

intel”

LITERATURE

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Iaiterelxature Sales. In Europe and other international locations, please contact your local sales office or
istributor.

INTEL LITERATURE SALES In the U.S. and Canada
P.O. BOX 7641 call toll free
Mt. Prospect, IL 60056-7641 (800) 548-4725

CURRENT HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information.

TITLE ORDER NUMBER
SET OF 11 HANDBOOKS 231003
(Available in U.S. and Canada only)

EMBEDDED APPLICATIONS 270648
8-BIT EMBEDDED CONTROLLERS 270645
16-BIT EMBEDDED CONTROLLERS 270646
16/32-BIT EMBEDDED PROCESSORS 270647
MEMORY ‘ 210830
MICROCOMMUNICATIONS 231658
(2 volume set)

MICROCOMPUTER BOARDS AND SYSTEMS 280407
MICROPROCESSORS 230843
PERIPHERALS 296467
PRODUCT GUIDE 210846
(Overview of Intel's complete product lines)

PROGRAMMABLE LOGIC 296083
ADDITIONAL LITERATURE

(Not included in handbook set)

AUTOMOTIVE 231792
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997
INTERNATIONAL LITERATURE GUIDE E00029
LITERATURE PRICE LIST (U.S. and Canada) 210620
(Comprehensive list of current Intel Literature)

MILITARY 210461

(2 volume set)
SYSTEMS QUALITY/RELIABILITY 231762

intel

NAME:

U.S. and CANADA LITERATURE ORDER FORM

COMPANY:
ADDRESS:

CITY:

COUNTRY:

PHONE NO.: (

STATE:

ZIP:

ORDER NO.

[

QTY. PRICE

TOTAL

|
|
I
l
l
I

]

X X X X X X X X X X

Postage: add 10% of subtotal

Subtotal

Must Add Your
Local Sales Tax

—» Postage

Total

Pay by check, money order, or include company purchase order with this form ($100 minimum).We also
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks

for delivery.

OVISA [OMasterCard [American Express Expiration Date

Account No.

Signature

Mail To: Intel Literature Sales
P.O. Box 7641
Mt. Prospect, Il 60056-7641

For phone orders in the U.S. and Canada
Call Toll Free: (800) 548-4725

Prices good until 12/31/90.

Source HB

International Customers outside the U.S. and Canada
should use the International order form or contact their local
Sales Office or Distributor.

intel

INTERNATIONAL LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: {)

ORDER NO. TITLE QTY. PRICE TOTAL
LTTT T X -
LTI TT] X -
LTI T T X =
HEEEEE X =
HEEEEN X -
HEEEEE X =
HEEEEE X =
LTTTIT1] X =
LTTTTT]] X =
LTI X -

Subtotal
Must Add Your
Local Sales Tax
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office (see inside back cover.)

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned
to your local Intel Sales Office.

intal

i486™ PROCESSOR
'HARDWARE REFERENCE MANUAL

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the informqtion contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376, 386, 387, 486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
ActionMedia, BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK,
Genius, i, 1, 1486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, I?ICE, iLBX,
iMDDX, iMMX, Inboard, Insite, Intel, intgl, Intel386, intglBOS, Intel Certified,
Intelevision, intgligent Identifier, intgligent Programming, Intellec, Intellink, iOSP,
iPAT, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, Library Manager,
MAPNET, ~ MCS, Megachassis, MICROMAINFRAME, = MULTICHANNEL,
MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP, Pro750, PROMPT,
Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming, READY LAN,
RMX/80, RUPI, Seamless, SLD, SugarCube, ToolTALK, UPI, VAPI, Visual Edge,
VLSIiCEL, and ZapCode, and the combination of ICE, iCS, iRMX, iSBC, iSBX,
iSXM, MCS, or UP! and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Ethernet is a registered trademark of Xerox Corp.

Micro Channel, OS/2, and PS/2 are trademarks of International Business Machines Corp.
StarLAN and UNIX are trademarks of AT&T.

Windows is a trademark of Microsoft Corp.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

CINTEL CORPORATION 1990—

intgl®

CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide —in the
U.S., Canada, Europe and the Far East. So wherever you’re using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your invest-
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel’s Networking Specialists can optimize network performance for you.

PREFACE

This manual describes the basic mechanisms of the hardware interface to the i486™
processor and gives design examples of systems using the processor. The manual is writ-
ten for designers who have moderate to advanced experience in microprocessor-based
systems.

The chapters include:

Chapter 1, “Introduction to the Processor.” Introduces the functions and features of
the i486 processor and its system components. Lists microprocessor products which
are object-code compatible with the 1486 processor. Shows block diagrams of basic
system architecture and applications.

Chapter 2, “Internal Architecture.” Describes the i486 processor’s internal instruc-
tion pipelining and the nine internal functional units: the bus interface, caches,
instruction prefetch, instruction decode, integer (datapath), floating point, segmenta-
tion, and paging units.

Chapter 3, “Processor Bus.” Describes the signals on the i486 processor pins, includ-
ing their uses and timing. Describes memory and I/O space. Describes data transfers,
bus control, cache control, and floating-point error control.

Chapter 4, “Performance Considerations.” Describes the i486 microprocessor perfor-
mance issues.

Chapter 5, “Memory Subsystem Design.” Describes the DRAM subsystem implemen-
tation for 486 microprocessor. It discusses the tested example. Appendix B contains
PLD codes and schematics example of this design.

Chapter 6, “Cache Subsystem.” Describes the second-level cache implementation for
the i486 microprocessor. It also covers the 82C6 cache controller specifics and general
caching issue.

Chapter 7, “Peripheral Subsystem.” Describes the techniques for connection periph-
eral devices to the i486 microprocessor.

Chapter 8, “System Design.” Describes the i486 microprocessor-based system in gen-
eral and cover the basics of i486 EISA chip set.

Chapter 9, “MULTIBUS II System Interface.”
Chapter 10, “Physical Design and System Debugging.”

Appendix A, “Introduction to Intel 86 Family Architecture.” Compares hardware
characteristics of the 8086, 80286, 386™, and i486 processors. Describes how the
hardware architecture of the Intel 86 family of processors has evolved.

Appendix B, “PLD Codes and Schematics.” This contains schematics and PLD codes
for i486 DRAM design.

intel” PREFACE

TIMING DIAGRAM NOTATION

In the timing diagrams for this manual, the beginning and end of bus cycle are illustrated
with heavy, vertical, dashed lines. The beginning of data-transfer bus cycles is marked by
the assertion of the address-status (ADS#) output, as shown in the following sample
timing diagram. Signals which are “don’t care” are cross hatched as in the RDY# signal
shown in the following diagram. Signals which are not valid contain the words “not
valid” as in the BLAST# signal. Signals which are valid are shown as high or low (as in
the ADS# signal), or as both high and low (as in the PCHK# signal, indicating that the
signal is in one or the other valid state).

DATA STRUCTURE NOTATION

The i486 processor is a “little endian” machine; this means the bytes of a word are
numbered starting from the least significant byte. Pictures of data structures in memory
show the smallest addresses at the bottom and the highest addresses at the top. Bit
positions are numbered from right to left. The following diagram illustrates these
conventions. The numerical value represented by a bit that is set (1) is equal to two

1 : ; : |

CLK | |)

I : 1 |

ADS# | \ : / | \ , |

I] 1

I]]

AZ-/A31 . X .

M/I0#

Koy X A :

BEO-3# |

|
L
|
|
|

W/R# ! ’ ;
e ER-

] }
RDY# 0HHNWHHHHNNNH\)HHW'NHH\)HWH
[}]
| I
BLAST# :1 \ . : /
1 I
‘

DATA

WRITE WRITE

240552ii-2

Timing Diagram Notation

PREFACE

Byte order in a 32-bit register

31 23 15 7 0
Byte 3 Byte 2 Byte 1 Byte 0
Byte order in memory
15 7
Byte 9 Byte 8 8
Byte 7 Byte 6 6
Byte 5 Byte 4 4
Byte 3 Byte 2 2 Bit positions are numbered
from right to left.
Byte 1 Byte 0 0 Memory addressed are
numbered from bottom to top

240552ii-1

Bit and Byte Order

raised to the power of the bit position. The bit notation in a 32-bit register corresponds
directly to the bit notation on the data bus when 32-bit data items are aligned to 32-bit

boundaries in memory.

When bits are marked as undefined or reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. Programs that read registers with undefined bits must mask off those values.
Programs that write to registers with undefined bits must first read the register and then
change only the desired defined bits before writing back to the register.

NOTE

Depending upon the values of reserved register bits will make software dependent upon
the unspecified manner in which the i486 processor handles these bits. Depending
upon reserved values risks incompatibility with future processors. AVOID ANY
DEPENDENCE UPON THE STATE OF RESERVED REGISTER BITS.

intgl” PREFACE

RELATED LITERATURE
e i486™ Microprocessor Data Sheet (Order Number 240440)
o i486™ Microprocessor Programmer’s Reference Manual (Order Number 240486)

The Microprocessor and Peripheral Handbook contains additional information on other
Intel products that may be useful. The i486™ Microprocessor Data Sheet contains the
latest and only authoritative source for device specifications, such as signal timing, signal
voltage levels, and power consumption.

vi

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION TO THE PROCESSOR Page
1.1 ARCHITECTURE ..ottt sttt sttt st es et et e e e e neeteneane 1-1
T.1.7 FRAIUINBS ettt sttt e e s sttt re et e e ene 1-2
1.1.2 Operating Modes and Compatibilityccccceeireeeiereiceeeecceccceteet e 1-3
1.1.83 Memory Managementcocecivreiiriiniiiseise ettt st sttt 1-4
1.1.4 ON-Chip CACHE ..ottt ettt ettt eeeeeene s 1-4
1.1.5 Floating-Point UNitc.oooiiiiiieecee ettt st 1-5
1.2 SYSTEM COMPONENTS ..ottt sttt sttt sttt sttt s 1-5
1.2.1 0486 PrOCESSOI ...ttt st ent st sttt st ss e st sese et e st et ess st st be st et st st et et see e eeens 1-5
1.2.2 LAN COPIOCESSOr ooeeeieieieiiiiesiesteteseestssaeteste st eerestesesessssts st s ete st e s sseenentsaennenneneeneens 1-6
1.2.3 485TUrbocache MOAUIEcccooiiiiiiicice ettt ettt ettt e e 1-7
1.2.4 EISA ChiP SEE ..ottt sttt st et eee 1-7
1.2.5 High-Performance PLDSc.ccoceiririiiiiie ettt ettt ene e sen e neens 1-8
1.3 SYSTEM ARCHITECTURE oouiiiitiirire sttt ettt sttt 1-8
1.3.1 Single ProCessor SYSEMcciiiiiiiieiieiceceeeeee ettt ettt et 1-9
1.3.2 Loosely Coupled MUtiproCessor SYSIEMcoeveeiiieiiii et 1-10
1.3.3 EXEEINAl CACNEoeiiiieiee e ettt sttt ee e 1-11
1.4 System APPLICAtIONS ccueiiirieicecc ettt 1-12
1.4.1 Personal COMPULEISc..cciiiiiierieciietete ettt st eteses st ete et eneesaesreeeneeeeeeessaneeens 1-13
1.4.2 Minicomputers and WOrKStationScccevveeiieeeeiececcceee et seee e 1-14
1.4.3 Embedded CONMrOIErScococoviiiiniiieriieeeeee ettt st ee et eee 1-14
CHAPTER 2

INTERNAL ARCHITECTURE

2.1 InStruction PIPeliNiNGcoiviiiiieiie ettt ettt en et st 2-3
2.2 BUS INErfACe UNItcooieiiieeecceiieeee ettt st et e e erene e ens 2-4
2.2.1 Data TrANSTEIScoeviiireeieciei ettt e e ettt et et e e se e e e ene 2-5
2.2.2 Write BUTEIS ..i.eciiieiie ettt et et e e e e e e e e e e 25
2.2.3 LOCKEA CYCIBScoiviiiierieiirieteieiec ettt ettt v ettt ettt s eneee et eeen et eaeesneaen 2-6
2.2.4 1/O TraNSFEIScocuiiiiriireieirece sttt sttt b bt n et ee s et eaeneenenen 2-6
2.3 CACHE UNIt ...ttt sttt st e et ettt e et e e et enn 2-7
2.3.1 CACRE SHTUCIUIEceiiiieeiieieiiietetete ettt ettt et et e e e sesenesseeessens 2-7
2.3.2 Cache UpdatiNgcccevrieuiirieiiinieiisse ettt ettt e et 2-8
2.3.3 €ache RePIECEMENTc.ccuiiieieticet ettt ettt et ee e et s e seeseeneeans 29
2.3.4 Cache ConfiQUIationcccccceoierniniieeeiecee ettt sttt eeeaea 29
2.4 INSTRUCTION PREFETCH UNIT ..ottt e 2-10
2.5 INSTRUCTION DECODE UNIT ...cooiviiiiiiieteeecietc ettt eeene e ene v e s eene 2-11
2.6 CONTROL UNIT .ottt ettt et se e et et et ne e teee e e eane 2-11
2.7 INTEGER (DATAPATH) UNIT oottt ettt en e 2-11
2.8 FLOATING-POINT UNIT ..ottt et sv e st e s e e s s e nee 2-12
2.9 SEGMENTATION UNITcc.c..e.. e ettt e et et sh et s e et e e aa e re et e etbeeheeeaeeenrees 2-12
2,10 PAGING UNIT oottt ettt e e 2-12
CHAPTER 3

PROCESSOR BUS

3.1 OVERVIEW OF THE BUS ..ottt ettt sttt sttt 3-1
311 BUS CYCIBS ..ottt ettt sttt e st st r sttt et sn ettt aneteene e 3-2
3.1.2 Overview of Signals and Control CYCIEScceeeereeeereeireiieiceen et 3-3
3.1.2.1 ADDRESS AND DATA BUSESccooiiitiieteceeteeeeeee ettt ee e 3-4
3.1.2.2 CYCLE DEFINITION AND CONTROL ..cocuicvivetieeeecieeisee sttt e e eeene 3-6

vii

intel” TABLE OF CONTENTS

2.3 BUS CONTROL ..ottt sttt s b e s s b s e nn e s
2.4 CACHE CONTROL .oiitiiviieeiie ittt ettt st b s ss e snesane st s n e s e
.2.5 FLOATING-POINT ERROR CONTROLccccociiiimmiiiiiiniiinii e et
.3 Timing and CIock GENErationccocevriiuiiiiieiinen e
.3.1 BUS STATE DIAGRAMcociiiiiiiiecieicee, rrenerrenenre s enapeeresensssae st s shasnibnesnein
.3.2 CLOCK TIMING AND GENERATIONcccooiniininiinieinand eerrinriirresediie s nsiasasieeine
.3.3 BASIC READ TIMING ..ooiiiiiiiiiiiesceneeei ettt st s
.4 Memory and I/0 on the BUS ...
4.1 DATA BUS STRUCTUREcccoiniiiiiiiniiin e ‘

4.2 DATA ALIGNMENT ..ot

.4.3 INVALID INSTRUCTION PRE-FETCHING
4.4 1/O PORT STRUCTURE ...ttt

3 1.4.5 16-BIT AND 8-BIT PERIPHERALS SRR S et

3.2 DATA TRANSFERSooiiiiiie ettt e b e et

3.2.1 NON-BUISE CYCIES ..o.viiiiiei et
3.2.1.1 NON-CACHEABLE 2-2 CYCLEScooiiiiitiiiiicte ettt
3.2.1.2 NON-CACHEABLE 3-3 CYCLESoiiiiiiiciiniieee ettt VPPN
3.2.1.3 NON-CACHEABLE MULTIPLE-CYCLE SEQUENCEScccccomminnininineneeinens 3-24
3.2.1.4 CACHEABLE MULTIPLE-CYCLE SEQUENGCESccoviiiiiiiiiee e 3-25
3.2.2 BUISt CYCIES ..viveveviiieereeecie ettt s bbb ss il B720
3.2.2.1 NON-CACHEABLE BURSTSccci ittt renenin 3-28
3.2.2.2 CACHEABLE BURSTS ..ottt et 3-30
3.2.2.3 ADDING WAIT STATES ...oioiiiiiieeienee ettt st 3-32
3.2.2.4 CHANGING KEN# DURING A CACHEABLE CYCLEcccooeiiieiiiie e 3-32
3.2.2.5 DATA ALIGNMENT AND SEQUENCINGccccoeviimiiiieriiiiininnneiceieeee e 3-33
3.2.2.6 INSTRUCTION PREFETCHooctiiiiiieiiiii ittt 3-34
3.2.2.7 INTERRUPTED BURSTSc.coociiiiiiiintiiieeeeiie ey retere s deie bt 3-35
3.2.2.8 IDENTIFYING THE FIRST TRANSFER OF A CACHEABLE CYCLEcccceee. 3-36
B.2.83 BUS SIZE .iieiieiieciiie ettt e evereereeee.
3.2.3.1 TIMING oottt sttt s e e ae e be s eas e s b e e s e e et e s ne e ne s 5
3.2.3.2 DATA ALIGNMENT ..o SO SO
3.2.3.3 MULTIPLE-CYCLE SEQUENCESc.cccoovniieiinnne S SOUE SO SO
3.2.3.4 CACHEABLE MEMORY READScociiiiiiiiiieniiii ettt :
3.2.3.5 BURST CYCLES ... oottt
3.2.3.6 DECODING A0, A1 AND BHE# ...cooovecieiiiiiiiinniicieie st
3.2.4 Parity EITOrScoocevieiniiiiiiiiiii et iemreeseeen e e e e sanne

3.3 BUS CONTROLccccoviiiiinns S OO PP O TS T N

3.3.1 RESET eoioiiiiiie ittt s s se st sa s st s bbb e ey SR
3.3.2 Interrupts ...ccccvvvieeiiinen PO NN
3.3.2.1 NON-MASKABLE INTERRUPTS ...ttt
3.3.2.2 MASKABLE INTERRUPTS ..ottt et s
3.3.2.3 INTERRUPT LATENCY ...ccooiiiiiiiiiineeccie s :

3.3.2.4 THE 8259A INTERRUPT CONTROLLER
3.3.3 Special BUS CYCIEScooiiiiiiiiiiiiiiicin e
LT < 2 N = 7Y O O OO OO PSPPSRI
3.3.3.2 SHUTDOWN ..ottt saa et et s seb e s s e s e s sne e sae e enne s
3.3.4 BUS HOIA ..eeieeieeeeeteeeecc e rrenrrerearh i
3.3.41 TIMINGocevriiiiiin SRR S TSSO
3.3.4.2 HOLD LATENCY ooiiitiiiieree sttt st ae bbbt
I T T =[N T= 3 I Yo LSO OO OSSP PP .3-52
3.3.5.1 TIMING ...ooiiieeeceeen et s bbb e b e e e s e r e 3-53
3.3.5.2 SEMAPHOR APPLICATIONSccoiiiriiiiiiin it sre e et 3-53
3.3.5.3 LOCK LATENGCY oottt sre s st st 3-53

viii

intgl® TABLE OF CONTENTS

Page
3.3.6 BUS PSEUAO-LOCK ...oiviiiiiiiiiiiiiiiiitc i 3-55
3.3.7 BUS BaACKOR ..ciiiiiiiiii e 3-56
B.3.7.1 TIMING i bbb bbb 3-57
3.3.7.2 CAUTIONS ..ttt st s b e b e et eas 3-58
3.4 CACHE CONTROL .oocviiiiiiiiiieeie et eie ettt sttt st e sttt e s st esre s b e sne et er e e snaesnneenrs 3-60
3.4.1 Page-Level Cache Controls ..o 3-61
3.4.2 Internal Cache-Line Invalidationccccooviiniiiieniiiii 3-61
3.4.2.1 RATE OF INVALIDATIONoiiiiiieiierieninetne ettt sae s smnss s 3-62
3.4.2.2 INVALIDATION CONCURRENT WITH LINE FILLS ...ccoiiiiiiiiiiccieceeeene 3-62
3.4.3 Internal Cache FIUShcccoiiiiiii 3-64
3.4.4 Cache FIUSh CYCIE ..cuciiiiiiiiiiieect e e s 3-64
3.4.5 Cache Write-Back and Flush Cyclecoccoviiviviiiniicii e 3-65
3.5 FLOATING-POINT ERROR CONTROL ...coccuirieiiieieneieniinnrencenre i 3-66
CHAPTER 4
PERFORMANCE CONSIDERATIONS
4.1 INTRODUGCTION ..oiiieie ittt sttt ettt sae et sha st aias s sr b aeenaan s 4-1
4.1.1 Memory Performance Factorsc.ccccoiiiiiiniiiiiiiiiiie s 4-1
4.2 INSTRUCTION EXECUTION PERFORMANCEccocoiniiiiiricii s 4-2
4.2.1 1486 Microprocessor EXecution TimMESccccccvrmrriiiiiiiiiiiiiec e, 4-2
4.2.2 Application Programs Used in ANalysiSccccorveiiiiiiiiiiiiic il 4-4
4.3 INTERNAL CACHE PERFORMANCE ISSUESccooiniiiiininiiiiiceei e 4-4
4.3.1 On-Chip Cache Organization ISSUESccccviviiniiiiiiiiiiii e 4-4
4.3.2 Performance Effect of the On-Chip Cachec.cccceeiiviiiiiiiiiiicienieeee FT 4-5
4.3.3 Bus Cycle Mix with and without an On-Chip Cacheccccecvivvnnininicennnciiin. 4-6
4.4 ON-CHIP WRITE BUFFERSccociiiiniinienicnientn sttt 4-7
4.5 EXTERNAL MEMORY CONSIDERATIONSccoioiiiiiiiinicii i 4-8
4.5.1 INTrOAUCHON ...ooeiiniiiiiiiiie e e 4-8
4.5.2 Wait States in Burst and Non-Burst MOdescccecvriirieniiiiiininiiiees 4-10
4.5.3 Impact of Wait States on Performancecccocoviiiiiiiiiiiiiice s 4-11
4.5.4 Bus Utilization and Wait Statescccecviviniiiiiiiciii e, . 4-11
4.6 SECONDARY CACHE PERFORMANCE CONSIDERATIONS ..o, 4-12
4.6.1 Advantages of a Second-Level Cachecccoceviiiiiniiniiiiii s 4-12
4.6.2 The 485Turbocache Module Second-Level Cachecccccoiiiiiiiiniiiiiii 4-13
4.6.3 System Performance with the 485Turbocache Modulec.cooeveiiiiniiinnn, 4-13
4.6.4 Impact of Secondary Cache on Bus Utilizationccccoceiiiiininninnn 4-13
4.7 DRAM DESIGN TECHNIQUEScccocimiiiiiiiicicic i 4-13
4.7.1 Static Column DESIGN ...coeuiiieeiiieiie et s 4-15
4.7.2 INTEIIEAVING ...eveiiereiiteeieie e e 4-17
4.7.3 Impact of Performance for Posted Write Cyclescccoooiiiiiiiiininicn s 4-18
4.8 FLOATING-POINT PERFORMANGEc.cccoiiiieiineneireeeee e 4-18
4.8.1 Floating-Point EXeCution SEQUENCESc.cccceriiiiiiiiiiiiiiinnii s 4-18
4.8.2 Performance of the Floating-Point Unitccciiiiiiiniiiiieeien, 4-19
CHAPTER 5
MEMORY SUBSYSTEM DESIGN :
5.1 INTRODUCTION ..ot eereeenteenere e rersan e e s erase et e st s raaeenaes 5-1
5.2 PROCESSOR AND CACHE FEATURE REVIEW ... 5-2
5.2.1 The BUISt CYCIE ..c.eeeiiiiieie e e e 5-2
5.2.2 The KEN# INPUL ..eeiii e b 5-3
5.2.3 Bus CharacteristiCsccvvviiiiiiiiiiiiii i 5-5
5.2.4 SeCoNd-LeVEl CACNEiciiiiiiiiiciesie ettt st s 5-7
5.3 DRAM INTERFACE OVERVIEWcoiiiiiiiciereee st 5-8

intel® TABLE OF CONTENTS

Page

5.3.1 FUNCHONAI BIOCKS ..c.vioviiiiiieiiiiesiecise ettt st s et et enr e sttt s ae b e erseneas 5-9
5.3.2 Address Path LOGIC ...ccoccoviriiriieeiciesie e st et 5-11
5.3.3 Data Path ...t e e et 5-13
5.3.4 Second-Level Cache SUPPOILccccvirriieriinreee e s st eve e 5-14
5.3.5 CONrOl LOGIC oeiiiiiiiiiereriei ettt ettt st et st ne s beeen e sreenteereereene 5-15
5.4 MEMORY SUBSYSTEM FUNCTIONcciiiiiitiininiese et sv e ere e 5-20
5.4.1 Memory Interface SignalScccccoiiiiiiiiiiiiieicerc i e 5-21
5.4.1.1 CPU INTERFACE SIGNALS ...ttt sttt st re s 5-21
5.4.1.2 DATA PATH CONTROLoiiiiiiiieieiie ettt et sa e sae st 5-21
5.4.1.3 ADDRESS PATH CONTROLooeiiriiiiiierieneeerreiees et e s 5-21
5.4.1.4 DRAM INTERFACEciiiei ettt et st s 5-22
5.4.1.5 CONTROLLER SIGNALScooiiiieieeiteieretiett ettt 5-23
5.4.2 Read CYClESoccooeiiiriinircriceterr e e et 5-23
5.4.3 WIIE CYCIBS ..ottt sttt et e st e s e e e snr et e e s e nesaeaneens 5-27
5.4.4 CoNSeCULiVE BUS CYCIESoociiiiiiiiiiriirie sttt ettt n e st baeaeenes 5-30
5.4.5 Page MiSS CYCIESccoiviieiirieire ettt st SRR 5-32
5.4.6 RefreSh CYCIEScooiiiiiiiiiiiiecc ettt en e 5-35
5.5 CONTROLLER IMPLEMENTATION ..ottt s e 5-37
5.5.1 Cycle Tracking LOGICccceririiriiirieriiseereeree s stes s eeste e see st e e snte e essetasnsesresressnens 5-37
5.5.2 BASH LOGIC .oeiieeiiiierie ettt ettt e st s ettt sae et sae s reense e enearteeras s resbearnens 5-40
5.5.3 CASH LOGIC .uiiriiiiiieiiie ettt ettt e b e sttt e sk sa e e a e s e st nen s 5-43
5.5.4 Write CONrol LOGIC ...ueivieicieiieitinirie st e et sae e sresae et be v enne 5-45
5.5.5 Burst ADAress LOGICcccceruerverriiiiiinniniieeirn e s e ees s seresresnnnensee s Treresernesseresiinns 5-48
5.6 SUMMARY ..ottt ettt e st sttt e st ae s e an e ebe et eneenesbereatas .. 5-50
5.7 TIMING RESTRICTIONScciiiiiiiieie ettt e e san e et 5-51
CHAPTER 6
CACHE SUBSYSTEM
6.1 INTRODUGCTION ...ttt ettt st se e e s e e st sae s et e sdae st e essensenseernen 6-1
6.2 CACHE MEMORY ..ottt sttt sttt st na st ne ten 641
6.2.1 What iS @ CaChE? ...ttt s et erean 6-1
6.2.2 Why Add @ Cache? ..ottt e e e SO 6-2
6.3 CACHE TRADEOFFSccccotienieinineieneereeeni et b et st she e be et e b e b e ens 6-2
6.3.1 Cache Size and Performancec.cceccvvveveenrsiseesece e evererernreareisanereneannnes 6-3
6.3.2 Associativity and Performance ISSUEScocevveiiininiinininnine e ne et e 6-5
6.3.3 BIOCK/LING SiZEooueiiereieeiiet ettt e ste s sttt e b e beere e st b eresteerecrneseas 6-9
6.3.4 Replacement PONICYccoociiiiiiiiniecece sttt 6-10
6.4 UPDATING MAIN MEMORYoiiiiiiiiieiiie ettt sttt s e en e neenne e 6-11
6.4.1 Write-Through and Buffered Write-Through Systemscccccccovvvverinniininniencnie e 6-12
6.4.2 Write-Back SYStem ..o e 6-12
6.4.3 CaChe CONSISIENCYcceiiiriiriiierii ettt ettt sttt sre e e te e e e sa e be s e eseesaeas 6-13
6.5 CACHE AND DMA OPERATIONSooiiiiiiieteeneit ettt st s eaesre e 6-14
6.6 CACHES FOR SINGLE VERSUS MULTIPLE CPU SYSTEMScccocvveiieinreecrcreene 6-15
6.7 INTRODUCTION TO THE 485TURBOCACHE MODULE EXTERNAL CACHE

AND THE MEMORY HIERARCHYiiiiiiiietiiece ettt e 6-16
6.7.1 AN 486 ProCeSSOr SYSIEMcc.icuiiiiiiiieiietiete ettt sa e st sae e st e e eeas 6-16
6.7.2 The Memory Hierarchy and Advantages of a Secondary Cachecccccceeuvevrennnnee. 6-17
6.7.3 485Turbocache Module ArChitECtUrecccevcvervieiiiiiieciecnren e 6-18
B.7.4 SYSIEM OVEIVIEWoiiiiiciiiuieiinitceterte et e e e e etesee e ee e ssessesaesse e s e saesseessesseessesseensses 6-20
B.7.5 PEMOIMANCEccooiiiiiiieiiit ettt ettt et et e st r e esaeses e s e neennean 6-21
6.8 485TURBOCACHE MODULE HARDWARE INTERFACEcccoocviivinienieeieeieee e 6-21
B.8.1 PN DESCHPLONoiiiiiiieeiieertes et e e se e e st e e ae s raee et e e sbeeebaeessbaeeentaeesnreeeaseeennns 6-22
6.8.2 CONIOl SIGNAIS ...c.eoviviiiiieieierisee ettt et st e s a e e s esasaennens 6-22

x

intgl” TABLE OF CONTENTS

Page
6.8.2.1 ADDRESS SIGNALScciiiiiiiiriieieece et e 6-23
6.8.2.2 DATA SIGNALS ..ottt s e b s et a s 6-23
6.8.2.3 CACHEABILITY SIGNALSooitiiiirteiniieeeeee et 6-24
6.8.2.4 SNOOP SIGNALS ...ttt ettt 6-24
6.8.3 System Configuration and Processor Interface ..., 6-24
6.8.3.1 1486 CPU CONNECTIONS AND TAG MAPPINGcccocviiiiiiiiiiiciineee e 6-25
6.8.3.2 READ HIT CYCLEScoiiiiiiieireeieie ettt st 6-27
6.8.3.3 READ MISS CYCLES ...ttt s e 6-29
6.8.3.4 WRITE CYCLES AND I/O CYCLESccoiiiiiieeeeeeeeeecee e 6-30
6.8.4 System INtErfaceccccovveiiiriiiiiicc e 6-30
6.8.4.1 READ MISS CYCLESooii ittt st sb st 6-31
B.8.4.2 LINE FILL .eeieeieiiiee ettt bbb 6-31
6.8.4.3 WRITE CYCLES AND WRITE PROTECTIONccocociriiiiiiiiiiiciicccnin e 6-32
6.8.4.4 SYSTEM CACHEABILITY INDICATION ...cciriiiriiieie it 6-32
6.8.4.5 INVALIDATE CYCLES ..ottt st sre s s s b ens 6-33
6.9 DESIGN CONSIDERATIONScooiiiiiiiene it sttt n et 6-33
6.9.1 DRAM INEEITACE ...eoieeeiiieeeeicee e e 6-33
6.9.2 Cascadable CACNEccccciiiriiiiirieeee e s 6-34
6.9.2.1 SYSTEM CONTROL SIGNALS AND CASCADABLE CACHEScccovniviniiniennnns 6-34
6.10 TIMING DIAGRAMS ...ttt ittt e bbb sae s st sbeeabe et
6.10.1 Read Hit Followed by a Write Miss »
6.10.2 Write Hit Followed by a Read Miss
6.10.3 Read Miss with a 2-Clock Burst Transfer and Write Protectioncccoceivieinnnin. 6-36
6.10.4 2-ClOCK SNOOP .iiivieiiiiiiriee et et et e et sbe e saa e s st e s e e e b e e saabeseennns 6-36
6.10.5 Snoop Cycle and Read HitSccoveeiiieiiiiiiceciier e 6-37
6.10.6 Backoff Cycles during a Read Hitccccociiiiiiiiiiiiiii s 6-37
6.10.7 1/0O Cycle Followed by @ Read MiSSccccooviiiviiiininiiiiniie e 6-37
6.10.8 Non-Cacheable Read MISSccccecveeviiiiiiiinniiiin i 6-38
6.11 SUMMARY ..ottt ettt e she e s e b b e s b e saa e sre b s aeenaeeares 6-38
CHAPTER 7
PERIPHERAL SUBSYSTEM
7.1 PERIPHERAL/PROCESSOR BUS INTERFACEccooieiiiiiiiiicic e 7-1
7.1.1 Mapping TECHNIQUEScceeevieiiieiiii e e s e e 7-1
7.1.2 DynamiC BUS SIZING ..uceeiiiiiiiie ettt e s e 7-3
7.1.2.1 ADDRESS DECODING FOR I/O DEVICESccccoimiiiiiiiiinnicnticn e 7-5
7.1.2.1.1 AdAress BUS INLEMACEcvveeririiriereerieieereienietse ettt sesnenas 7-5
7.1.2.1.2 8-Bit I/O INtErfaCeccovereiiiieieeeec e s 7-5
7.1.2.1.3 16-Bit I/O INterfaCeccovviiiiiiiiiiiiiiiiii e 7-9
7.1.2.1.4 32-Bit INEIFACE ...eiivieiiiiiiieit e e 7-11
7.2 BASIC PERIPHERAL SUBSYSTEMooiiiiiriiieieiire et e 7-13
7.2.1 Bus Control and Ready LOGICccccoviiiiriiiiiiiiiiiiciiic i 7-156
7.2.1.1 SIGNAL DESCRIPTION ..ttt s s 7-17
7.2.1.1.1 Processor INTerfaCecccveviiiiiiiiiiiiiiiiii e 7-17
7.2.1.1.2 Wait-State Generation Signalscccoceeieeieeceniiniii e 7-19
7.2.1.2 WAIT-STATE GENERATOR LOGICcootiiiiiiiieiecicnininee i 7-19
7.2.2 AAAress DECOETcccceviiieiiiiiciiiiiicc et 7-22
7.2.3 Data TranSCERIVEIScccieiiiiieiiiiciiiircit et bbb e s e b e s e e e s ne e e s neeeas 7-25
7.2.4 Recovery and Bus Contention ... s 7-25
7.2.5 Write Buffers and /0O CYCIEScovvueriiriiiiiiiiiieeeiie st 7-26
7.2.5.1 WRITE BUFFERS AND RECOVERY TIMEcccciiiiiiiniinice i 7-26
7.2.6 Non-Cacheability of Memory Mapped 1/O DeviCesccevvniviiiiiiiniiccieiineieniene 7-26
7.2.7 i486 Microprocessor On-Chip Cache Consistencyccceeiiiiiiiiinniinnniniinicnnnns 7-27

Xi

intel” TABLE OF CONTENTS

: Page
7.3 1/O CYCIBS ...ttt ettt et e s ae et e e e e nae et et e er e e et eaeaaas 7-27
7.3.1 Read CyCle TiMING ...occoieirieeieeeee ettt ettt s st et er et enee s 7-27
7.3.2 Write Cycle TIMINGScceciveeiiriririeisseie ettt se e 7-28
7.4 DIFFERENCE BETWEEN i486 AND 386 MICROPROCESSORSccccccecvvevvreievenene. 7-31
7.5 INTERFACING TO X86 PERIPHERALSc..cooeeieieeeeeeee et .. 7-33
7.5.1 8042 INTEIfACE ..ottt ettt sttt nen 7-33
7.5.2 B2CB59A INEIMACEeoiceieeieceieese sttt sttt ettt sttt eeeeteneeeen 7-34
7.5.2.1 SINGLE INTERRUPT CONTROLLERocvcuiiiiictieeretecet et 7-35
7.5.2.2 CASCADED INTERRUPT CONTROLLERSccccoiuitiieteeeeceeeececeeee e 7-36
7.5.2.3 HANDLING MORE THAN 64 INTERRUPTSccooiieieiececeie et 7-37
7.6 1486 MICROPROCESSOR SYSTEM PERIPHERALScooviiieeeeteeeecee e 7-38
7.6.1 LAN Controller INtErfateccvoiiivieieeiiieeeteeeccee ettt eee s 7-38
7.6.1.1 HARDWARE INTERFACEooiiiiiriieteeetece ettt sttt e e e 7-40
7.6.1.2 PROCESSOR AND COPROCESSOR INTERACTION ovovieieriiiiteccee e 7-41
7.6.1.3 MEMORY STRUCTUREc.ooiitiiiiiere ettt ettt ettt sttt ra e ees 7-44
7.6.1.4 MEDIA ACCESS ...ttt st 7-45
7.6.1.5 TRANSMIT AND RECEIVE OPERATIONccccocviiitiiciieeee e 7-45
7.6.1.6 BUS THROTTLE TIMERS ...ooiiiiiececeeeee ettt st st een 7-46
7.6.1.7 DESIGN CONSIDERATIONS ..ottt 7-47
7.6.1.8 PERFORMANGE ...ttt ettt ettt sttt ee et eneee e enes 7-49
7.6.2 Extended Industry Standard Architecture (EISA) Peripherals (82350) 7-50
7.6.2.1 EISA BUS CONTROLLER (EBC) ...ccccoiiiiiietiiecieeete ettt ettt 7-50
7.6.2.2 INTEGRATED SYSTEM PERIPHERAL (ISP) ..ocveiviveeeeeeceeeeee e 7-51
7.6.2.3 BUS MASTER INTERFACE CONTROLLER (BMIC) .. 7-52
7.6.2.4 BUS BUFFERSoiiiiiiiii ettt st sttt sr e 7-53
7.7 IMPLEMENTATION EXAMPLE ...oooiiiieecete et 7-53
7.7.1 AT Compatible SIgNalSccccecereiiriiinieei et 7-53
CHAPTER 8

SYSTEM DESIGN

8.1 INTRODUCGTION ...ttt ettt ettt et e st et e sttt st e ee s e e 8-1
8.2 MICROPROCESSOR CONTROL SUBSYSTEMoovctiiecteerceeceec et 8-1
8.3 CLOCK AND RESET CIRCUITS ...cociiiiiiieieiitceee et ettt st eneenee e e 8-3
8.3.1 ClOCK GIICUIE ...vieeieiistese ettt sttt ettt s se et e e s eeteneeeeeeneenen 8-3
8.3.2 RESEE GICUILoeciiice ittt ettt ettt st e e ereeeeneeeneeres 8-3
8.3.3 Self TESt OPEIAtIONcueeeeeieeietieieeeeee ettt sttt e et e e et et enseeeeeesaeeeaes 8-3
8.3.4 Tri-State OUtPUL TESt MOTE ..c..ooviiiiieiiietecie ettt e eeeas 8-6
8.4 MEMORY CYCLES ..ottt ettt ettt ettt sttt et ettt eese et et nannnen 8-6
8.4.1 BUrSt TranSfer LOGICcoueeeirirrieieccecte ettt ee st eeeeenaen 8-8
8.5 BUS RESTART LOGICcooiiiiiriitinietstee sttt st ee e eneenen e 8-12
8.6 CACHE SUBSYSTEMoouiiiiiiiriieieisee ettt ettt re et e eeeee e eeeseen e 8-13
8.6.1 On-Chip Cache and.Second-Level CACNEcevvueuiiicieeceeeeeeeeeeeeeee e eeenn e 8-13
8.6.2 Cacheability Map ISSUEScccccerieoirieiieicicieteeetee ettt ee et eeeee e 8-14
8.6.3 Cache and MUII-MASIETSc.c.cevieuiieieeiiciceceeeeet ettt ee et et eeesenen e 8-14
8.7 INTERRUPT CONTROLLER AND LOGICcuoovevieiiteeereeeeieee ettt 8-15
8.8 DMA CONTROLLER AND LOGIC ...oviieieiieerceeeeeeeeeeee ettt eeee e 8-15
8.8.1 Impact of DMA on System Performanceccceeeveueiieeeiiiteeee e eeeee e 8-15
8.9 LAN CONTROLLER AND LOGIC ...c.couiiiiuiiciceiceeeeeeete ettt e ene e 8-15
8.10 BUS ARBITRATION LOGICccociiieiriiieiectcte et ettt n et S 8-16
8.11 SYSTEM BUS INTERFACEcoeviiriiiiiiiecteete ettt et enne e 8-21
8.12 486 PROCESSOR SYSTEM DESIGN EXAMPLE USING THE EISA BUSc........... 8-21
8.12.1 Introduction to the EISA ArChitECIUIEcceeeuiiireiicieccecece s e n 8-21
8.12.2 Intel's EISA Chip Stceieiiieieiececece e ettt sttt 8-22

xh

intel” TABLE OF CONTENTS

Page
8.12.3 EBC HOSt BUS INEIMACEccvviiiceeie ettt es e eae e aeeaas 8-24
8.12.3.1 CLOCK, CONTROL AND STATUS INTERFACEccoiiieeeeiieeeee et 8-30
8.12.3.2 HOST LOCAL MEMORY AND I/O INTERFACEcoooviiiiieeeeeeeeeeee e 8-31
8.12.3.3 HOST BUS ACQUISITION AND RELEASEoooiieeeeie et 8-31
8.12.3.4 LOCK, SNOOP, AND ADDRESS GREATER THAN 16 MBYTEScccccovvevvevneenn. 8-31
8.12.4 EISA/ISA Bus Interface to the EBCc.oooiiiiiiiiceeee et 8-32
8.12.4.1 EBC AND EISA BUS INTERFACE SIGNALScooeiiiieeceeieieeeeete e 8-32
8.12.4.2 EBC AND ISA BUS INTERFACE SIGNALSccoiieeeeieeeeie e 8-34
8.12.5 EBC aNd ISP INTEIMACE ...ccccviiiiieiiie ettt ettt e e et et e e e ra s 8-35
8.12.6 EBC and EBB Data and Address Buffer CONtrolsccccccvevvviieeieieeeieeeeeeeeenenn 8-36
8.12.6.1 FUNCTIONS OF THE ISP ..ottt eeee et eae e 8-38
8.12.6.2 ISP-TO-HOST INTERFACEooi ittt eeat e e ete e s s 8-38
8.12.7 ISP 10 EISA INTEITACE ..uviciieiiiii ittt ettt et e st s et ee e s e as 8-39
CHAPTER 9
MULTIBUS Il SYSTEM INTERFACE
9.1 PARALLEL SYSTEM BUS (PSB) ...oeciiiiiciteie ettt ettt et e eae e 9-1
9.1.1 PSB INEEITACE ...iieiiiii ettt ettt e et e e et e e et e e e esteerere e e e eeaaas 9-3
9.1.2 PSB OPEIaAtiON ..c.eiiiiiiiiiiieeieet st ste ettt e e et re s v e et e b e be e eteesaeeetee st sbeesneeereenns 9-4
9.2 THE 82389 MESSAGE PASSING COPROCESSOR (MPC) ..ocoieitieieeeieeiecrectre e, 9-4
9.3 AN MPC INTERFACE EXAMPLEooiiiiieeeeee ettt 9-6
9.3.1 CPU-O-MPC INTEIACE ..iiivieeeeiiieee e ettt 9-7
9.3.2 NON-DMA INTEIACE ..icuveiiiiieeeeeeeeee ettt et e e st e e e e e saea e 9-8
SRR I B Y VN g (=1 o = To TR 9-9
9.3.4 DMA DULY CYCIB ..ottt s b e eba e resaes 9-9
9.4 PSB INTERFACE AND OPERATION EXAMPLESooiiiiiiiiiiiiie e 9-10
9.4.1 Minimal P1 INtErCONNECHONoooviiiiiii ittt 9-11
9.4.2 Memory and I/O Referencing on the PBScccccoiiieiiieiicciceeeccec e 9-11
9.4.3 Reset, Clock, and Slot Initializationcccoeeiiieiiiie e 9-14
9.5 INTERCONNECT-SPACE EXAMPLESoooiiiiec ettt 9-14
9.5.1 8751 Microcontroller Implementationccceoeveieeieci e 9-17
9.5.2 Configuration Through INterconNect SPaceccccvevieceeriiineieieceercree e 9-17
9.6 Related DOCUMENTALIONcc.oiiiiiiiecce ettt e e e e et e et et e e eeeeeeeeeas 9-18
CHAPTER 10
PHYSICAL DESIGN AND SYSTEM DEBUGGING
10.1 GENERAL DESIGN GUIDELINESoouiiiiie et 10-1
10.2 POWER DISSIPATION AND DISTRIBUTION ..oiiiiiiiiie ettt 10-1
10.2.1 Power and Ground PIANEScc.cooiuiiieieicee ettt sttt 10-2
10.3 HIGH-FREQUENCY DESIGN CONSIDERATIONSooiiiiiicieeeee et 10-9
10.3.1 Transmission LINE EffECLS c.uiiicuiiiiiiiiceeeee et e et eeeeaeeas 10-10
10.3.1.1 TRANSMISSION LINE TYPES ..ottt eee e et eveaeeeneenes 10-11
10.3.1.1.1 MICro StrP LINES cooiiieiie et e 10-11
10.3.1.1.2 SHP LINES .ottt et ettt et stetesaeaeaentean 10-12
10.3.2 Impedance MISMatCHccccociiiiierieie et st 10-13
10.3.2.1 IMPEDANCE MATCHINGoooiiiiiiie ettt e eere et een e nnaeas 10-19
10.3.2.1.1 Need for TermMINAtIONccccvviiiiiieiec ettt eete e e e s eee et e srereeseeaeens 10-19
10.3.2.1.2 Series TEIrMUNAtONc.cooooieiiiei ittt et see e et e e et eeae e reaeens 10-20
10.3.2.1.3 Parallel Terminated LINESccoviviiiiiiiiiiii ettt 10-20
10.3.2.1.4 Thevenins Equivalent Terminationcccccceiiieniiiiiciicciece e 10-21
10.3.2.1.5 A.C. TErMINAtioNcviiiiiiiieee et e . 10-22
10.3.2.1.6 ACHVE TEIrMINAtON ..cceviiiiiiiiiiie ettt e e sttt e e s s ea e e e s eaeesreeeseseanes 10-23
10.3.2.1.7 Impedance Matching EXampPlecccccoiivieiiiiiieeierise e 10-24

intel® © TABLE OF CONTENTS

Page
10.3.2.2 DAISY CHAINING ...ocoiiiiiiiece i e 10-25
10.3.2.3 90-DEGREE ANGLESoooiiiiieieeriie it 10-26
10.3.2.4 VIAS (FEED-THROUGH CONNECTIONS)coiiiiiiiiiiiicisinies i, 10-26
10.3.3 INEIFEIENCE ..oiieeiee e e e 10-26
10.3.3.1 ELECTROMAGNETIC INTERFERENCE (CROSS-TALK)cccoeiiiiiiiiiiiiiiinns 10-27
10.3.3.2 MINIMIZING CROSS-TALKoiiiiiiiiitieiir ettt st 10-28
10.3.3.3 ELECTROSTATIC INTERFERENCE .. 10-29
10.3.4 Propagation Delaycccocieeiiiiiiieees e 10-30
10.4 LATCOH-UP ..ottt a bbb bbb 10-31
10.5 CLOCK CONSIDERATIONSoiiiiiiiiiieeiieiee et sas e 10-31
10.5.1 ReqQUIrEMENTS ...eeiiiiii et e 10-32
ORI~ = (o U ([T OIS 10-33
10.6 THERMAL CHARACTERISTICSoiiiiiiiienee it 10-35
10.7 DERATING CURVE AND ITS EFFECTS ..., 10-38
10.8 BUILDING AND DEBUGGING THE i486 MICROPROCESSOR- BASED SYSTEM ... 10-40
10.8.1 Debugging Features of the i486 MIiCrOProCeSsSSOrcceeiiviininiiiniiencieneniee s 10-41
10.8.2 Breakpoint INSruCtioncooiiiiiei e 10-41
10.8.3 SiNGIE-SIEP TrAP cveeiciiieiieieiee e e e s 10-42
10.8.4 DebUQg REQISTEIS ...coiiiieiii et 10-42
10.8.5 Debug Control Register (DR7)oocieiiriinieirein i 10-42
B KO TR TG B T=T 18 o o [N 10-45
10.9 REFERENGES ...ttt e s b s 10-46
APPENDIX A
INTRODUCTION TO INTEL 86 FAMILY ARCHITECTURE
A.1 HISTORICAL OVERVIEW ...ttt sttt sre e s s A-1
A.2 PROCESSOR BUS ...ttt st ettt s sae s nn e s sre s s e A-4
A.3 INTERNAL ARCHITECTUREooiiiiiiienecees et s A7
A4 TESTABILITY ettt ettt et s ne s re s s aa e e r e sre e sanenne e sre s sanas A9
APPENDIX B
PLD CODES AND SCHEMATICS
B.1 PLD DEVICES ...ttt ettt s s n s s s B-1

Figures

Figure Title Page
1-1 A Typical i486™ Processor System 1-9
1-2 Single-Processor System - 110
1-3 Loosely Coupled SyStemMcoveiie i s 1-11
1-4 EXternal Cachecccccviiciiiiiiieic e e e e 1-12
1-5 Personal Computer Examplecccccviiiniiiiii i, 1-13
1-6 Embedded Controller EXampleccceciiiiiiiiininnii e 1-15
21 Internal Architecturecceceeeeeee [PPSR PO RPN 2-2
2-2 Internal Pipeliningcooo i e 2-3
2-3 Cache Organizationc.ceecveeiieeeenieenee e s re s 2-8
2-4 Segmentation and Paging Address Formatscccviiiiniiiiincncnnccnens 2-13
2-5 Translation Lookaside Buffercccooiiiiiiiini s reeeees 2-14
3-1 AdAress SIgNAIScc.oveeieiieriieiieeeeeee e e e 3-7
3-2 Data SIGNalSccceeceeeiiiiiiiiee e 3-8
3-3 Processor-Bus Statesccccceeeiiiiiinieniin e 3-14

H ®
intel TABLE OF CONTENTS

Figures
Figure Title Page
3-4 Data BUS SITUCIUrEcoooiiiiiiiiiiccccec e 3-16
3-5 Addressing Bytes, Words and Doublewordscccccocvmivieeiiiiiiiecie e, 3-17
3-6 Data Alignment on 32-Bit Data BUScccccvvevieiiiiieccce e 3-18
3-7 Misaligned Doubleword Transferc.cvoceevveeiiiiiiiieeeceeeee e 3-19
3-8 Non-Burst, Non-Cacheable 2-2 Cyclecccoovieviiiiiiiiiieeeee e, 3-23
3-9 Non-Burst, Non-Cacheable 3-3 CYCleccccecevieiiiciieieece e, 3-25
3-10 Non-Burst, Non-Cacheable Multiple-Cycle Sequenceccccecvevveviiienneane. 3-26
3-11 Non-Burst, Cacheable Multiple-Cycle Sequencec.ccoveeveveeeevvirennne.e. 3-27
3-12 Non-Cacheable Burst Cyclec.coceeevveniinene 3-29
3-13 Cacheable BUrst CYCIEc..ccviiiiieiie et 3-31
3-14 Slow Cacheable BUrst CYClEccveoieiiieiiiiiieeeeeeece s 3-33
3-15 Changing KEN# during a Cacheable CyClec.c.covveeivereiireeecricerieenn 3-34
3-16 Burst-Cycle Order of Addressingc.ceeeun..n e e 3-35
3-17 Interrupted Burst Cycle, Example #1cccocoovvininiieice e 3-36
3-18 Interrupted Burst Cycle, EXample #2cccccocveveeiiicceece e 3-37
3-19 8-Bit BUS SIiZ€ CYCIB ..oviieeeeiceiciicert e 3-38
3-20 Burst Write 0on 8-Bit BUSccooiciriiiiieiccreree e 3-41
3-21 16-Bit Interfacing to AO (BLE#), A1 and BHE#cc.coceevvveveiieecee e, 3-42
3-22 Interrupt Acknowledgement TiIMINGcocvviieiiiiectiec e 3-47
3-23 Bus HOIA TiMING ...eoeiieiiieieeseses ettt 3-51
3-24 LOCKEA BUS CYCIESeioiieiieciice ettt s 3-52
3-25 Semaphor Passing with Non-Locked CyClesccccccvvurueeecveevevecrereieeene 3-54
3-26 Pseudo-Locked 64-Bit Write CyYCIEcccvcvvveeiiiiiiceeeceece e 3-56
3-27 Bus Backoff and Restart during a Read Cyclecccccoceevevevcvveecicicceenen 3-58
3-28 Bus Backoff and Restart during a Write Cyclecc.ccoccovevvieiiieicciciceeeee, 3-59
3-29 External (Second-Level) Cachecccccoviiiiericiriiencee e 3-60
3-30 Internal Cache Invalidation CycClec..ccoecveiiieiiiieicicieceeee e 3-63
3-31 Concurrent Cache Invalidation and Line Fillcccovevveieviereeiececee, 3-64
3-32 Internal Cache FIUShcccoiiiiiiiect e 3-65
3-33 DOS-Compatible Logic for Floating-Point Error Interpretation ... 3-67
4-1 Cache Hit Rate for Various Programsccccccceveveveneennann. 4-6
4-2 386™ DX CPU Bus Cycle Mix without On-Chip Cacheccccceeeeierenennen. 4-7
4-3 i486™ CPU Bus Cycle Mix with On-Chip Cacheccccccccevveveviiivecrieienne 4-8
4-4 Effect of Wait States on Performanceccoceeeeeiiiicicicc e 4-11
4-5 Effect of External Bus Utilization versus Wait Statesccccceceevevveienane. 4-12
4-6 485Turbocache Module Performance Data with 1 Write Buffer 4-14
4-7 Static Column Memory Mapccccoeeeirinieinieiee et 4-15
4-8 Performance in Interleaved and Non-Interleaved Systemscc.o....... 417
4-9 Performance in Systems with and without Posted Writesc.cucueu....... 4-18
4-10 Whetstone Performance of the 386™ CPU and the i486™ CPU 4-21
5-1 Typical Burst CyClec.cciviiiiiiiiieieireiseceee et 5-4
5-2 Burst Cycle: KEN# Normally ACtiVeccceeeviieniiiierenene, 5-5
5-3 386™ Bus Cycle Mix/486™ Bus Cycle Mix 5-6
5-4 KEN# Logic for Second-Level Cacheccocoovveiiviiecicricceceee e 5-8
5-5 WIIte “POSHNG" ..ottt ettt 5-10
5-6 AAreSS LOGIC ..oviviieieieiirieiieneie ettt ettt sttt 5-12
5-7 Data Path LOGICcccoerieriiiiericiee sttt 5-14
5-8 Logic Required for Optional 485Turbocache Modulecccveevvrvverienennes 5-16
5-9 CONrol LOGIC OVEIVIEW ...o.ueviiiiieiictieeceeeeeeee sttt st 5-17
5-10 DECOAE LOGICeiiiieriieiieie ettt ettt ettt ettt st s st e et raneeeas 5-18
5-11 BUrst Read CYCIEcccceeieiiiriiie ittt e 5-24
5-12 Burst Read DRAM Page, Hit 5-26
5-13 Basic Write CyCleccceevieiniiireiiiccsecee e 5-28
5-14 Back-to-Back Write Cycles 5-29
5-15 Consecutive Write-Read CYClEccocvvvivieieeceietecceee e 5-31

TABLE OF CONTENTS

[e)X e)N e Ne Yo Ne)Neo) No Yo No)NorNo No)NorNerNeo)Ne)Ne) Jé Ho N6y

—_ ek ek e A DA S S OOONOOODOTRARWN =

NOORAWON—LO

NN NN ITITITI\I\I\I\I\I\IG)O’)O’O)O)@@

N N RN ENENENENEN|

Figures
Title

DRAM Page Miss-Read CyClecccoovviiiiniiiiiniiic i,
DRAM Page Miss-Write Cyclecccccciviiiiininiinniinnnnnn.

