I1~
["" WHT

WHT

CONNECTOR
SEE FIG. 3-5

YEL }-_-+ _________1 _____ .!.'_-..... -_-, - - - - - - - - -- -:1
I GE r, I TAPE

READER
CONTROL

6RS2Q. I I I
SP4B4 I I I 0.11 jJ.F 47o!l

}---i-----------"7I---<1>---' I I L - - - - - _ ---,

(9 ~e I POTTER:E~~MFIELD .: L..:-------:..---1 i
*ALTERNATE CONTACT PROTECTION CIRCUIT

~ 147o!l1I2W l T .1200V

Figure 3·9. TTY Modification

1M 4 I 12VDC soon COIL} : - II
I JR·l005 {IA I
I SEE FIG. 3-4 NORMAL OPEN I
I CONTACTS L____ --I I
~-----------------~------~

41

MODE SWITCH
(FRONT VIEWI
SEE FIG. 3-6

115AC
COMMON

"LOCAL"

48

The immS-63 Output Card contains logic which
enables its use as a self-contained output module with eight
(S) individually addressable output ports, each of which
holds an eight-bit byte of data sent by a Central Processor
(such as Intel's immS-63) for use by an external device. It
also contains logic which enables the use of more than one
card in any system, with each card individually addressable.

GENERAL FUNCTIONAL DESCRIPTION

The immS-63 Output Card may be divided into three
functional units as shown in Figure 4-1:

• The Module Decode Block
• The Port Decode Block
• The Output Port Block

The Output Port Block contains eight output ports,
each of which can communicate with a separate external
device. The Port Decode Block determines which of the
eight ports is to be used for an operation.

During an output operation, the Central Processor or
equivalent device, sends an 1/0 Address to the Output Card.
This information is used by the Module Decode Block to
enable output operations (for the particular module being
addressed, if there is more than one in the system), and is
also used by the Port Decode Block to enable the specific
output port which is to be used for output.

DATA

FROM{
CPU 110 ADDRESS

OUTPUT
OUTPUT
PORTS,

(8)

Figure 4-1. Output Module Functional Block Diagram

49

The Central Processor then sends the data which is to
be output to the immS-63 Card. The data is routed to the
Output Port block and is gated into the particular port
which was enabled previously by the Port Decode Block.
The data are then latched and held for use by the external
device associated with that output port.

DETAILED FUNCTIONAL THEORY

This section describes in detail the operation of the
immS-63 Card. Actual circuit-level implementation of the
features described as functional blocks in the previous sec­
tion are given .

Module Decoding

If it is desired to use more than one immS-63 Output
Card in a given system, some provision must be made to
enable selection of the particular card which is to be used,
out of all of those available. This function is provided by the
Module Decoding Circuits, shown in detail in Figure 4-2.

As shown in Figure 4-2, the Module Address informa­
tion is brought to the immS-63 Card edge pins and is led to
edge pins. The motherboard, in turn, selectively (according
to card position) return the proper set of address and in­
verted address signals to the OUT MOD SEL gate (A 14) in
the Module Decoding Circuits. In addition, address lines 12
and 13 are routed through jumper connections which pro­
vide either an inverted or non-inverted form of the address
12 and 13 signals to the OUT MOD SEL gate (A14). If all
the input lines to gate A 14 specify that the module is
selected, the OUT MOD SEL signal is generated.

Port Decoding

Once the proper module has been selected, as dis­
cussed in the previous subsection, an additional selection
must be made: that of one of the eight output ports which
are on each immS-63 Card_ This function is performed by
the Port Selection circuits, shown in detail in Figure 4-2.

::!!
C,Q
c: ..
CD

.j:o

N

o
c: ...
'C
c: ...
s: o
Q.

5..
CD

~
::r
CD

3
I» ...
(;'

o
Dj'

C,Q ..
I»
3

8

o

c

A

6

D, .-
06,1
oe'L
0& " oe 4
De"
oe" De,;

....

7

(j'D"I.Ij~ oJ.Wf ~"- P, ..
'''''~ ,f' + ''iff' +
GIlD.

6 5 4

""rES:
I. saJO JlJMPER:$ ARE M4PE WlTU

RC. n:tAca. DASU LINES AR~
ALl"EANAl=£ JUMPER CDNN~crlOt\lS.

Z.· RESISTANcE: VALUES ARE IN
OHMS '±5%, 1/4W.

3 2

11
,2.

1

:J"HPuT P;:#13
(6tI!~ ",,.r.t.E)

¢ o

1.

3

4

5

B

In order to select one of the eight output ports, three
data lines are led to the Port Decoder. When enabled by the
OUT MOD SEL signal, the Port Decoder will decode the
three incoming Port Select signals and will issue an enabling
signal to one of the eight output ports.

Output Operations

In a typical output operation, the following steps will
be executed (refer to Figure 4-2, the Schematic Diagram):

1) The Central Processor sends an I/O Address to the
imm8-63 Module on lines MAD8-15.

2) The Module Decoding and Port Decoding circuits
decode the incoming I/O Address, and send enab­
ling signal OUT STB to the proper output port.

3) The Central Processor sends the data which are to
be output to the imm8-63 Card, along with an Out­
put enabling signal, I/O OUT. I/O OUT activates
the internal signal OUT STB.

4) The data which have been sent to the imm8-63
Card are latched into the proper output port by
signal OUT STB, where they are held for use by
external equipment. The data are held until another
output operation using the selected port takes
place, at which time they are replaced by the new
incoming data.

The timing of the output operation is shown in Fig­
ure 4-3.

Figure 4-3. Output Module Timing

51

CARD UTILIZATION
The user has the capability of choosing which eight

addresses an imm8-63 will respond to; the user can assign
any group of addresses between 0 and 63. This section des­
cribes how to use the addressing option, and also supplies
a complete list of the imm8-63 card edge pins and their
associated signals.

User Options

A combination of card positioning and jumper con­
nections (on the Output Modules) determines which eight
addresses each module will recognize. Table 4-1 lists the pos­
sible combinations of card position and jumper connections,
and the address groups associated with each combination.

imm8-63 Addressing Options

Card
Jumpers

Position 1-2 2-3 1-2 2-3
5-6 5-6 4-5 4-5

0 0-7 16-23 32-39 48-55

1 0-7 16-23 32-39 48-55

2 8-15 24-31 40-47 56-63

3 8-15 24-31 40-47 56-63

Table 4-1

52

The imm6-28 Random Access Memory Card has been
designed to provide a user with a 4,096 (4K) 8-bit words of
random-access memory, which may be used as a computer
system's memory device_

More than one imm6-28 card may be included in a
system, for example, the imm8-83 Central Processor card
can address up to 16,384 words of memory on four separate
imm6-28 cards.

Although the imm6-28 Random Access Memory Card
has been designed to support the Intel imm8-83 Central
Processor Card, it can be used in any other system which
requires 4K x 8 bits of RAM storage.

THE imm6-28 RANDOM ACCESS MEMORY
CARD-GENERAL FUNCTIONAL DESCRIPTION

This section describes the operation of the imm6-28
Random Access Memory Card in general functional terms,
and is divided into four subsections.

MEMORY
(40968-BIT

ADDRESS

WORDS) 1-----+1

BLOCK
ENABLE

READ/
WRITE

BUFFERS

ADDRESS

CONTROL
~_-.! OPERATION

CONTROL

MEMORY ADDRESS
FROM CPU

READ/WRITE
CONTROL
SIGNAL

FROM CPU

MEMORY DATA
FROM CPU (8 BITS)

MEMORY DATA
TO CPU 18 BITS)

Figure 5-1. RAM Module Functional Block Diagram

53

The Four Functional Units

In order to describe its operation, the imm6-28 card
has been divided into four functional units:

1) The Address Control Block, which determines
which card is to be used for a memory operation,
and which memory location on that card is being
addressed.

2) The Operation Control Block, which controls the
execution of all operations performed by the card.

3) The ReadlWrite Buffers, which buffer the data
which is read from or written into memory.

4) The Memory Block, which contains the actual
memory components.

Each operation performed by the imm6-28 card uses
at least one of these functional units.

A block diagram of the imm6-28 card, showing the
four functional units and their interrelationship, is given in
figure 5-1, and should be referred to when readi ng the rest
of this section.

Memory Addressing Operations

I n order to send data to a memory location, or to
read data from a location, it is necessary to specify the
location which is to be accessed. This function is provided
by the memory Address, a group of signals which represent
the Central Processor. Once the Memory Address is received
to select the correct location for a Memory Read or Write
operation.

The Address Control Block performs Memory Address
decoding on the imm6-28 card; it receives the Memory
Address, and translates it into three types of signals: Module
Enabling signals, which enable the selected 4K segment of
the memory; Block Enabling signals, which enable one 1024
word block within the larger 4K segment; and Address sig­
nals, which access one word within the 1024 word block.

Memory Write Operations

A Memory Write Operation is executed in order to
load data into a selected memory word; it is executed in the
following steps:

1) The Memory Address for the word which is to be
written into is sent to the imm6-28 card by the
Central Processor.

2) The Address Control Block receives the Memory
Address and generates the signals necessary to
access the addressed memory location.

3) The Central Processor sends a data word to the
imm6-28 card, where it is received by the Read/
Write Buffer. The central Processor also sends con­
trol signals to the Operation Control B lock which
indicate a Memory Write operation.

4) The Operation Control Block generates signals
which cause data in the Read/Write Buffer to be
written into the selected memory location in the
Memory Block.

Memory Read Operations

A Memory Read operation is performed in order to
read data from a selected memory location into the Central
Processor; it is executed via the following steps:

1) The Memory Address which is to be read is sent
to the imm6-28 card by the Central Processor.

2) The Address Control Block receives the Memory

Address and generates signals necessary to access
the addressed memory location.

3) The Central Processor senc;ls control signals to the
to the Operation Control Block which indicate a
Memory Read operation.

Tl T2 T3 T4

rpl CLOCK

~CLDCK

SYNC

CLKA n
ADDRESS X X

CKIP ENABLE

DATA OUT X
DATA IN X

R/W

Figure 5-2. RAM Memory Module Timing

T5

54

4) The Operation Control Block generates the control
signals necessary to cause the contents of the se­
lected memory location to be sent from the Mem­
ory Block to the Read/Write Buffer, whence they
are sent on to the Central Processor.

THE imm6-28 RANDOM ACCESS MEMORY
CARD-THEORY OF OPERATION

This section describes the theory of operation of the
imm6-28 card in detail giving the circuit-level implementa­
tion of the features.

Physical Memory Implementation

The actual memory of the imm6-28 card is made up
of thirty-two Intel 2102 Random Access Memory chips,
each havi ng a capacity of 1024 one bit words. Si nce the data
word used by the imm6-28 card has a total of eight bits,
the 2102 memory chips are tied together in blocks of eight,
with each of the eight chips in the block handling one of
the eight data bits; this results in a basic block of 1024
eight-bit words. Since there are four blocks per card, each
imm6-28 card has a capacity of 4096 eight-bit words.

By combining more than one card in a system, mem­
ory size can be increased in increments of 4096 words.

Memory Address Decoding

Since more than 4096 words of memory can be ad­
dressed by a Central Processor, the imm6-28 card includes
address decoding circuits (see Figure 5-2) which allows a
Central Processor to select one imm6-28 memory card.

The Memory Address which the Central Processor
sends to the imm6-28 cards consists of sixteen bits of infor­
mation, organized as a sixteen digit binary number, with the

Tl T2 T3 T4

n

} READ

I WRITE

."
~'

iil
en
~
:ll
J> s:
s:
CD

3
o -< u
s:
&.
c:
CD
en
n
~
CD

3
III
r+
n'
c
iii'
ca ...
III

3

L

4

" g

4

3 2

" Il
" "

" !M 10 "
"

.---- .---- .----

'" '"
'! " L;-i nnn~ii 10

L-+-~+-~~~-+~~~+-~~~-+~~ __ ~ __ '~ ~~ 9

"

,< .. ." ..
"

\......TY+.-' .+-" ++-n~' '+-' ++-n~'I----+-+~n

L_~---++----~~~-4+-~

" '" .. ,.
14 '0 11

3

I" ~I

2

..
..... 10

u

I!~I~
IIWTII!: I

L

low order bit on line MADO and the highest order bit on
line MAD 15. The Address Decoding Circuits use this sixteen­
bit address as follows:

1) Since the high-order four bits of the Memory Ad­
dress effectively divide the possible memory loca­
tions into sixteen units of 4096 words each, they
are used to enable the particular card which is to be
used for a given memory operation. Th is is accom­
plished by bringing lines MAD12-MAD15 onto the
imm6-28 card edge pins, inverting them to form ---
MAD 12-MAD 15, and then sending these inverted
Memory Address signals out on another set of card
edge pins. External jumpers are then used to tie
the proper combination of Memory Address and
inverted Memory Address signals to the four input
lines to the Access Enable Gate, MOD SEL 12-MOD
SEL 15. When the proper Memory Address is sent
to the imm6-28 card by the Central Processor, the
Access Enable Gate will produce a Module Enable
signal which is used to enable all memory opera­
tions for that card.

2) The next two bits of the Memory Address, MAD1 0
and MAD 11, select one of the four 1024 word
Latches which are enabled by the Access Enable
Gate's Module Enable signal. The two signals are
then latched into the Address Latches by signal
ADR STB, sent by the Central Processor, and are
sent to a group of four NAND gates in both their
original and their inverted form. The four NAND
gates decode the two Memory Address bits into
one of four Chip Enable signals. The Chip Enable
signals are used to enable the proper block of eight
chips (1024 eight-bit words) out of the four blocks
available on each imm6-28 card.

3) The ten low-order bits of the Memory Address,
MADO-MAD9, are tied to Address Latches which
are enabled by the Access Enable Gates. They are
then sent to all of the individual memory chips,
which use them to enable the proper location out
of the 1024 available.

Memory Read Operations

A Memory Read operations is initiated by the Central
Processor. It sends a sixteen-bit Memory Address to the
imm6-28 card, which decodes the address to select one
particular memory location.

The Central Processor also sends signal Write/Read to

56

the imm6-28 card. In its TRUE state, this signal indicates a
Write operation, therefore, during a Read operation, it will
be FALSE. Signal Write/Read is inverted and applied to a
NAND gate along with the Module Enable signal. The NAND
gate produces a signal which indicates a Read operation.
The Read operation signal is used as the second input to the
series of Output Buffer NAND gates, and causes the mem­
ory data to be gated through the Output Buffer NAND
gates and onto the Data Out I ines DATA OUTO-DAT A
OUT7. Timing is shown in Figure 5-2.

Memory Write Operations

A Memory Write operation is initiated by the Central
Processor. It sends a sixteen bit Memory Address to the
imm6-28 card, which decodes the address to ,select one
particular memory location for access, as described in Sec­
tion 6.2.2. When the memory chips receive the Memory Ad­
dress, they immediately respond by sending the contents of
the addressed location to the Output Buffers, which are
series of eight NAND gates.

The Central Processor then sends the data wh ich is to
be written into memory to the imm6-28 card, where it is
led to the I nput Latches. The Central Processor also sends
out signal Write/Read, which indicates a Write operation.
This signal is NANDed with the Module Enable signal to
produce signal WDENBL, which indicates that a Write
operation is taking place. This signal causes the data sent by
the Central Processor to be latched into the Input Latches.

Signal WDENBL is also used to trigger a pair of one­
shot multivibrators. These multivibrators produce a delayed
Write Enable signal. The delay is necessary to ensure that the
delayed Write Enable signal becomes TRUE, the data will
be written into the selected memory location.

THE imm6-28 RANDOM ACCESS MEMORY
CARD - UTILIZATION

This section provides the information necessary to
efficiently use the imm6-28 card in an application. In par­
ticular, the requirements for interfacing with the Intel
imm8-83 Central Processor Card are stressed.

Memory Address Coding

In order to enable Memory operations, the imm6-28
card must have an encoded address designation. The proper
positioning of the external jumpers for each block of mem­
ory is as follows:

Module No. Memory Addresses

RAM 0 0-4095 MAD12
RAM 1 4096-8191 MAD12
RAM 2 8192-12287 MAD12
RAM 3 1 2288-1 6383 MAD12
RAM4 16384-204 7 9 MAD12
RAM 5 20480-24575 MAD12
RAM 6 24576-28671 MAD12
RAM 7 28672-32767 MAD12
RAM 8 32768-36863 MAD12
RAM 9 36864-40959 MAD12

--
RAM 10 40960-45055 MAD12
RAM 11 45056-49151 MAD12
RAM12 49152-53247 MAD12
RAM13 53248-57343 MAD12

--
RAM14 57344-61439 MAD12
RAM 15 61440-65535 MAD12

Installation Data and Requirements

Connector: Dual 50-pin, .125 in. centers
Input Voltage: +5v± 5% @ 2.5A.
Operating Temperature: 00 C_ 70° C

Memory Address Code Jumpers

MAD13 MAD14 MAD15 57-58, 62-61, 63-63, 67-68
MAD13 MAD14 MAD15 58-60, 62-61, 63-64, 67-68 --
MAD13 MAD14 MAD15 57-58, 59-61, 63-64, 67-68
MAD13 MAD14 MAD15 58-60, 59-61, 63-64, 67-68
MAD13 MAD14 MAD15 57-58, 62-61, 64-66, 67-68
MAD13 MAD14 MAD15 58-60, 62-61, 64-66, 67-68
MAD13 MAD14 MAD15 57-58, 59-61, 64-66, 67-68
MAD13 MAD14 MAD15 58-60, 59-61, 64-66, 67-68
MAD13 MAD14 MAD15 57-58, 62-61, 63-64, 65-67
MAD13 MAD14 MAD15 58-60, 62-61, 63-64, 65-67
MAD13 MAD14 MAD15 57-58, 59-61, 63-64, 65-68
MAD13 MAD14 MAD15 58-60, 59-61, 63-64, 65-67
MAD13 MAD14 MAD15 57-58, 62-61, 64-66, 65-67
MAD13 MAD14 MAD15 58-60, 62-61, 64-66, 65-67
MAD13 MAD14 MAD15 57-68, 59-61, 64-66, 65-67
MAD13 MAD14 MAD15 58-60, 59-61, 64-66, 65-67

57

58

The imm6-26 Programmable Read-Only Memory
(PROM) Card has been designed to provide a user with
4,096 (4K) words of read-only memory, which may be
used as non-volatile program or data storage.

The imm6-26 Card uses Intel 8702A Programmable
Read-Only Memory chips as its storage medium. These
chips represent a considerable advance in the field of
read-only memory, as they can be erased and reprogrammed
as the need arises. This capability makes the imm6-26 Card
a valuable addition to a system in which the stored data is
occasionally 9.J bject to change, for example, during the
development of mask-programmed read-only memory. The
imm6-26 PROM Card can be used to store programs in final
stages of correction, before the progr:am is well enough
defined to justify th; expense of creating masks. Also, the
imm6-26 PROM Card can be used instead of read-only
memory in pre-production equipment that may have to be
shipped before mask-programmed read-only memory is
available.

More than one itnm6-26 Card may be used in a
system. For example, the imm8-83 Central Processor Card

BLOCK

MEMORY ADORESS

14096 S'BIT
WORD

CAPACITY) WORD
ADDRESS

i
MEMORY

PROM
DISABLE

DATA
BUFFER

1
PROM DATA OUT

ADDRESS

CONTROL

MoDi ENBL.

CONTROL

1
RAM ENABLE

I+-

MEMORY

ADDRESS

DATA

Figure 6-1_ PROM Memory Module Functional Block·
Diagram

59

can address up to 16,384 words of memory on four
separate imm6-26 cards.

The imm6-26 Card may also be used in parallel with
an imm6-28 Random Access Memory Card.

Note: When used in conjunction with the imm8-83 the
8702A type used must have an access time of less
than 1.5 microsecond.

THE imm6-26 RANDOM ACCESS MEMORY
CARD-GENERAL FUNCTIONAL DESCRIPTION

This section describes the operation of the imm6-26
Programmable Read-Only Memory Card in general func­
tional terms, and is divided into three subsections.

The Four Functional Units

In order to describe its operation, the imm6-26 Card
had been divided into four functional units:

1) The Address Control Block, which determines
which card is to be used for a memory operation,
and which memory location on that card is being
addressed.

2) The Operation Control Block, which controls the
execution of all operations performed by the card.

3) The Memory Data Buffer, which buffers the .data
bei ng read from memory.

4) The Memory Block, which contains the actual
memory components.

A block diagram of the imm6-26 Card, showing the
four functional units and their interrelationship, is given in
Figure 6-1, and should be referred to when read ing the rest
of this section.

Memory Read Operation

In order t6 obtain data from a memory location, it is
necessary to perform a Memory Read operation. This
operation can be divided into two phases:

steps:

1) The Addressing Phase, in which the desired memory
address 'is sent to the imm6-26 Card, where it is
decoded and used to enable the specific memory
location which is to be accessed.

2) The Data Phase, where the data is sent out from
the imm6-26 Card.

The Addressing Phase is executed in the following

al The Central Processor sends a Memory Address to
the imm6-26 Card Address Control Block.

b) The Address Control Block translates the Memory
Address into three types of signals: Module Enab­
ling signals, which enable the selected 4K segment
of the memory; Block enabling signals, which
enable one 256 word block within the larger 4K
segment; and Address signals, which access one
word within the 256 word block.

c) The Control Block checks the selected memory
address, and determines if it exists on the imm6-26
Card. If it finds that it does not exist, it sends out
disabling signals which prevent further operations
with the imm6-26 Card. At the same time, it sends
out an enabling signal which can be used by an
imm6-28 Random Access Memory Card to enable
its operation.

The Operation Control Block generates the control
signals necessary to cause the contents of the selected
memory location to be sent from the Memory B lock to the
Memory Data Buffers, whence they are sent out to the
Centra I Processor.

THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD-THEORY OF OPERATION

This section describes the theory of operation of the
imm6-26 Card in detail, giving the circuit-level implemen­
tation of the features.

Physical Memory Implementation

The actual memory of the imm6-26 Card is made up
to sixteen Intel 8702A Erasable Programmable Read-Only
Memory chips, each having a capacity of 256 eight-bit
words. This results in a basic memory block of 256 words.
Each 256 word block is a separate unit, and can be
changed by removing the existing PROM chip and installing
a new PROM, or omitted by removing the existing PROM
without replacement. NOTE: Only standard 8702A PROMs
can be used with the INTELLEC a/MOD 80 system; all
8702A PROMs must have access time less than or equal to
1.5 microsecond.

Since there are sixteen 256 word PROMs on each
imm6-26 Card, each card has a total capacity of 4,096
words. By combining more than one card in a system,
memory size can be increased in increments of 256 words.

Memory Address Decoding

Since more than 4,096 words of memory can be
addressed by a Central Processor, the imm6-26 card includes
address decoding circuits which allow a Central Processor
to select one imm6-26 memory card.

The Memory Address which the Central Processor
sends to the imm6-26 <;:ard consists of sixteen bits of infor­
mation, organized as a binary number, with the low order
bit on line MADO and the high order bit on line MAD15.
The Address Decoding circuits use this sixteen-bit address
as follows:

1) Since the high order four bits of the Memory
Address effectively divide the possible memory
locations into sixteen units of 4,096 words each,
they are used to enable the particular card which is
to be used for a given memory operation. This
is accomplished by bringing lines MAD 12-MAD 15
onto the imm6-26 card edge pins, inverting them
to form MAD12-MAD15, and then sending these
inverted memory Address signals out on another
set of card edge pins. External jumpers are then
used to tie the proper combination of Memory
Address and inverted Memory Address signals to
the four inputs to the Access Enable Gate, MS12-
MS15. When the proper Memory Address is sent
to the imm6-26 card by the Central Processor, the
Access Enable Gate will produce a Module Enable
signal which is used to enable memory operations
for that card.

