

.. -~--... - ---~-~-------------------

LITERATURE

In addition to the product line Handbooks listed below. the INTEL PRODUCT G UI DE (no charge. Order
No. 210846) provides an overview of Intel's complete product line and customer services.

Consult the INTEL LITERATURE GUIDE fora complete listing of Intel literature. TO ORDER literature
in the United States. write or call the I ntel Literature Department. 3065 Bowers Avenue. Santa Clara. C A
95051. (800) 538-1876. or (800) 672-1833 (California only). TO ORDER literature from international
locations. contact the nearest Intel sales office or distributor (see listings in the back of most any Intel
literature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contains all application notes. article reprints. data sheets. and other design information
on RAMs. DRAMs. EPROMs. E2PROMs. Bubble Memories.

Telecommunication Products Handbook (Order No. 230730)
Contains all application notes. article reprints. and data sheets for telecommunication
products.

U.S. PRICE*

$15.00

7.50

Microcontroller Handbook (Order No. 210918) 15.00
Contains all application notes. article reprints. data sheets. and design information for the
MCS-48. MCS-51 and MCS-96 families.

Microsystem Components Handbook (Order No. 230843) 20.00
Contains application notes. article reprints. data sheets, technical papers for micropro-
cessors and peripherals. (2 Volumes) (Individual User Manuals are also available on the
8085, 8086, 8088. 186, 286, etc. Consult the Literature Guide for prices and order
numbers.)

Military Handbook (Order No. 210461) 10.00
Contains complete data sheets for all military products. Information on Leadless Chip
Carriers and on Quality Assurance is also included.

Development Systems Handbook (Order No. 210940) 10.00
Contains data sheets on development systems and software, support options, and design
kits.

OEM Systems Handbook (Order No. 210941) 15.00
Contains all data sheets, application notes, and article reprints for OEM boards and
systems.

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

• Prices are for the U.S. only.

10.00

iAPX 286 PROGRAMMER'S
REFERENCE MANUAL INCLUDING

THE iAPX 286 NUMERIC SUPPLEMENT

1985

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice, Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied. '

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iRMX Plug-A-Bubble
COMMputer iMMX iSBC PROMPT
CREDIT Insite iSBX Promware
Data Pipeline inte1 iSDM QueX
Genius intelBOS iSXM QUEST
i I ntelevision Library Manager Ripplemode
6

inteligent Identifier MCS RMXj80 1

121CE inteligent Programming Megachassis RUPI
ICE Intellec MICROMAINFRAME Seamless
iCS Intellink MULTI BUS SOLO
iDBP iOSP MULTICHANNEL SYSTEM 2000
iDIS iPDS MULTI MODULE UPI
iLBX

Table of Contents

CHAPTER 1 Page
INTRODUCTION TO iAPX 286

General Attributes 1-1
Modes of Operation ... 1-2
Advanced Features 1-2

Memory Management 1-2
Task Management 1-3
Protection Mechanisms 1-3
Support for Operating Systems 1-4

Organization of This Manual 1-4
Related Publications 1-6

CHAPTER 2
iAPX 286 BASE ARCHITI;CTURE

Memory Organization and Segmentation 2-1
Data Types ... 2-1
Registers 2-6

General Registers .. 2-6
Memory Segmentation and Segment Registers ... 2-7
Index, Pointer, and Base Registers 2-10
Status and Control Registers 2-14

Addressing Modes .. 2-15
Operands .. 2-16
Register and Immediate Modes .. 2-17
Memory Addressing Modes .. 2-17

Segment Selection ... 2-17
Offset Computation .. 2-19
Memory Mode .. 2-20

Input/Output ... 2-22
I/O Address Space ... 2-22
Memory-Mapped I/O ... 2-23

Interrupts and Exceptions ... 2-23
Hierarchy of Instruction Sets .. 2-25

CHAPTER 3
BASIC INSTRUCTION SET

Data Movement Instructions 3-1
General-Purpose Data Movement Instructions .. 3-1
Stack Manipulation Instructions 3-1

Flag Operation with the Basic Instruction Set .. 3-5
Status Flags 3-5
Control Flags .. 3-5

Arithmetic Instructions 3-6
Addition Instructions .. 3-7
Subtraction Instructions ... 3~7
Multiplication Instructions .. 3-8
Division Instructions .. :.. 3-9

Logical Instructions : .. 3-10
Boolean Operation Instructions ... 3-10
Shift and Rotate Instructions ... 3-10

Shift Instructions .. 3-11
Rotate Instructions ... 3-13

Type Conversion and No-Operation Instructions 3-17

iii

Table of Contents (cont.)

Page

Test and Compare Instructions .. 3-17
Control Transfer Instructions .. 3-17

Unconditional Transfer Instructions .. 3-18
Jump Instruction ... 3-18
Call Instruction .. 3-20
Return ·and Return From Interrupt Instruction .. 3-20

Conditional Transfer Instructions .. 3-21
Conditional Jump Instructions ... 3-21
Loop Instructions ... 3-21
Executing a Loop or Repeat Zero Times .. 3-22

Software-Generated Interrupts .. 3-23
Software Interrupt Instruction .. 3-23

Character Translation and String Instructions ... 3-23
Translate Instruction .. 3-23
String Manipulation Instructions and Repeat Prefixes ... 3-23

String Movement Instructions .. 3-24
Other String Operations ... 3-25

Address Manipulation Instructions ... 3-25
Flag Control Instructions ... 3-26

Carry Flag Control Instructions ... 3-26
Direction Flag Control Instructions 3-26
Flag Transfer Instructions ... 3-27

Binary-Coded Decimal Arithmetic Instructions ... 3-27
Packed BCD Adjustment Instructions ... 3-28
Unpacked BCD Adjustment Instructions .. 3-28

Trusted Instructions .. 3-29
Trusted and Privileged Instructions on POPF and IRET .. 3-29
Machine State Instructions .. 3-29
Input and Output Instructions .. 3-29

Processor Extension Instructions ... 3-30
Processor Extension Synchronization Instructions .. 3-30
Numeric Data Processor Instructions ... 3-31

Arithmetic Instructions ... 3-31
Comparison Instructions .. 3-31
Transcendental Instructions .. 3-31
Data Transfer Instructions ... 3-31
Constant Instructions ... 3-31

CHAPTER 4
EXTENDED INSTRUCTION SET

Block I/O Instructions 4-1
High-Level Instructions .. 4-2

CHAPTER 5
REAL ADDRESS MODE

Addressing and Segmentation .. 5-1
Interrupt Handling .. 5-3

Interrupt Vector Table .. 5-3
Interrupt Priorities 5-4

Interrupt Procedures 5-4
Reserved and Dedicated Interrupt Vectors 5-5

System Initialization ... 5-7

iv

Table of Contents (cont.)

CHAPTER 6 Page
MEMORY MANAGEMENT AND VIRTUAL ADDRESSING

Memory Management Overview ... 6-1
Virtual Addresses 6-2
Descriptor Tables 6-4
Virtual-to-Physical Address Translation 6-6
Segments and Segment Descriptors .. 6-7
Memory Management Registers 6-8

Segment Address Translation Registers 6-9
System Address Registers .. 6-11

CHAPTER 7
PROTECTION

Introduction .. 7-1
Types of Protection 7-1
Protection Implementation ... 7-2

Memory Management and Protection .. 7-4
Separation of Address Spaces .. 7-5
LDT and GDT Access Checks ... 7-5
Type Validation ... 7-8

Privilege Levels and Protection ... 7-8
Example of Using Four Privilege Levels ... 7-8
Privilege Usage .. 7-10

Segment Descriptor ... 7-10
Data Accesses ... 7-12
Code Segment Access .. 7-13
Data Access Restriction by Privilege Level .. 7-14
Pointer Privilege Stamping via ARPL .. 7-14

Control Transfers .. 7-15
Gates .. 7-16

Call Gates ... 7-17
Intra-Level Transfers via Call Gate .. 7-18
Inter-Level Control Transfer via Call Gates 7-19
Stack Changes Caused by Call Gates ... 7-20

Inter-Level Returns .. 7-20

CHAPTER 8
TASKS AND STATE TRANSITIONS

Introduction 8-1
Task State Segments and Descriptors ... 8-1

Task State Segment Descriptors 8-3
Task Switching .. 8-4
Task Linking .. 8-6
Task Gates 8-8

CHAPTER 9
INTERRUPTS AND EXCEPTIONS

Interrupt Descriptor Table ... 9-1
Hardware Initiated Interrupts .. 9-2
Software Initiated Interrupts 9-3
Interrupt Gates and Trap Gates 9-3
Task Gates and Interrupt Tasks ... 9-7

v

Table of Contents (cont.)

Page
Scheduling Considerations 9-8
Deciding Between Task, Trap, and Interrupt Gates ... 9-8

Protection Exceptions and Reserved Vectors 9-9
Invalid OP-Code (Interrupt 6) ... 9-10
Double Fault (Interrupt 8) .. ; 9-10
Processor Extension Segment Overrun (Interrupt 9) ... 9-10
Invalid Task State Segment (Interrupt 10) 9-11
Not Present (Interrupt 11) .. 9-11
Stack Fault (Interrupt 12) ... 9-12
General Protection Fault (Interrupt 13) .. 9-12

Additional Exceptions and Interrupts .. 9-13
Single Step Interrupt (Interrupt 1) .. 9-13

CHAPTER 10
SYSTEM CONTROL AND INITIALIZATION

System Flags and Registers ... 10-1
Descriptor Table Registers .. 10-1

System Control Instructions 10-3
Machine Status Word .. 10-4
Other Instructions .. 10-4

Privileged and Trusted Instructions 10-5
Initialization .. 10-6

Real Address Mode 10-6
Protected Mode 10-6

CHAPTER 11
ADVANCED TOPICS

Virtual Memory Management .. 11-1
Special Segment Attributes 11-1

Conforming Code Segments 11-1
Expand-Down Data Segments 11-2

Pointer Validation ... 11-2
Descriptor Validation 11-3
Pointer Integrity: RPL and the "Trojan Horse Problem" 11-4

NPX Context Switching ... 11-4
Multiprocessor Considerations 11-5
Shutdown ... 11-7

APPENDIX A
iAPX 286 SYSTEM INITIALIZATION

APPENDIX B
THE iAPX 286 INSTRUCTION SET

APPENDIX C
iAPX 286/10

APPENDIX D
iAPX 86/88 SOFTWARE COMPATIBILITY CONSIDERATIONS.

APPENDIX E
iAPX 286/386 SOFTWARE COMPATIBILITY CONSIDERATIONS

vi

Figures

Figure Title Page

1-1 Four Privilege Levels 1-4
2-1 Segmented Virtual Memory 2-2
2-2 Bytes and Words in Memory 2-3
2-3 iAPX 286 Supported Data Types ... 2-4
2-4 iAPX 286 Base Architecture Register Set 2-7
2-5 Real Address Mode Segment Selector Interpretation .. 2-9
2-6 Protected Mode Segment Selector Interpretation .. 2-9
2-7 iAPX 286 Stack ... 2-10
2-8 Stack Operation .. 2-12
2-9 BP Usage as a Stack Frame Base Pointer ... 2-13
2-10 Flags Register .. 2-14
2-11 Two-Component Address 2-18
2-12 Use of Memory Segmentation ... 2-19
2-13 Complex Addressing Modes 2-21
2-14 Memory Mapped I/O .. 2-23
2-15 Hierarchy of Instructions .. 2-25
3-1 PUSH... 3-2
3-2 PUSHA 3-3
3-3 POP ... 3-4
3-4 POPA .. 3-5
3-5 Flag Word Contents 3-6
3-6 SAL and SHL .. 3-11
3-7 SHR ... 3-12
3-8 SAR ... 3-12
3-9 ROL ... 3-13
3-10 ROR .. 3-14
3-11 RCL ... 3-15
3-12 RCR .. 3-16
3-13 LAHF and SAHF ... 3-27
3-14 PUSHF and POPF .. 3-28
4-1 Format Definition of the ENTER Instruction .. 4-3
4-2 Variable Access in Nested Procedures ... 4-4
4-2a Stack Frame for MAIN at Level 1 .. 4-5
4-2b Stack Frame for Procedure A.. 4-5
4-2c Stack Frame for Procedure B at Level 3 Called from A... 4-5
4-2d Stack Frame for Procedure C at Level 3 Called from B 4-6
5-1 a Forming the Segment Base Address 5-2
5-1 b Forming the 20-Bit Physical Address in the Real Address Mode 5-2
5-2 Overlapping Segments to Save Physical Memory.. 5-3
5-3 Interrupt Vector Table for Real Address Mode ... 5-4
5-4 Stack Structure After Interrupt (Real Address Mode) ... 5-4
6-1 Format of the Segment Selector Component ... 6-2
6-2 Address Spaces and Task Isolation 6-3
6-3 Segment Descriptor (S=1) .. 6-5
6-4 Special Purpose Descriptors or System Segment Descriptors (S=O) 6-5
6-5 LDT Descriptor 6-6
6-6 Virtual-to-Physical Address Translation .. 6-7
6-7 Segment Descriptor Access Bytes .. 6-8
6-8 Memory Management Registers 6-9

vii

6-9 Descriptor Loading ... 6-10
7-1 Addressing Segments of a Module Within a Task .. 7-3
7-2 Descriptor Cache Registers ... 7-4
7-3 iAPX 286 Virtual Address Space ... 7-6
7-4 Local and Global Descriptor Table Definition .. 7-7
7-5 Error Code Format (on the Stack) ... 7-7
7-6 Code and Data Segments Assigned to a Privilege Level... 7-9
7-7 Selector Fields .. 7-11
7 -8 Access Byte Example 7-12
7-9 Pointer Privilege Stamping ... 7-15
7-10 Gate Descriptor Format 7-17
7-11 Call Gate ... 7-19
7-12 Stack Contents After an Inter-Level Call ... 7-21
8-1 Task State Segment and TSS Registers ... 8-2
8-2 TSS Descriptor ... ,....... 8-4
8-3 Task Gate Descriptor ... 8-8
8-4 Task Switch Through a Task Gate .. 8-9
9-1 Interrupt Descriptor Table Definition ... 9-1
9-2 I DT Selector Error Code 9-2
9-3 Trap/Interrupt Gate Descriptors 9-4
9-4 Stack Layout After an Exception with an Error Code ... 9-5
10-1 Local and Global Descriptor Table Definition 10-2
10-2 Interrupt Descriptor Table Definition ... 10-2
10-3 Data Type for Global Descriptor Table and Interrupt Descriptor Table 10-3
11-1 Expand-Down Segment .. 11-2
11-2 Dynamic Segment Relocation and Expansion of Segment Limit 11-3
11-3 Example of NPX Context Switching .. 11-6
B-1 /n Instruction Byte Format B-2
B-2 /r Instruction Byte Format B-4

Tables

Table Title Page

2-1 Implied Segment Usage by Index, Pointer, and Base Registers 2-11
2-2 Segment Register Selection Rules .. 2-18
2-3 Memory Operand Addressing Modes 2-22
2-4 iAPX 286 Interrupt Vector Assignments (Real Address Mode) 2-24
3-1 Status Flags' Functions .. 3-7
3-2 Control Flags' Functions .. 3-7
3-3 Interpretation of Conditional Transfers ... 3-21
5-1 I nterrupt Processing Order 5-4
5-2 Dedicated and Reserved Interrupt Vectors in Real Address Mode 5-6
5-3 Processor State After RESET .. 5-7
7 -1 Segment Access Rights Byte Format 7 -11
7-2 Allowed Segment Types in Segment Registers .. 7-12
7 -3 Call Gate Checks 7-18
7-4 Inter-Level Return Checks ... 7-22
8-1 Checks Made During a Task Switch ... 8-6
8-2 Effect of a Task Switch on BUSY and NT Bits and the Link Word 8-7

viii

9-1 Trap and Interrupt Gate Checks 9-6
9-2 Interrupt and Gate Interactions .. 9-7
9-3 Reserved Exceptions and Interrupts 9-9
9-4 Interrupt Processing Order .. 9-10
9-5 Conditions That Invalidate the TSS ... 9-11
10-1 MSW Bit Functions .. '...................... 10-4
10-2 Recommended MSW Encodings for Processor Extension Control.......... 10-5
11-1 NPX Context Switching ... , 11-7
B-1 ModRM Values ... B-3
B-2 Protection Exceptions of the iAPX 286 .. ,.................... B-7
B-3 Hexadecimal Values for the Access Rights Byte .. B-13
0-1 New iAPX 286 Interrupts ... ,.................... 0-1

IX

Introduction To
iAPX 286

1

CHAPTER 1
INTRODUCTION TO iAPX 286

The iAPX 286 is the most powerful processor
in the iAPX 86 series of microprocessors,
which includes the iAPX 86 (8086), the iAPX
88 (8088), the iAPX 186 (80186), and now
the iAPX 286 (80286). It is designed for
applications that require very high perfor
mance. It is also an excellent choice for
sophisticated "high end" applications that will
benefit from its advanced architectural
features: memory management, protection
mechanisms, task management, and virtual
memory support. The iAPX 286 provides, on
a single VLSI chip, computational and archi
tectural characteristics normally associated
with much larger minicomputers.

Sections 1.1, 1.2, and 1.3 provide an overview
of the iAPX 286 architecture. Because the
iAPX 286 represents a revolutionary exten
sion of the iAPX 86 architecture, some of this
overview material may be new and unfamil
iar to previous users of the iAPX 86 and
similar microprocessors. But the iAPX 286 is
also an evolutionary development, with the
new architecture superimposed upon the
industry standard iAPX 86 in such a way as
to affect only the design and programming of
operating systems and other such system
software. Section 1.4 provides a guide to the
organization of this manual, suggesting
which chapters are relevant to the needs of
particular readers.

1.1 GENERAL ATTRIBUTES

The iAPX 286 base architecture has many
features in common with the architecture of
other members of the iAPX 86 family, such
as byte addressable memory, I/O interfacing
hardware, interrupt vectoring, and support for
both multiprocessing and processor exten
sions. The entire family has a common set of
addressing modes and basic instructions. The

1-1

iAPX 286 base architecture also includes a
number of extensions which add to the versa
tility of the computer.

The iAPX 286 processor can function in two
modes of operation (see section 1.2, Modes of
Operation). In one of these modes only the
base architecture is available to program
mers, whereas in the other mode a number of
very powerful advanced features have been
added, including support for virtual memory,
multitasking, and a sophisticated protection
mechanism. These advanced features are
described in section 1.3.

The iAPX 286 base architecture was designed
to support programming in high-level
languages, such as Pascal, C or PL/M. The
register set and instructions are well suited to
compiler-generated code. The addressing
modes (see section 2.6.3) allow efficient
addressing of complex data structures, such
as static and dynamic arrays, records, and
arrays within records, which are commonly
supported by high-level languages. The data
types supported by the architecture include,
along with bytes and words, high level
language constructs such as strings, BCD, and
floating point.

The memory architecture of the iAPX 286
was designed to support modular program
ming techniques. Memory is divided into
segments, which may be of arbitrary size, that
can be used to contain procedures and data
structures. Segmentation has several advan
tages over more conventional linear memory
architectures. It supports structured software,
since segments can contain meaningful
program units and data, and more compact
code, since references within a segment can
be shorter (and locality of reference usually

INTRODUCTION TO iAPX 286

insures that the next few references will be
within the same segment). Segmentation also
lends itself to efficient implementation of
sophisticated memory management, virtual
memory, and memory protection.

In addition, new instructions have been added
to the base architecture to give hardware
support for procedure invocations, parameter
passing, and array bounds checking.

1.2 MODES OF OPERATION

The iAPX 286 can be operated in either of
two different modes: Real Address Mode or
Protected Virtual Address Mode (also
referred to as Protected Mode). In either
mode of operation, the iAPX 286 represents
an upwardly compatible addition to the iAPX
86 family of processors.

In Real Address Mode, the iAPX 286
operates essentially as a very high-perfor
mance iAPX 86 (8086). Programs written for
the iAPX 86 or the iAPX 186 can be executed
in this mode without any modification (the
few exceptions are described in Appendix D,
"Compatibility Considerations"). Such
upward compatibility extends even to the
object code level; for example, an 8086
program stored in read-~nly memory will
execute successfully in iAPX 286 Real
Address Mode. An iAPX 286 operating in
Real Address Mode provides a number of
instructions not found on the iAPX 86. These
additional instructions, also present with the
iAPX 186, allow for efficient subroutine
linkage, parameter validation, index calcula
tions, and block I/O transfers.

The advanced architectural features and full
capabilities of the iAPX 286 are realized in
its native Protected Mode. Among these
features are sophisticated mechanisms to
support data protection, system integrity, task
concurrency, and memory management,

1-2

including virtual storage. Nevertheless, even
in Protected Mode, the iAPX 286 remains
upwardly compatible with most iAPX 86 and
iAPX 186 application programs. Most iAPX
·86 applications programs can be re-compiled
or re-assembled and executed on the
iAPX 286 in Protected Mode.

1.3 ADVANCED FEATURES

The architectural features described in section
1.1 are common to both operating modes of
the processor. In addition to these common
features, Protected Mode provides a number
of advanced features, including a greatly
extended physical and logical address space,
new instructions, and support for additional
hardware-recognized data structures. The
Protected Mode iAPX 286 includes a sophis
ticated memory management and multilevel
protection mechanism. Full hardware support
is included for multitasking and task switch
ing operations.

1.3.1 Memory Management

The memory architecture of the Protected
Mode iAPX 286 represents a significant
advance over that of the iAPX 86. The physi-·
cal· address space has been increased from
1 megabyte to 16 megabytes (224 bytes), while
the virtual address space (i.e., the address
space visible to a program) has been increased
from 1 megabyte to 1 gigabyte (230 bytes).
Moreover, separate virtual address spaces are
provided for each task in a multi
tasking system (see section 1.3.2, "Task
Management").

The iAPX 286 supports on-chip memory
management instead of relying on an exter
nal memory management unit. The one-chip
solution is preferable because no software is
required to manage an external memory
management unit, performance is much
better, and hardware designs are significantly
simpler.

INTRODUCTION TO iAPX 286

Mechanisms have been included in the iAPX
286 architecture to allow the efficient imple
mentation of virtual memory systems. (In
virtual memory systems, the user regards the
combination of main and external storage as
a single large memory. The user can write
large programs without worrying about the
physical memory limitations of the system. To
accomplish this, the operating system places
some of the user programs and data in exter
nal storage and brings them into main
memory only as they are needed.) All
instructions that can cause a segment-not
present fault are fully restart able. Thus, a not
present segment can be loaded from external
storage, and the task can be restarted at the
point where the fault occurred.

The iAPX 286, like all members of the iAPX
86 series, supports a segmented memory
architecture. The iAPX 286 also fully
integrates memory segmentation into a
comprehensive protection scheme. This
protection scheme includes hardware-enforced
length and type checking to protect segments
from inadvertent misuse.

1.3.2 Task Management

The iAPX 286 is designed to support multi
tasking systems. The architecture provides
direct support for the concept of a task. For
example, task state segments (see section 8.2)
are hardware-recognized and hardware
manipulated structures that contain infor
mation on the current state of all tasks in the
system.

Very efficient context-switching (task
switching) can be invoked with a single
instruction. Separate logical address spaces
are provided for each task in the system.
Finally, mechanisms exist to support inter
task communication, synchronization,
memory sharing, and task scheduling. Task
Management is described in Chapter 8.

1-3

1.3.3 Protection Mechanisms

The iAPX 286 allows the system designer to
define a comprehensive protection policy to be
applied, uniformly and continuously, to all
ongoing operations of the system. Such a
policy may be desirable to ensure system
reliability, privacy of data, rapid error recov
ery, and separation of multiple users.

The iAPX 286 protection mechanisms are
based on the notion of a "hierarchy of trust."
Four privilege levels are distinguished,
ranging from Level 0 (most trusted) to Level
3 (least trusted). Level 0 is usually reserved
for the operating system kernel. The four
levels may be visualized as concentric rings,
with the most privileged level in the center
(see figure 1-1).

This four-level scheme offers system reliabil
ity, flexibility, and design options not possible
with the typical two-level (supervisor luser)
separation provided by other processors. A
four-level division is capable of separating
kernel, executive, system services, and
application software, each with different
privileges.

At anyone time, a task executes at one of the
four levels. Moreover, all data segments and
code segments are also assigned to privilege
levels. A task executing at one level cannot
access data at a more privileged level, nor can
it call a procedure at a less privileged level
(i.e., trust a less privileged procedure to do
work for it). Thus, both access to data and
transfer of control are restricted in appro
priate ways.

A complete separation can exist between the
logical address spaces local to different tasks,
providing users with automatic protection
against accidental or malicious interference by
other users. The hardware also provides
immediate detection of a number of fault and

INTRODUCTION TO iAPX 286

LEAST TRUSTED

MOST TRUSTED

Figure 1-1. Four Privilege Levels

error conditions, a feature that can be useful
in the development and maintenance of
software.

Finally, these protection mechanisms require
relatively little system overhead because they
are integrated into the memory management
and protection hardware of the processor
itself.

1.3.4 Support for Operating Systems

Most operating systems involve some degree
of concurrency, with multiple tasks vying for
system resources. The task management
mechanisms described above provide the
iAPX 286 with inherent support for such
multi-tasking systems. Mor.eover, the
advanced memory management features of
the iAPX 286 allow the implementation of
sophisticated virtual memory systems.

1-4

Operating system implementors have found
that a multi-level approach to system services
provides better security and more reliable
systems. For example, a very secure kernel
might implement critical functions such as
task scheduling and resource allocation, while
less fundamental functions (such as I/O) are
built around the kernel. This layered approach
also makes program development and
enhancement simpler and facilitates error
detection and debugging. The iAPX 286
supports the layered approach through its
four-level privilege scheme.

1.4 ORGANIZATION OF THIS MANUAL

To facilitate the use of this manual both as
an introduction to the iAPX 286 architecture
and as a reference guide, the remaining
chapters are divided into three major parts.

INTRODUCTION TO iAPX 286

Part I, comprising chapters 2 through 4,
should be read by all those who wish to
acquire a basic familiarity with the iAPX 286
architecture. These chapters provide detailed
information on memory segmentation, regis
ters, addressing modes and the general
(application level) iAPX 286 instruction set.
In conjunction with the iAPX 286 Assembly
Language Reference Manual, these chapters
provide sufficient information for an assem
bly language programmer to design and write
application programs.

The chapters in Part I are:

Chapter 2, "Architectural Features." This
chapter discusses those features of the iAPX
286 architecture that are significant for
application programmers. The information
presented can also function as an introduc
tion to the machine for system programmers.
Memory organization and segmentation,
processor registers, addressing modes, and
instruction formats are all discussed.

Chapter 3, "Basic Instruction Set." This
chapter presents the core instructions of the
iAPX 86 family.

Chapter 4, "Extended Instruction Set." This
chapter presents the extended instructions
shared by the iAPX 186 and iAPX 286
processors.

Part II of the manual consists of a single
chapter:

Chapter 5, "Real Address Mode." This
chapter presents the system programmer's
view of the iAPX 286 when the processor is
operated in Real Address Mode.

Part III of the manual comprises chapters 6
through 11. Aimed primarily at system
programmers, these chapters discuss the more
advanced architectural features of the iAPX

1-5

286, which are available when the processor
is in Protected Mode. Details on memory
management, protection mechanisms, and
task switching are provided.

The chapters in Part III are:

Chapter 6, "Virtual Memory." This chapter
describes the iAPX 286 address translation
mechanisms that support virtual memory.
Segment descriptors, global and local
descriptor tables, and descriptor caches are
discussed.

Chapter 7, "Protection." This chapter
describes the protection features of the iAPX
286. Privilege levels, segment attributes,
access restrictions, and call gates are
discussed.

Chapter 8, "Tasks and State Transitions."
This chapter describes the iAPX 286 mecha
nisms that support concurrent tasks. Context
switching, task state segments, task gates, and
interrupt tasks are discussed.

Chapter 9, "Interrupts, Traps and Faults."
This chapter describes interrupt and trap
handling. Special attention is paid to the
exception traps, or faults, which may occur in
Protected Mode. Interrupt gates, trap gates,
and the interrupt descriptor table are
discussed.

Chapter 10, "System Control and Initializa
tion." This chapter describes the actual
instructions used to implement the memory
management, protection, and task support
features of the iAPX 286. System registers,
privileged instructions, and the initial machine
state are discussed.

Chapter 11, "Advanced Topics." This chapter
completes Part III with a description of
several advanced topics, including special
segment attributes and pointer validation.

1.5 RELATED PUBLICATIONS

The following manuals also contain informa
tion of interest to programmers of iAPX
286/20 systems:

• Introduction to the iAPX 286, order
number 210308

• ASM286 Assembly Language Reference
Manual, order number 121924

• iAPX 286 Operating System Writer's
Guide, order number 121960

1-6

• iAPX 286 Hardware Reference Manual,
order number 210760

• Microprocessor and Peripheral
Handbook, order number 210844

• PL/M-286 User's Guide, order number
121945

• 80287 Support Library Reference
Manual, order number 122129

• 8086 Software Toolbox Manual, order
number 122203 (includes informaton
about 80287 Emulator Software)

iAPX 286 Base Architecture 2

CHAPTER 2
iAPX 286 BASE ARCHITECTURE

This chapter describes the iAPX 286 appli
cation programming environment as seen by
assembly language programmers. It is
intended to introduce the programmer to
those features of the iAPX 286 architecture
that directly affect the design and implemen
tation of iAPX 286 application programs.

2.1 MEMORY ORGANIZATION AND
SEGMENTATION

The main memory of an iAPX 286 system
makes up its physical address space. This
address space is organized as a sequence of
8-bit quantities, called bytes. Each byte is
assigned a unique address ranging from 0 up
to a maximum of 220 (I megabyte) in Real
Address Mode, and up to 224 (16 megabytes)
in Protected Mode.

A virtual address space is the organization of
memory as viewed by a program. Virtual
address space is also organized in units of
bytes. (Other addressable units such as words,
strings, and BCD digits are described below
in section 2.2, "Data Types.") In Real
Address Mode, as with the 8086 itself,
programs view physical memory directly,
inasmuch as they manipulate pure physical
addresses. Thus, the virtual address space is
identical to the physical address space (I
megabyte).

In Protected Mode, however, programs have
no direct access to physical addresses. Instead,
memory is viewed as a much larger virtual
address space of 230 bytes (I gigabyte). This
I gigabyte virtual address is mapped onto the
Protected Mode's 16-megabyte physical
address space by the address translation
mechanisms described in Chapter 6.

2-1

The programmer views the virtual address
space on the iAPX 286 as a collection of up
to sixteen thousand linear subspaces, each
with a specified size or length. Each of these
linear address spaces is called a segment. A
segment is a logical unit of contiguous
memory. Segment sizes may range from one
byte up to 64K (65,536) bytes.

iAPX 286 memory segmentation supports the
logical structure of programs and data in
memory. Programs are not written as single
linear sequences of instructions and data, but
rather as modules of code and data. For
example, program code may include a main
routine and several separate procedures. Data
may also be organized into various data
structures, some private and some shared with
other programs in the system. Run-time
stacks constitute yet another data require
ment. Each of these several modules of code
and data, moreover, may be very different in
size or vary dynamically with program
execution.

Segmentation supports this logical structure
(see figure 2-1). Each meaningful module of
a program may be separately contained in
individual segments. The degree of modular
ization, of course, depends on the require
ments of a particular application. Use of
segmentation benefits almost all applications.
Programs execute faster and require less
space. Segmentation also simplifies the design
of structured software.

2.2 DATA TYPES

Bytes and words are the fundamental units in
which the iAPX 286 manipulates data, i.e.,
the fundamental data types.

iAPX 286 BASE ARCHITECTURE

r-------,
20000 CS

MAIN
PROCEDURE

0

8000

0

2000 r==-----.
0 ____

10000 r==-----.
0 ____

L _______ ...I

CURRENTLY
ACCESSIBLE

8000

PROCEDURE 8600
A

0 0

725]
DATA (A)

1000:1
DATA (B)

Figure 2·1. Segmented Virtual Memory

A byte is 8 contiguous bits starting on an
addressable byte boundary. The bits are
numbered 0 through 7, starting from the
right. Bit 7 is the most significant bit:

7 0

I: : :+< : : I
A word is defined as two contiguous bytes
starting on an arbitrary byte boundary; a word
thus contains 16 bits. The bits are numbered
o through 15, starting from the right. Bit 15
is the most significant bit. The byte contain
ing bit 0 of the word is called the low byte;
the byte containing bit 15 is called the high
byte.

15 0

I : : ~IGH:B+: : I : : +W:BY+ : : I
LOCATION N+ 1 LOCATIONN

, Each byte within a word has its own particu
lar address, and the smaller of the two
addresses is used as the address of the word.
The byte at this lower address contains the
eight least significant bits of the word, while
the byte at the higher address contains the
eight most significant bits. The arrangement
of bytes within words is illustrated in
figure 2-2.

2-2

Note that a word need not be aligned at an
even-numbered byte address. This allows
maximum flexibility in data structures (e.g.,
records containing mixed byte and word
entries) and efficiency in memory utilization.
Although actual transfers of data between the
processor and memory take place at physi
cally aligned word boundaries, the iAPX 286
converts requests for unaligned words into the
appropriate sequences of requests acceptable
to the memory interface. Such odd aligned
word transfers, however, may impact
performance by requiring two memory cycles

iAPX 286 BASE ARCHITECTURE

BYTE MEMORY
ADDRESS' VALUES

r

o

C FE

06

A

1F

23

DB

74

CB

31

c

}
WORD AT ADDRESS B
CONTAINS FE06

l BYTE AT ADDRESS 9
CONTAINS 1F

}
WORD AT ADDRESS 6
CONTAINS 2308

}
WORD AT ADDRESS 2
CONTAINS 74CB

}
WORD AT ADDRESS 1
CONTAINS CB31

'NOTE:
ALL VALUES IN HEXADECIMAL

Figure 2-2. Bytes and Words in Memory

to transfer the word rather than one. Data
structures (e.g., stacks) should therefore be
designed in such a way that word operands
are aligned on word boundaries whenever
possible for maximum system performance.
Due to instruction prefetching and queueing
within the CPU, there is no requirement for
instructions to be aligned on word boundaries
and no performance loss if they are not.

Although bytes and words are the fundamen
tal data types of operands, the processor also
supports additional interpretations on these
bytes or words. Depending on the instruction
referencing the operand, the following
additional data types can be recognized:

Integer:

A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All
operations assume a 2's complement
representation. (Signed 32- and 64-bit
integers are supported using the iAPX
286/20 Numeric Data Processor.)

2-3

Ordinal:

An unsigned binary numeric value
contained in an 8-bit byte or 16-bit word.

Pointer:

A 32-bit address quantity composed of a
segment selector component and an offset
component. Each component is a 16-bit
word.

String:

A contiguous sequence of bytes or words.
A string may contain from 1 byte to 64K
bytes.

ASCII:

A byte representation of alphanumeric and
control characters using the ASCII
standard of character representation.

BCD:

A byte (unpacked) representation of the
decimal digits (0-9).

Packed BCD:

A byte (packed) representation of two
decimal digits (0-9). One digit is stored in
each nibble of the byte.

Floating Point:

A signed 32-, 64-, or 80-bit real number
representation. (Floating operands are
supported using the iAPX 286/20 Numeric
Processor Configuration.)

Figure 2-3 graphically represents the data
types supported by the iAPX 286. iAPX 286
arithmetic operations may be performed on
five types of numbers: unsigned binary, signed
binary (integers), unsigned packed decimal,
unsigned unpacked decimal, and floating
point. Binary numbers may be 8 or 16 bits

