Preliminary Data

e IMST800

HHY transputer

NMOS®

FEATURES

Integral hardware 64 bit floating point unit
ANSI-IEEE 754-1985 floating point representation
Sustained 1.5(2.25t) Mflops ; i :
32 bit architecture with 15 MIPSt performance Floating Point Unit
Hardware and pin compatible with IMS T414-20 VAN
4 Kbytes on chip RAM for 120 Mbytes/sect data rate N
32 bit configurable memory interface «®
Directly addresses 4 Gbytes at 40 Mbytes/sect A N 32 bit
High performance graphics support System Processor
Sub-microsecond context switch & interrupt latency Services
Four 5/10/20 Mbits/sec INMOS serial links
Hardware scheduler for concurrent programs
Internal timers for real time processing

External event interrupt Link

Support for run-time error diagnostics Services

Boots from communication link or ROM .

On-chip DRAM controller Timers Link

Internal program continues during DMA — Interface

Optional external memory wait states

Single 5 MHz clock input 4Kk bytes Link

Single +5V +10% power supply _ =/ Interface
Link

APPLICATIONS Interface

Scientific and mathematical applications Link

High speed multi processor systems Interface

High performance graphics processing External

Supercomputers Memory

Workstations and workstation clusters Interface Event

Digital signal processing
Accelerator processors
Distributed databases
System simulation
Telecommunications
Robotics

Fault tolerant systems
Image processing
Molecular modelling
Pattern recognition Note: 1 indicates a reference to a 30 MHz device.

Artificial intelligence

42 1082 00 April 1987

IMS T800 Data Sheet

10

11

12

CONTENTS

Introduction
Pin designations

Processor

3.1 Registers

3.2 Instructions

33 Processes and concurrency
3.4 Priority

3.5 Communications

3.6 Timers

3.7 Instruction set summary

Floating Point Unit

System Services

5.1 Power

5.2 CapPlus, CapMinus
53 Clockin

5.4 ProcSpeedSelect0-2
55 Reset

5.6 Boot

5.7 Peek and poke

5.8 Analyse

5.9 Error, Errorin

Memory

External Memory Interface
7.4 ProcClockOut

7.2 Tstates

7.3 Internal access
7.4 MemAD2-31

7.5 MemnotWrDO

7.6 MemnotR{D1

7.7 notMemRd

7.8 notMemSO0-4

79 notMemWrBO0-3
7.10 MemConfig

7.11 notMemRf

712 MemWait

7.13 MemReq, MemGranted

Events
Links

Electrical specifications

10.1 DC electrical characteristics
10.2 Equivalent circuits

10.3 AC timing characteristics
10.4 Power rating

Package specifications
111 Pin grid array package

Ordering details

IMS T800 Data Sheet
1 Introduction

The IMS T800 transputer is a 32 bit CMOS
microcomputer with a 64 bit floating point unit

and graphics support. It has 4 Kbytes on-chip
RAM for high speed processing, a configurable
memory interface and four standard INMOS
communication links. The instruction set achieves
efficient implementation of high level languages
and provides direct support for the occam model of
concurrency when using either a single transputer or
a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond.

The processor speed of a device can be pin-selected
in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an
instruction throughput of 15 MIPS.

The IMS T800 provides high performance arithmetic
and floating point operations. The 64 bit floating point
unit provides single and double length operation

to the ANSI-IEEE 754-1985 standard for floating
point arithmetic. It is able to perform fleating point
operations concurrently with the processor, sustaining
a rate of 1.5 Mflops at a processor speed of 20 MHz
and 2.25 Mflops at 30 MHz.

High performance graphics support is provided by
microcoded block move instructions which operate

at the speed of memory. The two dimensional block
move instructions provide for contiguous block moves
as well as block copying of either non-zero bytes of
data only or zero bytes only. Block move instructions
can be used to provide graphics operations such as
text manipulation, windowing, panning, scrolling and
screen updating.

Cyclic redundancy checking (CRC) instructions

are available for use on arbitrary length serial data
streams, to provide error detection where data
integrity is critical. Another feature of the IMS T800,
useful for pattern recognition, is the facility to count
bits set in a word.

The IMS T800 can directly access a linear address
space of 4 Gbytes. The 32 bit wide memory

interface uses multiplexed data and address lines
and provides a data rate of up to 4 bytes every

100 nanoseconds (40 Mbytes/sec) for a 30 MHz
device. A configurable memory controller provides all
timing, control and DRAM refresh signals for a wide
variety of mixed memory systems.

System Services include processor reset and boot
control, together with facilities for error analysis.
Error signals may be daisy-chained in multi-
transputer systems.

The standard INMOS communication links allow
networks of transputer family products to be
constructed by direct point to point connections with
no external logic. The IMS T800 links support the
standard operating speed of 10 Mbits per second,
but also operate at 5 or 20 Mbits per second.

Each link can transfer data bi-directionally at up to
2.35 Mbytes/sec.

The IMS T800-20 is pin compatible with the

IMS T414-20, as the extra inputs used are all held

to ground on the IMS T414. The IMS T800-20 can
thus be plugged directly into a circuit designed for a
20 MHz version of the IMS T414. Software should be
recompiled, although no changes to the source code
are necessary.

The transputer is designed to implement the occam
language, detailed in the Occam Reference Manual,
but also efficiently supports other languages such as
C, Pascal and Fortran. Access to the transputer at
machine level is seldom required, but if necessary
refer to The Transputer Instruction Set - A Compiler
Writers’ Guide.

This data sheet supplies hardware implementation
and characterisation details for the IMS T800.

It is intended to be read in conjunction with the
Transputer Reference Manual, which details the
architecture of the transputer and gives an overview
of occam.

For convenience of description, the IMS T800
operation is split into the basic blocks shown in the
Block Diagram.

IMS T800 Data Sheet

Floating Point Unit

GND — @
CapPlus 4 N 32 bit
CapMinus 32 Processor
Reset —®
Analyse System
rvices
Eoror €—] ——— 14— LinkSpecial
BootFromROM — Services [& Link0Special
Clockin —¥ <4— Link123Special
ProcSpeed /l3_2'\ Link <4— LinkIn0
Select0-2 . N~ —__Interface [— LinkOuto
I_‘Jsz Link <¢— Linkin1
4 Kbytes Interface —® LinkOut1
of rl N M 22 N Link €4— LinkIn2
On-chip \l'&l/ \——4__Interfface % LinkOut2
RAM I ¢ _
32 Link — L!nkln3
ProcClockOut <¢— N——A__Interface [LinkOut3
notMemS0-4 ¢— 30 4— EventReq
notMemWrB0-3 €¢— External N~ V| Event —& EventAck
notMemRd €¢—
notMemRf €— Memory
MemWwait—{ Interface MemAD2-31
MemConfig— < 32 > MemnotR{D1
MemReq MemnotWrDO
MemGranted

IMS T800 Block Diagram

IMS T800 Data Sheet
2 Pin designations

System Services

Pin In/Out Function
VCC, GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
ProcSpeedSelect0-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Errorin in Error daisychain input
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link
HoldToGND Must be connected to GND
DoNotWire Must not be wired

External Memory Interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2-31 infout Multiplexed data and address bus
notMemRd out Read strobe
notMemWrB0-3 out Four byte-addressing write strobes
notMemSO0-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input
Event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge
Link

Pin In/Out Function
Linkin0-3 in Four serial data input channels
LinkOut0-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3
Notes

Signal names are prefixed by not if they are active low, otherwise they are active high. Pinout details for the
different packages are given in section 11.

IMS T800 Data Sheet
3 Processor

The 32 bit processor contains instruction processing
logic, instruction pointer, workspace pointer, and an
operand register. It directly addresses 4 Gbytes of
memory, 4 Kbytes of which is fast on-chip RAM.

3.1 Registers

The design of the transputer processor exploits the
availability of fast on-chip memory by having only
a small number of registers; six registers are used
in the execution of a sequential process. The small
number of registers, together with the simplicity of
the instruction set enables the processor to have
relatively simple (and fast) data-paths and control
logic. The six registers are:

The workspace pointer which points to an
area of store where local variables are kept.

The instruction pointer which points to the
next instruction to be executed.

The operand register which is used in the
formation of instruction operands.

The A, B and C registers which form an
evaluation stack.

A, B and C are sources and destinations for most
arithmetic and logical operations. Loading a value
into the stack pushes B into C, and A into B, before
loading A. Storing a value from A, pops B into A and
C into B.

Expressions are evaluated on the evaluation stack,
and instructions refer to the stack implicity. For
example, the add instruction adds the top two values
in the stack and places the result on the top of

the stack. The use of a stack removes the need
for instructions to respecify the location of their
operands. Statistics gathered from a large number
of programs show that three registers provide an
effective balance between code compactness and
implementation complexity.

No hardware mechanism is provided to detect that
more than three values have been loaded onto the
stack. It is easy for the compiler to ensure that this
never happens.

Any location in memory can be accessed relative to
the workpointer register, enabling the workspace to
be of any size.

Further register details are given in The Transputer
Instruction Set - A Compiler Writers’ Guide.

3.2 Instructions

The instruction set has been designed for simple
and efficient compilation of high-level languages. All
instructions have the same format, designed to give
a compact representation of the operations occurring
most frequently in programs.

Each instruction consists of a single byte divided into
two 4 bit parts. The four most significant bits of the
byte are a function code and the four least significant
bits are a data value.

Function Data

7 43¢o

Operand Register

Instruction Format

Registers

Locals Program

A

B

C

Workspace

Next inst

Operand

Registers

IMS T800 Data Sheet

3.2.1 Direct functions

The representation provides for sixteen functions,
each with a data value ranging from 0 to 15. Thirteen
of these are used to encode the most important
functions. These include

load constant add constant
load local store local
load local pointer

load non-local store non-local

Jjump conditional jump
call

The most common operations in a program are the
loading of small literal values and the loading and
storing of one of a small number of variables. The
load constant instruction enables values between

0 and 15 to be loaded with a single byte instruction.
The load local and store local instructions access
locations in memory relative to the workspace
pointer. The first 16 locations can be accessed using
a single byte instruction.

The load non-local and store non-local instructions
behave similarly, except that they access locations
in memory relative to the A register. Compact
sequences of these instructions allow efficient
access to data structures, and provide for simple
implementations of the static links or displays used
in the implementation of high level programming
languages such as occam, C, Fortran, Pascal or
ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any
instruction to be extended in length; prefix and
negative prefix.

All instructions are executed by loading the four data
bits into the least significant four bits of the operand
register, which is then used as the instruction’s
operand. All instructions except the prefix instructions
end by clearing the operand register, ready for the
next instruction.

The prefix instruction loads its four data bits into the
operand register and then shifts the operand register
up four places. The negative prefix instruction is
similar, except that it complements the operand
register before shifting it up. Consequently operands
can be extended to any length up to the length of the

operand register by a sequence of prefix instructions.
In particular, operands in the range -256 to 255 can
be represented using one prefix instruction.

The use of prefix instructions has certain beneficial
consequences. Firstly, they are decoded and
executed in the same way as every other instruction,
which simplifies and speeds instruction decoding.
Secondly, they simplify language compilation by
providing a completely uniform way of allowing any
instruction to take an operand of any size. Thirdly,
they allow operands to be represented in a form
independent of the processor wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its
operand to be interpreted as an operation on the
values held in the evaluation stack. This allows up
to 16 such operations to be encoded in a single byte
instruction. However, the prefix instructions can be
used to extend the operand of an operate instruction
just like any other. The instruction representation
therefore provides for an indefinite number of
operations.

Encoding of the indirect functions is chosen so
that the most frequently occuring operations are
represented without the use of a prefix instruction.
These include arithmetic, logical and comparison
operations such as add, exclusive or and greater
than. Less frequently occuring operations have
encodings which require a single prefix operation.

3.24 Expression evaluation

Evaluation of expressions sometimes requires use
of temporary variables in the workspace, but the
number of these can be minimised by careful choice
of the evaluation order.

Program Mnemonic
x:=0 Idc 0
stl X
X = #24 pfix 2
ldc 4
stl X
Xi=y+2Z [o] y
lal z
add
stl X

IMS T800 Data Sheet
3.2.5 Efficiency of encoding

Measurements show that about 70% of executed
instructions are encoded in a single byte (i.e.
without the use of prefix instructions). Many of these
instructions, such as load constant and add require
just one processor cycle.

The instruction representation gives a more compact
representation of high level language programs than
more conventional instruction sets. Since a program
requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions.
Furthermore, as memory is word accessed the
processor will receive several instructions for every
fetch.

Short instructions also improve the effectiveness

of instruction pre-fetch, which in turn improves
processor performance. There is an extra word of
pre-fetch buffer, so the processor rarely has to wait
for an instruction fetch before proceeding. Since
the buffer is short, there is little time penalty when
a jump instruction causes the buffer contents to be
discarded.

3.3 Processes and concurrency

A process starts, performs a number of actions, and
then either stops without completing or terminates
complete. Typically, a process is a sequence of

instructions. A transputer can run several processes
in parallel (concurrently). Processes may be
assigned either high or low priority, and there may
be any number of each (section 3.4).

The processor has a microcoded scheduler which
enables any number of concurrent processes to be
executed together, sharing the processor time. This
removes the need for a software kernel.

