fimmos

occamaz2
toolset
user manual — part 1

(User guide and tools)

INMOS Limited

72 TDS 275 02 March 1991

Copyright ® INMOS Limited 1991
@ , hmos , IMS and occam are trademarks of INMOS Limited.
INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 275 02

Contents overview

Contents

Preface

How to use the manual

User Guide

1 Introduction Introduces the toolset and transputer pro-
gramming. _
2 Overview of the An overview of the toolset containing brief de-
toolset scriptions of each tool, an introduction to the
libraries, and explanations of the toolset con-

ventions.
3 Getting started Shows the command sequences to generate

single transputer programs.

4 Programming single An introduction to programming single trans-
transputers puters, with worked examples.
5 Configuring An introduction to programming and configur-
transputer networks ing transputer networks, with examples.
6 Loading transputer Describes how to load programs onto trans-
programs puters and transputer networks, with descrip-
tions of the tools that are used.

7 Debugging occam Describes how to use the debugger to debug

programs occam programs in post-mortem and break-
point modes.
8 Access to host Describes how to access host services using
services the host file server and i/o libraries.
9 Mixed language Describes how to use C in 0cCam programs.
programming
10 Low level Describes the low level facilities of occam 2.
programming
11 EPROM Describes the EPROM programming facilities
programming of the toolset.

72 TDS 275 02 March 1991

i Contents overview

Tools

12 icollect —code Describes the code collector which generates

collector executable code from single linked units or
configuration binary files.

13 icvlink - Describes the file format convertor that con-
TCOFF file verts object files produced by earlier INMOS
convertor toolsets into TCOFF format.

14 idebug - Describes the toolset debugger, with full de-
debugger scriptions of its post-mortem and interactive

debugging facilities.
15 idump — memory Describes the memory dumper tool which
dumper dumps root transputer memory for post-
mortem debugging.
16 iemit — memory Describes the memory configurer tool which
configurer helps to configure the transputer memory in-
terface.
17 ieprom — EPROM Describes the EPROM program formatter
program formatter which creates executable files for loading into
ROM.
18 ilibr - librarian Describes the librarian tool that creates li-
braries of compiled code.

19 ilink - linker Describes the linker tool that links compiled
code into a single file.

20 ilist —binary Describes the binary lister tool for displaying

lister data from object files.
21 imakef — Makefile Describes the Makefile generator that creates
generator Makefiles for toolset compilations.
22 iserver - host Describes the host file server that loads pro-
file server grams onto transputers and provides run-time

communications with the host.
23 isim — T425 Describes the T425 simulator tool which al-

simulator lows programs to be run without hardware.
24 iskip - skip Describes the skip loader tool which loads
loader programs onto external subnetworks.
25 oc —occam 2 Describes the occam 2 compiler.
compiler
26 occonf - Describes the configurer which generates
configurer configuration binary files from configuration
descriptions.
The Index

72 TDS 275 02 March 1991

Contents

Contents overview

Contents iii
Preface XXi
How to use the manual xxiii
User guide 1
1 Introduction 3
1.1 Overview 3
1.2 Transputers 3
1.3 Transputers and occam 5
1.3.1 The occam programming model 5

1.3.2 Multitransputer programming 6

1.3.3 Reliability 7

1.3.4 Real time programming 7

1.4 Program development using the toolset 7
1.4.1 System design 7

1.4.2 Programming and code generation 8

1.4.3 Debugging 8

2 Overview of the toolset 9
21 Introduction 9
2.1.1 Standard file format 9

2.1.2 New configuration language 10

22 oc -the occam 2 compiler 12
23 Code generation tools 12
2.3.1 Linker 13

2.3.2 Configurer 13

2.3.3 Collector 13

2.4 Code loading 13
2.4.1 Host file server 13

2.4.2 Skip loader 14

25 Program development and support tools 14
2.5.1 Network debugger 14

2.5.2 Memory dumper 15

2.5.3 Librarian 15

72 TDS 275 02

March 1991

Contents

2.5.4 Binary lister 15

2.5.5 Makefile generator 15

2.5.6 File format convertor 16

2.5.7 T425 simulator 16

2.6 EPROM support tools 16
2.6.1 EPROM programmer 16

2.6.2 Memory configurer 16

2.6.3 Memory interface file convertor 16

2.7 The occam libraries 17
2.7.1 Constants 17

2.7.2 Compiler libraries 17

2.7.3 Maths libraries 18

2.7.4 1/O libraries 18
Hostio library 18

Streamio library 19

2.7.5 Other libraries 19

String handling library 19

Type conversion library 19
Extraordinary link handling library 19

Block CRC library 19

Debugging support library 19

Mixed language support library 20

DOS specific hostio library 20

2.8 Program development 20
2.8.1 Development support 21

2.9 File extensions 22
File extensions for use with imakef 22

2.10 Host dependencies 23
Command line syntax 24

2.10.1 Libraries 24

2.10.2 Filenames 24
2.10.3 Search paths 25

2.10.4 Host environment variables 25

2.10.5 Default command line arguments 26

2.11 Toolset conventions 26
212 Command line syntax 27
Standard options 27

2.12.1 Error handling and message format 28
Severities 29

Information messages 30

72 TDS 275 02 March 1991

Contents v
3 Getting started 31
3.1 Example command line 31
3.2 Interrupting programs 31
3.3 Compiling and running a simple example program 32
3.3.1 Setting environment variables 33
3.3.2 Compiling the example program 33
3.3.3 Linking the example program 34
3.3.4 Creating a bootable file 34
3.3.5 Running the example program 35
3.3.6 Compiling and linking for other transputer types 36
3.4 Using imakef 36
4 Programming single transputers 39
4.1 Program examples 39
4.2 occam programs 39
4.2.1 Compiling programs 40
Compilation information 41
4.2.2 Linking programs 41
4.2.3 Viewing code 42
4.2.4 Making bootable programs 42
4.2.5 Loading and running programs 42
4.3 Transputer types and classes 43
4.3.1 Single transputer type 43

4.3.2 Creating a program which can run on a range of
transputers 44
4.3.3 Mixing code compiled for different targets 45
4.3.4 Classes/instruction sets — additional information 48
4.4 Error modes 50
4.4.1 Error detection 51
4.5 Interactive debugging 53
4.6 Alias and usage checking 54
4.7 Using separate vector space 55
4.8 Sharing source between files 57
4.9 Separate compilation 57
4.9.1 Sharing protocols and constants 58
4.9.2 Compiling and linking large programs 59
4.10 Using imakef 59
4,11 Libraries 60
4.11.1 Selective loading 60
4.11.2 Building libraries 61
412 Example program - the pipeline sorter 62
72 TDS 275 02 March 1991

vi Contents
4.12.1 Overview of the program 62

4,12.2 The protocol 65

4.12.3 The sorting element 65

4.12.4 The input/output process 66

4.12.5 The calling program 68

4.12.6 Building the program 68

4.12.7 Automated program building 71

5 Configuring transputer networks 73
5.1 Introduction 73
5.2 Configuration model 74
5.2.1 Configuration language 75

5.2.2 Overall structure of a configuration description 77

5.3 Hardware description 79
5.3.1 Declaring processors 79

5.3.2 NODE attributes 79

5.3.3 NETWORK description 79

5.3.4 Declaring EDGEs 82

5.3.5 Declaring ARCs 82

5.3.6 Abbreviations 83

5.3.7 Host connection 84

5.3.8 Examples of network descriptions 84

5.4 Software description 86
5.4.1 Libraries of linked units 87

5.4.2 Example 87

5.5 Mapping descriptions 88
5.5.1 Mapping processes 89

5.5.2 Mapping channels 90

5.5.3 Moving code and data areas 91

5.5.4 Mapping without a MAPPING section 92

5.5.5 Mapping examples 92

5.6 Example: A pipeline sorter on four transputers 93
5.6.1 Building the program 96

5.6.2 Running the program 98

5.6.3 Automated program building 98

5.7 Use of conditionals in a configuration 99
5.7.1 Example: Configuration using conditional IF 99

5.8 Summary of configuration steps 101
72 TDS 275 02 March 1991

Contents vii
6 Loading transputer programs 103
6.1 Introduction 103
6.2 Tools for loading 103
6.3 The boot from link loading mechanism 104
6.3.1 Breakpoint debugging 104

6.4 Boards and subnetworks 105
6.4.1 Subsystem wiring 105

6.4.2 Connecting subnetworks 106

6.5 Loading programs for debugging 106
6.5.1 Board types 106

6.5.2 Use of the root transputer 107

6.5.3 Analyse and Reset 107

6.6 Example skip load 108
6.6.1 Target network 108

6.6.2 Loading the program 108

6.6.3 Clearing the network 109

7 Debugging occam programs 111
7.1 Introduction 111
7.1.1 Debugging with isim 112

7.2 Programs that can be debugged 112
7.3 Runtime errors 112
7.4 Compiling programs for debugging 114
7.4.1 Symbolic debug information 114

7.4.2 Error modes 114

7.5 Post-mortem debugging 115
7.5.1 Program loading 115

7.6 Breakpoint debugging 116
7.6.1 Runtime kernel 116

7.6.2 Hardware breakpoint support 117

7.6.3 Compiling the program 117

7.6.4 Configuring the program 118

7.6.5 Loading the program 118

7.6.6 Clearing error flags 118

7.6.7 Breakpoint functions and commands 118

7.6.8 Breakpoints 119

7.7 Program termination 119
7.8 Symbolic facilities 120
7.8.1 Locating to source code 120

7.8.2 Browsing source code 121

7.8.3 Inspecting variables 121

72 TDS 275 02

March 1991

viii

Contents

Jumping down channels 121

7.8.4 Tracing procedure calls 122

7.8.5 Modifying variables 122

7.8.6 Breakpointing 122

7.9 Monitor page 122
7.9.1 Startup display 123
Process pointers 124

Registers 125

Error flags 125

Clocks 125

Memory map 125

7.9.2 Monitor page commands 126
Examining memory 126

Locating processes 127

Specifying processes 127

Selecting processes 127

Other processors 127

Breakpoint commands 128

Changing to post-mortem debugging 128

7.10 A method for debugging halted programs 128
7.10.1 Inspecting other processes 128

7.10.2 Locating processes 128
Running on the processor 129

Waiting on a run queue 129

Waiting on a timer queue 129

Waiting for communication on a link 130

Waiting for communication on a channel 130

Processes stopped, terminated or not started 130

7.10.3 Locating to procedures and functions 130

7.11 Library functions 131
7.11.1 Action when the debugger is not available 132

7.12 Debugging with isim 133
7.12.1 Command interface 133

7.12.2 Using the simulator 133

7.12.3 Program execution monitoring 133
Breakpoints 134

Single step execution 134

7.12.4 Core dump file 134

7.13 Debugging using embedded messages 134
7.13.1 Reading the message buffers 135

7.14 Debugging example 135
7.14.1 The example program 135

72 TDS 275 02 March 1991

Contents

7.14.2 Compiling the facs program 138
Using imakef 138
Using the tools directly 138
7.15 Breakpoint debugging 139
7.15.1 Prerequisites for breakpoint debugging 139
7.15.2 Loading the program 139
7.15.3 Setting initial breakpoints 140
7.15.4 Starting the program 140
7.15.5 Entering the debugger 140
7.15.6 Inspecting variables 141
7.15.7 Backtracing 141
7.15.8 Jumping down a channel 141
7.15.9 Modifying a variable 141
7.15.10 Entering #INCLUDE files 142
7.15.11 Resuming the program 142
7.15.12 Clearing a breakpoint 142
7.15.13 Quitting the debugger 142
7.16 Post-mortem debugging 143
7.16.1 Prerequisites for post-mortem debugging 143
7.16.2 Running the example program 143
7.16.3 Creating a memory dump file 143
7.16.4 Running the debugger 144
7.17 Hints and further guidance 148
7.17.1 Invalid pointers 148
7.17.2 Examining and disassembling memory 148
7.17.3 occam scope rules 148
7.17.4 Debugging IF and CASE statements 150
7.17.5 Analysing deadlock 150
7.17.6 Inspecting soft configuration channels 153
7.18 Points to note when using the debugger 153
7.18.1 Abusing hard links 153
7.18.2 Examining the active network (the network is
volatile) 154
7.18.3 Using INSPECT| with channel communications 154
7.18.4 Selecting events from specific processors 154
7.18.5 Minimal confidence check 155
7.18.6 INTERRUPT key 155
7.18.7 Program crashes 155
7.18.8 Undetected program crashes 156
7.18.9 Debugger hangs when starting program 156
7.18.10 Debugger hangs 156

72 TDS 275 02

March 1991

X Contents
7.18.11 Catching concurrent processes with

breakpoints 156

7.18.12 Phantom breakpoints 157

7.18.13 Breakpoint configuration considerations 157

7.18.14 Determining connectivity and memory sizes 158

7.18.15 Long source code lines 158
7.18.16 Setting breakpoints on the transputer seterr

instruction 158

7.18.17 Backtracing to occam configuration code 158

8 Access to host services 159

8.1 Introduction 159

8.2 Communicating with the host 159

8.2.1 The host file server 159

8.2.2 Library support 160

8.2.3 File streams 160

Protocols 161

8.3 Host implementation differences 161

8.4 Accessing the host from a program 162

8.4.1 Using the simulator 162

8.5 Multiplexing processes to the host 162

8.5.1 Buffering processes to the host 163

8.5.2 Pipelining 163

9 Mixed language programming 165

9.1 Introduction 165

9.2 Importing C functions 166

9.2.1 Deciding whether a static area is required 166

9.2.2 Functions which do not require static or heap 167

9.2.3 Declaring the C function 167

Translating C names 169

Linking 169

9.2.4 Functions which require static and/or heap 170

The static area 170

The heap area 170

Callc library 170

9.2.5 Example of using the callc library 173

9.2.6 Linking the program 175

9.3 Parameter passing 176

9.3.1 Return values 179

9.3.2 Examples of passing parameters 179

72 TDS 275 02 March 1991

Contents Xi
10 Low level programming 185
10.1 Allocation 185
10.1.1 The PLACE statement 186
10.1.2 Allocating specific workspace locations 187
10.1.3 Allocating channels to links 188

10.2 RETYPING channels and creating channel array con-
structors 190
10.3 Code insertion 192
10.3.1 Using the code insertion mechanism 192
10.3.2 Special names 194
10.3.3 Labels and jumps 195
10.3.4 Programming notes 195
10.4 Dynamic code loading 195
10.4.1 Calling code 196
10.4.2 Loading parameters 198
10.4.3 Examples 199
10.5 Extraordinary use of links 203
10.5.1 Clarification of requirements 203
10.5.2 Programming concerns 204
10.5.3 Input and output procedures 204
10.5.4 Recovery from failure 205
10.5.5 Example: a development system 205
10.6 Scheduling 207
10.7 Setting the error flag 207
11 EPROM programming 209
11.1 Introduction 209
11.2 Processing configurations 210
11.2.1 Single program, single processor, run from ROM 211

11.2.2 Configured program, single processor, run from
ROM 211
11.2.3 Single program, single processor, run from RAM 211

11.2.4 Configured program, single processor, run from
RAM 211

11.2.5 Configured program, multiple processor, run from

RAM 211

11.2.6 Configured program, multiple processor, root
run from ROM, rest of network run from RAM 211
11.3 The eprom tool: ieprom 212

11.4 Using the configurer and collector to produce ROM-
bootable code 212

72 TDS 275 02 March 1991

xii Contents

11.5 Summary of EPROM tool steps for different processing

configurations 213

Tools 215
12 icollect — code collector 217
12.1 Introduction 217
12.2 Running the code collector 218
12.2.1 Examples of use 220

12.2.2 Input files 221

12.2.3 Output files 221
Debug data file 222

12.2.4 Small values of IBOARDSIZE 222

12.3 Program interface 222
12.3.1 Interface used for ‘T’ option 222
Warning messages 223

12.3.2 Interface used for ‘T" and ‘M’ options 224

12,4 Memory allocation for single processor 225

12.4.1 Memory allocation for mixed language programs 226

12.5 The memory map file 227
12.5.1 Single processor, boot from link 228
12.5.2 Configured program boot from link 231
12.5.3 Boot from ROM programs 233
Single processor, boot from ROM, run in RAM 233
Single processor, boot from ROM, run in ROM 233

Configured program, boot from ROM, run in
RAM 234

Configured program, boot from ROM, run in
ROM 234
12.6 Non-bootable files 234
12.7 Boot-from-ROM options 235
12.8 Alternative bootstrap loaders 236
12.9 Use of the icollect ‘Y’ option 236
12.10 Error messages 237
12.10.1Warnings 237
12.10.2Serious errors 238
13 icvlink — TCOFF convertor 245
13.1 Introduction 245
13.2 Running the format convertor 247
13.2.1 Default command line 249
13.2.2 Input files 249

72 TDS 275 02 March 1991

Contents

Xiii

Compiled object files 249
Library files 249
Linked object files 249
13.2.3 OQutput files 250
13.3 Transputer classes and error modes 250
13.4 Summary of rules for using icvlink 250
13.5 Error messages 251
13.5.1 Warning Messages 251
13.5.2 Serious errors 251
14 idebug — debugger 253
14.1 Introduction 253
14.1.1 Post-mortem debugging 253
14.1.2 Breakpoint debugging 253
14.1.3 Mixed language debugging 254
14.2 The root transputer 254
14.2.1 Board wiring 255
14.2.2 Post-mortem debugging R-mode programs 255
14.2.3 Post-mortem debugging T-mode programs 255

14.2.4 Post-mortem debugging from a network dump
file 256
14.2.5 Debugging a dummy network 256
14.2.6 Methods for breakpoint debugging 256
14.3 Running the debugger 257
14.3.1 Toolset file types read by the debugger 259
14.3.2 Environment variables 259
14.3.3 Program termination 260
14.3.4 Post-mortem mode invocation 260

14.3.5 Reinvoking the debugger on single transputer
programs 262
14.3.6 Breakpoint mode invocation 262
Clearing error flags on transputer boards 262
Program loading 263
14.3.7 Function key mappings 263
14.4 Debugging programs on INMOS boards 264
14.4.1 Subsystem wiring 264
14.4.2 Debugging commands 265
14.4.3 Detecting the error flag in breakpoint mode 265
14.5 Debugging programs on non-INMOS boards 265
14.6 Monitor page commands 265
14.6.1 Command format 266
14.6.2 Specifying transputer addresses 267

72 TDS 275 02

March 1991

Xiv Contents

14.6.3 Scrolling the display 267

14.6.4 Editing keys 267

14.6.5 Commands mapped by ITERM 268

14.6.6 Summary of main commands 269

14.6.7 Symbolic-type commands and scroll keys 271

14.6.8 Symbolic-type commands 292

14.7 Symbolic functions 292
14.7.1 Breakpoint functions 299

14.8 Error messages 301
14.8.1 Out of memory errors 301

14.8.2 If the debugger hangs 301

14.8.3 Error message list 301

15 idump — memory dumper 311
15.1 Introduction 311
15.2 Running the memory dumper 311
15.2.1 Example of use 312

15.3 Error messages 312
16 iemit — Memory configurer 315
16.1 Introduction 315
16.2 Running iemit 316
16.3 Output files 318
16.4 Interactive operation 319
16.4.1 Page 0 319

16.4.2 Page 1 319

16.4.3 Page 2 324

16.4.4 Page 3 326

16.4.5 Page 4 327

16.4.6 Page 5 327

16.4.7 Page 6 328

16.5 Example iemit display pages 328
16.6 diemit error and warning messages 332
16.7 Memory configuration file 333
16.8 Memory interface conversion tool icvemit 336
16.9 Running icvemit 336
16.10 icwvemit error messages 337
17 ieprom — EPROM program convertor 339
17.1 Introduction 339
17.2 Prerequisites to using the hex tool ieprom 339

72 TDS 275 02 March 1991

Contents xv
17.3 Running ieprom 340
17.3.1 Examples of use 341
17.4 ieprom control file 341
17.5 What goes in the EPROM 345
17.5.1 Memory configuration data 345
17.5.2 Jump instructions 346
17.5.3 Bootable file 346
17.5.4 Traceback information 346
17.6 ieprom output files 346
17.6.1 Binary output 347
17.6.2 Hex dump 347
17.6.3 Intel hex format 347
17.6.4 Intel extended hex format 347
17.6.5 Motorola S-record format 348
17.7 Block mode 348
17.7.1 Memory organisation 348
17.7.2 When to use block mode 348
17.7.3 How to use block mode 349
17.8 Example control files 349
17.9 Error and warning messages 351
18 ilibr — librarian 353
18.1 Introduction 353
18.2 Running the librarian 353
18.2.1 Default command line 355
18.2.2 Library indirect files 355
18.2.3 Linked object input files 356
18.3 Library modules 356
18.3.1 Selective loading 356
18.3.2 How the librarian sorts the library index 356
18.4 Library usage files 357
18.5 Building libraries 357
18.5.1 Rules for constructing libraries 358
18.5.2 General hints for building libraries 358
18.5.3 Optimising libraries 358
Library build targetted at specific transputer
types 360
Semi-optimised library build targetted at all trans-
puter types 360
Optimised library targetted at all transputer
types 361
18.6 Error Messages 361
72 TDS 275 02 March 1991