Refresh Timing Concurrent with Write
State Transition EXamplecccoccceriiemnieiinienneeiee e

Cycle in Progress State Diagramccceeeeiinnnn e eeeeeereeie e irnrse e st Ee s
Cycle Tracking State Machine ..o
Precharge State Machinecccccciiiiii e,
Refresh State — Timing Exampleccccvviriinninnns

RAS State Machineccoviiniiinii,

CAS State Machingeccccceveeneeninennn,
Static Column CAS State Machine.
State Machines for MENO, WIP#, and WEO#
Burst Address GEnerationccccccviiiiiieiiiviniii e
A Typical 386™ DX CPU System with an 82385 Cache Memory
A Fully Associative Cache Organization ...
Direct Mapped Cache Organizationccccoevieiieiiniinniinainns

Two-Way Set Associative Cache Organization
Sector Buffer Cache Organization ...t
The Cache Data Organization for the On-Chip i486™ CPU’s Cache
Stale Data Problem in the Cache/Main Memorycccccciiiiiinnniiniininnen.
Bus Watching/Snooping for Shared Memory Systems .
Hardware Transparencyccceooveeniiiinnnnivninnen,
Non-Cacheable Shared Memory ...,

A Typical i486™ CPU SyStemc.ccccovvviriiiiiiniiiniii i,

i486™ Processor System Memory Hierarchycocvviivinniniinienieen.
Internal Block Diagram of the 485Turbocache Moduleccciiiiiinniiins
485Turbocache Module Performancec.ccociiniiiinnenneniieccceceiee,
Multiple 485Turbocache Module Configurationccccvieiiiniiicneinicnens
485 Turbocache Module and i486™ CPU Connections
485Turbocache Module and Main Memory Connections
Read Hit—Writec..ccccouis SRR PO
Write —Read Miss (Fastest Line Fill) ..
Read Miss —Two Clock BUrStccccveeviiiiininiiiiiiincecceeen
Snoop Cycle —Maximum Invalidation Ratec.ccecviiniininiiniiinien,
Snoop during Read Hitcccveiiriiciiiee e
BOFF# during Read Hitcccccoiviiiiiiiiiiic e
I/O Cycle —Interrupted BUIStcccooveiiiiiiiiiic e
Single Cycle, Non-Cacheable Readcccovviiininiiiiiiie,
MapPiNg SCHEME ...t e e
Address Interface to 32/16/8-Bit I/O DeVICeScccevmiiininieniiiinierinine,
Logic to Generate A1, BHE# and BLE# for 16-Bit Busescce.e..
i486™ Microprocessor Interface to 8-Bit DeviCeccccoivveviiicicinnenen,
Bus Swapping 16-Bit Interfacecccciiiiiiiciiin e
. Bus Swapping and Low Address Bit Generating Control Logic
32-Bit 1/O INtErfaceccceeiiiiiieieieie e
System Block Diagramcccconeeiiiiiiniiiineniie,

Basic 1/O Interface Block Diagram
Bus Control Logic Implementation
BasiC 2-2 CYCIE ..ocveeiiieiieee e
BasiC 3-3 CYCIE ..ccoiiiiiiiriieeeieee e
PLD Equations for Basic I/O Control Logic
1/O AdAress EXAmMPIEcceveeiieeieieiireie et s
Internal Logic and Truth Table of 74LS138
I/0 Read Timing AnalySiscccceoverercerreieeneereens

1/0 Read TiMINGS c.vvvieieieiiie ettt e e bbb e sr b

Xvi

Page

5-33
5-34
5-36
5-37
5-38
5-39
5-41
5-42
5-43
5-44
5-46
5-47

@
IS
©

DDA D
DOOVWONNPLAWLOOONOW

DDA DD D

]\)[\)M_I._IL—L_L_L_I._I._I.

1
W
ODAN—=2ONOONOOONOO—-0OV0mON

60 €0 60 €3¢0 6O I RO R

}

NN

NNNNNN N
N — b) —

NN
NDNODNDNDNDNDND =
OCOPAPWN—=-O®

intel® TABLE OF CONTENTS

Figures
Figure Title Page
7-18 1/O Write CYCle TiMINGS .icvvoviieiiiriieiieieee ettt se st ee e e e eeeeeesaesrens 7-30
7-19 I/O Write Cycle Timing ANalYSIScccoevivieiriiriiiieeciciereerereres e 7-31
7-20 Posted Write CIrCUILcecevvirieiiicisee ettt s 7-31
7-21 Timing of @ Posted WItEccuciiiiiieecicecccccc e 7-32
7-22 8042 Interface 10 i486™ MiICTOPrOCESSONccovveveeeeveieeeerereeeeteeeeee e 7-34
7-23 i486™ Microprocessor Interface to the 82C59Acocevvvvveeevveevvesreeen 7-36
7-24 Cascaded Interrupt CONtrollerc.ccvevvieieeiiiiiecricee ettt 7-37
7-25 8259CA Coprocessor Block Diagramcccceeeeevieeeeneeieviiecseeese s s 7-39
7-26 82596CA Application EXamPplecccccovviniiriiiieieeeeeecreeereee e 7-41
7-27 82596-t0-Processor INterfacingcccoceevveiieieciece e 7-43
7-28 82596 Shared MemOIYccceeviiriiriiiie sttt s 7-44
7-29 BUs Throttle TIMEerscoccciiiiiiiiiiiscrseese e s s 7-47
7-30 596RESET, CA, and PORT# EQUatioNsccccooeeveeieeeeiieeceeeeeee e 7-48
7-31 EISA System Diagramccccoereivinienieieeeeecee et 7-51
7-32 AT Control Signal Generationcccccevveiveeeieieeeiccee s 7-55
7-33 More AT Control Signal Generationcc.ccoevveveeeerenieveceeeeeece s 7-56
8-1 Single-Processor i486™ CPU System 8-2
8-2 Multiple-Processor i486™ CPU Systemcccccovuene. 8-4
8-3 Multiple-Processor/Cache/Memory i486™ CPU Systemcccoevvvvevennene. 8-5
8-4 i486™ CPU ReSet SEQUENCEccceeceriiiiieiecticieeee ettt s 8-7
8-5 i486™ CPU BUrst CYCIEcccovueiririiirieisiecsetee ettt e e 8-8
8-6 i486™ CPU NON-BUISt CYCIEcoceviriiiicticiciee e 89
8-7 Changing from a Non-Burst to @ Burst CYClec.cceeveveiiveveecreiieeeeeas 8-10
8-8 Burst Cycle Beginning at Address 104cccccoevevveeiiesieiceeeeeee s 8-11
8-9 i486™ CPU BaCKOffccoceviieiirieiniiesse et 8-13
8-10 i486™ CPU System Arbitrationccccovieveveciericriereeeeeeseese e 8-16
8-11 Single Master i486™ CPU SySEMcccccecveveiveeeieeceeeee e 8-17
8-12 Single i486™ CPU With DMAccocoiriieicceeeeeeeee e 8-18
8-13 Single i486™ CPU with Multiple Secondary Mastersccccoovevernnnnee. 8-19
8-14 Multiplier Primary and Secondary Master i486™ CPU System 8-20
8-15 i486™ CPU SYSIEMocoiviiieiiciieiceieece ettt sttt 8-23
8-16 Block Diagram of EISA Bus Controller (EBC)ccccceveveuvereeennne. 8-25
8-17 Block Diagram of Integrated System Peripheral (ISP) . 8-26
8-18a Block Diagram of EISA Bus Buffers (EBB) (Mode 1) .. 8-27
8-18b Block Diagram of EISA Bus Buffers (EBB) (Mode 2)c.cccoevevevievrrenene... 8-28
8-18c Block Diagram of EISA Bus Buffers (EBB) (Mode 3)cccoeeveeveveiericernnenn. 8-29
8-19 EBB BYte TranSferccccveieiiiiieiiiiicte ettt ettt n e 8-36
9-1 Example MULTIBUS Il Architecture Board Layoutccccoeevvevieseneneenen. 9-2
9-2 Message Passing Coprocessor (MPC) Block Diagram.ccceeeeereeennnnnn. 9-5
9-3 MPC Device INErfAaCEcccceeeiiirieiieriiitiiereee ettt s 9-6
9-4 MPC Interface EXamPIeccccoviviieiiieciecce e s s 9-7
9-5 CPU-to-MPC Interface without DMA, ettt e e et raenaras 9-8
9-6 CPU-to-MPC Interface with DMAcocooviuiiiieeecceecece et 9-10
9-7 Minimal P1 Interconnection EXampleccccccceveeveviciiiiecciceeeeee e 9-12
9-8 Memory and 1/O Referencing EXampleccocevevieveeurivieerieeeeece e 9-13
9-9 Microcontroller-to-MPC INterconnectioncccceeevvveveueevereeeeeeee e, 9-15
9-10 RESEt HArAWAreccccoirieiiecc ittt s 9-16
9-11 On-Board Resource Configuration EXampleccccccoeeeeceeeeeeerereeesnennn, 9-19
10-1 Reduction in IMPedanceoceeeieeiereeeeeeeeeeeeeeeeeeeeeeeeeeanas e 10-3
10-2 Typical Power and Ground Trace Layout for Double-Layer Boards 10-5
10-3 Decoupling Capacitorsc.cecvereriiininenienieece ettt 10-6
10-4 Circuit without Decouplingcccovvreiiieicieeeeeee e e 10-7
10-5 Decoupling Chip Capacitorsc...coveeireriireisiiieceeee e 10-8
10-6 Decoupling Leaded Capacitorsccoovviviveeieceireeieeereereeeee oo 10-9
10-7 MiCro SHP LINES ..eiieieiiere sttt e 10-11

XVii

intal” TABLE OF CONTENTS

Figures
Figure Title Page
10-8 SHIP LINES oottt e s 10-12
10-9 Overshoot and Undershoot Effects ... 10-14
10-10 Loaded TransmisSion LINEccccoccviiiiiiiiiiniin e 10-14
10-11 Lattice DIagram ...cocceecveereeiieerieetcirr i s 10-17
10-12 Lattice Diagram EXamPplecccociiiiiiiiiiiinn e e 10-18
10-13 Series TermMINAtONcoveeriereerieie et 10-20
10-14 Parallel Terminationcoccoieiiiiiiiii e eiebeereere e 10-21
10-15 Thevenins Equivalent CirCuitcccccvviniiiiiiniiiii e, e 10-22
10-16 A.C. Terminationcceeieiiereieiec et et 10-23
10-17 ACtIVE TErmMINAtiONcccveeieeiiieeiee i e e 10-24
10-18 Impedance Mismatch Example ..o 10-25
10-19 Use of Series Termination to Avoid Impedance Mismatch .. 10-26
10-20 Daisy ChaiNingcccccevveiieiiiieiiniec e 10-26
10-21 Avoiding 90-Degree ANGIESccciiviiiiiniiiiiiiieee i 10-27
10-22 Typical Layoutccoocviiiiiiiiiiiiiin e 10-28
10-23 Closed Loop Signal Paths are Undesirablecccovieieiiiniinininnns 10-30
10-24 Typical i486™ Microprocessor Clock CirCuitcccceviiieinieniiniiiiiicis 10-33
10-25 (0 [oTe] Qi 1151115 To IO 10-34
10-26 Clock ROUtING ..ooveveeiiiiiiecieece e eveeraens 10-34
10-27 1] = LG 070 g aT=Te1 o] o TN SO ST 10-35
10-28a Typical Heat SiNKSccceveiiiiiiiiiiiin s 10-37
10-28b Heat Sink DIMENSIONSococveiiiiiiiiiei e e 10-38
10-29 Derating Curves for the i486™ Processor .. 10-39
10-30 Typical i486™ Processor-Based System 10-40
10-31 Debug REQISIEIScoiiiiiiiiiiiii e 10-43
10-32 Pattern COMPAIEcceceeiiiiiieiiii et ena e a e enes 10-46
B-1 PLD Equation and Device Implementationcccoccvvviiniininnennicieiienne, B-2
B-2 85C220/85C224 EPLD Macrocell Architectureccovvvnieiieiininiiniinn, B-3
Tables

Table Title Page
1-1 System COMPONENEScceviiriiiiiiciiieie e e 1-6
21 Cache Configuration OptioNscccciiiiiiiniinin e 2-10
3-1 Processor Bus Signalscccoccvrieiiiiiniiinin e 3-4
3-2 Output and Bidirectional Signalsc..ccocviiiiiiiiii 3-5
3-3 Input Signalscccccevieenne Cteerrerrrreeeeteeineeearresaees i e s e e e e a s e e e e baeean 3-6
34 Bus Cycle Definitionsccccvviiiiniiciiiiii i 3-8
3-5 BUS SEALES ...euviiveeereiiirer et s e e e 3-13
3-6 Conditions for Floating the Processor BUsc..cccevuiveiieniiniiiniininnc 3-15
3-7 Possible Transfers in a Single 32-Bit Bus CycClecccocvveeeiiciininin, 3-17
3-8 Restrictions on Burst Cycles and Cacheable Cyclesccooviieiiniinennen. 3-22
3-9 Burst Address SequencCingcccccvreiiereieniiinien e 3-34
3-10 Byte-Enable Signals with BS8# and BS16#ccccccceneie. 3-40
3-11 Data Bus Signals and Bus Sizeccccoceeniiciiiciciiecnn, 3-40
3-12 Decoding A1, A0 (BLE#), and BHE# from Byte-Enables 3-42
3-13 Processor Outputs after RESETccccooviiiiiiiiiiiniiniii e, 3-44
3-14 Special BUS CYCIESccveiiieiiiiiiiiiiiice e 3-49
41 Typical Instruction Mix and Execution Times for the i486™ CPU and the

B86™ CPU oottt s bbb s e ae b s 4-3
4-2 Programs USEaccociioieiiieiiieiiiiccee i 4-6
4-3 Floating-Point Instruction Execution Comparisonc.ccceeeeiieiiniicniennnnns 4-20

xviii

.E:

TABLE OF CONTENTS

-
o
=2
o

SN = = O NN NN NN R M S
'{);N—‘Oa)\lmm#wl\)—‘ml\)—‘&wm—‘

S O0oOoONOOHAWN =

>P>>>
o

Tables

Title Page
DRAM Device ReqUIrementsc.ccocueevvriieeniininieeeeseeseeeeseene 5-1
Clock Latencies for DRAM Functions ... 5-2
Access Length of Typical CPU FUNCHONScccoovivveirieeeeereeeseeeeeeeceeee s 5-3
Clock Latencies for DRAM FUNCHONSccoouvvieveeiinreeeiereeeeeeseeeie e e 5-50
First-Level Cache Hit RAteSccccccviivviieicrcreeeteceeecccteetee et 6-4
Burst Address Sequencing Issued by the i486™ CPUccccocoeevvvereeenn.. 6-32
Tag Address and Address CONNECHONScceeevvivevireereneeeeeseseeeeeieeseseens 6-35
Next Byte-Enable Values for the BSn# Cyclescccoeveevvevvvvrneeereesennens 7-4
Valid Data Lines for Valid Byte Enable Combinationscccccccueuveueunnne.. 7-4
32-Bit t0 8-Bit StEEIINGc.e.eevviriiriicieicceerce ettt 7-8
32-Bit to 16-Bit Bus Swapping Logic Truth Tablec.cccceeevvvvnevereenennn. 7-10
32-Bit to 32-Bit Bus Swapping Logic Truth Tableccccevveeivrenereriennee. 7-13
i486™ CPU Peripheral Familyc.ccoceueueieeeeeeeeieecece e 7-14
Bus Cycle DEfiNItioNSccccouieeieciiiieiiicci ettt st eee e tee e seeneseens 7-19
82596 SIGNAIScvceeevereieciiceerteeres ettt ettt eae e etene 7-42
82596 Bus Bandwidth Utilizationccccevveveeiiiiiiiecisrce e s 7-49
Burst Orderccvvevvivieveeericeecseeeeeen . 8-12
AENx Decode Tableccceevevvecenviireiiennnne. . 8-32
Comparison of Various Termination Techniques 10-24
LENi FieldSc..ccoverveeviviirircce e 10-44

The Intel 86 Family of ProCESSOrSccc.cccveiveveveeieeiiicececes et A-2

Memory Addressing, Segmentation, and Paging A-2
Object-Code Compatibility A-3
Operating Modesccccuuu.e. A-4
NUMENC COPIOCESSOISc.eerireeriiireiriiresietees ettt resserssesbese st reseresseseene A-5
Processor Bus Features and Utilizationcceevieveeeeiiniceinncenresee e A-5
Processor Bus Clocks and Organizationc.cceeeeeeeevevcevenseresereeenenne A-5
Bus Control and Arbitrationcccevveveeicecesiece e A-6
BUS CyCle SIgNalSccoeeeriiririeirieiine sttt bbbt ne A-6
Internal Speed and ThroughpULoeveiiiiciiicece et se s A-8

Xix

|
Introduction to the Processor 1

CHAPTER 1
INTRODUCTION TO THE PROCESSOR

The Intel i486™ processor is the highest-performance member of the Intel 386™ family
of processors. The 1486 processor executes DOS, Windows, OS/2 operating system,
UNIX System V/386, iRMX® operating system, and iRMX kernel applications faster
than any other processor. It is upward binary compatible with the 8086, 8088, 80186,
80286, 386 DX processor, and 386 SX processors. The i486 processor brings mainframe
power to PC architectures.

1.1 ARCHITECTURE

The i486 processor includes an integer processing unit, floating-point processing unit,
memory-management unit, and cache. With these units together on a single chip, many
inter-unit signals remain on-chip, running at the speed of VLSI silicon rather than the
speed of printed circuit boards. The increased level of integration also reduces board
space, which lowers cost and simplifies design.

The i486 processor can give a two- to four-fold performance improvement over the 386
processor, depending on the clock speeds used and the specific application. Like the 386,
the i486 processor includes both segment-based and page-based memory protection
schemes. Instruction processing time is reduced by on-chip instruction pipelining. By
performing fast, on-chip memory management and caching, the i486 processor relaxes
requirements for memory response for a given level of system performance.

The i486 processor bus is significantly faster than the 386 processor (local) bus. Both
buses are 32 bits wide, but the i486 processor bus introduces the use of a single-
frequency (1x) clock and support for parity checking, burst cycles, cacheable cycles,
cache invalidation cycles, and 8-bit data buses. There are two major advantages to using
a Ix clock. First, it simplifies system design by cutting in half the clock frequency
required by external devices. Second, elimination of the 2x clock used on the 386 pro-
cessor reduces RF emission at the higher speed of the i486 processor and simplifies
clock generation.

The 1486 processor can use burst cycles for read transfers which require multiple bus
cycles. Burst cycles are done at the continuous rate of one 32-bit (doubleword) transfer
per clock cycle. In the 386 processor, by comparison, data transfers require at least two
clock cycles per transfer. External cache, interleaved memory banks, or DRAMs with
static-column addressing may be used to achieve zero wait-state memory performance
during a burst.

Instructions can be executed in fewer clock cycles than with the 386 processor. In the
486 processor, streamlined instruction pipelining supports a continuous execution rate
of one clock cycle per instruction for most instructions. The internal cache supports a

1-1

intgl” INTRODUCTION TO THE PROCESSOR

continuous rate of one processor request per clock cycle. To support efficient task
switching in real-time multitasking and multiuser systems, the i486 processor, like the
386 processor, allows a single instruction or an interrupt to perform a complete task
switch.

Device testing is supported by a built-in self-test. Results of the built-in self-test are
available in an internal register. Assembly-language testing of the cache and translation
lookaside buffer are also supported.

Chapter 2 describes the processor’s internal architecture. Chapter 3 describes the >pro‘-
cessor bus. The rest of this section highlights features of particular interest to system
designers.

1.1.1 Features

The 486 processor offers the following features:

o Compatibility —The processor is binary-compatible with the 8086, 8088, 80186, 80286,
386 processor, and 386 SX processor.

o Full 32-bit integer processor— The processor performs a complete set of arithmetic and
logical operations on 8-, 16-, and 32-bit data types using a full-width ALU and eight
general-purpose registers.

o Separate 32-bit Address and Data Paths —Four gigabytes of physical memory can be
addressed directly. ,

o Single-Cycle Execution —Many instructions execute in a smgle clock cycle.

o On-Chip Floating-Point Unit —The 32-, 64-, and 80-bit formats specified in IEEE Stan-
dard 754 are supported. The unit is binary-compatible with the 8087, 80287, 387™ DX
coprocessor, and 387 SX coprocessor.

o On-Chip Memory Management Unit— Address-management and memory-space- pro-
tection mechanisms maintain the integrity of memory. This is necessary in multitask-
ing and virtual-memory environments, like those implemented by the UNIX and OS/2
operating systems. Both memory segmentation and paging are supported.

e On-Chip Cache, with Cache Consistency Support—The internal write-through cache
can hold 8K bytes of data or instructions. Cache hits are as fast as read accesses to a
processor register. Bus activity is tracked to detect alterations in the memory which
internal cache represents. The internal cache can be invalidated or flushed, so that an
external cache controller can maintain cache con51stency in multl -processor
environments.

e External Cache Control—Write-back and flush controls over an external cache are
provided so that the processor can maintain cache consistency in multi-processor
environments.

e Instruction Pipelining—The fetching, decoding, execution, and address translation of
instructions is overlapped within the 1486 processor. This results in a continuous exe-
cution rate of one clock cycle per instruction, for most instructions. -

1-2

. ®
intel INTRODUCTION TO THE PROCESSOR

e Burst Cycles—Burst transfers allow a new doubleword to be read from memory each
clock cycle. With this capability the internal cache and instruction prefetch buffer can
be filled very rapidly.

e Write Buffers —The processor can continue operations internally after a write, without
waiting for the write to be executed on the processor bus.

e Bus Backoff—If another bus master needs control of the bus during a i486 processor-
bus cycle, the i486 processor will float its bus signals, then restart its cycle when the
bus again becomes available.

e Instruction Restart—Programs can continue execution following an exception gener-
ated by an unsuccessful attempt to access memory. This feature is important for
supporting demand-paged virtual memory applications.

o Dynamic Bus Sizing—External controllers can dynamically alter the effective width of
the data bus. Bus widths of 8, 16, or 32 bits can be used.

1.1.2 Operating Modes and Compatibility

The 486 processor can run programs in modes which give it object-code compatibility
with software written for the 8086, 80286, and 386 processor families. The operating
mode is set in software as:

o Real Mode: When the processor is reset or powered up, it is initialized in Real Mode.
This mode has the same base architecture as the 8086 processor but allows access to
the 32-bit register set of the i486 processor. The address mechanism, maximum mem-
ory size (1 Mbyte), and interrupt handling are identical to the Real Mode of the
80286 processor. Nearly all of the i486 processor instructions are available, but the
default operand size is 16 bits; in order to use the 32-bit registers and addressing
modes, override instruction prefixes must be used. The primary purpose of Real
Mode is to set up the processor for Protected Mode operation.

o Protected Mode (also called Protected Virtual Address Mode): The complete capabilities
of the 1486 processor become available when programs are run in the Protected
Mode. In addition to segmentation protection, paging can optionally be used in Pro-
tected Mode. Linear address space is four gigabytes and virtual memory programs of
up to 64 terabytes can be run. All existing 8086, 80286, and 386 processor software

~can be run under the i486 processor’s hardware-assisted protection mechanism. The
addressing mechanism is more sophisticated in Protected Mode than in Real Mode.

Virtual 8086 Mode, a sub-mode of Protected Mode, allows 8086 programs to be run
with the segmentation and paging protection mechanisms of Protected Mode. This
mode offers more flexibility than the Real Mode for running 8086 programs. Using
this mode, the i486 processor can execute 8086 operating systems and applications
simultaneously with an i486 operating system and both 80286 and i486 processor
applications. :

The hardware offers additional modes which are described in Chapter 2 of this manual.
For more information on operating modes, see the i486™ Microprocessor Data Sheet and
the i486™ Programmer’s Reference Manual. :

1-3

intel” INTRODUCTION TO THE PROCESSOR

1.1.3 Memory Management

The memory management unit supports both segmentation and paging. Segmentation
provides several independent, protected address spaces. This is a security feature which
limits the damage a program error can cause. For example, a program’s stack space
should be prevented from growing into its code space. The segmentation unit maps the
separate address spaces seen by programmers into one unsegmented, linear address
space.

Paging provides access to data structures larger than the available memory space by
keeping them partly in memory and partly on disk. Paging breaks the linear address
space into units of 4K bytes called pages. When a program makes its first reference to a
page, the program can be stopped, the new page copied from disk, and the program
restarted. Programs tend to use only a few pages at a time, so a processor with paging
can simulate a large address space in RAM using a small amount of RAM, plus storage
on a disk.

1.1.4 On-Chip Cache

A software-transparent 8K-byte cache stores recently accessed information on the pro-
cessor chip. Both instructions and data can be cached. If the processor needs to read
data which is available in the cache, the cache responds and a time-consuming external
memory cycle is avoided. This allows the processor to complete transfers faster and
reduces traffic on the processor bus.

The cache uses a write-through protocol; all writes to the cache are immediately passed
on to the external memory which the cache represents, rather than stored for future
memory updating (write-back). To reduce the impact of writes on performance, the
processor can buffer write cycles; an operation which writes data to memory can finish
before the write cycle is actually performed on the processor bus.

The processor performs a cache line fill to place new information into the on-chip cache.
This operation reads four doublewords into a cache line, the smallest unit of storage
which can be allocated in the cache. Most read cycles on the processor bus result from
cache misses, which cause cache line fills.

Mechanisms are provided to maintain cache consistency between memory and cached
data in multiple bus master environments. The mechanisms protect the i486 processor
from reading invalid data from its own internal cache or from external caches. For
example, when the 1486 processor attempts to read an operand from memory that is also
held in the cache of another bus master, the other bus master must be forced to write its
cached data back to memory before the i486 processor can complete its read from mem-
ory. This is done because the cached version of the data may have been updated, and so
may now be different from the version stored in memory.

1-4

. ®
intel INTRODUCTION TO THE PROCESSOR

Most memory systems optimize the speed of access on a read cycle. This is because the
large majority of all memory accesses in a typical system are read accesses. The i486
processor’s internal cache changes this ratio. Most read requests will result in cache hits,
$0 most memory accesses on the processor bus will be write cycles. Memory optimization
should be done with this in mind.

1.1.5 Floating-Point Unit

The internal floating-point unit performs floating-point operations on the 32-, 64- and
80-bit arithmetic formats specified in IEEE Standard 754. Like the integer processing
unit, the floating-point unit architecture is binary-compatible with the 8087, 80287
coprocessors. The architecture is 100% compatible with the 387 DX coprocessor, and
387 SX coprocessor.

Floating-point instructions are executed fastest when they are entirely internal to the
processor. This occurs when all operands are in the internal registers or cache. When
data needs to be read from or written to external locations, burst transfers minimize the
time required and a bus locking mechanism ensures that the bus is not relinquished to
other bus masters during the transfer. Bus signals are provided to monitor errors in
floating-point operations and to control the processor’s response to such errors.

1.2 SYSTEM COMPONENTS

Intel offers several chips which are highly compatible with the i486 processor. These
components can be used to design high-performance systems with a minimum of effort
and cost. For components not directly connectable to the i486 processor bus, industry-
standard interfaces can be used, such as the MULTIBUS II system bus.

For Ethernet interfacing, the 82596 32-bit LAN coprocessor off-loads network data man-
agement and physical-layer LAN functions to a single chip. The 82320-family 32-bit
MCA system peripherals provide efficient, low-cost interfacing to Micro Channel expan-
sion buses for PS/2 systems. The 82350-family 32-bit EISA system peripherals provide
efficient, low-cost interfacing to EISA expansion buses. Several other components are
currently in development.

Table 1-1 lists the components which interact directly with the i486 processor bus.
Chapter 9 gives more details on many of these system peripherals. Chapter 10 describes
MULTIBUS II system bus interfacing.

1.2.1 i486 Processor

The 486 processor provides all of the integer and floating-point CPU functions plus
many of the peripheral functions required in a typical computer system. It executes the
complete instruction set of the 386 processor and 387 DX numerics coprocessor, with
some extensions. The processor eliminates the need for an external memory manage-
ment unit, and the on-chip cache minimizes the need for external cache and associated
control logic.

1-5

intel® INTRODUCTION TO THE PROCESSOR

Table 1-1. System Components

Component Name Description

32-Bit General-Purpose CPU | i486™ CPU General-purpose processor with floating-
point arithmetic, memory management,
and cache.

32-Bit LAN Coprocessor 82596CA Local-area network communications copro-
cessor supporting CSMA/CD protocol.

32-Bit MCA System 82320 Functional support for Micro Channel

Peripherals (PS/2) expansion buses and boards.
Seven chips in the set.

32-Bit EISA System 82350 Functional support for EISA expansion

Peripherals buses and boards. Four chips in the set.

485Turbocache Module 485Turbocache Module | Second-level cache module.

for i486 microprocessor

Chapters 2 through 7 of this manual focus on the details of the 486 processor’s archi-
tecture, hardware functions, and interfacing. For more information on the architecture
and software interface, see the i486™ Processor Programmer’s Reference Manual.

1.2.2 LAN Coprocessor

The 82596CA LAN coprocessor is a 32-bit multitasking local-area network communica-
tions processor that supports 80-Mbyte/second transfers at 25 MHz. It implements the
carrier-sense, multiple-access and collision-detect (CSMA/CD) link access protocol and
interfaces the i486 processor to a wide variety of networks and functions, including:

o IEEE 802.3 networks (Ethernet, HDLC, Cheapernet, StarLAN, and others).
¢ IBM PC networks (baseband and broadband).
e Proprietary CSMA/CD networks.

o HDLC frame delimiting.

The 82596 LAN coprocessor is typically used in desktop computers, file servers, and
gateways. It provides a high-performance front-end controller for heavy data traffic, and
it permits extensive protocol-layer software implementations. A complete hardware
interface to Ethernet networks, for example, can be implemented with the 82596 LAN
coprocessor and the 82C501AD Ethernet serial interface device. The 1486 processor and
82596 LAN coprocessor communicate by means of a memory-based mailbox, command
system and buffer system. The coprocessor fetches and executes high-level commands
from shared memory to control all time-critical network functions. It performs command
chaining and inter-processor communication. It is object-code compatible with the 82586
LAN coprocessor, with extensions which simplify software drivers.

1-6

intgl® INTRODUCTION TO THE PROCESSOR

Because the 82596 LAN coprocessor can execute commands directly from main memory
and operate on data buffers without processor intervention, supervision from the 486
processor is minimized. In large networks, the high performance of the i486 processor in
executing control and protocol software minimizes the need for host intervention.

1.2.3 485Turbocache Module

The 485Turbocache Module is a high-performance, optional, write-through, second-level
cache designed specifically for the i486 microprocessor. It consists of the 82485 cache
controller and 4 to 8 custom SRAMs for a complete cache solution in one package.

The 485Turbocache Module is a performance upgrade for 25-MHz or 33-MHz i486
microprocessor systems. One module provides 64K or 128K bytes of external cache
memory. Up to four modules may be cascaded for up to 512K bytes of external cache
memory. The module is optional, that is a single socket allows three price/performance
options: no cache, a 64K cache, or a 128K cache.

The module is organized as two-way, set-associative with a line size of 16 bytes. The
interface to the 486 microprocessor is simple since all CPU timings and bus cycles are
supported. The module also supports Burst Mode, BOFF# cycles, and the same invali-
dation cycles as the processor.

While performance benefits are extremely application sensitive, the module typically
provides from 5% to 30% performance improvement. The 485Turbocache Module pro-
vides the best price-performance ratio for 25- and 33-MHz 1486 microprocessor designs.
Chapter 6 discusses the 485Turbocache Module in detail.

1.2.4 EISA Chip Set

The 82350 family of peripherals interfaces the i486 processor to an extended industry
standard architecture (EISA) bus. The chip set includes three motherboard peripherals
(bus controller, integrated system peripheral, and bus buffers) and one peripheral for
EISA-bus expansion boards (a bus master interface chip). The EISA standard maintains
full compatibility with the existing ISA (also known as AT) standard. The EISA expan-
sion board connector is a superset of the ISA expansion board connector, allowing exist-
ing 8- and 16-bit ISA boards to be installed in EISA slots. This is discussed in detail in
Chapter 8.

The EISA bus controller performs data path translation, bus timing, and centralized bus
arbitration. The improvements over the ISA standard are provided transparently, even
to existing ISA DMA devices.

The EISA integrated system peripheral contains most of the EISA-specific peripheral
functions, including DMA controller, 2 eight-channel interrupt controllers, 4 counter
modules, EISA bus arbiter, and DRAM refresh address generator. The peripheral oper-
ates in a tightly coupled environment with the EISA bus controller to generate control

1-7

intel” INTRODUCTION TO THE PROCESSOR

signals for the DMA transfers. A master on any of the buses can communicate in parallel
with both devices. Transfers between buses of varying sizes or transfers with misaligned
addresses are performed correctly.

The EISA bus-master interface controller is the primary interface between local func-
tions on an EISA expansion board and the EISA bus on the i486 system motherboard.
The primary function of the controller is to support burst transfers between the expan-
sion board and main memory. Data transfer rates of up to 33 Mbytes/second are
supported —the fastest available on an EISA bus. With the controller, an EISA expan-
sion board can be implemented with simple logic similar to that used in traditional ISA
DMA designs. The general-purpose command and status interface allows a variety of
software control protocols by a local expansion-board processor. Data transfers on the
local processor bus are similar to traditional DMA transfer protocols. Local processors
are supported with the ability to access individual locations in system memory or
I/O space.

1.2.5 High-Performance PLDs

Programmable Logic Devices (PLDs) have become a vital factor in systems design. Intel
manufactures a line of CMOS PLDs that meet the performance requirements of high-
speed systems while reducing power consumption and heat dissipation. Some of these
devices, such as the 85C220 (20-pin general-purpose PLD), 85C224 (24-pin general-
purpose PLD), and 85C508 (28-pin-address decoder PLD), are shown in this manual.

The 85C220 and 85C224 PLDs are both supersets to commonly used bipolar and CMOS
alternatives (16x8 and 20x8 type devices). Both Intel PLDs are available at clock speeds
to support fast state-machines in i486 systems. The 85C508 is a 28-pin address decoder
PLD with integral transparent latches on its eight outputs.

1.3 SYSTEM ARCHITECTURE

The 486 processor can be the foundation for systems ranging from single-processor to
multiprocessor. A single-processor system might be a personal computer, updated to use
the i486 processor. A system design of this type offers higher performance through the
integration of floating-point processing, memory management, and caching. More com-
plex systems may use multiple processors which provide, at chip-level, the equivalent of
board-level functions. Designs of this type are typically used in multiuser machines,
scientific workstations, and engineering workstations.

A typical system, something between a single-processor design and a more complex
multiprocessing design, is shown in Figure 1-1. This example uses a single 486 processor
with external cache and the 82596 LAN coprocessor. Other examples of system design
are illustrated in the figures that follow.

1-8

integl® INTRODUCTION TO THE PROCESSOR

1486™
PROCESSOR
PROCESSOR BUS
EXTERNAL BUS
CACHE CONTROLLER
(OPTIONAL)
SYSTEM BUS
BUS 82596 LAN
MEMORY CONTROLLER COPROCESSOR
EXTERNAL BUS
240552i1-1

Figure 1-1. A Typical i486™ Processor System

1.3.1 Single Processor System

In single-processor systems, the processor handles all peripheral resources and intelli-
gent devices, and executes all software. The 486 processor does this in a more efficient
way and for a wider range of task complexity than earlier processors. Single-processor
systems offer small size and low cost in exchange for flexibility in upgrading or expanding
the system. Typical applications include personal computers, small desktop workstations
and embedded controllers. Such applications are implemented as a single board, usually
called a motherboard; the processor bus does not extend beyond the board occupied by
the 1486 processor.

intel” INTRODUCTION TO THE PROCESSOR

Figure 1-2 shows an example of such a system. In a single-processor system, devices
which share the processor bus must be selected carefully. All components must interact
directly with the processor bus or have interface logic which allows them to do so. The
total bus bandwidth requirements of other components should be no more than 50% of
the available processor-bus bandwidth. Traffic above 50% will degrade performance of
the processor.

Two basic design approaches are used to elaborate the single-processor system into more
complex systems. The first approach is to add more devices to the processor bus. This
can be done up to the limit mentioned above: no more than 50% of the processor-bus
bandwidth should be used by devices other than the 1486 processor. The second design
approach is to add more buses to the system. By adding buses, greater bus bandwidth is
created in the system as a whole, which in turn allows more devices to be added to the
system. The two approaches go hand-in-hand to expand the capabilities of a system. The
sections below give only a few examples of the great design variety that is possible with
devices that operate compatibly with the i486 processor.

1.3.2 Loosely Coupled Multiprocessor System

Loosely coupled multiprocessor systems include board-level products which communi-
cate with one another through a standard system bus, such as the MULTIBUS II system
bus described in Chapter 9. In this architecture, each board contains a processor and

485TURBOCACHE ia86™
MODULE PROCESSOR
PROCESSOR BUS
DMA PERIPHERAL
MEMORY CONTROLLER CONTROLLER

240552i1-2

Figure 1-2. Single-Processor System

1-10

H ®
intel INTRODUCTION TO THE PROCESSOR

associated logic. There is typically only one processor per board. Components within
each board communicate on either a processor bus or on the buffered system bus. The
system bus provides extra bandwidth beyond the processor bus.

A typical system is shown in Figure 1-3. Such system-bus boards typically occur in
higher-end personal computers and systems which allow for modular expansion. A typi-
cal design would include a coprocessor or LAN interface board in a personal computer,
or a network-interface board in a file server or gateway. Systems built from these boards
can contain a mix of processor types. Devices attached to the processor bus on a given
board make demands which may affect system performance. For example, the 82596
LAN coprocessor may use up to 3% of the bus bandwidth to handle 10-Mbit/second
Ethernet traffic.

1.3.3 External Cache

External cache allows a system to achieve maximum performance. This cache is essential
in tightly coupled multi-processor systems. The external cache should consist of cache
memory (usually fast SRAM) and cache control logic.

) PR:)?ES:SOR MEMORY MEMORY pn:gngon 1o
! L 3
PROCESSOR BUS PROCESSOR BUS
il I
BUS BUS
CONTROLLER CONTROLLER
il I
MULTIBUS Il
240552i1-3

Figure 1-3. Loosely Coupled System

1-11

intgl” INTRODUCTION TO THE PROCESSOR

External cache systems typically provide access to the cache from both the processor and
the system buses. This is shown in Figure 1-4. These caches typically monitor processor
memory accesses, optimal mix of data and instructions, processor access time, and con-
sistency between cache and memory.

1.4 System Applications

A majority of i486 processor systems can be grouped into these types:
e Personal Computers -
¢ Minicomputers and Workstations

¢ Embedded Controllers

ia86™
PROCESSOR

il

PROCESSOR BUS

il

EXTERNAL
CACHE :> SRAM

CONTROLLER

il

SYSTEM BUS
DRAM > DRAM
CONTROLLER ARRAY

Lﬁ«-» 4-»@4-1»@4»

240552i1-4

Figure 1-4. External Cache

1-12

intgl” INTRODUCTION TO THE PROCESSOR

Each type of system has distinct design goals and constraints, as described in the follow-
ing sections. Software running on the processor, even in standalone embedded applica-
tions, should use a standard operating system such as DOS, Windows, OS/2 operating
system, UNIX System V/386, iRMX operating system, or iRMX kernel for ease of
debugging, documentation, and transportability.

1.4.1 Personal Computers

In single-processor systems, the processor will interact directly with I/O devices and
DRAM memory. Other bus masters, such as the 82596 LAN coprocessor, typically reside
on the system bus; conventional personal computer architecture puts most peripherals
on separate plug-in boards. Expansion is typically limited to memory boards and I/O
boards. A standard I/O architecture such as MCA or EISA is used. System cost and size
are very important. Figure 1-5 shows an example of a personal computer application.

OPTIONAL CACHE 1486™ LOCAL
485TURBOCACHE PROCESSOR MEMORY
MODULE

il il
il

PROCESSOR BUS

5 = =

LOCAL
PERIPHERAL
CONTROLLER CONTROLLER
MCA OR EISA BUS
SLOwW OTHER
MEMORY PERIPHERAL

240552i1-5

Figure 1-5. Personal Computer Example

1-13

intel” INTRODUCTION TO THE PROCESSOR

External cache is optional in such environments, particularly if system performance is
not a critical parameter. Where an external cache is used, memory-access speed will
improve only if the cache is designed as a write-back system and memory access has zero
to one wait states. ;

- 1.4.2 Minicomputers and Workstations

Minicomputer and workstation systems can be implemented with a loosely coupled
architecture. These typically allow expansion of the number of CPUs, memory modules,
and I/O devices. Standard system buses like the MULTIBUS II system bus are used.
Minicomputers and workstations are more performance oriented and less cost oriented
than personal computers. Higher-performance systems may need a tightly coupled archi-
tecture. Due to the variety of architectures in which minicomputers and workstations are
implemented, no representative design example can be given.

The high performance of the i486 processor will cloud current distinctions between per-
sonal computers, minicomputers, and workstations. Personal computers can be viewed as
lower-cost minicomputers sharing software and data with desktop workstations. Unlike
personal computers, minicomputers are likely to use ECC memory and an external
cache. Fast communication controllers such as the 82596 LAN coprocessor can be used
on the processor bus. File servers can be designed to allow multiple communication links
on the same board, connecting directly to other 82596 LAN coprocessors on the
processor bus. S

‘1.4.3 Embedded Controllers

Most embedded controllers perform real-time tasks. The performance of the 1486 pro-
cessor and its compatibility with the extensive 386 processor installed base are important
factors in its choice. Embedded controllers are usually implemented as standalone sys-
tems, with less expansion capability than other applications because they are tailored so
specifically to a single environment.

If code must be stored in EPROM or ROM for non-volatility, but performance is also a
critical issue, then the code should be copied into RAM which is provided specifically for
this purpose. Frequently used routines and variables, such as interrupt handlers and
interrupt stacks, can be locked in the processor’s internal cache so that they are always
available quickly.

Embedded controllers usually require less memory than other applications, and control
programs are usually tightly written machine-level routines which need optimal perfor-
mance in a limited variety of tasks. The processor typically interacts directly with I/O
devices and DRAM memory. Other peripherals connect to the system bus, as shown in
Figure 1-6. :

INTRODUCTION TO THE PROCESSOR

i486™ DMA
PROCESSOR CONTROLLER
PROCESSOR BUS
PERIPHERAL LOCAL
CONTROLLER MEMORY

240552i1-6

Figure 1-6. Embedded Controller Example

1-15

Internal Architecture

CHAPTER 2
INTERNAL ARCHITECTURE

Internally, the i486™ processor has nine functional units which operate in parallel.
Figure 2-1 shows the nine internal units:

o Bus Interface

e Cache

¢ Instruction Prefetch

o Instruction Decode

e Control

o Integer and Datapath
o Floating-Point

¢ Segmentation

e Paging

The internal architecture is very much like that of the 386 processor, except for the new
on-chip cache and floating-point units.

Signals from the external 32-bit processor bus reach the internal units through the bus
interface unit. On the internal side, the bus interface unit and cache unit pass addresses
bidirectionally through a 32-bit bidirectional bus. Data is passed from the cache to the
bus interface unit on a 32-bit data bus. The closely coupled cache and instruction
prefetch units simultaneously receive instruction prefetches from the bus interface unit
over a shared 32-bit data bus, which is also used by the cache to receive operands and
other types of data. Instructions in the cache are accessible to the instruction prefetch
unit, which contains a 32-byte queue of instructions waiting to be executed.

When internal requests for data or instructions can be satisfied from the cache, time-
consuming cycles on the external processor bus are avoided. The bus interface unit is
only involved when an operation needs access to the processor bus. Many internal oper-
ations are therefore transparent to the external system.

The instruction decode unit translates instructions into low-level control signals and
microcode entry points. The control unit executes microcode and controls the integer,
floating-point, and segmentation units. Computation results are placed in internal regis-
ters within the integer or floating-point units, or in the cache. Internal storage locations
(datapaths) are kept in the integer unit.

The cache shares two 32-bit data buses with the segmentation, integer, and floating-
point units. These two buses can be used together as a 64-bit interunit transfer bus.
When 64-bit segment descriptors are passed from the cache to the segmentation unit,
32 bits are passed directly over one data bus and the other 32 bits are passed through the
integer unit, so that all 64 bits reach the segmentation unit simultaneously.

2-1

INTERNAL ARCHITECTURE

PROCESSOR BUS

BUS INTERFACE
UNIT

324/ DATA

sa.BiT ADDRESS 32L¢ 32/} DATA
INTERUNIT
TRANSFER
BUS
T
CACHE | INSTRUCTION PREFETCH
UNIT : UNIT
20} 4 PHYSICAL 32} DISPLACEMENT
. ADDRESS 1
2g
af o :> PAGING 24) } CODE:
UNIT 1| STREAM
32‘|(,32‘L,32‘|’, LINEAR
, ADDRESS {} Jb
] SEGMENTATION B INSTRUCTION DECODE
:Vr\ UNIT UNIT
INSTRUCTION 13, MICROCODE
321 BASE/INDEX WORD ENTRY POINT
’ : INTEGER (DATAPATH) CONTROL
> UNIT UNIT
HARDWIRED
MICROINSTRUCTION
E D FLOATING-POINT -
R— UNIT

240552i2-1

Figure 2-1. Internal Architecture

2-2

. ®
intel INTERNAL ARCHITECTURE

Address generation is performed by the segmentation and paging units. Logical
addresses are translated by the segmentation unit and passed to the paging and cache
units on a 32-bit linear address bus. The paging unit translates linear addresses into
physical addresses, which are passed to the cache on a 20-bit bus.

