

AP-186

FFFFH, and the other at offset 10000H (one
byte beyond the end of the segment). One byte
segment underflow will also occur (on the 80186)
if a stack PUSH is executed and the Stack Point­
er contains the value I.

Shift/Rotate by Value Greater Then 31:

Before the 80186 performs a shift or rotate by a
value (either in the CL register, or by an immedi­
ate value) it ANDs the value with IFH, limiting
the number of bits rotated to less than 32. The
8086 does not do this.

LOCK prefix:

The 8086 activates its LOCK signal immediately
after executing the LOCK prefix. The 80186
does not activate the LOCK signal until the pro­
cessor is ready to begin the data cycles associated
with the LOCKed instruction.

Interrupted String Move Instructions:

If an 8086 is interrupted during the execution of
a repeated string move instruction, the return
value it will push on the stack will point to the
last prefix instruction before the string move in­
struction. If the instructi\>n had more than one
prefix (e.g., a segment override prefix in addition
to the repeat prefix), it will not be re-executed
upon returning from the interrupt. The 80186
will push the value of the first prefix to the re­
peated instruction, so long as prefixes are not re­
peated, allowing the string instruction to
properly resume.

Conditions causing divide error with an integer
divide:

The 8086 will cause a divide error whenever the
absolute value of the quotient is greater then
7FFFH (for word operations) or if the absolute
value of the quotient is greater than 7FH (for
byte operations). The 80186 has expanded the
range of negative numbers allowed as a quotient

56

by I to include 8000H and 80H. These numbers
represent the most negative numbers representa­
ble using 2's complement arithmetic (equaling
-32768 and -128 in decimal, respectively).

ESC Opcode:

The 80186 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction
(used for co-processors like the 8087) is execut­
ed. The 8086 has no such provision. Before the
80186 performs this trap, it must' be pro­
grammed to do so.

These differences can be used to determine whether the
program is being executed on an 8086 or an 80186.
Probably the safest execution difference to use for this
purpose is the difference in multiple bit shifts. For exam­
ple, if a multiple bit shift is programmed where the shift
count (stored in the CL register!) is 33, the 8086 will
shift the value 33 bits, whereas the 80186 will shift it
only a single bit.

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language
programming of the processor, and enhance the perfor­
mance of higher level languages running on the proces­
sor. These new instructions are covered in depth in the
8086/80186 users manual and in appendix H of this
note.

10. CONCLUSIONS

The 80186 is a glittering example of state-of-the art in­
tegrated circuit technology applied to make the job of
the microprocessor system designer simpler and faster.
Because many of the required peripherals and their in­
terfaces have been cast in silicon, and because of the
timing and drive latitudes provided by the part, the de­
signer is free to concentrate on other issues of system de­
sign. As a result, systems designed around the 80186
allow applications where no other processor has been
able to provide the necessary performance at a compara­
ble size or cost.

AFN-21 0973

APPENDIX A 58
APPENDIX B 60
APPENDIX C 61
APPENDIX D 64

APPENDIX E 68
APPENDIX F 70

APPENDIX G 72

APPENDIX H 76

APPENDIX I 78

inter AP-186

APPENDIX A: PERIPHERAL CONTROL
BLOCK
All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained
within an integrated peripheral control block. The regis­
ters are physically located within the peripheral devices
they control, but are addressed as a single block of regis­
ters. This set of registers fills 256 contiguous bytes and
can be located beginning on any 256 byte boundary of
the 80186 memory or I/O space. A map of these regis­
ters is shown in Figure A-I.

A.1 Setting the Base Location of the
Peripheral Control Block

In addition to the control registers for each of the inte­
grated 80186 peripheral devices, the peripheral control

block contains the peripheral control block relocation
register. This register allows the peripheral control block
to be re-located on any 256 byte boundary within the
processor's memory or I/O space. Figure A-2 shows the
layout of this register.

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the
peripheral control block, any time the location of the pe­
ripheral control block is moved, the location of the relo­
cation register will also move.

In addition to the peripheral control block relocation in­
formation, the relocation register contains two addition­
al bits. One is used to set the interrupt controller into
iRMX86 compatibility mode. The other is used to force
the processor to trap whenever an ESCape (coprocessor)
instruction is encountered.

OFFSET

Relocation Register FEH

DMA Descriptors Channel 1

DMA Descriptors Channel 0

Chip-Select Control Registers

Timer 2 Control Registers

Timer 1 Control Registers

Timer 0 Control Registers

Interrupt Controller Registers

--

DAH

DOH

CAH

COH

A8H

AOH

66H

60H
5EH

58H
56H

SOH

3EH '

20H

Figure A-1. 80186 Integrated Peripheral Control Block

58 AFN-21 0973

AP-186

11 10 9 B 7 6 5 4 3 2 o
OFFSET: FEH Relocation Address Bits R19-RB

= ESC Trap I No ESC Trap (1/0) ET
MilO
RMX

= Register block located In Memory 11/0 Space (1/0)
= Master Interrupt Controller mode IIRMX compatible

Interrupt Controller mode (0/1)

Figure A-2. 80186 Relocation Regllter Layout

Because the relocation register is contained within the
peripheral control block, upon reset the relocation regis­
ter is automatically programmed with the value 20FFH.
This means that the peripheral control block will be lo­
cated at the very top (FFOOH to FFFFH) of I/0 space.
Thus, after reset the relocation register will be located at
word location FFFEH in I/O space.