Xvi

Contents

18.6.1 Warning messages 362

18.6.2 Serious errors 362

19 ilink — linker 365
19.1 Introduction 365
19.2 Running the linker 365
19.2.1 Default command line 369

19.3 Linker indirect files 369
19.3.1 Linker directives 369

19.3.2 Linker indirect files — supplied with the toolset 372

19.4 Linker options 372
19.4.1 Processor types 372

19.4.2 Error modes — options H, S and X 373

19.4.3 TCOFF and LFF output files — options T, LB, LC 373

19.4.4 Extraction of library modules - option Ex 374

19.4.5 Display information — option I 374

19.4.6 Virtual memory — option KB 374

19.4.7 Main entry point — option ME 375

19.4.8 Link map filename — option MO 375

19.4.9 Linked unit output file — option O 375
19.4.10 Permit unresolved references - option U 375
19.4.11 Disable interactive debugging — option ¥ 376

19.5 Selective linking of library modules 376
19.6 The link map file 376
19.7 Using imakef for version control 378
19.8 Error messages 378
19.8.1 Warning messages 378

19.8.2 Errors 379
Serious errors 380

19.8.3 Embedded messages 384

20 ilist — binary lister 385
20.1 Introduction 385
20.2 Data displays 385
20.2.1 Example displays used in this chapter 386

20.3 Running the lister 387
20.3.1 Default command line 388

20.4 Specifying an output file — option O 389
20.5 Symbol data - option A 389
20.6 Code listing — option C 392
20.7 Exported names — option E 393
20.8 Hexadecimal/ASCIl dump - option H 394

72 TDS 275 02

March 1991

Contents xvii
20.9 Module data — option M 395
20.10 Library index data — option N 396
20.11 Procedural interface data — option P 397
20.12 Specify reference — option R 398
20.13 Full listing — option T 398
20.14 File identification — option W 400
20.15 External reference data — option X 402
20.16 Error messages 402

20.16.1Warning messages 403
20.16.2Serious errors 403

21 imakef — Makefile generator 405
21.1 Introduction 405
21.2 How imakef works 406

21.2.1 Target files 406

21.2.2 File extensions for use with imakef 406

21.3 Running the Makefile generator 408
21.3.1 Example of use 408

21.3.2 Incorporating C modules 409

21.3.3 Configuration description files 410

21.3.4 Disabling debug data 410

21.3.5 Removing intermediate files 410

21.3.6 Files found on ISEARCH 410

21.4 imakef examples 411
21.4.1 Single transputer program 411

21.4.2 Multitransputer program 412

21.4.3 Mixed language program 412

21.5 Format of Makefiles 413
21.5.1 Macros 413

21.5.2 Rules 414
Action strings 414

21.5.3 Delete rule 414

21.5.4 Editing the Makefile 415
Adding options 415

Re-running imakef 415

21.6 Library usage files 415
21.7 Linker indirect files 416
21.8 Error messages 416

72 TDS 275 02

March 1991

Xviii Contents

22 iserver — host file server 419
22.1 Introduction 419
22.1.1 Loadahle programs 419

22.2 Running the server 419
22.2.1 Examples of use 420

22.2.2 Supplying parameters to the program 421

22.2.3 Checking and clearing the network 421

22.2.4 Terminating the server 421

22.2.5 Options to use when loading the program 422

22.2.6 Specifying a link address — option SL 422

22.2.7 Terminating on error — option SE 423

22.3 Server functions 423
File system commands 424

Host environment commands 424

Server control commands 425

22.4 Error messages 426
23 isim — IMS T425 simulator 429
23.1 Introduction 429
23.2 Running the simulator 429
23.2.1 Passing in parameters to the program 430

23.2.2 Example of use 430

23.2.3 ITERM file 431

23.3 Monitor page display 431
23.4 Simulator commands 432
23.4.1 Specifying numerical parameters 433

23.4.2 Commands mapped by ITERM 433

23.5 Batch mode operation 441
23.5.1 Setting up ISIMBATCH 441

23.5.2 Input command files 442

23.5.3 Output 442

23.5.4 Batch mode commands 442

23.6 Error messages 443
24 iskip — skip loader 447
24.1 Introduction 447
24.1.1 Uses of the skip tool 447

24.2 Running the skip tool 448
24.2.1 Skipping a single transputer 449
Subsystem wired down 449

Subsystem wired subs 449

72 TDS 275 02 March 1991

Contents XiX
24.2.2 Skipping multiple transputers 449
24.2.3 Loading a program 450
24.2.4 Monitoring the error status — option E 451
24.2.5 Clearing the error flag 451
24.3 Error messages 452
25 oc — 0ccam 2 compiler 453
25.1 Introduction 453
25.2 Running the compiler 454
25.2.1 Filenames 458
25.3 Transputer targets 458
25.4 Compilation error modes 460
25.5 Enable/Disable Error Detection 461
25.6 Enabling/disabling warning messages 462
25.7 Support for interactive debugging 462
25.8 Separately compiled units and libraries 463
25.9 ASM and GUY code 463
25.10 Compiler directives 463
25.10.1 Syntax 464
25.10.2 #INCLUDE directive 464
25.10.3 #USE directive 465
25.10.4 #IMPORT directive 466
Changes from the IMS D705/D605/D505 products 467
25.10.5 #COMMENT directive 468
25.10.6 #OPTION directive 469
25.10.7 #PRAGMA directive 470
#PRAGMA EXTERNAL "declaration" comment 471

#PRAGMA TRANSLATE identifier " string"
comment 471
#PRAGMA LINKAGE ["seclion-name"] comment 472
25.11 INLINE keyword 473
25.12 Implementation of channels 473
25.13 Implementation of usage checking 474
25.13.1 Usage rules of occam 2 474
25.13.2 Checking of non-array elements 475
25.13.3 Checking of arrays of variables and channels 475
25.13.4 Arrays as procedure parameters 476
25.13.5 Abbreviating variables and channels 477
25.14 Implementation of alias checking 477
25.14.1 Alias checking 477
Scalar variables 477
Arrays 478

72 TDS 275 02

March 1991

XX

Contents

25.15 Error messages 479
25.15.1 Warning messages 480

25.15.2 Errors 482

26 occonf — configurer 485
26.1 Introduction 485

26.2 Running the configurer 486

26.2.1 Search paths 488

26.3 Boot-from-ROM options 488

26.4 Configuration error modes 489

26.5 Enable/Disable Error Detection 490

26.6 Enabling memory lay-out re-ordering 490

26.7 Enabling/disabling warning messages 491

26.8 Support for interactive debugging 491

26.9 ASM and GUY code 492

26.10 Configurer diagnostics 492
26.10.1 Warning messages 493

72 TDS 275 02 March 1991

Preface

This manual is a combined user and reference guide to the occam 2 toolset.
Part 1 ‘User guide and tools' (this book) describes the toolset and shows how
it is used to develop and run transputer programs. Part 2 ‘occam libraries and
appendices’ (72 TDS 276 02) describes the libraries supplied with the toolset
and provides reference data in the form of appendices. A guide to how to use
this manual, follows immediately after this preface.

The occam 2 toolset

The occam 2 toolset is a set of software tools for developing transputer pro-
grams on host systems. Used with the occam libraries, it provides a complete
environment for developing programs on transputers and transputer networks.

The toolset allows 0ccam programs to be written using any convenient text
editor. Programs are then compiled and linked using programs resident on the
host or running on the transputer board. Self-booting code for single transputers
and multitransputer networks is produced using separate tools, and loaded from
the host system down the transputer link.

Toals that assist program development include a librarian tool for building code
libraries, a network debugger which provides both interactive and post-mortem
debugging facilities, and a transputer simulator that allows programs to be tested
without transputer hardware. A Makefile generator is provided to assist with
program version control, and a binary lister tool allows object files to be decoded
and displayed in a readable form.

Transputer programs are normally written in occam to make full use of trans-
puter parallel processing. Programs can also be written in C and included in
occam programs as separately compiled procedures.

The occam 2 toolset is intended for developing programs on transputers and
transputer boards that are loaded from the host via a transputer link. Boards
that boot from on-board ROM require application software to be in a format
suitable for blowing into ROM. Two tools are provided with the toolset to support
EPROM programming, they are the EPROM program formatting tool and the
EPROM memory configurer.

72 TDS 275 02 March 1991

XXii Preface

Host versions

The manual is designed to cover all host versions of the toolset:

IMS D7205 - IBM and NEC PC running MS-DOS.
IMS D5205 - Sun 3 systems running SunOS

IMS D4205 - Sun 4 systems running SunOS

IMS D6205 - VAX systems running VMS

72 TDS 275 02 March 1991

How to use the manual

About the manual

The occam 2 user manual is divided into two parts, as follows:
o User Guide and tools 72 TDS 275 02

— Chapters 1 to 11 show how the tools are used to develop pro-
grams on single transputers and transputer networks.

— Chapters 12 to 26 provide details of individual tools in terms of
command line syntax, command options, running the tool and
possible error messages.

e Occam libraries and appendices 72 TDS 276 02

— A detailed description is given of all the libraries supplied with the
toolset.

— A number of appendices provide reference material for program-
mers such as predefined names and constants, transputer in-
structions, and the implementation of 0CcCam on the transputer.
A glossary of terms and a short bibliography is also included.

References which span the two parts, take the form of a part number followed
by a chapter or section number. Each part contains its own index.

This manual does not contain details of how to install the software, which is to
be found in the Delivery Manual that accompanies the shipment.

The manual is intended to cover all host versions of the toolset; where there are
differences between the various host implementations, they are highlighted and
explained.

Readership

This manual is intended for programmers and system designers who wish to
develop transputer programs on host systems. Readers of the manual should
already be familiar with programming in a high level language, the software de-
velopment process, and the general ideas of 0occam and parallel processing.
Familiarity with the syntax of occam will also be an advantage, because OC-
cam programs and code fragments are used throughout the book to illustrate
concepts and procedures. For information about the occam language, refer
to the ‘occam 2 Reference Manual’, which accompanies this release. For an
introduction to 0ccam programming, read ‘A tutorial introduction to occam

72 TDS 275 02 March 1991

XXiv How to use the manual

programming’.

The reader should also be familiar with the hardware and operation of the trans-
puter evaluation board on which the programs will be developed. Information
about INMOS transputer evaluation boards is available in the form of product
datasheets.

User guide

The User Guide, provided in part 1 of this manual, contains information to show
programmers how to use the tools to develop transputer programs. It describes
how to design and build programs for transputers and transputer networks.

Example programs supplied with the toolset are used extensively throughout the
User Guide to illustrate program design and development.

Chapter breakdown

For those who do not wish to read the entire Guide or wish to get started quickly,
some recommendations follow.

If you have not used the toolset before then you should first read chapter 2,
which contains an overview of the toolset.

Chapter 3, ‘Getting started' is provided as a tutorial to show users how to compile,
link and run simple 0ccam programs on a single transputer. The example used
is provided in the examples directory supplied with the toolset.

Before attempting to write any programs of your own you should read chapters
4 and 8, which show how to compile simple programs that use host terminal i/o.
If you are new to 0ccam you should begin by writing a program which runs on
a single processor before attempting to write multiprocessor code.

Chapter 7 explains how to debug programs running on transputer boards, and
describes how to use the T425 simulator to test programs before loading them
onto hardware. Reading this chapter thoroughly and working studiously through
the examples will help to familiarise you with the operation of the debugger and
simulator tools.

Chapter 9 gives details of how to develop mixed language programs. It shows
how modules written in C can be inserted into an 0occam program using a set
of library procedures to initialise static and heap areas. Read and digest the
information in this chapter carefully before attempting to write mixed language
programs.

Chapters 10 and 11 provide more specialised information covering the use of

72 TDS 275 02 March 1991

How to use the manual XXV

the low level programming and EPROM programming facilities provided with the
toolset. These facilities are not aimed at the users who are new to occam or
transputers. Users intending to use the EPROM tools should be familiar with
INMOS transputers and with memory products.

Tools

The Tools section, provided in part 1 of the manual, contains reference informa-
tion for all tools in the toolset. Each tool is described in a separate chapter.

The Tools section is not intended to be read in chapter order. Chapters should
be consulted as required to obtain information about how to use specific tools.

The occam libraries

Reference information for the occam libraries is given in part 2 of this manual.
All the occam library routines provided with the toolset are described. Routines
are grouped according to the library to which they belong.

Appendices

These appear at the end of part 2 of the manual. They provide reference infor-
mation on the following topics:

o Predefined names.

o Transputer instructions.

« Constants.

e The implementation of 0Ccam on the transputer.
 Configuration language definition.

e Bootstrap loaders.

e ITERM

« Host file server protocol.

A glossary of terms and a short bibliography is also included.

72 TDS 275 02 March 1991

XXVi

How to use the manual

Conventions used in the manual

Convention

Italics

Bold

Teletype

KEY|

Braces

{}

Brackets

(]

Option prefix

72 TDS 275 02

Description

Used in command line syntax to denote parameters for which
values must be supplied. Also used for book titles and for
emphasis.

Used for new terms, pin signals, and the text of error mes-
sages.

Used for listings of program examples and to denote user
input and terminal output.

Used to denote function keys for the debugger and simulator
tools. Keyboard layouts for specific terminals can be found in
the Delivery Manual that accompanies the shipment.

Used to indicate the continuation of a function key description.

Used to denote lists of items in command line syntax.

Used to denote optional items in command line syntax.

Examples of command line input are duplicated to show both
option prefix characters. Use the line containing the ‘/’ char-
acter if you have an MS-DOS or VMS based system and the
line containing the ‘=’ character if you are using any other host
including UNIX.

March 1991

User guide

72 TDS 275 02 March 1991

2 User guide

72 TDS 275 02 March 1991

1 Introduction

This chapter gives a gentle introduction to transputers and how transputers are
programmed. It introduces the occam model for programming single and multi-
ple transputers, and briefly describes some of its advantages. The chapter also
outlines the development process for building and debugging programs, and
explains how the tools form an integrated development environment.

1: Overview

The occam 2 toolset is a software development system for building and de-
bugging programs on networks of transputers. The 0ccam 2 toolset supports
the full range of INMOS transputers and mixed networks of transputers. Used
with the ANSI C compiler the 0ccam 2 toolset can be used to build and debug
mixed language software systems.

System performance is substantially increased by parallel processing. Transput-
ers and the 0ccam 2 toolset make building high performance parallel systems
as simple as sequential programming with conventional microprocessors.

1.2 Transputers

Transputers are high performance microprocessors that support parallel process-
ing through on-chip hardware. They can be connected together by their serial
links in application-specific ways and can be used as the building blocks for
complex parallel processing systems.

The transputer is a complete microcomputer on a single chip. It has a very
fast (single cycle) on-chip memory, on-chip inter-processor links, and a pro-
grammable memory interface that allows external memory to be added with the
minimum of supporting logic.

Figure 1.1 shows the architecture of the transputer.

Multi-transputer systems can be built very simply. The four high speed links allow
transputers to be connected to each other in arrays, trees, and many other con-
figurations. (The IMS M212 and T400 each have two high speed communication
links). The circuitry to drive these links is all on the transputer chip, and only two
wires are needed to connect two transputers together. Figure 1.2 shows four
transputers connected using their communication links, and the communication
paths between them.

In addition to providing a communication link between programs running on pro-

72 TDS 275 02 March 1991

4 1 Introduction

System

Sorvicas Processor

e
Interface > Output

On-chip —N
RAM [— .

—

1

Application specific interface

Figure 1.1 Transputer architecture

cessors, transputer links allow memory to be examined without loading a pro-
gram, and permit programs to be loaded and executed. This allows whole net-
works of transputers to be loaded down a single transputer link.

Transputer

Transputer Transputer|

Transputer|

Figure 1.2 A node of four transputers
Each single transputer supports parallel processing through a system of internal

72 TDS 275 02 March 1991

1.3 Transputers and OCCam 5

channels implemented as words in memory. Each transputer has a highly effi-
cient built-in run-time scheduler; processes waiting for input or output, or waiting
on a timer consume no CPU resources, and process context switching time on
an IMS T800-25 is less than one microsecond. The communication links operate
concurrently with the processing unit and can transfer data on all links without
affecting the performance of the CPU.

The range of transputer devices available includes: 32 and 16 bit processors; a
peripheral control processor; a link switch; and a parallel link adaptor.

A wide range of transputer programming boards is supplied by INMOS and other
suppliers for a variety of hosts. These boards can be used for:

« Developing and debugging transputer software
e Running transputer programs (as accelerator boards)
o Loading software to transputer networks from the host.

¢ Building specific transputer networks.

1.3 Transputers and occam

occam 2 has been designed to reflect the architecture of the transputer, and
for maximum coding efficiency the whole system can be programmed in OC-
cam 2. The inherent security and code efficiency of occam and the ability to
use the special features of the transputer make occam 2 a powerful tool for
programming concurrent systems.

Transputers can also be programmed in G and FORTRAN, and their optimised
design ensures efficient code. Where programs need to exploit concurrency but
still need to use languages other than occam 2, special 0ccam code can be
used to link modules together.

1.3.1 The occam programming model

The occam programming model consists of parallel processes communicating
through channels. Channels connect pairs of processes and allow data to be
exchanged between them. Each process can be built from a number of parallel
processes, so that an entire software system can be described as a hierarchy
of intercommunicating parallel processes. This model is consistent with many
modern software design methods.

Communication between processes is synchronized. When a message is passed

72 TDS 275 02 March 1991

6 1 Introduction

between two processes the output process does not proceed until the input
process is ready. Buffered communication can be achieved by explicitly inserting
a buffer process between the two processes.

The occam programming model also provides an excellent basis for building
mixed language systems. Components written in languages other than occam
can be defined as processes inputting and outputting messages on channels.
The ANSI C and FORTRAN compilers supplied by INMOS are compatible with
occam and can be used to build equivalent 0CCam processes in any of these
languages. Library functions are provided in each language for the input and
output of messages on channels.

1.3.2 Multitransputer programming

In the 0occam 2 programming language parallelism can be expressed directly.
Each occam process is an independently executable process. A configuration
language extension to 0CCam 2 is used to distribute processes over networks
of transputers, and can be used to program multi-processor systems.

Figure 1.3 shows how three discrete processes, programmed in 0CCam or in
a compatible language, can be executed on a single processor or on three
processors connected in series.

© :
(p2) |

¢ ~

Three processes on
one transputer #

The same ﬁrocesses distributed
over three transputers

Figure 1.3 Mapping processes onto one or several transputers

72 TDS 275 02 March 1991

1.4 Program development using the toolset 7

1.3.3 Reliability

Because it has a formal mathematical framework, the 0ccam 2 language can
be extensively checked at compile time, and many programming errors can be
detected before the program is run. This significantly improves the reliability of
programs, and makes building correct programs faster and easier.

Each construct in the language has a precise meaning. This makes programs
easier to write and understand, and supports the formal mathematical manipu-
lation of programs required for program proving and advanced program optimi-
sation techniques.

1.3.4 Real time programming

occam 2 provides specific support for real time programming. The key features
of the transputer that support real time programming are listed below.

¢ Direct and efficient implementation of parallel processes in hardware
e Prioritisation of parallel processes

e Implementation of software interrupts as messages on 0ccam channels,
so that interrupt routines can be written as high priority processes

o Easy programming of software timers, allowing delays and non-busy
polling

1.4 Program development using the toolset

The 0ccam 2 toolset is a complete set of cross-development tools. The tools run
under standard host operating systems, either on the host itself or on a transputer
attached to the host, and use standard ASCII source files. All the tools can be
used in conjunction with existing software for text editing and source control
and with compilation utilities such as Make programs. For embedded systems,
programs can be loaded onto the target hardware from the host via a transputer
link.

1.4.1 System design

The designer can use the occam programming model to design software sys-
tems at the application level, by identifying the separate components of the sys-
tem in terms of processes and collections of related functions and procedures.
The design can be directly expressed in 0ccam and then checked by the com-

72 TDS 275 02 March 1991

8 1 Introduction

piler before transferring it to hardware.

1.4.2 Programming and code generation

To implement components of the design the programmer creates 0CCam source
texts, then compiles and links them together to produce executable code. Com-
piled source files can easily be combined into libraries for code sharing.

Code is linked using the toolset linker. For multi-transputer systems software
processes are allocated to transputers, and channels are allocated to links, in a
configuration description. This description, plus the linked code for each trans-
puter, is processed by the toolset configurer to create a multi-transputer program.
This program can then be distributed across a transputer network down trans-
puter links.

1.4.3 Debugging

Programs for multi-processor systems can be debugged at the symbolic level
using the network debugger that allows a breakpointed or halted program to be
analysed in terms of its source code. A low level debugging environment us-
ing direct memory display, instruction disassembly, and processor data is also
provided. Breakpoint debugging allows programs to executed interactively, and
post-mortem debugging allows stopped programs to be debugged from the con-
tents of the transputers’ memory. The debugger inserts no additional code into
the pragram, but rather reads data from a description file. This guarantees that
the code generated when debugging is disabled will always run in the same way
as the final version of the program.

occam programs can be executed and tested without transputer hardware us-
ing the T425 simulator tool which provides low-level debugging facilities. This
method is appropriate for debugging individual parts of a large transputer pro-
gram that would run on a single T425 processor.

