

intel MCS-80™
System Design Kit
User's Guide

CONTENTS

D= s =) I TIE i
Specificalions! s rrsumasanss ol ii st i
CHAPTER 1

INTRODUCTION

GENEEAL 5 rin s s iasyssiiegsss b doreatne s s vt 1
SUGGESHONS: rsiviinsitmirs s it ibiv s i Sl rews 1
Euncltional' Dehimifion e s sesision desssmmnms 1
Registration Card Information 2
CHAPTER 2

HOW TO ASSEMBLE THE KIT

GENEral (iistesiianies snm el e 3
TOOIS BOGUITEE i atate s arsinte: shats bt Ay oiass, o 3
Optional Rotary SWItCH .. cs v ainsie se s o 3
Parts LIStcqcue cvesmsimniysmasesmms dassiasie s 3
Assembly Procedure! .. .vswis wessivns o5 svsmasen 6
Assembly of AreaOneccvvvnnnnn. 7
Assembly of Area TWOc.ccvvvivennnnnns 10
Assembly of Area Threec.occvvvnnn. 12
CHAPTER 3

THEORY OF OPERATION

GENETAl i ssiiisinn susamesies it e 15
SYSIEMIBUSSES) tiiratiis wim edst s mis el S 16
RESEL.SWIHER: " unm s simmin et Lanmsis S 16
Clock Generator and Clock Crystal 16
BOBOA CRY < vmins aniiathon shniuss s S i e st 16
SysSteM CONEONET (i s i s ai e eins misin vesione agecais 16
Address Buffers (Optional) 17
SDK=BOMEMONY. e rsis it mmserrsbtsias sl s st iy
Baud Rate: Generatorcs.is e sss semisgs e 18
/O Communication Interface 18
Peripheral Interfaces -cccvivvn... 18
CHAPTER 4

FINAL ASSEMBLY AND CHECKOUT

GONErAl srciiln Rraiall 5k e soig v i 19
Jumper-Wiring the Board 19
Installing Integrated Circuits 21
Start-UIp:PrOCRAUILE i m sass it araismioius & 23
Troubleshooting HInS «..cucesminnemmisiis 23
CHAPTER 5

SDK-80 MONITOR

INTTOAUCHION %5 st i s atsererestonsisbapalletatationars 24
MONIOr OPerations:uesessmsms s easenns 24
APPENDIX A

MONIOELLISHING]. o imitonlstiiat s it i tetisrre 4ross 29
APPENDIX B

SDK-80'SchematiCs! « ju.simiian dvnivsaemms sios 57
APPENDIX C

Board Layout with Component

VUGS i smuicnrmssomsssissarisromemisisism st & 61

Intel Microcomputer Systems
8080 SYSTEM DESIGN KIT (SDK-80)

= Complete Single Board m Large Wire-Wrap area for
Microcomputer System Custom Interfaces
Including CPU, Memory and /O = Extensive System Monitor

s Easy to Assemble Kit-Form Software in ROM

= High-Performance = PC Board Format and Power,
(2us Instruction Cycle) Compatible with INTELLEC®

= Interfaces Directly with most MDS
Terminals (75-4800 Baud) s Complete MCS-80" User’s Library

The 8080 System Design Kit (SDK-80) is a complete, single board, microcomputer system in kit form. It contains all necessary
components, including resistors, caps, crystal and miscellaneous hardware to complete construction. Included is a pre-
programmed ROM that contains the system monitor for general software utilities and system diagnostics.

All that is required for operation are power supplies and a suitable terminal; TTY, CRT, etc., (level conversions and baud rate
generation included on board).

The SDK-80 is an inexpensive, high-performance prototype system that has designed-in flexibility for simple interface to the
users application.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patentlicenses are implied.

SDK-80

SDK-80 SPECIFICATIONS

Central Processor

CPU: 8080A
Instruction Cycle: 1.95 microsecond
Tcy: 488 ns

Memory

ROM: 2K bytes (expandable to 4K bytes)
8708/8308
RAM: 256 bytes (expandable to 1K bytes) 8111
Addressing:
ROM 0000-0FFF
RAM 1000-13FF

Input/Output

Parallel: One 8255 for 24 lines (expandable to
48 lines).
Serial: One 8251 USART.

On-board baud rate generator (jumper
selectable).
Baud Rates: 75 1200
110 2400
300 4800
600
Interfaces

Bus: All signals TTL compatible.
Parallel |/O: All signals TTL compatible.
Serial 1/0: RS232C/EIA
20 mil A. Current loop TTY
TTL (one TTL load)

Interrupts

Single level: Generates RST7 vector TTL
compatible input.

DMA

Hold Request: Jumper selectable.

Software

System Monitor: Pre-programmed 8708 or
8308 ROM Address; 0000-03FF.

Features:
Display Memory Contents (D)
Move blocks of memory (M)
Substitute memory locations (S)
Insert hex code 1))
Examine Registers (X)
Program Control (G)

Power-up start or system reset start.
1/0: Console Device (serial 1/0)

Literature

Design Library:
8080 Users Manual
8080 Assembly Language Manual
PL/M™ Programming Manual
MDS Brochure
Reference Card (Programmers)
SDK-80 User’s Guide

Connectors

1/0: 25 pin female (RS232C)
PCB: MDS format

Physical Characteristics (MDS Mechanical
format)

Width: 12.0 in.

Height: 6.75 in.

Depth: 0.50 in.

Weight: approx. 12 oz.

Electrical Characteristics (DC Power)

Vee 5V 5% 1.3 Amps
Vop 12V £5% .35 Amps
Ves -10V £5% .20 Amps

or -12V 5%
Environmental
Operating Temperature: 0-70°C

CHAPTER 1
INTRODUCTION

GENERAL

The 8080 System Design Kit (SDK-80) is a
complete microcomputer system in kit form. It
is simple to assemble (construction time is 6
hours) and provides an excellent training/
prototype vehicle for evaluation of the 8080
microcomputer system (MCS-80™).

The SDK-80 is an extremely flexible design and
allows easy interface to an existing application
or custom interface development.

An extensive system monitor is included in a
pre-programmed ROM for general software
utilities and system diagnostics.

The System Design Kit User's Guide will
instruct the user how to assemble his kit and
configure it to match the selected terminal and
peripheral devices. It is suggested that the
User’s Guide be followed in the exact sequence
that it is written to assure successful comple-
tion of the system.

SUGGESTIONS

The 8080 Microcomputer Systems User’s
Manual is included with the SDK-80 and it
would be extremely beneficial to the user that
he read and understand the operation of the
8080A and associated peripheral components
prior to beginning the assembly of the SDK-80.

Every effort has been made to allow the SDK-80
to interface directly with most common
terminals but with the wide array of display
terminals available it is not possible to perfectly
interface each one with the SDK-80 hardware
and software. The user should carefully
examine the requirements of his particular
terminal interface and adapt the SDK-80
accordingly.

FUNCTIONAL DEFINITION

The SDK-80 is shipped with a complement of
parts that allows the user to construct an
operating small system with the following
features:

CPU: 8080A (see 8080 User’s Manual for
details)
1.95 ps Instruction Cycle

RAM: 8111 (static 256 x 4) 2 included for
256 byte storage

ROM: 8708/8308 (1K x 8)

1 Pre-programmed
system monitor
1 User-programmed (erasable 8708)

1/O: 8251 (Programmable Communi-
cation Interface)
1 Serial communication
with terminal

8255 (Programmable
Peripheral Interface)
1 General user 1/0O, 24 lines

Serial TTL
Interface: 20mA current loop (TTY)
RS-232 (EIA)
Baud User-selected by jumper or switch
Rate: 75,110,300
600, 1200, 2400, 4800
Interrupt: Single level, vectored (RST-7)

The SDK-80 has many designed-in features for
expandability without the necessity of cutting
PC runs or adding extra logic. The maximum
configuration of the SDK-80 is as follows:

RAM: 8111 (static 256 x 4)
Up: to; 8 for, 1K x 8
storage

ROM: 8708/8308 (1K x 8)
Up to 4 for 4K x 8
storage
I/0: 8255 (Programmable Peripheral
Interface)

2 General user /0, 48 lines

Expanding the SDK-80 to the maximum
configuration is a simple matter of purchasing
the extra memory and I/O components and
installing them on the board.

REGISTRATION CARD

On the back cover of the User's Guide is the
Registration card for the SDK-80. Please fill it
out completely and return it to INTEL upon
completion of the kit. The Registration Card
assures you of being updated with the latest
information on the 8080 microcomputer system
and any additional updates on your 8080
System Design Kit.

GENERAL INQUIRY

How long ¢id it take to assemble? _____ Hours

Did 11 work the first time? Yas 1 No o

If No. please comment. e

Assembled Board.

CHAPTER 2

HOW TO ASSEMBLE THE KIT

GENERAL

The MCS-80"System Design Kit is shipped
in a single cardboard carton. This chapter will
take you from the point of receiving this carton
to the point where you are ready to insert the IC
(Integrated Circuit) chips.

Follow the instructions carefully and make a
check mark in the boxes provided after you
have completed each step.

Your work area should be an uncluttered, well-
lighted table or desk with access to an AC wall
socket or extension cord.

TOOLS REQUIRED

Before starting the project, you should make
sure the proper tools are at hand and are in
good operating condition. These tools will be
required to assemble the MCS-80 System
Design Kit:

A pair of needle-nose pliers

A small Phillips head screwdriver

A 1/4” standard flat head screwdriver

A pair of small diagonal cutters

A 25-watt pencil-type soldering iron

A spool of rosin core solder with 60:40 tin-
lead content.

IMPORTANT
Use only rosin core solder for all
electrical soldering!

O AVOM (Volt-Ohm-Milliammeter) test meter

If available, a dual-probe oscilloscope would
also be helpful.

OPTIONAL ROTARY SWITCH

The Design Kit is complete for most applica-
tions; however, applications requiring multiple
baud rates will need an additional rotary switch.
We have allocated a position on the circuit
board for this switch. One possible switch is
Spectrol 87-12-19, available from Spectrol
Electronics Corp., 17070 East Gale Avenue,
City of Industry, CA 91744. Phone: (213) 964-
6565.

B HE BE0E

PARTS LIST

With the proper tools at hand, you are now
ready to take inventory of the carton.

The contents of the carton are divided into two
compartments. One compartment contains the
kit's documentation, the other contains the
SDK-80. In addition to the User’s Guide that you

are now reading, the following documents are
included:

O 8080 Assembly Language Programming
Manual

8080 Assembly Language Reference Card

8008/8080 PL/M™ Programming Manual

MDS Brochure

8080 Microcomputer
Manual

15 {0 7 L)

Systems User’s

The components of the MCS-80 System Design
Kit come in four packages:

O Printed wiring (PW) board, PN 1000609-01
O Miscellaneous small component bag

O SDK-80 Intel component pack

CAUTION

Do not handle the IC’s until
instructed to do so.

[0 Miscellaneous non-Intel component pack

If any of the above component packages or
documents are missing, call your distributor
immediately. If not, lay each of the component
packages on your work table and proceed
reading.

SDK-80 Intel® Component Pack Table 2-1. Parts List, Intel Component Pack.

The Intel component pack contains the Intel Item Part
IC’s needed in the Kit. The numbers indicated in No. No. Description Qty.
Figure 2-1 correspond to the “ltem Number” in 1 52-016 IC, Intel® 8205 >
Table 2-1. 2 52-035 IC, Intel® 8251 1
O Verify that all items in Table 2-1 are 3 52-045 |C, Intel® 8224 1
included. Do not remove components from 4 52-046 IC, Intel® 8228 1
backing. 5 52-047 IC, Intel® 8255 1
6 52-059 IC, Intel® 8708 1
7 52-058 IC, Intel® 8080A 1
8 52-062 IC, Intel® 8111 2
9 52-605 |IC, Intel® SDK-80 Monitor 1
ROM

Figure 2-1. Intel® Component Pack.

Non-intel® Component Pack

The non-Intel component pack contains

Auxiliary Components For SDK-80
Expansion (Not Supplied With Kit)

miscellaneous components produced :la" SR W e M“;“"a;'“’ef
by other manufacturers. Figure 2-2 T addonllnd o gre. 150
shows the arrangement of these com- 66022 Eﬁpgna;‘\%lifcﬁ“égm Gk 81292
ponents. The circled numbers are keyed 68-102 Right angle female ITT Cannon DBC-255-AA
to Table 2-2. 25 pin connector AMP 205858-1
O Verify that all items in Table 2-2 are 68-077 Male 25 pin Cinch Jones DB-25p
included. D i connector (solder)
INC A0 O NOL IEHOVE COMPON= —— Low profile 18 pin TI C93-18-02
ents from backing. DIP socket
b -007 fil i -24-02
Table 2-2. Parts List, Non-Intel S D s L FRERH
Component Pack. 68-009 Low profile 40 pin TI C93-40-02
DIP socket
Item Part —— Small 30/60 PCB CDC 97167901 (w-w)
No. No. Description Qty. connector 97169001 (solder)
1 54-028 |G, 74161 2 —— Large 43/86 PCB Viking VPBO1EA3AD0A-1
connector
2 54-092 IC, 7406 1 (wire wrap)
3 54-135 IC, 79MO5AUC 1
4 54-136 IC, 93516 1
5 68-009 Socket, 40-pin 2
6 68-007 Socket, 24-pin 2
7 68-177 Socket, 28-pin 2
8 68-102 Connect female, right 2
angle, or 25-pin
9 68-077 Connect male, 25-pin 2
10 68-006 Socket, or 16-pin 1
6 9 8
/ \ \
i - Ly
o o o = < (:\' i f ', ! :"-ﬁ
= sl BV . : lT?T?T?T?T?T?T?T?Tﬂ?T?T?Tl =
3 |3 3 2 S
2 1 g | > f
x: o ’r.‘ o h I
) o o o //4
VOO0V OO0IVOTVDLOCO 00D :: %— ;" :i E %’7’1
P g M e Al
» i} Q Q [3 ./
1 0090000 ECO0I0 00 0D o i ; : .—-v——-——‘-”"z
5 < 3 o : o -
\\ 00N GOIO0N0BOOBODDOO O ; ‘0’ g P: //
CCOPDO0ZT0CO0OCO0OoOOQGODODC D ;) \: ::/ ?‘ CSC00000< —_— O
\ /
X /

10

Figure 2-2. Non-intel® Component Pack.

Small Component Bag

The small component bag contains the
miscellaneous resistors, capacitors, screws,
etc. needed to support the integrated circuits.
Proceed as follows:

O Open the bag and spread the components
in front of you.

O Separate the components into groups; i.e.,
resistors in one group, capacitors in an-
other, screws and nuts and washers in
another, etc.

O Verify that all parts listed in Table 2-3 are
included.

ASSEMBLY PROCEDURE

Now that you have verified that all of the parts
are included, you are ready to begin assembling
the board.

This section of the text will be supplemented
with drawings that illustrate the area of the
board under construction. Components to be
installed later will be shown as unshaded.
Components being installed will be shown as
shaded. Components that wereinstalled earlier
in the procedure will be shown blackened.

We shall assemble the board components by
area, where the board may be thought of as
being divided into three major areas. Area one
will encompass that portion of the board to the
left of J1 Pin 1 on the silkscreen. Area two will
encompass that portion of the board that lies
below J1 and J2. Area three will encompass
everything to the right of area two.

Table 2-3. Parts List, Small Component Bag

Part
No.

Description

Qty.

62-008
56-044

56-024
56-033
56-006
56-017

56-106
56-038

56-209
56-039
56-112
56-020

56-210
56-213

60-003
58-006
58-003
66-032
64-042
64-012
64-052
64-050

64-022

82-015
82-072
82-069
84-010
84-073
84-016
84-069
84-042
84-068
84-027
84-070
84-059

Crystal, 18.432 MHz

Resistor, 10 K2, 1/4W
(brown-black-orange)

Resistor, 1 K&, 1/4W
(brown-black-red)
Resistor, 2.7 K§2 , 1/4W
(red-violet-red)
Resistor, 47 £, 1/4W
(yellow-violet-black)
Resistor, 390 £2, 1/4W
(orange-white-brown)
Resistor, 43052, 1W

Resistor, 4.7 K2, 1/4W
(yellow-violet-red)

Resistor, 560 K£2 , 1/4W
(green-blue-yellow)

Resistor, 5.1 K&, 1/4W
(green-brown-red)

Resistor, 15082, 1/4W
(brown-green-brown)

Resistor, 51082 , 1/4W
(green-brown-brown)

Resistor, 430 2, 1.5W

Resistor, 1302 , 1/4W
(brown-orange-brown)

Diode, 1N914

Transistor, 2N2222

Transistor, 2N2907

Switch, right angle, SPDT

Capacitor, 1 uf, 50V tant

Capacitor, 22 uf, 15V tant

Capacitor, 10 pF, mica

Capacitor, .1 uf, 50V monolithic
(bright-colored)

Capacitor, .01 uf, ceramic disc
(orange)

Terminal lugs, 2010B

Spacer, nylon 1/4” x 7/16" o.d.

Rubber feet

Screw, 4-40 x 3/8" pan

Screw, 2-56 x 3/8" pan

Screw, 6-32 x 3/4” pan

Nut, 4-40 plain hex

Nut, 2-56

Washer, #2 nylon

Washer, #6 nylon

Nut, 6-32

Washer, #4 nylon

1
1

16

e S R & R e e A ~ S ¢ IS B o))

Assembly of Area One

Proceed as follows:

O

O

Lay the PW board on your work area,
silkscreened side up, so that the edge con-
nectors are directly in front of you.

Your first step will be to install the five rub-
ber feet. There will be one foot in each
corner and one in the middle of the board.
At each of these locations, place a nylon
spacer and rubber foot underneath the
board and insert ascrew (5-32x3/4) through
them from the bottom. Then attach the
screw at the top using a #6 nylon washer
and a 6-32 hex nut.

Referring to Table 2-4, solder resistors R1-
R4 and R21-R24 in place. Figure 2-3 shows
this area of the board.

HINT
Save all scrap resistor leads for later
use as jumper wires.

Table 2-4. Construction Table #1.

Resistor Description
R1 130, 1/4W (brown-orange-brown)
R2 1K, 1/4W (brown-black-red)
R3 1K, 1/4W (brown-black-red)
R4 560K, 1/4W (green-blue-yellow)
R21 1K, 1/4W (brown-black-red)
R22 5.1K, 1/4W (green-brown-red)
R23 1K, 1/4W (brown-black-red)
R24 1K, 1/4W (brown-black-red)

: ﬁ
Mmcs-gom Wi

SYSTEM
DESIGN RESET
KIT SWITCH
Cl_+
o s —

91s€6
£

T

s PR

(==
[E'F)

S+
oz (3
Z2
w
o @ 8 O
lN
v lw
~

191¥2L §5,

S+

Y1

1 TVISA¥D
ev-8l

>
@

S
[F2]
NID N1D 2z8

Figure 2-3. Construction Figure #1.

O

Solder capacitors C1-C3 and C10-C16 in
place (Figure 2-4). C1is a 1 uf, 50V tant. C2,
C3, and C11-C14 0.01 uf ceramic. C10is a
10 pF mica. C15 and C16 are 22 uf, 15V tant.

IMPORTANT
Be sure that electrolytic capacitors
C1, C15 and C16 are installed so that
their “+” ends are positioned as shown
on the board.

Solder diode CR1 in place. Make sure the
arrow is pointing as shown on the silk-
screen.

Solder Reset Switch SW1 in place.

Solder terminal lugs E1-E6 in place. Figure
2-5 shows the installation completed in the
last three steps.

Solder the Spectrol rotary baud rate switch
in place, if applicable.

Set the clock crystal on the board at loca-
tion Y1 and use a pencil to mark the bend
points of each of the leads.

Use needle-nose pliers to bend each of the
leads at a right angle at the points you
marked with pencil.

Insert the leads through the board and
solder them on the bottom.

Strap a piece of scrap resistor wire over the
crystal, pushing each endthroughoneofthe
drilled holes. Solder from the bottom.

Solder the 16-pin socket into location A8.

You have now completed area one. Compare
your board with Figure 2-6.

SYSTEM
DESIGN RESET
KIT SWITCH
Cl +
T -
) [

S+

19ty
6
s

19142 <3

S+

Y1

»] 1ViSA¥D
@ zev-al
o)
z
~ ©O
=3
44
£z

cn

—.—
TN
NID N1D 4TZ8
—.—
(4]

- 2 s
GNF‘. - £0
1 =
@) fé; _E:J:
Lﬁ:ior _Equ Ci3 Q6
(-] |§Or NTHE
LM cia
[T n

Figure 2-4. Construction Figure #2.