The next section describes the internal instruction pipelining method. Following that,
Sections 2.2 through 2.10 describe each of the nine internal units.

2.1 Instruction Pipelining

Not every instruction involves all internal units. When an instruction needs the partici-
pation of several units, each unit operates in parallel with others on instructions at
different stages of execution. Although each instruction is processed sequentially, several
instructions are at varying stages of execution in the processor at any given time. This is
called instruction pipelining. Instruction prefetch, instruction decode, microcode execu-
tion, integer operations, floating-point operations, segmentation, paging, cache manage-
ment, and bus interface operations are all performed simultaneously. Figure 2-2 shows
some of this parallelism for a single instruction: the instruction fetch, 2-stage decode,
execution, and register write-back of the execution result. Each stage in this pipeline can
occur in one clock cycle.

S g By W W

INSTRUCTION
FETCH

STAGE-1
DECODE

I
I
I
I
I
I
I

STAGE-2
DECODE

EXECUTION

REGISTER
I WRITE-BACK

240552i2-2

Figure 2-2. Internal Pipelining

2-3

H ®
intel INTERNAL ARCHITECTURE

The internal pipelining on the i486 processor offers an important performance advan-
tage over many single-clock RISC processors: in the i486 processor, data can be loaded
from the cache with one instruction and used by the next instruction in the next clock.
This performance advantage results from the stage-1 decode step, which initiates mem-
ory accesses before the execution cycle. Because most compilers and application pro-
grams follow load instructions with instructions which operate on the loaded data, this
method optimizes the execution of existing binary code.

The method has a performance tradeoff: an instruction sequence which changes register
contents and then uses that register in the next instruction to access memory takes three
clocks rather than two. This tradeoff is only a minor disadvantage, however, since most
instructions which access memory use the stable contents of the stack pointer or frame
pointer, and the additional clock is not used very often. Compilers often place an unre-
lated instruction between one which changes an addressing register and one which uses
the register. Such code is compatible with the 386 processor, and the 486 processor
provides special stack increment/decrement hardware and an extra register port to exe-
cute back-to-back stack push/pop instructions in a single clock.

2.2 Bus Interface Unit

The bus interface unit prioritizes and coordinates data transfers, instruction prefetches,
and control functions between the processor’s internal units and the outside system.
Internally, the bus interface unit communicates with the cache and the instruction
prefetch units through three 32-bit buses, as shown in Figure 2-1. Externally, the bus
interface unit provides the processor bus signals, described in Chapter 3. Except for
cycle definition signals, all external bus cycles—memory reads, instruction prefetches,
cache line fills, etc. —look like conventional microprocessor cycles to external hardware,
with all cycles having the same bus timing.

The bus interface unit contains the following architectural features:

e Address Transceivers and Drivers—The A2-A31 address signals are driven on the pro-
cessor bus, together with their corresponding byte-enable signals, BEO#-BE3#. The
high-order 28 address signals are bidirectional, allowing external logic to drive cache
invalidation addresses into the processor.

e Data Bus Transceivers—The D0-D31 data signals are driven onto and received from
the processor bus.

e Bus Size Control—Three sizes of external data bus can be used—32, 16, and 8 bits
wide. Two inputs from external logic specify the width to be used. Bus size can be
changed on a cycle-by-cycle basis.

e Write Buffering— Up to four write requests can be buffered, allowing many internal
operations to continue without waiting for write cycles to be completed on the pro-
cessor bus.

o Bus Cycles and Bus Control — A large selection of bus cycles and control functions are
supported, including burst transfers, non-burst transfers (single- and multiple-cycle),
bus arbitration (bus request, bus hold, bus hold acknowledge, bus locking, bus

2.4

H ®
intel INTERNAL ARCHITECTURE

pseudo-locking, and bus backoff), floating-point error signalling, interrupts, and reset.
Two software-controlled outputs enable page caching on a cycle-by-cycle basis. One
input and one output are provided for controlling burst read transfers.

o Parity Generation and Control—Even parity is generated on writes to the processor
and checked on reads. An error signal indicates a read parity error.

o Cache Control—Cache control and consistency operations are supported. Three
inputs allow the external system to control the consistency of data stored in the inter-
nal cache unit. Two special bus cycles allow the processor control the consistency of
external cache.

2.2.1 Data Transfers

To support the cache, the bus interface unit reads 16-byte cacheable transfers of oper-
ands, instructions, and other data on the processor bus and passes them to the cache
unit. When cache contents are updated from an internal source, such as a register, the
bus interface unit writes the updated cache information to the external system. Non-
cacheable read transfers are passed through the cache to the integer or floating-point
units.

During instruction prefetch, the bus interface unit reads instructions on the processor
bus and passes them to both the instruction prefetch unit and the cache. The instruction
prefetch unit may then obtain its inputs directly from the cache.

2.2.2 Write Buffers

The bus interface unit has temporary storage for buffering up to four 32-bit write trans-
fers to memory. Addresses, data, or control information can be buffered. Single I/O-
mapped writes are not buffered, although multiple I/O writes may be buffered. The
buffers can accept memory writes as fast as one per clock. Once a write request is
buffered, the internal unit which generated the request is free to continue processing. If
no higher-priority request is pending and the bus is free, the transfer is propagated as an
immediate write cycle to the processor bus. When all four write buffers are full, any
subsequent write transfer will stall inside the processor until a write buffer becomes
available.

The bus interface unit can re-order pending reads in front of buffered writes. This is
done because pending reads can prevent an internal unit from continuing, whereas buff-
ered writes need not have a detrimental effect on processing speed.

Writes are propagated to the processor bus in the same first-in-first-out order in which
they are received from the internal unit. However, a subsequently generated read
request (data or instruction) may be re-ordered in front of buffered writes. As a protec-
tion against reading invalid data, this re-ordering of reads in front of buffered writes will
only occur if all buffered writes are cache hits. Because an external read will only be
generated for a cache miss, and will only be re-ordered in front of buffered writes if all
such buffered writes are cache hits, any read generated on the external bus with this
protection will never read a location which is about to be written by a buffered write.

2-5

intel” INTERNAL ARCHITECTURE

This re-ordering can only happen once for a given set of buffered writes, because the
data returned by the read cycle could otherwise replace data about to be written from
the write buffers.

To ensure that no more than one such re-ordering is done for a given set of buffered
writes, all buffered writes are re-flagged as cache misses when a read request is re-
ordered ahead of them. Buffered writes thus marked are propagated to the processor
bus before the next read request is acted upon. Invalidation of data in the internal cache
also causes all pending writes to be flagged as cache misses. Disabling the cache unit
disables the write buffers, which eliminates any possibility of re-ordering bus cycles.

2.2.3 Locked Cycles

The processor can generate signals to lock a contiguous series of bus cycles. These cycles
can then be performed without interference from other bus masters, if external logic
observes these locking signals. One example of a locked operation is a semaphor read-
modify-write update, where a resource control register is updated. No other operations
should be allowed on the bus until the entire locked semaphor update is completed.

When a locked read cycle is generated, the read is not attempted from the internal
cache. All pending writes in the buffer are completed first. Only then is the read part of
the locked operation performed, the data modified, the result placed in a write buffer,
and a write cycle performed on the processor bus. This sequence of operations ensures
that all writes are performed in the order in which they were generated.

2.2.4 1/0 Transfers

Transfers to and from I/O locations have some restrictions to ensure data integrity:
e Caching—1/O reads are never cached.

e Read Re-Ordering—1/O reads are never re-ordered ahead of buffered writes to mem-
ory. This ensures that the processor will have completed updating all memory loca-
tions before reading status from a device.

o Writes— Single 1/O writes are never buffered. Thus, when processing an OUT instruc-
tion, internal execution stops until all buffered writes and the I/O write are completed
on the processor bus. This allows time for external logic to drive a cache invalidate
cycle or mask interrupts before the processor executes the next instruction. The pro-
cessor will have completed updating all memory locations before writing to the I/O
location. However, repeated OUT instructions may be buffered.

1/O device recovery time; is determined by the write buffers and the cache unit. In the
386 processor, back-to-back write recovery time; could be guaranteed to exceed a certain
value by inserting a jump to the next instruction that writes to the I/O device. This forced
an instruction prefetch cycle which could only be performed after the preceding write
was completed. This technique is not used in the i486 processor because a prefetch can
be satisfied internally by the cache and recovery time may be too short. The same effect

2-6

intel® INTERNAL ARCHITECTURE

is achieved in the i486 processor by explicitly generating a read to an area of memory
that is not cacheable. Because the i486 processor does not buffer single 1/0 writes, such
a read will not be done until the I/O write is completed.

2.3 Cache Unit

The cache unit stores copies of recently read instructions, operands, and other data.
When the processor requests information already in the cache—called a cache hit—no
processor-bus cycle is required. When the processor requests information not in the
cache —called a cache miss—the information is read into the cache in one or more
16-byte cacheable data transfers, called cache line fills. When an internal write request is
generated to an area currently in the cache, two things happen: the cache is updated,
and the write is also passed through the cache to memory. This is called cache
write-through.

The cache transfers data to other units on two 32-bit buses, as shown in Figure 2-1. The
cache receives linear addresses on a 32-bit bus and the corresponding physical addresses
on a 20-bit bus. The cache and instruction prefetch; units are closely coupled. 16-byte
blocks of instructions in the cache can be passed quickly to the instruction prefetch unit.
Both units read information in 16-byte blocks.

The cache can be accessed as often as once each clock. The cache acts on physical
addresses, which minimizes the number of times the cache must be flushed. When both
the cache and the cache write-through functions are disabled, the cache may be used as
a high-speed RAM.

2.3.1 Cache Structure

The cache has a four-way set associative organization. There are four possible cache
locations to store data from a given area of memory. Four-way association is a compro-
mise between the speed of a direct-mapped cache during cache hits, and the high cache-
hit ratio of fully associative cache. As shown in Figure 2-3, the 8-Kbyte data block is
divided into four data ways, each containing 128 16-byte sets, or cache lines. Each cache
line holds data from 16 successive byte addresses in memory, beginning with an address
divisible by 16.

Cache addressing is performed by dividing the high-order 28 bits of the physical address
into three parts, as shown in Figure 2-3. The 7 bits of the index field specify the set
number, one of 128, within the cache. The high-order 21 bits are the tag field; these bits
are compared with tags for each cache line in the indexed set, and they indicate whether
a 16-byte cache line is stored for that physical address. The low-order 4 bits of the
physical address select the byte within the cache line. Finally, a 4-bit valid field, one for
each way within a given set, indicates whether the cached data at that physical address is
currently valid.

2-7

intal® INTERNAL ARCHITECTURE

VALID/ TAG DATA
LRU BLOCK BLOCK
BLOCK
WAYO0 WAY1 WAY2 WAY3 WAYO0 WAY1 WAY2 way3
SET 0
SET1
SET 2
= -« SETN
| \\
\
\ \

\ \

\ \

\ 'SET 126

T * SET 127 \

\
\ \ \
VALID . TAG- 21 BITS | DATA - 16 BYTES
3
X1XX MATCH INDEXISN SELECTS BYTE
LINE IS VALID
31 1 4 0
TAG FIELD INDEX FIELD XXXX
PHYSICAL ADDRESS
240552i2-3

Figure 2-3. Cache Organization

2.3.2 Cache Updating

When a cache miss occurs on a read, the 16-byte block containing the requested infor-
mation is written into the cache. Data in the neighborhood of the required data is also
read into the cache, but the exact position of data within the cache line depends on its
location in memory with respect to addresses divisible by 16.

Any.area of memory is cacheable, but any page of memory can be declared not cache-
able by setting a bit in its page table entry. When a read from memory is initiated on the
bus, external logic can indicate whether the data may be placed in cache, as discussed in

Chapter 3. If the read is cacheable, the processor attempts. to read an entire 16-byte
cache line.

2-8

H ®
intel INTERNAL ARCHITECTURE

The unit is a write-through cache. Cache line fills are performed only for read misses,
never for write misses. When the processor is enabled for normal caching and write-
through operation, every internal write to the cache (cache hit) not only updates the
cache but is also passed along to the bus interface unit and propagated through the
processor bus to memory. The only conditions under which data in the cache differs
from the corresponding data in memory occur when a processor write cycle to memory is
delayed by buffering in the bus interface unit, or when an external bus master alters the
memory area mapped to the internal cache.

2.3.3 Cache Replacement

Replacement in the cache is handled by a pseudo-LRU (least recently used) mechanism.
This mechanism maintains three bits for each set in the valid/LRU block, as shown in
Figure 2-3. The LRU bits; are updated on each cache hit or cache line fill. Each cache
line (four per set) also has an associated valid bit which indicates whether the line
contains valid data. When the cache is flushed or the processor is reset, all of the valid
bits are cleared. When a cache line is to be filled, a location for the fill is selected by
simply finding any cache line which is invalid. If no cache line is invalid, the LRU bits
select the line to be overwritten. Valid bits are not set for lines which are only partially
valid.

Cache lines can be invalidated individually by a cache line invalidation operation on the
processor bus. When such an operation is initiated, the cache unit compares the address
to be invalidated with tags for the lines currently in cache and clears the valid bit if a
match is found. A cache flush operation is also available. This invalidates the entire
contents of internal cache unit.

2.3.4 Cache Configuration

Configuration of the cache unit is controlled by two bits in the processor’s machine
status register (CR0). One of these bits enables caching (cache line fills). The other bit
enables memory write-through. The four configuration options are shown in Table 2-1.
Chapter 3 gives details.

When caching is enabled, memory reads and instruction prefetches are cacheable. These
transfers will be cached if external logic asserts the cache enable input in that bus cycle,
and if the current page table entry allows caching. During cycles in which caching is
disabled, cache lines will not be filled on cache misses. However, the cache remains
active even though it is disabled for further filling. Data already in the cache will be used
if it is still valid. Only when all data in the cache is flagged invalid, as happens in a cache
flush, will all internal read requests be propagated as bus cycles to the external system.

When cache write-throughs are enabled, all writes, including those which are cache hits,
are written through to memory. Invalidation operations will remove a line from cache if
the invalidate address maps to a cache line. When cache write-throughs are disabled, an
internal write request which is a cache hit will not cause a write-through to memory, and
cache invalidation operations are disabled. With both caching and cache write-through

2-9

intel” INTERNAL ARCHITECTURE

Table 2-1. Cache Configuration Options

‘ Write-Through
Cache Enabled Enabled Operatlng Mode
no no Cache line fills, cache write-throughs, and cache invalidations -
- are disabled. This configuration allows the internal cache to

be used as high-speed static RAM. -

no yes Cache line fills are disabled, and cache write-throughs and
cache invalidations are enabled. This configuration allows
software to disable the cache for a short time, then re-enable
it without flushing the original contents.

yes no INVALID

yes . yes Cache line fills, cache write-throughs, and cache invalidations
are enabled. The is the normal operating configuration.

disabled, the cache can be used as a high-speed static RAM. In this configuration, the
only write cycles which are propagated to the processor bus are cache misses, and cache
invalidation operations are ignored.

2.4 INSTRUCTION PREFETCH UNIT

When the bus interface unit is not performing bus cycles to execute an instruction, the
instruction prefetch unit; uses the bus interface unit to prefetch instructions. By reading
instructions before they are needed, the processor rarely needs to wa1t for an 1nstruct10n
prefetch cycle on the processor bus.

Instruction prefetch cycles; read 16-byte blocks of instructions;, starting at addresses
numerically greater than the last-fetched instruction. The starting address is generated
by the prefetch unit, which has a direct connection (not shown in Figure 2-1) to the
paging unit. The 16-byte prefetched blocks are read into both the prefetch and cache
units simultaneously. The prefetch queue; in the prefetch unit stores 32 bytes of instruc-
tions. As each instruction is fetched from the queue, the code part is sent to the instruc-
tion decode unit and (depending on the instruction) the displacement part is sent to the
segmentation unit where it is used for address calculation. If loops are encountered in
the program being executed, the prefetch unit gets coples of previously executed instruc-
tions from the cache. v

The prefetch unit has the lowest priority for processor bus access. Assuming zero wait-
state memory access, prefetch- activity never delays execution. However, if there is:no
pending data transfer, prefetching may use bus cycles that:would otherwise be idle. The
prefetch unit is flushed whenever the next instruction needed is not in numerical
sequence with the previous instruction — for example durmg]umps task switches, excep-
tions, and interrupts. . :

H ®
intel INTERNAL ARCHITECTURE

The prefetch unit will never access beyond the end of a code segment and it will never
access a page that is not present. However, prefetching may cause problems for some
hardware mechanisms. For example, prefetching may cause an interrupt when program
execution nears the end of memory. To keep prefetching from reading past a given
address, instructions should come no closer to that address than one byte plus one
aligned 16-byte block.

2.5 INSTRUCTION DECODE UNIT

The instruction decode unit; receives instructions from the instruction prefetch unit and
translates them in a two-stage process into low-level control signals and microcode entry
points, as shown in Figure 2-1. Most instructions can be decoded at a rate of one per
clock. Stage 1 of the decode, shown in Figure 2-2, initiates a memory access. This allows
execution of a two-instruction sequence which loads and operates on data in just two
clocks, as described above in Section 2.2.

The decode unit simultaneously processes instruction prefix bytes, opcodes, modR/M
bytes, and displacements. The outputs include hardwired microinstructions to the seg-
mentation, integer, and floating-point units. The unit is flushed whenever the instruction
prefetch unit is flushed.

2.6 CONTROL UNIT

The control unit interprets the instruction word and microcode entry points received
from the instruction decode unit. The control unit has outputs with which it controls the
integer and floating-point processing units. It also controls segmentation because seg-
ment selection may be specified by instructions.

The control unit contains the processot’s microcode. Many instructions have only one
line of microcode, so they can execute in an average of one clock cycle. Figure 2-2 shows
how execution fits into the internal pipelining mechanism.

2.7 INTEGER (DATAPATH) UNIT

The integer and datapath unit identifies where data is stored and performs all of the
arithmetic and logical operations available in the 386 processor’s instruction set, plus a
few new instructions. It has eight 32-bit general-purpose registers, several specialized
registers, an ALU, and a barrel shifter. Single load, store, addition, subtraction, logic,
and shift instructions are executed in one clock.

Two 32-bit bidirectional buses connect the integer and floating-point units. These buses
are used together for transferring 64-bit operands. The same buses also connect the
processing units with the cache unit. The contents of the general purpose registers are
sent to the segmentation unit on a separate 32-bit bus for generation of effective
addresses. :

2-11

intel® INTERNAL ARCHITECTURE

2.8 FLOATING-POINT UNIT

The floating-point unit; executes the same instruction set as the 387 math COPIoCessor.
The unit contains a push-down register stack and dedicated hardware for interpreting
the 32-, 64-, and 80-bit formats specified in IEEE Standard 754. An output signal passed
through to the processor bus indicates floating-point errors to the external system, which
in turn can assert an input to the processor indicating that the processor should ignore
these errors and continue normal operations.

2.9 SEGMENTATION UNIT

A segment is a protected, independent address space. Segmentation is used to enforce
isolation among application programs, to invoke recovery procedures, and to isolate the
effects of programming errors. ' '

The segmentation unit translates a segmented address issued by a program, called a
logical address, into an unsegmented address, called a linear address. The locations of

. segments in the linear address space are stored in data structures called segment descrip-
tors. The segmentation unit performs its address calculations using segment descriptors
and displacements (offsets) extracted from instructions. Linear addresses are sent to the
paging and cache units. When a segment is accessed for the first time, its segment
descriptor is copied into a processor register. A program can have as many - as
16,383 segments. Up to six segment descriptors can be held in processor registers at any
one time. Figure 2-4 shows the relationships between logical, linear, and physical
addresses.

2.10 PAGING UNIT

The paging unit allows access to data structures larger than the available memory space
by keeping them partly in memory and partly on disk. Paging divides the linear address
space into 4-Kbyte blocks called pages. Paging uses data structures in memory called page
tables for mapping a linear address to a physical address. Physical addresses are used by
the cache and/or put on the processor bus. The paging unit also identifies problems, such
as accesses to a page which is not resident in memory, and raises exceptions called page
faults. On a page fault, the operating system has a chance to bring the required page into
memory from disk. If necessary, it can free space in memory by sending some other page
out to disk. If paging is not enabled, the physical address is identical to the linear
address.

The paging unit includes a translation lookaside buffer (TLB) which stores the most
recently used 32 page table entries. The TLB data structures are shown in Figure 2-5.
The paging unit looks up linear addresses in the TLB. If the paging unit does not find a
linear address in the TLB, the unit generates requests to fill the TLB with the correct
physical address contained in a page table in memory. Only when the correct page table
entry is in the TLB does the bus cycle take place. When the paging unit maps a page in

2-12

. ®
intel INTERNAL ARCHITECTURE

31 12 11 0

PAGE PAGE
BASE ADDRESS OFFSET

PHYSICAL ADDRESS
TRANSLATED BY THE PAGING UNIT

31 22 21 12 11 0
PAGE DIRECTORY PAGE TABLE PAGE
OFFSET OFFSET OFFSET
LINEAR ADDRESS

TRANSLATED BY THE SEGMENTATION UNIT

47 32 31 0
SEGMENT SEGMENT
SELECTOR OFFSET

LOGICAL ADDRESS

240552i2-4

Figure 2-4. Segmentation and Paging Address Formats

the linear address space to a page in physical memory, it only maps the upper 20 bits of
the linear address. The lowest 12 bits of the physical address come unchanged from the
linear address.

Most programs access only a small number of pages during any short span of time. When
this is true, the pages stay in memory and the address translation information stays in the
TLB. In typical systems, 99% of the requests to access the page tables are satisfied by
the TLB. The TLB uses a pseudo-LRU algorithm, similar to the cache, as a content-
replacement strategy.

2-13

intel® INTERNAL ARCHITECTURE

LRU VALID ATTRIBUTE DATA
BLOCK AND TAG BLOCK BLOCK
WAY0 WAY1 WAY2 WAY3 WAYO0 WAY1 WAY2 WAY3
SETO|
SET1
SET 2
SET 3
SET4
AN SET 5
e N SET 6
s) SET7
— A | N
7 \ AN
Ao] ATTRIBUTE__| TAG i SET SELECT DATA 1
1BIT 3BIT \ 17BIT 3BIT 20 BIT [
AN /
\N | |
\ 34 Ns 14 12/ l31 12|
| | I | |]
LINEAR ADDRESS PHYSICAL ADDRESS

240552i2-5

Figure 2-5. Translation Lookaside Buffer

The TLB is flushed whenever the page directory base register (CR3) is loaded. Page
faults can occur during either a page directory read or a page table read. The cache can
be used to supply data for the TLB, although this may not be desirable when external
logic monitors TLB updates.

Unlike segmentation, paging is invisible to application programs and does not provide
the same kind of protection against programs altering data outside a restricted part of
memory. Paging is visible to the operating system, which uses it to satisfy application
program memory requirements. For more information on paging and segmentation, see
the i486™ Programmer’s Reference Manual.

Processor Bus

CHAPTER 3
PROCESSOR BUS

3.1 OVERVIEW OF THE BUS

The processor bus is the set of pinout signals on the i486™ processor chip. It is the bus
through which the processor communicates with other devices in the system. The signals
on the bus are classed by their functions, which include bus control and arbitration, bus
cycle definition and control, address and data, cache control, and floating-point error
control.

The features of the processor bus include:

o Non-multiplexed 32-bit address and data buses.
o Single-frequency (1x) clock.

e Bus hold operations.

e Bus locking and pseudo-locking operations.

o Burst transfers (up to 16 bytes).

e Cacheable transfers.

¢ Support for internal and external cache consistency.
¢ Floating-point error handling.

e Maskable and non-maskable interrupts.

o Support for 16- and 8-bit peripherals.

o Support for 1-Mbyte 8086 address wrap-around.

o Parity generation and checking.

The way in which system designs use the processor bus has an important effect on
performance. Typically, only a few devices are located on the bus—those which need fast
communication with the processor, share compatible signals, and observe the basic con-
straint on use of bus bandwidth: at least 50% of processor-bus bandwidth should be
reserved for the i486 processor. Devices placed on the bus might include a LAN copro-
cessor, an external (second-level) cache controller, or other similar device. In most sys-
tems, the processor bus interfaces with one or more system buses. This distributes bus
traffic across greater bus bandwidth and provides greater flexibility for system expansion.
The design of external buses need not conform to the signal set of the processor bus.
Chapter 8 describes general approaches to system design, Chapter 7 describes system
peripherals, and Chapter 9 describes interfaces to the MULTIBUS II backplane.

Write cycles dominate 486 processor bus activity. This is unlike most other systems in
which read cycles dominate bus activity and can keep the processor waiting. With the
486 processor’s internal cache, instruction prefetch unit, and support for burst transfers,
any memory subsystem capable of sustaining a rate of one data transfer per clock cycle

3-1

intel® PROCESSOR BUS

can form the basis of a high-performance system. Most of the processor’s immediate
needs for instructions and data will then be satisfied quickly from the internal cache and
instruction prefetch queue, without having to perform cycles on the processor bus.

The processor bus can support multiple external caches. Cache consistency can be main-
tained between the processor’s internal cache, external caches, and main memory. Exter-
nal cache can be requested to write its contents back to memory, or it can be flushed,;
individual cache lines in the internal cache can be selectively invalidated, or the entire
internal cache can be flushed.

The 386 processor used address pipelining on the processor bus to minimize processor
waiting time. In the i486 processor, burst reads into the on-chip cache are used, rather
than address pipelining on the bus, to achieve high performance. This, together with the
simpler 1x bus clock and more latitude in bus- cycle scheduling, results in simpler system
logic.

Two processor inputs dynamically control bus size for interfacing 8- and 16-bit devices to
the processor’s data bus. There are no restrictions on byte or word alignment within
doubleword boundaries, although data that is not aligned to doubleword boundaries
requires more than the minimum number of bus cycles to transfer. The bus supports an
emulation of the 8086 processor’s 1-Mbyte address wrap-around.

The sections below first summarize, and later elaborate on, the use of processor bus
signals, how the signals work together during bus cycles, and other matters relating to
the processor bus.

3.1.1 Bus Cycles

Bus cycles implement the processor’s interactions with the external System. The proces-
sor can drive two basic groups of bus cycles.

e Data Transfer Cycles:
Prefetch (read) instructions from memory.
Read data from memory.
Read data from 1/O.
Write data to memory.
Write data to I/O.

e Other Cycles:
Interrupt acknowledgement.
Halt (a special bus cycle).
Shutdown (a special bus cycle).
Cache flush (a special bus cycle).
Cache write-back and flush (a special bus cycle).

Some of the cycles driven by the processor are, or can be, locked or pseudo-locked.
External hardware can exercise a bus hold operation and drlve its own cycles on the
processor bus, including cache invalidation cycles into the processor.

3-2

integl® PROCESSOR BUS

From the viewpoint of external hardware, data can be transferred as doublewords,
words, or bytes, depending on the bus size specified. From the processor’s viewpoint, all
transfers use the 32-bit data bus but some transfers have only certain bytes enabled. Bus
cycles which transfer data are of two basic types:

e Non-Burst Cycles—These cycles transfer up to four bytes at a maximum rate of two
clocks per data item (doubleword, word, or byte). When a single data item is trans-
ferred, it is a single-transfer cycle. When these single cycles are repeated in a series,
they form a rmultiple-cycle sequence.

o Burst Cycles—The fastest way to transfer more than one item of data is with a burst
cycle. These cycles transfer up to 16 bytes at a rate of one data item per clock cycle.
They are designed for cacheable reads (each internal cache line holds 16 bytes) but
they can also be used for long floating-point reads, segment table descriptor reads,
and other types of transfers.

Transfers internal to the processor, such as reads from the internal cache, do not appear
on the processor bus. However, writes to the cache always appear on the bus because the
cache uses a write-through policy: all writes go to memory and they will only go to the
internal cache if the addressed data is already stored in the cache.

The remaining types of bus cycles, aside from the data transfers discussed above, include
interrupt acknowledgement and four special bus cycles. The details of interrupt acknowl-
edgement cycles are given in Section 3.3.2. The four special bus cycles are described in
Sections 3.3.3 (halt and shutdown), 3.4.4 (cache flush cycle), and 3.4.5 (cache write-back
and flush cycle).

3.1.2 Overview of Signals and Control Cycles

Table 3-1 lists the signals on the processor bus. Tables 3-2 and 3-3 provide additional
perspectives on the signals. Table 3-3 shows that certain input signals have internal
pullup or pulldown resistors. These resistors will cause current to flow in these inputs,
but the resistors should not be relied upon as the sole connection for an input. All
unused inputs should be connected to an external pullup or pulldown.

Some signals on the processor bus have a dual use, one for normal operations and
another for device testing; only their normal function is described here. The power
supply pins are not included. The i486™ Microprocessor Data Sheet contains full details
on the timing and electrical characteristics of all signals. This data sheet is the only
authoritative source for timing and electrical information. The classification of signals in
the data sheet differs somewhat from the classification shown in Figure 3-1— the signals,
of course, are the same, but the viewpoint each reader may have of their functions can
differ.

The text immediately following the tables summarizes the function of each signal. It also
includes descriptions of the five bus cycles (halt, shutdown, cache flush, cache write-
back, and interrupt acknowledge) that perform control functions very much like signals.
The data transfer cycles, for which the bus fundamentally exists, are then described in
Section 3.2.

3-3

intel” PROCESSOR BUS

Table 3-1. Processor Bus Signals

Class Signal Type Description
Address and A4-A31 1/O Address
Data Buses A2-A3 o Address
A20M# | Address-bit 20 mask
DO0-D31 1/O Data
BEO#-BE3# o} Byte-enable (also Special Bus Cycle selection)
BS8# I 8-bit data bus size)
BS16# | 16-bit data bus size
DPO-DP3 /0 Data parity
PCHK# 0] Parity error
Cycle Definition ADS# 0} Address status
and Control M/I0# o} Memory or I/O
D/C# (0] Data or control
W/R# o Write or read
RDY# | Non-burst data ready
BRDY# | Burst data ready
BLAST# 0} Last burst cycle
KEN# | Internal-cache enable
Bus Control CLK | Clock
RESET | Reset
NMI | Non-maskable interrupt
INTR | Maskable interrupt
BREQ o Bus request
HOLD | Bus hold request
HLDA# 0] Bus hold acknowledgement
BOFF# | Bus backoff
LOCK# o} Bus lock
PLOCK# (0] Bus pseudo-lock
Cache Control PCD (0] Page cache disable (internal and external)
PWT o} Page cache write-through or write-back (external)
EADS# | Cache invalidation (internal)
AHOLD | Address-bus hold (internal)
FLUSH# | Cache flush (internal)
Floating-Point FERR# 0} Floating-point error
Error Control IGNNE# | Ignore floating-point error

3.1.2.1 ADDRESS AND DATA BUSES

The address and data buses are the paths on which bus cycles implement data transfers.
The signals include:

¢ Address Bus—The A2-A31 address signals (Figure 3-1) are a mixture of bidirectional
and output signals. A4-A31 are bidirectional. A2-A3 are output only. As outputs, the
A2-A31 signals carry the 30-bit physical address of a doubleword in the memory or
1/O space. As inputs, A4-A31 specify addresses in the internal cache to be invalidated
during a cache invalidation cycle controlled by external hardware. The A0-Al bits

3-4

intgl” PROCESSOR BUS

Table 3-2. Output and Bidirectional Signals

Signal Type When Floated
A4-A31 1/0 Bus Hold and Address Hold
A2-A3 (0] Bus Hold and Address Hold
D0-D31 1/0 Bus Hold
BEO#-BE3# (0] Bus Hold
DPO-DP3 110 Bus Hold
ADS# (0] Bus Hold
M/IO# 0 Bus Hold
D/C# 0 Bus Hold
W/R# (e} Bus Hold
BLAST# (0] Bus Hold
LOCK# (0] Bus Hold
PLOCK# (0] Bus Hold
PCD (0] Bus Hold
PWT (0] Bus Hold
PCHK# (0] (never)

BREQ (6] (never)
HLDA (0] (never)
FERR# (0] (never)

only exist internally; they generate the four byte-enable signals, BEO#-BE3#,
described below. The processor is a little-endian machine; the least significant byte of
a doubleword is the lowest-addressed byte of that doubleword, while the most signif-
icant byte is the highest-addressed byte of the doubleword.

Address-Bit 20 Mask—The A20M# input emulates the address wrap-around which
occurs at 1 Mbyte on the 8086 processor. The input causes the i486 processor to mask
(clear to zero) physical address bit 20 when performing an internal-cache lookup and
when writing to memory on the processor bus. During normal operation, the signal
should be asserted only when the processor is in Real-Address Mode, which emulates
the 8086 processor. During reset, A20M# plays a role in testability, as explained in
the data sheet.

Data Bus—The D0-D31 bidirectional signals (Figure 3-2) can carry a doubleword of
data. D0-D7 is the least significant byte; D24-D31 is the most significant byte. The
valid bytes on the 32-bit bus are specified by the byte-enable signals, BEO#-BE3#.
The parity bit for each byte is specified by the DPO-DP3 signals.

Byte Enables —The BEO#-BE3# outputs (Figure 3-2) indicate which bytes on the data
bus are valid. The byte-enable signals should be ignored for the first transfer of
cacheable cycles. In addition to their byte-enable functions for the data bus, these
signals perform two additional functions: they can be decoded to generate A0, Al,
and BHE# signals used in addressing 16- and 8-bit systems (see Section 3.2.3), and
they encode special bus cycles (see Section 3.3.3).

Bus Size—The BS8# and BS16# inputs (together with the address of data being
accessed) control the sequence in which the byte-enable signals are driven. BS8# and

3-5

intel® PROCESSOR BUS

Table 3-3. Input Signals

Signal I!Illt:izta)lr Timing with Respect to CLK

CLK - -

NMI - Asynchronous
IGNNE# Pullup Asynchronous
A20M# Pullup Synchronous
BS8# Pullup Synchronous
BS16# Pullup Synchronous
RDY# - Synchronous
BRDY# Pullup Synchronous
KEN# Pullup Synchronous
RESET — Synchronous
INTR — Synchronous
HOLD — Synchronous
BOFF# Pullup Synchronous
EADS# Puilup Synchronous
AHOLD Pulldown Synchronous
FLUSH# Pullup Synchronous

BS16# cause the processor to run multiple bus cycles to satisfy data transfers for 8-
and 16-bit devices. Doubleword transfers are converted to the appropriate number of
word or byte transfers. BS8# and BS16# must be driven for each data transfer.

e Data Parity—The DP0-DP3 bidirectional signals (Figure 3-2) carry the parity bit of
each byte on D0-D31. Even parity is used. To use parity checking, external logic must
latch these signals in the write direction and provide parity inputs in the read direc-
tion. Only enabled bytes are checked for parity.

o Parity Check—The PCHK# output indicates a parity error in one or more of the four
bytes sampled during the last clock of a read transfer. Only enabled bytes are checked
for parity. The processor continues with normal operations after such errors. External
hardware must take any action required.

3.1.2.2 CYCLE DEFINITION AND CONTROL

The cycle definition and control signals specify the type and direction of cycles (as shown
in Table 3-4), the points in time at which data becomes valid or invalid, and the cache-
ability of the cycle. The signals in this class include:

o Address Status — The ADS# output indicates that a valid address (or addresses) and a
valid cycle definition are being driven on the processor bus. The assertion of this
signal marks the beginning of a bus cycle. In non-burst bus cycles, each address is

3-6

intel” PROCESSOR BUS

INPUT/OUTPUT OUTPUT INTERNAL
31 20 43210

1-MBYTE 8086 ADDRESS WRAP-AROUND MASK

DOUBLEWORD BYTE-ENABLE
ADDRESSES CODING

240552i3-1

Figure 3-1. Address Signals

marked by a separate assertion of ADS# and a single data transfer. In burst bus
cycles, one assertion of ADS# marks the beginning of a sequence of addresses and
corresponding data transfers.

Memory or I/0 —The M/IO# output differentiates memory space from I/O space. It is
used for bus cycle definition. For halt and shutdown cycles, the encoding of this signal
is reversed from that used in the 386 processor.

Data or Control —The D/C# output differentiates data cycles from all other cycles. It
is used for bus cycle definition.

Write or Read —The W/R# output indicates whether the cycle is a write or read. It is
used for bus cycle definition.

Ready (non-burst) —The RDY# input indicates that an external device has presented
valid data on the data bus, or that the external device has accepted the processor’s
data. Slow devices can withhold RDY#, adding wait states until data is stable, so that
transfers can be made at a sustainable pace. RDY# always terminates the current bus
cycle, even if the signal is asserted in the middle of a burst cycle.

Burst Ready —The BRDY# input is used instead of RDY# during a burst transfer.
The signal is analogous to RDY#, although it does not terminate a burst cycle in
progress. The processor responds to BRDY# by expecting the next clock cycle to be
another data transfer. A maximum of 16 bytes can be transferred during the burst, at
the rate of one doubleword, word or byte per clock. The assertion of BLAST# ends
the burst.

3-7

PROCESSOR BUS

INPUT/OUTPUT
31 24 23 16 15 8 7 0
MSB LSB
BYTE
BE3# BE2# BE1# BEO# ENABLES
DATA
DP3 DP2 DP1 DPO PARITY
240552i3-2
Figure 3-2. Data Signals
Table 3-4. Bus Cycle Definitions
M/10# D/C# W/R# Transfer Type
0 0 0 Interrupt acknowledge
0 0 1 Special bus cycles (see also BEO#-BE3#)
0 1 0 Read data from 1/O
0 - 1 1 Write data to I/O
1 0 0 Prefetch (read) instructions from memory
1 0 1 (reserved) -
1 1 0 Read data from memory
1 1 1 Write data to memory

e Burst Last—The BLAST# output indicates the last transfer of any data transfer cycle
(burst or non-burst), from the processor’s viewpoint. When BLAST# is asserted, the
next BRDY# returned to the processor has the same effect as a RDY# input. If
BLAST# is de-asserted, additional transfers are needed to complete the cycle. These
additional transfers may be made in a burst cycle, if the external memory is capable of
bursting, or they may be made in a multiple-cycle sequence.

o Cache Enable—The KEN# input enables the internal cache. Almost any read cycle,
whether non-burst or burst, can be cached. When KEN# is asserted properly, the
current read cycle will be transformed into a cache-line fill and 16 bytes will be read.
The processor will run as many contiguous bus cycles as are required to fill the
16-byte cache line. KEN# is ignored during write cycles; data written by the proces-
sor will only be put in the cache if data from that address is currently in the cache.

3-8

intgl® PROCESSOR BUS

Section 3.2 describes data transfer cycles. Special bus cycles are described in
Section 3.3.3.

3.1.2.3 BUS CONTROL

Bus control signals, interrupt acknowledgement, and special bus cycles affect basic tim-
ing of, access to, and emergency actions for the processor bus. In the following list, these
signals and cycles are grouped under two headings: (1) those which apply to all systems,
and (2) those which apply only to multiple bus-master systems.

The signals and cycles used in all systems include:

Clock— A single CLK input controls the timing of the processor and the bus. All
timing parameters are specified with respect to the rising edge of this clock, which
uses TTL logic levels.

Reset —The RESET input forces the processor to initialize itself to a known state. The
reset can initialize all registers or only non-floating-point registers, and it can run
various tests, depending on the assertion of other signals during reset.

Maskable Interrupt—The INTR input, if it is not masked by software, interrupts the
processor and causes it to acknowledge the interrupt by reading an interrupt vector
(number) from an external interrupt controller.

Interrupt Acknowledge Cycle—The processor does not have a separate output for
acknowledgement of maskable interrupts, as do earlier Intel 8086-family processors.
Instead, the processor executes a unique interrupt-acknowledgement bus cycle that
reads an interrupt vector from external hardware. This is described in Section 3.3.2.

Non-Maskable Interrupt—The NMI input interrupts the processor and causes it to
execute a specific interrupt service routine, without reading a vector from external
logic.- These interrupts indicate conditions which require immediate attention, such as
loss of power.

Halt Cycle — This special bus cycle indicates that the processor has suspended its oper-
ations. The cycle is generated by the execution of a HLT instruction.

Shutdown Cycle — This special bus cycle indicates that the processor has terminated all
of its operations. The cycle is generated by multiple protection exceptions.

The signals used in multiple bus-master systems include:

Bus Request —The BREQ output indicates that the processor needs access to the bus,
or that it is currently using the bus. The signal is used by external logic to arbitrate
bus access among multiple bus masters. BREQ is always generated when the proces-
sor has a cycle pending, whether or not the processor is currently driving the bus. The
signal is never floated. Thus, BREQ can be asserted during bus hold (HOLD), bus
backoff (BOFF#), or address hold (AHOLD).

Bus Hold—The HOLD input causes the processor to release the bus. It is used by
other bus masters to gain access to the bus. In response, the processor floats most of
its signals after completing its current bus cycle (or sequence of locked cycles) and
asserts HLDA. Bus hold is distinct from address hold, which is described later. Bus
hold will be recognized during a reset.

3-9

intel” PROCESSOR BUS

o Bus-Hold Acknowledge—The HLDA output indicates that the processor has floated
most of its bus signals in response to a HOLD input. During bus hold, the processor
continues execution internally; the internal cache and instruction prefetch unit will
satisfy most of its bus requests. If the processor needs the bus, it will assert BREQ.

o Bus Lock—The LOCK# output allows the processor to complete multiple bus cycles
without interruption via the HOLD input. The signal is generated by read-modify-
write operations, interrupt acknowledge cycles, and segment descriptor loads. Among
other things, it is asserted during semaphor updates. Locked read cycles are not
cacheable. In systems with external cache, locked cycles should always cause a system-
bus cycle. During locked cycles, the processor will not recognize a HOLD request, but
will recognize a BOFF# or AHOLD request.

o Bus Pseudo-Lock —The PLOCK# output, like LOCK#, allows the processor to com-
plete multiple bus cycles without interruption via the HOLD input. PLOCK# is
asserted for all multiple-cycle sequences in which the transferred data is aligned to
quadword boundaries. This includes transfers of 64-bit floating-point operands and
cache line fills. BLAST# and PLOCK# have a complementary relationship—when
BLAST# is de-asserted and valid, PLOCK# is asserted —except during the first
transfer of a 64-bit write. During pseudo-locked cycles, the processor will not recog-
nize a HOLD request, but will recognize a BOFF# or AHOLD request.

o Bus Backoff— The BOFF# input indicates that another bus master needs to complete
a bus cycle in order for the processor’s current cycle to complete. It is used to avoid a
“deadly embrace” where neither the processor nor the other bus master can complete
its operation, since each is waiting for some action by the other. BOFF# is recognized
at any time. The processor’s response to BOFF# is similar to that of HOLD, but
more immediate; when BOFF# is asserted, the bus is always released in the next
clock and no acknowledgment is given. When BOFF# is de-asserted, the processor
will reliably restart the same bus cycle that was aborted. If RDY# or BRDY# is
asserted simultaneously with BOFF#, only BOFF# will be recognized.

Section 3.3 describes bus control in detail.

3.1.2.4 CACHE CONTROL

Cacheable reads are stored in the processor’s internal 8-Kbyte cache when the KEN#
input is asserted and other conditions are met, as described in Section 3.2. Cache control
maintains consistency between the internal cache, main memory, and any external cache
during cycles that update any of the three.

Each 4-Kbyte page of memory locations can have its cacheability and write-through or
write-back policy controlled on a cycle-by-cycle basis. The two outputs Wthh implement
page-based controls are:

e Page Cache Disable —The PCD output indicates whether the current page is cache-
able. The information is taken from the page table entries, used by the internal cache,
and can be used to control external caching.

o Page Write-Through (or Write-Back) —The PWT output, when asserted applies a
write-through caching policy for the current page (in which updates to external cache
will immediately be written through to memory). When de-asserted, the signal allows

3-10

intel” PROCESSOR BUS

the possibility of a write-back caching policy (in which updates to cache will written
back to memory only when specifically requested). This signal, also derived from the
page table entries, is only useful to external cache; internal cache is always
write-through.

Three inputs cause partial or complete invalidations of the internal cache:

Address Hold — The AHOLD input causes the processor to float its address bus in the
next clock cycle. This allows an external device to drive an address into the processor
for internal cache-line invalidation. The address is strobed by the EADS# input.
Only the address bus is floated: the remainder of the bus remains active. No address-
hold acknowledgement is given. During reset, AHOLD plays a role in testability, as
explained in the data sheet.

Internal Cache-Line Invalidation —The EADS# input indicates that an address for a
16-byte cache line has been driven into the processor and is valid. This causes imme-
diate invalidation of the cache line at that address, if the address matches an area
that is cached. EADS# is used together with AHOLD. In most cases, the processor
can accept one invalidation every clock cycle. Multiple invalidations can occur in a
single address hold operation.

Internal Cache Flush—The FLUSH# input forces the processor to flush the entire
contents of its internal cache. Since the internal cache is write-through, the cache
contents will already have been written to memory. During reset, FLUSH# plays a
role in testability, as explained in the data sheet.

Two special bus cycles control invalidation and write-back for both internal and external
cache:

Cache Flush Cycle—This special bus cycle does two things: (1) invalidates the entire
contents of the internal cache, and (2) requests an external cache to invalidate its
entire contents. External cache should not write its contents back to memory before
the flush. The cycle is initiated by the INVD instruction.

Cache Write-Back and Flush Cycle — This special bus cycle does three things: (1) inval-
idates the entire contents of the internal cache, (2) requests an external cache to
write its entire valid contents back to memory, and (3) requests the external cache to
invalidate its entire contents after the write-back. The write-back function is not used
with internal cache, which is write-through. The cycle is initiated by the WBINVD
instruction.

Section 3.2 describes cacheable transfers. Section 3.3.3 describes special bus cycles. Sec-
tion 3.4 describes cache control.

3.1.2.5 FLOATING-POINT ERROR CONTROL

Two signals are used to maintain compatibility with DOS floating-point error reporting.
One signal alerts the system to errors within the processor’s floating-point unit and the

3-11

intel® PROCESSOR BUS

other signal tells the processor what to do if errors occur. The mechanism is compatible
with floating-point error control in other Intel 8086-family processors and with DOS
environments:

o Floating-Point Error—The FERR# output indicates that an unmasked floating-point
error has occurred. The signal is similar to the ERROR# output on the 287 and 387
coprocessors. For DOS-compatible error reporting, the signal is routed back to the
processor’s INTR input.

o Ignore Floating-Point Errors—The IGNNE# input directs the processor to ignore
floating-point errors and continue execution. If IGNNE# is de-asserted when a
floating-point error is detected, the processor will either stop and wait for an inter-
rupt, or it will jump to the floating-point interrupt location (vector 16), depending on
the state of a control register bit.

Section 3.5 gives more detail on this mechanism, including a description of the software
bit and a design example for DOS-compatible error reporting.

3.1.3 Timing and Clock Generation

The i486 processor uses a single-frequency (1x) clock input. All operations across the bus
(except for the two asynchronous inputs, NMI and IGNNE#) are timed with respect to
the rising edge of the CLK input.

There are two major advantages to using a 1x clock, as opposed to the 2x clock used in
the 386 processor. First, the 1x clock simplifies system design by cutting in half the clock
frequency required by external devices. Second, it keeps RF emission to a minimum and
simplifies clock generation. A 25 MHz clock can be used to achieve high performance.

3.1.3.1 BUS STATE DIAGRAM

The bus can pass through five states during the operations described earlier in this
chapter. A transition between states is made in every clock cycle, even when the transi-
tion is back to the immediately preceding state. The states are listed in Table 3-5. A state
diagram is given in Figure 3-3.

When no bus cycle is executing, or when HOLD or BOFF# is asserted, the bus contin-
uously loops in the Ti idle state. The bus passes to the T1 state when a new bus cycle is
started and there is no bus hold or backoff. The bus passes to T2 if BOFF# is not
asserted during the single T1 clock. The bus loops in T2 until RDY#, or the final
BRDY# of a burst cycle, or BOFF# is asserted.

The bus returns to the T1 state if BRDY# or RDY# is received for a non-burst transfer
or if the final BRDY# or RDY# is received for the last transfer of a burst cycle,
provided that a new bus cycle is pending and HOLD, AHOLD and BOFF# are all
de-asserted. If HOLD or AHOLD is asserted, or if no new bus cycle is pending, while
BOFF# is de-asserted, the bus returns to the Ti idle state.

3-12

intgl® PROCESSOR BUS

Table 3-5. Bus States

State Description

Ti Bus is idle. Address and status signals may be driven to undefined values,
or the bus may be floated to a high-impedance state.

T First clock cycle of a bus cycle. Valid address and status are driven and
ADS# is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the
cycle is a write, or data is expected if the cycle is a read. RDY# and
BRDY# are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are
driven and ADS# is asserted. Externally, this state cannot be distinguished
from T1.

Tb Second and subsequent clock cycles of an aborted bus cycle.

If BOFF# is asserted while the bus is in T1 or T2, the bus goes to Tb, the backoff state.
It remains in that state while HOLD, AHOLD or BOFF# is asserted. When HOLD,
AHOLD and BOFF# are all de-asserted, the bus proceeds to T1b, ready to restart the
cycle which was aborted. The bus proceeds to T2 on the next clock if BOFF# remains
de-asserted. Otherwise, the bus goes back to Tb.

Table 3-6 shows the six conditions under which the processor will float its bus signals,
including its address bus.

3.1.3.2 CLOCK TIMING AND GENERATION

The processor uses only a TTL-level CLK input for all internal timing. The CLK input is
used at its undivided rate (1x). The processor can operate over a wide frequency range,
but the frequency of CLK cannot change rapidly while RESET is inactive. See the 486
Microprocessor Data Sheet for details on the clock waveform.

3.1.3.3 BASIC READ TIMING

Non-burst data transfers take at least two clock cycles. During the first clock, the address
of the source or destination of the data is placed on the address signals and the address
status signal ADS# is asserted. At the same time, the transfer type and direction are
defined by the M/IO#, D/C# and W/R# signals. In a data read from memory, for
example, M/IO# is high, D/C# is high, and W/R# is low. In the second clock, data is
transferred into the processor at the end of the cycle if the RDY# input is asserted.
Otherwise, the processor waits for RDY# to be asserted.

3-13

PROCESSOR BUS

OTHERWISE l +

T
IDLE

NEW CYCLE,

HOLD DE-ASSERTED,
AHOLD DE-ASSERTED, AND
BOFF# DE-ASSERTED

Tib T
FIRST CLOCK FIRST CLOCK | _
OF RESTARTED OF h
CYCLE NEW CYCLE
BOFF# BOFF#
ASSERTED BOFF# DE-ASSERTED DE-ASSERTED
, BOFF# ASSERTED
) l v OTHERWISE OTHERWISE v
Tb T2
SUBSEQUENT SUBSEQUENT
CLOCKS OF | BOFF# ASSERTED CLOCKS OF
ABORTED CYCLE CYCLE
HOLD, AHOLD THE FINAL TRANSFER
AND BOFF# ALL OF A CYCLE; WITH RDY#
DE-ASSERTED OR BRDY# ASSERTED;

AND WITH HOLD, AHOLD
AND BOFF# DE-ASSERTED;
AND WITH A NEW CYCLE
PENDING.