72 TDS 275 02 March 1991

2 Overview of the toolset

This chapter introduces the toolset and briefly describes each of the tools in turn.
It also introduces the occam libraries, describes host system dependencies,
and explains the conventions used within the toolset.

2.1 Introduction

The occam 2 toolset is a set of tools and supporting software that help with
the development of transputer programs. It allows programs developed on host
machines to be loaded onto transputers and transputer networks via transputer
evaluation boards such as the IMS B004 and B0OO08 boards. All of the tools
operate with files in standard host format. This enables you to use the editor
with which you are familiar, and allows different types of version control systems
to be used.

A list of the tools in the toolset is given in table 2.1.

There are a number of different implementations of the toolset, running on dif-
ferent host computers. Versions are available for the IBM PC/AT and PC/XT
(and compatibles) running DOS, DEC VAX systems running VMS, and the Sun
Microsystems Sun 3/Sun 4 workstations running SunOS.

This manual covers all host versions of the toolset. Where differences exist
between implementations they are highlighted and explained.

2.1.1 Standard file format

All tools in the OCCam 2 toolset generate and use files in a standard object
code format known as TCOFF (Transputer Common Object File Format). The
adoption of this format makes the mixing of code from different compilers more
convenient and facilitates the porting and transfer of object code. In particular,
it enables code generated by all INMOS language compilers to be mixed in the
same system.

Support is provided for previous versions of the toolset (i.e. the IMS D705, D605
and D505 products) which used a file format known as LFF Linker File Format.
It is recommended, however, that the current release of the toolset is used to
recompile existing programs. This has the advantage that the current toolset
may be used for their further development.

Two levels of support are provided for LFF format:

72 TDS 275 02 March 1991

10 2 Overview of the toolset

e The linker tool 11ink supplied with the current toolset supports the pro-
duction of files in LFF format. The toal has a command line option which
enables output files to be produced that can be used with the iboot
and iconf tools issued with the IMS D705, D605 and D505 releases of
the toolset.

« A file convertor tool icvlink supplied with the current toolset enables
code generated by previous INMOS toolsets (i.e. the IMS D705, D605,
D505, D511A, D611A and D711A products) to be used with the current
occam 2 toolset. Note: there are some limitations on this tool's use,
see chapter 13.

2.1.2 New configuration language
The toolset introduces a modified configuration language that allows software

and hardware to be described separately and joined by a mapping description.
The language is an extension to 0CCam and can be used on any size of network.

72 TDS 275 02 March 1991

2.1 Introduction 11

Program | Description

icollect | The code collector. Takes the output of the configurer tool and
generates bootable code for a transputer network.

icvemit | Memory interface file convertor. The tool converts files produced
by iemi (a previous version of iemit) into the file format recog-
nised by the current version of ieprom and iemit.

iecvlink | The TCOFF file format convertor. Converts LFF object files to
TCOFF format.

idebug The toolset debugger. Provides symbolic and assembly level
debugging.

idump The memory dumper for storing the contents of the root trans-
puter. Used when debugging programs running on the root
transputer.

iemit The transputer memory configuration tool. Used for evaluat-
ing and defining specific memory configurations for incorporation
into ROM programs.

ieprom | The EPROM program formatter tool. Formats transputer
bootable code for ROM programmers.

ilibr The librarian. Builds libraries of compiled code.

ilink The linker. Resolves external references and links compiled
code into a single file.

ilist The binary lister. Displays source level information from object
code.

imakef The Makefile generator. Generates Makefiles for building object
and bootable code. Also creates library usage files.

iserver | The host file server. Loads programs onto transputer boards
and provides run-time communications with the host.

isim The T425 transputer simulator.

iskip The skip loader tool. Prepares transputer networks to run pro-
grams without using the root transputer.

oc The occam compiler. Compiles source for IMS T212, M212,
T222, T225, T400, T414, T425, T800, T801 and T805 transput-
ers.

occonf The configurer. Checks the configuration description and pro-
duces a data file for the code collector.

Table 2.1 The occam 2 toolset

72 TDS 275 02 March 1991

12 2 Overview of the toolset

2.2 oc - the occam 2 compiler

The occam 2 compiler takes as input 0ccam source code contained within
standard host format text files. Any text editor that produces standard ASCII
files can be used to create the 0ccam source.

The compiler produces code for T212, M212, T222, T225, T400, T414, T425,
T800, T801 or the T805 transputers in one of three program execution error
modes. Command line options allow you to specify the transputer type, error
mode, and other information required by the compiler.

The compiler supports a number of source code directives which enable different
types of source files to be compiled together. The main directives are:

e #INCLUDE - includes other source files
e #USE - uses separately compiled code and libraries

The compiler also supports the directives #COMMENT, #IMPORT, #OPTION,
and #PRAGMA.

The implementation of transputer classes, error modes and channels have all
changed slightly with this release of the toolset. Details of these changes are
given in chapters 4 and 25.

2.3 Code generation tools

Three tools are used in sequence to generate the executable file for a transputer
or transputer network from the compiled object code:

ilink —the toolset linker which links separately compiled program units.

occonf - the configurer which generates a configuration data file for
multitransputer programs. This tool is not needed for single transputer
programs.

icollect — the code collector which reads the configuration file and
generates a single bootable file for a transputer network. The collector is
also used to create a bootable file from linker output for a single transputer
program.

72 TDS 275 02 March 1991

2.4 Code loading 13

2.3.1 Linker

The linker 11ink links separately compiled modules and libraries into a single
file, resolving external references and generating a linked unit.

Linked units can be used in configuration descriptions to map software onto
specific arrangements of iransputers. While a linked unit for a single transputer
program can used by icollect to generate a bootable file.

2.3.2 Configurer

The configurer occon£ generates configuration information for transputer net-
works from a configuration description, written using the transputer configuration
language. The tool prepares the program for configuring on a specific arrange-
ment of transputers by analysing the configuration description and producing a
data file for the collector tool.

2.3.3 Collector

The code collector tool icollect takes the data file generated by occonf
and generates a single file that can be loaded on a transputer network. The file
contains bootable code modules for each processor on the network, along with
distribution information that is used by the loader.

icollect is also used to generate bootable code for single transputer pro-
grams from linked units. This mode of use must be selected by a command line
option.

2.4 Code loading

Bootable code for single transputers and transputer networks is loaded onto the
transputer hardware using the host file server tool iserver. The auxiliary skip
loading tool iskip can be used prior to iserver in order to load a program
onto an external network connected via a root transputer.

2.41 Host file server

The host file server iserver is a combined host server and loader tool. When
invoked to load a program it both loads the code onto the transputer hardware
and provides runtime services on the host (such as program i/o) for the transputer
program. iserver runs on the host computer, which is usually not a transputer.

72 TDS 275 02 March 1991

14 2 Overview of the toolset

2.4.2 Skip loader

The skip loader iskip is used to force a program to be loaded over the root
transputer (the transputer connected to the host). This is useful for loading
programs onto a transputer board connected to the host via a root transputer.

It is also useful for debugging programs that normally use the root transputer to
run all or part of a program. The debugger always runs on the root transputer.
Provided the network has at least one processor which is not used by the pro-
gram, iskip may be used in conjunction with iserver to load the program
over the root transputer. For details of skip loading see section 6.6.

2.5 Program development and support tools
Seven tools are provided to assist and support program development:

idebug - the network debugger.

idump — the memory dump tool for use with idebug when debugging
programs on the root transputer.

ilibr - the librarian which generates libraries of compiled code.

ilist — the binary lister which decodes and displays data from object
files.

icvlink - the file format convertor which allows import of code from
earlier INMOS toolsets.

imakef — the Makefile generator which creates Makefiles for use with
MAKE programs.

isim - the T425 simulator tool which enables programs to be executed
in the absence of transputer hardware.

2.51 Network debugger

The network debugger idebug provides comprehensive debugging facilities for
transputer programs. It allows stopped programs to be analysed from their mem-
ory image or from image dump files (post-mortem debugging) and supports in-
teractive debugging with breakpoints. In breakpoint mode variables can be in-
spected and modified and debugging messages can be inserted in any process
on the network.

72 TDS 275 02 March 1991

2.5 Program development and support tools 15

252 Memory dumper

The special debugging tool idump is provided to assist with the post-mortem
debugging of programs that run on the root transputer. When used in post-
mortem mode idebug executes on the root transputer and overwrites the pro-
gram image. idump saves the program image to a file which is later read by
the debugger.

2.5.3 Librarian

The librarian ilibr creates libraries of compiled code that can be used in
application programs. Each separately compiled file, that is supplied as input to
the librarian, becomes a library module that can be selectively linked.

A library can contain modules compiled from the same source for different targets
and compilation modes.

Code written using other compatible toolsets can be mixed with 0Ccam code in
the same library.

2.5.4 Binary lister

The binary lister 11ist decodes object code files and displays data and infor-
mation from them in a readable form. Command line options select the category
and format of data displayed.

Examples of the kind of information that can be displayed are library contents,
code entry points, and external reference data.

2.5.5 Makefile generator

The Makefile generator imakef creates Makefiles for specific program compi-
lations. Coupled with a suitable MAKE program it can greatly assist with code
management and version control.

imakef constructs a dependency graph for a given object file and generates
a Makefile in standard format. In order to make use of the tool a special set
of file extensions for source and object files must be used throughout program
development.

72 TDS 275 02 March 1991

16 2 Overview of the toolset

2.5.6 File format convertor

The file format convertor icvlink converts object files generated by earlier
INMOS toolsets to TCOFF format. TCOFF is a standardised object file format
for transputer code.

icvlink allows existing object code be used with the current toolset. Files to
be converted must be compiled or linked object files or libraries.

2.5.7 T425 simulator

The T425 simulator tool isim simulates the operation of the T425 transputer,
enabling programs to be executed in the absence of transputer hardware. It pro-
vides low-level debugging features such as the inspection of variables, registers,
and queues, disassembly of memory, break points, and single step execution.

2.6 EPROM support tools

Three tools provide support for installing bootable transputer code in ROM: the
EPROM programmer ieprom; the memory configurer iemit and icvemit
the memory interface file convertor.

2.6.1 EPROM programmer

The EPROM programmer ieprom converts bootable files into a format suit-
able for input to ROM programmers. Files are generated for input to several
proprietary ROM loaders, or in hexadecimal or binary format.

2.6.2 Memory configurer

The memory configurer iemit allows specific memory configurations to be eval-
uated and tested ‘on the bench’ before committing them to a device. The com-
pleted configuration can be included in the ieprom output file for automatic
installation into the processor.

2.6.3 Memory interface file convertor
icvemit is an auxiliary tool that converts files produced by iemi (a previ-

ous version of iemit) into the file format recognised by the current version of
ieprom and iemit. See section 16.8 for further details.

72 TDS 275 02 March 1991

2.7 The OCCamM libraries 17

2.7 The occam libraries

A comprehensive set of libraries and include files are provided with the toolset.
Some form part of the standard support for the 0ccam language (the compiler
libraries), others are user-level libraries to support standard programming tasks
such as terminal i/o and file access.

Object code is supplled for all libraries and in some cases source code is supplied
as well. Table 2.2 lists the libraries that are supplied with the toolset and specifies
whether the source code is provided. Details of all the libraries can be found in
part 2, chapter 1.

Library Description Source
provided
occamx.lib Compiler libraries no
hostio.lib General purpose i/o library yes
streamio.lib | Stream i/o support yes
snglmath.lib | Single length maths functions yes
dblmath.lib | Double length maths functions yes
tbmaths.lib | T400/T414/T425 optimised maths func- | yes
tions

string.lib String handling routines yes
xlink.lib Extraordinary link handling routines no
convert.lib | Type conversion routines yes
cre.lib CRC coding no
debug.lib Debugging support no
callc.lib Mixed languages support no
msdos.lib DOS specific hostio library yes

Table 2.2 The occam 2 libraries

2.71 Constants

Files containing definitions of constants and protocols are also provided for use
with the occam libraries. These are listed in table 2.3.

2.7.2 Compiler libraries

The compiler libraries are used internally by code generated by the compiler;
they are not intended for direct use by the programmer.

72 TDS 275 02 March 1991

18 2 Overview of the toolset

File Description

hostio.inc Host file server constants
streamio.inc | Stream i/o constants
mathvals.inc | Mathematical constants
linkaddr.inc | Transputer link addresses
ticks.ing Rates of the two transputer clocks
msdos.inc DOS specific constants

Table 2.3 Library constants
The compiler automatically loads the library required for a specific combination
of compiler options.
2.7.3 Maths libraries
The maths libraries provide trigonometric and logarithmic functions for all trans-
puter types supported by the toolset. Single and double length routines are
supplied in the libraries snglmath.1lib and dblmath. 1ib respectively, and
versions of the same routines optimised for the T400, T414 and T425 processors
are provided in the library tbmaths . 1ib. Constants for the maths libraries can
be found in the include file mathvals. inc.

2.7.4 1/O libraries

Two libraries containing routines to assist with i/o are provided with the toolset.
Constants for the two libraries are provided in separate files.

Hostio library
The hostio library contains routines that provide access to the file system and
other host services via the host file server. The routines are based on commu-
nication with the server via the SP protocol. The SP protocol is defined in the
include file hostio.inc.
The hostio library is used for:

¢ File handling

o Host access

e Terminal i/o

Other routines provide facilities such as time and date processing, process buffer-

72 TDS 275 02 March 1991

The occam libraries 19

ing and multiplexing.

Streamio library

The streamio library contains routines which provide i/o at a higher level than
the hostio routines. The protocol is based on a stream model. The streamio
library is used for general character-based i/o using stream protocols, and for
controlling the screen display. Protocols for the streamio library are defined in
the include file streamio.inc.

Stream input and output procedures are used to input and output characters us-
ing keystream and screen stream protocols. These protocols must be converted

to the server protocol before communicating with the host. For this reason the
streamio routines include stream processes to perform this conversion.

2.7.5 Other libraries
String handling library
The string handling library provides string handling functions and procedures to

perform, for example, string comparison, string search, string editing, and line
parsing.

Type conversion library

The type conversion library converts occam data types to ASCII strings and
vice versa.

Extraordinary link handling library

The extraordinary link handling library provides facilities for handling error situa-
tions on links.

Block CRC library

The block CRC library provides functions for generating CRC codes from char-
acter strings.

Debugging support library

The debugging support library provides functions for stopping processes, insert-
ing debugging messages and analysing deadlocks.

72 TDS 275 02 March 1991

20 2 Overview of the toolset

Mixed language support library

The mixed languages support library provides functions for initialising static and
heap areas, enabling modules written in sequential languages to be incorporated
in occam programs.

DOS specific hostio library

The DOS specific hostio library supports the use of functions specific to the IBM
PC and other DOS hosts.

2.8 Program development

The occam 2 toolset is a development system for transputers. Creation of
transputer executable code involves several stages which involve the use of
specific tools for each stage of the process.

The main steps in developing a program, for a transputer or transputer network,
and the tools to use at each stage are listed below.

+ Write the source: Source code can be written using any ASCII editor
available on the system. Code can be divided between any number
of source files. occam source code must conform to the occam 2
language definition.

Compile the source: Each occam source code file must be compiled
using the occam 2 compiler oc to produce one or more compiled object
files in TCOFF format. Each file must be compiled for the same or a
compatible transputer type and compilation mode.

Link the compiled units: Compiled source files are linked together. This
generates a single file called a linked unit with no external references.
The linking operation also links in the library modules required by the
program, which are selected by transputer type and compilation mode
from the compiled library code.

Configure the program: For multitransputer programs a configuration
description must be constructed to assign linked units to specific nodes
on the transputer network, and link them by channel variables. The de-
scription is processed by the configurer tool occon£ to produce a con-
figuration data file.

Generate executable code: The configuration data file generated by
occonf is analysed by the code collector icollect to generate a
single executable file for a transputer network. The same tool is used

72 TDS 275 02 March 1991

2.8 Program development 21

to create bootable programs for running on a single transputer, by using
the linked unit as the input file.

e Load and run the program: The executable or bootable file is loaded
onto the transputer network down a host link. Once loaded into memory,
the code begins to execute.

Figure 2.1 illustrates the development process in terms of the architecture of the
toolset. The default file extensions generated by the tools are used to represent
source and target files.

.pgm occonf @

Cing Cink !

oc ilink icollect @
i ,é\ ‘AHJ

o) oy !

iserver

Transputer
network

Figure 2.1 Toolset compilation architecture

2.8.1 Development support

The development support tools are aids to developing software and software
systems. They are designed to assist with processes such as debugging, code
sharing, and software version control. Used systematically during software de-
velopment they can help to produce reliable code quickly and with the minimum
of manual recompilation.

The network debugger idebug can be used in breakpoint mode during code
development to test and debug programs interactively. In post-mortem mode it
can be used to investigate the reasons for program failure.

The librarian ilibxr can be used to build libraries which make it possible to
share and transfer code between developers.

72 TDS 275 02 March 1991

22 2 Overview of the toolset

The binary lister 11ist can be used throughout program development to assess
code size and structure, and to determine the contents of object code files such
as libraries.

The Makefile generator imakef£ can be used in conjunction with a MAKE pro-
gram to ensure that all object code is updated to reflect changes in source files.

The file format convertor icvlink can be used to import existing object code
where the source is unavailable or too complicated to recompile easily.

The T425 simulator isim can be used to run programs in the absence of trans-
puter hardware. It provides low-level debugging features such as the inspection
of variables, registers, and queues, disassembly of memory, break points, and
single step execution.

2.9 File extensions

File extensions can be used to indicate the various types of source and object
code that they contain and certain default names are assumed and where possi-
ble generated by the tools. For example, the compiler assumes the suffix .occ
for the input source file and adds the extension .tco to the output file unless
otherwise specified.

Assumed extensions permit common input file extensions to be omitted on the
command line and default generated extensions allow output files to be easily
identified and manipulated by the host file system.

The default output extensions and assumed input extensions are not part of the
required syntax and may be modified or omitted by personal choice (except when
imakef is used, see below). None are mandatory parts of the syntax.

Adoption of a convention is recommended where large systems are being devel-
oped. The standard set of conventions outlined here can be used, or a separate
system can be designed to suit a particular environment. The standard toolset
system has the advantage of built in defaults, and has been designed to reflect
the underlying architecture of the toolset.

The default extensions are listed in table 2.4 and the relationships of the exten-
sions to the compilation architecture is illustrated in figure 2.1.

File extensions for use with imakef

The Makefile generator imake £ requires special file extensions for compiled and
linked object files, which differ from the set of default extensions presented here.

72 TDS 275 02 March 1991

2.10 Host dependencies 23

Ext Description
.btl | Bootable code file. Created by icollect.

.btr | Executable code minus bootstrap information used for input
to ieprom. Created by icollect.

.cfb | Configuration data file. Created by occonf and
icollect.

.clu | Configuration object file. Created by occonf.

.dmp | Core-dump file created by idump or network-dump file cre-
ated by idebug.

.inc | Include file. Input to oc and occconf£.

.1lku | Linked unit. Created by ilink.

.1bb | Library build file. Input to ilibx.

.1ib | Library file. Created by ilibxr.

.liu | Library usage file. Created and used by imakef.
.1nk | Linker indirect file. Input to i1ink.

.occ | occam 2 source files. Assumed by oc.

.pgm | Configuration description. Assumed by occonf£.

.rsc | Dynamically loadable code file. These files are designed
to be executed by KERNEL . RUN.

.tco | Compiled code file. Created by oc.

Table 2.4 Standard file extensions

The extensions are used by imakef£ to trace file dependencies and construct
the necessary commands for building all types of object files.

If you use imake£ then you must use the special set of extensions. For more
details see chapter 21.

2.10 Host dependencies
The occam 2 toolset is hosted on four systems:
e IBM PC running DOS

e DEC VAX running VMS

¢ Sun 3 running SunOS (UNIX)

72 TDS 275 02 March 1991

24 2 Overview of the toolset

¢ Sun 4 running SunOS (UNIX)
Source and object code is portable between all these systems.

The four implementations have been designed to reflect the ‘flavour’ of the op-
erating system. This leads to minor differences between them in the areas of
command line syntax and the filename character set. Installation issues such as
the setting of environment variables and the definition of search paths are also
host dependent, and are covered in detail in the Delivery Manual that accompa-
nies the release. They are only described briefly here.

Operating system dependencies are as far as possible made transparent to the
user. The few differences are summarised below.

Command line syntax

The major difference between different host implementations is the use of the
standard host system option prefix. For MS-DOS and VMS based toolsets the
prefix character is the forward slash ‘/*. For all other hosts, including UNIX the
prefix character is the dash ‘-’;

2.10.1 Libraries

Most library routines supplied with the toolset are host independent, but a few
specific procedures may be provided for some operating systems. For details of
host dependent routines see the Delivery Manual.

If you wish to write programs that will be fully portable across different systems,
use only the host independent routines, which are described in part 2, chapter
1

2.10.2 Filenames

Filenames, with or without the full directory path, conform to the normal conven-
tions of the host operating system except that characters which can be inter-
preted as directory separators must not be used in the filename part. Prohibited
characters are: dot ., colon :, semi-colon ;, square brackets [, round brack-
ets (), angle brackets <>, forward slash /, backslash \, exclamation mark !,
or the equals sign =.