@ @
MCS-80" mcs-8o" WS
SYSTEM SYSTEM
DESIGN DESIGN
KIT KIT
Cl
Al —— Al
1) e
0
N 6‘ o
S
1
A2 A2 _2_.3
! ! 31
N n 32
* z b 2 33
34 7
0.35 36
w
A5 AS Ab
1 1 1
~N
¥ B 3
b > 4 o
= |
5
6
+ Y1 . N
+ AR —
(%] ol 2 > v § ‘u‘ 8
S a DA
= ; 3 =
EiN] = = | GND N IS
& T N
Y A8
1 1 [P
2 8
R R
(2}
o] o
z E:

H& Sy

=m
TS

13

-10
al

Q
=

Figure 2-5. Construction Figure #3.

Figure 2-6. Construction Figure #4.

Assembly of Area Two

Table 2-5. Construction Table #2.

Board area two will contain the 8080A and its Re»:?“ e Desct')'ptm" -
related logic. The assembly procedure is as LS s b
it 9 ¥ e e R6 4.7K, 1/4W (yellow-violet-red)
ollows: R7 1K, 1/4W (brown-black-red)
0 Referring to Table 2-5, solder resistors R5- R8 10K, 1/4W (brown-black-orange)
R17, R19, R20, R25, and R26 in place. Figure Ro 2eTIG; 1AW (redeviolet-tod)
2-7 shows this area of the board fnd i i e i
’ R11 47, 1/4W (yellow-violet-black)
R12 150, 1/4W (brown-green-brown)
R13 (Note 1)
R14 47, 1/4W (yellow-violet-black)
R15 1K, 1/4W (brown-black-red)
R16 1K, 1/4W (brown-black-red)
Note 1. (From Table 2-5) R17 1K, 1/4W (brown-black-red)
The resistor to be installed in R13 depends upon R19 430, 1W (RS-1A)
what negative voltage level your power supply R20 430, 1.5W (G-2)
delivers. For -10V, use a 39052, 1/4W resistor R25 1K, 1/4W (brown-black-red)
(orange-white-brown). For -12V or -15V, use a 51052 R26 1K, 1/4W (brown-black-red)
1/4W resistor (green-brown-brown).
1 2 3 4 5 6 7, '8 28 A1 42l 2 3 4 5 & 7: 8 g 18 N 12
w15 16 17 n 21022 23 24 25| 14 15 6 7 9 2 22 23 24 25
3333353803373305 58528 : 3 RARRERIERRALRAS AN
15— 16
GND = 2o 45
> 8
20
8255 PPl PORT F4-F6 > 8255 PP PORT EC-EE 2 >
22
23
25
cé RIL 24 !9
= 0205 o =
233 O> i A O’ R
=] | — 127
¢ , = RY S AT, L]
' e TRB [e
8251 : (o) RSO e U il =5
USART | » | '
PORT FA-FB T S
RN = 2 1 ©®
L 1 3 5 R
RIS O &) 3 Ll o e
g- g—Rri6 | 19 OQ
A"q 1 BUFFER
ABG-AB7
8225 {OPTION)
sYs
CTLR
8080A =
cpPy ' "AEVT & ghi2
8212 e
0
(8 4] = s
==l e
] 12 3' |r8 9 n
I
) J5 1 ITJ5| (OPTION)
! In 7=
R25 145 6@ ——— +_(%_
o Cama g ==
77

Figure 2-7. Construction Figure #5.

10

[0 Solder capacitors C4-C9 and C17-C22 into

place. C4, C6-C9, and C17-C20 are 0.01 uf
ceramic. C5is 0.1 uf, 50V mono. C21 is 1 uf,
50V tant. C22 is 22 uf, 15V tant.

IMPORTANT
Be sure that electrolytic capacitors
C21 and C22 are positioned so that
their “+” ends are positioned as shown
on the board.

Solder transistors Q1, Q2, and Q3 into
place. Q1 and Q2 are 2N2222. Q3 is a
2N2907.

IMPORTANT
The metal tabs on the transistors must
be positioned as shown on the board.

Solder diode CR2 into place. Make sure the
arrow is as shown on the board. Figure 2-8
shows the progress made in the last three
steps.

Solder 40-pin sockets into locations A3 and
A10.

Solder 28-pin sockets into locations A7 and
A9.

Insert a 25-pin female connector into loca-
tion J1. At each of two locations, place a
2-56x3/8 screw through the connector from
the top and secure it at the bottom with a
#2 nylon washer and a 2-56 nut.

Solder the 25 connector pins onto the board
from the bottom.

NOTE
The 25-pin male connector provided
can be used to interface your hard-
ware to connector J1.

Area two should now be complete. Compare
your board with Figure 2-9 (next page).

1 2 8 & 5 & 7 ‘e 90 WLaT gl g2 3 4 5 e 7 8 9 g0 192
14 15 16 17 1 2 22 23 24 250 14 15 6 17 12 21 22 23 24 25
VOV VOVVUVOVOTDOVOVIVOUVYVOUTDTIYO VOV UVOVVVOVVUVUVUVVTOVVOVUVIOUVOIOY DVVDODUO
383’339288892(}889:33E&gzguSKSSEESQSQSQQSQ{]Bé’3531’6
15 — 16
GND) — 1
> 18
19
20
8255 PPI PORT F4-Fé b 8255 PP PORT EC-EE » >2
B9
23
RIl 244\25
cé 26
c4 2 @ D Q3 ——
i D Ql 0 R10 R12
hoeN v 9 O 0 R13
= " R9 R14 l’%
1y —— r ——————— -
L Kl ®e
825 3P | A0 B C D E!
USART S i |
PORT FA-FB L
> c9
~N x = I (-]
3 N Al M N P R
o o I |
RIS . e ! = LE_ 1 _u vl
RI6 Q g
8212
ol — ADDRESS
! | BUFFER
ABO-AB7
8228 (OPTION)
SYS
CTLR
8080A x
cPU ﬂu— > +12
] GND
+
8212 3
n i)
S % ADDRESS (]
BUFFER
e T e b AB8-AB15
F==] o
123, Mg
1 1
! OPTION)
35} VY el f
! I LT c21
R25 14 5 6% ~5 ——
—A— LTl —10
GND +C22

75 77

Figure 2-8. Construction Figure #6.

11

DI T
W o5 16 17 n

L84

GND —

23 2
2 M 4
TTVOVVTUT v vT T © >
L P L L e e -
QONM‘&QQN—‘O\‘OMANNONMZ:>

—ET———em

8255 PPl PORT F4-F6 > 8255 PPI PORT EC-EE
o
|
USART
PORT FA-FB
L

8212

L ADDRESS
Aqu i 1 BUFFER
ABO-AB7
822 o (OPTION)
sys .
CTLR
cro S — =
s : 8212 S
- o .g * ADDRESS 8
e | RUREE
r==3
123, {'9'9‘1'
' | : X (OPTION)
J5 i i | 1
K5 14 6:2. el e + —g——
- LT) GND-‘° +— - <
75 77
Figure 2-9. Construction Figure #7.
Assembly of Area Three
Board area three contains the RAM and ROM O Set the voltage regulator (79MO5AUC) on

memory logic. Proceed as follows:

|

O

Solder resistors R27-R30 in place. All are

1K, 1/4W (brown-black-red).

Solder capacitor C23 in place. Itisa 0.01 uf
ceramic.

Solder capacitors C24-C35 in place. All of
these capacitors are 0.1 uf, 50V mono. Fig-
ure 2-10 shows the progress made in the
last three steps.

Solder 24-pin socket into location A14.

12

the board and use a pencil to mark the bend
point on each of the three leads.

Use needle-nose pliers to bend each of the
three leads at a right angle at the points you
marked with pencil.

Referring to Figure 2-11, fasten the regu-
lator to the board with a 4-40 x 3/8 screw, 2
#4 nylon washers, and a 4-40 nut.

Solder the three leads in place on the bot-
tom of the board and clip off any excess lead
lengths.

0 Insert a 25-pin female connector into loca-
tion J3. At each of two locations, place a
2-56x3/8 screw through the connector from
the top and secure it at the bottom with a
#2 nylon washer and a 2-56 nut.

[0 Solderthe 25connector pinsontothe board
from the bottom.

4-40 x 3/8 SCREW

79MO5AUC

NOTE |
The 25-pin male connector provided (L L
can be used to interface your hard- D
ware to connector J3.

NYLON WASHERS

You have now completed area three. Compare (&)
your board with Figure 2-12 (next page). N

4-40 NUT

Figure 2-11. Voltage Regulator (VR1) Installation.

14 25 T % 3 a4 6 7 8 19 qor oy Az
W 15 16 17 18 19 200 21 22 23 24 25 GND
I3 J4

(8] (2]
Al4 & Al5 Al6 & Al7
3 w711 8. < e
1 1 1] 1 g
< 8708 8708 - 8708 8798 5
['fb’ O
=3 PROM PROM PROM PROM
0% nmEm 0000- 0400- 0800- 2C08- @)
=4 N @00 @3FF O7FF OBFF o OFFF +12
£ 5 w
~ w
g
S 3
»
€25 31 5
€23 c24 €39 c34 2
as@ D a9 a0lED A2 AEED a3 GED A% a2s D a2 e
1 1 1 jii [1 1 e
B @ © 2 @ ® @ ®) '
o = = = = = = = =
w
b b
23 > > > > S 3 S >
83 2 = z z z z z z
o — [ed - -t - — — —
3 =] a8 =3 =8 = o8 38 38
2 b 39 i 39 3 B e e
R GND
! :VOLTAGEI °
2 _JrecuLator

8] 83 85

Figure 2-10. Construction Figure #8.

13

S B AW B
22 B3 MW 25

8
19 20 2

25

14

GND

15 16 7 18

“

J4

13

J3

i PWA 1000608- SYS 80
o~
a0 OF
&
w <
sy 8 m b ® &
<) Pm i
o
w
= P
(nGEp 3
&
@« [<
© 2 Mwe =l <
< -] a “
w-
- :
¢ 1200-
2 RAM “32FF
<
: =
ol
g § 28°
LR L Bl RAM her
o~
%5 :

A2l

A3

PROM

8205 pECODER

GND

o S

Al9

Al8

81

RAM

RAM

RAM

RAM

8205 DECODER

11FF

18ee-
10FF

10FF

1180 -

1e@e-

VRI

-~

OLTAGE

81 83 85

Figure 2-12. Construction Figure #9.

14

CHAPTER 3
THEORY OF OPERATION

GENERAL

Now that you have assembled the structure of
the SDK-80 it is time to discuss the internal
composition of the design. We will do this by
presenting the functional organization of the
SDK-80 logic and, in the process, bring in the
decisions that you, as the user, must make
before completing the Kit.

Figure 3-1 is a functional block diagram of the

SDK-80. It has been purposely drawn as simple
as possible in order to give a basis for
discussion. You will note that this figure shows
only the major signals in the unit. For this
reason, some occasional reference to the SDK-
80 schematics (Appendix B) will be in order.

The text to follow describes each of the
elements in the block diagram.

RESET

SWITCH CRYSTAL

8224

CLOCK
GENERATOR

|

|

r 1 X

INT REQ

HOLD

READY SYNC Cal #2 RESET INT

8080A CPU

8205 8205

RAM
DECODER

PROM
DECODER

Wi DBIN HLDA
I Ll ,___Q__ e==—n F::::,,ZE—
8228 |F217_ T | }: 708 IH 8111
SYSTEM | ADDRESS
"9 CONTROLLER I : BUFFERS : | EHOMS | RAMS
i
e]
DATA BUS (8)

CONTROL BUS (6}

. Ul

7:<:
2

8255

/0
COMM. INTERFACE
(USART)

BAUD
RATE
GENERATOR

= 8251

—— —

PERIPHERAL
INTERFACE

|

XMIT REC
DATA DATA

i

/G DATA

Figure 3-1. SDK-80 Functional Block Diagram.

15

SYSTEM BUSSES

The SDK-80 logic is built around three system
busses: the data bus, the address bus and the
control bus. All of the MCS-80™ components
communicate via these three busses.

The system busses can be selectively enabled/
disabled from the user system if the board is
jumpered for that capability. Bus enable
jumpering is described in the System Bus
Enable section of Chapter 4.

Each bus is more fully described in the 8080
Microcomputer Systems User’'s Manual.

RESET SWITCH

The Reset Switch gives you the capability of
forcing a reset to the SDK-80 logic at any time.
When the switch is pressed, the Clock
Generator will send a RESET signal throughout
the system. The Reset Switch should be
pressed each time you power-up the system.

CLOCK GENERATOR AND CLOCK
CRYSTAL

The 8224 Clock Generator provides the primary
timing to the system. It generates the high-level
clocks necessary to drive the 8080A CPU,
synchronizes the READY signal into the CPU,
and transmits the power-up (and Reset Switch)
reset signal.

71 and @2 Clocks

@1 and @2 are 2.048 MHz clocks for the CPU.
They are derived from OSC using an internal
divide-by-nine function.

RESET Signal

RESET is the primary reset signal to the system
logic. It is asserted both at power-up and when
the Reset Switch is pressed. RESET clears the
CPU, disables the RAM Decoder, and resets the
USART. RESET is available to the user system
at pad V.

READY Signal

READY can provide a synchronized READY to
the CPU, derived from an external asynchro-
nous RDYIN signal (pad P).

OSC Signal

OSC provides an 18.432 MHz input to the Baud
Rate Generator. This 18.432 MHz rate was
chosen for two reasons. First, it permits the
8080A CPU to run at very close to its maximum

16

speed. Second, it is a convenient rate to use in
designing a simple, but highly stable, Baud
Rate Generator.

STSTB (Status Strobe) Signal

At the beginning of each machine cycle, the
CPU issues status information on its data bus.
STSTB causes the 8228 System Controller to
store this information into its status latch.
STSTB is available to the user system as
STATUS STROBE at pad J.

8080A CPU

The 8080A CPU is thoroughly described in the
Intel® 8080 Microcomputer Systems User's
Manual and need not be repeated here.

The CPU clocks, @1 and @2, will be supplied (at
2.048 MHz) by the Clock Generator.

The data bus will interface directly to the
System Controller and the address bus will
enter the system through the Address Buffers, if
applicable.

There are two separate jumper-wire options
with the CPU. The first option allows an
external HOLD signal to be presented to the
CPU via pad R. The second option allows an
external READY signal to force a Wait state in
the CPU. It should be pointed out, however, that
the 8080A and SDK-80 memory chips have
been designed to operate without Wait states.
The option permits you to force a Wait if
desired, though. Both of these jumper options
are described in the Hold And Wait Options
section of Chapter 4.

SYSTEM CONTROLLER

The 8228 System Controller generates the
control bus signals that provide read and write
functions for 1/0 and memory.

They are available to the user system as shown
below:

e o 0 o
<
I
<
= P
7
=
e}
o
Q
(=

MEMR is at pad T
The System Controller also buffers the data
bus.

Interrupt

A single-level interrupt structure is provided
such that whenever pad H (INT REQ) is

grounded, the System Controller causes a
Restart instruction (RST 7) to be inserted into
the CPU. This feature provides a single
interrupt vector without using additional com-
ponents, such as an interrupt instruction port.

Multiple level interrupts will require additional
chips to be installed into the wire-wrap area.

ADDRESS BUFFERS (OPTIONAL)

The 8212 Address Buffers are not included in
the System Design Kit, but must be added if
more than a nominal amount of memory (more
than 1024 bytes of RAM and more than 4K bytes
of ROM) is used. The Address Buffers are tri-
state TTL buffers that provide 15mA drive.

The address bus level can be forced to the high-
impedance state by inputting a high level on
pad S (SYSTEM BUS ENABLE), if the board is
jumpered for this capability.

SDK-80 MEMORY

The SDK-80 has two types of memory. Its
ROM Memory can accommodate from 1K to 4K
bytes, where the lower 1K bytes are dedicated
to the system monitor. Its RAM Memory can
accomodate from 256 to 1K bytes, in which all
but the uppermost 30 bytes (addresses 13E2-
13FF) are useable by your system. Figure 3-2 is
a map of SDK-80 memory.

0 0000

03FF
7| 0400

L orer
2K 0800 NOTE
USER SHADED AREA INDICATES
MEMORY SUPPLIED WITH
OBFF KIT.

Sl Rt i 0coo

OFFF

K = = o — -] Zo00

5K - 13FF

Figure 3-2. SDK-80 Memory Map.

ROM Decoder and ROM Memory

The SDK-80 can accomodate up to four 1024x8
8708/8308 Read Only Memory (ROM) chips.

The ROM that installs into board location A14
has been pre-programmed with the SDK-80
system monitor.

The 8708/8308 that installs into board locations
A15, A16, and A17 can be used to hold a
program that you have developed and checked
out in RAM.

The 8205 ROM Decoder selects the ROM chip
being addressed. Figure 3-3 shows the ROM
address format.

15 14 13 12 11 10 9 8 78 5 4 3 2 1 0

—_— L Il = i
— - 4 -

[]— ROM ADDRESS

ROM CHIP SELECT
00 = MONITOR
01 =USER ROM 1
10 = USER ROM 2
11=USER ROM 3

NOT USED

Figure 3-3. ROM Address Format.

RAM Decoder and RAM Memory

In the standard configuration, the SDK-80 can
accommodate up to eight 256x4 Static MOS
Random Access Memory (RAM) chips. Two of
these chips are supplied in the System Design
Kit, so users requiring only 256 bytes of
memory need not install additional RAM chips.

The 8205 RAM Decoder selects the RAM chip
pair being addressed. Figure 3-4 shows the
RAM address format.

15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0

U o SEEEEEE

RAM ADDRESS
RAM CHIP PAIR

SELECT
000 = 1000-10FF

001 = 1100-11FF

010 = 1200-12FF

011 = 1300-13FF

100-111 ARE UNUSED
IN STANDARD
CONFIGURATION

NOT USED

Figure 3-4. RAM Address Format.

RAM access is disabled whenever the RESET
signal from the Clock Generator is asserted.

BAUD RATE GENERATOR

The Baud Rate Generator circuit supplies the
transmitter and receiver clocks to the /O
Communication Interface. This circuit is made
up of three IC chips: one 93S16 and two 74161s.

The Baud Rate Generator takes the 18.432 MHz
OSC signal from the Clock Generator and, by
internal division, generates a series of signals
which represent baud rates between 75 and
4800. The baud rate that will be presented to the
I/0 Communication Interface is determined by
jumper-wiring or a rotary switch. This selection
will be discussed in the Baud Rate Selection
section of Chapter 4.

1/0 COMMUNICATION INTERFACE

The 8251 [/0 Communication Interface is a Uni-
versal Synchronous/Asynchronous Receiver/
Transmitter (USART) chip that accommodates
any data communications required by the
SDK-80 system. The [/O Communication
Interface can accept parallel data from the data
bus and send it serially to an external device. It
can also accept serial data from an external
device and put it onto the data bus in parallel
form when eight bits have been collected.
Figure 3-5 shows the address format for
communications.

The baud rate at which the |/O Communication
Interface will transmit and receive data is
governed by the Baud Rate Generator.

The I/O Communication Interface circuit on the
board also includes some jumpers that select
the communication input/output level. Any of
three levels may be selected.

e RS-232 level, which is typically used for
CRT applications

® Current-loop level, for TTY applications

o TTL level.

The input/output level jumpering is discussed
in the Communication Level Selection section
of Chapter 4.

PERIPHERAL INTERFACES

The 8255 Programmable Peripheral Interfaces
provide the user’'s primary access point to the
SDK-80 data bus. One 8255 chip is supplied in
the System Design Kit.

18

—— CONTROL/DATA

0=DATA
" 1=CONTROL

NOT USED

———8251 CHIP SELECT

0= USART SELECTED
1= USART NOT SELECTED

Figure 3-5. 1/0 Communication Interface Address
Format.

Each Peripheral Interface chip provides three 8-
bit parallel /0O ports, each of which is
independently addressable. Figure 3-6 shows
the address format for |/O port selection.

L — 1/O PORT SELECT

00 PORT A -+ DATA BUS
01=PORT B -~ DATA BUS
10 = PORT C --» DATA BUS
11 = CONTROL — DATA BUS

—= 8255 CHIP SELECT
10 = KIT-SUPPLIED CHIP
SELECT
01 = USER-SUPPLIED CHIP
SELECT
00, 11 = ILLEGAL

Figure 3-6. Peripheral Interface Address Format.