2) The next four bits of the Memory Address, MAD8-
MAD11, select one of the sixteen 256 word blocks.
These two signals are led to two three-to-eight line
decoders. Signal MAD11 is then used to enable
one of the two decoders, while MAD8-MAD10 are
used as inputs to the decoders. The decoders pro­
duce Chip Enable signals which are used to enable
one of the sixteen 256 word PROM chips on the
imm6-26 card.

3) The eight low-order bits of the Memory Address,
MADO-MAD7, are tied to Address Latches which
are enabled by the Module Enable Access Enable
Gate. They are then sent to all of the available
memory chips, which use them to enable the
proper location out of the 256 available.

Memory Read Operations
A Memory Read operation is initiated by the Central

Processor, which sends a sixteen bit Memory Address' to the
imm6-26 card. The address decoding circuits decode the
address to select one particular memory location.

The Central Processor also sends signal PROM MOD
ENBL to the imm6-26 card, enabling operations from that
card. This signal is used as an input to the Module Enable
Gate along with the Access Enable Gate signal MOD
DECODE, as shown in Figure 6-3. When all of the inputs to
the ModuJe Enable Gate are TRUE, it generates the PROM

MOD SEL signal, which is sent to the two low-order
Address Decoders. It enables the decoders, and the proper
chip is enabled. The chip reads the low-order eight bits of
the Memory Address, and sends the data contained in the
selected memory location to the Memory Data buffers on
lines DO-D7. The Memory Buffers are also enabled by the
PROM MOD SEL signal, and will gate the data onto the
Memory Data Out lines MD1O-MD17. Timing is shown in
Figure 6-2.

Random Access Enable

Since it may be desired to mix Random Access and
Read-Only memories in a system, the imm6-26 card has
been designed to determine, for each memory operation,
whether or not PROM memory exists for the selected
Memory Address. If PROM memory does not exist for that
location, the imm6-26 card will generate an enabling signal
for Random Access memory which uses the same address.
If the two types of memories share common locations,
however, the Random Access enabling signal will not be
issued, giving the PROM memory priority.

Each PROM location on the imm6-26 card has a cor­
responding switch which is tied to one input of an eight
input multiplexer. In its normal position, this switch, and
thus its associated multiplexer input, is tied to +5v. When
a PROM is installed on the card, its corresponding switch is
depressed, causing the input to the multiplexer to be tied
to GROUND. When a memory operation is executed, the
four Memory Address lines MAD8-MAD11, which are used

by the address decoding circuits to generate chip enable
signals, are used as addressing inputs to the multiplexer. If
a PROM exists at the addressed location, the multiplexer
output will be HIGH. This output is led to the PROM
Resident Latch, which produces the PROM RESIDENT
signal. This signal is used as an enabling signal to the
Modul'e Enable Gate, and thus enables PROM operations
when there is a PROM present. Likewise, if there is no
PROM present in the addressed location, the output of the
multiplexer will be LOW, the PROM RESIDENT signal will
be FALSE, the Module Enable Gate output will be FALSE,
and imm6-26 operations will be disabled.

When the Module Enable Gate output signal, PROM
MOD SEL, is FALSE, signal RAM MOD ENBL is produced
by the RAM Module Enable Latch. This signal may be used
to enable a Random Access memory device wh ich has the
same address as the PROM module.

THE imm6-26 PROGRAMMABLE READ-ONLY
MEMORY CARD - UTILIZATION

This section provides the information necessary to
efficiently use the imm6-26 card in an application.

Memory Address Coding

In order to enable memory operations, the imm6-26
card must have an encoded address signation. The proper
positioning of external jumpers for each block of memory
as follows:

Module No. Memory Addresses Card Select Coding Jumper Pin Connections

PROM 0 0-4095 MAD12, MAD13, MAD14, MAD15 57-58, 61-62, 63-64, 67-68

PROM 1 4096-8191 MAD12, MAD13, MAD14, MAD15 58-60, 61-62, 63-64, 67-68
PROM 2 8192-12287 MAD12, MAD13, MAD14, MAD15 57-58, 59-61, 63-64, 67-68
PROM 3 12288-16383 MAD12, MAD13, MAD14, MAD15 58-60, 59-61, 63-64, 67-68
PROM 4 16384-20479 MAD12, MAD13, MAD14, MAD15 57-58, 61-62, 64-66, 67-68
PROM 5 20480-24575 MAD12, MAD13, MAD14, MAD15 58-60, 61-62, 64-66, 67-68
PROM 6 24576-28671 MAD12, MAD13, MAD14, MAD15 57-58, 59-61, 64-66, 67-68
PROM 7 28672-32767 MAD12, MAD13, MAD14, MAD15 58-60, 59-61, 64-66, 67-68
PROM 8 32768-36863 MAD12, MAD13, MAD14, MAD15 57-58, 61-62, 63-64, 65-67
PROM 9 36864-40959 MAD12, MAD13, MAD14, MAD15 58-60, 61-62, 63-64, 65-67
PROM 10 40960-45055 MAD12, MAD13, MAD14, MAD15 57-58, 59-61, 63-64, 65-67
PROM 11 45056-49151 MAD12, MAD13, MAD14, MAD15 58-60, 59-61, 63-64, 65-67

PROM 12 49152-53247 MAD12, MAD13, MAD14, MAD15 57-58, 61-62, 64-66, 65-67

PROM 13 53248-57343 MAD12, MAD13, MAD14, MAD15 58-60, 61-62, 64-66, 65-67
PROM 14 57344-61439 MAD12, MAD13, MAD14, MAD15 57-58, 59-61, 64-66, 65-67
PROM 15 61440-65535 MAD12, MAD13, MAD14, MAD15 58-60, 59-61, 64-66, 65-67

61

PROM Installation, Removal, Programming,
and Erasure

I n order to provide flexibility in memory assignment,
the imm6-26 card can be of any size desired, from 256
words to 4,096 words, in 256 word increments. rhis
flexibility is achieved by enabling installation and removal
of the individual PROM chips which make up the imm6-26
card's memory.

When installing PROM chips on the imm6-26 card,
the corresponding PROM Resident switch must be depressed.
If this is not done, the imm6-26 card will not be enabled
when that group of memory addresses is accessed. To install
a PROM, merely insert it into the socket provided on the
imm6-26 card. Likewise, to remove a PROM, merely pull it
from the socket. Again, if removing a PROM, ensure that
the corresponding switch is disabled. If this is not done,
faulty memory operations will ensue. If all of the sixteen
PROMs are installed on an imm6-26 card, the PROM
Resident signal can be permanently enabled by installing
the ALL RPOMS RESIDENT patch between points 1 and
2, as shown in Figure 6-3.

The Intel 8702A PROMs used by the imm6-26 card
may be programmed by using the imm6-76 PROM Program-

SYNC
-----'

mer card in conjunction with the Intellec 8 system. They
may be erased by exposing them to high intensity short­
wave ultraviolet light at a wavelength of 2537A. After ten
minutes of such exposure, the PROM will be erased to all
zeroes. No more exposure than is necessary should be used,
to avoid damaging the PROM. (See the Intel Memory De­
sign Handbook for more information regarding 8702A
PROM programming and erasure). CAUTION: When using
an ultraviolet source to erase the PROM, be careful not to
expose your skin or eyes to the ultraviolet rays because of
the damage which these rays can cause. In addition, short­
wavelength ultraviolet light generates considerable amounts
of ozone, which is also potentially hazardous.

Note: When used in conjunction with an imm8-83 module
the 8702A type used must have an access time of
less than 1.5I1sec.

Installation Data and Requirements

Connector: Dual 50-pin, .125 in. centers
Input Voltage: +5v ± 5% @ 1.6A (max)
Operating Temperature: 0° C-70o C

CLKA ___ ---In ______________ ..JnL ________ _

ADDRESS ____ ~x~ ______ ~x~ ____________ __

CHIP SELECT " /
DATA DUT ____________ ~X'_ ______ _

NOTE: WAIT STATES PROVIDED BY !mm8-83

Figure 6-2. PROM Memory Module Timing

62

."
ca' e ...
CII H
en
I
~
"U
:JJ
0 s:
s:
CII
3G
0 ...
<
s:
&.
e
CD
en
n
iF
3
III g. OlM

'D'
C "
Ai' "".0 OJ

a:I ...
III

3
.... 0 ..

E
"'.7

"'Ae ~ en
Col

MAO 10

""''''0 If

D

B

A

8

,'"

[d'-

[,I

Cd}--

.~

:ID---I-
£'01---1-

- -

7 8 5 4

~~'

--J.+jf.H+-~---= i--I

3

010 0;:: u e'! ~~~ ., ~~t.
fi;:::> us£;) __ N·&u..!.: ~ o v.
~ u5EO 1IQIl::: oI'tIiLL.:.':. CllLY.

So ac..eD .14."-. .. ,...· ~.,. _"' ... _c_ c.&

2

H

G

F

E

D

c

B

A

64

The INTELLEC S/MOD SO Control Console is de­
signed to provide a user of the INTELLEC S/MOD 80
microcomputer development system with an easy to use
means of monitoring and controlling machine operation,
manually moving data to or from memory or input/output
devices, and running or debugging programs_ Since the
INTELLEC S System is specifically designed for micro­
computer systems development, the Control Console has
several features which are not usually found on "traditional"
computer control consoles, e_g., extensive status displays
and special debugging aids_

This section describes the operation of the INTELLEC
S/MOD SO Control Console on two levels: first, on a general
functional level, second, on a more detailed theory of
operation leveL

Since the INTELLEC S/MOD SO Control Console has
been designed to support the imm8-S3 Central Processor
Card, many of its operations cannot be described without
referring to the operation of that card. It is an absolute
necessity, therefore, that Chapter 2 of this manual be read
and fully understood before attempting to read this section,
as it is in Chapter 2 that many of the basic concepts
necessary for a proper understanding of Control Console
operation are developed. If a more detailed description of
operational procedures using the Control Console is desired,
refer to the INTELLEC S/MOD SO Operator's ManuaL

THE INTELLEC 8/MOD 80 CONTROL CONSOLE
- FUNCTIONAL DESCRIPTION

This section provides a basic, functional overview of
INTELLEC S/MOD SO Control Console operation. The
operations performed by the Control Console can be
divided into seven groups, as follows:

1) Data display operations, including:

Memory Data display operations, in which the
contents of a selected memory location are dis­
played;

65

I/O Data display operations, in which data used
for an input or output operation is displayed;

Status display operations, which display indica­
tions of the operating mode of the Central
Processor;

Cycle display operations, which provide a con­
tinuous display of the 80S0 machine cycle;

Programmable display operations, in which the
contents of output port FF 16 are displayed_

2) Manual Memory Access operations, in which data
is read from or written into a selected memory
location from the Control Console rather than
the Central Processor.

3) Manual I/O Access operation~, in which input mon­
itoring or output operation is performed from the
Control Console rather than the Central Processor.

4) I nterrupt operations, in which an interrupt cycle
is initiated from the Control Console by the user.

5) Processor Control operations, which allow the user
to directly control the operation of the Central
Processor.

6) Sense operations, which allow the user to manually
enter data during a programmed input operation.

7) SearchIWait operations, which allow a selected
instruction to be executed a given number of
times, after which the Central Processor enters a
WAIT mode.

Each of these operational groups is discussed in a
separate subsection of this chapter.

Data Display Operations

The INTELLEC 8/MOD SO Control Console can
perform five distinct data display operations_

• Status Display
• Cycle Display
• Address Display
• Instruction/Data Display
• Programmable Display

The Status display functions provide a visual indica­
tion of the Processor's mode of operation. There exist eight
status display functions:

• Run
• Wait
• Halt
• Hold
• Search Complete
• Access Request
• Interrupt Request
• I nterrupt Disable

The eight functions are performed in the following
manner:

1) The RUN status display is lit whenever the Central
Processor is not waiting or stopped.

2) The WAIT status display is lit whenever the
Processor is in a WAIT state (Le., waiting for data
to be input).

3) The HALT status display is lit whenever the
Processor is in a STOPPED state.

4) The· HOLD status display is lit whenever the
Processor has acknowledged a Hold Request (as
for a direct memory or I/O access operation).

5) The SEARCH COMPLETE status display is lit
whenever a SearchllNait operation has been com­
pleted, and the passcounter has been counted
down to zero.

6) The ACCESS REQUEST display is lit whenever a
Direct Memory or I/O Access request has been
made by depressing the Console Mem Access or
I/O Access switches.

7) The INTERRUPT REQUEST display is lit when­
ever an Interrupt Request has been made via the
Control Console Interrupt or Reset switches, and
is extinguished when the Processor acknowledges
the interrupt request.

8) The INTERRUPT DISABLE display is lit when­
ever the processor has disabled its interrupt
capability.

The cycle display functions provide a visual indication
of the Processor machine state. There are eight cycle display
functions:

• Fetch
• Memory

• I/O

• DA
• Read/Input
• Write/Output

66

• Interrupt
• Stack

The eight cycle functions operate as follows:

1) The FETCH cycle display is I it when the processor
is executing an Instruction Fetch operation.

2) The MEM cycle display is lit when the processor
or the Control Console is executing a Memory
Access operation.

3) The I/O cycle display is lit when the processor or
the Control Console is executing an I/O Access
operation.

4) The DA cycle display is lit when a Memory or I/O
Access operation is being performed from the
Control Console rather than by the processor.

5) The Read/Input cycle display is lit when either a
Memory Read or I/O Input operation is executed.

6) The Write/Output cycle display is lit when either
a Memory Write or I/O Output operation is
executed.

7) The I NT cycle display is I it when a processor
I nterrupt cycle is in progress.

8) The STACK cycle display is lit when the processor
is accessing the stack.

The Address display function provides a visual display
of the address data used for a Memory or I/O operation.
There are sixteen address display lights, corresponding to
the sixteen address lines.

The Address display function is performed by tying
the processor memory address lines to the display lights
through a series of buffers.

The Instruction/Data display provides a visual indica­
tion of the instruction or data fetched from memory or the
data which is read from memory or an I/O device. There are
eight Instruction/Data display lights, tied to the processor
data bus.

The Programmable display function provides an indi­
cation of the contents of output port FF16.

Manual Memory Access Operations

A Manual Memory Access operation is performed in
order to read or write data to or from memory. It is accom­
plished via the following steps:

1) The Mem Access switch on the Control Console is
depressed, sending a control signal to the processor,
which"enters the HOLD state.

2) The memory address to be accessed is loaded into
the Address/I nstruction/Data switches on the Con­
trol Console.

3) The LOAD switch on the Control Console is de­
pressed, loading the Address/I nstruction/Data data
into the Address Register ..

4) The address held in the Address Register is sent to
the memory module on the memory address bus.

5) The memory module responds by sending the data
currently held in the selected memory location to
the Control Console, where it is displayed by the
I nstruction/Data display.

6) If it is desired to write data into memory, the
data byte to be written is loaded into the lower
eight Address/I nstruction/Data switches. Switch
DEP is then depressed, sending a control signal to
the memory module which causes the switch data
to be loaded into the memory address held by the
Address Register.

Note: The deposit at halt function is not implemented on
the INTELLEC 8/MOD 80.

The address held in the Address Register can be in·
cremented by one, by depressing the INC switch, or
decremented by one by depressing the DEC switch.

Manual I/O Access

A Manual I/O Access operation is performed to allow
the user to send data to an output device, or read data from
an input device, by using the Control Console, rather than
the Central Processor. It is executed in the following steps:

1) The I/O Access switch on the Control Console is
depressed, sendi ng a control signal to the processor,
wh ich enters the HO LD state.

2) The I/O Address signifying the I/O device to be
used for the manual I/O access operation is loaded
into Address Data switches 8·15 on the Control
Console.

3) If an Output operation is to be performed, the
data byte which is to be output is loaded into
Address/I nstruction/Data switches 0·7.

4) The DEP switch is depressed.

5) The I/O Address and data are sent to the Input/
Output and Output modules, which then perform
the designated input or output operation.

6) I n the case of an input operation, the data from
the selected input port is displayed in the data
display light.

Interrupt Operations

An interrupt operation is performed in order to
cause the Central Processor to interrupt its normal sequence
of operations and to execute an interrupt instruction. Th is
instruction can be such that processor operation is directed
to a routine which will service the device originating the
interrupt.

A Control Console interrupt is executed in the
foil owi ng steps:

1) The I nterrupt Instruction wh ich is to be executed

67

during the Interrupt operation is loaded into
Address/I nstruction/Data switches O· 7 on the Con·
trol Console.

2) The I nterrupt switch is depressed, generating an
I nterrupt signal which is sent to the Central
Processor.

3) The Central Processor disables further interrupts
and enters an I nterrupt cycle.

4) The Interrupt Instruction loaded into Address/
I nstruction/Data switches 0·7 is sent to the Central
Processor, which executes it as a normal instruc·
tion.

Sense Operations

A Sense operation is performed in order to manually
input data to the Central Processor while it is running a
user program. It is executed in the following steps:

1) The data which is to be input is loaded into the
Address/Data 8·15 switches on the Control Con·
sole.

2) The SENSE switch is depressed, generating a con·
trol signal which is sent to the Central Processor.

3) The control signal causes the CPU to input the
data from the switches, rather than from an input
device, each time an Input instruction is executed.

Search-Wait Operations

Search·Wait operations are a powerful debugging tool
which allows the user to execute a statement in his program
a certain specified number of times, from 0 to 256, and
then cause the. Central Processor to enter a WAI T "State,
wherein the contents of memory can be examined to ensure
proper program operation.

steps:
A Search·Wait operation is executed in the following

1) The PASS COUNT, or number of times that an
instruction is to be executed, is loaded into
Address/I nstruction/Data switches 0·7.

2) The LOAD PASS switch is depressed, causing the
PASS COUNT to be loaded into the PASS register.

3) The address which is to be monitored is entered
into the Address/Instruction/Data switches and
the LOAD switch is depressed, loading the address
into the Adaress Register.

4) Each time the referenced instruction address is
encountered by the CPU, a control signal is gen·
erated. This control signal decrements the Pass
Counter Register.

5) When the Pass Counter Register counts down to
zero, the processor will be forced into a WAIT
state if the SearchlWait switch has been depressed,
allowing the user access to the system memory.
This also causes the SRCH/COMP light to light.

Processor Control Operations

The Processor Control operations allow the user to
control the operation of the I NTELLEC 8/MOD 80 from
the Control Console There are eight Processor Control
functions:

1) Sense

2) Search/Wait

3) Deposit

4) Deposit at Halt (not used in the INTELLEC 8/
MOD 80 System)

5) Interrupt

6) Reset

7) Step/Continuous, which allows the user to cause
program execution to be performed one machine
cycle at a time.

8) Wait, which causes the processor to enter a WAIT
state.

The Wait function is executed by depressing the WAIT
switch on the Control Console. A control signal is then
produced which causes the Central Processor to enter a
WAIT state. Normal operations are resumed when the
switch is reset to its original position.

The Step/Cont function is dependent on the WAIT
function. Single-step operation cannot be performed unless
the WAIT mode is entered. Depressing the STEP/CaNT
switch generates a control signal which causes the CPU to
leave the WAIT state and execute one machine cycle. After
the cycle has been executed, the WAIT mode is reentered.

THE INTELLEC 8 FRONT PANEL CENTRAL
CONSOLE - THEORY OF OPERATION

This section describes the physical implementation of
the features described on page 65. Again, it is necessary that
Chapter 2 of this manual be understood in order to benefit
from this section.

The I ntellec 8 Control Console is made up of three
modules:

• The Front Panel Logic board, which holds Address
Registers, data multiplexers, data buffers, and the
Address Comparator.

• The Display board, which holds the circuitry which
enables the Light-Emitting Diode displays.

• The Front Panel Controller, which holds the logic
necessary to enable the proper performance of
Console function.

These three modules work together in order to per­
form all of the Control Console operations, and so in this
section they will be discussed as one unit_

The seven operational groups discussed in this section
are:

68

1) Data Display operations
2) Manual Memory Access operations
3) Manual I/O Access operations
4) Interrupt operations
5) Processor Control Operations
6) Sense Operations
7) Search/Wait operations

Data Display Operations

There are five distinct data display operations:

• Status display
• Cycle display
• Address display
• Instruction/Data display
• Programmable display

All of these display operations utilize Light-Emitting
Diodes as their active display element. These diodes are
triggered by their input signal going to a LOW level.

The Status display functions are as follows:

• Run
• Wait
• Hold
• Search Complete
• Access Request
• Interrupt Request
• Interrupt Disable

The display functions are executed as follows:
1) The R UN status display is I it when the Central

Processor is running: i.e., when it is not in the
WAIT or STOPPED state. This is accomplished
by combining the two signals WAIT ACK, indi­
cating the WAIT state, and HALT ACK, indi­
cating a STOPPED state, through a NAND gate.
The resulting signal is inverted, producing the
RUN STATUS DISP signal which will go LOW
when the processor is running.

2) The WAIT status display is lit when the Central
Processor is in the WAIT state. This is accom­
plished by using the WAIT ACK signal to produce
the WAIT STATUS DISP signal, which will go
LOW when the processor is in the WAIT state. In
normal operation, both the RUN and WAIT dis­
plays are lit simultaneously. This is because WAIT
states occur during all machine cycles, allowing
ample time for memory data to be returned to
the CPU.

3) The HALT status display is lit when the Central
Processor is in the STOPPED state. This is accom­
plished by using the HALT ACK signal to produce
the HALT STATUS DISP signal, which goes LOW
when the processor enters the STOPPED state.

4) The HOLD status display is lit when the Central
Processor has acknowledged a Hold Request. This
is indicated by the presence of signal HOLD ACK_

This signal is used to form the HOLD STATUS
DISP signal, which goes LOW when a hold request
is acknowledged.

5) The Search Complete status display is I it when­
ever a Search/INait operation has been completed.
This condition is indicated by the presence of sig­
nal SRCH CMPL, which is inverted' to form
SRCH CMPL DISP.

6) The Access Request status display is lit whenever
a manual memory or I/O access has been requested
from the front panel. The two signals which are
produced by such requests are I/O Access Mode
and Mem Access Mode. These two signals are com­
bined by a NOR gate and a NAND gate to pro­
duce the ACCESS REOUEST DISP signal.

7) The Interrupt Request status display is lit when an
Interrupt Request is made from the Control Con­
sole, and extinguished when the request is proc­
essed. This is accomplished by using the INT CTL
SW signal produced by the I nterrupt Request
switch, to set a D flip-flop, producing the INTR
R EO signal, indicating an interrupt request. This
signal is inverted to form INT REO DISP.

8) The Interrupt Disable status display is lit whenever
the CPU disables its interrupt capability. The INT
DSBL signal produces INT DSBL DISP.

When the Central Processor acknowledges the inter­
rupt request, it enters an interrupt cycle, indicated by sig­
nal INT CYCLE. This signal is used to clear the flip-flop
set by the request, thus extinguishing the Interrupt Request
display.