iAPX 286 BASE ARCHITECTURE

7 0

SI~~~~111i I I Ii I
SIGN BIT ..JI I

MAGNITUDE

7 0

UNSI~~~~I I I I I I "I
I LMSB

MAGNITUDE

1514 + 1 87 0 0

s~~~g II Ii I liT Ii I I 1 I I
SIGN BIT ...J I '- MSB I

MAGNITUDE

31 +3 +2 1615 + 1 0 0

SIGNED D~~~~ II Ii I" I I I Ii 1 Ii I I Ii I I Ii i I II I I I Ii I
SIGN BIT...J IL MSB ,

MAGNITUDE

+7 +6 +5 +4 +3 +2 +1 0
63 4847 3231 1615 0

SIGNEDW~:g. ~II~~-,-I ---'J....-.... I_...!----i.I_ ~1
SIGN BIT JL,L-.:M:::S:,:B=--__ --;::-:-:=::-:::::-_____

MAGNITUDE

15 +1 0 0

UNS~~~g 1:1 I I' I I I I I I I I I i I
I MSB 1

MAGNITUDE

+N
7 0

~~~~6111111111 
DECIMAL L. -=:--..... 

(BCD) DI~~~ N 

7 +N 0 

ASCII I iii Iii i I 
ASCII 

CHARACTERN 

7 +N 0 

PAC~~g l iii Iii i I 
MOST 
SIGNIFICANT DIGIT 

7/1S+ N 0 

STRING I i "I I "I 

7 +1 07 0 

llill"llllllill 
BCD BCD 

DIGIT 1 DIGIT 0 

7 +1 07 0 0 

111111111"11'"1 
ASCII ASCII 

CHARACTER, CHARACTERO 

7 +1 07 0 0 

1"11"11"11"', 
LEAST 

SIGNIFICANT DIGIT 

7/15+ 1 07/15 0 0 

1"lllilllllllli I 
BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0 

31 +3 +2 1615 +1 0 0 

POINTER I I II I Ii 1 I I Ii I II I I' II I Ii 1 I I II I i Ii I 
, , 

SELECTOR OFFSET 
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 

FLOATING \I 
POINT" 

SIGN BIT ...J I 
EXPONENT MAGNITUDE 

Figure 2-3. iAPX 286 Supported Data Types 

2-4 

0 0 

I 
·SUPPORTED BY 
iAPX 286/20 
NUMERIC DATA 
PROCESSOR 
CONFIGURATION 



iAPX 286 BASE ARCHITECTURE 

long. Decimal numbers are stored in bytes; 
two digits per byte for packed decimal, one 
digit per byte for unpacked decimal. The 
processor always assumes that the operands 
specified in arithmetic instructions contain 
data that represent valid numbers for the type 
of instruction being performed. Invalid data 
may produce unpredictable results. 

Unsigned binary numbers may be either 8 or 
16 bits long; all bits are considered in deter
mining a number's magnitude. The value 
range of an 8-bit unsigned binary number is 
0-255; 16 bits can represent values from 0 
through 65,535. Addition, subtraction, multi
plication and division operations are available 
for unsigned binary numbers. 

Signed binary numbers (integers) may be 
either 8 or 16 bits long. The high-order 
(leftmost) bit is interpreted as the number's 
sign: O=positive and 1 = negative. Negative 
numbers are represented in standard two's 
complement notation. Since the high-order bit 
is used for a sign, the range of an 8-bit integer 
is -128 through + 127; 16-bit integers may 
range from - 32,768 through + 32,767. The 
value zero has a positive sign. 

Separate multiplication and division opera
tions are provided for both signed and 
unsigned binary numbers. The same addition 
and subtraction instructions are used with 
signed or unsigned binary values. Conditional 
jump instructions, as well as an "interrupt on 
overflow" instruction, can be used following 
an unsigned operation on an integer to. detect 
overflow into the sign bit. 

Unpacked decimal numbers are stored as 
unsigned byte quantities. One digit is stored 
in each byte. The magnitude of the number 
is determined from the low-order half-byte; 
hexadecimal values 0-9 are valid and are 
interpreted as decimal numbers. The high-

2-5 

order half-byte must be zero for multiplica
tion and division; it may contain any value for 
addition and subtraction. 

Arithmetic on unpacked decimal numbers is 
performed in two steps. The unsigned binary 
addition, subtraction and multiplication 
operations are used to produce an intermedi
ate result. An adjustment instruction then 
changes the value to a final correct unpacked 
decimal number. Division is performed 
similarly, except that the adjustment is carried 
out on the two digit numerator operand in 
register AX first, followed by an unsigned 
binary division instruction that produces a 
correct result. 

Unpacked decimal numbers are similar to the 
ASCII character representations of the digits 
0-9. Note, however, that the high-order half-

. byte of an ASCII numeral is always 3. 
Unpacked decimal arithmetic may be 
performed on ASCII numeric characters 
under the following conditions: 

• the high-order half-byte of an ASCII 
numeral must be set to OH prior to 
multiplication or division. 

• unpacked decimal arithmetic leaves the 
high-order half-byte set to OH; it must be 
set to 3 to produce a valid ASCII 
numeral. 

Packed decimal numbers are stored as 
unsigned byte quantities. The byte is treated 
as having one decimal digit in each half-byte 
(nibble); the digit in the high-order half-byte 
is the most significant. Values 0-9 are valid 
in each half-byte, and the range of a packed 
decimal number is 0-99. Additions and 
subtractions are performed in two steps. First, 
an addition or subtraction instruction is used 
to produce an intermediate result. Then, an 
adjustment operation is performed which 
changes the intermediate value to a final 



iAPX 286 BASE ARCHITECTURE 

c()rrect packed decimal result. Multiplication 
and division adjustments are only available for 
unpacked decimal numbers. 

Pointers and addresses are described below in 
section 2.3.3, "Index, Pointer, and Base 
Registers," and in section 3.8, "Address 
Manipulation Instructions." 

Strings are contiguous bytes or words from I 
to 64K bytes in length. They generally contain 
ASCU or other character data representa
tions. The iAPX 286 provides string manip
ulation instructions to move, examine, or 
modify a string (see section 3.7, "Character 
Translation and String Instructions"). 

If the 80287 numerics processor extension 
(NPX) is present in the system (the iAPX 
286/20 configuration)- see Numeric 
Supplement following Appendix D-the 
iAPX 286 architecture also supports floating 
point numbers, 32- and 64-bit integers, and 
I8-digit BCD data types. 

The iAPX 286/20 Numeric Data Processor 
supports and stores real numbers in a three
field binary format as required by IEEE 
standard 754 for floating point numerics (see 
figure 2-3). The number's significant digits 
are held in the significand field, the exponent 
field locates the binary point within the 
significant digits (and therefore determines 
the number's magnitude), and the sign field 
indicates whether the number is positive or 
negative. (The exponent and significand are 
analogous to the terms "characteristic" and 
"mantissa," typically used to describe float
ing point numbers on some computers.) This 
format is used by the iAPX 286/20 with 
various length significands and exponents to 
support single precision, double precision and 
extended (80-bit) precision floating point data 
types. Negative numbers differ from positive 
numbers only in their sign bits. 

2-6 

2.3 REGISTERS 

The iAPX 286 contains a total of fourteen 
registers that are of interest to the applica
tion programmer. (Five additional registers 
used by system programmers are covered in 
section 10.1.) As shown in figure 2-4, these 
registers may be grouped into four basic 
categories: 

• General registers. These eight I6-bit 
general-purpose registers are used 
primarily to contain operands for arith
metic and logical operations. 

• Segment registers. These four special
purpose registers determine, at any given 
time, which segments of memory are 
currently addressable. 

• Status and Control registers. These three 
special-purpose registers are used to 
record and alter certain aspects of the 
iAPX 286 processor state. 

2.3.1 General Registers 

The general registers of the iAPX 286 are the 
I6-bit registers AX, BX, CX, DX, SP, BP, 
SI, and DI. These registers are used inter
changeably to contain the operands of logical 
and arithmetic operations. 

Some instructions and addressing modes (see 
section 2.4), however, dedicate certain general 
registers to specific uses. BX and BP are often 
used to contain the base address of data 
structures in memory (for example, the start
ing address of an array); for this reason, they 
are often referred to as the base registers. 
Similarly, SI and DI are often used to contain 
an index value that will be incremented to step 
through a data structure; these two registers 
are called the index registers. Finally, SP and 
BP are used for stack manipulation. Both SP 
and BP normally contain offsets into the 
current stack. SP generally contains the offset 
of the top of the stack and BP contains the 



iAPX 286 BASE ARCHITECTURE 

offset or base address of the current stack 
frame. The use of these general-purpose 
registers for operand addressing is discussed 
in section 2.3.3, "Index, Pointer, and Base 
Registers." Register usage for individual 
instructions is discussed in chapters 3 and 4. 

As shown in figure 2-4, eight byte registers 
overlap four of the 16-bit general registers. 
These registers are named AH, BH, CH, and 
DH (high bytes); and AL, BL, CL, and DL 
(low bytes); they overlap AX, BX, CX, and 
DX. These registers can be used either in their 
entirety or as individual 8-bit registers. This 
dual interpretation simplifies the handling of 
both 8- and 16-bit data elements. 

2.3.2 Memory Segmentation and Segment 
Registers 

Complete programs generally consist of many 
different code modules (or segments), and 
different types of data segments. However, at 
any given time during program execution, 
only a small subset of a program's segments 

16-BIT 
REGISTER 

NAME 

ADDRESS~~r~ OX lAX 

(8-BIT 

RE~~~~~ CX 

SHOWN) BX 

BP 

S I 

D I 

SP 

15 

AH 

OH 

CH 

BH 

o 7 

AL 

DL 

CL 

BL 

GENERAL 
REGISTERS 

o 

o 

} 
I 
} 

1 

SPECIAL 
REGISTER 

FUNCTIONS 

MULTIPLY IDIVIDE 
1/0 INSTRUCTIONS 

LOOP ISHIFT / 
REPEAT COUNT 

BASE REGISTERS 

INDEX REGISTERS 

STACK POINTER 

are actually in use. Generally, this subset will 
include code, data, and possibly a stack. The 
iAPX 286 architecture takes advantage of this 
by providing mechanisms to support direct 
access to the working set of a program's 
execution environment and access to 
additional segments on demand. 

At any given instant, four segments of 
memory are immediately accessible to an 
executing iAPX 286 program. The segment 
registers DS, ES, SS, and CS are used to 
identify these four current segments. Each of 
these registers specifies a particular kind of 
segment, as characterized by the associated 
mnemonics ("code," "stack," "data," or 
"extra") shown in figure 2-4. 

An executing program is provided with 
concurrent access to the four individual 
segments of memory-a code segment, a stack 
segment, and two data segments-by means 
of the four segment registers. Each may be 
said to select a· segment, since it uniquely 

15 o 

CS CODE SEGMENT SELECTOR 

Os OAT A SEGMENT SELECTOR 

SS STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

15 0 

F§FLAGS 

IP INSTRUCTION POINTER 

MSW MACHINE STATUS WORD 

STATUS AND CONTROL 
REGISTERS 

Figure 2·4. iAPX 286 Base Architecture Register Set 

2-7 



iAPX 286 BASE ARCHITECTURE 

determines the one particular segment from 
among the numerous segments in memory, 
which is to be immediately accessible at 
highest speed. Thus, the 16-bit contents of a 
segment register is called a segment selector. 

Once a segment is selected, a base address is 
associated with it. To address an element 
within a segment, a 16-bit offset from the 
segment's base address must be supplied. The 
16-bit segment selector and the 16-bit offset 
taken together form the high and low order 
halves, respectively, of a 32-bit virtual address 
pointer. Once a segment is selected, only the 
lower 16-bits of the pointer, called the offset, 
generally need to be specified by an instruc
tion. Simple rules define which segment 
register is used to form an address when only 
a 16-bit offset is specified. 

An executing program requires, first of all, 
that its instructions reside somewhere in 
memory. The segment of memory containing 
the currently executing sequence of instruc
tions is known as the current code segment; it 
is specified by means of the CS register. All 
instructions are fetched from this code 
segment, using as an offset the contents of the 
instruction pointer (IP). The CS:IP register 
combination therefore forms the full 32-bit 
pointer for the next sequential program 
instruction. The CS register is manipulated 
indirectly. Transitions from one code segment 
to another (e.g., a procedure call) are effected 
implicitly as the result of control-transfer 
instructions, interrupts, and trap operations. 

Stacks playa fundamental role in the iAPX 
286 architecture; subroutine calls, for 
example, involve a number of implicit stack 
operations. Thus, an executing program will 
generally require a region of memory for its 
stack. The segment containing this region is 
known as the current stack segment, and it is 
specified by means of the SS register. All 

2-8 

stack operations are performed within this 
segment, usually in terms of address offsets 
contained in the stack pointer (SP) and stack 
frame base (BP) registers. Unlike CS, the SS 
register can be loaded explicitly for dynamic 
stack definition. 

Beyond their code and stack requirements, 
most programs must also fetch and store data 
in memory. The DS and ES registers allow 
the specification of two data segments, each 
addressable by the currently executing 
program. Accessibility to two separate data 
areas supports differentiation and access 
requirements like local procedure data and 
global process data. An operand within a data 
segment is addressed by specifying its offset 
either directly in an instruction or indirectly 
via index and/or base registers (described in 
the next subsection). 

Depending on the data structure (e.g., the way 
data is parceled into one or more segments), 
a program may require access to multiple data 
segments. To access additional segments, the 
DS and ES registers can be loaded under 
program control during the course of a 
program's execution. This simply requires 
loading the appropriate data pointer prior to 
accessing the data. 

The interpretation of segment selector values 
depends on the operating mode of the proces
sor. In Real Address Mode, a segment selec
tor is a physical address (figure 2-5). In 
Protected Mode, a segment selector selects a 
segment of the user's virtual address space 
(figure 2-6). An intervening level of logical
to-physical address translation converts the 
logical address to a physical memory address. 
Chapter 6, "Memory Management," provides 
a detailed discussion of Protected Mode 
addressing. In general, considerations of 
selector formats and the details of memory 
mapping need not concern the application 
programmer. 



I 

iAPX 286 BASE ARCHITECTURE 

SEGMENT 
64K { 

BYTES 

BASE ADDRESS 

SEG 1 
1 MEGABYTE PHYSICAL 
ADDRESS SPACE 

I SELECTOR I 0000 I 
NOTES: ,. THE SELECTOR IDENTIFIES A SEGMENT IN PHYSICAL MEMORY. 

2. A SELECTOR SPECIFIES THE SEGMENTS BASE ADDRESS, MODULO 16, WITHIN 
THE 1 MEGABYTE ADDRESS SPACE. 

3. THE SELECTOR IS THE 16 MOST SIGNIFICANT BITS OF A SEGMENT'S PHYSICAL 
BASE ADDRESS. 

4. THE VALUES OF SELECTORS DETERMINES THE AMOUNT TtiEY OVERLAP IN REAL 
MEMORY. 

5. SEGMENTS MAY OVERLAP BY INCREMENTS OF 16 BYTES. OVERLAP RANGES FROM 
COMPLETE (SEG 1 ~ SEG 1) TO NONE (SEG 1 " SEG 2 ± 64K) 

Figure 2-5. Real Address Mode Segment Selector Interpretation 

.., 
'r 

SELECTOR 

1 TO 64K BYTES { 

SEG 3FFF 

SEG 3FFE 

SEG 3FFD 

SEG 3FFC 

SEG 3FFB 

SEG 4 

SEG 3 

SEG 2 

SEG 1 

SEG 0 

1 GIGABYTE 
VIRTUAL ADDRESS 
SPACE 

NOTES: 1. A SELECTOR UNIOUEL Y IDENTIFIES (NAMES) ONE OF 16K POSSIBLE SEGMENTS IN THE 
TASK'S VIRTUAL ADDRESS SPACE. 

2. THE SELECTOR VALUE DOES NOT SPECIFY THE SEGMENT'S LOCATION IN PHYSICAL 
MEMORY. 

3. THE SELECTOR DOES NOT IMPLY ANY OVERLAP WITH OTHER SEGMENTS (THIS 
DEPENDS ON THE BASE ADDRESS OF THE SEGMENT AS SPECIFIED VIA THE MEMORY 
MANAGEMENT AND PROTECTION INFORMATION). 

Figure 2-6. Protected Mode Segment Selector Interpretation 

2-9 



iAPX 286 BASE ARCHITECTURE 

2.3.3 Index, POinter, and Base Registers 

Five of the general-purpose registers are 
available for offset address calculations. These 
five registers, shown in figure 2-4, are SP, BP, 
BX, SI, and DI. SP is called a pointer regis
ter; BP and BX are called base registers; SI 
and DI are called index registers. 

As described in the previous section, segment 
registers define the set of four segments 
currently addressable by a program. A 
pointer, base, or index register may contain 
an offset value relative to the start of one of 
these segments; it thereby points to a partic
ular operand's location within that segment. 
To allow for efficient computations of effec
tive address offsets, all base and index regis
ters may participate interchangeably as 
operands in most arithmetical operations. 

Stack operations are facilitated by the stack 
pointer (SP) and stack frame base (BP) 
registers. By specifying offsets into the current 
stack segment, each of these registers provides 
access to data on the stack. The SP register 
is the customary top-of-stack pointer, 
addressing the uppermost datum on a push-

I ss I SP 1 

. down stack. It is referenced implicitly by 
PUSH and POP operations, subroutine calls, 
and interrupt operations. The BP register 
provides yet another offset into the stack 

, segment. The existence of this stack relative 
base register, in conjunction with certain 
addressing modes described in section 2.6.3, 
is particularly useful for accessing data struc
tures, variables and dynamically allocated 
work space within the stack. 

Stacks in the iAPX 286 are implemented in 
memory and are located by the stack segment 
register (SS) and the stack pointer register 
(SP). A system may have an unlimited 
number of stacks, and a stack may be up to 
64K bytes long, the maximum length of a 
segment. 

One stack is directly addressable at a time; 
this is the current stack, often referred to 
simply as "the" stack. SP contains the current 
top of the stack (TOS). In other words, SP 
contains the offset to the top of the push down 
stack from the stack segment's base address. 
Note, however, that the stack's base address 
(contained in SS) is not the "bottom" of the 
stack (figfrre 2-7). 

-
J-

~ 

LOGICAL 
BOTTOM OF STACK 
(initial SP value) 

POP·UP 

LOGICAL 
TOP OF STACK 

PUSH-DOWN 

STAC K SEGMENT BASE ADDRESS 

Figure 2;7 •. IAPX 28.6 Stack 

2-10 



iAPX 286 BASE ARCHITECTURE 

iAPX 286 stack entries are 16 bits wide. 
Instructions operate on the stack by adding 
and removing stack items one word at a time. 
An item is pushed onto the stack (see figure 
2-8) by decrementing SP by 2 and writing the 
item at the new TOS. An item is popped off 
the stack by copying it from TOS and then 
incrementing SP by 2. In other words, the 
stack grows down in memory toward its base 
address. Stack operations never move items 
on the stack; nor do they erase them. The top 
of the stack changes only as a result of updat
ing the stack pointer. 

The stack frame base pointer (BP) is often 
used to access elements on the stack relative 
to a fixed point on the stack rather than 
relative to the current TOS. It typically 
identifies the base address of the current stack 
frame established for the current procedure 
(figure 2-9). If an index register is used 
relative to BP (e.g., base + index addressing 
mode using BP as the base), the offset will be 
calculated automatically in the current stack 
segment. 

Accessing data structures in data segments is 
facilitated by the BX register, which has the 
same function in addressing operands within 
data segments that BP does for stack 
segments. They are called base registers 
because they may contain an offset to the base 
of a data structure. The similar usage of these 
two registers is especially important when 
discussing addressing modes (see section 2.4, 
"Addressing Modes"). 

Operations on data are also facilitated by the 
SI and DI registers. By specifying an offset 
relative to the start of the currently address
able data segment, an index register can be 
used to address an operand in the segment. If 
an index register is used in conjunction with 
the BX base register (i.e., base + index 
addressing) to form an offset address, the data 

2-11 

is also assumed to reside in the current data 
segment. As a rule, data referenced through 
an index register or BX is presumed to reside 
in the current data segment. That is, if an 
instruction invokes addressing for one of its 
operands using either BX, DI, SI, or BX with 
SI or DI, the contents of the register(s) (BX, 
DI, or SI) implicitly specify an offset in the 
current data segment. As previously men
tioned, data referenced via SP, BP or BP with 
SI or DI implicitly specify an operand in the 
current stack segment (refer to table 2-1). 

There are two exceptions to the rules listed 
above. The first concerns the operation of 
certain iAPX 286 string instructions. For the 
most flexibility, these instructions assume that 
the DI register addresses destination strings 
not in the data segment, but rather in the 
extra segment (ES register). This allows 
movement of strings between different 
segments. This has led to the descriptive 
names "source index" and "destination 
index." In all cases other than string instruc
tions, however, the SI and DI registers may 
be used interchangeably to reference either 
source or destination operands. 

Table 2-1. Implied Segment Usage by Index, 
Pointer, and Base Registers 

Register Implied Segment 

SP SS 
BP SS 
BX OS 
SI OS 
01 OS, ES for String Operations 
BP + SI, 01 SS 
BX + SI, 01 OS 

NOTE: 

All implied Segment usage, except SP to SS and 01 
to ES for String Operations, may be explicitly speci
fied with a segment override prefix for any of the four 
segments. The prefix precedes the instruction for 
which explicit reference is desired. 



iAPX 286 BASE ARCHITECTURE 

STACK OPERATION FOR CODE SEQUENCE: STACK 
SEGMENT 

PUSH AX 
POP AX 
POP BX 1062 0 0 0 0 

1060 1 

105E 2 2 2 2 1 '''''' 105C 3 3 3 3 
OF STACK 

105A 4 4 4 4 

1058 5 5 5 5 

I 1056 6 6 6 6 

1 
ss SP 

1054 7 7 7 7 NOT PRESENTLY 

1 SELECTOR I OFFSET 1 1052 8 8 8 8 USED 

I 
1050 9 9 9 9 

00001 I 
EXISTING STACK BEFORE PUSH 

STACK 
SEGMENT 

1062 0 0 0 0 

1060 1 

105E 2 2 2 

105C 3 3 3 3 

105A 4 4 4 4 

1058 5 5 5 5 PUSH AX 

1056 A A A A--1 A A A A I 
I ss SP 

1054 7 7 7 7 

I SELECTOR I -I 1052 8 8 8 8 
OFFSET 

1050 9 9 9 9 

I 
00001 I 

STACK 
SEGMENT 

1062 0 0 0 0 

1060 1 

105E 2 2 2 2 
POP BX 

105C 3 3 3 3 
15 5 5 51 

105A 4 4 4 4 

I 1058 5 5 5 5 + 
SS SP 1056 A A A A 

+ 1 SELECTOR I 1 1054 7 7 7 7 
OFFSET I A A A A I 1052 8 8 8 8 

1050 9 9 9 9 POP AX 

00001 I 

Figure 2-8. Stack Operation 

2-12 



iAPX 286 BASE ARCHITECTURE 

BP IS A CONSTANT POINTER TO STACK BASED VARIABLES AND WORK SPACE. ALL REFERENCES 
USE BP AND ARE INDEPENDENT OF SP. WHICH MAY VARY DURING A ROUTINE EXECUTION. 

PPOCN 
PUSH AX 
PUSH ARRA LSIZE 
CALL PROC_N+ 1 -----.... ~ PROC_N+ 1: 

PUSH BP 
PUSH CX 
MOV BP. SP 
SUB SP, WORK_SPACE 

"PROCEDURE BODY" 

MOF BOTTO 
S TACK t 
I 

1"--' 
I BP L __ ..I 

--

'r 

.. 

---+-

MOV SP, BP 
POPCX 
POP BP 
RET 

PARAMETERS 

RETURN ADDR 

REGISTERS 

WORKSPACE 

PARAMETERS 

RETURN ADDR 

REGISTERS 

WORKSPACE 

'I' 

PROCEDURE N STACK FRAME 

PROCEDURE N + 1 STACK FRAME 

I DYNAMICALLY ALLOCATED ON 
DEMAND RATHER THAN ST A TICALL Y 

TOP OF STACK 

STACK SEGMENT BASE 

Figure 2-9. BP Usage as a Stack Frame Base Pointer 

2-13 



iAPX 286 BASE ARCHITECTURE 

A second more general override capability 
allows the programmer complete control of 
which segment is used for a specific opera
tion. Segment-override prefixes, discussed in 
section 2.4.3, allow the index and base regis
ters to address data in any of the four 
currently addressable segments. 

2.3.4 Status and Control Registers 

Two status and control registers are of 
immediate concern to applications program
mers: the instruction pointer and the FLAGS 
registers. 

The instruction pointer register (IP) contains 
the offset address, relative to the start of the 
current code segment, of the next sequential 
instruction to be executed. Together, the 
CS:IP registers thus define a 32-bit program
counter. The instruction pointer is not directly 
visible to the programmer; it is controlled 
implicitly, by interrupts, traps, and control
transfer operations. 

STATUS FLAGS: 

The FLAGS register encompasses eleven flag 
fields, mostly one-bit wide, as shown in figure 
2-10. Six of the flags are status flags that 
record processor status information. The 
status flags are affected by the execution of 
arithmetic and logical instructions. The carry 
flag is also modifiable with instructions that 
will clear, set or complement this flag bit. See 
Chapters 3 and 4. 

The carry flag (CF) generally indicates a 
carry or borrow out of the most significant 
bit of an 8- or 16-bit operand after perform
ing an arithmetic operation; this flag is also 
useful for bit manipulation operations involv
ing the shift and rotate instructions. The effect 
on the remaining status flags, when defined 
for a particular instruction, is generally as 
follows: the zero flag (ZF) indicates a zero 
result when set; the sign flag (SF) indicates 
whether the result was negative (SF= 1) or 
positive (SF=O); when set, the overflow flag 
(OF) indicates whether an operation results 

CARRY--------------------------------, 

PARITY--------------------------, 
AUXILIARY CARRY __________________ --, 

I. 
ZERO---------------------, 

SIGN------------------, 

L l. 9 8 5 
OVERF~:W -14--13--1-2 --'lll 10 

FLAGS: _ NT IOFL OF I DF IF I TF I SF I ZF a 
TRAP FLAG 

AF 

L1:~~~'" 
INTERRUPT ENABLE 

L.... ______ DIRECTION FLAG 

SPECIAL FIELDS: 

L.... ___________ I/O PRIVILEGE LEVEL 

L..-_______________ NESTED TASK FLAG 

Figure 2-10. Flags Register 

2-14 

3 2 1 0 - PF _ 
CF I 



iAPX 286 BASE ARCHITECTURE 

in a carry into the high order bit of the result 
but not a carry out of the high-order bit, or 
vice versa; the parity flag (PF) indicates 
whether the modulo 2 sum of the low-order 
eight bits of the operation is even (PF = 0) or 
odd (PF= 1) parity. The auxiliary carry flag 
(AF) represents a carry out of or borrow into 
the least significant 4-bit digit when perform
ing binary coded decimal (BCD) arithmetic. 

The FLAGS register also contains three 
control flags that are used, under program 
control, to direct certain processor opera
tions. The interrupt-enable flag (IF), if set, 
enables external interrupts; otherwise, inter
rupts are disabled. The trap flag (TF), if set, 
puts the processor into a single-step mode for 
debugging purposes where the target program 
is automatically interrupted to a user supplied 
debug routine after the execution of each 
target program instruction. The direction flag 
(DF) controls the forward or backward direc
tion of string operations: 0 = forward or auto 
increment the address register(s) (SI, DI or 
SI and DI), I = backward or auto-decre
ment the address register(s) (SI, DI or SI and 
DI). 

In general, the interrupt enable flag may be 
set or reset with special instructions (STI = set, 
CLI = clear) or by placing the flags on the 
stack, modifying the stack, and returning the 
flag image from the stack to the flag register. 
If operating in Protected Mode, the ability to 
alter the IF bit is subject to protection checks 
to prevent non-privileged programs from 
effecting the interrupt state of the CPU. This 
applies to both instruction and stack options 
for modifying the IF bit. 

The TF flag may only be modified by copying 
the flag register to the stack, setting the TF 
bit in the stack image, and returning the 
modified stack image to the flag register. The 
trap interrupt occurs on completion of the 

2-15 

next instruction. Entry to the single step 
routine saves the flag register on the stack 
with the TF bit set, and resets the TF bit in 
the register. After completion of the single 
step routine, the TF bit is automatically set 
on return to the program being single stepped 
to interrupt the program again after comple
tion of the next instruction. Use of TF is not 
inhibited by the protection mechanism in 
Protected Mode. 

The DF flag, like the IF flag, is controlled by 
instructions (CLD = clear, STD = set) or 
flag register modification through the stack. 
Typically, routines that use string instruc
tions will save the flags on the stack, modify 
DF as necessary via the instructions provided, 
and restore DF to its original state by restor
ing the Flag register from the stack before 
returning. Access or control of the DF flag is 
not inhibited by the protection mechanism in 
Protected Mode. 

The Special Fields bits are only relevant in 
Protected Mode. Real Address Mode 
programs should treat these bits as don't
care's, making no assumption about their 
status. Attempts to modify the IOPL and NT 
fields are subject to protection checking in 
Protected Mode. In general, the application's 
programmer will not be able to and should 
not attempt to modify these bits. (See section 
9.4, "Privileged and Trusted Instructions" for 
more details.) 

2.4 ADDRESSING MODES 

The information encoded in an iAPX 286 
instruction includes a specification of the 
operation to be performed, the type of the 
operands to be manipulated, and the location 
of these operands. If an operand is located in 
memory, the instruction must also select, 
explicitly or implicitly, which of the currently 
addressable segments contains the operand. 



iAPX 286 BASE ARCHITECTURE 

This section covers the operand addressing 
mechanisms; iAPX 286 operators are 
discussed in Chapter 3. 

The five elements of a general instruction are 
briefly described below. The exact format of 
iAPX286 instructions is specified in 
Appendix B. 

• The opcode is present in all instructions; 
in fact, it is the only required element. Its 
principal function is the specification of 
the operation performed by the 
instruction. 

• A register specifier. 

• The addressing mode specifier, when 
present, is used to specify the addressing 
mode of an operand for referencing data 
or performing indirect calls or jumps. 

• The displacement, when present, is used 
to compute the effective address of an 
operand in memory. 

• The immediate operand, when present, 
directly specifies one operand of the 
instruction. 

Of the four elements, only one, the opcode, is 
always present. The other elements mayor 
may not be present, depending on the partic
ular operation involved and on the location 
and type of the operands. 

2.4.1 Operands 

Generally speaking, an instruction is an 
operation performed on zero, one, or two 
operands, which are the data manipulated by 
the instruction. An operand can be located 
either in a register (AX, BX, CX, DX, SI, 
DI, SP, or BP in the case of 16-bit operands; 
AH, AL, BH, BL, CH, CL, DH, or DL in 
the case of 8-bit operands; the FLAG register 
for flag operations in the instruction itself (as 
an immediate operand)), or in memory or an 

2-16 

I/O port. Immediate operands and operands 
in registers can be accessed more rapidly than 
operands in memory since memory operands 
must be fetched from memory while immedi
ate and register operands are available in the 
processor. 

An iAPX 286 instruction can reference zero, 
one, or two operands. The three forms are as 
follows: 

• Zero-operand instructions, such as RET, 
NOP, and HLT. Consult Appendix B. 

• One-operand instructions, such as INC or 
DEC. The location of the single operand 
can be specified implicitly, as in AAM 
(where the register AX contains the 
operand), or explicitly, as in INC (where 
the operand can be in any register or 
memory location). Explicitly specified 
operands are accessed via one of the 
addressing modes described in section 
2.4.2. 

• Two operand instructions such as MOV, 
ADD, XOR, etc., generally overwrite one 
of the two participating operands with the 
result. A distinction can thus be made 
between the source operand (the one left 
unaffected by the operation) and the 
destination operand (the one overwritten 
by the result). Like one-operand instruc
tions, two-operand instructions can 
specify the location of operands either 
explicitly or implicitly. If an instruction 
contains two explicitly specified operands, 
only one of them-either the source or the 
destination-can be in a register or 
memory location. The other operand must 
be in a register or be an immediate source 
operand; Special cases of two-operand 
instructions are the string instructions and 
stack manipulation. Both operands of 
some string instructions are in memory 
and are explicitly specified. Push and pop 



iAPX 286 BASE ARCHITECTURE 

stack operations allow transfer between 
memory operands and the memory based 
stack. 

Thus, the two-operand instructions of the 
iAPX 286 permit operations of the following 
sort: 

• Register-to-register 

• Register-to-memory 

• Memory-to-register 

• Immediate-to-register 

• Immediate-to-memory 

• Memory-to-memory 

Instructions can specify the location of their 
operands by means of eight addressing modes, 
which are described ill sections 2.4.2 
and 2.4.3. 

2.4.2 Register and Immediate Modes 

Two addressing modes are used to reference 
operands contained ill registers and 
instructions: 

• Register Operand Mode. The operand is 
located in one of the 16-bit registers (AX, 
BX, CX, DX, SI, DI, SP, or BP) or in 
one of the 8-bit general registers (AH, 
BH, CH, DH, AL, BL, CL, or DL) 

Special instructions are also included for 
referencing the CS, DS, ES, SS, and Flag 
registers as operands also. 

• Immediate Operand Mode. The operand 
is part of the instruction itself (the 
immediate operand element). 

2.4.3 Memory Addressing Modes 

Six modes are used to access operands in 
memory. Memory operands are accessed by 
means of a pointer consisting of a segment 

2-17 

selector (see section 2.3.2) and an offset, 
which specifies the operand's displacement in 
bytes from the beginning of the segment in 
which it resides. Both the segment selector 
component and the offset component are 
16-bit values. (See section 2.1 for a discus
sion of segmentation.) Only some instruc
tions use a full 32-bit address. 

Most memory references do not require the 
instruction to specify a full 32-bit pointer 
address. Operands that are located within one 
of the currently addressable segments, as 
determined by the four segment registers (see 
section 2.3.2, "Segment Registers"), can be 
referenced very efficiently simply by means 
of the 16-bit offset. This form of address is 
called by short address. The choice of segment 
(CS, DS, ES, or SS) is either implicit within 
the instruction itself or explicitly specified by 
means of a segment override prefix (see 
below). 

See figure 2-11 for a diagram of the address
ing process. 

2.4.3.1 SEGMENT SELECTION 

All instructions that address operands in 
memory must specify the segment and the 
offset. For speed and compact instruction 
encoding, segment selectors are usually stored 
in the high speed segment registers. An 
instruction need specify only the desired 
segment register and an offset in order to 
address a memory operand. 

Most instructions need not explicitly specify 
which segment register is used. The correct 
segment register is automatically chosen 
according to the rules of table 2-1 and table 
2-2. These rules follow the way programs are 
written (see figure 2-12) as independent 
modules that require areas for code and data, 
a stack, and access to external data areas. 



iAPX 286 BASE ARCHITECTURE 

I SEG 

31 

MENT 

POINTER 

I 
16 15 

OFFSET I 
0 --~ I OPERAND 

SELECTED 
• 

MEMORY 

, 

" 

SELECTED 
SEGMENT 

Figure 2-11. Two-Component Address 

Table 2-2. Segment Register Selection Rules 

Memory Segment Register 
Reference Needed Used 

Instructions Code (CS) 

Stack Stack (SS) 

Local Data Data (OS) 

External (Global) Data Extra (ES) 

There is a close connection between the type 
of memory reference and the segment in 
which that operand resides (see the next 
section for a discussion of how memory 
addressing mode calculations are performed). 
As a rule, a memory reference implies the 
current data segment (i.e., the implicit 
segment selector is in DS) unless the BP 
register is involved in the address specific a-

2-18 

Implicit Segment 
Selection Rule 

Automatic with instruction prefetch. 

All stack pushes and pops. Any memory refer-
ence which uses BP as a base register. 

All data references except when relative to stack 
or string destination. 

Alternate data segment and destination of string 
operation. 

tion, in which case the current stack segment 
is implied (i.e, SS contains the selector). 

The iAPX 286 instruction set defines special 
instruction prefix elements (see Appendix B). 
One of these is SEG, the segment-override 
prefix. Segment-override prefixes allow an 
explicit segment selection. Only in two special 
cases-namely, the use of DI to reference 



iAPX 286 BASE ARCHITECTURE 

MODULE A 

MODULE B 

PROCESS 
STACK 

PROCESS 
DATA 

BLOCK 1 

r-----, 
I I 

~ODE 
DATA 

CODE 

DATA 

I I 

I I 

I I 
I I 

I 

D_ 
PROg~~~ D 
BLOCK 2 

I I 
L ___ ..J 

MEMORY 

CPU 

L r- CODE 

DATA 

STACK 

r-- r- EXTRA 

SEGMENT 
REGISTERS 

Figure 2·12. Use of Memory Segmentation 

destination strings in the ES segment, and the 
use of SP to reference stack locations in the 
SS segment-is there an implied segment 
selection which cannot be overridden. The 
format of segment override prefixes is shown 
in Appendix B. 

2-19 

2.4.3.2 OFFSET COMPUTATION 

The offset within the desired segment is 
calculated in accordance with the desired 
addressing mode. The offset is calculated by 
taking the sum of up to three components: 

• the displacement element in the instruc
tion 

• the base (contents of BX or BP-a base 
register) 

• the index (contents of SI or DI-an index 
register) 

Each of the three components of an offset may 
be either a positive or negative value. Offsets 
are calculated modulo 216. 

The six memory addressing modes are gener
ated using various combinations of these three 
components. The six modes are used for 
accessing different types of data stored in 
memory: 

addressing mode 

direct address 
register indirect 
based 
indexed 
based indexed 
based indexed with 

displacement 

offset calculation 

displacement alone 
base or index alone 
base + displacement 
index + displacement 
base + index 
base + index + disp 

In all six modes, the operand is located at the 
specified offset within the selected segment. 
All displacements, except direct address mode, 
are optionally 8- or l6-bit values. 8-bit 
displacements are automatically sign
extended to 16 bits. The six addressing modes 
are described and demonstrated in the 
following section on memory addressing 
modes. 



iAPX 286 BASE ARCHITECTURE 

2.4.3.3 MEMORY MODE 

Two modes are used for simple scalar 
operands located in memory: 

• Direct Address Mode. The offset of the 
operand is contained in the instruction as 
the displacement element. The offset is a 
16-bit quantity. 

• Register Indirect Mode. The offset of the 
operand is in one of the registers SI, DI, 
or BX. (BP is excluded; if BP is used as 
a stack frame base, it requires an index 
or displacement component to reference 
either parameters passed on the stack or 
temporary variables allocated on the 
stack. The instruction level bit encoding 
for the BP only address mode is used to 
specify Direct Address mode. See 
Chapter 12 for more details.) 

The following four modes are used for 
accessing complex data structures in 
memory (see figure 2-13): 

• Based Mode. The operand is located 
within the selected segment at an offset 
computed as the sum of the displacement 
and the contents of a base register (BX 
or BP). Based mode is often used to 
access the same field in different copies 
of a structure (often called a record). The 
base register points to the base of the 
structure (hence the term "base" regis
ter), and the displacement selects a 
particular field. Corresponding fields 
within a collection of structures can be 
accessed simply by changing the base 
register. (See figure 2-13, example 1.) 

• Indexed Mode. The operand is located 
within the selected segment at an offset 
computed as the sum of the displacement 
and the contents of an index register (SI 
or DI). Indexed mode is often used to 
access elements in a static array (e.g., an 

2-20 

array whose starting location is fixed at 
translation time). The displacement 
locates the beginning of the array, and the 
value of the index register selects one 
element. Since all array elements are the 
same length, simple arithmetic on the 
index register will select any element. 
(See figure 2-13, example 2.) 

• Based Indexed Mode. The operand is 
located within the selected segment at an 
offset computed as the sum of the base 
register's contents and' an index register's 
contents. Based Indexed mode is often 
used to access elements of a dynamic 
array (i.e., an array whose base address 
can change during execution). The base 
register points to the base of the array, 
and the value of the index register is used 
to select one element. (See figure 2-13, 
example 3.) 

• Based Indexed Mode with Displacement. 
The operand is located with the selected 
segment at an offset computed as the sum 
of a base register's contents, an index 
register's contents, and the displacement. 
This mode is often used to access 
elements of an array within a structure. 
For example, the structure could be an 
activation record (i.e., a region of the 
stack containing the register contents, 
parameters, and variables associated with 
one instance of a procedure); and one 
variable could be an array. The base 
register points to the start of the activa
tion record, the displacement expresses 
the distance from the start of the record 
to the beginning of the array variable, and 
the index register selects a particular 
element of the array. (See figure 2-13, 
example 4.) 

Table 2-3 gives a summary of all memory 
operand addressing options. 



iAPX 286 BASE ARCHITECTURE 

1. BASED MODE 

MOV AX,[BP + DATE-CODE] 
ADD [BX + BALANCE], CX 

2. INDEXED MODE 

MOV ID [SI], DX 
SUB BX, DATA_TBl [SI] 

3. BASED INDEXED 

MOV DX, [BP][DI] 
AND [BX + S~, 3FFH 

I 
I 

l 

I 
I 

I 

INDEX 

+ 
DISPl 

+ 
SEGMENT 

INDEX 

+ 

BASE 

+ 
SEGMENT 

4. BASED INDEXED MODE WITH DISPLACEMENT 

MOV CX, [BP][SI + CNT] 
SHR [BX + DI + MASK] 

~ 
OPERAND 

I 
-.J 

'r 

~ 
OPERAND 

I 
I 

Figure 2-13. Complex Addressing Modes 

2-21 

,~ 

'r 

I 

} 
FIXED 
ARRAY 

I BASED 
ARRAY 

BASED 
STRUCTURE 
CONTAINING 
ARRAY 



iAPX 286 BASE ARCHITECTURE 

Table 2·3. Memory Operand Addressing Modes 

Addressing Mode 

Direct 
Register Indirect 
Based 
Indexed 
Based Indexed 
Based Indexed + Displacement 

- The displacement can be a 0, a or 16-bit value. 

2.5 INPUT/OUTPUT 

The iAPX 286 allows input/output to be 
performed in either of two ways: by means of 
a separate I/O address space (using specific 
I/O instructions) or by means of memory
mapped I/0 (using general-purpose operand 
manipulation instructions). 

2.5.1 I/O Address Space 

The iAPX 286 provides a separate I/O 
address space, distinct from physical memory, 
to address the input/output ports that are 
used for external devices. The I/O address 
space consists of 216 (64K) individually 
addressable 8-bit ports. Any two consecutive 
8-bit ports can be treated as a 16-bit port. 
Thus, the I/O address space can accommo
date up to 64K 8-bit ports or up to 32K 
16-bit ports. I/O port addresses OOF8H to 
OOFFH are reserved by Intel. 

The iAPX 286 can transfer either 8 or 16 bits 
at a time to a device located in the I/O space. 
Like words in memory, 16-bit ports should be 
aligned at even-numbered addresses so that 
the 16 bits will be transferred in a single 
access. An 8-bit port may be located at either 
an even or odd address. The internal registers 

Offset Calculation 

16·bit Displaceme.nt in the instruction 
BX, 81, 01 
(BX or BP) + Displacement-
(81 or 01) + Displacement-
(BX or BP) + (81 or 01) 
(BX or BP) + (81 or 01) + Displacement-

in a given peripheral controller device should 
be assigned addresses as shown below. 

The I/0 instructions IN and OUT (described 
in section 3.11.3) are provided to move data 
between I/O ports and the AX (l6-bit I/O) 
or AL (8-bit I/O) general registers. The block 
I/0 instructions INS and OUTS (described 
in section 4.1) move blocks of data between 
I/0 ports and memory space (as shown 
below). In Protected Mode, an operating 
system may prevent a program from execut
ing these I/0 instructions. Otherwise, the 
function of the I/0 instructions and the 
structure of the I/O space are identical for 
both modes of operation. 

INS es:byte ptr [dil, DX 
OUTS DX, byte ptr [sil 

IN and OUT instructions address I/O with 
either a direct address to one of up to 256 port 
addresses, or indirectly via the DX register to 
one of up to 64K port addresses. Block I/0 
uses the DX register to specify the I/O 
address and either SI or DI to designate the 
source or destination memory address. For 
each transfer, SI or DI are either incre
mented or decremented as specified by the 
direction bit in the flag word while DX is 
constant to select the I/O device. 

Port Register Port Addresses Example 

16-bit even word addresses OUT FE,AX 
8·bit; device on lower half even byte addresses IN AL,FE 
of 16-bit data bus 
a·bit; device on upper half odd byte addresses OUT FF,AL 
of 16-bit data bus 

2-22 



iAPX 286 BASE ARCHITECTURE 

2.5.2 Memory-Mapped I/O 

I/O devices also may be placed in the iAPX 
286 memory address space. So long as the 
devices respond like memory components, 
they are indistinguishable to the processor. 

Memory-mapped I/O provides additional 
programming flexibility. Any instruction that 
references memory may be used to access an 
I/O port located in the memory space. For 
example, the MOV instruction can transfer 
data between any register and a port; and the 
AND, OR, and TEST instructions may be 
used to manipulate bits in the internal regis
ters of a device (see figure 2-14). Memory
mapped I/O performed via the full instruc
tion set maintains the full complement of 
addressing modes for selecting the desired 
I/O device. 

Memory-mapped I/0, like any other memory 
reference, is subject to access protection and 
control when executing in protected mode. 

2.6 INTERRUPTS AND EXCEPTIONS 

The iAPX 286 architecture supports several 
mechanisms for interrupting program execu-

MEMORY 
ADDRESS SPACE 

tion. Internal interrupts are synchronous 
events that are the responses of the CPU to 
certain events detected during the execution 
of an instruction; External inteifupts are 
asynchronous events typically triggered by 
external devices needing attention. The iAPX 
286 supports both maskable (controlled by the 
IF flag) and non-maskable interrupts. They 
cause the processor to temporarily suspend its 
present program execution in order to service 
the requesting device. The major distinction 
between these two kinds of interrupts is their 
origin: an internal interrupt is always repro
ducible by re-executing with the program and 
data that caused the interrupt, whereas an 
external interrupt is generally independent of 
the currently executing task. 

Interrupts 0-31 are reserved by Intel. 

Application programmers will normally not be 
concerned with servicing external interrupts. 
More information on external interrupts for 
system programmers may be found in Chapter 
5, section 5.2, "Interrupt Handling for Real 
Address Mode," and in Chapter 9, "Inter
rupts, Traps and Faults for Protected Virtual 
Address Mode." 

I 0 DEVICE 1 

INTERNAL REGISTER 

~---I====== ~L...I ___ -, 

I 0 DEVICE 2 

INTERNAL REGISTER 

1------1 = = = = = = ~L...I ___ -' 

Figure 2-14. Memory-Mapped 1/0 

2-23 



iAPX 286 BASE ARCHITECTURE 

Table 2-4. iAPX 286 Interrupt Vector Assignments (Real Address Mode) 

Interupt 
Function Number 

Divide error exception 0 

Single step interrupt 1 

NMI interrupt 2 

Breakpoint interrupt 3 

INTO detected overflow exception 4 

BOUND range exceeded exception 5 

Invalid opcode exception 6 

Processor extension not available exception 7 

Interrupt table limit too small exception 8 

Processor extension segment overrun 9 
interrupt 

Reserved 10-12 

Segment overrun exception 13 

Reserved 14,15 

Processor extension error interrupt 16 

Reserved 17-31 

User defined 32-255 

In Real Address Mode, the application 
programmer is affected by two kinds of inter
nal interrupts. (Internal interrupts are the 

2-24 

Related Return Address 
Before Instruction Instructions 

Causing Exception? 

DIV,IDIV Yes 

All 

All 

INT 

INTO No 

BOUND Yes 

Any undefined Yes 
opcode 

ESC or WAIT Yes 

INT vector is not Yes 
within table limit 

ESC with memory No 
operand extending 
beyond offset 
FFFF(H) 

Word memory Yes 
reference with 
offset = FFFF(H) or 
an attempt to 
execute past the 
end of a segment 

ESC or WAIT 

result of executing an instruction which causes 
the interrupt.) One type of interrupt is called 
an exception because the interrupt only occurs 



if a particular fault condition exists. The other 
type of interrupt generates the interrupt every 
time the instruction is executed. 

The exceptions are: divide error, INTO 
detected overflow, bounds check, segment 
overrun, invalid operation code, and proces
sor extension error (see table 2-4). A divide 
error exception results when the instructions 
DIY or IDlY are executed with a zero 
denominator; otherwise, the quotient will be 
too large for the destination operand (see 
section 3.3.4 for a discussion of DIY and 
IDlY). An overflow exception results when 
the INTO instruction is executed and the OF 
flag is set (after an arithmetic operation that 
set the overflow (OF) flag). (See section 3.6.3, 
"Software Generated Interrupts," for a 
discussion of INTO.) A bounds check excep
tion results when the BOUND instruction is 
executed and the array index it checks falls 
outside the bounds of the array. (See section 
4.2 for a discussion of the BOUND instruc
tion.) The segment overrun exception occurs 
when a word memory reference is attempted 
which extends beyond the end of a segment. 
An invalid operation code exception occurs if 
an attempt is made to execute an undefined 
instruction operation code. A processor 

extension error is generated when a processor 
extension detects an illegal operation. Refer 
to Chapter 5 for a more complete description 
of these exception conditions. 

The instruction INT generates an internal 
interrupt whenever it is executed. The effects 
of this interrupt (and the effects of all inter
rupts) is determined by the interrupt handler 
routines provided by the application program 
or as part of the system software (provided 
by system programmers). See Chapter 5 for 
more on this topic. The INT instruction itself 
is discussed in section 3.6.3. 

In Protected Mode, many more fault condi
tions are detected and result in internal inter
rupts. Protected Mode interrupts and faults 
are discussed in Chapter 10. 

2.7 HIERARCHY OF INSTRUCTION SETS 

For descriptive purposes, the iAPX 286 
instruction set is partitioned into three distinct 
su bsets: the Basic Instruction Set, the 
Extended Instruction Set, and the System 
Control Instruction Set. The "hierarchy" of 
instruction sets defined by this partitioning 
helps to clarify the relationships between the 
various processors in the iAPX 86 family (see 
figure 2-15). 

iAPX186~ 
BASIC INSTRUCTION SET 

iAPX286~ 
EXTENDED INSTRUCTION SET 

SYSTEM CONTROL INSTRUCTION SET 

Figure 2·15. Hierachy of Instructions 

2-25 



IAPX 286 BASE ARCHITECTURE 

The Basic Instruction Set, presented in 
Chapter 3, comprises the common subset of 
instructions found on all processors of the 
iAPX 86 family. Included are instructions for 
logical and arithmetic operations, data 
movement, input/output, string manipula
tion, and transfer of control. 

The Extended Instruction Set, presented in 
Chapter 4, consists of those instructions found 

2-26 

only on the iAPX 186 and iAPX 286 proces
sors. Included are instructions for block 
structured procedure entry and exit, parame
ter validation, and block I/O transfers. 

The System Control Instruction Set, 
presented in Chapter 10, consists of those 
instructions unique to the iAPX 286. These 
instructions control the memory management 
and protection mechanisms of the iAPX 286. 



Basic Instruction Set 3 





CHAPTER 3 
BASIC INSTRUCTION SET 

The base architecture of the iAPX 286 is 
identical to the complete instruction set of the 
iAPX 86, 88, and 186 processors. The iAPX 
286 instruction set includes new forms of some 
instructions. These new forms reduce program 
size and improve the performance and ease of 
implementation of source coce. 

This chapter describes the instructions which 
programmers can use to write application 
software for the iAPX 286. The following 
chapters describe the operation of more 
complicated I/O and system control 
instructions. 

All instructions described in this chapter are 
available for both Real Address Mode and 
Protected Virtual Address Mode operation. 
The instruction descriptions note any differ
ences that exist between the operation of an 
instruction in these two modes. 

This chapter also describes the operation of 
each application program-relative instruction 
and includes an example of using the instruc
tion. The Instruction Dictionary in Appendix 
B contains formal descriptions of all instruc
tions. Any opcode pattern that is not described 
in the Instruction Dictionary is undefined 
and results in an opcode violation trap 
(interrupt 6). 

3.1 DATA MOVEMENT INSTRUCTIONS 

These instructions provide convenient methods 
for moving bytes or words of data between 
memory and the registers of the base 
architecture. 

3.1.1 General-Purpose Data Movement 
Instructions 

MOV (Move) transfers a byte or a word from 
the source operand to the destination operand. 

3-1 

The MOV instruction is useful for transfer
ring data to a register from memory, to 
memory from a register, between registers, 
immediate-to-register, or immediate-to
memory. Memory-to-memory or segment 
register-to-segment register moves are not 
allowed. 

Example: MOV DS,AX 

Replaces the contents of register 
DS with the contents of register 
AX. 

XCHG (Exchange) swaps the contents of two 
operands. This instruction takes the place of 
three MOV instructions. It does not require a 
temporary memory location to save the 
contents of one operand while you load the 
other. 

The XCHG instruction can swap two byte 
operands or two word operands, but not a byte 
for a word or a word for a byte. The operands 
for the XCHG instruction may be two regis
ter operands, or a register operand with a 
memory operand. When used with a memory 
operand, XCHG automatically activates the 
LOCK signal. 

Example: XCHG BX,WORDOPRND 

Swaps the contents of register BX 
with the contents of the memory 
word identified by the label 
WORDOPRND after asserting 
bus lock. 

3.1.2 Stack Manipulation Instructions 

PUSH (Push) decrements the stack pointer 
(SP) by two and then transfers a word from 
the source operand to the top of stack 
indicated by SP. See figure 3-1. PUSH is 



BASIC INSTRUCTION SET 

often used to place parameters on the stack 
before calling a procedure; it is also the basic 
means of storing temporary variables on the 
stack. The PUSH instruction operates on 
memory operands, immediate operands (new 
with the iAPX 286), and register operands 
(including segment registers). 

HIGH ADDRESS 

OPERANDS FROM 
PREVIOUS PUSH 
INSTRUCTIONS 

LOW ADDRESS 

BEFORE 
PUSH OPERAND 

Example: PUSH WORDOPRND 

Transfers a 16-bit value from the 
memory word identified by the 
label WORDOPRND to the 
memory location which repre
sents the current top of stack 
(byte transfers are not allowed). 

OPERAND 

AFTER 
PUSH OPERAND 

SS LIMIT 

SP ALWAYS POINTS TO 
___ THE LAST WORD PUSHED 

ONTO THE STACK eTOS) 

SS ALWAYS POINTS TO 
LOWEST ADDRESS USED BY 
THE STACK 

PUSH decrements SP by 2 bytes and places the operand in the stack at the location to which SP points. 

Figure 3-1. PUSH 

3-2 



BASIC INSTRUCTION SET 

PUSHA (Push All Registers) saves the 
contents of the eight general registers on the 
stack. See figure 3-2. This instruction simpli
fies procedure calls by reducing the number 
of instructions required to retain the contents 
of the general registers for use in a proce
dure. PUSHA is complemented by POP A 
(see below). 

HIGH ADDRESS 

OPERANDS FROM 
PREVIOUS PUSH 
INSTRUCTIONj 

SP 

LOW ADDRESS 

BEFORE 
PUSHA 

The processor pushes the general registers on 
the stack in the following order: AX, ex, DX, 
BX, the initial value of SP before AX was 
pushed, BP, SI, and DI. 

Example: PUSHA 

AFTER 
PUSHA 

AX 

CX 

OX 

BX 

OLD SP 

BP 

SI 

01 

Pushes onto the stack the contents 
of the eight general registers. 

SS LIMIT 

..-SP 

SS 

PUSHA copies the contents of the eight general registers to the stack in the above order. The instruction decrements SP by 16 bytes 
(8 words) to point to the last word pushed on the stack. 

Figure 3-2. PUSHA 

3-3 



BASIC INSTRUCTION SET 

POP (Pop) transfers the word at the current 
top of stack (indicated by SP) to the desti
nation operand, and then increments SP by 
two to point to the new top of stack. See 
figure 3-3. POP moves information from the 
stack to either a register or memory. The only 
restriction on POP is that it cannot place a 
value in register CS. 

HIGH ADDRESS 

OPERANDS FROM 
PREVIOUS PUSH 
INSTRUCTIONS 

OPERAND SP_ 
1-------1 

LOW ADDRESS 

BEFORE 
POP OPERAND 

Example: POP BX 

Replaces the contents of register 
BX with the contents of the 
memory location at the top of 
stack. 

paPA (Pop All Registers) restores the 
registers saved on the stack by PUSHA, 

AFTER 
POP OPERAND 

POP copies the contents of the stack location before SP to the operand in the Instruction. POP then increments SP by 2 bytes (1 word). 

Figure 3-3. POP 

3-4 



BASIC INSTRUCTION SET 

except that it ignores the value of SP. See 
figure 3-4. 

Example: POP A 

Pops from the stack the saved 
contents of the general registers, 
and restores the registers (except 
SP) to their original state. 

3.2 FLAG OPERATION WITH THE BASIC 
INSTRUCTION SET 

3.2.1 Status Flags 

The status flags of the FLAGS register reflect 
conditions that result from a previous 

HIGH ADDRESS 

OPERANDS FROM 
PREVIOUS PUSH 
INSTRUCTIONS 

SP_ 

LOW ADDRESS 

BEFORE 
POPA 

AX 

CX 

OX 

BX 

SP 

BP 

SI 

01 

instruction or instructions. The arithmetic 
instructions use OF, SF, ZF, AF, PF, and CF. 

The SCAS (Scan String), CMPS (Compare 
String), and LOOP instructions use ZF to 
signal that their operations are complete. The 
base architecture includes instructions to set, 
clear, and complement CF before execution 
of an arithmetic instruction. See figure 3-5 
and tables 3-1 and 3-2. 

3.2.2 Control Flags 

The control flags of the FLAGS register 
determine processor operations for string 
instructions, maskable interrupts, and 
debugging. 

AFTER 
POPA 

SS LIMIT 

POPA copies the contents of seven stack locations to the corresponding general registers. POPA discards the stored value of SP. 

Figure 3-4. POPA 

3-5 



BASIC .INSTRUCTION SET 

STATUS FLAGS: 

CARRY-----------------------------------------------------~ 

PARITY -------------..,.-------------------------------, 

AUXILIARY CARRY -----------------------------~------, 

ZERO --------------------------------,1 
OVERF~:; -------------------------1 

15 14 13 12 ! 11 10 9 8 7 6 5 4 3 2 1 

FLAGS:. NT I~PL OF I DF I IF I TF I SF I ZF _ AF _ PF _ 

o 

11 t CONTROL FLAGS: 

1'---------------------- TRAP FLAG 

INTERRUPT ENABLE 

L_ --------------------------- DIRECTION FLAG 

SPECIAL FIELDS: 

'----------------------------~--------- 1/0 PRIVILEGE LEVEL 

'----------------------------------------------:-- NESTED TASK FLAG 

Figure 3-5_ Flag Word Contents 

Setting DF (direction flag) causes string 
instructions to auto-decrement; that is, to 
process strings from high addresses to low 
addresses, or from "right-to-Ieft." Clearing 
DF causes string instructions to auto-incre
ment, or to process strings from "left-to
right." 

Setting IF (interrupt flag) allows the CPU to 
recognize external (maskable) interrupt 
requests. Clearing IF disables these inter
rupts. IF has no effect on either internally 
generated interrupts, nonmaskable external 
interrupts, or processor extension segment 
overrun interrupts. 

Setting TF (trap flag) puts the processor into 
single-step mode for debugging. In this mode, 
the CPU automatically generates an internal 
interrupt after each instruction, allowing a 

3-6 

program to be inspected as it executes each 
instruction, instruction by instruction. 

3.3 ARITHMETIC INSTRUCTIONS 

The arithmetic instructions of the iAPX 86-
family processors simplify the manipulation 
of numerical data. Multiplication and division 
instructions ease the handling of signed and 
unsigned binary integers as well as unpacked 
decimal integers. 

An arithmetic operation may consist of two 
register operands, a general register source 
operand with a memory destination operand, 
a memory source operand with a register 
destination operand, or an immediate field 
with either a register or memory destination 
operand, but not two memory operands. 
Arithmetic instructions can operate on either 
byte or word operands. 



BASIC INSTRUCTION SET 

Table 3-1. Status Flags' Functions 

Bit Name Function Position 

0 CF Carry Flag-Set on high-order bit 
carry or borrow; cleared other-
wise 

2 PF Parity Flag-Set if low-order 
eight bits of result contain an 
even number of 1 bits; cleared 
otherwise 

4 AF Set on carry from or borrow to 
the low order four bits of AL; 
cleared otherwise 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-
order bit of result (0 if positive, 1 
if negative) 

11 OF Overflow Flag-Set if result is 
too-large a positive number or 
too-small a negative number 
(excluding sign-bit) to fit in 
destination operand; cleared 
otherwise 

Table 3-2. Control Flags' Functions 

Bit Name Function Position 

8 TF Trap (Single Step) Flag-Once 
set, a single step interrupt occurs 
after the next instruction 
executes. TF is cleared by the 
single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an 
interrupt vector-specified 
location. 

10 DF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing DF causes 
auto increment. 

3-7 

3.3.1 Addition Instructions 

ADD (Add Integers) replaces the destination 
operand with the sum of the source and desti
nation operands. ADD affects OF, SF, AF, 
PF, CF, and ZF. 

Example: ADD BL, BYTEOPRND 

Adds the contents of the memory 
byte labeled BYTEOPRND to 
the contents of BL, and replaces 
BL with the resulting sum. 

ADC (Add Integers with Carry) sums the 
operands, adds one if CF is set, and replaces 
the destination operand with the result. ADC 
can be used to add numbers longer than 16 
bits. ADC affects OF, SF, AF, PF, CF, 
and ZF. 

Example: ADCBX,CX 

Replaces the contents of the 
destination operand BX with the 
sum of BX, ~,>:and 1 (if CF is 
set). If CF is cleared, ADC 
performs the same operation as 
the ADD instruction. 

INC (Increment) adds one to the destination 
operand. The processor treats the operand as 
an unsigned binary number. INC updates AF, 
OF, PF, SF, and ZF, but it does not affect 
CF. Use ADD with an immediate value of 1 
if an increment that updates carry (CF) is 
needed. 

Example: INC BL 

Adds 1 to the contents of BL. 

3.3.2 Subtraction Instructions 

SUB (Subtract Integers) subtracts the source 
operand from the destination operand and 
replaces the destination operand with the 
result. If a borrow. is required, carry flag is 



BASIC INSTRUCTION SET 

set. The operands may be signed or unsigned 
bytes or words. SUB affects OF, SF, ZF, AF, 
PF, and CF. 

Example: SUB WORDOPRND, AX 

Replaces the contents of the des
tination operand WORDOPRND 
with the result obtained by 
subtracting the contents of AX 
from the contents of the memory 
word labeled WORDOPRND. 

SBB (Subtract Integers with Borrow) 
subtracts the source operand from the desti
nation operand, subtracts 1 if CF is set, and 
returns the result to the destination operand. 
The operands may be signed or unsigned bytes 
or words. SBB may be used to subtract 
numbers longer than 16 bits. This instruction 
affects OF, SF, ZF, AF, PF, and CF. The 
carry flag is set if a borrow is required. 

Example: SBB BL, 32 

Subtracts 32 from the contents of 
BL and then decrements the 
result of this subtraction by one if 
CF is set. If CF is cleared, SBB 
performs the same operation 
as SUB. 

DEC (Decrement) subtracts 1 from the desti
nation operand. DEC updates AF, OF, PF, 
SF, and ZF, but it does not affect CF. Use 
SUB with an immediate value of 1 to perform 
a decrement that affects carry. 

Example: DEC BX 

Subtracts 1 from the contents of 
BX and places the result back 
in BX. 

3.3.3 Multiplication Instructions 

MUL (Unsigned Integer Multiply) performs 
an unsigned multiplication of the source 

3-8 

/ 

operand and the accumulator. If the source is 
a byte, the processor multiplies it by the 
contents of AL and returns the double-length 
result to AH and AL. 

If the source operand is a word, the processor 
multiplies it by the contents of AX and 
returns the double-length result to DX and 
AX. MUL sets CF and OF to indicate that 
the upper half of the result is nonzero; other
wise, they are cleared. This instruction leaves 
SF, ZF, AF, and PF undefined. 

Example: MUL BX 

Replaces the contents of DX and 
AX with the product of BX and 
AX. The low-order 16 bits of the 
result replace the contents of AX; 
the high-order word goes to DX. 
The processor sets CF and OF if 
the unsigned result is greater than 
16 bits. 

IMUL (Signed Integer Multiply) performs a 
signed multiplication operation. IMUL uses 
AX and DX in the same way as the MUL 
instruction, except when. used in the immedi" 
ate form. 

The immediate form of IMUL allows the 
specification of a destination register other 
than the combination of DX and AX. In this 
case, the result cannot exceed 16 bits without 
causing an overflow. If the immediate operand 
is a byte, the processor automatically extends 
it to 16 bits before performing the 
multiplication. 

The immediate form of IMUL may also be 
used with unsigned operands because the low 
16 bits of a signed or unsigned multiplication 
of two 16-bit values will always be the same. 

IMUL clears CF and OF to indicate that the 
upper half of the result is the sign of the lower 



BASIC INSTRUCTION SET 

half. This instruction leaves SF, ZF, AF, and 
PF undefined. 

Example: IMUL BL 

Replaces the contents of AX with 
the product of BL and AL. The 
processor sets CF and OF if the 
result is more than 8 bits long. 

Example: IMUL BX, SI, 5 

Replaces the contents of BX with 
the product of the contents of SI 
and an immediate value of 5. The 
processor sets CF and OF if the 
signed result is longer than 
16 bits. 

3.3.4 Division Instructions 

DIV (Unsigned Integer Divide) performs an 
unsigned division of the accumulator by the 
source operand. If the source operand is a 
byte, it is divided into the double-length 
dividend assumed to be in registers AL and 
AH (AH = most significant byte; AL = 
least significant byte). The single-length 
quotient is returned in AL, and the single
length remainder is returned in AH. 

If the source operand is a word, it is divided 
into the double-length dividend in registers 
AX and DX. The single-length quotient is 
returned in AX, and the single-length 
remainder is returned in DX. Non-integral 
quotients are truncated to integers toward O. 
The remainder is always less than the 
quotient. 

For unsigned byte division, the largest 
quotient is 255. For unsigned word division, 
the largest quotient is 65,535. DIV leaves OF, 
SF, ZF, AF, PF, and CF undefined. Inter
rupt (INT 0) occurs if the divisor is zero or 
if the quotient is too large for AL or AX. 

3-9 

Example: DIV BX 

Replaces the contents of AX with 
the unsigned quotient of the 
doubleword value contained in 
DX and AX, divided by BX. The 
unsigned modulo replaces the 
contents of DX. 

Example: DIV BL 

Replaces the contents of AL with 
the unsigned quotient of the word 
value in AX, divided by BL. The 
unsigned modulo replaces the 
contents of AH. 

IDIV (Signed Integer Divide) performs a 
signed division of the accumulator by the 
source operand. IDIV uses the same registers 
as the DIV instruction. 

For signed byte division, the maximum 
positive quotient is + 127 and the minimum 
negative quotient is -128. For signed word 
division, the maximum positive quotient is 
+32,767 and the minimum negative quotient 
is - 32,768. Non-integral results are 
truncated towards O. The remainder will 
always have the same sign as the dividend and 
will be less than the divisor in magnitude. 
IDIV leaves OF, SF, ZF, AF, PF, and CF 
undefined. A division by zero causes an inter
rupt (INT 0) to occur if the divisor is 0 or if 
the quotient is too large for AL or AX. 

Example: IDIV WORDOPRND 

Replaces the contents of AX with 
the signed quotient of the double
word value contained in DX and 
AX, divided by the value 
contained in the memory word 
labeled WORDOPRND. The 
signed modulo replaces the 
contents of DX. 



BASIC INSTRUCTION SET 

3.4 LOGICAL INSTRUCTIONS 

The group of logical instructions includes the 
Boolean operation instructions, rotate and 
shift instructions, type conversion instruc
tions, and the no-operation (NOP) 
instruction. 

3.4.1 Boolean Operation Instructions 

Except for the NOT and NEG instructions 
the Boolean operation instructions can use tw~ 
register operands, a general purpose register 
operand with a memory operand, an immedi
ate operand with a general purpose register 
operand, or a memory operand. The NOT and 
NEG instructions are unary operations that 
use a single operand in a register or memory. 

AND (And) performs the logical "and" of the 
operands (byte or word) and returns the result 
to the destination operand. AND clears OF 
and DF, leaves AF undefined, and updates 
SF, ZF, and PF. 

Example: AND WORDOPRND, BX 

Replaces the contents of 
WORDOPRND with the logical 
"and" of the contents of 
the memory word labeled 
WORDOPRND and the contents 
ofBX. 

NOT (Not) inverts the bits in the specified 
operand to form a one's complement of the 
operand. NOT has no effect on the flags. 

Example: NOT BYTEOPRND 

Replaces the original contents of 
BYTEOPRND with the one's 
complement of the contents of 
the memory word labeled 
BYTEOPRND. 

3-10 

OR (Or) performs the logical "inclusive or" 
of the two operands and returns the result to 
the destination operand. OR clears OF and 
DF, leaves AF undefined, and updates SF, 
ZF, and PF. 

Example: OR AL,5 

Replaces the original contents of 
AL with the logical "inclusive or" 
of the contents of AL and the 
immediate value 5. 

XOR (Exclusive OR) performs the logical 
"exclusive or" of the two operands and returns 
the result to the destination operand. XOR 
clears OF and DF, leaves AF undefined, and 
updates SF, ZF, and PF. 

Example: XOR DX, WORDOPRND 

Replaces the original contents of 
DX with the logical "exclusive or" 
or the contents of DX and the 
contents of the memory word 
labeled WORDOPRND. 

NEG (Negate) forms a two's complement of 
a signed byte or word operand. The effect of 
NEG is to reverse the sign of the operand 
from positive to negative or from negative to 
positive. NEG updates OF, SF, ZF, AF, PF, 
and CF. 

Example: NEG AX 

Replaces the original contents of 
AX with the two's complement of 
the contents of AX. 

3.4.2 Shift and Rotate Instructions 

The shift and rotate instructions reposition the 
bits within the specified operand. The shift 
instructions provide a convenient way to 
accomplish division or multiplication by 
binary power. The rotate instructions are 
useful for bit testing. 



BASIC INSTRUCTION SET 

3.4.2.1 SHIFT INSTRUCTIONS 

The bits in bytes and words may be shifted 
arithmetically or logically. Depending on the 
value of a specified count, up to 31 shifts may 
be performed. 

A shift instruction can specify the count in 
one of three ways. One form of shift instruc
tion implicitly specifies the count as a single 
shift. The second form specifies the count as 
an immediate value. The third form specifies 
the count as the value contained in CL. This 
last form allows the shift count to be a 
variable that the program supplies during 
execution. Only the low order 5 bits of CL 
are used. 

Shift instructions affect the flags as follows. 
AF is always undefined following a shift 
operation. PF, SF, and ZF are I.!-pdated 
normally as in the logical instructions. 

CF always contains the value of the last bit 
shifted out of the destination operand. In a 
single-bit shift, OF is set if the value of the 
high-order (sign) bit was changed by the 
operation. Otherwise, OF is cleared. Follow
ing a multibit shift, however, the content of 
OF is always undefined. 

SAL (Shift Arithmetic Left) shifts the desti
nation byte or word operand left by one or by 
the number of bits specified in the count 

00 I 1 1 1 1 1 11 1 1 o 1 0 

8[]-1 1 1 1 11 11 o 1 o 1 0 

0~-11 1 1 1 1 1 1 o 1 o 1 1 
OF CF 

operand (an immediate value or the value 
contained in CL). The processor shifts zeros 
in from the right side of the operand as bits 
exit from the left side. See figure 3-6. 

Example: SAL BL,2 

Shifts the contents of BL left by 
2 bits and replaces the two low
order bits with zeros. 

Example: SAL BL,1 

Shifts the contents of BL left by 
1 bit and replaces the low-order 
bit with a zero. Because the 
processor does not have to decode 
the immediate count operand to 
obtain the shift count, this form 
of the instruction takes 2 clock 
cycles rather than the 6 clock 
cycles (5 cycles + 1 cycle for 
each bit shifted) required by the 
previous example. 

SHL (Shift Logical Left) is physically the 
same instruction as SAL (see SAL above). 

SHR (Shift Logical Right) shifts the desti
nation byte or word operand right by one or 
by the number of bits specified in the count 
operand (an immediate value or the value 
contained in CL). The processor shifts zeros 
in from the left side of the operand as bits 
exit from the right side. See figure 3-7. 

o 1 11 11 1 1 0 o I 1 1 
BEFORE 1 1 1 SAL OR 
SHL 

11 1 1 11 1 0 1 0 11 11 o I AFTER 

1 1 SAL OR 
SHL BY 1 BIT 

o 1 0 1 0 o 1 o 1 o 1 o 1 o I AFTER 

1 1 SAL OR 
SHL BY 
8 BITS 

OPERAND 

Both SAL and SHL shift the bits in the register or memory operand to the left by the specified number of bit positions. CF receives the 
last bit shifted out of the left of the operana. SAL and SHL shift in zeros to fill the vacated bit locations. These instructions operate on 
byte opercmds as well as word operands. 

Figure 3-6. SAL and SHL 

3-11 



BASIC INSTRUCTION SET 

Example: SHR BYTEOPRND, CL 

Shifts the contents of the memory 
byte labeled BYTEOPRND right 
by the number of bits specified in 
CL, and pads the left side of 
BYTEOPRND with an equal 
number of zeros. 

SAR (Shift Arithmetic Right) shifts the 
destination byte or word operand to the right 
by one or by the number of bits specified in 
the count operand (an immediate value or the 
value contained in CL). The processor 

01 1 11 o I o 1 1 11 11 11 o 1 

[JI o 1 1 11 o 1 o 1 1 11 11 11 

01 01 0 1 0 1 0 1 0 o 1 01 0 o 1 
OF OPERAND 

preserves the sign of the operand by shifting 
in zeros on the left side if the value is positive 
or by shifting by ones if the value is negative. 
See figure 3-8. 

Example: SAR WORDPRND,l 

1 1 1 11 

o 1 1 1 1 

Shifts the contents of the memory 
byte labeled WORDPRND right 
by one, and replaces the high
order sign bit with a value equal 
to the original sign of 
WORDPRND. 

o 1 o 1 o 1 1 I o BEFORE 
SHR 

1 1 o 1 o 1 0 r-[2J AFTER 
SHR BY 1 BIT 

o 1 o 11 11 o 1 o 1 1 ~D 
AFTER 
SHR BY 10 BITS 

CF 

SHR shifts the bits in the register or memory operand to the right by the specified number 01 bit pOSitions. CF receives the last bit shifted 
out 01 the right 01 the operand. SHR shifts in zeros to liII the vacated bit locations. This Instruction operates on byte operands as well as 
word operands. 

Figure 3-7. SHR 

0101010101010101010101010101010111 

~I 0101010101010101010101010101010 J---0 

0111111111111 1 1 0 o 1 o 1 1 I 1 1 1 1 1 o 1 0 t-~ 
OF OPERAND CF 

BEFORE 
SAR 
WITH A 
POSITIVE 
OPERAND 

AFTER 
SAR 
WITH A 
POSITIVE 
OPERAND 
SHIFTED 
1 BIT 

BEFORE 
SARWITH 
A NEGATIVE 
OPERAND 

AFTER 
SAR 
WITH A 
NEGATIVE 
OPERAND 
SHIFTED 
6 BITS 

SAR preserves the sign 01 the register or memory operand as It shifts the operand to the right the specified number 01 bit positions. CF 
receives the last bit shifted out 01 the right 01 the operand. This Instruction also operates on byte operands. 

Figure 3-8. SAR 

3-12 



BASIC INSTRUCTION SET 

3.4.2.2 ROTATE INSTRUCTIONS 

Rotate instructions allow bits in bytes and 
words to be rotated. Bits rotated out of an 
operand are not lost as in a shift, but are 
"circled" back into the other "end" of the 
operand. 

Rotates affect only the carry and overflow 
flags. CF may act as an extension of the 
operand in two of the rotate instructions, 
allowing a bit to be isolated and then tested 
by a conditional jump instruction (JC or 
JNC). CF always contains the value of the 
last bit rotated out, even if the instruction does 
not use this bit as an extension of the rotated 
operand. 

In single-bit rotates, OF is set if the operation 
changes the high-order (sign) bit of the desti
nation operand. If the sign bit retains its 

00 I, 01 0 I 0 I, I, 

8eJ-C o I 01 0 11 1 11 

[J[2J 
OF CF 

I, I 0 

o 11 

original value, OF is cleared. On multibit 
rotates, the value of OF is always undefined. 

ROL (Rotate Left) rotates the byte or word 
destination operand left by one or by the 
number of bits specified in the count operand 
(an immediate value or the value contained 
in CL). For each rotation specified, the high
order bit that exists from the left of the 
operand returns at the right to become the 
new low-order bit of the operand. See 
figure 3-9. 

Example: ROL AL, 8 

I, 

I 0 

Rotates the contents of AL left by 
8 bits. This rotate instruction 
returns AL to its original state but 
isolates the low-order bit in CF 
for testing by a JC or JNC 
instruction. 

01 0 I, I' o I o I o 1 
BEFORE ROL 

o I 1 11 010101111 
AFTER ROL BY1 BIT 

OPERAND 

ROL shifts the bits In the memory or register operand to the left by the specified number of bit positions. It copies the bit shifted out of 
the left of the operand into the right of the operand. The last bit shifted into the least significant bit of the operand also appears in CF. 
This Instruction also operates on byte operands. 

Figure 3-9. ROL 

3-13 



BASIC INSTRUCTION SET 

ROR (Rotate Right) rotates the byte or word 
destination operand right by one or by the 
number of bits specified in the count operand 
(an immediate value or the value contained 
in CL). For each rotation specified, the low
order bit that exits from the right of the 
operand returns at the left to become the new 
high-order bit of the operand. See 
figure 3-10. 

I 1 I, o 1 ' 1 1 1 1 o 1 o 1 

[I o I 1 I 1 o 1 1 I 1 , I o I 

rl ' o 1 1 1 1 1 1 o I o I o I 

Example: ROR WORDOPRND, CL 
Rotates the contents of 
the memory word labeled 
WORDOPRND by the number 
of bits specified by the value 
contained in CL. CF reflects the 
value of the last bit rotated from 
the right to the left side of the 
operand. 

' 1 o I' 1 1 , 1 o I o 1 o I [:] 
BEFORE ROR 

o I 1 o I 1 I 1 111o l orrG 
''''' """ " , ., 

' 1 ' o 1 1 1111olo~D ~~"""'''~~-
OPERANO CF 

ROR shifts the bits in the memory or register operand to the right by the specified number of bit positions. II copies each bit shifted out 
of the right of the operand into the left of the operand. The last bit shifted into the most significant bit of the operand also appears in 
CF. This instruction also operates on byte operands. 

Figure 3-10. ROR 

3-14 



BASIC INSTRUCTION SET 

RCL (Rotate Through Carry Left) rotates bits 
in the byte or word destination operand left 
by one or by the number of bits specified in 
the count operand (an immediate value or the 
value contained in CL). 

This instruction differs from ROL in that it 
treats CF as a high-order I-bit extension of 
the destination operand. Each high-order bit 
that exits from the left side of the operand 
moves to CF before it returns to the operand 

8 11 1 1 1 1 01 0 o 11 

cD-I 1 11 1 0 1 0 o 1 1 1 1 

rEJ-f 1 11 11 11 1 0 01 0 

CF 

as the low-order bit on the next rotation cycle. 
See figure 3-1l. 

Example: RCL BX,l 

Rotates the contents of BX left by 
one bit. The high-order bit of the 
operand moves to CF, the 
remaining 15 bits move left one 
position, and the original value of 
CF becomes the new low-order 
bit. 

11 o 1 o 11 11 1 0 1 0 01 0 

BEFORE RCL 

1 0 1 0 11 11 o 1 o 1 0 1 0 11 Il 
AFTER RCL BY 1 BIT 

11 11 1 0 o 11 11 1 0 1 0 o I_ 
AFTER RCL BY 16 BITS 

OPERANO 

RCL rotates the bits In the memory or register operand to the lell In the same way as ROL except that RCL treats CF as a l·blt extension 
01 the operand. Note that a 16-blt RCL produces the same result as a l·blt RCR (though it takes much longer to execute). ThiS instruction 
also operate. on byte operands. 

Figure 3-11. RCL 

3-15 



BASIC INSTRUCTION SET 

RCR (Rotate Through Carry Right) rotates 
bits in the byte or word destination operand 
right by one or by the number of bits speci
fied in the count operand (an immediate value 
or the value contained in CL). 

This instruction differs from ROR in that it 
treats CF as a low-order I-bit extension of the 
destination operand. Each low-order bit that 
exits from the right side of the operand moves 
to CF before it returns to the operand as the 

1 1 1 1 1 01 0 o 1 1 1 1 1 0 

C' 1 1 1 1 1 1 I 0 o 1 o 1 1 1 1 

1 0 

1 0 

-'1 0 o 1 1 1 1 11 11 o 1 o 1 o 1 1 

OPERAND 

high-order bit on the next rotation cycle. See 
figure 3-12. 

Example: RCR BYTEOPRND,3 

1 1 1 

o 11 

1 1 1 0 

Rotates the contents of the 
memory byte labeled 
BYTEOPRND to the right by 3 
bits. Following the execution of 
this instruction, CF reflects the 
original value of bit number 5 of 
BYTEOPRND, and the original 
value of CF becomes bit 2. 

01 0 1 0 1 0 8 
BEFORE RCR 

1'1 + 1 '1' 1 1 1 
AFTER RCR BY 1 BIT 

1 0 1 1 11 1 0 1-8-
AFTER RCR BY 3 BITS 

CF 

RCR rotates the bits in the memory or register operand to the right in the same way as ROR except that RCR treats CF as a l-bit extension 
of the operand. This instruction also operates on byte operands. 

Figure 3-12. RCR 

3-16 



BASIC INSTRUCTION SET 

3.4.3 Type Conversion and No-Operation 
Instructions 

The type conversion instructions prepare 
operands for division. The NOP instruction is 
a I-byte filler instruction with no effect on 
registers or flags. 

CWD (Convert Word to Double- Word) 
extends the sign of the word in register AX 
throughout register DX. CWD does not affect 
any flags. CWD can be used to produce a 
double-length (double-word) dividend from a 
word before a word division. 

CBW (Convert Byte to Word) extends the sign 
of the byte in register AL throughout AX. 
CBW does not affect any flags. 

Example: CWD 

Sign-extends the I6-bit value in 
AX to a 32-bit value in DX and 
AX with the high-order 16-bits 
occupying DX. 

NOP (No Operation) occupies a byte of 
storage but affects nothing but the instruc
tion pointer, IP. The amount of time that a 
NOP instruction requires for execution varies 
in proportion to the CPU clocking rate. This 
variation makes it inadvisable to use NOP 
instructions in the construction of timing loops 
because the operation of such a program will 
not be independent of the system hardware 
configuration. 

Example: NOP 

The processor performs no opera
tion for 2 clock cycles. 

3.5 TEST AND COMPARE INSTRUCTIONS 

The test and compare instructions are similar 
in that they do not alter their operands. 
Instead, these instructions perform opera
tions that only set the appropriate flags to 
indicate the relationship between the two 
operands. 

3-17 

TEST (Test) performs the logical "and" of 
the two operands, clears OF and DF, leaves 
AF undefined, and updates SF, ZF, and PF. 
The difference between TEST and AND is 
that TEST does not alter the destination 
operand. 

Example: TEST BL,32 

Performs a logical "and" and sets 
SF, ZF, and PF according to the 
results of this operation. The 
contents of BL remain 
unchanged. 

CMP (Compare) subtracts the source operand 
from the destination operand. It updates OF, 
SF, ZF, AF, PF, and CF but does not alter 
the source and destination operands. A subse
quent signed or unsigned conditional transfer 
instruction can test the result using the 
appropriate flag result. 

CMP can compare two register operands, a 
register operand and a memory operand, a 
register operand and an immediate operand, 
or an immediate operand and a memory 
operand. The operands may be words or bytes, 
but CMP cannot compare a byte with a word. 

Example: CMP BX,32 

Subtracts the immediate operand, 
32, from the contents of BX and 
sets OF, SF, ZF, AF, PF, and CF 
to reflect the result. The contents 
of BX remain unchanged. 

3.6 CONTROL TRANSFER INSTRUCTIONS 

The iAPX 286 provides both conditional and 
unconditional program transfer instructions to 
direct the flow of execution. Conditional 
program transfers depend on the results of 
operations that affect the flag register. 
Unconditional program transfers are always 
executed. 



BASIC INSTRUCTION SET 

3.6.1 Unconditional Transfer Instructions 

JMP, CALL, RET, INT and IRET instruc
tions transfer control from one code segment 
location to another. These locations can be 
within the same code segment or in different 
code segments. 

3.6.1.1 JUMP INSTRUCTION 

JMP (Jump) unconditionally transfers control 
to the target location. JMP is a one-way 
transfer of execution; it does not save a return 
address on the stack. 

The JMP instruction always performs the 
same basic function of transferring control 
from the current location to a new location. 
Its implementation varies depending on the 
following factors: 

• Is the address specified directly within the 
instruction or indirectly through a regis
ter or memory? 

• Is the target location inside or outside the 
current code segment selected in CS? 

A direct JMP instruction includes the desti
nation address as part of the instruction. An 
indirect JMP instruction obtains the destina
tion address indirectly through a register or a 
pointer variable. 

Control transfers through a gate or to a task 
state segment are available only in Protected 
Mode operation of the iAPX 286. The formats 
of the instructions that transfer control 
through a call gate, a task gate, or to a task 
state segment are the same. The label 
included in the instruction selects one of these 
three paths to a new code segment. 

Direct JMP within the current code segment. 
A direct JMP that transfers control to a target 
location within the current code segment uses 
a relative displacement value contained in the 
instruction. This can be either a 16-bit value 

3-18 

or an 8-bit value sign extended to 16 bits. The 
processor forms an effective address by adding 
this relative displacement to the address 
contained in IP. IP refers to the next instruc
tion when the additions are performed. 

Example: JMP NEAR_NEWCODE 

Transfers control to the 
target location labeled 
NEAR_NEWCODE, which is 
within the code segment currently 
selected in CS. 

Indirect JMP within the current code 
segment. Indirect JMP instructions that 
transfer control to a location within the 
current code segment specify an absolute 
address in one of several ways. First, the 
program can JMP to a location specified by 
a 16-bit register (any of AX, DX, CX, BX, 
BP, SI, or DI). The processor moves this 16-
bit value into IP and resumes execution. 

Example: JMP SI 

Transfers control to the target 
address formed by adding the 16-
bit value contained in SI to the 
base address contained in CS. 

The processor can also obtain the destination 
address within a current segment from a 
memory word operand specified in the 
instruction. 

Example: JMP PTR_X 

Transfers control to the target 
address formed by adding the 16-
bit value contained in the memory 
word labeled PTR X to the base 
address contained in CS. 

A register can modify the address of the 
memory word pointer to select a destination 
address. 



BASIC INSTRUCTION SET 

Example: JMP CASE_TABLE [BX] 

CASE_TABLE is the first word 
in an array of word pointers. The 
value of BX determines which 
pointer the program selects from 
the array. The JMP instruction 
then transfers control to the 
location specified by the selected 
pointer. 

Direct JMP outside of the current code 
segment. Direct JMP instructions that specify 
a target location outside the current code 
segment contain a full 32-bit pointer. This 
pointer consists of a selector for the new code 
segment and an offset within the new 
segment. 

Example: JMP FAR_NEWCODE_FOO 

Places the selector contained in 
the instruction into CS and the 
offset into IP. The program 
resumes execution at this location 
in the new code segment. 

Indirect JMP outside of the current code 
segment. Indirect JMP instructions that 
specify a target location outside the current 
code segment use a double-word variable to 
specify the pointer. 

Example: JMP NEW CODE 

NEWCODE the first word of two 
consecutive words in memory 
which represent the new pointer. 
NEWCODE contains the new 
offset for IP and the word follow
ing NEWCODE contains the 
selector for CS. The program 
resumes execution at this location 
in the new code segment. 
(Protected mode programs treat 

3-19 

this differently. See Chapters 6 
and 7). 

Direct JMP outside of the current code 
segment to a call gate. If the selector included 
with the instruction refers to a call gate, then 
the processor ignores the offset in the instruc
tion and takes the pointer of the routine being 
entered from the call gate. 

JMP outside of current code segment may 
only go to the same level. 

The selector in the instruction 
refers to the call gate 
CALL_GATE-FOO, and the call 
gate actually provides the new 
contents of CS and IP to specify 
the address of the next 
instructions. 

Indirect JMP outside the current code 
segment to a call gate. If the selector speci
fied by the instruction refers to a call gate, 
the processor ignores the offset in the double
word and takes the address of the routine 
being entered from the call gate. The JMP 
instruction uses the same format to indirectly 
specify a task gate or a task state segment. 

Example: JMP CASE_TABLE [BX] 

The instruction refers to the 
double-word in the array of 
pointers called CASE_TABLE. 
The specific double-word chosen 
depends on the value in BX when 
the instruction executes. The 
selector portion of this double
word selects a call gate, and the 
processor takes the address of the 
routine being entered from the 
call gate. 



BASIC INSTRUCTION SET 

3.6.1.2 CALL INSTRUCTION 

CALL (Call Procedure) activates an out-of
line procedure, saving on the stack the address 
of the instruction following the CALL for 
later use by a RET (Return) instruction. An 
intrasegment CALL places the current value 
of IP on the stack. An intersegment CALL 
places both the value of IP and CS on the 
stack. The RET instruction in the called 
procedure uses this address to transfer control 
back to the calling program. 

A long CALL instruction that invokes a task
switch stores the outgoing task's task state 
segment selector in the incoming task state 
segment's link field and sets the nested task 
flag in the new task. In this case, the IRET 
instruction takes the place of the RET 
instruction to return control to the nested task. 

Examples: 

CALL NEAlLNEWCODE 
CALL SI 
CALLPTR-X 
CALL CASE_TABLE [BP] 
CALL FAR_NEWCODE_FOO 
CALL NEWCODE 
CALL CALL_GATE_FOO 
CALL CASE_TABLE [BX] 

See the previous treatment of JMP for a 
discussion of the operations of these 
instructions. 

3.6.1.3 RETURN AND RETURN FROM INTERRUPT 
INSTRUCTION 

RET (Return From Procedure) terminates the 
execution of a procedure and transfers control 
through a back-link on the stack to the 
program that originally invoked the 
procedure. 

An intrasegment RET restores the value of 
IP that was saved on the stack by the previous 

3-20 

intrasegment CALL instruction. An inter
segment RET restores the values of both CS 
and IP which were saved on the stack by the 
previous intersegment CALL instruction. 

RET instructions may optionally specify a 
constant to the stack pointer. This constant 
specifies the new top of stack to effectively 
remove any arguments that the calling 
program pushed on the stack before the 
execution of the CALL instruction. 

Example: RET 

If the previous CALL instruction 
did not transfer control to a new 
code segment, RET restores the 
value of IP pushed by the CALL 
instruction. If the previous CALL 
instruction transferred control to 
a new segment, RET restores the 
values of both IP and CS which 
were pushed on the stack by the 
CALL instruction. 

Example: RET n 

This form of the RET instruction 
performs identically to the above 
example except that it adds n 
(must be an even value) to the 
value of SP to eliminate n bytes 
of parameter information previ
ously pushed by the calling 
program. 

IRET (Return From Interrupt or Nested 
Task) returns control to an interrupted 
routine or, optionally, reverses the action of a 
CALL or INT instruction that caused a task 
switch. See Chapter 8 for further information 
on task switching. 

Example: IRET 

Returns from an interrupt with or 
without a task-switch based on the 
value of the NT bit. 



BASIC INSTRUCTION SET 

3.6.2 Conditional Transfer Instructions 

The conditional transfer instructions are 
jumps that mayor may not transfer control, 
depending on the state of the epu flags when 
the instruction executes. Instruction encoding 
is most efficient when the target for the 
conditional jumps is in the current code 
segment and within -128 to + 127 bytes of 
the first byte of the next instruction. Alter
natively, the opposite sense of the conditional 
jump can skip around an unconditional jump 
to the destination. 

3.6.2.1 CONDITIONAL JUMP INSTRUCTIONS 

Table 3-3 shows the conditional transfer 
mnemonics and their interpretations. The 
conditional jumps that are listed as pairs are 
actually the same instruction. The assembler 
provides the alternate mnemonics for greater 
clarity within a program listing. 

3.6.2.2 LOOP INSTRUCTIONS 

The loop instructions are conditional jumps 
that use a value placed in ex to specify the 
number of repetitions of a software loop. All 
loop instructions automatically decrement ex 
and terminate the loop when ex=o. Four of 
the five loop instructions specify a condition 
of ZF that terminates the loop before ex 
decrements to zero. 

LOOP (Loop While ex Not Zero) is a condi
tional transfer that auto-decrements the ex 
register before testing ex for the branch 
condition. If ex is non-zero, the program 
branches to the target label specified in the 
instruction. The LOOP instruction causes the 
repetition of a code section until the opera
tion of the LOOP instruction decrements ex 
to a value of zero. If LOOP finds CX=O, 
control transfers to the instruction immedi-

Table 3-3. Interpretation of Conditional Transfers 

Unsigned Conditional Transfers 

Mnemonic Condition Tested "Jump If •.. " 

JAjJNBE (CF or ZF) = 0 above/not below nor equal 
JAE/JNB CF = 0 above or equal/not below 
JB/JNAE CF = 1 below/not above nor equal 
JBE/JNA (CF or ZF) = 1 below or equal/not above 
JC CF = 1 carry 
JE/JZ ZF = 1 equal/zero 
JNC CF = 0 not carry 
JNE/JNZ ZF = 0 not equal/not zero 
JNP/JPO PF = 0 not parity/parity odd 
JP/JPE PF = 1 parity/parity even 

Signed Conditional Transfers 

Mnemonic Condition Tested "Jump If .•• " 

JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal 
JGE/JNL (SF xor OF) = 0 greater or equal/not less 
JL/JNGE (SF xor OF) = 0 less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF) = 1 less or equal/not greater 
JNO OF = 0 not overflow 
JNS SF = 0 not sign (positive, including 0) 
JO OF = 1 overflow 
JS SF = 1 sign (negative) 

3-21 



BASIC INSTRUCTION SeT 

ately following the LOOP instruction. If the 
value of ex is initially zero, then the LOOP 
executes 65536 times. 

Example: LOOP START_LOOP 

Each time the program encoun
ters this instruction, it decre
ments ex and then tests it. If the 
value of ex is non-zero, then the 
program branches to the instruc
tion labeled START_LOOP. If 
the value in ex is zero, then the 
program continues with the 
instruction that follows the LOOP 
instruction. 

LOOPE (Loop While Equal) and LOOPZ 
(Loop While Zero) are physically the same 
instruction. These instructions auto-decre
ment the ex register before testing ex and 
ZF for the branch conditions. If ex is non
zero and ZF= 1, the program branches to the 
target label specified in the instruction. If 
LOOPE or LOOPZ finds that ex=o or 
ZF = 0, control transfers to the instruction 
immediately succeeding the LOOPE or 
LOOPZ instruction. 

Example: LOOPE START_LOOP (or 
LOOPZ START_LOOP) 

Each time the program encoun
ters this instruction, it decre
ments ex and tests ex and ZF. 
If the value in ex is non-zero and 
the value of ZF is 1, the program 
branches to the instruction labeled 
START LOOP. If ex=o or 
ZF = 0, the program continues 
with the instruction that follows 
the LOOPE (or LOOPZ) 
instruction. 

LOOPNE (Loop While Not Equal) and 
LOOPNZ (Loop While Not Zero) are physi
cally the same instruction. These instructions 

3-22 

auto-decrement the ex register before testing 
ex and ZF for the branch conditions. If ex 
is non-zero and ZF=O, the program branches 
to the target label specified in the instruction. 
If LOOPNE or LOOPNZ finds that ex=o 
or ZF = 1, control transfers to the instruction 
immediately succeeding the LOOPNE or 
LOOPNZ instruction. 

Example: LOOPNE START_LOOP (or 
LOOPNZ START_LOOP) 

Each time the program encoun
ters this instruction, it decre
ments ex and tests ex and ZF. 
If the value of ex is non-zero and 
the value of ZF is 0, the program 
branches to the instruction labeled 
START_LOOP. If ex=o or 
ZF = 1, the program continues 
with the instruction that follows 
the LOOPNE (or LOOPNZ) 
instruction. 

3.6.2.3 EXECUTING A LOOP OR REPEAT 
ZERO TIMES 

JCXZ (Jump if CX Zero) branches to the 
label specified in the instruction if it finds a 
value of zero in ex. Sometimes, it is desira
ble to design a loop that executes zero times 
if the count variable in ex is initialized to 
zero. Because the LOOP instructions (and 
repeat prefixes) decrement ex before they 
test it, a loop will execute 65536 times if the 
program enters the loop with a zero value in 
ex. A programmer may conveniently 
overcome this problem with JeXZ, which 
enables the program to branch around the 
code within the loop if ex is zero when JeXZ 
executes. 

Example: JeXZ TARGETLABEL 

Causes the program to branch 
to the instruction labeled 
TARGETLABEL if ex=o when 
the instruction executes. 



BASIC INSTRUCTION SET 

3.6.3 Software-Generated Interrupts 

The INT n and INTO instructions allow the 
programmer to specify a transfer to an inter
rupt service routine from within a program. 
Interrupts 0-31 are reserved by Intel. 

3.6.3.1 SOFTWARE INTERRUPT INSTRUCTION 

INT n (Software Interrupt) activates the 
interrupt service routine that corresponds to 
the number coded within the instruction. 
Interrupt type 3 is reserved for internal 
software-generated interrupts. However, the 
INT instruction may specify any interrupt 
type to allow multiple types of internal inter
rupts or to test the operation of a service 
routine. The interrupt service routine termi
nates with an IRET instruction that returns 
control to the instruction that follows INT. 

Example: INT 3 

Transfers control to the interrupt 
service routine specified by a type 
3 interrupt. 

Example: INT 0 

Transfers control to the interrupt 
service routine specified by a type 
o interrupt, which is reserved for 
a divide error. 

INTO (Interrupt on Overflow) invokes a type 
4 interrupt if OF is set when the INTO 
instruction executes. The type 4 interrupt is 
reserved for this purpose. 

Example: INTO 

If the result of a previous opera
tion has set OF and no interven
ing operation has reset OF, then 
INTO invokes a type 4 interrupt. 
The interrupt service routine 
terminates with an IRET instruc
tion, which returns control to the 
instruction following INTO. 

3-23 

3.7 CHARACTER TRANSLATION AND 
STRING INSTRUCTIONS 

The instructions in this category operate on 
characters or string elements rather than on 
logical or numeric values. 

3.7.1 Translate Instruction 

XLAT (Translate) replaces a byte in the AL 
register with a byte from a user-coded trans
lation table. When XLAT is executed, AL 
should have the unsigned index to the table 
addressed by BX. XLA T changes the contents 
of AL from table index to table entry. BX is 
unchanged. The XLAT instruction is useful 
for translating from one coding system to 
another such as from ASCII to EBCDIC. The 
translate table may be up to 256 bytes long. 
The value placed in the AL register serves as 
an index to the location of the corresponding 
translation value. Used with a LOOP instruc
tion, the XLA T instruction can translate a 
block of codes up to 64K bytes long. 

Example: XLAT 

Replaces the byte in AL with the 
byte from the translate table that 
is selected by the value in AL. 

3.7.2 String Manipulation Instructions and 
Repeat Prefixes 

The string instructions (also called primi
tives) operate on string elements to move, 
compare, and scan byte or word strings. One
byte repeat prefixes can cause the operation 
of a string primitive to be repeated to process 
strings as long as 64 K bytes. 

The repeated string primitives use the direc
tion flag, DF, to specify left-to-right or right
to-left string processing, and use a count in 
CX to limit the processing operation. These 
instructions use the register pair DS:SI to 
point to the source string element and the 
register pair ES:DI to point to the 
destination. 



BASIC INSTRUCTION SET 

One of two possible opcodes represent each 
string primitive, depending on whether it is 
operating on byte strings or word strings. The 
string primitives are generic and require one 
or more operands along with the primitive to 
determine the size of the string elements being 
processed. These operands do not determine 
the addresses of the strings; the addresses 
must already be present in the appropriate 
registers. 

Each repetition of a string operation using the 
Repeat prefixes includes the following steps: 

1. Acknowledge pending interrupts. 

2. Check CX for zero and stop repeating if 
CX is zero. 

3. Perform the string operation once. 

4. Adjust the memory pointers in DS:SI and 
ES:DI by incrementing SI and DI if DF 
is 0 or by decrementing SI and DI if DF 
is 1. 

5. Decrement CX (this step does not affect 
the flags). 

6. For SCAS (Scan String) and CMPS 
(Compare String), check ZF for a match 
with the repeat condition and stop 

. repeating if the ZF fails to match. 

The Load String and Store String instruc
tions allow a program to perform arithmetic 
or logical operations on string characters 
(using AX for word strings and AL for byte 
strings). Repeated operations that include 
instructions other than string primitives must 
use the loop instructions rather than a repeat 
prefix. 

3.7.2.1 STRING MOVEMENT INSTRUCTIONS 

REP (Repeat While ex Not Zero) specifies 
a repeated operation of a string primitive. The 
REP prefix causes the hardware to automat
ically repeat the associated string primitive 
until CX =0. This form of iteration allows the 

3-24 

CPU to process strings much faster than 
would be possible with a regular software 
loop. 

When the REP prefix accompanies a MOVS 
instruction, it operates as a memory-to
memory block transfer. To set up for this 
operation, the program must initialize ex and 
the register pairs DS:SI and ES:DI. CX 
specifies the number of bytes or words in the 
block. 

If DF=O, the program must point DS:SI to 
the first element of the source string and point 
ES:DI to the destination address for the first 
element. If DF= 1, the program must point 
these two register pairs to the last element of 
the source string and to the destination 
address for the last element, respectively. 

Example: REP MOVSW 

The processor checks the value in 
CX for zero. If this value is not 
zero, the processor moves a word 
from the location pointed to by 
DS:SI to the location pointed to 
by ES:DI and increments SI and 
DI by two (if DF=O). Next, the 
processor decrements CX by one 
and returns to the beginning of 
the repeat cycle to check CX 
again. After CX decrements to 
zero, the processor executes the 
instruction that follows. 

MOVS (Move String) moves the string 
character pointed to by the combination of DS 
and SI to the location 'pointed to by the 
combination of ES and DI. This is the only 
memory-to-memory transfer supported by the 
instruction set of the base architecture. 
MOVSB operates on byte elements. The 
destination segment register cannot be 
overridden by a segment override prefix while 
the source segment register can be 
overridden. 



BASIC INSTRUCTION SET 

Example: MOVSW 

Moves the contents of the 
memory byte pointed to by DS:SI 
to the location pointed to by 
ES:DI. 

3.7.2.2 OTHER STRING OPERATIONS 

CMPS (Compare Strings) subtracts the 
destination string element (ES:DI) from the 
source string element (DS:SI) and updates the 
flags AF, SF, PF, CF and OF. If the string 
elements are equal, ZF= 1; otherwise, ZF=O. 
If D F = 0, the processor increments the 
memory pointers (SI and DI) for the two 
strings. The segment register used for the 
source address can be changed with a segment 
override prefix while the destination segment 
register cannot be overridden. 

Example: CMPSB 

Compares the source and desti
nation string elements with each 
other and returns the result of the 
comparison to ZF. 

SCAS (Scan String) subtracts the destination 
string element at ES:DI from AX or AL and 
updates the flags AF, SF, ZF, PF, CF and 
OF. If the values are equal, ZF= 1; other
wise, ZF=O. If DF=O, the processor incre
ments the memory pointer (DI) for the string. 
The segment register used for the source 
address can be changed with a segment 
override prefix while the destination segment 
register cannot be overridden. 

Example: SCASW 

Compares the value in AX with 
the destination string element. 

REPE/REPZ (Repeat While CX Equal/Zero) 
and REPNE/REPNZ (Repeat While CX Not 
Equal/Not Zero) are the prefixes that are 
used exclusively with the SCAS (Scan 
String) and CMPS (Compare String) 
primitives. 

3-25 

The difference between these two types of 
prefix bytes is that REPEjREPZ terminates 
when ZF=O and REPNEjREPNZ termi
nates when ZF= 1. ZF does not require 
initialization before execution of a repeated 
string instruction. 

When these prefixes modify either the SCAS 
or CMPS primitives, the processor compares 
the value of the current string element with 
the value in AX for word elements or with 
the value in AL for byte elements. The 
resulting state of ZF can then limit the 
operation of the repeated operation as well as 
a zero value in CX. 

Example: REPE SCASB 

Causes the processor to scan the 
string pointed to by ES:DI until 
it encounters a match with the 
byte value in AL or until CX 
decrements to zero. 

LODS (Load String) places the source string 
element at DS:SI into AX for word strings or 
into AL for byte strings. 

Example: LODSW 

Loads AX with the value pointed 
to by DS:SI. 

3.8 ADDRESS MANIPULATION 
INSTRUCTIONS 

The set of address manipulation instructions 
provide a way to perform address calcula
tions or to move to a new data segment or 
extra segment. 

LEA (Load Effective Address) transfers the 
offset of the source operand (rather than its 
value) to the destination operand. The source 
operand must be a memory operand, and the 
destination operand must be a 16-bit general 
register (AX, DX, BX, CX, BP, SP, SI, 
or DI). 



BASIC INSTRUCTION SET 

LEA does not affect any flags. This instruc
tion is useful for initializing the registers 
before the execution of the string primitives 
or the XLA T instruction. 

Example: LEA BX EBCDIC_TABLE 

Causes the processor to place 
the address of the' starting 
location of the table labeled 
EBCDIC_TABLE into BX. 

LDS (Load Pointer Using DS) transfers a 
32-bit pointer variable from the source 
operand to DS and the destination register. 
The source operand must be a memory 
operand, and the destination operand must be 
a 16-bit general register (AX, DX, BX, CX, 
BP, SP, SI or DI). DS receives the high-order 
segment word of the pointer. The destination 
register receives the low-order word, which 
points to a specific location within the 
segment. 

Example: LDS SI, STRINGJe 

Loads DS with the word identi
fying the segment pointed to by 
STRINGJe, and loads the offset 
of STRINGJe into SI. Specify
ing SI as the destination operand 
is a convenient way to prepare for 
a string operation on a source 
string that is not in the current 
data segment. 

LES (Load Pointer Using ES) operates 
identically to LDS except that ES receives the 
offset word rather than DS. 

Example: LES DI, DESTINA TIONJe 

Loads ES with the word identi
fying the segment pointed to by 
DESTINATION_X, and loads 
the offset of DESTINATIONJe 
into DI. This instruction provides 

3-26 

a convenient way to select a 
destination for a string operation 
if the desired location is not in the 
current extra segment. 

3.9 FLAG CONTROL INSTRUCTIONS 

The flag control instructions provide a method 
of changing the state of bits in the flag 
register. 

3.9.1 Carry Flag Control Instructions 

The carry flag instructions are useful in 
conjunction with rotate-with-carry instruc
tions RCL and RCR. They can initialize the 
carry flag, CF, to a known state before 
execution of a rotate that moves the carry bit 
into one end of the rotated operand. 

STC (Set Carry Flag) sets the carry flag (CF) 
to I. 

Example: STC 

CLC (Clear Carry Flag) zeros the carry flag 
(CF). 

Example: CLC 

CMC (Complement Carry Flag) reverses the 
current status of the carry flag (CF). 

Example: CMC 

3.9.2 Direction Flag Control Instructions 

The direction flag control instructions are 
specifically included to set or clear the direc
tion flag, DF, which controls the left-to-right 
or right-to-left direction of string processing. 
IF DF=O, the processor automatically incre
ments the string memory pointers, SI and DI, 
after each execution of a string primitive. If 
DF= 1, the processor decrements these 
pointer values. The initial state of DF is O. 



BASIC INSTRUCTION SET 

CLD (Clear Direction Flag) zeros DF, causing 
the string instructions to auto-increment SI 
and/or DI. CLD does not affect any other 
flags. 

Example: CLD 

STD (Set Direction Flag) sets DF to 1, 
causing the string instructions to auto-decre
ment SI and/or DI. STD does not affect any 
other flags. 

Example: STD 

3.9.3 Flag Transfer Instructions 

Though specific instructions exist to alter CF 
and DF, there is no direct method of altering 
the other flags. The flag transfer instructions 
allow a program to alter the other flag bits 
with the bit manipulation instructions after 
transferring these flags to the stack or the AH 
register. 

The PUSHF and POPF instructions are also 
useful for preserving the state of the flag 
register before executing a procedure. 

LAHF (Load AH from Flags) copies SF, ZF, 
AF PF and CF to AH bits 7, 6, 4, 2, and 0, 
res~ecti~ely (see figure 3-13). The contents of 
the remaining bits (5, 3, and 1) are undefined. 
The flags remain unaffected. This instruction 
can assist in converting 8080/8085 assembly 
language programs to run on the base archi
tecture of the iAPX 86, 88, 186, 
and 286. 

Example: LAHF 

SAHF (Store AH into Flags) transfers bits 7, 
6, 4, 2, and 0 from AH into SF, ZF, AF, PF, 
and CF, respectively (see figure 3-13). This 
instruction also provides 8080/8085 compat
ibility with the iAPX 86, 88, 186, and 286. 

Example: SAHF 

3-27 

76543210 

ISFlzF.AFBpFBCFI 
REGISTER AH 

LAHF loads five flags from the flag register into register AH. SAHF 
stores these same five flags from AH into the flag register. The 
bit position of each flag is the same in .AH as it is in the flag 
register. The remaining bits are indeterminate. 

Figure 3-13. LAHF and SAHF 

PUSHF (Push Flags) decrements SP by two 
and then transfers all flags to the word at the 
top of stack pointed to by SP (see figure 
3-14). The flags remain unaffected. This 
instruction enables a procedure to save the 
state of the flag register for later use. 

Example: PUSHF 

POPF (Pop Flags) transfers specific bits from 
the word at the top of stack into the low-order 
byte of the flag register (see figure 3-14). The 
processor then increments SP by two. 

Note that an application program in the 
protected virtual address mode may not alter 
IOPL (the I/O privilege level flag) unless the 
program is executing at privilege level O. A 
program may alter IF (the interrupt flag) only 
when executing at a level that is at least as 
privileged as IOPL. 

Procedures may use this instruction to restore 
the flag status from a previous value. 

Example: POPF 

3.10 BINARY-CODED DECIMAL 
ARITHMETIC INSTRUCTIONS 

These instructions adjust the results of a 
previous arithmetic operation to produce a 
valid packed or unpacked decimal result. 
These instructions operate only on AL or AH 
registers. 



BASIC INSTRUCTION SET 

15 14 13 12 11 10 9876543210 

STACK WORD 

PUSHF decrements SP by 2 bytes (1 word) and copies the contents 01 the Ilag re91ster to the top of stack. POPF loads the Ilag register 
with the contents 01 the last word pushed onto the stack. The bit position 01 each flag Is the same in the stack word as It Is In the flag 
register. Only programs executing at the highest privilege level (level 0) may alter the 2·blt 10PL flag. Only programs executing at a level at 
leaot as privileged as that Indicated by 10PL may alter IF. 

Figure 3-14. PUSHF and POPF 

3.10.1 Packed BCD Adjustment 
Instructions 

DAA (Decimal Adjust) corrects the result of 
adding two valid packed decimal operands in 
AL. DAA must always follow the addition of 
two pairs of packed decimal numbers (one 
digit in each nibble) to obtain a pair of valid 
packed decimal digits as results. The carry 
flag will be set if carry was needed. 

Exaptple: DAA 

DAS (Decimal Adjust for Subtraction) 
corrects the result of subtracting two valid 
packed decimal operands in AL. DAS must 
always follow the subtraction of one pair of 
packed decimal numbers (one digit in each 
nibble) from another to obtain a pair of valid 
packed decimal digits as results. The carry 
flag will be set if a borrow was needed. 

Example: DAS 

3.10.2 Unpacked BCD Adjustment 
Instructions 

AAA (ASCII Adjust for Addition) changes 
the contents of register AL to a valid 
unpacked decimal number, and zeros the top 
4 bits. AAA must always follow the addition 
of two unpacked decimal operands in AL. The 
carty flag will be set and AH will be incre
mented ira carry was necessary. 

Example: AAA 

3-28 

AAS (ASCII Adjust for Subtraction) changes 
the contents of register AL to a valid 
unpacked decimal number, and zeros the top 
4 bits. AAS must always follow the subtrac
tion of one unpacked decimal operand from 
another in AL. The carry flag will be set and 
AH decremented if a borrow was necessary. 

Example: AAS 

AAM (ASCII Adjust for Multiplication) 
corrects the result of a multiplication of two 
valid unpacked decimal numbers. AAM must 
always follow the multiplication of two 
decimal numbers to produce a valid decimal 
result. The high order digit will be left in AH, 
the low order digit in AL. 

Example: AAM 

AAD (ASCII Adjust for Division) modifies 
the numerator in AH and AL to prepare for 
the division of two valid unpacked decimal 
operands so that the quotient produced by the 
division will be a valid unpacked decimal 
number. AH should contain the high-order 
digit and AL the low-order digit. This 
instruction will adjust the value and leave it 
in AL. AH will contain o. 

Example: AAD 



BASIC INSTRUCTION SET 

3.11 TRUSTED INSTRUCTIONS 

When operating in Protected Mode (Chapter 
6 and following), the iAPX 286 processor 
restricts the execution of trusted instructions 
according to the Current Privilege Level 
(CPL) and the current value of IOPL, the 
2-bit I/O privilege flag. Only a program 
operating at the highest privilege level (level 
0) may alter the value of 10PL. A program 
may execute trusted instructions only when 
executing at a level that is at least as privi
leged as that specified by IOPL. 

Trusted instructions control I/O operations, 
interprocessor communications in a multipro
cessor system, interrupt enabling, and the 
HL T instruction. 

These protection considerations do not apply 
in the real address mode. 

3.11.1 Trusted and Privileged Restrictions 
on POPF and IRET 

POPF (POP Flags) and IRET (Interrupt 
Return) are not affected by 10PL unless they 
attempt to alter IF (flag register bit 9). To 
change IF, POPF must be part of a program 
that is executing at a privilege level greater 
than or equal to that specified by 10PL. Any 
attempt to change IF when CPL :> 0 will be 
ignored (Le., the IF flag will be ignored). To 
change the 10PL field, CPL must be zero. 

3.11.2 Machine State Instructions 

These trusted instructions affect the machine 
state control interrupt response, the processor 
halt state, and the bus LOCK signal that 
regulates memory access in multiprocessor 
systems. 

CLI (Clear Interrupt-Enable Flag) and STI 
(Set Interrupt-Enable Flag) alter bit 9 in the 
flag register. When IF = 0, the processor 
responds only to internal interrupts and to 
non-maskable external interrupts. When 

3-29 

IF = I, the processor responds to all inter
rupts. An interrupt service routine might use 
these instructions to avoid further interrup
tion while it processes a previous interrupt 
request. As with the other flag bits, the 
processor clears IF during initialization. These 
instructions may be executed only if CPL < 
10PL. A protection exception will occur if 
they are executed when CPL > 10PL. 

Example: STI 

Sets IF= 1, which enables the 
processing of maskable external 
interrupts. 

Example: CLI 

Sets IF=O to disable maskable 
interrupt processing. 

HLT (Halt) causes the processor to suspend 
processing operations pending an interrupt or 
a system reset. This trusted instruction 
provides an alternative to an endless software 
loop in situations where a program must wait 
for an interrupt. The return address saved 
after the interrupt will point to the instruc
tion immediately following HLT. This 
instruction may be executed only when 
CPL = O. 

Example: HL T 

LOCK (Assert Bus Lock) is a I-byte prefix 
code that causes the processor to assert the 
bus LOCK signal during execution of the 
instruction that follows. LOCK does not affect 
any flags. LOCK may be used only when CPL 
< 10PL. A protection exception will occur if 
LOCK is used when CPL > 10PL. 

3.11.3 Input and Output Instructions 

These trusted instructions provide access to 
the processor's I/O ports to transfer data to 
and from peripheral devices. In Protected 



BASIC INSTRUCTION SET 

Mode, these instructions may be executed 
only when CPL -< IOPL. 

IN (Input from Port) transfers a byte or a 
word from an input port to AL or AX. If a 
program specifies AL with the IN instruc
tion, the processor transfers 8 bits from the 
selected port to AL. Alternately, if a program 
specifies AX with the IN instruction, the 
processor transfers 16 bits from the port 
to AX. 

The program can specify the number of the 
port in two ways. Using an immediate byte 
constant, the program can specify· 256 8-bit 
ports numbered 0 through 255 or 128 16-bit 
ports numbered 0,2,4, ... ,252,254. Using the 
current value contained in DX, the program 
can specify 8-bit ports numbered 0 through 
65,535, or 16-bit ports using even-numbered 
ports in the same range. 

Example: IN AL, 
BYTE-PORT_NUMBER 

Transfers 8 bits to AL 
from the port identified 
by the immediate constant 
BYTE-PORT_NUMBER. 

OUT (Output to Port) transfers a byte or a 
word to an output port from AL or AX. The 
program can specify the number of the port 
using the same methods of the IN instruc
tion. 

Example: OUT AX, DX 

Transfers 16 bits from AX to the 
port identified by the 16-bit 
number contained in DX. 

INS and OUTS (Input String and Output 
String) cause block input· or output opera
tions using a Repeat prefix. See Chapter 4 for 
more information on INS and OUTS. 

3-30 

3.12 PROCESSOR EXTENSION 
INSTRUCTIONS 

Processor Extension provides an extension to 
the instruction set of the base architecture 
(e.g., 80287). The NPX extends the instruc
tion set of the CPU-based architecture to 
support high-precision integer and floating
point calculations. This extended instruction 
set includes arithmetic, comparison, 
transcendental, and data transfer instruc
tions. The NPX also contains a set of useful 
constants to enhance the speed of numeric 
calculations. 

A program contains instructions for the NPX 
in line with the instructions for the CPU. The 
system executes these instructions in the same 
order as they appear in the instruction stream. 
The NPX operates concurrently with the 
CPU to provide maximum throughput for 
numeric calculations. 

The software emulation of the NPX is trans
parent to application software but requires 
more time for execution. 

3.12.1 Processor Extension 
Synchronization Instructions 

Escape and wait instructions allow a proces
sor extension such as the 80287 NPX to 
obtain instructions and data from the system 
bus and to wait for the NPX to return a result. 

ESC (Escape) identifies floating point 
numeric instructions and allows the iAPX 286 
to send the opcode to the NPX or to transfer 
a memory operand to the NPX. The 80287 
NPX uses the Escape instructions to perform 
high-performance, high-precision floating 
point arithmetic that conforms to the IEEE 
floating point standard 754. 

Example: ESC 6, ARRAY [SI] 

The CPU sends the escape opcode 
6 and the location of the array 
pointed to by SI to the NPX. 



BASIC INSTRUCTION SET 

WAIT (Wait) suspends program execution 
until the iAPX 286 CPU detects a signal on 
the BUSY pin. In an iAPX 286/20 configu
ration that includes a numeric processor 
extension, the NPX activates the BUSY pin 
to signal that it has completed its processing 
task and that the CPU may obtain the results. 

Example: WAIT 

3.12.2 Numeric Data Processor 
Instructions 

This section describes the categories of 
instructions available with Numeric Data 
Processor systems that include a Numeric 
Processor Extension or a software emulation 
of this processor extension. Refer to the 
Numeric Supplement following Appendix D 
and to the 80287 data sheet for more 
information. 

3.12.2.1 ARITHMETIC INSTRUCTIONS 

The extended instruction set includes not only 
the four arithmetic operations (add, subtract, 
multiply, and divide), but also subtract
reversed and divide-reversed instructions. The 
arithmetic functions include square root, 
modulus, absolute value, integer part, change 
sign, scale exponent, and extract exponent 
instructions. 

3-31 

3.12.2.2 COMPARISON INSTRUCTIONS 

The comparison operations are the compare, 
examine, and test instructions. Special forms 
of the compare instruction can optimize 
algorithms by allowing comparisons of binary 
integers with real numbers in memory. 

3.12.2.3 TRANSCENDENTAL INSTRUCTIONS 

The instructions in this group perform the 
otherwise time-consuming calculations for all 
common trigonometric, inverse trigonome
tric, hyperbolic, inverse hyperbolic, logarith
mic, and exponential functions. The 
transcendental instructions include tangent, 
arctangent, 2 x - I, Y . log2X, and y. log2 
(X+l). 

3.12.2.4 DATA TRANSFER INSTRUCTIONS 

The data transfer instructions move operands 
among the registers and between a register 
and memory. This group includes the load, 
store, and exchange instructions. 

3.12.2.5 CONSTANT INSTRUCTIONS 

Each of the constant instructions loads a 
commonly used constant into an NPX regis
ter. The values have a real precision of 64 bits 
and are accurate to approximately 19 decimal 
places. The constants loaded by these instruc
tions include 0, 1, Pi, loge 10, log2 e, 10glO 2, 
and log 2e. 





Extended Instruction Set 4 





CHAPTER 4 
EXTENDED INSTRUCTION SET 

The instructions described in this chapter 
extend the capabilities of the base architec
ture instruction set described in Chapter 3. 
These extensions consist of new instructions 
and variations of some instructions that are 
not strictly part of the base architecture (in 
other words, not included in the iAPX 86, 88). 
These instructions are also available in the 
iAPX 186, 188. The instruction variations, 
described in Chapter 3, include the immedi
ate forms of the PUSH and MUL instruc
tions, PUSHA, POPA, and the privilege level 
restrictions on POPF. 

New instructions described in this chapter 
include the string input and output instruc
tions (INS and OUTS), the ENTER proce
dure and LEAVE procedure instructions, and 
the check index BOUND instruction. 

4.1 BLOCK I/O INSTRUCTIONS 

. REP, the Repeat prefix, modifies INS and 
OUTS (the string I/O instructions) to provide 
a means of transferring blocks of data 
between an I/O port and Memory. These 
block I/O instructions are string primitives. 
They simplify programming and increase the 
speed of data transfer by eliminating the need 
to use a separate LOOP instruction or an 
intermediate register to hold the data. 

INS and OUTS are trusted instructions. To 
use trusted instructions, a program must 
execute at a privilege level at least as privi
leged as that specified by the 2-bit IOPL flag 
(CPL <: IOPL). Any attempt by a less-privi
leged program to use a trusted instruction 
results in a protection exception. See Chapter 
7 for information on protection concepts. 

One of two possible opcodes represents each 
string primitive depending on whether it 

4-1 

operates on byte strings or word strings. After 
each transfer, the memory address in SI or 
DI is updated by 1 for byte values and by 2 
for word values. The value in the DF field 
determines if SI or DI is to be auto incre
mented (DF=O) or auto decremented 
(DF= 1). 

INS and OUTS use DX to specify I/O ports 
numbered 0 through 65,535 or 16-bit ports 
using only even port addresses in the same 
range. 

INS (Input String from Port) transfers a byte 
or a word string element from an input port 
to memory. If a program specifies INSB, the 
processor transfers 8 bits from the selected 
port to the memory location indicated by 
ES:DI. Alternately, if a program specifies 
INSW, the processor transfers 16 bits from 
the port to the memory location indicated by 
ES:DI. The destination segment register 
choice (ES) cannot be changed for the INS 
instruction. 

Combined with the REP prefix, INS moves a 
block of information from an input port to a 
series of consecutive memory locations. 

Example: REP INSB 

The processor repeatedly trans
fers 8 bits to the memory location 
indicated by ES:DI from the port 
selected by the 16-bit port number 
contained in DX. Following each 
byte transfer, the CPU decre
ments CX. The instruction termi
nates the block transfer when 
CX=O. After decrementing CX, 
the processor increments DI by 
one if DF=O. It decrements DI 
by one if DF= 1. 



EXTENDED INSTRUCTION SET 

OUTS (Output String to Port) transfers a 
byte or a word string element to an output 
port from memory. Combined with the REP 
prefix, OUTS moves a block of information 
from a series of consecutive memory locations 
indicated by DS:SI to an output port. 

Example: REP OUTS WSTRING 

Assuming that the program 
declares WSTRING to be a 
word-length string element, the 
assembler uses the 16-bit form of 
the OUTS instruction to create 
the object code for the program. 
The processor repeatedly trans
fers words from the memory 
locations indicated by DI to the 
output port selected by the 16-bit 
port number in DX. 

Following each word transfer, the 
CPU decrements CX. The 
instruction terminates the block 
transfer when CX = 0. After 
decrementing CX, the processor 
increments SI by two to point to 
the next word in memory if 
DF=O, it decrements SI by two 
if DF= l. 

4.2 HIGH-lEVEL INSTRUCTIONS 

The instructions in this section provide 
machine-language functions normally found 
only in high-level languages. These instruc
tions include ENTER and LEAVE, which 
simplify the programming of procedures, and 
BOUND, which provides a simple method of 
testing an index against its predefined range. 

ENTER (Enter Procedure) creates the stack 
frame required by most block-structured high
level languages. A LEAVE instruction at the 
end of a procedure complements an ENTER 
at the beginning of the procedure to simplify 
stack management and to control access to 
variables for nested procedures. 

4-2 

Example: ENTER 2048,3 

Allocates 2048 bytes of dynamic 
storage on the stack and sets up 
pointers to two previous stack 
frames in the stack frame that 
ENTER creates for this 
procedure. 

The ENTER instruction includes two param
eters. The first parameter specifies the 
number of bytes of dynamic storage to be 
allocated on the stack for the routine being 
entered. The second parameter corresponds to 
the lexical nesting level (0-31) of the routine. 
(Note that the lexical level has no relation
ship to either the protection privilege levels or 
to the I/O privilege level.) 

The specified lexical level determines how 
many sets of stack frame pointers the CPU 
copies into the new stack frame from the 
preceding frame. This list of stack frame 
pointers is sometimes called the "display." 
The first word of the display is a pointer to 
the last stack frame. This pointer enables a 
LEA VE instruction to reverse the action of 
the previous ENTER instruction by effec
tively discarding the last stack frame. 

After ENTER creates the new display for a 
procedure, it allocates the dynamic storage 
space for that procedure by decrementing SP 
by the number of bytes specified in the first 
parameter. This new value of SP serves as a 
base for all PUSH and POP operations within 
that procedure. 

To enable a procedure to address its display, 
ENTER leaves BP pointing to the beginning 
of the new stack frame. Data manipulation 
instructions that specify BP as a base register 
implicitly address locations within the stack 
segment instead of the data segment. Two 
forms of the ENTER instruction exist: nested 
and non-nested. If the lexical level is 0, the 



EXTENDED INSTRUCTION SET 

The Formal Dellnltlon 01 The ENTER Inslruction For All Cases Is 
Given By The Following Listing. LEVEL Denoles The Value 01 
The Second Operand. 

Push BP 
Sel a lemporary value FRAME_PTR : ~ SP 
II LEVEL> 0 Ihen 

Repeal (LEVEL -1) limes: 
BP:~ BP-2 
Push Ihe word poinled 10 by BP 

End repeat 
Push FRAME_PTR 

End il 
BP : ~ FRAME_PTR 
SP : ~ SP - Ilrsl operand. 

Figure 4-1. Formal Definition of the ENTER 
Instruction 

non-nested form is used. Since the second 
operand is 0, ENTER pushes BP, copies SP 
to BP and then subtracts the first operand 
from SP. The nested form of ENTER occurs 
when the second parameter (lexical level) is 
not 0. Figure 4-1 gives the formal definition 
of ENTER. 

The main procedure (with other procedures 
nested within) operates at the highest lexical 
level, level 1. The first procedure it calls 
operates at the next deeper lexical level, level 
2. A level 2 procedure can access the varia
bles of the main program which are at fixed 
locations specified by the compiler. In the case 
of levell, ENTER allocates only the 
requested dynamic storage on the stack 
because there is no previous display to copy. 

A program operating at a higher lexical level 
calling a program at a lower lexical level 
requires that the called procedure should have 
access to the variables of the calling program. 
ENTER provides this access through a 
display that provides addressability to the 
calling program's stack frame. 

A procedure calling another procedure at the 
same lexical level implies that they are paral
lel procedures and that the called procedure 
should not have access to the variables of the 
calling procedure. In this case, ENTER copies 
only that portion of the display from the 

4-3 

calling procedure which refers to previously 
nested procedures operating at higher lexical 
levels. The new stack frame does not include 
the pointer for addressing the calling proce
dure's stack frame. 

ENTER treats a reentrant procedure as a 
procedure calling another procedure at the 
same lexical level. In this case, each succeed
ing iteration of the reentrant procedure can 
address only its own variables and the varia
bles of the calling procedures at higher lexical 
levels. A reentrant procedure can always 
address its own variables; it does not require 
pointers to the stack frames of previous 
iterations. 

By copying only the stack frame pointers of 
procedures at higher lexical levels, ENTER 
makes sure that procedures access only those 
variables of higher lexical levels, not those at 
parallel lexical levels (see figure 4-2). Figures 
4-2a through 4-2d demonstrate the actions of 
the ENTER instruction if the modules shown 
in figure 4-1 were to call one another in 
alphabetic order. 

Block-structured high-level languages can use 
the lexical levels defined by ENTER to 
control access to the variables of previously 
nested procedures. For example, if 
PROCEDURE A calls PROCEDURE B 
which, in turn, calls PROCEDURE C, then 
PROCEDURE C will have access to the 
variables of MAIN and PROCEDURE A, 
but not PROCEDURE B because they 
operate at the same lexical level. Following is 
the complete definition of the variable access 
for figure 4-2. 

1. MAIN PROGRAM has variables at 
fixed locations. 

2. PROCEDURE A can access only the 
fixed variables of MAIN. 



EXTENDED INSTRUCTION SET 

MAIN PROGRAM (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

Figure 4·2. Variable Access in Nested Procedures 

3. PROCEDURE B can access only the 
variables of PROCEDURE A and 
MAIN. PROCEDURE B cannot access 
the variables of PROCEDURE C or 
PROCEDURE D. 

4. PROCEDURE C can access only the 
variables of PROCEDURE A and 
MAIN. PROCEDURE C cannot access 
the variables of PROCEDURE B or 
PROCEDURE D. 

5. PROCEDURE D can access the 
variables of PROCEDURE C, 
PROCEDURE A, and MAIN. 
PROCEDURE D cannot access the 
variables of PROCEDURE B. 

4·4 

ENTER at the beginning of the MAIN 
PROGRAM creates dynamic storage space 
for MAIN but copies no pointers. The first 
and only word in the display points to itself 
because there is no previous value for LEAVE 
to return to BP. See figure 4-2a. 

After MAIN calls PROCEDURE A, 
ENTER creates a new display for PROCE
DURE A with the first word pointing to the 
previous value of BP (BPM for LEAVE to 
return to the MAIN stack frame) and the 
second word pointing to the current value of 
BP. Procedure A can access variables in 
MAIN since MAIN is at level 1. Therefore 
the base for the dynamic storage for MAIN 
is at [BP-2]. All dynamic variables for 
MAIN will be at a fixed offset from this 
value. See figure 4-2b. 

After PROCEDURE A calls PROCEDURE 
B, ENTER creates a new display for 
PROCEDURE B with the first word point
ing to the previous value of BP, the second 
word pointing to the value of BP for MAIN, 
and the third word pointing to the value of 
BP for A and the last word pointing to the 
current BP. B can access variables in A and 
MAIN by fetching from the display the base 
addresses of the respective dynamic storage 
areas. See figure 4-2c. 

After PROCEDURE B calls PROCEDURE 
C, ENTER creates a new display for 
PROCEDURE C with the first word point
ing to the previous value of BP, the second 
word pointing to the value of BP for MAIN, 
and the third word pointing to the BP value 
for A and the third word pointing to the 
current value of BP. Because PROCEDURE 
B and PROCEDURE C have the same lexical 
level, PROCEDURE C is not allowed access 
to variables in B and therefore does not 
receive a pointer to the beginning of 
PROCEDURE B's stack frame. See 
figure 4-2d. 



EXTENDED INSTRUCTION SET 

15 0 

BP FOR 
MAIN -

OLD BP 

BPM' 
} DISPLAY 

DYNAMIC 
• STORAGE 

'BPM ~ BP VALUE FOR MAIN 

Figure 4-2a. Stack Frame for MAIN at Level 1 

15 

BP FOR 

A -

SP_ 

OLD BP 

BPM 

BPM 

BPM 

BPA' 

0 

I DISPLAY 

) 
DYNAMIC 
STORAGE 

'BPA ~ BP VALUE FOR PROCEDURE A 

Figure 4-2b. Stack Frame for Procedure A 

4-5 

15 

BP_ 

SP_ 

OLDBP 

BPM 

BPM 

BPM 

BPA 

BPA 

BPM 

BPA 

BPB 

0 

I DISPLAY 

I DYNAMIC 
STORAGE 

Figure 4-2c. Stack Frame for Procedure B at 
Level 3 Called from A 

LEAVE (Leave Procedure) reverses the action 
of the previous ENTER instruction. The 
LEAVE instruction does not include any 
operands, 

Example: LEAVE 

First, LEA VE copies BP to SP to 
release all stack space allocated to 
the procedure by the most recent 
ENTER instruction, Next, 
LEAVE pops the old value of BP 
from the stack, A subsequent 
RET instruction can then remove 
any arguments that were pushed 
on the stack by the calling 
program for use by the called 
procedure. 



EXTENDED INSTRUCTION SET 

15 

OLD BP 

BPM 

BPM 

BPM 

BPA 

BPA 
BP_ 

BPM 

BPA 

BPB 

SP_ 

0 

}.~, 

} 
DYNAMIC 
STORAGE 

Figure 4·2d. Stack Frame for Procedure C at 
Level 3 Called from B 

BOUND (Detect Value Out of Range) verifies 
that the signed value contained in the speci
fied register lies within specified limits. An 
interrupt (INT 5) occurs if the value 
contained in the register is less than the lower 
bound or greater than the upper bound. 

4-6 

The BOUND instruction includes two 
operands. The first operand specifies the 
register being tested. The second operand 
contains the effective relative address of the 
two signed BOUND limit values. The 
BOUND instruction assumes that it can 
obtain the upper limit from the memory word 
that immediately follows the lower limit. 
These limit values cannot be register 
operands; if they are, an invalid opcode 
exception occurs. 

BOUND is useful for checking array bounds 
before using a new index value to access an 
element within the array. BOUND provides 
a simple way to check the value of an index 
register before the program overwrites infor
mation in a location beyond the limit of the 
array. 

The two-word block of memory that specifies 
the lower and upper limits of an array might 
typically reside just before the array itself. 
This makes the array bounds accessible at a 
constant offset of -4 from the beginning of 
the array. Because the address of the array 
will already be present in a register, this 
practice avoids extra calculations to obtain the 
effective address of the array bounds. 

Example: BOUND BX,ARRA Y-4 

Compares the value in BX with 
the lower limit at address 
ARRAY -4 and the upper limit 
at address ARRAY - 2. If the 
signed value in BX is less than the 
lower bound or greater than the 
upper bound, the interrupt for this 
instruction (INT 5) occurs. 
Otherwise, this instruction has no 
effect. 



Real Address Mode 5 





CHAPTER 5 
REAL ADDRESS MODE 

The iAPX 286 can be operated in either of 
two modes according to the status of the 
Protection Enabled bit of the MSW status 
register. In contrast to the "modes" and 
"mode bits" of some processors, however, the 
iAPX 286 modes do not represent a radical 
transition between conflicting architectures. 
Instead, the setting of the Protection Enabled 
bit simply determines whether certain 
advanced features, in addition to the baseline 
architecture of the iAPX 286, are to be 
made available to system designers and 
programmers. 

If the Protection Enabled (PE) bit is set by 
the programmer, the processor changes into 
Protected Virtual Address Mode. In this 
mode of operation, memory addressing is 
performed in terms of virtual addresses, with 
on-chip mapping mechanisms performing the 
virtual-to-physical translation. Only in this 
mode can the system designer make use of the 
advanced architectural features of the iAPX 
286: virtual memory support, system-wide 
protection, and built-in multitasking mecha
nisms are among the new features provided in 
this mode of operation. Refer to Part II of 
this manual (Chapters 6 through 11) for 
details on Protected Mode operation. 

Initially, upon system reset, the processor 
starts up in Real Address Mode. In this mode 
of operation, all memory addressing is 
performed in terms of real physical addresses. 
In effect, the architecture of the iAPX 286 in 
this mode is identical to that of the 8086 and 
other processors in the iAPX 86 family. The 
principal features of this baseline architec
ture have already been discussed throughout 
Part I (Chapters 2 through 4) of this manual. 
This chapter discusses certain additional 
topics-addressing, interrupt handling, and 

5-1 

system initialization-that complete the 
system programmer's view of the iAPX 286 
in Real Address Mode. 

5.1 ADDRESSING AND SEGMENTATION 

Like other processors in the iAPX 86 family, 
the iAPX 286 provides a one-megabyte 
memory space (220 bytes) when operated in 
Real Address Mode. Physical addresses are 
the 20-bit values that uniquely identify each 
byte location in this address space. Physical 
addresses, therefore, may range from 0 
through FFFFFH. 

An address is specified by a 32-bit pointer 
containing two components: (1) a 16-bit 
effective address offset that determines the 
displacement, in bytes, of a particular location 
within a segment; and (2) a 16-bit segment 
selector component that determines the start
ing address of the segment. Both components 
of an address may be referenced explicitly by 
an instruction (such as JMP, LES, LDS, or 
CALL); more often, however, the segment 
selector is simply the contents of a segment 
register. 

The interpretation of the first component, the 
effective address offset, is straight-forward. 
Segments are at most 64K (216) bytes in 
length, so an unsigned 16-bit quantity is 
sufficient to address any arbitrary byte 
location with a segment. The lowest-addressed 
byte within a segment has an offset of 0, and 
the highest-addressed byte has an offset of 
FFFFH. Data operands must be completely 
contained within a segment and must be 
contiguous. (These rules apply in both modes.) 

A segment selector is the second component 
of a logical address. This 16-bit quantity 
specifies the starting address of a segment 
within a physical address space of 220 bytes. 



REAL ADDRESS MODE 

Whenever the iAPX 286 accesses memory in 
Real Address Mode, it generates a 20-bit 
physical address from a segment selector and 
offset value. The segment selector value is left
shifted four bit positions to form the segment 
base address. The offset is extended with 4 
high order zeroes and added to the base to 
form the physical address (see figure 5-0. 

Therefore, every segment is required to start 
at a byte address that is evenly divisible by 
16; thus, each segment is positioned at a 
20-bit physical address whose least signifi
cant four bits are zeroes. This arrangement 
allows the iAPX 286 to interpret a segment 

16 BIT SEGMENT SELECTOR 

selector as the high-order 16 bits of a 20-bit 
segment base address. 

No limit or access checks are performed by 
the iAPX 286 in the Real Address Mode. All 
segments are readable, writable, executable, 
and have a limit of OFFFFH (65535 bytes). 
To save physical memory, you can use unused 
portions of a segment as another segment by 
overlapping the two (see figure 5-2). The Intel 
iAPX 86 software development tools support 
this feature via the segment override and 
group operators. However, programs that 
access segment B from segment A become 
incompatible in the protected virtual address 
mode. 

~ ________________ -JA~ __________________ ~ 

15 o 

Figure 5-1a. Forming the Segment Base Address 

SEGMENT BASE 

+ 

OFFSET 

15 o 

PHYSICAL ADDRESS 

19 o 

Figure 5-1b. Forming the 20-Bit Physical Address in the Real Address Mode 

5-2 



REAL ADDRESS MODE 

T 
SEGMENT A 64K 

_t 

r-----

T 
64K SEGMENT B 

1-----
OVERLAP 

t-----+----''- BASE OF 
SEGMENT B 

t----........ -- BASE OF 
SEGMENT A 

Figure 5-2. Overlapping Segments to Save 
Physical Memory 

5.2 INTERRUPT HANDLING 

Program interrupts may be generated in either 
of two distinct ways. An internal interrupt is 
caused directly by the currently executing 
program. The execution of a particular 
instruction results in the occurrence of an 
interrupt, whether intentionally (e.g., an INT 
n instruction) or as an unanticipated excep
tion (e.g., invalid opcode). On the other hand, 
an external interrupt occurs asynchronously 
as the result of an event external to the 
processor, and bears no necessary relation
ship with the currently executing program. 
The INTR and NMI pins of the iAPX 286 
provide the means by which external 
hardware signals the occurrence of such 
events. 

5.2.1 Interrupt Vector Table 

Whatever its origin, whether internal or 
external, an interrupt demands immediate 
attention from an associated service routine. 
Control must be transferred, at least for the 
moment, from the currently executing 
program to the appropriate interrupt service 
routine. By means of interrupt vectors, the 
iAPX 286 handles such control transfers 
uniformly for both kinds of interrupts. 

5-3 

An interrupt vector is an unsigned integer in 
the range of 0-255; every interrupt is assigned 
such a vector. In some cases, the assignment 
is predetermined and fixed: for example, an 
external NMI interrupt is invariably associ
ated with vector 2, while an internal divide 
exception is always associated with vector O. 
In most cases, however, the association of an 
interrupt and a vector is established dynami
cally. An external INTR interrupt, for 
example, supplies a vector in response to an 
interrupt acknowledge bus cycle, while the 
INT n instruction supplies a vector incor
porated within the instruction itself. The 
vector is shifted two places left to form a byte 
address into the table (see figure 5-3). 

In any case, the iAPX 286 uses the interrupt 
vector as an index into a table in order to 
determine the address of the corresponding 
interrupt service routine. For Real Address 
Mode, this table is known as the Interrupt 
Vector Table. Its format is illustrated in 
figure 5-3. 

The Interrupt Vector Table consists of as 
many as 256 consecutive entries, each four 
bytes long. Each entry defines the address of 
a service routine to be associated with the 
correspondingly numbered interrupt vector 
code. Within each entry, an address is speci
fied by a full 32-bit pointer that consists of a 
16-bit offset and a 16-bit segment selector. 
Interrupts 0-31 are reserved by Intel. 

In Real Address Mode, the interrupt table can 
be accessed directly at physical memory 
location 0 through 1023. In the protected 
virtual address mode, however, the interrupt 
vector table has no fixed physical address and 
cannot be directly accessed. Therefore, Real 
Address mode programs that directly 
manipulate the interrupt vector table will not 
work in the protected virtual address mode. 



REAL ADDRESS MODE 

POINTER TO 
INTERRUPT HANDLER 

FOR: 

INTERRUPT 255 

INTERRUPT 254 

INTERRUPT 253 

INTERRUPT 1 

INTERRUPT 0 

:2 

POINTER 

POINTER 

POINTER .. 
~ 

POINTER 

POINTER 

PHYSICAL 
ADDRESS 

1020 

1016 

1012 

4 

0 

10 • 

19 

I 
01 

. . . . . VECTOR 10 I 01 
10 9 2 1 0 

Figure 5-3. Interrupt Vector Table for Real Address Mode 

5.2.1.1 INTERRUPT PRIORITIES 

When simultaneous interrupt requests occur, 
they are processed in a fixed order as shown 
in table 5-1. J nterrupt processing involves 
saving the flags, the return address, and 
setting CS:IP to point at the first instruction 
of the interrupt handler. If other interrupts 
remain enabled, they are processed before the 
first instruction of the current interrupt 
handler is executed. T~~.~.Lill1~l!J!J2t 

p'rocess~g, ~~lli~jlE~!~~IY'i~ed. 

5.2.2 Interrupt Procedures 

When an interrupt occurs in Real Address 
Mode, the iAPX 86 performs the following 
sequence of steps. First, the FLAGS register, 
as well as the old values of CS and IP, are 
pushed onto the stack (see figure 5-4). The 
IF and TF flag bits are cleared. The vector 
number is then used to read the address of 
the interrupt service routine from the inter
rupt table. Execution begins at this address. 

5-4 

Table 5-1. Interrupt Processing Order 

Order Interrupt 

1. Instruction exception 
2. Single step 
3. NMI 
4. Processor extension segment overrun 
5. INTR 

, c 

OLD FLAGS 

OlDCS 

OLD IP ~ 

INCREASING 1 
ADDRESSES 

< SS:SP) 

h h 

Figure 5-4. Stack Structure After Interrupt 
(Real Address Mode) 



REAL ADDRESS MODE 

Thus, when control is passed to an interrupt 
service routine, the return linkage is placed 
on the stack, interrupts are disabled, and 
single-step trace (if in effect) is turned off. 
The IRET instruction at the end of the inter
rupt service routine will reverse these steps 
before transferring control to the program 
that was interrupted. 

An interrupt service routine may affect regis
ters other than other IP, CS, and FLAGS. It 
is the responsibility of an interrupt routine to 
save additional context information before 
proceeding so that the state of the machine 
can be restored upon completion of the inter
rupt service routine (PUSHA and POP A 
instructions are intended for these opera
tions). Finally, execution of the IRET 
instruction pops the old IP, CS, and FLAGS 
from the stack and resumes the execution of 
the interrupted program. 

5.2.3 Reserved and Dedicated Interrupt 
Vectors 

In general, the system designer is free to use 
almost any interrupt vectors for any given 
purpose. Some of the lowest-numbered 
vectors, however, are reserved by Intel for 
dedicated functions; their use is specifically 
implied by certain types of exceptions. None 
of the first 32 vectors should be defined by 
the user; these vectors are either invoked by 
pre-defined exceptions or reserved by Intel for 
future expansion. Table 5-2 shows the 
dedicated and reserved vectors of the iAPX 
286 in Real Address Mode. 

The purpose and function of the dedicated 
interrupt vectors may be summarized as 
follows (the saved value of CS:IP will include 
all leading prefixes): 

• Divide error (Interrupt 0). This exception 
will occur if the quotient is too large or 
an attempt is made to divide by zero using 

5-5 

either the DIY or IDlY instruction. The 
saved CS:IP points at the first byte of the 
failing instruction. DX and AX are 
unchanged. 

• Single-Step (Interrupt 1). This interrupt 
will occur after each instruction if the 
Trap Flag (TF) bit of the FLAGS regis
ter is set. Of course, TF is cleared upon 
entry to this df any other interrupt to 
prevent infinite recursion. The saved 
value of CS:IP will point to the next 
instruction. 

• Nonmaskable (Interrupt 2). This inter
rupt will occur upon receipt of an exter
nal signal on the NMI pin. Typically, the 
nonmaskable interrupt is used to imple
ment power-fail/ auto-restart procedures. 
The saved value of CS:IP will point to the 
first byte of the interrupted instruction. 

• Breakpoint (Interrupt 3). Execution of 
the one-byte breakpoint instruction causes 
this interrupt to occur. This instruction is 
useful for the implementation of software 
debuggers since it requires only one code 
byte and can be substituted for any 
instruction opcode byte. The saved value 
.of CS:IP will point to the next 
instruction. 

• INTO Detected Overflow (Interrupt 4). 
Execution of the INTO conditional 
software interrupt instruction will cause 
this interrupt to occur if the overflow bit 
(OF) of the FLAGS register is set. The 
saved value of CS:IP will point to the next 
instruction. 

• BOUND Range Exceeded (Interrupt 5). 
Execution of the BOUND instruction will 
cause this interrupt to occur if the speci
fied array index is found to be invalid 
with respect to the given array bounds. 
The saved value of CS:IP will point to the 
first byte of the BOUND instruction. 



REAL ADDRESS MODE 

Table 5·2. Dedicated and Reserved Interrupt Vectors in Real Address Mode 

Function Interrupt 
Number 

Divide error exception 0 

Single step interrupt 1 
, 

NMI interrupt 2 

Breakpoint interrupt 3 

I NTO detected overflow exception 4 

BOUND range exceeded exception 5 

Invalid opcode exception 6 

Processor extension not available 7 
exception 

Interrupt table limit too small 8 

Processor extension segment overrun 9 
interrupt 

Segment overrun exception 13 

Reserved 10-12,14,15 

Processor extension error interrupt 16 

Reserved 17-31 

User defined 32-255 

N/A = Not Applicable 

• Invalid Opcode (Interrupt 6). This 
exception will occur if execution of an 
invalid opcode is attempted. (In Real 
Address Mode, most of the Protected 
Virtual Address Mode instructions are 
classified as invalid and should not be 
used). This interrupt can also occur if the 
effective address given by certain 
instructions, notably BOUND, LDS, 
LES, and LIDT, specifies a register 

5-6 

Related Return Address 
Before Instruction Instructions Causing Exception? 

DIV,IDIV Yes 

All N/A 

All N/A 

INT N/A 

INTO No 

BOUND Yes 

Any undefined opcode Yes 

ESC or WAIT Yes 

LlDT Yes 

ESC Yes 

Any memory reference Yes 
instruction that attempts 
to reference 16-bit word 
at offset OFFFFH. 

ESC or WAIT N/A 

rather than a memory location. The saved 
value of CS:IP will point to the first byte 
of the invalid instruction or opcode. 

• Processor Extension Not Available 
(Interrupt 7). Execution of the ESC 
instruction will cause this interrupt to 
occur if the status bits of the MSW 
indicate that processor extension 
functions are to be emulated in software. 
Refer to section 10.2.2 for more details. 



REAL ADDRESS MODE 

The saved value of CS:IP will point to the 
first byte of the ESC or the W AITin
struction. 

• Interrupt Table Limit Too Small (Inter
rupt 8). This interrupt will occur if the 
limit of the interrupt vector table was 
changed from 3FFH by the LIDT 
instruction and an interrupt whose vector 
is outside the limit occurs. The saved 
value of CS:lP will point to the first byte 
of the instruction that caused the inter
rupt or that was ready to execute before 
an external interrupt occurred. No error 
code is pushed. 

• Processor Extension Segment Overrun 
Interrupt (Interrupt 9). The interrupt will 
occur if a processor extension memory 
operand does not fit in a segment. The 
saved CS:IP will point at the first byte of 
the instruction that caused the interrupt. 

• Segment Overrun Exception (Interrupt 
13). This interrupt will occur if a memory 
operand does not fit in a segment. In Real 
Mode the only time when this will occur 
is when a word operand begins at segment 
offset OFFFFH. The saved CS:IP will 
point at the first byte of the instruction 
that caused the interrupt. No error code 
is pushed. 

• Processor Extension Error (Interrupt 16). 
This interrupt occurs after the numeric 
instruction that caused the error. It can 
only occur while executing a subsequent 
WAIT or ESC. The saved value of CS:lP 
will point to the first byte of the ESC or 
the WAIT instruction. The address of the 
failed numeric instruction is saved in the 
NPX. 

5.3 SYSTEM INITIALIZATION 

The iAPX 286 provides an orderly way to 
start or restart an executing system. Upon 
receipt of the RESET signal, certain proces-

5·7 

Table 5·3. Processor State After RESET 

Register Contents 

FLAGS 0002 
MSW FFFO 
IP FFFO 
CS FOOD 
OS 0000 
SS 0000 
ES 0000 

sor registers go into the determinate state 
shown in table 5-3. 

Since the CS register contains FOOO (thus 
specifying a code segment starting at physi
cal address FOOOO) and the instruction pointer 
contains FFFO, the processor will execute its 
first instruction at physical address FFFFOH. 
The uppermost 16 bytes of physical memory 
are therefore reserved for initial startup logic. 
Ordinarily, this location contains an interseg
ment direct JMP instruction whose target is 
the actual beginning of a system initialization 
or restart program. 

Some of the steps normally performed by a 
system initialization routine are as follows: 

• Allocate a stack. 

• Load programs and data from secondary 
storage into memory. 

• Initialize external devices. 

• Enable interrupts (i.e., set the IF bit of 
the FLAGS register). Set any other 
desired FLAGS bit as well. 

• Set the appropriate MSW flags if a 
processor extension is present, or if 
processor extension functions are to be 
emulated by software. 

• Set other registers, as appropriate, to the 
desired initial values. 

• Execute. (Ordinarily, this last step is 
performed as an intersegment JMP to the 
main system program.) 





Memory Management And 6 
Virtual Addressing 





CHAPTER 6 
MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

In Protected Virtual Address Mode, the iAPX 
286 provides an advanced architecture that 
retains substantial compatibility with the 8086 
and other processors in the iAPX 86 family. 
In many respects, the baseline architecture of 
the processor remains constant regardless of 
the mode of operation. Application program
mers continue to use the same set of instruc
tions, addressing modes, and data types in 
Protected Mode as in Real Address Mode. 

The major difference between the two modes 
of operation is that the Protected Mode 
provides system programmers with additional 
architectural features, supplementary to the 
baseline architecture, that can be used to good 
advantage in the design and implementation 
of advanced systems. Especially noteworthy 
are the mechanisms provided for memory 
management, protection, and multitasking. 

This chapter focuses on the memory manage
ment mechanisms of Protected Mode; the 
concept of a virtual address and the process 
of virtual-to-physical address translation are 
described in detail in this chapter. Subse
quent chapters deal with other key aspects of 
Protected Mode operation. Chapter 7 
discusses the issue of protection and the 
integrated mechanisms that support a system
wide protection policy. Chapter 8 discusses the 
notion of a task and its central role in the 
iAPX 286 architecture. Chapters 9 through 
11 discuss certain additional topics-inter
rupt handling, special instructions, system 
initialization, etc.-that complete the system 
programmer's view of iAPX 286 Protected 
Mode. 

6.1 MEMORY MANAGEMENT OVERVIEW 

A memory management scheme interposes a 
mapping operation between logical addresses 

6-1 

(i.e., addresses as they are viewed by 
programs) and physical addresses (i.e., actual 
addresses in real memory). Since the logical 
address spaces are independent of physical 
memory (dynamically relocatable), the 
mapping (the assignment of real address space 
to virtual address space) is transparent to 
software. This allows the program develop
ment tools (for static systems) or the system 
software (for reprogrammable systems) to 
control the allocation of space in real memory 
without regard to the specifics of individual 
programs. 

Application programs may be translated and 
loaded independently since they deal strictly 
with virtual addresses. Any program can be 
relocated to use any available segments of 
physical memory. 

The iAPX 286, when operated in Protected 
Mode, provides an efficient on-chip memory 
management architecture. Moreover, as 
described in Chapter 11, the iAPX 286 also 
supports the implementation of virtual 
memory systems-that is, systems that 
dynamically swap chunks of code and data 
between real memory and secondary storage 
devices (e.g., a disk) independent of and 
transparent to the executing application 
programs. Thus, a program-visible address is 
more aptly termed a virtual address rather 
than a logical address since it may actually 
refer to a location not currently present in real 
memory. 

Memory management, then, consists of a 
mechanism for mapping the virtual addresses 
that are visible to the program onto the 
physical addresses of real memory. With the 
iAPX 286, segmentation is the key to virtual 
memory addressing. Virtual memory is parti-



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

tioned into a number of individual segments, 
which are the units of memory that are 
mapped into physical memory and swapped 
to and from secondary storage devices. Most 
of this chapter is devoted to a detailed discus
sion of the mapping and virtual memory 
mechanisms of the iAPX 286. 

The concept of a task also plays a significant 
role in memory management since distinct 
memory mappings may be assigned to the 
different tasks in a multitask or multi-user 
environment. A complete discussion of tasks 
is deferred until Chapter 8, "Tasks and State 
Transition." For present purposes, it is suffi
cient to think of a task as an ongoing process, 
or execution path, that is dedicated to a 
particular function. In a multi-user time
sharing environment, for example, the 
processing required to interact with a partic
ular user may be considered as a single task, 
functionally independent of the other tasks 
(i.e., users) in the system. 

6.2 VIRTUAL ADDRESSES 

In Protected Mode, application programs deal 
exclusively with virtual addresses; programs 
have no access whatsoever to the actual 
physical addresses generated by the proces
sor. As discussed in Chapter 2, an address is 
specified by a program in terms of two 
components: (1) a 16-bit effective address 
offset that determines the displacement, in 
bytes, of a location within a segment; and (2) 
a 16-bit segment selector that uniquely refer
ences a particular segment. Jointly, these two 
components constitute a complete 32-bit 
address (pointer data type), as shown in 
figure 6-1. 

These 32-bit virtual addresses are manipu
lated by programs in exactly the same way as 
the two-component addresses of Real Address 
Mode. After a program loads the segment 
selector component of an address into a 

6-2 

segment register, each subsequent reference 
to locations within the selected segment 
requires only a 16-bit offset be specified. 
Locality of reference will ordinarily insure 
that addresses can be specified very efficiently 
using only 16-bit offsets. 

An important difference between Real 
Address Mode and Protected Mode, however, 
concerns the actual format and information 
content of segment selectors. In Real Address 
Mode, as with the 8086 and other processors 
in the iAPX 86 family, a 16-bit selector is 
merely the upper bits of a segment's physical 
base address. By contrast, segment selectors 
in Protected Mode follow an entirely differ
ent format, as illustrated by figure 6-1. 

Two of the selector bits, designated as the 
RPL field in figure 6-1, are not actually 
involved in the selection and specification of 
segments; their use is discussed in Chapter 7. 

32·BIT POINTER 

31 1615 o 

SEGMENT SELECTOR SEGMENT OFFSET 

INDEX 

SELECTOR 

Figure 6-1. Format of the Segment Selector 
Component 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

The remaining 14 bits of the selector compo
nent uniquely designate a particular segment. 
The virtual address space of a program, 
therefore, may encompass as many as 16,384 
(214) distinct segments. Segments themselves 
are of variable size, ranging from as small as 
a single byte to as large as 64K (216) bytes. 
Thus, a program's virtual address space may 
contain, altogether, up to a full gigabyte 
(230 = 214 X 216) of individually addressable 
byte locations. 

The entirety of a program's virtual address 
space is further subdivided into two separate 
halves, as distinguished by the TI ("table 
indicator") bit in the virtual address. These 
two halves are the global address space and 
the local address space. 

The global address space is used for system
wide data and procedures including operating 
system software, library routines, runtime 
language support and other commonly shared 

TASK 3 VIRTUAL ADDRESS SPACE~ 

system services. (To application programs, the 
operating system appears to be a set of service 
routines that are accessible to all tasks.) 
Global space is shared by all tasks to avoid 
unnecessary replication of system service 
routines and to facilitate shared data and 
interrupt handling. Global address space is 
defined by addresses with a zero in the TI bit 
position; it is identically mapped for all tasks 
in the system. 

The other half of the virtual address space
comprising those addresses with the TI bit 
set-is separately mapped for each task in the 
system. Because such an address space is local 
to the task for which it is defined, it is referred 
to as a local address space. In general, code 
and data segments within a task's local 
address space are private to that particular 
task or user. Figure 6-2 illustrates the task 
isolation made possible by partitioning the 
virtual address spaces into local and global 
regions. 

TASK 2 VIRTUAL ADDRESS SPACE 

Figure 6-2. Address Spaces and Task Isolation 

6-3 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

Within each of the two regions addressable 
by a program-either the global address space 
or a particular local address space-as many 
as 8,192 (2 13 ) distinct segments may be 
defined. The INDEX field of the segment 
selector allows for a unique specification of 
each of these segments. This 13-bit quantity 
acts as an index into a memory-resident table, 
called a descriptor table, that records the 
mapping between segment address and the 
physical locations allocated to each distinct 
segment. (These descriptor tables, and their 
role in virtual-to-physical address translation, 
are described in the sections that follow.) 

In summary, a Protected Mode virtual 
address is a 32-bit pointer to a particular byte 
location within a one-gigabyte virtual address 
space. Each such pointer consists of a 16-bit 
selector component and a 16-bit offset 
component. The selector component, in turn, 
comprises a 13-bit table index, a I-bit table 
indicator (local versus global), and a 2-bit 
RPL field; all but this last field serve to select 
a particular segment from among the 16K 
segments in a task's virtual address space. The 
offset component of a full pointer is an 
unsigned 16-bit integer that specifies the 
desired byte location within the selected 
segment. 

6.3 DESCRIPTOR TABLES 

A descriptor table is a memory-resident table 
either defined by program development tools 
in a static system or controlled by operating 
system software in systems that are repro
grammable. The descriptor table contents 
govern the interpretation of virtual addresses. 
Whenever the iAPX 286 decodes a virtual 
address, translating a full 32-bit pointer into 
a corresponding 24-bit physical address, it 
implicitly references one of these tables. 

Within a Protected Mode system, there are 
ordinarily several descriptor tables resident in 

6-4 

memory. One of these is the global descriptor 
table (GDT); this table provides a complete 
description of the global address space. In 
addition, there may be one or more local 
descriptor tables (LDTs), each describing the 
local address space of one or more tasks. 

For each task in the system, a pair of descrip
tor tables-consisting of the GDT (shared by 
all tasks) and a particular LDT (private to 
the task or to a group of closely related 
tasks)-provides a complete description of 
that task's virtual address space. The protec
tion mechanism described in Chapter 7, 
"Protection," ensures that a task is granted 
access only to its own virtual address space. 
In the simplest of system configurations, tasks 
can reside entirely within the GDT without 
the use of local descriptor tables. This will 
simplify system software by only requiring 
maintenance of one table (the GDT) at the 
expense of no isolation between tasks. The 
point is: theiAPX 286 memory management 
scheme is flexible enough to accommodate a 
variety of implementations and does not 
require use of all possible facilities when 
implementing a system. 

The descriptor tables consist of a sequence of 
8-byte entries called descriptors. A descriptor 
table may contain from 1 to 8192 entries. 

Within a descriptor table, two main classes of 
descriptors are recognized by the iAPX 286 
architecture. The most important of these, 
from the standpoint of memory management, 
are called segment descriptors; these deter
mine the set of segments that are included 
within a given address space. The other class 
are special-purpose control descriptors-such 
as call gates and task descriptors-to imple
ment protection (described in succeeding 
chapters) and special system data segments. 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

Figure 6-3 shows the format of a segment 
descriptor. Note that it provides information 
about the physical-memory base address and 
size of a segment, as well as certain access 
information. If a particular segment is to be 
included within a virtual address space, then 
a segment descriptor that describes that 
segment must be included within the appro
priate descriptor table. Thus, within the GDT, 
there are segment descriptors for all of the 
segments that comprise a system's global 
address space. Similarly, within a task's LDT, 
there must be a descriptor for each of the 
segments that are to be included in that task's 
local address space. 

Each local descriptor table is itself a special 
system segment, recognizable as such by the 
iAPX 286 architecture and described by a 
specific type of segment descriptor (see figure 
6-4). Because there is only a single GDT 
segment, it is not defined by a segment 
descriptor. Its base and size information is 
maintained in a dedicated register, GDTR, as 
described below (section 6.6.2). 

Similarly, there is another dedicated register 
within the iAPX 286, LDTR, that records the 
base and size of the current LDT segment 
(i.e., the LDT associated with the currently 
executing task). The LDTR register state, 
however, is volatile: its contents are automat
ically altered whenever a task switch is made 
from one task to another. An alternate speci
fication independent of changeable register 
contents must therefore exist for each LDT 
in the system. This independent specification 
is accomplished by means of special system 
segment descriptors known as descriptor table 
descriptors or LDT descriptors. 

Figure 6-4 shows the format of a descriptor 
table descriptor. (Note that it is distinguished 
from an ordinary segment descriptor by the 
contents of certain bits in the access byte.) 

6-5 

This special type of descriptor is used to 
specify the physical base address and size of 
a local descriptor table that defines the virtual 
address space and address mapping for an 
individual user or task (figure 6-5). 

+7 

,5 

~3 

o 7 

INTEL RESERVED" 
MUST BE 0 

pIOPLI~1 TYPE H BASE23_16 

., BASE 15_0 

LlMIT 15_0 

15 8 7 

ACCESS RIGHTS BYTES: 

P = PRESENT 
DPL DESCRIPTOR PRIVILEGE LEVEL 
S - SEGMENT DESCRIPTOR 
TYPE SEGMENT TYPE AND ACCESS INFORMATION 

(see Figure 6-7) 
A = ACCESSED 

. MUST BE SET TO 0 FOR 
COMPA TlBILlTY WITH iAPX 386 

+6 

+2 

Figure 6-3. Segment Descriptor (S= 1) 

+5 

+3 

+1 

o 7 

INTEL RESERVED" 
MUSTBEO 

pIOPLI~1 TYPE I BASE23_16 

BASE,S_0 

LlMIT15_0 

15 8 7 

ACCESS RIGHTS BYTES: 

P = PRESENT 
DPL = DESCRIPTOR PRIVILEGE LEVEL 
S SEGMENT DESCRIPTOR 
TYPE ~ TYPE OF SPECIAL DESCRIPTOR 

(Includes control and system segments) 

o = INVALID DESCRIPTOR 
1 = AVAILABLE TASK STATE SEGMENT 
2 ~ LDT DESCRIPTOR 
3 ~- BUSY TASK STATE SEGMENT 
4-7 = CONTROL DESCRIPTOR (see Chapter 7) 
8 = INVALID DESCRIPTOR (reserved by Intel) 
9-F = RESERVED BY INTEL 

• MUST BE SET TO 0 FOR 
COMPATIBILITY WITH iAPX 386 

+6 

+4 

+2 

Figure 6-4. Special Purpose Descriptors or 
System Segment Descriptors 
(S=O) 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

I' 

j I 
'I' 

RESERVED·ZERO 

ONE 
SEGMENT 

OF THE 
TASKS 
LOCAL 

, 

SEGMENT 
LIMIT 

1-
(private) J BASE 23·1, ADDRESS 

RESERVED·ZERO 
SPACE 

1-I BASE23. , • 

BASE 1S_0 

LIMIT1S_0 

LDT 
DESCRIPTOR 

IN THE 
GDT 

IN MEMORY 

,,> 

8 

'> 

BASE 15.0 

LIMIT 15·0 

DESCRIPTOR 
TABLES 
IN RAM 

h 

SEGMENT 
IN 

RAM 

," 

SEGMENT 
BASE 

Figure 6-5. LOT Descriptor 

Each LDT segment in a system must lie 
within that system's global address space. 
Thus, all of the descriptor table descriptors 
must be included among the entries in the 
global descriptor table (the GDT) of a system. 
In fact, these special descriptors may appear 
only in the GDT. Reference to an LDT 
descriptor within an LDT will cause a protec
tion violation. Even though they are in the 
global address space available to all tasks, the 
descriptor table descriptors are protected from 
corruption within the GDT since they are 
special system segments and can only be 
accessed for loading into the LDTR register. 

6-6 

6.4 VIRTUAL-TO-PHYSICAL ADDRESS 
TRANSLATION 

The translation of a full 32-bit virtual address 
pointer into a real 24-bit physical address is 
shown by figure 6-6. When the segment's base 
address is determined as a result of the 
mapping process, the offset value is added to 
the result to obtain the physical address. 

The actual mapping is performed on the 
selector component of the virtual address. The 
16-bit segment selector is mapped to a 24-bit 
segment base address via a segment descrip
tor maintained in one of the descriptor tables. 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

VIRTUAL ADDRESS 

I I I 
TARGET 

SELECTOR OFFSET SEGMENT 

f' G- PHYSICAL 
DATUM 

DESCRIPTOR ADDRESS 

I TABLE I 
SEGMENT 

SEGMENT 
BASE 

DESCRIPTOR 

--
INDEX 

Figure 6-6. Virtual-to-Physical Address Translation 

The TI bit in the segment selector (see figure 
6-1) determines which of two descriptor 
tables, either the GDT or the current LDT, 
is to be chosen for memory mapping. In either 
case, using the GDTR or LDTR register, the 
processor can readily determine the physical 
base address of the memory-resident table. 

The INDEX field in the segment selector 
specifies a particular descriptor entry within 
the chosen table. The processor simply multi
plies this index value by 8 (the length of a 
descriptor), and adds the result to the base 
address of the descriptor table in order to 
access the appropriate segment descriptor in 
the table. 

Finally, the segment descriptor contains the 
physical base address of the target segment, 
as well as size (limit) and access information. 
The processor sums the 24-bit segment base 
and the specified 16-bit offset to generate the 
resulting 24-bit physical address. 

6-7 

6.5 SEGMENTS AND SEGMENT 
DESCRIPTORS 

Segments are the basic units of iAPX 286 
memory management. In contrast to schemes 
based on fixed-size pages, segmentation allows 
for a very efficient implementation of 
software: variable-length segments can be 
tailored to the exact requirements of an 
application. Segmentation, moreover, is 
consistent with the way a programmer 
naturally deals with his virtual address space: 
programmers are encouraged to divide code 
and data into clearly defined modules and 
structures which are manipulated as con
sistent entities. This reduces (minimizes) the 
potential for virtual memory thrashing. 
Segmentation also eliminates the restrictions 
on data structures that span a page (e.g., a 
word that crosses page boundaries). 

Each segment within an iAPX 286 system is 
defined by an associated segment descriptor, 
which may appear in one or more descriptor 
tables. Its inclusion within a descriptor table 
represents the presence of its associated 
segment within the virtual address space 
defined by that table. Conversely, its ommis
sion from a descriptor table means that the 
segment is absent from the corresponding 
address space. 

As shown previously in figure 6-3, an 8-byte 
segment descriptor encodes the following 
information about a particular segment: 

• Size. This 16-bit field, comprising bytes 
o and 1 of a segment descriptor, specifies 
an unsigned integer as the size, in bytes 
(from 1 byte to 64K bytes), of the 
segment. 

Unlike segments in the 8086 (or the 
iAPX 286 in Real Address Mode)
which are never explicitly limited to less 
than a full 64K bytes-Protected Mode 
segments are always assigned a specific 
size value. In conjunction with the 
protection features described in Chapter 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