At any time, a concurrent process may be

Active - Being executed
- On a list waiting to be executed
Inactive - Ready to input

- Ready to output
- Waiting until a specified time

The scheduler operates in such a way that inactive
processes do not consume any processor time. It
allocates a portion of the processor’s time to each
process in turn. Active processes waiting to be
executed are held in two linked lists of process
workspaces, one of high priority processes and one
of low priority processes (section 3.4). Each list

is implemented using two registers, one of which
points to the first process in the list, the other to the
last. In the Linked Process List diagram, process

S is executing and P, Q and R are active, awaiting
execution. Only the low priority process queue
registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals Program
FPtr1 (Front) |——p»
BPtr1 (Back) i
Q ¢ >
A
B " -
c _|—’ S
Workspace
Next Inst >
Operand

Linked Process List

IMS T800 Data Sheet
High Priority Queue Control Registers

Fptr0
Bptr0

Pointer to front of active process list
Pointer to back of active process list

Low Priority Queue Control Registers

Fptri
Bptri

Pointer to front of active process list
Pointer to back of active process list

Each process runs until it has completed its action,
but is descheduled whilst waiting for communication
from another process or transputer, or for a time
delay to complete. In order for several processes

to operate in parallel, a low priority process is

only permitted to run for a maximum of two time
slices before it is forcibly descheduled at the next
available descheduling point (section 3.7.1). The time
slice period is 5120 cycles of Clockln, giving ticks
approximately 1ms apart.

A process can only be descheduled on certain
instructions, known as descheduling points

(section 3.7.1). As a result, an expression evaluation
can be guaranteed to execute without the process
being timesliced part way through.

Whenever a process is unable to proceed, its
instruction pointer is saved in the process workspace
and the next process taken from the list. Process
scheduling pointers are updated by instructions
which cause scheduling operations, and should not
be altered directly. Actual process switch times are
less than 1 us, as little state needs to be saved and
it is not necessary to save the evaluation stack on
rescheduling.

The processor provides a number of special
operations to support the process model, including
start process and end process. When a main
process executes a parallel construct, start process
instructions are used to create the necessary
additional concurrent processes. A start process
instruction creates a new process by adding a new
workspace to the end of the scheduling list, enabling
the new concurrent process to be executed together
with the ones already being executed. When a
process is made active it is always added to the
end of the list, and thus cannot pre-empt processes
already on the same list.

The correct termination of a parallel construct is
assured by use of the end process instruction.
This uses a workspace location as a counter of the

parallel construct components which have still to

terminate. The counter is initialised to the number of
components before the processes are started. Each
component ends with an end process instruction

which decrements and tests the counter. For all but
the last component, the counter is non zero and the
component is descheduled. For the last component,
the counter is zero and the main process continues.

3.4

The IMS T800 supports two levels of priority. The
priority 1 (low priority) processes are executed
whenever there are no active priority 0 (high priority)
processes.

Priority

High priority processes are expected to execute for a
short time. If one or more high priority processes are
able to proceed, then one is selected and runs until
it has to wait for a communication, a timer input, or
until it completes processing.

If no process at high priority is able to proceed, but
one or more processes at low priority are able to
proceed, then one is selected.

Low priority processes are periodically timesliced
to provide an even distribution of processor time
between computationally intensive tasks.

If there are n low priority processes, then the
maximum latency from the time at which a low
priority process becomes active to the time when
it starts processing is 2n-2 timeslice periods. It
is then able to execute for between one and two
timeslice periods, less any time taken by high
priority processes. This assumes that no process
monopolises the transputer’s time; i.e. it has a
distribution of descheduling points (section 3.7.1).

Each timeslice period lasts for 5120 cycles of the
input clock Clockln (approximately 1 millisecond at
the standard frequency of 5 MHz).

If a high priority process is waiting for an external
channel to become ready, and if no other high
priority process is active, then the interrupt latency
(from when the channel becomes ready to when the
process starts executing) is typically 19 processor
cycles, a maximum 78 cycles (assuming use of
on-chip RAM). If the floating point unit is not being
used at the time then the maximum interrupt latency
is only 58 cycles. To ensure this latency, certain
instructions are interruptable.

IMS T800 Data Sheet

3.5 Communications

Communication between processes is achieved by
means of channels. Process communication is point-
to-point, synchronised and unbuffered. As a result,

a channel needs no process queue, N0 message
queue and no message buffer.

A channel between two processes executing on the
same transputer is implemented by a single word in
memory; a channel between processes executing
on different transputers is implemented by point-
to-point links. The processor provides a number of
operations to support message passing, the most
important being input message and output message.

The input message and output message instructions
use the address of the channel to determine whether
the channel is internal or external. Thus the same
instruction sequence can be used for both, allowing
a process to be written and compiled without
knowledge of where its channels are connected.

The process which first becomes ready must wait
until the second one is also ready. A process
performs an input or output by loading the evaluation
stack with a pointer to a message, the address of a
channel, and a count of the number of bytes to be
transferred, and then executing an input message or
output message instruction. Data is transferred if the
other process is ready. If the channel is not ready or
is an external one the process will deschedule.

3.6 Timers

The transputer has two 32 bit timers which ‘tick’

periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves
until a specific time.

One timer is accessible only to high priority
processes and is incremented every microsecond,
cycling completely in 4295 seconds. The other is
accessible only to low priority processes and is
incremented every 64 microseconds, giving exactly
15625 ticks of this timer in one second. It cycles in
approximately 76 hours.

Timer Registers

Timer0 Current value of high priority
(level 0) process timer
Timer1 Current value of low priority
(level 1) process timer
TNextReg0 | Indicates time of earliest event on
high priority (level 0) timer queue
TNextReg1 | Indicates time of earliest event on
low priority (level 1) timer queue

The current value of a timer can be read by
executing ‘a load timer instruction. A process can
arrange to perform a timer input, in which case it will
become ready to execute after a specified time has
been reached. The timer input instruction requires a
time to be specified. If this time is in the ‘past’ then
the instruction has no effect. If the time is in the
‘future’ then the process is descheduled. When the
specified time is reached the process is scheduled
again.

The Timer Registers diagram shows two processes
waiting on a timer queue, one waiting for time 21, the
other for time 31.

Timer0

Comparator

TNextReg0

TPtrLocO | I

Workspaces Program
B ¢
Alarm
— 21
\
L
Empty |—>
31 &

Timer Registers

IMS T800 Data Sheet
3.7 Instruction set summary

The Function Codes table gives the basic function
code set (section 3.2.1). Where the operand is
less than 16 a single byte encodes the complete
instruction. If the operand is greater than 15 one

prefix instruction (pfix) is required for each additional

four bits of the operand. If the operand is negative
the first prefix instruction will be nfix.

Function Memory

Mnemonic code code
Idc #3 #4 #43
Ide #35

is coded as
pfix #3 #2 #23
Idc #5 #4 #45
Idc #987

is coded as
pfix #9 #2 #29
pfix #8 #2 #28
Idc #7 #4 #47
Idc -31 (dc #FFFFFFE1)

is coded as
nfix #1 #6 #61
Idc #1 #4 #41

The Operation Codes tables give details of operation

codes. Where an operation code is less than 16
(e.g. add: operation code 05), the operation can
be stored as a single byte comprising the operate

function code F and the operand (5 in the example).

Where an operation code is greater than 15 (e.g.
ladd: operation code 16), the prefix function code 2
is used to extend the instruction.

Function Memory

Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21

opr #6 #F #F6

In the Floating Point Operation Codes tables a
selector sequence code (section 4) is indicated in
the Memory Code column by s. The code given in
the Operation Code column is the indirection code,
the operand for the /dc instruction.

The FPU and processor operate concurrently, so
the actual throughput of floating point instructions

is better than that implied by simply adding up
instruction times. For full details see The Transputer
Instruction Set - A Compiler Writers’ Guide.

The Processor Cycles column refers to the number of
periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given
for the basic operation only; where relevant the time
for the prefix function (one cycle) should be added.
For a 20 MHz transputer one cycle is 50ns. Some
instruction times vary. Where a letter is included

in the cycles column it is interpreted from the table
below.

b is the bit number of the highest bit set in
register A. Bit 0 is the least significant bit.

m is the bit number of the highest bit set in the
absolute value of register A. Bit 0 is the least
significant bit.

n is the number of places shifted.

w is the number of words in the message. Part
words are counted as full words. If the message
is not word aligned the number of words is
increased to include the part words at either end
of the message.

p is the number of words per row.
r is the number of rows.

The Desch/Error column of the tables indicate if an
instruction is a descheduling point (section 3.3) or if it
will affect Error (section 5.9) or FP_Error (section 4).

3.7.1 Descheduling points

The following instructions are the only ones at which
a process may be descheduled (section 3.3). They
are also the ones at which the processor will halt if
Analyse is asserted (section 5.8).

input message output message
oulput byte output word
timer alt wait timer input

stop on error alt wait

jump loop end

end process stop process

IMS T800 Data Sheet

3.7.2

Error instructions

The following instructions are the only ones which
can affect Error (section 5.9) directly. Note,
however, that the floating point unit error flag
FP_Error is set by certain floating point instructions
(section 3.7.3), and that Error can be set from this

3.7.3

Floating point errors

The following instructions are the only ones which
can affect the floating point error flag FP_Error

(section 4). Error is set from this flag by focheckerror

if FP_Error is set.

flag by focheckerror. foadd fosub
formul fodiv
add add constant foldnladdsn foldnladddb
subtract multiply foldnimulsn foldnimuldb
divide remainder foremfirst fousqrtfirst
long add long subtract fogt foeq
long divide fractional multiply fouseterror fouclearerror
set error testerr fotesterror fortoi32
check word check subscript from 0 fouexpincby32 fpuexpdecby32
check single check count from 1 foumulby2 foudivby2
focheckerror four32tor64 four64tor32
foucki32 fouckié4
fouabs foint
Function Codes
Function | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
0 0X j 3 jump Desch
1 1X ldip 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X ldc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant Error
9 9X call 7 call
A AX Cj 2 conditional jump (not taken)
4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

10

IMS T800 Data Sheet

General Operation Codes

Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word Error
iD 21FD xdble 2 extend to double
4C 24FC csngl 3 check single Error
42 24F2 mint 1 minimum integer
Arithmetic/Logical Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24F0 shr n+2 shift right
05 F5 add 1 add Error
0C FC sub 1 subtract Error
53 25F3 mul 38 multiply Error
72 27F2 fmul 35 fractional multiply (no rounding) Error
40 fractional multiply (rounding) Error
2C 22FC div 39 divide Error
1F 21FF rem 37 remainder Error
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A
m+5 product for negative register A
Long Arithmetic Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
16 21F6 ladd 2 long add Error
38 23F8 Isub 2 long subtract Error
37 23F7 lsum 2 long sum
4F 24FF Idiff 2 long diff
31 23F1 Imul 33 long multiply
1A 21FA Idiv 35 long divide Error
36 23F6 Ishi n+3 long shift left (n<32)
n-28 long shift left(n>32)
35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n>32)
19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n>32)
3 normalise (n=64)

11

IMS T800 Data Sheet

Indexing/Array Operation Codes

Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
02 F2 bsub 1 byte subscript
0A FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bent 2 byte ccunt
3F 23FF went 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 5 store byte
4A 24FA move 2w+8 move message
Timer Handling Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) Desch
3 timer input (time past) Desch
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) Desch
48 timer alt wait (time future) Desch
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer
Input/Output Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
07 F7 in 2w+19 input message Desch
0B FB out 2w+19 output message Desch
OF FF outword 23 output word Desch
OE FE outbyte 23 output byte Desch
12 21F2 resetch 3 reset channel
43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) Desch
17 alt wait (channel not ready) Desch
45 24F5 altend 4 alt end
49 24F9 enbs 3 enable skip
30 23F0 diss 4 disable skip
48 24F8 enbc 7 enable channel (ready)
5 enable channel (not ready)
2F 22FF disc 8 disable channel

12

IMS T800 Data Sheet

Control Operation Codes

Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
20 22F0 ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
5A 25FA dup 1 duplicate top of stack
06 Fé gcall 3 general call
21 22F1 lend 10 loop end (loop) Desch
5 loop end (exit) Desch
Scheduling Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
0D FD startp 12 start process Desch
03 F3 endp 13 end process Desch
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority
Error Handling Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
13 21F3 csub0 2 check subscript from 0 Error
4D 24FD centl 3 check count from 1 Error
29 22F9 testerr 2 test error false and clear (no error)
3 test error false and clear (error) Error
10 21F0 seterr 1 set error Error
55 25F5 stoperr 2 stop on error Desch
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error
Processor Initialisation Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25F0 sthb 1 store high priority back pointer
1C 21FC stif 1 store low priority front pointer
17 21F7 stib 1 store low priority back pointer
54 25F4 sttimer 1 store timer

13

IMS T800 Data Sheet

Floating Point Load/Store Operation Codes

Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
8E 28FE fpldnisn 2 fp load non-local single
8A 28FA fpldnidb 3 fp load non-local double
86 28F6 fpldnisni 4 fp load non-local indexed single
82 28F2 fpldnidbi 6 fp load non-local indexed double
9F 29FF fpldzerosn 2 load zero single
A0 2AF0 fpldzerodb 2 load zero double
AA 2AFA fpldnladdsn 2+fpadd fp load non local & add single FP_Error
A6 2AF6 fpldniadddb 3+fpadd fp load non local & add double FP_Error
AC 2AFC fpldnimulsn 2+fpmul fp load non local & multiply single FP_Error
A8 2AF8 fpldnimuldb 3+fpmul fp load non local & multiply double FP_Error
88 28F8 fpstnisn 2 fp store non-local single
84 28F4 fpstnidb 3 fp store non-local double
SE 29FE fpstnli32 4 store non-local int32
Floating Point General Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
AB 2AFB fpentry 1 floating point unit entry
A4 2AF4 fprev 1 fp reverse
A3 2AF3 fpdup 1 fp duplicate
Floating Point Rounding Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
22 s fpurn 1 set rounding mode to round nearest
06 S fpurz 1 set rounding mode to round zero
04 S fpurp 1 set rounding mode to round positive
05 S fourm 1 set rounding mode to round minus
Floating Point Error Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
83 28F3 fpchkerror 1 check fp error Error
aC 29FC fptesterror 2 test fp error false and clear FP_Error
23 S fpuseterror 1 set fp error FP_Error
9C S fpouclearerror 1 clear fp error FP_Error