THE FINAL TRANSFER OF A CYCLE;
WITH RDY# OR BRDY# ASSERTED;
AND WITH HOLD ASSERTED, AHOLD
ASSERTED OR NO NEW CYCLE
PENDING WHILE BOFF# IS
DE-ASSERTED.

240552i3-3

Figure 3-3. Processor-Bus States

3-14

intel®

PROCESSOR BUS

Table 3-6. Conditions for Floating the Processor Bus

When...

The processor...

HOLD is asserted during the Ti (idle) state...

Floats the bus and asserts HLDA in the next
clock.

HOLD is asserted in the Tb (backed off) state...

Stays in Tb. The bus is not floated.

HOLD is asserted, RDY# is asserted, and
BOFF# is de-asserted in the T2 state...

Floats the bus and asserts HLDA in the next
clock.

HOLD is asserted, BRDY# is asserted, and
BOFF# is de-asserted in the T2 state either for

Floats the bus and asserts HLDA in the next
clock.

the last transfer of a burst or a non-burst
transfer...

BOFF# is asserted Floats the bus in the next clock, without assert-

ing HLDA.

AHOLD is asserted. Floats A2-A31 in the next clock.

3.1.4 NMemory and 1/O on the Bus

The instruction set supports an address space for memory that is separate from the
address space for I/O 2ports, as in other Intel 8086-family processors. Up to four
gi%abytes of memory (2% bytes, 00000000H-FFFFFFFFH) and up to 64 kilobytes of 1/O
(2'® bytes, 00000000H-0000FFFFH) can be addressed. Both memory and I/O address
space has hardware support for protection and multi-tasking.

3.1.4.1 DATA BUS STRUCTURE

To the programmer, memory locations and I/O ports are accessible as 8-bit bytes, 16-bit
words, 32-bit doublewords, and a variety of other data structures. A word is any two
consecutively addressed bytes. A doubleword is any four consecutively addressed bytes.
However, in hardware, memory and I/O on the data bus are viewed as a sequence of
doublewords (2*° 32-bit memory locations and 2'* 32-bit 1/O ports, maximum). From the
processor’s viewpoint, each doubleword location has four individually addressable bytes
at consecutive memory addresses. Each 32-bit memory location starts at a physical
address that is a multiple of four.

The least significant byte of a doubleword is transferred on bits D0-D7 of the data bus;
the most significant byte of the doubleword is transferred on bits D24-D31. Also, the
least significant byte of a doubleword is the lowest addressed byte of that doubleword,
while the most significant byte is the highest addressed byte, as illustrated in Figure 3-4.

Memory and I/O address space should be implemented as four sections in hardware.
Each section connects to a byte on the data bus (D0-D7, D8-D15, D16-D23, and D24-
D31). When the processor reads a doubleword, it accesses one byte from each section.

3-15

intel” PROCESSOR BUS

N+F N+E N+D N+C
N+B N+A N+9 N+8
N+7 N+6 N+5 N+4
N+3 N+2 N+1 N
31 24 23 16 15 8 7 0
MSB LSB
BE3# BE2# BE1# BEO#
240552i3-4

Figure 3-4. Data Bus Structure

A2-A31 are the most significant bits of the physical address; these signals address dou-
blewords of memory. The two least significant bits of the physical address are used
internally to activate the appropriate byte-enable outputs (BEO#-BE3#).

The manner in which bytes, words and doublewords are addressed is shown in
Figure 3-5. In implementing four sections of memory, the BEO#-BE3# outputs are used
as chip selects for the sections, with each section passing data on one byte of the proces-
sor’s data bus.

3.1.4.2 DATA ALIGNMENT

Software normally considers data to be aligned if its address is an even multiple of its
data width, in bytes. However, the processor hardware views alignment less strictly.
Transfers on the processor’s full 32-bit data bus are aligned if their data does not overlap
doubleword boundaries. A word is aligned if it can be read from one of three possible
positions within the doubleword space, as shown in Table 3-7 and Figure 3-6.

Data alignment is an important performance consideration: transfers of aligned words
and doublewords take one bus cycle; transfers of unaligned words and doublewords take
two bus cycles.

3-16

intel® PROCESSOR BUS

31 0
0 DOUBLEWORD ADDRESSES
2 | 0 WORD ADDRESSES
3 | 2 | 1 | o BYTE ADDRESSES
BE3# BE2# BE1# BEO#
240552i3-5

Figure 3-5. Addressing Bytes, Words and Doublewords

Table 3-7. Possible Transfers in a Single 32-Bit Bus Cycle

Bytes Transferred Bytes Enabled
4 bytes 3-2-1-0
3 bytes 3-2-1

2-1-0

2 bytes 3-2
21

1-0
1 byte 3
2
1
0

An aligned doubleword has an address which is clear in its lowest two bits. An aligned
word can have any address except one which is set in both of its lowest two bits. If the
addressed word is in the middle of a doubleword boundary (bytes 1 and 2 enabled, but
not bytes 0 and 3), the word is aligned from the hardware viewpoint—it will be trans-
ferred in a single bus cycle on the full 32-bit bus—even though it will generate an
alignment check fault in software.

Figure 3-7 shows an example of reading a misaligned doubleword at memory location
n+2. The operation takes two bus cycles instead of one. The first cycle accesses the
upper word of the doubleword at address n+4 and n+5, with BE1# and BEO#
asserted. The second cycle accesses the lower word at address n+2 and n+3, with
BE3# and BE2# asserted.

For maximum software compatibility with hardware environments, programmers should
keep word data aligned to two-byte boundaries, doubleword data aligned to four-byte

3-17

intel” PROCESSOR BUS

31 0

1 ALIGNED DOUBLEWORD

UNALIGNED DOUBLEWORD

ALIGNED WORD

ALIGNED WORD

I ! ALIGNED WORD
1 1
1 i
i
I 1 I UNALIGNED WORD
1 I

BE3# BE2# BE1# BEO#

240552i3-6

Figure 3-6. Data Alignment on 32-Bit Data Bus

boundaries, and quadword data (such as floating-point operands and segment-table
descriptors) aligned to 8-byte boundaries. Quadword alignment is useful because the
processor can do a quadword-aligned read from its internal cache in one clock cycle.
Quadword alignment also anticipates development of future Intel processors which may
have 64-bit data buses.

A software mechanism is provided for flagging misaligned data. The mechanism checks
for word data for word operands, doubleword data for doubleword operands, and quad-
word data for quadword operands. It will execute interrupt 17 if:

o The alignment check (AC) bit in the machine status register (CRO) is set (one).
¢ The alignment check (AC) bit is not masked.

o The data being checked is for user level 3.

As mentioned above, aligned words which have bytes 1 and 2 enabled (but not bytes 0
and 3) will generate an alignment check fault but will nevertheless be transferred in a
single bus cycle.

3-18

intel” PROCESSOR BUS

FIRST BUS CYCLE: A31—A2=n+4
32.BIT MEMORY

DATA BUS DATA BUS
A A

| | |
n+7 n+6
n+3 n+2 n+1 n
o—
] | !
1
: : \ | | | |
BE3 BE2 BE1 BEO
HIGH HIGH Low Low

SECOND BUS CYCLE: A31-A2=n
32:BIT MEMORY

DATA BUS DATA BUS
A A

n+7 n+6 n+5 n+4
n+1 n
\ 1] '
] 1]
BE3 BE2 BE1 BEO
LOW LOW HIGH HIGH

240552i3-7

Figure 3-7. Misaligned Doubleword Transfer

3.1.4.3 INVALID INSTRUCTION PRE-FETCHING

The processor may perform instruction prefetching to memory addresses not anticipated
by programmers. For example, prefetching may access addresses beyond the end of the
program in memory. The prefetcher will never read past the end of an instruction seg-
ment or access a page which is not present. An exception is generated when attempting
to execute a subsequent instruction which would violate the segment limit or access a
page which is not present.

3-19

intgl” PROCESSOR BUS

A problem occurs only when prefetching goes beyond the end of physical memory with-
out a segment-limit or page exception. This can happen in Real-mode systems with less
than 1 Mbyte of memory. External hardware may respond to such an access with invalid
data, no Ready, or a malfunction. For example, if memory ends at address OFFFFH, a
parity error or time-out may be asserted for access to a higher address. To keep
prefetching from going to addresses beyond OFFFFH, the last byte of the last instruction
should be at address OFFEEH. This places one free byte followed by one free, aligned
16-byte block between executable instructions and the end of valid memory. If a program
will never execute beyond memory but prefetching may occur beyond memory, make
sure that the prefetch will be terminated by a Ready and that correct parity is supplied,
if required.

3.1.4.4 1/O PORT STRUCTURE

The processor supports addressing of 8-, 16-, and 32-bit I/O devices in either of two
ways: I/O-mapped devices are addressed through the separate I/O address space, with
I/O instructions, and supported by a special hardware protection mechanism; memory-
mapped devices are addressed through the memory space, where I/O ports appear as
memory addresses, the general-purpose instruction set is used to access ports, and pro-
tection is provided through memory segmentation and paging.

I/O-mapped systems are mapped into the the 64-Kbyte I/O address space (a range of 0
to 65,535). Hardware must decode the M/IO# and D/C# outputs to generate chip select
signals for the I/O ports, as shown earlier in Table 3-4. Ports are addressed indirectly,
using the DX register, or directly, using a byte encoded in the instruction. Only
addresses in the range 0 to 255 can be accessed directly. If the number of I/O ports is
small, all ports should be placed in this low-end range for simplicity and speed. I/O-
mapped systems have the simplest address decode schemes; only two signals need to be
decoded for chip selects. Chapter 7 describes 1/O interfacing in detail.

In the memory-mapped I/O approach, a more complex address coding scheme is needed
because of the much larger address space —4-gigabytes of physical memory. As long as
the I/O devices respond like memory devices, this method can be used. I/O instructions
and data structures cannot be used in memory-mapped 1/O, but all other general instruc-
tions can be used. Memory segmentation and paging provides protection and multi-
tasking support for memory-mapped 1/O ports.

Like words in memory, 16-bit I/O ports should be aligned to even addresses so that all
words can be transferred in a single bus cycle. Like doublewords in memory, 32-bit ports
should be aligned to addresses which are multiples of four. The processor supports data
transfers to unaligned ports, but an extra bus cycle must be used. A port which crosses a
doubleword boundary, whether it is I/O mapped or memory mapped, is first accessed in
its high doubleword.

I/O hardware should not rely on the byte order the processor uses to access memory,
except for the order specified for burst transfers. Intel reserves the right to change the
byte order of non-burst bus cycles.

3-20

H ®
intel PROCESSOR BUS

PCHK# is generated for both memory and /O cycles. If I/O ports do not return parity
on reads, the PCHK# output may need to be masked during I/O access if irrelevant
interrupts are to be avoided. This is true whether I/O-mapped or memory-mapped I/O is
used. The PCHK# signal is masked internally to prevent parity errors from being
reported for interrupt-acknowledge and special bus cycles. The 1486 processor handles
1/O cycles in a special way with regard to the write buffers. See Chapter 7 for details.

3.1.4.5 16-BIT AND 8-BIT PERIPHERALS

The BS16# and BS8# inputs allow the external system to specify, on a cycle-by-cycle
basis, whether an addressed peripheral can only supply 8 or 16 bits of data on the
processor bus. If the peripheral cannot return all the bytes requested, the processor will
run enough bus cycles to complete the transfer. Data must be presented across the
processor’s entire 32-bit bus width, even though this cannot be done simultaneously.
Chapter 7 describes the logic needed to connect the peripheral’s data and address buses
to the processor’s 32-bit data and address buses.

If 8- or 16-bit memory devices support cacheable transfers to the processor, external
logic must detect the first transfer of a cacheable cycle and properly prioritize the bytes
placed on the processor’s data bus during this first transfer. Section 3.2.3.4 and
Table 3-11, describe this byte ordering during cacheable cycles. Chapter 6 covers mem-
ory interfacing in detail.

3.2 DATA TRANSFERS

Data transfers, also called data cycles, move instructions, operands, and other data across
the processor bus. Each item of data (doubleword, word, or byte) is identified by an
address and by the byte-enable signals.

Bus cycles control data transfers through a series of signal changes on the bus. The
beginning of data-transfer bus cycles is marked by the assertion of the address-status
(ADS#) output. In the timing diagrams for this manual, the beginning and end of bus
cycle are illustrated with heavy, vertical, dashed lines.

A single bus cycle may involve more than one data transfer; for example, burst cycles
transfer several items of data in a single cycle. The converse is also true for 8- or 16-bit
bus sizes: one 32-bit data transfer involves multiple bus cycles.

Data transfers can be made in the following ways:

o Non-Burst Cycles.
Non-cacheable memory or I/O reads or writes.
Cacheable memory reads (including instruction prefetching).

o Burst Cycles.
Non-cacheable memory or I/O reads or (for small bus sizes) writes.
Cacheable memory reads (including instruction prefetching).

3-21

intgl® PROCESSOR BUS

Non-burst cycles that transfer a single data item are called single-transfer cycles. A contin-
uous series of non-burst single-transfer cycles is called a multiple-cycle sequence. Cache-
able cycles provide the processor with internal copies of recently read instructions,
operands, and other data. When the processor generates a read request, it first checks its
cache for the data being addressed. If data at that address had previously been read into
the cache and is still valid (a cache hit), no bus cycle is required. If such data is not
present or not valid (a cache miss), the processor will read from memory. During mem-
ory reads which result from a cache miss, the processor transfers 16 bytes into the cache
(a cache line fill), if caching is enabled. Only memory reads are convertible into cache
line fills; write data will only be put into the cache if data at the address of the write is
currently cached.

Burst cycles are the fastest way to transfer more than one item of data. They are the
most important type of cycle for high-performance systems. Burst cycles transfer up to 16
bytes of contiguous, aligned data at a maximum rate of one data item per clock cycle.
They are designed primarily for 16-byte cache line fills, but they can also be used for
non-cacheable transfers involving fewer bytes.

Table 3-8 shows the restrictions on burst cycles and cacheable cycles.

3.2.1 Non-Burst Cycles

A non-burst transfer that passes a single data item is called a single-transfer cycle. The
minimum single-transfer read or write cycle takes two clocks. It is called a “2-2” bus
cycle, because read cycles and write cycles each take two clocks. If external logic is
unable to respond within the second clock, a 2-2 bus cycle can be converted into a “3-3”
cycle, in which read cycles and write cycles each take three clocks. A continuous series of
non-burst single-transfer cycles is called a multiple-cycle sequence. Of the non-burst
cycles, only multiple-cycle sequences can be cacheable. Each of these non-burst cycles is
described in the subsections below.

3.2.1.1 NON-CACHEABLE 2-2 CYCLES

Figure 3-8 shows the timing for 2-2 non-cacheable single-transfer cycles—the fastest
non-burst bus cycle that the processor supports. The cycle begins with the appearance of
a stable address and the processor’s assertion of ADS# at the rising edge of the first

Table 3-8. Restrictions on Burst Cycles and Cacheable Cycles

Cycle Type Restrictions

Burst Cycles Only memory or I/O reads that require more than one data transfer can
be bursted. Instruction prefetches are burstable. Burst writes can only
be done on 16- or 8-bit data buses, for a maximum of 4 bytes.

Cacheable Cycles Only memory reads (including instruction prefetches) can be cached.
Locked reads, 1/0-mapped reads, and interrupt acknowledge reads
cannot be cached.

3-22

intel® PROCESSOR BUS

" ., M , T2 , m , ” , nm , 1”7 ., 0, T, 0

CLK / | [/ | ! !/ 1 I 1

o T\

'

[

|

A2-A31 L
|

L

)

M/I0#
D/C#

BEO-3#

1
i .
W/R W i '.
1 !

rov YONOCOOOCUOCOUNNNA /OO AN L /XRRARREARARAL NN

BLAST# ! x NOT VALID

1] 1
| Il |]
1 1
’ NOT v'AuD\ : / NOT VALID : / NOT VALID \ : ’
1
| 1 |
1 | 1

1
] | [
| | Pl |
1 / \ ! T0 !
1 { FROM CPU) N {cpu)— T < FROM CPU >—
1 I |
| !
[1
|

7 T

READ WRITE READ WRITE

DATA

PCHK#

o]
0
<

I
|
|
!
|
|
|
|

240552i3-8

Figure 3-8. Non-Burst, Non-Cacheable 2-2 Cycle

clock. ADS# indicates that the bus-cycle definition and address signals are available.
The first clock is used only to pass the address and bus cycle definition. It allows time for
external devices to decode and prepare data in the case of a read cycle.

During the second clock, ADS# is de-asserted, but the address bus and other bus cycle
definition signals are held stable. To complete the transfer, external logic must assert
RDY# just before the end of the second clock. The processor samples RDY# on the
rising edge of the third clock. RDY# indicates either that the external device is able to
receive data during a write or return stable data during a read. Setup and hold times are
specified in the i486™ Microprocessor Data Sheet. ‘

RDY# is ignored at the end of the bus cycle’s first clock. During the second clock, the
assertion of RDY# does more than indicate the acceptance or validity of data; it also
enables a subsequent ADS# signal, if more data transfers are needed. BRDY# (used to
invoke a burst transfer) may be in any state throughout the bus cycle, as long as RDY#
is asserted properly. RDY# always takes precedence over BRDY# when the two signals
are sampled on the rising edge of the second clock. If the external system is unable to
respond in time, it must keep RDY# (and BRDY#) de-asserted until a valid response is
possible. The next section, on 3-3 cycles, discusses the details of adding these wait states.

The processor asserts BLAST# during the final (second) clock of the bus cycle, as
shown in Figure 3-8. This indicates that the transfer is complete after a single cycle.

3-23

intel® PROCESSOR BUS

While BLAST# is designed primarily for use with burst cycles (explained later), the
processor asserts the signal in all bus cycles to indicate when the processor expects the
last transfer of a cycle to occur.

Four alternating read/write cycles are shown in Figure 3-8. During write cycles, data
does not appear on the bus until the second clock. This allows time for the write data to
pass through the processor’s internal units, and it allows time for external bus transceiv-
ers to stabilize following any preceding read cycle. Write-data hold time is considerably
longer than read-data hold time, to accommodate slow memory. It may be necessary for
memory to latch the write-data address if the memory hold time is longer than the
processor hold time. Read-data setup and hold times are similar to RDY#. Since most
read requests by the processor are cache hits (no bus cycle), systems should optimize
their designs for processor write cycles.

Parity checking is done on read cycles. The PCHK# output indicates a parity error
during the preceding clock. It is valid one clock after RDY#. Only enabled bytes are
checked for parity. The processor will continue operating normally after parity errors.
External logic must latch parity errors and take any action that is required.

3.2.1.2 NON-CACHEABLE 3-3 CYCLES

If the external system is unable to respond to a read or write cycle within the specified
setup and hold times, RDY# must be de-asserted at the end of the second clock in the
bus cycle. This adds wait states (additional clock cycles) to the bus cycle. A bus cycle with
one wait state for both read and write cycles is called a “3-3” single-transfer cycle. In this
cycle, reads and writes each take three clocks, as shown in Figure 3-9. One wait state is
added for each clock that RDY# is withheld, so there can be “4-4” cycles, and so on.
Any number of wait states can be added, and external logic can add a different number
of wait states to read cycles than are added to write cycles.

The address bus, cycle definition, and data bus outputs remain stable during wait states.
However, BRDY# must be de-asserted on all clock edges where RDY# is de-asserted.
If this is not done, the processor may initiate a burst cycle. As with all data transfer
cycles, BLAST# is asserted during the final (in this case, third) clock of a 3-3 bus cycle.

Parity checking is the same as for 2-2 cycles. Where high performance is important,
systems should avoid wait states in favor of 2-2 cycles, described above, and burst cycles,
described below.

3.2.1.3 NON-CACHEABLE MULTIPLE-CYCLE SEQUENCES

A non-cacheable multiple-cycle sequence is a series of single-transfer cycles. A sequence
can be caused by internal requests from the processor or external requests from the
memory system. They are used when more than one doubleword of data needs to be
transferred. For example, the processor can cause the non-burst, non-cacheable
sequences by reading 128-bit instructions, 64-bit floating-point operands, or an unaligned
32-bit doubleword. The external memory system can cause the sequences when it reads
or writes 32- bit data over an 8- or 16-bit data bus.

3-24

intel” PROCESSOR BUS

2 , T2 , ™ , T2 , T2 ., W

—l—‘ [" | f
ADS# : | | 1
[

o

1 I
W/R# \ |

: o
rove XXCNOOOOOOMONNNT DA /AXoncmntonr o « AN

1 1 [
' I ! I
BLAST# : X NoT VALlD\ , [’ NOT VALID \ . | /
: | : | | : |
I 1 I
DATA " ‘g,,au) < IFROM CPU | —
! | ! \SEY/ | '
! ! READ ! ' WRITE !

240552i3-9

Figure 3-9. Non-Burst, Non-Cacheable 3-3 Cycle

Figure 3-10 shows such a multiple-cycle sequence; this one reads two data items in a
sequence of two bus cycles. The sequence begins exactly like a 2-2 cycle, with the asser-
tion of ADS# when the address and cycle definition signals are valid. The processor
then indicates that this is a multiple-cycle sequence by de-asserting BLAST# at the end
of the second clock of the first bus cycle. The external system asserts RDY#, completing
the first bus cycle. Each subsequent bus cycle in the sequence begins with the assertion
of ADS# and ends with the return of RDY#. The sequence ends when RDY# is
asserted while BLAST# is asserted.

If the data read or written in a multiple-cycle sequence is aligned to the width of the
data transferred (32, 64, or 128 bits), the PLOCK# signal is asserted as described below
in Section 3.3.6. Parity checking is the same as for 2-2 cycles.

3.2.1.4 CACHEABLE MULTIPLE-CYCLE SEQUENCES

Cacheable multiple-cycle sequences are used to fill a cache line in the processor’s inter-
nal cache. Only read sequences are cacheable. The cache does not support allocate-on-
write, and the KEN# input is not sampled during write cycles. Whenever a write is
internally generated, the processor will only put the data in its cache if data at the
address of the write is currently cached.

3-25

intel” PROCESSOR BUS

o, M, T mo, 12 , T’

CLK [[

'

|
ADS# 1 ~ : ' I ~ ' 1
| ! |

A2-A31 [. I \ !
M/10, L .
b SR O

, I |

W/R# .
BEO-3# ! |

1 i

rov# KECAKOOCCREOCOROORORUORON, ZXORKRORRRN /XA
! | ! 1 |

BroY# K O OO O KRN

)) | ! . l

1 ! 1 ' L

1 1 I
KEN#] :] : |

| ! 1 ' |

1 . . ! .]

BLAST# : x NOT VALID / : \ NoT \:/ALlD\ : /

[\ | \ [

i | |

| | /70\ . [T\
DATA] : CcPY T \cry/

1] '

1st DATA 2nd DATA

240552i3-10

Figure 3-10. Non-Burst, Non-Cacheable Multiple-Cycle Sequence

Cacheable read sequences are like the non-cacheable multiple-cycle sequences described
immediately above, except for the following conditions:

o KEN# —The cache enable 1nput must be asserted both at the beginning and the end
of the cache line fill.

. Cacheabzlzty—Only memory reads and instruction prefetches are cacheable. Locked
reads, interrupt acknowledge cycles, and 1/O-mapped reads are not cacheable.

o Page Cache Disable Bit—The PCD bit in the page directory base register, CR3, must
be clear (zero).

o Cache Enable Bit—The CE bit in the machine status register, CR0, must be set (one).

If the conditions listed above are fulfilled, the processor will change a memory-read
request that could be satisfied by a single-transfer cycle into a cacheable multiple-cycle
sequence. KEN# must be asserted by the external system at the end of the first clock,
before RDY#. When this is done, the processor will continue to read an entire 16-byte
cache line. Figure 3-11 shows a sequence in which four doublewords are transferred in
four bus cycles, with no wait states. The processor will read all data by running between
4 and 16 contiguous bus cycles, depending on the bus size selected by BS16# or BS8#.

BLAST# is invalid and should be ignored during the first clock of the sequence. In

response to the assertion of KEN# in the first clock, the processor de-asserts BLAST#
one clock later. KEN# must also be asserted one clock before RDY# is returned for the

3-26

intel” PROCESSOR BUS

CLK [[[[[

ADS# ! \ i / : \ E
. | X 1 J E | X , |
rov# KKRKKRKXRXCKNOXARARXRARK [HNHMNNH\)NONNWNN\)NWHNNW\ "[RO

&R0 KRR KRR AN ARMAMANANN
I 1 1 1 1)

KEN# ! E .'".'.'.'nY.V.'.'.'.’nl.V.V.Y.’ "V".Y.Y '.V.Y’l"nV’V‘V‘
' ! 1 I I

|

M/104# :
LA
1

'
! | !
T T T
BLAST# 1 XNOT V‘ALID / ! \NOT VALID / : \NOT YALID /
T
] I
I

E [T\ E [0\ E 10 E /0\

DATA CPU CPY
! \cpu/ \cPu/

240552i3-11

Figure 3-11. Non-Burst, Cacheable Multiple-Cycle Sequence

final transfer of the sequence. This second assertion of KEN# causes the data to actu-
ally be placed in the internal cache; without this second assertion of KEN#, the data
read into the processor will not be written into the cache.

The processor samples the KEN# input every clock. The value sampled in the clock
before RDY# determines (1) whether a bus cycle should be transformed into a cache
line fill, and (2) whether a transformed bus cycle should be loaded into the cache after it
is fully read. Between its first and second assertions, KEN# is don’t care except at each
clock edge, when it must meet setup and hold times. KEN#, BS8#, and BS16# are
synchronous inputs. BS8# and BS16# are also sampled each clock to determine whether
additional bus cycles are needed to complete a transfer. Like KEN#, BS8# and BS16#
must meet setup and hold times at each clock edge.

Whenever a bus cycle is first converted to a cache line fill, the processor expects valid
data across its entire data bus. Thus, the BEO#-BE3# outputs (although valid) should
be ignored during the first transfer in a cache line fill, and the memory system should
supply valid data as if BEO#-BE3# were all asserted. The data expected is that
addressed by the A2-A31 signals. After the first transfer of the cache line fill, the byte-
enable signals should be used for all subsequent transfers in the cache line fill. This is
true for both non-burst and burst cache line fills. Section 3.2.2.8 describes how to distin-
guish the first transfer of a cacheable cycle. Data sequencing for burst cycles (which can

be cacheable or non-cacheable) has additional considerations described in the next
section.

3-27

intgl” PROCESSOR BUS

KEN# can change state several times before a single-transfer cycle is converted into a
cacheable multiple-cycle sequence, as described later in Section 3.2.2.4 and Figure 3-15.
Section 3.2.2.5 describes data alignment and sequencing of cacheable cycles, whether
non-burst or burst. Parity checking is the same as for 2-2 cycles.

3.2.2 Burst Cycles

Burst cycles are the fastest means of transferring data. Up to 16 bytes can be transferred
in a single burst. The fastest burst cycle requires two clocks for the first transfer and one
clock for all subsequent transfers; by comparison, non-burst cycles take a minimum of
two clocks for every transfer. Bursts have a limitation: they can transfer only address
contiguous, aligned blocks of data. Because of this, however, they allow memory devices
using static column decode to be accessed very quickly.

Burst cycles, like non-burst cycles, can be either cacheable or non-cacheable. Cacheable
bursts load a contiguous 16-byte aligned block of instructions or data into an internal
cache line, which the processor can access without a time-consuming bus cycle. Never-
theless, non-cacheable burst cycles also play an important part in performance. Any
multiple-cycle read by the processor can be converted into a burst. The processor will
only burst the number of bytes needed to complete a transfer. For example, only eight
bytes will be bursted in a 64-bit floating-point non-cacheable burst read. Both cacheable
and non-cacheable bursts can be interrupted or have wait states added. Burst writes can
occur only if the bus size is restricted (BS8# or BS16# asserted). This limitation may not
apply to future Intel processors, and designers should allow for longer burst writes in the
future. To allow for upward compatiblity in the future, the i486 processor always asserts
BLAST# during writes if BS8# or BS16+# are de-asserted.

Parity checking is the same as for non-burst cycles. The PCHK# output indicates a
parity error on a data read during the preceding clock. It is valid one clock after
BRDY#. Only data signals which actually return data are checked for parity. The pro-
cessor will continue program execution after parity errors. External logic must latch
parity errors and take any action that is required.

The following text covers non-cacheable bursts first, then cacheable bursts. The basic
timing methods used in both types of burst are described in the non-cacheable burst
section, so it is important to read this even though your primary interest may be in
cacheable bursts.

3.2.2.1 NON-CACHEABLE BURSTS

The conditions for a non-cacheable burst cycle are:

o BRDY# —The burst ready input must be asserted instead of RDY#, with the same
timing as RDY#. ‘

¢ Burstability—Memory and 1/O reads that require more than a single data transfer are
burstable. Instruction prefetches are burstable. Interrupt acknowledge cycles and
write cycles (except writes of up to four bytes on 16-bit or 8-bit bus sizes) are not
burstable.

3-28

intgl” PROCESSOR BUS

o Contiguous Data Alignment —Addresses of all data must fall within a contiguous
aligned area. The number of bytes transferred will be the number of bytes needed for
the specific operation.

Figure 3-12 shows a non-cacheable burst cycle; in this example, two doublewords are
transferred in three clocks. The burst begins with the processor driving an address and
asserting ADS#, in the same manner as for non-burst cycles. In addition, however, the
processor indicates that more than one data item is needed or can be accepted by hold-
ing BLAST# de-asserted at the end of the second clock. Simultaneously, the external
system indicates its preparedness for a burst by asserting BRDY# and de-asserting
RDY#. The BRDY# input has the same effect as RDY#; it indicates that the external
system has presented valid readable data or has accepted written data, and that the next
transfer in the cycle can begin.

While BLAST# is de-asserted at the end of the second clock in non-cacheable bursts,
the state of BLAST# should not be used by external logic to determine whether the
current burst is being cached. The de-assertion of the signal is governed by the state of
other signals, such as KEN#.

Thereafter, ADS# is no longer asserted. The addresses change for each data transfer,
after BRDY# is returned for the prior transfer. A4-A31 change only at the beginning of
the burst cycle, but A2-A3 and the byte enables signals change at the beginning of each
data transfer within the burst cycle.

. 1 [
1

DATA

240552i3-12

Figure 3-12. Non-Cacheable Burst Cycle

3-29

intel® PROCESSOR BUS

For non-cacheable bursts, addresses will always increment after each data item is
returned. (This is not necessarily true for cacheable bursts, as described later in Section
3.225.) In Figure 3-12, for example, two doublewords are sequentially addressed.
BLAST# behaves exactly as it does in non-burst cycles. It is de-asserted at the end of
the second clock in the first data transfer, indicating that more transfers are needed to
complete the data transfers in the bus cycle. In the last transfer, BLAST# is asserted,
indicating that the end of the cycle will coincide with the next BRDY #.

For transfers which the processor cannot burst (interrupt acknowledge and all write
cycles that use the full 32-bit data bus width), the assertion of BRDY# has an effect
identical to RDY#. BRDY# is ignored if RDY# is returned in the same clock. Memory
areas that cannot perform bursting must terminate cycles with RDY#. If RDY# is
returned at any time during a burst cycle, bursting will stop and, if BLAST# is not
asserted (indicating that more transfers are needed to complete the cycle), the processor
will continue with non-burst transfers until all the data has been transferred.

3.2.2.2 CACHEABLE BURSTS

Cacheable burst cycles are the most important data transfer method for high-
performance systems. They are the fastest method for filling internal cache lines, the
internal cache is the processor’s fastest source of read data, and reading data is one of
the processor’s most time-consuming tasks.

To use cacheable burst cycles, these conditions for both burstability and cacheability
must be met:

o KEN#—The cache enable input must be asserted both at the beginning and at the
end of the cache line fill.

* BRDY# —The burst ready input must be asserted instead of RDY#, with the same
timing as RDY#.

* Burstability —Memory and I/O reads that require more than a single data transfer are
burstable.

e 16-Byte Contiguous Data — A 16-byte aligned area of memory will always be read as a
cache line, irrespective of the starting address within the 16-byte area.

e Cacheability— Only memory reads and instruction prefetches are cacheable. Locked
reads, interrupt acknowledge cycles, and 1/O-mapped reads are not cacheable.

* Page Cache Disable Bit—The PCD bit in the page directory base register, CR3, must
be clear (zero).

o Cache Enable Bit—The CE bit in the machine status register, CRO, must be set (one).

A cacheable burst cycle is shown in Figure 3-13. This is a cache line fill on the full 32-bit
data bus; it transfers four doublewords. The burst begins with the processor driving an
address and asserting ADS#, in the same manner as for non-burst cycles. The external
system asserts KEN# at the end of the first clock and de-asserts it shortly after the
beginning of the second clock. When KEN# is asserted and de-asserted in this manner,
the processor will de-assert BLAST#, indicating that more transfers are needed to com.
plete the cycle. The processor will then attempt to read all four doublewords. At the end

3-30

intgl® PROCESSOR BUS

i '
| [' ' '
' 1 ' ' !

CLK [|

1 1 l

1 1 1
ADS# DL . [: : !
"57.‘3,} ! | , ') |
b i SRR SN SN N
BEO-3# ! ' I ' ! |

rovy . AARARAREARCRRRUARNGEANRRR/ \CARKK/ XK+ X0 00

srov - XOCOCROCOMMMMANN | A0 & 000 | /0000 /00000
: A
BLAST# : x NOT \iALID / E E
! . :

KEN#

DATA

PCHK# |
- I

240552i3-13

Figure 3-13. Cacheable Burst Cycle

of the second clock, the external system strobes in the first doubleword and indicates its
preparedness for a burst by asserting BRDY# and de-asserting RDY#. BRDY# is
sampled in each clock and, if asserted, the data will be strobed into the processor.

The last three doublewords are transferred without ADS# being asserted; however,
addresses will change with each transfer to reflect the next item of data expected by the
processor. For the first transfer in the cache line fill, the processor expects valid data
across its entire data bus. During this first transfer, the BEO#-BE3# byte-enable outputs
(although valid) should be ignored and the external system should supply valid data as if
BEO#-BE3# were all asserted. The data expected is that addressed by the A2-A31
signals. The byte-enable signals for all subsequent cycles in the cache line fill can then be
used normally. Addresses will always fall within the same 16-byte aligned area, corre-
sponding to an internal cache line. Such an area begins at location xoxxxx0 and ends at
location xxoooxF. Given the first address in the burst, external hardware can easily
calculate the addresses of subsequent transfers in advance. The sequence of addresses
depends on the first address sent out, as described below in Section 3.2.2.5.

3-31

intel” PROCESSOR BUS

After the first BRDY# is returned, BLAST# will be asserted during the last transfer of
the cycle to indicate when the processor expects the burst to end. KEN# must be
asserted again at the end of the burst cycle, one clock before the last BRDY#. If KEN#
is not asserted properly, the four doublewords read into the processor will not be written
into the cache.

If BLAST# is asserted in the clock that BRDY# is returned, BRDY# is treated in the
same way as RDY#’; the burst transfer will come to an end, and the processor will
either drive a new bus cycle or the bus will go idle. If both BRDY# and RDY# are
asserted, BRDY# is ignored; in that case, the burst cycle is prematurely aborted, and a
new bus cycle will begin, if more cycles are needed to complete the cache line fill. For
the last data transfer in the burst cycle, BRDY# is treated the same as RDY#.

The BLAST# output is a function of the KEN#, BS8# and BS16# inputs sampled in
the previous clock. Because of this, BLAST# is not valid during the first clock of any bus
cycle, or when the bus is idle. BLAST# should be sampled only in the second and
subsequent clocks, when the first BRDY# of the cycle is returned.

Since BS8# and BS16# can change dynamically during a cycle, they can also cause
BLAST# to be de-asserted and then asserted again. This would happen, for example, if
BS8# were asserted during what the processor expects to be the last doubleword trans-
fer. The processor would perform four byte transfers, with BLAST# asserted during the
last transfer.

KEN# is ignored during write or I/O cycles. Memory writes will only be stored in the
cache if there is a cache hit (if data at that address had previously been read into the
cache and is still valid).

3.2.2.3 ADDING WAIT STATES

Burst cycles need not return data on each clock. The processor will only strobe burst
data in when BRDY# is asserted. Thus, keeping BRDY# de-asserted will delay the
transfer by adding wait states. This type of cycle, where each data transfer takes two
clocks, is shown in Figure 3-14.

3.2.2.4 CHANGING KEN# DURING A CACHEABLE CYCLE

KEN# can change several times at the beginning of a burst cycle, as long as it settles in
the clock before BRDY# or RDY# is asserted. This is shown in Figure 3-15, in which
wait states are added. The timing of BLAST# follows that of KEN# by one clock. In the
first clock of this example, KEN# is asserted by the external system and the processor
responds by de-asserting BLAST# in the next clock. In the second clock, KEN# is
de-asserted and, since neither BRDY# (for cacheable burst cycles) nor RDY# (for
cacheable non-burst cycles) are asserted, the cycle is converted back to a single-transfer
cycle. The processor responds by asserting BLAST# in the next clock. Finally, in the
third clock, KEN# is asserted again, converting the cycle back to a cache line fill, and
BLAST# is de-asserted in the next clock. BRDY# or RDY# is asserted in the fourth
clock, thereby starting the cache line fill.

3-32

intel” PROCESSOR BUS

T . T . T2 , T2 \ T2 . T2 , T2 . T2 . T2 \
) ' ' ' ' | ' ' '
1 ! ' | I ' '

1
1l
ADS# \ X [

|

:
M/I0# L

A

I

' | ' ' 1
| | '] |
T T T T
' | ' ' 1
' | ' ! |
' ' | ' 1
1 ' ' ' '
' ' ' ' '
| ' | ' '
T T
| | 1 ' '

:) X)
ROY ummmmmmmml \mol \mol \oml \HM \mol \ommo

I
BROY# ummoammmomm\)mol \mo\)oml \mo\ mul \mo\

KEN#

t
'
'
'
'
|
T

|
T
X NOT VALlD / !
'
'
I

BLAST#

DATA

240552i3-14

Figure 3-14. Slow Cacheable Burst Cycle
3.2.2.5 DATA ALIGNMENT AND SEQUENCING

The processor presents each request for data in an order determined by the first address
in the transfer, as shown in Table 3-9. The sequence accommodates either 64-bit or
32-bit buses and applies to all burst cycles, regardless of whether their purpose is to fill a
cache line, do a 64-bit read, or do a 16-byte instruction prefetch. Given the current
address, external logic can easily calculate in advance the addresses of subsequent
transfers. '

Data transferred with burst cycles is expected on the same data signals as for non-burst
cycles. Data transfers can take place using 8- or 16-bit bus sizes. When either of these
smaller bus sizes is used, more transfers are needed to complete operations than would
be needed on the full 32-bit bus. If either BS8# or BS16# is asserted, the processor
completes the transfer of the current doubleword before proceeding to the next. Within
each doubleword, the high-order word is transferred first. Within each word, the high-
order byte is transferred first. For example, a cacheable cycle beginning at address 104
while BS16+# is asserted would generate a burst address sequence of 104, 106, 100, 102,
10C, 10E, 108, 10A. This is shown in Figure 3-16.

If either BS8# or BS16# is asserted during a cacheable burst cycle, the burst could
stretch to as many as 16 data transfers (16 bytes on an 8-bit bus). The sequencing of
addresses and the location of data on the data bus are different in this case. For the first

3-33

intel” PROCESSOR BUS

' . ' ' ' . '
| ' | | 1 ' |
'

! ' 1
1 Ll
' '
1 '
I I
I

I
1
| ']
M/I0# E x : | X : ‘
] 1 T

' | | I

rove OO DX O ¢ A0 « A
1 ' 1

ey LAY WX ¢ AR B ¢ KX+ R

|
! 1
I 1 1
BLAST# X X NoT V:AUD / : \ | , | NOT VALID i
' ' [1 ! [!
I ' [l 1 I 1 1
DATA ! : X X T0) @_
' CPY,
. ' : : &/ :

240552i3-15
Figure 3-15. Changing KEN# during a Cacheable Cycle
Table 3-9. Burst Address Sequencing
First Address Second Address Third Address Fourth Address

PO O O®

Cc
8
4
0

O®doO
® o s

transfer in the cache line fill, the processor expects valid data across its entire data bus.
The byte-enable outputs, BEO#-BE3#, should be ignored and the external system
should supply valid data as if BEQ#-BE3# were all asserted. Both BS8# and BS16# are
sampled during the clock before each BRDY# is returned. Thus, the bus size inputs
should be held asserted throughout the entire burst, unless the addressed device can
dynamically alter its bus size during the cycle.

3.2.2.6 INSTRUCTION PREFETCH

Instruction prefetches are burstable data transfers which read, in advance of execution,
an aligned block of 16 bytes of instructions into the processor’s internal cache and
instruction prefetch units. The read is done with a burst transfer from sequentially
higher addresses. The instruction prefetch unit generates the addresses. Instruction
prefetch cycles have a unique encoding of the M/IO#, D/C# and W/R# signals, as
shown in Table 3-4.

3-34

intel” PROCESSOR BUS

' ' ' f .
| | ' | ' |
| ' ' '

CLK [[

1 1 1
1 1l)
]
ADS# ' \ , ' ! ' !
\ . \
1
|

'
'
[: 1
B

A2-A31 ! x v 104
1

100! 10! 108,

| | '] !
cors. 0000000 VN AT O/ KRN
! ' ' ' '

A | AW A | A
srovy YOOONOOOCOCCOUR000RRY ¢ /KRR /AR) AT

Keng . O, A G
!
1 . 1

' '
| |

I
T T

1

sy 1 Juerwn] [

' ' '
' '

DATA

.
[
1
'
|

240552i3-16

Figure 3-16. Burst-Cycle Order of Addressing

3.2.2.7 INTERRUPTED BURSTS

Some memory systems may not be able to respond with burst cycles in the address
sequence described in the previous section. To support such systems, the burst cycle may
be interrupted by asserting RDY# instead of BRDY#. After being interrupted, the
processor will automatically generate another normal burst cycle to complete the trans-
fers required. The external system can respond to an interrupted burst cycle with
another burst cycle.

Figure 3-17 shows a cacheable burst cycle being interrupted and converted to two burst
cycles. After RDY# is asserted, the processor immediately asserts ADS# to initiate a
new burst cycle. BLAST# is de-asserted one clock after ADS# begins in the second
burst cycle, indicating that the transfer is not complete. KEN# need not be asserted in
the first transfer of the second burst cycle, after the interruption. The operation will be
recognized as a cache line fill due to the assertion of KEN# during the burst preceding
the interrupt. The second part of the operation can itself be a burst.

Within the normal limits of burst transfers, there is no restriction on the number of
transfers that must be made with BRDY# before RDY# is asserted. If RDY# is
asserted and the processor indicates that the number of transfers required has not yet
been reached by continuing to de-assert BLAST#, then the processor immediately gen-
erates non-burst cycles using ADS# to complete the transfers.

3-35

intgl® PROCESSOR BUS

. : . . : | X
CLK) y y ¥ |
] 1l

ADS# ! ~ ’

1
' '
1 '
| '
[
'
1
'
'

C

1
'] I
X1oo. x o10c Ms,
: ; —

| ! !
| | ! t !
ROk KANCANGARRARKARRRRKRXONT X0 A7 WY DO
| : | . : | !
20 AAAAUAAAAAMCARARRXOOCL XM 2000\ © Ao
! : : . ' :

104

]
1
1
A2-A31 : x
. T

| ' [
Keny : AN RO O T)

I

| ' | |

' '
T T | g ——— ™ :
BLAST# 7—X£r VALID / ! ! NOT VALID !
L ' '
r
!

I

T | 1
!

I

240552i3-17

Figure 3-17. Interrupted Burst Cycle, Example #1

The order in which the processor addresses data during an interrupted burst cycle is
determined by Table 3-9. Mixing RDY# and BRDY# does not change this order. Fig-
ure 3-18 shows such an example, where the order of addresses may not be obvious. The
processor initially requests and receives the data at address 104. Then, the system asserts
RDY# instead of BRDY#. The processor begins a non-burst cycle by strobing address
100 with the ADS# signal. If BRDY# is asserted during the next clock, the processor
will expect address 10C to follow. The correct order is therefore determined by the
address during the first transfer of the entire operation. This may not be the same as the
address for the first transfer of the burst.

3.2.2.8 IDENTIFYING THE FIRST TRANSFER OF A CACHEABLE CYCLE

The byte-enables signals (BEO#-BE3#) are valid in any cycle or transfer except the first
transfer of a cacheable cycle. During such a transfer, BEO#-BE3# should be ignored
and the external system should supply valid data as if BEO#-BE3# were all asserted.

To determine the first transfer of a cacheable cycle, sample BLAST#, RDY#, and
BRDY#. If BLAST# is asserted with the immediately preceding RDY# or BRDY#,
then the next cacheable transfer will be the first transfer of a cacheable cycle.

3-36

~intel® PROCESSOR BUS

' . ' ' ' . !
I ! |

| ! | !
' ' 1)

I SR S

or O00AMCOOOANCNNNN. ACHOUONT R0 VRN \NRRANAR

arov# JER0000R0OE XK KRKKRRRRARMARAARY)HN\)NH\ ' NN

' ! \/ . VAN \/ W\
ey R R
1 1 \

|
! 1
! | | \
1l 1l
BLAST# : WVALID / [NOT VALID \ | !
. 1
| ! ! | | .
| ' '
T L T0 0
oATA - - E——E—E—E—
! | |

ADS#

|

A2-A31 10(3I 108

240552i3-18

Figure 3-18. Interrupted Burst Cycle, Example #2

3.2.3 Bus Size

Two sets of signals work together to control the flow of cycles across 8- and 16-bit data
buses:

e Bus Size—The BS8# and BS16# inputs.
e Byte Enables—The BEO#-BE3# outputs.

The bus-size inputs are useful for interfacing to I/O or ROM. The BS3# and BS16#
inputs allow the external system to specify, on a cycle-by-cycle basis, whether the exter-
nal device being addressed can supply 8 or 16 bits of data. BS8# and BS16#, together
with the address of data being accessed, control the sequence in which the BEO#-BE3#
outputs are driven. BEO#-BE3# tell the external device which of the bytes on the full
32-bit data bus are valid in any cycle or transfer. The only exception to this is in the first
transfer of a cacheable read cycle (cache line fill), when BE0#-BE3# should be ignored
and the external system should supply valid data as if BEO#-BE3# were all asserted.

Without BS8# or BS16# asserted, the data bus size is 32 bits. BS8# and BS16# can be
used in non-burst or burst cycles. If both BS8# and BS16# are asserted, only BS8# will
be recognized. Asserting BS8# or BS16# can cause the processor to run additional bus
cycles to complete a transfer.

3-37

intel® PROCESSOR BUS

This interface to smaller bus sizes is quite different from that used in the 386 processor.
Unlike the 386 processor, the 1486 processor expects to find data on all four addressed
bytes of the data bus. External logic must interface to all four bytes, using the BEO#-
BE3# outputs and detection of the first transfer of a cache line fill (see Section 3.2.2.8)
to steer the external byte swapper. For more on 1/O interfacing, see Chapter 7.

3.2.3.1 TIMING

Figure 3-19 shows an example using BS8#. The processor requests 24 bits of informa-
tion. The external system asserts BS8#, indicating that only eight bits can be supplied
per cycle. The processor then runs two extra cycles to complete the transfer. The pro-
cessor samples BS8# and BS16# in the clock before RDY# is returned. The timing
requirements for BS8# and BS16# are identical to those for KEN#; asserting either of

the bus-size inputs one clock prior to asserting RDY# or BRDY# indicates the bus
width.

Extra cycles caused by BS8# or BS16# are independent bus cycles. The inputs should be
asserted for each additional cycles. The addressed device can change the number of
bytes it returns on a cycle-by-cycle basis. The processor will keep BLAST# de-asserted
until the last cycle of the transfer.

. . ' .) . '
1 ' | ! 1 ' |
1 l 1

CLK [[[

|
ADS# : \ ’ | \ ' 1 \ ’ 1 \
| 1 1

| 1 |
A2=-A31

! i | i

btot I SR S
! ' ' '
! ! !]

W/R# I I !

BEO-34# :1 |1 l x ! X:

1
I f I f I

| [
Rov# AAAKAARKRMKERNKRAA AN)NHNNHHH\)WNNWHN\)MHN
| 1 i I
|

T T
‘ NOT VALID / | \ NOT VALID ’
N
I
'

BLAST#

I

1

]

1

|
1 ' ! | ! \ !
DATA ! . /T0\ . /T0\ X /To\
e

240552i3-19

Figure 3-19. 8-Bit Bus Size Cycle

3-38

intgl® PROCESSOR BUS

3.2.3.2 DATA ALIGNMENT

Because the processor operates on only bytes, words, and doublewords, certain combi-
nations of BEO#-BE3# are never produced. For example, a bus cycle is never performed
with only BEO# and BE2# active; such a transfer would be an operation on two non-
contiguous bytes at the same time. A single 3-byte transfer will never occur, but a 3-byte
address or data transfer followed or preceded by a 1-byte transfer can occur for mis-
aligned doubleword transfers.

The processor does not automatically align data on the processor bus from 16-bit or 8-bit
buses. Systems with 16- or 8-bit devices must use external logic to align their bytes on the
processor bus, as described in Chapter 7. Such devices are usually I/O, where the extra
delay is not a significant factor in overall performance.

While BS8# and BS16# are sampled every clock, only the state sampled in the clock
prior to the assertion of RDY# or BRDY# is used. If memory is running with no wait
states, the bus size inputs must be asserted in the same clock as the ADS# output. The
bus size inputs can be driven by static logic levels only if the entire physical memory and
I/O spaces use the same bus size.

3.2.3.3 MULTIPLE-CYCLE SEQUENCES

A single bus cycle may be converted to multiple bus cycles if the BS8# or BS16# inputs
are asserted. For example, a non-burst doubleword transfer will be converted to four
byte transfers if BS8# is asserted. Each of the four byte transfers will have the same
value on the A2-A31 address bus. The processor will attempt to read as many bytes as
possible. After the first byte of a doubleword is read, the processor will enable the three
remaining bytes on the second cycle. If BS8# is again asserted, the processor enables the
two remaining bytes on the third cycle. If BS16+# is asserted in place of BS8#, the two
remaining bytes will be read during the third cycle, and the doubleword transfer will be
complete.