The output pins of the Peripheral Interfaces are
totally uncommitted and may be jumper-wired
to best suit your particular application. For
example, they might be wired directly to the
interface plugs or, alternately, they might be
wired to standard TTL buffers in the wire-wrap
area before coming back to the plugs. This
wiring is further discussed in the Output Wiring
section of Chapter 4.

CHAPTER 4

FINAL ASSEMBLY AND CHECKOUT

GENERAL

At this point in the manual you should have
completed the preliminary assembly and read
the theory of operation. You can now finish the
board assembly and begin a checkout se-
quence.

JUMPER-WIRING THE BOARD

The SDK-80 is designed to be used in virtually
any evaluation application and can be
jumpered to suit your particular requirements.
These questions will help you decide what
jumpers are needed:

1. Will you ever want the CPU to enter aHold
or Wait state?

2. Will you ever want to disable the system
busses?

3. What type of input device will you use to
communicate with the SDK-80 (e.g., CRT,
Teletype)?

4, What is its baud rate?

5. Will you be using 8212 Address Buffer
chips?

6. What kind of information will be transfer-
red to/from the SDK-807?

If you have a fairly good idea of the answers to
all of these questions, you are ready to start
jumper-wiring the board. The scrap leads that
have been cut from previously-installed resis-
tors are a good source of jumper wire. However,
use 22-gauge insulated wire in situations where
any jumpers may make contact with each other.

Hold and Wait Options

The SDK-80 is designed to run without Hold or
Wait states. However, a jumper-wire option is
available to give either capability.

[0 To disable the Hold state, wire J5-2 to J5-3.
[0 To enable the Hold state, wire J5-1 to J5-2.

O If READY isto forcean 8080 Wait state, wire
J5-8 to J5-9. If not, wire J5-8 to J5-7.

19

System Bus Enable

One jumper is available to make it possible to
selectively disable the SDK-80 system bus.

O If the bus will be selectively disabled, wire
J5-5 to J5-6.
O If the bus should remain enabled at all

times, wire J5-4 to J5-5.

Baud Rate Selection

The communications baud rate can be selected
in two ways, depending on the application. If
only one baud rate will be employed, the rate
can be selected by installing a single jumper
wire. If two or more baud rates will be employed
in the application, however, the Spectrol rotary
switch installed in Chapter 1 will be used for
this purpose.

O To selectafixed baud rate, jumper pad 29to
one of the pads 31-37 per Table 4-1.

Table 4-1. Baud Rate Selection Table.

Baud Rate Wire Pad 29 To
4800 31
2400 32
1200 33
600 34
300 35
150 36
75 or 110 37

O For 110 baud, the standard Teletype rate,
wire pad 4 to pad 5.

Communication Level Selection

Any of three communication levels can be
selected: CRT, Teletype, or TTL. All serial data
is passed through connector J3.

Table 4-2. Communication Level Jumper Table.

CRT TTY TTL
Configuration Contfiguration Configuration
Jumpers Jumpers Jumpers
23 to 24 23 to 26 23 to 25
17 to 18 18 to 19 17 to 18
9to 10 10to 11 12to 13
13 to 14 13 to 14 « 2to 3
2to 3 1to 2 1 20 to 21
6to 8 7108
27 to 28 15to 16
21 to 22 21 to 22

O Jumper wire pads 1 through 28 per Table
4-2.

O If your system does not contain a modem,
jumper pad A to pad B.

Address Bus Jumpers

If you do not use 8212 Address Buffer chips on
your SDK-80, the address bus must be
jumpered across locations A11 and A12. In this
situation, connect the following jumpers AT
BOTH LOCATION A11 AND LOCATION A12.
All jumpers should be installed from the circuit
side of the board i.e., NOT the silk-screen side.
Jumper pad 3 to pad 4.

Jumper pad 5 to pad 6.

Jumper pad 7 to pad 8.

Jumper pad 9 to pad 10.

Jumper pad 15 to pad 16.

Jumper pad 17 to pad 18.

Jumper pad 19 to pad 20.

Jumper pad 21 to pad 22.

B BB E 8 EEE

Output Wiring

Connector J3 is dedicated as a communica-
tions interface (see Table 4-3) and is, in fact, the
only committed interface in the SDK-80. All
other interfacing is at the discretion of the user.

For example, the 8255 Peripheral Interface
might be jumpered directly to connector J1 or,
alternately, might be jumpered to TTL buffers
in the wire-wrap area before being passed to J1.
Conversely, you might wish to add a switch
array to the 8255 area in order to send data to
the CPU.

Your System Design Kit includes male connec-
tors that mate with the female connectors
installed at J1 and J3.

A group of control signals are available at the
alphabetic-labeled pads in area two of the
board. Table 4-4 identifies these pads.

Table 4-3. Pin Assignments for
Communications Interface (J3).

J3 CRT TTY TTL
Pin | Configuration | Configuration | Configuration
1

2 | CRT REC. TTL REC.

DATA DATA
3 | CRT XMIT TTL XMIT
DATA DATA

4

5 | +12VDC

6

7 | SIGNAL GND SIGNAL GND
8 | +12VDC

9

10

11

12 TTY REC

RETURN

13 TTY XMIT

14

15

16

17

18

19

20 | +12 VDC

21

22

23

24 TTY REC

25 TTY XMIT

RETURN

Table 4-4. SDK-80 Control Bus Pads.

Pad Mnemonic Description
A. CTS Clear To Send
B RTS Request to Send
C @2 (TTL) 2.048 MHz Clock
D DSR Data Set Ready
E I/OW 1/O Write
F DTR Data Terminal Ready
H INT REQ Interrupt Request
J STATUS STROBE Status is on Data Bus
K OSC 18.432 MHz Oscillator
L I/OR 1/0 Read
M HLDA Hold Acknowledge
N INTA Interrupt Acknowledge
P READY Ready
R HOLD Hold
S SYSTEM BUS ENABLE Enables Data Bus and
Address Bus
T MEMR Memory Read
U MEMW Memory Write
V. RESET Reset

INSTALLING INTEGRATED
CIRCUITS

You have now reached the point where you will
start installing IC’s in the board, but a few words
are in order before you begin.

Special Precautions For Handling MOS IC’s

The Kit's MOS IC’s (8080, 8111, 8251, 8255, and
8708) are particularly susceptible to static
electricity. They can be easily damaged if
proper care is not taken in handling them. For
this reason, the following steps should be
adhered to as closely as possible:

1. All equipment (soldering iron, tools,
solder, etc.) should be at the same poten-
tial as the PW board, the assembler, the
work surface and the IC itself along with
its container. This can be accomplished by
continuous physical comtact with the work
surface, the components, and everything
else involved in the operation.

2. When handling the IC, develop the habit of
first touching the conductive container in
which it is stored before touching the IC
itself.

3. Always touch the SDK-80's PW board
before touching the IC to the board. Try to
maintain this contact as much as possible
while installing the IC.

4. Handle the IC by the edges. Avoid touch-
ing the pins as much as possible.

5. In general, never touch anything to the IC
that you have not touched first while
touching both it and the IC itself.

Aligning the IC Pins

The connector pins of Integrated Circuit chips
are very fragile and can be easily pushed out of
line. In fact, sometimes IC’s will arrive with one
or more pins out of line. Trying to install a
misaligned IC is a hapless task and, worse,
might cause permanent damage to the chip.

Aligning the pins of an IC is an easy job. Simply
lay the IC on its side on yourwork surface, hold
the chip by its body and exert enough pressure
so that all pins are perpendicular to the body.

Chip Orientation

The IC's must be correctly oriented on the
board or they will not operate properly. One
end of the chip will carry some sort of
identifying mark, typically anotchoradotora+

21

sign. The chip must be installed so that this
identifier corresponds to the silkscreened “1”
on the board.

Installing IC Chips

After orienting the IC, follow these steps to
install it in the board:

1. Start the pins on one side of the IC into
their respective holes on the silk-screened
side of the PW board. DO NOT PUSH THE
PINS IN ALL THE WAY. If you have dif-
ficulty getting the pins into the holes, use
the tip of a small screwdriver to guide
them.

2. Start the pins on the other side of the IC
into their holes in the same manner. When
all of the pins have been started, set the IC
in place by gently rocking it back and forth
until it rests as close as possible to the
board or socket.

3. IfthelCis notinstalled in asocket, turnthe
board over and solder each pin to the foil
pattern on the back side of the board. Be
sure to solder each pin and be careful not
to leave any solder bridges.

Removing IC Chips

If required, an IC chip can be removed from a
socket by gently rocking it back and forth to
start its release. When a gap exists between the
chip and socket, pry it gently at alternate ends
until the pins start to come loose. A popsicle
stick or small screwdriver works well here.
Then hold the chip by the ends and pull it free.
Try to keep the chip fairly parallel to the socket
throughout this operation.

Clock Generator
Besides the 8080, the most critical chip in the
SDK-80 circuit is the 8224 Clock Generator.

O Insert the 8224 Clock Chip into the socket
at location A8.

Power, Clock and Reset Verification

With this single chip installed, we can check the
power and clock inputs and the operation of the
Reset Switch. The procedure is as follows:

O Connect your power supply to terminal
lugs E1-E6 on the SDK-80 board.

NOTE
The SDK-80 edge connector is
power-compatible with Intel’s MDS
(Microcomputer Development Sys-
tem). If you have an MDS, the SDK-80
can derive its power through installa-
tion in the MDS chassis.

Turn power on.

Using a voltmeter, verify +5 VDC at the pad
provided.

Verify +12 VDC at the “+12” pad.

Verify your supply’s negative voltage at the
“-10” pad.

Verify -5 VDC at the “-5” pad, near location
A17.

Press the Reset Switch a few times and
check for +4 VDC at A8, pin 1(RESET).

O

O

NOTE
Develop the habit of pressing the
Reset Switch each time you power-up
the system.

If you have an oscilloscope, verify that A8
pins 10 and 11 each show 2.048 MHz clocks
(02 and @1, respectively).

Using an oscilloscope, verify that A8 pin 12
shows an 18.432 MHz clock (OSC).

Turn the power off.

Remainder of SDK-80 ICs

After having verified that the SDK-80 logic is
correctly receiving power, the system clocks
and the RESET signal, you can finish installing
the chip complement. Some of the IC’s will plug
into sockets, others will have to be soldered
onto the board.

The procedure is as follows:

O
O

O

Solder the 93S16 chip into location A1.

Solder a 74161 chip into locations A2 and
A5.

Solder the 7406 chip into location A6.

If applicable, solder 8212 chips into loca-
tions A11 and A12.

Solder 8205 chips into locations A13 and
A18.

Solder 8111 chigs into locations A25 and
A26. #

22

Insert the 8228 chip into the socket at loca-
tion A9.

Insert the 8080A chip into the socket at lo-
cation A10.

Insert the 8251 chip into the socket at loca-
tion A7.

Insert the 8255 chip into the socket at loca-
tion AS.

Insert the pre-programmed monitor ROM
chip into the socket at location A14.

Table 4-5. Power Requirements.

Symbol Voltage Ng;;rtr::nm Msa;(sl:r:;‘m Unit
Vee +5V 5% 1.3 2.1 Amps
Vop +12V £5% .35 .45 Amps

-10V £5%
Vag 12V 5% .20 .30 Amps

START-UP PROCEDURE

You have now completed the SDK-80 assembly

and are ready to start up the system. The start-

up procedure is as follows:

O Plug your system communication moni-
tor (CRT, Teletype, etc.) into the SDK-80
connector J3.

0 Turn power on at both the SDK-80 power
supply and your communication monitor.

[0 Press the Reset Switch.

At this point, your monitor will display the
following message:

MCS-80™ KIT

Congratulations! You are now ready to start
using the system.

Assembled Board (Without Jumpers).

TROUBLESHOOTING HINTS

If the SDK-80 system does not work properly,
turn the power off and investigate these areas:

1

23

s,

Verify that all resistors have been properly
installed and are correctly color-coded.
Appendix C summarizes the component
values.

. Verify that all capacitors have been

properly installed and that all electrolytic
capacitors are installed with proper
polarity.

. Verify that both diodes (CR1 and CR2)

have been installed with proper polarity.

. Verify that the metal tabs of all three

transistors are properly positioned.

. Verify that all IC’s are installed with their

“1”-end identifiers correctly oriented.

. Verify that all jumpers have been properly

installed.

If the above hints do not fix the problem
contact the distributor where the SDK-80
was purchased.

CHAPTER 5 SDK-80 MONITOR

INTRODUCTION

The SDK-80 Monitor is an Intel® 8080 program
provided in a pre-programmed ROM. The
Monitor accepts and acts upon user commands
to operate the SDK-80. Italso provides input and
output facilities in the form of 1/O drivers for
user console devices. The Monitor provides the
following facilities:

e Displaying selected areas of memory.
Initiating execution of user programs.

Modifying contents of memory and proces-
sor registers.

Inputting hexadecimal data from the
console device to memory.

The Monitor communicates with the user
through an interactive console device, normally
a Teletype or CRT Terminal. The dialogue
between the operator and Monitor consists of
user-originated commands in the Monitor's
command language, and Monitor responses,
either in the form of a printed message or an
action being performed. After the cold start
procedure (described under the heading, “Cold
Start Procedures” in Section Ill), the Monitor
begins the dialogue by typing the sign-on
message on the console and requesting a
command by presenting a prompt character, “.”
(period).

MONITOR OPERATIONS

The SDK-80 Monitor is a command controlled
operations supervisor for the 8080 Micro-
computer System Design Kit. Control com-
mands are discussed in Section Il, “Command
Structure”.

Il. FUNCTIONAL SPECIFICATION

A. General Characteristics and Scope of
Product

The monitor is a program written in Intel® 8080
macro assembly language. The monitor resides
in 1K (K = 1024 bytes) of programmed ROM and
is located in the address space of the 8080
microcomputer between 0 and 1K. The non-
volatile nature of the program’s storage
medium means that the monitor is available for
use immediately after power-on or reset.

Setting “"BREAK POINTS" in user programs.

24

B. Description of All Major Functions
Performed

1. CONSOLE COMMANDS

The monitor communicates with the
operator via an interactive console, norm-
ally a teletypewriter. The dialogue be-
tween the operator and the monitor
consists of commands in the monitor's
command language and the monitor’s
responses. After the cold start procedure,
the monitor begins the dialogue by typing
a sign-on message on the console and
then requests a command by presenting a
prompt character, “.”. Commands are in
the form of a single alphabetic character
specifying the command, followed by alist
of numeric or alphabetic parameters.
Numeric parameters are entered as hexa-
decimal numbers. The monitor recognizes
the characters Othrough 9and A through F
as legal hexadecimal digits. The valid
range of numbers is from 1 to 4 hex digits.
Longer numbers may be entered, butsuch
numbers will be evaluated modulo 2'¢ so
that they will fall into the range specified
above.

The only command requiring an alpha-
betic parameter is the “X” command. The
nature of such parameters will be dis-
cussed in the section explaining the
command.

. USE OF THE MONITOR FOR

PROGRAMMING AND CHECKOUT

The monitor allows the user to enter,
check out, and execute small demonstra-
tion programs. The monitor contains
facilities for memory modification, 8080
CPU register display and modification,
program loading from the console device,
program initiation, and the recognition of
an “RST 7” instruction as an unconditional
branch to RAM address 13FDH. By
inserting RST 7 instructions in a program
under test, or by using the hardware
generated RST 7 instruction (if available),
the user can cause execution of a program
to transfer to a dedicated location, for
whatever purposes he desires.

When the user wishes to re-enter the

monitor, he should use an RST 1 instruc-
tion, either generated by hardware or
coded into his program. When entered in
this manner, the monitor will automatically
save the state of the 8080: specifically, it
will save all registers (A, B, C, D, E, H, L),
the CPU flags (F), the user's Program
Counter (PC), and the user’s Stack Pointer
(SP). These may be examined with the X
command. When the operator enters a G
command, these values will be restored.

3. I/0 SYSTEM

The 1/O system provides two routines,
console character in and console charac-
ter out, which the user may call upon to
read and write, respectively, characters
from and to the console device.

C. Applicable Standards

Throughout this specification, the numbering
convention for bits in a word is that bit 0 is the
least significant, or rightmost bit.

The internal code set used by the monitoris 7
bit (no parity) ASCII.

Il. INTERFACE SPECIFICATIONS

A. Command Structure

In the following paragraphs the monitor
command language is discussed. Each com-
mand is described, and examples of its use are
included for clarity. Error conditions that may
be encountered while operating the monitor are
described in Section IV.C.

The monitor requires each command to be
terminated by a carriage return. With the
exception of the “S” and “X” commands, the
command is not acted upon until the carriage
return is sensed. Therefore, the user can abort
any command, before he enters the carriage
return, by typing any illegal character (such as
RUBOUT).

Except where indicated otherwise, a single
space is synonymous with the comma for use as
a delimiter. Consecutive spaces or commas, or
a space or comma immediately following the
command letter, will be interpreted as a null
parameter. Null parameters are illegal in all
commands except the “X" command (see
below).

ltems enclosed in square brackets “[” and “]”
are optional. The consequences of including or
omitting them are discussed in the text.

25

1. DISPLAY MEMORY COMMAND, D

D <low address>, <high address>

Selected areas of addressable memory
may be accessed and displayed by the D
command. The D command produces a
formatted listing of the memory area
between <low address> and <high
address>, inclusive, on the console de-
vice. Each line of the listing begins with
the address of the first memory location
displayed on that line, represented as 4
hexadecimal digits, followed by up to 16
memory locations, each one represented
by 2 hexadecimal digits.

The D command may be aborted during
execution by typing an Escape (ESC) on
the console. The command will be
terminated immediately, and a new
prompt issued.

Example

D9,2A
0009 00 11 22 33 44 55 66
001077 88 99 AA BB CC DD EE FF 1020 3040506070
0020 80 90 AO BO CO DO EO FO 01 02 03

. PROGRAM EXECUTE COMMAND, G

G[<entry point>]

Control of the CPU is transferred from the
monitor to the user program by means of
the program execute command, G. The
<entry point> should be an address in
RAM which contains an instruction in the
user's program. If no entry point is
specified, the monitor uses, as an address,
the value on top of the stack when the
monitor was entered.

Example

61400
Control is passed to location 1400H.

. INSERT INSTRUCTIONS INTO RAM, |

| <address>

Single instructions, or an entire user
program, are entered into RAM with the |
command. After sensing the carriage
return terminating the command line, the
monitor waits for the user to enter a string
of hexadecimal digits (0to 9, A to F). Each
digit in the string is converted into its
binary value, and then l|oaded into
memory, beginning at the starting address
specified and continuing into sequential

memory locations. Two hexadecimal
digits are loaded into each byte of
memory.

Separators between digits (spaces, com-
mas, carriage returns) are ignored; illegal
characters, however, will terminate the
command with an error message (see
section |V.C.1). The character ESC or
ALTMODE (which is echoed to the
console as “$”) terminates the digit string.
If an odd number of hex digits have been
entered, a O will be appended to the string.

Example

11410
1122334455667788998

This command puts the following pattern
into RAM:

1410 11 22 33 44 55 66 77 88 99

11440
123456789%

This command puts the following pattern
into RAM:

1440 12 34 56 78 90

Note that, since an odd number of
hexadecimal digits were entered initially, a
0 was appended to the digit string.

. MOVE MEMORY COMMAND, M

M <low address>, <high address>,
<destination>

The M command moves the contents of
memory <low address> and <high
address>, inclusive, to the area of RAM
beginning at <destination>. The con-
tents of the source field remain un-
disturbed, unless the receiving field
overlaps the source field.

The move operation is performed on a
byte-by-byte basis, beginning at <low
address>. Care should be taken if
<destination> is between <low address>
and <high address>. For example, if
location 1410 contains 1AH, the command

M1410, 141F, 1411

will result in locations 1410 to 1420
containing “1A1A1A...".

The monitor will continue to move data
until the source field is exhausted, or until
it reaches address OFFFFH. If the monitor

26

reaches address OFFFFH without ex-
hausting the source field, it will move data
into this location, then stop.

Example
M1410, 150F, 1510

256 bytes of memory are moved from
1410-150F to 1510-160F by this command.