7, this assigned size allows the enforce
ment of a very desirable and natural rule: 
inadvertent accesses to locations beyond 
a segment's actual boundaries are 
prohibited. 

• Base. This 24-bit field, comprising bytes 
2 through 4 of a segment descriptor, 
specifies the physical base address of the 
segment; it thus defines the actual 
location of the segment within the 16-
megabyte real memory space. The base 
may be any byte address within the 16-
megabyte real memory space. 

• Access. This 8-bit field comprises byte 5 
of a segment descriptor. This access byte 
specifies a variety of additional informa
tion about a segment, particularly in 
regard to the protection features of the 
iAPX 286. For example, code segments 
are distinguished from data segments; and 
certain special access restrictions (such as 
Execute-Only or Read-Only) may be 
defined for segments of each type. Access 
byte values of OOH or 80H will always 
denote "invalid." 

Figure 6-7 shows the access byte format for 
both code and data segment descriptors. 
Detailed discussion of the protection related 
fields within an access byte (Conforming, 
Execute-Only, Descriptor Privilege Level, 
Expand Down, and Write-Permitted), and 
their use in implementing protection policies, 
is deferred to Chapter 7. The two fields 
Accessed and Present are used for virtual 
memory implementations. 

6.6 MEMORY MANAGEMENT REGISTERS 

The Protected Virtual Address Mode features 
of the iAPX 286 operate at high performance 
due to extensions to the basic iAPX 86 regis
ter set. Figure 6-8 illustrates that portion of 
the extended register structure that pertains 
to memory management. (For a complete 
summary of all Protected Mode registers, 
refer to section 10.1). 

6-8 

'--------- PRESENT (1 =yes) 

DATA OR 

STACK SEGMENT TYPE 
MSB ~_LSB 

WRITEABLE (1 -~ yes) 

'---- EXPAND DOWN (1 ~- down) 

'----- EXECUTABLE (O~no for data) 

'------ (indicates segment descriptor) 

'------- DESCRIPTOR PRIVILEGE LEVEL 

'--_______ PRESENT{1=yes) 

Figure 6-7. Segment Descriptor Access Bytes 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

SEGMENT ADDRESS TRANSLATION REGISTERS 

16-BIT 48-BIT HIDDEN DESCRIPTOR CACHE 

::::1 SELECTOR I (PRO I GRAM INVISIBLE-LOADED BIY CPU) I:::: ::::::: :::::::: 

_ "" " - ~m'~ ... ~'''.m 
_ STACK SEGMENT REGISTER 

63 48 47 40 39 16 15 0 
ACCESS SEGMENT BASE SEGMENT 
RIGHTS ADDRESS SIZE 

SYSTEM ADDRESS REGISTERS 

40'BIT EXPLICIT REGISTER 

GDTR I I GLOBAL DESCRIPTOR TABLE REGISTER 

IDTR 1-_ ---------i--------t INTERRUPT DESCRIPTOR TABLE REGISTER 

39 16 15 o 
BASE LIMIT 

16-BIT VISIBLE 
SELECTOR 40-BIT HIDDEN DESCRIPTOR CACHE 

LDTR I I LOCAL DESCRIPTOR TABLE REGISTER 

~55---------40~3-9-----------------16~15--------~O 
BASE LIMIT 

Figure 6-8. Memory Management Registers 

6.6.1 Segment Address Translation 
Registers 

Figure 6-8 shows the segment registers 
CS,DS,ES, and SS. In contrast to their usual 
representation, however, these registers are 
now depicted as 64-bit registers, each with 
"visible" and "hidden" components. 

The visible portions of these segment address 
translation registers are manipulated by 
programs exactly as if they were simply the 
16-bit segment registers of Real Address 
Mode. By loading a segment selector into one 
of these registers, the program makes the 
associated segment one of its four currently 
addressable segments. 

6-9 

The operations that load these registers-or, 
more exactly, those that load the visible 
portion of these registers-are normal 
program instructions. These instructions may 
be divided into two categories: 

1. Direct segment-register load instruc
tions. These instructions (such as LDS, 
LES, MaY, pop, etc.) can explicitly 
reference the SS, DS, or ES segment 
registers as the destination operand. 

2. Implied segment-register load instruc
tions. These instructions (such as inter
segment CALL and JMP) implicitly 
reference the CS code segment register; 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

as a result of these operations, the 
contents of CS are altered. 

Using these instructions, a program loads the 
visible part of the segment register with a 
16-bit selector (i.e., the high-order word of a 
virtual address pointer). Whenever this is 
done, the processor automatically uses the 
selector to reference the appropriate descrip
tor and loads the 48-bit hidden descriptor 
cache for that segment register. 

The correspondence between selectors and 
descriptors has already been described. 
Remember that the selector's TI bit indicates 
one of the two descriptor tables, either the 
LDT or the GDT. Within the indicated table, 
a particular entry is chosen by the selector's 

13-bit INDEX field. This index, scaled by a 
factor of 8, represents the relative displace
ment of the chosen table entry (a descriptor). 

Thus, so long as a particular selector value is 
valid (i.e., it points to a valid segment 
descriptor within the bounds of the descriptor 
table), it can be readily associated with an 
8-byte descriptor. When a selector value is 
loaded into the visible part of a segment 
register, the iAPX 286 automatically loads 6 
bytes of the associated descriptor into the 
hidden part of the register. These 6 bytes, 
therefore, contain the size, base, and access 
type of the selected segment. Figure 6-9 illus
trates this transparent process of 
descriptor loading. 

Icj;lJ-- --- --- ----, 

I 
I 
I 

DESCRIPTOR 
CACHE 

APPLICATION 
VISIBLE 
~ 

SEGMENT 
REGISTER 

~ 

~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L __ _ 

r----

SEGMENT 
DESCRIPTOR 

TYPE 

BASE 

LIMIT 

TRANSPARENT 
DESCRIPTOR 
LOADING 

-=---=-- _-I ~EX 

I 

I 
I 
I 

I 
I 
I 

-------~ 

-

Figure 6-9. Descriptor Loading 

6-10 

SYSTEM 
MEMORY 

DESCRIPTOR 
TABLE 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

In effect, the hidden descriptor fields of the 
segment registers function as the memory 
management cache of the iAPX 286. All the 
information required to address the current 
working set of segments-that is, the base 
address, size, and access rights of the 
currently addressable segments-is stored in 
this memory cache. Unlike the probabilistic 
caches of other architectures, however, the 
iAPX 286 cache is completely deterministic: 
the caching of descriptors is explicitly 
controlled by the program. 

Most memory references do not require the 
translation of a full 32-bit virtual address, or 
long pointer. Operands that are located within 
one of the currently addressable segments, as 
determined by the four segment registers, can 
be referenced very efficiently by means of a 
short pointer, which is simply a l6-bit offset. 

In fact, most iAPX 286 instructions reference 
memory locations in precisely this way, speci
fying only a 16-bit offset with respect to one 
of the currently addressable segments. The 
choice of segments (CS, DS, ES, or SS) is 
either implicit within the instruction itself, or 
explicitly specified by means of a segment
override prefix (as described in Chapter 2). 

Thus, in most cases, virtual-to-physical 
address translation is actually performed in 
two separate steps. First, when a program 
loads a new value into a segment register, the 
processor immediately performs a mapping 
operation; the physical base address of the 
selected segment (as well as certain additional 
information) is automatically loaded into the 
hidden portion of the register. The internal 
cache registers (virtual address translation 
hardware) are therefore dynamically shared 
among the 16K different segments poten
tially addressable within the user's virtual 
address space. No software overhead (either 
system or application) is required to perform 
this operation. 

6-11 

Subsequently, as the program utilizes a short 
pointer to reference a location within a 
segment, the processor generates a 24-bit 
physical address simply by adding the speci
fied offset value to the previously cached 
segment base address. By encouraging the use 
of short pointers in this way, rather than 
requiring a full 32-bit virtual address for every 
memory reference, the iAPX 286 provides a 
very efficient on-chip mechanism for address 
translation, with minimum overhead for 
references to memory-based tables or the need 
for external address-translation devices. 

6.6.2 System Address Registers 

The Global Descriptor Table Register 
(GDTR) is a dedicated 40-bit (5 byte) regis
ter used to record the base and size of a 
system's global descriptor table (GDT). Thus, 
two of these bytes define the size of the GDT, 
and three bytes define its base address. 

In figure 6-8, the contents of the GDTR are 
referred to as a "hidden descriptor." The term 
"descriptor" here emphasizes the analogy with 
the segment descriptors ordinarily found in 
descriptor tables. Just as these descriptors 
specify the base and size (limit) of ordinary 
segments, the GDTR register specifies these 
same parameters for that segment of memory 
serving as the system GDT. The limit prevents 
accesses to descriptors in the GDT from 
accessing beyond the end of the GDT and thus 
provides address space isolation at the system 
level as well as at the task level. 

The register contents are "hidden" only in the 
sense that they are not accessible by means 
of ordinary instructions. . Instead, the 
dedicated protected instructions LGDT and 
SGDT are reserved for loading and storing, 
respectively, the contents of the GDTR at 
Protected Mode initialization (refer to section 
10.2 for details). Subsequent alteration of the 
GDT base and size values is not recom
mended but is a system option at the most 



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING 

privileged level of software (see section 7.3 for 
a discussion of privilege levels). 

The Local Descriptor Table Register (LDTR) 
is a dedicated 40-bit register that contains, at 
any given moment, the base and size of the 
local descriptor table (LDT) associated with 
the currently executing task. Unlike GDTR, 
the LDTR register contains both a "visible" 
and a "hidden" component. Only the visible 
component is accessible, while the hidden 
component remains truly inaccessible even to 
dedicated instructions. 

The visible component of the LDTR is a 
16-bit "selector" field. The format of these 
16 bits corresponds exactly to that of a 
segment selector in a virtual address pointer. 
Thus, it contains a 13-bit INDEX field, a 1-
bit TI field, and a 2-bit RPL field. The TI 
"table indicator" bit must be zero, indicating 
a reference to the GDT (i.e., to global address 
space). The INDEX field consequently 
provides an index to a particular entry within 
the GDT. This entry, in turn, must be an LDT 
descriptor (or descriptor table descriptor), as 
defined in the previous section. In this way, 
the visible "selector" field of the LDTR, by 
selecting an LDT descriptor, uniquelydesig
nates a particular LDT in the system. 

The dedicated, protected instructions LLDT 
and SLDT are reserved for loading and 
storing, respectively, the visible selector 
component of the LDTR register (refer to 
section 10.2 for details). Whenever a new 
value is loaded into the visible "selector" 
portion of LDTR, an LDT descriptor will 

6-12 

have been uniquely chosen (assuming, of 
course, that the "selector" value is valid). In 
this case, the iAPX 286 automatically loads 
the hidden "descriptor" portion of LDTR with 
five bytes from the chosen LDT descriptor. 
Thus, size and base information about a 
particular LDT, as recorded in a memory
resident global descriptor table entry, is 
cached in the LDTR register. 

New values may be loaded into the visible 
portion of the LDTR (and, thus, into the 
hidden portion as well) in either of two ways. 
The LLDT instruction, during system initial
ization, is used explicitly to set an initial value 
for the LDTR register; in this way, a local 
address space is provided for theJirst task in 
a multitasking environment. After system 
startup, explicit changes are not required since 
operations that automatically invoke a task 
switch (described in section 8.4) appropri
ately manage the LDTR. 

At all times, the LDTR register thus records 
the physical base address (and size) of the 
current task's LDT; the descriptor table 
required for mapping the current local address 
space, therefore, is immediately accessible to 
the processor. Moreover, since GDTR always 
maintains the base address of the GDT, the 
table that maps the global address space is 
similarly accessible. The two system address 
registers, GDTR and LDTR, act as a special 
processor cache, maintaining currentinfor
mation about the two descriptor tables 
required, at any given time, for addressing the 
entire current virtual address space. 



Protection 7 





CHAPTER 7 
PROTECTION 

7.1 INTRODUCTION 

In most microprocessor based products, the 
product's availability, quality, and reliability 
are determined by the software it contains. 
Software is often the key to a product's 
success. Protection is a tool used to shorten 
software development time, and improve 
software quality and reliability. 

Program testing is an important step in 
developing software. A system with protec
tion will detect software errors more quickly 
and accurately than a system without protec
tion. Eliminating errors via protection reduces 
the development time for a product. 

Testing software is difficult. Many errors 
occur only under complex circumstances 
which are difficult to anticipate. The result is 
that products are shipped with undetected 
errors. When such errors occur, products 
appear unreliable. The impact of a software 
error is multiplied if it introduces errors in 
other bug-free programs. Thus, the total 
system reliability reduces to that of the least 
reliable program running at any given time. 

Protection improves the reliability of an entire 
system by preventing software errors in one 
program from affecting other programs. 
Protection can keep the system running even 
when some user program attempts an invalid 
or prohibited operation. 

Hardware protection performs run-time 
checks in parallel with the execution of the 
program. But, hardware protection has tradi
tionally resulted in a design that is more 
expensive and slower than a system without 
protection. However, the iAPX 286 provides 
hardware-enforced protection without the 
performance or cost penalties normally 
associated with protection. 

7-1 

The protected mode iAPX 286 implements 
extensive protection by integrating these 
functions on-chip. The iAPX 286 protection 
is more comprehensive and flexible than 
comparable solutions. It can locate and isolate 
a large number of program errors and prevent 
the propagation of such errors to other tasks 
or programs. The protection of the total 
system detects and isolates bugs both during 
development and installed usage. Chapter 9 
discusses exceptions in more detail. 

The remaining sections of this chapter explain 
the protection model implemented in the 
iAPX 286. 

7.1.1 Types of Protection 

Protection in the iAPX 286 has three basic 
aspects: 

1. Isolation of system software from user 
applications. 

2. Isolation of users from each other (Inter
task protection). 

3. Data-type checking. 

The iAPX 286 provides a four-level, ringed
type, increasingly-privileged protection 
mechanism to isolate applications software 
from various layers of system software. This 
is a major improvement and extension over 
the simpler two-level user/supervisor mecha
nism found in many systems. Software 
modules in a supervisor level are protected 
from modules in the application level and 
from software in less privileged supervisor 
levels. 

Restricting the addressability of a software 
module enables an operating system to control 
system resources and priorities. This is 



PROTECTION 

supports multiple concurrent users. Multi
user, multi-tasking, and distributed process
ing systems require this complete control of 
system resources for efficient, reliable 
operation. 

The second aspect of protection is isolating 
users from each other. Without such isolation 
an error in one user program could affect the 
operation of another error-free user program. 
Such subtle interactions are difficult to 
diagnose and repair. The reliability of appli
cations programs is greatly enhanced by such 
isolation of users. 

Within a system or application level program, 
the iAPX 286 will ensure that all code and 
data segments are properly used (e.g., data 
cannot be executed, programs cannot be 
modified, and offset must be within defined 
limits, etc.). Such checks are performed on 
every memory access to provide full run-time 
error checking. 

7.1.2 Protection Implementation 

The protection hardware of the iAPX 286 
establishes constraints on memory and 
instruction usage. The number of possible 
interactions between instructions, memory, 
and I/O devices is practically unlimited. Out 
of this very large field the protection mecha
nism limits interactions to a controlled, 
understandable subset. Within this subset fall 
the list of "correct" operations. Any opera
tion that does not fall into this subset is not 
allowed by the protection mechanism and is 
signalled as a protection violation. 

To understand protection on the iAPX 286, 
you must begin with its basic parts: segments 
and tasks. iAPX 286 segments are the small
est region of memory which have unique 
protection attributes. Modular programming 
automatically produces separate regions of 

7-2 

memory (segments) whose contents are 
treated as a whole. Segments reflect the 
natural construction of a program, e.g., code 
for module A, data for module A, stack for 
the task, etc. All parts of the segment are 
treated in the same way by the iAPX 286. 
Logically separate regions of memory should 
be in separate segments. 

The memory segmentation model (see figure 
7-1) of the iAPX 286 was designed to 
optimally execute code for software composed 
of independent modules. Modular programs 
are easier to construct and maintain. 
Compared to monolithic software systems, 
modular software systems have enhanced 
capabilities, and are typically easier to develop 
and test for proper operation. 

Each segment in the system is defined by a 
memory-resident descriptor. The protection 
hardware prevents accesses outside the data 
areas and attempts to modify instructions, 
etc., as defined by the descriptors. Segmen
tation on the iAPX 286 allows protection 
hardware to be integrated into the CPU for 
full data access control without any perform
ance impact. 

The segmented memory architecture of the 
iAPX 286 provides unique capabilities for 
regulating the transfer of control between 
programs. 

Programs are given direct but controlled 
access to other procedures and modules. This 
capability is the heart of isolating application 
and system programs. Since this access is 
provided and controlled directly by the iAPX 
286 hardware, there is no performance 
penalty. A system designer can take advan
tage of the iAPX 286 access control to design 
high-performance modular systems with a 
high degree of confidence in the integrity of 
the system. 



PROTECTION 

r-- -, 
I I 

MODULE A B 
~ 

MODULE B 

TASK 
STACK 

TASK 
DATA 

BLOCK 1 

CODE 

DATA 

I I 

I I 

0 
I 

TASK 0 DATA 
BLOCK 2 

I I 
L.. __ ...I 

MEMORY 

CPU 

L_ 
I 

CODE 

DATA 

STACK 

I 
r-- - EXTRA 

SEGMENT 
REGISTERS 

Figure 7-1. Addressing Segments of a Module Within a Task 

Access control between programs and the 
operating system is implemented via address 
space separation and a privilege mechanism. 
The address space control separates applica
tions programs from each other while the 
privilege mechanism isolates system software 
from applications software. The privilege 
mechanism grants different capabilities to 
programs to access code, data, and I/O 
resources based on the associated protection 
level. Trusted software that controls the whole 
system is typically placed at the most privi
leged level. Ordinary application software 
does not have to deal with these control 

7-3 

mechanisms. They come into play only when 
there is a transfer of control between tasks, 
or if the Operating System routines have to 
be invoked. 

The protection features of multiple privilege 
levels extend to ensuring reliable I/O control. 
However, for a system designer to enable only 
one specific level to do I/O would excessively 
constrain subsequent extensions or applica
tion development. Instead, the iAPX 286 
permits each task to be assigned a separate 
minimum level where I/O is allowed. I/O 
privilege is discussed in section 10.3. 



PROTECTION 

An important distinction exists between tasks 
and programs. Programs (e.g., instructions in 
code segments) are static and consist of a 
fixed set of code and data segments each with 
an associated privilege level. The privilege 
assigned to a program determines what the 
program may do when executed by a task. 
Privilege is assigned to a program when the 
system is built or when the program is loaded. 

Tasks are dynamic; they execute one or more 
programs. Task privilege changes with time 
according to the privilege level of the program 
being executed. Each task has a unique set of 
attributes that define it, e.g., address space, 
register values, stack, data, etc. A task may 
execute a program if that program appears in 
the task's address space. The rules of protec
tion control determine when a program may 
be executed by a task, and once executed, 
determine what the program may do. 

7.2 MEMORY MANAGEMENT AND 
PROTECTION 

The protection hardware of the iAPX 286 is 
related to the memory management hardware. 

Since protection attributes are assigned to 
segments, they are stored along with the 
memory management information in the 
segment descriptor. The protection informa
tion is specified when the segment is created. 
In addition to privilege levels, the descriptor 
defines the segment type (e.g., Code segment, 
Data segment, etc.). Descriptors may be 
created either by program development tools 
or by a loader in a dynamically loaded repro
grammable environment. 

The protection control information consists of 
a segment type, its privilege level, and size. 
These are fields in the access byte of the 
segment descriptor (see figure 7-2). This 
information is saved on-chip in the program
mer invisible section of the segment register 
for fast access during execution. These entries 
are changed only when a segment register is 
loaded. The protection data is used at two 
times: upon loading a segment register and 
upon each reference to the selected segment. 

The hardware performs several checks while 
loading a segment register. These checks 

PROGRAM VISIBLE 
,- - - - - - - - - - ;;;;O~R:;:-M -;;:;V-;SI~E - - - - - - - - - - I 

SEGMENT SELECTORS 

I I 
I ~T~~i; SEGMENT BASE ADDRESS SEGMENT SIZE I 

CS 

OS 

5S 

ES ! I I I ! 
15 0 I 47 4039 1615 0 I 

SEGMENT REGISTERS 
(loaded by program) 

I SEGMENT DESCRIPTOR CACHE REGISTERS I 
L __________ ~O,:,d~ b~ C~) ___________ J 

Figure 7-2. Descriptor Cache Registers 

7-4 



PROTECTION 

enforce the protection rules before any 
memory reference is generated. The hardware 
verifies that the selected segment is valid (is 
identified by a descriptor, is in memory, and 
is accessible from the privilege level in which 
the program is executing) and that the type 
is consistent with the target segment register. 
For example, you cannot load a read-only 
segment descriptor into SS because the stack 
must always be writable. 

Each reference into the segment defined by a 
segment register is checked by the hardware 
to verify that it is within the defined limits of 
the segment and is of the proper type. For 
example, a code segment or read-only data 
segment cannot be written. All these checks 
are made before the memory cycle is started; 
any violation will prevent that cycle from 
starting and cause an exception to occur. 
Since the checks are performed concurrently 
with address formation, there is no perform
ance penalty. 

By controlling the access rights and privilege 
attributes of segments, the system designer 
can assure a program will not change its code 
or overwrite data belonging to another task. 
Such assurances are vital to maintaining 
system integrity in the face of error-prone 
programs. 

7.2.1 Separation of Address Spaces 

As described in Chapter 6, each task can 
address up to a gigabyte (2 14 _2 segments of 
up to 65536 bytes each) of virtual memory 
defined by the task's LDT (Local Descriptor 
Table) and the system GDT. Up to one-half 
gigabyte (2 13 segments of up to 65536 bytes 
each) of the task's address space is defined by 
the LDT and represents the task's private 
address space. The remaining virtual address 
space is defined by the GDT and is common 
to all tasks in the system. 

7-5 

Each descriptor table is itself a special kind 
of segment recognized by the iAPX 286 
architecture. These tables are defined by 
descriptors in the GDT (Global Descriptor 
Table). The CPU has a set of base and limit 
registers that point to the GDT and the LDT 
of the currently running task. The local 
descriptor table register is loaded by a task 
switch operation. 

An active task can only load selectors that 
reference segments defined by descriptors in 
either the GDT or its private LDT. Since a 
task cannot reference descriptors in other 
LDTs, and no descriptors in its LDT refer to 
data or code belonging to other tasks, it 
cannot gain access to another tasks' private 
code and data (see figure 7-3). 

Since the GDT contains information that is 
accessible by all users (e.g., library routines, 
common data, Operating System services, 
etc.), the iAPX 286 uses privilege levels and 
special descriptor types to control access (see 
section 7.2.2). Privilege levels protect more 
trusted data and code (in GDT and LDT) 
from less trusted access (WITHIN a task), 
while the private virtual address spaces 
defined by unique LDTs provide protection 
BETWEEN tasks (see figure 7-4). 

7.2.2 LOT and GOT Access Checks 

All descriptor tables have a limit used by the 
protection hardware to ensure address space 
separation of tasks. Each task's LDT can be 
a different size as defined by its descriptor in 
the GDT. The GDT may also contain less 
than 8191 descriptors as defined by the GDT 
limit value. The descriptor table limit identi
fies the last valid byte of the last descriptor 
in that table. Since each descriptor is eight 
bytes long, the limit value is N X 8 - 1 for N 
descriptors. 



PROTECTION 

Any attempt by a program to load a segment 
register, local descriptor table register 
(LDTR), or task register (TR) with a selec
tor that refers to a descriptor outside the 
corresponding limit causes an exception with 
an error code identifying the invalid selector 
used (see figure 7-5). 

Not all descriptor entries in the GDT or LDT 
need contain a valid descriptor. There can be 

SEG. 

---.J · LDT 
A · - · 

8191 

t 
INDEX 

·0 
SEG. 

TASK A PRIVATE ADDRESS SPACE 

SEG. 

8191 

t 
INDEX 

+0 

W · LDT 
C · I---- · 

SEG. 

TASK C PRIVATE ADDRESS SPACE 

65535 

t 
OFFSET 

o + 

65535 
+ 

OFFSET 

o ~ 

65535 
+ 

OFFSET 

o * 

65535 

t 
OFFSET 

o + 

holes, or "empty" descriptors, in the LDT and 
GDT. "Empty" descriptors allow dynamic 
allocation and deletion of segments or other 
system objects without changing the size of 
the GDT or LDT. Any descriptor with an 
access byte equal to zero is considered empty. 
Any attempt to load a segment register with 
a selector that refers to an empty descriptor 
will cause an exception with an error code 
identifying the invalid selection. 

65535 
t 

SEG. OFFSET 

o * 8191 W · t LDT 
INDEX B · 

to 
I---- · 

65535 
I 

SEG. OFFSET 

o I 

TASK B PRIVATE ADDRESS SPACE 

65535 

t 
SEG. OFFSET 

o + 
---.J 8191 · t 

INDEX GDT · 
+ 1 

- · 65535 

GOF1SET 

t-.....I 0 + 

SHARED ADDRESS SPACE 

TASK B ADDRESS SPACE 

Figure 7·3. iAPX 286 Virtual Address Space 

7-6 



15 

, 

PROTECTION 

MEMORY 
CPU 

GOTR 

2r3 __ J:5~~G~OT~~LI~M~IT~:0.,....--_-+U_.Lil ... ~~~~:~~31 GOT I GOT BASE r t 
15 o 

LOTR 

I LOT 
LOT, 

SELECTOR T I 
,~ - -J'S -- - -0 .. _"'1-' +....I~l! __ E~~~:~~3 f~~RENT 

LOT LIMIT il 
23 , 

" I LOT BASE 
, L,..... ___ ........ , 

I PROGRAM INVISIBLE : 
L ________ --' 

Figure 7-4. Local and Global Descriptor Table Definition 

3 2 

T INOEX 
I 

- I 

o 

I E 
0 X 
T T 

L 
'--

means that an event external to 
the program caused the exception 
(Le., external interrupt, single step, 
processor extension error) 

o means that an exception occurred 
while processing the instruction at 
CS:IP saved on stack. 

1 means use lOT and ignore bit 2. 
o means bit 2 indicates table usage 

: 

1 means use LOT 
o means use GOT 

L..... ______________ Entry in lOT, GOT, or LOT 

Figure 7-5. Error Code Format (on the Stack) 

7-7 



PROTECTION 

7.2.3 Type Validation 

After checking that a selector reference is 
within the bounds of a descriptor table and 
refers to a non-empty descriptor, the type of 
segment defined by the descriptor is checked 
against the destination register. Since each 
segment register has predefined functions, 
each must refer to certain types of segments 
(see section 7.4.1). An attempt to load a 
segment register in violation of the protection 
rules causes an exception. 

The "null" selector is a special type of 
segment selector. It has an index field of all 
zeros and a table indicator of O. The null 
selector appears to refer to GDT descriptor 
entry #0 (see GDT in figure 7-3). This selec
tor value may be used as a place holder in the 
DS or ES segment registers; it may be loaded 
into them without causing an exception. 
However, any attempt to use the null segment 
registers to reference memory will cause an 
exception and prevent any memory cycle from 
occurring. 

7.3 PRIVILEGE LEVELS AND PROTECTION 

As explained in section 6.2, each task has its 
own separate virtual address space defined by 
its LDT. All tasks share a common address 
space defined by the GDT. The system 
software then has direct access to task data 
and can treat all pointers in the same way. 

Protection is required to prevent programs 
from improperly using code or data that 
belongs to the operating system. The four 
privilege levels of the iAPX 286 provide the 
isolation needed between the various layers of 
the system. The iAPX 286 privilege levels are 
numbered from 0 to 3, where 0 is the most 
trusted level, 3 the least. 

Privilege level is a protection attribute 
assigned to all segments. It determines which 
procedures can access the segment. Like 
access rights and limit checks, privilege checks 

7-8 

are automatically performed by the hardware, 
and thus protects both data and code 
segments. 

Privilege on the iAPX 286 is hierarchical. 
Operating system code and data segments 
placed at the most privileged level (0) cannot 
be accessed directly by programs at other 
privilege levels. Programs at privilege level 0 
may access data at all other levels. Programs 
at privilege levels 1-3 may only access data at 
the same or less trusted (numerically greater) 
privilege levels. Figure 7-6 illustrates the 
privilege level protection of code or data 
within tasks. 

In figure 7-6, programs can access data at the 
same or outer level, but not at inner levels. 
Code and data segments placed at level 1 
cannot be accessed by programs executing at 
levels 2 or 3. Programs at privilege level 0 can 
access data at level 1 in the course of provid
ing service to that level. iAPX 286 provides 
mechanisms for inter-level transfer of control 
when needed (see section 7.5). 

The four privilege levels of the iAPX 286 are 
an extension of the typical two-level user / 
supervisor privilege mechanism. Like user 
mode, application programs in the outer level 
are not permitted direct access to data 
belonging to more privileged system services 
(supervisor mode). The iAPX 286 adds two 
more privilege levels to provide protection for 
different layers of system software (system 
services, I/O drivers, etc.). 

7.3.1 Example of Using Four Privilege 
Levels 

Two extra privilege levels allow development 
of more reliable, and flexible system software. 
This is achieved by dividing the system into 
small, independent units. Figure 7-6 shows an 
example of the usage of different protection 
levels. Here, the most privileged level is called 



PROTECTION 

TASK C 

Figure 7·6. Code and Data Segments Assigned to a Privilege Level 

the kernel. This software would provide basic, 
application-independent, CPU-oriented 
services to all tasks. Such services include 
memory management, task isolation, multi
tasking, inter-task communication, and I/O 
resource control. Since the kernel is only 
concerned with simple functions and cannot 
be affected by software at other privilege 
levels, it can be kept small, safe, and under
standable. 

Privilege level one is designated system 
services. This software provides high-level 
functions like file access scheduling, charac
ter I/O, data communcations, and resource 
allocation policy which are commonly 
expected in all systems. Such software 

7·9 

remains isolated from applications programs 
and relies on the services of the kernel, yet 
cannot affect the integrity of level O. 

Privilege level 2 is the custom operating 
system extensions level. It allows standard 
system software to be customized. Such 
customizing can be kept isolated from errors 
in applications programs, yet cannot affect the 
basic integrity of the system software. 
Examples of customized software are the data 
base manager, logical file access services, etc. 

This is just one example of protection mecha
nism usage. Levels 1 and 2 may be used in 
many different ways. The usage (or non
usage) is up to the system designer. 



PROTECTION 

Programs at each privilege level are isolated 
from programs at outer layers, yet cannot 
affect programs in inner layers. Programs 
written for each privilege level can be smaller, 
easier to develop, and easier to maintain than 
a monolithic system where all system software 
can affect all other system software. 

7.3.2 Privilege Usage 

Privilege applies to tasks and three types of 
descriptors: 

1. Main memory segments 

2. Gates (control descriptors for state or task 
transitions, discussed in sections 7.5.1, 
7.5.3, 8.3, 8.4 and 9.2) 

3. Task state segments (discussed In 

Chapter 8). 

Task privilege is a dynamic value. It is derived 
from the code segment currently being 
executed. Task privilege can change only 
when a control transfers to a different code 
segment. 

Descriptor privilege, including code segment 
privilege, is assigned when the descriptor (and 
any associated segment) is created. The 
system designer assigns privilege directly 
when the system is constructed with the 
system builder (see the iAPX 286 Builder 
User's Guide) or indirectly via a loader. 

Each task operates at only one privilege level 
at any given moment: namely that of the code 
segment being executed. (The conforming 
segments discussed in section 11.2 permit 
some flexibility in this regard.) However, as 
figure 7-6 indicates, the task may contain 
segments at one, two, three, or four levels, all 
of which are to be used at appropriate times. 
The privilege level of the task, then, changes 
under the carefully enforced rules for trans
fer of control from one code segment to 
another. 

7-10 

The descriptor privilege attribute is stored in 
the access byte of a descriptor and is called 
the Descriptor Privilege Level (DPL). Task 
privilege is called the Current Privilege Level 
(CPL). The least significant two bits of the 
CS register specify the CPL. 

A few general rules of privilege can be stated 
before the detailed discussions of later 
sections. Data access is restricted to those 
segments whose privilege level is the same or 
less privileged (numerically greater) than the 
current privilege level (CPL). Direct code 
access, e.g., via call or jump, is restricted to 
code segments of equal privilege. A gate 
(section 7.5.1) is required for access to code 
at more privileged levels. 

7.4 SEGMENT DESCRIPTOR 

Although the format of access control infor
mation, discussed below, is similar for both 
data and code segment descriptors, the rules 
for accessing data segments differ from those 
for transferring control to code segments. 
Data segments are meant to be accessible 
from many privilege levels, e.g., from other 
programs at the same level or from deep 
within the operating system. The main 
restriction is that they cannot be accessed by 
less privileged code. 

Code segments, on the other hand, are meant 
to be executed at a single privilege level. 
Transfers of control that cross privilege 
boundaries are tightly restricted, requiring the 
use of gates. Control transfers within a privi
lege level can also use gates, but they are not 
required. Control transfers are discussed in 
section 7.5. 

Protection checks are automatically invoked 
at several points in selecting and using new 
segments. The process of addressing memory 
begins when the currently executing program 
attempts to load a selector into one of the 
segment registers. As discussed in Chapter 6, 
the selector has the form shown in figure 7-7. 



PROTECTION 

When a new selector is loaded into a segment 
register, the processor accesses the associated 
descriptor to perform the necessary loading 
and privilege checks. 

verifying the descriptor type, the CPU 
compares the privilege level of the task (CPL) 
to the privilege level in the descriptor (DPL) 
before loading the descriptor's information 
into the cache. 

The protection mechanism verifies that the 
selector points to a valid descriptor type for 
the segment register (see section 7.4.1). After 

The general format of the eight bits in the 
segment descriptor's access rights byte is 
shown in table 7-1. 

SELECTOR 

INDEX 
I I I I 

15 8 7 2 1 0 

BITS NAME FUNCTION 

'·0 REQUESTED INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL (RPL) 

2 TABLE TI ~ 0 USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GDT) 
(TI) 

TI ~ 1 USE LOCAL DESCRIPTOR TABLE 
(LDT) 

15·3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

Figure 7-7. Selector Fields 

Table 7-1. Segment Access Rights Byte Format 

Bit Name Description 

7 Present 1 means Present and addressable in real memory; 0 means not 
present. See section 11.3. 

6,5 DPL 2-bit Descriptor Privilege Level, 0 to 3. 

4 Segment 1 means Segment descriptor; 0 means control descriptor. 

For Segment= 1, the remaining bits have the following meanings: 

3 Executable 1 means code, 0 means data. 

2 C or ED If code, Conforming: 1 means yes, 0 no. 
If data, Expand Down: 1 yes, 0 no-normal case. 

1 RorW If code, Readable: 1 means readable, 0 not. 
If data, Writable: 1 means writable, 0 not. 

0 Accessed 1 if segment descriptor has been Accessed, 0 if not. 

NOTE: When the Segment bit (bit 4) is 0, the descriptor is for a gate, a task state segment, or a Local Descriptor 
Table, and the meanings of bits 0 through 3 change. Control transfers and descriptors are discussed in 
section 7.5. 

7-11 



PROTECTION 

For example, the access rights byte for a data 
and code segment present in real memory but 
not yet accessed (at the same privilege level) 
are shown in figure 7-8. 

Whenever a segment descriptor is loaded into 
a segment register, the accessed bit in the 
descriptor table is set to 1. This bit is useful 
for determining the usage profile of the 
segment. 

NOTE 

The Intel reserved bytes in the segment 
descriptor must be set to 0 for compati
bility with iAPX 386. 

7.4.1 Data Accesses 

Data may be accessed in data segments or 
readable code segments. When DS or ES is 
loaded with a new selector, e.g., by an LDS, 
LES, or MOV to ES, SS, or DS instruction, 

P DPL 5 E C R A 

I 
1 01 0 0 

I 
0 

Readable Code Segment 

the bits in the access byte are checked to 
verify legitimate descriptor type and access 
(see table 7-2). If any test fails, an error code 
is pushed onto the stack identifying the selec
tor involved (see figure 7 -5 for the error code 
format). 

A privilege check is made when the segment 
register is loaded. In general, a data segment's 
DPL must be numerically greater than or 
equal to the CPL. The DPL of a descriptor 
loaded into the SS must equal the CPL. 
Conforming code segments are an exception 
to privilege checking rules (see section 11.2). 

Once the segment descriptor and selector are 
loaded, the offset of subsequent accesses 
within the segment are checked against the 
limit given in the segment descriptor. Violat
ing the segment size limit causes a General 
Protection exception with an error code of O. 

P DPL 5 E ED W A 

I 
01 0 0 0 

I 
7 0 

Writable Data Segment 

Figure 7-8. Access Byte Example 

Table 7-2. Allowed Segment Types in Segment Registers 

Allowed Segment Types 

Segment Register 
Read Only Read-Write Execute Only Execute-Read 

Data Segment Data Segment Code Segment Code Segment 

OS Yes Yes No Yes 

ES Yes Yes No Yes 

SS No Yes No No 

CS No No Yes Yes 

7-12 



PROTECTION 

A normal data segment is addressed with 
offset values ranging from 0 to the size of the 
segment. When the ED bit of the access rights 
byte in the segment descriptor is 0, the 
allowed range of offsets is OOOOH to the limit. 
If limit is OFFFFH, the data segment contains 
65536 bytes. 

Since stacks normally occupy different offset 
ranges (lower limit to OFFFFH) than data 
segments, the limit field of a segment 
descriptor can be interpreted in two ways. The 
Expand Down (ED) bit in the access byte 
allows offsets for stack segments to be greater 
than the limit field. When ED is 1, the 
allowed range of offsets within the segment is 
limit + 1 to OFFFFH. To allow a full stack 
segment, set ED to 1 and the limit to 
OFFFFH. The ED bit of a data segment 
descriptor does not have to be set for use in 
SS (i.e., it will not cause an exception). 
Section 7.5.4 discusses stack segment usage 
in greater detail. An expand down (ED= 1) 
segment can also be loaded into ES or DS. 

Limit and access checks are performed before 
any memory reference is started. For stack 
push instructions (PUSH, PUSHA, ENTER, 
CALL, INT), a possible limit violation is 
identified before any internal registers are 
updated. Therefore, these instructions are 
fully restart able after a stack size violation. 

7.4.2 Code Segment Access 

Code segments are accessed via CS for 
execution. Segments that are execute-only can 
ONL Y be executed; they cannot be accessed 
via DS or ES, nor read via CS with a CS 
override prefix. If a segment is executable (bit 
3 = 1 in the access byte), access via DS or ES 
is possible only if it is also readable. Thus, 
any code segment that also contains data must 
be readable. (Refer to Chapter 2 for a discus
sion of segment override prefixes.) 

7-13 

An execute-only segment preserves the 
privacy of the code against any attempt to 
read it; such an attempt causes a general 
protection fault with an error code of O. A 
code segment cannot be loaded into SS and is 
never writable. Any attempted write will 
cause a general protection fault with an error 
code of O. 

The limit field of a code segment descriptor 
identifies the last byte in the segment. Any 
offset greater than the limit value will cause 
a general protection fault. The prefetcher of 
the iAPX 286 can never cause a code segment 
limit violation with an error code of O. The 
program must actually attempt to execute an 
instruction beyond the end of the code 
segment to cause an exception. 

If a readable non-conforming code segment is 
to be loaded into DS or ES, the privilege level 
requirements are the same as those stated for 
data segments in 7.4.1. 

Code segments are subject to different privi
lege checks when executed. The normal privi
lege requirement for a jump or call to another 
code segment is that the current privilege level 
equal the descriptor privilege level of the new 
code segment. Jumps and calls within the 
current code segment automatically obey this 
rule. 

Return instructions may pass control to code 
segments at the same or less (numerically 
greater) privileged level. Code segments at 
more privileged levels may only be reached 
via a call through a call gate as described in 
section 7.5. 

An exception to this, previously stated, is the 
conforming code segment that allows the DPL 
of the requested code segment to be numeri
cally less than (of greater privilege than) the 
CPL. Conforming code segments are 
discussed in section 11.2. 



PROTECTION 

7.4.3 Data Access Restriction by 
Privilege Level 

This section describes privilege verification 
when accessing either data segments (loading 
segment selectors into DS, ES, or SS) or 
readable code segments. Privilege verification 
when loading CS for transfer of control across 
privilege levels is described in the next section. 

Three basic kinds of privilege level indicators 
are used when determining accessibility to a 
segment for reading and writing. They are 
termed Current Privilege Level (CPL), 
Descriptor Privilege Level (DPL), and 
Requested Privilege Level (RPL). The CPL 
is simply the privilege level of the code 
segment that is executing (except if the 
current code segment is conforming). The 
CPL is stored as bits 0 and 1 of the CS and 
SS registers. Bits 0 and I of DS and ES are 
not related to CPL. 

DPL is the privilege level of the segment; it is 
stored in bits 5 and 6 of the access byte of a 
descriptor. For data access to data segments 
and non-conforming code segments, CPL 
must be numerically less than or equal to DPL 
(the task must be of equal or greater privi
lege) for access to be granted. Violation of this 
rule during segment load instruction causes a 
general protection exception with an error 
code identifying the selector. 

While the enforcement of DPL protection 
rules provides the mechanism for the isola
tion of code and data at different privilege 
levels, it is conceivable that an erroneous 
pointer passed onto a more trusted program 
might result in the illegal modification of data 
with a higher privilege level. This possibility 
is prevented by the enforcement of effective 
privilege level. protection rules and correct 
usage of the RPL value. 

The RPL (requested privilege level) is used 
for pointer validation. It is the least signifi-

7-14 

cant two bits in the selector value loaded into 
any segment register. RPL is intended to 
indicate the privilege level of the originator of 
that selector. A selector may be passed down 
through several procedures at different levels. 
The RPL reflects the privilege level of the 
original supplier of the selector, not the privi
lege level of the intermediate supplier. The 
RPL must be numerically less than or equal 
to the DPL of the descriptor selected, thereby 
indicating greater or equal privilege of the 
supplier; otherwise, access is denied and a 
general protection violation occurs. 

Pointer validity testing is required in any 
system concerned with preventing program 
errors from destroying system integrity. The 
iAPX 286 provides hardware support for 
pointer validity testing. The RPL field 
indicates the privilege level of the originator 
of the pointer to the hardware. Access will be 
denied if the originator of the pointer did not 
have access to the selected segment even if 
the CPL is numerically less than or equal to 
the DPL. RPL can reduce the effective privi
lege of a task when using a particular selec
tor. RPL never allows access to more 
privileged segments (CPL must always be 
numerically less than or equal to DPL). 

A fourth term is sometimes used: the Effec
tive Privilege Level (EPL). It is defined as the 
numeric maximum of the CPL and the 
RPL-meaning the one of lesser privilege. 
Access to a protected entity is granted only 
when the EPL is numerically less than or 
equal to the DPL of that entity. This is simply 
another way of saying that both CPL and 
RPL must be numerically less than or equal 
to DPL for access to be granted. 

7.4.4 Pointer Privilege Stamping via ARPL 

The ARPL instruction is provided in the 
iAPX 286 to fill the RPL field of a selector 
with the minimum privilege (maximum 



PROTECTION 

numeric value) of the selector's current RPL 
and the caller's CPL (given in an instruction
specified register). A straight insertion of the 
caller's CPL would stamp the pointer with the 
privilege level of the caller, but not necessar
ily the ultimate originator of the selector (e.g., 
Level 3 supplies a selector to a level 2 routine 
that calls a level 0 routine with the same 
selector). 

Figure 7-9 shows a program with an example 
of such a situation. The program at privilege 
level 3 calls a routine at level 2 via a gate. 
The routine at level 2 uses the ARPL instruc
tion to assure that the selector's RPL is 3. 
When the level 2 routine calls a routine at 
level 0 and passes the selector, the ARPL 
instruction at level 0 leaves the RPL field 
unchanged. 

Stamping a pointer with the originator's 
privilege eliminates the complex and time
consuming software typically associated with 
pointer validation in less comprehensive 
architectures. The iAPX 286 hardware 
performs the pointer test automatically while 
loading the selector. 

Privilege errors are trapped at the time the 
selector is loaded because pointers are 
commonly passed to other routines, and it 
may not be possible to identify a pointer's 
originator. To verify the access capabilities of 

Lev II!! 1 3 PUSH SELECTOR 
CAL L LEVEL_2 

Level_2: 
E H TE R 4.0 
MOV A X • [ B Pl, 4 
ARPL [BP } .8 1 A X 

Lev II!! 1 2 

PUSH WORD PTR [BP 1 .6 
CALL . Level_O 

Level_OJ 

E H TE R 6.0 
L II!! V II!! 1 0 MOV A X • [BP 1 04 

ARPL [BP 1 + 6 I AX 

a pointer, it should be tested when the pointer 
is first received from an untrusted source. The 
VERR (Verify Read), VERW (Verify 
Write), and LAR (Load Access Rights) 
instructions are provided for this purpose. 

Although pointer validation is fully supported 
in the iAPX 286, its use is an option of the 
system designer. To accommodate systems 
that do not require it, RPL can be ignored by 
setting selector RPLs to zero (except stack 
segment selectors) and not adjusting them 
with the ARPL instruction. 

7.5 CONTROL TRANSFERS 

Three kinds of control transfers can occur 
within a task: 

1. Within a segment, causing no change of 
privilege level (a short jump, call, or 
return). 

2. Between segments at the same privilege 
level (a long jump, call, or return). 

3. Between segments at different privilege 
levels (a long call, or return). (NOTE: A 
JUMP to a different privilege level is not 
allowed.) 

The first two types of control transfers need 
no special controls (with respect to privilege 
protection) beyond those discussed in 
section 7.4. 

RPL value doesn't matter at level 3 

GET CS of return address, RPL-3 
Put 3 in RPL flold 

Pess selector 

j Get CS of return address, RPL.2 
i Leaves RPL unchanged 

Figure 7-9. Pointer Privilege Stamping 

7-15 



PROTECTION 

Inter-level transfers require special consider
ation to maintain system integrity. The 
protection hardware must check that: 

• The task is currently allowed to access the 
destination address. 

• The correct entry address is used. 

To achieve control transfers, a special 
descriptor type called a gate is provided to 
mediate the change in privilege level. Control 
transfer instructions call the gate rather than 
transfer directly to a code segment. From the 
viewpoint of the program, a control transfer 
to a gate is the same as to another code 
segment. 

Gates allow programs to use other programs 
at more privileged levels in the same manner 
as a program at the same privilege level. 
Programmers need never distinguish between 
programs or subroutines that are more privi
leged than the current program and those that 
are not. The system designer may, however, 
elect to use gates only for control transfers 
that cross privilege levels. 

7.5.1 Gates 

A gate is a four-word control descriptor used 
to redirect a control transfer to a different 
code segment in the same or more privileged 
level or to a different task. There are four 
types of gates: call, trap, interrupt, and task 
gates. The access rights byte distinguishes a 
gate from a segment descriptor, and deter
mines which type of gate is involved. Figure 
7-10 shows the format of a gate descriptor. 

A key feature of a gate is the re-direction it 
provides. All four gate types define a new 
address which transfers control when invoked. 
This destination address normally cannot be 
accessed by a program. Loading the selector 
to a call gate into SS, DS, or ES will cause a 
general protection fault with an error code 
identifying the invalid selector. 

7-16 

Only the selector portion of an address is used 
to invoke a gate. The offset is ignored. All that 
a program peed know about the desired 
function is the selector required to invoke the 
gate. The iAPX 286 will automatically start 
the execution at the correct address stored 
within the gate. 

A further advantage of a gate is that it 
provides a fixed address for any program to 
invoke another program. The calling 
program's address remains unaltered even if 

. the entry address of the destination program 
changes. Thus, gates provide a fixed set of 
entry points that allow a task to access 
Operating System functions such as simple 
subroutines, yet the task is prohibited from 
simply jumping into the middle of the 
Operating System. 

Call gates, as described in the next section, 
are used for control transfers within a task 
which must either be transparently redirected 
or which require an increase in privilege level. 
A call gate normally specifies a subroutine at 
a greater privilege level, and the called routine 
returns via a return instruction. Call gates also 
support delayed binding (resolution of target 
routine addresses at run-time rather than 
program-generation-time ). 

Trap and interrupt gates handle interrupt 
operations that are to be serviced within the 
current task. Interrupt gates cause interrupts 
to be disabled; trap gates do not. Trap and 
interrupt gates both require a return via the 
interrupt return instruction. 

Task gates are used to control transfers 
between tasks and to make use of task state 
segments for task control and status infor
mation. Tasks are discussed in Chapter 8, 
interrupts in Chapter 9. 

In the iAPX 286 protection model, each 
privilege level has its own stack. Therefore, a 



PROTECTION 

control transfer (call or return) that changes 
the privilege level causes a new stack to be 
invoked. 

7.5.1.1 CALL GATES 

Call gate descriptors are used by call and 
jump instructions in the same manner as a 
code segment descriptor. The hardware 
automatically recognizes that the destination 
selector refers to a gate descriptor. Then, the 
operation of the instruction is expanded as 
determined by the contents of the call gate. 
A jump instruction can access a call gate only 
if the target code segment is at the same 

7 07 o 

+7 INTEL RESERVED' +6 

PIDPLlol TYPE I X x x I 
WORD 
COUNT,_o 

+5 +4 

+3 DESTINATION SELECTOR 15-2 I X X +2 

+1 DESTINATION OFFSET 15-0 o 

15 8 7 o 
'MUST BE SET TO 0 FOR 
COMPATIBILITY WITH iAPX 386 

privilege level. A call instruction uses a call 
gate for the same or more privileged access. 

A call gate descriptor may reside in either the 
GDT or the LDT, but not in the IDT. Figure 
7-10 gives the complete layout of a call gate 
descriptor. 

A call gate can be referred to by either the 
long JMP or CALL instructions. From the 
viewpoint of the program executing a JMP or 
CALL instruction, the fact that the destina
tion was reached via a call gate and not 
directly from the destination address of the 
instruction is not apparent. 

Gate Descriptor Fields 

Name Value Description 

4 -Call Gate 

TYPE 
5 -Task Gate 
6 -Interrupt Gate 
7 -Trap Gate 

P 0 -Descriptor Contents are 
not valid 

1 -Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 

WORD .Number of words to copy 
COUNT 

0-31 
from callers stack to called 
procedures stack. Only 
used with call gate. 

Selector to the target code 

DESTINATION 16-bit 
segment (Call, Interrupt or 

SELECTOR selector 
Trap Gate) 
Selector to the target tas k 
state segment (Task Gqte) 

DESTINATION 16-bit Entry point within the 
OFFSET offset target code segment 

Figure 7-10. Gate Descriptor Format 

7-17 



PROTECTION 

The following is a description of the protec
tion checks performed while transferring 
control (with the CALL instruction) through 
a call gate: 

• Verifying that access to the call gate is 
allowed. One of the protection features 
provided by call gates is the access' checks 
made to determine if the call gate may 
be used (i.e., checking if the privilege level 
of the calling program is adequate). 

• Determining the destination address and 
whether a privilege transition is required. 
This feature makes privilege transitions 
transparent to the caller. 

• Performing the privilege transition, if 
required. 

Verifying access to a call gate is the same for 
any call gate and is independent of whether a 
JMP or CALL instruction was used. The rules 
of privilege used to determine whether a data 
segment may be accessed are employed to 
check if a call gate may be jumped-to or 
called. Thus, privileged subroutines can be 
hidden from untrusted programs by the 
absence of a call gate. 

When an inter-segment CALL or JMP 
instruction selects a call gate, the gate's privi-

lege and presence will be checked. The gate's 
DPL (in the access byte) is checked against 
the EPL (MAX (task CPL, selector RPL». 
If EPL > CPL, the program is less privi
leged than the gate and therefore it may not 
make a transition. In this case, a general 
protection fault occurs with an error code 
identifying the gate. Otherwise, the gate is 
accessible from the program executing the 
call, and the control transfer is allowed to 
continue. After the privilege checks, the 
descriptor presence is checked. If the present 
bit of the gate access rights byte is 0 (i.e., the 
target code segment is not present), not 
present fault occurs with an error code identi
fying the gate. 

The checks indicated in table 7-3 are applied 
to the contents of the call gate. Violating any 
of them causes the exception shown. The low 
order two bits of the error code are zero for 
these exceptions. 

7.5.1.2 INTRA-LEVEL TRANSFERS VIA CALL GATE 

The transfer is Intra-level if the destination 
code segment is at the same privilege level as 
CPL. Either the code segment is non
conforming with DPL = CPL or it is 
conforming, with DPL < CPL (see section 
11.2 for this case). The 32-bit destination 
address in the gate is loaded into CS:IP. 

Table 7-3. Call Gate Checks 

Type of Check Fault(l) Error Code 

Selector is not Null GP 0 
Selector is within Descriptor Table Limit GP Selector id 
Descriptor is a Code Segment GP Code Segment id 
Code Segment is Present NP Code Segment id 
Nonconforming Code Segment DPL > CPL GP Code Segment id 

NOTES: 

(1) GP = General Protection, NP = Not-Present Exception. 

The offset portion of the JMP or CALL destination address which refers to a call gate is always ignored. 

7-18 



PROTECTION 

If the IP value is not within the limit of the 
code segment, a general protection fault 
occurs with an error code of O. If a CALL 
instruction is used, the return address is saved 
in the normal manner. The only effect of the 
call gate is to place a different address into 
CS:IP than that specified in the destination 
address of the JMP or CALL instruction. This 
feature is useful for systems which require 
that a fixed address be provided to programs, 
even though the entry address for the routine 
may change due to different functions, 
software changes, or segment relocation. 

7.5.1.3 INTER-LEVEL CONTROL TRANSFER VIA 
CALL GATES 

If the destination code segment of the call 
gate is at a different privilege level than the 
CPL, an inter-level transfer is being 
requested. However, if the destination code 

CALL 
OPCOOE 

CODE 
SEG. 

DESCR. 
r 
J 

! t 
J 

c_ 
J 

ENTER 

J 

OFFSET 

segment DPL > CPL, then a general protec
tion fault occurs with an error code identify
ing the destination code segment. 

The gate guarantees that all transitions to a 
more privileged level will go to a valid entry 
point rather than possibly into the middle of 
a procedure (or worse, into the middle of an 
instruction). See figure 7-11. 

Calls to more privileged levels may be 
performed only through call gates. A JMP 
instruction can never cause a privilege change. 
Any attempt to use a call gate in this manner 
will cause a general protection fault with an 
error code identifying the gate. Returns to 
more privileged levels are also prohibited. 
Inter-level transitions due to interrupts use a 
different gate, as discussed in Chapter 9. 

SELECTOR 

! .C 

CALL 
GATE 

.I 

I ! OFFSE 

J 

J 

T 

INSTRUCTION 

DESCRIPTOR 
TABLES 

TARGET 
CODE 
SEGMENT 

Figure 7-11. Call Gate 

7-19 



PROTECTION 

lhe RPL field of the CS selector saved as part 
of the return address will always identify the 
caller's CPL. This information is necessary to 
correctly return to the caller's privilege level 
during the return instruction. Since the CALL 
instruction places the CS value on the more 
privileged stack, and JMP instructions cannot 
change privilege levels, it is not possible for a 
program to maliciously place an invalid return 
address on the caller's stack. 

7.5.1.4 STACK CHANGES CAUSED BY CALL GATES 

To maintain system integrity, each privilege 
level has a separate stack. Furthermore, each 
task normally uses separate stacks from other 
tasks for each privilege level. These stacks 
assure sufficient stack space to process calls 
from less privileged levels. Without them, 
trusted programs may not work correctly, 
especially if the calling program does not 
provide sufficient space on the caller's stack. 

When a call gate is used to change privilege 
levels, a new stack is selected as determined 
by the new CPL. The new stack pointer value 
is loaded from the Task State Segment (TSS). 
The privilege level of the new stack data 
segment must equal the new CPL; if it does 
not, a task stack fault occurs with the saved 
machine state pointing at the CALL instruc
tion and the error code identifying the invalid 
stack selector. 

The new stack should contain enough space 
to hold the old SS:SP, the return address, and 
all parameters and local variables required to 
process the call. The initial stack pointers for 
privilege levels 0-2 in the TSS are strictly read 
only values. They are never changed during 
the course of execution. 

The normal technique for passing parameters 
to a subroutine is to place them onto the stack. 
To make privilege transitions transparent to 
the called program, a call gate specifies that 

7-20 

parameters are to be copied from the old stack 
to the new stack. The word count field in a 
call gate (see figure 7-10) specifies how many 
words (up to 31) are to be copied from the 
caller's stack to the new stack. If the word 
count is zero, no parameters are copied. 

Before copying the parameters, the new stack 
is checked to assure that it is large enough to 
hold the parameters; if it is not, a stack fault 
occurs with an error code of O. After the 
parameters are copied, the return link is on 
the new stack (i.e., a pointer to the old stack 
is placed in the new stack). In particular, the 
return address is pointed at by SS:SP. The 
call and return example of figure 7-12 illus
trate the stack contents after a successful 
inter-level call. 

The stack pointer of the caller is saved above 
the caller's return address as the first two 
words pushed onto the new stack. The caller's 
stack can only be saved for calls to proce
dures at privilege levels 2, 1, and O. Since level 
3 cannot be called by any procedure at any 
other privilege level, the level 3 stack will 
never contain links to other stacks. 

Procedures requiring more than the 31 words 
for parameters that may be called from 
another privilege level must use the saved 
SS:SP link to access all parameters beyond 
the last word copied. 

The call gate does not check the values of the 
words copied onto the new stack. The called 
procedure should check each parameter for 
validity. Section 11.3 discusses how the 
ARPL, VERR, VERW, LSL, and LAR 
instructions can be used to check pointer 
values. 

7.5.2 Inter-Level Returns 

An inter-segment return instruction can also 
change levels, but only toward programs of 



PROTECTION 

i 
HIGHER 

ADDRESSES 

LOWER 
ADDRESSES 

PARM 3 

PARM 2 

PARM 1 
OLD SS:SP_L...-___ .... 

OLD STACK 
(AT "OUTER" 

PRIVILEGE 
LEVEL) 

-SS:SP 
FROM TSS 

NEW SS + SP 

OLD SS 

OLD SP 

PARM 3 

PARM 2 

PARM 1 

OLDCS 

OLDIP 

NEW STACK 
(AT "INNER" 

PRIVILEGE 
LEVEL) 

DIRECTION 
OF STACK 
GROWTH 

Figure 7-12. Stack Contents After an Inter-Level Call 

equal or lesser privilege (when code segment 
DPL is numerically greater or equal than the 
CPL). The RPL of the selector popped off the 
stack by the return instruction identifies the 
privilege level to resume execution of the 
calling program. 

When the RET instruction encounters a saved 
CS value whose RPL > CPL, an inter-level 
return occurs. Checks shown in table 7-4 are 
made during such a return. 

The old SS:SP value is then adjusted by the 
number of bytes indicated in the RET 
instruction and loaded into SS:SP. The new 
SP value is not checked for validity. If SP is 
invalid it is not recognized until the first stack 

7-21 

operation. The SS:SP value of the returning 
program is not saved. (Note: this value 
normally is the same as that saved in the 
TSS.) 

The last step in the return is checking the 
contents of the DS and ES descriptor regis
ter. If DS or ES refer to segments whose DPL 
is greater than the new CPL (excluding 
conforming code segments), the segment 
registers are loaded with the null selector. Any 
subsequent memory reference that attempts 
to use the segment register containing the null 
selector will cause a general protection fault. 
This prevents less privileged code from 
accessing more privileged data previously 
accessed by the more privileged program. 



PROTECTION 

Table 7-4. Inter-Level Return Checks 

Type of Check Exception· Error Code 

SP is not within Segment Limit SF 0 
SP + N + 7 is not in Segment Limit SF 0 
RPL of Return CS is Greater than CPL GP Return CS id 
Return CS Selector is not null GP Return CS id 
Return CS segment is within Descriptor Table Limit GP Return CS id 
Return CS Descriptor is a Code Segment GP Return CS id 
Return CS Segment is Present NP Return CS id 
DPL of Return Non-Conforming Code Segment = RPL of CS GP Return CS id 
SS Selector at SP + N + 6 is not Null SF Return SS id 
SS Selector at SP + N + 6 is within Descriptor Table Limit SF Return SS id 
SS Descriptor is Writable Data Segment SF Return SS id 
SS Segment is Present SF Return SS id 
SS Segment DPL = RPL of CS SF Return SS id 

·SF = Stack Fault, GP = General Protection Exception, NP = Not-Present Exception 

7-22 



Tasks And State Transitions 8 





CHAPTER 8 
TASKS AND STATE TRANSITIONS 

8.1 INTRODUCTION 

An iAPX 286 task is a single, sequential 
thread of execution. Each task can be isolated 
from all other tasks. There may be many tasks 
associated with an iAPX 286 CPU, but only 
one task executes at any time. Switching the 
CPU from executing one task to executing 
another can occur as the result of either an 
interrupt or an inter-task CALL, JMP or 
IRET. A hardware-recognized data structure 
defines each task. 

The iAPX 286 provides a high performance 
task switch operation with complete isolation 
between tasks. A full task-switch operation 
takes only 22 microseconds at 8 MHz 
(18 microseconds at 10 MHz). High
performance, interrupt-driven, multi
application systems that need the benefits of 
protection are feasible with the 80286. 

A performance advantage and system design 
advantage arise from the iAPX 286 task 
switch: 

• Faster task switch: A task switch is a 
single instruction performed by micro
code. Such a scheme is 2-3 times faster 
than an explicit task switch instruction. 
A fast task switch translates to a signifi
cant performance boost for heavily multi
tasked systems over conventional 
methods. 

• More reliable, flexible systems: The 
isolation between tasks and the high speed 
task switch a1lows interrupts to be 
handled by separate tasks rather than 
within the currently interrupted task. This 
isolation of interrupt handling code from 
normal programs prevents undesirable 
interactions between them. The interrupt 

8-1 

system can become more flexible since 
adding an interrupt handler is as safe and 
easy as adding a new task. 

• Every task is protected from all others via 
the separation of address spaces described 
in Chapter 7, including a1location of 
unique stacks to each active privilege level 
in each task (unless explicit sharing is 
planned in advance). If the address spaces 
of two tasks include no shared data, one 
task cannot affect the data of another 
task. Code sharing is always safe since 
code segments may never be written into. 

8.2 TASK STATE SEGMENTS AND 
DESCRIPTORS 

Tasks are defined by a special control segment 
called a Task State Segment (TSS). For each 
task, there must be an unique TSS. The 
definition of a task includes its address space 
and execution state. A task is invoked (made 
active) by inter-segment jump or call instruc
tions whose destination address refers to a 
task state segment or a task gate. 

The Task State Segment (TSS) has a special 
descriptor. The Task Register within the CPU 
contains a selector to that descriptor. Each 
TSS selector value is unique, providing an 
unambiguous "identifier" for each task. Thus, 
an operating system can use the value of the 
TSS selector to uniquely identify the task. 

A TSS contains 22 words that define the 
contents of all registers and flags, the initial 
stacks for privilege levels 0-2, the LDT selec
tor, and a link to the TSS of the previously 
executing task. Figure 8-1 shows the layout 
of the TSS. The TSS can not be written into 
like an ordinary data segment. 



TASKS AND STATE TRANSITIONS 

CPU INTEL RESERVED 

TASK REGISTER 

I ~--- TSS 
-.. DESCRIPTOR 

15 0 

pID~+I,TYP~ I BASE23_16 

BASE15_0 1'"---------, 
I PROGRAM INVISIBLE I 
I 15 0 I LlMIT15_0 

I 
LIMIT 

I J .)... r]' ------ ------------
I I I 
I 
L ___ 

BASE 
I 
I 

0 I 
--- _...J 

15 

TASK LOT SELECTOR 

DS SELECTOR 

55 SELECTOR 

CS SELECTOR 

ES SELECTOR 

01 

SI 

BP 

SP 

BX 

TASK DX 
STATE 

SEGMENT CX 

AX 

FLAG WORD 

IP (ENTRY POINTI 

SS FOR CPL 2 

SP FOR CPL 2 

55 FOR CPL 1 

SP FOR CPL 1 

SS FOR CPL 0 

SP FOR CPL 0 

BACK LINK SELECTOR TO TSS 

(1) NEVER ALTERED (STATIC) AFTER INITIALIZATION BY 0,5. 
THE VALUES AS INITIALIZED FOR THIS TASK ARE ALWAYS 
VALID SS:SP VALUES TO USE UPON ENTRY TO THAT 
PRIVILEGE LEVEL (0, 1, OR 2) FROM A LEVEL OF 
LESSER PRIVILEGE. 

(2) CHANGED DURING TASK SWITCH 

0 

TYPE DESCRIPTION 

1 AN AVAILABLE TASK STATE 
SEGMENT MAYBE USED AS 
THE DESTINATION OF A TASK 
SWITCH OPERATION. 

A BUSY TASK STATE SEGMENT 
CANNOT BE USED AS THE 
DESTINATION OF A TASK 
SWITCH. 

BYTe 
OFFSET (1) 

2..--/ 4 

40 

3 

36 

34 

3 

30 

'2 

2 

2 

22 

2 

1 

1 

1 

1 

1 

o • 

P 

1 

0 

CURRENT 
TASK 
STATE 

INITIAL 

DESCRIPTION 

BASE AND LIMIT FIELDS ARE VALID 

SEGMENT IS NOT PRESENT IN 
MEMORY. BASE AND LIMIT ARE 
NOT DEFINED 

STACKS (1) 
FOR CPL 0,1,2 

Figure 8-1. Task State Segment and TSS Registers 

8-2 



TASKS AND STATE TRANSITIONS 

Each TSS consists of two parts, a static 
portion and a dynamic portion. The static 
entries are never changed by the iAPX 286, 
while the dynamic entries are changed by each 
task switch out of this task. The static portions 
of this segment are the task LDT selector and 
the initial SS:SP stack pointer addresses for 
levels 0-2. 

The modifiable or dynamic portion of the task 
state segment consists of all dynamically
variable and programmer-visible processor 
registers, including flags, segment registers, 
and the instruction pointer. It also includes 
the linkage word used to chain nested invoca
tions of different tasks. 

The link word provides a history of which 
tasks invoked others. The link word is impor
tant for restarting an interrupted task when 
the interrupt has been serviced. Placing the 
back link in the TSS protects the identity of 
the interrupted task from changes by the 
interrupt task, since the TSS is not writable 
by the interrupt task. (In most systems only 
the operating system has sufficient privilege 
to create or use a writable data segment 
"alias" descriptor for the TSS.) 

The stack pointer entries in the TSS for privi
lege levels 0-2 are static (i.e., never written 
during a privilege or task switch). They define 
the stack to use upon entry to that privilege 
level. These stack entries are initialized by the 
operating system when the task is created. If 
a privilege level is never used, no stack need 
be allocated for it. 

When entering a more privileged level, the 
caller's stack pointer is saved on the stack of 
the new privilege level, not in the TSS. 
Leaving the privilege level requires popping 
the caller's return address and stack pointer 
off the current stack. The stack pointer at that 
time will be the same as the initial value 

8-3 

loaded from the TSS upon entry to the privi
lege level. 

There is only one stack active at any time, the 
one defined by the SS and SP registers. The 
only other stacks that may be non-empty are 
those at outer (less privileged) levels that 
called the current level. Stacks for inner levels 
must be empty, since outward (to numeri
cally larger privilege levels) calls from inner 
levels are not allowed. 

The location of the stack pointer for an outer 
privilege level will always be found at the start 
of the stack of the inner privilege level called 
by that level. That stack may be the initial 
stack for this privilege level or an outer level. 
Look at the start of the stack for this privi
lege level. The TSS contains the starting stack 
address for levels 0-2. If the RPL of the saved 
SS selector is the privilege level required, then 
the stack pointer has been found. Otherwise, 
go to the beginning of the stack defined by 
that value and look at the saved SS:SP value 
there. 

8.2.1 Task State Segment Descriptors 

A special descriptor is used for task state 
segments. This descriptor must be accessible 
at all times; therefore, it can appear only in 
the GDT. The access byte distinguishes TSS 
descriptors from data or code segment 
descriptors. When bits 0 through 4 of the 
access byte are 00001 or 00011, the descrip
tor is for a TSS. 

The complete layout of a task state segment 
descriptor is shown in figure 8-2. 

Like a data segment, the descriptor contains 
a base address and limit field. The limit must 
be at least 002BH (43) to contain the 
minimum amount of information required for 
a TSS. An invalid task exception will occur if 



TASKS AND STATE TRANSITIONS 

o 7 

+7 INTEL RESERVED 

+5 
P I DPL I 01 0 1 0/ ! 1 I 

+3 TSS BASE 15-0 

+1 TSS LIMIT 

15 

o 

TSS BASE23_16 

o 

+6 

+4 

+2 

o 
B~ 1 MEANS TASK IS BUSY 

AND NOT AVAILABLE 

'MUST BE SET TO 0 FOR COMPATIBILITY WITH iAPX 386 

Figure 8-2. TSS Descriptor 

an attempt is made to switch to a task whose 
TSS descriptor limit is less than 43. The error 
code will identify the bad TSS. 

The P-bit (Present) flag indicates whether this 
descriptor contains currently valid informa
tion: I means yes, 0 no. A task switch that 
attempts to reference a not-present TSS 
causes a not-present exception code identify
ing the task state segment selector. 

The descriptor privilege level (DPL) controls 
use of the TSS by JMP or CALL instruc
tions. By the same reasoning as that for call 
gates, DPL can prevent a program from 
calling the TSS and thereby cause a task 
switch. Section 8.3 discusses privilege consid
erations during a task switch in greater detail. 

Bit 4 is always 0 since TSS is a control 
segment descriptor. Control segments cannot 
be accessed by SS, DS, or ES. Any attempt 
to load those segment re~isters with a selec
tor that refers to a control segment causes 
general protection trap. This rule prevents the 
program from improperly changing the 
contents of a control segment. 

TSS descriptors can have two states: idle and 
busy. Bit 1 of the access byte distinguishes 
them. The distinction is necessary since tasks 
are not re-entrant; a busy TSS may not be 
invoked. 

8-4 

8.3 TASK SWITCHING 

A task switch may occur in one of four ways: 

1. The destination selector of a long JMP or 
CALL instruction refers to a TSS 
descriptor. The offset portion of the 
destination address is ignored. 

2. An IRET instruction is executed when 
the NT bit in the flag word = 1. The new 
task TSS selector is in the back link field 
of the current TSS. 

3. The destination selector of a long JMP or 
CALL instruction refers to a task gate. 
The offset portion of the destination 
address is ignored. The new task TSS 
selector is in the gate. (See section 8.5 for 
more information on task gates.) 

4. An interrupt occurs. This interrupt's 
vector refers to a task gate in the inter
rupt descriptor table. The new task TSS 
selector is in the gate. See section 9.4 for 
more information on interrupt tasks. 

No new instructions are required for a task • switch operation. The standard iAPX 86 
JMP, CALL, IRET, or interrupt operations 
perform this function. The distinction between 
the standard instruction and a task switch is 
made either by the type of descriptor refer
enced (for CALL, JMP, or INT) or by the 
NT bit (for IRET) in flag word. 



TASKS AND STATE TRANSITIONS 

Using the CALL or INT instruction to switch 
tasks implies a return is expected from the 
called task. The JMP and IRET instructions 
imply no return is expected from the new task. 

When NT= 1, the IRET instruction causes a 
return to the task that called the current one 
via CALL or INT instruction. 

Access to TSS and task gate descriptors is 
restricted by the rules privilege level. The data 
access rules are used, thereby allowing task 
switches to be restricted to programs of suffi
cient privilege. Address space separation does 
not apply to TSS descriptors since they must 
be in the GDT. The access rules for inter
rupts are discussed in section 9.4. 

For JMP or CALL instructions that refer
ence a TSS descriptor or task gate, the effec
tive privilege level of the destination selector 
(i.e., the numeric maximum of the selector's 
RPL and current CPL) must be less than or 
equal to the descriptor DPL. If it is not, a 
general protection fault will occur with an 
error code identifying the descriptor. 

Once access to the TSS has been granted, the 
task switch operation involves five steps: 

1. Checking that the current task is allowed 
to switch to the designated task: Data 
access privilege rules are applied for the 
JMP /CALL cases. The current task 
becomes the outgoing task. 

2. Checking that the new task is present and 
has a proper TSS limit: The new task 
becomes the incoming task. All errors up 
to this point are handled in the context of 
the outgoing task. The errors are restart
able and error handling is transparent to 
the application program. 

3. Saving the state of the outgoing task: The 
outgoing TSS selector is in the TR. The 
dynamic portion of the outgoing TSS is 
written with the corresponding CPU 

8-5 

register values (e.g., AX, BX, CX, DX, 
SI, DI, BP, SP, ES, DS, SS, CS, IP, and 
flag register). The IP value points at the 
instruction following the one which 
caused the task switch. 

4. Load TR with the incoming task selec
tor, mark the incoming task's descriptor 
as busy, and set TS. 

5. Load the incoming task state and resume 
execution: The following registers are 
loaded: LDT, AX, BX, CX, DX, SI, DI, 
BP, SP, ES, DS, SS, CS, IP, and flag 
register. Any errors detected in this step 
are handled in the context of the incom
ing task. It will appear as if the first 
instruction of the new task had not yet 
executed. 

Note that the state of the outgoing task is 
always saved. If execution of that task is 
resumed, it will start after the instruction that 
caused the task switch. The values of the 
registers will be the same as that when the 
task stopped running. 

Any task switch sets the Task Switched (TS) 
bit in the Machine Status Word (MSW). This 
flag is used when processor extensions such 
as the 80287 Numeric Processor Extension 
are present. The TS bit signals that the 
context of the processor extension may not 
belong to the current iAPX 286 task. Chapter 
11 discusses the TS bit and processor exten
sions in more detail. 

The checks in table 8-1 are made during the 
task switch. All the requirements shown in the 
table must be satisfied for the task switch to 
occur without an exception. For each check, 
the type of exception and error code are 
described. Up to and including step 3, the 
exception occurs in the context of the outgo
ing task. After step 3, the incoming task is 
considered valid. All exceptions occur in the 
context of the incoming task. 



TASKS AND STATE TRANSITIONS 

Table 8-1. Checks Made During a Task Switch 

Step Test Exception' Error Code 

1 Incoming TSS descriptor is present NP Incoming TSS selector 
2 Incoming TSS is idle GP Incoming TSS selector 
3 Limit of incoming TSS greater than 43 Invalid TSS Incoming TSS selector 

••• All register and selector values are loaded ••• 

4 LOT selector of incoming TSS is valid 
5 LOT of incoming TSS is present 
6 CS selector is valid 
7 Code segment is present 
8 Code segment DPL matches CS RPL 
9 Stack segment is valid 
10 Stack segment is writable data segment 
11 Stack segment is present 
12 Stack segment OPL = CPL 
13 OS/ES selectors are valid 
14 OS/ES segments are readable 
15 OS/ES segments are present 
16 OS/ES segment OPL :::: CPL if not conform 

'NP = Not-Present Exception 
GP = General Protection Fault 
SF = Stack Fault 

Validity tests on a selector ensure that the 
selector is in the proper table (i.e., the LDT 
selector refers to GDT), lies within the bounds 
of the table, and refers to the proper type of 
descriptor (i.e., the LDT selector refers to the 
LDT descriptor). 

Note that between steps 3 and 4 in table 8-1, 
all the registers of the new task are loaded. 
Several protection rule violations may exist in 
the new segment register contents. If an 
exception occurs in the context of the new task 
due to checks performed on the newly loaded 
descriptors, the DS and ES segments may not 
be accessible even though the segment regis
ters contain non-zero values. These selector 
values must be saved for later reuse. When 
the exception handler reloads these segment 
registers, another protection exception may 
occur unless the exception handler pre
examines them and fixes any potential 
problems. 

8-6 

Invalid TSS Incoming TSS selector 
Invalid TSS Incoming TSS selector 
Invalid TSS Code segment selector 

NP Code segment selector 
Invalid TSS Code segment selector 

SF Stack segment selector 
GP Stack segment selector 
SF Stack segment selector 
SF Stack segment selector 
GP Segment selector 
GP Segment selector 
NP Segment selector 
GP Segment selector 

A task switch allows flexibility in the privi
lege level of the outgoing and incoming tasks. 
The privilege level at which execution resumes 
in the incoming task is not restricted by the 
privilege level of the outgoing task. This is 
reasonable, since both tasks are isolated from 
each other with separate address spaces and 
machine states. The privilege rules prevent 
improper access to a TSS. The only interac
tion between the tasks is to the extent that 
one started the other and the incoming task 
may restart the outgoing task by executing an 
IRET instruction. 

8.4 TASK LINKING 

The TSS has a field called "back link" which 
contains the selector of the TSS of a task that 
should be restarted when the current task 
completes. The back link field of an inter
rupt-initiated task is automatically written 
with the TSS selector of the interrupted task. 



TASKS AND STATE TRANSITIONS 

A task switch initiated by a CALL instruc
tion also points the back link at the outgoing 
task's TSS. Such task nesting is indicated to 
programs via the Nested Task (NT) bit in the 
flag word of the incoming task. 

Task nesting is necessary for interrupt 
functions to be processed as separate tasks. 
The interrupt function is thereby isolated from 
all other tasks in the system. To restart the 
in terru pted task, the in terru pt handler 
executes an IRET instruction much in the 
same manner as an iAPX 86 interrupt 
handler. The IRET instruction will then cause 
a task switch to the interrupted task. 

Completion of a task occurs when the IRET 
instruction is executed with the NT bit in the 
flag word set. The NT bit is automatically 
set/reset by task switch operations as appro
priate. Executing an IRET instruction with 
NT cleared causes the normal iAPX 86 inter
rupt return function to be performed, and no 
task switch occurs. 

Executing IRET with NT set causes a task 
switch to the task defined by the back link 
field of the current TSS. The selector value is 
fetched and verified as pointing to a valid, 
accessible TSS. The normal task switch 
operation described in section 8.3 then occurs. 

After the task switch is complete, the outgo
ing task is now idle and considered ready to 
process another interrupt. 

Table 8-2 shows how the busy bit, NT bit, 
and link word of the incoming and outgoing 
task are affected by task switch operations 
caused by JMP, CALL, or IRET 
instructions. 

Violation of any of the busy bit requirements 
shown in table 8-2 causes a general protec
tion fault with the saved machine state 
appearing as if the instruction had not 
executed. The error code identifies the selec
tor of the TSS with the busy bit. 

A bus lock is applied during the testing and 
setting of the TSS descriptor busy bit to 
ensure that two processors do not invoke the 
same task at the same time. See also section 
11.4 for other multi-processor considerations. 

The linking order of tasks may need to be 
changed to restart an interrupted task before 
the task that interrupted it completes. To 
remove a task from the list, trusted operating 
system software must change the backlink 
field in the TSS of the interrupting task first, 
then clear the busy bit in the TSS descriptor 
of the task removed from the list. 

Table 8·2. Effect of a Task Switch on BUSY and NT Bits and the Link Word 

JMP CALL/INT IRET 
Affected Field Instruction Instruction Instruction 

Effect Effect Effect 

Busy bit of incoming task TSS descriptor Set, must be Set, must be 0 Unchanged, 
o before before must be set 

Busy bit of outgOing task TSS descriptor Cleared Unchanged (will Cleared 
already be 1) 

NT bit in incoming task flag word Cleared Set Unchanged 

NT bit in outgoing task flag word Unchanged Unchanged Cleared 

Back link in incoming task TSS Unchanged Set to outgoing Unchanged 
task TSS selector 

Back link of outgoing task TSS Unchanged Unchanged Unchanged 

8·7 



TASKS AND STATE TRANSITIONS 

When trusted software deletes the link from 
one task to another, it should place a value in 
the backlink field, which will pass control to 
that trusted software when the task attempts 
to resume execution of another task via IRET. 

8.5 TASK GATES 

A task may be invoked by several different 
events. Task gates are provided to support this 
need. Task gates are used in the same way as 
call and interrupt gates. The ultimate effect 
of jumping to or calling a task gate is the same 
as jumping to or calling directly to the TSS 
in the task gate. 

Figure 8-3 depicts the layout of a task gate. 

A task gate is identified by the access byte 
field in bits 0 through 4 being 00101. The gate 
provides an extra level of indirection between 
the destination address and the TSS selector 
value. The offset portion of the JMP or CALL 
destination address is ignored. 

Gate use provides flexibility in controlling 
access to tasks. Task gates can appear in the 

o 7 

GDT, IDT, or LDT. The TSS descriptors for 
all tasks must be kept in the GDT. They are 
normally placed at level 0 to prevent any task 
from improperly invoking another task. Task 
gates placed in the LDT allow private access 
to selected tasks with full privilege control. 

The data segment access rules apply to 
accessing a task gate via JMP, CALL, or INT 
instructions. The effective privilege level 
(EPL) of the destination selector must be 
numerically less than or equal to the DPL of 
the task gate descriptor. Any violation of this 
requirement causes a general protection fault 
with an error code identifying the task gate 
involved. 

Once access to the task gate has been verified, 
the TSS selector from the gate is read. The 
RPL of the TSS selector is ignored. From this 
point, all the checks and actions performed 
for a JMP or CALL to a TSS after access 
has been verified are performed (see section 
8.4). Figure 8-4 illustrates an example of a 
task switch through a task gate. 

o 

+7 INTEL RESERVED' +6 

+5 

+3 

+1 

15 

PIDPLlolo 
1 1 0 11 1 

UNUSED +4 

TSS SELECTOR +2 

UNUSED o 

o 
• MUST BE SET TO 0 FOR 
COMPATIBILITY WITH IAPX 386 

Figure 8-3. Task Gate Descriptor 

8-8 



TASKS AND STATE TRANSITIONS 

TASK A TASK B 

f ~ 
TAS~ { 

LOT DESCRIPTOR LOT 

TSS DESCRIPTOR 

I I SELECTOR r-CALL TASK GATE 

LOT SELECTOR , 
f C 

LOT L 
LOT DESCRIPTOR 

LOT SELECTOR } TASK 

TSS DESCRIPTOR A ~ 
BACK LINK 

TSS 

TSS GOT 

Figure 8-4. Task Switch Through a Task Gate 

8-9 





Interrupts And Exceptions 9 





CHAPTER 9 
INTERRUPTS AND EXCEPTIONS 

Interrupts and exceptions are special cases of 
control transfer within a program. An inter
rupt occurs as a result of an event that is 
independent of the currently executing 
program, while exceptions are a direct result 
of the program currently being executed. 
Interrupts may be external or internal. Exter
nal interrupts are generated by either the 
INTR or NMI input pins. Internal interrupts 
are caused by the INT instruction. Excep
tions occur when an instruction cannot be 
completed normally. Although their causes 
differ, interrupts and exceptions use the same 
control transfer techniques and privilege rules; 
therefore, in the following discussions the term 
interrupt will also apply to exceptions. 

The program used to service an interrupt may 
execute in the context of the task that caused 
the interrupt (i.e., used the same TSS, LDT, 
stacks, etc.) or may be a separate task. The 
choice depends on the function to be 
performed and the level of isolation required. 

r 

CPU ~ 

15 0 

1 lOT LIMIT -f-

10TR I lOT BASE 

23 0 -'"' 

9.1 INTERRUPT DESCRIPTOR TABLE 

Many different events may cause an inter
rupt. To allow the reason for an interrupt to 
be easily identified, each interrupt source is 
given a number called the interrupt vector. Up 
to 256 different interrupt vectors (numbers) 
are possible. See figure 9-1. 

A table is used to define the handler for each 
interrupt vector. The Interrupt Descriptor 
Table (IDT) defines the interrupt handlers for 
up to 256 different interrupts. The IDT is in 
physical memory, pointed to by the contents 
of the on-chip IDT register that contains a 
24-bit base and a 16-bit limit. The IDTR is 
normally loaded with the LIDT instruction by 
code that executes at privilege level 0 during 
system initialization. The IDT may be located 
anywhere in the physical address space of the 
iAPX 286. 

Each IDT entry is a 4-word gate descriptor 
that contains a pointer to the handler. The 

MEMORY 

GATE FOR 
INTERRUPT #n 

GATE FOR 
INTERRUPT #n-1 

· · · 
GATE FOR 

INTERRUPT # 1 

GATE FOR 
INTERRUPT #0 

-r 

h 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

THE lOT MAY 
CONTAIN 
INTERRUPT 
GATES, TRAPS 
OR TASK GATES 
ONLY. 

Figure 9-1. Interrupt Descriptor Table Definition 

9-1 



INTERRUPTS AND EXCEPTIONS 

three types of gates permitted in the IDT are 
interrupt gates, trap gates (discussed in 
section 9.3), and task gates (discussed in 
section 9.5). Interrupt and task gates process 
interrupts in the same task, while task gates 
cause a task switch. Any other descriptor type 
in the IDT will cause an exception if it is 
referenced by an interrupt. 

The IDT need not contain all 256 entries. A 
16-bit limit register allows less than the full 
number of entries. Unused entries may be 
signaled by placing a zero in the access rights 
byte. If an attempt is made to access an entry 
outside the table limit, or if the wrong 
descriptor type is found, a general protection 
fault occurs with an error code pushed on the 
stack identifying the invalid interrupt vector 
(see figure 9-2). 

Exception error codes that refer to an IDT 
entry can be identified by bit 1 of the error 
code that will be set. Bit 0 of the error code 
is 1 if the interrupt was caused by an event 
external to the program (i.e., an external 
interrupt, a single step, a processor extension 
error, or a processor extension not present). 

Interrupts 0-31 are reserved for use by Intel. 
Some of the interrupts are used for instruc-

tion exceptions. The IDT limit must be at 
least 255 (32X8-l) to accommodate the 
minimum number of interrupts. The remain
ing 224 interrupts are available to the user. 

9.2 HARDWARE INITIATED INTERRUPTS 

Hardware-initiated interrupts are caused by 
some external event that activates either the 
INTR or NMI input pins of the processor. 
Events that use the INTR input are classified 
as maskable interrupts. Events that use the 
NMI input are classified as non-maskable 
interrupts. 

All 224 user-defined interrupt sources share 
the INTR input, but each has the ability to 
use a separate interrupt handler. An 8-bit 
vector supplied by the interrupt controller 
identifies which interrupt is being signaled. To 
read the interrupt id, the processor performs 
the interrupt acknowledge bus sequence. 

Maskable interrupts (from the INTR input) 
can be inhibited by software by setting the 
interrupt flag bit (IF) to 0 in the flag word. 
The IF bit does not inhibit exceptions or 
interrupts caused by the INT instruction. The 
IF bit also does not inhibit processor exten
sion interrupts. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 lOT VECTOR 0 1 
E 
X 
T 

1 An event external to the program 
caused the exception (i.e., external 
interrupt, single step, processor 
extension error) 

o An exception occurred while 
processing an instruction at CS:IP 
saved on stack 

Figure 9-2. lOT Selector Error Code 

9-2 



INTERRUPTS AND EXCEPTIONS 

The type of gate placed into the IDT for the 
interrupt vector will control whether other 
maskable interrupts remain enabled or not 
during the servicing of that interrupt. The flag 
word that was saved on the stack reflects the 
maskable interrupt enable status of the 
processor prior to the interrupt. The proce
dure servicing a maskable interrupt can also 
prevent further maskable interrupts during its 
work by resetting the IF flag. 

Non-maskable interrupts are caused by the 
NMI input. They have a higher priority than 
the maskable interrupts (meaning that in case 
of simultaneous requests, the non-maskable 
interrupt will be serviced first). A non
maskable interrupt has a fixed vector (#2) and 
therefore does not require an interrupt 
acknowledge sequence on the bus. A typical 
use of an NMI is to invoke a procedure to 
handle a power failure or some other critical 
hardware exception. 

A procedure servicing an NMI will not be 
further interrupted by other non-maskable 
interrupt requests until an IRET instruction 
is executed. A further NMI request is 
remembered by the hardware and will be 
serviced after the first IRET instruction. Only 
one NMI request can be remembered. To 
prevent a maskable interrupt from interrupt
ing the NMI interrupt handler, the IF flag 
should be cleared either by using an interrupt 
gate in the IDT or by setting IF = 0 in the 
flag word of the task involved. 

9.3 SOFTWARE INITIATED INTERRUPTS 

Software initiated interrupts occur explicitly 
as interrupt instructions or may arise as the 
result of an exceptional condition that 
prevents the continuation of program execu
tion. Software interrupts are not maskable. 
Two interrupt instructions exist which explic
itly cause an interrupt: INT nand INT 3. The 
first allows specification of any interrupt 

9-3 

vector; the second implies interrupt vector 3 
(Breakpoint ). 

Other instructions like INTO, BOUND, DIY, 
and IDlY may cause an interrupt, depending 
on the overflow flag or values of the operands. 
These instructions have predefined vectors 
associated with them in the first 32 interrupts 
reserved by Intel. 

A whole class of interrupts called exceptions 
are intended to detect faults or programming 
errors (in the use of operands or privilege 
levels). Exceptions cannot be masked. They 
also have fixed vectors within the first 32 
interrupts. Many of these exceptions pass an 
error code on the stack, which is not the case 
with the other interrupt types discussed in 
section 9.2. Section 9.5 discusses these error 
codes as well as the priority among interrupts 
that can occur simultaneously. 

9.4 INTERRUPT GATES AND TRAP GATES 

Interrupt gates and trap gates are special 
types of descriptors that may only appear in 
the interrupt descriptor table. The difference 
between a trap and an interrupt gate is 
whether the interrupt enable flag is to be 
cleared or not. An interrupt gate specifies a 
procedure that enters with interrupts disabled 
(i.e., with the interrupt enable flag cleared); 
entry via a trap gate leaves the interrupt 
enable status unchanged. The NT flag is 
always cleared (after the old NT state is saved 
on the stack) when an interrupt uses these 
gates. Interrupts that have either gate in the 
associated IDT entry will be processed in the 
current task. 

Interrupts and trap gates have the same 
structure as the call gates discussed in section 
7.5.1. The selector and entry point for a code 
segment to handle the interrupt or exception 
is contained in the gate. See figure 9-3. 



INTERRUPTS AND EXCEPTIONS 

The access byte contains the Present bit, the 
descriptor privilege level, and the type identi
fier. Bits 0-4 of the access byte have a value 
of 00110 for interrupt gates, 00111 for trap 
gates. Byte 5 of the descriptor is not used by 
either of these gates; it is used only by the 
call gate, which uses it as the parameter word
count. 

Trap and interrupt gates allow a privilege 
level transition to occur when passing control 
to a non-conforming code segment. Like a call 
gate, the DPL of the target code segment 
selected determines the new CPL. The DPL 
of the new non-conforming code segment must 
be numerically less than or equal to CPL. 

No privilege transition occurs if the new code 
segment is conforming. If the DPL of the 
conforming code segment is greater than the 
CPL, a general protection exception will 
occur. 

As with all descriptors, these gates in the IDT 
carry a privilege level. The DPL controls 
access to interrupts with the INT nand INT 
3 instructions. For access, the CPL of the 
program must be less than or equal to the gate 
DPL. If the CPL is not, a general protection 
exception will result with an error code 

identifying the selected IDT gate. For excep
tions and external interrupts, the CPL of the 
program is ignored while accessing the IDT. 

Interrupts using a trap or an interrupt gate 
are handled in the same manner as an iAPX 
86 interrupt. The flags and return address of 
the interrupted program are saved on the 
stack of the interrupt handler. To return to 
the interrupted program, the interrupt handler 
executes an IRET instruction. 

If an increase in privilege is required for 
handling the interrupt, a new stack will be 
loaded from the TSS. The stack pointer of the 
old privilege level will also be saved on the 
new stack in the same manner as a call gate. 
Figure 9-4 shows the stack contents after an 
exception with an error code (with and 
without a privilege level change). 

If an interrupt or trap gate is used to handle 
an exception that passes an error code, the 
error code will be pushed onto the new stack 
after the return address (as shown in figure 
9-4). If a task gate is used, the error code is 
pushed onto the stack of the new task. The 
return address is saved in the old TSS. 

+7 INTEL RESERVED' +6 

+5 P\DP21010 1 1 
T I UNUSED 

+3 INTERRUPT CODE SEGMENT SELECTOR 

+1 INTERRUPT CODE OFFSET 

T ~ 1 FOR TRAP GATE 
• MUST BE SET TO 0 FOR 
COMPATIBILITY WITH iAPX 386 T ~ 0 FOR INTERRUPT GATE 

Figure 9-3. Trap/Interrupt Gate Descriptors 

9-4 

+4 

+2 

+0 



INTERRUPTS AND EXCEPTIONS 

OLD SP -- NO PRIVILEGE TRANSITION 
OLD FLAGS 

OLDCS 

OLD IP 

ERROR CODE 
SP 

h , 

SS __ r ... ----~r 
SP FROM TSS - - WITH PRIVILEGE TRANSITION 

OLD SS 

OLD SP 

OLD FLAGS 

OLDCS 

OLD IP 

ERROR CODE 
SP 

"' 'h 

SS FROM TSS __ .... 1------..... 1 
STACK SEGMENT 

Figure 9-4. Stack Layout After an Exception with an Error Code 

If an interrupt gate is used to handle an inter
rupt, it is assumed that the selected code 
segment has sufficient privilege to re-enable 
interrupts. The IRET instruction will not re
enable interrupts if CPL is numerically 
greater than IOPL. 

Table 9-1 shows the checks performed during 
an interrupt operation that uses an interrupt 
or trap gate. EXT equals I when an event 
external to the program is involved, 0 other
wise. External events are maskable or non
maskable interrupts, single step interrupt, 

9-5 

processor extension segment overrun inter
rupt, numeric processor not-present excep
tion or numeric processor error. The EXT bit 
signals that the interrupt or exception is not 
related to the instruction at CS:IP. Each error 
code has bit 1 set to indicate an IDT entry is 
involved. 

When the interrupt has been serviced, the 
service routine returns control via an IRET 
instruction to the routine that was inter
nlpted. If an error code was passed, the 
exception handler must remove the error code 
from the stack before executing IRET. 



INTERRUPTS AND EXCEPTIONS 

Table 9-1. Trap and Interrupt Gate Checks 

Check 

Interrupt vector is in lOT limit 

Trap, Interrupt, or Task Gate in lOT Entry 

If INT instruction, gate OPL ;::: CPL 

P bit of gate is set 

Code segment selector is in descriptor table limit 

CS selector refers to a code segment 

If code segment is non-conforming, Code Segment 
DPL::5 CPL 

If code segment is non-conforming, and OPL < CPL and if 
SS selector in TSS is in descriptor table limit 

If code segment is non-conforming, and OPL < CPL and if 
SS is a writable data segment 

If code segment is non-conforming, and OPL < CPL and 
code segment OPL = stack segment OPL 

If code segment is non-conforming, and OPL < CPL and if 
SS is present 

If code segment is non-conforming, and OPL < CPL and if 
there is enough space for 5 words on the stack (or 6 if error 
code is required) 

If code segment is conforming, then OPL ;:::CPL 

If code segment is not present 

If IP is not within the limit of code segment 

• GP = General Protection Exception 
N P = Not Present Exception 
SF = Stack Fault 

Exception· Error Code 

GP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

NP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

GP lOT entry X 8 + 2 + EXT 

GP Stack segment selector + EXT 

SF Stack segment selector + EXT 

SF 0+ EXT 

GP Code segment selector + EXT 

NP Code segment selector + EXT 

GP 0+ EXT 

The NT flag is cleared when an interrupt 
occurs which uses an interrupt or trap gate. 
Executing IRET with NT=O causes the 
normal interrupt return function. Executing 
IRET with NT= 1 causes a task switch (see 
section 8.4 for more details). 

performed since no parameters are on the 
stack. See section 7.5.2 for information on 
inter-level returns. 

Like the RET instruction, IRET is restricted 
to return to a level of equal or lesser privilege 
unless a task switch occurs. The IRET 
instruction works like the inter-segment RET 
instruction except that the flag word is popped 
and no stack pointer update for parameters is 

9-6 

To distinguish an inter-level IRET, the new 
CPL (which is the RPL of the return address 
CS selector) is compared with the current 
CPL. If they are the same, the IP and flags 
are popped and execution continues. 

An inter-level return via IRET has all the 
same checks as shown in table 7-4. The only 
difference is the extra word on the stack for 
the old flag word. 



INTERRUPTS AND EXCEPTIONS 

Interrupt gates are typically associated with 
high-priority hardware interrupts for 
automatically disabling interrupts upon their 
invocation. Trap gates are typically software
invoked since they do not disable the maska
ble hardware interrupts. However, low-prior
ity interrupts (e.g., a timer) are often invoked 
via a trap gate to allow other devices of higher 
priority to interrupt the handler of that lower 
priority interrupt. 

Table 9-2 illustrates how the interrupt enable 
flag and interrupt type interact with the type 
of gate used. 

9.5 TASK GATES AND INTERRUPT TASKS 

The iAPX 286 allows interrupts to directly 
cause a task switch. When an interrupt vector 
selects an entry in the IDT which is a task 
gate, a task switch occurs. The format of a 
task gate is described in section 8.5. If a task 
gate is used to handle an exception that passes 
an error code, the error code will be pushed 
onto the new task's stack. 

A task gate offers two advantages over 
interrupt gates: 

1. It automatically saves all of the processor 
registers as part of the task-switch opera
tion whereas an interrupt gate saves only 
the flag register and CS:IP. 

2. The new task is completely isolated from 
the task that was interrupted. Address 
spaces are isolated and the interrupt
handling task is unaffected by the 
privilege level of the interrupted task. 

An interrupt task switch works like any other 
task switch once the TSS selector is fetched 
from the task gate. Like a trap or an inter
rupt gate, privilege and presence rules are 
applied to accessing a task gate during an 
interrupt. 

Interrupts that cause a task switch set the NT 
bit in the flags of the new task. The TSS 
selector of the interrupted task is saved in the 
back link field of the new TSS. The inter
rupting task executes IRET to perform a task 
switch to return to the interrupted task 
because NT was previously set. The interrupt 
task state is saved in its TSS before returning 
control to the task that was interrupted; NT 
is restored to its original value in the inter
rupted task. 

Since the interrupt handler state after 
executing IRET is saved, a re-entry of the 
interrupt service task will result in the execu
tion of the instruction that follows IRET. 
Therefore, when the next interrupt occurs, the 
machine state will be the same as that when 
the IRET instruction was executed. 

Table 9-2. Interrupt and Gate Interactions 

Type of Type of Further Further Further Further software 
Interrupt Gate NMls? INTRs? Exceptions? Interrupts? 

NMI Trap No Yes Yes Yes 
NMI Interrupt No No Yes Yes 
INTR Trap Yes Yes Yes Yes 
INTR Interrupt Yes No Yes Yes 
Software Trap Yes Yes Yes Yes 
Software Interrupt Yes No Yes Yes 
Exception Trap Yes Yes Yes Yes 
Exception Interrupt Yes No Yes Yes 

9-7 



INTERRUPTS AND EXCEPTIONS 

Note that an interrupt task resumes execu
tion each time it is re-invoked, whereas an 
interrupt procedure starts executing at the 
beginning of the procedure each time. The 
interrupted task restarts execution at the point 
of interruption because interrupts occur before 
the execution of an instruction. 

When an interrupt task is used, the task must 
be concerned with avoiding further interrupts 
while it is operating. A general protection 
exception will occur if a task gate referring to 
a busy TSS is used while processing an inter
rupt. If subsequent interrupts can occur while 
the task is executing, the IF bit in the flag 
word (saved in the TSS) must be zero. 

9.5.1 Scheduling Considerations 

A software-scheduled operating system must 
be designed to handle the fact that interrupts 
can come along in the middle of scheduled 
tasks and cause a task switch to other tasks. 
The interrupt-scheduled tasks may call the 
operating system and eventually the schedu
ler, which needs to recognize that the task that 
just called it is not the one the operating 
system last scheduled. 

If the Task Register (TR) does not contain 
the TSS selector of the last scheduled task, 
an interrupt initiated task switch has 
occurred. More than one task may have been 
interrupt-scheduled since the scheduler last 
ran. The scheduler must find via the backlink 
fields in each TSS all tasks that have been 
interrupted. The scheduler can clear those 
links and reset the busy bit in the TSS 
descriptors, putting them back in the sched
uling queue for a new analysis of execution 
priorities. Unless the interrupted tasks are 
placed back in the scheduling queue, they 
would have to await a later restart via the task 
that interrupted them. 

To locate tasks that have been interrupt
scheduled, the scheduler looks into the current 
task's TSS backlink (word one of the TSS), 

9-8 

which points at the interrupted task. If that 
task was not the last task scheduled, then it's 
backlink field in the TSS also points to an 
interrupted task. 

The backlink field of each interrupt-scheduled 
task should be set by the scheduler to point 
to a scheduling task that will reschedule the 
highest priority task when the interrupt
scheduled task executes IRET. 

9.5.2 Deciding Between Task, Trap, and 
Interrupt Gates 

Interrupts and exceptions can be handled with 
either a trap/interrupt gate or a task gate. 
The advantages of a task gate are all the 
registers are saved and a .new set is loaded 
with full isolation between the interrupted 
task and the interrupt handler. The advan
tages of a trap/interrupt gate are faster 
response to an interrupt for simple operations 
and easy access to pointers in the context of 
the interrupted task. All interrupt handlers 
use IRET to resume the interrupted program. 

Trap/interrupt gates require that the inter
rupt handler be able to execute at the same 
or greater privilege level than the interrupted 
program. If any program executing at level 0 
can be interrupted through a trap/task gate, 
the interrupt handler must also execute at 
level 0 to avoid general protection exception. 
All code, data, and stack segment descriptors 
must be in the GDT to allow access from any 
task. But, placing all system interrupt 
handlers at privilege level 0 may be in 
consistent with maintaining the integrity of 
level 0 programs. 

Some exceptions require the use of a task 
gate. The invalid task state segment excep
tion (#10) can arise from errors in the origi
nal TSS as well as in the target TSS. 
Handling the exception within the same task 
could lead to recursive interrupts or other 
undesirable effects that are difficult to trace. 



INTERRUPTS AND EXCEPTIONS 

The double fault exception (#8) should also 
use a task gate to prevent shutdown from 
another protection violation occurring during 
the servicing of the exception. 

9.6 PROTECTION EXCEPTIONS AND 
RESERVED VECTORS 

A protection violation will cause an excep
tion, i.e., a non-maskable interrupt. Such a 
fault can be handled by the task that caused 
it if an interrupt or trap gate is used, or by a 
different task if a task gate is used (in the 
IDT). 

Protection exceptions can be classified into 
program errors or implicit requests for service. 
The latter include stack overflow and not
present faults. Examples of program errors 
include attempting to write into a read-only 
segment, or violating segment limits. 

Requests for service may use different inter
rupt vectors, but many diverse types of 
protection violation use the same general 
protection fault vector. Table 9-3 shows the 
reserved exceptions and interrupts. Interrupts 
0-31 are reserved by Intel. 

When simultaneous external interrupt 
requests occur, they are processed in the fixed 
order shown in table 9-4. For each interrupt 
serviced, the machine state is saved. The new 
CS:IP is loaded from the gate or TSS. If other 
interrupts remain enabled, they are processed 
before the first instruction of the current 
interrupt handler, i.e., the last interrupt 
processed is serviced first. 

All but two exceptions are restartable after 
the exceptional condition is removed. The two 
non-restartable exceptions are the processor 
extension segment overrun and writing into 
read only segments with XCHG, ADC, SBB, 
RCL, and RCR instructions. The return 
address normally points to the failing instruc
tion, including all leading prefixes. 

The instruction and data addresses for the 
processor extension segment overrun are 
contained in the processor extension status 
registers. 

Interrupt handlers for most exceptions receive 
an error code that identifies the selector 
involved, or a 0 in bits 15-3 of the error code 

Table 9·3. Reserved Exceptions and Interrupts 

Vector 
Description Restartable 

Error Code 
Number on Stack 

0 Divide Error Exception Yes No 
1 Single Step Interrupt Yes No 
2 NMllnterrupt Yes No 
3 BreakpOint Interrupt Yes No 
4 INTO Detected Overflow Exception Yes No 
5 BOUND Range Exceeded Exception Yes No 
6 Invalid Opcode Exception Yes No 
7 Processor Extension Not Available Exception Yes No 
8 Double Exception Detected No Yes (Always 0) 
9 Processor Extension Segment Overrun Interrupt No No 

10 Invalid Task State Segment Yes Yes 
11 Segment Not Present Yes Yes 
12 Stack Segment Overrun or Not Present Yes Yes 
13 General Protection Yes' Yes 

* Except for writes into read-only segments (see section 9.6) 

9-9 



INTERRUPTS AND EXCEPTIONS 

Table 9-4. Interrupt Processing Order 

Order Interrupt 

1 Instruction exception 
2 Single step 
3 NMI 
4 Processor extension segment overrun 
5 INTR 

field if there is no selector involved. The error 
code is pushed last, after the return address, 
on the stack that will be active when the trap 
handler begins execution. This ensures that 
the handler will not have to access another 
stack segment to find the error code. 

The following sections describe the excep
tions in greater detail. 

9.6.1 Invalid OP-Code (Interrupt 6) 

When an invalid opcode is detected by the 
execution unit, interrupt 6 is invoked. (It is 
not detected until an attempt is made to 
execute it, i.e., prefetching an invalid opcode 
does not cause this exception.) The saved 
CS:IP will point to the invalid opcode or any 
leading prefixes; no error code is pushed on 
the stack. The exception can be handled 
within the same task, and is restartable. 

This exception will occur for all cases of an 
invalid operand. Examples include an inter
segment jump referencing a register operand, 
or an LES instruction with a register source 
operand. This exception can also occur 
because redundant prefixes have been placed 
before an instruction so that the total length 
of the instruction exceeds 10 bytes. 

9.6.2 Double Fault (Interrupt 8) 

If two separate protection violations occur 
during a single instruction, exception 8 
(Double Fault) occurs (e.g., a general protec
tion fault in level 3 is followed by a not
present fault due to a segment not-present). 

9-10 

If another protection violation occurs during 
the processing of exception 8, the iAPX 286 
enters shutdown, during which time no further 
instructions or exceptions are processed. 

Either NMI or RESET can force the CPU 
out of shutdown. An NMI input can bring the 
CPU out of shutdown if no errors occur while 
processing the NMI interrupt; otherwise, 
shutdown can only be exited via the RESET 
input. NMI causes the CPU to remain in 
protected mode, and RESET causes it to exit 
protected mode. Shutdown is signaled exter
nally via a HALT bus operation with Al 
LOW. 

A task gate must be used for the double fault 
handler to assure a proper task state to 
respond to the exception. The back link field 
in the current TSS will identify the TSS of 
the task causing the exception. The saved 
address will point at the instruction that was 
being executed (or was ready to execute) 
when the error was detected. The error code 
will be null. 

9.6.3 Processor Extension Segment 
Overrun (Interrupt 9) 

Interrupt 9 signals that the processor exten
sion (such as the 80287 numerics processor) 
has overrun the limit of a segment while 
attempting to read/write the second or subse
quent words of an operand. The interrupt is 
generated by the processor extension data 
channel within the 80286 during the limit test 
performed on each transfer of data between 
memory and the processor extension. This 
interrupt can be handled in the same task but 
is not restartable. 

As with all external interrupts, Interrupt 9 is 
an asynchronous demand caused by the 
processor extension referencing something 
outside a segment boundary. Since Interrupt 
9 can occur any time after the processor 
extension is started, the 80286 does not save 



INTERRUPTS AND EXCEPTIONS 

any information that identifies what particu
lar operation had been initiated in the proces
sor extension. The processor extension 
maintains special registers that identify the 
last instruction it executed and the address of 
the desired operand. 

After this interrupt occurs, no WAIT or 
escape instruction, except FNINIT, can be 
executed until the interrupt condition is 
cleared or the processor extension is reset. The 
interrupt signals that the processor extension 
is requesting an invalid data transfer. The 
processor extension will always be busy when 
waiting on data. Deadlock results if the CPU 
executes an instruction that causes it to wait 
for the processor extension before resetting the 
processor extension. Deadlock means the CPU 
is waiting for the processor extension to 
become idle while the processor extension 
waits for the CPU to service its data request. 

The FNINIT instruction is guaranteed to 
reset the processor extension without causing 
deadlock. After the interrupt is cleared, this 
restriction is lifted. It is then possible to read 
the instruction and operal!.d address via 

FSTENV or FSA VE, causing the segment 
overrun in the processor extension's special 
registers. 

The task interrupted by interrupt 9 is not 
necessarily the task that executed the ESC 
instruction that caused the interrupt. The 
operating system should keep track of which 
task last used the NPX (see section 11.4). If 
the interrupted task did not execute the ESC 
instruction, it can be restarted. The task that 
executed the ESC instruction cannot. 

9.6.4 Invalid Task State Segment 
(Interrupt 10) 

Interrupt lOis invoked if during a task switch 
the new TSS pointed to by the task gate is 
invalid. The EXT bit indicates whether the 
exception was. caused by an event outside the 
control of the program. 

A TSS is considered invalid in the cases shown 
in table 9-5. 

Once the existence of the new TSS is verified, 
the task switch is considered complete, with 

Table 9-5. Conditions That Invalidate the TSS 

Reason Error Code 

The limit in the TSS descriptor is less than 43 TSS id + EXT 

Invalid LOT selector or LOT not present LOT id + EXT 

Stack segment selector is outside table limit SS id + EXT 

Stack segment is not a writable segment SS id + EXT 

Stack segment OPL does not match new CPL SS id + EXT 

Stack segment selector RPL*CPL SS id + EXT 

Code segment selector is outside table limit CS id + EXT 

Code segment selector does not refer to code segment CS id + EXT 

Non-conforming code segment OPL*CPL CS id + EXT 

Conforming code segment OPL>CPL CS id + EXT 

OS or ES segment selector is outside table limits ES/OS id + EXT 

OS or ES are not readable segments ES/OS id + EXT 

9-11 



INTERRUPTS AND EXCEPTIONS 

the backlink set to the old task if necessary. 
All errors are handled in the context of the 
new task. 

Exception 10 must use a task gate to insure a 
proper TSS to process it. 

9.6.5 Not Present (Interrupt 11) 

Exception 11 occurs when an attempt is made 
to load a not-present segment or to use a 
control descriptor that is marked not-present. 
(If, however, the missing segment is an LDT 
that is needed in a task switch, exception 10 
occurs.) This exception is fully restart able. 

Any segment load instruction can cause this 
exception. Interrupt 11 is always processed in 
the context of the task in which it occurs. 

The error code has the form shown in figure 
9-5. The EXT bit will be set if an event exter
nal to the program caused an interrupt that 
subsequently referenced a not-present 
segment. Bit 1 will be set if the error code 
refers to an IDT entry, e.g., an INT instruc
tion referencing a not-present gate. The upper 
14 bits are the upper 14 bits of the segment 
selector involved. 

When a not-present exception occurs, the ES 
and DS segment registers may not be usable 
for referencing memory. During a task switch, 
the selector values are loaded before the 
descriptors are checked. The not-present 
handler should not rely on being able to use 
the values found in CS, ES, SS, and DS 
without causing another exception. 

9.6.6 Stack Fault (Interrupt 12) 

Stack underflow or overflow causes exception 
12, as does a not-present stack segment refer
enced during an inter-task or inter-level 
transition. This exception is fully restart able. 
A limit violation of the current stack results 
in an error code of O. The EXT bit of the error 

9-12 

code tells whether an interrupt external to the 
program caused the exception. 

Any instruction that loads a selector to SS 
(e.g., POP SS, task switch) can cause this 
exception. This exception must use a task gate 
if there is a possibility that any level 0 stack 
may not be present. 

When a stack fault occurs, the ES and DS 
segment registers may not be usable for 
referencing memory. During a task switch, the 
selector values are loaded before the descrip
tors are checked. The stack fault handler 
should check the saved values of SS, CS, DS, 
and ES to be sure that they refer to present 
segments before restoring them. 

9.6.7 General Protection Fault 
(Interrupt 13) 

If a protection violation occurs which is not 
covered in the preceding paragraphs, it is 
classed as Interrupt 13, a general protection 
fault. The error code is zero for limit viola
tions, write to read-only segment violations, 
and accesses relative to DS or ES when they 
are zero or refer to a segment at a greater 
privilege level than CPL. Other access viola
tions (e.g., a wrong descriptor type) push a 
non-zero error code that identifies the selec
tor used on the stack. Error codes with bit 0 
cleared and bits 15-2 non-zero indicate a 
restart able condition. 

Bit 1 of the error code identifies whether the 
selector is in the IDT or LDT /GDT. If bit 
1 =0 then bit 2 separates LDT from GDT. 
Bit 0 (EXT) indicates whether the exception 
was caused by the program or an event exter
nal to it (i.e., single stepping, an external 
interrupt, a processor extension not-present or 
a segment overrun). If bit 0 is set, the selec
tor typically has nothing to do with the 
instruction that was interrupted. The selector 
refers instead to some step of servicing an 
interrupt that failed. 



INTERRUPTS AND EXCEPTIONS 

When bit 0 of the error code is set, the inter
rupted program can be restarted, except for 
processor extension segment overrun excep
tions (see section 9.6.3). The exception with 
the bit 0 of the error code = 1 indicates some 
interrupt has been lost due to a fault in the 
descriptor pointed to by the error code. 

A non-zero error code with bit 0 cleared may 
be an operand of the interrupted instruction, 
an operand from a gate referenced by the 
instruction, or a field from the invalid TSS. 

In Real Address Mode, Interrupt 13 will 
occur if software attempts to read or write a 
16-bit word at segment offset OFFFFH. 

9.7 ADDITIONAL EXCEPTIONS AND 
INTERRUPTS 

Interrupts 0, 5, and 1 have not yet been 
discussed. Interrupt 0 is the divide-error 
exception, Interrupt 5 the bound-range 
exceeded exceptions, and Interrupt 1 the 
single step interrupt. The divide-error or 
bound-range exceptions make it appear as if 
that instruction had never executed: the 
registers are restored and the instruction can 
be restarted. The divide-error exception occurs 
during a DIY or an IDlY instruction when 
the quotient will be too large to be represent
able, or when the divisor is zero. 

Interrupt 5 occurs when a value exceeds the 
limit set for it. A program can use the 
BOUND instruction to check a signed array 
index against signed limits defined in a two
word block of memory. The block can be 
located just before the array to simplify 
addressing. The block's first word specifies the 
array's lower limit, the second word specifies 
the array's upper limit, and a register speci
fies the array index to be tested. 

9-13 

9.7.1 Single Step Interrupt (Interrupt 1) 

Interrupt 1 allows programs to execute one 
instruction at a time. This single-stepping is 
controlled by the TF bit in the flag word. 
Once this bit is set, an internal single step 
interrupt will occur after the next instruction 
has been executed. The interrupt saves the 
flags and return address on the stack, clears 
the TF bit, and uses an internally supplied 
vector of 1 to transfer control to the service 
routine via the IDT. 

The IRET instruction or a task switch must 
be used to set the TF bit and to transfer 
control to the next instruction to be single 
stepped. If TF= 1 in a TSS and that task is 
invoked, it will execute the first instruction 
and then be interrupted. 

The single-step flag is normally not cleared 
by privilege changes inside a task. INT 
instructions, however, do clear TF. There
fore, software debuggers that single-step code 
must recognize and emulate INT n or INT 0 
rather than executing them directly. System 
software should check the current execution 
privilege level after any single step interrupt 
to see whether single stepping should continue. 

The interrupt priorities in hardware guaran
tee that if an external interrupt occurs, single 
stepping stops. When both an external inter
rupt and a single step interrupt occur together, 
the single step interrupt is processed first. This 
clears the TF bit. After saving the return 
address or switching tasks, the external inter
rupt input is examined before the first 
instruction of the single step handler executes. 
If the external interrupt is still pending, it is 
then serviced. The external interrupt handler 
is not single-stepped. Therefore, to single step 
an interrupt handler, just single step an inter
rupt instruction that refers to the interrupt 
handler. 





System Control And 
Initialization 

10 





CHAPTER 10 
SYSTEM CONTROL AND INITIALIZATION 

Special flags, registers, and instructions 
provide contol of the critical processes and 
interaction in iAPX 286 operations. The flag 
register includes 3 bits that represent the 
current I/O privilege level (IOPL: 2 bits) and 
the nested task bit (NT). Four additional 
registers support the virtual addressing and 
memory protection features, one points to the 
current Task State Segment and the other 
three point to the memory-based descriptor 
tables: GDT, LDT, and IDT. These flags and 
registers are discussed in the next section. The 
machine status word, (which indicates 
processor configuration and status) and the 
instructions that load and store it are 
discussed in section 10.2.2. 

Similar instructions pertaining to the other 
registers are the subject of sections 10.2 and 
10.3. A detailed description of initialization 
states and processes, which appears in section 
10.4, is supplemented by the extensive 
exam ply in Appendix A. Instructions that 
validate descriptors and pointers are covered 
in section 11.3. 

10.1 SYSTEM FLAGS AND REGISTERS 

The IOPL flag (bits 12 and 13 of the flags 
word) controls access to I/O operations and 
interrupt control instructions. These two bits 
represent the maximum privilege level 
(highest numerical CPL) at which the task is 
permitted to perform I/O instructions. Alter
ation of the 10PL flags is restricted to 
programs at level 0 or to a task switch. 

IRET uses the NT flag to select the proper 
return: if NT=O, the normal return within a 
task is performed. As discussed in Chapter 8, 
the nested task flag (bit 14 of flags) is set 
when a task initiates a task switch via a 

10-1 

when a task initiates a task switch via a 
CALL or INT instruction. The old and new 
task state segments are marked busy and the 
backlink field of the new TSS is set to the old 
TSS selector. An interrupt that does not cause 
a task switch will clear NT after the old NT 
state is saved. To prevent a program from 
causing an illegal task switch by setting NT 
and then executing IRET, a zero selector 
should be placed in the backlink field of the 
TSS. An illegal task switch using IRET will 
then cause exception 13. The instructions 
POPF and IRET can also set or clear NT 
when flags are restored from the stack. POPF 
and IRET can also change the interrupt 
enable flag. If CPL -< 10PL, then the Inter
rupt Flag (IF) can be changed by POPF and 
IRET. Otherwise, the state of the IF bit in 
the new flag word is ignored by these instruc
tions. Note that the CLI and STI instructions 
are valid only when CPL :::::; 10PL; otherwise 
exception 13 occurs. 

10.1.1 Descriptor Table Registers 

The three descriptor tables used for all 
memory accesses are based at addresses 
supplied by (stored in) three registers: the 
global descriptor table register (GDTR), the 
interrupt descriptor table register (IDTR), 
and the local descriptor table register 
(LDTR). Each register contains a 24-bit base 
field and a 16-bit limit field. The base field 
gives the real memory address of the begin
ning of the table; the limit field tells the 
maximum offset permitted in accessing table 
entries. See figures 10-1 thru 10-3. 

The LDTR also contains a selector field that 
identifies the descriptor for that table. LDT 
descriptors must reside in the GDT. 

The task register (TR) points to the task state 
segment for the currently active task. It is 



SYSTEM CONTROL AND INITIALIZATION 

MEMORY 

CPU 
, , 

15 0 JI 
23 J · · GDTLIMIT - · I 

I 
I 

GDT BASE GDTR 

--15 0 

LDTR 

I LDT LDT, 
SELECTOR 

I 
r-'i5----ii' I · I · I · I 

231 

I 
I LDT LIMIT .- I 
I I I ..J 
I LDT BASE -.-

} 
CURRENT 
LDT 

I I LDTn 

I PROGRAM INVISIBLE I L _______ J · · · 
,.., ,.., 

Figure 10-1. Local and Global Descriptor Table Definition 

IDTR I 
23 

~ 

CPU 

15 0 

J IDTLIMIT -f-

IDTBASE 
i 

0 
,~ 

MEMORY 

GATE FOR 
INTERRUPT #n 

GATE FOR 
INTERRUPT #n-1 

· · · 
GATE FOR 

INTERRUPT # 1 

GATE FOR 
INTERRUPT #0 

, 

, 

INTERRUPT 
DESCRIPTOR 
TASLE 
(IDT) 

Figure 10-2. Interrupt Descriptor Table Definition 

10-2 



SYSTEM CONTROL AND INITIALIZATION 

7 

+5 

+3 

+1 

15 

07 

INTEL RESERVED· I BASE23·'6 

BAS;'5.0 

LIMIT,5_0 

8 7 

• MUST BE SET TO 0 FOR 
COMPATIBILITY WITH iAPX 386 

o 

+4 

+2 

o 

o 

Figure 10-3. Data Type for Global Descriptor Table 
and Interrupt Descriptor Table 

similar to a segment register, with selector, 
base, and limit fields, of which only the selec
tor field is readable under normal circum
stances. Each such selector serves as a unique 
identifier for its task. The uses of the TR are 
described in Chapter 8. 

The instructions controlling these special 
registers are described in the next section. 

10.2 SYSTEM CONTROL INSTRUCTIONS 

The instructions that load the GDTR and 
IDTR from memory can only be executed in 
real address mode or at privilege level 0; 
otherwise exception 13 occurs. The store 
instructions for GDTR and IDTR may be 
executed at any privilege level. The four 
instructions are LIDT, LGDT, SIDT, and 
SGDT. The instructions move 3 words 
between the indicated descriptor table regis
ter and the effective real memory address 
supplied (see figure 10-3). The format of the 
3 words is: a 2-byte limit, a 3-byte real base 
address, followed by an unused byte. These 
instructions are normally used during system 
initialization. 

The LLDT instruction loads the LDT regis
ters from a descriptor in the GDT. LLDT uses 

10-3 

a selector operand to that descriptor rather 
than referencing the descriptor directly. 
LLDT is only executable at privilege level 0; 
otherwise exception 13 occurs. LLDT is 
normally required only during system initial
ization because the processor automatically 
exchanges the LDTR contents as part of the 
task-switch operation. 

Executing an LLDT instruction does not 
automatically update the TSS or the register· 
cache;. To properly change the LDT of the 
currently running task so that the change 
holds across task switches, you must perform, 
in order, the following three steps: 

1. Store the new LDT selector into the 
appropriate word of TSS. 

2. Load the new LDT selector into LDTR. 

3. Reload the DS and ES registers if they 
refer to LDT-based descriptors. 

Note that the current code segment and stack 
segment descriptors should reside in the GDT 
or be copied to the same location in the new 
LDT. 

SLDT (store LDT) can be executed at any 
privilege level. SLDT stores the local descrip
tor table selector from the program visible 
portion of the LDTR register. 

Task Register loading or storing is again 
similar to that of the LDT. The L TR instruc
tion, operating only at level 0, loads the L TR 
at initialization time with a selector for the 
initial TSS. LTR does NOT cause a task 
switch; it just changes the current TSS. Note 
that the busy bit of the old TSS descriptor is 
not changed while the busy bit of the new TSS 
selector must be zero and will be set by L TR. 
The LDT and any segment registers referring 
to the old LDT should be reloaded. STR, 
which permits the storing of TR contents into 
memory, can be executed at any privilege 



SYSTEM CONTROL AND INITIALIZATION 

level. L TR is not usually needed after initial
ization because the TR is managed by the 
task-switch operation. 

10.2.2 Machine Status Word 

The Machine Status Word (MSW) indicates 
the iAPX 286 configuration and status. It is 
not part of a task's state. The MSW word is 
loaded by the LMSW instruction executed in 
real address mode or at privilege level 0 only, 
or is stbred by the SMSW instruction execut
ing at any privilege level. MSW is a 16-bit 
register, the lower four bits of which are used 
by the iAPX 286. These bits have the 
meanings shown in table 10-1. Bits 15-4 of 
the MSW will be used by the iAPX 386. 
iAPX 286 software should not change these 
bits. If the bits are changed by the 286 

Table 10-1. MSW Bit Functions 

Bit 
Name 

Position 
Function 

0 PE Erotected mode .enable places 
the 80286 into protected mode 
and cannot be cleared except by 
RESET. 

1 MP Monitor processor extension 
allows WAIT instructions to cause 
a processor extension not-
present exception (number 7) if 
TS is also set. 

2 EM .Emulate processor extension 
causes a processor extension 
not-present exception (number 7) 
on ESC instructions to allow a 
processor extension to be 
emulated. 

3 TS Iask switched indicates the next 
instruction using a processor 
extension will cause exception 7, 
allowing software to test whether 
the current processor extension 
context belongs to the current 
task. 

10-4 

software, compatibility with the iAPX 386 
will be destroyed. 

The TS flag is set under hardware control and 
reset under software control. Once the TS flag 
is set, the next instruction using a processor 
extension causes a processor extension not
present exception (#7). This feature allows 
software to test whether the current proces
sor extension state belongs to the current task 
as discussed in section 11.4. If the current 
processor extension state belongs to a differ
ent task, the software can save the state of 
any processor extension with the state of the 
task that uses it. Thus, the TS bit protects a 
task from processor extension errors that 
result from the actions of a previous task. 

The CLTS instruction is used to reset the TS 
flag after the exception handler has set up the 
proper processor extension state. The CLTS 
instruction can be executed at privilege level 
o only. 

The EM flag indicates a processor extension 
function is to be emulated by software. If 
EM= 1 and MP=O, all ESCAPE instruc
tions will be trapped via the processor exten
sion not-present exception (#7). 

MP flag tells whether a processor extension 
is present. If MP = 1 and TS = 1, escape and 
wait instructions will cause exception 7. 

The PE flag indicates that the iAPX 286 is 
in the protected virtual address mode. Once 
the PE flag is set, it can be cleared only by a 
reset, which then puts the system in real 
address mode emulating the 8086. 

Table 10-2 shows the recommended usage of 
the MSW. Other encodings of these bits are 
not recommended. 



SYSTEM CONTROL AND INITIALIZATION 

Table 10-2. Recommended MSW Encodings for Processor Extension Control 

Instructions 
TS MP EM Recommended Use Causing 

Exception 

0 0 0 Initial encoding after RESET. iAPX 286 operation is identical to iAPX None 
86,88. 

0 0 1 No processor extension is available. Software will emulate its ESC 
function. Wait instructions do not cause exception 7. 

1 0 1 No processor extension is available. Software will emulate its ESC 
function. The current processor extension context may belong to 
another task. 

0 1 0 A processor extension exists. WAIT 
(if TS=1) 

1 1 0 A processor extension exists. The current processor extension ESC or 
context may belong to another task. The exception on WAIT allows WAIT 
software to test for an error pending from a previous processor (ifTS=1) 
extension operation. 

10.2.3 Other Instructions 

Instructions that verify or adjust access rights, 
segment limits, or privilege levels can be used 
to avoid exceptions or faults that are correct
able. Section 10.3 describes such instructions. 

10.3 PRIVILEGED AND TRUSTED 
INSTRUCTIONS 

Instructions that execute only at CPL=O are 
called "privileged." An attempt to execute the 
privileged instructions at any other privilege 
level causes a general protection exception 
(#13) with an error code of zero. The privi
leged instructions manipulate descriptor tables 
or system registers. Incorrect use of these 
instructions can produce unrecoverable 
condi tions. Some of these instructions 
(LGDT, LLDT, and LTR) are discussed in 
section 10.2. 

Other privileged instructions are: 

• LIDT -Load interrupt descriptor table 
register 

• LMSW-Load machine status word 

10-5 

• CL TS-Clear task switch flag 

• HALT-Halt processor execution 

• POPF (POP flags) or IRET can change 
the IF value only if the user is operating 
at a trusted privilege level. POPF does not 
change 10PL except at Level O. 

"Trusted" instructions are restricted to 
execution at a privilege level of CPL >- 10PL. 
For each task, the operating system defines a 
privilege level below which these instructions 
cannot be used. Most of these instructions 
deal with input/output or interrupt manage
ment. The IOPL field in the flag word that 
holds the privilege level limit can be changed 
only when CPL=O. The trusted instructions 
are: 

• Input/Output-Block I/O, Input, and 
Output: IN, INW, OUT, OUTW, INSB, 
INSW, OUTSB, OUTSW 

• Interrupts-Enable Interrupts, Disable 
Interrupts: STI, CLI 

• Other-Lock Prefix 



SYSTEM CONTROL AND INITIALIZATION 

10.4 INITIALIZATION 

Whenever the iAPX 286 is initialized or reset, 
certain registers are set to predefined values. 
All additional desired initialization must be 
performed by user software. (See Appendix 
A for an example of a 286 initialization 
routine.) RESET forces the iAPX 286 to 
terminate all execution and local bus activity; 
no instruction or bus action will occur as long 
as RESET is active. Execution in real address 
mode begins after RESET becomes inactive 
and an internal processing interval (3-4 
clocks) occurs. The initial state at reset is: 

FLAGS = 0002 
MSW = FFFOH 
IP = FFFOH 
CS Selector = FOOOH 
DS Selector = OOOOH 
ES Selector = OOOOH 
!DT base = OOOOOOH 

CS.base = FFOOOOH CS.limit = FFFFH 
DS.base = OOOOOOH DS.limit = FFFFH 
ES.base = OOOOOOH ES.limit = FFFFH 
!DT.limit = 03FFH 

Two fixed areas of memory are reserved: the 
system initialization area and the interrupt 
table area. The system initialization area 
begins at FFFFFOH (through FFFFFFH) 
and the interrupt table area begins at 
OOOOOOH (through 0003FFH). The interrupt 
ta~le area is not reserved. 

At this point, segment registers are valid and 
protection bits are set to O. The iAPX 286 
begins operation in real address mode, with 
PE=O. Maskable interrupts are disabled, and 
no processor extension is assumed or emulated 
(EM=MP=O). 

DS, ES, and SS are initialized at reset to 
allow access to the first 64K of memory 
(exactly as in the 8086). The CS:IP combi
nation specifies a starting address of 
FFFFOH. For real address mode, the four 
most significant bits are not used, providing 
the same FFFOH address as the 8086 reset 
location. Use of (or upgrade to) the protected 
mode can be supported by a bootstrap loader 
at the high end of the address space. As 

10-6 

mentioned in Chapter 5, location FFFOH 
ordinarily contains a JMP instruction whose 
target is the actual beginning of a system 
initialization or restart program. 

After RESET, CS points to the top 64K bytes 
in the 16-Mbyte physical address space. 
Reloading CS register by a control transfer 
to a different code segment in real address 
mode will put zeros in the upper 4 bits. Since 
the initial IP is FFFOH, all of the upper 64K 
bytes of address space may be used for 
initialization. 

Sections 10.4.1 and 10.4.2 describe the steps 
needed to initialize the iAPX286 in the real 
address mode and the protected mode, 
respectively. 

10.4.1 Real Address Mode 

1. Allocate a stack. 

2. Load programs and data into memory 
from secondary storage. 

3. Initialize external devices and the 
Interrupt Vector Table. 

4. Set registers and MSW bits to desired 
values. 

5. Set FLAG bits to desired values
including the IF bit to enable inter
rupts-after insuring that a valid inter
rupt handler exists for each possible 
interrupt. 

6. Execute (usually via an inter-segment 
JMP to the main system program). 

10.4.2 Protected Mode 

The full iAPX 286 virtual address mode 
initialization procedure requires additional 
steps to operate correctly: 

1. Load programs and associated descriptor 
tables. 



SYSTEM CONTROL AND INITIALIZATION 

2. Load valid GDT and IDT descriptor 
tables, setting the GDTR and IDTR to 
their correct value. 

3. Set the PE bit to enter protected mode. 

4. Execute an intra-segment JMP to clear 
the processor queues. 

5. Load or construct a valid task state 
segment for the initial task to be executed 
in protected mode. 

6. Load the LDTR selector from the task's 
GDT or OOOOH (nUll) if an LDT is not 
needed. 

7. Set the stack pointer (SS, SP) to a valid 
location in a valid stack segment. 

8. Mark all items not in memory as 
not-present. 

9. Set FLAGS and MSW bits to correct 
values for the desired system 
configuation. 

10. Initialize external devices. 

11. Ensure that a valid interrupt handler 
exists for each possible interrupt. 

10-7 

12. Enable interrupts. 

13. Execute. 

The example in Appendix A shows the steps 
necessary to load all the required tables and 
registers that permit execution of the first task 
of a protected mode system. The program in 
Appendix A assumes that Intel development 
tools have been used to construct a prototype 
GDT, IDT, LDT, TSS, and all the data 
segments necessary to start up that first task. 
Typically, these items are stored on EPROM; 
on most systems it is necessary to copy them 
all into RAM to get going. Otherwise, the 
iAPX 286 will attempt to write into the 
EPROM to set the accessed or busy bits. 

The example in Appendix A also illustrates 
the ability to allocate unused entries in 
descriptor tables to grow the tables dynami
cally during execution. Using suitable naming 
conventions, the builder can allocate alias data 
segments that are larger than the prototype 
EPROM version. The code in the example 
will zero out the extra entries to permit later 
dynamic usage. 





Advanced Topics 11 





CHAPTER 11 
ADVANCED TOPICS~ 

This chapter describes some of the advanced 
topics as virtual memory management, 
restartable instructions, special segment 
attributes, and the validation of descriptors 
and pointers. 

11.1 VIRTUAL MEMORY MANAGEMENT 

When access to a segment is requested and 
the access byte in its descriptor indicates the 
segment is not present in real memory, the 
not-present fault occurs (exception 11, or 12 
for stacks). The handler for this fault can be 
set up to bring the absent segment into real 
memory (swapping or overwriting another 
segment if necessary), or to terminate execu
tion of the requesting program if this is not 
possible. 

The accessed bit (bit 0) of the access byte is 
provided in both executable and data segment 
descriptors to support segment usage profil
ing. Whenever the descriptor is accessed by 
the iAPX 286 hardware, the A-bit will be set 
in memory. This applies to selector test 
instructions (described below) as well as to the 
loading of a segment register. The reading of 
the access byte and the restoration of it with 
the A-bit set is an indivisible operation, i.e., 
it is performed as a read-modify-write with 
bus lock. If an operating system develops a 
profile of segment usage over time, it can 
recognize segments of low or zero access and 
choose among these candidates for 
replacement. 

When a not-present segment is brought into 
real memory, the task that requested access 
to it can continue its execution because all 
instructions that load a segment register are 
restartable. 

Not-present exceptions occur only on segment 
register load operations, gate accesses, and 

11-1 

task switches. The saved instruction pointer 
refers to the first byte of the violating 
instruction. All other aspects of the saved 
machine state are exactly as they were before 
execution of the violating instruction began. 
After the fault handler clears up the fault 
condition and performs an IRET, the program 
continues to execute. The only external 
indication of a segment swap is the additional 
execution time. 

11.2 SPECIAL SEGMENT ATTRIBUTES 

11.2.1 Conforming Code Segments 

Code segments intended for use at potentially 
different privilege levels need an attribute that 
permits them to emulate the privilege level of 
the calling task. Such segments are termed 
"conforming" segments. Conforming 
segments are also useful for interrupt-driven 
error routines that need only be as privileged 
as the routine that caused the error. 

A conforming code segment has bit 2 of its 
access byte set to 1. This means it can be 
referenced by a CALL or JMP instruction in 
a task of equal or lesser privilege, i.e., CPL of 
the task is numerically greater than or equal 
to DPL of this segment. CPL does not change 
when executing the conforming code segment. 
A conforming segment continues to use the 
stack from the CPL. This is the only case in 
which the DPLof a code segment can be 
numerically less than the CPL. If bit 2 is a 0, 
the segment is not conforming and can be 
referenced only by a task ofCPL=DPL. 

Inter-segment Returns that refer to conform
ing code segments use the RPL field of the 
code selector of the return address to deter
mine the new CPL. The RPL becomes the 
new CPL if the conforming code segment 
DPL:5RPL. 



ADVANCED TOPICS 

If a conforming segment is readable, it can be 
read from any privilege level without restric
tion. This is the only exception to the protec
tion rules. This allows constants to be stored 
with conforming code. For example, a read
only look-up table can be embedded in a 
conforming code segment that can be used to 
convert system-wide logical ID's into charac
ter strings that represent those logical entities. 

11.2.2 Expand-Down Data Segments 

If bit 2 in the access byte of a data segment 
is 1, the segment is an expand-down segment. 
All the offsets that reference such a segment 
must be strictly greater than the segment 
limit, as opposed to normal data segments (bit 
2=0) where all offsets must be less than or 
equal to the segment limit. Figure 11-1 shows 
an expand-down segment. 

The size of the expand down segment can be 
changed by changing either the base or the 
limit. An expand down segment with 
Limit=O will have a size of 216 -1 bytes. 
With a limit value of FFFFH, the expand 
down segment will have a size of 0 bytes. In 
an expand down segment, the base + offset 

BASE + FFFEH -..,==~ 

BASE + OFFSET 
> BASE + LIMIT 

BASE + LIMIT -.f'~~~ 

BASE 

EXPAND DOWN 
SEGMENT 

Figure 11-1. Expand-Down Segment 

11-2 

value should always be greater than the base 
+ limit value. Therefore, a full size segment 
(216 bytes) can only be obtained by using an 
expand up segment. 

The operating system should check the 
Expand-Down bit when a protection fault 
indicates that the limit of a data segment has 
been reached. If the Expand-Down bit is not 
set, the operating system should increase the 
segment limit; if it is set, the limit should be 
lowered. This supplies more room in either 
case (assuming the segment is not write
protected, i.e., that bit 1 is not 0). In some 
cases, if the operating system can ascertain 
that there is not enough room to expand the 
data segment to meet the need that caused 
the fault, it can move the data segment to a 
region of memory where there is enough 
room. See figure 11-2. 

11.3 POINTER VALIDATION 

Pointer validation is an important part of 
locating programming errors. Pointer valida
tion is· necessary for maintaining isolation 
between the privilege levels. Pointer valida
tion consists of the following steps: 

1. Check if the supplier of the pointer is 
entitled to access the segment. 

2. Check if the segment type is appropriate 
to its intended use. 

3. Check if the pointer violates the segment 
limit. 

The iAPX 286 hardware automatically 
performs checks 2 and 3 during instruction 
execution, while software must assist in 
performing the first check. This point is 
discussed in section 11. 3.2. Software can 
explicitly perform steps 2 and 3 to check for 
potential violations (rather than causing an 
exception). The unprivileged instructions 
LSL, LAR, VERR, and VER Ware provided 
for this purpose. 



ADVANCED TOPICS 

BASE + 10000H 

STACK 

SEG.B 

BASE + 10000H 
NEW BASE 

+ NEW LIMIT 

STACK 
SEG.B 

OLD BASE 
NEW BASE 

+ OLD LIMIT 

OLD BASE SEG.A 

Figure 11·2. Dynamic Segment Relocation and Expansion of Segment limit 

The load access rights (LAR) instruction 
obtains the access rights byte of a descriptor 
pointed to by the selector used in the instruc
tion. If that selector is visible at the CPL, the 
instruction loads the access byte into the 
specified destination register as the higher 
byte (the low byte is zero) and the zero flag 
is set. Once loaded, the access bits can be 
tested. System segments such as a task state 
segment or a descriptor table cannot be read 
or modified. This instruction is used to verify 
that a pointer refers to a segment of the 
proper privilege level and type. If the RPL or 
CPL is greater than DPL, or the selector is 
outside the table limit, no access value is 
returned and the zero flag is cleared. 
Conforming code segments may be accessed 
from any RPL or CPL. 

Additional parameter checking can be 
performed via the load segment limit (LSL) 
instruction. If the descriptor denoted by the 
given selector (in memory or a register) is 
visible at the CPL, LSL loads the specified 
register with a word that consists of the limit 
field of that descriptor. This can only be done 
for segments, task state segments, and local 

11·3 

descriptor tables (i.e., words from control 
descriptors are inaccessible). Interpreting the 
limit is a function of the segment type. For 
example, downward expandable data 
segments treat the limit differently than code 
segments do. 

For both LAR and LSL, the zero flag (ZF) 
is set if the loading was performed; otherwise, 
the zero flag is cleared. Both instructions are 
undefined in real address mode, causing an 
invalid opcode exception (interrupt #6). 

11.3.1 Descriptor Validation 

The iAPX 286 has two instructions, VERR 
and VER W, which determine whether a 
selector points to a segment that can be read 
or written at the current privilege level. 
Neither instruction causes a protection fault 
if the result is negative. 

VERR verifies a segment for reading and 
loads ZF with 1 if that segment is readable 
from the current privilege level. The valida
tion process checks that: 1) the selector points 
to a descriptor within the bounds of the GDT 
or LDT, 2) it denotes a segment descriptor 



ADVANCED TOPICS 

(as opposed to a control descriptor), and 3) 
the segment is readable and of appropriate 
privilege level. The privilege check for data 
segments and non-conforming code segments 
is that the DPL must be numerically greater 
than or equal to both the CPL and the selec
tor's RPL. Conforming segments are not 
checked for privilege level. 

VER W provides the same capability as 
VERR for verifying writability. Like the 
VERR instruction, VER W loads ZF if the 
result of the writ ability check is positive. The 
instruction checks that the descriptor is within 
bounds, is a segment descriptor, is writable, 
and that its DPL is numerically greater or 
equal to both the CPL and the selector's RPL. 
Code segments are never writable, conform
ing or not. 

11.3.2 Pointer Integrity: RPL and the 
"Trojan Horse Problem" 

The Requested Privilege Level (RPL) feature 
can prevent inappropriate use of pointers that 
could corrupt the operation of more privi
leged code or data from a less privileged level. 

A common example is a file system proce
dure, FREAD (file_id, nybytes, buffer-ptr). 
This hypothetical procedure reads data from 
a file into a buffer, overwriting whatever is 
'there. Normally, FREAD would be available 
at the user level, supplying only pointers to 
the file system procedures and data located 
and operating ata privileged level. Normally, 
such a procedure prevents user-level proce
dures from directly changing the file tables. 
However, in the absence of a standard proto
col for .checking pointer validity, a user-level 
procedure could supply a pointer into the file 
tables in place of its buffer pointer, causing 
the FREAD procedure to corrupt them 
unwittingly. 

By using the RPL, you can avoid such 
problems. The RPL field allows a privilege 

11-4 

attribute to be assigned to a selector. This 
privilege attribute would normally indicate the 
privilege level of the code which generated the 
selector. The iAPX 286 hardware will 
automatically check the RPL of any selector 
loaded into a segment register or a control 
register to see if the RPL allows access. 

To guard against invalid pointers, the called 
procedure need only ensure that all selectors 
passed to it have an RPL at least as high 
(numerically) as the original caller's CPL. 
This indicates that the selectors were not more 
trusted than their supplier. If one of the 
selectors is used to access a segment that the 
caller would not be able to access directly, i.e., 
the RPL is numerically greater than the DPL, 
then a protection fault will result when loaded 
into a segment or control register. 

The caller's CPL is available in the CS selec
tor that was pushed on the stack as the return 
address. A special instruction; ARPL, can· be 
used to appropriately adjust the RPL field of 
the pointer. ARPL (Adjust RPL field of 
selector instruction) adjusts the RPL field of 
a selector to become the larger of its original 
value and the value of the RPL field in a 
specified register. The latter is normally 
loaded from the caller's CS register which can 
be found on the stack. If the adjustment 
changes the selector's RPL, ZF is set; other
wise, the zero flag is cleared. 

11.4 NPXCONTEXT SWITCHING 

The context of a processor extension (such as 
the 80287 numerics processor) is not changed 
by the task switch operation. A processor 
extension context need only be changed when 
a different task attempts to use the processor 
extension (which still contains the context of 
a previous task). The 80286 detects the first 
use of a processor extension after a task switch 
by causing the processor extension not-present 
exception (#7) if the TS bit is set. The inter
rupt handler may then decide whether a 
context change is necessary. 



ADVANCED TOPICS 

The 286 services numeric errors only when it 
executes wait or escape instructions because 
the processor extension is running independ
ently. Therefore, the numerics error from one 
task may not be recorded until the 286 is 
running a different task. If the 286 task has 
changed, it makes sense to defer handling that 
error until the original task is restored. For 
example, interrupt handlers that use the NPX 
should not have their timing upset by a 
numeric error interrupt that pertains to some 
earlier process. It is of little value to service 
someone else's error. . 

If the task switch bit is set (bit 3 of MSW) 
when the CPU begins to execute a wait or 
escape instruction, the processor-extension 
not-present exception results (#7). The 
handler for this interrupt must know who 
currently "owns" the NPX, i.e., the handler 
must know the last task to issue a command 
to the NPX. If the owner is the same as the 
current task, then it was merely interrupted 
and the interrupt handler has since returned; 
the handler for interrupt 7 simply clears the 
TS bit, restores the working registers, and 
returns (restoring interrupts if enabled). 

If the recorded owner is different from the 
current task, the handler must first save the 
existing NPX context in the save area of the 
old task. It can then re-establish the correct 
NPX context from the current task's save 
area. 

The code example in figure 11-3 relies on the 
convention that each TSS entry in the GDT 
is followed by an alias entry for a data 
segment that points to the same physical 
region of memory that contains the TSS. The 
alias segment also contains an area for saving 
the NPX context, the kernel stack, and certain 
kernel data. That is, the first 44 bytes in that 
segment are the 286 context, followed by 94 
bytes for the processor extension context, 

11-5 

followed in some cases by the kernei stack and 
kernel private data areas. 

The implied convention is that the stack 
segment selector points to this data segment 
alias so that whenever there is an interrupt at 
level zero and SS is automatically loaded, all 
of the above information is immediately 
addressable. 

It is assumed that the program example knows 
about only one data segment that points to a 
global data area in which it can find the one 
word NPX owner to begin the processing 
described. The specific operations needed, and 
shown in the figure, are listed in table 11-1. 

11.5 MULTIPROCESSOR 
CONSIDERATIONS 

As mentioned in Chapter 8, a bus lock is 
applied during the testing and setting of the 
task busy bit to ensure that two processors do 
not invoke the same task at the same time. 
However, protection traps and conflicting use 
of dynamically varying segments or descrip
tors must be addressed by an inter-processor 
synchronization protocol. The protocol can use 
the indivisible semaphore operation of the 
base instruction set. Coordination of inter
rupt and trap vectoring must also be 
addressed when multiple concurrent proces
sors are operating. 

The interrupt bus cycles are locked so no 
interleaving occurs on those cycles. Descrip
tor caching is locked so that a descriptor 
reference cannot be altered while it is being 
fetched. 

When a program changes a descriptor that is 
shared with other processors, it should broad
cast this fact to the other processors. This 
broadcasting can be done with an inter-



ADVANCED TOPICS 

processor interrupt. The handler for this 
interrupt must ensure that the segment regis
ters, the LDTR and the TR, are re-Ioaded. 
This happens automatically if the interrupt is 
serviced by a task switch. 

segment as not-present while another is using 
it. Software has to ensure that the descriptors 
in the segment register caches are updated 
with the new information. The segment regis
ter caches can be updated by are-entrant 
procedure that is invoked by an inter
processor interrupt. The handler must ensure 
that the segment registers, the LDTR and the 
TR, are re-Ioaded. This happens automati
cally if the interrupt is serviced by a task 
switch. 

Modification of descriptors of shared 
segments in multi-processor systems may 
require that the on-chip descriptors also be 
updated. For example, one processor may 
attempt to mark the descriptor of a shared 

ASSEJl18LER INVOKED BY: ASJI!28S,B6 :F5:5WMPX.AB6 

LOC OBJ 

002C 

0000 

00110 50 
0001 1E 
0002 B8----
0005 8ED8 
0007 oroaca 
OllOA 2HC 
OOOC DFOG 
OOOE fA 

OOOF 38060000 
0013 7412 

0015 870110000 
0019 050800 
00lC 8[08 
001E DD36'COO 
0022 36DD262C 0 0 
0027 
0027 1f 
0028 5. 
00'9 Cf 

LI HE 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
3' 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

" 45 
46 
47 
4. 
49 
50 
51 
52 
53 

SOURCE 
+1 $tltle('Swltch the HPX Contut on Fint UH After II Task S\IIltch') 

.1 

public !witch_HPX_context 
I!xtrn Il!lst_npx_tBsI :word 

Ttl 15 In t err up t hand I e r \II ill 5"11 t c h the HP X con t e It if II new t 115 k 
i5 IIttemptlng to u!! the HPX context of another til,. lifter II t851 
!wi t c h. 1ft he tiP X con text b I!: 1 on9! tot he cur ren t til! k, no th 1"9 happen!. 

A t r II p gil t e ! hou I d be p lac I!d I n I DT en t ry 7 ref! rr i"9 tot hi' r ou tine
The DP L 0 f t he gil t e s h ou 1 d be 0 top r even t s poo f I ng. The code !'egmen t 
mu,t be lit pr Ivllqe level O. 

The kernel !tIlC\: Is 1I!!Umed to over Illy the TSS l!Ind the HPX !live lIrell 
I, pillced lit the end of the TSS lire!!. 

A globlll urd vllrillble LAST_H?X_TASK Identlfle! the TSS ulector of 
the 1115t tll!1: to uu the HPX. 

npl_!IIVe_arell 
$I! j ect 
kernel_code 

equ word ptr H j 0 f f!e t 0 f HP X ! live ar ell in TSS 

push 
push 

,j, 
"d 
cit! ,I. 

ugment er publlc 

proc far wdO> 

d, 
III, !eg lll!t_npx_tll!k 
d!,IIX 

" IIl,not 3 

5 live wo r I: I ng reg 1 s t e r5 

Ge t II dd r e!! 0 f I d 0 fIll! t HP X til! k 

ve tid 0 f t hi! til! k 
Remove RPL fie I d 
C 1 ellr til! k sw I t c hed f Il1g 
Ho Interrupt! IIllowed! 

LII5 t_npx_word cllnnot chllnge due to 0 ther 1 nter rupt! IIf ter t hi! pOint. 

cmp III,d!: IIl!t_npx_tl!l!1: 
Je ume_tll5l: 

xchg IIx,d!: lll!t_npx_tll!k 
IIdd IIx,8 
mov d!,l!IX 
f!lIve d!: npl_!IIVe_l!Irel!l 
fr!tor !!:npX_!IIVe_lIrell 

!lIme_la! 1:: 
pop 
pop 
lret 

d, 

!wltch_npx_context endp 

See If !lime til!\: 

Set new til!l: I d lind ge t 0 I d 
Go to TSS 1111115 

Add r eB TS S 0 f P r ev I ou, liP X t liS I: 
Silve 0 I d HPX ! t II te 
Get current ttPX !tllte 

Return to interrupted progrllm 

54 kernel_code end! .1. WARttlHG "60, lIHE '54, SEGr'1EHT COHTAIHS PRIVILEGED IHSTRUCTIOHS 
55 end 

Figure 11-3. Example of NPX Context Switching 

11-6 



ADVANCED TOPICS 

Table 11-1. NPX Context Switching 

Step Operation 
Lines 

(Figure 11-3) 

1. Save the working registers 28,29 
2. Set up address for kernel work area 30,31 
3. Get current task 10 from Task Register 32 
4. Clear Task Switch flag to allow NPX work 34 
5. Inhibit interrupts 35 
6. Compare owner with current task 10 37 

If same owner: 
7a. Restore working registers 48,49 
7b. and return 50 

If owner is not 
current task: 

8a. Use owner 10 to save old context in its TSS 42,43,44 
8b. Restore context of current task; 45 

restore working registers; 46 
and return 52 

11.6 SHUTDOWN 

Shutdown occurs when a severe error condi
tion prevents further processing. Shutdown is 
very similar to HLT in that the iAPX 286 

stops executing instructions. The 80286 
externally signals shutdown as a Halt bus 
cycle with Al =0. The NMI or RESET input 
will force the 80286 out of shutdown. The 
INTR input is ignored during shutdown. 

11-7 





Appendix A 
iAPX 286 System Initialization 



APPENDIX A 

Contents 

System Initialization ....... ..................... ...... A-1 



APPENDIX A 
iAPX 286 SYSTEM INITIALIZATION 

$title('Switch the 80286 from Real Addre •• Mode to Protected Mode') 
naml! 

pub I i c 
.witch 80286_mode. 
i d t_d e. c , g d t_d •• c 

Switch the 80286 from real addre •• mod. inlo prolected mode. 
Th. inilial EPROM GDT, IDT, TSS, and LDT (if any) con.lructed by BLD286 
will be copi.d from EPROM inlo RAM. The RAM or •••• re d.fined by data 
,egment, allocated a. fixed entries in the GDT. The CPU regi.ter. for 
Ih. GDT, IDT, TSS, and LDT will be •• t 10 pOinl .1 Ih. RAM-bo.ed 
,"gm.nt .. Th. b •• e field. in Ih. RAM-ba •• d GDT will 0150 be updoled 10 
poinl al Ihe RAM-ba.ed .egmenls. 

Thi. code i. u •• d by adding it 10 Ihe li.1 of obj.cl modul •• given 
10 BLD286. BLD286 mu.t Ih.n be told 10 place the •• gmenl 
in i I_c 0 de. I • d d r e. 5 F F FE! 0 H. Ex. cuI ion 0 f the mod e • w i I c h cod e beg ins 
ofl.r RESET. Thi. happen. b.couse the mode .wilch cod. will .Iorl al 
phy.icol addre •• FFFFFOH, which is Ih. power up .ddr •••• Thi. code Ih.n 
.el. up RAM copi •• of Ihe EPROM-b.s.d .egment. b.fore jumping to Ihe 
inilial ta.k placed al a fixed GDT entry. Afler the jump, Ihe CPU 
execul.s in Ih •• Iale of Ih. firsl la.k d.fin.d by BLD286. 

Thi. code will nol u.e .ny of the EPROM-based tobl •• direclly. 
Such u.e would re.ult in the 80286 writing into EPROM 10 .el 
the A bit. Any u.e of • GDT or TSS will .Iw.y. be in Ih. RAM copy. 
The limil .nd size of Ih. EPROM-based GDT and IDT mu.1 be .Iored at 
the public .ymbol. idt_desc and gdl_d •• c. The local ion commands of BLD286 
provide Ihi. function 

Inlerrupt. are disabled during Ihi. mode .wilching code. Full error 
checking i. mad. of Ihe EPROM-ba •• d GDT, IDT, TSS, and LDT to .ssure 
Ihey .re valid before copying Ihem to RAM. If any of Ihe RAM-ba.ed 
alia •• egm.nl. are .maller than Ih. EPROM segmenl. Ih.y are to hold, 
halt or .huldown will occur. In general, any exceplion or HMI will 
cau.e .huldown to occur unlil the fir.1 lask i5 invoked. 

If Ih. RAM .egmenl i. larger Ihan the EPROM •• gm.nl, the RAM •• gmenl 
will b. expanded with z.ro •. If the initial TSS 'pecifie. an LDT, 
Ihe LDT will 01.0 be copied inlo Idt_alia. with zero fill if ne.ded. 
The EPROM-bos.d or RAM-ba •• d GDT, IDT, TSS, and LDT .egm.nl. may b. locoled 
anywhere in physical m.mory. 

A-1 



Define layoul 

desc struc 
1 i m I I d w 
base_low dw 
base_high db 
access db 
res dw 
desc ends 

iAPX 286 SYSTEM INITIALIZATION 

of a descriplor. 

Offsel of last byle in segmenl 
Low 16 blls of 24-bll address 
High 8 blls of 24-bll address 
Access rlghls byle 
Reserved word 

Ihe descriplors Ihal Define Ihe fixed GDT seleclor values for 
define the EPROM-based lables. BLD286 must be inslrucled 10 place I he 
appropriale descriptors i n t 0 I he GDT. 

gdl_al ias e ~ u 1 • 5 i z e des c GDT(1) i s d a I a segmenl i n RAM for GDT 
idl_alia, e ~ u 2*size desc GDT(2) i s d a I a segmenl i n RAM for 1 DT 
s I a r 1_ T S S_a 1 i a s e q u 3*5ize des c GDT(3) i s d a I a segmenl i n RAM for TSS 
slarl_Iask e q u 4*size des c GDTC 4l i s T S S for slarling I ask 
s I a r I_L D T _a 1 i a 5 e q u S*size des c GDTCS) i s d a I a segmenl i n RAM for LDT 

Define machine s I a Ius IN 0 r d b i I positions. 

PE e q u Proleclion enable 
MP e q u Monitor processor extension 
EM e q u Emulale processor extension 

Define parlicular value,S of descriplor access righls by Ie. 

DT_ACCESS equ 82 H Access by I e val u e for an LDT 
DS_ACCESS e q u S2H Access by I e val u e for d a I a segmenl 

w hi c h i s g row up, a I I. v. 1 o , wrll.abl. 
TSS_ACCESS • q u 8 1 H Access by I • val u e for an I d I • T S S 
D P L e q u SOH Prlvil'g' 1 • vel fl. 1 d of acce~5 r I 9 hi. 
ACCESSED • q u Define acce~!l!d b I I 
T I • q u Posilion of T I b I I 
TSLS I ZE equ 44 S I , • of a TSS 
LDT_OFFSET • q u 42 Posllion of LDT In TSS 
TIRPL_MASK • q u 5 1 z e desc-1 T I and R P L fl. 1 d m a • k 

Pass conlrol from Ihe pow.r-up address 10 Ihe mode swllch cod •. 
The segmenl conlaining Ihls code must be al phy.lcal addre •• FFFE10H 
10 place Ihe ·JMP Inslruclion at physical address FFFFFOH. Th. ba •• 
addre" Is chosen according to the sl,e of this segment. 

segmenl er 

e q u 
or g 
j m p 

OFE10H Low 1S bil. of starling address 
OFFFOH-cs_offset; Start at address FFFFFOH 
resel_starlup Do not change CS! 

A-2 



iAPX 286 SYSTEM INITIALIZATION 

Define the template for a temporary GOT used to locate the initial 
GOT ond .tock. This data will be copied to location O. 
Thl •• pace Is also used for a temporary .tack and finally serve. 
o. the T55 written Into when enterlns the initial T55. 

or S Place remaining code below power_up 

Inltlal_sdt de 5 c ( ) F ill e r and nul I lOT de.criptor 
sdt_de.c de. c ( ) De.criptor for EPROM GOT 
Idt_de5c de.c () De.criptor for EPROM lOT 
temp_de.c de. c ( ) Temporary de.crlptor 

Define a de.criptor thot will point the GOT at location O. 
Thi. de.criptor will 01.0 be looded Into 55 to define the initial 
protected mode .tack .esment. 

temp_5 t ac k de. c (e n d_S d t - i nit i a I-S d t - 1 ,0 , 0 , 0 5_A C C E 5 5,0 ) 

Define the T55 descriptor u.ed to ollow the to.k .witch to the 
first ta.k to overwrite this res ion of memory. The T55 will overlay 
the Initial GOT and stack at location O. 

desc ( e n d_S d t - i nit i a I-S d t - 1 , 0 , 0 , T 5 S_A C C E 5 5 , 0 ) 

Define the initial .tack .pace and filler for the end of the TS5. 

.tort_pointer 

dw 
lob e I 

I abe I 
dw 

8 dup (0) 

w 0 r d 

d w 0 r d 
O,.tart_ta.k Pointer to initial task 

Define template for the tosk definition li.1. 

taSk_entry 
TS5_ .. 1 
T 5 5_01 i o. 
LOT _a II a. 
t •• k_entry 

r e • e t_. tor t up: 
c I i 
c I d 
xor 

mov 
mov 
mov 

• t r u c 
dw 
dw 
dw 
ends 

d i , d i 

e 5 1 d i 
• s , d I 

Define layout of ta.k description 
5elector for T5S 
Data .esment alia. for TSS 
Data .esment alia. for LOT if any 

( • tar t_ to. k , • tor t_ T S S_o I i a • , s tar t_L 0 T _0 I 10. ) 
Terminate li.t 

No Interrupt. allowed! 
U.e outolncrement mode 
Point ES:DI ot phy5ical addre •• OOOOOOH 

Set .tack at end of reserved area 

s P , en d_S d t - i nit I al_s d t 

A-3 



• tar t 

• tar I 1 : 

rep 

IAPX 286 SYSTEM INITIALIZATION 

Form an adjustment factor from the real CS ba.e of FFOOOOH to the 
.egment ba.e addre •• a.sumed by ASM286. Any data reference made 
Into CS mu.t add .n Indexing term lBPI 10 compensate for the difference 
between the off.et generated by ASM286 and the offset required from 
the base of FFOOOOH . 

proc 

c. I I • Is r t 1 

pop bp 
sub bp,offset s I ar t 1 

lid t initial_gdtlbpl 

The value of [P al run time will not be 
the same as the one u.ed by ASM286! 

Get true offset of .tart1 

Subtracl ASM286 offset of start1 
leaving adju.tment hctor in BP 

Setup null [OT to force .hutdown 
on any protection error or interrupt 

Copy Ihe EPROM-ba.ed temporary GOT inlo RAM. 

lea 

mov 
mOV5 

.i,initial_gdt[bpl ; Setup pOinter to temporary GDT 
template in EPROM 

ex, (e n d_g d t - I nit i a I_g d I ) I 2 Set len 9 t h 
e.:word ptr [dil,c.:[.II; Put into reserved RAM are. 

Look for 80287 proce •• or extension. A.sume all one. will be read 
if an 80287 i. not present. 

fn i nil 
mov 
f • t • w 
or 
j n z 

f .. t pm 
mov 

b x, EM 
a x 
a I , a I 
set_mode 

b x, M P 

[nitialize 80287 if pre .. nt 
A •• ume no 80287 
Look at statu. of 80287 
No errors .hould be pre.ent 
Jump if no 80287 

Put 80287 into protected mode 

Swilch to protected mode and .etup a stack, GOT, and LOT . 

• et_mode: 
!im5W 

or 
or 
Im.w 
j mp 

ax 
a x, P E 
a x, b x 
ax 
• + 2 

Get current MSW 
Set PE bit 
Set NPX status flag. 
Enter protected mode! 
Clear queue of in.truction. decoded 

while in Real Addre •• Mode 
CPL Is now 0, CS still point. at 
FFFE10 In phy.lcal memory 

A-4 



1 9 d t 
mov 
mov 
xor 
11 d t 

mov 
1 t r 

IAPX 286 SYSTEM INITIALIZATION 

temp_.tackEbpl U.e initial GOT in RAM area 
ax,tomp_.tack-initial_gdt i Setup 55 with valid protected made 
",ax .elector to the RAM GOT and .tack 
aX,ax Set the current LOT to null 
ax Any reference. to it will cau.e 

an exception cau.ing .hutdown 
a x , • a v e_ t .. - i nit i a l_g d t 5 ot i nit i a 1 T 5 5 i n tat h e law RAM 
ax The ta.k SWitch need. a valid TSS 

Copy the EPROM-ba.ed GOT into the RAM data segmen1 alias. 
Fir.t the de.criptor for the RAM data .egment must be copied Into 
the temporary GOT. 

mov 
cmp 

j b 

mov 
mov 
call 
mov 
mov 
call 
mov 
mov 
mov 
1 9 d t 

a x , 9 d t _d e • c E b P ) • 1 i mit 
ax,6·.ize de.c-l 

bad_gdt 

b x, 9 d t_d e. c - i nit i a I_g d t 
• i , 9 d t_a 1 i a. 
copy_EPROM_dt 
• i , i d t _a 1 i a • 
b x, i d t_d e. c - i nit i a l_g d t 
copy_EPROM_dt 
a x, g d t_d e. c - i nit i a 1-9 d t 
d!l , I!I X 

b x , g d t_a 1 i a • 
E b x I 

Get size of GDT 
Se sure the la.t entry expected by 

this code 15 inoide the GDT 
Jump if GDT is nat big enough 

Farm selector to EPROM GDT 
Get selector of GDT alia. 
Copy into EPROM 
Get selector of IDT alia. 
Indicate EPROM IDT 

Setup oddre.sing into EPROM GDT 

Get GDT alias d.t •• egment selector 
Set GDT to RAM GDT 
55 and TR remain in law RAM 

Copy all t •• k's TSS and LDT segment. into RAM 

lea 
copy_ta.k_loop: 

call 
add 
mov 

bx,ta.k_listEbpl 

copy_ta.k. 
bx,.ize t •• k_entry 
a x , c. : E b x I • t •• _. e 1 

or BX,ex 
jnz copy_ta.k_loop 

Define li.t of tasks to setup 

Copy them into RAM 
Go to next entry 
See if there i. another entry 

With TSS, GDT, and LDT .et, startup the Initial ta.k! 

mov 
mov 
mov 
1 i d t 
jmp 

bx,gdt_alla. 
d. , b x 
b x , i d t_a 1 i a 5 

E b x I 
• tar t _p a i n t erE b p ) 

Paint DS at GDT 

Get IDT alia. data segment selector 
Set IDT for errors and interrupt. 
Start the first t •• k! 
The law RAM area is overwritten with 

the current CPU context 

Halt here if GDT i. nat big enough 

A-5 



• I. r I 

bad_tss: 

iAPX 286 SYSTEM INITIAl..IZATION 

endp 

Copy Ihe TSS and LOT for the ta.k pointed at by CS:BX. 
If Ihe lask has an LOT it IIIill also be copied dOllln. 
EX and BP are tran.parent. 

hit 
copy_lasks pro c 

Halt here if TSS is invalid 

mov 
mov 
mov 
mov 
I s I 
mov 
I a r 
j n z 

mov 
and 
cmp 
j n z 

lsi 
cmp 
j b 

• i , g d t _a I i a • 
d 5 I !i i 
s i , c s : [ b x I • t •• _a I i a • 
e 5 , 5 i 

a x J 5 i 
s i , c s : [ bx I . t s 5_5 e I 
d x J 5 i 

bad_tss 

d I , d h 
dh,not OPL 
dh, TSLACCESS 
bad_tss 

ex, 5 i 

c x , T S S_S I Z E - 1 
bad_tss 

Get addre.sability to GOT 

Get selector for TSS alia. 
Point ES at alia. data .egment 
Get length of TSS alia. 
Get TSS .elector 
Get alias access right. 
Jump if invalid reference 

Save TSS descriptor acce •• byte 
Ignore privilege 
See if TSS 
Jump if not 

Get length of EPROM ba.ed TSS 
Verify it is of proper .ize 
Jump if it i. not big enough 

Setup for moving the EPROM-ba.ed TSS to RAM 
OS points at GOT 

mov 
mov 
c a I I 

[. i I. acce. s, OS_ACCESS 
d 5 J 5 i 
cop y_w it h_ f i I I 

Make TSS into data segment 
Point OS at EPROM TSS 
Copy OS segment to ES with zero fill 

CX has copy count, AX-CX fill count 

Set the GOT TSS limit and ba.e address to the RAM value •. 

mov 
mov 
mov 
mov 
mov 
movsw 
movsw 
10 d s w 

mov 
• to s w 

movsw 

ax,gdt_alias 
ds,ax 
e 5 J a x 
d i , c s : [ b x I . t s s_s e I 
s i , c s : [ b x I • t s s_a 1 i a 5 

a h , d I 

Restore GOT addressing 

Get TSS selector 
Get RAM alia. selector 
Copy limit 
Copy low 16 bit. of address 
Get high 8 bits of address 
Mark a. TSS de.criptor 
Fill in high addre •• and access byte • 
Copy re.erved word 

A-6 



iAPX 286 SYSTEM INITIALIZATION 

See if a valid LDT is 'pecifled for the .tartup ta,k 
If .0 then copy Ihe EPROM version Inlo Ihe RAM alia., 

mov 
mov 
and 

jZ 

p u • h 
I a r 
j n z 

mov 
and 
cmp 
j n e 

mov 
mov 
151 
c a I I 
mov 

d. , c. : [ b x I , I •• _a Ii •• 
,I,ds:word ptr LDT_OFFSET 
• i , no I T I R P L_M ASK 
n 0_1 d t 

5 i 
d x , 5 i 
bad_Idl 

d I , d h 
dh,nol DPL 
dh, DT_ACCESS 
b a d_1 d I 

e, : [ , iI, ace e •• , D S_A C C E S S ; 
d 5 , !!I i 
a x , 5 i 
I .. t_dt_1 i mit 
ex, a x 

Addres. TSS 10 get LDT 

Ignore TI and RPL 
Skip Ihis if no LDT used 

Save LDT seleclor 
Te.1 descriptor 
Jump if invalid .eleclor 

Save LDT descriplor acce,s byle 
Ignore privilege 
Be .ure il is an LDT descriplor 
Jump if invalid 

Mark LDT a. dala ,egmenl 
Poinl DS al EPROM LDT 
Gel LDT limil 
Verify II is valid 
