Ak .
iAPX 88 BOOK
| WITH AN INTRODUCTION TO THE iAPX 188

J ’

/

Intel Order Number: 210200-002




intal

IAPX 88 BOOK
WITH AN INTRODUCTION TO THE iAPX 188

1983



Published for Intel
by
Reston Publishing Company, Inc.
(A Prentice-Hall Company)
Reston, Virginia 22090

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, IZICE, ICS, iDBP, iDIS, iLBX, im, iIMMX,
Insite, INTEL, intel, Intelevision, Intellec, intgligent Identifier™,
intglBOS, inteligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of .
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of the iAPX 88 Book can be purchased through Reston Publishing Company, Inc.
ATTN: Special Sales, 11480 Sunset Hills Road, Reston, Virginia 22090. Phone: (703) 437-8900.

Copies of all other Intel literature may be obtained from:

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1983



ABOUT THIS BOOK

This book describes the unique Intel 8088
microprocessor, the outstanding choice for 8-
bit microcomputer applications requiring
both high performance and low cost.

The Intel 8088 is the most powerful 8-bit
microprocessor available today, yet as easy to
use as other 8-bit microprocessors designers
have used for years.

Chapter 1 introduces the 8088 CPU with its
key features that give it high performance,
with overviews on the following topics:

Pipelined architecture

Register resources

Memory addressing

Instruction set

System interfacing

Functional extensions

Also an iAPX 188 overview is given.

Chapter 2 provides a detailed discussion of
the programmer’s architecture including:

Register set

Addressing modes

Instruction set

Assembly language

At the end of Chapter 2 is a complete set of
instruction set reference pages that describe
each instruction fully, one at a time.

Chapter 3 provides necessary information for
the hardware designer to incorporate the
8088 microprocessor into cost effective
iAPX* 88 microcomputer systems. Included
is a discussion of the following:

® Bus Timing and Status

© Bus Interface including interface to MUX
bus devices

® Memory and Peripheral Interface
Wait States

*]APX stands for Intel Advanced Processor System

Interrupts

Direct Memory Access
Reset

Building Large Systems

Chapter 4 gives some specific 8088 system
design examples for the simple to complex
systems:

Multiplexed bus small systems

® Demultiplexed systems with standard mem-
ories and peripherals

e S100 Bus System
iAPX 88 based CRT

e MULTIBUS™ System

The Supplement provides an introduction to
microcomputer concepts and terminology
including:

What is a microcomputer?

What’s inside the CPU?

© What are machine cycles?

® What are addressing modes?

The Appendix contains the following data
sheets and comparison benchmark reports:

Data Sheets

iAPX 88/10 data sheet
© 8284A data sheet
8282/8283 data sheet
8286/8287 data sheet

o iAPX 188

Benchmark Reports
e iAPX 88 vs. 6809
e jAPX 88 vs. Z80

Related Documentation:

® TheiAPX 86,88 User's Manual
Contains complete design information on
building iAPX 86 and iAPX 88 systems,
including the use of 8089 I/O processor
and 8087 numerics processor extension.
Several Application Notes are included.



® The Peripheral Design Handbook
Contains data sheets and application
notes featuring Intel peripheral devices.

® The Intel Component Data Catalog
Contains data sheets for all Intel semi-
conductor components, including mem-
ories and peripherals.

Additional copies of the iAPX 88 Book can be
purchased by contacting:

Reston Publishing

Special Sales

11480 Sunset Hills Road

Reston, Virginia 22090

All other documentation is available from:

Literature Department
Intel Corporation
3065 Bowers Ave.
Santa Clara, CA 95051

The material in the Assembly Language sec-
tion of Chapter 2 was edited and reprinted
with permission of Hayden Book Company,
from The 8086 Primer, by Stephen P. Morse.
Copyright 1980.

Furthermore, selected material was extracted
from the following articles:

1) S.P. Morse, W.B. Pohlman, B.W. Ravenel,
“The Intel 8086 Microprocessor: A 16-Bit
Evolution of the 8080,” Computer, June
1978.

2) S.P. Morse, B.W. Ravenel, S. Mazor,
W.B. Pohlman, “Intel Microprocessors —
8008 to 8086,” Computer, October 1980.



Table of Contents

CHAPTER 1 Page
Introduction to iAPX 88/188
What is the 80887 . ...t i i e s 1-1
8088 Pipelined ArchiteCture ............eeunui it ees 1-2
Efficient Program Coding .......... .o i i i 1-3
iAPX 88 Megabyte Memory Addressing . .........c.eueuuriniueinannannn 1-5
The 8088’s 16-Bit Instruction Set .............. . i 1-10
Interfacing the 8088 . ... ..ottt e e e 1-13
Processor EXtENSIONS . .. oottt 1-17
ROV I BW oot e 1-19
The IAPX 188 CPU ...ttt e 1-20
. CHAPTER 2
iAPX 88 Architecture and Instructions
IAPX 88 ArChitecture . ...t e e i e, 2-1
Register StrUCIUre . ... ot e e e e e 2-2
Addressing MOdes . ...ttt e 2-5
Organization of Instruction Set ...... ... i 2-10
Assembly Language Programming . .........ooiiiuiiiiiiiiiiiiiiiinneeneeann. 2-18
INStrUCHION St . . e e 2-45
CHAPTER 3
iAPX 88 Hardware Design
CPU Pin FUNCHONS ..ottt et ettt e ettt ettt e e 3-1
8088 Bus Timing and Minimum Mode Status ............... ... ... o 3-6
BUS INterface ...t e e e 3-8
Memory and Peripheral Interface ......... ... i i 3-9
CloCK GENEratioN ..ottt it et e e 3-13
RSt .t e e e 3-14
Ready Implementation and Timing ...ttt 3-16
] (T 0T ] £ PP 3-18
Bus Control Transfer ... ..o e e 3-24
Maximum Mode SysStemS . ...ttt et 3-24
CHAPTER 4
Application Examples
Multiplexed System ... ...t e e 41
IAPX 88 Demultiplexed System . ... ..ot e e 4-10
iAPX 88-Based S100 Bus System . ... .ottt 4-14
iAPX 88-Based CRT Controller . ... ...ouiiiii it eie e 4-14
IAPX 88 Multiprocessing Systems . ....o vttt e e 4-16
SUPPLEMENT
What is a Microcomputer? . ..... ... it e S-1
What are Data, Address and Control Busses? ..., S-2
Machine Cycles, Interrupts, and Direct Memory Access ..........cccevevvvvnnnn S-3
What's Inside the CPU? .. .. it e ettt eas S-4
APPENDIX
Benchmark Reports and Data Sheets
Benchmark Report: Intel® iAPX 88 vs. Zilog Z80 .........coviiiiiiiiiiiiiienn., 1
Benchmark Report: Intel® iAPX 88 vs. Motorola MC6809............ovvvvvinnn... 20
iAPX 88/10 16-Bit HMOS MIiCrOproCEeSSOr .. ..uvttteniiiieeeeniiieeaneeenn s 37
8284A Clock Generator and Driver for iAPX 88/10, iAPX 88/10 Processors ........ 64
8282/8283 Octal LatCh . ...ttt i e 72
8286/8287 Octal Bus TranSCeIVEN .. .uuvuu ettt it i iiiiiaee s 77



List of Figures

CHAPTER 1 Page
1-1  Microcomputer Block Diagram ...........ooiiiiriiiiiiiiiniieieneeiannanas 1-1
T-2  B0B8 CPU .ottt e e e e e e e 1-1
1-83  Program Execution in Standard Microprocessor .............cccvveiiiienin.... 1-2
1-4  Pipelined Internal Architecture ...t 1-2
1-5  Parallel Operation in 8088 CPU ... ...ttt 1-3
1-6 8088 Register Set ... ...ttt e 1-4
1-7  Data Group Registers .........o.iiiiiiti i e 1-4
1-8 Baseand Index Registers ...........ooeiiiiiiii i 1-4
1-9  Control Registers ...t e e e 1-5

1-10  iAPX 88 Architecture Quick Access to Four Segment Types .................. 1-6

1-11 Segment Registers ..ot e ... 1-6

1-12  Howan Addressis Built ...ttt 1-6

1-13  Process Relocation ........ .. oo e 1-8

1-14  iAPX 88 Addressing Modes ..........ciiiniiiiiii i 1-8

1-15  Four-Component Addressing Example ...........ccooiiiiiiniiiiinnnenennnn... 1-9

1-16  Data Transfer Instructions ... 1-10

1-17  Arithmetic InStructions ........ ... oot 1-10

1-18  Bit Manipulation INStructions ......... .ottt 1-11

1-19  String INStruCtioNs ... . i e e 1-11

1-20  Program Transfer Instructions ...........ccoiiiiiiiiiiiiiii it e, 1-12

1-21  Processor Control Instructions ...ttt 1-13

1-22 8088 Bus Interface is Similarto 8085 ..........ccoiviiiiiiiiiiii i 1-14

1-23  Multiplexed Bus Components for Low Chip-Count Applications ............. 1-15

1-24  iAPX 88 Bipolar Support Components ...........ciuiiiiiiiiiiiiiiiiann. 1-16

1-25 iAPX 88 Longer Memory Access Time .. ....ouiniiiiiiiiiiiniiiininainnns 1-17

1-26  iAPX 88 Processor EXtensions .........couiiiuiiii it 1-18

CHAPTER 2
2-1  How to Address One Million Bytes ............coiiiiiiiiiiiiiiiiiiiiiniann. 2-2
2-2 8088 Register Structure .......... ..ot e 2-3
2-3  Implicit Use of General Registers .........c.oiiiiiiiiiiiiii i 2-4
2-4  Defining Bits in Instructions with One and Two Operands ~................... 2-6
2-5 Determing First Operand ...... ...ttt 2-7
2-6  Effective Addresses Used with Different Data Structures ...................... 2-7
2-7 8088 AdAress CoOmMPONENtS  ...i.tiitiit ittt e et aiaieanns 2-7
2-8 Reserved and Dedicated Memory Locations ...............ocoviiiiiiiin., 2-8
2-9  Interrupt Vector Tablein Memory ... ... ..o 2-9

2-10  Effective Address Calculation Time ........ccoviiiiiiii i, 2-17

2-11  Translation Process ....... A 2-19

2-12  Assemblers and Compilers ...........ooiiiiiiiii i 2-19

2-13  Delimiters in ASM-86 ... . ittt i e e 2-24

2-14  ASM-86 Reserved Words ........vuiuinintiii i iei e 2-43,44

References for Instruction Set ......... ... i 2-4547
(continued)



List of Figures (cont.)

CHAPTER 3 Page
-1 8088 CPU PiNs .ttt et e 3-1
3-2 Time Multiplexing of Addressand Data  .............coiiiiiiiiniiiininann.. 3-2
3-3 Decoding of Status Signals S3-S  .........coiiiiiiiii i 3-2
3-4 IAPX 88 Multiplexed BUs System .........coiuiniiiiii i 3-4
3-5 iAPX 88 With Buffered Demultiplexed Busses .............c.coeiiiiiiainenn.. 3-5
3-6  IAPX 88 Status DeCodiNg  ...ouitii i e e e 3-5
3-7 iAPX88Basic Machine CycCle ..........cciiiiiiiiiii ittt 3-7
3-8 iAPX 88 Compatible Multiplexed Bus Components ..............c.cocvivin.n. 3-8
3-9  Multiplexed Bus CONNECLIONS ... ittt ci et i e 3-10

3-10 Demultiplexed Bus CONNECLIONS  ......uiniiiiii it 3-11

3-11  iAPX 88 With Buffered Demultiplexed Busses .............c.cociiiiinin.... 3-12

3-12  How 16-bit Data is Arranged in 8-bit Memory ........... ... 3-13

3-13  Generating Clock Signal With 8284A ... ... . ittt 3-13

3-14 CPU State Following ReSet ......iiiiiiiii it 3-14

3-15 iAPX 88 Bus Condition During Reset ... 3-15

3-16  IAPX 88 Bus DUrNg ReSet .. ...c.iiiiniiiii i 3-15

3-17  8284A Reset CirCUit ...ttt e 3-16

3-18 Constant Current on Reset Circuit ....... ..., 3-16

3-19  Normally READY Wait State Timing ...t 3-17

3-20 Normally Not READY Wait State Timing  ........c.oiiiiiiiiiiiiiiiiaaen, 3-18

3-21  Using RDY 1/RDY 2to Generate READY ..ottt 3-19

3-22  Using AEN1/AEN2 to Generate READY ......ciitiriiiiii i neiienens 3-19

3-23  Single Wait State Generator ............o.iuiiiiiiiii i 3-19

3-24  Interrupt Acknowledge SeqUENCEe ..........i.iiiiiiiiii e 3-20

3-25  Interrupt Vector Table in Memory ...t 3-21

3-26  Interrupt Priorities ... s 3-23

3-27 iAPX 88 Bus Condition During HOLD ... ...ttt 3-24

3-28 IAPX 88 and 8237A ConNNECLiONS .....iuiiutiti i e e 3-25

3-29  HOLD/HLDA TimiNg .ttt et e ie e 3-26

3-30 iAPX 88 Using Maximum Mode ..........oiuiiiiiiiii e 3-26

3-31  Min./Max. Mode Pin Assignments ...t 3-27

3-32  Queue Status Decoding . ....c.iiiii e 3-27

3-33 Request Grant Sequence Time (Max. Mode Only) ............c...coiiiae... 3-28

3-34 iIAPX 88/21 Configuration ........ ..ot e 3-29

CHAPTER 4
4-0 iAPX 88 Multiplexed System Design Example ..........coiiiiiiiiniiininenn, 4-2
4-1  iAPX 88 Demo Board AdAress Map .....ovviiinriiiiei it 4-4
4-2  Vest Pocket Computer Component Layout ...........c.coviiiiiiieiiiiiennnnn. 4-5
4-3  Vest Pocket Schematic ........ ..o 4-6
4-4 iAPX 88 Demultiplexed Bus System ......... ..o 4-8
4-5 2114 Chip Select Connection ..ottt et e it 4-11
4-6  IAPX 88 S100 BUS SyStem ..ottt s 4-11
4-7  IAPX 88 S100 SChematiC ........iuiniitt et 4-12
4-8 CRT Controller Block Diagram ...........iniiiiiriiiit i iiireaneannns 4-15
4-9 8276 Row Buffer Loading .......c.oiiiiiiiiiii i e 4-16

4-10  Escape Character Recognition Code .............ciiiiiiiiiiiiiiiiininn., 4-17

4-11  iAPX 88 Multiprocessing System . ......oiiiiiiiii it 4-18

4-12  Typical iAPX 88 Local Mode Configuration ............c.coiiiiiiiiniinann... 4-19

4-13  Typical 8089 Remote Mode Configuration ..............c.oiiiiiiiiiiniinn.. 4-21

4-14  i{APX 86,88 Multiprocessing System ......... ..ottt 4-22

(continued)



List of Figures (cont.)

SUPPLEMENT Page
S-1 - Microcomputer Block Diagram ..........oveiriieinriiiii i S-1
APPENDIX

IAPX 88 vS. ZIlog Z80 ................ i 1
Table 1 Architecture Features ............ooiiiiniiiiiiiiie it iiinieeaannanns 2
Table 2  Execution Times iAPX 88 vs. ZBOA ... ..ottt it aannanas 5
Table 3  Execution Times iAPX88vs. Z80B .........ciiiiiiiiiiiiii i iiieieiians 6
Table 4  Execution Times with Comparable Memory Access ..........ccoevvvivnen... 6
Table 5 Execution Times with Comparable Memory Access ............cccovvvuen... 7
Table 6 Ease of Programming iAPX 88vs. Z80 ........ccciuiiiviiniiiniaiiainennn.. 7
Table 7 Memory Utilization (ByteS) .......couiiiiiiiiiii i i iei e 8
Table 8  Performance BreakdOWn ...........iiiniiiiiiii it e e 9
Fig. 1 16-bit Multiply Flowchart ...... ... i e e 11
Fig. 2 Block Translate Flowchart ...t it enans 14
Fig. 3  Bubble Sort ' ... o 17
iAPX 88 vs. Motorola MC6809 ......................ccoiiiiiiiiiiiiieeean, 20
Table 1 Architecture Features ............ciiiiiiiiiiii it 21
Table 2  Execution Times (5 MHz 88/10vs. 2 MHz 6809) ............c.ccovvininnnnn.. 24
Table 3 Execution Times with “Equal” Memory Access Times ...................... 25
Table 4  Memory Utilization (Bytes) .......ccoiiiiiiiiiiiiiii it iiee e 25
Table 5 Ease of Programming ..........o.iioiiiiiiint e 26
Table 6 Performance Breakdown ....... ... ittt 27
Fig. 1 16-bit Multiply Flowchart ........ . i i e 28
Fig.2 Block Move Flowchart ...........oiniiiiiiiii it it 31
Fig. 3 Character Search Flowchart ... i 34

vi-



ction
iAPX 88







CHAPTER 1
INTRODUCTION

WHAT IS THE 80882

AniAPX 88* Microcomputer system has the
three main elements typical to most compu-
ter systems: The central processor (8088
CPU), the input/output ports, and memory
(Fig. 1-1).

The iAPX 88 is unique in many ways, how-
ever, and the remainder of this chapter
describes the basics of the 8088 CPU and
iAPX 88 Microcomputer systems.

One of the most unique aspects of the 8088
is shown in the simple block diagram (Fig.
1-2). The 8088 combines the powerful resour-
ces of a 16-bit microprocessor internal
architecture with an easy-to-use 8-bit bus
interface. The bus interface is easy for hard-
ware designers because it is similar to other
8-bit microprocessors. In particular, most of
the bus lines are identical in function to the
popular 8085A. Those designers who have
interfaced memories and I/ O devices to 8085

*]APX refers to the entire microsystem built around
the 8088 CPU.

microprocessors will find it easy to incorpo-
rate the 8088 into new systems.

16-BIT POWER ON AN 8-BIT BUS

The 16-bit internal architecture provides 16-
bit wide registers, data paths, a 16-bit ALU,
and a set of powerful 16-bit instructions iden-
tical to the ones found in the popular 16-bit
8086 microprocessor.

With this new internal architecture, the 8088
has features that were never before available
with an 8-bit microprocessor. Among these
features is a 20-bit memory address range
and a 16-bit input/output port address range
for I/O cycles. This gives the 8088 a full
megabyte (1,000,000-plus bytes) of memory

BRINGS 16-BIT CAPABILITY TO 8-BIT
ENVIRONMENTS

16-BIT

8085A
ARg\ll-.lrﬁ'E'é‘%bRE BUS INTERFACE

Figure 1-2. 8088 CPU

< ADDRESS BUS

L

MEMORY

170

¢

2\

C

DATA BUS >

< CONTROL BUS

Figure 1-1. Microcomputer Block Diagram

1-1




INTRODUCTION

addressability and 64,000 bytes of I/0
addressability.

The iAPX 88 instruction set includes a full
complement of arithmetic operations includ-
ing addition, subtraction, multiplication, and
division, on 8-bit or 16-bit quantities. This
gives the 8088 the highest computational
throughput of any 8-bit microprocessor for
numerics intensive applications. The 8088
also has a complete set of string manipula-
tion operations for performance and flexi-
bility in applications where large amounts of
data are involved.

To make efficient use of its megabyte of
memory addressing, the 8088 provides the
most powerful range of addressing modes
available to the programmer; from simple
immediate addressing (data contained in the
instruction) to complex addressing built from
four components (three registers plus imme-
diate data). More details are provided on
addressing modes later on in this chapter.

The 8088 has built-in hardware support for
multi-processor systems to coordinate re-
source sharing of memory or peripheral
devices among multiple processors.

Finally, and possibly the most powerful
advantage: the 8088 is 100% code compatible
with the 16-bit 8086 CPU. All the power of
the 8086 16-bit instruction set is available in
the 8-bit 8088. So, IAPX 88 systems are easily
upgradable to iAPX 86 16-bit systems because
of this complete instruction set compatibility.

HOW THE 8088 PIPELINED
ARCHITECTURE INCREASES SYSTEM
PERFORMANCE

Figure 1-3 shows how programs are executed
over time in a standard microprocessor.
First, the microprocessor must fetch the
instruction to be performed, then it executes
the instruction. Only after the execution is
complete is the CPU ready to fetch in the
next instruction, execute that instruction, etc.
as the program proceeds from beginning to
end.

The CPU hardware that executes instruc-
tions must obviously wait until the
instruction is fetched and decoded before
execution begins. Therefore, in standard
microprocessors, the execution hardware
(primarily the control circuitry and the
arithmetic and logic unit) spends a lot of time
waiting for instructions to be fetched. The
8088 eliminates this wasted time by dividing
the internal CPU into two independent func-
tional units (Fig. 1-4).

BUS
EXECUTION
INTERFACE
UNIT UNIT

SYSTEM BUS
PIPELINED ARCHITECTURE DELIVERS HIGHER
PERFORMANCE WITH REDUCED BUS ““DEAD
TIME”

Figure 1-4. Pipelined Internal Architecture

FETCH EXECUTE

FETCH

EXECUTE FETCHe oo

TIME —

Figure 1-3. Program Execution in Standard Microprocessor

1-2



INTRODUCTION

Bus Interface and Execution Units

Work in Parallel

The 8088 has a separate bus interface unit
called the BIU whose only job is to fetch
instructions from memory and pass data to
and from the execution hardware to the out-
side world over the bus interface. Since the
execution unit and the bus interface unit are
independent, the bus interface unit fetches
additional instructions while the execution
unit (sometimes called the EU) executes a
previous instruction. This is made possible
by the instruction pipeline (or queue)
between the bus interface unit and the execu-
tion unit; the bus interface unit fills this
pipeline with instructions awaiting execu-
tion. Thus, whenever the execution unit
finishes executing a given instruction, the
next instruction is usually ready for imme-
diate execution without delays caused by
instruction fetching. Figure 1-5 shows paral-
lel fetching and executing in the 8088 CPU.

BENEFITS OF PIPELINING

Because the BIU is usually busy fetching
instructions for the pipeline, the 8088 bus is
more fully utilized making efficient use of
the iAPX 88 system bus structure. Parallel
fetching and executing also gives the 8088
almost as much performance as a micropro-
cessor that moves data 16-bits at a time.

Another benefit of the parallel operation is
that since the execution unit seldom needs to
wait for the BIU to fetch the next instruc-
tion, there is less need for the BIU to fetch
data quickly. Thus, the 8088 BIU allows
maximum performance and processing
power without high speed memory devices in
the system.

The only time instruction fetch time is not
totally transparent is when program execu-
tion transfers to a new, non-sequential
address. When this happens, the bus inter-
face unit is given the new address by the
execution unit; it then begins fetching instruc-
tions sequentially from the new address. The
execution unit must wait for the next
instruction to be fetched the way most
microprocessor units wait for every instruc-
tion to be fetched. After the first instruction
is fetched from the new location the bus
interface unit again continues to fill the pipe-
line with instructions and fetch-time be-
comes transparent.

HOW THE 8088 REGISTER RESOURCES
PROVIDE EFFICIENT PROGRAM CODING
Figure 1-6 provides an overview of the regis-
ters available in the 8088 CPU. The 8088
provides the largest number of continuously
available registers of any 8-bit microproces-

BIU | FETCH FETCH FETCH FETCH FETCH SET
EU | war EXECUTE EXECUTE EXECUTE

Figure 1-5. Parallel Operation in 8088 CPU

1-3



INTRODUCTION

sor. Within the general register group there
are eight 16-bit registers. Four of these can be
referenced alternately as either 16-bit or as
eight 8-bit registers. All of these registers are
available to the programmer for general pur-
pose activities.

In addition to the general registers, there are
two 16-bit control registers and four 16-bit
segment registers. The function of all 8088
registers is described in more detail in the
following paragraphs.

Data Registers

The data group registers which, in their 16-bit
form, are the AX, BX, CX and DX registers
(Fig. 1-7). For 8-bit operations they are
broken up into a high byte and low byte. AH
is the high byte of the AX register, AL is the
low byte of the AX register, and so on. As

register is used as a base register in some of
the more powerful addressing modes.

Pointer and Index Registers

Figure 1-8 shows the pointer and index regis-
ters. The BP and SP registers both point to
the 8088’s stack, a linear array in the 8088’s
memory used for subroutine parameters,
subroutine return addresses, or other data
temporarily saved during execution of an
8088 program.

Most microprocessors have a single stack
pointer register called the SP. The 8088 has
an additional pointer into the stack called the
BP or the base pointer register. While the SP
is used similar to stack pointers in other
machines (for pointing to subroutine and

1-4

" mentioned, these registers have general usage
for simple arithmetic and logical operations. AH AL AX
Some registers have additional special func-
tions which are performed in the execution of BH BL BX
certain instructions. For example, the CX
register is frequently used to contain a count
value during repetitive instructions. The BX CH CL 2
DH DL DX
5
- DATA -
i ]
k GENERAL Figure 1-7. Data Group Registers
INDEX A REGISTERS
BP & SP FOR BP
- POINTER - STACK PARAMETER
/ PASSING Sp
L CONTROL - } CONTROL
REGISTERS SI & DIFOR sl
STRING MANIP. &
] DATA STRUCTURES DI
L i 'SEGMENT
SEGMENT 1 > REGISTERS
THESE CAN ALSO BE USED AS GENERAL
REGISTERS
Figure 1-6. 8088 Register Set Figure 1-8. Base and Index Registers



INTRODUCTION

interrupt return addresses), the BP register is
available to the programmer for whatever use
he desires. The BP register can contain an old
stack pointer value, or it can mark a place in
the subroutine stack independent of the SP
register. Using the separate BP register to
mark the stack saves the juggling of a single
stack pointer to reference subroutine parame-
ters and addresses.

The two index registers are the SI (source
index) register and the DI (destination index)
register (Fig. 1-8). These are both 16-bits
wide and are used by string manipulation
instructions and in building some of the more
powerful 8088 data structures and addressing
modes. Both the SI and DI registers have
auto-incrementing and auto-decrementing capa-
bilities. All base and index registers have
general arithmetic and logical capabilities in
addition to their special functions. '

Control Registers

Figure 1-9 shows two 16-bit control registers.
First is the IP or instruction pointer which
points to the next instruction the bus inter-
face unit will fetch. (The instruction pointer is
similar to a Program Counter used in other
microprocessors, except that the IP points to
the next instruction being fetched, whereas
the traditional program counter points to the
next instruction to be executed). The second
16-bit control register (Fig. 1-9) contains flags
or condition codes that reflect the results of

arithmetic or logical operations as they are
performed by the execution unit.

Segment Registers

The fourth group of registers, called the seg-
ment registers, are used by the 8088 in the
formulation of memory addresses. Segment
register usage is described in the following
section on memory addressing.

THE iAPX 88 MEGABYTE MEMORY
ADDRESSING MEANS QUICK ACCESS
TO COMPLEX DATA STRUCTURES

As mentioned, the 8088 generates a 20-bit
memory address during every memory refer-
ence operation, to address one million
(1,048,576) bytes of memory. These bytes are
stored sequentially starting from byte 0 to
byte FFFFF in hexidecimal or base 16 nota-
tion. The 8088 has three uses for the memory
it addresses: programs, data and stack. The
8088 may separate data into “local data” used
by a particular program segment and “global
data’ accessible to all program segments. Al-
ternately, you may have two data areas acces-
sible to a given program at any point in time.

Every 20-bit memory address points either to
program code, data, or stack area in memory
(Fig. 1-10). For each of the four different
memory spaces, the 8088 has a segment base
register. Each segment register points to the
base address of the corresponding area in

INSTRUCTION
POINTER

FLAGS OF | DF

TF [ SF | zF AF PF CF

Figure 1-9. Control Registers

1-5



INTRODUCTION

memory (Fig. 1-11). The code segment regis-
ter points to the base of the program
currently running. The stack segment register
points to the base of the 8088’s stack, the data
segment register points to the base of one
data area, and the extra segment register
points to the base of another area where data
can be stored. Each segment register is 16-bits
wide, and one of the four is used in the com-
putation of every memory address that the
8088 generates.

How are Addresses Generated?

Every time the 8088 needs to generate a
memory address, one of the segment registers
is automatically chosen and added to a logi-
cal address (Fig. 1-12).

For an instruction fetch, the code segment
register is automatically added to the logical
address (in this case the contents of the
instruction pointer) to compute the value of
the instruction address.

For an operation referencing the 8088’s stack,
the stack segment register is automatically
added to the logical address (the SP register
contents) to compute the value of the stack
address.

For data reference operation, where either
the data or extra segment registers are chosen

MEMORY
T
STACK
cooE 1 W%
STACK clallal
DATA | %
DATA 1
EXTRA >
VA
REGISTERS .| PROGRAM
Vi
CONTENTS OF 8088 SEGMENT REGISTERS
POINT TO THE BASE ADDRESS OF THE
CORRESPONDING AREAS IN MEMORY.

IMPLICIT
SELECTION
CODE [ > seament
STACK
& | Locicar
DATA ADDRESS
| A |
EXTRA
SEGMENT 20 BIT
REGISTERS PHYSICAL
ADDRESS

Figure 1-12. How an Address is Built

MODULE
DATA

MODULE
STACK

SYSTEM
DATA

Figure 1-10. iAPX 88 Architecture Quick Access to Four Segment Types




INTRODUCTION

as the base, the logical address can be made
up of many different types of values: it can be
just the immediate data value contained in
the instruction, or, it can be the sum of an
immediate data value, plus a base register,
plus an index register.

For the sum of the addition to be 20-bits
wide, the segment register value is automati-
cally shifted left by four binary bits before it
is added to the 16-bit logical address. The
result is always 20-bits of physical address.

Note that since logical addresses are always
16-bits wide, you can address up to 64K bytes
in a given segment without changing the value
of the segment base register. In systems that do
not have more than 64K bytes of program plus
64K bytes of stack, plus 64K bytes in each of
two different data areas, it is possible to set the
segment registers at the beginning of the pro-
gram and then forget them. In a system where
the fotal amount of memory is 64K bytes or
less, it is possible to set all segment registers
equal and have fully overlapping segments.

On the other hand, segment registers are very
useful when you have a large programming
task and you want isolation between your
program code and the data area or isolation
between module data and the stack informa-
tion, etc. Segmentation also makes it easy to
build relocatable and/ or reentrant programs.

RELOCATABLE AND REENTRANT
PROGRAMS

In many cases, the task of relocating an 8088
program (relocation means having the ability
to run the same program in several different
areas of memory without changing the pro-
gram itself) simply requires moving the
program code and then adjusting of the code
segment register to point to the base of the
new code area. Since programs can be writ-
ten for the 8088 where branches or jumps in
program flow may occur using new locations

relative only to the instruction pointer, the
program does not care what value is kept in
the code segment register. Figure 1-13 shows
how an entire process, consisting of code,
stack and data areas, can be relocated.

Likewise in a reentrant program, a single
program uses multiple data areas. Before the
reentrant code is entered the second time, the
data segment register value is changed so that
a different data area is made available to the
program.

ADDRESSING MODES

Now, let’s continue our discussion of address-
ing modes, providing more detail about how
addresses are formed.

The 8088 has 24 different addressing modes
to generate logical addresses. Figure 1-14
shows the different logical address combina-
tions, from the simplest immediate data
mode to the register addressing mode, where
a selected register contains the data being
used by the instruction. In the direct address-
ing mode, the instruction itself contains the
address of the data. In the register indirect
mode, the instruction points to a register con-
taining the memory address of the desired
data. There are both indexed and based
addressing modes where the contents of an
index or based register is added to an imme-
diate data value contained in the instruction
to form the memory address.

Exactly how the 8088 selects an addressing
mode for a given instruction is encoded
within the bits of the instruction code. This is
discussed in more detail in Chapter 2.

If we examine the most complex and power-
ful of the addressing modes, which includes
base register, index register, and displace-
ment in the logical address, it can be seen that
some fairly complex data structures can be
easily addressed in a single instruction by the
8088.



INTRODUCTION

MEMORY
BEFORE RELOCATION

MEMORY
AFTER ELOCATION

V% 7
CODE i
/SEGMENT CODE CODE
//// STACK STACK
Lizc 4 DATA i DATA
SEGMENT — 1 ExTRaA EXTRA  |—
Z //
DATA CODE
SEGMENT | ' | SEGMENT
- STACK
/ | SEGMENT
DATA
/ . SEGMENT
EXTRA
SEGMENT | _ . SEQMENT
Y% E Y%

TO RELOCATE AN ENTIRE PROCESS MOVE THE CODE,
STACK, AND DATA, AND UPDATE THE SEGMENT REGISTER
CONTENTS TO POINT TO THE NEW AREAS.

Figure 1-13. Process Relocation

MODE LOCATION OF DATA
IMMEDIATE WITHIN INSTRUCTION
REGISTER IN REGISTER
DIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN

INSTRUCTION.

REGISTER INDIRECT

AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN
REGISTER.

INDEXED OR BASED

AT MEMORY LOCATION POINTED TO BY SUM OF INDEX REGISTER
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED
IN INSTRUCTION.

BASED AND INDEXED
WITH DISPLACEMENT

MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND
INDEX REGISTER CONTENTS AND IMMEDIATE DATA.

THE LOCATION OF DATA IS REALLY THE LOGICAL ADDRESS, WHICH IS ADDED TO THE SEGMENT
REGISTER VALUE TO FORM THE PHYSICAL MEMORY ADDRESS.

Figure 1-14. iAPX 88 Addressing Modes

1-8




INTRODUCTION

FOUR-COMPONENT ADDRESSING

An example of four-component addressing
(three-component logical address plus seg-
ment base) is shown in Figure 1-15, and is
described as follows:

Suppose you’re writing a program to com-
pute the payroll for a large corporation. This
corporation has several groups of employees.
Within each group there are multiple em-
ployees, and for each employee certain data
is kept in a record of information. Included
in this data are the employee’s address, social
security number, and a wage code indicating
how much that employee is being paid.

The task at hand is to select the wage code for
a particular employee from the entire com-
plex array of employee data. The 8088 can do
it with a single instruction after the registers
are set up. Here’s how: First, set the data
segment register to the base of the employee
data, set a base register such as BX to contain
the offset number of bytes between the
employee data base address and the start of
the data that applies only to the desired
group of employees. Next we set an index
register such as SI to index to the desired
employee’s information within the given
group of employees. Finally, we use an abso-

lute displacement value to point to the given
employee’s wage code within the employee’s
data record.

The single instruction MOV AX, [BX + SI+ 12]
then, will select the appropriate employee’s
wage code. To implement the same function
with any other 8-bit microprocessor would
require multiple instructions to build the
address.

Symmetric Use of Memory

Another way these powerful addressing
modes work is that memory locations can be
used as either source or destination operand
of most instructions. A single 8088 instruc-
tion can perform a logical AND between the
contents of a given memory address and an
immediate data value, and store the results
back in the same memory address. The equi-
valent function would take multiple
instructions on an 8-bit processor such as
an 8080. It is as though you can treat any
memory location as a CPU register for sim-
ple arithmetic and logic operations. Follow-
ing are several operations which can be
performed directly on memory locations.

AND [memory address], 7FH
OR [BX + ST+ 12], 1F80H
ADD [memory address], 2500

PAYROLL
DATA

I

DISPLACEMENT = 12 (WAGE CODE)

INDEX = S| (EMPLOYEE #N)
BASE = BX(EMPLOYEE GROUP)
SEGMENT = DS (PAYROLL SEGMENT)

MOV AX,[BX +SI+12];GET WAGE CODE

Figure 1-15. Four-Component Addressing Example

1-

9




INTRODUCTION

THE 8088’s POWERFUL 16-BIT
INSTRUCTION SET

The 8088 has the most powerful instructions
of any 8-bit microprocessor. In addition to
the standard instruction types you would find
on other 8-bit machines, the 8088 offers
powerful 16-bit instructions that perform the
function of multiple instructions on older
8-bit architectures. Figure 1-16 through 1-21
show the various groupings and the instruc-
tion names.

The 14 data transfer instructions (Fig. 1-16)
move single bytes and words between memory
and registers as well as between registers AL
or AX and I/O ports. The stack manipula-
tion instructions are included in this group as
are instructions for transferring flag contents
and for loading segment registers.

8088 arithmetic operations (Fig. 1-17) may be
performed on four types of numbers: un-
signed binary, signed binary integers,
unsigned packed decimal and unsigned

unpacked decimal numbers. Binary numbers
may be 8-bits or 16-bits long, decimal
numbers are stored in bytes, two digits per
byte for packed decimal, and one digit per
byte for unpacked decimal.

The 8088 provides three groups of bit manip-
ulation instructions (Fig. 1-18) for
manipulating bits within bytes and words
and for performing logical shifts and rotates.
The logical instructions include the Boolean
operators NOT, inclusive OR, exclusive OR,
plus a TEST instruction that sets the flags
but does not alter either of its operands.

The bits in bytes or words may be shifted
arithmetically or logically by the shift instruc-
tions. Up to 255 shifts may be performed
according to the value of the count operand
coded in the instruction. The count may be
specified as the constant “1” or as the con-
tents of register CL, allowing the shift count
to be a variable supplied during program

ADDITION
GENERAL PURPOSE ADD Add byte or word
ADC Add byte or word with carry
MoV Move byte or word INC Increment byte or word by 1
PUSH Push word onto stack AAA ASCI| adjust for addition
POP Pop word off stack DAA Decimal adjust for addition
XCHG Exchange byte or word SUBTRACTION
XLAT Translate byte SUB Subtract byte or word
SBB Subtract byte or word with borrow
INPUT/OUTPUT DEC Decrement byte or word by 1
IN input byte or word 25‘; lélegate bybtetor word 2
ompare byte or wor
out Output byte or word AAS | ASCIladjust for subiraction
ADDRESS OBJECT DAS Decimal adjust for subtraction
LEA Load effective address MULTIPLICATION
LDS Load pointer using DS mllliJLL IMim'p'y by:tg o'r Vt\)lotrd unsngr;ed
- - nteger multiply byte or wor
LES Load pointer using ES AAM | ASCITadjust for multiply
FLAG TRANSFER DIVISION
LAHF Load AH register from flags DIV Divide byte or word unsigned
- - IDIV Integer divide byte or word
SAHF Store AH registerin flags
9 g AAD | ASCIladjust for division
PUSHF Push flags onto stack CBW Convert byte to word
POPF Pop flags off stack CWD Convert word to doubleword

Figure 1-16. Data Transfer Instructions

Figure 1-17. Arithmetic Instructions




INTRODUCTION

execution. Bytes and words also may be
rotated. Bits rotated out of an operand are
not lost as in a shift but are circled back into
the other end of the operand.

POWERFUL STRING PROCESSING

Five basic string instructions called primitives
allow a string of bytes or words to be oper-
ated on, one byte or word at a time. Strings
of up to 64K bytes may be manipulated with
these instructions. Instructions are available
to move data from a source string to a desti-
nation string, or to compare two strings, or
to scan one string for a given value. In addi-
tion, string instructions are provided to move
string elements to and from the AX register
in the 8088 (Fig. 1-19).

The specified operation is performed only
once when the string primitive is encountered
in the program. If the programmer desires
the operation to be performed repetitively,

such as in a block or string manipulation
operation, the basic string primitive may be
proceeded by a special one byte “prefix” that
causes the instruction to be repeated by the
hardware. This prefix is called REPEAT.
The use of the REPEAT prefix allows long
strings to be processed much faster than
would be possible with a software loop. The
repetitions can be terminated by a variety of
conditions and a repeated operation may be
interrupted and resumed. The CX register
counts the number of times the string opera-
tion is performed.

When the 8088 moves a 16-bit quantity, it
does so 8 bits at a time automatically in the
hardware. Because of the variety of string
operations and the fact the 8088 can move
both 8-bit and 16-bit quantities using its
string instructions, the 8088 has the most
powerful string processing capabilities of any
8-bit microprocessor.

The program transfer instructions are shown
LOGICALS in Figure 1-20. These instructions redirect the
NOT “Not” byte or word flow of instruction execution to other loca-
AND “And” byte or word t10n§ in memory apd many 9f them are
— - - equivalent to instructions found in other 8-bit
OR Inclusive or’’ byte or word .
on e o o - microprocessors. The 8088, however, offers
X Xclusive or byte or wor much more flexibility in how an instruction is
TEST Test” byte or word performed. The unconditional transfer instruc-
SHIFTS tions may transfer control to a target
SHL/SAL Shift logical/arithmetic left MOVS Move byte or word string
byte or word
SHR Shift logical right byte or word CMPS Cc;rm):é'e byte orword
SAR Shift arithmetic right byte or ‘
word SCAS Scan byte or word string
ROTATES LODS Load byte or word string
ROL Rotate left byte or word STOS Store byte or word string
ROR Rotate right byte or word REP Repeat
RCL Rotate through carry left byte
rworg gncarry ety REPE/REPZ Repeat while equal/zero
RCR Rotate through carry right REPNE/REPNZ | Repeatwhile not
byte or word equal/not zero

Figure 1-18. Bit Manipulation Instructions

Figure 1-19. String Instructions



INTRODUCTION

instruction within the current code segment
for an intrasegment transfer, or to a different
code segment with an intersegment transfer.
The transfer is made unconditionally any
time the instruction is executed. An intra-
segment transfer is always made relative to
the current value of the instruction pointer.
Program segments which only use intraseg-
ment transfers are, therefore, relocatable in
memory. The conditional transfer instruc-
tions may or may not transfer control,
depending on the state of the CPU flags at
the time the instruction is executed.

The 18 instructions (Fig. 1-20), each test a
different combination of flags for a condi-
tion. If the condition is true, control is
transferred to the target address specified for
the instruction. If the condition is false, then
control passes to the instruction that follows
the conditional jump.

The iteration control instructions regulate the
repetition of software loops. These instruc-
tions use the CX register as a counter. The
LOOPNE instruction for instance decre-
ments a count, checks to see if the count is
zero, and branches back to the beginning of
the program loop. The equivalent function
would require multiple instructions in an
older 8-bit instruction set, such as the 8080’s.

The interrupt instructions allow interrupt
service routines to be activated by both pro-
grams and external hardware devices. The
effect of software initiated interrupts is sim-
ilar to hardware initiated interrupts.

The processor control instructions (Fig. 1-21)
allow programs to control various CPU func-
tions to update flags and to synchronize the
8088 with external events. Finally, the NOP
instruction causes the 8088 CPU to do
nothing,

CONDITIONAL TRANSFERS

UNCONDITIONAL TRANSFERS

JA/JNBE Jump if above/not below nor equal CALL Call procedure
JAE/INB Jump if above or equal/not below RET Return from procedure
JB/JNAE Jump if below/not above nor equal JMP Jump

JBE/JNA Jump if below or equal/not above

JC Jumpif carry ITERATION CONTROLS

JE/JZ Jump if equal/zero /

JG/INLE Jump if greater/not less nor equal LOOP Loop

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/UNG Jump if less or equal/not greater JCXZ Jump if register CX =0
JNC Jump if not carry

JNE/JINZ Jump if not equal/not zero INTERRUPTS

JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd INT Interrupt

JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even

JS Jump if sign

NOTE:

“Above” and “below” refer to the relationship of two unsigned values. “Greater” and “less” refer to the

relationship of two signed values.

Figure 1-20. Program Transfer Instructions

1-12



INTRODUCTION

Well-Planned Instructions

The 8088 instructions can be from one byte
to seven bytes in length, depending on the
number of operands and immediate data
fields included in the instruction. Great care
has been taken in the design of the instruc-
tion set to allow for efficient programs to be
written. The 8088 instructions need not be
word aligned (starting at even addresses) con-
trary to many other 16-bit instruction sets,
therefore saving bytes otherwise wasted. It is
also possible to use one-byte constants, one-
byte displacements, and jump offsets, saving
code when compared with other machines
that always require 16-bit quantities be used.

The 8088 instruction set also has been
designed such that some registers are always
used for certain functions. The CX register,
for example, is used for a count value by
some repetitive instructions. This implied use
of registers allows shorter programs because
the register address need not be contained in
those instructions.

FLAG OPERATIONS
STC Setcarry flag
CLC Clear carry flag
CMC Complement carry flag
STD Setdirection flag
CLD Clear direction flag
STI Setinterrupt enable flag
CLlI Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next instruction
NO OPERATION
NOP [ No operation

Figure 1-21. Processor Control Instructions

Because of the symmetric use of memory and
the ability to build sophisticated data struc-
tures using the 8088 addressing modes, the
8088’s instruction set is ideal for the imple-
mentation of higher level languages. And
because the instruction set is bit-efficient, the
higher level language programs consume less
memory. Benchmarks have shown that the
8088 can generate both assembly language
and higher level language programs with 30%
less source and object code than other 8- and
16-bit microprocessors. This code savings
results in both higher performance and lower
memory cost. The instruction set of the 8088
is discussed in more detail in Chapter 2.

INTERFACING THE 8088 IS EASY,
FLEXIBLE

We have talked at some length about what
goes on inside the 8088, what its instruction
set is and the resources available for the pro-
grammer. Following is a brief overview of
how the 8088 interfaces with other compo-
nents in an iAPX 88 system.

Figure 1-22 is a simple diagram showing
some of the bus interface lines that are pro-
vided on the 8088 CPU chip. The 8088 is
shown here opposite the 8085A, another
popular 8-bit microprocessor, to emphasize
the similarity between the two interfaces.
Both the 8088 and the 8085A time-multiplex
the low order 8 bits of the address bus with
the 8- bits of the data bus. This means that
during part of an 8088 machine cycle, the 8
bits of the multiplexed bus (ADy-AD7) con-
tain address information, and during the
remainder of the machine cycle the same 8
lines contain data being transferred to/from
the 8088. On both the 8088 and the 8085A
there is a control line, called ALE, which sig-
nals when the multiplexed address and data
lines contain address information. ALE can
be used to enable an external latch to latch
up the address for the remainder of the
machine cycle.



INTRODUCTION

The next higher order address lines, Ag
through Ajs, are present throughout the
machine cycle on both the 8088 and the
8085A. Note that the 8088 has four other
address lines, Aq through A|g not present
on the 8085A and which the 8088 time-
multiplexes with status information during
the machine cycle.

The three control lines RD, WR, and IO/M
signal the actual data transfer during a
machine cycle, whether the 8088 is reading or
writing, and whether that transfer is taking
place with respect to I/ O devices or memory

devices. Also, the 8088, like the 8085A, has
other lines containing cycle status infor-
mation available at the beginning of the
machine cycle to inform other devices in the
system what type of machine cycle is being
performed.

There are several other control lines used
with the 8088 such as interrupts, HOLD,
READY. See Chapter 3 for details.

Using Special Multiplexed Bus Parts

Because the 8088 is so much like the 8085A,
you may connect the 8088 directly to a whole
family of multiplexed bus components de-

8088 8085A
WR
10/M
DT/R S1
STATUS
SSO S0

g
(it

8088 IS AN EASY UPGRADE FOR EXISTING 8-BIT SYSTEMS

Figure 1-22. 8088 Bus Interface is Similar to 8085

1-14



INTRODUCTION

signed for the 8085A, without additional
interface logic. Figure 1-23 shows just a small
system. The multiplexed bus components are
the 8155, the 8355, 8755A, and the 8185.
Each of these contains an internal address
latch that demultiplexes internally the 8088’s
bus. The multiplexed bus devices are highly
integrated as they combine multiple functions
to provide a low cost, high-functionality sys-
tem in a very small number of components.
The 8155 contains 256 bytes of static RAM,
22 parallel 1/O lines, and a 14-bit timer/
counter. The 8355 and 8755A contain 2K
(2048) bytes of either ROM or EPROM, and
16 parallel I/O lines. The 8185 is a 1K byte
static RAM in a narrow 18-pin package.
Note also in Figure 1-23 that the 8088 uses an
external clock generator chip called the
8284A.There is another multiplexed-bus
memory called the 21821, brand new, that
adds 4K bytes of RAM memory to an iAPX
88 system.

BUILDING A STANDARD INTERFACE

Most applications, of course, require more
memory or I/ O capacity than provided by a
multiplexed bus system like the one just des-
cribed. In the average system, the designer
would like to use some commonly available
non-multiplexed RAM chips for data stor-
age, some standard EPROM or ROM chips
for program storage and some special peri-
pheral devices. To build a standard non-
multiplexed bus structure, a whole family of
support components are provided for use
with the 8088. These support devices are
shown in Figure 1-24.

The 8088’s bus can be demultiplexed very
easily using an 8282 or 8283 latch as shown in
Figure 1-24. The 8282 is a non-inverting 8-bit
latch in a narrow 20-pin package. The 8283
provides inverted outputs over the bus (“1”
inputs become “0” outputs and vice versa).

8284A
CLOCK

8088

T

8088 MULTIPLEXED BUS

0

=

8355/8755A

815%_
RAM/IO/TIMER ROM/EPROM/IO

8185
RAM

=

{

Figure 1-23. Multiplexed Bus Components for Low Chip-Count Applications

1-15




INTRODUCTION

To provide extra drive capability for the data
-~ lines, the 8286 and 8287 8-bit transceivers are
available; the 8287 being the inverting version
of the 8286. Also shown in Figure 1-24 is the
8288 bus controller. This optional system
device decodes some status information
coming from the 8088 CPU to provide
special control signals for the bus. The 8288
provides separate memory read, memory
write, I/O read, and I/O write control
signals. Without the 8288, the 8085A-
compatible RD, WR, and 10/M signals
would be used.
Also shown in Figure 1-24 is the 8289 bus
arbiter. It is also an optional component used
in multi-master iAPX 88 systems. A multi-
master system could be one where multiple

8088’s share control of the multi-master bus.
At any one point in time, only one of the
several 8088’s would be allowed to take
control of the bus to access a shared resource
such as a memory. Each 8088 would have its
own 8289 bus arbiter. Handshaking signals
between the 8289’s ensure that only one of
the possible masters takes control of the bus
at a time, thus preventing conflicts between
them.

Once the standard bus structure is created,
the 8088 interfaces easily with standard
memory and peripheral devices. In fact, the
performance requirement on memory devices
and peripherals imposed by an 8088 is much
lighter than any other high-performance 8-bit
MIiCroprocessor.

= 8284A
T CLOCK
8088
8286/87 8282/83 8288 8289
TRANSCEIVER LATCH CONTROLLER ARBITER

U U

MULTIMASTER BUS

Figure 1-24. iAPX 88 Bipolar Support Components



INTRODUCTION

iAPX 88 PERFORMANCE IS

COST EFFECTIVE

Figure 1-25 shows the 8088’s memory speed
requirements compared to other 8-bit micro-
processors. The memory access times listed
refer to the time available from when the
address first comes out of the CPU during a
memory read machine cycle until the data
must be available coming back from the
memory into the CPU.

The 8088 running at SMHz allows 460ns for
memory devices to receive the address and
return the data. The fastest Z80 and the fas-
test 6809 allow only 140ns and 320ns
respectively for the same activity to take
place. This means that the 8088 can offer its
full performance while using slower and pre-
sumably cheaper memories than any other
high-performance 8-bit micropro-
Cessor. ‘

Note that according to the benchmark
reports in the Appendix, the SMHz 8088 use
slower memories while offering an average of
30% more performance than either the
2MHz 6809 or the 6MHz Z80B.

How does the 8088 offer higher performance
yet use slower memory devices? The main
reason is that parallel instruction fetch and
execute using the instruction pipeline allows

the bus interface to be much more relaxed
while execution takes place at the full speed.
The 8088 can run at full speed using readily
available 450ns EPROM devices whereas its
counterparts, the 68B09 and Z80B require
wait states in their machine cycles to do the
same.

PROCESSOR EXTENSIONS FOR
FLOATING POINT ARITHMETIC

AND HIGH SPEED I/0

Up to now, we have justified that the 8088 CPU
itself offers a lot of performance, and many
systems will be built around the 8088 as the
only central processing unit. Note that there
are other ways to expand on the 8088 architec-
ture to add additional processing power to the
basic CPU. These additional processing mod-
ules are called processor extensions. There are
two processor extension chips that can be
added to the iAPX 88 system (Fig. 1-26).

Numerics Processor Extension

The iAPX 88/20 is an optional numerics
processor extension (NPX) added alongside
the 8088 CPU. This configuration has the
effect of adding the additional set of numerics
instructions to the 8088 instruction set. The
NPX picks its own instructions out of the

CPU 8088 68B09 Z80A Z80B
5MHz 2MHz 4MHz 6MHz
MEMORY
ACCESS 460 NS 320NS 250 NS 140 NS
TIME
LONGER ACCESS TIME MEANS SLOWER (AND
CHEAPER) MEMORIES CAN BE USED WITH iAPX 88

Figure 1-25. iAPX 88 Longer Memory Access Time



INTRODUCTION

8088 instruction stream. The instructions that
the NPX interprets as special purpose numer-
ics instructions are regarded almost like
“no-operations” for the 8088. The NPX con-
tains an additional register set of eight 80-bit
floating point registers which are mani-
pulated with by the additional numerics
instructions. Together, the 8088 with the
NPX have approximately 100 times the per-
formance of a standalone iAPX 88 system
for numerics-intensive applications.

1/0 Processor

The 8089 IOP, on the other hand, does not
receive instructions from the 8088 instruction
stream. It is a separate microprocessor with its
own instruction set. The IOP is an input/output
channel processor and off-loads I/O interfac-
ing from the 8088 general purpose CPU. The
IOP’s instruction set, different from the 8088,
is specifically tailored for peripheral control
and high speed data transfer. With the IOP, it is

(

possible to configure a dual-bus system, where
the 8089 interfaces with peripheral devices on
a separate “‘local’”’ bus while the 8088 runs its
application programs in parallel, interfacing
with memories over the system bus.

The IOP has a high-speed direct memory
access (DMA) mode that transfers data
between memory and peripherals or between
memory and memory at 1.25 megabytes per
second. The IOP is also capable of on-the-fly
processing activities such as masked com-
parison operations or data translations. If
you have an application that requires very
high performance floating point numerics
capabilities, numerous peripheral devices, or
very high performance peripheral devices, the
NPX and IOP should be considered for
inclusion in your system. More information
on these devices is contained in other manu-
als from Intel. This book will focus on single
CPU-systems build around the 8088 alone.

8088
CPU

8087
NPX

o3
°3

LOCAL /0 BUS

g

=

g 0

ARBITRATION

ARBITRATION

PERIPHERALS PERIPHERALS

g

=

< SYSTEM BUS

ARCHITECTURE EXTENDS FOR EVEN MORE PERFORMANCE

D

Figure 1-26. iAPX 88 Processor Extensions

, 1-18



INTRODUCTION

REVIEW

This chapter has provided a basic intro-
duction to the 8088 CPU and iAPX 88
systems.

The 8088’s pipelined architecture efficiently
uses the available bus time to maximize CPU
performance and make it possible to get
increased performance, even with slower
memory devices.

The 8088’s register set makes a large number
of 16-bit registers available and some registers
have special functions allowing more efficient
instruction encoding for compact programs.

The 8088’s addressing modes provide quick
access to complex data structures.

The 8088’s instruction set includes powerful
16-bit instructions that lead to smaller pro-
grams because many 8088 instructions replace
multiple instruction sequences in other 8-bit
machines.

The smaller 8088 programs run faster.

With the 8088, it is possible to build lower-
cost systems than with other 8-bit micro-
processors because the 8088 requires less
code memory and runs at high performance
with less expensive memories than other 8-bit
machines.

Interfacing the 8088 to 8-bit systems is easy
with processor extension chips that further
increase the 8088’s performance through
parallel processing using specialized I/ O and
numeric instructions and registers.

The 8088 is a unique CPU with optimal
combination of performance, ease of use, and
system economy that meets the needs of sys-
tem designers in the 1980’s.

The following chapters describe iAPX 88
software, hardware, and system design in
more detail.



THE iAPX 188 CPU

The iAPX 188 is a highly integrated CPU
board-on-a-chip. Most previous highly in-
tegrated microprocessors were optimized for
real-time control applications and supported
relatively small programs in their integrated
memory. Examples of this type of chip are
Intel’s 8048 and 8051 and Zilog’s Z8. The iAPX
188, however, is optimized for computing ap-
plications. It retains all the bus interface capa-
bilities of multi-chip microprocessors, yet it
integrates common peripheral functions used
in computer applications. As shown in Figure
1, the integrated functions on the iAPX 188
include the CPU, clock generator, timers,
DMA channels, interrupt controller, I/O and
memory chip selects, ready generation, and
added internal registers to control these
devices (Figure 2). The iAPX 188 can replace
15-20 of the most common chips found in a
typical microcomputer system.

[oh L1 AA] 1Al
[ 1 / vyvyy vlv]
clock P~ cpu INTER TIMERS
{ @ INTERNAL BUS @ @ {
CHIP
CHANNELS SELECT
? ? < J L

Figure 1. iAPX 188 CPU (80188) Block Diagram

Clock Generator

The 80188 provides an internal clock oscil-
lator, which requires a single external crystal
or TTL-level frequency source. The system
clock output is a standard 8 MHz, 50% duty
cycle clock at half the 16 MHz crystal fre-
quency. This output can be used to drive the
clock inputs of other system components and
hence makes additional clock generation
devices unnecessary. Synchronous and asyn-
chronous ready inputs are supplied for flexible
peripheral-device synchronization.

)

Timers

Two independent 16-bit programmable
timer/counters are provided to count or time
external events and generate nonrepetitive
waveforms. A third 16-bit programmable
timer, not connected externally, is useful for
implementing time delays and as a prescaler
for the two externally connected timers. The
iAPX 188 integrated timers are very flexible
and can be configured to time/count a variety
of distributed I/O activities.

Each of the three timers is equipped with a
16-bit timer register that contains the current
value of the timer. It can be read or written at
any time, independent of whether the timer is
running. Each timer is also equipped with a
16-bit count register containing the maximum
value the timer will reach. In addition, the two
externally connected timers each have a
second 16-bit count register which enables the
timers to alternate their count between two
different max count values as programmed by
the user. When a terminal count is reached, an
interrupt may be generated, and the timer
value is reset to zero.

The timers have several flexible programmable
modes of operation. All three timers can be 'set
to halt or continue on a terminal count value,
so no external event or device need wait for a
timer reset. The two externally connected
timers can select between internal and exter-
nal clocks, alternate between max count regis-
ters or use only one, and be set to retrigger on
external events.

DMA Channels

1-20

The on-chip DMA controller unit in the iAPX
188 contains two independent high-speed
DMA channels. DMA transfers can occur be-
tween memory and I/O spaces (i.e., M-I/O) or
within the same space (i.e., M—M, I/O-1/0).
The latter feature allows I/O devices and
memory buffers to be freely located anywhere
in the distributed system. For example,
memory-mapped I/O can be handled without



iAPX 188 CPU

15 80188 REGISTER BLOCK 0

———————— — 15 0

DMA CONTROL

CHIP SELECT
CONTROL

256
BYTES

TIMER
CONTROL

L

|
|
|
|
I P
|
I
|
|
|

INTERRUPT
CONTROL

THE MEMORY
OR I/0 MAPPED

I RELOCATION REGISTER}

Figure 2. iAPX 188 Register Architecture

any external decode logic to select the re-
quired I/O space or device. Each DMA chan-
nel maintains two 20-bit source and
destination pointers that can be incremented,
decremented, or left unchanged after each
transfer. Data transfers occur a byte at a time
and can be anywhere in the 1 megabyte of
directly addressable memory space. This al-
lows a maximum transfer rate of 1 megabyte
per second. The user can specify several differ-
ent modes of DMA operation via the on-chip
16-bit DMA channel control word.

By using the 80188 DMA facilities, data can be
input onto local system memory, processed,
passed on to the host computer (if needed),
and output to another I/O device, all by the use
of the two independent, high-speed, on-chip
DMA channels.

Interrupt Controller

The 80188 interrupt controller resolves
priority among interrupt requests that arrive
simultaneously. It can accept interrupts from
up to five external hardware sources (NMI +
4) and internal sources as well (timers, DMA
channels). Each interrupt source has a pro-
grammable priority level and a preassigned
interrupt vector type, used to derive an ad-
dress to a table in memory where interrupt

1-21

service routine addresses are located. This en-
hancement of predefined vector types makes
the interrupt response time about 50% faster
than the typical iAPX 88 response time. The
8259A programmable interrupt controller
(PIC) interrupt modes, such as fully nested
and specially fully nested, are provided by the
80188 as well. In addition, multiple 8259As can
be cascaded to provide the system with up to
128 external interrupts.

Chip Select/Ready Generation

The iAPX 188 contains programmable chip
select logic to provide chip select signals for
memory components, peripheral components,
and programmable ready (wait state) genera-
tion logic. The result of this integrated logic is a
lower system part count, since as many as 11
TTL packs will be saved. In addition to a lower
system cost, the performance of the system
will improve as a result of the elimination of
external propagation delays. Another advan-
tage involves flexibility in the choice of
memory component size and speed. Three
memory ranges (lower, middle, upper) can be
programmed to variable lengths (1K, 2K,
4K, . .. 256K) so that a variety of memory
chip sizes can be used. Further, anywhere
from zero to three wait states can be pro-
grammed so either high-speed or low-cost,
slower memories can be used. With respect to
the peripheral chip selects, as many as seven
different peripheral components can be ad-
dressed via I/O or memory space. Again, pro-
grammable wait states may be injected to
synchronize slower peripherals with the 80188
itself or memory.

The chip select/ready logic contributes to mak-
ing the iAPX 188 an optimum, low-cost choice
for a distributed processing node. In the past,
this necessary logic had to be designed, de-
bugged, and programmed. Now, with the
80188, the design, debug, and programming
are done by initializing the associated 16-bit
on-chip control registers.



iAPX 188 CPU

CPU Internal Registers

The added functionality of the iAPX 188 (i.e.,
timers, DMA, interrupt controller, and chip
selects) uses on-chip 16-bit control registers
for each integrated device. They are contained
in a 256-byte control block (see Figure 2) in-
cluded in the 80188 CPU register architecture.
The control register block may be either I/O or
memory-mapped, based on initialization for a
new control block pointer in the CPU. Except
for these additions, the register architecture of
the iAPX 188 is identical to the iAPX 88.

The iAPX 188 is similar to the recently
announced iAPX 186. The major difference is
in the data bus width (8 vs. 16 bits). Sixteen-bit

1-22

operands are fetched or written in two con-
secutive bus cycles. Both processors will ap-
pear identical to the software engineer, with
the exception of execution time. The internal
register structure is identical and all instruc-
tions have the same end result. The queue
length is shortened to four bytes rather than
six to prevent overuse of the bus when pre-
fetching instructions. To further optimize the
queue, the 80188 will prefetch an instruction
each time there is a one-byte space available in
the queue, rather than waiting for a two-byte
space for a 16-bit instruction in the 80186. The
relationship between the 80188 and 80186 is
similar to the relationship between the 8088
and 8086.



o T W R ‘?“:35"55553?5
e R

IAPX 88 Architecture 2
And Instructions







CHAPTER 2
THE iAPX 88 ARCHITECTURE AND INSTRUCTIONS

INTRODUCTION

This chapter describes the programmer’s
architecture of the 8088 CPU. The pro-
gramming model is presented first, including
the memory and I/ O port organizations and
the CPU registers. The addressing modes are
described next, followed by an introduction
to the instruction set and the iAPX 88
assembly language. The iAPX 88 instruction
set reference pages that describe each instruc-
tion in detail conclude the chapter.

iAPX 88 ARCHITECTURE

The iAPX 88 processor architecture com-
prises a memory structure, a register structure,
an instruction set, and a set of addressing
modes. The 8088 CPU can access up to one
million bytes of memory and up to 64K input/
output ports.

The 8088 has three register files:

1) data registers to hold intermediate results;
2) pointer and index registers to reference
within specified portions of memory;

3) segment registers used to specify these por-
tions of memory.

The 8088 has nine flags that are used to
record the state of the processor and to con-
trol its operations.

The 8088 instruction set and addressing
modes are richer and more symmetric than
the 8080. And the 8088 external interface,
providing such things as interrupts, multip-
rocessor synchronization, and resource shar-
ing, exceeds the facilities provided in the
8080, the 8085, or the Z80®.

Memory Structure

The 8088 input/output space and memory
space are treated in parallel and are collec-
tively called the memory structure. Code and
data reside in the memory space while (non-
memory-mapped) peripheral devices reside in
the I/ O space.

Z80is a registeredvtrademark of Zilog Corp.

Memory Space

The memory in an iAPX 88 system is a
sequence of up to one million bytes (a 64-fold
increase over the 8080). An 8088 word is any
two consecutive bytes in memory. Like the
8080, words are stored in memory with the
most significant byte at the higher memory
address.

The one-megabyte memory can be conceived
of as an arbitrary number of segments, each
containing at most 64K bytes. The starting
address of each segment is evenly divisible by
16 (the four least significant address bits are
0). At any moment, the program can imme-
diately access the contents of four such
segments:

1) Current code segment
2) Current data segment
3) Current stack segment
4) Current extra segment

Each of these segments can be identified by
placing the 16 most significant bits of the
segment starting address into one of the four
16-bit segment registers. By contrast, the
8080 memory structure is simply the 8088
memory structure with all four of the current
segments starting at 0.

An 8088 instruction can refer to bytes or
words within a segment by using a 16-bit
offset address. The processor constructs the
20-bit byte or word address automatically by
adding the 16-bit offset address (also called
the logical address) to the contents of a 16-bit
segment register, with four low-order zeros
appended (Fig. 2-1).

Input/Output Space

The 8088 I/ O space consists of 64K ports (a
256-fold increase over the 8080). Ports are
addressed the same way as memory except
there are no port segment registers. That is,
all ports are considered to be in one segment.
Like memory, ports may be 8- or 16-bits in
size.



ARCHITECTURE AND INSTRUCTIONS

The first 256 ports are directly addressable
(address in the instruction) by some input/
output instructions, other instructions let you
address the total 64K ports indirectly (address
in a register).

REGISTER STRUCTURE

The 8088 processor contains the thirteen 16-
bit registers and nine 1-bit flags shown in
Figure 2-2. Notice that the thirteen registers
are divided into three files of four registers
each plus the thirteenth register, namely the
instruction pointer (IP) (called the program
counter in earlier processors). The IP is
not directly accessible to the programmer;
it is manipulated with control-transfer
instructions.

Data Register File

The data registers (top file Fig. 2-2) can be
addressed as either 8- or 16-bit registers.
(Note vertical line showing byte divisions).

15 0
| LocicaLADDREss |QEFSEL.
;ﬁ r—J
15 0
[SEGMENTREGISTER | [0 0 0 0|3EGMENT
—— J
ADDER
19 0
20-BIT
PHYSICAL MEMORY ADDRESS

Figure 2-1. How to Address One Million Bytes

2-2

The data registers handle both byte and word
quantities with equal ease. Figure 2-2 shows
that the 16-bit registers are named AX, BX,
CX, and DX; and the 8-bit registers are
named AL, AH, BL, BH, CL, CH, DL, and
DH (the L or H suffix designates high-order
or low-order byte).

Generally, the data registers participate inter-
changeably in both arithmetic and logical
operations of the 8088. However, some
instructions (e.g. string instructions) require
certain general registers for specific uses. Fig-
ure 2-3 shows which registers are implicitly
used for special operations. Notice how Fig-
ure 2-3 relates to Figure 2-2.

To review, data registers may be addressed as
either 8-bit or 16-bit registers as shown in
Figure 2-2. The registers in the next 2 files are
addressed only as 16-bit registers.

Pointer and Index Register File

The pointer and index registers of the 8088
consist of the 16-bit registers SP, BP, SI, and
DI as shown in Figure 2-2. These registers
usually contain offset addresses for address-
ing within a segment. They reduce program
size by eliminating the need for each instruc-
tion to specify frequently used addresses.
These registers serve another (and perhaps
more important) function; they provide for
dynamic logical address computation as des-
cribed in the section on operand addressing
below. To accomplish this, the pointer and
index registers participate in arithmetic and
logical operations along with the 16-bit data
registers described above.

Figure 2-2 shows this file divided into the
pointer subfile (SP and BP) and the index
subfile (SI and DI). The pointer registers
provide convenient access to the current
stack segment (as opposed to the data seg-
ment). Unless otherwise specified in the
instruction, pointer registers refer to the cur-
rent stack segment while index registers refer
to the current data segment.



ARCHITECTURE AND INSTRUCTIONS

In certain instances, specific uses of these
four registers are indicated by the mnemonic
phrases “stack pointer,” “base pointer,”
“source index,” and “destination index.” (Fig.
2-2).