Table 3-10 shows the states of the byte-enable signals for the first and second bus cycles
of a multiple-cycle sequence in which either BS8# or BS16# are asserted.

3.2.3.4 CACHEABLE MEMORY READS

On small bus sizes, only memory reads can be cached, not I/O reads. In any cacheable
memory read, BEO#-BE3#, although valid, should be ignored during the first transfer of
a cacheable cycle. When a normal read cycle is promoted to a cacheable cycle by the
assertion of KEN#, the entire doubleword addressed by A2-A31 is read by the proces-
sor, even though only a few bytes may have been enabled. If an 8-bit bus size is selected,
the processor reads the lowest byte of this doubleword in the first cycle of the cache line
fill, even though the original. bus cycle might not have selected this byte for reading. If a
16-bit bus size is selected, the processor reads the low word. On the second and follow-
ing transfers of the cache line fill, the BEO#-BE3# outputs correctly reflect which bytes
the processor expects. ‘

3-39

PROCESSOR BUS

Table 3-10. Byte-Enable Signals With BS8# and BS16#

First Cycle Second Cycle, BS8# Second Cycle, BS16#

BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO# | BE3# | BE2# | BE1# | BEO#

1 1 1 0 none none none none none none none none

1 1 0 0 1 1 0 1 none none none none

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 - 1 none none none none none none none none

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 none none none none none none none none

0 0 1 1 0 1 1 1 none none none none

0 1 1 1 none none none none none none none none

The processor might not use all of the enabled bytes when the BS8# or BS16# inputs
are asserted. Table 3-11 shows which bit positions are used by the processor for all of the
valid combinations of the byte-enable signals and for all bus sizes. The implied rule is:
when multiple bytes are enabled, return only the lowest byte(s) that the device on the
data bus can provide.

3.2.3.5 BURST CYCLES

Burst read cycles can be returned on 8- or 16- bit data buses. In this case, the burst cycle
could stretch to 16 transfers (16 bytes in a cache line fill). The sequencing of addresses
and data is the same as for non-burst cycles. A single 32-bit non-cacheable processor

Table 3-11. Data Bus Signals and Bus Size

BE3# BE2# BE1# BEO# (gg-;ﬁlg‘:::) (12533:16;5) (B-gistagijs)
1 1 1 0 DO-D7 D0-D7 DO-D7
1 1 0 0 D0-D15 DO-D15 DO-D7
1 0 0 0 D0-D23 DO-D15 DO-D7
0 0 0 0 DO-D31 DO-D15 DO-D7
1 1 0 1 D8-D15 D8-D15 D8-D15
1 0 0 1 D8-D23 D8-D15 D8-D15
0 0 0 1 D8-D31 D8-D15 D8-D15
1 0 1 1 D16-D23 D16-D23 D16-D23
0 0 1 1 D16-D31 D16-D31 D16-D23
0 1 1 1 D24-D31 D24-D31 D24-D31

3-40

intel” PROCESSOR BUS

read or write could be done in four 8-bit burst cycles. An example of a burst write is
shown in Figure 3-20. Burst writes can occur only if BS8# or BS16# is asserted.

When running a burst cycle, the processor samples BS8# and BS16# in the clock before
each BRDY# is returned. Thus, the bus size inputs should be driven active throughout
the entire burst, unless the addressed device can change the number of bytes returned in
each cycle.

3.2.3.6 DECODING A0, A1 AND BHE#

If the system needs the low-order addresses AO-A1l and a byte-high enable BHE#, these
can be generated from the byte-enable outputs, as shown in Table 3-12. Such signals may
be necessary in systems using earlier Intel processors.

In Table 3-12, the check marks (1) indicate all combinations of the byte enable signals
that are generated for cache line fills. As described earlier for cacheable cycles, the
processor expects valid data across its entire 32-bit data bus when a cycle is first con-
verted to a cache line fill. Thus, for the first transfer in a cache line fill, the byte-enable
outputs (BEO#-BE3#) should be ignored and the memory or I/O system should supply
valid data as if BEO#-BE3# were all asserted. The data expected is that addressed by

CLK [/ [

ADDR

ADS# :
[
1
1
SPEC] x
1
!
[
|
[

BEO-34#

S S

1 1 1) |
oy KARARAAUANCGRRANVARKRRANGARE, - VARRY/ - VARRRY - ENKAY - \KRKARRR
| 1 1 ' I

| ' l | '
erov# KRARRRKRRARRKRRARRKKRNKANN /KKK /XKRKRN + /ZRKKKK\ 1 /KK
' [1 ! 1
’ '
1
]/
1

|
|
T
|
|
|
|
|
|
T
|
L
|
|
|

[
'
|
|
T
|
s
[
|
1

'
BS84# \ E

'
X NoT VEALlD /

BLAST#

DATA FROM CPU

[
_

. —

240552i3-20

Figure 3-20. Burst Write on 8-Bit Bus

3-41

intel” PROCESSOR BUS

Table 3-12. Decoding A1, A0 (BLE#), and BHE# from Byte-Enables

Processor Outputs in :i(r:satc.lr-lreatisrfnngill Any Other Transfer
BE3# BE2# BE1# BEO# A1 A0 BHE# Al Ab BHE#
1 1 1 0 — - - 0 0 1
1 1 0 0 - - — 0 0 0
1 0 0 0 — - - 0 0 0
%4 0 0 0 0 0 0 0 0 0 0
1 1 0 1 - — — 1 0 0
1 0 0 1 - - — 1 0 0
I 0 0 0 1 0 0 0 1 0 0
1 0 1 1 - - — 0 1 1
14 0 0 1 1 0 0 0 0 1 0
v 0 1 1 1| o 0 0 1 1 0

v Marks all combinations of byte enable signals that will be generated after a cycle has been converted to
a cache line fill.

the A2-A31 signals. The processor will then generate the appropriate byte-enable signals
for all subsequent cycles in the cache line fill. This is true for both non-burst and burst
cache line fills.

Addressing and byte enabling for systems with a BHE# signal can be done with simple
external logic that derives Al, A0 (BLE#), and BHE# from the processor’'s BEO#-
BE3# outputs. Figure 3-21 shows examples. '

3.2.4 Parity Errors

The processor generates even-parity outputs (DP0-DP3) during writes, and checks for
even-parity inputs on the same signals during reads. Each signal is associated with one
byte on the processor bus, as shown earlier in Figure 3-2. If parity-checking is not used,
each of these signals should be tied high with 4.7K() resistors and the PCHK# output
should be ignored. On writes, these bidirectional signals provide even parity for each
byte. (Even parity means that the parity bit is set or cleared so that there are an even

BEO#

240552i3-21

Figure 3-21. 16-Bit Interfacing to A0 (BLE#), A1 and BHE#

3-42

intel” PROCESSOR BUS

number of high bits in the 9 byte-plus-parity bits.) The timing of these signals is the same
as the timing of the data bus. Additional memory required for parity may be imple-
mented by widening the memory array from 32 bits to 36 bits, but byte addressability
must be maintained.

When the processor detects odd parity during a read, it asserts the PCHK# output.
When either the BS8# or BS16# input is asserted, parity is checked only for the enabled
bytes. Parity is valid on all bytes which are selected by the byte-enable outputs BEO#-
BE3#, except during the first transfer of a cache line fill, in which case parity is valid on
all four bytes of the full 32-bit data bus.

PCHK# is valid only during the clock immediately following the clock in which RDY# is
returned, as shown earlier in Figure 3-8. PCHK# is never floated and is de-asserted at
all times other than the clock following RDY#. External logic must latch parity errors, if
the information is to be used; the processor continues program execution when a parity
error occurs.

A parity error is usually considered to be an unrecoverable condition, since the data or
instruction which is read is invalid. In these cases, a program which receives a parity
error should be terminated. Data read into the internal cache should be invalidated or
the entire cache must be flushed with the FLUSH# input. If the operating system
receives a parity error, the system may need to be shut down and restarted. The PCHK#
output is normally fed back to the processor to cause an interrupt and initiate recovery
or shutdown procedures.

If /O ports do not support parity, the PCHK# output must be masked by a signal which
indicates access to an I/O port. This is true whether I/O-mapped or memory-mapped 1/O
is used. The PCHK# signal is masked internally to prevent parity errors from being
reported for interrupt-acknowledge cycles.

3.3 BUS CONTROL

The bus control signals and special cycles govern access to the bus and handle extraor-
dinary conditions, like interrupts and reset. The controls are of two types:

e Signals and special bus cycles used in all systems:
Reset (RESET).
Interrupts (INTR and NMI).
Halt and Shutdown (special bus cycles).

o Signals used only in systems with more than one bus master:
Bus Hold (HOLD).
Bus Lock (LOCK#).
Bus Pseudo-Lock (PLOCK#).
Bus Backoff (BOFF#).

3-43

intgl” PROCESSOR BUS

3.3.1 RESET

The RESET input starts or restarts the processor. During reset, various tests can be
invoked. The i486™ Microprocessor Data Sheet gives complete information on reset and
testing. The discussion below is only an overview of how reset uses or affects the signals
on the processor bus.

When the processor detects a low-to-high transition on RESET, it terminates all activi-
ties. When RESET goes low again, the processor’s registers are initialized to a known
internal state, and the processor begins reading instructions from the reset address. The
RESET input is normally provided by the external clock generator, thereby ensuring a
stable reset signal common to the entire system.

If only the RESET input is asserted, only the processor’s non-floating-point states will be
initialized. The internal floating-point registers are undefined after RESET, with one
exception: if both Vce and CLK are kept within specification during the entire cycle in
which RESET is asserted, the registers will be in the same state as they were on the
rising edge of RESET.

With RESET asserted, testing options are specified by asserting one or more of the
following three inputs, which are sampled on the falling (inactive) edge of RESET:

o AHOLD —If this input is asserted while RESET is asserted, the built-in self test
(BIST) will be invoked, and all processor states, both floating-point and non-floating-
point, will be initialized. Without the assertion of AHOLD, only the processor’s non-
floating-point states will be initialized. No bus cycles will be run until the BIST is
finished, although the bus signals will be driven.

o A20M# —This signal must be sampled asserted while RESET is asserted.

e FLUSH#~If this input is asserted while RESET is asserted, the high-impedance
(float) test mode will be invoked. All outputs and bidirectional signals are floated,
including signals normally driven during a hold (HLDA, BREQ, FERR# and
PCHK#). After RESET is de-asserted, the processor bus enters the idle state, Ti.
Outputs after RESET are shown in Table 3-13.

RESET must be kept asserted for the time shown in the data sheet. Upon power-up,
RESET must be held asserted for the specified period after Vcc and CLK stabilize to
allow the processor’s internal clock generator to synchronize with CLK.

Table 3-13. Processor Outputs after RESET

State Signals
High LOCK#, ADS#, PCHK#
Low HLDA, BREQ
High Impedance | D0-D31, DP0-DP3
Undefined A2-A31, BEO#-BE3#, W/R#, M/IO#, D/C#, PLOCK#, BLAST#, PCD, PWT , FERR#

3-44

intgl” PROCESSOR BUS

Before its first instruction fetch, the processor makes no requests for the bus and will
relinquish bus control if it receives a HOLD request. INTR and NMI are not recognized
before the first instruction fetch. Although maskable interrupts are disabled, it is not
possible to disable NMI. External hardware should ensure that an NMI does not occur
before the interrupt descriptor table (IDT) is built and the stack is initialized.

3.3.2 Interrupts

Interrupt requests are of three types: maskable hardware interrupts (INTR), non-
maskable hardware interrupts (NMI), and software interrupts (the INT instruction or
software exceptions). INTR and NMI are asynchronous to the clock. The processor will
not recognize an interrupt during a reset operation, and it will recognize only a single
NMI during a bus hold operation. The setup and hold times for NMI and INTR de-
assertion and subsequent assertion are given in the i486™ Microprocessor Data Sheet. For
details on the algorithmic response to interrupts and on the INT instruction, see the
i486™ Processor Programmer’s Reference Manual.

To service an interrupt, the processor completes its execution of the current instruction,
and saves its current state on the stack, along with task information if a task switch is
required. The processor then services the interrupt by transferring execution to one of
the 256 possible interrupt service routines defined in software. Entry-point descriptors to
the service routines are stored in an interrupt descriptor table (IDT) in memory. Not all
256 entry-point descriptors are available for general use; the first 32 are reserved by
Intel. To access a particular service routine, the processor needs an interrupt vector, or
index number, to the IDT location that contains the corresponding entry-point descrip-
tor. The source of the interrupt vector depends on the type of interrupt. Only INTR
interrupts cause the processor to query external hardware for the interrupt vector; NMI
interrupts always use same vector, and software interrupts specify the vector as an oper-
and within the instruction or exception.

3.3.2.1 NON-MASKABLE INTERRUPTS

Assertion of the NMI input typically indicates a catastrophic event which requires imme-
diate attention, such as imminent power loss, bus-transfer parity error, or memory-data
parity error. The input has a two-clock-cycle synchronizer to ensure stability. NMI is
edge-triggered; the rising edge of the signal, after internal synchronization with the
clock, is used to generate the interrupt request. NMI must first be de-asserted for at
least two clocks and then asserted. The request need not remain active until the inter-
rupt is serviced; NMI need only be active for a single clock, if it meets the setup and hold
requirements. NMI will also operate properly if it is held active for an arbitrary number
of clocks. In order for a second non-maskable interrupt to be latched while an earlier
one is being serviced, the NMI input must again be de-asserted for at least two clocks
before its second assertion. Only one NMI can be latched and held pending; all others
will be lost.

Interrupt acknowledgement cycles are not performed to obtain the interrupt vector.
Instead, a recognized NMI always causes the processor to execute the service routine
referenced by the entry-point descriptor at location 2 in the interrupt descriptor table.

3-45

intel® PROCESSOR BUS

To prevent recursive NMI calls, NMI is internally masked whenever the NMI routine is
entered, until the IRET instruction is executed. During NMI interrupts in the Real-
Address Mode, the processor disables INTR requests, although these can be re-enabled
in the service routine. In Protected Mode, the disabling of INTR requests depends on
the gate in location 2 of the IDT.

3.3.2.2 MASKABLE INTERRUPTS

Unlike NMI, the INTR input is level-sensitive; INTR must be held asserted until the
processor services the interrupt. Like NMI, the INTR input has a two-clock-cycle syn-
chronizer to ensure stability. A valid INTR input will be seen by the internal instruction
execution unit two clocks after it appears at the pin. INTR is sampled at the beginning
of every instruction.

INTR must first be de-asserted and then asserted continuously until it is acknowledged.
Setup and hold times are given in the data sheet. The interrupt will be serviced, unless
the signal is masked by the IF (bit 9) flag in the EFLAGS register. This flag is cleared
automatically when an interrupt operation is initiated; it prevents successive interrupts
from arriving too closely. INTR will be ignored for as long as the flag is clear. The flag
should be set by software at an appropriate point in the interrupt service routine.

The processor acknowledges INTR by performing two locked read cycles which request
external logic to provide the interrupt vector. The entire interrupt-acknowledgement
operation is shown in Figure 3-22. Interrupt-acknowledge transfers are the same as nor-
mal data transfers, except for the A2 signal. For interrupt acknowledgement, the princi-
pal signal configuration is:

o ADS# —driven low to indicate the start of each transfer.

o M/IO#, D/C#, W/R# —driven low to indicate interrupt acknowledgement.
o LOCK# —driven low to block any hold operations during both transfers.
s A31-A3 and BEO# —driven low during both transfers.

¢ A2—driven high during the first transfer and low during the second.

o BE3#, BE2# and BE1# —driven high during both transfers.

During the first read cycle shown in Figure 3-22, all data on the bus is ignored. As with
normal transfers, RDY# must be returned to the processor to terminate the cycle.
BRDY# can also be returned, although interrupt acknowledgement cycles are not burst-
able. The processor then inserts four idle clocks before starting the second read cycle.
During the second read, the data on the lowest byte of the data bus (D7-D0) is assumed
to be the interrupt vector. Wait states can be added by withholding RDY #.

Maskable interrupts can be nested until the stack overflows. Nesting will occur if an
interrupt is recognized and the interrupt flag is set while a previous interrupt operation
has not yet completed. The latest interrupt to be recognized will be the first one ser-
viced. If both NMI and INTR are recognized simultaneously, NMI takes precedence.

3-46

intel” PROCESSOR BUS

240552i3-22

Figure 3-22. Interrupt Acknowledgement Timing

3.3.2.3 INTERRUPT LATENCY

The time that elapses before an interrupt request is serviced (interrupt latency) varies
according to the following factors:

o NMI—If a non-maskable interrupt is being serviced, another incoming NMI will not
be serviced until the processor executes an IRET instruction.

e INTR—If INTR interrupts are masked, they will not be serviced until they are
re-enabled.

o Instruction Execution—If the processor is currently executing an instruction, the
instruction will usually be completed. Interrupts are serviced only at instruction
boundaries, except that (1) iterated string instructions can be interrupted at iteration
‘boundaries, and (2) transcendental floating-point instructions can be interrupted at
various points.

o Register Loads and Saves —Interrupts are not serviced when the contents of registers
are being saved. During task switching, registers must be saved and restored before
interrupts are recognized. If an instruction loads the stack segment register or sets the
interrupt flag, interrupts are not processed until after the next instruction.

The internal instruction execution unit will only act on an NMI or INTR interrupt at
instruction boundaries or (in the case of string-move instructions) at instruction-iteration
boundaries. The longest latency can be expected when a request is received during exe-
cution of a long instruction, such as multiplication.

For an interrupt to be acknowledged at the end of a specific instruction, the interrupt

must be asserted at least three clocks before the end of the instruction execution. This
allows the interrupt to pass through the two-clock-cycle synchronizer (both NMI and

3-47

intel® PROCESSOR BUS

INTR have these synchronizers) and leaves a third clock for completion of any instruc-
tion currently being executed (i.e. to prevent the initiation of the next sequential instruc-
tion, and to begin the interrupt service instead). If the interrupt is not received by the
internal execution unit in time to prevent the execution of the next instruction, it will be
acted upon at the end of that instruction (provided INTR is still asserted). The
interrupt-service microcode will start after two idle clocks.

Thus, the longest latency time will be determined by:
¢ Two clocks for interrupt synchronization, plus

¢ The longest instruction used (such as multiplication, division, or a task switch in
Protected Mode), plus

o Two idle clocks, plus

o One clock to vector into the interrupt service microcode.

NMI latency is the same as INTR latency, with two exceptions: (1) since NMIs are not
masked, disabling by software cannot not add to their latency, and (2) since NMIs are
automatically disabled whenever their interrupt service routine is executed, the length of
the NMI routine itself will contribute to maximum NMI latency.

3.3.2.4 THE 8259A INTERRUPT CONTROLLER

Maskable interrupts to the processor can be handled directly by the 8259A interrupt
controller. This device can coordinate the interrupt requests of up to eight devices and
can be cascaded with other 8259As to handle as many as 64 devices. The 8259A is
controlled by commands from the 486 processor and appears as a series of I/O ports to
the processor. These ports are used to configure masks and priorities for the interrupt
input signals.

When a device signals an interrupt request, the 8259A determines its priority relative to
other requests, and asserts INTR to the processor. When this signal is serviced, the
processor allows the 8259A sufficient recovery time to provide the 8-bit interrupt vector
during the second acknowledgement cycle. System logic may be requ1red to delay the
RDY# signals during the transfers in order to comply with the minimum pulse-width
requirements of the 8259A.

3.3.3 Special Bus Cycles

Special bus cycles are initiated by the processor in the same way as data transfers, except
that the cycle-definition signals have the values shown in Table 3-14. One of four oper-
ations is specified by the BEO#-BE3# outputs normally used for byte enabling on the
data bus. Special bus operations use the same bus-signal protocol as data transfers,
including the assertion of either the RDY# or BRDY# signals to acknowledge comple-
tion of the operation.

3-48

intel” PROCESSOR BUS

Table 3-14. Special Bus Cycles

M/IO# D/C# W/R# BE3# BE2+# BE1# BEO# Operation
0 0 1 1 1 1 0 Shutdown
0 0 1 1 1 0 1 Cache Flush
0 0 1 1 0 1 1 Halt
0 0 1 0 1 1 1 Cache Write-Back and Flush

Shutdown and halt are described immediately below. The coding of the M/IO# signal is
reversed from that in the 386 processor for halt and shutdown. The cache flush cycle and
the cache write-back and flush cycle are discussed later in Section 3.4.

3.3.3.1 HALT

Halt occurs upon execution of a HLT instruction. The instruction can be used as a
response to an unrecoverable error, such as a parity error, or to a program error. Halt
can also be used to indicate that the processor has failed the built-in self test invoked on
reset. The appropriate response depends on the details of system implementation.

Externally, a halt differs from a shutdown only in the resulting address-bus outputs and
in the processor’s ability to acknowledge a bus hold while in the halt condition. The
processor will remain in the halt condition until one of three inputs is asserted:

e INTR
e NMI
e RESET

3.3.3.2 SHUTDOWN

Shutdown occurs when the processor is handling a double fault and encounters a pro-
tection fault. This indicates an error in operating-system data structures, such as task-
state segment descriptors (if tasks are used for exception handling), segment descriptors,
or page-table entries. It may be desirable to invoke an NMI interrupt handler to record
diagnostic information.

While in shutdown mode, the processor cannot perform any bus operations. The proces-
sor will remain shut down until one of two inputs is asserted:

e NMI
e RESET

3.3.4 Bus Hold

Bus masters other than the processor take control of the bus by causing the assertion of
the HOLD input. When HOLD is asserted, the processor completes the current bus
operation or sequence of locked or pseudo-locked cycles, floats most of its outputs to

3-49

intel”® PROCESSOR BUS

high impedance, and asserts the HLDA acknowledgement. The bus stays in the hold
state until HOLD is de-asserted. During bus hold, the processor continues operation
with the information in its internal cache and instruction prefetch unit, until it needs
access to the bus again; then it asserts BREQ.

Bus hold uses the same hold-acknowledge protocol found in earlier Intel 8086-family
processors. The HLDA, BREQ, PCHK# and FERR# outputs are not floated and can
be asserted during bus hold. The processor will recognize and respond to HOLD during
reset; none of the outputs that are floated in response to HOLD are provided with
internal pullup resistors. During bus hold, the AHOLD, EADS#, and BOFF# inputs
are recogmzed The AHOLD (address hold) input is not associated with the bus hold
operation; it is used for cache invalidation, as described in Section 3.4.

The following operations are completed before a bus hold is acknowledged:

e The current bus cycle in progress (whether burst or non-burst) or the current
sequence of bus cycles for which BLAST# is de-asserted in all but the last data
transfer.

e Pseudo-locked vcycles—\i.e., multiple-cycle sequences during which PLOCK# is
asserted.

e Locked cycles.

Multiple processors can be in bus hold, and an external arbitration unit can use their bus
request signals to see which processors are ready to perform bus cycles.

3.3.4.1 TIMING

When HOLD# is asserted, the processor stops driving the following outputs:
o A2-A31.

e DO0-D31.

o DP0-DP3.

« BEO#-BE3#.

o PWT, PCD.

e M/IO#, D/C#, and W/R#.
o LOCK#.

o PLOCK#.

o ADS#.

e BLAST#.

The processor’s acknowledgement consists of floating all address and data bus signals
and asserting HLDA, as shown in Figure 3-23. LOCK#, M/IO#, D/C#, W/R#, ADS#,
A2-A31, BEO#-BE3# and DO0-D31 are held in the high-impedance condition. Some
signals such as ADS# and LOCK# may require external pull-up resistors to guarantee
that they remain inactive during transitions between bus masters.

3-50

H ®
intel PROCESSOR BUS

o.M, om ., T mo., om ., 7

CLK [[[

[
1 | |

Rovi# - KRARKRARKARKXEAX KRR XXX ARXNAXXNEANE)mommmomoomnm

|

“ FROM CPU ,‘

DATA

HOLD

/ CoL

HLDA

~——

240552i3-23

Figure 3-23. Bus Hold Timing

Since BREQ, HLDA, PCHK# and FERR# are not floated, they must not be driven by
any other bus master. The processor will remain in the hold state until after HOLD is
de-asserted. The requesting bus master must maintain HOLD asserted until it is ready to
pass control back to the processor.

During hold, the processor continues to execute from the internal instruction prefetch
unit and cache until it needs access to the bus. The processor can generate and store up
to four write cycles, until bus access is again granted, as discussed in Chapter 2. In a read
cycle, an instruction fetch that misses in the internal cache, or more than four write
cycles are needed, execution stops until the bus is available.

During hold, the processor monitors only HOLD, RESET, NMI, and INTR. One NMI
request will be recognized and latched for acknowledgement after the end of the hold
operation. While INTR is monitored during hold, the input must be held asserted until
the interrupt acknowledge cycle is run, after the end of the hold operation.

Once HOLD is de-asserted, the processor drives the bus and de-asserts HLDA on the
next clock. If a bus cycle is pending in the processor, the bus cycle will begin on that
clock.

3.3.4.2 HOLD LATENCY

Maximum HOLD latency is determined by the maximum duration of locked cycles.
Asserting AHOLD may prevent the processor from recognizing HOLD. For example,
asserting AHOLD during the third of four BS8# cycles will prevent HOLD from being
recognized.

3-51

intgl” PROCESSOR BUS

For details on LOCK# latency, see Section 3.3.5 immediately below. Other details and
values are given in the i486™ Microprocessor Data Sheet.

3.3.5 Bus Lock

When the LOCK# output is asserted, the processor will not acknowledge a bus hold
request. Bus locking prevents interruption of contiguous processor cycles that need to be

kept integral. Figure 3-24 shows a typical example of how the signal is used. The signal is
generated by:

o Read-Modify-Write Operations:
— Executing a TEST or SET instruction (semaphor updates).
— Executing an XCHG instruction with a memory operand.
— The LOCK prefix on certain instructions (such as XADD and CMPXCHG).
— Updating the accessed bit in segment descriptors.
— Updating the accessed and dirty bits in page table entries.
— Setting the busy bit in a task state segment (TSS) descriptor.
— Setting the access bit in a segment descriptor.
o Interrupt Acknowledge Cycles.

) . \ . '
| ' | ! |
1 1

CLK [[[

. |
ADS# ! \
|

1

1

'

1

! :
A2-A31 . .
1

1

'

'

'

!

10: i
e X i
BEO-34# : | :
X '
| 1

W/R# : \ /

l i l
rov# KXRKRCKERCOCOCOXRORARNEARRY | /XKKKRKKRRNEORN | /KRR
| ! [I)

!
L
1
L
I
!
i

'
' Ly
! ' T0 |
DATA N : \cpu/ : FROMICPU

1] ! I

1 : [! 1
LOCK# ! ! ! : !

I \ : | | | }

' O T 0

READ WRITE

240552i3-24

Figure 3-24. Locked Bus Cycles

3-52

intgl® PROCESSOR BUS

Locked read cycles are not cacheable. In systems with an external cache between the
processor bus and a system bus, locked cycles should always cause a system-bus cycle.
This will ensure consistent synchronization between multiple agents on the system bus.
During locked cycles, the processor will not recognize a HOLD request, but it will rec-
ognize BOFF# and AHOLD requests.

3.3.5.1 TIMING

Figure 3-24 shows a sequence of locked cycles. The LOCK# output is asserted on the
rising clock edge of the first locked bus cycle, at the same time as ADS#, and it is
de-asserted after RDY# is asserted at the end of the last bus cycle to be locked. Maxi-
mum duration of the LOCK# signal affects the maximum HOLD request latency
because HOLD is not recognized until LOCK# is de-asserted. The duration of LOCK#
depends on the instruction being executed and the number of wait states per cycle.

In Real Mode, the longest duration of LOCK# is two bus cycles plus approximately two
clocks. This occurs during the XCHG instruction and during locked read-modify-write
operations. In protected mode, the longest duration of LOCK# is five bus cycles plus
approximately 15 clocks. This occurs when a hardware or software interrupt occurs and
the processor performs a locked read of the gate in the interrupt descriptor table
(8 bytes), a read of the target descriptor (8 bytes), and a write of the accessed bit in the
target descriptor. The insertion of wait states will affect the length of the required bus
cycles.

3.3.5.2 SEMAPHOR APPLICATIONS

LOCK# is used for read-modify-write operations on memory-based semaphors, as
shown in Figure 3-25. The value of a semaphore indicates a condition, such as the
availability of a resource. If the processor reads a semaphore, determines that a resource
is available, and writes a new value to the semaphore to indicate that it intends to take
control of the resource, the read and write cycles should be locked to prevent another
bus master from reading or writing the semaphore between the processor’s two bus
cycles.

3.3.5.3 LOCK LATENCY

Execution of the LOCK instruction causes the assertion of the LOCK# output for two
bus cycles (each of which may split into multiple cycles for misaligned data or for 8- or
16-bit bus sizes), plus four clocks for ALU computation.

References to the global descriptor table (GDT) or the local descriptor table (LDT) will
lock the bus to set the accessed (A) bit for memory descriptors (if not already set).
Descriptors are read without LOCK# asserted. If the A bit is not set, the descriptor is
re-read with LOCK# asserted (two 4-byte read cycles), the A bit is set, and then four
bytes are written to store the updated half of the descriptor. This keeps LOCK#
asserted for three bus cycles (two reads, then one write), plus eight clocks. Once the

3-53

intel® PROCESSOR BUS

SEMAPHORE
BUS MASTER 1
READS
VALUE 0=NOT BUSY
TIME LOCKED
CYCLES

BUS MASTER 1
WRITES E—— m .
VALUE 1=BUSY

BUS MASTER 2
READS
—_—
= Y
BUS MASTER 1 D VALUE 1=BUS
HAS CONTROL
OF DEVICE
BUS MASTER 2
WAITS FOR
VALUE TO CHANGE
NO ERROR
SEMAPHORE
BUS MASTER 1
READS - m
VALUE 0=NOT BUSY
TIME //
/ BUS MASTER 2
UNLOCKED —_ READS
CYCLES \ VALUE 0=NOT BUSY
\
\
BUS MASTER 1
WRITES —
VALUE 1=BUSY
BUS MASTER 2
m. B WRITES
VALUE 1=BUSY

ERROR
BOTH BUS MASTERS
TRY TO CONTROL DEVICE

240552i3-25

Figure 3-25. Semaphor Passing with Non-Locked Cycles

accessed bit is set, subsequent reads of the same descriptor will use unlocked cycles.
Operating system software can minimize LOCK# duration by aligning descriptor tables
to 8-byte boundaries and storing these tables in 32-bit memory, avoiding use of BS8#

and BS16#.

Page table references will assert LOCK# to set the dirty (D) and/or accessed (A) bits in
the page-directory or page-table entries. First, the entry is read with LOCK#
de-asserted. If either bit is clear, the entry is re-read, with LOCK# asserted, the appro-
priate bit is set, and then the entry is written back to memory. LOCK# is asserted for
‘two bus cycles plus four clocks. Page table entires are always aligned, but again, storage
in 32-bit memory will avoid the possibility of BS8# or BS16# lengthening the lock

latency.

3-54

intel” PROCESSOR BUS

The worst-case lock latency occurs when reading a descriptor table entry: it takes
8 clocks, plus 2 read cycles, plus 1 write cycle. The worst-case use of the LOCK instruc-
tion prefix occurs with a locked BTS, BTC, or BTR instruction: these take 4 clocks, plus
1 read cycle, plus 1 write cycle (each of which may split into multiple cycles for mis-
aligned data or for 8- or 16-bit bus sizes).

3.3.6 Bus Pseudo-Lock

The PLOCK# output offers a new protection, not available in the 386 processor. The
signal performs a function identical to that of LOCK# — the processor will not acknowl-
edge a bus hold request while PLOCK# is asserted, thereby preventing interruption of
contiguous processor cycles that must be kept integral —but PLOCK# is asserted under
circumstances which are different than LOCK#. Pseudo-locking protects transfers of
aligned data that are longer than 32 bits. It is asserted only for cycles in a single direction
(read cycles or write cycles, but not read-modify-write cycles). Figure 3-25 shows a typi-
cal example of how the signal is used. During pseudo-locked cycles, the processor will
not recognize a HOLD request, although it will recognize a BOFF# or AHOLD
request.

The PLOCK# output is generated by:

o Any data transfer longer than 32 bits, in which the data is aligned to boundaries equal
to the data-structure size —i.e., any multiple-cycle sequence with aligned data.

e Whenever BLAST# is de-asserted (this case overlaps with the one above).

o During the first cycle of 64-bit floating-point writes.

Pseudo-locked cycles include 128-bit cache line fills, 64-bit floating-point operand reads
or writes, and doubleword transfers on an 8- or 16-bit bus. In 80-bit floating-point oper-
ands, only the first 64 bits are pseudo-locked. PLOCK# is asserted predictably only if
the transferred data is aligned to boundaries equal to the data-structure size: 32-bit data
must be aligned to 4-byte boundaries, 64-bit data must be aligned to 8-byte boundaries,
and 128-bit cache line fills must be aligned to 16-byte boundaries. Otherwise, additional
transfers will be necessary, and the additional transfers may not be pseudo-locked to the
normally required transfers.

The processor bursts read cycles longer than 32 bits whenever it can. In burst cycles, all
of the data is transferred in a single bus cycle. PLOCK# is only useful to external logic
in transfers which need more than one bus cycle. In systems which do not interrupt burst
cycles with BOFF#, no special provision for examining PLOCK# is needed during burst
reads. However, the system must examine PLOCK# during 64-bit writes, which need at
least two data transfers. In 64-bit writes, BLAST# is asserted at the end of each data
transfer but PLOCK# is asserted at the end of the first transfer and into the first part of
the second transfer. The assertion of PLOCK# indicates that another data transfer is
pending. Figure 3-26 shows the timing of PLOCK# in a 64-bit write. Access to 80-bit
operands use pseudo-locked bus cycles; however, only the 64 bits at the lowest addresses
are transferred in pseudo-locked bus cycles.

3-55

intgl® PROCESSOR BUS

CLK [I [
I

I I

A2-A31

M/10;
Vel L
]

-

'
'
|
|
'
'
|
|
1
!
[
'
|
1
U
'
'
!
T
'

BEO~3#

W/R# ! /
NNOT\%ALI“ / : S
!) :
RDY# HHHNHNNHNHNNH\ !)NQNN"HNH\ ! /XAXAKR
1 1

h [[
! L | ! |
1 x ! 1 ’ \ | ,
BLAST# , NOT ‘{Alﬂ . NOT YALID |
[' [[[
| : | : |
R B CIE) S G S
1 ' " 1

:
WRITE WRITE

PLOCK#

I
s
|
A
|
|
|
|
|
1
1

240552i3-26

Figure 3-26. Pseudo-Locked 64-Bit Write Cycle

PLOCK# should be sampled only in the clock in which RDY# or BRDY# is asserted,
as shown in Figure 3-26. Assertion of PLOCK# indicates that the next cycle is pseudo-
locked to the current cycle. PLOCK# and BLAST# are always the inverse of each
other, except during the first transfer of a 64-bit floating-point write. PLOCK# is a
function of the KEN#, BS8#, and BS16# inputs. PLOCK# may change state during a
cycle, but it is stable in the clock in which RDY# or BRDY# is asserted.

In systems with an external cache between the processor bus and a system bus, pseudo-
locked cyclés (unlike locked cycles) would not typically cause a system-bus cycle on
external cache hits. The pseudo-locked cycle should be confined to the processor bus
and the external cache controller should not allow system-bus activity to intervene with
pseudo-locked cycles on the processor bus.

There are some situations in which both PLOCK# and LOCK# will be asserted
simultaneously —for example, during 64-bit segment descriptor loads, which are oper-
ands longer than 32 bits (thus, protected by PLOCK#) but which are also specifically
protected by LOCK#.

3.3;7 Bus Backoff

- Some bus cycles initiated by the processor may require, for their completion, an external
bus master to complete bus cycles of its own. For example, access to data which is held in
the external cache of another processor may require the other processor to write-back

3-56

intel” PROCESSOR BUS

the cached data to memory. Bus backoff is used to avoid this “deadly embrace,” where
neither the processor nor the other bus master can complete its operation, since each is
waiting for something from the other. The BOFF# input indicates that another bus
master needs to complete a bus cycle in order for the processor’s current cycle to com-
plete. The processor’s response to bus backoff is similar to the bus hold operation, but
more immediate; the processor releases the bus in the next clock, and no acknowledg-
ment is given. When BOFF# is de-asserted, the processor will reliably restart the same
bus cycle that was aborted.

Bus backoff is also known as bus cycle restart because any cycle in progress when BOFF#
was asserted will be restarted when BOFF# is de-asserted. The restarted cycle will begin
with a new assertion of ADS# but the transfer will continue from its state at the clock in
which BOFF# was asserted. Any transfer complete before BOFF# was asserted will be
assumed correct and will not be repeated.

Chapters 6 and 8 contain more information on how BOFF# is used in a system design.

3.3.7.1 TIMING

BOFF# is sampled in every clock cycle. When the signal is asserted, the processor stops
driving the following outputs:

o A2-A31.

o DO0-D31.

« DPO-DP3.

o BEO#-BE3#.

e PWT, PCD.

o M/IO#, D/C#, and W/R#.
o LOCK#.

o PLOCK#.

o ADS#.

o BLAST#.

Bus backoff takes effect more immediately than bus hold: the processor floats the signals
listed above in the clock following the assertion of BOFF#. Burst cycles and other types
of cycles may be stopped and held pending for the duration of the backoff operation.
Bus backoff continues until the clock following the de-assertion of BOFF#, as shown in
Figures 3-27 and 3-28. If BOFF# is asserted during a write cycle, the processor will float
its data bus in addition to the signals listed above.

On assertion of BOFF#, the current bus cycle is suspended in a state which allows
reliable restarting after BOFF# is de-asserted. Any data returned during the cycle in
which BOFF# was recognized, or while BOFF# is asserted, is ignored. If RDY# or
BRDY# is asserted simultaneously with BOFF#, only BOFF# will be recognized. If
BOFF# is asserted after the processor has already begun a bus cycle, it may be neces-
sary for the device which asserts BOFF# to wait for the assertion of RDY# or BRDY#

3-57

intgl” PROCESSOR BUS

' | '
[} | |
T T 1
1 ' '
[1 '
' ' '
' | '
' [|
) | '
v l

]

1

| 1
A2-/A31 ! .)
M/10# 100)_l_._(100 104 108 10C
o B , T T
BEO-3#] j .) :

BROY# HHNNMHHNMNNNWOWHNNNNNHN'HNHHMHNH\)NH\)HH\)NN\
[|

KENY 1 NOOII))))IlII((((lIm)'WII)I’)I(lIM M

RDY# mmnmmommmum»muu0ou0ooomuomommmml \mol \oml \oml

| ' ' ' '
1 1 ! L
T
BOFF# | i \) [| |
| 1] ! !
1 1 1 1 1 1
!) | ' ! | '
T T T ' ! T T .
BLAST# | X NOT VALID / ' NOT VALID ')
! ' |) ' ' L—l
| ' ' | ' ' |
! ' ' | ! | ' 1 '
| ' ' ' | '
T0
L —O—O—O—®
1 1l Ll '

240552i3-27

Figure 3-27. Bus Backoff and Restart during a Read Cycle

before starting a new cycle. This verifies that the memory system is ready to accept
another bus cycle. If BOFF# is asserted while the bus is idle, the processor will go into
bus hold in the next clock. Thus, the signal can prevent a subsequent bus cycle from
starting.

RDY# and BRDY# need not be asserted if the processor is not performing a data
transfer at the time bus backoff occurs. A state machine used to track the operation of
the bus can indicate when a bus cycle is in progress. During backoff, the processor floats
the same signals as during a hold operation, but HLDA is not asserted. The data bus is
floated if BOFF# is asserted during a write cycle. Each turnaround of the bus between
bus masters takes two clocks to ensure that there is no overlap of control on the bus.

3.3.7.2 CAUTIONS

If bus backoff occurs during a burst transfer, instruction prefetch, or cache line fill, any
cycles which have been completed with assertion of RDY# or BRDY# are not

3-58

intgl” PROCESSOR BUS

CLK [[[

1 1 | 1
' |
| ' 1) ' |
L . | | .
e i S
| [l 1 0 |
| ! ! |
Rov# - R O OO OO OOCOON)
! 1 1 1 !

| | 1 1 1]
BrOY# - KRR CRRECCRROCCRRROCRROGREROOCCRAO. /XK

'
|
'
'
1
'
'
1
T
[

R 5

'
'
'
|
|
|
L
]
1

|
T T

BOFF#) 1
1 1
1 1
1

| |
1 '
' '
' | '
' 1 '
' '
! 1
' '
' |

(romorn)
DATA . FROM CPU FROM CPU
| n—

240552i3-28

Figure 3-28. Bus Backoff and Restart during a Write Cycle

restarted. Data obtained in these cycles is assumed to be good. The burst transfer,
instruction prefetch, or cache line fill continues with its next transfer after BOFF# is
de-asserted.

If BOFF# is asserted during a burst cycle or when BS8# or BS16# is asserted, the
processor will be forced to ignore data returned for that cycle only; data from previous
cycles must still be valid. For example, if BOFF# is asserted on the third RDY# of a
burst cycle, the processor assumes that the data returned with the first and second
RDY# is valid, and it restarts the burst beginning with the third cycle. The same thing
happens with transfers that are broken into multiple cycles when BS8# or BS16# are
asserted.

A problem may occur if BOFF# is asserted in the same clock the processor asserts the
ADS# output. Bus masters see the beginning of a bus cycle, which is then terminated
abnormally. One approach is to have all bus masters recognize bus backoff. Another
approach is to add an additional clock cycle before bus backoff is used. Asserting the
AHOLD input in this additional clock will keep the processor from issuing a new
address; it prevents assertion of the ADS# output in the next clock.

Care should be taken if BOFF# is asserted during an I/O cycle because the processor
will restart the I/O cycle after it regains control of the bus. Either BOFF# occurs before
the I/O device sees the I/O command, or the 1/O device must understand that the cycle
is restarting, or the system should not assert BOFF# during 1/O cycles.

3-59

intel” PROCESSOR BUS

3.4 CACHE CONTROL

Section 3.2 describes how bus cycles become cacheable cycles. When caching is enabled
for multiple-bus-master systems, cache control involves maintaining consistency between
the processor’s internal cache, main memory, and external (second-level) caches when
any of the three are updated. Figure 3-29 shows a system with external cache.

Page-level cache control is implemented with two outputs:

o PCD —Page cache disable (internal and external cache).

e PWT—Page write-through or write-back (external cache).

Internal cache-line invalidation is implemented with two inputs:
o EADS# — Cache-line invalidation, used with AHOLD (internal cache).
o AHOLD — Address hold, used with EADS# (internal cache).

Internal cache flush is implemented with one input:
o FLUSH# — Cache flush (internal cache).

Cache flush and cache flush/write-back are implemented for both internal and external
cache with two special bus cycles:

o Cache Flush Cycle—Initiated by the INVD instruction (internal and external céche).

o Cache Write-Back and Flush Cycle —Initiated by the the WBINVD instruction (exter-
nal write-back, and internal and external cache).

1486 ™
Microprocessor

3

Processor Bus

$

Second
Level
Cache

$

System Bus
External External
Memory Bus Master

240552i3-29

Figure 3-29. External (Second-Level) Cache

3-60

intel” PROCESSOR BUS

The sections below describe each cache control in detail. Section 3.3.3 describes special
bus cycles.

3.4.1 Page-Level Cache Controls

Caching and memory updating are page-based: each 4-Kbyte page of contiguous memory
locations can have its cacheability and write-through or write-back policy controlled on a
cycle-by-cycle basis. Two software-controlled outputs, PCD and PWT, are used for page-
level cache control on a cycle-by-cycle basis.

o PCD—The page cache disable output controls cacheability for the current page,
assuming that all other conditions for caching are satisfied. When the corresponding
bit is cleared in software, the output is de-asserted and caching is enabled for the
internal cache. The output can be used to enable external cache. When asserted,
internal caching is disabled even if the KEN# input is asserted; the PCD control bit is
internally ANDed with KEN#.

o PWT—The page write-through output is only useful for external cache; internal cache
is always write-through. When asserted, the signal applies a write-through caching
policy for the current page; updates to cache will be written through to memory.
When de-asserted, the signal allows the possibility for external caches to use a write-
back policy for the current page. Future Intel parts which incorporate write-back
caches will use PWT as described here.

When paging is enabled (PG = 1 in the machine status register, CR0), the PCD and
PWT outputs reflect the page-table entry of the current page that are stored in the
translation lookaside buffer (TLB), described in Section 2.8.2. The outputs are driven
when the page mapped by the TLB entry is referenced. For normal memory cycles with
paging enabled, PCD and PWT are taken from the second-level page-table entry. During
TLB refresh cycles, PCD and PWT are taken from CR3.

When paging is disabled (PG = 0 in the machine status register, CR0), or for cycles
which bypass paging, such as I[/O-mapped references, interrupts and halts, the processor
drives PWT and PCD to the state of the corresponding bits in the CR3 register. These
are cleared at reset, but can be given any value by level-0 software. See the
i486™ Processor Programmer’s Reference Manual for more information.

3.4.2 Internal Cache-Line Invalidation

The processor’s address bus, unlike those of previous Intel 8086-family processors, is
bidirectional. Addresses can be driven into the i486 processor for the purpose of invali-
dating any cache line at that address. The system should provide address-bus latches;
this will prevent loss of the address information when the address bus is turned around
to provide a cache-line invalidation address. Cache invalidations can be done at any
time. Because the address bus is not used during a burst transfer, cache invalidation can
be done simultaneously with burst transfers. During non-burst single-transfer cycles with
wait states, invalidation can also be performed during wait states if the address of the
invalidation is latched externally.

3-61

intgl” PROCESSOR BUS

Cache-line invalidation starts with the assertion of AHOLD by external logic. In the next
clock the processor floats A2-A31, allowing the external bus master to drive the address
of a 16-byte cache line into the processor. No address-hold acknowledgement is given.
The A3, A2, and BEO#-BE3# signals should not be driven, because the smallest unit of
storage in the cache is four doublewords. External logic then asserts EADS# to request
the cache invalidation. Multiple addresses may be invalidated by asserting EADS# mul-
tiple times while asserting AHOLD. Normal operation of the bus resumes with the
de-assertion of AHOLD.

AHOLD is always recognized, even during reset, although invalidations during reset are
superfluous because reset invalidates the entire cache. During address hold, data can be
returned for a single previously initiated bus cycle; the processor floats only its address
bus. The processor will not initiate another bus cycle (which starts with ADS#) during
address hold. Locked and pseudo-locked sequences can be interrupted.

Other cache operations, such as satisfying an internal request for cache contents, are
delayed while the cache invalidation is performed. Unnecessary cache invalidation cycles
reduce performance. Cache invalidation should not be attempted at the end of a cache
line fill. During the clock in which the line is actually written into the cache —either the
last clock of the fill or the first one following—EADS# is ignored. This is the only
circumstance in which EADS# is not recognized.

Figure 3-30 shows an internal cache invalidation cycle.

3.4.2.1 RATE OF INVALIDATION

The processor samples EADS# every clock and can accept cache-line invalidations at
the rate of one every clock, except in the last clock of a cache line fill. This rate of
invalidation can be maintained, if EADS# is de-asserted during one or both of the
following times:

e The clock in which RDY# or BRDY# is asserted for the last time in a transfer.

o The clock immediately following the one in which RDY# or BRDY# is asserted for
the last time in a transfer.

These conditions allow two distinct types of systems. A simple cache system can restrict
invalidations to every other clock, and need not track bus activity. Systems which require
invalidation once every clock must monitor the processor bus for the above conditions of
RDY# and BRDY#.

3.4.2.2 INVALIDATION CONCURRENT WITH LINE FILLS

In systems with external (second-level) cache and two buses allowing concurrent activity,
precautions are needed to prevent caching invalid data in the processor. In such systems
it is desirable to run invalidation cycles concurrently with other processor bus activity.
This is possible because the two buses allow a device to be writing to main memory while
the processor is retrieving data from the external cache. When such a write occurs, the
cache line must be invalidated if it exists in the processor’s internal cache, and the

3-62

intgl® PROCESSOR BUS

n , m , T , W , W , T ., T ., T
] 1 1 1 1 1 1 1
CLK \ 1)) | 1 1 :
! ' , \ !) : 1
o T\ T T
] 1 1] 1 I
| 1 1 1 1 1 |
\ 1 | | | [l [l |
[1
\ /T0\
ADDR D &y , : : :
T .

! 1 ' 1 | ' ' '
I [l | [} \) [1
AHOLD ! | : | | | X X
S AR R
1 [1 1 1 1 '
| | [l 1 ! i 1 '

- ' . v
EAvs# | | Y | '. !
| ' ' ! ' ' '
1 1l 1 1

~rovy RO EKICOOOMNRRRAR)HHNMNHNNMNNNMNM\)HNM

1
DATA [0\ ' /T\
7 \ePY/

'
) |
' '
' | '
' '
' ! '
'
) '
'
'
.

.

BREQ 1 ’

|
|
'
1
|
'
'
'
'

240552i3-30

Figure 3-30. Internal Cache Invalidation Cycle

external cache must be invalidated or updated. However, since the write to main mem-
ory and the read from external cache can occur at any time relative to one another, the
order in which the invalidation is requested and data is returned to the processor
becomes important. A simple rule to ensure consistency in such cases is described below
and shown in Figure 3-31.

If the processor is doing a cache line fill, and a cache-line invalidation is requested in the
first clock in which cache-line data is returned to the processor, or in any subsequent
clock, the processor will invalidate that line, even if it is the same caché line that the
processor is currently filling. That is, if EADS# is asserted in the same clock that the
first RDY# or BRDY# is asserted, or if it is asserted in a later clock, the processor will
invalidate the data even if the data pertains to the cache line that is being filled. During
an invalidation, the invalidated cache line is simply marked invalid; however, the proces-
sor will still use the data for the original purpose of the read (as a memory operand, for
example). ‘

If an invalidation occurs before the first data is transferred to the processor, the proces-
sor assumes that the data subsequently transferred is valid. Invalidation operations can-
not be done on data that the processor has not yet received. Thus, the system is
responsible for the validity of data passed to the internal cache. The responsibility for
invalidating data is passed along with the data itself: an external cache controller must

3-63

intel® PROCESSOR BUS

T . T . T2 T2 T2 T2 . T2 T2 Ll
1 '] 1 1 ' ' 1
C L K l ' 1 1 1) !
| ' | | | | |
N ' [} [} [] |
1 T T T T
ADS# ! \ ' ’ ' ' ' ' 1
1 [] ' 1 |
1 l 1] 1 L |
N 1 1 1 '
[] /_Q—__
ADDR ! x . n |
1 \ —— —
i ! !
I '
I [
1 1

1
1
T
X
1 1
1 1
1)
) .@ < 0 >

: CPU, :
j ‘
e 1
AHOLD / X i
] H '
| 1 1
[l T T
EADS#) : :
1 ' '

[}

| l !
Rov# - R ORRRA KRR RCRCOR0ooacd/ \oooay DO - 7 \mmo

! 1 I 1
BROY# . ARRARAAVAVAVARAARACARARARAAAAARARARRRRRARRCE /XK +JXROK\ /00K)HWN

eeve RO+ OGO ¢ XBOGC + X000\ ¢ GO OO 0, A T
! ' : N . , . |
DATA , X X . [\ __/___/7™__ /7\
' ! : ey ey ey ey

240552i3-31

Figure 3-31. Concurrent Cache Invalidation and Line Fill

keep its copies of data consistent with memory; but when data is copied from the exter-
nal cache to the processor’s internal cache, the processor will keep its copy of that data
consistent with memory.