Save for later 

Examine Ihe LDT alia, .egment and, if good, copy 10 RAM 

mov • i , C 5 : [ b x I , I d I _a I i a 5 Get I d I ali a 5 seleclor 
mov e 5 I ! i Pol n I E S a I a I i as .egmenl 
I 5 I 8 X , !5 i Get len 9 I h of a Ii. 5 .egmenl 
c a I I le.l_dl_Iimil Verify i I i 5 v. lid 
c. I I copY_Wi Ih_f ill Copy LDT i n to RAM a I i a 5 .egmenl 

Sel Ihe LDT Ilmil and ba.e addre •• 10 the RAM copy of Ihe LDT, 

mov 
pop 
mov 
mov 

• I , c • : [ b x I , I d t _a I i a • 
d i 
ax,gdl_alia. 
dS,8X 

mov eS,8X 
movsw 
mov!!Iw 
I 0 d • w 
mov 
• I 0 • w 
mOV5W 

reI 
bad_Idt: 

h I I 

a h , d I 

end p 

Re.lore LDT alia •• elector 
Re.tore LDT seleclor 
Restore GDT addressing 

Move the RAM LDT limit 
Move the low 16 bil, across 
Get the high 8 bits 
Mark as LDT de.criplor 
Set high address and access rights 
Copy reserved word 

All done 

Hall here If LDT i. Invalid 

A-7 



iAPX 286 SYSTEM INITIALIZATION 

Tesl Ihe d .. criplor lable size in AX 10 verify Ihal il is an 
even number of descriplors in lenglh. 

le.l_dl_limil pro c 

pus h ax Save len 9 I h 
and a I , 7 L 0 0 k a I low order b i I s 
c m p a I , 7 M u, I be a II On!5 

pop ax Re,lore len 9 I h 
j n e bad_dl_limil 

reI A I I OK 
bad_dl_limil: 

h I I Die! 

Ie, I_d I_I i mil end p 

Copy the EPROM DT at selector BX in Ihe lemporary GDT 10 Ihe .Iia, 
dala segmenl al selector 51. Any improper descriplors or limilo 
will cause shuldown! 

pro c 

mov Poinl ES:DI al lempor.ry descriplor 
mov eSdlX 

m 0 v e s : I b x I . a c ceo s , D S_A C C E 5 5; Mar k de, c rip lor a sad a I a 0 e 9 men I 
mov es:lbxl.re"O Clear reserved word 
lsi ax,bx Gel limil of EPROM DT 
mov 
c a I I 
mov 
mov 
mov 
push 
10 d s w 
c a I I 

5 t a 5 \IJ 

movsw 
mOV5W 

movsw 
pop 
mov 

ex 1 a x 
test_dt_Iimit 
d i , 9 d t_d e, c - i nil i al-9 d t 
d s , d i 
d i , t em p_d esc - i nil i • 1-9 d t ; 
d i 

es 
d s , b x 

endp 

Save for I.ter 
Verify it i5 a proper limit 
Addre •• EPROM GDT in DS 

Gel seleclor for lemporary descriptor 
Save off,et for laler use a, seleclor 
Get alia, ,egmenl size 
Verify it i. an even multiple of 
descriptors in length 

Pul length into lemporary 
Copy remaining entrie. into temporary 

ES now points at the GDT alia, are. 
DS now pointo at EPROM DT e. data 
Copy segment 10 alias wilh zero fill 
CX i. copy count, AX-CX is fill count 
F a II in t 0 cop y_w it h_ fill 

A-8 



iAPX 286 SYSTEM INITIALIZATION 

Copy the segment at DS to the segment at ES for length CX. 
Fill the end with AX-CX ,eros. Use word operations for speed but 
allow odd byte operations. 

copY_With_fill 

x 0 r 
xor 

• u b 
add 
r c r 

rep mOV5W 

xc h g 
j n c 

mov.b 
or 
j , 

• to. b 
dec 

even_copy: 

• h r 
rep • to. W 

J n c 

• to. b 
exit_copy: 

ret 

cop y_w It h_ f I II 

I n I t_c 0 d e 

pro c 

'5 i , 5 i 
d i , d i 
a x , ex 
c x , 
ex, 1 

BX,ex 
even_copy 

C x I ex 
exit_copy 

c x 

ex, 1 

exit_copy 

endp 

end. 
end 

Start at beginning of segments 

Form fill count 
Convert limit to count 
Allow full 64K move 
Copy DT into alias area 
Get fill count and ,ero AX 
Jump if even byte count on copy 

Copy odd byte 

Exit if no fill 

Even out the segment offset 
Adjust remaining fill count 

Form word count on fill 
Clear unused words at end 
Exit if no odd byte remains 

Clear last odd byte 

A-9 





Append~ fl 
The iAPX 286 Instruction Set 



APPENDIX B 

Contents 

Opcode ..................................................... 8-1 
Instruction ................................................. 8-5 
Clocks ....................................................... 8-6 
Description ................................................ 8-6 
Flags Modified .......................................... 8-6 
Flags Undefined ....................................... 8-6 
Operation .................................................. 8-6 
Protected Mode Exceptions .. ........ ........... 8-6 
Real Address Mode Exceptions .............. 8-7 
Protection Exceptions .............................. 8-7 
Error Codes ............ .................................. 8-7 
#DF8 Double Fault (Zero Error Code) .... 8-8 
#GP 13 General Protection 

(Selector or Zero Error Code) .............. 8-8 
#MF 16 Math Fault (No Error Code) ....... 8-8 
#MP 9 Math Unit Protection Fault 

(No Error Code) .................................... 8-9 
#NM 7 No Math Unit Available 

(No Error Code) .................................... 8-9 
#NP 11 Not Present 

(Selector Error Code) ............................ 8-9 
#SS 12 Stack Fault (Selector or Zero 

Error Code) .................................. ....... 8-10 
#TS 10 Invalid Task State Segment 

(Selector Error Code) .......................... 8-10 
#UD 6 Undefined Opcode 

(No Error Code) .................................. 8-11 
Privilege Level and Task Switching 

on the iAPX 286 ...... ............................ 8-11 
Instructions: AAA-XOR ........ 8-14 thru 8-111 



APPENDIX B 
THE iAPX 286 INSTRUCTION SET 

This section presents the iAPX 286 instruc
tion set using Intel's ASM286 notation. All 
possible operand types are shown. Instruc
tions are organized alphabetically according 
to generic operations. Within each operation, 
many different instructions are possible 
depending on the operand. The pages are 
presented in a standardized format, the 
elements of which are described in the 
following paragraphs. 

Opcode 

This column gives the complete object code 
produced for each form of the instruction. 
Where possible, the codes are given as 
hexadecimal bytes, presented in the order in 
which they will appear in memory. Several 
shorthand conventions are used for the parts 
of instructions which specify operands. These 
conventions are as follows: 

In: (n is a digit from ° through 7) A ModRM 
byte, plus a possible immediate and displace
ment field follow the opcode. See figure B-1 
for the encoding of the fields. The digit n is 
the value of the REG field of the ModRM 
byte. To obtain the possible hexadecimal 
values for / n, refer to column n of table B-l. 
Each row gives a possible value for the effec
tive address operand to the instruction. The 
entry at the end of the row indicates whether 
the effective address operand is a register or 
memory; if memory, the entry indicates what 
kind of indexing and/or displacement is used. 
Entries with D8 or D 16 signify that a one
byte or two-byte displacement quantity 
immediately follows the ModRM and optional 
immediate field bytes. The signed displace
ment is added to the effective address offset. 

/ r: A ModRM byte that contains both a 
register operand and an effective address 

8-1 

operand, followed by a possible immediate 
and displacement field. See figure B-2 for the 
encoding of the fields. The ModRM byte 
could be any value appearing in table B-l. 
The column determines which register 
operand was selected; the row determines the 
form of effective address. If the row entry 
mentions 08 or D16, then a one-byte or two
byte displacement follows, as described in the 
previous paragraph. 

cb: A one-byte signed displacement in the 
range of - 128 to + 127 follows the opcode. 
The displacement is sign-extended to 16 bits, 
and added modulo 65536 to the offset of the 
instruction FOLLOWING this instruction to 
obtain the new IP value. 

cw: A two-byte displacement is added modulo 
65536 to the offset of the instruction 
FOLLOWING this instruction to obtain the 
new IP value. 

cd: A two-word pointer which will be the new 
CS:IP value. The offset is given first, followed 
by the selector. 

db: An immediate byte operand to the 
instruction which follows the opcode and 
ModRM bytes. The opcode determines if it is 
a signed value. 

dw: An immediate word operand to the 
instruction which follows the opcode and 
ModRM bytes. All words are given in the 
iAPX 286 with the low-order byte first. 

+ rb: A register code from ° through 7 which 
is added to the hexadecimal byte given at the 
left of the plus sign to form a single opcode 
byte. The codes are: AL=O, CL= 1, DL=2, 
BL=3, AH=4, CH=5, DH=6, and BH=7. 



THE IAPX 286 INSTRUCTION SET 

In Instruction Byte Format 

ModRM 

"mod" Field Bit Assignments 

mod Displacement 

00 OISP = 0(2), disp-Iow and disp-high are absent 
01 OISP = disp-Iow sign-extended to 16-bits, disp-high is absent 
10 OISP = disp-high: disp-Iow 
11 rim is treated as a "reg" field 

"rim" Field Bit Assignments 

rim 
I 

Operand Address 

000 (BX) + (SI) + OISP 
001 (BX) + (01) + OISP 
010 (BP) + (SI) + OISP 
011 (BP) + (01) + OISP 
100 (SI) + OISP 
101 (01) + OISP 
110 (BP) + 0ISp(2) 
111 (BX) + OISP 

OISP follows 2nd byte of instruction (before data if required). 

NOTES: 

1. Opcode indicates presence and size of immediate value. 

2. Except if mod = 00 and rim = 11 0 then EA = disp-high: disp-Iow. 

Figure B-1. In Instruction Byte Format 

B-2 



THE iAPX 286 INSTRUCTION SET 

Table 8-1. ModRM Values 

Rb = AL CL OL BL AH CH OH BH 
Rw = AX CX OX BX SP BP SI 01 
REG = 0 1 2 3 4 5 6 7 

ModRM values Effective address 

00 08 10 18 20 28 30 38 [BX + SI] 
01 09 11 19 21 29 31 39 [BX + 01] 
02 OA 12 1A 22 2A 32 3A [BP + SI] 

mod=OO 
03 OB 13 1B 23 2B 33 3B [BP + 01] 
04 OC 14 1C 24 2C 34 3C [SI] 
05 00 15 10 25 20 35 3D [01] 
06 OE 16 1E 26 2E 36 3E 016 (simple var) 
07 OF 17 1F 27 2F 37 3F [BX] 

40 48 50 58 60 68 70 78 [BX + SI] + 08(1) 
41 49 51 59 61 69 71 79 [BX + 01] + 08 
42 4A 52 5A 62 6A 72 7A [BP + SI] + 08 

mod=01 
43 4B 53 5B 63 6B 73 7B [BP + 01] + 08 
44 4C 54 5C 64 6C 74 7C [SI] + 08 
45 40 55 50 65 60 75 70 [01] + 08 
46 4E 56 5E 66 6E 76 7E [BP] + 08(2) 
47 4F 57 5F 67 6F 77 7F [BX] + 08 

80 88 90 98 AO A8 BO B8 [BX + SI] + 016(3) 
81 89 91 99 A1 A9 B1 B9 [BX + 01] + 016 
82 8A 92 9A A2 AA B2 BA [BP +SI] + 016 

mod=10 
83 8B 93 9B A3 AB B3 BB [BP + 01] + 016 
84 8C 94 9C A4 AC B4 BC [SI] + 016 
85 80 95 90 A5 AD B5 BO [01] + 016 
86 8E 96 9E A6 AE B6 BE [BP] + 016(2) 
87 8F 97 9F A7 AF B7 BF [BX] + 016 

CO C8 DO 08 EO E8 FO F8 Ew=AX Eb=AL 
C1 C9 01 09 E1 E9 F1 F9 Ew=CX Eb=CL 
C2 CA 02 OA E2 EA F2 FA Ew=OX Eb=OL 

mod=11 
C3 CB 03 DB E3 EB F3 FB Ew=BX Eb=BL 
C4 CC 04 DC E4 EC F4 FC Ew=SP Eb=AH 
C5 CD 05 DO E5 ED F5 FO Ew=BP Eb=CH 
C6 CE 06 DE E6 EE F6 FE Ew=SI Eb=OH 
C7 CF 07 OF E7 EF F7 FF Ew=OI Eb=BH 

NOTES: 

1. 08 denotes an 8-bit displacement following the ModRM byte that is Sign-extended and added to the index. 

2. Default segment register is SS for effective addresses containing a BP index; OS is for other memory 
effective addresses. 

3. 016 denotes the 16-bit displacement following the ModRM byte that is added to the index. 

B-3 



THE iAPX 286 INSTRUCTION SET 

Ir Instruction Byte Format 

imm.low(1) imm. high(l) disp-Iow disp-high 

765432 o 7 o 7 o 7 o 7 o 

"mod" Field Bit Assignments 

mod Displacement 

00 OISP = 0(2), disp-Iow and disp-high are absent 
01 OISP = disp-Iow sign-extended to 16-bits, disp-high is absent 
10 OISP = disp-high; disp-Iow 
11 rIm is treated as a "reg" field 

"r" Field Bit Assignments 

16-Bit (w = 1) a-Bit (w = 0) Segment 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 OX 010 OL 10 SS 
011 BX 011 BL 11 OS 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 OH 
111 01 111 BH 

"rim" Field Bit Assignments 

rim Operand Address 

000 (BX) + (SI) + OISP 
001 (8X) + (01) + OISP 
010 (BP) + (SI) + OISP 
011 (BP) + (01) + OISP 
100 (SI) + OISP 
101 (01) + OISP 
110 (BP) + 0ISp(2) 
111 (8X) + OISP 

OISP follows 2nd byte of instruction (before data if required). 

NOTES: 

1. Opcode indicates presence and size of immediate field. 

2. Except if mod=OO and r/m=110 then EA=disp-high: disp-Iow. 

Figure B-2. Ir Instruction Byte Format 

B-4 



THE iAPX 286 INSTRUCTION SET 

+rw: A register code from ° through 7 which 
is added to the hexadecimal byte given at the 
left of the plus sign to form a single opcode 
byte. The codes are: AX=O, CX= 1, DX=2, 
BX=3, SP=4, BP=5, SI=6, and 01=7. 

Instruction 

This column gives the instruction mnemonic 
and possible operands. The type of operand 
used will determine the opcode and operand 
encodings. The following entries list the type 
of operand which can be encoded in the 
format shown in the instruction column. The 
Intel convention is to place the destination 
operand as the left hand operand. Source-only 
operands follow the destination operand. 

In many cases, the same instruction can be 
encoded several ways. It is recommended that 
you use the shortest encoding. The short 
encodings are provided to save memory space. 

cb: a destination instruction offset in the 
range of 128 bytes before the end of this 
instruction to 127 bytes after the end of this 
instruction. 

cw: a destination offset within the same code 
segment as this instruction. Some instruc
tions allow a short form of destination offset. 
See cb type for more information. 

cd: a destination address, typically in a 
different code segment from this instruction. 
Using the cd: address form with call instruc
tions saves the code segment selector. 

db: a signed value between -128 and + 127 
inclusive which is an operand of the instruc
tion. For instructions in which the db is to be 
combined in some way with a word operand, 
the immediate value is sign-extended to form 
a word. The upper byte of the word is filled 
with the topmost bit of the immediate value. 

8-5 

dw: an immediate word value which is an 
operand of the instruction. 

eb: a byte-sized operand. This is either a byte 
register or a (possibly indexed) byte memory 
variable. Either operand location may be 
encoded in the ModRM field. Any memory 
addressing mode may be used. 

ed: a memory-based pointer operand. Any 
memory addressing mode may be used. Use 
of a register addressing mode will cause 
exception 6. 

ew: a word-sized operand. This is either a 
word register or a (possibly indexed) word 
memory variable. Either operand location 
may be encoded in the ModRM field. Any 
memory addressing mode may be used. 

m: a memory location. Operands in registers 
do not have a memory address. Any memory 
addressing mode may be used. Use of a regis
ter addressing mode will cause exception 6. 

mb: a memory-based byte-sized operand. Any 
memory addressing mode may be used. 

mw: a memory-based word operand. Any 
memory addressing mode may be used. 

rb: one of the byte registers AL, CL, DL, BL, 
AH, CH, DH, or BH; rb has the value 
0,1,2,3,4,5,6, and 7, respectively. 

rw: one of the word registers AX, CX, DX, 
BX, SP, BP, SI, or DI; rw has the value 
0,1,2,3,4,5,6, and 7, respectively. 

xb: a simple byte memory variable without a 
base or index register. MaY instructions 
between AL and memory have this optimized 
form if no indexing is required. 

xw: a simple word memory variable without 
a base or index register. MaY instructions 
between AX and memory have this optimized 
form if no indexing is required. 



THE IAPX 286 INSTRUCTION SET 

Clocks 

This column gives the number of clock cycles 
that this form of the instruction takes to 
execute. The amount of time for each clock 
cycle is computed by dividing one micro
second by the number of MHz at which the 
80286 is running. For example, a lO-MHz 
80286 (with the eLK pin connected to a 
20-MHz crystal) takes 100 nanoseconds for 
each clock cycle. 

Add one clock to instructions that use the base 
plus index plus displacement form of address
ing. Add two clocks for each 16-bit memory 
based operand reference located on an odd 
physical address. Add one clock for each wait 
state added to each memory read. Wait states 
inserted in memory writes or instruction 
fetches do not necessarily increase execution 
time. 

The clock counts establish the maximum 
execution rate of the 80286. With no delays 
in bus cycles, the actual clock count of an 
80286 program will average 5-10% more than 
the calculated clock count due to instruction 
sequences that execute faster than they can 
be fetched from memory. 

Some instruction forms give two clock counts, 
one unlabelled and one labelled. These counts 
indicate that the instruction has two different 
clock times for two different circumstances. 
Following are the circumstances for each 
possible label: 

, 
mem: The instruction has an operand that can 
either be a register or a memory variable. The 
unlabelled time is for the register; the mem 
time is for the memory variable. Also, one 
additional clock cycle is taken for indexed 
memory variables for which all three possible 
indices (base register, index register, and 
displacement) must be added. 

noj: The instruction involves a conditional 
jump or interrupt. The unlabelled time holds 

8-6 

when the jump is made; the noj time holds 
when the jump is not made, 

pm: If the instruction takes more time to 
execute when the 80286 is in Protected Mode. 
The unlabelled time is for Real Address 
Mode; the pm time is for Protected Mode. 

Description 

This is a concise description of the operation 
performed for this form of the instruction. 
More details are given in the "Operation" 
section that appears later in this chapter. 

Flags Modified 

This is a list of the flags that are set to a 
meaningful value by the instruction. If a flag 
is always set to the same value by the instruc
tion, the value is given ("=0'; or "= 1") after 
the flag name. 

Flags Undefined 

This is a list of the flags that have an 
undefined (meaningless) setting after the 
instruction is executed. 

All flags not mentioned under "Flags 
Modified" or "Flags Undefined" are 
unchanged by the instruction. 

Operation 

This section fully describes the operation 
performed by the instruction. For some of the 
more complicated instructions, suggested 
usage is also indicated. 

Protected Mode Exceptions 

The possible exceptions involved with this 
instruction when running under the iAPX 286 
Protected Mode are listed below. These 
exceptions are abbreviated with a pound sign 
(#) followed by two capital letters and an 
optional error code in parenthesis. For 
example, #GP(O) denotes the general protec
tion exception with an error code of zero. The 



THE iAPX 286 INSTRUCTION SET 

next section describes all of the iAPX 286 
exceptions and the machine state upon entry 
to the exception. 

If you are an applications programmer, 
consult the documentation provided with your 
operating system to determine what actions 
are taken by the system when exceptions 
occur. 

Real Address Mode Exceptions 

Since less error checking is performed by the 
iAPX 286 when it is in Real Address Mode, 
there are fewer exceptions in this mode. One 
exception that is possible in many instruc
tions is #GP(O). Exception 13 is generated 
whenever a word operand is accessed from 
effective address OFFFFH in a segment. This 
happens because the second byte of the word 
is considered located at location 10000H, not 
at location 0, and thus exceeds the segment's 
addressability limit. 

Protection Exceptions 

In parallel with the execution of instructions, 
the protected-mode iAPX 286 checks all 
memory references for validity of addressing 
and type of access. Violation of the memory 
protection rules built into the processor will 
cause a transfer of program control to one of 
the interrupt procedures described in this 
section. The interrupts have dedicated 
positions within the Interrupt Descriptor 

Table, which is shown in table B-2. The inter
rupts are referenced within the instruction set 
pages by a pound sign (#) followed by a two
letter mnemonic and the optional error code 
in parenthesis. 

Error Codes 

Some exceptions cause the iAPX 286 to pass 
a l6-bit error code to the interrupt proce
dure. When this happens, the error code is the 
last item pushed onto the stack before control 
is tranferred to the interrupt procedure. If 
stacks were switched as a result of the inter
rupt (causing a privilege change or task 
switch), the error code appears on the inter
rupt procedure's stack, not on the stack of the 
task that was interrupted. 

The error code generally contains the selector 
of the segment that caused the protection 
violation. The RPL field (bottom two bits) of 
the error code does not, however, contain the 
privilege level. Instead, it contains the follow
ing information: 

• Bit 0 contains the value 1 if the exception 
was detected during an interrupt caused 
by an event external to the program (i.e., 
an external interrupt, a single step, a 
processor extension not-present excep
tion, or a processor extension segment 
overrun). Bit 0 is 0 if the exception was 
detected while processing the regular 

Table 8-2. Protection Exceptions of the iAPX 286 

Abbreviation Interrupt Number Description 

#UD 6 Undefined Opcode 
#NM 7 No Math Unit Available 
#DF 8 Double Fault 
#MP 9 Math Unit Protection Fault 
#TS 10 Invalid Task State Segment 
#NP 11 Not Present 
#SS 12 Stack Fault 
#GP 13 General Protection 
#MF, 16 Math Fault 

8-7 



THE iAPX 286 INSTRUCTION SET 

instruction stream, even if the instruction 
stream is part of an external interrupt 
handling procedure or task. If bit 0 is set, 
the instruction pointed to by the saved 
CS:IP address is not responsible for the 
error. The current task can be restarted 
unless this is exception 9. 

• Bit 1 is 1 if the selector points to the 
Interrupt Descriptor Table. In this case, 
bit 2 can be ignored, and bits 3-10 contain 
the index into the IDT. 

• Bit 1 is 0 if the selector points to the 
Global or Local Descriptor Tables. In this 
case, bits 2-15 have their usual selector 
interpretation: bit 2 selects the table 
(1 = Local, O=Global), and bits 3-15 are 
the index into the table. 

In some cases the iAPX 286 chooses to pass 
an error code with no information in it. In 
these cases, all 16 bits of the error code are 
zero. 

The existence and type of error codes are 
described under each of the following individ
ual exceptions. 

#DF 8 Double Fault (Zero Error Code) 

This exception is generated when a second 
exception is detected while the processor is 
attempting to transfer control to the handler 
for an exception. For instance, it is generated 
if the code segment containing the. exception 
handler is marked not presenLIt is also 
generated if invoking the exception handler 
causes a stack overflow. 

This exception is not generated during the 
execution of an exeception handler. Faults 
detected within the instruction stream are 
handled by regular exceptions. 

The error code is normally zero. The saved 
CS:IP will point at the instruction that was 
attempting to execute when the double fault 

8-8 

occurred. Since the error code is normally 
zero, no information on the source of the 
exception is available. Restart is not possible. 

If another exception is detected while 
attempting to perform the double fault 
exception, the iAPX 286 will enter shutdown 
(see section 11.5). 

#GP 13 General Protection (Selector or 
Zero Error Code) 

This exception is generated for all protection 
violations not covered by the other exceptions 
in this section. Examples of this include: 

1. An attempt to address a memory location 
by using an offset that exceeds the limit 
for the segment involved. 

2. An attempt to jump to a data segment. 

3. An attempt to load SS with a selector for 
a read-only segment. 

4. An attempt to write to a read-only 
segment. 

If #GP occurred while loading a descriptor, 
the error code passed contains the selector 
involved. Otherwise, the error code is zero. 

If the error code is not zero, the instruction 
can be restarted if the erroneous condition is 
rectified. If the error code is zero either a limit 
violation, a write protect violation, or an 
illegal use of invalid segment register 
occurred. An invalid segment register contains 
the values 0-3. A write protect fault on ADC, 
SBB, RCL, RCR, or XCHG is not restarta
ble. 

#MF 16 Math Fault (No Error Code) 

This exception is generated when the numeric 
processor extension (the 80287) detects an 
error signalled by the ERROR input pin 
leading from the 80287 to the 80286. The 
ERROR pin is tested at the beginning of most 



THE IAPX 286 INSTRUCTION SET 

floating point instructions, and when aWAIT 
instruction is executed with the EM bit of the 
Machine Status Word set to 0 (i.e., no 
emulation of the math unit). The floating 
point instructions that do not cause the 
ERROR pin to be tested are FNCLEX, 
FNINIT, FSETPM, FNSTCW, FNSTSW, 
FNSA VE, and FNSTENV. 

If the handler corrects the error condition 
causing the exception, the floating point 
instruction that caused #MF can be restarted. 
This is not accomplished by IRET, however, 
since the fault occurs at the floating point 
instruction that follows the offending instruc
tion. Before restarting the numeric instruc
tion, the handler must obtain from the 80287 
the address of the offending instruction and 
the address of the optional numeric operand. 

#MP 9 Math Unit Protection Fault 
(No Error Code) 

This exception is generated if the numeric 
operand is larger than one word and has the 
second or subsequent words outside the 
segment's limit. Not all math addressing 
errors cause exception 9. If the effective 
address of an ESCAPE instruction is not in 
the segment's limit, or if a write is attempted 
on a read-only segment, or if a one-word 
operand violates a segment limit, exception 13 
will occur. 

The #MP exception occurs during the execu
tion of the numeric instruction by the 80287. 
Thus, the 80286 may be in an unrelated 
instruction stream at the time. Exception 9 
may occur in a task unrelated to the task that 
executed the ESC instruction. The operating 
system should keep track of which task last 
used the NPX (see section 11.4). 

The offending floating point instruction 
cannot be restarted; the task which attempted 
to execute the offending numeric instruction 

8-9 

must be aborted. However, if exception 9 
interrupted another task, the interrupted task 
may be restarted. 

The exception 9 handler must execute 
FNINIT before executing any ESCAPE or 
WAIT instruction. 

#NM 7 No Math Unit Available 
(No Error Code) 

This exception occurs when any floating point 
instruction is executed while the EM bit or 
the TS bit of the Machine Status Word is 1. 
It also occurs when aWAIT instruction is 
encountered and both the MP and TS bits of 
the Machine Status Word are 1. 

Depending on the setting of the MSW bits 
that caused this exception, the exception 
handler could provide emulation of the 80287, 
or it could perform a context switch of the 
math processor to prepare it for use by 
another task. 

The instruction causing #NM can be restarted 
if the handler performs a numeric context 
switch. If the handler provided emulation of 
the math unit, it should advance the return 
pointer beyond the floating point instruction 
that caused NM. 

#NP 11 Not Present (Selector Error Code) 

This exception occurs when CS, DS, ES, or 
the Task Register is loaded with a descriptor 
that is marked not present but is otherwise 
valid. It can occur in an LLDT instruction, 
but the #NP exception will not occur if the 
processor attempts to load the LDT register 
during a task switch. A not-present LDT 
encountered during a task switch causes the 
#TS exception. 

The error code passed is the selector of the 
descriptor that is marked not present. 



THE IAPX 286 INSTRUCTION SET 

Typically, the Not Present exception handler 
is used to implement a virtual memory system. 
The operating system can swap inactive 
memory segments to a mass-storage device 
such as a disk. Applications programs need 
not be told about this; the next time they 
attempt to access the swapped-out memory 
segment, the Not Present handler will be 
invoked, the segment will be brought back into 
memory, and the offending instruction within 
the applications program will be restarted. 

If #NP is detected on loading CS, OS, or ES 
in a task switch, the exception occurs in the 
new task, and the IRET from the exception 
handler jumps directly to the next instruction 
in the new task. 

The Not Present exception handler must 
contain special code to complete the loading 
of segment registers when#NP is detected in 
loading the CS or OS registers in a task 
switch and a trap or interrupt gate was used. 
The OS and ES registers have been loaded 
but their descriptors have not been loaded. 
Any memory reference uSing the segment 
register may cause exception ·13; The #NP 
exception handler should execute code such 
as the following to ensure full loading of the 
segment registers: 

MOV AX,QS 
MOVOS,AX 
MOVAX,ES 
MOVES,AX 

#SS 12 Stack Fault (Selector or Zero 
Error Code) 

This exception is generated when a limit 
violation is detected in addressing through the 
SS register. It can occur on stack-oriented 
instructions such as PUSH or POP, as well 
as other types of memory references using SS 
such as MOV AX,[BP+28]. It also can occur 

8-10 

on an ENTER instruction when there is not 
enough space on the stack for the indicated 
local variable space, even if the stack excep
tion is not triggered by pushing BP or copying 
the display stack. A stack exception can 
therefore indicate a stack overflow, a stack 
underflow or a wild offset. The error code will 
be zero. 

#SS is also generated on an attempt to load 
SS with a descriptor that is marked not 
present but is otherwise valid. This can occur 
in a task switch, an inter-level call, an inter
level return, a move to the SS instruction or 
a pop to the SS instruction. The error code 
will be non-zero. 

#SS is never generated when addressing 
through the OS or ES registers even if the 
offending register points to the same segment 
as the SS register. 

The #SS exception handler must contain 
special code to complete the loading of 
segment registers. The OS and ES registers 
will not be fully loaded if a not-present 
condition is detected while loading the. SS 
register. Therefore, the #SS exception handler 
should execute code such as the following to 
insure full loading of the segment registers: 

MOV AX,OS 
MOVOS,AX 
MOV AX,ES 
MOVES,AX 

Generally, the instruction causing #SS can be 
restarted, but there is one special case when 
it cannot: when a PUSHA or POPAinstruc
tion attempts to wrap around the 64K bound
ary of a stack segment. This condition is 
identified by the value of the saved SP, which 
can be either OOOOH, 0001 H, OFFFEH, or 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

#TS 10 Invalid Task State Segment 
(Selector Error Code) 

This exception is generated when a task state 
segment is invalid, that is, when a task state 
segment is too small; when the LDT indicated 
in a TSS is invalid or not present; when the 
SS, CS, DS, or ES indicated in a TSS are 
invalid (task switch); when a TSS indicated 
an invalid privileged stack (inter-level call); 
or when the back link in a TSS is invalid 
(inter-task IRET). 

#TS is not generated when the SS, CS, DS, 
or ES back link or privileged stack selectors 
point to a descriptor that is not present but 
otherwise is valid. #NP is generated in these 
cases. 

The error code passed to the exception handler 
contains the selector of the offending segment, 
which can either be the Task State Segment 
itself, or a selector found within the Task 
State Segment. 

The instruction causing #TS can be restarted. 

#TS must be handled through a task gate. 

#UD 6 Undefined Opcode (No Error Code) 

This exception is generated when an invalid 
operation code is detected in the instruction 
stream. Following are the cases in which #UD 
can occur: 

1. The first byte of an instruction is 
completely invalid (e.g., 64H). 

2. The first byte indicates a 2-byte opcode 
and the second byte is invalid (e.g., OFH 
followed by OFFH). 

3. An invalid register is used with an other
wise valid opcode (e.g., MOV CS,AX). 

4. An invalid opcode extension is given in 
the REG field of the ModRM byte (e.g., 
OF6H /1). 

8-11 

5. A register operand is given in an instruc
tion that requires a memory operand 
(e.g., LGDT AX). 

Since the offending opcode will always be 
invalid, it cannot be restarted. However, the 
#UD handler might be coded to implement 
an extension of the iAPX 286 instruction set. 
In that case, the handler could advance the 
return pointer beyond the extended instruc
tion and return control to the program after 
the extended instruction is emulated. Any 
such extensions may be incompatible with 
iAPX 386. 

Privilege Level and Task Switching on 
the iAPX 286 

The iAPX 286 supports many of the functions 
necessary to implement a protected, multi
tasking operating system in hardware. This 
support is provided not by additional instruc
tions, but by extension of the semantics of 
iAPX 86/88 instructions that change the 
value of CS:IP. 

Whenever the iAPX 286 performs an inter
segment jump, call, interrupt, or return, it 
consults the Access Rights (AR) byte found 
in the descriptor table entry of the selector 
associated with the new CS value. The AR 
byte determines whether the long jump being 
made is through a gate, or is a task switch, or 
is a simple long jump to the same privilege 
level. Table B-3 lists the possible values of the 
AR byte. The "privilege" headings at the top 
of the table give the Descriptor Privilege 
Level, which is referred to as the DPL within 
the instruction descriptions. 

Each of the CALL, INT, IRET, JMP, and 
RET instructions contains on its instruction 
set pages a listing of the access rights 
checking and actions taken to implement 
the instruction. Instructions involving 
task switches contain the symbol 
SWITCH_TASKS, which is an abbreviation 
for the following list of checks and actions: 



THE IAPX 286 INSTRUCTION SET 

SWITCH_TASKS: 
Locked set AR byte of new TSS descriptor to Busy TSS (Bit 1 = 1) 
Current TSS cache must be valid with limit;::: 43 else #TS (error code will be new TSS, but back link points 
at old TSS) 
New TSS limit;::: 43 else #TS (new TSS) 
Save machine state in current TSS 
If nesting tasks, set the new TSS link to the current TSS selector 
Any exception will be in new context Else set the AR byte of current TSS 
descriptor to Available TSS(Bit 1 = 0) 
Set the current TR to selector, base, and limit of new TSS 
Set all machine registers to values from new TSS without loading descriptors for OS, ES, CS, SS, LOT 
Clear valid flags for LOT,SS,CS,OS,ES (not valid yet) 
Set the Task Switched flag to 1 
If nesting tasks, set the Nested Task flag to 1 
LOT from the new TSS must be within GOT table limits else #TS(LOT) 
AR byte from LOT descriptor must specify LOT segment else #TS(LOT) 
AR byte from LOT descriptor must indicate PRESENT else #TS(LOT) 
Load LOT cache with new LOT descriptor and set valid bit 
Set CPL to the RPL of the CS selector in the new TSS 
If new stack selector is null. #TS(SS) 
SS selector must be within its descriptor table limits else #TS(SS) 
SS selector RPL must be equal to CPL else #TS(SS) 
OPL of SS descriptor must equal CPL else #TS(SS) 
SS descriptor AR byte must indicate writable data segment else #TS(SS) 
SS descriptor AR byte must indicate PRESENT else #SS(SS) 
Load SS cache with new stack segment and set valid bit 
New CS selector must not be null else #TS(CS) 
CS selector must be within its descriptor table limits else #TS(CS) 
CS descriptor AR byte must indicate code segment else #TS(CS) 
If non-conforming then OPL must equal CPL else #TS(CS) 
If conforming then OPL must be :5 CPL else #TS(CS) 
CS descriptor AR byte must indicate PRESENT else #NP(CS) 
Load CS cache with new code segment descriptor and set valid bit 
For OS and ES: 
If new selector is not null then perform following checks: 

Index must be within its descriptor table limits else #TS(segment selector) 
AR byte must indicate data or readable code else #TS(segment selector) 
If data or non-conforming code then: 

OPL must be ;::: CPL else #TS(segment selector) 
OPL must be ;::: RPL else #TS(segment selector) 

AR byte must indicate PRESENT else #NP(segment selector) 
Load cache with new segment descriptor and set valid bit 

B-12 



THE iAPX 286 INSTRUCTION SET 

Table B-3. Hexadecimal Values for the Access Rights Byte 

Not present, Present, 
privilege = privilege = Descriptor Type 

0 1 2 3 0 1 2 3 

00 20 40 60 80 AO CO EO Illegal 
01 21 41 61 81 A1 C1 E1 Available Task State Segment 
02 22 42 62 82 A2 C2 E2 Local Descriptor Table Segment 
03 23 43 63 83 A3 C3 E3 Busy Task State Segment 
04 24 44 64 84 A4 C4 E4 Call Gate 
05 25 45 65 85 A5 C5 E5 Task Gate 
06 26 46 66 86 A6 C6 E6 Interrupt Gate 
07 27 47 67 87 A7 C7 E7 Trap Gate 
08 28 48 68 88 A8 C8 E8 Illegal 
09 29 49 69 89 A9 C9 E9 Illegal 
OA 2A 4A 6A 8A AA CA EA Illegal 
OB 2B 4B 6B 8B AB CB EB Illegal 
OC 2C 4C 6C 8C AC CC EC Illegal 
00 20 40 60 80 AD CD ED Illegal 
OE 2E 4E 6E 8E AE CE EE Illegal 
OF 2F 4F 6F 8F AF CF EF Illegal 
10 30 50 70 90 BO DO FO Expand-up, read only, ignored Data Segment 
11 31 51 71 91 B1 01 F1 Expand-up, read only, accessed Data Segment 
12 32 52 72 92 B2 02 F2 Expand-up, writable, ignored Data Segment 
13 33 53 73 93 B3 03 F3 Expand-up, writable, accessed Data Segment 
14 34 54 74 94 B4 04 F4 Expand-down, read only, ignored Data Segment 
15 35 55 75 95 B5 05 F5 Expand-down, read only, accessed Data Segment 
16 36 56 76 96 B6 06 F6 Expand-down, writable, ignored Data Segment 
17 37 57 77 97 B7 07 F7 Expand-down, writable, accessed Data Segment 
18 38 58 78 98 B8 08 F8 Non-conform, no read, ignored Code Segment 
19 39 59 79 99 B9 09 F9 Non-conform, no read, accessed Code Segment 
1A 3A 5A 7A 9A BA DA FA Non-conform, readable, ignored Code Segment 
1B 3B 5B 7B 9B BB DB FB Non-conform, readable, accessed Code Segment 
1C 3C 5C 7C 9C BC DC FC Conforming, no read, ignored Code Segment 
10 3D 50 70 90 BD DO FD Conforming, no read, accessed Code Segment 
1E 3E 5E 7E 9E BE DE FE Conforming, readable, ignored Code Segment 
1F 3F 5F 7F 9F BF OF FF Conforming, readable, accessed Code Segment 

B-13 



THE IAPX 286 INSTRUCTION SET 

AAA - ASCII Adjust AL After Addition 

Opcode Instruction 

37 AAA 

FLAGS MODIFIED 

Auxiliary carry, carry 

FLAGS UNDEFINED 

Overflow, sign, zero, parity 

OPERATION 

Clocks 

3 

AAA should be executed only after an ADD 
instruction which leaves a byte result in the 
AL register. The lower nibbles of the operands 
to the ADD instruction should be in the range 
o through 9 (BCD digits). In this case, the 
AAA instruction will adjust AL to contain the 
correct decimal digit result. If the addition 
produced a decimal carry, the AH register is 
incremented, and the carry and auxiliary 
carry flags are set to I. If there was no 
decimal carry, the carry and auxiliary carry 
flags are set to 0, and AH is unchanged. In 

8-14 

Description 

ASCII adjust AL after addition 

any case, AL is left with its top nibble set to 
O. To convert AL to an ASCII result, you can 
follow the AAA instruction with OR AL,30H. 

The precise definition of AAA is as follows: 
if the lower 4 bits of AL are greater than nine, 
or if the auxiliary carry flag is I, then incre
ment AL by 6, AH by I, and set the carry 
and auxiliary carry flags. Otherwise, reset the 
carry and auxiliary carry flags. In any case, 
conclude the AAA operation by setting the 
upper four bits of AL to zero. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

AAD-ASCII Adjust AX Before Division 

Opcode 

05 OA 

FLAGS MODIFIED 

Sign, zero, parity 

FLAGS UNDEFINED 

Instruction 

AAO 

Overflow, auxiliary carry, carry 

OPERATION 

Clocks 

14 

AAD is used to prepare two unpacked BCD 
digits (least significant in AL, most signifi
cant in AH) for a division operation which 
will yield an unpacked result. This is accom-

8-15 

DescrIptIon 

ASCII adjust AX before division 

plished by setting AL to AL + (lOX AH), 
and then setting AH to O. This leaves AX 
equal to the binary equivalent of the original 
unpacked 2-digit number. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

AAM-ASCII Adjust AX After Multiply 

Opcode 

04 OA 

FLAGS MODIFIED 

Sign, zero, parity 

FLAGS UNDEFINED 

Instruction 

AAM 

Overflow, auxiliary carry, carry 

OPERATION 

Clocks 

16 

AAM should be used only after executing a 
MUL instruction between two unpacked BCD 
digits, leaving the result in the AX register. 
Since the result is less than one hundred, it is 

8-16 

Description 

ASCII adjust AX after multiply 

contained entirely in the AL register. AAM 
unpacks the AL result by dividing AL by ten, 
leaving the quotient (most significant digit) 
in AH, and the remainder (least significant 
digit) in AL. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

AAS - ASCII Adjust AL After Subtraction 

Opcode Instruction 

3F AAS 

FLAGS MODIFIED 

Auxiliary carry, carry 

FLAGS UNDEFINED 

Overflow, sign, zero, parity 

OPERATION 

Clocks 

3 

AAS should be executed only after a subtrac
tion instruction which left the byte result in 
the AL register. The lower nibbles of the 
operands to the SUB instruction should have 
been in the range 0 through 9 (BCD digits). 
In this case, the AAS instruction will adjust 
AL to contain the correct decimal digit result. 
If the subtraction produced a decimal carry, 
the AH register is decremented, and the carry 
and auxiliary carry flags are set to 1. If there 
was no decimal carry, the carry and auxiliary 
carry flags are set to 0, and AH is unchanged. 

8-17 

Description 

ASCII adjust AL after subtraction 

In any case, AL is left with its top nibble set 
to O. To convert AL to an ASCII result, you 
can follow the AAS instruction with 
OR AL,30H. 

The precise definition of AAS is as follows: if 
the lower four bits of AL are greater than 9, 
or if the auxiliary carry flag is 1, then decre
ment AL by 6, AH by 1, and set the carry 
and auxiliary carry flags. Otherwise, reset the 
carry and auxiliary carry flags. In any case, 
conclude the AAS operation by setting the 
upper four bits of AL to zero. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

ADC/ ADD-Integer Addition 

Opcode Instruction Clocks 

10 /r ADC eb,rb 2,mem=7 
11 /r ADC ew,rw 2,mem=7 
12 /r ADC rb,eb 2,mem=7 
13 /r . ADC rw,ew 2,mem=7 
14 db ADC AL,db 3 
15 dw ADC AX,dw 3 
80 /2 db ADC eb,db 3,mem=7 
81 /2 dw ADC eW,dw 3,mem=7 
83 /2 db ADC eW,db 3,mem=7 
00 /r ADD eb,rb 2,mem=7 
01 /r ADD ew,rw 2,mem=7 
02 /r ADD rb,eb 2,mem=7 
03 /r ADD rw,ew 2,mem=7 
04 db ADD AL,db 3 
05 dw ADD AX,dw 3 
80 /0 db ADD eb,db 3;mem=7 
81 /0 dw ADD ew,dw .3,mem=7 
83 /0 db ADD eW,db 3,mem=7 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

ADD and ADC perform an integer addition 
on the two operands. The ADC instruction 
also adds in the initial state of the carry flag. 
The result of the addition goes to the first 
operand. ADC is usually executed as part of 
a multi-byte or multi-word addition 
operation. 

8-18 

Description 

Add with carry byte register into EA byte 
Add with carry word register into EA word 
Add with carry EA byte into byte register 
Add with carry EA word into word register 
Add with carry immediate byte into AL 
Add with carry immediate word into AX 
Add with carry immediate byte into EA byte 
Add with carry immediate word into EA word 
Add with carry immediate byte into EA word 
Add byte register into EA byte 
Add word register into EA word 
Add EA byte into byte register 
Add EA word into word register 
Add immediate byte into AL 
Add immediate word into AX 
Add immediate byte into EA byte 
Add immediate word into EA word 
Add immediate byte into EA word 

When a byte immediate value is added to a 
word operand, the immediate value is first 
sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

AND-Logical AND 

Opcode 

20 /r 
21 /r 
22 /r 
23 /r 
24 db 
25 dw 
80 /4 db 
81 /4 dw 

FLAGS MODIFIED 

Instruction 

AND eb,rb 
AND ew,rw 
AND rb,eb 
AND rw,ew 
AND AL,db 
AND AX,dw 
AND eb,db 
AND eW,dw 

Clocks 

2,mem=7 
2,mem=7 
2,mem=7 
2,mem=7 
3 
3 
3,mem=7 
3,mem=7 

Overflow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

Each bit of the result is a 1 if both corre
sponding bits of the operands were 1; it is 0 
otherwise. 

8-19 

Description 

Logical-AND byte register into EA byte 
Logical-AND word register into EA word 
Logical-AND EA byte into byte register 
Logical-AND EA word into word register 
Logical-AND immediate byte into AL 
Logical-AND immediate word into AX 
Logical-AND immediate byte into EA byte 
Logical-AND immediate word into EA word 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

ARPL-Adjust RPL Field of Selector 

Opcode Instruction Clocks 

63 /r ARPL ew,rw 10,mem=11 

FLAGS MODIFIED 

Zero 

FLAGS UNDEFINED 

None 

OPERATION 

The ARPL instruction has two operands. The 
first operand is a 16-bit memory variable or 
word register that contains the value of a 
selector. The second operand is a word· regis
ter. If the RPL field (bottom two bits) of the 
first operand is less than the RPL field of the 
second operand, then the zero flag is set to I 
and the RPL field of the first operand is 
increased to match the second RPL. Other
wise, the zero flag is set to 0 and no change 
is made to the first operand. 

8-20 

Description 

Adjust RPL of EA word not less than RPL of 
rw 

ARPL appears in operating systems software, 
not in applications programs. It is used to 
guarantee that a selector parameter to a 
subroutine does not request more privilege 
than the caller was entitled to. The second 
operand used by ARPL would normally be a 
register that contains the CS selector value of 
the caller. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6. ARPL is not recognized in Real 
Address mode. 



THE iAPX 286 INSTRUCTION SET 

BOUND-Check Array Index Against Bounds 

Opcode 

62 Ir 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

BOUND rw,md noj=13 

BOUND is used to ensure that a signed array 
index is within the limits defined by a two
word block of memory. The first operand (a 
register) must be greater than or equal to the 
first word in memory, and less than or equal 
to the second word in memory. If the register 
is not within the bounds, an INTERRUPT 5 
occurs. 

The two-word block might typically be found 
just before the array itself and therefore would 
be accessible at a constant offset of -4 from 
the array, simplifying the addressing. 

B-21 

Description 

INT 5 if rw not within bounds 

PROTECTED MODE EXCEPTIONS 

INTERRUPT 5 if the bounds test fails, as 
described above. #GP(O) for an illegal 
memory operand effective address in the CS, 
DS, or ES segments; #SS(O) for an illegal 
address in the SS segment. 

The second operand must be a memory 
operand, not a register. If the BOUND 
instruction is executed with a ModRM byte 
representing a register second operand, then 
fault #UD will occur. 

REAL ADDRESS MODE EXCEPTIONS 

INTERRUPT 5 if the bounds test fails, as 
described above. Interrupt 13 for a second 
operand at offset OFFFDH or higher. Inter
rupt 6 if the second operand is a register, as 
described in the paragraph above. 



THE iAPX 286 INSTRUCTION SET 

CALL-Call Procedure 

Opcode 

E8 cw 
FF /2 
9A cd 
9A cd 
9A cd 
9A cd 
9A cd 
9A cd 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 
FF /3 

Instruction 

CALL cw 
CALL ew 
CALL cd 
CALL cd 
CALL cd 
CALL cd 
CALL cd 
CALL cd 
CALL ed 
CALL ed 
CALL ed 
CALL ed 
CALL ed 
CALL ed 

Clocks' 

7 
7,mem=11 
13,pm=26 
41 
82 
86+4X 
177 
182 
16,mem=29 
44 
83 
90+4X 
180 
185 

Description 

Call near, offset relative to next instruction 
Call near, offset absolute at EA word 
Call inter-segment, immediate 4-byte address 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, X parameters 
Call via Task State Segment 
Call via task gate 
Call inter-segment, address at EA doubleword 
Call gate, same privilege 
Call gate, more privilege, no parameters 
Call gate, more privilege, X parameters 
Call via Task State Segment 
Call via task gate 

'Add one clock for each byte in the next instruction executed. 

FLAGS MODIFIED 

None, except when a task switch occurs 

FLAGS UNDEFINED 

None 

OPERATION 

The CALL instruction causes the procedure 
named in the operand to be executed. When 
the procedure is complete (a return instruc
tion is executed within the procedure), execu
tion continues at the instruction that follows 
the CALL instruction. 

The CALL cw form of the instruction adds 
modulo 65536 (the 2-byte operand) to the 
offset of the instruction following the CALL 
and sets IP to the resulting offset. The 2-byte 
offset of the instruction that follows the 
CALL is pushed onto the stack. It will be 
popped by a near RET instruction within the 
procedure. The CS register is not changed by 
this form. 

The CALL ew form of the instruction is the 
same as CALL cw except that the operand 
specifies a memory location from which the 

8-22 

absolute 2-byte offset for the procedure is 
fetched. 

The CALL cd form of the instruction uses the 
4-byte operand as a pointer to the procedure 
called. The CALL ed form fetches the long 
pointer from the memory location specified. 
Both long pointer forms consult the AR byte 
in the descriptor indexed by the selector part 
of the long pointer. The AR byte can indicate 
one of the following descriptor types: 

l. Code Segment-The access rights are 
checked, the return pointer is pushed onto 
the stack, and the procedure is jumped 
to. 

2. Call Gate-The offset part of the pointer 
is ignored. Instead, the entire address of 
the procedure is taken from the call gate 
descriptor entry. If the routine being 
entered is more privileged, then a new 
stack (both SS and SP) is loaded from 
the task state segment for the new privi
lege level, and parameters determined by 
the wordcount field of the call gate are 
copied from the old stack to the new 
stack. 



THE iAPX 286 INSTRUCTION SET 

3. Task Gate-The current task's context is 
saved in its Task State Segment (TSS), 
and the TSS named in the task-gate is 
used to load the new context. The selec
tor for the outgoing task (from TR) is 
stored into the new TSS's link field, and 
the new task's Nested Task flag is set. 
The outgoing task is left marked busy, the 
new TSS is marked busy, and execution 
resumes at the point at which the new 
task was last suspended. 

4. Task State Segment-The current task is 
suspended and the new task initiated as 
in 3 above except that there is no inter
vening gate. 

CALL FAR: 

For long calls involving no task switch, the 
return link is the pointer of the instruction 
that follows the CALL, i.e., the caller's CS 
and updated IP. Task switches invoked by 
CALLs are linked by storing the outgoing 
task's TSS selector in the incoming TSS's link 
field and setting the Nested Task flag in the 
new task. Nested tasks must be terminated by 
an IRET. IRET releases the nested task and 
follows the back link to the calling task if the 
NT flag is set. 

A precise list of the protection checks made 
and the actions taken is given by the follow
ing list: 

If indirect then check access of EA doubleword #GP(O) if limit violation 
New CS selector must not be null else #GP(O) 
Check that new CS selector index is within its descriptor table limits; else #GP (new CS selector) 
Examine AR byte of selected descriptor for various legal values: 

CALL CONFORMING CODE SEGMENT: 
DPL must be :s CPL else #GP (code segment selector) 
Segment must be PRESENT else #NP (code segment selector) 
Stack must be big enough for return address else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load code segment descriptor into CS cache 
Load CS with new code segment selector 
Load IP with new offset 

CALL NONCONFORMING CODE SEGMENT: 
RPL must be :s CPL else #GP (code segment selector) 
DPL must be = CPL else #GP (code segment selector) 
Segment must be PRESENT else #NP (code segment selector) 
Stack must be big enough for return address else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load code segment descriptor into CS cache 
Load CS with new code segment selector 
Set RPL of CS to CPL 
Load IP with new offset 

CALL TO CALL GATE: 
Call gate DPL must be :2:: CPL else #GP (call gate selector) 
Call gate DPL must be :2:: RPL else #GP (call gate selector) 
Call gate must be PRESENT else #NP (call gate selector) 
Examine code segment selector in call gate descriptor: 

Selector must not be null else #GP(O) 
Selector must be within its descriptor table limits else #GP (code segment selector) 
AR byte of selected descriptor must indicate code segment else #GP (code segment selector) 
DPL of selected descriptor must be :s CPL else #GP( code segment selector) 
If non-conforming code segment and DPL < CPL then 

CALL GATE TO MORE PRIVILEGE: 
Get new SS selector for new privilege level from TSS 

8-23 



THE iAPX 286 INSTRUCTION SET 

Check selector and descriptor for new SS: 
Selector must not be null else #TS(O) 
Selector index must be within its descriptor table limits else #TS (SS selector) 
Selector's RPL must equal DPL of code segment else #TS (SS selector) 
Stack segment DPL must equal DPL of code segment else #TS (SS selector) 
Descriptor must indicate writable data segment else #TS (SS selector) 
Segment PRESENT else #SS (SS selector) 

New stack must have room for parameters plus 8 bytes else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load new SS:SP value from TSS 
Load new CS:IP value from gate 
Load CS descriptor 
Load SS descriptor 
Push long pointer of old stack onto new stack 
Get word count from call gate, mask to 5 bits 
Copy parameters from old stack onto new stack 
Push return address onto new stack 
Set CPL to stack segment DPL 
Set RPL of CS to CPL 

Else 
CALL GATE TO SAME PRIVILEGE: 
Stack must have room for 4-byte return address else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from gate 
Push return address onto stack 
Load code segment descriptor into CS-cache 
Set RPL of CS to CPL 

CALL TASK GATE: 
Task gate DPL must be ;::: CPL else #GP (gate selector) 
Task gate DPL must be ;::: RPL else #GP (gate selector) 
Task Gate must be PRESENT else #NP (gate selector) 
Examine selector to TSS, given in Task Gate descriptor: _ 

Must specify global in the local/global bit else #GP (TSS selector) 
Index must be within GOT limits else #GP (TSS selector) 
TSS descriptor AR byte must specify available TSS (bottom bits 00001) else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 

SWITCH_TASKS with nesting to TSS 
IP must be in code segment limit else #GP(O) 

TASK STATE SEGMENT: 
TSS DPL must be ;::: CPL else #GP (TSS selector) 
TSS DPL must be ;::: RPL else #GP (TSS selector) 
TSS descriptor AR byte must specify available TSS else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 
SWITCH_TASKS with nesting to TSS 
IP must be in code segment limit else #GP(O) 

ELSE #GP (code segment selector) 

PROTECTED MODE EXCEPTIONS 

FAR calls: #GP, #NP, #SS, and #TS, as 
indicated in the list above. 

NEAR direct calls: #GP(O) if procedure 
location is beyond the code segment limits. 

NEAR indirect CALL: #GP(O) for an illegal 
memory operand effective address in the CS, 

8-24 

DS, or ES segments; #SS(O) for an illegal 
address in the SS segment. #GP if the indirect 
offset obtained is beyond the code segment 
limits. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

CBW-Convert Byte into Word 

Opcode 

98 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

CBW 2 

CBW converts the signed byte in AL to a 

B-25 

Description 

Convert byte into word (AH = top bit of AL) 

signed word in AX. It does so by extending 
the top bit of AL into all of the bits of AH. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 

7 



THE iAPX 286 INSTRUCTION SET 

CLC-Clear Carry Flag 

Opcode 

F8 

FLAGS MODIFIED 

Carry=O 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

CLC 

Clocks 

2 

CLC sets the carry flag to zero. No other flags 
or registers are affected. 

B-26 

Description 

Clear carry flag 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

CLD-Clear Direction Flag 

Opcode 

FC 

FLAGS MODIFIED 

Direction = 0 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

CLO 2 

CLD clears the direction flag. No other flags 

B-27 

Description 

Clear direction flag. 51 and 01 will increment 

or registers are affected. After CLD is 
executed, string operations will increment the 
index registers (SI and/or DI) that they use. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

ell-Clear Interrupt Flag 

Opcode 

FA 

FLAGS MODIFIED 

Interrupt=O 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

CLI 3 

CLI clears the interrupt enable flag if the 
current privilege level is at least as privileged 
as'IOPL. No other flags are affected. Exter
nal interrupts will not be recognized at the 

8-28 

Description 

Clear interrupt flag; interrupts disabled 

end of the CLI instruction or thereafter until 
the interrupt flag is set. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger 
(has less privilege) than the IOPL in the flags 
register. IOPL specifies the least privileged 
level at which I/O may be performed. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

CL TS-Clear Task Switched Flag 

Opcode 

OF 06 

FLAGS MODIFIED 

Task switched=O 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

CLTS 2 

CL TS clears the task switched flag in the 
Machine Status Word. This flag is set by the 
iAPX 286 every time a task switch occurs. 
The TS flag is used to manage processor 
extensions as follows: every execution of a 
WAIT or an ESC instruction will be trapped 
if the MP flag of MSW is set and the task 
switched flag is set. Thus, if a processor 
extension is present and a task switch has been 
made since the last ESC instruction was 
begun, the processor extension's context must 
be saved before a new instruction can be 

8-29 

Description 

Clear task switched flag 

issued. The fault routine will save the context 
and reset the task switched flag or place the 
task requesting the processor extension into a 
queue until the current processor extension 
instruction is completed. 

CL TS appears in operating systems software, 
not in applications programs. It is a privi
leged instruction that can only be executed at 
level O. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if CLTS is executed with a current 
privilege level other than O. 

REAL ADDRESS MODE EXCEPTIONS 

None (valid in REAL ADDRESS MODE to 
allow power-up initialization for Protected 
Mode) 



THE iAPX 286 INSTRUCTION SET 

CMC-Complement Carry Flag 

Opcode 

F5 

FLAGS MODIFIED 

Carry 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

CMC 2 

CMC reverses the setting of the carry flag. 
No other flags are affected. 

8-30 

Description 

Complement carry flag 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

CMP-Compare Two Operands 

Opcode Instruction Clocks 

3C db CMP AL,db 3 
3D dw CMP AX,dw 3 
80 17 db CMP eb,db 3,mem=6 
38 Ir CMP eb,rb 2,mem=7 
83 17 db CMP eW,db 3,mem=6 
81 17 dw CMP eW,dw 3,mem=6 
39 Ir CMP ew,rw 2,mem=7 
3A Ir CMP rb,eb 2,mem=6 
38 Ir CMP rW,ew 2,mem=6 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

CMP subtracts the second operand from the 
first operand, but it does not place the result 
anywhere. Only the flags are changed by this 
instruction. CMP is usually followed by a 
conditional jump instruction. See the "Jcond" 
instructions in this chapter for the list of 

8-31 

Description 

Compare immediate byte from AL 
Compare immediate word from AX 
Compare immediate byte from EA byte 
Compare byte register from EA byte 
Compare immediate byte from EA word 
Compare immediate word from EA word 
Compare word register from EA word 
Compare EA byte from byte register 
Compare EA word from word register 

signed and unsigned flag tests provided by the 
iAPX 286. 

If a word operand is compared to an immedi
ate byte value, the byte value is first sign
extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

CMPS/CMPSB/CMPSW-Compare string operands 

Opcode 

A6 
A6 
A7 

FLAGS MODIFIED 

Instruction 

CMPS mb,mb 
CMPS8 
CMPSW 

Clocks 

8 
8 
8 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

CMPS compares the byte or word pointed to 
by SI with the byte or word pointed to by Dr 
by performing the subtraction [SI] - [DI]. 
The result is not placed anywhere; only the 
flags reflect the result of the subtraction. The 
types of the operands to CMPS determine 
whether bytes or words are compared. The 
segment address ability of the first (SO 
operand determines whether a segment 
override byte will be produced or whether the 
default segment register DS is used. The 
second (D!) operand must be addressible from 
the ES register; no segment override is 
possible. 

8-32 

Description 

Compare bytes ES:[DI] from [SI] 
Compare bytes ES:[DI] from DS:[SI] 
Compare words ES:[DI] from DS:[SI] 

After the comparison is made, both SI and 
DI are automatically advanced. If the direc
tion flag is 0 (CLD was executed), the regis
ters increment; if the direction flag is 1 (STD 
was executed), the registers decrement. The 
registers increment or decrement by 1 if a 
byte was moved; by 2 if a word was moved. 

CMPS can be preceded by the REPE or 
REPNE prefix for block comparison of CX 
bytes or words. Refer to the REP instruction 
for details of this operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

CWO-Convert Word to Doubleword 

Opcode 

99 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

cwo 2 

CWD converts the signed word in AX to a 
signed doubleword in DX:AX. It does so by 

8-33 

Description 

Convert word to doubleword (OX:AX = AX) 

extending the top bit of AX into all the bits 
ofDX. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

DAA-Decimal Adjust AL After Addition 

Opcode Instruction Clocks 

27 DAA 3 

FLAGS MODIFIED 

Sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

Overflow 

OPERATION 

DAA should be executed only after an ADD 
instruction which leaves a two-BCD-digit byte 
result in the AL register. The ADD operands 
should consist of two packed BCD digits. In 
this case, the DAA instruction will adjust AL 
to contain the correct two-digit packed 
decimal result. 

8-34 

Description 

Decimal adjust AL after addition 

The precise definition of DAA is as follows: 

I. If the lower 4 bits of AL are greater than 
nine, or if the auxiliary carry flag is I, 
then increment AL by 6, and set the 
auxiliary carry flag. Otherwise, reset the 
auxiliary carry flag. 

2. If AL is now greater than 9FH, or if the 
carry flag is set, then increment AL by 
60H, and set the carry flag. Otherwise, 
clear the carry flag. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

DAS-Decimal Adjust AL After Subtraction 

Opcode Instruction Clocks 

2F DAS 3 

FLAGS MODIFIED 

Sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

Overflow 

OPERATION 

DAS should be executed only after a subtrac
tion instruction which leaves a two-BCD-digit 
byte result in the AL register. The operands 
should consist of two packed BCD digits. In 
this case, the DAS instruction will adjust AL 
to contain the correct packed two-digit 
decimal result. 

8-35 

Description 

Decimal adjust AL after subtraction 

The precise definition of DAS is as follows: 

1. If the lower four bits of AL are greater 
than 9, or if the auxiliary carry flag is 1, 
then decrement AL by 6, and set the 
auxiliary carry flag. Otherwise, reset the 
auxiliary carry flag. 

2. If AL is now greater than 9FH, or if the 
carry flag is set, then decrement AL by 
60H, and set the carry flag. Otherwise, 
clear the carry flag. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

DEC-Decrement by1 

Opcode 

FE /1 
FF /1 
48+ rw 

FLAGS MODIFIED 

Instruction 

DEC eb 
DEC ew 
DEC rw 

Clocks 

2,mem=7 
2,mem=7 
2 

Overflow, sign, zero, auxiliary carry, parity 

FLAGS UNDEFINED 

None 

OPERATION 

I is subtracted from the operand. Note that 
the carry flag is not changed by this instruc
tion. If you want the carry flag set, use the 
SUB instruction with a second operand of 1. 

8-36 

Description . 

Decrement EA byte by 1 
Decrement EA word by 1 
Decrement word register by 1 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the operand is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

DIV -Unsigned Divide 

Opcode InstructIon Clocks 

F6 /6 
F7 /6 

DIVeb 
DIVew 

14,mem=17 
22,mem=25 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

OPERATION 

DIV performs an unsigned divide. The 
dividend is implicit; only the divisor is given 
as an operand. If the source operand is a 
BYTE operand, divide AX by the byte. The 
quotient is stored in AL, and the remainder 
is stored in AH. If the source operand is a 
WORD operand, divide DX:AX by the word. 
The high-order 16 bits of the dividend are 
kept in DX. The quotient is stored in AX, and 

8-37 

DescrIption 

Unsigned divide AX by EA byte 
Unsigned divide DX:AX by EA word 

the remainder is stored in DX. Non-integral 
quotients are truncated towards o. The 
remainder is always less than the dividend. 

PROTECTED MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in 
the designated register (AL or AX), or if the 
divisor is zero. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in 
the designated register (AL or AX), or if the 
divisor is zero. Interrupt 13 for a word 
operand at offset OFFFFH. 



THE IAPX286 INSTRUCTION SET 

ENTER - Make Stack Frame for Procedure Parameters 

Opcode 

C8 dw 00 
C8 dw 01 
C8 dw db 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

ENTER dw,O 
ENTER dW,1 
ENTER dW,db 

Clocks 

11 
15 
12+4db 

ENTER is used to create the stack frame 
required by most block-structured high-level 
languages. The first operand specifies how 
many bytes of dynamic storage are to be 
allocated on the stack for the routine being 
entered. The second operand gives the lexical 
nesting level of the routine within the high
level-language source code. It determines how 
many stack frame pointers are copied into the 
new stack frame from the preceding frame. 
BP is used as the current stack frame pointer. 

If the second operand is 0, ENTER pushes 
BP, sets BP to SP, and subtracts the first 
operand from SP. 

For example, a procedure with 12 bytes of 
local variables would have an ENTER 12,0 
instruction at its entry point and a LEA VE 
instruction before every RET. The 12 local 

B-38 

Description 

Make stack frame for procedure parameters 
Make stack frame for procedure parameters 
Make stack frame for procedure parameters 

bytes would be addressed as negative offsets 
from [BP]. See also section 4.2. 

The formal definition of the ENTER instruc
tion for all cases is given by the following 
listing. LEVEL denotes the value of the 
second operand. 

LEVEL: = LEVEL MOD 32 
Push BP 
Set a temporary value FRAME-PTR : = SP 
If LEVEL> 0 then 

Repeat (LEVEL-1) times: 
BP:= BP - 2 
Push the word pointed to by BP 

End repeat 
Push FRAME-PTR 

End if 
BP : = FRAME-PTR 
SP : = SP - first operand. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if SP were to go outside of the stack 
limit within any part of the instruction 
execution. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

HLT-Halt 

Opcode 

F4 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

HLT 2 

Successful execution of HLT causes the iAPX 
286 to cease executing instructions and to 
enter a HALT state. Execution resumes only 
upon receipt of an enabled interrupt or a reset. 

8-39 

Description 

Halt 

If an interrupt is used to resume program 
execution after HLT, the saved CS:IP value 
will point to the instruction that follows HLT. 

PROTECTED MODE EXCEPTIONS 

HL T is a privileged instruction. #GP( 0) if the 
current privilege level is not O. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

IDIV -Signed Divide 

Opcode Instruction Clocks 

F6 /7 

F7 /7 

IDIVeb 17,mem=20 

IDIVew 25,mem=28 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

OPERATION 

IDIV performs a signed divide. The dividend 
is implicit; only the divisor is given as an 
operand. If the source operand is a BYTE 
operand, divide AX by the byte. The quotient 
is stored in AL, and the remainder is stored 
in AH. If the source operand is a WORD 
operand, divide DX:AX by the word. The 
high-order 16 bits of the dividend are in DX. 
The quotient is stored in AX, and the 
remainder is stored in DX. Non-integral 

8-40 

Description 

Signed divide AX by EA byte (AL=Quo, 
AH=Rem) 
Signed divide DX:AX by EA word (AX=Quo, 
DX=Rem) 

quotients are truncated towards O. The 
remainder has the same sign as the dividend 
and always has less magnitude than the 
dividend. 

PROTECTED MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in 
the designated register (AL or AX), or if the 
divisor is O. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 0 if the quotient is too big to fit in 
the designated register (AL or AX), or if the 
divisor is O. Interrupt 13 for a word operand 
at offset OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

IMUL-Signed Multiply 

Opcode Instruction Clocks 

F6 15 IMUL eb 13,mem=16 
F7 15 IMUL ew 21,mem=24 
68 If db IMUL rw,db 21,mem=24 
69 If dw IMUL rw,8w,dw 21,mem=24 
68 If db IMUL rw,ew,db 21,mem=24 

FLAGS MODIFIED 

Overflow, carry 

FLAGS UNDEFINED 

Sign, zero, auxiliary carry, parity 

OPERATION 

IMUL performs signed multiplication. If 
IMUL has a single byte source operand, then 
the source is multiplied by AL and the 16-bit 
signed result is left in AX. Carry and overflow 
are set to 0 if AH is a sign extension of AL; 
they are set to 1 otherwise. 

If IMUL has a single word source operand, 
then the source operand is multiplied by AX 
and the 32-bit signed result is left in DX:AX. 
DX contains the high-order 16 bits of the 
product. Carry and overflow are set to 0 if 
DX is a sign extension of AX; they are set to 
1 otherwise. 

If IMUL has three operands, then the second 
operand (an effective address word) is multi-

8-41 

Description 

Signed multiply (AX = AL X EA byte) 
Signed multiply (DXAX = AX X EA word) 
Signed multiply imm. byte into word reg. 
Signed multiply (rw = EA word X imm. word) 
Signed multiply (rw = EA word X imm. byte) 

plied by the third operand (an immediate 
word), and the 16 bits of the result are placed 
in the first operand (a word register). Carry 
and overflow are set to 0 if the result fits in a 
signed word (between - 32768 and + 32767, 
inclusive); they are set to 1 otherwise. 

NOTE 

The low 16 bits of the product of a 16-bit 
signed multiply are the same as those of 
an unsigned multiply. The three operand 
IMUL instruction can be used for 
unsigned operands as well. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

IN-Input from Port 

Opcode 

E4 db 
EC 
E5 db 
ED 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

IN AL,db 
IN AL,OX 
IN AX,db 
IN AX,OX 

Clocks 

5 
5 
5 
5 

IN transfers a data byte or data word from 
the port numbered by the second operand into 
the register (AL or AX) given as the first 
operand. You can access any port from 0 to 
65535 by placing the port number in the DX 
register then using an IN instruction with DX 
as the second parameter. These I/O instruc
tions can be shortened by using an 8-bit port 

8-42 

Description 

Input byte from immediate port into AL 
Input byte from port OX into AL 
Input word from immediate port into AX 
Input word from port OX into AX 

I/O in the instruction. The upper 8 bits of the 
port address will be zero when an 8-bit port 
I/O is used. 

Intel has reserved I/O port addresses OOF8H 
through OOFFH; they should not be used. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger 
(has less privilege) than 10PL, which is the 
privilege level found in the flags register. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

INC-Increment by 1 

Opcode Instruction Clocks 

FE /0 
FF /0 
40+rw 

INC eb 
INC ew 
INC rw 

2,mem=7 
2,mem=7 
2 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity 

FLAGS UNDEFINED 

None 

OPERATION 

1 is added to the operand. Note that the carry 
flag is not changed by this instruction. If you 
want the carry flag set, use the ADD instruc
tion with a second operand of 1. 

8-43 

Description 

Increment EA byte by 1 
Increment EA word by 1 
Increment word register by 1 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the operand is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

INS/INSB/INSW-Input from Port to String 

Opcode 

6C 
60 
6C 
60 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

INS eb,OX 
INS ew,OX 
INS8 
INSW 

Clocks 

5 
5 
5 
5 

INS transfers data from the input port 
numbered by the DX register to the memory 
byte or word at ES:DI. The memory operand 
must be addressable from the ES register; no 
segment override is possible. 

INS does not allow the specification of the 
port number as an immediate value. The port 
must be addressed through the DX register. 

After the transfer is made, DI is automati
cally advanced. If the direction flag is 0 (CLD 
was executed), DI increments; if the direction 
flag is 1 (STD was executed), DI decrements. 
DI increments or decrements by I if a byte 
was moved; by 2 if a word was moved. 

8-44 

Description 

Input byte from port OX into ES:[OI] 
Input word from port OX into ES:[OI] 
Input byte from port OX into ES:[OI] 
Input word from port OX into ES:[OI] 

INS can be preceded by the REP prefix for 
block input of CX bytes or words. Refer to 
the REP instruction for details of this 
operation. 

Intel has reserved I/O port addresses 00F8H 
through OOFFH; they should not be used. 

NOTE 

Not all input port devices can handle the 
rate at which this instruction transfers 
input data to memory. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if CPL > IOPL. #GP(O) if the desti
nation is in a non-writable segment. #GP(O) 
for an illegal memory operand effective 
address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

INT IINTO-Call to Interrupt Procedure 

Opcode Instruction Clocks(1) Description 

CC INT 3 23(2) Interrupt 3 (trap to debugger) 
CC INT 3 40 Interrupt 3, protected mode, same privilege 
CC INT 3 78 Interrupt 3, protected mode, more privilege 
CC INT 3 167 Interrupt 3, protected mode, via task gate 
CD db INT db 23(2) Interrupt numbered by immediate byte 
CD db INT db 40 Interrupt, protected mode, same privilege 
CD db INT db 78 Interrupt, protected mode, more privilege 
CD db INT db 167 Interrupt, protected mode, via task gate 
CE INTO 24,noj = 3(2) Interrupt 4 if overflow flag is 1 

(1) = Add one clock for each byte of the next instruction executed. 
(2) = (real mode) 

FLAGS MODIFIED 

All if a task switch takes place; Trap Flag 
reset if no task switch takes place. Interrupt 
Flag is always reset in Real Mode, and reset 
in Protected Mode when INT references an 
interrupt gate. 

FLAGS UNDEFINED 

None 

OPERATION 

The INT instruction generates via software a 
call to an interrupt procedure. The immedi
ate operand, from 0 to 255, gives the index 
number into the Interrupt Descriptor Table 
of the interrupt routine to be called. In 
protected mode, the IDT consists of 8-byte 
descriptors; the descriptor for the interrupt 
invoked must indicate an interrupt gate, a trap 
gate, or a task gate. In real address mode, the 
IDT is an array of 4-byte long pointers at the 
fixed location OOOOOH. 

The INTO instruction is identical to the INT 
instruction except that the interrupt number 
is implicitly 4, and the interrupt is made only 
if the overflow flag of the iAPX 286 is on. 
The clock counts for the four forms of INT 

INTERRUPT 

db are valid for INTO, with the number of 
clocks increased by 1 for the overflow flag 
test. 

The first 32 interrupts are reserved by Intel 
for systems use. Some of these interrupts are 
exception handlers for internally-generated 
faults. Most of these exception handlers 
should not be invoked with the INT 
instruction. 

Generally, interrupts behave like far CALLs 
except that the flags register is pushed onto 
the stack before the return address. Interrupt 
procedures return via the IRET instruction, 
which pops the flags from the stack. 

In Real Address mode, INT pushes the flags, 
CS and the return IP onto the stack in that 
order, then resets the Trap Flag, then jumps 
to the long point<;r indexed by the interrupt 
number, in the interrupt vector table. 

In Protected mode, INT also resets the Trap 
Flag. In Protected mode, the precise seman
tics of the INT instruction are given by the 
following: 

Interrupt vector must be within lOT table limits else #GP (vector number X 8+2+ EXT) 
Descriptor AR byte must indicate interrupt gate, trap gate, or task gate else #GP (vector number X 8 + 2 + EXT) 
If INT instruction then gate descriptor OPL must be 2: CPL else #GP (vector number X 8+2+EXT) 

8-45 



THE IAPX 286 INSTRUCTION SET 

Gate must be PRESENT else #NP (vector number X 8+2+EXT) 
If TRAP GATE or INTERRUPT GATE: 

Examine CS selector and descriptor given in the gate descriptor: 
Selector must be non-nUll else #GP (EXT) 
Selector must be within its descriptor table limits else #GP (selector + EXT) 
Descriptor AR byte must indicate code segment else #GP (selector + EXT) 
Segment must be PRESENT else #NP (selector + EXT) 

If code segment is non-conforming and DPL < CPL then 
INTERRUPT TO INNER PRIVILEGE: 

Check selector and descriptor for new stack in current Task State Segment: 
Selector must be non-null else #GP(EXT) 
Selector index must be within its descriptor table limits else #TS (SS selector + EXT) 
Selector's RPL must equal DPL of code segment else #TS (SS selector+EXT) 
Stack segment DPL must equal DPL of code segment else #TS (SS selector+EXT) 
Descriptor must indicate writable data segment else #TS (SS selector + EXT) 
Segment must be PRESENT else #SS (SS selector + EXT) 

New stack must have room for 10 bytes else #SS(O) 
IP must be in CS limit else #GP(O) 
Load new SS and SP value from TSS 
Load new CS and IP value from gate 
Load CS descriptor 
Load SS descriptor 
Push long pointer to old stack onto new stack 
Push return address onto new stack 
Set CPL to new code segment DPL 
Set RPL of CS to CPL 
If INTERRUPT GATE then set the Interrupts Enabled Flag to 0 (disabled) 
Set the Trap Flag to 0 
Set the Nested Task Flag to 0 

If code segment is conforming or code segment DPL = CPL then 
INTERRUPT TO SAME PRIVILEGE LEVEL: 

Current stack limits must allow pushing 6 bytes else #SS(O) 
If interrupt was caused by fault with error code then 

Stack limits must allow push of two more bytes else #SS(O) 
IP must be in CS limit else #GP(O) 
Push flags onto stack 
Push current CS selector onto stack 
Push return offset onto stack 
Load CS:IP from gate 
Load CS descriptor 
Set the RPL field of CS to CPL 
Push error code (if any) onto stack 
If INTERRUPT GATE then set the Interrupts Enabled Flag to 0 (disabled) 
Set the Trap Flag to 0 
Set the Nested Task Flag to 0 

Else #GP (CS selector + EXT) 

If TASK GATE: 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit else #GP (TSS selector) 
Index must be within GOT limits else #GP (TSS selector) 
AR byte must specify available TSS (bottom bits 00001) else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 

SWITCH_TASKS with nesting to TSS 
If interrupt was caused by fault with error code then 

Stack limits must allow push of two more bytes else #SS(O) 
Push error code onto stack 

IP must be in CS limit else #GP(O) 

8-46 



THE IAPX 286 INSTRUCTION SET 

NOTE 

EXT is 1 if an external event (i.e., a single 
step, an external interrupt, an MF excep
tion, or an MP exception) caused the 
interrupt; 0 if not (i.e., an INT instruc
tion or other exceptions). 

8-47 

PROTECTED MODE EXCEPTIONS 

#GP, #NP, #SS, and #TS, as indicated in the 
list above. 

REAL ADDRESS MODE EXCEPTIONS 

None; the 80286 will shut down if the SP = 

1, 3, or 5 before executing the INT or INTO 
instruction-due to lack of stack space. 



THE iAPX 286 INSTRUCTION SET 

IRET -Interrupt Return 

Opcode 

CF 
CF 
CF 

Instruction 

IRET 
IRET 
IRET 

Clocks' 

17,pm=31 
55 
169 

Description 

Interrupt return (far return and pop flags) 
Interrupt return, lesser privilege 
Interrupt return, different task (NT= 1) 

'Add one clock for each byte in the next instruction executed. 

FLAGS MODIFIED 

Entire flags register popped from stack 

FLAGS UNDEFINED 

None 

OPERATION 

In real address mode, IRET pops IP, CS, and 
FLAGS from the stack in that order, and 
resumes the interrupted routine. 

In protected mode, the action of IRET 
depends on the setting of the Nested Task 
Flag (NT) bit in the flag register. When 
popping the new flag image from the stack, 
note that the IOPL bits in the flag register 
are changed only when CPL=O. 

8-48 

If NT=O, IRET returns from an interrupt 
procedure without a task switch. The code 
returned to must be equally or less privileged 
than the interrupt routine as indicated by the 
RPL bits of the CS selector popped from the 
stack. If the destination code is of less privi
lege, IRET then also pops SP and SS from 
the stack. 

If NT= 1, IRET reverses the operation of a 
CALL or INT that caused a task switch. The 
task executing IRET has its updated state 
saved in its Task State Segment. This means 
that if the task is re-entered, the code that 
follows IRET will be executed. 

The exact checks and actions performed by 
IRET in protected mode are given on the 
following page. 



THE IAPX 286 INSTRUCTION SET 

INTERRUPT RETURN: 
If Nested Task Flag=1 then 

RETURN FROM NESTED TASK: 
Examine Back Link Selector in TSS addressed by the current Task Register: 

Must specify global in the local/global bit else #TS (new TSS selector) 
Index must be within GDT limits else #TS (new TSS selector) 
AR byte must specify TSS else #TS (new TSS selector) 
New TSS must be busy else #TS (new TSS selector) 
Task State Segment must be PRESENT else #NP (new TSS selector) 

SWITCH_TASKS without nesting to TSS specified by back link selector 
Mark the task just abandoned as NOT BUSY 
IP must be in code segment limit else #GP(O) 

If Nested Task Flag=O then 
INTERRUPT RETURN ON STACK: 

Second word on stack must be within stack limits else #SS(O) 
Return CS selector RPL must be ;::: CPL else #GP (Return selector) 
If return selector RPL = CPL then 

Else 

INTERRUPT RETURN TO SAME LEVEL: 
Top 6 bytes on stack must be within limits else #SS(O) 
Return CS selector (at SP+2) must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP( Return selector) 
AR byte must indicate code segment else #GP (Return selector) 
If non-conforming then code segment DPL must = CPL else #GP (Return selector) 
If conforming then code segment DPL must be :$ CPL else #GP (Return selector) 
Segment must be PRESENT else #NP (Return selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from stack 
Load CS-cache with new code segment descriptor 
Load flags with third word on stack 
Increment SP by 6 

INTERRUPT RETURN TO OUTER PRIVILEGE LEVEL: 
Top 10 bytes on stack must be within limits else #SS(O) 
Examine return CS selector (at SP+2) and associated descriptor: 

Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (Return selector) 
AR byte must indicate code segment else #GP (Return selector) 
If non-conforming then code segment DPL must = CS selector RPL else #GP (Return selector) 
If conforming then code segment DPL must be > CPL else #GP (Return selector) 
Segment must be PRESENT else #NP (Return selector) 

Examine return SS selector (at SP+8) and associated descriptor: 
Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (SS selector) 
Selector RPL must equal the RPL of the return CS selector else #GP (SS selector) 
AR byte must indicate a writable data segment else #GP (SS selector) 
Stack segment DPL must equal the RPL of the return CS selector else #GP (SS selector) 
SS must be PRESENT else #NP (SS selector) 

IP must be In code segment limit else #GP(O) 
Load CS:IP from stack 
Load flags with values at (SP+4) 
Load SS:SP from stack 
Set CPL to the RPL of the return CS selector 
Load the CS-cache with the CS descriptor 
Load the SS-cache with the SS descriptor 
For each of ES and DS: 

If the current register setting is not valid for the outer level, then zero the register and 
clear the valid flag 

To be valid, the register setting must satisfy the following properties: 
Selector index must be within descriptor table limits 

B-49 



THE IAPX 286 INSTRUCTION SET 

AR byte must indicate data or readable code segmer:)t 
If segment is data or non-conforming code, then: 
DPL must be ~ CPL, or 
DPL must be 2:: RPL. 

PROTECTED MODE EXCEPTIONS 

#GP, #NP, or #SS, as indicated in the above 
listing. 

8-50 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 if the stack is popped when it 
has offset OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

Jcond-Jump Short If Condition Met 

Opcode Instruction Clocks' Description 

77 cb JA cb 7,noj=3 Jump short if above (CF=O and ZF=O) 
73 cb JAE cb 7,noj=3 Jump short if above or equal (CF=O) 
72 cb J8 cb 7,noj=3 Jump short if below (CF=1) 
76 cb J8E cb 7,noj=3 Jump short if below or equal (CF = 1 or ZF = 1) 
72 cb JC cb 7,noj=3 Jump short if carry (CF=1) 
E3 cb JCXZ cb 8,noj=4 Jump short if CX register is zero 
74 cb JE cb 7,noj=3 Jump short if equal (ZF=1) 
7F cb JG cb 7,noj=3 Jump short if greater (ZF=O and SF=OF) 
70 cb JGE cb 7,noj=3 Jump short if greater or equal (SF=OF) 
7C cb JL cb 7,noj=3 Jump short if less (SF/=OF) 
7E cb JLE cb 7,noj=3 Jump short if less or equal (ZF=1 or SF/=OF) 
76 cb JNA cb 7,noj=3 Jump short if not above (CF = 1 or ZF = 1) 
72 cb JNAE cb 7,noj=3 Jump short if not above/equal (CF = 1) 
73 cb JN8 cb 7,noj=3 Jump short if not below (CF=O) 
77 cb JN8E cb 7,noj=3 Jump short if not below/equal (CF=O and 

ZF=O) 
73 cb JNC cb 7,noj=3 Jump short if not carry (CF=O) 
75 cb JNE cb 7,noj=3 Jump short if not equal (ZF=O) 
7E cb JNG cb 7,noj=3 Jump short if not greater (ZF=1 or SF/=OF) 
7C cb JNGE cb 7,noj=3 Jump short if not greater/equal (SF/=OF) 
70 cb JNL cb 7,noj=3 Jump short if not less (SF=OF) 
7F cb JNLE cb 7,noj=3 Jump short if not less/equal (ZF=O and 

SF=OF) 
71 cb JNO cb 7,noj=3 Jump short if not overflow (OF=O) 
78 cb JNP cb 7,noj=3 Jump short if not parity (PF=O) 
79 cb JNS cb 7,noj=3 Jump short if not sign (SF=O) 
75 cb JNZ cb 7,noj=3 Jump short if not zero (ZF=O) 
70 cb JO cb 7,noj=3 Jump short if overflow (OF=1) 
7A cb JP cb 7,noj=3 Jump short if parity (PF=1) 
7A cb JPE cb 7,noj=3 Jump short if parity even (PF=1) 
78 cb JPO cb 7,noj=3 Jump short if parity odd (PF=O) 
78 cb JS cb 7,noj=3 Jump short if sign (SF=1) 
74 cb JZ cb 7,noj=3 Jump short if zero (ZF=1) 

'When a jump is taken, add one clock for every byte of the next instruction executed. 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Conditional jumps (except for JCXZ, 
explained below) test the flags, which 
presumably have been set in some meaning
ful way by a previous instruction. The condi
tions for each mnemonic are given in 
parentheses after each description above. The 

8-51 

terms "less" and "greater" are used for 
comparing signed integers; "above" and 
"below" are used for unsigned integers. 

If the given condition is true, then a short 
jump is made to the label provided as the 
operand. Instruction encoding is most efficient 
when the target for the conditional jump is in 
the current code segment and within - 128 to 
+ 127 bytes of the first byte of ~he next 
instruction. Alternatively, the opposite sense 
(e.g., JNZ has opposite sense to that of JZ) 
of the conditional jump can skip around an 
unconditional jump to the destination. 



This range is necessary for the assembler to 
construct a one-byte signed displacement from 
the end of the current instruction. If the label 
is out-of-range, or if the label is aFAR label, 
then you must perform a jump with the 
opposite condition around an unconditional 
jump to the non-short label. 

Because there are, in many instances, several 
ways to interpret a particular state of the 
flags, ASM286 provides more than one 
mnemonic for most of the conditional jump 
opcodes. For example, consider that a 
programmer who has just compared a 
character to another in AL might wish to 
jump if the two were equal (JE), while 
another programmer who had just ANDed 
AX with a bit field mask would prefer to 
consider only whether the result was zero or 
not (he would use JZ, a synonym for JE). 

INSTRUCTION SET 

8-52 

JCXZ differs from the other conditional 
jumps in that it actually tests the contents of 
the CX register for zero, rather than interro
gating the flags. This instruction is useful 
following a conditionally repeated string 
operation (REPE SCASB, for example) or a 
conditional loop instruction (such as 
LOOPNE TARGETLABEL). These 
instructions implicitly use a limiting count in 
the CX register. Looping (repeating) ends 
when either the CX register goes to zero or 
the condition specified in the instruction (flags 
indicating equals in both of the above cases) 
occurs. JCXZ is useful when the termina
tions must be handled differently. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the offset jumped to is beyond the 
limit\> of the code segment. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

JMP-Jump 

Opcode Instruction Clocks' Description 

EB cb JMP cb 7 Jump short 
EA cd JMP cd 180 Jump to task gate 
E9 cw JMP cw 7 Jump near 
EA cd JMP cd 11,pm=23 Jump far (4-byte immediate address) 
EA cd JMP cd 38 Jump to call gate, same privilege 
EA cd JMP cd 175 Jump via Task State Segment 
FF /4 JMP ew 7,mem=11 Jump near to EA word (absolute offset) 
FF /5 JMP ed 15,pm=26 Jump far (4-byte effective address in memory 

doubleword) 
FF /5 JMP ed 41 Jump to call gate, same privilege 
FF /5 JMP ed 178 Jump via Task State Segment 
FF /5 JMP ed 183 Jump to task gate 

'Add one clock for every byte of the next instruction executed. 

FLAGS MODIFIED 

All if a task switch takes place; none if no 
task switch occurs. 

FLAGS UNDEFINED 

None 

OPERATION 

The JMP instruction transfers program 
control to a different instruction stream 
without recording any return information. 

For inter-segment jumps, the destination can 
be a code segment, a call gate, a task gate, or 
a Task State Segment. The latter two desti
nations cause a complete task switch to take 
place. 

Control transfers within a segment use the 
JMP cwor JMP cb forms. The operand is a 
relative offset added modulo 65536 to the 
offset of the instruction that follows the JMP. 
The result is the new value of IP; the value of 
CS is unchanged. The byte operand is sign
extended before it is added; it can therefore 
be used to address labels within 128 bytes in 
either direction from the next instruction. 

8-53 

Indirect jumps within a segment use the JMP 
ew form. The contents of the register or 
memory operand is an absolute offset, which 
becomes the new value of IP. Again, CS is 
unchanged. 

Inter-segment jumps in real address mode 
simply set IP to the offset part of the long 
pointer and set CS to the selector part of the 
pointer. 

In protected mode, inter-segment jumps cause 
the iAPX 286 to consult the descriptor 
addressed by the selector part of the long 
pointer. The AR byte of the descriptor deter
mines the type of the destination. (See table 
B-3 for possible values of the AR byte.) 
Following are the possible destinations: 

1. Code segment-The address ability and 
visibility of the destination are verified, 
and CS and IP are loaded with the desti
nation pointer values. 

2. Call gate-The offset part of the desti
nation pointer is ignored. After checking 
for validity, the processor jumps to the 
location stored in the call gate descriptor. 



THE iAPX 286 INSTRUCTION SET 

3. Task gate-The current task's state is 
saved in its Task State Segment (TSS), 
and the TSS named in the task gate is 
used to load a new context. The outgoing 
task is marked not busy, the new TSS is 
marked busy, and execution resumes at 
the point at which the new task was last 
suspended. 

JUMP FAR: 

4. TSS-The current task is suspended and 
the new task is initiated as in 3 above 
except that there is no intervening gate. 

Following is the list of checks and actions 
taken for long jumps in protected mode: 

If indirect then check access of EA doubleword #GP(O) or #SS(O) if limit violation 
Destination selector is not null else #GP(O) 
Destination selector index is within its descriptor table limits else #GP (selector) 
Examine AR byte of destination selector for legal values: 

JUMP CONFORMING CODE SEGMENT: 
Descriptor DPL must be s CPL else #GP (selector) 
Segment must be PRESENT else #NP (selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from destination pOinter 
Load CS-cache with new segment descriptor 

JUMP NONCONFORMING CODE SEGMENT: 
RPL of destination selector must be s CPL else #GP (selector) 
Descriptor DPL must = CPL else #GP (selector) 
Segment must be PRESENT else #NP (selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from destination pointer 
Load CS-cache with new segment descriptor 
Set RPL field of CS register to CPL 

JUMP TO CALL GATE: 
Descriptor DPL must be 2: CPL else #GP (gate selector) 
Descriptor DPL must be 2: gate selector RPL else #GP (gate selector) 
Gate must be PRESENT else #NP (gate selector) 
Examine selector to code segment given in call gate descriptor: 

Selector must not be null else #GP(O) 
Selector must be within its descriptor table limits else #GP (CS selector) 
Descriptor AR byte must indicate code segment else #GP (CS selector) 
If non-conforming, code segment descriptor DPL must = CPL else #GP (CS selector) 
If conforming, then code segment descriptor DPL must be s CPL else #GP (CS selector) 
Code Segment must be PRESENT else #NP (CS selector) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from call gate 

Load CS-cache with new code segment 
Set RPL of CS to CPL 

JUMP TASK GATE: 
Gate descriptor DPL must be 2: CPL else #GP (gate selector) 
Gate descriptor DPL must be 2: gate selector RPL else #GP (gate selector) 
Task Gate must be PRESENT else #NP (gate selector) 
Examine selector to TSS, given in Task Gate descriptor: 

Must specify global in the local/global bit else #GP (TSS selector) 
Index must be within GDT limits else #GP (TSS selector) 
Descriptor AR byte must specify available TSS (bottom bits 00001) else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 

8-54 



THE iAPX 286 INSTRUCTION SET 

SWITCH_TASKS without nesting to TSS 
IP must be in code segment limit else #GP(O) 

JUMP TASK STATE SEGMENT: 
TSS DPL must be 2: CPL else #GP (TSS selector) 
TSS DPL must be 2: TSS selector RPL else #GP (TSS selector) 
Descriptor AR byte must specify available TSS (bottom bits 00001) else #GP (TSS selector) 
Task State Segment must be PRESENT else #NP (TSS selector) 
SWITCH_TASKS with nesting to TS. 
IP must be in code segment limit else #GP(O) 

Else GP (selector) 

PROTECTED MODE EXCEPTIONS 

For NEAR jumps, #GP(O) if the destination 
offset is beyond the limits of the current code 
segment. For FAR jumps, #GP, #NP, #SS, 
and #TS, as indicated above. #UD if indirect 
inter-segment jump operand is a register. 

8-55 

REAL ADDRESS MODE EXCEPTIONS 

#UD if indirect inter-segment jump operand 
is a register. 



THE iAPX 286 INSTRUCTION SET 

LAHF-Load Flags into AH Register 

Opcode 

9F 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

LAHF 2 

The low byte of the flags word is transferred 
to AH. The bits, from MSB to LSB, are as 

8-56 

Description 

Load: AH = flags SF ZF xx AF xx PF xx CF 

follows: sign, zero, indeterminate, auxiliary 
carry, indeterminate, parity, indeterminate, 
and carry. See figure 3-5. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

LAR-Load Access Rights Byte 

Opcode Instruction Clocks 

OF 02 /r LAR rw,BW 14,mem=16 

FLAGS MODIFIED 

Zero 

FLAGS UNDEFINED 

None 

OPERATION 

LAR expects the second operand (memory or 
register word) to contain a selector. If the 
associated descriptor is visible at the current 
privilege level and at the selector RPL, then 
the access rights byte of the descriptor is 
loaded into the high byte of the first (regis
ter) operand, and the low byte is set to zero. 
The zero flag is set if the loading was 
performed (i.e., the selector index is within the 

8-57 

Description 

Load: high(rw)= Access Rights byte,selector 
ew 

table limit, descriptor DPL >- CPL, and 
descriptor DPL >- selector RPL); the zero 
flag is cleared otherwise. 

Selector operands cannot cause protection 
exceptions. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTION 

INTERRUPT 6; LAR is unrecognized In 

Real Address mode. 



THE IAPX 286 INSTRUCTION SET 

LOS/ LES-Load Doubleword Pointer 

Opcode 

C5 /f 

C4 /f 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

LOS rw,ed 

LES fW,ed 

Clocks 

7,pm=21 

7,pm=21 

The four-byte pointer at the memory location 
indicated by the second operand is loaded into 
a segment register and a word register. The 
first word of the pointer (the offset) is loaded 
into the register indicated by the first operand. 
The last word of the pointer (the selector) is 
loaded into the segment register (DS or ES) 
given by the instruction opcode. 

If selector is non-null then: 

Description 

Load EA doubleword into OS and word 
register 
Load EA doubleword into ES and word 
register 

When the segment register is loaded, its 
associated cache is also loaded. The data for 
the cache is obtained from the descriptor table 
entry for the selector given. 

A null selector (values 0000-0003) can be 
loaded into DS or ES without a protection 
exception. Any memory reference using such 
a segment register value will cause a #GP(O) 
exception but will not result in a memory 
reference. The saved segment register value 
will be null. 

Following is a list of checks and actions taken 
when loading the DS or ES registers: 

Selector index must be within its descriptor table limits else #GP (selector) 
Examine descriptor AR byte: 

Data segment or readable non-conforming code segment 
Descriptor DPL 2:: CPL else #GP (selector) 
Descriptor DPL 2:: selector RPL else #GP (selector) 

Readable conforming code segment 
No DPL, RPL, or CPL checks 

Else #GP (selector) 

Segment must be present else #NP (selector) 
Load registers from operand 
Load segment register descriptor cache 

If selector is null then: 
Load registers from operand 
Mark segment register cache as invalid 

B-58 



THE IAPX 286 INSTRUCTION SET 

PROTECTED MODE EXCEPTIONS 

#GP or #NP, as indicated in the list above. 
#GP(O) or #55(0) if operand lies outside 
segment limit. #UD if the source operand is 
a register. 

8-59 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for operand at offset OFFFFH 
or OFFFDH. #UD if the source operand is a 
register. 



THE iAPX 286 INSTRUCTION SET 

LEA-Load Effective Address Offset 

Opcode 

80 Ir 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

LEA rW,rn 3 

The effective address (offset part) of the 

8-60 

Description 

Calculate EA offset given by m, place in rw 

second operand is placed in the first (regis
ter) operand. 

PROTECTED MODE EXCEPTIONS 

#UD if second operand is a register. 

REAL ADDRESS MODE EXCEPTIONS 

#UD if second operand is a register. 



THE iAPX 286 INSTRUCTION SET 

LEAVE - High Level Procedure Exit 

Opcode 

C9 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

LEAVE 5 

LEAVE is the complementary operation to 
ENTER; it reverses the effects of that 
instruction. By copying BP to SP , LEAVE 
releases the stack space used by a procedure 
for its dynamics and display. The old frame 
pointer is now popped into BP, restoring the 

8-61 

Description 

Set SP to 8P, then POP 8P 

caller's frame, and a subsequent RET nn 
instruction will follow the back-link and 
remove any arguments pushed on the stack 
for the exiting procedure. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if BP does not point to a location 
within the current stack segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

LGDT ILIDT -Load Global/Interrupt 
Descriptor Table Register 

Opcode 

OF 01 /2 
OF 01 /3 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

LGDT m 
LlDT m 

Clocks 

11 
12 

The Global or the Interrupt Descriptor Table 
Register is loaded from the six bytes of 
memory pointed to by the effective address 
operand (see figure 10.3). The LIMIT field 
of the descriptor table register loads from the 
first word; the next three bytes go to the 
BASE field of the register; the last byte is 
ignored. 

LGDT and LIDT appear in operating systems 
software; they are not used in application 
programs. These are the only instructions that 

8-62 

Description 

Load m into Global Descriptor Table reg 
Load m into Interrupt Descriptor Table reg 

directly load a physical memory address in 
iAPX 286 protected mode. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is not O. 

#UD if source operand is a register. 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS( 0) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

These instructions are valid in Real Address 
mode to allow the power-up initialization for 
Protected mode. 

Interrupt 13 for a word operand at offset 
OFFFFH. #UD if source operand is a 
register. 



THE IAPX 286 INSTRUCTION SET 

LLDT -Load Local Descriptor Table Register 

Opcode Instruction Clocks 

OF 00 /2 LLDT ew 17,mem=19 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The word operand (memory or register) to 
LLDT should contain a selector pointing to 
the Global Descriptor Table. The GDT entry 
should be a Local Descriptor Table. If so, then 
the Local Descriptor Table Register is loaded 
from the entry. The descriptor cache entries 
for DS, ES, SS, and CS are not affected. The 
LDT field in the TSS is not changed. 

The selector operand is allowed to be zero. In 
that case, the Local Descriptor Table Regis
ter is marked invalid. All descriptor refer-

8-63 

Description 

Load selector ew into Local Descriptor Table 
register 

ences (except by LAR, VERR, VER W or 
LSL instructions) will cause a #GP fault. 

LLDT appears in operating systems software; 
it does not appear in applications programs. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is not O. 
#GP (selector) if the selector operand does not 
point into the Global Descriptor Table, or if 
the entry in the GDT is not a Local Descrip
tor Table. #NP (selector) if LDT descriptor 
is not present. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; LLDT is not recognized in Real 
Address Mode. 



THE iAPX 286 INSTRUCTION SET 

LMSW-Load Machine Status Word 

Opcode 

OF 01 /6 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

LMSWew 3,mem=6 

The Machine Status Word is loaded from the 
source operand. This instruction may be used 
to switch to protected mode. If so, then it 
must be followed by an intra-segment jump 
to flush the instruction queue. LMSW will not 
switch back to Real Address Mode. 

8-64 

Description 

Load EA word into Machine Status Word 

LMSW appears only in operating systems 
software. It does not appear in applications 
programs. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is not O. 
#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

LOCK - Assert BUS LOCK Signal 

Opcode 

FO 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

LOCK o 

LOCK is a prefix that will cause the BUS 
LOCK signal of the iAPX 286 to be asserted 
for the duration of the instruction that it 
prefixes. In a multiprocessor environment, this 
signal should be used to ensure that the iAPX 
286 has exclusive use of any shared memory 
while BUS LOCK is asserted. The read
modify-write sequence typically used to 
implement TEST -AND-SET in the iAPX 286 
is the XCHG instruction. 

B-65 

Description 

Assert BUSLOCK signal for the next 
instruction 

The 80286 LOCK prefix activates the lock 
signal for the following instructions: MOVS, 
INS, and OUTS. XCHG always asserts BUS 
LOCK regardless of the presence or absence 
of the LOCK prefix. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger 
(less privileged) than the I/O privilege level. 

Other exceptions may be generated by the 
subsequent (locked) instruction. 

REAL ADDRESS MODE EXCEPTIONS 

None. Exceptions may still be generated by 
the subsequent (locked) instruction. 



THE IAPX 286 INSTRUCTION SET 

LODS/LODSB/LODSW-Load String Operand 

Opcode 

AC 
AD 
AC 
AD 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

LOOS mb 
LOOS mw 
LOOS8 
LOOSW 

Clocks 

5 
5 
5 
5 

LODS loads the AL or AX register with the 
memory byte or word at SI. After the trans
fer is made, SI is automatically advanced. If 
the direction flag is 0 (CLD was executed), 
SI increments; if the direction flag is 1 (STD 
was executed), SI decrements. SI increments 

8-66 

Description 

Load byte [SI] into AL 
Load byte [SI] into AL 
Load byte OS:[SI] into AL 
Load byte OS:[SI] into AL 

or decrements by 1 if a byte was moved; by 2 
if a word was moved. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

LOOP/LOOPcond-Loop Control with CX Counter 

Opcode 

E2 cb 
E1 cb 
EO cb 

EO cb 
E1 cb 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

LOOP cb 8,noj=4 
LOOPE cb 8,noj=4 
LOOPNE cb 8,noj=4 

LOOPNZ cb 8,noj=4 
LOOPZ cb 8,noj=4 

LOOP first decrements the ex register 
without changing any of the flags. Then, 
conditions are checked as given in the 
description above for the form of LOOP being 
used. If the conditions are met, then an intra
segment jump is made. The destination to 
LOOP is in the range from 126 (decimal) 
bytes before the instruction to 127 bytes 
beyond the instruction. 

8-67 

Description 

DEC CX; jump short if CX,.oO 
DEC CX; jump short if cx * 0 and equal (ZF = 1) 
DEC CX; jump short if CX * 0 and not equal 
(ZF=O) 
DEC CX; jump short if CX,.oO and ZF=O 
DEC CX; jump short if cx * 0 and zero (ZF = 1) 

The LOOP instructions are intended to 
provide iteration control and to combine loop 
index management with conditional branch
ing. To use the LOOP instruction you load an 
unsigned iteration count into ex, then code 
the LOOP at the end of a series of instruc
tions to be iterated. The destination of LOOP 
is a label that points to the beginning of the 
iteration. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the offset jumped to is beyond the 
limits of the current code segment. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

LSL-Load Segment Limit 

Opcode Instruction Clocks 

OF 03 /r LSL rw,ew 14,mem=16 

FLAGS MODIFIED 

Zero 

FLAGS UNDEFINED 

None 

OPERATION 

If the descriptor denoted by the selector in the 
second (memory or register) operand is visible 
at the CPL, a word that consists of the limit 
field of the descriptor is loaded into the left 
operand, which must be a register. The value 
is the limit field for that segment. The zero 
flag is set if the loading was performed (that 
is, if the selector is non-null, the selector index 
is within the descriptor table limits, the 
descriptor is a non-conforming segment 
descriptor with DPL > CPL, and the 
descriptor DPL > selector RPL); the zero 
flag is cleared otherwise. 

8-68 

Description 

Load: rw = Segment Limit, selector ew 

The LSL instruction returns only the limit 
field of segments, task state segments, and 
local descriptor tables. The interpretation of 
the limit value depends on the type of 
segment. 

The selector operand's value cannot result in 
a protection exception. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; LSL is not recognized in Real 
Address mode. 



THE iAPX 286 INSTRUCTION SET 

LTR-Load Task Register 

Opcode Instruction Clocks 

OF 00 /3 LTR ew 17,mem=19 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

The Task Register is loaded from the source 
register or memory location given by the 
operand. The loaded TSS is marked busy. A 
task switch operation does not occur. 

LTR appears only in operating systems 
software. It is not used in applications 
programs. 

8-69 

Description 

Load EA word into Task Register 

PROTECTED MODE EXCEPTIONS 

#GP for an illegal memory operand effective 
address in the CS, DS, or ES segments; #SS 
for an illegal address in the SS segment. 

#GP(O) if the current privilege level is not O. 
#GP (selector) if the object named by the 
source selector is not a TSS or is already busy. 
#NP (selector) if the TSS is marked not 
present. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; L TR is not recognized in Real 
Address mode. 



THE iAPX 286 INSTRUCTION SET 

MOV-Move Data 

Opcode 

88 /r 
89 /r 
8A /r 
88 /r 
8C /0 
8C /1 
8C /2 
8C /3 
8E /0 
8E /0 
8E /2 
8E /2 
8E /3 
8E /3 
AO dw 
A1 dw 
A2 dw 
A3 dw 
80+ rb db 
88+ rw dw 
C6 /0 db 
C7 /0 dw 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

MOV eb,rb 
MOVew,rw 
MOV rb,eb 
MOV rw,ew 
MOVew,ES 
MOVew,CS 
MOVew,SS 
MOVew,OS 
MOV ES,mw 
MOV ES,rw 
MOV SS,mw 
MOV SS,rw 
MOV OS,mw 
MOV OS,rw 
MOV AL,xb 
MOV AX,xw 
MOV xb,AL 
MOV xW,AX 
MOV rb,db 
MOV rW,dw 
MOV eb,db 
MOVew,dw 

Clocks 

2,mem=3 
2,mem=3 
2,mem=5 
2,mem=5 
2,mem=3 
2,mem=3 
2,mem=3 
2,mem=3 
5,pm=19 
2,pm=17 
5,pm=19 
2,pm=17 
5,pm=19 
2,pm=17 
5 
5 
3 
3 
2 
2 
2,mem=3 
2,mem=3 

The second operand is copied to the first 
operand. 

If the destination operand is a segment regis
ter (DS, ES, or SS), then the associated 
segment register cache is also loaded. The 
data for the cache is obtained from the 
descriptor table entry for the selector given. 

If SS is loaded: 
If selector is null then #GP(O) 

Description 

Move byte register into EA byte 
Move word register into EA word 
Move EA byte into byte register 
Move EA word into word 'register 
Move ES into EA word 
Move CS into EA word 
Move SS into EA word 
Move OS into EA word 
Move memory word into ES 
Move word register into ES 
Move memory word into SS 
Move word register into SS 
Move memory word into OS 
Move word register into OS 
Move byte variable (offsetdw) into AL 
Move word variable (offset dw) into AX 
Move AL into byte variable (offset dw) 
Move AX into word register (offset dw) 
Move immediate byte into byte register 
Move immediate word into word register 
Move immediate byte into EA byte 
Move immediate word into EA word 

A null selector (values 0000-0003) can be 
loaded into DS and ES registers without 
causing a protection exception. Any use of a 
segment register with a null selector to 
address memory will cause #GP(O) excep
tion. No memory reference will occur. 

Any move into SS will inhibit all interrupts 
until after the execution of the next 
instruction. 

Following is a listing of the protected-mode 
checks and actions taken in the loading of a 
segment register: 

Selector index must be within its descriptor table limits else #GP (selector) 
Selector's RPL must equal CPL else #GP (selector) 
AR byte must indicate a writable data segment else #GP (selector) 
OPL in the AR byte must equal CPL else #GP (selector) 
Segment must be marked PRESENT else #SS (selector) 
Load SS with selector 

8-70 



THE iAPX 286 INSTRUCTION SET 

Load SS cache with descriptor 
If ES or OS is loaded with non-null selector 

Selector index must be within its descriptor table limits else #GP (selector) 
AR byte must indicate data or readable code segment else #GP (selector) 
If data or non-conforming code, then both the RPL and the 

CPL must be less than or equal to OPL in AR byte else #GP (selector) 
Segment must be marked PRESENT else #NP (selector) 

Load segment register with selector 
Load segment register cache with descriptor 
If ES or OS is loaded with a null selector: 

Load segment register with selector 
Clear descriptor valid bit 

PROTECTED MODE EXCEPTIONS 

If a segment register is being loaded, #GP, 
#SS, and #NP, as described in the listing 
above. 

Otherwise, #GP(O) if the destination is in a 
non-writable segment. #GP(O) for an illegal 

8-71 

memory operand effective address in the CS, 
DS, or ES segments; #SS(O) for an illegal 
address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

MOVS/MOVSB/MOVSW-Move Data from String 
to String 

Opcode 

A4 
A5 
A4 
A5 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

MOVS mb,mb 
MOVS mW,mw 
MOVS8 
MOVSW 

Clocks 

5 
5 
5 
5 

MOYS copies the byte or word at [SI] to the 
byte or word at ES:[DI]. The destination 
operand must be addressable from the ES 
register; no segment override is possible. A 
segment override may be used for the source 
operand. 

After the data movement is made, both SI and 
DI are automatically advanced. If the direc
tion flag is 0 (CLD was executed), the regis
ters increment; if the direction flag is 1 (STD 
was executed), the registers decrement. The 

8-72 

Description 

Move byte [SI] to ES:[OI] 
Move word [SI] to ES:[OI] 
Move byte OS:[SI] to ES:[OI] 
Move word OS:[SI] to ES:[OI] 

registers increment or decrement by 1 if a 
byte was moved; by 2 if a word was moved. 

MOYS can be preceded by the REP prefix 
for block movement of CX bytes or words. 
Refer to the REP instruction for details of this 
operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

MUL-Unsigned Multiplication of AL or AX 

Opcode Instruction Clocks 

F6 /4 
F7 /4 

MUL eb 
MUL ew 

13,mem=16 
21,mem=24 

FLAGS MODIFIED 

Overflow, carry 

FLAGS UNDEFINED 

Sign, zero, auxiliary carry, parity 

OPERATION 

If MUL has a byte operand, then the byte is 
multiplied by AL, and the result is left in AX. 
Carry and overflow are set to 0 if AH is 0; 
they are set to 1 otherwise. 

If MUL has a word operand, then the word 
is multiplied by AX, and the result is left in 

8-73 

Description 

Unsigned multiply (AX = AL X EA byte) 
Unsigned multiply (DXAX = AX X EA word) 

DX:AX. DX contains the high order 16 bits 
of the product. Carry and overflow are set to 
o if DX is 0; they are set to 1 otherwise. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

NEG-Two's Complement Negation 

Opcode 

F6 /3 
F7 /3 

FLAGS MODIFIED 

Instruction 

NEG eb 
NEG ew 

Clocks 

2,mem=7 
2,mem=7 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

The two's complement of the register or 
memory operand replaces the old operand 
value. Likewise, the operand is subtracted 
from zero, and the result is placed in the 
operand. 

8-74 

Description 

Two's complement negate EA byte 
Two's complement negate EA word 

The carry flag is set to 1 except when the 
input operand is zero, in which case the carry 
flag is cleared to O. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

NOP-No O~fo~ATION 
Opcode 

90 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

NOP 

Clocks 

3 

Performs no operation. NOP IS a one-byte 

8-75 

Description 

No OPpRATION 

filler instruction that takes up space but 
affects none of the machine context except IP. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

NOT -One's Complement Negation 

Opcode 

F6 /2 
F7 /2 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

NOT eb 
NOT ew 

Clocks 

2,mem=7 
2,mem=7 

The operand is inverted; that is, every 
becomes a 0 and vice versa. 

8-76 

Description 

Reverse each bit of EA byte 
Reverse each bit of EA word 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

OR-Logical Inclusive OR 

Opcode Instruction Clocks 

08 Ir OR eb,rb 2,mem=7 
09 Ir OR eW,rw 2,mem=7 
OA Ir OR rb,eb 2,mem=7 
08 Ir OR rW,ew 2,mem=7 
DC db OR AL,db 3 
00 dw OR AX,dw 3 
80 11 db OR eb,db 3,mem=7 
81 11 dw OR eW,dw 3,mem=7 

FLAGS MODIFIED 

Overflow = 0, sign, zero, parity, carry = 0 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

This instruction computes the inclusive OR of 
the two operands. Each bit of the result is 0 
if both corresponding bits of the operands are 
0; each bit is 1 otherwise. The result is placed 
in the first operand. 

8-77 

Description 

Logical-OR byte register into EA byte 
Logical-OR word register into EA word 
Logical-OR EA byte into byte register 
Logical-OR EA word into word register 
Logical-OR immediate byte into AL 
Logical-OR immediate word into AX 
Logical-OR immediate byte into EA byte 
Logical-OR immediate word into EA word 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

OUT-Output to Port 

Opcode 

E6 db 
E7 db 
EE 
EF 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

OUT db,AL 
OUT db,AX 
OUT OX,AL 
OUT OX,AX 

Clocks 

3 
3 
3 
3 

OUT transfers a data byte or data word from 
the register (AL or AX) given as the second 
operand to the output port numbered by the 
first operand. You can output to any port 
from 0-65535 by placing the port number in 
the DX register then using an OUT instruc
tion with DX as the first operand. If the 

8-78 

Description 

Output byte AL to immediate port number db 
Output word AX to immediate port number db 
Output byte AL to port number OX 
Output word AX to port number OX 

instruction contains an 8-bit port ID, that 
value is zero-extended to 16 bits. 

Intel reserves I/O port addresses 00F8H 
through OOFFH; these addresses should not 
be used. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger 
(has less privilege) than IOPL, which is the 
privilege level found in the flags register. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

OUTS/OUTSB/OUTSW-Output String to Port 

Opcode 

6E 
6F 
6E 
6F 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

OUTS OX,eb 
OUTS OX,ew 
OUTSB 
OUTSW 

Clocks 

5 
5 
5 
5 

OUTS transfers data from the memory byte 
or word at SI to the output port numbered by 
the DX register. 

OUTS does not allow the specification of the 
port number as an immediate value. The port 
must be addressed through the DX register. 

After the transfer is made, SI is automati
cally advanced. If the direction flag is 0 (CLD 
was executed), SI increments; if the direction 
flag is 1 (STD was executed), SI decrements. 
SI increments or decrements by I if a byte 
was moved; by 2 if a word was moved. 

B-79 

Description 

Output byte [SI] to port number OX 
Output word [SI] to port number OX 
Output byte OS:[SI] to port number OX 
Output word OS:[SI] to port number OX 

OUTS can be preceded by the REP prefix for 
block output of CX bytes or words. Refer to 
the REP instruction for details of this 
operation. 

Intel reserves I/O port addresses OOF8H 
through OOFFH; these addresses should not 
be used. 

NOTE 

Not all output devices can handle the rate 
at which this instruction transfers data. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if CPL >- IOPL. #GP(O) for an 
illegal memory operand effective address in 
the CS, DS, or ES segments; #SS(O) for an 
illegal address in the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THEIAPX 286 INSTRUCTION SET 

POP-Pop a Word from the Stack 

Opcode 

1F 
07 
17 
SF /0 
5S+rw 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

POP OS 5.pm=20 
POP ES 5.pm=20 
POP SS 5.pm=20 
POP mw 5 
POP rw 5 

The word on the top of the iAPX 286 stack, 
addressed by SS:SP, replaces the previous 
contents of the memory, register, or segment 
register operand. The stack pointer SP is 
incremented by 2 to point to the new top of 
stack. 

If the destination operand is another segment 
register (DS, ES, or SS), the value popped 
must be a selector. In protected mode, loading 
the selector initiates automatic loading of the 
descriptor information associated with that 
selector into the hidden part of the segment 

8-80 

Description 

Pop top of stack into OS 
Pop top of stack into ES 
Pop top of stack into SS 
Pop top of stack into memory word 
Pop top of stack into word register 

register; loading also initiates validation of 
both the selector and the descriptor 
information. 

A null value (0000-0003) may be loaded into 
the 'OS or ES register without causing a 
protection exception. Attempts to reference 
memory using a segment register with a null 
value will cause #GP(O) exception. No 
memory reference will occur. The saved value 
of the segment register will be null. 

A POP SS instruction will inhibit all inter
rupts, including NMI, until after the execu
tion of the next instruction. This permits a 
POP SP instruction to be performed first. 

Following is a listing of the protected-mode 
checks and actions taken in the loading of a 
segment register: 



THE iAPX 286 INSTRUCTION SET 

If SS is loaded: 
If selector is null then #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Selector's RPL must equal CPL else #GP (selector) 
AR byte must indicate a writable data segment else #GP (selector) 
OPL in the AR byte must equal CPL else #GP (selector) 
Segment must be marked PRESENT else #SS (selector) 
Load SS register with selector 
Load SS cache with descriptor 

If ES or OS is loaded with non-null selector: 
AR byte must indicate data or readable code segment else #GP (selector) 
If data or non-conforming code, then both the RPL and the 

CPL must be less than or equal to OPL in AR byte else #GP (selector) 
Segment must be marked PRESENT else #NP (selector) 
Load segment register with selector 
Load segment register cache with descriptor 

If ES or OS is loaded with a null selector: 
Load segment register with selector 
Clear valid bit in cache 

PROTECTED MODE EXCEPTIONS 

If a segment register is being loaded, #GP, 
iSS, and #NP, as described in the listing 
above. 

Otherwise, #SS(O) if the current top of stack 
is not within the stack segment. 

8-81 

#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

POP A - POp All General Registers 

Opcode 

61 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

POPA 19 

POP A pops the eight general registers given 
in the description above, except that the SP 
value is discarded instead of loaded into SP. 
POP A reverses a previous PUSHA, restoring 

B-82 

Description 

Pop in order: DI,SI,BP,SP,BX,DX,CX,AX 

the general registers to their values before 
PUSHA was executed. The first register 
popped is D I. 

PROTECTED MODE EXCEPTIONS 

#SS( 0) if the starting or ending stack address 
is not within the stack segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

POPF - POp from Stack into the Flags Register 

Opcode Instruction Clocks 

90 POPF 5 

FLAGS MODIFIED 

Entire flags register is popped from stack 

FLAGS UNDEFINED 

None 

OPERATION 

The top of the iAPX 286 stack, pointed to by 
SS:SP, is copied into the iAPX 286 flags 
register. The stack pointer SP is incremented 
by 2 to point to the new top of stack. The 
flags, from the top bit (bit 15) to the bottom 
(bit 0), are as follows: undefined, nested task, 
I/O privilege level (2 bits), overflow, direc
tion, interrupts enabled, trap, sign, zero, 
undefined, auxiliary carry, undefined, parity, 
undefined, and carry. 

6-83 

Description 

Pop top of stack into flags register 

The I/O privilege level will be altered only 
when executing at privilege level O. The inter
rupt enable flag will be altered only when 
executing at a level at least as privileged as 
the I/O privilege level. (Real Address mode 
is equivalent to privilege level 0.) If you 
execute a POPF instruction with insufficient 
privilege, there will be no exception nor will 
the privileged bits be changed. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if the top of stack is not within the 
stack segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

PUSH-Push a Word onto the Stack 

Opcode 

06 
OE 
16 
1E 
50+ rw 
FF /6 
68 dw 
6A db 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

InstructIon Clocks 

PUSH ES 3 
PUSH CS 3 
PUSH SS 3 
PUSH OS 3 
PUSH rw 3 
PUSH mw 5 
PUSH dw 3 
PUSH db 3 

The stack pointer SP is decremented by 2, and 
the operand is placed on the new top of stack, 
which is pointed to by SS:SP. 

The iAPX 286 PUSH SP instruction pushes 
the value of SP as it existed before the 
instruction. This differs from the iAPX 86, 

8-84 

Description 

Push ES 
Push CS 
Push SS 
Push OS 
Push word register 
Push memory word 
Push immediate word 
Push immediate sign-extended byte 

which pushes the new (decremented by 2) 
value. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if the new value of SP is outside the 
stack segment limit. 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

None; the 80286 will shut down if SP = 1-
due to lack of stack space. 



THE iAPX 286 INSTRUCTION SET 

PUSHA - Push All General Registers 

Opcode 

60 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

PUSHA 17 

PUSHA saves the registers noted above on the 
iAPX 286 stack. The stack pointer SP is 
decremented by 16 to hold the 8 word values. 
Since the registers are pushed onto the stack 
in the order in which they were given, they 

B-85 

Description 

Push in order: AX,CX,DX,BX,original 
SP,BP,SI,DI 

will appear in the 16 new stack bytes in the 
reverse order. The last register pushed is DI. 

PROTECTED MODE EXCEPTIONS 

#SS( 0) if the starting or ending address is 
outside the stack segment limit. 

REAL ADDRESS MODE EXCEPTIONS 

The 80286 will shut down if SP = 1, 3, or 5 
before executing PUSHA. If SP = 7, 9, 11, 
13, or 15, exception 13 will occur. 



THE iAPX 286 INSTRUCTION SET 

PUSHF -Push Flags Register onto the Stack 

Opcode 

9C 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

PUSHF 3 

The stack pointer SP is decremented by 2, and 
the iAPX 286 flags register is copied to the 
new top of stack, which is pointed to by 
SS:SP. The flags, from the top bit (15) to the 
bottom bit (0), are as follows: undefined, 

8-86 

Description 

Push flags register 

nested task, I/0 privilege level (2 bits), 
overflow, direction, interrupts enabled, trap, 
sign, zero, undefined, auxiliary carry, 
undefined, parity, undefined, and carry. 

PROTECTED MODE EXCEPTIONS 

#SS(O) if the new value of SP is outside the 
stack segment limit. 

REAL ADDRESS MODE EXCEPTIONS 

None; the 80286 will shut down if SP 
-due to lack of stack space. 



THE iAPX 286 INSTRUCTION SET 

RCLI RCR I ROLl ROR-Rotate Instructions 

Opcode Instruction Clocks-N' 

00 /2 RCL eb,1 2,mem=7 
02 /2 RCL eb,CL 5,mem=8 
CO /2 db RCL eb,db 5,mem=8 
01 /2 RCL eW,1 2,mem=7 
03 /2 RCL eW,CL 5,mem=8 
C1 /2 db RCL eW,db 5,mem=8 
00 /3 RCR eb,1 2,mem=7 
02 /3 RCR eb,CL 5,mem=8 
CO /3 db RCR eb,db 5,mem=8 
01 /3 RCR eW,1 2,mem=7 
03 /3 RCR eW,CL 5,mem=8 
C1 /3 db RCR eW,db 5,mem=8 
00 /0 ROL eb,1 2,mem=7 
02 /0 ROL eb,CL 5,mem=8 
CO /0 db ROL eb,db 5,mem=8 
01 /0 ROL ew,1 2,mem=7 
03 /0 ROL eW,CL 5,mem=8 
C1 /0 db ROL eW,db 5,mem=8 
00 /1 ROR eb,1 2,mem=7 
02 /1 ROR eb,CL 5,mem=8 
CO /1 db ROR eb,db 5,mem=8 
01 /1 ROR eW,1 2,mem=7 
03 /1 ROR eW,CL 5,mem=8 
C1 /1 db ROR eW,db 5,mem=8 

• Add 1 clock to the times shown for each rotate made 

FLAGS MODIFIED 

Overflow (only for single rotates), carry 

FLAGS UNDEFINED 

Overflow for multi-bit rotates 

OPERATION 

Each rotate instruction shifts the bits of the 
register or memory operand given. The left 
rotate instructions shift all of the bits upward, 
except for the top bit, which comes back 
around to the bottom. The right rotate 
instructions do the reverse: the bits shift 
downward, with the bottom bit coming around 
to the top. 

For the RCL and RCR instructions, the carry 
flag is part of the rotated quantity. RCL shifts 
the carry flag into the bottom bit and shifts 
the top bit into the carry flag; RCR shifts the 

8-87 

Description 

Rotate 9-bits (CF, EA byte) left once 
Rotate 9-bits (CF, EA byte) left CL times 
Rotate 9-bits (CF, EA byte) left db times 
Rotate 17-bits (CF, EA word) left once 
Rotate 17-bits (CF, EA word) left CL times 
Rotate 17 -bits (CF, EA word) left db times 
Rotate 9-bits (CF, EA byte) right once 
Rotate 9-bits (CF, EA byte) right CL times 
Rotate 9-bits (CF, EA byte) right db times 
Rotate 17-bits (CF, EA word) right once 
Rotate 17-bits (CF, EA word) right CL times 
Rotate 17 -bits (CF, EA word) right db times 
Rotate 8-bit EA byte left once 
Rotate 8-bit EA byte left CL times 
Rotate 8-bit EA byte left db times 
Rotate 16-bit EA word left once 
Rotate 16-bit EA word left CL times 
Rotate 16-bit EA word left db times 
Rotate 8-bit EA byte right once 
Rotate 8-bit EA byte right CL times 
Rotate 8-bit EA byte right db times 
Rotate 16-bit EA word right once 
Rotate 16-bit EA word right CL times 
Rotate 16-bit EA word right db times 

carry flag into the top bit and shifts the 
bottom bit into the carry flag. For the ROL 
and ROR instructions, the original value of 
the carry flag is not a part of the result; 
nonetheless, the carry flag receives a copy of 
the bit that was shifted from one end to the 
other. 

The rotate is repeated the number of times 
indicated by the second operand, which is 
either an immediate number or the contents 
of the CL register. To reduce the maximum 
execution time, the iAPX 286 does not allow 
rotation counts greater than 31. If a rotation 
count greater than 31 is attempted, only the 
bottom five bits of the rotation are used. The 
iAPX 86 does not mask rotate counts. 

The overflow flag is set only for the single
rotate (second operand = 1) forms of the 



THE IAPX 286 INSTRUCTION SET 

instructions. The OF bit is set to be accurate 
if a shift of length 1 is done. Since it is 
undefined for all other values, including a zero 
shift, it can always be set for the count-of-l 
case regardless of the actual count. For left 
shifts/rotates, the CF bit after the shift is 
XORed with the high-order result bit. For 
right shifts/rotates, the high-order two bits of 
the result are XORed to get OF. 

8-88 

PROTECTED MODE EXCEPTIONS 

#GP( 0) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 
REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

REP IREPE/REPNE-Repeat Following String Operation 

Opcode Instruction Clocks' 

F3 6C REP INS eb,OX 5+4*CX 
F3 60 REP INS ew,OX 5+4*CX 
F3 6C REP INSB 5+4*CX 
F3 60 REP INSW 5+4*CX 
F3 A4 REP MOVS mb,mb 5+4*CX 
F3 A5 REP MOVS mW,mw 5+4*CX 
F3 A4 REP MOVSB 5+4*CX 
F3 A5 REP MOVSW 5+4*CX 
F3 6E REP OUTS OX,eb 5+4*CX 
F3 6F REP OUTS OX,ew 5+4*CX 
F3 6E REP OUTSB 5+4*CX 
F3 6F REP OUTSW 5+4*CX 
F3 AA REP STOS mb 4+3*CX 
F3 AB REP STOS mw 4+3*CX 
F3 AA REP STOSB 4+3*CX 
F3 AB REP STOSW 4+3*CX 
F3 AS REPE CMPS mb,mb 5+9*N 
F3 A7 REPE CMPS mW,mw 5+9*N 
F3 A6 REPE CMPSB 5+9*N 
F3 A7 REPE CMPSW 5+9*N 
F3 AE REPE SCAS mb 5+S*N 
F3 AF REPE SCAS mw 5+S*N 
F3 AE REPE SCASB 5+S*N 
F3 AF REPE SCASW 5+S*N 
F2 A6 REPNE CMPS mb,mb 5+9*N 
F2 A7 REPNE CMPS mW,mw 5+9*N 
F2 A6 REPNE CMPSB 5+9*N 
F2 A7 REPNE CMPSW 5+9*N 
F2 AE REPNE SCAS mb 5+S*N 
F2 AF REPNE SCAS mw 5+S*N 
F2 AE REPNE SCASB 5+S*N 
F2 AF REPNE SCASW 5+S*N 

* N denotes the number of iterations actually executed. 

FLAGS MODIFIED 

By CMPS and SCAS, none by REP 

FLAGS UNDEFINED 

None 

OPERATION 

REP, REPE, and REPNE are prefix opera
tions. These prefixes cause the string instruc
tion that follows to be repeated CX times or 
(for REPE and REPNE) until the indicated 
condition in the zero flag is no longer met. 

B-S9 

Description 

Input CX bytes from port OX into ES:[OI] 
Input CX words from port OX into ES:[OI] 
Input CX bytes from port OX into ES:[OI] 
Input CX words from port OX into ES:[OI] 
Move CX bytes from [SI] to ES:[OI] 
Move CX words from [SI] to ES:[OI] 
Move CX bytes from OS:[SI] to ES:[OI] 
Move CX words from OS:[SI] to ES:[OI] 
Output CX bytes from [SI] to port OX 
Output CX words from [SI] to port OX 
Output CX bytes from OS:[SI] to port OX 
Output CX words from OS:[SI] to port OX 
Fill CX bytes at ES:[OI] with AL 
Fill CX words at ES:[OI] with AX 
Fill CX bytes at ES:[OI] with AL 
Fill CX words at ES:[OI] with AX 
Find nonmatching bytes in ES:[OI] and [SI] 
Find nonmatching words in ES:[OI] and [SI] 
Find nonmatching bytes in ES:[OI] and OS:[SI] 
Find nonmatching words in ES:[OI] and OS:[SI] 
Find non-AL byte starting at ES:[OI] 
Find non-AX word starting at ES:[OI] 
Find non-AL byte starting at ES:[OI] 
Find non-AX word starting at ES:[OI] 
Find matching bytes in ES:[OI] and [SI] 
Find matching words in ES:[OI] and [SI] 
Find matching bytes in ES:[OI] and OS:[SI] 
Find matching words in ES:[OI] and OS:[SI] 
Find AL, starting at ES:[OI] 
Find AX, starting at ES:[OI] 
Find AL, starting at ES:[OI] 
Find AX, starting at ES:[OI] 

Thus, REPE stands for "Repeat while equal," 
REPNE for "Repeat while not equal." 

The REP prefixes make sense only in the 
contexts listed above. They cannot be applied 
to anything other than string operations. 

Synonymous forms of REPE and REPNE are 
REPZ and REPNZ, respectively. 

The REP prefixes apply only to one string 
instruction at a time. To repeat a block of 
instructions, use a LOOP construct. 



THE iAPX 286 INSTRUCTION SET 

The precise action for each iteration is as 
follows: 

1. Check the CX register. If it is zero, exit 
the iteration and move to the next 
iri.;truction. 

2. Acknowledge any pending interrupts. 

3. Perform the string operation once. 

4. Decrement CX by I; no flags are 
modified. 

5. If the string operation is SCAS or CMPS, 
check the zero flag. If the repeat condi
tion does not hold, then exit the iteration 
and move to the next instruction. Exit if 
the prefix is REPE and ZF=O (the last 
comparison was not equal), or if the 
prefix is REPNE and ZF = I (the last 
comparison was equal). 

6. Go to step 1 for the next iteration. 

As defined by the individual string-ops, the 
direction of movement through the block is 
determined by the direction flag. If the direc
tion flag is 1 (STD was executed), SI and/or 
DI start at the end of the block and move 

8-90 

backward; if the direction flag is 0 (CLD was 
executed), SI and/or DI start at the begin
ning of the block and move forward. 

For repeated SCAS and CMPS operations the 
repeat can be exited for one of two different 
reasons: the CX count can be exhausted or 
the zero flag can fail the repeat condition. 
Your code will probably want to distinguish 
between the two cases. It can do so via either 
the JCXZ instruction or the conditional jumps 
that test the zero flag (JZ, JNZ, JE, and 
JNE). 

NOTE 

Not all input/output ports can handle the 
rate at which the repeated I/O instruc
tions execute. 

PROTECTED MODE EXCEPTIONS 

None by REP; exceptions can be generated 
when the string-op is executed. 

REAL ADDRESS MODE EXCEPTIONS 

None by REP; exceptions can be generated 
when the string-op is executed. 



THE iAPX 286 INSTRUCTION SET 

RET - Return from Procedure 

Opcode Instruction Clocks' 

CB RET 15,pm=25 
CB RET 55 
C3 RET 11 
CA dw RET dw 15,pm=25 
CA dw RET dw 55 
C2 dw RET dw 11 

'Add 1 clock for each byte in the next instruction executed. 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

RET transfers control to a return address 
located on the stack. The address is usually 
placed on the stack by a CALL instruction; 
in that case, the return is made to the instruc
tion that follows the CALL. 

There is an optional numeric parameter to 
RET. It gives the number of stack bytes to be 
released after the return address is popped. 
These bytes are typically used as input 
parameters to the procedure called. 

For the intra-segment return, the address on 
the stack is a 2-byte quantity popped into IP. 
The CS register is unchanged. 

Description 

Return to far caller, same privilege 
Return, lesser privilege, switch stacks 
Return to near caller, same privilege 
RET (far), same privilege, pop dw bytes 
RET (far), lesser privilege, pop dw bytes 
RET (near), same privilege, pop dw bytes 
pushed before Call 

For the inter-segment return, the address on 
the stack is a 4-byte-Iong pointer. The offset 
is popped first, followed by the selector. In 
real address mode, CS and IP are directly 
loaded. 

In protected mode, an inter-segment return 
causes the processor to consult the descriptor 
addressed by the return selector. The AR byte 
of the descriptor must indicate a code segment 
of equal or less privilege (of greater or equal 
numeric value) than the current privilege 
level. Returns to a lesser privilege level cause 
the stack to be reloaded from the value saved 
beyond the parameter block. 

The DS and ES segment registers may be set 
to zero by the inter-segment RET instruction. 
If these registers refer to segments which 
cannot be used by the new privilege level, they 
are set to zero to prevent unauthorized access. 

The following list of checks and actions 
describes the protected-mode inter-segment 
return in detail. 



THE IAPX 286 INSTRUCTION SET 

Inter-segment RET: 
Second word on stack must be within stack limits else #SS(O) 
Return selector RPL must be ;::: CPL else #GP (return selector) 
If r~turn selector RPL = CPL then 

RETURN TO SAME LEVEL: 
Return selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Descriptor AR byte must indicate code segment else #GP (selector) 
If non-conforming then code segment DPL must equal CPL else #GP (selector) 
If conforming then code segment DPL must be ::5 CPL else #GP (selector) 
Code segment must be PRESENT else #NP (selector) 
Top word on stack must be within stack limits else #SS(O) 
IP must be in code segment limit else #GP(O) 
Load CS:IP from stack 
Load CS-cache with descriptor 
Increment SP by 4 plus the immediate offset if it exists 

Else 
RETURN TO OUTER PRIVILEGE LEVEL: 
Top (8+ immediate) bytes on stack must be within stack limits else #SS(O) 
Examine return CS selector (at SP+2) and associated descriptor: 

Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Descriptor AR byte must indicate code segment else #GP (selector) 
If non-conforming then code segment DPL must equal return selector RPL else #GP (selector) 
If conforming then code segment DPL must be ::5 return selector RPL else #GP (selector) 
Segment must be PRESENT else #NP (selector) 

Examine return SS selector (at SP+6+imm) and associated descriptor: 
Selector must be non-null else #GP(O) 
Selector index must be within its descriptor table limits else #GP (selector) 
Selector RPL must equal the RPL of the return CS selector else #GP (selector) 
Descriptor AR byte must indicate a writable data segment else #GP (selector) 
Descriptor DPL must equal the RPL of the return CS selector else #GP (selector) 
Segment must be PRESENT else #NP (selector) 

IP must be in code segment limit else # GP(O) 
Set CPL to the RPL of the return CS selector 
Load CS:IP from stack 
Set CS RPL to CPL 
Increment SP by 4 plus the immediate offset if it exists 
Load SS:SP from stack 
Load the CS-cache with the return CS descriptor 
Load the SS-cache with the return SS descriptor 
For each of ES and DS: 

If the current register setting is not valid for the outer level', set the 
register to null (selector = AR = 0) 

To be valid, the register setting must satisfy the following properties: 
Selector index must be within descriptor table limits 
Descriptor AR byte must indicate data or readable code segment 
If segment is data or non-conforming code, then: 

DPL must be ;::: CPL, or 
DPL must be ;::: RPL 

PROTECTED MODE EXCEPTIONS 

#GP, #NP, or #SS, as described in the above 
listing. 

8-92 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 if the stack pop wraps around 
from OFFFFH to O. 



THE IAPX 286 INSTRUCTION SET 

SAHF -Store AH into Flags 

Opcode Instruction Clocks 

9E SAHF 2 

FLAGS MODIFIED 

Sign, zero, auxiliary carry, parity, carry 

FLAGS UNDEFINED 

None 

OPERATION 

The flags listed above are loaded with values 

8-93 

Description 

Store AH into flags SF ZF xx AF xx PF xx CF 

from the AH register, from bits 7,6,4,2, and 
0, respectively. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX286 INSTRUCTION SET 

SALI SARI SHLI SHR-Shift Instructions 

Opcode Instruction Clocks-N· 

DO /4 SAL eb,1 2,mem=7 
02 /4 SAL eb,CL 5,mem=8 
CO /4 db SAL eb,db 5,mem=8 
01 /4 SAL ew,1 2,mem=7 
03 /4 SAL ew,CL 5,mem=8 
C1 /4 db SAL eW,db 5,mem=8 
DO /7 SAR eb,1, 2,mem=7 
02 f7 SAR eb,CL 5,mem=8 
CO f7 db SAR eb,db 5,mem=8 
01 f7 SAR ew,1 2,mem=7 
03 /7 SAR ew,CL 5,mem=8 
C1 /7 db SAR ew,db 5,mem=8 
DO /5 SHR eb,1 2,mem=7 
02 /5 SHR eb,CL 5,mem=8 
CO /5 db SHR eb,db 5,mem=8 
01 /5 SHR ew,1 2,mem=7 
03 /5 SHR ew,CL 5,mem=8 
C1 /5 db SHR ew,db 5,mem=8 

• Add 1 clock to the times shown for each shift performed 

FLAGS MODIFIED 

Overflow (only for single-shift form), carry, 
zero, overflow, parity, sign 

FLAGS UNDEFINED 

Auxiliary carry; also overflow for multibit 
shifts (only). 

OPERATION 

SAL (or its synonym SHL) shifts the bits of 
the operand upward. The high-order bit is 
shifted into the carry flag, and the low-order 
bit is set to O. 

SAR and SHR shift the bits of the operand 
downward. The low-order bit is shifted into 
the carry flag. The effect is to divide the 
operand by 2. SAR performs a signed divide: 
the high-order bit remains the same. SHR 
performs an unsigned divide: the high-order 
bit is set to O. 

The shift is repeated the number of times 
indicated by the second operand, which is 
either an immediate number or the contents 
of the CL registe-r. To reduce the maximum 

8-94 

Description 

Multiply EA byte by 2, once 
Multiply EA byte by 2, CL times 
Multiply EA byte by 2, db times 
Multiply EA word by 2, once 
Multiply EA word by 2, CL times 
Multiply EA word by 2, db times 
Signed divide EA byte by 2, once 
Signed divide EA byte by 2, CL times 
Signed divide EA byte by 2, db times 
Signed divide EA word by 2, once 
Signed divide EA word by 2, CL times 
Signed divide EA word by 2, db times 
Unsigned divide EA byte by 2, once 
Unsigned divide EA byte by 2, CL times 
Unsigned divide EA byte by 2, db times 
Unsigned divide EA word by 2, once 
Unsigned divide EA word by 2, CL times 
Unsigned divide EA word by 2, db times 

execution time, the iAPX 286 does not allow 
shift counts greater than 31. If a shift count 
greater than 31 is attempted, only the bottom 
five bits of the shift count are used. The iAPX 
86 uses all 8 bits of the shift count. 

The overflow flag is set only if the single-shift 
forms of the instructions are used. For left 
shifts, it is set to 0 if the high bit of the answer 
is the same as the result carry flag (i.e., the 
top two bits of the original operand were the 
same); it is set to 1 if they are different. For 
SAR it is set to 0 for all single shifts. For 
SHR, it is set to the high-order bit of the 
original operand. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the operand is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

SBB -Integer Subtraction With Borrow 

Opcode Instruction Clocks 

18 Ir SBB eb,rb 2,mem=7 

19 Ir SBB eW,rw 2,mem=7 

1A Ir SBB rb,eb 2,mem=7 

1B Ir SBB rW,ew 2,mem=7 

1C db SBB AL,db 3 
10 dw SBB AX,dw 3 
80 13 db SBB eb,db 3,mem=7 
81 13 dw SBB eW,dw 3,mem=7 
83 13 db SBB eW,db 3,mem=7 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

The second operand is added to the carry flag 
and the result is subtracted from the first 
operand. The first operand is replaced with 
the result of the subtraction, and the flags are 
set accordingly. 

B-95 

Description 

Subtract with borrow byte register from EA 
byte 
Subtract with borrow word register from EA 
word 
Subtract with borrow EA byte from byte 
register 
Subtract with borrow EA word from word 
register 
Subtract with borrow imm. byte from AL 
Subtract with borrow imm. word from AX 
Subtract with borrow imm. byte from EA byte 
Subtract with borrow imm. word from EA word 
Subtract with borrow imm. byte from EA word 

When a byte-immediate value is subtracted 
from a word operand, the immediate value is 
first sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

SCAS/SCASB/SCASW-Compare String Data 

Opcode 

AE 
AF 
AE 
AF 

FLAGS MODIFIED 

Instruction 

SCAS mb 
SCAS mw 
SCAS8 
SCASW 

Clocks 

7 
7 
7 
7 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

SCAS subtracts the memory byte or word at 
ES:DI from the AL or AX register. The result 
is discarded; only the flags are set. The 
operand must be addressable from the ES 
register; no segment override is possible. 

After the comparison is made, 01 is automat
ically advanced. If the direction flag is 0 
(CLD was executed), 01 increments; if the 
direction flag is 1 (STO was executed), 01 

8-96 

Description 

Compare bytes AL - ES:[Olj. advance 01 
Compare words AX - ES:[Olj. advance 01 
Compare bytes AL - ES:[Olj. advance 01 
Compare words AX - ES:[Olj. advance 01 

decrements. 01 increments or decrements by 
1 if bytes were compared; by 2 if words were 
compared. 

SCAS can be preceded by the REPE or 
REPNE prefix for a block search of CX bytes 
or words. Refer to the REP instruction for 
details of this operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, OS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE IAPX 286 INSTRUCTION SET 

SGDT /SIDT -Store Global/Interrupt Descriptor Table 
Register 

Opcode 

OF 01 /0 
OF 01 /1 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

SGDT m 
SlOT m 

Clocks 

11 
12 

The contents of the descriptor table register 
are copied to six bytes of memory indicated 
by the operand. The LIMIT field of the 
register goes to the first word at the effective 
address; the next three bytes get the BASE 
field of the register; and the last byte is 
undefined. 

SGDT and SIDT appear only in operating 
systems software; they are not used in appli
cations programs. 

8-97 

Description 

Store Global Descriptor Table register to m 
Store Interrupt Descriptor Table register to m 

PROTECTED MODE EXCEPTIONS 

#UD if the destination operand is a register. 
#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the es, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

These instructions are valid in Real Address 
mode to facilitate power-up or to reset initial
ization prior to entering Protected mode. 

#UD if the destination operand is a register. 
Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX286 INSTRUCTION SET 

SLOT -Store Local··Oescriptor Table Register 

Opcode 

OF 00 /0 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

SLOT ew 2,mem=3 

The Local Descriptor Table register is stored 
in the 2-byte register or memory location 
indicated by the effective address' operand. 
This register is a selector that points into the 
Global Descriptor Table. 

Description 

Store Local Descriptor Table register to EA 
word 

SLDT appears only in operating systems 
software. It is not used in applications 
programs. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; SLDT is not recognized in Real 
Address mode. 



THE iAPX 286 INSTRUCTION SET 

SMSW -Store Machine Status Word 

Opcode 

OF 01 /4 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

SMSWew 2,mem=3 

The Machine Status Word is stored in the 
2-byte register or memory location indicated 
by the effective address operand. 

8-99 

Description 

Store Machine Status Word to EA word 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

STe-Set Carry Flag 

Opcode 

F9 

FLAGS MODIFIED 

Carry = 1 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

STC 

The carry flag is set to 1. 

Clocks 

2 

8-100 

Description 

Set carry flag 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

STD-Set Direction Flag 

Opcode 

FO 

FLAGS MODIFIED 

Direction = 1 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

STO 2 

The direction flag is set to 1. This causes all 
subsequent string operations to decrement the 

8-101 

Description 

Set direction flag so SI and 01 will decrement 

index registers (SI and/or DO on which they 
operate. 

PROTECTED MODE EXCEPTIONS 

None 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE iAPX 286 INSTRUCTION SET 

STI-Set Interrupt Enable Flag 

Opcode Instruction 

FB STI 

FLAGS MODIFIED 

Interrupt = 1 (enabled) 

FLAGS UNDEFINED 

None 

OPERATION 

Clocks 

2 

The interrupts-enabled flag is set to 1. The 
iAPX 286 will now respond to external inter
rupts after executing the next instruction if 
the next instruction allows the interrupt flag 
to remain enabled. Therefore, if external 
interrupts are disabled and the user codes 
ST!, RET (such as at the end of a subrou-

B-102 

Description 

Set interrupt enable flag, interrupts enabled 

tine) the RET is allowed to execute before 
external interrupts are recognized. Also, if 
external interrupts are disabled and the user 
codes STI, CLI, then external interrupts are 
not recognized because the CLI instruction 
clears the interrupt flag during its execution. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the current privilege level is bigger 
(has less privilege) than the I/O privilege 
level. 

REAL ADDRESS MODE EXCEPTIONS 

None 



THE IAPX 286 INSTRUCTION SET 

STOS/STOSB/STOSW-Store String Data 

Opcode 

AA 
AB 
AA 
AB 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

STOS mb 
STOS mw 
STOSB 
STOSW 

Clocks 

3 
3 
3 
3 

STOS transfers the contents the AL or AX 
register to the memory byte or word at ES:DI. 
The operand must be addressable from the ES 
register; no segment override is possible. 

After the transfer is made, DI is automati
cally advanced. If the direction flag is 0 (CLD 
was executed), DI increments; if the direction 
flag is 1 (STD was executed), DI decrements. 

B-1 03 

Description 

Store AL to byte ES:[OI]. advance 01 
Store AX to word ES:[OI]. advance 01 
Store AL to byte ES:[OI]. advance 01 
Store AX to word ES:[OI]. advance 01 

DI increments or decrements by 1 if a byte 
was moved; by 2 if a word was moved. 

STOS can be preceded by the REP prefix for 
a block fill of CX bytes or words. Refer to the 
RE.P instruction for details of this operation. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

STR-Store Task Register 

Opcode 

OF 00 /1 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

STR ew 2,mem=3 

The contents of the Task Register are copied 
to the 2-byte register or memory location 
indicated by the effective address operand. 

8-104 

Description 

Store Task Register to EA word 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the destination is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; STR is not recognized in Real 
Address mode. 



THE iAPX 286 INSTRUCTION SET 

SUB-Integer Subtraction 

Opcode Instruction Clocks 

28 If SUB eb,rb 2,mem=7 
29 Ir SUB ew,rw 2,mem=7 
2A Ir SUB rb,eb 2,mem=7 
2B Ir SUB rw,ew 2,mem=7 
2C db SUB AL,db 3 
20 dw SUB AX,dw 3 
80 15 db SUB eb,db 3,mem=7 
81 15 dw SUB eW,dw 3,mem=7 
83 15 db SUB eW,db 3,mem=7 

FLAGS MODIFIED 

Overflow, sign, zero, auxiliary carry, parity, 
carry 

FLAGS UNDEFINED 

None 

OPERATION 

The second operand is subtracted from the 
first operand, and the first operand is replaced 
with the result. 

B-105 

Description 

Subtract byte register from EA byte 
Subtract word register from EA word 
Subtract EA byte from byte register 
Subtract EA word from word register 
Subtract immediate byte from AL 
Subtract immediate word from AX 
Subtract immediate byte from EA byte 
Subtract immediate word from EA word 
Subtract immediate byte from EA word 

When a byte-immediate value is subtracted 
from a word operand, the immediate value is 
first sign-extended. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

TEST -Logical Compare 

Opcode Instruction Clocks 

84 Ir TeST eb,rb 2,mem=6 
84 Ir TEST rb,eb 2,mem=6 
85 Ir TEST eW,rw 2,mem=6 
85 Ir TeST rw,ew 2,mem=6 
A8 db TEST AL,db 3 
A9 dw TEST AX,dw 3 
F6 10 db TeST eb,db 3,mem=6 
F7 10 dw TEST eW,dw 3,mem=6 

FLAGS MODIFIED 

Overflow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

TEST computes the bit-wise logical AND of 
the two operands given. Each bit of the result 
is 1 if both of the corresponding bits of the 
operands are 1; each bit is 0 otherwise. The 

8-106 

Description 

AND byte register into EA byte for flags only 
AND EA byte into byte register for flags only 
AND word register into EA word for flags only 
AND EA word into word register for flags only 
AND immediate byte into AL for flags only 
AND immediate word into AX for flags only 
AND immediate byte into EA byte for flags only 
AND immediate word into EA word for flags 
only 

result of the operation is discarded; only the 
flags are modified. 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

VERR, VERW - Verify a Segment for Reading or Writing 

Opcode Instruction Clocks 

OF 00 /4 
OF 00 /5 

VERR ew 
VERWew 

14,mem=16 
14,mem=16 

FLAGS MODIFIED 

Zero 

FLAGS UNDEFINED 

None 

OPERATION 

VERR and VER W expect the 2-byte register 
or memory operand to contain the value of a 
selector. The instructions determine whether 
the segment denoted by the selector is reach
able from the current privilege level; the 
instructions also determine whether it is 
readable or writable. If the segment is deter
mined to be accessible, the zero flag is set to 
1; if the segment is not accessible, it is set to 
O. To set ZF, the following conditions must 
be met: 

1. The selector must denote a descriptor 
within the bounds of the table (GDT or 
LDT); that is, the selector must be 
"defined. " 

2. The selector must denote the descriptor 
of a code or data segment. 

3. If the instruction is VERR, the segment 
must be readable. If the instruction is 
VER W, the segment must be a writable 
data segment. 

8-107 

Description 

Set ZF=1 if seg. can be read, selector ew 
Set ZF=1 if seg. can be written, selector ew 

4. If the code segrrient is readable and 
conforming, the descriptor privilege level 
(DPL) can be any value for VERR. 
Otherwise, the DPL must be greater than 
or equal to (have less or the same privi
lege as) both the current privilege level 
and the selector's RPL. 

The validation performed is the same as if the 
segment were loaded into DS or ES and the 
indicated access (read or write) were 
performed. The zero flag receives the result 
of the validation. The selector's value cannot 
result in a protection exception. This enables 
the software to anticipate possible segment 
access problems. 

PROTECTED MODE EXCEPTIONS 

The only faults that can occur are those 
generated by illegally addressing the memory 
operand which contains the selector. The 
selector is not loaded into any segment regis
ter, and no faults attributable to the selector 
operand are generated. 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 6; VERR and VER Ware not 
recognized in Real Address Mode. 



THE iAPX 286 INSTRUCTION SET 

WAIT -Wait Until BUSY Pin Is Inactive (HIGH) 

Opcode 

98 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

WAIT 3 

WAIT suspends execution of 80286 instruc
tions until the BUSY pin is inactive (high). 
The BUSY pin is driven by the 80287 
numeric processor extension. WAIT is issued 

B-1 08 

Description 

Wait until BUSY pin is inactive (HIGH) 

to ensure that the numeric instruction being 
executed is complete, and to check for a 
possible numeric fault (see below). 

PROTECTED MODE EXCEPTIONS 

#NM if task switch flag in MSW is set. #MF 
if 80287 has detected an unmasked numeric 
error. 

REAL ADDRESS MODE EXCEPTIONS 

Same as Protected mode. 



THE iAPX 286 INSTRUCTION SET 

XCHG-Exchange Memory IRegister with Register 

Opcode 

86 Ir 
86 Ir 
87 Ir 
87 Ir 
90+ rw 
90+ rw 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction Clocks 

XCHG eb,rb 3,mem=5 
XCHG rb,eb 3,mem=5 
XCHG eW,rw 3,mem=5 
XCHG rW,ew 3,mem=5 
XCHG AX,rw 3 
XCHG rW,AX 3 

The two operands are exchanged. The order 
of the operands is immaterial. BUS LOCK is 
asserted for the duration of the exchange, 
regardless of the presence or absence of the 
LOCK prefix or IOPL. 

8-109 

Description 

Exchange byte register with EA byte 
Exchange EA byte with byte register 
Exchange word register with EA word 
Exchange EA word with word register 
Exchange word register with AX 
Exchange with word register 

PROTECTED MODE EXCEPTIONS 

#GP(O) if either operand is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

XLA T -Table Look-up Translation 

Opcode 

07 

07 

FLAGS MODIFIED 

None 

FLAGS UNDEFINED 

None 

OPERATION 

Instruction 

XLAT mb 

XLATB 

Clocks 

5 

5 

When XLAT is executed, AL should be the 
unsigned index into a table addressed by 
DS:BX. XLA T changes the AL register from 
the table index into the table entry. BX is 
unchanged. 

B-110 

Description 

Set AL to memory byte OS:[BX + unsigned 
ALl 
Set AL to memory byte OS:[BX + unsigned 
ALl 

PROTECTED MODE EXCEPTIONS 

#GP(O) for an illegal memory operand effec
tive address in the CS, DS, or ES segments; 
#SS(O) for an illegal address in the SS 
segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 



THE iAPX 286 INSTRUCTION SET 

X OR - Logical Exclusive OR 

Opcode Instruction Clocks 

30 /r XOR eb,rb 2,mem=7 
31 /r XOR eW,rw 2,mem=7 
32 /r XOR rb,eb 2,mem=7 
33 /r XOR rW,ew 2,mem=7 
34 db XOR AL,db 3 
35 dw XOR AX,dw 3 
80 /6 db XOR eb,db 3,mem=7 
81 /6 dw XOR eW,dw 3,mem=7 

FLAGS MODIFIED 

Overflow=O, sign, zero, parity, carry=O 

FLAGS UNDEFINED 

Auxiliary carry 

OPERATION 

XOR computes the exclusive OR of the two 
operands. Each bit of the result is 1 if the 
corresponding bits of the operands are differ
ent; each bit is 0 if the corresponding bits are 

8-111 

Description 

Exclusive-OR byte register into EA byte 
Exclusive-OR word register into EA word 
Exclusive-OR EA byte into byte register 
Exclusive-OR EA word into word register 
Exclusive-OR immediate byte into AL 
Exclusive-OR immediate word into AX 
Exclusive-OR immediate byte into EA byte 
Exclusive-OR immediate word into EA word 

the same. The answer replaces the first 
operand. 

PROTECTED MODE EXCEPTIONS 

#GP(O) if the result is in a non-writable 
segment. #GP(O) for an illegal memory 
operand effective address in the CS, DS, or 
ES segments; #SS(O) for an illegal address in 
the SS segment. 

REAL ADDRESS MODE EXCEPTIONS 

Interrupt 13 for a word operand at offset 
OFFFFH. 





Appendix 
iAPX 286/10 

c 



APPENDIXC 

Contents 

Functional Description ...... ......... .......... .... C-5 
iAPX 286/10 Base Architecture ......... ...... C-5 
iAPX 86 Real Address Mode ... ..... ..... .... C-13 
Protected Virtual Address Mode ......... ... C-14 
System Interface ......... ...... ....... ...... ........ C-24 
System Configurations ............ ........ ....... C-34 
Package .................... ........... ..... ...... ........ C-37 
Absolute Maximum Ratings .... ............... C-37 
D.C. Characteristics .... ............ ............ ... C-37 
A.C. Characteristics . .... ...... ....... .... .......... C-38 
Waveforms ............... ................ ....... ........ C-39 
80286 Instruction Set Summary............ C-42 



inter~ iAPX 286/10 ~IIDW~~©~O~IP@IRlIMI~'iJ'O@~ 
HIGH PERFORMANCE MICROPROCESSOR 

WITH MEMORY MANAGEMENT AND PROTECTION 
(80286,80286-6,80286-4) 

• High Performance 
Processor (Up to six times iAPX 86) 

• Large Address Space: 
-16 Megabytes Physical 
-1 Gigabyte Virtual per Task 

• Integrated Memory Management, Four
Level Memory Protection and Support 
for Virtual Memory and Operating 
Systems 

• Two iAPX 86 Upward Compatible 
Operating Modes: 
-iAPX 86 Real Address Mode 
-Protected Virtual Address Mode 

• Range of clock rates 
-8 MHz for 80286 
-6 MHz for 80286-6 
-4 MHz for 80286-4 

• Optional Processor Extension: 
-iAPX 286/20 High Performance 80-bit 

Numeric Data Processor 

• Complete System Development 
Support: 
-Development Software: Assembler, 

PLlM, Pascal, FORTRAN, and System 
Utilities 

-In-Circuit-Emulator (ICE ,. -286) 

• High Bandwidth Bus Interface 
(8 Megabyte/Sec) 

• Available In EXPRESS: 
-Standard Temperature Range 

The iAPX 286 10 (80286 part number) is an advanced, high-performance mic~processor with specially optimized 
capabilities for mUltiple user and multi-tasking systems. The 80286 has built-in memory protection that supports 
operating system and task isolation as well as program and data privacy within tasks. An 8 MHz iAPX 286/1 0 provides 
up to six times greater throughout than the standard 5 MHz iAPX 86/10. The 80286 includes memory management 
capabilities that map up to 230 (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) 
of physical memory. 

The iAPX 286 is upward compatible with iAPX 86 and 88 software. Using iAPX 86 real address mode, the 80286 is 
object code compatible with existing iAPX 86, 88 software. In protected virtual address mode, the 80286 is source 
code compatible with iAPX 86, 88 software and may require upgrading to use virtual addresses supported by the 
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 performance 
and execute a superset of the iAPX 86 and 88's instructions. 

The 80286 provides special operations to support the efficient implementation and execution of operating systems. 
For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and 
start execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present 
exception and restartable instructions. 

I 
I 
I 
I L __ 

A23 - Ao. 
IiHE.MIO 

J5"EACK 
PEREQ 

READY. HOLD 

S1, SO, COD INTA 

LOCK, HlDA 

R~SET 

elK 
Vss 

~ ~E~IJ!I~N~~T_(EU_) __ L-_-_-_-_.J_l_T_n~-----:-~l.-~~-L..:::::=:::.J Vee 
L-.;;.;;;.;;;.;;....;;;.;;;.;;....;;;;...::.-;:...:;:..;;..;:...:;;...;;;:N:iiiMIR~T;;;.u~;y.;:.-;.;-=-;,..;-=-:..:-;.;-::..:.' _...:...;=:..;;..;:...:;:..;;..;:...:;;...:;..;:;;...;;;.;:::..:;.;::..;;;..;:,.;=:..::-.--- CAP 

tNTR ERROR 

Figure 1. 80286 Internal Block Diagram 

The foUowlng are trademarks of Intel Corporation and itsaffillales and may be used only to identify Intel products: BXP, CREDIT, i, ICE. ieS, 1m, Insite, Intel, INTEL, Intelevision. Intellink, 

~~e~:~~,~~~~.' ;~~=:~~~~~P~.· ~~~7h~SC~~~;~:~r~n~~~~~~lrR~;~i·S~~~T~~~.~~~~2~eE~a~~;~~~u~:C;~::~~;:;:~~~U~~:~Y~~~~~~~~:;t~:~' :~~~~~~~b~~:~~::iit~~~~t~:~~ 
of Any CircUitry Other Than Circuitry EmbodIed In an Intel Product No Other Patent Ucensp.s are implied. @INTELCORPOAATION. 1983. 

C-1 
NOVEMBER 1983 

ORDER NUMBER: 210253-006 



inter IAPX 286/10 

Component Pad View-As viewed from 
underside of component when mounted on 
the board. 

P.C. Board View-As viewed from the 
component side of the P.C. board. 

CAP 

lIiIiOR 
BUSY 

N.C. 

N.C. 
INTR 

N.C. 

NMI 
Vss 

PEREa 

Vee 
mov 
HOLD 

HLDA 

coD'i'NTA 
MOO 

[lffi( 

PIN NO.1 MARK 

l.JL JL jU LJ LJLJ LJL JLJLJ L J L J LJ L.J L J ~ 

1 , 
, 
, 
, 
, 

" , , 
, 
, 
, 
" 

r11r lr 1r lr lr lrlrlr lrlr lr 1r 1r 1 r 1 r, r 

r 
c 

r 

r 
c 

c 
r 
c 

'I, 

.. 
A, 
A, 

elK 

Vee 
RESET 

A, 

A" 

NOTE: N.C. pads must not be connected. 

Figure 2. 80286 Pin Configuration 

Table 1. Pin Description 
The following pin function descriptions are for the 80286 microprocessor-

Symbol "TYpe 

elK I 

015-00 1/0 

A23-Ao a 

BHE a 

Name and Function 

System Clock provides the fundamental timing for iAPX 286 systems. It is divided by two inside 
the 80286 to generate the processor clock. The internal divide-by-two circuitry can 
be synchronized to an external clock generator by a lOW to HIGH transition on the RESET 
input. 

Data Bus inputs data during memory. 1/0. and interrupt acknowledge read cycles; outputs data 
during memory and 1/0 write cycles. The data bus is active HIGH and floats to ~-state OFF during 
bus hold acknowledge. 

Address Bus outputs physical memory and 1/0 port addresses. AO is lOW when data is to be 
transferred on pins 07-0' A23-A16 are lOW during 1/0 transfers. The address bus is active HIGH 
and floats to 3-state OFF during bus hold acknowledge. 

Bus High Enable indicates transfer of data on the upper byte of the data bus. DI5::8:...Eight-bit 
oriented devices assigned--.!Q...the upper byte of the data bus would normally use BHE to con-
dition chip select functions. BHE is active lOW and floals 10 3-stale OFF during bus hold acknowledge. 

BHEYatue AOYalue 
0 0 
0 1 
1 0 
1 1 

C-2 

SHE and AO Encodings 
Function 
Word transfer . 
Byte transfer on upper half of data bus (015-8) 
Byte transfer on lower half of data bus (07-0) 
Reserved 

210253-006 
AFN-020600 



Symbol Type 

81,80 a 

MilO a 

COD/INTA a 

LOCK 0 

READY I 

HOLD I 
HLDA a 

INTR I 

NMI I 

IAPX 286/10 

Table 1. Pin Oescription (Cont.) 

Name and Function 

BUB Cycle StatuB indicates initiation of a bus cycle and, along with M{IO and CODfJl'iI'TA, defines 
the type of bus cycle. The bus is in a Ts state whenever one or both are LOW. 'ST and SO are 
active LOW and float to 3-state OFF during bus hold acknowledge. 

80286 Bus Cycle Status Definition 
COD/INTA MilO 51 50 Bus cycle initiated 

a (lOW) a a 0 Interrupt acknowledge 
0 a 0 1 Reserved 
a a 1 0 Reserved 
a a 1 1 None; not a status cycle 
a 1 0 a IF A 1 ~ 1 then halt; else shutdown 
a 1 a 1 Memory data read 
0 1 1 a Memory data write 
a 1 1 1 None; not a status cycle 
1 (HIGH) a 0 a Reserved 
1 a a 1 1/0 read 
1 a 1 0 I/O write 
1 a 1 1 None; not a status cycle 
1 1 a a Reserved 
1 1 0 1 Memory Instruction read 
1 1 1 a Reserved 
1 1 1 1 None; not a status cycle 

Memory/lO Select distinguishes memory access from 1/0 access. If HIGH during T s, a memory 
cycle or a haltlshutdown cycle is in progress. If LOW, an 1/0 cycle or an interrupt acknowledge cycle 
is in progress. M/iO floats to 3-state OFF during bus hold acknowledge. 

Codellnterrupt Acknowledge distinguishes instruction fetch cycles from memory data read cycles. 
Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/INTA floats to 3-state OFF 
during bus hold acknowledge. Its timing is the same as M/iO. 

Bus Lock indicates that other system bus masters are not to gain control of the system bus following 
the current bus cycle. The LOCK Signal may be activated explicitly by the "LOCK" instruction prefix 
or automatically by 80286 hardware during memory XCHG instructions, interrupt acknowledge, or 
descriptor table access. LOCK is active LOW and floats to 3-state OFF during bus hold acknowledge. 

Bus Ready terminates a bus cycle. Bus cycles are extended without limit until terminated by READY 
Law. READY is an active LOW synchronous input requiring setup and hold times relative to the 
system clock be met for correct operation. READY is ignored during bus hold acknowledge. 

Bus Hold Request and Hold Acknowledge control ownership of the 80286 local bus. The HOLD 
input allows another local bus master to request control of the local bus. When control is granted, the 
80286 will float its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus hold 
acknowledge condition. The local bus will remain granted to the requesting master until HOLD 
becomes inactive which results in the 80286 deactivating HLDA and regaining control of the local 
bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the system 
clock. These Signals are active HIGH. 

Interrupt Request requests the 80286 to suspend its current program execution and service a 
pending external request. Interrupt requests are masked whenever the interrupt enable bit in the 
flag word is cleared. When the 80286 responds to an interrupt request, it performs two interrupt 
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To 
assure program interruption, INTR must remain active until the first interrupt acknowledge cycle is 
completed. INTR is sampled at the beginning of each processor cycle and must be active HIGH at 
least two processor cycles before the current instruction ends in order to interrupt before the next 
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock. 

Non-maskable Interrupt Request interrupts the 80286 with an internally supplied vector value of 
2. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80286 flag word 
does not affect this input. The NMI input is active HIGH, may be asynchronous to the system clock, 
and is edge triggered after internal synchronization. For proper recognition, the input must have 
been previously LOW for at least four system clock cycles and remain HIGH for at least four system 
clock cycles. 

C-3 
210253-006 

AFN-a2a6aD 



Symbol Type 
PEREQ I 
PEACK a 

BUSY I 
ERROR I 

RESET I 

Vss I 

Vee I 

CAP I 

iAPX 286/10 

Table 1. Pin Description (Cont.) 

Name and Function 
Processor Extension Operand Request and Acknowledge extend the memory management and protection t 
capabilities of the 80286 to processor extensions. The PEREO input requests the 80286 to perform a data, 
operand transfer for a processor extension. The mCK output signals the processor extension when the, 
requested operand is being transferred. PEREQ is active HIGH and floats to 3·state OFF during bus holdl 
acknowledge. mCK may be asynchronous to the system clock. mCK is active LOW. 

Processor Extension Busy and Error indicate the operating condition of a processor extension 
to the 80286. An active BUSY input stops 80286 program execution on WAIT and some ESC 
instructions until BUSY becomes inactive (HIGH). The 80286 may be interrupted while waiting 
for BUSY to become inactive. An active rn'IiOR input causes the 80286 to perform a processor 
extension interrupt when executing WAIT or some ESC instructions. These inputs are active 
LOW and may be asynchronous to the system clock. 

System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be reo 
initialized at any time with a LOW to HIGH transition on RESET which remains active for more than 
16 system clock cycles. During RESET active, the output pins of the 80286 enter the state shown 
below: 

80286 Pin State During Reset 
Pin Value Pin Names 

1 (HIGH) SO. S1. PEACK. A23-AO. BHE. lOCK 
o (lOW) MIlO, COD/INTA. HlDA 
3-stateOFF D,s-Do 

Operation of the 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transi' 
tion of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are 
required by the 80286 for interna.1 initializations before the first bus cycle to fetch code from the 
power'on execution address is performed. 

A LOW to HIGH transition of RESET synchronous to the system clock will end a processor 
cycle at the second HIGH to lOW transition of the system clock. The LOW to HIGH transition 
of RESET may be asynChronous to the system clock; however, in this case it cannot be prede· 
termined which phase of the processor clock will occur during the next system clock period. 
Synchronous LOW to HIGH transitions of RESET are required only for systems where the 
processor clock must be phase synchronous to another clock. 

System Ground: 0 Volts. -
System Power: + 5 Volt Power Supply. 

Substrate Filter Capacitor: a O.04lf,t.f ± 20% 12V capacitor must be connected between this pin 
and ground. This capacitor filters the output of the internal substrate bias generator. A maximum DC 
leakage current of 1 !-La is allowed through the capacitor. 

For correct operation of the 80286, the substrate bias generator must charge this capaCitor to its 
operating voltage. The capacitor chargeup time is 5 milliseconds (max.) after Vee and ClK reach 
their specified AC and DC parameters. RESET may be applied to prevent spurious activity by the 
CPU during this time. After this time, the 80286 processor clock can be phase synchronized to 
another clock by pulsing RESET LOW synchronous to the system clock. 

C-4 
210253·006 
AFN·02060D 



iAPX 286/10 

FUNCTIONAL DESCRIPTION 
Introduction 
The 80286 is an advanced, high-performance micro
processor with specially optimized capabilities for mul
tiple user and multi-tasking systems. Depending on the 
application, the 80286's performance is up to six times 
faster than the standard 5 MHz 8086's, while providing 
complete upward software compatibility with Intel's iAPX 
86,88, and 186 family of CPU's. 

The 80286 operates in two modes: iAPX 86 real address 
mode and protected virtual address mode. Both modes 
execute a superset of the iAPX 86 and 88 instruction set. 

In iAPX 86 real address mode programs use real ad
dresses with up to one megabyte of address space. Pro
grams use virtual addresses in protected virtual address 
mode, also called protected mode. In protected mode, 
the 80286 CPU automatically maps 1 gigabyte of virtual 
addresses per task into a 16 megabyte real address 
space. This mode also provides memory protection to 
isolate the operating system and ensure privacy ot each 
tasks' programs and data. Both modes provide the same 
base instruction set, registers, and addressing modes. 

The following Functional Description describes .first, the 
base 80286 architecture common to both modes, sec
ond, iAPX 86 real address mode, and third, protected 
mode. 

iAPX 286/10 BASE ARCHITECTURE 

The iAPX 86, 88, 186, and 286 CPU family all contain 
the same basic set of registers, instructions, and ad
dressing modes. The 80286 processor is upward com
patible with the 8086, 8088, and 80186 CPU·s. 

16·61T 
REGISTER 

NAME 

AH 

DH 

07 o 

AL 

DL 

SPECIAL 
REGISTER 

FUNCTIONS 

} 
MULTIPLY/DIVIDE 
110 INSTRUCTIONS 

Register Set 
The 80286 base architecture has fifteen registers as 
shown in Figure 3. These registers are grouped into the 
following four categories: 

General Registers: Eight 16-bit general purpose reg
isters used to contain arithmetic and logical operands. 
Four of these (AX, BX, CX, and OX) can be used either 
in their entirety as 16-bit words or split into pairs of sep
arate 8-bit registers. 

Segment Registers: Four 16-bit special purpose reg
isters select, at any given time, the segments of memory 
that are immediately addressable for code, stack, and 
data. (For usage, refer to Memory Organization.) 

Base and Index Registers: Four of the general pur
pose registers may also be used to determine offset ad
dresses of operands in memory. These registers may 
contain base addresses or indexes to particular loca
tions within a segment. The addressing mode deter
mines the specific registers used for operand address 
calculations. 

Status and Control Registers; The 3 16-bit special 
purpose registers in figure 3A record or control cer
tain aspects of the 80286 processor state including 
the Instruction Pointer, which contains the offset 
address of the next sequential instruction to be 
executed. 

15 0 

DS DATA SEGMENT SELECTOR 

BYTE 
ADDRESSABLE 
(8-BIT 
REGISTER 
NAMES 
SHOWN) 

lAX 

OX 

CX 

BX 

BP 

CH 

BH 

CL 

BL 

) LOOP/SHIFT/REPEAT COUNT 

} BASE REGISTERS 

CS ~ CODE SEGMENT SELECTOR 

55 STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

SI 

01 

SP 

15 

GENERAL 
REGISTERS 

} INDEX REGISTERS 

) STACK POINTER 

15 0 

Fa FLAGS 

IP INSTRUCTION POINTER 

MSW MACHINE STATUS WORD 

STATUS AND CONTROL 
REGISTERS 

Figure 3. Register Set 

C-5 

210253·006 
AFN-02060D 



iAPX 286/10 

STATUS FLAGS: 

CARRY ------------------------, 
PARITY ---------------------, 

AUXIUARYCARRY ----------------, 
ZERO ----'------------, 

CONTROL FLAGS: 
L-_____ TRAP FLAG 

L-_______ INTERRUPT ENABLE 
L-_________ DIRECTION FLAG 

SPECIAL FIELDS: 
L-_____________ 1I0PRIVILEGELEVEL 

L-________________ NESTED TASK FLAG 

TASK SWITCH ~ INTEL RESERVED 
PROCESSOR EXTENSION EMULATED -------I 

MONITOR PROCESSOR EXTENSION _____ ~ 

PROTECTION ENABLE --------' 

Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 
The Flags word (Flags) records specific characteristics 
of the result of logical and arithmetic instructions (bits 0, 
2,4,6,7, and 11) and controls the operation of the 80286 
within a given operating mode (bits 8 and 9). Flags is a 
16-bit register. The function of the flag bits is given in 
Table 2. 

Instruction Set 
The instruction set is divided into seven categories: data 
transfer, arithmetic, shift/rotate/logical, string manipula
tion, control transfer, high level instructions, and pro
cessor control. These categories are summarized in 
Figure 4. 

An 80286 instruction can reference zero, one, or two 
operands; where an operand resides in a register, in the 
instruction itself, or in memory. Zero-operand instruc
tions (e.g. NOP and HLT) are usually one byte long. One
operand instructions (e.g. INC and 9EC) are usually two 
bytes long but some are encoded in only one byte. One
operand instructions may reference a register or mem
ory location. Two-operand instructions permit the follow
ing six types of instruction operations: 

-Register to Register 
-Memory to Register 
-immediate to Register 
-Memory to Memory 
-Register to Memory 
-Immediate to Memory 

C-6 

Table 2 Flags Word Bit Functions 

Bit 
Name 

Position 

0 CF 

2 PF 

4 AF 

6 ZF 

7 SF 

11 OF 

8 TF 

9 IF 

10 DF 

Function 

Carry Flag-Set on high-order bit 
carry or borrow; cleared otherwise 

Parity Flag-Set if low-order 8 bits 
of tesult contain an even number of 
1-bits; cleared otherwise 

Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

Zero Flag-Set if result is zero; 
cleared otherwise 

Sign Flag-Set equal to high-order 
bit of result (0 if positive, 1 if negative) 

Overflow Flag-Set if result is a too-
large pusitive number or a too-small 
negative number (excluding sign-bit) 
to fit in destination operand; cleared 
otherwise . 

Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing OF causes 
auto increment. 

210253-006 
AFN-020600 



IAPX 286/10 

Two-operand instructions (e.g. MOV and ADD) are usu

ally three to six bytes long. Memory to memory opera
tions are provided by a special class of string instructions 

requiring one to three bytes. For detailed instruction for
mats and encodings refer to the instruction set summary 
at the end of this document. 

For detailed operation and usage of each instruction, see 
Appendix of iAPX 286 Programmer's Reference Manual 
(Order No. 210498) 

GENERAL PURPOSE 
MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 

paPA Pop all registers from stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 
IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT 
LEA Load effective address 

LOS Load pointer using OS 

LES Load pOinter using ES 

FLAG TRANSFER 
LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move byte or word string 

INS Input bytes or word string 

OUTS Output bytes or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LaDS Load byte or word string 

STOS Store byte or word string 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4c. String Instructions 

C-7 

ADDITION 
ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS DeCimal adjust for subtraction 

MULTIPLICATION 
MUL Multiply byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 

DIVISION 
DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWO Convert word to doubleword 

Figure 4b. Arithmetic Instructions 

LOGICALS 
NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 
SHUSAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 
ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate/Logical Instructions 

210253-006 

AFN-02060D 



IAPX 286/10 

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 

JAlJNBE Jump if above/not below nor equal CALL Call procedure 

JAE/JNB Jump if above or equal/not below RET Return from procedure 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA Jump if below or equal/not above 

JC Jump if carry ITERATION CONTROLS 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero 

JUJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump ifregister CX = 0 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 
JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd INT Interrupt 

JNS Jump if not sign INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt return 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 

STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 
HLT Halt until interrupt or reset 

WAIT Wait for BUSY not active 

ESC Escape to extension processor 

LOCK Lock bus during next instruction 

NO OPERATION 
NOP No operation 

EXECUTION ENVIRONMENT CONTROL 

LMSW I Load machine status word 

SMSW l Store machine status word 

Figure 4f.Processor Control Instructions 

ENTER Format stack for procedure entry 

LEAVE Restore stack for procedure exit 

BOUND Detects values outside prescribed range 

Figure 4g. High Level Instructions 

C-8 

Memory Organization 
Memory is organized as sets of variable length seg
ments. Each segment is a linear contiguous sequence 
of up to 64K (216) 8-bit bytes. Memory is addressed us
ing a two-component address (a pointer) that consists 
of a 16-bit segment selector, and a 16-bit offset. The 
segment selector indicates the desired segment in 
memory. The offset component indicates the desired byte 
address within the segment. 

I 
31 

32·BIT POINTER 
~ 

SEGMENT I OFFSET I 
1615 0 

1 

f' ;. 

OPERAND 
SELECTED 

I., .~ 
'"\J '"\J 

MEMORY 

SELECTED 
SEGMENT 

Figure 5. Two Component Address 

210253-006 

AFN·02060D 



iAPX 286/10 

Table 3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used Selection Rule 

Instructions Code (CS) Automatic with instruction prefetch 
Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP as a 

base register. 

Local Data Data (DS) All data references except when relative to stack or string destination 
External (Global) Data Extra (ES) Alternate data segment and destination of string operation 

All instructions that address operands in memory must 
specify the segment and the offset. For speed and com
pact instruction encoding, segment selectors are usu
ally stored in the high speed segment registers. An 
instruction need specify only the desired segment reg
ister and an offset in order to address a memory operand. 

Most instructions need not explicitly specify which seg
ment register is used. The correct segment register is 
automatically chosen according to the rules of Table 3. 
These rules follow the way programs are written (see 
Figure 6) as independent modules that require areas for 
code and data, a stack, and access to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 
To access operands not residing in one of the four 
immediately available segments, a full 32-bit pointer 
or a new segment selector must be loaded. 

Addressing Modes 
The 80286 provides a total of eight addressing modes 
for instructions to specify operands. Two addressing 
modes are provided for instructions that operate on reg
ister or immediate operands: 

Register Operand Mode: The operand is located in 
one of the 8 or 16-bit general registers. 

Immediate Operand Mode. The operand is included 
in the instruction. 

Six modes are provided to specify the location of an op
erand in a memory segment. A memory operand ad
dress consists of two 16-bit components: segment 
selector and offset. The segment selector is supplied by 
a segment register either implicitly chosen by the ad
dressing mode or explicitly chosen by a segment over
ride prefix. The offset is calculated by summing any 
combination of the following three address elements: 

the displacement (an 8 or 16-bit immediate value 
contained in the instruction) 

the base (contents of either the BX or BP base 
registers) 

the index (contents of either the SI or DI index registers) 

C-9 

MODULE A 

MODULE B 

PROCESS 
STACK 

PROCESS 
DATA 
BLOCK 1 

r- - -, 
I I 

~ODE 
DATA 

CODE 

-
DATA 

I I 
I I 
r--

I I 
I I 

n 
PROCEssD DATA 
BLOCK 2 

I I 
L ___ J 

MEMORY 

CPU 

L CODE 

L- DATA 

,---- STACK 

- EXTRA 

SEGMENT 
REGISTERS 

Figure 6. Segmented Memory Helps 
Structure Software 

Any carry out from the 16-bit addition is ignored. Eight
bit displacements are sign extended to 16-bit values. 

Combinations of these three address elements define 
the six memory addressing modes, described below. 

Direct Mode: The operand's offset is contained in the 
instruction as an 8 or 16-bit displacement element. 

Register Indirect Mode: The operand's offset is in one 
of the registers SI, DI, BX, or BP. 

Based Mode: The operand's offset is the sum of an 8 or 
16-bit displacement and the contents of a base register 
(BXorBP). 

210253-006 

AFN-02060D 



iAPX 286/10 

Indexed Mode: The operand's offset is the sum of an 8 
or 16-bit displacement and the contents of an index reg
ister (SI or 01). 

Based Indexed Mode: The operand's offset is the sum 
of the contents of a base register and an index register. 

Based Indexed Mode with Displacement: The oper
and's offset is the sum of a base register's contents, an 
index register's contents, and an 8 or 16-bit displacement. 

Data Types 
The 80286 directly supports the following data types: 

Integer: 

Ordinal: 

Pointer: 

String: 

ASCII: 

BCD: 

A signed binary numeric value con
tained in an 8-bit byte or a 16-bit word. 
All operations assume a 2's comple
ment representation. Signed 32 and 64-
bit integers are supported using the iAPX 
286/20 Numeric Data Processor. 

An unsigned binary numeric value con
tained in an 8-bit byte or 16-bit word. 

A 32-bit quantity, composed of a seg
ment selector component and an offset 
component. Each component is a 16-bit 
word. 

A contiguous sequence of bytes or 
words. A string may contain from 1 byte 
to 64K bytes. 

A byte representation of alphanumeric 
and control characters using the ASCII 
standard of character representation. 

A byte (unpacked) representation of the 
decimal digits 0-9. 

Packed BCD: A byte (packed) representation of two 
decimal digits 0-9 storing one digit in 
each nibble of the byte. 

Floating Point: A signed 32, 64, or 80-bit real number 
representation. (Floating point operands 
are supported using the iAPX 286/20 
Numeric Processor configuration.) 

Figure 7 graphically represents the data types sup
ported by the iAPX 286. 

I/O Space 
The 1/0 space consists of 64K 8-bit or 32K 16-bit ports. 
1/0 instructions address the 1/0 space with either an 8-
bit port address, specified in the instruction, or a 16-bit 
port address in the OX register. 8-bit port addresses are 
zero extended such that A15-Aa are LOW. 1/0 port ad
dresses 00F8(H) through OOFF(H) are reserved. 

C-10 

7 , 

SIGNED ITTTTTT11 
BYTE~ 

SIGN BIT ~ L---....J 
MAGNITUDE 

7 , 

UNSIGNED JTTTTTTT\ 
BYTE L..:..-..J 
~ 
MAGNITUDE 

1514 + 1 B 7 0 0 

s~~~g II iii i , iii iii iii I 
SIGN BIT..lL.,1 L..::M",SM;:,BA"'G~NI"'TU"'D"'E-...I 

SIGNED 31 +3 +2 1615 +1 0 

D~~~~~ Iii iii iii iii Iii iii iii iii Iii iii iii 
SIGN BIT.J L.,IL..::M;.::S::.B--..... M:7A"'GN"'IT .. U"'O"'E ____ -' 

+., +6 +5 +4 +3 +2 +1 
SIGNED 63 48 47 3231 1615 

w~~A~1I I I I 
SIGN BIT JL.,IL...:;M;;.:S.::,B---,M"'A;";G"'N=,TU"'D"'E,.------' 

15 +1 0 

UNS~~~g II I I II I I Iii iii iii 
,LMSB 

MAGNITUDE 

BINARY 7 +N 0 
CODED JTTTTTTT\ 

DECIMAL L..:..-..J 
(BCD) DI~7~ N 

7 +N 0 

ASCII L!:J 
ASCII 

CHARACTER. 

7 +N 0 
PACKED fT1T1TTTl 

BCD L-L-J 
L-..J 
MOST 
SIGNIFICANT DIGIT 

7'15 +N 0 

STRING L!:J 
BYTE/WORD N 

7 +1 07 0 

I i II Iii iii i i I" i I 
BCD BCD 

DIGIT 1 DIGIT 0 

7 +1 07 0 0 

liiil!iI)"'I!ii) 
ASCII ASCII 

CHARACTER, CHARACTER, 

7 +1 07 0 

(iii 1"11111 IIII I 
L-..J 
LEAST 

SIGNIFICANT DIGIT 

7/15 + 1 0 7.'15 0 0 

lillllli)"'I"! I 
BYTE/WORD 1 BYTE/WORD 0 

31 +3 +2 1615 +1 0 

POINTER I' I , I' , I Ii, I Ii, iii' , I I I I Iii , Iii I I 
SELECTOR OFFSET 

79+9 +8 +7 +6 +5 +4 +3 +2 +1 

FL~~~~ II 
SIGN BIT ..J~! ---'-_'---L--L.--L---''---L--L.--L--I 

EXPONENT MAGNITUDE 

·Supported by IAPX 286 20 Numeric Data Processor Conliguration 

Figure 7. iAPX 286 Supported Data Types 

210253-006 

AFN-02060D 



iAPX 286/10 

Table 4 Interrupt Vector Assignments 

Interrupt Related 
Does Return Address 

Function Point to Instruction 
Number Instructions Causing Exception? 

Divide error exception 

Single step interrupt 

NMI interrupt 

Breakpoint interrupt 

INTO detected overflow exception 
BOUND range exceeded exception 

Invalid opcode exception 

Processor extension not available exception 

Intel reserved-do not use 
Processor extension error interrupt 
Intel reserved-do not use 

User defined 

Interrupts 
An interrupt transfers execution to a new program loca
tion. The old program address (CS:IP) and machine state 
(Flags) are saved on the stack to allow resumption 
of the interrupted program. Interrupts fall into three 
classes: hardware initiated, INT instructions, and instruc
tion exceptions. Hardware initiated interrupts occur 
in response to an external input and are classified 
as non-maskable or maskable. Programs may cause 
an interrupt with an INT instruction. Instruction excep
tions occur when an unusual condition, which pre
vents further instruction processing, is detected while 
attempting to execute an instruction. The return ad
dress from an exception will always point at the in
struction causing the exception and include any leading 
instruction prefixes. 

A table containing up to 256 pOinters defines the proper 
interrupt service routine for each interrupt. Interrupts 0-
31, some of which are used for instruction exceptions, 
are reserved. For each interrupt, an 8-bit vector must be 
supplied to the 80286 which identifies the appropriate 
table entry. Exceptions supply the interrupt vector inter
nally. INT instructions contain or imply the vector and 
allow access to all 256 interrupts. Maskable hardware 
initiated interrupts supply the 8-bit vector to the CPU 
during an interrupt acknowledge bus sequence. Non
maskable hardware interrupts use a predefined inter
nally supplied vector. 

MASKABLE INTERRUPT (INTR) 

The 80286 provides a maskable hardware interrupt re
quest pin, INTR. Software enables this input by setting 

0 DIV,IDIV Yes 

1 All 

2 INT 2 or NMI pin 

3 INT 3 
4 INTO No 

5 BOUND Yes 

6 Any undefined opcode Yes 

7 ESC or WAIT Yes 

8-15 

16 ESC or WAIT 
17-31 

32-255 

C-11 

the interrupt flag bit (IF) in the flag word. All 224 user
defined interrupt sources can share this input, yet they 
can retain separate interrupt handlers. An 8-bit vector 
read by the CPU during the interrupt acknowledge se
quence (discussed in System Interface section) identi
fies the source of the interrupt. 

Further maskable interrupts are disabled while servic
ing an interrupt by resetting the IF but as part of the 
response to an interrupt or exception. The saved flag 
word will reflect the enable status of the processor prior 
to the interrupt. Until the flag word is restored to the flag 
register, the interrupt flag will be zero unless specifically 
set. The interrupt return instruction includes restoring 
the flag word, thereby restoring the original status of IF. 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

A non-maskable interrupt input (NMI) is also provided. 
NMI has higher priority than INTR. A typical use of NMI 
would be to activate a power failure routine. The activa
tion of this input causes an interrupt with an internally 
supplied vector value of 2. No external interrupt ac
knowledge sequence is performed. 

While executing the NMI servicing procedure, the 80286 
will service neither further NMI requests, INTR re
quests, nor the processor extension segment overrun 
interrupt until an interrupt return (IRET) instruction is ex
ecuted orthe CPU is reset. If NMI occurs while currently 
servicing an NMI, its presence will be saved for servic
ing after executing the first IRET instruction. IF is cleared 
at the beginning of an NMI interrupt to inhibit INTR 
interrupts. 

210253-00.6 

AFN-02060D 



iAPX 286/10 

SINGLE STEP INTERRUPT 

The 80286 has an internal interrupt that allows pro
grams to execute one instruction at a time. It is called the 
single step interrupt and is controlled by the single step 
flag bit (TF) in the flag word. Once this bit is set, an inter
nal single step interrupt will occur after the next instruc
tion has been executed. The interrupt clears the TF bit 
and uses an internally supplied vector of 1. The IRET 
instruction is used to set the TF bit and transfer control 
to the next instruction to be single stepped. 

Interrupt Priorities 
When simultaneous interrupt requests occur, they are 
processed in a fixed order as shown in Table 5. Interrupt 
processing involves saving the flags, return address, and 
setting CS:IP to point at the first instruction of the inter
rupt handler. If other interrupts remain enabled they are 
processed before the first instruction of the current in
terrupt handler is executed. The last interrupt processed 
is therefore the first one serviced. 

Table 5. Interrupt Processing Order 

Order Interrupt 

1 Instruction exception 

2 Single step 

3 NMI 

4 Processor extension segment overrun 

5 INTR 

6 INT instruction 

Initialization and Processor Reset 
Processor initialization or start up is accomplished by 
driving the RESET input pin HIGH. RESET forces the 
80286 to terminate all execution and local bus activity. 
No instruction or bus activity will occur as long as RE
SET is active. After RESET becomes inactive and an 
internal processing interval elapses, the 80286 begins 
execution in real address mode with the instruction at 
physical location FFFFFO(H). RESET also sets some 
registers to predefined values as shown as shown in 
Table 6. 

Table 6. 80286 Initial Register State after RESET 

Flag word 0002(H) 
Machine Status Word FFFO(H) 
Instruction pointer FFFO(H) 
Code segment FOOO(H) 
Data segment OOOO(H) 
Extra segment OOOO(H) 
Stack segment OOOO(H) 

Machine Status Word Description 
The machine status word (MSW) records when a task 
switch takes place and controls the operating mode of 
the 80286. It is a 16-bit register of which the lower four 
bits are used. One bit places the CPU into protected 
mode, while the other three bits, as shown in Table 7, 
control the processor extension interface. After RESET, 
this register contains FFFO(H) which places the 80286 
in iAPX 86 real address mode. 

Table 7. MSW Bit Functions 

Bit 
Name Function 

Position 

0 PE ~rotected mode !=lnable places the 
80286 into protected mode and can 
not be cleared except by RESET. 

1 MP ~onitor Qrocessor extension al-
lows WAIT instructions to cause a 
processor extension not present 
exception (number 7). 

2 EM Emulate processor extension 
causes a processor extension not 
pl'esent exception (number 7) on 
ESC instructions to allow emulat-
ing a processor extension. 

3 TS Task switched indicates the next 
mstruction using a processor ex-
tension will cause exception 7, al-
lowing software to test whether the 
current processor extension con-
text belongs to the current task. 

The LMSW and SMSW instructions can load and store 
the MSW in real address mode. The recommended use 
of TS, EM, and MP is shown in Table 8. 

Table 8. Recommended MSW Encodings For Processor Extension Control 

TS MP EM 

0 0 0 

0 0 1 

1 0 1 

0 1 0 

1 1 0 

Recommended Use 

Initial encoding after RESET. iAPX 286 operation is identical to 
iAPX 86,88. 

No processor extension is available. Software will emulate its function. 

No processor extension is available. Software will emulate its function. The current 
processor extension context may belong to another task. 

A processor extension exists. 

A processor extension exists. The current processor extension context may belong to 
another task. The Exception 7 on WAIT allows software to test for an error pending 
from a previous processor extension operation. 

C-12 

Instructions 
Causing 

Exception 7 

None 

ESC 

ESC 

None 

ESC or 
WAIT 

210253-006 
AFN·02060D 



iAPX 286/10 

Halt 
The HLT instruction stops program execution and pre
vents the CPU from using the local bus until restarted. 
Either NMI, INTR with IF = 1, or RESET will force the 
80286 out of halt. If interrupted, the saved CS:IP will 
point to the next instruction after the HL T. 

iAPX 86 REAL ADDRESS MODE 
The 80286 executes a fully upward-compatible superset 
of the 8086 instruction set in real address mode. In real 
address mode the 80286 is object code compatible with 
8086 and 8088 software. The real address mode archi
tecture (registers and addressing modes) is exactly as 
described in the iAPX 286/10 Base Architecture section 
of this Functional Description. 

Memory Size 
Physical memory is a contiguous array of up to 
1,048,576 bytes (one megabyte) addressed by pins 
Ao through A19 and SHE. A20 through A23 may be 
ignored. 

Memory Addressing 
In real address mode physical memory is a contiguous 
array of up to 1 ,048,576 by1res (one megabyte) addressed 
by pins Ao through A19 and BRE. A20 through A23 may be 
ignored. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
four bits of the 20-bit segment address are always zero. 
Segment addresses, therefore, begin on multiples of 16 
bytes. See Figure 8 for a graphic representation of ad
dress formation. 

All segments in real address mode are 64K bytes in size 
and may be read, written, or executed. Anjlxception or 
interrupt can occur if data operands or instructions at
tempt to wrap around the end of a segment (e.g. a word 
with its low order byte at offset FFFF(H) and its high 
order byte at offset OOOO(H)). If, in real address mode, 
the information contained in a segment does not use the 
full 64K bytes, the unused end of the segment may be 
overlayed by another segment to reduce physical mem
ory requirements. 

Reserved Memory Locations 
The 80286 reserves two fixed areas of memory in real 
address mode (see Figure 9); system initialization area 
and interrupt table area. Locations from addresses 
FFFFO(H) thorugh FFFFF(H) are reserved for system 
initialization. Initial execution begins at location FFFFO(H). 
Locations OOOOO(H) through 003FF(H) are reserved for 
interrupt vectors. 

C-13 

15 0 

I I I OFFSET 
.... O_O_00...l.. ___ O_F_FS_E_T __ -I ADDRESS 

15 

19 

SEGMENT 
SELECTOR 

SEGMENT 
0000 ADDRESS 

20-BIT PHYSICAL 
MEMORY ADDRESS 

Figure 8. iAPX 86 Real Address Mode Address 
Calculation 

~ 

~~ 

RESET BOOTSTRAP 
PROGRAM JUMP 

· · 
INTERRUPT POINTER 

FOR VECTOR 255 

· · · 
INTERRUPT POINTER 

FOR VECTOR 1 

INTERRUPT POINTER 
FOR VECTOR 0 

~~ 

~::: 

FFFFFH 

FFFFOH 

3FFH 

3FCH 

7H 

4H 
3H 

OH 

INITIAL CS:IP VALUE IS FOOO:FFFO. 

Figure 9. iAPX 86 Real Address Mode Initially 
Reserved Memory Locations 

210253-006 

AFN-02060D 



iAPX 286/10 

Table 9. Real Address Mode Addressing Interrupts 

Function Interrupt 
Number 

Interrupt table limit too small exception 8 

Processor extension segment overrun 9 
interrupt 

Segment overrun exception 13 

Interrupts 
Table 9 shows the interrupt vectors reserved for excep
tions and interrupts which indicate an addressing error. 
The exceptions leave the CPU in the state existing be
fore attempting to execute the failing instruction (except 
for PUSH, POP, PUSHA, or paPA). Refer to the next 
section on protected mode initialization for a discussion 
on exception 8. 

Protected Mode Initialization 
To prepare the 80286 for protected mode, the LlDT in
struction is used to load the 24-bit interrupt table base 
and 16-bit limit for the protected mode interrupt table. 
This instruction can also set a base and limit for the in
terrupt vector table in real address mode. After reset, 
the interrupt table base is initialized to OOOOOO(H) and 
its size set to 03FF(H). These values are compatible 
with iAPX 86, 88 software. LlDT should only be exe
cuted in preparation for protected mode. 

Shutdown 
Shutdown occurs when a severe error is detected that 
prevents further instruction processing by the CPU. 
Shutdown and halt are externally signalled via a halt bus 
operation. They can be distinguished by A1 HIGH for halt 
and A1 LOW for shutdown. In real address mode, shut
down Can occur under two conditions: 

• Exceptions 8 or 13 happen and the lOT limit does not 
include the interrupt vector. 

• A CALL INT or PUSH. instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the CPU out of shutdown if the 
lOT limit is at least OOOF(H) and SP is greater than 
0005(H), otherwise shutdown can only be exited via the 
RESET input. 

Related Return Address 
Instructions Before Instruction? 

INT vector is not within table limit Yes 

ESC with memory operand extend· No 
ing beyond offset FFFF(H) 

Word memory reference with offset Yes 
= FFFF(H) or an attempt to exe· 
cute past the end of a segment 

PROTECTED VIRTUAL ADDRESS MODE 
The 80286 executes a fully upward-compatible superset 
of the 8086 instruction set in protected virtual address 
mode (protected mode). Protected mode also provides 
memory management and protection mechanisms and 
associated instructions. 

The 80286 enters protected virtual address mode from 
real address mode by setting the PE (Protection En
able) bit of the machine status word with the Load Ma
chine Status Word (LMSW) instruction. Protected mode 
offers extended physical and virtual memory address 
space, memory protection mechanisms, and new oper
ations to support operating systems and virtual memory. 

All registers, instructions, and addressing modes de
scribed in the iAPX 286/10 Base Architecture section of 
this Functional Description remain the same. Programs 
for the iAPX 86, 88, 186, and real address mode 80286 
can be run in protected mode; however, embedded con
stants for segment selectors are different. 

Memory Size 
The protected mode 80286 provides a 1 gigabyte virtual 
address space pertask mapped into a 16 megabyte 
physical address space defined by the address pins A23-

Ao and ERE. The virtual address space may be larger 
than the physical address space since any use of an 
address that does not map to a physical memory loca
tion will cause a restartable exception. 

Memory Addressklg 
As in real address mode, protected mode uses 32-bit 
pointers, consisting of 16-bit selector and offset com
ponents. The selector, however, specifies an index into 
a memory resident table rather than the upper 16-bits of 
a real memory address. The 24-bit base address of the 

C-14 
210253-006 

AFN-02060D 



iAPX 286/10 

desired segment is obtained from the tables in memory. 
The 16-bit offset is added to the segment base address 
to form the physical address as shown in Figure 10. The 
tables are automatically referenced by the CPU when
ever a segment register is loaded with a selector. All 
iAPX 286 instructions which load a segment register will 
reference the memory based tables without additional 
software. The memory based tables contain 8 byte val
ues called descriptors. 

DESCRIPTORS 

Descriptors define the use of memory. Special types of 
descriptors also define new functions for transfer of con
trol and task switching. The 80286 has segment de
scriptors for code, stack and data segments, and system 
control descriptors for special system data segments and 
control transfer operations. Descriptor accesses are 
performed as locked bus operations to assure descrip
tor integrity in multi-processor systems. 

L 

CPU 

MEMORY ) SEGMENT 
OPERAND 

CODE AND DATA SEGMENT DESCRIPTORS (S = 1) 

Besides segment base addresses, code and data de
scriptors contain other segment attributes including 
segment size (1 to 64K bytes), access rights (read only, 
read/write, execute only, and execute/read), and pres
ence in memory (for virtual memory systems) (See Fig
ure 11). Any segment usage violating a segment attribute 
indicated by the segment descriptor will prevent the 
memory cycle and cause an exception or interrupt. 

Code or Data Segment Descriptor 

ACCESS 
RIGHTS BYTE 

+7 

+5 

+3 

+1 

o 7 

INTEL RESERVED' 

P I DPl lsi TYPE H BASE23_16 

BASE15_0 

LlM1T15_0 

15 87 

+6 

+4 

+2 

Figure 10, Protected Mode Memory Addressing 
• Must be set to 0 for compalability with IAPX 386. 

Bit 
Position 

7 

6-5 

4 

3 
2 

1 

3 
2 

1 

0 

Access Rights Byte Definition 

Name Function 

Present (P) P = : Segment is mapped into physical memory. 
P=O No mapping to physical memory exists, base and limit are not used. 

Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 

Segment Descrip- S = 1 Code or Data (includes stacks) segment descriptor 
tor (S) S=O System Segment Descriptor or Gate Descriptor 

Executable (E) E = 0 Data segment descriptor type is: J" Expansion Direc- ED = 0 Expand up segment, offsets must be <; limit. Data 
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Seg-ment 

Writeable (W) W = 0 Data segment may not be written into. 
(S = 1, 

W = 1 Data segment may be written into. E = 0) 

Executable (E) E = 1 Code S"me" Deoc"plo' type ;, J !t 
Conforming (C) C = 1 Code segment may only be executed when CPL 2: DPL ~ode t 

and CPL remains unchanged. _ egmen 

Readable (R) R=O (S - 1 
Code segment may not be read. E :-1)' 

R = 1 Code segment may be read. 

Accessed (A) A=O Segment has not been accessed. 
A = 1 Segment selector has been loaded into segment register or used 

by selector test instructions. 

Figure 11. Code and Data Segment Descriptor Formats 

C-15 
210253-006 

AFN-02060D 



iAPX 286/10 

Code and data (including stack data) are stored in two 
types of segments: code segments and data segments. 
Both types are identified and defined by segment descrip
tori(S ~ 1-). Code segments are identified by the execu
table (E) bit set to 1 in the descriptor access rights byte. The 
access rights byte of both code and data segment descrip
tor types have three fields in common: present (P) bit, 
Descriptor Privilege Level (DPL), and accessed (A) bit. 
If P ~ 0, any attempted use of this segment will cause 
a not-present exception. DPL specifies the privilege level 
of the segment descriptor. DPL controls when the descrip
tor may be used by a task (refer to privilege discussion 
below). The A bit shows whether the segment has been 
previously accessed for usage profiling, a necessity for 
virtual memory systems. The CPU will always set this bit 
when accessing the descriptor. 

Data segments (S = 1 , E = 0) may be either read-only or 
read-write as controlled by the W bit of the access rights 
byte. Read-only (W = 0) data segments may not be writ
ten into. Data segments may grow in two directions, as 
determined by the Expansion Direction (ED) bit: up
wards (ED = 0) for data segments, and downwards 
(ED = 1) for a segment containing a stack. The limit field 
for a data segment descriptor is interpreted differently 
depending on the ED bit (see Figure 11). 

A code segment (S = 1, E = 1) may be execute-only 
or execute/read as determined by the Readable (R) 
bit. Code segments may never be written into and 
execute-only code segments (R = 0) may not be read. 
A code segment may also have an attribute called 
conforming (C). A conforming code segment may be 
shared by programs that execute at different privi
lege levels. The DPL of a conforming code segment 
defines the range of privilege levels at which the 
segment may be executed (refer to privilege discus
sion below). The limit field identifies the last byte of 
a code segment. 

SYSTEM SEGMENT DESCRIPTORS (S ~ 0, TYPE ~ 1-3) 

In addition to code and data segment descriptors, the pro
tected mode 80286 defines System Segment Descriptors. 
These descriptors define special system data segments 
which contain a table of descriptors (Local Descriptor 
Table Descriptor) or segments which contain the execu
tion state of a task (Task State Segment Descriptor). 

Figure 12 gives the formats for the special system data 
segment descriptors. The descriptors contain a 24-bit 
base address of the segment and a 16-bit limit. The 
access byte defines the type of descriptor, its state and 
privilege level. The descriptor contents are valid and the 
segment is in physical memory if P ~ 1. If P ~ 0, the 
segment is not valid. The DPL field is only used in Task 
State Segment descriptors and indicates the privilege 
level at which the descriptor may be used (see Privilege). 
Since the Local Descriptor Table descriptor may only be 
u!'ed by a special privileged instruction, the DPL field is 
not used. Bit 4 of the access byte is () to indicate ihat it 

System Segment Descriptor 

o 7 

+7 INTEL RESERVED" +6 

+5 plDP~ol TYPE I BASE23-16 +4 

+3 BASEl5-0 +2 

+1 lIMIT15~O 

15 87 

• Must be set to 0 lor compatability with IAPX 388. 

System Segment Descriptor Fields 
Name Value Description 

TYPE 1 !lvailable Task State Segment (TSS) 
2 Local Descriptor Table 
3 ~ Task State Segment (TSS) 

p 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL 0-3 Descriptor Privilege Level 

BASE 24-bit Base Address of special system data 
number segment in real memory 

LIMIT 16-bit Offset of last byte in segment 
number 

Figure 12. System Segment Descriptor Format 

is a system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 12. . 

GATE DESCRIPTORS (S ~ 0, TYPE ~ 4-7) 

Gates are used to control access to entry points within 
the target code segment. The gate descriptors are call
gates, task gates, interrupt gates and !@.p gates. Gates' 
provide a level of indirection between the source and
destination of the control transfer. This indirection allows 
the CPU to automatically perform protection checks and 
control entry paint of the destination. Call gates are used 
to change privilege levels (see Privilege), task gates are 
used to perform a task switch, and interrupt and trap 
gates are used to specify interrupt service routines. The
interrupt gate disables interrupts (resets IF) while the 
'ti-ap gate does not. 

Figure 13 shows the format of the gate descriptors. The 
descriptor contains a destination pointer that points to 
the descriptor of the target segment and the entry point 
offset. The destination selector in an interrupt gate, trap 
gate, and call gate must refer to a code segment de
scriptor. These gate descriptors contain the entry point 
to prevent a program from constructing and using an 
illegal entry point. Task gates may only refer to a task 
state segment. Since task gates invoke a task switch, 
the destination offset is not used in the task gate. 

C-16 

Exception 13 is generated when the gate is used if a 
destination selector does not refer to the correct de-

210253-006 
AFN-02060D 



IAPX 286/10 

Gate Descriptor 

07 

+7 INTEL RESERVED· +6 

+5 plDpLIOI TYPE Ix x xl WORD 
COUNT4_0 +4 

+3 DESTINATION SELECTORl5-2 Ix X +2 

+1 DESTINATION OFFSET 15-0 

15 87 

*Must ba .et to 0 lor campa,ablllty with IAPX 388. (X is don't care) 

Gate Descriptor Fields 
Name Value Description 

4 -Call Gate 

TYPE 5 -Task Gate 
6 -Interrupt Gate 
7 -Trap Gate 

P 0 -Descriptor Contents are not 
valid 

1 -Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 

WORD Number of words to copy 
COUNT 0-31 from callers stack to called 

procedures stack. Only used 
with call gate. 

Selector to the target code 

DESTINATION 16-bit 
segment (Call, Interrupt or 

SELECTOR selector 
Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

DESTINATION 16-bit Entry point within the target 
OFFSET offset code segment 

Figure 13_ Gate Descriptor Format 

scriptor type. The word count field is used in the call gate 
descriptor to indicate the number of parameters (0-31 
words) to be automatically copied from the caller's stack 
to the stack of the called routine when a control transfer 
changes privilege levels. The word count field is not used 
by any other gate descriptor. 

The access byte format is the same for all gate descrip
tors. P = 1 indicates that the gate contents are valid. P 
= 0 indicates the contents are not valid and causes ex-

ception 11 if referenced. DPL is the descriptor privilege 
level and specifies when this descriptor may be used by 
a task (refer to privilege discussion below). Bit 4 must 
equal 0 to indicate a system control descriptor. The type 
field specifies the descriptor type as indicated in Figure 
13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 

A segment descriptor cache register is assigned to each 
of the four segment registers (CS, SS, OS, ES). Segment 
descriptors are automatically loaded (cached) into a seg
ment descriptor cache register (Figure 14) whenever the 
associated segment register is loaded with a selector 
Only segment descriptors may be loaded into segment 
descriptor cache registers. Once loaded, all references 
to that segment of memory use the cached descriptor 
information instead of reaccessing the descriptor. The 
descriptor cache registers are not visible to programs. 
No instructions exist to store their contents. They only 
change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector has three fields: descriptor 
entry index, local or global descriptor table indicator (TI), 
and selector privilege (RPL) as shown in Figure 15. These 
fields select one of two memory based tables of descrip
tors, select the appropriate table entry and allow high
speed testing of the selector's privilege attribute (refer 
to privilege discussion below). 

SELECTOR 

I, INDEX 
! ! ! I ! 

15 3 2 1 0 

BITS NAME FUNCTION 

1-0 REQUESTED INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL 
(RPL) 

2 TABLE TI = 0 USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GOT) 
(TI) TI = 1 USE LOCAL DESCRIPTOR TABLE 

(LOT) 

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

Figure 15. Selector Fields 

PROGRAM VISIBLE r - - - - - - - - - -;.,;-oo;,;M -;;;V$I;L;- - - - - - - - - - ., 

I ACCESS I 
SEGMENT SELECTORS I RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE I 

~8!11 : 
15 0 I 47 40 39 16 15 

SEGMENT REGISTERS I SEGMENT DESCRIPTOR CACHE REGISTERS I 
(LOADED BY PROGRAM) L ______ (~UT,?~~CA~L~ u:'~~B~ C~~ ________ J 

Figure 14. Descriptor Cache Registers 

C-17 
210253-006 
AFN·02060D 



iAPX 286/10 

LOCAL AND GLOBAL DESCRIPTOR TABLES 
Two tables of descriptors, called descriptor tables, con
tain all descriptors accessible by a task at any given time. 
A descriptor table is a linear array of up to 8192 descrip
tors. The upper 13 bits of the selector value are an index 
into a descriptor table. Each table has a 24-bit base reg
ister to locate the descriptor table in physical memory 
and a 16-bit limit register that confine descriptor access 
to the defined limits of the table as shown in Figure 16. A 
restartable exception (13) will occur if an attempt is made 
to reference a descriptor outside the table limits. 

One table, called the Global Descriptor Table (GDT), 
contains descriptors available to all tasks. The other ta
ble, called the Local Descriptor Table (LDT). contains 
descriptors that can be private to a task. Each task may 
have its own private LDT. The GDT may contain all de
scriptor types except interrupt and trap descriptors. The 
LDT may contain only segment, task gate, and call gate 
descriptors. A segment cannot be accessed by a task if 
its segment descriptor does not exist in either descriptor 
table at the time of access. 

I 

I 

CPU 

I I 
I PROGRAM INVISIBLE I 
I (AUTOMATICALLY I 
I LOADED I 
I FROM LOT OESCR. I 

WITHIN GOT) I 
~ ______ ..J 

'V MEMORY 'V 

Figure 16. Local and Global Descriptor 
Table Definition 

The LGDT and LLDT instructions load the base and limit 
of the global and local descriptor tables. LGDT and LLDT 
are privileged, i.e. they may only be executed by trusted 
programs operating at level O. The LGDT instruction loads 
a six byte field containing the 16-bit table limit and 24-bit 
physical base address of the Global Descriptor Table as 
shown in Figure 17. The LDT instruction loads a selector 
which refers to a Local Descriptor Table descriptor con
taining the base address and limit for an LDT, as shown 
in Figure 12. 

o 7 

+5 INTEL RESERVED' I BAS'E23-16 +4 

+3 BASE1S_O +2 

+1 lIMIT15_0 

15 8 7 

-Must be set to 0 for compatabillty with IAPX 386. 

Figure 17. Global Descriptor Table and Interrupt 
Descriptor Table Data Type 

INTERRUPT DESCRIPTOR TABLE 

The protected mode 80286 has a third descriptor table,. 
called the Interrupt Descriptor Table (IDT) (see Figure 
18), used to define up to 256 interrupts. It may contain 
only task gates, interrupt gates and trap gates. The IDT 
(interrupt Descriptor Table) has a 24-bit physical base. 
and 16-bit limit register in the CPU. The privileged LlDT 
instruction loads these registers with a six byte value of 
identical form to that of the LGDT instruction (see Figure 
17 and Protected Mode Initialization). 

CPU u' 15 0 

~ 
l lOT BASE 

23 0 

"- MEMORY 'V r 

GATE FOR 
INTERRUPT #n 

GATE FOR 
INTERRUPT #n-1 

· · · 
GATE FOR 

INTERRUPT #1 

GATE FOR 
INTERRUPT #0 

~ :.t 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

Figure 18. Interrupt Descriptor Table Definition 

References to IDT entries are made via INT instruc
tions, external interrupt vectors, or exceptions. The IDT 
must be at least 256 bytes in size to allocate space for 
all reserved interrupts. 

Privilege 
The 80286 has a four-level hierarchical privilege system 
which controls the use of privileged instructions and ac
cess to descriptors (and their associated segments) within 
a task. Four-level privilege, as shown in Figure 19, is an 
extension of the user/supervisor mode commonly found 
in minicomputers. The privilege levels are numbered 0 
through 3. Level 0 is the most privileged level. Privilege 

C-18 
210253-006 

AFN-02060D 



iAPX 286/10 

CPU 
ENFORCED 
SOFTWARE 
INTERFACES 

HIGH SPEED 
OPERATING 
SYSTEM 
INTERFACE 

NOTE, PL BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL 
INCREASES 

Figure 19. Hierarchical Privilege Levels 

levels provide protection within a task. (Tasks are isolated 
by providing private LOT's for each task.) Operating 
system routines, interrupt handlers, and other system soft
·ware can be included and protected· within the virtual 
address space of each task using the four levels of privi
lege. Each task in the system has a separate stack for 
·each of its privilege levels. 

Tasks, descriptors, and selectors have a privilege level 
attribute that determines whether the descriptor may be 
used. Task privilege effects the use of instructions and 
descriptors. Descriptor and selector privilege only effect 
access to the descriptor. 

TASK PRIVILEGE 

A task always executes at one of the four privilege 
levels. The task privilege level at any specific instant 
is called the Current Privilege Level (CPL) and is 
defined by the lower two bits of the CS register. CPL 
cannot change during execution in a single code seg
ment. A task's CPL may only be changed by control 
transfers through gate descriptors to a new code 
segment (See Control Transfer). Tasks begin executing 
at the CPL value specified by the code segment selec
tor within TSS when the task is initiated via a task 
switch operation (See Figure 20). A task executing at 
Level 0 can access all data segments defined in the 
GDT and the task's LDT and is considered the most 
trusted level. A task executing a Level 3 has the most 
restricted access to data and is considered the least 
trusted level. 

DESCRIPTOR PRIVILEGE 

Descriptor privilege is specified by the Descriptor Privi-

lege Level (DPL) field of the descriptor access byte. DPL 
specifies the least trusted task privilege level (CPL) at 
which a task may access the descriptor. Descriptors with 
DPL = 0 are the most protected. Only tasks executing 
at privilege level 0 (CPL = 0) may access them. De
scriptors with DPL = 3 are the least protected (i.e. have 
the least restricted access) since tasks can access them 
when CPL = 0, 1,2, or 3. This rule applies to all descrip
tors, except LDT descriptors. 

SELECTOR PRIVILEGE 

Selector privilege is specified by the Requested Privi
lege Level (RPL) field in the least significant two bits of a 
selector. Selector RPL may establish a less trusted priv
ilege level than the current privilege level for the use of a 
selector. This level is called the task's effective privilege 
level (EPL). RPL can only reduce the scope of a task's 
access to data with this selector. A task's effective privi
lege is the numeric maximum of RPL and CPL. A selec
tor with RPL = 0 imposes no additional restriction on its 
use while a selector with RPL = 3 can only refer to seg
ments at privilege Level 3 regardless of the task's CPL. 
RPL is generally used to verify that pOinter parameters 
passed to a more trusted procedure are not allowed to 
use data at a more privileged level than the caller (refer 
to pointer testing instructions). 

Descriptor Access and Privilege Validation 
Determining the ability of a task to access a segment 
involves the type of segment to be accessed, the in
struction used, the type of descriptor used and CPL, 
RPL, and DPL. The two basic types of segment ac
cesses are control transfer (selectors loaded into CS) 
and data (selectors loaded into DS, E8 or 88). 

DATA SEGMENT ACCESS 

Instructions that load selectors into D8 and E8 must 
refer to a data segment descriptor or readable code seg
ment descriptor. The CPL of the task and the RPL of the 
selector must be the same as or more privileged (nu
merically equal to or lower than) than the descriptor DPL. 
In general, a task can only access data segments at the 
same or less privileged levels than the CPL or RPL 
(whichever is numerically higher) to prevent a program 
from accessing data it cannot be trusted to use. 

An exception to the rule is a readable conforming code 
segment. This type of code segment can be read from 
any privilege level. 

If the privilege checks fail (e.g. DPL is numerically less 
than the maximum of CPL and RPL) or an incorrect type 
of descriptor is referenced (e.g. gate descriptor or exe
cute only code segment) exception 13 occurs. If the seg
ment is not present, exception 11 is generated. 

C-19 
210253-006 

AFN-02060D 



·nI:_l~ 
I •• ~ iAPX 286/10 

Instructions that load selectors into SS must referto data 
segment descriptors for writable data segments. The 
descriptor privilege (DPL) and RPL must equal CPL. All 
other descriptor types or a privilege level violation will 
cause exception 13. A not present fault causes excep
tion 12. 

CONTROL TRANSFER 

Four types of control transfer can occur when a selector 
i; loaded into CS by a control transfer operation (see 
Table 10). Each transfer type can only occur if the oper
ation which loaded the selector references the correct 
descriptor type. Any violation of these descriptor usage 
rilles (e.g. JMPthrough a call gateorRETto a Task State 
~ egment) will cause exception 13. 

1 he ability to reference a descriptor for control transfer 
h; also subject to rules of privilege. A CALL or JUMP 
instruction may only reference a code segment descrip
tor with DPL equal to the task CPL or a conforming seg
ment with DPL of equal or greater privilege than CPL. 
The RPL of the selector used to reference the code de
scriptor must have as much privilege as CPL. 

RET and IRET instructions may only reference code 
segment descriptors with descriptor privilege equal to or 
less privileged than the task CPL. The selector loaded 
into CS is the return address from the stack. After the 
return, the selector RPL is the task's new CPL. If CPL 
changes, the old stack pointer is popped after the return 
address. 

When a JMP or CALL references a Task State Segment 
descriptor, the descriptor DPL must be the same or less 
privileged than the task's CPL. Reference to a valid Task 

State Segment descriptor causes a task switch (see Task 
Switch Operation). Reference to a Task State Segment 
descriptor at a more privileged level than the task's CPL 
generates exception 13. 

When an instruction or interrupt references a gate de
scriptor, the gate DPL must have the same or less privi
lege than the task CPL. If DPL is at a more privileged 
level than CPL, exception 13 occurs. If the destination 
selector contained in the gate references a code seg
ment descriptor, the code segment descriptor DPL must 
be the same or more privileged than the task CPL. If not, 
Exception 13 is issued. After the control transfer, the 
code segment descriptors DPL is the task's new CPL. If 
the destination selector in the gate references a task 
state segment, a task switch is automatically performed 
(see Task Switch Operation). 

The privilege rules on control transfer require: 

-JMP or CALL direct to a code segment (code seg
ment descriptor) can only be to a conforming segment 
with DPL of equal or greater privilege than CPL or a 
non-conforming segment at the same privilege level. 

-interrupts within the task or calls that may change 
privilege levels, can only transfer control through a 
gate at the same or a less privileged level than CPL to 
a code segment at the same or more privileged level 
than CPL. 

-return instructions that don't switch tasks can only re
turn control to a code segment at the same or less 
privileged level. 

-task switch can be performed by a call, jump or inter
rupt which references either a task gate or task state 
segment at the same or less privileged level. 

Tabte 10. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level Interrupt 
within task may change CPL. 

Intersegment to a lower privilege level (changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag word) ~ 0 
"NT (Nested Task bit of flag word) ~ 1 

Operation Types 

JMP, CALL, RET, IRET" 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IRET' 

CALL,JMP 

CALL,JMP 

IRET" 
Interrupt Instruction, 
Exception, External 
Interrupt 

C-20 

Descriptor 
Referenced 
Code Segment 

Cal/Gate 

Trap or 
Interrupt 
Gate 

Code Segment 

Task State 
Segment 

Task Gate 

Task Gate 

Descriptor 
Table 

GOT/LOT 

GOT/LOT 

lOT 

GOT/LOT 

GOT 

GOT/LOT 

lOT 

210253-006 
AFN-02060D 



iAPX 286/10 

PRIVILEGE LEVEL CHANGES 

Any control transfer that changes CPL within the task, 
causes a change of stacks as part olthe operation. Initial 
values of SS:SP for privilege levels 0, 1, and 2 are kept 
in the task state segment (refer to Task Switch Opera
tion). During a JMP or CALL control transfer, the new 
stack pOinter is loaded into the SS and SP registers and 
the previous stack pointer is pushed onto the new stack. 

When returning to the original privilege level, its stack is 
restored as part of the RET or IRET instruction opera
tion. For subroutine calls that pass parameters on the 
stack and cross privilege levels, a fixed number of words, 
as specified in the gate, are copied from the previous 
stack to the current stack. The inter-segment RET in
struction with a stack adjustment value will correctly re
store the previous stack pointer upon return. 

Protection 
The 80286 includes mechanisms to protect critical in
structions that affect the CPU execution state (e.g. HLT) 
and code or data segments from improper usage. These 
protection mechanisms are grouped into three forms: 

Restricted usage of segments (e.g. no write allowed 
to read-only data segments). The only segments 
available for use are defined by descriptors in the Lo
cal Descriptor Table (LOT) and Global Descriptor Ta
ble(GDT). 

Restricted access to segments via the rules of privi
lege and descriptor usage. 

Privileged instructions or operations that may only be 
executed at certain privilege levels as determined by 
the CPL and 1/0 Privilege Level (IOPL). The 10PL is 
defined by bits 14 and 13 of the flag word. 

These checks are performed for all instructions and can 
be split into three categories: segment load checks (Ta
ble 11), operand reference checks (Table 12), and privi
leged instruction checks (Table 13). Any violation of the 
rules shown will result in an exception. A not-present 
exception related to the stack segment causes excep
tion 12. 

The IRET and POPF instructions do not perform some of 
their defined functions if CPL is not of sufficient privilege 
(numerically small enough). Precisely these are: 

• The IF bit is not changed if CPL > IOPL. 

• The IOPL field of the flag word is not changed if CPL > O. 

No exceptions or other indication are given when these 
conditions occur. 

C-21 

Table 11 
Segment Register Load Checks 

Error Description 
Exception 
Number 

Descriptor table limit exceeded 13 

Segment descriptor not-present 110r12 

Privilege rules violated 13 

Invalid descriptor/segment type seg-
ment register load: 

-Read only data segment load to 
SS 

-Special control descriptor load to 
OS, ES, SS 13 

-Execute only segment load to 
OS, ES, SS 

-Data segment load to CS 
-Read/Execute code segment 

10adtoSS 

Table 12 Operand Reference Checks 

Error Description Exception 
Number 

Write into code segment 13 
Read from execute-only code 
segment 13 
Write to read-only data segment 13 
Segment limit exceeded' 120r13 

Note 1; Carry out in offset calculations is ignored. 

Table 13. Privileged Instruction Checks 

Error Description 
Exception 
Number 

CPL 4c a when executing the following 
instructions: 13 

LlDT, LLDT, LGDT, LTR, LMSW, 
CTS,HLT 

CPL> IOPL when executing the fol-
lowing instructions: 13 

INS, IN, OUTS, OUT, STI, CLI, 
LOCK 

EXCEPTIONS 

The 80286 detects several types of exceptions and inter
rupts, in protected mode (see Table 14). Most are restart
able after the exceptional condition is removed. Interrupt 
handlers for most exceptions can read an error code, 
pushed on the stack after the return address, that identi
fies the selector involved (0 if none). The return address 
normally points to the failing instruction, including all 
leading prefixes. For a processor extension segment over
run exception, the return address will not point at the 
ESC instruction that caused the exception; however, the 
processor extension registers may contain the address 
of the failing instruction. 

210253-006 

AFN-02060D 



iAPX 286/10 

Table 14 Protected Mode Exceptions 

Return Always Error 
Interrupt 

Function 
Address Restart- Code Vector At Failing able? on Stack? 

Instruction? 

8 Double exception detected Yes N02 Yes 
9 Processor extension segment overrun No N02 No 

10 Invalid task state segment Yes Yes Yes 
11 Segment not present Yes Yes Yes 
12 Stack segment overrun or stack segment not present Yes Yes1 Yes 
13 General protection Yes N02 Yes 

NOTE 1: When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the 
exception will not be restartable because stack segment wrap around is not permitted. This condition is identified 
by the value of the saved SP being eigher OOOO(H), 0001 (H), FFFE(H), or FFFF(H). 

NOTE 2: These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not 
attempted under those conditions. 

These exceptions indicate a violation to privilege rules 
or usage rules has occurred. Restart is generally not 
attempted under those conditions. 

All these checks are performed for all instructions and 
can be split into three categories: segment load checks 
(Table 11), operand reference checks (Table 12), and 
privileged instruction checks (Table 13). Any violation 
of the rules shown will result in an exception. A 
not-present exception causes exception 11 or 12 and 
is restartable. 

Special Operations 
TASK SWITCH OPERATION 

The 80286 provides a built-in task switch operation which 
saves the entire 80286 execution state (registers, ad
dress space, and a link to the previous task), loads a 
new execution state, and commences execution in the 
new task. Like gates, the task switch operation is in
voked by executing an inter-segment JMP or CALL in
struction which refers to a Task State Segment (TSS) or 
task gate descriptor in the GOT or LOT. An INT n instruc
tion, exception, or external interrupt may also invoke the 
task switch operation by selecting a task gate descriptor 
in the associated lOT descriptor entry. 

The TSS descriptor points at a segment (see Figure 20) 
containing the entire 80286 execution state while a 
task gate descriptor contains a TSS selector. The limit 
field of the descriptor must be >002B(H). 

Each task must have a TSS associated with it. The cur
rent TSS is identified by a special register in the 80286 
called the Task Register (TR). This register contains a 
selector referring to the task state segment descriptor 
that defines the current TSS. A hidden base and limit 
register associated with TR are loaded whenever TR is 
loaded with a new selector. 

The IRET instruction is used to return control to the 
task that called the current task or was interrupted. 
Bit 14 in the flag egister is called the Nested Task (NT) 
bit. It controls the function of the IRET instruction. If 
NT = 0, the IRET instruction performs the regular cur
rent task return by popping values off the stack; when 

C-22 

NT = 1, IRET performs a task switch operation back 
to the previous task. 

When a CALL, JMP, or INT instruction initiates a task 
switch, the old and new TSS will be marked busy and 
the back link field of the new TSS set to the old TSS 
selector. The NT bit of the new task is set by CALL or 
INT initiated task switches. An interrupt that does not 
cause a task switch will clear NT. NT may also be set 
or cleared by POPF or IRET instructions. 

The task state segment is marked busy by changing 
the descriptor type field from Type 1 to Type 3. Use 
of a selector that references a busy task state segment 
causes Exception 13. 

PROCESSOR EXTENSION CONTEXT SWITCHING 

The context of a processor extension (such as the 80287 
numerics processor) is not changed by the task switch 
operation. A processor extension context need only be 
changed when a different task attempts to use the pro
cessor extension (which still contains the context of a 
previous task). The 80286 detects the first use of a pro
cessor extension after a task switch by causing the pro
cessor extension not present exception (7). The interrupt 
handler may then decide whether a context change is 
necessary. 

Whenever the 80286 switches tasks, it sets the Task 
Switched (TS) bit of the MSW. TS indicates that a pro
cessor extension context may belong to a different task 
than the current one. The processor extension not pres
ent exception (7) will occur when attempting to execute 
an ESC or WAIT instruction if TS = 1 and a processor 
extension is present (MP = 1 in MSW). 

POINTER TESTING INSTRUCTIONS 

The iAPX 286 provides several instructions to speed 
pOinter testing and consistency checks for maintain
ing system integrity (see Table 15). These instruc
tions use the memory management hardware to 
verify that a selector value refers to an appropriate 
segment without risking an exception. A condition 
flag (ZF) indicates whether use of the selector or 
segment will cause an exception. 

210253-006 
AFN-02060D 



CPU 

TASK REGISTER 

TRO-_-

" 0 r---------.., 
I PROGRAM INVISIBLE I 
I " 0 I 
I I LIMIT r- H I 

: I BASE 

I 23 0 I L. ___ --- _oJ 

iAPX 286/10 

, 

INTEL RESERVED 

SYSTEM -- SEGMENT 
pi rHTYP~1 BASE23-16 

DESCRIPTOR 
BASE15_0 

LlM1T15_0 

------ -----------
~ 

15 

TASK LOT SELECTOR 

OS SELECTOR 

55 SELECTOR 

CS SELECTOR 

ES SELECTOR 

01 

51 

BP 

SP 

BX 

TASK OX 
STATE 
SEGMENT CX 

AX 

fLAG WOAD 

IP (ENTRY POINT) 

55 FOR CPL 2 

SP FOR CPL 2 

55 FOR CPL 1 

SP fOR CPL 1 

55 FOR CPL 0 

SP FOR CPL 0 

BACK LINK SELECTOR TO TSS 

l., 

"~ 

0 

, 

TYPE DESCRIPTION 

1 AN AVAILABLE TASK STATE 
SEGMENT. MAY BE USED AS 
THE DESTINATION OF A TASK 
SWITCH OPERATION. 

3 A BUSY TASK STATE SEGMENT. 
CANNOT BE USED AS THE 
DESTINATION OF A TASK 
SWITCH. 

~ 
BYTE 
OFFSET 

42 

40 

3 

3 

3 

3 

3 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

P DESCRIPTION 
1 BASE AND LIMIT FIELDS ARE VALID 

0 SEGMENT IS NOT PRESENT IN 
MEMORY, BASE AND LIMIT ARE NOT 
DEFINED 

CURRENT 
TASK 
STATE 

INITIAL 
STACKS 
FOR CPl 0,1,2 

Figure 20. Task State Segment and TSS Registers 

C-23 
210253-006 

AFN-02060D 



iAPX 286/10 

Table 15 80286 Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the RPL 

of the selector to the nu-
meric maximum of current 
selector RPL value and the 
RPL value in the register. 
Set zero flag if selector RPL 
was changed by ARPL. 

VERR Selector VERify for Read: sets the 
zero flag if the segment re-
ferred to by the selector can 
be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment re-
ferred to by the selector can 
bewrilten. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules and 
descriptor type allow. Set 
zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the deSCriptor access rights 

byte into the register if priv-
ilege rules allow. Set zero 
flag if successful. 

DOUBLE FAULT AND SHUTDOWN 

If two separate exceptions are detected during a single 
instruction execution, the 80286 performs the double 
fault exception (8). If an exception occurs during pro
cessing of the double fault exception, the 82086 will en
ter shutdown. During shutdown no further instructions 
or exceptions are processed. Either NMI (CPU remains 
in protected mode) or RESET (CPU exits protected mode) 
can force the 80286 out of shutdown. Shutdown is exter
nally signalled via a HALT bus operation with A1 HIGH. 

PROTECTED MODE INITIALIZATION 

The 80286 initially executes in real address mode 
after RESET. To allow initialization code to be placed 
at the top of physical memory, A23-20 will be HIGH 
when the 80286 performs memory references 
relative to the CS register until CS is changed. A23-20 
will be zero for references to the DS, ES, or SS 
segments. Changing CS in real address mode will 
force A23-20 LOW whenever CS is used again. The 
initial CS:IP value of FOOO:FFFO provides 64K bytes 
of code space for initialization code without chang
ing CS. 

Protected mode operation requires several regis
ters to be initialized. The GDT and IDT base regis
ters must refer to a valid GDT and lOT. After 
executing the LMSW instruction to set PE, the 80286 
must immediately execute an intra-segment JMP 
instruction to clear the instruction queue of instruc
tions decoded in real address mode. 

C-24 

To force the 80286 CPU registers to match the initial 
protected mode state assumed by software, execute 
a JMP instruction with a selector referring to the 
initial TSS used in the system. This will load the task 
register, local descriptor table register, segment 
registers and initial general register state. The TR 
should point at a valid TSS since any task switch 
operation involves saving the current task state. 

SYSTEM INTERFACE 
The 80286 system interface appears in two forms: a 
local bus and a system bus. The local bus consists of 
address, data, status, and control signals at the pins of 
the CPU. A system bus is any buffered version of the 
local bus. A system bus may also differ from the local 
bus in terms of coding of status and control lines andlor 
timing and loading of signals. The iAPX 286 family in
cludes several devices to generate standard system 
buses such as the IEEE 796 standard Multibus '" . 

Bus Interface Signals and Timing 
The iAPX 286 microsystem local bus interfaces the 80286 
to local memory and 1/0 components. The interface has 
24 address lines, 16 data lines, and 8 status and control 
signals. 

The 80286 CPU, 82284 clock generator, 82288 bus 
controller, 82289 bus arbiter, 8286/7 transceivers, 
and 8282/3 latches provide a buffered and decoded 
system bus interface. The 82284 generates the 
system clock and synchronizes READY and RESET. 
The 82288 converts bus operation status encoded 
by the 80286 into command and bus control signals. 
The 82289 bus arbiter generates Multibus bus 
arbitration signals. These components can provide 
the timing and electrical power drive levels required 
for most system bus interfaces including the Multibus. 

Physical Memory and 1/0 Interface 
A maximum of 16 megabytes of physical memory can 
be addressed in protected mode. One megabyte can be 
addressed in real address mode. Memory is accessible 
as bytes orwords. Words consist of any two consecutive 
bytes addressed with the least significant byte stored in 
the lowest address. 

Byte transfers occur on either half of the 16-bit local data 
bus. Even bytes are accessed over D7-0 while odd bytes 
are transferred over 0 15-8. Even-addressed words are 
transferred over D15-0 in one bus cycle, while odd-ad
dressed words require two bus operations. The first 
transfers data on D15-8, and the second transfers data 
on 07-0' Both byte data transfers occur automatically, 
transparent to software. 

Two bus signals, Ao and BHE, control transfers over the 
lower and upper halves of the data bus. Even address 

210253-006 
AFN-02060D 



iAPX 286/10 

byte transfers are indicated by Ao lOW and BRE HIGH. 
Odd address byte transfers are indicated by An HIGH 
and BRE lOW. Both Ao and BRE are lOW for even ad
dress word transfers. 

The I/O address space contains 64K addresses in both 
modes. The I/O space is accessible as either bytes or 
words, as is memory. Byte wide peripheral devices may 
be attached to either the upper or lower byte of the data 
bus. Byte-wide I/O devices attached to the upper data 
byte (015-8) are accessed with odd I/O addresses. De
vices on the lower data byte are accessed with even I/O 
addresses. An interrupt controller such as Intel's 8259.A 
must be connected to the lower data byte (07-0) for proper 
return of the interrupt vector. 

Bus Operation 
The 80286 uses a double frequency system clock (ClK 
input) to control bus timing. All signals on the local bus 
are measured relative to the system ClK input. The CPU 
divides the system clock by 2 to produce the internal 
processor clock, which determines bus state. Each pro
cessor clock is composed of two system clock cycles 
named phase 1 and phase 2. The 82284 clock generator 
output (PClK) identifies the next phase of the processor 
clock. (See Figure 21.) 

elK 

ONE PROCESSOR CLOCK CYCLE 

I------ONE BUS T STATE-----I~ 
PHASE 1 PHASE 2 

OF PROCESSOR-------l.---OF PROCESSOR 
CLOCK CYCLE --[---- - CLOCK CYCLE 

....-- ONE SYSTEM _.J 
CLKCYCLE ~ 

peLKY \'-__ ---..:Jv 
Figure 21. System and Processor 

Clock Relationships 

Six types of bus operations are supported; memory read, 
memory write, I/O read, I/O write, interrupt acknowl
edge, and halt/shutdown. Data can be transferred at a 
maximum rate of one word per two processor clock cycles. 

The iAPX 286 bus has three basic states: idle (Ti), send 
status (Ts), and perform command (T d. The 80286 CPU 
also has a fourth local bus state called hold (Th)' Th in
dicates that the 80286 has surrendered control of the 
local bus to another bus master in response to a HOLD 
request. 

Each bus state is one processor clock long. Figure 22 
shows the four 80286 local bus states and allowed 
transitions. 

C-25 

RESET 

Figure 22. 80286 Bus States 

Bus States 

The idle (Ti) state indicates that no data transfers are 
in progress or requested. The first active state T s is 
signaled by status line ST or SO going lOW and identi
fying phase 1 of the processor clock. During T s, the 
command encoding, the address, and data (for a write 
operation) are available on the 80286 output pins. The 
82288 bus controler decodes the status signals and 
generates Multibus compatible read/write command 
and local transceiver control signals. 

After T s, the perform command (T d state is entered. 
Memory or I/O devices respond to the bus operation 
during T c, either transferring read data to the CPU or 
accepting write data. T c states may be repeated as 
often as necessary to assure sufficient time for the 
memory or I/O device to respond. The READY signal 
determines whether T c is repeated. A repeated Tc 
state is called a wait state. 

During hold (Th), the 80286 will float all address, data, 
and status output pins enabling another bus master 
to use the local bus. The 80286 HOLD input signal 
is used to place the 80286 into the T h state. The 
80286 HlDA output signal indicates that the CPU has 
entered Th. 

Pipelined Addressing 
The 80286 uses a local bus interface with pipelined 
timing to allow as much time as possible for data 
access. Pipelined timing allows a new bus operation 
to be initiated every two processor cycles, while allow
ing each individual bus operation to last for three 
processor cycles. 

The timing of the address outputs is pipelined such that 
the address of the next bus operation becomes available 
during the current bus operation. Or in other words, the 
first clock of the next bus operation is overlapped with 
the last clock of the current bus operation. Therefore, 
address decode and routing logic can operate in ad-

210253-006 
AFN-02060D 



iAPX 286/10 

T, I". READ BUS CYCLE N -I" READ BUS CYCLE N + 1~ 
.....--.. ~ Ts~------..j .. ----·~-Tc~"---T5------+-1------------Tc 

.~ I ~' I .1 I M M I ~ ~1 I ~ 

eLK 

PRoe eLK 

VALID ADOR (N) 

ReADY 

015 - 00 - - - - - - - - - - - - - - - - - - - - - - - - - -~ - - - - - - - - - - - - - - - -~ 
VALID READ VALID READ 

DATA(N) DATA (N+1) 

PIPELINING: VALID ADDRESS (N " 1) AVAILABLE IN LAST PHASE OF BUS CYCLE (N). 

Figur~ 23. Basic Bus Cycle 

vance of the next bus operation. External address latches 
may hold the address stable for the entire bus operation, 
and provide additional AC and DC buffering. 

The 80286 does not maintain the address of the current 
bus operation during all Tc states. Instead, the address 
for the next bus operation may be emitted during phase 
2 of any T c. The address remains valid during phase 1 
of the first Tc to guarantee hold time, relative to ALE, for 
the address latch inputs. 

Bus Control Signals 
The 82288 bus controller provides control signals; ad
dress latch enable (ALE), ReadlWrite commands, data 
transmit/receive (DT/R), and data enable (DEN) that 
control the address latches, data transceivers, write en
able, and output enable for memory and I/O systems. 

The Address Latch Enable (ALE) output determines when 
the address may be latched. ALE provides at least one 
system CLK period of address hold time from the end of 
the previous bus operation until the address for the next 
bus operation appears at the latch outputs. This address 
hold time is required to support Multibus® and common 
memory systems. 

The data bus transceivers are controlled by 82288 out
puts Data Enable (DEN) and Data Transmit/Receive (DT/ 
R). DEN enables the data transceivers; while DT/R con
trols transceiver direction. DEN and DT/R are timed to 
prevent bus contention between the bus master, data 
bus transceivers, and system data bus tranceivers. 

Command Timing Controls 
Two system timing customization options, command ex
tension and command delay, are provided on the iAPX 
286 local bus. 

Command extension allows additional time for external 
devices to respond to a command and is analogous to 
inserting wait states on the 8086. External logic can con
trol the duration of any bus operation such that the op
eration is only as long as necessary. The READY' input 
signal can extend any bus operation for as long as 
necessary. 

Command delay allows an increase of address or write 
data setup time to system bus command active for any 
bus operation by delaying when the system bus com
mand becomes active. Command delay is controlled by 
the 82288 CMDLY input. After Ts, the bus controller 
samples CMDLY at each failing edge of CLK. If CMDLY 
is H IG H, the 82288 will not activate the command signal. 
When CMDLY is LOW, the 82288 will activate the com
mand signal. After the command becomes active, the 
CMDLY input is not sampled. 

When a command is delayed, the available response 
time from command active to return read data or accept 
write data is less. To customize system bus timing, an 
address decoder can determine which bus operations 
require delaying the command. The CMDLY input does 
not affect the timing of ALE, DEN, or DT/R. 

C-26 
210253-006 

AFN-02060D 



iAPX 286/10 

1--------READ BUS CYCLE N ~ 1---------<..j.-----READ BUS CYCLE N-----i 

EX' 

elK 

.ROC ----, 
elK 

"23-"0 
---~--~~-~ 

$1 • so 

ALE ___ J 

R£AOY 

~ RD COMMAND 

CMDLY ___ ...J 

~ RD COMMAND 

EX' 

CMDLV 

Figure 24. CMDlY Controls the leading Edge of Command Signal. 

Figure 24 illustrates four uses of CMDlY. Example 1 
shows delaying the read command two system ClKs for 
cycle N-1 and no delay for cycle N, and example 2 shows 
delaying the read command one system ClK for cycle 
N-1 ilnd one system ClK delay for cycle N. 

Bus Cycle Termination 
At maximum transfer rates, the iAPX 286 bus alternates 
between the status and command states. The bus status 
signals become inactive after T S so that they may cor
rectly signal the start of the next bus operation after the 
completion of the current cycle. No external indication of 
T c exists on the iAPX 286 local bus. The bus master and 
bus controller enter T c directly after Ts and continue ex
ecuting Tc cycles until terminated by J1EADV'. 

READY Operation 
The current bus master and 82288 bus controller ter
minate each bus operation simultaneously to achieve 
maximum bus operation bandwidth. Both are informed 
in advance by READY active (open-collector output 
from 82284) which identifies the last T c cycle of the 

current bus operation. The bus master and bus con
troller must see the same sense of the READY signal, 
thereby requiring READY be synchronous to the 
system clock. 

Synchronous Ready 
The 82284 clock generator provides J1EADV' synchro
nization from both synchronous and asynchronous 
sources (see Figure 25). The synchronous ready input 
(SRDY) of the clock generator is sampled with the falling 
edge of ClK at the end of phase 1 of each T c. The state 
of SRDY is then broadcast to the bus master and bus 
controller via the J1EADV' output line. 

Asynchronous Ready 

Many systems have devices or subsystems that are 
asynchronous to the system clock. As a result, their 
ready outputs cannot be guaranteed to meet the 82284 
SRDY setup and hold time requirements. But the 
82284 asynchronous ready input (ARlJY) is designed 
to accept such signals. The ARO? input is sampled at 
the beginning of each T c cycle by 82284 synchroniza
tion logiC. This provides one system ClK cycle time to 
resolve its value before broadcasting it to the bus 
master and bus controller. 

C-27 
210253-006 

AFN·02060D 



iAPX 286/10 

• MEMORY CYCLE N ~ 1 .1. . '",E",OR'( C\,CLE N .\ 

--TIS~~Tr~~TIS~\~Tr~j~TIC~ 
elK 

PROC elK 

A23 - Ao 
---------------+~ 

so • 51 

READY (SEE NOTE 1.) (SEE NOTE 2.) '" '-____ _ 

ARDY \\\\\\\W~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ~7I/OO70// 
(SEE NOTE 3.) 

NOTES: 
1, SRDYEN is active low 
2. If SRDYEN IS high, Ihe state of SRDY will not effeci READY 
3, ARDYEN is active low 

Figure 25. Synchronous and Asynchronous Ready 

ARDY or ARDYEN must be HIGH at the end of T s. 
ARDY cannot be used to terminate bus cycle with 
no wait states. 

Each ready input of the 82284 has an enable pin 
(SRDYEN and ARDYEN) to select whether the current 
bus operation will be terminated by the synchronous or 
asynchronous ready. Either of the ready inputs may ter
minate a bus operation, These enable inputs are active 
low and have the same timing as their respective ready 
inputs, Address decode logic usually selects whether 
the current bus operation should be terminated by ARDY 
orS"FIDY. 

Data Bus Control 
Figures 26, 27, and 28 show how the DTfR, DEN, data 
bus, and address signals operate for different combina
tions of read, write, and idle bus operations, DT/R goes 
active (LOW) for a read operaton. DT/R remains HIGH 
before, during, and between write operations. 

C-28 

The data bus is driven with write data during the second 
phase of Ts. The delay in write data timing allows the 
read data drivers, from a previous read cycle, sufficient 
time to enter 3-state OFF before the 80286 CPU begins 
driving the local data bus for write operations. Write data 
will always remain valid for one system clock past the 
lastT c to provide sufficient hold time for Multibus or other 
similar memory or 1/0 systems. During write-read or write
idle sequences the data bus enters 3-state OFF during 
the second phase of the processor cycle after the last 
T c' In a write-write sequence the data bus does not enter 
3-state OFF between Tc and T s. 

Bus Usage 
The 80286 local bus may be used for several functions: 
instruction data transfers, data transfers by other bus 
masters, instruction fetching, processor extension data 
transfers, interrupt acknowledge, and halt/shutdown. This 
section describes local bus activities which have special 
signals or requirements. 

210253-006 
AFN-02060D 



iAPX 286/10 

CLK 

so. S1 

MRDe 

MWTC 

DEN ____________ ~-----J 

DTR 

Figure 26. Back to Back Read-Write Cycles 

WRITE CYCLE READ CYCLE 

CLK 

0,,-00---------- VALID WRITE DATA 

IlAllC 

DEN 

DT/R 

Figure 27. Back to Back Write-Read Cycles 

C-29 
210253·006 

AFN·02060D 



iAPX 286/10 

WRITE CYCLE N-l WRITE CYCLE N 

eLK 

A23-AU 

SO. Sl 

DEN 

----------' 
~----------------------------------------------------------DT/ll 

Figure 28. Back to Back Write-Write Cycles 

HOLD and HLDA 
HOLD and HLDA allow another bus master to gain con
trol of the local bus by placing the 80286 bus into the T h 
state. The sequence of events required to pass control 
between the 80286 and another local bus master are 
shown in Figure 29. 

In this example, the 80286 is initially in the T h state as 
signaled by HLDA being active. Upon leaving T h, as sig
naled by HLDA going inactive, a write operation is started. 
During the write operation another local bus master re
quests the local bus from the 80286 as shown by the 
HOLD signal. After completing the write operation, the 
80286 performs one Tj bus cycle, to guarantee write data 
hold time, then enters T h as signaled by HLDA going 
active. 

The CMDLY signal and AROY ready are used to start 
and stop the write bus command, respectively. Note that 
SRU'Y' must be inactive or disabled by SRDYEN to guar
antee AROY will terminate the cycle. 

Instruction Fetching 
The 80286 Bus Unit (BU) will fetch instructions ahead of 
the current instruction being executed. This activity is 
called prefetching. It occurs when the local bus would 
otherwise be idle and obeys the following rules: 

C-30 

A prefetch bus operation starts when at least two bytes 
of the 6-byte prefetch queue are empty. 

The prefetcher normally performs word prefetches in
dependent of the byte alignment of the code segment 
base in physical memory. 

The prefetcher will perform only a byte code fetch op
eration for control transfers to an instruction beginning 
on a numerically odd physical address. 

Prefetching stops whenever a control transfer or HLT 
instruction is decoded by the IU and placed into the 
instruction queue. 

In real address mode, the prefetcher may fetch up 
to 6 bytes beyond the last control transfer or HL T 
instruction in a code segment. 

In protected mode, the prefetcher will never cause a 
segment overrun exception. The prefetcher stops at 
the last physical memory word of the code segment. 
Exception 13 will occur if the program attempts to ex
ecute beyond the last full instruction in the code 
segment. 

If the last byte of a code segment appears on an even 
physical memory address, the prefetcher will read the 
next physical byte of memory (perform a word code 
fetch). The value of this byte is ignored and any at
tempt to execute it causes exception 13. 

210253·006 
AFN·02060D 



iAPX 286/10 

BUS HOLD ACKNOWLEDGE WRITE CYCLE 

BUS CYCLE TYPE 

CLK 

HOLD 

HLDA 

(SEE NOTE 1.) (SeE NOTE 1.) ------------ r------------------
51'50 

A 23 AO 

M ii), ----------------
COD II~TA. 

(SEE NOTE 2.) 

C=+~V~A~LlD~=:J~~~~~~~~it2]ftZffi~j--- ------
(SEE NOTE 3.) 

SHE, LOCK ------------------~==~~~==J~~~~~~ffi~ffi~~j---------

0" '-______ VA_L_'D ______ ~»>-~ --------

;:~~E~ ??W'~,fN~ VflIllIl "0l/WVmw1A2?P~ 
NOT READY NOT READY 

MWTC \'--_____ ~I 
~ VOH ----------------~-----------------------
~ DT/R 

DEN \'-____ _ 

ALE r-'\'-_______________ _ 

TS STATUS CYCLE 
Te COMMAND CYCLE 

NOTES: 

1. Status lines are not driven by 80286, yet remain high due to pullup resistors in 82288 and 82289 during HOLD state. 

2. Address, M/iQ and COD/I NT A may start floating dunng any TC depending on when Internal 80286 bus arbiter decides to release bus to 
external HOLD. The float starts in ,,2 of TC. 

3. SHE and LOCK may start floating after the end of any Te depending on when internal 80286 bus arbiter decides to release bus to external 
HOLD. The float starts in ,,1 of TC. 

4. The minimum HOLD to HLDA time is shown. Maximum is one T H longer 

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown. 

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other machine status (i.e., 
Interrupts, Walts, Lock, etc.) 

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Synchronous ready state 
is ignored after ready is signaled via the asynchronous input. 

Figure 29. Multibus Write Terminated by Asynchronous Ready with Bus Hold 

C-31 
210253·006 

AFN·02060D 



iAPX 286/10 

Processor Extension Transfers 
The processor extension interface uses I/O port 
addresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the 1/0 port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform I/O bus operations to 
one or more of these 1/0 port addresses independent 
of the value of 10PI and CPL. 

ESC instructions with memory references enable the 
CPU to accept PEREa inputs for processor extension 
operand transfers. The CPU will determine the operand 
starting address and readlwrite status of the instruction. 
For each operand transfer, two or three bus operations 
are performed, one word transfer with 1/0 port address 
OOFA(H) and one or two bus operations with memory. 
Three bus operations are required for each word oper
and aligned on an odd byte address. 

Interrupt Acknowledge Sequence 
Rgure 30 illustrates an interrupt acknowledge sequence 
performed by the 80286 in response to an INTR input. 
An interrupt acknowledge sequence consists of two 
INTA bus operations. The first allows a master 8259A 
Programmable Interrupt Controller (PIC) to determine 
which if any of its slaves should return the interrupt 
vector. An eight bit vector is read on 00-07 of the 
80286 during the second INTA bus operation to select 
an interrupt handler routine from the interrupt table. 

The Master Cascade Enable (MCE) signal of the 82288 
is used to enable the cascade address drivers, during 
INTA bus operations (See Figure 30), onto the local ad
dress bus for distribution to slave interrupt controllers via 
the system address bus. The 80286 emits the [OCR 
signal (active LOW) during Ts of the first INTA bus oper
ation. A local bus "hold" request will not be honored until 
the end of the second INTA bus operation. 

Three idle processor clocks are provided by the 80286 
between INTA bus operations to allow for the minimum 
INTA to INTA time and CAS (cascade address) out delay 
of the 8259A. The second INTA bus operation must al
ways have at least one extra Tc state added via logic 
controlling REAri'? A23-AO are in 3-state OFF until after 
the first Tc state of the second INTA bus operation. This 
prevents bus contention between the cascade address 
drivers and CPU address drivers. The extra Testate al
lows time for the 80286 to resume driving th-e address 
lines for subsequent bus operations. 

C-32 

Local Bus Usage Priorities 
The 80286 local bus is shared among several internal 
units and external HOLD requests. In case of simulta
neous requests, their relative priorities are: 

(Highest) Any transfers which assert [OCR either ex
plicitly (via the LOCK instruction prefix) or 
implicitly (i.e. segment descriptor access, 
interrupt acknowledge sequence, or an 
XCHG with memory). 

The second of the two byte bus operations 
required for an odd aligned word operand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand transfer 
via PEREa input. 

Data transfer performed by EU as part of an 
instruction. 

(Lowest) An instruction prefetch request from BU. The 
EU will inhibit prefetching two processor 
clocks in advance of any data transfers to 
minimize waiting by EU for a prefetch to finish. 

Halt or Shutdown Cycles 
The 80286 externally indicates halt or shutdown condi
tions as a bus operation. These conditions occur due to 
a HLT instruction or multiple protection exceptions while 
attempting to execute one instruction. A halt or shut
down bus operation is signalled when ST, SO and COOl 
TNTA are LOW and M/TO is HIGH. A1 HIGH indicates 
halt, and A1 LOW indicates shutdown. The 82288 bus 
controller does not issue ALE, nor is READY required to 
terminate a halt or shutdown bus operation. 

During halt or shutdown, the 80286 may service PEREa 
or HOLD requests. A processor extension segment 
overrun exception during shutdown will inhibit further 
service of PEREa. Either NMI or RESET will force the 
80286 out of either halt or shutdown. An INTR, if inter
rupts are enabled, or a processor extension segment 
overrun exception will also force the 80286 out of halt. 

210253-006 

AFN-02060D 



iAPX 286/10 

BUS CYCLE TYPE T, I T, I T, 1~'~TACTYcClE~~1 
I ,',2 ,'" I ,1,2 ./" I ./-2 ,I" I ,1>2 I ,I" '<1>2 I .:" I ,/,',l Ts 

~ 

NOTES: 

ClK 

51 • SO 

10. COD INTA 

LOCK 

(SEE NOTE 5.) '-___________ ' ______ 15_EE_NO_TE_5.1-<'-___ _ 
A23 - Ao ~ - - - - - - - - - - - < DON'T CARE r . 

SHE »»»»)}- -----------<'--__ OO_N·_T C_AR_E _--t}- - - - - n - - - - -c:::: 
PREVIOUS 

WAITE CYCLE 

(SEE NOTE 1.) 

-------<=>--------------------VECTO~-
ON 07-00 

(SEE NOTE 2.) (SEE NOTE 3.) 

READY S\\\\\\ !Ill I II I III 117 \.\:,~~ LZZ///ZZll I IV 1(1))11 I 11(1))1 IZ!1ll1L7 ~~\~ ///771/ 
NOT READY READY NOT READY READY 

INTA \ / \ r-
MCE 1\ 1\ 

ALE n n 
OTR \ / \ I 

DEN / \ / '-----

1. Data is ignored. 

2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width. 

3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A23 - Ao, BHE, and LOCK until after the first 
TC state. 

The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by MCE t and address 
outputs. 

Without the wait state, the 80286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The 
8259A also requires one wait state for minimum INTA pulse width. 

4. LOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi-master system. 

5. A23 - Ao exits 3-state OFF during 1>2 of the second T c in the INTA cycle. 

Figure 30_ Interrupt Acknowledge Sequence 

C-33 
210253-006 

AFN-02060D 



VCC VCC 
Vee 

lfC 
AEN 

MB 

CMDlY 

RESET 
so 
51 

iAPX 286/10 

MADe 
MWTC 

IORC 
lowe 
INTA 

ALE 

MCE 

I----------+- MEMORY READ 

1------------- MEMORY WRITE 

I---~t------- 10 READ 

I-----H------- 10 WRITE 

t----H~----- INTERRUPT ACKNOWLEDGE 

,..----, 
::!::: I -- PCLK 

READY I-----l-I_-I READY OEN ~-_ r-

1 r 

-' I 

- - ~ r --. ADVANCED MEMORY 

_ - EFI 
CLK I---..... T>-+++-..j CLK DT R f--

I 82288 BUS r -
- _...., DECODE t- .... AND I 0 CHIP SELECTS 

r - l' I (OPTIONAL) I 

I CONTROl~~~ I r 

I ~ I I r-

I r v ~ I 
.J I L ____ .1 

- r FC 

SYNC READY - SRDY RESET 1 _ J II I r 
ENABLE --------- SRDVEN I I I I 

_J 

.~;=]l 
ASYNC READY - AROY , I RESET M 10 __ I I I L..... srB 

ENABLE --------.. ARDYEN I I LOCK - I I I I ~ ADDRESS BUS 
82284 I I t.... CLK CODINTA _ --.J I I ~ DE 

Vee GE~~~~~OR I I ~---- READY 1-:-1 ---!'--.L--'-'--.L...LJ-'--_"- 8282 

\' • ~ : : ~:~ A23-AO; ~~~~8~ 
l ' - -- - - - -" I I I : ~ NMI BHE I---+-+-+-+-+~{ 

20K!J" I r - - - - - - - J I I 1-__ HOLD I r-----, 
.... I - - - - - HlDA I 
) : J I I: ERROR CASo 2 Ao ~ 
J : : : : I BUSY INTR I INT CS j..- CHIP SELECT 

L-1i-t-tT-,-- --",- PEACKI '-----IINTA 

I I I r - - - - - - - --+ PEREa CA.P ~ '--------1 WR 
I I ' .J 1 I ' ! I I I I I I - ~ __ I 80286 -;r- '--------., RD 

I ! I I J r- ~ CPU ~ + r-------fSPEN 

I I I 1 I I 1 I r - Do; - Do -= l IA--I'r- IRo - IR7 

I I : : ,: I : : I I 

._U_I_,-*_d_UJ __ , I 
I ,- - - - - __ J 

I PR~~~~~OR I 1...- - - -
I EXTENSION r r - - -
I (OPTIONAL) I 
'- ____________ J 

.-------. / 00 - 07 
I ...- 8259A 

INTERRUPT 
CONTROLLER 

r------ OE 
I t-.. 8286 
_, 0' 

L-----------~T 

8287 
TRANS
CEIVER 

~OATA 
~BUS 

Figure 31. Basic iAPX 286 System Configuration 

SYSTEM CONFIGURATIONS 

The versatile bus structure of the iAPX 286 microsys
tem, with a full complement of support chips, allows flex
ible configuration of a wide range of systems. The basic 
configuration, shown in Figure 31, is similar to an iAPX 
86 maximum mode system. It includes the CPU plus an 
8259A interrupt controller, 82284 clock generator, and 
the 82288 Bus Controller. The iAPX 86 latches (8282 
and 8283) and transceivers (8286 and 8287) may be 
used in an iAPX 286 microsystem. 

As indicated by the dashed lines in Figure 31, the ability 
to add processor extensions is an integral feature of iAPX 
286 microsystems. The processor extension interface 
allows external hardware to perform special functions 
and transfer data concurrent with CPU execution of other 
instructions. Full system integrity is maintained because 
the 80286 supervises all data transfers and instruction 
execution for the processor extension. 

The iAPX 286/20 numeric data processor which in
cludes the 80287 numeric processor extension (NPX) 

C-34 

uses this interface. The iAPX 286/20 has all the instruc
tions and data types of an iAPX 86/20 or iAPX 88/20. 
The 80287 NPX can perform numeric calculations and 
data transfers concurrently with CPU program execu
tion. Numerics code and data have the same integrity as 
all other information protected by the iAPX 286 protec
tion mechanism. 

The 80286 can overlap chip select decoding and ad
dress propagation during the data transfer for the pre
vious bus operation. This information is latched into the 
8282/3's by ALE during the middle of a Ts cycle. The 
latched chip select and address information remains 
stable during the bus.operation while the next cycles 
address is being decoded and propagated into the sys
tem. Decode logic can be'implemented with a high speed 
bipolar PROM. 

The optional decode logic shown in Figure 31 takes ad
vantage of the overlap between address and data of the 
80286 bus cycle to generate advanced memory and 10-
select signals. This minimizes system performance 

210253-006 

AFN-02060D 



91011 
d% 

IAPX 286/10 

20KII ~ SVSB RESS 
BCLK-

~~:~T B~:l~ t:==.: 
__ ALWAYS ~ _= CROLCK BFRO I---------~ =--= SO SPAN 1----

'---------S1 BUS'f~ 
L----+--++--O>--l READV CBRO ~ 

elK LOCK!_ 

r+---,H--H-I AEN M 10 I--
82289 SLOCK '-- -

BUS ARBITER 

MULTIBUS 
BUS ARBITRATION 

I ,0, I MI~:~ 10 READ 

lowe I a WAITE "~'. .-illh ~t!~l[";N-.!M':M~.Ojcr~~~!§~i~~ :::~:;~~~~E 
RESET ~f-4-~ RESX~ X'SO~E!aESO I::: INTERRUFTACKNOWLEOGE 

S1 S1 MCE 

I 4- READY READY OEN - t--
_ _ :~llK elK CL~2288 BU~T 1'1 -

--:-r--+ F C I CONTROLLER 
-:::!:- I CMPLY M 10 

C READY - SRD'¥' RESET ~~,+W+~~ li ±_:'-:tL 
ENABLE_ SRDVEN I I ,~ .---

ASYNC READY _ AROY I I RESET 
,..-..--

STB 

L.. DE ~ AOO.ESS BUS 
ENABLE _ ARQVEN I I 

82284 elK 

GE~~~~~OR :: t--; READY COO INTA I----,-'----'---'--..L.!---'--_---'--~ 
(f II ~s, A"A" I 8283 

I " ~+-so :1 I~~CH > r ------_I I I I I ~ :~~o SHE 

20KII f 1 I-----r...:~:-;-:·+- HLDA .------, 

I I I ERROR I ::so, :; :=.. CHIP SELECT 

L------11~-I-,--:---:~+t.:~:~K INTR I INTA 

I I I I I r l- -_J 1-;-1 PEREOao2B6 CAP~ :~ 

': II II: I ~ ,_J I I 0 CP'lJ' II l ' "EN L, .. 'R, I I I I I I I r.J I - ----==) 0" D, '< 

I I I I I I I I I I r --1 v INT8E2~~~PT 
,_tt,_,_t,_,_,_t t" I CONTRO'''. 

I 80287 .-. - - - - - ...J _ 
I PROCESSOR I. -L - - - r-'"---
I EXTENSION f'-.[" _ _ - OE 

~ __ ~o_:n~NA~ __ -.1 --~ 8287 ~ DATA BUS 

TRANS ~ 

Vee 
LOCK-

CEIVER 

Figure 32. Multibus System Bus Interface 

degradation caused by address propogation and de
code delays. In addition to selecting memory and I/O, 
the advanced selects may be used with configurations 
supporting local and system buses to enable the appro
priate bus interface for each bus cycle. The COO/TJ\JTA 
and M/IO signals are applied to the decode logic to dis
tinguish between interrupt, I/O, code and data bus cycles. 

connected to its CMOLY input to delay the start of com
mands one system CLK as required to meet Multibus 
address and write data setup times. This arrangement 
will add at least one extra Testate to each bus operation 
which uses the Multibus. 

By adding the 82289 bus arbiter chip the 80286 provides 
a Multibus system bus interface as shown in Figure 32. 
The ALE output of the 82288 for the Multibus bus is 

A second 82288 bus controller and additional latches 
and transceivers could be added to the local bus of Fig
ure 32. This configuration allows the 80286 to support 
an on-board bus for local memory and peripherals, and 
the Multibus for system bus interfacing. 

C-35 
210253-006 

AFN-02060D 



iAPX 286/10 

DATA 015 - DO 

80286 
CPU elK 

STATUS So, Si, MIlO 

DECODE 

8286 

DATA 

DRAM 
2118,2164 

8287 

MUL TIBUS SELECT 

t--+-XACK 
MULTlBUS 
COMMAND 

(MADC, MWTCI 

LOCAL 
SELECT '-----,J 

SELECT 

"'---- ADDRESS 

ADDRESS Au Ao, SHE, LOCK 

Figure 33. iAPX 286 System Configuration with Dual-Ported Memory 

Figure 33 shows the addition of dual ported dynamic 
memory between the Multibus system bus and the iAPX 
286 local bus, The dual port interface is provided by the 
8207 Dual Port DRAM Controller. The 8207 runs syn
chronously with the CPU to maximize throughput for lo
cal memory references. It also arbitrates between 
requests from the local and system buses and performs 

functions such as refresh, initialization of RAM, and read! 
modify/write cycles. The 8207 combined with the 8206 
Error Checking and Correction memory controller pro
vide for single bit error correction. The dual-ported 
memory can be combined with a standard Multibus sys
tem bus interface to maximize performance and protec
tion in multiprocessor system configurations. 

Table 16. 80286 Systems Recommended Pull up Resistor Values 

80286 Pin and Name Pullup value 

4-S1 
5-S0 20KO ± 10% 
6-PEACK 
53-ERROR 20KO ± 10% 

54-BUSY 

63-READY 9100 ± 5% 

Purpose 

Pull SO, S1, and PEACK inactive during 80286 hold periods 

Pull ERROR and BUSY inactive when 80287 not present 
(or temporarily removed from socket) 

Pull READY inactive within required minimum time (CL = 150pF, 
IR ,,; 7mA) 

C-36 
210253-006 

AFN-02060D 



inter iAPX 286/10 

PACKAGE 
The 80286 is packaged in a 68-pin, lead less JEDEC 
type A hermetic lead less chip carrier. Figure 34 illus
trates the package, and Figure 2 shows the pinout. 

(2.39) 

PIN NO 35 
.OS 

rt 
0 ;-7) 

PIN NO j' .52 F·094 

.066 
(1 .• 8) 

.800 
(20.32) 

--E:I 
--

=== I (~~:)l 

L -------, 

,,{ 

~ 

D 
~ 
~ 

.960 
(24.38 

PINNO"8~ PINNO.,~ ~PINN01MA RK 

.960 
(24.38) 

.130 
(3.30) 

INCHES 
(MILLIMETERS) 

Figure 34. JEDEC Type A Package 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias. . ....... aoe to 7aoe 

Storage Temperature. - 65°e to + 150'e 

Voltage on Any Pin with 
Respect to Ground. . . -1.0 to + 7V 

Power Dissipation . . . . ..... 3.6 Watt 

'NOTICE: Stresses above those listed under "Absolute Max
imum Ratings" may cause permanent damage to the device. 
This is a stress rating only and functional operation of the de
vice at these or any other conditions above those indicated in 
the operational sections of this specification is not implied. 
Exposure to absolute maximum rating conditions for ex
tended periods may affect device reliability. 

D.C. CHARACTERISTICS (TA = DOG to 55°G, Vee = 5V, ± 5%) 

4 MHz 6 MHz 

-4 -4 -6 -6 
Sym Parameter Min Max Min Max 

V,L Input LOW Voltage -.5 .8 -.5 .S 

V,H Input HIGH Voltage 2.0 Vee +.5 2.0 Vee +.5 

V'Le eLK Input LOW Voltage -.5 .6 -.5 .6 

V,He CLK Input HIGH Voltage 3.8 Vee +.5 3.8 Vee +.5 

VOL Output lOW Voltage .45 .45 

VOH Output HIGH Voltage 2.4 2.4 

'LI Input leakage Current +-10 +-10 

'LO Output leakage Current +-10 +-10 

Icc Supply Current (turn on, O°C) 600 600 

CeLK ClK Input Capacitance 12 12 

C'N Other Input Capacitance 10 10 

Co Input/Output Capacitance 20 20 

NOTE 1: Low temperature is worst case. 

C-37 

SMHz 

Min Max 

-.5 .8 

2.0 Vee +.5 

-.5 .6 

3.8 Vee +.5 

.45 

2.4 

+-10 

+-10 

600 

12 

10 

20 

Unit 

V 

V 

V 

V 

V 

V 

~ 

ilA 

ilA 

pF 

pF 

pF 

Test Condition 

IOL = 2.0mA 

IOH = -400ilA 

OV<V'N<Vee 

.45V<VOUT<Vee 

Note 1 

Fe=1MHz 

Fe = 1MHz 

Fe = 1MHz 

210253-006 
AFN-02060D 



iAPX 286/10 

A.C. CHARACTERISTICS (TA = aoc to 55°C, Vcc = 5V, ± 5%) 
AC timings are referenced to a.BV and 2.aV points of signals as illustrated in datasheet waveforms, unless otherwise noted. 

4 MHz 6 MHz 8 MHz 

-4 -4 -6 -6 
Sym Parameter Min Max Min Max Min Max 

1 System Clock (ClK) Period 124 250 83 250 62 250 
2 System Clock (ClK) lOW Time 30 210 20 250 15 225 
3 System Clock (ClK) HIGH Time 40 220 25 230 25 235 

17 System Clock (ClK) Rise Time 10 10 10 

18 System Clock (ClK) Fall Time 10 10 10 

4 Asynch. Inputs Setup Time 40 30 20 

5 Asynch. Inputs Hold Time 40 30 20 

6 RESET Setup Time 40 33 28 

7 RESET Hold Time 5 5 5 

8 Read Data Setup Time 30 20 10 

9 Read Data Hold Time 8 8 8 

10 READY Setup Time 75 50 38 
11 READY Hold Time 50 35 25 

12 Status/PEACK Valid Delay 1 80 1 55 1 40 
13 Address Valid Delay 1 120 1 80 1 60 
14 Write Data Valid Delay 0 100 0 65 0 50 
15 Address/Status/Data Float Delay 0 120 0 80 0 50 

16 HlDA Valid Delay 0 120 0 80 0 50 

NOTE: 1: Asychronous Inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY, This specification is given only for testing 
purposes, to assure recognition at a specific eLK edge 

NOTE: 2: Delay from O.8V on the elK, to O.8V or 2.0V or float on the output as appropriate for valid or floating condition, 

NOTE: 3: Output load: C1 ~ 100pF. 
NOtE: 4: -Float condition occurs when output current is less than ILO in magnitude 

82284 Timing Requirements 

82286-6 822284 

Symbol Parameter Min. Max. Min. Max. 

11 SRDY/SRDYEN setup time 25 15 

12 SRDY/SRDYEN hold time 0 0 

13 ARDY/ARDYEN setup time 5 0 

14 ARDY/ARDYEN hold time 30 30 

19 PClK delay 0 45 0 45 

NOTE: These rimes are given for testing purposes to assure a predetermined acton 

82288 Timing Requirements 
82288-6 82288 

Symbol Parameter Min. Max. Min. Max. 

12 CMDlY setup time 25 20 

13 CMDlT hold time 1 1 

30 Command delay I Command Inactive 3 30 3 25 
From ClK I 

29 Command. Active 3 40 3 25 

16 ALE active delay 3 25 3 20 

17 ALE inactive delay 35 25 

19 DT /R read active delay 40 25 

22 DT/R read inactive delay 5 45 5 35 

20 DEN read active delay 5 50 5 35 

21 DEN read inactive delay 3 40 3 35 

23 DEN write active delay 35 30 

24 DEN write inactive delay 3 35 3 30 

C-38 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Test Condition 

at 0.6V 

at 3.2V 

1.0V to 3.5V 

3.5V to 1.0V 

Note 1 

Note 1 

Note 2 Note 3 

Note 2 Note 3 

Note 2 Note 3 

Note 2 Note 4 

Note 2 Note 3 

Test Conditions 

See note 1 

See note 1 

Cl = 75pF 
IOl = 5 ma 
IOH = -1 ma 

Test Conditions 

Cl - 300 pF max 
IOl = 32 ma max 
IOH = 5 rna max 

Cl =150pF 

IOl = 16 ma max 

IOH = -1 ma max 

-210253006 
AFN-02060D 



iAPX 286/10 

WAVEFORMS 

MAJOR CYCLE TIMING 

READ 

BUS CYCLE TYPE 

CLK 

S1 • so 

A23-AO 7TTT7TT;'77rn,"mlir-+---l-~=+--, ,.;:;:;....Ir--l----+----l----+, n..-n\ r-l----!-----

I 

~ 

Mia. COD INTA CUI..lJ..JJ...U.i.J..I..jCUu..t.,I'-+ __ --t ___ + __ -{v.J.LLJI\--l-__ -+::.:==f.-__ -!-r<i..LLJ.1\...-l-_....:::=t-::...:.::..-. __ 

READY 

SRDY + SROYEN 

ARDY+ ARDYEN 

PCL.K 

ALE 

CMDLY 

MWTC 

MADC 

OTR 

DEN 

C-39 
210253-006 

AFN-02060D 



WAVEFORMS (Continued) 

80286 ASYNCHRONOUS INPUT SIGNAL TIMING 

BUS CYCLE TYPE 

elK 

PClK 
(SEE NOTE 1.) 

INTR,NMI 
HOLD,PEREQ 
(SEE NOTE 2.) I..I..<.LJ..<..LLfLUJI!'--+...JI""'''-'-':..L.L.LLL 

iAPX 286/10 

80286 RESET INPUT TIMING AND 
SUBSEQUENT PROCESSOR CYCLE PHASE 

elK 

RESET 

elK 

RESET 

NOTES: 
NOTE 1: When RESET meets the setup time shown, the next ClK 

will start or repeat </>2 of a processor cycle, 
1. PClK indicates which processor cycle phase will occur on the 

next ClK. PClK may not indicate the correct phase until the first 
bus cycle is performed. 

2. These inputs are asynchronous. The setup and hold times shown 
assure recognition for testing purposes. 

EXITING AND ENTERING HOLD 

BUS CYCLE TYPE 

ClK 

HLDA ----+"""1 

51· so 

I (SEE NOTE 4.) 

BHE,lOCK 
A23 - lAo 

MIlO, ------------

COD/INTA ~~~=====lV~A~LI~D==~~~~~~~+-------------------
0 15 _ Do ___________________ ~:.E~~T.:~) 

I ~.."""",___!~="""-'<..L/ 

~[ PCLK 

NOTES: 
1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is shown. 
2. The data bus will be driven as shown if the last cycle before TI in the diagram was a write T C. 
3. The 80286 floats its status pins during T H' External 20Ko resistors keep these signals high (see Table 16). 
4. For HOLD request set up to HLDA, refer to Figure 29. 
5. SHE and LOCK are driven at this time but will not become valid until T S. 
6. The data bus will remain in 3-state OFF if a read cycle is performed. 

C-40 
210253-006 

AFN-02060D 



iAPX 286/10 

WAVEFORMS (Continued) 

80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY 

BUS CYCLE TYPE 

CLK 

51 • so 

A23 - Ao 

MIO 
COD INTA 

PEACK 

PERea 

~SSUMING WORD·AlIGNED MEMORY OPERAND. IF ODD ALIGNED, 80286 TRANSFERS TO/FROM MEMORY BYTE·AT·A·TIME WITH TWO MEMORY CYCLES. 

NOTES: 
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation 

will be either a memory read at operand address or 110 read at port address OOFA(H). 

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3XG)-@ma, 
-@)m," . The actual, configuration dependent, maximum time is: 3X CD-@m.,.-@)mm. + A X 2 xCD. 
A is the number of extra T c states added to either the first or second bus operation of the processor extension data operand transfer 
sequence. 

INITIAL 80286 PIN STATE DURING RESET 

BUS CYCLE TYPE 

CLK 

RESET 

8HE 

MilO 

COD/iNTA 

LOCK 

DATA 

HlOA 

NOTES: 

UNKNOWN 

UNKNOWN 

UNKNOWN 

UNKNOWN 

, UNKNOWN 

AT lEAST 
16 ClK PERIODS 

------55---------

IF HOLD IS NOT ACTIVE (SEE NOTE 4). 

1. Setup time for RESET 1 may be violated with the consideration that 01 of the processor clock may begin one system elK period later. 
2. Setup and hold limes for RESET _ must be met for proper operation, but RESET 1 may occur during 01 or 02. 
3. The data bus is only guaranteed to be in 3·stale OFF at the time shown. 
4. HOLD is acknowledged during RESET, causing HlDA to go active and the appropriate pins to float If HOLD remains active while RESET goes 

inactive, the 80286 remains in HOLD state and will not perform any bus accesses until HOLD is de-activiated. 

C-41 
210253·006 

AFN·02060D 



iAPX 286/10 

BYTE 1 BYTe 2 BYTE 3 BYTE 4 BYTES BYTE 6 

,..........,...'-r-r-,r'-T.,..;T-r'-r....,..."r'-r-,~'-1 - - - - - - -,. - - - - - - -"T - - - - - - -"T - - - - - - -., 

LOW OISP/OATA : HIGH DISP/DATA LOW DATA 
I 
I HIGH DATA 

'--_...,..._ ........ ....., ....... ,.......-.,..-"'-..,..... .... ______ - • - ______ ..&._ - - - ___ .... ____ - __ ..I 

REGISTER OPERAND/REGISTERS TO USE IN OFFSET CALCULATION 

'----- REGISTER OPERAND/EXTENSION OF OPCODE 
L-____ REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH 

'-------- WORD/BYTE OPERATION 
'-------- DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER 

'----------- OPERATION (INSTRUCTION) CODE 

A. SHORT OPCOOE FORMAT EXAMPLE 

BYTe 1 BYTE 2 BYTE 3 BYTe 4 BYTES 

B. LONG OPCODE FORMAT EXAMPLE 

Figure 35. 80286 Instruction Format Examples 

80286 INSTRUCTION SET SUMMARY 
Instruction Timing Notes 
The instruction clock counts listed below establish the 
maximum execution rate of the 80286. With no delays in 
bus cycles, the actual clock count of an 80286 program 
will average 5% more than the calculated clock count, 
due to instruction sequences which execute faster than 
they can be fetched from memory. 

To calculate elapsed times for instruction sequences, 
multiply the sum of all instruction clock counts, as listed 
in the table below, by the processor clock period. An 8 
MHz processor clock has a clock period of 125 nanosec
onds and requires an 80286 system clock (ClK input) of 
16 MHz. 

Instruction Clock Count Assumptions 
1. The instruction has been prefetched, decoded, and 

is ready for execution. Control transfer instruction clock 
counts include all time required to fetch, decode, and 
prepare the next instruction for execution. 

2. Bus cycles do not require wait states. 

3. There are no processor extension data transfer or 
local bus HOLD requests. 

4. No exceptions occur during instruction execution. 

C-42 

Instruction Set Summary Notes 
Addressing displacements selected by the MOD field 
are not shown. If necessary they appear after the in
struction fields shown. 

Above/below refers to unSigned value 

Greater refers to positive signed value 

less refers to less positive (more negative) signed values 

if d = 1 then to register; if d = 0 then from register 

if w = 1 then word instruction; if w = 0 then byte 
instruction 

if s = 0 then 16-bit immediate data form the operand 

if s = 1 then an immediate data byte is sign-extended 
to form the 16-bit operand 

x don't care 

z used for string primitives for comparison with ZF 
FLAG 

If two clock counts are given, the smaller refers to a reg
ister operand and the larger refers to a memory operand 

* = add one clock if offset calculation requires sum-
ming 3 elements 

n = number of times repeated 

m = number of bytes of code in next instruction 

Level (l)-lexical nesting level of the procedure 

210253-006 
AFN-02060D 



iAPX 286/10 

The following comments describe possible exceptions, 
side effects, and allowed usage for instructions in both 
operating modes of the 80286. 

REAL ADDRESS MODE ONLY 

1. This is a protected mode instruction. Attempted ex
ecution in real address mode will result in an unde
fined opcode exception (6). 

2. A segment overrun exception (13) will occur if a word 
operand reference at offset FFFF(H) is attempted. 

3. This instruction may be executed in real address 
mode to initialize the CPU for protected mode. 

4. The IOPl and NT fields will remain O. 

5. Processor extension segment overrun interrupt (9) 
will occur if the operand exceeds the segment limit. 

EITHER MODE 

6. An exception may occur, depending on the value of 
the operand. 

7. meR is automatically asserted regardless of the 
presence or absence of the lOCK instruction prefix. 

8. lOCK does not remain active between all operand 
transfers. 

PROTECTED VIRTUAL ADDRESS MODE ONLY 

9. A general protection exception (13) will occur if the 
memory operand can not be used due to either a 
segment limit or access rights violation. If a stack 
segment limit is violated, a stack segment overrun 
exception (12) occurs. 

10. For segment load operations, the CPl, RPl, and 
OPl must agree with privilege rules to avoid an ex
ception. The segment must be present to avoid a 

C-43 

not-present exception (11). If the SS register is the 
destination, and a segment not-present violation 
occurs, a stack exception (12) occurs. 

11. All segment descriptor accesses in the GOT or lOT 
made by this instruction will automatically assert 
meR to maintain descriptor integrity in multipro
cessor systems. 

12. JMP, CAll, INT, RET, IRET instructions referring to 
another code segment will cause a general protec
tion exception (13) if any privilege rule is violated. 

13. A general protection exception (13) occurs if CPl 
~ o. 

14. A general protection exception (13) occurs if 
CPl> IOPl. 

15. The IF field of the flag word is not updated if 
CPl > IOPl. The IOPl field is updated only if 
CPl = O. 

16. Any violation of privilege rules as applied to the se
lector operand do not cause a protection exception; 
rather, the instruction does not return a result and 
the zero flag is cleared. 

17. If the starting address of the memory operand vio
lates a segment limit, or an invalid access is at
tempted, a general protection exception (13) will 
occur before the ESC instruction is executed. A stack 
segment overrun exception (12) will occur if the stack 
limit is violated by the operand's starting address. If 
a segment limit is violated during an attempted data 
transfer then a processor extension segment over
run exception (9) occurs. 

18. The destination of an INT, JMP, CAll, RET or 
IRET instruction must be in the defined limit of 
a code segment or a general protection excep
tion (13) will occur. 

210253-006 
AFN-02060D 



illtel~ iAPX 286/10 ~@W~OO©~ OOOrF@!rufMl~if'O@OO 

80286 INSTRUCTION SET SUMMARY 
CLOCK COUNT COMMENTS 
Real Protected Real Protected 

FUNCTION FORMAT Address Villual Address Villual 
Mode Address Mode Address 

Mode Mode 

DATA TRANSFER 
MOV = Move: 
Register to RegisterlMemory 11 000100w mod reg rim .3,.3:. ... 2,3" 

Registerlmemory to register 11 00 0 1 0 1 w mod reg rim 2,5" 2,5" 

Immediate to register/memory 11 1 0001 1 w modOOO rim data dataifw~1 2,3" 2,J-

Immediate to register 11 01 1 w reg data data ifw~ 1 2 

Memory to accumulator 11 010000~ addr·low addr·high _L 9· 

Accumulator to memory 11 o 1 0 0 0 1 w addr·low addr·high ... .11. 
Register/memory to segment register 11 00 0 1 11 0 mod 0 reg rim 2,5·· 17,19' 9,.10;l~··· 

Segment register to register/memory 11 00 0 1 1 0 0 I mod 0 reg rim 2,3" 2,3" 9 

PUSH = Push: 
Memory 11 111111 1 mod 11 0 rim 5" 5" ._.it. 

Register 10 1 0 1 0 reg 3 )1-· 

Segment register 1000regii o I 3 

';!!ni@_"', 1·~:1J' .. ~';10 $l!I'; 

:;l/II~"'P!l~n:l!It; l~lf()~~1I0t 

POP = PDP: 
Memory 11 00 0 1 1 1 11 modOOO rim 5" 5" 2 .9.--

Register 10 1 0 1 1 reg I 2 ,.,..~--
Segment register 10 00 reg 11 11 (reg~OI) 20 2 .9,,1a •. U--

IQ'1. 1 O·ilIlO.(1 

XCHG = Exchange: 
Register/memory with register 11 000011wl mod reg rim 3,5" 3,5" 2.7 7,9 

Register with accumulator 11 00 1 0 reg I 3 

IN = I.puttrom: 
Fixed port 11 1 1 00 lOw I port 

variable port 11 1 1 0 1 lOw I 14 

OUT = Outputlo: 
Fixed port 11 1 1 0 0 1 1 wi port 

variable port 11 1 1 0 1 1 1 wi •.. _).4-

XLAT ~ Translate byte to AL 11 1 0 1 0 1 1 11 

LEA ~ Load EA to register 11 00 0 1 1 0 11 mod reg rim 3" 3" 

lOS ~ Load painter to OS 11 1 0 0 0 1 0 11 mod reg lim (mod ~ 11) r 21" 

lES ~ Load pointer to ES 11 10001001 mod reg rim (mod ~ 11) r 21" 

LAHF ~ Load AH with flags 11 o 0 1 11 11 2 

SAHF ~ Store AH IOta flags 11 00 1 1 11 01 

PUSHF ~ Push flags 11 00 1 1 0 0 I ..... JL 
POPF ~ Pop flags 11 00 1 1 1 0 1 I 2,4 9,15 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

110\ .000 

C-44 
210253·006 

AFN·02060D 



IAPX 286/10 

80286 INSTRUCTION SET SUMMARY (Continued) 

FUNCTION 

ARITHMmC 
ADD = Add: 

FORMAT 

CLOCK COUNT 
Rial 

Address 
Mode 

Protectad 
Virtual 

Address 
Mode 

COMMENTS 
Rial 

Address 
Mode 

Protected 
Virtual 

Address 
Mode 

Reglmemory with register to erther 

Immediate to registerlmemory 

Immediate to accumulator 

~lo=o~o~O:;O~o::d=w*1 =m~od~r::::eg~r/:::m~ __ =_--''--::-'-''---::70 _-.23',77': 
11 00000 s w I modOOO rim data dataifsw-01 

2,7" .L.,. __ ..9... 

,.3,7:, .• _ .. L _,_~ .. 11-

ADC = Add with carry: 
Reglmemory with register to either 

Immediate to registerlmemory 

Immediate to accumulator 

INC = Increment: 
Registerlmemory 

Register 

SU8 = Subtract: 
Reglmemory and register to either 

Immediate from registerlmemory 

Immediate from accumulator 

S88 = Subtract wllb borraw: 
Reglmemory and register to either 

Immediate from registerlmemory 

Immediate from accumulator 

DEC = Decrement: 
Registerlmemory 

Register 

CMP = Compare: 
Registerlmemory with register 

Register with registerlmemory 

Immediate with register/memory 

Immediate with accumulator 

NEG = Change sign 

MA = ASCII adjustfor add 

DAA= Decimal adjustfor add 

AAS = ASCII adjust for subtract 

DAS = Decimal adjust for subtract 

MUL = Multiply (unsigned): 
Register-Byte 
Register-Word 
Memory-Byte 
Memory-Word 

IMUL = Integer multiply (Signed): 
Register-Byte 
Register-Word 
Memory-Byte 
Memory-Word 

DIV = Divide (unsigned): 
Register-Byte 
Register-Word 
Memory-Byte 
Memory-Word 

10000010wl data dataifw-1 

10 00 1 0 0 d w I mod reg rim 

11 0 0 0 0 0 s w I mod 0 10 rim 

10 0 0 1 0 1 0 w I data 

11 1 1 1 1 1 1 w I mod 000 rim 

10 1 0 0 0 reg I 

10 0 1 0 1 0 d w I 
11 OOOOOs wi 

/O'Oi0110wi 

10 00 1 1 0 d wi 

11 OOOOOs wi 

10001110wl 

11 111111 wi 

10 1 0 0 1 reg I 

10 01 1 1 01 w I 
10011100wl 

1100000swi 

10 01 1 1 1 0 w 

11 11 1 011 w 

10 01 1 0 1 1 1 

10 01 001 1 1 

10 0 1 1 1 1 1 1 

10-0 1 0 1 1 1 1 

mod reg rim 

mod 1 01 rim 

data 

mod reg rim 

mod011 rim 

data 

mod001 rim 

mod reg rim 

mod reg rim 

mod11 t rim 

data 

mod011 rim 

11111011 wi mod100 rim 

11 1 1 1 0 1 1 w I mod 1 0 1 rim 

11 1 1 1 0 1 1 w I mod 11 0 rim 

data 

dataifw-1 

data 

dataifw-1 

data 

dataifw-1 

data 

dataifw- t 

dataifsw-01 

dataifsw-01 

dataifsw-01 

dataiisw=01 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems, 

C-45 

2,r 
3,r 

3 

2,7" 2 9. 

3 .. ?: .. ,,' 2 ... ' ""'-'9 , .• 

3 
" ... "" 

2.7" 2,7" ---
2 ._,.2., ... 

2.r 2.~:.... 1_, '" 9 

3.7" 3.7" .. . ..... t.. . .. ,,9. 

L. __ .. .1. __ 

2.r 2,r 
-, ----- .. ,.--

3.7" 3.7" 

~'_I-, __ 3_ 

2,r 2.7" 2 
.-----.-~ .. 

2 2 
------1----. 

__ .~,.6:- ___ 2.6" . . _ .2 . ___ ._9. 

2.r 
3.6" 

".' .". 

2,r 
,~,:~: 

3 _.t 
7" 

I· 
'" _.......3... 

"_3,, 

. _",.3. 

3 3 
--I---

13 
21 
16''' 
24" 

210253-006 
AFN-020600 



iAPX 286/10 

80286 INSTRUCTION SET SUMMARY (Continued) 

FUNCTION 

ARITHMETIC (Conlinued): 

IDIV ~ Integer divide (signed): 
Register-Byte 
Register-Word 
Memory-Byte 
Memory-Word 
AAM ~ ASCII adjust for multipJy 

AAD ~ ASCII adjust for divide 

CBW ~ Convert byte to word 

CWO ~ Convert word to double word 

LOGIC 
Shift/Rotate Instructions: 
RegisterlMemory by 1 

RegisterlMemory by CL 

,!;i!!l!9~~~IiYQttI!~ 

AND;And: 
Reglmemory and register to either 

Immediate to register/memory 

Immediate to accumulator 

TEST;And tunclion 10 flags, no res<lt: 
Register/memory and register 

Immediate data and register/memory 

Immediate data and accumulator 

OR;Or: 
Reglmemory and register to either 

Immediate to register/memory 

Immediate to accumulator 

XOR; Exclusive or: 
Reg/memory and register to either 

Immediate to register/memory 

Immediate to accumulator 

NOT ~ Invert registerlmemory 

STRING MANIPULATION: 
MOVS ~ Move bytelword 

CMPS BIW ~ Compare byte/word 

SCAS ~ Scan bytelword 

LODS ~ Load bytelwd to AUAX 

FORMAT 

11 1 1 1 0 1 1 w I mod 1 t 1 rim 

1110101001000010101 

11101010tj000010l01 

1100110001 

11 00 1 1 0 0 1 I 

11 1 0 1 000 w I mod m rim I 
11 1 0 1 0 0 1 w I mod m rim I 

TTl Inslruction 
o 0 0 ROL 
o 0 1 ROR 
o 1 0 RCL 
o 1 1 RCR 
1 0 0 SHLISAL 
1 0 1 SHR 
1 1 1 SAR 

10 0 1 0 DOd wi mod reg rim 

11 oooooOwl mod 1 00 rim data 

10010010wl data dataifw~1 

11 000010wi mod reg rim 

11 1 1 1 0 1 1 wi mod 000 rim data 

11 010100wl data dataifw~1 

10000 10dw i mod reg 11m 

11 oooooowl mod 001 rim data 

10000110wl data datalf w ~ 1 

1001100dwi mod reg rim 

11 oooooowl mod 11 0 rim data 

10 o 1 1 0 lOw I data dataifw~ 1 

11 11 1 0 1 1 wi mod 0 1 0 rim 

010010wl 

01 00 1 1 wi 

o 1 0 1 11 wi 

data ifw~ 1 

dataifw~1 

dataifw~1 

dataifw~1 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-46 

CLOCK COUNT 
Real 

Address 
Mode 

17 
25 
20', .. 
28' 
16. 

14. 

L 

2,7' 

5+.n,8+rr: 

.; "'~+.A~+fi' 

V' 
.~~ ~- .. ~.-
3.7' 

Protected 
Virtual 

Address 
Mode 

JL 
.2L .. 

.. 2(1' 
28' 
t6 

•.. 14..-

2,7' 

2,7' _,_o __ ... _··,~ 
3.1' 

COMMENTS 
Real Protected 

Address Virtual 
Mode Address 

Mode 

.-L, ~ 
6 ... __ •. ~ . ..6._~-

.• 2.6 ..•.• .m • ..o;9--. 
2;6 .", .. ?:9 

,"-_. ~ -~'-.. -
3 

.~L~ 2,6' 

3,6: ..... M: 
3 "" _ .. _._.1.__ 

.~~~'C __ 
.. ~7:_ ... ?X' 

2,7' 2,7' 

3,7' 3,7' 

2,7' 2,7' 

•• 5. 

.L_ 
... __ 1-
. ____ .t. 

2 

9 

-.-JL 
. __ ._1 

.9.. 

9 -.-_...9--

210253-006 
AFN-02060D 



IAPX 286/10 

80286 INSTRUCTION SET SUMMARY L;OI~tlnUAtI 

FUNCTION 

STRING (Conlinuad): 
Repeated by count in CX 
1iI0VS = Move string 

CMPS = Compare string 

SCAS = Scan string 

LODS = Load string 

CONTROL TRANSFER 

CALL = Call: 
Direct within segment 

ReQister/memory 
indirect within segment 
Direct intersegment 

FORMAT 

/, , , , 0 0 , 

It , , , 0 0' z 

/, , , , 0 0' z 

1 , , 0 0 1 

/, , , 0 , 00 0 

I' """ 
II 00 , , 0 , 

P_d Moda Only (Dlract inlallaamanl): 
Via call gate to same privilege level 
Via call gate to differant privilege level, no parameters 
Via call gate to different privilage level, x parameters 
ViaTSS 
Via task gate 

Indirect intersegment I"""" , 
PI'otected Mode Only (Indirect Intllliamant): 

Via call gate to same privilege level 
Via call gate to different privilege level, no parameters 
Via call gate to different privilege level, x parameters 
ViaTSS 
Via task gate 

JMP = UnconilHlonaljump: 
Short/long I' , , 0 , 0, , 

Direct within segment I' , , 0 1 0 0 , 

disp·low disp·high 

modO'O rim 

segment ollset 

segment selector 

modO" rim (mod" ,') 

disp·low 

disp·low disp·high 

Registerlmemory indirect within segmentlL..;'.-:..' .,;,'_'-,-' .,;,1""'-,--,-..,;m",o;,;:d..;,'..:;O..:;O.,;,r/,,,m'-J 

Direct intersegment I' , , 0 , 0' 0 I 
Protactld Mode Only (Direct inlerseamanl): 

Via call gate to same privilege level 
ViaTSS 
Via task gate 

Indirect intersegment I' """ 
PI'otectad Moda Only (Indirect Inlelleamenl): 

Via call gate to same privilege level 
ViaTSS 
Via task gate 

RET = RllUm InIm CALL: 
Wrthin segment I' , 0 0 0 0 , 

Wrthin seg adding immed to SP I' '0000' 

I nterseg ment 

,:: 
,00 , 0' 

Intersegment adding immediate to SP , 0 0 , 0 , 

Protectad Mode Only (RET): 
To level 

'I 

tI 
o I 

~ I 

segment offset 

segment§"lector 

mod 1 0' rim (mod" ,') 

data·low data·high 

data·low data·high 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems, 

C-47 

16+m 

15+m' 

II+m 11+m 

II+m II+m 

15+m 25+m 

'5+m 

Protacted 
Virtual 
Addre" 
Mad. 

8,'1.12.18 

8.9.11,12,18 

8,9,18 

8.9,18 

8,9,11,12,,8 

8.9,11,12,18 

9.11,12,'8 

210253-006 
AFN·02060D 



intel4D 

/ 
/ 

80286 INSTRUCTION SET SUMMARY 

FUNCTION 

CONTROL 

JElJZ=Jumponeqlllllzero 

JLlJNGE ~ Jump on I,SSlnotgreat!ror equ~ 

JLElJNG ~ Jumpon lessorequallnot greater 

JB/JNAE ~ Jump on betowlnotaboveorequ~ 

JBElJNA ~ Jump on betow or equallnot above 

JP/JPE ~ Jump on pari~lpari~even 

JO ~ Jump on overlow 

JS ~ Jump on s~n 

JNE/JNZ ~ Jump on notequallnot zero 

JNLlJGE ~ Jump on not lesslgrederorequ~ 

JNLElJG ~ Jump onnot less or.'greater 

JNB/JAE ~ Jump on not beIowlabove oreq~ 

JNBElJA ~ Jump on not be~w orequallabove 

JNP/JPO ~ Jump on not par/jlarodd 

JNO~Jumponnotoverlow 

JNS ~ Jump onnot sign 

LOOP ~ LoopCXtimes 

LOOPZlLOOPE ~ LOllllwhilezerolequal 

LOOPNZlLOOPNE ~ Loop .hilenotzerolequ~ 

JeXZ ~ Jump on CXmro 

INTO '~Itnterrupt on overftow . , 
PnIIectad Mode Only: 

FORMAT 

10 1 1 1 0 1 0 0 I 
10 1 1 1 1 1 0 0 I 
1.0 1 1 1 1 1 1 0 I 
10 1 1 1 0 0,1 0 I 
10 1 1 1 01 1 0 

10 1 1 1 1 01 0 

101110000 

10 1 11 1 00 0 

10 1 1 1 0 1 0 1 

10 1 1 1 1 1 0 1 

10 1 1 1 1 'I 1 

10 1 1 1 0 0 1 

10 1 1 1 0,1 1 

10 1 1 1 1 01 1 

10 1 1 1 0 0 0 1 

10 1 1 1 1 00 1 

11 1 1 0 0 0 1 0 

11 1 1 0 0 0 0 1 

11 1100000 

11 1 1 0 0 0 1 1 

11100110\,1 

11 1 0 0 t 1 0 0 I 
11 1 0 0 1 1 1 0 I 

Via interrupt or trap gate to same privilege tevet 
Via interrupt or trap gate to fit different privilege level 
Via Task Gate 

IRET ~ Interrupt return 11 1 001 1 1 11 

IAPX 286/10 

disp 

disp 

disp 

disp 

dlsp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

disp 

'type 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-48 

~[Q)W~OO©[g OOOIF@OO[M)~'i1'O@OO 

Rell 
Add" .. 
Mode 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

8+mor4 8+mor4 

8+mor4 8+mor4 

8+mor4 8+mor4 

8+mor4 8+mor4 

I'nII8cIed 
Vil1ull 

Addre .. 
Mode 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

18 

210253-006 
AFN-02060D 



iAPX 286/10 

80286 INSTRUCTION SET SUMMARY 

FUNCTION 

PROCESSOR CONTROL 
ClC ~ Clear carry 

CMC ~ Complement carry 

STC ~ Set carry 

ClO ~ Clear direction 

STD ~ Set direction 

Cli ~ Clear interrupt 

STI ~ Set interrupt 

HlT~Halt 

WAIT~Wait 

FORMAT 

11 1 1 1 1 00 0 

11 1 1 1 0 1 0 1 

11 1 1 1 1 00 1 

11 1 1 1 1 1 0 0 

11 1 1 1 1 1 0 1 

11 1 1 1 1 0 1 0 

11 1 1 1 1 0 1 1 

11 1 1 1 0 1 0 0 

11 00 1 1 0 1 1 

lOCK~Buslockprefix 11 11 1000 0 

· ••. :iI~;;:o,;;;i;I·;;;i;I·.i;~·;~1·1;:;:.ii=;;j""':9"":Q"";i!!"":~""ij"'"~: ""'jQ::"I1 

ESC ~ Processor Extension Escape 11 1 0 1 1 T TTl mod LLL rim I 
(TIT LLL are opcode to processor extension) 

1001 re9110 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-49 

R.al 
Addr ••• 
Mode 

Prolected 
Virtual 

Addr ••• 
Mode 

Real 
Address 
Mode 

Prolecled 
Virtual 

Addre •• 
Mode 

14 

13 

14 

210253-006 
AFN-02060D 



iAPX 286/10 

Footnotes 

The effective Address (EA) of the memory operand is 
computed according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 

if mod = 00 then OISP = 0', disp-Iow and disp-high 

are absent 

if mod = 01 then OISP = disp-Iow sign-extended to 

16-bits, disp-high is absent 

if mod = 10 then OISP = disp-high: disp-Iow 

if rim = 000 then EA = (BX) + (SI) + OISP 

if rim = 001 then EA = (BX) + (DI) + DISP 

if rim = 010 then EA = (BP) + (SI) + DISP 

if rim = 011 then EA = (BP) + (DI) + DISP 

if rim = 100 then EA = (SI) + DISP 

if rim = 101 then EA = (DI) + DISP 

if rim = 110 then EA = (BP) + DISP' 

if rim = 111 then EA = (BX) + DISP 

OISP follows 2nd byte of instruction (before data if 
required) 

'except if mod ~ 00 and rim ~ 110 then EA ~ disp-high: disp-Iow. 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

reg is assigned according to the following: 

reg 
Segment 
Register 

00 ES 
01 CS 
10 SS 
11 DS 

C-50 

REG is assigned according to the following table: 

16·Bit(w = 1) 8·Bit(w = 0) 
000 AX 000 AL 

001 CX 001 CL 
010 DX 010 DL 

011 BX 011 BL 
100 SP 100 AH 

101 BP 101 CH 

110 SI 110 DH 

111 DI 111 BH 

The physical addresses of all operands addressed by 
the BP register are computed using the SS segment 
register. The physical addresses of the destination op
erands of the string primitive operations (those ad
dressed by the DI register) are computed using the ES 
segment, which may not be overridden. 

210253-006 

AFN-02060D 



268-5400-51 

PC BOARD PATTERN 

<t. ~P'NN01 

•. ;l;l;(l;l;l;l:~ ~-~ 
~ SOCKET .r:: FRONT 

C- ~1~~NL~A~~lNEn 41 
DEVICE PADS 8 FORI .029 DIA ..r:1 
SHOWN FOR -L.,I 7+10.741-- ~-'i ~500. 
CONTACT L/ I r.1 I I 1 
LOCATION ~ I .r7I (21~) TYP 
ONLY-NOT p- ,., r.1 .1.1 
T~,::Ef+- -~~~~)JJJ~~T 
10.381 I l..t L ~ ..j h~:~1 TV • 

. o~~ (2~~2) - -~ 
(0.51) 8 SPCSQ.100TOL NON ACCUM TYP 4 PlCS 

CONTACT TAil (2.54) 

iAPX 286/10 

268-5400-00 .. 

I .'r-
SOCKET ~RtENTAT10N PIN ~-= 

ALUMINUM LID 
(HEATSINK PROVISIONS OPTIONAL) 

INDEX 

CL-~FRONT 

TEST PROBE POINT / 

\-~~ 

'~L~~ ,)" 
.100 (O~~~) TYP 5 Ples ct 

(2.54) 

Figure 36_ Textool 68 Lead Chip Carrier Socket 

C-51 
210253-006 

AFN-02060D 





Append~ £) 
iAPX 86/88 Software 
Compatibility Considerations 



APPENDIX D 

Contents 

List of Minor Differences Between 
iAPX 86 arid iAPX 286 (Real Mode) ..... D-1 



APPENDIX D 
iAPX 86/88 SOFTWARE COMPATIBILITY CONSIDERATIONS 

In general, the real address mode iAPX 286 
will correctly execute ROM-based iAPX 
86/88 software. The following is a list of the 
minor differences between iAPX 86 and iAPX 
286 (Real mode). 

1. Add Six Interrupt Vectors. 

The iAPX 286 adds six interrupts which 
arise only if the iAPX 86/88 program has 
a hidden bug. These interrupts occur only 
for instructions which were undefined on 
the 8086/8088 or if a segment wrapa
round is attempted. It is recommended 
that you add an interrupt handler to the 
iAPX 86/88 software that is to be run on 
the iAPX 286, which will treat these 
interrupts as invalid operations. 

This additional software does not signifi
cantly effect the existing iAPX 86/88 
software because the interrupts do not 
normally occur and should not already 
have been used since they are in the 
interrupt group reserved by Intel. 
Table D-l describes the new iAPX 286 
interrupts. 

2. Do not Rely on iAPX 86/88 Instruction 
Clock Counts. 

The iAPX 286 takes fewer clocks for 
most instructions than the iAPX 86/88. 
The areas to look into are delays between 
I/O operations, and assumed delays in 
iAPX 86/88 operating in parallel with an 
8087. 

3. Divide Exceptions Point at the DIV 
Instruction. 

Any interrupt on the iAPX 286 will 
always leave the saved CS:IP value 
pointing at the beginning of the instruc
tion that failed (including prefixes). On 

0-1 

Table 0-1. New iAPX 286 Interrupts 

Interrupt 
Number 

5 

6 

7 

8 

9 

Function 

A BOUND instruction was 
executed with a register value 
outside the two limit values. 

An undefined opcode was 
encountered. 

The EM bit in the MSW has been 
set and an ESC instruction was 
executed. This interrupt will also 
occur on WAIT instructions if TS 
is set. 

The interrupt table limit was 
changed by the LlDT instruction 
to a value between 20H and 42H. 
The default limit after reset is 
3FFH, enough for all 256 inter
rupts. 

A processor extension data 
transfer exceeded offset OFFFFH 
in a segment. This interrupt 
handler must execute FNINIT 
before any ESC or WAIT instruc
tion is executed. 

13 Segment wraparound was 
attempted by a word operation at 
offset OFFFFH. 

16 When 80286 attempted to 
execute a coprocessor instruc-
tion ERROR pin indicated 
an unmasked exception 
from previous coprocessor 
instruction. 

the iAPX 86/88, the CS:IP value saved 
for a divide exception points at the next 
instruction. 

4. Use Interrupt 16 for Numeric Excep
tions. 

Any iAPX 286/20 system must use 
interrupt vector 16 for the numeric error 



IAPX 86/88 SOFTWARE COMPATIBILITY CONSIDERATIONS 

interrupt. If an iAPX 86/20 or iAPX 
88/20 system uses another vector for the 
8087 interrupt, both vectors should point 
at the numeric error interrupt handler. 

5. Numeric Exception Handlers Should 
allow Prefixes. 

The saved CS:IP value in the NPX 
environment save area will point at any 
leading prefixes before an ESC instruc
tion. On iAPX 86/88 systems, this value 
points only at the ESC instruction. 

6. Do Not Attempt Undefined iAPX 86/88 
Operations. 

iAPX 86/88 instructions like POP CS or 
MOV CS,op will either cause exception 
6 (undefined opcode) or perform a 
protection setup operation like LIDT on 
the iAPX 286. Undefined bit encodings 
for bits 5-3 of the second byte of POP 
MEM or PUSH MEM will cause excep
tion 13 on the iAPX 286. 

7. Place a Far JMP Instruction at FFFFOH. 

After reset, CS:IP = FOOO:FFFO on the 
iAPX 286 (versus FFFF:OOOO on the 
iAPX 86/88). This change was made to 
allow sufficient code space to enter 
protected mode without reloading CS. 
Placing a far JMP instruction at 
FFFFOH will avoid this difference. Note 
that the BOOTSTRAP option of LOC86 
will automatically generate this jump 
instruction. 

8. Do not Rely on the Value Written by 
PUSH SP. 

The iAPX 286 will push a different value 
on the stack for PUSH SP than the iAPX 
86/88. If the value pushed is important, 
replace PUSH SP instructions with the 
following three instructions: 

PUSH 
MOV 
XCHG 

BP 
. BP,SP 

BP,[BP] 

0-2 

This code functions as the iAPX 86/88 
PUSH SP instruction on the iAPX 286. 

9. Do not Shift or Rotate by More than 31 
Bits. 
The iAPX 286 masks all shift/rotate 
counts to the low 5 bits. This MOD 32 

. operation limits the count to a maximum 
of 31 bits. With this change, the longest 
shift/rotate instruction is 39 clocks. 
Without this change, the longest shift/ 
rotate instruction would be 264 clocks, 
which delays interrupt response until the 
instruction completes execution. 

10. Do not Duplicate Prefixes. 

The iAPX 286 sets an instruction length 
limit of 10 bytes. The only way to violate 
this limit is by duplicating a prefix two 
or more times before an instruction. 
Exception 6 occurs if the instruction 
length limit is violated. The iAPX 86 or 
88 has no instruction length limit. 

11. Do not Rely on Odd iAPX 86/88 LOCK 
Characteristics. 

The LOCK prefix and its corresponding 
output signal should only be used to 
prevent other bus masters from inter
rupting a data movement operation. The 
iAPX 286 'will always assert LOCK 
during an XCHG instruction with 
memory (even if the LOCK prefix was 
not used). LOCK should only be used 
with the XCHG, MOV, MOVS, INS, 
and OUTS instructions. 

The iAPX 286 LOCK signal will not go 
active during an instruction· prefetch. 

12. Do not Single Step External Interrupt 
Handlers. 

The priority of the iAPX 286 single step 
interrupt is different from that of the 
iAPX 86/88. This change was made to 
prevent an external interrupt from being 



iAPX 86/88 SOFTWARE COMPATIBILITY CONSIDERATIONS 

single-stepped if it occurs while single 
stepping through a program. The iAPX 
286 single step interrupt has higher 
priority than any external interrupt. 

The iAPX 286 will still single step 
through an interrupt handler invoked by 
INT instructions or an instruction 
exception. 

13. Do not Rely on IDIV Exceptions for 
Quotients of 80H or 8000H. 

The iAPX 286 can generate the largest 
negative number as a quotient for IDIV 
instructions. The iAPX 86 will instead 
cause exception O. 

14. Do not Rely on NMI Interrupting NMI 
Handlers. 

0-3 

After an NMI is recognized, the NMI 
input and processor extension limit error 
interrupt is masked until the first IRET 
instruction is executed. 

15. The NPX error signal does not pass 
through an interrupt controller (an 
8087 INT signal does). Any interrupt 
controller-oriented instructions for the 
iAPX 86/20 may have to be deleted. 

16. If any real-mode program relies on 
address space wrap-around (e.g. 
FFFO:0400=0000:0300), then external 
hardware should be used to force the 
upper 4 addresses to zero during real 
mode. 

17. Do not use I/O ports 00F8-00FFH. 
These are reserved for controlling 80287 
and future processor extensions. 





APPENDIX E 
iAPX 286/386 SOFTWARE COMPATIBILITY CONSIDERATIONS 

This appendix describes the considerations 
required in designing an Operating System for 
the protected mode iAPX 286 so that it will 
operate on an iAPX 386. An iAPX 286 
Operating System running on the iAPX 386 
would not use any of the advanced features 
of the iAPX 386 (i.e., paging or segments 
larger than 64K), but would run iAPX 286 
code faster. Use of the new iAPX 386 features 
requires changes in the iAPX 286 Operating 
System. 

The iAPX 386 is no different than any other 
software compatible processor in terms of 
requiring the same system environment to run 
the same software; the iAPX 386 must have 
the same amount of physical memory and 
I/O devices in the system as the iAPX 286 
system to run the same software. Note that 
an iAPX 386 system requires a different 
memory system to achieve the higher 
performance. 

The iAPX 286 design considerations can be 
generally characterized as avoiding use of 
functions or memory that the iAPX 386 will 
use. The exception to this rule is initialization 
code executed after power up. Such code must 
be changed to configure the iAPX 386 system 
to match that of the iAPX 286 system. 

The following are iAPX 286/386 software 
compatibility design considerations: 

1. Isolate the protected mode initialization 
code. 

System initialization code will be required 
on the iAPX 386 to program operating 
parameters before executing any signifi
cant amount of iAPX 286 software. The 
iAPX 286 initialization software should 
be isolated from the rest of the Operating 
System. 

E-1 

The initialization code in Appendix A is 
an example of isolated initialization code. 
Such code can be extended to include 
programming of operating parameters 
before executing the initial protected 
mode task. 

2. Self-modifying code requires cache 
flushes. 

The code cache of the iAPX 386 requires 
consideration in the Operating System to 
support special cases of self-modifying 
code. In general, self-modifying code will 
not work on iAPX 386 with caching 
enabled. 

Debuggers or loaders that change 
instructions (by overlaying data segments 
over code segments) should use an 
Operating System call to flush the cache. 
An iAPX 286 Operating System would 
do nothing with this call. An alternative 
approach is for the iAPX 286 Operating 
System to flush the cache automatically 
(do nothing on an iAPX 286) after 
subroutines or Operating System calls 
known to modify code segments. 

3. Avoid wraparound of iAPX 286 24-bit 
physical address space. 

Since the iAPX 386 has a larger physical 
address space, any segment whose base 
address is greater than FFOOOO and whose 
limit is beyond FFFFFF will address the 
seventeenth megabyte of memory in the 
iAPX 386 32-bit physical address space 
instead of the first megabyte on an iAPX 
286. 

No expand-down segments should 
have a base address in the range 
FFOOOOI-FFFFFF. No expand-up 
segments should wrap around the iAPX 
286 address space (the sum of their 



base and limit is in the range 
OOOOOO-OOFFFE). 

4. Zero the last word of every iAPX 286 
descriptor. 

The iAPX 386 uses the last word of'each 
descriptor to expand the base address and 
limit fields of segments. Placing zeros in 
the descriptor will cause the iAPX 386 to 
treat the segments the same way as an 
iAPX 286 (except for address space 
wraparound as mentioned above). 

5. Use only 80H or OOH for invalid 
descriptors. 

The iAPX 386 uses more descriptor types 
than the iAPX 286. Numeric values of 
8-15 in bits 3-0 of the access byte for 
control descriptors will cause a protec
tion exception on the iAPX 286, but may 
be defined for other segment types on the 
iAPX 386. Access byte values of 80H and 
OOH will remain undefined descriptors on 
both the iAPX 286 and the iAPX 386. 

6. Put error interrupt handlers in reserved 
interrupts 14,15, 17-3l. 

Some of the unused, Intel-reserved inter
rupts of the iAPX 286 will be used by the 
iAPX 386 (i.e., page fault or bus error). 
These interrupts should not occur while 
executing an iAPX 286 operating system 
on an iAPX 386. However, it is safest to 
place an interrupt handler in these inter
rupts to print an error message and stop 
the system if they do occur. 

7. Do not change bits 15-4 of MSW. 

The iAPX 386 uses some of the undefined 
bits in the machine status word. iAPX 

E-2 

286 software should ignore bits 15-4 of 
the MSW. To change the MSW on an 
iAPX 286, read the old value first with 
LMSW, change bits 3-0 only, then write 
the new value with SMSW. 

8. Use a restricted LOCK protocol for 
multiprocessor systems. 

The iAPX 386 supports the iAPX 86/286 
LOCK functions for simple instructions, 
but not the string move instructions. Any 
need for locked string moves can be satis
fied by gaining control of a status 
semaphore before using the string move 
instruction. Any attempt to execute a 
locked string move will cause a protec
tion exception on the iAPX 386. 

The general iAPX 286 LOCK protocol 
does not efficiently extend to large multi
processor systems. If all the processors in 
the system frequently use the iAPX 
86/286 LOCK, they will prevent other 
processors from accessing memory and 
thereby impact system performance. 

Access to semaphores in the future, including 
current iAPX 286 Operating Systems, should 
use a protocol with the following restrictions: 

• Be sure the semaphore starts at a physi
cal memory address that is a multiple 
of 4. 

• Do not use string moves to access the 
variable. 

• All accesses by any instruction or I/O 
device (even simple reads or writes) must 
use the LOCK prefix or system LOCK 
signal. 



AAA, 3-28, B-14, C-7 
AAD, 3-28, B-15, C-7 
AAM, 3-28, B-16, C-7 
AAS, 3-28, B-17, C-7 
ADC, 3-2, B-18, C-7 
ADD, 3-7, B-18, C-7 
Addressing Modes, 2-15 

Based Indexed Mode, 2-20 
Based Indexed Mode with Displacement, 

2-20 
Based Mode (on BX or BP 

Registers), 2-20 
Direct Address Mode, 2-20 
Displacement, 2-16, B-1, B-2 
Immediate Operand, 2-16, B-1, B-2, B-4, 

B-5 
Indexed Mode (by DI or SI), 2-20 
Opcode, 2-16, 2-21 
Register Indirect Mode, 2-20 
Summary, 2-20 

AF Flag, 
(see Flags) 

AH Register, 2-7, 2-17, 3-9, 3-25, 3-27, 3-28, 
B-56, C-47 

AL Register, 2-7, 2-17, 3-9, 3-25, 3-27, 3-28, 
3-30, B-73 

AND Instruction, 2-23, 3-10, B-19 
Arithmetic Instructions, 3-31 
ASCII 

(see Data Types), 
AX Register, 2-6, 2-7, 2-12, 2-16, 3-8, 3-9, 

3-17,3-24,3-30, B-73 

Based Index Mode 
(see Addressing Modes), 

Based Index Mode with Displacement 
(see Addressing Modes), 

Based Mode 
(see Addressing Modes), 

BCD Arithmetic 
(see Data Movement Instructions), 

BH Register, 2-7, 2-17, 3-9 

INDEX 

Index-1 

BL Register, 2-7, 2-17, 3-9, 3-17 
BOUND Instruction 

(see Extended Instruction Set), 
Bound Range Exceeded (Interrupt 5), 

(see Interrupt Handling), 
BP Register, 2-6, 2-7, 2-10, 2-11, 2-12, 

2-17,2-19,3-8,3-9,3-10,3-15,3-17, 
3-19, 3-25, 3-26 

Breakpoint Interrupt 3, 
(see Interrupt Handling), 

BUSY, 3-31 
BX Register, 2-6, 2-7, 2-10, 2-11, 2-12, 2-17, 

2-19,3-8,3-9,3-10,3-15,3-17,3-19, 
3-25, 3-26 

Byte 
(See Data Types), 

CALL Instructions, 3-18, 3-20,7-18, B-22, 
B-23, B-24, C-43 

Call Gates, 7-16 through 7-20, C-47 
CBW Instructions, 3-17, B-25, C-46 
CF (Carry Flag) 

(see Flags), 
CH Register, 2-7, 2-17 
CL Register, 2-7, 2-17, 3-11 through 3-16 
CLC Instruction, 3-26, B-26, C-49 
CLD Instruction,2-15, 3-27, B-27, C-49 
CLI Instruction, 2-15, 3-29, B-28, C-49 
CLTS Instruction, 10-4, 10-5, B-29, C-49 
CMDS Instruction, 3-5, 3-24, 3-25, B-32, 

C-46, C-47 
CMP Instruction, 3-17, B-36, C-45 
Code Segment Access, 7-12, 7-13, II-I, 11-2 
Comparison Instructions, 3-31 
Conforming Code Segments, 7-12, 7-13, 

II-I, 11-2 
Constant Instructions, 3-31 
Control Transfers, 7-15, 7-16 
CPL (Current Privilege Level), 7 -10, 7-14, 

C-43 
CS Register, 2-7, 2-8, 2-17, 2-18, 3-18, 3-19, 

3-20, 5-5 



CWD Instruction, 3-17, B-33, C-36 
CX Register, 2-6, 2-7, 2-17, 3-18, 

3-24 through 3-26 

DAA, 3-28, B-34, C-45 
DAS, 3-28, B-35, C-45 
Data Management Instructions,4-1, 4-2, 5-5 

Address Manipulation, 3-25, 3-26 
Arithmetic Instructions, 3-6 

Addition Instructions, 3-7 

INDEX 

Division Instructions, 3-9 
Multiplication Instructions, 3-8 
Subtraction Instructions, 3-7 

BCD Arithmetic, 2-3, 2-4, 2-6, 3-22, 3-24 
Character Transfer and String 

Instructions, 3-23 
Repeat Prefixes, 3-23, 3-24 
String Move, 3-23, 3-24, 3-25 
String Translate, 3-23 

Control Transfer Instructions,3-17 
Conditional Transfer, 3-21, 3-22 
Software Generated Interrupts, 3-23 

Interrupt Instructions, 3-23 
Unconditional Transfer, 3-18, 3-19, 3-20 

Flag Control, 3-26, 3-27 
Logical Instructions, 3-1 ° 

Shift and Rotate Instructions, 
3-10 through 3-16 

Type Conversion Instructions, 3-17 
Processor Extension Intructions, 3-30, 3-31 

Processor Extension Overview, 3-30, 
3-31 

Test and Compare Instructions, 3-17 
Trusted Instructions, 3-29 

Input/Output Instructions, 3-29, 3-30 
Stack Manipulation, 3-1 through 3-5 

Data Transfer Instructions, 3-31 
Data Types, 2-1 through 2-6 

ASCII, 2-3, 2-5, B-14 through B-17, C-45, 
C-46 

BCD,2-3 
Byte, 2-1, 2-2, 2-3 
Floating Point, 2-3 
Integer, 2-3 
Packed BCD, 2-3 

Pointer, 2-3 
Strings, 2-3 
Word, 2-2, 2-3 

DEC Instruction, 2-16, 3-8, B-36, C-45 
Dedicated Interrupt Vector, 5-5 
Descriptor Table, 6-4, 6-5, 6-6 
Descriptor Table Register, 6-6, 6-9, 7-6, 

10-1, 10-2, 10-3 
DF Flag, 

(see Flags), 
DH Register, 2-7, 2-17 
DI Instruction, 2-6, 2-10, 2-11, 2-15 through 

2-19, 3-18, 3-23 through 3-26, 4-1 
Direct Address Mode 

(see Addressing Modes), 
DIV Instruction, 1-24,3-9, B-37, C-45 
Divide Error (Interrupt 0) 

(see Interrupt Handling), 
DL Register, 2-7, 2-17 
DPL (Descriptor Privilege Level), 6-8, 7-10 

through 7-21, 8-4, 9-4,11-1,11-4, C-43 
DS Register, 2-7, 2-8, 2-17, 2-18, 3-24, 5-7, 

B-58 
DX Register, 2-6, 2-7, 2-17, 3-8, 3-9, 3-17, 

3-18, 3-25, 3-26, 3-30, 4-1 

EM (Bit in MSW), 10-4, 10-6 
ENTER Instruction, 4-1 through 4-5, B-38, 

C-48 
ES Register, 2-7, 2-8, 2-11, 2-17, 2-18, 2-19, 

3-23, 3-24, 3-25, 4-1 
ESC (Instructions for Coprocessor), 3-30, 

C-44 
Extended Instruction Set (Chapter 4), 

4-1 through 4-6 
ENTER Build Stackframe, 4-1 through 4-5, 

B-38, C-48 
LEAVE Remove Stackframe, 4-1, 4-5, 

B-61 
Repeated IN and OUT String Instructions, 

4-1,4-2, B-89 

Flag Register, 2-14, 2-15, 3-5, 3-6, B-83, 
B-86 

Index-2 



Flags, 2-14, 2-15, 3-5 through 3-8, 3-25, 
B-56 

see also Use of Flags with Basic 
Instructions, 2-14, 2-15, 3-5 through 

3-8, 3-25, B-56 
AF (Auxilliary Carry Flag), 2-14, 2-15, 

3-5 through 3-10, 3-17, 3-25, 3-27, 
3-28 

CF (Carry Flag), 2-14, 3-5 through 3-17, 
3-21, 3-25 through 3-27, B-26, B-30, 
B-88, B-I00 

DF (Direction Flag), 2-14, 2-15,3-6,3-7, 
3-24 through 3-27,4-2, B-27, B-IOO 

IF (Interrupt Flag), 2-14, 2-15, 3-6, 3-7, 
3-29,5-5,5-7,9-2,9-3, B-28, B-102, 
C-49 

IOPL (Privilege Level), 2-14, 3-6, 3-29, 
3-30, B-28, B-I00 

NT (Nested Task Flag), 2-14, 3-6, 8-7, 
9-3,9-5,9-7, 10-1 

OF (Overflow Flag), 2-14, 2-25, 3-5 
through 3-11, 3-17, 3-21, 3-25 

PF (Parity Flag), 2-14, 2-15, 3-6 through 
3-11,3-17,3-21,3-25,3-27 

SF (Sign Flag), 2-14, 3-5, 3-7 through 
3-11,3-17,3-21,3-25 

TF (Trap Flag), 2-14, 2-15, 3-6, 3-7, 9-13 
TS (Task Switch), 10-4, 10-5, B-29, C-49 
ZF (Zero Flag), 2-14, 3-5 through 3-11, 

3-21,3-22,3-24,3-25,3-27, 11-3 
Floating Point 

(see Data Types), 

Gates, 7-16 
GDT, 6-4 through 6-7, 6-10, 6-11, 6-12, 7-5 

through 7-8, 7-17, C-43 
GDTR (Global Descriptor Register), 6-4 

through 6-7, 6-11, 6-12, 10-1, 10-3, B-97 
General Protection Fault (Interrupt 3), 

(see Interrupt Handling), 
General Registers, 2-6 

HALT Instruction, 2-16, 3-29, 10-5, B-39, 
C:49 

Hierarchy of 86, 186, 286 Instruction Sets, 
2-25,2-26 

INDEX 

Index-3 

Basic Instruction Set, 2-26, 3-1 through 
3-31 

Extended Instruction Set, Chapter 4 
Instruction Set Overview, 2-25, 2-26 
System Control Register Set, Chapters 4 

through 10 
HL T Instruction, 

(see HALT Instruction), 

1/0,2-22 
IDIV Instruction, 2-24, 3-9, 9-3, B-40, C-46 
IDT (Interrupt Descriptor Table), 9-1 

through 9-9, 9-25, 10-2, B-62, C-49 
IDTR (Interrupt Descriptor Table Register), 

9-1, 10-3 
IF (Interrupt Flag), 

(see Flags), 
IMUL Instruction, 3-8, 3-9, B-41, C-45 
IN Instruction, 2-22, 3-29, 3-30, B-42, C-49 
INC Instruction, 2-16, 3-7, B-43, C-45 
INDEX Field, 6-4, 6-7, 6-10, 6-12, 7-7 
Indexed Mode, 2-20, 2-21, 2-22 
Index, Pointer and Base Register, 2-10 

through 2-14 
Input/Output, 2-22, 2-23 

Instructions, 3-29, 3-30 
Memory Mapped I/O, 2-23 
Restrictions in Protected Mode, 3-29, 3-30 
Separate I/O Space, 2-22 
Size of I/O Space, 3-22 

INS/INSB/INSW Instruction, 3-30, 4-1 
Instruction Sets, C-43 

(see Hierarchy of 86, 186, 286 Instruction 
Sets), 

INT Instruction, 
(see Interrupt Handling), 

Integer 
(see Data Types), 

Interrupt Handling, 2-23, 2-24, 5-3 through 
5-7, 9-2 through 9-13 

Interrupt Priorities, 5-4 
Interrupt 0 Divide Error, 2-24, 3-9, 5-5, 

5-6, 9-9, 9-13 
Interrupt 1 Single-Step, 5-5, 5-6, 9-9, 9-13 
Interrupt 2 Nonmaskable, 5-5, 5-6, 9-9, 

9-13 



Interrupt 3 Breakpoint, 2-24, ,5-5, 5-6,9-9 
Interrupt 4 INTO Detected Overflow, 2-24, 

5-5, 5-6, 9-9 
Interrupt 5 BOUND Range Exceeded, 

2-24, 4-6, 5-5, 5-6, 9-9, 9-13, B-2l 
Interrupt 6 Invalid Opcode, 2-24, 5-6, 9-9, 

9-10 
Interrupt 7 Processor Extension Not 

Available, 5-6, 5-7, 9-9 
Interrupt 8, Interrupt Table Limit 

Too Small, 5-6, 5-7, 9-9, 9-10 
Interrupt Vectors, 5-5, 5-6, 5-7 
Reserved Vectors, 5-5, 5-6 

Interrupt Procedures, 5-4, 5-5 
Interrupt Vector Table, 5-3 
Interrupts and Exceptions, 

(see Interrupt Handling and Interrupt 
Priorities ), 

INTO Detected Overflow (Interrupt 4), 
(see Interrupt Handling and Interrupt 

Priorities ), 
INTO Instruction, 2-24, 3-23, B-45, C-48 
INTR" 5-3, 5-4, 9-1, 9-2, 9-7, 11-7 
Invalid opcode (Interrupt 6) 

(see Interrupt Handling and Interrupt 
Priorities ), 

IOPL (I/O Privilege Level) 
(see Flags), 

IP Register, 2-7, 2-8, 3-18, 3-19, 3-20, 5-4 
IRET Instruction, 3-18, 3-20, 5-5, 8-5, 8-7, 

8-8,9-2 through 9-8, 9-13, B-48, C-43, 
C-48 

JCXZ Instruction, 3-22, B-51, B-52, C-48 
JMP Instruction, 3-18, 3-19, B-53, B-54, 

B-55, C-43, C-47 

LAHF Instruction, 3-27, B-56, C-44 
LAR Instruction, 11-3, B-57, C-49 
LDS Instruction, 3-26, 5-1, B-58, C-44 
LDT (Local Descriptor Table), 6-4 through 

6-7,6-10,6-12,7-5 through 7-8,7-17, 
8-6,8-8,8-9,9-11,9-12, 10-1, 10-2, 
10-3, 11-6 

LEA Instruction, 3-26, 3-27, B-60, C-49 

INDE~ 

LEAVE Instruction, 4-1, 4-5, B-61, C-48 
LES Instruction, 3-26, 5-1, B-58, C-44 
LGDT Instruction, 6-11, 6-12, 10-3, 10-5, 

B-62, C-49 
LIDT Instruction, 5-6, 5-7, 10-3, 10-5, B-62, 

C-49 
LLDT Instruction, 6-12, 10-3, 10-5, B-63, 

C-49 
LMSW Instruction, 10-4, 10-5, B-64, C-49 
LOCK Prefix, 3-29, B-65, C-43, C-49 
LODS/LODSB/LODSW, 3-25, B-66, C-46 
LOOPlnstruction, 3-5, 3-21, 3-22, B-l7 
LOOPE Instruction, 3-22, B-67, C-48 
LOOPNE, 3-22, B-67, C-48 
LOOPNZ, 3-22, B-67, C-48 
LSL Instruction, 11-3, B-68, C-49 

Memory, 
Physical Size, 2-1 
Segmentation, 2-1 

Implied Usage, 2-11 
Interpretation in Protected Mode, 2-8, 

2-9 
Interpretation in Real Mode, 2-8, 2-9, 

5-1, 5-2, 5-3 
Modularity, 2-1 

Virtual Size, 2-1 
Memory Addressing Modes, 2-17 through 

2-21 
Memory Management, 6-1 through 6-11, 7-4 

Task Managment, 6-1, 6-2, Chapter 8 
Context Switching (Task Switching), 

8-4, 8-5, 8-6 
Overview, 6-2 

Memory Management Registers, 6-8 through 
6-11 

Memory Mapped I/O 
(see Input/Output), 

Memory Mode, 
Memory Segmentation and Segment 

Registers, 2-7, 2-8, 2-9 
MOV Instructions, 2-16, 2-23, 3·1, B-70, 

C-44 
MOVS Instructions, 3-24, B-n, C-47 
MOVSB Instructions, 3-24, B-n 

Index-4 



MOVSW Instruction, 3-24, 3-25, B-72 
MSW Register, 5-7, 8-5,10-4,10-6,10-7, 

B-64 
MUL Instruction, 3-8, B-73, C-45 

NEG Instruction, 3-10, B-7 4, C-45 
NMI (Non maskable Interrupt), 5-5,9-1, 

9-2, 9-3, 9-9, 9-10 
Nonmaskable (Interrupt 2) 

(see Interrupt Priorities), 
NOP Instruction, 2-16, 2-17, B-7 5 
NOT Instruction, 3-10, B-76, C-46 
Not Present (Interrupt 11) 

(see Interrupt Priorities), 
NPX Processor Extension, 3-30, 3-31 
NT (Nested Task Flag) 

(see Flags), 
Numeric Data Processor Instructions, 3-31 

OF (Overflow Flag) 
(see Flags), 

Offset Computation, 2-19 
Operands, 2-16, 2-17 
OR Instruction, 2-23, 3-10, B-79, C-46 
OUT /OUTW, 2-23, 3-30, 10-5, B-78, C-44 
OUTS/OUTSB/OUTSW Instruction, 3-30, 

4-1, B-79, C-46 

PF (Parity Flag) 
(see Flags), 

Pointer 
(see Data Types), 

POP Instruction, 3-4, B-80, C-49 
POP A Instruction, 3-4, 3-5, B-82, C-49 
POPF Instruction, 3-27, 3-29, B-83, C-49 
Processor Extension Error (Interrupt 6) 

(see Interrupt Handling and Interrupt 
Priorities ), 

Processor Extension Not Available 
(Interrupt 7) 

(see Interrupt and Interrupt Priorities), 
Processor Extension Segment Overrun 

Interrupt (Interrupt 9) 
(see Interrupt and Interrupt Priorities), 

Protected Mode, 1-3, 1-4,6-2 
Protected Virtual Address Mode, 1-2, 1-4 

INDEX 

Protection Implementation, 7-2 through 7-10 
Protection Mechanisms, 1-3, 1-4 
Protection Overview, 1-3 
PUSH, 2-12, 3-1, 3-2, B-84, C-44 
PUSHA, 3-3, 3-4, B-85, C-44 
PUSHF, B-86, C-44 

Real Address Mode, 6-1, 6-2 
Register, 

Base Architecture Diagram, 2-7 
Base Register BX, 2-7, 2-17, 2-19, 2-20, 

3-1,3-4,3-7,3-8,3-10,3-15,3-17, 
3-19,3-21,4-6 

Flags Register, 2-14, 2-15 
General Registers, 2-6, 2-7 
Index Registers DI, SI, 2-10 
Overview, 2-6 
Pointer Registers BP and SP, 2-10, 2-23 
Segment Registers, 2-7, 2-8 
Status and Control, 2-14, 2-15 

Register Direct Mode, 2-20 
Register and Immediate Modes, 2-17 
Register Indirect Mode, 2-20 

(see Addressing Modes), 
Reserved Interrupt Vectors 

(see Interrupt Handling and Interrupt 
Priorities ), 

RESET,10-6 
RCL Instruction, 3-15, 9-9, B-87, C-41 
RCR Instruction,3-16, B-87, C-46 
REP Prefix, 3-24,4-1,4-2, B-89 
REPE Prefix, 3-25, B-89 
REPNE Prefix, 3-25, B-89 
REPNZ Prefix, 3-25 
REPZ Prefix, 3-25 
RET Instructon, 2-16, 3-18, 3-20, B-91, C-47 
ROL Instruction, 3-13, B-87, C-46 
ROR Instruction, 3-14, B-87, C-46 
RPL, 7-14, 8-6, 9-6, 11-3 

SAL Instruction, 3-4, B-44, C-46 
SAR Instruction, 3-12, B-94, C-46 
SBB Instruction, 3-5, B-95, C-45 
SCAS Instruction, 3-5, 3-24, 3-25, B-96, 

C-41 

Index-5 



INDEX 

SEG (Segment Override Prefix), 2-18 
Segment Address Translation Registers, 6-9, 

6-10, 6-11 
Segment Descriptor, 7-10, 7-11, 7-12 
Segment Overrun Exception (Interrupt 13) 

(see Interrupt Handling and Interrupt 
Priorities ), 

Segment Selection, 2-17, 2-18, 2-19 
SF (Sign Flag) 

(see Flags), 
SGDT Instruction, 6-11, 10-3, B-97, C-49 
SHL Instruction, 3-11, B-94, C-46 
SHR Instruction, 3-11, 3-12, B-97, C-46 
SI Register, 2-6, 2-10, 2-11, 2-15, 2-17, 2-19, 

3-9, 3-18, 3-24, 3-25, 3-26, 4-1 
SIDT Instruction, 10-3, B-97, C-49 
Single Step (Interrupt 1) 

(see Interrupt Priorities), 
SMSW Instruction, 10-4, B-99, C-49 
SP Register, 2-7, 2-10, 2-11, 2-12, 2-19, 

3-25,3-26,3-27,4-3,7-20,7-21,10-7 
SS Register, 2-7, 2-10, 2-11, 2-12, 2-19, 5-7, 

6-9,6-11,7-12,7-13,7-14,7-16,7-20, 
7-21,7-22,8-4,9-12, 10-7 

Status and Control Registers, 2-14, 2-15 
Stack Flag 

(see Flags), 
Stack Fault (Interrupt 12) 

(see Interrupt Priorities), 
Stack Manipulation Instructions, 3-1 through 

3-5 
Stack Operations, 2-1 ° 

Grow Down, 2-11 
Overview, 2-10 through 2-14 
Segment Register Usage, 2-11 
Segment Usage Override, 2-11 

Index-6 

Stack Frame Base Pointer BP, 2-11 
Top of Stack, 2-10, 2-11 
TOS, 2-10, 2-11 
with BP and SP Registers, 2-1 ° 

Status Flags, 3-5 
STC Instructions, 3-26, B-IOO, C-49 
STD Instructions, 3-27, B-101, C-49 
STI Instructions, 2-15, 3-29, B-I02, C-49 
String Instructions, 3-23 through 3-25 
SUB Instruction, 3-7, 3-8 B-I05, C-45 
System Address Registers, 6-11, 6-12 
System Initialization, 10-6, 10-7 
System Control Instructions, 10-3, 10-4 

TEST Instruction, 2-23, 3-17, B-I06, C-46 
TF (Trap Flags) 

(see Flags), 
TOS (Top of Stack) 

(see Stack Operation), 
TR (Task Register), 7-6 
Transcendental Instruction, 3-37 
TSS (Task State Segment), 8-1 through 8-8 

Use of Flags with Basic Instructions, 3-5, 
3-6 

Virtual Address, 6-'2, 6-3, 6-4 

WAIT Instruction, 3-31, B-108, C-49 

XCHG Instruction, 3-1, B-I09, C-44 
XLA T Instruction, 3-23, B-11 0, C-49 
XOR Instruction, 2-6, 3-10, B-lll, C-46 

ZF (Zero Flag) 
(see Flags), 



Numeric Supplement 





PREFACE 

AN INTRODUCTION TO THE iAPX 286 

This supplement describes the 80287 Numeric Processor Extension (NPX) for the iAPX 286 micro
processor. Below is a brief overview of iAPX 286 concepts, along with some of the nomenclature used 
throughout this and other Intel publications. 

The iAPX 286 Microsystem 

The iAPX 286 is a new VLSI microprocessor system with exceptional capabilities for supporting large
system applications. Based on a new-generation CPU (the Intel 80286), this powerful microsystem is 
designed to support multiuser reprogrammable and real-time multitasking applications. Its dedicated 
system support circuits simplify system hardware; sophisticated hardware and software tools reduce 
both the time and the cost of product development. 

The iAPX 286 is a virtual-memory microprocessor with on-chip memory management and protection. 
The iAPX 286 microsystem offers a total-solution approach, enabling you to develop high-speed, inter
active, multiuser, multitasking-and multiprocessor-systems more rapidly and at higher performance 
than ever before. 

• Reliability and system up-time are becoming increasingly important in all applications. Information 
must be protected from misuse or accidental loss. The iAPX 286 includes a sophisticated and flexi
ble four-level protection mechanism that isolates layers of operating system programs from appli
cation programs to maintain a high degree of system integrity. 

• The iAPX 286 provides 16 megabytes of physical address space to support today's application 
requirements. This large physical memory enables the iAPX 286 to keep many large programs and 
data structures simultaneously in memory for high-speed access. 

• For applications with dynamically changing memory requirements, such as multiuser business 
systems, the iAPX 286 CPU provides on-chip memory management and virtual memory support. 
On an iAPX 286-based system, each user can have up to a gigabyte (230 bytes) of virtual-address 
space. This large address space virtually eliminates restrictions on the number or size of programs 
that may be part of the system. 

• Large multiuser or real-time multitasking systems are easily supported by the iAPX 286. High
performance features, such as a very high-speed task switch, fast interrupt-response time, inter-task 
protection, and a quick and direct operating system interface, make the iAPX 286 highly suited to 
multiuser /multitasking applications. 

• The iAPX 286 has two operating modes: Real-Address mode and Protected-Address mode. In Real
Address mode, the iAPX 286 is fully compatible with the iAPX 86, iAPX 88, iAPX 186, and iAPX 
188 microprocessors; all of the extensive libraries of iAPX 86 and iAPX 88 software execute four 
to six times faster on the iAPX 286, without any modification. 

• In Protected-Address mode, the advanced memory management and protection features of the iAPX 
286 become available, without any reduction in performance. Upgrading iAPX 86 and iAPX 88 
application programs to use these new memory management and protection features usually requires 
only reassembly or recompilation (some programs may require minor modification). This compati
bility between iAPX 286 and iAPX 86 processor families reduces both the time and the cost of 
software development. 

iii 122164-001 



PREFACE 

Microsystem Nomenclature 

Over the last several years, the increase in microcomputer system and software complexity has given 
birth to a new family of microprocessor products oriented towards solving these increasingly complex 
problems. These new generations of microprocessors are both powerful and flexible, and include many 
processor enhancements, such as numeric (floating-point) extensions, I/0 processors, and operating
system functionality in silicon. 

As Intel's product line has grown and evolved, its microprocessor product numbering system has evolved 
into a comprehensive numbering scheme, while still including the basis of previous 8086 nomenclature. 

Intel has adopted the following prefixes to provide differentiation and consistency among its Micro
system 80-related product lines: 

iAPX-Processor Series 
iRMX-Operating Systems 
iSBC-Single-Board Computers 
iSBX-MULTIMODULE Boards 

Concentrating on the iAPX series, several processor families are defined: 

iAPX 86-8086 CPU family 
iAPX 88-8088 CPU family 
iAPX 186-80186 CPU family 
iAPX 286-80286 CPU family 

Each processor family consists of the CPU (e.g., 80286), processor extensions (80287 for the iAPX 
286), and bus support circuits, such as the 82284 Clock Generator and 82288 Bus Controller. With 
additional suffix information, configuration options for particular iAPX systems can be identified, such 
as the inclusion of Numeric Processor Extensions and I/0 Processors. For the iAPX 286 family: 

iAPX 286/IO-indicates 80286 CPU alone 
iAPX 286/20-indicates 80286 CPU + 80287 NPX 

This nomenclature is intended as an addition to Intel's regular part-numbering scheme. The series-level 
nomenclature describes the functional capabilities provided by specific configurations of the iAPX 
processor families. The hardware used to implement each functional configuration is still described by 
referring to the parts involved (as is the case for most of the 80287 information described in this 
su pplement). 

This improved nomenclature provides a more meaningful view of system capability and performance 
within the evolving Microsystem 80 architecture. 

The Organization of This Supplement 

This supplement describes the 80287 Numeric Processor Extension (NPX) for the iAPX 286 micro
processor. The material in this supplement is presented from the perspective of software designers, 
both at an applications and at a systems software level. 

• Chapter One, "Overview of Numeric Processing," gives an overview' of the 80287 NPX and reviews 
the concepts of numeric computation using the 80287. 

• Chapter Two, "Programming Numeric Applications," provides detailed information for software 
designers generating applications for iAPX 286/20 systems (systems containing an 80286 CPU with 

iv 122164-001 



inter PREFACE 

an 80287 NPX). The iAPX 286/20 instruction set mnemonics are explained in detail, along with a 
description of programming facilities for iAPX 286/20 systems. A comparative iAPX 286/20 
programming example is given. 

• Chapter Three, "System-Level Numeric Programming," provides information of interest to systems 
software writers, including details of the iAPX 286/20 architecture and operational characteristics. 

• Chapter Four, "Numeric Programming Examples," provides several detailed programming examples 
for the iAPX 286/20, including conditional branching, the conversion between floating-point values 
and their ASCII representations, and the calculation of several trigonometric functions. These 
examples illustrate assembly-language programming on the 80287 NPX. 

• Appendix A, "Machine Instruction Encoding and Decoding," gives reference information on the 
encoding of NPX instructions. 

• Appendix B, "Compatability between the 80287 NPX and the 8087," describes the differences 
between the 80287 and the 8087. 

• Appendix C, "Implementing the IEEE P754 Standard," gives details of the IEEE P754 Standard. 

• Appendix D, "80287 80-Bit HMOS Numeric Processor Extension," provides hardware details of 
the 80287 and the iAPX 286/20. 

• The Glossary defines 80287 and floating-point terminology. Refer to it as needed. 

Related Publications 

To best use the material in this supplement, readers should be familiar with the operation and archi
tecture of iAPX 286 systems. The following manuals contain information related to the content of this 
supplement and of interest to programmers of iAPX 286/20 systems: 

• Introduction to the iAPX 286, order number 210308 

• iAPX 286 Programmer's Reference Manual, order number 210498 

• ASM286 Assembly Language Reference Manual, order number 121924 

• iAPX 286 Operating System Writer's Guide, order number 121960 

• iAPX 286 Hardware Reference Manual, order number 210760 

• Microprocessor and Peripheral Handbook, order number 210844 

• PL/M-286 User's Guide, order number 121945 

• 80287 Support Library Reference Manual, order number 122129 

• 8086 Software Toolbox Manual, order number 122203 (includes information about 80287 Emulator 
Software) 

v 122164-001 





Table of Contents 

CHAPTER 1 
OVERVIEW OF NUMERIC PROCESSING 

Introduction to the 80287 Numeric Processor Extension 
Performance ............................................................................................ . 
Ease of Use ............................................................................................. . 
Applications ............................................................................................. . 
Upgradability ............................................................................................ . 
Programming Interface ............................................................................ . 
Hardware Interface .................................................................................. . 

80287 Numeric Processor Architecture ....................................................... . 
The NPX Register Stack .......................................................................... . 
The NPX Status Word ............................................................................. . 
Control Word ........................................................................................... . 
The NPX Tag Word ................................................................................. . 
The NPX Instruction and Data Pointers ................................................... . 

Computation Fundamentals ........................................................................ . 
Number System ....................................................................................... . 
Data Types and Formats ......................................................................... . 

Binary Integers ..................................................................................... . 
Decimal Integers .................................................................................. . 
Real Numbers ...................................................................................... . 

Rounding Control ..................................................................................... . 
Precision Control ..................................................................................... . 
Infinity Control ......................................................................................... . 

Special Computational Situations ................................................................ . 
Special Numeric Values ........................................................................... . 

Nonnormal Real Numbers .................................................................... . 
Denormals and Gradual Underflow ................................................... . 
Unnormals-Descendents of Denormal Operands ........................... . 

Zeros and Pseudo Zeros ..................................................................... . 
Infinity ................................................................................................... . 
NaN (Not a Number) ............................................................................. . 
Indefinite ............................................................................................... . 
Encoding of Data Types ....................................................................... . 

Numeric Exceptions ................................................................................. . 
Invalid Operation .................................................................................. . 
Zero Divisor ......................................................................................... . 
Denormalized Operand ........................................................................ . 
Numeric Overflow and Underflow ......................................................... . 
Inexact Result ...................................................................................... . 
Handling Numeric Errors ...................................................................... . 

Automatic Exception Handling .......................................................... . 
Software Exception Handling ........................................................... . 

vii 

Page 

1-1 
1-2 
1-2 
1-3 
1-4 
1-5 
1-6 
1-8 
1-8 
1-9 

1-11 
1-12 
1-12 
1-13 
1-13 
1-15 
1-15 
1-15 
1-15 
1-18 
1-18 
1-19 
1-19 
1-20 
1-20 
1-20 
1-22 
1-23 
1-25 
1-25 
1-27 
1-28 
1-32 
1-32 
1-32 
1-33 
1-33 
1-33 
1-33 
1-36 
1-36 

122164-001 



TABLE OF CONTENTS 

CHAPTER 2 Page 
PROGRAMMING NUMERIC APPLICATIONS 

The 80287 NPX Instruction Set ............................................... ..................... 2-1 
Compatibility with the 8087 NPX .......................... ,................................... 2-1 
Numeric Operands .................................................................................... 2-1 
Data Transfer Instructions ........................................................................ 2-2 
Arithmetic Instructions .............................................................................. 2-4 
Comparison Instructions ........................................................................... 2-9 
Transcendental Instructions ...................................................................... 2-11 
Constant Instructions ................................................................................ 2-13 
Processor Control Instructions ................................................................. 2-14 
Instruction Set Reference Information .................... .................................. 2-20 

Instruction Execution Time .............................. .................................. 2-20 
Bus Transfers .................................................................................... 2-21 
Instruction Length .............................................................................. 2-22 

Programming Facilities ................................................................................. 2-36 
High-Level Languages .............................................................................. 2-36 
PL/M-286 .................................................................................................. 2-36 
ASM286 .................................................................................................... 2-38 

Defining Data ........................................................................................ 2-38 
Records and Structures ........................................................................ 2-39 
Addressing Modes ................................................................................ 2-39 

Comparative Programming Example ........................................................ 2-41 
80287 Emulation ....................................................................................... 2-46 

Concurrent Processing with the 80287 ........................................................ 2-46 
Managing Concurrency ............................................................................. 2-47 
Instruction Synchronization ....................................................................... 2-47 
Data Synchronization ................................................................................ 2-47 
Error Synchronization ............................................................................... 2-49 

Incorrect Error Synchronization ............................................................. 2-50 
Proper Error Synchronization ................................................................ 2-51 

CHAPTER 3 
SYSTEM-LEVEL NUMERIC PROGRAMMING 

iAPX 286/20 Architecture ............................................................................. 3-1 
Processor Extension Data Channel .......................................................... 3-1 
Real-Address Mode and Protected Virtual-Address Mode ....................... 3-1 
Dedicated and Reserved I/O Locations .................................................... 3-2 

Processor Initialization and Control .............................................................. 3-2 
System Initialization· .................................................................................. 3-2 
Recognizing the 80287 NPX ..................................................................... 3-2 
Configuring the Numerics Environment .................................................... 3-3 
Initializing the 80287 .. .............. ................................................................. 3-4 
80287 Emulation ....................................................................................... 3-4 

viii 122164-001 



TABLE OF CONTENTS 

Page 

Handling Numeric Processing Exceptions ................................................. 3-5 
Simultaneous Exception Response .......................................................... 3-6 
Exception Recovery Examples ................................................................. 3-6 

CHAPTER 4 
NUMERIC PROGRAMMING EXAMPLES 

Conditional Branching Examples .................................................................. 4-1 
Exception Handling Examples ...................................................................... 4-3 
Floating-Point to ASCII Conversion Examples .............................................. 4-7 

Function Partitioning ................................................................................. 4-14 
Exception Considerations ......................................................................... 4-15 
Special Instructions ................................................................................... 4-15 
Description of Operation ........................................................................... 4-15 
Scaling the Value ...................................................................................... 4-16 

Inaccuracy in Scaling ............................................................................. 4-16 
Avoiding Underflow and Overflow..... ........... .... ......... ....................... ..... 4-16 
Final Adjustments .................................................................................. 4-17 

Output Format .......................................................................................... 4-17 
Trigonometric Calculation Examples ............................................................ 4-17 

FPT AN and FPREM .................................................................................. 4-17 
Cosine Uses Sine Code ............................................................................ 4-18 

APPENDIX A 
MACHINE INSTRUCTION ENCODING AND DECODING 

APPENDIX B 
COMPATIBILITY BETWEEN THE 80287 NPX AND THE 8087 

APPENDIX C 
IMPLEMENTING THE IEEE P754 STANDARD 

Options Implemented in the 80287 .............................................................. C-1 
Areas of the Standard Implemented in Software .......................................... C-1 
Additional Software to Meet the Standard ................................................... C-2 

APPENDIX D 
80287 80-BIT HMOS NUMERIC PROCESSOR EXTENSION 

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY 

ix 122164-001 



Table 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 
1-17 
2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
2-9 
2-10 
2-11 
2-12 
2-13 
2-14 
2-15 
2-16 
2-17 
3-1 
3-2 
A-1 
A-2 

TABLE OF CONTENTS 

List of Tables 

Title 

Numeric Processing Speed Comparisons ........................................... . 
Numeric Data Types ............................................................................ . 
Principal NPX Instructions ................................................................... . 
Interpreting the NPX Condition Codes ................................................ . 
Real Number Notation ......................................................................... . 
Rounding Modes ................................................................................. . 
Denormalization Process .................. : .................................................. . 
Exceptions Due to Denormal Operands .............................................. . 
Unnormal Operands and Results ........................................................ .. 
Zero Operands and Results ............................................................... .. 
Masked Overflow Response with Directed Rounding ........................ .. 
Infinity Operands and Results .............................................................. . 
Binary Integer Encodings .................................................................... . 
Packed Decimal Encodings ................................................................. . 
Real and Long Real Encodings .......................................................... .. 
Temporary Real Encodings ................................................................ .. 
Exception Conditions and Masked Responses .................................. .. 
Data Transfer Instructions ................................................................... . 
Arithmetic Instructions ......................................................................... . 
Basic Arithmetic Instructions and Operands ........................................ . 
Condition Code Interpretation after FPREM ........................................ . 
Comparison Instructions ...................................................................... . 
Condition Code Interpretation after FCOM .......................................... . 
Condition Code Interpretation after FTST .......................................... .. 
FXAM Condition Code Settings ........................................................... . 
Transcendental Instructions ................................................................ . 
Constant Instructions .......................................................................... . 
Processor Control Instructions ............................................................ . 
Key to Operand Types ....................................................................... .. 
Execution Penalties ............................................................................. . 
Instruction Set Reference Data .......................................................... .. 
PLfM-286 Built-In Procedures ............................................................ .. 
80287 Storage Allocation Directives .................................................... . 
Addressing Mode Examples ................................................................ . 
NPX Processor State Following Initialization ...................................... .. 
Precedence of NPX Exceptions .......................................................... .. 
80287 Instruction Encoding ................................................................. . 
Machine Instruction Decoding Guide .................................................. .. 

x 

Page 

1-2 
1-5 
1-6 

1-10 
1-17 
1-18 
1-21 
1-22 
1-23 
1-24 
1-26 
1-26 
1-28 
1-29 
1-30 
1-31 
1-34 

2-3 
2-5 
2-6 
2-8 

2-10 
2-10 
2-11 
2-11 
2-12 
2-13 
2-14 
2-20 
2-21 
2-22 
2-37 
2-38 
2-40 

3-4 
3-6 
A-1 
A-2 

122164-001 



Figure 

1-1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
2-9 
2-10 
2-11 
2-12 
3-1 
4-1 
4-2 
4-3 
4-4 
4-5 
4-6 
4-7 

TABLE OF CONTENTS 

List of Figures 

Title 

Evolution and Performance of Numeric Processors ............................ . 
80287 NPX Block Diagram .................................................................. . 
80287 Register Set ............................................................................. . 
80287 Status Word ............................................................................. . 
80287 Control Word Format ............................................................... . 
80287 Tag Word Format ..................................................................... . 
80287 Instruction and Data Pointer Image in Memory ........................ . 
80287 Number System ...................................................................... .. 
Data Formats ...................................................................................... . 
Projective versus Affine Closure .......................................................... . 
Arithmetic Example Using .Infinity ........................................................ . 
FSAVE/FRSTOR Memory Layout ...................................................... .. 
FSTENV /FLDENV Memory Layout ..................................................... . 
Sample 80287 Constants .................................................................... . 
Status Word RECORD Definition ....................................................... .. 
Structure Definition .............................................................................. . 
Sample PL/M-286 Program ................................................................ .. 
Sample ASM286 Program ................................................................... . 
Instructions and Register Stack ......................................................... .. 
Synchronizing References to Shared Data .......................................... . 
Documenting Data Synchronization ................................................... .. 
Nonconcurrent FIST Instruction Code Macro ...................................... . 
Error Synchronization Examples ........................................................ .. 
Software Routine to Recognize the 80287 ........................................ .. 
Conditional Branching for Compares ................................................... . 
Conditional Branching for FXAM ........................................................ .. 
Full-State Exception Handler ............................................................... . 
Reduced-Latency Exception Handler .................................................. . 
Reentrant Exception Handler .............................................................. . 
Floating-Point to ASCII Conversion Routine ........................................ . 
Calculating Trigonometric Functions ................................................... . 

xi 

Page 

1-1 
1-7 
1-9 

1-10 
1-11 
1-12 
1-13 
1-14 
1-16 
1-19 
1-36 
2-17 
2-18 
2-39 
2-40 
2-40 
2-42 
2-43 
2-44 
2-47 
2-47 
2-48 
2-49 

3-3 
4-2 
4-2 
4-4 
4-5 
4-6 
4-7 

4-18 

122164·001 





Overview Of 
Numeric Processing 

1 





CHAPTER 1 
OVERVIEW OF NUMERIC PROCESSING 

The 80287 NPX is a high-performance numerics processing element that extends the iAPX 286/10 
architecture by adding significant numeric capabilities and direct support for floating-point, extended
integer, and BCD data types. The iAPX 286/20 computing system (80286 CPU with 80287 NPX) 
easily supports powerful and accurate numeric applications through its implementation of the proposed 
IEEE 754 Standard for Binary Floating-Point Arithmetic. 

INTRODUCTION TO THE 80287 NUMERIC PROCESSOR EXTENSION 

The 80287 Numeric Processor Extension (NPX) is highly compatible with its predecessor, the earlier 
Intel 8087 NPX. 

The 8087 NPX was designed for use in iAPX 86-family systems. The iAPX 86 was the first micro
processor family to partition the processing unit to permit high-performance numeric capabilities. The 
8087 NPX for this processor family implemented a complete numeric processing environment in 
compliance with the proposed IEEE 754 Floating-Point Standard. 

With the 80287 Numeric Processor Extension, high-speed numeric computations have been extended 
to iAPX 286 high-performance multi-tasking and multi-user systems. Multiple tasks using the numeric 
processor extension are afforded the full protection of the iAPX 286 memory management and protec
tion features. 

Figure I-I illustrates the relative performance of 8-MHz iAPX 86/20 and iAPX 286/20 systems in 
executing numerics-oriented applications. 

DOUBLE·PRECISION 
WHETSTONE PERFORMANCE 

(KOPS) 

200 

100 

STACK TOP POINTER'" 

C iAPX 286/20 ) 

---../ C iAPX 86/20 ) 

1980 1983 
YEAR INTRODUCED 

Figure 1·1. Evolution and Performance of Numeric Processors 

1-1 

122164-1 

122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Performance 

Table 1-1 compares the execution times of several 80287 instructions with the equivalent operations 
executed in software on an 8-MHz 80286. The software equivalents are highly-optimized assembly
language procedures from the 80287 emulator. As indicated in the table, the 80287 NPX provides 
about 50 to 100 times the performance of software numeric routines on the 80286 CPU. An 8-MHz 
80287 multiplies 32-bit and 64-bit real numbers in about 11.9 and 16.9 microseconds, respectively. Of 
course, the actual performance of the NPX in a given system depends o'n the characteristics of the 
individual application. 

Although the performance figures shown in table 1-1 refer to operations on real (floating-point) numbers, 
the 80287 also manipulates fixed-point binary and decimal integers of up to 64 bits or 18 digits, respec
tively. The 80287 can improve the speed of multiple-precision software algorithms for integer opera
tions by 10 to 100 times. 

Because the 80287 NPX is an extension of the 80286 CPU, no software overhead is incurred in setting 
up the NPX for computation. The 80287 and 80286 processors coordinate their activities in a manner 
transparent to software. Moreover, built-in coordination facilities allow the 80286 CPU to proceed with 
other instructions while the 80287 NPX is simultaneously executing numeric instructions. Programs 
can exploit this concurrency of execution to further increase system performance and throughput. 

Ease of Use 

The 80287 NPX offers more than raw execution speed for computation-intensive tasks. The 80287 
brings the functionality and power of accurate numeric computation into the hands of the general user. 

Like the 8087 NPX that preceded it, the 80287 is explicitly designed to deliver stable, accurate results 