14

IMS T800 Data Sheet

Floating Point Comparison Operation Codes

Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
94 29F4 fpgt 3/6 fp greater than FP_Error
95 29F5 fpeq 3/5 fp equality FP_Error
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 2/3 fp NaN
93 29F3 fpnotfinite 2/2 fp not finite
0E s fpuchki32 3/4 check in range of type int32 FP_Error
OF S fpuchkic4 3/4 check in range of type int64 FP_Error
Processor cycles are shown as Minimum/Maximum cycles.
Floating Point Conversion Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
07 s fpur32tor64 3/4 real32 to real64 FP_Error
08 S fpur64tor32 6/9 real64 to real32 FP_Error
9D 29FD fprtoi32 7/9 real to int32 FP_Error
96 29F6 fpi32tor32 8/10 int32 to real32
98 29F8 fpi32toré4 8/10 int32 to real64
9A 29FA fpb32tor64 8/8 bit32 to real64
0D S fpunoround 2/2 real64 to real32, no round
A1 2AF1 fpint 5/6 round to floating integer FP_Error
Processor cycles are shown as Typical/Maximum cycles.
Floating Point Arithmetic Operation Codes
Processor Cycles
Operation | Memory Desch/
Code Code Mnemonic Single Double Name Error
87 28F7 fpadd 6/9 6/9 fp add FP_Error
89 28F9 fpsub 6/9 6/9 fp subtract FP_Error
8B 28FB fomul 11/18 18/27 fp multiply FP_Error
8C 28FC fpdiv 16/28 31/43 fp divide FP_Error
0B S fpuabs 2/2 2/2 fp absolute FP_Error
8F 28FF foremfirst 36/46 36/46 fp remainder first step FP_Error
90 29F0 foremstep 32/36 32/36 fp remainder iteration
01 S fpusqrtfirst 27/29 27/29 fp square root first step FP_Error
02 S fpusqrtstep 42/42 42/42 fp square root step
03 S fpusqrtlast 8/9 8/9 fp square root end
0A S fpuexpinc32 6/9 6/9 multiply by 232 FP_Error
09 s fouexpdec32 6/9 6/9 divide by 232 FP_Error
12 S foumulby?2 6/9 6/9 multiply by 2.0 FP_Error
11 S fpudivby2 6/9 6/9 divide by 2.0 FP_Error

Processor cycles are given for single and double length operations

15

. In each column, figures are shown as Typical/Maximum cycles.

IMS T800 Data Sheet

Block Move Operation Codes

Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
5B 25FB move2dinit 8 initialise data for 2D block move
5C 25FC move2dall (2p+23)xr | 2D block copy
5D 25FD move2dnonzero | (2p+23)«r | 2D block copy non-zero bytes
5E 25FE move2dzero (2p+23)#r 2D block copy zero bytes
CRC and Bit Operation Codes
Operation | Memory Processor Desch/
Code Code Mnemonic Cycles Name Error
74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte
76 27F6 bitcnt b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits in byte
4 Floating Point Unit to be transferred to or from the FPU are called

The 64 bit floating point unit (FPU) provides

single and double length arithmetic to floating

point standard ANSI-IEEE 754-1985. It is able to
perform floating point arithmetic concurrently with

the central processor unit (CPU), sustaining in
excess of 2.25 Mflops on a 30 MHz device. All data
communication between memory and the FPU occurs
under control of the CPU.

The FPU consists of a microcoded computing engine
with a three deep floating point evaluation stack for
manipulation of floating point numbers. These stack
registers are FA, FB and FC, each of which can
hold either 32 bit or 64 bit data; an associated flag,
set when a floating point value is loaded, indicates
which. The stack behaves in a similar manner to the
CPU stack (section 3.1).

As with the CPU stack, the FPU stack is not saved
when rescheduling (section 3.3) occurs. The FPU
can be used in both low and high priority processes.
When a high priority process interrupts a low priority
one the FPU state is saved inside the FPU. The CPU
will service the interrupt immediately on completing
its current operation. The high priority process will
not start, however, before the FPU has completed its
current operation.

Points in an instruction stream where data need

16

synchronisation points. At a synchronisation point
the first processing unit to become ready will wait
until the other is ready. The data transfer will then
occur and both processors will proceed concurrently
again. In order to make full use of concurrency,
floating point data source and destination addresses
can be calculated by the CPU whilst the FPU is
performing operations on a previous set of data.
Device performance is thus optimised by minimising
the CPU and FPU idle times.

The FPU has been designed to operate on both
single length (32 bit) and double length (64 bit)
floating point numbers, and returns results which
fully conform to the ANSI-IEEE 754-1985 floating
point arithmetic standard. Denormalised numbers are
fully supported in the hardware. All rounding modes
defined by the standard are implemented, with the
default being round to nearest.

The basic addition, subtraction, multiplication

and division operations are performed by single
instructions. However, certain less frequently used
floating point instructions are selected by a value in
register A (when allocating registers, this should be
taken into account). A load constant instruction /dc
is used to load register A; the floating point entry
instruction fpentry then uses this value to select the
floating point operation. This pair of instructions is
termed a selector sequence.

IMS T800 Data Sheet

Names of operations which use foentry begin with
fou. A typical usage, returning the absolute value of
a floating point number, would be

Idc fpuabs; fpentry;
Since the indirection code for fpuabs is 0B, it would
be encoded as

Function Memory
Mnemonic code code
Idc fouabs #4 #4B
foentry (op. code #AB) #2AFB
is coded as
pfix #A #2 #2A
opr #B #F #FB

The remainder and square root instructions take
considerably longer than other instructions to
complete. In order to minimise the interrupt latency

period of the transputer they are split up to form
instruction sequences. As an example, the instruction
sequence for a single length square root is

fousgrtfirst; fousqristep; fousqrtstep; fousqrtlast;

The FPU has its own error flag FP_Error. This
reflects the state of evaluation within the FPU and
is set in circumstances where invalid operations,
division by zero or overflow exceptions to the
ANSI-IEEE 754-1985 standard would be flagged
(section 3.7.3). FP_Error is also set if an input to a
floating point operation is infinite or is not a number
(NaN). The FP_Error flag can be set, tested and
cleared without affecting the main Error flag, but
can also set Error when required (sections 3.7.2).
Depending on how a program is compiled, it is
possible for both unchecked and fully checked
floating point arithmetic to be performed.

Further details on the operation of the FPU can be
found in The Transputer Instruction Set - A Compiler
Writers’ Guide.

Typical Floating Point Operation Times

T800-20 T800-30
operation single length | double length | single length | double length
add 350 ns 350 ns 233 ns 233 ns
subtract 350 ns 350 ns 233 ns 233 ns
multiply 550 ns 1000 ns 367 ns 667 ns
divide 850 ns 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers

5 System Services

System services include all the necessary logic to
initialise and sustain operation of the transputer.
They also include error handling and analysis
facilities.

5.1 Power

Power is supplied to the transputer via the VCC and
GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must
be connected. The supply must be decoupled close
to the chip by at least one 100nF low inductance
(e.g. ceramic) capacitor between VCC and GND.
Four layer boards are recommended; if two layer
boards are used, extra care should be taken in
decoupling.

17

Input voltages must not exceed specification with
respect to VCC and GND, even during power-up and
power-down ramping, otherwise /atchup can occur.
CMOS devices can be permanently damaged by
excessive periods of latchup.

5.2 CapPlus, CapMinus

The internally derived power supply for internal
clocks requires an external low leakage, low
inductance 1uF capacitor to be connected between
CapPlus and CapMinus. A ceramic capacitor is
preferred, with an impedance less than 3 ohms
between 100 KHz and 10 MHz. If a polarised
capacitor is used the negative terminal should be
connected to CapMinus. Total PCB track length
should be less than 50mm. The connections must
not touch power supplies or other noise sources.

IMS T800 Data Sheet

vCC
E . CapPlus P.C.B. track
| .
- Decoupling
Phalse locked =— Capacitor
oops 1uFE
| o K
CapMinus P.C.B. track

|

GND

Recommended PLL Decoupling

5.3 Clockin

Transputer family components use a standard clock
frequency, supplied by the user on the Clockin
input. The nominal frequency of this clock for all
transputer family components is 5SMHz, regardless of
word length or processor cycle time. High frequency
internal clocks are derived from Clockln, simplifying
system design and avoiding problems of distributing
high speed clocks externally.

A number of transputer devices may be connected
to a common clock, or may have individual clocks
providing each one meets the specified stability
criteria. In a multi-clock system the relative phasing
of Clockln clocks is not important, due to the
asynchronous nature of the links. Mark/space ratio is
unimportant provided the specified limits of Clockin
pulse widths are met.

Oscillator stability is important. Clockin must be
derived from a crystal oscillator; RC oscillators
are not sufficiently stable. Clockln must not be
distributed through a long chain of buffers. Clock
edges must be monotonic and remain within the
specified voltage and time limits.

5.4 ProcSpeedSelect0-2

Processor speed of the IMS T800 is variable

in discrete steps. The desired speed can be
selected, up to the maximum rated for a particular
component, by the three speed select lines
ProcSpeedSelect0-2. The pins are tied high or low,
according to the table below, for the various speeds.
The ProcSpeedSelect0-2 pins are designated
HoldToGND on the IMS T414, and coding is so
arranged that the IMS T800 can be plugged directly
into a board designed for a 20MHz IMS T414.

Only six of the possible speed select combinations

18

are currently used; the other two are not valid speed
selectors. The frequency of Clockin for the speeds
given in the table is 5 MHz.

5.5 Reset

Reset can go high with VCC, but must at no time
exceed the maximum specified voltage for VIH.
After VCC is valid Clockln should be running for a
minimum period TDCVRL before the end of Reset.
The falling edge of Reset initialises the transputer,
triggers the memory configuration sequence and
starts the bootstrap routine. Link outputs are forced
low during reset; link inputs and EventReq should
be held low. Memory request (DMA) must not occur
whilst Reset is high but can occur before boot
(section 7.13).

After the end of Reset there will be a delay of

144 periods of ClockIn (Post-Reset Sequence
diagram). Following this, the MemWrD0, MemRfD1
and MemAD2-31 pins will be scanned to check for
the existence of a pre-programmed memory interface
configuration (section 7.10.1). This lasts for a further
144 periods of Clockin. Regardless of whether a
configuration was found, 36 configuration read cycles
will then be performed on external memory using the
default memory configuration (section 7.10.2), in an
attempt to access the external configuration ROM.

A delay will then occur, its period depending on

the actual configuration. Finally eight complete and
consecutive refresh cycles will initialise any dynamic
RAM, using the new memory configuration. If the
memory configuration does not enable refresh of
dynamic RAM the refresh cycles will be replaced by
an equivalent delay with no external memory activity.

If BootFromRom is high bootstrapping will then take
place immediately, using data from external memory;
otherwise the transputer will await an input from any
link. The processor will be in the low priority state.

IMS T800 Data Sheet

Input Clock
SYMBOL PARAMETER MIN NOM MAX | UNITS |NOTES

TDCLDCH | Clockin pulse width low 40 ns
TDCHDCL | Clockin pulse width high 40 ns
TDCLDCL | Clockin period 200 ns 1,3
TDCerror Clockln timing error 405 ns 2
TDC1DC2 | Difference in Clockin for 2 linked devices 400 ppm 3
TDCr Clockin rise time 10 ns 4
TDCf Clockln fall time 8 ns 4

Notes

1 Measured between corresponding points on consecutive falling edges.

W DN

oSG

TDCerror

I‘—TDCLDCH

Variation of individual falling edges from their nominal times.

TDCerror |<—N

This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

Clock transitions must be monotonic within the range VIH to VIL (section 10.1).

ClockIn Timing
Processor Speed Seiection
Proc Proc Proc processor | processor

Speed Speed Speed clock cycle

Select2 | Select1 | Select0 | speed MHz time nS hotes
0 0 0 20.0 50.0
0 0 1 225 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

19

IMS T800 Data Sheet

Reset |

Action I« * Internal * External * ’I« * »l

Delay configuration configuration Delay Refresh Boot

Post-Reset Sequence

Reset, Analyse

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTES
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockin 1
TDCVRL Clockin running before Reset end 10 ms
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 ns
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 50 ms
TALBRX BootFromRom hold after Analyse 50 ms
Notes

1 Full periods of Clockin TDCLDCL required.

2 At power-on reset.

/ /

Clockin __/

TDCVRL P

- /I:
TPVRH —qﬂ»

Reset /_/ \\

TBRVRAL |qpleg | »{ TRLBRX
BootFromRom ///)/ //)

Reset Timing with Analyse Low

TRHRL

Reset N

TAHRH - TRLAL
Analyse
[

TBRVALI4# /7 / ®{TALBRX
)4 2/ N

BootFromRom

Reset and Analyse Timing

20

IMS T800 Data Sheet

5.6 Boot

The transputer can be bootstrapped either from a

link or from external ROM. To facilitate debugging,
BootFromRom may be dynamically changed, but
must obey the specified timing restrictions.