The cycle display functions are:

• Fetch
• Memory

• I/O

• DA
• Read/I nput
• Write/Output
• Interrupt

• Stack

The displays are as follows:

1) The FETCH display is lit during a processor Instruc­
tion Fetch operation. This is indicated by the
FETCH CYCLE signal, which is passed through a
buffer to produce signal FETCH CYCLE DISP.

2) The Memory Cycle display is lit when either the
processor or the Control Console is executing a
Memory Access Operation. In the case of the pro­
cessor, this is indicated by signal MEM RD CYCLE
or MEM WR CYCLE. These two signals are sepa­
rately buffered and tied to a common point as
signal MEM CYCLE DISP. This is possible as both
signals cannot occur simultaneously. Similarly, the
Control Console signal MEM ACCESS MODE can-

69

not occur simultaneously with a processor memory
access, so it is combined with DA ENBL, which
indicates a memory access in progress, and is then
tied to the same point as the two processor mem­
ory access signals.

3) The I/O Cycle display is lit when a processor or
Control Console I/O Access operation is in pro­
gress. The processor indicates this operation with
signal I/O CYCLE, which is buffered and tied to a
common point with the Console I/O Access Cycle
signal, which is produced by combining signals I/O
Access Mode and DA ENBL in a fashion similar to
that described above for memory access display
operations. This produces the I/O CYCLE DISP
signal.

4) The DA cycle display is lit during Control Console
memory or I/O access operation. A Control Con­
sole Access operation is always begun by request­
ing a HOLD operation. This fact is used to pro­
duce the proper signal by buffering the HOLD ACK
signal, which indicates a HOLD operation, to pro­
duce the DA CYCLE DISP signal.

5) The Read/Input cycle display is lit whenever a
Memory Read or I/O Input operation is executed.
This is indicated by three signals: I/O IN, produced
during a Control Console I/O input operation,
MEM RD CYCLE, produced during a Processor
memory read operation, and also by the combina­
tion of the Memory Access Mode and DA ENBL
signals as described in the discussion of the Mem­
ory Cycle display. The first two of these three sig­
nals are buffered and then tied to a common point
along with the third, producing signal RD/IN
CYCLE DISP.

6) The Write/Output cycle display is lit when either a
memory write or I/O output operation is executed.
This is indicated by two signals: MEM WR CYCLE,
produced during a memory write operation, and
then the combination of I/O IN and I/O CYCLE,
which is true only during an I/O OUT cycle. These
signals are tied to a common point to produce sig­
nal WR/OUT CYCLE DISP.

7) The Int cycle display is lit when an interrupt cycle
is in progress, which is accomplished by inverting
the INT CYCLE signal and combining it through
a NAND gate with the HOLD ACK signal which
indicates a HOLD operation, thus producing signal
INT CYCLE DISP.

8) The Stack cycle display is lit when the stack is being
accessed. The STACK CYCLE signal produces
STACK CYCLE DISP.

The Address display lights are lit either by the data
held in the Control Console Address Register, during a Mem­
ory Access operation, or by the data appearing on the Ad­
dress/Instruction switches, during an I/O Access operation.

The choice of which set of data to use is made at a two-input
multiplexer. If neither operation is being performed, the
Address display is activated by the data on the Processor
Memory Address Lines MADO-MAD15.

The Instruction/Data display lights are lit by the data
appearing on the Processor Data Out lines DBO-DB7 except
during a Control Console data deposit operation, when they
reflect the contents of the first eight Address/lnstruction/
Data switches.

The Register/Flag display lights reflect the contents
of the Processor Register/Flag flip-flops.

Manual Memory Access Operations

Manual Memory Access operations are executed in
the following manner:

1) The Mem Access switch on the front panel is de­
pressed. This causes the Request Multiplexer to
generate a HOLD REO signal, which is sent to the
Processor.

2) The Processor responds to the HOLD request by
giving control of the memory address and control
buses to the Control Console, and issuing signal
HOLD ACK.

3) The memory address to be accessed is loaded into
the Address/Instruction/Data switches on the front
panel.

4) The LOAD switch on the front panel is depressed,
causing the switch data to be gated into the Ad­
dress Register, a sixteen-bit up/down counter.

5) The data held by the address register are gated
through a multiplexer and fed onto the Memory
Address bus, and thence to the memory modules.

6) The memory module responds by sending the data
currently held in the addressed memory location
back on the Memory Data Input bus. The data is
then gated onto the Data Out bus, and is displayed
by the Control Console.

7) If it is desired to write data into memory the data
byte to be written is loaded into the lower eight
Address/Instruction/Data switches, and the DEP
switch is depressed. This causes the DEPosit flip­
flop to produce the DEP REO signal, which is com­
bined with the SYNCA and MEM ACCESS mode
signals to produce the memory write signal R/W.
R/W is then used to clear the Deposit flip-flop,
producing a pulsed write signal. The data held in
the switches is gated onto the Data Out bus at the
same time, by signal DEP DAEN, produced by
combining the DEP REO and DA ENBL signals.
The data will thus be written into the selected
memory location.

70

Manual 1/0 Access Operations

A Manual I/O access operation is performed as follows:

1) The I/O Access switch on the Control Console is
depressed, causing signal HOLD REO to be gener­
ated by the Request Multiplexer and sent to the
processor.

2) The processor gives control of the memory address
and control buses to the Control Console, and issues
signal HOLD ACK.

3) The I/O Address signifying the I/O device to be ac­
cessed is loaded into AID switches 8-15. This data
is immediately gated onto the Memory Address bus,
and sent to the I/O modules. Data which appears
on the selected I/O device will be read onto the
the Data Out lines by signal I/O IN, produced by
the I/O ACCESS MODE signal, and will be
displayed.

4) If an I/O Output operation is to be performed, the
data to be output is loaded into the first eight
A/I/D switches, and switch DEP is depressed. This
causes a deposit operation to be performed, except
that I/O OUT is produced rather than R/W.

Interrupt Operations

An Interrupt operation is executed as follows:

1) The I nterrupt Instruction wh ich is to be executed
during the Interrupt Cycle is loaded into the eight
Address/Instruction/Data switches on the Control
Console.

2) The Interrupt switch is depressed, producing signal
INT CTL SW, which sets the Interrupt flip-flop.
This flip-flop produces signal INT REO. This signal
causes the Request Multiplexer to issue signal I NT
REO, which is sent to the processor. It is also used
to produce signal INT REOEN, which causes the
data placed in the switches to be gated through a
multiplexer and onto the Interrupt Instruction bus.

3) The processor entersan Interrupt Cycle, producing
signal I NT CYCLE, which resets the Interrupt flip­
flop.

Sense Operations

A sense operation is executed in the following manner:

1) The data which is to be input is loaded into the
8 Address/Data switches.

2) The Sense switch is depressed. This causes signal
SENSE REOEN to be generated, which causes the
swtich data to be placed on the Input Data bus. It
also produces signal IN JAM ENBL, which causes

the switch data to be input during an input opera­
tion, rather than the normal input source data.

Search/Wait Operations

A Search/Wait operation is performed in the following
manner:

1) The pass count is loaded into the lower eight Ad­
dress/Instruction/Data switches.

2) The LOAD PASS switch is depressed, loading the
pass count into the Pass Counter, an eight-bit
counter.

3) The address which is to be monitored is loaded into
the Address/Instruction/Data switches. The LOAD
switch is depressed, loading the switch data into
the Address Registers.

4) The contents of the Address Register is compared
with the Memory Address buss by the SRCH ADR
comparator. Each time they coincide, signal ADR
CMP is produced. This signal is used to produce
PC STB, which is in turn used to count down the
Pass Counter by one.

71

5) When the Pass Counter reaches zero, it produces
signal SA CMP. This signal is used to set the Search
Complete flip-flop. This flip-flop's output causes
the Request Multiplexer to issue signal WAIT REO,
which causes the processor to enter a WAIT mode.

Processor Control Operations

Most of the processor control operations have been
previously discussed. Those which remain are the WAIT and
STEP/Continuous functions.

The wait function is executed by depressing the WAIT
switch on the Control Console. This produces the WAIT
MODE signal, which causes the Request Multiplexer to issue
signal WAIT REO, which causes the processor to enter the
WAIT mode.

If the WAIT mode is entered, the Step/Continuous
function becomes valid. Depressing the STEP/CaNT switch
causes the WAIT REOsignal to go FALSE for approximately
1 p.s., which enables the processor to execute one cycle of
operation, after which it again enters the WAIT mode.

8 7 6 5 4 3 2

" ca' e: ..
CD H H

I

" ..
0
;:, ..
'tI
I»
;:,
!!..G G

r
0

CQ
(i'
(I)
n
::r
CD
3
I» ..

F (i' F

C
iii'

CQ ..
I»

3 ",j~y
,~~v." "OO"~

E

::~~,~~
E

-..J
N

0 o

c c

B B

A
A

8 7 6 5 4 3 2

'TI
cE'

8 7
c ...
CD
.....
~
'TI 0 ...
0
::l
r+

~
::l
!2..

~ ;a ...
2.
(jj ...
en n :::r

C CD

3
III
r+
c;'
C
iii'
«=

-.j ...
III W
3

B

A

8 7

6

6

5

'~

-.~.

5

4

, ~. ~;.)A' '----""Ii

4

3 2

o

c

B

A

3 2

74

The INTELLEC 8 Chassis, Mother Board, and Power
Supplies are designed to provide the housing, interconnec­

tion, and power services for the INTELLEC 8/MOD 80
system.

Since these three components of the INTELLEC 8
are, essentially, very simple, they will not be described in
detail.

The INTELLEC 8/MOD 80 uses OEM power supplies.
One supplies -9V at 1.8 Amperes. A second furnishes +5V
at 12 Amperes. And the third supplies ±12V at 60 milli­
amperes. This is sufficient power to operate the standard

Figure 8·1. INTELLEC 8/MOD 80 Module Assignments.

75

INTELLEC 8/MOD 80 with one additional I/O or Output
module, and one additional memory module. If greater ex­
pansion is planned, maximum and typical current draw
should be totaled for all modules and the requirement for
an external supply evaluated. System Utilization has more
details concerning the use of the external power supply.

The Mother Board is, simply, a printed circuit board
which has mounted on it the connectors which hold the
various cards which make up the INTELLEC 8/MOD 80
System. The layout of these connectors is such that certain
modules must occupy certain locations on the Mother
Board. The suggested arrangement is shown in Figure 8-1.

"'-----PROM, PROGRAMMER MOOULE

76

The imm8-76 PROM Programmer Module is a stan­
dard module for the INTELLEC S/MOD SO system. When
used in conjunction with the INTELLEC 8/MOD SO Sys­
tem Monitor, the Programmer Module permits rapid, auto­
matic loading of Intel 8702A Programmable Read Only
Memories.

The program to be transferred to a PROM is first
stored in the INTELLEC 8's program RAM memory. The
PROM to be programmed is erased, if necessary, and in­
serted in the programming socket on the Control and Dis­
play Panel. The PRGM PROM PWR switch is turned on, and
the console operator types a 'P' followed by parameters
which indicate the first and the last RAM addresses to be
transferred, as well as the starting address in the PROM.

The software does the rest. It transfers the eight bits
of the PROM address to output port 2. It sets up the data
to be written into the PROM, at output port 3. It pulses the
power supply the required number of times, at the required
duty cycle. And it checks the result of its programming by
reading the PROM's output through input port 2. If im­
proper programming is indicated, the System Monitor prints

an exception notice at the teletype console. This program­
ming cycle is repeated at each of the memory locations
bracketed by the initial and the terminal parameters. Com­
plete programming involves the loading of 256 individual
locations, a process which requires approximately 2 minutes.
The procedure is described fully in the INTELLEC 8/MOD
80 Operator's Manual.

The imm6-76 is designed for plug-in installation in the
INTELLEC 8/MOD 80 mainframe. It makes use of existing
connectors and other provisions. No special installation is
. necessary.

THE 8702A PROGRAMMABLE
READ ONLY MEMORY

The 8702A is a 256 x S bit electrically programmable
read-only memory, designed for use in limited quantity
OEM production. The 8702A is programmed by the mo-

77

mentary application of high amplitude pulses on selected
pins of the chip. The 8702A is cleared by a controlled
exposure to high intensity ultraviolet. The 8702A may be
reloaded as often as desired, making it suitable for use in
program development.

Programming of the 8702A requires a carefully con­
trolled sequence of operations. The safety of the chip
demands that both the intermittent voltages and the duty
cycle of the programming pulses be maintained within spe­
cific limits. This insures against breakdown and overheating.
On the other hand, insufficient power levels will lead to
programming failures. An accurate balance is necessary.
The PROM Programmer Module is designed to provide
pulses of the correct level and duration, automatically.

Appendix B of this manual contains full electrical
specifications for the Intel 8702A.

The 8702A is shipped to the customer in a "cleared"
condition; that is, with zeros in all memory locations. An
internal zero-state is indicated by a HIGH on the output
pins of an enabled chip. During progr.amming, ones are
loaded selectively into each of the chip's memory locations.

A 8702A which has been programmed previously
must be erased prior to reloading. Erasure is accomplished
by exposing the silicon die to ultraviolet light. The device is
made with a transparent quartz lid, to permit such exposure.
Conventional room light, flourescent light, and sunlight
have no measureable effect on data stored in the 8702A,
even after years of exposure. But the device is quickly
cleared by a brief exposure to high intensity ultraviolet at
a wavelength of 2537 Angstroms. The Model UVS-ll (Ultra­
violet Products, Incorporated: San Gabriel, California) is a
cheap and effective source for this purpose. Its accompany­
ing filter must first be removed. The recommended inte­
grated does (the product of Intensity and the exposure
time) is 6W-sec/cm2 . Ten minutes exposure to the UVS-l1,
at a distance of 1 inch, will clear the PROM completely.
Avoid unnecessary or prolonged exposures, wh ich are po­
tentially damaging to the PROM.

-WARNING -

High intensity ultraviolet can cause serious burns.
Ultraviolet radiation can also generate potentially hazard­
ous amounts of ozone. Observe the following precautions,
when using the source to erase a PROM:

(1) Never expose skin or eyes to the source directly.
(2) Do not stare fixedly at an object which is under

ultraviolet illumination. The light is invisible, but
is nevertheless injurious to eye tissue.

(3) Use the source only in a well-ventilated area.

FUNCTIONAL DESCRIPTION
OF THE MODULE

An eight-line input, applied to the PROM's addressing
lines, specifies the location to be programmed. Data to be
written in that location is applied to the chip's eight output
lines. Then address lines, data lines, the PRGM pin, and all
four power lines (Vcc, Vbb, Vgg, and VDD) are pulsed, to
fix the data in location. The procedure requires about 3
milliseconds, and the cycle is repeated 32 times at each of
the 256 memory locations. To prevent overheating of the
8702A, the Programmer Module maintains a 20% duty
cycle, and it therefore takes approximately 123 seconds to
program the entire chip.

To perform the required functions, the imm6-76 con­
tains an address driver bank, a data driver bank, four elec­
tronically controlled power supplies, and a control and
timing section.

The sequence of events is as follows:

1) Data to be programmed into the PROM is placed
on the input lines, in complement (negative-true)
form.

2) Address to be programmed is placed on the ad­
dress lines, in complement (negative-true) form.

3) When the programming cycle begins, the following
changes in the static conditions occur:

a) Vcc switches from 5 to 47 Volts.

. b) Vbb switches from 5 to 59 Volts.

c) V gg switches from -9 to 12 Volts.

d) VDD switches from -9 to 0.6 Volts.

e) The programming signal (PRGM) goes from 0
to 47 Volts.

f) Address data changes from 0-5 Volts to 0-47
Volts.

78

4) 60 microseconds after the cycle begins, the address
data is switches from its complement form to its
positive-true form.

5) 155 microseconds after the cycle begins, the
PRGM signal dips from 47 Volts to approximately
9 Volts.

6) 3 milliseconds later, the PRGM signal returns to 47
Volts.

7) 3.25 milliseconds after the beginning of the cycle,
all voltages and signals are switched back to their
normal quiescent levels.

8) 15 milliseconds after the beginning of the first
cycle, the second cycle begins.

Interface to the INTELLEC 8/MOD 80

Note that the timing relationships above are deter­
mined by control circuitry on the PROM Programmer
Module itself. The number of pulsed repetitions, however, is
determined by the controlling program. The INTELLEC
8/MOD 80 System Monitor contains a timing routine which
holds the PROM Programmer enabled for approximately
520 milliseconds, or 35 programming cycles, before step­
ping to the next memory location.

The ADDRESS IN lines on the Programmer Module
are connected to the INTELLEC 8/MOD 80 output port
#2. The DATA IN lines are conne<;ted internally to output
port #3. The INTELLEC 8/MOD 80 System Monitor writes
into these ports when a PROM is being programmed.

When the Programmer Module is not actively pro­
gramming a memory location, the contents of that location
are available at the module's DATA OUT pins. These
outputs are connected in turn to input port #2, so that the
INTi:LLEC 8/MOD 80 System Monitor can check the
results if its programming.

The PROM programmer module also has two negative­
true enabling inputs, which initiate the programming cycle.
A .LOW applied to pin #32 of the module selects a 20%
programming duty cycle. This input is used when program­
ming8702A PROM. A LOW applied to pin#30 selects a
2% duty cycle, used when programming 8702A dllvice. In
the INTELLEC 8/MOD 80 system, pin #32 of the module
is connected to the BIT #7 line of RAM output port L1.
Pin #30 is connected to the BIT #6 line of the same output
port. The INTELLEC 8/MOD 80 System Monitor controls
the Programmer Module by writing into that port.

."
cE'
I:
nl
CO -.:.. ,.,

.,,,.,.
"'D 0
:l) -= 0
s:
"'D ...
0

cQ ...
'" 3
3
<1> ...
CI)
n :r
<1>

3
'" ...
j'i'

(-!O\Il~""4)

0 (-~" l.H",e~

iii'
cQ ...
'" 3

ta

B

.,

1>.lCfTES· ut.,J~£S.S O"\.I~...J'~t. "'P~ '" £.D
I I>.U. Z.£.!:,L~"OIt. .loot..£.. '-l c:,...H~ 'I41W ~IO~/O.

2.. 6.1..1.. c.A,I:).c..,""'Oe." A.1t.E.. 1\,1 "" .(ADt=AJtAO",.

~ ~ ~:;;'i:'i.''!o''''02~ ~ '":;o~tocl21~ z."'-J~5c..a,

7 6 5

~1,JI ... t£. '1o.JTu......u;,.4

t:.i:,::-e-- 'Cl:).>Oft~,,~~ .. Ll!.

£~_-B 'U""'-l~ ~~ 2-t..'!1

A/IJ -7 ~ uu~...,,. pPc.""~ ~LL

e . .i~

,~"PuY <>e>It..' :.
.... PlJT ~Il.~ l...

,,,-,TO>U~ ;;>alt. ... 2....

c.l'PI,I. ""II.' I 1!>"'"

V':;:-' ... 1!lo1"T L, "'I'\JT Po -. ",",TCI

llOo.T/O. O.iT ENof6,.E ~,~~ 0 ... ~ ?l>N.L..1.. OOT W"< ';It:lQ.l. e:,,' :!o

4

2

0

~(~\

C
~'t.!;:7~\

"'!.,~~O""\

~4,~1.O\

B

A

3 2

THEORY OF OPERATION OF
THE MODULE

Refer to Figure 9-1, the PROM Progra mmer Sche-

lJlatic.

Data Distribution

The data to be programmed into the PROM enter
originates at output port #3. This eight-line signal enters
the Programmer Module through a ribbon cable which runs
from Jl on the I NTE LLEC 8/MOD 80 motherboard to J 1
at the top of the module. Each of the input lines is applied
to one input of an XOR-gate. The alternate inputs of these
eight gates are returned through a common line to the +5
Volt supply, so that each gate acts as an inverter to the
incoming data.

Each of the XOR-gate outputs is directed to one
input of a 7403 NAND-gate. The alternate inputs to this
bank of gates are driven in common by a signal originating
in the control and timing section of the module. At the
appropriate time in the cycle, these inputs are permitted to
swing HIGH, causing data from the XOR-gate bank to pass
through to the bases of eight driver transistors: 019, 015,
011, 07, 017, A 13, A9, and 05. The signal at the
collectors of these drivers is conducted out of the assembly
through a ribbon cable which attaches to J2 at the top of
the module. It goes from there to the programming socket
on the front panel of the INTELLEC 8/MOD 80. This data
undergoes three successive inversions, between entering and

-·--3.25mS

155,.5 __ 3.0 mS

r--\
PRGM 1#13)

---.l
\

Vee, 1#12) ~
Vbb 1#15) -1
Vgg 1#16) -1

VDD 1#24) -1
All (7)

leaving the imm8-76. The output will therefore be in
complementary form, as required for the programming of

the 8702A PROM.

Observe that the bases of the PROM data driver
transistors are returned through pull-up resistors to the +5
Volt supply. As a result, these transistors will be conducting
whenever the input NAND-gates are inhibited. Under these
circumstances, the signal at each of the PROM's data pins
will be applied to the base of a transistor, through a divider
consisting of a 100-ohm resistor, the DC collector resistance
of a driver transistor, and a 1 K resistor. Transistors 020,
016, 012, 08, 018, 014, 010, and 06 amplify this
eight-line signal and forward it to an XOR-gate bank which
is used as an eight-line data inverter. The outputs of the
XOR-gates are applied to eight NAND-gates which have
their alternate inputs tied in common to the +5 Volt
supply. These gates are permanently enabled, and also act
as data inverters. The output of these gates is in positive­
true form. It is routed out of the assembly at J 1, through a

ribbon cable to Jl on the INTELLEC 8/MOD 80's mother­
board, and terminates at input port #2. The INTELLEC
8/MOD 80 System Monitor reads this port, to determine
the results of its programming.

Address data enters the module at J 1, through a
ribbon cable connecting it to Jl of the INTELLEC 8/MOD
80's motherboard. Data originating at output port #3 is
therefore applied to the eight-line XOR-gate bank, shown
on the right in Figure 9-1. The outputs of these gates are

15/150 mS

r 1,.- +47 V

+4.7 V

OV

+47 V

\ +4.7 V

\
+59 V

+4.7 V

\
+12 V

-9 V

+0.6 V

\ -9 V

~ +47V

ADDRESS dJ' \ DATA +4.7 V

- ~------------------------- OV

Figure 9-2. PROM Programmer Timing

80

directed to the bases of eight driver transistors, whose
outputs command the PROM address lines. Note that the
alternate inputs of the XOR-gates are tied in common to a
signal line from the control and timing section. This line
swings LOW when the programming cycle begins. It returns
to a HIGH condition 60 microseconds later. As a result, the
address forwarded to the PROM is in complementary form
initially. Sixty microseconds after the programming cycle
begins, the address data will switch to its positive-true form,
in accordance with the PROM's programming requirements.

Control and Timing

As shown in Figure 9-1, the programming cycle may
be initiated by a LOW applied to pin #32 or to pin #30 of
the card. The INTELLEC 8/MOD 80 System Monitor
enables the pin #32 input, selecting a duty cycle of 20% (3
mS/15 mS). The pin #30 input is set up for the 2% duty
cycle to program 8702 devices.

When a LOW is applied to pin #32 of the module, the
15 mi Ilisecond input multi vibrator re-triggers itself re­
petitively, until the enabling signal is removed. This pro­
vides a series of positive-going excursions with a period of
15 milliseconds, which are used to trigger the 3.25 milli­
second program cycle one-shot.

The output of the program cycle one-shot:

1) Complements the address to the PROM.

2) Enables the data drivers.