. SUBSTITUTE MEMORY COMMAND, S

S <address>

The S command allows the user to
examine and optionally modify memory
locations individually. The command
functions as follows:

i. Type an S, followed by the hexadecimal
address of the first memory location you
wish to examine, followed by a space or
comma.

ii. The contents of the location is dis-
played, followed by a dash (-).

iii. To modify the contents of the location
displayed, type in the new data, followed
by a space, comma, or carriage return. If
you do not wish to modify the location,
type only the space, comma, or carriage
return.

iv. If a space or comma was typed in step
(iii), the next memory location will be
displayed as in step (ii). If a carriage return
was typed, the S command will be
terminated.

Example
$1450 AA- BB-CC 01-13 23-24

Location 1450, which contains AA is
unchanged, but location 1451 (which used
to contain BB) now contains CC, 1452
(which used to contain 01) now contains
18, and 1453 (which used to contain 23)
now contains 24.

. EXAMINE AND MODIFY CPU

REGISTERS COMMAND, X
X [<register identifier>]

Display and modification of the CPU
registers is accomplished via the X
command. The X command uses
<register identifier> to select the
particular register to be displayed. A
register identifier is a single alphabetic
character denoting a register, defined as
follows:

— 8080 CPU register A

— 8080 CPU register B

— 8080 CPU register C

— 8080 CPU register D

— 8080 CPU register E

F — 8080 CPU flags byte, displayed in the
form as it is stored by the “PUSH PSW”
(hex code F5) instruction

H — 8080 CPU register H

L — 8080 CPU register L

M — 8080 CPU registers H and L
combined

P — 8080 Program Counter

S — 8080 Stack Pointer

The command operates as follows:

i. Type an X, followed by a register
identifier or a carriage return.

ii. The contents of the register are
displayed (two hexadecimal digits for A, B,
C, D, E, F, H, and L, four hexadecimal
digits for M and S), followed by a dash (-).

iii. The register may be modified at this
time by typing the new value, followed by a
space, comma, or carriage return. If no
modification is desired, type only the
space, comma, or carriage return.

iv. If a space or comma was typed in step
(iii), the next register in sequence
(alphabetical order) will be displayed as in
step ii (unless S was just displayed in
which case the command is terminated). If
a carriage return was entered in stepiii, the
X command is terminated. .

v. If a carriage return was typed in step (i)
above, an annotated list of all registers and
their contents are displayed.

mooO o>

Example

XA AA- BB- CC- DD- EE- FF- 12- 34- 1234- 0000

XA AA- 23- CC- 01- EE- FF- 12- 34- 1234- 1010

X

A-AA B-23 C-CC D-01 E-EE F-FF H-12 L-34 M-1234 P-01CF S-03CD

B. Console Device Drivers

The monitor interfaces to the console device
via a universal synchronous/asynchronous
receiver/transmitter (USART). The monitor
drivers interface with the USART according to
the USART specifications. At the time of the
assembly of the kit, the USART may be
configured for a particular type of console

27

interface. The actual console device must
conform to this interface.

C. Using the 1/O System

The user may access the two monitor /O
system routines from his program by calling the
routine desired. The following paragraphs
describe the routines available and their
respective functions.

Cl — Console Input

This routine returns a character received from
the console device to the caller in the A-
register. The A register and the CPU condition
codes are affected by this operation. The entry
point of this routine is 3FDH.

Example
cl EQU 3FDH
CALL CI

STA DATA

CO — Console Output

This routine transmits a character, passed from
the caller in the C-register, to the console
device. The A and C registers, and the CPU
condition codes, are affected by this operation.
The entry point of this routine is 3FAH.

Example
co EQU 3FAH
MVl G "
CALL CO

lll. OPERATING SPECIFICATIONS

A. Product Activation Instructions
1. COLD START PROCEDURE

After a power-on or reset, the monitor will
begin execution at location 0 in ROM. The
monitor will perform an initialization
sequence, and then display a sign-on
message on the console. When the
monitor is ready for a command, it will
prompt with a period, “.”. X

2. USE OF RAM STORAGE IN THE
MONITOR

The monitor dynamically assigns its RAM
stack near the top of the first 1K bytes of
RAM (address space from 4K to 5K). The
top 3 bytes in this block of RAM are
reserved for a transfer address, supplied

by the user, which is used as a destination
location for RST 7 instructions (or the
optional hardwired instruction). Several
additional bytes are used, below the stack,
for temporary storage. Except for RAM
addresses 5K-1 to 5K-256, all other RAM is
available for the user.

. BREAK POINT FACILITY

The monitor treats the RST 1 instruction
(CF hex) as a special sequence initiator.
Upon execution of an RST 1 instruction
the monitor will automatically save the
complete CPU status and output the sign
on message “MCS-80™ KIT” on to the
console device. The user can at that time
display the contents of the CPU status by
initiating an “X” command. After examin-
ing the machine status and making
changes if necessary the user can resume
execution of his program by simply
inputting “G" and Carriage Return on the
console device. By using the RST 1 break
point facilities of the monitor the user can
step through large portions of his program
by inserting RST 1 instructions at key
locations. This technique can significantly
reduce the amount of time it takes to
debug software.

. INTERRUPT PROCESSING

The SDK-80 hardware is designed so that
an external device can interrupt the CPU
and execute an automatic RST 7 in-
struction. The monitor, upon execution of
a RST 7 instruction, automatically exe-
cutes an unconditional JUMP to RAM
location (13FDH). This facility allows the
user to initiate his program upon com-
mand of a peripheral device, such as a
switch closure, without the activation of
the monitor’s program control command
“G". At any time during the execution of
the interrupt-invoked program, the user
may re-enter the monitor by executing a
RST 1 instruction. The sign-on message
“MCS-80 KIT” will be displayed on the
console device and all monitor commands
are available to the user. To resume the
user program, simply input “G” and
Carriage Return on the console device.

28

B. Error Conditions
1. INVALID CHARACTERS

The monitor checks the validity of each
character as it is entered from the console.
As soon as the monitor determines that
the last character entered is illegal in its
context, the monitor aborts the command
and issues an “+"” to indicate the error.

Example

D1400, 145G*
The character G was encountered in a
parameter list where only hexadecimal
digits and delimiters are valid.
Y*
Y is not a valid command.

. ADDRESS VALUE ERRORS

Some commands require an address pair
of the form <low address>, <high
address>. If, on these commands, the
value of <low address> is greater than or
equal to the value of <high address>, the
action indicated by the command will be
performed on the data at <low address>
only.

Addresses are evaluated modulo 2.
Thus, if a hexadecimal address greater
than FFFF is entered, only the last 4 hex
digits will be used.

Another type of address error may occur
when the operator specifies a part of
memory in a command which does not
exist in his particular configuration. In
general, if a nonexistent portion of
memory is specified as the source field for
an instruction, the data fetched will be
unpredictable. If a nonexistent portion of
memory is given as the destination field in
a command, the command has no effect.

APPENDIX A. MONITOR LISTING

ISIS-II 8080/8085 MACRO

LOC OBJ

LINE

woJdouUubd WNRK

ASSEMBLER, X108 SDK80 PAGE 1

SOURCE STATEMENT

jhhkkkkkkkhkhkkkkkkhhhhhhkhhhhhhkkkkhhhhhhhhhhhhkkdkkkhhhhhhhhhhhkkkkkkhhkkk

PROGRAM: 8080A BOARD MONITOR

COPYRIGHT (C) 1975
INTEL CORPORATION
3065 BOWERS AVENUE
SANTA CLARA, CALIFORNIA 95051

ghkkkkkkkkhkkkkkkkkhhkkkhkhhhhhkkkkkhhhkhkhkhhhhhkkkkhhhhkkhkhkhkkhkkkkkkkkkkk

’

’

; ABSTRACT

THIS PROGRAM RUNS ON THE 8080A BOARD AND IS DESIGNED TO PROVIDE
THE USER WITH A MINIMAL MONITOR. BY USING THIS PROGRAM,

THE USER CAN EXAMINE AND CHANGE MEMORY OR CPU REGISTERS, LOAD
A PROGRAM (IN ABSOLUTE HEX) INTO RAM, AND EXECUTE INSTRUCTIONS
ALREADY IN MEMORY. THE MONITOR ALSO PROVIDES THE USER WITH
ROUTINES FOR PERFORMING CONSOLE I/O.

PROGRAM ORGANIZATION

THE LISTING IS ORGANIZED IN THE FOLLOWING WAY. FIRST THE COMMAND
RECOGNIZER, WHICH IS THE HIGHEST LEVEL ROUTINE IN THE PROGRAM.
NEXT, ARE THE ROUTINES TO IMPLEMENT THE VARIOUS COMMANDS, FINALLY
THE UTILITY ROUTINES WHICH ACTUALLY DO THE DIRTY WORK. WITHIN
EACH SECTION, THE ROUTINES ARE ORGANIZED IN ALPHABETICAL

ORDER, BY ENTRY POINT OF THE ROUTINE.

THIS PROGRAM EXPECTS TO RUN IN THE FIRST 1K OF ADDRESS SPACE.
IF, FOR SOME REASON, THE PROGRAM IS RE-ORG'ED, CARE SHOULD

BE TAKEN TO MAKE SURE THAT THE TRANSFER INSTRUCTIONS FOR RST 1
AND RST 7 ARE ADJUSTED APPROPRIATELY.

THE PROGRAM ALSO EXPECTS THAT RAM LOCATIONS 5K-1 TO 5K-256,
INCLUSIVE, ARE RESERVED FOR THE PROGRAM'S OWN USE. THESE
LOCATIONS MAY BE ALTERED, HOWEVER, BY CHANGING THE EQU'ED
SYMBOL "DATA" AS DESIRED.

LIST OF FUNCTIONS

29

ISIS-II 8080/8085 MACRO

LOC OBJ

0000

001B
13FD
03FA
0027
00FB
00FA
00FA
00FB
000D
1300
001B
000F
00FF

LINE

ASSEMBLER, X108

ICMD
MCMD
SCMD
XCMD

ORG

SDK80 PAGE 2

SOURCE STATEMENT

OH

gREkkkkkkkkkkkkhkkkhkhkkhhhkhhkhkhkkhhkkhkkhhkkhkhkhkkhkkkhkkkkkkkkkkkkkkkx

’
’

’

MONITOR EQUATES

gREkkkkkkkkkkkkhkkkhkkkhkkkhhkhhkkhhkkhkkhhkkkhkkkhkkhkkkkhkkkkkkkkkkkkkkkx

’

BRCHR
BRLOC
BRTAB
CMD
CNCTL
CNIN
CNOUT
CONST
CR
DATA
ESC
HCHAR
INVRT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

1BH ; CODE FOR BREAK CHARACTER (ESCAPE)

13FDH ; LOCATION OF USER BRANCH INSTRUCTION IN RAM
3FAH ; LOCATION FOR START OF BRANCH TABLE IN ROM
027H ; COMMAND INSTRUCTION FOR USART INITIALIZATION
OFBH ; CONSOLE (USART) CONTROL PORT

OFAH ; CONSOLE INPUT PORT

OFAH ; CONSOLE OUTPUT PORT

OFBH ; CONSOLE STATUS INPUT PORT

ODH ; CODE FOR CARRIAGE RETURN

5*1024-256 ; END OF MONITOR RAM USAGE

1BH ; CODE FOR ESCAPE CHARACTER

OFH ; MASK TO SELECT LOWER HEX CHAR FROM BYTE
OFFH ; MASK TO INVERT HALF BYTE FLAG

30

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 3

LOC OBJ LINE SOURCE STATEMENT
000A 104 LF EQU OAH ; CODE FOR LINE FEED
0000 105 LOWER EQU 0 ; DENOTES LOWER HALF OF BYTE IN ICMD
106 ;LSGNON EQU - ; LENGTH OF SIGNON MESSAGE - DEFINED LATER
00CF 107 MODE EQU OCFH ; MODE SET FOR USART INITIALIZATION
108 ;MSTAK EQU - ; START OF MONITOR STACK - DEFINED LATER
109 ;NCMDS EQU - ; NUMBER OF VALID COMMANDS
000F 110 NEWLN EQU OFH ; MASK FOR CHECKING MEMORY ADDR DISPLAY
007F 111 PRTYO EQU 07FH ; MASK TO CLEAR PARITY BIT FROM CONSOLE CHAR
13ED 112 REGS EQU DATA+255-18 ; START OF REGISTER SAVE AREA
0002 113 RBR EQU 2 ; MASK TO TEST RECEIVER STATUS
0038 114 RSTU EQU 38H ; TRANSFER LOCATION FOR RST7 INSTRUCTION
115 ;RTABS EQU -—= ; SIZE OF ENTRY IN RTAB TABLE
001B 116 TERM EQU 1BH ; CODE FOR ICMD TERMINATING CHARACTER (ESCAPE)
0001 117 TRDY EQU 1 ; MASK TO TEST TRANSMITTER STATUS
00FF 118 UPPER EQU OFFH ; DENOTES UPPER HALF OF BYTE IN ICMD
119 ;
120 ,-***
121 ;
122 ; MONITOR MACROS
123 ;
124 ,-***
125 ;
126 ;
127 TRUE MACRO WHERE ; BRANCH IF FUNCTION RETURNS TRUE (SUCCESS)
- 128 Jc WHERE
129 ENDM
130 ;
131 FALSE MACRO WHERE ; BRANCH IF FUNCTION RETURNS FALSE (FAILURE)
- 132 JNC WHERE
133 ENDM
134 ;
135 ;
136 ;***
137 ;
138 ; USART INITIALIZATION CODE
139 ;
140 ;***
141 ;
142 ;
143 ; THE USART IS ASSUMED TO COME UP IN THE RESET POSITION (THIS
144 ; FUNCTION IS TAKEN CARE OF BY THE HARDWARE). THE USART WILL
145 ; BE INITIALIZED IN THE SAME WAY FOR EITHER A TTY OR CRT
146 ; INTERFACE. THE FOLLOWING PARAMETERS ARE USED:
147 ;
148 ; MODE INSTRUCTION
149 ;
150 ;
151 ; 2 STOP BITS
152 ; PARITY DISABLED
153 ; 8 BIT CHARACTERS
154 ; BAUD RATE FACTOR OF 64
155 ;

31

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 4

LOC OBJ LINE SOURCE STATEMENT
156 ; COMMAND INSTRUCTION
157 ;
158 ;
159 ; NO HUNT MODE
160 ; NOT (RTS) FORCED TO 0O
161 ; RECEIVE ENABLED
162 ; TRANSMIT ENABLED
163 ;
0000 3ECF 164 MVI A ,MODE
0002 D3FB 165 ouT CNCTL ; OUTPUT MODE SET TO USART
0004 3E27 166 MVI A,CMD ;
0006 D3FB 167 ouT CNCTL ; OUTPUT COMMAND WORD TO USART
168 ;
169 ;***
170 ;
171 ; RESTART ENTRY POINT
172 ;
173 ;***
174 ;
175 ;
176 GO:
0008 22F313 177 SHLD LSAVE ; SAVE HL REGISTERS
000B E1 178 POP H ; GET TOP OF STACK ENTRY
000C 22F513 179 SHLD PSAVE ; ASSUME THIS IS LAST P COUNTER
000F 210000 180 LXI H,0 ; CLEAR HL
0012 39 181 DAD SP ; GET STACK POINTER VALUE
0013 22F713 182 SHLD SSAVE ; SAVE USER'S STACK POINTER
0016 21F313 183 LXI H,ASAVE+1 ; NEW VALUE FOR STACK POINTER
0019 F9 184 SPHL ; SET MONITOR STACK POINTER FOR REG SAVE
001A F5 185 PUSH PSW ; SAVE A AND FLAGS
001B C5 186 PUSH B ; SAVE B AND C
001C D5 187 PUSH D ; SAVE D AND E
188 ;
189 ;**
190 ;
191 ; PRINT SIGNON MESSAGE
192 ;
193 ;**
194 ;
195 ;
196 SOMSG:
001D 219D03 197 LXI H,SGNON ; GET ADDRESS OF SIGNON MESSAGE
0020 060E 198 MVI B, LSGNON ; COUNTER FOR CHARACTERS IN MESSAGE
199 MSGL:
0022 4E 200 MOV Cc,M ; FETCH NEXT CHAR TO C REG
0023 CDE301 201 CALL co ; SEND IT TO THE CONSOLE
0026 23 202 INX H ; POINT TO NEXT CHARACTER
0027 05 203 DCR B ; DECREMENT BYTE COUNTER
0028 C22200 204 JNZ MSGL ; RETURN FOR NEXT CHARACTER
205 ;
206 ;

207 ;xkkkkkkkkkkkkkkkhhhkhkhkhhhhhkkkkhhhhhhkhhhhhhkkkkkhhhhhhkhkhhkhkkkkkk

32

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 5

LOC OBJ LINE SOURCE STATEMENT

208 ;

209 ; COMMAND RECOGNIZING ROUTINE

210 ;

211 ,-***
212 ;

213 ; FUNCTION: GETCM

214 ; INPUTS: NONE

215 ; OUTPUTS: NONE

216 ; CALLS: GETCH,ECHO,ERROR

217 ; DESTROYS: A,B,C,H,L,F/F'S

218 ; DESCRIPTION: GETCM RECEIVES AN INPUT CHARACTER FROM THE USER

219 ; AND ATTEMPTS TO LOCATE THIS CHARACTER IN ITS COMMAND
220 ; CHARACTER TABLE. IF SUCCESSFUL, THE ROUTINE
221 ; CORRESPONDING TO THIS CHARACTER IS SELECTED FROM
222 ; A TABLE OF COMMAND ROUTINE ADDRESSES, AND CONTROL
223 ; IS TRANSFERRED TO THIS ROUTINE. IF THE CHARACTER
224 ; DOES NOT MATCH ANY ENTRIES, CONTROL IS PASSED TO
225 ; THE ERROR HANDLER.
226 ;
227 GETCM:
002B 21ED13 228 LXI H,MSTAK ; ALWAYS WANT TO RESET STACK PTR TO MONITOR
002E F9 229 SPHL ; /STARTING VALUE SO ROUTINES NEEDN'T CLEAN UP
002F OE2E 230 MVI c,'.' ; PROMPT CHARACTER TO C
0031 CDF401 231 CALL ECHO ; SEND PROMPT CHARACTER TO USER TERMINAL
0034 C33B0O 232 JMP GTCO03 ; WANT TO LEAVE ROOM FOR RST BRANCH
233 ;
0038 234 ORG RSTU ; ORG TO RST TRANSFER LOCATION
0038 C3FD13 235 JMP USRBR ; JUMP TO USER BRANCH LOCATION
236 ;
237 GTCO3:
003B CD1B02 238 CALL GETCH ; GET COMMAND CHARACTER TO A
003E CDF401 239 CALL ECHO ; ECHO CHARACTER TO USER
0041 79 240 MOV A,C ; PUT COMMAND CHARACTER INTO ACCUMULATOR
0042 010600 241 LXI B,NCMDS ; C CONTAINS LOOP AND INDEX COUNT
0045 21B903 242 LXI H,CTAB ; HL POINTS INTO COMMAND TABLE
243 GTCO5:
0048 BE 244 CMP M ; COMPARE TABLE ENTRY AND CHARACTER
0049 CA5400 245 JZ GTC10 ; BRANCH IF EQUAL - COMMAND RECOGNIZED
004cC 23 246 INX H ; ELSE, INCREMENT TABLE POINTER
004D 0D 247 DCR C ; DECREMENT LOOP COUNT
004E C24800 248 JNZ GTCO05 ; BRANCH IF NOT AT TABLE END
0051 C30D02 249 JMP ERROR ; ELSE, COMMAND CHARACTER IS ILLEGAL
250 GTC10:
0054 21ABO03 251 LXI H,CADR ; IF GOOD COMMAND, LOAD ADDRESS OF TABLE

252 ; /OF COMMAND ROUTINE ADDRESSES

0057 09 253 DAD B ; ADD WHAT IS LEFT OF LOOP COUNT

0058 09 254 DAD B ; ADD AGAIN - EACH ENTRY IN CADR IS 2 BYTES LONG
0059 7E 255 MOV A,M ; GET LSP OF ADDRESS OF TABLE ENTRY TO A