If the user wished to locate the peripheral control block
starting at memory location 10000H he would program
the peripheral control register with the value 1100H. By
doing this, he would move all registers within the inte·
grated peripheral control block to memory locations
10000H to 100FFH. Note that since the relocation reg­
ister is contained within the peripheral control block, it
too would move to word location 100FEH in memory
space.

A.2 Peripheral Control Block Registers
Each of the integrated peripherals' control and status
registers are loc,a ted at a fixed location above the pro­
grammed base location of the peripheral control block.
There are many locations within the peripheral control
block which are not assigned to any peripheral. If a write
is made to any of these locations, the bus cycle will be
run, but the value will not be stored in any internalloca­
tion. This means that if a subsequent read is made to the
same location, the value written will not be read back.

The processor will run an external bus cycle for any
memory or I/0 cycle which accesses a location within
the integrated control block. This means that the ad­
dress, data, and control information will be driven on the
80186 external pins just as if a "normal" bus cycle had
been run. Any information returned by an external de­
vice will be ignored, however, even if the access was to a
location which does not correspond to any of the inte-

59

grated peripheral control registers. The above is also
true for the 80188, except that the word access made to
the integrated registers will be performed in a single bus
cycle, with only the lower 8 bits of data being driven by
the write cycle (since the upper 8 bits of data are non­
existant on the external data bus!)

The processor internally generates a ready signal when­
ever any of the integrated peripherals are accessed; thus
any external ready signals are ignored whenever an ac­
cess is made to any location within the integrated pe­
ripheral register control block. This ready will also be
returned if an access is made to a location within the 256
byte area of the periperal control block which does not
correspond to any integrated peripheral control register.
The processor will insert 0 wait states to any access with­
in the integrated peripheral control block except for ac­
cesses to the timer registers. ANY access to the timer
control and counting registers will incur 1 wait state.
This wait state is required to properly multiplex proces­
sor and counter element accesses to the timer control
registers.

All accesses made to the integrated peripheral control
block must be WORD accesses. Any write to the inte­
grated registers will modify all 16 bits of the register,
whether the opcode specified a byte write or a word
write. A byte read from an even location should cause no
problems, but the data returned when a byte read is per­
formed from an odd address within the peripheral con­
trol block is undefined. This is true both for the 80186
AND the 80188. As stated above, even though the
80188 has an external 8 bit data bus, internally it is still
a 16 bit machine. Thus, the word accesses performed to
the integrated registers by the 80188 will each occur in a
single bus cycle with only the lower 8 bits of data being
driven on the external data bus (on a write).

AFN-21 0973

AP-186

APPENDIX B: 80186 SYNCHRONIZATION
INFORMATION

Many input signals to the 80186 are asynchronous, that
is, a specified set up or hold time is not required to insure
proper functioning ofthe device. Associated with each of
these inputs is a synchronizer which samples this exter­
nal asynchronous signal, and synchronizes it to the in­
ternal 80186 clock.

B.1 ,,a/hy Synchronizers Are Required

Every data latch requires a certain set up and hold time
in order to operate properly. At a certain window within
the specified set up and hold time, the part will actually
try to latch the data. If the input makes a transition
within this window, the output will not attain a stable
state within the given output delay time. The size of this
sampling window is typically much smaller than the ac­
tual window specified by the data sheet, however part to
part variation could move this window around within the
specified window in the data sheet.

Even if the input to a data latch makes a transition while
a data latch is attempting to latch this input, the output
of the latch will attain a stable state after a certain
amount of time, typically much longer than the normal
strobe to output delay time. Figure B-1 shows a normal
input to output strobed transition and one in which the
input signal makes a transition during the latch's sample
window. In order to synchronize an asynchronous signal,
all one needs to do is to sample the signal into one data
latch, wait a certain amount of time, then latch it into a
second data latch. Since the time between the strobe into
the first data latch and the strobe into the second data
latch allows the first data latch to attain a steady state
(or to resolve the asynchronous signal), the second data
latch will be presented with an input signal which satis­
fies any set up and hold time requirements it may have.
Thus, the output of this second latch is a synchronous
signal with respect to its strobe input.