VR5

PROG

(3mS)

50VAC

PROG

CYCLE

(3.25 mS)

,----t 035

CR11-CR12

REGULATOR

RECTIFIER 030

CR3-CR6 ... L -
BIAS

PROTECT
V/REG

VR2/029
A17/033

BIAS
PRGM PROM

CLAMP PWR ___
032/034

(FRONT PANEL)
CR10

Figure 9-3_ Power Supply Functional Block

CR7
N
VI

81

3) Pulses all four power supplies.

4) Triggers a 155 microsecond cascaded one-shot
delay.

Sixty microseconds after the program cycle one-shot
fires, the negative-going pulse output at A11-7 subsides, and
the address data returns to its positive-true form.

One hundred fifty-five microseconds after the pro­
gram cycle one-shot fires, A 12-9-10-11-12-13-14 fires,
causing the power supply to apply a 3 millisecond PRGM
pulse to the PROM.

Three and a quarter milliseconds after the beginning
of the programming cycle, all signals return to their quies­
cent levels.

The Programmer Module's control timing is illus­

trated in Figure 9-2.

Power Supply

The power supply section of the PROM Programmer
Module performs the level switching functions required to
program PROMs, in response to signals which are generated
in the timing and control section of the module. The power
supply contains a rectifier section, a voltage regulator
section, a regulator control section, and six output
switches. The relationship among these is shown in a
simplified form, in Figure 9-3.

Vbb (+5/+59 VOC)

027 PRGM (+47/+9 VDC)

Vee (+5/+47 VDC)

~ 025 r-- CS 10/+47 VDC)

VR1 2~

Vgg 1-9/+12 VDC)

+5V

CLAMP

026/028
~-10V

036

037 VDD (-9/+0.S VDC)

CRB

RECTIFIER AND REGULATOR

The Programmer Module receives a 50 VAC/60 Hz
input, from two 25 Volt transformers which are located on
the I NTE LLEC 8/MOD 80's chassis. The secondaries of
these transformers are connected so that their outputs are
series additive, and the 50 Volt output thus obtained is
routed to the Programmer Module through J3. A full·wave
bridge consisting of diodes CR3·CR6 rectifies the 50 Volt
input to produce a +80 Volt DC output.

The +80VDC output of the rectifier is applied to a
series regulator, 030, shown in the upper left hand corner
of Figure 9·1. The output voltage at the emitter of 030
depends upon the signal at its base. This level is determined
in turn by a regulator loop which consists of an integrated
voltage regulator (A 17), 033, and 030 itself.

Figure 9-4 shows a simplified equivalent of the
regulator loop. Components within the broken lines are
part of the Signetics 550 monolithic voltage regulator.

The loop input is obtained from the regulator's
output, through an adjustable resistive divider (R91 and
R100). This level is applied to the non·inverting input of an
operational amplifier which is incorporated into A 17. The
output of the amplifier drives a common·emitter stage, also
contained within A 17, and the inverted output at A 17·11 is
applied externally to the emitter of 033. 033's collector
drives the base of the series regulator 030, completing the
negative feedback loop.

In a stabilized configuration such as this, the opera·
tional amplifier tends to maintain an output which results
in zero error, where the error is the potential difference
between the amplifier's inverting and non·inverting inputs.
Note that the inverting input is tied to the 550's internal
reference (approximately 1.63 Volts). In order to obtain
the desired output from the regulator, the resistive divider
is adjusted for a zero error when the regulator's output is
approximately +47.6 Volts.

Refer to the schematic for the PROM Programmer
Module, Figure 9·1. Observe that the series regulator 030 is

+80V -r--_____
CR7 +47.S V

r-~~--~---------------- OUT

11
r---- ---
I SG 550 :

~ ____ 51~ I

VR-S

I
I
I
I
I
I

Figure 94. Voltage Regulator Loop: Simplified Schematic
Equivalent

82

protected against short·circuit overloads, by a bias protec·
tion circuit consisting of 029 and the Zener diode VR2~
Under ordinary operating conditions, 029 will be off, and
the reverse voltage applied to VR2 will be insufficient to
cause this diode to conduct. In the event of a short·circuit,
however, the voltage drop across 030 will rise sharply. VR2
will begin conducting when the voltage across 030 ap­
proaches 36 Volts, applying a forward bias to 029. As a
result, the voltage at 029's collector will drop, clamping the
base of 030 to a relatively low level, and limiting the
current output from the supply.

SCR1 is a crowbar switch, used to protect the PROM
being programmed from an over·voltage condition in the
supply. The normal voltage level on the VCCS line (+47.6
Volts) is insufficient to cause conduction in Zener diode
VR3. Should VCCS rise above +56 Volts, however, the
diode will conduct, forward biasing the gate of the SCR.
SCRl short·circuits the output of the rectifier, and the
over·current condition blows fuse F2, interrupting AC
power to the Programmer Module. Capacitor C 16 provides
an alternate gate current path, to prevent dv/dt triggering of
the SCR when power is initially applied.

REGULATOR CONTROL

Refer again to Figure 9·3, the power supply functional
block. Note that the bias on 030 is subject to the condition
of a clamp. The clamp circuit consists of 032, 034, CR 10,
and associated components. These are used to switch the
regulator output on and off, producing the pulses required
for the programming of the PROM.

The base of 034 is returned to the +80 Volt source,
through pull·up resistor R92 (refer to Figure 9·1}. Under
static conditions, this transistor will conduct through
CR10, clamping the base of 030 to a low value. As a result
of the low forward bias, 030 displays a high impedance,
and the output of the regulator will therefore drop to a
very low value.

The PRGM PROM PWR switch is located on the
Console and Display Panel of the INTELLEC 8/MOD 80.
Contacts of the PRGM PROM PWR switch ground the base
of 034 when that switch is turned on. This turns 034 off,
enabling the regulator.

The regulator's output remains clamped, however, by
the conduction of 032. This transistor is commanded by
the control and timing section of the Programmer Module.
The 3.25 millisecond output of the program cycle one·shot
turns 032 off at the start of the programming cycle. With
both 032 and 034 disabled, the bias on 030 rises to the
stable level established by the characteristics of the regula·
tor loop. The output of the regulator rises in consequence.

OUTPUT SWITCHES

When no program cycle pulse is present, the regula·
tor's output is at a low level. Diode CR7 is reverse biased,
and the output voltage on the VCCS line is determined by
the clamp circuit consisting of 026 and 028. Under these

conditions, 026 operates in the reverse beta mode, holding
VCCS to approximately +4.7 Volts. When the program
cycle begins, the control and timing section applies a
negative·going 3.25 millisecond pulse to the base of 028,
turning that transistor off. 026 now operates in a conven­
tional manner, turned off by the low bias developed across
R88. With the clamp removed, the VCCS line is free to
follow the rising output of the regulator section. CR7
conducts, and the VCCS line rises to approximately +47
Volts.

Observe that the collectors of both the address drivers
and the data drivers are returned to the VCCS line, through
their individual load resistors. Thus the normal 0 to 5 Volt
logic excursion which prevails under static conditions
changes to a 0 to 47 Volt excursion during programming.
This is an accord with the electrical requirements of the
PROMs.

As VCCS rises, 025 goes into conduction, causing the
level at the CS output to go from 0 Volts to +47 Volts.

Under static conditions, conduction through R89
holds the Vgg output to approximately -10 Volts. The 15
Volt drop across VR1 is not sufficient to induce an
avalanche in the Zener. During programming, however,
VCCS rises to +47 Volts and the diode goes into conduc­
tion. As a result, Vgg rises to +11 Volts, approximately 36
Volts below the level on the VCCS line.

The VDD output is held to a static level of -10 Volts,
by conduction through 036. When programming begins, a
negative-going program cycle signal is applied to the emitter
of 037. The negative-going transition at its collector is
coupled to the base of 036, and 036 turns off. CR8
conducts, causing VDD to rise to about 0.6 Volts.

Under static conditions, the clamp transistor 032 is
conducting, and 035 is turned off by the low voltage
applied to its base through diode CR 12. The Vbb output
line is tied to VCCS through R87, and the quiescent voltage
I~vel at this point is approximately +4.7 Volts. When the
program cycle pulse turns 032 off, CR5 conducts, and the
voltage at the base of 035 rises to the vicinity of +60 Volts.
The emitter of 035 follows this excursion, and CR5
conducts, pulling Vbb up to a level of +59 Volts.

The PRGM line is connected to VCCS through R78,
and the static level at this output is approximately +4.7
Volts_ When VCCS rises to +47 Volts, at the beginning of

83

the programming cycle, the PRGM output follows. One
hundred fifty-five microseconds after the start of the cycle,
the control and timing section sends a 3 millisecond
program pulse to the base of 027. This positive-going pulse
turns the transistor on, and the voltage at its collector falls
to approximately +9 Volts. Three milliseconds later, the
PRGM output returns to +47 Volts, where it remains until
the end of the programming cycle.

UTILIZATION

This section describes the utilization of the imm6-76.

Installation

The PROM Programmer Module is designed for plug­
in installation in the INTELLEC 8/MOD 80. No special
installation is necessary.

Plug the printed circuit board into J 16 on the
INTELLEC 8/MOD 80's motherboard. A ribbon cable
connects J1 at the top of the module to J1 on the
motherboard. A second ribbon cable connects J2 on the
module to the programming socket on the front panel of
the INTELLEC 8/MOD 80.

An umbilical cable, permanently attached to the
module, plugs into J34 on the INTELLEC 8/MOD 80's
motherboard. This connection supplies AC power to the
Programmer Module.

Refer to the INTELLEC 8/MOD 80 Operator's
Manual for instructions on the programming of PROMs
using the INTELLEC 8/MOD 80 System Monitor.

Power Requirements

This module requires power at the following levels:

a) 50 VAC
b) +5 ±5% VDC@ 1.0A (max)
c) -10 ±5% VDC @ O.2A (max)

The 50 VAC source shares a fuse with the -9 Volts
supply in the INTELLEC 8/MOD 80. This 0.5 Ampere fuse,
F2, is located on the I NTE LLEC 8/MOD 80's rear panel.

Pin List

Connector pin allocations on the PROM Programmer
Module are given in Tables 9-1, 9-2, 9-3, and 9-4.

Pl PIN LIST

PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION

1 51
2 52
3 GROUND 53
4 GROUND 54
5 55
6 56
7 57
8 58
9 59

10 60
11 61
12 62
13 63
14 64
15 65
16 66
17 67
18 68
19 69
20 70
21 71
22 72
23 73
24 74
25 75
26 76
27 77
28 78
29 79
30 R/W (1701) 80
31 81
32 R/W (1702A) 82
33 83
34 84
35 85
36 86
37 87
38 88
39 89
40 90
41 91
42 92
43 -10 VDC 93
44 -10 VDC 94
45 95
46 96
47 97
48 98
49 99 +5 VDC
50 100 +5 VDC

Table 9-1_

84

J1 PIN LIST J2 PIN LIST J3 PIN LIST

PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION PIN SIGNAL FUNCTION

1 DATA 0 IN 1 PROM DATA OUT 0 50 VAC (01)
2 ADDRESS 0 IN 2 PROM ADDRESS OUT 0 2
3 DATA 1 IN 3 PROM DATA OUT 1 3 50 VAC (02)
4 ADDRESS 1 IN 4 PROM ADDRESS OUT 1 4 +80 VDC OUT
5 DATA 21N 5 PROM DATA OUT 2 5 PROGRAM PROM POWER
6 ADDRESS 2 IN 6 PROM ADDRESS OUT 2 6 GROUND
7 DATA 31N 7 PROM DATA OUT 3 7
8 ADDRESS 3 IN 8 PROM ADDRESS OUT 3 8
9 DATA 4 IN 9 PROM DATA OUT 4 9

10 ADDRESS 4 IN 10 PROM ADDRESS OUT 4 10
11 DATA 5 IN 11 PROM DATA OUT 5 11
12 ADDRESS 5 IN 12 PROM ADDRESS OUT 5 12
13 DATA 6 IN 13 PROM DATA OUT 6 13
14 ADDRESS 6 IN 14 PROM ADDRESS OUT 6 14
15 DATA 7 IN 15 PROM DATA OUT 7 15
16 ADDRESS 7 IN 16 PROM ADDRESS OUT 7 16
17 TEST DATA OUT 0 17 17
18 18 18
19 TEST DATA OUT 1 19 19
20 20 20
21 TEST DATA OUT 2 21 21
22 22 22
23 TEST DATA OUT 3 23 23
24 24 24
25 TEST DATA OUT 4 25 25
26 26 26
27 TEST DATA OUT 5 27 27
28 28 28
29 TEST DATA OUT 6 29 29
30 30 30
31 TEST DATA OUT 7 31 31
32 32 32
33 +5 VDC 33 33
34 +5 VDC 34 34
35 +5 VDC 35 35
36 +5 VDC 36 36
37 +5 VDC 37 37
38 +5 VDC 38 38
39 +5 VDC 39 39
40 +5 VDC 40 40
41 41 41
42 42 42
43 43 43
44 44 44
45 45 45
46 46 46
47 47 47
48 48 48
49 49· 49
50 50 50

Table 9-2. Table 9-3. Table 9-4.

85

86

This section gives the information necessary to install
and operate the INTELLEC 8/MOD 80 system in an
application. It is divided into four subsections.

INTELLEC S/MOD SO INSTALLATION

Installation of the INTELLEC 8/MOD 80 is very
simple, as it is delivered in a ready-to-use condition. Simply
set it on a convenient surface, plug the 110v supply cord
into the nearest 11 Ov AC socket, and connect any desired
peripherals, and it is ready to use.

The Bare Bones 80 is almost as simple to install, as it
has been designed to mount in any standard 19-1/2 inch
RETMA panel.

SYSTEM I/O INTERFACING

This section provides the information necessary to
properly interface external input and output equipment to
the INTELLEC 8/MOD 80. Since most of the interfacing
requirements are supplied by the internal Input/Output and
Output cards, interfacing is not a complex task; however,
there are certain procedures which must be followed in
order to assure the proper operation of any external devices
used.

The INTELLEC 8/MOD 80 can support up to 16

Module­
Location

1/0#0
1/0#1
1/0#2
1/0#3

OR

* 1/0#0
OUT#l
OUT #2
OUT#3

Ports

Input ports 0-3; output ports 0-3
I nput ports 4-7; output ports 4-7
I nput ports 8-11; output ports 8-11
Input ports 12-15; output ports 12-15

OR

Input ports 0-3; output ports 0-3
Output ports 16-23
Output ports 8-15
Output ports 24-31

*Note that in this configuration none of the output ports
respond to add resses 4-7.

87

input ports and 16 output ports (when four imm8-61 I/O
Modules are used) or up to 4 input ports and 28 output
ports (when one imm8-61 I/O Module and three imm8-63
Output Modules are used). The ports can be assigned to
specific modules as shown (lower left)_

All of the data ports complement data to and from
the CPU, and are TTL compatible. Note that the two input
ports (0 and 1) and two output ports (0 and 1) used for
Teletype communications are not available to the user. The
data from the other ports is brought, via flat cables, to the
back panel of the INTELLEC 8/MOD 80, where it is made
available on 37 pin jacks (see Figure 10-1). External devices
may connect to these jacks using AMP 205210-1 plugs.

The standard I NTE LLEC 8/MOD 80 comes equipped
with only one I nput/Output card, providing four input
ports and four output ports. A table of the data signals
associated with these ports is given in Table 10-1.

In order to ensure the proper transmission of data
through a twisted cable of 12 feet (maximum), the user
should provide circuitry which will assist in reducing signal
noise. It is suggested that each output line be provided with
a filter network and pullup resistors. The filter is made up
of a 200 ohm resistor and a .001 /1f capacitor, and the
pullup resistor should be 1 K ohm.

Also, 7404-type drivers are suggested for each input
data line. These drivers should, preferably, be open­
collector type devices. If input ports 2 or 3 are used,
open-collector devices must be used, as these ports are
shared with the PROM Programmer during programming,
transfer and compare PROM operations. The user must
disable his input drivers when PROM programming
operations are being performed.

INTELLEC S/MOD SO SYSTEM
OPERATING REQUIREMENTS

In order to ensure proper performance, certain re­
quirements must be met in operating the INTELLEC
8/MOD 80.

" Iii"
c ...
CD ...
9 ... 0

z
m
r
r
m
(")

co -3:
0
0
co
0
:J:I

C CD
I» ...
~
::s
!i.

CIO
CIO

B

A

8

8

7

1/'" "",,0'.'''''
(CuT)

........ ,Pu. "'00. 'i.. j~ . (.... ,;
rj.·~~ ... DO ?"..l

... ",... _ f'IA,'~ """-,l~

P 41 J 4'

7

~J"
~

6

6

5 4 3

o

c

[J] Ell 0\:':7 ~~~ 1_~"'"

S\ ::,. 'l>. ... , IS 0
B

el ~(LO;:' .. I""
0 ?~':]~ ~t~:1

el

$CJ~ el ~

A

5 4 3 2

I/O Port Assignments-Module I/O 0

SIGNAL SYMBOL COMMENTS

OUTPUTPORTOO, BITO OPOO, 0 UART XMIT DATA 0
1
2
3
4
5
6

OUTPUT PORT 00, BIT 7 OPOO, 7 UART XMIT DATA 7

OUTPUT PORT 01, BIT O· OP01,O RDR ADV-l
1 1 PUNCH COMMAND
2 2 READER COMMAND
3 3 DATA OUT ENBL
4 4 DATA IN
5 5 DATA OUT
6 6 Rffl

OUTPUT PORT 01, BIT 7 OP01,7 RfflA

OUTPUT PORT 02, BIT 0 OP02,O PROM ADR IN 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

OUTPUT PORT 02, BIT 7 OP02,7 PROM ADR IN 7

OUTPUT PORT 03, BIT 0 OP03,O PROM DATA IN 0, PUNCH DATA 0
1 1 1, 1
2 2 2, 2
3 3 3, 3
4 4 4, 4
5 5 5, 5
6 6 6, 6

OUTPUT PORT 03, BIT 7 OP03,7 PROM DATA IN 7, PUNCH DATA 7

GROUND

NOTES:
(1) Dedicated to UART /TTY operations and unavailable to user.

(2) Dedicated to PROM Programming Operation and unavailable to user.
(3) Back Panel Connector Signals appear at both LOC 3 and LOC 4.

Table 10-1.

89

BACK PANEL MODULE
CONN. PIN # PIN #

(3) J5

(1) 2
3
4
5
6
7
8

(1) 9

10 11
11 12

29 13
30 14
12 15
13 16
31 17
32 18

(2) 20
21
22
23
24
25
26

(2) 27

14 29
15 30
33 31
34 32
16 33
17 34
35 35
36 36

1,18,19,20,37 37-40

SIGNAL

INPUT PORT 0, BIT 0
1
2
3
4
5
6

INPUT PORT 0, BIT 7

INPUT PORT 1, BIT 0
1
2

3
4
5
6

INPUT PORT 1, BIT 7

INPUT PORT 2, BIT 0
1
2
3
4
5
6

INPUT PORT 2, BIT 7

INPUT PORT 3, BIT 0
1
2

3
4
5
6

INPUT PORT 3, BIT 7

GROUND

NOTES:

1/0 Port Assignments-Module 1/0 0

SYMBOL

IPO,O

1
2
3
4
5
6

IPO, 7

IP1,0

1
2
3
4
5
6

IP1,7

IP2,0

1
2
3
4
5
6

IP2,7

IP3,0

1
2
3
4
5
6

IP3,7

COMMENTS
BACK PANEL MODULE
CONN. PIN # PIN #

J4

TTY RCV DATA 0
1
2
3
4

5
6

(1) 2

TTY RCV DATA 7 (1)

DATA AVAILABLE 2

OVERRUN ERROR 3
TRANSMIT BUFFER EMPTY 21
FRAMMING ERROR 22
PARITY ERROR (INHIBITED) 4

DATA AVAILABLE (TAPE READER) 5
PUNCH READY 23

24

PROM DATA OUT (J3-16) (2)
(15)

(14)
(13)
(12)
(11)
(10)

PROM DATA OUT (J3- 9) (2)

READER DATA 0 6
1 7
2 25
3 26
4 8
5 9
6 27

READER DATA 7 28

3
4
5
6
7
8
9

11
12
13
14
15

16
17
18

20
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36

1,18,19,20,37 37-40

(1) Dedicated to UART/TTY operations and unavailable to user.

(2) Dedicated to PROM PGMR and unavailable to user.
(3) Back Panel CONNECTOR Signals appear at bothLOC 3 and LOC 4.

Table 10-1 (cont.).

90

1/0 Module To Back Panel Interface Chart

SIGNAL/MODULE CONNECTOR

I/O 1 OUT 2 OUT 3

IN OUT OUTL OUTH OUTL OUTH BIT BACK PANEL MODULE
(J4) (J5) (J2) (J3) (J2) (J3) No. CONN PIN # CONN PIN #

(Flat Cable)

LOC3 LOC1 LOC8 LOC6 LOC9 LOC7

IP4 OP05 OP09 OPOD OP11 OP1C 0 2 2
1 3 3
2 21 4
3 22 5
4 4 6
5 5 7
6 23 8

IP4 OP05 OP09 OPOD OP11 OP1C 7 24 9

- -- -- -- -- --
IP5 OP06 OPOA OPOE OP12 OP1D 0 6 11

1 7 12
2 25 13
3 26 14

I
4 8 15
5 9 16
6 27 17

IP5 OP06 OPOA OPOE OP12 OP1D 7 28 18

-- -- -- --
IP6 OP07 OPOB OPOF OP1A OP1E 0 10 20

1 11 21
2 29 22
3 30 23
4 12 24
5 13 25
6 31 26

IP6
--

OPOB OPOF OP1A OP1E OP07 7 32 27

-- -- --
IP7 OP08 OPOC OP10 OP1B OP1F 0 14 29

1 15 30
2 33 31
3 34 32
4 16 33
5 17 34

- --
IP7 OP08 OPOC OP10 OP1B OP1F 6 35 35

7 36 36

GND 1,18,19,20,37 37-40

Table 10-2

91

First, never operate the INTELLEC S/MOD SO with
the cover off. If this is done, the proper flow of air will be
disrupted, resulting in the burning-out of the internal power
supplies.

Second, use extreme care when removing or installing
individual circuit cards in the INTELLEC S/MOD SO,
especialty Input/Output board #1. The PROM Programmer
and Teletype connectors to I/O board a are very easily
damaged, and are located very close to I/O board #1.

92

EXTERNAL DEVICE CONTROLLER
INTERFACING

The INTELLEC S may be used with external devices
such as disks, etc., which require a Direct Memory Access
capability. This is accomplished by the TRI-State capability
of the processor memory address and control buses, which
can relinquish their control of tNTELLEC operations to an
external device.

Data in the 8080 is stored in the form of 8-bit
binary integers:

I D7 I D6 I D5 I D4 I D3 I D2 I D1 I Do I
DATA WORD

The 8080 program instructions may be one, two or
three bytes in length. Multiple byte instructions must be
stored in successive memory locations; the address of the
first byte is always used as the address of the instruction.
The exact instruction format will depend on the particular
operation to be executed.