If BootFromRom is connected high (e.g. to VCC)
the transputer starts to execute code from the

top two bytes in external memory, at address
#7FFFFFFE. This location should contain a backward
jump to a program in ROM. The processor is in the
low priority state. The W register points to MemStart
(section 6).

If BootFromRom is connected low (e.g. to GND) the
transputer will wait for the first bootstrap message to
arrive on any one of its links. The transputer is ready
to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater
than 1 it is taken as the quantity of bytes to be input.
The following bytes, to that quantity, are then placed
in internal memory starting at location MemStart.
Following reception of the last byte the transputer will
start executing code at MemStart as a low priority
process. The memory space immediately above

the loaded code is used as work space. Messages
arriving on other links after the control byte has
been received and on the booting link after the last
bootstrap byte will be retained until a process inputs
from them.

5.7 Peek and poke

Any location in internal or external memory can

be interrogated and altered when the transputer is
waiting for a boot from link. If the control byte is 0
then eight more bytes are expected on the same
link. The first four byte word is taken as an internal
or external memory address at which to poke (write)
the second four byte word. If the control byte is 1 the
next four bytes are used as the address from which
to peek (read) a word of data; the word is sent down
the output channel of the same link.

Following such a peek or poke, the transputer returns
to its previously held state. Any number of accesses
may be made in this way until the control byte is
greater than 1, when the transputer will commence
reading its boot code. Any link can be used, but
addresses and data must be transmitted via the
same link as the control byte.

21

5.8 Analyse

If Analyse is taken high when the transputer

is running, the transputer will halt at the next
descheduling point (section 3.7.1). From Analyse
being asserted, the processor will halt within three
time slice periods plus the time taken for any

high priority process to complete. As much of the
transputer status is maintained as is necessary to
permit analysis of the halted machine. Memory
refresh continues.

Input links will continue with outstanding transfers.
Output links will not make another access to memory
for data but will transmit only those bytes already

in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within
a few microseconds of the transputer halting.

Reset should not be asserted before the transputer
has halted and link transfers have ceased. When
Reset is taken low whilst Analyse is high, neither
the memory configuration sequence nor the block of
eight refresh cycles will occur; the previous memory
configuration will be used for any external memory
accesses. If BootFromRom is high the transputer
will boot as soon as Analyse is taken low, otherwise
it will await a control byte on any link.

If Analyse is taken low without Reset going high the
transputer state and operation are undefined.

After the end of a valid Analyse sequence the
registers have the following values:

1 MemStart if booting from a link, or the
external memory boot vector if booting from
ROM.

MemStart if booting from ROM, or the address
of the first free word after the boot code if
booting from link.

The value of | when the processor halted.

The value of W when the processor halted,
together with the priority of the process
when the transputer was halted (i.e. the W
descriptor).

The 1D of the booting link if booting from link.

IMS T800 Data Sheet
5.9

The Error pin carries the OR’ed ouput of the internal
Error flag and the Errorin input. If Error is high it
indicates either that Errorln is high or that an error
was detected in one of the processes. An internal
error can be caused, for example, by arithmetic
overflow, divide by zero, array bounds violation or
software setting the flag directly (section 3.7.2). It
can also be set from the floating point unit under
certain circumstances (sections 3.7.3 and 4).

Error, Errorin

A process can be programmed to stop if Error is
set; it cannot then transmit erroneous data to other
processes, but processes which do not require
that data can still be scheduled. Eventually all
processes which rely, directly or indirectly, on data
from the process in error will stop through lack of
data. Errorln does not directly affect the status of
a processor in any way.

By setting the HaltOnError flag the transputer itself
can be programmed to halt if Error becomes set. If
Error becomes set after HaltOnError has been set,
all processes on that transputer will cease but will not
necessarily cause other transputers in a network to
halt. Setting HaltOnError after Error will not cause
the transputer to halt; this allows Reset and Analyse
to function with the flags in indeterminate states.

An alternative method of error handling is to have the
errant process or transputer cause all transputers
to halt. This can be done by 'daisy-chaining’ the

Errorln and Error pins of a number of processors
and applying the final Error output signal to the
EventReq pin of a suitably programmed master
transputer. Since the process state is preserved
when stopped by an error, the master transputer can
then use the Analyse function to debug the fault.

Error checks can be removed completely to
optimise the performance of a proven program;
any unexpected error then occurring will have an
undefined effect.

If a high priority process pre-empts a low priority
one, status of the Error and HaltOnError flags is
saved for the duration of the high priority process and
restored at the conclusion of it. Status of both flags
is transmitted to the high priority process. Either flag
can be altered in the process without upsetting the
error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of
HaltOnError, the links will finish outstanding
transfers before shutting down. If Analyse is
asserted then all inputs continue, but outputs will not
make another access to memory for data. Memory
refresh will continue to take place.

After halting due to Error changing from 0 to 1 whilst
HaltOnError is set, register | points two bytes past
the instruction which sets Error. After halting due to
Analyse being taken high, register I points one byte
past the instruction being executed. In both cases |
will be copied to register A.

o r—
v vy

1 N Analyse
Master Latch ?
Transputer N1/ Reset # ;
Event T800
 \
slave 0

T800
slave 1

T800
slave n

(transputer links not shown)

GND —p{Errorin Error —®{Errorin Error}---${Errorin Error —I

Error Handling in a Multi-Transputer System

6 Memory

The IMS T800 has 4 Kbytes of fast internal static
memory for high rates of data throughput. Each
internal memory access takes one processor cycle
ProcClockOut (section 7.1). The transputer can
also access 4 Gbytes of external memory space.
Internal and external memory are part of the same
linear address space.

Transputer memory is byte addressed, with words
aligned on four-byte boundaries. The least significant

22

byte of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the
least significant. The bytes are numbered from 0,
with byte O the least significant. In general, wherever
a value is treated as a number of component values,
the components are numbered in order of increasing
numerical significance, with the least significant
component numbered 0. Where values are stored

in memory, the least significant component value is
stored at the lowest (most negative) address.

IMS T800 Data Sheet

Internal memory starts at the most negative address
#80000000 and extends to #80000FFF. User
memory begins at #80000070; this location is given
the name MemStart.

Values of certain processor registers for the current
low priority process are saved in the reserved
IntSaveLoc locations when a high priority process
pre-empts a low priority one. Other locations are
reserved for extended features such as block moves
A reserved area at the bottom of internal memory is and fioating point operations.

used to implement link and event channels.

External memory space starts at #80001000 and
extends up through #00000000 to #7FFFFFFF.
Memory configuration data and ROM bootstrapping
code must be in the most positive address

space, starting at #7FFFFF6C and #7FFFFFFE
respectively. Address space immediately below this
is conventionally used for ROM based code.

Two words of memory are reserved for timer use,
TPtrLocO for high priority processes and TPtrLoc1
for low priority processes. They either indicate the
relevant priority timer is not in use or point to the first
process on the timer queue at that priority level.

hi Machine Map lo Byte address Word offsets Occam Map
Reset Inst | #7FFFFFFE
_ _ #7FFFFFF8
" Memory configuration = #7FFFFF6C
#0 |
i #80001000 - Start of external memory - #0400
7 #80000070 MemStart MemStart #1C
Reserved for #8000006C \
Extended Functions #80000048
EregintSaveloc #80000044
STATUSIntSaveloc #80000040
CregintSaveloc #8000003C
BregIntSaveloc #80000038
AregIntSaveloc #80000034
IptrintSaveloc #80000030
WdescIntSavelLoc #8000002C
TPtrLoct #80000028
TPtrLoco #80000024 [Note
Event #80000020 #08 Event
Link 3 Input #8000001C #07 Link 3 Input
Link 2 Input #80000018 #06 Link 2 Input
Link 1 Input #80000014 #05 Link 1 Input
Link 0 Input #80000010 #04 Link 0 Input
Link 3 Output #8000000C #03 Link 3 Output
Link 2 Output #80000008 #02 Link 2 Output
Link 1 Output #80000004 #01 Link 1 Output
Link 0 Output #80000000 ./ (Base of memory) #00 Link 0 Output

Memory Map
Notes
1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like

processor registers, their contents may be useful for implementing debugging tools (see Analyse section 5.8).
For details see The Transputer Instruction Set - A Compiler Writers’ Guide.

23

IMS T800 Data Sheet
7 External Memory Interface

The External Memory Interface (EMI) allows access
to a 32 bit address space, supporting dynamic and
static RAM as well as ROM and EPROM. EMI timing
can be configured at Reset to cater for most memory
types and speeds, and a program is supplied with
the Transputer Development System to aid in this
configuration.

There are 13 internal configurations which can be
selected by a single pin connection (section 7.10.1).
If none are suitable the user can configure the
interface to specific requirements, as shown in
section 7.10.2.

7.1 ProcClockOut

This clock is derived from the internal processor
clock, which is in turn derived from Clockln. Its
period is equal to one internal microcode cycle time,
and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period,
TDCLDCL is the Clockln Period and PLLx is the
phase lock loop factor for the relevant speed part,
obtained from the ordering details (section 12).

The time value Tm is used to define the duration of
Tstates and, hence, the length of external memory
cycles; its value is exactly half the period of one
ProcClockOut cycle (0.5+TPCLPCL), regardless of
mark/space ratio of ProcClockOut.

Edges of the various external memory

strobes coincide with rising or falling edges of
ProcClockOut. It should be noted, however, that
there is a skew associated with each coincidence.
The value of skew depends on whether coincidence
occurs when the ProcClockOut edge and strobe
edge are both rising, when both are falling or if either
is rising when the other is falling. Timing values
given in the strobe tables show the best and worst
cases. If a more accurate timing relationship is
required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated
and the correct skew factors applied from the edge
skew timing table.

ProcClockOut
SYMBOL PARAMETER MIN NOM MAX _JUNITS |NOTES
TPCLPCL | ProcClockOut period a-1 a a+1 ns 1
TPCHPCL | ProcClockOut pulse width high b-2.5 b b+2.5 ns 2
TPCLPCH | ProcClockOut pulse width low C ns 3
Tm ProcClockOut half cycle b-0.5 b b+0.5 ns 2
TPCstab ProcClockOut stability 4000 ppm 4
Notes

1 ais TDCLDCL/PLLx.

2 b is 0.5xTPCLPCL (half the processor clock period).

3 cis TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points

on the cycles.

TPCLPCH

TPCHPCL

TPCLPCL

ProcClockOut Timing

IMS T800 Data Sheet

7.2 Tstates

The external memory cycle is divided into six Tstates
with the following functions:

T1 Address setup time before address valid strobe
T2 Address hold time after address valid strobe
T3 Read cycle tristate or write cycle data setup
T4 Extendable data setup time

T5 Read or write data

T6 Data hold

Under normal conditions each Tstate may be from
one to four periods Tm long, the duration being set
during memory configuration. The default condition
on Reset is that all Tstates are the maximum four
periods Tm long to allow external initialisation cycles
to read slow ROM.

Period T4 can be extended indefinitely by adding
externally generated wait states.

An external memory cycle is always an even number
of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If

the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the
end of T6 to force the start of the next T1 to coincide
with a rising edge of ProcClockOut. This period

is designated E in configuration diagrams (section
7.10.2).

7.3 Internal access

During an internal memory access cycle the external
memory interface bus MemAD2-31 reflects the word
address used to access internal RAM, MemnotWrDO
reflects the read/write operation and MemnotR{D1

is high; all control strobes are inactive. This is true
unless and until a memory refresh cycle or DMA
(memory request) activity takes place, when the bus
will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal
operation of the transputer in full, but may be used
for hardware debugging in conjuction with peek and
poke (section 5.7).

7.4 MemAD2-31

External memory addresses and data are multiplexed
on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins

25

MemAD2-31. They are normally output only during
Tstates T1 and T2, and should be latched during
this time. Byte addressing is carried out internally by
the IMS T800 for read cycles. For write cycles the
relevant bytes in memory are addressed by the write
strobes notMemWrBO0-3.

The data bus is 32 bits wide. It uses MemAD2-31 for
the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set
up on the bus at any time after the start of T3, but
must be valid when the IMS T800 reads it at the end
of T5. Data may be removed any time during T6,

but must be off the bus no later than the end of that
period.

Write data is placed on the bus at the start of T3 and
removed at the end of T6. If T6 is extended to force
the next cycle Tmx (section 7.8) to start on a rising
edge of ProcClockOut, data will be valid during this
time also.

7.5 MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a
write cycle, otherwise it will be high. During Tstates
T3 to T6 it becomes bit 0 of the data bus. In both
cases it follows the general timing of MemAD2-31.

7.6 MemnotRfD1

During T1 and T2, this pin is low if the address on
MemAD2-31 is a refresh address, otherwise it is
high. During Tstates T3 to T6 it becomes bit 1 of the
data bus. In both cases it follows the general timing
of MemAD2-31.

7.7 notMemRd

For a read cycle the read strobe notMemRd is low
during T4 and T5. Data is read by the transputer on
the rising edge of this strobe, and may be removed
immediately afterward. If the strobe duration is
insufficient it may be extended by adding extra
periods Tm to either or both of the Tstates T4 and
T5. Further extension may be obtained by inserting
wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut
is included as a guide only; it is shown with each
Tstate configured to one period Tm.