Segment Register File

The segment registers of the 8088 are 16-bit
registers. These registers specifically identify
the four currently addressable memory seg-
ments: CS (code segment), DS (data segment),
SS (stack segment), and ES (extra segment).

All instructions are fetched from the current

code segment offset by the instruction pointer
(IP) register. The segment for operand
fetches can usually be designated by append-
ing a special one-byte prefix to the instruc-
tion. This prefix, and other prefixes described
later, has unique encoding that distinguishes
it from the opcodes. In the absence of such a
prefix (the usual case), the operand is usually
fetched from the current data segment or cur-
rent stack segment, depending on whether
the offset address was calculated from the
contents of a pointer register.

DATA REGISTERS

7 07 0
AX AH AL
BX BH BL
CcX CH CL
DX DH DL

POINTER AND INDEX REGISTERS

15 0
SP STACK POINTER
BP BASE POINTER
SI SOURCE INDEX
DI DESTINATION INDEX

SEGMENT REGISTERS

15 0
CS CODE
DS DATA
SS STACK
ES EXTRA

INSTRUCTION POINTER AND FLAGS
P r : INSTRUCTION
POINTER
FLAGS lo[o|i]t]s|z] [a] |p| |c
15 11109 8 7.6 5 4 3 2 1 0

Figure 2-2. 8088 Register Structure



ARCHITECTURE AND INSTRUCTIONS

Programs can be dynamically relocated by
changing the segment registers, provided the
program itself does not load or manipulate
the segment registers.

Flag Register File

Six flags provide processor status informa-
tion (Fig. 2-2). Five are the 8080/8085 flags
and usually reflect the status of the latest
arithmetic or logical operation. The sixth, an
OVERFLOW flag, reflects a signed overflow
condition. '

The 8088 also contains three flags that con-
trol processor operations. These are the
DIRECTION flag, which controls the direc-
tion of the string manipulations; the INTER-
RUPT FLAG, which enables or disables
external interrupts; and the TRAP flag,
which puts the processor into a single-step
mode for program debugging.

A more detailed discussion of the flags
follows:

1) If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble (the
low order 4-bits of a byte) into the high nib-
ble or a borrow from the high nibble into the

REGISTER OPERATIONS .

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
I/0O, Translate, Decimal
Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect /O

SP Stack Operations

SI String Operations

DI String Operations

Figure 2-3. Implicit Use of General Registers

low nibble of an 8-bit quantity (low-order
byte of a 16-bit quantity). This flag is used by
decimal arithmetic instructions.

2) If CF (the carry flag) is set, there has been
a carry out of, or a borrow into, the high-
order bit of the result (8- or 16-bit). The flag
is used by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory or a register by
placing it in the carry flag.

3) If OF (the overflow flag) is set, an arith-
metic overflow has occurred; that is, a signifi-
cant digit has been lost because the size of the
computation exceeded the capacity of its des-
tination location. An optional Interrupt On
Overflow instruction generates an interrupt
in this situation.

4) If SF (the sign flag) is set, the high-order
bit of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive, 1
= negative).

5) If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6) If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (Fig. 2-2) can
be set and cleared by programs to alter pro-
cessor operations:

1) Setting DF (the direction flag) causes
string instructions to auto-decrement, that is,
to process strings from high addresses to low
addresses, or from “right to left”. Clearing
DF causes string instructions to auto-
increment, or to process strings from “left to
right.”

2) Setting IF (the interrupt-enable flag)
allows the CPU to recognize external (mask-
able) interrupt requests. Clearing IF disables
these interrupts. IF has no effect on either
nonmaskable external or internally generated
interrupts.



ARCHITECTURE AND INSTRUCTIONS

3) Setting TF (the trap flag) puts the proces-
sor into single-step mode for debugging. In
this mode, the CPU automatically generates
an internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction.

Instruction Pointer

The 16-bit instruction pointer (IP), as shown
in Figure 2-2, is analogous to the program
counter (PC) in the 8080/8085 CPUs and
points to the next instruction. The instruction
pointer contains the offset (distance in bytes)

of the next instruction from the beginning of -

the current code segment. During normal
execution, IP contains the offset of the next
instruction to be fetched. Whenever IP is
saved on the stack, however, it first is auto-
matically adjusted to point to the next

instruction to be executed. Programs do not .

have direct access to the instruction pointer,
but instructions cause it to change and to be
saved on and restored from the stack.

Stack Implementation

The 8088’s stack is implemented in memory
and is located by the stack segment register
(SS) and the stack pointer register (SP). A
system may have an unlimited number of
stacks, and a stack may be up to 64K bytes
long, the maximum length of a segment. (An
attempt to expand a stack beyond 64K bytes
overwrites the beginning of the stack). One
stack is directly addressable at a time; this is
the current stack often referred to simply as
“the” stack. SS contains the base address of
the current stack and SP points to the top of
the stack (TOS). In other words, SP contains
the offset of the top of the stack from the
stack segment’s base address. Note, however,
that the stack’s base address (contained in
SS) is not the “bottom” of the stack.

Instructions that operate on a stack add or
remove one word (2 bytes) at a time. An item
is pushed onto the stack by decrementing SP
by 2 and writing the item at the new TOS. An

item is popped off the stack by copying it
from TOS and incrementing SP by 2. In
other words, the stack grows down in
memory toward its base address: Stack oper-
ations never move items on the stack, nor do
they erase them. The top of the stack changes
only as a result of updating the stack pointer.

ADDRESSING MODES |

Instructions in the 8088 usually perform
operations on one or two source operands,
with the result overwriting one of the oper-
ands. The first operand of a two-operand
instruction can be usually either a register or
a memory location; the second operand can
be either a register or a constant within the
instruction. (The terms first and second oper-
and are used to distinguish the operands only

- — their use does not imply directionality for

data transfers). Typical formats for two-
operand instructions are shown in Figure 2-4.

Single-operand instructions generally allow
either a register or a memory location to
serve as the operand. Figure 2-4 also shows a
typical one-operand format. Virtually all
8088 operators may. specify 8- or 16-bit
operands.

Memory Operands.

An instruction may address an operand resid-
ing in memory in one of the following ways,
as determined by the “mod” and “r/m” field
in the instruction (Fig. 2-5):

DIRECT ADDRESSING — 16-bit offset address
contained in the instruction.

INDIRECT ADDRESSING — optionally with
an 8- or 16-bit displacement contained in the
instruction: B

1) through a base register (BP or BX)

2) through an index register (SI or DI)

3) through the sum of a base register and an
index register



ARCHITECTURE AND INSTRUCTIONS

° TWO OPERAND FORMAT, SECOND OPERAND IS REGISTER

[ oot TseG T 110] [ opcobe [p[w]  [moD [REG [RiM]

(optional)
C_—ospio _ 7] [__bisPhi_ ]
(optional) . (optional)

TWO OPERAND FORMAT, SECOND OPERAND IS CONSTANT

[Coo1 T sea [ 110 ] [ opPCobE_[S[W] [MOD [OPCODE [R/M]

(optional) ‘

[Z”Tospio 7] [_ToiseHi_ ]  [oatato ]
(optional) (optional)

[ _oatasi ]
(optional)

" ONE OPERAND FORMAT

[Coo1 ] seG T 110 ] [ opcobE [w] [moD [oPCODE [R/M]
: optlonal :
[ Toseio —7  [__DiSpH__ ]
(optional) (optional)

FOR DEFINITION OF MOD AND R/M FIELDS, SEE FIGURE 2-5.
OTHER BIT-FIELDS:

W =0: 8-BIT OPERAND(S)
1:16-BIT OPERAND(S)
D =0: DESTINATION IS FIRST OPERAND
1: DESTINATION IS SECOND OPERAND
S =0: DATA =DATAHI, DATALO APPLIES IF
' 1. DATA = DATA-LO SIGN EXTENDED W=1
SEG: SEGMENTREG REGISTER
00 ES 8-BIT 16-BIT
01 CS REG: (W=0) (W=1)
10 SS -
1. DS i “ - oo0 AL AX
001 CL o CX
010 DL DX
011 “ BL BX
100 AH SP:
101 - CH BP
110 DH Si
111 BH DI

Figure 2-4. Defining Bits in Instructions with One and Two Operands

2-6




ARCHITECTURE AND INSTRUCTIONS

FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE:"

FIRST OPERAND IN MEMORY FIRST OPERAND
INDIRECT ADDRESSING DIRECT ADDRESSING IN REGISTER
00*: DISP =0 » MOD = 00
MOD =01 :DISP = DISP-LO SIGN AND MOD = 11
10 :DISP D%ngDElgp LO RIM =110
: . | OPERAND EFFECTIVE REGISTER
OPERAND " ADDRESS = R/M: [ &BIT 16-BIT
R/M: | EFFECTIVE ADDRESS DISP-HI, DISP-LO W=0 | (W=1)
000 (BX) + (Sl) + DISP 000 AL AX
001 | (BX) + (DI) + DISP 001 cL CX
010 | (BP) + (SI) + DISP 010 DL DX
011 | (BP) + (DI) + DISP Con BL BX
100 | (SI)'+ DISP 100 AH SP
101 (DI) + DISP 101 CH BP
110 |(BP) + DISP 110 DH SI
111 | (BX) + DISP 111 BH. DI
Where ( ) means ‘‘contents of”’
*Exception—direct addressing mode
Figure 2-5. Determining First Operand
) DATA MEMORY
STR[L%TTQJRE STACK
WITHOUT BASE WITH BASE <
SIMPLE o
VAR RELE DIRECT BX + OFFSET BP + OFFSET
S| BX + Sl BP + S
ARRAYS DI BX + DI BP + DI
ARRAYS SI + OFFSET BX + S| + OFFSET BP + S| + OFFSET
OF RECORDS DI + OFFSET BX + DI + OFFSET BP + DI + OFFSET

Figure 2-6. Effective Addresses Used with Different Data Structures

TYPE OF MEMORY REFERENCE gfgﬁghTr Aslo-géﬁn'\éﬁTrE LOGICAL ADDR'ESS
BASE BASE :

Instruction Fetch Cs NONE . P

Stack Operation SS NONE SP

String. Source DS CS,ES,SS Sl

String Destination ES NONE DI o

BP Used As Base Register SS CS,DS,ES Effective Address

General Data Read/Write - --DS CS,ES,SS Effective Address

Figure 2-7. 8088 Address Components

2-7




ARCHITECTURE AND INSTRUCTIONS

Register Operands

An instruction may address an operand resid-

ingin one of the general registers or in one of

the pointer or index registers. Fig. 2-5 shows -

the register selection as determined by the
“r/m” field (first operand) or the “reg” field
(second operand) in the instruction.

Immediate Operands

In general, one of the two operands of a two-
operand instruction can be “immediate” data
contained within the instruction. These oper-
ands are represented in 2’s-complement form
and may be 8-bits or 16-bits in length.

Addressing Mode Usage

The addressing modes were des1gned to per-
mit efficient implementation of high-level
language features. For example, a simple var-
iable is accessed with the direct mode,
whereas an array element in a based record
(at a memory address pointed to by some
other base variable) may be accessed within
the indirect-through-BX-plus-SI-plus-offset
mode (where BX points to start-of-record,
offset points to the start of the array within

the record, and index register SI contains the

index into the array).

The addressing modes involving the BP base
register allow accessing data in the stack
segment instead of in the data segment. Rec-
ursive procedures and block-structured langu-
ages frequently store data in the stack.
Address modes for accessing data elements
use effective addresses shown in Fig. 2-6.

Addressing Summary

Fig. 2-7 summarizes the address components
that are combined to: generate memory
addresses. The Default segment base is the
segment register automatically chosen by the
8088 for the corresponding type of memory
reference. The Alternate segment base may
replace the Default segment if a special “seg-
ment override” prefix precedes the instruction.
The Logical address is automatically added
to the chosen segment register to form the

2-8

memory address. The 8088 Assembly lan-
guage simplifies the task of selecting the
desired addressing modes for use with basic
8088 instruction types.

Dedicated and Reserved Memory Locations
Two areas in extreme low and high memory
are dedicated to specific processor functions
or are reserved by Intel Corporation for use
by Intel hardware and software products. As
shown in Figure 2-8, the locations are: 0H
through 7FH (128 bytes) and FFFFOH
through FFFFFH (16 bytes). These areas are
used for interrupt and system reset process-
ing. iAPX 88 systems should not use these
areas for any other purpose. Doing so may
make these systems 1ncompat1b1e with future
Intel products.

FFFFFH
RESERVED
FFFFCH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
\E OPEN R
80H
7FH
RESERVED
14H
13H
DEDICATED
OH
MEMORY

‘Figure 2-8. Reserved and Dedicated Memory
Locations



ARCHITECTURE AND INSTRUCTIONS

The interrupt pointer (or interrupt vector)
table (Fig. 2-9) is the link between an inter-
rupt type code and the procedure designated

to service interrupts associated with that
code. The interrupt pointer table occupies up
to 1K bytes of low memory. There may be up

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
POINTERS
(27)

3FFH
| TYPE255POINTER: __|
(AVAILABLE)
3FCH
5 N
9 M
<
| TYPE33POINTER: __|
(AVAILABLE)
084H
| TYPE32POINTER: __|
(AVAILABLE)
080H
07FH
| TYPE31POINTER: __|
(RESERVED)
P, w v
| TYPE5POINTER: __|
(RESERVED)
: 014H
| TYPEA4POINTER: __|
OVERFLOW
010H
I YPE 3 POINTER
1-BYTE INT INSTRUCTION
00CH
s TYPE 2 POINTER 1
3 NON-MASKABLE
008H
| TYPE1POINTER —]
SINGLE-STE
004H
. TYPE 0 POINTER — _ESESEAD?B_ESE_ —_
000H DIVIDE ERROR IP OEFSET

le—16BITS——>|

Figure 2-9. Interrupt Vector Table in Memory

2-9




ARCHITECTURE AND INSTRUCTIONS

to 256 4-byte entries in the table, one for each
interrupt type that can occur in the system.
Each entry is a doubleword pointer (4 bytes)
containing the address of the procedure. The
higher-addressed word of the pointer con-
tains the base address of the segment
containing the procedure. The lower-
addressed word contains the procedure’s
offset from the beginning of the segment.
Since each entry is four bytes long, the CPU
can calculate the location of the correct entry
for a given interrupt type by simply multiply-
ing (type*4).

Memory location FFFFOH, sixteen bytes
from the absolute top of the 8088’s address
range is the first location from which the
8088 fetches an instruction following a sys-
tem RESET (the activation of the RESET
pin on the 8088 CPU chip, usually at the time
system is powered up). This memory location
usually contains a jump (JMP) instruction to
the actual beginning of the system program
somewhere else in memory.

ORGANIZATION OF THE INSTRUCTION
SET

Instructions are described here in six func-
tional groups:

1) Data transfer

2) Arithmetic

3) Logic

4) String manipulation
5) Control transfer

6) Processor control

Each of the first three groups mentioned in
the preceding list is further subdivided into
an array of codes that specify whether the
instruction is to act upon immediate data,
register or memory locations, whether 16-bit
words or 8-bit bytes are to be processed, and
what addressing mode is to be employed. All
of these codes are listed and explained in
detail in this book, but when you are writing
assembly-language programs you do not
have to code each one individually. The con-

2-10

text of your program automatically causes
the assembler to generate the correct code.

There are three general categories of instruc-
tions within each of the three functional
groups mentioned:

1) Register or memory space to or from
register

2) Immediate data to register or memory

3) Accumulator to or from registers, mem-
ory, or ports

The details of the syntax of the 8088 instruc-
tion set are described fully in Intel’s iAPX 86,
88 assembly language programming manual.

Data Transfer Instructions
Data transfer instructions are divided into
four classes:

1) General purpose

2) Accumulator-specific

3) Address-object

4) Flag

None affect flag setting except SAHF and
POPF.

General Purpose Transfers

Four general purpose data transfer opera-
tions are provided and may be applied to
most operands, though there are specific
exceptions. The general purpose transfers
(except XCHG) are the only operations
which allow a segment register as an operand.

MOV performs a byte or word transfer from
the source operand to the destination operand.

PUSH decrements the SP register by two
and then transfers a word from the source
operand to the stack element currently
addressed by SP.

POP transfers a word operand from the
stack element addressed by the SP register to
the destination operand and then increments
SP by 2.

XCHG exchanges the byte or word source
operand with the destination operand. The
segment registers may not be operands of
XCHG.



ARCHITECTURE AND INSTRUCTIONS

Accumulator-Specific Transfers
Three accumulator-specific transfer opera-
tions are provided:

IN transfers a byte (or word) from an input
port to the AL register (or AX register for a
word). The port is specified either with an
inline data byte, allowing fixed access to
ports 0 through 255, or with a port number in
the DX register, allowing variable access to
64K input ports.

OUT is similar to IN except that the transfer
is from the accumulator to the output port.

XLAT performs a table lookup byte transla-
tion. The AL register is used as an index into
a 256-byte table whose base is addressed by
the BX register. The byte operand so selected
is transferred to AL.

Address-Object Transfers

Three address-object transfer operations are
provided:

LEA (load effective address) transfers the off-
set address of (rather than its value) to the
destination operand. The source operand must
be a memory operand and the destination
operand must be a 16-bit general, pointer, or
index register.

LDS (load pointer into DS) transfers a
“pointer-object” (i.e., a 32-bit object contain-
ing an offset address and a segment address)
from the source operand (which must be a
memory operand) to a pair of destination
registers. The segment address is transferred
to the DS segment register. The offset
address must be transferred to a 16-bit gen-
eral, pointer, or index register.

LES (load pointer into ES) is similar to LDS
except that the segment address is transferred
to the ES segment register.

Flag Register Transfers
Four flag register transfer operations are
provided:

LAHF (load AH with flags) transfer the flag
registers SF, ZF, AF, PF, and CF (the 8080

flags) into specific bits of the AH register.

SAHF (store AH into flags) transfers specific
bits of the AH register to the flag register, SF,
ZF, AF, PF, and CF.

PUSHF (push flags) decrements the SP reg-
ister by two and transfers all of the flag
registers into specific bits of the stack element
addressed by SP.

POPF (pop flags) transfers specific bits of the
stack element addressed by the SP register to
the flag registers and then increments SP by
two.

Arithmetic Instructions

The 8088 provides the four basic mathemati-
cal operations in a variety of instructions.
Both 8- and 16-bit operations and both
signed and unsigned arithmetic are provided.
Standard twos complement representation of
signed values is used. The addition and sub-
traction operations serve as both signed and
unsigned operations to be made (see Condi-
tional Transfer). Correction operations allow
arithmetic to be performed directly on
packed or unpacked decimal numbers.

Flag Register Settings

Six flag registers are set or cleared by arith-
metic operations to reflect results of the
operation. They generally follow these rules:

CF is set if the operation results in a carry out

-of (from addition) or a borrow into (from

subtraction) the high-order bit of the result;
otherwise CF is cleared.

AF is set if the operation results in a carry
out of (from addition) or a borrow into (from
subtraction) the low-order four bits of the
result; otherwise AF is cleared.

ZF is set if the result of the operation is zero;
otherwise ZF is cleared.

SF is set if the high-order bit of the result of
the operation is set; otherwise SF is cleared.



ARCHITECTURE AND INSTRUCTIONS

PF is set if the modulo 2 sum of the low-
order eight bits of the operation is 0 (even
parity); otherwise PF is cleared (odd parity).

OF is set if the operation results in a carry
into the high-order bit of the result but not a
carry out of the high-order bit, or vice versa;
otherwise OF is cleared.

Addition
Five addition operations are provided:

ADD performs an addition of the two source
operands and returns the result to one of the
operands.

ADC (add with carry) performs an addition
of the two source operands, adds one if the
CF flag is found previously set, and returns
the result to one of the operands.

INC (increment) performs an addition of the
source operand and returns the result to the
operand.

AAA (unpacked BCD [ASCII] adjust for
addition) performs a correction of the result
in AL of adding two unpacked decimal ope-
rands, yielding an unpacked decimal sum.

DAA (decimal adjust for addition) performs
a correction of the result in AL of adding two
packed decimal operands, yielding a packed
decimal sum.

Subtraction
Seven subtraction operations are provided:

SUB performs a subtraction of the two
source operands and returns the result to one
of the operands.

SBB (subtract with borrow) performs a sub-
traction of the two source operands, subtracts
one if the CF flag is found previously set, and
returns the result to one of the operands.

DEC (decrement) performs a subtraction of
one from the source operand and returns the
result to the operand.

NEG (negate) performs a subtraction of the
source operand from zero and returns the
result to the operand.

2-12

CMP (compare) performs a subtraction of
the two source operands causing the flags to
be affected but does not return the result.

AAS (unpacked BCD [ASCII] adjust for
subtraction) performs a correction of the
result in AL of subtracting two unpacked
decimal - operands, yielding an unpacked
decimal difference.

DAS (decimal adjust for subtraction) per-
forms a correction of the result in AL of
subtracting two packed decimal operands,
yielding a packed decimal difference.

Muiltiplication
Three multiplication operations are
provided: ‘

MUL performs an unsigned multiplication of
the accumulator (AL or AX) and the source
operand, returning a double length result to
the accumulator and its extension (AL and
AH for 8-bit operation, AX and DX for
16-bit operation). CF and OF are set if the
top half of the result is non-zero.

IMUL (integer multiply) is similar to MUL
except that it performs a signed multiplica-
tion. CF and OF are set if the top half of the
result is not the sign-extension of the low half
of the result.

AAM (unpacked BCD [ASCII] adjust for
multiply) performs a correction of the result
in AX of multiplying two unpacked decimal
operands, yielding an unpacked decimal
product.

Division

Three division operations are provided and
two sign-extension operations to support
signed division:

DIV performs an unsigned division of the
accumulator and its extension (AL and AH
for 8-bit operation, AX and DX for 16-bit
operation) by the source operand and returns
the single length quotient to the accumulator
(AL or AX), and returns the single length
remainder to the accumulator extension (AH



ARCHITECTURE AND INSTRUCTIONS

or DX). The flags are undefined. Division by
zero generates an interrupt of type 0.

IDIV (integer division) is similar to DIV
except that it performs a signed division.

AAD (unpacked BCD [ASCII] adjust for divi-
sion) performs a correction of the dividend in
AL before dividing two unpacked decimal
operands, so that the result will yield an un-
packed decimal quotient.

CBW (convert byte to word) performs a sign
extension of AL into AH.

CWD (convert word to double word) per-
forms a sign extension of AX into DX.

LOGIC INSTRUCTIONS

The 8088 provides the basic logic operation
for both 8- and 16-bit operands.

Single-Operand Operations
Three single-operand logical operations are
provided: ‘

NOT forms the ones complement of the
source operand and returns the result to the
operand. Flags are not affected.

Shift operations of four varieties are pro-
vided for memory and register operands,
SHL (shift logic left), SHR (shift logic right),
SAL (shift arithmetic left), and SAR (shift
arithmetic right). Single bit shifts, and vari-
able bit shifts with the shift count taken from
the CL register are available. The CF flag
becomes the last bit shifted out; OF is defined
only for shifts with count of 1, and set if the
final sign bit value differs from the previous
value of the sign bit; and PF, SF, and ZF are
set to reflect the result value.

Rotate operations of four varieties are pro-

vided for memory and register operands, -

ROL (rotate left), ROR (rotate right), RCL
(rotate through CF left), and RCR (rotate
through CF right). Single bit rotates, and vari-
able bit rotates with the rotate count taken
from the CL register are available. The CF
flag becomes the last bit rotated out; OF is
defined only for shifts with count of 1, and is

2-13

set if the final sign bit value differs from the
previous value of the sign bit.

Two-Operand Operations

Four two-operand logical operations are
provided. The CF and OF flags are cleared
on all operations; SF, PF, and ZF reflect the
result.

AND performs the bitwise logical conjunc-
tion of the two source operands and returns
the result to one of the operands.

TEST performs the same operations as AND
causing the flags to be affected but does not
return the result.

OR performs the bitwise logical inclusive dis-
junction of the two source operands and
returns the result to one of the operands.

XOR performs the bitwise logical exclusive
disjunction of the two source operands and
returns the result to one of the operands.

STRING MANIPULATION INSTRUCTIONS

One-byte instructions perform various primi-
tive operations for the manipulation of byte
and word strings (sequences of bytes or
words). Any primitive operation can be per-
formed repeatedly in hardware by preceding
its instruction with a repeat prefix. The
single-operation forms may be combined to
form complex string operations with repeti-
tion provided by iteration operations.

Hardware Operation Control

All primitive string operations use the SI reg-
ister to address the source operands, which
are assumed to be in the current data seg-
ment. The DI register addresses the desti-
nation operands, which reside in the current
extra segment. If the DF flag is cleared, the
operand pointers are incremented after each
operation (once for byte operations and twice
for word operations). If the DF flag is set, the
operand pointers are decremented after each
operation. See Processor Control for setting
and clearing DF.



ARCHITECTURE AND INSTRUCTIONS

Any-of the primitive string instructions may
be preceded with a one-byte prefix indicating
that the operation is to be repeated until the
operation count in CX is satisfied. The test
for completion is made prior to each repeti-
tion of the operation. Thus, an initial
operation count of zero will cause zero exe-
cutions of the primitive operation.

The repeat prefix byte also designates a value
to compare with ZF flag. If the primitive
operation is one which affects the ZF flag,
and the ZF flag is unequal to the designated
value after any execution of the primitive
operation, the repetition is terminated. This
permits the scan operation to serve as a scan-
while or a scan-until.

During the execution of a repeated primitive
operation the operand pointer registers (SI
and DI) and the operation count register
(CX) are updated after each repetition,
whereas the instruction pointer will retain the
offset address of the repeat prefix byte
(assuming it immediately precedes the string
operation instruction). Thus, an interrupted
repeated operation will be correctly resumed
when control returns from the interrupted
task. ‘

You should avoid using the two other prefix
bytes with a repeat-prefixed string instruc-
tion. One overrides the default segment
addressing for the SI operand and one locks
the bus to prohibit access by other bus
masters. Execution of the repeated string
operation will not resume properly following
an interrupt if more than one prefix is present
preceding the string primitive. Execution will
resume one byte before the: primitive (pre-
sumably where the repeat prefix resides), thus
ignoring the additional prefixes.

anltlve String Operations
Five prlmmve string operatlons are prov1ded

MOYVS transfers a byte or ‘word operand
from the source operand to the destination
operand. As a repeated operation this moves

2-14

a string from one location in memory to
another.

CMPS subtracts the destination byte or word
operand from the source operand and affects
the flags but does not return the result. As a
repeated operation this compares two strings.
With the appropriate repeat prefix it is pos-
sible to determine after which string element
the two strings become unequal, thereby
establishing an ordering between the strings.

SCAS subtracts the destination byte or word
operand from AL (or AX) and affects the
flags but does not return the result. As a
repeated operation this scans for the occur-
rence of, or departure from a given value in
the string.

LODS transfers a byte or word operand
from the source operand to AL (or AX). This
operation ordinarily would not be repeated.

STOS transfers a byte or word operand from
AL (or AX) to the destination operand. As a
repeated operation this fills a string with a
given value.

In all cases above, the source operand is
addressed by SI and the destination operand
is addressed by DI.

Software Operation Control

The repeat prefix provides for rapid iteration
in a hardware-repeated string operation. The
iteration control operations: provide this
same control for implementing software
loops to perform complex string operations.
These iteration operations provide the same
operation count update, operation comple-
tion test, and ZF flag tests that the repeat
prefix provides.

By combining the prlmmve string operations
and iteration control operations with other
operations, it is possible to build sophisti-
cated yet efficient string manipulation
routines. One instruction that is particularly
useful in this context is XLAT; it permits a
byte fetched from one string to be translated



ARCHITECTURE AND INSTRUCTIONS

before being stored in a second string, or
before being operated upon in some other
fashion. The translation is performed by
using the value in the AL register as an index
into a table pointed at by the BX register.
The translated value obtained from the table
then replaces the value initially in the AL
register.

Here is an example problem solved by use of
primitive string operations and iteration con-
trol operations. to implement a complex
string operation: An input driver must trans-
late a buffer of EBCDIC characters into
ASCII, and transfer characters until one of
several EBCDIC control characters is encoun-
tered. The transferred ASCII string is to be
terminated with an EOT character.

To initialize the translation sequence, SI
points to the beginning of the EBCDIC
buffer, DI points to the beginning of the
receiving ASCII buffer, BX points to an
EBCDIC-to-ASCII translation table, and
CX contains the length of the EBCDIC
buffer (possibly empty). The translation table
contains the ASCII equivalent for each
EBCDIC character, perhaps with ASCII
NULs for illegal characters. The EOT code is
placed into the table corresponding to
EBCDIC stop characters. The 8088 instruc-
tion sequence to implement this example is
the following:
Next:

JCXZ Empty
LODS Ebcbuf
XLAT Table
CMP AL, EOT

STOS Ascbuf
LOOPNE Next

;skip if input buffer empty
;fetch next EBCDIC character
;translate it to ASCII

;test for the EOT

;transfer ASCII character
;continue if not EOT

Empty:

The body of this loop requires seven bytes of
code. ‘

CONTROL TRANSFER INSTRUCTIONS
Four classes of control transfer operations

may be distinguished:

1) calls, jumps, and returns;
2) conditional transfers;

3) iteration control; and

4) interrupts.

All control transfer operations cause the pro-
gram execution to continue at some new
location in memory, possibly in a new code
segment.

Calls, Jumps, and Returns

Two basic varieties of call jumps, and returns
are provided — those which transfer control
within the current code segment, and those
which transfer control to an arbitrary code
segment, which then becomes the current
code segment. Both direct and indirect
transfers are supported; indirect transfers
make use of the standard addressing modes.

The three transfer operations are described
below:

CALL pushes the offset address of the next
instruction onto the stack (in the case of an
inter-segment transfer the CS segment regis-
ter is pushed first) and then transfers control
to the target operand.

JMP transfers control to the target operand.

RET transfers control to the return address
saved by a previous CALL operation, and
optionally may adjust the SP register to dis-
card stacked parameters.

Intra-segment direct calls and jumps specify a
self-relative direct replacement, thus allowing
position independent code. A short jump
instruction (optional use) transfers —128 to
+127 bytes from the current instruction for
code compaction.

Conditional Jumps

The conditional transfers of control perform
a jump continuing upon various Boolean
functions of the flag registers. The destination
must be within —128 to +127 bytes from the
instruction.

2-15



ARCHITECTURE AND INSTRUCTIONS

Iteration Control

The iteration control transfer operations per-
form leading- and trailing-decision loop con-
trol. The destination of iteration control
transfers must be within —128 to +127 bytes
from the instruction. These operations are par-
ticularly useful with string manipulation oper-
ations.

There are four iteration control transfer
operations provided:

LOOP decrements the CX (“count”) register
by one and transfers if CX is not zero.

LOOPZ (dlso called LOOPE) decrements the
CX register by one and transfers if CX is not
zero and the ZF flag is set (loop while zero or
loop while equal). _ :

LOOPNZ (also called LOOPNE) decre-
ments the CX register by one and transfers if
CX is not zero and the ZF flag is cleared
(loop while not zero or loop while not equal).

JCXZ transfers if the CX register is zero.

Interrupts

Program execution control may be trans-
ferred by means of operations similar in
effect to that of external interrupts. All inter-
rupts transfer by pushing the flag registers
onto the stack (as in PUSHF), and perform
an indirect call (of the inter-segment variety)
through an interrupt vector table located at
absolute locations 0 through 3FFH. This vec-
tor contains a four-byte element for each of
up to 256 different interrupt types.

There are three interrupt transfer operations
provided:

INT pushes the flag registers (as in PUSHF),
clears the TF and IF flags, and transfers con-
trol with an indirect call through any one of
the 256 vector elements. A one-byte form of
this instruction is available for interrupt
type 3.

INTO pushes the flag registers (as in
PUSHPF), clears the TF and IF flags, and
transfers control with an indirect call through
vector element 4 if the OF flag is set (trap on

2-16

overflow). If the OF flag is cleared no opera-
tion takes place.

IRET transfers control to the return address
saved by a previous interrupt operation and
restores the saved flag register (as in POPF).

See Chapter 3 for further details on interrupt
operations.

PROCESSOR CONTROL INSTRUCTIONS
Various instructions and mechanisms control
the processor and its interaction with its
environment.

Flag Operations
Seven operations provided operate directly
on individual flag registers:

CLC clears the CF flag.
CMC complements the CF flag.
STC sets the CF flag.

CLD clears the DF flag, causing the string
operations to auto-increment the operand
pointer.

CLI clears the IF flag, disabling external
interrupts (except for the non-maskable
external interrupt.

STI sets the IF flag, enabling external
interrupts after the execution of the next
instruction.

Processor Halt

The HLT instruction causes the 8088
processor halt. The halt state is cleared by
RESET, or an enabled external interrupt, or
NMI.

Processor Wait

The WAIT instruction causes the processor
to enter a wait state if the signal on its TEST
pin is not asserted. The wait state may be
interrupted by an enabled external interrupt.
When this occurs the saved code location is
that of the WAIT instruction, so that upon
return from the interrupting task the wait
state is reentered. The wait state is asserted.
Execution resumes without allowing external
interrupts until after the execution of the next



ARCHITECTURE AND INSTRUCTIONS

instruction. This instruction allows the pro-
cessor to synchronize itself with external
hardware.

Processor Escape

The ESC instruction provides a mechanism
by which other processors (such as the
Numeric Processor Extension) may receive
their instructions from the 8088 instruction
stream and make use of the 8088 addressing
modes. The 8088 processor does no opera-
tion for the ESC instruction other than to
access a memory operand.

Bus Lock

A special one-byte lock prefix may precede
any instruction to cause the processor to
assert its bus-lock signal for the duration of
the operation caused by that instruction. This
has use in multiprocessing applications.
Single Steb

When the TF flag register is set, the processor
generates a type 1 interrupt after execution of
each instruction. During interrupt transfer
sequences caused by any type of interrupt,
the TF flag is cleared after the pushflags step
of the interrupt sequence. No instructions are
provided for setting or clearing TF directly.
Rather, the flag register image saved on the
stack by a previous interrupt operation must

be modified, so the subsequent interrupt’

return operation (IRET) restores TF set. This
allows a diagnostic task to single-step through
a task under test, while still executing nor-
mally itself.

If the single-stepped instruction itself clears
the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped
instruction. If the single-stepped instruction
generates an interrupt or if an enabled exter-
nal interrupt occurs prior to the completion
of the single-stepped instruction, the type 1
interrupt sequence will occur after the inter-
rupt sequence of the generated or external
interrupt, but before the first instruction of
the interrupt service routine is executed.

2-17

INSTRUCTION TIMINGS

Instruction timings are included with the
detailed instruction set pages at the back of
this chapter. They are provided as the
number of clock periods required to execute
a particular form (register-to-register,
immediate-to-memory, etc.) of the instruc-
tion. If a system is running with a 5 MHz
maximum clock, the maximum clock period
is 200 ns. Where memory operands are used,
“+EA” denotes a variable number of addi-
tional clock periods needed to calculate the
operand’s effective address. Fig. 2-10 lists all
effective address calculation times.

For control transfer instructions, the timings
given include any additional clocks required
to reinitialize the instruction queue as well
as the time required to fetch the target
instruction.

Note that four clocks are required for each
memory reference. Therefore, the execution
time of memory reference instructions will
depend on the number of byte transfers.

Several additional factors can increase actual
execution time over the figures shown in the
instruction set reference pages. The time pro-
vided assumes that the instruction has already

EACOMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI,Dl) 5
Displacement

+ 9
Base or Index (BX,BP,SI,DI)
Base BP + DI, BX+SI 7
+
Index BP + S|, BX+ DI 8
Displacement BP + DI+ DISP 1
+ BX +SI+DISP
Base
+ BP +Sl+DISP 12
Index BX+DI+DISP

*Add 2 clocks for segment override

Figure 2-10. Effective Address Calculation Time



ARCHITECTURE AND INSTRUCTIONS

been prefetched and that it is waiting in the
instruction queue, an assumption that is valid
under most, but not all operating conditions.
A series of fast executing (fewer than two
clocks per opcode byte) instructions can
drain the queue and increase execution time.

Execution time also is slightly impacted by
the interaction of the CPU’s internal instruc-
tion execution unit (EU) and BU’s interface
unit (BIU) when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one
clock if the BIU has already started an
instruction fetch bus cycle. The EU can
detect the need for a memory operand and
post a bus request far enough in advance of
its need for this operand to avoid waiting a
full 4-clock bus cycle. Of course, the EU does
not have to wait if the instruction queue be-
tween the BIU and EU is full, because the BIU
is idle. (Note: 8088 queue contains 4 bytes.)

With typical instruction mixes, the time actu-
ally required to execute a sequence of
instructions will typically be within 5-10% of
the sum of the individual timings given in the
instruction set sequence. Cases can be con-
structed, however, in which execution time
may be much higher than the sum of the
figures provided. The execution time for a
given sequence of instructions, however, is
always repeatable, assuming comparable ex-
ternal conditions (interrupts, coprocessor
activity, etc.) If the execution time for a given
series of instructions must be determined
exactly, the instructions should be run on an
actual system hardware implementation.

ASSEMBLY LANGUAGE PROGRAMMING!"

This section, while not meant to be a com-
pendium of all features and rules of ASM-86
(the Intel assembler for 8088 instructions)
covered in detail by the Intel iAPX 86,88
Assembly Language Reference Manual, pre-

sents most of the ASM-86 features in a form

[1] Edited and reprinted with permission of Hayden Book Co. from
The 8086 Primer, by Stephen P. Morse. Copyright 1980.

2-18

to enable you to write meaningful programs.
Not covered are many advanced ASM-86
features; attention is focused on underlying
concepts of the language.

Object Code

Let’s first consider a simple program that
reads in word values from input port 5,
increments each value read, and writes the
results to output port 2. The program is as
follows:

Memory Address Memory Contents

(Hexadecimal) (Binary) Comments
00000 11100101 read word into AX...
00001 00000101 ...from input port 5
00002 01000000 increment AX
00003 11100111 write word from AX...
00004 00000010 ...to output port 2
00005 11101011 repeat by jumping...
00006 11111001 ...back seven bytes
00007

The first two columns specify the address and
contents of each relevant memory location
and, as such, constitute the only form of the
program comprehensible to the processor.
This is called object code, and the language
of I’s and 0’s in which the object code is writ-
ten is called machine language. Once we have
the program in object code form, we can
store it in memory and then have the 8088
execute it.

Source Code

Writing a program in I’s and 0’s is tedious
and repetitive, a task that computers do well.
So, instead of writing the program in
machine language, we write the program in a
language more familiar to us and then use a
computer to translate it into the 8088’s lan-
guage. A program written in this more
familiar language is called source code, and
the computer program that translates source
code into object code. is called a transiator.
(Fig. 2-11)

There are two kinds of translator languages
for writing source code: assembly languages
and high-level languages described below and
illustrated in Fig. 2-12



ARCHITECTURE AND INSTRUCTIONS

The process of translation might involve per-
forming some additional activities before the
output is truly machine code. These activities,
like relocation and linkage, are part of the
translation process. Throughout this text,
references to translation (assembling, compil-
ing) imply all necessary activities to produce
object code.

A program written in assembly language is a
symbolic representation of the machine-
language program.

The relation between the assembly-language
program statements and the resulting object
code is usually obvious while the relation
between high-level language statements and
the resulting object code is often not obvious.
Assembly language gives you complete con-
trol over the resulting object code and
thereby allows you to generate very efficient
object code (providing you’re a very efficient
programmer).

A high-level language compiler frees you
from thinking about the object code and lets

OBJECT
[~ CODE

(MACHINE
LANGUAGE)

SQURCE | TRANSLATOR

Figure 2-11. Translation Process

SOURCE OBJECT
CODE —>»| ASSEMBLER _’CODE
ASSEMBLY (MACHINE
ANGUAGE) LANGUAGE)
SOURCE OBJECT
QODE - ™ COMPILER —>GODE
(HIGH-LEVEL (MACHINE
LANGUAGE) LANGUAGE)

Figure 2-12. Assemblers and Compilers

2-19

you concentrate on the task you are pro-
gramming. The compiler may generate less
efficient object code, but good compilers can
sometimes generate more efficient object
code than you could have written in assembly
language.

SYMBOLIC NAMES

The primary advantage of using assembly
language instead of machine language is the
ability to use symbolic names. Let’s illustrate
this point using assembly-language source
code: :

CYCLE:

IN AX,5 ;read word from port 5 into AX
INC AX sincrement AX

ouT 2AX ;write result to port 2

JMP CYCLE ;keep repeating

The above program is simpler to read and
understand because it uses symbolic names
instead of numbers as much as possible. The
opcodes of the four instructions are 1110010-,
01000---, 1110011-, and 11101011 in the
object code. They are IN, INC, OUT, and
JMP in the assembly-language source code.
Symbolic names for opcodes are called
instruction mnemonics. The symbolic opcode
names used throughout this book are the
instruction mnemonics of ASM-86 that gen-
erate corresponding bit patterns for object
code.

Register Names

Besides the opcode fields, there are other
fields in the object code (see above example).
The contents of these fields must be specified
in the assembly-language source code, so the
assembler can generate the appropriate bit
patterns in the object code.

For example, the INC instruction has a 3-bit
reg field, indicating which register is to be
incremented when the instruction is executed.
The contents of this reg field are specified in
the source code by indicating the symbolic
name of the register, as in “INC AX.”



ARCHITECTURE AND INSTRUCTIONS

The symbolic register names used in ASM-86
are the names that are used for the registers
throughout this book —

AX BL = CH DI
BX CL DH CS
CX DL BP DS
DX AH SP ES
AL BH SI SS

Input/Output

Both the IN and OUT instructions have a
1-bit w field and an 8-bit port number field.
The port numbers are simply specified in the
source code by “IN AX,5” and “OUT 2,AX”.
The w field is specified more subtly by the
presence of the AX in “IN AX,5” and “OUT
2,AX”. Input/output always uses AX when
words are involved and AL when bytes are
involved. So the appearance of AX instead of
AL in the IN and OUT instructions indicates
that the w field is a 1. (The AMS-86 conven-
tion is to place the destination before the
source; hence AX precedes port number on
the IN instruction and follows it on the OUT
instruction).

Jump Cycle

Another example of a symbolic name in the
above program is the label CYCLE on the IN
instruction. This permits the JMP instruction
to refer to the location of the IN instruction
by name as in “JUMP CYCLE.” The
assembler now has enough information to

determine that this'is a jump backwards of
seven bytes and can generate a -7 in the
appropriate field of the JMP instruction.

A Completé Program
In the previous section, we used a fragment
of an ASM-86 program. To make that frag-

ment into a complete program, we need some
additional statements (see below).

This entire program will reside in a single
segment in the 8088 memory. During the
assembly process, we don’t know (nor do we
care) where that segment will be located; that
decision will be made prior to loading the
segment into memory.

During the assembly process, we refer to the
starting address of the segment by the sym-
bolic name IN_AND OUT. Lines 1 and 7
delimit the extent of the segment; line 1
introduces the segment name IN_AND__
OUT, and line 7 marks the end of the segment
(ENDS).

Line 8 flags the end of the source program,
thereby telling the assembler that there are no
more lines to assemble. Furthermore, it indi-
cates that when the program is executed, it
should start with the instruction labeled
CYCLE (line 3).

The object code generated by the assembler
specifies the contents of all relevant memory
locations plus this starting address.

1. IN.AND.OUT SEGMENT ;start of segment

2. - ASSUME CS: INNAND.OUT ;that’s what's in CS
3. CYCLE: IN AX,5

4, INC AX

5. ouT 2,AX

6. JMP CYCLE -

7. IN.AND_OUT ENDS ,end of segment

8. END CYCLE ;end of assembly




ARCHITECTURE AND INSTRUCTIONS

The ASSUME statement on line 2 complies
with the following rule:

at the very beginning of any segment contain-
ing code, we must tell the assembler what to
assume is in the CS register when that code is
executed. This will always be the starting
address, without the last four “0” bits of the
segment, so we must include the statement:

ASSUME CS: Name_of_segment

ASM-86 Program Structure

Now consider a more detailed ASM-86 pro-
gram (shown below) to understand the
structure of such programs in general. This
program will be referred to as the “sample
program” throughout this chapter.

Line 1 introduces a segment somewhere ih
the 8088 memory (we don’t care where) and
gives it the name MY_DATA.

Line 3 ends the segment. The only thing in

the segment is SUM, defined to be a byte
(DB) of data. '

The question mark on line 2 indicates that
the generated object code needs to reserve a
place in memory for SUM, but it need not
specify any particular initial contents for that
location. MY_DATA is apparently going to
be used as a data segment.

Lines 4-18 define another segment with the
name MY_CODE. An examination of lines 7

- to 17 reveals that the segment contains

instructions for use as a code segment.

Line 19 flags the end of the source program
and indicates that when the program is exe-
cuted, execution should start with the instruc-
tion labeled GO (line 7).

Assumption About DS

The ASSUME statement on line 5 tells the
assembler what it should assume will be in
the CS and DS register when the segment of
code is executed.

1. MY_DATA SEGMENT ;data segment
2. SUM DB ? ;reserve a byte for SUM
3. MY_DATA ENDS :
4. MY_CODE SEGMENT ;code segment
5. ASSUME  CS:MY_CODE, DS:MY_ DATA
;contents of CS and DS
6. PORT_VAL EQU 3 ;symbolic name for port number
7. GO: MOV AX,MY_DATA ;initialize DS to MY_DATA
8. MOV DS,AX :
9. MOV SUM,0 ;clear sum
10. CYCLE: CMP SUM,100 ;if SUM exceeds 100
11. JNA NOT_DONE
12. MOV - AL,SUM ....then output SUM to port 3
13. ouT PORT_VAL,AL
14. HLT ;...and stop execution
15. NOT_DONE: IN AL, PORT_VAL ;otherwise add next input
16. ADD SUM,AL o '
17. JMP CYCLE ;and repeat the test
18. MY_CODE ENDS :
19. END GO ;this is the end of the assembly




ARCHITECTURE AND INSTRUCTIONS

The need for an assumption about DS is that
some assembly-language instructions in the
code segment access data directly, particu-
larly, the byte SUM. The assembler must
generate machine-language instructions that
address SUM "using the direct addressing
mode. These generated instructions specify
the offset of SUM and some segment register,
typically DS, containing the starting address
of the segment (namely MY_DATA) contain-
ing SUM.

The assembler needs to know which segment
registers (if any) will contain MY_DATA’s
starting address, at the time these instructions
are executed. With this information, the
assembler can determine if a segment-over-
riding prefix is required on these instructions,
and if so, which segment register should be
specified by the prefix. It would be the case if,
for example, MY_DATA'’s starting address
were contained only in ES. Furthermore, if
none of the registers will contain MY_

DATA’s starting address at instruction-
execution time, the assembler knows that it
cannot generate any instructions capable of
accessing SUM and will be able to report this
error at instruction-assembly time.

SUMMARY :
So, why assume some segment register would
contain MY_DATA’s starting address at
instruction-execution time? So that SUM can
be accessed. Why is DS used? Because no
segment-overriding prefix is necessary. Make
sure this assumption is satisfied by executing
certain instructions (lines 7 and 8) prior to the
first access to SUM. .

PORTS 3 AND 4

Line 6 specifies that PORT_VAL is equiva-
lent to the constant 3. This permits PORT_
VAL to be used in place of 3 on succeeding
lines. This makes PORT_VAL a symbolic
name for port 3 and refers to PORT_VAL
whenever port 3 is wanted. Now if we decide

2-22

to rewrite the prdgram to use port 4 instead,
we need make only one change: line 6 is
changed to:

PORT_VAL EQU 4

The instructions on lines 7 through 17 will
keep adding inputs from port 3 until the sum
exceeds 100, output that sum to port 3, then
halt. This is accomplished as follows: The
instruction on line 7 puts — the 16 most-
significant bits of — the starting address of
segment MY_DATA into register AX; on line
8 this value is moved from AX to DS. This
makes SUM accessible . in succeeding in-
structions. ‘

The instruction on line 9 initializes SUM to
0. Observe that on lines 7, 8, and 9, the desti-
nations, such as SUM on line 9, are always
written before the sources, as 0 on line 9.

Line 10 compares (CMP) the value in SUM
to 100 and sets processor flags, indicating
comparison results.

Line 11 tests the flags and jumps, if SUM was
not above 100 (JNA). The target of the jump
is the instruction labeled NOT_DONE (line
15). If the jump on line 11 is not taken (SUM
> 100), the SUM is moved into AL (line 12);
the contents of AL is sent to output port 3
(line 13), and the processor halts (line 14).

If the jump on line 11 is taken (SUM' < 100),
the value on input port 3 is sent to AL (line
15), added to SUM (line 16), and the jump on
line 17 transfers control back to line 10.

General Conclusions B

Now, from the above example, what can be
noticed about the structure of an ASM-86
program? It consists of one or more segment
blocks followed by an END statement. Each
segment block starts with a SEGMENT
statement and ends with an ENDS (end-of-
segment) statement. Between the SEGMENT
and ENDS statements is a sequence of other



ARCHITECTURE AND INSTRUCTIONS

statements. Each statement normally occu-
pies one line. If succeeding lines are needed,
they start with “&”. The structure of an
ASM-86 program is:

NAME1 SEGMENT
statement

: statement
NAME1 ENDS
NAME2 SEGMENT
statement

statement
NAME?2 ENDS

END

The programs presented here all display a
consistent tabular pattern.

Such tabulation is not part of the program
structure; it is optional to the assembler, but
highly recommended to make programs eas-
ier to read and understand.

In the untabulated version of the IN AND__

OUT program below, the assembler would
assemble faster, but the program would be
much less-comprehensible to us.

Tokens

Before examining the kinds of statements
from which ASM-86 programs are built, we
must - become familiar with the building
blocks of statements. Statements are com-
posed of such things as identifiers, reserved
words, delimiters, constants, and comments.
These building blocks, sometimes called tok-
ens, are described below.

IDENTIFIERS

Identifiers are names that you, the pro-
grammer, are free to make up. Identifiers in
the sample program are SUM, CYCLE, and
PORT __VAL. An identifier is a sequence of
letters, numbers, and underscore characters
(—), but may not start with a number. An
identifier may be up to 31 characters long,
which means the length is practically unlim-
ited. Examples of identifiers are:

X

GAMMA
JACKS

THIS _NODE
THISNODE

The last two examples are indeed different
identifiers.

IN_AND_OUT SEGMENT
ASSUME CS:IN.AND_OUT
CYCLE:IN AX,5

INC AX

OUT2,AX

JUMP CYCLE
IN_AND_OUT ENDS

END CYCLE

;start of segment
:that’s what's in CS

;end of segment
;end of assembly

2-23



ARCHITECTURE AND INSTRUCTIONS

RESERVED WORDS

Reserved words, look like identifiers, but
they have a special meaning in the language,
and you must not use them as identifier
names (Fig. 2-14). The sample program uses
reserved words like SEGMENT, MOV,
EQU, and AL. Thus, it would be perfectly
acceptable for us to make up a name like
EQUAL as in:

EQUAL DB

but it would be improper for us to write:

EQU DB ?
Refer to pg. 2-43, Fig. 2-14 for complete list

of ASM-86 Reserved Words.

DELIMITERS

Delimiters are non-alphanumeric characters
that have special meaning in the 8088 assem-
bly language. In the sample program, we saw
such delimiters as : and ;. In this chapter we
will use many of the delimiters. For a com-
plete list of delimiters in ASM-86, see Fig.
2-13.

2-24

CONSTANTS ‘
Constants are fixed values appearing in
ASM-86 programs. In the sample program
there are constants 0, 3, and 100. These are
whole-number constants. The assembly lan-
guage also allows for string constants.

A whole-number constant is any non-
fractional number between 0 and 65535 (216
— 1). It is normally written as a decimal
number, but can also be written in binary,
ending with a B, octal, ending with a Q, or
hexadecimal, ending with an H.

To avoid confusion with identifiers, a hexa-
decimal constant must start with a numeric
digit; a leading zero would suffice. Examples
of whole-number constants are 15, 1010B,
27Q, 3A0H, and 0BFA3H.

&

Figure 2-13. Delimiters in ASM-86



ARCHITECTURE AND INSTRUCTIONS

String Constant

A string constant is one or two characters
enclosed with apostrophes. Strings of more
than two characters are permitted in res-
tricted cases, but are not discussed here. An
apostrophe itself may be included in a string
constant by writing it as two consecutive
apostrophes. Examples of string constants
are ‘A’, ‘AB’, and ””. The last example is the
string consisting of the apostrophe character.

The value of a string constant is the ASCII
code of the character(s) in the string. For
example, the value of ‘A’ is 41H and the value
of ‘AB’ is 4142H. Thus, string constants and
whole-number constants can be used inter-
changeably.

COMMENTS

Any sequence of characters following a semi-
colon (;) up to the end of the line are com-
ments. They are ignored by the assembler
and should be used generously in your pro-
gram to document what you are doing. While
comments like

INC CX :increment CX

convey little information, comments like

INC CX ;increment outer

loop counter

make a program more readable.

Expressions

One more building block, namely expres-
sions, must be introduced before we can
build statements. Expressions are built up
from some of the tokens just described.

Loosely speaking, an expression is a sequence
of operands and operators combined to pro-
duce a value at program assembly time. How
are operands and operators combined to
produce the value of an expression?

OPERANDS
An operand is something that has either a
numeric value or a memory address value.

2-25

Operands with numeric values are constants,
or identifiers that represent constants. Some
numeric-valued operands, appearing in our
sample program are 100 and PORT_VAL.
The permissible range of values for such oper-
ands is from -65,535 to +65,535.

Note that the value of an operand may be
negative, but a constant is never negative. A
minus sign can be written in front of a con- .
stant, but is never considered a part of the
constant; it is an arithmetic operator.

Memory-address operands are frequently
identifiers, such as SUM and CYCLE in the
sample program. The value of a memory
address is not simply a number; it is a set of
components, each component generally being
a number. One component is the 16 most-
significant bits of the segment starting address
where the memory address is contained. The
four least-significant bits of a segment start-
ing address are always zeros.

Another component is the offset address
within the segment. These two components
are referred to as the segment and offset of
the memory-address operand.

Another operand is an expression itself,
enclosed in parentheses, and used in some
bigger expression, as in 3*(PORT_VAL+S).

OPERATORS

An operator takes the value of one or more
operands and produces a new value. There
are five kinds of operators in ASM-86

1) arithmetic operators
2) logical operators

3) relational operators
4) analytic operators
5) synthetic operators

Arithmetic Operators

Arithmetic operators are the familiar addi-
tion operator (+), subtraction operator (—),
multiplication operator (*), and division
operator (/). Another arithmetic operator,
MOD, produces the remainder after doing a



ARCHITECTURE AND INSTRUCTIONS

division. Thus 19/7is 2, whereas 19 MOD 7is 5.

Arithmetic operators may always be applied
to a pair of numeric operands, and the result
will be numeric. The rules for applying
arithmetic operators on memory-addressing
operands are more restrictive: such opera-
tions are valid only if the result has a
meaningful physical interpretation.

For example, the product of two memory
addresses has no meaningful interpretation.
What segment would it be in? What offset
would it have? Hence, it is a prohibited
operation.

The difference of two memory addresses in
the same segment is the numeric distance
between them — the difference in their offsets.

The only other meaningful arithmetic opera-
tion on a memory address is adding or
subtracting a numeric value. Thus SUM+2,
CYCLE-5, and NOT_DONE-GO would all
‘be valid expressions in the sample program.
SUM —CYCLE would not be a valid expres-
sion because they are in different segments.

NOTE: The value of SUM+2 is a memory
address two bytes beyond SUM in the MY
—_DATA segment; it is not the numeric value
that is 2 plus-the-contents-of-location-SUM.
Such contents are not known until program
execution, whereas expressions are evaluated
at assembly time.

Logical Operators
The logical operators are bit-by-bit AND,
OR, XOR (exclusive-or), and NOT.

The operands of logical operators must be
numeric only — memory-address operands
are not allowed — and the result will be
numeric. This is shown by:

1010101010101010B AND 1100110011001100B
is 10001000100010008B;

1100110011001100B OR 1111000011110000B
is 1111110011111100B

NOT 1111111111111111B is 0000000000000000B
and

1111000011110000B XOR SUM is invalid.

2-26

As an example of logical operators, consider:

IN
ouT

AL,PORT_VAL
PORT_VAL AND OFEH,AL

The IN instruction gets input from PORT
_ VAL, wherever that is.

Execution of the OUT instruction sends out-
put to port PORT_VAL AND O0FEH, which
is either the same port, if PORT_VAL is even,
or the next lower-numbered port, if PORT
__VAL is odd. The actual port value of the
OUT instruction is determined when the
instruction is assembled, not when it is
executed.

Observe that AND, OR, XOR, and NOT are
instruction mnemonics as well as ASM-86
operators. As ASM-86 operators, they cause
a value to be computed when the program is
being assembled. As instruction mnemonics,
they perform their roles when the program is
being executed:

AND DX,PORT_VAL AND OFEH

will cause the assembler to compute the value
of PORT_VAL AND OFEH and then gener-
ate an AND-immediate instruction contain-
ing that value in its data field. When this
instruction is later executed, it will cause the
contents of the DX register to be ANDed
with that value and the result placed in the
DX register.

Relational Operators

1) Equal (EQ)

2) not-equal (NE)

3) less-than (LT)

4) greater-than (GT)

5) less-than-or-equal (LE)

6) greater-than-or-equal (GE)

PORT_VAL LT 5 is a relational operator.
The two operands must both be numeric or
must both be memory addresses in the same
segment. The result is always a numeric
value. It will be 0 if the relationship is false,



ARCHITECTURE AND INSTRUCTIONS

and OFFFFH (16 bits of 1’s) if the relation-
ship is true.

Using a relational operator:

MOV BX,PORT_VAL LT 5
The assembler will assemble

MOV BX,0FFFFH

if the value of PORT_VAL is < 5;
otherwise the assembler will assemble
MOV BX,0

At first it may appear that relational opera-
tors are not useful. It’s not often that you
want to generate an instruction with a field
that contains either 0 or OFFFFH, and no
other choices. However, by combining rela-
tional operators with logical operators, the
two relational results of 0 and OFFFFH can
be molded into any numeric values you
desire:

MOV BX,((PORT_VAL LT 5)AND 20)
& OR ((PORT_VAL GES5) AND 30)

will assemble

MOV BX,20

if PORT_VAL is less than 5, and
MOV BX,30

otherwise.

Note the generous use of parentheses to force
the order that operators are applied. If you
always use parentheses to make the ordering
explicit, you won’t have to memorize the
rules about which operators get evaluated
first.

Analytic and Synthetic Operators

The analytic operators decompose memory-
address operands into their components,
while synthetic operators build memory-
address operands from their components. A
discussion of these operators is presented
after we learn more about memory-address
operands. (see page 2-30)

2-27

Statements

There are two kinds of ASM-86 program
statements: instruction statements (MOV,
ADD, JMP, etc.) and directive statements
(DB, SEGMENT, EQU, etc.)

Each instruction statement causes the assem-
bler to generate an instruction in the object
code. Directive statements tell the assembler
what kind of code to generate for succeed-
ing instruction statements. The directive
statement

MY_PLACE DB

tells the assembler that MY_PLACE is
defined as a byte. The assembler allocates a
memory address for MY_PLACE. Later,
when the assembler encounters the instruc-
tion statement

INC MY_PLACE

it will generate an object code instruction to
increment the contents of MY_PLACE.
Because of the previously-encountered direc-
tive statement, the assembler will know to
place a ‘0’ (to indicate a byte) in the w field of
the increment instruction.

?

The formats of the two kinds of statement are
similar. The instruction statements are of the
form

label: mnemonic argument,...,argument ;comment

The directive statements are of the form

name directive argument,...argument ;comment

The label in an instruction statement is fol-
lowed by a colon, whereas the name in a
directive statement is not. This highlights
the difference between the two kinds of
statements.

A label associates a symbolic name with the
location of an instruction. A label can be
used as an operand in a jump or call
instruction.

The name in a directive statement has no
relation to an instruction location and can
never be jumped to.



ARCHITECTURE AND INSTRUCTIONS

Labels in instruction statements are always
optional; names in directive statements can
be mandatory, optional, or prohibited, depend-
ing on the particular directive.

Mnemonics in instruction statements specify
the purpose of the statement. Directives, in
directive statements, specify the purpose of
the statement. The instruction mnemonics
correspond to the set of approximately 100
opcodes available in the 8088. The directives
correspond to the set of some 20 functions
provided by the ASM-86 assembler (Fig.
2-14). ‘

The mnemonic or directive may require addi-
tional information to define its purpose

completely. This information is provided by

a sequence of arguments.

Optional comments make the program more
readable; when present they must be pre-
ceded by a semicolon.

Directive Statements

The various directive statements in ASM-86
are:

1) symbol-definition

2) data-definition

3) segmentation-definition

4) procedure-definition

5) termination

Symbol-Definition Statements

The EQU statement provides a means for
defining symbolic names to represent values
or other symbolic names. The two forms of
the EQU statement are illustrated:

Some examples are:

BOILING_.POINT EQU 212
BUFFERSIZE EQU 32
NEW_PORT EQU PORTVAL+1
COUNT EQU ¢Cs ‘

The last example differs from the other three in
that COUNT does not represent a value; it is a
synonym for the CX register.

A symbolic name can be “undefined” by a
PURGE statement so it may later represent
something entirely different:

PURGE BUFFER_SIZE

Data-Definition Statements

Data-definition allocates memory for a data
item, associates a symbolic name with that
memory address, and optionally supplies an
initial value for the data. Symbolic names
associated with data items are called vari-
ables. Examples of data-definition statements
are: (see below)

In the example below, THING is a symbolic
name associated with a byte in memory,
BIGGER_THING with two consecutive
bytes in memory, and BIGGEST_THING
with four consecutive bytes in memory.

Initial Values »
Before we can discuss the question marks (?),
we need to introduce the concept of initial
values of data items.

The object code produced by the assembler
contains the I’s and 0’s that make up each
instruction and the memory address at which

name EQU expression
newname EQU old.name each instruction should reside. After the
object code is produced, the instructions are
THING DB ? ;defines a byte
BIGGER_THING DW ? ;defines a word (2 bytes)
BIGGEST_THING DD ? ;defines a doubleword (4 bytes)

2-28



ARCHITECTURE AND INSTRUCTIONS

loaded into memory at the indicated addresses
and then executed.

At the time the instructions are loaded, initial
values for data items could also be loaded
into memory. This means that the object
code, besides containing instructions and
their addresses, may also contain initial
values for data items and their addresses.
These initial values are specified to. the
assembler in the data definition statements.

The following statement will cause the
assembler to produce object code that, when
loaded into memory, will result in a 25 being
placed in the memory address allocated to
THING;

THING DB 25 :byte initially contains 25

A question mark in place of an initial value
means that we do not choose to specify an
initial value for that data item; we will be
satisfied with whatever initially appears in the
corresponding memory location.

When the assembler sees the question mark,
it still allocates memory for the data item, but
does not produce object code to initialize the
memory location (although it could).

In general, the initial value could be specified
by an expression, since expressions are eval-
uated at assembly time. So we can write
statements like:

IN.PORT DB
OUT_PORT DB

PORT.VAL
PORT.VAL+1

Recall that expressions come in two varieties
— numeric and memory address. It is mean-
ingful to initialize either a byte, or a word, or
a double-word with a numeric value. But,

what about a memory-address value? It won’t
fit into a byte, but the offset component fits
into a word; and, both the segment and address
components fit into a double word. So we can
write initialization statements like those
shown at the bottom of this page.

The initialization of LITTLE_CYCLE per-
mits an indirect intrasegment jump or call to
use the date item named LITTLE CYCLE to
transfer control to the label named CYCLE.

Similarly, an intersegment jump or call
transfers control to CYCLE by using the data
item named BIG CYCLE.

Tables

So far we have used data-definition state-
ments to define one byte, word, or double-
word at a time. Often, we deal with tables of
bytes, words, or double words. For example,
the 8088 XLAT instruction uses a table of
bytes to translate an encoded value into the
same value under a different encoding. The
8088 interrupt mechanism uses a table of
double-words, starting at memory location 0
to point to the starting addresses of the inter-
rupt service routines. And, the 8088 string
instructions operate on tables of bytes or
words containing the string elements.

A table is defined by placing several initial
values on a data-definition statement. The
following statement defines a table of bytes
containing powers of 2:

POWERS_2 DB 1,2,4,8,16
The byte at the memory address correspond-
ing to POWERS_2 will be initialized to 1

(when the object code is loaded into memory).

LITTLE.CYCLE DW CYCLE
BIG.CYCLE DD CYCLE
CYCLE MOV BX AX

;offset of CYCLE
;offset and segment of CYCLE

2-29



ARCHITECTURE AND INSTRUCTIONS

The next four bytes will be initialized to 2,4,8,
and 16, respectively. A table of bytes, all
initialized to zero, can be defined by

ALL_ZERO DB 0,0,0,0,0,0
or by the shorthand notation
ALL_ZERO DB 6 DUP (0)

And, finally, an un-initialized table can be
defined by either of the following equivalent
statements:

DONT_CARE DB ?,2,2,2,2,2,2,?

DONT_CARE DB 8 DUP (?)

TYPES OF MEMORY LOCATIONS

ASM-86 associates a type with every memory
location referred to in the program so it can
generate the correct code for instructions that
accesses memory. For example, the data-
definition statement ‘

SUM DB ?

informs the assembler that the memory loca-
tion SUM is of type BYTE. Later, when the
assembler encounters an instruction state-
ment such as

INC SUM

the assembler will know to generate a byte-
increment instruction, rather than a word-
increment instruction.
A memory location can be one of the follow-
ing types:
1) BYTE of data, as in:
SUM DB ?

2) WORD of data (two consecutive bytes), as
in:

BIGGERSUM DW ?
3) DWORD of data (four consecutive bytes),
as in:

BIGGEST_SUM DD ? defining a doubleword

;defining a byte

;defining a word

4) NEAR instruction location, as in:
CYCLE: CMP SUM,100

5) FAR instruction location:
(means of defining such locations will
be discussed shortly)

2-30

An instruction location can appear in a jump
or call instruction statement. The assembler
will generate an intrasegment jump or call if
the location type is NEAR, and an interseg-
ment jump or call if it is FAR. For example,
the labeled instruction statement

CYCLE: CMP SUM,100

informs the assembler that the memory loca-
tion CYCLE is of type NEAR. (We will see
shortly how the synthetic operators PTR and
THIS are used to define a memory location
of type FAR). Later, when the assembler
encounters an instruction such as

JMP CYCLE

the assembler will know to generate an intra-
segment jump .instruction, rather than an
intersegment jump instruction.

A memory address built by adding or sub-
tracting a numeric value fo or from some
other memory address has the same type as
the original memory address. For example,
SUM+2 is a BYTE, BIGGER_SUM-3 is a
WORD, and CYCLE+I is a NEAR instruc-
tion location.

ANALYTIC AND SYNTHETIC OPERATORS
We now know enough about memory addres-
ses to complete the discussion of operators.

The analytic operators decompose memory-
address operands into their components.
These operators are:

1) SEG
2) OFFSET
3) TYPE
4) SIZE
5) LENGTH

The SEG operator returns the segment com-
ponent of the memory-address operand. The
OFFSET operator returns the offset compo-
nent. Both of these components are generally
numeric values.

The TYPE operator returns a numeric value,
which is the type component of the memory-
address operand. The value of the type



ARCHITECTURE AND INSTRUCTIONS

component for the various memory-address
operands is:

Type
Memory Address Operand | Component
BYTE of data 1
WORD of data 2
DWORD of data 4
NEAR instruction location -1
FAR instruction location -2

Notice that the type component for bytes,
words, and double words corresponds to the
number of bytes that each occupies. The
value of the type component for instruction
locations does not have a physical interpreta-
tion.

The LENGTH and SIZE operators apply
only to data-memory-address operands
(BYTE, WORD, or DWORD).

The LENGTH operator returns a numeric
value for the number of units (bytes, words,
or double words) associated with the memory-
address operand.

The SIZE operator returns a numeric value
for the number of bytes allocated for the
memory-address operand. For example, if
MULTI_WORDS is defined by

MULTILWORDS Dw 50 DUP (0)
then LENGTH MULTLWORDS is 50 and
SIZE MULTL WORDS is 100. Notice that

SIZE X is equal to (LENGTH X)* (TYPE
X).