005A 23 256 INX H ; POINT TO NEXT BYTE IN TABLE

005B 66 257 MOV H,M ; GET MSP OF ADDRESS OF TABLE ENTRY TO H

005C 6F 258 MOV L,A ; PUT LSP OF ADDRESS OF TABLE ENTRY INTO L

005D E9 259 PCHL ; NEXT INSTRUCTION COMES FROM COMMAND ROUTINE

33

ISIS-II 8080/8085 MACRO

LoC

005E
0060
0063
0064

0065
0068
0069
006C
006D

0070
0072
0075
0076
0079

007C

007F

0082

0085
0088

008B
008C
008D

008F
0092

OBJ

0E02
CD5702
D1

El

CDEEO1
e
CDC302
7D
CDC302

0E20
CDF401
TE
CDC302
CDBDO1

DA8500

CD9C02

D28B00

CDEEO1
C32B00

23
7D
E60F

C27000
C36500

ASSEMBLER, X108

SOURCE STATEMENT

SDK80 PAGE 6

jhhkkkkkkhkkhkhkkkdkkhhhhhhhhhhhhhhkkdkkhhhhhhhhhhhhhkkkkkhhhhhkhhhhhhkkkkkkk

COMMAND IMPLEMENTING ROUTINES

ghkkkkkkkkkhhkkkhhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkhhkhhhkhhkkhhkhhkkkhhkkk

CALLS: ECHO,NMOUT,HILO,GETCM,CROUT,GETNM
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: DCMD IMPLEMENTS THE DISPLAY MEMORY (D) COMMAND

c,2
GETNM
D
H

CROUT
AH
NMOUT
AL
NMOUT

c,'
ECHO
A,M
NMOUT
BREAK
DCM12
DCM12
HILO

DCM15
DCM15

CROUT
GETCM

H
A,L
NEWLN

DCM10
DCMO5

LINE

260 ;

261 ;

262

263 ;

264 ;

265 ;

266

267 ;

268 ;

269 ; FUNCTION: DCMD
270 ; INPUTS: NONE
271 ; OUTPUTS: NONE
272 ;

273 ;

274 ;

275 ;

276 DCMD:

277 MVI
278 CALL
279 POP
280 POP
281 DCMO5:

282 CALL
283 MoV
284 CALL
285 MOV
286 CALL
287 DCM10:

288 MVI
289 CALL
290 MOV
291 CALL
292 CALL
293 TRUE
294+ Jc
295 CALL
296

297 FALSE
298+ JNC
299 DCM12:

300 CALL
301 JMP
302 DCM15:

303 INX
304 MoV
305 ANI
306

307 JNZ
308 JMP
309 ;

310 ;

311

; GET TWO NUMBERS FROM INPUT STREAM

; ENDING ADDRESS TO DE

STARTING ADDRESS TO HL

; ECHO CARRIAGE RETURN/LINE FEED
; DISPLAY ADDRESS OF FIRST LOCATION IN LINE

; ADDRESS IS 2 BYTES LONG

; USE BLANK AS SEPARATOR
; GET CONTENTS OF NEXT MEMORY LOCATION
; DISPLAY CONTENTS

SEE IF USER WANTS OUT
IF SO, BRANCH

SEE IF ADDRESS OF DISPLAYED LOCATION IS
/GREATER THAN OR EQUAL TO ENDING ADDRESS
IF NOT, MORE TO DISPLAY

; CARRIAGE RETURN/LINE FEED TO END LINE
; ALL DONE

IF MORE TO GO, POINT TO NEXT LOC TO DISPLAY

; GET LOW ORDER BITS OF NEW ADDRESS

SEE IF LAST HEX DIGIT OF ADDRESS DENOTES
/START OF NEW LINE

; NO - NOT AT END OF LINE
; YES - START NEW LINE WITH ADDRESS

jhhkkkkkkkhkkkkkkkhhhhhhhhhhhkkkkkkhhhhhhkhhhhhkkkkhhhhhhhhhkhkkkkkk

34

ISIS-II 8080/8085 MACRO

LoC

0095

0098
009B
009C
009E
00Al1
0024
00A5
00A6
00A7

00AA
00AB
00AD

00BO

00B3
00B5
00B8
00BA
00BD

00BE
00Cc1
00c2
00C5
00Cé

OBJ

CD2202

D2AA00
7A
FEOD
C20D02
21F513
71

23

70
C3B000

TA
FEOD
C20D02

C32E03

OEO1
CD5702
3EFF
32F913
D1

CD1B02
4F
CDF401
79
FE1B

LINE

312
313
314
315
316
317
318
319
320
321
322
323
324+
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

ASSEMBLER, X108

SOURCE STATEMENT

; FUNCTION: GCMD

; INPUTS: NONE
; OUTPUTS: NONE

SDK80 PAGE 7

; CALLS: ERROR,GETHX,RSTTF
; DESTROYS: A,B,C,D,E,H,L,F/F'S
; DESCRIPTION: GCMD IMPLEMENTS THE BEGIN EXECUTION (G) COMMAND.

GCMD :

GCMO5:

GCM10:

’

’

GETHX
GCMO05
GCMO05
A,D

CR
ERROR
H,PSAVE
M,C

M,B
GCM10

A,D
CR
ERROR

RSTTF

’

’

’

’

’

’

; GET ADDRESS (IF PRESENT) FROM INPUT STREAM
; BRANCH IF NO NUMBER PRESENT

ELSE, GET TERMINATOR
SEE IF CARRIAGE RETURN
ERROR IF NOT PROPERLY TERMINATED

; WANT NUMBER TO REPLACE SAVE PGM COUNTER

IF NO STARTING ADDRESS, MAKE SURE THAT
/CARRIAGE RETURN TERMINATED COMMAND
ERROR IF NOT

; RESTORE REGISTERS AND BEGIN EXECUTION

ghkkkkkkkkkkkkkkkkhhkkhkhhhhhkkkkkhhhhhhhkhhhhkkkkkhhhhhkkkhhkkkkkkkk

; FUNCTION: ICMD

; INPUTS: NONE
; OUTPUTS: NONE

; CALLS: ERROR,ECHO,GETCH,VALDL,VALDG,CNVBN, STHLF,GETNM, CROUT
; DESTROYS: A,B,C,D,E,H,L,F/F'S
; DESCRIPTION: ICMD IMPLEMENTS THE INSERT CODE INTO MEMORY (I) COMMAND.

ICMD:
MVI
CALL
MVI
STA
POP
ICMO5:
CALL
MOV
CALL
MOV
CPI

c,1
GETNM
A,UPPER
TEMP

D

GETCH
C,A
ECHO
A,C
TERM

’

’

’

’

’

GET SINGLE NUMBER FROM INPUT STREAM

; TEMP WILL HOLD THE UPPER/LOWER HALF BYTE FLAG

ADDRESS OF START TO DE

; GET A CHARACTER FROM INPUT STREAM

ECHO IT
PUT CHARACTER BACK INTO A
SEE IF CHARACTER IS A TERMINATING CHARACTER

35

ISIS-II 8080/8085 MACRO ASSEMBLER, X108

LoC

00cs
00CB

00CE
00D1

00D4
00D7
00DA
00DB
0O0DE
00E1l
00E2
00E5

00E6
00ES8
00EB

00EE
00F1

00F4
00F7
00FA

00FD
00FF
0102
0103
0104

0105
0106
0107
0108
0109
010A
010B
010C

OBJ

CAF400
CD8AO3

DABEOO
CD6F03

D2EEOO
CDDAO1
4F
CD5003
3AF913
B7
C2E600
13

EEFF
32F913
C3BEOO

CD4503
C30D02

CD4503
CDEEO1
C32B00

0EO03
CD5702
Ccl

El

D1

E5
62
6B
T1E
60
69
77
03

LINE

364
365
366
367+
368
369
370+
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

SOURCE STATEMENT

JZ
CALL
TRUE
Jc
CALL
FALSE
JNC
CALL
MOV
CALL
LDA
ORA
JNZ
INX
ICM10:

ICM20:

ICM25:

’

’

ICM25
VALDL
ICMO5
ICMO5
VALDG
ICM20
ICM20
CNVBN
c,a
STHLF
TEMP
a
ICM10
D

INVRT
TEMP
ICMO5

STHFO
ERROR

STHFO
CROUT
GETCM

SDK80 PAGE 8

; IF SO, ALL DONE ENTERING CHARACTERS
; ELSE, SEE IF VALID DELIMITER
; IF SO SIMPLY IGNORE THIS CHARACTER

; ELSE, CHECK TO SEE IF VALID HEX DIGIT
; IF NOT, BRANCH TO HANDLE ERROR CONDITION

; CONVERT DIGIT TO BINARY

; MOVE RESULT TO C

; STORE IN APPROPRIATE HALF WORD

; GET HALF BYTE FLAG

; SET F/F'S

; BRANCH IF FLAG SET FOR UPPER

; IF LOWER, INC ADDRESS OF BYTE TO STORE IN

; TOGGLE STATE OF FLAG
; PUT NEW VALUE OF FLAG BACK
; PROCESS NEXT DIGIT

; ILLEGAL CHARACTER
; MAKE SURE ENTIRE BYTE FILLED THEN ERROR

; HERE FOR ESCAPE CHARACTER - INPUT IS DONE
; ADD CARRIAGE RETURN

gREkkkkkkkkkkkkhkkkhkkkhhkhkhkkhhkkkhkhkhhkhhkkkhkkkhkkkhkkkhkkkhkkkkkkk

; FUNCTION: MCMD

; INPUTS: NONE
; OUTPUTS: NONE

; CALLS: GETCM,HILO,GETNM
; DESTROYS: A,B,C,D,E,H,L,F/F'S
; DESCRIPTION: MCMD IMPLEMENTS THE MOVE DATA IN MEMORY (M) COMMAND.

MCMD:
MVI
CALL
POP
POP
POP

MCMOS5:
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
INX

c,3
GETNM

B
H
D

~

S~ S~~~

PQWREAO

~

Ry mm

; GET 3 NUMBERS FROM INPUT STREAM
; DESTINATION ADDRESS TO BC

; ENDING ADDRESS TO HL

; STARTING ADDRESS TO DE

; SAVE ENDING ADDRESS

; SOURCE ADDRESS TO HL
; GET SOURCE BYTE

; DESTINATION ADDRESS TO HL
; MOVE BYTE TO DESTINATION
; INCREMENT DESTINATION ADDRESS

36

ISIS-II 8080/8085 MACRO ASSEMBLER, X108

LoC

010D
010E
010F
0112
0113
0114

0117
011Aa

011D
0120
0121

0122
0123
0125
0128
012A

012D
012E
0131
0133
0136

0139
013C

013D
013E

OBJ

78
Bl
CA2B0O
13
El
CD9C02

D22B00
C30501

CD2202
C5
El

TA
FE20
CA2D01
FE2C
C22B00

TE
CDC302
0E2D
CDF401
CD2202

D23D01
71

23
C32201

LINE

416
417
418
419
420
421
422
423+
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454+
455
456
457
458
459
460
461
462
463
464
465
466
467

SOURCE STATEMENT

MOV
ORA
JZ
INX
POP
CALL
FALSE
JNC

’

’

A,B
c
GETCM
D

H
HILO
GETCM
GETCM
MCMO05

SDK80 PAGE 9

; TEST FOR DESTINATION ADDRESS OVERFLOW
; IF SO, CAN TERMINATE COMMAND

; INCREMENT SOURCE ADDRESS

; ELSE, GET BACK ENDING ADDRESS

; SEE IF ENDING ADDR>=SOURCE ADDR

; IF NOT, COMMAND IS DONE

; MOVE ANOTHER BYTE

gRIkkkkkkkkkkkkhkkhkkkkhhkkkhkkhhkkhhkhkkhkkkhkkkhhhkhkkkkkkkhkkkkkkkkx

; FUNCTION: SCMD

; INPUTS: NONE
; OUTPUTS: NONE

; CALLS: GETHX,GETCM,NMOUT,ECHO
; DESTROYS: A,B,C,D,E,H,L,F/F'S
; DESCRIPTION: SCMD IMPLEMENTS THE SUBSTITUTE INTO MEMORY (S) COMMAND.

SCMD:
CALL
PUSH
POP
SCMO05:
MoV
CPI
JZ
CPI

SCM10:
MOV
CALL
MVI
CALL
CALL
FALSE

MOV
SCM15:
INX

’

’

GETHX

A,M
NMOUT
clv_v
ECHO
GETHX
SCM15
SCM15
M,C

H
SCMO05

; GET A NUMBER, IF PRESENT, FROM INPUT
; GET NUMBER TO HL - DENOTES MEMORY LOCATION

; GET TERMINATOR

; SEE IF SPACE

; YES - CONTINUE PROCESSING
; ELSE, SEE IF COMMA

; NO - TERMINATE COMMAND

; GET CONTENTS OF SPECIFIED LOCATION TO A
; DISPLAY CONTENTS ON CONSOLE

; USE DASH FOR SEPARATOR

; GET NEW VALUE FOR MEMORY LOCATION, IF ANY
; IF NO VALUE PRESENT, BRANCH

; ELSE, STORE LOWER 8 BITS OF NUMBER ENTERED

; INCREMENT ADDRESS OF MEMORY LOCATION TO VIEW

gREkkkkkkkkkkkkhkkhkhkkhhkkhhkhhkkhhkkhkkhhkkkhhhkhkkhhkkkhkkkhkkkkkkx

; FUNCTION: XCMD

; INPUTS: NONE
; OUTPUTS: NONE

; CALLS: GETCH,ECHO,REGDS,GETCM,ERROR,RGADR,NMOUT,, CROUT , GETHX

37

ISIS-II 8080/8085 MACRO

LoC

0141
0144
0145
0148
0149
014B
014E
0151

0154
0155
0158
0159
015A
015C
015F
0160

0163
0166
0168
016B
016D

0170
0171
0172
0175
0178

017B
017C
017D
TABLE
017F
0180
0181
0182
0183
0184
0185
0186
0189
018A
018B
018C
018F
0190

OBJ

CD1B02
4F
CDF401
79
FEOD
C25401
CDE602
C32B00

4F
CD1703
C5

El
0E20
CDF401
79
32F913

3AF913
FE20
CA7001
FE2C
C22B00

TE
B7
C27B01
CDEEO1
C32B00

E5
5E
1613

23
46
D5
D5
El
C5
TE
CDC302
Fl
F5
B7
CA9401
2B
TE

LINE

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519

ASSEMBLER, X108

SOURCE STATEMENT

SDK80 PAGE 10

; DESTROYS: A,B,C,D,E,H,L,F/F'S
; DESCRIPTION: XCMD IMPLEMENTS THE REGISTER EXAMINE AND CHANGE (X)

XCMD :

XCMO5:

XCM10:

XCM15:

XCM18:

CALL
MOV
CALL
MOV
CPI

MOV
CALL
PUSH
POP
MVI
CALL
MOV
STA

LDA
CPI
Jz

CPI

MOV
ORA
JNZ
CALL

PUSH
MOV
MVI

INX
MOV
PUSH
PUSH
POP
PUSH
MOV
CALL
POP
PUSH
ORA
JzZ
DCX
MOV

COMMAND .

GETCH ; GET REGISTER IDENTIFIER

C,A ;

ECHO ; ECHO IT

A,C

CR

XCMO05 ; BRANCH IF NOT CARRIAGE RETURN

REGDS ; ELSE, DISPLAY REGISTER CONTENTS

GETCM ; THEN TERMINATE COMMAND

C,A ; GET REGISTER IDENTIFIER TO C

RGADR ; CONVERT IDENTIFIER INTO RTAB TABLE ADDR
B

H ; PUT POINTER TO REGISTER ENTRY INTO HL

C,v v

ECHO ; ECHO SPACE TO USER

A,C

TEMP ; PUT SPACE INTO TEMP AS DELIMITER

TEMP ; GET TERMINATOR

v ; SEE IF A BLANK

XCM15 ; YES - GO CHECK POINTER INTO TABLE

vy ; NO - SEE IF COMMA

GETCM ; NO - MUST BE CARRIAGE RETURN TO END COMMAND
A,M

A ; SET F/F'S

XCM18 ; BRANCH IF NOT AT END OF TABLE

CROUT ; ELSE, OUTPUT CARRIAGE RETURN LINE FEED
GETCM ; AND EXIT

H ; PUT POINTER ON STACK

E,M

D,DATA SHR 8 ; FETCH ADDRESS OF SAVE LOCATION FROM
H ;

B,M ; FETCH LENGTH FLAG FROM TABLE

D ; SAVE ADDRESS OF SAVE LOCATION

D

H ; MOVE ADDRESS TO HL

B ; SAVE LENGTH FLAG

A,M ; GET 8 BITS OF REGISTER FROM SAVE LOCATION
NMOUT ; DISPLAY IT

PSW ; GET BACK LENGTH FLAG

PSW ; SAVE IT AGAIN

A ; SET F/F'S

XCM20 ; IF 8 BIT REGISTER, NOTHING MORE TO DISPLAY
H ; ELSE, FOR 16 BIT REGISTER, GET LOWER 8 BITS
A,M

38

ISIS-II 8080/8085 MACRO ASSEMBLER, X108

LoC

0191

0194
0196
0199

019C
019F
01A0
01A3
01Aa4
01A5
01A6
01A9
01AA

01AB

01AC
01AF
01BO
01B1

01B4
01B5
01B8
01B9
01BA

OBJ

CDC302

0E2D
CDF401
CD2202

D2B401
7A
32F913
Fl
El
B7
CAABO1
70
2B

71

110300
El
19
C36301

TA
32F913
D1
D1
C3AC01

LINE

520
521
522
523
524
525
526+
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

SDK80 PAGE 11

’

’

’

’

DISPLAY THEM

USE DASH AS SEPARATOR
SEE IF THERE IS A VALUE TO PUT INTO REGISTER
NO - GO CHECK FOR NEXT REGISTER

ELSE, SAVE THE TERMINATOR FOR NOW

GET BACK LENGTH FLAG

PUT ADDRESS OF SAVE LOCATION INTO HL
SET F/F'S

IF 8 BIT REGISTER, BRANCH

SAVE UPPER 8 BITS

POINT TO SAVE LOCATION FOR LOWER 8 BITS

STORE ALL OF 8 BIT OR LOWER 1/2 OF 16 BIT REG

SIZE OF ENTRY IN RTAB TABLE
POINTER INTO REGISTER TABLE RTAB
ADD ENTRY SIZE TO POINTER

DO NEXT REGISTER

GET TERMINATOR

SAVE IN MEMORY

CLEAR STACK OF LENGTH FLAG AND ADDRESS
/OF SAVE LOCATION

GO INCREMENT REGISTER TABLE POINTER

ghkkkkkkkkkkkkkkkhhhkkhkhhhhhhkkkkhhhhhhhhhhhkkkhhhhhhkhkhkhhhkkkkkkkk

UTILITY ROUTINES

ckkkhkkhkkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkkkhkkhkhkhkkkkkkkkkkk

- 1 IF ESCAPE CHARACTER INPUT

- 0 IF ANY OTHER CHARACTER OR NO CHARACTER PENDING

BREAK IS USED TO SENSE AN ESCAPE CHARACTER FROM

IF NO CHARACTER IS PENDING, OR IF THE

PENDING CHARACTER IS NOT THE ESCAPE, THEN A FAILURE
RETURN (CARRY=0) IS TAKEN. 1IN THIS CASE, THE

PENDING CHARACTER (IF ANY) IS LOST. IF THE PENDING
CHARACTER IS AN ESCAPE CHARACTER, BREAK TAKES A SUCCESS
RETURN (CARRY=1) .