when programmed using straightforward "pencil and paper" algorithms. The IEEE 754 standard 
specifically addresses this issue, recognizing the fundamental importance of making numeric compu
tations both easy and safe to use. 

For example, most computers can overflow when two single-precision floating-point numbers are multi
plied together and then divided by a third, even if the final result is a perfectly valid 32-bit number. 
The 80287 delivers the correctly rounded result. Other typical examples of undesirable machine behav
ior in straightforward calculations occur when solving for the roots of a quadratic equation: 

-b ± V b2 4ac 
2a 

Table 1-1. Numeric Processing Speed Comparisons 

Approximate Performance Ratios: 
Floating-Point Instruction 8 MHz iAPX 286/20 to 

8 MHz Protected Mode iAPX using E80287 

FADD ST,ST (Temp Real) Addition 1: 42:102 
FDIV DWORD PTR (Single-Precision) Division 1:266:358 
FXAM (Stack(O) assumed) Examine 1:139:454 
FYL2X (Stack(0),(1) assumed) Logarithm 1: 99:155 
FPATAN (Stack(O) assumed) Arctangent 1:153:176 
F2XM1 (Stack(O) assumed) Exponentiation 1: 41: 56 

1-2 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

or computing financial rate of return, which involves the expression: (l +i)n. On most machines, 
straightforward algorithms will not deliver consistently correct results (and will not indicate when they 
are incorrect). To obtain correct results on traditional machines under all conditions usually requires 
sophisticated numerical techniques that are foreign to most programmers. General application 
programmers using straightforward algorithms will produce much more reliable programs using the 
80287. This simple fact greatly reduces the software investment required to develop safe, accurate 
computation-based products. 

Beyond traditional numerics support for scientific applications, the 80287 has built-in facilities for 
commercial computing. It can process decimal numbers of up to 18 digits without round-off errors, 
performing exact arithmetic on integers as large as 264 or 10'8. Exact arithmetic is vital in accounting 
applications where rounding errors may introduce monetary losses that cannot be reconciled. 

The NPX contains a number of optional facilities that can be invoked by sophisticated users. These 
advanced features include two models of infinity, directed rounding, gradual underflow, and either 
automatic or programmed exception-handling facilities. 

These automatic exception-handling facilities permit a high degree of flexibility in numeric processing 
software, without burdening the programmer. While performing numeric calculations, the NPX 
automatically detects exception conditions that can potentially damage a calculation. By default, on
chip exception handlers may be invoked to field these exceptions so that a reasonable result is produced, 
and execution may proceed without program interruption. Alternatively, the NPX can signal the CPU, 
invoking a software exception handler whenever various types of exceptions are detected. 

Applications 

The NPX's versatility and performance make it appropriate to a broad array of numeric applications. 
In general, applications that exhibit any of the following characteristics can benefit by implementing 
numeric processing on the 80287: 

Numeric data vary over a wide range of values, or include nonintegral values. 

Algorithms produce very large or very small intermediate results. 

Computations must be very precise; i.e., a large number of significant digits must be maintained. 

Performance requirements exceed the capacity of traditional microprocessors. 

Consistently safe, reliable results must be delivered using a programming staff that is not expert in 
numerical techniques. 

Note also that the 80287 can reduce software development costs and improve the performance of 
systems that use not only real numbers, but operate on multi precision binary or decimal integer values 
as well. 

A few examples, which show how the 80287 might be used in specific numerics applications, are 
described below. In many cases, these types of systems have been implemented in the past with 
minicomputers. The advent of the 80287 brings the size and cost savings of microprocessor technology 
to these applications for the first time. 

• Business data processing-The NPX's ability to accept decimal operands and produce exact decimal 
results of up to 18 digits greatly simplifies accounting programming. Financial calculations that use 
power functions can take advantage of the 80287's exponentiation and logarithmic instructions. 

1-3 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

• Process control-The 80287 solves dynamic range problems automatically, and its extended preci
sion allows control functions to be fine-tuned for more accurate and efficient performance. Control 
algorithinsiinplemented with the NPX also contribute to improved reliability and safety, while the 
80287's speed can be exploited in real-time operations. 

• Computer numerical control (CNC)-The 80287 can move and position machine tool heads with 
accuracy in real-time. Axis positioning also benefits from the hardware trigonometric support provided 
by the 80287. 

• Robotics-Coupling small size and modest power requirements with powerful computational abili
ties, the NPX is ideal for on-board six-axis positioning. 

• Navigation-Very small, lightweight, and accurate inertial guidance systems can be implemented 
with the 80287. Its built-in trigonometric functions can speed and simplify the calculation of position 
from bearing data. 

• Graphics terminals-The 80287 can be used in graphics terminals to locally perform many functions 
that normally demand the attention of a main computer; these include rotation, scaling, and inter
polation. By also using an 82720 Graphics Display Controller to perform high speed data transfers, 
very powerful and highly self-sufficient terminals can be built from a relatively small number of 
80286 family parts. 

• Data acquisition-The 80287 can be used to scan, scale, and reduce large quantities of data as it is 
collected, thereby lowering storage requirements and time required to process the data for analysis. 

The preceding examples are oriented toward traditional numerics applications. There are, in addition, 
many other types of systems that do not appear to the end user as computational, but can employ the 
80287 to advantage. Indeed, the 80287 presents the imaginative system designer with an opportunity 
similar to that created by the introduction of the microprocessor itself. Many applications can be viewed 
as numerically-based if sufficient computational power is available to support this view. This is analo
gous to the thousands of successful products that have been built around "buried" microprocessors, 
even though the products themselves bear little resemblance to computers. 

Upgradability 

The architecture of the iAPX 286/10 CPU is specifically adapted to allow easy upgradability 
to an iAPX 286/20 system, simply by plugging in the 80287 NPX. For this reason, designers of 
iAPX 286/10 systems may wish to incorporate the 80287 NPX into their designs in order to offer two 
levels of price and performance at little additional cost. 

Two features of the 80286 CPU make the design and support of upgradable iAPX 286 systems partic
ularly simple: 

• The 80286 can be programmed to recognize the presence of an 80287 NPX; that is, software can 
recognize whether it is running on an iAPX 286/10 or an iAPX 286/20 system. 

• After determining whether the 80287 NPX is available, the 80286 CPU can be instructed to let the 
NPX execute all numeric instructions. If an 80287 NPX is not available, the 80286 CPU can emulate 
all 80287 numeric instructions in software. This emulation is completely transparent to the appli
cation software-the same object code may be used by both iAPX 286/10 and 286/20 systems. No 
relinking or recompiling of application software is necessary; the same code will simply execute 
faster on the iAPX 286/20 than on the iAPX 286/10 system. 

To facilitate this design of upgradable iAPX 286/10 systems, Intel provides a software emulator for 
the 80287 that provides the functional equivalent of the 80287 hardware, implemented in software on 

1-4 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

the 80286. Except for timing, the operation of this 80287 emulator (E80287) is the same as 
for the 80287 NPX hardware. When the emulator is combined as part of the systems software, the 
iAPX 286/10 system with 80287 emulation and the iAPX 286/20 (with 80287 hardware) are virtually 
indistinguishable to an application program. This capability makes it easy for software developers to 
maintain a single set of programs for both iAPX 286/10 and iAPX 286/20 systems. System manufac
turers can offer the NPX as a simple plug-in performance option without necessitating any changes in 
the user's software. 

Programming Interface 

The iAPX 286/20 is programmed as a single processor; all of the 80287 registers appear to a program
mer as extensions of the basic 80286 register set. The 80286 has a class of instructions known as 
ESCAPE instructions, all having a common format. These ESC instructions are numeric instructions 
for the 80287 NPX. These numeric instructions for the 80287 are simply encoded into the instruction 
stream along with 80286 instructions. 

All of the CPU memory-addressing modes may be used in programming the NPX, allowing convenient 
access to record structures, numeric arrays, and other memory-based data structures. All of the memory 
management and protection features of the CPU are extended to the NPX as well. 

Numeric processing in the 80287 centers around the NPX register stack. Programmers can treat these 
eight 80-bit registers as either a fixed register set, with instructions operating on explicitly-designated 
registers, or a classical stack, with instructions operating on the top one or two stack elements. 

Internally, the 80287 holds all numbers in a uniform 80-bit temporary-real format. Operands that may 
be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or 80-bit floating-point numbers, or 
18-digit packed BCD numbers, are automatically converted into temporary-real format as they are 
loaded into the NPX registers. Computation results are subsequently converted back into one of these 
destination data formats when they are stored into memory from the NPX registers. 

Table 1-2 lists each of the seven data types supported by the 80287, showing the data format for each 
type. All operands are stored in memory with the least significant digits starting at the initial (lowest) 
memory address. Numeric instructions access and store memory operands using only this initial address. 
For maximum system performance, all operands should start at even memory addresses. 

Table 1-2. Numeric Data Types 

Data Type Bits 
Significant Approximate Range (DeCimal) Digits (DeCimal) 

Word integer 16 4 -32,768 ~ X ~ +32,767 

Short integer 32 9 -2X109 ~ X ~ +2X10· 

Long integer 64 18 -9X10'8 ~ X ~ +9X10'8 

Packed decimal 80 18 -99 ... 99 ~ X ~ +99 ... 99 (18 digits) 

Short real 32 6-7 8.43X10·37 ~ I X I ~ 3.37X1038 

Long real 64 15-16 4.19X 1 0.307 ~ IX I ~ 1.67X10308 

Temporary real 80 19 3.4X10·4932 ~ I X I ~ 1.2X1 04932 

1-5 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

Table 1-3 lists the 80287 instructions by class. No special programming tools are necessary to use the 
80287, because all of the NPX instructions and data types are directly supported by the ASM286 
Assembler and Intel's appropriate high-level languages. 

Software routines for the iAPX 286/20 may be written in ASM286 Assembler or any of the following 
higher-level languages: 

PL/M-286 
PASCAL-286 
FORTRAN-286 
C-286 

In addition, all of the development tools supporting the iAPX 86/20 (8086 and 8087) can also be used 
to develop software for the iAPX 286/20 operating in Real-Address mode. 

All of these high-level languages provide programmers with access to the computational power and 
speed of the 80287 without requiring an understanding of the architecture of the 80286 and 80287 
chips. Such architectural considerations as concurrency and data synchronization are handled automat
ically by these high-level languages. For the ASM286 programmer, specific rules for handling these 
issues are discussed in a later section of this supplement. 

Hardware Interface 

As an extension of the iAPX 286/10 processor, the 80287 is wired very much in parallel with the 
80286 CPU. Four special status signals, PEREQ, PEACK, BUSY, and ERROR, permit the two 
processors to coordinate their activities. The 80287 NPX also monitors the 80286 ST, SO, COD/INTA, 
READY, HLDA, and CLK pins to monitor the execution of ESC instructions (numeric instructions) 
by the 80286. 

As shown in figure 1-2, the 80287 NPX is divided internally into two processing elements; the Bus 
Interface Unit (BIU) and the Numeric Execution Unit (NEU). The two units operate independently 
of one another: the BIU receives and decodes instructions, requests operand transfers with memory, 
and executes processor control instructions, whereas the NEU processes individual numeric 
instructions. 

Table 1-3. Principal NPX Instructions 

Class Instruction Types 

Data Transfer Load (all data type.s), Store (all data types), Exchange 

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide 
Reversed, Square Root, Scale, Remainder, Integer Part, Change 
Sign, Absolute Value, Extract 

Comparison Compare, Examine, Test 

Transcendental Tangent, Arctangent, 2x -1, YoLog2(X + 1), YoLog2(X) 

Constants 0, 1, 11", Log ,02, Log.,2, Log210, Log2e 

Processor Control Load Control Word, Store Control Word, Store Status Word, 
Load Environment, Store Environment, Save, Restore, Clear 
Exceptions, Initialize, Set Protected Mode 

1-6 122164·001 



inter 

STATUS 

A::IORESS 

OVERVIEW OF NUMERIC PROCESSING 

CONTROL WORD 

I 

_____ L 

w 
o 
R 
D 

1------1::: 
1-____ -1'" 

REGISTER STACK '" 1------1::: 
I------I;~: 

Figure 1·2. 80287 NPX Block Diagram 

--~ 

122164-2 

The BIU handles all of the status and signal lines between the 80287 and the 80286. The NEU executes 
all instructions that involve the register stack. These instructions include arithmetic, logical, transcen
dental, constant, and data transfer instructions. The data path in the NEU is 84 bits wide (68 fraction 
bits, 15 exponent bits, and a sign bit), allowing internal operand transfers to be performed at very high 
speeds. 

The 80287 executes a single numeric instruction at a time. Before executing most ESC instructions, 
the 80286 tests the BUSY' pin and, before initiating the command, waits until the 80287 indicates that 
it is not busy. Once initiated, the 80286 continues program execution, while the 80287 executes the 
numeric instruction. Unlike iAPX 86/20 systems, which required a WAIT instruction to test the BUSY 
signal before each ESC opcode, these WAIT instructions are permissible, but not necessary, in iAPX 
286/20 programs. 

In all cases, a WAIT or ESC instruction should be inserted after any 80287 store to memory (except 
FSTSW or FSTCW) or load from memory (except FLDENV, FLDCW, or FRSTOR) before the 80286 
reads or changes the memory value. 

When needed, all data transfers between memory and the 80287 NPX are performed by the 80286 
CPU, using its Processor Extension Data Channel. Numeric data transfers performed by the 80286 
use the same timing as any either bus cycle, and all such transfers come under the supervision of the 
iAPX 286 memory management and protection mechanisms. The 80286 Processor Extension Data 
Channel and the hardware interface between the 80286 and 80287 processors are described in Chapter 
Six of the iAPX 286 Hardware Reference Manual. 

From the programmer's perspective, the 80287 can be considered just an extension of the 80286 
processor. All interaction between the 80286 and the 80287 processors on the hardware level is handled 
automatically by the 80286 and is transparent to the software. 

1-7 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

To communicate with the 80287, the 80286 uses the reserved I/0 port addresses 00F8H, OOFAH, and 
OOFCH (I/O ports numbered 00F8H through OOFFH are reserved for the 80286/80287 interface). 
These I/0 operations are performed automatically by the 80286 and are distinct from I/O operations 
that result from program I/O instructions. I/0 operations resulting from the execution of ESC instruc
tions are completely transparent to software. Any program may execute ESCAPE (numeric) instruc
tions, without regard to its current I/0 Privilege Level (lOPL). 

To guarantee correct operation of the 80287, iAPX 286 programs must not perform any explicit I/O 
operations to any of the eight ports reserved for the 80287. The IOPL of the iAPX 286 can be used to 
protect the integrity of 80287 computations in multiuser reprogrammable applications, preventing any 
accidental or other tampering with the 80287 (see Chapter Eight of the iAPX 286 Operating System 
Writer's Guide). 

80287 NUMERIC PROCESSOR ARCHITECTURE 

To the programmer, the 80287 NPX appears as a set of additional registers complementing those of 
the 80286. These additional registers consist of 

• Eight individually-addressable 80-bit numeric registers, organized as a register stack 

• Three sixteen-bit registers containing: 
an NPX status word 
an NPX control word 
a tag word 

• Four 16-bit registers containing the NPX instruction and data pointers 

All of the NPX numeric instructions focus on the contents of these NPX registers. 

The NPX Register Stack 

The 80287 register stack is shown in 'figure 1-3. Each of the eight numeric registers in the 80287's 
register stack is 80 bits wide and is divided into fields corresponding to the NPX's temporary-real data 
type. 

Numeric instructions address the data registers relative to the register on the top of the stack. At any 
point in time, this top-of-stack register is indicated by the ST (Stack Top) field in the NPX status 
word. Load or push operations decrement ST by one and load a value into the new top register. A store
and-pop operation stores the value from the current ST register and then increments ST by one. Like 
80286 stacks in memory, the 80287 register stack grows down toward lower-addressed registers. 

Many numeric instructions have several addressing modes that permit the programmer to implicitly 
operate on the top of the stack, or to explicitly operate on specific registers relative to the ST. The 
ASM286 Assembler supports these register addressing modes, using the expression ST(O), or simply 
ST, to represent the current Stack Top and ST(i) to specify the ith register from ST in the stack (0 :5 
i :5 7). For example, if ST contains 011 B (register 3 is the top of the stack), the following statement 
would add the contents of the top two registers on the stack (registers 3 and 5): 

FADD ST,ST(2) 

The stack organization and top-relative addressing of the numeric registers simplify subroutine 
programming by allowing routines to pass parameters on the register stack. By using the stack to pass 
parameters rather than using "dedicated" registers, calling routines gain more flexibility in how they 

1-8 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

80287 STACK: TAG FIELD 
79 78 64 63 0 1 0 

RI SIGN EXPONENT SIGNIFICAND 

R2 

R3 

R4 

RS 

R6 

R7 

RS 

15 0 

CONTROL REGISTER 
STATUS REGISTER 

TAG WORD 

INSTRUCTION POINTER 

DATA POINTER 

122164-3 

Figure 1-3. 80287 Register Set 

use the stack. As long as the stack is not full, each routine simply loads the parameters onto the stack 
before calling a particular subroutine to perform a numeric calculation. The subroutine then addresses 
its parameters as ST, ST(1), etc., even though ST may, for example, refer to physical register 3 in one 
invocation and physical register 5 in another. 

The NPX Status Word 

The 16-bit status word shown in figure 1-4 reflects the overall state of the 80287. This status word may 
be stored into memory using the FSTSW /FNSTSW, FSTENV /FNSTENV, and FSA VE/FNSA VE 
instructions, and can be transferred into the 80286 AX register with the FSTSW AX/FNSTSW AX 
instructions, allowing the NPX status to be inspected by the CPU. 

The Busy bit (bit 15) and the BUSY pin indicate whether the 80287's execution unit is idle (B = 0) or 
is executing a numeric instruction or signalling an exception (B= 1). (The instructions FNSTSW, 
FNSTSW AX, FNSTENV, and FNSA VE do not set the Busy bit themselves, nor do they require the 
Busy bit to be clear in order to execute.) 

The four NPX condition code bits (Co-C,) are similar to the flags in a CPU: the 80287 updates these 
bits to reflect the outcome of arithmetic operations. The effect of these instructions on the condition 
code bits is summarized in table 1-4. These condition code bits are used principally for conditional 
branching. The FSTSW AX instruction stores the NPX status word directly into the CPU AX register, 
allowing these condition codes to be inspected efficiently by 80286 code. 

Bits 12-14 of the status word point to the 80287 register that is the current Stack Top (ST). The 
significance of the stack top has been described in the section on the Register Stack. 

1-9 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

15 o 
I B I Cal ST I C21 c, I CO IESI X I PE IUEIOEIZE IDEIIE I 

I EXCE PTION FLAGS (1 = EXCEPTION HAS OCCURRED) 

INVALID OPERATION" 

DENORMALIZED OPERAND" 

ZERO DIVIDE" 

OVERFLOW" 

UNDERFLOW" 

PRECISION" 

(RESE RVED) 
ERRO R SUMMARY STATUS(') 

ITION CODE(2) COND 

STAC K TOP POINTER(a) 

BUSY NEU 

(') ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE. 
(2) SEE TABLE '-4 FOR CONDITION CODE INTERPRETATION. 
(3) ST VALUES 

000 ~ REGISTER 0 IS TOP OF STACK 
001 ~ REGISTER 1 IS TOP OF STACK 

111 ~ REGISTER 7 IS TOP OF STACK 

'FOR DEFINITIONS, SEE THE SECTION ON EXCEPTION HANDLING 

122164-4 

Figure 1-4. 80287 Status Word 

Table 1-4. Interpreting the NPX Condition Codes 

Instruction C3 C2 C, Co Interpretation Type 

Compare, Test 0 0 X 0 ST > Source or 0 (FTST) 
0 0 X 1 ST < Source or 0 (FTST) 
1 0 X 0 ST = Source or 0 (FTST) 
1 1 X 1 ST is not comparable 

Remainder Q, 0 Qo Q2 Complete reduction with three 
low bits of quotient in Co, Ca, 
and C, 

U 1 U U Incomplete Reduction 

Examine 0 0 0 0 Valid, positive unnormalized 
0 0 0 1 Invalid, positive, exponent = 0 
0 0 1 0 Valid, negative, unnormalized 
0 0 1 1 Invalid, negative, exponent = 0 
0 1 0 0 Valid, positive, normalized 
0 1 0 1 Infinity, positive 
0 1 1 0 Valid, negative, normalized 
0 1 1 1 Infinity, negative 
1 0 0 0 Zero, positive 
1 0 0 1 Empty Register 
1 0 1 0 Zero, negative 
1 0 1 1 Empty Register 
1 1 0 0 Invalid, positive, exponent = 0 
1 1 0 1 Empty Register 
1 1 1 0 Invalid, negative, exponent = 0 
1 1 1 1 Empty Register 

NOTES: 
1. ST = Top of stack 
2. X = value is not affected by instruction 

3. U = value is undefined following instruction 
4. Qn = Quotient bit n following complete reduction (C2 =0) 

1-10 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Figure 1-4 shows the six error flags in bits 0-5 of the status word. Bit 7 is the error summary status 
(ES) bit. ES is set if any unmasked exception bits are set, and is cleared otherwise. If this bit is set, 
the ERROR signal is asserted. Bits 0-5 indicate whether the NPX has detected one of six possible 
exception conditions since these status bits were last cleared or reset. 

Control Word 

The NPX provides the programmer with several processing options, which are selected by loading a 
word from memory into the control word. Figure 1-5 shows the format and encoding of the fields in 
the control word. 

The low-order byte of this control word configures the 80287 error and exception masking. Bits 0-5 of 
the control word contain individual masks for each of the six exception conditions recognized by the 
80287. The high-order byte of the control word configures the 80287 processing options, including 

Precision control 

Rounding control 

Infinity control 

The Precision control bits (bits 8-9) can be used to set the 80287 internal operating precision at less 
than the default precision (64-bit significand). These control bits can be used to provide compatibility 
with the earlier-generation arithmetic processors having less precision than the 80287, as required by 
the IEEE 754 standard. Setting a lower precision, however, will not affect the execution time of numeric 
calculations. 

15 o 
Lxxx Ilcl RC I PC IxlxlpMluMloMlzMIDMllMI 

(1) PRECISION CONTROL 
00 ~ 24-BIT SIGNIFICAND 
o 1 ~ RESERVED 
10 ~ 53-BIT SIGNIFICAND 
11 ~ 54-BIT SIGNIFICAND 

I 

(2) ROUNDING CONTROL 
00 ~ ROUND TO NEAREST OR EVEN 
01 ~ ROUND DOWN (TOWARD -co) 
10 ~ ROUND UP (TOWARO +co) 
11 ~ CHOP (TRUNCATE TOWARD ZERO) 

EXCEPTION MASKS (1 ~ EXCEPTION IS MASKED) 

INVALID OPERATION 
DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 
PRECISION 

(RESERVED) 

(RESERVED) 

PRECISION CONTROL (1) 

ROUNDING CONTROL(2 ) 

INFINITY CONTROL (0 ~ PROJECTIVE, 1 ~ AFFINE) 

(RESERVED) 

122164-5 

Figure 1-5. 80287 Control Word Format 

1-11 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

The rounding control bits (bits 10-11) provide for directed rounding and true chop as well as the unbiased 
round-to-nearest-even mode specified in the IEEE 754 standard. 

The infinity control bit (bit 12) determines the manner in which the 80287 treats the special values of 
infinity. Either affine closure (where positive infinity is distinct from negative infinity) or projective 
closure (infinity is treated as a single unsigned quantity) may be specified. These two alternative views 
of infinity are discussed in the section on Computation Fundamentals. 

The NPX Tag Word 

The tag word indicates the contents of each register in the register stack, as shown in figure 1-6. The 
tag word is used by the NPX itself in order to track its numeric registers and optimize performance. 
Programmers may use this tag information to interpret the contents of the numeric registers. The tag 
values are stored in the tag word corresponding to the physical registers 0-7. Programmers must use 
the current Stack Top (ST) pointer stored in the NPX status word to associate these tag values with 
the relative stack registers ST(O) through ST(7). 

The NPX Instruction and Data Pointers 

The NPX instruction and data registers provide support for programmed exception-handlers. Whenever 
the 80287 executes a math instruction, the NPX internally saves the instruction address, the operand 
address (if present), and the instruction opcode. The 80287 FSTENV and FSA VE instructions store 
this data into memory, allowing exception handlers to determine the precise nature of any numeric 
exceptions that may be encountered. 

When stored.in memory, the instruction and data pointers appear in one of two formats, depending on 
the operating mode of the 80287. Figure 1-7 shows these pointers as they are stored following an 
FSTENV instruction. In Real-Address mode, these values are the 20-bit physical address and II-bit 
opcode formatted like the 8087. In Protected mode, these values are the 32-bit virtual addresses used 
by the program that executed the ESC instruction. 

The instruction address saved in the 80287 will point to any prefixes that preceded the instruction. 
This is different from the 8087, for which the instruction address pointed only to the ESC instruction 
opcode. 

TAG VALUES: 
00 ~ VALID 
01 ~ ZERO 
10 ~ INVALID OR INFINITY 
11 ~ EMPTY 

Figure 1-6. 80287 Tag Word Format 

1-12 

122164-6 

122164-001 



OVERVIEW OF NUMERIC PROCESSING 

15 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER (15-0) 

INSTRUCTION i)1 I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) 

DATA POINTER (15-0) 

DATA POINTER I 
(19-16) 0 

15 12 11 

REAL MODE 

o 

MEMORY 
OFFSET 

+0 

+2 

t4 

+6 

+8 

+10 

+12 

15 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IP OFFSET 

CS SELECTOR 

DATA OPERAND OFFSET 

DATA OPERAND SELECTOR 

PROTECTED MODE 

o 

Figure 1-7. 80287 Instruction and Data Pointer Image in Memory 

COMPUTATION FUNDAMENTALS 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

+8 

+10 

+12 

122164-7 

This section covers 80287 programming concepts that are common to all applications. It describes the 
80287's internal number system and the various types of numbers that can be employed in NPX 
programs. The most commonly used options for rounding, precision, and infinity (selected by fields in 
the control word) are described, with exhaustive coverage of less frequently used facilities deferred to 
later sections. Exception conditions that may arise during execution of NPX instructions are also 
described along with the options that are available for responding to these exceptions. 

Number System 

The system of real numbers that people use for pencil and paper calculations is conceptually infinite 
and continuous. There is no upper or lower limit to the magnitude of the numbers one can employ in a 
calculation, or to the precision (number of significant digits) that the numbers can represent. When 
considering any real number, there is always an infinity of numbers both larger and smaller. There is 
also an infinity of numbers between (i.e., with more significant digits than) any two real numbers. For 
example, between 2.5 and 2.6 are 2.51',2.5897,2.500001, etc. 

While ideally it would be desirable for a computer to be able to operate on the entire real number 
system, in practice this is not possible. Computers, no matter how large, ultimately have fixed-size 
registers and memories that limit the system of numbers that can be accommodated. These limitations 
determine both the range and the precision of numbers. The result is a set of numbers that is finite 
and discrete, rather than infinite and continuous. This sequence is a subset of the real numbers that is 
designed to form a useful approximation of the real number system. 

1-13 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Figure 1-8 superimposes the basic 80287 real number system on a real number line (decimal numbers 
are shown for clarity, although the 80287 actually represents numbers in binary). The dots indicate the 
subset of real numbers the 80287 can represent as data and final results of calculations. The 80287's 
range is approximately ± 4.19 Xl 0-307 to ± 1.67 X 10308. Applications that are required to deal with 
data and final results outside this range are rare. For reference, the range of the IBM 370 is about 
±0.54XlO-78 to ±0.72X1076. 

The finite spacing in figure 1-8 illustrates that the NPX can represent a great many, but not all, of the 
real numbers in its range. There is always a gap between two adjacent 80287 numbers, and it is possible 
for the result of a calculation to fall in this space. When this occurs, the NPX rounds the true result 
to a number that it can represent. Thus, a real number that requires more digits than the 80287 can 
accommodate (e.g., a 20-digit number) is represented with some loss of accuracy. Notice also that the 
80287's representable numbers are not distributed evenly along the real number line. In fact, an equal 
number of representable numbers exists between successive powers of 2 (i.e., as many representable 
numbers exist between 2 and 4 as between 65,536 and 131,072). Therefore, the gaps between repre
sentable numbers are larger as the numbers increase in magnitude. All integers in the range ± 264 

(approximately ± 10"), however, are exactly representable. 

In its internal operations, the 80287 actually employs a number system that is a substantial superset of 
that shown in figure 1-8. The internal format (called temporary real) extends the 80287's range to 
about ± 3.4 X 10-4932 to ± 1.2 X 104931 , and its precision to about 19 (equivalent decimal) digits. This 
format is designed to provide extra range and precision for constants and intermediate results, and is 
not normally intended for data or final results. 

,. 

[' 
-1.67xl0308 

NEGATIVE RANGE 
(NORMALIZED) 

11', 
I 

-5 -4 -3 -2 -1 : 

I §J" 'I" ,,""t""''''''''J 
-4.19x10·307 

I , POSITIVE RANGE 
(NORMALIZED) 

Figure 1-8. 80287 Number System 

1-14 

122164-8 

122164-001 



OVERVIEW OF NUMERIC PROCESSING 

From a practical standpoint, the 80287's set of real numbers is sufficiently large and dense so as not 
to limit the vast majority of microprocessor applications. Compared to most computers, including 
mainframes, the NPX provides a very good approximation of the real number system. It is important 
to remember, however, that it is not an exact representation, and that arithmetic on real numbers is 
inherently approximate. 

Conversely, and equally important, the 80287 does perform exact arithmetic on integer operands. That 
is, an operation on two integers returns an exact integral result, provided that the true result is an 
integer and is in range. For example, 4-:-2 yields an exact integer, 1-:-3 does not, and 240 X 230 + 1 
does not, because the result requires greater than 64 bits of precision. 

Data Types and Formats 

The 80287 recognizes seven numeric data types, divided into three classes: binary integers, packed 
decimal integers, and binary reals. A later section describes how these formats are stored in memory 
(the sign is always located in the highest-addressed byte). Figure 1-9 summarizes the format of each 
data type. In the figure, the most significant digits of all numbers (and fields within numbers) are the 
leftmost digits. Table 1-5 provides the range and number of signficant (decimal) digits that each format 
can accommodate. 

BINARY INTEGERS 

The three binary integer formats are identical except for length, which governs the range that can be 
accommodated in each format. The leftmost bit is interpreted as the number's sign: O=positive and 
1 = negative. Negative numbers are represented in standard two's complement notation (the binary 
integers are the only 80287 format to use two's complement). The quantity zero is represented with a 
positive sign (all bits are 0). The 80287 word integer format is identical to the 16-bit signed integer 
data type of the 80286. 

DECIMAL INTEGERS 

Decimal integers are stored in packed decimal notation, with two decimal digits "packed" into each 
byte, except the leftmost byte, which carries the sign bit (0 = positive, 1 = negative). Negative numbers 
are not stored in two's complement form and are distinguished from positive numbers only by the 
sign bit. The most significant digit of the number is the leftmost digit. All digits must be in the range 
OH-9H. 

REAL NUMBERS 

The 80287 stores real numbers in a three-field binary format that resembles scientific, or exponential, 
notation. The number's significant digits are held in the sigmjicand field, the exponent field locates 
the binary point within the significant digits (and therefore determines the number's magnitude), and 
the sign field indicates whether the number is positive or negative. (The exponent and significand are 
analogous to the terms "characteristic" and "mantissa" used to describe floating point numbers on 
some computers.) Negative numbers differ from positive numbers only in the sign bits of their 
significands. 

1-15 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

_ INCREASING SIGNIFICANCE 

WORD INTEGER lsi MAGNITUDE I g6'~~tEMENT) 
15 o 

SHORT INTEGER lsi MAGNITUDE I g6'~~tEMENT) 
~31~----------------~0 

II I (TWO'S 
LONG INTEGER .. s ....... __________ M_A_G_N_�_T_U_D_E __________ .. COMPLEMENT) 

~ 0 

MAGNITUDE 
PACKED DECIMAL d17 d '6 d , s d '4 d '3 d '2 d 11 dlO d g dB d7 d6 ds d 4 d3 d2 d, dO 

79 72 o 

SHORT REAL 

o 

LONG REAL .. ls .. I ..... _EX_Bp_I~_~_\_~_T_~I~ ______ SI_G_N_IF_I_C_A_N_D ______ -.I 

63 52~ 0 
'--li 

TEMPORARY REAL I .. S .. I ..... __ EX_~_I~_~_~_~_T __ ~1_1~1~ _______ S_IG_N_I_F_IC_A_N_D ________ --.i 

79 6463 1 

NOTES: 
S Sign bit (0 - positive, 1 - negative) 

dn Decimal digit (two per byte) 
X Bits have no significance; 80287 ignores when loading, zeros when storing . 

..&. Position of implicit binary point 
Integer bit of significand: stored in temporary real, implicit (always 1) in short and long real 

Exponent 8ias (normalized values): 
Short Real: 127 (7FH) 
long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 

Figure 1·9. Data Formats 

o 

122164-9 

Table 1-5 shows how the real number 178.125 (decimal) is stored in the 80287 short real format. The 
table lists a progression of equivalent notations that express the same value to show how a number can 
be converted from one form to another. The ASM286 and PL/M-286 language translators perform a 
similar process when they encounter programmer-defined real number constants. Note that not every 
decimal fraction has an exact binary equivalent. The decimal number 1/10, for example, cannot be 
expressed exactly in binary Uust as the number 1/3 cannotbe expressed exactly in decimal). When a 
translator encounters such a value, it produces a rounded binary approximation of the decimal value, 

1-16 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

Table 1-5. Real Number Notation 

Notation Value 

Ordinary Decimal 178.125 

Scientific Decimal 1t,78125E2 

Scientific Binary 1~0110010001E111 

Scientific Binary 
1~0110010001E10000110 (Biased Exponent) 

Sign Biased Exponent Significand 
80287 Short Real 
(Normalized) 

0 10000110 ~100100010000000000000 
1 ~ (implicit) 

The NPX usually carries the digits of the significand in normalized form. This means that, except for 
the value zero, the significand is an integer and a fraction as follows: 

where A indicates an assumed binary point. The number of fraction bits varies according to the real 
format: 23 for short, 52 for long, and 63 for temporary real. By normalizing real numbers so that their 
integer bit is always ai, the 80287 eliminates leading zeros in small values (ixi < 1). This technique 
maximizes the number of significant digits that can be accommodated in a significand of a given width. 
Note that, in the short and long real formats, the integer bit is implicit and is not actually stored; the 
integer bit is physically present in the temporary real format only. 

If one were to examine only the signficand with its assumed binary point, all normalized real numbers 
would have values between 1 and 2. The exponent field locates the actual binary point in the significant 
digits. Just as in decimal scientific notation, a positive exponent has the effect of moving the binary 
point to the right, and a negative exponent effectively moves the binary point to the left, inserting 
leading zeros as necessary. An unbiased exponent of zero indicates that the position of the assumed 
binary point is also the position of the actual binary point. The exponent field, then, determines a real 
number's magnitude. 

In order to simplify comparing real numbers (e.g., for sorting), the 80287 stores exponents in a biased 
form. This means that a constant is added to the true exponent described above. The value of this bias 
is different for each real format (see figure 1-9). It has been chosen so as to force the biased exponent 
to be a positive value. This allows two real numbers (of the same format and sign) to be compared as 
if they are unsigned binary integers. That is, when comparing them bitwise from left to right (begin
ning with the leftmost exponent bit), the first bit position that differs orders the numbers; there is no 
need to proceed further with the comparison. A number's true exponent can be determined simply by 
subtracting the bias value of its format. 

The short and long real formats exist in memory only. If a number in one of these formats is loaded 
into an 80287 register, it is automatically converted to temporary real, the format used for all internal 
operations. Likewise, data in registers can be converted to short or long real for storage in memory. 
The temporary real format may be used in memory also, typically to store intermediate results that 
cannot be held in registers. 

1-17 122164·001 



OVERVIEW OF NUMERIC PROCESSING 

Most applications should use the long real form to store real number data and results; it provides 
sufficient range and precision to return correct results with a minimum of programmer attention. The 
short real format is appropriate for applications that are constrained by memory, but it should be 
recognized that this format provides a smaller margin of safety. It is also useful for debugging algorithms, 
because roundoff problems will manifest themselves more quickly in this format. The temporary real 
format should normally be reserved for holding intermediate results, loop accumulations, and constants. 
Its extra length is designed to shield final results from the effects of rounding and overflow/underflow 
in intermediate calculations. However, the range and precision of the long real form are adequate for 
most microcomputer applications. 

Rounding Control 

Internally, the 80287 employs three extra bits (guard, round, and sticky bits) that enable it to represent 
the infinitely precise true result of a computation; these bits are not accessible to programmers. Whenever 
the destination can represent the infinitely precise true result, the 80287 delivers it. Rounding occurs 
in arithmetic and store operations when the format of the destination cannot exactly represent the 
infinitely precise true result. For example, a real number may be rounded if it is stored in a shorter 
real format, or in an integer format. Or, the infinitely precise true result may be rounded when it is 
returned to a register. 

The NPX has four rounding modes, selectable by the RC field in the control word (see figure 1-5). 
Given a true result b that cannot be represented by the target data type, the 80287 determines the two 
representable numbers a and c that most closely bracket b in value (a < b < c). The processor then 
rounds (changes) b to a or to c according to the mode selected by the RC field as shown in table 1-6. 
Round introduces an error in a result that is less than one unit in the last place to which the result is 
rounded. "Round to nearest" is the default mode and is suitable for most applications; it provides the 
most accurate and statistically unbiased estimate of the true result. The chop mode is provided for 
integer arithmetic applications. 

"Round up" and "round down" are termed directed rounding and can be used to implement interval 
arithmetic. Interval arithmetic generates a certifiable result independent of the occurrence of rounding 
and other errors. The upper and lower bounds of an interval may be computed by executing an algorithm 
twice, rounding up in one pass and down in the other. 

Precision Control 

The 80287 allows results to be calculated with either 64, 53, or 24 bits of precision in the significand 
as selected by the precision control (PC) field of the control word. The default setting, and the one 
that is best suited for most applications, is the full 64 bits of significance provided by the temporary-

Table 1-6. Rounding Modes 

RC Field Rounding Mode Rounding Action 

00 Round to nearest Closer to b of a or c; if equally close, 
select even number (the one whose 
least significant bit is zero). 

01 Round down (toward -00) a 

10 Round up (toward +00) c 

11 Chop (toward 0) Smaller in magnitude of a or c 

NOTE: a < b < c; a and c are representable, b is not. 

1-18 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

real format. The other settings are required by the proposed IEEE standard, and are provided to obtain 
compatibility with the specifications of certain existing programming languages. Specifying less preci
sion nullifies the advantages of the temporary real format's extended fraction length, and does not 
increase execution speed. When reduced precision is specified, the rounding of the fractional value 
clears the unused bits on the right to zeros. 

Infinity Control 

The 80287's system of real numbers may be closed by either of two models of infinity. These two means 
of closing the number system, projective and affine closure, are illustrated schematically in figure 
1-10. The setting of the Ie field in the control word selects one model or the other. The default means 
of closure is projective, and this is recommended for most computations. When projective closure is 
selected, the NPX treats the special values + 00 and - 00 as a single unsigned infinity (similar to its 
treatment of signed zeros). In the affine mode the NPX respects the signs of +00 and -00. 

While affine mode may provide more information than projective, there are occasions when the sign 
may in fact represent misinformation. For example, consider an algorithm that yields an intermediate 
result x of +0 and -0 (the same numeric value) in different executions. If I/x were then computed 
in affine mode, two entirely different values (+ 00 and - (0) would result from numerically identical 
values of x. Projective mode, on the other hand, provides less information but never returns misinfor
mation. In general, then, projective mode should be used globally, with affine mode reserved for local 
computations where the programmer can take advantage of the sign and knows for certain that the 
nature of the computations will not produce a misleading result. 

SPECIAL COMPUTATIONAL SITUATIONS 

Besides being able to represent positive and negative numbers, the 80287 data formats may be used to 
describe other entities. These special values provide extra flexibility, but most users will not need to 
understand them in order to use the 80287 successfully. This section describes the special values that 
may occur in certain cases and the significance of each. The 80286 exceptions are also described, for 
writers of exception handlers and for those interested in probing the limits of computation using the 
80287. 

The material presented in this section is mainly of interest to programmers concerned with writing 
exception handlers. For many readers, this section can be browsed lightly. 

o 
PROJECTIVE CLOSURE 

+ +00 
.~.~-----+------~.~. 

AFFINE CLOSURE 

Figure 1-10. Projective versus Affine Closure 

1-19 

122164-10 

122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Special Numeric Values 

The 80287 data formats encompass encodings for a variety of special values in addition to the typical 
real or integer data values that result from normal calculations. These special values have significance 
and can express relevant information about the computations or operations that produced them. The 
various types of special values are 

• Non-normal real numbers, including 
de normals 
unnormals 

• Zeros and pseudo zeros 

• Positive and negative infinity 

• NaN (Not-a-Number) 

• Indefinite 

The following description explains the origins and significance of each of these special values. Tables 
1-12 through 1-15 at the end of this section show how each of these special values is encoded for each 
of the numeric data types. 

NON NORMAL REAL NUMBERS 

As described previously, the 80287 generally stores nonzero real numbers in normalized floating-point 
form; that is, the integer (leading) bit of the significand is always a I. This bit is explicitly stored in 
the temporary real format, and is implicitly assumed to be a one (Ill) in the short- and long-real formats. 
Since leading zeros are eliminated, normalized storage allows the maximum number of significant 
digits to be held in a significand of a given width. 

When a floating-point numeric value becomes very close to zero, normalized storage cannot be used to 
express the value accurately. To accommodate these instances, the 80287 can store and operate on 
rea Is that are not normalized, Le., whose significands contain one or more leading zeros. Nonnormals 
typically arise when the result of a calculation yields a value that is too small to be represented in 
normal form. 

Nonnormal values can exist in one of two forms: 

• The floating-point exponent may be stored at its most negative value (a Denormal), 

• The integer bit (and perhaps other leading bits) of the significand may be zero (an Unnormal). 

The leading zeros of nonnormals permit smaller numbers to be represented, at the cost of some lost 
precision (the number of significant bits is reduced by the leading zeros). In typical algorithms, extremely 
small values are most likely to be generated as intermediate, rather than final results. By using the 
NPX's temporary real format for holding intermediate, values as small as ± 3.4 X 10.4932 can be repre
sented; this makes the occurrence of nonnormal numbers a rare phenomenon in 80287 applications. 
Nevertheless, the NPX can load, store, and operate on non normalized real numbers when they do 
occur. 

Denormals and Gradual Underflow 

A denormal is the result of the NPX's response to an underflow exception when that exception has 
been masked by the programmer (see the 80287 control word, figure 1-5). Underflow occurs when the 
absolute value of a real number becomes too small to be represented in the destination format, that is, 

1-20 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

when the exponent of the true result is too negative to be represented in the destination format. For 
example, a true exponent of - 130 will cause underflow if the destination is short real, because - 126 
is the smallest exponent this format can accommodate. No underflow would occur if the destination 
were long real or temporary real, since these formats can handle exponeJrts down to -1023 and -16,383, 
respectively. 

Most computers underflow "abruptly:" they simply return a zero result, which is likely to produce an 
unacceptable final result if computation continues. The 80287, on the other hand, underflows "gradu
ally" when the underflow exception is masked. Gradual underflow is accomplished by denormalizing 
the result until it is just within the exponent range of the destination format. Denormalizing means 
incrementing the true result's exponent and inserting a corresponding leading zero in the significand, 
shifting the rest of the significand one place to the right. Denormal values may occur in any of the 
short-real, long-real, or temporary-real formats. Table 1-7 illustrates how a result might be denormal
ized to fit a short-real destination. 

The intent of the 80287's masked response to underflow is to allow computation to continue without 
program intervention, while introducing an error that carries about the same risk of contaminating the 
final result as roundoff error. Roundoff (precision) errors occur frequently in real number calculations; 
sometimes they spoil the result of computation, but often they do not. Recognizing that roundoff errors 
are often nonfatal, computation usually proceeds, and the programmer inspects the final results to see 
if these errors have had a significant effect. The 80287's masked underflow response allows program
mers to treat underflows in a similar manner; the computation continues and the programmer can 
examine the final result to determine if an underflow has had important consequences. (If the 
underflow has had a significant effect, an invalid operation will probably be signalled later in the 
computation.) 

Denormalization produces a denormal or a zero. Denormals are readily identified by their exponents, 
which are always the minimum for their formats; in biased form, this is always the bit string: 00 ... 00. 
This same exponent value is also assigned to the zeros, but a denormal has a nonzero significand. A 
denormal in a register is tagged special. Tables 1-14 and 1-15 later in this chapter show how denormal 
values are encoded in each of the real data formats. 

The de normalization process may cause the loss of low-order significand bits as they are shifted off the 
right. In a severe case, all the significand bits of the true result are shifted out and replaced by the 
leading zeros. In this case, the result of denormalization is a true zero, and if the value is in a register, 
it is tagged as such. However, this is a comparatively rare occurrence and, in any case, is no worse than 
"abrupt" underflow. 

Table 1-7. Denormalization Process 

Operation Sign Exponent") Significand 

True Result 0 -129 1 t,01 0111 00 ... 00 

Denormalize 0 -128 0t,1 01 0111 00 ... 00 

Denormalize 0 -127 0t,01 01 0111 00 ... 00 

Denormalize 0 -126 0t,001 01 0111 00 ... 00 
Denormal Result(2) 0 -126 Oc,001 01 0111 00 ... 00 

NOTES: 

(1) Expressed as unbiased, decimal number. 

(2) Before storing, significand is rounded to 24 bits, integer bit is dropped, and exponent is biased by adding 
126. 

1-21 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

Denormals are rarely encountered in most applications. Typical debugged algorithms generate extremely 
small results during the evaluation of intermediate subexpressions; the final result is usually of an 
appropriate magnitude for its short or long real destination. If intermediate results are held in tempo
rary real, as is recommended, the great range of this format makes underflow very unlikely. Denormals 
are likely to arise only when an application generates a great many intermediates, so many that they 
cannot be held on the register stack or in temporary real memory variables. If storage limitations force 
the use of short or long reals for intermediates, and small values are produced, underflow may occur, 
and, if masked, may generate denormals. ' 

Accessing a denormal may produce an exception as shown in table 1-8. (The denormalized exception 
signals that a denormal has been fetched.) Denormals may have reduced significance due to lost low
order bits, and an option of the proposed IEEE standard precludes operations on non normalized 
operands. This option may be implemented in the form of an exception handler that responds to 
unmasked denormalized exceptions. Most users will mask this exception so that computation may 
proceed; any loss of accuracy will be analyzed by the user when the final result is delivered. 

As table 1-8 shows, the division and remainder operations do not accept denormal divisors and raise 
the invalid operation exception. Recall also that the transcendental instructions require normalized 
operands and do not check for exceptions. In all other cases, the NPX converts denormals to unnor
mals, and the rules governing un normal arithmetic then apply (unnormals are described in the follow
ing section). 

Unnormals-Descendents of Denormal Operands 

An un normal is the result of a computation using denormal operands and is therefore the descendent 
of the 80287's masked underflow response. An un normal may exist only in the temporary real format; 
it may have any exponent that a normal value may have (that is, in biased form any nonzero value), 
but it is distinguished from a normal by the integer bit of its significand, which is always O. An unnor
mal in a register is tagged valid. Unnormals are distinct from denormals, which have an exponent of 
00 ... 00 in biased form. 

Unnormals allows arithmetis to continue following an underflow while still retaining their identity as 
numbers that may have reduced significance. That is, unnormal operands generate unnormal results, 
so long as their unnormality has a significant effect on the result. Unnormals are thus prevented from 
"masquerading" as normals, numbers that have full significance. On the other hand, if an unnormal 
has an insignificant effect on a calculation with a normal, the result will be normal. For example, 
adding a small un normal to a large normal yields a normal result. The converse situation yields an 
unnormal. 

Table 1-8. Exceptions Due to Denormal Operands 

Operation Exception Masked Response 

FLD (short/long real) D Load as equivalent unnormal 

Arithmetic (except following) D Convert (in a work area) denormal to equivalent 
un normal and proceed 

Compare and test D Convert (in a work area) denormal to equivalent 
unnormal and proceed 

Division or FPREM with I Return real indefinite 
denormal divisor 

1-22 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

Table 1-9 shows how the instruction set deals with unnormal operands. Note that the unnormal may 
be the original operand or a temporary created by the 80287 from a denormal. 

ZEROS AND PSEUDO ZEROS 

The value zero in the real and decimal integer formats may be signed either positive or negative, 
although the sign of a binary integer zero is always positive. For computational purposes, the value of 
zero always behaves identically, regardless of sign, and typically the fact that a zero may be signed is 
transparent to the programmer. If necessary, the FXAM instruction may be used to determine a zero's 
sign. 

The zeros discussed above are called true zeros; if one of them is loaded or generated in a register, the 
register is tagged zero. Table 1-10 lists the results of instructions executed with zero operands and also 
shows how a true zero may be created from nonzero operands. 

Only the temporary real format may contain a special class of values called pseudo zeros. A pseudo 
zero is an unnormal whose significand is all zeros, but whose (biased) exponent is nonzero (true zeros 
have a zero exponent). Neither is a pseudo zero's exponent all ones, since this encoding is reserved for 
infinities and NANs. A pseudo zero result will be produced if two unnormals, containing a total of 
more than 64 leading zero bits in their significands, are multiplied together. This is a remote possibility 
in most applications, but it can happen. 

Pseudo zero operands behave like unnormals, except in the following cases where they produce the 
same results as true zeros: 

• Compare and test instructions 

• FRNDINT (round to integer) 

• Division, where the dividend is either a true zero or a pseudo zero (the divisor is a pseudo zero) 

Table 1-9. Unnormal Operands and Results 

Operation Result 

Addition/subtraction Normalization of operand with larger abosolute 
value determines normalization of result. 

Multiplication If either operand is unnormal, result is unnormal. 
Division (unnormal dividend only) Result is unnormal. 
FPREM (un normal dividend only) Result if normalized. 
Division/FPREM (unnormal Signal invalid operation. 
divisor) 
Compare/FTST Normalize as much as possible before making 

comparison. 
FRNDINT Normalize as much as possible before rounding. 
FSQRT Signal invalid operation. 
FST, FSTP (short/long real If value is above destination's underflow bound-
destination) ary, then signal invalid operation; else signal 

underflow. 
FSTP (temporary real destination) Store as usual. 
FIST, FISTP, FBSTP Signal invalid operation. 
FLD Load as usual. 
FXCH Exchange as usual. 
Transcendental instructions Undefined; operands must be normal and are not 

checked. 

1-23 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

In addition and subtraction of a pseudo zero and a true zero or another pseudo zero, the pseudo zeroes) 
behaves like unnormals, except for the determination of the result's sign. The sign is determined as 
shown in table 1-10 for two true zero operands. 

Table 1-10. Zero Operands and Results 

Operation 10perands Result Operation 10perands Result 

FLO, FBLD(1) Division 
+0 +0 ±O -i- ±O Invalid operation 
-0 -0 ±X -i- ±O Zerodivide 

FILD(2) +0 -i- +X, -0 -i- -X +0 
+0 +0 +O-i- -X, -O-i- +X -0 

FST, FSTP -X -i- -V, +X -i- +Y +0, underflow(B) 
+0 +0 -X -i- +Y, +X -i- -Y -0, underflow(B) 
-0 -0 
+X(3) +0 FPREM 
-X(3) -0 ±O rem ±O Invalid operation 

FBSTP ±X rem ±O Invalid operation 
+0 +0 +0 rem +X, +0 rem -X +0 
-0 -0 -0 rem +X, -0 rem -X -0 

FIST, FISTP +X rem +Y, +X rem -Y +0(9) 
+0 +0 -X rem -V, -X rem +Y -0(9) 
-0 +0 
+X(4) +0 FSQRT 
-X(4) +0 -0 -0 

+0 +0 
Addition 

+0 plus +0 +0 Compare 
-0 plus -0 -0 ±O: +X A<B 
+0 plus -0, -0 plus +0 '0(5) ±O: ±O A=B 
-X plus +X, +X plus -X '0(5) ±O: -X A>B 
±O plus ±X, ±X plus ±O tX(6) 

FTST 
Subtraction ±O Zero 

+0 minus -0 +0 FCHS 
-0 minus +0 -0 +0 -0 
+0 minus +0, -0 minus -0 '0(5) -0 +0 
+X minus +X, -X minus -X '0(5) FABS 
±O minus ±X, ±X minus ±O tX(6) ±O +0 

F2XM1 
Multiplication +0 +0 

+0· +0, -0·-0 +0 -0 -0 
+0· -0, -0· +0 -0 FRNDINT 
+O·+X,+X·+O +0 +0 +0 
+0· -X, -X· +0 -0 -0 -0 
-0· +X, +X.-O -0 FXTRACT 
-0· -X, -X· -0· +0 +0 Both +0 
+X·+Y,-X.-Y +0, underflow(7) -0 Both -0 
+X.-Y,-X·+Y -0, underflow(7) 

NOTES: 

(1) Arithmetic and compare operations with real memory operands interpret the memory operand signs in 
the same way. 

(2) Arithmetic and compare operations with binary integers interpret the integer sign in the same manner. 

(3) Severe underflows in storing to short or long real may generate zeros. 

(4) Small values ( Ixl < 1) stored into integers may round to zero. 

1-24 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

(5) Sign is determined by round mode: 
* = + for nearest, up, or chop 
* = - for down 

(6) t = sign of X. 

(7) Very small values of X and Y may yield zeros, after rounding of true result. NPX signals underflow to 
warn that zero has been yielded by nonzero operands. 

(8) Very small X and very large Y may yield zero, after rounding of true result. NPX signals underflow to 
warn that zero has been yielded from nonzero operands. 

(9) When Y divides into X exactly. 

INFINITY 

The real formats support signed representations of infinities. These values are encoded with a biased 
exponent of all ones and a significand of I~OO ... OO; if the infinity is in a register, it is tagged special. 
The significand distinguishes infinities from NANs, including real indefinite. 

A programmer may code an infinity, or it may be created by the NPX as its masked response to an 
overflow or a zero divide exception. Note that when rounding is up or down, the masked response may 
create the largest valid value representable in the destination rather than infinity. See table 1-11 for 
details. As operands, infinities behave somewhat differently depending on how the infinity control field 
in the control word is set (see table 1-12). When the projective model of infinity is selected, the infini
ties behave as a single unsigned representation; because of this, infinity cannot be compared with any 
value except infinity. In affine mode, the signs of the infinities are observed, and comparisons are 
possible. 

NaN (NOT A NUMBER) 

A NaN (Not a Number) is a member of a class of special values that exist in the real formats only. A 
NaN has an exponent of 11..11B, may have either sign, and may have any significand except I~OO .. OOB, 
which is assigned to the infinities. A NaN in a register is tagged special. 

The 80287 will generate the special NaN, real indefinite, as its masked response to an invalid operation 
exception. This NaN is signed negative; its significand is encoded 1~100 .. 00. All other NaNs represent 
programmer-created values. 

Whenever the NPX uses an operand that is a NaN, it signals an invalid operation exception in its 
status word. If this exception is masked in the 80287 control word, the 80287's masked exception 
response is to return the NaN as the operation result. If both operands of an instruction are NaNs, the 
result is the NaN with the larger absolute value. In this way, a NaN that enters a computation propa
gates through the computation and will eventually be delivered as the final result. Note, however, that 
the transcendental instructions do not check their operands, and a NaN will produce an undefined 
result. 

By unmasking the invalid operation exception, the programmer can use NaNs to trap to the exception 
handler. The generality of this approach and the large number of NaN values that are available provide 
the sophisticated programmer with a tool that can be applied to a variety of special situations. 

For example, a compiler could use NaNs as references to uninitialized (real) array elements. The 
compiler could preinitialize each array element with a NaN whose significand contained the index 
(relative position) of the element. If an application program attempted to access an element that it had 
not initialized, it would use the NaN placed there by the compiler. If the invalid operation exception 
were unmasked, an interrupt would occur, and the exception handler would be invoked. The exception 

1-25 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

handler could determine which element had been accessed, since the operand address field of the 
exception pointers would point to the NaN, and the NaN would contain the index number of the array 
element. 

NaNs could also be used to speed up debugging. In its early testing phase, a program often contains 
multiple errors. An exception handler could be written to save diagnostic information in memory 
whenever it was invoked. After storing the diagnostic data, it could supply a NaN as the result of the 
erroneous instruction, and that NaN could point to its associated diagnostic area in memory. The 
program would then continue, creating a different NaN for each error. When the program ended, the 
NaN results could be used to access the diagnostic data saved at the time the errors occurred. Many 
errors could thus be diagnosed and corrected in one test run. 

Table 1·11. Masked Overflow Response with Directed Rounding 

True Result 
Rounding 

Normalization Sign 
Mode 

Normal + Up 

Normal + Down 

Normal - Up 

Normal - Down 

Unnormal + Up 

Unnormal - Down 

Unnormal + Up 

Un normal - Down 

NOTES: 

(1) The largest valid representable reals are encoded: 
exponent: 11 ... 1 OB 
significand: (1)~ 11 ... 1 OB 

Result Delivered 

+00 

Largest finite positive number(1) 

Largest finite negative number(1) 

-00 

+00 

Largest exponent, result's significand(2) 

Largest exponent, result's significand(2) 

-00 

(2) The significand retains its identity as an unnormal; the true result is rounded as usual (effectively chopped 
toward 0 in this case). The .exponent is encoded 11 ... 1 OB. 

Table 1·12. Infinity Operands and Results 

Operation Projective Result Affine Result 

Addition 
+00 plus +00 Invalid operation +00 

-00 plus -00 Invalid operation -00 

+00 plus -00 Invalid operation Invalid operation 
-00 plus +00 Invalid operation Invalid operation 
±oo plus ±X *00 *00 

±X plus ±oo *00 *00 

Subtraction 
+00 minus -00 Invalid operation +00 

-00 minus +00 Invalid operation -00 

+00 minus +00 Invalid operation Invalid operation 
-00 minus -00 Invalid operation Invalid operation 
±oo minus ±X *00 *00 

±X minus ±oo too too 

1-26 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Table 1-12. Infinity Operands and Results (Cont'd.) 

Operation 

Multiplication 
±oo· ±oo 
±oo' ±y 
±o· ±oo, ±oo' ±o 

Division 
±oo -:- ±oo 
±oo -:- ±X 
±X -:- ±oo 

FSQRT 
-00 

+00 

FPREM 
±oo rem ±oo 
±oo rem ±X 
±Y rem ±oo 
±O rem ±oo 

FRNDINT 
±oo 

FSCALE 
± 00 scaled by ± 00 

± 00 scaled by ± X 
± 0 scaled by ± 00 

± Y scaled by ± 00 

FXTRACT 
±oo 

Compare 
±oo: ±oo 
±oo: ±Y 
±oo: ±O 

FTST 
±oo 

NOTES: 

X zero or nonzero operand 

Y nonzero operand 

sign of original operand 

$ 

$ 

Projective Result 

Invalid operation 

Invalid operation 
$ 

$ 

Invalid operation 
Invalid operation 

Invalid operation 
Invalid operation 
'Y 
'0 

'00 

Invalid operation 
'00 

'0 
Invalid operation 

Invalid operation 

A=B 
A ? B (and) invalid operation 
A ? B (and) invalid operation 

A ? B (and) invalid operation 

t sign is complement of original operand's sign 

Affine Result 

$ 

$ 

Invalid operation 

Invalid operation 
$ 

$ 

Invalid operation 
+00 

Invalid operation 
Invalid operation 
'Y 
'0 

'00 

Invalid operation 
'00 

'0 
Invalid operation 

Invalid operation 

-00 < +00 

-00 < Y < +00 

-00 < 0 < +00 

'00 

Ell sign is "exclusive or" original operand signs (+ if operands had same sign, - if operands had 
different signs) 

INDEFINITE 

For every 80287 numeric data type, one unique encoding is reserved for representing the special value 
indefinite. The 80287 produces this encoding as its response to a masked invalid-operation exception. 
In the case of reals, the indefinite value can be stored and loaded like any NaN, and it always retains 
its special identity; programmers are advised not to use this encoding for any other purpose. Packed 
decimal indefinite may be stored by the NPX in a FBSTP instruction; attempting to use this encoding 
in a FBLD instruction, however, will have an undefined result. In the binary integers, the same en cod-

1-27 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

ing may represent either indefinite or the largest negative number supported by the format (- 215, 

- 231 , or - 263 ). The 80287 will store this encoding as its masked response to an invalid operation, or 
when the value in a source register represents or rounds to the largest negative integer representable 
by the destination. In situations where its origin maybe ambiguous, the invalid operation exception 
flag can be examined to see if the value was produced by an exception response. When this encoding 
is loaded, or used by an integer arithmetic or compare operation, it is always interpreted as a negative 
number; thus indefinite cannot be loaded from a packed decimal or binary integer. 

ENCODING OF DATA TYPES 

Tables 1-13 through 1-16 show how each of the special values just described is encoded for each of the 
numeric data types. In these tables, the least-significant bits are shown to the right and are stored in 
the lowest memory addresses. The sign bit is always the left-most bit of the highest-addressed byte. 

Table 1-13. Binary Integer Encodings 

Class Sign Magnitude 

UI (Largest) 0 11 ... 11 
GI · · ~ · · 'iii 
0 · · 0.. (Smallest) 0 00 ... 01 

Zero 0 00 ... 00 

UI (Smallest) 1 11 ... 11 
GI · · .~ 
iii · · CI · · GI z (Largest! Indefinite") 1 00 ... 00 

Word: � ....... 11---- 15 bits ---"~I 
Short: 1 ....... 1---- 31 bits -----I.~II 
Long: 1 ...... 11---- 63 bits -----I.~II 

NOTES: 

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the 
80287 interprets it as the largest negative number representable in the format: -215 , -231 , or _263. The 
80287 will deliver this encoding to an integer destination in two cases: 

1) If the result is the largest negative number 

2) As the response to a masked invalid operation exception, in which case it represents the special value 
integer indefinite. 

1-28 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

Table 1-14. Packed Decimal Encodings 

Magnitude 
Class Sign 

I I I I ... I digit digit digit digit digit 

(Largest) 0 0000000 1 0 0 1 1 0 0 1 1 0 0 1 1 o 0 1 · .. 1 0 0 1 

· · · /I) 
G) · · · > .. · · · ·iii 

(Smallest) 0 0000000 o 0 0 0 000 0 o 0 0 0 o 0 0 0 000 1 0 · .. 
Q. 

Zero 0 0000000 o 0 0 0 o 000 o 0 0 0 000 0 ... 000 0 

Zero 1 0000000 o 0 0 0 o 0 0 0 000 0 o 000 ... o 0 0 0 
/I) 
G) 

(Smallest) 1 0000000 o 0 0 0 o 0 0 0 o 000 000 0 o 0 0 1 ~ · .. 
til · · · g) 
G) · · · z · · · (Largest) 1 0000000 1 o 0 1 1 001 1 0 0 1 1 o 0 1 1 001 

Indefinite' 1 1111111 1 1 1 1 1 1 1 1 U U U U2 U U U U U U U U 

'-1 byte ----. .. 9 bytes ~ 

NOTES: 

1. The packed decimal indefinite encoding is stored by FBSTP in response to a masked invalid operation 
exception. Attempting to load this value via FBLD produces an undefined result. 

2. UUUU means bit values are undefined and may contain any value. 

1-29 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Table 1-150 Real and Long Real Encodings 

Class Sign Biased Significand o 

Exponent ~ff...ff 

0 11 ... 11 11 ... 11 

· · · NaNs · · · · · · 0 11 ... 11 00 ... 01 

00 0 11 ... 11 00 ... 00 

0 11 ... 10 11 ... 11 
III 
CI) · · · ~ Normals · · · ·iii · · · 0 
Q. 0 00 ... 01 00 ... 00 

0 00 ... 00 11 ... 11 

· · · Denormals · · · · · · 0 00 ... 00 00 ... 01 

III Zero 0 00 ... 00 00 ... 00 
r-- co 

CI) 
a: Zero 1 00 ... 00 00 ... 00 

1 00 ... 00 00 ... 01 

· · · Denormals · · · · · · 1 00 ... 00 11 ... 11 

1 00 ... 01 00 ... 00 

· · · Normals · · · · · · III 1 11 ... 10 11 ... 11 CI) 

~ 
01 

1 11 ... 11 00 ... 00 Dl 00 
CI) 

z 
1 11 ... 11 00 ... 01 

· · · · · · · · · III 
Z 
01 
z Indefinite 1 11 ... 11 10 ... 00 

· · · · · · · · · 1 1 f .. 11 11 ... 11 

Short: 
*Integer bit is implied and not stored. Long: 

1 .. 8 bits .. 1 ............ -- 23 bits ---1.,.1 
~ 11 bits----.I .. 52 bits ---i ... 1 

1-30 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Table 1-16. Temporary Real Encodings 

Class Sign Biased Significand' 
Exponent 1/1 ft .. .ff 

0 11 ... 11 111 ... 11 

· · · NaNs · · · · · · 0 11 ... 11 100 ... 01 

<Xl 0 11 ... 11 100 ... 00 

0 11 ... 10 Normals 

· · 111 ... 11 

· · · · · · · · · · · · II) · · 100 ... 00 
CII 

~ · · 
'iii · · Unnormals 0 
0.. · · · · 011...11 

· · · · · · · · · 0 00 ... 01 000 ... 00 

Denormals 
0 00 ... 00 011...11 

· · · · · · · · · 0 00 ... 00 000 ... 01 

II) Zero 0 00 ... 00 000 ... 00 
r--- iii 

CII 
a:: Zero 1 00 ... 00 000 ... 00 

Denormals 
1 00 ... 00 000 ... 01 

· · · · · · · · · 1 00 ... 00 011...11 

II) 

1 00 ... 01 Unnormals CII 

~ · · 000 ... 00 
m · · · CI 
CII · · · z · · · · · 011 ... 11 

· · · · Normals 

· · · · 100 ... 00 

· · · · · · · · · 1 11...10 111...11 

1-31 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Table ~-16. Temporary Real Encodings (Cont'd.) 

Class Sign Biased Significand· 
Exponent III ff...ff 

CX) 1 11 ... 11 100 ... 00 

1 11 ... 11 100 ... 00 

· · · <II · · · CD 
.~ · · · i 
CI 

il CD 
Indefinite 11 ... 11 110 ... 00 z 1 

· · · · · · · · · 1 11 ... 11 111...11 

1'--15 bits .1. 64 bits -I 

Numeric Exceptions 

Whenever the 80287 NPX attempts a numeric operation with invalid operands or produces a result 
that cannot be represented, the 80287 recognizes a numeric exception condition. Altogether, the 80287 
checks for the following six classes of exceptions while executing numeric instructions: 

1. Invalid operation 

2. Divide-by·zero 

3. Denormalized operand 

4. Numeric overflow 

5. Numeric underflow 

6. Inexact result (precision) 

INVALID OPERATION 

The 80287 reports an invalid operation if any of the following occurs: 

• An attempt to load a register that is not empty (stack overflow). 

• An attempt to pop an operand from an empty register (stack underflow). 

• An operand is a NaN. 

• The operands cause the operation to be indeterminate (square root of a negative number, 0/0). 

An invalid operation generally indicates a program error. 

ZERO DIVISOR 

If an instruction attempts to divide a finite nonzero operand by zero, the 80287 will report a zero divide 
exception. 

1-32 122164-001 



inter OVERVIEW OF NUMERIC PROCESSING 

DENORMALIZED OPERAND 

If an instruction attempts to operate on a denormal, the NPX reports the denormalized operand excep
tion. This exception allows users to implement in software an option of the proposed IEEE standard 
specifying that operands must be prenormalized before they are used. 

NUMERIC OVERFLOW AND UNDERFLOW 

If the exponent of a numeric result is too large for the destination real format, the 80287 signals a 
numeric overflow. Conversely, if the exponent of a result is too small to be represented in thedestina
tion format, a numeric underflow is signaled. If either of these exceptions occur, the result of the 
operation is outside the range of the destination real format. 

Typical algorithms are most likely to produce extremely large and small numbers in the calculation of 
intermediate, rather than final, results. Because of the great range of the temporary real format 
(recommended as the destination format for intermediates), overflow and underflow are relatively rare 
events in most 80287 applications. 

INEXACT RESULT 

If the result of an operation is not exactly representable in the destination format, the 80287 rounds 
the number and reports the precision exception. For example, the fraction 113 cannot be precisely repre
sented in binary form. This exception occurs frequently and indicates that some (generally acceptable) 
accuracy has been lost; it is provided for applications that need to perform exact arithmetic only. 

HANDLING NUMERIC ERRORS 

When numeric errors occur, the NPX takes one of two possible courses of action: 

• The NPX can itself handle the error, producing the most reasonable result and allowing numeric 
program execution to continue undisturbed. 

• A software exception handler can be invoked by the CPU to handle the error. 

Each of the six exception conditions described above has a corresponding flag bit in the 80287 status 
word and a mask bit in the 80287 control word. If an exception is masked (the corresponding mask bit 
in the control word = I), the 80287 takes an appropriate default action and continues with the compu
tation. If the exception is unmasked (mask=O), the 80287 asserts the ERROR output to the 80286 to 
signal the exception and invoke a software exception handler. 

The NPX reports an exception by setting the corresponding flag in the NPX status word to 1. The 
NPX then checks the corresponding exception mask in the control word to determine if it should 
"field" the exception (mask= 1), or if it should signal the exception to the CPU to invoke a software 
exception handler (mask = 0). 

If the mask is set, the exception is said to be masked (from user software), and the NPX executes its 
on-chip masked response for that exception. If the mask is not set (mask=O), the exception is unmasked, 
and the NPX performs its unmasked response. The masked response always produces a standard result, 
then proceeds with the instruction. The unmasked response always traps to a software exception handler, 
allowing the CPU to recognize and take action on the exception. Table' 1-17 gives a complete descrip
tion of all exception conditions and the NPX's masked response. 

1-33 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Table 1·17. Exception Conditions and Masked Responses 

Condition Masked Response 

Invalid Operation 

Source register is tagged empty (usually due 
to stack underflow). 

Destination register is not tagged empty 
(usually due to stack overflow). 

One or both operands is a NaN. 

(Compare and test operations only): one or 
both operands is a NaN. 

(Addition operations only): closure is affine and 
operands are opposite-signed infinities; or 
closure is projective and both operands are 00 

(signs immaterial). 

(Subtraction operations only): closure is affine 
and operands are like-signed infinities; or 
closure is projective and both operands are 00 

(signs immaterial). 

(Multiplication operations only): 00 • 0; or 0 • 
00. 

(Division operations only): 00 7- 00; or 0 "'" 0; 
or 0 "'" pseudo zero; or divisor is denormal or 
unnormal. 

(FPREM instruction only): modulus (divisor) is 
un normal or denormal; or dividend is 00. 

(FSQRT instruction only): operand is nonzero 
and negative; or operand is denormal or 
un normal; or closure is affine and operand is 
-00; or closure is projective and operand is 
00. 

(Compare operations only): closure is projec-· 
tive and 00 is being compared with 0, a normal, 
or 00. 

(FTST instruction only): closure is projective 
and operand is 00. 

(FIST, FISTP instructions only): source regis
ter is empty, a NaN, denormal, unnormal, 00, 

or exceeds representable range of destina
tion. 

(FBSTP instruction only): source register is 
empty, a NaN, denormal, unnormal, 00, or 
exceeds 18 decimal digits. 

(FST, FSTP instructions only): destination is 
short or long real and source register is an 

. unnormalwith exponent in range. 

(FXCH instruction only): one or both registers 
is tagged empty. 

1-34 

Return real indefinite. 

Return real indefinite (overwrite destination 
value). 

Return NaN with larger absolute value (ignore 
signs). 

Set condition codes "not comparable." 

Return real indefinite. 

Return real indefinite. 

Return real indefinite. 

Return real indefinite. 

Return real indefinite, set condition code = 
"complete remainder." 

Return real indefinite. 

Set condition code = "not comparable." 

Set condition code = "not comparable." 

Store integer indefinite. 

Stored packed decimal indefinite. 

Store real indefinite. 

Change empty register(s) to real indefinite and 
then perform exchange. 

122164-001 



OVERVIEW OF NUMERIC PROCESSING 

Table 1-17. Exception Conditions and Masked Responses (Cont'd.) 

Condition Masked Response 

Denormalized Operand 

(FLO instruction only): source operand is No special action; load as usual. 
denormal. 

(Arithmetic operations only): one or both Convert (in a work area) the operand to the 
operands is denormal. equivalent un normal and proceed. 

(Compare and test operations only): one or Convert (in a work area) any denormal to the 
both operands is denormal or unnormal (other equivalent unnormal; normalize as much as 
than pseudo zero). possible, and proceed with operation. 

Zero Divide 

(Division operations only): divisor = O. Return 00 signed with "exclusive or" of 
operand signs. 

Overflow 

(Arithmetic operations only): rounding is Return properly signed 00 and signal precision· 
nearest or chop, and exponent of true result exception. 
> 16,383. 

(FST, FSTP instructions only): rounding is Return properly signed 00 and signal precision 
nearest or chop, and exponent of true result exception. 
> + 127 (short real destination) or > + 1 023 
(long real destination). 

Underflow 

(Arithmetic operations only): exponent of true Denormalize until exponent rises to -16,382 
result < -16,382 (true). (true), round significand to 64 bits. If denor-

malized rounded significand = 0, then return 
true 0; else, return denormal (tag = speCial, 
biased exponent = 0). 

(FST, FSTP instructions only): destination is Denormalize until exponent rises to -126 
short real and exponent of true result < -126 (true), round significand to 24 bits, store true 0 
(true). if denormalized rounded significand = 0; else, 

store denormal (biased exponent = 0). 

(FST, FSTP instructions only): destination is Denormalize until exponent rises to -1022 
long real and exponent of true result < -1022 (true), round significand to 53 bits, store true 0 
(true). if rounded denormalized significand = 0; else, 

store denormal (biased exponent = 0). 

Precision 

True rounding error occurs. No special action. 

Masked response to overflow exception earlier No special action. 
in instruction. 

Note that when exceptions are masked, the NPX may detect multiple exceptions in a single instruction, 
because it continues executing the instruction after performing its masked response. For example, the 
80287 could detect a deilormalized operand, perform its masked response to this exception, and then 
detect an underflow. 

1-35 122164·001 



OVERVIEW OF NUMERIC PROCESSING 

Automatic Exception Handling 

As described in the previous section, when the 80287 NPX encounters an exception condition whose 
corresponding mask bit in the NPX control word is set, the NPX automatically performs an internal 
fix-up (masked-exception) response. The 80287 NPX has a default fix-up activity for every possible 
exception condition it may encounter. These masked-exception responses are designed to be safe and 
are generally acceptable for most numeric applications. 

As an example of how even severe exceptions can be handled safely and automatically using the NPX's 
default exception responses, consider a calculation of the parallel resistance of several values using 
only the standard formula (figure 1-11). If Rl becomes zero, the circuit resistance becomes zero. With 
the divide-by-zero and precision exceptions masked, the 80287 NPX will produce the correct result. 

By masking or unmasking specific numeric exceptions in the NPX control word, NPX programmers 
can delegate responsibility for most exceptions to the NPX, reserving the most severe exceptions for 
programmed exception handlers. Exception-handling software is often difficult to write, and the NPX's 
masked responses have been tailored to deliver the most reasonable result for each condition. For the 
majority of applications, programmers will find that masking all exceptions other than Invalid Opera
tion will yield satisfactory results with the least programming effort. An Invalid Operation exception 
normally indicates a fatal error in a program that must be corrected; this exception should not normally 
be masked. 

The exception flags in the NPX status word provide a cumulative record of exceptions that have occurred 
since these flags were last cleared. Once set, these flags can be cleared only by executing the FCLEX 
(clear exceptions) instruction, by reinitializing the NPX, or by overwriting the flags with an FRS TOR 
or FLDENV instruction. This allows a programmer to mask all exceptions (except invalid operation), 
run a calculation, and then inspect the status word to see if any exceptions were detected at any point 
in the calculation. 

Software Exception Handling 

If the NPX encounters an unmasked exception condition, it signals the exception to the 80286 CPU 
using the ERROR status line between the two processors. 

R3 

EQUIVALENT RESISTANCE ~ 

122164-11 

Figure 1-11. Arithmetic Example Using Infinity 

1-36 122164-001 



OVERVIEW OF NUMERIC PROCESSING 

The next time the 80286 CPU encounters aWAIT or ESC instruction in its instruction stream, the 
80286 will detect the active condition of the ERROR status line and automatically trap to an exception 
response routine using interrupt #16-the Processor Extension Error exception. 

This exception response routine is typically a part of the systems software. Typical exception responses 
may include 

Incrementing an exception counter for later display or printing 

Printing or displaying diagnostic information (e.g., the 80287 environment and registers) 

Aborting further execution 

Using the exception pointers to build an instruction that will run without exception and executing 
it 

Application programmers on iAPX 286 systems having systems software support for the 80287 NPX 
should consult their references for the appropriate system response to NPX exceptions. For systems 
programmers, specific details on writing software exception handlers are included in the section "System
Level Numeric Programming" later in this supplement. 

The 80287 NPX differs from the 8087 NPX in the manner in which numeric exceptions are signalled 
to the CPU; the 8087 requires an interrupt controller (8259A) to interrupt the CPU, while the 80287 
does not. Programmers upgrading iAPX 86/20 software to operate on iAPX 286 systems should be 
aware of these differences and any implications they might have on numeric exception-handling software. 
Appendix B explains the differences between the 80287 and the 8087 NPX in greater detail. 

1-37 122164-001 





Programming 
Numeric Applications 

2 





CHAPTER 2 
PROGRAMMING NUMERIC APPLICATIONS 

Programmers developing applications for the 80287 have a wide range of instructions and program
ming alternatives from which to choose .. 

The following sections describe the 80287 instruction set in detail, and follow up with a discussion of 
several of the programming facilities that are available to programmers of iAPX 286/20 systems. 

THE 80287 NPX INSTRUCTION SET 

This section describes the operation of all 80287 instructions. Within this section, the instructions are 
divided into six functional classes: 

• Data Transfer instructions 

• Arithmetic instructions 

• Comparison instructions 

• Transcendental instructions 

• Constant instructions 

• Processor Control instructions 

At the end of this section, each of the instructions is described in terms of its execution speed, bus 
transfers, and exceptions, as well as a coding example for each combination of operands accepted by 
the instruction. For easy reference, this information is concentrated into a table, organized alphabeti
cally by instruction mnemonic. 

Throughout this section, the instruction set is described as it appears to the ASM286 programmer who 
is coding a program. Appendix A covers the .actual machine instruction encodings, which are princi
pally of use to those reading unformatted memory dumps, monitoring instruction fetches on the bus, 
or writing exception handlers. 

Compatibility with the 8087 NPX 

The instruction set for the 80287 NPX is largely the same as that for the 8087 NPX used with iAPX 
86 and 88 systems. Most object programs generated for iAPX 86/20 systems (8086 and 8087) will 
execute without change on iAPX 286/20 systems. Several instructions are new to the 80287, and several 
8087 instructions perform no useful function on the 80287. Appendix B at the back of this supplement 
gives details of these instruction set differences and of the differences in the ASM86 and ASM286 
assemblers. 

Numeric Operands 

The typical NPX instruction accepts one or two operands as inputs, operates on these, and produces a 
result as an output. Operands are most often (the contents of) register or memory locations. The operands 
of some instructions are predefined; for example, FSQRT always takes the square root of the number 
in the top stack element. Others allow, or require, the programmer to explicitly code the operand(s) 
along with the instruction mnemonic. Still others accept one explicit operand and one implicit operand, 
which is usually the top stack element. 

2-1 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

Whether supplied by the programmer or utilized automatically, the two basic types of operands are 
sources and destinations. A source operand simply supplies one of the inputs to an instruction; it is not 
altered by the instruction. Even when an instruction converts the source operand from one format to 
another (e.g., real to integer), the conversion is actually performed in an internal work area to avoid 
altering the source operand. A destination operand may also provide an input to an instruction. It is 
distinguished from a source operand, however, because its content may be altered when it receives the 
result produced by the operation; that is, the destination is replaced by the result. 

Many instructions allow their operands to be coded in more than one way. For example, FADD (add 
real) may be written without operands, with only a source or with a destination and a source. The 
instruction descriptions in this section employ the simple convention of separating alternative operand 
forms with slashes; the slashes, however, are not coded. Consecutive slashes indicate an option of no 
explicit operands. The operands for FADD are thus described as 

jjsourcejdestination, source 

This means that F ADD may be written in any of three ways: 

FADD 
FAD D source 
FAD D destination, source 

When reading this section, it is important to bear in mind that memory operands may be coded with 
any of the CPU's memory addressing modes. To review these modes-direct, register indirect, based, 
indexed, based indexed-refer to the iAPX 286 Programmer's Reference Manual. Table 2-17 later in 
this chapter also provides several addressing mode examples. 

Data Transfer Instructions 

These instructions (summarized in table 2-1) move operands among elements of the register stack, and 
between the stack top and memory. Any of the seven data types can be converted to temporary real 
and loaded (pushed) onto the stack in a single operation; they can be stored to memory in the same 
manner. The data transfer instructions automatically update the 80287 tag word to reflect the register 
contents following the instruction. 

Table 2-1. Data Transfer Instructions 

Real Transfers 

FLD Load real 
FST Store real 
FSTP Store real and pop 
FXCH Exchange registers 

Integer Transfers 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) load 
FBSTP Packed decimal (BCD) store and pop 

2-2 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

FLO source 

FLD (load real) loads (pushes) the source operand onto the top of the register stack. This is done by 
decrementing the stack pointer by one and then copying the content of the source to the new stack top. 
The source may be a register on the stack (ST(i)) or any of the real data types in memory. Short and 
long real source operands are converted to temporary real automatically. Coding FLD ST(O) duplicates 
the stack top. 

FST destination 

FST (store real) transfers the stack top to the destination, which may be another register on the stack 
or a short or long real memory operand. If the destination is short or long real, the significand is 
rounded to the width of the destination according to the RC field of the control word, and the exponent 
is converted to the width and bias of the destination format. 

If, however, the stack top is tagged special (it contains co, a NaN, or a denormal) then the stack top's 
significand is not rounded but is chopped (on the right) to fit the destination. Neither is the exponent 
converted, but it also is chopped on the right and transferred "as is." This preserves the value's identi
fication as co or a NaN (exponent all ones) or a denormal (exponent all zeros) so that it can be properly 
loaded and tagged later in the program if desired. 

FSTP destination 

FSTP (store real and pop) operates identically to FST except that the stack is popped following the 
transfer. This is done by tagging the top stack element empty and then incrementing ST. FSTP permits 
storing to a temporary real memory variable, whereas FST does not. Coding FSTP ST(O) is equivalent 
to popping the stack with no data transfer. 

FXCHlldestination 

FXCH (exchange registers) swaps the contents of the destination and the stack top registers. If the 
destination is not coded explicitly, ST(l) is used. Many 80287 instructions operate only on the stack 
top; FXCH provides a simple means of effectively using these instructions on lower stack elements. 
For example, the following sequence takes the square root of the third register from the top: 

FXCH ST(3) 
FSGRT 
FXCH ST(3) 

FILD source 

FILD (integer load) converts the source memory operand from its binary integer format (word, short, 
or long) to temporary real and loads (pushes) the result onto the stack. The (new) stack top is tagged 
zero if all bits in the source were zero, and is tagged valid otherwise. 

FIST destination 

FIST (integer store) rounds the content of the stack top to an integer according to the RC field of the 
control word and transfers the result to the destination. The destination may define a word or short 
integer variable. Negative zero is stored in the same encoding as positive zero: 0000 ... 00. 

2-3 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FISTP destInation 

FISTP (integer and pop) operates like FIST and also pops the stack following the transfer. The desti· 
nation may be any of the binary integer data types. 

FBLD source 

FBLD (packed decimal (BCD) load) converts the content of the source operand from packed decimal 
to temporary real and loads (pushes) the result onto the stack. The sign of the source is preserved, 
including the case where the value is negative zero. FBLD is an exact operation; the source is loaded 
with no rounding error. 

The packed decimal digits of the source are assumed to be in the range 0-9H. The instruction does not 
check for invalid digits (A-FH) and the result of attempting to load an invalid encoding is undefined. 

FBSTP destination 

FBSTP (packed decimal (BCD) store and pop) converts the content of the stack top to a packed 
decimal integer, stores the result at the destination in memory, and pops the stack. FBSTP produces a 
rounded integer from a non integral value by adding 0.5 to the value and then chopping. Users who are 
concerned about rounding may precede FBSTP with FRNDINT. 

Arithmetic Instructions 

The 80287's arithmetic instruction set (table 2-2) provides a wealth of variations on the basic add, 
subtract, multiply, and divide operations, and a number of other useful functions. These range from a 
simple absolute value to a square root instruction that executes faster than ordinary division; 80287 
programmers no longer need to spend valuable time eliminating square roots from algorithms because 
they run too slowly. Other arithmetic instructions perform exact modulo division, round real numbers 
to integers, and scale values by powers of two. 

The 80287's basic arithmetic instructions (addition, subtraction, multiplication, and division) are 
designed to encourage the development of very efficient algorithms. In particular, they allow the 
programmer to minimize memory references and to make optimum use of the NPX register stack. 

Table 2-3 summarizes the available operation/operand forms that are provided for basic arithmetic. In 
addition to the four normal operations, two "reversed" instructions make subtraction and division 
"symmetrical" like addition and multiplication. The variety of instruction and operand forms give the 
programmer unusual flexibility: 

• Operands may be located in registers or memory. 

• Results may be deposited in a choice of registers. 

• Operands may be a variety of NPX data types: temporary real, long real, short real, short integer 
or word integer, with automatic conversion to temporary real performed by the 80287. 

2-4 122164·001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2·2. Arithmetic Instructions 

Addition 

FADD Add real 
FADDP Add real and pop 
FIADD Integer add 

Subtraction 

FSUB Subtract real 
FSUBP Subtract real and pop 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and pop 
FISUBR Integer subtract reversed 

Multiplication 

FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

Division 

FDIV Divide real 
FDIVP Divide real and pop 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed and pop 
FIDIVR Integer divide reversed 

Other Operations 

FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 
FRNDINT Round to integer 
FXTRACT Extract exponent and significand 
FABS Absolute value 
FCHS Change sign 

Five basic instruction forms may be used across all six operations, as shown in table 2-3. The classicial 
stack form may be used to make the 80287 operate like a classical stack machine. No operands are 
coded in this form, only the instruction mnemonic. The NPX picks the source operand from the stack 
top and the destination from the next stack element. It then pops the stack, performs the operation, 
and returns the result to the new stack top, effectively replacing the operands by the result. 

The register form is a generalization of the classical stack form; the programmer specifies the stack 
top as one operand and any register on the stack as the other operand. Coding the stack top as the 
destination provides a convenient way to access a constant, held elsewhere in the stack, from the stack 
top. The converse coding (ST is the source operand) allows, for example, adding the top into a register 
used as an accumulator. 

Often the operand in the stack top is needed for one operation but then is of no further use in the 
computation. The register pop form can be used to pick up the stack top as the source operand, and 
then discard it by popping the stack. Coding operands of ST(l ),sT with a register pop mnemonic is 
equivalent to a classical stack operation: the top is popped and the result is left at the new top. 

2-5 122164-001 



PROGRAMMING NUMERIC APPLlCATIONS 

Table 2-3. Basic Arithmetic Instructions and Operands 

Instruction Form Mnemonic Operand Forms 
.ASM286 Exal)1ple Form destination, source 

Classical stack Fop { ST(1),ST} FADD 

Register Fop ST(i),ST or ST,ST(i) FSUB ST,ST(3) 

Register pop FopP ST(i),ST FMULP ST(2),ST 

Real memory Fop { ST,} short-real/long-real FDIV AZIMUTH 

Integer memory Flop { ST,} word-integer/short-integer FIDIV N_PULSES 

NOTES: 

Braces ({ }) surround imp/icit.operands; these are not coded, and are shown here for information only. 

op = ADD destination +- destination + source 
SUB destination +- destination - source 
SUBR destination +- source - destination 
MUL destination +- destination· source 
DIV destination +- destination +- source 
DIVR destination +- source +- destination 

The two memory forms increase the flexibility of the 80287'8 arithmetic instructions. They permit a 
real number or a binary integer in memory to be used directly as a source operand. This is a very useful 
facility in situations where operands ate not used frequently enough to justify holding them in registers. 
Note that any memory addressing mode may be used to define these operands, so they may be elements 
in arrays, structures, or other data organizations, as well as simple scalars. 

The six basic operations are discussed further in the next paragraphs, and descriptions of the remaining 
seven arithmetic operations follow. 

ADDITION 
FADD 
FADDP 
FIADD 

/ /source/destination,source 
destination/source 
source 

The addition instructions (add real, add real and pop, integer add) add the source and destination 
operands and return the sum to the destination. The operand at the stack top may be doubled by 
coding: 

FADD ST,SHO) 

NORMAL SUBTRACTION 
FSUB / /source/destination,source 
FSUBP destination/source 
FISUB source 

The normal subtraction instructions (subtract real, subtract real and pop, integer subtract) subtract 
the source operand from the destination and return the difference to the destination. 

REVERSED SUBTRACTION 
FSUBR / /source/destination,source 
FSUBRP destination/source 
FISUBRsource 

2-6 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

The reversed subtraction instructions (subtract real reversed, subtract real reversed and pop, integer 
subtract reversed) subtract the destination from the source and return the difference to the destination. 

MULTIPLICATION 
FMUL / /source/destination, source 
FMULP destination,source 
FIMUL source 

The multiplication instructions (multiply real, multiply real and pop, integer mUltiply) multiply the 
source and destination operands and return the product to the destination. Coding FMUL ST,ST(O) 
squares the content of the stack top. 

NORMAL DIVISION 
FDIV / /source/destination,source 
FDIVP destination, source 
FIDIV source 

The normal division instructions (divide real, divide real and pop, integer divide) divide the destination 
by the source and return the quotient to the destination. 

REVERSED DIVISION 
FDIVR / /source/destination,source 
FDIVRP destination, source 
FIDIVR source 

The reversed division instructions (divide real reversed, divide real reversed and pop, integer divide 
reversed) divide the source operand by the destination and return the quotient to the destination. 

FSQRT 

FSQRT (square root) replaces the content of the top stack element with its square root. (Note: The 
square root of -0 is defined to be -0.) 

FSCALE 

FSCALE (scale) interprets the value contained in ST(l) as an integer and adds this value to the exponent 
of the number in ST. This is equivalent to 

ST +- ST. 2ST(I) 

Thus, FSCALE provides rapid multiplication or division by integral powers of 2. It is particularly 
useful for scaling the elements of a vector. 

Note that FSCALE assumes the scale factor in ST(l) is an integral value in the range -215:sX<215 • 

If the value is not integral, but is in-range and is greater in magnitude than 1, FSCALE uses the 
nearest integer smaller in magnitude; i.e., it chops the value toward O. If the value is out of range, or 0 
< I X I < 1, the instruction will produce an undefined result and will not signal an exception. The 
recommended practice is to load the scale factor from a word integer to ensure correct operation. 

FPREM 

FPREM (partial remainder) performs modulo division of the top stack element by the next stack 
element, i.e., ST(l) is the modulus. FPREM produces an exact result; the precision exception does not 
occur. The sign of the remainder is the same as the sign of the original dividend. 

122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FPREM operates by performing successive scaled subtractions; obtaining the exact remainder when 
the operands differ greatly in magnitude can consume large amounts of execution time. Because the 
80287 can only be preempted between instructions, the remainder function could seriously increase 
interrupt latency in these cases. Accordingly, the instruction is designed to be executed iteratively in a 
software-controlled loop. 

FPREM can reduce a magnitude difference of up to 264 in one execution. If FPREM produces a 
remainder that is less than the modulus, the function is complete and bit C2 of the status word condi
tion code is cleared. If the function is incomplete, C2 is set to 1; the result in ST is then called the 
partial remainder. Software can inspect C2 by storing the status word following execution of FPREM 
and re-execute the instruction (using the partial remainder in ST as the dividend), until C2 is cleared. 
Alternatively, a program can determine when the function is complete by comparing ST to ST(1). If 
ST>ST(1), then FPREM must be executed again; if ST=ST(I), then the remainder is 0; if ST<ST(1), 
then the remainder is ST. A higher priority interrupting routine that needs the 80287 can force a 
context switch between the instructions in the remainder loop. 

An important use for FPREM is to reduce arguments (operands) of periodic transcendental functions 
to the range permitted by these instructions. For example, the FPTAN (tangent) instruction requires 
its argument to be less than 7r / 4. Using 7r / 4 as a modulus, FPREM will reduce an argument so that it 
is in range of FPTAN. Because FPREM produces an exact result, the argument reduction does not 
introduce roundoff error into the calculation, even if several iterations are required to bring the argument 
into range. (The rounding of 7r does not create the effect of a rounded argument, but of a rounded 
period.) 

FPREM also provides the least-significant three bits of the quotient generated by FPREM (in CJ , C I , 

Co). This is also important for transcendental argument reduction, because it locates the original angle 
in the correct one of eight 7r/4 segments of the unit circle (see table 2-4). If the quotient is less than 4, 
then CO will be the value of C3 before FPREM was executed. If the quotient is less than 2, then C3 
will be the value of Cl before FPREM was executed. 

Table 2·4. Condition Code Interpretation after FPREM 

Condition Code 
Interpretation after FPREM 

C3 C2 C1 CO 

X 1 X X Incomplete Reduction; 
further iteration is required for complete 
reduction. 

Complete Reduction; 
C1, C3, and CO contain the three least-
significant bits of quotient: 

0 0 0 0 (Quotient) MOD 8 = 0 

0 0 0 1 (Quotient) MOD 8 = 4 

0 0 1 0 (Quotient) MOD 8 = 1 

0 0 1 1 (Quotient) MOD 8 = 5 

1 0 0 0 (Quotient) MOD 8 = 2 

1 0 0 1 (Quotient) MOD 8 = 6 

1 0 1 0 (Quotient) MOD 8 = 3 

1 0 1 1 (Quotient) MOD 8 = 7 

2-8 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FRNDINT 

FRNDINT (round to integer) rounds the top stack element to an integer. For example, assume that 
ST contains the 80287 real number encoding of the decimal value 155.625. FRNDINT will change 
the value to 155 if the RC field of the control word is set to down or chop, or to 156 if it is set to up 
or nearest. 

FXTRACT 

FXTRACT (extract exponent and significand) "decomposes" the number in the stack top into two 
numbers that represent the actual value of the operand's exponent and significand fields. The "exponent" 
replaces the original operand on the stack and the "significand" is pushed onto the stack. Following 
execution of FXTRACT, ST (the new stack top) contains the value of the original significand expressed 
as a real number: its sign is the same as the operand's, its exponent is 0 true (16,383 or 3FFFH biased), 
and its significand is identical to the original operand's. ST(l) contains the value of the original operand's 
true (unbiased) exponent expressed as a real number. If the original operand is zero, FXTRACT 
produces zeros in ST and ST(l) and both are signed as the original operand. 

To clarify the operation of FXTRACT, assume ST contains a number of whose true exponent is +4 
(i.e., its exponent field contains 4003H). After executing FXTRACT, ST(l) will contain the real number 
+ 4.0; its sign will be positive, its exponent field will contain 4001 H ( + 2 true) and its significand field 
will contain It.OO ... OOB. In other words, the value in ST(l) will be 1.0 X 22 = 4. If ST contains an 
operand whose true exponent is -7 (i.e., its exponent field contains 3FF8H), then FXTRACT will 
return an "exponent" of -7.0; after the instruction executes, ST(1)'s sign and exponent fields will 
contain COOIH (negative sign, true exponent of 2), and its significand will be It.ll00 ... 00B. In other 
words, the value in ST(l) will be -1.11 X 22 = -7.0. In both cases, following FXTRACT, ST's sign 
and significand fields will be the same as the original operand's, and its exponent field will contain 
3FFFH (0 true). 

FXTRACT is useful in conjunction with FBSTP for converting numbers in 80287 temporary real format 
to decimal representations (e.g., for printing or displaying). It can also be useful for debugging, because 
it allows the exponent and significant parts of a real number to be examined separately. 

FABS 

F ABS (absolute value) changes the top stack element to its absolute value by making its sign positive. 

FCHS 

FCHS (change sign) complements (reverses) the sign of the top stack element. 

Comparison Instructions 

Each of these instructions (table 2-5) analyzes the top stack element, often in relationship to another 
operand, and reports the result in the status word condition code. The basic operations are compare, 
test (compare with zero), and examine (report tag, sign, and normalization). Special forms of the compare 
operation are provided to optimize algorithms by allowing direct comparisons with binary integers and 
real numbers in memory, as well as popping the stack after a comparison. 

The FSTSW (store status word) instruction may be used following a comparison to transfer the condi
tion code to memory for inspection. 

2-9 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

Note that instructions other than those in the comparison group may update the condition code. To 
ensure that the status word is not altered inadvertently, store it immediately following a comparison 
operation. 

FCOM / /source 

FCOM (compare real) compares the stack top to the source operand. The source operand may be a 
register on the stack, or a short or long real memory operand. If an operand is not coded, ST is compared 
to ST(l). Positive and negative forms of zero compare identically as if they were unsigned. Following 
the instruction, the condition codes reflect the order of the operands as shown in table 2-6. 

NaNs and 00 (projective) cannot be compared and return C3=CO=1 as shown in the table. 

FCOMP / /source 

FCOMP (compare real and pop) operates like FCOM, and in addition pops the stack. 

FCOMPP 

FCOMPP (compare real and pop twice) operates like FCOM and additionally pops the stack twice, 
discarding both operands. The comparison is of the stack top to ST(1); no operands may be explicitly 
coded. 

FICOM source 

FICOM (integer compare) converts the source operand, which may reference a word or short binary 
integer variable, to temporary real and compares the stack top to it. 

FICOMP source 

FICOMP (integer compare and pop) operates identically to FICOM and additionally discards the 
value in ST by popping the stack. 

C3 

0 
0 
1 
1 

Table 2-5. Comparison Instructions 

FCOM 
FCOMP 
FCOMPP 
FICOM 
FICOMP 
FTST 
FXAM 

Compare real 
Compare real and pop 
Compare real and pop twice 
Integer compare 
Integer compare and pop 
Test 
Examine 

Table 2-6. Condition Code Interpretation after FCOM 

Condition Code 
Interpretation after FCOM 

C2 C1 CO 

0 X 0 ST> source 
0 X 1 ST < source 
0 X 0 ST = source 
1 X 1 ST is not comparable 

2-10 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FTST 

FTST (test) tests the top stack element by comparing it to zero. The result is posted to the condition 
codes as shown in table 2-7. 

FXAM 

FXAM (examine) reports the content of the top stack element as positive/negative and NaN/unnor
mal/denormal/normal/zero, or empty. Table 2-8 lists and interprets all the condition code values that 
FXAM generates. Although four different encodings may be returned for an empty register, bits C3 
and CO of the condition code are both 1 in all encodings. Bits C2 and Cl should be ignored when 
examining for empty. 

Transcendental Instructions 

The instructions in this group (table 2-9) perform the time-consuming core calculations for all common 
trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic, logarithmic, and exponential 
functions. Prologue and epilogue software may be used to reduce arguments to the range accepted by 
the instructions and to adjust the result to correspond to the original arguments if necessary. The 
transcendentals operate on the top one or two stack elements, and they return their results to the stack, 
also. 

Table 2-7. Condition Code Interpretation after FTST 

Condition Code 
Interpretation after FTST 

C3 C2 C1 CO 

0 0 X 0 8T> 0 
0 0 X 1 8T < 0 
1 0 X 0 8T = 0 
1 1 X 1 8T is not comparable; (i.e., it is a NaN or projective infinity) 

Table 2-8. FXAM Condition Code Settings 

Condition Code 
Interpretation 

C3 C2 C1 CO 

0 0 0 0 + Unnormal 
0 0 0 1 + NaN 
0 0 1 0 - Unnormal 
0 0 1 1 - NaN 
0 1 0 0 + Normal 
0 1 0 1 +00 
0 1 1 0 - Normal 
0 1 1 1 - 00 
1 0 0 0 +0 
1 0 0 1 Empty 
1 0 1 0 -0 
1 0 1 1 Empty 
1 1 0 0 + Denormal 
1 1 0 1 Empty 
1 1 1 0 - Denormal 
1 1 1 1 Empty 

2-11 122164-001 



FPTAN 
FPATAN 
F2XM1 
FYL2X 
FYL2XP1 

PROGRAMMINGNU'MERIC APPLICATIONS 

Table 2-9. Transcendental Instructions 

NOTE 

Partial tangent 
Partial arctangent 
2X-1 
Y olog2X 
Y olog2(X + 1) 

The transcendental instructions assume that their operands are valid and in-range. The 
instruction descriptions in this section provide the allowed operand range of each instruction. 

All operands to a transcendental must be normalized; denormals, unnormals, infinities, and NaNs are 
considered invalid. (Zero operands are accepted by some functions and are considered out-of-range by 
others). If a transcendental operand is invalid or out-of-range, the instruction will produce an undefined 
result without signalling an exception. It is the programmer's responsibility to ensure that operands are 
valid and in-range before executing a transcendental. For periodic functions, FPREM may be used to 
bring a valid operand into range. 

FPTAN 
O:::OS ST(O):::OS 'l!'/4 

FPTAN (partial tangent) computes the function Y IX = TAN (0). 0 is taken from the top stack 
element; it must lie in the range 0 ::::s 0 ::::s 7r 14. The result of the operation is a ratio; Y replaces 0 in 
the stack and X is pushed, becoming the new stack top. 

The ratio result of FPTAN and the ratio argument of FPATAN are designed to optimize the calcula
tion of the other trigonometric functions, including SIN, COS, ARCSIN, and ARCCOS. These can 
be derived from TAN and ARCTAN via standard trigonometric identities. 

FPATAN 
O::::s ST(1) < ST(O) < <Xl 

FPATAN (partial arctangent) computes the function 0 = ARCTAN (Y IX). X is taken from the top 
stack element and Y from ST(l). Y and X must observe the inequality 0 ::::s Y < X < <Xl. The 
instruction pops the stack and returns 0 to the (new) stack top, overwriting the Yoperand. 

F2XM1 
o ::::s ST(O) ::::s 0.5 

F2XMl (2 to the X minus 1) calculates the function Y = 2X -1. X is taken from the stack top and 
must be in the range 0 ::::s X ::::s 0.5. The result Y replaces X at the stack top. 

This instruction is designed to produce a very accurate result even when X is close to O. To obtain 
Y=2x, add 1 to the result delivered by F2XMI. 

The following formulas show how values other than 2 may be raised to a power of X: 

10' = 2,·LOG210 

eX = 2x.lOG2e 

y' = 2,·LOG2Y 

2-12 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

As shown in the next section, the 80287 has built-in instructions for loading the constants LOG2 IO and 
LOG,e, and the FYL2X instruction may be used to calculate X.LOG,Y. 

FYL2X 
0< ST(O) < co-co < ST(1) < co 

FYL2X (Y log base 2 of X) calculates the function Z = Y·LOG2X. X is taken from the stack top and 
Y from ST(I). The operands must be in the ranges 0 < X < co and - co < Y < + co. The 
instruction pops the stack and returns Z at the (new) stack top, replacing the Yoperand. 

This function optimizes the calculations of log to any base other than two, because a multiplication is 
always required: 

LOG,2·LOG,X 

FYL2XP1 
o ::::;1 ST(O) 1 < (1-h/2/2» 
- co < ST(1) < co 

FYL2XPI (Y log base 2 of (X + 1)) calculates the function Z = Y·LOG2 (X + 1). X is taken from 
the stack top and must be in the range 0 ::::; 1 X 1 < (1-( Y2/2)). Y is taken from ST(1) and must 
be in the range - co < Y < co. FYL2XPI pops the stack and returns Z at the (new) stack top, 
replacing Y. 

The instruction provides improved accuracy over FYL2X when computing the log of a number very 
close to 1, for example 1 + ~ where ~ < < 1. Providing ~ rather than 1 + ~ as the input to the function 
allows more significant digits to be retained. 

Constant Instructions 

Each of these instructions (table 2-10) loads (pushes) a commonly-used constant onto the stack. The 
values have full temporary real precision (64 bits) and are accurate to approximately 19 decimal digits. 
Because a temporary real constant occupies 10 memory bytes, the constant instructions, which are only 
two bytes long, save storage and improve execution speed, in addition to simplifying programming. 

FLDZ 

FLDZ (load zero) loads (pushes) +0.0 onto the stack. 

FLD1 

FLDI (load one) loads (pushes) + 1.0 onto the stack. 

FLDZ 
FLD1 
FLDPI 
FLDL2T 
FLDL2E 
FLDLG2 
FLDLN2 

Table 2-10. Constant Instructions 

2-13 

Load + 0.0 
Load + 1.0 
Load 7r 

Load log210 
Load log29 
Loadlog102 
Load log.2 

122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FLDPI 

FLDPI (load 7r) loads (pushes) 7r onto the stack. 

FLDL2T 

FLDL2T (load log base 2 of 10) loads (pushes) the value LOG2 1O onto the stack. 

FLDL2E 

FLDL2E (load log base 2 of e) loads (pushes) the value LOG2e onto the stack. 

FLDLG2 

FLDLG2 (load log base 10 of 2) loads (pushes) the value LOG 102 onto the stack. 

FLDLN2 

FLDLN2 (load log base e of 2) loads (pushes) the value LOG,2 onto the stack. 

Processor Control Instructions 

The processor control instructions shown in table 2-11 are not typically used in calculations; they provide 
control over the 80287 NPX for system-level activities. These activities include initialization, exception 
handling, and task switching. 

As shown in table 2-11, many of the NPX processor control instructions have two forms of assembler 
mnemonic: 

• A wait form, where the mnemonic is prefixed only with an F, such as FSTSW. This form checks 
for unmasked numeric errors. 

• A no-wait form, where the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores 
unmasked numeric errors. 

Table 2-11. Processor Control Instructions 

FINlTjFNINIT 
FSETPM 
FLDCW 
FSTCW jFNSTCW 
FSTSW jFNSTSW 
FSTSW AX/FNSTSW AX 
FCLEXjFNCLEX 
FSTENV /FNSTENV 
FLDENV 
FSAVEjFNSAVE 
FRSTOR 
FINCSTP 
FDECSTP 
FFREE 
FNOP 
FWAIT 

2-14 

Initialize processor 
Set Protected Mode 
Load control word 
Store control word 
Store status word 
Store status word to AX 
Clear exceptions 
Store Environment 
Load environment 
Save state 
Restore state 
Increment stack pointer 
Decrement stack pointer 
Free register 
No operation 
CPU Wait 

122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

When the control instruction is coded using the no-wait form of the mnemonic, the ASM286 assembler 
does not precede the ESC instruction with a wait instruction, and the CPU does not test the ERROR 
status line from the NPX before executing the processor control instruction. 

Only the processor control class of instructions have this alternate no-wait form. All numeric instruc
tions are automatically synchronized by the 80286, with the CPU testing the BUSY status line and 
only executing the numeric instruction when this line is inactive. Because of this automatic synchroniz
ation by the 80286, numeric instructions for the 80287 need not be preceded by a CPU wait instruction 
in order to execute correctly. 

It should also be noted that the 8087 instructions FENI and FDISI perform no function in the 80287. 
If these opcodes are detected in an 80286/80287 instruction stream, the 80287 will perform no specific 
operation and no internal states will be affected. For programmers interested in porting numeric software 
from iAPX 86 or iAPX 88 environments to the iAPX 286, however, it should be noted that program 
sections containing these exception-handling instructions are not likely to be completely portable to the 
iAPX 28·6/20. Appendix B contains a more complete description of the differences between the 80287 
and the 8087 NPX. 

FINIT IFNINIT 

FIN IT /FNINIT (initialize processor) sets the 80287 NPX into a known state, unaffected by any 
previous activity. The no-wait form of this instruction will cause the 80287 to abort any previous numeric 
operations currently executing in the NEU. This instruction performs the functional equivalent of a 
hardware RESET, with one exception; FINIT /FNINIT does not affect the current 80287 operating 
mode (either Real-Address mode or Protected mode). FINIT checks for unmasked numeric exceptions, 
FNINIT does not. 

Note that if FNINIT is executed while a previous 80287 memory-referencing instruction is running, 
80287 bus cycles in progress will be aborted. This instruction may be necessary to clear the 80287 if a 
Processor Extension Segment Overrun Exception (Interrupt 9) is detected by the CPU. 

FSETPM 

FSETPM (set Protected mode) sets the operating mode of the 80287 to Protected Virtual-Address 
mode. When the 80287 is first initialized following hardware RESET, it operates in Real-Address 
mode, just as does the 80286 CPU. Once the 80287 NPX has been set into Protected mode, only a 
hardware RESET can return the NPX to operation in Real-Address mode. 

When the 80287 operates in Protected mode, the NPX exception pointers are represented differently 
than they are in Real-Address mode (see the FSAVE and FSTENV instructions that follow). This 
distinction is evident primarily to writers of numeric exception handlers, however. For general appli
cation programmers, the operating mode of the 80287 need not be a concern. 

FLDCW source 

FLDCW (load control word) replaces the current processor control word with the word defined by the 
source operand. This instruction is typically used to establish or change the 80287's mode of operation. 
Note that if an exception bit in the status word is set, loading a new control word that unmasks that 
exception and clears the interrupt enable mask will generate an immediate interrupt request before the 
next instruction is executed. When changing modes, the recommended procedure is to first clear any 
exceptions and then load the new control word. 

2-15 122164·001 



PROGRAMMING NUMERIC APPLICATIONS 

FSTCW IFNSTCW destination 

FSTCW /FNSTCW (store control word) writes the current processor control word to the memory 
location defined by the destination. FSTCW checks for unmasked numeric exceptions, FNSTCW 
does not. 

FSTSW IFNSTSW destination 

FSTSW /FNSTCW (store status word) writes the current value of the 80287 status word to the desti
nation operand in memory. The instruction is used to 

• Implement conditional branching following a comparison or FPREM instruction (FSTSW) 

• Poll the 80287 to determine if it is busy (FNSTSW) 

• Invoke exception handlers in environments that do not use interrupts (FSTSW). 

FSTSW checks for unmasked numeric exceptions, FNSTSW does not. 

FSTSW AX/FNSTSW AX 

FSTSW AX/FNSTSW AX (store status word to AX) is a special 80287 instruction that writes the 
current value of the 80287 status word directly into the 80286 AXregister. This instruction optimizes 
conditional branching in numeric programs, where the 80286 CPU must test the condition of various 
NPX status bits. The waited form checks for unmasked numeric exceptions, the non-waited for 
does not. 

When this instruction is executed, the 80286 AX register is updated with the NPX status word before 
the CPU executes any further instructions. In this way, the 80286 can immediately test the NPX status 
word without any WAIT or other synchronization instructions required. 

FCLEX/FNCLEX 

FCLEX/FNCLEX (clear exceptions) clears all exception flags, the error status flag and the busy flag 
in the status word. As a consequence, the 80287's ERROR line goes inactive. FCLEX checks for 
unmasked numeric exceptions, FNCLEX does not. 

FSAVE/FNSAVE destination 

FSA VE/FNSA VE (save state) writes the full 80287 state-environment plus register stack-to the 
memory location defined by the destination operand. Figure 2-1 shows the layout of the 94-byte save 
area; typically the instruction will be coded to save this image on the CPU stack. FNSA VE delays its 
execution until all NPX activity completes normally. Thus, the save image reflects the state of the 
NPX following the completion of any running instruction. After writing the state image to memory, 
FSA VE/FNSA VE initializes the 80287 as if FINIT /FNINIT had been executed. 

FSA VE/FNSA VE is useful whenever a program wants to save the current state of the NPX and 
initialize it for a new routine. Three examples are 

• An operating system needs to perform a context switch (suspend the task that had been running 
and give control to a new task). 

• An exception handler needs to use the 80287. 

• An application task wants to pass a "clean" 80287 to a subroutine. 

2-16 122164-001 



INSTRUCTION { 
POINTER 

OPERAND { 
POINTER 

PROGRAMMING NUMERIC APPLICATIONS 

INCREASING ADDRESSES 

15 ~ 15 

CONTROL WORD CONTROL WORD 

STATUS WORD STATUS WORD 

TAG WORD TAG WORD 

INSTRUCTION POINTER (15-0) ·6 IP OFFSET 

INSTRUCTION)I I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) CS SELECTOR ·8 

DATA POINTER (15-0) ·10 DATA OPERAND OFFSET 

DATA POINTER I 
(19-16) 0 ·12 DATA OPERAND SELECTOR 

TOP STAC 
ELEMENT: ,\ { 

51 

SIGNIFICAND 15-0 

SIGNIFICAND 31-16 

SIG NIFICAND 47-32 

SIGNIFICAND 63-48 

EXPONENT 14-0 

+14 

+16 

+18 

+20 

+22 

TOP ST AC 
ELEMENT ,\ { 

SlGN1F1CAND 15-0 

SIGNIFICAND 31-16 

SIGNIFICAND 47-32 

SIGNIFICAND 63-48 

81 

NEXT STACK 
ELEMENT:ST(l I L 

LAST STAG 
ELEMENT:ST( :{ 

SI 

SIGNIFICAND 15-0 +24 

SIGNIFICAND 31-16 +26 

SIGNIFICAND 47-32 +28 

SIGNIFICAND 63-48 +30 

EXPONENT 14-0 +32 

SIGNIFICAND 15-0 +84 

SIGNIFICAND 31·16 +8. 

SIGNIFICAND 47-32 +88 

SIGNIFICAND 63-48 +90 

EXPONENT 14-0 +92 

REAL MODE 

NOTES 
S = Sign 

K NEXT STAC 
ElEMENT:ST{l I L 

LASTSTAC 
ElEMENT:ST ,: { 

81 

EXPONENT 14-0 

SIGNIFICAND 15-0 

SIGNIFICAND 31-16 

SIGNIFICANO 47-32 

SIGNIFICANO 63-48 

EXPONENT 14-0 

SIGNIFICANO 15-0 

SIGNIFICANO 31-16 

SIGNIFICAND 47-32 

SIGNIFICAND 63-48 

EXPONENT 14-0 

PROTECTED MODE 

Bit 0 of each field is rightmost, least significant bit of corresponding 
register field. 
Bit 63 of significand is integer bit {assumed binary point is immediately 
to the right}. 

Figure 2-1. FSAVE/FRSTOR Memory Layout 

INCREASING ADDRESSES 

jl 
-2 

~ 4 

-6 

-8 

·10 

-12 

+14 

+ 1. 

+18 

+ 20 

+22 

+ 24 

+ 2. 

+28 

+30 

+32 

+84 

+8. 

+88 

+90 

+92 

122164-12 

FSA VE checks for unmasked numeric errors before executing, FNSA VE does not. An FW AIT should 
be executed before CPU interrupts are enabled or any subsequent 80287 instruction is executed. Other 
CPU instructions may be executed between the FNSAVE/FSAVE and the FWAIT. 

FRSTOR source 

FRSTOR (restore state) reloads the 80287 from the 94-byte memory area defined by the source operand. 
This information should have been written by a previous FSA VE/FNSA VE instruction and not altered 
by any other instruction. An FW AIT is not required after FRSTOR. FRSTOR will automatically wait 
and check for interrupts until all data transfers are completed before continuing to the next instruction. 

Note that the 80287 "reacts" to its new state at the conclusion of the FRSTOR; it will, for example, 
generate an exception request if the exception and mask bits in the memory image so indicate when 
the next WAIT or error-checking-ESC instruction is executed. 

2-17 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FSTENV IFNSTENV destination 

FSTENV /FNSTENV (store environment) writes the 80287's basic status-control, status, and tag 
words, and exception pointers-to the memory location defined by the destination operand. Typically, 
the environment is saved on the CPU stack. FSTENV /FNSTENV is often used by exception handlers 
because it provides access to the exception pointers that identify the offending instruction and operand. 
After saving the environment, FSTENV /FNSTENV sets all exception masks in the processor. FSTENV 
checks for pending errors before executing, FNSTENV does not. 

Figure 2-2 shows the format of the environment data in memory. FNSTENV does not store the 
environment until all NPX activity has completed. Thus, the data saved by the instruction reflects the 
80287 after any previously decoded instruction has been executed. After writing the environment image 
to memory, FNSTENV /FSTENV initializes the 80287 state as if FNINIT /FINIT had been executed. 

FSTENV /FNSTENV must be allowed to complete before any other 80287 instruction is decoded. 
When FSTENV is coded, an explicit FW AIT, or assembler-generated . WAIT, should precede any 
subsequent 80287 instruction. 

15 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER (15-0) 

INSTRUCTION)I 1 INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) 

DATA POINTER (15-0) 

DATA POINTER 1 
(19-16) 0 

15 12 11 

REAL MODE 

o 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

+8 

+10 

+12 

15 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IPOFFSET 

CSSELECTOR 

DATA OPERAND OFF.SET 

DATA OPERAND SELECTOR 

PROTECTED MODE 

Figure 2-2. FSTENV IFLDENV Memory Layout 

2-18 

o 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

+8 

+10 

+12 

122164-13 

122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

FLDENV source 

FLDENV (load environment) reloads the environment from the memory area defined by the source 
operand. This data should have been written by a previous FSTENV jFNSTENV instruction. CPU 
instructions (that do not reference the environment image) may immediately follow FLDENV. An 
FWAIT is not required after FLDENV. FLDENV will automatically wait for all data transfers to 
complete before executing the next instruction. 

Note that loading an environment image that contains an unmasked exception will cause a numeric 
exception when the next WAIT or error-checking-ESC instruction is executed. 

FINCSTP 

FINCSTP (increment stack pointer) adds I to the stack top pointer (ST) in the status word. It does 
not alter tags or register contents, nor does it transfer data. It is not equivalent to popping the stack, 
because it does not set the tag of the previous stack top to empty. Incrementing the stack pointer when 
ST=7 produces ST=O. 

FDECSTP 

FDECSTP (decrement stack pointer) subtracts 1 from ST, the stack top pointer in the status word. 
No tags or registers are altered, nor is any data transferred. Executing FDECSTP when ST=O produces 
ST=7. 

FFREE destination 

FFREE (free register) changes the destination register's tag to empty; the content of the register is 
unaffected. 

FNOP 

FNOP (no operation) stores the stack top to the stack top (FST ST,ST(O)) and thus effectively performs 
no operation. 

FWAIT (CPU INSTRUCTION) 

FW AIT is not actually an 80287 instruction, but an alternate mnemonic for the CPU WAIT instruc
tion. The FWAIT or WAIT mnemonic should be coded whenever the programmer wants to synchro
nize the CPU to the NPX, that is, to suspend further instruction decoding until the NPX has completed 
the current instruction. FW AIT will check for unmasked numeric exceptions. 

NOTE 

A CPU instruction should not attempt to access a memory operand until the 80287 instruc
tion has completed. For example, the following coding shows how FW AIT can be used to 
force the CPU instruction to wait for the 80287: 

F 1ST 
F W A I T 
MOV 

VALUE 
Wait for FIST to complete 

AX,VALUE 

More information on when to code an FW AIT instruction is given in a following section of this chapter, 
"Concurrent Processing with the 80287." 

2-19 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Instruction Set Reference Information 

Table 2-14 later in this chapter lists the operating characteristics of all the 80287 instructions. There 
is one table entry for each instruction mnemonic; the entries are in alphabetical order for quick lookup. 
Each entry provides the general operand forms accepted by the instruction as well as a list of all 
exceptions that may be detected during the operation. 

One entry exists for each combination of operand types that can be coded with the mnemonic. Table 
2-12 explains the operand identifiers allowed in table 2-14. Following this entry are columns that provide 
execution time in clocks, the number of bus transfers run during the operation, the length of the 
instruction in bytes, and an ASM286 coding sample. 

INSTRUCTION EXECUTION TIME 

The execution of an 80287 instruction involves three principal activities, each of which may contribute 
to the overall execution time of the instruction: 

80286 CPU overhead involved in handling the ESC instruction opcode and setting up the 80287 
NPX 

Instruction execution by the 80287 NPX 

• Operand transfers between the 80287 NPX and memory or a CPU register 

The timing of these various activities is affected by the individual clock frequencies of the 80286 CPU 
and the 80287 NPX. In addition, slow memories requiring the insertion of wait states in bus cycles, 
and bus contention due to other processors in the system, may lengthen operand transfer times. 

In calculating an overall execution time for an individual numeric instruction, analysts must take each 
of these activities into account. In most cases, it can be assumed that the numeric instructions have 
already been prefetched by the 80286 and are awaiting execution. 

• The CPU overhead in handling the ESC instruction opcode takes only a single CPU bus cycle 
before the 80287 begins its execution of the numeric instruction. The timing of this bus cycle is 
determined by the CPU clock. Additional CPU activity is required to set up the 80287's instruction 
and data pointer registers, but this activity occurs after the 80287 has begun executing its instruc
tion, and so this parallel activity does not affect total execution time. 

Table 2-12. Key to Operand Types 

Identifier Explanation 

ST Stack top; the register currently at the top of the stack. 

ST(i) A register in the stack i (Osis7) stack elements from the 
top. ST(1) is the next-on-stack register, ST(2) is below 
ST(1), etc. 

Short-real A short real (32 bits) number in memory. 

Long-real A long real (64 bits) number in memory. 

Temp-real A temporary real (80 bits) number in memory. 

Packed-decimal A packed decimal integer (18 digits, 10 bytes) in memory. 

Word-integer A word binary integer (16 bits) in memory. 

Short-integer A short binary integer (32 bits) in memory. 

Long-integer A long binary integer (64 bits) in memory. 

nn-bytes A memory area nn bytes long. 

2-20 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

The duration of individual numeric instructions executing on the 80287 varies for each instruction. 
Table 2-14 quotes a typical execution clock count and a range for each 80287 instruction. Dividing 
the figures in the table by 5 (for a 5-MHz 80287 NPX clock) produces an execution time in micro
seconds. The typical case is an estimate for operand values that normally characterize most appli
cations. The range encompasses 'best- and worst-case operand values that may be found in extreme 
circumstances. 

The operand transfer time required to transfer operands between the 80287 and memory or a CPU 
register depends on the number of words to be transferred, the frequency of the CPU clock control
ling bus timing, the number of wait states added to accommodate slower memories, and whether 
operands are based at even or odd memory addresses. Some (small) additional number of bus cycles 
may also be lost due to the asynchronous nature of the PEREQ/PEACK handshaking between the 
80286 and 80287, and this interaction varies with relative frequencies of the CPU and NPX clocks. 

The execution clock counts for the NPX execution of instructions shown in table 2-14 assume that no 
exceptions are detected during execution. Invalid operation, denormalized operand (unmasked), and 
zero divide exceptions usually decrease execution time from the typical figure, but execution still falls 
within the indicated range. The precision exception has no effect on execution time. Unmasked overflow 
and underflow, and masked denormalized exceptions impose additional execution penalties as shown 
in table 2-13. Absolute worst-case execution times are therefore the high range figure plus the largest 
penalty that may be encountered. 

BUS TRANSFERS 

NPX instructions that reference memory require bus cycles to transfer operands between the NPX and 
memory. The actual number of transfers depends on the length of the operand and the alignment of 
the operand in memory. In table 2-14, the first figure gives execution clocks for even-addressed operands, 
while the second gives the clock count for odd-addressed operands. 

For operands aligned at word boundaries, that is, based at even memory addresses, each word to be 
transferred requires one bus cycle between the 80286 data channel and memory, and one bus cycle to 
the NPX. For operands based at odd memory addresses, each word transfer requires two bus cycles to 
transfer individual bytes between the 80286 data channel and memory, and one bus cycle to the NPX. 

NOTE 

For best performance, operands for the 80287 should be aligned along word boundaries; that 
is, based at even memory addresses. Operands based at odd memory addresses are transferred 
to memory essentially byte-at-a-time and may take half again as long to transfer as word
aligned operands. 

Additional transfer time is required if slow memories are being used, requiring the insertion of wait 
states into the CPU bus cycle. In multiprocessor environments, the bus may not be available immedi
ately; this overhead can also increase effective transfer time. 

Table 2-13. Execution Penalties 

Exception Additional Clocks 

Overflow (unmasked) 14 

Underflow (unmasked) 16 

Denormalized (masked) 33 

2-21 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

INSTRUCTION LENGTH 

80287 instructions that do not reference memory are two bytes long. Memory reference instructions 
vary between two and four bytes. The third and fourth bytes are for the 8- or 16-bit displacement 
values used in conjunction with the standard 80286 memory-addressing modes. 

Note that the lengths quoted in table 2-14 for the processor control instructions (FNINIT, FNSTCW, 
FNSTSW, FNSTSW AX, FNCLEX, FNSTENV, and FNSA VE) do not include the one-byte CPU 
wait instruction inserted by the ASM286 assembler if the control instruction is coded using the wait 
form of the mnemonic (e.g. FINIT, FSTCW, FSTSW, FSTSW AX, FCLEX, FSTENV, and FSAVE). 
wait and no-wait forms of the processor control instructions have been described in the preceding section 
titled "Processor Control Instructions." 

Table 2-14. Instruction Set Reference Data 

FABS FABS (no operands) 
Exceptions: I Absolute value 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 14 10-17 0 2 FAB8 

FADD FADD I!source/destination,source 
Exceptions: I, D, 0, U, P Add real 

Execution Clocks 
Operands Operand Word Code 

Coding Example 
Typical Range Transfers Bytes 

/ /8T ,8T(i)/8T(i),8T 85 70-100 0 2 FADD 8T,8T(4) 
short-real 105 90-120 2 2-4 FADD AIR_TEMP [81] 
long-real 110 95-125 4 2-4 FADD [BX].MEAN 

FADDP FADDP destination, source 
Exceptions: I, D, 0, U, P Add real and pop 

Execution Clocks 
Operands Operand Word Code 

Coding Example 
Typical Range Transfers Bytes 

8T(i),8T 90 75-105 0 2 FADDP 8T(2),8T 

FBLD FBLD source 
Exceptions: I Packed decimal (BCD) load 

Execution Clocks 
Operands Operand Word Code Coding Example 

Typical Range Transfers Bytes 

packed-decimal 300 290-310 5 2-4 FBLD YTD_8ALE8 

2-22 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FBSTP FBSTP destination 
Exceptions: I Packed decimal (BCD) store and pop 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

packed-decimal 530 520-540 5 2-4 FBSTP [BX].FORECAST 

FCHS FCHS (no operands) 
Exceptions: I Change sign 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 15 10-17 0 2 FCHS 

FCLEX / FNCLEX FCLEX/FNCLEX(no operands) 
Exceptions: None Clear exceptions 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 5 2-8 0 2 FNCLEX 

FCOM FCOM jjsource 
Exceptions: I, D Compare real 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

jjST(i) 45 40-50 0 2 FCOM ST(1) 
short-real 65 60-70 2 2-4 FCOM [BP].UPPER_LlMIT 
long-real 70 65-75 4 2-4 FCOM WAVELENGTH 

FCOMP FCOMP j/source 
Exceptions: I, D Compare real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

jjST(i) 47 42-52 0 2 FCOMP ST(2) 
short-real 68 63-73 2 2-4 FCOMP [BP + 2].N_READINGS 
long-real 72 67-77 4 2-4 FCOMP DENSITY 

2-23 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FCOMPP FCOMPP (no operands) 
Exceptions: I, D Compare real and pop twice 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) . 50 45-55 0 2 FCOMPP 

FDECSTP FDECSTP (no operands) Exceptions: None Decrement stack pointer 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 9 6-12 0 2 FDECSTP 

FDIV FDIV / /source/destination,source 
Exceptions: I, D, Z, 0, U, P Divide real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

//ST(i),ST 198 193-203 0 2 FDIV 
short-real 220 215-225 2 2-4 FDIV DISTANCE 
long-real 225 220-230 4 2-4 FDIV ARC [DI] 

FDIVP FDIVP destination, source 
Exceptions: I, D, Z, 0, U, P Divide real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST 202 197-207 0 2 FDIVP ST(4),ST 

FDIVR FDIVR //source/destination, source 
Exceptions: I, D, Z, 0, U, P Divide real reversed 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

/ /ST,ST(i)/ST(i),ST 199 194-204 0 2 FDIVR ST(2),ST 
short-real 221 216-226 2 2-4 FDIVR[8X]. PULSE_RATE 
long-real 226 221-231 4 2-4 FDIVR RECORDER.FREQUENCY 

2-24 122164·001 



inter PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FDIVRP FDIVRP destination, source 
Exceptions: I, D, Z, a, U, P Divide real reversed and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST 203 198-208 0 2 FDIVRP ST(1 ),ST 

FFREE FFREE destination 
Exceptions: None Free register 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

STeil 11 9-16 0 2 FFREE ST(1) 

FIADD FIADD source 
Exceptions: I, D, a, P Integer add 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 120 102-137 1 2-4 FIADD DIST ANCE_ TRAVELLED 
short-integer 125 108-143 2 2-4 FIADD PULSE_CaUNT [SI] 

FICOM FICOM source 
Exceptions: I, D Integer compare 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 80 72-86 1 2-4 FICaM TaaL.N_PASSES 
Short-integer 85 78-91 2 2-4 FICaM [BP+4).PARM_CaUNT 

FICOMP FICOMP source 
Exceptions: I, D Integer compare and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 82 74-88 1 2-4 FICaMP [BP).LlMIT [SI] 
short-integer 87 80-93 2 2-4 FICaMP N_SAMPLES 

2-25 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FIDIV FIDIV source 
Exceptions: I, D, Z, 0, U, P Integer divide 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 230 224-238 1 2-4 FIDIV SURVEY.OBSERVATIONS 
short-integer 236 230-243 2 2-4 FIDIV RELATIVE_ANGLE [DI] 

FIDIVR FIDIVR source 
Exceptions: I, D,Z,O,U, P Integer divide reversed 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 230 225-239 1 2-4 FIDIVR [BP].X_COORD 
short-integer 237 231-245 2 2-4 FIDIVR FREQUENCY 

FllD FILD source 
Exceptions: I Integer load 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 50 46-54 1 2-4 FILD [BX].SEQUENCE 
short-integer 56 52-60 2 2-4 FILD STANDOFF [DI] 
long-integer 64 60-68 4 2-4 FILD RESPONSE.COUNT 

FIMUL FIMUL source 
Exceptions: I, D, 0, P Integer multiply 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 130 124-138 1 2-4 FIMUL BEARING 
short-integer 136 130-144 2 2-4 FIMUL POSITION.Z_AXIS 

FINCSTP FINCSTP (no operands) 
Exceptions: None Increment stack pOinter 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 9 6-12 0 2 FINCSTP 

2-26 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2·14. Instruction Set Reference Data (Cont'd.) 

FINIT IFNINIT FINIT IFNINIT (no operands) 
Exceptions: None Initialize processor 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 5 2-8 0 2 FINIT 

FIST FIST destination 
Exceptions: I, P I nteger store 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 86 80-90 1 2-4 FIST OBS.COUNT[SI] 
Short-integer 88 82-92 2 2-4 FIST [BP;].FACTOREO_PULSES 

FISTP FIST,P destination 
Exceptions: I, P Integer store and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 88 82-92 1 2-4 FISTP [BX].ALPHA-COUNT [SI] 
short-integer 90 84-94 2 2-4 FISTP CORRECTED_TIME 
long-integer 100 94-105 4 2-4 FISTP PANEL.N_REAOINGS 

FISUB FISUB source 
Exceptions: I, 0, 0, P Integer subtract 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

word-integer 120 102-137 1 2-4 FISUB BASE_FREQUENCY 
short-integer 125 108-143 2 2-4 FISUB TRAIN_SIZE [01] 

FISUBR FISUBR source 
Exceptions: 1,0,0, P Integer subtract reversed 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

word-integer 120 103-139 1 2-4 FISUBR FLOOR [BX] [SI] 
short-integer 125 109-144 2 2-4 FISUBR BALANCE 

2-27 122164·001 



inter PROGRAMMING NUMERIC APPLICATIONS 

Table 2·14. Instruction Set Reference Data (Cont'd.) 

FLD FLD source 
Exceptions: I, 0 Load real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i) 20 17-22 0 2 FLO ST(O) 
short-real 43 38-56 2 2-4 FLO READING [SI].PRESSURE 
long-real ·46 40-60 4 2-4 FLO [BP].TEMPERATURE 
temp-real 57 53-65 5 2-4 FLO SAVEREADING 

FLDCW FLDCW source 
Exceptions: None Load control word 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

2-bytes 10 7-14 1 2-4 FLDCW CONTROL-WORD 

FLDENV FLDENV source 
Exceptions: None Load environment 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

14-bytes 40 35-45 7 2-4 FLDENV [BP + 6] 

FLDLG2 FLDLG2 (no operands) 
Exceptions: I Load IOg102 

Execution Clocks 

Operands Operand Word Code 
Coding Example 

Typical Range Transfers Bytes 

(no operands) 21 18-24 0 2 FLDLG2 

FLDLN2 FLDLN2 (no operands) 
Exceptions: I Load loge2 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 20 17-23 0 2 FLDLN2 

2-28 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2·14. Instruction Set Reference Data (Cont'd.) 

FLOL2E FLOL2E (no operands) 
Exceptions: I Load 1092e 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 18 15-21 0 2 FLOL2E 

FLOL2T FLOL2T (no operands) 
Exceptions: I Load 109210 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range 
Transfers Bytes 

(no operands) 19 16-22 0 2 FLDL2T 

FLOPI FlOPI (no operands) 
Exceptions: I Load 7r 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 19 16-22 0 2 FLOPI 

FLOZ FLOZ (no operands) 
Exceptions: I Load +0.0 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 14 11-17 0 2 FLOZ 

FL01 FLO 1 (no operands) 
Exceptions: I Load +1.0 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 18 15-21 0 2 FL01 

2-29 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2·14. Instruction Set Reference Data (Cont'd.) 

FMUL FMUL Iisource/destination,source 
Exceptions: I, D, 0, U, P Multiply real 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

I IST(i),ST 1ST ,STW 97 90-105 0 2 FMUL ST,ST(3) 
I IST(i),ST IST,ST(i) 138 130-145 0 2 FMUL ST,ST(3) 
short-real H8 110-125 2 2-4 FMUL SPEED_FACTOR 
long-reaP 1'20 112-126 4 2-4 FMUL [BP].HEIGHT 
long-real 161 154-168 4 2-4 FMUL [BPj.HEIGHT 

FMULP FMULP destination, source 
Exceptions: I, D, 0, U, P Multiply real and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST1 100 94-108 0 2 FMULP ST(1),ST 
ST(i),ST 142 134-148 0 2 FMULP ST(1),ST 

FNOP FNOP (no operands) 
Exceptions: None No operation 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 13 10-16 0 2 FNOP 

FPATAN FPATAN (no operands) 
Exceptions: U, P (operands not checked) Partial arctangent 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 650 250-800 0 2 FPATAN 

FPREM FPREM (no operands) 
Exceptions: I, D, U Partial remainder 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 125 15-190 0 2 FPREM 

10ccurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded 
from a short-real memory operand. 

2-30 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2·14. Instruction Set Reference Data (Cont'd.) 

FPTAN FPTAN (no operands) 
Exceptions: I, P (operands not checked) Partial tangent 

Execution Clocks 
Operand Word Code Coding Example Operands Transfers Bytes Typical Range 

(no operands) 450 30-540 0 2 FPTAN 

FRNDINT FRNDINT (no operands) 
Exceptions: I, P Round to integer 

Execution Clocks 
Operand Word Code Coding Example Operands Transfers Bytes 

Typical Range 

(no operands) 45 16-50 0 2 FRNDINT 

FRSTOR FRSTOR source 
Exceptions: None Restore saved state 

Execution Clocks 
Operand Word Code Coding Example Operands 

Transfers Bytes 
Typical Range 

94-bytes 2 47 2-4 FRSTOR [BP] 

FSAVE/FNSAVE FSAVE/FNSAVE destination 
Exceptions: f)I.':1..lJ9 .. " Save state 

~ .. )i .. " 
". 

Execution Clocks ..'" 4' 

Op." •• wo~J ~C:C()de 
Coding Example Operands Transfers Bytes Typical Range 

" 

94-bytes 3 47 2-4 FSAVE [BP] 

2The 80287 execution clock count for this instruction is not meaningful in determining overall instruction 
execution time. For typical frequency ratios cA the 80286 and 80287 clocks, 80287 execution occurs in 
parallel with the operand transfers, with the vperand transfers determining the overall execution time of 
the instruction~ For 80286:80287 clock fref3juency ratios of 4:8, 1:1, and 8:5, the overall execution clock 
count for this instruction is estimated at 490, 302, and 227 80287 clocks, respectively. 

3The 80287 execution clock count for th1S instruction is not meaningful in determining overall instruction 
execution time. For typical frequency rations of the 80286 and 80287 clocks, 80287 execution occurs in 
parallel with the operand transfers, with the operand transfers determining the overall execution time of 
the instruction. For 80286:80287 clocl<· frequency ratios of 4:8, 1:1, and 8:5, the overall execution clock 
count for this instruction is estimated at 376, 233, and 17480287 clocks, respectively. 

2-31 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FSCALE FSCALE (no operands) 
Exceptions: I, 0, U Scale 

Execution Clocks 

Operands Operand Word Code 
Transfers Bytes Coding Example 

Typical Range 

(no operands) 35 32-38 0 2 FSCALE 

FSETPM FSETPM (no operands) 
Exceptions: None Set protected mode 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 2-8 0 2 FSETPM 

FSQRT FSQRT (no operands) 
Exceptions: I, 0, P Square root 

Execution Clocks 

Operands Operand Word Code 
Transfers Bytes Coding Example 

Typical Range 

(no operands) 183 180-186 0 2 FSQRT 

FST FST destination 
Exceptions: 1,0, U, P Store real 

,~ ",!,0;~/'$\ ,J'\I¥. ~.i ..... ,~,~ 

Executidltl Clocks 
"c Operand Word Code 

Operands 
Ran9~", 

Transfers Bytes 
Coding Example 

Typical . 
ST(i) 18 15-22 \~ 0 2 FST ST(3) 

short-real 87 84-90 "'e:...? 2-4 FST CORRELATION [01] 

long-real 100 96-104 4 \ 2-4 FST MEAN_READING 

. 
FSTCW/ FSTCW destination 

~, Exceptions: None 
FNSTCW Store control word 

Execution Clocks 
Operand Word Code Coding Example Operands Transfers B)ftes 

Typical Range 

2-bytes 15 12-18 1 2-1 FSTCW SAVE_CONTROL 

2-32 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FSTENV/ FSTENV destination 
Exceptions: None FNSTENV Store environment 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

14-bytes 45 40-50 7 2-4 FSTENV [BP] 

FSTP FSTP destination 
Exceptions; I, 0, U, P Store real and pop 

Execution Clocks 

Operands 
Operand Word Code 

Transfers Bytes Coding Example 
Typical Range 

STeil 20 17-24 0 2 FSTP ST(2) 
short-real 89 86-92 2 2-4 FSTP [BX].ADJUSTED_RPM 
long-real 102 98-106 4 2-4 FSTP TOTAL_DOSAGE 
temp-real 55 52-58 5 2-4 FSTP REG_SAVE [SI] 

FSTSW/ FSTSW destination 
Exceptions; None FNSTSW Store status word 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

2-bytes 15 12-18 1 2-4 FSTSW SAVE_STATUS 

FSTSW AX/ FSTSW AX 
Exceptions; None FNSTSWAX Store status word to AX 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

AX 10-16 1 2 FSTSW AX 

FSUB FSUB / /source/destination,source 
Exceptions; I, D, 0, U, P Subtract real 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

/ /ST ,ST(i)/ST(i),ST 85 70-100 0 2 FSUB ST,ST(2) 
short-real 105 90-120 2 2-4 FSUB BASE_VALUE 
long-real 110 95-125 4 2-4 FSUB COORDINATE.X 

2-33 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FSUBP FSUBP destination, source 
Exceptions: I, D, 0, U, P Subtract real and pop 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

ST(i),ST 90 75-105 0 2 FSUBP ST(2),ST 

FSUBR FSUBR //source/destination, source 
Exceptions: I, D, 0, U, P Subtract real reversed 

Execution Clocks 

Operands Operand Word Code 
Coding Example 

Typical Range Transfers Bytes 

/ /ST,ST(i)/ST(i),ST 87 70-100 0 2 FSUBR ST,ST(1) 
short-real 105 90-120 2 2-4 FSUBR VECTOR[SI] 
long-real 110 95-125 4 2-4 FSUBR [BX].INDEX 

FSUBRP FSUBRP destination, source 
Exceptions: I, D, 0, U, P Subtract real reversed and pop 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

ST(i),ST 90 75-105 0 2 FSUBRP ST(1),ST 

FTST FTST (no operands) 
Exceptions: I, D Test stack top against +0.0 

Execution Clocks 

Operands 
Operand Word Code 

Coding Example 
Typical Range Transfers Bytes 

(no operands) 42 38-48 0 2 FTST 

FWAIT FWAIT (no operands) 
Exceptions: None (CPU instruction) (CPU) Wait while 80287 is busy 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range Transfers Bytes 

(no operands) 3+5n* 3+5n4 0 1 FWAIT 

4n = number of times CPU examines BUSY line before 80287 completes execution of previous instruction. 

2-34 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

Table 2-14. Instruction Set Reference Data (Cont'd.) 

FXAM FXAM (no operands) 
Exceptions: None Examine stack top 

Execution Clocks 

Operands Operand Word Code 
Coding Example 

Typical Range Transfers Bytes 

(no operands) 17 12-23 0 2 FXAM 

FXCH FXCH j jdestination 
Exceptions: I Exchange registers 

Execution Clocks 

Operands Operand Word Code 
Coding Example 

Typical Range Transfers Bytes 

jjST(i) 12 10-15 0 2 FXCH ST(2) 

FXTRACT FXTRACT (no operands) 
Exceptions: I Extract exponent and significant 

Execution Clocks 

Operands Operand Word Code Coding Example 
Typical Range 

Transfers Bytes 

(no operands) 50 27-55 0 2 FXTRACT 

FYL2X FYL2X (no operands) 
Exceptions: P (operands not checked) yo Log2X 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 950 900-1100 0 2 FYL2X 

FYL2XP1 FYL2XP1 (no operands) 
Exceptions: P (operands not checked) Y olog2(X + 1) 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range 
Transfers Bytes 

(no operands) 850 700-1000 0 2 FYL2XP1 

2-35 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2·14. Instruction Set Reference Data (Cont'd.) 

F2XM1 F2XM1 (no operands) 
Exceptions: U, P (operands not checked) 2x-1 

Execution Clocks 

Operands 
Operand Word Code Coding Example 

Typical Range Transfers Bytes 

(no operands) 500 310-630 0 2 F2XM1 

PROGRAMMING FACILITIES 

As described previously, the 80287 NPX is programmed simply as an extension of the 80286 CPU. 
This section describes how programmers in ASM286 and in a variety of higher-level languages can 
work with the 80287. 

The level of detail in this section is intended to give programmers a basic understanding of the software 
tools that can be used with the 80287, but this information does not document the full capabilities of 
these facilities. For a complete list of documentation on all the languages available for iAPX 286 
systems, readers should consult Intel's Literature Guide. 

High·Level Languages 

For programmers using high-level languages, the programming and operation of the NPX is handled 
automatically by the compiler. A variety of Intel high-level languages are available that automatically 
make use of the 80287 NPX when appropriate. These languages include 

PL/M-286 
FORTRAN-286 
PASCAL-286 
C-286 

Each of these high-level languages has special numeric libraries allowing programs to take advantage 
of the capabilities of the 80287 NPX. No special programming conventions are necessary to make use 
of the 80287 NPX when programming numeric applications in any of these languages. 

Programmers in PL/M-286 and ASM286 can also make use of many of these library routines by using 
routines contained in the 80287 Support Library, described in the 80287 Support Library Reference 
Manual, Order Number 122129. These library routines provide many of the functions provided by 
higher-level languages, including exception handlers, ASCII-to-floating-point conversions, and a more 
complete set of transcendental functions than that provided by the 80287 instruction set. 

PLlM·286 

Programmers in PL/M-286 can access a very useful subset of the 80287's numeric capabilities. The 
PL/M-286 REAL data type corresponds to the NPX's short real (32-bit) format. This data type provides 
a range of about 8.43*10- 37 :::; ABS(X) :::; 3.38*1038, with about seven significant decimal digits. This 
representation is adequate for the data manipulated by many microcomputer applications. 

2-36 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

The utility of the REAL data type is extended by the PL/M-286 compiler's practice of holding inter
mediate results in the 80287's temporary real format. This means that the full range and precision of 
the processor are utilized for intermediate results. Underflow, overflow, and rounding errors are most 
likely to occur during intermediate computations rather than during calculation of an expression's final 
result. Holding intermediate results in temporary real format greatly reduces the likelihood of overflow 
and underflow and eliminates roundoff as a serious source of error until the final assignment of the 
result is performed. 

The compiler generates 80287 code to evaluate expressions that contain REAL data types, whether 
variables or constants or both. This means that addition, subtraction, multiplication, division, compar
ison, and assignment of REALs will be performed by the NPX. INTEGER expressions, on the other 
hand, are evaluated on the CPU. 

Five built-in procedures (table 2-15) give the PL/M-286 programmer access to 80287 functions manip
ulated by the processor control instructions. Prior to any arithmetic operations, a typical PL/M-286 
program will set up the NPX after power up using the INIT$REAL$MATH$UNIT procedure and 
then issue SET$REAL$MODE to configure the NPX. SET$REAL$MODE loads the 80287 control 
word, and its 16-bit parameter has the format shown in figure 1-5. The recommended value of this 
parameter is 033EH (projective closure, round to nearest, 64-bit precision, all exceptions masked except 
invalid operation). Other settings may be used at the programmer's discretion. 

If any exceptions are unmasked, an exception handler must be provided in the form of an interrupt 
procedure that is designated to be invoked by CPU interrupt pointer (vector) number 16. The excep
tion handler can use the GET$REAL$ERROR procedure to obtain the low-order byte of the 80287 
status word and to then clear the exception flags. The byte returned by GET$REAL$ERROR contains 
the exception flags; these can be examined to determine the source of the exception. 

The SA VE$REAL$STATUS and RESTORE$REAL$STATUS procedures are provided for multi
tasking environments where a running task that uses the 80287 may be preempted by another task that 
also uses the 80287. It is the responsibility of the preempting task to issue SAVE$REAL$STATUS 
before it executes any statements that affect the 80287; these include the INIT$REAL$MATH$UNIT 
and SET$REAL$MODE procedures as well as arithmetic expressions. SAVE$REAL$STATUS saves 
the 80287 state (registers, status, and control words, etc.) on the CPU's stack. 
RESTORE$REAL$STATUS reloads the state information; the preempting task must invoke this 
procedure before terminating in order to restore the 80287 to its state at the time the running task was 
preempted. This enables the preempted task to resume execution from the point of its preemption. 

Table 2-15. PLlM-286 Built-In Procedures 

Procedure 80287 Instruction 

INIT$REAL$MATH$U NIT!') FINIT 

SET$REAL$MODE FLDCW 

GET$REAL$ERROR(2) FNSTSW & FNCLEX 

SAVE$REAL$STATUS FNSAVE 

RESTORE$REAL$STATUS FRSTOR 

(1)Also initializes interrupt pointers for emulation. 
(2)Returns low-order byte of status word. 

2-37 

Description 

Initialize processor. 

Set exception masks, rounding 
preCision, and infinity controls. 

Store, then clear, exception flags. 

Save processor state. 

Restore processor state. 

122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

ASM286 

The ASM286 assembly language provides programmmers with complete access to all of the facilities 
of the 80286 and 80287 processors. 

The programmer's view of the iAPX 286/20 hardware is a single machine with these resources: 

160 instructions 

12 data types 

• 8 general registers 

• 4 segment registers 

8 floating-point registers, organized as a stack 

DEFINING DATA 

The ASM286 directives shown in table 2-16 allocate storage for 80287 variables and Cl'lnstants. As 
with other storage allocation directives, the assembler associates a type with any variable defined with 
these directives. The type value is equal to the length of the storage unit in bytes (10 for DT, 8 for 
DQ, etc.). The assembler checks the type of any variable coded in an instruction to be certain that it 
is compatible with the instruction. For example, the coding FIADD ALPHA will be flagged as an 
error if ALPHA's type is not 2 or 4, because integer addition is only available for word and short 
integer data types. The operand's type also tells the assembler which machine instruction to produce; 
although to the programmer there is only an FIADD instruction, a different machine instruction is 
required for each operand type. 

On occasion it is desirable to use an instruction with an operand that has no declared type. For example, 
if register BX points to a short integer variable, a programmer may want to code FIADD [BX]. This 
can be done by informing the assembler of the operand's type in the instruction, coding FIADD DWORD 
PTR [BX]. The corresponding overrides for the other storage allocations are WORD PTR, QWORD 
PTR, and TBYTE PTR. 

The assembler does not, however, check the types of operands used in processor control instructions. 
Coding FRSTOR [BP] implies that the programmer has set up register BP to point to the stack location 
where the processor's 94-byte state record has been previously saved. 

The initial values for 80287 constants may be coded in several different ways. Binary integer constants 
may be specified as bit strings, decimal integers, octal integers, or hexadecimal strings. Packed decimal 
values are normally written as decimal integers, although the assembler will accept and convert other 
representations of integers. Real values may be written as ordinary decimal real numbers (decimal 
point required), as decimal numbers in scientific notation, or as hexadecimal strings. Using hexadecimal 
strings is primarily intended for defining special values such as infinities, NaNs, and non normalized 

Table 2-16. 80287 Storage Allocation Directives 

Directive Interpretation Data Types 

OW Define Word Word integer 

DO Define Doubleword Short integer, short real 

DO Define Ouadword Long integer, long real 

DT Define Tenbyte Packed decimal, temporary real 

2-38 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

numbers. Most programmers will find that ordinary decimal and scientific decimal provide the simplest 
way to initialize 80287 constants. Figure 2-3 compares several ways of setting the various 80287 data 
types to the same initial value. 

Note that preceding 80287 variables and constants with the ASM286 EVEN directive ensures that the 
operands will be word-aligned in memory. This will produce the best system performance. All 80287 
data types occupy integral numbers of words so that no storage is "wasted" if blocks of variables are 
defined together and preceded by a single EVEN declarative. 

RECORDS AND STRUCTURES 

The ASM286 RECORD and STRUC (structure) declaratives can be very useful in NPX program
ming. The record facility can be used to define the bit fields of the control, status, and tag words. 
Figure 2-4 shows one definition of the status word and how it might be used in a routine that polls the 
80287 until it has completed an instruction. 

Because STRUCtures allow different but related data types to be grouped together, they often provide 
a natural way to represent "real world" data organizations. The fact that the structure template may 
be "moved" about in memory adds to its flexibility. Figure 2-5 shows a simple structure that might be 
used to represent data consisting of a series of test score samples. A structure could also be used to 
define the organization of the information stored and loaded by the FSTENV and FLDENV instructions. 

ADDRESSING MODES 

80287 memory data can be accessed with any of the CPU's five memory addressing modes. This means 
that 80287 data types can be incorporated in data aggregates ranging from simple to complex accord
ing to the needs of the application. The addressing modes, and the ASM286 notation used to specify 
them in instructions, make the accessing of structures, arrays, arrays of structures, and other organi
zations direct and straightforward. Table 2-17 gives several examples of 80287 instructions coded with 
operands that illustrate different addressing modes. 

THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126 
NOTE TWO'S COMPLETE STORAGE OF NEGATIVE BINARY INTEGERS. 

EVE N 
WORD_I NTEGER 
SHORT INTEGER 

DW 
DD 

111111111000010B 
OFFFFFF82H 

FORCE WORD ALIGNMENT 
BIT STRING 
HEX STRING MUST START 
WITH DIGIT 

LONG INTEGER DQ -126 ORDINARY DECIMAL 
SHORT_REAL DD -126.0 NOTE PRESENCE OF' 
LONG REAL DD -1.26E2 "SCIENTIFIC" 
PACKED_DECIMAL DT -126 ORDINARY DECIMAL INTEGER 

IN THE FOLLOWING, SIGN AND EXPONENT IS 'COOS' 
SIGNIFICAND IS '7EOO ... 00', 'R' INFORMS ASSEMBLER THAT 
THE STRING REPRESENTS A REAL DATA TYPE. 

DT OCOOS7EOOOOOOOOOOOOOOR HEX STRING 

Figure 2-3. Sample 80287 Constants 

2-39 122164-001 



inter PROGRAMMING NUMERIC APPLICATIONS 

j RESERVE SPACE FOR STATUS WORD 
STATUS WORD 
j LAY OUT STATUS WORD FIELDS 
STATUS RECORD 
& BUSY: 1, 
& COND_CODE3: 1, 
& STACK TOP: 3, 
& COND_CODE2: 1, 
& COND CODE1: 1, 
& COND CODED: 1, 
& I NT _R E Q : 1 , 

RESERVED: 1, 
& P _F LAG: 1 , 
& U_FLAG: 1, 
& 0 FLAG: 1, 
& Z_FLAG: 1, 
& D_FLAG: 1, 

I_FLAG: 1 
POLL STATUS WORD UNTIL 80287 IS NOT BUSY 

POLL: FNSTSW STATUS_WORD 
TEST STATUS_WORD, MASK_BUSY 
JNZ POLL 

Figure 2-4. Status Word RECORD Definition 

SAMPLE STRUC 

N_OBS DD SHORT INTEGER 
MEAN DQ LONG REAL 
MODE DW WORD INTEGER 
STD_DEV DQ LONG REAL 
j ARRAY OF OBSERVATIONS -- WORD INTEGER 
TEST SCORES DW 1000 DUP (?) 

SAMPLE ENDS 

Figure 2-5. Structure Definition 

Table 2-17. Addressing Mode Examples 

Coding Interpretation 

FIADD ALPHA ALPHA is a simple scalar (mode is direct). 

FDIVR ALPHA.BETA BETA is a field in a structure that is 
"overlaid" on ALPHA (mode is direct). 

FMUL aWORD PTR [BX] BX contains the address of a long real 
variable (mode is register indirect). 

FSUB ALPHA [SI] ALPHA is an array and SI contains the 
offset of an array element from the start of 
the array (mode is indexed). 

2-40 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

Table 2-17. Addressing Mode Examples (Cont'd.) 

Coding Interpretation 

FILD [BP].BETA BP contains the address of a structure on 
the CPU stack and BET A is a field in the 
structure (mode is based). 

FBLD TBYTE PTR [BX] [01] BX contains the address of a packed 
decimal array and 01 contains the offset of 
an array element (mode is based indexed). 

Comparative Programming Example 

Figures 2-6 and 2-7 show the PL/M-286 and ASM286 code for a simple 80287 program, called 
ARRSUM. The program references an array (X$ARRA Y), which contains 0-100 short real values; 
the integer variable N$OF$X indicates the number of array elements the program is to consider. 
ARRSUM steps through X$ARRA Y accumulating three sums: 

• SUM$X, the sum of the array values 

• SUM$INDEXES, the sum of each array value times its index, where the index of the first element 
is 1, the second is 2, etc. 

• SUM$SQUARES, the sum of each array element squared 

(A true program, of course, would go beyond these steps to store and use the results of these calcula
tions.) The control word is set with the recommended values: projective closure, round to nearest, 
64-bit precision, interrupts enabled, and all exceptions masked invalid operation. It is assumed that an 
exception handler has been written to field the invalid operation, if it occurs, and that it is invoked by 
interrupt pointer 16. Either version of the program will run on an actual or an emulated 80287 without 
altering the code shown. 

The PL/M-286 version of ARRSUM (figure 2-6) is very straightforward and illustrates how easily the 
80287 can be used in this language. After declaring variables the program calls built-in procedures to 
initialize the processor (or its emulator) and to load to the control word. The program clears the sum 
variables and then steps through X$ARRA Y with a DO-loop. The loop control takes into account 
PL/M-286's practice of considering the index of the first element of an array to be O. In the compu
tation of SUM$INDEXES, the built-in procedure FLOAT converts 1+1 from integer to real because 
the language does not support "mixed mode" arithmetic. One of the strengths of the NPX, of course, 
is that it does support arithmetic on mixed data types (because all values are converted internally to 
the 80-bit temporary real format). 

The ASM286 version (figure 2-7) defines the external procedure INIT287, which makes the different 
initialization requirements of the processor and its emulator transparent to the source code. After defining 
the data and setting up the segment registers and stack pointer, the program calls INIT287 and loads 
the control word. The computation begins with the next three instructions, which clear three registers 
by loading (pushing) zeros onto the stack. As shown in figure 2-8, these registers remain at the bottom 
of the stack throughout the computation while temporary values are pushed on and popped off the 
stack above them. 

The program uses the CPU LOOP instruction to control its iteration through X..i\RRA Y; register CX, 
which LOOP automatically decrements, is loaded with N_OF _X, the number of array elements to be 
summed. Register SI is used to select (index) the array elements. The program steps through X..i\RRA Y 
from back to front, so SI is initialized to point at the element just beyond the first element to be 
processed. The ASM286 TYPE operator is used to determine the number of bytes in each array element. 
This permits changing X_ARRAY to a long real array by simply changing its definition (DD to DQ) 
and reassembling. 

2-41 122164-001 



PROGRAMMING NUMERIC APPLICATIONS 

PL/M-286 COMP IL.ER ARRAYSLJr1 

SERIES-I I I PLlM-286 VI. 0 COt1PILATION OF MODULE ARRAYSUM 
OBJECT MODULE PLACED IN : F6: D. OEJ 
COMP ILER INVOKED BY· PLM286. 86 : F6: D. SRC XREF 

2 
3 
4 
5 

6 
7 

8 

9 
10 2 
II· 2 

1*************************************************** 
• * 

A R RAY SUM MOD 

* *** ***** **** ****** *.****** *** ** *** * ***** ********* ** / 
array$sum: dOl 

declare (sum$x, 5um$indexl2's, sum$squares) real; 
dec 1031'12' x$array (100) reaL 
declare (n$of$x, i) integer; 
declare control$287 literally '033eh"; 

1* Assume x$array and n$of$)( are initialized *1 

1* Prepare the 80287 or its emulator *1 
call init$real$math$unit; 
call set$reai$modeCcontroi$287); 

1* Clear sums *1 
sum$x, sum$indexes, sum$squares = 0 0; 

1* Loop through arra1j' accumulating sums *1 
do i = 0 to n$of$x-l; 

sum$x = sum$x + x$array(i); 
sum$indexes = sum$indexes + 

(x$array(i) * tlloat(i+1); 
12 2 
13 2 

sum$squares = sum$squares + (x$array(i)*x$array(i»; 
end; 

14 end array$sum; 

PL/M-286 COMPIl.ER ARRAYSUM 
CROSS"~REFEREt~CE LISTING 

DEFN AllOR SIZE NAt1E, I,TTRIB.UTI'S, AND REFERENCES 

0OO6H 117 ARRAYSUt1 
CONTROL287 
FLOAT. 

4 019EH 2 l. 
INITREALMATHUNIT 

4 Ol9CH 2 NOFX 
SETREAU10DE. 

;~ 0004H 4 SUMINDEXES 
2 0OO8H 4 SUt1SQUARES 
;: OOOOH 4 SUMX 
3 OOOCH 400 XARRAY 

MODUL.E INFORMATION 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAX IMUM STACK 61 ZE 
33 UNES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY: 

0077H 
0004H 
OIAOH 
0002H 

961>\13 MEMORY AVAILABLE 
3f"B t1EMORY USED (3'%) 
OKB DISK SPACE USED 

END OF PL/t1-286 COMPILATION 

l.19D 
4D 

4160 
2D 

PROCEDURE STACK=0002H 
LITERALLY '033.h' 
BUlL TIN II 
INTEGER 9* 
BUILTIN 6 
INTEGER 9 
BUlL TIN 7 
REAL 8* II 
REAL 8* 12 
REAL 8* 10 
REAL ARRAY( 100) 

Figure 2-6. Sample PL/M-286 Program 

2-42 

7 

9 10 II 12 13 

11-1(-
12-11-
10* 

10 11 12 

122164-001 



"1m _I® 
ll'e' PROGRAMMING NUMERIC APPLICATIONS 

lAPX286 MACRO ASSEMBLER EXAMPLE_.ASM286_PROGRAM 

SER IES-I I I iAPX286 MACRO ASSEMBLER X 108 ASSEMBLY OF MODULE EXAMPLE_ASM286_PROGRAM 
03JECT MODULE PLACED IN F6,287EXP.OBJ 
ASSEMBLER INVOKED BY ASM286.86 :F6:287EXP.SRC XREF 

LOC OBJ 

0000 3E03 
0002 
0004 (100 

0194 
0198 
019C 

0000 
0000 B8·------
0003 8ED8 
0005 B8----
0008 8EDO 
OOOA BCFEFF 

0000 9AOOOQ----
0012 D92EOOOO 

0016 D9EE 
0018 D9EE 
00lA D9EE 

00lC 8BOE0200 
0020 F7E9 
0022 8BFO 

0024 
0024 83EE04 
0027 D9840400 
0028 DCC3 
0020 09CO 
002F DCC8 
0031 OEC2 

E 
R 

LINE SOURCE 

name example_ASM286_program 
2 Define initialization routine 
3 
4 
5 
6 
7 
8 

'" 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
:;~ 1 

23 
:24 
25 
26 
27 

extrn init287:far 

Allocate space for data 
data segmen1:; rw public 
control_287 dw 033eh 
n __ of __ x dw 

x_array dd 100 dup <?) 

SUfTl_sq,ut3res 
sum_indexes 
sumo_x 
data ends 

dd 
dd 
dd 

i Allocate CPU stack space 
stack stac:kseg 400 

Begin code 
code segment e1' public 

assume ds· data, 
start: 

mov 
ax, delta 
ds, ax 
ax,stack 
55, ax 

ss: stac:k. es: 

mov sp,stackstart stack 

nothing 

28 Assume x_array and n_or_x are initialized 
29 this pprogram zeroes n_of_x 
30 
31 Prepare the 80287 or its emulator. 
32 call init287 
33 fldcw control._2B7 
34 
35 i Clear three registers to hold running sums 
36 fldz 
37 fldz 
38 fldz 
39 
40 
41 

Setup 
51 .s 

CX as 
index 

loop counter and 
to x _array 

R 42 mov cx,n of x 
43 
44 
45 

imul 
mov 

- -
sL ax 

46 i 81 now contains index o-f last element + 1 
47 ; Loop thru x_array, accumulating sums 
48 sum_next: 

sub 
fld 
fadd 
fld 
fmul 
faddp 

si, type K_array 
x_aT'ray(siJ 
st(3), st 
st 
st, st 
st(2), st 

backup one element 
push it on the stack 
add into sum of x 
duplicate x on top 
sctuare it 
add into sum of (index+x) 

and d i scsrd 
0033 FFOE0200 
0037 E2EB 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

dec: 
loop 

"_of ":"1( 
sum __ "e I( t 

reduce index -for ne~t iteration 
• continue 

0039 
0039 
003D 
0041 
0045 

D91E9401 
D91E9801 
D91E9COl 
9B 

R 
R 
R 

j Pop running 
pop_results: 

fstp 
fstp 
fstp 
fwai t 

Etc 

code ends 
end 

sums into memoT'y 

sum._sq.uares 
sum_indexes 
sum_x 

start 

Figure 2-7. Sample ASM286 Program 

2-43 122164-001 



"1m _I® II-e- PROGRAMMING NUMERIC APPLICATIONS 

i AP X286 MACRO ASSEI'1I3LE::R r;:XAMPLE_ASM286_PROGRAM 

XREF SYr180L TABLE LISTlt,G 

NAME TYPE VALUE ATTRIBUTES, XREFS 

CODE SEGMENT SIZE=0046H ER PUBLIC 19# 69 
CONTROL 287 V WORD OOOOH DATA 7# 33 --
DATA. SEGMENT SI ZE=OIAOH RW PUBLIC 6# 13 20 22 
IN!T287 L FAR OOOOH EXTRN 3# 32 
N_OFj. V WORD 0002H DATA 8# 42 56 
POP _RESUL T8 L NEAR 0039H CODE 60# 
STACK STACK SIZE=OI90H RW PUBLIC 16# 20 24 26 
START L NEAR OOOOH CODE 21# 70 
SUM_INDEXES V DWORD 0198H DATA 11# 62 
srJM NEXT. l. NEAR 0024H CODE 48# 57 
S<JM::SGUARES V DWORD 0194H DATA 10# 61 
8UM_X V DWORD 019CH DATA 12# 63 
X_ARRAY V DWORD 0004H ( 100) DATA 9# 49 50 

END OF SYMBOL TABLE L.ISTING 

ASSEMBLY COMPLETE, NO ERRORS 

Figure 2-7. Sample ASM286 Program (Cont'd.) 

ST(O) 

ST(l) 

ST(2) 

ST(O) 

ST(l) 

ST(2) 

ST(3) 

ST(O) 

ST(l) 

ST(2) 

ST(3) 

ST(4) 

ST(O) 

ST(l) 

ST(2) 

ST(3) 

FLDZ,FLDZ,FLDZ 

0.0 

0.0 

0.0 

FAOD 5T(3) 5T , 

2.5 

0.0 

0.0 

2.5 

S 

S 

UM_SQUARES 

UMJNDEXES 

S 

X_A 

SUM 

SUM 

SUM 

--
RRAY (19) 

_SQUARES 

INDEXES 

X 

--FMUL 5T 5T 
~~~~~~-- --