PTR and THIS

The synthetic operators build memory-
address operands from their components.
These operators are PTR and THIS.

The PTR operator builds a memory-address
operand that has the same segment and offset
of some other memory-address operand, but
has a different type. Unlike a data-definition
statement, the PTR operator does not allo-

_ cate memory; it merely gives another mean-

ing to previously-allocated memory. For
example, if TWO_BYTE were defined by,

TWOBYTE DW ?

then we could name first the byte in the word
as follows:

ONEBYTE EQU BYTEPTRTWOBYTE

In this example, the PTR operator creates a
new memory-address operand having the
same segment and offset components as
TWO_BYTE, but having a type component
of BYTE. We can name the second byte of
TWO_BYTE either as

OTHER_BYTE EQU BYTE PTR (TWO_BYTE+1)
or more simply as
OTHER.BYTE EQU ONE_BYTE+1

The PTR operator can also create words and
double-words as illustrated below:

MANY BYTES
FIRST WORD
SECOND DOUBLE EQU

DB

100 DUP (?)
EQU WORD PTR MANY_BYTES
DWORD PTR (MANY_BYTES +4)

;an array of 100 bytes

2-31



ARCHITECTURE AND INSTRUCTIONS

Further, the PTR operator can create loca-
tions of instructions:

INCHES: CMP  SUM,100 ;type of INCHES is NEAR
JMP  INCHES ;intrasegment jump

MILES EQU FAR PTR INCHES ;type of MILES is FAR
JMP  MILES ;intersegment jump

Notice that the above shows ways to build this example, MY_BYTE could have been
new memory-address operands from old built with the PTR operator instead:

ones by . MY BYTE EQU BYTE PTR MY_WORD
1) using the PTR operator asin BYTE PTR

TWQBYTE The THIS operator is convenient for defining
2) using expressions as in ONE BYTE+1 FAR instruction locations:

3) using a combination of PTR and expres- MILES EQU THIS FAR
sions as in BYTE PTR (TWQ_BYTE+1) CMP SUM.100

Expressions are useful when we wish to
change the offset component but leave the

type component unchanged. JMP MILES

Neither expressions, nor PTR, changes the Note that the use of the THIS operator in the
segment component. And the new memory- example made it unnecessary to have a
address operand, created by either expres- NEAR instruction location with the same

sions or PTR, will have a length component segment and offset as MILES. If we used the
of 1 (providing it’s not an instruction PTR operator instead of the THIS operator,

location). such a NEAR instruction would have been
The synthetic operator THIS, like PTR, necessary.
builds a memory-address operand of a speci- Segmentation-Definition Statements
fied type, without allocating memory for it. The segmentation-definition statements orga-
The segment and offset component of the nize our program to use the 8088 memory
new memory-address operand is the segment segments. These directives are: '
and offset of th_e next memory location avail- 1) SEGMENT
able for allocation. For example: 2) ENDS
3) ASSUME

. 4) ORG

MY BYTE EQU THIS BYTE

The SEGMENT and ENDS statement sub-

MY—WORD DW ? divide the assembly-language source pro-
‘ gram into segments. Such segments

correspond to the memory segments where

would create MY_BYTE with type compo- the resulting object code will eventually be
nent of BYTE, and with the same segment loaded. The assembler is concerned with pro-
and offset components as MY_WORD. In gram segmentation for the following reasons.

2-32



ARCHITECTURE AND INSTRUCTIONS

First, intrasegment jump and call instructions
require only the offset (16-bits) of the new
location. Intersegment jump and call instruc-
tions require the segment (another 16-bits) in
addition to the offset.

Second, data-accessing instructions that use
the current data segment and current stack
segment in the manner most optimal for the
8088 architecture contain only the offset
(16-bits) of the data location. Any other
instruction that accesses a data location
within one of the four currently-addressable
segments must contain a segment-overriding
prefix (another 8-bits) in addition to the

offset. Here, current refers to when the
instruction is executed, not assembled.

Therefore, to assemble the correct object
code, the assembler must know the segment
structure of the program and which segments
will be addressable — pointed at by segment
registers — when various instructions are
executed. This information is supplied by the
ASSUME directive.

The following example shows how the
SEGMENT, ENDS, and ASSUME direc-
tives can be used to define a code, data, extra,
and stack segment:

MY_DATA SEGMENT
X DB ?
Y DW ?
Z DD ?
MY_DATA ENDS
MY_EXTRA  SEGMENT
ALPHA DB ?
BETA DwW ?
GAMMA DD ?
MY_EXTRA  ENDS
MY_STACK SEGMENT
DW 100 DUP (?) ;this is the stack
TOP EQU THIS WORD
MY_STACK ENDS
MY_CODE SEGMENT
ASSUME CS:MY_CODE,DS:MY_DATA
ASSUME ES:MY_EXTRA,SS:MY_STACK
START: MOV AX,MY_DATA ;initializes DS
MOV DS,AX
MOV AX,MY_EXTRA sinitializes ES
MOV ES,AX
MOV AX,MY_STACK ;initializes SS
MOV SS,AX
MQV SP,OFFSET TOP ;initializes SP
MY_CODE ENDS
END START

2-33



ARCHITECTURE AND INSTRUCTIONS

Observe that the code at the head of the
MY_CODE segment will, at program execu-
tion, initialize the various segment registers to
point to the appropriate segments, and the
code will initialize the stack pointer to point
to the end of the stack segment.

The ASSUME statement makes the assem-
bler aware of segment register values when
the code is executed.

To illustrate the purpose of the ASSUME
statement, let’s consider code (within SEG-
MENT MY_CODE) that moves the contents
of byte X to byte ALPHA. To do this, we
need an instruction that moves the contents
of X into a register, say BL, and an instruction
that moves the contents of the register into
ALPHA. How about:

MOV  BLX
MOV  ALPHABL

;from X to BL
;from BL to ALPHA

During execution of such MOV instructions,
the 8088 processor would normally use the
DS register to find the starting address of the

segment where the specified item (X or
ALPHA) is located. This will work fine when
accessing X — the first instruction — because
DS will indeed contain the starting address of
segment MY_DATA where X is located.

But, this will not work when accessing
ALPHA — the second instruction — because
the starting address of segment MY EXTRA,
where ALPHA is located, will not be con-
tained in DS.

The ASSUME statement has made the
assembler aware that the first instruction will
execute properly. The assembler is also aware
(thanks to the ASSUME statement) that the
starting address of MY_EXTRA, although
not in DS, will be in one of the other segment
registers — namely ES. The assembler, there-
fore, generates a segment-overriding prefix
for the second instruction so that it too, will
execute properly.

It’s not always possible to know what will be
in the segment registers when a particular
instruction will be executed. Consider:

OLD_DATA SEGMENT

OLD_BYTE DB ?

OLD_DATA ENDS

NEW_DATA SEGMENT

NEW_BYTE DB ?

NEW_DATA ENDS

MORE_CODE SEGMENT
ASSUME CS:MORE_CODE
MOV AX,OLD_DATA ;put OLD_DATA into
MOV DS,AX ;...DS and
MOV ' ES,AX ;.. ES
ASSUME DS:OLD_DATA ES:OLD_DATA

CYCLE: INC OLD_BYTE ;what's in DS now?
MOV AX,NEW_DATA ;put NEW_DATA
MOV DS,AX ;...into DS

JMP CYCLE

MORE_CODE ENDS



ARCHITECTURE AND INSTRUCTIONS

The first time the INC instruction is exe-
cuted, DS will contain OLD DATA and the
indicated assumption on DS will be correct.
But then DS will be changed to NEW
__DATA, and the same INC instruction will
be executed a second time. Therefore, it
would be wrong for the assembler to make
assumptions about the contents of DS when
the INC instruction is executed. The assem-
bler must generate a segment-override prefix
— specifying the extra segment — on the
INC instruction, even though this prefix
would be unnecessary on the first execution
of INC.

In order to tell the assembler not to make any
assumptions about DS, we must place the
following assumption just before the INC
instruction:

AéSUME DS:NOTHING

CYCLE: INC OLDBYTE

Prior to, or at the very beginning of any seg-
ment containing code, we must tell the
assembler (via an ASSUME statement) what
it should assume will be in the CS register
when that segment of code is executed.

Instead of using an ASSUME statement, we
could tell the assembler which segment regis-
ter should be used for the execution of each
instruction. For example, the move of X to
ALPHA in the previous example could be
written as:

MOV
MOV

BX, DS:X
ES:ALPHA,BX

This says that DS should be used when X is
accessed, and ES should be used when
ALPHA is accessed. Since the processor

2-35

would normally use DS when executing these
instructions, the assembler produces a segment-
overriding prefix when generating object
code for the second instruction, but not for
the first instruction.

Efficient Prdgramming
Now let’s look at one of the shortcomings of
memory segments to see how to get around it.

Memory segments a/ways start on 16-byte
boundaries. Remember that the last 4 bits of
segment starting addresses are zero. A seg-
ment can be up to 216 bytes long. If a
segment does not use all of its approximately
65,000 bytes, some other segment can start
just beyond the last byte used by the first
segment. But the second segment must also
start on a 16-byte boundary, and, therefore,
may not start immediately after the last byte
used by the first segment. This means there
could be up to 15 bytes wasted between
segments.

Suppose the first segment starts at address
10000 (hexadecimal) and uses only 6D
(hexadecimal) bytes. So the last byte used is at
address 1006C. The closest the second seg-
ment could start would be at address 10070,
thereby wasting the bytes at 1006D, 1006E,
and 1006F.

Now, instead of starting the second segment
at the lowest 16-byte boundary beyond the
last byte used by the first segment, start the
second segment at the highest 16-byte boun-
dary that does not cause any bytes to be
wasted: thus, we could start the second seg-
ment at address 10060. This resuits in the last
few bytes — 13 to be exact — used by the
first segment to be also in the second
segment.

But the second segment would then simply
not use its first few bytes, which is efficient.
So, if the second segment starts at 10060, the
bytes in the second segment below offset
000D are simply not used by the second seg-
ment. Therefore, no bytes are wasted.



ARCHITECTURE AND INSTRUCTIONS

Ordinarily, it doesn’t matter where in mem-
ory segments are located, so we let the
translator make that choice. However, we
might want to give the translator some con-
straints such as “don’t overlap this segment
with any other segment,” “make sure the first
byte used by this segment is at an even
address” or ‘‘start this segment at the follow-
ing address.” We can write these constraints
into the source program:

1) Don’t overlap. First usable byte in seg-
ment is on a 16-byte boundary and has an
offset of 0000.

MY_SEG SEGMENT ;this is the normal case

MY_SEG ENDS

2) Overlap if you must, but first usable byte
must be on a word boundary.

MY_SEG SEGMENT WORD ;word aligned

MY_SEG ENDS

3) Overlap if you must, and place first usable
byte anywhere you like.

MY_SEG SEGMENT BYTE ;byte aligned

MY_SEG ENDS

4) Start segment at specified 16-byte boun-
dary. First usable byte is at specified offset.

MY_SEG SEGMENT AT 1A2BH ;address 1A2B0
ORG 0003H ;address 1A2B3

MY_SEG ENDS

The last example introduced another state-
ment, ORG (for origin). It specifies the next
offset to be used in the segment.

Procedure-Definition Statements

Procedures are sections of code that are
called into execution from various places in
the program. Each time a procedure is called
upon, the instructions that make up the
procedure are executed, then control is
returned to the place from which the proce-
dure was originally called.

The 8088 instructions to call and return from
a procedure are CALL and RET. These
instructions come in two flavors — intraseg-
ment and intersegment.

The intersegment instructions push (CALL)
and pop (RET) both the segment and the
offset of the place where the procedure
should return. \

The intrasegment ones push and pop only the
offset.

Near and Far

Procedures called with intrasegment CALLs
must return with intrasegment RETurns.
Such procedures are known as NEAR
procedures. Similarly, procedures that are
called with intersegment CALLs must return
with intersegment RETurns and are known
as FAR procedures.

The procedure-definition statements, PROC
and ENDP (end procedure), delimit a proce-
dure and indicate whether it is a NEAR or
FAR procedure. This helps the assembler in
two ways. First, when assembling CALLs to
that procedure, the assembler will know
which kind of CALL to assemble. Secondly,
when assembling RETs from that procedure,
the assembler will know which kind of RET
to assemble: (see table on next page)

Since UP_COUNT is declared to be NEAR
procedure, all CALLs to it are assembled as
intrasegment CALLs, and all RETurns with-
in it are assembled as intrasegment returns.

This example points out some similarities
between the RET instructions and the HLT
instruction. There may be more than one



ARCHITECTURE AND INSTRUCTIONS

MY_CODE  SEGMENT

URP_COUNT PROC NEAR
ADD CX,1
RET

UR_COUNT ENDP

START: .
CALL UPCOUNT
CALL UPCOUNT
HLT

MY_CODE ENDS
END START

RET in a procedure, just as there may be
more than one HLT in a program.

The last instruction in a procedure (program)
need not be a RET or (HLT); but, if it isn’t, that
instruction should be a jump back to some-
where within the procedure (program).

The ENDP (END) tells the assembler where
the procedure (program) ends, but does not
cause the assembler to generate a RET (HLT)
instruction.

Termination Statements

With one exception, each terminating state-
ment is paired up with some beginning
statement. For example, SEGMENT and
ENDS, PROC and ENDP. These terminat-
ing statements are described with their
corresponding beginning statements.

The one exception is END, which flags the
end of the source program. It tells the
assembler that there are no more instruc-
tions to assemble. The form of the END
statement is

END expression

where the expression must yield a memory-
address value. That address is the address of
the first instruction to be executed when the
program is executed.

The following example illustrates the use of
the END statement:

2-37

START:

END START

Instruction Statements

The instruction statements, for the most part,
correspond to the instructions of the 8088
processor. Each instruction statement causes
the assembler to generate one 8088 instruc-
tion. An 8088 instruction consists of an
opcode field and fields specifying the operand-
addressing mode (mod field, r/m field, reg.
field).

So the instruction statements in ASM-86
must contain an instruction mnemonic as
well as sufficient addressing information to
permit the assembler to generate the instruc-
tion.

INSTRUCTION MNEMONICS

Most of the instruction mnemonics are the
same as the symbolic opcode names for the
8088 instructions. Some additional instruc-
tion mnemonics, NIL and NOP, make the
assembly language more versatile.

No-Operation

The instruction mnemonic NOP causes the
assembler to generate the l-byte instruction
that exchanges the contents of the AX
register with the contents of the AX register
(hexadecimal opcode 90). Besides not doing
anything, NOP doesn’t waste any time not
doing it, since it doesn’t make any memory
accesses. Does it seem strange to waste
precious memory locations on instructions
that do nothing? There are good reasons for
doing so.

The NOPs might serve as placeholders for
instructions to be filled in later, possibly
when the program is executing — an old trick.



ARCHITECTURE AND INSTRUCTIONS

They might also be used to slow down a
portion of the program where precise timing
relationships are important.

Placeholder

NIL is the only instruction mnemonic that
does not cause the assembler to generate any
instructions. In contrast to NOP, which
causes the assembler to generate an instruc-
tion that does nothing when executed, NIL
doesn’t even cause an instruction to be
generated.

NIL serves as a convenient placeholder for
labels in the assembly-language program:

CYCLE: NIL
INC AX

Although this is equivalent to
CYCLE: INC AX

the NIL makes it much easier to insert
instructions ahead of the INC instruction in
the source program, if the need arises later.

INSTRUCTION PREFIXES

The 8088 instruction set permits instructions
to start off with one or more prefix bytes. The
three possible prefixes are:

1) segment-override
2) repeat
3) lock

ASM-86 permits the following prefixes to be
included with the instruction mnemonic:

LOCK

REP (repeat)

REPE (repeat while equal)
REPNE (repeat while not equal)
REPZ (repeat while zero)
REPNZ (repeat while non-zero)

A sample instruction statement using a prefix
is:
CYCLE:

LOCK DEC COUNT

The segment-overriding prefix is generated
automatically by the assembler whenever the
assembler realizes that a memory access
requires such a prefix. The asembler makes
this decision in two steps.

First, it selects a segment register that will
make the instruction execute properly. The
assembler selects the segment register based
on information it received from previous
ASSUME statements. However, we can
force the assembler to select a particular
segment register by including that register in
the instruction as in:

MOV BX,ES:SUM

Secondly, the assembler determines if a
segment-overriding prefix is necessary to
force execution of the instruction to use the
selected segment register.

OPERAND-ADDRESSING MODES

The 8088 processor provides various operand-
addressing modes. ASM-86 must therefore
provide a means of expressing each mode
when writing instruction statements: For
example:

1) Immediate:

MOV AX,15 ;15 is an immediate operand

2) Register:

MOV AX,15

3) Direct:
SUM DB ?

;AX is a register operand

MOV  SUM,15 ;SUM is a direct memory
operand

4) Indirect through base register:

MOV
MOV

AX,(BX)
AX,(BP)

5) Indirect through index register:

MOV
MOV

AX,(SI)
AX,(DI)



ARCHITECTURE AND INSTRUCTIONS

6) Indirect through base register plus index
register:

MOV AX,(BX) (Sh)
MOV AX,(BX) (DI
MOV AX,(BP) (S
MOV AX,(BP) (DI)

7) Indirect through base or index register
plus offset:

MANY_BYTES DB 100 DUP(?)

MOV

AX,MANY BYTES(BX)
MOV  AX,MANY_BYTES(BP)
MOV  AX,MANY_BYTES(SI)
MOV  AX,MANY_BYTES(DI)

8) Indirect through base register plus index
register plus offset:

MANY BYTES DB 100 DUP(?)

MOV

AX,MANY_BYTES(BX) (Sl)
MOV  AX,MANY BYTES(BX) (DI)
MOV  AX,MANYBYTES(BP) (S)
MOV  AX,MANY BYTES(BP) (DI)

The assembler uses its knowledge about a
memory location’s type when generating
instructions that reference that memory
location. For example, the assembler gen-
erates a byte-increment when encountering
the following:

SUM DB ? ;type is BYTE

INC SUM ;a byte increment

However, with indirect operand-addressing
modes, it is not always possible for the

2-39

assembler to know the type of the memory
location, as illustrated by:

MOV AL,(BX)

Even though the assembler does not know
the type of the source operand in the above
instruction, it does know that the type of the
destination operand, AL, is BYTE. So the
assembler assumes that (BX) is also of
type BYTE and generates a byte-move
instruction.

But now consider the statement:
INC (BX)

There is no second memory location here to
help the assembler determine the type of
(BX). So the assembler cannot decide whether
to generate a byte-increment instruc-
tion or a word-increment instruction. The
above statement must therefore be written as
shown so the assembler can determine the
type:

INC BYTE PTR (BX) ;a byte-increment
or

INC WORD PTR (BX) ;a word-increment

STRING INSTRUCTIONS

The assembler can usually discern the type of
an operand from its declaration, and hence
know what kind of code to generate for
accessing that operand.

However, we have just seen that, when using
an indirect-addressing mode, we might have
to supply the assembler with additional
information so it can determine the type.

String Primitives
String instructions also need such additional
information. Consider the string instruction

‘MOVS.

This instruction moves the contents of the
memory address whose offset is in ST into the
memory address whose offset is in DI. We
should not need to specify any operands,
since the instruction has no choice as to
which items to move and where.



ARCHITECTURE AND INSTRUCTIONS

However, the instruction could move either a
byte or a word. The assembler must know
which is being moved, so it can generate the
correct instruction. For this reason, the
ASM-86 statement for the MOVS instruc-
tion must specify the items that have been
moved into SI and DI.

For example:

ALPHA DB ?
BETA DB ?
MoV SI,OFFSET ALPHA

MOV
MOVS

DI,OFFSET BETA
BETA,ALPHA

The presence of BETA and ALPHA in the
MOVS statement tells the assembler to gen-
erate a MOVS instruction that moves bytes,
because the TYPE components of both
BETA and ALPHA are BYTE. Further,
from the SEG components of BETA and
ALPHA, the assembler determines if the

operands of the MOVS instruction are inac-
cessible segments. The OFFSET components
of ALPHA and BETA are ignored.

Like MOVS, the other four string primitives
contain operands, MOVS and CMPS have
two operands, while SCAS, LODS, and
STOS have one. For example:

CMPS BETA,ALPHA
SCAS ALPHA
LODS ALPHA
STOS BETA

XLAT also requires an operand; the item
that was moved into BX to serve as the trans-
lation table. The SEG component of this
operand enables the assembler to determine
if the translation table is in a currently access-
ible segment; the OFFSET component is
ignored. An example of an XLAT statement
is as follows:

MOV BX,OFFSET TABLE
XLAT TABLE

Details of ASM-86

Sample One:
Translate the values from input port 1 into a
Gray code and send result to output port 1.

MY _DATA SEGMENT
GRAY DB 18H,34H,05H,06H,09H,0AH,0CH,11H,12H,14H
MY _DATA ENDS
MY _CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY __DATA
GO: MOV AX,MY _DATA ;establish data segment
MOV DS,AX
MOV BX,OFFSET GRAY ;translation table into BX
CYCLE: IN AL,1 ;read in next value
XLAT GRAY ;translate it
ouT 1,AL ;output it
JMP CYCLE ;and repeat
MY_CODE ENDS
END GO

2-40



ARCHITECTURE AND INSTRUCTIONS

Sample Two:

Add two unpacked BCD (ASCII) strings

together.
MY _DATA SEGMENT
STRING _1 DB 1,752 ;value is 2571
STRING_2 DB ‘3,814 ;value is 4183
MY_DATA ENDS
MY _CODE SEGMENT
ASSUME CS:MY_CODE, DS:MY_DATA
GO: MOV AX,MY_DATA ;establish data segment
MOV DS,AX
MoV ES,AX
CLC ;no carry initially
CLD ;forward strings
MOV SI,OFFSET STRING—-1 ;establish string pointers
MOV DI,OFFSET STRING_-2
MoV CX,LENGTH STRING_1
JCXZ FINISH
CYCLE: LODS STRING_-1 ;get STRING_1 element
ADC AL,[DI] ;add STRING_2 element
AAA ;correct for ASCII
STOS STRING_2 ;result into STRING_2
LOOP CYCLE ;repeat for entire element
FINISH: HLT
MY_CODE ENDS
END GO
Sample Three:
Decimal multiplication algorithm.
MY_DATA SEGMENT
A DB 3,754’9’
B DB 6’
C DB LENGTH (A) DUP (?)
MY_DATA ENDS
MY_CODE SEGMENT
ASSUME CS:MY_CODE,DS:MY _DATA
GO: MOV AX,MY_DATA ;establish data segment
MOV ES,AX
CLD ;forward strings
MOV SI,OFFSET A ;establish pointers
MOV DI,OFFSET C
MOV CX,LENGTH A ;establish count
AND B,0FH ;clear upper haif of b
MOV BYTE PTR [SI],0 ;clear cfl]
JCXZ FINISH
CYCLE: LODS A ;get ali]
AND AL,0FH ;clear its high-order bits
MUL AL,B ;multiply by b
AAM ;correct for ASCII
ADD AL,[DI] ;add to cli]
AAA ;adjust for ASCII
STOS C ;store in c[i]
MOV [DI],AH ;...and c[l]
LOOP CYCLE ;repeat for entire string
FINISH: HLT
MY_CODE ENDS
END GO

2-41



ARCHITECTURE AND INSTRUCTIONS

Sample Four:
Move 50 bytes between two overlapping
strings.
MY _DATA SEGMENT
STRING DB 1000 DUP (?)
STRING _1 EQU STRING+7
STRING_2 EQU STRING+25
MY _DATA ENDS
MY_CODE SEGMENT
: © ASSUME CS:MY_CODE, DS:MY_DATA
STRING _SIZE EQU 50 ;number of bytes to move
GO: MOV AX,MY_DATA ;establish data segment
MoV DS,AX :
MoV ES,AX
MOV CX,STRING_SIZE
MOV SI,OFFSET STRING _1 ;source string
MOV DI,OFFSET STRING _2 ;destination string
CLD ;assume a forward move
CMP SI,DI ;if source string comes first
JLT OK
STD ;---we need backwards move
ADD SI,STRING _SIZE—1 ;set Sl and DI to
ADD DI, STRING_SIZE—1 ;-..end of strings
OK: REPEAT MOVS STRING_2,STRING _1 ;move the string
HLT
MY_CODE ENDS
END GO

2-42



ARCHITECTURE AND INSTRUCTIONS

DUAL FUNCTION KEYWORD

AND NOT OR SHL SHR XOR
SYMBOLS

AAA ES FLD1 FSUBRP JNGE PUSH
AAD ESC FLDCW FTST JNL PUSHF
AAM F2XM1 FLDENV FWAIT JNLE RCL
AAS FABS FLDL2E FXAM JNO RCR
ADC FAC FLDL2T FXCH JNP REP
ADD FADD FLDLN2 FXTRACT | JNS REPE
AH FADDP FLDLG2 FYL2X JNZ REPNE
AL FALC FLDPI FYL2XPI JO REPNZ
ARPL FBLD FLDZ HLT JP REPZ
AX FBSTP FMUL IDIV JPE RET
BH FCHS FMULP IMUL JPO ROL
BL FCLEX FNCLEX IN JS ROR
BOUND FCOM FNDISI INC JZ SAHF
BP FCOMP FNENI INT LAHF SAL
BX FCOMPP FNINIT INTO LDS SAR
CALL FDECSTP | FNOP IRET LEA SBB
CBW FDISI FNSAVE JA LES SCAS
CH FDIV FNSTCW JAE LOCK SCASB
CL FDIVP FNSTENV | JB LODS SCASW
CLC FDIVR FNSTSW JBCZ LODSB Sl
CLD FDIVRP FPATAN JBE LODSW SP
CLI FENI FPREM JC LOOP SS
CLTS FFREE FPTAN JCXE LOOPE ST
CMC FIADD FRNDINT | JE LOOPNE | STC
CMP FICOM FRSTOR JG LOOPNZ | STD
CMPS FICOMP FSAVE JGE LOOPZ STI
CMPSB FIDIV FSCALE JL MOV STOS
CMPSW | FIDIVR FSQRT JLE MOVS STOSB
CS FILD FST JMP MOVSB STOSW
CWD FMUL FSTCW JNA MOVSW SUB
CX FINCSTP FSTENV JNAE MUL TEST
DAA FINIT FSTP JNB NEG WAIT
DAS FIST FSTSW JNBE NIL XCHG
DEC FISTP FSUB JNC ouT XLAT
DH FISUB FSUBP JNE POP XLATB
DI FISUBR FSUBR JNG POPF ?77SEG
DIV FLD

DL

DS

DX

Figure 2-14. ASM-86 Reserved Words

2-43




ARCHITECTURE AND INSTRUCTIONS

NON-CONFLICTING KEYWORDS HANDS-OFF KEYWORDS

DA NOPR ABS NE
DATE NOPRINT ASSUME NEAR
DEBUG NOSB AT NOSEGFLX
EJ NOSYMBOLS BYTE NOTHING
EJECT NOXR COMMON OFFSET
EP NOXREF CODEMACRO ORG
ERRORPRINT OBJECT DB PAGE
GEN OoJ DD PARA
GENONLY PAGELENGTH DQ PREFX
GO PAGEWIDTH DT PROC
IC PAGING DUP PROCLEN
INCLUDE Pl DW PTR
LI ' PL DWORD PUBLIC
LIST PR END PURGE
MACRO PRINT ENDM QWORD
MEMORY PW ENDP RECORD
MR RESTORE ENDS RELB
NODB RS EQ RELW
NODEBUG SA EQU RFIX
NOEP SAVE EVEN RFIXM
NOERRORPRINT | SB EXTRN FNFIX
NOGE STACK FAR FNFIXM
NOGEN SYMBOLS GE RWFIX
NOLI TITLE GROUP SEG
NOLIST T GT SEGFIX
NOMACRO WF HIGH SEGMENT
NOMR WORKFILE INPAGE SHORT
NOOBJECT S LABEL SIZE
NOOJ ES LE STRUC
NOPAGING XR LENGTH TBYTE
NOPI XREF LOW THIS

LT TYPE

MASK WIDTH

MOD WORD

MODRM ?

NAME

Figure 2-14. ASM 86 Reserved Words (Continued)

2-44



REF

REFERENCES
FORINSTRUCTION SET

REF

Key to following Instruction Set Reference Pages

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by. the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupt-type
optional-pop-value
external-opcode

above-below

greater-less

arithmetic,

bit manipulation
XLAT

JMP, CALL
cond. transfer,
iteration control
IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT
RET
ESC

conditional jumps

conditional jumps

used in the operation, but is not altered by the
instruction.

Name of memory translation table addressed by
register BX.

A label to which control is to be transferred directly, or
a register or memory location whose content is the
address of the location to which control is to be
transferred indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the
first byte of the next instruction.

Register AX for word transfers, AL for bytes.

An 1/0O port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by
register SI; used only to identify string as byte or word
and specify segment override, if any. This string is
used in the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the
operation.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.

Above and below refer to the relationship of two unsigned
values.

Greater and less refer to the relationship of two signed
values.

2-45




REF

REFERENCES

FORINSTRUCTION SET

Key to Operand Types
IDENTIFIER EXPLANATION
(nooperands) | No operands are written
register An 8- or 16-bit general register
reg 16 An 16-bit general register
seg-reg A segment register
accumulator Register AX or AL
immediate A constant in the range
0-FFFFH
immed8 A constantin the range 0-FFH
memory An 8- or 16-bit memory
location™
mem38 An 8-bit memory location®
mem16 A 16-bit memory location
source-table Name of 256-byte translate

source-string

table

Name of string addressed by
register Sl :

dest-string Name of string, addressed by
register DI

DX Register DX )

short-label A label within -128 to +127
bytes of the end of the
instruction

near-label A label in current code
segment

far-label A label in another code
segment

near-proc A procedure in current code
segment

far-proc A procedure in another code
segment

memptri6 A word containing the offset of
the location in the current code
segment to which control is to
be transferred™

memptr32 A doubleword containing the
offset and the segment base
address of the location in
another code segment to
which control is to be trans-
ferred"

regptri6 A 16-bit general register

, containing the offset of the
location in the current code
segment to which control is to
be transferred

repeat A string instruction repeat
prefix

M Any addressing mode—direct, register

indirect, based, indexed, or based indexed—
may be used (see section 2.8).

15 14 13 12 11 10

7.6

9 8 5432 10
[T T T Tor[or[iFre[sFzF] Tar[ Jp¢] cF]

REF

CARRY

PARITY
AUXILIARY CARRY
ZERO

SIGN

TRAP

INTERRUPT
DIRECTION
OVERFLOW

Effective Address Calculation Time

EA COMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI1,DI) 5
Displacement

+ 9
Base or Index (BX,BP,SI,DI)
Base BP + DI, BX+ Sl 7
+
Index BP + Sl, BX + DI 8
Displacement BP +DI+DISP 11
+ BX + Sl + DISP
Base
+ BP + Sl+ DISP 19
Index BX+ DI+ DISP

*Add 2 clocks for segment override

Notation Key

+  Addition

—  Subtraction

* Multiplication
/ Division

%  Modulo
: Concatenation
& And

< Assignment

2-46




REF

REFERENCES
FOR INSTRUCTION SET REF

““reg’’ Field Bit Assignments:

Segment

000
001
010
011
100
101
110
111

AX
CX
DX
BX
SP
BP
S|
DI

16-Bit (w = 1) 8-Bit (w = 0)
000 AL
001 CL
010 DL
011 BL
100 AH
101 CH
110 DH
111 BH

00 ES
01 CS
10 SS
11 DS

““mod’’ Field Bit Assignments:

[mod XXX r/mJ

mod

Displacement

00
01
10
11

DISP =0*, disp-low and disp-high are absent

DISP = disp-low sign-extended to 16-bits, disp-high is absent
DISP = disp-high: disp-low

rimis treated asa ‘‘reg’’ field

“r/m’’ Field Bit Assignments:

r/m Operand Address
000 (BX) + (Sl) + DISP
001 (BX) + (DI) + DISP
010 (BP) + (SI) + DISP
011 (BP) + (DI) + DISP
100 (Sl) + DISP
101 (DI) + DISP
110 (BP) + DISP
111 (BX) + DISP

DISP follows 2nd byte of instruction (before data if required).
*exceptif mod =00 and r/m =110 then EA = disp-high: disp-low.

2-47



2-48



ASCII ADJUST
AAA FOR ADDITION AAA

Operation: Flags Affected:
if ((AL) & OFH) >9 or (AF) = 1 then AF, CF.
(AL) < (AL) + 6 OF, PF, XF, ZF undefined
(AH) < (AH) + 1
(AF) < 1
(CF) < (AF)

(AL) < (AL) & OFH

Description:

AAA (ASCII Adjust for Addition) changes
the contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content
of OF, PF, SF and ZF is undefined following
execution of AAA.

Encoding:

00110111 |

AAA Operands Clocks | Transfers|Bytes| AAA Coding Example
(no operands) 4 — 1 AAA

2-49




AAD

ASCII ADJUST
FOR DIVISION AAD

Operation: Flags Affected:

(AL) < (AH) * OAH + (AL) PF, SF, ZF.

(AH) <0 AF, CF, OF undefined
Description:
AAD (ASCII Adjust for Division) modifies for the subsequent DIV to produce the correct
the numerator in AL before dividing two valid result. The quotient is returned in AL, and the
unpacked decimal operands so that the quo- remainder is returned in AH; both high-order

tient produced by the division will be a valid half-bytes are zeroed. AAD updates PF, SF
unpacked decimal number. AH must be zero and ZF; the content of AF, CF and OF is

Encoding:

11010101 /00001010 |

undefined following execution of AAD.

AAD Operands

Clocks

Transfers|Bytes|AAD Coding Example

(no operands)

60

— 2 |AAD

2-50




AAM

ASCIlI ADJUST

AAM

FOR MULTIPLY

Operation:

(AH) < (AL) / OAH
(AL) < (AL) % OAH

Description:

AAM (ASCII Adjust for Multiply) corrects
the result of a previous multiplication of two
valid unpacked decimal operands. A valid 2-
digit unpacked decimal number is derived
from the content of AH and AL and is

Encoding:

11010100 [ 00001010 |

Flags Affected:

PF, SF, ZF.
AF, CF, OF undefined

returned to AH and AL. The high-order half-
bytes of the multiplied operands must have
been OH for AAM to produce a correct result.
AAM updates PF, SF and ZF; the content of
AF, CF and OF is undefined following execu-
tion of AAM.

AAM Operands Clocks

Transfers|Bytes| AAM Coding Example

(no operands) 83

2 |AAM

2-51



AAS

Operation:

if ((AL) & OFH) >9 or (AF) = 1 then
(AL) < (AL)-6
(AH) < (AH) -1
(AF) <1

(CF) < (AF)

(AL) < (AL) & OFH

Description:

AAS (ASCII Adjust for Subtraction) corrects
the result of a previous subtraction of two
valid unpacked decimal operands (the destina-
tion operand must have been specified as

ASCII ADJUST
FOR SUBTRACTION

Flags Affected:

AAS

AF, CF.
OF, PF, SF, ZF undefined

register AL). AAS changes the content of AL
to a valid unpacked decimal number; the high-
order half-byte is zeroed. AAS updates AF
and CF; the content of OF, PF, SF and ZF is
undefined following execution of AAS.

Encoding:
[00111111 ]
AAS Operands Clocks | Transfers|Bytes|AAS Coding Example
(no operands) 4 1 AAS

2-52




ADC ADD WITH CARRY ADC

Operation: Flags Affected:
if (CF) = 1 then (DEST) < (LSRC) AF, CF, OF, PF, SF, ZF
+ (RSRC) + 1

else (DEST) < (LSRC) + (RSRC)

Description:

ADC destination,source

ADC (Add with Carry) sums the operands,
which may be bytes or words, adds one if CF is
set and replaces the destination operand with
the result. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADC updates AF, CF, OF, PF, SF and
ZF. Since ADC incorporates a carry from a
previous operation, it can be used to write
routines to add numbers longer than 16 bits.

2-53



ADC

Encoding:

ADD WITH CARRY

ADC

Memory or Register Operand with Register Operand:

[000100dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod010r/m]|

data

|data if s:w=01]

LSRC =EA, RSRC =data, DEST = EA

Immediate Operand to Accumulator:

[0001010w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADC Operands Clocks* |Transfers|Bytes| ADC Coding Examples
register, register 3 — 2 | ADC AX, SI
register, memory 9(13)+ EA 1 2-4 | ADC DX, BETA [SI]
memory, register 16(24) + EA 2 2-4 | ADC ALPHA [BX] [SI], DI
register, immediate 4 — 3-4 | ADC BX, 256
memory, immediate 17(25) + EA 2 3-6 | ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 |ADCAL,5

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-54




ADD ADDITION ADD

Operation: Flags Affected:
(DEST) < (LSRC) + (RSRC) AF, CF, OF, PF, SF, ZF
Description:

ADD destination,source

The sum of the two operands, which may be
bytes or words, replaces the destination
operand. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADD updates AF, CF, OF, PF, SF and
ZF.

2-55



ADD

Encoding:

ADDITION

ADD

Memory or Register Operand with Register Operand:

1000000dw | modregr/m |

if d=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod000r/m|

data

|data if s:w=01|

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0000010w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC =data, DEST = AX

ADD Operands Clocks* |Transfers|Bytes| ADD Coding Examples
register, register 3 — 2 | ADDCX, DX
register, memory 9(13)+ EA 1 2-4 | ADD DI, [BX].ALPHA
memory, register 16(24) + EA 2 2-4 | ADD TEMP, CL
register, immediate 4 — 3-4 |ADDCL,?2
memory, immediate 17(25)+ EA 2 3-6 |ADD ALPHA,?2
accumulator, immediate 4 — 2-3 | ADD AX, 200

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-56




AND AND LOGICAL

Operation: Flags Affected:
(DEST) < (LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

AND destination,source

AND performs the logical ‘“‘and”’ of the two
operands (byte or word) and returns the result
to the destination operand. A bit in the result
is set if both corresponding bits of the original
operands are set; otherwise the bit is cleared.

2-57



AND AND LOGICAL AND

Encoding:

Memory or Register Operand with Register Operand:

1001000dw |[modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod100r/m| data | dataifw=1 |

LSRC = EA, RSRC = data, DEST =EA

Immediate Operand to Accumulator:

10010010w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

AND Operands Clocks* |Transfers|Bytes| AND Coding Examples
2 |ANDAL,BL

register, register

register, memory 9(13)+ EA 1 2-4 | AND CX, FLAG_WORD
memory, register 16(24) + EA 2 2-4 | AND ASCII [DI], AL
register, immediate 4 — 3-4 | AND CX, OFOH

memory, immediate 17(25) + EA 2 3-6 |AND BETA, 01H
accumulator, immediate 4 — 2-3 | AND AX, 01010000B

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-58



CALL

Operation:

if Inter-Segment then
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < SEG

(SP) < (SP)-2

((SP)+1:(SP)) < (IP)

(IP) < DEST

Description:

CALL procedure-name

CALL activates an out-of-line procedure, sav-
ing information on the stack to permit a RET
(return) instruction in the procedure to
transfer control back to the instruction follow-
ing the CALL. The assembler generates a dif-
ferent type of CALL instruction depending on
whether the programmer has defined the pro-
cedure name as NEAR or FAR. For control to
return properly, the type of CALL instruction
must match the type of RET instruction that
exits from the procedure. (The potential for a
mismatch exists if the procedure and the
CALL are contained in separately assembled
programs.) Different forms of the CALL
instruction allow the address of the target pro-
cedure to be obtained from the instruction
itself (direct CALL) or from a memory loca-
tion or register referenced by the instruction
* (indirect CALL). In the following descrip-
tions, bear in mind that the processor auto-
matically adjusts IP to point to the next
instruction to be executed before saving it on
the stack.

For an intrasegment direct CALL, SP (the
stack pointer) is decremented by two and IP is
pushed onto the stack. The target procedure’s
relative displacement (up to +32k) from
the CALL instruction is then added to the
instruction pointer. This CALL instruction

CALL PROCEDURE

CALL

Flags Affected:

2-59

None

form is ‘‘self-relative’” and appropriate for
position-independent (dynamically relocat-
able) routines in which the CALL and its
target are moved together in the same segment.

An intrasegment indirect CALL may be made
through memory or a register. SP is decre-
mented by two; IP is pushed onto the stack.
The target procedure offset is obtained from
the memory word or 16-bit general register
referenced in the instruction and replaces IP.

For an intersegment direct CALL, SP is decre-
mented by two, and CS ‘is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is
decremented by two. IP is pushed onto the
stack and replaced by the offset word in the
instruction.

For an intersegment indirect CALL (which
only may be made through memory), SP is
decremented by two, and CS is pushed onto
the stack. CS is then replaced by the content of
the second word of the doubleword memory
pointer referenced by the instruction. SP again
is decremented by two, and IP is pushed onto
the stack and replaced by the content of the
first word of the doubleword pointer refer-
enced by the instruction.



CALL PROCEDURE

CALL

Encoding:

CALL

Intra-segment direct:

111101000 | disp-low
DEST = (IP) + disp

| disp-high |

Intra-Segment Indirect:

[11111111 [mod010r/m]|

DEST = (EA)

Inter-Segment Direct:

[10011010 | offset-low | offset-high |

| seg-low | seg-high |

DEST = offset, SEG = seg

Inter-Segment Indirect:

11111111 [mod011r/m|

DEST = (EA), SEG = (EA + 2)
CALL Operands | Clocks Transfers | Bytes | CALL Coding Examples
near-proc (23) 1 3 [CALLNEAR__PROC
far-proc - (36) 2 5 |CALLFAR_PROC
memptr 16 (29) + EA 2 2-4 |CALL PROC__TABLE [S]]
regptr 16 (24) 1 2 CALL AX
memptr 32 (53) + EA 4 2-4 |CALL [BX].TASK [SI]

2-60




CONVERT BYTE
CBW TO WORD CBW

Operation: Flags Affected:
if (AL) < 80H then (AH) < 0 else (AH) < FFH None
Description:

CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout register
AH. CBW does not affect any flags. CBW can
be used to produce a double-length (word)
dividend from a byte prior to performing byte
division.

Encoding:

10011000 |

CBW Operands Clocks | Transfers| Bytes| CBW Coding Example

(no operands) 2 - 1 |CBW

2-61




CLC CLEAR CARRY CLC

Operation: Flags Affected:
(CF) <0 CF
Description:

CLC (Clear Carry flag) zeroes the carry flag
(CF) and affects no other flags. It (and CMC
and STC) is useful in conjunction with the
RCL and RCR instructions.

- Encoding:

11111000 |

CLC Operands Clocks | Transfers Bytes CLC Coding Example

(no operands) 2 — 1 |CLC

2-62



CLD

CLEARDIRECTION  CLD

FLAG

Operation: Flags Affected:
(DF)<0 DF
Description:
CLD (Clear Direction flag) zeroes DF causing
the string instructions to auto-increment the SI
and/or DI index registers. CLD does not
affect any other flags.
Encoding:
11111100 |
CLD Operands Clocks | Transfers|Bytes|CLD Coding Example
(no operands) 2 — 1 CLD

2-63




CLEAR INTERRUPT-
CLI ENABLE FLAG CLI

Operation: Flags Affected:
(IF)<0 IF
Description:

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external
interrupt request that appears on the INTR
line; in other words maskable interrupts are
disabled. A non-maskable interrupt appearing
on the NMI line, however, is honored, as is a
software interrupt. CLI does not affect any
other flags.

Encoding:

(11111010 |

CLI Operands Clocks | Transfers |Bytes|CLI Coding Example

(no operands) 2 — 1 CLI

2-64



CMC COMPLEMENT CMC

CARRY FLAG
Operation: Flags Affected:

if (CF)=0then (CF) <1 else (CF) <0 CF

Description:

CMC (Complement Carry flag) ‘‘toggles’ CF
to its opposite state and affects no other flags.

Encoding:

[11110101 |

CMC Operands Clocks | Transfers|Bytes|CMC Coding Example

(no operands) 2 — 1 CMC

2-65



CMP COMPARE CMP

Flags Affected:

Operation:
(LSRC) - (RSRC)

Description:

CMP destination,source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can
be tested by a subsequent conditional jump
instruction. CMP updates AF, CF, OF, PF,

2-66

AF, CF, OF, PF, SF, ZF

SF and ZF. The comparison reflected in the
flags is that of the destination to the source. If
a CMP instruction is followed by a JG (jump
if greater) instruction, for example, the jump
is taken if the destination operand is greater
than the source operand.



CMP

Encoding:

COMPARE

CMP

Memory or Register Operand with Register Operand:

[001110dw|modregrlm|

ifd=1then LSRC = REG, RSRC =EA
else LSRC = EA, RSRC = REG

Immediate Operand with Memory or Register Operand:

[100000sw |mod111r/m|

data

|data if s:w=01]

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[0011110w |

data

| dataifw=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

CMP Operands Clocks* |Transfers|Bytes| CMP Coding Examples
register, register 3 — 2 |CMPBX, CX
register, memory 9(13)+ EA — 2-4 | CMP DH, ALPHA
memory, register 9(13) + EA — 2-4 |CMP[BP + 2], SI
register, immediate 4 - 3-4 |CMP BL, 02H
memory, immediate 10(14) + EA — 3-6 g)M(I)DH [BX].RADAR [DlI],

42

accumulator, immediate 4 — 2-3 |CMP AL, 00010000B

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-67




CMPS

COMPARE STRING

CMPS

(BYTE OR WORD)

Operation:

(LSRC) - (RSRC)

if (DF) =0 then
(SI) < (SI) + DELTA
(D) < (DI) + DELTA

)
)-DELTA
)-DELTA

Description:

CMPS destination-string, source-string

CMPS (Compare String) subtracts the destina-
tion byte or word (addressed by DI) from the
source byte or word (addressed by SI). CMPS
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of the
destination element to the source element. For
example, if a JG (Jump if Greater) instruction
follows CMPS, the jump is taken if the des-

Encoding:

1010011 w |

Flags Affected:

AF, CF, OF, PF, SF, ZF

tination element is greater than the source
element. If CMPS is prefixed with REPE or
REPZ, the operation is interrupted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).” If CMPS is
preceded by REPNE or REPNZ, the operation
is interrupted as ‘‘compare while not end-of-
string (CX not zero) and strings are not equal
(ZF = 0).”” Thus, CMPS can be used to find
matching or differing string elements.

if w=0then LSRC = (Sl), RSRC = (DI), DELTA =1
else LSRC = (SI) +1:(Sl), RSRC = (DI) +1:(DI), DELTA =2

CMPS Operands Clocks* |Transfers | Bytes | CMPS CodingExamples
dest-string, source-string 22(30) 2 1 |CMPS BUFF1, BUFF2
(repeat) dest-string, source-string | 9+22(30)/rep | 2/rep 1 |REPCOMPSID, KEY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-68



CONVERT WORD
Cwbh TO DOUBLEWORD CWD

Operation: Flags Affected:

if (AX) < 8000H then (DX) < 0 None
else (DX) < FFFFH

Description:

CWD (Convert Word to Doubleword) extends
the sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to
performing word division.

Encoding:

110011001 |

CWD Operands Clocks | Transfers|Bytes|CWD Coding Example

(no operands) 5 — 1 CwD

2-69




DECIMAL ADJUST
DAA FOR ADDITION DAA

Operation: Flags Affected:

if (AL) & OFH) > 9 or (AF) = 1 then AF, CF, PF, SF, ZF
(AIIE) - %AL) + 6 OF undefined’

>9FH or (CF) =1 then

(AL) + 60H

-1

if (AL
AL
CF

Description:

DAA (Decimal Adjust for Addition) corrects
the result of previously adding two valid
packed decimal operands (the destination
operand must have been register AL). DAA
changes the content of AL to a pair of valid
packed decimal digits. It updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAA.

Encoding:

[00100111 |

DAA Operands Clocks | Transfers |Bytes| DAA Coding Example

(no operands) 4 — 1 DAA

2-70



DECIMAL ADJUST
DAS FOR SUBTRACTION DAS

Operation: Flags Affected:
if (AL) & OFH) >9 or (AF) = 1 then AF. GF, PF, SF, ZF.
(AL) < (AL)-6 OF undefined

(AF) <1

if (AL) >9FH or (CF) =1 then
(AL) < (AL) - 60H
(CF) <1

Description:

DAS (Decimal Adjust for Subtraction) cor-
rects the result of a previous subtraction of
two valid packed decimal operands (the desti-
nation operand must have been specified as
register AL). DAS changes the content of AL
to a pair of valid packed decimal digits. DAS
updates AF, CF, PF, SF and ZF; the content
of OF is undefined following execution of
DAS.

Encoding:

(00101111 |

DAS Operands Clocks | Transfers|Bytes|DAS Coding Example

(no operands) 4 — 1 DAS

271



DEC DECREMENT DEC

Operation: Flags Affected:
(DEST) < (DEST) -1 AF, OF, PF, SF, ZF
Description:

DEC (Decrement) subtracts one from the
destination operand. The operand may be a
byte or a word and is treated as an unsigned
binary number (see AAA and DAA). DEC
updates AF, OF, PF, SF and ZF; it does not
affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod001r/m]|

DEST=EA

16-Bit Register Operand:

[ 01001reg |
DEST =REG

DEC Operands Clocks* |Transfers|Bytes|DEC Coding Example

reg16 2 — 1 DEC AX
reg8 3 — 2 |DECAL
memory 15(23) + EA 2 2-4 |DEC ARRAY [SI]

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-72



DIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) > MAX then the
following, in sequence
(QUO), (REM) undefined

(SP) < (SP)-2
E|(I§)P)+1(SP)) FLAGS
(TF)<0

(SP)*—(SP) 2

§(SP) (SP)) (CS)

)
(SP)) < (IP)
P) < (0)i.e., the contents of
locations 0 and 1
else
(QUO) « (temp) / (DIVR), where
/ is unsigned division
(REM) < (temp) % (DIVR) where
% is unsigned modulo

Description:

DIV source

DIV (divide) performs an unsigned division of
the accumulator (and its extension) by the
source operand. If the source operand is a
byte, it is divided into the two-byte dividend
assumed to be in registers AL and AH. The
byte quotient is returned in AL, and the byte
remainder is returned in AH. If the source
operand is a word, it is divided into the two-
word dividend in registers AX and DX. The
word quotient is returned in AX, and the word

DIVIDE

DIV

Flags Affected:

2-73

AF, CF, OF, PF, SF, ZF undefined

remainder is returned in DX. If the quotient
exceeds the capacity of its destination register
(FFH for byte source, FFFFH for word
source), as when division by zero is attempted,
a type O interrupt is generated, and the
quotient and remainder are undefined. Nonin-
tegral quotients are truncated to mtegers The
content of AF, CF, OF, PF, SF and ZF is un-
defined following execution of DIV.



DIV DIVIDE DIV

Encoding:

11111011 w [mod110r/m|

if w=0then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = FFH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = FFFFH

DIV Operands Clocks Transfers|Bytes| DIV Coding Example

reg8 80-90 — 2 |DIVCL

reg16 144-162 — 2 |DIVBX

mems§ (86-96) + EA 1 2-4 |DIV ALPHA
mem16 (154-172) + EA 1 2-4 |DIV TABLE [SI]

2-74




ESC ESCAPE ESC

Operation: ~ Flags Affected:
if mod # 11 then data bus < (EA) None
Description:

The ESC (Escape) instruction provides a
mechanism by which other processors
(coprocessors) may receive their instructions
from the 8086 or 8088 instruction stream and
make use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does a no
operation (NOP) for the ESC instruction other
than to access a memory operand and place it
on the bus.

Encoding:
| 11011x | modxrim |
ESC Operands Clocks* | Transfers|Bytes|ESC Coding Example
immediate, memory | 8(12)+EA 1 2-4 |ESC 6,ARRAY [SI]
immediate, register 2 — 2 |ESC20,AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-75




HLT HALT HLT

Operation: Flags Affected:
None None
Description:

HLT (Halt) causes the CPU to enter the halt able interrupt request on INTR. HLT does not
state. The processor leaves the halt state upon affect any flags. It may be used as an alterna-
activation of the RESET line, upon receipt of a tive to an endless software loop in situations
non-maskable interrupt request on NMI, or, if where a program must wait for an interrupt.
interrupts are enabled, upon receipt of a mask-

Encoding:

[11110100 |

HLT Operands Clocks | Transfers|Bytes| HLT Coding Example

(no operands) 2 — 1 HLT

2-76




IDIV

Operation:

(temp) < (NUMR)
if (temp) / (DIVR) >0 and (temp)
| (DIVR) > MAX
or (temp) / (DIVR) < 0 and (temp)
/ (DIVR) < 0-MAX-1then
QUO), (REM) undefined
SP) < (SP)-2
(S)P)+1 :(SP)) < FLAGS
F) <
P) < (SP) 2
(SF;)+2 ()SP))<—(CS)

P) < (SP)-2
(SP) +1:(SP)) < (IP)
IP) < (0)

QUO) < (temp) / (DIVR), where
| is signed division

REM) < (temp) % (DIVR) where
% is signed modulo

els

(
(
(
(IF
(T
(S
(
(CS
(S
(
(
e
(
(

Description:

IDIV source

IDIV (Integer Divide) performs a signed divi-
sion of the accumulator (and its extension) by
the source operand. If the source operand is a
byte, it is divided into the double-length divi-
dend assumed to be in registers AL and AH;
the single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. For byte integer division, the maximum
positive quotient is +127 (7FH) and the
minimum negative quotient is —127 (81H). If
the source operand is a word, it is divided into
the double-length dividend in registers AX and
DX; the single-length quotient is returned in

INTEGER DIVIDE

IDIV

Flags Affected:

2-77

AF, CF, OF, PF, SF, ZF undefined

AX, and the single-length remainder is
returned in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative quotient
is —32,767 (8001H). If the quotient is positive
and exceeds the maximum, or is negative and
is less than the minimum, the quotient and
remainder are undefined, and a type O inter-
rupt is generated. In particular, this occurs if
division by 0 is attempted. Nonintegral quo-
tients are truncated (toward 0) to integers, and
the remainder has the same sign as the divi-
dend. The content of AF, CF, OF, PF, SF and
ZF is undefined following IDIV.



IDIV

Encoding:

INTEGER DIVIDE IDIV

[1111011w [mod111r/m|

if w=0then NUMR = AX, DIVR = EA, QUO = AL, REM =‘AH, MAX =7FH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH

IDIV Operands Clocks Transtfers | Bytes | IDIV Coding Example

regs 101-112 — 2 |IDIVBL

reg16 165-184 — 2 |IDIVCX

mem3 (107-118) + EA 1 2-4 | IDIV DIVISOR__BYTE [SI]
mem16 (175-194) + EA 1 2-4 [IDIV [BX].DIVISOR__WORD

2-78




IMUL

Operation:

(DEST) < (LSRC) * (RSRC) where
* is signed multiply

if (ext) = sign-extension of (LOW)
then (CF) <0

else (CF) < 1;

(OF) < (CF)

Description:

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source is a word, then it is multiplied by
register AX, and the double-length result is
returned in registers DX and AX. If the upper

Encoding:

[1111011w |[mod101r/m|

INTEGER MULTIPLY

IMUL

Flags Affected:

CF, OF
AF, PF, SF, ZF undefined

half of the result (AH for byte source, DX for
word source) is not the sign extension of the
lower half of the result, CF and OF are set;
otherwise they are cleared. When CF and OF
are set, they indicate that AH or DX contains
significant digits of the result. The content of
AF, PF, SF and ZF is undefined following exe-
cution of IMUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX

IMUL Operands | Clocks Transfers | Bytes | IMUL Coding Example

reg8 80-98 - 2 |IMULCL

reg16 128-154 — 2 |[IMULBX

mem8 (86-104) + EA 1 2-4 |IMUL RATE_BYTE

mem16 (138-164) + EA 1 2-4 | IMUL RATE_WORD [BP] [DI]

2-79




IN  INPUTBYTE ORWORD IN

Operation: Flags Affected:
(DEST) < (SRC) None
Description:

IN accumulator,port

IN transfers a byte or a word from an input 255, or with a number previously placed in the
port to the AL register or the AX register, DX register, allowing variable access (by
respectively. The port number may be speci- changing the value in DX) to ports numbered
fied either with an immediate byte constant, from O through 65,535.

allowing access to ports numbered 0 through

Encoding:
Fixed Port:

1110010w port
L ]

if w=0then SRC = port, DEST = AL
else SRC = port+1:port, DEST = AX

Variable Port:

[1110110w |

if w=0then SRC = (DX), DEST = AL
else SRC = (DX) +1:(DX), DEST = AX

IN Operands Clocks* | Transfers|Bytes |IN Coding Example

accumulator, immed8| 10(14) 1 2 |IN AL,0EAH
accumulator, DX 8(12) 1 1 IN AX, DX

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-80



INC INCREMENT

Operation: Flags Affected:
(DEST) < (DEST) + 1 AF,OF, PF, SF, ZF
Description:

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number
(see AAA and DAA). INC updates AF, OF,
PF, SF and ZF; it does not affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod 000r/m]
DEST =EA

- 16-Bit Register Operand:

| 01000reg |
DEST = REG

INC

INC Operands Clocks* |Transfers|Bytes|INC Coding Example

reg16 2 — 1 |INCCX
reg8 3 — 2 |INCBL
memory 15(23) + EA 2 2-4 | INC ALPHA [DI] [BX]

*b(w): where b denotes the number of clock cycles for byte operands and

w denotes the number of clock cycles for word operands.

2-81



INT

Operation:

<(TYPE*4 + 2)
< (SP)-2
P)+1:(SP)) < (IP)
) < (TYPE * 4)

Description:

INT interrupt-type

INT (Interrupt) activates the interrupt pro-
cedure specified by the interupt-type operand.
INT decrements the stack pointer by two,
pushes the flags onto the stack, and clears the
trap (TF) and interrupt-enable (IF) flags to
disable single-step and maskable interrupts.
The flags are stored in the format used by the
PUSHEF instruction. SP is decremented again
by two, and the CS register is pushed onto the
stack. The address of the interrupt pointer is
calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer
replaces CS. SP again is decremented by two,
and IP is pushed onto the stack and is replaced

INTERRUPT

INT

Flags Affected:

2-82

IF, TF

by the first word of the interrupt pointer. If
interrupt-type = 3, the assembler generates a
short (1 byte) form of the instruction, known
as the breakpoint interrupt.

Software interrupts can be used as ‘‘supervisor
calls,”” i.e., requests for service from an
operating system. A different interrupt-type
can be used for each type of service that the
operating system could supply for an applica-
tion program. Software interrupts also may be
used to check out interrupt service procedures
written for hardware-initiated interrupts.



INT

Encoding:

INTERRUPT

[1100110v | typeifv=1 |

ifv=0then TYPE=3

else TYPE =type

INT

INT Operands Clocks | Transfers|Bytes|INT Coding Example
immed8 (type = 3) (72) 5 1 INT 3
immed8 (type # 3) (71) 5 2 |INT67

2-83



INTO

Operation:
if

s — P~ P~ S~ P, P, S, o, o,

Description:

INTO (Interrupt on Overflow) generates a
software interrupt if the overflow flag (OF) is
set; otherwise control proceeds to the follow-
ing instruction without activating an interrupt
procedure. INTO addresses the target inter-
rupt procedure (its type is 4) through the inter-

INTERRUPT ON
OVERFLOW

INTO

Flags Affected:

None

rupt pointer at location 10H; it clears the TF
and IF flags and otherwise operates like INT.
INTO may be written following an arithmetic
or logical operation to activate an interrupt
procedure if overflow occurs.

Encoding:

[11001110 |

INTO Operands | Clocks [Transfers|Bytes|INTO Coding Example
(no operands) (73)or 4 1 INTO

2-84



IRET INTERRUPTRETURN IRET

FLAGS < ((SP) + 1:(SP))
(SP) < (SP

Operation: Flags Affected:
(I) ((SP)+1:(SP)) All
(SP) < (S )+2
(CS) < ((SP)+1:(SP))
(SP)«(SP%+)2
) + 2

Description:

IRET (Interrupt Return) transfers control
back to the point of interruption by popping
IP, CS and the flags from the stack. IRET thus
affects all flags by restoring them to previously
saved values. IRET is used to exit any inter-
rupt procedure, whether activated by hard-
ware or software.

Encoding:

11001111 |

IRET Operands | Clocks | Transfers|Bytes|IRET Coding Example

(no operands) (44) 3 1 IRET

2-85



JA JUMP ON ABOVE JA
JNBE JUMPONNOTBELOW JNBE

OR EQUAL
Operation: Flags Affected:
if (CF) & (ZF) =0 then None
(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

Jump on Above (JA)/Jump on Not Below or
Equal (JNBE) transfers control to the target
operand (IP + displacement) if CF and ZF = 0.

Encoding:

01110111 |  disp |

JA/JNBE Operands Clocks | Transfers|Bytes|JA Coding Example

short-label 16or4 — 2 |JAABOVE

JNBE Coding Example

JNBE ABOVE

2-86



JUMP ON ABOVE
JAE OR EQUAL

JNB JUMPONNOTBELOW JNB

Operation:
if (CF) = 0 then

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JAE

Flags Affected:

None

JAE (Jump on Above or Equal)/JNB (Jump ‘

on Not Below) transfers control to the target

operand (IP + displacement) if CF = 0.

Encoding:

lo1110011 |  disp |

JAE/JNB Operands

Clocks

Transfers

Bytes

JAE Coding Example

short-label

16or4

JAE ABOVE__EQUAL

2-87




JB JUMP ON BELOW JB
JNAE  JUMPONNOT  JNAE

ABOVE OR EQUAL

Operation: Flags Affected:
if (CF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JB (Jump on Below)/JNAE (Jump on Not
Above or Equal) transfers control to the target
operand (IP + displacement) if CF = 1.

Encoding:

|o1110010 | disp |

JB/JNAE Operands | Clocks | Transfers|Bytes|JB Coding Example
JB BELOW

short-label 16or4 — 2

2-88




JUMP ON BELOW
JBE 'OREQUAL
JUMP ON

JNA NOT ABOVE
Operation: Flags Affected:

IF (CF) or (ZF) =1 then None

(IP)<(IP) + disp (sign-extended
to 16-bits)

Description:

JBE (Jump on Below or Equal)/JNA (Jump
on Not Above) transfers control to the target
operand (IP + displacement) if CF or ZF = 1.

Encoding:

lo1110110 ] disp |

JBE
JNA

JBE/JNA Operands Clocks | Transfers Bytes [JNA C'o*ding Example

short-label 16 or4 — 2 |JNANOT_ABOVE

2-89



JC JUMP ON CARRY JjC

Operation: Flags Affected:
if (CF) = 1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JC (Jump on Carry) transfers control to the
target operand (IP + displacement) on the con-
dition CF = 1.

Encoding:

01110010 | disp |

JC Operands | Clocks | Transfers | Bytes | JC Coding Example

short-label 16or4 — 2 JC CARRY__SET

2-90



JCXZ  pecisterzero  ICXZ

Operation: Flags Affected:
if (CX)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JCXZ short-label

JCXZ (Jump if CX Zero) transfers control to
the target operand if CX is 0. This instruction
is useful at the beginning of a loop to bypass
the loop if CX has a zero value, i.e., to execute
the loop zero times.

Encoding:

11100011 ]| disp |

JCXZ Operands Clocks | Transfers|Bytes|JCXZ Coding Example

short-label 18o0r6 — 2 JCXZ COUNT__DONE

2-91



JE JUMP ON EQUAL
J7Z JUMP ON ZERO
Operation: Flags Affected:
if (ZF) =1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JE (Jump on Equal)/JZ (Jump on Zero)
transfers control to the target operand (IP +
displacement) if ZF = 1.

Encoding:

01110100 disp |

JE
JZ

JE/JZ Operands Clocks | Transfers|Bytes|JZ Coding Example

short-label 16 or 4 —_ 2 JZZERO

2-92



JG
JNLE

JUMP ON GREATER
JUMP ON NOT

JG
JNLE

LESS OR EQUAL

Operation:

if (SF) = (OF)) or (ZF) = 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JG (Jump on Greater Than)/JNLE (Jump on
Not Less Than or Equal) transfers control to
the target operand (IP + displacement) if the
conditions ((SF XOR OF) or ZF = 0) are
greater than/not less than or equal to the
tested value.

Flags Affected:

None

Encoding:
[01111111 ]  disp |
JG/JNLE Operands | Clocks | Transfers|Bytes|{JG Coding Example

16or4

short-label

— 2

JG GREATER




JUMP ON GREATER
JGE OR EQUAL : JGE

JNL JUMPONNOTLESS  JNL

Operation: Flags Affected:
if (SF) = (OF) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JGE (Jump on Greater Than or Equal)/JNL
(Jump on Not Less Than) transfers control to
the target operand (IP + displacement) if the
condition (SF XOR OF = 0) is greater than or
equal/not less than the tested value.

Encoding:

[01111101 | disp |

JGE/JNL Operands | Clocks | Transfers|Bytes|JGE Coding Example

short-label 16 or4 — 2 |JGE GREATER_EQUAL

2-94



JL JUMP ON LESS JL

JNGE G RéX'II\'nEPROONRNE%TUAL JNGE

Operation: Flags Affected:
if (SF) # (OF) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JL (Jump on Less Than)/JNGE (Jump on Not
Greater Than or Equal), transfers control to
the target operand if the condition (SF XOR
OF = 1) is less than/not greater than or equal
to the tested value.

Encoding:

[01111100 ]| disp |

JL/JNGE Operands Clocks | Transfers|Bytes|JL Coding Example

short-label 16 or4 — 2 |JLLESS

2-95



JLE wrouEs  JLE

JNG JUMPONNOTGREATER JNG

Operation: | Flags Affected:
if ((SF) # (OF)) or ((ZF) =1) then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JLE (Jump on Less Than or Equal to)/ING
(Jump on Not Greater Than) transfers control
to the target operand (IP + displacement) if
the conditions tested ((SF XOR OF) or ZF = 1)
are less than or equal to/not greater than the
tested value.

Encoding:

[01111110] disp |

JLE/JNG Operands Clocks | Transfers|Bytes| JNG Coding Example
short-label 16 or 4 — 2 |JNG NOT__GREATER

2-96



JMP JUMPUNCONDITIONALLY JMP

Operation:

if Inter-Segment then (CS) < SEG
(IP) < DEST

Description:

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction,
JMP does not save any information on the
stack; no return to the instruction following
the JMP is expected. Like CALL, the address
of the target operand may be obtained from
the instruction itself (direct JMP), or from
memory or a register referenced by the instruc-
tion (indirect JMP).

An intrasegment direct JMP changes the
instruction pointer by adding the relative
displacement of the target from the JMP
instruction. If the assembler can determine
that the target is within 127 bytes of the JMP,
it automatically generates a two-byte instruc-
tion form called a SHORT JMP; otherwise, it
generates a NEAR JMP that can address a
target within £32k. Intrasegment direct JMPS
are self-relative and appropriate in position-

2-97

Flags Affected:

None

independent (dynamically relocatable)
routines in which the JMP and its target are
moved together in the same segment.

An intrasegment indirect JMP may be made
either through memory or a 16-bit general
register. In the first case, the word content
referenced by the instruction replaces the
instruction pointer. In the second case, the
new IP value is taken from the register named
in the instruction.

An intersegment direct JMP replaces IP and
CS with values contained in the instruction.

An intersegment indirect JMP may be made
only through memory. The first word of the
doubleword pointer referenced by the instruc-
tion replaces IP and the second word replaces
CS.



JMP JUMPUNCONDITIONALLY JMP

Encoding:

Intra-Segment Direct:

[11101001 | disp-low | disp-high |
DEST = (IP) + disp

Intra-Segment Direct Short:

[11101011 | disp |
DEST = (IP) + disp sign extended to 16-bits

Intra-Segment Indirect:

[11111111 [mod100r/m|
DEST = (EA)

Inter-Segment Direct:

[11101010 | offset-low | offset-high |

| seg-low | seg-high ]
DEST = offset, SEG = seg

Inter-Segment Indirect:

11111111 [mod101r/m|
DEST = (EA), SEG = (EA + 2)

JMP Operands | Clocks | Transfers | Bytes | JMP Coding Example
short-label 15 — 2 JMP SHORT

near-label 15 — 3 JMP WITHIN_SEGMENT
far-label 15 — 5 JMP FAR__LABEL
memptri16 18+ EA — 2-4 | JMP [BX].TARGET
regptri16 11 — 2 JMP CX

memptr32 24+ EA — 2-4 | JMP OTHER.SEG [S]]

2-98



JNC JUMP ONNOTCARRY JNC

Operation: Flags Affected:
if (CF)=0THEN None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNC (Jump on Not Carry) transfers control to
the target operand (IP + displacement) on the
condition CF =0.