SOURCE STATEMENT
CALL NMOUT
XCM20:
MVI c,'-'
CALL ECHO
CALL GETHX
FALSE XCM30
JNC XCM30
MOV A,D
STA TEMP
POP PSW
POP H
ORA A
JZ XCM25
MOV M,B
DCX H
XCM25:
MOV M,C
XCM27:
LXI D,RTABS
POP H
DAD D
JMP XCM10
XCM30:
MOV A,D
STA TEMP
POP D
POP D
JMP XCcM27
; FUNCTION: BREAK
; INPUTS: NONE
; OUTPUTS: CARRY
; CALLS: NOTHING
; DESTROYS: A,F/F'S
; DESCRIPTION:
; THE USER.
BREAK:

39

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 12

LOC OBJ LINE SOURCE STATEMENT

01BD DBFB 572 IN CONST ; GET CONSOLE STATUS

01BF E602 573 ANI RBR ; SEE IF CHARACTER PENDING

01C1 CcA1802 574 JZ FRET ; NO - TAKE FAILURE RETURN

01C4 DBFA 575 IN CNIN ; YES - PICK UP CHARACTER

01C6 E67F 576 ANI PRTYO ; STRIP OFF PARITY BIT

01c8 FE1B 577 CPI BRCHR ; SEE IF BREAK CHARACTER

01CA CA4303 578 JZ SRET ; YES - SUCCESS RETURN

01CD C€31802 579 JMP FRET ; NO - FAILURE RETURN - CHARACTER LOST
580 ;
581 ;
582 ;***
583 ;
584 ;

585 ; FUNCTION: CI

586 ; INPUTS: NONE

587 ; OUTPUTS: A - CHARACTER FROM CONSOLE

588 ; CALLS: NOTHING

589 ; DESTROYS: A,F/F'S

590 ; DESCRIPTION: CI WAITS UNTIL A CHARACTER HAS BEEN ENTERED AT THE

591 ; CONSOLE AND THEN RETURNS THE CHARACTER, VIA THE A
592 ; REGISTER, TO THE CALLING ROUTINE. THIS ROUTINE
593 ; IS CALLED BY THE USER VIA A JUMP TABLE IN RAM.
594 ;
595 CI:

01D0 DBFB 596 IN CONST ; GET STATUS OF CONSOLE

01D2 E602 597 ANI RBR ; CHECK FOR RECEIVER BUFFER READY

01D4 CADOO1 598 JZ CI ; NOT YET - WAIT

01D7 DBFA 599 IN CNIN ; READY SO GET CHARACTER

01D9 C9 600 RET
601 ;
602 ;
603 ;HEkkdh ko k kA kA k kA kA k kA ko k kA ko k Ak ko k Ak ko k ko kkkkk ko kkkk
604 ;
605 ;

606 ; FUNCTION: CNVBN

607 ; INPUTS: C - ASCII CHARACTER '0'-'9' OR 'A'-'F'

608 ; OUTPUTS: A - 0 TO F HEX

609 ; CALLS: NOTHING

610 ; DESTROYS: A,F/F'S

611 ; DESCRIPTION: CNVBN CONVERTS THE ASCII REPRESENTATION OF A HEX

612 ; CHARACTER INTO ITS CORRESPONDING BINARY VALUE. CNVBN
613 ; DOES NOT CHECK THE VALIDITY OF ITS INPUT.
614 ;
615 CNVBN:
01DA 79 616 MOV A,C
01DB D630 617 SUI '0’ ; SUBTRACT CODE FOR 'O' FROM ARGUMENT
01DD FEOA 618 CPI 10 ; WANT TO TEST FOR RESULT OF 0 TO 9
01DF F8 619 RM ; IF SO, THEN ALL DONE
01E0 D607 620 SUI 7 ; ELSE, RESULT BETWEEN 17 AND 23 DECIMAL
01E2 C9 621 RET ; SO RETURN AFTER SUBTRACTING BIAS OF 7
622 ;
623 ;

40

ISIS-II 8080/8085 MACRO

LOC OBJ

01lE3 DBFB
01E5 E601
01E7 CAE301
01lEA 79
01EB D3FA
01ED C9

01lEE OEOD
01F0 CDF401
01F3 C9

01F4 41

LINE

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

ASSEMBLER, X108 SDK80 PAGE 13

SOURCE STATEMENT
PR
; FUNCTION: CO
; INPUTS: C - CHARACTER TO OUTPUT TO CONSOLE
; OUTPUTS: C - CHARACTER OUTPUT TO CONSOLE
; CALLS: NOTHING
; DESTROYS: A,F/F'S
; DESCRIPTION: CO WAITS UNTIL THE CONSOLE IS READY TO ACCEPT A CHARACTER
; AND THEN SENDS THE INPUT ARGUMENT TO THE CONSOLE.

CoO:
IN CONST ; GET STATUS OF CONSOLE
ANI TRDY ; SEE IF TRANSMITTER READY
Jz co ; NO - WAIT
MOV A,C ; ELSE, MOVE CHARACTER TO A REGISTER FOR OUTPUT
ouT CNOUT ; SEND TO CONSOLE
RET
;***
; FUNCTION CROUT
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: ECHO
; DESTROYS: A,B,C,F/F'S
; DESCRIPTION: CROUT SENDS A CARRIAGE RETURN (AND HENCE A LINE
; FEED) TO THE CONSOLE.
CROUT:
MVI C,CR
CALL ECHO ; OUTPUT CARRIAGE RETURN TO USER TERMINAL
RET
;***
; FUNCTION: ECHO
; INPUTS: C - CHARACTER TO ECHO TO TERMINAL
; OUTPUTS: C - CHARACTER ECHOED TO TERMINAL
; CALLS: CO
; DESTROYS: A,B,F/F'S
; DESCRIPTION: ECHO TAKES A SINGLE CHARACTER AS INPUT AND, VIA
; THE MONITOR, SENDS THAT CHARACTER TO THE USER
; TERMINAL. A CARRIAGE RETURN IS ECHOED AS A CARRIAGE
; RETURN LINE FEED, AND AN ESCAPE CHARACTER IS ECHOED AS §.
ECHO:
MoV B,C ; SAVE ARGUMENT

41

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 14

LOC OBJ LINE SOURCE STATEMENT
01F5 3E1B 676 MVI A ,ESC
01F7 B8 677 CMP B ; SEE IF ECHOING AN ESCAPE CHARACTER
01F8 C2FDO1 678 JINZ ECHO5 ; NO - BRANCH
01FB OE24 679 MVI cC,'s$' ; YES - ECHO AS $
680 ECHO05:
01FD CDE301 681 CALL Cco ; DO OUTPUT THROUGH MONITOR
0200 3EOD 682 MVI A,CR
0202 B8 683 CMP B ; SEE IF CHARACTER ECHOED WAS A CARRIAGE RETURN
0203 C20B02 684 JNZ ECH10 ; NO - NO NEED TO TAKE SPECIAL ACTION
0206 OEOA 685 MVI C,LF ; YES - WANT TO ECHO LINE FEED, TOO
0208 CDE301 686 CALL co
687 ECH10:
020B 48 688 MOV C,B ; RESTORE ARGUMENT
020C C9 689 RET
690 ;
691 ;
692 ;**
693 ;
694 ;

695 ; FUNCTION: ERROR

696 ; INPUTS: NONE

697 ; OUTPUTS: NONE

698 ; CALLS: ECHO,CROUT,GETCM

699 ; DESTROYS: A,B,C,F/F'S

700 ; DESCRIPTION: ERROR PRINTS THE ERROR CHARACTER (CURRENTLY A NUMBER SIGN)

701 ; ON THE CONSOLE, FOLLOWED BY A CARRIAGE RETURN-LINE FEED,
702 ; AND THEN RETURNS CONTROL TO THE COMMAND RECOGNIZER.
703 ;
704 ERROR:
020D OE2A 705 MVI C,'*!
020F CDF401 706 CALL ECHO ; SEND # TO CONSOLE
707 EXIT:
0212 CDEEO1 708 CALL CROUT ; SKIP TO BEGINNING OF NEXT LINE
0215 C32B00 709 JMP GETCM ; TRY AGAIN FOR ANOTHER COMMAND
710 ;
711 ;
712 ;**
713 ;
714 ;

715 ; FUNCTION: FRET

716 ; INPUTS: NONE

717 ; OUTPUTS: CARRY - ALWAYS 0

718 ; CALLS: NOTHING

719 ; DESTROYS: CARRY

720 ; DESCRIPTION: FRET IS JUMPED TO BY ANY ROUTINE THAT WISHES TO

721 ; INDICATE FAILURE ON RETURN. FRET SETS THE CARRY
722 ; FALSE, DENOTING FAILURE, AND THEN RETURNS TO THE
723 ; CALLER OF THE ROUTINE INVOKING FRET.
724 ;
725 FRET:

0218 37 726 STC ; FIRST SET CARRY TRUE

0219 3F 727 CMC ; THEN COMPLEMENT IT TO MAKE IT FALSE

42

ISIS-II 8080/8085 MACRO

LOC OBJ

021A C9

021B CDDO0O01
021E E67F
0220 4F
0221 c9

0222 E5
0223 210000
0226 1E00

0228 CD1B02
022B 4F

LINE

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

ASSEMBLER, X108 SDK80 PAGE 15

SOURCE STATEMENT

RET ; RETURN APPROPRIATELY
:-**
; FUNCTION: GETCH
; INPUTS: NONE
; OUTPUTS: C - NEXT CHARACTER IN INPUT STREAM
; CALLS: CI
; DESTROYS: A,C,F/F'S
; DESCRIPTION: GETCH RETURNS THE NEXT CHARACTER IN THE INPUT STREAM
; TO THE CALLING PROGRAM.
GETCH:

CALL cI ; GET CHARACTER FROM TERMINAL

ANI PRTY0O ; TURN OFF PARITY BIT IN CASE SET BY CONSOLE

MOV C,A ; PUT VALUE IN C REGISTER FOR RETURN

RET
:-**
; FUNCTION: GETHX
; INPUTS: NONE
; OUTPUTS: BC - 16 BIT INTEGER
; D - CHARACTER WHICH TERMINATED THE INTEGER
; CARRY - 1 IF FIRST CHARACTER NOT DELIMITER
; - 0 IF FIRST CHARACTER IS DELIMITER
; CALLS: GETCH,ECHO,VALDL,VALDG,CNVBN, ERROR
; DESTROYS: A,B,C,D,E,F/F'S
; DESCRIPTION: GETHX ACCEPTS A STRING OF HEX DIGITS FROM THE INPUT
; STREAM AND RETURNS THEIR VALUE AS A 16 BIT BINARY
; INTEGER. IF MORE THAN 4 HEX DIGITS ARE ENTERED,
; ONLY THE LAST 4 ARE USED. THE NUMBER TERMINATES WHEN
; A VALID DELIMITER IS ENCOUNTERED. THE DELIMITER IS
; ALSO RETURNED AS AN OUTPUT OF THE FUNCTION. ILLEGAL
; CHARACTERS (NOT HEX DIGITS OR DELIMITERS) CAUSE AN
; ERROR INDICATION. IF THE FIRST (VALID) CHARACTER
; ENCOUNTERED IN THE INPUT STREAM IS NOT A DELIMITER,
; GETHX WILL RETURN WITH THE CARRY BIT SET TO 1;
; OTHERWISE, THE CARRY BIT IS SET TO O AND THE CONTENTS
; OF BC ARE UNDEFINED.
GETHX:

PUSH H ; SAVE HL

LXI H,0 ; INITIALIZE RESULT

MVI E,0 ; INITIALIZE DIGIT FLAG TO FALSE
GHXO05:

CALL GETCH ; GET A CHARACTER

MOV C,A ;

43

ISIS-II 8080/8085 MACRO ASSEMBLER, X108

LoC

022C
022F

0232
0235
0236
0237
0238
0239
023a
023B
023E

0241

0244
0247
024A
024cC
024D
024E
024F
0250
0252
0253
0254

0257
0259
025A
025C
025D

OBJ

CDF401
CD8A03

D24102
51
E5
Cl
El
7B
B7
C24303
CA1802

CD6F03

D20D02
CDDAO1
1EFF
29

29

29

29
0600
4F

09
C32802

2E03
79
E603
cs
67

LINE

780
781
782
783+
784
785
786
787
788
789
790
791
792
793
794
795+
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

SDK80 PAGE 16

SOURCE STATEMENT

CALL
CALL
FALSE
JNC
MOV
PUSH
POP
POP
MOV
ORA

JZ
GHX10:
CALL
FALSE
JNC
CALL
MVI
DAD
DAD
DAD
DAD
MVI
MOV
DAD

’

’

ECHO ; ECHO THE CHARACTER

VALDL ; SEE IF DELIMITER

GHX10 ; NO - BRANCH

GHX10

D,C ; YES - ALL DONE, BUT WANT TO RETURN DELIMITER
H

B ; MOVE RESULT TO BC

H ; RESTORE HL

A,E ; GET FLAG

A ; SET F/F'S

SRET ; IF FLAG NON-O, A NUMBER HAS BEEN FOUND
FRET ; ELSE, DELIMITER WAS FIRST CHARACTER
VALDG ; IF NOT DELIMITER, SEE IF DIGIT
ERROR ; ERROR IF NOT A VALID DIGIT, EITHER
ERROR

CNVBN ; CONVERT DIGIT TO ITS BINARY VALUE
E,OFFH ; SET DIGIT FLAG NON-0

H ; *2

H ; *4

H ; *8

H ; *16

B,0 ; CLEAR UPPER 8 BITS OF BC PAIR

C,A ; BINARY VALUE OF CHARACTER INTO C

B ; ADD THIS VALUE TO PARTIAL RESULT
GHX05 ; GET NEXT CHARACTER

gREkkkkkkkkkkkkhkkkhkkkkhhhkhkkhhkkhkhkhhkhhkkkhkkkhkkkhkkkhkkkkkkkkkkk

; FUNCTION: GETNM
; INPUTS: C - COUNT OF NUMBERS TO FIND IN INPUT STREAM
; OUTPUTS: TOP OF STACK - NUMBERS FOUND IN REVERSE ORDER (LAST ON TOP

OF STACK)

; CALLS: GETHX,HILO,ERROR
; DESTROYS: A,B,C,D,E,H,L,F/F'S

; DESCRIPTION:

MVI
MOV

RZ
MOV

GETNM FINDS A SPECIFIED COUNT OF NUMBERS, BETWEEN 1
AND 3, INCLUSIVE, 1IN THE INPUT

STREAM AND RETURNS THEIR VALUES ON THE STACK. IF 2
OR MORE NUMBERS ARE REQUESTED, THEN THE FIRST MUST BE
LESS THAN OR EQUAL TO THE SECOND, OR THE FIRST AND
SECOND NUMBERS WILL BE SET EQUAL. THE LAST NUMBER
REQUESTED MUST BE TERMINATED BY A CARRIAGE RETURN

OR AN ERROR INDICATION WILL RESULT.

L,3 ; PUT MAXIMUM ARGUMENT COUNT INTO L
A,C ; GET THE ACTUAL ARGUMENT COUNT
3 ; FORCE TO MAXIMUM OF 3

; IF 0, DON'T BOTHER TO DO ANYTHIING
H,A ; ELSE, PUT ACTUAL COUNT INTO H

44

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 17

LOC OBJ LINE SOURCE STATEMENT
832 GNMOS5:
025E CD2202 833 CALL GETHX ; GET A NUMBER FROM INPUT STREAM
834 FALSE ERROR ; ERROR IF NOT THERE - TOO FEW NUMBERS
0261 D20D02 835+ JNC ERROR
0264 C5 836 PUSH B ; ELSE, SAVE NUMBER ON STACK
0265 2D 837 DCR L ; DECREMENT MAXIMUM ARGUMENT COUNT
0266 25 838 DCR H ; DECREMENT ACTUAL ARGUMENT COUNT
0267 CA7302 839 JZ GNM10 ; BRANCH IF NO MORE NUMBERS WANTED
026A 7A 840 MOV A,D ; ELSE, GET NUMBER TERMINATOR TO A
026B FEOD 841 CPI CR ; SEE IF CARRIAGE RETURN
026D CAODO2 842 JZ ERROR ; ERROR IF SO - TOO FEW NUMBERS
0270 C35E02 843 JMP GNMO05 ; ELSE, PROCESS NEXT NUMBER
844 GNM1O0:
0273 7A 845 MoV A,D ; WHEN COUNT 0, CHECK LAST TERMINATOR
0274 FEOD 846 CPI CR
0276 C20D02 847 JNZ ERROR ; ERROR IF NOT CARRIAGE RETURN
0279 O1FFFF 848 LXI B,0FFFFH ; HL GETS LARGEST NUMBER
027C 7D 849 MoV A, L ; GET WHAT'S LEFT OF MAXIMUM ARG COUNT
027D B7 850 ORA A ; CHECK FOR 0
027E CA8602 851 JZ GNM20 ; IF YES, 3 NUMBERS WERE INPUT
852 GNM15:
0281 C5 853 PUSH B ; IF NOT, FILL REMAINING ARGUMENTS WITH OFFFFH
0282 2D 854 DCR L
0283 C€28102 855 JNZ GNM15
856 GNM20:
0286 C1 857 POP B ; GET THE 3 ARGUMENTS OUT
0287 D1 858 POP D
0288 E1 859 POP H
0289 CD9CO02 860 CALL HILO ; SEE IF FIRST >= SECOND
861 FALSE GNM25 ; NO - BRANCH
028C D29102 862+ JNC GNM25
028F 54 863 MOV D,H
0290 5D 864 MOV E,L ; YES - MAKE SECOND EQUAL TO THE FIRST
865 GNM25:
0291 E3 866 XTHL ; PUT FIRST ON STACK - GET RETURN ADDR
0292 D5 867 PUSH D ; PUT SECOND ON STACK
0293 C5 868 PUSH B ; PUT THIRD ON STACK
0294 E5 869 PUSH H ; PUT RETURN ADDRESS ON STACK
870 GNM30:
0295 3D 871 DCR A ; DECREMENT RESIDUAL COUNT
0296 F8 872 RM ; IF NEGATIVE, PROPER RESULTS ON STACK
0297 E1 873 POP H ; ELSE, GET RETURN ADDR
0298 E3 874 XTHL ; REPLACE TOP RESULT WITH RETURN ADDR
0299 C39502 875 JMP GNM30 ; TRY AGAIN
876 ;
877 ;
IR A L T e
879 ;
880 ;

881 ; FUNCTION: HILO
882 ; INPUTS: DE - 16 BIT INTEGER
883 ; HL - 16 BIT INTEGER

45

ISIS-II 8080/8085 MACRO

LoC

029C
029D
029E
029F
02A0
02A1
024
02A5
02A6
02A7
02AA
02AB
02AC
02AE
02AF
02B0O
02B2
02B3
02B4
02B5
02B6
02B7
02B8
02B9
02BA
02BB
02BC

02BD
02BE
02BF
02co

OBJ

CABDO02
El
D5
3EFF
AA
57
3EFF
AB
5F
13
7D
83
e
8A
D1
78
Cl
(01°]

El
78
Cl
C34303

LINE

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

ASSEMBLER, X108

SDK80 PAGE 18

- 1 IF HL>=DE

; DESCRIPTION: HILO COMPARES THE 2 16 BIT INTEGERS IN HL AND DE. THE

INTEGERS ARE TREATED AS UNSIGNED NUMBERS. THE CARRY
BIT IS SET ACCORDING TO THE RESULT OF THE COMPARISON.

SAVE BC
SAVE A REGISTER
INCREMENT HL BY 1

; WANT TO TEST FOR 0 RESULT AFTER

/INCREMENTING

; WE'RE AUTOMATICALLY DONE IF IT IS

INCREMENT HL BY 1

; WANT TO TEST FOR 0 RESULT AFTER

/INCREMENTING

IF SO, HL MUST HAVE CONTAINED OFFFFH
IF NOT, RESTORE ORIGINAL HL

SAVE DE

; Want TO TAKE 2°S COMPLEMENT OF DE CONTENTS

; 2°S COMPLEMENT ODE TO DE
; ADD HL AND DE

; THIS OPERATION SETS CARRY PROPERLY
; RESTORE ORIGINAL DE CONTENTS

; RESTORE ORIGINAL CONTENTS OF A

; RESTORE ORIGINAL CONTENTS OF BC

; RETURN WITH CARRY SET AS REQUIRED

IF HL CONTAINS OFFFFH, THEN CARRY CAN
/Only BE WSET TO 1

; RESTORE ORIGINAL CONTENTS OF REGISTERS

SET CARRY AND RETURN

ghkkkkkkkkkkkkkkkkhkhhkkhkhhhhhkkkkkkhhhhhkhkhhhhkkkkkhhhhhkkkhkhkkkkkkkk

SOURCE STATEMENT
; OUTPUTS: CARRY - 0 IF HL<DE
; CALLS: NOTHING
; DESTROYS: A,F/F'S
HILO:
PUSH B
MOV B,A
INX H
MOV A,H
ORA L
Jz HILO5
INX H
MOV A,H
ORA L
Jz HILO5
POP H
PUSH D
MVI A,O0FFH
XRA D
MOV D,A
MVI A,O0FFH
XRA E
MOV E,A
INX D
MOV A,L
ADD E
MOV A,H
ADC D
POP D
MOV A,B
POP B
RET
HILO5:
POP H
MOV A,B
POP B
JMP SRET
; FUNCTION: NMOUT
; INPUTS: A - 8 BIT INTEGER
; OUTPUTS: NONE
; CALLS: ECHO,PRVAL
; DESTROYS: A,B,C,F/F'S

; DESCRIPTION: NMOUT CONVERTS THE 8 BIT, UNSIGNED INTEGER IN THE

46

ISIS-II 8080/8085 MACRO

LoC

02c3
02c4
02C5
02ceé
02Cc7
02cs
02C9
02CB
02cc
02CF
02D2
02D3
02D5
02D6
02D9
02DC
02DD

OBJ

E5

F5

OF

oF

oF

OoF
E60F
4F
CDDEO02
CDF401
Fl
E60F
4F
CDDEO02
CDF401
El

co

LINE

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

ASSEMBLER, X108 SDK80 PAGE 19

SOURCE STATEMENT
; A REGISTER INTO 2 ASCII CHARACTERS. THE ASCII CHARACTERS
; ARE THE ONES REPRESENTING THE 8 BITS. THESE TWO
; CHARACTERS ARE SENT TO THE CONSOLE AT THE CURRENT PRINT
; POSITION OF THE CONSOLE.
NMOUT :
PUSH H ; SAVE HL - DESTROYED BY PRVAL
PUSH PSW ; SAVE ARGUMENT
RRC
RRC
RRC
RRC ; GET UPPER 4 BITS TO LOW 4 BIT POSITIONS
ANI HCHAR ; MASK OUT UPPER 4 BITS - WANT 1 HEX CHAR
MOV C,A ;
CALL PRVAL ; CONVERT LOWER 4 BITS TO ASCII
CALL ECHO ; SEND TO TERMINAL
POP PSW ; GET BACK ARGUMENT
ANI HCHAR ; MASK OUT UPPER 4 BITS - WANT 1 HEX CHAR
MOV C,A ;
CALL PRVAL ;
CALL ECHO ;
POP H ; RESTORE SAVED VALUE OF HL
RET

shkkkkkkkkhkkkkkkkkhkhkkhkhkhhhhkkkkkhhhhkhkhkhhhhhkkkkhhhhhkhkhkhhhhhkkkkhhhhkkkkkkkk

02DE
02E1
02E3
02E4
02E5

21BF03
0600
09

4E

(01°]

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

FUNCTION; PRVAL

INPUTS: A - INTEGER, RANGE 0 TO F

OUTPUTS: A - ASCII CHARACTER

CALLS: NOTHING

DESTROYS: B,C,H,L,F/F'S

DESCRIPTION: PRVAL CONVERTS A NUMBER IN THE RANGE O TO F HEX TO
THE CORRESPONDING ASCII CHARACTER, 0-9,A-F. PRVAL
DOES NOT CHECK THE VALIDITY OF ITS INPUT ARGUMENT.