6.25 X_ARRAY(19)2
1-----1

2.5

0.0

0.0

2.5

F I MU L N OF

50.0

6.25

0.0

2.5

X

X_ARRAY(19)

SUM_INDEXES

X_A RRAY(19)'20

_SQUARES

_INDEXES

SUM

SUM

SUM X

fLD X ARRAy(5Il

ST(O)

ST(l)

ST(2)

ST(3)

---ST (0)

ST (1)

ST (2)

ST (3)

ST (4) -
ST(O)

ST(l)

ST(2)

ST(3)

-
2.5

0.0

0.0

FLO 5T

2.5

2.5

0.0

0.0

2.5

fADDP 5T(2) ,5T

2.5

6.25

0.0

2.5

X .. ARRAY (19)

SUM_SQUARES

X_ARRAY (19)

X.ARRAY (19)

SUM_SQUARES

SUM._INDEXES

SUM ... X

X.ARRAY(19)

SUM_SQUARES

SUM .. INDEXES

ST(O) 6.25 SUM_SQUARES

-§BFADDP 5T(2),5T

ST(l) 50.0 SUM .. JNDEXES

ST(2) 2.5 SUM_X

Figure 2·8. Instructions and Register Stack

2-44

122164-14

122164-001

PROGRAMMING NUMERIC APPLICATIONS

Figure 2-8 shows the effect of the instructions in the program loop on the NPX register stack. The
figure assumes that the program is in its first iteration, that N_OF _X is 20, and that X_ARRA Y(19)
(the 20th element) contains the value 2.5. When the loop terminates, the three sums are left as the top
stack elements so that the program ends by simply popping them into memory variables.

80287 Emulation

The programming of applications to execute on both iAPX 286/10 and iAPX 286/20 systems is made
much easier by the existence of an 80287 emulator for iAPX 286/10 systems. The Intel E80287 emulator
offers a complete software counterpart to the 80287 hardware; NPX instructions can be simply emulated
in software rather than being executed in hardware. With software emulation, the distinction between
iAPX 286/10 and iAPX 286/20 systems is reduced to a simple performance differential. Identical
numeric programs will simply execute more slowly on iAPX 286/10 systems (using software emulation
of NPX instructions) than on iAPX 286/20 systems (executing NPX instructions directly).

When incorporated into the systems software, the emulation of NPX instructions on iAPX 286/10
systems is completely transparent to the programmer. Applications software needs no special libraries,
linking, or other activity to allow it to run on an iAPX 286/10 with 80287 emulation.

To the applications programmer, the development of programs for iAPX 286 systems is the same
whether the 80287 NPX hardware is available or not. The full iAPX 286/20 instruction set is available
for use, with NPX instructions being either emulated or executed directly. Applications programmers
need not be concerned with the hardware configuration of the computer systems on which their appli
cations will eventually run.

For systems programmers, details relating to 80287 emulators are described in a later section of this
supplement. An E80287 software emulator for iAPX 286/10 systems is contained in the iMDX 364
8086 Software Toolbox, available from Intel and described in the 8086 Software Toolbox Manual.

CONCURRENT PROCESSING WITH THE 80287

Because the 80286 CPU and the 80287 NPX have separate execution units, it is possible for the NPX
to execute numeric instructions in parallel with instructions executed by the CPU. This simultaneous
execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent execution; numeric
instructions for the NPX are simply placed in line with the instructions for the CPU. CPU and numeric
instructions are initiated in the same order as they are encountered by the CPU in its instruction
stream. However, because numeric operations performed by the NPX generally require more time than
operations performed by the CPU, the CPU can often execute several of its instructions before the
NPX completes a numeric instruction previously initiated.

This concurrency offers obvious advantages in terms of execution performance, but concurrency also
imposes several rules that must be observed in order to assure proper synchronization of the 80286
CPU and 80287 NPX.

All Intel high-level languages automatically provide for and manage concurrency in the NPX.
Assembly-language programmers, however, must understand and manage some areas of concurrency
in exchange for the flexibility and performance of programming in assembly language. This section is
for the assembly-language programmer or well-informed high-level-language programmer.

2-45 122164-001

PROGRAMMING NUMERIC APPLICATIONS

Managing Concurrency

Concurrent execution of the host and 80287 is easy to establish and maintain. The activities of numeric
programs can be split into two major areas: program control and arithmetic. The program control part
performs activities such as deciding what functions to perform, calculating addresses of numeric
operands, and loop control. The arithmetic part simply adds, subtracts, multiplies, and performs other
operations on the numeric operands. The NPX and host are designed to handle these two parts separately
and efficiently.

Managing concurrency is necessary because both the arithmetic and control areas must converge to a
well-defined state before starting another numeric operation. A well-defined state means all previous
arithmetic and control operations are complete and valid.

Normally, the host waits for the 80287 to finish the current numeric operation before starting another.
This waiting is called synchronization.

Managing concurrent execution of the 80287 involves three types of synchronization:

1. Instruction synchronization

2. Data synchronization

3. Error synchronization

For programmers in higher-level languages, all three types of synchronization are automatically provided
by the appropriate compiler. For assembly-language programmers, instruction synchronization is
guaranteed by the NPX interface, but data and error synchronization are the responsibility of the
assembly-language programmer.

Instruction Synchronization

Instruction synchronization is required because the 80287 can perform only one numeric operation at
a time. Before any numeric operation is started, the 80287 must have completed all activity from its
previous instruction.

Instruction synchronization is guaranteed for most ESC instructions because the 80286 automatically
checks the BUSY status line from the 80287 before commencing execution of most ESC instructions.
No explicit WAIT instructions are necessary to ensure proper instruction synchronization.

Data Synchronization

Data synchronization addresses the issue of both the CPU and the NPX referencing the same memory
values within a given block of code. Synchronization ensures that these two processors access the memory
operands in the proper sequence, just as they would be accessed by a single processor with no concur
rency. Data synchronization is not a concern when the CPU and NPX are using different memory
operands during the course of one numeric instruction.

The two cases where data synchronization might be a concern are

I. The 80286 CPU reads or alters a memory operand first, then invokes the 80287 to load or alter
the same operand.

2. The 80287 is invoked to load or alter a memory operand, after which the 80286 CPU reads or
alters the same location.

2-46 122164-001

PROGRAMMING NUMERIC APPLICATIONS

Due to the instruction synchronization of the NPX interface, data synchronization is automatically
provided for the first case-the 80286 will always complete its operation before invoking the 80287.

For the second case, data synchronization is not always automatic. In general, there is no guarantee
that the 80287 will have finished its processing and accessed the memory operand before the 80286
accesses the same location.

Figure 2-9 shows examples of the two possible cases of the CPU and NPX sharing a memory value. In
the examples of the first case, the CPU will finish with the operand before the 80287 can reference it.
The NPX interface guarantees this. In the examples of the second case, the CPU must wait for the
80287 to finish with the memory operand before proceeding to reuse it. The FW AIT instructions shown
in these examples are required in order to ensure this data synchronization.

There are several NPX control instructions where automatic data synchronization is provided; however;
the FSTSW /FNSTSW, FSTCW /FNSTCW, FLDCW, FRSTOR, and FLDENV instructions are all
guaranteed to finish their execution before the CPU can read or alter the referenced memory locations.

The 80287 provides data synchronization for these instructions by making a request on the Processor
Extension Data Channel before the CPU executes its next instruction. Since the NPX data transfers
occur before the CPU regains control of the local bus, the CPU cannot change a memory value before
the NPX has had a chance to reference it. In the case of the FSTSW AX instruction, the 80286 AX
register is explicitly updated before the CPU continues execution of the next instruction.

For the numeric instructions not listed above, the assembly-language programmer must remain aware
of synchronization and recognize cases requiring explicit data synchronization. Data synchronization
can be provided either by programming an explicit FW AIT instruction, or by initiating a subsequent
numeric instruction before accessing the operands or results of a previous instruction. After the subse
quent numeric instruction has started execution, all memory references in earlier numeric instructions
are complete. Reaching the next host instruction after the synchronizing numeric instruction indicates
that previous numeric operands in memory are available.

The data-synchronization function of any FW AIT or numeric instruction must be well-documented, as
shown in figure 2-10. Otherwise, a change to the program at a later time may remove the synchronizing
numeric instruction and cause program failure.

F 1ST P
FMUL
MOV AX,I

Case 1: Case 2:
MOV I, F I L D
F I L D I F W A I T

MOV I , 5

MOV A X , I F 1ST P
F 1ST P I F W A I T

MOV A X , I

Figure 2-9. Synchronizing References to Shared Data

is updated before FMUL is executed
is now safe to use

Figure 2-10. Documenting Data Synchronization

2-47 122164-001

inter PROGRAMMING NUMERIC APPLICATIONS

High-level languages automatically establish data synchronization and manage it, but there may be
applications where a high-level language may not be appropriate.

For assembly-language programmers, automatic data synchronization can be obtained using the assem
bler, although concurrency of execution is lost as a result. To perform automatic data synchronization,
the assembler can be changed to always place aWAIT instruction after the ESCAPE instruction.
Figure 2-11 shows an example of how to change the ASM286 Code Macro for the FIST instruction to
automatically place a WAIT instruction after the ESCAPE instruction. This Code Macro is included
in the ASM286 source module. The price paid for this automatic data synchronization is the lack of
any possible concurrency between the CPU and NPX.

Error Synchronization

Almost any numeric instruction can, under the wrong circumstances, produce a numeric error. Concur
rent execution of the CPU and NPX requires synchronization for these errors just as it does for data
references and numeric instructions. In fact, the synchronization required for data and instructions
automatically provides error synchronization.

However, incorrect data or instruction synchronization may not be discovered until a numeric error
occurs. A further complication is that a programmer may not expect his numeric program to cause
numeric errors, but in some systems, they may regularly happen. To better understand these points,
let's look at what can happen when the NPX detects an error.

The NPX can perform one of two things when a numeric exception occurs:

The NPX can provide a default fix-up for selected numeric errors. Programs can mask individual
error types to indicate that the NPX should generate a safe, reasonable result whenever that error
occurs. The default error fix-up activity is treated by the NPX as part of the instruction causing
the error; no external indication of the error is given. When errors are detected, a flag is set in the
numeric status register, but no information regarding where or when is available. If the NPX performs
its default action for all errors, then error synchronization is never exercised. This is no reason to
ignore error synchronization, however.

• As an alternative to the NPX default fix-up of numeric errors, the 80286 CPU can be notified
whenever an exception occurs. The CPU can then implement any sort of recovery procedures desired,
for any numeric error detectable by the NPX. When a numeric error is unmasked and the error

This is an ASM286 code macro to redefine the FIST
instruction to prevent any concurrency
while the instruction runs. A wait
instruction is placed immediately after the
escape to ensure the store is done
before the program may continue.

CodeMacro FIST memop: Mw
RfixM l1IB, memop
ModRM 010B, memop
R W fix
EndM

Figure 2-11. Nonconcurrent FIST Instruction CodeMacro

2-48 122164-001

PROGRAMMING NUMERIC APPLICATIONS

occurs, the NPX stops further execution of the numeric instruction and signals this event to the
CPU. On the next occurrence of an ESC or WAIT instruction, the CPU traps to a software excep
tion handler. Some ESC instructions do not check for errors. These are the nonwaited forms FNINIT,
FNSTENV, FNSA VE, FNSTSW, FNSTCW, and FNCLEX.

When the NPX signals an unmasked exception condition, it is requesting help. The fact that the error
was unmasked indicates that further numeric program execution under the arithmetic and program
ming rules of the NPX is unreasonable.

If concurrent execution is allowed, the state of the CPU when it recognizes the exception is undefined.
The CPU may have changed many of its internal registers and be executing a totally different program
by the time the exception occurs. To handle this situation, the NPX has special registers updated at
the start of each numeric instruction to describe the state of the numeric program when the failed
instruction was attempted.

Error synchronization ensures that the NPX is in a well-defined state after an unmasked numeric error
occurs. Without a well-defined state, it would be impossible for exception recovery routines to figure
out why the numeric error occurred, or to recover successfully from the error.

INCORRECT ERROR SYNCHRONIZATION

An example of how some instructions written without error synchronization will work initially, but fail
when moved into a new environment is shown in figure 2-12.

In figure 2-12, three instructions are shown to load an integer, calculate its square root, then increment
the integer. The NPX interface and synchronous execution of the NPX emulator will allow this program
to execute correctly when no errors occur on the FILD instruction.

This situation changes if the 80287 numeric register stack is extended to memory. To extend the NPX
stack to memory, the invalid error is unmasked. A push to a full register or pop from an empty register
will cause an invalid error. The recovery routine for the error must recognize this situation, fix up the
stack, then perform the original operation.

The recovery routine will not work correctly in the first example shown in the figure. The problem is
that the value of COUNT is incremented before the NPX can signal the exception to the CPU. Because
COUNT is incremented before the exception handler is invoked, the recovery routine will load an
incorrect value of COUNT, causing the program to fail or behave unreliably.

F I L D
INC
F 5 Q R T

F I L D
FSQRT

INC

COUNT
COUNT
COUNT

CO U N T

COUNT

INCORRECT ERROR SYNCHRONIZATION
NPX instruction
CPU instruction alters operand
subsequent NPX instruction -- error from

previous NPX instruction detected here

PROPER ERROR SYNCHRONIZATION
NPX instruction
subsequent NPX instruction -- error from

previous NPX instruction detected here
CPU instruction alters operand

Figure 2-12. Error Synchronization Examples

2-49 122164-001

PROGRAMMING NUMERIC APPLICATIONS

PROPER ERROR SYNCHRONIZATION

Error Synchronization relies on the WAIT instructions required by instruction and data synchroniza
tion and the BUSY and ERROR signals of the 80287. When an unmasked error occurs in the 80287,
it asserts the ERROR signal, signalling to the CPU that a numeric error has occurred. The next time
the CPU encounters an error-checking ESC or WAIT instruction, the CPU acknowledges the ERROR
signal by trapping automatically to Interrupt #16, the Processor Extension Error vector. If the follow
ing ESC or WAIT instruction is properly placed, the CPU will not yet have disturbed any information
vital to recovery from the error.

2-50 122164-001

System-Level 3
Numeric Programming

CHAPTER 3
SYSTEM-LEVEL NUMERIC PROGRAMMING

System programming for iAPX 286/20 systems requires a more detailed understanding of the 80287
NPX than does application programming. Such things as emulation, initialization, exception handling,
and data and error synchronization are all the responsibility of the systems programmer. These topics
are covered in detail in the sections that follow.

iAPX 286/20 ARCHITECTURE

On a software level, the 80287 NPX appears as an extension of the 80286 CPU. On the hardware
level, however, the mechanisms by which the 80286 and 80287 interact are a bit more complex. This
section describes how the 80287 NPX and 80286 CPU interact and points out features of this inter
action that are of interest to systems programmers.

Processor Extension Data Channel

All transfers of operands between the 80287 and system memory are performed by the 80286's internal
Processor Extension Data Channel. This independent, DMA-like data channel permits all operand
transfers of the 80287 to come under the supervision of the 80286 memory-management and protection
mechanisms. The operation of this data channel is completely transparent to software.

Because the 80286 actually performs all transfers between the 80287 and memory, no additional bus
drivers, controllers, or other components are necessary to interface the 80287 NPX to the local bus.
Any memory accessible to the 80286 CPU is accessible by the 80287. The Processor Extension Data
Channel is described in more detail in Chapter Six of the iAPX 286 Hardware Reference Manual.

Real-Address Mode and Protected Virtual-Address Mode

Like the 80286 CPU, the 80287 NPX can operate in both Real-Address mode and in Protected mode.
Following a hardware RESET, the 80287 is initially activated in Real-Address mode. A single, privi
leged instruction (FSETPM) is necessary to set the 80287 into Protected mode.

As an extension to the 80286 CPU, the 80287 can access any memory location accessible by the task
currently executing on the 80286. When operating in Protected mode, all memory references by the
80287 are automatically verified by the 80286's memory management and protection mechanisms as
for any other memory references by the currently-executing task. Protection violations associated with
NPX instructions automatically cause the 80286 to trap to an appropriate exception handler.

To the programmer, these two 80287 operating modes differ only in the manner in which the NPX
instruction and data pointers are represented in memory following an FSA VE or FSTENV instruction.
When the 80287 operates in Protected mode, its NPX instruction and data pointers are each repre
sented in memory as a 16-bit segment selector and a 16-bit offset. When the 80287 operates in Real
Address mode, these same instruction and data pointers are represented simply as the 20-bit physical
addresses of the operands in question (see figure 1-7 in Chapter One).

3-1 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

Dedicated and Reserved 1/0 Locations

The 80287 NPX does not require that any memory addresses be set aside for special purposes. The
80287 does make use of I/0 port addresses in the range 00F8H through OOFFH, although these I/0
operations are completely transparent to the iAPX 286 software. iAPX 286 programs must not refer
ence these reserved I/0 addresses directly.

To prevent any accidental misuse or other tampering with numeric instructions in the 80287, the 80286's
I/0 Privilege Level (IOPL) should be used in multiuser reprogrammable environments to restrict
application program access to the I/O address space and so guarantee the integrity of 80287 compu
tations. Chapter Eight of the iAPX 286 Operating System Writer's Guide contains more details regard
ing the use of the I/0 Privilege Level.

PROCESSOR INITIALIZATION AND CONTROL

One of the principal responsibilities of systems software is the initialization, monitoring, and control of
the hardware and software resources of the system, including the 80287 NPX. In this section, issues
related to system initialization and control are described, including recognition of the NPX, emulation
of the 80287 NPX in software if the hardware is not available, and the handling of exceptions that
may occur during the execution of the 80287.

System Initialization

During initialization of an iAPX 286 system, systems software must

• Recognize the presence or absence of the NPX

• Set flags in the 80286 MSW to reflect the state of the numeric environment

If an 80287 NPX is present in the system, the NPX must be

• Initialized

• Switched into Protected mode (if desired)

All of these activities can be quickly and easily performed as part of the overall system initialization.

Recognizing the 80287 NPX

During initialization, the 80286 is easily programmed to recognize the presence of the 80287 NPX.
Figure 3-1 shows an example of such a recognition routine.

In the example, the 80286 assumes that the 80287 is present and executes an FNINIT instruction.
Following the FNINIT instruction, the 80286 attempts to read the NPX status word. If the 80287
NPX is present, the lower eight bits of this word (the exception flags) will be all zeros. If an 80287 is
not present, these data lines will have been floating. The iAPX 286 Hardware Reference Manual
describes how to design the 80287 socket to ensure that at least one of these lower eight data lines
floats high in the absence of the 80287.

3-2 122164-001

"1m _I® I 1'eI SYSTEM-LEVEL NUMERIC PROGRAMMING

; initialization routine to detect an 80287 Numeric Processor

FND 287: FNINIT;
FSTSW AX
OR AL,AL

JZ GOT 287

SMSW AX
ORO 4 H
LMSW AX
JMP CONTINUE

GOT 287: SMSW AX
ORO 2 H
LMSW AX

CONTINUE:

initialize Numeric Processor
retrieve 80287 status word
test low-byte--80287 exception flags
if all zero, then 80287 present and
properly initialized
if not all zero, then 80287 absent.
branch if 80287 present

No Numeric Processor--
set EM bit in machine status word
to enable software emulation of 80287

Humeric Processor present
set MP bit in machine status word
to permit normal 80287 operation

and off we go ...

Figure 3-1. Software Routine to Recognize the 80287

Configuring the Numerics Environment

Once the 80286 CPU has determined the presence or absence of the 80287 NPX, the 80286 must set
either the MP or the EM bit in its own machine status word accordingly. The initialization routine can
either

Set the MP bit in the 80286 MSW to allow numeric instructions to be executed directly by the
80287 NPX component

Set the EM bit in the 80286 MSW to permit software emulation of the 80287 numeric instructions

The Math Present (MP) flag of the 80286 machine status word indicates to the CPU whether an 80287
NPX is physically available in the system. The MP flag controls the function of the WAIT instruction.
When executing a WAIT instruction, the 80286 tests only the Task Switched (TS) bit if MP is set; if
it finds TS set under these conditions, the CPU traps to exception #7.

The Emulation Mode (EM) bit of the 80286 machine status word indicates to the CPU whether NPX
functions are to be emulated. If the CPU finds EM set when it executes an ESC instruction, program
control is automatically trapped to exception #7, giving the exception handler the opportunity to emulate
the functions of an 80287. The 80286 EM flag can be changed only by using the LMSW (load machine
status word) instruction (legal only at privilege level 0) and examined with the aid of the SMSW (store
machine status word) instruction (legal at any privilege level).

The EM bit also controls the function of the WAIT instruction. If the CPU finds EM set while execut
ing a WAIT, the CPU does not check the ERROR pin for an error indication.

For correct 80286 operation, the EM bit must never be set concurrently with MP. The EM and MP
bits of the 80286 are described in more detail in the iAPX 286 Operating System Writer's Guide.
More information on software emulation for the 80287 NPX is described in the "80287 Emulation"
section later in this chapter.

3-3 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

Initializing the 80287

Initializing the 80287 NPX simply means placing the NPX in a known state unaffected by any activity
performed earlier. The example software routine to recognize the 80287 (table 3-1) performed this
initialization using a single FNINIT instruction. This instruction causes the NPX to be initialized in
the same way as that caused by the hardware RESET signal to the 80287. All the error masks are set,
all registers are tagged empty, the ST is set to zero, and default rounding, precision, and infinity
controls are set. Table 3-1 shows the state of the 80287 NPX following initialization.

Following a hardware RESET signal, such as after initial power-up, the 80287 is initialized in Real
Address mode. Once the 80287 has been switched to Protected mode (using the FSETPM instruction),
only another hardware RESET can switch the 80287 back to Real-Address mode. The FNINIT
instruction does not switch the operating state of the 80287.

80287 Emulation

If it is determined that no 80287 NPX is available in the system, systems software may decide to
emulate ESC instructions in software. This emulation is easily supported by the 80286 hardware, because
the 80286 can be configured to trap to a software emulation routine whenever it encounters an ESC
instruction in its instruction stream.

As described previously, whenever the 80286 CPU encounters an ESC instruction, and its MP and
EM status bits are set appropriately (MP=O, EM= 1), the 80286 will automatically trap to interrupt
#7, the Processor Extension Not Available exception. The return link stored on the stack points to the
first byte of the ESC instruction, including the prefix byte(s), if any. The exception handler can use
this return link to examine the ESC instruction and proceed to emulate the numeric instruction in
software.

The emulator must step the return pointer so that, upon return from the exception handler, execution
can resume at the first instruction following the ESC instruction.

Table 3-1. NPX Processor State Following Initialization

Field Value Interpretation

Control Word
Infinity Control 0 Projective
Rounding Control 00 Round to nearest
Precision Control 11 64 bits
Interrupt-Enable Mask 1 Interrupts disabled
Exception Masks 111111 All exceptions masked

Status Word
Busy 0 Not busy
Condition Code ???? (Indeterminate)
Stack Top 000 Empty stack
Interrupt Request 0 No interrupt
Exception Flags 000000 No exceptions

Tag Word
Tags 11 Empty

Registers N.C. Not changed

Exception Pointers
Instruction Code N.C. Not changed
Instruction Address N.C. Not changed
Operand Address N.C. Not changed

3-4 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

To an application program, execution on an iAPX 286/10 system with 80287 emulation is almost
indistinguishable from execution on an iAPX 286/20 system, except for the difference in execution
speeds.

There are several important considerations when using emulation on an iAPX 286/10 system:

When operating in Protected-Address mode, numeric applications using the emulator must be
executed in execute-readable code segments. Numeric software cannot be emulated if it is executed
in execute-only code segments. This is because the emulator must be able to examine the particular
numeric instruction that caused the Emulation trap.

Only privileged tasks can place the 80286 in emulation mode. The instructions necessary to place
the 80286 in Emulation mode are privileged instructions, and are not typically accessible to an
application.

An emulator package (E80287) that runs on iAPX 286/10 systems is available from Intel in the 8086
Software Toolbox, Order Number 122203. This emulation package operates in both Real and Protected
mode, providing a complete functional equivalent for the 80287 emulated in software.

When using the E80287 emulator, writers of numeric exception handlers should be aware of one slight
difference between the emulated 80287 and the 80287 hardware:

On the 80287 hardware, exception handlers are invoked by the 80286 at the first WAIT or ESC
instruction following the instruction causing the exception. The return link, stored on the 80286
stack, points to this second WAIT or ESC instruction where execution will resume following a
return from the exception handler.

Using the E80287 emulator, numeric exception handlers are invoked from within the emulator itself.
The return link stored on the stack when the exception handler is invoked will therefore point back
to the E80287 emulator, rather than to the program code actually being executed (emulated). An
IRET return from the exception handler returns to the emulator, which then returns immediately
to the emulated program. This added layer of indirection should not cause confusion, however,
because the instruction causing the exception can always be identified from the 80287's instruction
and data pointers.

Handling Numeric Processing Exceptions

Once the iAPX 286/20 system has been initialized and normal execution of applications has been
commenced, the 80287 NPX may occasionally require attention in order to recover from numeric
processing errors. This section provides details for writing software exception handlers for numeric
exceptions. Numeric processing exceptions have already been introduced in previous sections of this
manual.

As discussed previously, the 80287 NPX can take one of two actions when it recognizes a numeric
exception:

If the exception is masked, the NPX will automatically perform its own masked exception response,
correcting the exception condition according to fixed rules, and then continuing with its instruction
execution.

If the exception is unmasked, the NPX signals the exception to the 80286 CPU using the ERROR
status line between the two processors. Each time the 80286 encounters an ESC or WAIT instruc
tion in its instruction stream, the CPU checks the condition of this ERROR status line. If ERROR
is active, the CPU automatically traps to Interrupt vector #16, the Processor Extension Error trap.

3-5 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

Interrupt vector #16 typically points to a software exception handler, which mayor may not be a part
of systems software. This exception handler takes the form of an iAPX 286 interrupt procedure.

When handling numeric errors, the CPU has two responsibilities:

The CPU must not disturb the numeric context when an error is detected.

The CPU must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one imple
mentation to the next, most exception handlers will include these basic steps:

Store the NPX environment (control, status, and tag words, operand and instruction pointers) as it
existed at the time of the exception.

Clear the exception bits in the status word.

Enable interrupts on the CPU.

Identify the exception by examining the status and control words in the save environment.

Take some system-dependent action to rectify the exception.

Return to the interrupted program and resume normal execution.

It should be noted that the NPX exception pointers contained in the stored NPX environment will take
different forms, depending on whether the NPX is operating in Real-Address mode or in Protected
mode. The earlier discussion of Real versus Protected mode details how this information is presented
in each of the two operating modes.

Simultaneous Exception Response

In cases where multiple exceptions arise simultaneously, the 80287 signals one exception according to
the precedence sequence shown in table 3-2. This means, for example, that zero divided by zero will
result in an invalid operation, and not a zero divide exception.

Exception Recovery Examples

Recovery routines for NPX exceptions can take a variety of forms. They can change the arithmetic
and programming rules of the NPX. These changes may redefine the default fix-up for an error, change
the appearance of the NPX to the programmer, or change how arithmetic is defined on the NPX.

A change to an error response might be to automatically normalize all denormals loaded from memory.
A change in appearance might be extending the register stack into memory to provide an "infinite"
number of numeric registers. The arithmetic of the NPX can be changed to automatically extend the

Table 3-2. Precedence of NPX Exceptions

Signaled First: Denormalized operand (if unmasked)
Invalid operation
Zero divide
Denormalized (if masked)
Over/Underflow

Signaled Last: Precision

3-6 122164-001

SYSTEM-LEVEL NUMERIC PROGRAMMING

precision and range of variables when exceeded. All these functions can be implemented on the NPX
via numeric errors and associated recovery routines in a manner transparent to the application
programmer.

Some other possible system-dependent actions, mentioned previously, may include:

Incrementing an exception counter for later display or printing

Printing or displaying diagnostic information (e.g., the 80287 environment and registers)

Aborting further execution

Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception mayor may not constitute an error, depending on the implementation. Once
the exception handler corrects the error condition causing the exception, the floating-point instruction
that caused the exception can be restarted, if appropriate. This cannot be accomplished using the
IRET instruction, however, because the trap occurs at the ESC or WAIT instruction following the
offending ESC instruction. The exception handler must obtain from the NPX the address of the
offending instruction in the task that initiated it, make a copy of it, execute the copy in the context of
the offending task, and then return via IRET to the current CPU instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must recognize the
precise state of the NPX at the time the exception handler was invoked, and be able to reconstruct the
state of the NPX when the exception initially occurred. To reconstruct the state of the NPX, program
mers must understand when, during the execution of an NPX instruction, exceptions are actually
recognized.

Invalid operation, zero divide, and denormalized exceptions are detected before an operation begins,
whereas overflow, underflow, and precision exceptions are not raised until a true result has been
computed. When a before exception is detected, the NPX register stack and memory have not yet been
updated, and appear as if the offending instructions has not been executed.

When an after exception is detected, the register stack and memory appear as if the instruction has
run to completion; i.e., they may be updated. (However, in a store or store-and-pop operation, unmasked
over /underflow is handled like a before exception; memory is not updated and the stack is not popped.)
The programming examples contained in Chapter Four include an outline of several exception handlers
to process numeric exceptions for the 80287.

3-7 122164-001

Numeric 4
Programming Examples

CHAPTER 4
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs for the 80287 NPX written in ASM286.
These examples are intended to illustrate some of the techniques for programming the iAPX 286/20
computing system for numeric applications.

CONDITIONAL BRANCHING EXAMPLES

As discussed in Chapter Two, several numeric instructions post their results to the condition code bits
of the 80287 status word. Although there are many ways to implement conditional branching following
a comparison, the basic approach is as follows:

• Execute the comparison.

• Store the status word. (80287 allows storing status directly into AX register.)

Inspect the condition code bits.

• Jump on the result.

Figure 4-1 is a code fragment that illustrates how two memory-resident long real numbers might be
compared (similar code could be used with the FTST instruction). The numbers are called A and B,
and the comparison is A to B.

The comparison itself requires loading A onto the top of the 80287 register stack and then comparing
it to B, while popping the stack with the same instruction. The status word is then written into the
80286 AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate which
ordering holds. These bits are positioned in the upper byte of the NPX status word so as to correspond
to the CPU's zero, parity, and carry flags (ZF, PF, and CF), when the byte is written into the flags.
The code fragment sets ZF, PF, and CF of the CPU status word to the values of C3, C2, and CO of
the NPX status word, and then uses the CPU conditional jump instructions to test the flags. The
resulting code is extremely compact, requiring only seven instructions.

The FXAM instruction updates all four condition code bits. Figure 4-2 shows how a jump table can be
used to determine the characteristics of the value examined. The jump table (FXAM_TBL) is initial
ized to contain the 16-bit displacement of 16 labels, one for each possible condition code setting. Note
that four of the table entries contain the same value, because four condition code settings correspond
to "empty."

The program fragment performs the FXAM and stores the status word. It then manipulates the condi
tion code bits to finally produce a number in register BX that equals the condition code times 2. This
involves zeroing the unused bits in the byte that contains the code, shifting C3 to the right so that it is
adjacent to C2, and then shifting the code to multiply it by 2. The resulting value is used as an index
that selects one of the displacements from FXAM_TBL (the multiplication of the condition code is
required because of the 2-byte length of each value in FXAM_TBL). The unconditional JMP instruc
tion effectively vectors through the jump table to the labelled routine that contains code (not shown in
the example) to process each possible result of the FXAM instruction.

4-1 122164-001

inter

A
B

DQ
DQ

FLD
FCOMP
FSTSW

A
B
A X

NUMERIC PROGRAMMING EXAMPLES

LOAD A ONTO TOP OF 287 STACK
COMPARE A:B, POP A
STORE RESULT TO CPU AX REGISTER

i CPU AX REGISTER CONTAINS CONDITION CODES (RESULTS OF
i COMPARE>

LOAD CONDITION CODES INTO CPU FLAGS
SA H F
i
i USE CONDITIONAL JUMPS TO DETERMINE ORDERING OF A TO
i B

JP
JB
JE

LB_UNORDERED
A_LESS
A EQUAL

TE S T C2 (P F)
TE S T CO (C F)
TE S T C3 (ZF)

A_GREATER: CO (C F) o , C3 (ZF) . 0

CO (C F) . o , C3 (Z F>

A LESS: CO (CF> 1,C3(ZF)-O

C2 (PF>

Figure 4-1. Conditional Branching for Compares

JUMP TABLE FOR EXAMINE ROUTINE

FXAM_TBL DW POS_UNNORM, POS_NAN, NEG_UNNORM, NEG_NAN,
& POS_NORM, POS_INFINITY, NEG_NORM,
& NEG_INFINITY, POS_ZERO, EMPTY, NEG_ZERO,
& EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

EXAMINE ST AND STORE RESULT (CONDITION CODES)
FXAM
FSTSW AX

Figure 4-2. Conditional Branching for FXAM

4-2 122164-001

NUMERIC PROGRAMMING EXAMPLES

CALCULATE OFFSET INTO JUMP TABLE
MOV BH,O ; CLEAR UPPER HALF OF BX,
MOV BL,AH ; LOAD CONDITION CODE INTO BL
AND BL,00000111B ; CLEAR ALL BITS EXCEPT C2-CO
AND AH,01000000B ; CLEAR ALL BITS EXCEPT C3
SHR AH,2 SHIFT C3 TWO PLACES RIGHT
SAL BX,1 SHIFT C2-CO 1 PLACE LEFT (MULTIPLY

BY 2)
DR BL,AH DROP C3 BACK IN ADJACENT TO C2

(OOOXXXXO)

JUMP TO THE ROUTINE 'ADDRESSED' BY CONDITION CODE
JMP FXAM_TBLIBXl

POS UNNORM:

POS NAN:

NEG UNNORM:

HERE ARE THE JUMP TARGETS, ONE TO HANDLE
EACH POSSIBLE RESULT OF FXAM

POS INFINITY:

NEG NORM:

POS ZERO:

EMPTY:

I'lEG ZERO:

POS DENORM:

NEG DENORM:

Figure 4-2. Conditional Branching for FXAM (Cont'd.)

EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception handlers. One useful technique is to consider the
exception handler procedure as consisting of "prologue," "body," and "epilogue" sections of code. (For
compatibility with the 80287 emulators, this procedure should be invoked by interrupt pointer (vector)
number 16.)

4-3 122164-001

NUMERIC PROGRAMMING EXAMPLES

At the beginning of the prologue, CPU interrupts have been disabled. The prologue performs all
functions that must be protected from possible interruption by higher-priority sources. Typically, this
will involve saving CPU registers and transferring diagnostic information from the 80287 to memory.
When the critical processing has been completed, the prologue may enable CPU interrupts to allow
higher-priority interrupt handlers to preempt the exception handler.

The exception handler body examines the diagnostic information and makes a response that is neces
sarily application-dependent. This response may range from halting execution, to displaying a message,
to attempting to repair the problem and proceed with normal execution.

The epilogue essentially reverses the actions of the prologue, restoring the CPU and the NPX so that
normal execution can be resumed. The epilogue must not load an unmasked exception flag into the
80287 or another exception will be requested immediately.

Figure 4-3 through 4-5 show the ASM286 coding of three skeleton exception handlers. They show how
prologues and epilogues can be written for various situations, but provide comments indicating only
where the application-dependent exception handling body should be placed.

Figure 4-3 and 4-4 are very similar; their only substantial difference is their choice of instructions to
save and restore the 80287. The tradeoff here is between the increased diagnostic information provided
by FNSA VE and the faster execution of FNSTENV. For applications that are sensitive to interrupt
latency or that do not need to examine register contents, FNSTENV reduces the duration of the "criti
cal region," during which the CPU will not recognize another interrupt request (unless it is a nonmask
able interrupt).

After the exception handler body, the epilogues prepare the CPU and the NPX to resume execution
from the point of interruption (i.e., the instruction following the one that generated the unmasked
exception). Notice that the exception flags in the memory image that is loaded into the 80287 are
cleared to zero prior to reloading (in fact, in these examples, the entire status word image is cleared).

The examples in figures 4-3 and 4-4 assume that the exception handler itself will not cause an unmasked
exception. Where this is a possibility, the general approach shown in figure 4-5 can be employed. The
basic technique is to save the full 80287 state and then to load a new control word in the prologue.
Note that considerable care should be taken when designing an exception handler of this type to prevent
the handler from being reentered endlessly.

SAVE ALL PRO C

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80287 STATE IMAGE

PUSH BP
MOV BP,SP
SUB SP,94

SAVE FULL 80287 STATE, WAIT FOR COMPLETION,
ENABLE CPU INTERRUPTS

FNSAVE [BP-941
F WA I T
S T I

APPLICATION-DEPENDENT EXCEPTION HANDLING
CODE GOES HERE

Figure 4-3. Full-State Exception Handler

4-4 122164-001

NUMERIC PROGRAMMING EXAMPLES

CLEAR EXCEPTION FLAGS IN
RESTORE MODIFIED STATE
I MAG E

STATUS WORD

MOV
FRSTOR

DE-ALLOCATE
MOV

BYTE PTR IBP-921, OH
IBP-941
STACK SPACE, RESTORE CPU REGISTERS
S P , B P

POP B P

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE ALL ENDP

Figure 4-3. Full-State Exception Handler (Cont'd.)

SAVE_ENVIRONMENT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE
FOR 80287 ENVIRONMENT

PUSH BP

MOV BP,SP
SUB SP,14

SAVE ENVIRONMENT, WAIT FOR COMPLETION,
ENABLE CPU INTERRUPTS

FNSTENV IBP-141
F W A I T
S T I

APPLICATION EXCEPTION-HANDLING CODE GOES HERE

CLEAR EXCEPTION FLAGS IN STATUS WORD
RESTORE MODIFIED
ENVIRONMENT IMAGE

MOV BYTE PTR IBP-12I, OH
FLDENV IBP-141

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP
POP BP

RETURN TO INTERRUPTED CALCULATION
IRE T

SAVE_ENVIRONMENT ENDP

Figure 4-4. Reduced-Latency Exception Handler

4-5 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

ASSUME INITIALIZED

REENTRANT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR
80287 STATE IMAGE

PUSH BP

MOV BP,SP
SUB SP,94

SAVE STATE, LOAD NEW CONTROL WORD,
FOR COMPLETION, ENABLE CPU INTERRUPTS

FNSAVE IBP-941
FLDCW LOCAL CONTROL
S T I

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE CPU STACK.

CLEAR EXCEPTION FLAGS IN STATUS WORD
RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR IBP-921, OH
FRSTOR IBP-941

DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP

POP BP
RETURN TO POINT OF INTERRUPTION

IRE T
REENTRANT ENDP

Figure 4-5. Reentrant Exception Handler

4-6 122164-001

NUMERIC PROGRAMMING EXAMPLES

FLOATING-POINT TO ASCII CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and inspection by
the program user. In many cases, numeric results are formatted as ASCII strings for printing or display.
This example shows how floating-point values can be converted to decimal ASCII character strings.
The function shown in figure 4-6 can be invoked from PL/M-286, Pascal-286, FORTRAN-286, or
ASM286 routines.

Shortness, speed, and accuracy were chosen rather than providing the maximum number of significant
digits possible. An attempt is made to keep integers in their own domain to avoid unnecessary conver
sion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy of three
units in the 16th decimal position for a noninteger value or integers greater than 10". This is double
precision accuracy. With values having decimal exponents less than 100 in magnitude, the accuracy is
one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size, and lower
performance.

iAPX286 MACRO ASSEMBLER 80287 Floating-Point to IS-Digit ASCII Conversion 10: 12: 36 09/25/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER XI0B ASSEMBLY OF MODULE FLOATING_TO_ASCII
OB.JECT MODULE PLACED IN : F3: FPASC. DB
ASSEMBLER INVOKED BY: A8M286.86: F3: FPASC. AP2

LOC DB') LINE SOURCE

1 +1 $title("80287 Floating-Point to IS-Digit ASCII Conversion")
2
3 floatin9_to_ascii
4
5 public floatinQ_to_OIscii
6 extrn Qet...J)ower _10: near, tos_status: n('ar
7
8 This subroutine will convert the floating point numbel' in tne
9 top of the 80287 stack to an ASCII string and separate power of 10

10 scaling value (in binary). The maximum width or the ASCII string
11 formed is controlled b~ a parameter which must be :> 1. Unnormal values.
12 denormal values. and psuedo zeroes will be correctl~ converted.
13 A returned value will indicate how man~ binary bits of
14 preCision were lost in an unnormal or denormal value. The magnitude
15 (in terms Or binary power) Or a psuedo zero will also be indicated.
16 Integers less than 10**18 in magnitude are accurately converted if the
17 destination ASCII string field is lIIide enough to hold all the
18 digits. Otherwise the value is converted to scientific notation. ,.
20 The status of the conversion is identified b~ the return value.
21 it can be:
22
23 conversion complete, string_size is. defined
24 inval id argumeryts
25 exact integer conversion, string_size is defined
26 indefinite
27 ... NAN (Not A Number)
28 - NAN
29 + Infinity
30 - Infinitv
31 psuedo zero found. string_size is defined
32
33 The PLM/286 calling convention is:
34
35 floating_to_ascii:
36 proc edure (numb er. d enorma 1 J tr. s tr i ngJ tr. s i z e_ptr. fie lo_si z e,
37 powerJtr) word external;
38 declare (denormal_ptr. string_ptr. power Jh'. size....JItr) pointer;
39 decla1'e field_Size word, string_size based size_pt1' 1II01'd;
40 declare number real;
41 deela1'e denormal integer based denormal_ptri
42 declare power integer based power_ptri
43 end floating_to_asciii
44
45 The floating point value is expected to be on the top of the NPX
46 stack. This subroutine expects 3 f1'ee entries on the NPX stack and
47 will pop the passed value off when done. The generated ASCII string
48 will have a leading cha1'acte1' @ithe1' '-' or '+' indicating the sign
49 of th@ value. Ttle ASCII decimal digih will immediately follow.
50 The nume1'ic value of the ASCII string is (ASCII STRINQ.)*10**POWER.

Figure 4-6. Floating-Point to ASCII Conversion Routine

4-7 122164-001

iAPX286 MACRO ,ASSEMBLER

lOC DB..}

OOOO[]
0002[]
0004[]
0006U
OOOS[)
OOOA[]
oooee]
OOOE[]

COOA

0012
0002
COCA
0001
0004
0006
0003
0008

-0002
-0004
-0006
-0008

0000
0002

-OQ02[]
-0004[]
-OOOO[]
-OOIO[]
-OOIOC]
-OOtO[]

0010

0000 CACO

0002 Fe
0003 04
0004 F9
0005 05
0006 00
0007 06
0008 01
0009 07
OOCA Fe
0008 FE
DOOC FD
OOOD FE
OOOE FA
OOOF FE
0010 FB
0011 FE

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to IS-Digit ASCII Conv.-rsion 10: 12: 38 09/25/83 PAGE

LINE

51
52
53
54
55
56
57
58
59
60
61
62
63
6.
65
6.
67
68
.9
70
71
72 +1
73
7.
75
76
77
78
79
80
81
82
83
8.
85
8.
87
88
89
90
91
92
93
94
95
9.
97
98
99

100
101
102
103
104
105
10.
107
108
109
110
111
112
113
114
115
11.
117
118 +1
119
120
121
122
123
124
12.
12.
127
128
129
130

131

132

133

SOURCE

If! the give" number was 'ero, the ASCII string lIIill contain a sign
and a single zero chaeter The Villul' string_slze indicates the total
length of! the ASCII string including the sign character. String(O) will
.llIIa",5 hold the sign. It is possible for strin9_siz~ to b~ less than
field_size. This occurs for zeroes 01' integer values. A psu~do zero
lIIill return a special return code. The denormal cDunt will indicate
the pOliler of two originally associated with the value. The power of
ten and ASCII string will be as if the value was an ordinary zero.

This subroutine is accurate up to a maximum of 18 decimal digits for
integers. Integer values will have a decimal power of zero associated
with them. For non intelll"rS, the result will be accurste to within 2
decimal digits of the 16th decimal place (doubll~ pr.cision). The
exponentiate instruction is also used for scaling the value into the
range acceptable for the BCD data type. The rounding mode in effect
on entry to the subroutine is used for the conversion.

The following registers are not transparent:

ax bx ex dx si di flags

Define the stack layout.

bp_save
es_save
return _ptr
power _ptr
-Field_size
size_ptr
strin9_ptr
denormal _ptr

parms_ si ze

•

equ
equ
equ
equ
equ
equ
equ
equ

equ

word ptr [bp]
bp_save + size bp_ssve
£os_save + size es_save
return_ptr + size retul'nJltr
powerJltr + size powerJltl'
field_size + size field_size
size_ptl' + size size_ptr
stringJltr + size stl'ing_ptl'

size power_ptr + size field_size + size size_ph' +
size stl'ingJltr + size denormalJltr

Define constants used

BCD_DIGITS
WORD_SIZE
BCD_SIZE
MINUS
NAN
INFINITY
INDEFINITE
PSUEDO_ZERQ
INVALID
ZERO
DENORMAL
UNNORMAL
NORMAL
EXACT

equ
equ
equ
equ
equ
equ
equ
oqu
equ
equ
equ
equ
equ
equ

18
2
10
1
4

•
3
8
-2
-4 -.
-8
o
2

Number of digits in bcd_value

Define return values
The exact values chosen here are
important. The" must correspond to
the possible return values and be in
the same numeric order as tested by
the program.

Define layout of temporary storage area.

status
power _two
power_ten
bcd_value
bcd_byte
fraction

stac k
'eJect
code

const10

eClu
equ
equ
equ
equ
equ

equ

lIIord ptr Cbp-WORD_SlZEl
status - WORD_SIZE
pOlller _two - WORD_SIZE
tbyte ptr power_ten - BCD_SIZE
byte ptr bcd_value
bcd_value

size status + size power_two + size pOlller_ten
+ size bcd_value

stackseg (local_size+6) ; Allocate stack space for IDeals

segment er pub 1 ic
extrn power_table: Clolllord

Constants used by this function.

even
d. 10

j Optimize for 16 bits
i AdJustment value for too big BCD

Convert the C3,C2,C1.CO encoding from tos_status into meaningful bit
.plags and values.

db UNNORMAL, NAN, UNNORMAL + MINUS. NAN + MINUS.

NORMAL, INFINITY, NORMAL + MINUS, INFINITY + MINUS.

ZERO. INVALID, ZERO + MINUS, INVALID,

DENORMAL, INVALID, DENORMAL + MINUS, INVALID

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-8 122164-001

iAPX286 MACRO ASSEMBLER

LOC DB,)

0012

0012 E80000
0015 8BD8
0017 2EBA870200
001C 3eFE
DOlE 752B

0020 C20AOO

0023

0023 DODe
0025 EB02

0027

0027 BOFE

0029

0029 C9
002A 07
0028 C20AOO

002E

002E DB7EFO
0031 A801
0033 9B
0034 74F3

0036 B800eo
0039 2B5EF6
003C OE5EF4
D03F OB5EF2
0042 DE5EFO
0045 75E2

0047 B003
0049 EBDE

0040

004B 06
004C C B 1 00000

0050 BB4EOB
0053 8af902
0056 7CCF

0058 49
0059 B3F912
aose 7603

005E B91200

0061

0061 3C06
0063 ?DBE

0065 3C04
0067 7DCS

0069 09E1

0068 BDDO

0060 33CO
a06F 8B7EOE
0072 8905
0074 885E06
0077 8907
0079 80FAFC
007C 732B

007E BOFAFA
0081 732C

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to lS-Digit ASCII Conversion 10: 12: 38 O~/25/83 PAGE

LINE

134
135
136
137
138
13q
140
141
142
143
144
145
146
147
148
14q
150
151
152
153
154
155
156
157
158
15q
160
161
162
163
164
165
166
167
168
16q
170
171
172
17"
174
175
176
177
178
17q
180
181
182
183
184
185
186
187
188
18q
190
191
lq2
193
lq4
195
196
197
198
lq9
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227

SOURCE

call

'm,
Jn,

tos_status
b x, a ~
ill. status tablerbx]
0111. INVALID
not_empty

Look at status of ST(O)
Get descriptor from table

Look for empty ST(O)

ST(O) is empty! Return the status value

cot

Remove infinity from stack and exit

fstp st (0) ; OK to leave fstp runnlng
Jmp short exit_proc

String space is too small! Return invalid code

a 1. INVALID

e~it_proc

leave j Restore stac k
pop es
ret parms_slze

ST(O) is NAN or indefinite. Store the value in memory and look
at the fraction field to Separate indefinite from an ordinary NAN.

fstp fraction
test al, MINUS
fwait

mav
,ub

Jn,

b x. OCOOOH
bx. word ptr fraction+6
bx. word ptr fraction+4
bx. word ptr fraction+2
bx, word ptr fraction
edt_proc

a 1. INDEFINITE
Jmp exit_proc

Remove value from stack for examination
Look at sign bit
Insure store is done
Can't be indefinite if positive

Match against upper 16 bits of fraction
Compare bits 63-48
Bits 32-47 must be zero
Bits 31-16 must be zero
Bits 15-0 must be zero

Set return value for indefinite value

Allocate stack space for local variables and establish parameter
addressibility

push
enter 10cal_size,O

cx, field_size
cmp c l(. 2
Jl small_string

dec cx
cmp c x. BCD_DIGITS
Jbe size_ok

,m,
J9'

,m,

a1. INFINITY
found_infinity

al. NAN

Save working register
Format stac k

Check for enough string space

Adjust for sign character
See if string is too large for BCD

Else set maximum st-r-ing si~e

Look for infinity
Return status value for + or - inf.

Look for NAN or INDEFINITE

Set default return values and check that the number is normalized.

f'abs

,m,
J.'
,m,
J.'

dx. ax

ax. ax
di. denormalJtr
word ptr [di]. ax
bx, power _ptr
ward ptr [bx]. ax
dl. ZERO
real_zero

d I. DENORMAL
found_denormal

Use positive value only
sign bit in 0111 has true si!ln of value
Save return value for later

Form 0 constant
Zero denormal count

Zero power of ten value

Test for zero
Skip power code if value

Look for a denormal value
Handle it specially

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-9 122164-001

iAPX286 MACRO ASSEMBLE.R

LOC OB,;

0083 D9F4
0085 80FAF8
0088 7240

008A 80EAF8

0080 D9E8

ooaF

DoaF DCC 1
0091 DEE9
0093 D9F4

0095 09C9
0097 DF1S
0099 DEC2

0090 F71D
0090 7526

009F 09C9
OOAI DFID

00A3 80EAF8
00A6 E9A400

00A9

00A9 90EAFC
OOAC E99EOQ

DOAF

DOAF D9E8
DOBI 09C9
0093 D9F8

00B5 D9F4

00D7 D9E5
00D9 9BDFEO
DOne 09C9
DOBE D9CA
ODCO eOEAFA
00C3 A90044
00C6 74C7

ooce DODe

OOCA
DOCA

OOCA DB7EFO
OOCD DF56FC
0000 D9EC

0002 DEC9
00D4 DFSEFA

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to 18-Digit ASCII l;onversion 10; 12: 38 09/25/83 PAGE

LINE

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

SOURCE

t'xtract
cmp d I. UNNORMAL
Jb normal_value

sub dl, UNNORMAL-NORMAL

Normalize the fraction,
the denormal count value.

Assert 0 <= STeO) < 1 0

fldl

separate exponent from significand
Test for unnormal value

Return normal status with correct SIgn

adJust the power of two in. ST(l) and set

, Load constant to normalize fraction

normal i z e_frac: tion:

real

fadd st (1), st
fsub
fxtrac:t

fxch
-Fist word ptr Cdi]
faddp st(2), st

neg word ptr Cd iJ
Jnz not_psuedo_zero

Set integer bit in fraction
Form normalized fraction in ST(O)
Power of two field will be negative
of denormal count
Put denormal count in ST(O)
Put negative of denormal count in memory
Form correct power of two in st(1)
OK to use word ptr (diJ now
Form pasitlve denormal count

A psuedo zero wi 11 appear as an unnormal number When attempting
to normalize it, the resultant fraction field will be zero. Performlng
an fxtract on zero will yield a zero exponent valuE'.

heh
fistp word ptr Cdi]

sub d L NORMAL-PSUEDO_ZERO
Jmp convert_integer

Put power of two value in st(O)
Set denormal count to power of two value
Word ptr Cdi] is not used by convert
integer, OK to leave running
Set return value saving thl;' sign bit
Put zero value into memory

The number is a real zero, set the return value and setup for
to BCD

'"' Jmp

d I, ZERO-NORMAL
convert_integer

; Convert status to normal value
Treat the zero as an integer

The number is a denormal. FXTRACT will not work correctll,l in this
case. To correctly separate the exponent and ft'action, add a fixed
c:onstant to the exponent to guat'antee the result is not a denormal.

fldl
fxc:h
fprem

fxtrac:t

Prepare to bump exponent

Force denormal to smallest representable
extended real format exponent
This will work correctly

The power of the original denormal value has been safely isolated.
Check if the fraction value is unnormal.

fxam
fstsw
fxch
hch st(2)
sub d l, DENORMAL-NORMAL
test ax. 4400H
JZ normalize_frac:tion

f5tp st(O)

See if the fraction is an unnormal
Save 80287 status in CPU AX reg for later

J Put exponent in ST(Ol
Put 1. 0 into ST(O). exponent in sn2)
Return normal status with correct sign
See if C3=C2=O impling unnormal or NAN
,Jump if fraction is an unnormal

Remove unnecessary 1. 0 from st(Ol

Calculate the decimal magnitude associated with this number to
within one order. This error will always be inevitable due to
rounding and lost precision. As a result, we will deliberately fail
to c:onsider the LOGlO of the frac:tion value in c:alculating the order.
Since the fraction will always be 1 (= F < 2, its LOGlO will not change
the basic ac:curac:y of the function. To get the decimal order of magnitude.
simply multiply the power of two by LOG10(2) and truncate the result to
an integer.

normal_value:
not_p sued o_z ero:

fstp fraction
fist power _two
fldlg2

fmul
fistp power_ten

Save the fraction field for later
Save power 0 f two
Get LOGIO(2)

I power_two is now safe to use
Form LOG10(of exponent of number)
Any rounding mode will work here

Chec:k if the magnitude of the number rules out treating it as
intE!ger

CX has the maximum number of decimal digits allowed.

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-10 122164-001

iAPX286 MACRO ASSEMBLER

LOC OBJ

0007 913
0008 BB46FA
00013 2BC 1
DODD 7722

COOF DF46FC
OOE2 BBF2
00E4 BOEAFE
00E7 OB6EFO
OOEA D9FD
OOEC 0001
OOEE D9FC
COFO 0809
OOF2 9BDD7EFE
OOF6 F746FE0040
QOFB 7550

OOFD 0008
DOFF 8ED6

0101

0101 8907
0103 F70B

0105 E80000

0108 DB6EFO
01013 DEC9
0100 88Ft
OIOF 01E6
0111 01E6
0113 01E6
0115 DF46FC
0118 DEC2
OIIA D9FD
OIIC DDD9

011E

011 E 2EDC94·0BOO

0123 9BDFEO
0126 A9Q041
0129 ?SOC

o 12B 2EOE360000
0130 80E2FD
0133 FF07
0135 EB14

0137

0137 2EDC940000
013C 9BDFEO
013F A90001
0142 7407

0144 2EOEOEOOOO
0149 FFOF

014B

01413 D9FC

0140

014D DF76FO

0150 8E0800

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to IS-Digit ASCII Conversion 10' 12: 38 09/25/83 PAGE

LINE

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
37;
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

SOURCE

fwai t
mev a~, power _ten
sub a x, (: x
Ja adJust_rl::'sult

Wait ,for power_ten to be valid
Get power of ten of value
Form scaling factor necessary
Jump if number will not fit

The number is between 1 and 10**(field_site)
Test if it is an integer

f i 1 d
mov
"b

'" fs(:al e
"t
frnd i nt
fcomp
fstsw
test
In,

fstp

power two
s), dx-
d L NORMAL-EXACT
fraction

st (1)

status
status,4000H
c Dnvert _integer

st (0)

dx,si

Restore original number
Save return value
Convert to exact return value

Form full value, this is safe here
Copy value for compare
Test if its an integer
Compare values
Save status
C3=1 implies it was an integer

Remove non integer value
Restore original return value

Scale the number to within the range allowed by the BCD format.
The s(:aling operation should produce a number within one decimal order
of magnitude of the largest decimal number representable within the
given string width.

The scaling power of ten value is in ax

word p tr [bx], ax
n'9

call get_power _10

'" fraction
fmul
mov s 1, C x
'h 1 s i, 1
'h 1 s 1, 1
'h 1 s i, 1
f'ild power _ two
fad dp st(2),st
fsral e
fstp st (1)

Set initial power of ten return value
Subtract one for each order of
magnitude the value is s(:aled by
Scaling fa(:tor i!i returned as exponent
and fraction
Get fraction
Combine fractions
Form power of ten of the maximum
BCD value to fit in the string
Ind e x in s i

Combine powers of two

Form full value, exponent was safe
Remove exponent

Test the adJusted value against a table of exact powers of ten
The combined errors of the magnitude estimate and power function can
result in a value one order of magnitude too small or too large to fit
correctly in the BCD field To handle this problem. pretest the
adJusted value, it' it is too small or large, then adJust it by ten and
adjust the pOwer' of ten value

fcom

fstsw
test
In,

fidiv
and

Jmp

power _tab 1 e [5 i J+ty P e

a,
ax,4100H
test_for small

constl0
d I, not EXACT
word ptr Cbx]
short in_range

fcom power tableCsi]
fstsw ax
test ax,lOOH
JZ in_range

fimul const10
dec word ptr Cbx]

frnd i nt

power_table; Compare against exact power
entry Use the next entry since
has been decremented by one
No wait is necessary
If C3 "" CO = 0 then too big

Else adJust value
Remove exact flag
AdJust power of ten value
Convert the value to a BCD integer

Test relative sile
No wait is necessary
If CO = 0 then st(O))= lower bound
Convert the value to a BCD integer

AdJust value into range
AdJust power of ten value

; Form integer value

Assert 0 (= TOS <= 999.999,999,999,999.999
The TOS number will be exactly representable in 18 digit BCD format

Store as BCD format number

While the store BCD runs, setup registers for the conversion to
ASCII

s1, BCD_SIZE-2 Initial BCD index value

Figure 4-6. Floating-Point to ASCII ConverSion Routine (Cont'd.)

4-11 122164-001

iAPX286 MACRO ASSEMBLER

LOC OBJ

0153 B9Q40F
0156 BBOIOO
0159 SE7EOC
Dl5C eCDS
015E BEeo
0160 Fe
0161 B02B
0163 F6C201
0166 7402

0168 B020

Ol6A

OlbA AA
0168 80E2FE
016E 9B

016F

016F SA62FO
0172 BAC4
0174 D2E8
0176 22C5
0178 7516

Ol7A BAC4
017e 22C5
017E 7518

01BO 4E
01Bl 79EC

0183 B030
0185 AA
0186 43
0187 EB16

0189

0189 8A62FO
alBC 8AC4
018E D2E8

0190

0190 0430
0192 AA
0193 8AC4
0195 22C5
0197 43

0198

0198 0430
019A AA
01913 43
019C 4E
019D 79EA

019F

019F BB7EOA
OlA2 8910
OlA4 8BC2
OlA6 E980FE

NUMERIC PROGRAMMING EXAMPLES

80287 Floating-Point to IS-Digit ASCII Conversion 10: 12: 38 09/25/83 PAGE

LINE

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
47.
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

SOURCE

enter

enter -

moy
old

cx.Of04h
bx.l
di.string_ptr
ax. ds

mov al, '+'
test dl, MINUS
JZ positive_T'esult

aI, '-'

stosb
and dl. not MINUS
fwait

Register usage'

Remove leading

ah. bcd _byteCsiJ
moy al. ah
,hr at. cl
and al. ch
Jn, enter _odd

moy al. ah
and aL ch
Jn, enter - even

de, "

ah'
0011:

d,
,h
cl:

Set shift count and mask
Set initial size of ASCII field foT' sign
Get address of' start of ASCII string
Copy ds to es

Set auto increment mode
I Clear sign field

Look for negative value

Bump string painter past sign
Turn off sign bit
Wai t foT' fbstp to finish

BCD byte value in use
ASCII character value
Return value
BCD mask '" Ofh
BCD shift count"" 4

bx ASCII string field width
SI BCD field index
di ASCII string -Field painter
ds. es: ASCII string segment base

from the number

Get BCD byte
Copy value
Get high oT'der digit
Set zero flag
Exit loop if leading non zero found

Get BCD byte again
Get low order digit
Exit loop if non zero digit found

Decrement BCD index
Jn, sk ip_Iead ing_z eroes

The significand wa, ."
moY a" '0 ' Set initial
stosb
inc b, Bump string length
Jm, short exit _with_value

Now expand the BCD string into digit pel' byte values 0-9

ah, bcd_byteCsiJ
moy 0011. ah
'he al. cl

odd

add 0011, '0'
stosb
moy a1, ah
and al. ch
inc b,

even:

add a}, '0'
stosb
inc b,
de, ,\
Jn, d 19 1 t_lOIJP

Conversion complete

di,size_ptr
word ptr Cdi], bx
ax, dx

Jmp exitJroc

G.t BCD byte

G.t high oT'der diQlt

Convert to ASCII
Put digit into ASCI I strlng
Get low order digit

Bump field size counteT'

Convert to ASCI I
Put dlglt into ASCII area
Bump field sIze counter
Go to next BCD bljte

Set the string si ze and remainder.

i Set return value

floating_to_ascii endp
code ends

end

ASSEMBLY COMPLETE, NO WARNINGS. NO ERRORS

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-12 122164-001

i AP X286 MACRO ASSEMBLER

LOC OB.J

0000 aOOQDQOOOOOOFO
3F

0008 00000000000024
40

0010 00000000000059
40

0018 0000000000408F
40

0020 000000000088C 3
40

0028 00000000006AF8
40

0030 ooOOa00080B42E
41

0038 00000000001263
41

0040 00000000840797
41

0048 0000000065CDCD
41

0050 000000205FA002
42

0058 OOOOOOE8764837
42

0060 OOOOOOA2941 A60
42

0068 OOOQ40E59C30A2
42

0070 OOOQ901EC4BCD6
42

0078 a0003426F56BOC
43

0080 aOBOE03779C341
43

0088 aOAOD885573476
43

0090 OOCB4E676DCIAB
43

0098

0098 301200
0098 770F

0090 53
009E 8808
eOAD CIE3D3
aDA3 2EDDB70000
OOAa 58
OQA9 D9F4
DOAD C3

DOAC

OOAC D9E9
aOAE C 8040000
0032 8946FE
OOB5 DE4EFE
0088 9BD97EFC
DOBe BB46FC
DOBF 25FFF3
OOC2 OD0004
OOCS 8746FC

DOCS D9EB
aOCA D9EO
Doce D9Cl
DOCE D96EFC

NUMERIC PROGRAMMING EXAMPLES

Calculate the value of 10**ax 12: 11: 08 09J;!5/83 PAGE

LINE SOURCE

1 +1 $title("Calculate the value of 10**ax")
2
3 This subroutine liJill calculate the value of 10**ax.
4 For values of 0 <= ax -(19, the result liJill exact
5 All 80286 registers are transparent and the value is r-etur-ned on
6 the TOS as tliJO number-s, exponent in ST(1) and fraction in ST(O)
7 The exponent value can be larger than the largest exponent of an
8 extended real format number-. Three stack entril!'s are used.
9

10 get_power-_10
11
12 public get_poliJer-_l0. power-_table
13
14
15
16
17
18

" 20
21

22

23

24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
3.
40
41
42
43
44
45
46
47
48
4.
50
51
52
53
54
55
56
57
58
59
60
61

stack stackseg 8

code segment £or public

Use exact values fr-om 1. 0 to le18.