3.4.3 Internal Cache Flush

This cycle invalidates the entire internal cache. When the address of modified data is not
available, a partial invalidation cannot be performed, and a cache flush is the only alter-
native. Changes to address mapping information require a cache flush. Assertion of the
FLUSH# input for one clock causes a cache flush, as shown in Figure 3-32.

In addition to flushing, which clears the entire cache but allows it to begin storing new
data in the next clock, the cache can also be disabled. Cache disabling is a two-step
process: (1) set the PCD and PWT bits in CR3, and (2) flush the cache.

3.4.4 Cache Flush Cycle
This special bus cycle is invoked by executing the INVD instruction, which causes the

assertion of BE1# and the de-assertion of BEO#, BE2#, and BE3#, as shown in
Table 3-14.

3-64

intel® PROCESSOR BUS

| 1

1]

FLUSH# = \ : [
1

] 1

1 1

240552i3-32

Figure 3-32. Internal Cache Flush

When the INVD instruction is executed, it will (1) force the internal cache to invalidate
its entire contents. External logic should decode this cycle to (2) cause external cache to
invalidate its entire contents (the external cache should not write its contents back to
memory before the flush).

A combination of software and hardware design must define the behavior of signals used
to control the internal and external cache. For example, in a system with multiple pro-
cessors on the system bus, hardware should propagate the external cache flush indica-
tions to all of the other processors.

3.4.5 Cache Write-Back and Flush Cycle

This special bus cycle, shown in Table 3-14, is like the cache flush cycle except that it
adds a write-back function for external caches. The cycle is invoked by executing the
WBINVD instruction, which causes the assertion of BE3# and the de-asserted of
BEO#-BE2# during a special bus cycle.

When the WBINVD instruction is executed, it will (1) force the internal cache to inval-
idate its entire contents. External logic should decode this cycle to (2) cause external
cache to write its entire contents back to memory, and then (3) cause external cache to
invalidate its entire contents.

Unlike the processor’s internal write-through cache, a write-back cache does not imme-
diately update memory with data received during a write cycle. Instead, each block of the
cache has a bit set in the tag field if the cache contains data more recent than the
corresponding memory area. Only if this block is about to be overwritten is the data it
currently contains written out to memory. This reduces bus activity.

3-65

intel” PROCESSOR BUS

3.5 FLOATING-POINT ERROR CONTROL

Two signals are used to maintain compatibility with DOS floating-point error reporting
schemes:

o FERR# —This output indicates that an unmasked floating-point error has occurred.

o IGNNE# —This input directs the processor to ignore floating-point errors and con-
tinue execution.

On each floating-point instruction (except for the no-wait control instructions), the pro-
cessor checks to see whether the previous floating-point instruction generated an
unmasked numeric exception (overflow, underflow, zero-divide, etc.). If so, the proces-
sor reports the error condition by asserting FERR#. In this respect, FERR# is analo-
gous to the ERROR# output of the 287 and 387 math coprocessors.

If IGNNE# is de-asserted when a floating-point error is detected, the processor will
either stop and wait for an interrupt, or it will jump to the floating-point interrupt
location (vector 16), depending on the state of the NE bit in the machine status register
(CRO). These two methods of invoking exception handlers are the same as in systems
using the 286 processor and 287 math coprocessor, and in systems using the 386 proces-
sor and 387 math coprocessor.

o If the NE bit in CRO is set, the processor raises interrupt 16, the floating-point error
interrupt.

o If NE is clear, the processor stalls and waits for an external interrupt. NE is cleared at
RESET. This is the default.

The default mechanism (NE clear) emulates error-reporting in 8086/8087 systems, and is
supported for DOS compatibility. It requires an external interrupt controller, such as
that shown in Figure 3-33, to monitor the FERR# output and generate the necessary
interrupts (normally to the INTR input). The interrupt controller can allow execution of
floating-point instructions before the error condition is cleared (i.e., within the interrupt
handler), by asserting the IGNNE# input of the processor. When IGNNE# is asserted
(and NE is clear), the processor executes floating-point instructions in spite of pre-
existing error conditions. The IGNNE# input can be asynchronous to the processor’s
clock.

See the i486™ Processor Programmer’s Reference Manual for detailed discussion of
floating-point instructions, numeric exceptions, and exception handlers.

3-66

PROCESSOR BUS

RESET

+5

IGNNE#
INTR 1486™ -
PROCESSOR FERR#
8259A PROCESSOR BUS R]‘
L +—{D al—
1/O SPACE FO CK a#
ADDRESS s
L DECODER —
ool \V/
CK Q#
S
1 F7a

240552i3-33

Figure 3-33. DOS-Compatible Logic for Floating-Point Error Interpretation

3-67

Performance Considerations 4

CHAPTER 4
PERFORMANCE CONSIDERATIONS

4.1 INTRODUCTION

System performance is a key attribute of any computer system. How quickly a program is
run is the common measure of performance. Program performance is a function of many
parameters: CPU speed, clock speed, memory latency, memory data transfer rate, mem-
ory size, disk access time, disk data transfer rate, video access time, compiler efficiency,
operating system efficiency, program algorithms, etc. This chapter will focus on the
memory system parameters that affect performance. External caches will also be exam-
ined as a means of improving memory system performance. Later chapters will give
specific examples of memory and cache designs. To see how other factors affect perfor-
mance, see the i486™ CPU Benchmark Report, February 1990.

Memory system design is important. The 1486 microprocessor is faster than any practical
memory system. It contains a significant amount of logic (e.g., caches, write buffers,
prefetcher) to allow the execution logic to keep operating even with slow external mem-
ories. The on-chip caches and data bandwidth requirements of the 1486 microprocessor
are different than earlier microprocessors. Memory system design should be approached
differently as well. This chapter will describe the memory requirements and bus usage
characteristics of the i486 microprocessor.

4.1.1 Memory Performance Factors

The ideal memory subsystem would operate without wait states. All bus cycles on the
486 microprocessor would complete in only two clocks for single access and five clocks
for cache fill. This is impractical for almost all applications since they would require
huge amounts of 15 ns memory to run at 33 MHz. Practical systems use DRAM of
60-100 ns access times. The 486 microprocessor is designed to effectively use DRAM.
This chapter examines memory system design using DRAM.

There are many different performance options in the design of the memory subsystem
for the 1486 microprocessor. The CPU clock speed sets the maximum possible perfor-
mance. Higher is faster, but it then requires faster memories to keep the whole system
performance scaling at the frequency rate. The 486 CPU is designed to allow overall
performance to increase up to a point with higher clock speed and constant memory
speed.

The most common attribute of memory design is the number of wait states if any
required to read a data item. At 33 MHz, a read operation requires 15 ns memories. For
slower memories with wait states, add 30 ns each to the access time at 33 MHz. Wait
states will exist in practical memory system design. This chapter will examine how they
affect 1486 microprocessor performance.

4-1

intgl” PERFORMANCE CONSIDERATIONS

The 1486 microprocessor adds a new metric to memory design, read transfer rate. It is
important for filling the internal cache of the i486 microprocessor. The 486 CPU can
transfer data from memory on every clock for most read transfers. This is twice the rate
of individual memory cycles. Memory systems supporting this high speed transfer rate
increase performance 10-20% over those without.

A third important attribute is write cycle time. The i486 CPU write-through cache gen-
erates approximately twice as many writes as reads. Write performance is especially
important for 16-bit programs which generate more writes than 32-bit programs. The
cycle time of the write can limit system performance as the total bus usage approaches
the maximum allowed.

N

A common method of improving memory system performance is a cache. The i486
microprocessor has an on-chip cache. It handles most of the read requests. The perfor-
mance gain of an external cache for the i486 microprocessor is less than for the 386™
microprocessor. The performance gain is highly dependent on the application. Some
applications benefit less than 5% with an external cache. Most benefit 10-15% while a
few benefit as much as 40%. An external cache is not required for many i486 micropro-
cessor applications.

A high-performance i486 microprocessor design needs to consider all of these issues in
the memory design. The following sections provide more detail on the activity of the 486
CPU during typical program execution. The memory activity of the CPU needs to be
understood to best design the memory subsystem.

4.2 INSTRUCTION EXECUTION PERFORMANCE

The 1486 CPU was designed to execute instructions in fewer clocks than earlier
Intel386™ family microprocessors. The reduced clock counts increase performance rela-
tive to earlier products. This section will review how the i486 microprocessor accom-
plishes this and compare it to earlier Intel microprocessors.

The instruction execution rate and internal design is important to understand when
designing memory systems. It accounts for the heavy write traffic on the 1486 CPU as
compared to earlier microprocessors. It also explains how memory bandwidth and
latency affect performance.

4.2.1 1486 Microprocessor Execution Times

The 1486 microprocessor uses several techniques to execute many frequent instructions
in a single clock. The chip has-an on-chip code/data cache, five stage pipelined execution
unit, decodes many simple instructions directly into hardware actions, and uses write
buffers to match the execution rate to memory bus speed.

4-2

intel® PERFORMANCE CONSIDERATIONS

One high-level way to examine the impact of these techniques is to compare the execu-
tion time of a typical application. To do so, Intel has measured a set of applications for
the frequency of instruction usage. Based on this we can compare the individual instruc-
tion execution times of the i486 and 386 microprocessors. For each instruction we mul-
tiply the frequency times the clocks required to execute. The sum of the products then
yields the typical number of clocks required to execute an instruction.

Table 4-1 shows such a comparison. The 486 microprocessor requires 1.95 clocks for a
typical instruction while the 386 microprocessor requires 4.919 clocks. This is a 2.5x
improvement for integer programs. The floating-point instructions have an even larger
improvement as discussed later. The numbers in Table 4-1 do not include effects of
cache misses for the 486 CPU.

One implication of these numbers is that the i486 CPU cannot sustain that rate of
execution with the cache disabled. The bus bandwidth required for the 486 CPU with
cache disabled would be 2.5 x that of the 386 CPU. The i486 CPU bus has 60% more
data bandwidth for reads than the 386 CPU, but the same bandwidth for writes. The

Table 4-1. Typical Instruction Mix and Execution Times for the i486™ CPU and
the 386™ CPU

. Percentage i486™ CPU 1486 386™ CPU 386

Instruction Utilization Clocks Accum. Clocks Accum.
Clocks Clocks
Move R,M 16.2% 1.16 0.188 5 0.810
Move M,R 6.9% 1 0.069 2 0.138
Push R 6.1% 1 0.061 2 0.122
Move R,R 5.7% 1 0.057 2 0.114
Move R,| 5.5% 1 0.055 2 0.110
JCC taken 4.6% 3.4 0.156 9.25 0.426
JCC fail 4.5% 1 0.045 3 0.135
ALU2 R,R 4.3% 1 0.043 2 0.086
POP R 4.0% 1.16 0.046 5 0.200
JMP M 2.9% 3.4 0.099 9.25 0.268
ALU2 R,M 2.9% 2.16 0.063 7 0.203
ALU2 M, 2.9% 3.16 0.092 8 0.232
Call 2.8% 3.4 0.095 9.25 0.259
Shift R 2.8% 2 0.056 3 0.084
ALU2 R,| 2.8% 1 0.028 2 0.056
RET 2.7% 5.56 0.150 15.25 0.412
String 2.6% 3.16 0.082 8 0.208
ALU1 R 2.0% 1 0.020 2 0.040
LDS 1.4% 12 0.168 22 0.308
ALU2 M,R 1.3% 3.16 0.041 8 0.104
ALU1 M 1.2% 3.16 0.038 8 0.096
Push M 1.1% 2.16 0.024 7 0.077
NOP 1.1% 1 0.011 2 0.022
Others 11.7% 2.25 0.263 3.5 0.410
Average clocks per. 1.95 4,919
instruction

4-3

H ®
intel PERFORMANCE CONSIDERATIONS

on-chip cache of the i486 CPU handles most (90-95%) of the read requests. The external
bus must handle all of the writes. A later section will examine bus utilization and on-chip
cache hit rates in more detail. :

4.2.2 Application Programs Used in Analysis

For the bus utilization and cache statistics presented later, a series of five programs were
used. Each was traced to record the address access pattern. These patterns were then
used in a cache simulator to measure how many accesses could be handled in the on-chip
cache of the 486 CPU. The cache simulator is an accurate representation of on-chip
cache. External bus traffic was also measured to give bus utilization statistics. An exter-
nal DRAM controller and external cache can also be simulated to measure their effect
on program execution.

The programs represent different types of work. Each was run in the UNIX environ-
ment. Some are 16-bit DOS applications run under a DOS emulator. Each had
16 million memory references recorded.

4.3 INTERNAL CACHE PERFORMANCE ISSUES

The 486 processor is capable of very high speed operations, as fast as 1 CPI for many
common instructions. Since external memory cannot provide data for the CPU every
clock, an on-chip cache that can be accessed very quickly is necessary to enhance the
overall performance. The cache eases the bandwidth differences between the external
bus and the CPU. The size, organization, write policy, miss replacement, and busing of
the 1486 CPU on-chip cache were chosen to support a broad range of applications.

4.3.1 On-Chip Cache Organization Issues

The 1486 processor contains an 8-Kbyte cache on-chip cache. The cache is unified (con-
taining both code and data), and is organized as 4-way set-associative, with four 2-Kbyte
sets. Each set contains 128 lines. Cache lines are 16 bytes long. Lines in the cache are
either valid or not valid. There is no provision for partially valid lines.

Read requests are generated either by program flow (data request) or an instruction
prefetch (code request). The great majority of the time, these requests are usually satis-
fied by the on-chip cache. However, if a cache miss occurs, an external bus request is
generated. For reads to non-cacheable areas of memory, the read is completely normal.
If, however, the read request is to a cacheable portion of memory, then the CPU initiates
a cache bus line fill. Cache line fills require the execution of additional bus cycles in
order to read the remainder of the 16-byte line into the CPU.

Cache line size can impact system performance. If the line size is too large, then the
number of blocks that can fit in the cache is reduced. In addition, as the line length is
increased the latency for the external memory system to fill a cache line increases, reduc-
ing overall performance.

4-4

H ®
intel PERFORMANCE CONSIDERATIONS

However, the i486 processor bus is optimized for a line size of 16 bytes. Since the 486
processor can access four bytes in each bus cycle and the cache lines are 16 bytes long,
four bus cycles are necessary to fill a cache line. To reduce latency of reading cache
lines, the CPU allows for burst cycles. During burst cycles, four bytes of data can be read
into the CPU every clock. With the use of burst cycles, a 16-byte cache line can be read
into the CPU in as few as five clock cycles. Static column DRAMs can be implemented
to support burst cycles to the CPU.

During writes, the main memory update method utilized is the write through policy. All
writes from the i486 CPU will initiate an external bus cycle. In addition, the internal
cache is updated if the address written to is contained in the cache. This policy ensures
consistency between the on-chip cache and the external memory.

4.3.2 Performance Effect of the On-Chip Cache

If all program operations use on-chip resources, the fastest possible execution is
achieved, as the on-chip registers and cache satisty all requests. However, on cache read
misses or any memory write operation, the external bus has to be accessed reducing
system performance.

A hit rate of approximately 95% is realized from the on-chip cache, depending on the
application. The high level of cache hits has three main effects.

1. Performance is improved. The i486 CPU can access data from its on-chip cache
every clock. This high bandwidth allows the execution unit of the 486 processor to
execute many common instructions in one clock.

2. The bus utilization decreases. As a high percentage of reads are satisfied by the
cache, the i486 processor is idle a large percentage of the time. Additional bus
masters can reside in a system without bus saturation and the resulting performance
degradation.

3. The ratio of writes to reads is increased on the external bus. The number of reads is
decreased but the amount of writes remains constant. Therefore, main memory sys-
tems should have low latency on write operations.

Internally, two separate 128-bit wide prefetch buffers interface to the cache unit. These
can be filled with data fetched from the on-board cache or the external memory in one
clock cycle. Because the wide prefetch buffers satisfy multiple prefetches, the usual deg-
radation caused by a combined code cache and data cache scheme is avoided.

To optimize performance during cache line fills, a technique called bypassing is used.
The first cycle of a cache line fill satisfies the original request. Data read in during the
first cycle is sent directly to the requesting unit. Because of this, it is not necessary to
wait for the entire cache line to fill before the requested data can be used.

Figure 4-1 shows the on-chip hits rates for prefetch and read operations when running
the programs shown in Table 4-2.

45

intel® PERFORMANCE CONSIDERATIONS

ON-CHIP CACHE HIT RATES
100.00% —
PREFETCHES
95.00% READS
w 90.00% —
<
o
E
T 85.00% —
a
80.00% — [J
75.00% I I I I '
A B c D E
PROGRAM
240552i4-1
Figure 4-1. Cache Hit Rate for Various Programs
Table 4-2. Programs Used
Name Description
A FRAME Desktop publishing package
B PHONGS4 Small benchmark program
C SUNVIEW Window manager
D INVFRAME Desktop publishing package
E TPASCAL Pascal compiler
F TROFF Text formatter

4.3.3 Bus Cycle Mix with and without an On-Chip Cache

Microprocessors that lack an on-chip cache must devote a significant portion of execu-
tion time to external bus accesses. Code prefetches and data reads must come from the
external memory system; subsequently a high percentage of bus accesses are reads. This
is shown in Figure 4-2 for the 386 DX CPU. Traditional memory systems are optimized
for reads because of this mix of bus cycles.

With the i486 processor’s on-chip cache, however, the high hit rate reduces the number
of external reads. As the on-chip cache implements a write-through policy, the number
of writes to the bus is not reduced. As a result, external bus read cycles are now a minor
portion of the overall bus cycles, as shown in Figure 4-3. For best performance, memory
systems that use the i486 processor should be optimized for write cycles.

4-6

intel” PERFORMANCE CONSIDERATIONS

PREFETCHES

o,
WRITES 36%

22%

\\L~ LL,/’

READS
42%

240552i4-2

Figure 4-2. 386™ DX CPU Bus Cycle Mix without On-Chip Cache

4.4 ON-CHIP WRITE BUFFERS

As previously discussed, low write latency is more critical for i486 CPU systems than in
previous processors. The i486 processor has four write buffers to allow CPU execution
without latency for write operations. The buffers can be filled at the rate of one per
clock cycle until all four are filled.

When all four write buffers are empty and the bus is idle, then a write request propa-
gates to the external bus bypassing the write buffers directly. If the bus is not available
when the write cycle is generated internally, then the write is buffered and propagated as
soon as the bus is available. If a cache hit occurs on a write, then the on-chip cache is
updated immediately.

Writes are normally executed on the external bus in the same order in which they are
received by the write buffers, as in a FIFO. Under certain conditions a memory read can
take priority, and the sequence of external bus cycles can be reordered, even though the
writes occurred earlier in program execution.

4-7

intel” PERFORMANCE CONSIDERATIONS

WRITES
7%

READS
8%

PREFETCHES
15%

240552i4-3

Figure 4-3. i486™ CPU Bus Cycle Mix with On-Chip Cache

A memory read will be reordered before all writes under the following conditions. If all
writes in the buffers are cache hits and the read is a cache miss, then the read is guar-
anteed not to conflict with the pending writes. In this case, the bus cycles can be reor-
dered to allow the read operation to occur before the write buffers have been retired.

486 CPU performance is enhanced because of both the write buffers and bus cycle
reordering. The write buffers decouple the internal execution unit from the bus. Pro-

gram execution can continue without delay of write latency. In addition, reordering
allows program execution to continue in some cases even if some write buffers are filled.

4.5 EXTERNAL MEMORY CONSIDERATIONS

4.5.1 Introduction

A well-designed external memory system is needed to achieve high-performance i486
processor system performance. A system can be designed using different combinations of
SRAMs and DRAMs to provide different price-performance levels. SRAMs have faster

4-8

intel” PERFORMANCE CONSIDERATIONS

access times and do not require precharging between accesses or refresh cycles. DRAMs
offer higher densities and are less expensive, but they require refresh circuitry, and
require the addition of wait states due to the longer access times.

The overall system performance of a high-performance microprocessor system is directly
related to the performance of the memory subsystem. The great majority of bus cycles
are used to access memory for instructions and data. As processor speeds increase, so
does the demand for higher-speed memories because a high-performance processor that
is coupled with a low performance memory offers no better throughput than a low-
performance processor.

The cost of using only fast memories in a system may be prohibitive. Yet as slower
devices are added to lower the overall cost, the performance penalty of added wait states
increases. At frequencies of 25 MHz or more, optimum memory performance can only
be achieved with use of very fast memory devices. However, using only fast memory
devices is uneconomical. Building a system out of slower devices lowers the cost, but the
penalty is lower performance.

The cost performance tradeoff can be compromised by partitioning functions and using a
combination of both fast and slow memories. The most frequently used functions are
placed in a faster memory. A common use of faster memory devices is implementation of
an external cache, built of fast SRAM devices.

Fast SRAM devices have high enough bandwidth to achieve optimum performance. For
high performance and ease of design, the Intel 485Turbocache Module can be used.
Performance of the 485Turbocache Module will be discussed later in this chapter. In
addition, Chapter 6 covers external (second level) cache concepts.

Regardless of the use of an external cache, the external memory system consists of a
combination of EPROM and DRAM devices. EPROM devices tend to have a long
access time. Being nonvolatile, EPROMs are used primarily for initialization routines.
After initialization EPROMs are accessed infrequently. Thus, system performance is not
dependent upon EPROM latency. If a high-level of performance is desired EPROM
contents may be copied to the DRAM memory array. This technique is called
shadowing.

Organization of the DRAM memory array is more critical to system performance.
DRAM optimization techniques can be used to reduce the average latency of accesses to
DRAM devices. Techniques such as static column and interleaving will be discussed.

Several of the memory design concepts described in this chapter depend on the principle
of locality for high performance. The locality principle basically states that when a pro-
gram references a particular location in memory, there is a high probability that nearby
locations will then also be referenced. Caches and paged memory DRAM design tech-
niques offer high performance because of locality.

4-9

intel” PERFORMANCE CONSIDERATIONS

4.5.2 Wait States in Burst and Non-Burst Modes

The i486 processor can execute non-burst cycles in as little as two clocks. These cycles
are called 2-2 cycles, as read and write cycles take two cycles each. The first 2 refer to
read cycle time and the second 2 to write cycle time. Accesses to devices which cannot
respond by the end of the second clock require the addition of wait states. If a wait state
must be added to write cycles, then a 2-3 system is created. The external system gener-
ates RDY# and the RDY# signal is sampled at the end of the second clock. If it is
asserted (low) at the sample time, it indicates that the external system has placed valid
data on the pins for reads, or that the system has accepted the data for writes. Wait
states are inserted by driving RDY# inactive (high) at the end of the second clock.

The 1486 non-burst cycles are very similar to non-pipelined 386 DX CPU cycles. In the
386 DX processor, the read and write accesses can be as fast as two cycles each. Thus,
adding a wait state increases the bus cycle time by 50 percent of the zero wait state bus
cycle time. Overall performance does not degrade in direct proportion to the bus cycle
increase.

To enhance read performance, the 486 processor supports burst cycles. The 486 pro-
cessor bus can burst successive words from memory into the cache every clock. Most
memory reads can be performed in bursts as indicated by the BLAST# pin. The 486
processor keeps the BLAST# output inactive in the second clock of the cycle, indicating
that it is able to perform a burst cycle. The external system indicates that it will initiate
a burst cycle by asserting BRDY#. If BRDY# is not asserted at the second clock, wait
states will be inserted. If a system executes non-burst reads in 2 clocks, burst reads in
1 clock, and writes in 3 clocks, a 2-1-3 system is indicated.

Because of the on-chip cache, the addition of external wait states affects the i486 pro-
cessor’s performance less than previous processors. A wait state in a 386 DX system
incurs a performance degradation of about 20 percent. The i486 processor achieves
optimum performance through a 2-1-2 cycle, zero wait state bus cycle. Adding one wait
state in an 486 processor system causes a performance degradation of only about
6 percent.

The i486 processor can execute an external bus cycle in as little as two clock cycles. For
achieving the optimum system performance, memory accesses must also execute in two
cycles to eliminate wait states. At higher frequencies, however, it is impractical and
cost-prohibitive to implement zero wait states for all of memory.

At 25 MHz, a wait state adds 40 ns to the available access time. While an operation with
one wait state increases the bus cycle time by 50 percent, system performance does not
degrade in direct proportion. The amount of degradation incurred is application depen-
dent and varies with instruction mix, external cache size, and the number of memory
references.

Several DRAM design techniques can reduce wait states and keep system performance
at.a high level using slower memory devices. Three of these techniques, page mode
design, static column and interleaving and their impact on performance are discussed in
Section 4.7.

intel” PERFORMANCE CONSIDERATIONS

4.5.3 Impact of Wait States on Performance

There are many benchmarks used to evaluate the performance of microprocessor sys-
tems. Figure 4-4 demonstrates the performance of i486 processor systems using different
bus cycle implementations. The 100 percent performance level is an 1486 processor with
an external memory that operates a 2-1-2 cycle. The 2-1-2 cycle achieves the highest level
of performance while a 5-1-4 cycle achieves the lowest.

Note that the performance effect of the four on-chip write buffers is apparent. Since
more than 75% of external cycles are writes, write latency due to slower external mem-
ory should impact overall performance more than read latency. However, the on-chip
write buffers reduce the dependence on write latency.

4.5.4 Bus Utilization and Wait States

Figure 4-5 demonstrates external bus utilization versus systems with different wait state
configurations. The percentage figures were calculated by dividing the number of bus
cycles in which the processor required the bus by the total number of bus cycles. A
smaller percentage is better because it indicates that the external bus is accessed less
frequently. In the benchmarks used in this demonstration, the percentages varied from
39 percent for a 2-1-2 cycle system to 90 percent for a 5-1-4 cycle system.

i486™ CPU PERFORMANCE VS. MEMORY LATENCY

100%

95%

90% —

85%

EXECUTION RATE
(NORMALIZED)

80%

75%

21-2 3-1-2 4-1-2 213 313 2:2-2 414 5-1-4

MEMORY LATENCY
EXECUTION CLOCKS FOR DIFFERENT SYSTEMS

240552i4-4

Figure 4-4. Effect of Wait States on Performance

411

intel® PERFORMANCE CONSIDERATIONS

i486™ CPU EXTERNAL BUS UTILIZATION VS. MEMORY LATENCY

100% —

90%

80%

70%

60%

50%

40%

30%

EXTERNAL BUS UTILIZATION

20%

2-1-2 3-1-2 4-1-2 2-1-3 3-1-3 2-2-2 4-1-4 5-1-4
MEMORY LATENCY EXECUTION

240552i4-5

Figure 4-5. Effect of External Bus Utilization versus Wait States

The bus utilization percentage is not critical for single-processor systems. However,
when considering multi-processing systems, the amount of time that each CPU needs the
bus becomes very important. '

4.6 SECONDARY CACHE PERFORMANCE CONSIDERATIONS

4.6.1 Advantages of a Second-Level Cache

As previously described, approximately 90%-95% of the read cycles generated internally
by the 1486 processor will be satisfied by the processor’s on-chip cache. However, the
remaining 5%-10% that miss the internal cache will result in external read bus cycles
being executed. For best system performance, an external (second-level) cache reduces
wait states for these read cycles.

This section will show use of the Intel 485Turbocache Module controller. Performance
benefits with the 485Turbocache Module will be shown. One of the main features of the
485Turbocache Module is its optional use. 486 processor systems can be designed with
one or more 485Turbocache Module empty sockets; if desired, one or more
485Turbocache Modules can be installed into these sockets to increase performance.
Chapter 6 will discuss the 485Turbocache Module design in detail.

4-12

intgl” PERFORMANCE CONSIDERATIONS

Different applications and operating environments will experience varying performance
benefits from use of the 485Turbocache Module. Hit rates for second level caches
depend on the application being executed and the randomness with which the applica-
tion addresses memory. Systems which make extensive use of multitasking should see a
very beneficial gain in system performance with use of the 485Turbocache Module.

4.6.2 The 485Turbocache Module Second-Level Cache

The 485Turbocache Module is a high-performance cache designed for the i486 proces-
sor, which provides 64- or 128-Kbytes of cache depth. Multiple 485Turbocache Modules
can be cascaded to give 256 Kbyte or 512-Kbyte cache depths. The 485Turbocache Mod-
ule is organized as a 64- or 128-Kbyte, 2-way set-associative memory. Like the processor,
the 485Turbocache Module has a line size of four doublewords. On a cache read oper-
ation the address is presented to the 485Turbocache Module, and the tags are com-
pared. If they match, a hit condition has occurred and the data is bursted to the 1486
processor. Data can be sent over in two cycles for the first word, and one cycle for each
of the subsequent three doublewords. This implies the fastest read cycle time for cache
hits on the 485Turbocache Module. For cache misses, the data is fetched from the main
memory, and then sent to both the i486 processor and the 485Turbocache Module. On
write operations, the 485Turbocache Module operates like the 1486 processor’s cache by
updating write hits and not updating write misses. The main memory is updated on all
writes, because of the write-through policy.

4.6.3 System Performance with the 485Turbocache Module

The performance of the 485Turbocache Module is shown in Figure 4-6. The 1.0 level of
performance reflects an 486 processor system that operates with 2-1-2 memory accesses.
For example, a system which has 4-2-4 cycles for page hits and 7-2-5 cycles for page
misses results in less than .6 of optimum (2-1-2) performance with no cache. Adding
256K of external cache and 1 level of write buffering to this system increases the perfor-
mance level to greater than .9 optimum performance.

4.6.4 Impact of Secondary Cache on Bus Utilization

A secondary cache reduces the number of processor reads to main memory, lowering
external system bus utilization. The benefit is more bandwidth available to other bus
master devices like DMA or LAN controllers. Systems with multiple CPUs are sensitive
to the amount of bus bandwidth used by each CPU. Note that with a write-through
cache the minimum bus bandwidth is the number of writes performed.

4.7 DRAM DESIGN TECHNIQUES

An efficient DRAM memory design is needed for a high-performance 1486 CPU system.
For some applications, the principle of locality will not be as applicable. A common
technique used to improve performance with DRAMs uses the commonly seen attribute

4-13

integl® PERFORMANCE CONSIDERATIONS

485TURBOCACHE MODULE PERFORMANCE DATA, WITH 1 WRITE BUFFER
[Jises™ cpu witHouT 82C6 [iff] 128K
7] 64K Bl 2sex

1.0 —

0.9 —
X 08—
o
g
2 07— o [
&
S
=0
3 [
=z
3
E 05—
o
'
['4
w
o 04—
w
>
=
E 0.3 —
(4

0.2 —

0.1 —

0.0 |

3-1-3 PAGE HIT) 5-1-4 4-2-4 PAGE HIT
7-1-5 PAGE MISS 7-2-5 PAGE MISS
240552i4-6

Figure 4-6. 485Turbocache Module Performance Data with 1 Write Buffer

of locality of reference in programs. This works well with the fast access modes offered
by DRAMs using the same row address. As a result, system performance will be more
dependent upon DRAM latency.

Normally, a DRAM access is made by first asserting RAS# (Row Address Strobe) to
latch the presented row address into the DRAM device. As the DRAM devices have
multiplexed address pins, the address must then be externally switched to present the
column address. Finally, the CAS# (Column Address Strobe) is asserted to latch the
column address and enable the DRAM output buffers. Refer to the Memory Design
chapter for specific details of memory accessing.

The simplest DRAM design offers a fixed number of wait states for each access. As an
example, a system could be designed such that all DRAM accesses occur in six clocks.

4-14

H ®
intel PERFORMANCE CONSIDERATIONS

However, many DRAMs offer special modes of operation based on the policy of updat-
ing the row address which have higher performance. Some of these modes and their
impact on performance are discussed below.

4.7.1 Static Column Design

A static column design partitions a DRAM array into physical pages of memory. Each
page corresponds to a series of column addresses using the same row address. The
memory page size depends on size of the memory used, and its row addresses. The first
access into a page occurs as a normal access, with RAS# asserted followed by CAS#
asserted. If the next access occurs to the same page in memory, then it is not necessary
to update the row address. The previous row address remains latched in the DRAM. As
the CPU drives a new address for the next access, the column address changes and the
DRAM data outputs are driven with the corresponding data. It is not necessary to
negate and reassert the CAS# signal for DRAMs that support static column design.

The use of static column DRAM:s is particularly useful for high-speed burst cycles. As
burst cycles will always be to the same memory page, designs may be implemented with
static column DRAMs to provide one clock burst cycle.

Static column designs may use multiple banks of memory. For example, Figure 4-7 shows
a static column memory map with four banks. The banks use the same RAS# signal, and
the page size is effectively quadrupled. Consecutive accesses within the same row
address to any bank results in high-speed accesses.

ADDRESS ASSIGNMENT

512 ROWS ROW = 4 KBYTES

PAGE = 1 KBYTE

P0|19|18I17|1el15|14|13|12|11|1o|9Ia|7|5|5|4|3 |2|1I0J
L | | -
! I | L

ROW SELECT BANK PAGE INDEX BYTE
SELECT SELECT

240552i4-7a

Figure 4-7. Static Column Memory Map (Part 1 of 2)

4-15

PERFORMANCE CONSIDERATIONS

XXFFFH

xxCOO0H

xx800H

Xxx400H

CURRENT ACCESS

xx000H

NEXT ACCESS
OCCURS AT

0 WAIT STATES
IF IN SAME PAGE

ROW 0
ROW 1
ROW 2
ROW 3

©ON © O O -
;;Nnvm 838855
§335383 835333
[L EEECECRE
? wl;
é BANK 3
[,L
a)
%‘ BANK 2
é (L
I I,;l)
| g BANK 1
é (L
P\ 1]
I KA BANK 0
MEMORY
l b PaGE
0 IQIJ (b
77
<
E
[o]
-3

1 PAGE = 1000H BYTES

NOTE: ONE RAS IS SENT TO ALL 4 BANKS.

BYTE
7FFFFF

240552i4-7b

Figure 4-7. Static Column Memory Map (Part 2 of 2)

4-16

intgl” PERFORMANCE CONSIDERATIONS

Note that 1486 processor systems which use page memory techniques will experience
lower page hit percentages than similar designs on the 386 CPU. Because of the on-chip
cache of the i486 processor, the external bus cycles which occur will tend to be more
randomly distributed throughout memory, reducing page hit percentage. However,
writes will continue to show the same degree of locality as in a 386 SX microprocessor
system.

4.7.2 Interleaving

A more complicated DRAM design technique is called interleaving. Interleaving is pos-
sible when more than one memory bank is used. Effective implementation of interleav-
ing brings higher performance to a design. Specific memory design issues will be
discussed in Chapter 5.

Interleaving controls each bank separately. As an access is occurring, the other (non-
accessed) banks are being readied for their next access. Interleaving can help provide
fast burst accesses for designs. In addition, another use of interleaving is to hide the
RAS# precharge time, which is incurred on page misses for paged memory designs. As
the number of banks is increased, the chances for hiding the precharge time is increased.
As a result, the performance is increased with additional banks.

Figure 4-8 demonstrates the performance differences between an interleaved system
supporting one clock bursting and a non-interleaved system in two applications. The

i486™ CPU PERFORMANCE VS. INTERLEAVING

100 T

APPLICATION A
INTERLEAVED

PERFORMANCE
@
=1

®
APPLICATION B
INTERLEAVED
— APPLICATION A []
NON-INTERLEAVED
[)

APPLICATION B
NON-INTERLEAVED

240552i4-8

Figure 4-8. Performance in Interleaved and Non-Interleaved Systems

4-17

intel® PERFORMANCE CONSIDERATIONS

performance levels are measured with respect to a zero wait state (2-1-2 bus). Interleav-
ing can add as much as 15% to system performance.

4.7.3 Impact of Performance for Posted Write Cycles

In an i486 processor system, the on-board cache reduces the external read cycles so that
as much as 77 percent of the external bus cycles are write cycles. In program execution,
writes occur in strings of two, about 60 to 70% of the time. Writes occur in strings of 3,
40-50% of the time. The DRAM subsystem must be optimized for write strings; one
method is to support posted writes with write buffers. Posting writes means that RDY #
is returned to the CPU before the write transaction is completed. This avoids the CPU
depending on the write latency time. This is discussed further in the Memory Subsystem
chapter. Figure 4-9 demonstrates the performance in two different applications and
shows the improvement gained by using posted writes.

4.8 FLOATING-POINT PERFORMANCE

4.8.1 Floating-Point Execution Sequences

The floating-point unit on the i486 processor contains the logic to execute the floating-
point instruction set that is 100% binary compatible to the 387™ DX math COprocessor

80 —

APPLICATION D WITH

POSTED WRITES
] ®
w
Q APPLICATION D WITHOUT
g POSTED WRITES
£ 60 —
5] APPLICATION C WITH ®
£ POSTED WRITES
a ®
APPLICATION C WITHOUT
POSTED WRITES
40 — ®

i486™ CPU PERFORMANCE VS. OPTIMIZED WRITE

240552i4-9

Figure 4-9. Performance in Systems with and without Posted Writes

4-18

intel” PERFORMANCE CONSIDERATIONS

(387 DX NPX). The floating-point unit operates in parallel with the arithmetic and logic
unit, and provides arithmetic functions and transcendental functions. The enhanced
floating-point unit provides three to four times the performance of the math coprocessor
387 DX NPX.

The on-chip floating-point unit has a multiplier that operates on eight bits per clock
cycle, as opposed to two bits per clock cycle in the 387 DX NPX. An overlap of floating-
point instruction execution and non-floating point instruction execution increases the
overall throughput.

The floating-point unit can take advantage of pipelined instruction execution. Within the
1486 processor, the floating-point instructions share the microcode ROM with integer
instructions. However, floating-point operations do not utilize the microcode ROM after
the operation has been prepared for execution. For example, only the first three clocks
of the floating-point add, multiply and divide instructions use the microcode ROM.
After the third clock, the floating-point unit completes the operations independently,
and the microcode ROM can be utilized by non-floating point instructions.

Another feature that enhances performance is an efficient on-chip interface. The
386 DX CPU and the 387 DX NPX communicate asynchronously. The 486 CPU com-
municates with its on-chip floating-point unit synchronously allowing higher
performance.

The 486 CPU’s on-chip cache dramatically speeds floating-point loads and stores. For
the 386/387 CPU, instructions such as FLD (floating-point load) will take 14-20 clock
cycles if any external memory addressing is required. Once operands are on the internal
stack, it takes 23 to 31 cycles to execute the floating-point add instruction, depending on
the value of the operands. Finally an external memory store can take up to 11-44 cycles.

Because the floating-point unit of the i486 processor is integrated, the entire operation
executes in fewer cycles. Data from the external memory can be cached. After that it can
be accessed by the floating-point unit, and loaded into the stack in three cycles on a
cache hit. The floating-point add instruction takes between 8 to 20 cycles depending on
the value of the operands. Finally the store instruction takes 7 clocks.

Because the i486 processor provides a higher performance not only for floating point
loads and stores, but also for floating-point compute operations, a 3x to 4x performance
boost is realized for numerics-intensive routines. A large portion of the performance
improvement is attributed to the fact that synchronous floating-point transfers occur
on-chip.

4.8.2 Performance of the Floating-Point Unit

To achieve three to four times the floating-point performance of the 387 DX NPX, the
i486 processor’s floating-point circuitry has been enhanced to reduce the number of
clock counts needed to execute frequently used instructions. Also, the interface to the
processor’s registers and buses is much more efficient since all of the interacting units
are on the same chip.

intgl®

PERFORMANCE CONSIDERATIONS

Table 4-3 compares the number of clock counts per instruction on the 387 DX math
coprocessor with the floating-point unit of the i486 processor.

The Whetstone benchmark measures the performance of processors executing floating-
point multiplication, addition, subtraction, division, exponential and trigonometric
instructions. Both single-precision and double-precision operations are exercised. The
Whetstone benchmark also measures overall floating-point and integer performance by
duplicating the type and frequency of floating-point and integer operations used in more
than 100 scientific programs.

Figure 4-10 shows the results of Whetstones performance simulations on the 386 DX
processor and the 486 processor. As seen here, a 25-MHz 486 processor significantly

outperforms a 33-MHz 386/387 processor in floating-point operations.

Table 4-3. Floating-Point Instruction Execution Comparison

Clock ‘ Counts

Clock Counts

Floating divide

Instruction 387™ DX 1486™ CPU
Coprocessor -
FLD-Load 14 3
FST-Store 11 3
FADD/FSUB
- Floating ADD/SUB 23-31 . .8-20
FMUL
Floating multiply 29-57 16
FDIV 88 7a

4-20

PERFORMANCE CONSIDERATIONS

386™ DX CPU/i486™ CPU WHETSTONE PERFORMANCE

6 — [J sINGLE PRECISION
[l bouBLE PRECISION

5 —
2 4
]
w
w
4
o
=
(7]
53—
I
3
=

2]

1 ——

0

386 DX CPU 386 DX CPU/ i486 CPU
387™ DX NPX 387 DX NPX 25 MHz
25 MHz 33 MHz
PROCESSOR

240552i4-10

Figure 4-10. Whetstone Performance of the 386™ CPU and the i486™ CPU

4-21

Memory Subsystem Design 5

"CHAPTER 5
MEMORY SUBSYSTEM DESIGN

5.1 INTRODUCTION

The i486™ CPU contains several improvements over its predecessor, the highly success-
ful 386™ CPU. One of the most important of these is the processor’s data access rate.
The i486 CPU can access instructions and data from its on-chip cache in the same clock
cycle. To support the processor’s redesigned internal data path, the external bus has also
been optimized and can access external memory at twice the rate of the 386 CPU. The
internal cache requires rapid access to entire cache lines. Invalidation cycles must be
supported to maintain consistency with external memory. All of these functions must be
supported by the external memory system. Without them, the full performance potential
of the CPU cannot be attained.

The requirements of todays multitasking and multiprocessor operating systems also put
increased demand on the external memory system. OS support functions such as paging
and context switching can degrade reference locality. Without efficient access to external
memory, the performance of these functions is degraded.

Second-level caching is a technique used to improve the memory interface. Some appli-
cations, such as multiuser office computers, require this feature to meet performance
goals. Single-user systems, on the other hand, may not warrant the extra cost. Given the
variety of applications incorporating the 486 CPU, memory system architecture will be
very diverse.

In this chapter, we will work with an example to discuss the details of memory system
design. In the example, we have supported as many functions of the CPU as possible. An
optional second-level cache is included. A write buffer is also implemented to reduce
write latency. The cache supports zero wait state read cycles. The DRAM controller
supports the following devices with the wait states shown in Table 5-2. The DRAM
speed given in Table 5-1 is the RAS access time (tRAC). Table 5-2 summarizes the bus
clocks required for each function.

Many of the functions and optimizations included here will not be required in every
application. The example provides guidelines for the hardware designer but will not
necessarily provide the optimal cost/performance solution for many applications. For
example, 11 PLDs are required to implement the memory control logic partially due to
the implementation of a back-off capability. An address register must also be used to

Table 5-1.. DRAM Device Requirements

CPU Clock Frequency DRAM Speed
25 MHz 100 ns
33 MHz 70 ns

5-1

intel” MEMORY SUBSYSTEM DESIGN

Table 5-2. Clock Latencies for DRAM Functions

. First Subsequent .
DRAM Function Access Burst Burst Accesses Write Cycles
Page hit 3 1 2
Page miss 7 1 5*

*Latency only incurred for back-to-back cycles.

implement this function. If this function is not used, the control logic can be substantially
reduced. These and other optimizations will be discussed in the summary of this chapter.
The design has been tested as a prototype, however, it may be used as shown in
Appendix B.

The discussion assumes a working knowledge of computer systemn design. Items dis-
cussed but not explained include DRAM operation, PLD programming and operation,
worst-case timing analysis and 486 CPU bus operation. The complete schematics and
PLD equations are included in Appendix B.

5.2 PROCESSOR AND CACHE FEATURE REVIEW

The improvements made to the CPU bus interface obviously impact the memory sub-
system design. It is important to understand the impact of these features before attempt-
ing to define the system. This section is a review of the bus features which affect the
memory interface. The features and their impact on memory system design is discussed.

5.2.1 The Burst Cycle

The i486 CPU’s burst bus cycle feature has more impact on the memory logic than any
other feature. It is the most significant departure from previous bus architectures. A
large portion of the control logic is dedicated to supporting this feature. The second
level cache control is also primarily dedicated to supporting burst cycles.

To understand why the logic is designed this way, we must first understand the function
of the burst cycle. Burst cycles are generated by the CPU if, and only if, two events
occur. First, the CPU must request a cycle which is longer in bytes than the data bus can
accommodate. Second, the BRDY# signal must bé activated to terminate the cycle.
When these two events occur a burst cycle will take place. Note that this cycle will occur
regardless of the state of the KEN# input. The KEN# input’s function is discussed in
the next section.

With this definition we see that several cases are included as “burstable.” Some exam-
ples of burstable cycles are listed in Table 5-3. These cycle’s length is shown in bytes to
clarify the case listed.

5-2

H ®
intel MEMORY SUBSYSTEM DESIGN

Table 5-3. Access Length of Typical CPU Functions

Bus Cycle Size (Bytes)
All code fetches 16
Descriptor loads 8
Cacheable reads 16
Floating-point operand loads 8
Bus size 8 (16) writes 4 (Max.)

The last two cases show that write cycles are burstable. In the last case a write cycle is
transferred on an 8- or 16-bit bus. If BRDY# is returned to terminate this cycle the
CPU will generate another without activating ADS#.

Using the burst write feature has debatable performance benefit. Some systems may
implement special functions which benefit from the use of burst writes. However, the
i486 CPU does not write cache lines. Therefore, all write cycles are 4 bytes long. Also,
most of the devices which use dynamic bus sizing are read only. This fact further reduces
the utility of burst writes.

Due to these facts, the design example used here does not implement burst write cycles.
In fact, the BRDY# input is only asserted during main memory read cycles. RDY# is
used to terminate all memory write cycles. RDY# is also used for all cycles which are
not in the memory subsystem or are not capable of supporting burst cycles. The RDY#
input is used, for example, to terminate an EPROM or 1/O cycle.

5.2.2 The KEN# Input

The primary purpose of the KEN# input is to determine whether a cycle is to be cached.
Only read data and code cycles can be cached. Therefore, these cycles are the only cycles
affected by the KEN# input.

Figure 5-1 shows a typical burst cycle. In this sequence the value of KEN# is important
in two different places. First, to begin a cacheable cycle KEN# must be active the clock
before BRDY# is returned. Second, KEN# is sampled the clock before BLAST# is
active. At this time the CPU determines whether this line will be written to the cache.

The state of KEN# also determines when read cycles can be bursted. Most read cycles
are initiated as 4 byte long from the CPU’s cache unit. When KEN# is sampled active
the clock before BRDY# or RDY# is returned, the cycle is converted to a 16-byte cache
line fill by the bus unit. This way, a cycle which would not have been bursted can now be
bursted by activating BRDY#.

. ®
intel MEMORY SUBSYSTEM DESIGN

T T2 T2 T2 T2

T/

BLAST # \
_——/SAMPLED
HERE AND
KEN # \ y'd &~ HERE

DATA X 1 X 2 X
BRDY # _/ \

N =N

240552i5-1

Figure 5-1. Typical Burst Cycle

Some read cycles can be bursted without activating KEN#. The most prevalent example
of this type of read cycle is code fetches. All code fetches are generated as 16-byte cycles
from the CPU’s cache unit. So, regardless of the state of KEN#, code fetches are always
burstable. In addition, several types of data read cycles are generated as 8-byte cycles.
These cycles, mentioned previously, are descriptor loads and floating-point operand
loads. These cycles can also be bursted at any time.

It’s obvious that the use of the KEN# input affects performance. The design example
used in Figure 5-1 illustrates one way to use this signal effectively.

The primary concern when using KEN# is generating it in time for zero wait state read
cycles. Most main memory cycles will be zero wait state if a second level cache is imple-
mented. In this example, the main memory is one wait state during most read cycles. Any
cache access will take place with zero wait states. KEN# must, therefore, be valid during
the first T2 of any read cycle.

Once this requirement is established, a problem arises. Decode functions are inherently
asynchronous. Therefore, the decoded output which generates KEN# must be synchro-
nized. If not, the setup and hold times of the CPU will be violated and internal metasta-
bility will result. With synchronization, the delay required to generate KEN# will beat
least three clocks. In this example 4 clocks are required. In either case the KEN# signal
will not be valid before BRDY# is returned for zero or one wait state cycles.

5-4

intgl” MEMORY SUBSYSTEM DESIGN

This problem is resolved if KEN# is made normally active. Figure 5-2 illustrates this
function. In this diagram KEN# is active during the first two clocks of the burst cycle. If
this is a data read cycle, KEN# being active at this time causes it to be converted to a
16-byte length. The decode and synchronization of KEN# takes place during the first
two T2 states of the cycle. If the cycle turns out to be non-cacheable, KEN# will be
deactivated in the third T2. Otherwise KEN# will be left active and the data retrieved
will be written to the cache.

Some memory devices may be slow enough that 16-byte cycles are undesireable. In this
case more than three wait states will exist. The KEN# signal can be deactivated prior to
returning RDY# or BRDY# if three or more wait states are present. As a result these
slow cycles will would not be converted to 16-byte cache line fills.

5.2.3 Bus Characteristics

The internal cache causes other effects which impact the memory subsystem design.
Perhaps the most obvious of these is the effect on bus traffic. The fact that the internal
cache uses the write-through policy dramatically increases the number of write bus
cycles. Figure 5-3 illustrates this effect. The chart on the left shows the bus cycle mix for

T T2 T2 T2 T2

) —e
BLAST # / | /"

SAMPLED

KEN # ; i / s :235 J
DATA X[X 2 X_ 13 X_ LX
A

BRDY # ___/ \

240552i5-2

Figure 5-2. Burst Cycle: KEN# Normally Active

5-5

intgl® MEMORY SUBSYSTEM DESIGN

12.79%

21.65% 35.90%
12.37%
B WRITE B WRITE
B PREFETCH B PREFETCH
[rReaD [rReaDp
42.45% 74.84%
386™ BUS CYCLE MIX 486™ BUS CYCLE MIX

240552i5-3

Figure 5-3. 386™ Bus Cycle Mix/486™ Bus Cycle Mix

an application executed with the 386 DX CPU. The chart on the right shows the same
application executed with the i486 CPU. The percentage of write bus cycles jumps to
70% from 30% when this application is executed with the i486 CPU.