A synchronization failure can occur if the synchronizer
fails to resolve the asynchronous transition within the
time between the two latch's strobe signals. The rate of
failure is determined by the actual size of the sampling

60

STROBE /

INPUT ----=SE:::T:::-U:-::P~T:::I:-:M=E· HOLD TIME

rrl
I

ACTUAL SAMPLING INSTANT

Ilel INVALID ~
_---J ~

INPUT ~

FiEsPONSE 1 • RESOLUTION TIME .1

VALID~
INPUT

RESPONSE _______ -J/

Figure 8-1_ Valid & Invalid Latch Input
Transitions & Responses

window of the data latch, and by the amount of time be­
tween the strobe signals of the two latches. Obviously, as
the sampling window gets smaller, the number of times
an asynchronous transition will occur during the sam­
pling window will drop. In addition, however, a smaller
sampling window is also indicative of a faster resolution
time for an input transition which manages to fall within
the sampling window.

B.2 80186 Synchronizers

The 80186 contains synchronizers on the RES,
TEST, TmrInO-I, DRQO-1, NMI, INTO-3,ARDY, and
HOLD input lines. Each of these synchronizers use the
two stage synchronization technique described above
(with some minor modifications for the ARDY line, see
section 3.1.6). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow
operation of the synchronizers with a mean time be­
tween failures of over 30 years assuming continuous
operation.

AFN-21 0973

APPENDIX C: 80186 EXAMPLE DMA INTERFACE CODE

$modl86
name assembly.example.80 186.0 MA.support

This file contains an example procedure which initializes the 80186 OMA
controller to perform the OMA transfers between the 80186 system the the
8272 Floppy Oisk Controller (FOC). It assumes that the 80186
peripheral control block has not been moved from its reset location.

argl
arg2
arg3
OMA..FROM.LOWER
OMA..FROM_UPPER
OMA..TO.LOWER
OMA..TO_UPPER
OMA.COUNT
OMA_CONTROL
OMA..TO_DISK..CONTROL

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

OMA.FROM_OISK..CONTROLequ

FOCOMA equ
FOCOATA equ
FOCSTATUS equ

cgroup group

word ptr [BP + 4]
word ptr [BP + 6]
word ptr [BP + 8]
OFFCOh
OFFC2h
OFFC4h
OFFC6h
OFFC8h
OFFCAh
01486h

OA046h

6B8h
688h
680h

code

OMA register locations

destination synchronization
source to memory, incremented
destination to I/O
no terminal count
byte transfers

source synchroniza tion
source to I/O
destination to memory, incr
no terminal count
byte transfers
FOC OMA address
FOC data register
FOC status register

code segment public 'code'
public seLdma_
assume cs:cgroup

seLdma (offset,to) programs the OMA channel to point one side to the

seLdma.

disk OMA address, and the other to memory pointed to by ds:offset. If
'to' = 0 then will be a transfer from disk to memory; if
'to' = 1 then will be a transfer from memory to disk. The parameters to
the routine are passed on the stack.

proc near
enter 0,0
push AX
push BX
push OX
test arg2,1

jz from..disk
performing a transfer from memory to the disk controller

mov
rol

AX,OS
AX,4

61

set stack addressability
save registers used

check to see direction of
transfer

get the segment value
gen the upper 4 bits of the
physical address in the lower 4
bits of the register

• AFN·21 0973

AP-186

moy BX,AX saYe the result ...
moy DX,DMA.FROM_UPPER prgm the upper 4 bits of the
out DX,AX DMA source register
and AX,OFFFOh form the lower 16 bits of the

physical address
add AX,arg1 add the offset
may DX,DMA.FROM_LOWER prgm the lower 16 bits of the
out DX,AX DMA source register
jnc no_carry _from check for carry out of addition
inc BX if carry out, then need to adj
may AX,BX the upper 4 bits of the pointer
maY DX,DMA.FROM_UPPER
out DX,AX

no_carry_from:
may AX,FDCDMA prgm the low 16 bits of the DMA
may DX,DMA.TO_LOWER destination register
out DX,AX
xor AX,AX zero the up 4 bits of the DMA
may DX,DMA.TO_UPPER destination register
out DX,AX
may AX,DMA.TO_DISK..CONTROL; prgm the DMA ctl reg
may DX,DMA.CONTROL note: DMA may begin immediatly
out DX,AX after this word is output
pop DX
pop BX
pop AX
leaye
ret

frolTLdisk:

performing a transfer from the disk to memory

maY AX,DS
rol AX,4
may DX,DMA.TO-UPPER
out DX,AX
may BX,AX
and AX,OFFFOh
add AX,arg1
may DX,DMA.TO_LOWER
out DX,AX
jnc no_carry_to
inc BX
may AX,BX
may DX,DMA.TO_UPPER
out DX,AX

no_carry_to:
may AX,FDCDMA

may DX,DMA.FROM_LOWER
out DX,AX
xor AX,AX
may DX,DMA.FROM_UPPER
out DX,AX
may AX,DMA.FROM_DISK..CONTROL
may DX,DMA.CONTROL