IMS T800 Data Sheet

CapPlus

m__@__m_x_: _ _.__._ CapMinus
OMHz) \ee
LinkOIn
100K —notMemWrB3
—notMemWrB2
. GND IMS —notMemWrB1
Link0Out —EF | T800 [—notMemWrBoO
. - —notMemRd
E”__mﬁ: As Linko L notMem$S3 _
T —notMemS2
Link2In —notMemS1 .
Link20ut ——— —notMemS0 K A AM
RM 1 LnotOE- gaxe4 |Pamic Z\
Link3in — 27 o Column |-N]Row/Column notCAS— Dynamic AM 7\
Link30ut — address /] address notRAS Ram 7
Mem Config [latch multiplexer V
O - ~ O - V ™ -
10 =T - na ZCd o z N
ot - [a) Q o o0 =} o) fa)
< cc< < < cc<g < < g
£ EEE £ m EEE £ £ £
® S0 o ° 2 000 o o o
= S== = EEE N=EN=N\=/

Dynamic RAM application

26

IMS T800 Data Sheet

Read
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES

TazdVv Address tristate to data valid 0 ns

TdVRdH Data setup before read 20 ns

TRdHdX Data hold after read 0 ns

TSOLRdL |notMemS0 before start of read a-2 a a+2 ns 1

TSoOHRdH | End of read from end of notMemS0 -1 1 ns

TRJLRdH |Read period b b+6 ns 2
Notes

1 ais total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
any number of periods Tm in length.

Tstate | T | T2 | T3 | T4 | T5 | 16 | TI |

ProcClockOut __/
Tmx

CLLLLLLLLLKK et
KKLLLKLK Pata >

N

MemnotWrDO >‘

<
/

MemnotRtD1 >~ N
<

MemAD2-31 > Address Data
TazZdV—p| |€—
TaVSOL kg¢——p TdVRdH k@9 TRdHdX
<@———p» TS0LaX
| @ TSOLRAL TRALRAH |
Y/
notMemRd /
—@—TSOHRAH
< TSOLSOH >
TN
notMemSO0 A\ yd \
O @DrsoLsiL —sle— TSoHS1H(9)
(5) TSOLS1H |
notMemS1 \
(ALE)

External Read Cycle: Static Memory

27

IMS T800 Data Sheet

Tstata | T | T2 | T38| T4 | T5 | Te | T1 |
ProcClockOut __/
< Tmx
MemnotWrDO >—f N Data I
MemnotRiD1)—1 N C_Data)
MemAD2.31 p—K__ Address YK {LCLLLLLLLLK Data Y3
TazdV—p» TdVRdH (@—i<®! TRdHAX
TavSOL lke—bje $ TS0Lax
| TSOLRL TRALRAH
,
notMemRd /]
— pl€—TSOHRAH
TSOLSOH [« >
T N\ /-
notMemS0 N /| \
RAS
A3 (DTs0LS1L —lt— TSOHS1H (@)
(5) TSOLS1H |«
notMemS1 N\
(ALE)) TsoLS2H|e
@) TsoLs2L “:L —i:—TSOHSZH
notMemS2
AMUX
(AMLX) (7) TSoLS3He
(@) TsoLsaL 4—:L TsonsaH{)
notMemS3
CAS
(GAS) (8) TSOLS4H [@-
@) TSOLSA4L ke TSOHS4H (2)
notMemS4
(Wait state)

External Read Cycle: Dynamic Memory

28

IMS T800 Data Sheet

Strobe Timing

SYMBOL @ PARAMETER MIN NOM MAX | UNITS| NOTES
TaVSoL Address setup before notMemS0 a ns 1
TSOLaX Address hold after notMemS0 b ns 2
TSOLSOH notMemS0 pulse width low c c+6 ns 3
TSOLS1L |1 | notMemS1 from notMemS0 0 2 ns
TSOLS1H |5 | notMemS1 end from notMemS0 d d+6 ns 4.6
TSOHS1H |9 | notMemS1 end from notMemS0 end e-1 e+4 ns 5,6
TSOLS2L |2 | notMemS2 delayed after notMemS0 f-1 f+4 ns 7
TSOLS2H |6 | notMemS2 end from notMemS0 c+4 c+8 ns 3
TSOHS2H [10| notMemS2 end from notMemS0 end 0 2 ns
TSOLS3L |3 | notMemS3 delayed after notMemS0 f-1 f+3 ns 7
TSOLS3H |7 | notMemS3 end from notMemS0 c+4 c+8 ns 3
TSOHS3H |11 | notMemS3 end from notMemS0 end 0 2 ns
TSOLS4L | 4 | notMemS4 delayed after notMemS0 f-1 f+2 ns 7
TSOLS4H |8 | notMemS4 end from notMemS0 c+4 c+8 ns 3
TSOHS4H [12] notMemS4 end from notMemSO0 end 0 2 ns
Tmx Complete external memory cycle g 8

Notes

1
2
3

a is T1 where T1 can be from one to four periods Tm in length.
b is T2 where T2 can be from one to four periods Tm in length.

c is total of T2+T3+T4+Twait+T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twait may be any number of periods Tm in length.

d can be from zero to 31 periods Tm in length.
e can be from -27 to +4 periods Tm in length.

If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

g is one complete external memory cycle comprising the total of T1+T2+T3+T4+Twait+T5+T6 where T1, T2,
T3, T4, T5 can be from one to four petiods Tm each in length, T6 can be from one to five periods Tm in length
and Twait may be zero or any number of periods Tm in length.

Strobe S0 to ProcClockOut Skew

SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TPCHSOH | Strobe rising from ProcClockOut rising 0 3 nS
TPCLSOH | Strobe rising from ProcClockOut falling 1 4 nsS
TPCHSOL | Strobe falling from ProcClockOut rising 3 0 nsS
TPCLSOL | Strobe falling from ProcClockOut falling - 2 nsS

ProcClockOut N\
TPCHSOH TPCHSOL TPCLSOH TPCLSOL
—>

—
notMemS0

Skew of notMemSO0 to ProcClockOut
29

IMS T800 Data Sheet
7.8 notMemS0-4

To facilitate control of different types of memory and
devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The
strobes are conventionally assigned the functions-
shown in the read and write cycle diagrams, although
there is no compulsion to retain these designations.

notMemSo0 is a fixed format strobe. Its leading
edge is always coincident with the start of T2 and
its trailing edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident
with the start of T2, but its duration may be
configured to be from zero to 31 periods Tm.
Regardless of the configured duration, the strobe will
terminate no later than the end of T6. The strobe

is sometimes programmed to extend beyond the
normal end of Tmx. When wait states are inserted
into an EMI cycle the end of Tmx is delayed, but
the potential active duration of the strobe is not
altered. Thus the strobe can be configured to
terminate relatively early under certain conditions
(section 7.12). If notMemS1 is configured to be zero
it will never go low.

notMemS2, notMemS3 and notMemS4 are identical
in operation. They all terminate at the end of T5,

but the start of each can be delayed from one to 31
periods Tm beyond the start of T2. If the duration of
one of these strobes would take it past the end of TS
it will stay high. This can be used to cause a strobe

to become active only when wait states are inserted.
If one of these strobes is configured to zero it will
never go high. One of the diagrams shows the effect
of Wait on strobes in more detail; each division on
the scale is one period Tm.

7.9 notMemWrB0-3

Because the IMS T800 uses word addressing, four
write strobes are provided; one to write each byte
of the word. nhotMemWrBO0 addresses the least
significant byte.

The IMS T800 has both early and late write cycle
modes. For a late write cycle the relevant write
strobes notMemWrB0-3 are low during T4 and T5;
for an early write they are also low during T3. Data
should be latched into memory on the rising edge of
the strobes in both cases, although it is valid until the
end of T6. If the strobe duration is insufficient, it may
be extended at configuration time by adding extra
periods Tm to either or both of Tstates T4 and T5 for
both early and late modes. For an early cycle they
may also be added to T3. Further extension may be
obtained by inserting wait states at the end of T4. If
the data hold time is insufficient, extra periods Tm
may be added to T6 to extend it.

In the write cycle timing diagram ProcClockOut

is included as a guide only; it is shown with each
Tstate configured to one period Tm. The strobe is
inactive during internal memory cycles.

Write
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TdVWrH Data setup before write d ns 1,5
TWrHdX Data hold after write a ns 1,2
TSOLWrL | notMemSO0 before start of early write b-3 b+2 ns 1,3
notMemS0 before start of late write c-3 C+2 ns 1,4
TSOHWrH | End of write from end of notMemS0 -2 2 ns 1
TWrLWrH | Early write pulse width d d+6 ns 1,5
Late write pulse width e e+6 ns 1,6
Notes

1 Timing is for all write strobes notMemWrBO0-3.

a is T6 where T6 can be from one to five periods Tm in length.

b is T2 where T2 can be from one to four periods Tm in length.

2
3
4 c is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.
5

d is total of T3+T4+Twait+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm in length.

6 e is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be

zero or any number of periods Tm in length.

IMS T800 Data Sheet

Tstate | T | T2 | T3 | T4 | T5 | 16 | T1 |
ProcClockOut __/f
Tmx
<
MemnotWrDO >—\ Data
MemnotRfD1 >—/ Data
MemAD2-31 >—£ Address Data
TaVSOL <¢———> &<t TWrHdX
TdVWrH
TSO0LaX
TSOLWrL |« TWrL Wri >
Y/
notMemWrB0-B1 /
(early write)
< TSOLWrL TWrLWrH >
/
notMemWrBO0-B1 /]
(late write) —»<€4— TSOHWrH
< TSOLSOH >
N\ y/
notMemSO0 N\ / x
8 e ®
(DTsoLsiL TSOHS1H
TSOLS1H [¢
=
notMemS1 N
(ALE)

External Write Cycle

ProcClockOut _/_\M/__

MemnotWrDO0 l Write

/

Read

Read

h G

MemnotRfD1 D/

h G

MemAD2-31 X Address »__ Address

X Agdress X

Bus Activity for Internal Memory Cycle

31

IMS T800 Data Sheet

7.10 MemConfig

MemConfig is an input pin used to read
configuration data when setting external memory
interface (EMI) characteristics. It is read by the
processor on two occasions after Reset goes
low; first to check if one of the preset internal
configurations is required, then to determine a
possible external configuration.

7.10.1

The internal configuration scan comprises 64 periods

Internal configuration

TDCLDCL of Clockln during the internal scan
period of 144 Clockln periods. MemnotWrDO,

MemnotRfD1 and MemAD2-32 are all high at the
beginning of the scan. Starting with MemnotWrDO,
each of these lines goes low successively at intervals
of two Clockln periods and stays low until the end

of the scan. If one of these lines is connected to
MemConfig the preset internal configuration mode
associated with that line will be used as the EMI

configuration. The default configuration is that

configurations are valid.

defined in the table for MemAD31; connecting
MemConfig to VCC will also produce this default
configuration. Note that only 13 of the possible

Internal Configuration Coding

Duration of each Tstate Strobe coefficient Write| Refresh|Cycle| Extra

periods Tm cycle| interval | time |cycles
Pin TI T2 T3 T4 T5 Te| s1 s2 s3 s4 [type %')?CCIE'S” cl;gl):s e
MemnotWrDO | 1 1 1 1 1 1 30 1 3 5 late 72 3 2
MemnotRfD1 | 1 2 1 1 1 2] 30 1 2 7 late 72 4 3
MemAD2 1 2 1 1 2 3| 30 1 2 7 late 72 5 4
MemAD3 2 3 1 1 2 3] 30 1 3 8 late 72 6 5
MemAD4 1 1 1 1 1 1 3 1 2 3 |early 72 3 2
MemADS5 1 1 2 1 2 A1 5 1 2 3 |early 72 4 3
MemADG6 2 1 2 1 3 1 6 1 2 3 |early 72 5 4
MemAD7 2 2 2 1 3 2 7 1 3 4 |eary 72 6 5
MemADS8 1 1 1 1 1 1 30 1 2 3 |early - 3 2
MemADS9 1 1 2 1 2 1 30 2 5 9 |early - 4 3
MemAD10 2 2 2 2 4 2] 80 2 3 8 late 72 7 6
MemAD11 3 3 3 3 3 3] 80 2 4 13 late 72 9 8
MemAD31 4 4 4 4 4 4] 31 30 30 18 late 72 12 11

Internal configuration description

Pin Configuration
MemnotWrD0 Dynamic RAM in 3 processor cycles
MemnotR{D1 Dynamic RAM in 4 processor cycles
MemAD2 Dynamic RAM in 5 processor cycles
MemAD3 Dynamic RAM in 6 cycles
MemAD4 Multiplexed address dynamic RAM in 3 processor cycles
MemAD5 Multiplexed address dynamic RAM in 4 processor cycles
MemADG6 Multiplexed address dynamic RAM in 5 processor cycles
MemAD7 Multiplexed address dynamic RAM in 6 processor cycles
MemADS8 Fast static RAM in 3 processor cycles
MemADS9 Static RAM in 4 cycles with wait generator
MemAD10 General purpose configuration in 7 processor cycles
MemAD11 General purpose configuration in 9 processor cycles
MemAD31 General purpose configuration in 12 processor cycles

32

IMS T800 Data Sheet

Delay Internal_configuration External configuration
64 periods Periods of Clockin 6 periods| Read at { Read at
of Clockin DI:O G011 /,5666 ofClockIn 7FFFFF6C 7FFFFF70
- 246802/802 >4
MemnotWrDO // | |
MemnotR{D1 | I
MemAD2 ! | W/ W
MemAD3 [V22 277
v \ v v v v v
MemAD31 } [Wz Wz
@ MemConfig /| !’ [VA4 U277
@ MemConfig /) | // // L

1 Internal configuration: MemConfig connected to MemAD2.
2 External configuration: MemConfig connected to inverse of MemAD3.