Where the host operating system allows logical names to be used in place of
filenames, such as with VMS, the toolset allows logical names to be used, but
the name must be followed by a dot (.). This prevents the tool from adding an
extension, which would generate a host file system error.

72 TDS 275 02 March 1991

210 Host dependencies 25

2.10.3 Search paths

All tools which use or generate filenames use a standard mechanism for locating
files on the host system. This mechanism is used whenever a filename has to be
interpreted e.g. from'the command line, as part of a directive such as # INCLUDE
or #USE or a library call. The same mechanism is used in all operating system
versions of the toolset.

The mechanism is based on a list of directories to be searched. If the name
includes a directory path only this directory is searched. If the file is not found
on the path an error is generated. Relative pathnames are treated as relative to
the current directory i.e. the directory from which the tool is invoked.

If no directory path is specified the current directory is searched followed by the
directories specified in the ISEARCH environment variable e.g.

ISEARCH=C:\IOCTOOLS\LIBS\;C:\MYDIR\

The mechanism used to define environment variables depends on the operating
system. For example, on the IBM PC they are defined using the set command;
on VAX systems running VMS they can be set up either as logical names or as
VMS symbols.

Examples showing how to set up environment variables on your system can be

found in the Delivery Manual that accompanies the release. Details of the oper-
ating system commands can be found in the operating system documentation.

2.10.4 Host environment variables
The toolset uses several environment variables on the host system. Use of these

variables is optional but if defined they will affect the behaviour of the tools on
your system.

72 TDS 275 02 March 1991

26 2 Overview of the toolset

Variable Meaning

ISEARCH The list of directories that will be searched if the full pathname
is not specified. Pathnames must be terminated by the direc-
tory separator character. Used by all tools that read and write
files.

ISERVER Defines an alternative iserver to be used by the host system
for booting a transputer network and communicating with the
application program running con the network.

ITERM The file that defines terminal keyboard and screen control
codes. Used by idebug, isimand iemit.

IBOARDSIZE | The size (in bytes) of memory on the transputer board. Used
by non-configured programs.

TRANSPUTER | The host address at which the transputer board is connected
to the host. Used by iserver.

IDEBUGSIZE | The amount of memory (in bytes) on the root transputer avail-
able for use by idebug.

2.10.5 Default command line arguments

An environment variable can be defined on the system to specify a default set of
command line arguments for certain tools. The variable name must be defined
in upper case and is constructed from the tool name by appending the letters
‘ARG’. For example, the variable for ilist is ILISTARG.

Tools for which a default command line can be defined, and the variables used
to define them, are listed below.

Tool Variable
ilink ILINKARG
ilibr ILIBRARG
ilist ILISTARG
icvlink | ICVLINKARG

Command line parameters must be specified within each variable using the spe-
cific syntax required by each tool.

2.11 Toolset conventions

The toolset conforms to a number of conventions for the command line syntax,
file names, and error reporting.

72 TDS 275 02 March 1991

2,12 Command line syntax 27

2.12 Command line syntax

All tools in the toolset conform to a standard command line syntax. Toolset
commands use the following syntax conventions:

o Commands, and their parameters and options, obey host system stan-
dards.

¢ Filenames, either directly specified on the command line or as arguments
to options, must conform to the host system naming conventions.

» Options must be prefixed with the standard option prefix character for the
operating system '/’ for MS-DOS and VMS based toolsets and (‘~’ for
all other hosts including UNIX).

e Command line parameters and options can be specified in any order but
must be separated by spaces.

e Lists of arguments to options, where allowed, must be enclosed in paren-
theses (), and the items in the list must be separated by commas.

o If no parameters or options are specified the tool displays a help page
that explains the command syntax.

Standard options

Where options are common to more than one tool in the toolset, the following
conventions apply:

e All tools provide help information if invoked with no options.

e The ‘F" option, where supported, specifies an indirect input file. If no
name is given then input may be taken either from host standard input
(normally the keyboard) or the command line.

e The 'I’ option, where supported, displays progress information as the
tool runs.

e The 'L’ option , where supported, loads the tool onto a transputer board
and awaits a command line. Only applies to transputer hosted tools.

e The ‘O’ option, where supported, is used to specify an output filename.
If no filename is given then ASCII output is sent to host standard output
(normally the screen), or to a file whose name is derived from an input
file.

72 TDS 275 02 March 1991

28

2 Overview of the toolset

« The ‘XO' option, invokes the tool in single invocation mode. Only applies

to transputer hosted tools. The tool terminates after execution and has
to be rebooted onto the transputer board when it is next invoked. Single
invocation is the default.

The *XM' option, invokes the tool in continuous execution mode. Only ap-
plies to transputer hosted tools. Once the tool has completed its current
operation it remains resident on the transputer board and can be rein-
voked without rebooting onto the transputer board by the server. When
the tool is reinvoked, a combination of server options and the tool's own
options are used on the server's command line. For example:

UNIX system:

oc -1 -xm

iserver -ss —xm myprog.occ -o myprog.t4h
iserver -ss -xm -t8 myprog.occ -o myprog.t8h
iserver -ss -xm -t5 myprog.occ -o myprog.t5h

MS-DOS/VMS system:

oc /1 /xm

iserver /ss /xm myprog.occ /o myprog.tdh
iserver /ss /xm /t8 myprog.occ /o myprog.t8h
iserver /ss /xm /t5 myprog.occ /o myprog.t5Sh

In this example the occam compiler is first loaded onto the trans-
puter board. It is then invoked in continuous execution mode, with
different compiler options (see section 25) selected for the program
"myprog.occ”. A different output file is specified each time the tool
is invoked. The server ‘ss’ option enables the program to communicate
with the host file server (see chapter 22). The ‘xm’ option must be used
each time the tool is to be reinvoked.

2.121 Error handling and message format

All tools in the toolset use a common system of error handling and a common
format for error messages. This has the following advantages:

¢ The tool generating the error can be identified even when the tool is run

in a ‘background’ mode, that is, out of contact with the terminal.

« Some editors can provide automatic location of the error if the error mes-

sages are in a fixed format.

e Host programs or operating system utilities can be used to detect errors.

72 TDS 275 02 March 1991

2.12 Command line syntax 29

The format includes information to assist in locating the error in the file, an
indication of the error severity, and a message explaining why the error occurred.
The general format is as follows:

severity—toolname —filename (linenumber)—message

where: severity indicates the category of error, which can be: Warning; Error,
Serious; or Fatal. These are described in more detail below.

toolname is the standard toolset name for the tool. Names defined using
host system abbreviations and batch files are not displayed.

filename and linenumber indicate the file and line where the error was
detected. They are only displayed when the error occurs in a file. They
are commonly displayed when files of the wrong format are specified on
the command line, for example, a source file is specified where an object
file is expected.

message is the text explaining why the error occurred and, if appropriate,
how to recover from the problem.

Far example:

Error-oc—-Invalid command line option (sting)

Severities

Warning messages identify relatively minor inconsistencies in code; they may
also warn of the impending generation of more serious errors. The tool continues
to run and may produce usable output if no errors of a more serious nature are
encountered subsequently.

Error messages indicate errors from which immediate recovery is possible but
long term recovery is unlikely. The tool may continue to run, but further errors
are likely and the tool will probably abort eventually. No output is produced.

Serious messages indicate errors from which no immediate recovery is possible.
Further processing is abandoned and the operation is aborted. No output is
produced.

Fatal errors indicate internal inconsistencies in the software and cause immediate

termination. No output is produced. Fatal errors should be reported immediately
to an INMOS field applications engineer.

72 TDS 275 02 March 1991

30 2 Overview of the toolset

Information messages

Messages that are part of the normal operation of the tool, for example, infor-
mation from the debugger and simulator tools are displayed in special formats.
The formats will become familiar with use.

72 TDS 275 02 March 1991

3 Getting started

This chapter contains a tutorial that shows you how to compile, link, and run a
simple example program on a single processor.

A more complex programming example, illustrating separate compilation, can be
found in chapter 4, together with a detailed description of program development
for single transputers. While chapter 5 provides a description and examples of
multitransputer programming.

The tutorial, given in this chapter, assumes that you have a boot from link board
containing a IMS T400, T414 or T425 processor. If you have a board fitted with
any other transputer you must compile and link the program for that transputer
type, see section 3.3.6. The tutorial also assumes that certain environment
variables have been set up. These are introduced in sections 2.10.3 and 2.10.4
and a description of how to set them up is given in the delivery manual supplied
with this product.

If you do not have a transputer board use the T425 simulator tool isim to run
the application program, see section 3.3.5.

3.1 Example command line

Where necessary, the example command lines are duplicated for different host
versions of the toolset; the ‘=’ switch character is used in command lines for
UNIX based toolsets and the ‘/* character is used in commands for MS-DOS

and VMS based toolsets. When reproducing the examples you should use the
appropriate command line for your host system.

3.2 Interrupting programs

To interrupt an application program while it is still running, press the host system
BREAK key to interrupt the server. See the delivery manual, section ‘Server
Interrupts’ for further details.

When the BREAK key is pressed the following prompt is displayed:

(x)exit, (s)hell, or (c)ontinue?

To abort the program type ‘x’ or press This terminates the host file
server.

To suspend the program so that you can resume it later, type ‘s’.

72 TDS 275 02 March 1991

32 3 Getting started

To abort the interrupt and continue running the program, type ‘c’.

3.3 Compiling and running a simple example program

The example program simple.occ reads a name from the keyboard and dis-
plays a greeting on the screen. The source of the program can be found in the
toolset examples directory. The program uses the library hostio.1lib and
incorporates the include file hostio.inc.

The program is illustrated below.
#INCLUDE "hostio.inc" -- contains SP protocol
PROC simple (CHAN OF SP fs, ts, []INT memory)
#USE "hostio.lib" -- iserver libraries
[IBYTE buffer RETYPES memory:
BYTE result:
INT length:
SEQ
so.write.string (fs, ts,

"Please type your name :")
so.read.echo.line (fs, ts, length, buffer,

result)
so.write.nl (fs, ts)
so.write.string (fs, ts, "Hello ")

so.write.string.nl (fs, ts,
[buffer FROM 0 FOR length])
so.exit (fs, ts, sps.success)

The first line in the program loads the file hostio. inec. This file contains the
definition of protocol SP, used to communicate with the host file server, and a
number of constants that are used in conjunction with the host i/o library.

The procedure simple is then declared. All the working code is contained
within this procedure. Single processor programs must always use a similar
parameter list.

The serverlibrary hostio.libis referenced by the #USE directive. This library

contains all the procedures used by the program. See part 2, section 1.4 for
descriptions of the routines.

72 TDS 275 02 March 1991

3.3 Compiling and running a simple example program 33

Before the body of the procedure a number of variables are declared. First, the
memory array is retyped as a BYTE array. This enables the program to use the
free memory on the board as a character buffer.

The variables 1length and result are then declared for use by the program.
The variable 1length refers to the number of characters in the name read from
the keyboard, and result is used by the library routine to indicate whether
or not the read was successful. The result is ignored by this example for the
sake of simplicity; it is assumed that screen writes and keyboard reads always
succeed.

The working code is contained within a SEQ, indicating that the statements which
follow are to be executed sequentially. All of the statements are calls to library
routines in hostio.lib. The code prompts for a name, reads the name from
the keyboard, and types a greeting on the screen.

The last statement calls a library procedure which terminates the server, returning
control to the host operating system. Without this statement the program would
finish and appear to hang, and the server would have to be terminated explicitly
by interrupting the program.

3.3.1 Setting environment variables

Certain environment variables must be set up prior to using the toolset. These
are introduced in sections 2.10.3 and 2.10.4 and a description of how to set them
up is given in the delivery manual supplied with this product. For example, the
compilation will fail with a message indicating that hostio.inc has not been
found, should the environment variable ISEARCH not be set up correctly.

3.3.2 Compiling the example program

In order to compile the program in its simplest form i.e. with all defaults enabled
the following command line should be used:
oc simple L7799

Because the file has the default extension of . oce you can omit it when invoking
the compiler.

The compiler will create afile called simple. tco, containing the code compiled
for a T414 in HALT mode. The compiler will perform the necessary syntax, alias
and usage checks and will insert code to perform run-time error checking. By
default the compiler enables interactive debugging with idebug.

72 TDS 275 02 March 1991

34 3 Getting started

3.3.3 Linking the example program

To use the result of your compilation it must be linked with the libraries that it
uses.

To link the program type:

ilink simple.tco hostio.lib -f occama.lnk (UNIX)
ilink simple.tco hostio.lib /f occama.lnk (MS-DOS/VMS)

The linked program will be written to the file simple.lku. As no output file
is specified, the file is named after the input file and the default link extension
.1ku is added.

The library hostio.lib is the server library used by this program.

The ‘£’ option specifies a linker indirect file containing commands and directives
to ilink. Three indirect files are supplied to support different transputer types.
They are occam2. 1nk, occama. lnk and occam8 . 1nk; they are described
in chapter 19. These files identify various libraries including compiler libraries
which are required to be linked with the program. These files are provided as a
short-hand method of specifying such libraries to the linker.

The file occama. 1nk is the correct file to use for T4 series transputers.

Note: In more complex programs, libraries may be dependent on other files
and libraries. To ensure all necessary libraries are linked into a program, the
imakef tool may be used with a suitable MAKE program. (See below).

3.3.4 Creating a bootable file

Before the program can be run it must be made ‘bootable’. This involves adding
bootstrap information to make the program loadable and is achieved using the
collector tool icollect. One of the following commands should be used de-
pending on the type of host in use.

icollect simple.lku -t (UNIX)
icollect simple.lku /t (MS-DOS/VMS)

By default icollect expects the input file to have been produced by the con-
figurer. Because the example program is going to run on a single processor
there is no need to configure it. The ‘t’ option instructs the collector to build a
bootable file from a linked unit. The bootable program will be written to the file
simple.btl.

72 TDS 275 02 March 1991

3.3 Compiling and running a simple example program 35

icollect will also create a configuration binary file as a by-product of creating
the bootstrap. Configuration binary files describe the network configuration, in
this case a single transputer. This file will have the extension .cfb and is
created by icollect for use by the debugger. For multitransputer programs
the configurer is used to create configuration binary files.

Chapter 12 gives more information on the collector tool.

3.3.5 Running the example program

To run the program it must be loaded onto a transputer board using the host
file server tool iserver. To load and run the program use one of the following
commands:

iserver -se -sb simple.btl (UNIX)
iserver /se /sb simple.btl (MS-DOS/VMS)

The 'sb’ option specifies the file to be booted and loads the program onto the
transputer board. It has the effect of resetting the board, opening communication
with the host, and loading the program onto the network. The ‘se’ option directs
the server to terminate if the program sets the error flag. For more details about
the server options see chapter 22.

Figure 3.1 shows an example of the screen display, obtained by running
simple.btl on a UNIX based toolset, for a user called ‘John’.

iserver -se -sb simple.btl

Please type your name :John
Hello John

Figure 3.1 Example output produced by running simple.btl.

If you are using the simulator to run the example program use one of the following
commands:

isim -bg simple.btl UNIX
isim /bqg simple.btl MS-DOS/VMS

The ‘bg’ option specifies batch quiet mode which causes the simulator to run the
program and then terminate. For more details about how to use the simulator
see chapter 23.

72 TDS 275 02 March 1991

36 3 Getting started

3.3.6 Compiling and linking for other transputer types

If you are using a transputer other than a T400, T414 or T425 you must specify a
target transputer type for the compilation and linkage function, since the default
type T414 will be inappropriate. Chapters 25 and 19 describe the options avail-
able. The same option must be specified to both the compiler and the linker,
otherwise the linker will report an error. In addition, you must change the linker
indirect file as described in chapter 19.

For example to compile and link the program ‘simple.occ’ so that it will run
on a T800, T801 or T805 use the following command lines, as appropriate:

UNIX hosts:

oc simple -t800
ilink simple.tco hostio.lib -f occam8.lnk -t800

MS-DOS/VMS hosts:

oc simple /t800
ilink simple.tco hostio.lib /f occam8.lnk /t800

3.4 Using imakef

As an alternative method of program development the toolset Makefile generator
imakef can be used. This tool can produce a Makefile for any type of file that
can be built with the toolset tools. imake£ serves two purposes:

« It enables the user to generate a target file automatically (e.g. a bootable
file) without having to manually perform the intermediate stages of pro-
gram development i.e. compiling, linking, configuring etc.

« For more complex programs, comprising several modules, it simplifies
the incorporation of changes to the program by identifying dependencies
and incorporating them into the Makefile.

In order for imakef£ to be able to identify file types, a different system of file
extensions must be used to that used in the examples above. See chapter 21
for a description of imakef and the extensions used.

To create a Makefile for the example program, use the following command:

imakef simple.b4h

72 TDS 275 02 March 1991

3.4 Using imakef 37

The .b4h extension informs imakef that we wish to build a bootable program
fora T414 in the default HALT error mode. imakef will create a Makefile called
simple.mak containing full instructions on how to build the program.

To build the program run the MAKE program on simple.mak. The entire
program will be automatically compiled, linked and made bootable, ready for
loading onto the transputer.

For example:
make -f simple.mak UNIX
make /f simple.mak MS-DOS/VMS

To run the program:

iserver -se =-sb simple.bdh (UNIX)
iserver /se /sb simple.b4h (MS-DOS/VMS)

If you are using the simulator to run the example program use one of the following
commands:

isim -bg simple.b4h UNIX
isim /bg simple.b4h MS-DOS/VMS

72 TDS 275 02 March 1991

38 3 Getting started

72 TDS 275 02 March 1991

4 Programming single
transputers

This chapter provides an introduction to 0ccam programming using the toolset,
using an example program for single processors. The chapter follows on from
the information and example given in chapter 3 ‘Getting started’. For information
on programming multitransputer networks see chapter 5.

Before reading this chapter the user should already be familiar with the concepts
and syntax of the 0occam programming language. For detailed information about
the language see the ‘occam 2 Reference Manual' and for an introduction to
occam see ‘A tutorial introduction to occam programming’.

4.1 Program examples
A simple programming example, to get you started, is provided in section 3.3.

This chapter uses a more complex example, illustrating separate compilation;
which can be found in section 4.12.

All the example programs are designed for boot from link boards. If you have a
board that boots from ROM you should set it to boot from link or run the example
programs using the T425 simulator tool isim.

4.2 occam programs

Within the toolset a single processor program is a single 0ccam procedure with
a fixed pattern of formal parameters, as illustrated below.

#INCLUDE "hostio.inc"
PROC occam.program (CHAN OF SP fs, ts,
[JINT memory)
body of program

The procedure and its parameters can have any legal 0Ccam names. You must
always supply the procedure with the same type of formal parameters as shown
above, to enable communication with the host.

All occam procedures are terminated by a colon (:), at the same indentation

as the corresponding PROC keyword. Do not forget the colon at the end of a
program.

72 TDS 275 02 March 1991

40 4 Programming single transputers

Program input and output is supported by the host file server, which is resident
on the host computer. Access to the host file server is via the i/o libraries, which
are described in part 2, chapter 1. Whenever routines from these libraries are
used the channels £s and ts must be passed to the routine so that it can
communicate with the host file server.

Channel £s comes from the host file server and ts goes to the host file server.
Both use protocol SP, which is defined in the include file hostio.inec. Fig-
ure 4.1 shows how these channels are connected.

The array memory contains the free memory remaining on the transputer evalua-
tion board after the program code has been loaded and the workspace allocated.
It is calculated by subtracting the area occupied by the program code and data
from the value specified in the IBOARDSIZE host environment variable. The
memory array is passed to the program as an array of type INT, where it can
be used. By allowing programs to be run on boards with different memory sizes,
this array aids program portability between different boards.

host computer transputer board
fs
[occam
program
ts

Figure 4.1 Program input/output

4.21 Compiling programs

The compiler produces object code in TCOFF format for input to the linker. The
compiler is capable of compiling code for any one of a range of transputers (the
IMS T212, M212, T222, T225, T400, T414, T425, T800, T801 or T8OS) in one
of three error modes and with interactive debugging either enabled or disabled.
The compiler enables interactive debugging by default unless the compiler ‘¥’
option is used.

The standard error modes are HALT system and STOP process. A special
mode, UNIVERSAL, enables code to be compiled so that it may be run in either
HALT or STOP mode. The target processor and error mode must be specified
for each compilation, using options on the command line. By default the compiler
compiles for an IMS T414 in HALT mode, and when compiling for this transputer
type and error mode you may omit the options. In all other cases the options
must be supplied.

72 TDS 275 02 March 1991

Compiling occam programs 41

Other operating features of the compiler may be changed by options. See sec-
tion 25.2 for a full description of these options.

If the compiler detects any errors, the file name and line number of each error
is displayed along with a message explaining the error.

If the compilation succeeds, the compiler creates a new code file in the current
directory. The filename for the new file is derived from the name of the source
file and the default file extension .tco is added. The filename can also be
specified on the command line.