Encoding:

[o1110011 | disp |

JNC Operands | Clocks | Transfers | Bytes

JNC Coding Example

short-label 16 or 4 — 2

JNC NO__CARRY

2-99




JNE JUMPONNOTEQUAL JNE
JNZ JUMPONNOTZERO  JNZ

Operation: Flags Affected:
r
if (ZF) =0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNE (Jump on Not Equal to)/ JNZ (Jump on
Not Zero) transfers control to the target
operand (IP + displacement) if the condition
tested (ZF = 0) is true.

Encoding:

01110101 | disp |

JNE/JNZ Operands Clocks | Transfers|Bytes|JNE Coding Example
16 0r4 — 2 |JNENOT_EQUAL

short-label

2-100



JNO JUMP ON NOT JNO

OVERFLOW
Operation: Flags Affected:
if (OF) =0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNO (Jump on Not Overflow) transfers con-
trol to the target operand (IP + displacement)
if the condition tested (OF = 0) is true.

Encoding:

01110001 | disp |

JNO Operands Clocks | Transfers|Bytes|JNO Coding Example

short-label 16or4 — 2 |JNONO_OVERFLOW

2-101




JNS JUMP ON NOT SIGN JNS

Operation: Flags Affected:
if (SF)=0then None
(IP) < (IP) + disp (sign-extended '
to 16-bits)
Description:

JNS (Jump on Not Sign) transfers control to
the target operand (IP + displacement) when
the tested condition (SF = 0) is true.

Encoding:
[01111001 | disp |
JNS Operands Clocks | Transfers|Bytes|JNS Coding Example
short-label 16 or4 — 2 |JNS POSITIVE

2-102



JNP  JUMPON NOT PARITY
JPO JUMPON PARITY ODD

Operation:

JNP
JPO

Flags Affected:

if (PF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JNP (Jump on Not Parity)/JPO (Jump on
Parity Odd) transfers control to the target
operand if the condition tested (PF = 0) is true.
Encoding:
(01111011 | disp |
JNP/JPO Operands Clocks | Transfers| Bytes|JPO Coding Example
short-label 16 or 4 — 2 |JPOODD__PARITY

2-103




JO JUMP ON OVERFLOW JO

Operation: Flags Affected:
if (OF) =1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JO (Jump on Overflow) ‘transfers control to
the target operand (IP + displacement) if the
tested condition (OF = 1) is true.

Encoding:
[01110000 ]| disp |
JO Operands Clocks | Transfers| Bytes|JO Coding Example
short-label 16 or4 — 2 |JOSIGNED__OVERFLOW

2-104




JP JUMP ON PARITY JP
JPE JUMPONPARITYEQUAL JPE

Operation: Flags Affected:
if (PF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JP (Jump on Parity)/JPE (Jump on Parity
Equal) transfers control to the target operand
(IP + displacement) if the condition tested (PF
=1)is true.

Encoding:

(01111010 | disp |

JP/JPE Operands Clocks | Transfers|Bytes|JPE Coding Example
short-label 16or4 — 2 |JPEEVEN__PARITY

2-105



JS JUMPONSIGN JS

Operation: Flags Affected:
if (SF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JS (Jump on Sign) transfers control to the
target operand (IP + displacement) if the
tested condition (SF = 1) is true.

Encoding:
101111000 | disp |
JS Operands Clocks | Transfers|Bytes|JS Coding Example
short-label 16 or 4 - 2 |JSNEGATIVE

2-106



LAHF LospsceisTensn LAHF

Operation: Flags Affected:
(AH) < (SF):(ZF):X:(AF):X:(PF):X:(CF) None
Description:

LAHF (load register AH from flags) copies
SF, ZF, AF, PF and CF (the 8080/8085 flags)
into bits 7, 6, 4, 2 and 0, respectively, of
register AH. The content of bits 5, 3 and 1 is
undefined; the flags themselves are not
affected. LAHF is provided primarily for con-
verting 8080/8085 assembly language pro-
grams to run on an 8086 or 8088.

Encoding:

[10011111 |

LAHF Operands Clocks | Transfers |Bytes|LAHF Coding Example

(no operands) 4 — 1 LAHF

2-107



LDS LOADPOINTERUSINGDS LDS

Operation:

(REG) < (EA)
(DS) < (EA + 2)

Description:

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination operand and register DS. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

111000101 [modregr/m |

if mod =11 then undefined operation

Flags Affected:

None

pointer is transferred to register DS. Specify-
ing SI as the destination operand is a conve-
nient way to prepare to process.a source string
that is not in the current data segment (string
instructions assume that the source string is
located in the current data segment and that SI
contains the offset of the string).

LDS Operands Clocks

Transfers|Bytes|LDS Coding Example

reg16, mema32 24 + EA

2 2-4

LDS SI,DATA.SEG [DI]

2-108




LEA

Operation:

(REG) < EA

Description:

LEA destination,source

LOAD EFFECTIVE LEA

ADDRESS

Flags Affected:

None

LEA (load effective address) transfers the off- register. LEA does not affect any flags. The

set of the source operand (rather than its XLAT and string instructions assume that cer-
value) to the destination operand. The source tain registers point to operands; LEA can be
operand must be a memory operand, and the used to load these registers (e.g., loading BX
destination operand must be a 16-bit general with the address of the translate table used by

Encoding:

110001101 [modregr/m |

the XLAT instruction).

if mod =11 then undefined operation

LEA Operands

Clocks

Transfers |Bytes|LEA Coding Example

reg16, mem1i6

2+EA

— 2-4 |LEA BX,[BP][DI]

2-109



LES LOADPOINTERUSINGES LES

Operation:

(REG) < (EA)
(ES) < (EA + 2)

Description:

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination operand and register ES. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

11000100 | modregr/m

if mod =11 then undefined operation

Flags Affected:

None

pointer is transferred to register ES. Specifying
DI as the destination operand is a convenient
way to prepare to process a destination string
that is not in the current extra segment. (The
destination string must be located in the extra
segment, and DI must contain the offset of the
string.)

LES Operands Clocks

Transfers |Bytes|LES Coding Example

reg16, mema32 24+ EA

2.4 |LES DI,[BX].TEXT__BUFF

2-110




LOCK LOCK THE BUS LOCK

Operation: Flags Affected:

None None
Description:
LOCK is a one-byte prefix that causes the 8088
(configured in maximum mode) to assert its Ch%ﬁ& M(.(‘,)t}IIG QLJ AL :.fetALto1(implies locked)
bus LOCK signal while the following instruc- - Teer A o basog o AL
tion executes. LOCK does not affect any flags. INZ Check retry if lock already set
The instruction most useful in this context is MOV Sema, ;clear the lock when done

an exchange register with memory. A simple
software lock may be implemented with the The LOCK prefix may be combined with the
following code sequence: segment override and/or REP prefixes.

Encoding:

111110000 |

LOCK Operands Clocks | Transfers|Bytes | LOCK Coding Example

(no operands) 2 — 1 LOCK XCHG FLAG,AL

2-111



LODS

Operation:

(DEST) < (SRC)
if (DF) =0then (SI) < (Sl) + DELTA
else (SI) < (SI) - DELTA

Description:

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL
or AX, and updates SI to point to the next ele-
ment in the string. This instruction is not ordi-
narily repeated since the accumulator would be

Encoding:

[1010110w |

LOAD STRING
(BYTE OR WORD)

LODS

Flags Affected:

None

overwritten by each repetition, and only the
last element would be retained. However,
LODS is very useful in software loops as part
of a more complex string function built up
from string primitives and other instructions.

if w=0then SRC =(Sl), DEST = AL, DELTA =1
else SRC =(Sl)+1:(Sl), DEST = AX, DELTA =2

LODS Operands Clocks*

Transfers |Bytes|LODS Coding Example

source-string 12(16)
(repeat) source-string |9+13(17)/rep

1/rep 1

1 |LODS CUSTOMER__NAME
REP LODS NAME

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-112




LOOP LOOP LOOP

Operation: Flags Affected:

(CX) < (CX) -1 None
if (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOP short-label

LOOP decrements CX by 1 and transfers con-
trol to the target operand if CX is not 0;
otherwise the instruction following LOOP is
executed.

Encoding:

[11100010 | disp |

LOOP Operands Clocks | Transfers|Bytes|LOOP Coding Example

short-label 1715 — 2 [LOOP AGAIN

2-113



LOOPE

LOOP WHILE

LOOPE

EQUAL

LOOPZ

LOOP WHILE

LOOPZ

ZERO

Operation:
(CX) < (CX) -1
if (ZF) =1and (CX) # 0 then

(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and

Loop While Zero) are different mnemonics for -

the same instruction (similar to the REPE and
REPZ repeat prefixes). CX is decremented by
1, and control is transferred to the target
operand if CX is not O and if ZF is set;
otherwise the instruction following LOOPE/
LOOPZ is executed.

Encoding:

11100001 | disp |

Flags Affected:

None

LOOPE/LOOPZ Operands | Clocks | Transfers| Bytes{LOOPE Coding Example

short-label 18 0r6

— 2 |LOOPE AGAIN

2-114




LOOPNZ LOOPWHILE | OOPNZ

LOOPNE LOOPWHILE | OOPNE

Operation: Flags Affected:

(CX) < (CX) -1 None
if (ZF) =0 and (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not
Equal and Loop While Not Zero) are also
synonyms for the same instruction. CX is
decremented by 1, and control is transferred to
the target operand if CX is not 0 and if ZF is
clear; otherwise the next sequential instruction
is executed.

Encoding:

11100000 |  disp

LOOPNE/LOOPNZ Operands|Clocks| Transfers| Bytes| LOOPNE Coding Example

short-label 190r5 - 2 | LOOPNE AGAIN

2-115



MOV MOVE (BYTEORWORD) MOV

Operation: Flags Affected:
(DEST) < (SRC) None
Description:

MOV destination,source

MOVE transfers a byte or a word from the
source operand to the destination operand.

Encoding:

Memory or Register Operand to/from Register Operand:

[100010dw [modregr/m]

ifd =1then SRC =EA, DEST =REG
else SRC=REG, DEST=EA

Immediate Operand to Memory or Register Operand:

[1100011w [mod000r/m| data [ dataifw=1 |

SRC =data, DEST =EA

Immediate Operand to Register:

[1011wreg | data | dataifw=1 |

SRC =data, DEST = REG

2-116



MOV MOVE (BYTEORWORD) MOV

Encoding:

Memory Operand to Accumulator:

[1010000w | addr-low | addr-high |

if w=0then SRC = addr, DEST = AL
else SRC = addr+1:addr, DEST = AX

Accumulator to Memory Operand:

[1010001w | addrlow | addr-high |

if w=0then SRC = AL, DEST = addr
else SRC = AX, DEST = addr +1:addr

Memory or Register Operand to Segment Register:

10001110 [mod0regr/m|
ifreg # 01 then SRC = EA, DEST = REG
else undefined operation

Segment Register to Memory or Register Operand:

| 10001100 |mod0reg r/m|
SRC = REG,DEST =EA

MOV Operands Clocks* |Transfers|Bytes| MOV Coding Example
memory, accumulator|  10(14) 1 3 | MOV ARRAY AL
accumulator, memory| 10(14) 1 3 |MOV AX, TEMP_RESULT
register, register 2. — 2 | MOV AX,CX
register, memory 8(12) + EA 1 2-4 | MOV BP, STACK_TOP
memory, register 9(13)+ EA 1 2-4 | MOV COUNT [DI], CX
register, immediate 4 — 2-3 |[MOVCL, 2
memory, immediate |10(14)+EA 1 3-6 | MOV MASK [BX] [SI], 2CH
seg-reg, reg16 2 — MOV ES, CX
seg-reg, mem16 (12)+ EA 1 2-4 | MOV DS, SEGMENT__BASE
regi6, seg-reg 2 — 2 |MOVBP,SS
memory, seg-reg (13)+EA 1 2-4 | MOV [BX].SEG__SAVE, CS

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-117




MOVS MOVE STRING MOVS

Operation: : Flags Affected:
(DEST) < (SRC) None
Description:

MOVS destination-string, source-string

MOVS (Move String) transfers a byte or a
word from the source string (addressed by SI)
to the destination string (addressed by DI) and
updates SI and DI to point to the next string
element. When used in conjunction with REP,
MOVS performs a memory-to-memory block
transfer.

Encoding:

[1010010w |

ifw=_0then SRC = (Sl), DEST = AL, DELTA =1
else SRC =(Sl) + 1:(Sl), DEST = AX, DELTA =2

MOVS Operands Clocks* | Transfers|Bytes| MOVS Coding Example

dest-string, source-string 18(26) 2 1 MOVS LINE__EDIT.__DATA
(repeat) dest-string, source-string| 9+17(25)/ rep| 2/rep 1 REP MOVS SCREEN, BUFFER

*b(w): where b denotes the number of clock cycles for byte operands and w denotes the
number of clock cycles for word operands.

2-118




MUL

Operation:

(DES) < (LSRC) * (RSRC), where *
is unsigned multiply

if (EXT)=0then (CF) <0

else (CF) < 1;

(OF) < (CF)

Description:

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the accum-
ulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source operand is a word, then it is multiplied
by register AX, and the double-length result is
returned in registers DX and AX. The oper-

Encoding:

[1111011w [mod100r/m|

MULTIPLY

MUL

Flags Affected:

CF, OF.
AF, PF, SF, ZF undefined

ands are treated as unsigned binary numbers
(see AAM). If the upper half of the result (AH
for byte source, DX for word source) is non-
zero, CF and OF are set; otherwise they are
cleared. When CF and OF are set, they indi-
cate that AH or DX contains significant digits
of the result. The content of AF, PF, SF and
ZF is undefined following execution of MUL.

if w = 0 then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX

MUL Operands Clocks Transfers|Bytes| MUL Coding Example
reg8 70-77 2 [MULBL

regié 118-113 2 |MULCX

mem3 (76-83) + EA 2-4 |MUL MONTH [SI]
mem16 (128-143) + EA 2-4 |MUL BAUD__RATE

2-119



NEG

Operation:

(EA) < SRC- (EA)
(EA) < (EA) + 1 (affecting flags)

Description:

NEG destination

NEG (Negate) subtracts the destination
operand, which may be a byte or a word, from
0 and returns the result to the destination. This
forms the two’s complement of the number,
effectively reversing the sign of an integer. If
the operand is zero, its sign is not changed.

Encoding:

[1111011w [mod011r/m]|

if w=0then SRC =FFH
else SRC = FFFFH

NEGATE

NEG

Flags Affected:

AF, CF, OF, PF, SF, ZF

Attempting to negate a byte containing —128
or a word containing —32,768 causes no
change to the operand and sets OF. NEG
updates AF, CF, OF, PF, SF and ZF. CF is
always set except when the operand is zero, in
which case it is cleared.

NEG Operands | Clocks* | Transfers | Bytes | NEG Coding Example
register 3 = 2 NEG AL
memory 16(24) + EA 2-4 | NEG MULTIPLIER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-120




NOP

Operation:

None

Description:

NOP

NO OPERATION

NOP

Flags Affected:

NOP (No Operation) causes the CPU to do

nothing. NOP does not affect any flags.

Encoding:

[10010000 |

None

NOP Operands

Clocks

Transfers

Bytes

NOP Coding Example

(no operands)

3

NOP

2-121




NOT LOGICAL NOT

NOT

Operation: Flags Affected:
(EA) < SRC- (EA) None

Description:

NOT destination

NOT inverts the bits (forms the one’s comple-
ment) of the byte or word operand.

Encoding:

[1111011w [mod010r/m|

if w=0then SRC=FFH
else SRC = FFFFH

Bytes

NOT Coding Example

NOT Operands Clocks* | Transfers
register 3 —
memory 16(24) + EA 2

NOT AX
NOT CHARACTER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-122




OR LOGICAL OR

Operation: Flags Affected:
(DEST) < (LSRC) OR (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

OR destination,source

OR performs the logical ‘‘inclusive or’” of the
two operands (byte or word) and returns the
result to the destination operand. A bit in the
result is set if either or both corresponding bits
in the original operands are set; otherwise the
result bit is cleared.

2-123



OR

Encoding:

LOGICAL OR OR

Memory or Register Operand with Register Operand:

[000010dw | modregr/m |

ifd =1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod001r/m]|

data | dataifw=1 |

LSRC = EA, RSRC = data, DEST =EA

Immediate Operand to Accumulator:
\

|0000110w | data

| data if w=1 |

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

OR Operands Clocks* |Transfers|Bytes|OR Coding Example
register, register 3 — 2 |ORAL,BL
register, memory 9(13)+ EA 1 2-4 |OR DX, PORT__ID [DI]
memory, register 16(24) + EA 2 2-4 |ORFLAG__BYTE,CL
accumulator, immediate 4 — 2-3 |OR AL, 01101100B
register, immediate 4 — 3-4 |ORCX,01H
memory, immediate 17(25) + EA 2 3-6 [OR[BX].CMD__WORD,0CFH

*b(w): where b denotes the number of clock cycles for byte operands and w
denotes the number of clock cycles for word operands.

2-124




OUT

Operation:
(DEST) < (SRC)

Description:

OUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an
output port. The port number may be speci-

fied either with an immediate byte constant,
allowing access to ports numbered O through

Encoding:
Fixed Port:

[1110011w |

port |

if w=0then SRC = AL, DEST = port
else SRC = AX, DEST = port+1:port

Variable Port:

[1110111w|

if w=0then SRC = AL, DEST = (DX)
else SRC = AX, DEST = (DX) +1:(DX)

OUTPUT

OuT

Flags Affected:

None

255, or with a number previously placed in
register DX, allowing variable access (by
changing the value in DX) to ports numbered
from 0 through 65,535.

OUT Operands Clocks* | Transfers | Bytes | OUT Coding Example
immed8, accumulator | 10(14) 1 2 | OUT 44, AX |
DX, accumulator 8(12) 1 1 OUT DX, AL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-125




POP POP  POP

Operation: Flags Affected:
(DEST) < ((SP)+1:(SP)) None
(SP) < (SP)+2

Description:

POP destination

POP transfers the word at the current top of
stack (pointed to by SP) to the destination
operand, and then increments SP by two to
point to the new top of stack. POP can be used
to move temporary variables from the stack to
registers or memory.

2-126



POP POP POP

Encoding:

Memory or Register Operand:

110001111 [mod000r/m]|

DEST =EA

Register Operand:
| 01011reg |

DEST =REG

Segment Register:

[000reg111]

ifreg #01then DEST = REG
else undefined operation

POP Operands Clocks | Transfers | Bytes | POP Coding Example

register 12 1 1 POP DX
seg-reg (CS illegal) 12 1 1 POP DS
memory 25+EA 2 2-4 | POP PARAMETER

2-127




POPF

Operation:

Flags < ((SP)

+1:(SP))
(SP) < (SP) + 2

Description:

POPF

POPF transfers specific bits from the word at
the current top of stack (pointed to by register
SP) into the 8086/8088 flags, replacing
whatever values the flags previously contained
(see figure 2-32). SP is then incremented by
two to point to the new top of stack. PUSHF

Encoding:

10011101

POP FLAGS

POPF

Flags Affected:

All

and POPF allow a procedure to save and
restore a calling program’s flags. They also
allow a program to change the setting of TF
(there is no instruction for updating this flag
directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

POPF Operands | Clocks

Transfers

Bytes | POPF Coding Example

12 1

(no operands)

POPF

2-128 .




PUSH PUSH PUSH

Operation: Flags Affected:

(SP) < (SP)-2 None
((SP)+1:(SP)) < (SRC)

Description:

PUSH source

PUSH decrements SP (the stack pointer) by
two and then tranfers a word from the source
operand to the top of stack now pointed to by
SP. PUSH often is used to place parameters
on the stack before calling a procedure; more
generally, it is the basic means of storing tem-
porary data on the stack.

- 2-129



PUSH PUSH PUSH

Encoding:

Memory or Register Operand:

11111111 [mod110r/m]

SRC=EA

Register Operand:

| 01010reg |

SRC =REG

Segment Register:

[000reg110]|
SRC = REG

PUSH Operands | Clocks | Transfers | Bytes | PUSH Coding Example

register 15 1 1 PUSH SI
seg-reg (CS legal) 14 1 1 PUSHES
memory 24+ EA 2 2-4 |PUSH RETURN__CODE [SI]

2-130 °




PUSHF

Operation:
(SP) < (SP) -2

PUSH FLAGS

((SP)+1:(SP)) < Flags

Description:

PUSHF

PUSHF

Flags Affected:

PUSHF decrements SP (the stack pointer) by
two and then transfers all flags to the word at
the top of stack pointed to by SP. The flags

themselves are not affected.

Encoding:

loo11100]

None

PUSHF Operands

Clocks

Transfers

Bytes

PUSHF Coding Example

(no operands)

14

1

PUSHF

2-131




' - ROTATE THROUGH
RCL CARRY LEFT RCL

Operation: Flags Affected:
(temp) < COUNT CF, OF
do while (temp) # 0
(tmpcf) < (CF)

(CF) < high-order bit of (EA)
(EA) < (EA) * 2 + (tmpcf)
(temp) < (temp) -1
if COUNT =1then
if high-order bit of (EA) # (CF)
then (OF) <1
else (OF) <0 ‘
else (OF) undefined

Description:

RCL destination,count

RCL (Rotate through Carry Left) rotates the
bits in the byte or word destination operand to
the left by the number of bits specified in the
count operand. The carry flag (CF) is treated
as ‘“‘part of’’ the destination operand; that is,
its value is rotated into the low-order bit of the
destination, and itself is replaced by the high-
order bit of the destination.

2-132



ROTATE THROUGH
RCL CARRY LEFT RCL

Encoding:

[110100vw [mod010r/m|

if v=0then COUNT =1
else COUNT = (CL)

RCL Operands Clocks* Transfers|Bytes|RCL Coding Example

register1, 2 — 2 |RCLCX,1

register, CL 8+ 4/bit — 2 |RCLAL,CL

memory, 1 15(23) + EA 2 2-4 |RCL ALPHA, 1
memory, CL 20(28) + EA + 4/Dbit 2 2-4 |RCL [BP].PARAM,CL

“b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-133



RCR ROTATE THROUGH RCR

CARRY RIGHT
Operation: Flags Affected:
(temp) < COUNT CF, OF
do while (temp) # 0
(tmpcf) < (CF)

(CF) < low-order bit of (EA)
(EA) < (EA) | 2
high-order bit of (EA) < (tmpcf)
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

RCR destination,count
RCR (Rotate through Carry Right) operates

exactly like RCL except that the bits are
rotated right instead of left.

Encoding:

[110100vw [mod011r/m]|

ifv=0then COUNT =1
else COUNT = (CL)

RCR Operands - Clocks Transfers|Bytes|RCR Coding Example
register, 1 2 2 |RCRBX,1
register, CL 8+ 4/bit 2 |RCRBL,CL

2-4 |RCR [BX].STATUS, 1
2-4 |RCR ARRAY [DI], CL

memory, 1 15(23) + EA 9
memory, CL 20(28) + EA +4/bit 2

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

3
2-134



REP REPEAT REP

REPE/REPZ REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILE NOT EQUAL/

REPEAT WHILE NOT ZERO
Operation: Flags Affected:
do while (CX)# 0 None

service pending interrupt (if
any) execute primitive string
operation in succeeding byte
(CX) < (CX) -1
if primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) # z then exit from
while loop

2-135



REP
REPE/REPZ

REPEAT

REP
REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ

REPEAT WHILE NOT EQUAL/
REPEAT WHILE NOT ZERO

Description:

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While
Zero, Repeat While Not Equal and Repeat
While Not Zero are mnemonics for two forms
of the prefix byte that controls subsequent
string instruction repetition. The different
mnemonics are provided to improve program
clarity. The repeat prefixes do not affect the
flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String)
instructions and is interpreted as ‘‘repeat while
not end-of-string’”” (CX not 0). REPE and
REPZ operate identically and are physically
the same prefix byte as REP. These instruc-
tions are used with the CMPS (Compare
String) and SCAS (Scan String) instructions
and require ZF (posted by these instructions)
to be set before initiating the next repetition.
REPNE and REPNZ are mnemonics for the
same prefix byte. These instructions function
the same as REPE and REPZ except that the
zero flag must be cleared or the repetition is
terminated. ZF does not need to be initial-
ized before executing the repeated string
instruction.

Repeated string sequences are interruptable;
the processor will recognize the interrupt
before processing the next string element.
System interrupt processing is not affected in
any way. Upon return from the interrupt, the
repeated operation is resumed from the point
of interruption. However, execution does not
resume properly if a second or third prefix
(i.e., segment override or LOCK) has been
specified in addition to any of the repeat
prefixes. At interrupt time, the processor
“remembers’’ only the prefix that immediately
precedes the string instruction. After returning
from the interrupt, processing resumes, but
any additional prefixes specified are not in
effect. If more than one prefix must be used
with a string instruction, interrupts may be
disabled for the duration of the repeated exe-
cution. However, this will not prevent a non-
maskable interrupt from being recognized.
Also, the time that the system is unable to
respond to interrupts may be unacceptable if
long strings are being processed.

2-136



REP

REPE/REPZ

Encoding:

[11110012z |

REPEAT

REP

REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ

REPEAT WHILE NOT EQUAL/
REPEAT WHILE NOT ZERO

REP Operands

Clocks

Transfers

Bytes

REP Coding Example

(no operands)

2

REP MOVS DEST, SRCE

REPE/REPZ Operands

Clocks

Transfers

Bytes

REPE Coding Example

(no operands)

2

REPE CMPS DATA, KEY

REPNE/REPNZ Operands

Clocks

Transfers

Bytes

REPNE Coding Example

(no operands)

2

REPNE SCAS INPUT__LINE

2-137




RET

Operation:

(IP) < ((SP) + 1:(SP))

(SP) < (SP) + 2 ,

if Inter-Segment then
(CS) < ((SP)+1:(SP))
(SP) < (SP) + 2

if Add Immediate to Stack Pointer
then (SP) < (SP) + data

Description:

RET optional-pop-value

RET (Return transfers control from a pro-
cedure back to the instruction following the
CALL that activated the procedure. The
assembler generates an intrasegment RET if
the programmer has defined the procedure
NEAR, or an intersegment RET if the pro-
cedure has been defined as FAR. RET pops
the word at the top of the stack (pointed to by
register SP) into the instruction pointer and

RETURN

RET

Flags Affected:

None

increments SP by two. If RET is intersegment,
the word at the new top of stack is popped into
the CS register, and SP is again incremented
by two. If an optional pop value has been
specified, RET adds that value to SP. This
feature may be used to discard parameters
pushed onto the stack before the execution of
the CALL instruction.

2-138



RET "RETURN RET

Encoding:

Intra-Segment:

11000011 |

Intra-Segment and Add Immediate to Stack Pointer:

[ 11000010 | data-low | data-high |

Inter-Segment:

11001011 |

Inter-Segment and Add Immediate to Stack Pointer:

11001010 | data-low | data-high |

RET Operands Clocks | Transfers | Bytes | RET Coding Example
(intra-segment, no pop) 20 1 1 RET
(intra-segment, pop) 24 1 3 RET 4
(inter-segment, no pop) 34 2 1 RET
(inter-segment, pop) 33 2 3 RET 2

2-139



ROL ROTATE LEFT ROL
Operation: Flags Affected:
(temp) < COUNT CF, OF

do while (temp) #0
(CF) < high-order bit of (EA)
(EA) < (EA) * 2 + (CF)
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # (CF)
then (OF) < 1
else (OF) <0
else (OF) undefined

Description:

ROL destination,count
ROL (Rotate Left) rotates the destination byte

or word left by the number of bits specified in
the count operand.

Encoding:

[110100vw [mod000r/m]

if v=0then COUNT =1
else COUNT = (CL)

ROL Operands Clocks™ Transfers| Bytes| ROL Coding Example
register,1 | 2 — 2 |ROLBX,1

register, CL 8+4/bit — 2 |ROLDI,CL

memory, 1 15(23) + EA 2 2-4 | ROL FLAG__BYTE [DI], 1
memory, CL 20(28) + EA +4/bit 2 2-4 |ROLALPHA,CL

- *b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-140




ROR ROTATE RIGHT ROR
Operation: Flags Affected:
(temﬁ) < COUNT CF,OF

do while (temp) #0
(CF) < low-order bit of (EA)

- (EA) < (EA) /2
high-order bit of (EA) < (CF)
(temp) < (temp) -1

if COUNT =1 then

if high-order bit of (EA) # next-

to-high-order bit of (EA)

then (OF) <1

else (OF) <0

else (OF) undefined

Description:

ROR destination,count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or
word are rotated right instead of left.

Encoding:

[110100vw [mod001r/m|

if v =0 then COUNT = 1
else COUNT = (CL)

ROR Operand Clocks* Transfers | Bytes | ROR Coding Example
register, 1 2 — 2 ROR AL, 1

register, CL 8+ 4/bit — 2 | RORBX,CL

memory, 1 15(23) + EA 2 2-4 | ROR PORT__STATUS, 1
memory, CL | 20(28) + EA + 4/bit 2 2-4 | RORCMD__WORD, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-141




SAHF STOREACOISTERAH SAHF

Operation: Flags Affected:
(SF):(ZF):X:(AF):X:(PF):X:(CF) < (AH) AF, CF, PF, SF, ZF

Description:

SAHF

SAHF (store register AH into flags) transfers
bits 7, 6, 4, 2 and 0 from register AH into SF,
ZF, AF, PF and CF, respectively, replacing
whatever values these flags previously had.
OF, DF, IF and TF are not affected. This
instruction is provided for 8080/8085
compatibility.

Encoding:

| 10011110 |

SAHF Operands | Clocks | Transfers | Bytes | SAHF Coding Example

(no operands) 4 — 1 SAHF

2-142




SAL SHIFTARITHMETIC LEFT SAL

SHL

Operation:

(temp) < COUNT

do while (temp) # 0
(CF) < high-order bit of (EA)
(EA) < (EA)* 2
(temp) < (temp) -1

if COUNT =1then
if high-order bit of (EA) # (CE)

then (OF) <1

else (OF) <0

else (OF) undefined

Description:

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation
and are physically the same instruction. The
destination byte or word is shifted left by the
number of bits specified in the count operand.
Zeros are shifted in on the right. If the sign bit
retains its original value, then OF is cleared.

2-143

SHIFT LOGICAL LEFT

SHL

Flags Affected:

CF, OF, PF, SF, ZF.
AF undefined



SAL SHIFTARITHMETICLEFT SAL
SHIFT LOGICAL LEFT SHL

SHL

Encoding:

[110100vw [mod100r/m

if v=0then COU

NT =1

else COUNT =(CL)

SAL/SHL Operands Clocks* Transfers| Bytes| SAL/SHLCoding Example
register, 1 2 — 2 |SALAH,1

register, CL 8+4/bit — 2 |SHLDI,CL

memory, 1 15(23) + EA 2 2-4 | SHL [BX].OVERDRAW, 1
memory, CL 20(28) + EA +4/bit 2 2-4 |SAL STORE_COUNT, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-144




SAR

Operation:

(temp) < COUNT
do while (temp) # 0
(CF) < low-order bit of (EA)
(EA) < (EA) 2, where | is
equivalent to signed division,
rounding down
(temp) < (temp) -1
if COUNT =1then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) <0

Description:

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in
the destination opérand (byte or word) to the
right by the number of bits specified in the
count operand. Bits equal to the original high-
order (sign) bit are shifted in on the left,
preserving the sign of the original value. Note
that SAR does not produce the same result as
the dividend of an ‘‘equivalent” IDIV instruc-

2-145

SHIFT ARITHMETIC
RIGHT

Flags Affected:

SAR

CF, OF, PF, SF, ZF.
AF undefined

tion if the destination operand is negative and
1-bits are shifted out. For example, shifting —5
right by one bit yields —3, while integer divi-
sion —5 by 2 yields —2. The difference in the
instructions is that IDIV truncates all numbers
toward zero, while SAR truncates positive
numbers toward zero and negative numbers
toward negative infinity.



SAR  SHIFTARITHMETIC  SAR

RIGHT

Encoding:

[110100vw [mod111r/m

if v=0then COUNT =1

else COUNT = (CL)
SAR Operands Clocks* Transfers| Bytes|SAR Coding Example
register, 1 2 — 2 |SARDX,1
register, CL 8+ 4/bit — 2 |SARDI,CL
memory, 1 15(23) + EA 2 2-4 |SARN__BLOCKS, 1
memory, CL 20(28) + EA + 4/bit 2 2-4 |SARN__BLOCKS, CL

“b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-146




SBB

Operation:

if (CF) =1 then (DEST) = (LSRC) -
(RSRC) -1
else (DEST) < (LSRC) - (RSRC)

Description:

SBB destination,source

SBB (Subtract with Borrow) subtracts the
source from the destination, subtracts one if
CF is set, and returns the result to the destina-
tion operand. Both operands may be bytes or

words. Both operands may be signed or -

SUBTRACT WITH
BORROW

SBB

Flags Affected:
AF, CF, OF, PF, SF, ZF

unsigned binary numbers (see AAS and DAS).
SBB updates AF, CF, OF, PF, SF, and ZF.
Since it incorporates a borrow from a
previous operation, SBB may be used to write
routines that subtract numbers longer than 16
bits.

2-147



SBB  SUBTRACTWITH  SBB

Encoding:

Memory or Register Operand and Register Operand:

[000110dw [modregr/m|

if d=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

lmmediate Operand from Memory or Register Operand:

[100000sw [mod011r/m| - data  |data if s:w=01]
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand from Accumulator:

[0001110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SBB Operands Clocks* |Transfers|Bytes|SBB Coding Example
register, register 3 — 2 {SBBBX,CX
register, memory 9(13)+ EA 1 2-4 |SBBDI, [BX].PAYMENT
memory, register 16(24) + EA 2 2-4 |SBB BALANCE, AX
accumulator, immediate 4 — 2-3 |SBBAX,2
register, immediate 4 — 3-4 |SBBCL,1
memory, immediate 17(25)+ EA 2 3-6 [SBBCOUNT [SI], 10

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-148




SCAS

SCAN (BYTE OR

SCAS

WORD) STRING

Operation:

(LSRC) — (RSRC)
if (DF) =0then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX
(word string) and updates the flags, but does
not alter the destination string or the accum-
ulator. SCAS also updates DI to point to the
next string element and AF, CF, OF, PF, SF
and ZF to reflect the relationship of the scan
value in AL/AX to the string element. If

Encoding:

[1010111w |

Flags Affected:
AF, CF, OF, PF, SF, ZF

SCAS is prefixed with REPE or REPZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”” This form may be used
to scan for departure from a given value. If
SCAS is prefixed with REPNE or REPNZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element is
not equal to scan-value (ZF = 0).”” This form
may be used to locate a value in a string.

if w=0then LSRC = AL, RSRC = (DI), DELTA =1
else LSRC = AX, RSRC = (DI) +1:(Dl), DELTA =2

SCAS Operands Clocks* Transfers | Bytes | SCAS Coding Example
dest-string 15(19) 1 1 SCAS INPUT__LINE
(repeat) dest-string | 9+15(19)/rep 1/rep 1 REPNE SCAS BUFFER

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-149




SHR SHIFTLOGICALRIGHT SHR

Operation: Flags Affected:
(temp) < COUNT CF, OF, PF, SF, ZF.
do while (temp) #0 AF undefined

o
(CF) < low-order bit of (EA)
(EA) < (EA) | 2, where [ is

equivalent to unsigned
division
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right
by the number of bits specified in the count
operand. Zeros are shifted in on the left. If the
sign bit retains its original value, then OF is
cleared.

2-150



SHR

Encoding:

SHIFT LOGICALRIGHT SHR

1110100vw [mod101r/m]

if v=0then COUNT =1
else COUNT = (CL)

SHR Operands Clocks* Transfers |Bytes| SHR Coding Example
register, 1 2 — 2 SHR SI, 1

register, CL 8+ 4/bit — 2 |SHRSI,CL

memory, 1 15(23)+ EA 2 2-4 |SHRID__BYTE [SI] [BX], 1
memory, CL 20(28) + EA + 4/bit 2 2-4 |SHRINPUT_WORD, CL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-151




STC SET CARRY

Operation: Flags Affected:
(CF) <1 CF

Description:

STC

STC (Set Carry flag) sets CF to 1 and affects

no other flags.

Encoding:

[11111001 |

STC Operands | Clocks

Transfers

Bytes

STC Coding Example

(no operands) 2

STC

2-152




STD SETDIRECTION FLAG STD

Operation: Flags Affected:
(DF) <1 DF

Description:

STD

STD (Set Direction flag) sets DF to 1 causing
the string instructions to auto-decrement the
SI and/or DI index registers. STD does not
affect any other flags.

Encoding:

[11111101 |

Timing: 2 clocks

STD Operands | Clocks | Transfers | Bytes | STD Coding Example

(no operands) 2 — 1 STD

2-153



STI SET INTERRUPT- STI

ENABLE FLAG

Operation: | Flags Affected:

(IF) <1

Desdription:

STI (Set Interrupt-enable flag) sets IF to I,
enabling processor recognition of maskable
interrupt requests appearing on the INTR line.
Note however, that.a pending interrupt will
not actually be recognized until the instruction
following STI has executed. STI does not
affect any other flags.

Encoding:

[11111011 |

STI Operands Clocks | Transfers

Bytes

STI Coding Example

(no operands) 2 —

STI

2-154



STORE (BYTE/OR/
STOS WORD()STRING STOS

Operation: Flags Affected:

(DEST) < (SRC) None
if (DF) =0then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

STOS destination-string

STOS (Store String) transfers a byte or word
from register AL or AX to the string element
addressed by DI and updates DI to point to the
next location in the string. As a repeated
operation, STOS provides a convenient way
to initialize a string to a constant value (e.g., to
blank out a print line).

Encoding:

1010101 w |

if w=0then SRC = AL, DEST = (DI), DELTA =1
else SRC = AX, DEST = (DI) +1:(Dl), DELTA =2

STOS Operands Clocks* Transfers | Bytes | STOS Coding Example
dest-string 11(15) 1 1 STOS PRINT__LINE
(repeat) dest-string | 9+10(14)/rep 1/rep 1 REP STOS DISPLAY

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-155



SUB SUBTRACT SUB

Operation: Flags Affected:
(DEST) < (LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF
Description:

SUB destination,source

The source operand is subtracted from the
destination operand, and the result replaces
the destination operand. The operands may be
bytes or words. Both operands may be signed
or unsigned binary numbers (see AAS and
DAS). SUB updates AF, CF, OF, PF, SF and
ZF.

2-156



SUB SUBTRACT SUB

Encoding:

Memory or Register Operand and Register Operand:

[001010dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod101r/m| data  [dataif s:w=01]

LSRC = EA, RSRC = data, DEST =EA

Immediate Operand from Accumulator:

[0010110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC =data, DEST = AX

SUB Operands Clocks* |Transfers|Bytes{SUB Coding Example

register, register 3 — 2 |SUBCX, BX

register, memory 9(13)+ EA 1 2-4 |SUB DX, MATH__TOTAL [SI]
memory, register 16(24) + EA 2 2-4 |SUB[BP + 2],CL
accumulator, immediate 4 — 2-3 |[SUBAL, 10

register, immediate 4 — 3-4 |SUB SI, 5280

memory, immediate 17(25) + EA 2 3-6 |SUB [BP].BALANCE, 1000

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-157



TEST TEST TEST

Operation: Flags Affected:
(LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

TEST destination,source

TEST performs the logical ““and” of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand
is changed. If a TEST instruction is followed
by a JNZ (jump if not zero) instruction, the
jump will be taken if there are any correspond-
ing 1-bits in both operands.

2-158



TEST TEST TEST

Encoding:

Memory or Register Operand with Register Operand:

[1000010w [ modregr/m |

LSRC =REG, RSRC =EA

Immediate Operand with Memory or Register Operand:

[1111011w [mod000r/m| data [ dataifw=1 |

LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[1010100w| data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

TEST Operands Clocks* |Transfers|Bytes |TEST Coding Example
register, register 3 — 2 |TESTSI, DI
register, memory 9(13)+EA 1 2-4 |TEST SI,END_COUNT
accumulator, immediate 4 — 2-3 |TEST AL, 00100000B
register, immediate 5 — 3-4 |TEST BX, 0CC4H
memory, immediate 11(15)+EA 1 3-6 |TESTRETURN__CODE, 01H

*b(w): where b denotes the number of clock cycles for byte operands and w
denotes the number of clock cycles for word operands.

2-159




WAIT

Operation:

None

Description:

WAIT

WAIT

Flags Affected:

None

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does

not affect any flags.

Encoding:

10011011 |

WAIT Operands

Clocks

Transfers

Bytes

WAIT Coding Example

(no operands)

3+5n

WAIT

2-160




XCHG EXCHANGE XCHG

Operation: Flags Affected:
(temp) < (DEST) None
(DEST) < (SRC)
(SRC) < (temp)

Description:

XCHG destination,source

XCHG (exchange) switches the contents of the
source and destination (byte or word)
operands. When used in conjunction with the
LOCK prefix, XCHG can test and set a sema-
phore that controls access to a resource shared
by multiple processors (see section 2.5).

2-161



XCHG

Encoding:

EXCHANGE

XCHG

Memory or Register Operand with Register Operand:

[1000011w |modregr/m|

SRC =EA, DEST = REG

Register Operand with Accumulator:

[ 10010reg |

SRC = REG, DEST = AX

XCHG Operands Clocks* | Transfers| Bytes | XCHG Coding Example
accumulator, reg16 3 — 1 XCHG AX, BX
memory, register 17(25)+ EA 2 2-4 | XCHG SEMAPHORE, AX
register, register 4 — 2 XCHG AL, BL

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-162




XLAT

Operation:
AL < ((BX) + (AL))

Description:

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-
coded translation table. Register BX s
assumed to point to the beginning of the table.
The byte in AL is used as an index into the
table and is replaced by the byte at the offset in
the table corresponding to AL’s binary value.

TRANSLATE

XLAT

Flags Affected:

None

The first byte in the table has an offset of O.
For example, if AL contains 5H, and the sixth
element of the translation table contains 33H,
then AL will contain 33H following the
instruction. XLAT is useful for translating
characters from one code to another, the
classic example being ASCII to EBCDIC or
the reverse.

Encoding:

111010111 |

XLAT Operands | Clocks | Transfers | Bytes | XLAT Coding Example
source-table 11 1 1 XLAT ASCII_TAB

2-163



XOR EXCLUSIVE OR XOR

Operation: Flags Affected:
(DEST) < (LSRC) XOR (RSRC) CF, OF, PF, SF, ZF.
(CF)<0 AF undefined
(OF) <0

Description:

XOR destination,source

XOR (Exclusive Or) performs the logical
“‘exclusive or’” of the two operands and
returns the result to the destination operand. A
bit in the result is set if the corresponding bits
of the original operands contain opposite
values (one is set, the other is cleared); other-
wise the result bit is cleared.

2-164



XOR EXCLUSIVE OR XOR

Encoding:

Memory or Register Operand with Register Operand:

1001100dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod110r/m| data | dataifw=1 |

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0011010w | data | dataifw=1 ]

if w=0then LSRC = AL, RSRC =data, DEST = AL
else LSRC = AX, RSRC =data, DEST = AX

XOR Operands Clocks* |Transfers| Bytes| XOR Coding Example
register, register 3 — 2 | XORCX, BX
register, memory 9(13) + EA 1 2-4 | XORCL, MASK_BYTE
memory, register 16(24) + EA 2 2-4 | XOR ALPHA[SI], DX
accumulator, immediate 4 — 2-3 | XOR AL, 01000010B
register, immediate 4 — 3-4 | XOR S|, 00C2H
memory, immediate 17(25) + EA 2 3-6 | XORRETURN_CODE, 0D2H

*b(w): where b denotes the number of clock cycles for byte operands and
w denotes the number of clock cycles for word operands.

2-165







Design







CHAPTER 3
HARDWARE DESIGN

INTRODUCTION

This chapter discusses the hardware design of
iAPX 88 systems. First, the pins and signals
of the 8088 CPU are functionally described
for simple, but powerful iAPX 88 systems.
The timings of 8088 signals are explained,
and how they cleanly interface the 8088 CPU
with the rest of the system.

Other parts of the iAPX 88 system are dis-
cussed including, the clock generator, reset
and wait state circuits.

Interrupt handling follows, leading into a
description of maximum mode iAPX 88
systems.

8088 CPU Pin Functions

The functions of the 8088 CPU pins, are
categorized by these groups (Fig. 3-1):

1) Address

2) Data

3) Control and Status

4) Timing

5) Power/Ground

N/

ano [ 1 407 Vee
aa (]2 39[]a1s
a3 []3 38 [ ] A16/S3
a2 []4 37 ] A17/s4
a1 []s 36 [ ] ateiss
at0 []6 35 [] at/s6
A (|7 34| 1550
a8 [ 33 [] MN/MIX
ap7 []9 32| ] RD
aps [J10 gogg  31[JwoLp
aps [ 11 cPU 30 [ HLDA
apa [ 12 20[ ] WR
AD3 |13 28 [ Jiom
ap2 [|14 27 ] DT/R
ap1[]15 26 | | DEN
Apo [}16 25 [ ] ALE
Nmt |17 24 [ ] INTA
INTR [ 18 23 [ ] TEST
cLk 19 22 [ ] READY
GND [] 20 21| ] RESET

Figure 3-1. 8088 CPU Pins

The number of pins in each group varies. The
only pin in the Timing group is the clock,
while others, such as the Address and Data
groups, use many pins and are multiplexed
with other functions.

The 8088 pins and their functions are briefly
described here. For more information, con-
sult the iAPX 88/ 10 data sheet (see pg. 37 of
Appendix) and the iAPX 86, 88 Family
User’s Manual.

ADDRESS AND DATA

The 8088 CPU uses 20 pins to directly
address up to one million bytes of memory.
Some address pins are multiplexed to also
function as data or status pins. Thus, the
8088 provides all necessary signals from a
40-pin package.

The address pins are discussed below in these
three groups:

1) ADy-ADj7. Drives the lower eight address
bits and also the iAPX 88’s 8-bit data bus.

2) Ag-Ajs. Address bits 8-15.

3) Aig-Ajg. Drives the upper 4 bits of the
1APX 88’s 20 bit address bus; also generates
status signals.

ADg-AD,
Pins AD( through AD7 are time-multiplexed
in the iAPX 88 system to serve as both
address and data lines (Fig. 3-2). At the
beginning of every machine cycle, the lower 8
address bits are driven on these pins. Later in
the machine cycle, these pins function as the
8-bit data bus. At this time, ADy-AD7 may
be inputs or outputs, depending on whether
the 8088 is reading or writing data to or from
the system.

These lines float to 3-state OFF during inter-
rupt acknowlgdge and local bus “hold acknow-
ledge.”



HARDWARE DESIGN

Ag-Ats :

These pins drive the next 8 address bits on
the address bus. They are not multiplexed
with other signals and are valid during the
entire machine cycle.

These lines float to 3-state OFF during inter-
rupt acknowledge and local bus “hold acknow-
ledge”.

AteA1g

A e through A9 have two sets of functions.
First, at the beginning of each machine cycle,
these pins drive the upper 4 bits of the iIAPX
88’s 20-bit address bus. These 4 address bits,
(not provided by other 8-bit microproces-
sors), together with the other 16-bits of
address, enable the iAPX 88 to directly
address 1 megabyte of memory. This is 16
times more than 8080, 8085, Z80, MC6800*
and MC6809"".

The second function of these four pins is to
provide status information. After the address
has been latched, pins A and A7 change
their function to status signals S3 and S4.
These two signals can be decoded to deter-
mine which memory segment is being acces-
sed by the 8088 during the current machine
cycle (Fig. 3-3). This information could be
used to enable memory, such that each of the

4 segments could have its own megabyte of
memory, extending the iIAPX 88 memory
space to 4 megabytes.

Status line S5 gives the state of the interrupt
flag. S6 is always low. These status signals are
not necessary for normal operation of most
systems, but they can be useful for
diagnostics.

These lines float to 3-state OFF during local
bus ‘‘hold acknowledge.”” During interrupt ac-
knowledge, the address information is indeter-
minate, but the status information is valid.

POWER
The 8088 should have pin 40 connected to
+5V, and pins 1 and 20 are ground. Decou-

S3 S4
0 0 Alternate (relative to the ES
segment)

1 0 Stack (relative to the SS segment)
0 1 Code/None (relative to the CS
segment or a default of zero)

1 1 Data(relative to the DS segment)

S5=IF (interrupt enable flag)
S6 =0 (indicates the 8088 is on the bus)

Figure 3-3. Decoding of Status Signals S;-Sg

8088 A15 8088 A15 >
CPU A8 A8-A15 > CPU A8 A8-A15
AD7 AD7
AO-A7 8282 : > 8282 AO-AT >
ADO STB ADO STB
AQ-A7 > D0-D7 >
ALE A ALE
Y . L
ADO-AD7 DRIVE ADDRESS EARLY AND DATA
LATEIN EACHBUS CYCLE.

Figure 3-2. Time Multiplexing of Address and Data

*Z80is a registered trademark of Zilog Corporation.
**MC 6800 and MC6809 are registered trademarks of Motorola Corporation.



HARDWARE DESIGN

pling capacitors are recommended to reduce
the noise on the power and ground lines.

TIMING

Pin 19 is the clock input for basic timing of
the 8088. The maximum clock frequency is
5 MHz for the 8088, and 8 MHz for the
8088-2. The clock signal is usually generated
by the 8284A (see pg. 3-13).

CONTROL STATUS
These lines specify the type of machine cycle
occurring and control external logic.

RD. The Read line is an active LOW output,
which indicates when the CPU is reading data
from a memory or I/ O device.

This signal floats to 3-state OFF during “hold
acknowledge”.

WR. The Write signal is an active LOW out-
put, which indicates that the CPU is output-
ting data onto the data bus to write it into a
memory or I/ O device.

This signal floats to 3-state OFF during “hold
acknowledge”.

ALE. Address Latch Enable is an output that
latches the addresses on the iIAPX 88’s address
bus. This signal is usually connected to the
STB input of an 8282 latch, (Fig. 3-5).

The falling edge of ALE latches the address
on the system address bus to hold it through-
out the entire machine cycle, even though
some of the 8088’s address pins will change
their functions during this time. ALE never
floats.

10/M. This output specifies whether the cur-
rent machine cycle will address an I/O or a
memory device (HIGH = I/O, LOW =
Memory). This signal is valid during the entire
machine cycle, and floats to 3-state OFF dur-
ing “hold acknowledge”.

RESET. Providing an orderly way to start or
restart an 1APX 88 system, reset is an active
HIGH input to the 8088, synchronized by the
8284A.

3-3

Reset causes the processor to immediately
terminate its present activity and to condition
the bus as shown in Fig. 3-15. When reset
returns LOW, the 8088 will begin executing
from memory location FFFF0¢.

During reset the processor is initialized to the
following conditions:

1) The Flag register is reset to 0000. This
disables interrupts and the single step mode.

2) The DS, ES, SS and IP registers are reset
to 0000.
3) The CS register is set to FFFF .

Mn/Mx. This input configures the 8088 in the
minimum mode when HIGH, and in the max-
imum mode when LOW. This manual focuses
on minimum mode systems. Refer to pg. 3-24
for a discussion of maximum mode systems.

The pins and signals described above are suf-
ficient to completely control a small multi-
plexed bus system (Fig. 3-4). Larger systems,
however, use latches and transceivers for de-
multiplexing and increasing the drive of the
busses. Control signals for handling these
latches and for other functions are described
below as they are used in the IAPX 88 larger
system (Fig. 3-5).

DT/R. Data Transmit/ Receive is an output,
controlling the direction in which the data
bus transceivers (8286s or 8287s) drive the
data on the data bus. When HIGH, data is
transmitted onto the system data bus from
the 8088. When LOW, data is received from
the system bus to be read by the 8088. This
signal floats to 3-state OFF during “hold
acknowledge”.

DEN. The Data Enable output drives the
output enable of the 8286/8287 data bus
transceivers. This prevents bus contention by
disabling the data bus transceivers while the
8088 is driving addresses on the address/data
bus.



HARDWARE DESIGN

8155-2
ce PORT

[N

RD
111 |*F PORT

<::::::::::::§>Aom7

>WR  poRT
> B

588

10/M
RESET

=
=
m
e

ouT

!

8088 8355-2/8755A-2
Ag-A15{_ ADDR ~{iow

> RD
—{ALE PORT
I »|CE A
N Il
> As.10
READY ‘ [T 1 1]

MN/MX I—vcc <:‘—__—:> ADg.7
I

CLK
ADo-AD7 ADDR/DATA )|
|

i

g

Vee ALE 10/M pPORT
8284A RD —»{RESET B

CLK|- RESET WR

READY 10/M
RES

RESET
X1 X2

GND 5400 5109
[ HOF 8185-2

CE;

WR

RD

ALE
CS, CE,

g

YYYVYY

Y

Ag, Ag

K D ADo.7

VNV YYYY

Figure 3-4. iAPX 88 Multiplexed Bus System

3-4




HARDWARE DESIGN

This signal floats to 3-state OFF during “hold
acknowledge” (Fig. 3-5).

INTR. Interrupt Request is a level-triggered
active HIGH input, sampled during the last
clock cycle of each instruction. It tells the
8088 to stop what it is currently doing and
service an 1/ O or peripheral device.

When INTR is detected HIGH, the 8088
jumps to an interrupt service routine via an
interrupt vector table in system memory.

INTR can be internally masked through
software by resetting the interrupt enable bit
in the Flag register. INTR is internally
synchronized.

INTA. Used as a read strobe during interrupt
acknowledge cycles, INTA is active. LOW
during T2, T3, and T4 of each interrupt
acknowledge cycle. INTA is never floated.

SSO. This is a status output. When decoded
with IO/M and DR/R, SSO specifies the
type of bus activity in progress (Fig.3-6).

10/M | DT/R |'SSO

1(HIGH) | © 0 | Interrupt Acknowledge

1 0 1 Read 1/O port
1 1 0 Write 1/ O port
1 1 1 Halt

o(LOW) 0 0 Code access
0 0 1 Read memory
0 1 0 Write memory

Passive

Figure 3-6. iAPX 88 Status Decoding

ALE}+—]5TB
Al9- 8282 AT6-A19 >
L IS8
A15- 8282 AB-A15
8088 A8 >
O CPU —
Vce ]
, AD7-
8284A ADo 8282 AO-A7 >
cebibiton 1o, 1] [ 7
READY
RES | Reser 8288 De-D7 >
RDY T OF 2N PON
I A INTA p1/Rl— 4 ]
GND >|INTR DEN il
>|HoLD 10/M
HLDA RD | [—
WR T
NMI_TEST 'EEEYAEEELY4 [EK]
WRRDCS WRRDCE WR RDCS
ATA [
INTR  bERIPHERAL D
»|HLD MEMORY
HOLD INTR_INTA apDRess|C— |
4

Figure 3-5. iAPX 88 with Buffered Demultiplexed Busses

3-5




HARDWARE DESIGN

HOLD/HLDA. Hold indicates that another’
master is requesting control of the local bus.
To be acknowledged, HOLD must be in its
active HIGH state.

The processor receiving the “HOLD”’ request
will issue HLDA (HIGH) at the end of the
current data transfer operation. A data transfer
operation is one bus cycle for a byte operation
and two bus cycles for a word operation or
interrupt acknowledge.

After HOLD is'detected as LOW, the proces-
sor LOWers HLDA, and when the processor
needs to run another cycle, it will again drive
the local bus and control lines.

NMI. Non-Maskable Interrupt is an edge-
triggered input causing a type 2 interrupt.

A subroutine is activated via an interrupt vec-
tor in system memory. NMI is not maskable
by software.

A transition from a LOW to HIGH initiates
the interrupt at the end of the current instruc-
tion. This input is internally synchronized.

READY. The READY signal is used to add
wait states to the 8088 machine cycle so that
slow I/O or memory devices can be used.
READY is a synchronized input generated
by the 8284A in response to the RDY1/
RDY2 or AEN1/AEN2 inputs.

TEST. This input synchronizes the CPU with
an external event. When used with the “Wait
for test” instruction, the CPU is kept in an
idle state until TEST is driven low by an
external event.

8088 Bus Timing and Minimum Mode Status

The 8088 CPU communicates with external
logic through the systems bus. This commun-
ication is accomplished by a machine cycle,
in which data is tranferred between the 8088
and a memory or peripheral device. During
this machine cycle, the 8088 first generates an

address to select the proper memory or peri-
pheral device. Then the 8088 activates the
read or write control-line, and the data is
either transferred into the 8088 from the
selected memory or peripheral device (a read
cycle) or out of the 8088 to the selected
memory or peripheral device (a write cycle).

On termination of the cycle, the data is
latched by the 8088 (read), or the selected

- device (write), and the control signal is

3-6

deactivated.

The basic machine cycle of the 8088 consists
of four clock periods or T-states, T, T2, T3
and Ty. (Fig. 3-7)

During the first T state (T), the CPU places
an address on the 20-bit address/data/status
bus. This address specifies a unique location
in the memory or I/O address spaces of the
iAPX 88, and is guaranteed to be valid on the
address bus when the ALE (Address Latch
Enable) signal makes a HIGH to LOW tran-
sition. By this time, the 10/M, SSO and
DT/R control and status signals are also
valid.

These signals tell the external logic which

‘type of machine cycle is occurring and in

which direction data will flow. The signal
10/ M specifies whether the addressed device
is in the iAPX 88’s I/O space or memory
space.

The DT/R (Data Transmit/Receive) signal
will be HIGH if data is to be transmitted out
of the CPU (a write cycle) or LOW if it is to
be read into the CPU (a read cycle).

SSO can be decoded with 10/ M and DT/R
to specify other types of machine cycles such
as Interrupt Acknowledge, Halt and Passive.

During state T, the 8088’s lower 8 address/
data pins (ADg-AD7) float in preparation
for the data transfer.

Next, the DEN and RD or WR control sig-
nals become valid, to enablc the data onto



HARDWARE DESIGN

the bus for the transfer. This data will be read
into, or out of, the 8088 through pins ADg-
AD7, which now function as the data bus.
Also at this time the upper 4 address lines
switch from address (A16-A19) to status (S3-
S6). The status information available from
decoding these lines is primarily for diagnos-
tics monitoring,.

However, S3 and S4 can be decoded to
determine which of the four segments is being
accessed by that particular machine cycle.
This information can be used to select one of
the four memory segments (Code, Data,
Stack or Extra) being addressed by the iAPX
88. This technique allows memory partition-
ing by segment to expand memory address-
ing up to four megabytes.

Decoding S3 and S4 can also provide a

degree of memory protection, by preventing
erroneous writes into overlapping segments.

During T3 the CPU continues to assert write
data or sample read data on the lower 8 bus
lines (ADp-AD7) and to provide status
information on the upper 4 bus lines (A ¢/ S3-
A19/S6). This state allows time for the data
to stabilize on the bus and be read by the
8088 or the selected memory or peripheral.

At the beginning of T4 the RD or WR line
goes inactive (HIGH) and the data is latched
into the 8088 or the selected device. The DEN
and DT/R signals also go HIGH and the
memory or peripheral is deselected from the
bus.

Extending Machine Cycle

If the memory or I/ O device cannot transfer
data at maximum CPU transfer rate, the

A

T4 |
CLK

ONE BUS CYCLE : |
T2

ve

>

.

ALE —_/——_\

A19/58-6
ores H ADDRESS OUT X STATUS OUT )—
Ats-Ag H ADDRESS OUT j—
/
AD7-ADg ADDRESS OUT DATA

10/M

X

LOW = MEMORY, HIGH = 1/0

_
-

5
i
3

\

Figure 3-7. iAPX 88 Basic Machine Cycle

3-7




HARDWARE DESIGN

device must tell the CPU that the data
transfer is not complete and that the machine
cycle must be extended. It does this by bring-
ing the READY input LOW before the
beginning of T3. This forces the 8088 to insert
additional clock cycles (Wait States or Tw’s)
between T3 and T4.

Bus activity during Tw is the same as T3. The
address and control signals remain on the
bus, allowing time to complete the data
transfer. When the selected device has com-
pleted the transfer, it brings the READY pin
HIGH, dllowing the CPU to continue from
the Tw states into Ty4.

The CPU will then latch the data on the bus
during T4, as it would during a normal
machine cycle. The machine cycle is then
terminated in T4 when the command lines
are disabled, and the external device is de-
selected. Refer to READY, see pg. 3-16, and
the iIAPX 86, 88 User’s Manual.

Idle Cycles

The 8088 CPU only executes a machine cycle
when instructions or operands must be trans-
ferred between the 8088 and memory or I/ O
devices. When not executing a machine cycle,
the bus interface executes idle cycles (Ty).
During these idle cycles, the CPU continues
to drive status information from the previous
machine cycle on the upper address lines.

If the previous machine cycle was a write, the
CPU continues to drive the write data onto
the multiplexed bus until the start of the next
machine cycle. If the CPU executes idle
cycles following a read cycle, the CPU will
not drive the lower 8 bus lines until the next
machine cycle is required.

Because the CPU prefetches up to 4 bytes of
the instruction stream for the internal instruc-
tion queue, the relationship of instruction
fetch and associated operand transfers may
be skewed in time and separated by addi-
tional instruction fetches.

3-8

In general, if a given instruction is fetched
into the 8088’s internal instruction queue,
several additional instructions may be fetched
before the given instruction is removed from
the queue and executed.

If the instruction being executed is a jump or
other control transfer instruction, any instruc-
tions remaining in the queue are discarded
without execution.

Bus Interface

The bus interface of an iAPX 88 can be struc-
tured in a number of ways. The best configur-
ation for a particular application depends on
system size, and the type of memory, and I/O
devices used.

The simplest bus interface for an iAPX 88
system uses the “multiplexed bus” configura-
tion. In this system, memory and I/ O devices
are attached directly to the 8088’s multi-
plexed Address/Data Bus (Fig. 3-4). This
configuration is ideal for small systems where
simplicity and low component-count are
important.

Each device must use ALE to internally latch
the address and separate it from data. There
are, however, certain limitations to this sys-
tem. First, only memory and I/O devices
specifically designed to operate on a multi-
plexed bus can be used in this system. Figure
3-8 lists all Intel multiplexed bus components
which are compatible with the iAPX 88.

8155/8156 | 256 Byte Static RAM, 1/0 and Timer
8185 1024 Byte Static Ram

8355 2048 Byte ROM and 1/0

8755A 2048 Byte EPROM and 1/0

8256 Multifunction UART

21821 4096 Byte Pseudostatic RAM

Figure 3-8. iAPX 88 Compatible Multiplexed
Bus Components



HARDWARE DESIGN

Secondly, a multiplexed system is necessarily
small — usually less than 15 components —
due to the limited drive capability of the
MOS parts which directly drive the bus.

Larger iAPX 88 systems will normally use a
demultiplexed and buffered bus configura-
tion, (Fig. 3-5). In this configuration, the
8282 is used to latch the address and hold it
on the address bus throughout the entire
machine cycle. The 8286 octal transceiver
buffers the data bus to provide the higher
drive capability necessary for large systems.
Small systems could eliminate this trans-
ceiver and the latch on address lines Ag-Ajs.

Memory and Peripheral Interface

The 8088 uses address, data and control
information to control and communicate
with system memory and peripheral compo-
nents. Some components connect directly to
the multiplexed Address/Data Bus, while
others have separate address and data pins
and must connect to a demultiplexed bus.
Some interfacing methods for both multi-
plexed and demultiplexed busses follow.

MULTIPLEXED BUS SYSTEMS

The connection of two multiplexed bus com-
ponents (the 8755A and 8185) is given in
Figure 3-9. These components receive both
address and data on the same pins. The
address is internally latched by the ALE con-
trol signal.

The data then flows in (write), or out (read) if
the device has been enabled using the CS
(chip select) and CE (chip enable) inputs.

Note that the RD, WR, I0/M and ALE con-
trol signals from the 8088 CPU connect
directly to these chips.

Linear Chip Select

Connecting A9 to CE2 of the 8755A in Fig.
39 enables this device whenever Ajpg is
HIGH. CEl is grounded so it is always valid.

3-9

The 8185 is enabled whenever Aqj is LOW
and Ajqpis HIGH by connecting CS to Ajj,
CE2 to A1, and CE1 to ground.

Recall that address lines Ag-A |5 are held sta-
ble throughout the machine cycle and thus
can be connected directly to the chip enable
or chip select lines.

Linear chip select is a method that reduces
system chip complexity and chip count. At
the same time, linear chip selection reduces
available address space in the system. For
instance a 2K memory device, the 8755A, is
enabled by any address between 8000016 and
FFFFF ¢ (a 512K byte logical address space)
(Fig. 3-9). This is usually not a problem
because most systems using the multiplexed
bus configuration are small enough that the 1
megabyte address space of the iIAPX 88 is far
larger than necessary.

DE-MULTIPLEXED BUS SYSTEMS

Most system memories and peripherals re-
quire the address to be stable for the entire
machine cycle, therefore requiring address to
be latched and held on a separate de-
multiplexed address bus. Figure 3-10 shows
this system, with address lines Ag-A7 latched
by an 8282 octal latch, which drives the lower
8 bits of the de-multiplexed address bus.

Note that the data bus is still multiplexed.
This brings up two things to consider.

First, multiplexed bus parts can still be used
in this system, provided they are connected to
the data bus.

Second, any devices connected to the data bus
must guarantee not to drive data onto this
bus before the ALE signal has latched the ad-
dress into the 8282 and the 8088 has 3-stated
its lower 8 address drivers in preparation for
reading the data. If a device were to drive the
data bus as soon as its address is generated,
bus contention would occur because the 8088
is still driving the address on this bus. This
could cause an incorrect address to be
latched into the 8282 address latch.



oL-¢

suonoauuo) sng paxajdiyiny "6-¢ ainbi4

MN/MX

,—o—:%- NMI
——O0—— INTR
o3 UHoLp
—o—2]TesT

Heno
20

A19/35
At4
A13
A12
A1l
A10

A9
A8
AD7

8088

ALE
1o/M

RESET
CLK
READY

pl]

8284A
CLOCK
GENERATOR
RES

35 ——0 A19/35
2o
2o
4 ———0 A2
s —0 Al1
3 © A0
L 0 A9
8 O A8
L] —0 AD7
10 0 ADS
11 -0 AD5
12 0 AD4
it oD
—0 AD2
15 —0AD1
16 - ADO
32 OFD
29 o WR
25 0 ALE
kL 0 10/M
21 ————0 RESET
19 Voo
2 jmm|
Bl 5 a0 {8 v
cc
200 288 amol L—1 ADO
IE) st wr Lo 21,01
141 ap2 aLe 1 31 Ap2 Ve P2
151 ap3 10/ |- + a0s
164 ppa ce2 |2 21 apa
11 aos ReseT |4 & o
:: ADG ; ADG
AD7 AD7
21 28 10 A8 8185
;i A9 Ves |2 “2‘ A9
2 a0 i3] S5
|| CLK 755 cerft 1 _Z'
1 71 7o ano2
o—] Reapy = L I
Blae
244 pag [Yg Sy =
ZE PA1 pes |20
o—2810,, pes B _o
271 o3 P4 2o
28] pe prs |85 _o 1/OPORTB
o—2pps pe2 Pl o
o—U ppg a1 o
o—Upar peo B2

NOIS3a 34vMadvH



HARDWARE DESIGN

Conveniently, most Intel peripherals,
EPROMs and RAMs in the iAPX 88 family
provide output enable or read inputs which
prevent this from happening.

Observe how some memory and peripheral
components are connected in this system
configuration. A 2716 2K x 8 EPROM and
two 2114 RAMs are connected in an iAPX
88 system with a demultiplexed address bus
(Fig. 3-10). Address lines Ayp-Ajg from the
demultiplexed address bus are connected to
the address inputs Ag-A1g of the 2716.