Internal Configuration Scan

Tstate |1[2|3]4| 56| 1|2| 3|4 |5] 6]1 | 2 Tstate | 1|2, 2| 3|4| 5| &,6]1]2, 2| 3| 4|5

notMemS0] 1 [L notMemSo0 ~ | [1

notMemS1 ~ | 1p] L notMemS1 | 30 [

notMemS2 ~ ;1] [1 [notMemS2 i1 [|
notMemS3 3 LJ L] notMemS3~ { 2 | [|
notMemS4 _{ _ _5 _ _ _ _ _ _ ___ notMemS4 _ i _ _ 7 o o & o
notMemRd L1 L1 notMemRd L1 L
notMemwr late |__| | notMemwr late || L

Internal Configuration: MemConfig=MemnotWrD0 Internal Configuration: MemConfig=MemnotRfD1

Tstate [1,1[2,2,2[3]4|5,5]|6,6 612 Tstate [1,122 |3,3] 4]5,5, 5]6,6]1 1

notMemSO0 | I notMemS0 ™ | |—
notMemS1 l 30 | notMemS1 — | 7 —
notMemS2 1J notMemS2 —'——1] —
notMemS3 3 |____|—" notMemS3 _TL—_I_
notMemS4 _ _ i _ _ _8_ _ _ _ _ __ notMemS4 =~ T, | [
notMemRd |_| notMemRd _—|_]_
notMemWr late | [notMemWr = oo] [

Internal Configuration: MemConfig=MemAD3

33

Internal Configuration: MemConfig=MemAD7

IMS T800 Data Sheet
7.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes
low the internal configuration is ignored and an
external configuration will be loaded instead. An
external configuration scan always follows an internal
one, but if an internal configuration occurs any
external configuration is ignored.

The external configuration scan comprises

36 successive external read cycles, using the default
EMI configuration preset by MemAD31. However,
instead of data being read on the data bus as for

a normal read cycle, only a single bit of data is

read on MemConfig at each cycle. Addresses put
out on the bus for each read cycle are shown in

the External Configuration Coding table, and are

designed to address ROM at the top of the memory
map. The table shows the data to be held in ROM;
data required at the MemConfig pin is the inverse of
this.

MemConfig is typically connected via an inverter

to MemnotWrDO0. Data bit zero of the least
significant byte of each ROM word then provides
the configuration data stream. By switching
MemConfig between various data bus lines up to
32 configurations can be stored in ROM, one per bit
of the data bus. MemConfig can be permanently
connected to a data line or to GND. Connecting
MemConfig to GND gives all Tstates configured to
four periods; notMemS1 pulse of maximum duration;
notMemS2-4 delayed by maximum; refresh interval
72 periods of Clockin; refresh enabled; early write.

Internal configuration External configuration Delay
Address E E E E E E E % E
MemnotWrD0 —_| I_I'L_I L1 L
MemnotRiD1 | A WA A WA || lA A WA A wzd—
memaD2 _ | ZA 72 WA 24| A W74 7724 ved v2zd——
MemADS3 A 2 T A | PA VA A o vz

v v v v v

memaD31 _ (WA WA WA WA [7ATWA WA Al wla——
®MemConfig] [| l |'—l |—1———

nomempa I LI LI LI LI7/LT LT LI LT L

[eDle———> P>

% "o e e oo

External Configuration Scan
Notes

-h

Configuration field 12; refresh enabled.

N 0O o0 A OWN

Configuration field 13; early write cycle.

MemConfig connected to inverse of MemnotWrDO.

Configuration field 1; T1 configured for 2 periods Tm.

Configuration field 2; T2 configured for 3 periods Tm.

Configuration field 10; most significant bit of notMemS4 configured high.

Configuration field 11; refresh interval configured for 36 periods Clockin.

IMS T800 Data Sheet
Tstate | 112,213, 9] 4|5|6|6|E|1|2| 23

noctMemSO0 | | |

notMemS1 ~ | 8 1
notMemS2 3 | |

notMemS3 ~ 41 [|__
notMemS4 4 L1

notMemRd L

notMemWr ealy | [L

@ MemWait _____ __ _~— ——~———=—"
@ MemWait

External Configuration: Example 1

Tstate |1]2]3;3]4[wWww[5| 6,6, E[1]2
notMemS0 |

notMemS1 |1|

notMemS2 —{ — T T ~T5 T T T T T ~—~°
notMemS3

notMemsS4 ~ i, | [
notMemRd L[
notMemwr late L [
@) Memwait]

@) Memwait | I

External Configuration: Example 3

Notes

0 No wait states inserted.
1 One wait state inserted.
2 Two wait states inserted.

3 Three wait states inserted.

@MemWait I

Tstate | 1]2]3,3 [4|www| 5 6]1]2]3,3

notMemS0 ~ | [1
notMemS1 _{ _ _ o0_ _ _ _ _ __ __
notMems2™: 21 [L
notMemS3 7 ||
notMemS4 6 L1

notMemRd I___I
notMemWr M
r

@Memwait ____ [| T

@ Memwait

@ MemWait __I__l

External Configuration: Example 2

Tstate | 1 |2 |2|3|3| 4{W|W|5| 6, 6 El1 |2

notMemS0 -_| | |
notMemS1 —L1_| |_
notMemS2 7 |_.|

notMemS3 T 5 | |
notMemS4 3 | |
notMemRd | |
notMemWr early [
[1

External Configuration: Example 4

The external memory configuration table shows

the contribution of each memory address to the

13 configuration fields. The lowest 12 words
(#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the
number of extra periods Tm to be added to each
Tstate. If field 2 is 3 then three extra periods will

be added to T2 to extend it to the maximum of four
periods.

The next five addresses (field 7) define the duration
of notMemS1 and the following fifteen (fields 8
to 10) define the delays before strobes notMemS2-4

35

become active. The five bits allocated to each strobe
allow durations of from 0 to 31 periods Tm, as
described in strobes section 7.8.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11
and 12) define the refresh interval and whether
refresh is to be used, whilst the final address

(field 13) supplies a high bit to MemConfig if a late
write cycle is required.

The columns to the right of the coding table show the
values of each configuration bit for the four sample

IMS T800 Data Sheet

external configuration diagrams. Note the inclusion
of period E at the end of T6 in some diagrams. This
is inserted to bring the start of the next Tstate T1

to coincide with a rising edge of ProcClockOut
(section 7.1).

Wait states W have been added to show the effect
of them on strobe timing; they are not part of a

states, two wait periods are defined. This shows
that if a wait state would cause the start of T5 to
coincide with a falling edge of ProcClockOut,
another period Tm is generated by the EMI to force
it to coincide with a rising edge of ProcClockOut.
This coincidence is only necessary if wait states are
added, otherwise coincidence with a falling edge is
permitted.

configuration. In each case which includes wait

External Configuration Coding

Scan Example diagram
cycle | MemAD address | Field Function 11 2| 3| 4
1 7FFFFF6C 1 | T1 least significant bit o 0o 0| O
2 7FFFFF70 1 | T1 most significant bit o o0l 0O
3 7FFFFF74 2 | T2 least significant bit 11 0] Of 1
4 7FFFFF78 2 | T2 most significant bit o 0] 0O
5 7FFFFF7C 3 T3 least significant bit 1 11 1] 1
6 7FFFFF80 3 | T3 most significant bit o of 0] O
7 7FFFFF84 4 | T4 least significant bit 0] 0 0] 0
8 7FFFFF88 4 | T4 most significant bit oj o o0 o0
9 7FFFFF8C 5 T5 least significant bit 0] 0] 0] O
10 7FFFFF90 5 T5 most significant bit o of 0| O
11 7FFFFF94 6 | T6 least significant bit 11 0o 1] 1
12 7FFFFF98 6 T6 most significant bit 0| 0 0 O
13 7FFFFF9C 7 | notMemSH1 least significant bit of o 1 1
14 | 7FFFFFA0 7 01 0y 010
15 | 7FFFFFA4 7 l l 01 0] 0} 0
16 7FFFFFA8 7 1] 0] 0] O
17 7FFFFFAC 7 | notMemS1 most significant bit of of 0] O
18 7FFFFFBO 8 | notMemS2 least significant bit 11 0] 0f 1
19 | 7FFFFFB4 8 T of !
20 | 7FFFFFB8 8 01 0f 0 1
21 | 7FFFFFBC 8 0pofofo
22 7FFFFFCO 8 | notMemS2 most significant bit o of 0o} o0
23 | 7FFFFFC4 9 | notMemS3 least significant bit Tt
24 | 7FFFFFC8 9 0l 110} 0
25 | 7FFFFFCC 9 l o 11011
26 | 7FFFFFDO 9 01 0f 110
27 7FFFFFD4 9 | notMemS3 most significant bit ojojlo] o
28 7FFFFFD8 10 | notMemS4 least significant bit o oo} 1
29 | 7FFFFFDC 10 op 111
30 | 7FFFFFEO 10 11100
31 | 7FFFFFE4 10 01 01010
32 7FFFFFES8 10 | notMemS4 most significant bit o oo} O
33 7FFFFFEC 11 Refresh Interval least significant bit - -l - -
34 7FEFFFFO 11 | Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - -1 - -
36 | 7FFFFFF8 13 | Latewrite of fftjo

36

IMS T800 Data Sheet

Memory refresh configuration coding

Refresh intervals are in periods of Clockln and
Refresh Interval Field 11 Complete | Clockin frequency is 5SMHz:
interval in us encoding | cycle (mS)
Interval = 18 « 200 = 3600ns
18 3.6 00 0.922
36 72 01 1.843 Refresh interval is between successive incremental
54 10.8 10 2.765 refresh addresses. Complete cycles are shown for
72 144 11 3.686 256 row DRAMS.
Memory Configuration
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TMCVRdH | Memory configuration data setup 20 ns
TRAHMCX | Memory configuration data hold 0 ns
TSOLRdH | notMemSO0 to configuration data read a a+6 ns 1
Notes
1 ais 16 periods Tm.
Tstate T1 T2 | 13 | T4 | T5 T6 | T1 |
Tm [TTTTTTrrrrrrerrrrrrrtrrrretl

MemnotWrDO0 /

MemnotRfD1

MemAD2-31 _<

notMemS0
TSOLRdHt

-/

LLLLLLLLLLL e)
S,
Address ><XLLLLLLLLLLL pata))

/

AN

notMemRd
TMCVRdH
TRAHMCX
MemConfig CLLLLLLLLL LK patayp)
External Configuration Read Cycle Timing
7.11 notMemRf A refresh cycle uses the same basic external

The IMS T800 can be operated with memory refresh
enabled or disabled. The selection is made during
memory configuration, when the refresh interval is
also determined. Refresh cycles do not interrupt
internal memory accesses, although the internal
addresses cannot be reflected on the external bus

during refresh.

When refresh is disabled no refresh cycles occur.
During the post-Reset period eight dummy refresh
cycles will occur with the appropriate timing but with
no bus or strobe activity.

37

memory timing as a normal external memory cycle,
except that it starts two periods Tm before the start
of T1. If a refresh cycle is due during an external
memory access, it will be delayed until the end of
that external cycle. Two extra periods Tm (periods
R in the diagram) will then be inserted between the
end of T6 of the external memory cycle and the
start of T1 of the refresh cycle itself. The refresh
address and various external strobes become active
approximately one period Tm before T1. Bus signals
are active until the end of T2, whilst notMemRf
remains active until the end of T6.

IMS T800 Data Sheet

For a refresh cycie, MemnotRfD1 goes low before
notMemRf goes low and MemnotWrDO goes

high with the same timing as MemnotRfD1. All

the address lines share the same timing, but only
MemAD2-11 give the refresh address. MemAD12-30
stay high during the address period, whilst
MemAD31 remains low. Refresh cycles generate
strobes notMemS0-4 with timing as for a normal
external cycle, but notMemRd and notMemWrB0-3
remain high.

7.12 MemWait

Taking MemWait high with the timing shown will
extend the duration of T4. MemWait is sampled
near to, but independent of, the falling edge of

ProcClockOut, and should not change state in
this region. By convention, notMem$4 is used to
synchronize wait state insertion. If this or another
strobe is used, its delay should be such as to take
the strobe low an even number of periods Tm after
the start of T1, to coincide with a rising edge of
ProcClockOut.

MemWait may be kept high indefinitely, although
if dynamic memory refresh is used it should not be
kept high long enough to interfere with refresh timing.

If the start of T5 would coincide with a falling edge

of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a
rising edge. Rising edge coincidence is only forced

if wait states are added, otherwise coincidence with a
falling edge is permitted.

Memory Refresh

SYMBOL PARAMETER MIN NOM MAX | UNITS] NOTES
TRfLRfH Refresh pulse width low a a+6 ns 1
TRaVSoOL | Refresh address set up before notMemS0 b ns 2
TRfLSOL Refresh indicator setup before notMemS0 b ns 2

Notes
1 ais total Tmx+(2 periods Tm).
2 b is total T1+(2 periods Tm) where T1 can be from one to four periods Tm in length.
Tstate | 76 | R RI Tl mI Bl wl =l wl 1l
normal cycle
MemAD2-31 X X Address X Data X
MemAD2-11 X ><Refresh Address N\
notMemSO0 / /
TRaVSoL
TRfLSOL
TRfLRfH j
notMemRf
o
MemnotWrDO AN
Vo
MemnoiRfD1 \
)/ o
MemAD12-30 N
) <
MemAD31 \

Refresh Cycle Timing

IMS T800 Data Sheet

Memory Wait
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TPCHWiH | Wait setup -(a+3) ns | 1,4
TPCHWIL | Wait hold b+3 ns |23,4
TWiLWtH | Delay before re-assertion of Wait 2 ™™

Notes

1 ais 0.5 periods Tm.

2 b is 1.5 periods Tm.