Compilation information

It is sometimes necessary to check how much workspace (data space) will be
required to run the code. This information is stored in the code file produced
by the compiler, linker and librarian. To display the information use the ‘I’ com-
mand line option or use the binary lister tool 11ist. For details of ilist see
chapter 20.

4.22 Linking programs

When all the component parts of a program have been compiled they must be
linked together to form a whole program. Component parts include the main
program, any separately compiled units, and any libraries used by the program,
including the compiler libraries.

If required, the compiler libraries are automatically loaded by the compiler unless
specifically disabled with the compiler ‘E’ option. If you are unsure whether your
program uses the compiler libraries it is best to always link in the appropriate
library. Only library modules actually used by the compiled code will be included
in the linked code file. The correct library for your program depends on the
transputer type of the compilation.

To assist the user, three linker indirect files are supplied listing the compiler
libraries appropriate to different processor types. The relevant file should be
included on the linker command line using the ‘£’ option. occam2.lnk is
provided for the T2 series, occam8 . 1nk for the T8 series and occama.lnk
for other 32-bit transputers.

For further details of the compiler libraries see part 2, section 1.2.

By default, the order in which the code modules are specified on the command
line determines their order within the linked unit; library modules being placed
after the separately compiled modules. This default can be overruled by using the
compiler directive ##RAGMA LINKAGE (see section 25.10.7) and the linkage

72 TDS 275 02 March 1991

42 4 Programming single transputers

directive #SECTION (see section 19.3.1). These directives enable the user to
prioritise the order in which modules are linked together and so influence the
use of on-chip RAM. A map of the linked unit, showing the order of the modules,
may be produced by specitying the linker command line option ‘MO'.

4.2.3 Viewing code

Object code files produced by compiling or linking programs can be examined
using the binary lister tool 11ist. Information that can be displayed includes
procedure definitions, exported names, external references within the code, and
symbol data. For more details see chapter 20.

4.2.4 Making bootable programs

Code that has been linked to form a program cannot be loaded directly onto a
transputer evaluation board, for two reasons. Firstly, object code produced by
the linker and compiler tools contains extra information required by some tools.
This information must be removed before the program can be loaded. Secondly,
code to be run on a board which boots from link, such as the IMS B004, require
the addition of bootstrap information to load the program and start it running.

Extraneous data is removed, and a boot-from-link bootstrap is added, by the
collector tool icollect.

4.2.5 Loading and running programs

Bootable programs can be loaded onto the transputer evaluation board using
the host file server iserver (see chapter 22).

The server must be given a number of parameters when it loads a program. All
server options are two characters long, with ‘S’ as the first character. Server
parameters are removed from the command line by the server, so you should
avoid using the same options for your own program (it is best to avoid giving
programs two letter options beginning with the letter 's’).

To load a program use the ‘SB’ option and specify the file to be loaded. This
has the same effect as using options ‘SR’, ‘SS’, ‘SI’, and ‘SC’ together, that is,
it resets the board, provides access to host facilities such as file access and
terminal i/o, and loads the program. The ‘SI’ option directs the tool to display
progress information as it loads the file. To terminate when the transputer error
flag is set, thereby enabling the program to be debugged, add the server ‘SE’
option.

72 TDS 275 02 March 1991

4.3 Transputer types and classes 43

Programs can also be loaded onto transputer networks, without using code on
the root transputer, by first using the iskip tool to set up a skip process and
then loading the program using iserver. This can be useful when loading
programs onto external networks via a transputer evaluation board. It is also
useful for debugging programs that normally use the root transputer to run all or
part of a program. The debugger always runs on the root transputer. Provided
the network has at least one processor which is not used by the program, iskip
may be used in conjunction with iserver to load the program over the root
transputer. For details of skip loading see section 6.6.

4.3 Transputer types and classes

This section describes the meaning of transputer types and classes and how
selection of the target processor affects the compilation and linking stages of
program development. The section describes how to compile and link code
targetted at a single processor type and then describes how to compile and
link programs so that they can be executed on different processor types. The
examples used in this section follow on from the example introduced in chapter
3

4.3.1 Single transputer type

For those users who have a single transputer or indeed a network of transputers
all of the same type, the compilation and linking stages of program development
are very straighforward. Simply compile and link all your modules for the required
processor.

The compiler and linker both support command line options to select the following
processar types:

16-bit processors | T212, M212, T222, T225
32-bit processors | T400, T414, T425, T800, T801, T805

Example to compile and link for a T800:

oc simple -T800 (UNIX)
ilink simple.tco hostio.lib -T800 -f occamB.lnk

oc simple /T800 (MS-DOS/VMS)
ilink simple.tco hostio.lib /T800 /f occam8.lnk

The default target processor for both the compiler and linker is a T414, so if you
are using this processor type the steps are even simpler:

72 TDS 275 02 March 1991

44 4 Programming single transputers

Transputer | Processors which class can be run on
class
T2 T212, M212, T222, T225
T3 T225
T4 T414, T400, T425
T5 T400, T425
T8 T800, T801, T805
T9 T801, T805
TA T400, T414, T425, T800, T801, T805
B T400, T414, T425

Table 4.1 Transputer classes and target processor

oc simple (UNIX)
ilink simple.tco hostio.lib -f occama.lnk

oc simple (MS-DOS/VMS)
ilink simple.tco hostio.lib /f occama.lnk

4.3.2 Creating a program which can run on a range of transputers

The compiler and linker use the concept of transputer class to enable programs
to be developed which may be run on different transputer types without the need
to recompile.

A transputer class identifies an instruction set which is common to all the pro-
cessors in that class. When a program is compiled and linked for a transputer
class it may be run on any member of that class.

Note: Code created for a transputer class will often be less efficient than code
created for a specific processor type. Therefore, creating code for a transputer
class is discouraged in situations where program efficiency is a primary concern;
it should only be performed where there is a genuine need to produce code
which will run on a range of transputers or to reduce the size of a support library,
where program efficiency is not a major concern.

Table 4.1 lists all the transputer classes which the compiler and linker support
and indicates which processors the program can be run on.

In order to develop a program which will run on different processor types, perform
the following steps:

72 TDS 275 02 March 1991

4.3 Transputer types and classes 45

1 ldentify the processors on which the program is to run.

2 Using table 4.1 select the class which may be run on all the target pro-
CESSOors.

3 Compile and link all the program modules for this class.

For example to create a program which will run on both a T400 and a T425,
compile and link for transputer class T5:

oc simple -T5 (UNIX)
ilink simple.tco hostio.lib -T5 -f occama.lnk

oc simple /T5 (MS-DOS/VMS)
ilink simple.tco hostio.lib /T5 /f occama.lnk

Alternatively to create a program which will run on a T400, T425 or a T800,
compile and link for transputer class TA.

oc simple -TA (UNIX)
ilink simple.tco hostio.lib -TA -f occama.lnk

oc simple /TA (MS-DOS/VMS)
ilink simple.tco hostio.lib /TA /f occama.lnk

Programs compiled for the T212, M212 or T222 transputers, which make up
class T2, can be run on a T225 (class T3) because a T225 has a similar but
larger instruction set than class T2 transputers. Similarly code compiled for a
T414 (class T4) may be run on a T400 or T425, which form class T5. The
T400 and T425 have additional instructions to those of the T414. Likewise, code
compiled for a T80O (class T8) may be run on a T801 or T805, which form class
T9. Again the T801 and T805 have additional instructions to those of the T800.

4.3.3 Mixing code compiled for different targets
This section describes how object code compiled for one target processor or
transputer class can call and be linked with code compiled for different transputer

types or classes.

The ability to do this provides the user with greater flexibility in the use of program
modules:

e An individual module can be compiled once e.g. for class T4, and then

be called by separate programs to run on different processor types e.g.
T414 and T425.

72 TDS 275 02 March 1991

46 4 Programming single transputers

e When the user is preparing a library for use by programs intended to
run on different processor types, a single copy of code compiled for a
transputer class can be inserted instead of multiple copies for specific
transputers.

When linking a collection of compiled units together into a single linked unit,
the user must select a specific transputer type or transputer class on which the
linked unit is to run. As before, this determines the set of transputer types on
which the code will run. When linking for a particular type or class, the linker
will accept compilation units compiled for a compatible class. Table 4.2 shows
which transputer classes the linker will accept when linking for a particular class.

Link | Transputer classes which
class | may be linked

T2 | T2

T3 | T3, T2

T4 | T4,TB, TA

T5 | T5, T4, TB, TA

T8 | T8
T9 |T9, T8
TB | TB, TA
TA | TA

Table 4.2 Linking transputer classes

For example if the target processors are a T400 and a T425 the user may compile
for classes T5 and TB and link the code for class T5.

Code for a different transputer class can be included in the final linked unit, as
long as :

- it uses the instruction set, or a subset of the instruction set, of the link
class.

- the calling conventions are the same, (see below).

The same rules must also be followed during the program design stage, when
deciding which modules should call each other. Code for a different transputer
class can be called provided that it uses the instruction set or a subset of the
instruction set of the calling class. This is because the compiler needs to know
which modules to select from libraries containing copies for different processor
types.

72 TDS 275 02 March 1991

4.3 Transputer types and classes 47

Hence the headings in table 4.2 can be modified slightly to produce table 4.3
which identifies for each class the list of possible classes which it may call.

Calling | Transputer classes which
class | may be called

T2 T2

T3 T3, T2

T4 T4, TB, TA

T5 T5, T4, TB, TA

T8 T8
T9 T9, T8
B TB, TA
TA TA

Table 4.3 Calling transputer classes

In addition, the order in which the program modules are compiled is affected,
in that a module which is called must be compiled before the calling module is
compiled. This is explained in section 4.9 and an example is given in section
4.12.

Classes T8 and T9 cannot call or be linked with class TA; this is a change from
the IMS D705/D605/D505 versions of the toolset. The reason why these classes
cannot be linked together is explained in section 4.3.4, which gives details of the
differences between the instruction sets, as additional information.

A library can be made consisting of the same modules compiled for different
transputer types or classes. The user then needs only to specify the library file
to the linker, and the linker will choose a version of a required routine which is
suitable for the system being linked.

The linker uses the rules given in table 4.2 to determine whether a compiled
module, found in a library, is suitable for linking with the current system. So, for
example, to create a library which may be linked with any transputer class or
specific transputer type, all routines could be compiled for classes T2, TA and
T8.

If there are a number of possible versions of a module in a library the best one
(i.e. the most specific for the system being linked) is chosen.

72 TDS 275 02 March 1991

48

4 Programming single transputers

4.3.4

Classes/instruction sets — additional information

The instruction sets of the transputer classes differ in the following ways:

Classes T2 and T3 support 16-bit transputers whereas all the other trans-
puter classes support 32-bit transputers.

Class T3 is the same as class T2 except that T3 has some extra instruc-
tions to support CRC and bit operations and includes special debugging
functions.

Class T5 is the same as class T4 except that T5 has extra instructions
to perform CRC, 2D block moves, bit operations and special debugging
functions.

Class T9 is the same as class T8 except T9 has additional debugging
instructions.

The T800, T801 and T805 processors use an on-chip floating point pro-
cessor to perform REAL arithmetic. Thus a large number of floating point
instructions are available for these transputers and for their associated
classes T8 and T9. These instructions are listed in part 2, section B.6.

For the T414, T400 and T425 processors i.e. transputer classes T4 and
T5 the implementation of REAL arithmetic is in software. These trans-
puters make use of a small number of floating point support instructions
listed in part 2, section B.5.

The instruction set of class TA only uses instructions which are common
to the T400, T414, T425, T800, T801 and T805 transputers. Therefore
it does not use the floating point instructions, the floating point support
instructions or the extra instructions to perform CRC, 2D block moves or
special debugging or bit operations.

The instruction set of class TB only uses instructions which are common
to the T400, T414 and T425 processors. Therefore it uses the float-
ing point support instructions, but does not use the extra instructions to
perform CRC, 2D block moves or special debugging or bit operations.

Note: code which includes CRC, 2D block moves and floating point operations
implemented by ASM or GUY code cannot be compiled for classes TA or TB. The
compiler will report an error if this is attempted.

When considering the similarities and differences in the instruction sets of differ-
ent transputer classes it helps to divide them into the three separate structures
as shown in figure 4.2.

72 TDS 275 02 March 1991

4.3 Transputer types and classes 49

T2 @ T8
] ® [

T4
Direction of
permitted
calls
T5

Figure 4.2 Structures for mixing transputer types and classes

By comparison with tables 4.2 and 4.3 it can be seen that a module may only
call and be linked with modules compiled for a transputer class which belongs
to the same structure.

Classes T2 and T3 which form the first structure are targetted at 16-bit transput-
ers so it is obvious that they cannot be linked with the other classes which are
all targetted at 32-bit transputers.

The reason why classes T8 and T9 cannot call or be linked with classes TA,
TB, T5 or T4 is because floating point results from functions are returned in a
floating point register for T8 and T9 code and in an integer register for all other
32-bit processors. Even if your code does not perform real arithmetic, linking
code compiled for a T9 or T8 with code compiled for any of the other classes is
not permitted.

To summarise, compiling code for the transputer classes TA and TB enables it
to be run on a large number of transputer types, however, the code may not
be as efficient as code compiled for one of the other transputer classes or for a
specific transputer type. For example compiling code for class T5 enables the
CRC and 2D block move instructions to be used, whereas these instructions are
not available to code compiled for classes TA and TB.

72 TDS 275 02 March 1991

50 4 Programming single transputers

4.4 Error modes

For systems that require maximum security and reliability, the error behaviour is
of great concern. 0ccam 2 specifies that run-time errors are to be handled in
one of three ways, each suitable for different programs. The error mode to be
used is supplied as a parameter to both the compiler and linker. The options are
listed in table 4.4.

Option(s) | Description
H HALT mode
S STOP mode
X UNIVERSAL mode

Table 4.4 Compiler and linker options for selecting error mode

The first mode, called HALT system mode, causes all run-time errors to bring the
whole system to a halt promptly, ensuring that any errant part of the system is
prevented from corrupting any other part of the system. This mode is extremely
useful for program debugging and is suitable for any system where an error is
to be handled externally. HALT system mode is the default for the compiler, and
you should use this mode when you may want to use the debugger.

Note: on the IMS T414, T222 and M212, HALT mode does not work for pro-
cesses running at high priority, as the HaltOnError flag is cleared when going
to high priority.

The second mode, called STOP mode, allows more control and containment of
errors than HALT mode. This maps all errant processes into the process STOP,
again ensuring that no errant process corrupts any other part of the system. This
has the effect of gradually propagating the STOP process throughout the system.
This makes it possible for parts of the system to detect that another part has
failed, for example, by the use of ‘watchdog’ timers. It allows multiply-redundant,
or gracefully degrading systems, to be constructed.

The third mode, called UNIVERSAL mode, may behave as either HALT or STOP
mode depending on the transputer’s Halt-On-Error flag. For example if a library is
compiled in UNIVERSAL mode, it may be linked in HALT mode with HALT mode
modules and it will behave as if it had been compiled in HALT mode. Alternatively
if it is linked in STOP mode with STOP mode modules it will behave as if it had
been compiled in STOP mode.

If a program, targetted at a single processor, is compiled and linked in UNIVER-
SAL, the collector tool will treat the linked unit as though it had been linked in
the default error mode which is HALT mode.

All separately compiled units for a single processor must be compiled and linked

72 TDS 275 02 March 1991

4.4 Error modes 51

with compatible error modes. Where a library is used the module of the appro-
priate error mode will be selected.

Code which is compiled in either HALT or STOP mode can call code compiled
in UNIVERSAL mode, however code compiled in UNIVERSAL mode may only
call code which has also been compiled in UNIVERSAL mode. Code which has
been compiled in HALT mode may not call or be called by code compiled in
STOP mode. The linker will report an error if user attempts to link HALT and
STOP modules together.

4.4.1 Error detection

In some circumstances it may be desirable to omit the run time error checking
in one part of a program, for example, in a time-critical section of code, while
retaining error checks in other parts of a program, for debugging purposes.

The compiler provides three command line options to enable the user to control
the degree of run time error detection; they are the 'K’, 'U’ and ‘NA’ options
and they prevent the compiler from inserting code to explicitly perform run time
checks.

These options should only be used on code which is known to be correct. The
compiler does not insert a lot of error checking code so it should only be disabled
as a last resort.

It is the user's responsibility to ensure that errors cannot occur. The ability to
disable certain error checking code by using the ‘K’ and ‘U’ options should not
be abused in an attempt to use illegal code, since there is no way of telling the
compiler to ignore all errors.

The ‘K’ option disables the insertion of code to perform run time range checking.
In this context range checking only includes checks on array subscripting and
array lengths. Note: in any situation where the compiler can detect a range
check error without specifically adding code, it may still do so. The type of
situation where this is likely to happen is when an array subscript such as [z + j]
is used, and 1 + 7 overflows.

The ‘U’ option disables the insertion of code whose only purpose is to detect
some kind of error. This option is stronger than the ‘K’ option, and includes the
‘K’ option, so it is not necessary to use both options together. (Note: that the
‘U’ does not include the ‘NA’ option which is described below).

The ‘U’ option will disable the insertion of run-time checks to detect occurrences
such as the following:

72 TDS 275 02 March 1991

52 4 Programming single transputers

negative values in replicators

errors in type conversion values,

errors in the length of shift operations,

zero length moves,

array range errors,

errors in replicated constructs such as SEQ, PAR, IF and ALT.

Note: again in any situation where the compiler can detect an error without
specifically inserting code, it may still do so. Thus arithmetic overflows, etc, can
still cause an error. (To avoid overflow errors the operators PLUS, MINUS and
TIMES can be used).

If the ‘U’ option is used in conjunction with HALT mode, it will prevent explicit
checking for floating point errors in those cases where library calls are not used
to perform floating point arithmetic (see below). In addition if the ‘U’ option is
used with STOP or UNIVERSAL mode, it inhibits the ability of the system to
gradually propagate a STOP process throughout the system. This means that
the ‘U’ option, when used with any error mode produces identical code. The
object file, however, is still marked as being compiled in a particular error mode.

Thus, faster code is produced by using the ‘U’ option with any error mode. Any
libraries which are linked with the modules will maintain the error mode and level
of error detection that they were compiled for. In practice, libraries compiled in
HALT mode will be fastest, so for benchmarking, modules should be compiled
in HALT mode and the ‘U’ option used.

If the user requires the equivalent of the UNIVERSAL error mode implemented
by the IMS D705/D605/D505 versions of the toolset, then UNIVERSAL error
mode should be used and the ‘U’ option specified. However, the compiler will
not incorporate library entries compiled with the ‘U’ option.

The following points summarise the differences in the implementation of error

detection between the current release and previous releases of the toolset i.e
the IMS D705/D605/D505 toolsets.

72 TDS 275 02 March 1991

4.5 Interactive debugging 53

Comparison of error modes with the IMS D705/D605/D505 toolsets

The detection of errors and the action that is taken when an error is detected
are separated in the current toolset.

HALT and STOP mode behave the same as they did in the previous toolsets.

UNIVERSAL mode no longer turns error detection off, instead it produces
code which may be linked in either HALT or STOP mode.

The degree of run-time checking may be reduced by using the ‘K’ and ‘U’
command line options.

To obtain the equivalent of the UNIVERSAL mode implemented by the IMS
D705/D605/D505 toolsets, compile in UNIVERSAL mode and use the ‘U’ op-
tion. Note: this will not cause the compiler to incorporate libraries compiled
with the ‘U’ option.

To obtain the equivalent of occam UNDEFINED mode (see the ‘occam 2
Reference Manual’), compile in any error mode and use the ‘U’ option.

The 'NA' option disables the insertion of code to check calls to ASSERT.

The occam 2 compiler recognises a procedure ASSERT with the following pa-
rameter:

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of test and if it is FALSE the
compiler will give a compile time error; if it is TRUE, the compiler does nothing. If
test cannot be checked at compile-time then the compiler will insert a run-time
check to detect its status. The ‘NA’ option can be used to disable the insertion
of this run-time check.

4.5 Interactive debugging

The compiler and linker tools support interactive debugging by default. When in-
teractive debugging is enabled the compiler or linker will generate calls to library
routines to perform channel input and output rather than using the transputer's
instructions. This does cause a performance penalty to be incurred when in-
teractive debugging is enabled. Disabling interactive debugging by using the
command line option ‘Y’ results in faster code execution.

Interactive debugging must be enabled in order to use the interactive features of
the debugger. However, the debugger does not have to be present in order to
run the code.

72 TDS 275 02 March 1991

54 4 Programming single transputers

Code which has interactive debugging disabled may call code which has inter-
active debugging enabled but not vice versa. If interactive debugging is disabled
for any module in a program this will prevent the whole program from being
debugged interactively.

4.6 Alias and usage checking

The compiler implements the alias and usage checking rules described in the
‘occam 2 Reference Manual'. Alias checking ensures that elements are not
referred to by more than one name within a section of code. Usage checking
ensures that channels are used correctly for unidirectional point-to-point commu-
nication, and that variables are not altered while being shared between parallel
processes. For a further discussion of the rationale behind these rules, see sec-
tions 25.13 and 25.14. Information is also given in The Transputer Applications
Notebook — Architecture and Software, Chapter 6 — The development of 0occam
2

Alias and usage checking during compilation may be disabled by means of the
compiler options ‘A’ and 'N'. Using the ‘N’ option it is possible to carry out alias
checking without usage checking. However, it is not possible to perform usage
checking without alias checking, as the usage checker relies on lack of aliasing
in the program. If you switch off alias checking with option ‘A’, usage checking
is automatically disabled.