PRVAL:

’

LXI H,DIGTB ; ADDRESS OF TABLE

MVI B,0 ; CLEAR HIGH ORDER BITS OF BC
DAD B ; ADD DIGIT VALUE TO HL ADDRESS
MOV c,M ; FETCH CHARACTER FROM MEMORY
RET ;

ckkkhkkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkhkhkhkkkkkhkkhkkkkkkkhkkkkkkk

’

FUNCTION: REGDS

INPUTS: NONE

OUTPUTS: NONE

CALLS: ECHO,NMOUT,ERROR,CROUT

47

ISIS-II 8080/8085 MACRO

LoC

02E6

02E9
02EA
02EB
02EC
02EF
02F2

02F3
02F6
02F8
02FB
02FC
02FD
02FF
0300
0301
0304
0305
0306
0309
030A
030B

030E
0310
0313
0314

OBJ

21CFO03

4E
79
B7
C2F302
CDEEO1
co

CDF401
0E3D
CDF401
23

5E
1613
23

1A
CDC302
TE

B7
CAOEO3
1B

1A
CDC302

0E20
CDF401
23
C3E902

LINE

988

989

990

991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

ASSEMBLER, X108

’

; DESCRIPTION: REGDS DISPLAYS THE CONTENTS OF THE REGISTER SAVE

’

SOURCE STATEMENT

SDK80 PAGE 20

DESTROYS: A,B,C,D,E,H,L,F/F'S

LXI

MOV
MOV

REG10:

CALL
MVI
CALL
INX
MOV
MVI
INX
LDAX
CALL
MOV
ORA
JZ
DCX
LDAX
CALL

REG15:

MVI
CALL
INX

LOCATIONS,
DISPLAY IS DRIVEN FROM A TABLE, RTAB, WHICH CONTAINS
THE REGISTER'S PRINT SYMBOL, SAVE LOCATION ADDRESS,
AND LENGTH (8 OR 16 BITS).

IN FORMATTED FORM, ON THE CONSOLE. THE

H,RTAB ; LOAD HL WITH ADDRESS OF START OF TABLE
Cc,M ; GET PRINT SYMBOL OF REGISTER
A,C
A ; TEST FOR 0 - END OF TABLE
REG10 ; IF NOT END, BRANCH
CROUT ; ELSE, CARRIAGE RETURN/LINE FEED TO END
; /DISPLAY
ECHO ; ECHO CHARACTER
C,v=v
ECHO ; OUTPUT EQUALS SIGN, I.E. A=
H ; POINT TO START OF SAVE LOCATION ADDRESS
E,M ; GET LSP OF SAVE LOCATION ADDRESS TO E
D,REGS SHR 8 ; PUT MSP OF SAVE LOC ADDRESS INTO D
H ; POINT TO LENGTH FLAG
D ; GET CONTENTS OF SAVE ADDRESS
NMOUT ; DISPLAY ON CONSOLE
A,M ; GET LENGTH FLAG
.\ ; SET SIGN F/F
REG15 ; IF 0, REGISTER IS 8 BITS
D ; ELSE, 16 BIT REGISTER SO MORE TO DISPLAY
D ; GET LOWER 8 BITS
NMOUT ; DISPLAY THEM
c,l v
ECHO ; OUTPUT BLANK CHARACTER
H ; POINT TO START OF NEXT TABLE ENTRY
REGO5 ; DO NEXT REGISTER

gRIkkkkkkkkkkkkhkkhkkkhhkkhhkhhkkhhhkhhkhhkkhhkkkhkkhkhkkhkkkhkkkhkkkkkkkkkkkx

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

FUNCTION: RGADR
INPUTS: C - CHARACTER DENOTING REGISTER
ADDRESS OF ENTRY IN RTAB CORRESPONDING TO REGISTER

OUTPUTS: BC -
CALLS: ERROR

DESTROYS: A,B,C,D,E,H,L,F/F'S

RGADR TAKES A SINGLE CHARACTER AS INPUT. THIS CHARACTER
DENOTES A REGISTER. RGADR SEARCHES THE TABLE RTAB

FOR A MATCH ON THE INPUT ARGUMENT. IF ONE OCCURS,

RGADR RETURNS THE ADDRESS OF THE ADDRESS OF THE

SAVE LOCATION CORRESPONDING TO THE REGISTER. THIS

DESCRIPTION:

48

ISIS-II 8080/8085 MACRO

LoC

0317
031A

031D
031E
031F
0322
0323
0326
0327

032a
032B
032C
032D

032E
032F
0332
0333
0334
0335
0336
0339
033a
033D
033E
0341
0342

OBJ

21CF03
110300

1E
B7
CAODO2
B9
CA2A03
19
C31D03

23
44
4D
co

F3
21ED13
F9
D1
Cl
Fl
2AF713
F9
2AF513
E5
2AF313
FB
co

LINE

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

ASSEMBLER, X108 SDK80 PAGE 21

SOURCE STATEMENT
; ADDRESS POINTS INTO RTAB. IF NO MATCH OCCURS, THEN
; THE REGISTER IDENTIFIER IS ILLEGAL AND CONTROL IS
; PASSED TO THE ERROR ROUTINE.
RGADR:
LXI H,RTAB ; HL GETS ADDRESS OF TABLE START
LXI D,RTABS ; DE GET SIZE OF A TABLE ENTRY
RGAO5:
MOV A,M ; GET REGISTER IDENTIFIER
ORA A ; CHECK FOR TABLE END (IDENTIFIER IS 0)
JZ ERROR ; IF AT END OF TABLE, ARGUMENT IS ILLEGAL
CMP C ; ELSE, COMPARE TABLE ENTRY AND ARGUMENT
JZ RGA10 ; IF EQUAL, WE'VE FOUND WHAT WE'RE LOOKING FOR
DAD D ; ELSE, INCREMENT TABLE POINTER TO NEXT ENTRY
JMP RGAO5 ; TRY AGAIN
RGA10:
INX H ; IF A MATCH, INCREMENT TABLE POINTER TO
MOV B,H ; /SAVE LOCATION ADDRESS
MoV C,L ; RETURN THIS VALUE
RET
;***
; FUNCTION: RSTTF
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: NOTHING
; DESTROYS: A,B,C,D,E,H,L,F/F'S
; DESCRIPTION: RSTTF RESTORES ALL CPU REGISTER, FLIP/FLOPS, STACK
; POINTER AND PROGRAM COUNTER FROM THEIR RESPECTIVE
; SAVE LOCATIONS IN MEMORY. THE ROUTINE THEN TRANSFERS
; CONTROL TO THE LOCATION SPECIFIED BY THE PROGRAM
; COUNTER (I.E. THE RESTORED VALUE). THE ROUTINE
; EXITS WITH THE INTERRUPTS ENABLED.
RSTTF:
DI ; DISABLE INTERRUPTS WHILE RESTORING THINGS
LXI H,MSTAK ; SET MONITOR STACK POINTER TO START OF STACK
SPHL ;
POP D ; START ALSO END OF REGISTER SAVE AREA
POP B ;
POP PSW ;
LHLD SSAVE ; RESTORE USER STACK POINTER
SPHL ;
LHLD PSAVE ;
PUSH H ; PUT USER RETURN ADDRESS ON USER STACK
LHLD LSAVE ; RESTORE HL REGISTERS
EI ; ENABLE INTERRUPTS NOW
RET ; JUMP TO RESTORED PC LOCATION

49

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 22

LOC OBJ LINE SOURCE STATEMENT
1092 ;
TOO3 ;o e e e e e ek
1094 ;
1095 ;

1096 ; FUNCTION: SRET

1097 ; INPUTS: NONE

1098 ; OUTPUTS: CARRY = 1

1099 ; CALLS: NOTHING

1100 ; DESTROYS: CARRY

1101 ; DESCRIPTION: SRET IS JUMPED TO BY ROUTINES WISHING TO RETURN SUCCESS.

1102 ; SRET SETS THE CARRY TRUE AND THEN RETURNS TO THE
1103 ; CALLER OF THE ROUTINE INVOKING SRET.
1104 ;
1105 SRET:
0343 37 1106 STC ; SET CARRY TRUE
0344 C9 1107 RET ; RETURN APPROPRIATELY
1108 ;
1109 ;
1110 Hkkkdkkddkkkdohkdhdkkdhh ko k kA ko ko k ko ko k ko k ok k ko ko k ok ko kk*
1111 ;
1112 ;

1113 ; FUNCTION: STHFO

1114 ; INPUTS: DE - 16 BIT ADDRESS OF BYTE TO BE STORED INTO

1115 ; OUTPUTS: NONE

1116 ; CALLS: NOTHING

1117 ; DESTROYS: A,B,C,H,L,F/F'S

1118 ; DESCRIPTION: STHF0 CHECKS THE HALF BYTE FLAG IN TEMP TO SEE IF

1119 ; IT IS SET TO LOWER. IF SO, STHFO STORES A 0 TO
1120 ; PAD OUT THE LOWER HALF OF THE ADDRESSED BYTE;
1121 ; OTHERWISE, THE ROUTINE TAKES NO ACTION.
1122 ;
1123 STHFO:
0345 3AF913 1124 LDA TEMP ; GET HALF BYTE FLAG
0348 B7 1125 ORA A ; SET F/F'S
0349 CoO 1126 RNZ ; IF SET TO UPPER, DON'T DO ANYTHING
034A OEOO 1127 MVI c,0 ; ELSE, WANT TO STORE THE VALUE 0
034C CD5003 1128 CALL STHLF ; DO IT
034F C9 1129 RET
1130 ;
1131 ;
TL32 ;e o o ko e e
1133 ;
1134 ;

1135 ; FUNCTION: STHLF

1136 ; INPUTS: C - 4 BIT VALUE TO BE STORED IN HALF BYTE

1137 ; DE - 16 BIT ADDRESS OF BYTE TO BE STORED INTO

1138 ; OUTPUTS: NONE

1139 ; CALLS: NOTHING

1140 ; DESTROYS: A,B,C,H,L,F/F'S

1141 ; DESCRIPTION: STHLF TAKES THE 4 BIT VALUE IN C AND STORES IT IN
1142 ; HALF OF THE BYTE ADDRESSED BY REGISTERS DE. THE

1143 ; HALF BYTE USED (EITHER UPPER OR LOWER) IS DENOTED

50

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 23

LOC OBJ LINE SOURCE STATEMENT
1144 ; BY THE VALUE OF THE FLAG IN TEMP. STHLF ASSUMES
1145 ; THAT THIS FLAG HAS BEEN PREVIOUSLY SET
1146 ; (NOMINALLY BY ICMD).
1147 ;
1148 STHLF:
0350 D5 1149 PUSH D
0351 E1 1150 POP H ; MOVE ADDRESS OF BYTE INTO HL
0352 79 1151 MOV A,C ; GET VALUE
0353 E60F 1152 ANI OFH ; FORCE TO 4 BIT LENGTH
0355 4F 1153 MOV c,A ; PUT VALUE BACK
0356 3AF913 1154 LDA TEMP ; GET HALF BYTE FLAG
0359 B7 1155 ORA A ; CHECK FOR LOWER HALF
035A C26303 1156 JNZ STHO5 ; BRANCH IF NOT
035D 7E 1157 MOV A,M ; ELSE, GET BYTE
035E E6F0 1158 ANI OFOH ; CLEAR LOWER 4 BITS
0360 Bl 1159 ORA o ; OR IN VALUE
0361 77 1160 MOV M,A ; PUT BYTE BACK
0362 C9 116l RET
1162 STHOS5:
0363 7E 1163 MOV A,M ; IF UPPER HALF, GET BYTE
0364 E60F 1164 ANI OFH ; CLEAR UPPER 4 BITS
0366 47 1165 MOV B,A ; SAVE BYTE IN B
0367 79 1166 MOV A,C ; GET VALUE
0368 OF 1167 RRC
0369 OF 1168 RRC
036A OF 1169 RRC
036B OF 1170 RRC ; ALIGN TO UPPER 4 BITS
036C BO 1171 ORA B ; OR IN ORIGINAL LOWER 4 BITS
036D 77 1172 MOV M,A ; PUT NEW CONFIGURATION BACK
036E C9 1173 RET
1174 ;
1175 ;
1176 ;***
1177 ;
1178 ;

1179 ; FUNCTION: VALDG

1180 ; INPUTS: C - ASCII CHARACTER

1181 ; OUTPUTS: CARRY - 1 IF CHARACTER REPRESENTS VALID HEX DIGIT
1182 ; - 0 OTHERWISE

1183 ; CALLS: NOTHING

1184 ; DESTROYS: A,F/F'S

1185 ; DESCRIPTION: VALDG RETURNS SUCCESS IF ITS INPUT ARGUMENT IS

1186 ; AN ASCIT CHARACTER REPRESENTING A VALID HEX DIGIT
1187 ; (0-9,A-F) , AND FAILURE OTHERWISE.
1188 ;
1189 VALDG:
036F 79 1190 MOV A,C
0370 FE30 1191 CPI o' ; TEST CHARACTER AGAINST 'O’
0372 FA1802 1192 M FRET ; IF ASCII CODE LESS, CANNOT BE VALID DIGIT
0375 FE39 1193 CPI 9" ; ELSE, SEE IF IN RANGE '0'-'9’
0377 FA4303 1194 IM SRET ; CODE BETWEEN '0' AND '9'
037A CA4303 1195 Jz SRET ; CODE EQUAL '9'

51

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 24

LoC

037D
037F
0382
0384
0387

038a
038B
038D
0390
0392
0395
0397
039A

039D
039E
039F
03A3
03A7
03A9
03AA
000E

03AB
03AD
03AF

OBJ

FE41
FA1802
FE47
F21802
C34303

79
FE2C
CA4303
FEOD
CA4303
FE20
CA4303
C31802

0D

oA
4D43532D
3830204B
4954

oD

oA

0000
4101
1D01

LINE

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

1236
1237
1238
1239
1240
1241

SOURCE STATEMENT

CPI A’ ; NOT A DIGIT - TRY FOR A LETTER

IM FRET ; NO - CODE BETWEEN '9' AND 'A’

CPI 'G'

Jp FRET ; NO - CODE GREATER THAN 'F'

JMP SRET ; OKAY - CODE IS 'A' TO 'F', INCLUSIVE
:-**
; FUNCTION: VALDL
; INPUTS: C - CHARACTER
; OUTPUTS: CARRY - 1 IF INPUT ARGUMENT VALID DELIMTER
; - 0 OTHERWISE
; CALLS: NOTHING
; DESTROYS: A,F/F'S
; DESCRIPTION: VALDL RETURNS SUCCESS IF ITS INPUT ARGUMENT IS A VALID
; DELIMITER CHARACTER (SPACE, COMMA, CARRIAGE RETURN) AND
; FAILURE OTHERWISE.

VALDL:

MoV A,C

CPI vt ; CHECK FOR COMMA

JZ SRET

CPI CR ; CHECK FOR CARRIAGE RETURN

Jz SRET

CPI v ; CHECK FOR SPACE

JZ SRET

JMP FRET ; ERROR IF NONE OF THE ABOVE
’-***
; MONITOR TABLES
’-***
SGNON:: ; SIGNON MESSAGE

DB CR,LF, 'MCS-80 KIT',CR,LF
LSGNON EQU $-SGNON ; LENGTH OF SIGNON MESSAGE
CADR: ; TABLE OF ADDRESSES OF COMMAND ROUTINES

DW 0 ; DUMMY

DW XCMD

DW SCMD

52

ISIS-II 8080/8085 MACRO ASSEMBLER, X108

LoC

03B1
03B3
03B5
03B7

03B9
03BA
03BB
03BC
03BD
03BE
0006

03BF
03cCo
03C1
03c2
03cC3
03c4
03C5
03Ceé6
03C7
03cs8
03c9
03ca
03CB
03cc
03CD
03CE

03CF
03D0
03p1
0003
03D2
03D3
03D4
03D5
03D6
03D7
03D8
03D9
03DA
03DB
03DC
03DD
03DE
03DF
03E0

OBJ

FDOO
B300
9500
5E00

41
F2
00

42
FO
00
43
EF
00
44
EE

45
ED
00
46
F1l
00

LINE

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

CTAB:

NCMDS

DIGTB:

RTAB:

RTABS

SDK80 PAGE 25

SOURCE STATEMENT

DW
DW
DW
DW

DB
DB
DB
DB
DB
DB
EQU

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
EQU
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

MCMD
ICMD
GCMD
DCMD

D
’G’
’I’
M
’S’
le
$-CTAB ;