3 If wait period exceeds refresh interval, refresh cycles will be lost.

4 Wait timing is independent of falling edge of ProcClockOut.

Tstate | 12 | ™ | | wil | 171 7 |

ProcClockOut
TPCHWIL

TPCHWIH

MemWait

A

MemaD0-31 _Address < LLLLLLLLLLLLLLL pata p<_ Aderess
notMemRd \ /

Tstate | 3 | 1 7 | w | w EW 5 | T6

ProcClockOut

MemWait 42:/_,/ - - ////////

Tstate | l | | | | w | Ew | 715

ProcClockOut

L

Memory Wait Timing

MemWait

39

IMS T800 Data Sheet

Tstate |T1|T2|T3| T4|T5[T6|T1] Tstate |T1|T2|T3|T4|W |W|T5|T6|T1|
notMemS1 ——I | notMemS1 _l |
notMemS2 notMemS2 | |

No wait states Wait states inserted

Effect of Wait States on Strobes

Memory Request

SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TMRHMGH | Memory request response time 4 6 Tm 1
TMRLMGL |Memory request end response time 2 4 m
TADZMGH | Bus tristate before memory granted 1 m
TMGLADV | Bus active after end of memory granted 1 Tm

Notes

1 These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

s _/__N
ProcClockOut
MemReq c 5,[\\\
TMRHMCH TMRLMGL
MemGranted
MemnotWrDO TADZMGH —:I TMGLADV I;
MemnotR{fD1 >>
MemAD2-31 / vyl N

Memory Request Timing

7.13 MemReq, MemGranted

Direct memory access (DMA) can be requested at
any time by taking the asynchronous MemReq input
high. The IMS T800 samples MemReq during the
final period Tm of T6 of both refresh and external
memory cycles. To guarantee taking over the bus
immediately following either, MemReq must be set
up at least two periods Tm before the end of T6. In
the absence of an external memory cycle, MemReq

is sampled during every low period of ProcClockOut.

The address bus is tristated two periods Tm after the
ProcClockOut rising edge which follows the sample.
MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low
period of ProcClockOut and MemGranted is
removed synchronously with the next falling edge
of ProcClockOut. If accurate timing of DMA is

40

required, MemReq should be set low coincident with

a falling edge of ProcClockOut. Further external bus
activity, either refresh, external cycles or reflection of

internal cycles, will commence at the next rising edge
of ProcClockOut.

Strobes are left in their inactive states during DMA.
DMA cannot interrupt a refresh or external memory
cycle, and outstanding refresh cycles will occur
before the bus is released to DMA. DMA does not
interfere with internal memory cycles in any way,
although a program running in internal memory would
have to wait for the end of DMA before accessing
external memory. DMA cannot access internal
memory. If DMA extends longer than one refresh
interval (Memory Refresh Configuration Coding table,
section 7.10.2), the DMA user becomes responsible
for refresh. DMA may also inhibit an internally
running program from accessing external memory.

IMS T800 Data Sheet

If MemRegq is taken high at least one period begins. This allows a boot program to be loaded to
TDCLDCL of Clockin before Reset is asserted external memory. The circuit should be designed to
and remains high during Reset, MemGranted will ensure correct operation if Reset could interrupt a
be asserted immediately before the boot sequence normal DMA cycle.
Vs /e
MemReq 1 | V7777

MemGranted | ﬂ

Reset __.__] / |

Configuration [—l
sequence o[i lEIDIR] =/ &

DMA sequence at Reset
Notes
D Pre- and post-configuration delays (see Reset Sequence diagram).
I Internal configuration sequence.
E External configuration sequence.
R Initial refresh sequence.

B Boot sequence.

MemReq 42222” \

External Memory Wi P 1 Mo
Interface cycles [{ ReadorWrite [Refres [| ite H

MemGranted / \
MemnotRfD1 \ Ve (
MemnotWrDO N\ 4
MemAD2-31 s/ N\

Operation of MemReq and MemGranted with External and Refresh Memory Cycles

MemReq /S N\ m

+Internal Memory Cycles
External Memory |1l T2l T3l Tel 75|76 11|12l T3] T4l T8l TE | i
Interface activity —L__EMI cycle EMI cycle 1 |
MemGranted / \\ / \
MemnotWrDO

MemnotRfD1 > 24 > <
MemAD2-31

Operation of MemReq and MemGranted with External and Internal Memory Cycles

41

IMS T800 Data Sheet
8

EventReq and EventAck provide an asynchronous
handshake interface between an external event
and an internal process. When an external event
takes EventReq high the external event channel
(additional to the external link channels) is made
ready to communicate with a process. When both
the event channel and the process are ready the
processor takes EventAck high and the process, if
waiting, is scheduled. EventAck is removed after
EventReq goes low.

Events

Only one process may use the event channel at

any given time. If no process requires an event to
occur EventAck will never be taken high. Although
EventReq triggers the channel on a transition from
low to high, it must not be removed before EventAck
is high. EventReq should be low during Reset; if not
it will be ignored until it has gone low and returned
high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high
priority process is running, the maximum latency is
as described in section 3.4. Setting a high priority
task to wait for an event input is a way of interrupting
a transputer program.

Event
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns
Notes

1 ais 2 periods Tm.

EventReq

EventAck

Event Timing

9 Links

Four identical INMOS bi-directional serial links
provide synchronized communication between
processors and with the outside world. Each link
comprises an input channel and output channel.

A link between two transputers is implemented by
connecting a link interface on one transputer to a link
interface on the other transputer. Every byte of data
sent on a link is acknowledged on the input of the
same link, thus each signal line carries both data and
control information.

The quiescent state of a link output is low. Each
data byte is transmitted as a high start bit followed
by a one bit followed by eight data bits followed by
a low stop bit. The least significant bit of data is
transmitted first. After transmitting a data byte the
sender waits for the acknowledge, which consists

42

of a high start bit followed by a zero bit. The
acknowledge signifies both that a process was able
to receive the acknowledged data byte and that
the receiving link is able to receive another byte.
The sending link reschedules the sending process
only after the acknowledge for the final byte of the
message has been received.

Link performance is improved over previous
transputers by allowing an acknowledge packet to be
sent before the data packet has been fully received.
This overlapped acknowledge technique is fully
compatible with all other INMOS transputer links.

The IMS T800 links support the standard INMOS
communication speed of 10 Mbits per second. In
addition they can be used at 5 or 20 Mbits per
second. Links are not synchronised with Clockin or
ProcClockOut and are insensitive to their phases.

IMS T800 Data Sheet

Thus links from independently clocked systems may
communicate, providing only that the clocks are
nominally identical and within specification.

Links are TTL compatible and intended to be used in
electrically quiet environments, between devices on a
single printed circuit board or between two boards
via a backplane. Direct connection may be made
between devices separated by a distance of less

than 300 millimetres. For longer distances a matched
100 Ohm transmission line should be used with
series matching resistors RM. When this is done the

line delay should be less than 0.4 bit time to ensure
that the reflection returns before the next data bit is

sent.

Buffers may be used for very long transmissions. If
s0, their overall propagation delay should be stable

within the skew tolerance of the link, although the
absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial,

LinkOSpecial and Link123Special. The link 0
speed can be set independently. The table shows
uni-directional and bi-directional data rates in
Kbytes/second for each link speed; LinknSpecial

is to be read as LinkOSpecial when selecting link 0
speed and as Link123Special for the others. Data
rates are quoted for a transputer using internal
memory, and will be affected by a factor depending
on the number of external memory accesses and the
length of the external memory cycle.

Speed settings for Links

Kbytes/sec
Link Linkn Mbits
Special | Special /sec Uni Bi
0 0 10 910 1250
0 1 5 450 670
1 0 10 910 1250
1 1 20 1740 2350

Transputer family device A

LinkOut

Linkin

Linkin

LinkOut

Transputer family device B

Links Directly Connected

Transputer family device A

LinkOut

Linkin

RM

Z0 =100 ohms

Linkin

HC———_O——c—{tinkout

Zo =100 ohms

RM

Transputer family device B

Links Connected by Transmission Line

Transputer family device A
N
I/

LinkOut

Y

Linkin

Linkin

4‘

buffers

LinkOut

~

Transputer family device B

Links Connected by Buffers

43

IMS T800 Data Sheet

Link
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TJQr LinkOut rise time 20 ns
TJQf LinkOut fall time 10 ns
TJDr Linkln rise time 20 ns
TJDf Linkin fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD: 05 Mbits/S 30 ns 1
10 Mbits/S 10 ns 1
20 Mbits/S 3 ns 1
CLIZ LinkIn input capacitance @f=1MHz 7 pF
CLL LinkOut load capacitance 50 pF
RM Series resistor for 100Q transmission line 56 ohms
Notes

1 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

9
LinkOut

LinkIn

0% — —— —

Link Timing

1]2]3lals]e

7le,

1.5v — —

=

LinkOut
Latest TJIQJD
Earliest TUQJD

Buffered Link Timing

|H|L

| Data

| Ack |

Link Data and Acknowledge Packets

44

IMS T800 Data Sheet
10 Electrical specifications

10.1 DC electrical characteristics

Absolute Maximum Ratings

SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
VCC DC supply voltage 0 7.0 V 1,2,3
VI,VO Voltage on input and output pins -0.5 VCC+0.5| V 1,2,3
I Input current +25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °c)
TA Ambient temperature under bias -55 125 °c 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond
those indicated in the operating sections of this specification is not implied. Stresses greater than those listed
may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended
periods may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than
the absolute maximum rated voltages to this high impedance circuit. Reliability of operation is enhanced if
unused inputs are tied to an appropriate logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Recommended Operating Conditions

SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
VCC DC supply voltage 4.75 5.25 Vv 1
VI,VO Input or output voltage 0 VCC \Y 1,2
CL Load capacitance on any pin 50 pF
TA Operating temperature range (still air) 0 70 °c

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

45

IMS T800 Data Sheet

DC Characteristics

SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
VIH High level input voltage 2.0 VCC+0.5 \ 1,2
VIL Low level input voltage -0.5 0.8 \ 1,2
1 Input current @ GND<VI<VCC +10 pA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 \ 1,2
VOL Output low voltage @ IOL=4mA 0.4 \) 1,2
10S Output short circuit current @ GND<VO<VCC 50 mA 1,2
10Z Tristate output current @ GND<VI<VCC +10 pA | 1.2
PD Power dissipation 1.2 W [1,2,3,4
CIN Input capacitance @ f=1MHz 7 pF
01074 Output capacitance @ f=1MHz 10 pF

Notes

=

All voltages are with respect to GND.

Parameters measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. Input clock frequency = 5MHz.

2
3 Dissipation for processor operating at 20MHz.
4

Power dissipation varies with output loading and with executing program content.

10.2 Equivalent circuits

VCC

Output

Load for: R1 R2 |Equivalent load:
Link outputs 1k96 47k | 1 Schottky TTL input
Other outputs | 970R 24k | 2 Schottky TTL inputs

30pF =

GND

Diodes are 1N916

Load Circuit for AC Measurements

—li:%fi

Test point
Output under test

GND

30pF
by

Tristate Load Circuit for AC Measurements

46

IMS T800 Data Sheet
10.3 AC timing characteristics

Input, Output Edges

SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
TDr input rising edges 2 20 ns
TDf Input falling edges 2 20 ns
TQr Output rising edges 25 ns
TQf Output falling edges 15 ns
TSO0LaHZ | Address high to tristate a a+6 ns
TS0LalLZ | Address low to tristate a a+6 ns 1
Notes

1 ais T2 where T2 can be from one to four periods Tm in length. Address lines include MemnotWrDO,
MemnotRfD1, MemAD2-31.

90% — — — =\ A

10% — — — —
TDf —

90% — — — 2\

10% 2 — — —
TQf —p

Tristate Timing Relative to notMemSO0

30 — 30 Rise time
Time _| Time _]

s] Risetime pg
) —/ 207 Fall time
Fall time 1 0_/

10
/ /Skew
T T T T T 17T IIIIIIII®
40 60 80 100 40 60 80 100
Load Capacitance pF Load Capacitance pF
Typical Link Rise/Fall Times Typical EMI Rise/Fall Times

Notes

1 Skew is measured between notMemS0 with a standard load (2 Schottky TTL inputs and 30pF) and notMemS0
with a load of 2 Schottky TTL inputs and varying capacitance.

47

IMS T800 Data Sheet
10.4 Power rating
Average junction temperature T'J of the chip in °C is obtained from
TJ=TA+ (PD *6JA) (1)
where
T A = ambient temperature in °C
9J A = package junction-to-ambient thermal resistance in °C/W
PD=PINT+ PIO
PINT = ICC =V CC Watts (internal power)
PIO = power dissipation on input/output pins (application dependant)
The relationship between PD and T'J with negligible PIO is approximated by
PD = K/(TJ +273) (2)
From equations (1) and (2)
K =PDx*(TA+273)+6JAx PD? (3)
where K is a constant for a particular part. K is determined from (3) by measuring PD at

equilibrium for a known temperature TA. The values of PD and T'J can be obtained using
K to iteratively solve (1) and (2) for any value of T A.