It seems intuitively obvious that many of these write cycles would be consecutive. In fact,
70% of all write cycles are consecutive. Furthermore, 50% of all write cycles occur three
in a row. It is obvious from these statistics that optimizing the memory subsystem for
write cycles can improve performance. But it is important to optimize the memory sys-
tem for consecutive write cycles. Improving individual write cycle latency will not buy
much performance if subsequent write cycles suffer.

A technique called write posting proves ideal for this purpose. This technique allows
consecutive write cycles to be overlapped. It also allows write cycles to be overlapped
with second level cache cycles and reduces overall write miss latency. The technique of
write posting is discussed in Sections 5.3.1 and 5.4.3.

Using the write posting technique adds complexity to the system logic. It is therefore
valid to ask what performance improvement is gained by using this technique. This ques-
tion is especially pertinent when we consider the logic already implemented in the 486
CPU to improve write performance. The internal i486 write buffers decouple the proces-
sor execution unit from the external bus.

Analysis has shown that, in general, 6% degradation in performance can be expected for
every additional wait state added to write cycles. This analysis was performed by mea-
suring the CPU clocks required to execute several applications.

The same analysis has shown that write posting reduces average write latency to 2.5
clocks. Without write posting average write latency is 4 clocks. From this data we can
conclude that approximately 9% performance improvement can be obtained by using

5-6

H ®
intel MEMORY SUBSYSTEM DESIGN

write posting. This improvement may increase due to other affects. These affects, such as
overlapping write cycles with cache reads, are discussed in subsequent sections of this
chapter.

5.2.4 Second-Level Cache

Several different types of second-level cache architectures are possible candidates for
use with the 1486 CPU. For single CPU systems the different architectures offer similar
performance benefits in most cases. The reason they are so similar is the mechanism
which improves performance. The primary benefit of the second level cache is bus cycle
latency reduction.

In most systems which incorporate a single i486 CPU, bus traffic from other bus masters
is minimal. With any reasonable memory system the CPU uses at most 50% to 70% of
the bus. Therefore reduction of bus cycle latency is the only performance benefit exter-
nal logic can offer.

The second-level cache used in this example is an economical method of reducing read
cycle latency. The 485Turbocache Module contains the control circuits, data and tag ram
required to implement a 128K byte cache. It is organized as a two way set associative
cache. Modules can be cascaded to provide up to 512K bytes of cache memory. This
device is described completely in Chapter 6.

One of the most interesting aspects of this device is it can be a system option. To provide
this capability the device is configured as a look-aside cache. It monitors the CPU
address and control signals. When a cycle occurs in which the cache can supply data, it
intervenes. The cache module then supplies an entire 16-byte line with no wait states.

The performance improvement offered by this cache is substantial in some environ-
ments. This performance improvement is particularly obvious when executing multitask-
ing, multiuser operating systems such as UNIX and OS/2. Some users, however, may not
require the performance improvement offered by the cache. In these cases the cache as
an option is attractive.

By designing the cache subsystem as an option both users requirements can be met. A
single system design can be manufactured for both customers. The UNIX or OS/2 user
can add the cache module. Other users may or may not require the module. They can
choose the system configuration which meets their price-performance needs.

A few functions must be considered when using the 485Turbocache Module as an
option. First, the DRAM logic must be capable of handling cache intervene cycles. To
perform this function it must monitor one of two signals. The activation of the
BRDYO# or START signals indicates the cache’s intention to intervene. When these
signals are active, the DRAM control logic must ignore the current read cycle.

Second, several cache signals must be combined with CPU signals for proper operation.

The cacheability indicator signals, SKEN# and CKEN#, are two of these. These signals
can be combined with the CPU’s KEN # signals in two ways. If SKEN# is connected to

5-7

intgl” MEMORY SUBSYSTEM DESIGN

a separate decode signal, some memory can be made non-cacheable in the CPU’s cache
while it is cacheable in the 485Turbocache Module. Alternatively, the SKEN# and
KEN# inputs may be connected together. In this configuration, all cacheable memory
can be contained in either cache. Figure 5-4 shows the proper connection of these sig-
nals for both configurations.

The last function required is the combination of the BRDYO# signal. BRDYO# must
be combined with other system burst ready signals to create the CPU BRDY# input.
These three logic functions are all that is required for proper operation of one module.
Additional functions are required for use of more than one module. Other configura-
tions also require additional logic. All configurations will require the three functions
listed above. These are the only functions which have been tested in this example. Fur-
ther discussion on 485Turbocache Module system configurations are discussed in
Chapter 6.

5.3 DRAM INTERFACE OVERVIEW

The i486 CPU bus interface unit integrates several functions which improve the memory
access rate. These features must be supported by the memory subsystem to provide the

DECODE ——> SYNCHRONIZER SKEN# 5 CKEN#
KSELY > (TO 485TURBOCACHE
MODULE)
KEN#
(TO PROCESSOR)
CKEN#
(FROM 485TURBOCACHE
MODULE)
CKEN#
(FROM 485TURBOCACHE
MODULE)
FROM KEN# KEN# '
DECODE ——> S (TO PROCESSOR)
KSEL# SYNCHRONIZER
CESKEN#
KCGSEL# ——> S (TO 485TURBOCACHE
MODULE)
240552i5-4

Figure 5-4. KEN# Logic for Second-Level Cache

5-8

H ®
intel MEMORY SUBSYSTEM DESIGN

intended performance benefit. They are supported by the memory subsystem example
described in this chapter. The example also includes logic support for a second-level
cache. An overview of the subsystem is presented in this section. Details of the function
and logic design of this subsystem are presented in later sections.

This subsystem follows a moduler design. Only minor changes to particular logic sections
are needed to implement variations. For instance, the PLD which generates the CAS#
signal needs only minor changes to support Static Column mode DRAMs. It is also
simple to implement a non-interleaved DRAM controller based on this design.

Other possible optimizations will be pointed out throughout the chapter. This first sec-
tion summarizes only the features and functions present in the design example presented
in this section.

5.3.1 Functional Blocks

Two common design techniques are employed in interfacing the i486 CPU to DRAMs.
The first, interleaving, is used to support the burst bus feature. The second, write post-
ing, is used to reduce write cycle latency. Both techniques improve performance, and
without them, performance is degraded by the access requirements of currently available
DRAMs.

Interleaving can be implemented in several ways. Here, alternate 32-bit DRAM banks
are accessed. The bank accessed is determined by the value of A2. In this way, even
DWORDs (A2=0) are stored in one bank while odd DWORDs (A2=1) are stored in
the other. When data is retrieved from memory during a cache line fill, cycles are over-
lapped to allow single clock DWORD accesses. Timing of this operation is detailed in the
next section.

A multiplexor alternates data flow between the DRAM banks and the appropriate data
path is selected according to the value of A2. The multiplexor prevents bus contention.

Write posting, bus cycles are again overlapped to reduce latency. Figure 5-5 illustrates
how this technique is applied within the write cycle. The RDY# signal terminates the
cycle in the clock after ADS# becomes active. This creates a zero wait state write cycle,
the fastest possible.

When the cycle terminates, however, data must still be written to memory. A delay
allows additional DRAM access time. Figure 5-5 shows that data is actually written to
memory two clocks after RDY# is returned to the CPU. The CAS# signal completes
the write cycle four clocks after it is started by the CPU.

Write data and address registers support the posted write function by holding write data
and address after RDY# is returned to the CPU. These registers are required to allow
the CPU to start another cycle immediately following the first (see Figure 5-5). ADS# is
activated in the clock after RDY# is returned to the CPU. This cycle starts before the
first is complete, and the cycles overlap by two clocks.

5-9

intel® MEMORY SUBSYSTEM DESIGN

11
ADS # _L/
|
]
1

PROCESSOR t
ADDRESS X___[CYeLE

1
|
|
ADDRESS [, cverez
| CYCLE 1 CYCLE 2
| DATA TO DRAM DATA TO DRAM
I | J
L i
cas# A S/
RDY # RETURNED
TO PROCESSOR

240552i5-5

Figure 5-5. Write “Posting”

In effect the write cycle completes in two clocks. Write cycles can be overlapped in this
manner indefinitely. The timing and logic required to support this function is described
in Section 5.4.3.

Address registers also support invalidation with the AHOLD signal. They are required if
AHOLD is activated when bus are cycles in progress to hold the current address while
the bus cycle completes.

The efficient CPU interface and invalidation support make this DRAM subsystem well-
suited for use with an optional cache. The memory system includes specific functions
designed to support the optional 485Turbocache Module (see Chapter 6). The sub-
system supports 256K X 4 and 1 Mbyte X 1 DRAM configurations. The minimum
memory configuration is 2 Mbytes with 256K x 4 devices; the maximum is 16 Mbytes
with 1 Mbyte X 1 devices. Additional banks can be added to increase the memory
capacity.

5-10

intel” MEMORY SUBSYSTEM DESIGN

The control logic for this example is implemented with EPLDs. The modular approach
allows quick modification so that the example can be tailored for specific implementa-
tion requirements.

The control state machine is distributed among the various EPLDs, and each functional
block receives control input from other blocks. In addition most of the functional blocks
are implemented as state machines.

Figure 5-5 is a top level block diagram of the memory system. This diagram depicts the
sections of logic that will be described subsequently. We will first discuss the address
path logic.

5.3.2 Address Path Logic

Unlike processors without on-chip caches, the address bus of the i486 processor is bidi-
rectional. The address pins serve as inputs whenever external memory is changed by
DMA or another CPU. The address is driven into the CPU to invalidate the correspond-
ing cache entry if present.

Invalidation of the i486 CPU’s internal cache can be performed in several different ways.
This example supports invalidation cycles during a memory access.

As described in the previous section, AHOLD is used to perform the invalidation func-
tion. AHOLD tristates the 486 address bus. Address registers must be used to hold the
address to allow the current bus cycle to be completed. These registers hold the current
address when AHOLD is activated.

The registers shown in Figure 5-6 hold the entire row and column address, as well as the
current byte enables and control definition. These signals are latched at the rising clock
edge of the first T2 of a bus cycle. They must be held from this edge to allow zero wait
state write cycles. See Section 5.4 for a more detailed discussion of the individual cycles.

Registers with enable inputs are needed. The enable input can select the CLK edge
appropriate for latching the address and control state. The control logic generates the
enable signal ALD which disables the CLK input of the registers during a bus cycle.
When ALD is active (High) the current row and column addresses are held in the
registers. 74AS823 registers have enable inputs and are used in this example.

An additional address register is required for posted write cycles. This register holds the
write column address. The address is latched only on write cycles and is held until the
write cycle completes at the DRAM.

Separate write and read address paths are implemented with a 3 to 1 address multi-
plexor. The read address path is required to meet the timing of a three CLKs read cycle.
In this case the read address must propagate through the address mux one CLK sooner
than the write address. If the initial read access is 4 CLKs long the read and write
address paths can be combined. See Section 5.4.1 for a complete description of read
cycle timing. The third address path is for the row address.

5-11

H ®
intel MEMORY SUBSYSTEM DESIGN

ADDRESS LOGIC
RAS# TODRAM
DELAY
\ BURST ADDRESS
PA13 [sorer > BOA3
oxs ADD > B1A3
LoGic | MUXENO
LST#
READ 1 4
ADDRESS
AL
D# MUX DADDRO
8 T
o
MUXEN1 b
J , Y n
COLUMN 'el
ADDRESs —>| REG REG MUX DADDR1
PAGLPAI2 coL PIPE 8
WRITE
¥ ADDRESS
A
ROW
EG
ADDRESS :ow
PA13-PA22 8
ADDRESS HIT#
CLK COoMP > TOPLD
6311
240552i5-6

Figure 5-6. Address Logic

A delay line is used to meet the row address DRAM hold time requirement (tRAH).
The RAS# signal is delayed 20 ns to create the DRAS# signal. This signal is used as the
multiplexor path select input. When DRAS# is inactive (high) the multiplexor always
selects the row address path. When DRAS# is active (low) the mux enable signal
(MENO# or MEN1#) controls whether the read path or the write path is selected.

The comparator and register combination is connected to the row address path to gen-
erate the HIT# signal. This signal indicates that the current cycles address is in the same
DRAM row as that of the previous cycle and also determines whether RAS# will be
deactivated.

In this example a standard component designed specifically for this purpose isused. This
component contains a register and a comparator. The register in this component holds
the previous row address. When a bus cycle occurs to a new DRAM row, the new row
address is latched. The RALE signal enables the row address latch.

5-12

H ®
intel MEMORY SUBSYSTEM DESIGN

The timing of this component meets the requirements of a 33-MHz CPU clock. Discrete
registers and comparators can be used to improve the timing of the HIT# signal, if
desired.

The last important address logic component is the burst address generator. This state
machine generate A3 and A2 during burst accesses and is needed to achieve zero wait
state performance during burst cycles. It predicts the value of A2 and A3. Section 5.4.2
contains a complete description of the burst cycle timing.

Note that because interleaving is used, A3 is the lowest order DRAM address. Two A3
equivalent signals are generated. One for Bank 0 (BOAO) and one for Bank (B1A0).
These signals are connected directly to the DRAM devices to meet critical timing
requirements. The signals must also reflect the lowest order row address during miss
cycles. As a result Al3 is, therefore, an input to this logic. It is the lowest order row
address when 1 MB x 1 DRAMs are used.

5.3.3 Data Path

A2 must also be predicted during burst read accesses. For this purpose, the burst
address logic creates the DATASEL signal. DATASEL reflects the value of A2 for each
access of a burst cycle and is used to control the data multiplexor as shown in Figure 5-7.

During burst cycles, the data multiplexor alternates between the bank 0 and bank 1 data
paths. A2 must alternate states each clock for interleaving to function properly. The i486
CPU’s burst address sequence is defined such that A2 changes state on every access (see
Chapter 3).

A2 also selects the bank to which data is written. Data path logic is not involved in
steering data during writes. Figure 5-7 shows separate data registers for each bank.
Separate registers are only required to keep the data paths separate. These registers
hold the same write data on every write cycle. The CAS# and WE# (write enable)
signals control doubleword and byte steering.

Because of write data timing, the data registers must have the enable function (see
Section 5.2.2). This function, can be used to select the clock upon which data is latched.
The processor clock can be used as the register clock input to guarantee proper data
setup and hold times.

As Figure 5-7 indicates, the MRDY# signal enables the write data registers and termi-

nates memory write cycles. Data is therefore latched during the last clock of any write
cycle.

MRDY# is restricted to write cycles while the MBRDY# signal is used for read cycles.
The need for these signals illustrates the convenience of the CPU’s dual-ready inputs.
The MBRDY# signal enables the output of the data path multiplexor to prevent bus
contention. ‘

5-13

intel” MEMORY SUBSYSTEM DESIGN

DATA PATH LOGIC

DATASEL ——————————

MBRDY

<

BANKO DRAM DATA (0-31) AND PARITY
PROCESSOR r

MUX
DATA (0-3) BANK1 DRAM DATA (0-31) AND PARITY

DATA PARITY }
(0-3)

G

CLK

823
x4
EN OE

823
— x4

2l
4
>| 8l

RDY#

WE#

240552i5-7

Figure 5-7. Data Path Logic

These ready signals are combined with similar system logic signals to form the processor
RDY# and BRDY# inputs. I/O, peripheral and other non-burst devices can use the
RDY# input. Burst devices, such as a second level cache controller must also use the
BRDY# input. The MBRDY# and MRDY # signals are, therefore, used only with the
DRAM control logic. They are isolated from the rest of the system by combinatorial
logic.

5.3.4 Second-Level Cache Support

Second level cache strategies for the i486 CPU are diverse and application dependent.
Chapter 6 discusses the requirements and tradeoffs of different cache strategies. The
example described in this chapter illustrates a second-level cache strategy that is ideal
for single CPU systems.

intgl® MEMORY SUBSYSTEM DESIGN

The 485Turbocache Module second-level cache used in this example is optional and is
used to complement the i486 internal cache to improve the performance when running
complex applications and operating systems. Some users will not require the extra per-
formance. Since the cache is optional, O.E.M.’s or end-users can decide whether it
should be included. System board design and manufacturing costs are thus eased since
one system board supports multiple performance requirements.

The 485Turbocache Module is a completely self contained cache module. Optionality is
accomplished by including control logic, tag RAM and data RAM in one package. A
socket is added to the system board in much the same manner as a math coprocessor
socket. In systems which, for example, run UNIX, the cache module is simply plugged in.
The 485Turbocache Module is described in Chapter 6.

This option must, of course, be supported by the system logic. Specifically, the memory
control logic is directly interfaced to the cache module. The DRAM controller example
described here is particularly well-suited for this cache strategy.

The support included in the 485Turbocache Module’s memory control logic for the
485Turbocache Module is illustrated in Figure 5-8. Since the 485Turbocache Module is a
write-through cache, provision must be made for read cycles. When read data is found in
the second-level cache, the cycle is called a cache hit. At the time this cycle is deter-
mined to be a cache hit, it has already been started in the DRAM controller. This cycle
must be aborted by the DRAM controller.

The BRDYO# signal from the 485Turbocache Module provides a convenient cache hit
indication. This signal is included in the decoder function. When a cache hit occurs, the
DRAM controller aborts the cycle. The memory chip select signal is not activated and
the first level control logic is reset aborting the cycle. The control logic then waits for
another cycle to start. This function is very similar to the back-off function.

Like the 486 internal cache, the 485Turbocache Module supports non-cacheable mem-
ory by decoding. The SKEN# input is analogous to the 1486 CPU’s KEN# input. This
function is also supported by the decode logic. Note that, as with the KEN# signal,
SKEN# must be synchronized to the CPU clock.

Separate cache enable inputs also allow areas of memory to be noncacheable in the 1486
CPU internal cache yet cachable in the second level cache. This feature is convenient for
BIOS.

5.3.5 Control Logic

Memory control logic generates the signals that control the memory devices, multiplex-
ors, and registers described earlier. These control signals can be generated in a variety of
ways and this example employs a distributed state machine.

5-15

intel”

MEMORY SUBSYSTEM DESIGN

MEMCS _ TO MEMORY CONTROL
l————
CKEN DECODE | KgN PKEN
BRDYO _ 485 KEN| SYNCHRONIZER [485 kEN
CONTROL
, Vo
KEN DATA
1486™ CPU ADDRESS (2:29 485TURBOCACHE
_,| srpy MoDULE
| roY :
RDY BRDY —1 BRDYO CKEN
MBRDY
READY |<MERDY
TO MEMORY
Locic |__mrpy cgnfnx'i
|._vorpy Loaic
240552i5-8

Figure 5-8. Logic Required for Optional 485Turbocache Module

Because only prototypes were built from this example, PLDs were the logical choice for
the controller implementation. Because the number of terms in a PLD is limited, the
state machine implementation must be distributed. Function distribution was deter-
mined based on this constraint. Figure 5-9 shows a block diagram of the controller, with
each block made up of one or two PLDs.

There are two levels of logic in the controller shown in Figure 5-9. The first is made up
of two PLDs, one which tracks bus cycles and another which generates the MRDY#
signal. The first level signals to PLDs in the second level that a cycle has started. The
second level is made up of several PLDs which generate the actual control signals such
as RAS# and CAS#.

Implementing the controller in this manner has two important advantages. First, more
decode time is allowed. The cycle start signal, CIP#, is used by the second-level logic to
sample the decode output. CIP# is valid in the first T2 of any bus cycle. As a result,

5-16

integl® MEMORY SUBSYSTEM DESIGN

BRDYO#
(485TURBOCACHE MODULE)
e
OTHER SYSTEM RDY RDY#
> coms. - >
MEMCS# MRDY# LoGic | BRDV#
—_—
BOFF# il
MBRDY#
LoGic TO CPU
Ras [DASE
CPU CONTROL CAS O CASO# (2)
— 5
(BANK 0)
RESET > pys | DRAM
> ~veLe CONTROL CAS1 CAS1# (2)
> BANK1
BRDYO# TRACK TO DRAM
DATASEL
DATASEL | paLe
B1A0
BURST
B2A0
ADDRESS |——>
wieg
wE WEO# WEO# (0-3)
WE1# WE1#(0-3)
CoMB.
LOGIC
BE (0-3)#

240552i5-9

Figure 5-9. Control Logic Overview

decode does not need to be valid until the end of this T2 bus state. Without this func-
tion, the decode output must be valid at the end of every T1 bus state. The time allowed
for decode at 33 MHz is very short. With 7-ns PLDs, the time allowed for decode would
be 7 ns. With 5-ns PLDs, this time is still only 9 ns. The advantage of the extra clock
period is clear.

The second advantage of the two-level approach is similarly clear. The AQO signal indi-
cates the start of a bus cycle to all second-level PLDs. Without this signal ADS# would
have to be connected to these devices, and the resulting load on ADS# would be
prohibitive.

Invalidation within bus cycles is another case that makes decode design difficult. The
AHOLD signal must be used to implement this function. As its name implies, AHOLD
can be active in any clock. If AHOLD is active in the first clock (T1) of a bus cycle, the
CPU address lines are tristated in T2. Unless decode is latched at the beginning of T2, it
will not be valid for the DRAM cycle. This case is explored in detail in Section 5.5.1.

5-17

intel®

MEMORY SUBSYSTEM DESIGN

The two-level approach allows decode to be a transparent function. The decode circuit is
shown in Figure 5-10. The 85C508 address decoder PLD shown here includes a flow-
through latch function. Using this function, the decode outputs can be latched. The
DALE signal is generated at the beginning of the first T2 of any bus cycle. This signal
activates the latch input of the 85C508. In this manner, decode is held during T2. If
AHOLD is active in T1, the decode outputs may not be valid in T2. In this case, the
cycle must not be started until the CPU address is redriven. Cycle-tracking PLD handles
this function. By delaying the cycle start signal, the DRAM cycle is delayed. When
AHOLD is deasserted, the CPU redrives the address again. At that time, CIP# is acti-
vated and the cycle begins. If AHOLD is active in any other clock, the bus cycle can

continue normally.

CLK

RESET -Dc

A14-A23/10 EPH#
MIo EPL# 10CS#
VO# MEMCS#
MEMO# PKEN#
85C508 COMB.
PLD MEM# LOGIC | 485 KEN#
____ _ | SYNCHRONIZATION _
PKEN# I :
| l I
CKEN# | :
> ! b RQ o R |isse™ cPu
! KEN# |
> ! !
| p—>1 }
| |
DALE | I | :
| :
! TO 485
BRDYO# ! b a b a :
: > SKEN# |
|
[i
| |
| |
b o e e e e e |
240552i5-10

Figure 5-10. Decode Logic

5-18

. ®
intel MEMORY SUBSYSTEM DESIGN

The first level of interface with the memory subsystem, the cycle tracking PLD handles
many other functions, most of which relate to synchronization. Refresh synchronization
is one example, as is determining the RAS# precharge duration. AQO# is not the only
signal which supports the AHOLD function. Address registers, controlled by the PLD,
generate the ALD signal to disable the registers during bus cycles. These and other
functions of the control logic are described completely in Section 5.5.

The PLDs in the next level of logic perform more specific functions. RAS# and CAS#
are generated at this level, and the PLDs that generate these signals are devoted solely
to this function. The RAS# PLD generates four RAS# signals, RASO#-RAS3#. These
signals are identical but drive different DRAM modules to reduce the load on the
RAS# signal.

The RAS# function is designed to support page or static column mode memory devices.
To support these devices, RAS# must be left active between accesses to the same row.
The RAS# state machine is designed so that RAS is deactivated only for are fresh or
page miss cycle. This module generates RAS# for both DRAM banks.

For the CAS# function, the PLD’s are responsible for implementing burst accesses.
During write cycles, the CAS# signals determine which DRAM bank is written to. All
even doublewords (A2 = 0) are stored in bank 0 while odd doublewords (A2 = 1) are
stored in bank 1. When data is retrieved from memory, cycles can be overlapped to
allows zero wait state burst accesses.

Address generation is another important consideration in burst accesses. The address
for the last three access of a burst must be generated by logic because the CPU cannot
generate these addresses in time to allow zero wait state accesses. The burst address
logic shown in Figure 5-9 is actually two PLDs which generate the burst address for
bank 0 and bank 1, respectively. The burst address consists of two signals —the lowest
order DRAM addresses from each PLD.

Because of timing constraints, these signals are connected directly to the DRAM
devices. The burst address PLD must generate the burst address, provide the multi-
plexor function for row and column addresses and generate the write address. The burst
address signals must, therefore, reflect the value of A13 during miss cycles. These reflect
during burst read and write cycles. These signals reflect A3.

BOOMAO and BOIMADO are the burst address signals for bank 0. Two identical signals are
used to divide loading. BIOMAO and B11MAO are the burst address signals for bank 1. A
detailed description of the burst address function is given in Sections 5.42 and 5.5.5.

The DSEL PLD functions this signal to generate the data select signal. As described
above, this signal is used during burst to switch the data path multiplexer. It reflects the
value of A2 during burst read cycles only and is one component of the burst address. The
DSEL PLD also generates the RALE signal to control the row address register
described above.

5-19

intel® MEMORY SUBSYSTEM DESIGN

BRDY# terminates all read cycles. MBRDY# is generated by the MRDY PLD and is
separated from the RDY# signal to facilitate posted writes by preventing data bus con-
tention. When a write cycle is immediately followed by a read, the read cycle must be
delayed. This delay is implemented by delaying MBRDY # signal until the previous write
cycle is complete. MBRDY# is combined with other burst ready inputs using combina-
torial logic. ' »

WIP# (write in progress) indicates to the MRDY PLD that a write is taking place, and
MBRDY# is not generated unless this signal is inactive. WIP# tracks the state of the
CAS# state machines. ‘

The WE PLD generates WIP# and other signals associated with the write function. The
MUXEN# signals control the address multiplexors and activate the write address path
during write cycles. The WE# signals are used to create the DRAM W inputs and to
implement byte steering. They are combined with latched CPU byte enables using com-
binatorial logic in this way, DRAM W inputs are not active for unselected bytes. Data
bus contention on unselected bytes is prevented by controlling the write data register
output enables.

By implementing byte steering in this way the CAS# logic is simplified. The CAS#
timing path is critical during burst read cycles, and by placing the byte steering logic in
the write enable path, CAS# timing restrictions are eased.

The MRDY# signal terminates all write cycles. The logic used to generate this signal is
unusual because it uses the ADS# input and is therefore at the first level. This config-
uration is needed to implement zero wait-state write cycles.

MRDY# must be active by the end of the first T2 to terminate a write cycle and main-
tain zero wait-state performance. To meet this restriction, it must be active during any
write cycle, or before decode is available because the CPU RDY # signal must not be
activated during non-memory write cycles, MRDY# is inhibited by the decode output,
MEMCS#, in combinatorial logic.

5.4 MEMORY SUBSYSTEM FUNCTION

In this section we will explore the function of the memory subsystem in detail. Each of
the signals will be described, and bus cycles will be illustrated to show the memory logic
function.

The bus cycle description in this section is specific to this example. Signals such as
KEN# and RDY#, for example, are shown as they are driven by this particular control
logic. The signals are not restricted to the timing shown here.

5-20

intel®

MEMORY SUBSYSTEM DESIGN

A list of the memory control signals follows.

5.4.1 Memory Interface Signals

5.4.1.1 CPU INTERFACE SIGNALS

KEN#

PBRDY#

KEN# is an input to the processor, indicating whether the next
bus cycle is cacheable or not. This signal is a logical AND of
SKEN# and CKEN# signals.

PBRDY# is the burst ready input to the processor. This is a log-
ical AND of the BRDY# signal from the system and the
BRDYO# from the second-level cache.

5.4.1.2 DATA PATH CONTROL

DATASEL

MRDY#

MBRDY #

WEO#/WE1#

WBE00#-WBEQ03#

WBE10#-WBE13#

DATASEL reflects the value of A2 during burst accesses. It is
used to control the data multiplexor for bank 0 and bank 1 data
paths.

MRDY# enables the write data registers that are used to support
write posting and terminates memory write cycles.

MBRDY# is used for read cycles and enables the output of the
data path multiplexor.

WEO# and WE1# signals enable the outputs of data write regis-
ters used for write posting. Both the signals are active during a
write and CAS# determines the correct bank to which the data is
written.

WBE00#-WBE03# are a combination of write enable and byte
enable signals. They control which byte is written into bank 0 dur-
ing a write cycle.

WBE10-WBE13# control which byte is written into bank 1 during
write cycles.

5.4.1.3 ADDRESS PATH CONTROL

ALD

MUXENO#,1#

ALD disables the clock input to the registers that hold the row
and column addresses corresponding to the current bus cycle.

MUXENO#, MUXENT1# control signals are inputs to the address

multiplexors and are used in selecting the read or write paths to
the respective banks.

5-21

intel”

MEMORY SUBSYSTEM DESIGN

RALE#

DALE#

BOOMAO/BO1IMAO

B10MAO/B11MAO

RALE# enables the row address latch, allowing a new row
address to be latched for successive bus cycles.

DALE# activates the latch inputs of the decode logic in the first
T2 of a bus cycle and holds the decode during the bus cycle.

BOOMAO and BOIMAQ are the burst address signals for bank 0.
They correspond to the value of A3 during burst read cycles.

B10MAO and B11MAO are the burst address signals for bank 1.
They correspond to the value of A3 during burst read cycles.

5.4.1.4 DRAM INTERFACE

HIT#

WIP#

CIP#

RASO0-3#

DRAS#

RFRQ

RFACK

PCHG

CASO#/CAS1#

MEMCS#

HIT# is active if the row address for the current memory cycle is
the same as the previous memory cycle.

WIP# indicates that a write cycle is in progress and a read to the
DRAM needs to be delayed till WIP# becomes inactive.

CIP# indicates a memory cycle is in progress. If the current cycle
is not to DRAM, CIP# is deactivated else it remains active till the
end of the bus cycle.

RAS0-3# go active for a valid row address. It remains active
between accesses to the same row and is deactivated only for page
miss and refresh cycles.

DRAS# is the delayed RAS# signal to accommodate the RAS#
hold-time requirements.

RFRQ indicates that a refresh of the DRAM is required. This
signal is activated every 15.6 us.

RFACK is asserted as a response to RFRQ and indicates that the
DRAM controller is ready to perform the refresh cycle. It is active
during idle cycles or after the current cycle is complete.

PCHG determines the timing of refresh cycles and RAS# pre-
charge count.

CASO# and CAS1# signals are active when a valid column
address is present on the bus and control the bank to which the
data is written into.

MEMCS# is active when a read or a write is performed to the
DRAM. It is the synchronized output of the address decoder.

5-22

intgl” MEMORY SUBSYSTEM DESIGN

5.4.1.5 CONTROLLER SIGNALS

CT CT indicates that a new cycle had started while a cycle was in
progress or the refresh cycle was taking place. It is deactivated
when the pending cycle is recognized.

SKEN# SKEN# indicates if any of the caches is enabled. It is an input to
the second-level cache and is similar to the KEN# signal input to
the processor.

CKEN# CKEN# is the output of the second-level cache. It is activated
twice for a valid line fill first to enable a 485Turbocache Module
line fill and the second time to validate it.

LA2, LA313 LA2 and LA313 are latched versions of address lines A2 and A13.
LA313 is the lowest order DRAM address line. The multiplexor
output reflects A3 when RAS# is low and Al3 when RAS# is

high.
M# M# indicates the occurrence of a write miss.
BRDYO# BRDYO# is a burst ready signal driven by the second-level cache.

It is activated when a read hit occurs in this cache.

5.4.2 Read Cycles

Figure 5-11 shows a burst read cycle. At the start of the bus cycle, RAS# is inactive. This
case is a rare occurrence because RAS# is normally active. Unless a cycle is the first bus
cycle after a reset or refresh cycle, RAS# will be active in T1.

It is useful to examine this case because it demonstrates a complete DRAM cycle. The
basic function of most of the control logic is illustrated.

The cycle begins with the activation of ADS#. The controller samples this signal and
activates both ALD and CIP#. The CPU address registers are disabled by ALD. There-
fore, the previously latched address is held throughout the bus cycle. The latched
address is valid in the first T2 of the bus cycle.

The row address comparison is made with this address. As a result, the HIT# signal is
not valid until the rising edge of the second T2. At this rising clock edge, the CIP#,
MEMCS# and HIT# signals are sampled. If MEMCS# is sampled active, the RAS#
signal is activated.

The delay line holds the DRAS# signal high for 20 ns after RAS# is activated. In this
way the row address is maintained to meet tRAH, the row address hold time. When
DRAS# is activated, the address multiplexers switch to the column address path. The
MUXEN# signals are not active, and the read path is selected.

5-23

81949 peay 1sing °| |-G ainbig

MEMORY SUBSYSTEM DESIGN

intel”

L1-Glessove

] § 13ssviva

g
i

(
(

| _ T T #AQyg
_mvoA K IXKLln.voA z__ XX J\.) il Ty 2 Tl e vivad
I T
. Y v@A’ z D S S e [R vivaa
; I I I] 1 1 !
] ¥ anvA X £SsadaavNwni1od X X . : L4aava
- 1 I | 1 i 7 !
£)¢ G SD S Sy i S ovivaa
n I 1 | I 1 I | |
_|||\|_J|.||\ | i I N\ t 1 #1SV0
/1 N\ /1 | I— N | l | #0SVD
|] , |] 1 1 !
f € arnvA X X | SS3HAAV NWN10D Xssauaav mouX | ouaava
| 1 L L 1 v
! I
I _ N T #Svy
j_ } #1sv1g

|

NLLLL 77777777 sswirkun
1

NLLL 77777777 #sowam
1

L aIvA X #X34 1ev-2v

T T T

1 L/ awv

1 1 |
™~ #d10

| 1 [#sav

l L N— 3o

L | I | 1 — 1T
zL | | e 1 W

5-24

H ®
intel MEMORY SUBSYSTEM DESIGN

In the third T2 of the bus cycle CAS# is asserted. This cycle begins with A2 low and the
first access is to bank 0. Due to the access time of the DRAM two clocks are required to
retrieve data from memory. MBRDY# is asserted in the fourth T2 of the bus cycle, and
this action completes the first access of the burst read. The access is completed in five
clocks. The minimum time for this access is two clocks indicating that three wait states
were added to the first cycle.

The timing diagram reveals two important points about burst cycle implementation. First
DRAM access requires two clocks. Second, the burst address from the CPU is not avail-
able until the clock after MBRDY# is sampled active. These circumstances make zero
wait-state burst cycles. The DRAM bank interleaving alleviates this difficulty.

The first advantage of interleaving is revealed in the second and third T2 states. Access
to both the first and second memory doublewords can be made simultaneously. This
function requires that the burst address be predicted. As mentioned above, the burst
address from the CPU is not available until several clocks later. The burst address for
both the first and second accesses is generated in the second T2. Therefore, CAS# for
both banks can be asserted in the next T2 state.

The second advantage of interleaving is seen in fifth T2 of the burst cycles in which
DATASEL switches the data multiplexer. The second doubleword is driven on the CPU
data bus. In this CLK, the burst address for the third access of the cycle is generated.
CAS00# and CASO1# are also deasserted to begin the third access. Note that this
access is started before the second access is completed. The cycle overlap shown allows
new data to be driven on the CPU data bus every clock. This way zero wait-state accessis
achieved.

Timing is even more critical during page hit cycles. Figure 5-12 shows the timing of this
cycle. Because of the function of RAS#, this cycle is more common than the cycle
discussed above. The row address is the same as in the previous cycle. Therefore, the
RAS# signal is left active.

When a burst read starts with RAS# active, fewer clock, are required to complete the
first access. This reduction improves performance. As a result, however, some timings
become more critical. One of these is the time allowed to generate the burst address.

The CAS# signals are asserted in the second T2 of the bus cycle. MBRDY# is also
asserted at this time. To meet the address access time of the DRAMS, the burst address
must be generated in the second T2. The rest of the read column address must also be
available at this time. Two logic functions are needed to meet this timing requirement.
First, read and write address paths must be separate to allow the read address to be
available in the first T2. Second, the burst address path logic must latch the CPU A3
signal directly. In this way, the logic can generate the necessary address in time. The
burst address state machine must track the state of A3 at the beginning of every cycle.
The state machine function is described in Section 5.5.

5-26

intgl” MEMORY SUBSYSTEM DESIGN

| !

1 |

1 1 1/

T T

T T ™\

| I I
ALID1 ! X vaup2 X vaup3 X Tvaups

T T T

T

1

|

1

T

1

I
1
|
T
!
I

ALD 1/

ADDRESS X!
| |
BLAST#) ' ! _:_/_—
1 |
RASH ! I ! I
| | | |
DADDRO X XX vamoz T X X vaupa !
T I 1 1
CASO# \ ! I/ ™\ !
l
cAst# _ ' /T T\ ! /1
| |
DDATAQ

I
vaup 1 T X" X" vaups |

XXX D1 Wns ! !
poata __ XX) (o1 XXX o2 XXX 0 XXX 0e XX

‘ 1 1 1
l(— MUST BE SAMPLED ACTIVE HERE ! /

KEN#
1 T T 1
BRDY# [T\ I | 1 N
| | t t t —

DADDR1 XX

DDATA1

240552i5-12

Figure 5-12. Burst Read DRAM Page, Hit

5-26

The timing of KEN# must also be considered in this example. KEN# must be valid at
the beginning of the second T2 of the cycle. If it is not, the cycle will not be cached, and
a 16-byte access cannot be generated. If KEN# is active, a 16-byte burst access will be
generated, and the cycle will be cached as long as KEN# is active in the second to
last T2.

At first glance this timing may not appear critical. KEN# is a decode function, and
decode is valid at the clock edge called for. The KEN# input to the CPU must be

intel” MEMORY SUBSYSTEM DESIGN

synchronized to clock, however. Since decode is not synchronous, a two-clock synchro-
nizer delay is required, and this delay is the reason that KEN# is normally active in this
example.

From the time CAS# is activated, this cycle is exactly the same as in the previously
described burst cycle. It is terminated when BLAST# is asserted, and MBRDY# is
deasserted when BLAST# is sampled active.

5.4.3 Write Cycles

As described in Section 5.3.1, a posted or delayed write function is employed in this
example to reduce write cycle latency. Latency is reduced since write cyles with are
overlapped with other cycles including other write cycles or reads from the second-level
cache. Write cycles normally make up 70 percent of all cycles, and overlapping can
increase performance accordingly.

Figure 5-13 illustrates the posted write implementation. In this example cycles begin
when RAS# is inactive. As with read cycles, this case is rare in practice.

The cycle begins like a read. The CPU drives ADS# active, and the decode is sampled.
RAS# is activated if the cycle is in DRAM space. In the second T2 of the cycle, how-
ever, the latched version of W/R# (LW/R#) is sampled active at the rising edge of the
second T2. In response, the control logic begins several write cycle functions at this clock
edge.

The CAS# state machine for the appropriate bank enters the write sequence. The
MUXEN# and WE# signals are asserted. MRDY# is also asserted, terminating the
cycle at the CPU. The MUXEN# signals activate the write address path. This address is
not present at the multiplexor outputs, however, until the next clock at which the write
pipeline register latches the write address.

The write data is latched at the same clock edge. The write data registers are enabled by
MRDY# which simultaneously terminates the CPU cycle. Note that data is latched in
both the bank 0 and bank 1 registers.

The WEO# and WE1# signals are also both active. The CAS# signals determine which
bank is written to. These signals are asserted within two clocks after MRDY#. This
action completes the write cycle. Note that, while five clocks are required to complete
the cycle, the CPU cycle is terminated in three CLKs. The wait state is only required if
RAS# is inactive at the start of the cycle.

In Figure 5-13 the next bus cycle starts immediately after RDY # is sampled. In this case,
CAS# is activated during the second clock of the next bus cycle. This overlap of cycles is
similar to the pipelining feature used by many processors except that the 486 processor
bus is not involved in the posting function. All logic for this function is implemented in
the memory controller.

5-27

intel® MEMORY SUBSYSTEM DESIGN

T1 T2 T2 T2 T2
ADS# Twi w2
I | |
PADDR X T ! X !
T T T T T
RASH T ! | o
I I | T T
DADDRO ' X_row XX T coLumn ! T DATA
! ' ! ! . WRITTEN
CASO# T T T ™ w /~ ToDRAM
I I | |
WEO# ' ™ !
1 | T
DDATAO L L{ !
I T
T
1

X RDY RETURNED

TO PROCESSOR
MRDY# ! wi | HERE
I | -
csT# ™\ I 1/ : -
I

BRDY# / : :
WIP# : ‘ : A\

240552i5-13

Figure 5-13. Basic Write Cycle

Figure 5-14 is a more typical 1486 processor bus sequence which more clearly illustrates
the advantages of the posting technique. Four write cycles have occurred together with-
out idle bus clocks occurring between cycles. Since all writes access the same DRAM
row, RAS# is active throughout the sequence.

Without the extra clock to activate RAS#, MRDY# can be asserted in the clock after
ADS# is asserted. These cycles, therefore, have no wait states. As before, the write cycle
is not complete when MRDY# is asserted but instead when CAS# is asserted two
clocks after MRDY# to terminate the CPU bus cycle.

At zero wait states, each write cycle still requires four clock cycles. The last two clocks of
each write cycle overlap with the next cycle. The net effect on the CPU bus is the same
as a string of two-clock write cycles, as illustrated in Figure 5-14. :

5-28

MEMORY SUBSYSTEM DESIGN

intel”

soj9A9 aluM oeg-o1-yoeg “vL-§ ainbid

¥1-G1e550vC

I I

_ S S

_ o

I I 1 L L L L L

%_ T v_ﬁ Zanv bA|“1 E_._<>" \X|"1 %" "

T

I o e R e N S S

g N S H o B R N S

A S N A S

S CHI CRE ¢RI ¢ G o

T
Y G EY I G ") o

l I

|

#AQHW

vivad

#1SVO

lvivaa
+ovivaa

#dIM

#13IM

#03IM

#0SVO

rdaava
+0Haava

#0Svd

dHaavd

#dI10

#sav

A0

5-29

intgl® MEMORY SUBSYSTEM DESIGN

The first write in this figure is to bank 0. The falling edge of CASO# clocks the data into
the bank 0 DRAM. This edge is denoted by W1 in the diagram. CASO# is asserted in
the same clock that MRDY# terminates the second write (W2), which accesses bank 1.
CAS1# is activated in the same clock as MRDY# for the third write (W3).

The second and third writes happen to be to the same DRAM bank. As we see, no
timing modification is required in this case. Write cycles can be completed with zero wait
states in either case. This is important since writes often occur in sequence on the 486
bus, but not necessarily to sequential addresses. Write posting supports zero wait-state
write cycles to sequential and non-sequential addresses.

This is also important if the design is to be modified. For example while, interleaved
DRAMs may not be required in systems with a permanent second-level cache, the write
posting technique may still be used in the system. The benefits of this technique still
apply since write cycles may still be overlapped as described.

5.4.4 Consecutive Bus Cycles

The DRAM control logic is optimized for write cycles, as warranted by the 486 proces-
sor’s bus characteristics. Over 70 percent of all cycles are writes. By employing the
posted write technique, system performance is increased.

The posted write technique poses some special problems, however. Page miss, refresh
and consecutive write-read cycles require special consideration. We will begin by discuss-
ing the consecutive write-read case. Page miss and refresh cycles will be discussed in
Sections 5.4.5 and 5.4.6.

When a read cycle immediately follows a write, the read cycle must be delayed as illus-
trated in Figure 5-15. The read cycle is delayed to allow the write to complete. Only read
cycles to DRAM, i.e., (cache misses) need be delayed. Cache hits and write cycles over-
lap easily because the cache is on the CPU side of the DRAM controller.

Write cycles cannot overlap DRAM read cycles, however, primarily because of data bus
contention. The DRAMSs used here have common data I/O pins. In this case read and
write data paths cannot be active at the same time.

To prevent data bus contention, the first data access of the read is delayed. In
Figure 5-15 the first read access is to the same bank as the write. In addition, the read
cycle accesses the same DRAM row. Two functions are required to ensure that the write
is completed. First, the write address must be held until CAS# is asserted. Second, the
data mux outputs must not be enabled until the CPU tristates the bus.

The first function is accomplished by the MUXEN# signals. The MUXEN# state
machine tracks the CAS# function for the appropriate bank. When the write for that
bank is complete, MUXEN# is deactivated. In this way, the read address path is not

5-30

MEMORY SUBSYSTEM DESIGN

intgl®

3]9A0 peay-alIM dAIIND3SU0YD "GL-G ainbig

S1-Glgssove

I
\ ! ! I 1 #Nav
T

lllﬁn ™ bA" ma X ._:EEQ

1 1
& @y - ~F---r- " KB X v

| #1SVD

X1 oviaa

T #am

]

E

i
1
|
1 1
I

\llﬂ/L'l_ iHaava

M aiTvA

P

| #0SVO

|

i #Svd

v X | ssauaav

! #sav

_‘
-
]

|| 10

5-31

intgl® MEMORY SUBSYSTEM DESIGN

enabled until the CLK after CAS# becomes active. Normally, the read address would be
valid in the first T2 of the read cycle; however it must be delayed one clock to allow the
write complete. Note that if one or more idle CLKs intervenes between these cycles, no
delay occurs.

The second function is accomplished with the WIP# signal which is active until all write
cycles are complete. A read cycle to either bank will be delayed if it immediately follows
a write. The first access of the read is delayed by MBRDY #, which is not asserted until
the WIP# signal is deasserted.

WIP# is deasserted once all pending writes are complete. In Figure 5-15 the read cycle
is delayed 3 CLKs by this signal; in other words, three additional wait states are added.
A read may not occur immediately after a write. In this case, the number of wait-states
added will decrease by the number of idle CLKs between cycles. For example, if ADS#
for the read is asserted three clocks after MRDY# for the write, MBRDY# will not be
delayed. :

5.4.5 Page Miss Cycles

As described previously, page miss cycles occur when the CPU generates a cycle which
changes the DRAM row address. The RAS# signal must be deasserted to change the
ROW address in the DRAMS. Any time RAS# is deasserted, it must remain high for
the precharge time (tRP). A delay is added to every page miss cycle to satisfy this
requirement.

For read cycles this function simply requires extra wait states as illustrated in
Figure 5-16.

The bus cycle starts with RAS# low or active. The row address generated by the CPU is
different than in the previous cycle, and the row address comparator deasserts HIT#.
This signal is valid in the first T2. HIT# is sampled at the RAS# PLD at the rising edge
of the second T2. In response, RAS# is immediately deasserted and held inactive for
two clocks. This time satisfies the RAS# precharge requirement.

Four wait states are added to process the miss cycle. These clocks are added to every
read cycle which accesses a new DRAM row. The delay is accomplished, again, with the
MBRDY# signal. MBRDY# will not be asserted when RAS# is inactive. Once RAS#
is sampled active, MBRDY# is asserted. From here, the cycle proceeds as described in
Section 5.4.3.

Write miss cycles are more complex than read miss cycles, due mainly to the write
posting technique. The added complexity results in lower latency than in a non-posted
memory system, however. Figure 5-17 illustrates how this improvement is achieved.

5-32

aj9A9 peay-ssiy abed WvHA "91-G anbid

MEMORY SUBSYSTEM DESIGN

integl®

91-G12550¥e

_ _[\‘ T T T T /_ _ _ _ _ \\ll #AQug
T t | | I 1 t t T t T
— e X T O —
I I X 2 1 XX " 1 1 1vivaa
S PR SR | | | I | I | |
1 | I 1 beq F_\Xv9lll_||l_|ﬁ 1 1 ovivaa
| } } } } } | | | I |
1+0SVO
L I I 1 | | \ } t } } }
! ! ! ! T ssauaav Nwn10d ' X ssadaav mod XX T X oyava
I I 1 1 1 1 1 1 1 1 1
T T T T T T | \ | | a T #SvH
| | i I I | I 1] I |
/ | _I | | | 1 | I | | 1/ isvis
1 | i 1 1 | 1 i 1 _\||H_._N|I|
1 | I I I | 1 I WA t #1H
B 1 " “ L 1 L 1
T X CEX . ————
] 1 1]] 1 T T
—/\! _ [_ ! ! ! | I |/ T__ sav
1 T] 1] 1 [] 1]]
1L zL zL L L zL zL zL zL L L 1L

5-33

31940 auIM-ssIN abed INvHQA "ZL-S aunbiy

MEMORY SUBSYSTEM DESIGN

intel®

]]]] 1 1
| i | 1 I\ #®
| 1 I 1 \._l
| | | | | I o
1 1 | | | I
I I I I _I | #dim
1 1 | I | |
! _ [L /Tem \!___ /" s
| | | | | |
| | 1 1/ Tem\ 1 #1Sv0
[[1 [I 1
1 I eanwva | X T zanwa | X 1+ovivad
I I 1 | | I
T T T T \ ! 1 #03M
I | I | T T
| I I | | | #0SVD
| T T 1 T T T
T I] 1 1 1 1 +
Uh.r vHaay n X " cHaav “ JJVOF wmwmon<§o=TvOOAn _ JAH 1+04aava
} } } } } | | } }
I I | I | Ny /) i v
1 L 1 L | [1 _
I I I I I I AWHAN ARY #LH
] 1 1] | 1 1] 1
i i X | | | | vHaav Q | tHaav, * gaavd
| 1 | | 1 I
I._l\lmﬂulr I I] I § #sav
_ _ 19
L 1L L L zl zL 1L L 1L

5-34

. ®
intel MEMORY SUBSYSTEM DESIGN

The write cycle in Figure 5-17 also begins with RAS# active. The HIT# signal is deas-
serted in the first T2 at the same time that MRDY# is asserted. MRDY# could be
inhibited at this point to prevent write cycle termination. The wait states added to meet
RAS# precharge time would then be added to this cycle. Five wait states are required to
meet the precharge time.

The average number of write cycle clocks can be reduced, however, if another method is
used. MRDY# can be allowed to terminate the cycle. In this case, any necessary wait
states will be added to the next cycle.

This method improves the average in two ways. First, some write miss cycles will not
require wait-states. This is the case when the next cycle occurs four or more clocks after
a write miss. In addition, wait states will be reduced when the next cycle occurs in two or
three clocks. Second, three wait-states are required to complete the next cycle when it
follows immediately as illustrated in Figure 5-17.

The first cycle in this figure is a page miss. It is terminated at the CPU without wait-
states. Because HIT# is not active in the first T2, RAS# is deasserted. At this point,
additional clocks are added to perform the miss function. Part of the time required for
RAS# precharge is overlapped with the next cycle. The two clock overlap reduces the
number of wait states required in the next cycle. Therefore, the average write cycle
latency is reduced.