0!
1
Al
3
4
g
6!’
Uy Al
g
X-N
A’
'B'
e
D'
B
5ol

IAI :
ASAVE AND
0 ;
$-RTAB ;
lBl
BSAVE AND
0

lcl

CSAVE AND
0

’D’
DSAVE AND
0

’E’
ESAVE AND
0

lFl

FSAVE AND
0

; TABLE OF VALID COMMAND CHARACTERS

NUMBER OF VALID COMMANDS

; TABLE OF REGISTER INFORMATION
; REGISTER IDENTIFIER

OFFH ; ADDRESS OF REGISTER SAVE LOCATION

LENGTH FLAG - 0=8 BITS, 1=16 BITS

SIZE OF AN ENTRY IN THIS TABLE

OFFH

OFFH

OFFH

OFFH

OFFH

53

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK80 PAGE 26

LOC OBJ LINE SOURCE STATEMENT
03E1l 48 1294 DB 'H'
03E2 F4 1295 DB HSAVE AND OFFH
03E3 00 1296 DB 0
03E4 4C 1297 DB 'L'
03E5 F3 1298 DB LSAVE AND OFFH
03E6 00 1299 DB 0
03E7 4D 1300 DB ™'
03E8 F4 1301 DB HSAVE AND OFFH
03E9 01 1302 DB 1
03EA 50 1303 DB 'P'
03EB F6 1304 DB PSAVE+1 AND OFFH
03EC 01 1305 DB 1
03ED 53 1306 DB 'S’
03EE F8 1307 DB SSAVE+1 AND OFFH
03EF 01 1308 DB 1
03F0 00 1309 DB 0 ; END OF TABLE MARKERS
03F1 00 1310 DB 0
1311 ;
03FA 1312 ORG BRTAB
1313 ;
03FA C3E301 1314 JMP co ; BRANCH TABLE FOR USER ACCESIBLE ROUTINES
03FD C3D001 1315 JMP CI ;
1316 ;
1317 ;
1318 ,-***
1319 ;
1320 ;
1300 1321 ORG DATA
13ED 1322 ORG REGS ; ORG TO REGISTER SAVE - STACK GOES IN HERE
1323 ;
13ED 1324 MSTAK EQU $; START OF MONITOR STACK
13ED 00 1325 ESAVE: DB 0 ; E REGISTER SAVE LOCATION
13EE 00 1326 DSAVE: DB 0 ; D REGISTER SAVE LOCATION
13EF 00 1327 CSAVE: DB 0 ; C REGISTER SAVE LOCATION
13F0 00 1328 BSAVE: DB 0 ; B REGISTER SAVE LOCATION
13F1 00 1329 FSAVE: DB 0 ; FLAGS SAVE LOCATION
13F2 00 1330 ASAVE: DB 0 ; A REGISTER SAVE LOCATION
13F3 00 1331 LSAVE: DB 0 ; L REGISTER SAVE LOCATION
13F4 00 1332 HSAVE: DB 0 ; H REGISTER SAVE LOCATION
13F5 0000 1333 PSAVE: DW 0 ; PGM COUNTER SAVE LOCATION
13F7 0000 1334 SSAVE: DW 0 ; USER STACK POINTER SAVE LOCATION
13F9 00 1335 TEMP: DB 0 ; TEMPORARY MONITOR CELL
1336 ;
13FD 1337 ORG BRLOC ; ORG TO USER BRANCH LOCATION
1338 ;
13FD 1339 USRBR: DS 3 ; BRANCH GOES IN HERE
1340 ;
1341 ;
1342 END

PUBLIC SYMBOLS

54

ISIS-II 8080/8085 MACRO ASSEMBLER, X108

EXTERNAL SYMBOLS

USER
ASAVE
CI
CONST
DCM10
ECH10
FRET
GETHX
GNM20
HCHAR
ICM25
MCMO5
NMOUT
REG15
RSTU
SGNON
TEMP
VALDL
XCcM27

ASSEMBLY COMPLETE,

SYMBOLS

PRPRPPRPPERIPRD DD

13F2
01D0
00FB
0070
020B
0218
0222
0286
000F
00F4
0105
02c3
030E
0038
039D
13F9
038a
01AC

PRPRPPRPERIERD DD

001B BREAK
0027 CNCTL
000D CROUT
0085 DCM15
01F4 ERROR
13F1 GCM05
0257 GHX05
0291 GNM30
02BD HILO
00B3 INVRT
00FD MODE
007F PRVAL
02E6 REGS
03CF RTABS
001D SRET
001B TRDY
0154 XCM10
01B4 XCMD
NO ERRORS

PRPRPEPPERIERD DD

01BD
00FB
01lEE
008B
020D
00AA
0228
0295
029c
O00FF
00CF
02DE
13ED
0003
0343
0001
0163
0141

BRLOC
CNIN
CSAVE

ESAVE
GCM10
GHX10
GO

HSAVE

MSGL

PSAVE
RGAOS5
SCM05
SSAVE
TRUE

XCM15

PHPOPPREERIIPRPP DD

SDK80
13FD BRTAB
00FA CNOUT
13EF CTAB
005E DIGTB
13ED ESC
00BO GCMD
0241 GNMO05
0008 GTCO03
13F4 ICMO5
000a LOWER
0022 MSTAK
13F5 RBR
031D RGAL0
0122 SCM10
13F7 STHO5
0000 UPPER
0170 XCM18

55

PRPDPPRIERIPDPP DD

PAGE

03FA
00FA
03B9
03BF
001B
0095
025E
003B
00BE
0000
13ED
0002
032a
012D
0363
O00FF
017B

27

BSAVE
CNVBN
DATA

DSAVE
EXIT

GETCH
GNM10
GTCO05
IcM10
LSAVE
NCMDS
REGO05
RGADR
SCM15
STHFO
USRBR
XCM20

PP PRIEREPDPP DD

13F0
01DA
1300
13EE
0212
021B
0273
0048
00E6
13F3
0006
02E9
0317
013D
0345
13FD
0194

CADR

DCM05
ECHO5
FALSE
GETCM
GNM15
GTC10
ICM20
LSGNON
NEWLN
REG10
RSTTF
SCMD
STHLF
VALDG
XCM25

PP PREERIY+ PP DD

03AB
01E3
0065
01FD
0001
002B
0281
0054
00EE
000E
000F
02F3
032E
011D
0350
036F
01AB

56

"9 XIAN3ddV

LS

8 7 6 5 v 4 | 3 | 2 1
R2G in
Py 1
45V ———— S 2/B8 3
n i !IH CLR 7_
3|5T8 D5y \4
1= Doy ABO
: br; boyle— say | TZEB
5530 l;:s 73 ::z 3708
T Seut[E—he3 | t7ce
2 | el oo] R
s @ Zo |oT: he = .
HOLDOZ—0 2ol Ay (22 loe 290; ABb - T7ce,37C8
=] Doglel AB7
w5y 5y 3 Atla L
25 Ald A3 o] _]_1' b
3 R24 Bfgo* Ay 3? L
\ e U e
LS & 4oL s :‘i E7 —T_T_LCLR
T =ea ol %c LEING S e :3 2 eva”asl: Nq-
; +my = 20luce A =155 ooy, ABB 27ce | Flce
Ag Iz Doy AB9 2/¢cs 3/ce
N \]
18432 MHE vl Aol ; I3 42 Do3| i ABIO ZJZce , 3/ca
a 78 Ay e 74 212004 Al ZZce
cio Hzv «—ESvoo Ry e fots 2 ABlZ Z2/cB 37ce
10pF APRS A3 18 o1, DoufT A3
-I:_ Ay ze |orq 069 19 Rl
I+ 12 = Bl 22 |Dlg Dog| 2! aBIS
T A D MD
v =1 (oL P L 22|, 8 we
d (] TR
¢ o) o s DeIN
s Wi Nee @y @z HLoa |2 £o= =
=== " e
J__Sc.ua é‘?z-z _,?,}‘, 202 T HLOA > 1o 13
I - EE=Y
Z 1555 eeser | E=-Sdizlocer oofe 5 |5 58 bBof = oo
= 5 o) |2 o oay e oB)
19 ey BTN READY T2 lzeacy = a 12 b2 B2 1 B2
BEADY = & 9
Sloene osc 2. ‘é: 5 75 2 I S Son | ZT2ee, FZce WZoe
houd o
gearofel e I] i ‘:: e
oy |2 Epe oBl 15 oBlb
SETB T o7 fe 8l a7 mos — iy
syne 9 — 2y T TREMR
vsy -—2Blyec o—m;“ BaTA: SR IINTA [#’o».\emw
STATUS 52 B 4 24 MEMR 2788 3/¢8
STROBE —Hene bl Memw iz MEWW 37ce
Boaega 2| A9 £ UGE or GT/ca
Z Buzlz RaT N 21 _{ow \loW TZce
J5 94 LS._"C’W YORESET
Ves ov ¥ L—sTor
@j w2y RESET 37¢8 B/ Cs
Voo @ (TTL) W88
Vec 3l v 1% 5y ———— o5C L)
24, L 55 4vaTem Bus BuABLE 18.432Z MHZ
=2, [cis Cle | cos,ay caa &
AiTe AGD A 2 &L Ve [cer et ~0@(TTL)
"la"n' 22l S JuF +~-zz}4F - 2 3
S S OuF[ipaf TopuF ——00SC
Vee ol
4D [T
73
MOTES: UMLESS OTHERWISE SPECIFIED
|. ARTWORK REV LTR | &
GND 2. RESISTANCE 19 1N OHMS Ly, h .
!
3. CAPACITANCE 15 1N MICRO FARADS o o | s
[B> sHoRTING PADS GIVE SIMILAR EFFELT QUANTITY PER DASH 10 TS UsT
AS SWITEH A2G SAE NS SIGNATURE OATE intd“ 3048, BONTRY .
c3s -
b OPTIONAL CHIPS FOR ADDITIONAL BUFFERING A3 | A8 oo [2rc | Ao [avoie [oaner T\ /i8] 3 v T CALIF 95081
a3 P = [~ [S Vi e| e _
B> RiI3 GAGE ¢) USE: 2204 FOR -lOV. o VAT (o, S0 ECHEMATIC
S0 . FOR -2y T0-I5Y. Swit ~— o i~ L MC5-80 SYSTEM DESIGN WIT
DRAWING NO.
LAST UsEB| noT USED | A00062 3] 1Mcs 8o | Mt nmey | Adyg, (4[] 32 | 2T]
SPARE GATES | NoTAsY | Usoon woe_ [afe |\ o | D 2000610
\vj
8 | 6 5 4 3 | 2 | 1

SOILVINIHOS .08-SOIN

86

8 | 7 6 5 o 4 3 2 1
REVIBIONS
o DESCRIPTION I o l cHx ovon
/| see sHeET 4 5]
[beo
oal
oB2
B3
774
oBS
DBL
Loe7
[ABO
AB\
TZ02 4 a82
ABS
ABH
ABS
TZo2 ARl
87
2 Cc2 ABS
TZ.C2 re”
TAict ABID
TZLS ABl|
TZ LR ABIZ
2 (=3} Ao,
[=} o2 19 $12v :?D‘L Yoo 9 2y
i
O3 o3
Blon vee [Bessy 2loq Vee [EE—wwsv
I+ o5 L] o5
15 o6 Ves 2\ V) 5 oL Vps 21 BV
73 P lelnq
[l oa I og
Ao _8, Ao
=
A A
| Al4 e ; AlS
5 |5 ,8708 Bl SFIAE
CH |\ S
3 las 25
zl, ves |2 20 ves [E
Llag eeowm q’a s peent qa
w5V 221ng =2 22ina =
F7a = EA e E
o A R3O0 Y o
5 1%
ao ¥2€ oghts T S ze ‘f:—"
Zlay o) pt e
b
J_—’Az:z\gsog 3 a5, 2o
e, owp oz Voo 19 o sizv T 19 .2y
—_ 5 e o5 p— = O3
782 MEMR i i Blol vee [Plessv L 2lo, vee [Blessy
i/ D2 SA ES ol S i TH b
ahe % lop ves [Hs-sv Blo, Ve [Ele-5V
— e 75 Yol
= 7 log I log
R sl
A| AANT
bly, Ale LCH R
5 k3'3706 5 A;‘B"IOB
=, L
Ay At
E4 AS
2h, ves [= e Ve ::
La ozem q A7 Plt.\\q_
22 l3s 23 |,
22|, = 22 Ao =
25 R2D
2o A 45V

ommm“"-a 7 6 5 * a4 3 2

6G

8 7 6 5 v 4 3 2 1

SEISIONS.
m—l CESCRIFTION]m [euul oA
R - [s€e siEeT 4 BT AT
N
DR2
DB3
l£B2 DEY D
DBS
DBe
Loer
[aeD
ABI
ABZ
AB3
/D2
7—‘3 ABY
ARS < —
ABL
AB7
=
= MCME
/B2 — MEMW
| RESET ——————————— BV
o 15
— 17\"5‘4 R
s 7120 Ais 2 P
ABS 1Al gope Uz c
ABIC =182 B3P
1 —qF, Oy Pg
IEcE;; O5P—
| asi2 o LY s
t—.’;ub o7p—
I o 5V 1 +5Y e 45V s BV
] ! P10 — /0y i o <t
é T/0p Vee —':J »—I'—g 0z Vee s § i Tjoe Ve %? Ao Vie —B—J
I/03 GMD I/03 LMD I/o3 GNO g B E R
': /04 —-:L ': 1/ou _J:- '3 I/ou —-,L e —j:-
[0 {40 =140 5|80
A2 Al Al Azt | A2
z 7 A0 7 731
A z
Ilagimiey \ A% Biil-\ | :% 111-1 '7 A (T”{;
= & 4 7 X
x; Al IZ Pl) ot (-2 e
—{As % s [e S1%5 cmb® b5 jemy D% B
_-,: Ab CEl :>-—-l ‘;Alo CElD——‘L : i D-j: (;, Al 1
eH o = = A7 = A1 = 5 A =
i et T e oo oo
W e AW ce2 W cee QW ce2
o o Tm Txo
MWeer +8v s +BY e +5V il (o7 L8y
—1 10 s 1 —T/0) BT) 8
:; /02 VC[M '—:%—I/OZ Vi .._B_? —II:—I/D'L \l“__@_’ 0 ggl vee .——1 ==
/05 GUD I/0z GND I/o3 G| 3 GAD
(] [5 [
o Hoy 1:— T 1/0y _—-:L T zjou 1, TS s =
=1 Ad 3] A0 =] Ao B ﬁc
— A A AZ4 Ay 1 A2e
Z A2D F 7z ARS z
Az AZ
I -l [} < alii=) [Bl \ Bin=
A A
7|3 (e-3) 7142 -7 T A2 (8-3) 7143 -1
s Ay 5 5 Ay 5 Ay s = Ay s
5 At CE P~ = As = AS CEOD—J_ & Ag CE\D—J 7
e = = A6 = = IS = —he =
5 1A7 51147 = Kl =3 Kl
=—{oD ={co 0P %o
W CER W 2 qw ez
o Jlo Yo
]
- s
P 7 6 l 5 f 4 3 2

8 7 6 5 W 4 3 2 1

09

REVIRONS
URI DESCRIPTION [W [Ml Enan
- | see shemT o |ave3s] | e
’ e R
[= Pag? o— i1
DBO oBg A <
oB| Blos; P2 o o—fz)
opz 2ios, PAgff——o o—m
OB DBs PA o o—{z=]
782 4 oey - - 22/08, P2 o o
oBS 29cps PASIZE o o—fiT]
oBL 28103, PALIZE o
LOB7 2loa; Paq3l— o o—1{31
==} L 110N Pegll® &5 o[
a8 8la pa 12 o ‘o—FE]
702 ABZ 2 N o f=]
AB3 % & pBa|2L o o—rm
LABu (& I,
TZB2 \[oR 3 PB5lZ3 o [3]
ZB2 oW 2o, PB@%—O o—iZ]
T/ B2 REAET 25 |opcet Pay : o—rT)
z 2 y > o Py : e—{iz]
1P Ve [Feeiny azms ool [i L
D Pl
s :, BZ?‘“D i .?;I_b P (i o—g]
2 o2 l___ = Ve peyg |13 o 0 =z
5154 2z ﬁz - Ve5 P55 o (7]
elos |2 =212 = peefl 5 o]
1 log vz_? 215 Pty He o
aley o L
/D Tve =
| EE=—— e i 2yD |2 JE
| AR — o
2Hoes PAR——o o—fa
22108, PhlE——0 o
TZ82 oe(TTL) L 32ipg,; PAz ._o‘:o o—1zz]
2lloes PAy o o—pz)
RI& 22io8u Phs L L o—{i1]
=Q A 290 ok 5K 29 ope PRLl2S o
w0 an2222 B> L ZBle. PRl —o o—3]
27 Z-;’ o8- PRA4S o
! i
A P o
EE 5 28 == No P:'z o o—{ie]
15 QAGB(;LQ° el 5 = = R20 e PBaldl o o—Jia]
S ame o o g e —r R
ABCDcRIK AB C D (LR LN Wi o e85 2 5 o—1=]
34fsle Tile I3l4T5Te Yilz [z 25 locset PBLIEY o o (2]
= R2 5 Pe[2 o o—[1]
I
: : o Rty a4 Plolt—o o—®]
| L=l
/82 0sC oo o—8)
IS +H2Vv o—i5]
o—{E])
o—{=]
o—zal
CONMNELT APPROPZIATE SUMPER Zal% FOR
APPECPRIATE LSES
BAUD RATE TABLE
TS - (e
STO 24 12370 26 1237025
STSITIHBTY ¢ Te\1 ED Heoo e
il 101§ [0 \: 242
CRT Sl 610/ TTL 516 GND i16 31470 53[0 e
WO—————nF 208 |1 l02si 20| 3 &00
— cTog] 108 b 3 200 ST | DEPT | DRAWING NO. eV
e [27 o2& s 10 I E7) 150 =
2235321 22?0:1 1 Zi T5/NOUE 4 TO 5 iS ONNECTED) 2000610 A

‘ 5 f 4 3 1 z

19

A i ® ~
©h97s
mcs-so™ SWI MADE IN USA
SYSTEM A 50 9= b s e e el S ST Al el 2 Al (5. .80 7 & 9 wInlR i 25 V2534 5 6 ST B 1o s
DESIGN s‘tslsng L R L v N 2l 22 23 4 25 14 15 7 12 21 22 23 24 25 M O15 16 17 18 19 20 21 22 23 24 25 GND
KlT 1 3 J
TP TV VT TTOVT T TT VP OIVPIVVD T O D TUTTOUDT VLT CTVTTUDTE J3 4
B32EE23a333A0 T 28, RISRASEFANRIRINZAN 28
e 15— 16
GND A S
5 ” e 20
8255 PPl PORT F4-F6 2 8255 PP PORT EC-EE » >
T
a 23
e e 1233 N2
A2 Sk e 6 RIL_24 !9
31 /N RI0 (750 1 RI2
¥ 32 28349 Sl \ [k =1 RI3 390/510
* s —(Z7K— 47 27
AS e 33 29 = | 2N2907 i
79 R4 128
34 37 g : E] I gt &
AN 8251 =|x s j A& Blc B ET
USART - L
i PORT FA-FB 9 1 [a0 -] Kr- =i s A
AS 5 i] 3
=| = 10 Al4 & AlS Al6 [A7
1 [1 2 3 an GO M N R —_AISL
¥ 3 RIS 300 :30 e“o :._s I uv_i 1 1 81 @l W[5]1
> 430:2 L A R i | F | e ST S e
g 4 |2 a6 (2 [2)a W 1.5W 8 Eaaa 8708 8708 / 8708 798 =
! picr— ez \J U 8212 9 3 o)
AlD oz
5 ADDRESS Rs PROM PROM PROM PROM
A9 BEFrER 0% =RER 0000- 8400- 2800- acoe- (@)
| j ABB-AB7 2 N® 9o @3FF b O7FF @BFF 4 OFFF 2
X » w
+ Y1 =
o 28 8228 &
oK (OPTION)
B 8 SYS
= CTLR
8080A x :
AT |
) CcPU 8 412 €23 B Lid toV) caa MY
1 GND cu CiD Lo 1/
8 e Al8 20C 1D az25 CID a2
R 8212 1 1 1
8 g g g S
e c’: g ADDRESS & & =
BUFFER on <
Z 4 my >
Z ABB-ABIS Az z
c12) 2 =3
D
] —_—_——] o
|slojionsn i (OPTION) a?
Co1 D +
'530.057‘: r4E] Cib sl = c21
ok »-:-E‘ga Cod & T + —LiaF— vourace| °
e S 21' a4 GND +—{ 2uF |- 22 REGULATOR
T 875 n 7577 8 83 85
NOTES:

— ALL RESISTORS ARE IN OHMS
— ALL CAPACITORS ARE IN uF UNLESS OTHERWISE NOTED

SED

-809000L YMd

08 SAS

S3ANTVA LNINOdINOD
HLIM LNOAV AYVvO4

\

O XIAN3ddV

intel@ el

	98-203B_Page_01c
	98-203B_Page_02a
	98-203B_Page_03
	98-203B_Page_04
	98-203B_Page_05
	98-203B_Page_06
	98-203B_Page_07
	98-203B_Page_08
	98-203B_Page_09
	98-203B_Page_10
	98-203B_Page_11
	98-203B_Page_12
	98-203B_Page_13
	98-203B_Page_14
	98-203B_Page_15
	98-203B_Page_16a
	98-203B_Page_17
	98-203B_Page_18
	98-203B_Page_19
	98-203B_Page_20
	98-203B_Page_21
	98-203B_Page_22
	98-203B_Page_23
	98-203B_Page_24
	98-203B_Page_25
	98-203B_Page_26
	98-203B_Page_27
	98-203B_Page_28
	98-203B_Page_29
	98-203B_Page_30
	98-203B_Page_31
	98-203B_Page_32
	98-203B_Page_33-60
	98-203B_Page_61
	98-203B_Page_62
	98-203B_Page_63
	98-203B_Page_64
	98-203B_Page_65
	98-203B_Page_66a
	98-203B_Page_67a
	98-203B_Page_68b