Single Byte Instructions

I D7 Do lop Code

Two-Byte Instructions

Byte One I D7 Do lOp Code

Byte Two I D7
I Data or

DO Address

Three-Byte Instructions

Byte One I D7 I Do lop Code

Byte Two I D7
I

DO It D,w
or

ByteThreel D7 Do I Address

Addressing Modes:

Often the data that is to be operated on is stored in
memory. When multi-byte numeric data is used, the data,
I ike instructions, is stored in successive memory locations,
with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for
addressing data stored in memory or in registers.

vii

• Direct - Bytes 2 and 3 of the instruction contain
the exact memory address of the data
item (the low-order bits of the address
are in byte 2, the high-order bits in style
3).

• Register - The instruction specifies the register or
register-pair in which the data is located.

• Register Indirect - The instruction specifies a
register-pair which contains the memory
address where the data is located (the
high-order bits of the address are in the
first register of the pair, the low-order
bits in the second).

• Immediate - The instruction contains the data it­
self. This is either an 8-bit quantity or a
16-bit quantity (least significant byte first,
most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through consecutively
increasing memory locations. A branch instruction can spec­
ify the address of the next instruction to be executed in
one of two ways:

• Direct - The branch instruction contains the ad­
dress of the next instruction to be exe­
cuted. (Except for the 'RST' instruction,
byte 2 contains the low-order address and
byte 3the high-order address.)

• Register Indirect - The branch instruction indicates
a register-pair which contains the address
of the next instruction to be executed.
(The high-order bits of the address are in
the first register of the pair, the low-order
bits in the second.)

The RST instruction is a special one-byte call instruc­
tion (usually used during interrupt sequences). RST includes
a three-bit field; program control is transferred to the in­
struction whose address is eight times the contents of this
three-bit field.

Condition Flags:

There are five condition flags associated with the
execution of instructions on the 8080. They are Zero,
Sign, Parity, Carry, and Auxiliary Carry, and are each rep­
resented by a l-bit register in the CPU. A flag is "set" by
forcing the bit to 1; "reset" by forcing the bit to O.

Unless indicated otherwise, when an instruction af­
fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the val ue 0,
this flag is set; otherwise it is reset.

Sign: If the most significant bit of the result of the
result of the operation has the value 1, this
flag is set; otherwise it is reset.

Parity: If the modulo 2 sum of the bits of the result
of the operation is 0, (i.e., if the result has
even parity), this flag is set; otherwise it is
reset (i.e., if the result has odd parity).

Carry: If the instruction resulted in a carry (from
addition or incrementation) or a borrow
(from subtraction, decrementation, or com­
parison) out of the high-order bit, this flag
is set; otherwise it is reset.

Auxiliary Carry: If the instruction caused a carry out
of bit 3 and into bit 4 of the resulting value,
the auxiliary carry is set; otherwise it is
reset. Th is flag is affected by single precision
additions: subtractions, increments, decre­
ments, comparisons, and logical operations,
but is principally used with additions and
increments preceding a DAA (Decimal Ad­
just Accumulator) instruction.

Symbols and Abbreviations:

The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOL

Accumulator

addr

data

data 16

byte 2

byte 3

r.rl.r2

DDD,SSS

MEANING

Register A

16-bit address quantity

8-bit data quantity

16-bit data quantity

The second byte of the instruction

The third byte of the instruction

One of the registers A,B,C,D,E,H,L

The bit pattern for one of registers A,B,
C,D,E,H,L (DOD = destination, SSS =
source) :

viii

rp

RP

rh

rl

PC

SP

DOD or SSS REGISTER NAME

000 A
001 B
010 C
011 0
100 E
101 H
110 L

One of the register pairs:

B represents the B,C pair with B as the
high-order register and C as the low-order
register;

o represents the D,E pair with D as the
high-order register and E as the low-order
register;

H represents the H,L pair with H as the
high-order register and L as the low-order
register;

SP represents the 16-bit stack pointer
register.

The bit pattern for one of the register
pairs B,D,H,SP:

RP REGISTER PAIR
-
00 B-C
01 D-E
10 H-L
11 SP

The first (high-order) register of a desig­
nated register pa ir.

The second (low-order) register of a desig­
nated register pair.

16-bit program counter register (PCH and
PCl are used to refer to the high-order
and low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPl
are used to refer to the high-order and
low-order 8 bits respectively).

Bit m of the register r (bits are number
7 through 0 from left to right).

Z,S,P,CY,CA, The condition flags:

()

..-

A
-V­

V

Zero,
Sign,
Parity,
Carry,
and Auxiliary Carry, respectively.

The contents of the memory location or
registers enclosed in the parentheses.

"Is transferred to"

logical product ("and")

Exclusive "or"

Inclusive "or"

+

-
n

NNN

Addition

Two's complement subtraction

"Is exchanged with"

The one's complement

The restart number 0 through 7

The binary representation 000 through
111 for restart number 0 and' 7 re­
spectively.

Data Transfer Group:

This group of instructions transfers data to and from
registers and memory. Unless otherwise indicated, condi­
tion flags are not affected by any instructions in this group.

MOV rl, r2 (Move)
(rl) - (r2)
The content of register r2 is moved to register rl.

o I 1 I 0 I 0 I 0 I S I S I S

Cycles: 1
States: 5

Addressing: register
Flags: none

MOV r. M (Move from memory)
(r) - ((H) (L))

The content of the memory location, whose address
is in registers Hand L, is moved to register r.

0111010101,1,10

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

MOV M,r (Move to memory)
((H)(L))- (r)

The content of register r is moved to the memory
location whose address is in registers Hand L.

0'1 1 1','0IS'S'S

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

SPHL(MoveHL to SP)
(SP) --- (H) (L)
The contents of registers Hand L ('6 bits) are moved
to register SP.

Cycles:
States: 5

Addressing: register
Flags: none

ix

MVI r, data
(r) - (byte 2)
The content of byte 2 of the instruction is moved to
register r.

o I 0 I 0 I DI
data

Cycles: 2
States: 7

Addressing: register immed.
Flags: none

MVI M, data (Move to memory immediate)
((H) (Ll) - (byte 2)
The content of byte 2 of the instruction is moved to
the memory location whose address is in registers H
and L.

data

Cycles: '3

States: 10
Addressing: reg./ind. immed.

Flags: none

LXI rp, data '6 (Load register pair immediate)
(rh) --- (byte 3), (rI) - (byte 2)
Byte 3 of the instruction.is moved into the high·order
register (rh) of the register pair rp. Byte 2 of the in­
struction is moved into the low-order register (r1) of
the register pair rp.

o I 0 1 R I P 10 1 0 I 0 I

low-order data

high-order data

Cycles: 3
States: 10

Addressing: immediate
Flags: none

LOA addr (Load Accumulator direct)
(A) - ((byte 3) (byte 2))

1-

The content of the memory location, whose address is
specified in byte 2 and byte 3 of the instruction, is
moved to register A.

o I 0 I 1 I 1 I 1 I 0 I 1 I 0

low-order addr

high-order addr

Cycles: 4
States: 13

Addressing: direct
Flags: none

ST A addr (Store Accumulator direct)
((byte 3) (byte 2)) - (A)
The content of the accumulator is moved to the mem­
ory location whose address is specified in byte 2 and
byte 3 of the .instruction.

o I 0 I 1 I 1 t 0 I

low-order addr

high-order addr

Cycles: 4
States: 13

Addressing: direct
Flags: none

LHLD addr (Load Hand L direct)
(L) - ((byte 3) (byte 2))

(H) - ((byte 3) (byte 2) + 1)

o I 1 I 0

The content of the memory location. whose address
is specified in byte 2 and byte 3 of the instruction.
is moved to register L. The content of the memory
location at the succeeding address is moved to register
H.

o I 0 I 1 I 0 I 1 I

low-order addr

high-order addr

Cycles: 5
States: 16

Addressing: direct
Flags: none

SHLD addr (Store Hand L direct)
((byte 3) (byte 2)) - (L)
((byte 3) (byte 2) +1) - (H)

o I 1 I 0

The content of register L is moved to the memory lo­
cation whose address is specified in byte 2 and byte
3. The content of register H is moved to the succeed­
ing memory location.

o I 0 I 1 I 0 I 0 I

low-order addr

high-order addr

Cycles: 5
States: 16

Addressing: direct
Flags: none

LDAX rp (Load accumulator indirect)
(Al-«rp)

o I 1 I 0

The content of the memory. location, whose address
is in the register pair rp, is moved to register A. Note:
only register pairs rp=B (registers B and C) or rp=D

x

(registers D and E) may be specJfied.

Cycles: 2
States: 7·

Addressing: reg. indirect
Flags: none

STAX rp (Store accumutator indirect)
«rp))-(A)

o

The content of register A is moveo to the memory
location whose address is in the register pair rp. Note:
only register pairs rp=B (registers B and C) or rp=D
(registers D and E) may be specified.

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

XCHG (Exchange Hand L with D and E)
(H)-(D)
IL) -(E)
The contents of registers Hand L are exchanged with
the contents of registers D and E.

Cycles:
States: 4

Addressing: register
Flags: none

Arithmetic Group:

This group of instructions performs arithmetic opera­
tions on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, and Carry flags accord­
ing to the standard rules.

All subtraction operations are performed via two's
complement arithmetic and set the carry flag to one to
indicate a borrow and clear it to indicate no borrow.

ADD r (Add)
(A) -- (A) + (r)
The content of register r is added to the content of
the accumulator. The result if placed in the accumu­
lator.

1 I 0 I 0 I 0 I 0 I S I S I S

Cycles:
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

ADD M (Add from memory)
(A) -- (A) + ((H) (L))

The content of the memory location whose address is
contained in the Hand L registers is added to the
content of the accumulator. The result is placed in
the accumulator.

, 1 , 1 0 1 0 1 0 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ADI data (Add immediate)
(A) -- (A) + (byte 2)

The content of the second byte of the instruction is
added to the content of the accumulator. The result
is placed in the accumulator.

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

ADC r (Add with carry)
(A) -- (A) + (r) + (CY)
The content of register r and the content of the carry
bit are added to the content of the accumulator. The
result is placed in the accumulator.

Cycles:
States: 4

Addressi ng: register
Flags: Z,S,P,CY,AC

ADC M (Add from memory with carry)
(A) -- (A) + ((H) (L) + (CY))
The content of the memory location whose address is
contained in the Hand L registers and the content
of the CY flag are added to the accumulator. The
result is placed in the accumulator.

1 0 1 0 I 0 I , I , I 1 I 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

xi

ACI data (Add with carry immediate)
(A) -- (A) + (byte 2) + (CY)
The content of the second byte of the instruction and
the content of the CY flag are added to the contents
of the accumulator. The result is placed the accumu­
lator.

0 0 0

data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

SUB r (Subtract)
(A) -- (A) - (r)
The content of register r is subtracted from the con­
tent of the accumulator. The result is placed in the
accumulator.

, 1 0 1 0 1 , 1 0 I S 1 S 1 S

Cycles:
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

SUB M (Subtract from memory)
(A) -- (A) - ((H) (L))
The content of the memory location whose address
is contained in the Hand L registers is subtracted from
the content of the accumulator. The result is placed
in the accumulator.

o

Cycles: 2

States: 7
Addressing: reg. indirect

Flags: Z,S,P,CY,AC

SUI data (Subtract immediate)
(A) -- (A) - (byte 2)

o

The content of the second byte of the instruction is
subtracted from the content of the accumulator. The
result is placed in the accumulator.

,1,1 0 1,1 0 1,1 1 1 0

data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

SBB r (Subtract with borrow)
(A)- (A) - (r) - (CY)
The content of register r and the content of the CY
flag are both subtracted from the accumulator The
result is placed in the accumulator.

Cycles: 1
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

SBa M (Subtract from memory with borrow)
(A) __ (A) - ((H) (L)) - (CY)
The content of the memory location whose address
is contained in the Hand L registers and the content
of the CY flag are both subtracted from the accumu­
lator. The result is placed in the accumulator.

110 1 0 1 1111111 1 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

SBI data (Subtract with borrow immediate)
(A) -- (A) - (byte 2) - (CY)
The contents of the second byte of the instruction and
the contents of the CY flag are both subtracted from
the accumulator. The result is placed in the accu­
mulator.

1 1 1 o
data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

INC r (Increment)
(r) -- (r) + 1

o

The content of register r is incremented by one. Note:
All condition flags except CY are affected.

o I 0 I D 1 D 1 D 1 1 1 0 1 0

Cyctes: 1
States: 5

Addressing: register
Flags: Z,S,P,AC

xii

INC M (Increment memory)
((H) (L)) -- ((H) (L)) + 1

The content of the memory location whose address is
contained in the Hand L registers is decremented by
one. Note: All condition flags except CYare affected.

010111110111010

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z,S,P,AC

DCR r (Decrement)
(r) -- (r)-1
The content of the memory location whose address is
contained in the Hand L registers is incremented by
one. Note: All condition flags except CY are affected.

010lDIDIDI1 1 011

Cycles: 1
States: 5

Addressing: register
Flags: Z,S,P,AC

DCR M (Decrement memory)
((H) (L)) -- ((H) (L)) - 1

The content of the memory location whose address is
contained in the Hand L registers is decremented by
one. Note: All condition flags except CYare affected.

0101111'0111011

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: X,S,P,AC

INX rp (Increment register pair)
(rh) (re) -- (RH) (R1) + 1
The content of the register pair rp is incremented by
one. Note: No condition flags are affected.

Ol0lRIp i 0101111

Cycles:
States: 5

Addressing: register
Flags: none

DCX rp (Decrement register pair)
(rh) (r1) -- (rh) (r1) -1
The content of the register pair rp is decremented by
one. Note: No condition flags are affected.

olOlRlpI1 1 01111

Cycles:
States: 5

Addressing: register
Flags: none

DAD rp (Add register pair to Hand L)
(H) (L) --- (H) (L) + (rh) (re)
The content of the register pair rp is added to the con­
tent of the register pair Hand L. The result is placed
in the register pair Hand L. Note: Only the CY is
affected. It is set if there is a carry out of the double
precision add; otherwise it is reset.

Cycles: 3
States: '0

Addressing: register
Flags: CY

DAA (Decimal Adjust Accumulator)
The eight-bit number in the accumulator is adjusted
to form two four-bit binary-coded-decimal digits by
the following process:
,. If the value of the least significant 4-bits of the

accumulator is greater than 9 or if the AC flag is
set, 6 is added to the accumulator.

2. If the value of the most significant 4-bits of the
accumulator is now greater than 9, or if the CY
flag is set, 6 is added to the most significant 4-bits
of the accumulator.

All flags are affected by the additions, if performed,
otherwise they are reset.

Logical Group:

Cycles:
States: 4

Addressing: -
Flags: Z,S,P,CY,AC

This group of instructions performs logical operations
on data in registers and memory and on condition flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry, and
Carry flags according to the standard rules.

ANA r (And)
(A) ___ (A) A (r)
The content of register r is logically anded with the
content of the accumulator. The result is placed in the
accumulator. The CY and AC flags are cleared.

101,',IOISISIS

Cycles:
States: 4

Addressi ng: register
Flags: Z,S,P,CY,AC

xiii

ANA M (And from memory)
(A) --- (A) A ((H) (L))

The contents of the memory location whose address
is contained in the Hand L registers is logically anded
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ANA data (And immediate)
(A) --- (A) A (byte 2)
The content of the second byte of the instruction is
logically anded with the contents of the accumulator.
The result is placed in the accumulator. The CYand
AC flags are cleared.

data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

XRA r (Exclusive OR)

(A) --- (A) V (r)
The content of register r is exclusive-or'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1 0 I I 0 I , I S r S I S

Cycles: ,

States: 4
Addressing: register

Flags: Z,S,P,CY,AC

XRA M (Exclusive OR)
(A) --- (A) V ((H) (L))

The content of the memory location whose address is
contained in the Hand L registers is exclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags are
cleared.

I 0 I ., I 0 I, I , I , I 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P ,CY ,AC

XRI data (Exclusive or immediate)
(A) - (A) V (byte 2)
The content of the second byte of the instruction is
exclusive-or'd with the content of the accumulator.
The result is placed in the accumulator. The CYand
AC flags are cleared.

,',','0',',',1 0

ORA r (OR)

data

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

(A) - (A) V (r)
The content of register r is inciusive-OR'd with the
content of the accumulator. The result is placed in
the accumulator. The CY and AC flags are cleared.

1 I 0 I , I 1 f 0 I sis I sl
Cycles: ,
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

ORA M (OR from memory)
(A) - (A) V ((HI (L))
The content of the memory location whose address is
contained in the Hand L registers is inclusive-OR'd
with the content of the accumulator. The result is
placed in the accumulator. The 'CY and AC flags are
cleared.

, , 0 I , I , I· 0 I, , , , 0

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

ORI data (OR Immediate)
(A) - (A) V (byte 2)
The content of the second byte of the instruction is
inclusive-OR'd with the content of the accumulator.
The result .is placed in the accumulator. The CY and
AC flags are cleared.

" , , I , '1 , 0 , , I , , 0

Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

xiv

CMP r (COMPARE)
(A) - (r)

The content of register r is subtracted from the accu­
mulator. The accumulator remains unchanged. The
condition flags are set as a result of the subtraction.
The Z flag is set to 1 if fA), = (r). The CY flag is set
to 1 if (r)t: (A).
Note: 'The auxiliary carry is affected.

Cycles: 1
States: 4

Addressing: register
Flags: Z,S,P,CY,AC

CMP M (Compare with memory)
(A) - ((H).(L))
The content of the memory location whose address is
contained in the Hand L registers is subtracted from

, the accumulator. The accumulator remains unchanged.
The condition flags are set as a result of the sub­
traction. The Z flag is set to 1 if (A) = ((H) (L)).
((H) (L)) t= A.

Note: The AC flag is affected.

, 0 , l' , I ,

Cycles: 2
States: 7

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

CPI data (Compare immediate)
(A) - (byte 2)

o

The content of the second byte of the instruction is
subtracted from the accumulator. The accumulator is
not changed. The condition flags are set by the result
of the subtraction. The Z flag is set to , if (A) = byte
2). The CY flag is set to , if byte 2) t= (A).
Note: The AC flag is affected.

,',',',',1,','0
Cycles: 2
States: 7

Addressing: immediate
Flags: Z,S,P,CY,AC

RLC (Rotate left)
(An+,) - (An); (AO)- (A7); (CY) - (A7)
The content of the. accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi­
tion. Only the CY flag is affected.

Cycles: 1
"States: ,

Flags: CY

RRC (Rotate right)

(An) -- An-l); (A7)-(AO); (CY)-(Ao)
The content of the accumulator is rotated right one
position. The high order bit and the CY flag are both
set to the value shifted out of the low order bit posi­
tion. Only the CY flag is affected.

Cycles:
States: 4

Flags: CY

RAL (Rotate left through carry)
(A n+l)-(An); (CY)-(A7); (Ao) -(CY)
The content or the accumulator is rotated left one
position through the carry. The low order bit is set
equal to the CY flag and the CY flag is set to the
value shifted out of the high order bit. Only the CY
flag is affected.

Cycles:
States: 4

Flags: CY

RAR (Rotate rigt.lt through carry)
(A n)-(An+l); (CY) - (AO); (A7)- (CY)

The content of the accumulator is rotated right one
position through the CY flag. The high order bit is
the CY flag. The high-order bit is set equal to the CY
flag and the CY flag is set to the value shifted out of
the low order bit. Only the CY flag is affected.

a 10 1 a 11 ' 1 '1 '1 1 1

Cycles:
States: 4
Flags: CY

CMA (Complement accumulator)
(A)-(A)
The contents of the accumulator are complemented
(zero bits become 1, one bits become (0). No flags
are affected.

a 10 11 , a 11 11 , 1 11

Cycles: 1
States: 4

Flags: none

CMC (Complement carry)
(CY) -- (CY)
The CY flag is complemented. No other flags are
affected.

a , a

Cycles:
States: 4

Flags: CY

1 1 1 ,

xv

STC (Set carry)
(CY)--l
The CY flag is complemented. No other flaps are
affected.

a 1 a a 1 1

Cycles:
States: 4

Flags: CY

Branch Group:

This group of instructions alter normal sequential
program flow.

Unless specified otherwise, no condition flags are af­
fected by any instruction in this group.

The two types of branch instructions are uncondi­
tional and conditional. Unconditional transfers simply per­
form the specified operation on register PC (the program
counter). Conditional transfers examine the status of one
of the four processor flags to determine if the specified
branch is to be executed. The conditions that may be
specified are as follows:

CONDITION

C - carry (CY=l)
Z - zero (Z=l)
M - minus (5=1)
PE - parity even (P=l)
NC - no carry (CY=O)
NZ - not zero (Z=O)
P - plus (5=0)
PO - parity odd (P=O)

JMP addr (Jump)
(PC) - (byte 3) (byte 2)

CCC

000
001
010
all
100
101
110
111

Control is transferred to the instruction whose ad­
dress is specified in byte 3 and byte 2 of the cur­
rent instruction.

1 1 1 -T 0 1 a I a I a I 1 I 1

low-order addr

high-order addr

Cycles: 3
States: 10

Addressi ng: direct
Flags: none

Jcondition addr (Conditional jump)
If (CCC),

(PC) __ (byte 3) (byte 2)

If the specified condition is true, control is trans­
ferred to the instruction whose address is specified
in byte 3 and byte 2 of the current instruction; other­
wise, control continues sequentially.

1 I 1 I ci C I C I

low-order addr

high-order addr

Cycles:
States:

Addressing:
Flags:

CAll addr (Call)
((SP) - 1) -- (PCH)
((SP) - 2) -- (PCl)

(SP) -- (SP) -2

3
10
direct
none

(PC)-- (byte 3) (byte 2)

o I 1 I 0

The high-order eight bits of the next instruction ad­
dress is one less than the content of register SP. The
low-order eight bits of the next instruction address
are moved to the memory location whose address is
two less than the content of register SP. The content
of register SP is decremented by 2. Control is trans­
ferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction.

1 I 1 I 0 I 0 1 1 r

low-order addr

high-order addr

Cycles: 5
States: 17

Addressing: direct
Flags: none

Ccondition addr (Conditional call)
If ICC),

((SP) - 1) -- (PCH)
((SP) - 2) -- (PCl)

(SP) -- (SP) - 2
(PC) -- (byte 3) (byte 2)

1 I 0 I 1

If the specified condition is true, the actions spec·
ified in the CAll instruction (see above) are per­
formed; otherwise, control continues sequentially.

1 I 11C I C I Cll 1 01

low-order addr

high-order addr

Cycles: 3/5
States: 11/17

Addressing: direct
Flags: none

0

xvi

RET (Return)
(PCl) -- ((SP))
(PCH) -- ((SP) + 1)
(SP) -- (SP) + 2
The content of the memory location whose address is
specified in register SP is moved to the low-order eight
bits of register PC. The content of the memory loca­
tion whose address is one more than the content of
register PS is moved to the high-order eight bits of
register PC. The content of register PC is incremented
by 2.

Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

Rcondition (Conditioned return)
If (CC),

(PCl) -- ((SP))
(PCH) -- ((SP) + 1)

(Sf') -- (SP) + 2
If the specified condition is true, the actions spec­
ified in the RET instruction (see above are per­
formed; otherwise; control continues sequentially.

11 CICICIOIOIO

Cycles: 1/3
States: 5/11

Addressing: reg. indirect
Flags: none

RST n (Restart)
((SP) - 1) -- (PCH)
((SP) - 2) -- (PCl)

(SP) -- (SP) - 2
(PC) -- 8* (NNN)

The high-order eight bits of the next instruction ad­
dress are moved to the memory location whose ad­
dress is one less than the content of register SP. The
low-order eight bits of the next instruction address are
moved to the memory location whose address is two
less than the content of register SP. The content of
register SP is decremented by two. Control is trans­
ferred to the instruction whose address is eight times
the content of (NNN).