The 'K' and ‘U’ options will also disable the insertion of alias checks that would
otherwise be performed at run-time. These options do not affect the insertion of
alias checks at compile time nor the insertion of usage checks which are only
performed at compile time.

Alias checking can impose some code penalties, for example, extra code is
inserted if array accesses are made which cannot be checked until runtime.
The WO’ command line option will produce a warning message every time one
of these checks is generated. However, alias checking can also improve the
quality of code produced, since the compiler can optimise the code if names in
the program are known not to be aliased.

The compiler usage check detects illegal usage of variables and channels, for
example, attempting to assign to the same variable in parallel. The compiler
performs most of its checks correctly, but with certain limitations. Normally,
if it is unable to implement a check exactly, it will perform a stricter check. For
example, if an array element is assigned to, and its subscript cannot be evaluated
at compile time, then the compiler assumes that all elements of the array are
assigned to. If a correct program is rejected because the compiler is imposing
too strict a rule, it is possible to switch off usage checking.

72 TDS 275 02 March 1991

4.7 Using separate vector space 55

It should also be noted that usage checking can slow the compiler down. For
example, programs which contain replicated constructs defined with constant
values for the base and count, will be checked for each iteration of the rou-
tine. Replicated constructs which have variable base and count values are only
checked once with a stricter check, because the compiler cannot evaluate, at
this point, the actual limits of the replication.

4.7 Using separate vector space

The compiler normally produces code which uses separate vector space. Arrays
which are declared within a compilation unit are allocated into a separate ‘vector
space' area of memory, rather than into workspace when they are either:

e greater than 8 bytes or

¢ greater than 1 word, where the elements are smaller than a word (e.g.
[5]1BTYE).

This decreases the amount of stack required, which has two benefits: firstly,
the offsets of variables are smaller, access to them is faster; secondly, the total
amount of stack used is smaller, allowing better use to be made of on-chip RAM.

The compiler option ‘v disables the use of a separate vector space, in which
case arrays are placed in the workspace.

When a program is loaded onto a transputer in a network, memory is allocated
contiguously, as shown in figure 4.3.

This allows the workspace (and possibly some of the code) to be given priority

use of the on-chip RAM. Generally, the best performance will be obtained with
the separate vector space enabled.

The default allocation of an array can be overridden by an allocation immediately
after the declaration of an array. This allocation has one of the forms:

PLACE name IN VECSPACE :

or PLACE name IN WORKSPACE

For example, in a program which is normally using the separate vector space,
it may be advantageous to put an important buffer into workspace, so that it is
more likely to be put into internal RAM. The program would be compiled with

72 TDS 275 02 March 1991

58 4 Programming single transputers

Separate compilation units may be nested to any depth and may contain
#INCLUDE directives. They may also use libraries, as described in section 4.11.

A separate compilation unit must be compiled before the source which references
it can be compiled.

4.91 Sharing protocols and constants

occam constants and protocols may be declared and used within a compilation
unit according to the rules of the language. Where a constant and/or protocol is
to be used across separate compilation boundaries, it should always be placed
in a separate file. The file should be referenced in any compilation unit where it
is needed, by using the #INCLUDE directive before any #USE directive, which
introduces procedures using the protocol in their formal parameter lists. Proto-
cols will also need to be referenced in any enclosing compilation unit (because
the channels will either be declared there or passed through). For example,
suppose we have a protocol P defined in a file myprot.inc. We might then
use it as follows:

PROC main ()
#INCLUDE "myprot.inc"
#USE "mysc.tco"

CHAN OF P actual.channel :
PAR
do.it (actual.channel)

The separately compiled procedure do. it, in the file mysc.oce, would look
like this:

#INCLUDE "myprot.inc" =-- declares protocol P
PROC do.it (CHAN OF P in)

SEQ
... body of procedure

Since the protocol name P occurs in the formal parameter list of the separately
compiled procedure do.it, the compilation unit must include a #INCLUDE
directive, preceding the declaration of do. it, to introduce the name P.

72 TDS 275 02 March 1991

4.10 Using imakef 59

4.9.2 Compiling and linking large programs

Building a program which includes separate compilation units and library ref-
erences is straightforward. Separate compilation units in the program can be
compiled individually by applying the compiler to them. Nested compilation units
must be compiled in a bottom-up order before the top level of the program is
compiled; finally the whole program is linked together.

Separate compilation units must be compiled before the unit which references
them can be compiled. This is because the object code contains all the infor-
mation about a unit (names, formal parameters, workspace and code size, etc.)
which is needed to arrange the static allocation of workspace and to check cor-
rectness across compilation boundaries. This informaticn may be viewed using
the ilist tool.

When a program is linked the code for all the separate compilation units in the
program is copied into a single file. In addition, code for any libraries used is
included in the file. Where libraries contain more than one module, only those
modules containing routines actually required in a program are linked into the
final code. This helps to minimise the size of the linked code.

The target processor or transputer class and error mode must be specified to the
linker to enable it to select appropriate library modules. Only one processor type
or class may be used for the linking process and this must be compatible with
the transputer type or class used to compile the modules. The error mode used
for the linking process must also be compatible with the error mode(s) used to
compile the modules. Compatible use of the compiler and linker ‘¥’ option must
also be adopted for the modules to be linked.

If there are a large number of input modules, they may be supplied to the linker,
within an indirect file, as a list of flenames. Indirect files may also contain
directives fo the linker. Linker directives enable the user to customise the linkage
operation and include facilities to modify the use of workspace, create forward
references to symbols and to nest indirect files. Chapter 19 provides detailed
information of how to run and use the linker.

410 Using imakef

When a change is made to part of a program it is necessary to recompile the
program to create a new code file reflecting the change. The purpose of the
separate compilation system is to split up a program so that only those parts of
the program which have changed or which depend on the changed units, need to
be recompiled, rather than needing to recompile the whole program. However,
it would be tedious to have to remember which modules had been edited, which
modules might be affected by calls and the order in which the modules were

72 TDS 275 02 March 1991

60 4 Programming single transputers

compiled and linked. For this reason a Makefile generator imakef is supplied
with the toolset and may be used to assist with building programs consisting of
several modules. This tool, when applied to a program (or part of a program),
compiles a list of dependencies of compilation units and uses this list to produce
a Makefile. The Makefile can be used with a suitable MAKE program to recompile
only the changed parts of a program. This ensures that compilation units will
always be recompiled where a change has made this necessary.

To use the Makefile generator you must tell it the name of the file you wish to
build. The tool can produce a Makefile for any type of file that can be built with
the toolset tools. In order for imake£ to be able to identify file types, a different
system of file extensions must be used to that used in this chapter. The file
name rules for imake£ are described in chapter 21 together with details of how
to use the tool.

4.11 Libraries

A library is a collection of compiled procedures and/or functions. Any number
of separately compiled units may be made into a library by using the librarian.
Separately compiled units and libraries can be added to existing libraries. Each
compilation unit is treated as a separately loadable module within a library. When
compiling or linking, only modules which are used by a program are loaded. The
rules for selective loading are described in the following section.

Libraries are referenced from 0ccam source by the #USE directive. For exam-
ple:

#USE "hostio.lib" -- host server library

The filename is enclosed in quotes. The rest of the line, following the closing
quote, may be used for comments. Directives must occupy a single line.

Libraries should always use a .1ib file extension, and this must always be
supplied in a #USE directive.

4.11.1 Selective loading

Each module (separately compiled unit) in a library is selectively loadable by the
linker; i.e. parts of a library not used or unusable by a program are ignored.
The unit of selectivity is the library module; i.e. if one procedure or function of a
library module is used then all the code for that module is loaded.

The compiler is selective when a library is referenced. Only modules of a library
that are of the same, or compatible, transputer type or class, error mode and

72 TDS 275 02 March 1991

411 Libraries 61

method of channel input/output, are read (see sections 4.3, 4.4 and 4.5).
Selective loading is based on the following rules:

1 The transputer type or class of a library module must be the same as, or
compatible with, the code which could use it.

2 The error mode of the library module must be the same as, or compatible
with, the code which could use it.

3 The interactive debugging mode (i.e. whether interactive debugging is
enabled or not) of the library must be the same, or compatible with, the
code which could use it.

4 At least one routine (entry point) in a module is called by the code.

Rules 1 to 3 apply to the compiler. All the rules are used by the linker. The
compiler only selects on transputer type, error mode and method of channel
input/output. It is not until the linking stage that unused modules are rejected.
For details on mixing processor classes and error modes see sections 4.3 and 4.4
respectively.

4.11.2 Building libraries

Libraries are built using the librarian tool 11ibr. Libraries can be created from
either separately compiled units (. teco or library files . 1ib) or from linked units
(-1ku files) but not a combination of both. The librarian takes any number of
input files and combines them into a single library file. Each separately compiled
unit forms a single module in the library.

When forming a library the librarian will warn if there are multiply defined routines
(entry points). In other words, for each combination of transputer type, error
mode and method of channel input/output there may only be one routine with a
particular name. For further information on building libraries see chapter 18.

As an example consider building a library called mylib.1lib. The source of
this library is contained in a file called mylib.ocec and has been written to
be compilable for both 16 and 32 bit transputers. We want the library to be
available for T212 and T800 processors in halt on error mode only. Having
compiled the source for the two processors we will have two files, for example:
mylib.t2h and mylib.t8h. To form a library from these compilation units
use the following command line:

ilibr mylib.t2h mylib.t8h

72 TDS 275 02 March 1991

62 4 Programming single transputers

When an output filename is not specified, as in this example, the librarian uses
the first file in the list to make up the output file name and adds the extension
.1ib. In this case it will write the library to the file mylib.1lib.

The librarian can also take an indirect file containing a list of the files to be built
into the library. Such files should have the same name as the library, but with a
. 1bb file extension. So, still using the above example, if the names of the files
to make up the library were put in a file called mylib. 1bb, we could then build
the library using one of the following commands:

ilibr -f mylib.lbb -o mylib.lib (UNIX)
ilibr /f mylib.lbb /o mylib.lib (MS-DOS/VMS)

Compiled modules can be added to an existing library file. However, if the
librarian attempts to create an output file with the same name as an input library
file, an error will be produced. This can be avoided by specifying a different
output filename using the ‘o’ option. Alternatively if one on the compiled modules
to be added to the library has a different name, this could be specified first on
the command line. Once the new library file has been created it can be renamed
if necessary. Adding modules to an existing library does not require programs
which call it, to be recompiled, provided it is given its original name in its final
form.

The Makefile generator imakef can be used to assist with the building of li-
braries. This is particularly useful where libraries are nested within other libraries
or compilation units, because imakef£ can identify the dependencies of libraries
on other modules or separately compiled units. For further information about the
imakef tool see chapter 21.

For further details of how to use the librarian and how to optimise libraries see
chapter 18.

4.12 Example program — the pipeline sorter
This section introduces an example which serves to show how a large program

might be structured, in terms of separate compilation units, libraries, and a shared
protocol.

4.12.1 Overview of the program

The program sorts a series of characters into the order of their ASCII code
values.

Figure 4.4 shows the basic structure of this program. There are three processes:

72 TDS 275 02 March 1991

412 Example program — the pipeline sorter 63

Figure 4.4 Basic structure of sorter program

the input process, the output process and the sorter process. We can decom-
pose the sorter process by using a pipeline structure. This uses the algorithm
described in ‘A tutorial introduction to occam programming’. If we design the
pipeline carefully we can ensure that each element of the pipeline is identical to
all the other elements. The pipeline is served by an input process, which reads
characters from the keyboard, and an output process which writes the sorted
characters to the screen. Figure 4.5 shows the structure of the program using a
pipeline.

element
0

Figure 4.5 Pipeline of n elements

An obvious implementation would be to write an 0ccam process for each pro-
cess in figure 4.5, using a replicated process for the pipeline. Communication
between the processes is via 0CCam channels and to aid program correctness
we should use an occam PROTOCOL for these channels. This protocol must
be shared by all the processes. As the 0ccam compiler compiles processes
(PROCs) and as each of the processes is independent we can implement each
one as a separately compiled unit. The processes share a common protocol
and the best way to ensure consistency is to place the protocol in a separate file
and use the #INCLUDE mechanism to access it. These processes can then be
called in parallel by an enclosing program which can access the code of each
process by the #USE mechanism.

There is a problem with this implementation because two processes require
access to the host file server. The host file server is accessed via a pair of
occam channels and occam does not allow the sharing of channels between
processes. There are a number of ways around this problem. One solution is to
use a multiplexor process for the server channels, as described in section 8.5.
Another solution is to merge the two processes into a single process. This
solution is used because the program accesses the server in a sequential manner
(read a line then display sorted line, read a line etc.). Figure 4.6 gives the final

72 TDS 275 02 March 1991

64 4 Programming single transputers

process diagram for the program.

element
0

Figure 4.6 Program with combined input/output process

The implementation can be split into four files:

element.occ the pipeline sorting element
inout.occ the input/output process
sorter.occ the enclosing program

sorthdr.inc the common protocol definition

Figure 4.7 shows the way these files are connected together to form a program.

sorter
#INCLUDE)) #USE
#USE
element inout
| #INCLUDE
sorthdr # INCLUDE

Figure 4.7 File structure of program

The source of the program is given below and is supplied in the ‘examples’
directory. You can either copy these files to a working directory or you can
type in the source as given below. For details of the toolset directories see the
Delivery Manual that accompanies the shipment.

Two other files are required to complete the program. These are the host file

server library hostio. 1ib and the correspending . inc file containing the host
file server constants.

72 TDS 275 02 March 1991

4.12 Example program — the pipeline sorter 65

4.12.2 The protocol

Declarations of constants and channel protocols are contained in the include file
sorthdr. ine, which is listed below.

PROTOCOL LETTERS
CASE
letter; BYTE
end.of.letters
terminate

VAL number.elements IS 100:

This declares a protocol called LETTERS, which permits three different types of
message to be communicated:

letter - followed by the character to be sorted.
end.of.letters - marks the end of the sequence to be sorted.

terminate - signals the end of the program.

The constant number.elements is also declared. This defines both the num-
ber of sorting elements in the pipeline and the maximum length of the sequence
of characters that can be sorted.

4.12.3 The sorting element
The sorting element element . occ is listed below:
#INCLUDE "sorthdr.inc"

PROC sort.element (CHAN OF LETTERS input, output)

BYTE highest:
BOOL going:

SEQ
going := TRUE
WHILE going
input ? CASE
terminate
going := FALSE

72 TDS 275 02 March 1991

66 4 Programming single transputers

letter; highest

BYTE next:

BOOL inline:

SEQ
inline := TRUE
WHILE inline

input ? CASE
letter; next

IF
next > highest
SEQ
output ! letter; highest
highest := next
TRUE

output ! letter; next
end.of.letters
SEQ
inline := FALSE
output ! letter; highest
output ! end.of.letters
output ! terminate

This program consists of two loops, one nested inside the other. The outer
loop accepts either a termination signal or a character sequence for sorting. If it
receives a character it enters the inner loop. The inner loop reads characters until
it receives an ‘end of letters’ signal, signifying the end of the string of characters
to be sorted. The sort is performed by storing the highest (ASCII) value character
it receives and passing any lesser (or equal) characters on to the next process.
The ‘end of letters’ tag causes the stored value to be passed on and the inner
loop terminates.

The maximum number of characters which can be sorted is determined by the
number of sorter processes. One character is sorted per process.

4.12.4 The input/output process

This process consists of a loop which reads a line from the keyboard, then
sends the line to the sorter and, in parallel, reads the sorted line back. It then
displays the sorted line. If the line read from the keyboard is empty the loop is
terminated. At the end of the process the host file server is terminated with the
success constant sps. success, which is defined in the file hostio. inc.

If any i/o errors occur the program will stop, allowing it to be examined by the
debugger.

72 TDS 275 02 March 1991

4.12 Example program — the pipeline sorter 67

The input/output process inout .occ is listed below.

#INCLUDE "sorthdr.inc"
#INCLUDE "hostio.inc"

PROC inout (CHAN OF SP fs, ts,
CHAN OF LETTERS from.pipe, to.pipe)

#USE "hostio.lib"

[number.elements - 1]BYTE line, sorted.line:
INT line.length, sorted.length:

BYTE result:

BOOL going:

SEQ

so.write.string.nl (fs, ts,

"Enter lines of text to be sorted *

*- empty line terminates")

going := TRUE

WHILE going

SEQ
so.read.echo.line(fs, ts, line.length,

line, result)

IF
result <> spr.ok
STOP -- stop if an error occurs
TRUE
so.write.nl (fs, ts)
PAR
SEQ
IF
(line.length = 0) -- no more input
to.pipe ! terminate
TRUE
SEQ

SEQ i = 0 FOR line.length
to.pipe ! letter; line[i]
to.pipe ! end.of.letters
BOOL end.of.line:

SEQ
end.of.line := FALSE
sorted.length := 0

WHILE NOT end.of.line
from.pipe ? CASE
terminate

72 TDS 275 02 March 1991

68 4 Programming single transputers

SEQ
end.of.line := TRUE
going := FALSE
letter; sorted.line[sorted.length]
sorted.length := sorted.length + 1
end.of.letters
SEQ
so.write.string.nl(fs, ts,
[sorted.line FROM 0
FOR sorted.length])
end.of.line := TRUE
so.exit(fs, ts, sps.success) -- terminate server

4.12.5 The calling program

This process calls the input output process in parallel with the sorter elements,
in a pipeline. The memoxry parameter must be declared, but the program does
not use it.

The calling program sorter.occ is listed below.

#INCLUDE "hostio.inc"

PROC sorter (CHAN OF SP fs, ts, []INT memory)

#USE "hostio.lib" =-- host i/o library
#INCLUDE "sorthdr.ing"

#USE "inout" -- separately compiled units
#USE "element"

[number.elements + 1]CHAN OF LETTERS pipe:
PAR -- run pipe between i/o processes
inout (fs, ts, pipel[number.elements], pipe[0])
PAR i = 0 FOR number.elements
sort.element (pipe[i], pipel[i + 11)

4.12.6 Building the program

To build the program, first compile each component of the program separately,
link them together, and add bootstrap code to the main compilation unit.

72 TDS 275 02 March 1991

4.12 Example program — the pipeline sorter 69

The program’s components must be compiled in a bottom up fashion, that is,
element .occ and inout . occ first (in either sequence), followed by the main
program sorter.occ

First, compile the sorting element element . oce using the following command:

oc element

The file extension can be omitted on the command line because the source file
has the conventional extension .occ.

The compiler produces a file called element.tco, compiled for a T414 in
HALT mode.

Compile the input/output process using the following command:
oc inout

The compiler will produce a file called inout . tco, compiled fora T414 in HALT
mode.

Then compile the main body using the command line:
oc sorter

The compiler will produce a file called sorter.tco, compiled for a T414 in
HALT mode.

Having compiled all the components of the program you can now link them
together to form a whole program. Any libraries used by the program must also
be specified to the linker. The library hostio.1lib is the server library used
by this program. Remember the include file, occama . 1nk, which identifies the
other libraries, such as compiler libraries, required in the linking process. (See
section 4.2.2). To link the files use one of the following commands:

ilink sorter.tco inout.tco element.tco hostio.lib -f occama.lnk
ilink sorter.tco inout.tco element.tco hostio.lib /f occama.lnk

When specifying options for any of the tools remember to use the correct prefix
character for your version of the toolset (‘-' for UNIX implementations, and ‘/’
for the IBM PC and VAX/VMS implementations).

The linker will create the file sorter.lku linked for a T414 in HALT mode.

If a main entry point is not specified, the linker uses the first valid entry point
that it encounters in the input. Therefore, in the above example, it is important

72 TDS 275 02 March 1991

70 4 Programming single transputers

to list the file ‘sorter.tco’ first. A main entry point may be specified within
an indirect file using the linker directive #mainentry or on the command line
using the ‘ME’ option.

Before you can run the program you must add bootstrap code. To do this use
the collector tool icollect, using one of the following command lines:

icollect sorter.lku -t (UNIX)
icollect sorter.lku /t (MS-DOS/VMS)

The ‘t’ option informs the collector tool that the input file is a linked unit rather
than the output of the configurer tool. (The configurer is used for multi-processor
applications).

The collector tool will create the files sorter.btl and sorter.cfb. The
.bt1l file contains the bootable program code. The .c£b file is a configura-
tion binary file which is created by icollect as a by-product of creating the
bootable file; it is redundant as far as this example is concerned.

To run the program on a transputer board use one of the following commands:

iserver -se -sb sorter.btl (UNIX)
iserver /se /sb sorter.btl (MS-DOS/VMS)

The 'sb’ option specifies the file to be booted and loads the program onto the
transputer board. It has the effect of resetting the board, opening communication
with the host, and loading the program onto the network. The ‘se’ option directs
the server to terminate if the program sets the error flag. For more details about
the server options see chapter 22.