62 AFN-21 0973

AP-186

out DX,AX
pop DX
pop BX
pop AX
leave
ret

seLdma.. endp

code ends
end

63 AFN-21 0973

inter AP-186

APPENDIX D: 80186 EXAMPLE TIMER INTERFACE CODE

$modl86
name

this file contains example 80186 timer routines. The first routine

argl
arg2
arg3
timer-2int

sets up the timer and interrupt controller to cause the timer
to generate an interrupt every 10 milliseconds, and to service
interrupt to implement a real time clock. Timer 2 is used in
this example because no input or output signals are required.
The code example assumes that the peripheral control block has
not been moved from its reset location (FFOO-FFFF in I/0 space).

equ word ptr [BP + 4)
equ word ptr [BP + 6)
equ word ptr [BP + 8)
equ 19

timer-2control equ OFF66h
timeL2malLcti equ OFF62h
timerjnLcti equ OFF32h
eoLregister equ OFF22h
interrupLstat equ OFF30h

data segment
public hour_,minute_,second_,msec_

msec_ db ?
hOUL db ?
minute_ db ?
second_ db ?
data ends

cgroup group code
dgroup group data

code segment
public seLtime_
assume cs:code,ds:dgroup

seLtime(hour,minute,second) sets the time variables, initializes the
80186 timer2 to provide interrupts every 10 milliseconds, and
programs the interrupt vector for timer 2

seLtime_ proc near
enter 0,0
push AX
push DX
push SI
push DS

xor AX,AX

mov DS,AX

mov SI,4 * timer2int

64

timer 2 has vector type 19

interrupt controller regs

public 'data'

public 'code'

set stack addressability
save registers used

set the interrupt vector
the timers have unique
interrupt
vectors even though they share
the same control register

AFN-21 0973

AP-186

mov OS: lSI] ,offset timer-2..interruptJoutine
inc SI
inc SI
mov OS: [SI],CS
pop OS

mov AX,argl set the time values
mov hour_,AL
mov AX,arg2
mov minute_,AL
mov AX,arg3
mov second_,AL
mov msec..,O

mov OX,timer2..maJLctl set the max count value
mov AX,20000 10 ms /500 ns (timer 2 counts

at 1/4 the CPU clock rate)
out OX,AX
mov OX,timer2..control set the control word
mov AX, III 000000000000 I b enable counting

generate interrupts on TC
continuous counting

out OX,AX

mov OX,timer..inLctl set up the interrupt controller
mov AX,OOOOb unmask interrupts

highest priority interrupt
out OX,AX
sti enable processor interrupts

pop SI
pop OX
pop AX
leave
ret

seUime_ endp

timer2..interruptJoutine proc far
push AX
push OX

cmp msec_,99 see if one second has passed
jae bump..second if above or equal...
inc msec_
jmp resetinLctl

bump..second:
mov msec_,O reset millisecond
cmp second..,59 see if one minute has passed
jae bump_minute
inc second..
jmp resetinLctl

bump_minute:
mov second..,O
cmp minute..,59 see if one hour has passed
jae bump..hour
inc minute_
jmp resetinLctl

65 AFN-21 0973

bump.hour:

reseLhour:

reseLinLctl:

timer2.interrupLroutine
code

$mod186
name

mov
cmp
jae
inc
jmp

AP-186

minute.,O
hour., I 2
reseLhour
hour.
reseLinLcti

mov hour.., I

mov
mov
out

pop
pop
iret
endp
ends
end

OX,eoLregister
AX,8000h
OX,AX

OX
AX

example.80 I 86.baud.code

this file contains example 80186 timer routines. The second routine
. sets up the timer as a baud rate generator. In this mode,

Timer I is used to continually output pulses with a period of
6.5 usec for use with a serial controller at 9600 baud
programmed in divide by 16 mode (the actual period required
for 9600 baud is 6.51 usec). This assumes that the 80186 is
running at 8 MHz. The code example also assumes that the
peripheral control block has not been moved from its reset
location (FFOO·FFFF in I/O space).

timer Lcontrol
timer LmalLcnt

equ OFF5Eh
equ OFF5Ah

see if 12 hours have passed

non-specific end of interrupt

code segment public 'code'
assume cs:code

seLbaudO initializes the 80186 timer I as a baud rate generator for
a serial port running at 9600 baud

seLbaud. proc near
push AX
push OX

mov OX,timerl.malLcnt
mov AX,13
out OX,AX
mov OX,timer Lcontrol
mov AX, II 0000000000000 I b

out OX,AX

pop OX
pop AX

66

save registers used

set the max count value
500ns * 13 = 6.5 usec

set the control word
enable counting
no interrupt on TC
continuous counting
single max count register