1 I 1

Cycles: 3
States: 11

Addressing: direct
Flags: none

PCHl (Jump Hand l indirect - move Hand l to PC)
(PCH)- (H)
(PCl) - (L)
The content of register H is moved to the high-order
eight bits of register PC. The content of register l is
moved to the low-order eight bits of register PC.

1111110 1 1 1 0 1 0 1 1

Cycles: 1
States: 5

Addressing: register
Flags: none

Stack, I/O, and Machine Control Group:

This group of instructions performs I/O, manipulates
the "stack", and alters internal control flags.

Unless otherwise specified, no condition flags are af­
fected by any instructions in this group.

PUSH rp (Push)
((SP) -1)- (rh)
((SP) - 2) - (r1)

(SP) - (SP) - 2
The content of the high-order register of register pair
rp is moved to the memory location whose address is
one less than the content of register SP. The content
of register pair rp is moved to the memory location
whose address is two less than the content of register
SP. The content of register SP is decremented by 2.
Note: Register pair rp = SP may not be specified.

111Rlp 1 ol11011

Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

PUSH PSW (Push processor status word)
((SP) - 1) - (A)

((SP) - 2) 0 - (CY), ((SP) - 2) 1 - 1
((SP) - 2) 2 - (P), ((SP) - 2) 3 - 0
((SP) -2) 4 - (AC), ((SP) -2) 5- 0
((SP) -2) 6 - (Z), ((SP) -2) 7 -- (S)

(SP) - (SP) - 2
The content of register A is moved to the memory lo­
cation whose address is one less than register SP. The
contents of the condition flags are assembled into a
processor status word and the word is moved to the
memory location whose address is two less than the
content of register SP. The content of register PS is
decremented by two.

1 1

Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

xvii

POP rp (Pop)
(r1) - ((SP))
(rh) - ({SP) + 1)
(SP) - (SP) + 2
The content of the memory location, whose address
specified by the content of register SP, is moved to
the content of register SP, is moved to the low-order
register of register pair rp. The content of the memory
location, whose address is one more than the content
of register SP, is moved to the high-order register of
register pair rp. The content of register PS is incre·
mented by 2.
Note: Register pair rp = SP may not be specified.

1111Rlp i 0101011

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: none

POP PSW (Pop processor status word)
(CY) - ((SP))0

{PI - { (SP))2

(AC) - ((SP))4
(Z) - ((SP))6
(S) - ((SP))7

(A) - ((SP) + 1)

(SP) - ((SP + 2)

The content of the memory location whose address is
specified by the content of register SP is used to re­
store the condition flags. The content of the mem­
ory location whose address is one more than the
content of register SP is moved to register A. The
content of register SP is incremented by 2.

1 I 1 I

Cycles: 3
States: 10

Addressing: reg. indirect
Flags: Z,S,P,CY,AC

XTHl (Exchange stack top with Hand l)
(l)-{{SP))
(H) - ({SP) + 1)
The content of the l register is exchanged with the
content of the memory location whose address is
specified by the content of register SP. The content
of the H register is exchanged with the content of the
memory location whose address is one more than the
content of register SP.

Cycles: 5
States: 18

Addressing: reg. indirect
Flags: none

I N port (Input)

(A) -- (data)
The data placed on the eight-bit bi-directional data bus
by the specified port is moved to register A.

,1,lal,I,lol,l,
port

Cycles: 3
States: ,a

Addressing: direct
Flags: none

OUT port (Output)

EI

(data) -- (A)
The content of register A is placed on the eight-bit
bi-directional data bus for transmission to the spec­
ified port.

, I , t a I , 1 a .1 a I , I ,

port

Cycles: 3
States: ,a

Addressi ng: direct
Flags: none

(Enable interrupt)
The interrupt system is enabled following the execu­
tion of the next instruction.

,', I, I, 11 1 a I, I ,

Cycles:
States: 4
Flags: none

xviii

01 (Disable interrupt)

HLT

The interrupt system is disabled immediately follow­
ing the execution of the instruction.

1 I, ! 1 I , I a I a I , I 1

(Halt)

Cycles: ,

States: 4
Flags: none

The processor is stopped. The registers and flags are
unaffected.

Cycles: ,

States: 4
Flags: none

NOP (No op)
No operation is performed. The registers and flags are
unaffected.

a I a 1 a I a 1 a , a 1 a 1 a

Cycles:
States: 4
Flags: none

xix

inter Silicon Gate MOS 8080

SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR
• 2 ILs Instruction Cycle

• Powerful Problem Solving
Instruction Set

• Six General Purpose Registers
and an Accumulator

• Sixteen Bit Program Counter for
Directly Addressing up to 64K Bytes
of Memory

• Sixteen Bit Stack Pointer and Stack
Manipulation Instructions for Rapid
Switching of the Program Environment

• Decimal,Binary and Double
Precision Arithmetic

• Ability to Provide Priority Vectored
Interrupts

• 512 Directly Addressed 1/0 Ports

The Intel 8080 is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n­
channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications.
The 8080 contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be
addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set
or reset four testable flags. A fifth flag provides decimal arithmetic operation.
The 8080 has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store!
retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit
stack pointer controls the addressing of this external stack. This stack gives the 8080 the ability to easily handle multiple level
priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.
This microcoprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bidirecti.onal data
busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are pro­
vided directly by the 8080. Ultimate control of the address and data busses resides with the HOLD signal. It provides the
ability to suspend processor operation and force the address and data busses into a high impedance state. This permits OR­
tying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

8080 CPU FUNCTIONAL
BLOCK DIAGRAM

POWER1- +12V
SUPPLIES _ +5V

_-5V

-GNO

©Intel Corp. 1974

(BBIT)
INTERNAL DATA BUS

ACK

0 7 -Do
BI-DiRECTIONAL

DATA BUS

INSTRUCTION
DECODER

AND
MACHINE

CYCLE
ENCODING

TIMING
AND

CONTROL

xx

181 181

0 181 E 181
REG. REG.

H 181 L 181 REGISTER
REG. REG. ARRAY

STACK POINTER
1161

PROGRAM COUNTER
1161

1161

SILICON GATE MOS 8080

8080 FUNCTIONAL PIN DEFINITION

The following describes the function of all of the 8080 I/O pins.
Several of the descriptions refer to internal timing periods. [1]

A15.AO (output three-state)
ADDRESS BUS; the address bus provides the address to memory
(up to 64K 8-bit words) or denotes the I/O device number for up
to 256 input and 256 output devices. Ao is the least significant
address bit.

07-00 (input/output three-state)
DATA BUS; the data bus provides bidirectional communication
between the CPU, memory, and I/O devices for instructions and
data transfers. Do is the least significant bit.

SYNC (output)
SYNCHRONIZING SIGNAL; the SYNC pin provides a signal to
indicate the beginning of each machine cycle.

DBIN (output)
DATA BUS IN; the DBIN signal indicates to external circuits that
the data bus is in the input mode. This signal should be used to
enable the gating of data onto the 8080 data bus from memory
or I/O.

READY (input)
READY; the READY signal indicates to the 8080 that valid mem­
ory or input data is available on the 8080 data bus. This signal is
used to synchronize the CPU with slower memory or I/O devices.
lfafter sending an address out the 8080 does not receive a READY
input, the 8080 will enter a WAIT state for as long as the READY
line is low.

WAIT (output)
WAIT; the WAIT.signal acknowledges that the CPU is in a WAIT
state.

WR (output)
WRITE; the WR signal is used for memory WRITE or I/O output
control. The data on the data bus is stable while the WR signal is
active (WR = 0).

HO LD (input)
HOLD; the HOLD signal requests the CPU to enter the HOLD
state. The HOLD state allows an external device to gain control
of the 8080 address and data bus as soon as the 8080 has com­
pleted its use of these buses for the current machine cycle. It is
recognized under the following conditions:
• the CPU is in the HALT state.
• the CPU is in the T2 or TW state and the READ Y signal is active.
As a result of entering the HOLD state the CPU ADDRESS BUS
(A1s-Ao) and DATA BUS (DrDo) will be in their high impedance
state. The CPU acknowledges its state with the HOLD AC­
KNOWLEDGE (HLDA) pin.

HLDA (output)
HOLD ACKNOWLEDGE; the HLDA signal appears in response
to the HOLD signal and indicates that the data and address bus
will go to the high impedance state. The H LOA signal begins at:
• T3 for READ memory or input.
• The Clock Period following T3 for WR ITE memory or OUT·

PUT operation.

xxi

A,O
GND

D.
D.
De
0 7
0 3
D.
0,0

Do
-5V

RESET
HOLD

INT

DBIN

WR
SYNC

+5V

4

INTEL
10 8080
11

12

13
14
15

18
17

18

19
20

40

39
38
37
36
36
34
33
32
31

30

29
28
27

26

25

24
23

22
21

A"
Au
Au
An

o A,.
Ae
Ae

WAIT
READY
~,

HLDA

In either case, the H LOA signal appears after the rising edge of 1/11
and high impedance occurs after the rising edge of 1/12,

INTE (output)
INTER RUPT ENABLE; indicates the content of the internal inter­
rupt enable flip/flop. This flip/flop may be set or reset by the En­
able and Disable Interrupt instructions and inhibits interrupts
from being accepted by the CPU when it is reset. It is auto­
matically reset (disabling further interrupts) at time T1 of the in­
struction fetch cycle (M 1) when an interrupt is accepted and is
also reset by the RESET signal.

INT (input)
INTERRUPT REQUEST; the CPU recognizes an interrupt re­
quest on this line at the end of the current instruction or while
halted. If the CPU is in the HOLD state or if the Interrupt Enable
flip/flop is reset it will not honor the request.

RESET (input) [2]

RESET; while the RESET signal is activated, the content of the
program counter is cleared and the instruction register is set to O.
After RESET, the program will start at location a in memory.
The I NTE and H LOA flip/flops are also reset. Note that the
flags, accumulator, and registers are not cleared.

Ground Reference.
+12 ± 5% Volts.
+5 ± 5% Volts.
-5 ±5% Volts (substrate bias).
2 externally supplied clock phases. (non TTL compatible)

SILICON GATE MOS 8080

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias O°C to +70° C
Storage Temperature " -65°C to +150°C
All Input or Output Voltages

With Respect to VBB -0.3V to +20V

Vcc. Voo and Vss With Respect to VBB -0.3V to +20V
Power Dissipation 1.5W

D.C. CHARACTERISTICS

*COMMENT:

Stresses above those listed under ''Absolute Maximum Rat­
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or any other conditions above those indicated in the op­
erational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods
may affect device reliability.

TA = O°C, to 70°C, VOO = +12V ± 5%, Vcc = +5V ± 5%, VBB = -5V ± 5%, Vss = OV, Unless Otherwise Noted.

Symbol Parameter Min. Typ. Max.

VILC Clock Input Low V.ltage VSS-1 VSS+0.6

VIHC Clock Input High Voltage Voo-1 Voo+1

VIL Input Low Voltage Vss-1 Vss+0.8

VIH Input High Voltage 3.3 Vcc+ 1

VOL Output Low Voltage 0.45

VOH Output High Voltage 3.7

IDD(AV) Avg. Power Supply Current (Voo) 40 67

ICC (AV) Avg. Power Supply Current (Vcc) 60 75

IBB(AV) Avg. Power Supply Current (VBB) .01 1

IlL Input Leakage ±10

ICL Clock Leakage ±10

IOL[3J Data Bus Leakage in Input Mode -100

IFL
Address and Data Bus Leakage +10

During HOLD -100

CAPACITANCE
T A = 25°C VCC = VOD = Vss = OV, Vss = -5V ±5%

Symbol Parameter Typ. Max. Unit Test Condition

Cq, Clock Capacitance 10 20 pf fc = 1 MHz

CIN Input Capacitance 5 10 pf Unmeasured Pins

COUT Output Capacitance 10 20 pf Returned to Vss

NOTES:
1. For definitions the user is directed to the fotlowing publications:

A. Programming Manual for the 8080 Microcomputer System.
B. 8080 Microcomputer Users Manual.
C. From CPU to Software.

2. The RESET signal must be active for a minimum of 3 clock cycles.
3. When OBIN is high and VIN> VtH an active pull up of nominally 2k!l

will be switched onto the Oata Bus.
4. AI supply / AT A = -0.45%f c.

xxii

Unit

V

V

V

V

V

V

mA

mA

mA

IlA

pA

pA

pA

?:
~ z
w
a:
a:
:::>
u
>

Test Condition

},OL = 1.7mA on the Data Bus
IOL = .75mA on all other outputs
IOH = 100pA. rp,,,,;O"
TA = 25°C
T CY = .48 psec

Vss ,;;;; VIN ,;;;; Vcc

Vss ,;;;; VCLOCK ,;;;; VOD

Vss ,;;;; VIN ,;;;; VCC

VAOOR/DATA = VCC

VADDR/OATA = Vss

TYPICAL SUPf>L Y CURRENT VS. [J
TEMPERATURE, NORMALIZED. 4

1.5,----,-----..,----.....,

~ O.51-----+----+---~
iil

O.OO!-----:-+f.2S,...----+5Q::!::----.....,J+7·S

AMBIENT TEMPERATURE ('CI

SILICON GATE MOS 8080

A.C. CHARACTERISTICS
TA = O°C to 70°C, VOO = +12V ± 5%, VCC = +5V ± 5%, Vee = -5V ± 5%, Vss = OV, Unless Otherwise Noted

Symbol Parameter Min. Max. Unit Test Condition

tCy[3] Clock Period 0.48 2.0 JJ.sec

t r , tf Clock Rise and Fall Time 5 50 nsec

tq,1 4>1 Pulse Width 60 nsec

tq,2 4>2 Pulse Width 220 nsec

t01 Delay 4>1 to 4>2 0 nsec

t02 Delay 4>2 to 4>1 70 nsec

t03 Delay 4>1 to 4>2 Leading Edges 130 nsec

tOA [2] Address Output Delay From 4>2 200 nsec RL = 4.5kn, CL = 100pf

too [2] Data Output Delay From 4>2 220 nsec RL = 2.1kn, CL = 100pf

toc [2] Signal Output Delay From 4>1, or 4>2 (SYNC, WR WAIT HLOA) 120 nsec RL =4.5kn, CL = 50pf

tOF [2] DBIN Delay From 4>2 25 140 nsec RL = 2.1 kn, CL = 50pf

tOI[1] Delay for Input Bus to Enter Input Mode During DBIN tOF nsec

tOS1 Data "Setup Time" During 4>1 and DBIN 50 nsec

TIMING WAVEFORMS [12] (Note: Timing measurements are made at the fol.lowing reference voltages: CLOCK "1" = 9.5V,
"0" = 1.0V; INPUTS "1" = 3.3V, "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8V.)

~,

-W-~v- '0,-
'" f\ r /\ F\ F\
~ r-\ .,....----, ~ ,----, r\ ~ "-

1-'0,-; '0, - - ',. --- I: -~ ~ --- ,..-- -- '. --- -- - --- ---- --- -- ~,

I-'o.-.j I- f----j 'w. ' ..
1--'0·4 - tOII- ~ tOHI*-' -'0.--;
f--- .x: _____

~ ~
__ 1 - -- -- '. '~:":tTAIN DATA OUT -- --- to:1= --- - --- -- - - ,~

-'ow ~ - ~'w. - ',. -• -\- '0,,-
- 'oc - 'ocl-

SYNC

I 1-
i-'o~ i-'w.j

DBIN

'H --or i~c - locI--

------------ - ~® 1:1. £-f-L-,.:r= ~-- t RS - toe :::i
'H- I

READY

WAIT
loc- I- - -I ® :I

---I 'HS .;::- ~ I-'H ~ toe!-- '
HOLD

7: -HLDA

- -
1." ,I .Iii. I

'''~II. "~~il,
I--tlE ---:+ ~tH

_ 'H
INT

INTE -

xxiii

SILICON GATE MOS 8080

A.C. CHARACTERISTICS ,Continued)

TA = O°C to 70°C. VOO = +12V ± 5%. VCC = +5V ± 5%. VBB = -5V ± 5%. Vss = OV. Unless Otherwise Noted

Symbol Parameter Min. Max.

t052 Data "Setup Time" to tP2 During DBIN 150

tOH 11] Data "Hold Time" From tP2 During DBIN tOF

tIE [2] INTE Output Delay From tP2 200

tA5 Ready "Setup Time" During tP2 120

tHS Hold "SetupTime" to tP2 140

tIS INT "Setup Time" During tP2 (During till in Halt Mode) 180

tH "Hold Time" From tP2 (Aead,(, INT, Holdl 0

tFO Delay to Float During Hold (Address and OATA BUS) 120

tWA [2] Address Stable From WR t03

tAW [2] Address Stable Prior to WR [5]

two [2] Output Data Stable From WR t03

towl2] Output Data Stable Prior to WR 16]

NOTES: 1. Data input should be enablad with OBIN status. No bus conflict can then occur and data hold time is assured.
2. Loed circuit

8080
OUTPUT

3. tCY = t03 + toP2 + t02 + tloP2 + troPl + tloPl .. 480n •.

+5V

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE

!
> <
w
0 ...
:> a. ...
:>
0
<1

+20

+10 /
V 0

-10 ./ '-....SPEC

-20 V
-100 -so o

~ CAPACITANCE (pi'

(CACTUAL - C.PEcl

+50 +100

4. The lollowing are relevant when interfacing the B080 to devices having VIH = 3.3V:
al Maximum output rise tim.- Irom .BV to 3.3V = 140ns @ CL - SPEC.
bl· Output delay when measured to 3.0V z SPEC + 60ns @ CL = SPEC.
cl .If CL ¢ SPEC add .6ns/pl il CL > CSPEC, subtract .3ns/pl (Irom modified delay I il CL < CSPEC.

5. tAW = 2 tCY -t03 -trl/>2 -120nsec.
6. tOW· ICY -t03 -trl/>2 -l50niec.
7. Data ir\ must be stable for this period during OBIN "T3' Both tOSl and IOS2 must be satisfied.
8. Ready signal must be stable lor this period during T2 or TW' IMust be externally synchronized.I
9. Hold signal must be stable lor this period during T2 or TW when entering hold mode. and.during T3. T 4. TS

and TWH when in hold mode. (Must be externally synchronized.I
10. Interrupt signal must be stable during this period of the last clock cycle 01 any instruction to be recognized

on the following instruction. (External synchronization is not required.)
11. During halt mode only. timing is with respect 10 1/>1 falling edge.
12. This timing diagram shows timing relationships only. it dOls not represent any specific machine cycle.

xxiv

Unit Test Condition

nsec

nsec

nsec AL = 4.5kn, CL = 50pf

nsec

nsec

nsec

nsec

nsec

nsec AL = 4.5kn, CL = 100pf

nsec AL = 4.5kn, CL = 100pf

nsec AL = 2.lkn, CL = 100pf

nsec AL = 2.lkn, CL = l00pf

SILICON GATE MOS 8080

INSTRUCTION SET

The accumulator group instructions include ARITHMETIC and
LOGICAL OPERATORS with DIRECT, INDIRECT, AND IM­
MEDIATE addressing modes.

MOVE, LOAD, and STORE instruction groups provide the ability
to move either 8 or 16 bits of data between memory, the six
working registers and the accumulator using 01 RECT, INDI RECT,
and IMMEDIATE addressing modes.

The ability to branch to different portions of the program is pro­
vided with JUMP, JUMP CONDITIONAL, and COMPUTED
JUMPS. Also the ability to CALL to and RETURN from sub­
routines is provided both conditionally and unconditionally. The
RESTART (or single byte call instruction) is useful for interrupt
vector operation.

Double precision operators such as STACK manipulation and
DOUBLE ADD instructions extend both the arithmetic and inter­
rupt handling capability of the 8080. The ability to INCREMENT

Data and Instruction Formats

and DECREMENT memory, the six general registers and the ac­
cumulator is provided as well as EXTENDED INCREMENT and
DECREMENT instructions to operate on the register pairs and
stack pointer. Further capability is provided by the ability to RO­
TATE the accumulator LEFT or RIGHT through or around the
carry bit.

Input and output may be accomplished using memory addresses
as I/O ports or the directly addressed I/O provided for in the
8080 instruction set.

The following special instruction group completes the 8080 in­
struction set: the NO-OP instruction, HALT to stop processor
execution and the DAA instructions provide decimal arithmetic
capability. STC allows the carry flag to be directly set, and the
CMC instruction allows it to be complemented. CMA comple­
ments the contents of the accumulator and XCHG exchanges the
contents of two 16-bit register pairs directly.

Data in the 8080 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be in the
same format.

07 Os 05 04 03 02 01 Do

DATA WORD

The program instructions may be one, two, or thfee bytes in length. Multiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend on the particular operation
executed.

One Byte Instructions

Two Byte Instructions

I 07 Os 05 04 03 O2 0 1 Do I OP CODE

I 0 7 Os 05 04 03 D2 0 1 Do I OPERAND

Three Byte Instructions

107 Os 05 04 03 O2 0 1 Do I OP CODE

107 Os 05 04 03 02 01 Do I LOW ADDRESSOR OPERAND 1

107 Os 0 5 04 03 02 01 Do I HIGH ADDRESSOR OPERAND 2

TYPICAL INSTRUCTIONS

Register to register, memory refer­
ence, arithmetic or logi.cal, rotate

return, PUSH, POP, ENABLE or
DISABLE

INTERRUPT INSTRUCTIONS

Immediate mode or I/O instructions

JUMP, CALL or DIRECT LOAD

AND STORE INSTRUCTIONS

For the 8080 a logic "1" is defined as a high level and a logic "0" is defined as a low level.

xxv

SILICON GATE MOS 8080

INSTRUCTION SET

Summary of Processor Instructions

Instruction Codel1] Clockl2r
Mnemonic Description ~ lis lis 04 03 ~ 0, Do Cycles Mnemonic Description

MOV,',r2 Move register to register 0 D D D S S S 5 RZ Return 00 zero
MOVM,r Move register to memory 0 1 1 1 0 S S S 7 RNZ Return on no lero
MOVr,M Move memory to register 0 1 0 D 0 1 1 0 7 RP Return on positive
HlT Halt 0 1 1 1 0 1 1 0 7 RM Return on minus
MVlr Move immediate regis.ter 0 0 D D D 1 1 0 7 RPE Return on parity even
MVIM Move immediate memory 0 0 1 1 0 1 1 0 10 RPO Return on parity odd
INR r Increment register 0 0 0 D D 1 0 0 5 RST ReSIa"
OCRr Decrement register 0 0 D D D 1 0 1 5 IN Input
INR M Increment memory 0 0 1 0 1 0 0 10 OUT Output
OCR M Decrement memory 0 0 1 0 1 0 1 10 lXI B '.oad immediate register
ADDr Add register to A 1 0 0 0 S S S 4 Pair B & C
ADC r Add register to A with carry 1 0 0 S S S 4 lXIO load immediate register
SUB r Subtract register from A 1 0 1 S S S 4 Pair 0 & E
SBB r Subtract register Irom A 1 0 1 S S S 4 lXIH Load tmmediate register

with borrow Pair H & l
ANAr And register with A 0 S lXI SP Load immediate stack pointer
XRA r Exclusive Or register with A 1 0 S PUSH B Push register Pair B & C on
ORA r Or register with A 1 1 S stack
CMPr Compare register with A 1 1 S PUSH 0 Push register Pair 0 & E on
ADD M Add memory to A 0 0 1 stack
AOC M Add memory to A with carry 0 0 PUSH H Push register Pair H & l on
SUB M Subtract memory Irom A 0 1 stack
SBB M Subtract memory Irom A 0 1 PUSH PSW Push A and Flags

with borrow on stack
ANAM And memory with A 0 0 POP B Pop register pair B & C off
XRA M Exclusive Or memory with A 0 0 stack
ORA M Or memory with A 0 0 POP 0 Po~ register pair 0 & E off
CMP M Compare memory wfth A 0 0 stack
ADI Add immediate to A 1 0 POP H Pop register pair H & l off
ACI Add immediate to A with 1 () stack

carry POPPSW Pop A and Flags
SUI Subtract immediate from A off stack
SBI Subtract immediate from A STA Store A direct

with borrow lOA load A direct
ANI And immediate with A 0 XCHG <Exchange 0 & E, H & l
XRI Exclusive Or immediate with 0 Registe ..