The multiplexed data bus is connected to the
data output of the 2716. The CE (chip ena-
ble) input is driven from an address decoder.
This could be either a decoder PROM or a
TTL decoder such as a 74L.S139.

Another possibility is to use a linear chip
select, described previously.

The output enable (OE) of the 2716 is driven
by the 8088’s RD control line. This enables
the output data onto the data bus from the
2716 with the proper timing to prevent bus
contention problems.

The connections for a 2114 RAM are a little
different from a 2716 because the 2114 is a
1K x 4 memory, and because it can be
written-to as well as read. Also, because it
does not have an output enable, care must be
taken to not cause bus contention by driving
the data bus too early.

‘The address pins of the 2114 are directly con-
nected to Ag-Ag on the de-multiplexed
address bus. The data pins I/O1-1/O4 are
connected to the multiplexed data bus.

A19-
A1g A16-A19 — T :>>
A15-
12 A8-A15 >
AD7-
AD7 <1T B 8282 AQ-A7 ::>
STB
ALE|— —I
8088 D0-D7 >
CPU _ -
D - f
WR x ;
DEN|— — L L s —
D007 | %% KavAtg |WEOPK agag HME ADDLESS
2716 2114 A 2114 DECODER
E csi D0-D3 D4-D7 csi I

Figure 3-10. Demultiplexed Bus Connections

3-11



HARDWARE DESIGN

Because the 2114 is a 1K x 4 memory, we
need two 2114’s to make an 8-bit wide
memory. The two 2114s are connected to the
data bus so that one drives data lines Dg-D3,
and the other drives D4-D7. Any read or
write to the 2114s will enable both chips at
the same time to move the 8-bit data byte.

The chip select input cannot be connected
directly to the output of the address decoder,
as was done with the 2716, because the 2114
has no output enable pin. Instead, CS is
delayed by ORing the chip select with the
DEN output of the 8088. This delays the
2114s from outputting the data until after the
address has been latched by the falling edge
of ALE and the 8088 has tri-stated its
address/data bus.

LARGE DE-MULTIPLEXED BUS SYSTEMS
The bus configuration in Figure 3-10 is fine
for medium-sized systems, but if too many
components are connected to the busses, the
8088’s outputs will not be able to drive the
system.

Figure 3-5 shows a system where 8282
latches have been added to lines Ag-As and
A16-A19, and an 8286 octal transceiver has
been added to the multiplexed data bus. This
accomplishes two things.

First, address bits Ajg-A19 are multiplexed
with status bits S3-S6 and therefore must be
latched like lines ADg-AD7 if they are to be
used in addressing.

Second, the 8286 on the data bus, and the
8282s on the address bus, can drive much
higher loads than the 8088 can. With the 8088

ALE}-—{STB R
XY 8282 A16-A19 )
|_ISTB
A15- 8282 AB-Ai5
8088 A8 4»>
Dl—] CPU LSTB
Vce
, AD7-
B8R | ADO 8282 AQ-A7 }>
CLOCK CLK [ ﬁ
GENERATOR| ,_|oEapy
RES Eoer 8286 b0-b7 —>
rRoY _ [™[R T OE[ T\ ~ ~
I A INTA p1/R f
&ND >|INTR DEN ]
>1HoLD 10/M
HLDA RD |
WR | |
NMI TEST Y Y VN YV VN V¥
WRRDCS WRRDCE WRRDCS
DATA K
INTR  pERIPHERAL
>|HLDA MEMORY
HOLD TR _Tw7a | | apoRess|<—— |
_ |

Figure 3-11. iAPX 88 with Buffered Demultiplexed Busses

3-12




HARDWARE DESIGN

drive specified to drive 2.0mA and 100pF, a
system with 5 peripheral components and 10
memory components would overload the
bus.

The 8282 non-inverting and 8283 inverting
octal latches plus the 8286 non-inverting and
8287 inverting octal transceivers can drive
loads up to 32mA and 300pF. The 8282/8283
are directly controlled by connecting ALE to
the STB (strobe) input and grounding OE.
The 8286/8287 is controlled by connecting
the 8088’s DEN and DT/R signals to the
8286/8287's EN (enable) and T (transmit
inputs). These signals provide the proper tim-
ing to guarantee that the address is latched
properly and that the 8286/8287 drives data
in the correct direction for read and write
cycles.

Note that adding these latches and transceiv-
ers increases the chip count and adds
propagation delays (25ns for the 8283 and
8287 and 35ns for the 8282 and 8286) that
subtract from the read or write access time of
the system’s memory and peripheral devices.
For complete specifications of the 8283/8282
and 8286/8287 see the data sheets in the
Appendix.

Memory Operands
The iAPX 88 directly operates on 8- or 16-bit
memory based variables. This means that a

6
MOVE 3,AX 5
2ND CYCLE
) 65 4
I 43 3
1STCYCLE
2
15 87 0 1
65 43 0
16-BIT REGISTER MEMORY
FORMAT MAP

Figure 3-12. How 16-bit Data is Arranged
within 8-bit memory

variable may occupy one or two bytes of
memory (each byte is 8-bits). Consequently,
8-bit operands are read or written in one
machine cycle, while 16-bit operands require
two bus cycles.

16-bit operands are stored in memory, with the
least significant byte (LSB) first and the most
significant byte (MSB) in the next location.
Figure 3-12 shows that when the 16-bit
operand 6543 was moved from the AX register
to memory location 3, the LSB (43) was moved
into location 3 by the first machine cycle, and
the MSB (65) was moved to location 4 in the
next machine cycle.

Clock Generation

The 8088 requires a clock signal with fast rise
and fall times (10ns maximum) between low
and high voltages.

The maximum clock frequency of the 8088 is
5 MHz, and 8 MHz for the 8088-2. The
recommended method for generating this
signal is to use Intel’s 8284 A clock generator.

USING 8284A

Either an external frequency source or a ser-
ies resonant crystal may be selected to drive
the 8284A. The selected source must oscillate
at 3X the desired CPU frequency.

To select the crystal inputs of the 8284A as
the frequency source for clock generation, the
F/C input to the 8284A must be strapped to
ground. The crystal should be connected
using the configuration shown in Figure 3-13.

8088
1 CPU
5102 © | 8284A
im
] CLK CLK
X2
5109

Figure 3-13. Generating Clock Signal with 8284A




HARDWARE DESIGN

If a high-accuracy frequency source, externally-
variable frequency source, or a common
source for driving multiple 8284 A’s is desired,
the External Frequency Input (EFI) of the
8284 A can be selected by strapping the F/C
input HIGH through a pull-up resistor (~ 1K
ohms). The external frequency source should
be TTL compatible, have a 50% duty cycle,
and oscillate at 3 times the desired CPU
operating frequency.

The 8284 A has several other functions, includ-
ing RESET and READY generation (see pg.
" 3-16). For complete details on iAPX 88 clock
generation, refer to the iAPX 88/10 and
8284 A data sheets.

Reset

The 8088 RESET line provides an orderly
way to start or restart an iAPX 88 system.

When the processor detects the positive-
going edge of a pulse on RESET, it
terminates all activities until the signal goes
LOW, at which time the internal CPU regis-
ters are initialized to the reset condition (Fig.
3-14).

Upon RESET, the code segment register and
the instruction pointer are initialized to
FFFFi¢ and 0 respectively. Therefore, the
8088 executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an

CPU COMPONENT CONTENT
FLAGS Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Figure 3-14. CPU State Following Reset

intersegment direct JMP instruction whose
target is the actual beginning of the system
program.

As external (maskable) interrupts are dis-
abled by system reset, the system software
should re-enable interrupts as soon as the sys-
tem is initialized, to the point where inter-
rupts can be processed.

The 8088 requires an active HIGH reset, with
minimum pulse width of 4 clocks, except
after power-on which requires a 50 us reset
pulse.

Since the CPU internally synchronizes reset
with the clock, the reset is internally active
for up to one clock period after the external
reset.

Non-Maskable interrupts (NMI) or hold
requests occurring during the internal reset
are not acknowledged. A hold request active
immediately after the internal reset will be
honored before the first instruction fetch.

Upon reset the 8088 will condition the system
busses in the following manner (Fig. 3-15):
The address bus will float to the three-state
condition upon detection of reset by the
CPU. It floats until the CPU comes out of
reset and begins fetching code from
FFFFOy.

Other signals which three-state will be driven
HIGH for one clock low period prior to
entering three-state (Fig. 3-16).

ALE and HLDA are driven inactive (LOW)
and are not three-stated.

22K ohm pull-up resistors should be con-
nected to floatable CPU command and bus
control lines, to guarantee the inactive state
of these lines in systems where leakage cur-
rents or bus capacitance may cause the
voltage levels to settle below the minimum
HIGH voltage of devices in the system.

The reset signal to the 8088 is normally gen-
erated by the 8284A. The 8284A has a
schmitt trigger input (RES) for generating
reset from a LOW active external reset.



HARDWARE DESIGN

The hysteresis specified in the 8284A data
sheet implies that at least 0.25 volts will
separate the logic 0 and 1 switching point of
the 8284A reset input. Inputs without hys-
teresis switch from LOW to HIGH and
HIGH to LOW at approximately the same
voltage threshold. The inputs are guaranteed

SIGNAL CONDITION
ADO-AD7

A8-A15

FLOAT

S*SO
IO*/M
D'I;/R
DI;N
WR

*

RD

*

INTA

DRIVEN HIGH,
THEN FLOAT

ALE
HLDA

LOwW

Figure 3-15. iAPX 88 Bus Condition During Reset

)

to switch at specified LOW and HIGH vol-
tages (ViL and V1g), but the actual switching
point is anywhere in between.

Since ViL min. is specified at 0.8 volts, the
hysteresis guarantees that the reset will be
active until the input reaches at least 1.05
volts. A reset will not be recognized until the
input drops at least 0.25 volts below the reset
inputs Vg of 2.6 volts.

To guarantee reset from power up, the reset
input must remain below 1.05 volts for 50 us
after V¢ has reached the minimum supply
voltage of 4.5 volts. The hysteresis allows the
reset input to be driven by a simple RC cir-
cuit (Fig. 3-17).

The calculated RC value does not include
time for the power supply to reach 4.5 volts,
or the charge accumulated during this inter-
val. Without the hysteresis, the reset output
might oscillate as the input voltage passes
through the switching voltage of the input.
The calculated RC value provides the min-
imum required reset period of 50 us for
8284 A’s that switch at the 1.05 volt level, and
a reset period of approximately 162 us for
8284 A’s that switch at the 2.6 volt level.

N

)

CLOCK C>\> (l\

o )

RESET INPUT ////
INTERNAL
RESET
BUS

A

A

FLOAT BUS
DRIVE OUTPUT TO INACTIVE STATE

Figure 3-16. iAPX 88 Bus During Reset

3-15




HARDWARE DESIGN

If tighter tolerance between the minimum
and maximum reset times is necessary, the
reset circuit shown in Figure 3-18 might be
used rather than the simple RC circuit. This
circuit provides a constant current source and

SYSTEM RESET

8284A 8088
+5
RESET >1 RESET
RES
CLK » CLK

1

‘[—1F/é

Figure 3-17. 8284A Reset Circuit

a linear charge rate on the capacitor, rather
than the inverse exponential charge rate of
the RC circuit. The maximum reset period
for this implementation is 124 us.

The 8284A synchronizes the reset input with
the CPU clock to generate the RESET signal
to the CPU. This output is also available as a
general reset to the entire system. Reset has
no effect on any clock circuits in the 8284A.

READY IMPLEMENTATION AND TIMING

As discussed previously, the ready signal is
used in the iIAPX 88 system to generate wait
states to accommodate slow memory and
I/ O devices. Ready is also used in multipro-
cessor systems to force the CPU to wait for
access to the system bus.

The 8284A can be set up for systems using
synchronous or asynchronous ready signals
by strapping the ASYNCH input HIGH
(synchronous) or LOW (asynchronous). To
use the synchronous configuration, the de-
signer must analyze the ready timing to
insure that the setup and hold requirements

Vce
D2

—RESET

oo
—H<
]
Olo

~Vcc—.6

dv
dT

[ -
T
l‘*

T

R1— DETERMINES CURRENT TO CHARGE C
R2 — VALUE NOT CRITICAL = 10K

Ic = CHARGE CURRENT = w

IF ALL SEMICONDUCTORS ARE SILICON, Ic = R

T

.6V

Figure 3-18. Constant Current on Reset Circuit



HARDWARE DESIGN

are always met by the 8284A’s RDY and
AEN inputs. If this can not be guaranteed,
the asynchronous configuration must be
used.

Asynchronous System
To insert a wait state in the asynchronous
configuration, the RDY inputs must be valid
at least 35ns before the rising edge of the
clock in state To. The AEN must be valid
S0ns before that edge.

If RDY or AEN make a transition later
than these setup times, the 8284A may not
recognize the change in time to cause the
READY output to change until after the
next clock cycle. For a normally not READY
system, this simply causes an extra wait state
to be added. In normally READY systems,
this must be avoided because it results in
premature termination of the machine cycle.

Synchronous Systems

In synchronous systems, setup times for the
8284A’s RDY and AEN inputs are specified
from the falling edge of the clock in state T>.
In this configuration (ASYNCH strapped
LOW), transitions must not occur during the
RDY or AEN setup time to insure proper
operation of the 8284A.

Depending on the size and characteristics of
the system, ready implementation may use
either the normally READY or the normally
not READY approach.

Normally Ready Systems

In normally READY systems, all devices are
assumed to operate at the maximum CPU
bus bandwidth. Devices that do not meet this
requirement must disable READY as noted
above to guarantee the insertion of wait
states (Fig. 3-19). This implementation is typ-
ically used in small single-CPU systems. It
reduces the logic required to control the
READY signal. Since a device requiring wait
states may fail to disable READY in time to
be recognized, resulting in premature termi-
nation of the machine cycle, the system
timing must be carefully analyzed when using
this approach.

Normally Not Ready Systems

An alternate ready implementation is to have
the system normally not READY. When the
selected device receives the command (RD/
WR/INTA) and has had sufficient time to
complete the data transfer, it activates
READY to the CPU, allowing the CPU to
terminate the machine cycle (Fig. 3-20). This
implementation is characteristic of large
multiprocessor systems, multibus systems, or
where propagation delays, bus access delays
and device characteristics inherently slow the
system down. For maximum system perfor-
mance, devices that can run with no wait
states must return “READY” within the pre-
viously described time. Failure to respond in

<< T1

RDY INPUT

ONE MACHINE CYCLE

READY

OUTPUT

ma
'/ Y @
/
=\

Figure 3-19. Normally READY Wait State Timing



HARDWARE DESIGN

time will only result in the insertion of one or
more wait states.

RDY1 and RDY2

To generate a stable READY signal to satisfy
the 8088’s setup hold times, the 8284A pro-
vides two separate system ready inputs
(RDY1 and RDY?2) and a single synchron-
ized ready output (READY) for the CPU.

The RDY inputs are enabled with separate
active LOW access enables (AEN1, AEN2)
to select one of the two ready signals. The
system ready inputs to the §284A (RDY]I,
RDY2) must be valid 35ns (TR1VCL) before
T3 and AEN must be valid 60ns before T3.

For a system using only one RDY input, the
associated AEN is tied to ground while the
other AEN is connected to 5 volts through
1K ohms (Fig. 3-21). If the system generates a
LOW active ready signal, it can be connected
to one of the 8284A’s AEN inputs, if the
additional setup time required by the AEN
input is satisfied. In this case, the associated
RDY input would be tied HIGH (Fig. 3-22).

Single Wait State Generator

Most memory and peripheral devices that fail
to operate at the maximum CPU frequency
typically require only one wait state.

The circuit in Figure 3-23 is an example of a
simple wait state generator. The system ready
line is driven low whenever a device requiring

one wait state is selected. The flip-flop is
cleared by ALE, enabling RDY to the
8284A.

If no wait states are required, the flip-flop
remains HIGH. If the system ready is driven
LOW, the flip-flop toggles on the LOW to
HIGH clock transition of Ty to force one
wait state. The next LOW to HIGH clock
transition toggles the flip-flop again to indi-
cate ready, and allow completion of the
machine cycle. Further changes in the state of
the flip-flop will not affect the machine cycle.
The cycle allows approximately 100ns for
chip select decode and conditioning of the
system ready.

Interrupts

The iAPX 88 has a simple and versatile inter-
rupt system. Interrupts may be triggered by
devices external to the CPU or by software
interrupt instructions or, under certain condi-
tions, by the CPU itself.

Every interrupt is assigned a type code that
identifies it to the CPU. The type code is used
by the CPU to point to a location in the
memory based interrupt vector table contain-
ing the address of the interrupt routine.

This interrupt vector table can contain up to
256 vectors for different interrupt types (Fig.
3-25).

ONE MACHINE CYCLE

atatatata

—_—
Ta

/

RDY INPUT

READY

%%

OUTPUT

Figure 3-20. Normally Not READY Wait State Timing

3-18



HARDWARE DESIGN

8284A
| | R SYSTEM 3| —=en
=, READY AENT
SYSTEM

READY ; RDY1 31 RoY1
REN2 i —
6 RENZ

RDY2

6
1K . [—-RDYZ
+5 =

Figure 3-21. Using RDY1/RDY2 to Generate READY Figure 3-22. Using AEN1/AEN2 to Generate READY

74125

+5
. 1KQ
Cs
Iniz , D J
1 I 741504
s 74LS734
o[ >CK
cLkPo—--—--—-
K Q|—RDY TO 8284A
CLR
ALE—> T

Figure 3-23. Single Wait State Generator

3-19



HARDWARE DESIGN

EXTERNAL INTERRUPTS

The 8088 has two inputs that may be used by
external devices to signal interrupts, INTR
and NML

The INTR (Interrupt Request) line is usually
driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn
connected to the devices that need interrupt
service. The 8259A is a very flexible compo-
nent that is controlled by software com-
mands from the iAPX 88. The PIC appears
as a set of I/ O ports to the software.

The 8259A’s main job is to accept interrupt
requests from the devices attached to it,
determine which requesting device has high-
est priority, then activate the iAPX 88 INTR
line if the selected device has higher priority
than the device currently being serviced (if
any).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place,
however, until the currently executing instruc-
tion has been completed. Some unusual cases
are described under the heading of Interrupt
Latency Exceptions. Then, if IF is clear —
meaning that interrupts signaled on INTR
are masked or disabled — the CPU ignores
the interrupt request and processes the next
instruction.

The INTR signal is not latched by the CPU,
so it must be held active until a response is
received or the request is withdrawn.

If interrupts on INTR are enabled (if IF is
“17), the CPU recognizes the interrupt request
and processes it. Interrupt requests arriving
on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and
disabled by the CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabled, some disabled)
by writing commands to the 8259A.

Note that to reduce the likelihood of exces-
sive stack build-up, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request
by executing two consecutive interrupt acknow-
ledge (INTA) machine cycles (Fig. 3-24). If a
bus hold request arrives via the HOLD line
during the INTA cycles, it is not honored
until the INTA cycles have been completed.
The first cycle signals the 8259A that the
request has been honored.

During the second INTA cycle, the 8259A
responds by placing a byte on the data bus.
This byte represents the interrupt type (0-255)
associated with the device requesting service.

1ST MACHINE CYCLE
Tq | To | T3 |

Ta

<«— 2ND MACHINE CYCLE —————— ]
T4 | To | T3 | Ta

[

AD7-ADg

U A

VECTOR
TYPE

Figure 3-24. Interupt Acknowledge Sequence

3-20



HARDWARE DESIGN

CS BASE ADDRESS
IP OFFSET

TYPE 255 POINTER:
(AVAILABLE)

I
v

TYPE 33 POINTER:
(AVAILABLE)

(AVAIL

| TYPE32POINTER: __|
ABLE)

3FFH

3FCH

084H

080H
07FH

014H

010H

00CH

008H

004H

000H

16 BITS

Figure 3-25. Interrupt Vector Table in Memory
3-21




HARDWARE DESIGN

The type assignment is made when the §259A
is initialized by software in the iAPX 88.

The CPU reads this type code, locates the
corresponding interrupt vector in the inter-
rupt vector table, and calls the corresponding
interrupt procedure.

Interrupt Latency Exceptions
There are a few cases in which an interrupt

request is not recognized until after the fol-'

lowing instruction. Repeat, LOCK, and
segment override prefixes are considered
“part of” the instructions they prefix; no
interrupt is recognized between execution of
a prefix and an instruction.

A MOV (move) to segment register instruc-
tion and a POP segment register instruction
are treated similarly: no interrupt is recog-
nized until after the following instruction.

This mechanism protects a program that is
changing to a new stack by updating SS and
SP. If an interrupt were recognized after SS
has been changed, but before SP has been
altered, the processor would push the flags,
CS, and IP into the wrong area of memory.

Therefore, whenever a segment register and
another value must be updated together, the
segment register should be changed first, fol-
lowed immediately by the instruction that
changes the other value.

WAIT and repeated string instruction are 2
cases where an interrupt request is recognized
in the middle of an instruction. In these cases,
interrupts are processed after any completed
primitive operation or wait test cycle.

External Interrupt

An external interrupt request may also arive
on another CPU input, NMI (non-maskable
interrupt). This line is edge-triggered (INTR
is level-triggered) and must be active for at
least two clock cycles. It is generally used to
signal the CPU of a “catastrophic” event,
such as imminent loss of power, memory
error, or bus parity error.

3-22

i

Interrupt requests arriving on NMI cannot
be disabled. They are latched by the CPU,
and have higher priority than an interrupt
request on INTR.

If an interrupt request arrives on both lines
during instruction execution, NMI will be
recognized first. Non-maskable interrupts are
pre-defined as type 2, which means that the
address of the service routine will be found in
the interrupt vector table at memory location
8 (Fig. 3-25). Because NMI is predefined as
type 2, the processor does not need to be
supplied with a type code to call the NMI
procedure.

Interrupt Latency

The time required for the CPU to recognize
an external interrupt request depends on how
many clock periods remain in the execution
of the current instruction. The longest latency
occurs when a multiplication, division, variable-
bit shift or rotate instruction is executing
when interrupt request arrives.

As mentioned previously, in a few cases,
worst-case latency will span two instructions
rather than one.

INTERNAL INTERRUPTS

An INT instruction generates an interrupt
immediately upon completion of its execu-
tion. The interrupt type, coded into the
instruction, lets the CPU obtain the interrupt
routine address from the interrupt vector
table.

Since any type code may be specified, soft-
ware interrupts may be used to test interrupt
procedures written to service external
devices.

The CPU itself generates a type 0 interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction, if
the calculated quotient is larger than the spec-
ified destination.



HARDWARE DESIGN

SINGLE-STEP EXECUTION

If the trap flag (TF) is set, the CPU automat-
ically generates a type 1 interrupt following
every instruction. Single-step execution is a
powerful debugging tool.

If the overflow flag (OF) is set, an INTO
(interrupt on overflow) instruction generates
a type 4 interrupt immediately upon comple-
tion of its execution.

All internal interrupts, INT n, INTO, divide
error, and single-step share these character-
istics:

1) The interrupt type code is either contained
in the instruction or is predefined.

2) No INTA machine cycles are run.

3) Internal interrupts cannot be disabled,
except for single-step.

4) Any internal interrupt (except single-step)
has higher priority than any external inter-
rupt (Fig. 3-26). If interrupt requests arrive
on NMI and/or INTR during execution of
an instruction that causes an internal inter-
rupt (e.g., divide error), the internal interrupt
is processed first.

INTERRUPT VECTOR TABLE

The interrupt vector table is the link between
an interrupt type code and the procedure
designated to service interrupts associated
with that code (Fig. 3-25).

The interrupt vector table occupies up to the
first 1K bytes of low memory. There may be
up to 256 entries in that table, one for each

INTERRUPT PRIORITIES
Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

Figure 3-26. Interrupt Priorities

3-23

interrupt type that can occur in the system.
Each entry in the table is a double word poin-
ter containing the address of the procedure
that is to service interrupts of that type.

The higher-addressed word of the pointer
contains the base address of the code segment
containing the procedure. The lower-
addressed word contains the procedure’s
offset from the beginning of the segment.
These two word pointers will be placed in the
CS and IP registers, respectively, to cause the
CPU to execute the interrupt service routine.

Since each entry is four bytes long, the CPU
can calculate the location of the correspond-
ing entry for a given interrupt type by simply
multiplying (type - 4).

Unused space at the high end of the interrupt
vector table may be used for other purposes.
The dedicated and reserved portions of the
interrupt pointer table (locations OH—
7FH), however, should not be used for any
other purpose, to insure proper operation
and compatibility with future Intel hardware
and software products.

INTERRUPT ACKNOWLEDGE SEQUENCE
When a maskable interrupt is acknowledged,
the CPU executes two interrupt acknowledge
machine cycles (Fig. 3-24). The CPU will not
recognize a hold request from another bus
master until the full interrupt acknowledge
sequence is completed.

During the first machine cycle, the CPU
floats the address/data bus and activates the
INTA (Interrupt Acknowledge) command
output during states T through Tj.

During the second machine cycle, the CPU
again activates its INTA command output.
The external interrupt system (e.g., an Intel®
8259A Programmable Interrupt Controller)
responds to this by placing a byte on the data
bus that identifies the interrupt source, the
vector type. This byte is read by the CPU,
multiplied by four, and used as a pointer into
the interrupt vector table.



HARDWARE DESIGN

Before calling the corresponding interrupt
routine, the CPU saves the machine status by
pushing the flag’s register onto the stack.

The CPU then clears the interrupt enable and
trap bits in the flag’s register to prevent sub-
sequent maskable and single-step interrupts.
The CPU also establishes the interrupt rou-
tine return linkage by pushing the current CS
and IP register contents onto the stack,
before loading the new CS and IP register
values from the interrupt vector table.

Bus Control Transfer

In most iAPX 88 designs, the system busses
are normally controlled by the 8088 CPU.
This means that address and control signals
are driven by the 8088, and that data is driven
by the 8088 or by a device being read by the
8088.

HOLD AND HLDA

In some cases, however, another device can
take control of the system bus and drive it
while the 8088 is forced into the inactive
state, called “HOLD”.

This occurs when a device such as Intel’s
8237A or 8257 DMA Controller requests
control of the iIAPX 88 system by driving the
8088’s HOLD input HIGH. The DMA con-
troller must then wait until the 8088 responds
by raising the HLDA (Hold Acknowledge)
output. This signals the DMA controller that
the 8088 has completed the machine cycle in
progress when the HOLD request occurred
and floated its busses as listed in Figure 3-27.

The 8088 remains in the HOLD state until
the DMA controller releases it by bringing
the HOLD line LOW. Then the DMA con-
troller floats the bus and control goes back to
the 8088 after its HLDA output goes LOW.

Figure 3-28 gives a general interconnect dia-
gram for an iAPX 88 system with an
8237A-5 DMA controller. This is a typical

configuration in which the HOLD/HLDA
sequence would be used.

The handshake timing for transfer of bus
control is shown in Figure 3-29. Note that the
8237A-5 drives the system only when the
8088 is in HOLD, and that HLDA and the
8237A AEN output can be used to properly
enable and disable other components to
assure a clean transfer of control.

Maximum Mode Systems

In addition to the minimum mode systems
described, the iAPX 88 can also be config-
ured in the maximum mode.

Maximum mode systems are intended prim-
arily for larger multi-board and multi-
processor systems because they provide a
more sophisticated set of bus control signals.

SIGNAL CONDITION

ADO-AD7
A8-A15

A16/S3-A19S6

FLOAT

ALE LOW

HLDA HIGH

Figure 3-27. iAPX 88 Bus Condition During HOLD

3-24



G2-¢

SUOKIBUUOD V.LEZG PUE 88 XdV! "82-€ ainbid4

Asg.15 N
7S Asg.15
——/
— N
LATCH
) -
ADg.7 (: STB E
.'; DATA
ALE - I EAN
* MEnIé(ORY
8088 A1 1/0
—1B1
— A o —NconTroL
RD B, & AN L | V]
As § — STB
—Bs A LATCH
L A4
WR Bg . 1 o
o/ | l
4 ) < b DRQ DACK
HLDA HDA 5 © @ > S prof——
2 E ° 8 2 M
HOLD Q 8 8237A-5
~74LS74 | DACK
CLK CLK D HRQ 0«
CLK F—_
 —
8280A | =

NOIS3A IHVYMAHVYH



HARDWARE DESIGN

In the minimum mode 8088 CPU, the
number of control outputs is limited by the
number of pins available on the 40 pin pack-
age. The maximum mode iAPX 88 system
gets around this limitation by using the 8288

bus controller to generate several of the sys-
tem control signals (Fig. 3-30). This frees up
several 8088 pins to support multiprocessing
functions not available in minimum mode
systems.

| TaORT4
CLKJ \ 5 f \
HOLD / \
HLDA / \)
Figure 3-29. HOLD/HLDA Timing
v 8288 BUS
o r”:"_l 1 LCONTROLLER
MN/MX | = CLK
8284A |l lcik 5 |50 NTA COMMANDBUS
RES »|READY St —-[S1 MRDC >
>[RESET S »lS,  MWTC >
DEN 10RC] >
1 CLOCK or/E OWE g
GENERATOR 8088 ALE
CPU
STB
8282
ADDRESS BUS §
A19-A8 ADDRESS OR ,
I > 8283 g
AD7-ADg < ADDRESS/DATA .
2N OE \AVA A Yvy
' 1/0
i MEMORY | IPERIPHERAL
' DATA DATA
T
8286
D>ow{oE OR DATA BUS Y
8287

Figure 3-30. iAPX 88 Using Maximum Mode

3-26




HARDWARE DESIGN

Pins with different functions in minimum
and maximum modes are listed in Fig. 3-31.

Pins 26, 2l_and 28, which were DEN, DT/R
and IO/M in the minimum mode, are
replaced by the status lines SO, S1 and S2.

These three status lines are used by the 8288
to produce seven bus control functions, ena-
bling the 8088 to redefine pins 24, 25 and 29.

Pins 24 and 25 are now used to track the
status of the 8088’s queue (listed in Fig. 3-32).
Pin 29 provides a function called LOCK
which is used to prevent other processors
from using a shared resource while it is being
used by the 8088.

Pins 31 and 30 now implement functions
called Request/Grant 0 and Request/Grant
1. These have the same function as HOLD/
HLDA, but both functions are implemented
on one bi-directional line. This enables the

maximum mode iAPX 88 system to directly
support three bus masters — the 8088 and
two more — instead of the two supported in
the minimum mode. Figure 3-33 shows the
timing for the Request/ Grant function.

In Figure 3-34, an iAPX 88 system is config-
ured in the maximum mode. Status lines SO,
S1 and S2 from the 8088 are connected to the
8288, which then produces the system com-
mand and control signals and interface to the
multibus.

The Request/Grant lines can interface to the
8087 and 8089 co-processors as shown.

The 8284A clock generator is used the same
way as in minimum mode systems. The 8289
Bus Arbiter, also included, coordinates the
use of system resources. For a complete dis-
cussion of maximum mode systems, see
Intel’s iIAPX 88, 86 User’s Manual.

Figure 3-31. Minimum/Maximum Mode
Pin Assignments

Mode

Pin

Minimum Maximum
31 HOLD RQ/GTO0
30 HLDA RQ/GT1
% WE TOCK QSs1 QS0 FUNCTION
28 10/M S2 0(LOW) | 0 [Nooperation
27 DT/R S1
26 DEN S0 0 1 |Firstbyte of opcode from queue
25 ALE QS0 -
o1 NTE Qs 1(HIGH) [ 0 [Emptythe queue
34 SS0 High State 1 1 |Subsequent byte from queue

Figure 3-32. Queue Status Decoding

3-27



HARDWARE DESIGN

CLK

G

RQ/GT

Master request is sampled by 8088 (see note 1)

Any CLK >0-CLK T2 0-CLK
Cycle Cycle »1<«TsorT| Cycle T
(see note 2) (see note 3)
5__-
PULSE 1 PULSE 2
MASTER RQ CPUGT

1. THE 8088 FLOATS Sp, S1,So FROM 1.1.1 STATE
ON THIS EDGE

2. THE 8088 FLOATS AxDx BUS,RD,AND LOCK
ON THIS EDGE

3. THE OTHER MASTER FLOATS S, S1, So FROM
1.1.1 STATE ON THIS EDGE

4. THE OTHER MASTER FLOATS AxDx BUS, AND
LOCK ON THIS EDGE

Figure 3-33. Request/Grant Sequence Timing (Maximum Mode Only)

3-28

PULSE 3
MASTER GT

Master grant is sampled by 8088




6¢-€

uoneinbyuo) 12/88 Xdv! "ve-¢ ainbig

Oh

8284A

CLK
READY
RESET

CLK  MN/MX
READY
RESET

COMMAND BUS

soss ST

cPU
Ass-Ao

D;-Do
ROGH
QS0 QS1TEST

QS0 QS1 BUSY
RQ/GT1

CLK

-

ADDRESS BUS

RQ/GT1

8282
(20R3) j

—1

EXT1

DRQ1
CA SEL

ADDRESS/

DATA

8286

DATA BUS

Ao

/

15BIT |
ADDRESS D

AV

NS

/0
ECODE

WEOD

RAM
(2142)

OE

R
(2716-2)

RDWR

KD WR

1/0 PERIPHERAL 1/0 PERIPHERAL

DRQ___INT DRQ

INT

NOIS3A 3HVMAHVYH






Examples







CHAPTER 4
APPLICATION EXAMPLES

INTRODUCTION

This chapter describes some iAPX 88 system
design examples, ranging from a simple
seven-chip system, to a larger system with
multiple CPU’s and coprocessors. The iAPX
nomenclature is used for configurations using
the 8088 or 8086 with 8089s and 8087s.

MULTIPLEXED SYSTEM

The first iAPX 88 design example is a simple
multiplexed bus system, complete with 8088
CPU, 8284A clock generator, and — depend-
ing on the amount of memory and I/O
desired — 2-5 multiplexed bus components.
This system demonstates the power, sim-
plicity, and density possible in iAPX 88
designs.

In its smallest configuration, this system
consists of only 4 chips:

8088 CPU

8284A Clock Generator

8755A-2 2K Bytes EPROM, 16 Lines I/O
8185 1K Bytes RAM

The configuration we will discuss has 7 chips:

8088 CPU

8284A Clock Generator

2 x 8755A-2 4K Bytes EPROM, 32 I/O Lines

2 x 8185 2K Bytes RAM

8155-2 256 Bytes RAM, 22 I/O Lines,
Timer/ Counter

This system is built on a 95 mm X 105 mm
printed circuit board. It draws 400 — 600 mA
from a single 5V power supply and includes
an RS-232C interface, an LED for visual
communication, a RESET switch, and
JUMPER options. A small monitor and
two programs — CHESS and TINY BASIC
—are available to demonstrate system
capabilities.

This system uses the SMHz 8088 CPU. Its
memory and I/O components are connected
directly to the 8088’s multiplexed address/
data bus, and no wait states are required.

Address Decoding

The memory and I/O address spaces are
decoded using upper address lines for linear
chip selects. Address lines A10-Al3 are
connected directly to the CS (chip select) and
CE (chip enable) inputs of the memory and
I/ O components. This eliminates the need for
special decoding PROMs or TTL, re-
ducing component count and system com-
plexity.

The address decoding table (Fig. 4-1) lists
address line usage for memory and I/O
address decoding.

CAUTION: For most systems using linear
chip selects, some addresses enable more than
one memory or I/ O device at the same time.
For instance, the 8755A-2 in location E3 is
enables any time All is HIGH. Another
device, the 8185 at E6 is enabled, when A13is
LOW and AIl0 is HIGH. Although the
8755A-2 is uniquely selected by address
locations F800H-FFFFH and the 8185 is
uniquely selected by 14H-17FFH, both com-
ponents are enabled by memory addresses
from COOH to FFFH. Therefore, the pro-
grammer must NOT use this range of
addresses.

/0

This system provides 54 I/O lines, some
dedicated to the RS232C interface, the LED
output, and the 8155’s timer/counter. The
other I/O lines are available for general
purpose I/ O. The two 8755As provide 321/0O
lines, individually programmable as inputs or
outputs. Three of these lines, PA7, PB0 and
PB7 of E3, implement the RS232C REC-
EIVE-DATA and TRANSMIT-DATA fun-
ctions, and the LED output.

The implementation of the RS232C interface
will be explained for a few interesting tricks



APPLICATION EXAMPLES

Y
R8 _fﬁ”z R7 Vee
[ s100 W 510Q os CLK|
. | IN914
= 5 R1 PORTAK
—|CLK e RES T ©° ﬂ porTBK
RESET READY 1Cu2F CE2
! A10 o rssa
_l_ A9 E2
A8
ALE ADO- |/
RD ADT7 [\
oW
CLK RESET
READY—J
A11
A8-
%033 A19 A13 A8-A19
k .
Eq | a2l T Mo || s [ao
——  ADO-
MN /WX AD7< ADO-AD7
ALE J
RD
WR
10/M
10/M WR
WR RD
btk -AD7K
5 ADO-AD ALE
ALE 8185
RESET CE ES ‘
155 ADO-AD7<
PORT  PORT
C A Vee
PORT T—lc_ez
DE— T CEt
——>|TIMER CLK (3

Figure 4-0. iAPX 88 Multiplexed System

4-2



APPLICATION EXAMPLES

CLK

PORTA

PORTB

8755A
E3

vce

‘ O
m
N

> O
— m
m =

EE

A13

A1

>AD&
- AD7
A8 A9 A10'
| |

ol [ ] ]

IA13

T1

2N2907

D2,D3 = IN914
R2-R6 = 1800Q

XMIT DATA ERG

(TO RS232 PIN 3)

D2 R5

(FROM RS232 PIN 2)

RD

L—b\\ ADO-

A8 | |A9
CE2—
WR
RD
8185 ALE
E6
AD7
CS
CE1

WR
10/M
RESET

D1

Vce

RCV DATA

T2
2N2222

SIGNAL GROUND (RS232 PIN 7)

ALE

4-3




APPLICATION EXAMPLES

ADDRESS LINE USAGE

RECOMMENDED
DEVICE ADDRESSING

DEVICE PART A14-A19 | A13 | A12 | A11 | A10 | A9 | A8 | A7-A0 | MEMORY 16 1/0 16
8755A-2 E3 X X X 1 D D D D F800-FFFF F800-F803
8755A-2 E2 X 1 X 0 D D D D F000-F7FF F000-F003
8185-2 E6 X 0 X X 1 D D D 1400-17FF —
E5'(J2 short) X 0 1 X 0 D D D 1000-13FF —
8185-2
E5%(J2 open) X 0 X X 0 D|D D 0000-03FF —
8155-2 E1 X X 0 X X X X D 0000-00FF 0000-0005
LEGEND : X=NOT USED ; 0=CHIP SELECTON 0 ; 1=CHIP SELECTON 1 ; D=FULLY DECODED ADDRESS
'J2 short
*J2 open

MEMORY
FFFF
8755A-2
(E3) EPROM
F800
8755A-2
(E2) EPROM
EFFF
A NOT USED
1800
8185-2
(E6) RAM
13FF
8185-2 RAM
(E5)&J2 SHORTED
1000
NOT USED
03FF
NOT
USED | 8155-2
g;gg (E5)& J2
8155-2 | OPEN
(E1) RAM
RAM
0000

F7FF

F000

17FF

1400

OFFF
A

0400
03FF

0000

FFFF
A

F804

F7FF
A
F004

EFFF
A
0006

170
NOT USED
F803
8755A-2
(E3)
F800
NOT USED
F003
8755A-2
(E2)
F000
NOT USED
0005
8155-2
(E1)
0000

Figure 4-1. iIAPX 88 Demo Board Address Map

4-4




APPLICATION EXAMPLES

that eliminate the need for the +12 volt and -
12 volt power supplies normally required.
The +12 volt power supply was eliminated by
connecting the emitter of T1 to +5V. While
this produces a signal that is not strictly
within the RS232C specification, it works
well on interconnections of less than 10
meters.

This design also employs a useful trick to
eliminate a -12V power supply. Many people
have attempted to eliminate this supply by
driving the TRANSMIT-DATA line bet-
ween GROUND and +5V. Because of a
circuit switching element (Transistor T2), the
low-level signal is always a little higher than
ground and hence won’t work with many
terminals requiring a negative voltage for a
LOW. This design, however, uses the REC-
EIVE-DATA line (presumably driven by a
true RS232C-compatible terminal) as a
source of a negative voltage.

This negative voltage (negative whenever
RECEIVE-DATA is low) charges capacitor
C1 through diode DI. This circuit has been
verified to work when receiving any sequence
of characters, except BREAK.

BREAK causes a very long “1” on REC-
EIVE-DATA; TRANSMIT-DATA event-
ually exhausts the negative charge on cap-

acitor Cl1. If desired, a -12 volt supply may be
connected to the junction of C1, D1 and R4.

This RS232C interface is driven by soft-
ware to provide the proper timing for
transmitting and receiving characters.

Muitiplexed System #2: The Vest Pocket
Computer

Combining state-of-the-art microprocessor
components results in a usable computer
small enough to be carried in a vest pocket
(Fig. 4.2).

In only 15 square inches (3”x5”), this system
could contain a 2K tiny BASIC operating
system, 16K memory for user programs, and
an I/ O port. The port is designed to interface
to a terminal.

The system is designed with an 8088 CPU,
8755A 1/0 Port with EPROM and 21821
RAMSs with 4K byte density each.

The 21821 is a new concept in RAM
architecture, interfacing directly on the iIAPX
86, 88 or MCS-85 multiplexed bus, respond-
ing directly to controls from the processor.

Contained within the 21821 is a com-
plete memory system on a single piece of
silicon.

| L 8
DIP—> MDS S 2
= im SWITCH vDT| |4 0
4 5
8
2
8 ) 2 2 2 2
a 8088 8755A-2 1 , r ]
A 8 8 8 8
2 2 2 2
1 1 1 1

ERESET

Figure 4-2. Vest Pocket Computer Component Layout



APPLICATION EXAMPLES

ADS

74L814

8088

|

ln
I

z

Iw

B
z

coboo

s]alofe ol
o] 3 X b 3
zz

i

—033 +5

40

0045

i

ucc

READY
RESET

“lcLk

N
N}

X

510Q

2111918

N

AD9
AD8
AD7

& READY
RST
CLK

107
AD10

+

8755A

17

ucc=
cLk =
RDY 1}~

READY &
RESET|=

5

40 45

+5

PAO

8284A

)

R1
560K
+5

+5
1] 04 5| 8

20
=
+

5
74LS14

s[20

CR1
IN914
J3

|

NOTE: SW2IW A QUAD SPST DIP

Figure 4-3. Vest Pocket Schematic

4-6



APPLICATION EXAMPLES

3¥a2 E|
2 E :]
A1
1 8205 GND s 1
A0 E L
Vg; 14 +5 =
515, A o, .
£E) 2 +5
255 ; 24 25 ;
cs 9 RDY,
@ ROV| ] 1 ?
AD1
AD2
AD3
AD4
ADS
19 ans
AD7
ADS8
AD9
21821 AD10 21821
AD11
17| L] an12
18] 18] ap1a
19 20 AD14
2] 2 no1s
23 2 o
22 2l
2] 1 Y
s 1
BHE/8-16 - REFEN U/L Voo Vss
REFEN UL Voo Vs - T
= 2 s 28l 1Al = o—+5
- O—+5 = = -9 = =
L2 8 8 = &5 = =61 E2 E3 +5
+5
2Al 25"+ J 25%_ 1
cs Cs ROY
4 cs & RDY 4 5o S5 3
—2Apo 4
5 AD1
~—31 ap1
—81ap2 AD2
7 AD3
—AD3
] AD4
—3ADa
9 AD5
—2abs T
1o ADS
11] oy 1 b7
—Yap7
12 AD8
—12} g
— 134 Apg AD9
—51apt0 21821 21 Apto 21821
—181 Ap11 161 AD11
17
17 AD12
AD12 T
18 AD13
AD13 12
19 AD14
0] AD14 20
AD15
AD15 20
23| A2 o2
OF 210e
2] o= we
WE =
ZU ALE 5] ALE.
261 ,i5 264 m/i0
21} B 271 8HE/B-16
E/B1 N _ . N _
BHE/B16 REFEN U/L Ve Vs [ REFEN St Yoo Vss
= 1] =

2y o045 3L 284
£ E = 45

28 o4 AL 288 4L
28 = 45 =

NOTE: STRAP REFENTO Vss FOR SELF REFRESH




APPLICATION EXAMPLES

) GND 45V GND +5 2MHz GND 45V
o 1 XTaL ls |18 40 J2o__ Jao
+ -10 pF
3-10p 16 GND Voo 21[_GND GND Vee 1, 7 Veo ”
X2 . RESET INTA |24 RESET paol2—
. CLK = ek ALDA —33 NG +5V Voo PAT __.25
Ral Hxi RESET P21 ssofS- PA2%
READY [ 7- ] 27
EADY GND——CYSYNC 2 A9 L2 ] Sl
‘ RD1 READY READY ate [ paaf2e
880 GND—— RENT PCLK AT b Ne PAS —;—:—
NC~——RD2 A16 —-39 PA6 -——3‘
+5V——AAA AEN2 osc L:i— NC A15 2= PA7=——
L CR1 828an  EFI o= NC Ata L 2
R IN914 1 u1 E/C GND A13 2 23 PBOf—
45V —K o REs - arzfd [ i
1" L
an | Y1 W pB2[
RESET R3 A10 PBI}=—
SWITCH b3 7 3_ P NC
7.5K 8088 A9 B 8655A PE4?—'
U2 as2— . U3 pespE-
, 2 ok [ KL
swi ne —2Lo1/R WR 10} 5w [T
==C2 26 == —(32 [)
Tuld BEN AD RD
L L 10/M zz io/m READY -2—- .
ALE e cukBP—
— 9
33 mN/RiX AD7 [y 1: AD7
ADS -2 :7 AD6
ADS[L ADS
2 AD4 13 161 A4
{TEsT A3 15 A3
—{Horo AD2 ‘: :; AD2
18 NMI AD1 16 m AD1
4 R ADO ADO —
INT CE2 CEl
GND 2 01
>
8, AB-A15
7
A0-A7
PETTr
4
GND  +5V ”"’z 5 GND 45V
s 16 3 110 |20
N v
ann__ 1[GND . Voo :; : 1SN0 “ o7 :z
A2 At T D16 pos |2
LIEE] PP fo ) SV — = 2 D15 DOs :4
o7 b 2ot DOa ‘5
oz o':i NC [TIE] O pos 16
8205 03 jo& D12 gog2 DO2fL
U7 o7 it Al_21pyy U8  pot :g
. o5 c‘9° A0 11p1o Doo
A4 5 B 06 c7
A15 4 E2 m 11
:ﬁ B STB D_Ej_
1K BYTES RAM 00000-003FF2114’s RAM (MAPPED 0-07FF) =
256 BYTES RAM 03000-030FF8155 RAM/I0 (MAPPED 3000-37FF)
2K BYTES ROM FF800-FFFFF8655A MONITOR (MAPPED 80000-FFFFF) L@ 3
0 ) 7
USART COM/STATUS 03801\, 1/0 OR MEMORY.
DATA 03800 % (MAPPED 3800-3FFF)
8155 COM/STATUS 3000
PORT A 3001
PORTB 3002 1/0
PORT C 3003 (~ (MAPPED 3000-37FF)
TIMER LOW 3008
TIMER HIGH/MODE 3005
8655 PORT A 2800
PORT B 2801 \ 170
PORT A DDR 2802 (" (MAPPED 2800-2FFF)
PORT B DDR 2803

NOTE: 1/0 ADDRESSES 0-3FF WILL TALK TO RAM & THEREFORE SHOULD NOT BE USED

Figure 4-4. iAPX 88 Demultiplexed Bus System

48



APPLICATION EXAMPLES

GND  +5V GND 45V
|20 |40 4 26
Vs . GND Voo 147
L4 Reser TIMER 1IN :; RESET 5= e
TIMEROUT |8 L203cik RTSP-
oTR (24—
PAO ,——-21 ReRDY [ NG
22 * 18
PA1 '—-23 TxEMPTY f—
PA2 ?"-
PA3 [—— 3 g
pas p25_ P AL TRANSMITTED
% x DATA
pas 22— U1 I5oF
pas 21— 1488 I +10%
PA7 p— 9
TXC -
8155 29 %5 8251A
us  PeofE- AXC U5
PB1
‘: WR PB2 ;‘; rNe :‘; WR  SYNDET/BDH—nc
RD PBIFT— RD
Yio/m PB4 pb—
e PBS -3—:—
19 PBe 36 8
AD7 PB7 p— D7
184 ADs , "1ps
17} As PCO 33 $1os REC'D DATA
16} A4 PC1 »-3—9- 404
5] Aps pe2P 2103
:: AD2 pcaP— b2
e =l
Y- pcsp— Do
CE cs c/b
) 12
f—G SIGNAL GND
75 ADO-AD7
CLEARTO
—C] §b
A 6
(G oATAsET
a0 READY
72 A 11
7 7 = 1488
GND  +5V GND 45V +5V -
9 16 9 18 | C1t ca-co
G,Im Vl 5 | vl R 22ufd R 0.01 ufd
151 po cc ag GND cc 15V 15V
16 A8 :: A8 GND L
17 c10
1 1A =R0.01 ud
1 5146 15V
3145 3148 -l >
14 211a re 211
A3 v D 714 uto 11___AD3
7 1" AD7
A: 1/0 A2 1704
5] 4 ‘[1i2__ape 6 12 AD2 FFFFF 1MEG
A1 1/0, A1 1703 MONITOR
2 a0 1/0, H3—-ADS 5o 1702 ji—AD1 FF800
N
2 AD4 1a___ADO MONITOR
o, P o 1/01 SHADOWED
WE Cs WE TS HERE
110 T 8 —lm ) 80000 s12K
496K
. FREE
04000 16K
1/0 &
RAM




APPLICATION EXAMPLES

Using a dynamic storage cell, the 21821
includes all the necessary support logic such
as refresh control, arbiter, latches, and multi-
plexers. (Fig. 4-3)

iAPX 88 DEMULTIPLEXED BUS SYSTEM

In this application example we will look at an
iAPX 88 system which uses 2114 RAMs
connected to a demultiplexed bus, and an
8251 A to implement a serial interface.

As seen in Figure 4-4, the 8088 CPU receives
its CLOCK, READY and RESET signals
from the 8284A.

The control software is in the 8755A
EPROM. This software contains the “boot-
up” routine which tells the CPU how to get
started when the system is reset. It might also
contain a small monitor, an interpreter such
as TINY BASIC, or some game software.

The 8155 provides 256 bytes of RAM,
timer/counter and 22 I/ O lines. Both devices
connect directly to the 8088’s multiplexed
address/data bus because they internallly
latch the address when ALE goes LOW.

The majority of the system RAM is provided
by two 2114s. These 1K x 4 static RAMs do
not internally latch the lower 8-bits of address
as the 8755 and 8155 do. For this reason, an
8282 octal latch is used to provide a
demultiplexed address bus. The 8282 looks at
the lower eight bits of address at the
beginning of each machine cycle, and holds it
on the address bus on the falling edge of ALE.

Note that the 2114s are chip selected, using a
decoded address from the 8205 decoder,
combined with the DEN output of the 8088.
The DEN delays the chip select until the
system is ready for data to be driven onto the
data bus. If this were not done, the 2114s
would output data onto the data bus shortly
after the address appeared on the bus. This
would cause a problem called “bus con-
tention”, where the 8088 is driving address

4-10

information on the address/data bus at the
same time the 2114s are beginning to drive
data on that same bus (see Fig. 4-5). This is
prevented by using DEN to delay CS until
after ALE goes LOW.

Universal Synchronous/Asynchronous
Receiver/Transmitter

Another important part of this design is the
8251A USART. The 8251A is a peripheral
device programmed by the CPU to transmit
and receive serial data.

The USART accepts data characters from
the CPU in parallel, and then converts the
characters into a serial data stream for
transmission. Simultaneously, the 8251 A can
receive serial data streams and convert them
into parallel data characters for the CPU.

The 8088 and 8251A interface is quite simple.
Data travels to and from the 8251A via the
8088’s multiplexed address/data bus. The
RD and WR inputs of the 8251A are driven
directly by the 8088’s RD and WR control
lines.

The Chip select is provided by the 8205
address decoder, and address line AO tells the
USART whether the data bus is transmitting
a data character or a control/status char-
acter.

Baud/Rate Generation

The rate serial data shifts into and out of the
8251A is controlled by the Receiver Clock
(RxC) and Transmitter Clock (TxC) inputs.
They are provided by the TIMER OUT output
from the 8155’s 14-bit counter/timer.

A demultiplexed system is useful for a
number of applications, including small
control or monitoring systems, dedicated
testing, or games.

The monitor software for the 8755A is
available through Insite, the INTEL users
library. It contains a “bootup” routine,
display/alter memory and registers, single
step, break point, and other functions.



APPLICATION EXAMPLES

A15
: AB-A15 8205 -——Q}
A8
—
DEN
8088
CPU
AD7
: 8282 AO-A7
ADO \
STB
[
2118 CSPCS 5114
ALE Joo Dj JDA D7
K D0-D7 DATA J

CHIP SELECT MUST BE DELAYED BY DEN UNTIL ALE GOES LOW TO PREVENT BUS CONTENTION.

Figure 4-5. 2114 Chip Select Connection

™

| i
cS CS cS cS CcS
8284A DECODE 2708 2708 2708 2114 2114
EN
JCLK ][ T“ AN P 4 ;(\AT /\4 't 4N 4 'y
DEN
A16-A19
At19/s6| | 8282 =
A16/S3 ST8B J
A15 AB-A15,
] 8282 >
A8 i
ALE STB AO-A7
AD7| | 8282 >
Aboﬂ_ ADO-AD7,
" 8282 b———>
8088
CONTROL/STATUS N

8286

Figure 4-6. iAPX 88 S100 Bus System




APPLICATION EXAMPLES

P2
]
PO
P3
20 20 20 8
cs
?,:o proc 18 Bho PR%LS—‘ 80  Pros 2
G ool 2 [8ls oo} i (1]
10 (5] 10 = /L
alay vio O M /f':i o OUAN FaR i uis WE //’i“ uls %
3las 2708 03 //3__2,\5 2708 03[13] [‘3lss 2708 214 (2l 2118
2ins o4 (s 042 2lae 1voafl L liae 1/04 '|lz
2347 0s [31a7 os 12 eI /03 ';n 1703
£51A8 06 [ |5las 0 12 2a8 1702 [+Sae 1702
[#3as o7 (229 o7 a9 1701 29 o1
/ J _J
— PRLE . ° 3lp2lot
\__ L X" N
aolai [z [a3lasalas]asiazlas/ag) [
15
A23 (63— 131241110 12fbo0 —oio}5
A22{63— ool o1 1|
A21(& 002 U DIzt
a20[e1 003 LEls
al9 (39— 51504 20 pig =
Als[15>— - D05 oI5|
AT - 1210086 DI 6|5 3
A18{16)>- 0o7 017
g
GJ +5 l'
c;—"l———w
A8(89> 000 STB pio
AsFD— 18001 ot
21037 b0z o2
anEn- 003 o3
1233 131004 24 014}
A3 1310093 o1
A4 (@6 51008 016
AI5(3Z DO7GE_ OI7
l‘_—[—9 — 8282
. Py
A0(TS D00 010
AI[80— : ool ol
A28 )— 161002 o12f—
A3 (30> 157003 013
A4(30 141004 23 Dis
AS (29> 1310083 E)
A8 (82— 131008 016
AT[E3- DOTGE OIT
A0s8[22 = "{>nﬁ|s° 91 +5 8282
S !u
00790 RT 2foor o7
006[400—— 1aip o8 16|
00339 151005 oI5
00438 15{004 U oispy
003(8H—— 171003 25 0i3f5
002 [B8)>- 1002 o2
00! (35— 910! ol
000 (38> D00 Gg _DIO
__ 102 3] — 8202
6005823 +S
LN;,_o5 1/0'13 1"
017 [@3>—— £ {oi7 519 pot[i2
01633 oi6 006
0is(92— ois posH2
o14(81)— +0'4 26 DOsH
0l3(4D— 013 003}
o124~ D12 002k
o1 [32> o 001
010[95) 010 gg DOO
sl7lels| 432 |I ’@5 8282
7:4'2\ U9 PN g
ST AT
+5

Reprinted by permission from Microfuture.

Figure 4-7. iAPX 88 S100 Schematic

412



APPLICATION EXAMPLES

M3
M2

=

MO +5

ﬂ%

|2}

Yo v
cs
x3
1A 1B |
10r
= 27pt 2 MHZ L 275t
I cio I c?
3
13 a 13 I }
3| 4 oy 12 ueN \
[
2 L -
- 1A 8% (@3lcLock
Zlk CHPN vt Galg
172 DIP SWI —E{3a 3y —7———}—<w:54 STAVE-CR
6 U9 13 — :
' Ls3es 98 ————.Ennon
Jojawss AN iz 2 o3 T 1 o
361 we/s5 i TIREN2 e » . “L—CJS °—<4s 2] Wi
AI7/S8  MN/MX|+5 4{Rov 1 3 4
s 281 a16/53 Bleg 82946 13 T x2
csyne X2 4 LN T3 R0Y
v2 rov2{8 C3 8(y] —Ll
Al -3 ]xROY
A 8l READY gf 3 renoy R2 56K
7lhe RESET T8 RESET " L—ws—cr_ﬁbl
3 [ cLK cLK RES| S — ~TSRESET
l C6 —~iut
a2 NI v
3)as 8088 010 uooMsmc
2 30 013 003 PHLDA
35| HLDATS 215, ooipd T)Pw s
25 L 38— 3oz y ooz| {78JPoBIN
ALE - .8 u uis 22
181,00 RO (32 Lhe 8282 R
3 pydy A |24 s] 9 8
14 a0 2 TesT|22 Als® Lm-»s tes sT8  OF %] (i9]¢os8
J LA A o T
S 18 =T 8,19 e ve T
INTR (T3]INT
:lo ADS vis lz,/1|3 RPY 3% e
5]A06 HoL ! < 5 ——<74]HoLD
a7 1077 |28 Hro oo}2 - AR Gajsm!
pI/R 2L a1 orft o1t 001 96JSINTA
§50 34 32 U o02f2 4‘3%‘: i 0i2 U D02 l"——-swo
45 g3 27 o3f2 ! 013 28 DO3FA———— ——5js OUT
62 05 |10 : ois oosf4— G6]sine
) 06 12 DI6 D06
o7 :'I 5 84017 oorfA———  GElsHLTA
LsI38 3
04 1Y {o14 D04l — GTlsMEMR
8283 s18_OF RS
[} +5
VR VR3 VR2
| +8V V-IN VOUT +8 2-16V, WIN VOUT 52-16V VN V-OUT! -8V
+8v
s+e LM323 7812 I 1908 l
‘.I Juf AT C2,C3,C9,C13,C17, A7 Juf AT CI,CIS Tut luf
v GND c19,C21,c22,C23, ut GND 4.7 GNO :
ca7 I c24,c25 c29 of
c28
J -
50 lOO
GND @ND

4-13




APPLICATION EXAMPLES

iAPX 88-BASED S100 BUS SYSTEM

One very popular standard for microcompu-
ter systems is the S100 Bus. This application
example describes an S100 system which uses
the iAPX 88 to implement a high perfor-
mance system which has many other benefits.

First, an iAPX 88-based S100 system is easy
to implement, because the CPU interface is
very similar to the CPUs for which the
standard S100 was originally designed. For
example, the hardware of an 8085-based
S100 CPU card is very similar to this system.

Secondly, because this S100 system is using
an iAPX 88 CPU, standard S100 memory,
I/ O, peripherals, and other cards, can take
advantage of the powerful iAPX 88 features
to greatly enhance the capabilities of existing
S100 systems based on the 8080, Z80 or other
8-bit CPU’s.

Another point is that, along with higher
performance, the system also has the advant-
age of the greatly relaxed iAPX 88 bus to
accommodate slower memory, 1/O, and
peripheral cards without the performance
degradation of wait states.

The bus also directly supports the iAPX
88’s 1 Megabyte memory address space.

As shown in the block diagram in Figure 4-6,
the system has 3K bytes of EPROM (three
2708s), 1K of ROM (two 2114s), fully
buffered busses and demultiplexed address
bus. The control and status busses have been
decoded to provide compatible signals for the
S100 bus.

1/ O, peripherals and additional memory are
assumed to be on the other standard S100
cards in the system. A detailed schematic is
shown in Figure 4-7.

iAPX 88-BASED CRT CONTROLLER

This application example describes an intel-
ligent CRT controller based on the iAPX 88

and the 8276 Small System CRT controller.
This design demonstrates the power of the
1APX 88 and LSI chips for a low component
count,

A unique implementation shows how to
eliminate the need for a DMA controller,
while enabling the iAPX 88 to supply
characters directly to the 8276 by means of
interrupt-driven software.

The overhead on the processor is less than
30%, leaving it free to implement intelligent
terminal functions, as local data processing.

The entire design requires only 22 IC
packages.

The heart of the controller is an iAPX 88
operating at 5 MHz (Fig. 4-8). It is supported
by two 8185 (1K x 8) static RAMs, and a
2716 EPROM, containing control software.
An 8251A programmable communication
interface provides synchronous or asynchro-
nous serial communications.

Baud rates are selected by switches on the
board. The baud rate clock is generated by
the 8253 programmable interval timer under
software control.

An 8255A provides three 8-bit parallel I/O
ports, two of which are utilized for keyboard
scanning. The third port is used to sense
option switch settings and to sense the
vertical retrace signal from the 8276 for CRT
synchronization upon reset.

The CRT interface is controlled by an 8276
programmable CRT controller. The CRT
dot and character timing is generated by an
8284A clock generator. A second counter of
the 8253 timer provides the appropriate
horizontal retrace timing for the CRT
monitor. A 2716 EPROM provides a user-
programmable character generator.

A shift register transforms parallel data from
the character EPROM into a serial bit stream



APPLICATION EXAMPLES

to illuminate dots on the CRT screen. The
2716 character generator makes it possible to
display special symbols for word processing
or industrial control applications, or to
display characters and words in a foreign
language.

Screen Memory Feature

One special feature of this design is the IAPX
88’s Load String (LODS) instruction to
emulate DMA. This DMA function fills the
8276’s row buffers which must receive 80
characters (one row on the CRT screen) every
617 microseconds. This is done using an
interrupt routine which saves the registers to
be used, points to the first character to be

DMAed, and uses a repeated Load String
(REP LODS) to DMA 40 words (80 bytes) to
the 8276. The routine then checks to see if it is
at the bottom of the screen memory, updates
the character pointer in memory, restores the
registers, and returns from the interrupt.

DMA Emulation -

The LODS instruction actually moves each
byte of data from memory to the 8276 in one
machine cycle by using a special decoding
trick to generate both a read signal to
memory and a write signal to the 8276. The
address decoding is set up so that the screen
memory is at memory locations 30H to
7FFH. This memory is also accessed by
memory addresses 1030H through 17FFH.

]

l_“:"_—|11.34 mHZ

DOT/
8284A CHARACTER
TIMING
¥ _NMI BRDY LCos [ 1 L VERTICAL
8088 BS CS dars CHARACTER SHIFT |, ypEo 1O
LI GENERATOR REGISTER I CRT
DECODER
cC NG
06
™ FROM
8253
SYSTEM BUS
82535 PROGRAM/ 8255A5 |
COUNTER/ [ S&I4 DISPLAY KEYBOARD
TIMER MEMORY CONTROLLER
P O ,
COMMUMCATIONS
MUNICAT! KEYBOARD STATUS

Figure 4-8. CRT Controller Block Diagram

415



APPLICATION EXAMPLES

Any memory reads using addresses 1030H-
17FFH will simultaneously cause a write to
the 8276 row buffers (Fig. 4-9).

In this way, the iAPX 88 emulates DMA by
addressing both the 8185s and 8276, directly
transferring data from the screen memory to
the 8276 row buffers. Other accesses of screen
memory, such as inputting a character from
the keyboard, are done using addresses
between 30H and 7FFH.

Another demonstration of the power of the
iAPX 88 is the routine which recognizes
escape characters (Fig. 4-10).

Using the iAPX 88’s Translate (XLAT)
instruction and flexible addressing, this
routine takes only 9 lines and 22 bytes of
code. It executes in 6.6 microseconds. This
same routine written for the 8085A-2 takes 20

lines, 61 bytes, and 31 microseconds. The
iAPX 88 uses fewer than half the lines and
bytes of code, while executing 4.7 times
faster!

iAPX 88 MULTIPROCESSING SYSTEMS

Using multiple processors in medium-to-
large systems offers several significant advan-
tages over the centralized approach that relies
on a single CPU and extremely fast memory:

1) System tasks may be allocated to special-
purpose processors whose designs are opti-
mized to perform specific tasks simply and
efficiently.

2) Very high levels of performance can be
attained when processors can execute simul-
taneously (parallel/distributed processing).

DATA BUS

e T—:

DATA FLOW -

8088

RD

1/2
L 7415139

Y

DECODER

ADDRESS
BUS

DECODER|,

A SINGLE 8088 STRING INSTRUCTION
MOVES DATA BYTES FROM THE 8185
RAM TO THE 8276 ROW BUFFER. THE
8088 "‘THINKS” IT IS LOADING THE AX
REGISTER.

- G
1/2
74LS139 [ !
P— S

Q
BS WR CS RD
cs SCREEN
CONTROLLER MEMORY
8276 8185

Figure 4-9. 8276 Row Buffer Loading

4-16



APPLICATION EXAMPLES

3) Reliability is improved by isolating sys-
tem functions so a failure or error in one part
of the system has a limited effect on the rest
of the system.

4) Modular system design promotes parallel
development of subsystems breaks the appli-
cation into smaller, more manageable tasks,
and helps isolate the effects of system
modifications.

The iAPX 88 architecture supports two types
of processors: independent processors and
COProcessors.

An independent processor executes its own
instruction stream. The 8088 CPU and 8089
I/O Processor are examples of independent
processors. An 8088 typically executes a
program in response to an interrupt. The IOP
starts its channels in response to an interrupt-
like signal called a channel attention; this
signal is typically issued by a CPU.

The iAPX 88 product line architecture also
supports processor extensions. The 8087
Numeric Processor Extension is an example.
A special interface, designed into the 8088,
allows this type of processor to be ac-
comodated.

The processor extension adds additional
registers, data types, and instruction re-
sources directly to the system. When one 8087
is configured with one 8089 and an 8088, the
system is referred to as iAPX88/21 (Fig.
4-11).

iAPX 88 Multiprocessor Interface

The iAPX 88 architecture simplifies the
development of multiple-processor systems
by providing facilities for coordinating the
interaction of the processors. The iAPX 88
provides built-in solutions to two classic
multiprocessing coordination problems: bus
arbitration and mutual exclusion.

Bus arbitration may be performed by the bus
request/grant logic contained in each of the
processors (local bus arbitration), by 8289

417

bus arbiters (system bus arbitration), or by a
combination of the two, when processors
have access to multiple shared busses. In all
cases, the arbitration mechanism operates
invisibly to software.

For mutual exclusion, each processor has a
LOCK (bus lock) signal (program activated),
to prevent other processors from obtaining a
shared system bus.

The IOP may lock the bus during a DMA
transfer to ensure both that the transfer
completes in the shortest possible time, and
that another processor does not access the
target of the transfer (e.g., a buffer) while it is
begin updated.

Each subsystem can examine and update a
memory byte with the bus locked, using a
LOCK prefix with the XCHG instruction.
This instruction can be used to implement a
semaphore mechanism for controlling the
access of multiple processors to shared
resources. A semaphore is a variable that
indicates whether a resource, such as a buffer
or a pointer, is “available” or “in use.”

One multiprocessing system is shown in
Figure 4-12. This iAPX system uses the 8088
CPU to perform data processing activities.