AFN-21 0973

seLbaud_
code

$modl86
name

ret
endp
ends
end

AP-186

example..80 I 86_counLcode

this file contains example 80186 timer routines. The third routine
sets up the timer as an external event counter. In this mode,
Timer I is used to count transitions on its input pin. After
the timer has been set up by the routine, the number of
events counted can be directly read from the timer count
register at location FF58H in I/0 space. The timer will
count a maximum of 65535 timer events before wrapping
around to zero. This code example also assumes that the
peripheral control block has not been moved from its reset
location (FFOO-FFFF in I/O space).

timer Lcontrol equ OFF5Eh
timer l..max-cnt equ OFF5Ah
timer LcnLreg equ OFF58H

code segment
assume cs:code

set..countO initializes the 80186 timer! as an event counter

seLcounL proc near
push AX
push OX

mov OX,timerl_max-cnt
mov AX,O

out OX,AX
mov OX,timerLcontrol
mov AX,II 00000000000 1 0 1 b

out OX,AX

xor AX,AX
mov OX,timerLcnLreg
out OX,AX

pop OX
pop AX
ret

seLcounL endp
code ends

end

67

public 'code'

save registers used

set the max count value
allows the timer to count
all the way to FFFFH

set the control word
enable counting
no interrupt on TC
continuous counting
single max count register
external clocking

zero AX
and zero the count in the timer
count register

AFN-21 0973

AP-186

APPENDIX E: 80186 EXAMPLE
INTERRUPT CONTROLLER INTERFACE
CODE

$modl86
name exampk80186jnterrupLcode

This routine configures the 80186 interrupt controller to provide
two cascaded interrupt inputs (through an external 8259A
interrupt controller on pins INTOjINT2) and two direct
interrupt inputs (on pins INTI and INT3). The default priority
levels are used. Because of this, the priority level programmed
into the control register is set the III, the level all
interrupts are programmed to at reset.

intO_control
inLmask

equ
equ

OFF38H
OFF28H

code

seLinL

seLinL
code

$modl86
name

segment
assume CS:code
proc near
push OX
push AX

mov AX,OIOOIlIB

mov OX,intO_control
out OX,AX

mov AX,OIOOllOIB

mov OX,inLmask
out OX,AX
pop AX
pop OX
ret
endp
ends
end

exampk80186jnterrupLcode

This routine configures the 80186 interrupt controller into iRMX 86
mode. This code does not initialize any of the 80186
integrated peripheral control registers, nor does it initialize
the external 8259A or 80130 interrupt controller.

relocation_reg equ OFFFEH

code segment
assume CS:code

seLrmlL proc near
push OX
push AX

mov OX,relocation_reg
in AX,OX
or AX,O I OOOOOOOOOOOOOOB
out OX,AX

68

public 'code'

cascade mode
interrupt unmasked

now unmask the other external
interrupts

public 'code'

read old contents of register
set the RMX mode bit

AFN-21 0973

seLrmx..
code

pop
pop
ret
endp
ends
end

AX
DX

Ap·186

69 AFN-21 0973

AP-186

APPENDIX F: 80186/8086 EXAMPLE
SYSTEM INITIALIZATION CODE

name example..80186_system.init

This file contains a system initialization routine for the 80186
or the 8086. The code determines whether it is running on
an 80186 or an 8086, and if it is running on an 80186, it
initializes the integrated chip select registers.

restart segment at

This is the processor reset address at OFFFFOH

org 0
jmp far ptr initialize

restart ends

extrn monitor:far
init.hw segment at

assume CS:init.hw

This segment initializes the chip selects. It must be located in the
top lK to insure that the ROM remains selected in the 80186

system until the proper size of the select area can be programmed.

UMCS.reg equ OFFAOH
LMCS.reg equ OFFA2H
PACS_reg equ OFFA4H
MPCS.reg equ OFFA8H
UMCS_value equ OF800H
LMCS_value equ 07F8H
PACS_value equ 72H
MPCS_value equ OBAH

initialize proc far
mov AX,2
mov CL,33
shr AX,CL
test AX,1
jz not.80186

mov DX,UMCS.reg
mov AX,UMCS_value
out DX,AX

mov DX,LMCS.reg
mov AX,LMCS_value
out DX,AX

mov DX,PACS.reg

mov AX,PACS_value
out DX,AX

70

OFfFFh

OFFFOh

chip select register locations

64K, no wait states
32K, no wait states
peripheral base at 400H, 2 ws
PCS5 and 6 supplies,
peripherals in I/O space

determine if this is an
8086 or an 80186 (checks
to see if the multiple bit
shift value was ANDed)

program the UMCS register

program the LMCS register

set up the peripheral chip
selects (note the mid-range
memory chip selects are not
needed in this system, and
are thus not initialized

AFN-21 0973

mov
mov
out

AP-186

DX,MPCS.reg
AX,MPCS_value
DX,AX

Now that the chip selects are all set up, the main program of the
computer may be executed.

noL80186:

initialize
iniLhw

jmp
endp
ends
end

far ptr monitor

71 AFN-21 0973

AP-186

APPENDIX G: 80186 WAIT STATE
PERFORMANCE

Because the 80186 contains seperate bus interface and
execution units, the actual performance of the processor
will not degrade at a constant rate as wait states are add­
ed to the memory cycle time from the processor. The ac­
tual rate of performace degradation will depend on the
type and mix of instructions actually encountered in the
user's program.