A XTHl Exchange top 01 stack, H & l
ORI Or immediate with A 1 1 1 SPHl H & l to stack pointer
CPI Compare immediate with A 1 1 1 1 PCHl H & l to program counter
RlC Rotate A left 0 0 0 0 4 DAD B Add B & C to H & l
RRC Rotate A right 0 0 0 4 DAD 0 Add 0 & E to H & l
RAl Rotate A left through carry 0 0 0 4 DAD H Add H & l to H & l
RAR Rotate A right through 0 0 0 4 DAD SP Add stack pointer to H & l

carry STAX B Store A indirect
JMP Jump uncon~itional 0 0 0 1 10 STAX D Store A indirect
JC Jump on carry 0 0 0 10 LDAX B load A indirect
JNC Jump on no carry 0 0 0 10 LDAX D load A indirect
JZ Jump on zero 0 0 0 10 INX B Increment B & C registers
JNZ Jump on no zero 0 0 0 10 INX 0 Increment 0 & E registers
JP Jump on positive 0 0 10 INX H Increment H & l registers
JM Jump on minus 1 0 0 10 rNX SP Increment stack pointer
JPE Jump on parity even 1 1 0 0 10 DCX B Decrement B & C
JPO Jump on parity odd 1 0 0 1 0 10 DCXD Decrement D & E
CAll Call unconditional 0 1 0 1 17 DCX H Decrement H & L
CC CaU on carry 0 1 0 0 11117 DCXSP Decrement stack pointer
CNC Call on no carry 0 1 0 0 0 11117 CMA Compliment A
CZ Call on zero 0 a 1 0 0 11117 STC Set carry
CNZ Call on no zero 0 0 0 0 0 11/17 CMC Compliment carry
CP Call on positive 1 0 0 0 11/17 DAA Decimal adjust A
CM CaU on- minus 1 1 0 0 11117 SHLD Store H & l direct
CPE Call on parity ewn 1 1 0 0 11117 lHlD load H & l direct
CPO Call on- parity odd 1 0 0 0 11/17 EI Enable Interrupts
RET Return (} 1 0 1 11} DI Disable interrupt
RC Return on carry 0 1 0 0 5/11 NOP No'operation
RNt Return on no carry 0 0 0 0 5tH

NOTES: 1. DDS or SSS - 000 B - 001 C - 010 D - 011 E - 100 H - 101 L - 110 Memory - 111 A.
2. Two possible cycle times, (5/11} indicate instruction cycles dependent on condition flags.

xxvi

Instruction Cod,ll] Clock 12]
~ lis lis 04 03 ~ 0, Do Cycles

0 0 1 0 5111
0 0 0 0 5111
1 1 0 0 5/11
1 1 1 0 5111
1 0 1 0 5111
1 0 0 0 5111
A A A 1 11
0 1 I 0 10
0 0 0 10
0 0 0 10

10

0 10

10
11

0 11

11

11

0 0 10

10

0 HI

10

0 0 1 0 0 13
0 0 1 0 0 13
1 () 0 4

0 0 0 1 lB
1 1 0 0 5

1 1 1 0 1 0 0 5
0 0 0 0 1 0 0 10
0 0 0 1 1 0 0 1 10
0 0 1 0 1 0 0 1 10
0 0 l 1 1 0 0 1 10
(} 0 0 0 (} 0 1 0 7
0 0 0 1 ,0 0 1 0 7
0 0 0 0 1 0 0 7
0 0 0 1 1 0 0 7
0 0 0 0 0 0 1 5
0 0 0 1 0 0 1 5
0 0 1 0 0 0 1 5
0 0 1 1 0 0 1 5
0 0 0 0 1 0 1 5
0 0 0 1 1 0 1 5
0 0 0 0 1 5
0 0 1 0 1 5
0 0 0 1 1 1 4
(} 0 1 0 1 1 4
0 0 1 1 1 1 4
0 0 0 0 1 1 4
0 0 (} 0 0 0 16
0 0 1 0 1 0 T 0 16
1 1 1 1 0 1 1 4
1 1 1 0 0 1 1 4
0 0 0 0 0 0 0 4

inter Silicon Gate MOS 8102-2

1024 BIT FULLY DECODED STATIC MOS
RANDOM ACCESS MEMORY

• Access Time - 850ns Max.
• Single + 5 Volts Supply Voltage
• Directly TIL Compatible - All Inputs

and Output
• Static MOS - No Clocks or

Refreshing Required

• Simple Memory Expansion - Chip
Enable Input

• Fully Decoded - On Chip Address
Decode

• Inputs Protected - All Inputs Have
Protection Against Static Charge

• Low Power - Typically 150 mW
• Three-State Output - OR-Tie

Capability

• Low Cost Packaging - 16 Pin Plastic
Dual-In-Line Configuration

The Intel 8102-2 is a 1024 word by one bit static random access memory element using normally off
N-channel MOS devices integrated ona monolithic array. It uses fully DC stable (static) circuitry and
therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the
same polarity as the input data.

The 8102-2 is designed for microcomputer memory applications where hrgh performance, low cost,large
bit storage, and simple interfacing are important design objectives.

It is directly TTL compatible in all respects: inputs, output, and a single +5 volt supply. A separate chip
enable (CE) lead allows easy selection of an individual package when outputs are OR-tied.

The Intel 8102-2 is fabricated with N-channel silicon gate technology. This technology allows the design
and production of high performance, easy-to-use MOS circuits and provides a higher functional density on
a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

Intel's silicon gate technology also provides excellent protection against contamination. This permits the
use of low cost silicone packaging.

PIN CONFIGURATION LOGIC SYMBOL

As 16 A7

As 2 1.5 As
Ao

A,

R/w 3 14 As A2 DIN

A3
A, 4 13 EE A4

8102-2 As 8102-2
A2 5 12 DATA OUT

As

A3 6 11 DATA IN
A7

As DOUT

~ 7 10 Vee Ag

Ao B 9 GND

PIN NAMES

DIN OATA INPUT CE CHIP ENABLE

Ao- Ag ADDRESS INPUTS DOUT DATA OUTPUT

R/W READ/WRITE INPUT Vee POWER (+5VI

R/W

DATA
IN

0;; PIN NUMBERS

xxvii

BLOCK DIAGRAM

CELL
ARRAV

32 ROWS
32 COLUMNS

COLUMN I/O CIRCUITS

COLUMN SELECTOR

DATA
OUT

SILICON GATE MOS 8102-2

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias

Storage Temperature

Voltage On Any Pin
With Respect To Ground

Power Dissipation

-o.SV to +7V

1 Watt

D.C. AND OPERATING CHARACTERISTICS

*COMMENT:

Stresses above those listed under" Absolute Maxi­
mum Rating" may cause permanent damage to the
device. This is a stress rating only and functional
operation of the device at these or at any other
condition above those indicated in the operational
sections of this specification is not implied. Expo­
sure to absolute maximum rating conditions for
extended periods may affect device reliability.

TA = O°C to +70 oC, Vcc = SV ±S% unless otherwise specified

LIMITS
SYMBOL PARAMETER

TYP.UI
UNIT TEST CONDITIONS

MIN. MAX.

III INPUT LOAD CURRENT 10 p.A VIN = 0 to 5.25V
(ALL INPUT PINS)

ILOH OUTPUT LEAKAGE CURRENT 10 p.A CE = 2.2V, VOUT = 4.0V

ILOL OUTPUT LEAKAGE CURRENT -100 p.A CE = 2.2V, VOUT = 0.45V

I CCt POWER SUPPLY CURRENT 30 60 mA ALL INPUTS = 5.25V
DATA OUT OPEN
TA = 25°C

ICC2 POWER SUPPLY CURRENT 70 mA ALL INPUTS = 5.25V
DATA OUT OPEN
TA = OOC

VIL INPUT "LOW" VOLTAGE -0.5 +0.65 V

VIH INPUT "HIGH" VOLTAGE 2.2 Vcc V

VOL OUTPUT "LOW" VOLTAGE +0.45 V IOL = 1.9mA

VOH OUTPUT "HIGH" VOLTAGE 2.2 V IOH- -100p.A

Itt Typical values are for TA= 250C and nominal supply voltage.

TYPICAL D.C. CHARACTERISTICS

POWER SUPPLY CURRENT VS. POWER SUPPLY CURRENT VS.
AMBIENT TEMPERATURE SUPPLY VOLTAGE

I J
~ ... Vee = 5.25V_

........

\ SPEC.

J,.-- 'i"'_ ja- ja-. -.

60

50

40
<'
~

1----+' ---+--+: --+---+---....j.-~
AMBIENT TEMPERATURE = 25°C

·--1 I
I

80

70

60
<'
~

r---POINTS

!
w 30
t:l
<I:
a:

w 50
t:l
<I:
a:

r-- TYPICAL

w
20 >

<I:
u
~

w
> 40
<I:
u

_u

30

20

I
10

o 10 20 30 40 50 60 70 3 4 5 6

AMBIENT TEMPERATURE (OC) Vee (VOLTS)

'(xviii

SILICON GATE MOS 8102-2

A.C. CHARACTERISTICS TA = OOC to 70°C, Vee = 5V ±5% unless otherwise specified

SYMBOL PARAMETER UNIT

READ CYCLE

tRe READ CYCLE 850 ns

tA ACCESS TIME 500 850 ns

teo CHIP ENABLE TO OUTPUT TIME 500 ns

tOH1 PREVIOUS READ DATA VALID WITH RESPECT 50 ns
TO ADDRESS

tOH2 PREVIOUS READ DATA VALID WITH RESPECT 0 ns
TO CHIP ENABLE

WRITE CYCLE

twe WRITE CYCLE 850 ns

tAW ADDRESS TO WRITE SETUP TIME 200 ns

twp WRITE PULSE WIDTH 600 ns

tWR WRITE RECOVERY TIME 50 ns

tow DATA SETUP TIME 650 ns

tOH DATA HOLD TIME 100 ns

tew CHIP ENABLE TO WRITE SETUP TIME 750 ns

(1) Typical values are for TA:250 e and nominal supply voltage.

CAPACITANCE TA = 25°C, f = 1 MHz

A.C. CONDITIONS OF TEST SYMBOL TEST
LIMITS (pF)

Input Pulse Levels: +0.65 Volt to 2.2 Volt

Input Pulse Rise and Fall Times: 20nsec

1.5 Volt Timing Measurement Reference Level:

Output Load: 1 TTL Gate and CL = 100 pF

WAVEFORMS

READ CYCLE

f+------tRC------+l

TYP. MAX.

CIN INPUT CAPACITANCE
3 5

(ALL INPUT PINS) ViN = OV

COUT OUTPUT CAPACITANCE
7 10

VOUT = OV

WRITE CYCLE

f+-------twc--------<~

xxix

C
!
_I

SILICON GATE MOS 8102-2

TYPICAL D.C. CHARACTERISTICS

INPUT CURRENT VS.
INPUT VOLTAGE

+5

Vcc' 5.0V

+2.&

r TYPICAL

-2.S

•

3

EFFECTIVE INPUT
CHARACTERISTIC

Vcc J 5.0V

I

OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE

151----ji-----+--+----hh"f..--+----1

If-- ----- - -

-6

-7.5
~ H d q M +5 +5

V ,N (VOLTS)

OUTPUT SOURCE CURRENT VS.
OUTPUT VOLTAGE

+5

1 -6

~
- -10

-15

-20

:

~'~~~~W VtL MAX. V1H MIN.

V,N (VOLTS)

OUTPUT CURRENT VS. OUTPUT
VOLTAGE WITH CHIP DISABLED

(TYPICAL

I I
i

I I I

r I I CE • 2.2V

r'T-

c
!
~

_0

VOL (VOLTS)

RELATIONSHIP BETWEEN OUTPUT
SINK CURRENT, NUMBER OF OR·TIES,

AND OUTPUT VOLTAGE
4.3 .---.----..-"""T"-"'T'"-.,...--.----.

3.91---<-----t--+-.---r---+--I-----l

2D

3.1 16

12

4

-1 +1 +2 +3 +4 +5 +6 .45 .50 .55 .60 .65 .70 .75

VOH (VOLTS)

TYPICAL A.C. CHARACTERISTICS

1400

1200

1000

!
~ 100 -

0

ACCESS TIME VS.
LOAD CAPACITANCE

fA = 25·C
Vee" 4.75V
1 TTL LOAD

SPEC POINT

I--~
"'I'P\Cl'l

'1--

50 100 150 200 250 JOO 350

LOAD CAPACITANCE IpFI

VOUT (VOLTS)

xxx

VOL (VOLTS)

ACCESS TIME VS.
AMBIENT TEMPERATURE

1200 ~-l-l-- Vcc c4.7SV

I--- i----"---- HTL LOAD
C l " 100pF

I--- I---+---+-- 1--1000
SPEC. POINT

•
~ ~

! 800

~. 100

1VP\Cl'l.

400

200

00 10 m ~ ~ ~ ~ ro

AMBIENT TEMPERATURE loe.

:r
;:
0:
0 ..
0

ffi ..
~
::l
Z

inter Schottky Bipolar 8205

HIGH SPEED 1 OUT OF 8 BINARY DECODER

• I/O Port or Memory Selector

• Simple Expansion - Enable Inputs

• High Speed Schottky Bipolar
Technology - 18ns Max. Delay

• Directly Compatible with TTL Logic
Circuits

• Low Input Load Current - .25 mA
max., 1/6 Standard TTL Input Load

• Minimum Line Reflection - Low
Voltage Diode Input Clamp

• Outputs Sink 10 mA min.
• 16-Pin Dual-In-Line Ceramic or

Plastic Package

The 8205 decoder can be used for expansion of systems which utilize input ports, output ports, and mem­
ory components with active low chip select input. When the 8205 is enabled, one of its eight outputs goes
"Iow", thus a single row of a memory system is selected. The 3 chip enable inputs on the 8205 allow easy
system expansion. For very large systems, 8205 decoders can be cascaded such that each decoder can drive
eight other decoders for arbitrary memory expansions.

The Intel 8205 is packaged in a standard 16 pin dual-in-line package; and its performance is specified over
the temperature range of O°C to + 75°C, ambient. The use of Schottky barrier diode clamped transistors to
obtain fast switching speeds results in higher performance than equivalent devices made with a gold diffu­
sion process.

PIN CONFIGURATION LOGIC SYMBOL

Ao 16 Vee Ao

A, 2 15 0 0 A,

A2 3 14 0, A2

E, 4 13 °2
8205 8205

E2 5 12 O:J

E3 6 11 0 4

0 7 7 10 Os

GRO 8 9 0 6 E3

ADDRESS ENABLE OUTPUTS

PIN NAMES Ao A, A2 E, E2 E3 0 , 2 3 4 5 6 7

L L L L L H L H H H H H H H
H L L L L H H L H H H H H H
L H L L L H H H L H H H H H
H H L L L H H H H L H H H H
L L H L L H H H H H L H H H

AO-A2 ADDRESS INPUTS

E,- E3 ENABLE INPUTS

00-07 DECODED OUTPUTS H L H L L H H H H H H L H H
l H H L L H H H H H H H L H
H H H L L H H H H H H H H L
X X X L L L H H H H H H H H
X X X H L L H H H H H H H H
X X X L H L H H H H H H H H
X X X H H L H H H H H H H H
X X X H L H H H H H H H H H
X X X L H H H H H H H H H H
X X X H H H H H H H H H H H

xxxi

SCHOTTKY BIPOLAR 8205

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias: Ceramic
Plastic

Storage Temperature

All Output or Supply Voltages

All Input Voltages

Output Currents

-65°C to +125"C
-65°C to +75°C

-65°C to +160oC

-0.5 to +7 Volts

-1.0 to +5.5 Volts

125 mA

*COMMENT
Stresses above those listed under "Absolute Maximum Rat·
ing" may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or at
any other condition above those indicated in the operational
sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS TA = O°C to +75°C. Vee = 5.0V ±5%

8205

SYMBOL PARAMETER
LIMIT

UNIT
MIN. MAX.

IF INPUT LOAD CURRENT -0.25 mA

IR INPUT LEAKAGE CURRENT 10 VA

Ve INPUT FORWARD CLAMP VOLTAGE -1.0 V

Val OUTPUT "LOW" VOLTAGE 0.45 V

VOH OUTPUT HIGH VOLTAGE 2.4 V

V1l INPUT "LOW" VOLTAGE 0.85 V

V1H INPUT "HIGH" VOLTAGE 2.0 V

Ise OUTPUT HIGH SHORT -40 -120 mA
CIRCUIT CURRENT

Vox OUTPUT "LOW" VOLTAGE 0.8 V
@ HIGH CURRENT

Icc POWER SUPPLY CURRENT 70 mA

TYPICAL CHARACTERISTICS

OUTPUT CURRENT VS. OUTPUT CURRENT VS.
OUTPUT "LOW" VOLTAGE OUTPUT "HIGH" VOLTAGE

100
TA = 750C _ ~

o
~

TA = 25"C_
-.I ~ tr 80

-t lsoJ
I VIA... f;. = ~So C

-10

<
!
!Z 60
w
a:
a:
:::>
(.)

.. 40
:::>
:::>
o

20

o
o

vee = 5.0V ~ TA = OOC

~
J

~'f'

" TA = 75OC ~
/, '-I- TA = ooc

.M - I- TA = 2S"C

.2 .4 .6 .8 1.0

OUTPUT "LOW" VOL TAGE (V)

<
!
!Z -20
w
a:
a:
:::>
~ -30
:::>
:::>
o -40

-50
o

TA=O"C-~Jl TA = 7SOC

I ,
I

If
I

If
A

1.0 2.0 3.0 4.0

OUTPUT "HIGH" VOLTAGE (V)

xxxii

~
w
'-' «
0
> ..
:::>
:::>
0

5.0

_.

S.O

4.0

3.0

2.0

1.0

0

TEST CONDITIONS

Vee = 5.25V. VF = 0.45V

Vee = 5.25V. VR = 5.25V

Vee = 4.75V. Ie = -5.0 mA

Vee = 4.75V. IOl = 10.0 mA

Vee =4.75V.l oH = -1.5mA

Vee = 5.0V

Vee = 5.0V

Vee = 5.0V. VOUT = OV

Vee = 5.0V. lox = 40 mA

Vee = 5.25V

DATA TRANSFER FUNCTION

1 .1
vee = 5.0V - -

TA=O"C

1\ ~
TA = 25°C-H--.\\
TA = 75OC_ H \ \

\
\ l\ \
\.. \. ~

o .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

INPUT VOLTAGE (V)

SCHOnKY BIPOLAR 8205

8205 SWITCHING CHARACTERISTICS

CONDITIONS OF TEST: TEST LOAD:

Input pulse amplitudes: 2.5V

Input rise and fall times: 5 nsee
between 1 V and 2V

Measurements are made at 1.5V

390fl

2K

All Transistors 2N2369 or Equivalent. e L = 30 pF

TEST WAVEFORMS

ADDRESS OR ENABLE
INPUT PULSE ---1_-"'I~ ______________ :'t-'~-~--I'-------

, , \
" \

OUTPUT

A.C. CHARACTERISTICS T A = OOC to + 75°C, Vee = 5.0V ±5% unless otherwise specified.

SYMBOL PARAMETER MAX. LIMIT

t++ 18

t_+ ADDRESS OR ENABLE TO 18

t+_ OUTPUT DELAY 18

t -- 18

<;N
(1) INPUT CAPACITANCE P8205 4(typ.)

C8205 5(typ,)

1. This parameter IS perood,cally sampled and IS not 100% tested.

TYPICAL CHARACTERISTICS
ADDRESS OR ENABLE TO OUTPUT

DELAY VS. LOAD CAPACITANCE

20r-----~----~----,_----~

Vee = 5,OV

TA = 25"C

oL-----~----~----~----~

o 50 100 t50

LOAD CAPACITANCE (pF)

200

xxxiii

UNIT TEST CONDITIONS

ns

ns

ns

ns

pF f = 1 MHz. Vee = OV

pF vBIAS = 2.0V. T A = 250 e

ADDRESS OR ENABLE TO OUTPUT
DELAY VS. AMBIENT TEMPERATURE

20r-------~------~1~------,

vee = 5,OV

CL = 30 pF

~_ 15r-------+-------~1------_1
~ ~ t t .L 111- ------ --!.-~~:..- _____ _
~ ~ t_+ I
w..l

~~ to

:J!5
wI>.

~~
0° « 5r------+--------+--------;

OL-______ ~ ______ ~ ______ -J

o 25 50 75

AMBIENT TEMPERATURE (OCI

inter Silicon Gate MOS 8702A

2048 BIT ERASABLE AND ELECTRICALLY
REPROGRAM MABLE READ ONLY MEMORY

• Access Time -1.3 J.Lsec
Max.

• Fast Programming - 2 Minutes for
All 2048 Bits

• Fully Decoded, 256 x 8 Organization
• Static MOS - No Clocks Required

• Inputs and Outputs TTL Compatible

• Three-State Output - OR-Tie
Capability

• Simple Memory Expansion Chip
Select Input Lead

The 8702A is a 256 word by 8 bit electrically programmable ROM ideally suited for microcomputer system
development where fast turn-around and pattern experimentation are important. The 8702A undergoes
complete programming and functional testing on each bit position prior to shipment, thus insuring 100%
programmability.

The8702A is packaged in a 24 pin dual-in line package with a transparent quartz lid. The transparent quartz
lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be
written into the device. This procedure can be repeated as many times as required.

The circuitry of the 8702A is entirely static; no clocks are required.

A pin-for-pin metal mask programmed ROM, the Intel 8302, is ideal for large volume production runs of
systems initially using the 8702A.

The 8702A is fabricated with silicon gate technology. This low threshold technology allows the design and
production of higher performance MaS circuits and provides a higher functional density on a monolithic
chip than conventional MaS technologies.

PIN CONFIGURATION BLOCK DIAGRAM

A2 24 voo
DATA OUT 1 DATA OUT 8

AT 2 23 Vee

CS OUTPUT
Ao 3 22 Vee BUFFERS

'DATA OUT 1 4 (LSB) 21

'DATA OUT 2 5 20 A4 2048 BIT
PROGRAM- PROM MATRIX

'DATA OUT 3 6 19 As (256 X 8)
8702A

'DATA OUT 4 7 18 As

'DATA OUT 5 8 17 A7

'DATA OUT 6 9 16 VGG

'DATA OUT 7 10 15 Vaa

'DATA OUT 8 11 (MSB) 14 CS

Vee 12 13 PROGRAM
Ao AT A7

'THIS PIN IS THE DATA INPUT LEAD DURING PROGRAMMING.