XOR ’AX,AX ; clear AX

MOV BX,ESCTBL ;load table pointer

MOV AL,USCHR ;read character

CMP AL,41H ; check for 41H (lowest
possible escape character
value)

JL SETUP ; not valid

CMP AL, 48H ; check for 48H (highest
possible escape character
value)

JG SETUP ; not valid

XLAT ESCTBL ; translate to routine address

JMP  (AX)

Figure 4-10. Escape Character Recognition Code



8i-¥

wayshg Buissaoosdniniy 88 Xdv! “LL-p 8anbiy

1/0 PROCESSING SUBSYSTEM

DATA PROCESSING SUBSYSTEM

1/0 MAPPED LOCAL
1/0 DEVICES ROM/RAM RESOURCES
A : : N A 'Y
1/0 BUS D4 < LOCAL BUS
N A v v
~ i
_____ iAPX 88/21 N
8284A e 8284A 8288
CLOCK GENERATOR |/ \ | CLOCK GENERATOR BUS CONTROLLER
// \\
r I \ 7\
————————————— - 4 r
/ TRANSCEIVERS TRANSCEIVERS 88/20 !
/ AND LATCHES AND LATCHES !
B ]
N 8088 -
~ Mol ® B
8089 1 1
1oP :
i
{ } I
1
1
M s0s7
L\ U4 4 L{' L - R/
\/ - 1 I J \/
8288 8289 TRANSCEIVERS TRANSCEIVERS 8289 8288
BUS CONTROLLER BUS ARBITER AND LATCHES AND LATCHES BUS ARBITER BUS CONTROLLER
p

MULTIBUS® SYSTEM BUS

MULTIBUS” CONTROLS

g

SYSTEM ROM/RAM

MULTIBUS® CONTROLS

S3TdINVX3 NOILVIITddVY



61-¥

uoneinbyuo) spopy [e207 88 XdV! [ed1dAL ZL-p a1nbiy

[0

8284A
CLK

READY
RESET

>{CLK MN/MX
—=|READY >
F—» RESET 2o =
8088 >
Asg-Ay
D,-Dq >
RQ/GT,
ADDRESS BUS 1 1 11
8282 [ >
Y R "
(20R 3) H H H
] [ ] ]
r-—’- A 4 N _
RQ/GT 1 r 1 r . 1
RESET I RAM ROM | I/0 DECODE | | _
> s.= IDECODE | DECODE | AND CONTROL B
»READY — L_ L_ R
= I | | | |
»]cLk DATA
8089 1 | | Ll | Bus | | J
g 3] <'L >
EXTE 4285 2 14T P s Pl
- 19-Ag ]
>{ora2 el ——) | [ [

—>EXT 1 ADDRESS/DATA 1 \ Al
»1DRQ 1 cs WE opf [CE OE| fRDWR CS/ CS/ RDWR| f CS/ RDWR
CA SEL pAack| pack DACK
T 1 A RAM ROM 1/0 1/0 1/0

0 (2142) (2716-2) PERIPHERAL| | PERIPHERAL| | PERIPHERAL
< 1 Ash, DRQ INT DRQ INT DRQ_INT
\__Jo 1OWE
15BIT1/0
ADDRESS DECODE

N —

S37dINVX3 NOILVII1ddV



APPLICATION EXAMPLES

I/O intensive tasks, such as DMA, are
handled by the 8089 I/O Processor. This
configuration is said to use the IOP in Jocal
mode because the 8088 and the 8089 share all
the system resources and the common local
bus. The system name for the 8088/8089
combination is iAPX 88/11.

Use of the system resources is arbitrated by
the Request/Grant (RQ/GT) line which
serves the same function as HOLD/HLDA
in minimum mode. This enables the 8089 to
gain control of the system to read parameter
blocks from memory, perform DMA, or
execute other I/ O processing tasks.

Figure 4-11 is a block diagram of an iAPX
88/21 system. Here the IO processor is said to
be in remote mode because it has its own local
resources separate from those of the 8088.

The processors communicate with each
other and can share resources via the
MULTIBUS™ system bus. Control of the
MULTIBUS™ is handled by the 8289 Bus
Arbiter. Note that each subsystem has its
own 8289 to access the system bus in order
to use shared resources and communicate
with the other subsystem.

An example of one possible configuration for
the 8089 in Remote Mode is shown in Figure
4-13. This subsystem has its own local I/O
and memory resources. For many systems of
this type, a large percentage of the 8089’s
tasks will use its local resources and not
require use of the multimaster system bus.

But, when the 8089 does need to use shared
resources, the 8289 will obtain control of the

4-20

system bus for the 8089. The 8289s in the
system will assure that bus contention and
deadlock do not occur.

Some systems will have several separate data
processing tasks which can all be operated on
at the same time. This could use a con-
figuration such as Figure 4-14, which has two
iAPX 88/ 10 subsystems and one iAPX 86/ 10
subsystem. This could easily be expanded by
adding Numeric Data Processors (iIAPX
88/20) 8089 I/O Processors, and/or more
i1APX 88, 86 subsystems. Each subsystem has
its own local bus on which it can attach
its own resources.

In this system, the LOCK output of the
processors can be very important. When one
subsystem begins an operation such as a read-
modify-write using a shared resource, the
CPU can use the LOCK to assure that the
operation is completed before another sub-
system can take control of the system bus.

The LOCK signal tells the 8288 and 8289 that
control of the bus must not be given up
between the two bus cycles of this type of
instruction. In this way, an exchange instruct-
ion can be used to set a semaphore flag
without the possibility of losing the bus
between the read and write cycles of the
exchange.

The iAPX 88 architecture promotes modular
multiprocessing designs. The maximum
mode interface with the 8288 Bus Controller
and 8289 Bus Arbiter provide all the signals
necessary for implementing multimaster
busses and greatly simplifying the design of
large systems.



APPLICATION EXAMPLES

A, FROM CPU
A,;-A; PROM CPU
1/0 PORT
ADDRESS
DECODE WRITE COMMAND
LOGIC | /O WRITE COMMAND
READ
WAIT STATE
LocAL 3284
e GENERATOR
WRITE ONE SHOT B[ROV SYSTEM RESET
(IF WAIT STATES __ UE INIT)
7a\ REQUIRED) L RESET  RST
ADY  RDY2
o Rovaf= TRANSFER ACKNOWLEDGE
AN (IE XACK)
RENZ CLK
1/0 ADDRESS ]
DECODE
GIC
‘ T
3089 - myLTIMASTER
CONTROL
>ca CLK f= <:_|>
P-{SEL
DACK . :
DRQ DRQ1
cs
7o INT P-EXT1
PERIPHERAL TO/FROM
ANOTHER I10P
— <—{rRo/aT ok
DRQ »{pRa2 o
»cs 5.5,
T
PERIPHERAL . MRDCp————————————
—3-{ ToCK W h——————————»
o@jmm 8289
TORC
jowe o Vee
o8 jt—«—————
ALE
PDEN DT/R_DEN
GND
l \i \

Al
m
»
9
@
Al
»
=
@

MULTIMASTER

LOCAL ADDRESS ADDRESS (A,-Aq)
<j 8282/83 K 8282/83 >

{
OE T T

LOCAL DATA
— U Gy § G

MULTIMASTER DATA (D4-Dy)
8286/87 >

Figure 4-13. Typical 8089 Remote Mode Configuration

4-21




APPLICATION EXAMPLES

¢ LOCAL BUS
|
|
|
|
|
| -
|
. <L
I — L
| 8 |§ oF ' DEN @ i E AEN

8287 8283 L—qoTR 8288
sT8 ALE 18

COMMAND BUS

ADDRESS BUS

T S
Sl
SIS

DATA BUS
r — ..1_.._______._._.]
—— 4 PRIORITY 3
[} - >~ X |@ o B
sT8 ALE 5] l"’ |-‘ le 2 q
3 3 g # _.l__ RDY1
8287 8283 —]oTR  g288 8289 8284A
3
&3 >
X [ a |~ o~
< X AEN AEN x [0 |C |Z x < [>
w DEN . AEN AE] _ I ‘ z
15 5 OF 3o I3 3 1815 15 312 IS < ocxld B
‘{"T> PZN L_é& T l ;

@l
COCR
CLK
EADY

2
=
8
2
8

g <

AB-A19

LOCAL BUS

{\
=
-

i
J

Figure 4-14. iAPX 86,88 Multiprocessing System

4-22



APPLICATION EXAMPLES

PRIORITY 1

|
l ¢ LOCAL BUS
|

g

ADO-AD15 }—
A16-A19 —

2
8
2

S
B x3
- 3

e
s

W i OE BIe IS % T
< Loen 81013 5 47 AE ;;|8F
o =
S
8287 8283 L—oTR 828 8289 8284A
-]
>0 0|Z (O 2 o
sTB ALE _ I%EIE‘E"&‘EgE__L 26 a
0B 2o o o o lo |12 = [ «
= [ (4=
—_—— —_———— e — — —_—_—— e e e | | L AN e L D e e
D T N
______ —_— —_———— e — e — —_——— ——— ——— — — —— — — N— —
- al
L

3 2 1
SYSTEM SYSTEM
MEMORY "o PRIORITY
ENCODER
DECODER

PRIORITY-RESOLVING
MODULE (PARALLEL) _I

r=——rr--—----

4-23







o pp/ement







MICROCOMPUTER OVERVIEW

WHAT\ IS A MICROCOMPUTER?

A Microcomputer is a system of one or more
integrated circuit devices using semiconduc-
tor technology and digital logic to implement
large computer functions on a smaller scale.

Computer miniaturization is a leap-frog
technology, with microcomputers getting
smaller, faster, and cheaper each year.

There are three main elements in a micro-
computer system; each has a special role to
play in the overall operation of the computer
system. These three elements are shown in
Figure 1. They are the central processing unit
(CPU), the memory, and the input/output
(IO) ports.

The CPU does the actual work of the micro-
computer system: numerical processing (addi-
tions, subtractions, etc.) logical operations,
and timing functions.

The CPU is told what to do by a set of
instructions, called a program, stored in the
microcomputer’s memory. Data is also kept

in the memory and processed according to
programmed instructions. The input/output
(I0) ports allow the CPU to communicate
with the outside world. ’

The program(s) are specially designed sec-
tions of machine code that perform the
following, to name a few:

® numeric calculation

® communication with Input/ Output devices

® organization and manipulation of data
structures

® response to expected and unexpected con-
ditions and program interrupts

@ translation of Input/Qutput data to/from
machine-usable format

® coordination, monitoring, and timing of
events /

While it may appear that the computer does

many things simultaneously, the CPU exe-

cutes just one instruction at a time. Instruc-

tion times vary depending on the type of

instruction, and the speed of memory or I/ O

device.

< ADDRESS BUS
MEMORY 170
CPU AN AN
MODULE
C DATA BUS >
< CONTROL BUS

Figure S-1. Microcomputer Block Diagram

S-1



SUPPLEMENT

The CPU reads in data or control signals
through the input ports and sends data or
control signals to the outside world through
the output ports. :

System input/output devices may also be
called peripherals. Many different types of
peripherals exist: some peripheral devices can
do limited processing on the data given to
them by the CPU.

In a typical microcomputer-based CRT ter-
minal, the input ports are connected to
keyboard push buttons while the output
ports are connected to the hardware that
generates the characters displayed on the
CRT screen.

In addition to reading input characters and
displaying them on the screen, the CPU may
also scroll character lines up the screen and
perform special functions such as instructing
the displayed characters to blink or to be
highlighted.

In this CRT application, as with others, the
CPU provides the real intelligence in the
microcomputer system and relies on memory
and I/ O devices for support.

WHAT ARE DATA, ADDRESS AND
CONTROL BUSSES?

The CPU is physically connected to the
memory and I/ O devices by the bus interface
which is a connection of parallel wires (some-
times called “lines”) that perform a similar
function. As Figure 1 shows, there are three
different busses that interface a CPU to other
system components. They are the data bus,
the address bus, and the control bus.

The data bus, as the name implies, is the set
of wires over which data passes between the
CPU and the memory and I/ O. The data can
either be instructions for the CPU, or infor-
mation the CPU is passing to or from I/O
ports.

The CPU uses the address bus to select the
desired memory or I/ O device by providing a
unique address that corresponds to one of the
many memory or I/ O elements in the system.

The control bus contains control lines for
signals to the memory and I/ O devices and
specifies whether data is to go into or out of
the CPU and exactly when the data is being
transferred.

From one microcomputer to another, the
number of bus lines may vary. A microcom-
puter is called an “8-bit machine” if there are
eight lines in the data bus and the CPU
communicates with memory and I/ O using
8-bit bytes. Likewise, a “16-bit machine” has
a 16-bit wide data bus.

Also, the number of address bus lines varies
from one microcomputer to another. Some
smaller machines, like the Intel 8008 have
only 14 lines in the address bus, providing
unique addressability of about 16,000 pieces
of information. (All the signals emanating
from a microprocessor are interpreted in
terms of voltage levels (high or low) on the
bus lines. The signals on the address bus
represent a binary number: HIGH voltages
are 1I’s, LOW voltage are 0’s. Thus, a 14-line
address bus can specify up to 214 or 16,384
unique memory addresses).

In an 8-bit machine, each address (sometimes
called “location”) can point to an 8-bit quan-
tity of data or program information. The
Inte]l 8080 has 16 lines in the address bus,
providing addressability of over 65,000 bytes.

The Intel 8088, described herein, actually has
20 lines in its address bus, providing the
binary addressability for over 1 million bytes
of information.



SUPPLEMENT

HOW ARE MACHINE CYCLES,
INTERRUPTS, AND DIRECT MEMORY
ACCESS RELATED?

Machine Cycles

As the microcomputer program executes,
data is transferred to and from memory and
I/ O devices. Each time the CPU transfers
data between itself and one of the other parts
of the system, we call this the execution of a
machine cycle (or “bus cycle”). Machine
cycles include operations like instruction
fetch, memory read, memory write, read
from an input port, or a write to an output
port. The timing of these operations is coor-
dinated by the CPU clock signal derived
from CPU timing sources from an external
crystal or other frequency source.

At the beginning of a machine cycle, the
CPU issues a binary code to the address bus
to identify the memory location or I/O
device to be accessed. Next, the CPU issues
an activity command on the control bus.
Third, the CPU either receives or transmits
data over the data bus.

Following the data transfer, the CPU pre-
pares to issue the next memory or I/O
address for the next machine cycle. In this
manner, the CPU cycles through the pro-
grammed instructions, performing logical
arithmetic and I/ O operations as required.

The CPU keeps track of the instruction
sequence with the program counter register
containing the binary address of the next
instruction in memory.

Normally, the program counter is incre-
mented after a given instruction is executed.
The CPU automatically fetches instructions
from memory, decodes them, and executes
them in sequence, until the program ends, or,
until special instructions tell the CPU to exe-
cute instructions in other parts of program
memory.

Certain situations can interrupt the normal
sequential flow of instruction execution. For
example, a wait state may be imposed in a
given machine cycle to provide more time for
a memory or I/O device to communicate
with the CPU. Wait states are needed when a
fast microprocessor needs to communicate
with a slow memory. Here’s why:

Once the CPU addresses memory, it cannot
proceed until the memory responds. While
most memories respond faster than required,
some cannot supply the addressed byte
within the minimum time established by the
CPU clock. Therefore, the memory must
request a wait state when it receives the CPU
signal that a memory read or write operation
has commenced. After the memory responds,
it signals the CPU to leave the wait state and
continue processing.

Another situation that alters sequential instruc-
tion execution is an interrupt. Interrupts
actually improve CPU efficiency. For exam-
ple, consider a computer that is processing a
large volume of data, portions of which are
to be output to a printer. The CPU can out-
put to the printer in one machine cycle, but
the printer may take many machine cycles to
actually print the characters specified by the
data byte. So, the CPU must remain idle
until the printer can accept the next data byte
from the CPU, or, if an interrupt capability is
implemented, the CPU can output to the
printer and then return to other data process-
ing. When the printer is ready to accept the
next data byte, it signals the CPU via special
interrupt control line. When the CPU an-
swers the interrupt it suspends main program
execution and automatically switches to/the
instructions that output to the printer, after
which, the CPU continues with main pro-
gram execution where processing was
suspended.



SUPPLEMENT

Priority interrupt structures are possible
where several interrupting devices share the
same CPU. If two or more interrupts occur
simultaneously, the one with the higher prior-
ity is serviced first.

Another feature that improves microproces-
sor throughput is direct memory access,
otherwise called DMA. In ordinary input/
output operations, the CPU itself supervises
the entire data transfer as it executes I/O
instructions to transfer data from the input
device to the CPU and then from the CPU to
specified memory location. Similarly, data
going from memory to an output device also
goes by way of the CPU.

Some peripheral devices transfer information
to/from memory faster than the CPU can
accomplish the transfer under program con-
trol. In this case, using DMA (direct memory
access) the CPU allows the peripheral device
to hold and control the bus transfer the data
directly to/from memory without involving
the CPU itself.

When the DMA transfer is done, the peri-
pheral releases the hold request signal. The
CPU then resumes processing instructions
where it left off.

The DMA allows the high speed data
transfers required in many of today’s micro-
computer systems with hard disk controllers,
and CRT terminals, etc.

WHAT'S INSIDE THE CPU?

A typical microprocessor CPU consists of the

following three functional units: The regis-
ters, arithmetic/ logic unit (ALU), and control
circuitry, described below.

Registers provide temporary storage within
the CPU for status codes, memory addresses,
and other information useful to the CPU and

programmer during program execution. Dif-
ferent microprocessors have different num-
bers and sizes of registers. In general, 8-bit
microprocessors have 8-bit registers and 16-
bit microprocessors have 16 bits in each
register.

All CPUs contain an arithmetic logic unit,
often referred to as the ALU. The ALU, asits
name implies, is the CPU hardware that per-
forms arithmetic and logical operations on
binary data. The ALU contains an adder to
perform binary arithmetic manipulations on -
data obtained from memory, the registers or
other inputs. Some ALU’s perform more
complex arithmetic operations such as mul-
tiplication and division. ALU’s also provide
other functions including Boolean logic and
data shifting by one or more bit positions.
The ALU also contains flag bits that signal
the results of arithmetic and logical manipu-
lations such as sign, zero, carry, and parity
information. These flag bits frequently de-
termine where the program will continue
after the current instruction is executed.

The control circuitry coordinates all micro-
processor activity. Using clock inputs, the
control circuitry maintains the proper
sequence of events required for any process-
ing task. The control circuitry decodes the
instruction bits and issues control signals to
units both internal and external to the CPU
to perform the proper processing action. It is
the control circuitry that responds to external
signals, such as interrupt or wait requests.

As mentioned before, an interrupt request
will cause the control circuitry to temporarily
interrupt the program in process, and direct
the microcomputer to execute a special inter-
rupt service program. A wait request causes
the control circuitry to suspend processing of
the current instruction until the memory or
I/ O port is ready with the data.



SUPPLEMENT

Addressing Modes

The address that the CPU provides on the
address lines selects one specific memory or
I/O device from all those available. This
address can be generated in different ways
depending on the operation being performed.
For an instruction fetch, the address comes
from the CPU program counter register.
While executing an instruction, this address
can be generated many different ways, called
addressing modes.

In the simplest addressing mode, the desired
data item is contained within the instruction
being executed. In a more complex address-
ing mode the instruction contains the mem-
ory address of the data. Or, the instruction
may reference a CPU register that contains
the memory address of the data.

S-5

And finally within some microprocessors, the
instruction may instruct the control circuitry
to generate a complex address that is the sum
of several address components such as multi-
ple registers plus data contained in the
instruction itself.

Generally, the most powerful micropro-
cessors are the ones with the widest variety
of addressing modes available to the
programmer.

When you put it all together: the microcom-
puter bus structure, the CPU registers, the
addressing modes, and the instructions them-
selves, you have the total microcomputer
architecture. The many available microcom-
puters have many different architectures
from which the system designer has to choose
in selecting a microcomputer for this
application.






......................................

"Appendix B A




APPENDIX

Benchmark Report: Contents
® JAPX 88 vs
Intel - 8 INTRODUCTION . ... ...ttt 1
Zilog Z80
PROCESSOR DESCRIPTION . .................... 1
) ) ) ) TAPX B8 . .t e 1
Z80is a registered trademark of Zilog Corporation. Table 1. Architectural Features ................ 2
ZIHOGZBO . vee et e e 3
PERFORMANCE MEASUREMENTS ............... 3
BENCHMARK PROGRAM DESCRIPTIONS ......... 4
RESULTS . ..ot e e 5

PERFORMANCE COMPARISON TABLES

Table 2. Execution Times (iAPX 88 vs Z80A). ..... 5
Table 3. Execution Times (iAPX 88 vs Z80B). ..... 6
Table 4. Execution Times with Comparable

Memory Access Times: (IAPX 88 vs Z80A) . .. ... 6
Table 5. Execution Times with Comparable

Memory Access Times: (IAPX 88 vs Z80B) . ..... 7
Table 6. Ease of Programming . ................ 7
Table 7. Memory Utilization.................... 8

PERFORMANCE COMPARISON GRAPHS

Graph I. Normalized Average Throughput........ 8
Graph ll. Normalized Average Program Length

andCodeSize ......... .. ... . .. 8

CONCLUSION . . ... 9

APPENDIX. BENCHMARK PROGRAM CODE
AND FLOWCHARTS ................. 11

AFN-01664A



APPENDIX

INTRODUCTION

This benchmark report compares the capabilities of
Intel’s iAPX 88/10 microprocessor with those of the
Zilog Z80. The purpose of the report is to aid the user in
his evaluation of the two processors, and to provide him
with some of the information he will need in making a
knowledgeable decision regarding which processor best
satisfies the requirements of his application.

Because system requirements can vary greatly from one
application to the next, no one program can adequately
display the capabilities of each processor. For this
reason, ten programs have been chosen to demonstrate
the performance of the iAPX 88/10 and Z80 in several
areas. The benchmark programs cover some of the basic
tasks which are relevant to many of the applications for
which these two processors might be considered. These
ten programs demonstrate the processors capabilities in
the areas of Data Manipulation, Computation, and
Processor Control. Each program was defined in such a
way as to be relatively straightforward, while still allow-
ing the processors to use their instruction set efficiently
in implementing the program.

The benchmark programs were used to evaluate the
iAPX 88/10 and Z80 on the basis of execution speed,
ease of programming (number of lines of code) and
memory usage. These factors were considered because
they are often the key requirements evaluated when a
design decision is made. Execution speed is a direct
measure of how fast a processor will complete a task.
This can be the critical requirement for many real-time
control or multi-user systems. Here, cost may not be the
primary issue because a less expensive but slower system
may be inadequate, regardless of the cost savings. On
the other hand, many systems do have critical cost
requirements for which it may make sense to sacrifice
some execution speed in order to reduce costs. For a
memory intensive system, the cost can be reduced
significantly by using less memory, or less expensive
lower speed memory. For this reason, coding efficiency
and memory access time were examined to help evaluate
price/performance tradeoffs. Another factor, the ease
of programming, is becoming more and more important
as the cost of memory decreases and the amount of soft-
ware in the typical microprocessor application rapidly
grows. For many applications, software development
costs have become greater than hardware development
costs. This means that the total development costs of
such a project can be substantially reduced by using the
processor which accomplishes the most in the least
number of lines of code. To demonstrate performance
in this area, the processors have been evaluated on the
basis of the number of lines of code required for each
program which has been defined as ‘‘ease of pro-
gramming.”’

The benchmark programs in this report were written for
the purpose of comparing the iAPX 88/10 and Z80
microprocessors. They should be used only as a guide in

evaluating processor performance and are not an abso-
lute measure of performance for all applications. The
programs were written to perform the tasks in a clear
and straightforward manner. They do not necessarily
show an optimized implementation of the task for either
processor. The benchmark programs do, however, pro-
vide relevant information and a consistent comparison
which may be useful to the designer in choosing the
microprocessor which delivers the best solution to the
requirements of his design.

PROCESSOR DESCRIPTION

A brief description of some of the key features of the
iAPX 88 and Z80 is included here and in Table 1. The
topics discussed are Architecture, Memory Timing,
Instruction Sets, and Addressing Modes. For more com-
plete descriptions, refer to Intel’s 8086 Family Users
Manual and Zilog’s Z80 Programming Manual or other
related literature. Throughout this document iAPX 88
will refer to a 5 MHz system using the 8088 CPU, while
Z80A and Z80B will refer to 4 MHz and 6 MHz systems
using the Z80 CPU.

Intel iAPX 88

The Intel 8088 (or 88/10) is the host processor of the
iAPX 88 microcomputer system. The 88/10 is an
N-channel MOS microprocessor which currently has a
maximum clock rate of 5§ MHz. Internally the 88/10 is a
microcoded 16-bit processor which multiplexes a 16-bit
internal data bus onto an 8-bit system data bus for
external communication. The address space is 1
Megabyte which is segmented to support modular pro-
gramming. Except for the implementation of the Bus
Interface Unit, the 88/10 is identical to the Intel 86/10
miCroprocessor.

The architecture of the 88/10 is divided into two
separate processing units, the Bus Interface Unit (BIU)
and the Execution Unit (EU). These two units perform
separate functions in parallel to maximize throughput.

The EU contains the 16-bit arithmetic/logic unit (ALU)
as well as the general registers and flags of the CPU. It is
responsible for executing instructions, and communi-
cates only with the BIU. The BIU performs all bus
operations needed by the EU. It contains the segment
registers, the instruction pointer, the bus control logic
and the instruction queue. Because the BIU operates in
parallel with the EU, instruction fetches overlap instruc-
tion execution. The result is efficient utilization of the
system bus and transparent instruction prefetch.

The 88/10 contains three sets of four 16-bit registers,
and nine one-bit flags. The four data group registers,
AX, BX, CX and DX, as well as the four pointer and in-
dex registers, SP, BP, SI and DI, are all 16-bits wide and
can be used as source and destination in most arithmetic
and logic operations. All eight of these general registers
function as accumulators for many instructions. The
data group registers, AX, BX, CX and DX can also be

AFN-01664A



APPENDIX

Table 1. Architectural Features

Feature iAPX 88/10 280
Memory Addressability 1 megabyte | 64K bytes
General Registers
Number and Size* 8X 16 or 7x8 or
8% 8 and 1x8 and
4x16 3x16
Coprocessor Compatibility - Yes No
Instruction Sizes (bytes) 1,2,3,4,5,6 1,2,3,4
Operand Addressing Modes
Register Yes Yes
Immediate Yes Yes
Direct Address Yes Yes
Register Indirect Yes Yes
Indexed or Based Yes Yes
Base + Indexed Yes No
Base + Displacement Yes Yes
Base + Indexed + Displacement Yes No
Auto Increment/Decrement Yes Yes
Data Types
BCD Digits Yes Yes
ASCII Digits Yes No
Bytes Yes Yes
Words Yes Yes
Unsigned Integers Yes Yes
Signed Integers Yes Yes
General Two Operand
Operations .
Reg with Reg to Reg Yes Yes
Reg with Mem to Reg Yes Yes
Reg with Mem to Mem Yes No
Reg with Imed to Reg Yes Yes
Mem with Imed to Mem Yes No
Mem with Mem to Mem Yes** Yes**
Interrupts
NMI Yes Yes
Software Interrupts (#) Yes (256) Yes (8)
Maskable Hardware
Interrupts (#) Yes (256) Yes (256)
LMemory Access Time 460 ns 250 ns/
140 ns***

NOTES:

*JAPX 88/10: The AX, BX, CX and DX registers can be used as four 16-bit
registers, or as eight 8-bit registers. With the index and pointer registers, this
gives eight 16-bit registers, or eight 8-bit and four 16-bit registers.

Z280: Each of the BC, DE, and HL registers can be used as two 8-bit registers
or a single 16-bit register. The A register is an eight bit accumulator. The
alternate register set can be used for exchanges only (general logic instruc-
tions are not supported by the alternate register set).

**For string instructions only.
#**250 ns for the Z80A, and 140 ns for the Z80B.

used as eight 8-bit accumulators for byte operations. In
addition to their general register functions, the pointer
and index registers also serve as address registers. The SI
and DI registers function as the source and destination
indexes for the string operations. The Stack Pointer
register (SP) is used in stack operations, and the BP
register is a base pointer for stack relative Based
Addressing modes frequently used in high level

language programming. The four 16-bit segment regis-
ters CS, DS, SS and ES, provide memory segmentation
expanding the address space to one megabyte.

The iAPX 88 uses a four clock basic bus cycle. The nor-
mal memory access time is 460 nsec. To use memories
slower than this, wait states of 200 nsec can be added.
Using one wait state produces a memory access time of
660 nsec. Adding one wait state to the iAPX 88 reduces
the throughput only approximately 10% because wait
states are partially hidden by the queue. For a non-
queued machine such as the Z80, the throughput will
typically be reduced about 20%.

The iAPX 88/10 instruction set operates on bits, BCD
digits, ASCII digits, 8-bit bytes, 16-bit words, and
signed or unsigned integers. Many of the two operand
instructions allow both operands to reside in registers,
or one in a register and one in memory. The order of the
operands is interchangeable, and the location of either
source operand may serve as the destination for the
result. The arithmetic instructions include 8- or 16-bit
Add, Subtract, Multiply, Divide and Compare of signed
or unsigned integer values. The iAPX 88 instructions
are identical to those of the iIAPX 86 providing complete
software compatibility. Although this report considers
only single processor systems, the iAPX 88 has the
unique compatibility with the 8087 numeric data proc-
essor to extend the data types to include 32-bit integers
as well as short (32-bit), long (64-bit), and extended
(80-bit) floating point numbers, and decimal numbers
of up to 18 digits. Adding an 8087 also adds 68 addi-
tional instructions and eight 80-bit registers.

Twenty-four addressing modes are available to directly
or indirectly access data and operands. These modes
allow from one to four component addressing using
combinations of segment, base, and index registers,
with optional 8- or 16-bit displacements. The string
instructions provide auto increment and auto decrement
addressing, memory to memory operations, and have an
optional repeat prefix for automatically repeating the
string instruction without re-fetching the opcode from
memory.

Like the iAPX 86, the iAPX 88 has two modes of opera-
tion. In the minimum mode, the iAPX 88 supports the
hold/hold acknowledge protocol to enable bus control
to be transferred to another bus master such as a DMA
controller. In the maximum mode it supports two re-
quest/grant lines, each of which can support multiple
bus masters for multiprocessor designs using the 8087
Numeric Data Processor and/or the 8089 I/0O Processor
(IAPX 88/20, iAPX 88/21, iAPX 88/11). This mode
also adds support for multiprocessor configurations and
Multibus interface.

The iAPX 88 provides nonmaskable software (internal)
interrupts and maskable or nonmaskable hardware (ex-
ternal) interrupts. The interrupt structure supports up to
256 different interrupt types using an interrupt vector
table located in memory.

AFN-01664A



APPENDIX

Zilog 280

The Z80 is an eight bit N-channel MOS microprocessor
currently available in two versions, the Z80A and Z80B.
The maximum clock rates are 4 MHz for the Z80A and
6 MHz for the Z80B. Both speed selections- are used in
benchmark timing.

The Z80 registers are grouped into the main, alternate
and special purpose register sets. The main and alternate
register sets are two identical sets of eight-bit registers.
Each set consists of eight registers, one accumulator
(A), one flag register (F), and six general purpose regis-
ters: the B, C, D, E, H, and L. For some operations, the
general purpose registers can be concatenated together
into sixteen bit register pairs. The user can switch back
and forth between the main and alternate register sets
using the exchange instructions, but only one set can be
active at any one time. One exchange instruction (EX)
allows the main accumulator and flags to be exchanged
with the alternate accumulator and flags. The other ex-
change (EXX) switches all of the general purpose
registers at once. This is helpful for a single context
switch, but makes it difficult to pass data between the
main and alternate register sets.

The Z80 has six special purpose registers: IX, 1Y, IP,
SP, R, and I. The IX and IY are sixteen bit index regis-
ters which can be added to a displacement to provide
indexed addressing. The instruction pointer (IP) and
stack pointer (SP) are also sixteen bit registers. The R
register is a seven bit counter used for dynamic RAM
refresh. The I register is a page register which contains
the upper eight address bits for a Mode 2 interrupt.

The Z80 supports one nonmaskable interrupt and has
three modes for maskable interrupts. In Mode 0, the
Z80 requires the interrupting device to place one instruc-
tion on the data bus. (This mode is identical to the way
the 8080 handles interrupts.) Mode 1 performs an
automatic restart to location 038H. In Mode 2, the in-
terrupting device places an eight bit address on the bus.
These eight bits are concatenated with the interrupt page
register to point to a location in a memory based table
of interrupt vectors.

The basic bus timing of the Z80 consists of an opcode
fetch (M1), a memory read (M2), and a memory write
(M3). During the M1 cycle, the CPU first fetches and
then decodes the instruction opcode. (Because the Z80
does not have a queue there is no overlap of opcode
fetch and execution.) The Z80 then outputs a memory
refresh address. If no wait states are used, M1 is four
clock cycles, while M2 and M3 are each three clock
cycles. The M1 zero wait state memory access times are
250 ns and 140 ns for the Z80A and Z80B. These times
can be increased by adding wait states. Each wait state
adds one clock per memory reference. This adds 250 ns
and 165 ns per bus cycle to the Z80A and Z80B to give
access times of 500 ns and 305 ns respectively.

The instruction set of the Z80 contains eight major
groups: Load and Exchange, Arithmetic, Logical,
Rotate and Shift, Bit Manipulation, I/O, CPU and pro-
gram control, and Block instructions. The processor
operates on bits, BCD digits, eight-bit bytes and sixteen-
bit words. The Block instructions will search or transfer
a block of memory using the DE and HL registers as
pointers and the BC register as a counter.

The Z80 provides seven addressing modes to access data
operands. It allows the use of eight or sixteen bit im-
mediate addresses, indexing using the IX or 1Y with an
eight bit displacement and register indirect addressing’
using register pairs.

PERFORMANCE MEASUREMENTS

The processors were compared in four categories of per-
formance measurements. The first two categories
measure the execution speed of the iAPX 88/10 and the
7.80. The next comparison looks at the ease of use which
is the number of lines of code in each program. The last
basis for comparison is memory use or coding effi-
ciency.

The first performance measurement tests the processors
for maximum execution speed. This is important for
many applications where high throughput is a critical
factor. To measure this, the processors were run at max-
imum speed with no wait states. The maximum clock
rates are 5 MHz for the iAPX 88/10, 4 MHz for the
Z80A and 6 MHz for the Z80B. Table 2 gives the results
of this measurement for the iAPX 88/10 and the Z80A.
Table 3 gives the results for the iAPX 88/10 and the
Z80B.

The next measurement again examines execution speed,
but this time memory address access time was also con-
sidered. While the processors were again run at their
maximum clock rates, they were also required to be
compatible with slow memories. The Z80B has a
memory access time of 140 ns which often requires the
use of expensive speed selected memories. And there are
no EPROMSs which could be used in this system without
wait states. Because of this, many Z80B systems will be
required to run with one, or even two wait states, pro-
viding memory access times of 305 ns and 470 ns. Many
systems using the Z80A also require one wait state
which increases the memory access time from 250 ns to
500 ns. The iAPX 88 has a zero wait state memory ac-
cess time of 460 ns. This is relaxed enough to allow the
use of ordinary nonspeed selected memories including
most EPROMs. Tables 4 and 5 compare the execution
speeds of the processors for systems which have the re-
quirement of a relaxed memory access time. The iAPX
88 is run with no wait states because of its 460 ns zero
wait state timing. The Z80A is measured with one wait
state providing a 500 ns memory access time. The Z80B
is measured for both the one and two wait state cases.
These measurements give relative performance for
relaxed memory access time.

AFN-01664A



APPENDIX

The next method of measuring performance was to
count the number of lines of code in each program.
These figures (in Table 6) demonstrate the power of the
instruction set and the ease with which the programmer
can implement the task using that processor. This has
been defined as ‘‘ease of use,’’ and is becoming increas-
ingly important. Both the cost of programmer time and
the amount of software in a typical application are
rapidly increasing. This means that a processor which
can accomplish more with fewer lines of code can
greatly reduce a product’s development time and cost.

Table 7 is titled ‘“Bytes of Code.’’ It shows the number
of bytes of object code required to encode each pro-
gram. This coding efficiency is directly translatable into
system memory requirements, and therefore, into
system cost. Consequently, coding efficiency is very im-
portant in cost sensitive applications which have a large
amount of software such as a sophisticated operating
system Or many user programs.

Tables 2 through 7 contain the results of the four cate-
gories of performance measurements. The actual times
and numbers are given for each program along with the
Relative Performance which is the Z80 time or number
divided by the iAPX 88 time or number. For each Table
the Average Relative Performance was calculated by
adding the Relative Performance figures and dividing
by the number of programs (10). An ‘‘Adjusted
Average” Relative Performance was also calculated.
This average is calculated without using the highest and
lowest Relative Performance figures from that table.
This method makes sure that the average is not greatly
affected by one figure which may differ widely from the
others, such as the Computer Graphics Relative Execu-
tion Time in Table 2.

PROGRAM DESCRIPTIONS

The ten benchmark programs were chosen to demon-
strate the capabilities of the iAPX 88/10 and the Z80 in
the areas of Data Manipulation, Computation, and
Processor Control. All iAPX 88 code has been as-
sembled and run.

1. Computer Graphics

The Computer Graphics program scales the X and Y
pairs that make up a graphics display. The 16-bit X and
Y pairs are offset by constant values (X0 and YO0), then
multiplied by a fractional scale factor to obtain the
scaled XY pairs. There are 16,384 pairs. This program
demonstrates computational capability.

2. 16-Bit Multiply

The 16-Bit Multiply program reads two 16-bit numbers
from memory, multiplies them and returns the 32-bit
product and the two multiplicands to memory. It
demonstrates computational capability.

3. Vector Add

The 16-Bit Vector Add performs an element-by-element
add of two twenty element vectors. Vector add demon-
strates computation and string processing capabilities.

4. Block Move

The Block Move program reads the block length,
source, and destination from memory. The block length
was chosen to be 126 bytes. The data is moved from the
source to the destination using repeated moves. Block
Move demonstrates manipulation of string data.

5. Block Translate

The Block Translate program translates a memory
block containing EBCDIC characters to ASCII .and
stores the ASCII characters in another memory block.
The translation is done using an EBCDIC to ASCII
translation table, and the block length is 125 bytes. This
demonstrates string data manipulation and the use of a
lookup table.

6. Character Search _
The Character Search program searches a table of
known length for a specific character. If that character
is found, its address is returned. If it is not found, zero
is returned. This program demonstrates data com-
parison and auto increment addressing.

7. Word Shift

The Word Shift program reads a 16-bit word from
memory, and shifts it N places to the right. (N is chosen
to be five.) Zeros rotate in on the left. The result is
stored in memory. This demonstrates manipulation of
16-bit data.

8. Reentrant Call

The Reentrant Call program passes three parameters to
the called procedure. One is pushed from a general
register, the other two are pushed from memory. The
procedure is called, the state of the processor is pushed
onto the stack, and local storage is set up. The pro-
cedure body adds the three parameters and places the
result in local storage. The procedure is then exited and
the state of the processor is restored.

This program demonstrates the processors call and reen-
trant procedures and its ability to pass variables to a
called procedure. Support of these features is essential
for procedure oriented structured programming.

9. Bubble Sort

The Bubble Sort program sorts a one dimensional array
of sixteen bit integer elements into numerically ascend-
ing order using the exchange (bubble) sort algorithm.
This program was measured for a ten element array in
which the integers are initially in descending order. Bub-
ble Sort demonstrates indexed addressing and data
handling.

AFN-01664A



APPENDIX

10. Interrupt Response

This program accepts an interrupt, pushes all the proc-
essor registers (except the Stack Pointer) on to the stack,
and jumps to a service routine. All registers are restored
before returning from the service routine. This program
also considers the worst case latency due to finishing the
longest instruction. This is because when an interrupt
occurs it must wait to be processed until after the com-
pletion of the current instruction. The times are mea-
sured both with and without this latency. (For each
application where interrupt response is critical, the
designer should only consider the longest instruction his
system will use.)

RESULTS

The benchmark results are presented in Tables 2, 3, 4, 5,
6, and 7. These tables contain performance measure-
ments figures in terms of execution speed, ease of use,
and memory usage. For a description of these cate-
gories, see the Performance Measurements section.

Tables 2 and 3 show that the iAPX 88 executed nine of
the ten programs faster than the Z80A, and that the
iAPX 88 was faster than the Z80B for eight of the ten
programs. The Computer Graphics program had the
largest performance difference. Here the iAPX 88 was

Table 2. Execution Times (IAPX 88 vs Z80A)

faster than the Z80A and Z80B by relative execution
time figures of 14.61 and 9.74. The major reason for
this difference is the sixteen bit divide instruction of the
iAPX 88. The sixteen bit multiply instruction of the
iAPX 88 also gave it a substantial performance advan-
tage in the Sixteen Bit Multiply benchmark. The Z80B
(but not the Z80A) was faster for the Block Translate
program where the alternate register set and the string
move instruction were used effectively. Both the Z80A
and Z80B were faster than the iAPX 88 for the Interrupt
Response benchmark. (The Z80 could have used the
alternate register set for even faster interrupt response,
but this would not allow multiple level interrupts.) The
two times given for each processor show its execution
time with and without latency due to finishing a
previous instruction. The relative execution time figures
for this program used the average of these numbers.
Here the Z80 gained a large advantage on instruction
latency time because it does not have the time consum-
ing (but powerful) sixteen bit divide and multiply in-
structions of the iAPX 88. The hardware interrupt
response time of the Z80 is also faster than that of the
iAPX 88.

The Average Relative Execution Times from Tables 2
and 3 show that iAPX 88 executed the programs faster
than the Z80A and Z80B by ratios of 3.78 to 1 and 2.52
to 1, respectively.

Absolute Time*

Relative Execution Time

Benchmark Programs iAPX 88/10 (5 MH2) Z80A (4 MH2) ZB8OAJIAPX 88
Computer Graphics 2.32 33.9 14.61
16-Bit Multiply 40.8 354.0 8.68
Vector Add 295.00 480.0 1.63
Block Move 328.00 661.0 2.02
Block Translate 1507.00 1980.0 1.31
Character Search 136.00 220.0 1.62
Word Shift 13.00 48.6 3.60
Bubble Sort 2406.00 4596.0 1.91
Reentrant Call 87.60 140.0 1.60
Interrupt Response** 107/61.5 75.5/69.7 0.86
Average Relative Execution Time*** 3.79
Adjusted Average Relative Execution Time' 2.79

NOTES:

*The times are given in microseconds except for the Computer Graphics benchmark where the times are in seconds.

**The times given for the Interrupt Response benchmark show two times. The first the time includes the latency due to finishing the previous instruction. The second

time does not include this latency.

The Relative Execution Time and the averages use the average of these two times.

***The Average Relative Execution Time is the sum of the processor’s normalized times for all programs divided by the number of programs (10).

1The Adjusted Average Relative Execution Time is the average of the normalized times, excluding the highest and lowest normalized times. This prevents significant
shifts in results due to anomalies for one particular benchmark and may be viewed as a better measure of expected relative performance.

AFN-01664A



APPENDIX

Table 3. Execution Times (iAPX 88 vs Z80B)

Absolute Time* . Relative Execution Time
Benchmark Programs iAPX 88/10 (5 MH2) Z80B (6 MH2) Z80B/iAPX 88
Computer Graphics 2.32 22.6 9.74
16-Bit Multiply 40.80 236.0 5.78
Vector Add 295.00 320.0 1.08
Block Move 328.00 441.0 1.34
Block Translate 1507.00 1320.0 0.88
Character Search 136.00 146.0 1.07
Word Shift 13.00 31.1 2.39
Bubble Sort 2406.00 3064.0 1.27
Reentrant Call 87.60 93.3 1.07
Interrupt Response** 107/61.5 50.3/46.5 0.58
Average Relative Execution Time*** 2.52
Adjusted Average Relative Execution TimeT 1.86

NOTES:
*The times are given in microseconds except for the C

p Graphics b k where the times are in seconds.

**The times given for the Interrupt Response benchmark show two times. The first the time includes the latency due to finishing the previous instruction. The second
time doés not include this latency.

The Relative Execution Time and the averages use the average of these two times.
***The Average Relative Execution Time is the sum of the processor’s normalized times for all programs divided by the number of programs (10).

1The Adjusted Average Relative Execution Time is the average of the normalized times, excluding the highest and lowest normalized times.

Tables 4 and 5 give the results for execution time with
comparable memory access times. Here, the iAPX 88
was faster than the Z80A for all ten programs, and
faster than the Z80B for nine of the ten programs. As
explained in the Performance Measurements section,
the Z80A was run with one wait state, and the Z80B for

both the cases of one and two wait states. The Average
Relative Execution Times in Tables 4 and 5 show that
the iAPX 88 was faster than the Z80A with one wait
state (4.77 to 1), the Z80B with one wait state (3.20 to 1)
and the Z80B with two wait states (3.83 to 1).

Table 4. Execution Times with Compardble Memory Access Times (iAPX 88 vs Z80A)

Absolute Time* Relative Execution Time
Benchmark Programs iAPX 88/10 (5 MH2) Z80A (4 MH2) Z80/iAPX 88
Computer Graphics 2.32 42.8 18.45
16-Bit Multiply 40.80 452.0 11.08
Vector Add 295.00 598.0 2.03
Block Move 328.00 829.0 2.53
Block Translate 1507.00 2514.0 1.67
Character Search 136.00 272.0 2.00
Word Shift 13.00 59.0 4.54
Bubble Sort 2406.00 5771.0 2.40
Reentrant Call 87.60 181.0 2.06
Interrupt Response** 107/61.5 95.7/88.5 0.90
Average Relative Execution Time*** 4.77
Adjusted Average Relative Execution Time*** 3.54

NOTES:

*Times for the Z80 include one wait state on memory access. The times are given in

seconds.
**See note 2 of Table 2.

ds for the Comp G

biec bench

***See Table 3, notes 3 and 4 for description of average calculations.

AFN-01664A

k where the times are in



APPENDIX

Table 5. Execution Times with Comparable Memory Access Times (iAPX 88 vs Z80B)

Relative Execution Time
Absolute Time* Z80/iAPX 88

Benchmark Programs iAPX 88 (5 MH2) Z80B** Z80B*** Z80B** Z80B***
Computer Graphics 2.32 28.5 34.5 12.38 14.87
16-Bit Multiply 40.80 302.0 361.0 7.59 8.84
Vector Add 295.00 399.0 471.0 1.35 1.62
Block Move 328.00 552.0 659.0 1.68 2.01
Block Translate 1507.00 1676.0 2032.0 1.11 1.35
Character Search 136.00 181.0 216.0 1.33 1.59
Word Shift 13.00 39.0 48.0 3.02 3.65
Bubble Sort 2406.00 3851.0 4638.0 1.60 1.93
Reentrant Call 87.60 120.0 147.0 1.38 1.69
Interrupt Response 107/61.5 63.8/59.0 71.3/71.5 0.60 0.73
Average Relative Execution Time Tt 3.20 3.83
Adjusted Average Relative Execution TimeTT 2.38 2.84

NOTES:

*The times are given in microseconds except for the Computer Graphics benchmark where the times are in seconds.

**These times for the 6 MHz Z80B include one wait state on memory accesses.
***These times for the 6 MHz Z80B include two wait states on memory accesses.
1See note 2 of Table 2.

1See Table 3, notes 3 and 4 for description of average calculations.

Table 6 is titled ‘‘Ease of Use’’ and gives the number of
lines of code required for each program. The Average
Relative Program Length of 2.51 shows that the Z80 re-
quired more than twice as many lines of code as the
iAPX 88 to accomplish the same tasks. The sixteen bit
multiply and divide instructions of the iAPX 88 were the
major factors in the 4.73-and 5.00 Relative Program
Length figures for the Computer Graphics and Sixteen
bit Multiply benchmarks. Some other factors which
helped the iAPX 88 in this category are its flexible ad-

dressing modes, string instructions and its ease of
handling sixteen bit data. The Z80 used fewer lines of
code for the Block Move and the Character Search
benchmarks. The iAPX 88 Block Move uses word
moves. A byte move algorithm could have been used,
but with a slight performance degradation (although
still faster than the Z80). The program would then have
the same number of lines (and bytes) of code used by the
Z80 Block Move.

Table 6. Ease of Programming (iAPX 88 vs Z80)

Lines of Code Relative Program Length
Benchmark Program iAPX 88/10 Z80 ZB0/iAPX 88
Computer Graphics 15 71 4.73
16-Bit Multiply 4 20 5.00
Vector Add 8 20 2.50
Block Move 7 4 0.57
Block Translate 10 13 1.30
Character Search 8 6 0.75
Word Shift 2 10 5.00
Bubble Sort 17 30 1.76
Reentrant Call 26 47 1.81
Interrupt Response 15 25 1.67
Average Relative Program Length* 2.51
Adjusted Average Relative Program Length* 244

NOTE:

*See Table 3, notes 3 and 4 for description of average calculations.

AFN-01664A



APPENDIX

Table 7 gives the bytes of object code used to encode the
benchmark programs. The Average Relative Code Size
number of 1.97 says that the Z80 used nearly twice as
much memory to store its programs as the iAPX 88.

Table 7. Memory Utilization (Bytes) (IAPX 88 vs Z80)

Even though the majority of the Z80 opcodes are
shorter than iAPX 88 opcodes, the Z80 requires more
memory mostly because the iAPX 88 used fewer lines of
code as shown in Table 6.

Bytes of Code Relative Code Size
Benchmark Programs iAPX 88/10 280 Z80/iAPX 88
Computer Graphics 40 151 3.78
16-Bit Multiply 14 41 2.93
Vector Add 18 30 1.67
Block Move 15 11 0.73
Block Translate 24 26 1.08
Character Search 18 15 0.83
Word Shift 6 21 3.50
Bubble Sort 38 62 1.63
Reentrant Call 48 83 1.73
Interrupt Response 15 28 1.87
Average Relative Code Size* 1.97
Adjusted Average Relative Code Size* 1.91
NOTE:
*See Table 3, notes 3 and 4 for description of average calculations.
N ol 3.0 r
9 =
251
25 |- ’_‘
8
5
% RS S 1.97
3 g2or ]
acl o] @ <
Is w [
W ¢ E
8z .| |3 = L
3 o ]
.| > 3
wy > <
5: E 0.31 g 10 - 1.0 1.0
g 93r |k o 4 0.26
S H . g 4] 021 > 2 e
2 2f |8 E- $8 g 52 4 2 g
z e 8 2z wsd A o838 - x x °
H saeg| BB lER| [3:E] [ E g E g
Tl HHREARGAR BRG]
PROCESSOR PROGRAM LENGTH CODE SIZE

Graph |. Normalized Average Throughput

Graph Il. Normalized Average: Program Length and

Code Size

AFN-01664A



APPENDIX

CONCLUSION

The results of this benchmark study show that the iAPX
88/10 significantly outperformed both the Z80A and
Z80B for the benchmark programs used. Table 8 shows
that the iAPX 88 is faster than both the Z80A and the
7Z80B, and that the iAPX 88 uses fewer lines of code,
less memory and cheaper memory than the Z80.

The iAPX 88 did particularly well in the programs
which were word oriented. It was also efficient to pro-
gram due to the powerful instruction set and flexible ad-
dressing modes. Both processors do have useful string
instructions and a loop instruction with an automatic
counter. The Z80 has faster interrupt response, but was
slower and less efficient than the iAPX 88 for nearly all
other benchmarks.

In view of these results, it appears that the iAPX 88 is a
better choice for applications where high throughput,
low development cost and low memory cost are impor-
tant considerations.

Table 8. Performance Breakdown

Performance Ratio of
Performance Category iAPX 88 to Z80

Execution Speed (Z80A)
Execution Speed (Z80B)
Execution Speed (Z80A)*
Execution Speed (Z80B)**
Execution Speed (Z80B)***
Ease of Programming

Coding Efficiency

iAPX 88/10 is 3.79X faster
iAPX 88/10 is 2.52X faster
iAPX 88/10 is 4.77X faster
iAPX 88/10 is 3.20X faster
iAPX 88/10 is 3.83X faster
iAPX 88/10 is 2.51X more
efficient
iAPX 88/10 is 1.97X more
efficient

NOTES:

*JAPX 88 vs Z80A with comparable memory (Z80A with 1 wait state).

**APX 88 vs Z80B with comparable memory (Z80B with I wait state).

***APX 88 vs Z80B with comparable memory (Z80B with 2 wait states).

AFN-01664A






APPENDIX

APPENDIX

BENCHMARK PROGRAM CODE AND FLOWCHARTS

READ M1

!

READ M2

!

P2:P1=M1x M2

1

STORE P1

1

STORE P2

!

Figure 1. 16-Bit Multiply Flowchart

1 AFN-01664A



APPENDIX

BENCHMARK: 16-Bit Multiply

PROCESSOR: Intel iAPX 88
;sREGISTER USAGE:
; AX- ACCUMULATOR
; DX- ACCUMULATOR

Bytes Cycles

3 18 MOv AX, M1 ;Read operand
4 137 MUL M2 ;A*B

3 19 MOv P1,AX ;Store LSB

4 19 MOv Pz,DX ;Store MSB

14 bytes of code
4 lines of code

12



APPENDIX

BENCHMARK:

PROCESSOR: 280

Bytes

Cycles
20 LD
20 LD
7 LD
10 LD
11 LP: ADD
4 EX
7/12 JR
11 ADD
10 JP
11 MP1: ADD
6 INC
4 MP2: EX
7/12 JR
11 ADD
7/12 JR
6 INC
4 MP3: DEC
10 JP
20 LD
16 LD

16-Bit Multiply

;Register usage

H A -
3 DE -
5 BC -
5 HL -

DE, (M1)
BC, (M2)

A, 16

HL,0

HL, HL
HL,DE
C,MP1
HL,HL

MP2

HL, HL

HL

HL,DE
NC,MP3
HL,BC
NC,MP3

DE

A

NZ,LP
(PRMSB) , DE
(PRLSB) HL

41 bytes of code
20 lines of code

13

Count

Multiplier, Product MSB

Multiplicand
Product LSB

;Load multiplier

;Load multiplicand

;Load count

;Clear HL

;Shift product LSB left

;Exchange MSB with LSB

;dump if carry from LSB

;No carry. Shift multiplier left.

;Carry. Shift multiplier left.
;Increment multiplier

L]

;dump if no carry from multiplier
;Add multiplicand to product LSB
;dump if no carry

sIncrement MSB due to Add carry
;Decrement count

;Loop if not zero

;Store product

AFN-01664A



APPENDIX

INITIALIZE
TRANSLATE, EBCDIC
AND ASCII TABLE
POINTERS

T

INITIALIZE COUNT

!

READ EBCDIC

NO

CHARACTER

!

TRANSLATE TO
AsSCll

T

STORE IN
ASCIlI BUFFER

UPDATE POINTERS
AND COUNTER

YES

Figure 2. Block Translate Flowchart

14

AFN-01684A



APPENDIX

BENCHMARK:
PROCESSOR: Intel
Bytes Cycles

4 8

4 8

4 8

4 18

1 2

1 16 NEXT:

1 15

1 15

2 3

2 19/5

iAPX 88

; REGI
; AL
: BX
s CX
; SI
; DI

LEA
LEA
LEA
MOv
CLD

LODS
XLAT
STOS
CMP
LOOPNE

24 byt
10 1in

Block Translate

STER USAGE

- ACCUMULATOR

- TRANSLATE TABLE POINTER

- COUNT

- EBCBUF POINTER

- ASCIBUF POINTER
BX, TABLE ;Initialize Table Pointer
SI, EBCBUF ;Initialize EBCDIC Pointer
DI, ASCIBUF ;Initialize ASCII Pointer
CX, COUNT ;Initialize COUNT

;Clear direction flag

EBCBUF ;Read EBCDIC character
TABLE ;Translate to ASCII
ASCIBUF ;Store translated byte
AL,EOL ;Compare with terminator
NEXT ;Loop unless AL=EOL or CX =0

es of code

es of code

15 AFN-01664A



APPENDIX

BENCHMARK :

PROCESSOR:

Bytes

WWwWw—Ww

WN e N = N\

Block Translate

780

Cycles

10

4
10
10
10

[ e R I NE N

—_— o —

LP:

;Register usage

A
BC
DE
DE"
HL
SP

Ve we e Us we we

LD
EXX
LD
LD
LD

EXX
LDD
EXX
LD
LD
ADD
LDI
JP

Accumulator

Count

ASCII Buffer

EBCDIC Buffer
Accumulator

Translate table pointer

DE',EBCBUF ;Load EBCDIC pointer
;Store pointer in DE'

BC, COUNT ;COUNT = 125

DE, ASCIBUF ;Load, ASCII pointer

SP, XTBL ;Load translate table pointer
;Restore EBCDIC pointer

A,(DE") ;Load EBCDIC character
;Restore pointers

H,0 ;Clear H

L,A ;Load character into A

HL,SP ;Address of ASCII character

(DE), (HL) ;Move ASCII character

PO,LD ;dump if not done

26 bytes of code
13 lines of code

16 AFN-01664A



APPENDIX

FLAG = TRUE

FLAG=TRUE? DN

YES

FLAG = FALSE
KNT=COUNT -1
I=0

ARRAY(l) >
ARRAY (I +1)?

EXCHANGE ARRAY ()
AND ARRAY (I +1)

!

FLAG =TRUE

NO

I=1+1
KNT=KNT -1

YES

Figure 3. Bubble Sort

17 AFN-01664A



APPENDIX

BENCHMARK: Bubble

PROCESSOR: iAPX 88

Bytes

N N — —

Cycles

Sort

sREGISTER USAGE:

5 AX
BL
CX
DX
SI

Vs e e e

MOv

Cmp
JNE
XOR
MOv
DEC
XOR

MOv
CMP
JLE
XCHG
MOv
MOv

INC
INC
Loop
JMP

ACCUMULATOR

EXCHANGE FLAG (OFF=TRUE, 0= FALSE)

COUNT OF ELEMENTS
ACCUMULATOR
INDEX OF ARRAY

BL,OFFH
BL,OFFH
A4

BL,BL
CX,COUNT
CX

SI,SI

AX,ARRAY[SI]
AX,ARRAY[SI+2]
A3

ARRAY[SI+2],AX
ARRAY[SI],AX
BL,OFFH

SI
SI
Az
Al

38 bytes of code
17 lines of code

18

;EXCHANGE=TRUE
sEXCHANGE=TRUE ?
;5 NO, FINISHED
sEXCHANGE=FALSE
;CX=COUNT=1
;3SI,=0

sARRAY (1)

;s ARRAY(I+1) ?
;NO

;EXCHANGE ELEMENTS
sEXCHANGE=TRUE
;SI=SI+2

;DEC CX & LOOP IF CX=0

AFN-01664A



APPENDIX

BENCHMARK:

PROCESSOR: 780

Bytes

w SN

Cycles

8
14
10

8 LI:
7/1¢

8

10

Lz:

—_
POOCOORN

—_— N —
—_
~N

ON— 0O PrOOOWOON—PDPD

NOEX:

—_~ —
j—
n

DONE:

Bubble Sort

sREGISTER USAGE:

DE
HL
HL
IX
DE

e Ve ve We we we

EXX

BC - ACCUMULATOR

ACCUMULATOR

COUNT

ACCUMULATOR

ARRAY POINTER
TEMPORARY STORAGE

FLAG,A ;Set FLAG bit

IX,PTR ;Load pointer to array
DE,1 ;Load decrement constant
FLAG,A ;Test FLAG

Z,DONE ;Done if zero

FLAG,A ;Reset FLAG

HL,COUNT-1 sLoad COUNT

C, (IX+0) ;Load data (I)

B,(IX+1)

L, (IX+2) ;Load data (I+1)

H, (IX+3)

E,L ;Save date in DE

D,H

A,A ;Clear carry flag

HL,BC ;Compare data

NC,NOEX ;No ex if data(I) data(I+1)
(Ix+2)cC ;Exchange

(Ix+2)8B

(IX+0)E

(IX+1)D

FLAG,A ;Set exchange flag

IX s;Increment Pointer

IX

A,A ;Clear carry flag
HL',DE' ;Decrement COUNT

NZ,L2 ;dump if COUNT not zero
L1 ;Another pass

62 bytes of code
30 lines of code

19 AFN-01664A



APPENDIX

Benchmark Report:
Intel® iAPX 88 vs
Motorola MC6809

MC6809 is a registared trademark of Motorola Corporation.

20

Contents

INTRODUCTION . ........coii i 21

PROCESSOR DESCRIPTION.................... 21
iAPX 88 Description . ...........vviiiiinnn. 22
MC6809 Description . .........civiiiiiinn.. 22
Table 1. Architectural Features ............... 21

BENCHMARK PROGRAM DESCRIPTIONS........ 23

RESULTS ... .. i i 24
Table 2. ExecutionTimes .................... 24
Table 3. Execution Times with “Equal”

Memory Access Times . .......coveevvnenn. 25
Table 4. Memory Utilization................... 25
Table 5. Ease of Programming ................ 26
Graph I. Normalized Average Throughput....... 26
Graph Il. Normalized Average Memory Use

and LinesofCode .................. 26
CONCLUSION .........oiiiiiiiiiiienneneann, 27
Table 6. Performance Breakdown.............. 27

APPENDIX |. BENCHMARK PROGRAM CODE

AND FLOWCHARTS*.............. 28
Figure 1. 16-Bit Multiply Flowchart ............ 28
Figure 2. Block Move Flowchart............... 31
Figure 3. Character Search Flowchart.......... 34

*Includes code and flowcharts from three benchmark programs. For the
code and flowcharts for all benchmark programs contact your local
Intel sales office.

tMuiltibus is a trademark of Intel Corporation.

AFN 01532A



APPENDIX

INTRODUCTION

This benchmark report compares the capabilities of
Intel’s iAPX 88/10 microprocessor with those of the
Motorola MC6809. The purpose of the report is to aid
the user in his evaluation of the two processors, and to
provide him with some of the information he will need
in making a knowledgeable decision regarding which
processor best satisfies the requirements of his applica-
tion.

Because the requirements can vary so greatly from one
system to the next, no one program can adequately
display the capabilities of each processor. For this
reason, ten programs have been chosen to demonstrate
the performance of the iAPX 88/10 and MC6809 in
several areas. The benchmark programs cover some of
the basic tasks which are relevant to many of the ap-
plications for which these two processors might be con-
sidered. These ten programs demonstrate the proces-
sors’ capabilities in the areas of data manipulation,
computation, and processor control. Each program was
defined in such a way as to be relatively straight-
forward, while still allowing the processors to use their
instruction set efficiently in implementing the program.

The benchmark programs were used to evaluate the
iAPX 88/10 and MC6809 on the basis of execution
speed, memory usage, and ease of programming (num-
ber of lines of code). These factors were considered
because they are often the key requirements evaluated
when a design decision is made. Execution speed is a
direct measure of how fast a processor will complete a
task. This can be the critical requirement for many real-
time control or multi-user systems. Here, cost may not
be the primary issue because a less expensive but slower
system may be inadequate, regardless of the cost sav-
ings. On the other hand, many systems do have critical
cost requirements for which it may make sense to sacri-
fice some execution speed in order to reduce costs. For a
memory intensive system, the cost can be reduced signi-
ficantly by using less memory, or cheaper, lower speed
memory. For this reason, coding efficiency and memory
access time were examined to help evaluate price/
performance tradeoffs. Another factor, the ease of pro-
gramming, is becoming more and more important as the
cost of memory decreases and the size of the typical
microcomputer application rapidly grows. For many
applications, software development costs have become
greater than hardware development costs. This means
that the total development costs of such a project can be
substantially reduced by using the processor which ac-
complishes the most in the least number of lines of code.
To demonstrate performance in this area, the processors
have also been evaluated on the basis of the number of
lines of code required for each program which has been
defined as ‘‘ease of programming.”’

The benchmark programs in this report were written for
the purpose of comparing the iAPX 88/10 and MC6809
microprocessors. They should be used only as a guide in

evaluating processor performance and are not an ab-
solute measure of performance for all applications. The
programs were written to perform the tasks in a clear
and straightforward manner. They do not necessarily
show an optimized implementation of the task. The
benchmark programs do, however, provide relevant in-
formation and a consistent comparison which may be
useful to the designer in choosing the microprocessor
which delivers the best solution to the requirements of
his design.

PROCESSOR DESCRIPTION

A brief description of some of the key features of the
iAPX 88 and MC6809 is included here and in Table 1.

Table 1. Architectural Features

Feature iAPX88/10 | MC6809
Memory Addressability 1 megabyte | 64K bytes
General Registers
Number 8 or 8+4* 2 or 1**
Size (bits) 16 or 8,16* | 8 or 16**
Instruction Sizes (bytes) 1,2,3,4,5,6 1,2,3,4,5
Operand Addressing Modes
Register Yes Yes
Immediate Yes Yes
Direct Address Yes Yes
Register Indirect Yes Yes
Indexed or Based Yes Yes
Base + Indexed Yes No
Base + Displacement Yes No
Index + Displacement Yes Yes
Base + Indexed + Displacement Yes No
Indexed Indirect No Yes
Auto Increment/Decrement Yes Yes
Data Types
BCD Digits Yes Yes
ASCII Digits Yes No
Bytes * Yes Yes
Words Yes Yes
Unsigned Integers Yes Yes
Signed Integers Yes Yes
General Double Operand ’
Operations
Reg with Reg to Reg Yes No
Reg with Mem to Reg Yes Yes
Reg with Mem to Mem ) Yes No
Reg with Imed to Reg Yes Yes
Mem with Imed to Mem Yes No
Mem with Mem to Mem Yes No
Interrupts
NMI Yes Yes
Software Interrupts (#) Yes (256) Yes (3)
Fast External Interrupts (#) No -1 Yes (1)
Multi-Vectored Interrupts (#) Yes (256) No

*The AX, BX, CX and DX registers can be used as four 16-bit registers, or as
eight 8-bit registers. With the index and pointer registers, this gives eight 16-bit
registers, or eight 8-bit and four 16-bit registers.

**The A and B registers can be used as two 8-bit registers or as one 16-bit
register.

AFN 01532A



APPENDIX

The topics discussed are Architecture, Memory Timing,
Instruction Sets, and Addressing Modes. For more com-
plete descriptions, refer to Intel’s 8086 Family Users’
Manual and Motorola’s MC6809 Preliminary Program-
ming Manual or other related literature.

iAPX 88

The Intel 8088 (or 88/10) is the host processor of the
iAPX 88 microcomputer system. The 88/10 is an
N-channel MOS microprocessor which, currently has a
maximum clock rate of S MHz. Internally the 88/10is a
microcoded 16-bit processor which multiplexes a 16-bit
internal data bus onto an 8-bit system data bus for ex-
ternal communication. The address space is one mega-
byte which is segmented to support modular programm-
ing. Except for the implementation of the Bus Interface
Unit the 88/10 is identical to the Intel 86/10
MiCroprocessor.

The architecture of the 88/10 is divided into two
separate processing units, the Bus Interface Unit (BIU)
and the Execution Unit (EU). These two units perform
separate functions in parallel to maximize throughput.

The EU contains the 16-bit arithmetic/logic unit (ALU)
as well as the general registers and flags of the CPU. It is
responsible for executing instructions, and communi-

cates only with the BIU. The BIU performs all bus -

operations needed by the EU. It contains the segment
registers, the instruction pointer, the bus control logic
and the instruction queue. Because the BIU operates in
parallel with the EU, instruction fetches overlap instruc-
tion execution. The result is efficient utilization of the
system bus and transparent instruction prefetch.

The 88/10 contains three sets of four 16-bit registers,
and nine one-bit flags. The four data group registers,
AX, BX, CX and DX, as well as the four pointer and in-
dex registers, SP, BP, SI and DI, are all 16-bits wide and
can be used as source and destination in most arithmetic
and logic operations. All eight of these general registers
function as accumulators for many instructions. The
data group registers, AX, BX, CX and DX can also be
used as eight 8-bit accumulators for byte operations.
The pointer and index registers also serve as address
registers in addition to their general register functions.
The SI and DI registers function as the source and
destination pointers for the string operations. The Stack
Pointer register (SP) is used in stack operations, and the
BP register is a base pointer for stack relative Based Ad-
dressing modes frequently used in high level language
programming. The four 16-bit segment registers, CS,
DS, SS and ES, provide memory segmentation expand-
ing the address space to one megabyte.

The iAPX 88 uses a four-clock basic bus cycle. The nor-
mal memory access time is 460 nsec. To use memories
slower than this, wait states of 200 nsec can be added.
Using one wait state produces a memory access time of
660 nsec.

22

The iAPX 88/10 instruction set operates on bits, BCD
digits, ASCII digits, 8-bit bytes, 16-bit words, and
signed or unsigned integers. Many of the two operand
instructions allow both operands to reside in registers,
or one in a register and one in memory. The order of the
operands is interchangeable, and the location of either
source operand may serve as the destination for the
result. The arithmetic instructions include 8- or 16-bit
Add, Subtract, Multiply, Divide and Compare of signed
or unsigned integer values. The iAPX 88 instructions
are identical to those of the iAPX 86 providing complete
software compatibility.