5.4.6 Refresh Cycles

The CAS# before RAS# refresh function is used in this example. This function uses
internal counters in the DRAM devices to generate the refresh address. When the
CAS# input is activated prior to RAS#, the internal counter is incremented. The output
of the counter is then used as the address of the row to be refreshed.

Each refresh cycle refreshes one row of the DRAM array. The refresh cycles are distrib-
uted such that one occurs every 15.6 uS, with every row being refreshed in 8 uS. Refresh
cycles are initiated by the RFRQ signal. This signal is activated every 15.6 uS by a
counter. The counter circuit is shown in Appendix B.

RFACK is asserted in response to RFRQ. This signal indicates that the DRAM control-
ler is ready to perform the refresh cycle. It also signals the counter circuit that RFRQ
can be deasserted.

The function of RFRQ and RFACK is very similar to that of the CPU’s HOLD and
HLDA signals. RFRQ is sampled at the end of each cycle and during idle cycles.
RFACK is activated in the clock after RFRQ is sampled, except immediately after write
cycles.

Again, the posted write function must complete before the refresh cycle begins. If WIP#
is active when RFRQ is sampled, RFACK will not be immediately asserted. RFACK will
be asserted after WIP# is deactivated as illustrated in Figure 5-18.

5-35

MEMORY SUBSYSTEM DESIGN

intel”

SIM Yyim uaninouo) Bujw] ysayay "gi-g ainbi4

81-G12550ve

TTTTR TV Ty P
y] 1 1] 1]] I I I i I
! I] 1] 1 I\ L L L/]]
I ; f ; ; } } n f } - "
! I I | | I I I I I _/IE I
__II._I_I/L I] 1 1 1 ! L/ N N\a /1 N\
e —y—t ; } ; ; } } ; —y—t +—y—
’ I J I 1 1 I I I 1 1 I T I
" |] YA] T __1 L/ e/ M\ |
I I I ; } ' } } " } } “ }
- T T — I I I I I I I I I
| ! 1 L/] T\ 1 1 1 I _ . /S
; y XLz.Iz:._oo. XX o 4.|xvq t "xx Wmios uor“ t X y
x_ I 1 T 1 L 1 1 1 I 1 1 1 I
R Y E e e N R SR ar i 1 I I
J|X’]] T T T T T] 4v[x T A—IX 1)
_ i] T [T T T] 1 [T
_ _ — L L 1 L L L 1/ — — I.— _ -
I I I I I I I I I L /TN N\

(48 L (48

370AD 3LIHM HO av3d

(48 (48 el ozZzL (48 (48 (48

cL

cL L (48

#dIM

AOvdd

[o1oE L]

#Aad

L+ ovivaa

#1SYO

#3IM

#0SVO

L+odaava

#svd

Haavd

#1S0

#sav

D ko)

5-36

intel” MEMORY SUBSYSTEM DESIGN

Another cycle can start between RFRQ and RFACK. The cycle start PLD tracks this
case. CIP# will not be asserted for any cycle that starts during this interval. Once the
refresh cycle is complete, this cycle can be started.

5.5 CONTROLLER IMPLEMENTATION

The functions described in the previous section are generated by the control logic. The
controller, as outlined in Section 5.3, is made up of several PLDs. These devices gener-
ate the control signals described in Section 5.4. The function of the logic is determined
by the state machine definition. These state machines are distributed in the different
PLDs of the controller.

In this section, we will explore the implementation of the control logic. The discussion
will focus on the state machine definition. Certain conventions are followed throughout
the discussion. These conventions are based on the state machine compiler used to
generate the PLD equations. This compiler uses the exclamation point (!) to indicate the
low or “0” condition of a signal. It uses the number sysmbols (#) to indicate that the
signal is active. For example, !ADS# indicates that the ADS signal is both and active.
The # symbol indicates that asignal is active when low. So symbol !ALD means that the
ALD signal is not active. ’

These symbols are used to indicate state transitions as shown in Figure 5-19. The state
transition in 5-19 depends on three signals: ADS#, ALD, and RAS#. The equation
indicates that if both ADS# and ALD are active or if RAS# is not active at the next
clock edge. The transition from SO to S1 takes place. In the transition between SO and
S1, the Y# signal is activated. The definition of states indicates which outputs are
changed in the transition. These conventions are used to describe the control state
machines in the next section.

5.5.1 Cycle Tracking Logic

The cycle tracking logic is contained in one PLD. The five state machines implemented
in this PLD start and end DRAM cycles, control refresh timing and control the address
registers. These state machines, along with the MRDY# state machine, comprise the
first level of control logic. All other control state machines depend on this first level to
generate signals at the proper time.

!ADS*ALD
so DS*ALD+RAS# st

240552i5-19

Figure 5-19. State Transition Example

5-37

intel® MEMORY SUBSYSTEM DESIGN

The signals generated by this PLD are the following:

CIP# — Cycle in Progress

ALD — Address Latch Disable
CT — Cycle Track

RFACK — Refresh Acknowledge
PCHG — RAS Precharge Count

The primary cycle tracking state machine is shown in Figure 5-20. This state machine
generates the CIP# and M# signals. CIP# indicates that the CPU has started a cycle.
When it is active, the rest of the logic samples the CPU control and MEMCS # signals. If
the current cycle is not to DRAM, it will be ignored and CIP# will be deactivated.

This function is defined by the SO and S1 states in Figure 5-20. As shown, CIP# is
activated when either ADS# or CT are sampled active. If the cycle is not to a DRAM
address, the MEMCS# signal will not be active in the next clock. In this case, CIP# is
deactivated o wait for the next ADS#. If the cycle is to DRAM, CIP# stays active until
the end of the bus cycle. The bus cycle is terminated by one of three circumstances. All
write cycles are terminated with the MRDY# signal. Read cycles are terminated by
BRDY# and by BLAST#. The cycle can be aborted by BOFF#. Any of these three
events causes CIP# to be deactivated (S1 to S0). :

RESET

CIP# | M#
S0| 1 (1
S1| 0 (1
S2| 0 (o0

MEMCS#+
!BRDY#+!BLAST#+
IMRDY#+ .

BOFF# !BOFF#+!PCHG+ICT

IADS#+CT

\

! g
sl RAS#HIT# IMRDY#

PCHG

IPCHG*CT

240552i5-20

Figure 5-20. Cycle in Progress State Diagram

5-38

intel” MEMORY SUBSYSTEM DESIGN

Two special cases are also handled by this state machine. When AHOLD is active in the
same clock as ADS#, MEMCS# is not valid. In this case, the CIP# signal is not acti-
vated until AHOLD is deasserted. The state machine remains in SO when AHOLD is
active.

The second case is a write miss cycle. During a write miss, CIP# must be active for the
cycle to complete. CIP# is active in this case after MRDY# is returned to the CPU.
Cycles that start during the time CIP# is active must be tracked by the CT state
machine. The M# signal indicates to the CT state machine that the cycles must be
tracked.

The state in which M# and CIP# are both active is S2. This state is entered when
MRDY# and RAS# are active and HIT# is inactive. By using MRDY# to qualify this
transition, S2 is entered only during write cycles. Therefore, M# is only activated during
write miss cycles. Note that any cycle will be recognized by the CT state machine when
M# is active. _

The CT state machine is shown in Figure 5-21. This state machine tracks cycles that start
while the CIP# state machine is busy. It tracks CPU cycles that start during refresh
cycles as well as to the two cases mentioned above.

This state machine tracks one cycle. Any cycle that starts while CIP# is busy is not
terminated immediately. The MRDY# and MBRDY# signals are delayed until the
previous cycle is finished. Therefore, anytime CT is active, there is only one cycle
pending.

CT
SO So| 0
S1] 1

ICIP#*Mi#

IADS#'(AHOLD+RFACK#+!M#+EP)

S1

240552i5-21

Figure 5-21. Cycle Tracking State Machine

5-39

intel® MEMORY SUBSYSTEM DESIGN

CT is deactivated when the pending cycle is recognized by the CIP# state machine. This
event is indicated by CIP# active and M# inactive. When this event occurs, the CT state
machine transitions to SO deactivating CT. ;

The ALD signal is also active only during DRAM cycles. Therefore, its state machine is
very similar to that of CIP#. As with CIP#, ALD is asserted when ADS# is sampled
active. If the cycle is not to a DRAM address, ALD is deasserted. When a DRAM cycle
is terminated, ALD is also deasserted. The SO-to-S1 transition is quite similar to that of
CIP#. ‘

The difference between the two state machines is revealed during write miss cycles. The
S1-to-S2 transition is made if a write miss occurs: ALD must be held active during a
write miss until RAS# is active. In this way the row address is held even if another cycle
occurs. The combination of CIP# being active while PCHG: is inactive indicates that
RAS# will be active in this clock. ALD must be deactivated in this clock to allow the
next address to be latched. ALD is re-activated if another cycle has started during the
write miss process. CIP# and MEMCS# are sampled during SO for this purpose.

The PCHG state machine provides two functions. It determines the time RAS# is inac-
tive during a miss or refresh cycle, and it determines the timing of refresh cycles.
Figure 5-22 shows the state transitions of the PCHG state machine. Because the timing
of this signal is not obvious, Figure 5-23 has been included. It shows a refresh cycle
which occurs following a write cycle. o .

After RAS# is active the PCHG signal is activated. State S1 is maintained then until
RAS# is deactivated. RAS# is only deactivated during a miss or refresh cycle or, of
course, if RESET is asserted. During a miss cycle the transition to SO is made deactivat-
ing PCHG. RAS# is then activated, resulting in two CPU clocks of RAS# precharge
time. .

States S2 and S3 define the timing of refresh cycles. The function of these states is
shown in Figure 5-23. The transition to this sequence is made when RAS# is sampled
inactive while EP active. EP indicates that the RAS# state machine has entered the
refresh sequence.

RFACK# initiates the refresh sequence. It indicates that the control logic is ready to
accept a refresh request. The RFRQ signal is sampled at the end of a DRAM cycle or
during idle clocks. Note that RFRQ cannot be recognized during a write miss.
RFACK# is deactivated after RAS# is deactivated at the beginning of the refresh
sequence (see Figure 5-22 and Figure 5-23).

5.5.2 RAS# Logic

The RAS# logic for both memory banks occupies one PLD. Four RAS# signals are
generated: RASO#- RAS3#. These signals are generated to divide loading. Their timing
is identical. The state machine for RAS is relatively simple and is shown in Figure 5-24.

5-40

intgl” MEMORY SUBSYSTEM DESIGN

RESET

RAS#'1EP

RAS#'EP

EP*RFACK*!RAS#

RAS PRECHARGE AND REFRESH COUNTER

240552i5-22

Figure 5-22. Precharge State Machine

States SO and S1 are used to implement RAS# function for normal cycles. After
RESET, the state machine waits for the first bus cycle. The first bus cycle is signaled by
the CIP# signal. When CIP#, MEMCS# and PCHG are sampled active, RAS# is
asserted. RAS# stays active until a miss or refresh cycle occurs.

A miss cycle is indicated when the HIT# signal is driven inactive. It is qualified by CIP#
and MEMCS# being active. In this way, RAS# is only deactivated during DRAM cycles.

Once RAS# is deasserted during a miss cycle, it stays high until PCHG is sampled
active. This function implements the RAS# precharge time. CIP# and MEMCS# will
still be active during read miss cycles. Therefore, RAS# will be asserted in the next
clock. For write miss cycles the WIP# signal must be used to restart RAS#. With a write
miss, an on-DRAM cycle can occur before RAS# is asserted. WIP# is the only valid
indication that a DRAM cycle has occurred in this case. WIP# is combined with
MEMCS# to create the CSWIP# term which indicates a valid RAS# cycle.

5-41

MEMORY SUBSYSTEM DESIGN

intel®

a|dwexg bujwi] —ajels Yysaiay "g2-g ainbiy

£2-§lessove

L
ARNNY

AN #dIM

///A////?///%///%/AAA

AOV4H

)

T__ #AQY

o s e e e

><

L+ ovivaa

1
I
I
\ E\ f oHdH
‘ —
|
T

]

/

#IM

I

|

|

|
L
X
|

I

|

- 4 - -4 4 == 4+ = [-L4

|
|
1
T
1 1
| | /
T T
] L/ /~ #0Svo

|
X X tmou _xx

XX

) G L+odaava

NWNI0J
|

|/T|_|I_|/L||_|\

|
t
I
1
t
]
I\ | 1/ TM__1 / 1M\ __] | #LSVD
|
|
'
|

I
t
I
1
t
|
|
|
I
1
1

i #svy

X Haavd

t t

1]

1 _4 ! 1 1 1 1 / | 1 \ / \ #1SO
I | | _/emm _! /im #sav

(48

1S
cs

370A0 31IHM HO av3Hd

A0
el (48 (48 (48 cL (48 (45 L cL (48 (48 L cL
os 0s 0s €S es cs s IS IS 35 1s £ IS 31V1S DHOd
cs 35} IS €S €S s Vs €S €S 2s (4 (4] cs 3LV1S #SvH

5-42

intgl® MEMORY SUBSYSTEM DESIGN

RESET

RFACK*WIP#

!RFACK*!PCHG

'AQO#*MEMCS#"!PCHG

!AQO#* HIT#*!MEMCS#

RFACK*WIP#

a1 IPCHG

240552i5-24

Figure 5-24. RAS State Machine

When a refresh cycle occurs, the RAS# state machine transitions to S2. S2 and S3 are
devoted to the refresh function. When RFACK is sampled active, the transition occurs.
The refresh sequence shown in Figure 5-23 illustrates the function of these two states.
Note that after a refresh cycle, RAS# is left inactive. The transition from SO to S4 allows
for refresh cycles that start when RAS# is inactive.

5.5.3 CAS# Logic

Two separate PLDs implement the CAS# function. These PLDs generate the CAS#
signals for bank 0 and bank 1, respectively. The state machines which generate these
signals are separate and independent. Each generates two CAS# signals. CAS00# and
CASO01# for bank 0, and CAS10# and CAS11# for bank 1. These signals drive separate
DRAM modules due to drive requirements.

5-43

intgl” MEMORY SUBSYSTEM DESIGN

Figure 5-25 shows the state diagram for the bank 0 CAS# function. The states on the
left side of the diagram implement the write function. The states on the right implement
the read function. As with RAS#, the state machine waits until CIP# indicates that a
cycle has started. When CIP# is active, the state of the latched version of W/R# deter-
mines which sequence is started.

If the cycle is a read, S4 is entered. If the cycle is a write, LA2 is sampled to determine
if the cycle is to bank 0. If LA2 is low, S1 is entered. Note that this function is the same
for the bank 1 state machine. The only difference is the state of LA2, which starts the
write sequence.

RESET

AQO#*!AQO#*(MEMCS#+!ILWR)+
!AQO#*'LWR*LA2

!AQO# IMEMCS#*HIT#*LWR*!RAS#*RFACK+
RFACK*RAS#

'AQO#*!MEMCS#*
LA2*LWR*!IRFACK

!BRDY#*!BLAST#

{BRDY#*

IRAS#'RDY#

IBRDY#'BLAST#'LA2+
RFACK

IAQO#*LA2*
LWR*
IMEMC2#

IBRDY#*
IBLAST#*
BRDY#

CASO0 C1 C2

240552i5-25

Figure 5-25. CAS State Machine

5-44

intel” MEMORY SUBSYSTEM DESIGN

During a write cycle, CAS# is held inactive until the clock after RDY # is asserted. The
state machine also waits in S1 during a write miss cycle. CAS# is asserted during S2. In
this state, several events can occur. First, the CPU may not start another bus cycle.
Second, it may start a bus cycle other than a DRAM cycle. Third, it may initiate a read
cycle, and fourth, it may begin a write cycle to bank 1. If any of these events occur, Stis
entered. If another write cycle starts to the same bank, however, S3 is entered.

The case of sequential writes to the same bank involves S2 and S3 only. An unlimited
number of write cycles can occur in the same bank. If the DRAM row is same, they will
occur without wait states. If a write miss occurs, RAS# will be deasserted, and the
transition from S3 to S1 takes place.

During read cycles, the CAS# signals for bank 0 and bank 1 are activated at the same
time. Therefore, the state machines enter S4 at the same clock. At this point, however,
the state of LA2 determines which state machine enters S5. In S5, CAS# is deasserted
to prepare that bank for the next access. If S6 is entered, the DATA from that bank has
not yet been accessed. CAS# must be held active, in this case, until the data is sampled
by the CPU. From S6, the next transition will be to S5 to continue the cycle, or SO to
terminate the cycle. If this bank was accessed first, the cycle will terminate from this
state.

The read sequence is much simpler if static column mode DRAMs are used. The state
sequence for static column mode is shown in Figure 5-26. The write sequence in this
diagram is exactly the same as for the page mode CAS# control logic. The read function,
however, requires only two states. From SO0, the transition is made to S5 any time that a
DRAM read cycle starts. Note that LA2 is not used to qualify this transition. Therefore,
the CAS# signals for bank 0 and bank 1 are active at the same time.

5.5.4 Write Control Logic

The posted write implementation requires logic support for a few key functions. These
functions are required mainly to support posting with interleaved memory. Three types
of signals are generated to implement these functions:

e Multiplexer Select—These signals control the address multiplexers when RAS# is
active. During write cycles, they must be active to select the write address path. These
signals stay active during read cycles which are immediately preceded by a write. They
are deactivated, when the write cycle is complete. Once they are deactivated the read
cycle may proceed as the read path is selected.

o Write Enable—These signals are combined with the byte enable CPU outputs
(BEO#-BE3#) to create the WBE# signals. The WBE0O#-WBE03# signals control
which byte is written in bank 0 during a write cycle. The WBE10#-WBE13# signals
perform the same function for bank 1.

5-45

intel® MEMORY SUBSYSTEM DESIGN

RESET

AQO#'!AQO#*(MEMCS#+ILWR)+
IAQO#*LWR*LA2

!AQO#*IMEMCS#* IHIT#LWR*!RAS#'RFACK+
RFACK*RAS#

{AQO#*IMEMCS#*
LA2'LWR*IRFACK

IBRDY#*IBLAST#
IRFACK#+RFACK#'RAS#

'RAS#*'RDY#

IAQO#*LA2*
LWR*

CASO0 C1 C2

240552i5-26

Figure 5-26. Static Column CAS State Machine

 Write In Progress— This signal is active when a write cycle has been started

by either

DRAM bank. It is active when either CO1# or C11# is active. CO1# and C11# are
state outputs from the CAS# state machine which indicates that a write cycle is being
performed. CO1# is generated for bank 0 and C11# for bank 1. WIP# is only
required for interleaved memory systems. The CO1# (or C11#) output would be

sufficient for a non-interleaved (single bank) system.

The state machines which generate these signals are shown in Figure 5-27. The state
diagram for the MENO# signal is shown. This signal enables the address multiplexer for
bank 0. MENO# is activated whenever a write cycle occurs to an address with A2 low
(0). The MEN1# function is the same except that it is activated when A2 is high (1). The

AQO#, MEMCS# and LW/R# signals are used to indicate a valid write cycle.

5-46

intel® MEMORY SUBSYSTEM DESIGN

ICASO1#

LWIP#
RESET
So0| 1
sty o ICO1*CASO1#*
c ICIP#LW/R*IMEMCS#'LA2*!CASO1#
ICO1+!C11 co1 ICIP#*LW/R*IMEMCS#*ILA2

ICOT#IC11 1cot
WIP#=!ILWIP#+1C01+!C11

240552i5-27

Figure 5-27. State Machines for MENO, WIP#, and WEO#

The MEN# signals are deactivated when the write cycle is complete. The cycle is com-
plete when CAS# for that bank is sampled active. For bank 0, CO1# is used to indicate
that a write is in progress. MENO# is held active when CO1# is active. When CAS00# is
sampled active, CIP# is checked to determine if another valid write to the same bank
has occurred. If so, MENO# stays active until CAS00# is sampled active. This function
keeps the write address path open during consecutive writes to the same bank.

The WE# state machine is very similar to that of the MEN# state machine. When a
write cycle starts, WEO# is activated in the same manner as MENO#. The write enable
signals, however, must stay active one clock longer than the MEN# signals. Therefore,

the WE# signal is not deactivated until CO1# is sampled inactive.

5-47

intel® MEMORY SUBSYSTEM DESIGN

WIP# is generated in part by combinatorial logic so that it can be active in the same
clock as the CO1# and C11# signals. WIP# must be active in this clock to ensure that a
write miss is completed before a refresh cycle takes place. WIP# must also be held
active one clock after CO1# and C02# are sampled inactive. This timing ensures the
proper sequence for subsequent read cycles. The logic equation and state machine for
WIP# are shown in Figure 5-27.

5.5.5 Burst Address Logic

The burst address logic generates the BIMAO and BOMAO signals. These signals are
connected directly to the low order address inputs of the DRAMs. Because of the direct
connection, these signals must perform several different functions. They must multiplex
the low order row and column addresses, multiplex the write and read addresses and
generate the burst address during read cycles.

These functions are performed separately for each bank by two PLDs. Each PLD gen-
erates two identical signals to reduce the drive requirements. These signals are con-
nected directly to two bytes of the DRAM array. The signals are generated partly by
combinatorial logic and partly by the state machine. :

The logic equations and state diagram for this function are shown in Figure 5-28. The
state machine generates the burst address for read cycles. The logic equations handle the
multiplexing functions.

The burst address is generated after a burst read cycle has started. Note that the 1486
CPU cache need not be enabled for burst cycles to occur. Cycles such as 64-bit floating-
point operand reads will burst if BRDY is returned to the processor./The state machine
in Figure 5-28 has four states. SO and S3 track the state of the A3 CPU address output.
When a burst read cycle starts, S1 or S2 is entered. The BOMAO address output will then
change its state when MBRDY# and DATASEL are both low. This function is the burst
address for bank 0. The BIMAO address output changes its state when MBRDY #is low
and DATASEL is high. This function is the burst address for bank 1. The only differ-
ence in the two PLDs is the value of DATASEL used to determine the time of which the
burst address changes its state.

The SO and S3 states are required only to ensure that the burst address outputs are valid
during the T2 of any read cycle. Figure 5-12 shows the timing of a burst read hit cycle. In
the first access of this cycle, the burst address must be valid in the first T2 to satisfy the
address access time requirements of the DRAM. The value of A3 is sampled with ALD
to statisfy this requirement. In this way, the burst address state machine always starts
from the correct value of A3. If another wait state is added to this access, this function is
not required. ‘ ,

The logic equations which provide the multiplexor function are very simple. The first
term of the equations shown in Figure 5-28 enables the write path. The write enable
signals are used to enable this path. When WEQO is active, for example, the value of the
multiplexor output is passed through to the DRAM. The second term allows the row
address Al3 to be passed to the DRAM during a read page miss. This term is also

5-48

MEMORY SUBSYSTEM DESIGN

RESET

!ALD*A3*AQO# !ALD*A3*AQO#

IAQO*ILW/R#*
IMEMCS#'HIT#

IBRDY#'BLAST# / \ !BRDY#'BLAST#
IBRDY*IDATASEL N /

|BOOMAO=!WEO#*!LA313=WEO#'RAS#*!LA313+
WEO#'!RAS#*!BOA

240552i5-28

Figure 5-28. Burst Address Generation

5-49

intel” MEMORY SUBSYSTEM DESIGN

qualified by the write enable signals. In this way, the write address is not disabled early
during a read miss. The third term enables the burst address output from the state
machine onto the address pins.

5.6 SUMMARY

In this chapter we have discussed an example memory subsystem for the 1486 CPU. The
material has been presented as a design guide for systems under development or as an
optimization for existing systems. We have discussed several key functions which will be
summarized in this section. We will also discuss some important timing restrictions. The
key functions discussed in this chapter include an external or second level cache, posted
write cycles, and interleaved DRAM banks.

The interleaving technique is used to support the burst bus feature of the 1486 CPU.
Theuse of this technique allows the DRAM to supply a DWORD every clock during
burst cycles. Interleaving proves to be very useful in 486 CPU memory designs. Without
its use DRAM timings such as tPC (Page Mode Cycle time) and tCP (CAS Precharge
time) would prevent zero wait state access at 33 MHz.

Data registers are also used to improve average write cycle latency. These registers hold
write data during posted write cycles. Write posting can improve average write latency to
under 3 clocks for many applications. This improvement is important in 1486 CPU-based
systems because 65% to 70% of all bus cycles are writes. Without using a latency
improvement technique such as write posting average write latency will be above
5 clocks.

The write posting technique also improves memory performance in other ways. Write
cycles, particularly DRAM page misses, can be overlapped with read hit cycles in the
second-level cache. This fact greatly reduces the delay caused by read cycles which
immediatly follow write cycles.

Analysis of this memory subsystem design has shown that use of these features has
resulted in a low latency response to the CPU. Over several important applications the
following characteristics have been recorded. The average clock cycles required to com-
plete the first read is 3.5 clocks. Subsequent cycles of a burst are always processed in one
clock. Write cycles average 2.5.clocks. These average counts result from the DRAM
access rates in Table 5-4. Read accesses from the cache always occur in zero wait states.

Table 5-4. Clock Latencies for DRAM Functions

. First Subsequent .
DRAM Function Access Burst Burst Accesses Write Cycles
Page hit 3 1 2
Page miss 7 1 5*

*Latency only incurred for back-to-back cycles.

5-50

intgl® MEMORY SUBSYSTEM DESIGN

5.7 TIMING RESTRICTIONS

A few DRAM timing restrictions must be mentioned. These timings become critical at
33 MHz. These timings are critical due primarily to the latency of the first cycle of a read
page hit. Since three clocks are used the following timing restrictions exist:

tRAC = Data access time from RAS# active

tCAA = Data access time from column address valid
tCAC = Data access time from CAS# active

tRP = RAS# precharge time

At 33 MHz:
tRAC = 71.5 ns
tCAA = 375 ns
tCAC = 34 ns
tRP = 60.6 ns
At 25 MHz:
tRAC = 101.5 ns
tCAA = 51 ns
tCAC = 61.5 ns
tRP = 80 ns

5-51

Cache Subsystem

CHAPTER 6
CACHE SUBSYSTEM

6.1 INTRODUCTION

Caches are an important means of improving system performance. The i486™ DX micro-
processor has an on-chip, unified code and data cache. The on-chip cache is used for
both instruction and data accesses and operates on physical addresses. The 486 CPU
has an 8-Kbyte cache which is organized in a 4-way set associative manner. To under-
stand cache philosophy and the system advantages of a cache, many issues must be
considered.

This chapter discusses the following related cache issues:
e Cache theory and the impact of caches on performance.
o The relationship between cache size and hit rates when using a single-level cache.

o Issues in mapping (or associativity) that arise when main memory is cached. Different
cache configurations including direct-mapped, set associative, and fully associative.
They are discussed along with the performance tradeoffs inherent to each
configuration.

o The impact of cache line sizes and cache re-filling algorithms on performance.

e Write-back and write-through methods for updating main memory. How they main-
tain cache consistency and their impact on external bus utilization.

« Cache consistency issues that arise when a DMA occurs while the i486 CPU’s cache is
enabled. Methods that ensure cache and main memory consistency during cache
accesses.

e Caches used in single versus multiple CPU systems.

6.2 CACHE MEMORY

Cache memories are high-speed memories that are placed between microprocessors and
main memories. They keep copies of main memory that are currently in use to speed
microprocessor access to requested data and instructions. When properly implemented,
their access time can be three to eight times faster than that of main memory, and thus
can reduce the overall access time. Caches also reduce the number of accesses to main
memory DRAM which is important to systems with multiple CPU’s which all access that
same memory. This section introduces the cache concept and memory performance ben-
efits provided by a cache.

6.2.1 What is a Cache?

A cache memory is a smaller high-speed memory that fits between a CPU and a slower
main memory. Cache memories are important in increasing computer performance by
reducing total memory latency. A cache memory consists of a directory (or tag), and a

6-1

intel® CACHE SUBSYSTEM

data memory. Whenever the CPU is required to read or write data it first accesses the
tag memory and determines if a cache hit occurred, implying that the requested word is
present in the cache. If the tags do not match, the data word is not present in the cache.
This is called a cache miss. On a cache hit, the cache data memory allows a read oper-
ation to be completed more quickly from its faster memory than from a slower main
memory access. The hit rate is the percentage of the accesses that are hits, and is
affected by the size and organization of the cache, the cache algorithm used, and the
program running. An effective cache system should maintain data in a way that increases
the hit rate. Different cache organizations will be discussed later in this chapter. The
main advantage of caches is that a larger main memory appears to have the high speed
of a cache. For example, a zero-waitstate cache that has a hit rate of 90 percent will
make main memory appear to be zero-waitstate memory for 9 out of 10 accesses.

Programs usually address memory in the neighborhood of recently accessed locations.
This is called program locality or locality of reference and it is locality that makes cache
systems possible. Code, data character strings, and vectors tend to be sequentially
scanned items or items accessed repeatedly, and caches will help the performance in
these cases. In some cases the program locality principle does not apply. Jumps in code
sequences and context switching are some examples.

6.2.2 Why Add a Cache?

A cache can increase system performance at a reduced cost. Caches make main memory
act as though it is performing at near-SRAM speed at a cost much less than a complete
SRAM memory system. Caches are commonly used in high-speed 386™ CPU systems. A
386 DX CPU system with a 32-Kbyte cache and a main memory of 16 Mbytes is shown in
Figure 6-1. A 32-Kbyte, direct-mapped cache using an 82385 cache controller has an
86 percent hit rate; it responds to the CPU in 0 waitstates (SRAM speeds) 86 percent of
the time. This makes the 16 Mbytes of slower main memory appear to be 16 Mbytes of
SRAM in 86 percent of its reads.

The 386 DX performance benefits from an 82385 cache about 25-35% compared to
DRAM alone. The 1486 CPU, however, has an 8K internal cache. An external cache for
the 1486 CPU, called a second-level cache, will offer anywhere from no to moderate
performance increases. The on-chip, 8K cache is sufficient for most applications, but
thrashes during larger, memory-intensive or multi-process applications. A large, second-
level cache can capture the data that misses the internal cache and provide near-SRAM
speed response. The effectiveness of the second-level cache widely varies and depends
on the application being executed and the main memory speed.

6.3 CACHE TRADEOFFS

Cache efficiency is the cache’s ability to keep the most frequently used code and data
used by the microprocessor, and it is measured in terms of the hit rate. Another indica-
tion of cache efficiency is system performance; this is the speed in which the micropro-
cessor can perform a certain task and is measured in effective bus cycles. An efficient
cache reduces external bus cycles and enhances overall system performance. Hit rates
are discussed in the next section. o :

6-2

H @
intel CACHE SUBSYSTEM

DATA
‘ DATA
386™DX CPU + >
ADRS
ADRS
CNTRL D A
‘ MEMORY
ADRS DATA
IADRS
82385 B
CACHE CACHE
CONTROLLER DATA RAM
16MB DRAM
H CNTRL 8K X 32 DATA 4M X 32
1K X 17 TAG

240552i6-1

Figure 6-1. A Typical 386™ DX CPU System with an 82385 Cache Memory

Factors that can affect a cache’s performance are:

[

Size: Increasing the cache size allows more items to be contained in the cache. Cost is
increased, however, and a larger cache cannot operate as quickly as a smaller one.

Associativity (discussed in Section 6.2.2): Increased associativity increases the cache’s
hit rate but also increases its complexity and reduces its speed.

Line Size: The amount of data the cache must fetch during each cache line replace-
ment (every miss) affects performance. More data takes more time to fill a cache line,
but then more data is available and the hit rate increases.

Write-Back and Write Posting: The ability to write quickly to the cache and have the
cache then write to the slower memory increases performance. Implementing these
types of caches can be very complex, however.

Features: Adding features such as write-protection (to be able to cache ROM mem-
ory), bus watching, and multiprocessing protocols can speed a cache but increases
cost and complexity.

Speed: Not all caches return data to the CPU as quickly as possible. It is less expen-
sive and complex to use slower cache memories and cache logic. Intel’s 82385 and
485Turbocache Module are, however, the fastest possible solutions for the 386 DX
and i486 microprocessor.

6.3.1 Cache Size and Performance

Hit rates for various first-level cache configurations are shown in Table 6-1. These
statistics are conservative because they illustrate the lowest hit rates generated by ana-
lyzing several mainframe traces. The hit rates are not absolute quantities, and the hit

6-3

intgl” CACHE SUBSYSTEM

Table 6-1. First-Level Cache Hit Rates

Cache Configuration
Hit Rate

Size Associativity Line Size
1K direct 4 bytes 41%
8K direct 4 bytes 73%
16K direct 4 bytes 81%
32K direct 4 bytes 86%
32K 2-way 4 bytes 87%
32K direct 8 bytes 91%
64K direct 4 bytes 88%
64K 2-way . 4 bytes 89%
64K 4-way 4 bytes 89%
64K direct 8 bytes 92%
64K 2-way 8 bytes 93%
128K direct 4 bytes 89%
128K 2-way 4 bytes 89%
128K direct 8 bytes 93%

rate of a particular configuration is software dependent. However, the table allows a
meaningful comparison of the various cache configurations. It also indicates the degree
of hardware complexity needed to arrive at a particular cache efficiency. Table 6-1 pre-
sents direct-mapped, 2-way, and 4-way set associative caches which are all discussed in
the next section.

Program behavior is another important factor in determining cache efficiency. If a pro-
gram uses a piece of data only once, then the cache may spend all its time thrashing or
replacing itself with new data from memory. This is common in vector processing. The
processor receives no added efficiency from the cache as main memory is being
requested frequently. In such instances, the user can consider mapping the data entries
as noncacheable.

Cache system performance can be calculated based on the main memory access time, the
cache access time, the miss rate, and the write cycle time.

Cs is defined as the ratio of the cache system access time to the main memory access
time. Cs is a dimensionless number but provides a useful measure of the cache
performance.

Ca = (1-M)Tc + MTm

Cs = Ca/Tm = (1-M)(Tc/Tm) + M = (1-M)Cm+M

where:

Ca = average cache system cycle time averaged over reads and writes

Tc = cache cycle time

Tm = main memory cycle time

M = miss rate = 1-hit rate

Cs = cache system access time as a fraction of main memory access time
Cm = cache memory access time as compared to main memory cycle time

6-4

intgl® CACHE SUBSYSTEM

If the cache always misses then M=1 and Cm=1, and the main memory access is equal
to the effective access time of the cache. If the cache is infinitely fast, then Cm is equal
to the miss rate. Because the cache access time is finite, the cache system access time
approaches the cache access time as the miss rate approaches zero.

While the above discussion applies to read operations it can be easily extended to write
operations, which also affect system performance. When memory has to be written to,
the CPU has to wait for the completion of the write cycle before proceeding to the next
instruction. In a buffered memory system, where posted writes occur, data can be loaded
in a register, and the memory can be updated later. This allows the CPU to begin the
next cycle without being delayed by the main memory write access time. Both these
memory updating techniques are discussed later in this chapter.

6.3.2 Associativity and Performance Issues

Data and instructions are written into the cache by a function that maps the main mem-
ory address into a cache location. The placement policy determines the mapping func-
tion from the main memory address to the cache location. There are four policies to
consider: fully associative, direct-mapped, set associative, and sector buffering.

Fully Associative: A fully associative cache system provides maximum flexibility in deter-
mining which blocks are stored in the cache at any time. Ideally the blocks of words in
the cache would contain the main memory locations needed most by the processor
regardless of the distance between the words in main memory. The size of a block in the
cache is also known as the line size, and corresponds to the width of a cache word. For
example, a block can be eight bytes for a 32-bit processor, in which case two double-
words are accessed each time the cache line is filled. In the example shown in Figure 6-2,
the block size is one doubleword.

Because there is no single relationship between all of the addresses in the 64 blocks, the
cache would have to store the entire address of each block. When the processor requests
data, the cache controller would have to compare the address with each of the
64 addresses in the cache for a match condition. This organization, shown in Figure 6-2
is called fully associative.

Direct Mapped: In a direct mapped cache, the simplest of the three policies, only one
address comparison is required to determine if the requested word is in the cache. This
is because each block in the cache maps to only one location in the cache. A direct
mapped cache address has two parts: a cache index field, which specifies the block’s
location in the cache, and a tag field that distinguishes blocks within a particular cache
location.

For example, consider a 64-Kbyte direct mapped cache that contains 16K 32-bit loca-
tions and caches 16 Mbytes of memory. The cache index field must include 14 bits to
select one of the 16-Kbyte blocks in cache plus two bits to decode one of the four byte
enables. The tag field must be eight bits wide to identify one of the 256 blocks that can

6-5

intel® CACHE SUBSYSTEM

31 24 23 21 0
32-BIT
e e I
ADDRESS
|<¢——16 MEGABYTE DRAM = 24 BITS —»]
DATA
»1 24682468 FFFFFC
;:Agr:s AT es »>{ 11223344 FFFFF8
4 3 FFFFF4
FFFFFC 24682468
000000 12345678
FFFFF4
163340
LOCAIONS 4 »| 87654321 16339C
163398
16339C 87654321
FFFFF8 11223344
. 00000C
2816 BIT SRAM 4096 BIT SRAM 000008
000004
> 12345678 000000
|e—32 BITS—>>|
16 MEGABYTE DRAM
240552i6-3

Figure 6-2. A Fully Associative Cache Organization

occupy the selected cache location. The most significant eight bits of the address are
decoded to select the cache subsystem from other memories in the memory space. The
direct-mapped cache organization is shown in Figure 6-3.

If the processor requests data at FFFFFS, then the first step is to send the most signif-
icant 14 bits of FFF8 to the cache tag RAM. If the tag ficld stored at FFES is FF (as
shown in the diagram), then a hit has occurred and the data word “B” is sent to the
CPU. If the requested word has 020004, then the tags would not match. In this case the
tag RAM would be updated with the value 02 corresponding to the index 0004, and the
data “D” would be replaced by the word at location 020004,

If the processor accesses locations that have the same index bits, then the cache would
have to be updated constantly. This type of program behavior is infrequent, however, so
a direct mapped cache may provide acceptable performance at a lower cost when com-
pared to a fully associative cache memory.

6-6

CACHE SUBSYSTEM

32-BIT PROCESSOR ADDRESS

31 24 | 23 16|15 0
CACHE/DRAM
SELECT TAG INDEX
64K CACHE 16 BITS
B 16 MEGABYTE DRAM 24 BITS
CACHE-64KB MAIN MEMORY-16 MB
DATA INDEX TAG
DA
INDEX TAG TA - crrC
FFFC 01 A - 5 FEF8
FFF8 FF B] *
0008
-
0008 00 c 0004
0004 o1 D 0000
0000 00 E g
<_>| » A FFFC
32BITS
FFF8
01
> D 0008
0004
0000
FFFC
FFF8
00
| ¢ 0008
0004
» E 0000

240552i6-4

Figure 6-3. Direct Mapped Cache Organization

Set Associative: The set-associative cache is a compromise between the fully associative
and direct-mapped caches. The set-associative cache has more than one set and it is
equivalent to several direct mapped caches operating in parallel. For each cache index
there are several block locations allowed, and the block can be placed in any set or
retrieved from any set. Figure 6-4 shows a two-way set associative cache memory.

6-7

intel”

CACHE SUBSYSTEM

32-BIT PROCESSOR ADDRESS
32 24|23 15|14 0
TAG INDEX
2 x 32K SRAM = 2 x 15 BITS
16 MEGABYTE DRAM 24 BITS
CACHE-64KB DATA INDEX TAG
TAG DATA
INDEX > Y 7FFC
7FFC 001 A — > B 7FF8
7FF8 1FF B |
1FF
0008 000 c] 0008
0004 001 0004
0000 000 E 0000
— 001
32 BITS l ' o A 7FFC
7FF8
| > D 0008
INDEX TAG DATA 0004
7FFC 1FF Y w 0000
7FF8
7FF8
0008 7FFC
0004 000
0000 001 w - c 0008
- > e > 0004
9 BITS 32 BITS >~ E 0000

240552i6-5

Figure 6-4. Two-Way Set Associative Cache Organization

Given an equal amount of cache memory as in the direct mapped example, the set
associative cache has half as many locations, and the extra address bit becomes part of
the tag field. Because the set-associative cache has several places for a block with the
same cache index, the hit rate is increased. The set associative cache performs more
efficiently than a direct mapped cache, but it needs a wider tag field and additional logic
to determine which set should receive the data. This function is determined by the

replacement policy, which is covered later in this section.

6-8

intgl® CACHE SUBSYSTEM

Sector Buffering: Another cache configuration uses a sector buffer and is sometimes
called a sub-block cache. The cache is a number of sectors, and the sectors in turn are a
number of blocks. Each block can have its own valid bit, but only one tag address exists
per sector. When a word is accessed whose sector is in the cache but the block is not,
then the block is fetched from the main memory. Sector buffering has its own tradeoffs
associated with miss ratios and bus utilization. Having smaller blocks increases the miss
ratio, but reduces the number of external bus accesses. Conversely, having a large num-
ber of blocks increases the hit ratio but also increases the external bus utilization.
Figure 6-5 shows the cache organization in sector buffering.

The i486 CPU’s on-board cache is organized 4-way set associative with a line size of
16 bytes. The 8-Kbyte cache is organized as four 2-Kbyte sets. Each 2-Kbyte set is com-
prised of one hundred and twenty-eight 16 byte-lines. Figure 6-6 shows the cache orga-
nization. Because the cache is on-chip, the user can achieve an extremely high hit rate
with the 4-way associativity. The cache is transparent so that the i486 CPU remains
software compatible with its non-cache predecessors.

6.3.3 Block/Line Size

As mentioned earlier, block size is an important consideration in cache memory design.
Block size is also referred to as the line size or the width of the cache data word. The
block size may be larger than the word, and this can impact the performance as the
cache may be fetching and storing more information than the CPU needs.

As the block size increases, the number of blocks that fit in the cache are reduced.
Because each block fetch overwrites the older cache contents, some blocks are overwrit-
ten shortly after being fetched. In addition, as block size increases, additional words are
fetched with the requested word. Because of program locality the additional words are
less likely to be needed by the processor.

TAG 1 BLOCK 1.1 BLOCK 1.2 BLOCK 1.3 e BLOCK 1.N

TAG 2 BLOCK 2.1 BLOCK 2.2 BLOCK 2.3 ce BLOCK 2.N

TAG M BLOCK M.1 BLOCK M.2 BLOCK M.3

TAG PER SECTOR BLOCKS PER SECTOR

Figure 6-5. Sector Buffer Cache Organization

6-9

intgl® CACHE SUBSYSTEM

4-WAY SET ASSOCIATIVE 8K — BYTE CACHE

SET 0
WORD 0 [WORD 1] WORD 2 [WORD 3

LINE SIZE = 4 DWORDS"
2K BYTES LINE SIZE = 16 BYTES

SET 1

2K BYTES

SET 2

2K BYTES

SET 3

2K BYTES

240552i6-7

Figure 6-6. The Cache Data Organization for the On-Chip i486™ CPU’s Cache

If a cache is refilled with 4 or 8 CPU words on a miss then the performance improves
dramatically over a cache size that employs single word refills. Those extra words that
were read into the cache, because they are subsequent words and by the sequential
nature of programs, will most likely be hits in subsequent cache accesses. As well, the
cache refill algorithm is a significant performance factor in systems where the delay in
transferring the first word from the main memory is long but in which several subsequent
words can be transferred in a shorter time. This situation applies when using page mode
accesses in dynamic RAMs, and the initial word is read after the normal access time,
while subsequent words can be quickly accessed by changing only the column addresses.
Taking advantage of this situation while selecting the optimum line size can greatly
increase cache performance.

6.3.4 Replacement Policy

In a set-associative cache configuration, a replacement policy is needed to determine
which set should receive new data when the cache is updated. There are three common
approaches for choosing which block (or single word) within a set will be overwritten.
These are the least recently used (LRU) method, the first-in first-out (FIFO) method,
and the random method. v

6-10

intel” CACHE SUBSYSTEM

In the LRU method, the set that was least recently accessed is overwritten. The control
logic must maintain least recently used bits and must examine the bits before an update
occurs. In the FIFO method, the cache overwrites the block that is resident for the
longest time. In the random method, the cache arbitrarily replaces a block. The perfor-
mance of the algorithms depends on the program behavior. The LRU method is pre-
ferred because it provides the best hit rate.

6.4 UPDATING MAIN MEMORY

When the processor executes instructions that modity the contents of the cache, changes
have to be made in the main memory as well, otherwise, the cache is only a temporary
buffer and it is possible for data inconsistencies to arise between the main memory and
the cache. If only one of the two, the cache or the main memory, is altered and the other
is not, two different sets of data become associated with the same address. A potential
situation of incorrect or stale data is shown in Figure 6-7. There are two general
approaches to updating the main memory. The first is the write-through method, and the
second is the write-back, also known as copy-back method. Memory traffic issues are
discussed for both the methods.

CPU CACHE MAIN MEMORY

1
PROCESSOR READS DATA INTO
CACHE, FROM MAIN MEMORY

2
THE DATA IS PROCESSED, AND]
MODIFIED AND STORED IN
THE CACHE, AND NOT IN

THE MAIN MEMORY NONNNNNNWN

ANNNNNNN

3 el
LATER, ANOTHER READ OVERWRITES < \ \\\\ <
THE CACHE DATA AND THE MODIFIED
DATA IS OVERWRITTEN, AND LOST
BEFORE THE MAIN MEMORY WAS NNONUNNNNN
UPDATED

4

THE PROCESSOR READS DATA FROM
MEMORY AS IN THE FIRST STEP,

BUT STALE DATA IS COPIED IN

THE CACHE,AS THE CORRECT DATA . AN\
SHOWN IN STEP 2, WAS NOT SENT
TO THE MAIN MEMORY

240552i6-8

Figure 6-7. Stale Data Problem in the Cache/Main Memory

6-11

intel® CACHE SUBSYSTEM

6.4.1 Write-Through and Buffered Write-Through Systems

In a write-through system, data is written to the main memory immediately after or while
it is written into the cache. As a result, the main memory always contains valid data. The
advantage to this approach is that any block in the cache can be overwritten without data
loss, while the hardware implementation remains fairly straightforward. There is a mem-
ory traffic tradeoff, however, because every write cycle increases the bus traffic on a
slower memory bus. This can create contention by multiple bus masters for use of the
memory bus. Even in a buffered write-through scheme, each write will eventually go to
memory. Thus, bus utilization for write cycles is not reduced by using a write-through or
buffered write-through cache.

Users sometimes adopt a buffered write-through approach in which the write accesses to
the main memory can be buffered with a N-deep pipeline. A number of words are stored
in pipelined registers, and will subsequently be written to the main memory. The proces-
sor can begin a new operation before the write operation to main memory is completed.
If a read access follows a write access, and a cache hit occurs, then data can be accessed
from the cache memory while the main memory is updated. If the N-deep pipeline is full
the processor must wait if another write access occurs and the main memory has not
been as yet been updated. A write access followed by a read miss also requires the
processor to wait as the main memory has to be updated before the next read access.

Pipeline configurations must account for multiprocessor complications when another
processor accesses a shared main memory location which has not been updated by the
pipeline. This means the main memory hasn’t been updated, and the memory controller
must take the appropriate action to prevent data inconsistencies. :

6.4.2 Write-Back System

In a write-back system, the processor writes data into the cache and sets a “dirty bit”
which indicates that a word had been written into the cache but not into the main
memory. The cache data is written into the main memory at a later time and the dirty bit
is cleared. Before overwriting any word or block in the cache, the cache controller looks
for a dirty bit and updates the main memory before loading the cache with the new data
into the cache.

A write-back cache accesses memory less often than a write-through cache because the
number of times that the main memory must be updated with altered cache locations is
usually lower than the number of write accesses. This results in reduced traffic on the
main memory bus.

A write-back cache can offer higher performance than a write-through cache if writes to
main memory are slow. The primary use of the a write-back cache is in a multiprocessing
environment. Since many processors must share the main memory, a write-back cache
may be required to limit each processor’s bus activity, and thus reduce contention for
main memory. It has been shown that in a single-CPU environment with up to 4 clock
memory writes, there is no significant performance difference between a write-through
and write-back cache.

6-12

intel® CACHE SUBSYSTEM

There are some disadvantages to a write-back system. The cache control logic is more
complex because addresses have to be reconstructed from tlie tag RAM and the main
memory has to be updated along with the pending request. For DMA and multiproces-
sor operations, all locations with an asserted dirty bit must be written to the main mem-
ory before another device can access the corresponding main memory locations.

6.4.3 Cache Consistency

Write-through and write-back systems require mechanisms to eliminate the problem of
stale main memory in a multiprocessing system or in a system with a DMA controller. If
the main memory is updated by one processor then the cache data maintained by
another processor can contain stale data. A system that prevents the stale data problem
is said to maintain cache consistency. There are four methods commonly used to main-
tain cache consistency: snooping (or bus watching), broadcasting (or hardware transpar-
ency), non-cacheable memory designation, and cache flushing.

In snooping, cache controllers monitor the bus lines and invalidate any shared locations
that are written by another processor. The common cache location is invalidated and
cache consistency is maintained. This method is shown in Figure 6-8.

In broadcasting/hardware transparency, the addresses of all stores are transmitted to all
the other caches so that all copies are updated. This is accomplished by routing the
accesses of all devices to main memory through the same cache. Another method is by
copying all cache writes to main memory and to all of the caches that share main mem-
ory. A hardware transparent system is shown in Figure 6-9.

CACHE .
CPU 1 CONTROLLER >
svoor == seeen
ADDRESS 1/P

| S

OTHER g
BUS MASTER (S)

240552i6-9

Figure 6-8. Bus Watching/Snooping for Shared Memory Systems

6-13

intel® CACHE SUBSYSTEM

OTHER
BUS - »1 CACHE - >
MASTER
) MAIN
MEMORY
cpu - »1 CACHE -

240552i6-10

Figure 6-9. Hardware Transparency

In non-cacheable memory systems, all shared memory locations are considered non-
cacheable. In such systems, access to the shared memory is never copied in the cache,
and the cache never receives stale data. This can be implemented with chip select logic
or with the high order address bits. Figure 6-10 shows non-cacheable memory.

In cache flushing, all cache locations with set dirty bits are written to main memory (for
write-back systems), then cache contents are cleared. If all of the devices are flushed
before another bus master writes to shared memory, cache consistency is maintained.

Combinations of various cache coherency techniques may be used in a system to provide
an optimal solution. A system may use hardware transparency for time critical I/O oper-
ations such as paging, and it may partition the memory as non-cacheable for slower 1/O
operations such as printing.

6.5 CACHE AND DMA OPERATIONS

Some of the issues related to cache consistency in systems employing DMA have already
been covered in the preceding section. Because a DMA controller or other bus master
can update main memory there is a possibility of stale data in the cache. The problem
can be avoided through snooping, cache transparency, and non-cacheable designs.

In snooping, the cache controller monitors the system address bus, and invalidates cache
locations that will be written to during a DMA cycle. This method is advant