800
Power — VCC =56V
PD -
w007 VCC =5.0V
400 VCC =4.4V
I 1 1 1 LI 1 1 1 1 1 1 1 1 1
50 -25 0 25 50 75 100 125
Ambient temperature TA °C
Typical Power Dissipation with Temperature
650 -
Power 600 —
PD - +
MW 550 - +
7 +
500 —
+
1 1 1 1 | L I L 1 1 I 1 I
15 20 25 30

Processor frequency MHz

Typical Power Dissipation with Processor Speed

48

IMS T800 Data Sheet

11 Package specifications

11.1 Pin grid array package

11.1.1 Pin grid array pinout

1 2 3 4 5 6 7 8 9 10
4 oY Y Y)
A | DoNot Link Link123 Link Link Mem
Special Special In0
B LinkO Link Link Event Mem notMem
Special Outo Out3 Req Req WrB3
Cap vce Mem Mem
c Plus In1 Config |Granted WrB1
X A P—=
Proc
D Speed | Errorin Index notMem | notMem| notMem
Select2
\§
E IMS T800
84 Pin Grid Array
Proc Top View
F | Speed |Analyse | Mem
Select1i AD31
Mem Memnot
G| apso WrDO
4 Y Y
H Mem Mem Mem vee Mem Mem Memnot
AD29 AD25 AD23 AD16 RfD1
Mem Mem
AD19 AD17
>_<>_<
Mem Mem
AD18 AD15
N A AN

IMS T800 Data Sheet

11.1.2 Pin grid array dimensions

index

a4

>
G —

«<— c —»

\L’M -’IE|<-F

109 876 5 4321

(OPEEEOEOEER)
PPOOOOOOOO
fololololololololo 0,
0]OO]

SP—

XeIToHOmmooOw>»

Millimetres Inches
DIM NOM TOL NOM TOL NOTES
A 26.924 +0.254 1.060 +0.010
B 17.018 +0.203 0.670 40.008
C 18.796 +0.203 0.740 +0.008
D 4572 +0.127 0.180 +0.005
E 3.302 +0.127 0.130 +0.005
F 0.457 +0.051 0.018 +0.002 | Pin diameter
G 1.143 +0.127 0.045 4+0.005 | Flange diameter
H 2.456 +0.278 0.097 +0.011
K 22.860 +0.254 0.900 +0.010
L 2.540 +0.127 0.100 +0.005
M 0.508 0.020 Chamfer
Package weight is approximately 7.2 grams
11.1.3 Pin grid array thermal characteristics
SYMBOL PARAMETER MIN NOM MAX | UNITS| NOTES
8JA Junction to ambient thermal resistance 35 °C/wW 1
Notes

1 Measured in still air.

50

IMS T800 Data Sheet
12 Ordering details
The following table indicates the designation of the IMS T800 speed and package selections. Speed of

Clockln is 5MHz for all parts. Processor cycle time is nominal; it can be calculated more exactly using the
phase lock loop factor PLLx, as detailed in section 7.1.

INMOS Instruction | Processor Processor
designhation throughput | clock speed | cycle time | PLLx Package
IMS T800B-G20S 10 MIPS 20 MHz 50 ns 4.0 Ceramic Pin Grid
IMS T800B-G30St 15 MIPS 30 MHz 33 ns 6.0 Ceramic Pin Grid

Notes

1 For availability contact INMOS.

51

INMOS

REPRESENTATIVES

ALABAMA
Huntsville
Macro-M arketmg Associates
205-883-9630

ARIZONA
Phoenix
Compass Marketing & Sales
602-996-0635

Scottsdale
Col ass Marketing & Sales
602-505-0202

Tucson
Compass Marketing & Sales
602-293-1220

CALIFORNIA
Santa Clara
Criterion Sales
408-988-6300

San Diego
Hadden Associates
619-565-9444

COLORADO
Wheatridge
Waugaman Associates
303-423-1020

CONNECTICUT
Brookfield
M & M Associates
203-775-6888

FLORIDA
Coral Springs
Graham Associates
305-755-6733

Indiatlantic
Graham Associates
305-773-6631

Palm Beach Gardens
Graham Associates
305-622-4049

Winter Garden
Graham Associates
305-656-9369

GEORGIA
Norcross (Atlanta)
Macro-Marketing Associates
404-662-5580

ILLINOIS
Chicago
Micro-Tex
312-382-3001

KANSAS
Kansas City
B.C. Electronic Sales
913-342-1211

Wichita
B.C. Electronic Sales
316-722-0104

MASSACHUSETTS
Needham Heights
Kanan Associates
617-443-7400

MARYLAND
Severna Park (Baltimore)
New Era Sales
301-544-4100

MINNESOTA
Edina (Minneapolis)
Mel Foster Tech Sales
612-941-9790

MISSOURI
St. Louis
B. C. Electronic Sales
314-521-6683

NEW JERSEY
Teaneck (New York City)
Technical Marketing Group
201-692-0200

NEW MEXICO
Albuquerque

Compass Marketing & Sales

505-888-0800

NEW YORK
Endwell
Tri-Tech Electronics
607-754-1094

Fayetteville
Tri-Tech Electronics
315-446-2881

Fishkill
Tri-Tech Electronics
914-897-5611

Melville
Technical Marketing Group
516-351-8833

Rochester
Tri-Tech Electronics
716-385-6500

NORTH CAROLINA
Raleigh
J&B Sales, Inc.
919-783-9440

Myrtle Beach
J & B Sales, Inc.
803-272-3475

OHIO
Beachwood

.S.l.
216-831-9555
OKLAHOMA
Tulsa

B.P. Sales
918-744-9964

OREGON
Portland
waic Technology Group
503-629-987

PENNSYLVANIA
Feasterville (Philadelphia)
Knowles Associates
215-322-7100

TEXAS
Austin
B.P. Sales
512-346-9186

Houston
B.P. Sales
713-782-4144

Richardson (Dallas)
B.P. Sales
214-234-8438

UTAH
Salt Lake City
Waugaman Associates
801-261-0802

WASHINGTON
Seattle
W3C Technology Group
206-285-0210

WISCONSIN
Waukesha (Milwaukee)
Micro-Tex
414-542-5352

CANADA
Downsview, Ontario
Har-Tech Electronics
416-665-7773

Nepean, Ontario
Har-Tech Electronics
613-726-8410

Pointe Claire, Quebec
Har-Tech Electronics
514-694-6110

InMos*

INMOS
DISTRIBUTORS

ALABAMA
Huntsville
Arrow Electronics
205-837-6955

Huntsville
Pioneer-Standard
205-837-9300

ARIZONA
Phoenix
Wyle
602-866-2888

Te
Anthem Electronics
602-966-6600

Tempe
Arrow Electronics
602-968-4800

CALIFORNIA
Calabasas

Wyle
818-880-9001
Chatsworth

Anthem Electronics
818-700-1000

Chatsworth
Arrow Electronics
818-701-7500

El Segundo

Wyle

213-322-8100

Garden Grove

Wyle 8gMicroeI(-)clronics)
714-891-1717

Irvine
Anthem Electronics
714-768-4444

Irvine
Wyle
714-863-9953

Irvine
Wyle (Military)
714-851-9953

Rancho Cordova
Wyle
916-638-5282
Sacramento

Anthem Electronics
916-922-6800

San Di
Anthem Electronics
619-453-4871

San Diego
Arrow Electronics
619-565-4800

San Diego
Wyle
619-565-9171

San Jose
Anthem Electronics
408-295-4200

Santa Clara
Wyle
408-727-2500

Sunnyvale
Arrow Electronics
408-745-6600

Tustin
Arrow Electronics
714-838-5422

COLORADO
Aurora (Denver)
Arrow Electronics
303-696-1111

(ghewood (Denver)
em Electronics
303 790-4500

Thornton (Denver)

Wyle
303-457-9953

CONNECTICUT
Meriden
Anthem-Lionex Corporation
203-237-2282

Mifford
Falcon Electronics
203-878-5272

Wallingford
Arrow Electronics
203-265-7741

FLORIDA
Ft. Lauderdale
Arrow Electronics
305-429-8200

Ft. Lauderdale
Pioneer-Standard
305-428-8877

Orlando
Pioneer-Standard
305-834-9090

Palm Bay
Arrow Electronics
305-725-1480

GEORGIA
Norcross
Arrow Electronics
404-449-8252

Norcross
Pioneer-Standard
404-448-1711

ILLINOIS
Elk Grove Village
Anthem Electronics
312-640-6066

Schaumburg (Chicago)
Arrow Electronics
312-397-3440

IOWA
Cedar Rapids
Arrow Electronics
319-395-7230

INDIANA
Indianapolis
Arrow Electronics
317-243-9353

KANSAS
Lenexa
Arrow Electronics
913-541-9542

MASSACHUSETTS
Wilmington
Anthem:-Lionex Corporation
617-657-5170

Woburn
Arrow Electronics
617-933-8130

MARYLAND
Columbia
Arrow Electronics
800-842-7769

Columbia
Anthem:-Lionex Corporation
301-995-6640

Gaithersburg
Pioneer-Standard
301-921-0660

MICHIGAN
Ann Arbor
Arrow Electronics
313-971-8220

Grand Rapids
Arrow Electronics
616-243-0912

MINNESOTA
Edina (Minneapolis)
Arrow Electronics
612-830-1800

Eden Praire
Anthem-Lionex Corporation
612-944-5454

MISSOURI
St. Louis
Arrow Electronics
314-567-6888

NORTH CAROLINA
Charlotte
Pioneer-Standard
704-527-8188

Raleigh
Arrow Electronics
919-876-3132

Winston-Salem
Arrow Electronics
919-725-8711

NEW HAMPSHIRE
Manchester
Arrow Electronics
603-668-6968

NEW JERSEY

Fairfield
Anthem-Lionex Corporation
201-227-7960

Parsippany
Arrow Electronics
201-538-0900

Mariton
Arrow Electronics
609-596-8000

NEW MEXICO
Albuquerque
Arrow Electronics
505-243-4566

NEW YORK
lauppauge
Arroevalegctronics
516-231-1000

Hauppauge
Anthem-Lionex Corporation
516-273-1660

Melville
Arrow Electronics
516-694-6800

Rochester
Arrow Electronics
716-427-0300

OHIO
Centerville (Dayton)
Arrow Electronics
513-435-5563

Columbus
Arrow Electronics
614-885-8362

Solon (Cleveland)
Arrow Electronics
216-248-3990

OKLAHOMA
Tulsa
Arrow Electronics
918-665-7700

OREGON
Beaverton
Anthem Electronics
503-643-1114

Portland
Arrow Electronics
503-684-1690

Portland
Wyle
503-640-6000
PENNSYLVANIA
Horsham
Anthem-Lionex Corporation
215-443-5150
Horsham
Pioneer-Standard
215-674-4000
Monroeville
Arrow Electronics
412-856-7000
TEXAS
Austin
Arrow Electronics
512-835-4180
Austin
Wyle
512-834-9957
Carroliton (Dallas)
Arrow Electronics
214-380-6464
Houston
Wyle
713-879-9953
Richardson (Dallas)
Wyle
214-235-9953
Houston

Arrow Electronics
713-530-4700

UTAH
Salt Lake City
Anthem Electronics
801-973-8555

Salt Lake City
Arrow Electronics
801-972-0404

Salt Lake City
Wyle
801-974-9953

WASHINGTON
Bellevue (Seattle)
Arrow Electronics
206-643-4800

Bellevue (Seattle)
Wyle
206-453-8300

Redmond (Seattle)
Anthem Electronics
206-881-0850

WISCONSIN
Brookfield (Milwaukee)
Arrow Electronics
414-792-0150

CANADA
Baxter Center , Ottawa
Future Electronics
613-820-8313

Calgary, Alberta
Future Electronics
403-235--5325

Downsview, Ontario
Future Electronics
416-638-4771

Pointe Claire, Quebec
Future Electronics
514-694-7710

Vancouver, B.C.
Future Electronics
604-438-3321

INMOS SALES
OFFICES

CALIFORNIA
SantaClara
INMOS Sales
408-727-7771

Santa Ana
INMOS Sales
714-957-6018

COLORADO
Denver
INMOS Sales
303-252-4100

GEORGIA
Norcross
INMOS Sales
404-242-7444

MASSACHUSETTS
Westborough
INMOS Sales
617-366-4020

MARYLAND
Columbia (Baltimore)
INMOS Sales
301-995-6952

MINNESOTA
Minneapolis
INMOS Sales
612-831-5626

TEXAS
Dallas
INMOS Sales
214-490-9522

INTERNATIONAL
Francse, Paris
INMOS SARL
(1)-4687-22-01

United Kingdom, Bristol
INMOS Limited
454-616616

West Germany
INMOS GmbH
089-319-1028

Japan, Tokyo
INMOS Japan KK.
03-505-;

August 1987

IMos

INMOS Corporation ¢ P.O. Box 16000 e Colorado Springs, CO ¢ 80935 e USA e (303) 630-4000 ¢ Easy Link 62944936

INMOS Limited e 1000 Aztec West ¢ Almondsbury e Bristol BS12 4SQ e England e Tel (0454) 616616 o TLX 851-444723

INMOS SARL ° Immeuble Monaco ¢ 7 rue Le Corbusier SILIC 219 ¢ 94518 Rungis Cedex ® France e Tel (1) 4687-22-01 ¢ TLX 201222
INMOS GmbH ¢ Danziger Strasse 2 ¢ 8057 Eching ¢ Munich ¢ West Germany ¢ Tel (089) 319-1028 ¢ TLX 522645

INMOS Japan K.K. ¢ No. 16 Annex, Room 308 ¢ 9-20 Akasaka 1-Chome e Minato-Ku/Tokyo ¢ 107 Japan e Tel (035) 052840 ¢ TWX 29507

INMOS reserves the right to make changes in specifications at any time and without notice. The information furnished by INMOS in this publication is believed to be accurate; however, no

responsibility is assumed for its use, nor for any infringements of patents or other rights of third parties resulting from its use. No licence is granted under any patents, trade marks, or other
rights of INMOS.

, inmos, IMS, and occam are trade marks of the INMOS Group of Companies.