The program reads characters from the keyboard, sorts the line and redisplays
it. The program will run until input is terminated by typing RETURN on an empty
line.

Figure 4.8 shows an example of the screen display, obtained by running
sorter.btl on a UNIX based toolset. The user inputs the string ‘Sorter
program * and terminates the program by pressing RETURN.

iserver -se -sb sorter.btl
Enter lines of text to be sorted - empty line terminates

Sorter program
Saegmooprrrrt

Figure 4.8 Example output produced by running sorter.btl.

72 TDS 275 02 March 1991

4,12 Example program — the pipeline sorter 71

To run the program using the simulator use one of the following commands:

isim -bg sorter.btl (UNIX)
isim /bg sorter.btl (MS-DOS/VMS)

The ‘bg’ option specifies batch quiet mode which causes the simulator to run the
program and then terminate. For more details about how to use the simulator
see chapter 23.

4.12.7 Automated program building

The imakef tool can be used to automate the development process. From the
above example it can be seen that there are many steps to go through when
building a program of any size. Some of these steps must be performed in a
specific order and if part of the program were changed then all affected parts
must be recompiled and relinked etc.

MAKE is a common tool for building programs. It uses information about when
files were last updated, and performs all the necessary operations to keep object
and bootable files up to date with changes in any part of the source. Makefiles
are the standard method of providing the MAKE program with the information it
needs. ‘

The occam toolset is designed in such a way that it is possible for a tool to
construct Makefiles to build occam programs. The Makefile generator imakef
produces Makefiles in a format acceptable to most MAKE programs.

imakef requires the user to adopt a particular convention of file extensions.
The user then cnly has to specify the target file he requires i.e. a bootable
file and imakef£, using its knowledge of file names rules, creates a suitable
Makefile. This file has full instructions on how to build the program.

By running the MAKE program for the file the entire program will be automatically
compiled, linked and made bootable, ready for loading onto the transputer.

For more details about the imakef£ tool and an example of how to create a
makefile for the pipeline sorter program used in this chapter, see chapter 21.

72 TDS 275 02 March 1991

72 4 Programming single transputers

72 TDS 275 02 March 1991

5 Configuring transputer
networks

This chapter describes how to build programs that run on networks of transputers.
It describes how to configure an occam program for a network of transputers us-
ing the occam configurer tool occon£ and describes how to load the program
onto a transputer network. These procedures are illustrated with an example
program for four transputers.

The chapter introduces the configuration language, whose syntax is specified
in part2, appendix E and the configurer tool occon£, described in chapter 26.
This chapter also includes examples illustrating various aspects of configuration.

5.1 Introduction

In order to build programs for multitransputer networks a program is split into a
number of self contained components, and each of these is implemented as an
occam process. Each process may communicate with other processes resident
on the same transputer or, via links, with processes on other transputers.

Programs consisting of 0CCam processes can be run on single or multiple trans-
puters, in any combination. Performance requirements can be met by adapting
the application to run on differing numbers of transputers, and by using differing
network topologies. The mapping of processes to processors on a transputer
network is known as configuration.

Transputer programs can be configured to run on any physical network of trans-
puters. They can be configured to be loaded from an external host down a
transputer link, or to be loaded from ROM.

Configuration is achieved by including the program in a configuration description
written in the occam configuration language. A configuration description is
created by the user as a text file using the configuration language which is an
extension of occam. The file is expected by occon £ to have the file extension
-pgm. A configuration description may be processed by the configurer tool to
generate a configuration data file, which in turn may be processed by the collector
tool icollect to generate a transputer loadable file.

Conventional file name extensions may be used for these various file types to
facilitate the construction of Makefiles using the Makefile generator tool. Chapter
21 describes how to use the Makefile generator for program development and
the extensions which should be used.

72 TDS 275 02 March 1991

74 5 Configuring transputer networks

Within a configuration description the hardware network and the software de-
scription are kept separate. This enables the software description to be used for
running the same parallel program on a variety of alternative hardware networks.
Likewise a particular physical network may be described once for use in a vari-
ety of configurations describing different programs that may be run on the same
network.

By using the facilities for calling other languages from occam, programs com-
piled from mixed language sources may also be configured using the occam
configurer. (These facilities enable the foreign language code to be incorporated
into the 0ccam program as equivalent 0ccam processes. An example of this
is provided in the examples directory supplied with the toolset. A description
of this method of mixed language programming is given in ANSI C toolset user
manual). Similarly it is possible to configure 0ccam modules (which are called
by C programs) using the configurer provided with the ANSI C toolset. Details
of how to do this are also given in the ANSI C toolset user manual.

5.2 Configuration model
The configuration model consists of the following parts:

¢ A hardware network description which declares a network as a connected
graph of processors.

¢ A software description in the form of an occam process.

¢ A mapping between the processes and channels of the software and the
nodes (processors) and arcs (transputer link connections) of the network.
The mapping is achieved by declaring names and, in the scopes of these
declarations, referring to the names in the structures of the configuration
description. Normal occam scope rules apply.

The software description takes the form of an occam process with at least
as many parallel sub-processes as there are hardware processors in the net-
work. Within the description, each process which may be independently placed
on a processor, is introduced by a PROCESSOR construct naming a proces-
sor. Processors so named may either be the hardware processors declared in
the network description, or may be logical processors mapped onto the hard-
ware processors in a separate mapping structure. In either case the processor
name must have appeared in a NODE declaration in whose scope the software
description is written.

The connections between processes in the software description are defined by

occam channels. It is thus possible for the configurer tool to determine what
code is to be loaded onto what processor, and to choose its own mapping of

72 TDS 275 02 March 1991

5.2 Configuration model 75

channels onto physical connections between processors.

Some channels may be used to connect to hardware outside the network, such
as the development host or other hardware connected by means of link adaptors.
External objects of this kind are declared as EDGESs in the hardware description.

All processors which are connected together are connected via their links, rep-
resented in the language as attributes, of type EDGE of declared NODESs.

The connections to external edges, or those between processors may optionally
be declared as ARCs, which associate a name with a particular connection. This
enables explicit mappings of channels onto these arcs to be made.

5.2.1 Configuration language

A configuration description consists of a sequence of declarations and state-
ments in an extension to occam and follows the usual 0CCam scope rules.
These declarations and statements are evaluated by the occam compiler, which
is called during configuration by the configurer tool occon£. Appendix E (in part
2) defines the syntax of the occam configuration language and also gives de-
tails of how it differs from previous implementations of the toolset i.e. the IMS
D705/D605/D505 products.

Configuration declarations introduce physical processors, arcs and edges of the
network, network connections and processor attributes, logical processors to be
mapped onto physical processors, the software description, and the mapping
between logical and physical processors.

Arrays of NODEs, EDGEs, and ARCs may also be declared. A configuration de-
scription includes one NETWORK, one CONFIG and, optionally, one MAPPING.
Each of the items appearing before CONFIG behaves as an occam specifi-
cation, and ordinary VAL abbreviations may be included amongst these com-
ponents to facilitate the description of scalable configurations. A NETWORK,
CONFIG or MAPPING is optionally named by an identifier following its opening
keyword.

Configuration declarations are usually followed by statements which perform var-
ious actions relating to the declaration. Actions are defined by SET, CONNECT
and MAP statements. The DO construct enables these statements to be grouped
or replicated. PROCESSOR statements introduce processes which may be
mapped onto named processors.

The MAP statement may be replicated, via the DO construct, within a MAPPING

declaration. SET and CONNECT statements may be used within a NETWORK
declaration and may be combined in any order using the DO construct.

72 TDS 275 02 March 1991

76 5 Configuring transputer networks
Declaration | Description .
NODE Introduces processors (nodes of a graph). These processors

are considered to be physical if they are defined as part of the
hardware description, or logical if they are defined as part of
the software description and mapped to a physical processor
as part of the mapping.

ARC Introduces named connections (arcs of a graph) between pro-
cessors (using the transputer links). These connections need
not be declared as ARCs unless channels are required to be
explicitly placed on particular links.

EDGE Introduces external connections of the hardware description.
External edges may be the host, or any peripheral connected
via a link adaptor e.g. a joystick, disc drive.

NETWORK | Defines the connections and attribute settings of previously
declared NODEs (physical processors).

MAPPING Defines mappings between logical processors and physical
processors.

CONFIG Introduces the software description.

Table 5.1 Configuration description declarations

Statement Description

SET Defines values for NODE attributes.

CONNECT Defines a connection between two EDGES, either of two nodes
or between a node and a declared external EDGE.

MAP Defines the mapping of a logical processor onto a physical
processor declared as a NODE.

PROCESSOR | Introduces a software process and associates it with a logical
or physical processor.

DO Groups one or more actions defined by SET, CONNECT or
MAP statements.

Table 5.2 Configuration description statements

Code from other files may be referenced by means of the #USE directive, either
at the top level, or within the CONFIG construct. #INCLUDE directives can be
used to include other source files.

It is suggested that the distinct sections are kept in different files, accessed by
#INCLUDE directives from a ‘master’ file.

72 TDS 275 02

March 1991

5.2 Configuration model 77

5.2.2 Overall structure of a configuration description

A configuration description consists of two or three parts; a hardware network
description, a software network description, and an optional mapping between
the two.

The hardware description defines processor connections. It also defines at-
tributes such as processor types and memory sizes. These processors are
known as physical processors.

The software description is basically an occam parallel process, annotated with
PROCESSOR statements to indicate which processes are to be compiled for
which processors. These processes are allocated to logical processors.

The mapping section can be used to ease the task of changing a particular pro-
gram to execute on a different hardware network. The mapping section enables
this to be performed without modifying the software description in any way, by
flexibly mapping the logical processors onto the physical processors. As an
optimisation, for simple programs, or for programs which will never need to be
re-mapped, the software description may reference the physical processors di-
rectly, avoiding the need to introduce logical processor names.

The following example illustrates the basic style of the language:

-—- hardware description, omitting host connection

VAL K IS 1024 : -- useful constants for memory
VAL M IS K * K : -—- sizes
NODE root.p, worker.p : -- declare two processors
NETWORK simple.network
DO
SET root.p (type, memsize := "T414", 1 * M)
SET worker.p (type, memsize := "TB800", 4 * M)

CONNECT root.p[link][3] TO worker.p[link][0]

—-- mapping . ,
NODE root.l, worker.l : — (slae duwa physicsl procescon
MAPPING
DO
MAP root.l ONTO root.p
MAP worker.l ONTO worker.p

-- software description
#INCLUDE "prots.inc" -- declare protocol
#USE "root.lku" -- must be linked units

72 TDS 275 02 March 1991

78 5 Configuring transputer networks

#USE "worker.lku"

CONFIG
CHAN OF protocol root.to.worker, worker.to.root
PLACED PAR
PROCESSOR root.1l
root.process (worker.to.root, root.to.worker)

PROCESSOR worker.l
worker .process (root.to.worker, worker.to.root)

Note that the configurer can, in this example, automatically place the channels
onto the single connecting link, assuming that the two channels are used in
different directions. The configurer can make this check by means of the normal

occam usage checking rules.

This example is illustrated in figure 5.1.

root.p worker.p
T414 TBOO
3 WY 0
(1) IR T

worker.to.root

Maps onto

——————

Figure 5.1 Mapping of software onto hardware

In a simple configuration such as this one where each physical processor is
mapped onto a single logical processor, a shortened configuration description
may be used which omits the mapping section altogether and uses the physical
processor names directly in the software description.

To devise this shortened description remove the mapping section and delete
the suffixes .p and .1 from the NODE declarations, SET, CONNECT and

PROCESSOR statements.

72 TDS 275 02 March 1991

5.3 Hardware description 79

5.3 Hardware description
5.3.1 Declaring processors
Processors are declared to have NODE type, as if they were 0CCam data items:

NODE worker : -- single processor
[No.of.workers]NODE pipeline : -- array of processors

5.3.2 NODE attributes

A NODE has a set of attributes, analogous to fields of a record. An attribute is
referenced by subscripting the name of the node with the name of the attribute.
The attributes are:

[IBYTE type : -=- String describing processor type,
-- see list below

[JEDGE link : -- Link connections, number may
-- depend on type

INT memsize : -- Memory size in BYTEs

BOOL root g -- Defines root processor if there is

no HOST connection
INT romsize : —- Size of ROM attached to processor
order.code : -- Defines the priority of the program
) code in memory
order.vs : ~=- Defines the priority of the

program’s vectorspace in memory

The list of permissible attributes is in general dependent upon the NODE type
field, and may be extended for other NODE types in the future.

The attribute names, which are predeclared by the configurer, do not follow the
occam scope rules; they are only recognised in the correct context.

The use of order.code and order.vs is explained in section 5.5.3.

5.3.3 NETWORK description

The NETWORK keyword introduces a section which describes the connectivity,
and attributes of previously declared NODEs. These should be declared out-
side of the NETWORK description, so that they are visible inside and below the
NETWORK description.

To describe a single processor, the SET statement provides values for the pro-

72 TDS 275 02 March 1991

80 5 Configuring transputer networks

cessor’s attributes in the style of a multiple assignment.

NETWORK single
SET processor (type, memsize := "T800", 1024*1024)

.

The type attribute must be set to a BYTE array (of any length) whose contents
describe the processor type. Trailing spaces at the end of the processor’s type
are ignored.

Supported types are:

"T212l| "T222" nT225|l IIM212I'I
n"mAQQ" nm414n np4285"
n"pg8o0" nmgol" nmgQs"

The memsize attribute must be set to the amount of usable memory attached
to that processor, as a contiguous amount starting at the most negative address.
It is specified in BYTES.

Both the type and memsize attributes must be defined for all processors. No
attribute may be defined more than once for each processor.

The above example could also be written as a sequence of SET statements in
a DO construct:

NETWORK single
DO
SET processor (type
SET processor (memsize

TITBOOII)
1024*1024)

Since the DO construct does not imply any particular ordering, there is no con-
straint on the order in which attributes may be defined.

If a network is to be configured to be loaded from ROM, the attribute root must
be set to TRUE for one processor only. By default this attribute is FALSE for
all processors. The attribute romsize should be set to the number of bytes
of ROM on the root processor. These attributes are ignored if the network is
configured to be booted from link.

IF, SKIP and STOP may be used in DO constructs and are effectively executed
at configuration time.

Processors must be connected together by means of CONNECT statements quot-

72 TDS 275 02 March 1991

5.3 Hardware description 81

ing a pair of edges:

VAL K IS 1024:
NETWORK pair.from.ROM
DO
SET procl (type, memsize :
SET procl (root, romsize := TRUE, 256 * K)
SET proc2 (type, memsize := "T414", 1024 * K)
CONNECT procl[link] [0] TO proc2[link][3]

"T800", 2048 * K)

The order of the two edges in a CONNECT statement is irrelevant.

Arrays of processors do not need to all have the same types or attributes. They
can be set by using DO replicators within the NETWORK construct, and by using
conditionals, as in this (rather contrived) example:

NETWORK pipe

DO
DO i = 0 FOR 100
IF
(i1 \ 4) =0
SET processor[i] (type, memsize := "T800",
4 * (1024 * 1024))
TRUE

SET processor[i] (type, memsize := "T414",
2 * (1024 * 1024))

DO i = 0 FOR 99
DO
CONNECT processor[i] [1ink] [1] TO
processor[i+1l] [1link] [0]

IF
(i \2) =0
CONNECT processor[i] [1link][2] TO
processor[i+2] [1link] [3]
TRUE

SKIP

More complicated expressions may also be used, as long as they can be eval-
uated at configuration time:

72 TDS 275 02 March 1991

82 5 Configuring transputer networks

VAL processors IS ["T414", "T414", "T414", "T800"]

NETWORK fancy -- every fourth processor is different!
DO i = 0 FOR SIZE array
SET array[i] (type := processors[i \ 4])

5.3.4 Declaring EDGEs

Declared EDGEs define the ends of external connections of a NETWORK. For
instance, a connection to another machine whose internal structure is irrelevant.
They are declared as though they were 0ccam data types, and as usual we
can declare arrays of them:

[I0]EDGE diskdrive
NETWORK disk.farm
DO i = 0 FOR 10
DO
-—- insert code to set attributes, then:
CONNECT processor[i] [1ink] [0] TO diskdrive[i]

EDGE joystick
NODE controller :
NETWORK n
DO
SET controller (type, memsize := "T212", 64 * 1024)
CONNECT controller[link][2] TO joystick

5.3.5 Declaring ARCs

In some circumstances a programmer may require to name a connection be-
tween two processors. This isn't normally necessary, because the configurer
can place channels between processors onto links automatically, but where a
channel must be connected onto an external EDGE this is required. Also, if
there are multiple links between two processors, and one link is set for some
reason to go at a different data rate than another, the programmer might wish to
have more control.

These named links are called ARCs, and are declared as though they were

occam data types. They are associated with a link connection by adding a
WITH clause to the end of a CONNECT statement.

72 TDS 275 02 March 1991

5.3 Hardware description 83

EDGE joystick :

ARC link.to.joystick :

NODE controller :

NETWORK n

DO
SET controller (type, memsize := "T212", 64 * 1024)
CONNECT controller([link][2] TO joystick WITH
link.to.joystick

5.3.6 Abbreviations

occam style abbreviations are permitted, to enable easier reference to elements
of arrays, etc:

[10]NODE pipe
NETWORK pipeline
DO i = 0 FOR 10
NODE this IS pipe[il]
SET this (type, memsize := "T414", 1024%*1024)

Since NODEs have an attribute 1ink, whose type is [] EDGE, we can abbreviate
one link of a processor as an EDGE:

[10]NODE pipe
NETWORK pipeline
DO
DO i = 0 FOR 10
SET pipe[i] (type, memsize := "T414", 1024*1024)
DO i = 0 FOR 9
EDGE this IS pipe[i][1link][2] :
EDGE that IS pipe[i+l1][link][3] :
CONNECT this TO that

Simple one-to-one mappings of logical to physical processors may also be ex-
pressed as abbreviations:

NODE root.l IS root.p

72 TDS 275 02 March 1991

84 5 Configuring transputer networks

5.3.7 Host connection

There is a predefined EDGE named HOST, which indicates the connection to a
host computer:

NODE single
ARC hostlink :
NETWORK B004
DO
SET single (type, memsize := "TB800", 1000000)
CONNECT single[link] [0] TO HOST WITH hostlink

When configuring a program which is designed to be booted via a transputer
link, one processor must be connected to the predefined EDGE HOST.

5.3.8 Examples of network descriptions
1) Single processor configuration connected to host:

NODE MyB004:
ARC hostlink:
NETWORK B004
DO
SET MyB004 (type, memsize := "T414", 2 * M)
CONNECT MyB004[1link] [0] TO HOST WITH hostlink

This configuration is illustrated in figure 5.2.

MyB004

hostlink |, T4%4

(2M)

0O xI

Figure 5.2 Example of host connection

72 TDS 275 02 March 1991

5.3 Hardware description 85

2) Simple pipe with one processor with different memory size:

[PINODE Pipe:
ARC hostLink:
NETWORK simple.pipe
DO
CONNECT HOST TO Pipe[0] [1ink] [0] WITH hostLink
DO i = 0 FOR p-1
CONNECT Pipe[i] [1ink] [2] TO Pipe[i+1] [link][1]
SET Pipe[0] (type, memory := "TB00", 2*M)
DO i = 1 FOR p
SET Pipe[i] (type, memory := "T800", 1*M)

This network is illustrated in figure 5.3.

pipe[0] pipel[l] pipe[2] pipe [p-1]
H
T8OO T800 T80O T80O
g hostlink |, Py Py I
T (2m) (1M) (18) (1M)

Figure 5.3 Simple pipeline with different processor memory sizes
3) Square array with host interface processor:

VAL Up IS 0:

VAL Left IS 1:

VAL Down IS 2:

VAL Right IS 3:

NODE HostSquare:

[p] [PINODE Square:

ARC hostlink:

NETWORK square

DO
SET HostSquare (type, memsize := "T414", 2*M)
CONNECT HOST TO HostSquare[link] [0] WITH hostlink
CONNECT HostSquare[link][1] TO
Square[p-1] [p-1] [1ink] [Down]

SET Square[i][j] (type, memsize := "T800", 1*M)
IF

72 TDS 275 02 March 1991

86 5 Configuring transputer networks

(1 =0) AaND (j = 0)
CONNECT HostSquare [link] [Down] TO
Square[0] [0] [1ink] [Up]
i=0
CONNECT Square[p - 1][Jj - 1][link] [Down] TO
Square[0 103 1[1link] [Up]
TRUE
CONNECT Square[i - 1][j][link][Down] TO
Square[i 1[31[1link] [Up]

DO i =0 for p
DO j =0 for p
IF
j = (p-1)

CONNECT Square[i] [j] [link] [Right] TO
Square[(i + 1)\p][0][link] [Left]
TRUE
CONNECT Square[i] [j] [link] [Right] TO
Square[i] [§ + 1][link] [Left]

5.4 Software description

The software description is an OCCam process, PAR or PLACED PAR, with pro-
cesses annotated by PROCESSOR statements. These identify which processes
may be placed on particular processors. The keyword PLACED is retained for
compatibility with earlier products; it is no longer required and has no effect.