PIN NAMES

AO-A, ADDRESS INPUTS

CS CHIP SELECT INPUT

DOT- 002 DATA OUTPUTS

xxxiv

SILICON GATE MOS 8702A

PIN CONNECTIONS

The external lead connections to the 8702A differ, depending on whether the device is being programmed (1) or used in read
mode. (See following table.)

~ 12 13
MODE (Vee) (Program)

Read Vee Vee

Programming GND Program Pulse

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias OOC to +70 0 C
Storage Temperature -65°C to +125°C
Soldering Temperature of Leads (10 sec) +3000 C
Power Dissipation 2 Watts
Read Operation: Input Voltages and Supply

Voltages with respect to Vee +0.5V to -20V
Program Operation: Input Voltages and Supply

Voltages with respect to Vee -48V

READ OPERATION

D.C. AND OPERATING CHARACTERISTICS

14 15 16 22 23
(CS) (Vee) (VGG) (Vee) (Vee)

GND Vee VGG Vee Vee

GND Vee Pulsed VGG (VIL4P) GND GND

'COMMENT

Stresses above those listed under "Absolute Maximum Rat·
ings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
these or at any other condition above those indicated in
the operational sections of this specification is not implied.
Exposure to Absolute Maximum Rating conditions for ex­
tended periods may affect device reliability.

T A = ooe to 700 e, Vec = +5V±5%, Voo = -9V±5%, V6~ = -9V±5%, unless otherwise noted.

SYMBOL TEST MIN. TYP.(3) MAX. UNIT CONDITIONS

III Address and Chip Select 10 fJA VIN = O.OV

Input Load Current

ILO Output Leakage Current 10 fJA VOUT = O.OV, CS = Vcc-2

1000 Power Supply Current 5 10 mA VGG=Vee' CS=Vce-2
10L = O.OmA, T A = 25°C

1001 Power Supply Current 35 50 mA CS=Vee -2
10L =O.OmA, TA = 25°C

1002 Power Supply Current 32 46 mA CS=O.O

10L =O.OmA, TA = 25°C
Continuous

IDD3 Power Supply Current 38.5 60 mA CS=V -2 Operation ec
10L =O.OmA , T A = ooC

ICF1 Output Clamp Current 8 14 mA VOUT = -1.0V, T A = OOC

leF2 Output Clamp Current 13 mA VOUT = -1.0V, TA = 25°C

IGG Gate Supply Current 10 fJA

V1L1 Input Low Voltage for -1.0 0.65 V

TTL Interface

VIL2 Input Low Voltage for VOO Vee-6 V
MOS Interface

V 1H Address and Chip Select Vee -2 Vee +0.3 V

Input High Voltage
-

10L Output Sink Current 1.6 4 mA VOUT = 0.45V

VOL Output Low Voltage -.7 0.45 V 10L = 1.6mA

VOH Output High Voltage 3.5 V 10H = -200!J.A

Note 1: In the programming mode, the data inputs 1-8 are pins 4-11 respectively. es = GNO.
Note 2: VGG may be clocked to reduce power dissipation. In this mode average 100 increases in proportion to VGG duty cycle. (See p. 5)
Note 3: Typical values are at nominal voltages and T A = 25° e.

xxxv

SILICON GATE MOS 8702A

A.C. CHARACTERISTICS

T A = fY e to + 70o e, Vee = +5V ±5%, Voo = -9V ±5%, VGG = -9V ±5% unless otherwise noted

SYMBOL TEST MINIMUM TYPICAL MAXIMUM UNIT

Freq. Repetition Rate 1 MHz

tOH Previous read data valid 100 ns

tAee Address to output delay 1.3 IlS

tovGG I Clocked VGG set up 1.0 IlS

tes Chip select delay 400 i ns

teo Output delay from CS 900 ns

too Output deselect 400 ns

t oHe i Data out hold in clocked VGG mode (Note 1) 5 IlS

Note 1. The output will remain valid for tOHC as long as clocked VGG is at Vee. An address change may occur as soon as the output is sensed

(clocked VGG may still be at Vee). Data becomes invalid for the old address when clocked VGG is returned to VGG.

CAPACITANCE*

SYMBOL TEST MINIMUM TYPICAL

CIN Input Capacitance

COUT Output Capacitance

CVGG VGG Capacitance
(Clocked VGG Mode)

This parameter is periodically sampled and is not 100% tested.

SWITCHING CHARACTERISTICS

Conditions of Test:
Input pulse amplitudes: 0 to 4V; t R , tF S50 ns
Output load is 1 TTL gate; measurements made

at output of TTL gate (tpD S 15 ns)

A) Constant V GG Operation

VOH

DATA
OUT

CYCLE TI~~E l/F REO

OESELECTION OF DATA OUTPUT IN OR TIE OPERATION

AD:'~SX: x'----
10%

VOH ---r.(l()--:......... - too ~r--------

V DATA
OUT

VOL

8

10

xxxvi

MAXIMUM UNIT CONDITIONS

15 pF ~N' vee} All

15 pF CS = Vee unused pins

30 pF
VOUT = Vee are at A.C.

VGG = Vee ground

B) Clocked V GG Operation
J... CYCL~ TIME 1 FREO-I

ADDRESS V'H~"O% e',
.. ~9~rn~' __________ ~

Vlt I

CS ::~ \~ _______ ,.. -:.-==_,_o_"'_~ _____ _
-: t-- tOVGG

Vee I I

CLOCKED I 1

DATA
OUT

DESELECTION OF DATA OUTPUT IN OR TIE OPERATION

V,H V
ADDRESS ..I\.

V" , ----------------
I
I NOTE 2 --, ~ ~ Ons

,It - - - _ - --7'-;---
B V'Hl

Vil I
--I '- t

VCC"{': DVGG /
CLOCKED ::

Vee 1

VGG I'-I-----...J'
1

too----.

.2' SOns

1
VOH -";"1 ---.., r

' DATA OU-T I \ :-"cc --\'. _________ .1
VOL

NOTE 1 The output will remain valid tor tOHC as long as clocked VGG
IS at Vee- An address change may occur as soon as- the output is sensed
(clocked VGG may still be at Veel. Data becomes invalid ~or the old

address when clocked VGG is returned to VGG·

NOTE 2' It CS makes a tram,ttion from VIL to VtH while clocked VGG
IS at VGG, then deselectlon of output occurs at too as shown In static

operation With constant VGG'

SILICON GATE MOS 8702A

TYPICAL CHARACTERISTICS

100 CURRENT VS. TEMPERATURE

31

31

37

I ! 1 1
\. Vee· +5v -

31

35

voo - -IV

\. VOG - -IV
-
-

OUTPUT CURRENT VS.
VDD SUPPLY VOLTAGE

i
i
0:

a

OUTPUT CURRENT VS.
TEMPERATURE

~
LLl
vDO - -IV

""- VaG- -IV

1 :M

"-
"-

."\
INPUTS· Vee

OUTPUTS ARE MEN
" z
iii VOL· +.45Y- ,....-.. 33 z ..

a: 32 a:
::>
u 3'

Q

.!' 30

21

28

27

l'\ 1"\ 1
'''\ ~'Vee

" I"
"i.

C$. O.OV

1 I

I
20 60 10

AMBIENT TEMPERATURE lOCI

~
--~

'00 flO

C
! ..
~ -3
a:
a: a
"' u a:
~ -3.&1--t-""

~
::>
o

I '::::-. TT r-
1

0 '0 20304050110 70 10 I AMBIENT TEMPERATURE IOCt

Vee .15v I
yoo- -IV

'- VGG - -IV

VOM - O.OV

-~ ,....-1::-
r-

.P-4L-_.l....-_.L-_.L-_.L-_-'-_-'---' rr

i

OUTPUT SINK CURRENT
VS. OUTPUT VOLTAGE

1.4.0

C
I I I

! '2.0
Vee - +5V .. -VOO ' -9V-

Z
VaG" -9v ..

~ 10.0 - TA • 250C-
::>

7:)7~
u

- " 8.0 z
iii ..
~

6.0 --

5 4.0
/v

_6/

V V!2.0

-4 -3 -2 -1 0 +' +2 +3 +4

OUTPUT VOLTAGE (VOLTS)

ACCESS TIME VS.

.400

'300

'200

1100

I ,OlIO
w
:IE
;:: 900
gj

~ BOO

700

600

500

LOAD CAPACITANCE

, TTL LOAD

Vee = +5V

Voo • -9V

VaG • -9V

TA • 2S°C

45

40

'00,35
C 30 !
Q

25 _Q

"' " 20 ...
a:
~ .5 ..

.0

'000 5

r--

r--
~

o
o

Q oro 20 30 40 50 110 ro 110 9O~

LOAD CAPACITANCE CpFI

~ ~

.0

xxxvii

AVERAGE CURRENT VS. DUTY
CYCLE FOR CLOCKED VGG

! 1.1
CLOCKED VOG

Voo
a;

TA

~ :--
I

20 30

'400

;300

'200

1100
'2
;; 1000
:IE
;:: 900

~
~ BOO

700

&00

500

I I i
'-9V +
.. -9V

! '" V 1H

= 2SoC
~

~
.-

--
,

40 50 110 70

OUTY CYCLE C,.I

ACCESS TIME VS.
TEMPERATURE

, TTL LOAD ~ 20 pf

Vee • +5V

Voo = -9V

VGG • -9V

~

I

10

-

-

o ro 20 30 40 50 50 ro 10 90

AMBIENT TEMPERATURE (OCI

L...---
90 .00

90

I
I

SILICON GATE MOS 8702A

PROGRAMMING OPERATION

D.C. AND OPERATING CHARACTERISTICS FOR PROGRAMMING OPERATION

TA = 25°C, Vee = OV, VBB = +12V ± 10%, CS = OV unless otherwise noted

SYMBOL TEST MIN. TYP. MAX. UNIT CONDITIONS

I Ll1 P Address and Data Input 10 mA VIN = -48V
Load Current

ILI2P Program and VGG 10 mA VIN = -48V
Load Current

IBB VBB Supply Load Current .05 mA
IDDp I1) Peak ID D Supply 200 mA VDO = VproV= -48V

Load Current VGG = -35
VIHP Input High Voltage 0.3 V

------ --- ---~ --- ----~------ V-------
VIL1P Pulsed Data Input -46 -48

Low Voltage
VIL2P Address Input Low -40 -48 V

Voltage
VIL3P Pulsed Input Low VDD -46 -48 V

and Program Voltage
VIL4P Pulsed Input Low -35 -40 V

VGG Voltage

Note 1: IDOP flows only during VOO. VGG on time. IDDP should not be allowed to exceed 300mA for greater than 100,"sec. Average power
supply current IDOP is typically 40mA at 20% duty cycle.

A.C. CHARACTERISTICS FOR PROGRAMMING OPERATION

TAMBIENT = 25°C. Vee = OV, VBB = + 12V ± 10%. CS = OV unless otherwise noted

SYMBOL TEST MIN. TYP. MAX. UNIT CONDITIONS

Duty Cycle (VOO ' VGG) 20 %

t¢pw Program Pulse Width 3 ms VGG = -35V, Voo =
Vprog = -48V

tow Data Set Up Ti me 25 ps

tOH Data Hold Time 10 ps

tvw Voo ,VGG Set Up 100 ps

tvo VOO ' VGG Hold 10 100 ps

tACW (2) Address Complement 25 ps
Set Up

tACH (2) Address Complement 25 ps
Hold

tATW Address True Set Up TO ps

tATH Address True Hold 10 ps

Note 2. All 8 address bits must be in the complement state when pulsed VDD and VGG move to their negatrve levels. The addresses (0 through
255) must be programmed as shown in the timing diagram for a minimu~ of 32 times.

xxxviii

SILICON GATE MOS 8702A

SWITCHING CHARACTERISTICS FOR PROGRAMMING OPERATION

PROGRAM OPERATION

Conditions of Test:

Input pulse rise and fall times S lJ,Lsec

CS = OV

PROGRAM WAVEFORMS

--I tACH/--
I I I

tAcw---~'1 I I
o

ADDRESS

-40 to -48

91NARY COMPLEMEN­
ADDRESS OF WORD

TO BE PROGRAMMED

I

BINARY ADDRESS
OF WORD TO BE

PROGRAMMED

I " I ----, tvo :--

0------------.... --: I--tATW
PULSED VOO

POWER SUPPLY

-46 to-48

1 I I
1 1 I
I 1 I
I 1 I
1 1 I

1 : I
1 1 I

0------------.... 1 1 1 1

~~:~pp~~ \ i I !
-35to-40 1 I , 1

1 1 1 I
~tvw'" 1

1 1 1 O--------.~I f' :
PROGRAMMING r-ttPPW-1 1 1

PULSE ~ } . rtATH~

-46to-48 1 1 1 1

-46 to

'I 'I 1 r--tow-, -ltOHr---
1 1

DATA STABLE
TIME

PROGRAMMING OPERATION OF THE 8702A

ADDRESS

When the Data I nput for Then the Data Output WORD A7 A6 A5 A4 A3
the Program Mode is: during the Read Mode is:

0 0 0 0 0 0

VILIP = --48V pulsed Logic 1 = VOH = 'P' on tape 0 0 0 0 0

I I I I I
I I I I I

VIHP=- OV Logic 0 = VOL ='N' on tape
255

Address Logic Level During Read Mode: Logic 0 = VIL (-.3V) Logic 1 = VIH (- 3V)

Address Logic Level During Program Mode: Logic 0 = VIL2P (--40V) Logic 1 = VIHP (-OV)

xxxix

A2 A1 AO

0 0 0

0 0

I I
I I

SILICON GATE MOS 8702A

PROGRAMMING INSTRUCTIONS
FOR THE 8702A

I. Operation of the 8702A in
Program Mode
Initially, all 2048 bits of the ROM are in
the "0" state (output low). Information
is introduced by selectively program­
ming "1 "s (output high) in the proper
bit locations.

Word address selection is done by the
same decoding circuitry used in the
READ mode (see table on page 6 for
logic levels). All 8 address bits must be
in the binary complement state when
pulsed VDD and VGG move to their nega­
tive levels. The addresses must be held
in their binary complement state for a
minimum of 25 I(sec after VDD and VGG
have moved to their negative levels.
The addresses must then make the
transition to their true state a minimum
of 10 ,usec before the program pulse
is applied. The addresses should be
programmed in the sequence 0 through
255 for a minimum of 32 times. The
eight output terminals are used as data
inputs to determine the information
pattern in the eight bits of each word.
A low data input level (- 48V) will pro­
gram a "1" and a high data input level
(ground) will leave a "0" (see table on
page 6). All eight bits of one word are
programmed simultaneously by setting
the desired bit information patterns on
the data input terminals.

During the programming, VGG, VDD and
the Program Pulse are pulsed signals.

II. Programming of the 8702A UsIng
Intel Microcomputers
Intel provides low cost program devel­
opment systems which may be used to
program its electrically programmable
ROMs. Note that the programming
specifications that apply to the 8702A
are identical to those for Intel's 1702A.

A. Intellec 8

The Intellec series of program de­
velopment systems, the Intellec
8/Mod 8 and Intellec 8/Mod 80, are
used as program development tools
for the 8008 and 8080 microproces­
sors respectively. As such, they are
equipped with a PROM programmer
card and may be used to program
Intel's electrically prog ram mabie
and ultraviolet erasable ROMs.

An ASR-33 teletype terminal is used
as the input device. Through use of
the Intellec software system monitor,
programs to be loaded into PROM
may be typed in directly or loaded
through the paper tape reader. The
system monitor allows the program
to be reviewed or altered at will
prior to actually programming the
PROM. For more complete informa­
tion on these program development
systems, refer to the Intel Micro­
computer Catalog or the Intellec
Spec ifications.

B. Users of the SIM8 microcomputer
programming systems may also
program the 8702A using the
MP7-03 programmer card and the
appropriate control ROMs:

SIM8 system-Control ROMs
A0860, A0861 and A0863.

xxxx

III. 8702A Erasing Procedure
The 8702A may be erased byexpo-
sure to high intensity short-wave ultra­
violet light at a wavelength of 2537A.
The recommended integrated dose (i.e.,
UV intensity x exposure time) is
6W-sec/cm2. Examples of ultraviolet
sources which can erase the 8702A
in 10 to 20 minutes are the Model
UVS-54 and Model S-52 short-wave
ultraviolet lamps manufactured by
Ultra-Violet Products, Inc. (5114 Walnut
Grove Avenue, San Gabriel, California).
The lamps should be used without
short-wave filters, and the 8702A to
be erased should be placed about one
inch away from the lamp tubes.

The INTELLEC 8 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code with the parity (high order) bit
always reset_

GRAPHIC OR CONTROL ASCII (HEXADECIMAL) GRAPHIC OR CONTROL ASCII (HEXADECIMAL)

NULL 00 ACK 7C
SaM 01 Alt. Mode 70
EOA 02 Rubout 7F
EOM 03 21
EaT 04 22
WRU 05 # 23
RU 06 $ 24
BELL 07 % 25
FE 08 & 26
H. Tab 09 27
Line Feed OA 28
V. Tab OB 29
Form OC * 2A
Return 00 + 2B
SO OE 2C
SI OF 20

DCa 10 2E

X-On 11 / 2F
Tape Aux. On 12 3A
X-Off 13 3B
Tape Aux. Off 14 < 3C
Error 15 3D
Sync 16 > 3E
LEM 17 ? 3F
SO 18 [5B
S1 19 / 5C
S2 1A l 50
S3 1B t 5E
S4 1C +- 5F
S5 10 @ 40
S6 1E blank 20
S7 1F 0 30

xxxxi

GRAPHIC OR CONTROL ASCII (HEXADECIMAL)

1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39
A 41
8 42
C 43
D 44
E 45
F 46
G 47
H 48
I 49
J 4A
K 48
L 4C
M 4D
N 4E
0 4F
P 50
Q 51
R 52
S 53
T 54
U 55
V 56
W 57
X 58
y 59
Z 5A

xxxxii

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0 1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10
2 03 04 05 06. 07 08 09 OA OB OC OD OE OF 10 11
3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13
5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14
6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15

7 08 09 OA OB OC OD OE Of 10 11 12 13 14 15 16
8 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17
9 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 18

A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19
B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A
C OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B

D OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10
F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 10 1E

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F

2 04 06 08 OA OC OE 10 12 14 16 18 1A 1C 1E
3 06 09 OC OF 12 15 18 1B 1E 21 24 27 2A 2D

4 08 OC 10 14 18 1C 20 24 28 2C 30 34 38 3C
5 OA OF 14 19 1E 23 28 2D 32 37 3C 41 46 4B
6 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 OE 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 12 1B 24 2D 36 3F 48 51 5A' 63 6C 75 7E 87

A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F 1E 2D 3C 48 5A 69 78 87 96 A5 B4 C3 D2 E1

xxxxiii

POWERS OF TWO

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015625
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 OOG 938 893 903 907 228 377 647 697 925 567 676 950 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

xx)(xiv

TABLE OF POWERS OF SIXTEEN IO

16n

1

16

256

4 096

65 536

048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

152 921 504 606 846 976

n

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.10000

0.62500

0.39062

0.24414

0.15258

0.95367

0.59604

0.37252

0.23283

0.14551

0.90949

0.56843

0.35527

0.22204

0.13877

0.86736

16,n

00000 00000 00000

00000 00000 00000

50000 00000 00000

06250 00000 00000

78906 25000 00000

43164 06250 00000

64477 53906 25000

90298 46191 40625

06436 53869 62891

91522 83668 51807

47017 72928 23792

41886 08080 14870

13678 80050 09294

46049 25031 30808

78780 78144 56755

17379 88403 54721

x 10
X 10-1

X 10-2

X 10-3

X 10-4

X 10-6

X 10-7

X 10-8

X 10-9

X 10-10

X 10-12

X 10-13

X 10-14

X 10-15

X 10-16

X 10-18

TABLE OF POWERS OF 1016

3

23

163

OEO

8AC7

1

F

98

5F5

3B9A

2 540B

17 4876

E8 04A5

918 4E72

5AF3 107 A

807E A4C6

8652 6FCl

4578 508A

B6B3 A764

2304 89E8

A

64

3E8

2710

86AO

4240

9680

El00

CAOO

n

o
1

2

3

4

5

6

7

8

9

E400 10

E800 11

1000 12

AOOO 13

4000 14

8000 15

0000 16

0000 17

0000 18

0000 19

1.0000

0.1999

0.28F5

0.4189

0.680B

0.A7C5

0.10C6

0.1 A07

0.2AF3

0.44B8

0.60F3

O.AFEB

0.1197

0.1 C25

0.2009

OA80E

0.734A

0.B877

0.1272

0.1083

0000 0000

9999 999A

5C28 F5C3

C6A7 EF9E

710C B296

1 B47 8423

B5ED 8037

BCAF 4858

6118 73BF

9B5A 52CC

X 16- 1

X 16-2

X 16-3

X 16-4

X 16-4

X 16-5

X 16-6

X 16-7

0000

9999

C28F

374B

8BAC

AC47

F7AO

F29A

10C4

2FAO

7F67

FFOB

9981

C268

SEF6 EAOF X 16-8

CB24 AAFF X 16-9

20EA 1119 X 16-9

4976 81C2 X 16-10

3700 4257

BE7B 9058

CA5F 6226

AA32 36A4

5001 0243

C94F B602

3604

5660

FOAE

B449

ABAl

AC3'5

X 16- 11

X 16 -12

X 16-\3

X 16 -14

X 16 -14

X 16 -IS

xxxxv

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095_ For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal Hexadecimal Decimal

01 000 4096 20000 131 072

02000 8 192 30000 196608

03000 12288 40000 262 144

04000 16384 50000 327680
05000 20480 60000 393216

06000 24576 70000 458752

07000 28672 80000 524288

08000 32768 90000 589824

09000 36864 AD 000 655360

OA 000 40960 BO 000 720896

OB 000 45056 CO 000 786432

OC 000 49152 DO 000 851 968

00000 53248 EO 000 917 504

OE 000 57344 FO 000 983040

OF 000 61 440 100000 1 048576

10000 65536 200000 2097 152

11 000 69632 300000 3 145728

12000 73728 400000 4194304

13000 77 824 500000 5242880

14000 81 920 600000 6291 456

15000 86016 700000 7340032

16000 90112 800000 8388608

17000 94208 900000 9437 184

18000 98304 AOO 000 10485760

19000 102400 800000 11 534336
lA 000 106496 COO 000 12582912
18000 110592 000000 13631 488
lC 000 114688 EOO 000 14680064
10000 118 784 FOO 000 15728640
1 E 000 122880 1 000000 16777216

1 F 000 126976 2000000 33554432

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015

010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031

020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047

030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079

050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095

060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111

070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143

090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159

OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175

080 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207

000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223

OED 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239

OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

xxxxvi

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C D E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
lDO 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1 FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3DO 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

xxxxvii

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F
400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

xxx xviii

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C D E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7DO 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9DO 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

xxxxix

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2808 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
B80 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063

,
3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3·195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

L

HEXADECIMAL·DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
OBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
CCO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
OEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
OFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El0 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EOO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Li

INTEL CORPORATION, 3065 Bowers Ave., Santa Clara, California 95051 (408) 246-7501

© 1975 Printed in U.S.A. MCS-307a-0275/1K

	0001
	0002
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	xBack