Twenty-four addressing modes are available to directly
or indirectly access data and operands. These modes
allow from one to four component addressing using
combinations of segment, base, and index registers,
and/or 8- or 16-bit displacements. The string instruc-
tions provide auto increment and auto decrement ad-
dressing, memory to memory operations, and have an
optional repeat prefix.

The iAPX 88 in the minimum mode supports the hold/
hold acknowledge protocol to enable bus control to be
transferred to another bus master such as a DMA con-
troller. It can also be configured in the maximum mode
with two request/grant lines, each of which can support
multiple bus masters for coprocessor designs using the
8087 Numeric Data Processor and/or the 8089 1/0
Processor (1IAPX 88/20, iAPX 88/21, iAPX 88/11).
Even though not considered on these benchmarks, the
8087 (1IAPX 88/20) uniquely enhances the iAPX 88/10
(86/10) capabilities with 68 additional instructions, in-
cluding 64-bit floating point and transcendental func-
tions, eight 80-bit stack oriented registers and seven ad-
ditional numeric data types.

The iAPX 88 provides nonmaskable software (internal)
interrupts and maskable or nonmaskable hardware (ex-
ternal) interrupts. The interrupt structure supports up to
256 different interrupt types using an interrupt vector
table located in memory. For more information regard-
ing interrupts see your local Intel office.

MC6809

The Motorola MC6809 is an N-channel random logic
MOS microprocessor which is available at 1.0 MHz, 1.5
MHz or 2.0 MHz clock rates. The MC6809 can address
up to 64 kbytes of memory. The A and B registers are
two 8-bit accumulators which may be concatenated into
a single 16-bit accumulator, the D register. There are
four pointer registers: X, Y, U and S. All are 16-bits
wide and function primarily as base registers for
memory addressing. The U and S registers are also used
for manipulating the hardware and user stacks. The
16-bit program counter (PC) points to the address of the
next instruction, and can also be operated on for control
transfer. The 8-bit Direct Page Register (DPR) is used to
contain the upper eight address bits for some addressing

AFN 01532A



APPENDIX

modes. The processor flags are contained in the 8-bit
condition Code Register (CCR).

The basic bus cycle of the MC6809 is a single, 500 nsec
clock cycle for the 2.0 MHz version. The normal
memory access time is 320 nsec. To accommodate
slower memories, 125 nsec wait states can be added. Ad-
ding one wait state extends the memory access time to
445 nsec.

Although the instruction set of the MC6809 operates
predominantly on 8-bit data, there are a few bit opera-
tions, two BCD adjusts, and eight instructions with
16-bit operands. Most two operand instructions require
one operand to be in a register, and the other operand to
reside in memory, with the result going to the register.
Two operand instructions such as Add or Compare can-
not be done from register to register. The exceptions to
this are the Multiply, Transfer Exchange, and Sign Ex-
tend instructions, for which both source operands and
the destination operand must be in registers. The arith-
metic instructions include 8-bit unsigned integer Multip-
ly and 8- or 16-bit Add, Subtract and Compare. Other
16-bit instructions include Load, Store, Exchange,
Transfer, and Sign Extend.

For stack manipulation, a single Push or Pull instruc-
tion allows any combination of registers to be placed on
or removed from either of the two stacks. There are also
19 branch instructions, in long (16-bit offset) or short
(8-bit offset) forms.

The MC6809 supports 13 different addressing modes.
Included in these modes are 5 forms of indexed address-
ing, including indexed Auto Increment and Auto Decre-
ment modes which are useful for string operations.
Relative addressing for Branch instructions use one- or
two-byte offsets as a pointer to a data location.

The MC6809 provides maskable and nonmaskable
hardware interrupts, as well as three software inter-
rupts. There are two maskable hardware interrupts,
FIRQ and IRQ. The FIRQ (Fast Interrupt Request)
pushes only the Condition Code and Program Counter
registers. The IRQ automatically pushes all of the
MC6809 registers (except the SP) onto the stack. Each
MC6809 interrupt has a fixed vector address, fetching
its service routine address from a predefined memory
location. For more information regarding hardware and
software interrupts see your local Intel office.

PROGRAM DESCRIPTIONS

The ten benchmark programs were chosen to demon-
- strate the capabilities of the iAPX 88/10 and the
MC6809 in the areas of data manipulation, computa-
tion, and processor control. The basic algorithms for
several of the programs (Block Move, Character Search,
Word Shift, Vector Add, and 16-Bit Multiply) are
similar to the algorithms of benchmark programs in
Motorola’s MC6809 Preliminary Programming
Manual. All iAPX 88 code has been assembled and run.

23

1. Computer Graphics

The Computer Graphics program scales the X and Y
pairs that make up a graphics display. The 16-bit X and
Y pairs are offset by constant values (X0 and YO0), then
multiplied by a fractional scale factor to obtain the
scaled XY pairs. There are 16,384 pairs. This program
demonstrates 16-bit computational capability.

2. 16-Bit Multiply .
The 16-Bit Multiply program reads two 16-bit numbers
from memory, multiplies them and returns the 32-bit
product and the two multiplicands to memory. Multiply
demonstrates 16-bit computational capability.

3. Vector Add

The 16-Bit Vector Add performs an element-by-element
add of two twenty-element vectors. Vector add demon-
strates 16-bit computation and string processing capa-
bilities.

4. Block Move

The Block Move program reads the block length,
source, and destination from memory. The block length
was chosen to be 126 bytes. The data is moved from the
source to the destination using word moves. Block
Move demonstrates data manipulation and auto incre-
ment addressing.

5. Block Translate

The Block Translate program translates a memory
block containing EBCDIC characters to ASCII and
stores the ASCII characters in another memory block.
The translation is done using an EBCDIC to ASCII
translation table, and the block length is 125 bytes. This
demonstrates data manipulation, auto increment ad-
dressing, and the use of a lookup table.

6. Character Search

The Character Search program searches a table of
known length for a specific character. If that character
is found, its address is returned. If it is not found, zero
is returned. This program demonstrates data com-
parison and auto increment addressing.

7. Word Shift

The Word Shift program reads a 16-bit word from
memory, and shifts it N places to the right. (N is chosen
to be five.) Zeros rotate in on the left. The result is
stored in memory. This demonstrates manipulation of
16-bit data.

8. Reentrant Call

The Reentrant Call program passes three parameters to
the called procedure. One is pushed from a general
register, the other two are pushed from memory. The
procedure is called, the state of the processor is pushed
onto the stack, and local storage is set up. The pro-
cedure body adds the three parameters and places the
result in local storage. The procedure is then exited and
the state of the processor is restored.

AFN 01532A



APPENDIX

This program demonstrates the processor’s call and re-
entrant procedures and its ability to pass variables to a
called procedure. Support of these features is essential
for structured programming.

9. Interrupt Response

1. Single-Vectored Interrupt

The Single-Vectored Interrupt pushes all the processor
registers (except the Stack Pointer) onto the stack, and
jumps to a service routine. All registers are restored
before returning. The time also includes the length of
time the processor requires to execute the longest
instruction before recognizing the interrupt.

II. Multi-Vectored Interrupt

The Multi-Vectored Interrupt stacks only the Instruc-
tion Pointer/Program Counter and Flags/Condition
Code registers. The processor must determine which of
eight possible devices initiated the interrupt request, and
jump to the corresponding service routine. The return
time is also included.

RESULTS

The results of this study are presented in terms of execu-
tion speed, memory usage, and ease of programming.
To be relevant to applications where speed is the crucial
factor, the processors are first compared at their highest
performance, with no wait states. Then for the cases
where memory cost is an issue, comparisons are made
for execution speed with (nearly) equal memory access
times, and for coding efficiency. The processors are also
compared on the ease of programming (number of lines
of code) which can be an important factor in the
development costs of a project.

The zero wait state execution speed of the iIAPX 88/10 is
compared to that of the MC6809 in Table 2. For each
program, the execution time is given in terms of Ab-

solute Time and Normalized Time for each processor.
The Normalized Time is the Absolute Time required by
the processor for that benchmark divided by the Ab-
solute Time of the iAPX 88/10 for that benchmark. The
Average Normalized Time was computed by adding the
Normalized Times and dividing by the total number of
benchmarks (10). The Adjusted Average Normalized
Time is calculated in the same manner as the Average
Normalized Time, except that the highest and the lowest
numbers were eliminated from this average. This was
done because the Average Normalized Time was greatly
affected by the Computer Graphics benchmark. This
method is used when computing averages for other
categories as well.

The execution speed comparison made in Table 2 shows
that the iAPX 88/10 performed faster for eight of the
ten benchmarks. The MC6809’s Average Normalized
Time of 3.65 says that it required 265% more time than
the iAPX 88/10. The Adjusted Average Normalized
Time (1.86), which eliminated the Computer Graphics
and Single-Vectored Interrupt benchmarks, shows that
the MC6809 is 86% slower, or requires 86% more time,
than the iAPX 88/10 to complete these benchmarks.

For applications where the cost of memory is a critical
factor, both the speed of memory, and the amount of
memory must be considered. By speed of memory, we
are referring to the memory access time, which is a ma-
jor factor in the price of memory. Because the memory
access time of the iAPX 88 is 460 nsec with no wait
states, one wait state is added to the MC6809. This gives
a 445 nsec memory access time, which is still less than
the 460 nsec zero wait state time of the iIAPX 88. A com-
parison of the execution speeds of the two processors
for this case is made in Table 3 (Execution Times With
‘““Equal’”’ Memory Access Times), showing that the
iAPX 88/10 was again faster than the MC6809 for eight

Table 2. Execution Times (5 MHz 88/10 vs 2 MHz 6809)

Absolute Time Normalized Time

Benchmark Programs iAPX 88/10 MC6809 iAPX 88/10 MC6809
Computer Graphics 2.32 sec 49.7 sec. 1 21.42
16-Bit Multiply 40.8 us | 82.0 us 1 2.01
Vector Add 295.0 us 325.0 us 1 1.10
Block Move 328.0 us 674.0 us 1 2.05
Block Translate 1507.0 us 2687.0 us 1 1.78
Character Search 136.0 us 284.0 us 1 2.09
Word Shift 13.0 us 44.5 us 1 3.42
Reentrant Call 87.6 us 76.5 us 1 0.87
Single-Vectored Interrupt 102.6 us 25.5 us 1 0.27
Multi-Vectored Interrupt 24.6 us 45.5 us 1 1.85

Average Normalized Execution Time* 1 3.69

Adjusted Average Normalized Execution Time** 1 1.90

*The Average Normalized Time is the sum of the processor’s normalized times for all programs divided by the number of programs (10).

**The Adjusted Average Normalized Execution Time is the average of the normalized times, excluding the highest and lowest normalized times.

24 AFN 01532A




APPENDIX

Table 3. Execution Times with “Equal” Memory Access Times (5 MHz 88/10 vs 2 MHz 6809)

Absolute Time

Normalized Time

Benchmark Program iAPX 88/10 MC6809* iAPX 88/10 MC6809
Computer Graphics 2.32 sec. 57.1 sec. 1 24.61
16-Bit Multiply 40.8 us 91.9 us 1 2.25
Vector Add 295.0 us 369.0 us 1 1.25
Block Move 328.0 us 763.0 us 1 2.33
Block Translate 1507.0 us 3016.0 us 1 2.00
Character Search 136.0 us 324.0 us 1 2.38
Word Shift 14.4 us 49.1 us 1 3.78
Reentrant Call 87.6 us 84.1 us 1 0.96
Single-Vectored Interrupt 102.6 us 30.1 us 1 0.29
Multi-Vectored Interrupt 24.6 us 55.3 us 1 2.25

Average Normalized Execution Time** 1 4.21
Adjusted Average Normalized Execution Time** 1 2.15

*Times for the MC6809 include one wait state on memory accesses.
**See note, Table 2, for description of average calculations.

of the ten programs. The MC6809’s Average Normal-
ized Time of 4.17 greatly reflects (as it did in Table 2)
the fact that the iAPX 88/10 outperformed the MC6809
by a large margin (more than 24 to 1) in the Computer
Graphics benchmark. The Adjusted Average Normal-
ized Time of 2.10 indicates that, after eliminating the
Computer Graphics and Single-Vectored Interrupt, the
iAPX 88/10 was more than twice as fast as the MC6809.

Table 4 compares the performance of the iAPX 88 and
the MC6809 in terms of memory use, or coding efficien-
cy. The results in this table show that the iAPX 88 used
less code for nine of the ten programs. The two pro-

grams in which the largest performance differences oc-
curred were the interrupt response benchmarks. The
MC6809 won on the Single-Vectored Interrupt, largely
due to the use of its IRQ interrupt which automatically
stacks all the MC6809’s registers. The iAPX 88/10 per-
formed better for the Multi-Vectored Interrupt because
its interrupt response requires no extra code to accom-
modate multiple interrupt vectors. For the other pro-
grams, the iAPX 88 provides significant advantages due
to its string instructions and its efficient handling of
16-bit quantities. The Adjusted Average Normalized
Number of Bytes shows the iAPX 88 with better than a
2 to 1 advantage over the MC6809 in coding efficiency.

Table 4. Memory Utilization (Bytes)

Bytes of Code

Normalized Bytes

Benchmark Program iAPX 88/10 MC6809 iAPX 88/10 MC6809
Computer Graphics 40 180 1 4.50
16-Bit Multiply 14 56 1 4.00
Vector Add 18 21 1 1.17
Block Move 15 26 1 1.73
Block Translate 24 37 1 1.54
Character Search 18 19 1 1.06
Word Shift 6 18 1 3.00
Reentrant Call 48 49 1 1.02
Single-Vectored Interrupt 15 1 1 0.07
Multi-Vectored Interrupt 1 15 1 15.00

Average Normalized Number of Bytes of Code* 1 3.31
Adjusted Average Normalized Number of Bytes of Code* 1 2.25
*See note, Table 2, for description of average calculations.

25 AFN 01532A




APPENDIX

In Table S the iAPX 88 and the MC6809 are compared
for ‘“Ease of Programming’’ by counting the number of
lines of code required for each benchmark. The iAPX
88 used a smaller number of lines of code than the
MC6809 for eight of the ten programs. As in coding ef-
ficiency, the greatest differences occurred in the two in-
terrupt response benchmarks, with the MC6809 again
having an advantage in the Single-Vectored Interrupt,

and the iAPX 88/10 using fewer instructions in the
Multi-Vectored Interrupt. For the other programs, the
iAPX 88’s use of string instructions, and its ability to
handle 8-bit or 16-bit data allowed the algorithms to be
implemented in fewer lines of code. The Adjusted
Average Normalized Lines of Code was 2.67 showing
that the iAPX 88 used less lines of code than the
MC6809 by a factor of more than 2.6 to 1.

Table 5. Ease of Programming

Lines of Code Normalized Lines
Benchmark Program iAPX 88/10 MC6809 iAPX 88/10 MC6809
Computer Graphics 15 87 1 5.80
16-Bit Multiply 28 1 7.00
Vector Add 8 8 1 1.00
Block Move 7 14 1 2.00
Block Translate 10 13 1 1.30
Character Search 8 9 1 1.13
Word Shift 2 9 1 4.50
Reentrant Call 26 23 1 0.88
Single-Vectored Interrupt 15 1 1 0.07
Multi-Vectored Interrupt 1 8 1 8.00
Average Normalized Number of Lines of Code* 3.17
Adjusted Average Normalized Number of Lines of Code* 1 2.95
*See note, Table 2, for description of average calculations.
1 1APX 83110 IAPX 8810
100 1.00 B
5 6809
2 AVERAGE ca00
% L w s 319 AVERAGE 1 ysTED
2o 6808 2.94 | AVERAGE
EE ADJUSTED 6809 & ADJUSTED 267
w2 AVERAGE ADJUSTED H AVERAGE
32t 54 AVERAGE 22l 210
wo 48 N "
ai e :
gt AVERAGE AV SE S | iapx es 1APX 88
2 27 z4
= 24 1.00 1.00
o
o
z
HIGHEST SPEED SPEED WITH EQUAL MEMORY BYTES OF CODE LINES OF CODE
ACCESS TIME

Graph I. Normalized Average Throughput:
5 MHz iAPX 88/10 vs 2 MHz 6809

26

Graph Il. Normalized Average Memory Use and Lines
of Code: iAPX 88/10 vs 6809

AFN 01532A



APPENDIX

CONCLUSION

The results of this benchmark study show that for the
programs used, the Intel iAPX 88/10 significantly out-
performed the Motorola MC6809. In absolute execution
speed, the iIAPX 88/10 proved to be 86% faster than the
MC6809 (using the Adjusted Average). When compared
at equal memory access times, the iAPX 88/10 outper-
formed the MC6809 by 110%. On the basis of coding
efficiency, the iAPX 88/10 generated less than half as
much object code as the MC6809. In the Ease of Pro-
gramming category, the results showed that the MC6809
required more than 2.6 times the number of lines of
code required by the iAPX 88/10. These results are
summarized in the table below.

Table 6. Performance Breakdown

Performance Ratio of
iAPX 88 to MC6809

iAPX 88/10 is 1.86X

Performance Category

Execution Speed

(Fastest) faster
Execution Speed* iAPX 88/10 is 2.10X
faster

iAPX 88/10 is 1.47X
more efficient

iAPX 88/10 is 2.67X
more efficient

Coding Efficiency

Ease of Programming

*With equal speed memory

~ The iAPX 88 is the highest performance 8-bit micro-

27

processor in the market today. The already superior per-
formance of the iIAPX 88 will be increased by 60% when
the 8 MHz version is available in 1981. This, together
with the upgrade path to other object code compatible
processor series in the Microsystem 80 product line
(1APX 86, iAPX 188, 186 and iAPX 286, 288), and the
unequalled hardware and software support, makes it
clear that Intel delivers the best solution to the many ap-
plications which require a powerful 8-bit microproc-
€ssor.

AFN 01532A



APPENDIX

APPENDIX |

BENCHMARK PROGRAM CODE AND FLOWCHARTS*

READ M1

!

READ M2

Y

P2:P1=M1x M2

¥

STORE P1

k2

STORE P2

!

Figure 1. 16-Bit Multiply Flowchart

*This appendix contains the code and flowcharts for three of the benchmark programs (16-Bit Multiply, Block Move,
and Character Search). For the code and flowcharts for all benchmark programs contact your local Intel sales office.

28 AFN 01532A



APPENDIX

BENCHMARK :
PROCESSOR:
Bytes Cycles

3 18

4 137

3 19

4 19

16-Bit Multiply
Intel iAPX 88

MOv
MUL
MOv
MOv

;REGISTER USAGE:

5 AX- ACCUMULATOR
5 DX- ACCUMULATOR

AX, M
M2

P1,AX
P2,DX

14 bytes of code
4 lines of code

29

;Read operand
sA*B

;Store LSB
;Store MSB

AFN 01532A



APPENDIX

BENCHMARK: 16-Bit Multiply
PROCESSOR: Motorola 6809

sREGISTER USAGE:

3 D - ACCUMULATOR

5 X - OPERAND POINTER
3 Y - OPERAND POINTER
5 U - PRODUCT POINTER

Bytes Cycles

3 3 LDX #AA ;Pointer to multiplicand A(MS Byte)
4 5 LDY #BB ;Pointer to multiplicand B(MS Byte)
3 3 LDU #MO ;Pointer to product

2 6 CLR o,u ;CLR MO

2 6 CLR 1,U ;CLR M1

2 5 LDA 1,X ;Read LS byte of A (AL)

2 5 LDB 1,Y ;Read LS byte of B (BL)

1 1 MUL sAL*BL

2 6 STD 2,U ;Store in M3:M2

2 4 LDA 0,X ;Read MS byte of A (AH)

2 5 LDB 1,Y ;Read LS byte of B (BL)

1 11 MUL sAH*BL

2 7 ADDD 1,U ;AH*BL + MS byte from AL*BL
2 6 STD 1,U ;Store in M2:Mi1

2 3 BCC AB1 ;Skip INC if no carry

2 6 INC 0,U ;Add carry to MO

2 5 AB1 LDA 1,X sRead LS byte of A (AL)

2 4 LDB 0,Y ;Read LS byte of B (BH)

1 11 MUL sAL*BH

2 7 ADDD 1,U sAL*BH+ M2:M1

2 6 STD 1,U ;Store in Mz:Mi1

4 3 BCC AB2 ;Skip INC if no carry

4 6 INC 0,U ;Add carry to MO

Z 4 AB2 LDA 0,X ;Read AH

V4 4 LDB 0,Y sRead BH

1 11 MUL ;AH*BH

2 7 ADDD 0o,U ;AH*BH +M1 + carries

2 6 STD 0,U ;Store in M1:MO

56 bytes of code
28 lines of code

30 AFN 01532A



APPENDIX

INITIALIZE SOURCE
AND DESTINATION
POINTERS

INITIALIZE BLOCK
LENGTH
ADJUST BLOCK
LENGTH

LENGTH=LENGTH/2

)

MOVE WORD

'

LENGTH=
LENGTH -1

YES

Figure 2. Block Move Flowchart

31 AFN 01532A



APPENDIX

BENCHMARK: Block Move
PROCESSOR: Intel jAPX 88

sREGISTER USAGE:

H CX - BLOCK LENGTH
3 SI - SOURCE POINTER
5 DI - DESTINATION POINTER

Bytes Cycles

1 2 CLD ;Clear direction flag

3 4 MOv SI,FROM ;Initialize Source Pointer

3 4 Mov DI, TO ;Initialize Destination Pointer
3 4 MOv CX,LNGTH ;Initialize Block Length

1 2 INC CX 5

2 2 SHR CX,1 ;Adjust LNGTH for word moves

2 9+25/ REP MOvS TO, FROM ;Move Block

15 bytes of code
7 lines of code

32 AFN 01532A



APPENDIX

BENCHMARK :

PROCESSOR:

Bytes

Block Move

Motorola 6809

Cycles

WN WNOOooRNNWN WW A

SHIFT
MOVE

LDY
LDU
LDD
INCB
BNC
INCA
LSRA
RORB
LDX
STX
DECB
BNE
DECA
BNE

sREGISTER USAGE

5 D - Block Length

; X - Temporary Storage

5 Y - Source Pointer

; U - Destination Pointer

#FROM ;Initialize Source Pointer

#T0 ;Initialize Destination Pointer
#LENGTH :Initialize Block Length

SHIFT ;Add one to avoid losing a

; byte if LENGTH is odd
;Adjust LENGTH for word
; moves

5 Y+t ;Read word
sUt+ ;Store word
;LS Count
MOVE
;MS Count
MOVE

26 bytes of code
14 Tines of code

33

AFN 01532A



APPENDIX

INPUT SRCH CHAR
FROM MEMORY

!

X=TBLPTR

'

Y=TBL LENGTH

Y

CHAR(X) =

SRCH CHAR?

Y=Y-1

X=X-1

Figure 3. Character Search Flowchart

34

AFN 01532A



APPENDIX

BENCHMARK: Character Search
PROCESSOR: Intel iAPX 88
;REGISTER USAGE:
3 AL - ACCUMULATOR

5 CX - COUNT
: DI - TABLE POINTER

Bytes Cycles

4 6 LEA DI,PTR sInitialize Table Pointer

2 4 MOv AL,CHAR ;Search character

3 4 MOv CX,40 ;Initialize count

1 2 CLD : ;Clear direction flag

2 9+15/ REPNE SCAS PTR ;Search

2 16/4 JZ PASTPTR ;Jdump if found

3 4 MOv DI,1 ;Not found:DI will return 0
1 2 PASTPTR:DEC DI sAdjust DI

18 bytes of code
8 lines of code

35 AFN 015324



APPENDIX

BENCHMARK: Character Search
PROCESSOR: Motorola 6809
;REGISTER USAGE:
; A - ACCUMULATOR
3 B - COUNT
: X - TABLE POINTER

Bytes Cycles

3 3 1DX #PTR ;Initialize Table Pointer

2 2 LDA #CHAR ;Search character

2 2 - LDB #40 sInitialize count

2 6 AGAIN  CMPA S X+ ;Compare, autoincrement

2 3 BEQ PASTPTR ;Jdump if found

1 2 DECB ;Decrement count

2 3 BNE AGAIN ;Do again unless B=0

3 3 LDX #1 ;Not found: X will return O
2 5 PASTPTR LEAX -1,X ;Adjust X

19 bytes of code
9 lines of code

36 AFN 01532A



Intel PRELIMINARY

iAPX 88/10
8-BIT HMOS MICROPROCESSOR
8088/8088-2

m 8-Bit Data Bus Interface m 8-Bit and 16-Bit Signed and Unsigned
Arithmetic in Binary or Decimal,
Including Multiply and Divide

s Compatible with 8155-2, 8755A-2 and
8185-2 Multiplexed Peripherals

m 16-Bit Internal Architecture

m Direct Addressing Capability to 1
Mbyte of Memory

a Direct Software Compatibility with

. = Two Clock Rates:
iAPX 86/10 (8086 CPU) 5 MHz for 8088
= 14-Word by 16-Bit Register Set with 8 MHz for 8088-2

Symmetrical Operations = Available in EXPRESS
m 24 Operand Addressing Modes - Standard Temperature Range

= Byte, Word, and Block Operations - Extended Temperature Range

The Intel® iAPX 88/10 is a new generation, high performance microprocessor implemented in N-channel, depletion load,
silicon gate technology (HMOS), and packaged in a 40-pin CerDIP package. The processor has attributes of both 8- and
16-bit microprocessors. It is directly compatible with iAPX 86/10 software and 8080/8085 hardware and peripherals.

MEMORY INTERFACE

MIN MAX
MODE  |MODE
[ \J ]
GND []1 40[J Vee
A4 ]2 39[] A5
INSTRUCTION
STREAM BYTE A13 3 38[] At6/S3
QUEUE 2 A12 []a 37[] Atns4
, A1 s 361 A18/S5
ES 1 a10 6 3507 A19186
BUS cs A9 7 34 SSO (HIGH)
INTERFACE Ss a8 s 337 MNMX
L EXECUTION UNIT aor s w2f] RD
CONTROL RGIGTO
SYSTEM AD6 []10 qpy 31[] HOLD (R_Q _E‘I‘ )
ADS []11 30 ] HLDA (RQIGTT)
AD4 []12 29[ WR (LOCK)
AD3 []13 28] 10m (52
AD2 []14 27|] DTR (5]
AH AD1 [ 15 26 [ DEN (50)
BH ARITHMETIC/
oh oL LOGIC UNIT ADO []16 25[] ALE (@s0)
NMI [] 17 24[] INTA (@st)
EXECUTION DH bL
UNIT SP INTR [} 18 23] TEST
BP CLK []19 22|] READY
SI GND 20 21[7] RESET
DI
Figure 1. iAPX 88/10 CPU Functional Block Diagram Figure 2. iAPX 88/10 Pin Configuration
Intel Corporation A No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied.

©INTEL CORPORATION, 1980
37 AFN-00826D



intel

iAPX 88/10 PRELIMINARY

Table 1. Pin Description

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The “local bus” in
these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus

buffers).
Symbol Pin No. | Type Name and Function

AD7-ADO 9-16 /0 | Address Data Bus: These lines constitute the time multiplexed memory/IO
address (T1) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and
float to 3-state OFF during interrupt acknowledge and local bus “*hold acknowl-
edge”.

A15-A8 2-8, 39 o Address Bus: These lines provide address bits 8 through 15 for the entire bus
cycle (T1-T4). These lines do not have to be latched by ALE to remain valid.
A15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge
and local bus “hold acknowledge”.

A19/S6, A18/S5, 34-38 o Address/Status: During T1, these are the four

A17/S4, A16/S3 most significant address lines for memory op-

erations. During I/O operations, these lines are
LOW. During memory and I/O operations, status
information is available on these lines during
T2,T3,Tw,and T4.S6is always low. The status of s4 $3. | CHARACTERISTICS
the interrupt enable flag bit (S5) is updated at ouow 0 | Atternate Data
the beginning of each clock cycle. S4and S3 are JIHIGH 0| CodeorNone
encoded as shown. 8615 0{LOW)
This information indicates which segment reg-
ister is presently being used for data accessing.
These lines float to 3-state OFF during local bus
“hold acknowledge”.

RD 32 o Read: Read strobe indicates that the processor is performing a memory or I/O
read cycle, depending on the state of the I0/M pin or S2. This signal is used to
read devices which reside on the 8088 local bus. RD is active LOW during T2, T3
and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 8088
local bus has floated.

This signal floats to 3-state OFF in “*hold acknowledge’.

READY 22 | READY: isthe acknowledgement from the addressed memory orl/O device that
it will complete the data transfer. The RDY signal from memory or I/O is syn-
chronized by the 8284 clock generator to form READY. This signal is active
HIGH. The 8088 READY input is not synchronized. Correct operation is not
guaranteed if the set up and hold times are not met.

INTR 18 1 Interrupt Request: is a level triggered input which is sampled during the last
clock cycle of each instruction to determine if the processor should enterinto an
interrupt acknowledge operation. A subroutine is vectored to via an interrupt
vector lookup table located in system memory. It can be internally masked by
software resetting the interrupt enable bit. INTR is internally synchronized. This
signal is active HIGH.

TEST 23 | TEST: input is examined by the “wait for test” instruction. If the TEST input is
LOW, execution continues, otherwise the processor waitsin an “idle” state. This
input is synchronized internally during each clock cycle on the leading edge of
CLK.

NMI 17 | Non-Maskable Interrupt: is an edge triggered input which causes a type 2

interrupt. Asubroutine is vectored to via an interrupt vector lookup table located
in system memory. NMI is not maskable internally by software. A transition from
a LOW to HIGH initiates the interrupt at the end of the current instruction. This
input is internally synchronized.

38 AFN-00826D



intel

iAPX 88/10 PRELIMINARY

Table 1. Pin Description (Continued)

Symbol Pin No. | Type Name and Function

RESET 21 | RESET: causes the processor to immediately terminate its present activity. The
signal must be active HIGH for at least four clock cycles. It restarts execution, as
described in the instruction set description, when RESET returns LOW. RESET
is internally synchronized.

CLK 19 | Clock: provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing.

Vee 40 Vce: is the +5V £10% power supply pin.

GND 1,20 GND: are the ground pins.

MN/MX 33 | Minimum/Maximum: indicates what mode the processor is to operate in. The
two modes are discussed in the following sections.

The following pin function descriptions are for the 8088 minimum mode (i.e., MN/MX = V). Only the pin functions which
are unique to minimum mode are described; all other pin functions are as described above.

10/M

28

0

Status Line: is an inverted maximum mode S2. It is used to distinguish a
memory access from an l/O access. I0/M becomes valid in the T4 preceding a
bus cycle and remains valid until the final T4 of the cycle (/O=HIGH, M=LOW).
I0/M floats to 3-state OFF in local bus ““hold acknowledge”.

29

Write: strobeindicates thatthe processor is performing a write memory or write
1/0 cycle, depending on the state of the I0/M signal. WR is active for T2, T3, and
Tw of any write cycle. It is active LOW, and floats to 3-state OFF in local bus “'hold
acknowledge”.

24

INTA: isused as a read strobe for interrupt acknowledge cycles. It is active LOW
during T2, T3, and Tw of each interrupt acknowledge cycle.

25

Address Latch Enable: is provided by the processor to latch the address into
the 8282/8283 address latch. It is a HIGH pulse active during clock low of T1 of
any bus cycle. Note that ALE is never floated.

27

Data Transmit/Receive: is needed in a minimum system that desires to use an
8286/8287 data bus transceiver. It is used to control the direction of data flow
through the transceiver. Logically, DT/R is equivalent to §1 in the maximum
mode, and its timing is the same as for I0/M (T=HIGH, R=LOW). This signal
floats to 3-state OFF in local “‘hold acknowledge”.

o
P4

26

Data Enable: is provided as an output enable for the 8286/8287 in a minimum
system which uses the transceiver. DEN is active LOW during each memory and
1/0 access, and for INTA cycles. For a read or INTA cycle, it is active from the
middle of T2 until the middle of T4, while for a write cycle, it is active from the
beginning of T2 until the middle of T4. DEN floats to 3-state OFF during local bus
“hold acknowledge’.

HOLD, HLDA

30,31

HOLD: indicates that another master is requesting a local bus “hold”. To be
acknowledged, HOLD must be active HIGH. The processor receiving the “*hold”
request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or
Tl clock cycle. Simultaneous with the issuance of HLDA the processor will float
the local bus and control lines. After HOLD is detected as being LOW, the
processor lowers HLDA, and when the processor needs to run another cycle, it
will again drive the local bus and control lines.

Hold is not an asynchronous input. External synchronization should be
provided if the system cannot otherwise guarantee the set up time.

S50

34

Status line: is logically equivalent toi_o_in the \oii_| ovifi| 555 | cHARAcTEmSTICS
maximum mode. The combination of SSO, I0/M 1HIGH) |0 | 0| ioerpt Acknouledge
and DT/R allows the system to completely de- Virte 10 port
code the current bus cycle status.

1

Halt
Code access
Read memory
write memory
Passive

(Low)

0000
“eco--o0
~“o-o-0=

39 AFN-00826D



mtJ iAPX 88/10 PRELIMINARY

Table 1. Pin Description (Continued)

The following pin function descriptions are for the 8088, 8228 system in maximum mode (i.e., MN/MX=GND.) Only the pin
functions which are unique to maximum mode are described; all other pin functions are as described above.

Symbol Pin No.| Type Name and Function

S2, 51, S0 | 26-28 (0] Status: is active during clock high of T4, T1,
and T2, and is returned to the passive state
(1,1,1) during T3 or during Tw when READY is
HIGH. This status is used by the 8288 bus con-
troller to generate all memory and 1/O access

control signals. Any change by S2, S1, or 50 [ 32| s1 | 50 | charactemistics
during T4 is used to indicate the beginning of a QLML 0 19 | et peoiedse
bus cycle, and the return to the passive state in H IR R
T3 or Tw is used to indicate the end of a bus LG T
cycle. i L I
These signals float to 3-state OFF during ‘‘hold
acknowledge’’. During the first clock cycle after
RESET becomes active, these signals are active
HIGH. After this first clock, they float to 3-state
OFF.
RQ/GTO, 30, 31 /0 Request/Grant: pins are used by other local bus masters to force the processor
RQ/GTH to release the local bus at the end of the processor’s current bus cycle. Each pin

is bidirectional with RQ/GTO having higher priority than RQ/GT1. RQ/GT has an
internal pull-up resistor, so may be left unconnected. The request/grant se-
quence is as follows (See Figure 8):

1. Apulse of one CLK wide from another local bus master indicates a local bus
request (“*hold”’) to the 8088 (pulse 1).

2. During a T4 or Tl clock cycle, a pulse one clock wide from the 8088 to the
requesting master (pulse 2), indicates that the 8088 has allowed the local bus
to float and that it will enter the “hold acknowledge” state at the next CLK.
The CPU’s bus interface unit is disconnected logically from the local bus
during “hold acknowledge”. The same rules as for HOLD/HOLDA apply as for
when the bus is released.

3. Apulse one CLK wide from the requesting master indicates to the 8088 (pulse
3) that the ““hold” request is about to end and that the 8088 can reclaim the
local bus at the next CLK. The CPU then enters T4.

Each master-master exchange of the local bus is a sequence of three pulses.
There must be one idle CLK cycle after each bus exchange. Pulses are active
LOW.

If the request is made while the CPU is performing a memory cycle, it will release
the local bus during T4 of the cycle when all the following conditions are met:

1. Request occurs on or before T2.

2. Current cycle is not the low bit of a word.

3. Current cycle is not the first acknowledge of an interrupt acknowledge
sequence.

4. Alocked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events will
follow:

1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently
active memory cycle apply with condition number 1 already satisfied.

40 AFN-00826D



iAPX 88/10

PRELIMINARY

Table 1. Pin Description (Continued)

Symbol Pin No.| Type Name and Function

LOCK 29 (e} LOCK: indicates that other system bus masters are not to gain control of the
system bus while LOCK is active (LOW). The LOCK signal is activated by the
“LOCK"” prefix instruction and remains active until the completion of the next
instruction. This signal is active LOW, and floats to 3-state off in “*hold acknowl-
edge”.

QS1, QS0 | 24, 25 o Queue Status: provide status to allow external st | aso]
tracking of the internal 8088 instruction queue. owow | 0 | No operation

[ 1 First byte of opcode from queue

The queue status is valid during the CLK cycle | G e e o queue
after which the queue operation is performed.

— 34 (0] Pin 34 is always high in the maximum mode.

41

AFN-00826D



intal

iAPX 88/10

PRELIMINARY

FUNCTIONAL DESCRIPTION

Memory Organization

The processor provides a 20-bit address to memory which
locates the byte being referenced. The memory is orga-
nized as a linear array of up to 1 million bytes, addressed
as 00000(H) to FFFFF(H). The memory is logically divided
into code, data, extra data, and stack segments of up to
64K bytes each, with each segment falling on 16-byte
boundaries. (See Figure 3.)

All memory references are made relative to base
addresses contained in high speed segment registers. The
segment types were chosen based on the addressing
needs of programs. The segment register to be selected is
automatically chosen according to the rules of the follow-
ing table. All information in one segment type share the
same logical attributes (e.g. code or data). By structuring
memory into relocatable areas of similar characteristics
and by automatically selecting segment registers, pro-
grams are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd ad-
dress boundaries. For address and data operands, the
least significant byte of the word is stored in the lower
valued address location and the most significant byte in

7 0
——— FFFFFH

64 KB ‘cons SEGMENT

3. XXXXOH

‘l STACK SEGMENT
+0F|FSET ’

SEGMENT ==
REGISTER FILE worD | —rer— Loara seament

cs BYTE l

SS

DS

ES = =

EXTRA DATA SEGMENT
T——00000H

Figure 3. Memory Organization

the next higher address location. The BIU will auto-
matically execute two fetch or write cycles for 16-bit
operands.

Certain locations in memory are reserved for specific
CPU operations. (See Figure 4. Locations from ad-
dresses FFFFOH through FFFFFH are reserved for
operations including a jump to the initial system initial-
ization routine. Following RESET, the CPU will always
begin execution at location FFFFOH where the jump
must be located. Locations 00000H through 003FFH are
reserved for interrupt operations. Four-byte pointers
consisting of a 16-bit segment address and a 16-bit off-
set address direct program flow to one of the 256 possi-
ble interrupt service routines. The pointer elements are
assumed to have been stored at their respective places
in reserved memory prior to the occurrence of inter-
rupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maxi-
mum 8088 systems are sufficiently different that they
cannot be done efficiently with 40 uniquely defined
pins. Consequently, the 8088 is equipped with a strap
pin (MN/MX) which defines the system configuration.
The definition of a certain subset of the pins changes,
dependent on the condition of the strap pin. When the
MN/MX pin is strapped to GND, the 8088 defines pins 24
through 31 and 34 in maximum mode. When the MN/MX
pin is strapped to Vg, the 8088 generates bus control
signals itself on pins 24 through 31 and 34.

FFFFFH
RESET BOOTSTRAP
PROGRAM JUMP FFFFOH
.
oy . oy
°
3FFH
INTERRUPT POINTER
FOR TYPE 255
3FOH
.
RN L
T . ¥
.
7H
INTERRUPT POINTER
FOR TYPE 1 aH
INTERRUPT POINTER 3H
FOR TYPE 0 oH

Figure 4. Reserved Memory Locations

Memory Segment Register Segment
Reference Need Used Selection Rule
Instructions CODE (CS) Automatic with all instruction prefetch.
Stack STACK (SS) All stack pushes and pops. Memory references relative to BP
base register except data references.
Local Data DATA (DS) Data references when: relative to stack, destination of string
operation, or explicitly overridden.
External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a
segment override.

42

AFN-00826D



intel

iAPX 88/10

PRELIMINARY

The minimum mode 8088 can be used with either a
multiplexed or demultiplexed bus. The multiplexed bus
configuration is compatible with the MCS-85™ multi-
plexed bus peripherals (8155, 8156, 8355, 8755A, and
8185). This configuration (See Figure 5) provides the user
with a minimum chip count system. This architecture
provides the 8088 processing power in a highly integrated
form.

The demultiplexed mode requires one latch (for 64K ad-
dressability) or two latches (for a full megabyte of ad-
dressing). A third latch can be used for buffering if the
address bus loading requires it. An 8286 or 8287 trans-
ceiver can also be used if data bus buffering is required.
(See Figure 6.) The 8088 provides DEN and DT/R to con-

43

trol the transceiver, and ALE to latch the addresses.
This configuration of the minimum mode provides the
standard demultiplexed bus structure with heavy bus
buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller.
(See Figure 7.) The 8288 decodes status lines S0, §1,
and S2, and provides the system with all bus control-
signals. Moving the bus control to the 8288 provides
better source and sink current capability to the control
lines, and frees the 8088 pins for extended large system
features. Hardware lock, queue status, and two request/
grant interfaces are provided by the 8088 in maximum
mode. These features allow co-processors in local bus
and remote bus configurations.

AFN-00826D



ntel“ | iAPX 88/10 PRELIMINARY

+— ce  PORT “
A
WR
—_ PORT
i)
p1ss ° .
ALE  poRT
DATA/ c
ADDR
_ 1Y) p—
I0/M TIMER
reser  OYT
Ag-Arg ADDR iow
RD .
ADo — AD; ADDR/DATA | ALE
(104 & A
8088 Z foro
/
READY 8355/8755A
MN/MX |——Vcc 28;:
vee l‘. 0 l_‘ ALE ——J 10/ porT
RESET RD — 2]
RESET
X1 X2 _
cik | WR
Vee
READY 1o/ - ior
RES
8284A
RESET — Yss Vee Voo PROG
GND WA
RD
CE, :
8185
ALE
S 8. CE;
SJ— Aq. Aq
< e
Vs Vee

Figure 5. Multiplexed Bus Configuration

44 AFN-00826D



I iAPX 88/10 PRELIMINARY

F={CLK - MNMX |— vce
10/ "
RD 4
WR 0
8088
CPU fra X
OTR
DEN |
ALE sT8 |
OE
ADg-AD, N 8282 |
-AD; LATCH 3
o Ar ADDRIDATA 20ns) [ ADDRESS )
INTR
T
OE
8286 4
TRANSCEIVER DATA -
‘ L E j
EN € 0D oE] [cs RDWR
2142 RAM (2) 2716-2 PROM MCS-80
PERIPHERAL
8250A
INTERRUPT |-
CONTROL
INT
1RO-7

Figure 6. Demultiplexed Bus Configuration

1
-—GND CLK  WRpc
MWTC
AMWC [—N.C.

OTR AIGWC|—N.C
——]ALE INTA ;
sT8
ADg - AD: % s
o~ AD7 LATCH
As—Ag ADDRIDATA 2083 ADDRESS ;
INT

T

OE
8286 | 4
TRANSCEIVER R DATA :
/ G U H

WE 0D OF cs RD WR
2142 RAM (2) 27162 PROM MCS-80
. PERIPHERAL
8259A
INTERRUPT |+—
CONTROL

1R0-7

Figure 7. Fully Buffered System Using Bus Controller

45 AFN-00826D



intal

iAPX 88/10

PRELIMINARY

Bus Operation

* The 8088 address/data bus is broken into three parts —
the lower eight address/data bits (AD0O-AD7), the middle
eight address bits (A8-A15), and the upper four address
bits (A16-A19). The address/data bits and the highest
four address bits are time multiplexed. This technique
provides the most efficient use of pins on the proc-
essor, permitting the use of a standard 40 lead package.
The middle eight address bits are not multiplexed, i.e.
they remain valid throughout each bus cycle. In addi-

tion, the bus can be demultiplexed at the processor with
a single address latch if a standard, non-multiplexed
bus is desired for the system.

Each processor bus cycle consists of at least four CLK
cycles. These are referred to as T1, T2, T3, and T4. (See
Figure 8). The address is emitted from the processor
during T1 and data transfer occurs on the bus during T3
and T4. T2 is used primarily for changing the direction of
the bus during read operations. In the event that a “NOT
READY” indication is given by the addressed device,

4+ Nwam=Tcy

(4+Nwarr) =Tey —— |

Ty | T2 | T3 I Twair | Ta I T I T2 l T3 | Twair l Ta

GOES INACTIVE IN THE STATE
JUST PRIOR TO Tq

[\ AR

T T

5250

\

\
[ \

ADDR/STATUS $7-S3

=X

8$7-S3

X Atg-Ars X X

ADDR

)

A1sAg

A1s-Ag

X X

BUS RESERVED

ADDR/DATA FOR DATA IN

: e : : DATAOU”Drbo} —: —-<:X:

READY

READY

READY

WAIT

ORY ACCESS TIME

—— -

WAIT

o
-

-/

Figure 8. Basic System Timing

46

AFN-008260




intal

iAPX 88/10

PRELIMINARY

“wait” states (Tw) are inserted between T3 and T4. Each
inserted - “wait” state is of the same duration as a CLK
cycle. Periods can occur between 8088 driven bus cycles.
These are referred to as “idle” states (Ti), or inactive CLK
cycles. The processor uses these cycles for internal
housekeeping.

During T1 of any bus cycle, the ALE (address latch enable)
signal is emitted (by either the processor or the 8288 bus
controller, depending on the MN/MX strap). At the trailing
edge of this pulse, a valid address and certain status
information for the cycle may be latched.

Status bits S0, S1, and S2 are used by the bus controller, in
maximum mode, to identify the type of bus transaction
according to the following table:

S, S, So CHARACTERISTICS
0 (LOW) 0 0 Interrupt Acknowledge
0 0 1 Read 110
0 1 0 Write 110
0 1 1 Halt
1(HIGH) 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 0 Write Data to Memory
1 1 1 Passive (no bus cycle)

Status bits S3 through S6 are multiplexed with high order
address bits and are therefore valid during T2 through T4.
S3 and S4 indicate which segment register was used for
this bus cycle in forming the address according to the
following table:

S, S; CHARACTERISTICS
0 (LOW) 0 Alternate Data (extra segment)
0 1 Stack
1(HIGH) 0 Code or None
1 1 Data

S5 is a reflection of the PSW interrupt enable bit. S6 is
always equal to 0.

I/O Addressing

In the 8088, /O operations can address up to a maximum
of 64K 1/O registers. The I/O address appears in the same
format as the memory address on bus lines A15-A0. The
address lines A19-A16 are zero in I/O operations. The vari-
able 1/O instructions, which use register DX as a pointer,
have full address capability, while the direct I/O instruc-
tions directly address one or two of the 256 1/O.byte
locations in page 0 of the I/O address space. I/O ports are
addressed in the same manner as memory locations.

Designers familiar with the 8085 or upgrading an 8085
design should note that the 8085 addresses I/O with an
8-bit address on both halves of the 16-bit address bus. The
8088 uses a full 16-bit address on its lower 16 address
lines.

EXTERNAL INTERFACE

Processor Reset and Initialization

Processor initialization or start up is accomplished with
activation (HIGH) of the RESET pin. The 8088 RESET is
required to be HIGH for greater than four clock cycles. The
8088 will terminate operations on the high-going edge of
RESETand will remain dormant as long as RESET is HIGH.
The low-going transition of RESET triggers an internal
reset sequence for approximately 7 clock cycles. After this
interval the 8088 operates normally, begisning with the
instruction in absolute location FFFFOH. (See Figure 4.)
The RESET input is internally synchronized to the proces-
sor clock. At initialization, the HIGH to LOW transition of
RESET must occur no sooner than 50 us after power up, to
allow complete initialization of the 8088.

If INTR is asserted sooner than nine clock cycles after the
end of RESET, the processor may execute one instruction
before responding to the interrupt.

All 3-state outputs float to 3-state OFF during RESET.
Status is active in the idle state for the first clock after
RESET becomes active and then floats to 3-state OFF.

Interrupt Operations

Interrupt operations fall into two classes: software or
hardware initiated. The software initiated interrupts and
software aspects of hardware interrupts are specified in
the instruction set description in the iAPX 88 book or the
iAPX 86,88 User's Manual. Hardware interrupts can be
classified as nonmaskable or maskable.

Interrupts result in a transfer of control to a new program
location. A 256 element table containing address pointers
to the interrupt service program locations resides in abso-
lute locations 0 through 3FFH (see Figure 4), which are
reserved for this purpose. Each element in the table is 4
bytes in size and corresponds to an interrupt “type.” An
interrupting device supplies an 8-bit type number, during
the interrupt acknowledge sequence, which is used to
vector through the appropriate element to the new inter-
rupt service program location.

Non-Maskable Interrupt (NiMI)

The processor provides a single non-maskable interrupt
(NMI) pin which has higher priority than the maskable
interrupt request (INTR) pin. A typical use would be to
activate a power failure routine. The NMl is edge-triggered
on a LOW to HIGH transition. The activation of this pin
causes a type 2 interrupt.

NMI is required to have a duration in the HIGH state of
greater than two clock cycles, but is not required to be
synchronized to the clock. Any higher going transition of
NMlI is latched on-chip and will be serviced at the end of
the currentinstruction or between whole moves (2 bytes in
the case of word moves) of a block type instruction. Worst
case response to NMI would be for multiply, divide, and
variable shift instructions. There is no specification on
the occurrence of the low-going edge; it may occur

AFN-00826D



intel

iAPX 88/10

PRELIMINARY

before, during, or after the servicing of NMI.
Another high-going edge triggers another response if it
occurs after the start of the NMI procedure. The signal
must be free of logical spikes in general and be free of
bounces on the low-going edge to avoid triggering ex-
traneous responses.

Maskable Interrupt (INTR)

The 8088 provides a single interrupt request input (INTR)
which can be masked internally by software with the
resetting of the interrupt enable (IF) flag bit. The in-
terrupt request signal is level triggered. It is internally
synchronized during each clock cycle on the high-going
edge of CLK. To be responded to, INTR must be present
(HIGH) during the clock period preceding the end of the
current instruction or the end of a whole move for a
block type instruction. During interrupt response se-
quence, further interrupts are disabled. The enable bit is
reset as part of the response to any interrupt (INTR,
NMI, software interrupt, or single step), although the
FLAGS register which is automatically pushed onto the
stack reflects the state of the processor prior to the in-
terrupt. Until the old FLAGS register is restored, the
enable bit will be zero unless specifically set by an in-
struction.

During the response sequence (See Figure 9), the proc-
essor executes two successive (back to back) interrupt
acknowledge cycles. The 8088 emits the LOCK signal
(maximum mode only) from T2 of the first bus cycle until
T2 of the second. A local bus “hold” request will not be
honored until the end of the second bus cycle. In the
second bus cycle, a byte is fetched from the external in-
terrupt system (e.g., 8259A PIC) which identifies the
source (type) of the interrupt. This byte is multiplied by
four and used as a pointer into the interrupt vector
lookup table. An INTR signal left HIGH will be continual-
ly responded to within the limitations of the enable bit

and sample period. The interrupt return instruction in-
cludes a flags pop which returns the status of the
original interrupt enable bit when it restores the flags.

HALT

When a software HALT instruction is executed, the
processor indicates that it is entering the HALT state in
one of two ways, depending upon which mode is
strapped. In minimum mode, the processor issues ALE,
delayed by one clock cycle, to allow the system to latch
the halt status. Halt status is available on IO/M, DT/R,
and SSO. In maximum mode, the processor issues ap-
propriate HALT status on 52, 51, and S0, and the 8288
bus controller issues one ALE. The 8088 will not leave
the HALT state when a local bus hold is entered while in
HALT. In this case, the processor reissues the HALT in-
dicator at the end of the local bus hold. An interrupt re-
quest or RESET will force the 8088 out of the HALT
state. :

Read/Modify/Write (Semaphore) Operations
via LOCK

The LOCK status information is provided by the proc-
essor when consecutive bus cycles are required during
the execution of an instruction. This allows the proc-
essor to perform read/modify/write operations on
memory (via the “exchange register with memory”
instruction), without another system bus master receiv-
ing intervening memory cycles. This is useful in multi-
processor system configurations to accomplish “test
and set lock” operations. The TOCK signal is activated
(LOW) in the clock cycle following decoding of the
LOCK prefix instruction. It is deactivated at the end of
the last bus cycle of the instruction following the LOCK
prefix. While LOCK is active, a request on a RQ/GT pin will
be recorded, and then honored at the end of the LOCK.

TYPEVECTOR

ADg-AD7

Figure 9. Interrupt Acknowledge Sequence

AFN-008260



intel

iAPX 88/10

PRELIMINARY

External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a
single software-testable input pin (TEST). This input is
utilized by executing a WAIT instruction. The single
WAIT instruction is repeatedly executed until the TEST
input goes active (LOW). The execution of WAIT does
not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the
8088 3-states all output drivers. If interrupts are enabled,
the 8088 will recognize interrupts and process them.
The WAIT instruction is then refetched, and reexecuted.

Basic System Timing

In minimum mode, the MN/MX pin is strapped to V¢
and the processor emits bus control-signals compatible
with the 8085 bus structure. In maximum mode, the
MN/MX pin is strapped to GND and the processor emits
coded status information which the 8288 bus controller
uses to generate MULTIBUS compatible bus control
signals.

System Timing — Minimum System
(See Figure 8.

The read cycle begins in T1 with the assertion of the ad-
dress latch enable (ALE) signal. The trailing (low going)
edge of this signal is used to latch the address informa-
tion, which is valid on the address/data bus (AD0-AD7)
at this time, into the 8282/8283 latch. Address lines A8
through A15 do not need to be latched because they re-
main valid throughout the bus cycle. From T1 to T4 the
I0/M signal indicates a memory or 1/O operation. At T2
the address is removed from the address/data bus and
the bus goes to a high impedance state. The read con-
trol signal is also asserted at T2. The read (ﬁ) signal
causes the addressed device to enable its data bus
drivers to the local bus. Some time later, valid data will
be available on the bus and the addressed device will
drive the READY line HIGH. When the processor returns
the read signal to a HIGH level, the addressed device
will again 3-state its bus drivers. If a transceiver
(8286/8287) is required to buffer the 8088 local bus,
signals DT/R and DEN are provided by the 8088.

A write cycle also begins with the assertion of ALE and
the emission of the address. The I0/M signal is again
asserted to indicate a memory or I/O write operation. In
T2, immediately following the address emission, the
processor emits the data to be written into the ad-
dressed location. This data remains valid until at least
the middle of T4. During T2, T3, and Ty, the processor
asserts the write control signal. The write (WR) signal
becomes active at the beginning of T2, as opposed to
the read, which is delayed somewhat into T2 to provide
time for the bus to float.

The basic difference between the interrupt acknowl-
edge cycle and a read cycle is that the interrupt
acknowledge (INTA) signal is asserted in place of the
read (RD) signal and the address bus is floated. (See
Figure 9.) .In the second of two successive INTA cycles,

49

a byte of information is read from the data bus, as sup-
plied by the interrupt system logic (i.e. 8259A priority in-
terrupt controller). This byte identifies the source (type)
of the interrupt. It is multiplied by four and used as a
pointer into the interrupt vector lookup table, as de-
scribed earlier.

Bus Timing — Medium Complexity Systems

(See Figure 10.)

For medium complexity systems, the MN/Wpin is con-
nected to GND and the 8288 bus controller is added to
the system, as well as an 8282/8283 latch for latching
the system address, and an 8286/8287 transceiver to
allow for bus loading greater than the 8088 is capable of
handling. Signals ALE, DEN, and DT/R are generated by
the 8288 instead of the processor in this configuration,
although their timing remains relatively the same. The
8088 status outputs (52, S1, and S0) provide type of
cycle information and become 8288 inputs. This bus
cycle information specifies read (code, data, or 1/0),
write (data or 1/0), interrupt acknowledge, or software
halt. The 8288 thus issues control signals specifying
memory read or write, 1/0 read or write, or interrupt
acknowledge. The 8288 provides two types of write
strobes, normal and advanced, to be applied as required.
The normal write strobes have data valid at the leading
edge of write. The advanced write strobes have the
same timing as read strobes, and hence, data is not
valid at the leading edge of write. The 8286/8287 trans-
ceiver receives the usual T and OE inputs from the
8288's DT/R and DEN outputs.

The pointer into the interrupt vector table, which is
passed during the second INTA cycle, can derive from
an 8259A located on either the local bus or the system
bus. If the master 8289A priority interrupt controller is
positioned on the local bus, a TTL gate is required to
disable the 8286/8287 transceiver when reading from the
master 8259A during the interrupt acknowledge se-
qguence and software “poll”.

The 8088 Compared to the 8086

The 8088 CPU is an 8-bit processor designed around the
8086 internal structure. Most internat functions of the
8088 are identical to the equivalent 8086 functions. The
8088 handles the external bus the same way the 8086
does with the distinction of handling only 8 bits at a
time. Sixteen-bit operands are fetched or written in two
consecutive bus cycles. Both processors will appear
identical to the software engineer, with the exception of
execution time. The internal register structure is iden-
tical and all instructions have the same end result. The
differences between the 8088 and 8086 are outlined
below. The engineer who is unfamiliar with the 8086 is
referred to the iAPX 86, 88 User’s Manual, Chapters 2 and

4, for function description and instruction set information.

Internally, there are three differences between the 8088
and the 8086. All changes are related to the 8-bit bus in-
terface.

AFN-00826D



intel

iAPX 88/10

PRELIMINARY

The queue length is 4 bytes in the 8088, whereas the
8086 queue contains 6 bytes, or three words. The
queue was shortened to prevent overuse of the bus by
the BIU when prefetching instructions. This was re-
quired because of the additional time necessary to
fetch instructions 8 bits at a time.

To further optimize the queue, the prefetching algo-
rithm was changed. The 8088 BIU will fetch a new in-
struction to load into the queue each time thereisa 1
byte hole (space available) in the queue. The 8086
waits until a 2-byte space is available.

The internal execution time of the instruction set is
affected by the 8-bit interface. All 16-bit fetches and
writes from/to memory take an additional four clock
cycles. The CPU is also limited by the speed of in-
struction fetches. This latter problem only occurs
when a series of simple operations occur. When the
more sophisticated instructions of the 8088 are being
used, the queue has time to fill and the execution pro-
ceeds as fast as the execution unit will allow.

The 8088 and 8086 are completely software compatible
by virture of their identical execution units. Software
that is system dependent may not be completely trans-
ferable, but software that is not system dependent will
operate equally as well on an 8088 or an 8086.

50

The hardware interface of the 8088 contains the major
differences between the two CPUs. The pin assign-
ments are nearly identical, however, with the following
functional changes:

e A8-A15 — These pins are only address outputs on the
8088. These address lines are latched internally and
remain valid throughout a bus cycle in a manner
similar to the 8085 upper address lines.

* BHE has no meaning on the 8088 and has been elimi-
nated.

o SS0 provides the SO status information in the mini-
mum mode. This output occurs on pin 34 in minimum
mode only. DT/R, IO/M, and SSO provide the complete
bus status in minimum mode.

* |0/M has been inverted to be compatible with the
MCS-85 bus structure.

e ALE is delayed by one clock cycle in the minimum
mode when entering HALT, to allow the status to be
latched with ALE.

AFN-00826D



intel

iAPX 88/10

PRELIMINARY

CLK __/——\

T4

T2

Ta

Qst, aso

8088

@
@
2
g
g

[/

A19/S6 — A16/S3

X rean

S6-S3

ALE

8288 RDY 8284

READY 8088 ‘
|
|
i

AD7 - ADO

— DATAIN

8088 A15 - A8

A15-A8

DTIR

8288 MRDC

DEN

Figure 10. Medium Complexity System Timing

51

AFN-00826D




intal’

iAPX 88/10

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias......... 0°Cto70°C
Storage Temperature............. -65°C to +150°C
Voltage on Any Pin with

Respectto Ground.................. -10to+7V

Power Dissipation ........................

2.5 Watt

*NOTICE: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (8088: T4 = 0°C to 70°C, Vg = 5V +10%) *
(8088-2: Tp = 0°C to 70°C, Vg = 5V +5%)
Symbol Parameter Min. Max. Units Test Conditions
ViL Input Low Voltage -0.5 +0.8 \
ViH Input High Voltage 2.0 Vec+0.5 v
VoL Output Low Voltage 0.45 \ loL =2.0mA
VoH Output High Voltage 24 \" loq = —400 A
gggg 2 ggg A T 25°C
| P Supply Ci t: - m = 25°
cc ower Supply Curren Paoos 520 A
Iy Input Leakage Current +10 LA 0V =V|N =Vce
0.45V <V, =<
ILo Output Leakage Current +10 nA Vee out
VoL Clock Input Low Voltage -05 +0.6 \
VcH Clock Input High Voltage 3.9 Vce+1.0 \
Capacitance if Input Buffer
Cin (All input except 15 " pF fc =1 MHz
ADp-AD7, RQ/GT
Capacitance of I/O Buffer B
Cio (ADg-AD7, RQ/GT 15 pF fc = 1 MHz

*Note: For Extended Temperature EXPRESS Voo =5V +5%

52

AFN-00826D



intel IAPX 88/10 PRELIMINARY

A.C. CHARACTERISTICS (8088: T4 = 0°C to 70°C, Vo = 5V +10%)*
(8088-2: Tp = 0°C to 70°C, Vg = 5V *5%)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

8088 8088-2
Symbol Paramet Mi Ma Min Max. | Unit Test
ymbo| meter n. X. in. ax. S| Conditions
TCLCL CLK Cycle Period 200 500 125 500 ns
TCLCH CLK Low Time 118 68 ns
TCHCL CLK High Time 69 44 ns
- ’ From 1.0V
TCH1CH2 CLK Rise Time 10 10 ns to 3.5V
" From 3.5V
TCL2CLA CLK Fall Time 10 10 ns 10 1.0V
TDVCL Data in Setup Time 30 20 ns
TCLDX Data in Hold Time 10 10 ns
RDY Setup Time
TR1VCL into 8284 (See 35 35 ns
Notes 1, 2)
RDY Hold Time
TCLR1X into 8284 (See 0 0 ns
Notes 1, 2)
READY Setup ‘
TRYHCH Time into 11\8 68 ns
8088 i
READY Hold Time
TCHRYX into 8088 30 20 ns
READY Inactive to
TRYLCL CLK (See Note 3) -8 -8 ns
THVCH HOLD Setup Time 35 20 ns
INTR, NMI, TEST
TINVCH Setup Time (See 30 15 ns
Note 2)
Input Rise Time From 0.8V
TILIH (Except OLK) 20 20 " | to20v
Input Fall Time From 2.0V
TIHIL (Except CLK) 12 12 NS | 008V

*Note: For Extended Temperature EXPRESS Voo =5V 5%

53 AFN-00826D



Intel iAPX 88/10

PRELIMINARY
A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES
8088 8088-2
Symbol Parameter Min. Max. Min. Max. | Units Test Conditions
TCLAV Address Valid Delay 10 110 10 60 ns
TCLAX Address Hold Time 10 10 ns
TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns
TLHLL ALE Width TCLCH-20 TCLCH-10 ns
TCLLH ALE Active Delay 80 50 ns
TCHLL ALE Inactive Delay 85 55 ns
TLLAX ':Eg’ﬁf:c';%d Time to TCHCL-10 TCHCL-10 ns
TCLDV Data Valid Delay 10 110 10 60 ns CL = 20-100 pF for
TCHDX | Data Hold Time 10 10 ns | all 8088 Outputs
— in addition to
TWHDX Data Hold Time After WR TCLCH-30 TCLCH-30 ns | internal loads
TCVCTV | Control Active Delay 1 10 110 10 70 ns
TCHCTV | Control Active Delay 2 10 110 10 60 ns
TCVCTX | Control Inactive Delay 10 110 10 70 ns
TAZRL Q:S\r”eass Float to READ 0 0 ns
TCLRL RD Active Delay 10 165 10 100 ns
TCLRH RD Inactive Delay 10 150 10 80 ns
TRHAV 23 d':'e";‘?x’;it:’e”e’“ TCLCL—45 TCLCL-40 ns
TCLHAV | HLDAValid Delay 10 160 10 100 ns
TRLRH RD Width 2TCLCL-75 2TCLCL-50 ns
TWLWH | WRWidth 2TCLCL-60 2TCLCL-40 ns
TAVAL Address Valid to ALE Low | TCLCH-60 TCLCH-40 ns
TOLOH Output Rise Time 20 20 ns From 0.8V to 2.0V
TOHOL Output Fall Time 12 12 ns From 2.0V to 0.8V
A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT
INPUT/OUTPUT
24
Yoee
1.5 «——— TEST POINTS —» 1.5 TEST —1 —
0.45
ALOGIC 0" THE CLOGK 5 DRNEN AT 4.3Y AN 0250, TIVING MEASURE. -
MENTS ARE MADE AT 1.5V FOR BOTH A LOGIC "1~ AND "0." C INCLUDES JIG CAPACITANGE

54

AFN-00826D



L) ®
intel IAPX 88/10 PRELIMINARY
BUS TIMING—MINIMUM MODE SYSTEM
T T T Tw Ts
le——— TCLCL —~{TCH1CH2 H Tewacks
Veu
CLK (8284 Output) vjt 5\ X 7F \\ }( \
= renery TCHCL l— TCLCH —|
10/M, 50 X
Ats-Ag A1s - Ag (Float during INTA)
— +— TCLDV
TCLAV—~| ToLAX~] DS TCHDX |
A19/Se-A16/Sy A1g-A1s >C S6-S3
L l— TLLAX
-
ALE /
— e
TCHLL—] - |~ TRIVCL
Vin
RDY (8284 Input) [« TAVAL—| § \‘\ \
SEENOTES viL -
T—veLrix
RYLCL—]  |~—
READY (8088 Input) o e denmvx
—f‘r— -
— ~TCLAZ rmvcn.———«rcmx-—
AD7 - ADg )( AD7-ADo TOAT DATA IN FLoAT
TAZRL—] TCLRH—> TRHAV
RD
READ CYCLE T _/
(NOTE 1) — TCHCTV-  TCLRL . TRLRH TCHCTV
(WR, INTA =Vou) T '
DTR
TCVCTV— TCVCTX —~|
DEN
/
55 AFN-00826D




| iAPX 88/10 PRELIMINARY

WAVEFORMS (Continued)

BUS TIMING;MINIMUM MODE SYSTEM (Continued)

T T2 T Tw T4
TCH1CH2 TCL2CL1 /
VeH
CLK (8284 Output) j‘ SQ ;‘ \ f 5\ 7[_\—
Ve
TCLAV ] DU s — TCHDX—~|  |—
AD7 - ADg AD;-ADo DATA OUT
[~ TWHDX -~
TCVCTV-~| ADg iy TCVCTX
WRITE CYCLE —
DEN
NOTE 1
TCVCTV—+| I-—
TWLWH (
WA \K 7
TCVCTX— ~—
— «TCLAZ
~—TDVCL— <«—TCLDX
AD; - AD, ( {
7= ADg ] LoAT A POINTER FLORT o
— —TCHCTV ] TCHCTV
DTIR
INTA CYCLE -
|
NOTES 1,3
(RD, WR=V _
( OH) INTA
TCVCTV—>| |~ TCVCTX—~
DEN
SOFTWARE HALT -
DEN,RD,WR,INTA = Vou AD; - ADg INVALID ADDRESS SOFTWARE HALT
DT/R INDETERMINATE TCLAV —
NOTES: 1. ALL SIGNALS SWITCH BETWEEN Von AND Vo UNLESS OTHERWISE

SPECIFIED.
. RDY IS SAMPLED NEAR THE END OF T, T3, Tw TO DETERMINE IF Ty
MACHINES STATES ARE TO BE INSERTED.
. TWO INTA CYCLES RUN BACK-TO-BACK. THE 8088 LOCAL ADDR/DATA
BUS IS FLOATING DURING BOTH INTA CYCLES. CONTROL SIGNALS
ARE SHOWN FOR THE SECOND INTA CYCLE.
SIGNALS AT 8284 ARE SHOWN FOR REFERENCE ON
ALLTIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE
NOTED.