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of
the processor. These programs show the two extremes to
which wait states will or will not effect system perfor­
mance as wait states are introduced.

Program I is very memory intensive. It performs many
memory reads and writes using the more extensive mem­
ory addressing modes of the processor (which also take a
greater number of bytes in the opcode for the instruc­
tion). As a result, the execution unit must constantly
wait for the bus interface unit to fetch and perform the
memory cycles to allow it to continue. Thus, the execu­
tion time of this type of routine will grow quickly as wait
states are added, since the execution time is almost total­
ly limited to the speed at which the processor can run bus
cycles.

Note also that this program execution times calculated
by merely summing up the number of clock cycles given
in the data sheet will typically be less than the actual
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data
sheet assume that the opcode bytes have been prefetched
and reside in the 80186 prefetch queue for immediate
access by the execution unit. If the execution unit cannot

access the opcode bytes immediatly upon request, dead
clock cycles will be inserted in which the execution unit
will remain idle, thus increasing the number of clock cy­
cles required to complete execution of the program.

On the other hand, program 2 is more CPU intensive. It
performs many integer multiplies, during which time
the bus interface unit can fill up the instruction pre­
fetch queue in parallel with the execution unit perform­
ing the multiply. In this program, the bus interface unit
can perform bus operations faster than the execution
unit actually requires them to be run. In this case, the
performance degradation is much less as wait states are
added to the memory interface. The execution time of
this program is closer to the number of clock cycles cal­
culated by adding the number of cycles per instruction
because the execution unit does not have to wait for the
bus interface unit to place an opcode byte in the prefetch
queue as often. Thus, fewer clock cycles are wasted by
the execution unit laying idle for want of instructions.
Table G-l lists the execution times measured for these
two programs as wait states were introduced with the
80186 running at 8 MHz.

Table G-1

Program 1 Program 2

of Exec Exec
Wait Time Perf Time Perf

States (",sec) Oegr (",sec) Oegr

0 505 294

1 595 18% 311 6%

2 669 12% 337 8%

3 752 12% 347 3%

$modl86
name example_waiLstate_performance

This file contains two programs which demonstrate the 80186 performance
degradation as wait states are inserted. Program 1 performs a
transformation between two types of characters sets, then copies

cgroup
dgroup
data

the transformed characters back to the original buffer (which is 64
bytes long. Program 2 performs the same type of transformation, however
instead of performing a table lookup, it multiplies each number in the
original 32 word buffer by a constant (3, note the use of the integer
immediate multiply instruction). Program "nothing" is used to measure
the call and return times from the driver program only.

group code
group data
segment public 'data'

72 AFN-21 0973

AP-186

Ltable db 256 dup (?)
Lstring db 64 dup (?)
IILarray dw 32 dup (?)
data ends

code segment public 'code'
assume eS:cgroup,DS:dgroup
public benciLl , benciL2,nothing.., waiLsta te_,seLtimer_

benciLl proc near
push SI ; save registers used
push ex
push BX
push AX

mov eX,64 translate 64 bytes
mov SI,O
mov BH,O

loop_back:
mov BL,Lstring[SI] get the byte
mov AL,Ltable[BX] translate byte
mov Lstring [SI] ,AL and store it
inc SI increment index
loop loop_back do the next byte

pop AX
pop BX
pop ex
pop SI
ret

bench_l endp

benciL2 proc near
push AX save registers used
push SI
push ex

mov eX,32 multiply 32 numbers
mov SI,offset IILarray

loop_back..2:
imul AX,word ptr [SI],3 immediate multiply
mov word ptr [SI] ,AX
inc SI
inc SI
loop loop_back..2

pop ex
pop SI
pop AX
ret

benciL2_ endp

73 AFN-21 0973

nothing..

nothing_

proc
ret
endp

AP-186

near

waiLstate(n) sets the 80186 LMCS register to the number of wait states
(0 to 3) indicated by the parameter n (which is passed on the stack).
No other bits of the LMCS register are modified.

waiLstate_ proc near
enter 0,0
push AX
push BX
push OX

mov BX,word ptr [BP + 4]
mov OX,OFFA2h

contents
in AX,OX

and AX,OFFFCh
and BX,3
or AX,BX
out OX,AX

pop OX
pop BX
pop AX
leave
ret

waiLstate_ endp

seUimerO initializes the 80186 timers to count microseconds. Timer 2
is set up as a prescaler to timer 0, the microsecond count can be read

directly out of the timer 0 count register at location FF50H in I/0
space.