The NODEs which are referenced by a PROCESSOR statement may be either
physical processors if they are described as part of the hardware description, or
logical processors if they are described as part of the software description. If
the latter, they are mapped onto physical processors by means of a MAPPING
section.

Physical processor names are allowed here to simplify small networks, or those
which will not be re-mapped, so that the programmer does not need to invent
two names for each processor.

The Jogical processor names must be introduced first by means of NODE declara-
tions. These look identical to those used in the hardware description, but cannot
have attribute settings. Since these must be visible to a following MAPPING
section, they must be declared outside the CONFIG construct. Channels which
are to be placed on ARCs by mapping statements must also be declared outside
the CONFIG construct.

The process ‘inside’ the PROCESSOR statement may consist of 0ccam text.

72 TDS 275 02 March 1991

5.4 Software description 87

However, it is recommended that the code should be restricted to simple proce-
dure calls i.e. to separately compiled procedures, referenced as linked compi-
lation units using the #USE directive. Code which generates library calls is not
allowed.

A PROCESSOR statement associates the process instance (process) it labels
with the logical or physical processor it names. The same name may be ref-
erenced in more than one PROCESSOR statement. The set of processes so
named will run in parallel on that processor.

Note: when imakef is used to build the program, any linked units referenced
by the software description must be given extensions of the type exx. This is
because imakef uses a different convention for file extensions to the normal
TCOFF file extensions, see chapter 21.

5.4.1 Libraries of linked units

The facility to create libraries of linked units provides an easy method of targetting
a process at different processor types within a software description.

For example, suppose a process is compiled and linked once for a T2 and
once for a T8 and the linked units are given imakef file extensions in order
to distinguish them. Referencing the two linked units directly within the software
description by #USE directives, will cause one of them to hide the other from the
configurer.

If, however, the linked units are used to create a library and this is referenced
by a single #USE directive, the configurer will be able to extract the correct copy
of the process for each PROCESSOR statement it finds.

Only libraries containing linked units may be referenced from within a software
description.

5.4.2 Example

The following example of a software description, is for the pipeline sorter pro-
gram introduced in chapter 4. The example is developed to show the complete
configuration description for the program, in section 5.6. Figure 5.4 illustrates the
mapping of the software processes onto a network of logical processors, which
in this example is achieved without an actual mapping section. This method of
mapping is explained in section 5.5.4.

#INCLUDE "hostio.ine" -- declares SP
#INCLUDE "sorthdr.inc" -- declares LETTERS

72 TDS 275 02 March 1991

88 5 Configuring transputer networks

#USE "inout.lku" -- linked unit
#USE "element.lku" == linked unit
NODE inout.p : -- logical processor
[string.length]NODE pipe.element.p : -- logical

—-- processors
CONFIG

CHAN OF SP app.in:
CHAN OF SP app.out:
PLACE app.in, app.out ON hostlink:
[string.length+1]CHAN OF LETTERS pipe:
PAR
PROCESSOR inout.p
inout (app.in, app.out, pipe[string.length],
pipe[0])
PAR i = 0 FOR string.length
PROCESSOR pipe.element.p[i]
sort.element (pipe[i], pipe[i+l])

This example names a single processes inout.p and an array of processes
pipe.element.p. The code may be mapped onto any hardware configuration
onto which these logical processors may be mapped and which includes an ARC
declaration for the host connection hostlink.

pipe.
pipe. element .
element. plstring.
inout.p plo] length-1]
H pipe
[string.

O _ length-1]/ sort.
S element
T

pipe[string.length]

Figure 5.4 Pipeline sorter — mapping processes onto processors

5.5 Mapping descriptions

A MAPPING structure is used if the user has declared logical processors. The
MAPP ING maps logical processors used in the software description onto physical
processors used in the hardware description. It is possible to map any number
of logical processors onto any physical processor.

72 TDS 275 02 March 1991

5.5 Mapping descriptions 89

The priority at which a process runs may be determined as part of the mapping, if
that logical process does not explicitly include high priority code. This reflects the
fact that changes in mapping may not affect the overall structure of the software,
but can often change the decisions made about which processes should be
prioritised.

IF, SKIP and STOP may be used in a mapping structure.
As would be expected from the 0ccam scoping rules, logical processor names
must be declared as NODEs in the software description, before the opening
keyword MAPPING of the mapping description. Each name so declared must
appear once and once only on the left hand side of a mapping item. Physical
processors may appear on the right hand sides of multiple mapping items.
The mapping structure itself may appear either before or after the software de-
scription.
5.5.1 Mapping processes
Having declared physical processors, as part of the hardware description, and
logical processors, as part of the software description, we can assign logical
processors to physical processors using the MAP statement.
MAPPING map

MAP logical.proc ONTO physical.proc
We can also supply a list of logical processors to all be mapped onto the same

physical processor:

MAPPING map
MAP router.proc, application.proc ONTO root.processor
This is exactly equivalent to:
MAPPING map
DO
MAP router.proc ONTO root.processor
MAP application.proc ONTO root.processor

And we can use DO replicators, and IF constructs, etc:

MAPPING map

72 TDS 275 02 March 1991

90 5 Configuring transputer networks

DO
DO i = 0 FOR 10
MAP router.proc[i] ONTO router.processor[i]
DO i = 0 FOR 5
MAP sieve.proc[i] ONTO sieve.processor

If we require that the process’s priority be determined by the mapping, we can
use the optional PRI clause. The argument to PRI can be either 0 to indicate
high priority, or 1 to indicate /ow priority:

MAPPING map
DO i = 0 FOR 10
MAP logical.proc[i] ONTO physical.proc
PRI (INT (i = 0))

The configuration tool will reject the mapping at high priority of a process which
itself includes a PRI PAR.

5.5.2 Mapping channels

Channels between processors need not be placed by the user. The configurer
will determine that a connection exists, and will allocate all the channels to links
if they are available. However, if a user wants to override the default allocation,
channels may be mapped onto named ARCs. Also, channels connecting pro-
cessors to external EDGEs must be mapped onto an ARC which connects to that
EDGE.

Channels are mapped onto ARCs in exactly the same way as logical processors
are mapped onto physical processors. Two channels may be mapped onto the
same ARC, as long as they are used in different directions (the configurer will
check this). Obviously the ARC must connect EDGEs of the processors onto
which are mapped the processes which use the channel.

EDGE peripheral

ARC peripheral.arc :

NODE root.proc

NETWORK n

DO
-— insert code to set attributes, then:
CONNECT root.proc[link][0] TO peripheral WITH
peripheral.arc

CHAN OF protocol to.periph, from.periph :

72 TDS 275 02 March 1991

5.5 Mapping descriptions 91

NODE process
CONFIG
PLACED PAR
PROCESSOR process
—-- reads from channel from.periph, writes to
-- channel to.periph

MAPPING
DO
MAP process ONTO root.proc
MAP to.periph, from.periph ONTO peripheral.arc

5.5.3 Moving code and data areas

Two processor attributes may be used to provide greater control of the layout of
code and data areas in memory. Note that changing the default ordering means
that the INMOS debugger cannot be used with the program, and for this reason
these attributes must be explicitly enabled on the command line by means of the
‘RE' option.

Normally the configurer arranges for the program’s workspace to be given the
highest priority, and hence placed at the lowest address on chip. This means
that the workspace can make best use of the transputer’s on-chip RAM. Program
code is treated with next priority, and vectorspace has the lowest priority.

These priorities can be overridden by setting two processor attributes:
‘order.code’ and ‘order.vs’, which correspond to the program code, and
to the program’s vectorspace, respectively. These can be set to INT values,
where lower integers indicate a higher priority. The workspace is given priority 0.
Hence setting ‘order.code’ to -1 means that the code will be placed at a lower
address than the workspace. If an attribute is not set, the priority is considered
to have value 0. The relative ordering of sections whose priorities are equal is
undefined.

Since these attributes are essentially properties of the user's program, not of the

hardware description, the settings must be made as part of the MAPPING sec-
tion. However, the processor which is referenced must be a physical processor.

72 TDS 275 02 March 1991

92 5 Configuring transputer networks

Thus we may have a mapping section like so:

MAPPING prioritise.code
DO
SET physical.processor (order.code := -1)
MAP logical.processor ONTO physical.processor

If code re-ordering has not been explicitly enabled by the command line option
‘RE’, these attributes will be ignored.

5.5.4 Mapping without a MAPPING section

Without a mapping section a channel allocation may be used instead of a channel
mapping.

Any channel in scope at the point where a process is labelled is available for
explicit placement on an arc declared in the hardware network. This is done by
adding the following allocation immediately after the declaration of the channel:

CHAN OF protoceol to.periph, from.periph :
PLACE to.periph, from.periph ON peripheral.arc
CONF'IG
PLACED PAR
PROCESSOR root.proc
== as before

Allowing more than one channel to be placed in a single allocation or mapping
statement allows the two channels on any one physical transputer link to be
placed in a single line of code.

5.5.5 Mapping examples
1) pipeline sorter on a single processor
MAPPING
DO
MAP inout.p ONTO MyB004

DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO MyB004

72 TDS 275 02 March 1991

5.6 Example: A pipeline sorter on four transputers 93

2) pipeline sorter on a ring of processors, one per process

MAPPING
DO
MAP inout.p ONTO MyB004
DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO ringl[i]

5.6 Example: A pipeline sorter on four transputers

This section describes how the pipeline sorter program, described in section 4.12,
may be distributed over four T414 transputers. Each processor has many pro-
cesses allocated to it.

An example of how to design and write a configuration description is given,
followed by detailed instructions about how to compile, configure and run the
program.

In the configuration description it is assumed that there is a transputer network
of four T414 transputers connected as shown in figure 5.5. It does not matter if
you don't have such a network — you should read through this example and then
try modifying it for your network.

transputer 0 transputer 1

hostlink | . IMS IMS

HOST <=0 1443 2 3 T414
3 2

[

2 3

IMS IMS

Ta14 3 2 Ta14

transputer 3 transputer 2

Figure 5.5 Network of four transputers

The occam source and configuration description developed in this example is
supplied with the toolset in the "examples” directory, and you should copy these
files to a working directory in order to build the program. Alternatively you can

72 TDS 275 02 March 1991

94 5 Configuring transputer networks

type in the source of the program, as it is given below and in section 4.12.
The files are as follows:

sorthdr.inc the common protocol definition.
element.occ the sorting element.

inout.occ the interface to the host file server.
sortb3.pgm the configuration description for the network.

The contents of the files sorthdr.inc, element.occ and inout .occ are
described in section 4.12. The contents of the other files used in the program
are described below.

To complete the program the host file server library hostio.1lib, the hostio
include file hostio.ine, and the compiler library code will be used from the
toolset library directory.

The following code is in the file sortb3 . pgm, it describes the hardware network
shown above and a mapping of processes onto this network which puts an equal
number of processes on all processors after the first one, which also gets any
remainder:

-- problem size
VAL string.length IS 80:

-- hardware description
VAL number.of.transputers IS 4:
VAL number.of.elements IS string.length:
VAL elements.per.transputer IS number.of.elements/
number.of.transputers:
VAL remaining.elements IS number.of.elements\
number.of.transputers:
VAL elements.on.root IS elements.per.transputer +
remaining.elements:

VAL K IS 1024:
[4]NODE BOO03.t:
ARC hostlink:
NETWORK
DO
CONNECT B003.t[0] [link] [0] TO HOST WITH hostlink
DO i = 0 FOR 4
DO
SET B003.t[i] (type, memsize := "T41l4", 256%*K)
CONNECT B003.t[i][1link][2] TO

72 TDS 275 02 March 1991

5.6 Example: A pipeline sorter on four transputers 95

BOO03.t[(i+1)\4] [1ink] [3]

== mapping
VAL HIGH IS 0: =-- priorities
VAL LOW IS 1:
NODE inout.p:
[number.of.elements]NODE pipe.element.p:
MAPPING
DO
MAP inout.p,
pipe.element.p[elements.on.root-1] ONTO
B003.t[0] PRI HIGH
DO i = 0 FOR elements.on.root-1
MAP pipe.element.p[i] ONTO B003.t[0] PRI LOW
DC j = 0 FOR number.of.transputers - 1
VAL first.element.here IS elements.on.root +
(j*elements.per.transputer) :
VAL last.element.here IS first.element.here +
(elements.per.transputer-1):
DO
MAP pipe.element.p[first.element.here],
pipe.element.p[last.element.here] ONTO
B003.t[j+1] PRI HIGH
DO i = first.element.here + 1 FOR
elements.per.transputer - 2
MAP pipe.element.p[i] ONTO
B003.t[j+1] PRI LOW

#INCLUDE "hostio.inc"
#INCLUDE "sorthdr.inc"
#USE "inout.lku"
#USE "element.lku"
CONFIG
CHAN OF SP app.in:
CHAN OF SP app.out:
PLACE app.in, app.out ON hostlink:
[string.length+1]CHAN OF LETTERS pipe:
PAR
PROCESSOR inout.p
inout (app.in, app.out, pipel[string.length],
pipe[0])
PAR i = 0 FOR string.length
PROCESSOR pipe.element.p[i]
sort.element (pipe[i], pipe[i+l])

72 TDS 275 02 March 1991

96 5 Configuring transputer networks

In the mapping structure shown, the logical processors named in the software
description are mapped onto the physical processors declared in the hardware
description. Note: that on each processor, processes which communicate on
external channels are mapped to be run at high priority. The allocation of pro-
cesses to transputers is shown in figure 5.6.

transputer 0

transputer 3 ransputer 2
element --—@ element

Figure 5.6 Pipeline sorter processes

5.6.1 Building the program

The components of the program must be compiled in a bottom up fashion. First
compile the sorting element using the following command:

oc element

72 TDS 275 02 March 1991

5.6 Example: A pipeline sorter on four transputers 97

Because the file has a . oce file extension you can omit the extension from the
filename. The command line options to specify the target processor and error
mode may also be omitted because the defaults are required i.e. T414 and
HALT mode. The compiler will produce a file called element . tco.

Next compile the input/output process using the following command:
oc inout (creates the file inout.tco)

Each of these files must now be linked. The files are linked in separate oper-
ations, together with any files they reference. Each linking operation creates
a unit of code which may be loaded onto the transputer network, according to
configuration defined in the configuration description.

To link element . tco use one of the following commands:

ilink element.tco -f occama.lnk (UNIX)
ilink element.tco /f occama.lnk (MS-DOS/VMS)

Both of these commands will create a file called element.lku. The linker
indirect file occama.lnk contains the necessary references to the compiler
libraries. This file is supplied with the toolset.

To link inout. tco use one of the following commands:

ilink inout.tco hostio.lib -f occama.lnk (UNIX)
ilink inout.tco hostio.lib /f occama.lnk (MS-DOS/VMS)

Both of these commands will create a file called inout . 1ku.
Now configure the file sortb3.pgm which defines both the communication
channels between the processes and how they should be loaded onto the net-
work:

occonf sortb3.pgm

This command will create an cutput file called sortb3.cfb

To make the program runnable you must add bootstrap code. To do this use the
collector tool icollect:

icollect sortb3.cfb

The collector will create the file sortb3.btl

72 TDS 275 02 March 1991

98 5 Configuring transputer networks

5.6.2 Running the program

The program in the file sortb3.btl may be loaded and run using the skip
loader from the host via the root transputer which is assumed to be connected
by its link 2 to link O of the first transputer of the IMS B003 external network.
One of the following command sequences should be used:

UNIX based toolsets:

iskip 2 -e -r
iserver -se =-ss =-sc sortb3.btl

MS-DOS and VMS based toolsets:

iskip 2 /e /r
iserver /se /ss [/sc sortb3.btl

To run the program on the transputer network which includes the root transputer,
use one of the following commands:

iserver -se -sb sortb3.btl (UNIX)
iserver /se /sb sortb3.btl (MS-DOS/VMS)

The program will run until you type ‘RETURN' on its own. The ‘se’ option directs
the server to terminate if the program sets the error flag.
5.6.3 Automated program building
As with the single processor version of this program it is possible to automate
the building of this program with the Makefile generator tool and a suitable
MAKE program. The version of the configuration program supplied in the file
sortb3c.pgm is written using imakef£ file naming conventions. For example,
the linked units are given file extensions of the form cxx.
To produce a Makefile for the entire program type:

imakef sortb3c.btl
The Makefile generator will produce a file called sortb3c.mak containing a
MAKE description for the program. It will also produce linker indirect files for the

two compiled units which comprise the program; these will refer to any necessary
modules from the library.

To build the program run the MAKE program on the file sortb3c.mak and

72 TDS 275 02 March 1991

5.7 Use of conditionals in a configuration 99

all the necessary compiling, linking and configuration will be done automatically.
For more information about MAKE programs see chapter 21.

5.7 Use of conditionals in a configuration

Conditional constructs (IF) are permitted inside NETWORK, MAPPING and
CONFIG constructs. This makes it possible to create configuration descriptions
which can be ‘conditionally compiled’ for different network structures.

For example, while developing a program, it may be useful to modify a program
to bypass the root processor, so that an application may be placed directly onto
an application processor. The following, rather trivial, example demonstrates
this:

5.71 Example: Configuration using conditional IF

In this example, when a single processor is in use, the application communicates
directly with the host, as shown in figure 5.7. When two processors are available,
a buffer process is loaded onto the root processor. This process buffers the
communication between the application and the host. See figure 5.8.

application

rootlink T414

-0WOIT

Figure 5.7 Direct host connection

root application

T414 T414

3 rootlink 0

—nOIT
E;
©

Figure 5.8 Communication via the root processor

The implementation is split into the following files:

app . occ - the application
buff.occ — the buffer process

72 TDS 275 02 March 1991

100 5 Configuring transputer networks

myprog .pgm — the configuration description file
The content of app.oce is as follows:

#INCLUDE "hostio.inc"
#USE "hostio.lib"

PROC application.process (CHAN OF SP fs, ts)

SEQ
so.write.string.nl (fs, ts, "Hello world")
so.exit (fs, ts, sps.success)

The content of buff. occ is as follows:

#INCLUDE "hostio.inc"
#USE "hostio.lib"

PROC buffer.process (CHAN OF SP fs, ts, from.app, to.app)
CHAN OF BOOL stopper :
-- This never terminates
so.buffer(fs, ts, from.app, to.app, stopper)

The content of myprog.pgm is as follows:

VAL number.of.processors IS 1 : -- 1 when running,
-- 2 for developing
NODE root, application :
ARC hostlink, rootlink :
NETWORK
DO
IF
number.of.processors = 2
DO
SET root (type, memsize := "T414", #100000)
CONNECT root[link] [0] TO HOST WITH hostlink
CONNECT root[link] [3] TO application[link] [0]
WITH rootlink
TRUE
CONNECT application[link] [0] TO HOST WITH rootlink
SET application(type, memsize := "T414", #100000)

#INCLUDE "hostio.ine"
#USE "app.cah"
#USE "buff.cah"
CONFIG

CHAN OF SP fs, ts :

72 TDS 275 02 March 1991

5.8 Summary of configuration steps 101

PLACE fs, ts ON rootlink : -- Note that this is ‘rootlink’
-- not ‘hostlink’
PAR
IF

number.of.processors = 2
CHAN OF SP fs0, ts0 :
PLACE £s0, ts0 ON hostlink :
PROCESSOR root
buffer.process (£s0, ts0, ts, fs)
TRUE
SKIP
PROCESSOR application
application.process(fs, ts)

NODEs which are declared, but do not have any attributes set, are ignored when
configuring a program.

5.8 Summary of configuration steps

To summarise, the steps involved in building a program that runs on a network
of transputers are as follows:

1 Decide how your program will be distributed over the transputers in your
network.

2 Write a configuration description for your program by:
(a) Describing your hardware network.

(b) Inserting PROCESSOR statements into your program and adding
any necessary mapping description.

3 Compile all the separate compilation procedures that form the code for
each transputer in a bottom up fashion.

4 Link each configuration procedure with its component parts into a file with
the name used in #USE directives in the configuration source file.

5 Run the configurer on the configuration description file.
6 Collect the code using icollect.
7 Load the program into the network using the host file server.

Steps 3 to 6 can be automated by using imakef and a suitable MAKE program.

72 TDS 275 02 March 1991

102 5 Configuring transputer networks

72 TDS 275 02 March 1991

6 Loading transputer
programs

This chapter explains how to load programs onto single transputers and trans-
puter networks. It briefly describes the format of loadable programs and intro-
duces the program loading tools iserver and iskip. The chapter goes on to
explain how to load programs for debugging and ends with an example of skip
loading.

6.1 Introduction

Transputer programs are loaded onto transputer boards with the iserver tool
which installs code on each processor using processor and distribution informa-
tion embedded in the executable file. The executable file consists of code to
which bootstrap information has been added to make the program self-booting
on the transputer. Self-booting executable code is also known as bootable
code.

Bootable files are generated by icollect from configuration data files (network
programs) or linked units (single transputer programs). Bootable files are gen-
erated with the default extension .bt1 (for loading onto boot from link boards),
or .btr (for loading onto boot from ROM boards). Note a bootable file is con-
structed such that copying it to a link will boot the network automatically<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>