; Optimize 16 bit accesa
power _table

even
d. 1.0, let. 1e2, 1£'3

d. le4, le5, le6, 1£07

d. le8. le9. 1el0, le11

d. 1e12, 1£013, 1e14, le15

d. le16, 1017, lel8

cmp ax,18
Ja out_of _range

push b x
mov bx. ax
shl bx,3
fld power _table[bxl
pop bx
fxtract
rot

Test for 0 <= ax < 19

Get working index r-egister
For-m table index

Get exact value
Restore register value
Separate power- and fraction
OJ.(, to leave fxtr-act running

Calculate the value using the exponentiate instr-uction.
The folloliJing relations al'e used:

10**x "" 2**(10g2(10)*x)
2**(I+F) "" 2**1 * 2**F
if st(l) :: I and st(O) = 2**F then fscale pl'oduces 2**(l+F)

fld12t
entel' 4.0
mov Cbp-2], ax
fimul liJord ptr Cbp-2J
fstcw word ptr [bp-41
mov ax, liJord ptr [bp-4J
and ax, not OCOOH
or ax.0400H
xchg ax, liJord ptr [bp-41

fldl
fchs
fld st(l)
fldcw word ptr (bp-4]

TOS == LOG2(10)
Format stac k
Save pOliJel' of 10 value
TOS. X = LOG2(10)*P :: LOG2(10**P)
Get current control word
Get control 1iJ0l'd. no liJait nec£Ossar",
Mask off current rounding field
Set round to negative infinitlJ
Put neliJ control word in memory
old control word is in ax
Set TOS "" -1. 0

Copy pOliJer value in base two
Set new control word value

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

4-13 122164-001

NUMERIC PROGRAMMING EXAMPLES

iAPX286 MACRO ASSEMBLER Calculate the value of 10**ax 12: 11; 08 09/25/83 PAGE

Lac aB" LINE SOURCE

QODl D9FC 62 frndint
0003 8946FC 63 .'v word ,tr [bp-4], ax

TOS = I: -inf < I (= X, I is an integer
Restore original rounding control

00D6 D96EFC 6. f!ldcw
0009 D9CA 65 fKch
OODa DBE2 66 fsub
OODD 8B46FE 67 .'v
OOEO D9FD 68 f~cale

OOE2 D9FO 6' f2l1'ml
OOE4 C9 70 leave
OOES DEEl 71 f~ubr
OOE7 DCC8 72 fmul

OOE9 C3 73 ret
7.
7. get_poWl!'r _ 10
76
77 code
78

ASSEMBL Y COMPLETE. NO WARNINGS, NO ERRORS

word ph
st(2)
st.st(2)
all'. [bp-2J

st.st(O)

endp

ends
end

tbp-4J
TOS"" X. STel) = -1.0. ST(2) "" I
TOS, F = X-I: 0 (= TOS < L 0
Restore pOlder of ten
TOS = F/2: 0 <= TOS < 0.5
TOS .:= 2*.(F/2) - 1. 0
Restore stat k

J Form 2**(F/2)
Form 2**F
OK to leave fmu 1 l'unn i ng

iAPX'286 MACRO ASSEMBLER Determine TOS register t:ontents 12: 12: 13 09/25/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER X1QB ASSEMBLY OF MODULE TOS STATUS
OBJECT MODULE PLACED IN : F3: TOSST. OB') -
ASSEMBLER INVOKED BY: A8M286.86: F3: TOSST. AP2

LOC aBJ

0000

0000 D9E5
0002 9BDFEO
0005 8AC4
0007 250740
OOOA COEC03
0000 OAC4
OOOF B400
0011 C3

LINE SOURCE

1 +1 $title("Determine TOS register contents")
2
3

•
5
6
7
8

• 10
11
12
13
I.
15
16
17
18
I.
20
21
22
23
2.
25
26
27
28
2'
30

stack

code

code

This subroutine will return a value from 0-15 in AX corresponding
to the contents 01' 80287 TOS. All registers are transparent and no
errors srE! possible The T'eturn value corresponds to c3. ,2. c1. cO
of! FXAM instruction.

public

fll'am
fstsw .,v
and
,hr

.,v
ret

stackseg 6

segment er public

proc

.,
011. ah
ax.4007h
ah.3
011. ah
ah.O

endp

ends
end

Allocate space on the stack

Get register contents status
Get status
Put bit 10-8 into bits 2-0
Mask out bits c3, c2, cl. cO
Put bit c3 into bit 11
Put c3 into bit 3
Clear return value

ASSEMBLY COMPLETE. NO WARNINGS, NO ERRORS

Figure 4-6. Floating-Point to ASCII Conversion Routine (Cont'd.)

Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion is done in the
module FLOATlNG_TO_ASCII. The other modules are provided separately, because they have a
more general use. One of them, GET_POWER_IO, is also used by the ASCII to floating-point conver
sion routine. The other small module, TOS_ST A TUS, will identify what, if anything, is in the top of
the numeric register stack.

4-14 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric value will be
accepted. The only exceptions possible would occur if insufficient space exists on the numeric register
stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and status
(unnormal, denormal, zero, sign). The string size is tested for a minimum and maximum value. If the
top of the register stack is empty, or the string size is too small, the function will return with an error
code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

Special Instructions

The functions demonstrate the operation of several numeric instructions, different data types, and
precision control. Shown are instructions for automatic conversion to BCD, calculating the value of 10
raised to an integer value, establishing and maintaining concurrency, data synchronization, and use of
directed rounding on the NPX.

Without the extended precision data type and built-in exponential function, the double precision accuracy
of this function could not be attained with the size and speed of the shown example.

The function relies on the numeric BCD data type for conversion from binary floating-point to decimal.
It is not difficult to unpack the BCD digits into separate ASCII decimal digits. The major work involves
scaling the floating-point value to the comparatively limited range of BCD values. To print a 9-digit
result requires accurately scaling the given value to an integer between 108 and 109 • For example, the
number +0.123456789 requires a scaling factor of 109 to produce the value +123456789.0, which
can be stored in 9 BCD digits. The scale factor must be an exact power of 10 to avoid to changing any
of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field size given.
Integer values that fit in the given string size will not be scaled, but directly stored into the BCD form.
Noninteger values exactly representable in decimal within the string size limits will also be exactly
converted. For example, 0.125 is exactly representable in binary or decimal. To convert this floating
point value to decimal, the scaling factor will be 1000, resulting in 125. When scaling a value, the
function must keep track of where the decimal point lies in the final decimal value.

Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identifying the magni
tude of the number, scaling it for the BCD data type, and converting the BCD data type to a decimal
ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is repre
sented by I*10x , where 1.0 <= I < 10.0. Scaling the number requires multiplying it by a scaling
factor lOS, so that the result is an integer requiring no more decimal digits than provided for in the
ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form easy to
convert to decimal ASCII by host software.

4-15 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

Implementing each of these three steps requires attention to detail. To begin with, not all floating-point
values have a numeric meaning. Values such as infinity, indefinite, or Not a Number (NaN) may be
encountered by the conversion routine. The conversion routine should recognize these values and identify
them uniquely.

Special cases of numeric values also exist. Denormals, unnormals, and pseudo zero all have a numeric
value but should be recognized, because all of them indicate that precision was lost during some earlier
calculations. .

Once it has been determined that the number has a numeric value, and it is normalized setting appro
priate unnormal flags, the value must be scaled to the BCD range.

Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the magnitude to
an accuracy of I unit, or within a factor of 10 of the given value. After scaling the number, a check
will be made to see if the result falls in the range expected. If not, the result can be adjusted one
decimal order of magnitude up or down. The adjustment test after the scaling is necessary due to
inevitable inaccuracies in the scaling value.

Because the magnitude estimate need only be close, a fast technique is used. The magnitude is estimated
by multiplying the power of 2, the unbiased floating-point exponent, associated with the number by
loglO2. Rounding the result to an integer will produce an estimate of sufficient accuracy. Ignoring the
fraction value can introduce a maximum error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be calculated.
Calculating the scaling factor is the most inaccurate operation of the conversion process. The relation
IOx=2**(X*log,lO) is used for this function. The exponentiate instruction (F2XMI) will be used.

Due to restrictions on the range of values allowed by the F2XMl instruction, the power of 2 value will
be split into integer and fraction components. The relation 2**(1 + F) = 2**1 * 2**F allows using
the FSCALE instruction to recombine the 2**F value, calculated through F2XMl, and the 2**1 part.

INACCURACY IN SCALING

The inaccuracy of these operations arises because of the trailing zeros placed into the fraction value
when stripping off the integer valued bits. For each integer valued bit in the power of 2 value separated
from the fraction bits, one bit of precision is lost in the fraction field due to the zero fill occurring in
the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating point exponent value is
2'4-1.

AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and overflow in
calculating the scaling values. For example, to scale 10-4932 to 10' requires a scaling factor of 10495°,
which cannot be represented by the NPX.

By separating the exponent and fraction, the scaling operation involves adding the exponents separate
from multiplying the fractions. The exponent arithmetic will involve small integers, all easily repre
sented by the NPX.

4-16 122164-001

NUMERIC PROGRAMMING EXAMPLES

FINAL ADJUSTMENTS

It is possible that the power function (GeLPoweclO) could produce a scaling value such that it forms
a scaled result larger than the ASCII field could allow. For example, scaling 9.9999999999999999 X
104900 by 1.00000000000000010 X lQ-m3 would produce 1.00000000000000009 X 10 1'. The scale
factor is within the accuracy of the NPX and the result is within the conversion accuracy, but it cannot
be represented in BCD format. This is why there is a post-scaling test on the magnitude of the result.
The result can be multiplied or divided by 10, depending on whether the result was too small or too
large, respectively.

Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated by a binary
integer called the power value. If the power value is zero, then the decimal point is assumed to be at
the right of the rightmost digit. Power values greater than zero indicate how many trailing zeros are
not shown. For each unit below zero, move the decimal point to the left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal point lies.
The BCD string is then unpacked into ASCII decimal characters. The ASCII sign is set corresponding
to the sign of the original value.

TRIGONOMETRIC CALCULATION EXAMPLES

The 80287 instruction set does not provide a complete set of trigonometric functions that can be used
directly in calculations. Rather, the basic building blocks for implementing trigonometric functions are
provided by the FPT AN and FPREM instructions. The example in figure 4-7 shows how three trigon
ometric functions (sine, cosine, and tangent) can be implementing using the 80287. All three functions
accept a valid angle argument between - 262 and + 262. These functions may be called from
PL/M-286, Pascal-286, FORTRAN-286, or ASM286 routines.

These trigonometric functions use the partial tangent instruction together with trigonometric identities
to calculate the result. They are accurate to within 16 units of the low 4 bits of an extended precision
value. The functions are coded for speed and small size, with tradeoffs available for greater accuracy.

FPT AN and FPREM

These trigonometric functions use the FPT AN instruction of the NPX. FPT AN requires that the angle
argument be between 0 and 7r /4 radians, 0 to 45 degrees. The FPREM instruction is used to reduce
the argument down to this range. The low three quotient bits set by FPREM identify which octant the
original angle was in.

One FPREM instruction iteration can reduce angles of 10 18 radians or less in magnitude to 7r / 4! Larger
values can be reduced, but the meaning of the result is questionable, because any errors in the least
significant bits of that value represent changes of 45 degrees or more in the reduced angle.

4-17 122164-001

inter NUMERIC PROGRAMMING EXAMPLES

Cosine Uses Sine Code

To save code space, the cosine function uses most of the sine function code. The relation sin (I A I +
7f' /2) = cos (A) is used to convert the cosine argument into a sine argument. Adding 7f' /2 to the angle
is performed by adding 0102 to the FPREM quotient bits identifying the argument's octant.

It would be very inaccurate to add 7f' /2 to the cosine argument if it was very much different from
7f'/2.

Depending on which octant the argument falls in, a different relation will be used in the sine and
tangent functions. The program listings show which relations are used.

For the tangent function, the ratio produced by FPTAN will be directly evaluated. The sine function
will use either a sine or cosine relation depending on which octant the angle fell into. On exit, these
functions will normally leave a divide instruction in progress to maintain concurrency.

If the input angles are of a restricted range, such as from 0 to 45 degrees, then considerable optimiza
tion is possible since full angle reduction and octant identification is not necessary.

All three functions begin by looking at the value given to them. Not a Number (NaN), infinity, or
empty registers must be specially treated. Unnormals need to be converted to normal values before the
FPTAN instruction will work correctly. Denormals will be converted to very small unnormals that do
work correctly for the FPTAN instruction. The sign of the angle is saved to control the sign of the
result.

Within the functions, close attention was paid to maintain concurrent execution of the 80287 and host.
The concurrent execution will effectively hide the execution time of the decision logic used in the
program.

iAPX286 MACRO ASSEMBLER 80287 TrignometT'ic Functions 10: 13: 51 09/25/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER Xl08 ASSEMBLV OF MODULE TRIG_FUNCTIONS
OBJECT MODULE PLACED IN : F3: TRIG. DB")
ASSEMBLER INVO~ED BY: ASM286.86: F3: TRIG. AP2

LOC DB,) LINE

1 +1
2
3

• 5
6
7

SOURCE

$title("B0287 Trignometric Functions")

name tri9_-Functions
public sine. cosine. tangent

stack stackseg j Reser e local space

B sw_287 record res1: 1. cond3: 1. top: 3, cond2: 1. tend1: 1. condO: 1.

0000 35C26821A2DAOF
C9FE3F

OOOA OOOOCOFF

9
10
11
12
13
I.
15 ,.
17
18 +1

&I 1'e52: 8

code segment aT' public

indefinite
$eJect

Define local constants.

even
dt 3FFEC90FDAA2216SC235R

d d OFFCOOOOOR

PI/4

Indefinite special value

Figure 4-7. Calculating Trigonometric Functions

4-18 122164-001

iAPX286 MACRO ASSEMBLER

LOC OBJ

CODE

DODE 0009
0010 7501

0012 C3

0013

0013 E80901
0016 E82F

0018

0018 09E5
001A 9BDFEO
0010 2EOB2EOOOO
0022 13101
0024 9E
0025 7263

0027 D9C9
0029 7A1C

0028 DDD9
002D 75E4

NUMERIC PROGRAMMING EXAMPLES

80287 T1' i gnometr i c Func t ions 10; 13: 51 09125/83 PAGE

LINE

19
20
21
22
23
24
25
26
27
28
2.
30
31
32
33
34
35
36
37
38
3.
40
41
42
43
44
45 +1
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
6.
70
71

SOURCE

72 +1 $I!Ject

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

This subroutine calculates the sine or cosine of the angle. given in
radians. The angle is in ST(O), the returned value will be in 5T(0)'
The result is accurate to within 7 units of the least significant three
bits of the NPX extended real format, The PLM/86 definition is

sine: procedure (angled real external;
d£'clare angle real!
end sine;

procedure (angle) real external;
declare angle ,. •• 1;

end cosine;

Three staclc registers are rl'quired. The result of the function is
defined follows foT' the following arguments:

angle result

valid unnormal less than 2**62 in magnitude correct value
D or 1 zero

denormal
val id or unnormal
inf i ni t\j

greater than 2**62
correct denormal
indefinite
indef'inite

NAN NAN
empty empty

This function is based on the NPX f'ptan instruction. The f'ptan
instruction will only work with an angle of' f'rom 0 to PI/4. With this
instruction. the sine or cosine of' angles f'rom 0 to PI/4 can be accuratell:!
calculated. The technillue used by this routine can calculate a general
Slne or COSlne b\j using one 0-1' four possible operations:

Let R = iangle mod PI/4:
S = -lor 1. according to the sign of the angle

1) sin (R) 2) cos(R) 3) sin(PI/4-R) 4) cos(PI/4-R)

The choice of' the relation and the sign of' the result follow~ the
decision table shown below based on the octant the angle falls in:

oc tant cosine

S*l
S*.
5*2 -1*1
S*3 -1*4

-6*1 -1*2
-8*4 -1*3
-5*2 1
-6*3 4

Angle to sine f'unction is a zero or unnormal.

fstp st(l)
Jnz enter _sine_normal ize

Angle

r.t

Angle unnormal.

call normalize_value
Jmp short enter_sine

proc

fxam
f'stsw ax
fld pi_quarter
mov c1. 1
sahf
JC funn\j_parameter

Angle " unnorrnal. normal.

f'xch

". enter - sine

Angle " an unnormal

fstp st (1)

In, enter _sine_normal i ze

Angle i. a lero cos (0) = 10

Remove PI/4
Jump if angle is unnormal

Entr\j point to cosine

Look at the value
Store status value
Setup for ang Ie reduce
Signal cosine f'unction
ZF "" C3, PF = C2, CF = CO
,Jump if' parameter is
empt\j. NAN. or infinit\j

denormal.

; st(O) = angle. st(1) =: PI/4
; ,Jump if normal or denormal

; Remove PI/4

Figure 4·7. Calculating TrigonometriC Functions (Cont'd.)

4-19 122164-001

iAPX286 MACRO ASSEMBLER

LOC DB,,)

002F ODDS
0031 D9E8
0033 C3

0034

0034 D9E5
0036 9BDFEO
0039 2EDB2EOOOO
D03E 9E
D03F 7249

0041 D9C9
0043 BI00
0045 7BC7

0047
0047 D9FB

0049 93
004A 9BDFEO

0040 93
004E F6C704
0051 7544

0053 D9El

0055 DAe9
0057 740F

0059 80E4FD
DOSe BoeFBD

D05F 80C740
0062 BODO
0064 DODO
0066 32FB

0068

0068 F6C702
006B 7404

0060 DEE9
006F EBDE

0071

0071 D9E4
0073 91
0074 9BDFEO
0077 91
0078 DDD9
007A F6C540
0070 7514

NUMERIC PROGRAMMING EXAMPLES

80287 Trignometric Functions 10: 13: 51 09/25/83 PAGE

LINE

113

"' 115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
13'
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
IS'
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
17.
175
176
177
178
17'
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
20'
203
204
205
206

SOURCE

fstp
fldl
rot

I Remove 0
Return 1

All work is done as a sine function. By adding PI/2 to the angle
iii co&ine is converted to a sine. Of' course the angle addition is not
done to the argument but r~ther to the program logic control values.

fxam
fstsw a.
fld pi_ttuarter
sahf

Angle is unnormal. normal,

Ixeh
cl. 0

Entry point for sine function

Look at the parameter
Look at f)ljjlm status
Get PI/4 value

J CF = CO. PF = C2. ZF = C3
-.Jump if empty. NAN. or infinity

denormal.

, 5T(U = Pl/04, st(O) angle
J Signal sine
J -.Jump if zero or unnormal

ST{O) is either II normal 01' denormal value. Both will work.
Use the fprem instruction to accurately reduce the range of the given
angle to within ° and PI/4 in magnitude. If fprem cannot reduce the
angle in one shot, the angle is too big to be meaningful, > 2**62
radians. Any roundoff errol' in the calculation of the angle given
could completely change the result of this function. It is safest to
call this very rare case an error.

enter_sine:
fprem Reduce angle

xchg ax, b x
fstsw ax

xchg ax. bx
test bh, high(mask cond2)
Jnz angle_too_big

Note that fprem will force a
denormal to a very small unnormal
Fptan of III very small unnormal
will be the same very small
unnormal, which is correct.
Save old status in BX
Check if reduction was complete
Quotient in CO, C3, Cl
Put new status in bx
sin(2*N*PI+x) '" sin(x)

Set sign flags and test for which eighth of the revolution the
angle fell into.

Assert: -PI/4 (st(O) (PI/4

fab 5

or
J'

c 1. c I
sine_select

Force the argument positive
condl bit in bx holds the sign
Test for sine or cosine fUnction
-.Jump if sine function

This is a cosine function. Ignore the original sign of the angle
and add a quarter revolution to the octant id from the fprem instruction.
coslA) = sin(A+PI/2) and cos(iAi) "" cos (A)

and

add
mov
rd

alhnot high(mask ccndl)
bh, BOH

bh,high(mask eond3)

al, °
aL 1
bh, a 1

Turn off sign of argument
Prepare to add 010 to CO, C3, Cl
status value in ax
Set busy bit sO carry out from
C3 will go into the carry flag
Extract carry flag
Put carry flag in low bit
Add carry to CO not changing
Cl flag

See if the argument should be l'eversed, depending
which the argument fell during fprem.

the octant in

_select:

test bh, high(mask condl>

Angle was in octants 1.3,5,7.

fsub
Jm,

Angle Ulas in octants 0,2,4,6.

; Reverse angle if Cl '" 1

Invert sense of rotation
o < arg <= PI/4

Test for a zero argument since Tptan will not work if st(O) "" 0

o_s i ne_rever 5e:

ftst Test for lero angle
xehg ax, cx
Tf>tsw ax cond3'" 1 if st<O) "" 0
xchg
fstp st(l) Remove PII4
test ch, high(mask cond3) j If C3"'1, argument is zero
Jnz sine_argument_tero

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-20 122164-001

iAPX286 MACRO ASSEMBLER

LOC QBJ

007F

007F D9F2

0081

0081 F6C742
0084 70lA

0086 09Cl
008S E81A

OOSA

OOSA ODDS
Dose 7404

008E 7B02

0090 09F8

0092 C3

0093

0093 09E8
0095 EBEA

0097

0097 CED9
0099 2ED9060AQQ
009E 98
009F C3

DOAa

DOAD D9CO
OOA2 D9CA

OOA4

OOM ccce
OOA6 D9C9
OOAa ccce
OOAA DEC 1
OOAC D9FA

OOAE 80E701
OOBI 80E402
0084 DAFe
OOB6 7A02

00B8 D9EO

DOD A

OOSA DEF9
DODC C3

NUMERIC PROGRAMMING EXAMPLES

80287 Trignometric Functions 10: 13: 51 09/25/83 PAGE

LINE

207
208
20.
210
211
212
213
214
215
216
217
218
21'
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
24'
250
251
252
253
254
255
256
257
258
25.
260
261
262
263
264
265
266
267
268
26'
270
271
272
273
274
27S
276
277
278
27.
280
281
282
283
284
285
286
287
288
289
2.0
291
2'2
293
294
2'5
296 +1

2'7
2.8

2.'
300

SOURCE

Assert: 0 .: st(O) <:= PI/4

fptan ; TAN 5nO) = ST<1>/ST(O) ".. V/X

test bh,highCmask cond3'" mask tendi); Look at octant angle fell into
Jpo X_numerator Calculate cosine for octants

1,2,5,6

Calculate the sine of the argument
sin(Al "" tan(Al/sllrt(1+tan(A)**2)
sin(Al '" Y/sqrt(X*X + Y*Y)

'1 d
Jmp

st (1)
short finish_sine

if tan (A) "" Y/X then

; Copy Y value
, Put Y value in numerator

The top of the stack is either NAN, infinity, or empty

funnYJarameter:

fstp st (0) Remove PI/4
J z return_empty Return empty if no parm

JPo return_NAN .Jump if st(O) is NAN

st(O) is infinity. Return an indefinite value

fprem ; STll1 can be anything

return_NAN:
return_emp ty:

ret ; Ok to leave fprem running

Simulate fptan with st(Q) '" Q

5 i ne_argument_z ero

fl d 1 ; Simulate tan (0)

Jmp after _sine_fptan ; Return the zero value

The angle was too laT'ge Remove the modulus and dividend from the
stack and T'eturn an indefinite result.

fcompp
fld indefinite
fwait
ret

Calculate the cosine of the argument

Pop two values from the stOIC k
RetuT'n indefinite
Wait for load to finish

costA) = I/sqT't(1+tan(A)**2) if tan(A) = Y/X then
cos (A) '" X/sqT't(X*X -+- y*y)

X _numeT'atoT':

firdsh -

fld st(O) Copy X value
fxch st(2) Put X in numeT'atoT'

sine·

fmul st, st(O)
fu:h
fmul st. st (0)

fadd stlQ) = X*X -+- Y*Y
fsqrt st(Ol "" sqrt(X*X + Y*Y)

Form the sign of the result. The two conditions aT'e the Ci flag from
FXAM in bh and the CO flag from fprem in ah

Jpe

fc hs

bh,high(mask condO)
ah, high(mask cond1)
bh, ah
positive_sine

Look at the fp"l'em CO flag
Look at the fxam Cl flag
Evan numbl!T' of flags cancel
Two negatives make a positive

Force T'esult negative

pOSItive_sine

cosine
$eJect

fdiv

ret

endp

Form final result

Ok to leave fdiv running

This function will calculate the tangent of an angle
Ttl-e angle, in radians is passed in ST(O), the tangent is retuT'ned
in 5T(0). The tangent is calculated to an accuracy of 4 units in the.

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-21 122164-001

inter

iAPX286 MACRO ASSEMBLER

LOC DB,)

ooeD

OOBO D9E5
DoaF 9BDFEO
OOC2 2EDB2f;:OOOO
DOC? 9E
DOCS 72CO

aOCA D9C9
Doce 7Ai7

DOCE

DOCE D9FB

0000 93
0001 90DFEO

0004 93
0005 F6C?04
0008 7580

DODA 09E1

DODe F6C702
DOOF 740E

OOEl DEE9
00E3 EB 18

00E5

00E5 DOD9
OOE7 7405

NUMERIC PROGRAMMING EXAMPLES

80287 Trignometric Functions 10: 13: 51 09/25/83 PAGE

LINE

301
302
303
304
305
30.
307
308
30'
310
311
312
313
314
31S
31.
317
318
31.
320
321
322
323
324
325
32.
327
328
32.
330
331
332
333
334
335
33.
337
338
33.
340
341
342
343
344
345
34.
347
348
34.
350
351
352
353
354
355
35.
357
358
35.
3.0
3.,
3.2
3.3
3.4
3.5
3 ••
3.7
3.8
3.'
370
371
372
373
374
375
37.
377
37B
37.
380
381
382
383
38.
3B5
386
387
3B8
38.
3'0
3"
3.2
3'3
3"
3'5

SOURCE

least three significant bits of an extended real format number. The
PLM/B6 calling format is:

tangent: procl!odure (angle) T'eal external;
declare angle reali
end tangent;

Two stack registers are used. The result of the tangent function is
defined faT' the following cases:

angle result

valid 01' unnormal < 2**62 in magnitudll'
o
dlPnormal
valid Dr unnormal)- 2**62 in magnitude
NAN
infinity
empty

correct value
o
cor'l'ect denormal
ind&finite
NAN
indefinite
IPmptli

The tangent inlitruction
relations are used:

the fptan instruction. Four possible

LlPt R "" langle MOD PI/41
S "" -1 or 1 depending the sign of the angle

1) tan(R) 2) tan(PI/4-R> 3> l/tan(R) 4) l/tan(PI/4-R)

The following table is used to decide which relation to use dlPpending
on in IIIhich octant the angle fell.

octant relation

0 S*1
1 S*4
2 -9*3
3 -9*2
4 S*1
S S*4

• -9*3
7 -9*2

tanglPnt proc

fxam
fstsw
fl'
sahf
J'

AngllP

fxch
J"

.,
pl_lluarter

funnYJarameter

;. unnormal, normaL

tan _zero_ unnormal

Look at the parameter
Get flam status
Get PII4
CF :;; CO, PF "" C2, ZF:;; C3

denormal.

; st(O) "" angle, sHl) "" PI/4

Angle is either an normal or denormal.
RE'duce the angle to tile range -PII4 -(result -(PI/4.
If fprem cannot perform this operation in one try, the magnitude of the
angle must be > 2**62. Such an angle is so large that any rounding
errors could make a very large differencE' in the reduced angle.
It is safest to call this very rare case an E'r1'or.

fprem

xchg ax, bx
fstsw ax

xchg ax, bx
test bh, high(mask cond2)
Jnz angle_too_big

SeE' if thE' angle must be reversE'd.

Assert: -PI/4 -(st(O) -(PIl4

Quotient in CO, C3, Cl
Convert d&normals into unnormals

Quotient identifies octant
original angle fell into

Test for complete reduction
Exit if! angle was too big

fabs a <= st<O) -(PII4

test
J'

bil, high (mask tond1)
no_tan_reversE'

C3 in bx has the sign flag
must be revE'rsed

Angle fell in octants 1.3,5,7. Reverse it, subtract it from PI/4.

fsub

J.'
Angle is either zero or an unnormal.

fstp st(1)

Angle i9 an unnormal

RevE'rse ang IE'

; Remove PI/4

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-22 122164-001

i AP X286 MACRO ASSEMBLER

LOC OBJ

OOE9 E83300
QOEe EBEO

QGEE

QGEE C3

OOEF

COEF 09E4
OOFt 91
OOF2 9BDFEO
OOFS 91
OOFb 0009
OOFS F6C:540
OOFB 7515

COFO

OOFO D9F2

DOFF

COFF BAC?
0101 254002

0104 F6C742

0107 7BOD

0109 OAC4
010B 7A02

0100 09EO

OlOF

OIOF DEF9
0111 C3

0112

0112 09E8
0114 EBE'?

0116

0116 OAC4
0118 7A02

GIlA 09EO

QllC

Olie DEF1
011E C3

a11F

011F 09E1
0121 D9F4
0123 09E8
0125 Dec 1
0127 DEE9
0129 D9FD
0128 0009
0120 2E082EOOOO
0132 09C9
0134 C3

NUMERIC PROGRAMMING EXAMPLES

90287 Trignometrit Functions 10: 13: 51 09/25/83 PAGE

LINE

396
397
398
399
400
401
402
403
404
405
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

SOURCE

call
Jmp

normalize_value
t<iln_norma 1

Angle fell 1n octants 0,2,4,6 Test for st(Q) '" 0, fptan won't work

tan reverse

f'tst
xc hg
fstsw
xchg
fstp
test
In,

fp tan

ax, ex
st (1)

ch,high(mask cond3)
tan_zero

Test for zero ang Ie

C3 '" 1 if st(O) '" 0

Remove PI/4

i tan 5T(0) '" 9T(1)/5T(0)

after _tangent:

Decide on the order of the operands and their sign for the divide
operation while the fptan instruction is working

mov aI, bh Get a copy of fprem C3 flag
and ax, mask cond! + high(mask cond3); Examine fprem C3 flag and

FXAM Cl flag
test bh,high(mask condl + mask cond3); Use reverse divide if

octants 1,2,5,6
Jpo reverse_divide Note~ parity works low

8 bits only!

Angle was in octants 0.3.4,7
Test for the sign of the result Two negatives cancel.

al. ah
Jpe positive_divide

fchs ; Force result negative

p os i t i ve _d i v ide·

fd iv
ret

TId!
Jmp after _tangent

Angle was in octants 1. 2, 5, 6
Set the correct sign of the result

al, ah
Jpe positive_r _divide

Form result
Ok to leave fd iv running

; Force 1/0 = tan(PI/2)

fchs ; Force result negative

fd ivr
ret

Form reciprol:al of result
Ok to leave fdiv running

tangent endp

This function will normalize the value in st(O)
Then PI/4 is placed into st(1)

nor-malize_value

fab s
fxtract
TId 1

fadd
·hub
fscal e
fstp
fld
fxch
ret

cod e ends
end

st(1),st

st (1)

pi_quarter

Force value positive
o <:= stCO) <: 1
Get normalize bit
Normalize fraction
Restore original value
Form original normalized
Remove scale factor
Get PI/4

value

ASSEMBLY COMPLETE, NO WflIRNINGS, NO ERRORS

Figure 4-7. Calculating Trigonometric Functions (Cont'd.)

4-23 122164-001

Append~ A
Machine Instruction
Encoding And Decoding

APPENDIX A
MACHINE INSTRUCTION ENCODING AND DECODING

Machine instructions for the 80287 come in one of five different forms as shown in table A-I. In all
cases, the instructions are at least two bytes long and begin with the bit pattern 1101 1B, which identi
fies the ESCAPE class of instructions. Instructions that reference memory operands are encoded much
like similar CPU instructions, because all of the CPU memory-addressing modes may be used with
ESCAPE instructions.

Note that several of the processor control instructions (see table 2-11 in Chapter Two) may be preceded
by an assembler-generated CPU WAIT instruction (encoding: 10011011B) if they are programmed
using the WAIT form of their mnemonics. The ASM286 assembler inserts a WAIT instruction only
before these specific processor control instructions-all of the numeric instructions are automatically
synchronized by the 80286 CPU and an explicit WAIT instruction, though allowed, is not necessary.

Table A-1. 80287 Instruction Encoding

Lower-Addressed Byte Higher-Addressed Byte 0, 1, or 2 bytes

(1) 1 1 0 1 1 OP-A 1 MOD 1 OP-B R/M DISPLACEMENT

(2) 1 1 0 1 1 FORMAT OP-AMOD OP-B R/M DISPLACEMENT

(3) 1 1 0 1 1 R P OP-A 1 1 OP-B REG

(4) 1 1 0 1 1 0 0 1 1 1 1 OP

(5) 1 1 0 1 1 0 1 1 1 1 1 OP

7 6 5 4 3 2 o 7 6 5 4 3 2 o

NOTES:

(1)Memory transfers, including applicable processor control instructions; 0, 1, or 2 displacement bytes may
follow.

(2)Memory arithmetic and comparison instructions; 0, 1, or 2 displacement bytes may follow.

(3)Stack arithmetic and comparison instructions.

(4)Constant, transcendental, some arithmetic instructions.

(5)Processor control instructions that do not reference memory.

OP, OP-A, OP-B: Instruction opcode, possibly split into two fields.

MOD: Same as 80286 CPU mode field.

R/M: Same as 80286 CPU register/memory field.

FORMAT: Defines memory operand
00 = short real
01 = short integer
10 = long real
11 = word integer

R: 0 = return result to stack top
1 = return result to other register

P: 0 = do not pop stack
1 = pop stack after operation

A-1 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

REG: register stack element
000 = stack top
001 = next on stack
010 = third stack element, etc.

Table A-2 lists all 80287 machine instructions in binary sequence. This table may be used to "disassem
ble" instructions in unformatted memory dumps or instructions monitored from the data bus. Users
writing exception handlers may also find this information useful to identify the offending instruction.

Table A-2. Machine Instruction Decoding Guide

1st Byte

2nd Byte Bytes 3, 4
ASM286 Instruction

Hex Binary Format

08 1101 1000 MOOOO OR/M (disp-Io),(disp-hi) FAOO short-real
08 1101 1000 MOOOO 1R/M (disp-Io),(disp-hi) FMUL short-real
08 1101 1000 M0001 OR/M (disp-Io),(disp-hi) FCOM short-real
08 1101 1000 M0001 1R/M (disp-Io),(disp-hi) FCOMP short-real
08 1101 1000 M0010 OR/M (disp-Io),(disp-hi) FSUB short-real
08 1101 1000 M0010 1RjM (disp-Io),(disp-hi) FSUBR short-real
08 1101 1000 M0011 OR/M (disp-Io),(disp-hi) FDIV short-real
08 1101 1000 M0011 1R/M (disp-Io),(disp-hi) FOIVR short-real
08 1101 1000 1100 OREG FAOO ST,ST(i)
08 1101 1000 1100 1REG FMUL ST,ST(i)
08 1101 1000 1101 OREG FCOM ST(i)
08 1101 1000 1101 1REG FCOMP ST(i)
08 1101 1000 1110 OREG FSUB ST,ST(i)
08 1101 1000 1110 1REG FSUBR ST,ST(i)
08 1101 1000 1111 OREG FOIV ST,ST(i)
08 1101 1000 1111 1REG FDIVR ST,ST(i)
09 1101 1001 MOOOO OR/M (disp-Io),(disp-hi) FLO short-real
09 1101 1001 MOOOO 1R/M reserved
09 1101 1001 M0001 OR/M (disp-Io),(disp-hi) FST short-real
09 1101 1001 M0001 1R/M (disp-Io),(disp-hi) FSTP short-real
09 1101 1001 M0010 OR/M (disp-Io),(disp-hi) FLDENV 14-bytes
09 1101 1001 M0010 1R/M (disp-Io),(disp-hi) FLOCW 2-bytes
09 1101 1001 M0011 OR/M (disp-Io),(disp-hi) FSTENV 14-bytes
09 1101 1001 M0011 1R/M (disp-Io),(disp-hi) FSTCW 2-bytes
09 1101 1001 1100 OREG FLO ST(i)
09 1101 1001 1100 1REG FXCH ST(i)
09 1101 1001 1101 0000 FNOP
09 1101 1001 1101 0001 reserved
09 1101 1001 1101 001- reserved
09 1101 1001 1101 01-- reserved
09 1101 1001 1101 1REG *(1)
09 1101 1001 1110 0000 FCHS
09 1101 1001 1110 0001 FABS
09 1101 1001 1110 001- reserved
09 1101 1001 1110 0100 FTST
09 1101 1001 1110 0101 FXAM
09 1101 1001 1110 011- reserved
09 1101 1001 1110 1000 FL01
09 1101 1001 1110 1001 FLOL2T
09 1101 1001 1110 1010 FLOL2E
09 1101 1001 1110 1011 FLOPI
09 1101 1001 1110 1100 FLOLG2

A-2 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte

2nd Byte Bytes 3, 4
ASM286 Instruction

Hex Binary Format

D9 1101 1001 1110 1101 FLDLN2
D9 1101 1001 1110 1110 FLDZ
D9 1101 1001 1110 1111 reserved
D9 1101 1001 1111 0000 F2XM1
D9 1101 1001 1111 0001 FYL2X
D9 1101 1001 1111 0010 FPTAN
D9 1101 1001 1111 0011 FPATAN
D9 1101 1001 1111 0100. FXTRACT
D9 1101 1001 1111 0101 reserved
D9 1101 1001 1111 0110 FDECSTP
D9 1101 1001 1111 0111 FINCSTP
D9 1101 1001 1111 1000 FPREM
D9 1101 1001 1111 1001 FYL2XP1
D9 1101 1001 1111 1010 FSQRT
D9 1101 1001 1111 1011 reserved
D9 1101 1001 1111 1100 FRNDINT
D9 1101 1001 1111 1101 FSCALE
D9 1101 1001 1111 111- reserved
DA 1101 1010 MODOO ORjM (disp-Io),(disp-hi) FIADD short-integer
DA 1101 1010 MODOO 1RjM (disp-Io),(disp-hi) FIMUL short-integer
DA 1101 1010 MOD01 ORjM (disp-Io),(disp-hi) FICOM short-integer
DA 1101 1010 MOD01 1RjM (disp-Io),(disp-hi) FICOMP short-integer
DA 1101 1010 MOD10 ORjM (disp-Io),(disp-hi) FISUB short-integer
DA 1101 1010 MOD10 1RjM (disp-Io),(disp-hi) FISUBR short-integer
DA 1101 1010 MOD11 ORjM (disp-Io),(disp-hi) FIDIV short-integer
DA 1101 1010 MOD11 1RjM (disp-Io),(disp-hi) FIDIVR short-integer
DA 1101 1010 11-- ---- reserved
DB 1101 1011 MODOO ORjM (disp-Io),(disp-hi) FILD short-integer
DB 1101 1011 MODOO 1RjM (disp-Io),(disp-hi) reserved
DB 1101 1011 MOD01 ORjM (disp-Io),(disp-hi) FIST short-integer
DB 1101 1011 MOD01 1RjM (disp-Io),(disp-hi) FISTP short-integer
DB 1101 1011 MOD10 ORjM (disp-Io),(disp-hi) reserved
DB 1101 1011 MOD10 1RjM (disp-Io),(disp-hi) FLD temp-real
DB 1101 1011 MOD11 ORjM (disp-Io),(disp-hi) reserved
DB 1101 1011 MOD11 1RjM (disp-Io),(disp-hi) FSTP temp-real
DB 1101 1011 110- ---- reserved
DB 1101 1011 1110 0000 reserved (8087 FEN I)
DB 1101 1011 1110 0001 reserved (8087 FDISI)
DB 1101 1011 1110 0010 FCLEX
DB 1101 1011 1110 0011 FINIT
DB 1101 1011 1110 0100 FSETPM
DB 1101 1011 1110 1--- reserved
DB 1101 1011 1111 ---- reserved
DC 1101 1100 MODOO ORjM (disp-Io),(disp-hi) FADD long-real
DC 1101 1100 MODOO 1RjM (disp-Io),(disp-hi) FMUL long-real
DC 1101 1100 MOD01 ORjM (disp-Io),(disp-hi) FCOM long-real
DC 1101 1100 MOD01 1RjM (disp-Io),(disp-hi) FCOMP long-real
DC 1101 1100 MOD10 ORjM (disp-Io),(disp-hi) FSUB long-real
DC 1101 1100 MOD10 1RjM (disp-Io),(disp-hi) FSUBR long-real
DC 1101 1100 MOD11 ORjM (disp-Io),(disp-hi) FDIV long-real
DC 1101 1100 MOD11 1RjM (disp-Io),(disp-hi) FDIVR long-real
DC 1101 1100 1100 OREG FADD ST(i),ST
DC 1101 1100 1100 1REG FMUL ST(i),ST
DC 1101 1100 1101 OREG *(2)

A-3 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

Table A·2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte

2nd Byte Bytes 3, 4 ASM286 Instruction

Hex Binary Format

DC 1101 1100 1101 lREG *(3)
DC 1101 1100 1110 OREG FSUB ST(i),ST
DC 1101 1100 1110 lREG FSUBR ST(i),ST
DC 1101 1100 1111 OREG FDIV ST(i),ST
DC 1101 1100 1111 1REG FDIVR ST(i),ST
DO 1101 1101 MODOO OR/M (disp-Io),(disp-hi) FLO long-real
DO 1101 1101 MODOO lR/M reserved
DO 1101 1101 MODOl OR/M (disp-Io),(disp-hi) FST long-real
DO 1101 1101 MODOl lR/M (disp-Io),(disp-hi) FSTP long-real
DO 1101 1101 MOD10 OR/M (disp·lo),(disp-hi) FRSTOR 94-bytes
DO 1101 1101 MOD10 lR/M (disp-Io),(disp-hi) reserved
DO 1101 1101 MOD11 OR/M (disp·lo),(disp-hi) FSAVE 94-bytes
DO 1101 1101 MODll lR/M (disp-Io),(disp-hi) FSTSW 2-bytes
DO 1101 1101 1100 OREG FFREE ST(i)
DO 1101 1101 1100 lREG *(4)
DO 1101 1101 1101 OREG FST ST(i)
DO 1101 1101 1101 lREG FSTP ST(i)
DO 1101 1101 111- ---- reserved
DE 1101 1110 MODOO OR/M (disp-Io),(disp-hi) FIADD word-integer
DE 1101 1110 MODOO lR/M (disp-Io),(disp-hi) FIMUL word-integer
DE 1101 1110 MODOl OR/M (disp-Io),(disp-hi) FICOM word-integer
DE 1101 1110 MODOl lR/M (disp-Io),(disp-hi) FICOMP word-integer
DE 1101 1110 MOD10 OR/M (disp-Io),(disp-hi) FISUB word-integer
DE 1101 1110 MOD10 lR/M (disp-Io),(disp-hi) FISUBR word-integer
DE 1101 1110 MODll OR/M (disp-Io),(disp-hi) FIDIV word-integer
DE 1101 1110 MODll lR/M (disp-Io),(disp-hi) FIDIVR word-integer
DE 1101 1110 1100 OREG FADDP ST(i),ST
DE 1101 1110 1100 lREG FMULP ST(i),ST
DE 1101 1110 1101 0--- *(5)
DE 1101 1110 1101 1000 reserved
DE 1101 1110 1101 1001 FCOMPP
DE 1101 1110 1101 101- reserved
DE 1101 1110 1101 11-- reserved
DE 1101 1110 1110 OREG FSUBP ST(i),ST
DE 1101 1110 1110 lREG FSUBRP ST(i),ST
DE 1101 1110 1111 OREG FDIVP ST(i),ST
DE 1101 1110 1111 lREG FDIVRP ST(i),ST
OF 1101 1111 MODOO OR/M (disp-Io),(disp-hi) FILD word-integer
OF 1101 1111 MODOO lR/M (disp-Io),(disp-hi) reserved
OF 1101 1111 MODOl OR/M (disp-Io),(disp-hi) FIST word-integer
OF 1101 1111 MODOl lR/M (disp-Io),(disp-hi) FISTP word-integer
OF 1101 1111 MOD10 OR/M (disp-Io),(disp-hi) FBLD packed-decimal
OF 1101 1111 MOD10 lR/M (disp-Io),(disp-hi) FILD long-integer
OF 1101 1111 MODll OR/M (disp-Io),(disp-hi) FBSTP packed-decimal
OF 1101 1111 MODll lR/M (disp-Io),(disp-hi) FISTP long-integer
OF 1101 1111 1100 OREG *(6)
OF 1101 1111 1100 lREG *(7)
OF 1101 1111 1101 OREG *(8)
OF 1101 1111 1101 lREG *(9)
OF 1101 1111 1110 000 FSTSWAX
OF 1101 1111 1111 XXX reserved

A-4 122164-001

MACHINE INSTRUCTION ENCODING AND DECODING

NOTE:

• The marked encodings are not generated by the language translators. If, however, the 80287 encounters
one of these encodings in the instruction stream, it will execute it as follows:

(1) FSTP ST(i)

(2) FCOM ST(i)

(3) FCOMP ST(i)

(4) FXCH ST(i)

(5) FCOMP ST(i)

(6) FFREE ST(i) and pop stack

(7) FXCH ST(i)

(8) FSTP ST(i)

(9) FSTP ST(i)

A-5 122164-001

Appendix B
Compatibility Between
The 80287 NPX And The 8087

APPENDIX B
COMPATIBILITY BETWEEN

THE 80287 NPX AND THE 8087

The iAPX 286/20 operating in Real-Address mode will execute iAPX 86/20 programs without major
modification. However, because of differences in the handling of numeric exceptions by the 80287
NPX and the 8087 NPX, exception-handling routines may need to be changed.

This appendix summarizes the differences between the 80287 NPX and the 8087 NPX, and provides
details showing how iAPX 86/20 programs can be ported to the iAPX 286/20.

1. The NPX signals exceptions through a dedicated ERROR line to the 80286. The NPX error
signal does not pass through an interrupt controller (the 8087 INT signal does). Therefore, any
interrupt-controller-oriented instructions in numeric exception handlers for the iAPX 86/20 should
be deleted.

2. The 8087 instructions FENI/FNENI and FDlSI/FNDlSI perform no useful function in the 80287.
If the 80287 encounters one of these opcodes in its instruction stream, the instruction will effec
tively be ignored-none of the 80287 internal states will be updated. While iAPX 86/20 code
containing these instructions may be executed on the iAPX 286/20, it is unlikely that the excep
tion-handling routines containing these instructions will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric exception handling routine.

4. The ESC instruction address saved in the 80287 includes any leading prefixes before the ESC
opcode. The corresponding address saved in the 8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the 80287's saved instruction and address pointers is
different than for the 8087. The instruction opcode is not saved in Protected mode-exception
handlers will have to retrieve the opcode from memory if needed.

6. Interrupt 7 will occur in the 80286 when executing ESC instructions with either TS (task switched)
or EM (emulation) of the 80286 MSW set (TS = 1 or EM = 1). If TS is set, then aWAIT instruc
tion will also cause interrupt 7. An exception handler should be included in iAPX 286/20 code to
handle these situations.

7. Interrupt 9 will occur if the second or subsequent words of a floating-point operand fall outside a
segment's size. Interrupt 13 will occur if the starting address of a numeric operand falls outside a
segment's size. An exception handler should be included in iAPX 286/20 code to report these
programming errors.

8. Except for the processor control instructions, all of the 80287 numeric instructions are automati
cally synchronized by the 80286 CPU-the 80286 automatically tests the BUSY line from the
80287 to ensure that the 80287 has completed its previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are required to assure this synchronization. For
the 8087 used with iAPX 86 and iAPX 88 processors, explicit WAITs are required before each
numeric instruction to ensure synchronization. Although iAPX 86/20 programs having explicit
WAIT instructions will execute perfectly on the iAPX 286/20 without reassembly, these WAIT
instructions are unnecessary.

9. Since the 80287 does not require WAIT instructions before each numeric instruction, the ASM286
assembler does not automatically generate these WAIT instructions. The ASM86 assembler,
however, automatically precedes every ESC instruction with aWAIT instruction. Although numeric
routines generated using the ASM86 assembler will generally execute correctly on the iAPX 286/
20, reassembly using ASM286 may result in a more compact code image.

The processor control instructions for the 80287 may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these instructions cause ASM286 to precede the ESC
instruction with a CPU WAIT instruction, in the identical manner as does ASM86.

8-1 122164·001

COMPATIBILITY BETWEEN THE 80287 NPX AND THE 8087

10. A recommended way to detect the presence of an 80287 in an iAPX 286 system (or an 8087 in an
iAPX 86 system) is shown below. It assumes that the sytem hardware causes the data bus to be
high if no 80287 is present to drive the data lines during the FSTSW (Store 80287 Status Word)
instruction.

F N D 287: F N I NIT
FSTSTW STAT

MoV AX,STAT
OR A L , A L
JZ GOT 287

No 80287 Present

SMSW A X
OR AX,0004H

LMSW A X

JMP CONTINUE

initialize numeric processor.
store status word into location
STAT.

Zero Flag reflects result of OR.
Zero in AL means 80287 is
present.

set EM bit in Machine Status
Word.
to enable software emulation of
287.

80287 is present in system

GOT 287: SMSW
OR
LMSW

Continue

A X
AX,0002H
A X

set MP bit in Machine Status Word
to permit normal 80287 operation

CONTINUE: j and off we go

An 80286/80287 design must place a pullup resistor on one of the low eight data bus bits of the
80286 to be sure it is read as a high when no 80287 is present.

8-2 122164-001

Appendix C
Implementing The
IEEE P754 Standard

APPENDIX C
IMPLEMENTING THE IEEE P7 54 STANDARD

The iAPX 286/20 computing system, containing the 80287 NPX and standard support library software,
provides an implementation of the IEEE "A Proposed Standard for Binary Floating-Point Arithmetic,"
Draft 10.0, Task P754, of December 2, 1982. The 80287 Support Library, described in 80287 Support
Library Reference Manual, Order Number 122129, is an example of such a support library.

This appendix describes the relationship between the 80287 NPX and the IEEE Standard. Where the
Standard has options, Intel's choices in implementing the 80287 are described. Where portions of the
Standard are implemented through software, this appendix indicates which modules of the 80287
Support Library implement the Standard. Where special software in addition to the Support Library
may be required by your application, this appendix indicates how to write this software.

This appendix contains many terms with precise technical meanings, specified in the 754 Standard.
Where these terms are used, they have been capitalized to emphasize the precision of their meanings.
The Glossary provides the definitions for all capitalized phrases in this appendix.

OPTIONS IMPLEMENTED IN THE 80287

The 80287 SHORT_REAL and LONG_REAL formats conform precisely to the Standard's Single
and Double Floating-Point Numbers, respectively. The 80287 TEMP_REAL format is the same as the
Standard's Double Extended format. The Standard allows a choice of Bias in representing the exponent;
the 80287 uses the Bias 16383 decimal.

For the Double Extended format, the Standard contains an option for the meaning of the minimum
exponent combined with a nonzero significand. The Bias for this special case can be either 16383, as
in all the other cases, or 16382, making the smallest exponent equivalent to the second-smallest exponent.
The 80287 uses the Bias 16382 for this case. This allows the 80287 to distinguish between Denormal
numbers (integer part is zero, fraction is nonzero, Biased exponent is 0) and Unnormal numbers of the
same value (same as the denormal except the Biased Exponent is 1).

The Standard allows flexibility in specifying which NaNs are trapping and which are nontrapping. The
EH287.LIB module of the 80287 Support Library provides a software implementation of nontrapping
NaNs, and defines one distinction between trapping and nontrapping NaNs: If the most significant bit
of the fractional part of a NaN is 1, the NaN is nontrapping. If it is 0, the NaN is trapping.

When a masked Invalid Operation error involves two NaN inputs, the Standard allows flexibility in
choosing which NaN is output. The 80287 selects the NaN whose absolute value is greatest.

AREAS OF THE STANDARD IMPLEMENTED IN SOFTWARE

There are five areas of the Standard that are not implemented directly.in the 80287 hardware; these
areas are instead implemented in software as part of the 80287 Support Library.

1. The Standard requires that a Normalizing Mode be provided, in which any nonnormal operands
to functions are automatically normalized before the function is performed. The NPX provides a
"Denormal operand" exception for this case, allowing the exception handler the opportunity to
perform the normalization specified by the Standard. The Denormal operand exception handler

C-1 122164-001

inter IMPLEMENTING THE IEEE P754 STANDARD

provided by EH287.LIB implements the Standard's Normalizing Mode completely for Single- and
Double-precision arguments. Normalizing mode for Double Extended operands is implemented in
EH287.LIB with one non-Standard feature, discussed in the next section.

2. The Standard specifies that in comparing two operands whose relationship is "unordered," the
equality test yield an answer of FALSE, with no errors or exceptions. The 80287 FCOM and
FTST instructions themselves issue an Invalid Operation exception in this case. The error handler
EH287.LIB filters out this Invalid Operation error using the following convention: Whenever an
FCOM or FTST instruction is followed by a MOV AX,AX instruction (8BCO Hex), and neither
argument is a trapping NaN, the error handler will assume that a Standard equality comparison
was intended, and return the correct answer with the Invalid Operation exception flag erased.
Note that the Invalid Operation exception must be unmasked for this action to occur.

3. The Standard requires that two kinds of NaN's be provided: trapping and nontrapping. Nontrap
ping NaNs will not cause further Invalid Operation errors when they occur as operands to calcu
lations. The NPX hardware directly supports only trapping NaN's; the EH287.LIB software
implements nontrapping NaNs by returning the correct answer with the Invalid Operation excep
tion flag erased. Note that the Invalid Operation exception must be unmasked for this action to
occur.

4. The Standard requires that all functions that convert real numbers to integer formatsautomati
cally normalize the inputs if necessary. The integer conversion functions contained in CEL287.LIB
fully meet the Standard in this respect; the 80287 FIST instruction alone does not perform this
normalization.

5. The Standard specifies the remainder function which is provided by mqerRMD in CEL287.LIB.
The 80287 FPREM instruction returns answers within a different range.

ADDITIONAL SOFTWARE TO MEET THE STANDARD

There are two cases in which additional software is required in conjunction with the 80287 Support
Library in order to meet the standard. The 80287 Support Library does not provide this software in
the interest of saving space and because the vast majority of applications will never encounter these
cases.

I. When the Invalid Operation exception is masked, Nontrapping NaNs are not implemented fully.
Likewise, the Standard's equality test for "unordered" operands is not implemented when the
Invalid Operation exception is masked. Programmers can simulate the Standard notion of a masked
Invalid Operation exception by unmasking the 80287 Invalid Operation exception, and providing
an Invalid Operation exception handler that supports nontrapping NaNs and the equality test, but
otherwise acts just as if the Invalid Operation exception were masked. The 80287 Support Library
Reference Manual contains examples for programming this handler in both ASM286 and
PL/M-286.

2. In Normalizing Mode, Denormal operands in the TEMP_REAL format are converted to 0 by
EH287.LIB, giving sharp Underflow to O. The Standard specifies that the operation be performed
on the real numbers represented by the denormals, giving gradual underflow. To correctly perform
such arithmetic while in Normalizing Mode, programmers would have to normalize the operands
into a format identical to TEMP_REAL except for two extra exponent bits, then perform the
operation on those numbers. ThUg, software must be written to handle the 17 -bit exponent explicitly.

In designing the EH287.LIB, it was felt that it would be a disadvantage to most users to increase the
size of the Normalizing routine by the amount necessary to provide this expanded arithmetic. Because
the TEMP_REAL exponent field is so much larger than the LONG_REAL exponent field, it is
extremely unlikely that TEMP_REAL underflow will be encountered in most applications.

C-2 122164-001

IMPLEMENTING THE IEEE P754 STANDARD

If meeting the Standard is a more important criterion for your application than the choice between
Normalizing and warning modes, then you can select warning mode (Denormal operand exceptions
masked), which fully meets the Standard.

If you do wish to implement the Normalization of denormal operands in TEMP_REAL format using
extra exponent bits, the list below indicates some useful pointers about handling Denormal operand
exceptions:

1. TEMP_REAL numbers are considered Denormal by the NPX whenever the Biased Exponent is
o (minimum exponent). This is true even if the explicit integer bit of the significand is 1. Such
numbers can occur as the result of Underflow.

2. The 80287 FLD instruction can cause a Denormal Operand error if a number is being loaded
from memory. It will not cause this exception if the number is being loaded from elsewhere in the
80287 stack.

3. The 80287 FCOM and FTST instructions will cause a Denormal Operand exception for un normal
operands as well as for denormal operands.

4. In cases where both the Denormal Operand and Invalid Operation exceptions occur, you will want
to know which is signalled first. When a comparison instruction operates between a nonexistent
stack element and a denormal number in 80286 memory, the D and I exceptions are issued simul
taneously In all other situations, a Denormal Operand exception takes precedence over a nonstack
Invalid operation exception, while a stack Invalid Operation exception takes precedence over a
Denormal Operand exception.

C-3 122164-001

Appendix D
80287 80-Bit HMOS
Numeric Processor Extension

80287
80-Bit HMOS

NUMERIC PROCESSOR EXTENSION
80287-3

• High Performance 80-Bit Internal
Architecture

• Implements Proposed IEEE Floating
Point Standard 754

• Expands iAPX 286/10 Datatypes to
Include 32-, 64-, 80-Bit Floating Point,
32-, 64-Bit Integers and 18-Digit BCD
Operands

• Object Code Compatible with 8087

• Built-in Exception Handling

• Operates in Both Real and Protected
Mode iAPX 286 Systems

• Protected Mode Operation Completely
Conforms to the iAPX 286 Memory
Management and Protection
Mechanisms

• Directly Extends iAPX 286/10 Instruction
Set to Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions
for All Datatypes

• 8x80-Bit, Individually Addressable,
Numeric Register Stack

• Available in EXPRESS-Standard
Temperature Range

The Intel® 80287 is a high performance numerics processor extension that extends the iAPX 286/10
architecture with floating point, extended integer and BCD data types. The iAPX 286/20 computing system
(80286 with 80287) fully conforms to the proposed IEEE Floating Point Standard. Using a numerics
oriented architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the
iAPX 286/20 a complete solution for high performance numeric processing. The 80287 is implemented in
N-channel, depletion load, silicon gate technology (HMOS) and packaged in a 40-pin ceramic package.
The iAPX 286/20 is object code compatible with the iAPX 86/20 and iAPX 88/20.

BUS INTERFACE UNIT NUMERIC EXECUTION UNIT

1-----'--------------1
I ['~(lNl ~ T liON I

1 I BU'; BUS 1+----,
I r-:EC----'l
I I
I I

I ,
I :
I f 1-------1
I ~-------1

I
I
I
I
I

. I ~
t;=;:::=:J L _____ 1- ____ ~-_...'Z."~_-_'_. ____ .-3

Figure 1. 80287 Block Diagram

51 READY

CKM

HLDA

CLK286

015 PEACK

014 RESET

013 NP$1

012 NP52

Vee ClK

Vss CMD1

Vss
01. CMoo

N.C. NPWR

DO NPRD
DB ERROR
01 BUSY

DO PEREQ

05 o.
04

03

NOTE:
N.C. PINS MUST NOT BE CONNECTED.

Figure 2. 80287 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. OCTOBER 1983

© INTEL CORP?RATION, 1983. ORDER NUMBER: 210920-002

D-1 122164-001

inter 80287

Table 1. 80287 Pin Description

Symbols Type Name and Function

ClK I Glock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MaS level inputs are required. The 82284 or 8284A ClK
outputs are compatible to this input.

CKM I Clock Mode signal: indicates whether ClK input is to be divided by 3 or
used directly. A HIGH input will cause ClK to be used directly. This input
may be connected to Vcc or Vss as appropriate. This input must be either
HIGH or lOW 20 ClK cycles before RESET goes law.

RESET I System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than
480287 ClK cycles. For proper initialization the HIGH-lOW transition must
occur no sooner than 50 ILs after Vee and ClK meet their D.C. and A.C.
specifications.

015-00 I/O Data: 16-bit bidirectional data bus. Inputs to these pins may be applied
asynchronous to the 80287 clock.

BUSY a Busy status: asserted by the 80287 to indicate that it is currently executing
a command.

ERROR a Error status: reflects the ES bit of the status word. This signal indicates
that an unmasked error condition exists.

PEREa a Processor Extension Data Channel operand transfer request: a HIGH on
this output indicates that the 80287 is ready to transfer data. PEREa will be
disabled upon assertion of PEACK or upon actual data transfer. whichever
occurs first, if no more transfers are required.

PEACK I Processor Extension Data Channel operand transfer ACKnowledge: ack-
nowledges that the request signal (PEREa) has been recognized. Will
cause the request (PEREa) to be withdrawn in case there are no more
transfers required. PEACK may be asynchronous to the 80287 clock.

NPRD I Numeric Processor Read: Enables transfer of data from the 80287. This
input may be asynchronous to the 80287 clock.

NPWR I Numeric Processor Write: Enables transfer of data to the 80287. This input
may be asynchronous to the 80287 clock.

NPS1, NPS2 I Numeric Processor Selects: indicate the CPU is performing an ESCAPE instruc-
tion. Concurrent assertion of these signals (Le., NPS1 is lOW and NPS2 is
HIGH) enables the 80287 to perform floating point instructions. No data trans-
fers involving the 80287 will occur unless the device is selected via these
lines. These inputs may be asynchronous to the 80287 clock.

CMD1, CMDO I Command lines: These, along with select inputs, allow the CPU to directthe
operation of the 80287.
These inputs may be asynchronous to the 80287 clock.

0-2 122164-001

80287

Table 1. 80287 Pin Description (cont.)

Symbols Type Name and Function

ClK286 I CPU Clock: This input provides a sampling edge for the 80287 inputs 51, SO,
COD/INTA, READY, and HlDA. It must be connected to the 80286 ClK input.

51, SO I Status: These inputs must be connected to the corresponding 80286 pins.
COD/INTA

HlDA I Hold Acknowledge: This input informs the 80287 when the 80286 controls
the local bus. It must be connected to the 80286 HlDA output.

READY I Ready: The end of a bus cycle is signaled by this input. It must beconnected
to the 80286 READY input.

Vss I System ground, both pins must be connected to ground.

Vee I +5V supply

FUNCTIONAL DESCRIPTION effectively extends the register and instruction set
of an iAPX 286/10 system for existing iAPX 286
data types and adds several new data types as well.
Figure 3 presents the program visible register
model of the iAPX 286/20. Essentially, the 80287
can be treated as an additional resource or an
extension to the iAPX 286/10 that can be used as a
single unified system, the iAPX 286/20.

The 80287 Numeric Processor Extension (NPX)
provides arithmetic instructions for a variety of
numeric data types in iAPX 286/20 systems. It also
executes numerous built-in transcendental func
tions (e.g., tangent and log functions). The 80287
executes instructions in parallel with a 80286. It

80286

a I 15 FILE' 79 78

AX I R1 SIGN EXPONENT

BX I
R2

CX I
R3

OX I
R4

Sl I
R5

01 I
RS

BP I
R7

SP I
RS

I
L __ ,

r-15 ___ -:::---__ ..,O I

I FL:GS :
L ____,

r-'5 ________ ...lf,0 I

gl I i

80287
STACK:

64 63

SIGNIFICAND

15

CONTROL REGISTER

STATUS REGISTER

TAG WORD

I- INSTRUCTION POINTER -

t- DATA POINTER -

Figure 3. iAPX 286/20 Architecture

D-3

TAG FIELD
0 1 0

o

122164-001

inter 80287

The 80287 has two operating modes similar to the
two modes of the 80286. When reset, 80287 is in
the real address mode. It can be placed in the
protected virtual address mode by executing the
SETPM ESC instruction. The 80287 cannot be
switched back to the real address mode except by
reset. In the real address mode, the iAPX 286/20 is
completely software compatible with iAPX 86/20,
88/20.

Once in protected mode, all references to memory
for numerics data or status information, obey the
iAPX 286 memory management and protection
rules giving a fully protected extension of the
80286 CPU. In the protected mode, iAPX 286/20
numerics software is also completely compatible
with iAPX 86/20 and iAPX 88/20.

SYSTEM CONFIGURATION
As a processor extension to an 80286, the 80287
can be connected to the CPU as shown in Figure 4.
The data channel control signals (PEREO,
PEACK), the BUSY signal and the NPRD, NPWR
signals, allow the NPX to receive instructions and
data from the CPU. When in the protected mode, all
information received by the NPX is validated by the
80286 memory management and protection unit.
Once started, the 80287 can process in parallel
with and independent of the host CPU. When the
NPX detects an error or exception, it will indicate
this to the CPU by asserting the ERROR Signal.

The NPX uses the processor extension request and
acknowledge pins of the 80286 CPU to implement
data transfers with memory under the protection
model of the CPU. The full virtual and physical
address space of the 80286 is available. Data for
the 80287 in memory is addressed and represented
in the same manner as for an 8087.

The 80287 can operate either directly from the CPU
clock or with a dedicated clock. For operation with
the CPU clock (CKM=O), the 80287 works at one
third the frequency of the system clock (i.e., for an
8 MHz 80286, the 16 MHz system clock is divided
down to 5.3 MHz). The 80287 provides a capability
to internally divide the CPU clock by three to pro
duce the required internal clock (33% duty cycle).
To use a higher performance 80287 (8 MHz), an
8284A clock driver and appropriate crystal may be
used to directly drive the 80287 with a 1/3 duty
cycle clock on the ClK input (CKM=1).

HARDWARE INTERFACE
Communication of instructions and data operands
between the 80286 and 80287 is handled by the
CMDO, CMD1, NJ5Sf, NPS2, f\ll5R'(), and fJI5WR sig
nals. I/O port addresses 00F8H, OOFAH, and OOFCH
are used by the 80286 for this communication. When
any of these addresses are used, the NJ5Sf input
must be lOW and NPS2 input HIGH. The lORe and
TOWC outputs of the 82288 identify I/O space trans
fers (see Figure 4). CMDO should be connected to
latched 80286 A 1 and CMD1 should be connected to
latched 80286 A2. The ST, sa, COD/INTA,~,
HlDA, and ClK pins of the 80286 are connected to
the same named pins on the 80287.

I/O ports 00F8H to OOFFH are reserved for the
80286/80287 interface. To guarantee correct oper
ation of the 80287, programs must not perform any
I/O operations to these ports.

The PEREO, PEACK, BUSY, and ERROR signals of
the 80287 are connected to the same-named 80286
input. The data pins of the 80287 should be directly
connected to the 80286 data bus. Note that all bus
drivers connected to the 80286 local bus must be
inhibited when the 80286 reads from the 80287.
The use of COD/INTA and M/ra in the decoder
prevents INTA bus cycles from disabling the data
transceivers.

PROGRAMMING INTERFACE

Table 2 lists the seven data types the 80287 sup
ports and presents the format for each type. These
values are stored in memory with the least signifi
cant digits at the lowest memory address. Pro
grams retrieve these values by generating the
lowest address. All values should start at even
addresses for maximum system performance.

Internally the 80287 holds all numbers in the tem
porary real format. load instructions automati
cally convert operands represented in memory as
16-, 32-, or 64-bit integers, 32- or 64-bit floating
point number or 18-digit packed BCD numbers
into temporary real format. Store instructions per
form the reverse type conversion.

80287 computations use the processor's register
stack. These eight 80-bit registers provide the
equivalent capacity of 40 16-bit registers. The
80287 register set can be accessed as a stack, with

0-4 122164-001

Vee

20 KO

RESET I--+-i----,

READY 1-+--11--.

82284 CLK I--

511--

Vee
?

~;

80287

20K"

I ADDRESS

r--~~~I~~-~--~~~~~~~-~T~~~~~cr~~~r.~~!cT~~~~IT~;~~~~~C'--
A ,5-Ao

"--+-+--1 RESET

READY I--t-l-++t-+~-I READY

82288

C~ C~

511--t-<H+~--j-t-i51
SO 1-+--1-+-1-+--++--1 SO

M/iO I--+-H-++-H-+--I M/iO

80286

0 ,5 -00 f--~

I- ERROR PEREa I-t-

.- BUSY PEACK ~
COD/iNl'A HLDA

DT/R I-+-H-++----I-+-----..1I---i---+-+--1

ALEI--+-H-+-+----I-+-----..1I---i---+-+--1

-I
- I. 0 0 0

IORC CODIINTA HLDA I-+-t-~----IIC~ a a

'----t-t--t RESET PEACK c- ;---.

'----+-t--t READY PEREa ~ ~
.---+-t--t CLK286 T ~

,-+---+-1-,51 0 ,5-00 1--__ -=D.:.;AT.:.;.A-=--_____ --._r-'T"""'4 8~~6
L--+---++-fSO 80287 8287

'------
NPRD NPS2 -Vee
--
NPWR NPS1

r- ERROR CMD1

'-- BUSY CMDO
CLK CKM

,----,
:[:--1 1 /'
C' 8284A -------0

:i:J 1 L ___ ..J

Figure 4. iAPX 286/20 System Configuration

0-5 122164-001

80287

Table 2. 80287 Oatatype Representation in Memory

Most Significant Byte HIGHEST ADDRESSED BYTE
Oat.a

Range Precision

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 o 1 Formats 7

Word Integer 104 16 Bits ;1 I (TWOS S MAGNITUDE COMPLEMENT)

15 0

Short Integer 109 32 Bits sl MAGN(TUDE I (TWO'S
COMPLEMENT)

31 0

Long Integer 1019 64 Bits sl MAGNITUDE I (TWOS
COMPLEMENT)

63 0

MAGNITUDE
Packed BCD 1018 18 Digits sl x k d'b d'5 d q do d'2 d ll d 10 dg dB d 7 ds d, d, d, d, d,

79 72

Short Real 10±38 24 Bits ;1 BIASED I S EXPONENT SIGNIFICAND I
31 23'-- I. 0

Long Real 10±308 53 Bits si BIASED
I SIGNIFICAND J EXPONENT

63 52'L. 0 I.

BIASED Temporary Real 10±4932 64 Bits sl EXPONENT l-il SIGNIFICAND

NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) dn = Decimal digit (two per byte)

79

(3) X = Bits have no significance; 8087 ignores when load
ing, zeros when storing.

(4) ,= Position of implicit binary point
(5) I = Integer bit of significand; stored in temporary real,

implicit in short and long real

instructions operating on the top one or two stack
elements, or as a fixed register set, with instruc
tions operating on explicitly designated registers.

Table 6 lists the 80287's instructions by class. No
special programming tools are necessary to use
the 80287 since all new instructions and data types
are directly supported by the iAPX 286 assembler

64 63·

(6) Exponent Bias (normalized values):
Short Real: 127 (7FH)
Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

(7) Packed BCD: (-1)s(D17· . Do)
(8) Real: (_1)s(2E'BIAS)(Fo F1 .. ·)

and appropriate high level languages. All iAPX
86/88 development tools which support the 8087
can also be used to develop software for the iAPX
286/20 in real address mode.

Table 3 gives the execution times of some typical
numeric instructions.

D-6 122164·001

do I
0

I
0

80287

Table 3. Execution Time for Selected 80287 Instructions

Floating Point Instruction

Add/Subtract

Multiply (single precision)

Multiply (extended precision)

Divide

Compare

Load (double precision)

Store (double precision)

Square Root

Tangent

Exponentiation

SOFTWARE INTERFACE
The iAPX 286/20 is programmed as a single pro
cessor. All communication between the 80286 and
the 80287 is transparent to software. The CPU au
tomatically controls the 80287 whenever a numeric
instruction is executed. All memory addressing
modes, physical memory, and virtual memory of
the CPU are available for use by the NPX.

Since the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the CPU has executed the ESCAPE instruc
tion which caused it. To allow identification of the
failing numeric instruction, the NPX contains two
pointer registers which identify the address of the
failing numeric instruction and the numeric
memory operand if appropriate for the instruction
encountering this error.

INTERRUPT DESCRIPTION

Several interrupts of the iAPX 286 are used to
report exceptional conditions while executing
numeric programs in either real or protected
mode. The interrupts and their functions are
shown in Table 4.

D-7

Approximate Execution
Time (ILs)

80287
(5 MHz Operation)

14/18

19

27

39

9

10

21

36

90

100

PROCESSOR ARCHITECTURE
As shown in Figure 1, the NPX is internally divided
into two processing elements, the bus interface
unit (BIU) and the numeric execution unit (NEU).
The NEU executes all numeric instructions, while
the BIU receives and decodes instructions, re
quests operand transfers to and from memory and
executes processor control instructions. The two
units are able to operate independently of one
another allowing the BIU to maintain asynchro
nous communication with the CPU while the NEU
is busy processing a numeric instruction.

BUS INTERFACE UNIT
The BIU decodes the ESC instruction executed by the
CPU. If the ESC code defines a math instruction, the
BIU transmits the formatted instruction to the NEU. If
the ESC code defines an administrative instruction,
the BIU executes it independently of the NEU. The
parallel operation of the NPX with the CPU is normally
transparant to the user. The BIU generates the I3ITSV
and ERROR signals for 80826/80287 processor syn
chronization and error notification, respectively.

The 80287 executes a single numeric instruction at
a time. When executing most ESC instructions, the

122164-001

80287

Table 4. 80286 Interrupt Vectors Reserved for NPX

Interrupt Number Interrupt Function

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was set.
EM=1 indicates that software emulation of the instruction is required. When TS is
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the
current NPX context may not belong to the current task.

9 The second or subsequent words of a numeric operand in memory exceeded a
segment's limit. This interrupt occurs after executing an ESC instruction. The saved
return address will not point at the numeric instruction causing this interrupt. After
processing the addressing error, the iAPX 286 program can be restarted at the
return address with IRET. The address of the failing numeric instruction and
numeric operand are saved in the 80287. An interrupt handler for this interruptmust
execute FNINIT before any other ESC or WAIT instruction.

13 The starting address of a numeric operand is not in the segment's limit. The return
address will pOint at the ESC instruction, including prefixes, causing this error. The
80287 .has not executed this instruction. The instruction and data address in 80287
refer to a previous, correctly executed, instruction.

16 The previous numeric instruction caused an unmasked numeric error. The address
of the faulty numeric instruction or numeric data operand is stored in the 80287.
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address
will point at a WAIT or ESC instruction, including prefixes, which may be restarted
after clearing the error condition in the NPX.

80286 tests the BUSY pin and waits until the 80287
indicates that it is not busy before initiating the com
mand. Once initiated, the 80286 continues program
execution while the 80287 executes the ESC instruc
tion. In iAPX 86/20 systems, this synchronization is
achieved by placing a WAIT instruction before an ESC
instruction. For most ESC instructions, the iAPX 286/20
does not require a WAIT instruction before the ESC
opcode. However, the iAPX 286/20 will operate cor
rectly with these WAIT instructions. In all cases, a WAIT
or ESC instruction should be inserted after any 80287
store to memory (except FSTSW and FSTCW) or load
from memory (except FLOENV or FRSTOR) before the
80286 reads or changes the value to be sure the
numeric value has already been written or read by
the NPX.

Data transfers between memory and the 80287,
when needed, are controlled by the PEREQ
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The
80286 does the actual data transfer with memory
through its processor extension data channel.
Numeric data transfers with memory performed by
the 80286 use the same timing as any other bus

0-8

cycle. Control signals for the 80287 are generated
by the 80826 as shown in Figure 4, and meet the
timing requirements shown in the AC require
ments section.

NUMERIC EXECUTION UNIT
The NEU executes all instructions that involve the
register stack; these include arithmetic, logical, tran
scendental, constant and data transfer instructions.
The data path in the NEU is 84 bits wide (68 signifi
cand bits, 15 exponent bits and a sign bit) which
allows internal operand transfers to be performed at
very high speeds.

When the NEU begins executing an instruction, it
activates the BIU BUSY signal. This signal is used
in conjunction with the CPU WAIT instruction or
automatically with most of the ESC instructions to
synchronize both processors.

REGISTER SET
The 80287 register set is shown in Figure 5. Each of
the eight data registers in the 80287's register stack

122164-001

inter 80287

DATA FIELD TAG FIELD
~~79~~78 ________ 6_4~63 ____________________ ~O 1 0

SIGN EXPONENT SIGNIFICAND

15

CONTROL REGISTER
STATUS REGISTER

TAG WORD

- INSTRUCTION POINTER -

- DATA POINTER -

Figure 5. 80287 Register Set

is 80 bits wide and is divided into "fields" corre
sponding to the NPX's temporary real data type.

At a given point in time the ST field in the status
word identifies the current top-of-stack register. A
"push" operation decrements ST by 1 and loads a
value into the new top register. A "pop" operation
stores the value from the current top register and
then increments ST by 1. Like 80286 stacks in
memory, the 80287 register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the Stack Top. These instructions
implicitly address the register pointed by the ST.
Other instructions allow the programmer to explic
itly specify the register which is to be used. This
explicit register addressing is also "top-relative."

Bits 14-12 ofthe status word paints tothe 80287 regis
ter that is the current top-of-stack (ST) as described
above. Figure 6 shows the six error flags in bits
5-0 of the status word. Bits 5-0 are set to indicate
that the NEU has detected an exception while
executing an instruction. The section on exception
handling explains how they are set and used.

The instructions FSTSW, FSTSW AX, FSTENV, and
FSAVE which store the status word are executed
exclusively by the BIU and do not set the busy bit
themselves or require the Busy bit be cleared in
order to be executed.

The four numeric condition code bits (CO-C3) are
similar to the flags in a CPU: instructions that perform
arithmetic operations update these bits to reflect the
outcome of NPX operations. The effect of these
instructions on the condition code bits is summarized
in Tables 5a and 5b.

Bits 14-12 of the status word point tothe 80287 regis
ter that is the current top-of-stack (8T) as described
above. Figure 6 shows the six error flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the NEU has detected an exception while executing
an instruction. The section on exception handling
explains how they are set and used.

Bit 7 is the error summary status bit. This bit is set if
any unmasked exception bit is set and cleared other
wise. If this bit is set, the ERROR signal is asserted.

D-9 122164-001

80287

15 o
I B I C31 ST Icd c, ICoIESI x IPEluEloElzEIDEllEI

I
EXCE PTION FLAGS (1 ~ EXCEPTION HAS OCCURRED)

INVALID OPERATION'

DENORMALIZED OPERAND"

ZERO DIVIDE"

OVERFLOW"

UNDERFLOW"

PRECISION'

(RESE RVED)
ERRO R SUMMARY STATUS(l)

TION CODE(2) CONDI

STAC K TOP POINTER(3)

BUSY NEU

(1) ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE.
(2) SEE TABLE 1-4 FOR CONDITION CODE INTERPRETATION.
(3) ST VALUES

000 ~ REGISTER 0 IS TOP OF STACK
001 ~ REGISTER 1 IS TOP OF STACK

111 ~ REGISTER 7 IS TOP OF STACK

'FOR DEFINITIONS, SEE THE SECTION ON EXCEPTION HANDLING

Figure 6. 80287 Status Word

TAG WORD

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optimize the NPX's performance. The eight
two-bit tags in the tag word can be used, however, to
interpret the contents of 80287 registers.

INSTRUCTION AND DATA POINTERS

The instruction and data pointers (See Figures 8a
and 8b) are provided for user-written error hand
lers. Whenever the 80287 executes a new instruc
tion, the BIU saves the instruction address, the
operand address (if present) and the instruction
opcode. 80287 instructions can store this data into
memory.

The instruction and data pointers appear in one of
two formats depending on the operating mode of
the 80287_ In real mode, these values are the 20-bit
physical address and 11-bit opcode formatted like
the 8087. In protected mode, these values are the
32-bit virtual addresses used by the program

which executed an ESC instruction. The same
FLDENV/FSTENV/FSAVE/FRSTOR instructions as
those of the 8087 are used to transfer these values
between the 80287 registers and memory.

The saved instruction address in the 80287 will
point at any prefixes which preceded the instruc
tion. This is different than in the 8087 which only
pointed at the ESCAPE instruction opcode.

CONTROL WORD

The NPX provides several processing options
which are selected by loading a word from memory
into the control word. Figure 9 shows the format
and encoding of fields in the control word.

The low order byte of this control word configures
the 80287 error and exception masking. Bits 5-0 of
the control word contain individual masks for each
of the six exceptions that the 80287 recognizes.
The high order byte of the control word configures
the 80287 operating mode including precision,

D-10 122164-001

inter 80287

Table Sa. Condition Code Interpretation

Instruction
~ ~ Type

Compare. Test 0 0
0 0
1 0
1 1

Remainder 01 0

U 1

Examine 0 0
0 0
0 0
0 0
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

NOTES:
1. 5T = Top of stack
2. X = value is not affected by instruction
3. U = value is undefined following instruction
4. Qn = Quotient bit n

Table 5b. Condition Code Interpretation after
FPREM Instruction As a Function of

Dividend Value

Dividend Range Q2 Q1 Qo

Dividend < 2 • Modulus C3 C1 00
Dividend < 4 • Modulus C3 01 00
Dividend;;. 4 • Modulus 02 01 00

NOTE:

C1

X
X
X
X

00

U

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

1. Previousvalueof indicated bit, not affected by FPREM
instruction execution.

D-11

Co Interpretation

0 ST > Source or 0 (FTST)
1 ST < Source or 0 (FTST)
0 ST = Source or 0 (FTST)
1 ST is not comparable

02 Complete reduction with
three low bits of quotient
(See Table 5b)

U Incomplete Reduction

0 Valid, positive unnormalized
1 Invalid, positive, exponent =0
0 Valid, negative, unnormalized
1 Invalid, negative, exponent =0
0 Valid, positive, normalized
1 Infinity, positive
0 Valid, negative, normalized
1 Infinity, negative
0 Zero, positive
1 Empty
0 Zero, negative
1 Empty
0 Invalid, positive, exponent = 0
1 Empty
0 Invalid, negative, exponent = 0
1 Empty

rounding, and infinity control. The precision con
trol bits (bits 9-8) can be used to set the 80287
internal operating precision at less than the
default of temporary real (80-bit) precision. This
can be useful in providing compatibility with the
early generation arithmetic processors of smaller
precision than the 80287. The rounding control
bits (bits 11-10) provide for directed rounding and
true chop as well as the unbiased round to nearest
even mode specified in the IEEE standard. Control
over closure of the number space at infinity is also
provided (either affine closure: ± "', or projective
closure: 00, is treated as unsigned, may be
specified).

122164-001

inter 80287

NOTE: The index i of tag (i) is not top-relative. A program
typically uses the "top" field of Status Word to deter
mine which tag(i) field refers to logical top of stack.

TAG VALUES:
00 ~ VALID
01 ~ ZERO
10 ~ INVALID or INFINITY
11 ~ EMPTY

Figure 7. 80287 Tag Word

MEMORY OFFSET

15

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IP OFFSET

CS SELECTOR +8

DATA OPERAND OFFSET +10

DATA OPERAND SELECTOR +12

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory

EXCEPTION HANDLING

The 80287 detects six different exception conditions
that can occur during instruction execution. Any or
all exceptions will cause the assertion of external
ERliOli signal and ES bit of the Status Word if the
appropriate exception masks are not set.

The exceptions that the 80287 detects and the 'default'
procedures that will be carried out if the exception is
masked, are as follows:

Invalid Operation: Stack overflow, stack underflow,
indeterminate form (DID, 00, -00, etc) or the use of a
Non-Number (NAN) as an operand. An exponent value
of all ones and non-zero significand is reserved to
identify NANs. If this exception is masked, the 80287
default response is to generate a specific NAN called

INDEFINITE, or to propogate already existing NANs
as the calculation result.

Overflow: The result is too large in magnitude to
fit the specified format. The 80287 will generate an
encoding for infinity if this 1xception is masked.

Zero Divisor: The divisor is zero while ,the divi
dend is a non-infinite, non-zero number. Jl:gain, the
80287 will generate an encoding for infinity if this
exception is masked.

Underflow: The result is non-zero but too small in
magnitude to fit in the specified format. If this
exception is masked the 82087 will denormalize
(shift right) the fraction until the exponen~ is in
range. The process is called gradual underflow.

D-12 122164-001

80287

15

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER (15-0)

INSTRUCTION i)1 I INSTRUCTION
POINTER (19-16) 0 OPCODE (10-0)

DATA POINTER (15-0)

DATA POINTER I
(19-16) 0

15 12 11

MEMORY
OFFSET

+0

+2

+4

+6

+8

+10

+12

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory

15

IxxxllCIRCl PC I x I x IPMluMloMlzMIDMllMI

"'PRECISION CONTROL
00 = 24 BITS (SHORT REAL)
01 = RESERVED
10 = 53 BITS (LONG REAL)
11 = 64 BITS (TEMP REAL)

I I

(2)ROUNDING CONTROL
00 = ROUND TO NEAREST OR EVEN
01 = ROUND DOWN (TOWARD -x)
10 .= ROUND UP (TOWARD +x)
11 = CHOP (TRUNCATE TOWARD ZERO)

EXCEPTION MASKS (1 =EXCEPTION IS MASKED)

INVALID OPERATION
DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW
PRECISION

(RESERVED)

(RESERVED)

PRECISION CONTROL (1)

ROUNDING CONTROL(2)

INFINITY CONTROL (0 = PROJECTIVE, 1 = AFFINE)

(RESERVED)

Figure 9. 80287 Control Word

D-13 122164-001

inter 80287

Denormalized Operand: At least one of the
operands is denormalized; it has the smallest ex
ponent but a non-zero significand. Normal pro
cessing continues if this exception is masked off.

Inexact Result: The true result is not exactly repre
sentable in the specified format, the result is rounded
according to the rounding mode, and this flag is set.
If this exception is masked, processing will simply
continue.

If the error is not masked, the corresponding error
bit and the error status bit (ES) in the control word
will be set, and the ERROR output signal will be
asserted. If the CPU attempts to execute another
ESC or WAIT instruction, exception 7 will occur.

The error condition must be resolved via an inter
rupt service routine. The 80287 saves the address
of the floating point instruction causing the error
as well as the address of the lowest memory loca
tion of any memory operand required by that
instruction.

iAPX 86/20 COMPATIBILITY:
iAPX 286/20 supports portability of iAPX 86/20
programs when it is in the real address mode.
However, because of differences in the numeric
error handing techniques, error handling routines
may need to be changed. The differences between
an iAPX 286/20 and iAPX 86/20 are:

1. The NPX error signal does not pass through an
interrupt controller (8087 INT signal does).

Therefore, any interrupt controller oriented in
structions for the iAPX 86/20 may have to be
deleted.

2. Interrupt vector 16 must point at the numeric
error handler routine.

3. The saved floating point instruction address in
the 80287 includes any leading prefixes before
the ESCAPE opcode. The corresponding saved
address of the 8087 does not include leading
prefixes.

4. In protected mode, the format of the saved in
struction and operand pointers is different than
for the 8087. The instruction opcode is not
saved-it must be read from memory if needed.

5. Interrupt 7 will occur when executing ESC in
structions with eitherTS or EM of MSW=1.lfTS
of MSW=1 then WAIT will also cause interrupt
7. An interrupt handler should be added to han
dle this situation.

6. Interrupt 9 will occur if the second or subse
quent words of a floating point operand fall
outside a segment's size. Interrupt 13 will occur
if the starting address of a numeric operand
falls outside a segment's size. An interrupt
handler should be added to report these pro
gramming errors.

In the protected mode, iAPX 86/20 application
code can be directly ported via recompilation if the
286 memory protection rules are not violated.

0-14 122164-001

80287

ABSOLUTE MAXIMUM RATINGS'

Ambient Temperature Under Bias .. O°C to 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin with
Respect to Ground -1.0 to +7V
Power Dissipation 3.0 Watt

-NOTICE: Stresses above those listed under Ab
solute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS TA = O°C to 70°C, Vcc = 5V, +/-5%
5 MHz

Symbol Parameter -3 Min -3 max Unit Test Conditions

VIL Input lOW Voltage -.5 .8 V

VIH Input HIGH Voltage 2.0 Vcc +.5 V

VILC Clock Input lOW Voltage
CKM = 1: -.5 .8 V
CKM =0: -.5 .6 V

VIHC Clock Input HIGH Voltage
CKM = 1: 2.0 Vcc + 1 V
CKM =0: 3.8 Vcc + 1 V

VOL Output lOW Voltage .45 V IOL = 3.0 mA

VOH Output HIGH Voltage 2.4 V IOH = -400 /lA

III Input leakage Current ±10 /lA OV '" VIN '" Vcc

ILO Output leakage Current ±10 /lA .45V '" VOUT '" Vcc

Icc Power Supply Current 475 mA

CIN Input Capacitance 10 pF Fc = 1 MHz

Co Input/Output Capacitance
(00-015)

20 pF Fc = 1 MHz

CCLK ClK Capacitance 12 pF Fc = 1 MHz

0-15 122164-001

80287

A.C. CHARACTERISTICS (T A = O°C to 70°C, Vcc + 5V,=/-5%)
TIMING REQUIREMENTS
A.C. timings are referenced to 0.8V and 2.0V points on signals unless otherwise noted.

5 MHz

Symbol Parameter -3 Min -3 max Unit Test Conditions

TCLCL ClK Period
CKM= 1: 200 500 ns
CKM=O: 62.5 250 ns

TCLCH ClKLOWTime
CKM=1: 118 ns At 0.8V
CKM=O: 15 230 ns At 0.6V

TCHCL ClK HIGH Time
CKM=1: 69 ns At 2.0V
CKM=O: 20 235 ns At 3.8V

TCH1CH2 ClK Rise Time 10 ns 1.0V t03.5V if CKM = 1.

TCL2CL1 ClK Fall Time 10 ns 3.5V to 1.0V if CKM = 1.

TDVWH Data Setup to NPWR Inactive 75 ns

TWHDX Data Hold from "j\j"I5WR Inactive 30 ns

TWLWH'
TRLRH NPWR, NPRD Active Time 95 ns At 0.8V

TAVRL, Command Valid to f\IT5WR or
TAVWL NPRD Active 0 ns

TMHRL Minimum Delay from PEREQ
Active to NPRD Active 130 ns

TKLKH PEACK Active Time 85 ns At 0.8V

TKHKL PEACK Inactive Time 250 ns At 2.0V

TKHCH J5EACK Inactive to f\IT5WR, NJ5l1Cj
Inactive , 50 ns

TCHKL NPWR, NJ5Ri) Inactive to PEACK
Active -30 ns

TWHAX' Command Hold from f\IT5WR,
TRHAX NJ5R[5 Inactive 30 ns

TKLCL J5EACK Active Setup to NPWR,
Jill5R[j Active 50 ns

T2CLCL ClK286 Period 62.5 ns

T2CLCH ClK286 lOW Time 15 ns At 0.8V

T2CHCL ClK286 HIGH Time 20 ns At 2.0V

T2SVCL "SO, "ST Setup Time to ClK286 22.5 ns

T2CLSH "SO, "ST Hold Time from ClK286 0 ns

0-16 122164-001

A.C. CHARACTERISTICS, continued
TIMING REQUIREMENTS

Symbol Parameter

TCIVCL COD/fN'rA Setup Time to ClK286

TCLCIH COD/INTA Hold Time from ClK286

TRVCL READY Setup Time to ClK286

TCLRH READY Hold Time from ClK286

THVCL HlDA Setup Time to ClK286

TCLHH HlDA Hold Time from ClK286

T1VCL NPWR, NPRD to ClK Setup Time

TCLIH NPWR, NPRD from ClK Hold Time

TRSCL RESET to ClK Setup Time

TCLRS RESET from ClK Hold Time

A.C. CHARACTERISTICS,
TIMING RESPONSES

Symbol Parameter

TRHQZ NJ5RO Inactive to Data Float

TRLQV iiJi5Rl) Active to Data Valid

TILBH ERlIDR Active to BUSY Inactive

TWLBV f\Jl5W'R Active to mmv Active

TKLML PEACK Active to PEREa Inactive

TCMDI Command Inactive Time
Write-to-Write
Read-to-Read
Write-to-Read
Read-to-Write

TRHQH Data Hold from NJ5RO Inactive

NOTES:

80287

5 MHz

-3 Min -3 max Unit Test Conditions

0 ns

0 ns

38.5 ns

25 ns

0 ns

0 ns

70 ns NOTE 1

45 ns NOTE 1

20 ns NOTE 1

20 ns NOTE 1

5 MHz

-3 Min -3 max Unit Test Conditions

37.5 ns NOTE 2

60 ns NOTE 3

100 ns NOTE 4

100 ns NOTE 5

127 ns NOTE 6

95 ns At 2.0V
250 ns At2.0V
105 ns At2.0V
95 ns At2.0V

5 ns NOTE 7

1. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific ClK edge.
2. Float condition occurs when output current is less than ILO on 00-015.
3. 00-015 loading: Cl = 100pF.
4. BUSY loading: Cl= 100pF.
5. BUSY loading: Cl = 100pF.
6. On'last data transfer of numeric instruction.
7, 00-015 loading: Cl = 100pF.

D-17 122164-001

inter 80287

WAVEFORMS (conI.)

DATA TRANSFER TIMING (INITIATED BY 80286)

CMDO CMD1
Nm,NPS2

NPRD

00-0'5

}. VALID

_TRLRH '" TRHAX

TAVRL \, V --- '_TRHOZ_
_ TRLOV 1- _TRHOH_I

/////1/ DATA OUT D \.\.\.\.\.\. VALID
TAVWL

'"
__ TWLWH_,"

TWHAX

\ V --,

TDVWH TWHDX _. ..

~
..

-

~ = ~ DATA MAY CHANGE DATA MAY CHANGE DATA IN
VALID

- TWLBN .-
BUSY ~..t --4--

DATA CHANNEL TIMING (INITIATED BY 80287)

CMDO'CMD1~~
I'lm,NPS2 J-----f-.:.j
~

TAVWL
TAVRL -

\

VALID

- TRHAX
TWHAX -

,k'

1
DATA
TRANSFER
FROM
80287

I DATA
TRANSFER
TO
80287

'" TCMDI_
_TMHRL--__ _ TCLML __

_TCHKL __

TKLCL_ - 'J r .. TKLML_ - TKHCH --- _TKHKL

S -------------
r

i / ~I\-
-----I
PEACK

'" TKLKH ..

0-18 122164-001

inter 80287

WAVEFORMS (cont.)

ERROR OUTPUT TIMING

iiiiSY __ , rn".=i
ERROR ~

80286 STATUS TIMING

.. Ts -----.+ ,...-.------ Tc

NOTES
1. This nput transition occurs before TS'
2. This nput transition occurs after Te.

0-19 122164-001

inter
WAVEFORMS

ClK
(IFCKM = 1)

80287

(Reset, NPWR, NPRDare inputsasynchronoustoClK. Timing requirements on this page

are given iortesting purposes only, to assure recognition at a specific ClK edge.)

ClK, RESET TIMING (CKM = 1)

_________________________ T_CL_IH_-. ___ • ____ .J~ r-__ T_I~ __ L __ -- ______ _

RESET ~

ClK, NPRO, NPWR TIMING (CKM = 1)

I l/', I l/'2

ClK~ ;I
(IF CKM = 1) '--------'

I

t
NPRO,
NPWR

RESET

\\\~\\\\\

~-f- T RSCL

ClK, RESET TIMING (CKM = 0)

(

/

NOTE: Reset must meet timing shown to guarantee known phase of internal + 3 circuit

NPRD,
NPWR \\\\ \\\\\ \\

ClK, NPRD, NPWR TIMING (CKM =0)

I $2 $,

'~1 I'~
'lIlt

0-20 122164-001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set

Data Transfer

FLO ~ LOAD 1 MF

I
Optional
8,16 Bit

Displacement

Integer/Real Memory to ST(O) [ESCAPE MF 1 [MOD 0 0 0 RIM [- = _ ~.I~P = =:

Long Integer Memory to STIO) 1 ESCAPE 1 1 1 1 MOD 1 0 1 RIM 1 = = ~.I~P = =:

Temporary Real Memory to
STIO)

BCD Memory to STIO)

STII) to ST(O)

FST ~ STORE

STIO) to Integer/Real Memory

STIO) to STII)

FSTP ~ STORE AND POP

ST(O) to Integer/Real Memory

ST(O) to Long Integer Memory

STIO) to Temporary Real
Memory

STIO) to BCD Memory

ST(O) to STII)

FXCH ~ Exchange STII) and
ST(O)

Comparison

FCOM ~ Compare

Integer/Real Memory to STIO)

STII) to ST (0)

FCOMP ~ Compare and Pop

Integer/Real Memory to ST(O)

STII) to ST(O)

FCOMPP ~ Compare STll) to
ST(O) and Pop Twice

FTST ~ Test ST(O)

FXAM ~ Examine STIO)

MnemOniCs ,f\ Intel 1982

1 ESCAPE 0 1 1 1

I ESCAPE 1 1 1 I

I ESCAPE 0 0 1 1

MOD 1 0 1 RIM 1_ = = =DI~P = =:

MOD 1 0 0 RIM [___ .?I~P _ ~

1 1 0 0 0 ST(I) 1

I ESCAPE MF 1 1 MOD 0 1 0 RIM 1 DISP

I ESCAPE 1 0 1 I 1 1 0 1 0 STII) 1

1 ESCAPE MF 1 I

I ESCAPE 1 1 1 I

MOD 0 1 1 RIM 1- ~ ~ 91~P ~ J
MOD 1 1 1 RIM I ~ ~ ~I~< J

LI_E_SC __ A_P_E __ O __ l ___ l-LI_M __ O_D __ l ___ l __ l __ R_I_M~I_ .~ ~ ~I~P~.J

1 ESCAPE 1 1 1 I MOD 1 1 0 RIM 1_ ~ ~ ~I~ ~ J
~====~====~
I ESCAPE 1 0 1 1 1 1 0 1 1 STII) 1

@CAPE 0 0 1 1 1 1 0 0 1 STII) 1

r--------r---------,- - - - - - -

1 ESCAPE MF 0 1 MOD 0 1 0 RIM I DISP

I ESCAPE 0 0 0 I 1 1 0 1 0 STII) I

:=1 E,;S~C~A=P~E~"'M=F=~041 ="'M~O~D~O"'=I==1 ~R",/M",==~[~I~P = =:
[ESCAPE 0 0 0 [1 1 0 1 1 STII) 1

1 ESCAPE 1 1 0 I 1 1 0 1 1 0 0 1 1

1 ESCAPE 0 0 1 I 1 1 1 0 0 1 0 0 I

1 ESCAPE 0 0 1 I 1 1 1 0 0 1 0 1 I

0-21

Clock Count Range
32 Bit 32 Bit 64 Bit 16 Bit
Real Integer Real Integer

00 01 10 11

38-56 52-60 40-60 46-54

60-68

53-65

290-310

17-22

84-90 82-92 96-104 80-90

15-22

86-92 84-94 98-106 82-92

94-105

52-58

520-540

17-24

10-15

60-70 78-91 65-75 72-86

40-50

63-73 80-93 67-77 74-88

45-52

45-55

38-48

12-23

122164-001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

Constants

I MF

I
Optional
8,16 Bit

Displacement

FLDZ ~ LOAD + 0.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 1 0 I

FLDl ~ LOAD + 1.0 into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 0

FLDPI ~ LOAD 7T into ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 0 1 1

FLDL2T ~ LOAD log2 10 into
ST(O)

FLDL2E ~ LOAD log2 e into
ST(O)

I ESCAPE 0 0 1 I 1 1 1 0 1 0 0 1

[ESCAPE 0 0 1 I 1 1 1 0 1 0 1 0

FLDLG2 ~ LOAD 10glO 2 into
ST(O) I ESCAPE 0 0 1 I 1 1 1 0 1 1 0 0 I

FLDLN2 ~ LOAD log.2 into §PE 0 0 1 I 1 1 1 0 1 1 0 1 I
ST(O)

Arithmetic

FADD ~ Addition

Integer/Real Memory with ST(O) IL-E_S_C_A_P_E_M_F __ o----'I_M_O_D_O __ O_O_R_/M_~ _ ___..J~. ~DI~P~ J
ST(i) and ST(O) I ESCAPE d P 0 I 1 1 0 0 0 ST(i)

FSUB = Subtraction

Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD lOR R/M

ST(i) and ST(O) I ESCAPE d Pol 1 1 lOR R/M

FMUL ~ Multiplication

[=DI~P= J
I

Clock Count Range
32 Bit 32 Bit 64 Bit 16 Bit
Real Intager Real Integer

00 01 10 11

11-17

15-21

16-22

16-22

15-21

18-24

17-23

90-120 108-143 95-125 102-137

70-100 (Note 1)

90-120 108-143 95-125 102-137

70-100 (Note 1)

Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 0 0 1 R/M [~DI~P~' -: 110-125 130-144 112-168 124-138

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 0 0 1 RIM

FDIV = Division
Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 1 1 R R/M

ST(i) and ST(O) I ESCAPE d Pol 1 1 1 1 R R/M

FSQRT ~ Square Root of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I

FSCALE ~ Scale ST(O) by ST(I) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I

FPREM ~ Partial Remainder of I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I
ST(O) +ST(I)

FRNDINT ~ Round ST(O) to
Integer

NOTE:
1. If P=1 then add 5 clocks.

I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 0 I

0-22

90-145 (Note 1)

215-225 230-243 220-230 224-238

193-203 (Note 1)

180-186

32-38

15-190

16-50

122164·001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

FXTRACT 0 Extract
Components of St(O)

FABS = Absolute Value of
ST(O)

FCHS 0 Change Sign of ST(O)

Transcendental

FPTAN = Partial Tangent of
ST(O)

ESCAPE 0 0 1

ESCAPE

ESCAPE

1 1 1 1 0 1 0 0

Optional
8,16 Bit

Displacement

o~

o 0 0 I

1 1 1 1 a 0 1 0 ~001
----~---------------

FPATAN 0 Partial Arctangent [ESCAPE
of ST(O) -ST(l) '--------'-------------'

F2XM1 0 25T(0) -1 ESCAPE
L-________ ~ __________ ~

~ L-__________ ~ ________ _

o 0 1

o 1

'-_______ '-_______ R_/M __ -'I ~ ~~I~~~J
,-------------,----------------, -- - - ---

DISP : RIM

_-'-_______ R_/M ___ I_ ~~~S~ ~ .. ~

D-23

Clock Count Range

27-55

10-17

10-17

30-540

250-800

310-630

900-1100

700-1000

2-8

2-8

10-16

7-14

12-18

12-18

2-8

40-50

35-45

205-215

205-215

6-12

6-12

122164-001

80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)
----_._--------_._--- --------------,

FFREE ~ Free ST(i) ESCAPE 1 0 1 I 1 1 0 0 0 ST(i)

FNOP = No Operation ESCAPE 0 0 1 I 1 1 0 1 0 0 0 0

NOTES:
1, if mod =00 then DISP=O', disp-Iow and disp-high are absent

if mod=01 then DISP=disp-low sign-extended to 16-bits, disp-high is absent
if mod=10 then DISP=disp-high; disp-Iow
if mod = 11 then rim is treated as an ST(i) field

2. if r/m=OOO then EA=(BX) + (SI) +DISP
if r/m=001 then EA=(BX) + (DI) +DISP
if r/m=010 then EA=(BP) + (SI) +DISP
if r/m=011 then EA=(BP) + (DI) +DISP
if r/m=100 then EA=(SI) + DISP
if r/m=101 then EA=(DI) + DISP
if r/m=110 then EA=(BP) + DISP
if r/m=111 then EA=(BX) + DISP

'except if mod=OOO and r/m=110 then EA =disp-high; disp-Iow.
3. MF= Memory Format

00-32-bit Real
01-32-bit Integer
10-64-bit Real
11-16-bit Integer

4. ST(O) = Current stack top

ST(i) ith register below stack top
5. d= Destination

O-Destination is ST(O)
1-Destination is ST(i)

6. P= Pop
O-No pop
1-PopST(0)

7, R= Reverse: When d=1 reverse the sense of R
O-Destination (op) Source
1-Source (op) Destination

8. For FSQRT: -0 ,,;; ST(O) ,,;; +co

For FSCALE: _215 ,,;; ST(1) < +215 and ST(1) integer
For F2XM1: 0,,;; ST(O),,;; 2-1

For FYL2X: 0 < ST(O) <00
-'" < ST(1) < + co

For FYL2XP1: 0,,;; IST(O)I < (2 -\12)/2
-co < ST(1) < co

For FPTAN: 0,,;; ST(O) ';1r/4
For FPATAN: 0,,;; ST(O) < ST(1) < +00

9, ESCAPE bit pattern is 11011.

0-24

Clock Count Range

9-16

10-16

122164-001

Glossary Of 80287 And
Floating-Point Terminology

GLOSSARY OF 80287
AND FLOATING-POINT TERMINOLOGY

This glossary defines many terms that have precise technical meanings as specified in the IEEE 754
Standard. Where these terms are used, they have been capitalized to emphasize the precision of their
meanings. In reading these definitions, you may therefore interpret any capitalized terms or phrases as
cross-references.

Affine Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are treated
as having a sign. Thus, the values + INFINITY and - INFINITY are considered different; they can
be compared with finite numbers and with each other.

Base: (1) a term used in logarithms and exponentials. In both contexts, it is a number that is being
raised to a power. The two equations (y = log base b of x) and (bY = x) are the same.

Base: (2) a number that defines the representation being used for a string of digits. Base 2 is the binary
representation; Base 10 is the decimal representation; Base 16 is the hexadecimal representation. In
each case, the Base is the factor of increased significance for each succeeding digit (working up from
the bottom).

Bias: the difference between the unsigned Integer that appears in the Exponent field of a Floating
Point Number and the true Exponent that it represents. To obtain the true Exponent, you must subtract
the Bias from the given Exponent. For example, the Short Real format has a Bias of 127 whenever the
given Exponent is nonzero. If the 8-bit Exponent field contains 10000011, which is 131, the true
Exponent is 131-127, or +4.

Biased Exponent: the Exponent as it appears in a Floating-Point Number, interpreted as an unsigned,
positive number. In the above example, 131 is the Biased Exponent.

Binary Coded Decimal: a method of storing numbers that retains a base 10 representation. Each decimal
digit occupies 4 full bits (one hexadecimal digit). The hex values A through F (1010 through 1111)
are not used. The 80287 supports a Packed Decimal format that consists of 9 bytes of Binary Coded
Decimal (18 decimal digits) and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary numbers. Each binary
digit to the right of the Binary Point is multiplied by an increasing negative power of two.

C3-CO: the four "condition code" bits of the 80287 Status Word. These bits are set to certain values
by the compare, test, examine, and remainder functions of the 80287.

Characteristic: a term used for some non-Intel computers, meaning the Exponent field of a Floating
Point Number.

Chop: to set the fractional part of a real number to zero, yielding the nearest integer in the direction
of zero.

Control Word: a 16-bit 80287 register that the user can set, to determine the modes of computation
the 80287 will use, and the error interrupts that will be enabled.

Denormal: a special form of Floating-Point Number, produced when an Underflow occurs. On the
80287, a Denormal is defined as a number with a Biased Exponent that is zero. By providing a Signi
ficand with leading zeros, the range of possible negative Exponents can be extended by the number of

Glossary-1 122164-001

inter GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

bits in the Significand. Each leading zero is a bit of lost accuracy, so the extended Exponent range is
obtained by reducing significance.

Double Extended: the Standard's term for the 80287 Temporary Real format, with more Exponent
and Significand bits than the Double (Long Real) format, and an explicit Integer bit in the Significand.

Double Floating Point Number: the Standard's term for the 80287's 64-bit Long Real format.

Environment: the 14 bytes of 80287 registers affected by the FSTENV and FLDENV instructions. It
encompasses the entire state of the 80287, except for the 8 Temporary Real numbers of the 80287
stack. Included are the Control Word, Status Word, Tag Word, and the instruction, opcode, and operand
information provided by interrupts. .

Exception: any of the six error conditions (I, D, 0, U, Z, P) signalled by the 80287. \
Exponent: (1) any power that is raised by an exponential function. For example, the operand to the
function mqerEXP is an Exponent. The Integer operand to mqerYI2 is an Exponent.

Exponent: (2) the field of a Floating-Point Number that indicates the magnitude of the number. This
would fall under the above more general definition (1), except that a Bias sometimes needs to be
subtracted to obtain the correct power.

Floating-Point Number: a sequence of data bytes that, when interpreted in a standardized way, repre
sents a Real number. Floating-Point Numbers are more versatile than Integer representations in two
ways. First, they include fractions. Second, their Exponent parts allow a much wider range of magni
tude than possible with fixed-length Integer representations.

Gradual Underflow: a method of handling the Underflow error condition that minimizes the loss of
accuracy in the result. If there is a Denormal number that represents the correct result, that Denormal
is returned. Thus, digits are lost only to the extent of denormalization. Most computers return zero
when Underflow occurs, losing all significant digits.

Implicit Integer Bit: a part of the Significand in the Short Real and Long Real formats that is not
explicitly given. In these formats, the entire given Significand is considered to be to the right of the
Binary Point. A single Implicit Integer Bit to the left of the Binary Point is always 1, except in one
case. When the Exponent is the minimum (Biased Exponent is 0), the Implicit Integer Bit is O.

Indefinite: a special value that is returned by functions when the inputs are such that no other sensible
answer is possible. For each Floating-Point format there exists one Nontrapping NaN that is designated
as the Indefinite value. For binary Integer formats, the negative number furthest from zero is often
considered the Indefinite value. For the 80287 Packed Decimal format, the Indefinite value contains
all 1 's in the sign byte and the uppermost digits byte.

Infinity: a value that has greater magnitude than any Integer or any Real number. The existence of
Infinity is subject to heated philosophical debate. However, it is often useful to consider Infinity as
another number, subject to special rules of arithmetic. All three Intel Floating-Point formats provide
representations for + INFINITY and - INFINITY. They support two ways of dealing with Infinity:
Projective (unsigned) and Affine (signed).

Integer: a number (positive, negative, or zero) that is finite and has no fractional part. Integer can also
mean the computer representation for such a number: a sequence of data bytes, interpreted in a stand
ard way. It is perfectly reasonable for Integers to be represented in a Floating-Point format; this is
what the 80287 does whenever an Integer is pushed onto the 80287 stack.

Glossary-2 122164-001

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Invalid Operation: the error condition for the 80287 that covers all cases not covered by other errors.
Included are 80287 stack overflow and underflow, NaN inputs, illegal infinite inputs, out-of-range
inputs, and illegal unnormal inputs.

Long Integer: an Integer format supported by the 80287 that consists of a 64-bit Two's Complement
quantity.

Long Real: a Floating-Point Format supported by the 80287 that consists of a sign, an II-bit Biased
Exponent, an Implicit Integer Bit, and a 52-bit Significand-a total of 64 explicit bits.

Mantissa: a term used for some non-Intel computers, meaning the Significand of a Floating-Point
Number.

Masked: a term that applies to each of the six 80287 Exceptions I,D,Z,O,U,P. An exception is Masked
if a corresponding bit in the 80287 Control Word is set to 1. If an exception is Masked, the 80287 will
not generate an interrupt when the error condition occurs; it will instead provide its own error recovery.

NaN: an abbreviation for Not a Number; a Floating-Point quantity that does not represent any numeric
or infinite quantity. NaNs should be returned by functions that encounter serious errors. If created
during a sequence of calculations, they are transmitted to the final answer and can contain information
about where the error occurred.

Nontrapping NaN: a NaN in which the most significant bit of the fractional part of the Significand is
1. By convention, these NaNs can undergo certain operations without visible error. Nontrapping NaNs
are implemented for the 80287 via the software in EH87.LIB.

Normal: the representation of a number in a Floating-Point format in which the Significand has an
Integer bit I (either explicit or Implicit).

Normalizing Mode: a state in which nonnormal inputs are automatically converted to normal inputs
whenever they are used in arithmetic. Normalizing Mode is implemented for the 80287 via the software
in EH87.LIB.

NPX: Numeric Processor Extension. This is the 80287.

Overflow: an error condition in which the correct answer is finite, but has magnitude too great to be
represented in the destination format.

Packed Decimal: an Integer format supported by the 80287. A Packed Decimal number is a lO-byte
quantity, with nine bytes of 18 Binary Coded Decimal digits, and one byte for the sign.

Pop: to remove from a stack the last item that was placed on the stack.

Precision Control: an option, programmed through the 80287 Control Word, that allows all 80287
arithmetic to be performed with reduced precision. Because no speed advantage results from this option,
its only use is for strict compatibility with the IEEE Standard, and with other computer systems.

Precision Exception: an 80287 error condition that results when a calculation does not return an exact
answer. This exception is usually Masked and ignored; it is used only in extremely critical applications,
when the user must know if the results are exact.

Projective Mode: a state of the 80287, selected in the 80287 Control Word, in which infinities are
treated as not having a sign. Thus the values + INFINITY and - INFINITY are considered the same.

Glossary-3 122164-001

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Certain operations, such as comparison to finite numbers, are illegal in Projective Mode but legal in
Affine Mode. Thus Projective Mode gives you a greater degree of error control over infinite inputs.

Pseudo Zero: a special value of the Temporary Real format. It is a number with a zero significand
and an Exponent that is neither all zeros or all ones. Pseudo zeros can come about as the result of
multiplication of two Unnormal numbers; but they are very rare.

Real: any finite value (negative, positive, or zero) that can be represented by a decimal expansion. The
fractional part of the decimal expansion can contain an infinite number of digits. Reals can be repre
sented as the points of a line marked off like a ruler. The term Real can also refer to a Floating-Point
Number that represents a Real value.

Short Integer: an Integer format supported by the 80287 that consists of a 32-bit Two's Complement
quantity. Short Integer is not the shortest 80287 Integer format-the 16-bit Word Integer is.

Short Real: a Floating-Point Format supported by the 80287, which consists of a sign, an 8-bit Biased
Exponent, an Implicit Integer Bit, and a 23-bit Significand-a total of 32 explicit bits'.

Significand: the part of a Floating-Point Number that consists of the most significant nonzero bits of
the number, if the number were written out in an unlimited binary format. The Significand alone is
considered to have a Binary Point after the first (possibly Implicit) bit; the Binary Point is then moved
according to the value of the Exponent.

Single Extended: a Floating-Point format, required by the Standard, that provides greater precision
than Single; it also provides an explicit Integer Significand bit. The 80287's Temporary Real format
meets the Single Extended requirement as well as the Double Extended requirement.

Single Floating-Point Number: the Standard's term for the 80287's 32-bit Short Real format.

Standard: "a Proposed Standard for Binary Floating-Point Arithmetic," Draft 10.0 of IEEE Task P754,
December 2, 1982.

Status Word: A 16-bit 80287 register that can be manually set, but which is usually controlled by side
effects to 80287 instructions. It contains condition codes, the 80287 stack pointer, busy and interrupt
bits, and error flags.

Tag Word: a 16-bit 80287 register that is automatically maintained by the 80287. For each space in
the 80287 stack, it tells if the space is occupied by a number; if so, it gives information about what
kind of number.

Temporary Real: the main Floating-Point Format used by the 80287. It consists of a sign, a 15-bit
Biased Exponent, and a Significand with an explicit Integer bit and 63 fractional-part bits.

Transcendental: one of a class of functions for which polynomial formulas are always approximate,
never exact for more than isolated values. The 80287 supports trigonometric, exponential, and logarith
mic functions; all are Transcendental.

Trapping NaN: a NaN that causes an I error whenever it enters into a calculation or comparison, even
a nonordered comparison.

Two's Complement: a method of representing Integers. If the uppermost bit is 0, the number is consid
ered positive, with the value given by the rest of the bits. If the uppermost bit is 1, the number is
negative, with the value obtained by subtracting (2b't count) from all the given bits. For example, the
8-bit number 11111100 is -4, obtained by subtracting 28 from 252.

Glossary-4 122164-001

GLOSSARY OF 80287 AND FLOATING-POINT TERMINOLOGY

Unbiased Exponent: the true value that tells how far and in which direction to move the Binary Point
of the Significand of a Floating-Point Number. For example, if a Short Real Exponent is 131, we
subtract the Bias 127 to obtain the Unbiased Exponent +4. Thus, the Real number being represented
is the Significand with the Binary Point shifted 4 bits to the right.

Underflow: an error condition in which the correct answer is nonzero, but has a magnitude too small
to be represented as a Normal number in the destination Floating-Point format. The Standard specifies
that an attempt be made to represent the number as a Denormal.

Unmasked: a term that applies to each of the six 80287 Exceptions: I,D,Z,O,U,P. An exception is
Unmasked if a corresponding bit in the 80287 Control Word is set to O. If an exception is Unmasked,
the 80287 will generate an interrupt when the error condition occurs. You can provide an interrupt
routine that customizes your error recovery.

Unnormal: a Temporary Real representation in which the explicit Integer bit of the Significand is
zero, and the exponent is nonzero. We consider Unnormal numbers distinct from Denormal numbers.

Word Integer: an Integer format supported by both the 80286 and the 80287 that consists of a 16-bit
Two's Complement quantity.

Zero divide: an error condition in which the inputs are finite, but the correct answer, even with an
unlimited exponent, has infinite magnitude.

Glossary-5 122164-001

INDEX

Address Modes, 2-39, 2-40, 3-1
Architecture, 1-8, 3-1, 3-2, D-l, D-7
Arithmetic Instructions, 2-4 through 2-9,

D-22, D-23
ASM 286, 2-38 through 2-45
Automatic Exception Handling, 1-36

Binary Integers, 1-15

Comparison Instructions, 2-9, 2-10, 2-11
Compatibility of 80287 and 8087, 2-1,

Appendix B, D-14
Computation Fundamentals, 1-13
Concurrent (80286 and 80287) Processing,

2-45 through 2-50
Condition Codes Interpretation, 1-9, 1-10,

1-11, D-ll
Constant Instructions, 2-13, 2-14, D-22
Control Word, 1-11, 1-12, D-I0, D-13

Data Synchronization, 2-46, 2-47, 2-48
Data Transfer Instructions, 2-2, 2-3, 2-4,

D-21
Data Types and Formats,

Binary Integers, 1-15
Decimal Integers, 1-15
Encoding of Data Type, 1-28 through 1-32
Infinity Control, 1-19
Precision Control, 1-18, 1-35
Real Numbers, 1-15, 1-16, 1-17
Rounding Control, 1-18

Decimal Integers, 1-15
Denormalization, 1-20
Denormalized Operand, 1-33, 1-35
Denormals, 1-19, 1-20, 1-21
Destination Operands, 2-2

EM (Emulation Mode) Bit in 80286, 3-3
Emulation of 80287, 2-45, 3-4, 3-5
Encoding of Data Types, 1-28 through 1-32
Error Synchronization, 2-48, 2-49, 2-50

Exception Handling, Numeric Processing,
3-5,3-6,3-7, D-12

Exceptions, Numeric, 1-32 through 1-37
Automatic Exception Handling, 1-36
Handling Numeric Errors, 1-33
Inexact Result, 1-33
Invalid Operation, 1-32
Masked Response, 1-33, 1-34, 1-35
Numeric Overflow and Underflow, 1-33,

1-35
Software Exception Handling, 1-36, 1-37
Zero Divisor, 1-32, 1-35, D-I0

Exponent Field, 1-15

F2XMl (Exponentiation), 1-2,2-12,2-35,
D-23, D-24

FADD (Add Real), 1-2,2-2,2-5,2-6,2-22,
D-22

FADDP (Add Real and POP), 2-5, 2-6, 2-22,
D-22

F ABS (Absolute Value), 2-5, 2-9, 2-22, D-23
FBLD (Packed Decimal~-BCD-Load), 2-2,

2-4,2-22
FBSTP (Packed Decimal-BCD--Store and

Pop), 2-2, 2-4, 2-3
FCHS (Change Signs), 2-5, 2-9, 2-23, D-23
FCLEX/FNCLEX (Clear Exceptions), 2-14,

2-16,2-32, D-23
FCOM (Compare Real), 2-10, 2-23, D-21
FCOMP (Compare Real and Pop), 2-10,

2-23, D-21
FCOMPP (Compare Real and Pop Twice),

2-10,2-24, D-21
FDECSTP (Decrement Stack Pointer), 2-14,

2-19, 2-24, D-23
FDISI/FNDISI, 2-15, B-1
FDIV (Divide Real), 2-5, 2-7, 2-24, D-22
FDIV DWORD PTR (Division, Single

Precision), 1-2
FDIVP (Divide Real and Pop), 2-5, 2-7, 2-24
FDIVR (Divide Real Reversed), 2-5, 2-7,

2-24

Index-1

FDIVRP (Divide Real Reversed and Pop),
2-5, 2-7, 2-25

FENIjFNENI, 2-15, B-1
FFREE (Free Register), 2-14, 2-19, 2-25,

D-23
FIADD (Integer Add), 2-5, 2-6, 2-25
FICOM (Integer Compare), 2-10, 2-25
FICOMP (Integer Compare and Pop),2-10,

2-25
FIDIV (Integer Divide), 2-5, 2-7, 2-26
FIDIVR (Integer Divide Reversed), 2-5, 2-7,

2-26
FILD (Integer Load), 2-2, 2-3, 2-26
FIMUL (Integer Multiply), 2-5, 2-7, 2-26,

D-22
FINCSTP (Increment Stack Pointer), 2-14,

2-19,2-26, D-23
FINIT jFNINIT (Initialize Processor), 2-14,

2-15,2-27,2-37, D-23
FIST (Integer Store), 1-34, 1-35, 2-2, 2-3,

2-27
FISTP (Integer Store and Pop), 2-2, 2-4,

·2-27
FISUB (Integer Subtract), 2-5, 2-6, 2-27
FISUBR (Integer Subtract Reversed), 2-5,

2-6,2-27
FLD (Load Real), 1-35,2-3,2-28, D-21
FLDI (Load One), 2-13, 2-29, D-22
FLDCW (Load Control Word), 2-14, 2-15,

2-28, 2-37, D-23
FLDENV (Load Environment), 1-36,2-14,

2-19,2-25, D-23
FLDLZE (Load Log Base 2 of e), 2-13,

2-14,2-29, D-22
FLDL2T (Load Log Base 2 of 10), 2-13,

2-14,2-29, D-22
FLDLG2 (Load Log Base3 10 of 2),2-13,

2-14,2-28, D-22
FLDLN2 (Load Log Base e of 2),2-13,

2-14,2-28, D-22
FLDPI (Load PI), 2-13, 2-14, 2-25, D-22
FLDZ (Load Zero), 2-13, 2-29, D-22
Floating Point, 1-15, 1-20
FMUL (Multiply Real), 2-5, 2-7, 2-30
FMULP (Multiply Real and Pop), 2-5, 2-7,

2-30

INDEX

FNOP (No Operation), 2-14, 2-19, 2-30,
D-23

FPATAN (Partial Arctangant), 1-2,2-12,
2-30, D-23, D-24

FPREM (Partial Remainder), 1-34, 2-5, 2-7,
2-8,2-30,4-17, D-22

FPTAN (Partial Tangent), 2-12, 2-31, 4-17,
D-23, D-24

FRNDINT (Round to Integer), 1-23,2-5,
2-9, 2-35, D-23

FRSTOR (Restore State), 2-14, 2-17, 2-31,
2-37, D-23

FSAVE, FNSAVE (Save State), 2-14, 2-17,
2-31,2-37, D-23

FSCALE (Scale), 2-5, 2-7, 2-32, D-22
FSETPM (Set Protected Mode), 2-14, 2-15,

2-32, D-23
FSQRT (Square Root), 1-34,2-1,2-5,2-7,

2-32, D-22
FST (Store Real), 1-34, 1-35, 2-2, 2-3, 2-32,

D-21
FSTCW jFNSTCW (Store Control Word),

2-14, 2-16, 2-32, D-23
FSTENV jFNSTENV (Store Environment),

2-14, 2-18, 2-32, D-23
FSTP (Store Real and Pop), 1-34, 1-35,2-2,

2-3, 2-33, D-21
FSTSW jFNSTSW (Store Status Word),

2-9,2-14,2-16,2-33,2-37, D-23
FSTSW AX, FNSTSW AX (Store Status

Word in AX), 2-14, 2-16, 2-33, D-23
FSUB(Subtract Real), 2-5, 2-6, 2-33, D-22
FSUBP (Subtract Real and Pop), 2-5, 2-6,

2-34
FSUBR (Subtract Real Reversed), 2-5, 2-6,

2-34
FSUBRP (Subtract Real Reversed and Pop),

2-5, 2-6, 2-34
FTST (Test), 2-10, 2-11, 2-34, D-21
FWAIT (CPU Wait), 2-14,2-19,2-34
FXAM (Examine), 1-2, 1-23,2-10,2-11,

2-35, 4-2, 4-3, D-21
FXCH (Exchange Registers), 2-2, 2-3, 2-35,

D-21
FXTRACT (Extract Exponent and

Significand), 2-5, 2-9, 2-35, D-23

Index-2

FYL2X (Logarithm-of x), 1-2,2-13,2-35,
D-23, D-24

FYL2XPI (Logarithm-of x+ 1),2-13,2-35,
D-23, D-24

GET$REAL$ERROR (Store, then Clear,
Exception Flags), 2-37

Handling Numeric Errors, 1-33
Hardware Interface, 1-6, D-4

I/O Locations (Dedicated and Reserved),
3-2

IEEE P754 Standard, Implementation,
Appendix C

Indefinite, 1-27
Inexact Result, 1-33
Infinity, 1-25
Infinity Control, 1-19
INIT$REAL$MA TH$UNIT (Initialize

Processor Procedure), 2-37
Initialization and Control, 3-2 through 3-7
Instruction Coding and Decoding, A-I
Instruction Execution Times, 2-20, 2-21
Instruction Length, 2-22 through 2-36
Integer Bit, 1-16, 1-17, 1-20
Introduction to Numeric Processor 80287,

1-1, Appendix D
Invalid Operation, 1-32

Long Integer Format, 1-16
Long Real Format, 1-16

Machine Instruction Encoding and
Decoding, Appendix A

Masked Response, 1-33, 1-34, 1-35
MP (Math Present) Flag, 3-3

NaN (Not a Number), 1-25, 1-26, 1-27
NO-WAIT FORM, 2-14
Nonnormal Real Numbers, 1-20
Number System, 1-13, 1-14, 1-15
Numeric Operands, 2-1
Numeric Overflow and Underflow, 1-33,

1-35
Numeric Processor Overview, 1-1

INDEX

Output Format, 4-17
Overflow, 1-20, 1-33,4-16, D-12

Packed Decimal Notation, 1-15, 1-16
Precision Control, 1-18, 1-35
PLM-286, 2-41, 2-42
Pointers (INstruction/Data), 1-12, D-1O
Processor Control Instructions, 2-14 through

2-19, D-23, D-24
Programming Examples (Chapter 4),

Conditional Branching, 4-1, 4-2
Exception Handling, 4-3 through 4-6
Floating Point to ASCII Conversion, 4-7

through 4-16
Function Partitioning, 4-14
Special Instructions, 4-15

Programming Interface, 1-5, D-4
Pseudo zeros and zeros, 1-23, 1-24

Real Number Range, 1-14
Real Numbers, 1-15, 1-16, 1-17
Recognizing the Presence of 80287, 3-2, 3-33
Register Stack, 1-8, 1-9
RESTORE$REAL$STA TUS (Restore

Processor State), 2-3 7
Rounding Control, 1-18

SA VE$REAL$ST ATUS (Save Processor
State), 2-37

Scaling, 4-16
SET$REAL$MODE (Set Exception Masks,

Ronding Precision, and Infinity
C.ontrols),

2-37
Short Integer Format, 1-16
Short Real Format, 1-16
Significand, 1-15
Software Exception Handling, 1-36, 1-37
Source Operands, 2-2
Status Word, 1-9, 1-10, 1-11

Tag Word 1-12, D-1O
Temporary Real Format, 1-16
Transcendental Instructions, 2-11, 2-12, D-23
Trigonometric Calculation Examples, 4-17

through 4-23

Index-3

Underflow, 1-20, 1-33,4-16, D-12
Unnormals, 1-20, 1-22, 1-23
U pgradability, 1-4

WAIT Form, 2-14

INDEX

Word Integer Format, 1-16

Zero Divisor, 1-32, 1-35, D-10
Zeros, 1-23, 1-24

Index-4

DOMESTIC SALES OFFICES

ALABAMA GEORGIA NEW JERSEY PENNSYLVANIA (Cont'd)

TEXAS
ARIZONA ILLINOIS

NEW MEXICO

CALIFORNIA
INDIANA NEW YORK

Parkway

IOWA

NE

KANSAS

UTAH

Street

LOUISIANA
City 84123
263-8051

Industrial Digital Systems Corp VIRGINIA
Tel: (504) 899-1654

MARYLAND Rosa Road

23288
282-5668

NORTH CAROLINA
WASHINGTON

Road

COLORADO
OHIO

MASSACHUSETTS

300
WISCONSIN

Road

CONNECTICUT
MICHIGAN OKLAHOMA

CANADA
ONTARIO

Canada, Ltd.

MINNESOTA OREGON

FLORIDA

MISSOURI
PENNSYLVANIA

City Expressway QUEBEC

63045 Canada, Ltd

291-1990

*Field Application Location

BELGIUM

Intel Corporation SA
Parc Seny
Rue du Moulin a Papier 51
Boite 1
B-1160 Brussels
Tel: (02)661 07 11
TELEX: 24814

DENMARK

Inlel Denmark A/S·
Glentevej 61 - 3rd Floor
DK-2400 Copenhagen
Tel: (01) 19 80 33
TELEX: 19567

FINLAND

Intel Finland OY
Hameentie 103
SF - 00550 Helsinki 55
Tel: 0/716 955
TELEX: 123 332

FRANCE

Intel Corporation, S.A.R.L.·
5 Place de la Balance
Silic 223
94528 Rungis Cedex
Tel: (01) 687 22 21
TELEX: 270475

EUROPEAN SALES OFFICES

FRANCE (Cont'd)

Intel Corporation, SAR.L
Immeuble BBC
4 Quai des Etroils
69005 Lyon
Tel: (7) 842 40 89
TELEX: 305153

WEST GERMANY

Inlel Semiconductor GmbH'
Seidlslrasse 27
0-8000 Munchen 2
Tel: (89) 53891
TELEX: 05-23177 INTL D

Intel Semiconductor GmbH'
Mainzer Sirasse 75
0-6200 Wiesbaden 1
Tel: (6121) 70 08 74
TELEX: 04186183 INTW 0

Intel Semiconductor GmbH
Brueckstrasse 61
7012 Fellbach
Stuttgart
Tel: (711) 58 00 8~
TELEX: 7254826 INTS 0

Intel Semiconductor GmbW
Hohenzollern Strasse 5*
3000 Hannover 1
Tel: (511) 34 40 81
TELEX: 923625 INTH 0

ISRAEL

Intel Semiconductor Ltd."
P.O. Box 1659
Haifa
Tel: 4/524 261
TELEX: 46511

ITALY

Intel Corporation ltalia Spa*
Milanofiori, Palazzo E
20094 Assago (Milano)
Tel: (02) 824 00 06
TELEX: 315183 INTMIL

NETHERLANDS

Intel Semiconductor Nederland B.v.·
Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam
Tel: (10) 21 23 77
TELEX: 22283

NORWAY

SPAIN

28

40 04

SWEDEN

SWITZERLAND

UNITED KINGDOM

'Field Application Lec

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Elektronische Geraete GmbH
Rotemuehlgasse 26
A 1120 Vienna
Tel: (222) 83 63 96
TELEX: 11532 BASAT A

BELGIUM

Inelco Belgium SA
Ave. des Croix de Guerre 94
B1120 Brussels
Tel: (02) 216 01 60
TELEX: 25441

DENMARK

iTT MultiKomponent A/S
Naverland 29
DK-2600 Gloskrup
Tel: (02) 45 66 45
TX: 33355

FINLAND

Oy Fintronlc AB
Melkonkatu 24 A
SF-0021O
Helsinki 21
Tel: {OJ 692 60 22
TELEX: 124 224 Ftron SF

FRANCE

Generim
ZA de Courtaboeul
Avenue de la. Baltique
91943 Les Ulis Cedex-B.P.88
Tel: (1) 907 78 78
TELEX: F691700

Jermyn SA
16, Avenue Jean-Jautes
94600 Choisy-Le-Roi
Tel: (1) 853 12 00
TELEX: 260967

Metrologie
La Tour d' Asnieres
4, Avenue Laurent Cely
92606-Asnieres
Tel: (1) 790 62· 40
TELEX: 611-448

Tekelec Airtronic
Cite des Bruyeres
Rue Carle Vernet B.P 2
92310 Sevres
Tel: (1) 535 75 35
TELEX: 204552

WEST GERMANY

Electronic 2000 Vertriebs A.G.
Neumarkter Strasse 75
D-8000 Munich 80
Tel: (89) 43 40 61
TELEX 522561 EIEC D

Jermyn GmbH
Postfach 1180
Schulstrasse 48
D-6277 Bad Camberg
Tel: (06434) 231
TELEX: 484426 JERM 0

Celdis Enatechnik Systems GmbH
Gutenbergstrasse 4
2359 Henstedt.Ulzburg
Tel: (04193) 4026
TELEX: 2180260

Metrologie GmbH
Hansastrasse 15
8000 Munich 21
Tel: (89) (7 30 84
TELEX: 0 5213189

Proelectron Vertriebs GmbH
Max Planck Strasse 1-3
6072 Oteieich bei Frankfurt
Tel: (6103) 33564
TELEX: 417983

IRELAND

Micro Marketing
Glenageary Office Park
Glenageary
Co. Dublin
Tel: (1) 85 62 88
TELEX: 31584

ISRAEL

Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61390
Tel: (3) 47 51 51
TELEX: 33638

ITALY

Eledra 3S S.PA
Viale Elvezia, 18
I 20154 Milano
Tel: (2) 34 97 51
TELEX: 332332

Intesi
Milanoljori Pal. E/5
20090 Assago
Milano
Tel: (02) 82470
TELEX: 311351

NETHERLANDS

Koning & Hartman
Koperwerl 30
P.O. Box 43220
2544 EN's Gravenhage
Tel: 31 (70) 210.101
TELEX: 31528

NORWAY

Nordisk Elektronic (Norge) AlS
Postoffice Box 122

~fs~dSH~a~:t~d 4

Tel: (2) 846 210
TELEX: 17546

PORTUGAL

Ditram
Componentes E Electronica LOA
Av. Miguel Bombarda, 133
Pl000 Lisboa
Tel: (19) 545 313
TELEX: 14182 Brieks-P

SPAIN

Interface S.A
Ronda San Pedro 22, 3 Piso
Barcelona 10
Tel: (34) 33 01 78 51
TWX: 51508

In SESA
~~dW~ ~ggel 21, 6 Piso

Tel: (34) 14 1954 00
TELEX: 27461

SWEDEN

AB Gosta Backstrom
Box 12009
Aistroemergatan 22
S-10221 Stockholm 12
Tel: (8) 541 080
TELEX: 10135

Nordisk Electronik AB
Box 27301
Sandhamnsgatan 71
S-10254 Stockholm
Tel: (8) 635 040
TELEX: 10547

Telko AB
Gardsfogdevagen 1
Box 186
S-161 26 Bromma
Tel: (8) 98 08 20
TELEX: 11941

SWITZERLAND

UNITED KINGDOM

By tech Ltd.
Unit 57
London Road

§!~I~lhir:eading
Tel: (0734) 61031
TELEX: 848215

Comway Microsystems Ltd.
Market Street
UK-Bracknell, Berkshire
Tel: 44 (344) 55333
TELEX: 847201

Jermyn Industries
Vestry Estale
Sevenoaks, Kent
Tel: (0732) 450144
TELEX: 95142

M.ED.L
East Lane Road

~?J~~e~;m~~~ 7PP
Tel: (01) 904 93 07
TELEX: 28817

Rapid Recall, LId.
Rapid House/Denmark St

~~~s,W~~~~~d HP11 2ER 
Tel: (0494) 26 271 
TELEX: 837931 

YUGOSLAVIA 

H. R. Microelectronics Enterprises 
P.O. Box 5604 
San Jose, California 95150 
Tel: 408/978-8000 
TELEX: 278-559 