seuimeL proc near
push AX
push OX

mov OX,Off66h
mov AX,4000h
out OX,AX

mov OX,Off50h
mov AX,O
out OX,AX

mov OX,Off52h
mov AX,O
out OX,AX

74

set up stack frame
save registers used

get argument
get current LMCS register

and off existing ready bits
insure ws count is good
adjust the ready bits
and write to LMCS

tear down stack frame

stop timer 2

clear timer 0 count

timer 0 counts up to 65535

AFN-21 0973

AP-186

moy DX,Off56h enable timer 0
moy AX,OcOO9h
out DX,AX

mov DX,Off60h clear timer 2 count
moy AX,O
out DX,AX

moy DX,Off62h set maximum count of timer 2
moy AX,2
out DX,AX

moy DX,Off66h re-enable timer 2
moy AX,OcOOlh
out DX,AX

pop DX
pop AX
ret

seLtimer_ endp
code ends

end

75 AFN-210873

AP-186

APPENDIX H: 80186 NEW INSTRUCTIONS

The 80186 performs many additional instructions to
those of the 8086. These instructions appear shaded in
the instruction set summary at the back of the 80186
data sheet. This appendix explains the operation of these
new instructions. In order to use these new instructions
with the 8086/186 assembler, the "$mod 186" switch
must be given to the assembler. This can be done by plac­
ing the line: "$modI86" at the beginning of the assem­
bly language file.

PUSH immediate

This instruction allows immediate data to be pushed
onto the processor stack. The data can be either an im­
mediate byte or an immediate word. If the data is a byte,
it will be sign extended to a word before it is pushed onto
the stack (since all stack operations are word
operations).

PUSHA,POPA

These instructions allow all of the general purpose
80186 registers to be saved on the stack, or restored from
the stack. The registers saved by this instruction (in the
order they are pushed onto the stack) are AX, CX, DX,
BX, SP, BP, SI, and DI. The SP value pushed onto the
stack is the value of the register before the first PUSH
(AX) is performed; the value popped for the SP register
is ignored.

This instruction does not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (IP), the
flag register, or any of the integrated peripheral
registers.

IMUL by an immediate value

This instruction allows a value to be multiplied by an im­
mediate value. The result of this operation is 16 bits
long. One operand for this instruction is obtained using
one of the 80186 addressing modes (meaning it can be in
a register or in memory). The immediate value can be
either a byte or a word, but will be sign extended if it is a
byte. The 16-bit result of the multiplication can be
placed in any of the 80186 general purpose or pointer
registers.

This instruction requires three operands: the register in
which the result is to be placed, the immediate value,
and the second operand. Again, this second operand can
be any of the 80186 general purpose registers or a speci­
fied memory location.

shifts/rotates by an immediate value

The 80186 can perform multiple bit shifts or rotates
where the number of bits to be shifted is specified by an

76

immediate value. This is different from the 8086, where
only a single bit shift can be performed, or a multiple
shift can be performed where the number of bits to be
shifted is specified in the CL register.

All of the shift/rotate instructions of the 80186 allow
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the
number of bits specified modulus 32 (i.e. the maximum
number of bits shifted by the 80186 multiple bit shifts is
31).

These instructions require two operands: the operand to
be shifted (which may be a register or a memory location
specified by any of the 80186 addressing modes) and the
number of bits to be shifted.

block input/output

The 80186 adds two new input/output instructions: INS
and OUTS. These instructions perform block input or
output operations. They operate similarly to the string
move instructions of the processor.

The INS instruction performs block input from an I/O
port to memory. The I/O address is specified by the DX
register; the memory loca tion is pointed to by the D I reg­
ister. After the operation is performed, the DI register is
adjusted by I (if a byte input is specified) or by 2 (if a
word input is specified). The adjustment is either an in-.
crement or a decrement, as determined by the Direction
bit in the flag register of the processor. The ES segment
register is used for memory addressing, and cannot be
overridden. When preceeded by a REPeat prefix, this in­
struction allows blocks of data to be moved from an I/O
address to a block of memory Note that the I/O address
in the DX register is not modified by this operation.

The OUTS instruction performs block output from
memory to an I/O port. The I/O address is specified by
the DX register; the memory location is pointed to by the
SI register. After the operation is performed, the SI reg­
ister is adjusted by I (if a byte output is specified) or by
2 (if a word output is specified). The adjustment is either
an increment or a decrement, as determined by the Di­
rection bit in the flag register of the processor. The DS
segment register is used for memory addressing, but can
be overridden by using a segment override prefix. When
preceeded by a REPeat prefix, this instruction allows
blocks of data to be moved from a block of memory to an
I/O address. Again note that the I/O address in the DX
register is not modified by this operation.