N

©

o>

56 AFN-00826D



intal

iAPX 88/10 PRELIMINARY
A.C. CHARACTERISTICS
MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)
TIMING REQUIREMENTS
8088 8088-2
Symbol Parameter Min. Max. Min. Max.| Units| Test Conditions
TCLCL CLK Cycle Period 200 500 125 500 ns
TCLCH CLK Low Time 118 68 ns
TCHCL CLK High Time 69 44 ns
TCH1CH2| CLK Rise Time 10 10 ns | From 1.0V to 3.5V
TCL2CL1 | CLK Fall Time 10 10 ns | From 3.5V to 1.0V
TDVCL Data In Setup Time 30 20 ns
TCLDX Data In Hold Time 10 10 ns
RDY Setup Time into 8284
TR1VCL (See Notes 1, 2) 35 35 ns
RDY Hold Time into 8284
TCLR1X (See Notes 1, 2) 0 0 ns
TRYHCH READY Setup Time into 118 68 ns
8088
TCHRYX | READY Hold Time into 8088 30 20 ns
READY Inactive to CLK (See
TRYLCL Note 4) -8 -8 ns
Setup Time for Recognition
TINVCH (INTR, NMI, TEST) 30 15 ns
(See Note 2)
TGVCH RQ/GT Setup Time 30 15 ns
TCHGX RQ Hold Time into 8086 40 30 ns
Input Rise Time
TILIH (Except CLK) 20 20 ns | From 0.8V to 2.0V
TIHIL Input Fall Time (Except CLK) 12 12 ns |From 2.0V to 0.8V
NOTES:

1. Signal at 8284 or 8288 shown for reference only.

2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T2 state (8 ns into T3 state).
4. Applies only to T2 state (8 ns into T3 state).

57

AFN-00826D



intal

iAPX 88/10 PRELIMINARY
A.C. CHARACTERISTICS
TIMING RESPONSES
8088 8088-2
Symbol Parameter Min. Max. Min. Max. | Units | Test Conditions
Command Active Delay (See
TCLML Note 1) 10 35 10 35 ns
Command Inactive Delay (See
TCLMH Note 1) 10 35 10 35 ns
READY Active to Status Passive
TRYHSH (See Note 3) 110 65 ns
TCHSV | Status Active Delay 10 110 10 60 ns
TCLSH | Status Inactive Delay 10 130 10 70 ns
TCLAV | Address Valid Delay 10 110 10 60 ns
TCLAX | Address Hold Time 10 10 ns
TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns
Status Valid to ALE High (See
TSVLH Note 1) 15 15 ns
Status Valid to MCE High (See
TSVMCH Note 1) 15 15 ns
CLK Low to ALE Valid (See
TCLLH Note 1) 15 15 ns
CLK Low to MCE High (See
TCLMCH Note 1) 15 15 ns
TCHLL ALE Inactive Delay (See Note 1) 15 15 ns
TCLMCL | MCE Inactive Delay (See Note 1) 15 15 ns Cp = 20-100 pF for
TCLDV | DataValid Delay 10 110 10 60 | ns | 2ll8088 Outputs
in addition to
TCHDX Data Hold Time 10 10 ns internal loads
Control Active Delay (See
TCVNV Note 1) 5 45 5 45 ns
Control Inactive Delay (See
TCVNX Note 1) 10 45 10 45 ns
TAZRL Address Float to Read Active 0 0 ns
TCLRL RD Active Delay 10 165 10 100 ns
TCLRH RD Inactive Delay 10 150 10 80 ns
TRHAY | RO Inactive to Next Address TCLCL—45 TCLCL—40 ns
ctive
Direction Control Active Delay
TCHDTL (See Note 1) 50 50 ns
Direction Control Inactive Delay
TCHDTH (See Note 1) 30 30 ns
TCLGL GT Active Delay 85 50 ns
TCLGH GT Inactive Delay 85 50 ns
TRLRH RD Width 2TCLCL-75 2TCLCL~-50 ns
TOLOH | Output Rise Time 20 20 | ns z o 0.8Vito
TOHOL | Output Fall Time 12 12 | ns grg\;” 20Vito

58

AFN-00826D



N
intel IAPX 88110 PRELIMINARY
BUS TIMING—MAXIMUM MODE ™ T T Ts
TeLCL TCH1CH2 oLt g,
H
ok VC / \ / \ a Sk / \
ver—| N/ N\ _/ /|
TCLAV~ TCHCL | TcicH—]
G GEED G
TCHSV —+|  |eTCLSH
-
\ (SEE NOTE 8) \
§3,57,5 (EXCEPT HALT) X 7 / o
As-Ag Ais—Ag
—] TCLAV TeLov TCHDX—|
TCLAX —]
A19/Se-A16/S3 A1g-A1s S6-S3
TSVLH—]
b — L rehLL
—
ALE (8288 OUTPUT) //
SEE NOTE 5 —| [Thve
RDY (8284 INPUT) § E ;xj
= TCLR1X
TRYLCL—] | —
—_—
READY (8088 INPUT) ]‘ s | TCHRYX
—= TCLAX [-—
READ CYCLE, TCLAV—] —ltcLAZ TOVCL TCLDX
AB7=ADy AD7-ADo FLOAT DATAIN FLOAT
TAZ RL-—ZI e TCLRH TRHAV
C X y
T
TCHOTL —=| |~ TCLAL TCHDTH
" TRLRH
DTR
oML~ - TOLMH—~
s2e8 oUTRUTS | o o
SEE NOTES 5,6
TCVNV—|
DEN
TCVNX —*| -
59 AFN-00826D



| iAPX 88/10 PRELIMINARY

WAVEFORMS (Continued)
BUS TIMING—MAXIMUM i Tz Ta Ts

TCHSV1s Tw
MODE SYSTEM ok Veu /\ —
(USING 8288) ver y A ﬂ\ VAR U,

5, 55 (EXCEPT HALT) X /{//// (sse note ) \______.

J

- —={TCLDV
WRITE CYCLE TCLAV I‘- iy e — [+—TCLSH TCHDX—>|
AD7 - ADg X DATA
TCVNV—| TCVNX—|
DEN

— TCLML TCLMH—~

8288 OUTPUTS
SEE NOTES 5,6 AMWC OR AIOWC

— TCLML — |«— TCLMH

MWTC OR IOWC

INTA CYCLE

FLOAT |/ FOR \

R
\__CASCADE ADDR / FLOAT FLOAT

- [\[TCLAZ I—/:TDVCL—-» TCLI
AD7-ADg l ) POINTER

/l FLOAT FLOAT
TeLMeL =] e—

M

Ats - Ag
(SEE NOTES 3,4)

T i

TSYMCH—|
MCE/
PDEN TCLMCH—~ CHDTL — TCHDTH
DT/R —_—
8288 OUTPUTS TCLML—~
SEE NOTES 5,6 ) INTA
] — =T |«téimn
DEN P
SOFTWARE TCVNX—]

HALT — (DEN = Vo,;AD,MRDC,IORC, MWTC,AMWC,IOWC,ATOWC,INTA, DT/ = Von.

AD7—ADg, Ajs—-Ag

INVALID ADDRESS

—\_—/ x——————-
—_—— \
$2,51,S0 | N

NOTES: 1. ;:: éIFGN;LS SWITCH BETWEEN Vou AND VoL UNLESS OTHERWISE
IED.

RDY IS SAMPLED NEAR THE END OF T, Ts, Tw TO DETERMINE IF Tw

MACHINES STATES ARE TO BE INSERTED.

CASCADE ADDRESS IS VALID BETWEEN FIRST AND SECOND INTA

CYCLES.

TWO INTA CYCLES RUN BACK-TO-BACK. THE 8088 LOCAL ADDR/DATA

BUS IS. FLOATING DURING BOTH INTA CYCLES. CONTROL FOR

POINTER ADDRESS IS SHOWN FOR SECOND INTA CYCLE.

SIGNALS AT 8284 OR 8288 ARE SHOWN FOR REFERENCE ONLY.

THE ISSUANCE OF THE 8288 COMMAND AND CONTROL SIGNALS

, [OWC, ATOWT, INTA AND DEN) LAGS THE

El o

LX)

( s 'y
ACTIVE HIGH 8288 CEN.
ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE

NOTED.
8. STATUS INACTIVE IN STATE JUST PRIOR TO T,.

~

60 AFN-008260



intal iAPX 88/10 PRELIMINARY

WAVEFORMS (Continued)

ASYNCHRONOUS BUS LOCK SIGNAL TIMING
SIGNAL RECOGNITION (MAXIMUM MODE ONLY)

Any CLK Cycle —-I
cLK
"
]
CLK
NM! — TINVCH (see note 1)
. "
! ! TCLAV |[+— —~{TCLAV
INTR signal
— - J—
¥ c ! d LOCK
TEST

NOTE: 1. SETUP FOR
SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT CLK

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

]._ Any CLK Cycle —ej=— > 0-CLK Cycle —=|

cLK
TCLGH {+— =] |——TGVCH
L tcLeL "«vcwexr-‘ [~ TCLGH
| — PULSE 1 PULSE 3
Rt / COPROCESSOR PULSE 2 OPROCESSOR,
7 % 8088 GT RELEASE
Previous grant TCLAZ
Atp/Se—-A1e/Sy ) » ] P’
Ais—Ag € ¢
AD; - ADy 8088 COPROCESSOR
5515 N N
AD, [OTK T N

(SEE NOTE 1)

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION
° SHOWN WITHOUT RISKING CONTENTION.

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

2 1 CLK CYCLE— ~—1 OR 2 CYCLES

A A\

v.' le—tHvcn . SEENOTED — |~—THVCH
HoLD #
B ¥

"
45
- (== TCLHAV «—I TCLHAV
HLDA }_‘
— 4

L S —"

|
L )y —| [~—TCLAZ 2

)
s ¢ af
8088 COPROCESSOR —< 8088
e Ik n )
! 1t ¢ 1

61 AFN-00826D



| iAPX 88/10 PRELIMINARY

iAPX 86/10, 88/10
INSTRUCTION SET SUMMARY

DATA TRANSFER
MOV - Move: 76543210 76543210 76543210 76543210 DEC  Decrement 76543210 76543210 76543210 76543210
Register memory to/from register (1000100 w|mod reg 1/m Register/memary 110111 w [moe00 1 m
Immedrate to register/memory 110001 1w |[m6000 t/m dala data w1 ] Register 01001 reg |
Immediate to register 1011w reg data Gata il w 1 NEG Change sign
Memory to accumulator 1010000w addr-low agar high
Accumutator 10 memory 1010001 w 200t low add: han CMP - Compare
Register/memory 1o segment register [ 100 0 1 110 [mod0reg /m Registermemory and register 001110dw mod reg tim
Seqment register 10 register/memory (10001100 |moddreg rim {mmediate with register/memory 100000sw modttt u/m veta | datartsw ot
Immediate with accumulator 0011 110w data datadw 1|
PUSH  Push: AAS ASCIl adjust for subtract 00111111
Register/memory P11t Jmed 110 ym ] DAS Decimal adjust for subtract 00101111
Register 01010 reg MUL Multiply wnsigned) 111101 1w |mod100 (m
Segment register 000reg110 IMUL tnteger multiply (signed) 111101 1w [modl 01 1 m
p—— MM ASCH agjust for multiply 11010100]00001010
DIV Divide tunsigned) 111101 1w mod110 +m
Regster imemory (oot Tmosooe ] IOV ntege o sgnech EEEEEET LR
Register IR ARD ASCII agjust for divide 11010101 ]00001010
Segment register IXEITEREN CBW Convert byle 10 word 0011000
XCHG - Exchange: CWD Convert word to double word  [100 1 1001
Register imemary with register
Register with accumulator 10010 reg
IN=Input from
Fixed port [rioovow] — pon ]
Variable port 1410110w
LOGIC
OUT = Output to NOT Invert 111010 w mes0 10 om
Fixed port 1110001 w port SHL/SAL Shit logical anthmetic ieft [ 110 100y w [modt 00 r/m
Vanable port IRREEREE] SHR Shitt logical 1ight 110100y w|me1 01 (m
XLAT=Translate byte to AL 1101011 SAR SNift antnmetic ngnt 110100V w|[modttt um
LEA-Load EA 10 register 10001101 [mod reg o/m ROL Rotate fef T LI
L0S-Load pointer to 0S 11000101 Imod reg t/m ROR Rotate nght T10100vw|ma00rt rjm
LES-Load pointer to ES 11000100 [mod reg c/m RCL Rotate thiough carty fag left 110100vw|mod010 tfm
LAKF=Load AH with flags 100111t RCR Rotate through carry rignt T10100vw|mod0t1 ofm
SAHF -Store AH into flags 10011110
PUBHE=Push flags 10011100 AND  And
POPF=Pop flags 10011101 Reg -memory and tegister to ener (00 10000 w|mod reg cim
Immediate to register memory 1000000w [mod100 1/m data | caadw 1]
Immegiate 10 accumulator 0010010w ata sata w1 |
TEST  And function to fiags. no result:
ARITHMETIC Register‘memory and register 100001 0w [mog reg oim
ADD - Add Immediate cata and register'memory 1111011 w [mod000 /m data | caadw 1|
Reg /memory with register toeither [0 000000 w[mog reg t/m | Immediate data and accumulator 1010100w data datatw 1|
Immediate 10 register /memory 1000005 w|[mog000 r/m | cata__ | catadswor]
Immediate to accumulator 0000010w data cata ! OR Or
Reg /memory and register to either (0000 100 w [mod reg t/im
ADC - Add with carry: Immediate 10 register /memory 1000000w [mod0 01 r/m Gaa | dataitw
Reg /memory with register to ether  [00 0 100d w[mod reg r/m Immediate 1o accumulator 0000110w dala G w1 |
Immediate to register/memory 100000sw|md010 o/m | 0ata [ oamiswor]
Immediate to accumulator 0001010w G2 | datadw | XOR  Exclusive or:
Req /memory and register to ether [0 0 1100d w [mod reg t/m
INC = Increment: Immediate 1o register/memory 1000000w [modt 10 r/im data__ | datadw 1
Register/memory 111111 1w [mog000 r/m Immediate to accumulator 0011010w data caantw 1|
Register 01000 reg
AAA-ASCH adyust for add [oo1101171]
BAA-Decimal adjust for add 00100111
8UB - Subtract:
Reg /memory and register to exther [0 0 10 100 w |mod reg r/m
Immediate from register/memory 100000sw |modl 01 i/m dan [ ooariswor] STRING MANIPULATION
Immediate from accumulator 0010110w data qata w1 | REP=Repeat 11110012
MOVS=Move byte/word 1010010w
888 - Subtract with borrow CMPS=Compare byte/word 101001 1w
Reg /memory and register 1o either 000110dw|mod reg t/m SCAS=Scan byte/word 101011 1w
Immediate from register/memory 100000 sw |[mdd11 r/m daa | daaiswol L0DS=Load byte/wd 10 AL/AX 10101 10w
Immediate from accumulator 0001 110w cala datadw 1 | STOS=Stor byte/wd from AL/A [m

Mnemonics ©In(el, 1978

62 AFN-00826D



intel IAPX 88/10 PRELIMINARY

INSTRUCTION SET SUMMARY (Continued)

CONTROL TRANSFER |
CALL = Call: 76543210 76543210 76543210 76543210 76543210
Direct within segment 11101000 disp-low disphigh ] JNB/JAE Jump on not below/above 5171100 11 65D
Indirect within segment 11111111 mod010 r/m JII!/JAe:m%%cgl below or 01110111 disp
Direct intersegment 10011010 offset-low oftset-high | JNP/JPO: Jump on not par/par odd 01111011 disp
seg-low seg-high I JNO:Jump on not overtlow 01110001 disp
Indirect intersegment [T [mdo1 1 om NS Jump on not sign 01111001 disp
JMP = Unconditional Jump: LOOP Loop CX times. 11100010 disp
LOOPZ/LOOPE {oop while zero/equal | 11100001 disp
Direct within segment 11101001 disp-low disp-high ] LOOPN2/LOOPNE Loop while not
Direct within segment-short 11101011 disp zerofequal MMRLELLL 25
JCXZ Jump on CX zero 11100011 disp
Indirect within segment 11111111 mod100 ¢/m
Direct intersegment 11101010 offset-low ouset»mgrl INT  Interrupt
seg-low seg-hgh | Type specitied 710071101 wee )
Indirect intersegment [ i1 mod 101 om Type 3 11001100
INTO Interrupt on overflow 11001110
RET - Return from CALL: IRET Interrupt return 11001111
Within segment 11000011
Within seg. adding immed to SP 11000010 data-low data-high |
Intersegment 11001011
Intersegment. adding immediate to SP{ 11001010 data-low data-high | PROCESSOR CONTROL
S kO CXRL K] B EEREIITS
or equal 01111100 disp CMC Complement carry 11110101
.ILE/JIE;Jumn on less or equal/not (=" g disp STC Set carry 1111001
Jlllm;fuer:sann below/notabove [y 1 19010 disp CLO Clear direction 11111100
JBE/INA-Jump on below or equal/ 9 1110110 disp STO Set durection 11111101
JP/JPE=Jump on parity/parity even 01111010 disp LI Clear interrupt 11111010
J0=Jump on overflow 01110000 disp ST Set nterrupt 11111011
J8=Jump on sign 01111000 disp HLT Halt 11110100
JNE/INZ=Jump on not equal/not zero 01110101 disp WAIT wait 10011011
INLAJGE=dump on not less/greater (471711191 asp ESC Escape (10 external device) 11011 xx x| modx x xrim]
NLEAJE Jump on not less or equall o 311 17171 aisp LOCK Bus lock prefix 11110000
Footnotes:
AL = 8-bit accumulator it s:w =01 then 16 bits of immediate data form the operand.
AX = 16-bit accumulator if s:w =11 then an immediate data byte is sign extended to
CX = Count register form the 16-bit operand.
gg : g::'aas:gg"::r:‘ itv= Ollhen “count’” =1 if v=1 then ““count’ in (CL)
Above/below refers to unsigned value. x=don't care
Greater = more positive; z is used for string primitives for comparison with Z.F FLAG.
Less = less positive (more negative) signed values SEGMENT OVERRIDE PREFIX

if d = 1 then ""to” reg; if d = 0 then "from" reg
if w = 1 then word instruction; if w = 0 then byte instruction

/
if mod = 11 then r/m is treated as a REG field REG is assigned according to the following table:
if mod = 00 then DISP = 0°, disp-low and disp-high are absent
it mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent 16Bitw=1) 8Bitw-0 Segment
it mod = 10 then DISP = disp-high: disp-low %2 2: 83? éIL. g? 52
if r/m = 000 then EA = (BX) + (S) + DISP 010 DX 010 oL 0 ss
if r/m = 001 then EA = (BX) + (O!) + DISP 01t BX 011 BL 1 DS
if r/m = 010 then EA = (BP) + (SI) + DISP 100 SP 100 AH
if r/m = 011 then EA = (BP) + (DI) + DISP 11210 %5’ :% g:
it r/m = 100 then EA = (Sl) + DISP m ool M BH

if r/m = 101 then EA = (DI) + DISP

it r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) + DISP .

DISP follows 2nd byte of instruction (before data if required) Ins"ucm:r:'s w'r_llicn reference the flag register file as a 16-bit object use the symbol FLAGS to
represent the file:

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low. FLAGS = X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

Mnemonics @ Intel, 1978

63 AFN-00826D



Intel PRELIMINARY

8284A
CLOCK GENERATOR AND DRIVER FOR
iIAPX 86, 88 PROCESSORS

® Generates the System clock for the # 18-Pin Package
iAPX 86, 88 Processors

& Single +5V Power Supply
= Uses a Crystal or a TTL Signal for ® Generates System Reset Output from
Frequency Source Schmitt Trigger Input
m Provides Local READY and Multibus™ m Capable of Clock Synchronization with

READY Synchronization Other 8284As

RES @_ D
al>Reser

Q
__Jick
X XTAL
OSCILLATOR | ] NG
X2 l/ osc
_ csYNC[]1 ~ 18[dVee
Fic .3 2 s poik PCLK[] 2 17 [0 x1
A i AENIL]3 16 [ Ix2
EFI ~ L_SYNC SYNC ROVICH4 o015 ] ASYNC
CSYNC 1 | READY [] 5 14 ]EFI
ROY2[] 6 13[JFC
RDY1 Jrm—
AEN2[]7 12]7Josc
l\ CLK —
AENT l/ cLk[]s 11[_JRES
) GND[]9 10 [ JRESET
RDY2 L
CKt CK#
AEN2 - D Q D Q|—=Rreapy
FF1 FF2 '
ASYNC
Figure 2.
Figure 1. 8284A Block Diagram 8284A Pin Configuration

64



8284A

PRELIMINARY

Table 1. Pin Description

Name and Function

Symbol | Type Name and Function

Symbol | Type
Address Enable: AEN is an active LOW
AEN2 signal. AEN serves to qualify its respective
Bus Ready Signal (RDY1 or RDY2). AENT
validates RDY1 while AEN2 validates RDY2.
Two AEN signal inputs are useful in system
configurations which permit the processor to
access two Multi-Master System Busses. In
non Multi-Master configurations the AEN
signal inputs are tied true (LOW).

CLK O | Processor Clock: CLK is the clock output
used by the processor and all devices which
directly connect to the processor’s local bus
(i.e., the bipolar support chips and other MOS
devices). CLK has an output frequency which
is V3 of the crystal or EFlinput frequencyand a
¥s duty cycle. An output HIGH of 4.5 volts
(Vcc= 5V) is provided on this pin to drive MOS
devices.

RDY1, | | Bus Ready: (Transfer Complete). RDY is an
RDY2 active HIGH signal which is an indication from
a device located on the system data bus that
data has been received, or is available. RDY1
is qualified by AENT while RDY2 is qualified
by AENZ.

ASYNC | | Ready Synchronization Select: ASYNCis an

PCLK O | Peripheral Clock: PCLK is a TTL level pe-
ripheral clock signal whose output frequency

is ¥2 that of CLK and has a 50% duty cycle.

Oscillator Output: OSC is the TTL level out-
put of the internal oscillator circuitry. Its fre-
quency is equal to that of the crystal.

0sC o

quency appearing on this pin. The input
signal is a square wave 3 times the frequency

input which defines th hronizati RES I | ResetIn: RES is an active LOW signal which
::g: ; t’r? R;A'Sﬁo e ﬁmc ’zgx‘?‘f: is used to generate RESET. The 8284A
| wte t e fREADglc. h en ti ! provides a Schmitt trigger input so thatan RC
;:'o;li‘g: ds \7Vgl'leesn°/'\_SY_NC isslye?fos::\'zar ;ﬁg;’: connection can be used to establish the
single stage of READY synchronization is power-up reset of proper duration.
provided. RESET | O [ Reset: RESET isan active HIGH signal which
N ! X : is used to reset the 8086 family processors. Its
READY | O Regdy.. READY is an active H!GH §|gnal timing characteristics are determined by
which is the synchronized RDY signal input. RES
READY is cleared after the guaranteed hold -
time to the processor has been met. CSYNC | | | Clock Synchronization: CSYNC is an active
" ~ N HIGH signal which allows multiple 8284As to
X1, X2 ! g“:':"i;"a't t)a(::ha: dd ﬁ:f t:tealprs L°e‘:1vh'(:h g be synchronized to provide clocks that are in
tirrriesthe desired .roces |'ty)r clo i?re ucyns phase. When CSYNC is HIGH the internal
— p S _c - quency. counters are reset. When CSYNC goes LOW
F/C | | Frequency/Crystal Select: F/Cisastrapping the internal counters are allowed to resume
option. When strapped LOW, F/C permits the counting. CSYNC needs to be externally syn-
processor’s clock to be generated by the crys- chronized to EFI. When using the internal os-
tal. When F/C is strapped HIGH, CLK is gener- cillator CSYNC should be hardwired to
ated from the EFI input. ground.
EFI | | External Frequency: When F/C is strapped GND Ground.
HIGH, CLK is generated from the input fre- Veo Power: +5V supply.

of the desired CLK output.

FUNCTIONAL DESCRIPTION
General

The 8284A is a single chip clock generator/driver for the
iAPX 86, 88 processors. The chip contains a crystal-
controlled oscillator, a divide-by-three counter, com-
plete MULTIBUS™ “Ready” synchronization and reset
logic. Refer to Figure 1 for Block Diagram and Figure 2
for Pin Configuration.

Oscillator

The oscillator circuit of the 8284A is designed primarily
for use with an external series resonant, fundamental
mode, crystal from which the basic operating frequency
is derived.

The crystal frequency should be selected at three times
the required CPU clock. X1 and X2 are the two crystal
input crystal connections. For the most stable operation
of the oscillator (OSC) output circuit, two series resistors
(R1 = Ry = 510 Q) as shown in the waveform figures are
recommended. The output of the oscillator is buffered and
brought out on OSC so that other system timing signals
can bederived from this stable, crystal-controlled source.

For systems which have a Vg ¢ ramp time = 1V/ms and/or
have inherent board capacitance between X1 or X2, ex-
ceeding 10pF (not including 8284A pin capacitance), the
configuration in Figures 4 and 6 is recommended. This
circuit provides optimum stability for the oscillatorin such
extreme conditions. It is advisable to limit stray ca-
pacitances to less than 10pF on X1 and X2 to minimize
deviation from operating at the fundamental frequency.

AFN-01472B



intel

8284A

PRELIMINARY

Clock Generator

The clock generator consists of a synchronous divide-
by-three counter with a special clear input that inhibits
the counting. This clear input (CSYNC) allows the out-
put clock to be synchronized with an external event
(such as another 8284A clock). It is necessary to syn-
chronize the CSYNC input to the EFI clock external to
the 8284A. This is accomplished with two Schottky flip-
flops. The counter output is a 33% duty cycle clock at
one-third the input frequency.

The FIC input is a strapping pin that selects either the
crystal oscillator or the EFl input as the clock for the +3
counter. If the EFI input is selected as the clock source,
the oscillator section can be used independently for
another clock source. Output is taken from OSC.

Clock Outputs

The CLK output is a 33% duty cycle MOS clock driver
designed to drive the iAPX 86, 88 processors directly.
PCLK is a TTL level peripheral clock signal whose out-
put frequency is ¥2 that of CLK. PCLK has a 50% duty
cycle.

Reset Logic

The reset logic provides a Schmitt trigger input (RES)
and a synchronizing flip-flop to generate the reset
timing. The reset signal is synchronized to the falling
edge of CLK. A simple RC network can be used to
provide power-on reset by utilizing this function of the
8284A.

READY Synchronization

Two READY inputs (RDY1, RDY2) are provided to accom-
modate two Multi-Master system busses. Each input
has a qualifier (AENT and AENZ, respectively). The AEN
signals validate their respective RDY signals. If a Multi-

Master system is not being used the AEN pin should be
tied LOW.

Synchronization is required for all asynchronous active-
going edges of either RDY input to guarantee that the
RDY setup and hold times are met. Inactive-going edges
of RDY in normally ready systems do not require syn-
chronization but must satisfy RDY setup and hold as a
matter of proper system design.

The ASYNC input defines two modes of READY syn-

chronization operation.

When ASYNC is LOW, two stages of synchronization
are provided for active READY input signals. Positive-
going asynchronous READY inputs will first be syn-
chronized to flip-flop one at the rising edge of CLK
and then synchronized to flip-flop two at the next falling
edge of CLK, after which time the READY output will go
active (HIGH). Negative-going asynchronous READY in-
puts will be synchronized directly to flip-flop two at the
falling edge of CLK, after which time the READY output
will go inactive. This mode of operation is intended for use
by asynchronous (normally not ready) devices in the sys-
tem which cannot be guaranteed by design to meet the
required RDY setup timing, TryvcL, on each bus cycle.

When ASYNC is high or left open, the first READY flip-
flop is bypassed in the READY synchronization logic.
READY inputs are synchronized by flip-flop two on the
falling edge of CLK before they are presented to the
processor. This mode is available for synchronous
devices that can be guaranteed to meet the required
RDY setup time.

ASYNC can be changed on every bus cycle to select the
appropriate mode of synchronization for each device in
the system.

CLOCK
SYNCHRONIZE

EFI >—-—D¢ >T

(TO OTHER 8284As)

Figure 3. CSYNC Synchronization

AFN-01472B



intel

8284A

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS*

Temperature UnderBias................. 0°Cto70°C
Storage Temperature .............. -65°Cto +150°C
All Output and Supply Voltages ......... —-0.5Vto+7V
Alllnput Voltages . .................. -1.0Vto +5.5V
Power Dissipation .................. ... ..., 1 Watt

*NOTICE: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Ty=0°C to 70°C, Voo =5V £ 10%)

Symbol Parameter Min. Max. Units | Test Conditions
I Forward Input Current (ASYNC) -1.3 mA VE=0.45V
Other Inputs -0.5 mA Vg=0.45V
Ir Reverse Input Current (ASYNC) 50 uA Vr=Vee
Other Inputs 50 A Vg=5.25V
Ve Input Forward Clamp Voltage -1.0 Vv lc=-5mA
lcc Power Supply Current 162 mA
ViL Input LOW Voltage 0.8 \
Vi Input HIGH Voltage 2.0 \
ViHg Reset Input HIGH Voltage 2.6 Vv
Voo Output LOW Voltage 0.45 \ 5mA
VoH Output HIGH Voltage CLK 4 \" -1mA
Other Outputs 2.4 \" -1mA
Viig— ViLg RES Input Hysteresis 0.25 \'
A.C. CHARACTERISTICS (T5=0°C to 70°C, Vgc =5V + 10%)
TIMING REQUIREMENTS
Symbol Parameter Min. Max. Units Test Conditions
tEHEL External Frequency HIGH Time 13 ns 90%-90% VN
tELEH External Frequency LOW Time 13 ns 10%-10% Vin
teLEL EFI Period teHEL+ tELEH + O ns (Note 1)
XTAL Frequency 12 30 MHz
tRiveL RDY1, RDY2 Active Setup to CLK 35 ns ASYNC = HIGH
trRivcH RDY1, RDY2 Active Setup to CLK 35 ns ASYNC = LOW
triveL RDY1, RDY2 Inactive Setup to CLK 35 ns
toLR1X RDY1, RDY2 Hold to CLK 0 ns
tayver ASYNC Setup to CLK 50 ns
toLavx ASYNC Hold to CLK 0 ns
tA1VRIV ‘AENT, AENZ Setup to RDY1, RDY2 15 ns
toLatx AENT, AEN2 Hold to CLK 0 ns
tYHEH CSYMC Setup to EFI 20 ns
tenyL CSYNC Hold to EFI 20 ns
tyHYL CSYNC Width 2-tg el ns
tiHoL RES Setup to CLK 65 ns (Note 2)
tcLn RES Hold to CLK 20 ns (Note 2)
LTHIT] Input Rise Time 20 ns From 0.8V to 2.0V
tLIL Input Fall Time 12 ns From 2.0V to 0.8V

67

AFN-01472B



n ®
intel 8284A PRELIMINARY
A.C. CHARACTERISTICS (Continued)
TIMING RESPONSES
Symbo! Parameter Min. Max Units Test Conditions
teleL CLK Cycle Period 100 ns
teneL CLK HIGH Time (Va toLc)+2 for CLK Freq. < 8 MHz ns Fig. 7 & Fig. 8
(V3 tcLcL) +6 for CLK Freq.=10 MHz
teLeH CLK LOW Time (35 teLc)—15 for CLK Freq.<8 MHz ns Fig. 7 & Fig. 8
(24 tcLcL)— 14 for CLK Freq.=10 MHz
:z:g:z CLK Rise or Fall Time 10 ns 1.0V to 3.5V
tPHPL PCLK HIGH Time tcrc—20 ns
tpien PCLK LOW Time toLeL—20 ns
tRyLcL Ready Inactive to CLK (See Note 4) -8 ns Fig. 9 & Fig. 10
tRYHCH Ready Active to CLK (See Note 3) (35 tcLc)—15 for CLK Freq.<8 MHz ns Fig. 9 & Fig. 10
(%5 teel) —14 for CLK Freq.=10 MHz
teuL CLK to Reset Delay 40 ns
toen CLK to PCLK HIGH DELAY 22 ns
topL CLK to PCLK LOW Delay 22 ns
torcH OSC to CLK HIGH Delay -5 22 ns
tocL 0OSC to CLK LOW Delay 2 35 ns
toLon Output Rise Time (except CLK) 20 ns From 0.8V to 2.0V
tonoL Output Fall Time (except CLK) 12 ns From 2.0V to 0.8V
NOTES:

1. d=EFI rise (6 ns max) + EFI fall (5ns max).
2. Setup and hold necessary only to guarantee recognition at next clock.
3. Applies only to T3 and TW states.
4. Applies only to T2 states.

A.C. TESTING INPUT, OUTPUT WAVEFORM

A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

24

0.45

1.5 <«—— TEST POINTS —> 1.5

DEVICE
UNDER
TEST

A.C.TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC “1" AND 0.45V FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A

LOGIC 1" AND 0.

Cy. = 100pF FOR CLK

Cp = 30pF FOR READY

byl

V= 2,08V

R, = 3250

C.

68

AFN-01472B



intel 8284 PRELIMINARY

WAVEFORMS

CLOCKS AND RESET SIGNALS

[e—teLEL teHEL

NAME 10

iataV

lec

CLK o
kcmcm—ﬂ tolpi—> a— —>| |e—ferr
PCLK (]
le——toLn towpL
tEHYL—>~ o e tymen
CSYNC 1 T
tyHyL—>| . <-—'cum—>|<—luucu.—>
RES | _\ l'—
teLiL—= '4—
.

RESET O ’
oo

NOTE: ALL TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED.

READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

CLK j
/ 3( 1" % \ 1 !t / l(
t
—>| CLR1X F_ _.1 — e
tR1IVCH—]
RDY1,2 ] (
—| {CLRIX |[=—
L—immv
AEN1,2 ]
- tocLax r—
— ftayvcL e
ASYNC ! 1[
— CLAYX [w—
.o
READY ]t l(
—>l tRYHCH [ tRyLcL—>| [w—

6 9 AFN-014728



intel

8284A

PRELIMINARY

WAVEFORMS (Continued)

READY SIGNALS (FOR SYNCHRONOUS DEVICES)

CLK , )

/—'}

f ./ X

[ X

|— tcLR1IX—>|
CLA1 l«— tarveL—>]
—> tR1vCL [-—
.o
RDY1,2 71 Y
ta1RIv—> [ —»| tCLRIX [—
AEN1,2 ! [
_ . 1
—>| tavver — tcLAIX [=—
.o
ASYNC * -‘
- tcLAYX [
.o
READY

|<— tRYHCH—>1

tRYLCL —> [=—

-
24MHz [J

X1

X2

FIC

CSYNC

CLK

LOAD
(SEE NOTE 1)

Rq = Rp = 5100

Clock High and Low Time (Using X1, X2)

PULSE

GENERATOR

"

EFI

| FIC

CSYNC

CLK

LOAD
(SEE NOTE 1)

Clock High and Low Time (Using EFl)

70

AFN-01472B



-
intel 8284A PRELIMINARY
Vce
LOAD
REN1  CLK (SEE NOTE 1)
X1
= LOAD
24mHz 5 " READY (SEE NOTE 2)
PULSE
! GENERATOR RDY2 0OSC
SR Ry TRIGGER FIiC
AP AEN2
CSYNC
= = = Ry = Ry = 5100,
Ready to Clock (Using X1, X2)
PULSE LOAD
GENERATOR EFl  CLK[ (SEE NOTE 1)
| Vec
; FIT
TRIGGER AENT
PULSE RDY2
GENERATOR RENZ =
LOAD
CSYNC READY (SEE NOTE 2
NOTES: Ready to Clock (Using EFl)
1. CL =100 pF
2. CL=30pF
/
71 AFN-01472B



intel

8282/8283
OCTAL LATCH

s Address Latch for iAPX 86, 88, m 3-State Outputs
MCS-80%, MCS-85%, MCS-48° Families

a High Output Drive Capability for . . ‘
Driving 8ystem Data Bus m 20-Pin PaCkage with 0.3” Center

m Fully Parallel 8-Bit Data Register and

Buffer s No Output Low Noise when Entering
= Transparent during Active Strobe or Leaving High Impedance State

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers.
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal periph
eral and input/output functions of a microcomputer system can be implemented with these devices.

D'od

r—-——————-— *: 1 7 20 vee
< | <]
— a B I T oh[]2 19 [ 00g
@, | » : @ @ | Di2[]3 18 [] DOy
I | | Di3[]a 17 [] 002
| ! l oiaC]s  16fJD0s
:- ! :. s 6262 5 0o
r<¥J | r——————- 'L_ 7 < Dig] 7 14 [] DOs
m — . @ m —1 L< oi;[]e 13 [ ] DOg
r~ | r-——————- 4 ] rN | r—————-—- 4 7 oF DO
O TTHE BT E A
72 fm—————— [~ 72 p———— 7
:1L H—{) :1L H—{=)
70 I 'L 7 N rv~ ( ,,~—f—/—""——— 7\
O L E B G
O HE B [ s M e
& _[I: S N J"_* N o]z  19[7D0p
2 b—————— ) r‘ P——————-— 7z 07
CId—— Hed H—{=) oeCfe epoor
L i L i Diz[]a 17 [J 002
rY | 2 bm—m—————— 7R\ rv | bYL*"—————e-— T =
@ ._I H @ @ ',_l - @ olalys 8283 16 {1003
[ in [ iR ois[]6 15 [] D04
Dig[] 7 14[]D0g
piz []8 13 []D0%
A g gt 4y B
7 ~N 7 [N
@ @ @ @ GND[J10  n[]sTe
Figure 1. Logic Diagrams Figure 2. Pin Configurations

72



ntel

8282/8283

Table 1. Pin Description

Pin

Description

STB

STROBE (Input). STB is an input control
pulse used to strobe data at the data input
pins (Ag-A;) into the data latches. This
signal is active HIGH to admit input data.
The data is latched at the HIGH to LOW
transition of STB.

OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW
enables the contents of the data latches
onto the data output pin (Byp-B5). OE being
inactive HIGH forces the output buffers to
their high impedance state.

Dlg-Dl7

DATA INPUT PINS (Input). Data presented
at these pins satisfying setup time re-
quirements when STB is strobed and
latched into the data input latches.

DO,-DO;

(8282)

DOO- -D_O-7
(8283)

DATA OUTPUT PINS (Output). When OE is
true, the data in the data latches is pre-
sented as inverted (8283) or non-inverted
(8282) data onto the data output pins.

FUNCTIONAL DESCRIPTION

The 8282 and 8283 octal latches are 8-bit latches with
3-state output buffers. Data having satisfied the setup
time requirements is latched into the data latches by
strobing the STB line HIGH to LOW. Holding the STB
line in its active HIGH state makes the latches appear
transparent. Data is presented to the data output pins by
activating the OE input line. When OE is inactive HIGH
the output buffers are in their high impedance state.
Enabling or disabling the output buffers will not cause
negative-going transients to appear on the data output
bus.

73 AFN-00727C



intel

8282/8283

ABSOLUTE MAXIMUM RATINGS*

Temperature UnderBias................. 0°Cto70°C
Storage Temperature............. -65°C to +150°C
All Output and Supply Voltages........ -05Vto +7V
All Input Voltages. ................. -1.0V to +5.5V
Power Dissipation.......................... 1 Watt

*NOTICE: Stresses above those listed under “Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (v = 5V £10%, Ta = 0°C to 70°C)
Symbol Parameter Min." Max. Units Test Conditions
Ve Input Clamp Voltage -1 v lc= -5mA
lcc Power Supply Current 160 mA
I3 Forward Input Current -0.2 mA Vg = 0.45V
Ir Reverse Input Current 50 A Vg = 5.25V
VoL Output Low Voltage .45 v loL = 32 mA
Vou Output High Voltage 2.4 v loy = —5mMA
lorr Output Off Current +50 uA Vogr = 0.45 to 5.25V
Vi Input Low Voltage 0.8 v Vec=5.0V  See Note 1
Vin Input High Voltage 2.0 v Vee=5.0V  See Note 1
F=1MHz
Cin Input Capacitance 12 pF Vgias=2.5V, Vo =5V
Ta=25°C
NOTE:

1. Output Loading lg. =32mA, loy = —5mA, C_=300pF.

A.C. CHARACTERISTICS (vcc = 5V £10%, T = 0°C to 70°C
Loading: Outputs — lgp = 32 mA, lgy = —5 mA, C = 300 pF)
Symbol Parameter Min. Max. Units Test Conditions
Tivov Input to Output Delay . (See Note 1)
—Inverting 5 22 ns
—Non-Inverting 30 ns
TSHOV STB to Output Delay
—Inverting 10 40 ns
—Non-Inverting 10 45 ns
TEHOZ Output Disable Time 5 18 ns
TELOV Output Enable Time 10 30 ns
~ TIvsL Input to STB Setup Time 0 ns
TSLIX Input to STB Hold Time 25 ns
TSHSL STB High Time 15 ns
TILIH, TOLOH Input, Output Rise Time 20 ns From 0.8V tq 2.0V
TIHIL, TOHOL Input, Output Fall Time 12 ns From 2.0V to 0.8V
NOTE: .
1. See waveforms and test load circuit on following page.
74 AFN-00727C



intal

8282/8283

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4

1.5 <—— TEST POINTS —» 1.5

0.45

A.C.TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC 1" AND 0.45V FOR
A LOGIC "0.” TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A
LOGIC "1 AND "0.”

OUTPUT TEST LOAD CIRCUITS

1.5V

33Q

ourt

1300 pF

3-STATE TO VoL

1.5V

180Q

out

ISDODF

3.STATE TO Vo

214V

h 3
3 5270
<

ouTo—4

-~ 300 pF

4
SWITCHING

75

AFN-00727C



intal | 8282/8283

WAVEFORMS

INPUTS ><
TIVSL TSLIX:

STB
-—/ TSHSL \

[+ TIVOV-> TEHOZ TELOV
Voh-.1V
OUTPUTS < ——— e ———
VorLt+.1v
SEE NOTE 1 o
TSHOV

NOTE: 1.8283 ONLY — OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION.
2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

50~ S0
8282 8283
40

(4] (3]
w w 5!
[”] cN
z : - ors’t
> >
3 3
(-] o

20 2 ﬂP\OAL

10 10

1 | 1 | i 1 1 1 1 |
200 400 600 800 1000 200 400 600 800 1000
pF LOAD pF LOAD

Output Delay vs. Capacitance

76 AFN-00727C



intel
8286/8287
OCTAL BUS TRANSCEIVER

s Data Bus Buffer Driver for iAPX 86,88, m 3-State Outputs
MCS-80™, MCS-85™, and MCS-48™M
Families
m 20-Pin Package with 0.3 Center
a High Output Drive Capability for
Driving System Data Bus
m No Output Low Noise when Entering
m Fully Parallel 8-Bit Transceivers or Leaving High Impedance State

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

(=)
€

- TTTTHE BT =) AOE:—U;:]VCC Ao dmﬂ Vee

______________ ” A2 19[1Bo A2 191 Bo
@“4 l-< A3 18[] 84 A2(]3 18[184
E_J ———————————— L@ Az[]4 17182 A3[]4 17[]82
e Them g o g Th——— e — As]s 16783 A5 16[1B3
—l @ As(]s 8286 15[ 1Ba As[]6 8287 By
@_‘_, ______________ =) Ag[]7 14|85 Ag[]7 14185
" o L A7[]s 13786 A7[]s 13|86
(o) W] U () OE[]9 12[]87 oe[]o 12187
@ ““““““““““ =) GND [] 10 nar GND [ 10 war
ot Q @—-

Figure 1. Logic Diagrams Figure 2. Pin Configurations




8286/8287

Table 1. Pin Description

Symbol Type Name and Function

T | Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH,
it configures the transceiver’s Bo—-B7 as outputs with Ag—A7 as inputs. T LOW configures Ag—-A7 as
the outputs with Bo-By serving as the inputs.

OE | Output Enable: OE is an input control signal used to enable the appropriate output driver (as
selected by T) onto its respective bus. This signal is active LOW.

Ag-A7 /O Local Bus Data Pins: These pins serve to either present data to or accept data from the processor’s
local bus depending upon the state of the T pin.

Bo-B7(8286) /0 System Bus Data Pins: These pins serve to either present data to or accept data from the system

Bo-B7(8287) bus depending upon the state of the T pin.

FUNCTIONAL DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with Bo-B7 pins is driven onto the Ag—-A7 pins. No output low
high impedance outputs. With T active HIGH and OE ac- glitching will occur whenever the transceivers are enter-
tive LOW, data at the Ag—A7 pins is driven onto the By—B7 ing or leaving the high impedance state.

pins. With T inactive LOW and OE active LOW, data at the

78 AFN-015068



ntel

I 8286/8287
TEST LOAD CIRCUITS
1.5V 1.5V 2.14V
33Q 66Q 52.7Q
ouT ouT ouT
Iaoo pF Iwo oF Iaoo PF
3‘STATE-TO VoL 3-STATETTO VoL Sw'szNG
B OUTPUT A OUTPUT B OUTPUT
1.5V 1.5V 2.28V
180Q 900Q 114Q
ouT ouT ouT
ISOOPF Iwo pF Iwo pF
3~STATE TO VoH S-STATE-TO VOH SwszHlNG
B OUTPUT A OUTPUT A OUTPUT
79 AFN-01506B



intel

8286/8287

ABSOLUTE MAXIMUM RATINGS*

TemperatureUnderBias................. 0°Cto70°C
Storage Temperature............. -65°C to +150°C
All Output and Supply Voltages. ....... -05Vto +7V
All Input Voltages.................. -1.0Vto +5.5V
Power Dissipation.......................... 1 Watt

*NOTICE: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vcc = +5V £10%, Ty= 0°C to 70°C)

Symbol Parameter Min Max Units Test Conditions
Ve Input Clamp Voltage -1 Vv Ilc=-5mA
lec Power Supply Current—8287 130 mA
—B8286 160 mA
e Forward Input Current -0.2 mA Ve=0.45V
g Reverse Input Current 50 KA Vg=5.25V
Vou Output Low Voltage —B Outputs .45 \' loL=32 mA
—A Outputs .45 \' loL =16 mA
VoH Output High Voltage —B Outputs 2.4 \ loH=-5mA
—A Outputs 2.4 \" lon=-1mA
lorr Output Off Current g Vogg=0.45V
lorr Output Off Current In Vorg=5.25V
Vi Input Low Voltage  —A Side 0.8 \ Vcc=5.0V, See Note 1
—B Side 0.9 \ Vcc=5.0V, See Note 1
Vi Input High Voltage 2.0 \" Vcc=5.0V, See Note 1
F=1MHz
Cin Input Capacitance 12 pF Vgias=2.5V, Vgc=5V
Ta=25°C
NOTE:

1. B Outputs—IlgL = 32 mA, Igy = —5 mA, C|_ = 300 pF; A Outputs—Ig. = 16 mA, Iopy = —1 mA, C_ = 100 pF.

A.C. CHARACTERISTICS (V¢ = +5V +10%, T = 0°C to 70°C)

Loading: B Outputs—Ig. = 32 mA, loy = —5 mA, C__ = 300 pF
A Outputs—Ilg. = 16 mA, oy = —1 mA, C,_ = 100 pF

_Symbol Parameter Min Max Units Test Conditions
TIVOV Input to Output Delay
Inverting 5 22 ns (See Note 1)
Non-Inverting 5 30 ns
TEHTV Transmit/Receive Hold Time ns
TTVEL Transmit/Receive Setup 10 ns
TEHOZ Output Disable Time 5 18 ns
TELOV Output Enable Time 10 30 ns
TILIH, Input, Output Rise Time 20 ns From 0.8 Vto 2.0V
TOLOH
TIHIL, Input, Output Fall Time 12 ns From 2.0V to 8.0V
TOHOL
NOTE:
1. See waveforms and test load circuit on following page.
80 AFN-015068



intel

8286/8287

WAVEFORMS
INPUTS ><
. _/ N
<Tivov —= TEHOZ TELOV —| [
VoH - .1V
OUTPUTS —— — —
VoL + .1V
|+——— TEHTV l~—TTVEL
T
NOTE:

1. All timing measurements are made at 1.5V unless otherwise noted.

sor I
8287
40 |-
o ©
] pSE w
@ - < C »
z % WOPRS z
> >
< <
-d -l
w w
a a
» TyPICAY 20
10 10
1 | | i l. 1 1 | 1 |
200 400 600 800 1000 200 400 600 800 1000
pF LOAD pF LOAD

Output Delay versus Capacitance

81

AFN-015068



ALABAMA

Inte! Corp.

5015 Bradford Drive
Suite 2

Huntsville 35805
Tel: (205) 830-4010

ARIZONA
Intel_Corp.

11225 N. 28th Drive
Suite 214D

Phoenix 85029

Tel: (602) 869-4980
CALIFORNIA

Intel Corp.

gZSO E. Impenal Highway
El Se undo 90245

Tel: (213) 640-6040

Intel Corp.

1010 Hurley Way
Suite 300
Sacramento 95825
Tel: (916) 929-4078

Intel Corp.

4350 Executive Drive
Sul(

San Diego 92111
(619) 452-5880

ntel Corp.
000 Easl 4th Street

an\a Ana 92705
(714) 835-9642
: 910-595-1114

Intel Corp.*
1350 Shmeblrd Way
Mt w 94043

Yo ) ‘Ses-aoss
TWx: §10.333.9279
910-338-0255

Intel Corp.

530 Corbm Avenue
uite

ar;sna 91356

el:” (818) 708-0333
TWX: 910-495-2045

COLORADO

‘.'L.

4445 Norlhpark Drive
Suite 100

Qolorady. Springs 80907
Tel: (303) 594-6622

Intel Corp.
650 S. Cherry Street

Te| (303) 321-8086
. 910-931-2289

CONNECTICUT

Intel
36 Padanavam Road

ry 06810
Tel: (203) 792-8366
TWX: 710-456-1199

EMC Corp.

222 Summer Street
Stamford 06901
Tel: (203) 327-2934

FLORIDA

Intel Corp.

242 N. Westmonte Drive
Suite 105

Altamonte Springs 32714
Tel: (305) 869-5588

intel Corp.
1500 NW. 6200 Street

Suit

F(. Lauderdale 33309
(305) 771-0600
TWX 510-956-9407

DOMESTIC SALES OFFICES

GEORGIA

Intel Corp.
gzao ;omle Parkway

Norcross 30092

Tel: (404) 4490541
ILLINOIS

Intel Corp.*

2550 Golf Road
Suite 815

Rolling Meadows 60008
Tel: (312) 981-7200
TWX: 910-651-5881
INDIANA

Intel Corp.

9100 Purdue Road
Suite 400
Indianapolis 46268
Tel: (317) 875-0623
IOWA

Intel Corp.

St. Andrews B

1930 St. Andrews rlve N.E.
edar Fapids
: (319) 393 5510

KANSAS

Intel CO
8400 . 110th Street

le 170
Overland Park 66210
Tel: (913) 642-8080
LOUISIANA
lnduslnal Digital Systems Corp.
: (504) 899-1654

MARYLAND

7257 Parkway Drive
Hanove 076

Tel: (301) 7gs 7500
TWX: 710-862-1944

Intel Corp.
7833 Walker Drive
Greenbelt 20770

Tel: (301) 441-1020

MASSACHUSETTS
Intel Corp.*

27 Iduslr-a| Avenue
Chelmsford 0182¢
Tel: (6I7 256-‘800
TWX: 710-343-6333
EMC Corp.

385 Elliot Street
Newton 02164

Tel: (617) 244-4740
TWX: 922531
MICHIGAN

7071 Ovchavd Lake Road

1
Wes( Bloomfield 48033
Tel: (313) 851-8096

MISSOURI

Intel Corp.

4203 Earth City Expressway
Sulle 3

Earth 045

Tel: (314) 2914990

NEW JERSEY

Intel Oo?.‘

Raritan Plaza Nl

Ra llan Cen(e

Tel (20‘) 225 -3000
TWX: 710-480-6238

NEW MEXICO

Intel Corp.

8500 Menual Boulevard N.E.
Suite B 295

Albuquerque 87112

Tel: (505) 292-8086

NEW YORK

Intel Corp.*

300 Vanderbwll Molor Parkway
Hauppauge

Tel: (516) 231 3300

TWX: 510-227-6236

Intel

80 Washlnglcn Street
Poughkeepsie 12601

Tel: (914) 473-2303

TWX: 510-248-0060

Intel Corp.

211 White Spruce Boulevard
Rochester 14623

Tel: (716) 424-1050

TWX: 510-253-7391
T-Squared

6443 Ridings Road

206
Tel: (3;5 463-8592

Tel: (715) 240101
TWX: 510-254-8542

NORTH CAROLINA

intel Corp.

2306 W. Meadowview Road
Suite 206

Greensboro 27407

Tel: (919) 294-1541

OHIO

Intel Corp.*

6500 Poe Avenue
Dayton

Tel: (513 890 5350
TWX: 810-450-2528

Intel Cory é)

Chagrin-Brainard Bldg., No. 300
28001 Chagrin Boulevard
Cleveland 44122

el:

TWX: 810-427-9298

OKLAHOMA
Intel Co p.
4157 S, Harvard Avenue
Suite

Tulsa 74135

Tel: (918) 749-8688
OREGON

Inlel Covp
S.W. Beaverton
Hlllsdale Highway

uite
Besvenon 97005

Tel: (503) 641-8086
TWX: 910-467-8741

PENNSYLVANIA

Intel Corp.*

510 Pennsylvania Avenue

Fort Washington 19034

Tel (215) 641-1000
510-661-2077

Intel Corp.
400 Penn Cen\ev Boulevard

1
Pnltsburgn 15235
Tel: (412) 823-4970

Q.ED. Electronics
139 Terwood Rcad
Willow Grove 190!
Tel: (215) 657+ 5600

TEXAS

Intel Corp.*
\2300 al;old Road

D II
Tel: (2|4| 241 8087
TWX: 910-860-5617

Intel Corp.*

7322 SW. Freeway
Suite 1490

Houston 77074

Tel: (713) 988-8086
TWX: 910-881-2490

Industrial Dngllal Systems Corp
5925 Sou

Suite 120
Houslon 77036
Tel: (713)988-9421

Intel Corp.
313 E Anderson Lane

Suit
Ausv
Tel: (512) Y3628

UTAH

Intel Corp.

5201 Green Street
Suite 290

Salt Lake City 84123
Tel: (801) 263-8051

VIRGINIA

Intel Cory

1603 Sanla Rosa Road
Suite 109

Ru:hmond 23288

Tel: (804) 282-5668

'WASHINGTON

Intel Corg
110 uo‘rl\) “Avenue NE
1

TWX: 910-443-3002
Intel Corp.

408 N. MuHan Road
Suit

Spokane

Tel: (509) 923 8086
WISCONSIN

!mel Cor
Sunnyslape Road

Chancellory Park

Brookfield 53005

Tel: (414) 784-9060

CANADA
ONTARIO

Intel Semxconduclor ol Canada, L.
Suite Bell

39 th ay 7

Nepean K2H 8R2

Tel: (613) 829-9714

TELEX: 053-415

Intel Sermconducmv of Canada, Lid.
|90 Aliw il

Suit

Rexdale M9W 6HB
Tel: (416) 675-2105
TELEX: 06983574

QUEBEC

Intel Semiconductor of Canada, Ltd.
3860 Cole Vertu Rd.

Suite 210

St. Laurent H4R 1v4

Tel: (514) 334-0560

TELEX: 05-824172

*Field Application Location



BELGIUM

Intel Corporation S.A.

Parc Seny

Rue du Moulin a Papier 51
Boite 1

B-1160 Brussels

Tel: (02)661 07 11

TELEX: 24814

DENMARK

Intel Denmark A/S*
Glentevej 61 - 3rd Floor
DK-2400 Copenhagen
Tel:_(01) 19 80 33
TELEX: 19567

FINLAND

Intel Flnland OY
Hameentie

SF - 00550 Helstnkl 55
Tel: 0/716 955

TELEX: 123 332

FRANCE

Intg, Corporation, SARL
§ Page de'la Balance

94528 Rungis Cedex
Tel:_(0f) 687 22 21
TELEX: 270475

EUROPEAN SALES OFFICES

FRANCE (Cont'd)

Intel Corporanon. SARL.
Immeub

4 Oual des E‘rons
69005 Lyon

Tel: (7) 842 40 89
TELEX: 305153

WEST GERMANY
Intel Semxoonduclcr GmbH*

Tel: (89) 53891
TELEX: 05-23177 INTL D

Intel Semlconduclor GmbH*
Mainzer Strasse

D-6200 Wlesbaden 1

Tel: (6121) 70 08 74
TELEX: 04186183 INTW D

Intel Semlconduclor GmbH
Brueckstrasse

7012 Fellbach

Stutigart

Tel: (711) 58 00 8:

TELEX: 7254826 \NTS D

Intel Semiconductor GmbH*
Hohenzollern Strasse 5°*
3000 Hannover 1

Tel: (511) 34 40 81
TELEX: 923625 INTH D

ISRAEL
Intel Semiconductor Ltd.*
PO Box 1659

laifa
Tel 4/524 261
TELEX: 46511

ITALY

Intel Corporauon ltalia Spa*
Milanofiori, Palazzo E
20094 Assagu (M|Ianc)

Tel: (02) 824 00 O

TELEX: 315133 INTMIL

NETHERLANDS

Intel Semiconductor Nederland B.V.*

Alexanderpoort Building
M: W

TELEX 22283
NORWAY

Intel Norway A/S
P.O. Box 92
Hvamgeien 4

Skjetten
Tel: (2) 742 420
TELEX: 18018

SPAIN

Intel Iberia
Calle Zurbaran 28

ladrid 04
Tel: (34) 1410 40 04
TELEX: 46880

SWEDEN

Intel Sweden AB.*
Box 20092
Archimedesvagen 5
S- romm:

Tel: (08) 99 5 8
TELEX: 12

SWITZERLAND

Intel Semiconductor A.G.*
Forchstrasse 95

CH 8032 Zurich

Tel: (01) 55 45 02
TELEX: 57989 ICH CH

UNITED KINGDOM

Intel COrporauon (UK) Ld.*

5 Hospital Street

amwwh. Cheshire CW5 5RE
70) 626 560

TELEX;

Intel Corporation (UK.) Ltd.*
Pipers Way

Swi mdon Wlltsmre SN3 1RJ
Tel: (0793) 488 388
TELEX: 444447 INT SWN

*Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Elektronische Geraete GmbH

Ro(emuehlgasse 26

1120 Vienna
Tel (222) 83 63
TELEX: 11532 BASAT A
BELGIUM

Inelco Belgium S.A

des Croix de Guerre 94

Ve,

B1120 Brussels

Tet (02) 216 01 60
TELEX: 254

DENMARK

iTT MumKomponem A/S
Naverlan

DK- 2600 Gloskrup

Tel: (02) 4

TX: 33355

FINLAND

Oy Fintronic AB
Melkonkatu 24 A
SF-00210

Helsinki 21

Tel: (0) 692 60

TRLE 1587 254 Fron SF

FRANCE

Generim

ZA de Ommaboeu!

Avenue de la Baltique
91943 Les Uiis CedexBPBB
Tel: (1) 907 78 78

TELEX: F691700

Jerm n S.A.

venue Jean-Jaures
94600 Chulsy Le Rox
Tel: (1) 8
TELEX: 260967

Metrologie

La Tour d' Asnier

& Avenus Lagrent Cely
92606-Asnieres

Tel: (1) 790 62 40
TELEX: 611-448

Tekelec Airtronic

Cite des Bruyeres

Rue Carle Veme| BP. 2
92310 Sewr

Tel: (1) 535 75 35
TELEX: 204552

WEST GERMANY

Electronic 2000 Vennebs AG.
Neumarkter Stra:

D-8000 Munlch 80

Tel: (89) 43 40

TELEX 2256! ElEC D

Jermyn GmbH
Postfach 1180
Schulstrasse 48

D-6277 Bad Camberg
Tel: (06434) 231

TELEX: 484426 JERM D

Celdis Enatechnik Systems GmbH

Gutenbergstrasse 4
2359 Henstedt-Ulzburg
Tel: (04193) 4026
TELEX: 2180260

Metrologie GmbH
Hansaslrasse 15
8000

Tel: (59; "5 3 s
TELEX: D 5213189

Proelgctron Vertriebs GmbH
Max Planck Strasse 1-3
6072 Dreieich bei Frankfurt
Tel: (6103) 33564

TELEX: 417983

IRELAND

Micro Marketing
Glenageary Office Park

Tel: (1) 8 62 88
TELEX: 31584

ISRAEL

Eastronics Ltd
H Rozanis _Street
Box 39, 00

Tel “Aviv 61390
@) 47 51 51
Teie sthas

ITALY

Eledra 3S SP.A.
Vigle Eivezia, 18
| 20154 Milano
Tel: (2) 34 97 51
TELEX: 332332

Intesi
Mulanoron Pal E/5

Yok 02 82470
TELEX: 311351

NETHERLANDS

Koning & Hartman
Koperwerf 30

P.O. Box

2544 ENs Gravennage
Tel: 31 170) 210.101
TELEX: 315

NORWAY

Nordisk Elekironic, (Norge) A/S

Postoffice
Smeusvmgen %,
1364 Hvalstad
Tel: (2) 846 210
TELEX: 17546

PORTUGAL
Ditram

Componentes E Electronica LDA

A Miguel Bombarde, 133
P1000

Tl (19) 5

Tt iats Sriksp

SPAIN
Interface S.A.

Ronda San Pedro 22, 3 Piso

Barcelona 1
Tel: (34) 33 01 78 51
TWX: 51508

:\}T SIESI: 1 21, 6 Pi
iguel el 21, S0
Magdvid ‘Sg

Tel: (34) 14 1954 00
TELEX: 27461

SWEDEN

AB Gosta_Backstrom
Box 12009
Alstroemergatan 22
§-10221 Stockholm 12
Tl @) &

e o1

Nordisk Electronik AB
Box 27301
Sandhamnsgatan 71
$-10254  Stockholm

Tel: (8) 635 040
TELEX: 10547

Telko AB

Gardsfogdevagen 1
x 186

$-161 26 Bromma

Tei (8 98 08 20
TELEX: 11941

SWITZERLAND

Industrade  AG

Gemsenstrasse 2

Postcheck 80 - 21190

CH-8021 Zuri

Tel 01) %3 23 20
ELEX: 56788 INDEL CH

UNITED KINGDOM
Bytech_ Lt
57

London Foad
Earey, Feading

Tel (0734) 61031
TELEX: 848215

Comway_ Misrosystems Ltd.
Market _Stre
R Sracknal Berkhire
Tel a4 (e

TELEX: 847

Jermyn Indusmes
Vestry E

Sevenoaks. KEn
Tel: (0732) 450144
TELEX: 95142

MEDL.

East Lane Road
North  Wemble;
Middlesex HAQ 7PP
Tel: (01) 904 93 07
TELEX: 28817

Rapid Recall, Ltd.

Rapid House/Denmavk St

ngh W{

Berks, ngland HP11 2ER

Tel (049) 26 271
TELEX: 837931

YUGOSLAVIA
H.
P.O.
Jose, Cahforma 95150

San
Tel:_408/978-8
TELEX: 273559

R._Microelectrorics Enterprises
Bo 5¢



AUSTRALIA

lmel Semiconductor Pty. Ltd.*
Spectrum Building
200 IPsclllc Highway

Cvows Nest, NSW, 2089

alia

Tel: 011-61-2-436-2744
TELEX: 790-20097
FAX: 011-61-2-923-2632

HONG KONG

Intel Semiconductor Ltd.*

|3/F Hong Kong Trade Centre
s Voeux Road Central

011—852 5—450—88

TELEX: 63869 ISLHKHX

INTERNATIONAL SALES OFFICES

JAPAN

Intel Japan
5-6 Tokodai, Toyosala -machi
Tsuki uba un, Ibaraki-ken 300-26
Tel 7-851

EX: 03656150

Intel Japan KK.*
2-1-15 Naka-machi
Alsugi, Kanagawa 243
Tel: 0462-23-3511

Intel Japan KK.*
2-51-2 Kojima-cho
Chofu, Tol 182
Tel: 0424-88-3151

JAPAN (Contd)
inel Japan, K.
269

‘? a. Sanama 360
1485-24-6871

Intel Japan K.K.*
24\ Terauchi

naka, Osaka 560
TB. 06-863-1091

Intel Japan KK.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621

JAPAN (Cont'd)
Intel Japan K.K.*
1-23-9 Shinmachi
Setagaya-ku, Tokyo 154
Tel: 03-426-2231

SINGAPORE

Intet Semlcnnduc(or Ltd.
101 Thomson R

21-06 Goldmll Square
Singapore 1

Tel: (65) 250 78“

*Field Application Location

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

VLC S.RL.

Sarmiento 1630, 1 Piso
1042 Buenos Aires
Tel: 35-1201/9242
TELEX: 17575 EDARG

Mailing Address
Solmex Irggr:aﬁona] Corpovaﬂon

York New York 10038
&2'2) 406-3052

Gaston Briones
AUSTRALIA
Total Electronics
9 Harker Street
urw
Victoria 3125
Tel: 011-61 3 288-4044
TELEX: AA 31261
Mailing Address

anale 250
Burwood, Victoria 3125

Australia

Total Electronics

Unit 10, Valetta Buildin,
CNR Campbell Street E Reserve

Roa

Artarmon, N.S.W. 2064

TeI 02-438-1855
TELEX: 26297

BRAZIL

Icotron S.A.
05110 Av. Munnga 3650-6 Andar
Plnluba Sao Paulo

833-2378
TELEX: 1122274/ICOTBR

CHILE

DIN
Av. VIC MacKenna 204
Casilla 60!

Santiago

Tel: 277-564

TELEX: 352-0003

HONG KONG

Schmidt & Co. Ltd.
18/F. Great Eagle Centre
23 H'a|vbouv Road

Wancl
Tel: 5-8330-220
INDIA/

Mlcvomc Devices
/I(ig? Nirmal industrial Estate
Bomba 400022
Tel:
TELEX 011 71447 MDEV IN

JAPAN

Asahi Elemromcs Co Ltd.
KMM Bldg.
2-141 Asano. Kokurakﬂa Ku
Kitakyushu City 802

Tel: (093) 511-6471

TELEX: AECKY 7126-16

JAPAN (Cont'd)

Hamillan-Avnel Electronics Japan Ltd.
and YOU Bidg. 1-5-7 Horidome-

Nlhorz%gfhl Cnu&Ku. Tokyo 103

TELEX: 2523774

Ryoyo Electric Corporation

Konwa Bldg.

1-12-22, Tsukiji

Chuo-Ku, Tokyo 104

Tel: (03) 543-7711/541-7311

Tokyo Electron le

Shinjuku Nomura Bidg.

26-2 lehl-Shlnluku lChome
okyo

Tl (03) 3434411
TELEX: 232.2220 LABTEL J

KOREA
Koram Digital
2nd o

Floor, Governmem Pension Bldg.
Dong

24-3, Yoido-
;oungdungpo-Ku

Tel: 782-8039 or 8049
TELEX: KODIGIT K25299
NEW ZEALAND

McLean Inlormsnon Technology Ltd.
9 Kyber Pass Road, Newmarket,
Box 9 64. Newmalkel

Auckland 1, New Zeal

Tel: 501-801, 50| -219, 587037

TELEX: NZ21570 THERMAL

PAKISTAN

Computer Aggncallons Ltd.
7 ? Gizri Boulevard

Te|. 021 530 306/7
TELEX: 24434 GAFAR PK

SINGAPORE

ngeral Engineers Corporation Pty.
18 Pasir Panjan

|S|oslos PSA ulll S(orey Complex
ingapor

051
Tel: 011-65-: 271 3163
TELEX: RS23987 GENERCO

SOUTH AFRICA

Eledmnic Building Elements, Pty. Ltd.
H ood Ple loria 0001

Tel 0“2 -12-46-9221 or 9227
TELEX: 3-0181 SA

TAIWAN

Taiwan Automation Corporalmn'
3rd Floor #75, Sectio

#anklng East Road

ai

Te|?e77|-0940 or 0941
TELEX: 11942 TAIAUTO

YUGOSLAVIA

R. M|croelsclronm ‘Enterprises
PO Box

an Jose, Callmmla 95150
Tel (408) 978-8000
TELEX: 278-559

*Field Application Location



Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel International (U.K.) Ltd.
Piper’s Way

Swindon, Wiltshire SN3 1R]
United Kingdom

Intel Japan K.K.
5.6 Tokodai Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26

Japan

Published for Intel Corporation
. by
Reston Publishing Company, Inc.

Printed in USA/C-211/26K/0384/RRD MDK
Microprocessors

ISBN 0-8359-3016-

{
{
|
{
|
i
y

R
e