Like the string move instruction, these two instructions
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determina­
tion can be supplied by the mnemonic itself by adding a
"B" or "w" to the basic mnemonic, for example:
INSB ; perform byte input
REP OUTSW ; perform word block output

AFN-21 0973

AP-186

BOUND

The 80186 supplies a BOUND instruction to facilitate
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed in one of the general
purpose registers of the 80186. Located in two adjacent
word memory locations are the lower and upper bounds
for the array index. The BOUND instruction compares
the register contents to the memory locations, and if the
value in the register is not between the values in the
memory locations, an interrupt type 5 is generated. The
comparisons performed are SIGNED comparisons. A
register value equal to either the upper bound or the low­
er bound will not cause an interrupt.

This instruction requires two arguments: the register in
which the calculated array index is placed, and the word
memory location which contains the lower bound of the
array (which can be specified by any of the 80186 mem­
ory addressing modes). The memory location containing
the upper bound ofthe array must follow immediatly the
memory location containing the lower bound of the
array.

ENTER and LEAVE

The 80186 contains two instructions which are used to
build and tear down stack frames of higher level, block
structured languages. The instruction used to build
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is:

PUSH BP

if level = 0 then
BP:= SP;

f* save the previous frame
pointer * f

else tempi := SP; /* save current frame pointer
*f

7

BP~ BEFORE

SP-

temp2 : = level - I;
do while temp2 > 0 /* copy down previous

BP:= BP- 2;
PUSH [BP);

BP:= tempi;
PUSHBP;

/* in the save area • f
SP:= SP - disp;

/* local variables * f

frame *f
/* pointers * f

/* put current level
pointer * f

/* create space on the
for *f

level

frame

stack

Figure H-I shows the layout of the stack before and
after this operation.

This instruction requires two operands: the first value
(disp) specifies the number of bytes the local variables of
this routine require. This is an unsigned value and can be
as large as 65535. The second value (level) is an un­
signed value which specifies the level of the procedure. It
can be as great as 255.

The 80186 includes the LEAVE instruction to tear down
stack frames built up by the ENTER instruction. As can
be seen from the layout of the stack left by the ENTER
instruction, this involves only moving the contents of the
BP register to the SP register, and popping the old BP
value from the stack.

Neither the ENTER nor the LEAVE instructions save
any of the 80186 general purpose registers. If they must
be saved, this must be done in addition to the ENTER
and the LEAVE. In addition, the LEAVE instruction
does not perform a return from a subroutine. If this is
desired, the LEAVE instruction must be explicitly fol­
lowed by the RET instruction.

AFTER

BP_ OLDBP I-
OLD FRAME

PTRS.

CURRENT FRAME >--PTR

LOCAL

VARIABLE

SP--
AREA

Figure H-1. ENTER Instruction Stack Frame

77 AFN-21 0973

AP-186

APPENDIX I: 80186/80188 DIFFERENCES

The 80188 is exactly like the 80186, except it has an 8 bit
external bus. It shares the same execution unit, timers,
peripheral control block, interrupt controller, chip se­
lect, and DMA logic. The differences between the two
caused by the narrower data bus are:

The 80188 has a 4 byte prefetch queue, rather than
the 6 byte prefetch queue present on the 80186. The
reason for this is since the 80188 fetches opcodes one
byte at a time, the number of bus cycles required to
fill the smaller queue of the 80188 is actually greater
than the number of bus cycles required to fill the
queue of the 80186. As a result, a smaller queue is
required to prevent an inordinate number of bus cy­
cles being wasted by prefetching opcodes to be dis­
carded during a jump.

AD8-ADI5 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is pre­
sent on these lines throughout the bus cycle of the
80188. Valid address information is not guaranteed
on these lines during idle T states.

BHEjS7 is always defined HIGH by the 80188,
since the upper half of the data bus is non-existant.

78

The DMA controller. of the 80188 only performs
byte transfers. The BjW bit in the DMA control
word is ignored.

Execution times for many memory access instruc­
tions are increased because the memory access must
be funnelled through a narrower data bus. The
80188 also will be more bus limited than the 80186
(that is, the execution unit will be required to wait
for the opcode information to be fetched more often)
because the data bus is narrower. The execution time
within the processor, however, has not changed be­
tween the 80186 and the 80188.

Another important point is that the 80188 internally is a
16-bit machine. This means that any access to the inte­
grated peripheral registers of the 80188 will be done in
16-bit chunks, NOT in 8-bit chunks. All internal periph­
eral registers are still 16-bits wide, and only a single read
or write is required to access the registers. When an ac­
cess is made to the internal registers, only a single bus
cycle will be run, and only the lower 8-bits of the written
data will be driven on the external bus. All accesses to
registers within the integrated peripheral block must be
WORD accesses.

AFN-21 0973

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

INTEL INTERNATIONAL, Brussels, Belgium; Tel. (02) 661 0711

I NTEL JAPAN k_k_, Ibaraki-ken; Tel. 029747-8511.

Printed in U.S.A./T-2406.1/0783/25K/RRD RM

